REPARAMETRIZATIONS OF VECTOR FIELDS AND THEIR SHIFT MAPS

SERGIY MAKSYMENTKO

Abstract. Let M be a smooth manifold, F be a smooth vector field on M, and (F_t) be the local flow of F. Denote by $Sh(F)$ the subset of $C^\infty(M,M)$ consisting of maps $h : M \to M$ of the following form:

$$h(x) = F_{\alpha(x)}(x),$$

where α runs over all smooth functions $M \to \mathbb{R}$ which can be substituted into F instead of t. This space often contains the identity component of the group of diffeomorphisms preserving orbits of F. In this note it is shown that $Sh(F)$ is not changed under reparametrizations of F, that is for any smooth strictly positive function $\mu : M \to (0, +\infty)$ we have that $Sh(F) = Sh(\mu F)$. As an application it is proved that F can be reparametrized to induce a circle action on M if and only if there exists a smooth function $\mu : M \to (0, +\infty)$ such that $F(x, \mu(x)) \equiv x$.

1. Introduction

Let M be a smooth manifold and F be a smooth vector field on M tangent to ∂M. For each $x \in M$ its integral trajectory with respect to F is a unique mapping $o_x : \mathbb{R} \supset (a_x, b_x) \to M$ such that $o_x(0) = x$ and $\frac{d}{dt} o_x = F(o_x)$, where $(a_x, b_x) \subset \mathbb{R}$ is the maximal interval on which a map with the previous two properties can be defined. The image of o_x will be denoted by the same symbol o_x and also called the orbit of x. It follows that from standard theorems in ODE the following subset of $M \times \mathbb{R}$

$$\text{dom}(F) = \bigcup_{x \in M} x \times (a_x, b_x),$$

is an open, connected neighbourhood of $M \times 0$ in $M \times \mathbb{R}$. Then the local flow of F is the following map

$$F : M \times \mathbb{R} \ni \text{dom}(F) \to M, \quad F(x, t) = F_x(t).$$

It is well known that if M is compact, or F has compact support, then F is defined on all of M.

Denote by $\text{func}(F) \subset C^\infty(M, \mathbb{R})$ the subset consisting of functions $\alpha : M \to \mathbb{R}$ whose graph $\Gamma_\alpha = \{(x, \alpha(x)) : x \in M\}$ is contained in

\textbf{2000 Mathematics Subject Classification.} 37C10, 37C27, 37C55.
\textbf{Key words and phrases.} Reparameterization of a flow, shift map, circle action.
dom(\(F\)). Then we can define the following map
\[
\varphi : C^\infty(M, \mathbb{R}) \supset \text{func}(F) \longrightarrow C^\infty(M, M),
\]
\[
\varphi(\alpha)(x) = F(x, \alpha(x)).
\]
This map will be called the shift map along orbits of \(F\) and its image in \(C^\infty(M, M)\) will be denoted by \(\text{Sh}(F)\).

It is easy to see, \([1, \text{Lm. 2}]\), that \(\varphi\) is \(S^{r,s}\)-continuous for all \(r \geq 0\), that is continuous between the corresponding \(S^r\) Whitney topologies of \(\text{func}(F)\) and \(C^\infty(M, M)\).

Moreover, if the set \(\Sigma_F\) of singular points of \(F\) is nowhere dense, then \(\varphi\) is locally injective, \([1, \text{Pr. 14}]\). Therefore it is natural to know whether it is a homeomorphism with respect to some Whitney topologies, and, in particular, whether it is \(S^{r,s}\)-open, i.e. open as a map from \(S^r\) topology of \(\text{func}(F)\) into \(S^s\) topology of the image \(\text{Sh}(F)\), for some \(r, s \geq 0\). These problems and their applications were treated e.g. in \([1, 2, 3]\).

In this note we prove the following theorems describing the behaviour of the image of shift maps under reparametrizations and pushforwards.

Theorem 1.1. Let \(\mu : M \to \mathbb{R}\) be any smooth function and \(G = \mu F\) be the vector field obtained by the multiplication \(F\) by \(\mu\). Then
\[
\text{Sh}(G) \subset \text{Sh}(F).
\]
Suppose that \(\mu \neq 0\) on all of \(M\). Then
\[
\text{Sh}(\mu F) = \text{Sh}(F).
\]
In this case the shift mapping \(\varphi : \text{func}(F) \to \text{Sh}(F)\) of \(F\) is \(S^{r,s}\)-open for some \(r, s \geq 0\), if and only if so is the shift mapping \(\psi : \text{func}(G) \to \text{Sh}(G)\) of \(G\).

Theorem 1.2. Let \(z \in M\), \(\alpha : (M, z) \to \mathbb{R}\) be a germ of smooth function at \(z\), and \(f : M \to M\) be a germ of smooth map defined by \(f(x) = F(x, \alpha(x))\). Suppose that \(f\) is a germ of diffeomorphism at \(z\). Then
\[
f_*F = (1 + F(\alpha)) \cdot F,
\]
where \(f_*F = Tf \circ F \circ f^{-1}\) is the vector field induced by \(f\), and \(F(\alpha)\) is the derivative of \(\alpha\) along \(F\). Thus \(f_*F\) is just a reparametrization of \(F\).

If \(\alpha : M \to \mathbb{R}\) is defined on all of \(M\) and \(f = \varphi(\alpha)\) is a diffeomorphism of \(M\), then
\[
\text{Sh}(f_*F) = \text{Sh}(F).
\]

Further in \([3, 3]\) we will apply these results to circle actions. In particular, we prove that \(F\) can be reparametrized to induce a circle action on \(M\) if and only if there exists a smooth function \(\mu : M \to (0, +\infty)\) such that \(F(x, \mu(x)) \equiv x\), see Corollary \([3, 3]\).
2. Proofs of Theorems 1.1 and 1.2

These theorems are based on the following well-known statement, see e.g. [7, 5, 4] for its variants in the category of measurable maps.

Lemma 2.1. Let $G = \mu F$ and $G : \text{dom}(G) \to M$ be the local flow of G. Then there exists a smooth function $\alpha : \text{dom}(G) \to \mathbb{R}$ such that

$$G(x, s) = F(x, \alpha(x, s)).$$

In fact,

$$\alpha(x, s) = \int_0^s \mu(G(x, \tau))d\tau.$$

In particular, for each $\gamma \in \text{func}(G)$ we have that

$$G(x, \gamma(x)) = F(x, \alpha(x, \gamma(x))),$$

whence $\text{Sh}(G) \subset \text{Sh}(F)$.

Proof. Put $G(x, s) = F(x, \alpha(x, s))$, where α is defined by (3). We have to show that $G = G$.

Notice that a flow G of a vector field G is a unique mapping that satisfies the following ODE with initial condition:

$$\frac{\partial G(x, s)}{\partial s} \bigg|_{s=0} = G(x) = F(x)\mu(x), \quad G(x, 0) = x.$$

Notice that

$$\alpha(x, 0) = 0, \quad \alpha'(x, 0) = \mu(G(x, 0)) = \mu(x).$$

In particular, $G(x, 0) = F(x, \alpha(x, 0)) = x$. Therefore it remains to verify that

$$\frac{\partial G(x, s)}{\partial s} \bigg|_{s=0} = F(x) \cdot \mu(x).$$

We have:

$$\frac{\partial G}{\partial s}(x, s) = \frac{\partial F}{\partial s}(x, \alpha(x, s)) = \frac{\partial F(x, t)}{\partial t} \bigg|_{t=\alpha(x, s)} \cdot \alpha'(x, s).$$

Substituting $s = 0$ in (6) we get (5). \qed

Proof of Theorem 1.1. Eq. (1) is established in Lemma 2.1.

Suppose that $\mu \neq 0$ on all of M. Then $F = \frac{1}{\mu} G$, and $\frac{1}{\mu}$ is smooth on all of M. Hence again by Lemma 2.1 $\text{Sh}(F) \subset \text{Sh}(G)$, and thus $\text{Sh}(F) = \text{Sh}(G)$.

To prove the last statement define a map $\xi : \text{func}(G) \to \text{func}(F)$ by

$$\xi(\gamma)(x) = \alpha(x, \gamma(x)) = \int_0^s \mu(G(x, \tau))d\tau, \quad \gamma \in \text{func}(G).$$
Then (4) means that the following diagram is commutative:

\[
\begin{array}{c}
\text{func}(G) \xrightarrow{\xi} \text{func}(F) \\
\downarrow \psi \hspace{1cm} \downarrow \varphi \\
\text{Sh}(G) \xrightarrow{\psi} \text{Sh}(F)
\end{array}
\]

We claim that \(\xi\) is a homeomorphism with respect to \(S^r\) topologies for all \(r \geq 0\). Indeed, evidently \(\xi\) is \(S^r,r\)-continuous. Put

\[
(7) \quad \beta(x,s) = \int_0^s \frac{d\tau}{\mu(F(x,\tau))}.
\]

Then the inverse map \(\xi^{-1} : \text{func}(F) \rightarrow \text{func}(G)\) is given by

\[
(8) \quad \xi^{-1}(\delta)(x) = \beta(x,\delta(x)) = \int_0^{\delta(x)} \frac{d\tau}{\mu(F(x,\tau))}, \quad \delta \in \text{func}(F),
\]

and is also \(S^r,r\)-continuous. Hence \(\psi\) is \(S^r,s\)-open iff so is \(\varphi\). Theorem 1.1 is completed.

Proof of Theorem 1.2. First we reduce the situation to the case \(\alpha(z) = 0\). Suppose that \(a = \alpha(z) \neq 0\) and let \(\beta(x) = \alpha(x) - a\). Define the following germ of diffeomorphisms \(g = F_a \circ f\) at \(z\):

\[
g(x) = F(F(x,\alpha(x)), -a) = F(x,\alpha(x) - a) = F(x,\beta(x)).
\]

Then \(g(z) = z\), and \(\beta(z) = 0\).

Since \(F\) preserves \(F\), i.e. \((F_t)_*F = F\) for all \(t \in \mathbb{R}\), we obtain that

\[
f_*F = f_*\left(F_a\right)_*F = (f \circ F_a)_*F = g_*F.
\]

Moreover, \(F(\alpha) = F(\beta)\). Therefore it suffices to prove our statement for \(g\).

If \(z\) is a singular point of \(F\), i.e. \(F = 0\), then both parts of (2) vanish. Therefore we can assume that \(z\) is a regular point of \(F\). Then there are local coordinates \((x_1, \ldots, x_n)\) at \(z = 0 \in \mathbb{R}^n\) in which \(F(x) = \frac{\partial}{\partial x_1}\) and

\[
F(x_1, \ldots, x_n, t) = (x_1 + t, x_2, \ldots, x_n).
\]

Then \(g(x_1, \ldots, x_n) = (x_1 + \beta(x), x_2, \ldots, x_n)\), whence

\[
Tg \circ F \circ g^{-1} = \begin{pmatrix}
1 + \beta'_{x_1} & \beta'_{x_2} & \cdots & \beta'_{x_n} \\
0 & 1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\frac{\partial}{\partial x_1} \\
0 \\
\vdots \\
0
\end{pmatrix} = (1 + \beta'_{x_1})F = (1 + F(\beta))F.
\]

Suppose now that \(\alpha\) is defined on all of \(M\) and \(f\) is a diffeomorphism of all of \(M\). Then by 11 the function \(\mu = 1 + F(\alpha) \neq 0\) on all of \(M\), whence by Theorem 1.1 \(\text{Sh}(\mu F) = \text{Sh}(F)\).
3. Periodic shift maps

Let \(F \) be a vector field, and \(\varphi \) be its shift map. The set
\[
\ker(\varphi) = \varphi^{-1}(\text{id}_M)
\]
will be called the kernel of \(\varphi \), thus \(F(x, \nu(x)) \equiv x \) for all \(\nu \in \ker(\varphi) \). Evidently, \(0 \in \ker(\varphi) \). Moreover, it is shown in [1, Lm. 5] that \(\varphi(\alpha) = \varphi(\beta) \iff \alpha - \beta \in \text{func}(F) \).

Suppose that the set \(\Sigma_F \) of singular points of \(F \) is nowhere dense in \(M \). Then, [1, Th. 12 & Pr. 14], \(\varphi \) is a locally injective map with respect to any weak or strong topologies, and we have the following two possibilities for \(\ker(\varphi) \):

a) Non-periodic case: \(\ker(\varphi) = \{0\} \), so \(\varphi : \text{func}(F) \rightarrow \text{Sh}(F) \) is a bijection.

b) Periodic case: there exists a smooth strictly positive function \(\theta : M \rightarrow (0, +\infty) \) such that \(F(x, \theta(x)) \equiv x \) and \(\ker(\varphi) = \{n\theta\}_{n \in \mathbb{Z}} \).

It also follows that every non-singular point \(x \) of \(F \) is periodic of some period \(\text{Per}(x) \),
\[
\theta(x) = n_x \text{Per}(x)
\]
for some \(n_x \in \mathbb{N} \), and in particular, \(\theta \) is constant along orbits of \(F \). We will call \(\theta \) the period function for \(\varphi \).

Lemma 3.1. Suppose that the shift map \(\varphi \) of \(F \) is periodic and let \(\theta \) be its period function. Let also \(\mu : M \rightarrow (0, +\infty) \) be any smooth strictly positive function. Put \(G = \mu F \). Then the shift map \(\psi \) of \(G \) is also periodic, and its period function is
\[
\tilde{\theta}(x) \overset{\text{[S]}}{=} \xi^{-1}(\theta)(x) = \beta(x, \theta(x)) = \int_0^{\theta(x)} \frac{d\tau}{\mu(F(x, \tau))}.
\]

If \(\mu \) is constant along orbits of \(F \), then the last formula reduces to the following one:
\[
\tilde{\theta} = \frac{\theta}{\mu}.
\]
In particular, for the vector field \(G = \theta F \) its period function is equal to \(\tilde{\theta} \equiv 1 \).

Proof. Let \(G : M \times \mathbb{R} \rightarrow M \) be the flow of \(G \). We have to show that \(G(x, \tilde{\theta}(x)) \equiv x \) for all \(x \in M \):
\[
G(x, \tilde{\theta}(x)) = G(x, \beta(x, \theta(x))) = F(x, \theta(x)) \equiv x.
\]
Since θ is the minimal positive function for which $F(x, \theta(x)) \equiv x$ and $\mu > 0$, it follows from (9) that so is $\bar{\theta}$ is also the minimal positive function for which (11) holds true. Hence $\bar{\theta}$ is the period function for the shift map of G.

Let us prove (10). Since μ is constant along orbits of F, we have that $\mu(F(x, \tau)) = \mu(x)$, whence

$$\bar{\theta}(x) = \beta(x, \theta(x)) = \int_0^{\theta(x)} \frac{d\tau}{\mu(F(x, \tau))} = \int_0^{\theta(x)} \frac{d\tau}{\mu(x)} = \frac{\theta(x)}{\mu(x)}.$$

Lemma is proved. \square

3.2. Circle actions. Regard S^1 as the group $U(1)$ of complex numbers with norm 1, and let $\exp : \mathbb{R} \to S^1$ be the exponential map defined by $\exp(t) = e^{2\pi it}$.

Let $\Gamma : M \times S^1 \to M$ be a smooth action of S^1 on M. Then it yields a smooth \mathbb{R}-cation (or a flow) $G : M \times \mathbb{R} \to M$ given by

$$G(x, t) = \Gamma(x, \exp(t)).$$

Moreover G is generated by the following vector field

$$G(x) = \frac{\partial G(x, t)}{\partial t} \bigg|_{t=0}.$$

Evidently, any of Γ, G, and G determines two others. In particular, a flow G on M is of the form (12) for some smooth circle action Γ on M if and only if $G_1 = \text{id}_M$, i.e. $G(x, 1) \equiv x$ for all $x \in M$.

In other words, the shift map of G is periodic and its period function is the constant function $\theta \equiv 1$.

As a consequence of Lemma 3.1 we get the following:

Corollary 3.3. Let F be a smooth vector field on M and

$$\theta : M \to (0, +\infty)$$

be a smooth strictly positive function. Then the following conditions are equivalent:

(a) the vector field $G = \theta F$ yields a smooth circle action, i.e. $G(x, 1) = x$ for all $x \in M$;

(b) the shift map φ of F is periodic and θ is its period function, i.e. $F(x, \theta(x)) \equiv x$ for all $x \in M$.

Corollary 3.4. Suppose that the shift map φ of F is periodic and let $z \in M$ be a singular point of F. Then there are $k, l \geq 0$ such that $2k + l = \dim M$, non-zero numbers $A_1, \ldots, A_k \in \mathbb{R} \setminus \{0\}$, local coordinates $(x_1, y_1, \ldots, x_k, y_k, t_1, \ldots, t_l)$ at $z = 0 \in \mathbb{R}^{2k+l}$, and in which
the linear part of F at 0 is given by

$$j_0^1 F(x_1, y_1, \ldots, x_k, y_k, t_1, \ldots, t_l) = -A_1 y_1 \frac{\partial}{\partial x_1} + A_1 x_1 \frac{\partial}{\partial y_1} + \cdots$$

$$-A_k y_k \frac{\partial}{\partial x_k} + A_k x_k \frac{\partial}{\partial y_k}.$$

Proof. Let θ be the period function for F and $G = \theta F$. Since $\theta > 0$, it follows that $\Sigma_F = \Sigma_G$ and for every $z \in \Sigma_F$ we have that

$$j_1^1 G = \theta(z) \cdot j_1^1 F.$$

Therefore it suffices to prove our statement for G.

By Corollary 3.3, G yields a circle action, i.e. $G_1 = \text{id}_M$, where G is the flow of G. Then G yields a linear flow $T_z G_1$ on the tangent space $T_z M$ such that $T_z G_1 = \text{id}$. In other words we obtain a linear action (i.e. representation) of the circle group $U(1)$ in the finite-dimensional vector space $T_z M$. Now the result follows from standard theorems about presentations of $U(1)$. \[\square\]

Remark 3.5. Suppose that in Corollary 3.4 dim $M = 2$. Then we can choose local coordinates (x, y) at $z = 0 \in \mathbb{R}^2$ in which

$$j_0^1 F(x, y) = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$

For this case the normal forms of such vector fields are described in [6].

References

[1] S. Maksymenko, *Smooth shifts along trajectories of flows*, Topol. Appl., 130 (2003) 183–204, arXiv:math/0106199.

[2] S. Maksymenko, *Homotopy types of stabilizers and orbits of Morse functions on surfaces*, Ann. Glob. Anal. Geom., 29 no. 3 (2006) 241–285, arXiv:math/0310067.

[3] S. Maksymenko, *Local inverses of shift maps along orbits of flows*, submitted, arXiv:0806.1502.

[4] D. S. Ornstein, M. Smorodinsky, *Continuous speed changes for flows*, Israel J. Math. 31 no. 2 (1978) 161-168.

[5] W. Parry, *Cocycles and velocity changes*, J. London Math. Soc. (2) 5 (1972), 511-516.

[6] F. Takens, *Normal forms for certain singularities of vectorfields*, Ann. Inst. Fourier 23 no. 2 (1973) 163-195.

[7] H. Totoki, *Time changes of flows*, Memoirs Fac. Sci. Kyushu Univ. Ser. A. 20.1 (1966) 27-55.