Microfracture in Hip Arthroscopy. Keep It Simple!

David R. Maldonado, M.D., Jeffrey W. Chen, B.A., Ajay C. Lall, M.D., M.S., Cynthia Kyin, B.A., Rafael Walker-Santiago, M.D., Jacob Shapira, M.D., Philip J. Rosinsky, M.D., and Benjamin G. Domb, M.D.

Abstract: Despite all the advances in hip arthroscopy, microfracture is still the workhorse for treating focal and full-thickness cartilage lesions. The success of this treatment is owed to its reliability and simplicity. Given the structure of the hip joint, however, there are challenges to this procedure using a conventional microfracture pick. This note presents our current and preferred microfracture technique using a curve drill guide and flexible drill. This method offers greater range of access to different regions of the joint with ease, thus ensuring a reproducible and quicker procedure with less risk.

The goal with the microfracture is to promote migration of stem cells and growth factors from beneath the subchondral bone plate into the cartilage defect, which eventually heals to form fibrocartilage.1-3 Currently, many options have been put forth for the treatment of severe chondral lesions, yet microfracture remains as a popular choice mainly for its simplicity.2,4-9 The basics of performing the techniques has been developed for years in knee surgery. The anatomic complexity imparted by the “ball-and-socket” joint brings unique challenges when using the standard microfracture awl.10,11 The “angle
of attack” with the awl is difficult to maintain, or even obtain, during the process. As a result, the surgeon risks slippage of the pick tip, which compromises the procedure. We present our arthroscopic microfracture technique using a curve drilling guide and flexible drill, which make this procedure reproducible and efficient.

Surgical Technique

Patient Preparation and Positioning

After being sedated under general anesthesia, the patient is placed in the modified supine position on the traction table (Supine Hip Positioning System; Smith & Nephew, Andover, MA) with an extra-padded post. Manual bilateral leg traction is applied to achieve full contact between the perineum and the post. The operative leg is positioned to neutral rotation and

![Fig 1. Patient in modified supine position. Right hip, patient’s head is to the right and feet to the right, anterior superior iliac spine is marked (*). Portals are identified: anterolateral (AL), mid-anterior (MA), and distal anterolateral accessory (DALA).](image)

Fig 2. Intraoperative view from the anterolateral portal with the 70° arthroscope in a right hip. (A) During the diagnostic assessment, a large unviable chondral flap is found (*), and the probe from the mid-anterior portal is pointing to the cartilage defect. (B) Chondral flap has been removed. Bone-bed is prepared by stabilizing borders of the defect and removing the calcified layer. (C) While still viewing from the anterolateral portal, the 70° curve drill is inserted through the distal anterolateral accessory portal. The face of the curved guide sits perpendicular and flush to the bone-bed surface. (D) The final microfractured holes (black arrows) are shown. (A, acetabulum; FH, femoral head; L, labrum.)
adduction, and the nonoperative leg is placed in 30° of abduction. The operative table is transitioned to 8° to 10° of Trendelenburg inclination.12

Fluoroscopy Technique
The C-arm is positioned on the nonoperative side of the patient and draped in sterile fashion. To obtain a true anteroposterior image of the pelvis, tilt the C-arm to compensate for the Trendelenburg inclination. Under fluoroscopy, the joint seal is broken and traction applied.13

Table 1. Surgical Indications and Contraindications

Indications	Contraindications
Focal and full-thickness cartilage lesion	Extensive cartilage defect, over 2 cm²
	Patients unwilling to commit to the required and specific postoperative management

Table 2. Advantages and Disadvantages

Advantages	Disadvantages
Expedient	Extended recovery time
Cost-effective	Fibrocartilage instead of hyaline cartilage
Simple to perform	Benefits may decrease at mid and long term
Skiving is prevented	

Fig 3. Intraoperative view from the anterolateral portal with the 70° arthroscope in a right hip with a chondral damage to the femoral head. (A) During the diagnostic assessment, an unstable chondral lesion on the femoral head is found (*). (B) Unstable cartilage has been removed and the borders of the defect are stabilized. The face of the 90° curved drill guide is placed flush to the subchondral bone. (C) The final holes (black arrows) are shown. (A, acetabulum; FH, femoral head.)
Diagnostic Arthroscopy and Cartilage Assessment

A methodical diagnostic arthroscopy is performed. The ligamentum teres, acetabular notch, iliopsoas impingement sign, labral/chondrolabral junction condition, and femoral and acetabular cartilage are all assessed. Microfracture is indicated if the cartilage defect exposes subchondral bone, categorized as Outerbridge lesion IV (Figs 2 and 3).11,14,15

Acetabular Microfracture Technique

According to preoperative planning and intraoperative findings, perform any acetabular rim trimming before microfracture drilling. If labral repair, reconstruction, or augmentation is needed, drill holes for the anchors after the microfracture. If a chondral defect is noted and fulfills criteria for microfracture (Table 1), proceed as follows.

Bone-Bed Preparation

First, remove all unviable and unstable cartilage around the edges of the defect with a shaver. Using a ring curette, scrape away loose cartilage to create perpendicular borders around the chondral lesion site. The same should be done to the calcified layer (Video 1).

Microfracture Drilling

Once the lesion site is prepared, the MicroFX OCD Osteochondral Drill System (Stryker, Kalamazoo, MI) is used. The 70° curved drill guide is introduced into the joint from either the mid-anterior or distal anterolateral accessory portal, which ever offers a perpendicular drilling trajectory relative to the bone-bed. Before drilling, ensure that that the drill bit is (1) centered and (2) assembled to reach the desired depth.

During the procedure, the arthroscope should be held by the assistant so that the surgeon can maneuver in one hand the curved drill guide and in the other the drill. Start from the periphery of defect and work towards the center, placing the holes 3 to 4 mm apart to avoid subchondral plate fractures (Video 1). During this process, the drill should exclusively be set on the forward speed. Keep the drill on forward while retrieving from the hole. This will reduce the risk of breaking the drill bit.

After drilling, use the shaver to remove debris that may have accumulated in the joint during drilling. Cease the fluid irrigation pump to ensure bleeding from each one of the microfractured holes (Video 1).

Postoperative Rehabilitation

The patient is placed in a brace (X-Act ROM Hip Brace; Donjoy, Vista, CA) for 8 weeks. In addition, use of crutches is encouraged for 8 weeks with weight-bearing restriction of up to 20% body weight. Gentle passive range-of-motion exercise is initiated during the first week, under the supervision of a physiotherapist.

Discussion

The purpose of this technique is to offer an alternative to accomplish the microfracture procedure in such a way that overcomes the challenges of accessing regions of a joint with high surface curvature. Our indications and contraindications are described in Table 1. To achieve a reproducible and lower-risk procedure, a curved guide with a flexible drill is used to reach angles without the creation of additional portals beyond the standard ones for hip arthroscopy. Additional advantages and disadvantages are presented in Table 2. In a recent systematic review, MacDonald et al.16 concluded that favorable outcomes can be achieved after microfracture in hip arthroscopy but noted concerns regarding the potential formation of subchondral cyst.1,10,16

Domb et al.6 published result with minimum 5-year follow-up after hip arthroscopy with microfracture for patients with symptomatic labral tears and femoroacetabular impingement. The authors reported that sustained and significant improvement in several patient-reported outcomes. Moreover, the authors also found that the outcomes did depreciate compared with those recorded at 2 years.
Microfracture in hip arthroscopy offers a feasible alternative for the management of certain types of severe cartilage defects. Nevertheless, acknowledging the demanding nature of this arthroscopic procedure, attention to details is vital (Table 3). Furthermore, risks must be recognized and considered (Table 4).

References
1. Green CJ, Beck A, Wood D, Zheng MH. The biology and clinical evidence of microfracture in hip preservation surgery. J Hip Preserv Surg 2016;3:108-123.
2. Marquez-Lara A, Mannava S, Howse EA, Stone AV, Stubbs AJ. Arthroscopic management of hip chondral defects: A systematic review of the literature. Arthroscopy 2016;32:1435-1443.
3. O’Connor M, Minkara AA, Westermann RW, Rosneck J, Lynch TS. Outcomes of joint preservation procedures for cartilage injuries in the hip: A systematic review and meta-analysis. Orthop J Sports Med 2018;6:2325967118776944.
4. Domb BG, Gupta A, Dunne KF, Gui C, Chandrasekaran S, Lodhia P. Microfracture in the hip: Results of a matched-cohort controlled study with 2-year follow-up. Am J Sports Med 2015;43:1865-1874.
5. Domb BG, El Bitar YF, Lindner D, Jackson TJ, Stake CE. Arthroscopic hip surgery with a microfracture procedure of the hip: Clinical outcomes with two-year follow-up. Hip Int 2014;24:448-456.
6. Domb BG, Rybalko D, Mu B, Litrenta J, Chen AW, Perets I. Acetabular microfracture in hip arthroscopy: Clinical outcomes with minimum 5-year follow-up. Hip Int 2018;28:649-656.
7. Lodhia P, Gui C, Chandrasekaran S, Suarez-Ahedo C, Vemula SP, Domb BG. Microfracture in the hip: A matched-control study with average 3-year follow-up. J Hip Preserv Surg 2015;2:417-427.
8. Becher C, Malahias MA, Ali MM, Maffulli N, Thermann H. Arthroscopic microfracture vs. arthroscopic autologous matrix-induced chondrogenesis for the treatment of articular cartilage defects of the talus. Knee Surg Sports Traumatol Arthosc 2018 [Epub ahead of print].
9. Fontana A, de Girolamo L. Sustained five-year benefit of autologous matrix-induced chondrogenesis for femoral acetabular impingement-induced chondral lesions compared with microfracture treatment. Bone Joint J 2015;97-B:628-635.
10. Lubowitz JH. Editorial Commentary: Microfracture for focal cartilage defects: Is the hip like the knee? Arthroscopy 2016;32:201-202.
11. Trask DJ, Keene JS. Analysis of the current indications for microfracture of chondral lesions in the hip joint. Am J Sports Med 2016;44:3070-3076.
12. Maldonado DR, LaReau JM, Lall AC, Battaglia MR, Mohr MR, Domb BG. Concomitant arthroscopy with labral reconstruction and peri-acetabular osteotomy for hip dysplasia. Arthrosc Tech 2018;7:e1141-e1147.
13. Domb B, Hanyskak B, Botser I. Labral penetration rate in a consecutive series of 300 hip arthroscopies. Am J Sports Med 2012;40:864-869.
14. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961;43-B:752-757.
15. Cameron ML, Briggs KK, Steadman JR. Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 2003;31:83-86.
16. MacDonald AE, Bedi A, Horner NS, et al. Indications and outcomes for microfracture as an adjunct to hip arthroscopy for treatment of chondral defects in patients with femoroacetabular impingement: A systematic review. Arthroscopy 2016;32:190-200.e2.
17. Crawford K, Philippon MJ, Sekiya JK, Rodkey WG, Steadman JR. Microfracture of the hip in athletes. Clin Sports Med 2006;25:327-335.
18. Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: Results at second-look arthroscopic surgery. Am J Sports Med 2012;40:2725-2730.