Assessment of nerve involvement in the lumbar spine: agreement between magnetic resonance imaging, physical examination and pain drawing findings

Bo C Bertilson1*, Eva Brosjö2, Hans Billing2, Lars-Erik Strender1

Abstract

Background: Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing.

Methods: Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar’s exact test, specificity, sensitivity, and positive and negative predictive values.

Results: MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively.

Conclusion: In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with “MRI-invisible” lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing.

Background

Detection of nerve involvement is considered a primary diagnostic concern in the assessment of spine disorders. This is because nerve involvement originating in the spine may indicate a need for invasive treatment and also because the resulting pain is often resistant to drug therapy and has less favourable recovery rates [1-5]. Magnetic resonance imaging (MRI) has emerged as the diagnostic method of choice for assessing spine disorders and especially for detecting nerve involvement [6-8]. MRI can be deemed to be too sensitive, with the risk of showing findings not associated with objective nerve involvement, which can lead to potentially harmful clinical measures including surgery [6]. However,
scientifically, the agreement between MRI-visible nerve involvement and other diagnostic methods remains speculative, except that severe MRI-visible nerve involvement in the lumbar spine is associated with distal leg pain, which is considered a sign of nerve involvement [8-13]. Our experience is that MRI is rather insensitive in detecting nerve involvement found in a clinical examination. This study was motivated by the discrepancy between the notion that MRI is sensitive, the science, and our experience of MRI in the assessment of lumbar spine disorders. We recognize that treatment, patient reliability and insurance questions ultimately depend largely on radiological assessment, especially the detection of MRI-visible nerve involvement [8].

The aim of this diagnostic study on 61 patients with long-standing nerve root symptoms referred for MRI of the lumbar spine was to evaluate the agreement between MRI-visible nerve involvement and findings of nerve involvement detected in a structured physical examination and in a simplified pain drawing. We present novel data on the prevalence, sensitivity, specificity and positive and negative predictive value of MRI-visible nerve involvement in relation to findings of nerve involvement detected in the physical examination and the pain drawing.

Methods

Setting and participants

From February to September 2004, all patients 18-80 years of age referred to Ersta radiological clinic in Stockholm for MRI of some part of the spine were invited to participate. A written invitation with information about the study was extended to 123 consecutive patients. Exclusion criteria were previous back surgery, life-threatening disease, inability to speak Swedish or patient known by the conductor of the physical examination. Twenty patients were thereby excluded from the study. Three more were excluded during the study; one because of lack of time, one because of claustrophobia, and one who was outside the age limit. Among the remaining 100 patients, 61 were examined with MRI of the lumbar spine and the other 39 with MRI of the cervical or thoracic spine. Only data from the 61 patients with MRI of the lumbar spine are evaluated in this paper. Data from the other patients are evaluated in a separate paper.

Referring physicians were general practitioners, orthopaedic surgeons and pain specialists working in outpatient care, who were informed about the study before their patients were invited to participate. The pain drawing, the history and the physical examination were assessed by one of the authors who has specialised in orthopaedic medicine for 20 years. Two certified radiologists each with about 10 years’ experience of spinal MRI performed assessment of the MRI. Informed consent was obtained to present patient data anonymously. The southern ethical board of the Karolinska Institutet approved the study on the 8th of December 2003.

Procedure, protocols and technique

A first assessment based on a simplified pain drawing

The pain drawing (Additional file 1) was mailed to each patient a few days before the MRI scan with instructions to fill it out at home and bring it to the MRI clinic 45 minutes prior to the appointment. On arrival to the clinic, the patient handed the pain drawing to the examiner, who made a written statement of his initial impression assessment of the drawing before any other information from the referring physicians or the patient was made known to him. A neuroanatomical distribution pattern of discomfort indicating nerve involvement [14,15] originating in the spine was assessed subjectively to answer the following questions about nerve involvement: yes/no, right/left/bilateral, grade 1 or 2 and suspected spine segment(s). Grade 2 indicated more severe nerve involvement than grade1 and was subjectively assessed based on the darkness of the shading on the pain drawing. History questionnaires were then filled out.

A second assessment based on a structured physical examination

The physical examination was performed during the half hour preceding the MRI scan. It focused on the detection of nerve involvement originating in the spine. A protocol (Additional file 2) prepared by the examiner and based on his standard examination method was filled out for each patient and assessed as described in the protocol. The dermatome map by Netter [15] was used to guide the assessment of sensibility to touch and pain in different areas of the body. All sensibility tests were done bimanually at right and left side simultaneously from the chin (C2 nerve) to the lateral part of the foot (S1 nerve)

A third assessment based on MRI

MRI was performed using a 1.0 Tesla scanner (Philips Intera) with a dedicated phased array spinal coil to produce sagittal and axial T1 and T2 spin and turbo spin echo sequences (slice thickness 3 mm, interslice gap 0.3 mm, fields of view 25 cm for sagittal and 16 cm for axial images). A protocol (Additional file 3) prepared by the radiologists and based on their standard examination method was filled out for each patient. Findings were assessed by two independent radiologists and graded as noted in the protocol or as described below in additional definitions that were determined before the start of the study. Visible nerve involvement resulting from spine processes was assessed subjectively. Each radiologist made a first assessment before reading the patient’s
history from the referring physician. Each radiologist also made a second assessment after reading the patient's history from the referring physician. The immediately preceding assessment of the pain drawing and the physical examination were not made known to the radiologists at any time.

Additional definitions not noted in the MRI protocol

- **Disc water content**: decreased; **slight** = grey or light black disc and **significant** = very dark or black. Disc height - decreased; **slight** = <50% decreased height and **significant** = >50%.
- **HIZ (high intensity zone)**: present defined as bright disc rim sign indicative of annular tear.
- **Spinal stenosis**: slight = transverse dural area >0.7 < 1.2 cm² and significant = < 0.7 cm².
- **Protrusion/protuberance grade extraforaminal**: slight = reaching to nerve and significant = deranging nerve.
- **Protrusion/protuberance grade foraminal**: slight = <50% decreased width and significant = >50%.
- **Restriction type by disc**: bulging = broad-based bulging of the disc beyond the vertebral disc margin with intact annulus fibrosus (usually < 3 mm) and hernia = focal protrusion of the disc through a defect in the annulus fibrosus into the spinal canal, foraminal or lateral space (usually > 3 mm). Findings of significant spinal stenosis were considered as findings of nerve involvement.

Analytical methods

Graded findings were dichotomised in two steps: (1) all positive findings irrespective of grade were recorded as yes and the rest as no, and (2) all positive findings of grade 2 or more were recorded as yes and the rest as no.

Inter-examiner reliability in the detailed findings of the MRI assessment was generally moderate to good in segments L2-3 and L3-4 and poor to fair in segments L4-5 and L5-S1. The radiologists differed, though not significantly, in their assessments; the one who noted more MRI-visible nerve involvement is the one whose data are used for comparison in this paper. When calculations were made from the assessments by the radiologist who noted less visible nerve involvement, the overall results given below were not altered. These assessments were not changed after the radiologists read the patient histories.

Results

Patient characteristics (Table 1)

Characteristic	Median or %
Basic characteristics	
Age, years (range)	60 (27-80)
Gender, % females	49
Length, cm (range)	173 (155-195)
Weight, kg (range)	80 (52-115)
Body mass index (range)	26 (20-40)
Born in Sweden, %	75
Current smoker, %	23
Believes MRI diagnose, %	100
Desires operation, %	85
Discomfort in low back region	
Debut, years (range)	14 (0-50)
Presently, %	89
Duration <3 months, %	21
Duration 3-12 months, %	23
Duration 1-2 years, %	8
Duration > 2 years, %	48
Discomfort into leg/foot region	
Presently, %	56
Duration <3 months, %	23
Duration 3-12 months, %	25
Duration 1-2 years, %	8
Duration > 2 years, %	44

* MRI will present explanation to their discomfort
† If MRI show surgical treatable explanation
‡ Below the buttock

MRI-visible nerve involvement and findings of nerve involvement except for sensibility to touch provide an explanation of their discomfort and 85% desired an operation if there was a surgically treatable explanation. Median time since debut of low back pain was 14 years and 44% experienced discomfort into the leg/foot region since more than 2 years.

Inter-examiner reliability

Inter-examiner reliability in the assessment of nerve involvement was generally moderate to good in segments L2-3 and L3-4 and poor to fair in segments L4-5 and L5-S1. The radiologists differed, though not significantly, in their assessments; the one who noted more MRI-visible nerve involvement is the one whose data are used for comparison in this paper. When calculations were made from the assessments by the radiologist who noted less visible nerve involvement, the overall results given below were not altered. These assessments were not changed after the radiologists read the patient histories.

Prevalence of findings (Table 2)

MRI-visible nerve involvement at any location and segment was significantly less prevalent than all grade 1 physical examination and pain drawing findings of nerve involvement except for sensibility to touch.
Table 2 Prevalence of findings in the MRI, the physical examination and pain drawing in assessing the lumbar spine (n = 61)

Segment (nerve) Location	Magnetic resonance image	Physical examination	Pain drawing					
	Visible nerve involvement	Decreased intensity zone	Increased medulla signal	Spinal stenosis	Discogenic protrusion	Bone protuberance	Disturbed sensibility	Indicating nerve involvement
		disc water	disc height				to touch	
							reflex function	
							motor function	
							Grade	
							Grade	
							Grade	
							Grade	

Grade 1 includes all positive findings, grade 2 includes all positive findings grade 2 or more; T = thoracic; L = lumbar; S = sacral

Bertilsson et al. BMC Musculoskeletal Disorders 2010, 11:202
http://www.biomedcentral.com/1471-2474/11/202
in more than 50% of the patients (data not shown). Kind were present in more than one adjacent segment in more than 50% of the patients (data not shown).

MRI findings

Nerve involvement was found in 30 patients (49%) in a total of 50 locations, most prevalent in segment L4-5 and in more than one segment in 8 patients (27%). In segments T11 to L3 there were a total of 3 MRI-visible nerve involvements making calculations on agreement, sensitivity and specificity etcetera less meaningful. However, the data and calculations on these segments are presented in additional file 4 and 5.

The most prevalent disc pathology finding was decreased water content and the most prevalent space-restricting finding was discoligament protrusion; 93% and 79%, respectively, had these findings of at least grade 1 in any one segment. The least prevalent finding was medulla cord signal with 0%. All MRI findings were most prevalent in segments L4-S1 and least prevalent in segments T11-L1. Decreased disc water content and height as well as discoligament protrusion occurred in more than one segment in more than 50% of the patients (data not shown).

Physical examination findings of nerve involvement

Disturbed motor function was the most prevalent finding and disturbed sensibility to touch the least; 80% and 57%, respectively, had these findings of at least grade 1 in any one segment. All physical examination findings were most prevalent in segment L4-5 and least in segment T11-12. Physical examination findings of every kind were present in more than one adjacent segment in more than 50% of the patients (data not shown).

Pain drawing findings of nerve involvement

A neuroanatomical distribution pattern of discomfort indicating nerve involvement originating in the spine was found in 95% of the patients. These findings were most prevalent for segment L4-5 and least for segments T11-L1. They included more than one adjacent segment in 24% of the patients (data not shown).

Agreement between MRI-visible nerve involvement and findings of nerve involvement detected in the physical examination and pain drawing (Table 3)

Considering findings irrespective of grade in the physical examination and pain drawing

The mean overall agreement for MRI-defined nerve involvement at any location in segments T11-S1 ranged from 72 to 90%, with a pain drawing indicating nerve involvement showing the best agreement with MRI-visible nerve involvement. For disturbed sensibility to touch, pain and disturbed motor function, the overall agreement for findings of grade 2 or more was significantly greater (respectively p = 0.002, p = 0.000 and p = 0.000) than the overall agreement for findings irrespective of grade. The lowest overall agreement for all tests (56-64%) was observed in segment L4-5. McNe- mar’s test showed a significant difference between MRI and physical examination/pain drawing findings of nerve involvement in less than 20% of all locations.

Sensitivity, specificity, and positive and negative predictive values of MRI-visible nerve involvement to findings of nerve involvement detected in the physical examination and pain drawing (Table 4)

Considering findings irrespective of grade in the physical examination and pain drawing

The mean sensitivity for MRI-visible nerve involvement to the presence of physical examination and/or pain drawing findings of nerve involvement at any location in segments T11-S1 ranged from 10 to 20% depending on the test; sensitivity was lowest for disturbed sensibility to pain or touch and highest for disturbed reflex function. This means that at best 1 out of 5 and at worst 1 out of 10 patients with a physical examination finding indicating nerve involvement originating in the lumbar spine were considered as MRI-visible nerve involvement. Sensitivity was lower in the upper segments and higher in segment L4-5 (at any location), where 16-37% of the positive physical examination/pain drawing findings were considered as MRI-visible nerve involvement.

The mean specificity for MRI-visible nerve involvement to the absence of physical examination and/or pain drawing findings of nerve involvement at any location in segments T11-S1 ranged from 85-92%. Specificity was lowest for the absence of disturbed reflex function and highest for the absence of a pain drawing indicating nerve involvement. Specificity was lower in segment L4-5 (at any location 61-77%) and higher in the upper segments. This means that about 1/3 to 1/4 of those having no physical examination or pain drawing finding indicating nerve involvement in segment L4-5.
Segment (nerve)	Location	Patients	MRI	Overall	P	Physical examination	Pain drawing	Overall	P	
L 3-4	right	7	11	79 °	70 °	64 ° 0.017	67 ° 0.012	77 °	70 ° 0.012	
(L4)	left	5	8	74 °	54 ° 0.001	66 ° 0.002	64 ° 0.004	84 °	54 ° 0.001	
	bilateral	4	7	89 °	84 °	69 ° 0.004	79 °	87 °	84 ° 0.004	
	any	8	13	67 °	41 ° 0.001	61 ° 0.007	52 °	74 °	41 ° 0.001	
L 4-5	right	11	18	69 °	67 °	62 ° 0.001	61 °	49 °	62 ° 0.001	
(L5)	left	13	21	62 °	54 ° 0.036	54 ° 0.036	56 ° 0.002	39 °	54 ° 0.036	
	bilateral	6	10	89 °	84 °	59 ° 0.001	70 ° 0.031	56 °	84 ° 0.001	
	any	18	30	43 °	41 ° 0.011	57 ° 0.029	46 ° 0.005	43 °	41 ° 0.011	
L 5-S1	right	4	7	82 °	79 °	64 ° 0.001	79 ° 0.023	79 °	79 ° 0.023	
(S1)	left	7	11	74 °	66 ° 0.027	46 ° 0.004	75 °	85 °	66 ° 0.004	
	bilateral	0	0	97 °	93 °	66 ° 0.008	85 ° 0.004	85 °	93 ° 0.008	
	any	11	18	62 °	54 ° 0.013	44 ° 0.003	57 ° 0.029	72 °	54 ° 0.013	
T11-S1 mean of										
any	69	54	65	56	83					

Dichotomised findings irrespective of grade in the physical examination and pain drawing

| Segment (nerve) | Location | Patients | MRI | Overall | P | Physical examination | Pain drawing | Overall | P |
|----------------|----------|----------|-----|---------|---|----------------------|-------------|---------|---|---------|---|---------|---|---------|---|---------|---|---------|---|---------|---|---------|---|
| L 3-4 | right | 7 | 11 | 89 ° 0.016 | 85 ° | 72 ° 0.016 | 85 ° 0.016 | 89 ° | 0.016 |
| (L4) | left | 5 | 8 | 90 ° 0.001 | 84 ° | 74 ° 0.001 | 85 ° 0.001 | 92 ° | 0.001 |
| | bilateral| 4 | 7 | 93 ° 0.039 | 92 ° | 77 ° 0.004 | 93 ° 0.004 | 93 ° | 0.004 |
| | any | 8 | 13 | 85 ° 0.021 | 89 ° | 69 ° 0.021 | 77 ° 0.008 | 87 ° | 0.008 |
| L 4-5 | right | 11 | 18 | 75 ° 0.007 | 75 ° | 64 ° 0.007 | 70 ° 0.007 | 75 ° | 0.007 |
| (L5) | left | 13 | 21 | 74 ° 0.021 | 69 ° | 64 ° 0.021 | 70 ° 0.021 | 75 ° | 0.021 |
| | bilateral| 6 | 10 | 89 ° 0.023 | 89 ° | 69 ° 0.001 | 82 ° 0.031 | 90 ° | 0.031 |
| | any | 18 | 30 | 61 ° 0.001 | 56 ° | 59 ° 0.021 | 59 ° 0.039 | 64 ° | 0.039 |
| L 5-S1 | right | 4 | 7 | 92 ° 0.001 | 90 ° | 74 ° 0.001 | 90 ° 0.001 | 90 ° | 0.001 |
| (S1) | left | 7 | 11 | 85 ° 0.021 | 85 ° | 66 ° 0.021 | 85 ° 0.021 | 85 ° | 0.021 |
| | bilateral| 0 | 0 | 100 ° 0.001 | 100 °| 79 ° 0.001 | 98 ° 0.001 | 98 ° | 0.001 |
| | any | 11 | 18 | 77 ° 0.010 | 75 ° | 61 ° 0.010 | 79 ° 0.010 | 80 ° | 0.010 |
| T11-S1 mean of | | | | | | | | | |
| any | 87 | 80 | 72 | 79 | 80 | | | | |

McN = p-value for exact McNemar significance probability test; T = thoracic; L = lumbar; S = sacral; ° = non significant p-value (> 0.05)
were considered as having MRI-visible nerve involvement in segment L4-5.

The mean positive predictive value for MRI-visible nerve involvement at any location in segments T11-S1 ranged from 18 to 42%. The lowest value was for disturbed sensibility to touch and the highest for disturbed reflex function. The positive predictive value in segment L4-5 (at any location) ranged from 22 to 78%, with the lowest value for disturbed sensibility to touch and the highest for a pain drawing indicating nerve involvement.

The mean negative predictive value for MRI-visible nerve involvement at any location in segments T11-S1 ranged from 56 to 83%. The lowest value was no disturbed sensibility to pain and no disturbed motor function, and the highest for a pain drawing indicating no nerve involvement.

The mean positive predictive value for MRI-visible nerve involvement at any location in segments T11-S1 ranged from 18 to 42%. The lowest value was for disturbed sensibility to touch and the highest for disturbed reflex function. The positive predictive value in segment L4-5 (at any location) ranged from 22 to 78%, with the lowest value for disturbed sensibility to touch and the highest for a pain drawing indicating nerve involvement.

The mean negative predictive value for MRI-visible nerve involvement at any location in segments T11-S1 ranged from 56 to 83%. The lowest value was no disturbed sensibility to pain and no disturbed motor function, and the highest for a pain drawing indicating no nerve involvement.

Considering findings of grade 2 or more in the physical examination and pain drawing (data not shown)

With one exception, the mean sensitivity and specificity for MRI-visible nerve involvement at any location in segments T11-S1 did not differ significantly from the observations made irrespective of grade in the physical examination and pain drawing. The mean positive and negative predictive values for MRI-visible nerve involvement at any location in segments T11-S1 respectively decreased and increased significantly for all tests of grade 2. This means that MRI-visible nerve involvement was significantly less often confirmed as a grade 2 than a grade 1 positive physical examination/pain drawing finding. Also, patients with no MRI-visible nerve involvement lacked a grade 2 positive physical examination/pain drawing finding significantly more often than a grade 1.

Discussion

The results of this diagnostic study on patients with long-standing nerve root symptoms referred for MRI of the lumbar spine showed that MRI-visible nerve involvement was significantly less prevalent than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement. The sensitivity, specificity, and positive and negative predictive values of MRI-visible nerve involvement to findings of nerve involvement detected in the structured physical examination and/or the simplified pain drawing do not support the notion that MRI is the diagnostic method of
choice for detecting nerve involvement originating in the spine.

The mean sensitivity of MRI-visible nerve involvement to a positive neurological test of any degree was at best 20% for disturbed reflex function and at worst 10% for disturbed sensibility to pain. This means that for most patients, nerve involvement detected in a physical examination and/or pain drawing may go undetected if the clinician believes the MRI assessment of nerve involvement. This observation contrasts with the views of experts who suggest that the (greater) sensitivity of MRI in detecting spinal disorders can lead to potentially harmful clinical measures, for example surgery [6]. Roland et al. even suggest that a radiological report should include a caution to the effect that the clinician, and in the end the patient, should not worry about abnormalities seen on the MRI [17]. Such suggestions may explain why patients with back pain generally have very high expectations of the diagnostic value of MRI, at least believing that it will not fail to find the explanation for their discomfort, and therefore desire to have a scan. In our patient sample, 100% believed the MRI would (finally) provide the explanation for their discomfort, which for the median patient had started 14 years earlier and had plagued them to the extent that 85% desired back surgery after having been through years of conservative treatment. About half of these patients - and the referring clinicians - in the end received radiological reports that showed no visible nerve involvement. In accordance with clinical practice, this usually means that the patient’s discomfort is labelled “non-specific” and therefore continues to receive conservative treatment and/or is referred for psychosocial treatment strategies.

Our study adds to earlier studies that have shown a weak agreement between MRI-visible nerve involvement and other findings of nerve involvement in the assessment of the lumbar spine [8,9,13,18,19]. One possible explanation to the weak agreement is that the standard MRI recording is made with the patient in supine position with minimal axial loading of the lumbar spine and consequently reasonably less bulging of discs. Another possible explanation to the weak agreement is that previous disc herniation caused pressure damage and pathologies other than standard MRI-visible nerve involvement can elicit nerve involvement. Studies have shown that inflammatory cytokines from leaking discs, functional instability and fluctuating disc bulges and restrictions caused by discoligament injuries, some visible on functional MRI, can elicit radiating pain and nerve involvement from the spine [20-25]. One hypothesis is that even minor MRI findings should be considered potential causes of nerve involvement. Our results give some support to this hypothesis as we observe that the prevalence of MRI findings of decreased disc water and height and protrusion, and of the physical examination findings of disturbed sensibility to pain and disturbed motor function and pain drawing findings of nerve involvement were in the same quartile (between 77 and 95%).

The correlation between MRI visible findings and treatment outcome has been studied. A contained herniated/bulging disc (not necessarily with visible nerve involvement) has been found indicative of a negative outcome in conservative treatment of lumbar radiculopathy [26,27]. On the contrary, a broad-based, extruded or sequestered disc is not indicative of a negative outcome [26,27]. This may be due to the well-known fact that the latter types of disc herniations are prone to be resorbed as opposed to the contained bulging disc [28-30]. We agree with Jensen et al saying: "The time has come for clinicians to take the consequences of the fact that the "size" does matter, meaning that the more "prominent" the herniation is, the better..." and that "Pressure on the nerve root is not the crux of the matter" [27,30] even though some patients with acute cauda equina need prompt surgical intervention.

The correlation between clinical or other findings and treatment outcome has also been studied. Komori et al found that sensory disturbance was the most significant predicting factor of a negative conservative treatment outcome of lumbar radiculopathy [26]. On the other hand, the often used straight leg raising nerve tension test showed no significant correlation with treatment outcome [26]. Correlation between clinical findings of nerve involvement and a negative outcome of surgery of lumbar disc hernia has also been shown, indicating the need for careful pre- and postoperative neurological examination [31-33]. Laboratory findings like higher levels of neurofilament protein in the cerebrospinal fluid before surgery does also correlate to post-operative sequelae [34]. Neurofilament protein in the cerebrospinal fluid may indicate permanent damage of axons and Schwann cells in the affected nerve root and this may explain why about 1/3 of patients have persisting sensory and/or reflex deficits one year post-operatively while motor function tends to improve to a greater extent [32,35,36]. Weber found that 35% of patients with lumbar disc herniation still had sensory dysfunctions demonstrable 10 years after treatment. These observations are in line with our findings of sensory, reflex and motor function grade 2 deficits in about 1/3 of our patients and add emphasise to the need for more careful neurological examination and development of new treatment strategies for neuropathic pain which often does not resolve with time [5].

We do agree with the notion that an MRI report, made and/or read by less updated personnel, can lead to
potentially harmful clinical measures, but the reason is
not a high but rather a low sensitivity of MRI in detect-
ing nerve involvement. It may be that the need for spe-
cific medication against nerve involvement and even
invasive methods would be indicated more often if the
low sensitivity of MRI in detecting nerve involvement
observed in this study was considered [37]. Other poten-
tially harmful clinical consequences if there is no MRI-
visible nerve involvement include the diagnosis “non-
specific” given to 80-90% of all patients with lumbar
spine disorders, which may be translated by some col-
leagues and insurance personnel into dysfunctional,
somatic, psychosomatic or even “non-existent”. Such a
diagnosis is often considered an insult by the patient
suffering spinal pain and may leave him or her without
hope for the future [38]. Non-specific pain per se may
be more detrimental than pain due to a known cause
and may contribute to the poor outcome of low back
pain treatment [39,40]. Better diagnostic and treatment
strategies and antidotes are needed for patients who
may suffer physically and mentally from today’s “MRI-
invisible” symptoms [41].

An interesting observation is that findings of disturbed
sensibility to touch and pain often occurred in more
than one single dermatome. Chen has reported similar
findings in patients with cervical disc protrusions [42].
In our study, this observation also applied to motor and
reflex findings. A possible explanation is that a discol-
gament injury causing biochemical and/or mechanical
stress to a nerve can initiate motor-sensory axonal neu-
ropathy, which can progress both distally and proximally
along nerve tracts [43,44]. The observation of wide-
spread sensory and motor dysfunction seems to be
related to the idea of sensitization. However, our patient
sample generally had findings of nerve involvement
spread from one injured spinal segment to surrounding
areas and not to the whole body. Further studies are
needed to explore possible mechanisms [45-47].

Figure 1 exemplifies a case in which the radiologist
noted no MRI-visible nerve involvement but the physi-
cal examination and pain drawing did, i.e. the specificity
of MRI in determining nerve involvement was question-
able. The physical examination findings also showed
widespread disturbed sensibility in dermatomes adjacent
to the most affected dermatome (L5). Figure 2 exempli-
fies a case in which MRI-visible nerve involvement was
observed but there were almost no physical examination
findings of nerve involvement, i.e. the specificity of MRI
in determining nerve involvement was questionable.

Limitations
The lack of a gold standard for detecting nerve involve-
ment with which MRI and other diagnostic methods
may be compared in the assessment of lumbar spine
disorders is a major limitation [48]. Electro-diagnostic
procedures are sometimes used as a gold standard for
detecting nerve involvement. However, conventional
electro-diagnostic procedures leave the function of
small-calibre afferent fibres unexplored and therefore
cannot identify the basis for positive sensory findings
[49-52]. Even quantitative sensory testing, which is con-
sidered to include small fibre testing, seems to underes-
timate the prevalence of disturbed sensibility to touch
in patients with partial nerve injury [53]. Myelography,
discography and/or root blocks are used to confirm
symptomatic discs and/or roots but these procedures
have been less thoroughly evaluated and may not be
considered gold standards for detecting nerve involve-
ment [54]. In this study we chose the simple yet thor-
ough physical examination and pain drawing methods
for detecting nerve involvement originating in the spine
and for comparison with MRI findings. This method for
detecting nerve involvement has been suggested by The
International Association for the Study of Pain [50,55].

The reliability and validity of these diagnostic methods
must therefore be considered. For that purpose we per-
formed reliability studies on clinical tests prior to this
study. In those prior studies we found the highest inter-
examiner reliability (kappa 0.67 with known patient
history) for the bimanual sensibility to pain test with
spurs described by Bertilson et al. [56,57]. Furthermore,
validity was indirectly tested in another study where
sensibility findings were compared to pain drawing pat-
terns of nerve involvement and a 90% concordance with
affected nerves was found [58]. Other studies on clinical
tests in the assessment of nerve involvement have come
to similar results; sensory testing generally shows good
reliability as do motor function tests, while reflex func-
tion seems less reliable [59,60]. Inter-examiner reliability
in various assessment of the pain drawing has been stu-
died and generally been shown to be good [61-63]. The
validity of the pain drawing has also been tested and
70-90% concordance with myelographic, computer
tomographic/discographic and per-operative findings of
disc pathology in the lumbar spine have been found
[64-68]. Rankine when comparing pain drawing assess-
ment of nerve root compression with MRI visible nerve
root compression found that the pain drawing correctly
classified only 58% of the patients [69]. However, the
method used by Rankine to assess the pain drawing
for nerve involvement by dividing up the lower body in
regions was not the same as we used (assessing neuroa-
natomical distribution patterns like dermatome, myotome
and/or sclerotome distribution of symptoms). Our results
may therefore not be comparable.

Another limitation to consider is varying inter-exami-
ner reliability in MRI assessment. However, similar reli-
bility has been reported previously [70,71]. We present
calculations based on the data from the radiologist who noted more (but not significantly more) visible nerve involvement. We refrain from presenting the other radiologist’s assessments, as they would clutter the paper with data without adding any new insight.

Further limitations include the fact that the amount of statistical analyses makes possible that mass significance can influence the results. However, the difference in prevalence between findings of nerve involvement in the MRI and the pain drawing and the physical examination are not influenced by mass significance and these are the main findings upon which all other analyses are based.

Also a limitation is that the same examiner made the assessment of the pain drawing and the physical examination - having the pain drawing in memory - which could theoretically have influenced the physical examination findings. However, a prior study showed that knowledge of history and the pain drawing did not influence physical examination findings significantly [56].

A limitation to the generalisation of our results is that our patient sample had long-standing symptoms of low back pain (median debut 14 years prior) and radiation into the leg (44% > 2 years). However, patients with long-standing nerve root symptoms are those who rely
most on MRI results for their future treatment; understanding and welfare, so we consider them most appropriate to study.

We acknowledge that normally a diagnosis is made on the basis of a sum of observations with varying reliability and validity. However, in this study we wanted to specifically compare a few of the main diagnostic methods as we consider that these methods - especially the MRI - are more commonly relied upon in the overall diagnostic conclusion.

Future studies

Future studies may evaluate the agreement of other MRI findings of different grades and preferably more functional MRI recordings (for example while standing, sitting and moving the spine) with pain drawing and physical examination findings indicating nerve involvement and also with other diagnostic methods of nerve involvement such as electrophysiological methods [72]. Larger and more homogeneous patient samples will add internal and external validity to these studies.

Conclusion

In this diagnostic study on 61 patients with long-standing nerve root symptoms referred for MRI of the lumbar spine we found that MRI-visible nerve involvement significantly underestimated the prevalence of, and showed weak agreement with, findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. The notion that MRI is the diagnostic method of choice in detecting nerve involvement originating in the spine must be questioned. Factors
other than nerve involvement visible on MRI may be responsible for findings of nerve involvement in the physical examination and the pain drawing. Using a structured physical examination and a simplified pain drawing in assessing lumbar spine disorders, especially on patients with “MRI-invisible” symptoms, may indicate that these symptoms are less “non-specific” or psychosomatic than hitherto believed and that the patients may need treatment aimed at nerve involvement.

Additional material

Additional file 1: The simplified pain drawing.
Additional file 2: The structured physical examination protocol.
Additional file 3: MRI protocol lumbar spine.
Additional file 4: Ad Table 3 Agreement between MRI-visible nerve involvement and findings of nerve involvement detected in the physical examination and pain drawing in assessing the lumbar spine (n = 61).
Additional file 5: Ad Table 4 Sensitivity, specificity, and positive and negative predictive values of MRI-visible nerve involvement to findings of nerve involvement detected in the physical examination and pain drawing in assessing the lumbar spine (n = 61).

Acknowledgements
The Stockholm County Council funded this work. Hassan Alinaghizadeh, Sven-Erik Johansson and Robert Szulkin provided statistical consultation.

Author details
1. Center for Family and Community Medicine, Karolinska Institutet, Alfred Nobels allé 12, 141 85 Huddinge, Stockholm, Sweden. 2. Radiological department, Ersta Hospital, Fjällgatan 44 Södermalm, Box 4622, 116 91 Stockholm, Sweden.

Authors’ contributions
BCB, LES, EB and HB designed this study. BCB made the clinical examinations and assessments. EB and HB made the radiological examinations and assessments. BCB prepared the manuscript. All authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 November 2008 Accepted: 10 September 2010 Published: 10 September 2010

References
1. Diwarkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Masiakowski C, Nurmikko TJ, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007, 132(3):237-251.
2. Haswell K, Gilmour J, Moore B. Clinical decision rules for identification of low back pain patients with neurologic involvement in primary care. Spine 2008, 33(1):68-73.
3. Haefeli M, Effering A. Pain assessment. Eur Spine J 2006, 15(Suppl 1): S17-24.
4. Koes BW, van Tulder MW, Ostelo R, Kim Burton A, Waddell G. Clinical guidelines for the management of low back pain in primary care: an international comparison. Spine 2001, 26(22):2504-2513, discussion 2513-2504.
5. Melton L. Taking a shot at neuropathic pain. The Lancet Neurology 2003, 2.
6. Nachemson A, Vingård E. Back and neck pain. Stockholm: SBU - The Swedish Council on Technology Assessment in Health Care 2000.
7. Campbell : Campbell’s Operative Orthopaedics St Louis: Mosby 2007.
8. Karpinnen J, Malmivaara A, Tervonen O, Paakko E, Kurunlahti M, Syrjälä P, Vasan P, Vanharanta H. Severity of symptoms and signs in relation to magnetic resonance imaging findings among sciatric patients. Spine 2001, 26(7):E149-154.
9. Beatte FF, Meyers SP, Stratford P, Millard RW, Hollenberg GM. Associations between patient report of symptoms and anatomic impairment visible on lumbar magnetic resonance imaging. Spine 2000, 25(7):819-828.
10. Boos N, Reder R, Schade V, Spratt KF, Semmer N, Aebi M. 1995 Volvo Award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 1995, 20(24):2613-2625.
11. Haig AJ, Tong HC, Yamakawa KS, Quint DJ, Hoff JT, Chod A, Miner JA, Choksi VR, Geisser ME, Parnes CM. Spinal stenosis, back pain, or no symptoms at all? A masked study comparing radiologic and electrodiagnostic assessments to the clinical impression. Archives of physical medicine and rehabilitation 2006, 87(7):997-903.
12. Pearson AM, Blood EA, Frymoyer JW, Herkowitz H, Abdu WA, Woodward R, Longley M, Emery SE, Lure JD, Toitson T, et al. SPORT lumbar intervertebral disk herniation and back pain: does treatment, location, or morphology matter? Spine 2008, 33(4):428-435.
13. Videman T, Battie MC, Gibbons LE, Maravilla K, Manninen H, Kaprio J. Associations between back pain history and lumbar MRI findings. Spine 2003, 28(6):582-586.
14. McCredie J, Willert HG. Longitudinal limb deficiencies and the sclerotomes. An analysis of 378 dysmorphic malformations induced by thalidomide. J Bone Joint Surg Br 1999, 81(1):9-23.
15. Netter FH. Nervous system. New York: CBA, 7 1967, 1.
16. Altman D. Practical statistics for Medical Research. Chapman and Hall, London, 1999.
17. Roland M, van Tulder M. Should radiologists change the way they report plain radiography of the spine? Lancet 1998, 352(9123):229-230.
18. Rhee JM, Schaafmele M, Abdu WA. Radiculopathy and the herniated lumbar disc. Controversies regarding pathophysiology and management. The Journal of bone and joint surgery 2006, 88(9):2070-2080.
19. Reihani-Kermani H. Correlation of clinical presentation with intraoperative level diagnosis in lower lumbar disc herniation. Ann Saudi Med 2004, 24(4):273-275.
20. Braby H. Pathology and possible mechanisms of nervous system response to disc degeneration. The Journal of bone and joint surgery 2006, 88(Suppl 2):68-71.
21. Olmarker K, Larsson K. Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine 1998, 23(23):2538-2544.
22. Schaifers M, Swensson Č, Sommar C, Sorkin LS. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 2003, 23(7):2517-2521.
23. Nakenes J, Kaale BR. Magnetic resonance imaging assessment of craniovertebral ligaments and membranes after whiplash trauma. Spine 2006, 31(24):2820-2826.
24. Madsen R, Jensen TS, Pope M, Sorensen JS, Rendsvik T. The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis. Spine 2008, 33(11):161-67.
25. Zou J, Yang H, Miyazaki M, Wei F, Hong SW, Yoon SH, Morishita Y, Wang JC. Missed lumbar disc herniations diagnosed with kinetic magnetic resonance imaging. Spine 2008, 33(15):140-144.
26. Komori H, Okawa A, Haro H, Shionoya Ki K. Factors predicting the prognosis of lumbar radiculopathy due to disc herniation. J Orthop Sci 2002, 7(1):56-61.
27. Jensen TS, Albert HB, Sorensen JS, Manniche C, Leboeuf-Yde C. Magnetic resonance imaging findings as predictors of clinical outcome in patients with sciatica receiving active conservative treatment. Journal of manipulative and physiological therapeutics 2007, 30(2):98-108.
28. Auto RA, Karpipin J, Niinimaki J, Qaja R, Kurunlahti M, Haapea M, Vanharanta H, Tervonen O: Determinants of spontaneous resorption of intervertebral disc herniations. Spine (Phila Pa 1976) 2006, 31(11):1247-1252.
29. Benost M. The natural history of lumbar disc herniation and radiculopathy. Joint Bone Spine 2002, 69(2):155-160.
30. Jensen TS, Albert HB, Sorensen JS, Manniche C, Leboeuf-Yde C. Natural course of disc morphology in patients with sciatica: an MRI study using a standardized quantitative classification system. Spine 2006, 31(14):1605-1612, discussion 1613.
Eysel P, Rompe JD, Hopf C: Prognostic criteria of discogenic paresis. Eur Spine J 1994, 3(4):214-218.

Jansson B, Stromqvist B: Neurologic signs in lumbar disc herniation. Preoperative affliction and postoperative recovery in 150 cases. Acta orthopaedica Scandinavica 1996, 67(5):466-469.

Barnios C, Ahmed M, Aramtegu J, Bjoransson S: Clinical factors predicting outcome after surgery for herniated lumbar disc: an epidemiological multivariate analysis. Journal of spinal disorders 1990, 3(3):205-209.

Brisby H, Olmarker K, Rosengren L, Cederlund CG, Rydevik B: Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc herniation and sciatica. Spine 1999, 24(8):742-746.

Blaauw G, Bralakm R, Gelpke GI, Singh R: Changes in radicular function following low-back surgery. Journal of neurosurgery 1988, 69(5):649-652.

Weber H: Lumbar disc herniation. A controlled, prospective study with ten years of observation. Spine 1983, 8(2):131-140.

Brisby H: Nerve root injuries in patients with chronic low back pain. The Orthopedic clinics of North America 2003, 34(2):221-230.

Johannson EE, Hamberg K, Lindgren G, Westman G: "I've been crying my way"-qualitative analysis of a group of female patients' consultation experiences. Fam Pract 1996, 13(6):498-503.

Hansson TH, Hansson EK: The effects of common medical interventions on pain, back function, and work resumption in patients with chronic low back pain: A prospective 2-year cohort study in six countries. Spine 2000, 25(23):3025-3034.

Mortimer M, Pernold G, Viktorin C: Low back pain in a general population. Natural course and influence of physical exercise—a 5-year follow-up of the Musculoskeletal Intervention Center-Norrtalje Study. Spine 2006, 31(26):3045-3051.

Bredt DS, Ritter SM: Nonsurgical management of low back pain and lumbar disk degeneration, Instructional course lectures 2005, 54:279-286.

Chen TY: The clinical presentation of uppermost cervical disc protrusion. Spine 2000, 25(4):439-442.

Smith PW, Jeffrey ND: Histological and ultrastructural analysis of white matter damage after normally-occurring spinal cord injury. Brain Pathol 2006, 16(2):99-109.

Todou MO, Keirstead HS: Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 2005, 486(4):373-383.

Jørgensen K, Johansen P, Nielsen P: Changes in radicular function and disc herniation and sciatica. Spine 1999, 24(8):742-746.

Morita Y, Nakamura K, Nakamura K: The sensitivity and specificity of electrodiagnostic tests assessing intervertebral disc pathology. Eur Spine J 1999, 8(2):126-131.

Ohnmeiss DD, Vanharanta H, Ekholm J: Relation between pain location and disc pathology: a study of pain drawings and CT/discography. The Clinical journal of pain 1999, 15(3):210-217.

Ohnmeiss DD, Vanharanta H, Ekholm J: Relationship of pain drawings to invasive tests assessing intervertebral disc pathology. Eur Spine J 1999, 8(2):126-131.

Ohnmeiss DD, Vanharanta H, Gayer RD: The association between pain drawings and computed tomographic/discographic pain responses. Spine 1995, 20(6):729-733.

Vucetic N, Maartanen H, Svensson O: Pain and pathology in lumbar disc hernia. Clin Orthop 1995, 320: 65-72.

Rankine JJ, Fortune DG, Hutchinson CE, Hughes DG, Main CJ: Pain drawings in the assessment of nerve root compression: a comparative study with lumbar spine magnetic resonance imaging. Spine 1998, 23(15):1668-1676.

Brant-Zawadzki MN, Jensen MC, Obuchowski N, Ross JS, Modic MT: Interobserver and intraobserver variability in interpretation of lumbar disc abnormalities: A comparison of two nomenclatures. Spine 1995, 20(11):1257-1263, discussion 1264.

Lutie JD, Tosteson AN, Tosteson TD, Carasee E, Carino J, Kaiser J, Segovias RT, Leconte AR, Grove MR, Blood EA, et al: Reliability of magnetic resonance imaging readings for lumbar disc herniation in the Spine Patient Outcomes Research Trial (SPORT). Spine 2008, 33(9):991-998.

Matsuda H, Tsi CL, Tseng CY, Norigage A, Tsai TM, Dai YC, Jou IM: Neurophysiologic changes after preganglionic and postganglionic nerve-root constriction: an experimental study in the rat. Spine 2007, 32(9):950-958.

Pre-publication history
The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2474/11/202/prepub

doi:10.1186/1471-2474-11-202

Cite this article as: Bertilson et al: Assessment of nerve involvement in the lumbar spine: agreement between magnetic resonance imaging, physical examination and pain drawing findings. BMC Musculoskeletal Disorders 2010 11:202.