Chebychev interpolations of the Gamma and Polygamma Functions and their analytical properties

Karl Dieter Reinartz

May 11, 2016

in memoriam
Cornelius Lanczos[5] 1893-1974[1]

address:
Email: KD.Reinartz@T-Online.de
Kieferndorfer Weg 30, D-91315 Höchstadt, GERMANY

keywords:
Gamma function, Sterling formula, Bernoulli numbers, Chebychev approximations, Chebyshev polynomials, Shifted Chebyshev polynomials, Invers Gamma function, Psi (Digamma) function, Harmonic function, Polygamma functions, Summation/Differentiation/Multiplication of Chebyshev approximations.

Contents

1 Introduction 2

2 Chebyshev Interpolations of the Γ Function 3
 2.1 The Γ−1 Function .. 4
 2.2 The LnΓ Function .. 5

3 The Chebyshev Interpolation of the Psi(Digamma) Function 7
 3.1 Summation of the Harmonic Series 7

4 Interpolating further Polygamma Functions 7
 4.1 Summation of the higher Harmonic Series 8

5 Relations of the Shifted Chebychev Polynomials 8
 5.1 Chebychev approximation of smooth functions 8
 5.1.1 Numerical determination of the \(a_r^*\)-coefficients 9

1 http://www.youtube.com/watch?v=avSHHi9QCjA
http://www.youtube.com/watch?v=P06xt8xB5Vg
1 Introduction

The Gamma Function derived by Leonhard Euler (1729) is the generalization of discrete factorials:

\[z! = \Gamma(z+1) = \int_0^\infty t^{z-1}e^{-t}dt, \quad \Re z > 0 \quad (1) \]

The numerical evaluation is not easy. Whittaker+Watson [9] and Temme [8] give a good discussion of the \(\Gamma \) Function and several basic properties.

In contrast to that Lanczos [4] developed approximations with a restricted precision by using Chebyshev polynomials in the range \([-1..+1]\) (instead of shifted polynomials which will be used exclusively in this paper). Chebychev polynomials were introduced into numerical analysis especially by Lanczos [5] in the US since 1935 and by Clenshaw [2] in GB since 1960.

The next formula is due to James Stirling (1730)

\[\ln \Gamma(z) \sim \ln \left(\sqrt{2\pi} z^{z-\frac{1}{2}} e^{-z} \right) + \sum_{n=1}^\infty \frac{B_{2n}}{2n (2n-1)}z^{2n-1} \quad (2) \]

The \(B_{2n} \) are the Bernoulli numbers with a poor behaviour:

1, -1/30, 1/42, -1/360, 1/6, 1/5, 1/6, 1/6, 5/2730, 1/6, 1/6, 1/5, 1/6, 1/6, 1/6, 1/510, 1/6, ...

They decrease at the beginning only slowly and then grow with \((2n)!\). The complete terms in the infinite sum eq. (2) depend on \(n \) and \(z \) and grow nevertheless, especially if \(z \) is small:

1, 1/12, 1/360, 1/1260, 1/1260, 1/1188, 1/12492, 1/12492, 1/1156, 1/122400, 1/122400, ...

The summation has to stop before the terms begin to grow unrestricted. There is an optimal position depending on \(z \) where summation has to end. This problem is discussed in some detail in [3].

A further disadvantage is the low convergence of the admitted terms. In fig. 1 the problem is described in some detail depending on \(z \): fig. 1a shows the maximal number of convergent terms, fig. 1b shows the maximal achievable accuracy in decimal digits.

\[... \text{page 467} \]
2 Chebyshev Interpolations of the $Γ$ Function

The Chebyshev polynomials were derived by the Russian Mathematician P. L. Chebyshev (1821-1894) [6]. Among all normalized power polynomials of same degree they have the smallest deviation from zero in a predefined intervall. Most of their beautiful properties are described by Snyder [7] and Clenshaw [2] showing many applications to transcendental functions and differential equations.

The approximation of the $Γ$ Function is represented by

$$(z - 1)! \approx Γ(z) = \sqrt{2\pi} \cdot z^{\frac{1}{2}} \cdot e^{-z} \cdot \left[0.99999999998 + \frac{0.00029536102066}{z^7} + \frac{0.000052647439438}{z^{10}} \right]$$

the maximal relativ error(Figure 3a) is less than $8 \cdot 10^{-4}$. Using eleven coefficients for the corresponding powerseries

$$(z - 1)! \approx Γ(z) = \sqrt{2\pi} \cdot z^{\frac{1}{2}} \cdot e^{-z} \cdot \left[0.999935 + \frac{0.0845506}{z} \right.$$

$$+ \frac{0.0024711193390}{z^4} + \frac{0.000358599470338}{z^7} + \frac{0.0008333337647}{z^2} + \frac{0.0034720552506}{z^5} - \frac{0.0026788696285}{z^3} + \frac{0.000029536102066}{z^{9}} + \frac{0.000052647439438}{z^{10}} \right]$$

the maximal relativ error(Figure 3b) is less than $2 \cdot 10^{-11}$.

Figure 1: restricted summation and limited precision
Figure 2: Chebyshev coefficients Γ-function 30 digits

2.1 The Γ^{-1} Function

Figure 4 contains 53 Chebyshev coefficients of the Γ^{-1}-function for an accuracy of 30 decimal digits in the whole range $1 \leq z \leq \infty$.

$$
\frac{1}{(z-1)!} \approx \Gamma^{-1}(z) = \frac{1}{\sqrt{2\pi}} z^{\frac{1}{2}-z} e^{z} \ast \sum_{0}^{\infty} b_r T_r^*(\frac{1}{z}), \quad 1 \leq z \leq \infty
$$
With four coefficients the power series expansion is:

\[\Gamma^{-1}(z) = \frac{1}{\sqrt{2\pi}} z^{\frac{1}{2} - z} e^z \cdot \left(1.000006 - \frac{0.08354413}{z} + \frac{0.004512425}{z^2} + \frac{0.001168239}{z^3} \right) \] (9)

The maximal relative error (Figure 5) is less than \(7 \times 10^{-6} \). In contrast to that in the famous Handbook of Mathematical Functions [1], the series expansion for \(\Gamma^{-1} \) is completely wrong.

2.2 The \(\ln \Gamma \) Function

The approximation is represented by

\[\ln[(z - 1)!] \simeq \ln \Gamma(z) = \ln \left(\sqrt{\frac{2\pi}{z}} \cdot z^{\frac{1}{2} - z} \cdot e^{-z} \right) + \sum_{r=0}^{\infty} c_r T_r \left(\frac{1}{z} \right), \quad 1 \leq z \leq \infty \] (10)

Figure 6 contains the Chebyshev coefficients with a precision of 30 decimal digits for the whole range of \(1 \leq z \leq \infty \). Using only the first two coefficients and building the power series form

\[\ln \Gamma(z) = \ln \sqrt{\frac{2\pi}{z}} + \left(z - \frac{1}{2} \right) \ln(z) - z + 0.91932 + 0.081160 z \] (11)

the maximum absolute error (Figure 7a) is less than \(5 \times 10^{-4} \). Using five coefficients

\[\ln \Gamma(z) = \ln \sqrt{\frac{2\pi}{z}} + \left(z - \frac{1}{2} \right) \ln(z) - z + 0.918935 + \frac{0.0833326}{z} + \frac{0.00037082}{z^2} - \frac{0.00305155}{z^3} + \frac{0.000743418}{z^4} \] (12)

the maximum absolute error (Figure 7b) is less than \(2 \times 10^{-7} \).
r	b_r	r	b_r
0	+ 1.92058 34762 54948 20024 18291 34328	27	+ 0.00000 00000 00000 00002 45571 98296
1	- 0.03896 62376 24892 01214 15331 82954	28	- 1 33445 12573
2	+ 0.00078 30980 24559 58872 29636 11440	29	+ 46583 60719
3	+ 0.00003 65074 79093 94718 63219 85541	30	- 10869 26183
4	- 63995 52363 25099 03462 62930	31	+ 689 16332
5	+ 2508 67644 41246 12497 57714	32	+ 934 45505
6	+ 664 29088 71454 74619 02130	33	- 645 45386
7	- 164 72719 66800 61015 61714	34	+ 270 90508
8	+ 15 22654 03292 35267 51875	35	- 81 55332
9	+ 1 78294 76780 20568 75297	36	+ 14 39319
10	- 1 02239 73513 75719 08376	37	+ 2 10256
11	+ 21131 54880 28419 64665	38	- 3 35833
12	- 1579 76630 19572 63953	39	+ 1 87421
13	- 589 22900 53182 13064	40	- 74017
14	+ 294 26575 02392 08743	41	+ 21339
15	+ 71 44837 50686 73310	42	- 3194
16	+ 8 04021 40306 78275	43	- 1095
17	+ 1 79571 80338 19450	44	- 1242
18	+ 1 35094 39033 25037	45	- 684
19	+ 44531 04004 16223	46	+ 278
20	+ 9839 21502 24802	47	- 875
21	+ 244 92005 80535	48	+ 15
22	+ 681 06936 15141	49	+ 4
23	- 356 97024 27690	50	+ 5
24	+ 113 11653 97918	51	+ 3
25	- 22 20176 58614	52	+ 1
26	- 11809 99223		
3 The Chebyshev Interpolation of the Psi (Digamma) Function

This function is the first derivative of the LnΓ Function:

$$\psi(0)(z) = \psi(z) = \ln' \Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)} = \ln z - \frac{1}{2z} + \sum_{0}^{\infty} c_r^* T_r^* \left(\frac{1}{z}\right), \quad 1 \leq z \leq \infty$$ \hspace{1cm} (13)

After differentiating the sum using eq. (23) and eq. (24), \(-\frac{1}{2z}=\frac{1}{4} \left(T_0^* \left(\frac{1}{z}\right) + T_1^* \left(\frac{1}{z}\right) \right)\) has to be added. The final result is

$$\psi(0)(z) = \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} = \ln z + \sum_{0}^{\infty} \alpha_{(0)r}^* T_r^* \left(\frac{1}{z}\right), \quad 1 \leq z \leq \infty$$ \hspace{1cm} (14)

3.1 Summation of the Harmonic Series

\(-\psi(0)(1) = \gamma = 0.57721 \ 56649 \ 01532 \ 86061\) is Euler’s constant.

$$\psi(0)(n + 1) - \psi(0)(1) = H_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}, \quad n \in N$$

defines and computes the n-th harmonic number \(H_n\).

4 Interpolating further Polygamma Functions

Differentiating the result of eq. (14) as before one gets

$$\psi(1)(z) = \psi'(z) = \frac{1}{z} + \sum_{0}^{\infty} \alpha_{(0)r}^* T_r^* \left(\frac{1}{z}\right), \quad 1 \leq z \leq \infty$$ \hspace{1cm} (15)
Finally \(\frac{1}{z} = \frac{1}{2} \ast (T^*_0(z) + T^*_1(z)) \) has to be added yielding

\[
\psi^{(1)}(z) = \sum_{0}^{\infty} \alpha_{(1)r} T^*_r(z), \quad 1 \leq z \leq \infty \tag{16}
\]

The higher Polygamma Functions can be approximated applying the two step differentiation repeatedly without additional correction. Each next generated function looses about two decimal digits in precision.

4.1 Summation of the higher Harmonic Series

The general relation is:

\[
\frac{(-1)^{m+1}}{m!} \psi^{(m)}(z) = \sum_{k=0}^{\infty} \frac{1}{(z+k)^{m+1}} = \frac{1}{z^{m+1}} + \frac{1}{(z+1)^{m+1}} + \frac{1}{(z+2)^{m+1}} + ... \tag{17}
\]

and especially for \(z=n \) integer

\[
\frac{(-1)^{m+1}}{m!} [\psi^{(m)}(1) - \psi^{(m)}(n)] = \frac{1}{1^{m+1}} + \frac{1}{2^{m+1}} + \frac{1}{3^{m+1}} + ... + \frac{1}{(n-1)^{m+1}} \tag{18}
\]

and further specialized with \(m=1 \)

\[
\psi^{(1)}(1) - \psi^{(1)}(n) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + ... + \frac{1}{(n-1)^2} \tag{19}
\]

5 Relations of the Shifted Chebychev Polynomials

The Shifted Chebyshev polynomials are defined by

\[
T^*_r(z) = \cos(r\theta) \quad \begin{array}{l}
-1 \leq \cos \theta \leq +1 \\
-1 \leq T^*_r \leq +1
\end{array} \quad \begin{array}{l}
2z - 1 = \cos \theta \\
0 \leq z \leq +1
\end{array}
\]

They are power polynomials in \(z \). Their highest coefficient \(2^{r-1} \) is used for normalization.

Chebyshev proved [6] that among all normalized power polynomials of same degree (or less) they have the smallest deviation from zero in the range \(0 \leq z \leq +1 \). That makes them unique for optimal interpolation in the declared region. The ranges may be adapted by linear or even nonlinear transformations.

The polynomials for the interval \(0 \leq z \leq +1 \) are called the shifted polynomials. They are used here exclusively. Explicit expressions for the first few shifted Chebyshev polynomials are:

\[
T^*_0(z) = 1, \quad T^*_1(z) = 2z - 1, \quad T^*_2(z) = 8z^2 - 8z + 1, \quad T^*_3(z) = 32z^3 - 48z^2 + 18z - 1, ...
\]

Inversion gives:

\[
1 = T^*_0(z), \quad 2z = T^*_0(z) + T^*_1(z), \quad 8z^2 = 3T^*_0(z) + 4T^*_1(z) + T^*_2(z), \quad 32z^3 = 10T^*_0(z) + 15T^*_1(z) + 6T^*_2(z) + T^*_3(z), ...
\]

5.1 Chebychev approximation of smooth functions

\[
f(z) = \sum_{0}^{\infty} a_r T^*_r(z) = \frac{1}{2} a_0 + a_1 T^*_1(z) + a_2 T^*_2(z) + a_3 T^*_3(z) + ...
\]
5.1.1 Numerical determination of the a^*_r-coefficients

For the given function $f(z)$ the a^*_r can be determined by

$$a^*_r = \sum_{j=0}^{m} f(\cos^2(\frac{j\pi}{2m})) \cos(\frac{rj\pi}{m})$$

\(^________ \) means: terms with $j=0$ and $j=m$ must be halved and m should be chosen sufficiently large for a good approximation.

5.1.2 Summation

1. substituting the T^*-polynomials by their powerseries representations and thereafter applying the Horner Scheme or

2. it is better to use the coefficients directly: starting with a sufficiently large index n and applying recursion:

$$b^*_r = (2 * z - 1) * b^*_{r+1} - b^*_{r+2} + a^*_r, \quad b^*_{n+1} = b^*_{n+2} = 0, \quad r = n, n-1, ..., 0 \quad (22)$$

$$f(z) = \frac{1}{2}(b^*_0 - b^*_2)$$

5.1.3 Differentiation

1. In order to get $f'(z) = \sum_{0}^{n-1} a^*_r T^*_r(z)$ from eq. (20) one starts with a sufficiently large index n and applies the recursion:

$$a^*_r = a^*_{r+1} + 4 r a^*_r, \quad a^*_n = 0, \quad a^*_n+1 = 0 \quad (23)$$

and applies the recursion till $r=1$.

2. Differentiation (chainrule) of

$$f(x) = \sum_{0}^{n} a^*_r T^*_r(x) \text{ with } x = \frac{1}{2}$$

results in

$$f'(z) = -\frac{1}{z^2} \sum_{0}^{n-1} a^*_r T^*_r\left(\frac{1}{2}\right)$$

In addition to the former derivation step each coefficient of the derived form has to be multiplied by

$$-\frac{1}{z^2} = -(\frac{3}{8}T^*_0(\frac{1}{2}) + \frac{1}{2}T^*_1(\frac{1}{2}) + \frac{1}{8}T^*_2(\frac{1}{2})) \quad (24)$$

applying the multiplication rule of the next subsection.

5.1.4 Multiplication of two Chebyshev approximations

The relation

$$T^*_m(z) * T^*_n(z) = \frac{1}{2} [T^*_{m+n}(z) + T^*_{m-n}(z)] \quad (25)$$
is used for multiplying two polynomials eq. (20). The resulting polynomial has $m+n+1$ coefficients and may be further reduced in length with a minor loss in accuracy.

References

[1] Abramowitz, Milton (Hrsg.) ; Stegun, Irene A. (Hrsg.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, D.C., 1964 (National Bureau of Standards Applied Mathematics Series 55). – xiv+1046 S. – Corrections appeared in later printings up to the 10th Printing, December, 1972. Reproductions by other publishers, in whole or in part, have been available since 1965.

[2] Clenshaw, C. W.: Chebyshev Series for Mathematical Functions. London : Her Majesty’s Stationery Office, 1962 (National Physical Laboratory Mathematical Tables, Vol. 5. Department of Scientific and Industrial Research). – iv+36 S.

[3] Graham, Ronald L. ; Knuth, Donald E. ; Patashnik, Oren: Concrete Mathematics: A Foundation for Computer Science. 2nd. Reading, MA : Addison-Wesley Publishing Company, 1994. – xiv+657 S. – ISBN 0–201–55802–5

[4] Lanczos, Cornelius: A Precision Approximation of the Gamma Function. (1964)

[5] Lanczos, Cornelius ; Bennett, Dr. Albert A. (Hrsg.): Applied Analysis. Prentice Hall, Inc., 1972 (PRENTICE-HALL MATHEMATICS SERIES)

[6] Natanson, Isidor P.: Konstruktive Funktionentheorie. Akademie-Verlag Berlin, 1955

[7] Snyder, Martin A.: Chebyshev Methods in Numerical Approximation. PRENTICE-HALL, INC., 1966 (Series in Automatic Computation)

[8] Temme, Nico M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. New York : John Wiley & Sons Inc., 1996. – xiv+374 S. – ISBN 0–471–11313–1

[9] Whittaker, E. T. ; Watson, G. N.: A Course of Modern Analysis. 4th. Cambridge University Press, 1927. – Reprinted in 1996. Table errata: Math. Comp. v. 36 (1981), no. 153, p. 319.
\(r \)	\(c_r^* \)	\(r \)	\(c_r^* \)
0	+ 0.08185 98159 04678 13286 79379 08794	27	- 0.00000 00000 00000 00002 52444 70512
1	+ 0.04057 97417 47366 64225 70346 89356	28	+ 1 32814 92164
2	- 0.00040 49079 31144 69879 91516 29808	29	- 15497 24058
3	- 0.00094 88972 89378 19193 19687 07281	30	+ 1 0336 96592
4	+ 5.0879 53853 61925 40892 36122	31	- 512 94655
5	- 12.63 98282 71842 96931 39424	32	- 973 13164
6	- 734 49134 70322 01656 85808	33	+ 646 80725
7	+ 153 71553 54944 52438 97676	34	- 666 93664
8	- 12 30594 52195 28798 08799	35	+ 78 99455
9	- 2 14161 16407 73544 01689	36	- 13 34338
10	+ 1 01696 97689 38973 88713	37	- 2 41499
11	- 19745 33328 72290 64398	38	+ 3 41305
12	+ 215 14210 52726 46241	39	- 1 86412
13	+ 637 30023 89944 34722	40	+ 723
14	- 291 75788 31163 52078	41	- 20440
15	+ 67 97660 47992 56588	42	+ 2907
16	- 6 92586 21512 51366	43	+ 1180
17	+ 2 00266 46187 92255	44	- 1256
18	+ 1 57756 74519 07662	45	+ 681
19	- 4 3329 38804 96534	46	- 274
20	+ 8271 25257 24804	47	+ 82
21	- 87 83512 79129	48	- 14
22	+ 705 72119 91064	49	- 4
23	+ 354 89122 49033	50	+ 5
24	- 109 85798 10742	51	- 3
25	+ 20 73348 40963	52	+ 1
26	+ 52755 41308		
Figure 7: overall convergence

(a) absolute error using only 2 coefficients
(b) absolute error using 5 coefficients

Chebyshev coefficients

r	$a_{(0)}^r$	$a_{(0)}^r$
0	0.44099	98884
1	0.21108	63054
2	0.00912	29231
3	0.0031	64394
4	0.0001	53324
5		36953
6		34872
7		37346
8		15161
9		19235
10		59626
11		19625
12		48530
13		17755
14		18059

ψ(0)-function 20 digits

r	$a_{(0)}^r$	$a_{(0)}^r$
15	0.00000	00000
16	0.00000	00227
17		98195
18		60526
19		54435
20		62634
21		24377
22		5992
23		650
24		2388
25		199
26		718
27		20
28		3
29		1

Figure 8: The $\psi(0)$-approximation 20 digits
Chebyshev coefficients $\psi^{(1)}$-function 20 digits

r	$\alpha^{(1)}_r$	r	$\alpha^{(1)}_r$
0	0.65708	16	0.00000
1	0.43109	17	78 98169
2	0.09873	18	53 57073
3	0.00356	19	17 10043
4	0.00025	20	3 26492
5	0.911 691249	21	2479
6	3108 83744	22	27852
7	6189 17377	23	14009
8	468 49899	24	4337
9	87 01963	25	820
10	40 20193	26	21
11	7 75739	27	100
12	47235 75596	28	52
13	25200 70766	29	18
14	11306 14546	30	4
15	2679 83664		

Figure 9: The $\psi^{(1)}$-function 20 digits