Efficient Optical Reflection Modulation by Coupling Interband Transition of Graphene to Magnetic Resonance in Metamaterials

Yiqun Ji¹, Zhendong Yan², Chaojun Tang³*, Jing Chen⁴,⁵*, Ping Gu⁴*, Bo Liu⁶ and Zhengqi Liu⁷

Abstract
Designing powerful electromagnetic wave modulators is required for the advancement of optical communication technology. In this work, we study how to efficiently modulate the amplitude of electromagnetic waves in near-infrared region, by the interactions between the interband transition of graphene and the magnetic dipole resonance in metamaterials. The reflection spectra of metamaterials could be significantly reduced in the wavelength range below the interband transition, because the enhanced electromagnetic fields from the magnetic dipole resonance greatly increase the light absorption in graphene. The maximum modulation depth of reflection spectra can reach to about 40% near the resonance wavelength of magnetic dipole, for the interband transition to approach the magnetic dipole resonance, when an external voltage is applied to change the Fermi energy of graphene.

Keywords: Metamaterials, Graphene, Reflection modulation, Magnetic resonance

Background
Dynamically controlling the spectral properties of electromagnetic waves by external stimuli such as mechanical force, temperature change, electrical voltage, and laser beam [1–4] has been drawing increasing interest, because of many applications in the fields of holographic display technology, high-performance sensing, and optical communications. In the past few years, much effort has been made to actively manipulate the transmission, reflection, or absorption spectra of electromagnetic waves, which is based on electrically tunable surface conductivity of graphene, in a very wide frequency range including microwave [5, 6], terahertz (THz) [7–33], infrared [34–65], and visible regime [66–69]. Such graphene-based active manipulation of electromagnetic waves is under external electrical stimulus without re-building-related structures, which aims to efficiently modulate the amplitude [5, 7–21, 34–57, 66–72], phase [6, 22–28, 58–62], and polarization [29–33, 63–65] of electromagnetic waves. The three kinds of electromagnetic wave modulators are the most important for signal processing in free-space optical communications [1–4]. In the far-infrared and THz regime, the surface conductivity of graphene only comprises the contribution of intraband, and graphene has an effective dielectric function that can be described with the standard Drude model [27]. Therefore, at lower frequencies, very similar to noble metals (e.g., Ag and Au), nanostructured graphene is also able to support localized or delocalized surface plasmon resonances [73] with great electromagnetic field enhancement, which has been widely employed to strengthen light-matter interactions for efficient modulation of electromagnetic waves. For example, in 2012, Sensale-Rodriguez et al. theoretically presented reflectance modulators with an excellent performance at THz frequency, by taking advantage of plasmonic effects in graphene micro-ribbons [9]. In the visible and near-infrared regime, interband

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
contribution dominates the surface conductivity of graphene, whose complex permittivity has a real part of positive value. So, at higher frequencies, graphene itself no longer supports surface plasmon resonances, but behaves more like an ultra-thin dielectric film when it interacts with light. In this situation, various high-quality resonance modes supported in other nanostructured materials are often explored to electrically modulate electromagnetic waves, with the help of the gate-controlled Fermi energy of graphene. For example, Yu et al. studied in theory the amplitude modulation of visible light with graphene, by utilizing Fabry-Perot interference, Mie modes in dielectric nanospheres with a high refractive index, and surface lattice resonances in a periodic array of metal nanoparticles [67]. In past decade, magnetic resonance in metamaterials has been studied extensively and intensively to achieve perfect absorbers of electromagnetic waves [74–78]. However, up to now, there are only a few studies on optical modulators that are based on magnetic resonance in metamaterials with an inserted graphene monolayer [34].

We will propose an efficient method to modulate the reflection spectra of electromagnetic waves in near-infrared region, by coupling the interband transition of graphene to the magnetic dipole resonance in metamaterials. It is found that the reflection spectra of metamaterials can be largely reduced in the wavelength range below the interband transition of graphene, because the enhanced electromagnetic fields from the magnetic dipole resonance greatly increase the light absorption in graphene. The maximum modulation depth of reflection amplitude can reach to about 40% near the resonance wavelength of magnetic dipole, for the interband transition to be close to the magnetic dipole resonance, when an external voltage is applied to change the Fermi energy of graphene.

Methods

We schematically show in Fig. 1 the building block of investigated metamaterials for efficient reflection modulation in near-infrared region, through the interactions between the magnetic dipole resonance and the interband transition of graphene. We carry out numerical calculations by the commercial software package “EastFDTD” [79, 80]. The silica layer has a refractive index of 1.45, and the silver nanostrips and substrate have an experimental dielectric function [81]. The graphene has a relative permittivity calculated by the following formula [82]:

\[
\sigma_{\text{intra}} = \frac{ie^2 k_B T}{\pi \hbar^2 (\omega + i/\tau)} \left(\frac{E_f}{k_B T} + 2 \ln \left(e^{\frac{E_f}{k_B T}} + 1 \right) \right)
\]

\[
\sigma_{\text{inter}} = \frac{ie^2}{4\pi \hbar} \ln \left(\frac{2E_f - (\omega + i/\tau)\hbar}{2E_f + (\omega + i/\tau)\hbar} \right)
\]

\[
\sigma = \sigma_{\text{intra}} + \sigma_{\text{inter}}
\]

\[
\epsilon_g = 1 + i\sigma / (\epsilon_0 \omega \tau_g)
\]

where \(\sigma_{\text{intra}}\) and \(\sigma_{\text{inter}}\) are the intraband and interband terms of the surface conductivity of graphene, \(\tau\) is the electron-phonon relaxation time, \(E_f\) is the Fermi energy, and \(\tau_g\) is the graphene thickness. The studied metamaterials could be realized in experiment with the help of advanced fabrication technology [83]. Firstly, the silver substrate and the silica layer are prepared by thermal evaporation. Then, the monolayer graphene is coated on the silica surface through chemical vapor deposition. Finally, the periodic array of silver nanostrips is fabricated by electron beam lithography.

Results and Discussion

We first discuss the reflection spectra of metamaterials without graphene, as shown by the black line and squares in Fig. 2a. A broad reflection dip at 1210 nm is observed, which is related to a magnetic dipole. When graphene is inserted into metamaterials, the reflection is largely reduced for the wavelengths smaller than 1150 nm (the position of interband transition in graphene), as shown by the red line and circles in Fig. 2a. The reason is that the enhanced electromagnetic fields from the resonance excitation of magnetic dipole hugely increase the light absorption of graphene. Correspondingly, the graphene-induced modulation depth of reflection spectra will gradually increase from about 11 to 28%, when the light wavelength is increased from 1000 nm to the
interband transition position, as exhibited in Fig. 2b. The modulation depth is generally defined as \((R - R_0)/R_0 \), where \(R \) and \(R_0 \) are the reflection spectra with and without graphene inserted in metamaterials [34].

To demonstrate that the broad reflection dip is relevant to a magnetic dipole, in Fig. 3, we plot the electromagnetic fields on the \(xoz \) plane at the wavelength of 1210 nm. The electric fields are mainly distributed around the edges of silver nanostrips, and the magnetic fields are largely localized into the silica region under the silver nanostrips. The field distribution is the typical property of a magnetic dipole resonance [84]. Between the silver substrate and individual nanostrip, the plasmonic near-field hybridization produces anti-parallel currents, as indicated by two black arrows in Fig. 3b. The anti-parallel currents can induce a magnetic moment \(\mathbf{M} \) counteracting the incident magnetic field to form the magnetic dipole resonance. The resonant wavelength depends strongly on the width \(w \) of the silver nanostrips, which will have an obvious red-shift when \(w \) is increased.

The position of interband transition can be conveniently tuned when an external voltage is applied to change Fermi energy \(E_F \). The position tunability of interband transition is very helpful to efficiently control the reflection spectra. For \(E_F \) to increase from 0.46 to 0.58 eV, the interband transition blue-shifts quickly, as exhibited by the opened circles in Fig. 4a. Simultaneously, the reflection is reduced noticeably in the wavelength range.
blow the interband transition. Near the resonance wavelength of magnetic dipole, the reflection is reduced to a minimum of about 0.55, when the interband transition is tuned gradually to be across the broadband magnetic dipole. Figure 4b shows the graphene-induced reflection modulation effect for different E_f. With decreasing E_f, the modulation depth of reflection spectra becomes larger and has a maximum of nearly 40% when $E_f = 0.46$ eV. Furthermore, the tunable wavelength range also becomes much broader, because of the continuous red-shift of interband transition when E_f is decreased. However, in the wavelength range over the interband transition, the reflection spectra are not modulated as compared with the case of no graphene, and so, the modulation depth is almost zero.

The interband transition is closely related to Fermi energy E_f, which can be fully manifested as a sharp spectral feature in the permittivity ε_g of graphene. In Fig. 5, we give the real and imaginary parts of ε_g for different E_f. For each E_f, there exists a narrow peak in the real part of ε_g, and correspondingly an abrupt drop appears in the imaginary part of ε_g. With decreasing E_f, such a sharp spectral feature red-shifts obviously. In the wavelength range on the right side of the abrupt drop, the imaginary part of ε_g is very small. This is why the reflection spectra are not modulated for the wavelengths over the interband transition. The position dependence of interband transition on Fermi energy E_f is shown in Fig. 6. We can clearly see that the peak positions of the real part of ε_g are in excellent agreement with those indicated by the opened circles in Fig. 4a.

Conclusion

We have numerically demonstrated a method to efficiently modulate the reflection spectra of electromagnetic waves in near-infrared region, by coupling the interband transition of graphene to the magnetic dipole resonance in metamaterials. It is found that the reflection spectra can be largely reduced in the wavelength range below the interband transition of graphene, because the enhanced electromagnetic fields from the magnetic dipole resonance greatly increase the light absorption in graphene. The maximum modulation depth of reflection spectra can reach to about 40% near the resonance wavelength of magnetic dipole, for the interband transition to be near the magnetic dipole resonance, when an external voltage is applied to change the Fermi energy of graphene. The reflection modulation effect presented in this work may find potential applications in optical communication systems.

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11974188, 11704183, 61405134, 61340007, 11304159, and 11104136; PAPD; NSFJS under Grant No. BK20161512; NSFZJ under Grant No. LY14AA04004; China Postdoctoral Science Foundation under Grant No. 2018M632345; Qing Lan Project of Jiangsu Province; Open Project of State Key Laboratory of Millimeter Waves under Grant No. K201821; NUPTSF under Grant Nos. NY218022 and NY217045.

Authors’ Contributions

YJ and ZY made equal contributions. CT, JC, and PG guided idea and simulations, analyzed data, and drafted manuscript. All authors read and improved manuscript. All authors read and approved the final manuscript.

Availability of Data and Materials

All data are fully available without restriction.

Ethics Approval and Consent to Participate

We declare that there are no concerning data of human and animals.

Competing Interests

The authors declare that they have no competing interests.

Author details

1School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China. 2College of Science, Nanjing Forestry University, Nanjing 210037, China. 3Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and
References

1. Ou JY, Plum E, Zhang JF, Zheludev NI (2013) An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol 8:252–255

2. Rahm M, Li JS, Padilla WJ (2013) THz wave modulators: a brief review on different modulation techniques. J Infrared Milli Terahz Waves 34:1–27

3. Hashemi MR, Cakmakypan S, Jariahi M (2017) Reconfigurable metamaterials for terahertz wave manipulation. Rep Prog Phys 80094501

4. Cheng JR, Fan F, Chang SJ (2019) Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control. Nanomaterials 9:398

5. Balić O, Polat EO, Kakenov N, Kocabas C (2015) Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun 6:6628

6. Balić O, Kakenov N, Kocabas C (2017) Controlling phase of microwaves with active graphene surfaces. Appl Phys Lett 110:161102

7. Liu XD, Chen ZF, Parrott EPJ, Ung BS, Xu JB, Pickwell-MacPherson E (2017) Graphene based terahertz light modulator in total internal reflection geometry. Adv Opt Mater 5:1600697

8. Kim TT, Kim H, Kenney M, Park HS, Kim HD, Min B, Zhang S (2018) Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Adv Opt Mater 6:705007

9. Sensale-Rodriguez B, Yan RS, Jena D, Liu L, Xing HG (2012) Efficient terahertz electro-absorption modulation employing graphene plasmonic structures. Appl Phys Lett 101:261115

10. Jessop DS, Kindness SJ, Xiao L, Braeuninger-Weimer P, Lin H, Ren Y, Ren CX, Hofmann S, Zeidler JA, Beere HE, Ritchie DA, DeGiovanni C (2016) Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Appl Phys Lett 108:171101

11. He XY (2015) Tunable terahertz graphene metamaterials. Carbon 82:229–237

12. Li Q, Tian Z, Zhang XQ, Singh RI, Du G, Liu JG, Han JG, Zhang WL (2015) Active graphene-silicon hybrid diode for terahertz waves. Nat Commun 6:7082

13. Liu PQ, Luxmoore U, Mikhailov SA, Savostianova NA, Valmora F, Fairt J, Nash GR (2015) Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat Commun 6:8969

14. Sensale-Rodriguez B, Yan RS, Railique S, Zhu MD, Li W, Liang XL, Gundlach D, Protsenko V, Kopaev MM, Jena D, Liu L, Xing HG (2012) Extraordinary control of terahertz beam reflectance in graphene electro-absorption metamodulators. Nano Lett 12:4518–4522

15. Jalili MM, Sushkov AB, Myers-Ward RL, Cronin SB (2017) Broadband terahertz graphene plasmon induced reflectance in hybrid plasmonic-fiber phasemodulators. Nat Photonics 7:322–327

16. Chatzakis I, Liu L, Vlassopoulos V, Jonkman SE, van Hulst HN, Jena D (2016) Graphene based plasmonic terahertz modulator enabled by Fabry-Perot assisted multiple reflection. Opt Express 25:1318–1324

17. Zhou YT, Wu B, Huang BI, Chen Q (2017) Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Opt Express 25:1761–1769

18. Chen X, Fan WH (2017) Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance. Opt Lett 42:2034–2037

19. Tang PR, Li L, Zhi SC, Zhai ZH, Zhu B, Du LH, Li ZR, Zhu LG (2019) Giant dual-mode graphene-based terahertz modulator enabled by Fabry-Perot assisted multiple reflection. Opt Lett 44:1630–1633

20. Shen NH, Tassin P, Koschny T, Soukoulis CM (2014) Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator. Phys Rev B 90:115437

21. Sun WY, DeGiovanni C, Ritchie DA, Beere HE, Xiao L, Ruggiero M, Zeitler JA, Stantchev RI, Chen D, Peng ZC, Macphearson E, Liu XD (2018) Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry. Photonics Res 6:1151–1157

22. Liu ZZ, Zy L, Aydin K (2016) Time-varying metasurfaces based on graphene microribbon arrays. ACS Photonics 3:2035–2039

23. Yatoshii T, Ishikawa A, Tsuruta K (2015) Terahertz wavefront control by tunable metasurface made of graphene ribbons. Appl Phys Lett 107:053105

24. Zhang T, Yang X, Liu LJ, Wei DQ, Yang W, Yao JQ (2018) The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies. Carbon 132:529–538

25. Gao WL, Shu J, Reichel K, Nickel DV, He XW, Shi G, Vajta R, Ayanj PM, Kono J, Mitteman DM, Xu QF (2014) High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 14:1242–1248

26. Lee SH, Choi M, Kim TT, Lee S, Liu M, Yin XB, Choi HK, Lee SS, Choi CG, Choi SY, Zhang X, Min B (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11:936–941

27. Xiao ZQ, Wu Q, Li X, He Q, Ding K, An ZH, Zhang YB, Zhou L (2015) Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5:041027

28. Yang Y, Feng YJ, Zhao JM, Jiang T, Zhu B (2017) Terahertz beam switching by electrical control of graphene-enabled tunable metasurface. Sci Rep 7:14147

29. Yang Y, Feng YJ, Jiang T, Cao J, Zhao JM, Zhu B (2018) Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterials. Carbon 133:170–175

30. Yang Y, Feng YJ, Zhu B, Zhao JM, Jiang T (2014) Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Express 22:22743–22752

31. Yang Y, Feng YJ, Zhu B, Zhao JM, Jiang T (2015) Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation. Opt Express 23:27230–27239

32. Gao X, Yang WL, Cao WP, Chen M, Jiang YN, Yu XH, Li HO (2017) Bandwidth broadening of a graphene-based circular polarization converter by phase compensation. Opt Express 25:23945–23954

33. Kim TT, Oh SS, Kim HD, Park HS, Hess O, Min B, Zhang S (2017) Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3:1701377

34. Zhu WR, Rukhin ID, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102:241914

35. Cheng H, Chen SQ, Yu P, Duan XY, Xie BY, Tian JG (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103:205112

36. Li L, Zhao H, Zhang JW (2017) Electrically tuning reflectance of graphene-based Tamm plasmon polariization structures at 1550 nm. Appl Phys Lett 111:6:083504

37. Li DM, Wang W, Zhang H, Zhu YH, Zhang S, Zhang ZY, Zhang XP, Yi J, Wei W (2018) Graphene-induced modulation effects on magnetic plasmon in multilayer metal-dielectric-metal metamaterials. Appl Phys Lett 112:13:1101

38. Habib M, Gokbayrak M, Ozbay E, Caglayan H (2018) Electrically controllable plasmon induced reflectance in hybrid metamaterials. Appl Phys Lett 113:221105

39. Khoromkova I, Andryieuski I, Lavrinenko A (2014) Ultrasensitive terahertz/ infrared waveguide modulators based on multilayer graphene metamaterials. Laser Photonics Rev 8:389–423

40. He XF, Lu KH (2014) Graphene-supported tunable extraordinary transmission. Nanotechnology 25:325201

41. Kim S, Jiang MS, Brar VW, Tolstov YA, Mauser KW, Atwater HA (2016) Electromagnetically tunable optical extraordinary transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat Commun 7:12571–12576

42. Yao Y, Kats MA, Genovert P, Yu NF, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:12:1257–1264

43. Youngblood N, Anugrahy M, Ma R, Köster SJ, Li M (2014) Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett 14:2741–2746

44. Gao YD, Shiue RJ, Gan XT, Li LZ, Peng C, Merci I, Wang L, Seep A, Walker D, Hone J, England D (2015) High-speed electro-optic modulator integrated...
