Characterization of Ambient Air Quality in Selected Urban Areas in Uganda

A Low-Cost Approach

Deo Okure
Engineer Bainomugisha
Nancy Lozano-Gracia
Maria Edisa Soppelsa
Abstract

Many cities and urban centers around the world experience high air pollution episodes attributable to increased anthropogenic alterations of natural environmental systems. World Health Organization estimates indicate strong exceedances of prescribed limits in developing countries. However, the evidence on local pollution measures is limited for such cities and Uganda is no exception. Informed by the practical realities of air quality monitoring, this paper employs a low-cost approach using passive and active monitors to obtain characterization of pollution levels based on particulate matter 2.5, nitrogen dioxide, and ozone over a six-month period (starting in December 2018) for selected urban centers in three of the four macro-regions in Uganda. This is the first attempt to comprehensively assess pollution levels at a near-national level in Uganda. A combination of distributed stationary monitors and mobile monitors installed on motorcycle taxis (boda-boda) was employed in selected parishes to obtain spatiotemporal variations in the pollutant concentrations. The results suggest that seasonal particulate levels heavily depend on precipitation patterns with a strong inverse relation, which further corroborates the need for longer monitoring periods to reflect actual seasonal variations. Informed by the observed level of data completeness and quality in all the monitoring scenarios, the paper highlights the practicability and potential of a low-cost approach to air quality monitoring and the potential to use this information to inform citizens.
Characterization of Ambient Air Quality in Selected Urban Areas in Uganda: A Low-Cost Approach

Deo Okure, Engineer Bainomugisha, Nancy Lozano-Gracia and Maria Edisa Soppelsa

Key Words: Urban Air Pollution Uganda, Low-cost Air Quality Monitoring in Uganda, mobile air pollution monitoring, Spatiotemporal Variations.

JEL: Q01, Q53, R00,
1. Introduction

1.1 Background

Air pollution episodes are prevalent in cities and urban centers usually resulting from the cumulative anthropogenic alterations of the natural environmental systems, due to the inevitable and increasing demand for limited resources that often exceed the carrying capacity of cities (Gramsch et al., 2006; Martinez, 2015). According to WHO (2018), more than 80% of inhabitants in monitored urban centers are exposed to pollution levels that exceed WHO prescribed limits (Annex 1).

Consequently, populations in fast-growing urban centers are exposed to air pollution–linked health threats (WHO, 2018) with significant dependence on exposure periods. Broadly speaking, a 2018 WHO report indicates that 7 million people die every year from exposure to air pollution with the majority of deaths occurring in developing countries. WHO further ranks air pollution (i.e. both outdoor from industries, construction & automobiles, and indoor from solid fuel combustion) among the 24 leading risk factors for global mortality (WHO, 2009). A recent OECD (Economic Co-operation and Development Centre) study quantifying human and financial costs of Africa's outdoor air pollution found air pollution to be more deadly in Africa than malnutrition or dirty water; specifically, it estimates that air pollution in Africa kills 712,000 people a year prematurely, compared with approximately 542,000 from unsafe water, 275,000 from malnutrition and 391,000 from unsafe sanitation (OECD, 2016).

Findings from empirical epidemiological studies consistently show association of pollutant exposure and exacerbation of illnesses and increased mortality for cardiovascular and respiratory cases among vulnerable groups, e.g., older people, children, pregnant women, lower socio-economic groupings in low-income countries, etc. (Seaton et al., 1995; Brunekreef & Holgate, 2002; Bellinger, 2005; Kampa & Castanas, 2008). Respectively, morbidity and mortality cases are largely linked to lung cancer, ischemic heart disease and stroke, Chronic Obstructive Pulmonary Disease (COPD), and respiratory infection. For example, a 9-year study (1990s) covering 38 million people in 8 European cities found a significant increase in hospital admissions for asthma and COPD, and Cardiovascular Disease (CVD) for people older than 65 years per 10 μgm⁻³ exposure to PM₁₀. More recently (2015), exposure to PM₂.₅ caused 4.2 million deaths accounting for 7.6% recorded total global deaths thus making it the most important pollutant, and also ranked the 5th global risk factor in 2015. Additionally, O₃ accounted for over 0.25 million deaths (Atkinson et al., 2001; Cohen et al., 2017; WHO, 2018).

A snapshot of historical pollution trends and projections in developed countries and the world’s megacities indicate higher per-capita emission levels than cities in low-income economies. However, this outlook is projected to be altered as air pollution has been increasingly severe in fast-expanding cities from non-industrialized countries often exceeding WHO limits (Mayer, 1999). Without any additional action to limit or control air pollution, challenges are only expected to increase as firms and people concentrate further in cities as economic growth rises (Bose, 2010; Kilroy et al., 2015; Martinez, 2015).

Whereas strong regulatory regimes (e.g. restriction of lead and sulfur bearing fuels, strict emission limits, etc.) and technological advances have generally resulted in improved air quality in industrialized economies over time, e.g., China from 2013-2015 (Zheng et al., 2017), a broad plethora of literature and seminal studies still denote distributed pollution levels across a wide
spectrum of urban settings (i.e. from small urban centers to megacities) sufficient enough to be linked to adverse health effects.

In fact, one of the first major efforts to contextualize urban air pollution from a global perspective commissioned by the WHO and UNEP found pollution levels that could be associated with serious health effects in 20 megacities (i.e. cities with a population of more than 10 million) across the world. Generally, exceedances of WHO limits were much higher in megacities in developing countries (largely situated in Asia) with Suspended Particulate Matter (SPM) being the most severe, whereas gaseous pollution levels were somewhat spread throughout the sampled megacities. While air pollution seemed particularly more severe in megacities in developing countries, each megacity had at least one pollutant level exceeding WHO health protection guidelines with vehicle traffic being the single most important ambient pollution source accounting for CO, NOx, HC and Pb. This was largely based on data from some of the 270 established monitoring sites under the Global Environment Monitoring System/Air Programme covering 45 countries by 1992 (WHO & UNEP, 1993; Mage et al., 1996).

Likewise, subsequent studies investigating urban air quality on a global scale which also focused primarily on megacities and major urban centers found considerable levels of poor air quality. A snapshot of further insights from the global perspective studies (non-encyclopedic list) have been presented as follows: An assessment of air quality from the years 1990-2000 in the ‘principal cities’ of the world selected from Europe, Africa, North America, Latin America, Asia and Oceania by Baldasano et al (2003) which identified O3, PM10 and NO2 as pollutants of concern. Particularly, nearly half of the cities had maximum daily hourly O3 levels above 200μgm$^{-3}$ with North America (Mexico City), and Latin America (São Paulo, Santiago) recording the highest levels i.e. 491μgm$^{-3}$, 403μgm$^{-3}$, 351μgm$^{-3}$ respectively, whereas most cities in Asia had high PM levels with a number of cities exceeding 300μgm$^{-3}$. These pollutant concentrations were several times higher than the WHO threshold values at the time (i.e. 120 μgm$^{-3}$ and 60-90μgm$^{-3}$ for daily 8-hour O3 and suspended particulate matter respectively). A similar study by Gurjar et al. (2008) classified air quality in 18 megacities based on a Multi-Pollutant Index (MPI) and found poor air quality in 13 of the megacities studied. Work on air pollution trends for Kolkata, Mumbai and Delhi (3 megacities in India) by Gurjar et al (2016) based on historical monitoring data (1991-2012) highlighted the severity of NOx and Particulate Matter ambient concentrations largely coming from transportation and industry. The geographic span of these sampled megacities during various timescales i.e. North America, Europe, Africa, Central and South America and Asia, highlights the historical significance of urban air pollution as a major health and environmental issue for both developed and developing countries, although there has been significant decline in SO2 and Pb levels attributable to regulatory enforcement.

Rapid population increase coupled with air pollution precursors and economic drivers e.g. motorization, combustion energy, industrialization, and other infrastructural developments may lead to inferring that air quality may be deteriorating in fast-growing urban centers in Africa. However, actual evidence is limited given the lack of adequate real-time monitoring data sets. Countries in Sub-Saharan Africa particularly have had minimal or oftentimes unsuccessful attempts to implement effective air quality control programs (Mage et al., 1996; Mayer, 1999; Baldasano et al., 2003; Petkova et al., 2013), and for a number of cases, data are nonexistent e.g. the WHO (2016) compilation of urban ambient air pollution in global cities had only 9 Sub-Saharan African countries with active monitoring in place, a possible reduction from what was reported in Schwela (2012).

6 This study referred to WHO guidelines of 1979, but the standards have since been updated and revised. the current standards are the WHO Air Quality Guidelines 2005.
Nonetheless, a consolidated review of urban air quality based on Particulate Matter by Petkova et al. (2013) for cities in Africa found exceedances of WHO annual and 24-hour limits with levels higher than what is ordinarily observed in already industrialized countries in Europe and America. This is typical in Uganda where available and collective empirical evidence from published and grey literature dating back to the year 1987 points towards a gradual deterioration of air quality in Kampala (Uganda’s largest city).

This paper summarizes the key findings and insights from an empirical air quality data collection exercise using low-cost tools. The study advances previous efforts using a low-cost approach and attempts to comprehensively characterize ambient air pollution for selected urban areas in 25 districts in Uganda. This is the first attempt to comprehensively characterize air pollution on a near-national scale, as all previous initiatives focused on Kampala with a single exception i.e. Kirenga et al. (2015) that evaluated Kampala and Jinja. A review of individual published studies indicates a broad measure of limitations and shortfalls that could have rendered air quality characterization (based on specific study findings) inconclusive e.g. limited averaging periods—impeding assessment of temporal variations, pollutants profile, and spatial coverage. This work provides an important step toward filling this data and knowledge gap.

In what follows, this paper starts by providing a description of the materials and methods used for the low cost and innovative data collection effort used in this study. Section 3 presents the main characterization of pollution measures throughout sampled parishes in Uganda, a first effort of this kind. We conclude with some insights for policy making and suggestions for future research contributing to improving the understanding of air pollution patterns in the developing world.

2. Materials and Methods

2.1 The Case for Low-Cost Air Quality Monitoring

The first step towards managing and reducing air pollution is monitoring. One needs to quantify its scale, magnitude and spatial distribution to really understand where the challenges lie. However, air quality data inadequacy is often linked to the lack of institutional capacity mainly attributed to the associated resource burdens of air quality monitoring e.g. distinctive traditional certified reference instruments are expensive to set up and maintain (Castell et al., 2017 and Hugh et. al 2019). This often leads to sparse distribution of monitoring networks in developing countries; moreover, the unique practical realities of urban centers in resource-strained countries make traditional reference monitoring unaffordable. Consequently, various international environmental agencies and regulatory bodies including US-EPA, European Environment Agency and the United Nations Environment Programme (UNEP) recognize the dire need for supplementary monitoring techniques to provide indicative air quality data.

7 These studies include Nyangababo (1987), Nyangababo & Salmeen (1987), Matagi (2002), ICF International (2009), Schwander et al (2014), Kirenga et al (2015), KCCA (unpublished) (2019).

8 For example, Nyangababo (1987), and Nyangababo and Salmeen (1987) use lichens and moss for assessment of heavy metal traces in ambient air from industries and traffic; whereas the study is a good reference baseline for ambient heavy metal concentrations in Kampala, it cannot be a representative indication of the current air quality situation given the drastic changes in the physical environment within the last 30 years. Matagi (2002) provides a qualitative profile of emission sources but lacked quantitative measurement data. Schwander et al. (2014) whose findings were based on two 24-hour measurements in a single location can only be used to characterise levels within the monitoring location and restricted to 24-hour averaging periods. Kirenga et al., (2015) was the first study to focus on 2 major urban areas in Uganda (Kampala and Jinja), however, this was restricted to one-month monitoring and therefore findings are restricted to concentrations experienced within one meteorological month, disregarding the pronounced seasonal fluctuations in pollution levels.
Low-cost monitors (both passive and active) that can cost a fraction of the reference monitors\(^9\) have increasingly been adopted to supplement reference monitors. However, the monetary boundaries of ‘low-cost’ are still colloquial and very subjective e.g., US-EPA defines ‘low-cost’ as <US $2,500, and Morawska et al. (2018) review of low-cost sensing technologies preferred a US $1,000 threshold (Castell et al., 2017; Morawska et al., 2018). To date, several initiatives (see Table 1 for a non-exhaustive list of initiatives) from academia and regulatory bodies have taken interest in low-cost active sensor platforms. The paradigm shift from traditional monitoring restricted to reference instruments towards a mixed network of sensors can be attributed to its immense and demonstrable potential for substantive reduction in monitoring costs and improvement in spatial coverage—a strong case for low-cost approaches to revolutionize urban air quality management.

This study leverages on these advances and employs low-cost monitors (primarily AirQo from Makerere University) uniquely designed to withstand the environmental and physical conditions such as dust, extreme weather conditions, unreliable power and intermittent internet connectivity. These devices are portable air quality monitors that can be deployed statically or mounted on mobile devices (figure 2) to provide pollution snapshots. AirQo monitors were supplemented by diffusive passive samplers also proven to be cost-effective for characterizing spatial variability over varying landscapes e.g. urban and rural as well as seasonal and annual trends (Van Reeuwijk et al., 1998; Chao and Law, 2000; Vardoulakis et al., 2009).

Initiative	Focus area(s)
EuNetAir	Developing new sensing technologies for air pollution control and environmental sustainability
http://www.eunetair.it/	
CamMobSense	Focusing on small scale sensor deployment
EveryAware	Aiming to enhance environmental awareness using portable gas sensors
http://www.everyaware.eu/	
Citi-Sense and Citi-Sense-MOB	Technological platforms for distribution monitoring
http://www.citi-sense.eu/	
PiMi Airbox	Indoor air quality monitoring
Smartsantander	Developed networks of internet-based devices (including air quality) for smart cities
http://www.smartsantander.eu/	
CAIRSENSE	US-EPA project for testing low-cost sensors

\(^9\) Measurement instruments certified by regulatory bodies, e.g., US-EPA operating under a rigorous set of regulatory protocols, are usually referred to as the “gold standard” of air quality monitoring.
Village Green
https://www.epa.gov/air-research/village-green-project

US-EPA community-based project aimed at raising awareness on local air quality

AirVisual
https://www.airvisual.com/

Aimed at creating a crowd sourced global network for static air quality monitors

PurpleAir
https://www2.purpleair.com/

a US-based low-cost air quality monitoring network

Data collection focused on anticipated emissions from anthropogenic processes within the predefined study areas with a primary focus on Particulate Matter (PM$_{2.5}$ and PM$_{10}$), supplemented by NO$_2$ and O$_3$ passive data sets. These pollutants are not only indicative of the ambient air pollution profile in Uganda but are also within the context of WHO-classical and US-EPA-criteria pollutants i.e. pollutants considered to have adverse effects on human health upon inhalation and ingestion (through contaminated food & water), and to a small extent, dermal contact (cited in Kampa & Castanas, 2008) as informed by empirical clinical and epidemiological studies (see table 2).

Table 2: Classical and Criteria Pollutants (WHO, 2005; EPA, 2018)

Classical Pollutants	Criteria Pollutants	Major Sources
PM	PM	Automobile-generated particulates, combustion emissions, industrial sources, dispersion and ambient suspension of loose surface particulates by wind, etc.
NO$_2$	NO$_2$	Direct combustion of fossil fuel from thermal fixation of atmospheric nitrogen in the combustion environment
O$_3$	O$_3$	Series of reactions between NO$_2$ and VOCs, CO, CH$_4$, etc. initiated by sunlight
SO$_2$	SO$_2$	largely combustion of Sulphur bearing fuels
CO10		Incomplete combustion of fuels and inadequate ventilation due to limited oxygen supply e.g. tobacco smoke, engine exhaust, etc.

2.2 Geographic Scope (Study Area)

This study was restricted to predefined geographical project boundaries in selected sub-counties11 within three of the four macro-regions of Uganda (i.e. Central, Southern and Eastern) defined to

10 Only available from US-EPA criteria pollutants.

11 Sub-counties are the official administrative units which collectively make up a district, which then are aggregated to form macro-regions (presently four in total).
be representative of the spatial distribution of manufacturing firms in Uganda, and consistent with the official administrative boundaries of Uganda. Because the air pollution assessment was designed to accompany a firm survey designed to be representative of the firm distribution across the country, exclusion of the Northern region was informed by low population density and low firm density of the targeted firm categories. The study set out to collect 6-month pollution data with primary focus around the major emission sources in urban centers12 and targeted firms within the sampled locations.

As mentioned above, the decisions for deployment of monitors started from the pre-selected sub-counties and was supplemented by collation of grey literature to help establish parish level boundaries for the monitoring exercise (i.e. re-aligning with the pre-selected boundaries from the firm-level survey) and map out tentative locations for stationary monitors including boundaries for mobile monitoring-partly informed by the authors’ knowledge of the local environment.

The field validation exercise to all the selected sub-counties followed, with the objective to confirm static deployment locations and identify boundaries/routes for supplementary mobile monitoring for areas where static would not have adequate spatial coverage. Spatial boundaries and buffer zones of key pollution generating activities with the potential to affect local air quality were also identified during the field validation exercise. As anticipated, major pollution generating activities including target firm categories were largely situated in urban areas. For stationary deployment, a maximum of 1-2km impact zones (region within the physical environment and activities that can affect local air quality) were considered as most major emission sources within the study areas are closer to the ground (<3m above the ground) having largely localized effects. This was partly informed by study objectives and the fact that there is no official air quality monitoring in Uganda (i.e. there are no Air Quality Management Areas).13 Lists of all the sampled sub-counties with respective parishes were uploaded onto a portable mapping tool (ArcGIS collector) for precision during the field visits and corresponding GPS coordinates for all potential locations in visited sub-counties were obtained (figure 1).

12 Since there is no universal threshold/definition for urban centers (Chomitz et al., 2005; UN, 2017), we adopted the official classification of urban areas in Uganda, i.e., gazetted administrative centers including District Headquarters, Cities, Municipalities, Towns, Town Boards and all Trading Centers with a population of more than 1,000 persons (UBOS, 2001) and all sampled locations met this criterion. This threshold is also comparable to other jurisdictions, e.g., Chomitz et al. (2005) and UN (2017), and adopting a different threshold would not have significantly altered the sampling, in fact even the US census threshold of 288 persons per square kilometer adopted for the parish level firm survey was way below the average parish level population density.

13 It is typical for regulatory practice, e.g., UK-EA, to define impact zones for air quality risk assessments prior to establishing monitoring sites.
2.3 Data Collection (Pollution and Supplementary Data)

This study combined both distributed stationary and mobile monitors (using motorcycle taxis also known as *boda-boda*) deployed in selected locations within predefined project geographical boundaries (*figure 1*). Stationary monitors provided data on the longer temporal variations (diurnal, daily and monthly) in pollutant concentrations experienced in a typical 6-month period within respective monitoring locations, whereas mobile monitors provided spatiotemporal variations/‘snapshots’ of the pollutant concentrations within the areas not spatially covered by the static installations i.e. assessing how pollution varies in different areas at different times (spatiotemporal variability). This is due to the usually high temporal and spatial variability of urban air quality. Two sampling techniques were adopted for static deployment i.e. active monitoring
using AirQo monitors (https://www.airqo.net/) for real-time particulate matter sampling and 2-month passive sampling using Palmes-type diffusion tubes supplied by Gradko International for supplementary gaseous monitoring (NO₂ and O₃). Monitoring devices were installed between 2.5 to 4m high (i.e. within breathing zone) to ensure pollution levels captured is reflective of population exposure. For O₃ and NO₂, monitoring tubes were removed at the end of every 4 weeks and shipped to a UK based ISO 17025 accredited laboratory for pollutant analyses and results relayed over emails. Volunteers were opportunistically identified and recruited to host the monitoring devices.

Mobile sampling was conducted along predefined routes converging at a stationary monitoring location. These were largely ‘popular’ boda-boda routes within the respective geographic boundaries. It is standard practice for boda-boda riders to operate from within specific geographic boundaries, and rider recruitment (from the predefined areas of interest) was largely informed by this fact. All devices deployed on boda-boda had inbuilt GPS modules to track and attribute monitoring data to specific locations (see figures 2a and 12). Data was then streamed in near-real-time to an online platform over a local cell-phone network.

Under mobile monitoring, riders were presented with 2 scenarios:

Scenario 1 (Opportunistic Monitoring): Mobile data routes were identified and highlighted to the riders but boda movements were not restricted i.e. riders were free to collect data alongside their regular schedules.

Scenario 2 (Restrictive Monitoring): Riders were asked to spend about 30 minutes in selected spots during specific times of the day i.e. morning before 08:30, afternoon between 14:00 and 16:30, and evening between 17:00 to 21:00 (riders usually stop working after 21:00). In addition, they were asked to specifically ride through the defined routes on their way to/from the selected spots. In both cases, monitoring was done during active hours of the day to correspond with riders’ typical working hours i.e. (from around 06:00 to 21:00) and the stoppage times were chosen to correspond to the highs and lows of expected typical diurnal profile (figure 4).

Real-time PM data from active monitors (AirQo and PurpleAir tools) were automatically uploaded to the cloud platform at a frequency ranging 30-80 seconds, with variations depending on mode i.e. whether static or mobile and available power options. The resulting data sets informed the average pollutant concentrations within specific static deployment neighborhood along with spatiotemporal variations from mobile sampling.¹⁴

2.3.1 Meteorological Data

Supplementary meteorological data (humidity, temperature and precipitation) were obtained from weather stations situated within the national climatic zones in line with sampled locations. These compilations included both historical data sets and measurements obtained during the pollution assessment period. Sampled precipitation compilations were superimposed on pollution plots to indicatively assess the meteorological influence on seasonal variations.

¹⁴ All active monitors were collocated (in a controlled environment) with a high-end factory calibrated instrument Turnkey Osiris (https://turnkey-instruments.com/product/osiris/) prior to deployment to establish any correction factors, whereas analysis for the passive monitors was handled by an ISO 17025 accredited laboratory.
Figure 2: (a) Mobile and (b) static installation

Figure 3a: Distribution of Static installations in Eastern, Central and South Western Uganda (10-June-2019)
3. Results and Discussion/Key Insights

Air quality levels across all monitoring locations exhibit distinctive diurnal, weekly and seasonal/monthly variations. Insights on pollution variations generated from the 6-month monitoring data sets obtained from selected monitoring locations (in all sampled regions) have been presented as spatiotemporal profiles. These profiles have been further disaggregated as diurnal, weekly, and monthly variations for PM$_{2.5}$ and gaseous pollutants (NO$_2$ and O$_3$). Results are clustered to correspond to geographical macro-regions considered for the study i.e. locations within Kampala and Wakiso (central business districts of Uganda), Rest of Central, and locations in Eastern and Western Uganda. Kampala and Wakiso are clustered separately due to their unique status as central business districts of Uganda with the highest population density relative to the rest of the country, in addition to having the highest concentration of pollution generating activities (UBOS, 2011, 2016).

PM$_{2.5}$ Diurnal Profiles

Diurnal variations indicate a consistent pattern with what would be expected for a typical day i.e. higher pollution levels were observed in the evening hours (starting around 5 pm) up to early morning (around 8 am). Consistent with this pattern, in Kampala and Wakiso, highest pollution levels are seen between 06:00 and 09:00, and 18:00 and 00:00, whereas 09:00 to 16:00, and 00:00 to 05:00 are the least polluted hours. While similar patterns are observed in other sampled locations, in Eastern Uganda, peak levels are considerably lower in these areas (e.g. Mbale Industrial division). These diurnal patterns are akin to findings in other studies across the world (Chow et al., 1999; Watson and Chow, 2002; DeGaetano and Doherty, 2004; Zhao et al., 2009; Chen et al., 2015, etc.). The variations indicate strong dependence on activity patterns within the monitoring locations e.g. high automobile transit time during rush hours (early morning and late evenings) which have been proven to increase emission levels (Sjodin et al., 1998; Zhang and Batterman, 2013), outdoor cooking in the evenings, and other commercial activities, etc. This is also enhanced by the influence of day to day meteorological/weather and atmospheric conditions on pollution dispersion i.e. daytime conditions (e.g. hot sunny days) being characterized by turbulent ambient conditions that increase pollution dispersion as opposed to calm weather situations typical of night time and early morning conditions i.e. lower temperatures with usually lower wind speeds (DeGaetano and Doherty, 2004; Zhu et al., 2006).
Since dispersion is proportional to the pollution decay gradient (Zhu et al., 2006; Karner et al., 2010), ambient concentrations/pollution levels relayed by the monitoring device are usually dependent on the rate of pollution decay towards background concentrations. Pollution decay is usually slower at night due to reduced dilution effect as dispersion is inversely related to wind speeds. In essence, main road monitoring locations and large commercial centers exhibit sharp temporal variations that could be linked to the influence of daily activities patterns and prevailing atmospheric conditions experienced in a typical day. Typical were monitoring locations in clusters within the central business districts of Uganda (figure 1 and 3) e.g. Kireka and Kawempe (UBOS, 2011, 2016) (about 8 and 5m from the main roads respectively) which exhibited sustained sharp/much higher temporal peaks between 05:00 to 09:00 and 18:00 to 23:30 for the entire monitoring duration, a strong contrast with other geographic clusters outside the central business districts.

However, two adjacent locations (<2km apart) within Kampala and Wakiso cluster (i.e. Bweyogerere and Kireka), and Eastern geographical clusters (Mbale-figure 4c) showed interesting outlier characteristics, i.e. sustained disparity in temporal peaks, and visible pollution sources (i.e. human activities) not seeming to correlate with observed temporal peak levels, respectively. While these deviations and disparities could be attributed to site-specific contexts (e.g. site locations, (sustained) localized temporal alterations in the physical environment, e.g. figure 13), further research for example focusing on transboundary pollution effects and pollution source apportionment, could provide useful insights into these sharp contrasts such as sustained high temporal spikes outside the central business districts. On the other hand, the disparities could also be pointing towards the spatial inadequacy of fixed ambient monitors towards estimating pollution levels over a wide area with diverse physical characteristics i.e. not being able to capture instantaneous and even sustained localized pollution within the vicinity of monitoring location e.g. Kireka and Bweyogerere (<2km apart). This provides a strong rationale for the use of multiple-sensor deployment strategies within a given urban setting.
(b) Rest of Central Uganda

(c) Eastern Uganda
Weekly Variations (7-day period)

Daily PM$_{2.5}$ mass concentration over a 7-day period (figure 5) ranges from ~30 to 107µg/m3. However, pollution levels in all monitoring locations and geographical clusters show no apparent correlation across all areas i.e. do not conform to particular patterns with different locations having different days of peak pollution. Kireka, Kawempe and Bunamwaya are exceptions (figure 5a) with peak pollution levels observed in all cases on Wednesday, Thursday, Friday and Saturday throughout the 6-month period. Temporal peaks for Kireka and Kawempe were over 105µg/m3 and 80µg/m3 on Wednesday and Thursday, while Bunamwaya followed suit with a similar pattern from Tuesday to Sunday with highest pollution levels recorded on Wednesday (~55µg/m3). However, all geographical clusters showed haphazard trends in the weekly pollution levels but clusters outside Central maintained lower temporal profiles (highest level being Sunday about 63µg/m3 experienced on Sunday in Jinja (Buwenge). On the contrary, Entebbe 4b and Busia 4c experienced the lowest pollution levels (below 35µg/m3) on Sunday, Monday (Entebbe) and Saturday (Busia) (figure 5b and 5c).

Haphazard pollution patterns could be a result of the nature of localized pollution sources/drivers within the respective monitoring locations which could be affecting other pollutant levels e.g. low PM$_{2.5}$ levels on
Mondays within central business districts (figure 5a) despite the usually observed traffic congestion during rush hours brings to light the significance of other pollutant levels and sources—akin to the findings in Watson and Chow (2002). Influence of other pollutants can be further supported by ‘weekend effect’ cycle often associated with photochemical and other gaseous pollutants which result from the strong dependence of surface pollution levels on anthropogenic sources (Cleveland et al., 1974; Beirle et al., 2003).

Likewise, persistent replication of disparities in the weekly profile between adjacent sampled locations i.e. Kireka and Bweyogerere (<2km apart) is yet another notable observation. These inconsistent variations make it difficult to derive conclusive weekly trends over a given geographic cluster using sparse monitoring data sets and a single pollutant which in essence re-emphasizes the need for a multi-pollutant approach and multiple sensor placements for accurate pollution estimates over a given geographic landscape.

In spite of the wide variation in daily patterns, diurnal PM$_{2.5}$ concentrations far exceeded the daily air quality limits considered for this assessment i.e. 25µg/m3 and 35µg/m3 for WHO and EU, and US-EPA respectively. The exceedances of pollution standards are also consistent with the findings from published air quality studies in Uganda i.e. Schwander et al. (2014) and Kirenga et al. (2015) which ranged from ~50µg/m3 to over 240µg/m3 24-hour averages with lower concentrations for sampling sites outside Kampala (Jinja).

Furthermore, our analysis confirms (as expected) a strong positive correlation between pollution levels and degree of urbanization across all sampled regions which is also consistent with seminal work in the field e.g. Mage et al. (1996). With the administrative-based annual urbanization growth rate in Uganda averaging between 2.5 and 5% per year over the last 10 years (Jie et al., 2010; UBOS, 2014; CIA, 2018; UN, 2018), such correlation provides a warning sign and a call to think about measures that can minimize pollution as urbanization advances.
Figure 5: 7-day daily PM$_{2.5}$ averages for all sampled geographic clusters.
Monthly/Seasonal Variations

PM$_{2.5}$ and Meteorological Influence

Monthly pollution levels follow a consistent pattern across all geographical clusters as if to replicate a sinusoidal curve. Peak pollution levels are reported in March, the highest being over 115μg/m3 for Kireka (Kampala and Wakiso cluster-6a) while Entebbe (6b) registered the lowest (just over 30μg/m3 for the same month). Pollution levels decreased sharply reaching the lowest levels in the months of April and May. This was consistent for all sampled locations with Busia, Jinja and Entebbe registering the lowest levels just above 20μg/m3. Thereafter, pollution levels increase gradually until July (most polluted month) where another peak is registered before it starts to decline. This ‘sinusoidal’ pattern can be linked to the effect of precipitation levels/meteorological conditions experienced within a given meteorological month in the sampled locations. In particular, the inverse relations between Particulate Matter and precipitation and unstable stormy periods that influence pollution dispersion and decay, dilution, and suppression (Chow et al., 1999; Zhu et al., 2006; Karner et al., 2010; Yan et al., 2016), other meteorological factors notwithstanding. The inverse correlation of precipitation levels and PM$_{2.5}$ is further demonstrated by the superimposed graphical plots of total monthly rainfall/precipitation experienced within selected geographical clusters and pollution levels (figure 7). While pollution source attribution is beyond the scope of this paper, the strong suppression effect caused by precipitation/rainfall patterns on pollution levels could point towards easily ‘washable’/dissolved chemical elements.
(b) Rest of Central Uganda

(c) Eastern Uganda

(d) Western Uganda
Figure 6: Monthly/seasonal variation

(a) Kampala and Wakiso

(b) Eastern Uganda
NO$_2$ and O$_3$ Variations

NO$_2$ levels exhibited distinctive variations throughout all geographic clusters ranging from $<5\mu g/m^3$ to over $70\mu g/m^3$ with locations within the Central clusters (with more pollution generating activities) largely experiencing much higher levels than Eastern and Western clusters (figures 8(a-d)). This is consistent with the notion that urbanization levels and traffic density have strong positive correlations with NO$_2$ attributed pollution (Mage et al., 1996; Studnicka et al., 1997; Krämer et al., 2000; Rijnders et al., 2001). Most notably, ambient NO$_2$ is widely considered an appropriate marker and a major indicator of traffic pollution as a primary combustion emission (Studnicka et al., 1997; Van Reeuwijk et al., 1998; Krämer, et al., 2000; Rijnders, et al., 2001; Nerriere et al., 2005) which is further validated by the enhanced correlation of measured NO$_2$ levels with automobile population (observed traffic) and observed street topology (that influence pollution dilution) in all monitored locations. Furthermore, the fact that household combustion energy profile in Uganda is predominantly biomass (about 95%) leaves very little room for the influence of domestic NO$_2$ sources on ambient levels e.g. Chao and Law (2000) on personal exposure.

Likewise, O$_3$ levels ranged between $~30\mu g/m^3$ to over $90\mu g/m^3$ but exhibiting strong inverse relations with NO$_2$ pattern i.e. Eastern and Western clusters registering higher O$_3$ levels than Central cluster, with the highest levels being $~90\mu g/m^3$ in Namayingo also with the lowest NO$_2$ levels i.e. $<5\mu g/m^3$ (figure 8c). Smaller urban centers and rural locations experiencing higher O$_3$ concentrations could be strongly attributed to the chemical nature of O$_3$ as a secondary pollutant i.e. higher atmospheric retention time because of limited fossil/petroleum combustion activities in rural settings or smaller urban areas, compared to major urban centers where O$_3$ retention is hindered by atmospheric chemical decomposition i.e. reactions with other combustion emissions.

While O$_3$ formation partly depends on prevailing weather conditions-particularly sunlight intensity that influences photochemical reactions from precursor pollutants e.g. VOC, CH$_4$, NOx, CO, etc. (Ganguly and Tzanis,2011; Zhang et al., 2015; Yan et al., 2016), it is not possible to derive any conclusions on meteorological influence based on 2-month monthly estimations, in addition to making direct comparisons to recommended long-term limits (e.g. WHO annual for the case of NO$_2$). Another major limitation of the passive diffusive approach to quantifying gaseous pollutants
is the inability to estimate short-term temporal variations making it impossible to obtain temporal insights e.g. diurnal pollution distribution.

While longer monitoring campaigns would be an important consideration for future studies, these findings remain vitally important to indicatively highlight the contrast between urban and rural pollution levels with respect to combustion gaseous emissions, in addition to providing the only pollution baseline on a near-national scale.
Further insights into supplementary mobile data sets have been presented (figures 9 and 10). The mobile data sets obtained reflect real-time and distinctive micro-level characterization largely linked to the street physical databases and indicative of the high temporal resolution of the data collection approach and varying spatial settings. The first monitoring Scenario (Opportunistic Monitoring) (figure 9a) provided ‘running data’, a key assumption being no prolonged stoppages unless prompted by extreme traffic situations (it is typical for boda boda to be minimally affected by traffic situations). Monitoring Scenario 2 (Restrictive Monitoring) (figure 9b) provided ‘controlled and consistent’ running data with some static data sets for selected spots out of the regular main route situations. To explore the reproducibility of the temporal variations in the PM_{2.5} concentration levels, monitoring data sets for 2 consecutive days (independent samples) are.

Mobile Data Sets

Scenario 1 (Opportunistic Monitoring) versus Scenario 2 (Restrictive Monitoring)

Further insights into supplementary mobile data sets have been presented (figures 9 and 10). The mobile data sets obtained reflect real-time and distinctive micro-level characterization largely linked to the street physical databases and indicative of the high temporal resolution of the data collection approach and varying spatial settings. The first monitoring Scenario (Opportunistic Monitoring) (figure 9a) provided ‘running data’, a key assumption being no prolonged stoppages unless prompted by extreme traffic situations (it is typical for boda boda to be minimally affected by traffic situations). Monitoring Scenario 2 (Restrictive Monitoring) (figure 9b) provided ‘controlled and consistent’ running data with some static data sets for selected spots out of the regular main route situations. To explore the reproducibility of the temporal variations in the PM_{2.5} concentration levels, monitoring data sets for 2 consecutive days (independent samples) are.
presented for both scenarios. Because there were more sampling days for Scenario 1 (primarily due to the cost implications of Scenario 2), 2-day data sets were randomly chosen within two weeks from the sampling days of Scenario 2 to ensure consistent meteorological conditions during the monitoring period. For comparative purposes, we evaluated data sets from two monitoring locations i.e. one from Kampala and Wakiso and another from the Eastern cluster (Tororo).

Monitoring data sets for the two scenarios exhibit consistency in the measurement trend for Scenario 2 and the longer time lag in Scenario 1 (i.e. fewer measurement entries). This is largely because riders were more conscious of their routes and speed under Scenario 2 which produced some consistency and replicability in the measurement data sets. Variations appear to be stronger for Tororo (Eastern Cluster and located over 200km from Kampala) which could be explained by the clustered nature of pollution sources as you move away from the urban centers coupled with the fact that bodaboda riders tend to travel much longer distances in rural-urban centers-typical of urban centers outside Kampala-Wakiso areas.

Distributed spikes stretching throughout the monitoring duration (in both scenarios) result from exposure to instantaneous emission episodes typical of microenvironments which can be systematic or accidental e.g. domestic burning (figure 13), exposure to vehicle exhaust, instantaneous particulate suspension from unpaved roads, etc. However, the trends for both scenarios tended to conform to the diurnal pollution profile obtained from static monitors as influenced by street topology, atmospheric and meteorological conditions, pollution generating activities. While Scenario 2 would be more ideal for a mobile assessment study, these results indicate that both scenarios can potentially be used to provide a snapshot (Spatio-temporal) of the air quality situation in the monitored areas, somewhat similar to stationary data sets. These insights further advance the case for mobile monitoring to supplement conventional static monitoring due to ability to capture micro-level pollution drivers i.e. high spatial and temporal resolution (e.g. figure 13) that result in large pollution level disparities within a given monitoring locality (Weijers et al., 2004; Zwack et al., 2011; Elen et al., 2013; Van den Bossche et al., 2015), and potential to aid personal exposure epidemiological studies e.g. Berghmans et al. (2009).

(a) Rider movements not restricted (8th-9th April)
(b) Rider asked to make strategic stops at the point of interest (18-19th April). Stoppage times between: 7:30-8:30, 13:30 to 14:30 and 18:00 to 19:00

Fig. 9. PM$_{2.5}$ profile from the two monitoring scenarios for Namugongo-Bweyogerere-Nakawa mobile routes (Kampala-Wakiso Cluster)
Mobile versus Static Data Sets

In order to further establish the relationship between mobile and static monitoring data sets, static and mobile data sets are compared for one of the boda routes under Restrictive Sampling Scenario and one static location (figure 11) within Kampala-Wakiso cluster. The choice of the mobile routes and sampling days are informed by the proximity (about 400m apart) of the point of interest (i.e. pre-determined stoppage point for boda rider) to the static location (figure 12). This was the closest attempt to simulate a collocation situation. However, the strength of the comparison is limited as mobile measurements are taken from various locations and relies on the assumption that the static monitoring data relatively represents the neighborhood. Nonetheless, valuable insights into the spatial variabilities and representativeness can still be obtained from comparing the two data sets (Van den Bossche et al., 2015).

As already intimated, unlike static data sets, mobile monitoring captured micro-level pollution drivers reflected in the temporal spikes and variabilities throughout the monitoring period as demonstrated in figures 9 & 10. These expansive concentration disparities re-emphasize the spatial boundary limitations of static monitors and their inability to explicitly capture micro-level pollution drivers e.g. from instantaneous exposures. The temporal disparities further reaffirm the

Fig. 10. Non-restrictive rider movements (8-9th-May), and 27-28th April-riders asked to make strategic stops (7:30-8:30, 13:30 to 14:30 and 18:00 to 19:00) at points of interest for Tororo-Malaba mobile routes (outside Kampala-Wakiso areas-more than 200km)
substantive influence of micro-level extreme pollution episodes on measured concentrations, and subsequently the spatial distribution. However, a relatively comparable replica of the diurnal temporal profiles for the static and mobile monitoring scenarios denotes the potential for the two approaches to be deployed concurrently. While static monitoring may not capture micro-level pollution episodes, mobile monitoring might equally not be ideal for monitoring during certain weather conditions e.g. rainy days, and also due to rider-behavior induced bias.

(a) Restrictive rider movements with a stop (stoppage times: 7:30-8:30, 13:30 to 14:30 and 18:00 to 19:00) close to the static unit.

(b) Static monitoring data for the same measurement days as mobile data sets

Fig. 11: Comparison of static and mobile data sets obtained within the same sampling days (Kampala-Wakiso)
Fig. 12: Location of mobile stoppage point relative to static monitoring location

Fig. 13: Outdoor burning in one of the static monitoring locations and resulting relayed measurement on the AirQo platform (mobile App), an indication of the impact of localised temporal alterations
4. Conclusion

Air pollution concentrations in urban areas are determined by a balance of factors between pollutant generation (and subsequent accumulation) and pollution dispersion. Generally, indicative findings point towards the gradual deterioration of ambient air quality within the study areas. But more specifically, PM$_{2.5}$ pollution data sets show significant spatiotemporal variations in pollution profiles across all the sampled locations. Spatiotemporal patterns generally indicate strong disproportionate correlations between pollution levels (for PM$_{2.5}$, NO$_2$ and O$_3$) in central business districts and outside central business districts. Notably, concentrations for Kampala and Wakiso were systematically higher than upcountry locations (i.e. Eastern and Western clusters) with some PM$_{2.5}$ diurnal temporal exceptions. The influences of traffic levels and urban topology (presented in seminal literature) were also confirmed in the case study areas. Despite varying pollution levels, PM$_{2.5}$ and NO$_2$ results indicate a wide measure of substantial exceedances of WHO, EU and US-EPA temporal (24-hour) and annual limits.

We further conclude that inconsistent and haphazard weekly profiles and the probable absence of the ‘weekend effect’ highlights the need for multiple pollutant assessments and also reiterates the inadequacy of sparse monitoring data sets. This further corroborates the need for multiple sensor deployment with a plausible mixture of both static and complementary mobile monitors to estimate pollution levels and inform the development of high-resolution pollution maps while identifying micro-level/localized drivers. In addition, the strong influence of rainfall patterns on seasonal particulate levels justifies the need for long-term monitoring to reflect actual seasonal variations.

Informed by the observed level of completeness for static monitoring data sets and comparison of data sets for the two mobile scenarios, we further conclude that engaging volunteers for opportunistic monitoring has huge potential, not only for high-resolution air quality monitoring but also as an avenue for increasing awareness of air pollution. In other words, the practicability and the potential of a low-cost monitoring network to succeed in the setting of Uganda and perhaps Sub-Saharan African are highly demonstrated. Determining the actual costs of setting up and maintaining a large network of low-cost monitors would be an interesting line of inquiry for subsequent studies.

Although this paper is limited to providing an overview of air pollution levels within the study areas, there is a strong basis for the key findings to inform future lines of research, which could include pollution source attribution and composition, transboundary effects on local pollution, pollution trapping and street topology effects (i.e. street canyon effect), personal exposure assessment, quantifying the economic impacts of pollution, hindcasting and forecasting studies, and most importantly, exploring effective models for citizen science engagement and mitigation actions. Further still, it would also be important to continue the measurement of air pollution over a long-term period to assess annual trends as well as expanding the geographic scope of the work.
References

1. Atkinson, R.W., Ross Anderson, H., Sunyer, J., Ayres, J.O.N., Baccini, M., Vonk, J.M., Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G. and Schwartz, J., 2001. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. American journal of respiratory and critical care medicine, 164(10), pp.1860-1866.

2. Baldasano, J.M., Valera, E. and Jimenez, P., 2003. Air quality data from large cities. Science of the Total Environment, 307(1-3), pp.141-165.

3. Beirle, S., Platt, U., Wenig, M. and Wagner, T., 2003. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmospheric Chemistry and Physics, 3(6), pp.2225-2232.

4. Bellinger, D.C., 2005. Teratogen update: lead and pregnancy. Birth Defects Research Part A: Clinical and Molecular Teratology, 73(6), pp.409-420.

5. Berghmans, P., Bleux, N., Panis, L.I., Mishra, V.K., Torfs, R. and Van Poppel, M., 2009. Exposure assessment of a cyclist to PM10 and ultrafine particles. Science of the Total Environment, 407(4), pp.1286-1298.

6. Bose, Ranjan K.. 2010. Energy efficient cities : assessment tools and benchmarking practices (English). Washington, DC: World Bank. http://documents.worldbank.org/curated/en/602471468337215697/Energy-efficient-cities-assessment-tools-and-benchmarking-practices

7. Brunekreef, B. and Holgate, S.T., 2002. Air pollution and health. The lancet, 360(9341), pp.1233-1242.

8. Castell, N., Dauge, F.R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D. and Bartonova, A., 2017. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?. Environment international, 99, pp.293-302.

9. Chao, C.Y. and Law, A., 2000. A study of personal exposure to nitrogen dioxide using passive samplers. Building and Environment, 35(6), pp.545-553.

10. Chen, W., Tang, H. and Zhao, H., 2015. Diurnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing. Atmospheric Environment, 119, pp.21-34.

11. Chomitz, Kenneth M.; Buys, Piet; Thomas, Timothy S.. 2005. Quantifying the rural-urban gradient in Latin America and the Caribbean (English). Policy, Research working paper ; no. WPS 3634. Washington, DC: World Bank. Available at: http://documents.worldbank.org/curated/en/417881468226751166/Quantifying-the-rural-urban-gradient-in-Latin-America-and-the-Caribbean

12. Chow, J.C., Watson, J.G., Lowenthal, D.H., Hackney, R., Magliano, K., Lehrman, D. and Smith, T., 1999. Temporal variations of PM2.5, PM10, and gaseous precursors during the 1995 integrated monitoring study in central California. Journal of the Air & Waste Management Association, 49(9), pp.16-24.

13. CIA. (2018). Field Listing: Urbanization — The World Factbook - Central Intelligence Agency. [online] Available at: https://www.cia.gov/library/publications/resources/the-world-factbook/fields/349.html [Accessed 26 Dec. 2019].
14. Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R. and Feigin, V., 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), pp.1907-1918.

15. Cleveland, W.S., Graedel, T.E., Kleiner, B. and Warner, J.L., 1974. Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science, 186(4168), pp.1037-1038.

16. DeGaetano, A.T. and Doherty, O.M., 2004. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmospheric Environment, 38(11), pp.1547-1558.

17. EEA, 2008. Air Quality Standards. Available at: https://www.eea.europa.eu/themes/air/air-quality-standards

18. Elen, B., Peters, J., Poppel, M., Bleux, N., Theunis, J., Reggente, M. and Standaert, A., 2013. The Aeroflex: a bicycle for mobile air quality measurements. Sensors, 13(1), pp.221-240.

19. EPA, 2018. Criteria Air Pollutants. Available at: https://www.epa.gov/criteria-air-pollutants Accessed on 12 June 2019

20. Ganguly, N.D. and Tzanis, C., 2011. Study of Stratosphere-troposphere exchange events of ozone in India and Greece using ozonesonde ascents. Meteorological Applications, 18(4), pp.467-474.

21. Gurjar, B.R., Butler, T.M., Lawrence, M.G. and Lelieveld, J., 2008. Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42(7), pp.1593-1606.

22. Gurjar, B.R., Ravindra, K. and Nagpure, A.S., 2016. Air pollution trends over Indian megacities and their local-to-global implications. Atmospheric Environment, 142, pp.475-495.

23. Gramsch, E., Cereceda-Balic, F., Oyola, P. and Von Baer, D., 2006. Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data. Atmospheric environment, 40(28), pp.5464-5475.

24. Hugh Z. Li, Peishi Gu, Qing Ye, Naomi Zimmerman, Ellis S. Robinson, R. Subramanian, Joshua S. Apte, Allen L. Robinson, Albert A. Presto, Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors, Atmospheric Environment: X, Volume 2, 2019, 100012, ISSN 2590-1621, https://doi.org/10.1016/j.aeaoa.2019.100012.

25. ICF International, “Greenhouse Gas Emissions in Toronto,” no. 2012, pp. 1–94, 2007.

26. Jie, S., Yingxuan, Z., Dan, H. and Huili, C., 2010. Statistical methodologies used to calculate urbanization rates in China. Chinese Journal of Population Resources and Environment, 8(3), pp.89-96.

27. Kampa, M. and Castanas, E., 2008. Human health effects of air pollution. Environmental pollution, 151(2), pp.362-367.
28. Karner, A.A., Eisinger, D.S. and Niemeier, D.A., 2010. Near-roadway air quality: synthesizing the findings from real-world data. *Environmental science & technology, 44*(14), pp.5334-5344.

29. Kilroy, Austin Francis Louis; Mukim, Megha; Negri, Stefano. 2015. *Competitive cities for jobs and growth: what, who, and how (English)*. Competitive cities for jobs and growth. Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/902411467990995484/Competitive-cities-for-jobs-and-growth-what-who-and-how

30. Kirenga, B.J Meng Q., van Gemert F, Aanyu-Tukamuhebwa H, Chavannes N, Katamba A, Obai G, Molen T.V.D, Schwander S, and Mohsenin V. ‘The state of ambient air quality in two Ugandan cities: a pilot cross-sectional spatial assessment’. International journal of environmental research and public health, (2015) 12(7), pp.8075-8091.

31. Krämer, U., Koch, T., Ranft, U., Ring, J. and Behrendt, H., 2000. Traffic-related air pollution is associated with atopy in children living in urban areas. *Epidemiology, 11*(1), pp.64-70.

32. Li, H.Z., Gu, P., Ye, Q., Zimmerman, N., Robinson, E.S., Subramanian, R., Apte, J.S., Robinson, A.L. and Presto, A.A., 2019. Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors. *Atmospheric Environment: X, 2*, p.100012.

33. Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V. and Gwynne, M., 1996. Urban air pollution in megacities of the world. *Atmospheric Environment, 30*(5), pp.681-686.

34. Martínez, Clara Inés Pardo. "Energy and sustainable development in cities: A case study of Bogotá." *Energy* 92 (2015): 612-621.

35. Mayer, H., 1999. Air pollution in cities. *Atmospheric environment, 33*(24-25), pp.4029-4037.

36. Morawska, L., Thai, P.K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M. and Gao, J., 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?. *Environment international, 116*, pp.286-299.

37. Nerriere, É., Zmirou-Navier, D., Blanchard, O., Moms, I., Ladner, J., Le Moullec, Y., Personnaz, M.B., Lameloise, P., Delmas, V., Target, A. and Desqueyroux, H., 2005. Can we use fixed ambient air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study. *Environmental Research, 97*(1), pp.32-42.

38. OECD Development Centre, The cost of air pollution in Africa, 2016

39. Palmes, E.D., Gunnison, A.F., DiMattio, J. and Tomczyk, C., 1976. Personal sampler for nitrogen dioxide. *American Industrial Hygiene Association Journal, 37*(10), pp.570-577.

40. Petkova, E.P., Jack, D.W., Volavka-Close, N.H. and Kinney, P.L., 2013. Particulate matter pollution in African cities. *Air Quality, Atmosphere & Health, 6*(3), pp.603-614.
41. Rijnders, E., Janssen, N.A., Van Vliet, P.H. and Brunekreef, B., 2001. Personal and outdoor nitrogen dioxide concentrations in relation to degree of urbanization and traffic density. *Environmental health perspectives*, 109(suppl 3), pp.411-417.

42. Schwander, S., Okello, C.D., Freers, J., Chow, J.C., Watson, J.G., Corry, M. and Meng, Q., 2014. Ambient particulate matter air pollution in Mpererwe District, Kampala, Uganda: A pilot study. *Journal of environmental and public health*, 2014.

43. Schwela, D., 2012. Review of Urban Air Quality in Sub-Saharan Africa Region: Air Quality Profile of SSA Countries.

44. Seaton, A., Godden, D., MacNee, W. and Donaldson, K., 1995. Particulate air pollution and acute health effects. *The Lancet*, 345(8943), pp.176-178.

45. Sjodin, A., Persson, K., Andreasson, K., Arlander, B. and Galle, B., 1998. On-road emission factors derived from measurements in a traffic tunnel. *International Journal of Vehicle Design*, 20(1-4), pp.147-158.

46. Studnicka, M., Hackl, E., Pischinger, J., Fangmeyer, C., Haschke, N., Kuhr, J., Urbanek, R., Neumann, M. and Frischer, T., 1997. Traffic-related NO₂ and the prevalence of asthma and respiratory symptoms in seven year olds. *European Respiratory Journal*, 10(10), pp.2275-2278.

47. Thron, R.W., 1996. Direct and indirect exposure to air pollution. *Otolaryngology--Head and Neck Surgery*, 114(2), pp.281-285.

48. UBOS, 2001, *Compendium of Statistical Concepts and Definitions Used in the Uganda Statistical System and Services*.

49. UBOS, 2011, ‘Report on the Census of Business Establishment 200/11’. Available at: https://www.ubos.org/publications/statistical/20/

50. Uganda Bureau of Statistics 2016, The National Population and Housing Census 2014 – Main Report, Kampala, Uganda

51. UN, 2017, Population Density and Urbanisation. Available at: https://unstats.un.org/unsd/demographic/sconcerns/densurb/densurbmethods.htm

52. UN. (2018). *World Urbanization Prospects - Population Division - United Nations*. [online] Available at: https://population.un.org/wup/Download/ [Accessed 26 Dec. 2019].

53. UK Environment Agency, 2016, ‘Guidance - Air emissions risk assessment for your environmental permit’. Accessed on 15 Jun. 2019, at: https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-environmental-permit

54. Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J. and De Baets, B., 2015. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. *Atmospheric Environment*, 105, pp.148-161.
55. Van Reeuwijk, H., Fischer, P.H., Harssema, H., Briggs, D.J., Smallbone, K. and Lebret, E., 1998. Field comparison of two NO₂ passive samplers to assess spatial variation. *Environmental Monitoring and Assessment, 50*(1), pp.37-51.

56. Vardoulakis, S., Lumberas, J. and Solazzo, E., 2009. Comparative evaluation of nitrogen oxides and ozone passive diffusion tubes for exposure studies. *Atmospheric Environment, 43*(16), pp.2509-2517.

57. Watson, J.G. and Chow, J.C., 2002. A wintertime PM₂.₅ episode at the Fresno, CA, supersite. *Atmospheric Environment, 36*(3), pp.465-475.

58. WHO 2018 https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

59. WHO, ‘Global Health Observatory (GHO) data: Ambient air pollution’ (2018). [online]. Available at: http://www.who.int/gho/phe/outdoor_air_pollution/en/

60. WHO, ‘Global Urban Ambient Air Pollution Database (Update 2016)’, (World Health Organization, 2018) Available at: http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ Accessed 5 Jun 2019

61. WHO & UNEP, 1993. GEMS/AIR : Global Environmental Monitoring System, a global programme for urban air quality monitoring and assessment. Available from: https://apps.who.int/iris/handle/10665/58355

62. Weijers, E.P., Khlystov, A.Y., Kos, G.P.A. and Erisman, J.W., 2004. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. *Atmospheric Environment, 38*(19), pp.2993-3002.

63. Yan, S., Cao, H., Chen, Y., Wu, C., Hong, T. and Fan, H., 2016. Spatial and temporal characteristics of air quality and air pollutants in 2013 in Beijing. *Environmental Science and Pollution Research, 23*(14), pp.13996-14007.

64. Zhang, K. and Batterman, S., 2013. Air pollution and health risks due to vehicle traffic. *Science of the total Environment, 450*, pp.307-316.

65. Zhang, Z., Zhang, X., Gong, D., Quan, W., Zhao, X., Ma, Z. and Kim, S.J., 2015. Evolution of surface O₃ and PM₂.₅ concentrations and their relationships with meteorological conditions over the last decade in Beijing. *Atmospheric Environment, 108*, pp.67-75.

66. Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W. and Pu, W., 2009. Seasonal and diurnal variations of ambient PM₂.₅ concentration in urban and rural environments in Beijing. *Atmospheric Environment, 43*(18), pp.2893-2900.

67. Zheng, Y., Xue, T., Zhang, Q., Geng, G., Tong, D., Li, X. and He, K., 2017. Air quality improvements and health benefits from China’s clean air action since 2013. *Environmental Research Letters, 12*(11), p.114020.

68. Zhu, Y., Kuhn, T., Mayo, P. and Hinds, W.C., 2006. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. *Environmental science & technology, 40*(8), pp.2531-2536.
69. Zwack, L.M., Hanna, S.R., Spengler, J.D. and Levy, J.I., 2011. Using advanced dispersion models and mobile monitoring to characterize spatial patterns of ultrafine particles in an urban area. *Atmospheric Environment, 45*(28), pp.4822-4829.
Annex

Annex 1: WHO, EU and US-EPA air quality standards (WHO, 2005; EEA, 2008; US-EPA, 2016)

Pollutant Category	Pollutant Parameter	Standards	Exceedances (maximum allowable exceedances)		
	Averaging Periods	WHO/µgm³	EU/µgm³	EPA[1]	
Gaseous pollutants	NO₂	1 hour	200	200	188.14 (100ppb) 18 times; 98th percentile of 1-hour daily maximum concentrations, averaged over 3 years (EU; US-EPA)
	8 hours	-	120	-	
	Annual	40	40	99.71 (53ppb)	
Ozone (O₃)	8-hour	100	120	137.4 (0.07ppm) Annual fourth-highest daily maximum 8-hour concentration averaged over 3 years (US-EPA)	
Particulates	PM₂.₅	24 hours	25	25	35 98th percentile, averaged over 3 years (US-EPA)
	Annual	10	10	12, 15[2] Annual mean averaged over 3 years (US-EPA)	
	PM₁₀	24 hours	50	50	150 35 times a calendar year; not to be exceeded more than once per year on average over 3 years (US-EPA)
	Annual	20	40	-	-

[1] Conversion factor: \(ppb = \mu g/m^3 \times 24.45/MW \) Where: \(MW= \) Pollutant Molar Weight

[2] Primary and secondary standards respectively
Annex 2: Installation locations for passive monitors

Region	District	Location Name and ID	Date and Time	Dist. from road with regular traffic (approx.)	Site description and visible emission sources	
Western	Bundibugyo	Nyahuka TC: WN_BGYO_AQ1	08/12/2018 10:20 – 19-02-19 10:08	10	Major commercial centre of the selected sub-county. Monitoring location in the middle of the business centre. Visible sources included, automobiles, outdoor cooking, fuel station operations.	
Western	Kabarole	Western Div.: WN_KRLE_AQ1	08/12/2018 14:20 – 19-02-19 12:55	250	Location away from the major commercial establishments of Fort Portal Municipality; predominantly residential with minimal commercial establishments; surrounded by unpaved roads and some furniture businesses. Gaseous emission sources likely to be from automobiles	
Central	Kasese	Nyamwamba: WN_KSSE_AQ1	08/12/2018 14:20 – 22-02-19 18:30	200	Mixed residential and commercial area but outside the major town centre within minimal vehicle/automobile movements.	
Central	Rubirizi	Rubirizi: WS_RBZI_AQ1	09/12/2018 10:33 – 18-02-19 16:41	3	Major commercial centre of the selected sub-county. Location in the middle of the business centre along the highway.	
Central	Kabale	Northern Div.: WS_KBLE_AQ1	09/12/2018 18:30 – 19-02-19 19:15	500	Predominantly residential with minimal commercial activities. Site surrounded by unpaved roads	
Central	Mityana	Central Div: CW_MTNA_AQ1	07/12/2018 18:00 – 19-02-19 18:15	2	Middle of the commercial centre of Mityana municipality. Primary emission sources likely to include direct automobile emissions	
Central	Mubende	Kisekende: CW_MBDE_AQ1	07/12/2018 18:00 – 19-02-19 16:50	5	Located within the commercial centre of the selected parish; major businesses include fabrication, grain milling and general merchandise. Emission sources include automobile emissions, fabrication gases	
Central	Masaka	Nyendo: CW_MSKA_AQ1	10/12/2018 18:00 – 17-02-19 14:21	5	Heavily commercial with mixed settlements and visibly high population density. Primary sources to include automobile emissions	
Central	Wakiso	Entebbe: CE_WKSO_AQ1	20/12/2018 12:22 – 01-03-19 11:08	15	The back end of Kitoro market within mixed settlement and commercial area. Likely emissions to result from occasional automobile traffic and	
Division Zone	Code	Date/Time	Hour	Description		
--------------	------	-----------	------	-------------		
Ndeje Div:	CE_WKSO_AQ2	20/12/2018 13:38	01-03-19	10:32	Outdoor cooking along Entebbe highway within major commercial establishments and mixed settlements. Emissions likely to result from vehicular movements along the highway and localised particulates from nearby grain milling firm.	
Bunamwaya Div:	CE_WKSO_AQ3	20/12/2018 14:05	01-03-19	10:20	Mixed residential, some industrial and commercial activities.	
Namugongo-Kireka:	CE_WKSO_AQ4	21/12/2018 8:30	01-03-19	15:56	Heavily commercial with adjacent commercial car park. Emission sources include vehicles and other automobiles (trucks, commercial and private vehicles, and motorcycles) along the highway, outdoor cooking, and industrial facilities.	
Bweyogerere Div:	CE_WKSO_AQ5	21/12/2018 9:15	01-03-19	15:30	Industrial area with mixed settlements and commercial establishments. Emission sources likely to include heavy trucks along the highway and industrial emissions.	
Kampala Rubaga Div:	CE_KPLA_AQ1	20/12/2018 14:40	01-03-19	10:06	At the junction of major roads; area characterised by mixed residential and commercial activities.	
Mukono Central Div.:	CE_MKNO_AQ1	21/12/2018 10:00	01-03-19	14:40	Predominantly commercial with frequent automobile traffic in the area.	
Luwero	Wobulenzi:	CE_LWRO_AQ1	21/12/2018 12:45	01-03-19	13:05	Along the highway with major commercial activities within the sub-county. Primary emissions to include outdoor cooking and automobile sources.
Jinja	Central Division	ES_INJA_AQ1	26/12/2018 12:45	03-03-19	10:55	Commercial area, outdoor cooking, industrial and automobile emissions.
Buwenge TC	ES_INJA_AQ2	26/12/2018 14:08	03-03-19	13:22	Centre of Buwenge TC, emissions likely to result from automobile sources within the area.	
Iganga Central Div:	ES_IGGA_AQ1	26/12/2018 15:38	03-03-19	16:25	Predominantly commercial. Sources to include outdoor cooking and automobile generated emissions.	
Location	Date	Time	Emissions	Description		
---------------	---------------	---------------	-----------	-------------		
Busiembatya	28/12/2018	17:20	03-03-19	16:56	250	Residential side of the major commercial centre surrounded by grain/rice, furniture businesses and general merchandise. Minimal traffic except along the highway about 400m from the location. Emissions from occasional traffic within the area and outdoor cooking
Mbale	26/12/2018	17:30	03-03-19	19:06	2.5	Predominantly surrounded by furniture and grain businesses. About 2km from the major commercial centre of Mbale town. Occasional traffic, wood and grain dust suspension.
Lwasso	27/12/2018	17:52	04-03-19	19:12	2	At the foot of mt. Elgon located over 1400m above sea level. Predominantly residential (although sparse) with minimal commercial activities. Sources to come from occasional automobile movements in the area
Bududa	27/12/2018	10:29	04-03-19	17:15	2.5	Centre of Bududa town and major commercial establishments. Unpaved roads with frequent vehicular movements.
Manafwa	27/12/2018	11:45	04-03-19	16:20	2	Adjacent to Buwabwala Health Centre III. Trading centre with commercial activities typical of a rural setting in Uganda. Also, surrounded by unpaved roads
Kapechorwa	27/12/2018	14:10	04-03-19	13:12	3	Predominantly residential with minimal commercial activities
Soroti	28/12/2018	8:30	04-03-19	9:40	1	Centre of Soroti town (major commercial centre of the district). Localised automobile generated sources likely to be predominant.
Tororo	28/12/2018	11:00	05-03-19	8:40	1	Centre of Tororo town (major commercial centre). Emission sources primarily from industrial from the 3 cement factories and automobiles
Busia	28/12/2018	12:12	05-03-19	10:05	2.5	Location sited and the centre of Busia town. Anticipated sources from heavy traffic entering and exiting Uganda-Kenya border
Located about 20km from Namayingo town (major commercial centre in the district). Characterised by unpaved roads predominant rural settlements and minimal commercial activities. Occasional traffic likely to be the source of gaseous emissions but very low concentrations to near background levels.

Major commercial centre of Bugiri town. Trucks and other commercial vehicles likely to be the emission sources

Region	District	Static Location Name and ID	Date and Time	Distance from the road (approx.)/m	Monitoring Mode (Static/Mobile)
Western	Bundibugyo	Nyahuka TC: WN_BGYO_AQ1	2019-01-14 to 2019-05-30	10	Static
	Kabarole	Western Div: WN_KRLE_AQ1	2019-01-14 to 2019-05-30	250	Static
	Kasese	Nyamwamba: WN_KSSE_AQ1	2019-01-14 to 2019-05-30	200	Static
	Rubirizi	Rubirizi TC: WS_RBZI_AQ1	2019-01-14 to 2019-05-30	3	Static
	Kisoro	Southern Div. WS_KSRO_AQ1	2019-01-14 to 2019-05-30	5.0	Static
	Kabale	Northern Div.: WS_KBLE_AQ1	2019-01-14 to 2019-05-30	500	Static
Central	Mityana	Central Div: CW_MTNA_AQ1	2019-03-15 to 2019-05-30	2	Static
	Mubende	Kisekende: CW_MBDE_AQ1	2019-01-14 to 2019-05-30	5	Static
	Masaka	Nyendo: CW_MSKA_AQ1	2019-01-14 to 2019-05-30	5	Static
	Entebbe	CE_WKSO_AQ1	2019-03-15 to 2019-05-30	2.5	Static
	Wakiso	Ndejje Div: CE_WKSO_AQ2	2019-03-15 to 2019-05-30	2.5	Static and mobile
Location	Code	Start Date	End Date	Duration	Type
------------------------	---------------	--------------	------------	----------	-----------------------
Bunamwaya: CE_WKSO_AQ3	2019-03-17	2019-05-30	3	Static and mobile	
Namugongo (Kireka): CE_WKSO_AQ4	2019-01-07	2019-05-30	8	Static and mobile	
Bweyogerere: CE_WKSO_AQ5	2019-01-07	2019-05-30	10	Static and mobile	
Kampala	Rubaga: CE_KPLA_AQ1	2019-01-04	2019-05-30	3	Static and mobile
	Kawempe CE_KPLA_AQ2	2018-12-06	2019-05-30	3	Static and mobile
Mukono	Central Div.: CE_MKNO_AQ1	2019-01-07	2019-05-30	2	Static and mobile
Luwero	Wobulenzi TC: CE_LWRO_AQ1	2019-03-17	2019-05-30	4	Static
Jinja	Central Division ES_INJA_AQ1	2019-03-23	2019-05-30	5	Static and mobile
	Buwenge TC ES_INJA_AQ2	2019-03-23	2019-05-30	10	Static
Iganga	Central Div: ES_IGGA_AQ1	2019-06-01	2019-05-30	3	Static and mobile
	Busiembatya ES_IGGA_AQ2	2019-05-04	2019-05-30	250	Static
Mbale	Masaba Ward EN_MBLE_AQ1	2019-01-31	2019-05-30	5.0	Static and mobile
	Lwasso EN_MBLE_AQ2	2019-01-31	2019-05-30	2	Static and mobile
Bududa	Bududa TC EN_BUDA_AQ1	2019-02-01	2019-05-30	2.5	Static
Manafwa	Bumurwa EN_MFWA_AQ1	2019-02-01	2019-05-30	4	Static
Kapchorwa	Kachorwa-Sipi EN_KPWA_AQ1	2019-01-31	2019-05-30	3	Static
Soroti	Eastern Div. EN_SRTI_AQ1	2019-01-31	2019-05-30	1	Static
Tororo	Eastern Div. EN_TRRO_AQ1	2019-02-02	2019-05-30	2	Static and mobile
Busia	Eastern Div. ES_BSIA_AQ1	2019-02-02	2019-05-30	2.5	Static and mobile
Namayingo	Bugana EN_NYGO_AQ1	2019-02-02	2019-05-30	500	Static
Bugiri	Eastern Div.	2019-05-03	2019-05-30	3	Static
------------	--------------	------------	------------	---	--------
EN_BGRI_AQ1					