Introduction

Aeromonads are recognized not only as an important disease-causing pathogen of fish and other cold-blooded organisms but also as a causative organism in a variety of infectious complications in both immunocompetent and immunocompromised humans. Several virulence and antibiotic resistance genes have been identified and isolated from this group, which if present in their mobile genetic elements, may be horizontally transferred to other naive environmental bacteria posing threat to the society. The extensive and indiscriminate use of antibiotics has given rise to many resistant varieties of bacteria. Multidrug resistance genes, such as NDM-1, have been identified in this group of bacteria which is of serious health concern. Therefore, it is important to understand how antibiotic resistance develops and spreads in order to undertake preventive measures. It is also necessary to search and map putative virulence genes of *Aeromonas* for fighting the diseases caused by them. This review encompasses current knowledge of bacteriological, environmental, clinical and virulence aspects of the *Aeromonas* group and related diseases in humans and other animals of human concern.

Key words: Aeromonad, diarrhea, multi-drug, resistance, virulence
Aeromonads are found to inhabit a variety of niches including soil, aquatic habitats, aquatic animals, terrestrial animals, birds, insects, and human beings (Table I). *A. hydrophila* are found to inhabit a wide range of thermal and pH conditions, except in extremely polluted and saline water and hot water springs. Estuaries are ideal for *Aeromonas*, where they either exist freely or associated with crustaceans (Fiorentini *et al.*, 1998). Most of the aeromonads come into human systems through ingestion of water or food contaminated with *Aeromonas*. In India, *Aeromonas* spp. have been detected in 13.4% of animal-origin food samples, the highest being in fish (Kumar *et al.*, 2000). Aeromonads mostly infect the gastrointestinal tract, urinary tract and blood of human beings. Three *Aeromonas* species viz., *A. hydrophila*, *A. caviae* and *A. veronii* bv. Sobria are known to infect human beings (Janda and Abbott, 1998). Some other species like *A. jandaei*, *A. veronii* bv. veronii, *A. schubertii*, *A. popoffi* are also known to infect human (Janda *et al.*, 1994; Hua *et al.*, 2004). Hua *et al.* (2004) isolated *A. popoffi* from the urine of a patient with urinary tract infection (Hua *et al.*, 2004). *A. salmonicida*, generally known to infect cold blooded animals, has also been isolated from blood sample of a patient in India (Tewari *et al.*, 2014). *A. salmonicida* was identified by Vitek 2 compact automated system. Non-culturable *Aeromonas* can be found in drinking water in various concentrations. The first report of *Aeromonas* from drinking water was confirmed by sequencing 16S rRNA (Figueras *et al.*, 2005). Different concentrations of *Aeromonas* have been detected in consumable products from markets (Isonhood and Drake, 2002).

Epidemiology

Mesophilic bacteria grow well at higher temperatures and therefore an increase in bacterial load may be attributed to their increase in concentration in both freshwater environments and drinking water sources with the increase of ambient temperature (Moyer, 1987; Edberg *et al.*, 2007; Khardori and Fainstein, 1988). The seasonality is also seen in extra-intestinal infections such as septicaemia, where 42% to 67% of bacteremic diseases appear during the summer season (Tsai *et al.*, 2006). The elevated levels of these bacteria in aquatic environments during the summer season increases the opportunities of human or aquatic organisms of getting exposed to them and thus the risk of getting infected by these bacteria also gets higher. Infections caused by aeromonads seem to be rather more prevalent in developing countries like India, Bangladesh, Brazil, China, Cuba, Egypt, Iran, Libya, Nigeria, Venezuela and Vietnam (Ghenghesh *et al.*, 2008). Prevalence of *Aeromonas* related disease is more during rainy seasons when the water salinity is low than at high salinity during dry season (Marcel *et al.*, 2002).

Infections and Symptoms

Gastrointestinal tract is the most common site of *Aeromonas* infection. Evidences show that *Aeromonas*-associated diarrhoea or cholera-like disease occurs in some patients, whereas no symptom may appear in cases of low-level infections (Gurwith *et al.*, 1977; Holmberg *et al.*, 1984). Kelly *et al.* (1993) isolated *Aeromonas* from non-fecal samples from 58 patients, suffering from gangrene, septicaemia, osteomyelitis and peritonitis. *Aeromonas*-related diarrhoea may be watery and self-limiting. In other cases, fever, abdominal pain and bloody diarrhea may develop along with dehydration (Ghenghesh *et al.*, 1999). Hematologic cancer patients, patients with tumours in their gastrointestinal tract or having alimentary canal diseases are more likely to be infected by *Aeromonas*. In rare cases of segmental colitis *Aeromonas* segmental colitis may occur that seem to be ischemic colitis or Crohn's disease (Bayerdorffer *et al.*, 1986). Although any portion of the colon may be affected, it mostly affects the ascending or transverse sections. Ileal ulceration has also been linked to *Aeromonas enteritidis* (Yamamoto *et al.*, 2004). It may also cause intra-mural intestinal hemorrhage including small bowel obstruction (Block *et al.*, 1994).
Table I
Genospecies and phenospecies of the genus Aeromonas.

DNA Hybridization group	Type Strain/Reference	Genospecies	Phenospecies	Remarks	Reference
1	ATCC 7966	*A. hydrophila*	*A. hydrophila*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
1	BCCM/LMG 19562	*A. hydrophila* subsp. *dhakensis*	*A. hydrophila* subsp. *dhakensis*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
1	BCCM/LMG 19707	*A. hydrophila* subsp. *ranae*	*A. hydrophila* subsp. *ranae*	Pathogenic for frogs	Martin-Carnahan and Joseph, 2005
2	ATCC 14715	*A. bestiarum*	*A. hydrophila*-like	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
3	ATCC 33658	*A. salmonicida*	*A. salmonicida* subsp. *Salmonicida*	Nonmotile fish pathogen	Martin-Carnahan and Joseph, 2005
3	ATCC 33659	*A. salmonicida*	*A. salmonicida* subsp. *Achromogenes*	Nonmotile fish pathogen	Martin-Carnahan and Joseph, 2005
3	ATCC 27013	*A. salmonicida*	*A. salmonicida* subsp. *Massoucida*	Nonmotile fish pathogen	Martin-Carnahan and Joseph, 2005
3	ATCC 49393	*A. salmonicida*	*A. salmonicida* subsp. *Smithia*	Nonmotile fish pathogen	Martin-Carnahan and Joseph, 2005
3	CDC 0434-84, Popoff C316	Unnamed	*A. hydrophila*-like	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
4	ATCC 15468	*A. caviae*	*A. caviae*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
5A	CDC 0862-83	*A. media*	*A. caviae-like*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
5B	CDC 0435-84	*A. media*	*A. media*	–	Martin-Carnahan and Joseph, 2005
6	ATCC 23309	*A. eucrenophila*	*A. eucrenophila*	–	Martin-Carnahan and Joseph, 2005
7	CIP 7433, NCMB 12065	*A. sobria*	*A. sobria*	–	Martin-Carnahan and Joseph, 2005
8X	CDC 0437-84	*A. veronii*	*A. sobria*	–	Martin-Carnahan and Joseph, 2005
8Y	ATCC 9071	*A. veronii*	*A. veronii* biovar *sobria*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
9	ATCC 49568	*A. jandaei*	*A. jandaei*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
10	ATCC 35624	*A. veronii* biovar *veronii*	*A. veronii* biovar *veronii*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
11	ATCC 35941	Unnamed	*Aeromonas* spp. (ornithine Positive)	–	Martin-Carnahan and Joseph, 2005
12	ATCC 43700	*A. schubertii*	*A. schubertii*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
13	ATCC 43946	*Aeromonas* Group 501	*A. schubertii-like*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
14	ATCC 49657	*A. trota*	*A. trota*	Isolated from clinical specimens	Martin-Carnahan and Joseph, 2005
15	ATCC 51208, CECT 4199	*A. allosaccharophila*	*A. allosaccharophila*	–	Martin-Carnahan and Joseph, 2005
16	ATCC 51020	*A. encheleia*	*A. encheleia*	Pathogenic for eels	Martin-Carnahan and Joseph, 2005
17	BCCM/LMG 1754	*A. popoffii*	*A. popoffii*	–	Martin-Carnahan and Joseph, 2005
UA	MTCC 3249, NCIM 5147	*A. culicicola*	*A. culicicola*	Isolated from mosquitoes	Martin-Carnahan and Joseph, 2005
and refractory inflammatory bowel disease (Doman et al., 1989). Gastrointestinal tract infection symptoms may mimic cholera (Mohan et al., 2017).

The second most common area of Aeromonas-related infection in our body is the skin and the soft tissues underlying the skin. Aeromonads may cause several types of skin and soft tissue infections, ranging from mild problems like pustular lesions to dangerous conditions that can cause morbidity in infected person. Some of these conditions include cellulitis, necrotizing fasciitis, myonecrosis, septic arthritis and septic shock (Lai et al., 2007). Some medical treatment procedures like medicinal leech therapy, appendectomies, colec-tomy, cholecystectomy and elective surgery enhance
the chances of *Aeromonas*-associated wound infections (Moawad and Zelderman, 2002; Tena et al., 2009). *A. hydrophila* and *A. caviae* were isolated from five burn patients admitted in Royal Brisbane hospital, where the patients had been immersed in water immediately after getting burnt, putatively contaminated with *Aeromonas* (Kienzle et al., 2000).

A. hydrophila senso stricto, A. caviae and *A. veronii* bv. Sobria have been implicated in blood borne infections. Less frequently, three other species namely, *A. jandaei*, *A. veronii* bv. *veronii* and *A. schubertii* are known to cause sepsis (Janda et al., 1994). *Aeromonas*-septicemia is more prevalent in immunocompromised conditions viz. myeloproliferative disorders, chronic liver disease, neoplasia, biliary disease, AML, myelodysplastic syndromes, non-Hodgkin's lymphoma and acute lymphocytic leukemia (Ko et al., 2000; Tsai et al., 2006). *Aeromonas* septicemia is also related to diseases like diabetes mellitus, renal and cardiac problems, thalassemia, multiple myeloma, aplastic anemia and Waldenstrom's macroglobulinemia (Janda and Abbott, 1996; Padmaja et al., 2013). Aeromonad-contaminated catheters and dialysis chambers may serve as points of entry into human blood. *Aeromonas* cause peritonitis and cholangitis as intra-abdominal disease. *Aeromonas*-associated cholangitis may result in pancreatic carcinoma, cholangiocarcinoma, cholelithiasis patients or patients with non-malignant biliary disease by the invasion of the bacteria from the gastrointestinal tract to the biliary tract via surgery or endoscopy (Chan et al., 2000). *A. hydrophila*, *A. veronii* bv. Sobria, *A. popoffi* and *A. caviae* infections have been implicated in UTI, aspiration pneumonia, keratitis, endophthalmitis, corneal ulceration and blood stream infections through biofilm formation (Ender et al., 1996; Hsueh et al., 1998; Miyake et al., 2000; Hua et al., 2004; Pinna et al., 2004; Hondur et al., 2008; Tang et al., 2014). First case of neonatal meningitis in a premature baby has been reported recently caused by *A. hydrophila* (Kali et al., 2016).

Aeromonas affects both cold and warm-blooded non-human animals. Mass deaths in fishes occur every year due to *Aeromonas*-associated diseases resulting in huge economic loss to the fish industry (Monette et al., 2006). Furunculosis in the salmonids, caused by *A. salmonicida sensu stricto* is characterized by symptoms like heamorrhages at fin bases, muscles and internal organs; loss of appetite, disordered melanin production, loss of energy and exophthalmia (Austin, 1997). Secondly, septicemia in carps, tilapia, catfishes, salmons, cods, bass and freshwater prawns is caused by *A. hydrophila* and *A. veronii* (Joseph and Carnahan, 1994). *A. hydrophila* has been detected in tissues like kidney, liver and blood of carps in farms (Mohanty et al., 2008). Incidences of *A. hydrophila* seem to be more prevalent than *A. caviae* and *A. sobria*, which indicates that *A. hydrophila*, is more virulent than the other (Daood, 2012). In a very recent study it was shown that *A. caviae* infection causes thrombocytopenia which contributes to elongation of clotting time which leads to hemorrhages in internal organs, muscles and bases of fins (Baldissera et al., 2018). Diseases in other ectothermic animals include ulcers (Lizards and snakes), “red leg” disease (frogs), septicemia (dogs), septic arthritis (calves), vesiculitis (bulls) (Gosling, 1996).

Pathogenicity

The identified virulence factors in *Aeromonas* are haemolysins, cytotoxins, enterotoxins, proteases [serine protease (AspA), elastase (AhpB)], lipases (Pla and Plc, Sat), DNases, adhesins [type IV pili, polar flagella (FlaA and FlaB)] (Agarwal et al., 1998; Cascon et al., 2000; Rabaan et al., 2001), capsule and T3SS (Grim et al., 2013). Genome sequencing and annotation can be used to detect these virulence factors in *Aeromonas* (Grimm et al., 2013). Enterotoxins, Act and Ast (Sha et al., 2002), elastase (Cascon et al., 2000), flagellin (Rabaan et al., 2001), and Stx1 and Stx2 (Alperi and Figueras, 2010) are directly involved in the pathogenesis. In a study *Aeromonas* isolates from well, tap and bottled water samples were found to have *aer* and *ast* genes, which poses a serious health concern for the human society (Didugu et al., 2015).

Aeromonas infections are mostly polymicrobial (Figueras and Beaz-Hidalgo, 2015), in which there is competition and cooperation between the bacterial cells (Armbruster et al., 2016). Virulence when checked in *C. elegans* was found to be higher in paired *Aeromonas* infections than in single strain (Mosser et al., 2015). The dual strain *A. hydrophila* infection showed synergistic effect by local tissue damage and antagonistic effect by elimination (Ponnusamy et al., 2016). The pathogenic potential of *A. veronii* isolates from clinical samples when tested were found to be like the drinking water and environmental isolates (Lye, 2011). The protein secretion systems of *Aeromonas* play important roles in pathogenesis caused by them. The type II secretion system is associated with the extracellular release of proteases, amylases, DNases and aerolysin (Pang et al., 2015). Type III secretion system, which is found in greater frequency in clinical isolates than environmental ones (Pang et al., 2015) functions by inserting effective toxins inside the host cells (Sierra et al., 2010). The type VI secretion system allows insertion of virulence factors into host cells through valve-glycine repeat protein and hemolysin-coregulated proteins. These proteins when secreted show antimicrobial pore-forming properties or remain as structural proteins (Bingle et al., 2008).
Gastroenteritis. Aeromonads enter the human gut via oral cavity, escape the effects of gastric acidity and produce bacteriocin-like compounds, which facilitate colonization of the intestine. They attach themselves to gastrointestinal epithelium, form biofilm, colonize and elaborate virulence factors to cause infection. Bacterial flagella and pili play important roles in gastric pathogenicity (Kirov et al., 2000).

Wound infections. Virulence caused by Aeromonas and the virulence factors possessed by them are similar to those of Gram-negative P. aeruginosa. The first step is settlement of the bacteria in wound site with the help of adhesion factors such as OmpA protein (Namba et al., 2008). The second step involves production of proteases (metalloproteases, serine proteases and aminopeptidases) and the breakdown of proteinaceous material of the host cells to gain energy, for multiplication of bacilli (Janda, 2001). The third step includes the entry of aeromonads into deeper tissues via chemotactic motility (Janda, 1985).

Septicemia. Most cases of primary Aeromonas septicaemia apparently arise through transfer of bacteria from the gastrointestinal tract into the blood circulatory system. They may also travel to the bloodstream from infected wounds, peritonitis, or biliary disease. Most of the Aeromonas septicaemias are caused by a small number of species. Specific strains having certain markers are only responsible for most of the blood-borne diseases. Aeromonads of serogroups O:11, O:16, O:18, and O:34 are responsible for most cases of septicemia, which shows that lipo-polysaccharide (LPS) antigens are important in causing systemic diseases. The presence of LPS or the S layers makes most Aeromonas isolates resistant to the lytic effects of the host's classical complement pathway (Janda et al., 1994).

Genes involved in virulence

Cytotoxic enterotoxin (act), haemolysin (hlyA)/ aerolysin (aerA). The act gene of A. hydrophila encodes cytotoxic enterotoxin, which has many functions viz., cytotoxic, haemolytic and enterotoxic activities (Chopra and Houston, 1999). Other aeromonads have haemolytic activities due to the presence of other genes, namely hlyA and aerA, and these strains may have one or more of these genes (Heuzenroeder et al., 1999). The mature aerolysin binds to host cells, aggregates there and forms holes in their cell membrane destroying the permeability barrier of the membrane, which ultimately leads to osmotic lysis of the cells (Howard and Buckley, 1982). The haemolysin induces accumulation of fluids in intestinal loops (Asao et al., 1986), release of certain inflammation promoting factors from the granulocytes (Scheffer et al., 1988) and apoptosis of the host cells (Nelson et al., 1999). A study showed that about 50% of the marine fish samples were positive for the haemolysin gene hyl in India (Reshma et al., 2015). In another study, both environmental and clinical isolates from Kolkota (erstwhile Calcutta) in India were found to be positive for act and the enteropathogenic potential of these isolates were found to be comparable to V. cholerae (Bhowmik et al., 2009).

Cytotoxic enterotoxins (ast, alt). The cytotoxic enterotoxins do not degenerate the small intestine. The clones of E. coli having cytotoxic enterotoxin genes have been showed to cause elongation of Chinese hamster ovary (CHO) cells, which also produces cyclic AMP, and these are enterotoxic responses. The Alt enterotoxin is heat labile, whereas Ast is heat stable at 56°C (Chopra and Houston, 1999). These genes have strong roles in causing diarrhoea (Sha et al., 2002).

Elastase (ahpB). The knocking out of the ahpB gene in A. hydrophila causes a high rise in the LD50 value of A. hydrophila in fishes, which indicates that elastase, a zinc metalloprotease, is an important virulence factor to cause disease in organisms (Cascon et al., 2000). The ahpB gene in A. hydrophila encodes protease with both elastolytic and caseinolytic activities (Cascon et al., 2000).

Flagella. Most of the Aeromonas species and all of the species responsible for human pathogenesis are motile having polar flagella. The polar flagellum has five flagellin subunits Fla A, Fla B, Fla G, Fla H and Fla J. The flaA and flaB genes have been cloned and sequenced from A. salmonicida (Umelo and Trust, 1997). All the five genes (flaA, flaB, flaG, flaH and flaJ) were identified in polar flagellin locus of A. caviae. Motility is known as an important virulence factor in the aeromonads. Mutation in either flaA or flaB did not affect development of flagellum but did reduce adherence and motility by approximately 50%. Mutations in flaH, flaI or both cause complete loss of motility, development of flagellum and ability to get attached to Hep-2 cells. Thus, the ability to get attached to Hep-2 cells depends on motility and presence of flagella of aeromonads (Rabaan et al., 2001).

Lipase. Lipases change the plasma membrane of the host, increasing the severity of disease (Nawaz et al., 2010). Lipase gene has been recovered from multidrug-resistant virulent aeromonads capable of forming biofilms isolated from cattle feaces (Igbinosa et al., 2015).

Shiga toxins (Stx1 and Stx2). Shiga toxins are protein toxins, which have two parts A and B. One part has enzymatic property and the other binds to the surface of the host cells. These toxins inhibit protein synthesis of the host cells (Sandvig, 2001) and also induce apoptosis (Jones et al., 2000).

Enolase. Enolase is a glycolytic enzyme expressed in cell surfaces, which binds to human plasminogen
leading to the production of plasmin which degrade plasma proteins. Enolase is also a heat-shock protein, which regulated transcription and is also necessary for cell viability (Sha et al., 2009).

Others. Other virulence factors include adhesins (Huang et al., 2015), nucleases (Li et al., 2015), pore forming toxins (Saurez et al., 2012) and catalysts.

Antimicrobial Susceptibility

All species of *Aeromonas* show similar antibiotic susceptibility profiles, which are also independent of the origin of the isolates (Kampfer et al., 1999). Most of the aeromonads have inducible chromosomal lactamases, which are their main resistance mechanisms. Among these, metallo-β-lactamases, which work against carbapenems, are of major concern (Janda, 2001; Zhiyong et al., 2002). The Clinical and Laboratory Standards Institute (CLSI) have published consensus guideline for testing *Aeromonas* (Jorgensen and Hindler, 2007). The susceptibility status of *Aeromonas* isolates for therapeutically active drugs also seem to be species independent with one exception of *Aeromonas trota*, which is susceptible to ampicillin (Carnahan et al., 1991). In a study antibiotic resistance status of *Aeromonas* isolates from diseased fishes were found to be similar to those isolated from the freshwater fish farm (Daood, 2012). In another study *Aeromonas* strains resistant to mercury and arsenite were found and these got transferred to *E. coli* when conjugation experiments were performed (Huddleston et al., 2006).

Resistance Mechanisms. Three major classes of β-lactamases are present in *Aeromonas* species, viz, C cephalosporinase, D penicillinase, and a class B metallo-β-lactamase (MBL) (Libisch et al., 2008). Fosse et al. (2003) classified strains expressing these β-lactamases into five groups as *A. hydrophila*: class B, C, and D β-lactamases, *A. caviae*: class C and D β-lactamases, *A. veronii*: class B and D lactamases, *A. schubertii*: class D lactamases and *A. trota*: class C β-lactamases. Many *A. veronii* bv. Sobria isolates also express a class C cephalosporinase. In few cases, infecting *Aeromonas* strains expressed a class A β-lactamase of the TEM family of ESBLs (Extended Spectrum β-Lactamases), a character similar to the *Enterobacteriaceae* (Marchandin et al., 2003). The β-lactamases are involved in detoxification of antibiotics, changes in the drug binding site of the target and inhibiting the entry of the drug into the bacterial cells by causing changes in structure and function of the cytoplasmic and cell membranes (Benveniste and Davies, 1973). Each strain can produce a maximum of three β-lactamases, which work in a coordinated manner (Walsh et al., 1997). Class C cephalosporinases of the AmpC family are resistant to cephamycins, extended spectrum cephalosporins and β-lactamase inhibitor compounds, like clavulanic acid, tazobactam, and sulbactam, which hydrolyse the CO-NH bond in the lactum ring of cephalosporin to inactivate it (Fosse et al., 2003).

“CphA”, is the most common MBL produced by *Aeromonas* species, which is largely found in *A. hydrophila* and *A. veronii* isolates (Walsh et al., 1997). Two other MBLs (VIM and IMP) are also found in *A. hydrophila* and *A. caviae* strains, which encode an integron and a plasmid, respectively (Libisch et al., 2008). These MBL-producing strains are resistant to ceftazidime, cefepime, imipenem, and piperacillin-tazobactam; both strains are found to be susceptible to aztreonam *in vitro*. MBLs work in a two-step process: firstly, the C-N bond of the beta-lactam antibiotic is cleaved and then the binding nitrogen is protonated (Crowder et al., 2006).

Recently, NDM-1 (*blaNDM-1*) gene has been detected in this group of bacteria (Walsh et al., 2011). The spread of mobile NDM-1, also known as carbapenemase, is of great concern, not only because these enzymes confer resistance to carbapenems and other β-lactam antibiotics, but also because such pathogens typically are resistant to multiple antibiotic classes, making treatment difficult. Plasmids having the sequence encoding this carbapenemase can have up to 14 other antibiotic-resistance determinants and can make other bacteria also resistant, resulting in multi-drug resistant or extreme drug-resistant phenotypes. Resistance of this scale could have serious public health implications because modern medicine is dependent on the ability to treat infection (Livermore, 2009).

Quinolone resistance in *Aeromonas* strains isolated from two European rivers is a matter of rising concern because quinolone was previously known to be effective in combating *Aeromonas* infections (Goni-Urriza et al., 2000). Several *A. caviae* strains showed resistance to nalidixic acid, ciprofloxacin, and norfloxacine (Sinha et al., 2004). Aeromonads pathogenic to fish are found to be resistant to amoxicillin, ampicillin-sulbactum and streptomycin (Abu-Elala et al., 2015). These antibiotic resistant bacteria come into the environment through improper septic systems, agriculture and wastewater treatment plants (Rosenblatt-Farrell, 2009). River sediments adsorb antibiotics (Zhou et al., 2011) some of which may remain there for months (Lai et al., 2011). These impart antibiotic resistance to bacterial populations at that location. Biofilm formation increases resistance to antimicrobial substances (Acker et al., 2014), disinfectants (Jahid and Ha, 2014). Biofilm formation in *Aeromonas* is affected differently in different strains under several food related stresses. However, low temperature and pH conditions were found to facilitate biofilm formation in a recent study, which is the first study of this kind regarding *Aeromonas* (Nagar et al., 2017).
Role of plamids, integron systems and transposons in disease transmission

In *Aeromonas*, gene transfer mainly occurs through conjugation and transformation, in which type IV pili play a vital role (Huddleston et al., 2013). In a study, seven ESBL and two AmpCBL-producing *Aeromonas* strains were able to transfer their antibiotic resistance genes to *E. coli* (Bhaskar et al., 2015). Bacterial conjugative plasmids, transposable elements and integron systems are the panoply on which bacteria depend for their resistance to anti-bacterial compounds. Plasmids in particular serve as a platform on which useful resistance genes are assembled and subsequently disseminated (Bennett, 2008). Plasmid profiling and molecular characterization of aeromonad plasmids were undertaken by several research groups to address to the problems of generation and transmission of antibiotic resistance genes (Toranzo et al., 1983; Rhodes et al., 2000). Studies in eastern India focussed on the characterization of *Aeromonas* spp. isolated from cyprinid and silurid fishes affected with ulcerative disease (EUS) and the involvement of a low molecular weight plasmid has been implicated in the etiology of this disease in fishes (Pradhan and Pal, 1990; Majumdar et al., 2006; Majumdar et al., 2007). Subsequent investigations have also proved that, the degree of antibiotic resistance in these bacterial isolates is gradually increasing through the years (Pradhan and Pal, 1993; Saha and Pal, 2002; Das et al., 2009; Pal and Bhattacharjee, 2011).

Our laboratory tested antibiotic resistance status in few environmental *Aeromonas* isolates and the results showed an increase in antibiotic resistance in case of some antibiotics, while decrease in resistance in others (Dey Bhowmick and Bhattacharjee, 2017). Since antibiotic resistance is increasing in *Aeromonas*, aquaculture should resort to alternate means such as probiotics, essential oils and phage therapy to combat this problem.

In contrast to bacterial conjugative plasmids, which tend to be larger, mobilizable resistance plasmids tend to be relatively smaller (~10 to 20 kb) and encode only a handful of genes including the resistance gene(s) (Bennet, 2008). Therefore, resistance to multi-drugs and presence of small-sized plasmids in environmental isolates of this medically important bacteria group may indicate potential threat to human and culture fisheries (Pal and Bhattacharjee, 2011). Through horizontal gene transfer R-plasmids are spread between different species of *Aeromonas*, which spread multi-drug resistance (Indra et al., 2015). Transfer of antibiotic resistance genes from *Aeromonas* to other environmental and clinical bacteria makes treatment of both fish and humans difficult. Presence of multidrug resistance genes on mobile genetic elements is therefore a serious threat to society (Piotrowska and Popowska, 2015).

Conclusion

Phenotypically and genotypically a heterogenous group, aeromonads have been detected, isolated and characterized from varied sources such as brackish, fresh, estuarine, marine waters, chlorinated and unchlorinated water supplies, heavily polluted waters, cold and warm-blooded animals and humans alike. In contrast to the traditional morphological and biochemical differentiation, identification of aeromonads from clinical and environmental sources are presently based on PCR-based genotyping approach such as ribotyping and analysis of gyrB.

In the post World War II period, extensive use (or abuse) of antibiotics have given rise to drug-resistant varieties of bacteria, owing to the success and speed of bacterial adaptation. Bacteria apply many mechanisms to show antibiotic resistance. These resistance genes get accumulated in plasmids and are thought to spread among other bacteria through them. In order to find solution to this problem many researchers have undertaken plasmid profiling and molecular characterization of aeromonad plasmids (Toranzo et al., 1983). Therefore, assessment of anti-microbial drug resistance and possible involvement of bacterial plasmids in this resistance, in the locally isolated clinically and agriculturally important aeromonads, may be rewarding. To understand fully the virulence potential of any pathogen, it is imperative to understand pathogenic factors and/or mechanisms that are involved in their virulence. This is crucial since the expression of different virulence genes could contribute to infection depending upon the anatomical niche where the pathogenic organisms colonize and the microenvironment that dictates the differential expression of genes.

So far, many virulence factors have been discovered and characterized from *Aeromonas* group, especially from *A. hydrophila*, the causative organism of septicaemia, wound infections and diarrhoea in humans and in animals. Novel putative virulence factors and/or virulence transfer systems, such as the NDM-1 gene, are being discovered on a regular basis in this diverse and ubiquitous group of bacteria. Although its emergence and distribution is controversial, the detection of NDM-1 gene in this clinically and agriculturally important bacteria group calls for a detailed surveillance of antibiotic resistance and also mode of transferability of NDM-1 gene in this bacteria group.

Plasmid-mediated horizontal gene transfer and acquisitions are thought to be one of the many adaptive ways by which bacteria acquire genes that may be useful periodically in combating environmental stresses, e.g., confronting potentially hazardous anti-bacterial agents, such as antibiotics (Bennett, 2008). Useful genes are thought to be selected and persist that ultimately confer...
better adaptability to microorganisms. Plasmid profiling in pathogenic isolates of *A. hydrophila* from fishes with ulcers, had been done to investigate plasmid-mediated virulence potential of the bacterium. Plasmid profiling, plasmid-mediated antibiotic resistance and pathogenesis in aeromonads have been investigated by several groups but further works are necessary to investigate the mode of transmission of virulence and drug-resistance genes in this bacterial group. This is imperative in heavily populated tropical countries like India, especially where sanitary requirements are not up to the standard.

Moreover, knowledge on how antibiotic resistance develops and is spread by mobile genetic elements is necessary for designing and developing prevention strategies intended to minimize the threat of bacterial infections. Considering the great adaptive ability of these bacteria vis-a-vis the environmental stresses and increasing use of anti-bacterial agents in combating *Aeromonas*-associated pathogenesis, newer virulence genes may be acquired by these organisms. Therefore, a search and mapping for putative virulence genes of *Aeromonas* should be undertaken.

Acknowledgements

The authors are grateful to Department of Zoology, University of North Bengal for providing all the research facilities and the University Grants Commission for providing the funds to carry out the study presented here. We are also thankful to Shubhashis Paul for helping in collecting environmental samples. The work was partially funded by the UGC-BSR fellowship scheme, University Grants Commission, New Delhi, India [Award No.F.25/1/2013-14(UGC)/7-13/2007(UGC)].

Literature

Abeyta C.Jr., C.A. Kaysner, M.M. Wekell, J.J. Sullivan and G.N. Stelma. 1986. Recovery of *Aeromonas hydrophila* from oysters implicated in an outbreak of food borne illness. *J. Food Prot.* 49: 643–646.

Abu-Elala N., M. Abdelsalam, Sh. Marouf and A. Setta. 2015. Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile *Aeromonas* species isolates from Nile tilapia and domestic fish. *Lett. Appl. Microbiol.* 61: 429–436.

Acker H.V., P.V. Djick and T. Coenye. 2014. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. *Trends. Microbiol.* 22: 326–333.

Agarwal R.K., K.N. Kapoor and A.J. Kumar. 1998. Virulence factors of aeromonads—an emerging food borne pathogen problem. *A. J. Commun. Dis.* 30: 71–78.

Alperi A. and M.J. Figueras. 2010. Human isolates of *Aeromonas* possess shiga toxin genes (stx1 and stx2) highly similar to the most virulent gene variants of *Escherichia coli*. *Clin. Microbiol. Infect.* 16: 1563–1567.

Alperi A., A.J. Martinez-Murcia, A. Monera, M.J. Saavedra and M.J. Figueras. 2010b. *Aeromonas fluvialis* sp. nov., isolated from a Spanish river. *Int. J. Syst. Evol. Microbiol.* 60: 72–77.

Alperi A., A.J. Martinez-Murcia, W.C. Ko, A. Monera, M.J. Saavedra and M.J. Figueras. 2010a. *Aeromonas taiwanensis* sp. nov. and *Aeromonas samarelli* sp. nov., clinical species from Taiwan. *Int. J. Syst. Evol. Microbiol.* 60: 2048–2055.

Altwegg M., G. Martinetti Lucchini, J. Luthy-Hottenstein and M. Rohrbach. 1990. *Aeromonas*-associated gastroenteritis after consumption of contaminated shrimp. *Eur. J. Clin. Microbiol. Infect. Dis.* 10: 44–45.

Anguita J., L.B.R. Aparicio and G. Naharro. 1993. Purification, gene cloning, amino acid sequence analysis and expression of an extracellular lipase from an *Aeromonas hydrophila* human isolate. *Appl. Environ. Microbiol.* 59: 2411–2417.

Aravena-Roman M., R. Hidalgo, T.J.J. Ingasis, T.V. Riley, A.J. Martinez-Murcia, B.J. Chang and M.J. Figueras. 2013. *Aeromonas salmonicida* sp. nov., isolated from irrigation water. *Int. J. Syst. Evol. Microbiol.* 63: 2270–2276.

Armbuster C.A., D.J. Wolter, M. Mishra, H.S. Hayden, M.C. Radey, G. Merrihew, M.J. MacCoss, J. Burns, D.J. Wozniak, M.R. Parsek and others. 2016. *Staphylococcus aureus* Protein A mediates interspecies interactions at the cell surface of *Pseudomonas aeruginosa*. mBio. 7: 00538–16.

Asao T., S. Kozaki, K. Kato, Y. Kinoshita, K. Otsu, T. Uemura, and G. Sakaguchi. 1986. Purification and characterization of an *Aeromonas hydrophila* hemolysin. *J. Clin. Microbiol.* 24: 228–232.

Austin B. 1997. Progress in understanding the fish pathogen *Aeromonas salmonicida*. *Mar. Biotechnol.* 15: 131–134.

Baldissera M.D., C.F. Souza, C.M. Verdi, D.S. Vizzotto, R.C.V. Santos and B. Baldisserotto. 2018. *Aeromonas caviae* alters the activities of ecto-enzymes that hydrolyze adenine nucleotides in fish thrombocytes. *Microb. Pathog.* 115: 64–67.

Bayerdorffer E., G. Schwarzkopf-Steinhauser and R. Ottenjann. 1986. New unusual forms of colitis: report of four cases with known and unknown etiology. *Hepatogastroenterology* 33: 187–190.

Beaz-Hidalgo R., A. Alperi, M.J. Figueras and J.L. Romalde. 2009. *Aeromonas piscicola* sp. nov., isolated from diseased fish. *Syst. Appl. Microbiol.* 32: 471–479.

Bennett P.M. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. *Br. J. Pharmacol.* 153: S347–S357.

Benveniste R. and J. Davies. 1973. Mechanisms of antibiotic resistance in bacteria. *Annu. Rev. Biochem.* 42: 471–506.

Bhaskar M., K.P. Dinoop and J. Mandal. 2015. Characterization of ceftriaxone-resistant *Aeromonas* spp. isolates from stool samples of both children and adults in Southern India. *J. Health Popul. Nutr.* 33: 1–5.

Dey Bhowmick U. and S. Bhattachrjee. 2017. Status of antibiotic resistance in the Aeromonads of North Bengal with a special reference to change in resistance pattern through altitudinal gradient. *NBU J. Anim. Sci.* 11: 51–59.

Bhowmik P., P.K. Bag, T.K. Hajra, R. De, P. Sarkar and T. Ramamurthy. 2009. Pathogenic potential of *Aeromonas hydrophila* isolated from surface waters in Kolkata, India. *J. Med. Microbiol.* 58: 1549–1558.

Bingle L.E.H., C.M. Bailey and M.J. Pullen. 2008. Type VI secretion: a beginner’s guide. *Curr. Opin. Microbiol.* 11: 3–8.

Block K., J.M. Braver and F.A. Farrar. 1994. *Aeromonas* infection and intramural hemorrhage as a cause of small bowel obstruction. *Am. J. Gastroenterol.* 89: 1902–1903.

Carnahan A.M., T. Chakraborty, G.R. Fanning, D. Verma, A. Ali, J.M. Janda and S.W. Joseph. 1991. *Aeromonas trota* sp. nov., an ampicillin-susceptible species isolated from clinical specimens. *J. Clin. Microbiol.* 29: 1206–1210.

Casco A., J. Yugueros, Temprano, A. Temprano, M. Sanchez, C. Hernanz, J.M. Luengo and G. Naharro. 2000. A major secreted...
elastase is essential for pathogenicity of Aeromonas hydrophila. Infect. Immun. 68: 3233–3241.

Chakraborty T., B. Hulhe, H. Bergbaur and W. Goebel. 1986. Cloning, expression, and mapping of the Aeromonas hydrophila aerolysin gene determinant in Escherichia coli K-12. J. Bacteriol. 167: 368–374.

Chan F.K.L., J.YL Ching, T.K.W. Ling, S.C.S. Chung and J.I.Y. Sung. 2000. Aeromonas infection in acute suppurative cholangitis: review of 30 cases. J. Infect. 40: 69–73.

Chopra A.K. and C.W. Houston. 1999. Enterotoxins in Aeromonas-associated gastroenteritis. Microb. Infect. 1: 1129–1137.

Chopra A.K., C.W. Houston, J.W. Peterson and G.F. Jin. 1993. Cloning, expression, and sequence analysis of a cytolytic enterotoxin gene from Aeromonas hydrophila. Can. J. Microbiol. 39: 513–8.

Crowder M.W., J. Spencer and A.J. Vila. 2006. Metallo-lactamases: Novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39: 721–728.

Dasood N. 2012. Isolation and antibiotic susceptibility of Aeromonas spp. from freshwater fish farm and farmed carp (Dam of 16 Tshreen, Lattakia). Damascus Univ. J. Basic Sci. 28: 27–39.

Das A., D. Saha and J. Pal. 2009. Antimicrobial resistance and in vitro gene transfer in bacteria isolated from ulcers of EUS-affected fishes in India. Lett. Appl. Microbiol. 49: 497–502.

Demarta A., M. Kupfer, P. Riegel, C. Harf-Monteil, M. Tonolla, R. Peduzzi, A. Monera, M.J. Saavedra and A. Martinez-Murcia. 2008. Aeromonas tecta sp. nov., isolated from clinical and environmental sources. Syst. Appl. Microbiol. 3: 278–286.

Didugu H., M. Thirtham, K. Nelapati, K.K. Reddy, B.S. Kumbhar, D. Didugu and G. Pothanaboyina. 2015. A study on the prevalence of Aeromonas spp. from freshwater fish farm and farmed carp (Dam of 16 Tshreen, Lattakia). Damascus Univ. J. Basic Sci. 28: 27–39.

Edberg S.C., E.A. Browne and M.J. Allen. 2007. Issues for microbial regulation: Aeromonas as a model. Crit. Rev. Microbiol. 33: 89–100.

Ender P.T., M.J. Dolan, D. Dolan, J.C. Farmer and G.P. Melcher. 1996. Near-drowning-associated Aeromonas pneumonia. J. Emerg. Med. 14: 737–741.

Erova T.E., V.G. Korykh, A.A. Fadl, J. Sha, A.J. Horneman and A.K. Chopra. 2008. Cold Shock Exoribonuclease R (VacB) Is Involved in Aeromonas hydrophila Pathogenesis. J. Bacteriol. 190: 3467–3474.

Farfan M., N. Spataro, A. Sanglas, V. Albarral, J.G. Loren, E. Bosch and M.C. Fustea. 2013. Draft Genome Sequence of the Aeromonas diversa Type Strain. Genome Announc. 1: 1–2.

Figueras M.J. and R. Beaz-Hidalgo. 2015. Aeromonas infections in humans, pp. 65–68. In J. Graf (ed.), Aeromonas. Norfolk Caister Academic Press.

Figueras M.J., A. Alperi, R. Beaz-Hidalgo, E. Stackebrandt, E. Brambilla, A. Monera and A.J. Martinez-Murcia. 2011. Aeromonas rivalis sp. nov., isolated from the upstream region of a karst water rivulet. Int. J. Syst. Evol. Microbiol. 61: 242–248.

Figueras M.J., A. Saurez-Franquet, M.R. Chacon, L. Soler, M. Navarro, C. Alejandro, B. Ajaza, A.J. Martínez-Murcia and J. Guzman. 2003. First record of the rare species Aeromonas caviae from a drinking water supply. Appl. Environ. Microbiol. 71: 538–541.

Figueras M.J., F. Latif-Eugenin, F. Ballester, I. Pujol, D. Tena, K. Berg, M.J. Hossain, R. Beaz-Hidalgo and M.R. Liles. 2017. ‘Aeromonas intestinalis’ and ‘Aeromonas enterica’ isolated from human faeces, ‘Aeromonas croatensis’ from oyster and ‘Aeromonas aquatilis’ isolated from lake water represent novel species. New Microbes New Infect. 15: 74–76.

Fiorentini C., E. Barbieri, L. Falzano, W. Baffone, A. Pianetti, M. Katouli, I. Kuhn, R. Mollby, F. Bruscolinì, A. Casiere and others. 1998. Occurrence, diversity and pathogenicity of mesophilic Aeromonas in estuarine waters of the Italian coast of the Adriatic Sea. J. Appl. Microbiol. 85: 501–511.

Fosse T., C. Giraud-Morin, I. Madinier and R. Labia. 2003. Sequence analysis and biochemical characterization of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated Amp‘FOX‘ cluster. FEMS Microbiol. Lett. 222: 93–98.

Ghenghes K.S., S.F. Ahmed, R.A. El-Khalek, A. Ai-Gendy and J. Klena. 2008. Aeromonas Associated Infections in Developing Countries. J. Infect. Dev. Cities. 2: 81–98.

Ghenghes K.S., F. Bara, B. Bukris, A. El-Surmani and S.S. Abeer. 1999. Characterization of virulence factors of Aeromonas isolated from children with and without diarrhoea in Tripoli, Libya. J. Diarrhoeal Dis. Res. 17: 75–80.

Goni-Urizza M., L. Pineau, M. Capdepuy, C. Roques, P. Caumette and C. Quentin. 2000. Antimicrobial resistance of mesophilic Aeromonas spp. isolated from two European rivers. J. Antimicrob. Chemother. 46: 297–301.

Gosling P.J. 1996. Aeromonas species in disease of animals, p. 175–195. In B. Austin, M. Altwegg, P.J. Gosling, and S. Joseph (ed.), The genus Aeromonas. John Wiley & Sons Ltd., West Sussex, England.

Grim C.J., E.V. Kozlova, J. Sha, E.C. Fits, C.J.V. Lier, M.L. Kirtley, S.J. Joseph, T.D. Read, E.M. Burd, B.D. Tall and others. 2013. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes. mBio. 6: 00064–13.

Gurwitt M., C. Bourque, E. Cameron, G. Forrest and M. Green. 1977. Cholera-like diarrhea in Canada. Report of a case associated with enterotoxigenic Escherichia coli and a toxin producing Aeromonas hydrophila. Arch. Intern. Med. 137: 1461–1464.

Harf-Monteil C., A. Le Fleche, P. Riegel, G. Prevost, D. Bermond, P.A.D. Grimont and H. Monteil. 2004. Aeromonas simiae sp. nov., isolated from monkey faeces. Int. J. Syst. Evol. Microbiol. 54: 481–485.

Heuzenroeder M.W., C.Y.F. Wong and R.L.P. Flower. 1999. Distribution of two hemolytic toxin genes in clinical and environmental isolates of Aeromonas spp.: correlation with virulence in a suckling mouse model. FEMS Microbiol. Lett. 174: 131–136.

Holmberg S.D. and J.J. III. Farmer. 1984. Aeromonas hydrophila and Plesiomonas shigelloides as causes of intestinal infection. Rev. Infect. Dis. 6: 633–640.

Hondur A., K. Bilgihan, Clark, M.Y. Clark, O. Dogan, A. Erdinc and B. Hasaneisoglu. 2008. Microbiologic study of soft contact lenses after laser subepithelial keratectomy for myopia. Eye Contact Lens. 34: 24–27.

Howard S.P. and J.T. Buckley. 1982. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry 21: 1662–1667.

Houe P.R., I. Jeng, L.N. Lee, P.C. Yang, Y.C. Chen, S.W. Ho and K.T. Luh. 1998. Indwelling device-related and recurrent infections due to Aeromonas species. Clin. Infect. Dis. 26: 651–658.

Hua H.T., C. Bollet, S. Tercian, M. Drancourt and D. K.T. Luh. 1998. Characterization of plasmid-mediated AmpC ‘FOX’ cluster. FEMS Microbiol. Lett. 174: 131–136.

Huxley P.R., F. Hui, C. Zhang, Y. Zhang, Y. Yang, C.W. Ho and K.T. Luh. 1998. Indwelling device-related and recurrent infections due to Aeromonas species. Clin. Infect. Dis. 26: 651–658.

Huang L., Y. Qin, Q. Yan, G. Lin, L. Huang, B. Huang and W. Huang. 2015. MinD plays an important role in Aeromonas hydrophila adherence to Anguilla japonica mucus. Gene 565: 275–281.

Huddleston J.R., J.M. Brokaw, J.C. Zak and R.M. Jeter. 2013. Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species. Syst. Appl. Microbiol. 36: 224–234.

Huddleston J.R., J.C. Zak and R.M. Jeter. 2006. Antimicrobial susceptibilities of Aeromonas spp. isolated from environmental sources. Appl. Environ. Microbiol. 72: 7036–7042.
Aspects of Aeromonas-associated diseases in human

Igbinosa I.H., E.O. Igbinosa and A.I. Okoh. 2015. Detection of antibiotic resistance, virulence gene determinants and biofilm formation in Aeromonas species isolated from cattle. Environ. Sci. Pollut. Res. 22: 17596–17605.

Indra U., M. Sureshkumar, B.L. Kumar and G. Vivekanandhan. 2015. Virulence determinants, drug and metal resistance of clinical and environmental Aeromonas species. Int. J. Adv. Res. 3: 573–587.

Isonghood J.H. and M. Drake. 2002. Aeromonas species in foods. J. Food Prot. 65: 575–582.

Jahid I.K. and S.D. Ha. 2014. Inactivation Kinetics of Various Chemical Disinfectants on Aeromonas hydrophila Planktonic Cells and Biofilms. Foodborne Pathog. Dis. 0: 1–8.

Janda J.M. 1985. Biochemical and exoenzymatic properties of Aeromonas species. Diagn. Microbiol. Infect. Dis. 3: 223–232.

Janda J.M. 2001. Aeromonas and Plesiomonas, pp. 1237–1270. In M. Sussman (ed.), Molecular medical microbiology, vol. 2. Academic Press, London, United Kingdom. Chapter 59.

Janda J.M. and P.S. Duffey. 1988. Mesophilic aeromonads in human disease: current taxonomy, laboratory identification, and infectious disease spectrum. Rev. Infect. Dis. 10: 980–987.

Janda J.M. and S.L. Abbott. 1996. Human pathogens, pp. 151–173. In: Austin B. et al. (eds). The genus Aeromonas. Wiley, London.

Janda J.M. and S.L. Abbott. 1998. Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentation, and unanswered questions. Clin. Infect. Dis. 27: 332–344.

Janda J.M., L.S. Guthertz, R.P. Kokka and T. Shimada. 1994. Aeromonas species in septicemia: laboratory characteristics and clinical observations. Clin. Infect. Dis. 19:773–87.

Jangid K., R. Kong, M.S. Patole and Y.S. Shouche. 2007. lux/rl homologs are universally present in the genus Aeromonas. BMC. Microbiol. 7: 93.

Ji Y., J. Li, Z. Qin, A. Li, Z. Gu, X. Liu, L. Lin and Y. Zhou. 2015. Contribution of nacleae to the pathogenesis of Aeromonas hydrophila. Virulence 6: 515–522.

Jones N.L., A. Islur, R. Haq, M. Mascarenhas, M.A. Karmali, M.H. Perdue, B.W. Zanke and P.M. Sherman. 2000. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278: G811–G819.

Jorgensen J.H. and J.F. Hindler. 2002. New consensus guidelines for the Clinical and Laboratory Standards Institute for antimicrobial susceptibilities of infrequently isolated or fastidious bacteria. Clin. Infect. Dis. 4: 280–286.

Joseph S.W. and A. Carnahan. 1994. The isolation, identification, and systematics of the motile Aeromonas species. Annu. Rev. Fish Dis. 4: 315–343.

Kali A., R. Kalaivani, P.M.V. Charles and K.S. Seetha. 2016. Aeromonas hydrophila meningitis and fulminating sepsis in preterm newborn: A case report and review of literature. Indian J. Med. Microbiol. 34: 544–547.

Kamper P., C. Christmann, J. Swings and G. Huys. 1999. In vitro susceptibilities of Aeromonas genomic species to 69 antimicrobial agents. Syst. Appl. Microbiol. 22: 662–669.

Kelly K.A., J.M. Koehler and L.R. Ashdown. 1993. Spectrum of extraintestinal disease due to Aeromonas species in tropical Queensland, Australia. Clin. Infect. Dis. 16: 574–579.

Khan A.A., E. Kim and C.E. Cerniglia. 1998. Molecular cloning, nucleotide sequence, and expression in Escherichia coli of a haemolytic toxin (aerolysin) gene from Aeromonas trota. Appl. Environ. Microbiol. 64: 2473–2478.

Khardori N. and V. Fainstein. 1988. Aeromonas and Plesiomonas as etiological agents. Annu. Rev. Microbiol. 42: 395–419.

Kienzle N., M. Muller and S. Pegg. 2000. Aeromonas wound infections in burns. Burns. 26: 478–482.

Kirow S.M., T.C. Barnett, C.M. Pepe, M.S. Strom and M.J. Albert. 2000. Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect. Immun. 68: 4040–4048.

Ko W.C., H.C. Lee, Y.C. Chuang, C.C. Liu and J.J. Wu. 2000. Clinical features and therapeutic implications of 104 episodes of mono-microbial Aeromonas bacteremia. J. Infect. 40: 267–273.

Kumar A., V.N. Bachhil, K.N. Bhilegaonakar and R.K. Agarwal. 2000. Occurrence of enterotoxigenic Aeromonas species in foods. J. Common. Dis. 32: 169–74.

Lai C.C., L.W. Dingand P.B. Hsueh. 2007. Wound infection and septic shock due to Aeromonas trota in a patient with liver disease. Clin. Infect. Dis. 44: 1523–1524.

Lai H.T., T.S. Wang and C.C. Chou. 2011. Implication of light sources and microbial activities on degradation of sulphonamides in water and sediment from a marine shrimp pond. Biomed. Tech. 102: 5017–5023.

Leeu K.Y. and R.M.W. Stevenson. 1988. Characteristics and distribution of extracellular proteases from Aeromonas hydrophila. J. Gen. Microbiol. 134: 151–160.

Lisibsch B., C.G. Giske, B. Kovacs, T.G. Toth and M. Fuzi. 2008. Identification of the first VIM metallo-β-lactamase-producing multiresistant Aeromonas hydrophila strain. J. Clin. Microbiol. 46: 1878–1880.

Livermore D.M. 2009. Has the era of untreatable infections arrived? J. Antimicrob. Chemother. 64: 129–136.

Lye D.J. 2011. Gastrointestinal colonization rates for human clinical isolates of Aeromonas veronii using a mouse model. Curr. Microbiol. 63: 332–336.

Majumdar T., D. Ghosh, S. Datta, C. Sahoo, J. Pal and S. Mazumder. 2007. An attenuated plasmid-cured strain of Aeromonas hydrophila elicits protective immunity in Clarias batrachus L. Fish Shellfish Immunol. 22: 229–230.

Majumdar T., S. Ghosh, J. Pal and S. Majumder. 2006. Possible role of a plasmid in the pathogenesis of a fish disease caused by Aeromonas hydrophila. Aquaculture 256: 95–104.

Manna S.K., P. Maury, C. Dutta and G. Samanta. 2013. Occurrence and virulence characteristics of Aeromonas species in meat, milk and fish in india. J. Food. Saf. 33: 461–469.

Marcel K.A., A.A. Antoindrete and D. Mireille. 2002. Isolation and characterization of Aeromonas species from an eutrophic tropical estuary. Marine Pollut. Bull. 44: 1341–1444.

Marchandin H., S. Godreuil, H. Darbas, H.J. Pierre, E.J. Bilak, C. Chanal and R. Bonnet. 2003. Extended-spectrum β-lactamase TEM-24 in an Aeromonas clinical strain: acquisition from the prevalent Enterobacter aerogenes clone in France. Antimicrob. Agents Chemother. 47: 3994–3995.

Martín-Carnahan A. and S.W. Joseph. 2005. Genus I. Aeromonas Stanier 1943, 213AL, pp. 557–578. In D.J. Brenner, N.R. Krieg, J.T. Staley, and G.M. Garrity (eds). Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2, Part B. Springer, New York, NY.

Martínez-Murcia A.J., M.J. Saavedra, V.R. Mota, T. Maier, E. Stackerbrandt and S. Cousin. 2008 Aeromonas aquariorum sp. nov., isolated from aquaria of ornamental fish. Int. J. Syst. Evol. Microbiol. 58: 1169–1175.

Martinez-Murcia A., R. Beaz-Hidalgo, A. Navarro, M.J. Carvalho, M. Aravena-Roman, A. Correia, M.I. Figueiras and M.I. Saavedra. 2016. Aeromonas lusitana sp. nov., isolated from untreated water and vegetables. Curr. Microbiol. 72: 795–803.

Minana-Galbis D., M. Farfan, M.C. Fuste and J.G. Loren. 2004. Aeromonas mollisicurum sp. nov., isolated from bivalve mussels. Int. J. Syst. Evol. Microbiol. 54: 2073–2078.

Minana-Galbis D., M. Farfan, M.C. Fuste and J.G. Loren. 2007. Aeromonas bivalvium sp. nov., isolated from bivalve mussels. Int. J. Syst. Evol. Microbiol. 57: 582–587.
Miyake M., K. Iga, C. Izumi, A. Miyagawa, Y. Kobashi and T. Konishi. 2000. Rapidly progressive pneumonia due to *Aeromonas hydrophila* shortly after near-drowning. *Intern. Med.* 39: 1128–1130.

Moawad M.R. and M. Zelderman. 2002. *Aeromonas hydrophila* wound infection in elective surgery. *J. Wound Care.* 11: 210–211.

Mohan B., N. Sethuraman, R. Verma and N. Taneja. 2017. Speciation, clinical profile & antibiotic resistance in *Aeromonas* species isolated from cholera-like illnesses in a tertiary care hospital in north India. *Indian J. Med. Res.* 146: 53–58.

Mohanty B.R., J. Mishra, S. Das, J.K. Jena and P.K. Sahoo. 2008. An outbreak of Aeromoniasis in an organized composite carp culture farm in India: experimental pathogenicity and antibiotic study. *J. Aqua.* 16: 27–37.

Monette S., A.D. Dallaire, M. Minglehner, D. Gromon, C. Uhland, J.P. Richard, T.G. Paillard, L.M. Johannson, D.P. Chivers, H.W. Ferguson, F.A. Leighton and E. Simko. 2006. Massive mortality of common carp (*Cyprinus carpio*) in the St. Lawrence river in 2001: diagnostic investigation and experimental induction of lymphocytic encephalitis. *Vet. Pathol.* 43: 302–310.

Mossor T., E.T. Reboul, S.M. Colston, J. Graf, M.J. Figueras, E.J. Bilak and B. Lamy. 2015. Exposure to pairs of *Aeromonas* strains enhances virulence in the *Caenorhabditis elegans* infection model. *Front. Microbiol.* 6: 12218.

Moyer N.P. 1987. Clinical significance of *Aeromonas* species isolated from patients with diarrhea. *J. Clin. Microbiol.* 25: 2044–2048.

Nagar V., L.P. Godambe, J.R. Bandekar and R. Shashidhar. 2008. Biofilm formation by *Aeromonas* strains under food-related environmental stress conditions. *J. Food Process Preserv.* 41: 13182.

Namba A., N. Mano, H. Takano, T. Beppo, K. Ueda and H. Hirose. 2008. OmpA is an adhesion factor of *Aeromonas veronii*, an optimistic pathogen that habituates in carp intestinal tract. *J. Appl. Microbiol.* 105: 1441–1451.

Nawaz M., S.A. Khan, A.A. Khan, K. Sung, Q. Tran, K. Kerdahi and R. Steele. 2010. Detection and characterization of virulence genes and integrons in *Aeromonas veronii* isolated from catfish. *Food Microbiol.* 27: 327–331.

Nelson K.L., R.A. Brodsky and J.T. Buckley. 1999. Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas. *Cell Microbiol.* 1: 69–74.

Nieto T.P., Y. Santos, L.A. Rodriguez and A.E. Ellis. 1991. An extracellular acetylcholinesterase produced by *Aeromonas hydrophila* is a major lethal toxin for fish. *Microb. Pathog.* 1: 101–110.

Padmaja K., V. Lakshmi and K.V.D. Murthy. 2013. Sepsis due to *Aeromonas hydrophila*. *Int. J. Infect. Control.* 9: 1–4.

Pal A. and S. Bhattacharjee. 2011. Isolation and characterization of aeromonads from North Bengal, India. *NBU J. Anim. Sci.* 5: 47–56.

Pang M., J. Jiang, X. Xie, Y. Wu, Y. Dong, A.H.Y. Kwok, W. Zhang, H. Yao, C. Lu, F.C. Leung and others. 2015. Novel insights into the pathogenicity of epidemic *Aeromonas hydrophila* ST251 clones from patients with diarrhea. *J. Bacteriol.* 197: 3524–3534.

Paredes-Lopez A., C. Aspiroz, M.J. Figueras, A. Gonzalez-Praetorius and J. Claeys. 2011. Isolation and characterization of *Aeromonas veronii* sp. nov., from the midgut of *Culex quinquefasciatus*. *Int. J. Syst. Evol. Microbiol.* 15: 471–475.

Pradhan K. and J. Pal. 1990. Drug sensitivity testing of bacteria isolated from ulcerative diseases of air breathing fishes. *J. Parasitol.* *App. Anim. Biol.* 2: 15–18.

Pradhan K. and J. Pal. 1993. Drug sensitivity testing of bacteria isolated from ulcerative disease of air-breathing fishes. *J. Parasitol.* *App. Anim. Biol.* 2: 15–18.

Rabaan A.A., I. Gryllos, J.M. Tomas and J.G. Shaw. 2001. Motility and the polar flagellum are required for *Aeromonas caviae* adherence Hep-2 cells. *Infect. Immun.* 69: 4257–4267.

Reshma J.M., R. Amsaveni, M. Suresh Kumar, G. Vivekanandhan. 2015. Screening of haemolytic *Aeromonas sp.* isolated from marine fish samples. *Int. J. Adv. Res.* 3: 1004–1008.

Rhodes G., G. Huys, J. Swings, P. McGann, M. Hiney, P. Smith and R.W. Pickup. 2000. Distribution of Oxytetracycline Resistance Plasmids between *Aeromonads* in Hospital and Aquaculture Environments: Implication of Tn1721 in Dissemination of the Tetracycline Resistance Determinant Tet A. *Appl. Environ. Microbiol.* 66: 3883–3890.

Rosenblatt-Farrell N. 2009. The landscape of antibiotic resistance. *Environ. Health Perspec.* 117: 245–250.

Rouf M.A. and M.M. Rigney. 1993. *Bacterial Flora in Larvae of Aquatic Insects* from patients with diarrhea. *J. Clin. Microbiol.* 34: 311–316.

Saha P. and T. Chakrabarti. 2006. *Aeromonas sharmanii* sp. nov., isolated from a warm spring. *Int. J. Syst. Evol. Microbiol.* 56: 1905–1909.

Sandvig V. 2001. Shiga toxins. *Toxicon.* 39: 1629–1635.

Saurez G., B.K. Khajanchi, J.C. Sierra, T.E. Erova, J. Sha and A.K. Chopra. 2012. Actin cross linking domain of *Aeromonas hydrophila* repeat in toxin A (RtxA) induces host cell rounding and apoptosis. *Gene* 506: 369–376.

Scheffer J., W. Konig, V. Braun and W. Goebel. 1988. Comparison of four hemolysin producing organisms (*Escherichia coli*, *Serratia marcescens*, *Aeromonas hydrophila*, and *Listeria monocytogenes*) for release of inflammatory mediators from various cells. *J. Clin. Microbiol.* 26: 544–550.

Schubert R.H.W., M. Hegaz and W. Wahlig. 1990. *Aeromonas enteroxigenes* species nova. *Hyg. Med.* 15: 471–472.

Sha J., E.V. Kozlova and A.K. Chopra. 2002. Role of various enterotoxins in *Aeromonas hydrophila*–induced gastroenteritis: generation of enterotoxin gene–deficient mutants and evaluation of their enterotoxic activity. *Infect. Immun.* 70: 1924–1935.

Sharma K. and J. Pal. 2009. Surface-Exposed Enolase Contributes to the Pathogenesis of Clinical Isolate SSU of *Aeromonas hydrophila*. *J. Bacteriol.* 191: 3095–3107.

Sierra J.C., G. Suarez, J. Sha, W.B. Baze, S.M. Foltz and A.K. Chopra. 2010. Unraveling the mechanism of action of a new type III secretion system effector AexU from *Aeromonas hydrophila*. *Microb. Pathog.* 49: 122–134.

Sinha S., S. Chattopadhyay, S.K. Bhattacharya, G.B. Nair and T. Ramamurthy. 2004. An unusually high level of quinolone resistance associated with type II transposon-like mutations in quinolone resistance-determining regions of *Aeromonas caviae* isolated from diarrhealoid patients. *Res. Microbiol.* 155: 827–829.

Tang H.J., C.C. Lai, H.L. Lin and C.M. Chao. 2014. Clinical Manifestations of Bacteremia caused by *Aeromonas Species* in Southern Taiwan. *Plos One.* 9: 91642.

Tena D., C. Aspiroz, M.J. Figueras, A. Gonzalez-Praetorius, M.J. Aldea, A. Alperi and J. Bisquert. 2009. Surgical site infection
Aspects of Aeromonas-associated diseases in human due to Aeromonas species: report of nine cases and literature review. Scand. J. Infect. Dis. 41: 164–170.

Tewari R., M. Dudeja, S. Nandy and A.K. Das. 2014. Isolation of Aeromonas salmonicida from human blood sample: a case report. J. Clin. Diag. Res. 8: 139–140.

Toranzo A.E., J.L. Barja, R.R. Colwell and F.M. Hetrick. 1983. Characterization of Plasmids in Bacterial Fish Pathogens. Infect. Immun. 39: 184–192.

Tsai M.S., C.Y. Kuo, M.C. Wang, H.C. Wu, C.C. Chien and J.W. Liu. 2006. Clinical features and risk factors for mortality in Aeromonas bacteremic adults with hematologic malignancies. J. Microbiol. Immunol. Infect. 39: 150–154.

Umelo E. and T.J. Trust. 1997. Identification and molecular characterization of two tandemly located flagellin genes from Aeromonas salmonicida A449. J. Bacteriol. 179: 5292–5299.

Walsh T.R., J. Weeks, D.M. Livermore and M.A. Toleman. 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet. Infect. Dis. 11: 355–362.

Walsh T.R., R.A. Stunt, I.A. Nabi, A.P. MacGowan and P.M. Bennett. 1997. Distribution and expression of β-lactamase genes among Aeromonas spp. J. Antimicrob. Chemother. 40: 171–178.

Wang G., C.G. Clark, C. Liu, C. Pucknell, C.K. Munro, T.M.A.C. Kruk, R. Caldeira, D.L. Woodward and E.G. Rodgers. 2003. Detection and characterization of the Hemolysin Genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. J. Clin. Microbiol. 41: 1048–1054.

Yamamoto T., T. Ishii, M. Sanaka, M. Saitoh and Y. Kuyama. 2004. Ileal ulcers due to Aeromonas hydrophila infection. J. Clin. Gastroenterol. 38: 911.

Yu H.B., Y.L. Zhang, Y.L. Lau, F. Yao, S. Vilches, S. Merino, J.M. Tomas, S.P. Howard and K.Y. Leung. 2005. Identification and Characterization of Putative Virulence Genes and Gene Clusters in Aeromonas hydrophila PPD134/91. Appl. Environ. Microbiol. 71: 4469–4477.

Zhiyong Z., L. Xiaoju and G. Yanyu. 2002. Aeromonas hydrophila infection: clinical aspects and therapeutic options. Rev. Med. Microbiol. 13: 151–162.

Zhou L.J., G.G. Ying, J.L. Zhao, J.F. Yang, L. Wang, B. Yang and S. Liu. 2011. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 159: 1877–1885.

This article is published in Open Access model and licensed under a Creative Commons CC BY-NC-ND 4.0, licence available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
