Gibbs Energy Additivity Approaches in Estimation of Dynamic Viscosities of n-Alkane-1-ol

S. Phankosol1* and K. Krisnangkura2

1Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, 10600, Thailand
2School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bangkhuntien), Bangkok, 10150, Thailand

*Corresponding’s author: s.phankosol@gmail.com

Abstract. Alcohols are solvents for organic and inorganic substances. Dynamic viscosity of liquid is important for equipment design, heat and mass transfer. There were many published mathematical models for prediction of viscosity of the liquids, including vegetable oils. The Andrade equation (Eq. 1) was a good equation that correlates dynamic viscosity (η) to the free energy of viscous flow (ΔG) and absolute temperature (T).[2, 3]

$$\eta = A_0 e^{-\frac{\Delta G}{RT}}$$

or

$$\ln \eta = A + \frac{B}{T}$$

1. Introduction
Alcohols are solvents for organic and inorganic substances. Recently, alcohols have been proposed as an alternatives as oxygenated fuel. Oxygenated fuel is used to help fuel burn more efficiently and cut down on some types of atmospheric pollution.[1] Viscosity of liquid is important for equipment design, heat and mass transfer. There were many published mathematical models for prediction of viscosity of the liquids, including vegetable oils. The Andrade equation (Eq.1) was a good equation that correlates dynamic viscosity (η) to the free energy of viscous flow (ΔG) and absolute temperature (T).[2, 3]
However, Eq.1 just correlated the dynamic viscosity to temperature without structural information. In this study, attention was paid on the Martin’s rule of free energy additivity. The free energy of viscous flow for n-Alkane-1-ol in Eq.1 was expanded to the enthalpy and entropy forms.

2. Theory

\[
\Delta G = \Delta G_f + \Delta G_1 + \Delta G_2 \ldots + \Delta G_n_c
\]

\(\Delta G_1 \ldots \Delta G_n_c\) are the free energies of the methylene and methyl groups, which are not very different. Thus, they are average to \(\Delta G\) and Eq.3 is shortening to Eq.4.

\[
\Delta G = \Delta G_f + n_c \delta G
\]

where \(\Delta G_f\) is the free energy of the functional group, \(f\); \(\Delta G\) is the change in free energy/carbon atom; \(n_c\) is the number of carbon atoms.

Substitution Eq.4 into Eq.1 and expansion the free energy to enthalpy and entropy forms (G=H-TS),

\[
\ln \eta = \ln A - \frac{\Delta H_f}{RT} + \frac{\Delta S_f}{R} - \frac{n_c \delta H}{RT} + \frac{n_c \delta S}{R}
\]

or

\[
\ln \eta = a + bn_c + (c + dn_c) \frac{1}{T}
\]

where \(a = \ln A + \frac{\Delta S_f}{R}, b = \frac{\delta S}{R}, c = -\frac{\Delta H_f}{R}\) and \(d = -\frac{\delta H}{R}\)

Eq.6 is used for estimation of dynamic viscosity of n-alkan-1-ol at several temperatures.

3. Materials and Methods

3.1 Dynamic viscosity data

The dynamic viscosities values of n-alkan-1-ol were obtained from the report of Mokhtaram et al.[5] (propanol and butanol) and Baltazer et al.[6], (pentanol, hexanol and heptanol). The dynamic viscosities were measured by using Anton Paar Automated Micro Viscometer (AMVn).
3.2 Numeric constants of Eq.6

All the four numeric constants of Eq.5 were solved by multiple linear regression according to Phankosol et al. [3, 7, 8] as shown in Eq.7.

\[
\ln\eta = -5.008 + 1481.8n_c - (0.3925 + 194.07n_c) \frac{1}{T} \tag{7}
\]

3.3 Statistical analysis

The percent average absolute deviations (AAD (%)) were calculated from Eq.8.

\[
AAD(\%) = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\eta_{exp} - \eta_{cal}}{\eta_{exp}} \right| \times 100 \tag{8}
\]

where exp stands for experimental value reported elsewhere, cal is the calculated value and N is the number of data points.

4. Results and Discussion

Percent differences between the calculated by Eq.7 and literature dynamic viscosities values are listed in the parentheses, at 288.15-363.15 K are summarized in Table 1. The estimated dynamic viscosities values for n-propanol, n-butanol, n-pentanol, n-hexanol and n-heptanol agrees well with the literature values. The highest absolute difference is 6.65% (Propanol at 333.15 K). The Bias and AAD (%) were -0.17% and 1.73%, respectively.

T (K)	Propanol[5] (n_c=3)	1-Butanol[5] (n_c=4)	1-Pentanol[6] (n_c=5)	1-Hexanol[6] (n_c=6)	1-Heptanol[6] (n_c=7)					
	\(\eta_{exp}\) (mPa.s)	D (%)								
288.15	3.52	3.97	3.52	-3.80	4.66	-	6.17	-	8.18	-
293.15	2.35	2.42	3.08	-2.31	4.03	-0.01	5.28	1.54	6.91	2.91
298.15	2.09	1.31	2.71	-3.85	3.50	-0.59	4.54	0.85	5.88	2.02
303.15	1.86	0.51	2.39	-3.19	3.06	-1.12	3.92	0.31	5.02	1.34
308.15	1.67	0.08	2.12	-2.48	2.68	-1.65	3.40	-0.15	4.31	0.82
313.15	1.50	1.54	1.88	-1.92	2.36	-2.13	2.97	-0.55	3.72	0.45
318.15	1.35	2.22	1.68	-1.30	2.09	-2.59	2.60	-0.87	3.23	0.23
323.15	1.22	2.59	1.51	-0.75	1.85	-2.99	2.28	-1.10	2.81	0.11
328.15	1.11	3.67	1.35	0.18	1.65	-3.40	2.02	-1.25	2.46	0.14
333.15	1.01	6.65	1.22	1.78	1.48	-3.79	1.79	-1.31	2.16	0.24
338.15	0.92	-	1.10	-	1.32	-4.14	1.59	-1.35	1.90	0.47
343.15	0.84	-	1.00	-	1.19	-4.46	1.42	-1.29	1.68	0.84
348.15	0.77	-	0.91	-	1.08	-1.27	1.79	-1.15	1.50	1.26
353.15	0.71	-	0.83	-	0.97	-	1.14	-0.98	1.33	1.79
358.15	0.66	-	0.76	-	0.88	-	1.03	-0.78	1.19	2.36
363.15	0.61	-	0.70	-	0.80	-	0.93	-0.51	1.07	3.00

The correlation between the reported experimental dynamic viscosities of Mokhtaram et al.[5] and Baltazer et al.[6] and estimated values using Eq.7 (61 data points) show in figure 2 was linear with the slope of 0.982 and intercept at 0.0427. The \(R^2\) and standard error are 0.999 and 0.022, respectively.
Correlation of the estimated dynamic viscosities (η_{cal}) to the experiment values (η_{exp}) [3,10] of n-alkan-1-ol at 288.15-363.15 K.

5. Conclusions
This work, the total free energy is then related to physical property of the n-alkan-1-ol via an existing equation. Thus, the derive equation can then be used to estimate dynamic viscosities of the n-alkan-1-ol at different temperatures with good accuracy. The dynamics viscosities values outside of this temperature range may be possibly predicted by the correlation but the accuracy may be lower.

Acknowledgements
This work was supported by Research and Development Institute Bansomdejchopraya Rajabhat University.

References
[1] Alaoui F E M, Montero E A, Qiu G, Aguilar F and Wu J 2013 Liquid density of biofuel mixtures: 1-Heptanol + heptane system at pressures up to 140 MPa and temperatures from 298.15 K to 393.15 K The Journal of Chemical Thermodynamics 65 174-83
[2] Krisnangkura K, Aryusuk K, Phankosol S and Lilitchan S 2016 Energy Additivity Approaches to QSPr Modeling in Estimation of Dynamic Viscosity of Fatty Acid Methyl Ester and Biodiesel Journal of the American Oil Chemists’ Society 93 1407-14
[3] Phankosol S, Sudaprasert K, Lilitchan S, Aryusuk K and Krisnangkura K 2015 An Empirical Equation for Estimation of Kinematic Viscosity of Fatty Acid Methyl Esters and Biodiesel Journal of the American Oil Chemists’ Society 92 1051-61
[4] Martin A J P 1950 Partition Chromatography Annual Review of Biochemistry 19 517-42
[5] Mokhtarani B, Sharifi A, Mortaheb H R, Mirzaei M, Mafi M and Sadeghian F 2009 Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures The Journal of Chemical Thermodynamics 41 1432-8
[6] Estrada-Baltazar A, Bravo-Sanchez M G, Iglesias-Silva G A, Alvarado J F J, Castrejon-Gonzalez E O and Ramos-Estrada M 2015 Densities and viscosities of binary mixtures of n-decane + 1-pentanol, + 1-hexanol, + 1-heptanol at temperatures from 293.15 to 363.15 K and atmospheric pressure Chinese Journal of Chemical Engineering 23 559-71
[7] Phankosol S, Sudaprasert K, Lilitchan S, Aryusuk K and Krisnangkura K 2014 Estimation of surface tension of fatty acid methyl ester and biodiesel at different temperatures Fuel 126 162-8
[8] Phankosol S, Sudaprasert K, Lilitchan S, Aryusuk K and Krisnangkura K 2014 Estimation of Density of Biodiesel Energy & Fuels 28 4633-41