Economic efficiency of biological preparation application in protected ground vegetable growing

A V Soldatenko¹*, K L Alekseeva¹, L G Smetanina¹, A F Razin¹ and M I Ivanova¹

¹Federal Scientific Vegetable Center, 14, Selectionnaya str., VNIISSOK, Odintsovo district, 143072, Moscow region, Russian Federation

E-mail: vniioh@yandex.ru

Abstract. The paper describes the characteristics of biologic preparations and their application in protected ground conditions. In the course of the work, it was revealed that at present, vegetables are becoming more and more popular on the market, the use of chemicals in their cultivation is limited. As a result of the experiment, the effectiveness of the use of biologic preparation Alirin-B and Gairn against diseases of protected soil cucumber and tomato was studied. The effectiveness of chemical and biological protection systems was compared, and the economic effect of their use was calculated.

1. Introduction

The modern approach to the production of protected soil vegetable products is based on the use of phytosanitary technologies aimed at reducing the pesticide load and minimizing the negative consequences of the use of chemical plant protection products [6,7,9,13,14]. Along with agricultural and technical measures, the stability of varieties and hybrids, an important component of phytosanitary technologies is the use of biological preparations that provide effective and safe plant protection [2,3,4,10,12]. Research on the identification of bioagents and the creation of effective biological preparation is actively conducted in many countries [19,20,21,23,25], technologies for their use on various protected soil crops are being developed[15,16,17,18,22,24,26].

Protected soil conditions are favorable for the development of pathogens. Spores of pathogens are transferred by air, with irrigation water, on the clothes of workers, with containers and tools. Drop liquid moisture on the film and surface of the leaves contributes to their germination and rapid spread of diseases during the growing season of plants. The development of plant diseases increases as a result of reducing the stress resistance of plants in conditions of insufficient light, sharp changes in day and night temperatures in greenhouses, high humidity, etc., which reduces the yield of standard products, worsens its quality, and reduces the fruiting period by 1-1.5 months. With a high infectious background and weak organization of protective measures, crop losses can reach 50% or more [1,4,5].

Chemical treatments cause the occurrence of resistant forms of pathogens, worsens working conditions in the greenhouse, and can have a negative impact on plants and product quality. In this regard, biological plant protection products (BPPP) occupy an increasingly important place in greenhouse technologies. According to the FSBI “Rosselkhoznadzor” there has been a steady growth in the use of BPPP both in greenhouses and in farms recently. Currently, the List of drugs approved for use in Russia includes more than 50 biological preparations, the use of which can significantly reduce the volume of chemical treatments, provides an environmentally friendly vegetable production. Biological preparations are not phytotoxic, do not harm pollinating insects and entomophages in the...
greenhouse, and do not affect the timing of harvest. Proper use of biological preparations reduces the development of diseases, reduces the cost of production and increases productivity and product quality.

2. Materials and methods
We studied the protective effect of biological preparations against the main diseases of protected soil cucumber and tomato. The research was conducted in 2017-2018 in film greenhouses on the basis of ARSRI - a branch of FSBSI FSCVG (Moscow region) using standard methods [8]. In the experiments, we used microbiological preparations Alirin-B and Gamair based on Bacillus subtilis strains (produced by AgroBioTechnology Group of Companies). These drugs are characterized by high activity against phytopathogenic fungi; do not have a negative impact on the environment. They are safe from environmental, toxicological and sanitary points of view, harmless to humans, warm-blooded animals, birds, fish, bees and other useful insects. The preparations have the necessary technological properties – they completely dissolve in water and do not clog the injectors. Dry preparation forms have a long shelf life (3 years from the date of manufacture at a temperature of -30° up to + 30°C), reliable, cost-saving and easy to use. Biological preparations were applied by 3-fold filling under the root and by 2-fold spraying of plants with an interval of 15-20 days at a rate of 60 g/ha. The flow rate of the working fluid is 1000-3000 l/ha. Accounting for the development of diseases was carried out according to the standard method [11].

Topaz (consumption rate 0.3 l/ha), Quadris (consumption rate 0.5 l/ha), Previcur Energy (consumption rate 0.3 l/ha), widely used for protecting cucumbers and tomatoes from diseases, were used as a reference.

3. Results
On cucumber, the main diseases during the growing season were root rot (pathogens Fusarium sp, Pythium debaryanum, Rhizoctonia solani) and powdery mildew (pathogen Oidium erysioides) on tomato – trachemycosis wilt (pathogen Fusarium oxysporum f. sp. lycopersici) and solanaceae buck eye rot (pathogen Phytophthora infestans).

The use of BPPP reduced the level of development of diseases of vegetable crops and increased their productivity. The biological effectiveness of treatments against leaf diseases was 49.2-63.9%, against root rot - 54.2-95.5%. To the greatest extent, biological preparation limited the development of diseases in the initial period. In the second half of the growing season, as the plants aged and the infectious background in the greenhouse increased, the effectiveness of biological preparations decreased. The same tendency to decrease the effectiveness of fungicides was observed in the variants of the experiment with the use of chemical means of protection. Evaluation of the economic efficiency of biological preparations in the experiment on vegetable crops showed a significant increase in fruit yield as a result of plant treatments. The value of the stored crop was 15.3-19.4% of the control.

To calculate the economic efficiency of the use of biological preparations against diseases of vegetable crops, the following indicators were used: the cost of biological preparation Alirin-B and Gamair 3500 rubles/kg, the cost of the chemical drug Previcur Energy - 4132 rubles/l, Topaz - 4880 rubles/l, Quadris - 6250 rubles/l. The sale price of cucumber with a chemical protection system is 50 rubles/kg, with a biological one – 55 rubles/kg. The price of selling tomatoes with a chemical protection system is 100 rubles/kg, with a biological one – 110 rubles/kg. The calculation results are presented in tables 1 and 2.

It is found that the use of biological preparations against diseases of protected soil vegetable crops is cost-effective. On cucumber culture, the economic effect of the use of biological preparation Alirin-B and Gamair was 748950 rubles/ha and 773950 rubles/ha, respectively, and was not inferior to this indicator on the variant of the experiment with the use of chemicals Previcur Energy and Topaz, where the economic effect was 748129 rubles/ha. On tomato culture, the greatest economic effect was observed on the variant with the use of the biological preparation Alirin-B (1298950 rubles/ha). The results obtained allow concluding that the biologized system of protection of vegetable crops from
diseases is not inferior in efficiency to chemical protection and at the same time provides the production of environmentally friendly products.

Table 1. Economic efficiency of application of biological preparations against diseases of protected soil cucumber (Podarok F₁ hybrid).

Indicator	Control - without treatment	Previkur Energy, 0.3 l/ha, 2-fold+Topaz, 0.3 l/ha (3-fold) – reference	Alirin-B, 60 g/ha 5-fold	Gamair, 60 g/ha 5-fold
Output of standard products, kg/ha	98000	117000	115000	115500
Increase to control, kg/ha	-	19000	17000	17500
Cost of additional products, rubles/ha	-	104500	1020000	1050000
Costs for processing, collecting and selling additional products, rubles/ha	-	296871	271050	276050
Economic effect, rubles/ha	748129	748950	773950	

Table 2. Economic efficiency of application of biological preparations against diseases of protected soil tomato (Ostrovok F₁ hybrid).

Indicator	Control - without treatment	Previkur Energy, 0.3 l/ha, 3-fold+Quadris, 0.3 l/ha(2-fold) – reference	Alirin-B, 60 g/ha 5-fold	Gamair, 60 g/ha 5-fold
Output of standard products, kg/ha	87500	102700	101500	100600
Increase to control, kg/ha	-	15200	14000	131000
Cost of additional products, rubles/ha	-	1520000	1540000	1440000
Costs for processing, collecting and selling additional products, rubles/ha	-	259469	241050	232050
Economic effect, rubles/ha	1260531	1298950	1207000	

4. References

[1] Alekseeva KL, Anikeeva NA 2009 Protection of cucumbers from root rot in the joint action of biologies and growth regulators (Agrarian Bulletin of the Urals) 11 65 49

[2] Alekseeva KL, Biryukova NK, Maslovskaya EM, Smetanina LG 2010 Environmentally safe methods of protecting cucumbers from diseases in film greenhouses (Manual). M.: SSI ARSRIVG, 32

[3] Alekseeva KL, Tereshonkova TA, Gorshkova NS, Smetanina LG 2010 Environmentally safe methods of tomato protection from diseases and pests (Manual). M.: SSI ARSRIVG, 34
Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi.

4 [4] Alekseeva KL, Nurmetov RD, Devochkina NL 2016 Protection of plants in greenhouses (Potatoes and vegetables) 4 15-18
[5] Budynkov NI, Uvarov VN 2008 Diseases of vegetable and greenhouse crops. ARSRIP, Bolshie Vyazemy, 91
[6] Danilenkova GN. 2017 Effectiveness of complex application of biological and chemical plant protection products (Plant protection and quarantine) 3 3-6
[7] Zakharenko VA 2015 Biotechnology and plant protection (Plant protection and quarantine) 11 3-6
[8] Litvinov S S 2011 Methods of field experience in vegetable growing, 679
[9] Litvinov S S 2015 Phytosanitary problems in vegetable growing (Plant protection and quarantine) 4 3-6
[10] Litvinov S S, Nurmetov R Dzh, Razin A F, Alekseeva K L, Selivanov V G 2015 Structures, technologies and technical means for the production of vegetable products in protected ground: guidelines. M.: FSBSI “Rosinformagrotech”, 144
[11] Guidelines for registration tests of fungicides in agriculture (under the ed. of Dolzhenko V I.) 2009 St. Petersburg: VIZR, 378
[12] Petrovsky A S, Karakotov S D 2017 Microbiological preparations in crop production. Alternative or partnership? (Plant protection and quarantine) 2 14 - 18
[13] Pozharsky V G, Pugachev A N For biological preparations - the future (Plant protection and quarantine) 3 42-43
[14] Soldatenko A V, Razin A F, Shatilov M V, Ivanova M I, Razin O A, Rossinskaya O V, Bashkirov O V 2018 Interregional exchange in the context of equalizing vegetable consumption in the Federal subjects (Vegetables of Russia) 6 37-42 DOI:10.18619/2072-9146-2018-6-3-8
[15] Baysal O, Calskan M 2008 An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. Radicis-lycopersici (PMPP - Physiological and Molecular Plant Pathology) 731/3 25-32
[16] Chebotar V K, Makarova N M, et al. 2009 Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of biopreparations (Applied Biochemistry and Microbiology) 454 419-423
[17] Chen L and Chen W 2009 Genome shuffling enhanced antagonistic activity against Fusarium oxysporum f. sp. melonis and tolerance to chemical fungicides in Bacillus subtilis BS14 (Journal of Food, Agriculture & Environment) 72 856-860
[18] Eden Paredes-Escalante J, Armando Carrillo-FasioJet al. 2009 Antagonistic microorganisms for control of the fungal complex that cause wilt in chickpea (Cicer arietinum L.) in the state of Sinaloa, Mexico (Revista Mexicana de Fitopatologia) 271 27-35
[19] Kamilova F, Validov S 2009 Biological control of tomato foot and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas bacteria (ActaHorticulturae) 808 317-320
[20] Kannan V and Sureendar R 2009 Synergistic effect of beneficial rhizospheremicroflora in biocontrol and plant growth promotion (Journal of Basic Microbiology) 492 158-164
[21] Li J, Yang Q et al. 2009 Evaluation of biocontrol efficiency and security of Bacillus subtilis strain B29 against cucumber Fusarium wilt in field (China Vegetables) 2 30-33
[22] Matar SM, El-Kazzaz S A 2009 Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi (Biotechnology) 81 53-61
[23] Narayam N, TiniPet al. 2009 Biological and chemical management of tomato wilt caused by Fusarium oxysporum f. lycopersici (Journal of Soils and Crops) 191 118-121
[24] Saidi N, Kouki Set 2009 Characterization and selection of Bacillus sp. strains, effective biocontrol agents against Fusarium oxysporum f. radicis-lycopersici, the causal agent of Fusarium crown and root rot in tomato (Annals of Microbiology) 592 191-198
[25] Thanh D T, Tarn L T Tet 2009 *Biological Control of Soilborne Diseases on Tomato, Potato and Black Pepper by Selected PGPR in the Greenhouse and Field in Vietnam* (Plant Pathology Journal) 253 263-269

[26] Zelenkov V N, Petrichenko V N, Potapov V V, Eliseeva L G, Ivanova M I, Latushkin V V, Novikov V B 2018 Verification of the complex preparation of hydrothermal nanosilicon with krezacin for hydroponic growing of lettuce in a closed system of the ITS-1phytotron (Current Biotechnology) 3 378