Title
Human bony labyrinth is an indicator of population history and dispersal from Africa.

Permalink
https://escholarship.org/uc/item/4q99g9g9

Journal
Proceedings of the National Academy of Sciences of the United States of America, 115(16)

ISSN
1091-6490

Authors
Ponce de León, Marcia S
Koesbardiati, Toetik
Weissmann, John David
et al.

Publication Date
2018-04-02

DOI
10.1073/pnas.1717873115

Peer reviewed
Human bony labyrinth is an indicator of population history and dispersal from Africa

Marcia S. Ponce de León*, Toetik Koebesdiartib, John David Weissmann*, Marco Millela*, Carlos S. Reyna-Blancoa,c,d, Gen Suwa*, Osamu Kondo*, Anna-Sapfo Malaspinasc,d, Tim D. White*,e, and Christoph P. E. Zollikoferc

*Department of Anthropology and Anthropological Museum, University of Zurich, CH-8057 Zurich, Switzerland; bDepartment of Anthropology, Airlangga University, Surabaya, 60115 Jawa Timur, Indonesia; cInstitute of Ecology and Evolution, University of Berne, CH-3012 Bern, Switzerland; dDepartment of Computational Biology, University of Lausanne, CH-1015 Lausanne, Switzerland; eThe University Museum, University of Tokyo, Hongo, 113-0033 Tokyo, Japan; fDepartment of Biological Sciences (Anthropology), University of Tokyo, Hongo, 113-0033 Tokyo, Japan; and gDepartment of Integrative Biology, University of California, Berkeley, CA 94720-3140

Contributed by Tim D. White, February 28, 2018 (sent for review October 11, 2017; reviewed by Lounès Chikhi and Erik Trinkaus)

The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype—phenotype comparisons.

Human bony labyrinth is an indicator of population history and dispersal from Africa

The Late Pleistocene dispersal of modern humans from Africa (also known as “Out-of-Africa II”) has been well documented with fossil evidence (1–3). The dispersal also left a complex genetic signature in recent worldwide populations, reflecting the effects of random drift, selection, and gene flow between dispersing and local populations (4, 5). While molecular data have proven highly effective in reconstructing population history and identifying local adaptations (6–10), phenotypic data have the potential to provide similar but also complementary information. Indeed, modern human skeletal variation has been shown to reflect both population history and local adaptation (11–15). However, patterns of heritable variation tend to be superimposed with nonheritable variation due to developmental plasticity and differences in lifestyle (16, 17). As a result, different parts of the human skeleton (such as the neurocranium, cranial base, face, mandible, teeth, pelvis, and long bones) provide differential insights into population history, local adaptation, and lifestyle (15, 18–25). Results on the influence of each of these factors on different skeletal regions depend to some extent on the morphometric variables and methods of analysis used. Overall, however, it appears that the external morphology of the temporal bone most clearly reflects human population history as it seems to be relatively unaffected by environmental effects, such as local adaptation and phenotypic plasticity (18, 23, 26–29).

Given the current state of research on human phenetic phylogeography, it is worth scrutinizing a wider range of human hard tissue structures for their potential to track population history. Here we assess the potential of the cavity system of the inner ear—the so-called bony labyrinth—as a source of information about human population history. The labyrinth reaches its final morphology by birth (30). Accordingly, postnatal developmental differences and phenotypic plasticity can largely be excluded as potentially confounding effects. Furthermore, the labyrinth is contained in dense cortical bone such that it is typically well-preserved, even in fragmentary archaeological specimens. Archaeological samples are relevant because they provide a temporal perspective on modern human phenotypic variation. Furthermore, the labyrinth is less liable to taphonomic distortion than other skeletal parts because of the compactness of the petrous bone.

We compare patterns of worldwide variation in modern human labyrinth morphology with patterns of variation in genetic markers (SNPs) known to track human population history and assumed to evolve neutrally. Three-dimensional data of bony labyrinths were acquired with computed tomography (CT) from a sample of 221 skeletal specimens representing 22 worldwide human dispersals | bony labyrinth | morphometrics | stabilizing selection

Significance

The cavity system of the inner ear—the so-called bony labyrinth—houses the senses of balance and hearing. This structure is embedded in dense petrous bone, fully formed by birth and generally well preserved in human skeletal remains, thus providing a rich source of morphological information about past populations. Here we show that labyrinthine morphology tracks genetic distances and geography in an isolation-by-distance model with dispersal from Africa. Because petrous bones have become prime targets of ancient DNA recovery, we propose that all destructive studies first acquire high-resolution 3D computed-tomography data prior to any invasive sampling. Such data will constitute an important archive of morphological variation in past and present populations, and will permit individual-based genotype—phenotype comparisons.

Author contributions: M.S.P.d.L., A.S.M., T.D.W., and C.P.E.Z. designed research; M.S.P.d.L., J.D.W., M.M., C.S.R.-B., A.-S.M., and C.P.E.Z. performed research; J.D.W. contributed new reagents/analytic tools; M.S.P.d.L., T.K., M.M., G.S., O.K., and C.P.E.Z. contributed to data analysis; M.S.P.d.L., J.D.W., M.M., C.S.R.-B., A.-S.M., T.D.W., and C.P.E.Z. analyzed data; and M.S.P.d.L., C.S.R.-B., G.S., A.-S.M., T.D.W., and C.P.E.Z. wrote the paper.

Reviewers: L.C., CNRS; and E.T., Washington University.

The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

See Commentary on page 3992.

1To whom correspondence may be addressed. Email: timwhite@berkeley.edu or zollik@aim.uzh.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717873115/-/DCSupplemental.

Published online April 2, 2018.
Table 1. Sample for labyrinth data

Population	Region	n	Longitude	Latitude	Distance (km)
South Africa	Z Af	19	-21	-12	2.8
North Africa	Z Af	7	-20	20	7.9
Egypt	Z Af	10	30	30	8.9
Western Asia	Z Af	8	41	55	12.1
Central Europe	Z Eu	15	13	47	13.3
Vaihingen	L Eur	16	49	19	13.3
Northern Europe	Z Eur	6	59	30	14.1
India	Z WAs	7	21	79	15.9
China	Z Na	5	38	114	19.5
Southeast Asia	Z As	8	13	98	19.6
Indonesia	Z As	8	22	107	22.4
Ainu	T Jap	10	43	141	23.5
Japan	T Jap	10	26.4	140	24.6
Jomon	T Jap	8	25.4	138	24.6
Sunda	A SAs	4	9.3	120	25.0
Australia	D Aus	11	-21	125	27.2
Torres Strait	D As	8	28.2	143	29.8
Arctic	Z Nam	19	31.6	-118	64
North America	Z Nam	10	33.3	-117	39
Mesoamerica	Z SAm	7	37.7	-91	15
South America	Z SAm	15	43.7	-69	9
Patagonia	Z SAm	10	49.5	-70	53

*Collection source: A. Airlangga University, Surabaya; D. Duckworth Collection, Cambridge; L. Landesdenkmalamt Baden-Württemberg, Stuttgart; T. Tokyo University Museum, Tokyo; Z. Department of Anthropology, University of Zurich.

Dispersal distance in 1,000 km.
One basic assumption is that the constraints exerted on the shape of the bony labyrinth of modern humans is constrained by the physics of vestibulo-cochlear signal transduction (48), so it is expected to be under taxon-specific-stabilizing selection that optimizes auditory, motion, and gravity perception. How can the action of stabilizing selection be reconciled with the evidence presented here that labyrinth morphology shows a neutral-like pattern of worldwide variation? This question expresses a well-known paradox of phenotypic evolution that “many quantitative traits show substantial heritable variation and yet appear to be subject to stabilizing selection” (49). One basic assumption is that the constraints exerted by stabilizing selection are similar for all human populations worldwide, and are largely independent of the local environment. In addition, as an effect of in vivo neural plasticity, an individual’s sensory performance tends to be optimized within the constraints imposed by the signal transduction system (50). Under these conditions, the classic model of Lande (51, 52) states that the expected variance of a phenotypic feature under stabilizing selection depends on the width of the adaptive zone w around a single fitness peak (with $w^2 >> \sigma^2$, where σ^2 is the within-population phenotypic variance). Under these model assumptions, the patterning of population-mean variation is due to random genetic drift: that is, “stochastic wandering of populations in the vicinity of the fitness peak” (53).

An additional model prediction is that within-population variation will be larger than variation between population means (52) (Table 2). We thus expect that—within the human-specific constraints given by w—the morphology of the bony labyrinth exhibits nondirectional variation according to a neutral-like evolutionary process. The results presented here largely correspond to this pattern, indicating no dominant direction of variation and wide intragroup compared with intergroup variation. Furthermore, our data permit a tentative estimate of the relative width of the adaptive zone, w/σ (Materials and Methods). Assuming effective population sizes between 5,000 and 10,000 individuals (54), estimates for w/σ range between 39 and 55 (Table S2). These values are larger than the theoretical value of 10 assumed in Lande (51), but within the range of empirical values reported in the literature (55).

Various models have been proposed to study genetic and phenetic evolution in a population expanding over space and time (52, 56, 57). The neutral expectation is that genetic and phenetic distances between the founder population and subsequent populations increase as a function of time and dispersal distance, and that deviations from this relationship indicate nonneutral effects. Fig. 2 shows a similar increase of genetic and phenetic distance with dispersal distance, providing support for the notion that labyrinth morphology evolves neutral-like. The phenetic data exhibit relatively more variation around the regression line than the genetic data. It remains to be clarified to what extent these deviations reflect factors, such as phenotypic plasticity, nonadditive genetic variation, and local adaptation, and to what extent they merely reflect sampling bias due to the limited number of independent phenetic features or small

Table 2. Within-population and between-population variances

Source	Within population (V_ω)	Between population (V_ν)	V_ν/V_ω
Labyrinth SC1–SC72	0.0053	0.0014	0.2680
HGDP 8192 SNP data	0.0328	0.0156	0.4759

Averaged over all populations.
In recent years it was shown that the petrous in Homo 0.55). This is a typical property, revealed by di-

Fig. 2. Correlations between phenetic, genetic, and dispersal distance data. (A) Phenetic distance Dp (red) and genetic distance Dg (blue) versus dispersal distance Dv; note that slopes for phenetic and genetic data are statistically similar (P > 0.74). (B) Dp vs. Dg by region (to facilitate comparisons, Dp and Dg are log-mean-centered). See population name abbreviations list in Fig. 1.

population-specific samples. An earlier study on worldwide modern human cranial variation showed that the interplay of these factors tends to complicate the discrimination between signatures of “neutral” population history and local adaptation, and that a combination of genomic, phenomic, environmental, and fossil/archaeological data will be required to reconstruct the diversity of evolutionary processes that have shaped modern human cranial variation (15).

Additional evidence for a strong influence of genetic drift, and that a combination of genomic, phenomic, environmental, and fossil/archaeological data will be required to reconstruct the diversity of evolutionary processes that have shaped modern human cranial variation (15).

In view of these findings, it is worth reexamining skeletal structures, such as the cranium, for evidence of neutral-like evolution under stabilizing selection. For example, the evolutionary divergence between human and Neanderthal cranial morphologies has been characterized as compatible with neutral expectations, whereas the divergence between cranial morphologies of chimpanzee subspecies is smaller than expected under neutrality, thus indicating stabilizing selection and developmental constraints reducing within-group variation (61, 62). These findings may indicate a wider adaptive zone w/s in Homo than in Pan, probably an effect of cultural buffering favoring relaxed stabilizing selection (62, 63).

Given the strong population-history signal of labyrinth morphology, one may ask whether the labyrinth of a single individual can be used to infer its population affiliation. This is clearly not the case, as has been shown previously for cranial morphologies (64). Similar limitations apply to inferring population affiliations of isolated fossil hominin laboratories (65–67). One reason is that within-population variation is larger than between-population variation. The other is that the highly integrated nature of the phenotype results in a small number of independently evolving features (the first few SCs with significant loadings) available to discriminate between populations. As has been shown for genetic data, the analysis of population structure faces a trade-off between the number of available markers and sample size (68). As demonstrated here, evaluating local population-mean phenotypes is an effective means to infer population affiliations and history, even for comparatively small samples.

We have therefore shown that the petrous portion of the human temporal bone is a valuable source of information for “paleo-phenomics.” In recent years it was shown that the petrous bone is a valuable source of information for paleo-genomics as well (69). Indeed, the dense cortical bone surrounding the labyrinth has become a major target of ancient DNA and collagen retrieval from archaeological and fossilized human specimens (69, 70). Typically, destructive sampling is performed before 3D data acquisition with CT, with the effect that unique phenotypic information is irrevocably lost. We thus urge all parties involved in extracting organic material from structures, such as the petrous bones or teeth, to acquire high-resolution CT data beforehand. The X-ray doses used in medical CT as well as in low-dose μCT (<200 Gy) have been reported as not affecting ancient DNA preservation in the sample (see ref. 71, pending confirmation, including blind tests by independent laboratories). Combining phenotypic and genotypic information obtained from the same specimen and the same skeletal structure will thus open

Fig. 3. Consensus tree of phenetic similarities among populations. Numbers indicate branch support as evaluated from 1,000 resamplings on random subsamples of n = 6 specimens per population (note that local population affiliations are better supported than global affiliations; for details, see Materials and Methods). See population name abbreviations list in Fig. 1.

Ponce de León et al.
new venues for the co-investigation of genetic and phenetic aspects of human evolutionary processes.

Materials and Methods

Morphometric Analysis of the Bony Labyrinth. Volumetric data of the bony labyrinths were acquired with medical and μCT from a global sample of modern humans (n = 221; 22 populations; institutional review board approvals were unnecessary). When available, left labyrinths were used, otherwise mirror-imaged right labyrinths. Labyrinth shape was quantified with a set of 26 3D landmarks equally distributed over the semicircular canals, the vestibular region, and the cochlea, as specified in ref. 44 and visualized in Fig. 1A. Shape variation in the sample was analyzed with principal components analysis (PCA) of shape (72). Note that this procedure is equivalent to the evaluation of principal coordinates via MDS analysis of the between-individual Procrustes distance matrix. Population-mean shapes were used to evaluate a between-population phenetic (Procrustes) distance matrix. The neighbor-joining method was then used to derive a phenetic similarity tree. To obtain statistical estimates of branch support, 1,000 trees were constructed with n = 6 randomly selected specimens per population (resampling with replacement), and a consensus tree was evaluated [procedures “neighbor” and “consense” of the PHYLIP software (73)] (Fig. 3).

Modern Human Genetic Data. Genetic data were obtained from the HGDP panel (74). The following filtering procedures were applied: First, we removed individuals that have been labeled as related (75), then we used the pipeline reported by Patterson et al. (76) to exclude individuals having up to third-degree relatives that have been labeled as related (75), then we used the pipeline proposed by Patterson et al. (80), where each individual is the average of σ reported in Gazal et al. (76) to exclude individuals having up to third-degree relatives. Next, we ran ADMIXTURE (77) to identify and filter out individuals exhibiting recent population admixture. Using the PLINK software (78), we selected only the autosomal biallelic SNPs with minor allele frequency >0.05 or <0.01% missing data. We applied a Hardy–Weinberg equilibrium threshold by population (HWPE P < 10−5) to exclude SNPs deviating from it, and removed SNPs that were fewer than 2,000 bases apart from each other. Following these quality-control procedures, we obtained genotype data on 351K SNPs for 902 individuals from 52 populations (Table S1). Finally, we used the Genomic Evolutionary Rate Profiling method (79) to obtain site-specific estimates of evolutionary constraint. After this step, we retained a subsample of 8,192 (=225) SNPs that are unlikely to be affected by natural selection. The average distance between these SNPs is 0.345 Mb.

These data were analyzed with methods closely matching the methods used for the analysis of the phenetic data. First, we calculated allele-sharing distances (which, in terms of information theory, are Hamming distances) between all individuals, resulting in an n × n interindividual distance matrix (no Jukes– Cantor correction was performed, which corresponds to the assumption that back-mutations or mutation saturation are not present in the sample). MDS was used to transform this matrix into specimen coordinates in multivariate genetic space (principal coordinates). These data were used to evaluate population-mean locations, and between-population Euclidean distances, using the same methods as for the phenetic data. Note that the procedures used here differ in some aspects from traditional genetic PCA as proposed by Patterson et al. (80), where each individual’s position in multivariate genetic space is directly coded relative to a predefined reference (the most frequent alleles). Here, each individual’s position in that space results from MDS on the interindividual allele-sharing distance matrix.

Dispersal Distances from Africa. Traditionally, geographic distances from Africa are estimated as sums of great-circle segments connected through geographic way-points (8). These estimates implicitly assume directional migration paths rather than dispersal. The estimates used here are based on a nondirectional population growth and diffusion model (the “Fisher–Kolmogorov–Petrovsky–Piskounov” model), which was implemented in an agent-based simulation framework (81, 82). We simulated the global spread of a pan-African population in South Africa to a spherical grid with 660,492 nodes (internode distance 30–35 km) and a total number of 70,000 1-y time steps. This simulation strategy permits evaluating, for each habitable grid node, the accumulated dispersal distance D from Africa (Fig. S1). In a next step, geo-locations for all individuals in the phenetic and genetic samples were evaluated. For the labyrinth sample, geo-locations were estimated from the population affiliation information of each individual, using the present-day geographic center of each population as the reference location. For the HGDP sample, such information was gathered from the metadata associated with each individual. Finally, each individual’s geo-location was used to read out from the simulation map its corresponding dispersal distance.

Comparison of Distance Data. To permit direct comparisons between genetic and phenetic distances (Fig. 28), populations were further grouped according to larger geographical regions (Fig. 2, Table 1, and Table S1). The groupwise phenotypic and genotypic distance metrics used here differ from analyses relying upon Pst and Fst distances (83, 84). These latter distance measures depend on estimates of parameters, such as effective population size N, heritability h², and within-population variation, while the measures used here represent distances between groups of individuals from geographically confined areas. For phenetic data, an additional advantage of the measurements used here is that possible differences between female and male labyrinth morphologies (85) tend to be averaged out. Nevertheless, to permit comparisons with Pst-Fst-based studies, we analyzed our data with the respective methods (83, 84), and provide the results in Fig. S4. To facilitate scale-independent comparisons between phenetic, genetic, and dispersal distances, all data were log10-transformed (51).

Estimation of the Strength of Stabilizing Selection on Labyrinth Shape. Under weak stabilizing selection, the expected equilibrium variance σ²meas of the mean phenotype around its optimum is σ²meas = (σ² + σ²w)N, where σ² characterizes a Gaussian fitness function for stabilizing selection, σ²w is the within-population variance, and N is the effective population size (51). Resolving by σ² and standardizing by σw yields the relative width of the adaptive zone, w = (2Nσ²meas/σ²w − 1)−1/2. To obtain estimates of w we used a following approach at the DNA level: we squared the average of the within-population variances Vw, and the between-population variance Vb, respectively. PCA of shape (see above) yields Vb and Vw for each shape component SC, as well as for labyrinth size S. Because SCs are statistically independent of each other (and, in the present case, of size S), each of these variables can be treated as an independent phenotypic feature. Accordingly, w can be estimated for each feature (Table S2). Because variation in SCI is largely an effect of dispersal distance from Africa, and thus unlikely to be in an equilibrium state (57), we omit this component from our analyses. Published estimates of effective human population size N vary widely; here we use a range of N = 5,000–10,000 (54). Together, these data yield the estimates of w reported in Table S2.

ACKNOWLEDGMENTS

We thank Marta Mirazon Lahr for granting permission to use data acquired at the Duckworth Collection (Cambridge); Daisuke Kubo, Delta Bayumurti, and Marc Scherrer for CT-scanning specimens; and Fred Guillaume, Axel Timmermann, and the two reviewers for providing many helpful comments and suggestions. This research was supported by Swiss National Science Foundation Grant 31003A-135470; a grant of the Swiss Platform for Advanced Scientific Computing Initiative; a grant of the Foundation for Research in Science and the Humanities, University of Zurich (to C.P.E.Z.); and European Research Council starting Grant 679330 and National Science Foundation ambizione Grant PZ00P3_154717 (to A.-S.M.).

1. Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1268.
2. Aiello LC (1993) The fossil evidence for modern human origins in Africa–A revised view. Am Anthropol 95:73–96.
3. White TD, et al. (2003) Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423:742–747.
4. Nielsen R, et al. (2017) Tracing the peopling of the world through genomics. Nature 541:302–311.
5. Smith FH, Ahern JCM, Jankovic I, Karavanic I (2017) The Assimilation Model of modern human origins in light of current genetic and genomic knowledge. Quat Int 439:126–136.
6. Harpending H, Rogers A (2000) Genetic perspectives on human origins and differentiation. Annu Rev Genomics Hum Genet 1:361–385.
7. Goldstein DB, Chikhi L (2002) Human migrations and population structure: What we know and why it matters. Annu Rev Genomics Hum Genet 3:129–152.
8. Ramachandran S, et al. (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci USA 102:15942–15947.
9. Fan S, Hansen ME, Lo Y, Tishkoff SA (2016) Going global by adapting local: A review of current human adaptation. Science 354:54–59.
10. Mariani-Kurki S, Perry GH (2017) Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 18:659–674.
11. Pinto JF, Amorim W, Balloux F, Guggenbichler T (2007) The effect of ancient population bottlenecks on human phenotypic variation. Nature 448:346–348.
12. Handley LJ, Manica A, Goudet J, Balloux F (2007) Going the distance: Human population genetics in a cline world. Trends Genet 23:432–439.
13. Roseman CC, Weaver TD (2007) Molecules versus morphology? Not for the human cranium. Bioscience 58:1185–1198.
14. Relethford JH (2010) Population-specific deviations of global human cranio-metric variation from a neutral model. Am J Phys Anthrop 142:105–111.

4132 | www.pnas.org/cgi/doi/10.1073/pnas.1717873115
Ponce de León et al.
15. Roseman CC (2016) Random genetic drift, natural selection, and noise in human population history. Am J Phys Anthropol 160:593–603.

16. Reyes-Centeno H, Ghirotto S, Harvati K (2017) Genomic validation of the differential preservation of population history in modern human cranial anatomy. Am J Phys Anthropol 161:244–265.

17. Katz DC, Grote MN, Weaver TD (2017) Changes in human skull morphology across the agricultural transition are consistent with softer diets in preindustrial farming groups. Proc Natl Acad Sci USA 114:9050–9055.

18. Rathmann H, et al. (2017) Reconstructing human population history from dental phenotypes. Sci Rep 7:12495.

19. Harvati K, Weaver TD (2006) Human cranial anatomy and the differential preservation of population history and climate signals. Anat Rec A Discov Mol Cell Evol Biol 289:121–123.

20. Smith HF, Terhune CE, Lockwood CA (2007) Genetic, geographic, and environmental correlates of human temporal bone variation. Am J Phys Anthropol 134:312–322.

21. von Cramon-Taubadel N, Stock JT, Pinhasi R (2013) The bony labyrinth of Neanderthals. Proc Natl Acad Sci USA 110:15724–15729.

22. Hedges LR, Wagenbauer J, Castiglione A, Harvati K (2014) The contribution of sub-Saharan to global human cranial variation. J Hum Evol 80:34–50.

23. Betti L (2017) Human variation in pelvic shape and the effects of climate and past population history. Anat Rec (Hoboken) 300:687–697.

24. Katz DC, Grote MN, Weaver TD (2012) A mixed model for the relationship between climate and human cranial form. Am J Phys Anthropol 151:205–215.

25. Smith HF, Ritzman T, Otárola-Castillo E, Terhune CE (2013) A 3-D geometric morphometric study of intraspecific variation in the ontogeny of the temporal bone in modern Homo sapiens. J Hum Evol 65:479–489.

26. Jeffrey N, Spoor F (2004) Prenatal growth and development of the modern human brain. J Anat 204:71–92.

27. Roseman CC (2004) Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc Natl Acad Sci USA 101:12911–12916.

28. Hedges LW, Mather LT (2003) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 57:1989–1994.

29. Mazet O, Rodriguez W, Grueza S, Boitard S, Chikhi L (2016) On the importance of distribution of genetic variability. Proc Natl Acad Sci USA 113:12343–12348.

30. Novembre J, Peter BM (2016) Recent advances in the study of fine-scale population structure in humans. Curr Opin Genet Dev 41:98–105.

31. Pinhasi R, et al. (2015) Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10:e0129102.

32. Hansén HB, et al. (2017) Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One 12:e0170940.

33. Gjónálm S, et al. (2016) Effect of X-ray irradiation on ancient DNA in sub-fossil bones—Preliminary results for safe X-ray imaging. Sci Rep 6:29269.

34. Dryden IL, Mardia K (2018) Statistical Shape Analysis (John Wiley & Sons, New York).

35. Bhatia G, Patterson N, Sankararaman S, Price AL (2013) Estimating and interpreting relatedness among ancient DNA samples using a new independent method. PLoS Comput Biol 9:e1003125.

36. Relethford JH, Crawford MH, Blangero J (1997) Genetic drift and gene flow in post-famine Ireland. Am J Hum Genet 60:841–847.

37. Gazal S, Sababou M, Babron MC, Genin E, Leutenegger AL (2015) High level of inbreeding in final phase of 1000 Genomes Project. Sci Rep 5:17453.

38. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664.

39. Pinhasi R, et al. (2007) PLINK: A tool set for whole-genome-association and population-based linkage analyses. Am J Hum Genet 81:559–575.

40. Davydov EV, et al. (2010) Identifying a high fraction of the human genome to be correlated with the human phenotype: The 1000 Genomes Project. PLoS Genetics 6:0100125.

41. Patterson N, Price AL, Reich D (2006) Population structure and genic divergence times for Neandertals and modern humans. Proc Natl Acad Sci USA 103:5927–5932.