Multistate Tuning of Third Harmonic Generation in Fano-Resonant Hybrid Dielectric Metasurfaces

Omar A. M. Abdelraouf, Aravind P. Anthur, Zhaogang Dong, Hailong Liu, Qian Wang, Leonid Krivitsky, Xiao Renshaw Wang,* Qi Jie Wang,* and Hong Liu*

Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus high optical nonlinearity by utilizing low loss dielectric rather than relatively high loss metallic resonators. A wider range of applications can be realized if more design dimensions can be provided from material and fabrication perspectives to allow dynamic control of light. Here, tunable third harmonic generation (THG) via hybrid metasurfaces with phase change material Ge2Sb2Te5 (GST) deposited on top of amorphous silicon metasurfaces is demonstrated. Fano resonance is excited to confine the incident light inside the hybrid metasurfaces, and an experimental quality factor (Q-factor = 125) is achieved at the fundamental pump wavelength around 1210 nm. Not only the switching between a turn-on state of Fano resonance in the amorphous state of GST and a turn-off state in its crystalline state are demonstrated, but also gradual multistate tuning of THG emission at its intermediate states. A high THG conversion efficiency of $\eta = 2.9 \times 10^{-6}\%$ is achieved, which is 32 times more than that of a GST-based Fabry–Perot cavity under a similar pump laser power. Experimental results show the potential of exploring GST-based hybrid dielectric metasurfaces for tunable nonlinear optical devices.

1. Introduction

Third harmonic generation (THG) is a common nonlinear optical phenomenon,\(^1\) which generates photons with triple frequencies of those of the incident photons. One advantage of THG over second harmonic generation is that it can be generated from nonlinear materials with arbitrary lattice structures. THG has been used in many applications, such as imaging of lipid bodies in tissues,\(^2\) generating free-electron laser in the near-infrared (NIR),\(^3\) probing quantum tunneling limit in self-assembled monolayer,\(^4\) spectroscopy,\(^5\) light modulation,\(^6\) nonlinear optical image encoding,\(^7\) and its tunability has been explored in light modulation of generated harmonics.\(^8\) Motivated by those applications, it is highly desirable to improve the conversion efficiency of THG and to modulate its emission amplitude in tunable nonlinear optical devices. Nonlinear crystals have been widely utilized for generating THG. However, they are expensive, bulky, and have stringent phase-matching conditions between the fundamental and the generated harmonic fields. On the other hand, metasurfaces, namely artificially engineered nanostructures, have been utilized to confine the incident light down to a subwavelength scale to enhance THG. In addition, metasurfaces do not require the stringent phase matching conditions for high-order harmonic generation (HHG). Plasmonic metasurfaces consisting of metallic nanostructures have been used for THG via a variety of structures such as gap plasmon,\(^9\) multi-quantum well,\(^10\) and toroidal dipole plasmonic meta-atom.\(^11\) Generally, the light confinement via plasmonic metasurfaces is constrained to only over the surface of metals. Moreover, the intrinsic Ohmic losses of metals reduce both conversion efficiency and the damage threshold of plasmonic metasurfaces.

In contrast, owing to their high permittivity and inherent low optical losses, dielectric metasurfaces have been proposed to overcome the issue of Ohmic losses of metallic metasurfaces.\(^12–14\) The modes of the incident light are confined in the whole volume of dielectric nanostructures, which greatly enhance the conversion efficiency of THG. In addition, dielectric metasurfaces have relatively higher damage thresholds, which outperform their plasmonic counterparts. Recently, dielectric metasurfaces have been extensively studied to enhance the efficiency of THG and other HHGs in nonlinear dielectric nano-resonators driven by high Q-factor Fano-resonance,\(^15–20\) anapole resonance,\(^21–24\) and bound states in the...
Recently, reconfigurable metasurfaces have been developed to realize active tuning of various functions upon different stimuli. For example, it can be achieved via tuning refractive index of liquid crystals by manipulating their molecules rotation, using optical pumping to tune free carriers generation in semiconductors, or applying an electrical bias to tune Fermi energy level in graphene.

Among the tunable materials utilized in the reconfigurable metasurfaces, optical phase change materials (PCMs) stand out by their giant optical property contrast upon a solid-state phase transition between amorphous and crystalline states. Such giant optical contrast comes from the different bonding mechanisms at these two states. At the amorphous state, PCMs undergo covalent bonding with substantial valence between neighboring atoms. In contrast, PCMs undergo a shift to resonant bonding at the crystalline state. Different bonding mechanisms in PCMs are very stable, enabling their applications in non-volatile rewritable memory. Another advantage of PCMs is the fast and reversible transition between those two states, upon external optical, electrical, or thermal stimulus. PCMs consist of different compounds, such as sulfide (S), selenide (Se), and telluride (Te). Different combinations of PCMs compounds provide the ability to tune the optical properties of PCMs from low loss material to high loss material or even metallic-like material at different wavelength ranges.

Integrating PCMs in hybrid dielectric metasurfaces offers non-volatile phase change between amorphous and crystalline states, ultrafast switching speed, broadband and large tuning of the refractive index and compatibility with the CMOS technology. A Fabry–Pérot cavity in reflection mode based on high refractive index Ge$_2$Sb$_2$Te$_2$ (GST) has been demonstrated to achieve two-state switching (ON/OFF) of THG. However, its THG conversion efficiency is only about $5.46 \times 10^{-9}\%$, which is largely attributed to the low Q-factor of the device and inherent high optical losses in the thick GST film.

In this work, we design a transmissive mode hybrid metasurfaces consisting of amorphous silicon and GST nanostructures, and experimentally realize gradual tuning of the amplitude of THG. The high nonlinearity in silicon nanostructures generates third harmonic emission, while multiple phase states of GST control the emitted THG intensity. Fano resonance subsequently enhances the light confinement inside the silicon nanostructures, which greatly improves THG conversion efficiency. We achieved a THG enhancement factor of ≈ 128 compared to an unpatterned GST-Si thin film and a corresponding conversion efficiency of up to $2.9 \times 10^{-6}\%$ at a pump power of 55 mW. The measured conversion efficiency is ≈ 32 times higher than that of the GST-based Fabry–Pérot cavity using a similar pump laser power density. The tunability of THG amplitude was realized via the gradual phase change among the amorphous, intermediate, and crystalline states of the GST nanostructures.

2. Results and Discussion

Figure 1 illustrates the design concept of tunable THG using hybrid silicon-GST metasurfaces, which consist of two...
split-ring resonators (SRR) connected to each other as shown in Figure 1a. The advantage of adopting SRR structures is to achieve a very high Q-factor Fano resonance comparable with other types of resonant structures demonstrated in the literature. Through the simulation, we have optimized the design parameters of SRR structures, such as period, height, side wall, and air gap width, which enables us to control the interference between the electric and magnetic modes formed inside SRR structures. In addition, we can sweep the structural design parameters systematically to obtain the optimized Q-factor at the desired wavelength. The width of the middle rod (w1) and the outer rod width (w2) are optimized to be 200 and 120 nm, respectively, to maximize the Q-factor of Fano resonance (see Figure S1, Supporting Information). The silicon SRR structure enhances the field confinement and hence the Q-factor of the Fano resonance, which is induced by breaking the symmetry of SRR of the hybrid metasurfaces. The incident light is perpendicular to the sample surface (x-y direction) and its polarization is along the y-axis to excite the Fano resonance. Other structural parameters of SRR on quartz are shown in Figure 1b. A 5-nm thick GST layer on top of the silicon SRR enables both tunable THG in transmission mode and tunable Fano resonance in the silicon SRR. Details about the GST thickness layer optimization are provided in Supporting Information. Nanofabrication process of the proposed hybrid metasurfaces started from electron beam lithography (EBL) followed by inductively coupled plasma-reactive ion etching (ICP-RIE) using hydrogen silsesquioxane (HSQ) as an etching mask. A scanning electron microscope (SEM) image of the fabricated hybrid metasurfaces is shown in Figure 1c and its inset shows the SEM image of the unit cell. For more details on fabrication steps see Experimental Section and Figure S4, Supporting Information.

The phase change of GST can be excited upon annealing of samples on a hotplate at a temperature above its phase-change temperature. Baking GST film at ~180 °C for 2 min will transform it into an intermediate state and full crystalline state, respectively. Intermediate states of GST film are formed due to the co-existence of the cubic phase and the hexagonal phase with different ratios, while a full crystalline state results from a pure hexagonal phase.[36] We quantitatively investigated the variation of optical properties of GST at the multiple phase states by measuring the refractive index (n) and extinction coefficient (k) of GST film using variable angle spectroscopic ellipsometry (JA Woollam V8000). The fitting was carried out by using the Tauc-Lorentz model and the mean square error (MSE) of less than 20 was achieved for all measurements. The measured refractive index and extinction coefficient are plotted in Figure 1d,e, respectively. It can be observed that the refractive index gradually increases with the annealing time. At the wavelength of ~1200 nm, the changes in refractive index (Δn) of ~0.68 and 0.79 were measured after annealing at a temperature of 180 °C for 2 and 4 min, respectively. Similarly, extinction coefficient gradually increases from an amorphous state (a-GST) to intermediate states (i-GST) and finally reaches the highest value at the full crystalline state (c-GST). The corresponding changes of extinction coefficient (Δk) were ~0.50 and 0.61, respectively. Multiple i-GSTs can be achieved via increasing the annealing time. Upon c-GST, a very large value of Δn of ~3.15 and extinction coefficient k of ~2.38 at wavelength 1200 nm were measured, which agreed well with the literature.[40] Moreover, our results provide rich data sources of the optical properties of GST, which offers more design freedom for multi-functional metasurfaces based on GST. To test the quality of c-GST film, we did Raman spectroscopy measurement on a sample with sputtered GST film (5 nm thickness) on quartz, (Figure S6, Supporting Information). The measured Raman spectra of a-GST and c-GST films agree with the literature.[43]

Figure 2 shows the simulated and measured results verifying the multistate tunability of Fano-resonance in the hybrid dielectric metasurfaces. Figure 2a shows a sharp peak of Fano resonance formed at the wavelength of 1292.6 nm in the simulated transmission spectrum of a-GST. Due to the low optical loss at a-GST, it leads to the strongest Fano-resonance and the highest Q-factor. As a result, a high transmission of ~72% at the Fano resonance wavelength is achieved, which denotes the “turn-on” state of the device. Fano resonance at a high Q-factor of ~615 corresponds to a full width at half maximum (FWHM) of around 2.1 nm. The dip depth of Fano resonance is around 38%, which was measured through the amplitude difference between the maximum and the minimum transmission at the Fano resonance wavelength. The calculated dephasing time (τd) is approximately 245 femtosecond (fs). More details about the dephasing time calculation can be found in the Supporting Information. For the intermediate state achieved after annealing the sample at 180 °C for 2 min, the dip depth reduces to 28%. The FWHM of Fano resonance increases to 2.4 nm, while the Fano resonance wavelength redshifts to 1292.9 nm, and the dephasing time reduces to ~160 fs. After 4 min of annealing, the dip depth is further reduced to 8%. The FWHM of Fano resonance increases to 5.6 nm while the resonance wavelength redshifts to 1294.6 nm with a longer decay in the dephasing time of 95 fs. At i-GST, the FWHM of Fano resonance increases with the annealing time, which shows the Fano-resonance becomes weaker due to the increase of the optical loss in GST film. The i-GST denotes the “dynamic tuning” state of the device since its optical properties gradually vary with the phase change upon annealing. The full crystalline state was achieved by annealing the sample at 300 °C for 5 min,[44] and there is no resonance observed for c-GST, besides vanishing of the dephasing time. The highest optical loss in c-GST state is detrimental to the excitation of Fano resonance so that the hybrid metasurfaces cannot function for the THG enhancement, which denotes the “turn-off” state of the device. All simulations were carried out using the measured refractive index of amorphous silicon and GST at different states. In addition, we calculated the modal volume (Vd) to assess the light-matter interaction within the SRR cavity. At the a-GST, the Vd is 0.0135 μm3 at Fano resonance dip wavelength (as shown in Figure S2, Supporting Information). The small modal volume and high Q-factor resonance indicate a strong light localization within the cavity.[45] For the i-GST state (after 2 min of annealing), the amplitude of Vd drops to 0.0125 μm3 and Q-factor reduces to ~538, which indicates a lower light coupling within the cavity. At the c-GST state, the Q-factor is vanished, and the incident light cannot couple to the SRR cavity. More details and discussion about modal volume calculations are provided in the Supporting Information.
Correspondingly, the measured transmission spectrum is shown in Figure 2b. The curve of a-GST exhibits Fano resonance wavelength at 1211.8 nm with FWHM of 9.7 nm, t_{d} of 160 fs, and a dip depth of 24%. The measured Q-factor was ≈ 125, which is smaller than the simulated value possibly due to the device fabrication mismatch. The degradation in the Fano resonance of the fabricated sample is largely due to the nanofabrication imperfection, in particular, a small variation of side wall width significantly blueshifts the Fano resonance wavelength. At i-GST, the dip depth of Fano resonance gradually reduced from 17% to 7% when the annealing time rose from 2 to 4 min; at the same time, we observed that the FWHM of the Fano resonance curve increased from ≈ 10.3 nm to 12.5 nm, while t_{d} decreased from 150 fs to 124 fs correspondingly. The Fano resonance completely vanished at c-GST state, which is identical to the theoretical prediction. The dip depth of the Fano resonance gradually reduced from a-GST to i-GST till it became zero at the c-GST with a measured transmission of $\approx 55\%$.

To investigate the origin of Fano-resonance, the multipolar decomposition method has been implemented individually using the finite difference time domain (FDTD) method for each GST state and the simulated results are shown in Figure 2c–e, respectively. In the case of a-GST as shown in Figure 2c, the total scattering cross section has strong electric quadrupole (EQ) resonance with FWHM of ≈ 2.4 nm, while electric dipole (ED) shows damped oscillation with a very small normalized magnitude less than 0.028. Therefore, the Fano resonance in the proposed hybrid metasurfaces arises from a destructive interference between in-plane damped ED which oscillates in y-direction (ED_y) and out-of-plane high Q-factor
EQ in z-direction (EQz). In the case of i-GST after 2 min of annealing, the normalized scattering cross section shows larger FWHM (3.17 nm) of EQz curve than that of a-GST. Meanwhile, the peak EQz scattering degrades as well by 33%. EDz maintains a small scattering magnitude of less than 0.015. That explains the origin of relatively weak Fano-resonance at i-GST. Upon full crystallization, it shows that total normalized scattering efficiency has been reduced significantly to ≈0.12 as compared with a-GST. No resonance is observed for all modes and that results in the high transmission at Fano resonance wavelength formed in a-GST, which agrees well with the measured transmission of crystalline GST, it shows that total normalized scattering efficiency has been reduced significantly to ≈0.40 as compared with c-GST. In the case of a-GST, the field distribution shows high field confinement in EQ mode with out-of-plane field oscillations. While another ED mode oscillates horizontally along the central air gap. For the i-GST (2 min), the corresponding normalized field distribution shows field vectors of EQ and ED similar to a-GST. However, the intensity of field confinement of i-GST is reduced to 67% of a-GST due to the relatively higher optical losses in i-GST film, which results in a weaker Fano resonance. In addition, the field distribution shows the vanishing of EQ at c-GST, indicating there is no out-of-plane field oscillation. Meanwhile, the maximum field intensity is decreased to 29% compared with a-GST. The field distribution and the multipolar scattering of c-GST agree in terms of vanishing resonant modes near Fano resonance wavelength at a-GST.

The vertical slice (y-z plane) in the case of a-GST, shows confinement of the electric field in the air gap. Rotation of the ED field vector between the top Si-GST interface and the bottom Si-quartz interface satisfies the continuity equation of lateral electric field intensity. The field distribution for the i-GST is similar to a-GST but its amplitude of peak field is reduced to 67%. For c-GST, the electric field vector along the central air gap reverses its direction due to the giant refractive index change of GST film. Moreover, the giant optical losses in c-GST state reduce the amplitude of peak localized electric field to 32% compared to a-GST.

To experimentally measure the near field enhancement achieved by Fano resonance, we used a home-built optical setup. The femtosecond laser beam was generated from an optical parametric oscillator (APE) with a pulse width of 200 fs and a tunable range of 1100–1300 nm in Figure 3a. The incident light was focused on the sample using plano-convex lens with a focal length of 25.4 mm. The diameter of focused laser beam spot was 15 μm. Transmitted THG was collected by an objective with 0.55 numerical aperture (NA) and filtered by a low pass UV filter before being coupled to a spectrometer (Ocean Optics, USB4000). Details of the optical setup can be referred to Experimental Section and Figure 3a.

Figure 3b shows the measured optical characterization of THG at a-GST. We observed a THG peak at the wavelength of ≈404 nm, corresponding to the fundamental incident wavelength of ≈1216 nm. It indicates that the enhancement of THG emission comes from the enhanced localized near field inside hybrid metasurfaces at the Fano resonance wavelength as shown in Figure 3a. Moreover, the emission peak wavelength is nearly one-third of the Fano resonance peak wavelength, indicating that emitted field is THG. We further examined the polarization dependence of THG emission by varying the pump laser polarization via a half-wave plate (HWP). Figure 3c plots the variation of the measured intensity of THG emission with the pumped laser polarization. The enhancement of THG emission vanishes under the perpendicular incident polarization (x-direction). It is consistent with our design depicted in Figure 1 that Fano resonance is only able to be excited by the y-polarized pumped laser. The far-field emission of THG was measured using 4f-lens setup to get a back focal plane (BFP) image using a CCD camera and the measured diffraction patterns are plotted in Figure 3d. The integration time used in the measured BFP image is calibrated to avoid color saturation. The detected intensity of the higher-order diffraction is lower than that of the zero-order diffraction, which indicates the feasibility of collecting most of THG emission from the proposed hybrid metasurfaces for practical applications using low NA lenses.

The measurement and characterization results of the tunability of THG are plotted in Figure 4. We measured the THG spectrum at each state of GST and fixed the output power of the laser to the maximum of ≈55 mW, which was equivalent to a peak power density of up to 1.6 GW cm−2 as shown in Figure 4a. At a-GST, the intensity of THG emission reached its maximum at the peak wavelength of ≈404 nm. After annealing for 2 min, the measured THG emission was degraded. That could be explained by the weaker Fano resonance after annealing as shown in Figure 2b. When the annealing time increased to 4 min, it was observed that emitted THG was further decreased due to the smaller light confinement of the very weak Fano resonance. For c-GST, no THG emission was detected which indicates that thin GST film has undergone a complete phase change and there was no observation of Fano resonance. The modulation depth (MD) of the designed hybrid metasurface can be calculated through:

\[
MD = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}}} \tag{1}
\]

where \(I_{\text{max}}\) and \(I_{\text{min}}\) are the maximum and minimum THG intensity, respectively. By excluding the background noise of the THG signal, we achieved MD of ≈65% for i-GST (2 min), ≈78% for i-GST (4 min), and ≈100% for c-GST states. The measured MD results show the potential for efficient modulation of THG intensity. We performed the nonlinear optical simulations to estimate the relative change in THG intensity as shown in Figure S7, Supporting Information. The calculated MD is 66% for i-GST (2 min) and 98% for c-GST states, respectively. More details about the nonlinear optical calculations can be found in the Supporting Information.

We also measured the THG power dependence on the pump power at each state of GST. Figure 4b shows the variation of the measured THG power with pump powers. It can be observed that the highest THG power of up to 1.6 nW at the pump power of 55 mW was achieved at the a-GST. That corresponds to a THG enhancement factor of ≈125 in respect of an unpatterned
GST-Si film. Our THG conversion efficiency was calculated based on the following equation:

\[\eta = \frac{P_{\text{THG}}}{P_{\text{pump}}} = 2.9 \times 10^{-6} \% \] (2)

The experimentally measured THG conversion efficiency is ≈32 times higher than the amplitude of THG emitted from the Fabry–Perot cavity incorporated with GST using the same pump laser power.⁴⁸ To fit the measured THG power, we used the power dependence formula \(P_{\text{THG}} = aP_{\text{pump}}^b \) with a line

Figure 3. Optical characterization of THG emission at a-GST state. a) Experimental optical setup used for transmission measurement of the proposed metasurfaces using ns-laser, THG power and spectrum using optical parametric oscillator laser, and BFP imaging of THG using 4f-telescope setup. b) The measured transmission spectrum of the hybrid metasurfaces and the corresponding THG emission. c) The normalized measured THG intensity versus the pump laser polarization. d) BFP imaging of the transmitted THG signal using an objective with high NA (NA = 0.95), showing a high concentration of the THG emission at the zero-order diffraction.

Figure 4. Tunable THG measurement and characterization. a) Measured THG spectrum at different GST states. b) The measured THG power in a log scale, slope of line fit set to 3 for a-GST, and line slope of 3.1 for i-GST (2 min) and (4 min) states.
slope near 3. The line slope of 3 fits THG power for a-GST state while the line slope of 3.1 fits i-GST with the annealing time of 2 and 4 min, respectively. All the measured power points show R-squared values higher than 0.995 after fitting, which indicates that the measured power at each GST state is dominantly generated by THG. In addition, the measured THG power gradually decreased with annealing time, which indicates that the increase of optical losses in GST film at different states results in the degradation in the Fano resonance and reduction of the collected THG power.

3. Conclusion

In conclusion, we have demonstrated multistate tuning in THG emission using hybrid metasurfaces based on silicon-GST metasurfaces. We employed silicon as a high dielectric constant and low loss material at the near-infrared regime to sustain Fano resonance to experimentally achieve a high Q-factor of up to 125 for THG emission enhancement. A thin layer of 5 nm thick PCMs of GST was deposited on top of Si metasurfaces to gradually tune the THG emission in transmission mode. THG conversion efficiency up to 2.9×10^{-6}% was achieved, which is ≈ 32 times higher than a recent work based on GST-based Fabry–Pérot cavity. Moreover, we have demonstrated multiple intermediate states of GST, which results in multilevel emission amplitude of THG. We believe that our tunable hybrid metasurfaces made of silicon-GST nanostructures pave the way for tunable nonlinear optics applications such as light modulation of HHGs in nonlinear materials, tunable lasing, and quantum entanglement.

4. Experimental Section

Transmission and Field Profile Simulations: Simulation of the proposed tunable silicon-GST hybrid dielectric metasurfaces was carried out using an FDTD program (Lumerical FDTD Solutions). A 3D simulation with periodic boundary condition in the lateral direction (x-direction) and perfectly matched layer in the z-direction were adopted. The incident polarization was parallel to the middle rod of the structure (y-direction). The maximum mesh size was 10 nm for all simulation domains except x-direction. The refractive index of quartz was imported from main text, respectively. The refractive index of quartz was imported from the EELS-7000. The surPass 3000 was used as an etching mask to pattern the silicon metasurfaces using EBL (Elionix ELS-7000). The surPass 3000 was used as an adhesion promoter followed by spin coating of HSQ (6%) at a speed of 2000 rpm for 60 s to get the thickness of around 300 nm. After that, the EBL mask was spin-coated at 1500 rpm for 30 s to avoid charging effect during EBL exposure, followed by nitrogen drying to remove excess EBL mask. EBL exposure was carried out under the conditions of the electron beam current of 50 pA, acceleration voltage of 100 kV, and dose charge 9600 cm$^{-2}$ to expose a field of $300 \times 300 \mu$m2 with 60000 dots. After exposure, the sample was rinsed with deionized (DI) water to remove EBL mask, then developed in salty solution NaOH/NaCl (1:4) for 60 s, followed by another 60 s rinse in DI water. After that sample was rinsed using IPA and then dried with nitrogen gas. Etching of silicon metasurfaces was implemented using ICP-RIE (Oxford OIPT Plasmalab system) with HSQ as an etching mask. Etching gas consisted of chlorine with a flow of 22 sccm, using RF power of 200 W and ICP power of 400 W at room temperature. All measurements were done with a top residual HSQ layer of thickness ≈ 40 nm to protect GST from oxidation during the annealing process.

THG Measurement: The optical setup used in this work is shown in Figure 3a. Optical parametric oscillator (OPO) laser pumped via a Ti-Sapphire laser of wavelength 830 nm, with a repetition rate of around 76 MHz and pulse width of around 200 fs. The wavelength of OPO laser was tunable from 1100 to 1300 nm. Switching between OPO laser and ns-laser done with flipping mirror (M1). Variable attenuator used to examine the power slope of THG signal by changing the pump laser power. A quarter-wave plate was used to convert the elliptically polarized light to the linearly polarized light with a phase shift γ from the horizontal plane. An HWP, attached to a motorized stage, was used to control the linearly polarized light to get the maximum power after passing through a linear polarizer, which was used for measuring the polarization dependence of THG. A dichroic mirror was used to cut off light with wavelength shorter than 700 nm. A lens (L1) of a focal length of 25.4 mm focused the laser beam on the sample. White light LED used to align laser spot on the fabricated pattern. The transmitted light was collected using an objective of 50x magnification and 0.55 NA (Mitutoyo Plan Apo). The collimated light was directed to a low pass filter (NE03A-A) with a cut-off wavelength above 400 nm. Flipping mirror (M2) switches between the BFP imaging of THG, THG spectrum, and metasurfaces transmission at NIR. A set of mirrors (L2 to L4) used for THG measurement was Ocean Optics (USB4000). For the diffraction measurement of THG, an objective of 50x magnification and 0.55 NA (Mitutoyo Plan Apo) was used to collect all diffracted THG signal.

Material Characterization: The measured refractive index of amorphous silicon was fitted using Tauc-Lorentz model. MSE for fitted data was lower than 10; the measured data was plotted in Figure S5, Supporting Information. To verify the phase change of a thin layer of GST (≈ 5 nm, after annealing at a temperature of 300 °C for 5 min),
measurement of Raman spectra of both a-GST and c-GST was carried out and the results are plotted in Figure S6a,b, Supporting Information, respectively. A broad Raman scattering peak for a-GST centered near 140 cm\(^{-1}\), while c-GST film shows a narrow peak centered near 117 cm\(^{-1}\), which was consistent with the reported measurement of GST spectrum in literature,\(^{[45]}\) which validates the phase change of the thin GST layer.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work is partially supported by Singapore Ministry of Education Academic Research Fund Tier 2 under grant no. MOE2018-T2-1-176, MOE-TZEPS0120-0006 and by A*STAR AME programmatic grant (grant no. A18A7b0035), IMRE project (SC25/18-8R1804-PR18), and AME IRG grant (Project No. A20E5c0094 and A20E5c0095), and A*STAR Quantum Technologies for Engineering (QTE) grant No. A1685b0005. The authors would like to thank DENG jie, YAP Sherry, HUANG AiHong, Febiana Tijpoharsono, and ANC Norman for their technical guide during optimization of nanofabrication processes. Also, Ramon Paniagua-Dominguez, and HO Jin Fa for their comments on multipolar decomposition results.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

O.A.M.A. proposed the idea and structure design, performed simulations, materials characterization, and nanofabrication. Optical characterization measurements were done by O.A.M.A. with help of A.P.A. who construct and align the THG setup. O.A.M.A. drafts the manuscript. All authors discussed and commented on the results and the manuscript. X.R.W., Q.J.W., and L.H. convinced the idea, supervised the project, and finalized the manuscript.

Data Availability Statement

The data that support the findings of this study are available in the Supporting Information of this article.

Keywords

Fano resonance, Ge\(_2\)Sb\(_2\)Te\(_5\), hybrid metasurfaces, multistate tuning, phase change, third harmonic generation

Received: May 16, 2021
Revised: July 15, 2021
Published online: September 17, 2021
[31] M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, G. Shvets, Nat. Commun. 2019, 10, 1345.
[32] G. Soavi, G. Wang, H. Rostami, D. G. Purdie, D. De Fazio, T. Ma, B. Luo, J. Wang, A. K. Ott, D. Yoon, S. A. Bourelle, J. E. Muench, I. Goykhman, S. Dal Conte, M. Celebano, A. Tomadino, M. Polini, G. Cerullo, A. C. Ferrari, Nat. Nanotechnol. 2018, 13, 583.
[33] N. Raeis-Hosseini, J. Rho, Materials 2017, 10, 1046.
[34] F. Ding, Y. Yang, S. I. Bozhevolnyi, Adv. Opt. Mater. 2019, 14, 1801709.
[35] S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, A. Adibi, Nano Lett. 2021, 21, 1238.
[36] F. Zhang, X. Xie, M. Pu, Y. Guo, X. Ma, X. Li, J. Luo, Q. He, H. Yu, X. Luo, Adv. Mater. 2020, 32, 1908194.
[37] J. Ruiz De Galarreta, I. Sinev, A. M. Arseny, P. Trofimov, K. Ladutenko, S. Garcia-Cuevas Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, C. D. Wright, Optica 2020, 7, 476.
[38] T. Cao, K. Liu, Y. Tang, J. Deng, K. Li, G. Li, Laser Photonics Rev. 2019, 13, 1900063.
[39] Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, G. P. Agrawal, Appl. Phys. Lett. 2007, 91, 10.
[40] P. Singh, P. Sharma, V. Sharma, A. Thakur, Semicond. Sci. Technol. 2017, 32, 045015.
[41] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar, Nat. Photonics 2017, 11, 543.
[42] J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, A. Majumdar, Opt. Mater. Express 2018, 8, 6.
[43] E. Cho, S. Yoon, H. R. Yoon, W. Jo, J. Korean Phys. Soc. 2006, 48, 1616.
[44] B. Gholi, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zholudev, Adv. Mater. 2013, 25, 3050.
[45] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, Nature 2004, 432, 200.
[46] Lumerical Inc., https://www.lumerical.com/products/ (accessed: June 2020).
[47] R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Lukyanchuk, A. I. Kuznetsov, Nat. Commun. 2016, 7, 10362.