Supplementary Online Content

Su D, Wu B, Shi L. Cost-effectiveness of atezolizumab plus bevacizumab vs sorafenib as first-line treatment of unresectable hepatocellular carcinoma. *JAMA Netw Open*. 2021;4(2):e210037. doi:10.1001/jamanetworkopen.2021.0037

eFigure 1. The Replicated Kaplan-Meier PFS Curves of Atezolizumab Plus Bevacizumab and Sorafenib in the IMbrave150 Trial

eFigure 2. The Replicated Kaplan-Meier OS Curves of Atezolizumab Plus Bevacizumab and Sorafenib in the IMbrave150 Trial

eFigure 3. The Replicated Kaplan-Meier OS Curves of Lenvatinib and Sorafenib in the Kudo and Colleague’s Trial

eFigure 4. Tornado Diagram of 1-Way Sensitivity Analyses of Atezolizumab Plus Bevacizumab Versus Sorafenib in Order of Magnitude of the Association

eFigure 5. Subgroup Analysis of Incremental Net Health Benefits (INHB) and Probabilities of Cost-effectiveness by Varying the Hazard Ratios (HRs) of PFS

eTable 1. CHEERS Checklist

eTable 2. Estimated Parameters and AIC Values From Each Survival Model

eTable 3. Probability and Costs Related to Adverse Events (Grade ≥3)

This supplementary material has been provided by the authors to give readers additional information about their work.
eFigure 1. The Replicated Kaplan-Meier PFS Curves of Atezolizumab Plus Bevacizumab and Sorafenib in the IMbrave150 Trial

The smooth lines indicated the survival curves predicting their corresponding best survival distributions.
eFigure 2. The Replicated Kaplan-Meier OS Curves of Atezolizumab Plus Bevacizumab and Sorafenib in the IMbrave150 Trial

The smooth lines indicated the survival curves predicting their corresponding best survival distributions.
The replicated Kaplan-Meier OS curves of Lenvatinib and Sorafenib in the Kudo and Colleague’s Trial

The smooth lines indicated the survival curves predicting their corresponding best survival distributions.
eFigure 4. Tornado Diagram of 1-Way Sensitivity Analyses of Atezolizumab Plus Bevacizumab Versus Sorafenib in Order of Magnitude of the Association

- HR of OS of Atezolizumab plus Bevacizumab versus Sorafenib: 0.42 to 0.79
- Cost of bevacizumab per 100mg: $420.3 to $840.5
- Cost of sorafenib per 200mg: $173.9 to $347.8
- Cost of atezolizumab per 1200mg: $4640.0 to $9280.0
- Body weight: 57.1 kg to 66.7 kg
- HR of PFS of Atezolizumab plus Bevacizumab versus Sorafenib: 0.47 to 0.76
- Proportion of receiving subsequent therapy in Sorafenib strategy: 83.7% to 50.2%
- Utility of progressed disease: 0.80% to 0.54%
- Cost of overall subsequent therapy per patient after disease progressed: $135420.0 to $81252.0
- Utility of progression–free disease: 0.91% to 0.61%
- Proportion of receiving subsequent therapy in Atezolizumab plus Bevacizumab strategy: 26.3% to 43.8%
- Cost of BSC per patient after disease progressed: $27813.0 to $46355.0
- Cost of administration: $223.4 to $372.3
- Cost of follow–up and monitoring per month in PFD: $590.5 to $984.2
- Cost of terminal care per patient: $9473.0 to $6315.0
- Cost of managing ADR related to hepatic toxicity per event: $1583.9 to $7118.8
- Cost of managing ADR related to thrombocytopenia per event: $1750.0 to $9579.0
- Probability of ADR grade 3–5 in Atezolizumab plus Bevacizumab strategy: 45.8% to 76.4%
- Probability of ADR grade 3–5 in Atezolizumab plus Sorafenib strategy: 76.1% to 45.7%

Cost data are presented in US dollars. ICUR (incremental cost-effective ratio) is calculated as the difference in cost divided by the difference in quality-adjusted life years (QALY) between the Atezolizumab plus Bevacizumab and Sorafenib strategies.

© 2021 Su D et al. JAMA Network Open.
eFigure 5. Subgroup Analysis of Incremental Net Health Benefits (INHB) and Probabilities of Cost-effectiveness by Varying the Hazard Ratios (HRs) of PFS

The vertical line indicates the point of no effect (INHB = 0), the red circle indicates the median INHB, and the green bar indicates the ranges of INHB adjusted by the HRs.
eTable 1. CHEERS Checklist

Section	Item No	Recommendation	Reported ?
Title and Abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as “cost-effectiveness analysis”, and describe the interventions compared.	✓
Abstract	2	Provide a structured summary of objectives, perspective, setting, methods (including study design and inputs), results (including base case and uncertainty analyses), and conclusions.	✓
Introduction			
Background and objectives	3	Provide an explicit statement of the broader context for the study. Present the study question and its relevance for health policy or practice decisions.	✓
Methods			
Target population and subgroups	4	Describe characteristics of the base case population and subgroups analysed, including why they were chosen.	✓
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	✓
Study perspective	6	Describe the perspective of the study and relate this to the costs being evaluated.	
------------------------	---	--	
Comparators	7	Describe the interventions or strategies being compared and state why they were chosen.	
Time horizon	8	State the time horizon(s) over which costs and consequences are being evaluated and say why appropriate.	
Discount rate	9	Report the choice of discount rate(s) used for costs and outcomes and say why appropriate.	
Choice of health outcomes	10	Describe what outcomes were used as the measure(s) of benefit in the evaluation and their relevance for the type of analysis performed.	
Measurement of effectiveness	11a	Single study-based estimates: Describe fully the design features of the single effectiveness study and why the single study was a sufficient source of clinical effectiveness data.	
	11b	Synthesis-based estimates: Describe fully the methods used for identification of included studies and synthesis of clinical effectiveness data.	
Measurement and valuation of preference based outcomes	12	If applicable, describe the population and methods used to elicit preferences for outcomes.	
Estimating resources and costs	13a	Single study-based economic evaluation: Describe approaches used to estimate resource use associated with the alternative interventions. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	NA
---	---	---	---
13b	Model-based economic evaluation: Describe approaches and data sources used to estimate resource use associated with model health states. Describe primary or secondary research methods for valuing each resource item in terms of its unit cost. Describe any adjustments made to approximate to opportunity costs.	✓	
Currency, price date, and conversion	14	Report the dates of the estimated resource quantities and unit costs. Describe methods for adjusting estimated unit costs to the year of reported costs if necessary. Describe methods for converting costs into a common currency base and the exchange rate.	✓
Choice of model	15	Describe and give reasons for the specific type of decision-analytical model used. Providing a figure to show model structure is strongly recommended.	✓
Assumptions	16	Describe all structural or other assumptions underpinning the decision-analytical model.	✓
Analytical methods	17	Describe all analytical methods supporting the evaluation. This could include methods for dealing with skewed, missing, or censored data; extrapolation methods; methods for pooling	✓
Results	Study parameters	18	Report the values, ranges, references, and, if used, probability distributions for all parameters. Report reasons or sources for distributions used to represent uncertainty where appropriate. Providing a table to show the input values is strongly recommended.
---	---	---	---
Incremental costs and outcomes	19	For each intervention, report mean values for the main categories of estimated costs and outcomes of interest, as well as mean differences between the comparator groups. If applicable, report incremental cost-effectiveness ratios.	
Characterizing uncertainty	20 a	Single study-based economic evaluation: Describe the effects of sampling uncertainty for the estimated incremental cost and incremental effectiveness parameters, together with the impact of methodological assumptions (such as discount rate, study perspective).	
	20 b	Model-based economic evaluation: Describe the effects on the results of uncertainty for all input parameters, and uncertainty related to the structure of the model and assumptions.	
Characterizing heterogeneity	21	If applicable, report differences in costs, outcomes, or cost-effectiveness that can be explained by variations between subgroups of patients with different baseline characteristics or other observed variability in effects that are not reducible by more information.	✔
Discussion		Summarise key study findings and describe how they support the conclusions reached. Discuss limitations and the generalisability of the findings and how the findings fit with current knowledge.	✔
Study findings, limitations, generalizability, and current knowledge	22		
Other		Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non-monetary sources of support.	✔
Source of funding	23		
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	✔

© 2021 Su D et al. *JAMA Network Open.*
eTable 2. Estimated Parameters and AIC Values From Each Survival Model

Strategies	Distributions	Parameters	PFS	OS								
			est	L95%	U95%	se	AIC	est	L95%	U95%	se	AIC
Weibull	shape	1.2555	1.1501	1.3704	0.0561	2775.10	1.3671	1.1386	1.6415	0.1276	645.16	
	scale	20.1901	18.5692	21.9625	0.8621	22.8177	18.5285	28.1028	2.4254			
Gamma	shape	1.4723	1.2891	1.6815	0.0986	2768.85	1.5097	1.1925	1.9113	0.1817	844.28	
	rate	0.0776	0.0651	0.0926	0.0070	0.0672	0.0443	0.1020	0.0143			
Exp	rate	0.0490	0.0441	0.0545	0.0026	2796.57	0.0323	0.0264	0.0394	0.0033	853.10	
Log-logistic	shape	1.6930	1.5514	1.8475	0.0754	2759.36	1.5145	1.2655	1.8125	0.1388	643.38	
	scale	13.8408	12.5886	15.2175	0.6696	18.5869	15.1847	22.7504	1.9170			
Log-normal	meanlog	2.6216	2.5227	2.7206	0.0505	2766.82	3.0426	2.8013	3.2839	0.1231	844.11	
	sdlog	1.0369	0.9593	1.1208	0.0412	1.2691	1.0807	1.4903	0.1041			
Gompertz	shape	0.0161	0.0038	0.0284	0.0063	2792.22	0.0600	0.0403	0.1156	0.0284	850.77	
	rate	0.0410	0.0343	0.0490	0.0037	0.0232	0.0158	0.0341	0.0045			
Royston/Parmar spline model (0 knot)	gamma0	-3.7728	-4.1195	3.4261	0.1769	2775.10	-4.2757	-4.8886	3.6628	0.3127	845.16	
	gamma1	1.2554	1.1454	1.3654	0.0561	1.3671	1.1171	1.6172	0.1276			
Royston/Parmar spline model (1 knot)	gamma0	4.4832	5.0274	-3.9391	0.2776	5.4727	5.3891	3.7563	0.4165	845.50		
	gamma1	2.4603	1.8178	3.1029	0.3278	2760.44	1.9805	0.9432	3.0178	0.5292		
	gamma2	0.0759	0.0732	0.1147	0.0196	0.0867	0.0529	0.2602	0.0722			
Royston/Parmar spline model (2 knot)	gamma0	4.4486	4.9899	-3.9074	0.2762	4.6034	5.4045	3.8022	0.4088			
	gamma1	2.2368	1.2381	3.2356	0.5086	2762.29	1.5652	0.2825	2.8379	0.6519		
	gamma2	-0.0348	-0.2634	0.1937	0.1166	-0.3031	-1.0000	0.3937	0.3555			
	gamma3	0.1342	0.1606	0.4289	0.1504	0.5613	0.4766	1.5992	0.5296			
Sorafenib	theta	0.1247	0.0717	0.2081	NA	0.5621	0.3979	0.7138	NA			
	shape	1.3998	1.2584	1.5571	0.0760	2769.66	1.6960	1.3323	2.1589	0.2088	843.64	
	scale	16.2332	14.2225	18.5822	1.0952	9.6355	6.5162	14.2480	1.9230			
Mixture cure model (Weibull)	theta	0.1077	0.0552	0.1998	NA	0.4802	0.2458	0.7237	NA			
	shape	1.6888	1.4308	1.9933	0.1428	2764.92	1.9604	1.3181	2.7572	0.3589	844.14	
	rate	0.1092	0.0827	0.1442	0.0155	0.1736	0.0712	0.4231	0.0789			
Mixture cure model (Exp)	theta	0.0001	0.0000	1.0000	NA	0.0007	0.0000	1.0000	NA			
	rate	0.0490	0.0441	0.0545	0.0026	0.0323	0.0264	0.0396	0.0034			
Mixture cure model (Log-logistic)	theta	0.0031	0.0000	1.0000	NA	0.3763	0.1186	0.7335	NA			
	shape	1.6978	1.5386	1.8733	0.0852	2761.38	1.7579	1.3163	2.3477	0.2595	844.08	
	scale	13.7796	12.2441	15.5083	0.8308	11.0251	5.8470	20.7889	3.5677			
Mixture cure model (Log-normal)	theta	0.0004	0.0000	1.0000	NA	0.0024	0.0000	1.0000	NA			
	meanlog	2.6210	2.5214	2.7207	0.0506	2768.84	3.0395	2.7646	3.3144	0.1403	846.12	
	sdlog	1.0367	0.9588	1.1208	0.0413	1.2680	1.0762	1.4942	0.1062			
Model Type	Parameter	Estimate	Standard Error	95% Confidence Interval	z Value	Pr(>	z)				
------------------------------------	-----------	----------	----------------	-------------------------	---------	----------						
Mixture cure model (Gompertz)	theta	0.1331	0.0772	0.2196	NA	0.6198						
	shape	0.0406	0.0202	0.0611	0.0104	2.7897						
	rate	0.0423	0.0351	0.0511	0.0041	0.0414						
Non-mixture cure model (Weibull)	theta	0.0974	0.0409	0.2143	NA	0.5432						
	shape	1.5157	1.3484	1.7036	0.0904	2.7655						
	scale	28.0300	19.4237	40.4495	5.2454	11.3519						
Non-mixture cure model (Gamma)	theta	0.0750	0.0266	0.1942	NA	0.4410						
	shape	1.6893	1.4339	2.0139	0.1473	2.7635						
	rate	0.0562	0.0320	0.0988	0.0162	0.1285						
Non-mixture cure model (Exp)	theta	0.0000	0.0000	1.0000	NA	0.0000						
	rate	0.0010	0.0002	0.0048	0.0008	0.0018						
Non-mixture cure model (Log-logistic)	theta	0.0000	0.0000	0.9900	NA	0.0010						
	shape	1.6042	1.3963	1.8429	0.1136	2.7635						
	scale	30.3637	19.0768	48.3285	7.2003	14.1656						
Non-mixture cure model (Log-normal)	theta	0.0000	0.0000	1.0000	NA	0.0000						
	shape	5.0858	3.1088	7.0628	1.0087	2.7626						
	rate	1.6321	1.0267	2.2072	0.2514	1.7375						
Non-mixture cure model (Gompertz)	theta	0.1338	0.0776	0.2209	NA	0.6193						
	shape	0.0863	0.0404	0.0857	0.0116	0.2308						
	rate	0.0174	0.0133	0.0228	0.0024	0.0321						
Weibull	shape	1.2136	1.1131	1.3297	0.0537	2.7338						
	scale	18.9127	17.3445	20.6227	8.8352	16.2507						
Gamma	shape	1.4436	1.2641	1.6491	0.0979	2.7238						
	scale	0.0813	0.0682	0.0971	0.0073	0.0897						
Exp	rate	0.0525	0.0473	0.0583	0.0028	2.7486						
Log-logistic	shape	1.6866	1.5463	1.8394	0.0747	2.6996						
	scale	12.5778	11.4312	13.8394	0.6134	12.3488						
Log-normal	shape	2.5401	2.4439	2.6363	0.0491	2.6931						
	scale	1.0093	0.9035	1.0912	0.0402	1.2314						
Gompertz	shape	0.0059	-0.0069	0.0187	0.0065	0.2749						
	rate	0.0494	0.0416	0.0587	0.0043	0.0415						
Royston/Parmar spline model (0 knot)	gamma0	-3.5684	-3.8955	-3.2413	0.1669	-3.5478						
	gamma1	1.2138	1.1086	1.3190	0.0537	1.2728						
Royston/Parmar spline model (1 knot)	gamma0	-5.1767	-5.7859	-4.4492	0.3410	-3.8625						
	gamma1	2.4528	2.0122	2.8933	0.2248	2.6923						
Royston/Parmar spline model (2 knot)	gamma0	-5.2768	-6.1235	-4.4301	0.4320	-3.8714						
	gamma1	2.6445	1.9094	3.3797	0.3751	1.8750						

Atezolizumab plus bevaczumab
Mixture cure model (Weibull)	gamma2	0.1633	-0.1172	0.4437	0.1431	-0.0644	-0.7659	0.6371	0.3579
gamma3	-0.0131	-0.3252	0.2989	0.1592	0.1943	-0.6946	1.0833	0.4535	
theta	0.1717	0.1276	0.2271	NA	0.2874	0.0460	0.7713	NA	
shape	1.4675	1.3310	1.6180	0.0731	2710.72	1.3891	1.0415	1.8527	2.0401
scale	13.5815	12.2713	15.0316	0.7030	10.8445	5.1269	22.9387	4.1452	
Mixture cure model (Gamma)	theta	0.1631	0.1182	0.2207	NA	0.2670	0.0389	0.7660	NA
shape	1.9013	1.6207	2.2304	0.1549	2702.06	1.5995	1.0486	2.4439	0.3460
rate	0.1511	0.1197	0.1906	0.0179	0.1505	0.0489	0.4631	0.0863	
Mixture cure model (Exp)	theta	0.0067	0.0000	1.0000	NA	0.0006	0.0000	1.0000	NA
rate	0.0532	0.0425	0.0667	0.0061	0.0526	0.0411	0.0672	0.0066	
Mixture cure model (Log-logistic)	theta	0.0872	0.0374	0.1903	NA	0.1425	0.0014	0.9520	NA
shape	1.8660	1.6520	2.1079	0.1160	2697.27	1.5618	1.0951	2.2274	0.2829
Meanlog	2.4289	2.2573	2.6005	0.0876	2693.64	2.5555	2.2813	2.8289	0.1399
SDlog	0.9413	0.8317	1.0653	0.0594	1.2310	1.0182	1.4882	0.1192	
Mixture cure model (Log-normal)	theta	0.1720	0.1271	0.2286	NA	0.1605	0.0000	0.9996	NA
shape	0.0475	0.0287	0.0664	0.0096	2739.58	0.0623	-0.1132	0.2379	0.0896
Rate	0.0501	0.0416	0.0602	0.0047	0.0485	0.0121	0.1953	0.0345	
Non-mixture cure model (Weibull)	theta	0.1575	0.1088	0.2227	NA	0.2624	0.0280	0.8146	NA
shape	1.6171	1.4592	1.7922	0.0846	2703.99	1.4559	1.0605	1.9615	0.2215
Scale	19.9994	16.4474	24.3186	1.9953	15.5044	3.9797	60.4035	10.7577	
Non-mixture cure model (Gamma)	theta	0.1424	0.0930	0.2119	NA	0.2396	0.0258	0.7894	NA
shape	1.9556	1.6662	2.2953	0.1598	2698.65	1.6193	1.0558	2.4834	0.3533
rate	0.0984	0.0682	0.1418	0.0184	0.1001	0.0177	0.5676	0.0886	
Non-mixture cure model (Exp)	theta	0.0000	0.0000	1.0000	NA	0.0000	0.0000	1.0000	NA
rate	0.0014	0.0002	0.0092	0.0014	0.0022	0.0001	0.0664	0.0038	
Non-mixture cure model (Log-logistic)	theta	0.1048	0.0592	0.1788	NA	0.1850	0.0126	0.8013	NA
shape	1.7875	1.5747	2.0291	0.1156	2699.35	1.5504	1.0840	2.2176	0.2831
Scale	19.2839	14.7142	25.2727	2.6610	15.9799	3.6614	89.6900	12.0059	
Non-mixture cure model (Log-normal)	theta	0.0444	0.0102	0.1732	NA	0.0023	0.0000	1.0000	NA
Meanlog	3.9399	2.8031	3.9847	0.3014	2693.41	4.5780	-0.9138	10.0697	2.8019
SDlog	1.1619	0.9635	1.4011	0.1110	1.6924	0.7639	3.6540	0.6646	
Non-mixture cure model (Gompertz)	theta	0.1701	0.1260	0.2258	NA	0.2190	0.0019	0.9763	NA
shape	0.0728	0.0530	0.0926	0.0101	2737.36	0.0840	-0.0748	0.2628	0.0861
Rate	0.0223	0.0178	0.0280	0.0026	0.0260	0.0023	0.2923	0.0321	

© 2021 Su D et al. JAMA Network Open.
eTable 3. Probability and Costs Related to Adverse Events (Grade ≥3)

Parameters	Expected value	Range	Distribution	Reference
Probabilities in sorafenib arm				(5)
Diarrhea	0.05	0.42 - 0.79	Beta: α= 0.3, β= 5.2	
Palmar-plantar erythrodysesthesia syndrome	0.08	0.06 - 0.10	Beta: α= 14.7, β= 162.1	
Fatigue	0.03	0.02 - 0.04	Beta: α= 15.5, β= 468.5	
Nausea	0.01	0.00 - 0.01	Beta: α= 15.9, β= 2634.8	
Hypertension	0.12	0.09 - 0.15	Beta: α= 14, β= 101.1	
Thrombocytopenia	0.01	0.01 - 0.02	Beta: α= 15.8, β= 1199	
Hepatotoxicity	0.06	0.05 - 0.08	Beta: α= 15, β= 219	
Proteinuria	0.01	0.00 - 0.01	Beta: α= 15.9, β= 2634.8	
Probabilities in atezolizumab plus bevacizumab arm				(5)
Diarrhea	0.02	0.01 - 0.02	Beta: α= 15.7, β= 857.2	
Palmar-plantar erythrodysesthesia syndrome	0.00	0.00 - 0.00	Beta: α= 0, β= 0	
Fatigue	0.02	0.02 - 0.03	Beta: α= 15.6, β= 635.1	
Nausea	0.00	0.00 - 0.00	Beta: α= 16, β= 5301.4	
Hypertension	0.15	0.11 - 0.19	Beta: α= 13.6, β= 75.7	
Thrombocytopenia	0.03	0.02 - 0.04	Beta: α= 15.5, β= 453.4	
Hepatotoxicity	0.11	0.08 - 0.13	Beta: α= 14.3, β= 120.6	
Proteinuria	0.03	0.02 - 0.04	Beta: α= 15.5, β= 501.8	
Costs per event				
Diarrhea	3,802	2,851 - 4,752	Gamma: α= 15206, λ= 0.25	(13)
Palmar-plantar erythrodysesthesia syndrome	987	741 - 1,234	Gamma: α= 3949, λ= 0.25	(13)
Fatigue	249	187 - 311	Gamma: α= 996, λ= 0.25	(13)
Nausea	2,638	1,978 - 3,297	Gamma: α= 10551, λ= 0.25	(13)
Hypertension	1,701	1,276 - 2,127	Gamma: α= 6805, λ= 0.25	(13)
Thrombocytopenia	4,094	1,750 - 9,579	Gamma: α= 8390, λ= 0.488	(12)
Hepatotoxicity	2,773	-1,584 - 7,119	Gamma: α= 3461, λ= 0.801	(15)
Proteinuria	1,728	97 - 3,565	Gamma: α= 3376, λ= 0.512	(15)