Identification and Safety Assessment of Goods from Polystyrene

Abstract: It is established that the studied samples of polystyrene goods contain different types of organic and macromolecular structures. The ratios of substances in the composition of polyethylene materials were identified using the methods of IR spectroscopy, viscosimeter, density and PTR.

Key words: Commercial nomenclature of foreign economic activity, classification, polyolefin, IR spectroscopy, viscosimeter, density and PTR.

Language: English

Citation: Khamrakulov, G., Sarimsakov, A., Khamrokulov, M., & Abdulakimov, I. (2020). Identification and safety assessment of goods from polystyrene. ISJ Theoretical & Applied Science, 10 (90), 301-306.

Soi: http://s-o-i.org/1.1/TAS-10-90-51 Doi: https://dx.doi.org/10.15863/TAS.2020.10.90.51

Scopus ASCC: 2200.

Introduction

Goods manufactured by the chemical and as well as with the related industries have more significant share of products and usually are the subject of export-import trade operations. There are raw materials and various substances among them which are used in industrial production, as well as a large number of industrial and domestic products. In the commodity nomenclature of foreign economic activity of the Republic of Uzbekistan, these goods are concentrated in sections V-VII (groups 25-40).

The polystyrene which has been researched is classified in heading 3903 TN [1].
This heading also covers polystyrene and styrene copolymers. The most important copolymers of styrene are copolymers of styrene acrylonitrile (SAN), copolymers of acrylonitrile butadiene styrene (ABS), copolymers of styrene butadiene. Most copolymers of styrene and butadiene with a high content of butadiene meet the requirements of note 4 to group 40 and therefore are included in group 40 as synthetic rubber. [1]

In the examination of these materials a large role belongs to their identification. This is important not only for raw materials and semi-finished products, but also for finished products, since they are all characterized by a diverse composition.

Due to its valuable properties, polystyrene is used to produce a wide range of consumer goods. Like hard plastic, it is often used in products requiring transparency, such as food packaging and laboratory glassware. In combination with various dyes, additives or other plastics, polystyrene is used for the manufacture of appliances, electronics, automotive parts, toys, garden pots and other equipment.

2 MATERIAL AND METHODS

Polystyrene is also converted into a foam called polystyrene foam (EPS) or extruded polystyrene (XPS), which is valued for its insulating and cushioning properties. Expanded polystyrene can contain more than 95 percent of air and is widely used for insulation of homes and household appliances, lightweight protective packaging, surfboards, packaging for catering and food products, automotive parts, road stabilization systems and etc.

Non-foamed polystyrene is a colorless, transparent thermoplastic material that is widely used in the electrical and radio industries. It is also used in packaging, for example, food and cosmetics. It is also used in the manufacture of toys, watch cases and phonograph records.

Styrene and acrylonitrile (SAN) copolymers, which have high tensile strength, are well formed and have high chemical resistance, are used to make cups and glasses, typewriter keys, refrigerator parts, oil filter containers and some items of kitchen equipment. Copolymers of acrylonitrile, butadiene and styrene (ABS), which have high impact resistance and weather resistance, are used in the manufacture of parts and auxiliary parts of vehicle bodies, refrigerator doors, telephones, bottles, shoe heels, cases and cases of various apparatus and equipment, water pipes, building panels, ships, etc.

The problems of the classification of goods in accordance with the commodity nomenclature of foreign economic activity are common to all types of products. However, it is worth noting that when assigning certain types of goods to high-tech industries (chemical products) to a certain Harmonized system (HS) code, experts have additional difficulties due to the need to use special technological knowledge, which leads to errors in determining the subheading of the goods. [5]

Polystyrene is classified on several bases (Table 1). [2]

### Table 1.

| By stereoisomer | By the method of obtaining | By appointment |
|-----------------|----------------------------|---------------|
| 1. Atactic      | 1. emulsion polystyrene (PSE) | 1. high impact polystyrene |
| 2. Isotactic    | 2. suspension polystyrene (PSS) | 2. transparent or general purpose polystyrene |
| 3. Syndiotactic | 3. block polystyrene (PSB)     | 3. extruded polystyrene foam |
Nowadays there are several varieties of polystyrene and all of them have the same formula. The nature of the spatial arrangement of benzene rings relative to the molecular chain distinguish: (table 2)

- atactic (amorphous) polystyrene;
- isotactic polystyrene;
- syndiotactic polystyrene.

### Table 2. Physical and chemical and thermal properties of atactic, isotactic and syndiotactic polystyrene

| Name            | $T_m$ °C (melting) | The density of crystals, g/cm³ | Molecular weight distribution range, $\times 10^3$ | $T_g$ °C (glass transition) |
|-----------------|--------------------|--------------------------------|--------------------------------------------------|-----------------------------|
| Isotactic PS     | 240                | 1,111                          | 150-710 (Toluene, 30 °C)                          | ~90                         |
| Syndiotactic PS  | 270                | 1,03                           | 150-710 (Toluene, 30 °C)                          | ~90                         |
| Atactic PS       | 190-230            | -                              | 30-700 (benzene, 25 °C) 10-1600 (Toluene, 25 °C) | ~90                         |

The test samples were taken in the form of granules. Using UR spectroscopic analysis, PS-525 polystyrene grades (OAO Nizhnekamsk Oilchemistry) were studied (Fig. 1).

Grade 525 - polystyrene for the manufacture of injection molded products and the production of coatings by joint extrusion. Designed for the manufacture of medical and laboratory products, cups and jewelry boxes. The melt rheology of the present polymer allows the coating of cups, plates and other disposable tableware. [3]

Using the Fourier method, IR spectrometry was used to identify the functional groups of isotactic polystyrene (Fig. 1). IR spectra were recorded and processed on a Perkin Elmer Spectrum Version 10.4.3 IR Fourier spectrometer with a resolution of 4 cm⁻¹ in the frequency range from 4000 to 400 cm⁻¹.
Impact Factor:

| Journal  | Impact Factor |
|----------|---------------|
| ISRA (India) | 4.971         |
| SIS (USA)   | 0.912         |
| ICV (Poland) | 6.630         |
| ISI (Dubai, UAE) | 0.829         |
| РИНЦ (Russia) | 0.126         |
| PIF (India)  | 1.940         |
| GIF (Australia) | 0.564         |
| ESJI (KZ)    | 8.997         |
| JIF          | 1.500         |
| SIS (USA)    | 0.912         |
| РИНЦ (Russia) | 0.126         |
| IBI (India)  | 4.260         |
| JIF          | 1.500         |
| SJIF (Morocco) | 5.667         |
| OAJI (USA)   | 0.350         |

3 RESULTS ACHIEVED

Table 3. Characteristic frequencies for some functional groups [4]

| Frequency range (cm⁻¹) | The assignment                                           |
|------------------------|----------------------------------------------------------|
| ~3400                  | OH stretching vibrations, deformation vibrations in vinyl alcohol |
| 2920-2935              | Asymmetric stretching vibrations of aliphatic CH₂ groups |
| 1580-1620              | Mostly C=C stretching vibrations of aromatic rings       |
| ~1560, ~1410          | C=O stretching symmetric and asymmetric vibrations in RCOO- |
| 1450-1470             | Deformation vibrations of aliphatic CH₂CH₂ groups        |
| ~1240                 | C=O stretching vibrations in CH₃C(O)=OR                  |
| 830-940               | Symmetric and asymmetric C-O-C stretching vibrations in aliphatic ethers |

Fig. 1. IR spectrum of PS-525 polystyrene brand
The main features of the classification of carbochain polymers in primary forms are: type of polymer, specific gravity, structure, physical properties, composition, shape and size of granules, state of aggregation, hydroxyl number, purpose.

4 DISCUSSIONS

Since the polystyrene studied in the research is a different type of polystyrene, its detailing in accordance with the stereoisomers should be performed in 11-digit numbers and not in 10-digit numbers of the commodity of goods in foreign economic activity of Republic of Uzbekistan. For this reason, it was proposed in the dissertation to clarify the commodity of goods in foreign economic activity codes for isotactic, syndiotactic, atactic and other types of polystyrene, namely a separate subsubposition of goods

As a result of studies using customs examination for polystyrene in primary forms, the following new code numbers for commodity nomenclature of foreign economic activity of the Republic of Uzbekistan are recommended. (table 4).

| Recommended product codes for the Commodity Nomenclature of Foreign Economic Activity | Name                     |
|-------------------------------------------------------------------------------------|--------------------------|
| 39031100091                                                                         | Isotactic PS             |
| 39031100092                                                                         | Syndiotactic PS          |
| 39031100093                                                                         | Atactic PS               |
| 39031100099                                                                         | other types of polystyrene |

Classification and coding systems for goods are necessary for the automated processing of product information in various fields of activity, for the study of consumer properties, the safety and quality of goods, the accounting and planning of goods turnover, the improvement of the standardization system for product certification and marketing research.

The safety of polystyrene, especially when it and its derivatives are used in the food industry as packaging material, is primarily assessed by the amount of residual monomer in the structure of polystyrene. This is due to the fact that polystyrene gets through a polymerization reaction of a monomer - styrene in a liquid state having a sufficiently high boiling point. Often, the polymerization reaction is carried out at a temperature below its boiling point and, as a result, a certain amount of styrene monomer remains in the polystyrene structure. Often this amount of styrene is below the maximum allowable concentration (table 5.). However, given the high toxicity of styrene, it is necessary to strictly control its concentration in polystyrene products, depending on the areas of practical application and operating conditions. Polystyrene is often used as a disposable food package, such as disposable tableware and food packaging containers. At the same time, if packaged food products contain water, oils, fats and protein products with a limited shelf life, then the possibility of migration of styrene into food products into water of low rate of migration is excluded. [6]

| Name of material          | Controlled indicators | Allowable migration, mg/l | Maximum permissible concentration in water, mg/l | Hazard Class | Maximum permissible concentration in the air, mg/m³ | Hazard Class |
|---------------------------|-----------------------|---------------------------|-------------------------------------------------|--------------|---------------------------------------------------|--------------|
| block polystyrene shockproof | Styrene              | 0.010                     | -                                                | 2            | 0.002                                             | 2            |
|                           | Alcohols              |                           |                                                  |              |                                                   |              |
|                           | methyl                | 0.200                     | -                                                | 2            | 0.500                                             | 3            |
|                           | butyl                 | 0.500                     | -                                                | 2            | 0.100                                             | 3            |
|                           | Formaldehyde          | 0.100                     | -                                                | 2            | 0.003                                             | 2            |
|                           | Benzene               | -                         | 0.010                                            | 2            | 0.100                                             | 2            |
|                           | Toluene               | -                         | 0.500                                            | 4            | 0.600                                             | 3            |
|                           | Ethylbenzene          | -                         | 0.010                                            | 4            | 0.020                                             | 3            |
Stabilizers are introduced into polymeric materials in very small amounts from 0.01 to 1%. The possibility of human contact with them, as well as food, cosmetics, water, lasts throughout the life of a person. Therefore, given the wide variability of individual sensitivity to chemical agents, the danger of a number of stabilizers penetrating through damaged skin, as well as the possibility of an allergic, carcinogenic, and mutagenic effect, their choice for synthetic materials should be carried out only after appropriate hygienic assessment. [8]

Stabilizers are added to polystyrene plastics in order to inhibit their aging under operating conditions. If polymeric materials are intended for technical purposes, then there is no reason to limit the list of chemicals used as stabilizers. [9]

Under the condition of heating foodstuffs in polystyrene packaging, the rate of migration of styrene into foodstuffs increases several times and in such conditions it is not permissible to use polystyrene packaging materials. [10]

5 CONCLUSIONS
In addition to the above, upon receipt of expanded polystyrene and its larger number of copolymers of various compositions, when using plasticizers in each case, taking into account possible applications, it is necessary to develop special methods for controlling the safety of polystyrene products.

Thus, materials in contact with foodstuffs must comply with the Hygienic standard “Maximum allowable quantities of chemicals in contact with foodstuffs” according to hygienic safety indicators. The values of hygienic standards indicated in them are the main evaluation criteria when conducting studies of materials.

References:

1. (n.d.). Commodity nomenclature of foreign economic activity of the Republic of Uzbekistan (2017 version). Retrieved from http://fmc.uz/legisl.php?tnvcl2017=tnved_2017_39
2. Khamrakulov, M.G., & Askarov, I.R. (2019). 39 group of commodity nomenclature for foreign economic activity of the Republic of Uzbekistan: identification and their classification, Austrian Journal of Technical and Natural Sciences, No. 7–8 / 2019, pp. 36-44.
3. (n.d.). Retrieved from http://www.camelotplast.ru/info/vidi_polistirola_po_strukture.php#atakticheskiy_polistiro
4. (n.d.). Retrieved from https://www.nkh.ru/products/plastics/general-purpose-polystyrene/general-purpose-polystyrene-grade-525/
5. Kuptsov, A.Kh., & Zhizhin, G.N. (2001). Fourier-KR and Fourier-IR spectra of polymers (Fourier spectra of Raman scattering and infrared absorption of polymers). (p.656, pp.31-32). Moscow: Fizmatlit.
6. Khamrakulov, M.G., & Sarimsakov, A.A. (2019). Influence of the content of harmful substances to the food safety of polymer packages. Austrian Journal of Technical and Natural Sciences, No. 7–8 / 2019, pp.31-35.
7. (2017). Resolution of the Cabinet of Ministers of the Republic of Uzbekistan dated July 7, 2017
8. Khamrakulov, M., Negmatova, M., & Sarimsakov, A. (2019). Identification and safety assessment of goods from polystyrene. Kompozitsion materiallar magazine, Tashkent, №3 / 2019 art. 103-106 (02.00.00, No. 4).
9. Khamrakulov, M.G., Sayfullaeva, Z.S., & Khasanova, D. (2019). On the safety of packaging containers and utensils made of polymer material for food products. Scientific and technical journal "STANDART", Tashkent-2019, No. 1, pp. 34-37.
10. Khamrakulov, M.G., Khamrakulov, G., & Askarov, I.R. (2018). Examination of polyethylene granules by identification method. Global science and innovations 2018 - Central Asia "conference, Bobek Astana, 2018, pp. 267-269.
11. Ershov, N.P. (1988). Sostoyanie i perekhestiya razvitiya raschetno-eksperimental’nyh rabot v oblasti proektirovaniya tonkostennix konstruksiy kompozisicionix materialov. Mexanika kompozisishnix materialov, № 1, pp. 86-92.
12. Abovskiy, N.P. (1967). Rebristie obolochki. (p.61). Krasnoyarsk.