Continuous anti-forcing spectra of cata-condensed hexagonal systems

Kai Denga,b, Heping Zhanga,†

aSchool of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
bSchool of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan, Ningxia 750027, P. R. China

Abstract

The anti-forcing number of a perfect matching M of a graph G is the minimal number of edges not in M whose removal make M as a unique perfect matching of the resulting graph. The anti-forcing spectrum of G is the set of anti-forcing numbers of all perfect matchings of G. In this paper we prove that the anti-forcing spectrum of any cata-condensed hexagonal system is continuous, that is, it is an integer interval.

Key words: Perfect matching; Anti-forcing number; Anti-forcing spectrum; Hexagonal system

1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. A perfect matching or 1-factor of G is a set of disjoint edges which covers all vertices of G. Harary et al. \cite{10} proposed the forcing number of a perfect matching M of a graph G. The roots of this concept can be found in an earlier paper by Klein and Randić \cite{13}. There, the forcing number has been called the innate degree of freedom of a Kekulé structure. The forcing number of a perfect matching M of a graph G is equal to the smallest cardinality of some subset S of M such that M is completely determined by this subset (i.e., S is not contained in other perfect matchings of G). The minimum (resp. maximum) forcing number of G is the minimum (resp. maximum) value over

*Supported by NSFC (grant no. 11371180).
†Corresponding author.
E-mail address: zhanghp@lzu.edu.cn, dengkai04@126.com
forcing numbers of all perfect matchings of \(G \). The set of forcing numbers of all perfect matchings of \(G \) is called the *forcing spectrum* of \(G \) \([1]\). The sum of forcing numbers of all perfect matchings of \(G \) is called the *degree of freedom* of \(G \), which is relative to Clar’s resonance-theoretic ideals \([5]\). For more results on the matching forcing problem, we refer the reader to \([2,11,12,14,16–20,23,24,26,27]\).

In 2007, Vukićević and Trinajstić \([21]\) introduced the *anti-forcing number* that is opposite to the forcing number. The anti-forcing number of a graph \(G \) is the smallest number of edges whose removal result in a subgraph of \(G \) with a unique perfect matching. After this initial report, several papers appeared on this topic \([4,7,8,22,30]\).

Recently, Lei, Yeh and Zhang \([15]\) define the *anti-forcing number of a perfect matching* \(M \) of a graph \(G \) as the minimal number of edges not in \(M \) whose removal to make \(M \) as a single perfect matching of the resulting graph, denoted by \(af(G,M) \). By this definition, the anti-forcing number of a graph \(G \) is the smallest anti-forcing number over all perfect matchings of \(G \). Hence the anti-forcing number of \(G \) is the *minimum anti-forcing number* of \(G \), denoted by \(af(G) \). Naturally, the *maximum anti-forcing number* of \(G \) is defined as the largest anti-forcing number over all perfect matchings of \(G \), denoted by \(Af(G) \). They \([15]\) also defined the *anti-forcing spectrum* of \(G \) as the set of anti-forcing numbers of all perfect matchings of \(G \), and denoted by \(\text{Spec}_{af}(G) \). If \(\text{Spec}_{af}(G) \) is an integer interval, then the anti-forcing spectrum of \(G \) is called to be *continuous*.

Let \(M \) be a perfect matching of a graph \(G \). A cycle \(C \) of \(G \) is called an *\(M \)-alternating cycle* if the edges of \(C \) appear alternately in \(M \) and \(E(G) \setminus M \). If \(C \) is an \(M \)-alternating cycle of \(G \), then the symmetric difference \(M \triangle C := (M \setminus C) \cup (C \setminus M) \) is another perfect matching of \(G \).

A set \(A \) of \(M \)-alternating cycles of a graph \(G \) is called a *compatible \(M \)-alternating set* if any two members of \(A \) either are disjoint or intersect only at edges in \(M \). Let \(c'(M) \) denote the cardinality of a maximum compatible \(M \)-alternating set of \(G \). For a planar bipartite graph \(G \) with a perfect matching \(M \), the following minimax theorem reveals the relationship between \(af(G,M) \) and \(c'(M) \).

Theorem 1.1 \([15]\). Let \(G \) be a planar bipartite graph with a perfect matching \(M \). Then \(af(G,M) = c'(M) \).

A *hexagonal system* (or *benzenoid system*) \([6]\) is a finite 2-connected planar bipartite graph in which each interior face is surrounded by a regular hexagon of side length one. Hexagonal systems are of great important for theoretical chemistry since they are the molecular graphs of benzenoid hydrocarbons.

Let \(H \) be a hexagonal system with a perfect matching \(M \). A set of \(M \)-alternating hexagons (the intersection is allowed) of \(H \) is called an *\(M \)-alternating set*. A *Fries set* of \(H \) is a maximum alternating set over all perfect matchings of \(H \). The size of a Fries
set of H is called the Fries number of H and denoted by $Fries(H)$ \cite{9}. It is obvious that an M-alternating set of H is also a compatible M-alternating set. By Theorem \ref{thm1} $Af(H) \geq Fries(H)$. The following theorem implies that the equality holds.

Theorem 1.2 \cite{15}. Let H be a hexagonal system with a perfect matching. Then $Af(H) = Fries(H)$.

In this paper we consider the anti-forcing spectra of cata-condensed hexagonal systems. In the next section, we introduce some graph-theoretic terms relevant to our subject and give some useful lemmas. In Section 3, we prove that the anti-forcing spectrum of any cata-condensed hexagonal system is continuous. It is quite different from the case for forcing spectrum. In fact, the forcing spectra of some cata-condensed hexagonal systems have gaps (see \cite{15,26}).

2 Preliminaries and lemmas

The inner dual graph H^* of a hexagonal system H is a graph whose vertices correspond to hexagons of H, and two such vertices are adjacent by an edge of H^* if and only if they correspond to two adjacent hexagons (i.e., these two hexagons have one common edge). Then H is cata-condensed if and only if H^* is a tree \cite{3}.

We can see that edges of a cata-condensed hexagonal system H can be classified into boundary edges (edges are on the boundary of H) and shared edges (edges are shared by two hexagons of H), and all vertices of H are on the boundary (i.e., H has no inner vertices). A subgraph G' of a graph G is nice if $G - V(G')$ (the graph obtained by deleting vertices of $V(G')$ and their incident edges from G) has a perfect matching. It is well known that every cata-condensed hexagonal system H has perfect matchings and every cycle in it is nice \cite{5}, so each hexagon of H can be M-alternating with respect to some perfect matching M of H.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1}
\caption{A cata-condensed hexagonal system with one branched hexagon and three kinks.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2}
\caption{The linear chain with five hexagons.}
\end{figure}
A hexagon s of a cata-condensed hexagonal system H has one, two, or three neighboring hexagons. s is called *terminal* if it has one neighboring hexagon, and *branched* if it has three neighboring hexagons. s has exactly two neighboring hexagons is a *kink* if s possesses two adjacent vertices of degree 2, is *linear* otherwise. An illustration is given in Fig. 1. A cata-condensed hexagonal system with no branched hexagons is called a *hexagonal chain*. A hexagonal chain with no kinks is called a *linear chain*, an example is shown in Fig. 2.

A linear chain B contained in a cata-condensed hexagonal system H is called *maximal* if B is not contained in other linear chains of H. For example, see Fig. 1. B_1 and B_2 are two maximal linear chains.

Let B be a maximal linear chain of a cata-condensed hexagonal system H. We draw a straight line l passing through the two centers of the two terminal hexagons of B. Let E be the set of those edges which intersecting l. By the Lemma 2.1 in [28], the following lemma is immediate.

Lemma 2.1. Let M be any perfect matching of H. Then $|M \cap E| = 1$.

Let \mathcal{A} be a compatible M-alternating set with respect to a perfect matching M of a planar bipartite graph G. Two cycles C_1 and C_2 of \mathcal{A} are *crossing* if they share an edge e in M and the four edges adjacent to e alternate in C_1 and C_2 (i.e., C_1 enters into C_2 from one side and leaves from the other side via e). \mathcal{A} is *non-crossing* if any two cycles in \mathcal{A} are not crossing. Lei, Yeh and Zhang [15] proved that any compatible M-alternating set can be improved to be a non-crossing compatible M-alternating set with the same cardinality. Let H be a cata-condensed hexagonal system with a perfect matching M. For a cycle C of H, let $h(C)$ denote the number of hexagons in the interior of C. Then we can choose a maximum non-crossing compatible M-alternating set \mathcal{A} such that $|\mathcal{A}| = af(H, M)$ and $h(\mathcal{A}) = \sum_{C \in \mathcal{A}} h(C)$ ($h(\mathcal{A})$ is called h-*index* of \mathcal{A} [15]) is as small as possible. By using those notations, we give the following lemma.

Lemma 2.2. \mathcal{A} contains all M-alternating hexagons of H, and any two non-hexagon cycles of \mathcal{A} have at most one common edge in M and are interior disjoint (i.e., have no common areas).

Proof. Let s be any M-alternating hexagon of H. Suppose $s \notin \mathcal{A}$. By the maximality of $|\mathcal{A}|$, $\mathcal{A} \cup \{s\}$ is not a compatible M-alternating set. So there is a cycle $C \in \mathcal{A}$ which is not compatible with s. Since any two M-alternating hexagons must be compatible, C is not a hexagon of H. s is in the interior of C since H is cata-condensed. We claim that $(\mathcal{A} \setminus \{C\}) \cup \{s\}$ is a compatible M-alternating set. Otherwise there is a cycle $C' \in \mathcal{A} \setminus \{C\}$ such that C' and s are not compatible. Hence s is in the interior of C'. It implies that C and C' are either not compatible or crossing, a contradiction.
Therefore, \((A \setminus \{C\}) \cup \{s\}\) is a maximum non-crossing compatible \(M\)-alternating set with smaller \(h\)-index, a contradiction. Hence \(s \in A\).

Let \(C_1\) and \(C_2\) be two non-hexagon cycles in \(A\). First we prove that \(C_1\) and \(C_2\) are interior disjoint. If not, without loss of generality, we may suppose \(C_1\) is contained in the interior of \(C_2\) since \(C_1\) and \(C_2\) are not crossing. Then there is an \(M\)-alternating hexagon \(s\) in the interior of \(C_1\) since \(C_1\) is \(M\)-alternating [25, 29]. By the above discussion, we have that \(s \in A\) and \(s\) is compatible with both \(C_1\) and \(C_2\). Since \(H\) is cata-condensed, \(C_1\) must pass through the vertices of \(s\) and the three edges of \(s\) in \(M\), but not the other three edges of \(s\). Hence \(C_1\) must pass through the six edges going out of \(s\). Similarly, \(C_2\) must pass through the six edges going out of \(s\). It implies that \(C_1\) and \(C_2\) are not compatible, a contradiction.

Next, we prove that \(C_1\) and \(C_2\) have at most one common edge in \(M\). If \(C_1\) and \(C_2\) have at least two common edges in \(M\), then there must generate inner vertices in \(H\), a contradiction.

Lemma 2.3. Let \(H\) be a cata-condensed hexagonal system with at least two hexagons. Then \(af(H) < F\text{ries}(H)\).

Proof. By Theorem 1.2, \(Af(H) = F\text{ries}(H)\). It is sufficient to prove that \(af(H) < Af(H)\). Let \(s\) be a terminal hexagon of \(H\). Then \(s\) has a neighboring hexagon \(s'\) since \(H\) has at least two hexagons. Let \(e\) be the sheared edge of \(s\) and \(s'\). Since \(s'\) is nice, there is a perfect matching \(M\) of \(H\) such that \(s'\) is \(M\)-alternating and \(e \in M\). Note that \(s\) is also \(M\)-alternating. So \(F = M \Delta s\) is a perfect matching of \(H\) such that \(s\) is \(F\)-alternating. Let \(A\) be a maximum non-crossing compatible \(F\)-alternating set with smallest \(h\)-index. By Lemma 2.2 we have that \(s \in A\). We can see that no cycle of \(A\) passing through the three edges of \(s'\) not in \(M\). So \(A \cup \{s'\}\) is a compatible \(M\)-alternating set. By Theorem 1.1 we have that \(af(H) \leq |A| < |A \cup \{s'\}| \leq af(H, M) \leq Af(H)\).

3 Continuous anti-forcing spectra

Let \(a\) and \(b\) be two integer numbers, and \(a \leq b\). In the following, we use \([a, b]\) to denote the integer interval from \(a\) to \(b\).

Theorem 3.1. Let \(H\) be a cata-condensed hexagonal system. Then anti-forcing spectrum of \(H\) is continuous.

Proof. We proceed by induction on the number \(n\) of hexagons of \(H\). If \(H\) is a single hexagon, then \(\text{Spec}_{af}(H) = \{1\}\). Suppose \(n \geq 2\). Take a maximal linear chain \(B\) in \(H\) such that one end hexagon of \(B\) is a terminal hexagon of \(H\). Let \(h_0, h_1, \ldots, h_r\) \((r \geq 1)\) be hexagons of \(B\) in turn, and \(h_r\) be terminal (see Fig. 3).
If h_0 is also a terminal hexagon of H, then $H = B$ is a linear chain with $n > 1$ hexagons. We can check that $\text{Spec}_{af}(H) = [1, 2]$.

If h_0 is not terminal, then h_0 is a kink or branched hexagon of H. Let B' be the linear chain obtained from B by removing hexagon h_0 and H' the cata-condensed hexagonal system obtained from H by removing the hexagons of B' (see Fig. 3). Then H' has less than n hexagons. By the induction hypothesis, the anti-forcing spectrum of H' is continuous. By Theorem 1.2, $Af(H') = \text{Fries}(H')$. Let $af(H') = a'$. Then $\text{Spec}_{af}(H') = [a', \text{Fries}(H')]$.

Claim 1. $[a' + 1, \text{Fries}(H')] \subseteq \text{Spec}_{af}(H)$.

Since h_0 is not terminal, H' has at least two hexagons. By Lemma 2.3, $a' + 1 \leq \text{Fries}(H')$. For any $i \in [a' + 1, \text{Fries}(H')]$, we want to prove $i \in \text{Spec}_{af}(H)$. Since $i - 1 \in [a', \text{Fries}(H') - 1]$, by the induction hypothesis, there is a perfect matching M' of H' such that $af(H', M') = |A'| = i - 1 \geq 1$, where A' is a maximum non-crossing compatible M'-alternating set of H' with smallest h-index. Note that $M = M' \cup \{e_1, f_2, \ldots, f_r, g_1, g_2, \ldots, g_r\}$ is a perfect matching of H and $d_i \notin M$ for each $1 \leq i \leq r$. By Lemma 2.4, either $e_4 \in M'$ or $e_1 \in M'$.

If $e_1 \in M'$, then h_1 is M'-alternating. By Lemma 2.2, $h_1 \in A$, where A is a maximum non-crossing compatible M-alternating set of H with smallest h-index. We can see that $A \setminus \{h_1\}$ is a compatible M'-alternating set of H', and $|A| = |A \setminus \{h_1\}| + 1 \leq |A'| + 1 = i$. On the other hand, $A' \cup \{h_1\}$ is a compatible M-alternating set of H, so $i = |A'| + 1 = |A' \cup \{h_1\}| \leq |A|$, i.e., $|A| = i$. By Theorem 1.1, $af(H, M) = i \in \text{Spec}_{af}(H)$.

From now on, we suppose $e_4 \in M'$. Then $\{e_2, e_6\} \subseteq M'$. So h_0 is M'-alternating and M-alternating. By Lemma 2.2, $h_0 \in A'$ and $h_0 \in A$. See Fig. 3, $H - e_2 - e_4 - e_6$ consists of three disjoint sub-catacondensed hexagonal systems: H_1, H_2 and B' (the former two may be single edges). Note that there is a possible non-hexagon cycle Q in A which containing h_0.

If such Q exists, then Q must pass through g_1 and f_1 since Q and h_0 are compatible.
So $A \setminus \{Q\}$ is a compatible M'-alternating set of H', we have $|A \setminus \{Q\}| \leq |A'| = i - 1$. If $|A'| = |A \setminus \{Q\}|$, then $af(H, M) = |A| = i \in \text{Spec}_{af}(H)$. If $|A'| > |A \setminus \{Q\}|$, then $|A'| \geq |A|$. On the other hand, A' is also a compatible M-alternating set, so $|A'| \leq |A|$. We have $|A'| = |A| = i - 1$. Note that Q does not pass through e_3 and e_5. Let $M_1 = M \triangle h_0 \triangle h_1 \triangle \ldots \triangle h_j$ ($j = 0, 1, \ldots, r$), $Q_1 = (E(Q) \cap E(H_1)) \cup \{e_5\}$ and $Q_2 = (E(Q) \cap E(H_2)) \cup \{e_3\}$. Then Q_1 and Q_2 both are M_0-alternating cycles. We can see that $(A \setminus \{Q\}) \cup \{Q_1, Q_2, h_1\}$ is a compatible M_0-alternating set with cardinality $i+1$, so $c'(M_0) \geq i+1$. On the other hand, $c'(M_0)$ is at most $|A| + 2 = i + 1$. So $c'(M_0) = i + 1$.

Note that h_r is the unique M_r-alternating hexagon contained in B_i by Theorem 1.3 and Lemma 2.2. We have $af(H, M_r) = c'(M_r) = c'(M_0) - 1 = i \in \text{Spec}_{af}(H)$.

If such cycle Q does not exist, then there is no cycle in A which passing through the edges going out of h_0 since $h_0 \notin A$. So A is also a maximum compatible M'-alternating set on H', and $|A'| = |A| = i - 1$. Note that any cycle of $A \setminus \{h_0\}$ is completely contained in H_1 or H_2. Let i_1 (resp. i_2) be the number of cycles of A which are completely contained in H_1 (resp. H_2). Then $|A| = i_1 + i_2 + 1 = i - 1$. Since M and M_0 only differ on h_0 and $e_5 \in M_0$ (resp. $e_3 \in M_0$), the size of maximum compatible M_0-alternating set on H_1 (resp. H_2) is i_1 or $i_1 + 1$ (resp. i_2 or $i_2 + 1$). Let A_0 be a maximum compatible non-crossing M_0-alternating set of H with minimal h-index. Note that h_0 and h_1 both are M_0-alternating. By Lemma 2.2, $h_0 \in A_0$ and $h_1 \in A_0$. It implies that cycles in $A_0 \setminus \{h_0, h_1\}$ are completely contained in H_1 or H_2. Hence $i = i_1 + i_2 + 2 \leq |A_0| \leq i_1 + i_2 + 4 = i + 2$. If $|A_0| = i$, then $af(H, M_0) = i \in \text{Spec}_{af}(H)$. If $|A_0| = i + 1$, then $(A_0 \setminus \{h_0, h_1\}) \cup \{h_r\}$ is a maximum compatible M_r-alternating set with size i since M_0 and M_r only differ on B_i. So $af(H, M_r) = i \in \text{Spec}_{af}(H)$.

If $|A_0| = i + 2$, then H_1 (resp. H_2) contains exactly $i_1 + 1$ (resp. $i_2 + 1$) cycles of A_0. Let M_0' (resp. M_0'') be the restriction of M_0 to H_1 (resp. H_2). Then $af(H_1, M_0') = i_1 + 1$ (resp. $af(H_2, M_0'') = i_2 + 1$). Hence $af(H_1) \leq i_1 + 1$ (resp. $af(H_2) \leq i_2 + 1$). If $af(H_1) < i_1 + 1$ (resp. $af(H_2) < i_2 + 1$), then $i_1 \in \text{Spec}_{af}(H_1)$ (resp. $i_2 \in \text{Spec}_{af}(H_2)$) by the induction hypothesis. So there is a perfect matching F_1 (resp. F_2) of H_1 (resp. H_2) such that $c'(F_1) = i_1$ (resp. $c'(F_2) = i_2$). We can see that $M_1' = F_1 \cup (M_r \cap (E(H_1) \cup E(B'))) \cup (E(B'))$ (resp. $M_2' = F_2 \cup (M_r \cap (E(H_1) \cup E(B'))) \cup (E(B'))$) is a perfect matching of H such that $af(H, M_1') = c'(M_1') = i_1 + i_2 + 1 + 1 = i \in \text{Spec}_{af}(H)$ (resp. $af(H, M_2') = c'(M_2') = i_2 + i_1 + 1 + 1 = i \in \text{Spec}_{af}(H)$).

Now suppose $af(H_1) = i_1 + 1$ and $af(H_2) = i_2 + 1$, F' is a perfect matching of H' with $af(H', F') = a'$. Note that $F = F' \cup \{f_1, f_2, \ldots, f_r, g_1, g_2, \ldots, g_e\}$ is a perfect matching of H. By Lemma 2.2, either $e_1 \in F'$ or $e_4 \in F'$. We assert that $e_4 \in F'$. Otherwise $e_1 \notin F'$, then the restrictions F_1' and F_2' of F' to H_1 and H_2 are perfect matchings of H_1 and H_2 respectively. So $a' \geq c'(F_1') + c'(F_2') \geq af(H_1) + af(H_2) = i_1 + 1 + i_2 + 1 = i \in [a' + 1, \text{Fries}(H')], a$ contradiction. Since $e_4 \notin F'$,
\{e_2, e_6\} \subseteq F'$. So h_0 is F'-alternating, and $F' \triangle h_0$ is a perfect matching of H'. Since the restrictions of $F' \triangle h_0$ to H_1 and H_2 are perfect matchings of H_1 and H_2 respectively, $c'(F' \triangle h_0) \geq af(H_1) + af(H_2) + 1 = i + 1 \geq a' + 2$. On the other hand, by Lemma 2.2 we have that $c'(F' \triangle h_0) \leq a' + 2$. So $c'(F' \triangle h_0) = a' + 2$ and $a' + 1 = i$. Let \mathcal{A}^* be a maximum non-crossing compatible $F' \triangle h_0$-alternating set of H' with minimal h-index. Then $|\mathcal{A}^*| = c'(F' \triangle h_0) = a' + 2$. Note that $c'(F') = a'$, but $c'(F' \triangle h_0) = a' + 2$, it implies that there must be an $F' \triangle h_0$-alternating cycle C_1 (resp. C_2) of \mathcal{A}^* passing through e_5 (resp. e_3) and contained in H_1 (resp. H_2). We can see that $D = (C_1 - e_3) \cup (C_2 - e_3) \cup \{e_2, e_6, g_1, f_1, f_1', d_1\}$ is an F'-alternating cycle containing h_0, and D is compatible with each cycle of $\mathcal{A}^* \setminus \{C_1, C_2\}$. So $\{D\} \cup (\mathcal{A}^* \setminus \{C_1, C_2\})$ is a compatible F-alternating set with size i. By theorem 1.1 $af(H, F) \geq i$. On the other hand, by Theorem 1.1 and Lemma 2.2 we have $i = a' + 1 = c'(F') + 1 \geq c'(F) = af(H, F)$. Therefore, $af(H, F) = i \in \text{Spec}_{af}(H)$.

By the arbitrariness of i, we proved that $[a' + 1, \text{Fries}(H')] \subseteq \text{Spec}_{af}(H)$.

Claim 2. $a' \leq af(H)$.

Let $af(H) = a$, M be a perfect matching of H with $af(H, M) = a$. By Lemma 2.1 just one edge of $\{e_4, e_1, d_1, d_2, \ldots, d_r\}$ belongs to M. If $e_4 \in M$ or $e_1 \in M$, then the restriction M' of M to H' is a perfect matching of H'. So $a' \leq c'(M') \leq c'(M) = a$. If $d_i \in M$ ($1 \leq i \leq r$), then h_i is M-alternating. Let $M_i = M \triangle h_i \triangle h_{i-1} \triangle \cdots \triangle h_1$. Then M_i is a perfect matching of H and $e_1 \in M_i$. Note that M and M_i only differ on B'. By Lemma 2.2 $c'(M_i) \leq c'(M) + 1 = a + 1$. Since $e_1 \in M_i$, the restriction M_i' of M_i to H' is a perfect matching of H'. So $a' \leq c'(M'_i)$. Let \mathcal{A}_i' be a maximum non-crossing compatible M_i'-alternating set with minimal h-indices in H'. Then $\mathcal{A}_i' \cup \{h_1\}$ is a compatible M_i-alternating set of H since h_1 is M_i-alternating. Hence $|\mathcal{A}_i' \cup \{h_1\}| \leq c'(M_i)$. Further, $a' + 1 \leq c'(M'_i) + 1 = |\mathcal{A}_i'| + 1 \leq c'(M_i) \leq a + 1$, i.e., $a' \leq a$.

Claim 3. $\text{Fries}(H) \leq \text{Fries}(H') + 2$.

Let M be a perfect matching of H and $h'(M)$ denote the the number of M-alternating hexagons of H. Suppose $h'(M) = \text{Fries}(H)$. By Lemma 2.1 only one of $\{e_4, e_1, d_1, d_2, \ldots, d_r\}$ belongs to M. If $e_1 \in M$ or $e_4 \in M$, then the restriction M' of M to H' is a perfect matching of H'. Note that B' contains at most one M-alternating hexagon. So $h'(M) \leq h'(M') + 1 \leq \text{Fries}(H') + 1$. If $d_i \in M$ ($1 \leq i \leq r$), then h_i is M-alternating. Let $M_i = M \triangle h_i \triangle h_{i-1} \triangle \cdots \triangle h_1$. Then M_i is a perfect matching of H such that the restriction M_i' of M_i to H' is a perfect matching of H'. Since h_1 is the unique M_i-alternating hexagon contained in B', $h'(M_i) = h'(M') + 1$. Note that $h'(M_i) = h'(M)$ or $h'(M_i) = h'(M) - 1$ since B is a linear chain. If $h'(M_i) = h'(M)$, then $h'(M) = h'(M'_i) + 1 \leq \text{Fries}(H') + 1$. If $h'(M_i) = h'(M) - 1$, then $h'(M) = h'(M'_i) + 2 \leq \text{Fries}(H') + 2$.

Claim 4. If $\text{Fries}(H) = \text{Fries}(H') + 2$, then $\text{Fries}(H') + 1 \in \text{Spec}_{af}(H)$.
The proof of Claim 3 implies that if $\text{Fries}(H) = \text{Fries}(H') + 2$, then there is a perfect matching M of H with $h'(M) = \text{Fries}(H)$ such that just two adjacent M-alternating hexagons h_i and h_{i+1} ($1 \leq i < r$) contained in B'. Let $M^* = M \triangle h_{i+1} \triangle h_{i+2} \triangle \cdots \triangle h_r$. Then M^* is a perfect matching of H and h_r is the unique M^*-alternating hexagon contained in B'. By Lemma 2.2, $c'(M^*) = h'(M) - 1 = \text{Fries}(H') + 1$. By Theorem 1.1, $af(H, M^*) = \text{Fries}(H') + 1 \in \text{Spec}_{af}(H)$.

We can see that Claims 1, 2, 3 and 4 imply that there is no gap in the anti-forcing spectrum of H. □

According to Theorems 1.2 and 3.1 the following corollary is immediate.

Corollary 3.2. Let H be a cata-condensed hexagonal system. Then $	ext{Spec}_{af}(H) = [af(H), \text{Fries}(H)]$.

References

[1] P. Adams, M. Mahdian and E. S. Mahmoodian, On the forced matching numbers of bipartite graphs, *Discrete Math.* **281** (2004) 1–12.

[2] P. Afshani, H. Hatami and E.S. Mahmoodian, On the spectrum of the forced matching number of graphs, *Australas. J. Combin.* **30** (2004) 147–160.

[3] A. T. Balaban and F. Harary, Chemical graphs–V: Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons, *Tetrahedron* **24** (1968) 2505–2516.

[4] Z. Che and Z. Chen, Forcing on perfect matchings-A survey, *MATCH Commun. Math. Comput. Chem.* **66** (2011) 93–136.

[5] E. Clar, *The Aromatic Sextet*, J. Wiley & Sons, New York, 1972.

[6] S. J. Cyvin and I. Gutman, *Kekulé Structures in Benzenoid Hydrocarbons*, Lecture Notes in Chemistry, Vol **46**, Springer Verlag, Berlin, 1988.

[7] H. Deng, The anti-forcing number of hexagonal chains, *MATCH Commun. Math. Comput. Chem.* **58** (2007) 675–682.

[8] H. Deng, The anti-forcing number of double hexagonal chains, *MATCH Commun. Math. Comput. Chem.* **60** (2008) 183–192.

[9] K. Fries, Uber byclische verbindungen und ihren vergleich mit dem naphtalin, *Ann. Chem.* **454** (1927) 121–324.

[10] F. Harary, D. Klein and T. Živković, Graphical properties of polyhexes: perfect matching vector and forcing, *J. Math. Chem.* **6** (1991) 295–306.

[11] X. Jiang, *Study on forcing matching number and spectrum of some classes of graphs*, Ph.D. Thesis, Lanzhou University, 2011 (in chinese).
[12] X. Jiang and H. Zhang, On forcing matching number of boron-nitrogen fullerene graphs, *Discrete Appl. Math.* **159** (2011) 1581–1593.

[13] D. Klein and M. Randić, Innate degree of freedom of a graph, *J. Comput. Chem.* **8** (1987) 516–521.

[14] F. Lam and L. Pachter, Forcing number for stop signs, *Theor. Comput. Sci.* **303** (2003) 409–416.

[15] H. Lei, Y. Yeh and H. Zhang, Anti-forcing numbers of perfect matchings of graphs, (2014), http://arxiv.org/pdf/1406.3796v1.pdf.

[16] L. Pachter and P. Kim, Forcing matchings on square grids, *Discrete Math.* **190** (1998) 287–294.

[17] M. Randić and D. Vukičević, Kekulé structures of fullerene C_{70}, *Croat. Chem. Acta* **79** (2006) 471–481.

[18] M.E. Riddle, The minimum forcing number for the torus and hypercube, *Discrete Math.* **245** (2002) 283–292.

[19] D. Vukičević, I. Gutman and M. Randić, On instability of fullerene C_{72}, *Croat. Chem. Acta* **79** (2006) 429–436.

[20] D. Vukičević and M. Randić, On Kekulé structures of buckminsterfullerene, *Chem. Phys. Lett.* **401** (2005) 446–450.

[21] D. Vukičević and N. Trinajstić, On the anti-forcing number of benzenoids, *J. Math. Chem.* **42** (2007) 575–583.

[22] D. Vukičević and N. Trinajstić, On the anti-Kekulé number and anti-forcing number of cata-condensed benzenoids, *J. Math. Chem.* **43** (2008) 719–726.

[23] H. Wang, D. Ye and H. Zhang, The forcing number of toroidal polyhexes, *J. Math. Chem.* **43** (2008) 457–475.

[24] L. Xu, H. Bian and F. Zhang, Maximum forcing number of hexagonal systems, *MATCH Commun. Math. Comput. Chem.* **70** (2013) 493–500.

[25] F. Zhang, X. Guo and R. Chen, Z-transformation graphs of perfect matchings of hexagonal systems, *Discrete Math.* **72** (1988) 405–415.

[26] H. Zhang and K. Deng, Forcing spectrum of a hexagonal system with a forcing edge, *MATCH Commun. Math. Comput. Chem.* **73** (2015), in press.

[27] H. Zhang, D. Ye and W.C. Shiu, Forcing matching numbers of fullerene graphs, *Discrete Appl. Math.* **158** (2010) 573–582.

[28] H. Zhang, H. Yao and D. Yang, A min-max result on outerplane bipartite graphs, *Appl. Math. Lett.* **20** (2007) 199–205.

[29] H. Zhang and F. Zhang, Plane elementary bipartite graphs, *Discrete Appl. Math.* **105** (2000) 291–311.
[30] Q. Zhang, H. Bian and E. Vumar, On the anti-kekulé and anti-forcing number of cata-condensed phenylenes, *MATCH Commun. Math. Comput. Chem.* 65 (2011) 799–806.