Incidence of internal parasites of the slaughtered local breeds of ducks and geese

B.Y. Al-Lahaibi, M.H. Hasan and A.F. Al-Taee

Department of Microbiology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq

Article information

Article history:
Received October 28, 2019
Accepted January 20, 2020
Available online September 11, 2020

Keywords:
Internal parasites
Ducks
Geese

Abstract

This study was carried out to determine the presence of gastrointestinal parasites of local ducks and geese in Nineveh province. Sixty-four ducks and seventy geese of different ages and sexes were purchased from local markets. Necropsy findings in ducks revealed a total infection rate of 68.8% was with protozoa, 50% was with nematodes, while 28.1% were with cestodes. On the other hand, in geese, the percentages with the mentioned parasites were 78.6% with protozoa, 54.2% with nematodes, 31.4% with cestodes. Four types of nematodes were identified in ducks; Ascaridia galli, Heterakis gallinarum, Heterakis isolonche, and Subulura brompti, the same were also found in geese except Heterakis isolonche. Cestodes identified in ducks and geese were Railletina tetragona, Railletina echinobothrda, Railletina cesticillus and Coantaenia infundibulum. The detected protozoa include Eimeria spp., Tyzeria spp., Wenyonella spp., Cryptosporidia spp., Giardia spp. Double infection with parasite was higher in ducks while the triple infection in geese was the higher.

Introduction

In Iraq, ducks and geese are often raised in cities as home-grown, also in villages and rural areas, as they constitute important proportions of per capita income and to benefit from their meat, eggs and feathers, the intensive breeding of ducks and geese is always associated with parasitic infections (1). Internal parasites, including worms and protozoa, are common in poultry because they are grown outside homes and so exposed to soil that is a source of infection. Worm infection is also associated with unthriftness and poor growth, low eggs production, low percentage of fertilization and mortalities especially in acute cases, the presence of intermediate host and victors in the vicinity of poultry breeding locations, such as beetles, ants, and houseflies are responsible for the transmission and persistence of parasitic infection (2,3). Several studies have been conducted in Iraq and Nineveh governorate on the presence and prevalence of internal parasites in ducks and geese (4-7).

For further studies this research was carried out on ducks and geese delivered from different regions of Nineveh province on the postmortem status to identify the different stages of gastrointestinal tract helminthes and protozoa.

Materials and methods

This study conducted from April 2017 to December 2018, included several regions in Nineveh province including city center, Kokgali, Hamdania, Bazwaya, Khazer, Salamia and Tizkharab bartela, Talkeef. One hundred forty-three, 64 ducks and 70 geese, with different ages (from 5 months to more than one year) and sexes from the owners, were purchased from local markets and from their owners. These birds were reared with healthy and sick chickens showing emaciation, weight loss and...
weakness. Necropsy was done according to (8) after slaughtering of the delivered ducks and geese to the laboratory of parasitology, Department of Microbiology, College of Veterinary Medicine, University of Mosul. All gastrointestinal tracts were partitioned to their segments of crop, proventriculus, gizzard small intestine and caecum. Mucosal scraping was done to each separated segment. Parasitic examination methods of direct, flotation and sedimentation techniques were carried out according to (9-11) to elucidate any parasites or their eggs and oocytes, under light microscopes. The gastrointestinal parasites prevalence rate and mean intensity were calculated according to (12).

Results

Among 64 ducks screened, 48 were found positive for gastrointestinal parasites and among 70 geese screened, 41 were found positive for parasites (Table 1).

Out of 48 infected ducks, 32(50%) were found positive for nematoda, 18(7.28%) were positive for cestoda and 44(68.8%) were infected with protozoa (Table 2).

While out of 41 infected geese, 38(54.2%) were found positive for nematoda, 22(31.4%) positive for cestoda and 55 (78.6%) were infected with protozoa (Table 3).

At necropsy, four species of Nematodes are found in ducks, and they were *Ascaridia galli*, *Heterakis gallinarum*, *Heterakis isolonche*, *Subulura brompti* with intensity of 1.3, 2.6, 2.5, and 1.4 respectively (Table 4) (Figures 1-4).

Table 1: Total Prevalence rate of internal parasites in duck and geese in Mosul city

Birds	No. of examination	No. of infected	%
Ducks	64	48	75
Geese	70	41	58.6

Table 2: Prevalence rate of internal parasites in ducks

Parasites	No. of infected	%
Nematodes	32	50%
Cestoda	18	28.1%
Protozoa	44	68.8%
Total	94	

Table 3: Prevalence rate of internal parasites in geese

Parasites	No. of infected	%
Nematodes	38	54.2%
Cestoda	22	31.4%
Protozoa	55	78.6%
Total	115	

Table 4: Intensity of adult helminthes nematodes in ducks

Site of recovery	Helminth	No. of infected birds	No. of parasites	Mean of intensity
Small intestine	*Ascaridia galli*	32	42	1.3
Caecum	*Heterakis gallinarum*	20	52	2.6
Caecum	*Heterakis isolonche*	4	10	2.5
Caecum	*Subulura brompti*	18	26	1.4

In comparison to the geese, which revealed three species of Nematodes *Ascaridia galli*, *Heterakis gallinarum*, *Subulura brompti* with intensity 1.2, 1.3, and 1.6 respectively. At scraping of the gastrointestinal tract five types of eggs were identified including *Ascaridia galli*, *Heterakis gallerinarum*, *Subulura brompti*, *Capillaria spp.*, and *Syngamus trachea* (Table 5) (Figure 5).

It is interesting to note that it was the first time in which *Heterakis isolonche* was recorded in the caecum of ducks in Mosul city. These worms were small white worms, with 3 prominent lips on the mouth and well developed esophageal bulb, they were differentiated from *Heterakis gallinarum* as the end of male worms had equal spicules (Figure 4) while the posterior end of the male of *Heterakis gallinarum* possesses prominent circular pre- cloacal sucker and has two unequal spicules (Figure 3).
Iraqi Journal of Veterinary Sciences, Vol. 35, No. 1, 2021 (39-44)

Figure 2: Anterior end of *Subulura brumpti* from the cecum of ducks, with a small swelling (A) followed by a constriction (B) and an esophageal bulb (C). x10.

In ducks the types of infection either with one or more parasites recorded in this study (Table 6) showed that the higher percentage was traced to the double type of infection 37.5%, then by the triple type of infection 33.3% followed by the single type of infection 25% while the lowest one was the quadruple type 4.1%.

Table 5: Intensity of adult helminth nematodes in geese

Site of recovery	Helminth	No. of infected birds	No. of parasites	Mean of intensity
Small intestine	*Ascaridia galli*	18	22	1.2
Caecum	*Heterakis gallinarum*	24	32	1.3
Caecum	*Subulura brompti*	11	18	1.6

Figure 3: Anterior end (A) and Posterior end (B) of *Heterakis gallinarum* of cecal scrapping of a duck showing male worm with two unequal spicules. x10.

Figure 4: Posterior end of *Heterakis isolonche* of cecal scrapping of a duck showing male worm with equal spicules. x10.

Figure 5: Different nematode eggs in gastrointestinal scraping, x10. (A) Egg of *Capillaria spp*, (B) Egg of *Syngamus trachea*, (C) Egg of *Heterakis gallinarum*, (D) Egg of *Subulura brumpti*, (E) Egg of *Ascaridia galli*.
In comparison with the previous study performed by (5) about the infection with the internal parasites of ducks and geese in Nineveh province, they recorded 11 species of nematodes in ducks, including Ascaridia galli and Heterakis spp. Sublura spp. while in geese, 7 species were recorded, including Ascaridia galli, Heterakis spp., and Sublura brompti., and four types of cestodes including Railletina spp. Nearly similar percentage were recorded by (17) and but lowered than that recorded by (18).

In southern Iraq, Al-Diwaniya province (19) found that the infection rate in ducks with nematodes was 82.71%, and 96.29% with cestodes, and within the same category (6), reported 47.5% of internal parasites. In Al-Najaf (20) found lesser nematodes infection in chickens with a rate of 47.8% including Ascaridia galli, Heterakis spp. and Capillaria spp.

In Bangladesh, 167 of the ducks examined, (81.1%) were infected by one/more species of gastro-intestinal helminthes, with a total of ten species of helmintas parasites were recovered from gastrointestinal tract, of which four species were trematodes (21), but (22) in Gilan province/ Iran, estimated a higher rate of infection reaching 50% including Railletina tetragona, Heterakis gallinarum, Capillaria spp.

In Bangladesh (23) estimated infection rate of 80% in ducks with intestinal nematodes, and an intensity of 24.4% and 15.33% in females and males respectively. In the same country (24) recorded a high percentage with helminthes reached 98.33%, of which 16 types trematodes, 8 cestodes and 5 nematodes.

In cases of massive infestation, one can observe growth retardation, diarrhea and/or anemia and immunosuppression (25). Ascaridia galli can cause enteritis, weight loss, anemia and even nervous signs. A heavy infestation may cause an intestinal obstruction (25). This finding could be attributed to the higher fecundity of female worm (26).

From above, it is clear that there is a huge difference in the percentages of intestinal parasitic infections and their types. These differences may be attributed to the rearing systems of ducks and geese in different geographical areas and the specificity of climatic changes in these locations regarding rainfall, drought, humidity and temperature. The type of management and breeding system play also a pivotal role in the transmission of infections between different types of birds when breeding them in a backyard mixing system, in addition to the adding extrinsic parasitic infections from the migratory birds. The role of age, gender, nutrition, health and immune status of the host cannot be overlooked (14,20,27,28).

Internal parasitic infections, including intestinal ones have a great negative impact on meat and egg production, health parameters and immune status of the infected birds, which increase or predispose them to other infections in spite of parasites themselves being an important etiological causes of different diseases (28-30).

In ducks (Table 7) shows that the triple infection was the highest one with a percentage of 41.4%, then the single type 24.3% while the double type of infection 22.2% and the lowest one was the quadruple 4.8%.

Table 7: Prevalence rate of internal parasite in geese according the type of infection

Type of infection	No. of infected	%
Single	10	24.3%
Double	12	22.2%
Triple	17	41.4%
Quadruple	2	4.8%
Total	41	58.6%

Discussion

Internal parasitic infection are of great importance in breeding birds, especially ducks and geese in terms of their nature, nutrition, presence close to ponds and stagnant water since they are rearing in a backyard system so they could be exposed to eggs, larvae, intermediate hosts and vectors of many parasites in feces contaminating soil and water in addition to their poking and dipping feeding their waste and bedding, which may end in mortalities (13,14), there for our necropsy findings done on 64 ducks and 70 geese for investigation of gastrointestinal parasitic infection, a total of 75% was recorded in ducks and 58.6%. In geese. Our current results were lower than those recorded in the same province of Nineveh for ducks and geese, which were 86.25% (5), but higher than that recorded in Al-Diwniya province of 47.5% (6). In world, the rate was 51.7% in Kenya (15) and 15.15% in China (16).

The results of this study showed that the mean of intensity of nematodes in ducks was 50% including four species namely Ascaridia galli 1.3%; Heterakis gallinarum 2.6%; Heterakis isolonche 2.5%, Sublura brompti 1.4%, and 54.2% in geese with the same species as above except Heterakis isolonche, with mean of intensity of 1.2, 1.3, and 1.6 respectively.

The percentage of cestode infections were 28.1% and 31.4% in ducks and geese, respectively, and only two types of cestodes were identified here namely with the mean of intensity Railletina spp. and Coantaenia spp.
In our study, the total infection rate of protozoa in ducks was 68.8%, including *Eimeria* spp., *Tyzeria* spp., *Wenyonella* spp., *Cryptosporidia* spp., *Giardia* spp. The same species were found also in geese but at a higher percentage of 78.6%.

Comparing with other studies in ducks performed in Nineveh province (31) recorded a percentage of 77% for *Cryptosporidia* spp. and 63.75% with *Eimeria* spp. and *Tyzeria* spp. (4), while in geese the percentage rate with *Cryptosporidia* spp. was 46.67%. (32), and 34.4% and 36.45% in ducks and geese with *Giardia* spp. respectively.

In the south of Iraq, Al- Diwaniya province (6), recorded infection rate of 11.25% with *Eimeria* spp. in ducks. Outside Iraq (in New Mexico), Giardia spp. infection in geese were recorded at a rate of 28% (14). While inside Iraq they were 29.4% (6) and 28% in New Mexico (14).

The possible causes for infection with different types of protozoa in ducks and geese could be attributed to various etiological cause of these are poor management, lack of hygienic conditions, overcrowding, presence of insects and rodents, outside contamination from migrating or wild birds, mixed breeding with other types of birds, the location of birds rearing, their environmental conditions like the effect of season an diurnal temperatures in addition to the etiological cause of these infections.

In the south of Iraq, Al- Diwaniya province (6), recorded infection rate of 11.25% with *Eimeria* spp. in ducks. Outside Iraq (in New Mexico), Giardia spp. infection in geese were recorded at a rate of 28% (14). While inside Iraq they were 29.4% (6) and 28% in New Mexico (14).

Other parasites like cestodes have also been reported to cause massive infection in ducks represented by diarrhea, anemia and growth retardation; the upper part of the digestive system was also claimed to be affected by nematodes especially by capillariosis causing dysphagia and local inflammation in the crop and esophagus; ascaridiosis and heterakidosis are also another threats to ducks and geese causing enteritis, weight loss, anemia, nervous signs and intestinal obstruction (25).

Tyzeria perniciosa is pathogenic because of its deeper penetration into the intestinal mucosa of common ducklings less than four weeks old. Hemorrhagic enteritis can occur with a mortality rate of 70%. *Eimeria multardi* is also pathogenic for ducks.

Conclusion

This study was conducted to determine internal parasites in local ducks and geese in Nineveh province. A total Prevalence rate of internal parasites (nematodes, cestodes, protozoa) was 75 % and 58.6% in ducks and geese respectively.

Acknowledgments

The authors are very grateful to the University of Mosul, College of Veterinary Medicine for their provided facilities, which helped to improve the quality of this work.

Conflict of Interest

The authors declare that no conflict of interests of the manuscript.

References

1. Amundson CL, Traub NJ, Smith-Herron AJ, Flint PL. Helminth community structure in two species of arctic-breeding waterfowl. Inter J Parasitol. 2016;5(3):263-272. DOI: 10.1016/j.ijparw.2016.09.002
2. Phiri IK, Phiri AM, Zeila M, Chota A, Masuku M, Monrad J. Prevalence and distribution of gastrointestinal helminths and their effects on weight gain in free-range chickens in central Zambia. Trop Anim Heal Prod. 2007;39:309-315. DOI: 10.1007/s11250-007-9201-5
3. Mebrahtu A, Berhanu M, Abbra B, Gebretsadik A. Gastrointestinal helinth parasites of chicken under different management system in Mekelle town, Tigray region, Ethiopia. Res. Adv. 2019;1307582:1-7. DOI: 10.1155/2019/1307582
4. Abdulla DA. Coccidiosis in domesticated duck in Nineveh governorate. Iraqi J Vet Sci. 2010;24(2):93-97. DOI: 10.33899/ijvs.2010.5602
5. Al Taee AF, Mohammed RG, Mohammed NH. Diagnosis of some helminthic eggs in faces of ducks and geese in Nineveh governorate, Iraq. Iraqi J Vet Sci. 2011;25(1):5-10. DOI: 10.33899/ijvs.2011.5696
6. Al-Labban NQ. Isolation and identification of some parasites in local ducks and their pathological changes in Al-Diwaniya province [master’s thesis]. Al-Qadisiya University: 2012. 90 p.
7. Mohammed NH. Study on the blood protozoa in geese. Iraqi J Vet Sci. 2020;34(1):23-27. DOI: 10.33899/ijvs.2019.125499.1028
8. Islam MR, Shaikh H, Baki MA. Prevalence and pathology of helminth parasites in domestic ducks of Bangladesh. Vet Parasitol. 1988;29(1):73-77. DOI: 10.1016/0304-4017(88)90099-X
9. Afia IU, Usip LP, Udoaka UE. Prevalence of gastro-intestinal helminths in local and broiler chickens in Besikpo local government area, Akwa Ibom State, Nigeria. Am J Zool Res. 2019;7(1-7. DOI: 10.12691/ajzr-7-1-1
10. Amundson CL, Traub NJ, Smith-Herron AJ, Flint PL. Helminth community structure in two species of arctic-breeding waterfowl. Inter J Parasitol. 2016;5(3):263-272. DOI: 10.1016/j.ijparw.2016.09.002
11. Mohammad RM, Seyed BH, Amir HAT, Hadi AA, Farshid JR. Gastrointestinal helminthes of green-winged teal (*Anas crecca*) from north Iran. Asian Pac J Trop Biomed. 2014;4(1):S143-S147. DOI: 10.12980/APJTB.4.2014C1205
12. Mohammad Z.A. Some chewing lice (Phthiraptera) species as ectoparasites infested aquatic birds with a new record of three species from Al-Sanaf marsh/ southern Iraq. Iraqi J Vet Sci. 2020;34(1):173-180. DOI: 10.33899/ijvs.2019.125731.1139
13. Al-Gabery KM. Diagnostic and pathological study of cestodes in intestine of three types of pigeon in Najaf province [master’s thesis]. Kufa: College of Education, Al-Kufa University; 2006. 12 p.
14. Hoberge EP, Lioy D, Omar H. *Libyostrongylus dentatus* n. sp (Nematode: trichostrongylidae) from ostriches in north America with comment on the genera *Libyostrongylus* and Paralibyostrongylus. J
15. Waruiru RM, Mavati SK, Mbuthia PG, Njagi LW. Prevalence and intensity of gastrointestinal nematode infection of free range domestic ducks in Kenya. Livestock Res Rural Develop. 2018;30(4):18-25. Doi: 10.1080/21344599.2019.1708577

16. Wang QX, Lin RQ, Zhu X Q. Prevalence of intestinal helminths in domestic goose (Anser domestica) in Qingyuan, Guangdong province, China. Afr J Microbiol Res. 2013;40(6):43-46. Doi: 10.5897/ajmr.12.706

17. Kuhn RC, Rock CM, Oshina KH. Occurrence of Cryptosporidium and Giardia in wild ducks along the Rio Grande River Valley in southern New Mexico. Appl Environ Microbiol. 2002;68(1):161-165. Doi: 10.1128/AEM.68.1.161-165.2002

18. Farjana T, Islam KR, Mondal MH. Population density of helminths in ducks: effects of host's age, sex, breed and season. Bangl J Vet Med. 2008;6(1):45-51. Doi: 10.3329/bjvm.v6i1.s138

19. Shubber WH. The parasitic helminths of the digestive tract of the dunlin (Calidris alpina). Al-Qadisiya: College of Education, University of Al-Qadisiya; 2006. 122 p.

20. Muhsin SJ. Epidemiological and pathological study of Ascariidae galli in Najaf governorate [PhD dissertation]. Kufa: College of Education for Girls, University of Al-Kufa; 2008. 110 p.

21. Yousuf M, Das P, Anisuzzaman M, Banowary B. Gastro-intestinal helminths of ducks: Some epidemiological and pathetic aspects. J Bangladesh Agri Univ. 1970;7(1):91-7. Doi: 10.3329/bau.v1i1

22. Shenmashidi B, Ranbar B, Delfan AM. Prevalence and intensity of parasitic infection in domestic ducks (Anas platyrhynchos) in Gilan province, northern Iran. Comp Clin Pathol. 2016:1-3. Doi: 10.1007/s00058-016-2361-7

23. Sharmin M, Tania R, Hamied K. Prevalence and intensity of parasites in domestic ducks. Dhiaka Uni J Biol Sci. 2012;21(2):197-199. Doi: 10.3329/djibs.v21i2.11518

24. Anisuzzaman MA, Rajman MH, Mondal MM. Helminth parasites in indigenous duck L: Seasonal dynamic and effect on production performance. J Agr Baniuv. 2005;3(2):291-295. Doi: 10.22004/ag.econ.276489

25. Nnadi PA, George SO. A Cross- sectional survey on parasites of chickens in selected villages in the subhumid zones of south-eastern Nigeria. J Parasitol Res. 2010;141824. Doi: 10.1155/2010/141824

26. Berhe M, Mekhibib H, Birad B, Alemu G. Gastrointestinal helminth parasites of chicken under different management system in Mekelle town, Tigray region, Ethiopia, J Vet Med. 2019;7(1):31-37. Doi: 10.1155/2019/1307582

27. Slimane BB. Prevalence of the gastrointestinal parasites of domestic chicken Gallus domesticus Linnaeus, 1758 in Tunisia according to the agro-ecological zones. J Parasit Dis. 2016;40(3):774-778. Doi: 10.1007/s12639-014-0577-5

28. Ola-Fadahunsi ND, Uwabujo PI, Sanda IM, Ganjey IA, Hussain K, Rabiu M. Gastrointestinal helminths of intensively managed poultry in Kwarra Central, Kwarra State, Nigeria: Its diversity, prevalence, intensity, and risk factors. Vet World. 2019;12(3):389-96. Doi: 10.14202/vetworld.2019.389-396

29. Tolossa Y, Basu A, Shafi Z. Ectoparasites and gastrointestinal helminths of three agro-climatic zones in Oromia Region, Ethiopia. Anim Biol. 2009;59(3):289-97. Doi: 10.1163/157057609X454926

30. Silva G da, Romero D, Fonseca L, Meireles M. Helminthic Parasites of Chickens (Gallus domesticus) in different regions of São Paulo State, Brazil. Revista Brasileira de Ciência Avícola. 2016;18(1):163-8. Doi: 10.1590/18090601.2015.0122

31. Mohammed NH. Detection of Cryptosporidium spp. In feces of ducks in Nineveh governorate. Iraqi J Vet Sci. 2009;23(1):1-5. Doi: 10.33899/ijvs.2009.569

32. Mohammed NH. Prevalence of Giardia spp. in ducks and geese in Nineveh governorate. Iraqi J Vet Sci. 2009;23(1):1-5. Doi: 10.33899/ijvs.2012.35197

33. Richter D, Wiegani TG, Burkher DT, Kaleta EF. Natural infection by Cryptosporidium sp. in farm: Raised ducks and geese. Avian Pathol. 1994;23(2):277-286. Doi: 10.1080/03079459409481899

34. Al-Labban Q, Dowood KH, Jassm GA. New parasites of local duck recorded in Iraq with histopathological study. Al-Qadisiyah J Vet Med. 2013;12(1):152-161. Doi: 10.29079/vol12issart244

35. Chung OS, Lee HJ, Sohu WM, Park YK, Choi JY, Seo M. Discovery of Paratrama daboasi and Paratrama homoestecum (Digenea: Gymnophallidae) from migratory birds in Korea. J Parasitol. 2010;48(3):271-274. Doi: 10.3347/kip.2010.48.3.371

36. Chauve C. The poultry red mite Demodexs gallinarum (De Geer,1778): Current situation and future prospects for control. Vet Parasitol. 1998;97:239-245. Doi: 10.1016/S0304-4079(98)00167-8

37. Alvin G, Gary W, Stockdale PG. Coccidia of domestic and wild waterfowl (Anseriformes). Canadian J Zool. 1983;61(1):1-24. Doi: 10.1139/z83-001

Toward the helminths of the poultry and the local livestock

Breed young chickens, such as good and healthy, of the poultry and the poultry and the local livestock. This study is important because it provides information on the prevalence and types of intestinal parasites in poultry, which can affect the productivity and health of poultry. The study was conducted in the area of Nineveh governorate and the results showed high prevalence of intestinal parasites in poultry. These parasites can cause various diseases in poultry, such as reduce in productivity, increase in mortality and decrease in meat and egg quality. Therefore, it is important to control and prevent these parasites to ensure the health and productivity of poultry. The study also highlights the need for further research to develop effective control strategies for these parasites.