Detection of Impurities in Bulk Drug and Capsule of Fluconazole

Uttam Kumar Sarker¹, Md. Mahasin Ali¹, Fatiha Farhana¹, Md. Atikul Islam¹*, Shifat Kaisar², Mir Misbahuddin³, Md. Rabiul Islam⁴ and Md. Elias Molla⁴

¹Department of Chemistry, Faculty of Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh.
²Biochemist, Department of Biochemistry, Khwaja Yunus Ali Medical College and Hospital, Enayetpur, Sirajgonj, Bangladesh.
³Department of Pharmacology, Faculty of Basic Science, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh.
⁴Department of Chemistry, Faculty of Science, Jahangirnagar University, Savar, Dhaka, Bangladesh.

A B S T R A C T

Objectives: The purpose of this study was to identify the impurities and their amounts in the fluconazole bulk drug and capsule FLUNAC™ (150 mg).

Method: HPLC with diode array detector was used to carry out the study. The composition of mobile phase was acetonitrile: water (85:15 %) with flow rate of 0.7 mL/min and detected at 260 ± 1 nm.

Results: Two impurities (one is known impurity A and other unknown impurity) were detected in the bulk drug and also in capsule FLUNAC (150mg). The total amount of impurities in fluconazole bulk drug and capsule were 0.368% and 0.392% respectively.

Conclusion: The total amount of impurities was less than 1% which is acceptable.

Keywords: Fluconazole, Impurities, HPLC.

INTRODUCTION

Fluconazole is an anti-fungal drug. The triazole antifungal fluconazole is used against superficial and systemic candidiasis and in the treatment of cryptococcal infection for patients with the acquired immuno deficiency syndrome¹⁴. It is also used for the treatment of fungal infection by inhibiting the action of fungal cytochrome P450 activity, thus inhibiting cell membrane formation of susceptible fungi including B dermatitidis, Epidermophyton spp. Candida spp, C immitis, C neoformans, thus leading to cell death. Fluconazole is formulated in different dosage forms. In USP, three potential impurities of Fluconazole are listed (Fluconazole related compounds A, B, and C). Impurity is defined as any substance co-existing with the original drug, such as starting material or intermediates or that is formed, due to any side reactions. At present the control of pharmaceutical impurities is a demanding issue to the pharmaceutical industry.

The International Conference on Harmonization (ICH) has formulated a workable guideline regarding the control of impurities¹⁰. Drug impurity has become essential as per various regulatory requirements. In the pharmaceutical world, an impurity is considered as any other organic material, besides the drug substance, or ingredients, arise out of synthesis or unwanted chemicals that remains with API’s. The presence of these unwanted chemicals, even in small amount, may influence the efficacy and safety of the pharmaceutical products¹¹. Impurities can be classified as Organic impurities (process and drug related), Inorganic impurities and Residual solvents. Impurities in new drug substances can be addressed from two perspectives, the chemical aspect which includes classification and identification of impurities, report generation, listing of impurities in specifications, and a brief discussion of
analytical procedures, the safety aspect which includes the specific guidance for quantifying impurities, substantially at lower levels in a drug substance used in clinical studies\(^\text{12}\).

![Figure 1. Fluconazole and its impurity A, B and C](image)

MATERIALS AND METHODS

Chemicals

Fluconazole and its three impurities, impurity A, B, and C were supplied by Cadila healthcare Ltd, Ahmedabad, India. HPLC grade acetonitril was purchased from E. Merck (Germany). Capsule FLUNAC\(^\text{TM}\) (150 mg), fluconazole, batch number: 0909) was supplied by Drug International Ltd, Bangladesh.

Chromatographic condition

The HPLC-UV diode-array system consisted of Agilent model 1200 series solvent reservoir, binary pump, degasser, auto sampler, column oven and photo diode array detector. Chromatographic data were collected and analyzed using Chemstation software.

A reverse-phase high performance liquid chromatography (HPLC) was used for the determination of fluconazole both in fluconazole bulk drug and capsule FLUNAC\(^\text{TM}\) (150 mg)\(^\text{3}\). The chromatographic analyses were performed on an Agilent 5 μm C18 column (150 × 4.6 mm). The mobile phase used for analysis consisted of 85% acetonitril (HPLC grade; E. Merck, Germany) and 15% water was delivered at a rate of 0.7 mL/min. Separations were carried out at 50°C. The wavelength was set at 260 nm with bandwidth 1 nm. Injection of sample (50 μL) was done using an autosampler. The peak with retention time and area were defined using software.

Identification of impurities

One milligram of each impurity (impurity A, impurity B, impurity C) was dissolve into the mobile phase separately and then diluted into different concentrations. One microgram of each sample was injected into the HPLC system separately to identify the peak using retention time. Then all the above-mentioned impurities with fluconazole (1 µg each) were mixed in mobile phase of which 50 µL was injected.

One tablet FLUNAC\(^\text{TM}\) (150 mg) was powdered and dissolved in 150 mL of mobile phase (1 mg/mL). It was then diluted to 100 µg/mL using mobile phase and finally filtered using syringe filter 0.22 µm. Fifty microliter of the sample was injected into the HPLC system.

RESULTS AND DISCUSSION

The peak of the impurity A appeared first with a retention time of 6.98 min was shown in **Figure 2**. Other peaks were: impurity B (11.66 min), impurity C (13.02 min). Impurity A=150 µL (10 µg/ml), Impurity B=500 µL (100 µg/ml), Impurity C=8 µL (100 µg/ml), Fluconazole =100 µL (100 µg/ml), mobile phase 242 µL. The volume of drug injected was 50 µL.

In case of FLUNAC\(^\text{TM}\) (150 mg) all peaks were similar to fluconazole bulk drug which were shown in **Figure 3 and 4**. An unknown peak was detected in both fluconazole bulk drug and FLUNAC\(^\text{TM}\) (150 mg). Impurity B and Impurity C were not detected in both fluconazole bulk drug and FLUNAC\(^\text{TM}\) (150 mg). Unknown impurity showed the highest amount (0.271%) among all the impurities. The total amount of these impurities in fluconazole bulk drug was 0.368% and in FLUNAC\(^\text{TM}\) (150 mg) capsule was 0.392% shown in **Table 1**. Only 0.024% impurity was increased during the production of capsule.

Table 1: Percentage of impurities of fluconazole present in bulk drug and capsule FLUNAC\(^\text{TM}\)

Peak No.	Impurities	Retention time (min)	Present (%)	Bulk drug*	Cap. FLUNAC\(^\text{TM}\) (150 mg)*
1	Impurity A	7.3	0.106	0.121	
2	Unknown impurity	8.5	0.262	0.271	
Total impurities			0.368	0.392	

*Data are mean of three samples
The International Conference on Harmonization (ICH) has published guidelines on impurities in new drug substances, products and residual solvents. According to ICH guidelines on impurities in drug products, identification of impurities below the 0.1% level is not considered to be necessary unless the potential impurities are expected to be unusually potent or toxic. The maximum daily dose qualification threshold is considered to be less than 1 mg/day.

CONCLUSION

The amount of impurities in finished product (Cap. FLUNAC™) was less than 1% which is acceptable.

ACKNOWLEDGEMENT

The authors are thanks full to Mr. Mohammed Yusuf, Director (Technical), Khwaja Yunus Ali Medical College Hospital, Enayetpur, Sirajgonj, Bangladesh.
REFERENCES

1. Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clinical Microbiological reviews 1999; 12(1):40-79.
2. Vensel TD. Fluconazole: a valuable fungistatic. Primary care update for ob/gyns. 2002; 9(5):181-3.
3. Stern JJ, Hartman BJ, Sharkey P, Rowland V, Squires KE, Murray HW, Graybill JR. Oral fluconazole therapy for patients with acquired immunodeficiency syndrome and cryptococcosis: experience with 22 patients. The American journal of medicine. 1988; 85(4):477-80.
4. Fox R, Neal KR, Leen CL, Ellis ME, Mandal BK. Fluconazole resistant Candida in AIDS. Journal of Infection. 1991; 22(2):201-4.
5. Petitjean O, Jacolot A, Tod M. Pharmacologie des antifongiques azolés systémiques. Médecine et Maladies Infectieuses. 1995; 25:14-26.
6. Zervos M, Meunier F. Fluconazole (Diflucan®): a review. International journal of antimalarial agents. 1993; 3(3):147-70.
7. Rogers TE, Galgiani JN. Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrobial agents and chemotherapy. 1986; 30(3):418-22.
8. Humphrey MJ, Jevons S, Tarbit MH. Pharmacokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans. Antimicrobial agents and chemotherapy. 1985; 29(5):648-53.
9. Anandkumar Y, Kapse-Mistry S, Kadu P. UV spectrophotometric method development and validation for estimation of fluconazole. World Journal of Pharmaceutical Research. 2015 Aug 17; 4(11):814-21.
10. Roy J. Pharmaceutical impurities—a mini-review. AAPS PharmSciTech. 2002; 3(2):1-8.
11. Misbahuddin M, Islam MS, Sarker UK. Detection of Impurities in a tablet of Atorvastatin. KYAMC Journal. 2011; 1(2):43-7.
12. Bari SB, Kadam BR, Jaiswal YS, Shirkhedkar AA. Impurity profile: significance in active pharmaceutical ingredient. Eurasian journal of analytical chemistry. 2007; 2(1):32-53.
13. Scriba GK. Selected fundamental aspects of chiral electromigration techniques and their application to pharmaceutical and biomedical analysis. Journal of pharmaceutical and biomedical analysis. 2002; 27(3-4):373-99.
14. International Conference on Harmonisation-ICH. Draft revised guidance on impurities in new drug products. Fed. Regist. Q3B (R). 2000; 65(139):44791.