Cuspidal representations in the \(\ell\)-adic cohomology of the Rapoport-Zink space for \(\text{GSp}(4)\)

Tetsushi Ito and Yoichi Mieda

Abstract. In this paper, we study the \(\ell\)-adic cohomology of the Rapoport-Zink tower for \(\text{GSp}(4)\). We prove that the smooth representation of \(\text{GSp}_4(\mathbb{Q}_p)\) obtained as the \(i\)th compactly supported \(\ell\)-adic cohomology of the Rapoport-Zink tower has no quasi-cuspidal subquotient unless \(i = 2, 3, 4\). Our proof is purely local and does not require global automorphic methods.

1 Introduction

In [RZ96], M. Rapoport and Th. Zink introduced certain moduli spaces of quasi-isogenies of \(p\)-divisible groups with additional structures called the Rapoport-Zink spaces. They constructed systems of rigid analytic coverings of them which we call the Rapoport-Zink towers, and established the \(p\)-adic uniformization theory of Shimura varieties generalizing classical Čerednik-Drinfeld uniformization. These spaces uniformize the rigid spaces associated with the formal completion of certain Shimura varieties along Newton strata.

Using the \(\ell\)-adic cohomology of the Rapoport-Zink tower, we can construct a representation of the product \(G(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \times W(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\), where \(G\) is the reductive group over \(\mathbb{Q}_p\) corresponding to the Shimura datum, \(J\) is an inner form of it, and \(W(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\) is the Weil group of the \(p\)-adic field \(\mathbb{Q}_p\). It is widely believed that this realizes the local Langlands and Jacquet-Langlands correspondences (cf. [Rap95]). Classical examples of the Rapoport-Zink spaces are the Lubin-Tate space and the Drinfeld upper half space; these spaces were extensively studied by many people and many important results were obtained (cf. [Dri76], [Car90], [Har97], [HT01], [Dat07], [Boy09] and references therein). However, very little was known about the \(\ell\)-adic cohomology of other Rapoport-Zink spaces.

The aim of this paper is to study cuspidal representations in the \(\ell\)-adic cohomology of the Rapoport-Zink tower for \(\text{GSp}_4(\mathbb{Q}_p)\). Let us denote the Rapoport-Zink space for \(\text{GSp}_4(\mathbb{Q}_p)\) by \(\mathcal{M}\). It is a special formal scheme over \(\mathbb{Z}_{p^\infty} = W(\overline{\mathbb{F}}_p)\) in the sense of Berkovich [Berk96]. Let \(\mathcal{M}^{\text{rig}}\) be the Raynaud generic fiber of \(\mathcal{M}\), that is, the generic fiber of the adic space \(\mathfrak{t}(\mathcal{M})\) associated with \(\mathcal{M}\). Using level structures

2010 Mathematics Subject Classification. Primary: 14G35; Secondary: 22E50, 11F70.
at p, we can construct the Rapoport-Zink tower
\[
\cdots \to \mathcal{M}_{m+1}^{\text{rig}} \to \mathcal{M}_m^{\text{rig}} \to \cdots \to \mathcal{M}_2^{\text{rig}} \to \mathcal{M}_1^{\text{rig}} \to \mathcal{M}_0^{\text{rig}} = \mathcal{M}_{\text{rig}},
\]
where $\mathcal{M}_m^{\text{rig}} \to \mathcal{M}_m^{\text{rig}}$ is an \'{e}tale Galois covering of rigid spaces with Galois group $\text{GSp}_4(\mathbb{Z}/p^m\mathbb{Z})$. We take the compactly supported ℓ-adic cohomology (in the sense of [Hub98]) and take the inductive limit of them. Then, on $H^i_{RZ} := \lim_{\to} H^i_c(\mathcal{M}_m^{\text{rig}} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p, \mathbb{Q}_\ell)$ (here $\mathbb{Q}_p = \text{Frac} \mathbb{Z}_p$), we have an action of a product
\[
\text{GSp}_4(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \times W(\mathbb{Q}_p/\mathbb{Q}_p),
\]
where J is an inner form of GSp_4.

The main theorem of this paper is as follows:

Theorem 1.1 (Theorem 3.2) The $\text{GSp}_4(\mathbb{Q}_p)$-representation $H^i_{RZ} \otimes_{\mathbb{Q}_\ell} \overline{\mathbb{Q}}_\ell$ has no quasi-cuspidal subquotient unless $i = 2, 3, 4$.

For the definition of quasi-cuspidal representations, see [Bern84, 1.20]. Note that since $\mathcal{M}_m^{\text{rig}}$ is 3-dimensional for every $m \geq 0$, $H^i_{RZ} = 0$ unless $0 \leq i \leq 6$.

Our proof of this theorem is purely local. We do not use global automorphic methods. The main strategy of the proof is similar to that of [Mie10a], in which the analogous result for the Lubin-Tate tower is given; we construct the formal model \mathcal{M}_m of $\mathcal{M}_m^{\text{rig}}$ by using Drinfeld level structures and consider the geometry of its special fiber. However, our situation is much more difficult than the case of the Lubin-Tate tower. In the Lubin-Tate case, the tower consists of affine formal schemes $\{\text{Spf} A_m\}_{m \geq 0}$, and we can associate it with the tower of affine schemes $\{\text{Spec} A_m\}_{m \geq 0}$. In [Mie10a], the second author defined the stratification on the special fiber of $\text{Spec} A_m$ by using the kernel of the universal Drinfeld level structure, and considered the local cohomology of the nearby cycle complex $R\psi A$ along the strata. On the other hand, our tower $\{\mathcal{M}_m\}_{m \geq 0}$ does not consist of affine formal schemes and there is no canonical way to associate it with a tower of schemes. To overcome this problem, we take a sheaf-theoretic approach. For each direct summand I of $(\mathbb{Z}/p^n\mathbb{Z})^4$, we will define the complex of sheaves $\mathcal{F}_{m, I}$ on $(\mathcal{M}_m)^{\text{red}}$ so that the cohomology $H^i((\mathcal{M}_m)^{\text{red}}, \mathcal{F}_{m, I})$ substitutes for the local cohomology of $R\psi A$ along the strata defined by I in the Lubin-Tate case. For the definition of $\mathcal{F}_{m, I}$, we use the p-adic uniformization theorem by Rapoport and Zink.

There is another difficulty; since a connected component of \mathcal{M} is not quasi-compact, the representation H^i_{RZ} of $\text{GSp}_4(\mathbb{Q}_p)$ is far from admissible. Therefore it is important to consider the action of $J(\mathbb{Q}_p)$ on H^i_{RZ}, though it does not appear in our main theorem. However, the cohomology $H^i((\mathcal{M}_m)^{\text{red}}, \mathcal{F}_{m, I})$ has no apparent action of $J(\mathbb{Q}_p)$, since $J(\mathbb{Q}_p)$ does not act on the Shimura variety uniformized by
ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

We use the variants of formal nearby cycle introduced by the second author in [Mie10b] to endow it with an action of $J(\mathbb{Q}_p)$. Furthermore, to ensure the smoothness of this action, we use a property of finitely generated pro-p groups (Section 2). In fact, extensive use of the formalism developed in [Mie10b] make us possible to work mainly on the Rapoport-Zink tower itself and avoid the theory of p-adic uniformization except for proving that \mathcal{M}_m is locally algebraizable. However, for the reader’s convenience, we decided to make this article as independent of [Mie10b] as possible.

The authors expect that the converse of Theorem 1.1 also holds. Namely, we expect that $H^i_{RZ} \otimes_{\mathbb{Q}_\ell} \mathbb{Q}_\ell$ has a quasi-cuspidal subquotient if $i = 2, 3, 4$. We hope to investigate it in a future work.

The outline of this paper is as follows. In Section 2, we prepare a criterion for the smoothness of representations over \mathbb{Q}_ℓ. It is elementary but very powerful for our purpose. In Section 3, we give some basic definitions concerning with the Rapoport-Zink space for GSp(4) and state the main theorem. Section 4 is devoted to introduce certain Shimura varieties related to our Rapoport-Zink tower and recall the theory of p-adic uniformization. The proof of the main theorem is accomplished in Section 5. The final Section 6 is an appendix on cohomological correspondences. The results in the section are used to define actions of $\text{GSp}_4(\mathbb{Q}_p)$ on various cohomology groups.

Acknowledgment The second author would like to thank Noriyuki Abe and Naoki Imai for the stimulating discussions.

Notation Let p be a prime number and take another prime ℓ with $\ell \neq p$. We denote the completion of the maximal unramified extension of \mathbb{Z}_p by \mathbb{Z}_p^∞ and its fraction field by \mathbb{Q}_p^∞. Let $\text{Nilp} = \text{Nilp}_{\mathbb{Z}_p^\infty}$ be the category of \mathbb{Z}_p^∞-schemes on which p is locally nilpotent. For an object S of Nilp, we put $\overline{S} = S \otimes_{\mathbb{Z}_p^\infty} \overline{\mathbb{F}}_p$.

In this paper, we use the theory of adic spaces ([Hub94], [Hub96]) as a framework of rigid geometry. A rigid space over \mathbb{Q}_p^∞ is understood as an adic space locally of finite type over $\text{Spa}(\mathbb{Q}_p^\infty, \mathbb{Z}_p^\infty)$.

Every sheaf and cohomology are considered in the étale topology. Every smooth representation is considered over \mathbb{Q}_ℓ or $\overline{\mathbb{Q}}_\ell$. For a \mathbb{Q}_ℓ-vector space V, we put $V_{\mathbb{Q}_\ell} = V \otimes_{\mathbb{Q}_\ell} \overline{\mathbb{Q}}_\ell$.

2 Preliminaries: smoothness of representations of profinite groups

Let G be a linear algebraic group over a p-adic field F. In this section, we give a convenient criterion for the smoothness of a $G(F)$-representation over \mathbb{Q}_ℓ. The following theorem is essential:

Theorem 2.1 Let K be a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$ and (π, V) a finite-dimensional representation over \mathbb{Q}_ℓ of K as an abstract group. Assume that there exists a K-stable \mathbb{Z}_ℓ-lattice Λ of V. Then this representation is automatically smooth.
In order to prove this theorem, we require several facts on pro-p groups. Put $K_1 = K \cap (1 + pM_n(\mathbb{Z}_p))$, which is a pro-$p$ open subgroup of K.

Lemma 2.2 The pro-p group K_1 is (topologically) finitely generated.

Proof. By [DdSMS99, §5.1], the profinite group $\text{GL}_n(\mathbb{Z}_p)$ has finite rank. In particular, K_1, a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$, has finite topological generators.

Lemma 2.3 Every subgroup of finite index of K_1 is open.

Proof. In fact, this is true for every finitely generated pro-p group; this is due to Serre [Ser94, 4.2, Exercices 6)]. See also [DdSMS99, Theorem 1.17], which gives a complete proof.

Remark 2.4 More generally, every subgroup of finite index of a finitely generated profinite group is open ([NS03], [NS07a], [NS07b]). It is a very deep theorem.

Lemma 2.5 Let G be a pro-ℓ group. Then every homomorphism $f : K_1 \to G$ is trivial.

Proof. Let H be an open normal subgroup of G and denote the composite $K_1 \xrightarrow{f} G \to G/H$ by f_H. By Lemma 2.3, Ker f_H is an open normal subgroup of K_1. Thus $K_1/\text{Ker} f_H$ is a finite p-group. On the other hand, G/H is a finite ℓ-group. Since we have an injection $K_1/\text{Ker} f_H \to G/H$, we have $K_1/\text{Ker} f_H = 1$, in other words, $f_H = 1$. Therefore the composite $K_1 \xrightarrow{f} G \to \varprojlim H G/H$ is trivial. Hence we have $f = 1$, as desired.

Proof of Theorem 2.1. Since K_1 is an open subgroup of K, we may replace K by K_1. Take a K_1-stable \mathbb{Z}_p-lattice Λ of V. Then, $\Lambda/\ell \Lambda$ is a finite abelian group. Therefore, by Lemma 2.3, there exists an open subgroup U of K_1 which acts trivially on $\Lambda/\ell \Lambda$. In other words, the homomorphism $\pi : K_1 \to \text{GL}(\Lambda) \subset \text{GL}(V)$ maps U into the subgroup $1 + \ell \text{End}(\Lambda)$. Since U is a closed subgroup of $1 + pM_n(\mathbb{Z}_p)$ and $1 + \ell \text{End}(\Lambda)$ is a pro-ℓ group, by Lemma 2.5, the homomorphism $\pi|_U : U \to 1 + \ell \text{End}(\Lambda)$ is trivial. Namely, $\pi|_U$ is a trivial representation.

Lemma 2.6 Let F be a p-adic field and G a linear algebraic group over F. Then every compact subgroup K of $G(F)$ can be realized as a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$ for some n.

Proof. Take an embedding $G \hookrightarrow \text{GL}_m$ defined over F. Since $G(F)$ is a closed subgroup of $\text{GL}_m(F)$, K is also a closed subgroup of $\text{GL}_m(F)$. Therefore we have a faithful continuous action of K on F^m. By taking a \mathbb{Q}_p-basis of F, we have a faithful continuous action of K on \mathbb{Q}_p^n for some n. Since K is compact, it is well-known that there is a K-stable \mathbb{Z}_p-lattice in \mathbb{Q}_p^n. Hence we have a continuous injection $K \hookrightarrow \text{GL}_n(\mathbb{Z}_p)$. Since K is compact, it is isomorphic to a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$.

4
Corollary 2.7 Let F and G be as in the previous proposition. Let I be a filtered ordered set and $\{K_i\}_{i \in I}$ be a system of compact open subgroups of $G(F)$ indexed by I.

Let (π, V) be a (not necessarily finite-dimensional) \mathbb{Q}_ℓ-representation of $G(F)$ as an abstract group. Assume that there exists an inductive system $\{V_i\}_{i \in I}$ of finite-dimensional \mathbb{Q}_ℓ-vector spaces satisfying the following:

- For every $i \in I$, V_i is endowed with an action of K_i as an abstract group.
- For every $i \in I$, V_i has a K_i-stable \mathbb{Z}_ℓ-lattice.
- There exists an isomorphism $\lim_{\rightarrow i \in I} V_i \rightarrow V$ as \mathbb{Q}_ℓ-vector spaces such that the composite $V_i \rightarrow \lim_{\rightarrow i \in I} V_i \rightarrow V$ is K_i-equivariant for every $i \in I$.

Then (π, V) is a smooth representation of $G(F)$.

Proof. Let us take $x \in V$ and show that $\text{Stab}_{G(F)}(x)$, the stabilizer of x in $G(F)$, is open. There exists an element $i \in I$ such that x lies in the image of $V_i \rightarrow V$. Take $y \in V_i$ which is mapped to x. By Theorem 2.1 and Lemma 2.6, V_i is a smooth representation of K_i. Therefore $\text{Stab}_{K_i}(y)$ is open in K_i, hence is open in $G(F)$. Since $V_i \rightarrow V$ is K_i-equivariant, we have $\text{Stab}_{K_i}(y) \subset \text{Stab}_{K_i}(x) \subset \text{Stab}_{G(F)}(x)$. Thus $\text{Stab}_{G(F)}(x)$ is open in $G(F)$, as desired.

Remark 2.8 Although we need the corollary above only for the case $F = \mathbb{Q}_p$, we proved it for a general p-adic field F for the completeness.

3 Rapoport-Zink space for $GSp(4)$

3.1 The Rapoport-Zink space for $GSp(4)$ and its rigid analytic coverings

In this subsection, we recall basic definitions concerning with Rapoport-Zink spaces. General definitions are given in [RZ96], but here we restrict them to our special case.

Let X be a 2-dimensional isoclinic p-divisible group over \overline{F}_p with slope $1/2$, and $\lambda_0: X \rightarrow X^\vee$ a (principal) polarization of X, namely, an isomorphism satisfying $\lambda_0^\vee = -\lambda_0$. Consider the contravariant functor $\tilde{\mathcal{M}}: \text{Nilp} \rightarrow \text{Set}$ that associates S with the set of isomorphism classes of pairs (X, ρ) consisting of

- a 2-dimensional p-divisible group X over S,
- and a quasi-isogeny (cf. [RZ96, Definition 2.8]) $\rho: X \otimes_{\mathbb{F}_p} S \rightarrow X \otimes_S \overline{S}$, such that there exists an isomorphism $\lambda: X \rightarrow X^\vee$ which makes the following
diagram commutative up to multiplication by Q_p^\times:

$$
\begin{array}{ccc}
X \otimes_{F_p} S & \xrightarrow{\rho} & X \otimes_{S} S \\
\downarrow_{\lambda_0 \otimes \text{id}} & & \downarrow_{\lambda \otimes \text{id}} \\
X^\vee \otimes_{F_p} S & \xleftarrow{\rho^\vee} & X^\vee \otimes_{S} S.
\end{array}
$$

Note that such λ is uniquely determined by (X, ρ) up to multiplication by Z_p^\times and gives a polarization of X. It is proved by Rapoport-Zink that $\acute{\mathcal{M}}$ is represented by a special formal scheme (cf. [Berk96]) over $\text{Spf} Z_{p^\infty}$. Moreover, $\acute{\mathcal{M}}$ is neither quasi-compact nor p-adic.

We put $\bar{\mathcal{M}} = \acute{\mathcal{M}}_{\text{red}}$, which is a scheme locally of finite type and separated over \mathbb{F}_p. It is known that $\bar{\mathcal{M}}$ is 1-dimensional (for example, see [Vie08]) and every irreducible component of $\bar{\mathcal{M}}$ is projective over \mathbb{F}_p [RZ96, Proposition 2.32]. In particular, $\bar{\mathcal{M}}$ has a locally finite quasi-compact open covering.

Let $D(X)_Q = (N, \Phi)$ be the rational Dieudonné module of X, which is a 4-dimensional isocrystal over Q_{p^∞}. The fixed polarization λ_0 gives the alternating pairing $\langle \cdot, \cdot \rangle_{\lambda_0} : N \times N \rightarrow Q_{p^\infty}(1)$. We define the algebraic group J over Q_p as follows: for a Q_p-algebra R, the group $J(R)$ consists of elements $g \in \text{GL}(R \otimes_{Q_p} N)$ such that

- g commutes with Φ,
- and g preserves the pairing $\langle \cdot, \cdot \rangle_{\lambda_0}$ up to scalar multiplication, i.e., there exists $c(g) \in R^\times$ such that $\langle gx, gy \rangle_{\lambda_0} = c(g) \langle x, y \rangle_{\lambda_0}$ for every $x, y \in R \otimes_{Q_p} N$.

It is an inner form of $G\text{Sp}(4)$, since $D(X)_Q$ is the isocrystal associated with a basic Frobenius conjugacy class of $G\text{Sp}(4)$.

In the sequel, we also denote $J(Q_p)$ by J. Every element $g \in J$ naturally induces a quasi-isogeny $g : X \rightarrow X$ and the following diagram is commutative up to Q_p^\times-multiplication:

$$
\begin{array}{ccc}
X & \xrightarrow{g} & X \\
\downarrow_{\lambda_0} & & \downarrow_{\lambda_0} \\
X^\vee & \xleftarrow{g^\vee} & X^\vee.
\end{array}
$$

Therefore, we can define the left action of J on $\acute{\mathcal{M}}$ by $g : \acute{\mathcal{M}}(S) \rightarrow \acute{\mathcal{M}}(S)$; $(X, \rho) \mapsto (X, \rho \circ g^{-1})$.

We denote the Raynaud generic fiber of $\acute{\mathcal{M}}$ by $\acute{\mathcal{M}}^{\text{rig}}$. It is defined as $t(\acute{\mathcal{M}}) \setminus V(p)$, where $t(\acute{\mathcal{M}})$ is the adic space associated with $\acute{\mathcal{M}}$ (cf. [Hub94, Proposition 4.1]). As $\acute{\mathcal{M}}$ is separated and special over Z_{p^∞}, $\acute{\mathcal{M}}^{\text{rig}}$ is separated and locally of finite type over $\text{Spa}(Q_{p^\infty}, Z_{p^\infty})$. Since $\acute{\mathcal{M}}$ has a locally finite quasi-compact open covering, $\acute{\mathcal{M}}^{\text{rig}}$ is taut by [Mie10b, Lemma 4.14]. Moreover, by using the period morphism RZ96, Chapter 5, we can see that $\acute{\mathcal{M}}^{\text{rig}}$ is 3-dimensional and smooth over $\text{Spa}(Q_{p^\infty}, Z_{p^\infty})$ (cf. [RZ96, Proposition 5.17]).
Next we will consider level structures. Let \tilde{X} be the universal p-divisible group over \mathcal{M} and \tilde{X}^{\rig} be the associated p-divisible group over $\tilde{\mathcal{M}}^{\rig}$. Note that \tilde{X}^{\rig} is an étale p-divisible group. Let us fix a polarization $\tilde{\lambda}: \tilde{X} \to \tilde{X}^\vee$ which is compatible with λ_0, i.e., satisfies the condition in the definition of \mathcal{M}. Let S be a connected rigid space over $\mathbb{Q}_p\propto$ (i.e., a connected adic space locally of finite type over $\Spa(\mathbb{Q}_p\propto, \mathbb{Z}_p\propto)$), $S \to \tilde{\mathcal{M}}^{\rig}$ a morphism over $\mathbb{Q}_p\propto$ and \tilde{X}_S^{\rig} the pull-back of \tilde{X}^{\rig}. Fix a geometric point $\overline{\tau}$ of S and an isomorphism $T_p(\mu_{p\propto,S})\overline{\tau} = \mathbb{Z}_p(1) \cong \mathbb{Z}_p$. Then $\tilde{\lambda}$ induces an alternating bilinear form $\psi_{\overline{\tau}}$ on the $\pi_1(S,\overline{\tau})$-module $(T_p\tilde{X}_S^{\rig})_{\overline{\tau}}$.

$$\psi_{\overline{\tau}}: (T_p\tilde{X}_S^{\rig})_{\overline{\tau}} \times (T_p\tilde{X}_S^{\rig})_{\overline{\tau}} \to T_p(\mu_{p\propto,S})_{\overline{\tau}} \cong \mathbb{Z}_p.$$

Fix a free \mathbb{Z}_p-module L of rank 4 and a perfect alternating bilinear form $\psi_0: L \times L \to \mathbb{Z}_p$. Put $K_0 = \text{GSp}(L, \psi_0)$, $V = L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, and $G = \text{GSp}(V, \psi_0)$. Let $T(S, \overline{\tau})$ be the set consisting of isomorphisms $\eta: L \to (T_p\tilde{X}^{\rig})_{\overline{\tau}}$ which map ψ_0 to \mathbb{Z}_p^\times-multiples of $\psi_{\overline{\tau}}$. It is independent of the choice of $\tilde{\lambda}$ and $T_p(\mu_{p\propto,S})_{\overline{\tau}} \cong \mathbb{Z}_p$, since they are unique up to \mathbb{Z}_p^\times-multiplication. Obviously, the groups K_0 and $\pi_1(S,\overline{\tau})$ naturally act on $T(S, \overline{\tau})$.

For an open subgroup K of K_0, a K-level structure of \tilde{X}_S^{\rig} means an element of $(T(S, \overline{\tau})/K)^{\pi_1(S,\overline{\tau})}$. Note that, if we change a geometric point $\overline{\tau}$ to $\overline{\tau}'$, the sets $(T(S, \overline{\tau})/K)^{\pi_1(S,\overline{\tau})}$ and $(T(S, \overline{\tau}')/K)^{\pi_1(S,\overline{\tau}')}$ are naturally isomorphic. Thus the notion of K-level structures is independent of the choice of $\overline{\tau}$. The functor that associates S with the set of K-level structures of \tilde{X}_S^{\rig} is represented by a finite Galois étale covering $\tilde{\mathcal{M}}^{\rig}_{K_0} \to \tilde{\mathcal{M}}^{\rig}$, whose Galois group is K_0/K. Since $T(S, \overline{\tau})$ is a K_0-torsor, $\tilde{\mathcal{M}}^{\rig}_{K_0}$ coincides with $\tilde{\mathcal{M}}^{\rig}$. If K' is an open subgroup of K, we have a natural morphism $\rho_{K,K'}: \tilde{\mathcal{M}}^{\rig}_{K'} \to \tilde{\mathcal{M}}^{\rig}_{K}$. Therefore, we get the projective system of rigid spaces $\{\tilde{\mathcal{M}}^{\rig}_{K}\}_{K}$ indexed by the filtered ordered set of open subgroups of K_0, which is called the Rapoport-Zink tower. Obviously, the group J acts on the projective system $\{\tilde{\mathcal{M}}^{\rig}_{K}\}_{K}$.

Let g be an element of G and K an open subgroup of K_0 which is enough small so that $g^{-1}Kg \subset K_0$. Then we have a natural morphism $\tilde{\mathcal{M}}^{\rig}_{K} \to \tilde{\mathcal{M}}^{\rig}_{g^{-1}Kg}$ over $\mathbb{Q}_p\propto$. If $g \in K_0$, then it is given by $\eta \mapsto \eta \circ g$; for other g, it is more complicated [RZ96 5.34]. In any case, we get a right action of G on the pro-object "$\varprojlim \tilde{\mathcal{M}}^{\rig}_{K}$".

Definition 3.1 We put $H^1_{\text{RZ}} = \varprojlim_K H^1_{\text{rig}}(\tilde{\mathcal{M}}^{\rig}_{K} \otimes_{\mathbb{Q}_p\propto} \overline{\mathbb{Q}_p\propto}, \mathbb{Q}_\ell)$.

Here $H^1_{\text{rig}}(\tilde{\mathcal{M}}^{\rig}_{K} \otimes_{\mathbb{Q}_p\propto} \overline{\mathbb{Q}_p\propto}, \mathbb{Q}_\ell)$ is the compactly supported ℓ-adic cohomology of $\tilde{\mathcal{M}}^{\rig}_{K} \otimes_{\mathbb{Q}_p\propto} \overline{\mathbb{Q}_p\propto}$ defined in [Hub98]; note that $\tilde{\mathcal{M}}^{\rig}_{K}$ is separated and taut. By the constructions above, $G \times J$ acts on H^1_{RZ} on the left (the action of $j \in J$ is given by $(j^{-1})^*$). Obviously the action of G on H^1_{RZ} is smooth. On the other hand, it is known that the action of J on H^1_{RZ} is also smooth. This is due to Berkovich (see [Far04 Corollaire 4.4.7]); see also Remark 5.12 where we give another proof of the smoothness. Hence we get the smooth representation H^1_{RZ} of $G \times J$.

Our main theorem is the following:
Theorem 3.2 (Non-cuspidality) The smooth representation $H^i_{\overline{RZ}, \overline{Q}_c}$ of G has no quasi-cuspidal subquotient unless $i = 2, 3, 4$.

For the definition of quasi-cuspidal representations, see [Bern84, 1.20]. Theorem 3.2 is proved in Section 5.

3.2 An integral model \tilde{M}_m of $\tilde{M}_{K_m}^{\text{rig}}$

For an integer $m \geq 1$, let K_m be the kernel of $\text{GSp}(L, \psi_0) \to \text{GSp}(L/p^mL, \psi_0)$. It is an open subgroup of K_0. We can describe the definition of K_m-level structures more concretely. As in the previous subsection, we fix a polarization $\tilde{\lambda}$ of \tilde{X}_{rig} which is compatible with λ_0. It induces the alternating bilinear morphism between finite étale group schemes $\psi_{\tilde{X}}: \tilde{X}_{\text{rig}}[p^m] \times \tilde{X}_{\text{rig}}[p^m] \to \mu_{p^m}$. Let $S \to \tilde{M}_{\text{rig}}^{\text{rig}}$ be as in the previous subsection. Then a K_m-level structure of \tilde{X}_S naturally corresponds bijectively to an isomorphism $\eta: L/p^mL \cong \tilde{X}_S[p^m]$ between finite étale group schemes such that there exists an isomorphism $\mathbb{Z}/p^m\mathbb{Z} \cong \mu_{p^m,S}$ which makes the following diagram commutative:

\[
\begin{array}{ccc}
L/p^mL \times L/p^mL & \xrightarrow{\psi_{\tilde{X}}} & \mathbb{Z}/p^m\mathbb{Z} \\
\eta \times \eta \cong & & \cong \\
\tilde{X}_S[p^m] \times \tilde{X}_S[p^m] & \xrightarrow{\psi_{\tilde{X}}} & \mu_{p^m,S}.
\end{array}
\]

For simplicity, we write \tilde{M}_m^{rig} for $\tilde{M}_{K_m}^{\text{rig}}$ and p_{mn} for $p_{K_mK_n}$. In this subsection, we construct a formal model \tilde{M}_m of \tilde{M}_m^{rig} by following [Man05, §6]. Let S be a formal scheme of finite type over \tilde{M}_{rig} and denote by \tilde{X}_S the pull-back of \tilde{X} to S. A Drinfeld m-level structure of \tilde{X}_S is a morphism $\eta: L/p^mL \to \tilde{X}_S[p^m]$ satisfying the following conditions:

- the image of η gives a full set of sections of $\tilde{X}_S[p^m]$,
- and there exists a morphism $\mathbb{Z}/p^m\mathbb{Z} \to \mu_{p^m,S}$ which makes the following diagram commutative:

\[
\begin{array}{ccc}
L/p^mL \times L/p^mL & \xrightarrow{\psi_{\tilde{X}}} & \mathbb{Z}/p^m\mathbb{Z} \\
\eta \times \eta & & \\
\tilde{X}_S[p^m] \times \tilde{X}_S[p^m] & \xrightarrow{\psi_{\tilde{X}}} & \mu_{p^m,S}.
\end{array}
\]

It is known that the functor that associates S with the set of Drinfeld m-level structures of \tilde{X}_S is represented by the formal scheme \tilde{M}_m which is finite over \tilde{M} (cf. [Man05, Proposition 15]). Note that, unlike the case of Lubin-Tate tower, \tilde{M}_m is not necessarily flat over \tilde{M}. It is easy to show that \tilde{M}_m gives a formal model of
\(\check{\mathcal{M}}^\text{rig}_m \), namely, the Raynaud generic fiber of \(\check{\mathcal{M}}_m \) coincides with \(\check{\mathcal{M}}^\text{rig}_m \). We denote \((\check{\mathcal{M}}_m)_\text{red} \) by \(\check{\mathcal{M}}_m \), which is a 1-dimensional scheme over \(\overline{\mathbb{F}}_p \).

There is a natural left action of \(J \) on \(\check{\mathcal{M}}_m \) which is compatible with that on \(\check{\mathcal{M}}^\text{rig}_m \). On the other hand, the natural action \(K_0 \) on \(L/p^mL \) induces a right action of \(K_0 \) on \(\check{\mathcal{M}}_m \), which is compatible with that on \(\check{\mathcal{M}}^\text{rig}_m \).

We can also describe \(\check{\mathcal{M}}_m \) as a functor from \(\text{Nilp} \) to \(\text{Set} \); for an object \(S \) of \(\text{Nilp} \), the set \(\check{\mathcal{M}}_m(S) \) consists of isomorphism classes of triples \((X, \rho, \eta) \), where \((X, \rho) \in \check{\mathcal{M}}_m(S) \) and \(\eta : L/p^mL \to X[p^m] \) is a Drinfeld \(m \)-level structure of \(X \). By this description, the action of \(j \in J \) on \(\check{\mathcal{M}}_m \) is given by \((X, \rho, \eta) \mapsto (X, \rho \circ j^{-1}, \eta) \). On the other hand, the action of \(g \in K_0 \) on \(\check{\mathcal{M}}_m \) is given by \((X, \rho, \eta) \mapsto (X, \rho \circ g \circ \eta) \).

By [Man04, Lemma 7.2], \(\{ \check{\mathcal{M}}_m \}_{m \geq 0} \) forms a projective system of formal schemes equipped with the commuting action of \(J \) and \(K_0 \).

3.3 Compactly supported cohomology of \(\check{\mathcal{M}}_m \)

For \(m \geq 0 \), we denote the set of quasi-compact open subsets of \(\check{\mathcal{M}}_m \) by \(\mathcal{Q}_m \). It has a natural filtered order by inclusion.

Definition 3.3 For an object \(\mathcal{F} \) of \(D^b(\check{\mathcal{M}}_m, \mathbb{Z}_\ell) \) or \(D^b(\check{\mathcal{M}}_m, \mathbb{Q}_\ell) \), we put

\[
H_c^i(\check{\mathcal{M}}_m, \mathcal{F}) = \lim_{U \in \mathcal{Q}_m} H_c^i(U, \mathcal{F}|_U).
\]

Assume that \(\mathcal{F} \) has a \(J \)-equivariant structure, namely, for every \(g \in J \) an isomorphism \(\varphi_g : g^*\mathcal{F} \to \mathcal{F} \) is given such that \(\varphi_{gg'} = \varphi_g \circ g'^*\varphi_g \) for every \(g, g' \in J \). Then \(J \) naturally acts on \(H_c^i(\check{\mathcal{M}}_m, \mathcal{F}) \) on the right. Therefore we get a left action of \(J \) on \(H_c^i(\check{\mathcal{M}}_m, \mathcal{F}) \) by taking the inverse \(J \to J ; g \mapsto g^{-1} \).

Theorem 3.4 Let \(\mathcal{F}^0 \) be an object of \(D^b_c(\check{\mathcal{M}}_m, \mathbb{Z}_\ell) \) and \(\mathcal{F} \) the object of \(D^b_c(\check{\mathcal{M}}_m, \mathbb{Q}_\ell) \) associated with \(\mathcal{F}^0 \). Assume that we are given a \(J \)-equivariant structure of \(\mathcal{F}^0 \) (thus \(\mathcal{F} \) also has a \(J \)-equivariant structure). Then \(H_c^i(\check{\mathcal{M}}_m, \mathcal{F}) \) is a finitely generated smooth \(J \)-representation.

Proof. Let \(U \) be an element of \(\mathcal{Q}_m \). By [Far04, Proposition 2.3.11], there exists a compact open subgroup \(K^U \) of \(J \) which stabilizes \(U \). Then \(H_c^i(U, \mathcal{F}|_U) \) is a finite-dimensional \(\mathbb{Q}_\ell \)-vector space endowed with the action of \(K^U \) and has the \(K^U \)-stable \(\mathbb{Z}_\ell \)-lattice \(\text{Im}(H_c^i(U, \mathcal{F}^0|_U) \to H_c^i(U, \mathcal{F}|_U)) \). Therefore \(H_c^i(\check{\mathcal{M}}_m, \mathcal{F}) \) is a smooth \(J \)-representation by Corollary 2.7.

To prove that \(H_c^i(\check{\mathcal{M}}_m, \mathcal{F}) \) is finitely generated, we may assume \(m = 0 \), for \(H_c^i(\check{\mathcal{M}}_{m, 0}, \mathcal{F}) = H_c^i(\check{\mathcal{M}}_{0, p_0m, \mathcal{F}}) \). In this case, we can use the similar method as in [Far04, Proposition 4.4.13]. Let us explain the argument briefly. By [Far04, Théorème 2.4.13], there exists \(W \in \mathcal{Q}_0 \) such that \(\bigcup_{g \in J} gW = \check{\mathcal{M}}_0 \). We put \(K = \{ g \in J \mid gW = W \} \) and \(\Omega = \{ g \in J \mid gW \cap W \neq \emptyset \} \). As in the proof of [Far04, Proposition 4.4.13], \(K \) is a compact open subgroup of \(J \) and \(\Omega \) is a compact.
subset of \(J \). For \(\alpha = ([g_1], \ldots, [g_n]) \in (J/K)^n \), we put \(W_\alpha = g_1W \cap \cdots \cap g_nW \) and \(K_\alpha = \bigcap_{j=1}^n g_jKg_j^{-1} \). For an open covering \(\{gW\}_{g \in J/K} \), we can associate the Čech spectral sequence

\[
E_1^{r,s} = \bigoplus_{\alpha \in (J/K)^{-r+1}} H_c^s(W_\alpha, F|_{W_\alpha}) \Longrightarrow H^{r+s}(\mathcal{L}_0, F).
\]

Consider the diagonal action of \(J \) on \((J/K)^{-r+1} \). The coset

\[J \setminus \{ \alpha \in (J/K)^{-r+1} \mid W_\alpha \neq \emptyset \} \]

is finite; indeed, if \(W_\alpha \neq \emptyset \) for \(\alpha = ([g_1], \ldots, [g_{r-1}]) \in (J/K)^{-r+1} \), then \(g_{r-1}^{-1} \in \{ 1 \} \times \Omega/K \times \cdots \times \Omega/K \), which is a finite set.

Take a system of representatives \(\alpha_1, \ldots, \alpha_n \) of the coset above. Then there is a natural isomorphism \(\bigoplus_{\alpha_1} L_{J/K} H_c^s(W_{\alpha_1}, F|_{W_{\alpha_1}}) \cong c\text{-Ind}_{J/K} H^s_c(W_{\alpha_1}, F|_{W_{\alpha_1}}) \). Hence

\[
E_1^{r,s} \cong \bigoplus_j L_{J/K} H_c^s(W_{\alpha_j}, F|_{W_{\alpha_j}}) \text{ is a finitely generated } J\text{-module, since the cohomology } H^s_c(W_{\alpha_j}, F|_{W_{\alpha_j}}) \text{ is finite-dimensional for each } j. \]

By this and the fact that a finitely generated smooth \(J \)-module is noetherian \([\text{Bern4}]\), Remark 3.12], we conclude that \(H^i_c(\mathcal{L}_0, F) \) is finitely generated.

Lemma 3.5 Let \(\mathcal{F} \) be an object of \(D^b_c(\mathcal{M}, \mathbb{Q}_\ell) \) with a \(K_0/K_m \)-equivariant structure. Let \(n \) be an integer with \(0 \leq n \leq m \) and put \(\mathcal{G} = (p_{nm*} \mathcal{F})_{K_n/K_m} \). Then we have \(H^i_c(\mathcal{M}, \mathcal{F})_{K_n/K_m} = H^i_c(\mathcal{M}, \mathcal{G}) \).

Proof. Since the cardinality of \(K_n/K_m \) is prime to \(\ell \), \((-)^{K_n/K_m} \) commutes with \(H^i_c \).

Therefore, we have

\[
H^i_c(\mathcal{M}, \mathcal{F})_{K_n/K_m} = \lim_{U \in \mathcal{Q}_n} H^i_c(U, \mathcal{F}|_U)_{K_n/K_m} = \lim_{V \in \mathcal{Q}_n} H^i_c(p_{nm}^{-1}(V), \mathcal{F}|_{p_{nm}^{-1}(V)})_{K_n/K_m} = \lim_{V \in \mathcal{Q}_n} H^i_c(V, \mathcal{F}|_{p_{nm}^{-1}(V)})_{K_n/K_m} = H^i_c(\mathcal{M}, \mathcal{G}).
\]

Definition 3.6 A system of coefficients over the tower \(\{\mathcal{M}_m\}_{m \geq 0} \) is the data \(\mathcal{F} = \{ \mathcal{F}_m \}_{m \geq 0} \) where \(\mathcal{F}_m \) is an object of \(D^b_c(\mathcal{M}_m, \mathbb{Q}_\ell) \) with a \(K_0/K_m \)-equivariant structure such that \((p_{nm*} \mathcal{F})_{K_n/K_m} = \mathcal{F}_n \) for every integers \(m, n \) with \(0 \leq n \leq m \). Then, by Lemma 3.5, we have \(H^i_c(\mathcal{M}_m, \mathcal{F}_m)_{K_n/K_m} = H^i_c(\mathcal{M}_n, \mathcal{F}_n) \). We put \(H^i_c(\mathcal{M}_\infty, \mathcal{F}) = \lim_{\mathcal{M}_m} H^i_c(\mathcal{M}_m, \mathcal{F}_m) \).

If each \(\mathcal{F}_m \) is endowed with a \(J \)-equivariant structure which commutes with the given \(K_0/K_m \)-equivariant structure, and for every \(0 \leq n \leq m \) the \(J \)-equivariant structures on \(\mathcal{F}_m \) and \(\mathcal{F}_n \) are compatible under the identification \((p_{nm*} \mathcal{F}_m)_{K_n/K_m} = \mathcal{F}_n \), then we say that we have a \(J \)-equivariant structure on \(\mathcal{F} \). Such a structure naturally induces the action of \(J \) on \(H^i_c(\mathcal{M}_\infty, \mathcal{F}) \).

By replacing “\(D^b_c(\mathcal{M}_m, \mathbb{Q}_\ell) \)” with “\(D^b_c(\mathcal{M}_m, \mathbb{Z}_\ell) \)”\), we may also define a system of integral coefficients \(\mathcal{F}_0 \) over \(\{\mathcal{M}_m\}_{m \geq 0} \), the cohomology \(H^i_c(\mathcal{M}_\infty, \mathcal{F}_0) \) and a \(J \)-equivariant structure on \(\mathcal{F}_0 \).
\section{Shimura variety and p-adic uniformization}

In this section, we introduce certain Shimura varieties (Siegel threefolds) related to our Rapoport-Zink tower. Let us fix a 4-dimensional \mathbb{Q}-vector space V' and an alternating perfect pairing $\psi': V' \times V' \to \mathbb{Q}$. For an integer $m \geq 0$ and a compact open subgroup $K^p \subset \text{GSp}(V'_{\bar{k},p}) = \text{GSp}(V'_{\bar{k},p}, \psi'_{\bar{k},p})$, consider the functor Sh_{m, K^p} from the category of locally noetherian \mathbb{Z}_p-schemes to the category of sets that associates S with the set of isomorphism classes of quadruples $(A, \lambda, \eta^p, \eta_p)$ where

- A is a projective abelian variety over S up to prime-to-p isogeny,
- $\lambda: A \to A'$ is a prime-to-p polarization,
- η^p is a K^p-level structure of A,
- $\eta_p : L/p^mL \to A[p^m]$ is a Drinfeld m-level structure

(for the detail, see [Kot92 §5]). Two quadruples $(A, \lambda, \eta^p, \eta_p)$ and $(A', \lambda', \eta'^p, \eta'_p)$ are said to be isomorphic if there exists a prime-to-p isogeny from A to A' which carries λ to a \mathbb{Z}_p^\times-multiple of λ', η^p to η'^p and η_p to η'_p. We put $\text{Sh}_{K^p} = \text{Sh}_{0, K^p}$. It is known that if K^p is sufficiently small, Sh_{m, K^p} is represented by a quasi-projective scheme over \mathbb{Z}_p with smooth generic fiber. In the sequel, we always assume that K^p is enough small so that Sh_{m, K^p} is representable. We denote the special fiber of Sh_{m, K^p} (resp. Sh_{K^p}) by Sh_{m, K^p} (resp. Sh_{K^p}).

For a compact open subgroup K^p contained in K^p and an integer $m' \geq m$, we have the natural morphism $\text{Sh}_{m', K^p} \to \text{Sh}_{m, K^p}$. This is a finite morphism and is moreover étale if $m' = m$.

Next we recall the p-adic uniformization theorem, which gives a relation between \mathcal{M} and Sh_{K^p}. Let us fix a polarized abelian surface (A_0, λ_{A_0}) over \mathbb{F}_p such that $A_0[p^\infty]$ is an isoclinic p-divisible group with slope $1/2$. Note that such (A_0, λ_{A_0}) exists; for example, we can take $(A_0, \lambda_{A_0}) = (E^2, \lambda^2_E)$, where E is a supersingular elliptic curve over \mathbb{F}_p and λ_E is a polarization of E. By definition, the rational Dieudonné module $D(A_0[p^\infty])_Q$ is isomorphic to $D(\mathbb{X})_Q$. Thus, by the subsequent lemma, there is an isomorphism of isocrystals $D(A_0[p^\infty])_Q \cong D(\mathbb{X})_Q$ which preserves the natural polarizations.

\begin{lemma}
We use the notation in [RR96 §1]. Let $d \geq 1$ be an integer.

i) Let b be an element of $B(\text{GSp}_{2d})$ and b' the image of b under the natural map $B(\text{GSp}_{2d}) \to B(\text{GL}_{2d})$. Then b is basic if and only if b' is basic.

\end{lemma}
ii) The map $B(GSp_{2d})_{\text{basic}} \to B(GL_{2d})_{\text{basic}}$ induced from i) is an injection.

Proof. Note that the center of GSp_{2d} coincides with that of GL_{2d}. Thus i) is clear, since b (resp. b') is basic if and only if the slope morphism $\nu_b: \mathbb{D} \to GSp_{2d}$ (resp. $\nu_{b'}: \mathbb{D} \to GSp_{2d} \hookrightarrow GL_{2d}$) factors through the center of GSp_{2d} (resp. GL_{2d}).

We prove ii). By [RR96, Theorem 1.15], it suffices to show that the natural map $\pi_1(GSp_{2d}) \to \pi_1(GL_{2d})$ is injective. Take a maximal torus T (resp. T') of GSp_{2d} (resp. GL_{2d}) such that $T \subset T'$. Then, since Sp_{2d} (resp. SL_{2d}) is simply connected, $\pi_1(GSp_{2d})$ (resp. $\pi_1(GL_{2d})$) can be identified with the quotient of $X_*(T)$ (resp. $X_*(T')$) induced by $c: T \to \mathbb{G}_m$ (resp. $det: T' \to \mathbb{G}_m$), where c denotes the similitude character of GSp_{2d}. In particular, both $\pi_1(GSp_{2d})$ and $\pi_1(GL_{2d})$ are isomorphic to \mathbb{Z}.

The commutative diagram

$$
\begin{array}{ccc}
GSp_{2d} & \xrightarrow{c} & \mathbb{G}_m \\
\downarrow & & \downarrow \scriptstyle{z \to z^d} \\
GL_{2d} & \xrightarrow{det} & \mathbb{G}_m
\end{array}
$$

induces the commutative diagram

$$
\begin{array}{ccc}
X_*(T) & \xrightarrow{d} & X_*(\mathbb{G}_m) \\
\downarrow & & \downarrow \scriptstyle{\times d} \\
X_*(T') & \xrightarrow{d} & X_*(\mathbb{G}_m)
\end{array}
= \pi_1(GSp_{2d}) \\
\pi_1(GL_{2d}).
$$

In particular, the natural map $\pi_1(GSp_{2d}) \to \pi_1(GL_{2d})$ is injective.

Therefore, there is a quasi-isogeny $X \to A[p^\infty]$ preserving polarizations. If we replace (X, λ_0) by the polarized p-divisible group $(A_0[p^\infty], \lambda_{A_0})$ associated with (A_0, λ_{A_0}), the G-representation H_{RZ} remains unchanged. Thus, in order to prove Theorem 3.2 we may assume that $(X, \lambda_0) = (A_0[p^\infty], \lambda_{A_0})$. In the remaining part of this article, we always assume it. Moreover, we fix an isomorphism $H_1(A_0, A^{\infty,p}) \cong V^r_{A^{\infty,p}}$ preserving alternating pairings.

Denote the isogeny class of (A_0, λ_{A_0}) by ϕ and put $I^\phi = \text{Aut}(\phi)$. We have natural group homomorphisms $I^\phi \to J$ and $I^\phi \to \text{Aut}(H_1(A_0, A^{\infty,p})) = GSp(V^r_{A^{\infty,p}})$. These are injective.

Let Y_{K^p} be the reduced closed subscheme of \overline{Sh}_{K^p} such that $Y_{K^p}(\overline{F}_p)$ consists of triples (A, λ, η^p) where the p-divisible group associated with (A, λ) is isogenous to (X, λ_0). It is the basic (or supersingular) stratum in the Newton stratification of \overline{Sh}_{K^p}. Note that $(A, \lambda, \eta^p) \in \overline{Sh}_{K^p}(\overline{F}_p)$ if and only if $(A, \lambda) \in \phi$ ([Far04, Proposition 3.1.8], [Kot92, §7]). We denote the formal completion of \overline{Sh}_{K^p} along Y_{K^p} by $(\overline{Sh}_{K^p})'/Y_{K^p}$.

Now we can state the p-adic uniformization theorem:
\[\theta_{K^p} : I^\phi \backslash (\tilde{\mathcal{M}} \times \text{GSp}(V'_{h,\infty,\rho})/K^p) \cong (\text{Sh}_{K^p})_{/Y_{K^p}}. \]

In the left hand side, \(I^\phi \) acts on \(\tilde{\mathcal{M}} \) through \(I^\phi \mapsto J \) and acts on \(\text{GSp}(V'_{h,\infty,\rho})/K^p \) through \(I^\phi \mapsto \text{GSp}(V'_{h,\infty,\rho}) \).

The isomorphisms \(\{ \theta_{K^p} \}_{K^p} \) are compatible with change of \(K^p \). (It is also compatible with the Hecke action of \(\text{GSp}_4(V'_{h,\infty,\rho}) \), but we do not use it.)

Let us briefly recall the construction of the isomorphism \(\theta_{K^p} \). Take a lift \((\tilde{X}, \lambda_0)\) of \((X, \lambda_0)\) over \(\mathbb{Z}_{p^\infty} \) (such a lift is unique up to isomorphism). Then, by the Serre-Tate theorem, the lift \((\tilde{A}_0, \tilde{\lambda}_0)\) of \((A_0, \lambda_0)\) is canonically determined. Let \(S \) be an object of \(\text{Nilp} \), \((X, \rho) \in \tilde{\mathcal{M}}(S) \) and \([g] \in \text{GSp}(V'_{h,\infty,\rho})/K^p \). Then \(\rho \) extends uniquely to the quasi-isogeny \(\tilde{\rho} : \tilde{X} \times \mathbb{Z}_{p^\infty} S \rightarrow X \). We can see that there exist a polarized abelian variety \((A, \lambda)\) and a \(p \)-quasi-isogeny \(\tilde{A}_0 \times \mathbb{Z}_{p^\infty} S \rightarrow A \) preserving polarizations, such that the associated quasi-isogeny \(\tilde{A}_0[p^\infty] \times \mathbb{Z}_{p^\infty} S \rightarrow A[p^\infty] \) coincides with \(\tilde{\rho} \). The fixed isomorphism \(H_1(A_0, \mathbb{A}^{\infty,\rho}) \cong V'_{h,\infty,\rho} \) naturally induces a \(K^p \)-level structure \(\eta \) of \(A \). The morphism \(\theta_{K^p} \) is given by \(\theta_{K^p}((X, \rho), [g]) = (A, \lambda, \eta \circ g) \).

By composing the morphism \(\tilde{\mathcal{M}} \rightarrow \tilde{\mathcal{M}} \times \text{GSp}(V'_{h,\infty,\rho})/K^p ; x \mapsto (x, [id]) \), we get a morphism \(\tilde{\mathcal{M}} \rightarrow (\text{Sh}_{K^p})_{/Y_{K^p}} \), which is also denoted by \(\theta_{K^p} \). For \(U \in \mathcal{O}_0 \), we denote the image of \(U \) under \(\theta_{K^p} \) by \(Y_{K^p}(U) \). It is an open subset of \(Y_{K^p} \).

Proposition 4.3 Let \(U \) be an element of \(\mathcal{O}_0 \). Then for a sufficiently small compact open subgroup \(K^p \) of \(\text{GSp}(V'_{h,\infty,\rho}) \), \(\theta_{K^p} \) induces an isomorphism \(U \cong Y_{K^p}(U) \).

Moreover, if we denote the open formal subscheme of \(\tilde{\mathcal{M}} \) (resp. \(\text{Sh}_{K^p} \)) whose underlying topological space is \(U \) (resp. \(Y_{K^p}(U) \)) by \(\tilde{\mathcal{M}}_{/U} \) (resp. \(\text{Sh}_{K^p} \)) then \(\theta_{K^p} \) induces an isomorphism \(\tilde{\mathcal{M}}_{/U} \cong (\text{Sh}_{K^p})_{/Y_{K^p}(U)} \).

Proof. The proof is similar to [Far04 Corollaire 3.1.4]. Put \(\Gamma_{K^p} = I^\phi \cap K^p \), where the intersection is taken in \(\text{GSp}(V'_{h,\infty,\rho}) \). It is known that \(\Gamma_{K^p} \) is discrete and torsion-free [RZ96]. By Theorem 4.2, \(\theta_{K^p} \) gives an isomorphism from \(\Gamma_{K^p} \backslash \tilde{\mathcal{M}} \) to an open and closed formal subscheme of \((\text{Sh}_{K^p})_{/Y_{K^p}} \). By the same method as in [Far04 Lemme 3.1.2, Proposition 3.1.3], we can see that every element \(\gamma \in \Gamma_{K^p} \) other than 1 satisfies \(\gamma \cdot U \cap U = \emptyset \) if \(K^p \) is sufficiently small. For such \(K^p \), the natural morphism \(\tilde{\mathcal{M}}_{/U} \hookrightarrow \Gamma_{K^p} \backslash \tilde{\mathcal{M}} \) is an open immersion. Thus we have an open immersion \(\tilde{\mathcal{M}}_{/U} \hookrightarrow \Gamma_{K^p} \backslash \tilde{\mathcal{M}}_{/K^p} \cong (\text{Sh}_{K^p})_{/Y_{K^p}(U)} \), whose image is \((\text{Sh}_{K^p})_{/Y_{K^p}(U)} \).

Next we consider the case with Drinfeld level structures at \(p \). Let \(Y_{m,K^p} \) be the closed subscheme of \(\overline{\text{Sh}}_{m,K^p} \) obtained as the inverse image of \(Y_{K^p} \) under \(\overline{\text{Sh}}_{m,K^p} \rightarrow \overline{\text{Sh}}_{K^p} \). By the construction of \(\theta_{K^p} \) described above, we have the following result:
Corollary 4.4 Let $m \geq 0$ be an integer. We can construct naturally a morphism $\theta_{m,K^p} : \tilde{\mathcal{M}}_m \to (\text{Sh}_{m,K^p})^{\wedge}_{Y_{m,K^p}}$ which makes the following diagram cartesian:

$$
\begin{array}{ccc}
\tilde{\mathcal{M}}_m & \xrightarrow{\theta_{m,K^p}} & (\text{Sh}_{m,K^p})^{\wedge}_{Y_{m,K^p}} \\
\downarrow & & \downarrow \\
\mathcal{M} & \xrightarrow{\theta_{K^p}} & (\text{Sh}_{K^p})^{\wedge}_{Y_{K^p}}.
\end{array}
$$

In particular, the similar result as Proposition 4.3 holds for θ_{m,K^p}; that is, for $U \in \mathcal{Q}_m$, θ_{m,K^p} induces $(\tilde{\mathcal{M}}_m)/U \cong (\text{Sh}_{m,K^p})^{\wedge}_{Y_{m,K^p}(U)}$ if K^p is sufficiently small.

5 Proof of the non-cuspidality result

5.1 The system of coefficients $\mathcal{F}^{[h]}$, $\mathcal{F}^{(h)}$

Definition 5.1 Let $m \geq 1$ and $0 \leq h \leq 2$ be integers. We denote by $\mathcal{S}_{m,h}$ the set of direct summands of $L/p^m L$ of rank $4-h$, and by $\mathcal{S}_{m,h}^{\text{coi}}$ the subset of $\mathcal{S}_{m,h}$ consisting of coisotropic direct summands (recall that $I \in \mathcal{S}_{m,h}$ is said to be coisotropic if $I^\perp \subset I$). Put $\mathcal{S}_m = \bigcup_{h=0}^2 \mathcal{S}_{m,h}$ and $\mathcal{S}_m^{\text{coi}} = \bigcup_{h=0}^2 \mathcal{S}_{m,h}^{\text{coi}}$.

For $I \in \mathcal{S}_{m,h}$, let $\overline{\text{Sh}}_{m,K^p,[I]}$ be the $\overline{\mathbb{F}}_p$-scheme defined by

$$
\overline{\text{Sh}}_{m,K^p,[I]}(S) = \{(A, \lambda, \eta^p, \eta_p) \in \overline{\text{Sh}}_{m,K^p,[I]}(S) \mid I \subset \text{Ker} \eta_p\}.
$$

Clearly it is a closed subscheme of $\overline{\text{Sh}}_{m,K^p}$. Similarly, we can define the closed formal subscheme $\tilde{\mathcal{M}}_m, [I]$ of $\mathcal{M} \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}}_p$. Obviously, $\tilde{\mathcal{M}}_m, [I]$ is stable under the action of J on $\tilde{\mathcal{M}}_m$.

We denote by $Y_{m,K^p,[I]}$ the closed subscheme of $\overline{\text{Sh}}_{m,K^p,[I]}$ obtained as the inverse image of Y_{m,K^p}. As Corollary 4.4 we have the following cartesian diagram of formal schemes:

$$
\begin{array}{ccc}
\tilde{\mathcal{M}}_m, [I] & \xrightarrow{\theta_{m,K^p}} & (\overline{\text{Sh}}_{m,K^p,[I]})^{\wedge}_{Y_{m,K^p,[I]}} \\
\downarrow & & \downarrow \\
\mathcal{M}_m & \xrightarrow{\theta_{K^p}} & (\overline{\text{Sh}}_{K^p})^{\wedge}_{Y_{K^p}}.
\end{array}
$$

Definition 5.2 For $I \in \mathcal{S}_m$, we put

$$
\overline{\text{Sh}}_{m,K^p,(I)} = \overline{\text{Sh}}_{m,K^p,[I]} \setminus \bigcup_{I' \in \mathcal{S}_m, I \subset I'} \overline{\text{Sh}}_{m,K^p,[I']},
$$

which is an open subscheme of $\overline{\text{Sh}}_{m,K^p,[I]}$, and thus is a subscheme of $\overline{\text{Sh}}_{m,K^p}$. Moreover, for an integer h with $0 \leq h \leq 2$, we put $\overline{\text{Sh}}^{[h]}_{m,K^p} = \bigcup_{I \in \mathcal{S}_m} \overline{\text{Sh}}_{m,K^p,[I]}$ and
\(\Sh_{m,Kp}^{(h)} = \bigcup_{I \in S_{m,h}} \Sh_{m,Kp,(I)}^{(h)}\). The former is a closed subscheme of \(\Sh_{m,Kp}\), which is the scheme theoretic image of \(\bigsqcup_{I \in S_{m,h}} \Sh_{m,Kp,(I)}^{[I]} \longrightarrow \Sh_{m,Kp}\). The latter is an open subscheme of \(\Sh_{m,Kp}^{(h)}\), since \(\Sh_{m,Kp}^{(h)} = \Sh_{m,Kp}^{[h]} \setminus \Sh_{m,Kp}^{[h-1]}\) (if \(h = 0\), we put \(\Sh_{m,Kp}^{[-1]} = \emptyset\)).

Lemma 5.3
1) Let \(x = (A, \lambda, \eta^p, \eta_p)\) be an element of \(\Sh_{m,Kp}(\mathbb{F}_p)\). Then, for \(I \in S_m, x \in \Sh_{m,Kp,(I)}^{(h)}(\mathbb{F}_p)\) if and only if \(I = \Ker \eta_p\). For an integer \(h\) with \(0 \leq h \leq 2\), \(x \in \Sh_{m,Kp}^{(h)}(\mathbb{F}_p)\) if and only if \(\text{rank}_{\mathbb{F}_p} A[p] \leq h\) (resp. \(\text{rank}_{\mathbb{F}_p} A[p] = h\)).

2) For every integer \(h\) with \(0 \leq h \leq 2\), we have \(\Sh_{m,Kp}^{(h)} = \bigsqcup_{I \in S_{m,h}} \Sh_{m,Kp,(I)}^{(h)}\) as schemes.

3) We have \((\Sh_{m,Kp})^{[2]}_{\text{red}} = (\Sh_{m,Kp})_{\text{red}}^{(h)}\) and \((\Sh_{m,Kp})^{[0]}_{\text{red}} = (Y_{m,Kp})_{\text{red}}\).

Proof. Let us prove i). Put \(X = A[p^\infty]\). Then there is an exact sequence \(0 \longrightarrow X_0 \longrightarrow X \longrightarrow X_{et} \longrightarrow 0\), where \(X_0\) is a connected \(p\)-divisible group and \(X_{et}\) is an étale \(p\)-divisible group. By [HT01, Lemma II.2.1], \(\Ker \eta_p\) is a direct summand of \(L/p^mL\) and \((L/p^mL)/\Ker \eta_p \longrightarrow X_{\et}[p^m]\) is an isomorphism. Thus \(\Ker \eta_p \in S_m\), where \(r = \text{rank}_{\mathbb{F}_p} X_{\et}[p^m] = \text{rank}_{\mathbb{F}_p} A[p] \leq 2\). By this, all the claims in i) are immediate.

By i), \(\Sh_{m,Kp}^{(h)}\) coincides with \(\bigsqcup_{I \in S_{m,h}} \Sh_{m,Kp,(I)}^{(h)}\) as a set; thus to prove ii) it suffices to show that \(\Sh_{m,Kp,(I)}^{(h)}\) is closed (hence open) in \(\Sh_{m,Kp}^{(h)}\) for every \(I \in S_{m,h}\).

It is clear from \(\Sh_{m,Kp,(I)}^{(h)} = \Sh_{m,Kp,(I)}^{[I]} \cap \Sh_{m,Kp}^{(h)}\).

The former equality in iii) follows immediately from i). We will prove the latter. For \(x = (A, \lambda, \eta^p, \eta_p) \in \Sh_{m,Kp}^{[0]}(\mathbb{F}_p), X = A[p^\infty]\) has no étale part by i). Since \(X^\vee \cong X\), \(X\) has no multiplicative part. Therefore \(X\) is isochinic of slope 1/2; indeed, if a Newton polygon with the terminal point \((4,2)\) has neither slope 0 part nor slope 1 part, then it is a line of slope 1/2. Thus, by Lemma 4.1, there is a quasi-isogeny \(X \longrightarrow X\) preserving polarizations; namely, \(x \in Y_{m,Kp}(\mathbb{F}_p)\). The opposite inclusion is clear. \(\blacksquare\)

Remark 5.4 The latter part of iii) in Lemma 5.3 is the only place where the same argument does not work in the case \(GSp(2d)\) with \(d \geq 3\).

Definition 5.5 Let \(m \geq 1\) be an integer. Fix a compact open subgroup \(K_p\) of \(GSp(V_{h,\infty,p})\). For \(I \in S_m\), denote the natural immersion \(\Sh_{m,Kp,(I)} \longrightarrow \Sh_{m,Kp}\) by \(j_{m,I}\). For an integer \(h\) with \(0 \leq h \leq 2\), denote the natural immersions \(\Sh_{m,Kp}^{(h)} \longrightarrow \Sh_{m,Kp}\) and \(\Sh_{m,Kp}^{(h)} \hookrightarrow \Sh_{m,Kp}\) by \(j_{m,h}^{[h]}\) and \(j_{m,h}\), respectively.

We define \(F_{m,I}^0, F_{m,I}^{(h)}, F_{m}^{[h]}, F_{m}^{(h)}\) and \(F_{m}^{(h)}\) as follows:

\[
F_{m,I}^0 = \theta_{m}^*(Rj_{m,I}R_j^{[I]}R_{\psi}Z_{\ell})|_{Y_{m,Kp}}, \\
F_{m,I}^{[h]} = \theta_{m}^*(Rj_{m,I}^{[h]}R_{\psi}Z_{\ell})|_{Y_{m,Kp}}, \\
F_{m}^{(h)} = \theta_{m}^*(Rj_{m}^{[h]}R_{\psi}Z_{\ell})|_{Y_{m,Kp}}.
\]

\[
F_{m,I} = \theta_{m}^*(Rj_{m,I}R_j^{[I]}R_{\psi}Q_{\ell})|_{Y_{m,Kp}}, \\
F_{m}^{[h]} = \theta_{m}^*(Rj_{m}^{[h]}R_{\psi}Q_{\ell})|_{Y_{m,Kp}}, \\
F_{m}^{(h)} = \theta_{m}^*(Rj_{m}^{[h]}R_{\psi}Q_{\ell})|_{Y_{m,Kp}}.
\]

15
Here \(\theta_m : \mathcal{M}_m \to Y_{m,K^p} \) is the morphism induced from \(\theta_{m,K^p} \) in Corollary 4.4. These are independent of the choice of \(K^p \); indeed, for another compact open subgroup \(K^p \) contained in \(K^p \), the natural map \(\text{Sh}_{m,K^p} \to \text{Sh}_{m,K^p} \) is étale.

Proposition 5.6 Let \(h \) be an integer with \(1 \leq h \leq 2 \).

i) We have the following distinguished triangle:
\[
\mathcal{F}^{[h-1]}_m \to \mathcal{F}^{[h]}_m \to \mathcal{F}^{(h)}_m \to \mathcal{F}^{[h-1]}_m[1].
\]

ii) We have \(\mathcal{F}^{(h)}_m = \bigoplus_{I \in \mathcal{S}_{m,h}} \mathcal{F}_{m,I} \).

Proof. By the definition, i) is clear. ii) is also clear from Lemma 5.7 ii).

Proposition 5.7 For \(I \in \mathcal{S}_{m,h} \setminus \mathcal{S}^{\text{co}}_{m,h} \), we have \(\mathcal{F}^\circ_{m,I} = \mathcal{F}_{m,I} = 0 \).

Proof. We will prove that \(Rj^*_{m,I}R\psi \mathbb{Z}_\ell = 0 \). Since the dual of \(Rj^*_{m,I}R\psi \mathbb{Z}_\ell \) is isomorphic to \(j^*_{m,I}R\psi \mathbb{Z}_\ell(3)[6] \), it suffices to show that, for every \(x \in \text{Sh}_{m,K^p,(I)}(\mathbb{F}_p) \), no point on the generic fiber of \(\text{Sh}_{m,K^p} \) specializes to \(x \). In other words, for every complete discrete valuation ring \(R \) with residue field \(\mathbb{F}_p \) which is a flat \(\mathbb{Z}_{p^\infty} \)-algebra, and every \(\mathbb{Z}_{p^\infty} \)-morphism \(\tilde{x} : \text{Spec} R \to \text{Sh}_{m,K^p} \), the image of the closed point of \(\text{Spec} R \) under \(\tilde{x} \) does not lie in \(\text{Sh}_{m,K^p,(I)} \). This is a consequence of the following lemma.

Lemma 5.7 Let \(R \) be a complete discrete valuation ring with perfect residue field \(k \) and with mixed characteristic \((0,p)\), and \((X, \lambda)\) a polarized \(p \)-divisible group over \(R \). We denote the generic (resp. special) fiber of \(X \) by \(X_\eta \) (resp. \(X_\s \)). Then, for every \(m \geq 1 \), the kernel of the specialization map \(X_\eta[p^m] \to X_\s[p^m] \) is a coisotropic direct summand of \(X_\eta[p^m] \).

Proof. We shall prove that the kernel of the specialization map \(T_pX_\eta \to T_pX_\s \) is a coisotropic direct summand of \(T_pX_\eta \). Consider the exact sequence \(0 \to X_\s,0 \to X_\s \to X_{\s,\et} \to 0 \) over \(k \). It is canonically lifted to the exact sequence \(0 \to X_0 \to X \to X_{\et} \to 0 \) over \(R \), where \(X_{\et} \) is an étale \(p \)-divisible group (cf. [Mes72, p. 76]). Thus we have the following commutative diagram, whose rows are exact:
\[
\begin{array}{ccccccccc}
0 & \to & T_pX_{\s,0,\eta} & \to & T_pX_\eta & \to & T_pX_{\s,\et,\eta} & \to & 0 \\
0 & \to & 0 & \to & T_pX_\s & \to & T_pX_{\s,\et} & \to & 0. \\
\end{array}
\]

Hence the kernel of \(T_pX_\eta \to T_pX_\s \) coincides with \(T_pX_{\s,0,\eta} \). Therefore it suffices to show that the composite \((T_pX_{\s,0,\eta})^\perp \to T_pX_\eta \to T_pX_{\s,\et,\eta} \) is 0.

On the other hand, by the polarization \(T_pX_\eta \xrightarrow{\cong} (T_pX_\eta)^\vee(1) \), \((T_pX_{\s,0,\eta})^\perp \) corresponds to \((T_pX_{\s,\et,\eta})^\vee(1) \cong T_pX_{\s,\et,\eta}^\vee \). Thus it suffices to prove that every Galois-equivariant homomorphism \(T_pX_{\s,\et,\eta}^\vee \to T_pX_{\s,\et,\eta} \) is 0. For this, we may replace the
Tate modules $T_pX^\vee_{\mathrm{et},n}$ and $T_pX_{\mathrm{et},n}$ by the rational Tate modules $V_pX^\vee_{\mathrm{et},n}$ and $V_pX_{\mathrm{et},n}$. These are crystalline representations and the corresponding filtered φ-modules are the rational Dieudonné modules $D(X^\vee_{\mathrm{et}})_Q$ and $D(X_{\mathrm{et}})_Q$, respectively. Since the slope of the former is 1 and that of the latter is 0, there is no φ-homomorphism other than 0 from $D(X^\vee_{\mathrm{et}})_Q$ to $D(X_{\mathrm{et}})_Q$. This completes the proof.

The following corollary is immediate from Proposition 5.6 ii) and Proposition 5.7.

Corollary 5.9 For h with $1 \leq h \leq 2$, we have $\mathcal{F}_m^{(h)} = \bigoplus_{I \in \mathcal{S}_m} \mathcal{F}_{m,I}$.

Let us consider the action of K_0. Since K_0/K_m naturally acts on Sh_{m,K_P} and the action of $g \in K_0/K_m$ maps $\overline{\text{Sh}}_{m,K_P,[l]}$ onto $\overline{\text{Sh}}_{m,K_P,[g^{-1}l]}$, the subschemes $\overline{\text{Sh}}^h_{m,K_P}$ and $\overline{\text{Sh}}_{m,K_P}$ are preserved by the action of K_0/K_m. Therefore, $\mathcal{F}_m^{[h]}$, $\mathcal{F}_m^{(h)}$, and $\mathcal{F}_m^{(h)}$ have natural K_0/K_m-equivariant structures. Moreover, in the same way as in [Mie10a, Proposition 2.5], we can observe that $\mathcal{F}_m^{[h]}$, $\mathcal{F}_m^{(h)}$, and $\mathcal{F}_m^{(h)}$ have natural K_0/K_m-equivariant structures. Moreover, in the same way as in [Mie10a, Proposition 2.5], we can observe that $\mathcal{F}_m^{[h]} = \{\mathcal{F}_m^{[h]}\}_{m \geq 1}$ and $\mathcal{F}_m^{(h)} = \{\mathcal{F}_m^{(h)}\}_{m \geq 1}$ form systems of coefficients (resp. integral coefficients) over $\{\mathcal{M}_m\}_{m \geq 1}$.

Thanks to [Mie10b, Corollary 5.9], we can define J-equivariant structures on the systems of coefficients introduced above.

Proposition 5.10 The complexes $\mathcal{F}_m^{[h]}$, $\mathcal{F}_m^{(h)}$, $\mathcal{F}_m^{(h)}$, $\mathcal{F}_m^{(h)}$, and $\mathcal{F}_m^{(h)}$ have natural J-equivariant structures. These structures are compatible with the distinguished triangles and the direct sum decompositions in Proposition 5.6.

Proof. We will prove the proposition for $\mathcal{F}_m^{(h)}$; other cases are similar. Put

$$\overline{\text{Sh}}^{[h]}_{m,K_P} = (\text{Sh}_{m,K_P})_{Y_{m,K_P}} \times \text{Sh}_{m,K_P} \overline{\text{Sh}}^{[h]}_{m,K_P}, \quad \overline{\text{Sh}}^{(h)}_{m,K_P} = (\overline{\text{Sh}}^{[h]}_{m,K_P}, \overline{\text{Sh}}^{[h-1]}_{m,K_P}),$$

$$\mathcal{M}_m^{[h]} = \mathcal{M}_m \times (\text{Sh}_{m,K_P})_{Y_{m,K_P}} \overline{\text{Sh}}^{[h]}_{m,K_P}, \quad \mathcal{M}_m^{(h)} = (\mathcal{M}_m^{[h]}, \mathcal{M}_m^{[h-1]}).$$

Then, by [Mie10b, Proposition 3.11], we have the canonical isomorphism

$$(Rj_m^*[h] \circ R\psi_\ell)|_{Y_{m,K_P}} \cong R\psi_\ell \circ \overline{\text{Sh}}^{(h)}_{m,K_P} \overline{\text{Sh}}^{(h)}_{m,K_P} Q_\ell.$$

Moreover, since θ_{m,K_P} is étale (cf. Corollary 4.4), by [Mie10b, Proposition 3.14], we have the canonical isomorphism

$$\mathcal{F}_m^{(h)} \cong R\psi_\ell \circ \mathcal{M}_m^{(h)} Q_\ell.$$
It is easy to see that the actions defined in the previous proposition give J-equivariant structures on the systems of (integral) coefficients $\mathcal{F}^{\circ [h]}$, $\mathcal{F}^{\circ (h)}$, $\mathcal{F}^{\circ (h)}$ and $\mathcal{F}^{\circ (h)}$. Thus we get the smooth representations $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)})$ of $K_0 \times J$ (cf. Corollary 3.7).

Proposition 5.11 There exists an isomorphism $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[0]}) \cong H^i_{R\mathbb{Z}}$, which is compatible with the action of $K_0 \times J$.

Proof. Let $m \geq 1$ be an integer and $U \in \mathcal{Q}_m$. Then, by [Mie10b, Corollary 4.40] and Proposition 4.3, we have the J-equivariant isomorphism

$$H^i_c(U, \mathcal{F}^{[0]}|_U) \cong H^i_c((\mathcal{M}_m)^{\rig} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p, \mathbb{Q}_\ell).$$

Since this isomorphism is functorial, we have $K_0 \times J$-equivariant isomorphisms

$$H^i_c(\mathcal{M}_m, \mathcal{F}^{[0]}) \cong \lim_{U \in \mathcal{Q}_m} H^i_c((\mathcal{M}_m)^{\rig} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p, \mathbb{Q}_\ell),$$

$$H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[0]}) \cong \lim_m H^i_c(\mathcal{M}_m^{\rig} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p, \mathbb{Q}_\ell) = H^i_{R\mathbb{Z}}.$$

For the isomorphism of (*), we need [Hub98 Proposition 2.1 (iv)] and [Mie10b, Lemma 4.14].

Remark 5.12 We can deduce from Proposition 5.11 and Corollary 3.7 that the action of $K_0 \times J$ on $H^i_{R\mathbb{Z}}$ is smooth.

5.2 G-action on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$, $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)})$

In this subsection, we define actions of G on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)})$ by using the method in [Man05, §6]. Put $G^+ = \{g \in G \mid g^{-1} L \subset L\}$, which is a submonoid of G. For $g \in G^+$, let $e(g)$ be the minimal non-negative integer such that $\text{Ker}(g^{-1}: V/L \rightarrow V/L)$ is contained in $p^{-e(g)} L/L$. Since $\text{Ker}(g^{-1} = (gL+L)/L$, we have $gL \subset p^{-e(g)} L$.

In the sequel, we fix a compact open subgroup K^p of $\text{GSp}(\mathcal{V}_{\ell, \mathbb{A}_\infty})$ and denote $\text{Sh}_{m, K^p, \overline{\mathcal{B}}_{m, K^p}, \overline{\mathcal{B}}_{m, K^p, [l]}, \ldots}$ by $\text{Sh}_{m, \overline{\mathcal{B}}_{m, [l]}, \ldots}$, respectively. Moreover, we fix $g \in G^+$ and denote $e(g)$ by e for simplicity.

Assume that $m \geq e$. Let us consider the $\mathbb{Z}_{p}\infty$-scheme $\text{Sh}_{m, g}$ such that for a $\mathbb{Z}_{p}\infty$-scheme S, the set $\text{Sh}_{m, g}(S)$ consists of isomorphism classes of quintuples $(A, \lambda, \eta^p, \eta_p, \mathcal{E})$ satisfying the following.

- The quadruple $(A, \lambda, \eta^p, \eta_p)$ gives an element of $\text{Sh}_m(S)$.
- $\mathcal{E} \subset X[p^e]$ is a finite flat subgroup scheme of order $p^{e(\det g^{-1})}$, where we put $X = A[p^\infty]$. It is self-dual with respect to λ, and satisfies $\eta_p^g(\text{Ker} g^{-1}) \subset \mathcal{E}(S)$, where η_p^g denotes the composite $p^{-m} L/L \times_{p^m} L/p^m L \rightarrow X[p^m].$
\(\ell \)-adic cohomology of the Rapoport-Zink space for GSp(4)

- For \(\mathcal{E} \) as above, we have the following commutative diagram:

\[
\begin{array}{c}
p^{-m}L/L \xrightarrow{\eta_p} X[p^m] \xrightarrow{g} X \\
\downarrow g^{-1} \downarrow \downarrow \downarrow \\
p^{-m}g^{-1}L/L \xrightarrow{\eta_p} X[p^m]/\mathcal{E} \xrightarrow{g} X/\mathcal{E} \\
\downarrow \downarrow \downarrow \downarrow \downarrow \\
L/p^{m-\epsilon}L \xrightarrow{\cong} p^{-m+\epsilon}L/L \xrightarrow{\eta_p} (X/\mathcal{E})[p^{m-\epsilon}].
\end{array}
\]

We denote the composite of the lowest row by \(\eta_p \circ g \) and assume that it gives a Drinfeld \((m - \epsilon)\)-level structure.

We have the two natural morphisms

\[
\begin{align*}
\text{pr}: & \quad \text{Sh}_{m,g} \to \text{Sh}_m; (A, \lambda, \eta^p, \eta_p, \mathcal{E}) \mapsto (A, \lambda, \eta^p, \eta_p), \\
[g]: & \quad \text{Sh}_{m,g} \to \text{Sh}_{m-\epsilon}; (A, \lambda, \eta^p, \eta_p, \mathcal{E}) \mapsto (A/\mathcal{E}, \lambda, \eta^p, \eta_p \circ g).
\end{align*}
\]

It is known that these are proper morphisms, pr induces an isomorphism on the generic fibers, and \([g]\) induces the action of \(g \) on the generic fibers [Man05, Proposition 16, Proposition 17].

We can easily see that \(\{\text{Sh}_{m,g}\}_{m \geq \epsilon} \) form a projective system whose transition maps are finite. Obviously, pr and \([g]\) are compatible with change of \(m \).

Similarly we can define the formal scheme \(\hat{\mathcal{M}}_{m,g} \) and the morphisms \(\text{pr}: \hat{\mathcal{M}}_{m,g} \to \hat{\mathcal{M}}_m \) and \([g]: \hat{\mathcal{M}}_{m,g} \to \hat{\mathcal{M}}_{m-\epsilon} \). The former morphism induces an isomorphism on the Raynaud generic fibers and the composite \([g]^{\text{rig}} \circ (\text{pr}^{\text{rig}})^{-1}\) coincides with the action of \(g \). The group \(J \) naturally acts on \(\hat{\mathcal{M}}_{m,g} \) and two morphisms \(\text{pr} \) and \([g]\) are compatible with the action of \(J \). Moreover, if we denote by \(Y_{m,g} \) the inverse image of \(Y_m \subset \text{Sh}_m \) under \(\text{pr}: \text{Sh}_{m,g} \to \text{Sh}_m \), then we can construct a morphism \(\theta_{m,g}: \hat{\mathcal{M}}_{m,g} \to (\text{Sh}_{m,g})^{\wedge}_{Y_{m,g}} \) which makes the following diagrams cartesian:

\[
\begin{array}{ccc}
\hat{\mathcal{M}}_{m,g} & \xrightarrow{\theta_{m,g}} & (\text{Sh}_{m,g})^{\wedge}_{Y_{m,g}} \\
\downarrow \text{pr} & & \downarrow \text{pr} \\
\hat{\mathcal{M}}_m & \xrightarrow{\theta_{m}} & (\text{Sh}_m)^{\wedge}_{Y_m} \\
\downarrow [g] & & \downarrow [g] \\
\hat{\mathcal{M}}_{m-\epsilon} & \xrightarrow{\theta_{m-\epsilon}} & (\text{Sh}_{m-\epsilon})^{\wedge}_{Y_{m-\epsilon}}.
\end{array}
\]

Now let \(h \) be an integer with \(1 \leq h \leq 2 \) and \(I \in \mathcal{S}_{m,h} \). Then we can define the subschemes \(\overline{\text{Sh}}_{m,g,[I]} \), \(\overline{\text{Sh}}_{m,g}(I) \), \(\overline{\text{Sh}}_{m,g}^{[h]} \) and \(\overline{\text{Sh}}_{m,g}^{(h)} \) of \(\text{Sh}_{m,g} \) in the same way as \(\overline{\text{Sh}}_{m,[I]} \), \(\overline{\text{Sh}}_{m,I} \), \(\overline{\text{Sh}}_{m}^{[h]} \) and \(\overline{\text{Sh}}_{m}^{(h)} \). The following proposition is obvious:

Proposition 5.13 We have the commutative diagrams below:

\[
\begin{array}{ccc}
\overline{\text{Sh}}_{m,g,[I]} & \xrightarrow{\text{pr}} & \overline{\text{Sh}}_{m,g} \\
\downarrow & & \downarrow \\
\overline{\text{Sh}}_{m,[I]} & \xrightarrow{\text{pr}} & \overline{\text{Sh}}_{m}.
\end{array}
\]
The rectangles in the left diagram is cartesian. The rectangles in the right diagram is cartesian up to nilpotent elements (namely, \(\overline{\text{Sh}}_{m,g}^{[h]} \to \overline{\text{Sh}}_m^{[h]} \times_{\overline{\text{Sh}}_m} \overline{\text{Sh}}_{m,g} \) induces a homeomorphism on the underlying topological spaces, and so on).

Let us consider how \(\overline{\text{Sh}}_{m,g,[l]} \) are mapped by \([g] : \text{Sh}_{m,g} \to \text{Sh}_{m-e} \). For this purpose, let us introduce some notation.

Definition 5.14 We denote by \(S_{\infty,h} \) the set of direct summands of \(L \) of rank \(4 - h \) and by \(S_{\infty,h}^{\text{coi}} \) the subset of \(S_{\infty,h} \) consisting of coisotropic direct summands. We can identify \(S_{\infty,h} \) with the set of direct summands of \(V \) of rank \(4 - h \); thus \(G \) naturally acts on \(S_{\infty,h} \) and \(S_{\infty,h}^{\text{coi}} \). Let \(g^{-1} : S_{m,h} \to S_{m-e,h} \) be the unique map which makes the following diagram commutative:

\[
\begin{array}{ccc}
S_{\infty,h} & \longrightarrow & S_{m,h} \\
\downarrow^{g^{-1}} & & \downarrow^{g^{-1}} \\
S_{\infty,h} & \longrightarrow & S_{m-e,h}.
\end{array}
\]

The existence of such \(g^{-1} \) follows from \(p^n L \subseteq p^r L \subseteq g^{-1} L \subseteq L \). Indeed, for direct summands \(I, I' \) of \(V \), we have

\[
I \cap L + p^m L = I' \cap L + p^m L \implies g^{-1} I \cap g^{-1} L + p^m L = g^{-1} I' \cap g^{-1} L + p^m L \\
\implies g^{-1} I \cap g^{-1} L \cap p^e L + p^m L = g^{-1} I' \cap g^{-1} L \cap p^e L + p^m L \\
\iff g^{-1} I \cap L + p^m L = g^{-1} I' \cap L + p^{m-e} L.
\]

Obviously \(g^{-1} : S_{m,h} \to S_{m-e,h} \) induces a map from \(S_{m,h}^{\text{coi}} \) to \(S_{m-e,h}^{\text{coi}} \).

Proposition 5.15 i) For \(h \in \{1, 2\} \) and \(I \in S_{m,h} \), \([g] \) induces morphisms

\[
\begin{align*}
\text{Sh}_{m,g,[l]} & \to \text{Sh}_{m-e,[g^{-1} l]}, \\
\text{Sh}_{m,g}^{[h]} & \to \text{Sh}_{m-e}^{[h]}, \\
\text{Sh}_{m,g} & \to \text{Sh}_{m-e}.
\end{align*}
\]

ii) The rectangles of the following commutative diagram is cartesian up to nilpotent elements:

\[
\begin{array}{ccc}
\text{Sh}_{m,g}^{[h]} & \longrightarrow & \text{Sh}_{m,g}^{[h]} \\
\downarrow & & \downarrow \\
\text{Sh}_{m-e}^{[h]} & \longrightarrow & \text{Sh}_{m-e}^{[h]} \\
\downarrow & & \downarrow \\
\text{Sh}_{m-e} & \longrightarrow & \text{Sh}_{m-e}.
\end{array}
\]

Proof. By the definition of \([g] \), it is clear that \([g] \) induces a morphism \(\text{Sh}_{m,g,[l]} \to \text{Sh}_{m-e,[g^{-1} l]} \) for \(I \in S_{m,h} \), and thus induces a morphism \(\text{Sh}_{m,g}^{[h]} \to \text{Sh}_{m-e}^{[h]} \). On the other hand, note that, for every \((A, \lambda, \eta^p, \eta_{1,p}, \mathcal{E}) \in \text{Sh}_{m,g}(\mathbb{F}_p) \), the \(p \)-divisible groups \(A[p^\infty] \) and \(A[p^\infty]/\mathcal{E} \) are isogenous, and thus have the same étale heights.
ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

Therefore, by Lemma 5.13 i), the inverse image of \overline{Sh}_{m-e} (resp. \overline{Sh}_{m-e}) under $[g]$ coincides with $\overline{Sh}_{m,g}$ (resp. $\overline{Sh}_{m,g}$) as sets. Therefore a morphism $\overline{Sh}_{m,g} \rightarrow \overline{Sh}_{m-e}$ is naturally induced and the rectangles in the diagram above are cartesian up to nilpotent elements. Finally, since $\overline{Sh}_{m,g}(I) = \overline{Sh}_{m,g}(I) \cap \overline{Sh}_{m,g}$ and $\overline{Sh}_{m-e,(g-1)I} = \overline{Sh}_{m-e,(g-1)I}$, $[g]$ induces a morphism $\overline{Sh}_{m,g}(I) \rightarrow \overline{Sh}_{m-e,(g-1)I}$.

By Proposition 5.13 and Proposition 5.15 we have the natural cohomological correspondence γ_g from $\mathcal{F}^{[h]}_m$ (resp. $\mathcal{F}^{(h)}_m$) to $\mathcal{F}^{[h]}_m$ (resp. $\mathcal{F}^{(h)}_m$); see Lemma 5.16 This cohomological correspondence induces a homomorphism γ_g from $H^i_c(\mathcal{M}_m, \mathcal{F}^{[h]}_m)$ (resp. $H^i_c(\mathcal{M}_m, \mathcal{F}^{(h)}_m)$) to $H^i_c(\mathcal{M}_m, \mathcal{F}^{[h]}_m)$ (resp. $H^i_c(\mathcal{M}_m, \mathcal{F}^{(h)}_m)$). Indeed, for $U \in \mathcal{Q}_m$, we can take $U' \in \mathcal{Q}_m$ which contains $pr([g]^{-1}(U))$. Then γ_g induces $H^i_c(U, \mathcal{F}^{[h]}_m) \rightarrow H^i_c(U', \mathcal{F}^{[h]}_m)$, and therefore induces $H^i_c(\mathcal{M}_m, \mathcal{F}^{[h]}_m) \rightarrow H^i_c(\mathcal{M}_m, \mathcal{F}^{(h)}_m)$. It is easy to see that this homomorphism is compatible with change of m; hence we get the endomorphism γ_g on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}_m)$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)}_m)$.

Lemma 5.16 The endomorphism γ_g commutes with the action of J on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}_m)$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)}_m)$.

Proof. We will only consider γ_g on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}_m)$, since the other case is similar. Let $U \in \mathcal{Q}_m$ and $U' \in \mathcal{Q}_m$ be as above and put $W = [g]^{-1}(U), W' = pr^{-1}(U')$. It suffices to show the commutativity of the following diagram for $j \in J$:

\[
\begin{array}{ccc}
H^i_c(jU, \mathcal{F}^{[h]}_m) & \xrightarrow{\gamma_g} & H^i_c(jW, \mathcal{F}^{[h]}_m|W) \\
\downarrow j & & \downarrow j \\
H^i_c(U, \mathcal{F}^{[h]}_m|U) & \xrightarrow{\gamma_g} & H^i_c(W, \mathcal{F}^{[h]}_m|W)
\end{array}
\]

By the construction of the J-actions, the left and the middle rectangles are commutative. On the other hand, since pr is proper and induces an isomorphism on the generic fiber, pr_* is an isomorphism and its inverse is pr^*. As pr^* commutes with the J-action, the right rectangle above is also commutative. This concludes the proof.

Lemma 5.17 i) For $g, g' \in G^+$, $\gamma_{gg'} = \gamma_g \circ \gamma_{g'}$.
ii) For $g \in K_0$, γ_g coincides with the action of K_0 on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}_m)$ or $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)}_m)$, which we already introduced.
iii) The endomorphism $\gamma_{p^{-1} \cdot id}$ an isomorphism (in fact, it coincides with the action of $p^{-1} \cdot id \in J$).

Proof. i) follows from Corollary 5.3, ii) and iii) are consequences of Proposition 16, Proposition 17] and the analogous properties for the Rapoport-Zink spaces (cf. Proposition 7.4 (4), (5)).
Note that G is generated by G^+ and $p \cdot \text{id}$ as a monoid. Therefore, by the lemma above, we can extend the actions of K_0 on $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)})$ and $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)})$ to whole G. Together with Lemma 5.16, we have a smooth $G \times J$-module structures on $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)})$ and $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)})$. We can observe without difficulty that the isomorphism in Proposition 5.11 is in fact compatible with the action of G:

Proposition 5.18 The isomorphism $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{[0]}) \cong H_{KZ}^1$ in Proposition 5.11 is an isomorphism of $G \times J$-modules.

Next we investigate the G-module structure of $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)})$ for $h \in \{1, 2\}$. Let us fix an element $\tilde{I}(h)$ of $S_{\text{col}, h}$ and denote its image under the natural map $S_{\text{col}, h} \rightarrow S_{\text{m}, h}$ by $\tilde{I}(h)_m$. Put $P_h = \text{Stab}_G(\tilde{I}(h))$, which is a maximal parabolic subgroup of G. Then we can identify $S_{\text{col}, h}$ with $G/P_h = K_0/(P_h \cap K_0)$ and $S_{\text{m}, h}$ with $K_m \backslash G/P_h = K_m\backslash K_0/(P_h \cap K_0)$. For $g \in G^+$ and an integer m with $m \geq e := e(g)$, $g^{-1} : S_{\text{m}, h} \rightarrow S_{\text{m}, e, h}$ is identified with the map $K_m \backslash G/P_h \rightarrow K_{m-e} \backslash G/P_h$.

Definition 5.19 We put $H_c^1(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)_m}) = \lim_{m \rightarrow \infty} H_c^1(\mathcal{M}_m, \mathcal{F}_{m, \tilde{I}(h)_m})$. Here the transition maps are given as follows: for integers $1 \leq m \leq m'$,

$$
H_c^1(\mathcal{M}_m, \mathcal{F}_{m, \tilde{I}(h)_m}) \rightarrow H_c^1(\mathcal{M}_m', \mathcal{F}_{m', \tilde{I}(h)_m}) \rightarrow \bigoplus_{l' \in S_{\text{col}, h}} H_c^1(\mathcal{M}_{m'}, \mathcal{F}_{m', l'})
$$

$$
\rightarrow H_c^1(\mathcal{M}_{m'}, \mathcal{F}_{m', \tilde{I}(h)_{m'}}).
$$

It is easy to see that $H_c^1(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$ has a structure of a smooth $P_h \times J$-module (use Theorem 3.4 and Proposition 5.13 i)). For each $m \geq 1$ we have the homomorphism

$$
H_c^1(\mathcal{M}_m, \mathcal{F}^{(h)}) = \bigoplus_{I \in S_{\text{col}, h}} H_c^1(\mathcal{M}_m, \mathcal{F}_{m, I}) \rightarrow H_c^1(\mathcal{M}_m, \mathcal{F}_{m, \tilde{I}(h)_m}),
$$

which induces the homomorphism $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)}) \rightarrow H_c^1(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$. By Proposition 5.15 i), we can prove that this is a homomorphism of $P_h \times J$-modules.

Proposition 5.20 We have an isomorphism $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)}) \cong \text{Ind}_{P_h}^G H_c^1(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$ of $G \times J$-modules.

Proof. By the Frobenius reciprocity, we have a G-homomorphism $H_c^1(\mathcal{M}_\infty, \mathcal{F}^{(h)}) \rightarrow \text{Ind}_{P_h}^G H_c^1(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$. We shall observe that this is bijective. For an integer $m \geq 1$, we have

$$
H_c^1(\mathcal{M}_m, \mathcal{F}^{(h)}) = \bigoplus_{I \in S_{\text{col}, h}} H_c^1(\mathcal{M}_m, \mathcal{F}_{m, I}) \cong \bigoplus_{g \in K_0/(P_h \cap K_0)} H_c^1(\mathcal{M}_m, \mathcal{F}_{m, g^{-1}\tilde{I}(h)_m})
$$

$$
\cong \text{Ind}_{(P_h \cap K_0)/(P_h \cap K_0)}^G H_c^1(\mathcal{M}_m, \mathcal{F}_{m, \tilde{I}(h)_m}),
$$

where Ind denotes the induced representation.
ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

where the last isomorphism, due to \([\text{Boy99], Lemme 13.2}\), is an isomorphism as \(K_0\)-modules. By taking the inductive limit, we have isomorphisms

\[
H^i_c(\overline{M}_\infty, F^{(h)}) \xrightarrow{\cong} \text{Ind}_{P_h \cap K_0}^{K_0} H^i_c(\overline{M}_\infty, F_{I(h)_m}) \xleftarrow{\cong} \text{Ind}^G_{P_h} H^i_c(\overline{M}_\infty, F_{I(h)_m})
\]

(the second isomorphism follows from the Iwasawa decomposition \(G = P_h K_0\)). By the proof of \([\text{Boy99], Lemme 13.2}\], it is easy to see that the first isomorphism above is nothing but the \(K_0\)-homomorphism obtained by the Frobenius reciprocity for \(P_h \cap K_0 \subset K_0\). Therefore the composite of the two isomorphisms above coincides with the \(G\)-homomorphism introduced at the beginning of this proof. Thus we conclude the proof.

5.3 Proof of the main theorem

We begin with the following result on non-cuspidality:

Theorem 5.21 For every \(i \in \mathbb{Z}\) and \(h \in \{1, 2\}\), the \(G\)-module \(H^i_c(\overline{M}_\infty, F^{(h)})_{\mathbb{Q}_\ell}\) has no quasi-cuspidal subquotient.

By Proposition 5.20 and \([\text{Bern84], 2.4}\], it suffices to show the following proposition:

Proposition 5.22 Let \(h \in \{1, 2\}\). The unipotent radical \(U_h\) of \(P_h\) acts trivially on \(H^i_c(\overline{M}_\infty, F^{(h)})_{\mathbb{Q}_\ell}\).

To prove Proposition 5.22, we need some preparations. In the sequel, let \(G\) and \(H\) be connected reductive groups over \(\mathbb{Q}_p\), \(P\) a parabolic subgroup of \(G\) and \(U\) the unipotent radical of \(P\). We put \(P = P(\mathbb{Q}_p)\), \(H = H(\mathbb{Q}_p)\) and \(U = U(\mathbb{Q}_p)\).

Lemma 5.23 Let \(A\) be a noetherian \(\mathbb{Q}\)-algebra and \(V\) an \(A\)-module with a smooth \(P\)-action. Assume that \(V\) is \(A\)-admissible in the sense of \([\text{Bern84], 1.16}\]. Then \(U\) acts on \(V\) trivially.

Proof. First assume that \(A\) is Artinian. Then we can prove the lemma in the same way as \([\text{Boy99], Lemme 13.2.3}\] (we use length in place of dimension).

For the general case, we use noetherian induction. Assume that the lemma holds for every proper quotient of \(A\). Take a minimal prime ideal \(p\) of \(A\). Then \(A_p\) is Artinian and \(V_p\) is an \(A_p\)-admissible representation of \(P\) (note that \((V_p)^K = (V^K)_p\) for every compact open subgroup \(K\) of \(P\)). Therefore \(U\) acts on \(V_p\) trivially. Let \(V'\) (resp. \(V''\)) be the kernel (resp. image) of \(V \rightarrow V_p\). Note that \(V'\) and \(V''\) are \(A\)-admissible representations of \(P\), for \(A\) is noetherian.

Consider the following commutative diagram:

\[
\begin{array}{c}
0 \rightarrow V' \rightarrow V \rightarrow V'' \rightarrow 0 \\
\downarrow^{(1)} \downarrow^{(2)} \downarrow^{(3)} \\
0 \rightarrow V'_U \rightarrow V_U \rightarrow (V_p)_U \\
\end{array}
\]
It is well-known that the functor taking U-coinvariant $V \mapsto V_U$ is an exact functor; thus the lower row in the diagram above is exact. On the other hand, the arrow labeled (3) is injective, since it is the composite of $V'' \hookrightarrow V_p \xrightarrow{\cong} (V_p)^U$. Therefore, by the snake lemma, the injectivity of (2) is equivalent to that of (1). In other words, we have only to prove that the action of U on V' is trivial.

On the other hand, by the definition, V' is the union of $V_s := \{x \in V \mid sx = 0\}$ for $s \in A \setminus p$. Since V_s can be regarded as an admissible $A/(s)$-representation, U acts on V_s trivially by the induction hypothesis. Hence U acts on V' trivially.

Proposition 5.24 Let V be a smooth representation of $P \times H$ over $\overline{\mathbb{Q}}_l$ and assume that for every compact open subgroup K of P, V^K is a finitely generated H-module. Then U acts on V' trivially.

Proof. Since $\overline{\mathbb{Q}}_l$ and \mathbb{C} are isomorphic as fields, we may replace $\overline{\mathbb{Q}}_l$ in the statement by \mathbb{C}. Let \mathfrak{Z} be the Bernstein center of H [Bern84]. It is decomposed as $\mathfrak{Z} = \prod_{\theta \in \Theta} \mathfrak{Z}_\theta$, where Θ denotes the set of connected components of the Bernstein variety of H. For $\theta \in \Theta$, we denote the θ-part of V by V_θ. Then we have the canonical decomposition $V = \bigoplus_{\theta \in \Theta} V_\theta$, which is compatible with the action of $P \times H$. Therefore, by replacing V with V_θ, we may assume that the action of \mathfrak{Z} on V factors through \mathfrak{Z}_θ for some $\theta \in \Theta$.

By the assumption and [Bern84, Proposition 3.3], for every compact open subgroup K of P, V^K is a finitely generated H-module. Namely, for every compact open subgroup K (resp. K') of P (resp. H), $V^{K \times K'}$ is a finitely generated \mathfrak{Z}_θ-module. In other words, for every compact open subgroup K of H, V^K is a finitely generated \mathfrak{Z}_θ-module. Since \mathfrak{Z}_θ is a finitely generated \mathbb{C}-algebra, U acts trivially on V^K by Lemma 5.23. Therefore U acts trivially on V' also.

Proof of Proposition 5.22 By Proposition 5.24, we have only to prove that, for every $m \geq 1$, $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^{P_h \cap K_m}_p$ is a finitely generated J-module (recall that a finitely generated J-module is noetherian [Bern84, Remarque 3.12]). As a J-module, it is a direct summand of $(\text{Ind}^{G}_{P_h} H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)}))^K_m \cong H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^{K_m}$. On the other hand, by Corollary 3.7, $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^{K_m}$ is a finitely generated J-module. Thus $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^{P_h \cap K_m}_p$ is also finitely generated.

Proposition 5.25 Let i be an integer. If $i \geq 5$, then $H^i_c(\mathcal{M}_\infty, \mathcal{F}[2]) = 0$. On the other hand, if $i \leq 1$, then $H^i_c(\mathcal{M}_\infty, \mathcal{F}[0]) = 0$.

Proof. By the definition, it suffices to show that for every $m \geq 1$ and every $U \in Q_m$ we have $H^i_c(U, \mathcal{F}_m[1]|_U) = 0$ for $i \geq 5$ and $H^i_c(U, \mathcal{F}_m[0]|_U) = 0$ for $i \leq 1$. Thus the claim is reduced to the following lemma.

Lemma 5.26 Let S be the spectrum of a strict henselian discrete valuation ring and X a separated S-scheme of finite type. We denote its special (resp. generic)
fiber by X_s (resp. X_n). Let Z be a closed subscheme of X_s and denote the natural closed immersion $Z \rightarrow X$ by i. Assume that X_n is smooth of pure dimension d and Z is purely d'-dimensional.

Then we have $H^n(Z, i^* R^i R\psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R\psi_X \mathbb{Q}_\ell) = 0$ for $n > d + d'$ and $H^n_c(Z, R^i i^* R\psi_X \mathbb{Q}_\ell) = 0$ for $n < d - d'$.

Proof. First note that $H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = 0$ if $n > 2 \dim Z$ or $n > 2 \dim(\text{supp } R^k \psi_X \mathbb{Q}_\ell)$. By [BBD82, Proposition 4.4.2], for each $k \geq 0$ we have $\dim(\text{supp } R^k \psi_X \mathbb{Q}_\ell) \leq d - k$; therefore if $n + k > d + d'$ then we have

$$n > d' + (d - k) \geq \dim Z + \dim(\text{supp } R^k \psi_X \mathbb{Q}_\ell)$$

and thus $H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = 0$. By the spectral sequence, we have $H^n(Z, i^* R\psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R\psi_X \mathbb{Q}_\ell) = 0$ for $n > d + d'$.

On the other hand, by the Poincaré duality, we have

$$H^n_c(Z, R^i i^* R\psi_X \mathbb{Q}_\ell) = H^{-n}(Z, D_Z(R^i i^* R\psi_X \mathbb{Q}_\ell))^{\vee} = H^{-n}(Z, i^* R\psi_X D_X, \mathbb{Q}_\ell)^{\vee}$$

$$= H^{-n}(Z, i^* R\psi_X \mathbb{Q}_\ell(d)[2d])^{\vee} = H^{2d-n}(Z, i^* R\psi_X \mathbb{Q}_\ell)^{\vee}(-d),$$

where D_Z (resp. D_X) denotes the dualizing functor with respect to Z (resp. X_n). Therefore it vanishes if $2d - n > d + d'$, namely, $n < d - d'$.

Now we can prove our main theorem.

Proof of Theorem 5.22. By Proposition 5.11 and Proposition 5.25 we have $H^i_{RZ} = 0$ for $i \leq 1$. Therefore we may assume that $i \geq 5$.

By Proposition 5.6(i), we have the exact sequence of smooth G-modules

$$H^{i-1}_c(\mathcal{M}_\infty, \mathcal{F}(h))_{\mathbb{Q}_\ell} \rightarrow H^i_c(\mathcal{M}_\infty, \mathcal{F}[h^{-1}])_{\mathbb{Q}_\ell} \rightarrow H^i_c(\mathcal{M}_\infty, \mathcal{F}[h])_{\mathbb{Q}_\ell}$$

for every h with $1 \leq h \leq 2$. Moreover, $H^i_c(\mathcal{M}_\infty, \mathcal{F}(h))_{\mathbb{Q}_\ell}$ has no quasi-cuspidal subquotient by Theorem 5.21. Thus, starting from $H^i_c(\mathcal{M}_\infty, \mathcal{F}[2])_{\mathbb{Q}_\ell} = 0$ (Proposition 5.23), we can inductively prove that $H^i_c(\mathcal{M}_\infty, \mathcal{F}[h])_{\mathbb{Q}_\ell}$ has no quasi-cuspidal subquotient; indeed, the property that a representation has no quasi-cuspidal subquotient is stable under sub, quotient and extension (use the canonical decomposition in [Bern84, 2.3.1]). In particular, $H^i_c(\mathcal{M}_\infty, \mathcal{F}[0])_{\mathbb{Q}_\ell} \cong H^i_{RZ, \mathbb{Q}_\ell} (\text{cf. Proposition 5.18})$ has no quasi-cuspidal subquotient. This completes the proof.

6 Appendix: Complements on cohomological correspondences

In this section, we recall the notion of cohomological correspondences (cf. [SGA5, Exposé III], [Fuj97]) and give some results on them. These are used to define the action of G on $H^i_c(\mathcal{M}_\infty, \mathcal{F}[h])$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}(h))$.

25
In this section, we change our notation. Let k be a field and ℓ a prime number which is invertible in k. We denote one of $\mathbb{Z}/\ell^n\mathbb{Z}$ or \mathbb{Q}_ℓ by Λ. Let X_1 and X_2 be schemes which are separated of finite type over k, and L_i an object of $D^b_c(X_i, \Lambda)$ for $i = 1, 2$ respectively. A cohomological correspondence from L_1 to L_2 is a pair (γ, c) consisting of a separated k-morphism of finite type $\gamma : \Gamma \rightarrow X_1 \times X_2$ and a morphism $c : \gamma_1^*L_1 \rightarrow R\gamma_2^!L_2$ in the category $D^b_c(\Gamma, \Lambda)$, where we denote $\text{pr}_i \circ \gamma$ by γ_i. For simplicity, we also write c for (γ, c), if there is no risk of confusion. If we are given a cohomological correspondence (γ, c) where γ_1 is proper, then we have the associated morphism $R\Gamma_c(\epsilon) : R\Gamma_c(X_1, L_1) \rightarrow R\Gamma_c(X_2, L_2)$ by composing

$$R\Gamma_c(X_1, L_1) \xrightarrow{\gamma_1^*} R\Gamma_c(\Gamma, \gamma_1^*L_1) \xrightarrow{R\Gamma_c(\epsilon)} R\Gamma_c(\Gamma, R\gamma_2^!L_1) = R\Gamma_c(X_2, R\gamma_2^!L_2) \xrightarrow{\text{adj}} R\Gamma_c(X_2, L_2).$$

We can compose two cohomological correspondences. Let X_3 be another scheme which is separated of finite type over k and $L_3 \in D^b_c(X_3, \Lambda)$. Let (γ', c') be a cohomological correspondence from L_2 to L_3. Consider the following diagram

$$
\begin{array}{ccc}
\Gamma \times X_2 & \xrightarrow{\text{pr}_2} & \Gamma' \\
\downarrow \gamma_1 & & \downarrow \gamma_2' \\
\Gamma & \xrightarrow{\gamma_2} & X_2 \\
\downarrow \gamma_1 & & \downarrow \gamma_2 \\
X_1 & & \end{array}
$$

Let γ'' be the natural morphism $\Gamma \times X_2 \Gamma' \rightarrow X_1 \times X_3$ and $c'' : \gamma''_1^*L_1 \rightarrow R\gamma''_2^!L_3$ the composite of

$$\gamma''_1^*L_1 = \text{pr}_1^* \gamma_1^*L_1 \xrightarrow{\text{pr}_1^*(c)} \text{pr}_1^* R\gamma_2^!L_2 \xrightarrow{b.c.} R \text{pr}_2 \gamma_1^*L_2 \xrightarrow{R \text{pr}_2^*(c)} R \text{pr}_2^* R\gamma_2^!L_3 = R\gamma''_2^!L_3,$$

where $b.c.$ denotes the base change morphism. We call the cohomological correspondence (γ'', c'') the composite of (γ, c) and (γ', c'), and denote it by $c' \circ c$. It is not difficult to see that if γ_1 and γ_1' are proper, then γ''_1 is also proper and $R\Gamma_c(c' \circ c) = R\Gamma_c(c') \circ R\Gamma_c(\epsilon)$.

Let us recall some operations for cohomological correspondences. Let X_1, X_2, X'_1 and X'_2 be schemes which are separated of finite type over k, and $\gamma : \Gamma \rightarrow X_1 \times X_2$ and $\gamma' : \Gamma' \rightarrow X'_1 \times X'_2$ separated k-morphisms of finite type. Assume that the following commutative diagram is given:

$$
\begin{array}{ccc}
X'_1 & \xleftarrow{\gamma'_1} & \Gamma' \\
\downarrow a_1 & & \downarrow a \\
X_1 & \xleftarrow{\gamma_1} & \Gamma \\
\downarrow a_2 & & \downarrow a_2 \\
X_2 & \xrightarrow{\gamma'_2} & X'_2
\end{array}
$$
First assume that every vertical morphism is proper. Let L'_i be an object of $D^b_c(X'_i, \Lambda)$ for each $i = 1, 2$ and (γ', c') a cohomological correspondence from L'_1 to L'_2. Then we can define the cohomological correspondence (γ, a_*c') from $R\Lambda_1, L'_1$ to $R\Lambda_2, L'_2$ by

$$
\gamma'_1 Ra_1, L'_1 \xrightarrow{b.c.} Ra_* \gamma'_1^* L'_1 \xrightarrow{Ra_*(c')} Ra_* R\gamma'_2^* L'_2 = Ra_1 R\gamma'_2^* L'_2
$$

The cohomological correspondence (γ, a_*c') is called the push-forward of (γ', c') by a. It is easy to see that push-forward is compatible with composition. Moreover, we have the following lemma whose proof is also immediate:

Lemma 6.1 In the above diagram, assume that $X_1 = X'_1$, $X_2 = X'_2$, $a_1 = a_2 = id$ and a is proper. Let L_i be an object of $D^b_c(X_i, \Lambda)$ for each $i = 1, 2$ and (γ, c) a cohomological correspondence from L_1 to L_2. Then we have $R\Gamma_c(a_* c') = R\Gamma_c(c')$.

Next we assume that the right rectangle in the diagram above is cartesian. Let L'_i and (γ', c') be as above. Then we have the cohomological correspondence $(\gamma, a_* c')$ from $R\Lambda_1, L'_1$ to $R\Lambda_2, L'_2$ by

$$
\gamma'_1 Ra_1, L'_1 \xrightarrow{b.c.} Ra_* \gamma'_1^* L'_1 \xrightarrow{Ra_*(c')} Ra_* Ra_2, L'_2 \xrightarrow{b.c.} R\gamma'_2^* Ra_2, L'_2.
$$

On the other hand, let L_i be an object of $D^b_c(X_i, \Lambda)$ for each $i = 1, 2$ and (γ, c) a cohomological correspondence from L_1 to L_2. Then we have the cohomological correspondence $(\gamma, a_* c)$ from $a_1^* L_1$ to $a_2^* L_2$ by

$$
\gamma_1^* a_1^* L_1 = a_1^* \gamma_1^* L_1 \xrightarrow{a_1^*(c)} a_1^* R\gamma_2^* L_2 \xrightarrow{b.c.} R\gamma_2^* a_2^* L_2.
$$

Finally assume that the left rectangle in the diagram above is cartesian. Let L_i and (γ, c) be as above. Then we have the cohomological correspondence $(\gamma, a_* c)$ from $Ra_1^* L_1$ to $Ra_2^* L_2$ by

$$
\gamma'_1 Ra_1^* L_1 \xrightarrow{b.c.} Ra_1^* \gamma'_1^* L_1 \xrightarrow{Ra_1^*(c)} Ra_1^* Ra_2^* L_2 \xrightarrow{b.c.} R\gamma_2^* Ra_2^* L_2.
$$

These constructions are also compatible with composition.

Next we recall the specialization of cohomological correspondences. Let S be the spectrum of a strict henselian discrete valuation ring on which ℓ is invertible. For an S-scheme X, we denote its special (resp. generic) fiber by X_s (resp. X_η).

Let X_1, X_2 be schemes which are separated of finite type over S and $\gamma: \Gamma \rightarrow X_1 \times_S X_2$ a separated S-morphism of finite type. Let L_i be an object of $D^b_c(X_i, \eta, \Lambda)$ for each $i = 1, 2$ and (γ, c) a cohomological correspondence from L_1 to L_2. Then we have the cohomological correspondence $(\gamma, R\psi(c))$ from $R\psi L_1$ to $R\psi L_2$ by

$$
\gamma'_{1,s} R\psi L_1 \xrightarrow{R\psi(c)} R\psi R\gamma'_{1,\eta} L_1 \xrightarrow{R\psi(R\gamma'_2^* L_2)} R\gamma'_2 L_2.
$$
It is easy to see that this construction is compatible with composition and proper push-forward (cf. [Fuj97, Proposition 1.6.1]).

Now we will give the main result in this section. Let X_i, γ_i, L_i be as above and Y_i (resp. Z_i) a closed (resp. locally closed) subscheme of $X_{1,s}$. Assume that $\gamma_{i,s}^{-1}(Y_i) = \gamma_{2,s}^{-1}(Y_2)$ and $\gamma_{i,s}^{-1}(Z_i) = \gamma_{2,s}^{-1}(Z_2)$ as subschemes of Γ_s, and denote the former by Γ_Y and the latter by Γ_Z. Then we have the following diagrams whose rectangles are cartesian:

\[\begin{array}{ccc}
Y_1 & \leftarrow & Y_2 \\
\gamma_{1,s}^{-1} & \downarrow & \gamma_{2,s}^{-1} \\
X_{1,s} & \rightarrow & X_{2,s}.
\end{array}\]

\[\begin{array}{ccc}
Z_1 & \leftarrow & Z_2 \\
\gamma_{1,s}^{-1} & \downarrow & \gamma_{2,s}^{-1} \\
X_{1,s} & \rightarrow & X_{2,s}.
\end{array}\]

Therefore, for a cohomological correspondence (γ_i, c) from L_1 to L_2, the cohomological correspondence $i^*j_*j^!R\psi(c)$ from $i^*Rj_{1!}Rj_1^!R\psi L_1$ to $i_2^*Rj_2, Rj_2^!R\psi L_2$ is induced. If moreover we assume that γ_1 is proper, then we have

\[R\Gamma_c(i^*j_*j^!R\psi(c)) : R\Gamma_c(X_{1,s}, i_1^*Rj_{1!}Rj_1^!R\psi L_1) \longrightarrow R\Gamma_c(X_{2,s}, i_2^*Rj_2, Rj_2^!R\psi L_2).\]

Proposition 6.2 The morphism $R\Gamma_c(i^*j_*j^!R\psi(c))$ depends only on the cohomological correspondence (γ_i, c). More precisely, if another S-morphism $\gamma' : \Gamma' \rightarrow X_1 \times_S X_2$ has the same generic fiber as γ and satisfies the conditions that $\gamma_{i,s}^{-1}(Y_i) = \gamma_{2,s}^{-1}(Y_2)$, $\gamma_{i,s}^{-1}(Z_i) = \gamma_{2,s}^{-1}(Z_2)$ and γ'_i is proper, then the morphism $R\Gamma_c(i^*j'_*j'^!R\psi(c))$ induced from γ' is equal to $R\Gamma_c(i^*j_*j^!R\psi(c))$ (here i' and j' are defined in the same way as i and j).

Proof. Since Γ and Γ' have the same generic fiber, there is the “diagonal” in the generic fiber of $\Gamma \times_{X_1 \times_S X_2} \Gamma'$. Let Γ'' be the closure of it in $\Gamma \times_{X_1 \times_S X_2} \Gamma'$. Then Γ'' has the same generic fiber as Γ. We have natural morphisms $\Gamma'' \rightarrow \Gamma$ and $\Gamma'' \rightarrow \Gamma'$, which are proper since γ and γ' are proper. Therefore $\gamma'' : \Gamma'' \rightarrow X_1 \times_S X_2$ also satisfies the same conditions as γ and γ'. By replacing γ' by γ'', we may assume that there exists a proper morphism $a : \Gamma' \rightarrow \Gamma$ such that $a \circ a = \gamma'$. Then, it is easy to see that the push-forward of the cohomological correspondence $(\gamma'_i, i'^*j'_*j'^!R\psi(c))$ by a_s coincides with $(\gamma_i, i^*j_*j^!R\psi(c))$. Therefore the proposition follows from Lemma 6.1. \[\blacksquare\]

Corollary 6.3 Let X_1, X_2 and X_3 be schemes which are separated of finite type over S, Y_i (resp. Z_i) a closed (resp. locally closed) subscheme of X_i, and L_i an object of $D^b_{c}(X_i, \eta, \Lambda)$ for each $i = 1, 2, 3$. Let $\gamma_i : \Gamma \rightarrow X_1 \times_S X_2$ (resp. $\gamma' : \Gamma' \rightarrow X_2 \times_S X_3$, resp. $\gamma'' : \Gamma'' \rightarrow X_1 \times_S X_3$) be an S-morphism such that γ_1 (resp. γ'_1, resp. γ''_1) is proper, and (γ_i, c) (resp. (γ'_i, c'), resp. (γ''_i, c'')) a cohomological correspondence from L_1 to L_2 (resp. from L_2 to L_3, resp. from L_1 to L_3). Moreover we assume that $\gamma_{1,s}^{-1}(Y_1) = \gamma_{2,s}^{-1}(Y_2)$, $\gamma_{1,s}^{-1}(Z_1) = \gamma_{2,s}^{-1}(Z_2)$, $\gamma_{1,s}^{-1}(Y_2) = \gamma_{2,s}^{-1}(Y_3)$, $\gamma_{1,s}^{-1}(Z_2) = \gamma_{2,s}^{-1}(Z_3)$,
\(\gamma_{1,s}^{-1}(Y_1) = \gamma_{2,s}^{-1}(Y_2)\) and \(\gamma_{1,s}^{-1}(Z_1) = \gamma_{2,s}^{-1}(Z_2)\). Then, as above, the morphisms

\[
R\Gamma_c(i^*j_*^! R\psi(c)) : R\Gamma_c(X_{1,s}, i^*Rj_{1,s} Rj_{1}^! R\psi L_1) \to R\Gamma_c(X_{2,s}, i^*Rj_{2,s} Rj_{2}^! R\psi L_2),
\]

\[
R\Gamma_c(i^*j_*^! R\psi(c')) : R\Gamma_c(X_{2,s}, i^*Rj_{2,s} Rj_{2}^! R\psi L_2) \to R\Gamma_c(X_{3,s}, i^*Rj_{3,s} Rj_{3}^! R\psi L_3),
\]

\[
R\Gamma_c(i^*j_*^! R\psi(c'')) : R\Gamma_c(X_{1,s}, i^*Rj_{1,s} Rj_{1}^! R\psi L_1) \to R\Gamma_c(X_{3,s}, i^*Rj_{3,s} Rj_{3}^! R\psi L_3)
\]

are induced. Assume that the composite of \((\gamma_\eta, c)\) and \((\gamma_\eta', c')\) coincides with \((\gamma_\eta'', c'')\). Then we have \(R\Gamma_c(i^*j_*^! R\psi(c')) \circ R\Gamma_c(i^*j_*^! R\psi(c)) = R\Gamma_c(i^*j_*^! R\psi(c''))\).

Proof. By Proposition 6.2, we may replace \(\gamma''\) by \(\Gamma' \times X_2 \Gamma' \to X_1 \times S \times X_3\). Then the equality is clear, since all the operations for cohomological correspondences are compatible with composition.

References

[BBD82] A. A. Beilinson, J. Bernstein, and P. Deligne, *Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.

[Bern84] J. N. Bernstein, *Le “centre” de Bernstein*, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, Edited by P. Deligne, pp. 1–32.

[Berk96] V. G. Berkovich, *Vanishing cycles for formal schemes. II*, Invent. Math. 125 (1996), no. 2, 367–390.

[Boy99] P. Boyer, *Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale*, Invent. Math. 138 (1999), no. 3, 573–629.

[Boy09] ———, *Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples*, Invent. Math. 177 (2009), no. 2, 239–280.

[Car90] H. Carayol, *Nonabelian Lubin-Tate theory*, Automorphic forms, Shimura varieties, and \(L\)-functions, Vol. II (Ann Arbor, MI, 1988), Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 15–39.

[Dat07] J.-F. Dat, *Théorie de Lubin-Tate non-abélienne et représentations elliptiques*, Invent. Math. 169 (2007), no. 1, 75–152.

[DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, *Analytic pro-p groups*, second ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999.

[Dri76] V. G. Drinfeld, *Coverings of p-adic symmetric domains*, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 29–40.

[Far04] L. Fargues, *Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales*, Astérisque (2004), no. 291, 1–199, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales.
[Fuj97] K. Fujiwara, *Rigid geometry, Lefschetz-Verdier trace formula and Deligne’s conjecture*, Invent. Math. **127** (1997), no. 3, 489–533.

[Har97] Michael Harris, *Supercuspidal representations in the cohomology of Drinfeld upper half spaces; elaboration of Carayol’s program*, Invent. Math. **129** (1997), no. 1, 75–119.

[HT01] M. Harris and R. Taylor, *The geometry and cohomology of some simple Shimura varieties*, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich.

[Hub94] R. Huber, *A generalization of formal schemes and rigid analytic varieties*, Math. Z. **217** (1994), no. 4, 513–551.

[Hub96] R. Huber, *Étale cohomology of rigid analytic varieties and adic spaces*, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996.

[Hub98] R. Huber, *A comparison theorem for l-adic cohomology*, Compositio Math. **112** (1998), no. 2, 217–235.

[Kot92] R. E. Kottwitz, *Points on some Shimura varieties over finite fields*, J. Amer. Math. Soc. **5** (1992), no. 2, 373–444.

[Man04] E. Mantovan, *On certain unitary group Shimura varieties*, Astérisque (2004), no. 291, 201–331, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales.

[Man05] E. Mantovan, *On the cohomology of certain PEL-type Shimura varieties*, Duke Math. J. **129** (2005), no. 3, 573–610.

[Mes72] W. Messing, *The crystals associated to Barsotti-Tate groups: with applications to abelian schemes*, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin, 1972.

[Mie10a] Y. Mieda, *Non-cuspidality outside the middle degree of l-adic cohomology of the Lubin-Tate tower*, Adv. Math. **225** (2010), no. 4, 2287–2297.

[Mie10b] Y. Mieda, *Variants of formal nearby cycles*, preprint, arXiv:1005.5616, 2010.

[NS03] N. Nikolov and D. Segal, *Finite index subgroups in profinite groups*, C. R. Math. Acad. Sci. Paris **337** (2003), no. 5, 303–308.

[NS07a] N. Nikolov and D. Segal, *On finitely generated profinite groups. I. Strong completeness and uniform bounds*, Ann. of Math. (2) **165** (2007), no. 1, 171–238.

[NS07b] N. Nikolov and D. Segal, *On finitely generated profinite groups. II. Products in quasisimple groups*, Ann. of Math. (2) **165** (2007), no. 1, 239–273.

[Rap95] M. Rapoport, *Non-Archimedean period domains*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birkhäuser, 1995, pp. 423–434.
ℓ-adic cohomology of the Rapoport-Zink space for $\text{GSp}(4)$

[RR96] M. Rapoport and M. Richartz, *On the classification and specialization of F-isocrystals with additional structure*, Compositio Math. **103** (1996), no. 2, 153–181.

[RZ96] M. Rapoport and Th. Zink, *Period spaces for p-divisible groups*, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996.

[Ser94] J.-P. Serre, *Cohomologie galoisienne*, fifth ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994.

[Vie08] E. Viehmann, *The global structure of moduli spaces of polarized p-divisible groups*, Doc. Math. **13** (2008), 825–852.

[SGA5] *Cohomologie l-adique et fonctions L (SGA5)*, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin, 1977.

Tetsushi Ito
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606–8502, Japan
E-mail address: tetsushi@math.kyoto-u.ac.jp

Yoichi Mieda
Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819–0395, Japan
E-mail address: mieda@math.kyushu-u.ac.jp