Salt tolerant *Methylobacterium mesophilicum* showed viable colonization abilities in the plant rhizosphere

Dilfuza Egamberdieva, **Stephan Wirth**, **Abdulaziz A. Alqarawi**, **E.F. Abd_Allah**^{b,,*}

a Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
b Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia

Received 4 June 2015; revised 26 June 2015; accepted 28 June 2015
Available online 4 July 2015

KEYWORDS
Colonization;
Salt stress;
Pathogens;
Plant;
Antibiotic resistance

Abstract
The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of *Methylobacterium mesophilicum* and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by *M. mesophilicum* was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4×10^4 and 2.6×10^4 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by *M. mesophilicum* strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen *M. mesophilicum* on plants and their survival in harsh environmental conditions.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[*] Corresponding author.
Peer review under responsibility of King Saud University.

1. **Introduction**

The incidence of microbes with a potential risk to human health in the soil, plant and water resources has been reported previously (Berg et al., 2005; Park et al., 2005; Egamberdieva et al., 2008; Lai et al., 2011). The pink-pigmented, and
facultative methylotrophic bacteria Methylobacterium are commonly found within the natural environment such as soils, plants, lake sediments and also in association with humans (Corpe and Rheem, 1989; Green, 2001; Omer et al., 2004). Several species of Methylobacterium have been reported as causing infections in humans, such as persistent bacteremia in a child with lymphoma (Fernandez et al., 1997; Lai et al., 2011), bloodstream infections (Lai et al., 2011), peritonitis, and pneumonia (Sanders et al., 2000; Kovaleva et al., 2014).

The frequent persistence of Methylobacterium genus in the clinical surroundings has been explained by their ability to tolerate stress factors and antimicrobials (Yano et al. 2013; Kovaleva et al., 2014). The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals (Lederberg, 1997). There are several reports on the Methylobacterium spp. isolated from various natural environments i.e., plant leaves, roots (Green, 2001; Omer et al., 2004), and nodules (Sy et al., 2001). Ivanova et al. (2001) found Methylobacterium spp. on plant phyllosphere and in plant rhizosphere. The endophytic Methylobacterium mesophilicum was isolated from citrus plants (Gai et al., 2009). Methylobacterium nodulans from the rhizosphere of crotalaria podocarpa and Methylobacterium oryzae from rice stem and leaf (Yim et al., 2010). The improved plant growth, yield, and nodulation of leguminous plants by Methylobacterium species have been reported by several authors (Sy et al., 2001; Radha et al., 2009). However, there are few studies available on the biology of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental conditions. In the present study we investigated the tolerance of M. mesophilicum strain to salinity stress and their colonization abilities in the rhizosphere and phyllosphere of cucumber, tomato and paprika grown under severe drought and salt stress conditions.

2. Material and methods

2.1. Bacterial strain and growth characters

The strain M. mesophilicum previously isolated from the root of wheat was obtained from the National Culture Collection of Uzbekistan. The strain was grown on ammonia mineral salt (AMS) medium which contains methanol as a sole carbon source at 28 °C (Whittenbury et al., 1970).

2.2. Characterization of strain

Carbon utilization of bacterial strain was tested in nutrient broth containing 1% of d-glucose, d-sucrose, d-Xylose, l- Arabinose, Fructose, d-mannitol, maltose, glycerol, and methanol (Cowen, 1974). The method of Castric (1975) was used to determine the HCN production by bacterial strain, lipase activity was investigated by Howe and Ward (1976) using Tween lipase indicator assay, and protease activity by methods of Brown and Foster (1970). The production of glucanase was determined using glucan substrate lichenan (Walsh et al., 1995), whereas cellulase activity using substrate carboxymethylcellulose (Hankin and Anagnostakis, 1977).

The salt tolerance of bacterial strain was tested in Luria–Bertani (LB) medium supplemented with 0–6% of NaCl.

2.3. Antibiotic resistance patterns

Antibiotic resistance of M. mesophilicum strain against the antibiotics of human and veterinary significance was analysed using a modified Kirby–Bauer disc-diffusion method (Bauer et al., 1966).

In vitro susceptibilities of M. mesophilicum to Ampicillin (AMP, 10 μg), Amoxicillin/Clavulanic acid (AMC/20 + 10 μg), Penicillin (PEN, 10 μg), Chloramphenicol (CLR/30 μg), Cefotaxime (CTX/30), Tetracycline (TET/30 μg), Streptomycin (STR/100 μg), Erythromycin (ERY/15 μg), Neomycin (NEOM/100 μg), and Gentamicin (GEN/10 μg) were determined using the Neo-Sensitab (Rosco Diagnostica A/S) antibiotic discs. The Mueller–Hinton broth (Difco Laboratories, Detroit, MI) used to culture bacteria for 24 h and 100 μl of cell suspension plated on agar plate. The antibiotic discs (6 mm diameter) were placed on the agar surface. Antibiotic effectiveness against bacteria was determined after two days of incubation at 28 °C by measuring the zones of inhibition around the discs. The resistance to antibiotics was analysed according to the National Committee for Clinical Laboratory Standards guidelines (NCCLS, 2001).

2.4. Plant associated traits

The antagonistic potential of experimental bacterial strain was carried out using the triple layer agar method (Herr, 1959) against some plant pathogenic fungi (Fusarium oxysporum Schlecht. ex Fr., F. solani [Mart.] Sacc., Gaumannomyces graminis var. tritici, Pythium ultimum var. ultimum, Alternaria alternata [Fr.] Keisler, Botrytis cinerea Pers). The production of indole 3-acetic acid (IAA) was determined spectrophotometrically according to the method of Bano and Musarrat (2003).

2.5. Colonization in the rhizosphere

The colonization abilities of bacterial strain in the rhizosphere of cucumber (Cucumis sativus), tomato (Solanum lycopersicum) and paprika (Capsicum annuum) were studied in gnotobiotic sand tubes (25 mm in diameter, 200 mm in length) as described by Simons et al. (1996), containing sand and vermiculite (1:1) soaked with diluted nitrogen-free Jensen nutrient solution supplemented with 100 mM NaCl. The seeds of cucumber, tomato and paprika were sterilized and treated with the overnight cultured bacterial strain (10⁹ cells/ml) suspension and were planted into sterile glass tubes, one seed per tube with ten replicates. The seedlings were grown in a climate controlled plant growth chamber with a 16-h light period at 22 °C and an 8-h dark period at 16 °C. After 15 days, 1 cm root tip was cut, vortexed and diluted suspension (10⁻³ and 10⁻⁴) was spread on agar plates. After three days bacterial colonies were counted and colony forming units (CFU per 1 cm of root tip) were enumerated.

2.6. Survival in the plant and soil

The bacterial strain of M. mesophilicum plated on LB agar medium amended with 200 μg/ml rifampicin for obtaining antibiotic resistance mutants. The sterilized seeds of tomato, cucumber and paprika were inoculated with bacterial
Colonization abilities of *Methylobacterium mesophilicum* in the plant rhizosphere

We have also determined salt stress tolerance of *M. mesophilicum* and its survival after inoculation onto plants. The plants are colonized by various bacterial species including beneficial, parasitic, and pathogenic bacteria such as *Arthrobacter*, *Bacillus*, *Enterobacter*, *Mycobacterium*, *Pseudomonas*, *Stenotrophomonas*, and *Staphylococcus* (Sessitsch et al., 2004; Egamberdiyeva, 2005; Egamberdiyeva, 2008). The opportunistic pathogen *M. mesophilicum* is able to colonize rhizosphere of cucumber, tomato and paprika grown in both normal and salinity conditions.

We showed here that the opportunistic pathogen *M. mesophilicum* was able to colonize rhizoplane and in the phyloplane of tomato. In other report *Methylobacterium* sp. strain NPBM-SB3, isolated from *Sesbania rostrata* stem nodules was able to colonize in the rhizosphere of rice (Senthilkumar et al., 2009).

We have also determined salt stress tolerance of *M. mesophilicum* and its survival after inoculation onto plants. The...
strains *M. mesophilicum* demonstrated a high tolerance to salt stress up to 6%, and survive in soil, root and leaves regardless of the plant type. The rhizosphere of tomato and cucumber was more colonized by introduced strain compared to paprika grown in saline soil. The stress tolerance of bacterial strains has been shown to play an important role in adaptation of strains to the ecological stressed factors (McArthur and Tuckfield, 2000; Kummerer, 2004). According to Bouma and Lenski (1988) bacterial resistances to antibiotics are one of the key factors regulating tolerance to harsh environmental conditions. The plant roots, which are rich in nutrients also attract pathogens (Roberts et al., 2000; Ji and Wilson, 2002), where they may enrich and compete with the indigenous microflora for available carbon sources (Gilbert et al., 1993; Jablasone et al., 2005). We found that *M. mesophilicum* strain utilizes various carbon sources such as glucose, sucrose, xylose, arabinose, mannitol, glycerol, and methanol. The strain showed multidrug resistance to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, Neomycin, Penicillin. The persistence of antibiotic resistance bacteria in ground water, soil, and plants is a growing public health concern, because of possible further increase in their incidence rate into the environments (McKeon et al., 1995).

The opportunist pathogenic bacteria can function also as a plant beneficial microbe, through their production of biological active compounds. *M. mesophilicum* was shown to produce IAA and several fungal cell wall degrading enzymes, which might explain the capacity of this strain to stimulate plant growth and protect them from various fungal pathogens. Some *Methylobacterium* isolates are able to synthesize plant growth regulators like zeatins, cytokinins and auxins (Ivanova et al., 2000,2001; Lidstrom and Chistoserdova, 2002).

Table 1

Plants	Soil	Rhizosphere	Phyllosphere
Cucumber	182.5 a	1460.0 b	48.0 a
Tomato	265.0 b	2130.0 c	110.0 b
Paprika	124.4 a	987.0 a	24.0 a

5. Conclusion

This study provides background information on the behaviour of opportunistic pathogen *M. mesophilicum* on plants and their survival in harsh environmental conditions. The salt tolerance and antibiotic resistance abilities of the strain allow competing with the indigenous microbes and persisting in the rhizosphere and phyllosphere of plants.

Acknowledgement

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group No. (RG 1435-014).

References

Bano, N., Musarrat, J., 2003. Characterization of a new *Pseudomonas aeruginosa* strain NJ-15 as a potential biocontrol agent. Curr. Microbiol. 46, 324–328.

Bauer, A.W., Kirby, M.M., Sherris, J.C., Truck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.

Berg, G., Eber, L., Hartmann, A., 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7, 1673–1685.

Berg, G., Egamberdieva, D., Lugtenberg, B., Hagemann, M., 2010. Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by *Stenotrophomonas*. In:
Colonization abilities of Methylobacterium mesophilicum in the plant rhizosphere

Seckbach, J., Grube, M. (Eds.), Symbioses and Stress, Cellular Origin, Life in Extreme Habitats and Astrobiology, 17(4). Springer, Netherlands, pp. 445–460.

Bouma, J.E., Lenski, R.E., 1988. Evolution of a bacteria/plasmid association. Nature 335, 351–352.

Brown, M.R., Foster, J.H., 1970. A simple diagnostic milk medium for Pseudomonas aeruginosa. J. Clin. Pathol. 23, 172–177.

Castric, P.A., 1975. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can. J. Microbiol. 21, 613–618.

Corpe, W.A., Rheem, S., 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62, 243–249.

Cowen, S.T., 1974. Cowen and Steel’s Manual for the Identification of Medical Bacteria, second ed. Cambridge University Press.

Egamberdieva, D., 2012. Colonisation of Mycobacterium phlei in the rhizosphere of wheat grown under saline condition. Turk. J. Biol. 36, 487–492.

Egamberdieva, D., Kamilova, F., Validov, S.H., Gafurova, L., Kucharová, Z., Lugtenberg, B., 2008. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10, 1–9.

Egamberdieva, D., 2005. Plant growth promoting rhizobacteria isolated from calcisol in a semiarid region of Uzbekistan: biochemical characterisation and effectiveness. Plant Nutr. Soil Sci. 168, 94–99.

Egamberdieva, D., Hoflich, G., 2002. Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. J. Plant Growth Regul. 38, 219–222.

Fernandez, M., Dreyer, Z., Hockenberry-Eaton, M., Baker, C.J., 1997. Methylobacterium mesophilica as a cause of persistent bacteremia in a child with lymphoma. Pediatr. Infect. Dis. J. 16 (10), 1007–1009.

Gai, C.S., Lacava, P.T., Quecine, M.C., Aurici, M.C., Lopes, J.R.S., Araújo, W.L., Miller, T.A., Azevedo, J.L., 2009. Transmission of Methylobacterium mesophilicum by Bucephalangia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J. Microbiol. 47, 448–454.

Gilbert, G.S., Parke, J.L., Clayton, M.K., Handelsman, J., 1993. Effects of an introduced bacterium on bacterial communities on roots. Ecology 74, 840–854.

Green, P.N., 2001. Methylobacterium. In: Dworkin, M. (Ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Springer, New York.

Hankin, L., Anagnostakis, S.L., 1977. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of microorganisms. J. Gen. Microbiol. 98, 109–115.

Herr, J.L., 1959. A method of assaying soils for numbers of enteric bacteria. J. Gen. Microbiol. 19, 239–249.

Howe, T.G., Ward, J.M., 1976. The utilization of tween 80 as carbon source by Pseudomonas. J. Gen. Microbiol. 2, 234–235.

Ivanova, E.G., Doronina, N.V., Shepelilavskova, A.O., Laman, A.G., Brovko, F.A., Trotsenko, Y.A., 2000. Facultative and obligate aerobic methylotrobes synthesize cytokinins. Mikrobiologiya 69, 764–769 (In Russian.)

Ivanova, E.G., Doronina, N.V., Trotsenko, Y.A., 2001. Aerobic methylotrobes are capable of synthesizing auxins. Microbiology 70, 392–397.

Jablonsone, J., Warriner, K., Griffiths, M., 2005. Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int. J. Food Microbiol. 99, 7–18.

Ji, P., Wilson, M., 2002. Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Appl. Environ. Microbiol. 68, 4383–4389.

Kovaleva, J., Degener, J.E., van der Mei, H.C., 2014. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol. 52 (5), 1317–1321.

Kummerer, K., 2004. Resistance in the environment. J. Antimicrob. Chemother. 54, 311–320.

Lai, C.C., Cheng, A., Liu, W.L., Tan, C.K., Huang, Y.T., Chung, K.P., Lee, M.R., Hsueh, P.R., 2011. Infections caused by unusual Methylobacterium species. J. Clin. Microbiol. 49 (9), 3329–3331.

Lederberg, J., 1997. Infectious disease as an evolutionary paradigm. Emerg. Infect. Dis. 3, 417–423.

Lidstrom, M.E., Chistoserdova, L., 2002. Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol. 184, 1818.

McArthur, J.V., Tuckfield, R.C., 2000. Resistance among stream bacteria: effects of industrial pollution. Appl. Environ. Microbiol. 66, 3722–3726.

McKeon, D.M., Calabrese, J.P., Bissonnette, G.K., 1995. Antibiotic resistant gram-negative bacteria in rural groundwater supplies. Water Res. 29, 1902–1908.

NCCLS, 2001. National Committee for Clinical Laboratory Standards. Performance standard for antimicrobial susceptibility testing. Eleventh informational supplement. Document M100–S10. NCCLS, Wayne, PA, USA, 2001.

Omer, Z.S., Tombolini, R., Gerhardtson, B., 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 47, 319–326.

Park, M.S., Jung, S.R., Lee, M.S., Kim, K.O., Do, J.O., Lee, K.H., Kim, S.B., Bae, K.S., 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43, 219–227.

Poonguzhali, S., Madhayian, M., Yim, W.J., Kim, K.A., Sa, T.M., 2008. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomense and its persistence in rhizosphere. Appl. Microbiol. Biotechnol. 78 (6), 1033–1043.

Radha, T.K., Savalgi, V.P., Alagawadi, A.R., 2009. Effect of methylotrophs on growth and yield of soybean (Glycine max L.) Merrill. Karnataka J. Agric. Sci. 22, 118–121.

Roberts, D.P., Dery, P.D., Yuvel, I., Buyer, J.S., 2000. Importance of pH for rapid growth of Enterobacter cloacae during colonization of crop seed. Appl. Environ. Microbiol. 66, 87–91.

Sanders, J.W., Martin, J.W., Hooke, M., Hooke, J., 2000. Methylobacterium mesophilicum infection: case report and literature review of an unusual opportunistic pathogen. Clin. Infect. Dis. 30, 936–938.

Senthilkumar, M., Madhayian, M., Sundaram, S., Kannaiyan, S., 2009. Inter-cellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol. Res. 164, 92–104.

Sessitsch, A., Reiter, B., Berg, G., 2004. Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting abilities. Can. J. Microbiol. 50, 239–249.

Simons, M., van der Bij, A.J., Brand, I., de Weerdt, L.A., Wijffelman, N.C., van der Bij, A.J., Brand, I., de Weger, L.A., Wijffelman, N.C., Simons, M., van der Bij, A.J., Brand, I., de Weerdt, L.A., Wijffelman, N.C., 2004. Plant colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomense and its persistence in rhizosphere. Appl. Microbiol. Biotechnol. 78 (6), 1033–1043.

Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., De, L., Prin, S., Simons, M., van der Bij, A.J., Brand, I., de Weerdt, L.A., Wijffelman, N.C., 2004. Plant colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomense and its persistence in rhizosphere. Appl. Microbiol. Biotechnol. 78 (6), 1033–1043.

Walsh, G.A., Murphy, R.A., Killeen, G.F., Headon, D.R., Power, R.F., 1995. Technical note: detection and quantification of Enterobacter cloacae during colonization of crop seed. Appl. Environ. Microbiol. 66, 87–91.

Whittenbury, R., Phillip, K.C., Wilkinson, J.F., 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61, 205–217.
Yano, T., Kubota, H., Hanai, J., Hitomi, J., Tokuda, H., 2013. Stress tolerance of Methylobacterium biofilms in bathrooms. Microbes Environ. 28, 87–95.

Yim, W.J., Poonguzhali, S., Deka Boruah, H.P., Palaniappan, P., Sa, T.M., 2010. Colonization pattern of gfp tagged Methylobacterium suomien on rice and tomato plant root and leaf surfaces. In: 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia.