Data Article

Genomics dataset of unidentified disclosed isolates

Bhagwan N. Rekadwad *

School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra 431606, India

ARTICLE INFO

Article history:
Received 22 May 2016
Received in revised form 4 June 2016
Accepted 8 June 2016
Available online 15 June 2016

Keywords:
BioLABs
Blunt ends
Genomics
NEB cutter
Restriction digestion
Short DNA sequences
Sticky ends

ABSTRACT

Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis.

© 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Life Sciences
More specific subject area	Microbiology, Genomics, Bioinformatics, Bacterial Systematics
Type of data	Table, Figures
	Through NCBI BioSample database

* Corresponding author.
E-mail address: rekadwad@gmail.com

http://dx.doi.org/10.1016/j.dib.2016.06.010
2352-3409/© 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired

Data format
Raw and Analyzed

Experimental factors
Dataset obtained through bioinformatics tool

Experimental features
Only disclosed genome sequences were used

Data source location
School of Life Sciences, S. R. T. M. University, Nanded, India

Data accessibility
Data available within article and via the NCBI repository http://www.ncbi.nlm.nih.gov/nuccore.

Value of the data

- Data provides information of the AT and GC percentage of unidentified isolates.
- This data would be valuable for qualitative and quantitative analysis newly isolated and unidentified strains.
- This data provides exact position of restriction sites to create blunt and sticky ends and gives an idea about cleavage affected by methylation.

1. Data

This paper contains data on data for QR codes, GC percentage and DNA sequence analysis of 17 unidentified strains. Genome sequences of unidentified bacterial strains which were disclosed from the patents US 6596510 and WO 9906567 were retrieved in FASTA format via NCBI nuccore database. These downloaded sequences were used to create quick response (QR) codes and digitized using ENDMEMO GC calculating and GC plotting tool. The AT and GC percentage, number of cleavage code (blunt end, 5' and 3' sticky ends) and number of enzyme code (cleavage affected methylation) were determined using BioLabs NEB cutter tool (NEW ENGLAND BioLabs. Inc. https://www.neb.com/).

2. Experimental design, materials and methods

A total of 17 genome sequences of disclosed unidentified bacteria (AR360580, AR360581, AR360582, AR360583, AR360584, AR360585, AR360586, AR360587, AR360588, AR360589, AR360590, AX000218, AX000220, AX000221, AX000222, AX000224 and AX000225) were saved in FASTA format via NCBI BioSample DNA database. DNABarID tool was used for creation of QR codes (Fig. 1). ENDMEMO GC calculating and GC plotting tool was used to determine percentage of nucleotides in the genome. Pattern of GC distribution in complete DNA sequence showed through graphical representations in Fig. 2. Upper and lower red line indicate maximum and minimum percentage of GC content distribution in complete DNA sequence, while middle blue line indicates average GC percentage [1–6]. NEB cutter tool was used analysis of DNA sequence of unidentified isolates. The number of cleavage to
Fig. 1. QR codes of unidentified sequences (AR360580-AR360590, AX000218, AX000220, AX000221, AX000222, AX000224 and AX000225).
Fig. 2. GC plot of unidentified sequences (AR360580-AR360590, AX000218, AX000220, AX000221, AX000222, AX000224 and AX000225).
possible in the form of blunt end, 5’ and 3’ sticky ends was determined. The number of enzyme codes was determined. It gives exact information about cleavage affected CpG methylation and other types of methylation possible caused by biomolecules. Additionally, BioLabs database determined the AT and GC percentage in the genome [7,8] (Fig. 3; Table 1).

Fig. 3. NEB restriction enzyme digestion of unidentified sequences of patents (Accession No.: AR360580-AR360590, AX000218, AX000220, AX000221, AX000222, AX000224 and AX000225).
Acknowledgments

BNR is thankful to Dr. Juan M. Gonzalez, Senior Scientist, Institute of Natural Resources and Agrobiology, Spanish National Research Council, CSIC, Sevilla (Spain) and Dr. Kamlesh Jangid, Scientist C, Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune (India) for their untiring support from last many years.
Fig. 3. (continued)
Table 1
Unidentified sequences: Genomic analysis and restriction digestion using NEB single cutter restriction enzymes.

S. N.	Accession number	Name of sequence	Maximum GC%	Average GC%	Average AT%	Number of cleavage code	Number of enzyme code
						Blunt end cut 5' extension 3' extension	
1	AR360580	Sequence 1 from patent US 6596510	42	37	63	10 10 9	13 4
2	AR360581	Sequence 3 from patent US 6596510	38.5	22	67	1 7 –	3 –
3	AR360582	Sequence 4 from patent US 6596510	65	51	49	2 12 2	20 7
4	AR360583	Sequence 5 from patent US 6596510	45	36	64	11 11 14	17 2
5	AR360584	Sequence 7 from patent US 6596510	73.37	47	53	3 5 4	6 –
6	AR360585	Sequence 8 from patent US 6596510	30	27	73	– 6 –	2 –
7	AR360586	Sequence 9 from patent US 6596510	55.6	51	49	4 20 1	12 5
8	AR360587	Sequence 10 from patent US 6596510	58.8	51	49	5 18 4	10 6
9	AR360588	Sequence 11 from patent US 6596510	54.5	41	59	11 15 10	17 2
10	AR360589	Sequence 12 from patent US 6596510	44.5	38	62	9 12 10	17 4
11	AR360590	Sequence 13 from patent US 6596510	54.5	41	59	9 19 11	18 1
12	AX000218	Sequence 1 from Patent WO 9906567	42	37	63	10 11 9	13 4
13	AX000220	Sequence 3 from patent WO 9906567	38.5	33	67	1 8 –	3 7
14	AX000221	Sequence 4 from patent WO 9906567	65	51	49	2 12 1	21 7
15	AX000222	Sequence 5 from patent WO 9906567	45	36	64	11 23 12	18 2
16	AX000224	Sequence 7 from patent WO 9906567	73.3	47	53	3 5 4	6 –
17	AX000225	Sequence 8 from patent WO 9906567	30	27	73	– 6 –	2 –
Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.06.010.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.06.010.

References

[1] B.N. Rekadwad, C.N. Khobragade, Data Brief 6 (2016) 53–67.
[2] B.N. Rekadwad, C.N. Khobragade, Data Brief 7 (2016) 1538–1540.
[3] B.N. Rekadwad, C.N. Khobragade, Data Brief 7 (2016) 1306–1313.
[4] B.N. Rekadwad, C.N. Khobragade, Data Brief 7 (2016) 1524–1530.
[5] B.N. Rekadwad, C.N. Khobragade, Data Brief 7 (2016) 1511–1514.
[6] B.N. Rekadwad, C.N. Khobragade, Data in Brief 8 (2016) 300–303.
[7] M.M.A.K. Shawan, M.M. Hossain, M.A. Hasan, M.M. Hasan, A. Parvin, S. Akter, K.R. Uddin, S. Banik, M. Morshed, M.N. Rahman, S.M. Badier Rahman, Nat. Sci. 13 (2015) 37–50.
[8] J. Domenech-Casal, Rev. Eureka sobre Enseñ. Divulg. Cienc. 13 (2016) 342–358.