Monochromatic Clique Decompositions of Graphs

Henry Liu,¹ Oleg Pikhurko,² and Teresa Sousa³

¹CENTRO DE MATEMÁTICA E APLICAÇÕES
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA
CAMPUS DE CAPARICA, 2829-516 CAPARICA, PORTUGAL
E-mail: h.liu@fct.unl.pt

²MATHEMATICS INSTITUTE AND DIMAP
UNIVERSITY OF WARWICK
COVENTRY CV4 7AL, UNITED KINGDOM
http://homepages.warwick.ac.uk/staff/O.Pikhurko

³DEPARTAMENTO DE MATEMÁTICA AND CENTRO DE MATEMÁTICA E APLICAÇÕES
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA
CAMPUS DE CAPARICA, 2829-516 CAPARICA, PORTUGAL
E-mail: tmjs@fct.unl.pt

Received January 23, 2014; Revised November 11, 2014

Published online 12 January 2015 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.21851

Abstract: Let G be a graph whose edges are colored with k colors, and $\mathcal{H} = (H_1, \ldots, H_k)$ be a k-tuple of graphs. A monochromatic \mathcal{H}-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a monochromatic copy of H_i in color i, for some $1 \leq i \leq k$. Let $\phi_k(n, \mathcal{H})$ be the smallest number ϕ, such that, for every order-n graph and every k-edge-coloring, there is a monochromatic \mathcal{H}-decomposition with at most ϕ elements. Extending the previous results of Liu and Sousa [Monochromatic K_r-decompositions of graphs, J Graph Theory 76 (2014), 89–100], we solve this problem when each graph in \mathcal{H} is a clique and $n \geq n_0(\mathcal{H})$ is sufficiently large. © 2015 The Authors Journal of Graph Theory Published by Wiley Periodicals, Inc. J. Graph Theory 80: 287–298, 2015

Keywords: monochromatic graph decomposition; Turán number; Ramsey number

Journal of Graph Theory
© 2015 The Authors Journal of Graph Theory Published by Wiley Periodicals, Inc.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
1. INTRODUCTION

All graphs in this article are finite, undirected, and simple. For standard graph-theoretic terminology the reader is referred to [3].

Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a subgraph isomorphic to H. Let $\phi(G, H)$ be the smallest possible number of parts in an H-decomposition of G. It is easy to see that, if H is nonempty, we have $\phi(G, H) = e(G) - \nu_H(G)(e(H) - 1)$, where $\nu_H(G)$ is the maximum number of pairwise edge-disjoint copies of H that can be packed into G. Dor and Tarsi [4] showed that if H has a component with at least three edges then it is NP-complete to determine if a graph G admits a partition into copies of H. Thus, it is NP-hard to compute the function $\phi(G, H)$ for such H. Nonetheless, many exact results were proved about the extremal function

$$\phi(n, H) = \max\{\phi(G, H) \mid \nu(G) = n\},$$

which is the smallest number such that any graph G of order n admits an H-decomposition with at most $\phi(n, H)$ elements.

This function was first studied, in 1966, by Erdős et al. [6], who proved that $\phi(n, K_3) = t_2(n)$, where K_3 denotes the complete graph (clique) of order 3, and $t_r(n)$ denotes the number of edges in the Turán graph $T_{r-1}(n)$, which is the unique $(r-1)$-partite graph on n vertices that has the maximum number of edges. A decade later, Bollobás [2] proved that $\phi(n, K_r) = t_{r-1}(n)$, for all $n \geq r \geq 3$.

Recently, Pikhurko and Sousa [13] studied $\phi(n, H)$ for arbitrary graphs H. Their result is the following.

Theorem 1.1 [13]. Let H be any fixed graph of chromatic number $r \geq 3$. Then,

$$\phi(n, H) = t_{r-1}(n) + o(n^2).$$

Let $\text{ex}(n, H)$ denote the maximum number of edges in a graph on n vertices not containing H as a subgraph. The result of Turán [20] states that $T_{r-1}(n)$ is the unique extremal graph for $\text{ex}(n, K_r)$. The function $\text{ex}(n, H)$ is usually called the Turán function for H. Pikhurko and Sousa [13] also made the following conjecture.

Conjecture 1.2 [13]. For any graph H of chromatic number $r \geq 3$, there exists $n_0 = n_0(H)$ such that $\phi(n, H) = \text{ex}(n, H)$ for all $n \geq n_0$.

A graph H is edge-critical if there exists an edge $e \in E(H)$ such that $\chi(H) > \chi(H - e)$, where $\chi(H)$ denotes the chromatic number of H. For $r \geq 4$, a clique-extension of order r is a connected graph that consists of a K_{r-1} plus another vertex, say v, adjacent to at most $r - 2$ vertices of K_{r-1}. Conjecture 1.2 has been verified by Sousa for some edge-critical graphs, namely, clique-extensions of order $r \geq 4$ ($n \geq r$) [18] and the cycles of length 5 ($n \geq 6$) and 7 ($n \geq 10$) [17, 19]. Later, Özkahya and Person [12] verified the conjecture for all edge-critical graphs with chromatic number $r \geq 3$. Their result is the following.

Theorem 1.3 [12]. For any edge-critical graph H with chromatic number $r \geq 3$, there exists $n_0 = n_0(H)$ such that $\phi(n, H) = \text{ex}(n, H)$, for all $n \geq n_0$. Moreover, the only graph attaining $\text{ex}(n, H)$ is the Turán graph $T_{r-1}(n)$.

Recently, as an extension of Özkahya and Person’s work (and as further evidence supporting Conjecture 1.2), Allen et al. [1] improved the error term obtained by Pikhurko
and Sousa in Theorem 1.1. In fact, they proved that the error term \(o(n^2) \) can be replaced by \(O(n^{2-a}) \) for some \(a > 0 \). Furthermore, they also showed that this error term has the correct order of magnitude. Their result is indeed an extension of Theorem 1.3 since the error term \(O(n^{2-a}) \) that they obtained vanishes for every edge-critical graph \(H \).

Motivated by the recent work about \(H \)-decompositions of graphs, a natural problem to consider is the Ramsey (or colored) version of this problem. More precisely, let \(G \) be a graph on \(n \) vertices whose edges are colored with \(k \) colors, for some \(k \geq 2 \) and let \(\mathcal{H} = (H_1, \ldots, H_k) \) be a \(k \)-tuple of fixed graphs, where repetition is allowed. A \textit{monochromatic} \(\mathcal{H} \)-decomposition of \(G \) is a partition of its edge set such that each part is either a single edge, or forms a monochromatic copy of \(H_i \) in color \(i \), for some \(1 \leq i \leq k \). Let \(\phi_k(G, \mathcal{H}) \) be the smallest number, such that, for any \(k \)-edge-coloring of \(G \), there exists a monochromatic \(\mathcal{H} \)-decomposition of \(G \) with at most \(\phi_k(G, \mathcal{H}) \) elements. Our goal is to study the function

\[
\phi_k(n, \mathcal{H}) = \max\{\phi_k(G, \mathcal{H}) \mid v(G) = n\},
\]

which is the smallest number \(\phi \) such that, any \(k \)-edge-colored graph of order \(n \) admits a monochromatic \(\mathcal{H} \)-decomposition with at most \(\phi \) elements. In the case when \(H_i \cong H \) for every \(1 \leq i \leq k \), we simply write \(\phi_k(G, H) = \phi_k(G, \mathcal{H}) \) and \(\phi_k(n, H) = \phi_k(n, \mathcal{H}) \).

The function \(\phi_k(n, K_r) \), for \(k \geq 2 \) and \(r \geq 3 \), has been studied by Liu and Sousa [11], who obtained results involving the Ramsey numbers and the Turán numbers. Recall that for \(k \geq 2 \) and integers \(r_1, \ldots, r_k \geq 3 \), the \textit{Ramsey number} for \(K_{r_1}, \ldots, K_{r_k} \), denoted by \(R(r_1, \ldots, r_k) \), is the smallest value of \(s \), such that, for every \(k \)-edge-coloring of \(K_s \), there exists a monochromatic \(K_{r_i} \) in color \(i \), for some \(1 \leq i \leq k \). For the case when \(r_1 = \cdots = r_k = r \), for some \(r \geq 3 \), we simply write \(R_k(r) = R(r_1, \ldots, r_k) \). Since \(R(r_1, \ldots, r_k) \) does not change under any permutation of \(r_1, \ldots, r_k \), without loss of generality, we assume throughout that \(3 \leq r_1 \leq \cdots \leq r_k \). The Ramsey numbers are notoriously difficult to calculate, even though, it is known that their values are finite [15]. To this date, the values of \(R(3, r_2) \) have been determined exactly only for \(3 \leq r_2 \leq 9 \), and these are shown in the following table [14].

\(r_2 \)	3	4	5	6	7	8	9
\(R(3, r_2) \)	6	9	14	18	23	28	36

The remaining Ramsey numbers that are known exactly are \(R(4, 4) = 18, R(4, 5) = 25, \) and \(R(3, 3, 3) = 17 \). The gap between the lower bound and the upper bound for other Ramsey numbers is generally quite large.

For the case \(R(3, 3) = 6 \), it is easy to see that the only 2-edge-coloring of \(K_5 \) not containing a monochromatic \(K_3 \) is the one where each color induces a cycle of length 5. From this 2-edge-coloring, observe that we may take a “blow-up” to obtain a 2-edge-coloring of the Turán graph \(T_5(n) \), and easily deduce that \(\phi_2(n, K_3) \geq t_5(n) \). See Figure 1.

This example was the motivation for Liu and Sousa [11] to study \(K_r \)-monochromatic decompositions of graphs, for \(r \geq 3 \) and \(k \geq 2 \). They have recently proved the following result.

\[Journal\ of\ Graph\ Theory\ DOI\ 10.1002/jgt \]
Theorem 1.4 [11].

(a) $\phi_k(n, K_3) = t_{R_3} - 1(n) + o(n^2)$;
(b) $\phi_k(n, K_3) = t_{R_3} - 1(n)$ for $k = 2, 3$ and n sufficiently large;
(c) $\phi_k(n, K_r) = t_{R_r} - 1(n)$, for $k \geq 2, r \geq 4$ and n sufficiently large.

Moreover, the only graph attaining $\phi_k(n, K_r)$ in cases (b) and (c) is the Turán graph $T_{R_r} - 1(n)$.

They also made the following conjecture.

Conjecture 1.5 [11]. Let $k \geq 4$. Then $\phi_k(n, K_3) = t_{R_3} - 1(n)$ for $n \geq R_3(n)$.

Here, we will study an extension of the monochromatic K_r-decomposition problem when the clique K_r is replaced by a fixed k-tuple of cliques $C = (K_{r_1}, \ldots, K_{r_k})$. Our main result, stated in Theorem 1.6, is clearly an extension of Theorem 1.4. Also, it verifies Conjecture 1.5 for sufficiently large n.

Theorem 1.6. Let $k \geq 2$, $3 \leq r_1 \leq \cdots \leq r_k$, and $R = R(r_1, \ldots, r_k)$. Let $C = (K_{r_1}, \ldots, K_{r_k})$. Then, there is an $n_0 = n_0(r_1, \ldots, r_k)$ such that, for all $n \geq n_0$, we have

$$\phi_k(n, C) = t_{R_r}(n).$$

Moreover, the only order-n graph attaining $\phi_k(n, C)$ is the Turán graph $T_{R_r} - 1(n)$ (with a k-edge-coloring that does not contain a color-i copy of K_r for any $1 \leq i \leq k$).

The upper bound of Theorem 1.6 is proved in Section 2. The lower bound follows easily by the definition of the Ramsey number. Indeed, take a k-edge-coloring f' of the complete graph K_{R_r} without a monochromatic K_r in color i, for all $1 \leq i \leq k$. Note that f' exists by definition of the Ramsey number $R = R(r_1, \ldots, r_k)$. Let u_1, \ldots, u_{R_r} be the vertices of the K_{R_r}. Now, consider the Turán graph $T_{R_r} - 1(n)$ with a k-edge-coloring f that is a “blow-up” of f'. That is, if $T_{R_r} - 1(n)$ has partition classes V_1, \ldots, V_{R_r}, then for $v \in V_j$ and $w \in V_{\ell}$ with $j \neq \ell$, we define $f(vw) = f'(u_ju_{\ell})$. Then, $T_{R_r} - 1(n)$ with this k-edge-coloring has no monochromatic K_r in color i, for every $1 \leq i \leq k$. Therefore, $\phi_k(n, C) \geq \phi_k(T_{R_r} - 1(n), C) = t_{R_r} - 1(n)$ and the lower bound in Theorem 1.6 follows.

In particular, when all the cliques in C are equal, Theorem 1.6 completes the results obtained previously by Liu and Sousa in Theorem 1.4. In fact, we get the following direct corollary from Theorem 1.6.

Journal of Graph Theory DOI 10.1002/jgt
Corollary 1.7. Let $k \geq 2$, $r \geq 3$ and n be sufficiently large. Then,

$$\phi_k(n, K_r) = t_{R_k(r)-1}(n).$$

Moreover, the only order-n graph attaining $\phi_k(n, K_r)$ is the Turán graph $T_{R_k(r)-1}(n)$ (with a k-edge-coloring that does not contain a monochromatic copy of K_r).

2. PROOF OF THEOREM 1.6

In this section, we will prove the upper bound in Theorem 1.6. Before presenting the proof we need to introduce the tools. Throughout this section, let $k \geq 2$, $3 \leq r_1 \leq \ldots \leq r_k$ be an increasing sequence of integers, $R = R(r_1, \ldots, r_k)$ be the Ramsey number for K_{r_1}, \ldots, K_{r_k}, and $C = (K_{r_1}, \ldots, K_{r_k})$ be a fixed k-tuple of cliques.

We first recall the following stability theorem of Erdős and Simonovits [5, 16].

Theorem 2.1 (Stability Theorem [5,16]). Let $r \geq 3$, and G be a graph on n vertices with $e(G) \geq t_{r-1}(n) + o(n^2)$ and not containing K_r as a subgraph. Then, there exists an $(r-1)$-partite graph G' on n vertices with partition classes V_1, \ldots, V_{r-1}, where $|V_i| = \frac{n}{r-1} + o(n)$ for $1 \leq i \leq r-1$, that can be obtained from G by adding and subtracting $o(n^2)$ edges.

Next, we recall the following result of Győri [7, 8] about the existence of edge-disjoint copies of K_r in graphs on n vertices with more than $t_{r-1}(n)$ edges.

Theorem 2.2 [7,8]. For every $r \geq 3$ there is C such that every graph G with $n \geq C$ vertices and $e(G) = t_{r-1}(n) + m$ edges, where $m \leq \binom{r}{2} / C$, contains at least $m - Cm^2 / n^2$ edge-disjoint copies of K_r.

Now, we will consider coverings and packings of cliques in graphs. Let $r \geq 3$ and G be a graph. Let \mathcal{K} be the set of all K_r-subgraphs of G. A K_r-cover is a set of edges of G meeting all elements in \mathcal{K}, that is, the removal of a K_r-cover results in a K_r-free graph. A K_r-packing in G is a set of pairwise edge-disjoint copies of K_r. The K_r-covering number of G, denoted by $\tau_r(G)$, is the minimum size of a K_r-cover of G, and the K_r-packing number of G, denoted by $\nu_r(G)$, is the maximum size of a K_r-packing of G. Next, a fractional K_r-cover of G is a function $f : E(G) \to \mathbb{R}_+$, such that $\sum_{e \in E(H)} f(e) \geq 1$ for every $H \in \mathcal{K}$, that is, for every copy of K_r in G the sum of the values of f on its edges is at least 1. A fractional K_r-packing of G is a function $p : \mathcal{K} \to \mathbb{R}_+$ such that $\sum_{H \in \mathcal{K}, e \in E(H)} p(H) \leq 1$ for every $e \in E(G)$, that is, the total weight of K_r’s that cover any edge is at most 1. Here, \mathbb{R}_+ denotes the set of nonnegative real numbers. The fractional K_r-covering number of G, denoted by $\tau_r^*(G)$, is the minimum of $\sum_{e \in E(G)} f(e)$ over all fractional K_r-covers f, and the fractional K_r-packing number of G, denoted by $\nu^*_r(G)$, is the maximum of $\sum_{H \in \mathcal{K}} p(H)$ over all fractional K_r-packings p.

One can easily observe that

$$\nu_r(G) \leq \tau_r(G) \leq \left(\frac{r}{2}\right) \nu_r(G).$$

For $r = 3$, we have $\tau_3(G) \leq 3\nu_3(G)$. A long-standing conjecture of Tuza [21] from 1981 states that this inequality can be improved as follows.
Conjecture 2.3 [21]. For every graph G, we have $\tau_3(G) \leq 2\nu_3(G)$.

Conjecture 2.3 remains open although many partial results have been proved. By using the earlier results of Krivelevich [10], and Haxell and Rödl [9], Yuster [22] proved the following theorem which will be crucial to the proof of Theorem 1.6. In the case $r = 3$, it is an asymptotic solution of Tuza’s conjecture.

Theorem 2.4 [22]. Let $r \geq 3$ and G be a graph on n vertices. Then

$$\tau_r(G) \leq \left\lfloor \frac{r^2}{4} \right\rfloor \nu_r(G) + o(n^2). \quad (1)$$

We now prove the following lemma that states that a graph G with n vertices and at least $t_{R-1}(n) + \Omega(n^2)$ edges falls quite short of being optimal.

Lemma 2.5. For every $k \geq 2$ and $c_0 > 0$ there are $c_1 > 0$ and n_0 such that for every graph G of order $n \geq n_0$ with at least $t_{R-1}(n) + c_0 n^2$ edges, we have $\phi_k(G, C) \leq t_{R-1}(n) - c_1 n^2$.

Proof. Suppose that the lemma is false, that is, there is $c_0 > 0$ such that for some increasing sequence of n there is a graph G on n vertices with $e(G) \geq t_{R-1}(n) + c_0 n^2$ and $\phi_k(G, C) \geq t_{R-1}(n) + o(n^2)$. Fix a k-edge-coloring of G and, for $1 \leq i \leq k$, let G_i be the subgraph of G on n vertices that contains all edges with color i.

Let $m = e(G) - t_{R-1}(n)$, and let $s \in \{0, \ldots, k\}$ be the maximum such that

$$r_1 = \ldots = r_s = 3.$$

Let us very briefly recall the argument from [11] that shows $\phi_k(G, C) \leq t_{R-1}(n) + o(n^2)$, adopted to our purposes. If we remove a K_{r_i}-cover from G_i for every $1 \leq i \leq k$, then we destroy all copies of K_R in G. By Turán’s theorem, at most $t_{R-1}(n)$ edges remain. Thus,

$$\sum_{i=1}^k \tau_{r_i}(G_i) \geq m. \quad (2)$$

By Theorem 2.4, if we decompose G into a maximum K_{r_i}-packing in each G_i and the remaining edges, we obtain that

$$\phi_k(G, C) \leq e(G) - \sum_{i=1}^k \left(\binom{r_i}{2} - 1 \right) \nu_{r_i}(G_i) \leq t_{R-1}(n) + m - \sum_{i=1}^k \left(\binom{r_i}{2} - 1 \right) \tau_{r_i}(G_i) + o(n^2) \quad (3)$$

$$\leq t_{R-1}(n) + m - \sum_{i=1}^k \tau_{r_i}(G_i) - \frac{1}{4} \sum_{i=s+1}^k \tau_{r_i}(G_i) + o(n^2) \leq t_{R-1}(n) + o(n^2).$$

The third inequality holds since $(\binom{r}{2} - 1)/[r^2/4] \geq 5/4$ for $r \geq 4$ and is equal to 1 for $r = 3$.

Journal of Graph Theory DOI 10.1002/jgt
Let us derive a contradiction from this by looking at the properties of our hypothetical counterexample G. First, all inequalities that we saw have to be equalities within an additive term $o(n^2)$. In particular, the slack in (2) is $o(n^2)$, that is,

$$\sum_{i=1}^{k} \tau_{r_i}(G_i) = m + o(n^2). \quad (4)$$

Also, $\sum_{i=s+1}^{k} \tau_{r_i}(G_i) = o(n^2)$. In particular, we have that $s \geq 1$. To simplify the later calculations, let us redefine G by removing a maximum K_{r_i}-packing from G_i for each $i \geq s + 1$. The new graph is still a counterexample to the lemma if we decrease c_0 slightly, since the number of edges removed is at most $\sum_{i=s+1}^{k} \binom{n}{2} \tau_{r_i}(G_i) = o(n^2)$.

Suppose that we remove, for each $i \leq s$, an arbitrary (not necessarily minimum) K_3-cover F_i from G_i such that

$$\sum_{i=1}^{s} |F_i| \leq m + o(n^2). \quad (5)$$

Let $G' \subseteq G$ be the obtained K_{r_i}-free graph. (Recall that we assumed that G_i is K_{r_i}-free for all $i \geq s + 1$.) Let $G_i' \subseteq G_i$ be the color classes of G'. We know by (5) that $e(G') \geq t_{r_i-1}(n) + o(n^2)$. Since G' is K_{r_i}-free, we conclude by the Stability Theorem (Theorem 2.1) that there is a partition $V(G) = V(G') = V_1 \cup \ldots \cup V_{R-1}$ such that

$$\forall i \in \{1, \ldots, R-1\}, \quad |V_i| = \frac{n}{R-1} + o(n) \quad \text{and} \quad |E(T) \setminus E(G')| = o(n^2), \quad (6)$$

where T is the complete $(R-1)$-partite graph with parts V_1, \ldots, V_{R-1}.

Next, we essentially expand the proof of (1) for $r = 3$ and transform it into an algorithm that produces K_3-coverings F_i of G_i, with $1 \leq i \leq s$, in such a way that (5) holds but (6) is impossible whatever V_1, \ldots, V_{R-1} we take, giving the desired contradiction.

Let H be an arbitrary graph of order n. By the LP duality, we have that

$$\tau^*_r(H) = v^*_r(H). \quad (7)$$

By the result of Haxell and Rödl [9] we have that

$$v^*_r(H) = v_r(H) + o(n^2). \quad (8)$$

Krivelevich [10] showed that

$$\tau_3(H) \leq 2\tau^*_3(H). \quad (9)$$

Thus, $\tau_3(H) \leq 2v_3(H) + o(n^2)$ giving (1) for $r = 3$.

The proof of Krivelevich [10] of (9) is based on the following result.

Lemma 2.6. Let H be an arbitrary graph and $f : E(H) \to \mathbb{R}_+$ be a minimum fractional K_3-cover. Then $\tau_3(H) \leq \frac{3}{2} \tau^*_3(H)$ or there is $xy \in E(H)$ with $f(xy) = 0$ that belongs to at least one triangle of H.

Proof. If there is an edge $xy \in E(H)$ that does not belong to a triangle, then necessarily $f(xy) = 0$ and xy does not belong to any optimal fractional or integer K_3-cover. We can remove xy from $E(H)$ without changing the validity of the lemma. Thus, we can assume that every edge of H belongs to a triangle.

Suppose that $f(xy) > 0$ for every edge xy of H, for otherwise we are done. Take a maximum fractional K_3-packing p. Recall that it is a function that assigns a weight

Journal of Graph Theory DOI 10.1002/jgt
Let \(p(xyz) \in \mathbb{R}_+ \) to each triangle \(xyz \) of \(H \) such that for every edge \(xy \) the sum of weights over all \(K_3 \)'s of \(H \) containing \(xy \) is at most 1, that is,

\[
\sum_{z \in \Gamma(x) \cap \Gamma(y)} p(xyz) \leq 1, \tag{10}
\]

where \(\Gamma(v) \) denotes the set of neighbors of the vertex \(v \) in \(H \).

This is the dual LP to the minimum fractional \(K_3 \)-cover problem. By the complementary slackness condition (since \(f \) and \(p \) are optimal solutions), we have equality in (10) for every \(xy \in E(H) \). This and the LP duality imply that

\[
\tau^*_3(H) = \nu^*_3(H) = \frac{1}{3} \sum_{\text{triangle } xyz} p(xyz) = \frac{1}{3} e(H).
\]

On the other hand \(\tau_3(H) \leq \frac{1}{2} e(H) \): take a bipartite subgraph of \(H \) with at least half of the edges; then the remaining edges form a \(K_3 \)-cover. Putting the last two inequalities together, we obtain the required result. \(\blacksquare \)

Let \(1 \leq i \leq s \). We now describe an algorithm for finding a \(K_3 \)-cover \(F_i \) in \(G_i \). Initially, let \(H = G_i \) and \(F_i = \emptyset \). Repeat the following.

Take a minimum fractional \(K_3 \)-cover \(f \) of \(H \). If the first alternative of Lemma 2.6 is true, pick a \(K_3 \)-cover of \(H \) of size at most \(\frac{1}{3} \tau^*_3(H) \), add it to \(F_i \) and stop. Otherwise, fix some edge \(xy \in E(H) \) returned by Lemma 2.6. Let \(F' \) consist of all pairs \(xz \) and \(yz \) over \(z \in \Gamma(x) \cap \Gamma(y) \). Add \(F' \) to \(F_i \) and remove \(F' \) from \(E(H) \). Repeat the whole step (with the new \(H \) and \(f \)).

Consider any moment during this algorithm, when we had \(f(xy) = 0 \) for some edge \(xy \) of \(H \). Since \(f \) is a fractional \(K_3 \)-cover, we have that \(f(xz) + f(yz) \geq 1 \) for every \(z \in \Gamma(x) \cap \Gamma(y) \). Thus, if \(H' \) is obtained from \(H \) by removing \(2\ell \) such pairs, where \(\ell = |\Gamma(x) \cap \Gamma(y)| \), then \(\tau^*_3(H') \leq \tau^*_3(H) - \ell \) because \(f \) when restricted to \(E(H') \) is still a fractional cover (although not necessarily an optimal one). Clearly, \(|F_i| \) increases by \(2\ell \) during this operation. Thus, indeed we obtain, at the end, a \(K_3 \)-cover \(F_i \) of \(G_i \) of size at most \(2\tau^*_3(G_i) \).

Also, by (7) and (8) we have that

\[
\sum_{i=1}^{s} |F_i| \leq 2 \sum_{i=1}^{s} \nu_3(G_i) + o(n^2).
\]

Now, since all slacks in (3) are \(o(n^2) \), we conclude that

\[
\sum_{i=1}^{s} \nu_3(G_i) \leq \frac{m}{2} + o(n^2)
\]

and (5) holds. In fact, (5) is equality by (4).

Recall that \(G'_i \) is obtained from \(G_i \) by removing all edges of \(F_i \) and \(G' \) is the edge-disjoint union of the graphs \(G'_i \). Suppose that there exist \(V_1, \ldots, V_{R-1} \) satisfying (6). Let \(M = E(T) \setminus E(G') \) consist of missing edges. Thus, \(|M| = o(n^2) \).

Let

\[
X = \{ x \in V(T) \mid \deg_M(x) \geq c_2 n \},
\]

Journal of Graph Theory DOI 10.1002/jgt
where we define $c_2 = (4(R - 1))^{-1}$. Clearly,

$$|X| \leq 2|M|/c_2n = o(n).$$

Observe that, for every $1 \leq i \leq s$, if the first alternative of Lemma 2.6 holds at some point, then the remaining graph H satisfies $\tau_3^s(H) = o(n^2)$. Indeed, otherwise by $\tau_3(G_i) \leq 2\tau_3^s(G_i) - \tau_3^s(H)/2 + o(n^2)$ we get a strictly smaller constant than 2 in (9) and thus a gap of $\Omega(n^2)$ in (3), a contradiction. Therefore, all but $o(n^2)$ edges in F_i come from some parent edge xy that had f-weight 0 at some point.

When our algorithm adds pairs xz and yz to F_i with the same parent xy, then it adds the same number of pairs incident to x as those incident to y. Let P consist of pairs xy that are disjoint from X and were a parent edge during the run of the algorithm. Since the total number of pairs in F_i incident to x is at most $n|X| = o(n^2)$, there are $|F_i| - o(n^2)$ pairs in F_i such that their parent is in P.

Let us show that y_0 and y_1 belong to different parts V_j for every pair $y_0y_1 \in E(P)$. Suppose on the contrary that, say, $y_0, y_1 \in V_j$. For each $2 \leq j \leq R - 1$ pick an arbitrary $y_j \in V_j \setminus (\Gamma_M(y_0) \cup \Gamma_M(y_1))$. Since $y_0, y_1 \notin X$, the possible number of choices for y_j is at least

$$\frac{n}{R - 1} - 2c_2n + o(n) = \frac{n}{R - 1} - 3c_2n.$$

Let

$$Y = \{y_0, \ldots, y_{R-1}\}.$$

By the above, we have at least $(\frac{n}{R - 1} - 3c_2n)^{R-2} = \Omega(n^{R-2})$ choices of Y. Note that by the definition, all edges between $\{y_0, y_1\}$ and the rest of Y are present in $E(G')$. Thus, the number of sets Y containing at least one edge of M different from y_0y_1 is at most

$$|M| \times n^{R-4} = o(n^{R-2}).$$

This is $o(1)$ times the number of choices of Y. Thus, for almost every $Y, H = G'[Y]$ is a clique (except perhaps the pair y_0y_1). In particular, there is at least one such choice of Y; fix it. Let $i \in \{1, \ldots, k\}$ be arbitrary. Adding back the pair y_0y_1 colored i to H (if it is not there already), we obtain a k-edge-coloring of the complete graph H of order R. By the definition of $R = R(r_1, \ldots, r_k)$, there must be a monochromatic triangle on abc of color $h \leq s$. (Recall that we assumed at the beginning that G_j is K_{ij}-free for each $j > s$.) But abc has to contain an edge from the K_3-cover F_i, say ab. This edge ab is not in G' (it was removed from G). If a, b lie in different parts V_j, then $ab \in M$, a contradiction to the choice of Y. The only possibility is that $ab = y_0y_1$. Then $h = i$. Since both y_0c and y_1c are in G'_i, they were never added to the K_3-cover F_i by our algorithm. Therefore, y_0y_1 was never a parent, which is the desired contradiction.

Thus, every $xy \in P$ connects two different parts V_j. For every such parent xy, the number of its children in M is at least half of all its children. Indeed, for every pair of children xz and yz, at least one connects two different parts; this child necessarily belongs to M. Thus,

$$|F_i \cap M| \geq \frac{1}{2} |F_i| + o(n^2).$$
(Recall that parent edges that intersect X produce at most $2n|X| = o(n^2)$ children.) Therefore,

$$|M| \geq \frac{1}{2} \sum_{i=1}^{s} |F_i| + o(n^2) \geq \frac{m}{2} + o(n^2) = \Omega(n^2),$$

contradicting (6). This contradiction proves Lemma 2.5. ■

We are now able to prove Theorem 1.6.

Proof of the upper bound in Theorem 1.6. Let C be the constant returned by Theorem 2.2 for $r = R$. Let $n_0 = n_0(r_1, \ldots, r_k)$ be sufficiently large to satisfy all the inequalities we will encounter. Let G be a k-edge-colored graph on $n \geq n_0$ vertices. We will show that $\phi_k(G, C) = t_{R-1}(n)$ with equality if and only if $G = T_{R-1}(n)$, and G does not contain a monochromatic copy of K_{r_i} in color i for every $1 \leq i \leq k$.

Let $e(G) = t_{R-1}(n) + m$, where m is an integer. If $m < 0$, we can decompose G into single edges and there is nothing to prove.

Suppose $m = 0$. If G contains a monochromatic copy of K_{r_i} in color i for some $1 \leq i \leq k$, then G admits a monochromatic C-decomposition with at most $t_{R-1}(n) - \binom{r_i}{2} + 1 < t_{R-1}(n)$ parts and we are done. Otherwise, the definition of R implies that G does not contain a copy of K_R. Therefore, $G = T_{R-1}(n)$ by Turán’s theorem and $\phi_k(G, C) = t_{R-1}(n)$ as required.

Now suppose $m > 0$. We can also assume that $m < \binom{r_i}{2}/C$ for otherwise we are done: $\phi_k(G, C) < t_{R-1}(n)$ by Lemma 2.5. Thus, by Theorem 2.2, the graph G contains at least $m - Cm^2/n^2 > \frac{m}{2}$ edge-disjoint copies of K_R. Since each K_R contains a monochromatic copy of K_{r_i} in the color-i graph G_i, for some $1 \leq i \leq k$, we conclude that $\sum_{i=1}^{k} v_{r_i}(G_i) > \frac{m}{2}$, so that $\sum_{i=1}^{k} \left(\binom{r_i}{2} - 1 \right) v_{r_i}(G_i) \geq \sum_{i=1}^{k} 2v_{r_i}(G_i) > m$. We have

$$\phi_k(G, C) = e(G) - \sum_{i=1}^{k} \binom{r_i}{2} v_{r_i}(G_i) + \sum_{i=1}^{k} v_{r_i}(G_i) < t_{R-1}(n),$$

giving the required. ■

Remark. By analyzing the above argument, one can also derive the following stability property for every fixed family C of cliques as $n \to \infty$: every graph G on n vertices with $\phi_k(G, C) = t_{R-1}(n) + o(n^2)$ is $o(n^2)$-close to the Turán graph $T_{R-1}(n)$ in the edit distance.

ACKNOWLEDGMENTS

Henry Liu and Teresa Sousa acknowledge the support from FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PTDC/MAT/113207/2009 and PEst-OE/MAT/UI0297/2014 (CMA). Oleg Pikhurko was supported by ERC grant 306493 and EPSRC grant EP/K012045/1.

The authors thank the anonymous referees for the careful reading of the manuscript.
REFERENCES

[1] P. Allen, J. Böttcher, and Y. Person. An improved error term for minimum H-decompositions of graphs, J Combin Theory Ser B 108 (2014), 92–101.

[2] B. Bollobás. On complete subgraphs of different orders, Math Proc Cambridge Philos Soc 79 (1976), 19–24.

[3] B. Bollobás. Modern Graph Theory, vol. 184 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.

[4] D. Dor and M. Tarsi. Graph decomposition is NP-complete: A complete proof of Holyer’s conjecture, SIAM J Comput 26 (1997), 1166–1187.

[5] P. Erdős. Some recent results on extremal problems in graph theory. (results), Theory Graphs, Int Symp Rome (1966), 117–123 (English), (1967), 124–130 (French).

[6] P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections, Canad J Math 18 (1966), 106–112.

[7] E. Győri. On the number of edge-disjoint triangles in graphs of given size, In: Combinatorics (Eger, 1987), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1988, pp. 267–276.

[8] E. Győri. On the number of edge disjoint cliques in graphs of given size, Combinatorica 11 (1991), 231–243.

[9] P. E. Haxell and V. Rödl. Integer and fractional packings in dense graphs, Combinatorica 21 (2001), 13–38.

[10] M. Krivelevich. On a conjecture of Tuza about packing and covering of triangles, Discrete Math 142 (1995), 281–286.

[11] H. Liu and T. Sousa. Monochromatic K_r-decompositions of graphs, J Graph Theory 76 (2014), 89–100.

[12] L. Özkahya and Y. Person. Minimum H-decompositions of graphs: Edge-critical case, J Combin Theory Ser B 102 (2012), 715–725.

[13] O. Pikhurko and T. Sousa. Minimum H-decompositions of graphs, J Combin Theory Ser B 97 (2007), 1041–1055.

[14] S. P. Radziszowski. Small Ramsey numbers, Electron J Combin DS01:Dynamic Survey, Version of 12 January, 2014.

[15] F. P. Ramsey. On a problem of formal logic, Proc London Math Soc 30 (1930), 264–286.

[16] M. Simonovits. A method for solving extremal problems in graph theory, stability problems, In: Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 279–319.

[17] T. Sousa. Decompositions of graphs into 5-cycles and other small graphs, Electron J Combin 12 (2005), Research Paper 49, 7 pp. (electronic).

[18] T. Sousa. Decompositions of graphs into a given clique-extension, Ars Combin 100 (2011), 465–472.

[19] T. Sousa. Decompositions of graphs into cycles of length seven and single edges, Ars Combin to appear.
[20] P. Turán. On an extremal problem in graph theory, Mat Fiz Lapok 48 (1941), 436–452.
[21] Zs. Tuza. In Finite and Infinite Sets, vol. 37 of Colloquia Mathematica Societatis János Bolyai, North-Holland Publishing Co., Amsterdam, 1984, p. 888.
[22] R. Yuster. Dense graphs with a large triangle cover have a large triangle packing, Combin Probab Comput 21 (2012), 952–962.