INTRODUCTION

Micro-organisms have developed resistance against antibiotics with the help of biofilms. Biofilms formed by micro-organisms, covers the microbes which prevent the passage of antibiotics and interferes with the interaction between antibiotics and micro-organisms. Biofilms are formed when micro-organisms get attached to the moist surface. After coming in contact to the moist surface, it produces gel-like, slimy contents which are known as biofilms. Micro-organisms encapsulate themselves in this slimy layer, which is known as biofilm. It is made up of extracellular polymeric matrix, produced by micro-organisms [3]. The lifestyle of micro-organisms changes completely on the formation of biofilm. The physiological changes have been observed in the microbes with the formation of biofilms. Biofilms increase the life span of micro-organisms. It also increases the microbial growth rate. Micro-organisms enter inside the host and combat its innate immune defense system with the help of biofilm [8]. Hence, biofilm increases the persistence period of micro-organisms inside the host. Biofilm has the complex structure which reduces the attacking ability of antibiotics. It protects micro-organisms from the attack of antibiotics as it does not allow antibiotics to reach microbial surface [11]. Experiments have been performed which shows that Staphylococcus aureus has become resistant to methicillin as it is covered by biofilms [1]. Polysaccharides, such as silica acid, help in protecting micro-organisms by inhibiting the attack of neutrophils toward microbes. Thus, pathogens which were once considered as extracellular are converted into intracellular with the help of biofilm. It helps microbes to penetrate inside the host [10] (Figs. 1 and 2).

Therapeutics plants have the rich assets of ingredients which are utilized for the development of drugs. There are 8000 species of plants in India which are designated as medicinal plants. Medicinal plants have proved to be the best for the treatment of disease [2]. During secondary metabolism, medicinal plants secrete active compounds which have been helpful in treating infectious disease. Medicinal plants have been used for the extraction, synthesis, and development of drugs. Extracts of methanol and ethanol from the medicinal plants have been studied and it has proved to be effective in treating biofilm and thus, the pathogens [16].

The objective of most of the conventional treatment is to kill or repress the growth of micro-organisms. Continuous exposures to these treatments make micro-organisms resistant toward them. This method affects pathogenic microbes only for a limited period. It has been observed that many pathogenic micro-organisms start developing resistant against such treatment after a certain period [9]. It is because of the virulent factor that they produce during the treatment which makes them resistant. One such virulent factor is biofilm. Biofilm helps bacteria in fighting against the antibiotics treatment and immune system response. Thin, slimy layers of microbes that occur in moist environment are considered as biofilms. Biofilms are impermeable in nature which prevents the passage of antibiotics into the microbes. It has become important to develop new methods or medicines to treat micro-organisms that cause infectious disease. Nanotechnology has proved to be a standout among the most dynamic regions of research and development in advanced medical science. Nanoparticle is the most essential part of nanotechnology. It has proved to be effective in treating many diseases [5].

Nanoparticles are made up of both natural and inorganic materials. Nanoparticles made up from these materials have antibiofilm and antibacterial properties. Experiments have been performed and it has been proved that these nanoparticles can be used for the treatment of drugs which can be used for the treatment of biofilms. This proves that nanoparticle has different mechanisms to control biofilm growth and also different strategies to stop microbial growth and kill them. When the biofilms are treated with nanoparticles, it gets destroyed [20].

The interaction between nanoparticle and biofilm are as follows:

- Nanoparticle is transferred to the biofilm surface
- Nanoparticle gets attached to the surface
Nanoparticles penetrate through the biofilm surface toward the microorganisms [18].

In other words, nanoparticles penetrate into biofilm layer, spoil cell physiology, denature protein, stop the activity of enzymes, and prevent the replication of DNA and interaction of ribosomes [17]. Many factors influence the interaction that occurs between biofilm and nanoparticle. They are physiochemical and biological factors of the biofilm matrix, environmental factors such as water and temperature (Fig. 3).

MEDICINAL PLANTS

Panax ginseng

P. ginseng is a therapeutic plant. It has a wide range of pharmacological applications. It contains an active ingredient, ginsenosides, which is useful in treating many infectious diseases. It has been used to treat cancer, neurodegenerative disease, diabetes mellitus, and hypertension. It helps in maintaining the homeostasis of immune system and regulates immune system against microbial attack [7]. Ginseng plants show many properties such as antimicrobial, antibacterial and antiviral properties. This plant was used for the synthesis of gold and silver nanoparticles [36]. These nanoparticles were formed by the reduction of auric chloride and silver nitrate, respectively, and they have been studied and found to be resistant toward biofilm produced by microbes. Silver nanoparticles showed inhibition against biofilm produced by *S. aureus* and *Pseudomonas aeruginosa*. Both gold and silver nanoparticles were also found to have anticoagulant properties [22] (Table 1 and Fig. 4).

Dioscorea bulbifera

There are 600 species under genus *Dioscorea*. Among them, *D. bulbifera* is a novel plant due to its species-specific phytochemistry. Tuber extract of the plant is rich in flavonoids and catechin which provides plant antioxidant and antidiabetic properties. Biofilm compounds of this plant show anti-inflammatory, plasmid curing, anticancer, and antidiabetic properties [4]. Aucore Ag shell nanoparticle was synthesized using the tuber extracts from *D. bulbifera*. These nanoparticles showed highest biofilm inhibition. This leads to the death of cells [19] (Table 2 and Fig. 5).

S. aureus is a widely recognized infectious disease which causes skin infection, burn wounds and are resistant to antibiotics. Drug resistance is deadly dispute evolving in today’s world. Recently, microbes resistant to antibiotics are controlled by multi-drug treatments.

Table 1: Classification of Panax ginseng

Kingdom	Plantae
Order	Apiales
Family	Araliaceae
Genus	Panax
Species	*Panax ginseng*

Table 2: Classification of Dioscorea bulbifera

Kingdom	Plantae
Order	Dioscoreales
Family	Dioscoreaceae
Genus	Dioscorea
Species	*Dioscorea bulbifera*

Fig. 1: *Staphylococcus aureus* biofilm on a moist surface. Source: http://science.howstuffworks.com/life/cellular-microscopic/biofilm4.htm

Fig. 2: Stages of biofilm development (1) reversible stage (2) attachment stage (3) formation of biofilm (4) biofilms mature (5) detachment stage. Source: http://www.formatex.info/microbiology4/vol1/179-187.pdf

Fig. 3: Nanoparticle penetrating through the biofilm layer and migrating toward bacterial surface. Source: http://journal.frontiersin.org/article/10.3389/fmicb.2015.00591/full

Fig. 4: Medicinal plant *Panax ginseng*. Source: http://www.herbs.org/greenpapers/ginseng.htm
In vitro extraction of secondary metabolites from *D. binata* is potent antibacterial agent against *S. aureus*. It disrupts the biofilm layer of bacteria. Silver nanoparticle obtained from the extract of *D. binata* is effective in antibiotic activity. They do not have any cytotoxic impacts on human keratinocytes [15] (Table 3 and Fig. 6).

Plumbago zeylanica

P. zeylanica belongs to genus *Plumbago* exhibits multiple medicinal properties such as anti-inflammatory, wound healing, antidiabetic, memory inducing, blood coagulation, antimalarial, central nervous system, microbiological, anticancer, antiviral, and antioxidant activities [12]. Root extract of *P. zeylanica* contains sugars, flavonoids, and organic acid. Bimetallic, gold and silver nanoparticles were developed using the root extract of the plant. These nanoparticles affect biofilms produced by *S. aureus, Acinetobacter baumannii*, and *Escherichia coli*. They showed antimicrobial and antibiofilm properties against these microbes [13] (Table 4 and Fig. 7).

Ruta graveolens

R. graveolens comes under the genus *Ruta*. *R. graveolens* contains acridone alkaloids, flavonoids, coumarines, terpenoids, and volatile substances which give the plant antiandrogenic activity, anti-inflammatory and analgesic properties and anticancer activities [6] (Table 5 and Fig. 8). Silver nanoparticles obtained from *R. graveolens* shows color change on phytochemical reaction. It also shows antibacterial and antibiofilm activity against *Candida albicans, S. aureus*, and *P. aeruginosa* [14] (Table 6).

Table 3: Classification of Drosera binata

Kingdom	Plantae
Order	Caryophyllales
Family	Droseraceae
Genus	Drosera
Species	Drosera binata

Table 4: Classification of Plumbago zeylanica

Kingdom	Plantae
Order	Caryophyllales
Family	Plumbaginaceae
Genus	Plumbago
Species	Plumbago zeylanica

Table 5: Classification of Ruta graveolens

Kingdom	Plantae
Order	Sapindales
Family	Rutaceae
Genus	Ruta
Species	Ruta graveolens

Fig. 5: Medicinal plant Dioscorea bulbifera.
Source: https://keyserver.lucidcentral.org/weeds/data/media/Html/dioscorea_bulbifera_var_bulbifera.htm

Fig. 6: Medicinal plant Drosera binata.
Source: http://cpphotofinder.com/drosera-binata-var-dichotoma-2539.html

Fig. 7: Medicinal plants Plumbago zeylanica.
Source: http://cysonline.org/article.asp?issn=2229-5186;year=2012;volume=3;issue=3;spage=178;epage=198;aulast=Kishore

Fig. 8: Medicinal plant Ruta graveolens.
Source: http://www.motherearthliving.com/in-the-garden/ruta-graveolens-growing-common-rue
Table 6: Activities of medicinal plants in form of nanoparticles

Medicinal plants	Parts used	Nanoparticles	Activity	References
Pelargonium endlicherianum	Root extract	Silver nanoparticle	Antimicrobial activity	[46]
Fenzl.				
Millettia pinnata	Flower extract	Silver nanoparticle	Anticholinesterase, antibacterial, and cytotoxic activities	[47]
Bauhinia acuminata and	Plant extract	Silver nanoparticle	Antimicrobial activity	[48]
Biophytum sensitivum				
Taraxacum laevigatum	Plant extract	Platinum nanoparticle	Antibacterial activity	[49]
Pongamia pinnata	Seeds extract	Silver nanoparticle	Antibacterial activity	[50]
Cassia fistula (Linn,)	Leaf extract	Silver nanoparticle	Antimicrobial agents; antioxidants	[42]
Panax ginseng	Leaf extract, root extract	Silver nanoparticle, gold	Anticancer activity, antimicrobial, antibacterial and antifungal properties, anticoagulant properties, and antibiofilm activity	[22,7,41]
Carum copticum	Root extract	MnFeO nanoparticles coated with PEGylated chitosan	Antibacterial activity	[39]
Ginkgo biloba	Leaf extract	Silver nanoparticles	Antimicrobial activity	[37]
Garcinia mangostana	Rind extract	Gold nanoparticles	Antimicrobial activity	[38]
Cacao	Leaf extract	Silver nanoparticles	Antibacterial activity and cytotoxicity	[35]
Prunella vulgaris L	Callus culture	Silver and gold nanoparticles	Antioxidant	[33]
Cassytha filiformis	Plant extract	Silver nanoparticles	Anticancer, antifungal, antimicrobial activity	[34]
Trigonella foenum-graecum	Seed extract	Lanthanum nanoparticles	Antibacterial activity	[40]
Artocarpus lacucha	Plant extract	Alginate-chitosan	Antibacterial activity	[32]
Sueaed maritima (L) Dumort	Plant extract	Silver and gold nanoparticles	Anti-leukemic activity	[31]
Linum ustvatisissimum	Plant extract	ZnO/Zn(0H)2 nanoparticles	Antibacterial, antifungal, and antimicrobial activities	[43]
Carissa edulis	Plant extract	Zinc oxide nanoparticles	Antibacterial and antioxidant activities	[27]
Jacaranda minisimofolia	Flowers extract	Zinc oxide nanoparticles	Antimicrobial activity	[26]
Hydrocotyle rotundofolia	Leaf extract	Silver nanoparticles	Antimicrobial activity	[29]
Rhus chinensis	Galls extract	Silver nanoparticles	Antimicrobial activity	[30]
Dioscorea morbifera	Leaf extract	Silver and gold nanoparticles	Anticancer activity	[26]
Isatis tinctoria	Plant extract	Silver nanoparticles	Antileishmanial activity	[25]
Nopatapotes foetida	Leaf extract	Silver nanoparticles	Antimicrobial activity	[23]
Hovenia dalsis	Plant extract	Silver nanoparticles	Anticancer activity	[24]
Syzygium cumini	Plant extract	Silver, gold, and bimetallic nanoparticles	Antitubercular agents, antymycobacterial agent	[21]

CONCLUSION
Biofilms produced by micro-organisms are accountable for the spread of infectious disease. Biofilms have high resistance against the antibiotics which has become a threat to the human beings. It is because the biofilm restrict the penetration of antibiotics and thus prevents the killing of micro-organisms. Nanoparticles made up of medicinal plants have been observed to be helpful in killing micro-organisms. It has proved to be very significant in treating infectious disease. They have the high penetrating power which helps them to penetrate into the biofilm layer and attack microbial surface. It has been observed that a nanoparticle does not affect any organs when treated to eliminate infectious disease. Nanoparticle increases the efficiency of antibiotics and it not only has antibiofilm activity but also antibacterial, antimicrobial, anticancer, and antioxidant activities.

REFERENCES
1. Chambers HF, Deloe FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009;7(9):629-41.
2. Silva NC, Júnior AF. Biological properties of medicinal plants: A review of their antimicrobial activity. J Venom Anim Toxins Incl Trop Dis 2010;16(3):402-13.
3. Namasiyavan SK, Preethi M, Bhariani RS, Robin G, Latha B. Biofilm inhibitory effect of silver nanoparticles coated catheter against Staphylococcus aureus and evaluation of its synergistic effects with antibiotics. Int J Biol Pharm Res 2012;3(2):259-65.
4. Ghosh S, Patil S, Ahire M, Kuttle R, Kale S, Pardesi K, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 2012;7:483-96.
5. Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP. Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano Micro Lett 2012;4(1):34-9.
6. Asgarpanah J, Khoshrak R. Phytochemistry and pharmacological properties of Ruta graveolens L. J Med Plants Res 2012;6(23):3942-9.
7. Kang S, Min H. Ginseng, the ‘Immunity boost’: The effects of Panax ginseng on immune system. J Ginseng Res 2012;36(4):354-68.
8. Gautam CK, Srivastav AK, Bind S, Madhav M, Shanthi V. An insight into biofilm ecology and its applied aspects. Int J Pharm Pharm Sci 2013;5(4):69-73.
9. Namasiyavan SK, Roy EA. Anti-biofilm effect of medicinal plant extracts against clinical isolate of biofilm of Escherichia coli. Int J Pharm Pharm Sci 2013;5(2):486-9.
10. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013;3(4):a010306.
11. Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 2013;14(9):18488-501.
12. Jain P, Sharma HP, Baisi F, Barai R, Kumari S, Pathak C. Pharmacological profiles of ethno-medicinal plant: Plumbago zeylanica Linn. A review. Int J Pharm Sci Res 2014;24(1):157-63.
13. Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, et al. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 2014;9:2635-37.
14. Sivakamavalli J, Deepa O, Vaseeharan B. Discrete nanoparticles of Ruta graveolens induces the bacterial and fungal biofilm inhibition. Cell Adhes Molecules 2014;21(4):229-38.
15. Krychowiak M, Grinholc M, Banasiuk R, Krauze-Baranowska M, Glod D, Kawiak A, et al. Combination of silver nanoparticles and...
mediated synthesis of novel Au core th in presence of ZnO/Zn(OH) extract capped zinc and bacteria causing skin diseases. Chin Med J Sci 2016:43(5):946-58.

33. Fazal H, Abbasi BH, Ahmad N, Ali M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Panax ginseng L. Appl Biochem Biotechnol 2016:180(1):158-7.

34. Jena S, Singh RK, Panigrahi B, Suar M, Mandal D. Photo-bioreduction of Ag+ ions towards the generation of multifunctional silver nanoparticles: Mechanistic perspective and therapeutic potential. J Photochem Photobiol B 2016:164:306-13.

35. Chowdhury VR, MacGregor-Ramiasa M, Zilm P, Majewski P, Vasilyev K. ‘Chocolate’ silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity: J Colloid Interface Sci 2016:482:151-8.

36. Singh P, Kim YJ, Yang DC. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng seed: Characterization, antibacterial property, and spectroscopic assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol 2016:10(6):438-44.

37. Esmaeili A, Ghobadianpour S. Antibacterial activity of Carum petroselinum extract loaded MnFe2O4 nanoparticles coated with PEGylated chitosan. Desalination Water Treat 2016:57(43):20597-607.

38. Mohanta YK, Panda SK, Biswas K, Tamang A, Bandyopadhyay D, et al. Anticancer activity of silver nanoparticles from the medicinal plant Panax ginseng: Mechanistic perspective and therapeutic potential. J Photochem Photobiol B 2016:164:306-13.

39. Ghaedi M, Yousefi-Nejad M, Safarpoor M, Hashemi S, Goudarzi A, Tyagi I, et al. Investigation of phytochemical and antimicrobial properties of Linum usitatissimum in presence of ZnO/Zn(OH) nanoparticles and extraction of eucophol from Euphorbia microsciaida. Desalination Water Treat 2016:57(43):20597-607.

40. Tahir K, Nazir S, Ahmad A, Li B, Khan AU, Khan ZU, et al. Facile and green synthesis of silver nanoparticles using Pongamia pinnata leaf extracts and its anti-microbial activities. Asian J Pharm Clin Res, Vol 10, Issue 5, 2017, 64-68.