Surfactant protein B (SP-B), a hydrophobic protein of pulmonary surfactant, is essential for maintenance of biophysical properties and physiological function of surfactant. SP-B mRNA expression is restricted to alveolar type II epithelial cells and bronchiolar epithelial cells (Clara cells) of adult lung. We previously (Margana, R. K., and Boggaram, V. (1996) Am. J. Physiol. 270, L601–L612) found that a minimal promoter region (−236 to +39) of rabbit SP-B gene is sufficient for high level expression of chloramphenicol acetyltransferase reporter gene in NCI-H441 cells, a cell line with characteristics of Clara cells. In the present study we used mutational analysis, electrophoretic mobility shift assays, and DNase I footprinting to identify cis-DNA regulatory elements and trans-acting protein factors required for lung cell-specific expression of SP-B gene. We found that in addition to thyroid transcription factor 1 (TTF-1) and hepatocyte nuclear factor nuclear factor 3α (HNF-3α) binding sites, two spatially separate DNA sequences that bind Sp1 and Sp3 factors are necessary for the maintenance of SP-B promoter activity. Mutation of any one of the transcription factor binding sites caused a significant reduction in SP-B promoter activity suggesting that Sp1, Sp3, and TTF-1 and HNF-3α interact cooperatively with SP-B promoter to activate gene transcription.

Surfactant protein B (SP-B), a hydrophobic protein of pulmonary surfactant, is essential for maintenance of biophysical properties and physiological function of surfactant (1). The critical role of SP-B in surfactant function is suggested by its deficiency in newborns with congenital alveolar proteinosis (2). Infants diagnosed with alveolar proteinosis die of respiratory failure despite maximal medical assistance. Targeted disruption of SP-B gene causes abnormalities of surfactant metabolism and respiratory failure in newborn mice, further supporting the important role of SP-B in lung function (3). SP-B mRNA is developmentally induced and in adult lung SP-B mRNA is expressed in a highly cell type-specific manner in alveolar type II cells and bronchiolar epithelial (Clara) cells (4, 5). SP-B mRNA is increased by glucocorticoids and agents that increase intracellular cyclic AMP (6–10).

Transcription initiation plays a key role in the control of gene expression during terminal differentiation of cell types. Activation of cell/tissue-specific gene transcription is dependent on interactions between transcription factors (activators and repressors), some of which are expressed widely and others are restricted in their distribution, and the general transcriptional machinery (11, 12). How interactions between various transcription factors result in cell/tissue-specific activation of gene transcription is not yet well understood.

We previously isolated and sequenced rabbit SP-B gene and determined that a minimal SP-B promoter region spanning −236 to +39 nucleotides is sufficient for high level expression of CAT reporter gene in a cell-specific manner in NCI-H441 cells, a human pulmonary adenocarcinoma cell line with characteristics of Clara cells (13). We also determined that the SP-B minimal promoter contained a lung cell/tissue-specific enhancer (13). SP-B promoter activity was enhanced in HeLa cells by co-expression of thyroid transcription factor 1 (TTF-1), suggesting that it contained sequence element(s) for TTF-1 binding (13). TTF-1 and hepatocyte nuclear factor nuclear factor 3α (HNF-3α) have been shown recently to play important roles in human SP-B promoter activity in NCI-H441 cells (14, 15). TTF-1 and HNF-3 are also expressed in tissues other than lung, and during lung development TTF-1 and HNF-3 are expressed before differentiation of alveolar type II cells and expression of SP-B mRNA (16, 17). These observations suggest that TTF-1 and HNF-3 are not sufficient for cell type-specific activation of SP-B gene transcription and that additional factors might be required for activation of SP-B gene transcription.

The objective of our investigation was to identify cis-acting DNA elements and interacting protein factors necessary for lung cell-specific expression of rabbit SP-B gene. We used mutational analysis, electrophoretic mobility shift assays, and DNase I footprinting to identify DNA sequence elements and interacting protein factors important for the functional activity of SP-B promoter. We found that in addition to TTF-1 and HNF-3 binding sites, two spatially separate DNA sequences that bind Sp1 and Sp3 factors play critical roles in maintaining functional activity of SP-B promoter. Mutation of any one of these sites resulted in a significant reduction in SP-B promoter activity, suggesting that combined or cooperative interactions of Sp1, Sp3, and TTF-1 and HNF-3α transcription factors with SP-B promoter is necessary for activation of gene transcription. Some of the findings reported in the present study have been presented in preliminary form (18).

MATERIALS AND METHODS

Nuclear Extract Preparation—Nuclear extracts from NCI-H441 cells and other cells were prepared according to the method described by Ausubel et al. (19). Typically cells from 10 confluent 75-cm² flasks were used for preparation of nuclear extracts. Nuclear extracts were aliquoted into chilled tubes and rapidly frozen in liquid nitrogen and stored at −80 °C. The protein concentration of nuclear extract was determined by Bio-Rad protein assay (20).

DNase I Footprinting—DNase I footprinting reactions were per-
formed as described by Lakin (21) with modifications. The sense and antisense strands of SP-B fragment −236 to +39 were labeled as follows: pSKCATAS (22) containing SP-B fragment from −236 to +39 was linearized with BamHI or HindIII, and the DNA was dephosphorylated. Deyphosphorylated DNA was digested with PstI or BamHI to release the SP-B fragment, and the fragment was end-labeled using [γ-32P]ATP and T4 polynucleotide kinase. For footprinting, 0.5–1 ng of labeled DNA probe (2.5–5.0 × 10^6 cpm) was incubated with H441 or Heps2 cells (100 units), streptomycin (100 μg/ml) and heparin (100 units), in a total volume of 20 μl. The DNA binding site is underlined, and the desired mutation(s), and the other three oligonucleotides were designed to allow selective amplification of the mutant DNA fragment containing mutations in the Max binding motif at +30 was obtained by PCR amplification using pSKCATAS containing SP-B primer fragment −730 to +39 as the template and upstream primer (−246, sense), 5′-CTGTTAGACGGGATCCAGAACCGGCTCTG-3′ and downstream primer (+50, antisense), 5′-CTGGTCAGCCAGGCAGGTCGCTC-3′. The DNA binding site is underlined, and the mutated nucleotides are shown in bold italics. BamHI and PstI sites are shown in italics. In all cases the final purified DNA was phenol/CHCl3-extracted and digested with BamHI and PstI. The digested DNA was purified by agarose gel electrophoresis and inserted upstream of CAT gene in pSKCATAS. The sequence of insert DNA was determined to verify that it contained the desired mutations.

Electrophoretic Mobility Shift Assays—Double-stranded synthetic oligonucleotides were end-labeled using [γ-32P]ATP and T4 polynucleotide kinase. Electrophoretic mobility shift assays were performed by incubating 0.5 or 1.0 ng (10^6 to 2 × 10^6 cpm) of the oligonucleotide probe (Table II) with 5 μg of nuclear protein in 20 μl of binding buffer (13 mM HEPES, pH 7.9, 13% glycerol, 80 mM KC1, 5 mM MgCl2, 1 mM dithiothreitol, 1 mM EDTA, 67 μg of bovine serum albumin, and 0.2 μg of poly(dI-dC) as nonspecific competitor). Following incubation the reaction mixture was treated with 3 μl of DNase I (Promega) (5 μl of DNase I (1 unit/μl)) was diluted to 50 μl in 5 mM CaCl2 and 10 mM MgCl2) for 30 s at room temperature. DNase I reaction was terminated by addition of buffer containing 8.5 mM EDTA, 8.5 μM/ml proteinase K, 85 μg/ml tRNA, and 0.07% SDS followed by incubation at 37°C for 20 min and then at 65°C for 2 min. The samples were phenol/CHCl3-extracted, and DNA was ethanol-precipitated. DNA was dissolved in 10 μl of denaturing loading solution (90% formamide, 10 mM EDTA, pH 8.0, 0.01% bromphenolblue, and 0.01% xylenecyanol) and analyzed on a 6% denaturing polyacrylamide gel. Plasmid Constructions and Site-directed Mutagenesis—pSKCATAS containing SP-B promoter fragment −236 to +39 or −730 to +39 served as the template for site-directed mutagenesis by PCR amplification using mutagenic oligonucleotides as primers (sense) for selective amplification of the mutant DNA fragments containing mutations in the Max binding motif at +30 was obtained by PCR amplification using pSKCATAS containing SP-B primer fragment −730 to +39 as the template and upstream primer (−246, sense), 5′-CTGTTAGACGGGATCCAGAACCGGCTCTG-3′ and downstream primer (+50, antisense), 5′-CTGGTCAGCCAGGCAGGTCGCTC-3′. The DNA binding site is underlined, and the mutated nucleotides are shown in bold italics. In all cases the final purified DNA was phenol/CHCl3-extracted and digested with BamHI and PstI. The digested DNA was purified by agarose gel electrophoresis and inserted upstream of CAT gene in pSKCATAS. The sequence of insert DNA was determined to verify that it contained the desired mutations.

Electrophoretic Mobility Shift Assays—Double-stranded synthetic oligonucleotides were end-labeled using [γ-32P]ATP and T4 polynucleotide kinase. Electrophoretic mobility shift assays were performed by incubating 0.5 or 1.0 ng (10^6 to 2 × 10^6 cpm) of the oligonucleotide probe (Table II) with 5 μg of nuclear protein in 20 μl of binding buffer (13 mM HEPES, pH 7.9, 13% glycerol, 80 mM KC1, 5 mM MgCl2, 1 mM dithiothreitol, 1 mM EDTA, 67 μg of bovine serum albumin and 0.2 μg of poly(dI-dC) as nonspecific competitor) for 20 min at 30°C. In some experiments nuclear proteins were preincubated in binding buffer prior to addition of the labeled probe. Competition experiments were performed by addition of indicated molar excess of cold wild type or mutant oligonucleotides prior to addition of the labeled probe. In case of antibody supershift assays, nuclear extracts were preincubated with preimmune IgG or polyclonal antibodies to transcription factors for 1 h or overnight at 4°C prior to incubation with oligonucleotide probe. Polyclonal antibodies to human Sp1, Sp2, Sp3, and Sp4 were purchased from Santa Cruz Biotechnology. Polyclonal antibodies to forkhead domain of mouse HNF-3α, HNF-3β, and HNF-3γ were kindly supplied by Drs. Gunther Schutz and Wolfgang Schmid, German Cancer Research Center, Heidelberg, Germany. Polyclonal antisera to the N-terminal portion of rat T/EBP (TTF-1) was kindly supplied by Dr. Shioko Kimura, National Cancer Institute. After incubation the DNA-protein complexes were resolved by electrophoresis on a 4% nondenaturing polyacrylamide gel containing 0.5% TBE (0.045 M Tris-borate and 0.001 M EDTA) using 0.5 × TBE as running buffer. Electrophoresis was performed at constant current (30–35 mA) for 1.5–2 h. Gels were vacuum-dried and exposed to autoradiographic film.

Cell Culture and Transfections—Cell lines were maintained in culture medium supplemented with 10% fetal bovine serum, penicillin (100 units), streptomycin (100 μg/ml), and amphotericin B (0.25 μg/ml) at 37°C in a humidified atmosphere of 5% CO2 and air. C8-IH441 (24), a human bronchial epithelial cell line with characteristics of Clara cells which expresses SP-B endogenously, was maintained in RPMI 1640 medium. HeLa, a human cervical cancer cell line, was maintained in Dulbecco’s modified Eagle’s medium.

Plasmid DNAs were transiently transfected into cells by liposome-mediated DNA transfer using LipofectAMINE (Life Technologies, Inc.) as described previously (13). At least two independent preparations of plasmid were used for transfection experiments. Plasmid DNA (1 μg) was mixed with 0.2 μg of Galacto-Light Plus (Tropix, Bedford, MA) substrate accord-
RESULTS

SP-B Proximal Promoter Region Contains Binding Sites for Multiple Transcription Factors—Proximal promoter regions of rabbit (−236 to +39) (13) and human (−218 to +41) (26) SP-B genes display high degree of sequence conservation and support high level expression of CAT reporter gene in NCI-H441 cells (13, 27). These observations suggest that SP-B proximal promoter contains binding sites for transcription factors necessary for expression in NCI-H441 cells. DNA sequence alignment of rabbit and human SP-B promoter regions (13) showed that rabbit SP-B promoter contains sequence motifs that are nearly identical to TTF-1 and HNF-3 motifs identified in human SP-B promoter. As in the case of human SP-B promoter (14), the TTF-1 binding site in rabbit SP-B promoter has limited identity to the consensus binding sequence for TTF-1 (14), the TTF-1 binding site in rabbit SP-B promoter contains sequence motifs that are nearly identical to TTF-1 and HNF-3 motifs identified in human SP-B promoter. As in the case of human SP-B promoter (14), the TTF-1 binding site in rabbit SP-B promoter has limited identity to the consensus binding sequence for TTF-1 (14), the TTF-1 binding site in rabbit SP-B promoter contains sequence motifs that are nearly identical to TTF-1 and HNF-3 motifs identified in human SP-B promoter.

We investigated the functional importance of binding sites for Sp1, ETS, TTF-1, HNF-3, and Myc-Max transcription factors (Fig. 1). Mutations resulting in nearly 70% reduction in SP-B promoter activity and 60% reduction in TTF-1 transactivation of promoter by TTF-1 in HeLa cells. Mutation of both the ETS binding site at 162 and the 5'-TGGTTG-3' portion of consensus TTF-1 binding sequence. Mutation of the nucleotides that are similar to the sequence 5'-GGAA/T-3' drastically reduces binding of Sp1 to its binding site (31). Results showed that SP-B promoter, besides containing TTF-1 and HNF-3 sites, also contained putative binding sites for Sp1, ETS, and Myc-Max transcription factors (Fig. 1).

DNase I Footprinting Reveals Multiple Interactions between NCI-H441 Nuclear Proteins and SP-B Promoter—SP-B proximal promoter contained putative binding sites for several transcription factors. To map out regions of SP-B promoter that bind transcription factors, we analyzed the interactions of nuclear proteins present in NCI-H441 cells with SP-B promoter by DNase I footprinting assay. In DNA samples complexed with NCI-H441 nuclear proteins, several protected regions were observed (Fig. 2), suggesting that multiple proteins present in nuclear extracts of NCI-H441 cells interact with SP-B promoter. The protected regions of SP-B promoter included binding sites for Sp1, ETS, TTF-1, HNF-3, and Myc-Max transcription factors (Fig. 1).

Sp1, TTF-1, and HNF-3 Factors Are Critical for SP-B Promoter Activity—We investigated the functional importance of putative binding sites for Sp1 (−207, −130, −35), ETS (−161, −51), TTF-1 (−112, −102), HNF-3 (−88) and Myc-Max (−115, +30) transcription factors by mutational analysis (Fig. 3).

Mutated nucleotides are shown in bold italic. wt = wild type; mt = mutant; cons = consensus.

Primers	Sequence
Sp1 (−207) wt	−215 TGGAGTCGGCCAGGACAGAAGG −190 ACGGGCTGACGGTTGTTTC
Sp1 (−130) wt	−138 CGTGAGGAGGGCCTTCCAAGAC −114 CTGCCCTTCAAGAAAGTTG
Sp1 (−30) wt	−50 TCCATGCCTCCCGCCCAAGCTGTA −28 AATCTCAGCTCAGGAGGTTGC
Sp1 cons	5'− ATTCCGGCGCCGGGCGAAGC −3'
Sp1 mt	3'− TTAGCTGGCGCCGGCGGCTG
TTF-1 wt	−118 TCCAAACAGTGGGACTCTGCAAGGCAAGG −90 AGTGGTCGGCAGCTCCGGAAGAGT
TTF-1 mt	−118 TCAAAAACACAGGGGGTCTCAGCAAGGCAAGG −90 AGTTTTGTCGGTCCTGTGTTC
HNF-3 wt	−96 GACAAGGAACACTGAGGTC −75 CTGGTTTCTGTTGCCAGC
HNF-3 mt	−96 GACAAGGAAGCGCCCTTGAAGCTCAAAC

Table II
Wild type and mutated double-stranded oligonucleotides used in gel mobility shift assays

Mutated nucleotides are shown in bold italic. wt = wild type; mt = mutant; cons = consensus.
sensus binding motif for Myc-Max transcription factors (33) are located at −115 and +30. Mutation of the Myc-Max binding site at −115 resulted in approximately 40% reduction in SP-B promoter activity, whereas mutation of the site at +30 had no significant effect on promoter activity.

Transcription Factors Sp1, ETS, TTF-1, and HNF-3 Bind to the SP-B Promoter—To verify if Sp1, TTF-1, HNF-3, and ETS factors are components of the binding activity in nuclear extracts, we analyzed binding of factors present in nuclear extracts by electrophoretic mobility shift assays. Results showed that SP-B promoter oligonucleotide that contained Sp1 binding site at −207 did not form any complex, indicating absence of interaction of nuclear proteins (data not shown). However, SP-B promoter oligonucleotides that included binding sites for Sp1 at −130 or −35 formed two complexes that were competed by excess amounts of unlabeled wild type oligonucleotide and by an oligonucleotide containing a consensus Sp1 binding site (Figs. 4A and 5A). However, an oligonucleotide that contained a mutant Sp1 site failed to prevent formation of complex, suggesting the identity of binding factors as Sp1 or Sp1-like proteins (Fig. 4A). Electrophoretic mobility shift assays in the presence of monospecific antibodies to different members of the Sp1 family of transcription factors as described under “Materials and Methods.” The sequences of oligonucleotides used are shown in Table II. A, effects of indicated molar excess of wild type (Wt) or mutant (Mt) or consensus Sp1 oligonucleotides on complex formation. B, effects of preimmune IgG (P IgG) or monospecific antibodies to Sp1, Sp2, Sp3, and Sp4 on the mobilities of retarded complexes. Incubation of the SP-B promoter oligonucleotide produced two complexes (I and II) with different mobilities. Sp1 and Sp3 antibodies reacted with proteins bound to the oligonucleotide to produce supershifted complexes.

Fig. 4. Electrophoretic mobility shift analysis of NCI-H441 nuclear proteins binding to the Sp1 site at −130 in the SP-B promoter. The 32P-labeled double-stranded SP-B promoter oligonucleotide (−138 to −114) was incubated with 5 μg of NCI-H441 nuclear proteins in the presence of unlabeled oligonucleotides as competitors or in the presence of antibodies to different members of the Sp1 family of transcription factors as described under “Materials and Methods.” The sequences of oligonucleotides used are shown in Table II. A, effects of indicated molar excess of wild type (Wt) or mutant (Mt) or consensus Sp1 oligonucleotides on complex formation. B, effects of preimmune IgG (P IgG) or monospecific antibodies to Sp1, Sp2, Sp3, and Sp4 on the mobilities of retarded complexes. Incubation of the SP-B promoter oligonucleotide produced two complexes (I and II) with different mobilities. Sp1 and Sp3 antibodies reacted with proteins bound to the oligonucleotide to produce supershifted complexes.
molar excess of wild type (Wt) or mutant (Mt) or consensus Sp1 oligonucleotides on complex formation. The sequences of oligonucleotides used are shown in Table II. A, effects of indicated molar excess of wild type (Wt) or mutant (Mt) or consensus Sp1 oligonucleotides on complex formation. The presence of antibodies to different members of Sp1 family of transcription factors as described under "Materials and Methods." The sequences of oligonucleotides used are shown in Table II. A, effects of indicated molar excess of wild type (Wt) or mutant (Mt) or consensus Sp1 oligonucleotides on complex formation. B, effects of preimmune IgG (P IgG) or monospecific antibodies to Sp1, Sp2, Sp3, and Sp4 on the mobilities of retarded complexes. Incubation of the SP-B promoter oligonucleotide produced two complexes (I and II) with different mobilities. Sp1 and Sp3 antibodies reacted with proteins bound to the oligonucleotide to produce supershifted complexes.

Electrophoretic mobility shift assays with the SP-B promoter oligonucleotide containing the HNF-3 binding site demonstrated formation of two complexes (Fig. 8). Formation of these complexes was significantly reduced in the presence of excess wild type oligonucleotide. In the presence of excess mutant oligonucleotide formation of complex I was not reduced but formation of complex II was reduced, suggesting that complex I is likely from interaction with HNF-3. In the presence of monospecific antibodies to different members of the Sp1 family of transcription factors, formation of a supershifted complex was observed only in the presence of antibodies to HNF-3 (Fig. 8). Furthermore in the presence of HNF-3 antibodies complex I was specifically supershifted, indicating the identity of the protein species present in complex II as TTF-1 or TTF-1-related protein (Fig. 7). The lower mobility complex (complex I) was not supershifted in the presence of antibodies to TTF-1, indicating that complex I arises from interaction with protein(s) unrelated to TTF-1.

Electrophoretic mobility shift assays with the SP-B promoter oligonucleotide containing the HNF-3 binding site demonstrated formation of two complexes (Fig. 8). Formation of these complexes was significantly reduced in the presence of excess wild type oligonucleotide. In the presence of excess mutant oligonucleotide formation of complex I was not reduced but formation of complex II was reduced, suggesting that complex I is likely from interaction with HNF-3. In the presence of monospecific antibodies to different members of the Sp1 family of transcription factors, formation of a supershifted complex was observed only in the presence of antibodies to HNF-3 (Fig. 8). Furthermore in the presence of HNF-3 antibodies complex I was specifically supershifted, indicating the identity of the protein species present in complex II as TTF-1 or a related protein. The identity of proteins present in complex II remains to be determined.

Electrophoretic mobility shift assays with the SP-B promoter oligonucleotides containing binding sites for the ETS family of transcription factors showed formation of three distinct complexes that were competed by excess wild type oligonucleotide but not by a mutant oligonucleotide (data not shown). The complexes were not recognized by polyclonal ETS antibody (Santa Cruz Biotechnology) capable of cross-reacting with ETS family proteins.

DISCUSSION

SP-B mRNA is induced during fetal lung development, and in adult lung its expression is restricted to alveolar epithelial (type II) cells and bronchiolar epithelial (Clara) cells (4, 5). Molecular mechanisms that mediate cell type-specific activation of SP-B gene transcription are not well understood. Recent studies have shown that TTF-1 and HNF-3/horseradish peroxidase proteins play important roles in the functional activity of human SP-B promoter (14, 15). During lung development HNF-3α and TTF-1 proteins are expressed at the onset of lung morphogenesis (16, 17) at which time expression of SP-B mRNA is not detected, and in fully developed lung the expression of HNF3α, TTF-1, and SP-B co-localize to cells of distal epithelium. These data suggest that TTF-1 and HNF-3α are not sufficient for cell-specific activation of SP-B promoter and that additional factors are required for activation of the promoter.

DNA footprinting analysis showed that multiple proteins present in nuclear extracts of NCI-H441 cells bind to the SP-B promoter and that protected regions contain binding sites for Sp1, ETS, Myc-Max, TTF-1, and Sp-B core binding element is indicated by rectangular boxes.
and mouse SP-B promoters contain putative Sp1 binding sites at proximal promoter sequences reveals that the human and mouse SP-B promoters appear to be unique to rabbit SP-B gene, since a similar sequence element could not be found in human and mouse SP-B promoters.

Our data suggest that besides TTF-1 and HNF-3α, Sp1 and Sp3, display a high degree of similarity to Sp1 element at −35 in rabbit SP-B promoter. The high degree of conservation of sequence as well as similar placements of Sp1 binding sites in rabbit, human, and mouse SP-B promoters underscores the importance of Sp1 binding element in the functional activity of SP-B promoter. Sp1 binding site at −130 in rabbit SP-B promoter appears to be unique to rabbit SP-B gene, since a similar sequence element could not be found in human and mouse SP-B promoters.

Putative Sp1 binding sites are located at −207, −130, and −35 in SP-B proximal promoter. We determined the functional importance of these elements in SP-B promoter activity by mutational analysis. Mutation of the site at −207 had no significant effect on SP-B promoter activity, but mutations of the site at −130 or −35 caused a significant reduction in promoter activity. These data demonstrated that Sp1 elements at −130 and −35 play equally important roles in the functional activity of SP-B promoter. Gel mobility shift and DNase I footprinting experiments indicated the identities of proteins interacting with these sites as Sp1 and Sp3.

The occurrence and role of Sp1 elements in the promoter functions of human and mouse SP-B genes have not been investigated. Examination of human (26) and mouse (34) SP-B proximal promoter sequences reveals that the human and mouse SP-B promoters contain putative Sp1 binding sites at −36 and −42. The putative Sp1 binding sequences in human and mouse promoters, 5′-GCCGCCCCA-3′ and 5′-TCCAGC-

FIG. 7. Electrophoretic mobility shift analysis of NCI-H441 nuclear proteins binding to the TTF-1 site in the SP-B promoter. The 32P-labeled double-stranded SP-B promoter oligonucleotide (−118 to −90) was incubated with 5 μg of NCI-H441 nuclear proteins in the presence of indicated molar excess of unlabeled wild type (Wt) or mutant (Mt) oligonucleotides as competitors and in the presence of preimmune IgG (P IgG) or monospecific antibodies to TTF-1. The sequences of oligonucleotides used are shown in Table II. Protein-DNA complexes were resolved by electrophoresis as described under "Materials and Methods." On incubation with NCI-H441 nuclear proteins, two major retarded complexes were formed. Complex I was specifically recognized by TTF-1 antibodies.

FIG. 8. Electrophoretic mobility shift analysis of NCI-H441 nuclear proteins binding to the HNF-3 site in the SP-B promoter. The 32P-labeled double-stranded SP-B promoter oligonucleotide (−130 to −75) was incubated with 5 μg of NCI-H441 nuclear proteins in the presence of indicated molar excess of unlabeled wild type (Wt) or mutant (Mt) oligonucleotides as competitors and in the presence of preimmune IgG (P IgG) or monospecific antibodies to different members of the HNF-3 family of proteins. The sequences of oligonucleotides used are shown in Table II. Protein-DNA complexes were resolved by electrophoresis as described under "Materials and Methods." On incubation with NCI-H441 nuclear proteins, two major retarded complexes were formed. Complex I was specifically recognized by HNF-3α antibodies.
Sp3 serve as important regulators of SP-B gene expression. The critical role of Sp1 and Sp3 binding sites in the functional activity of SP-B promoter suggests that cell type-specific and developmental induction of SP-B gene expression is dependent on expression of Sp1 and Sp3 proteins or activity. Sp1 is modified by phosphorylation, and modification by phosphorylation modulates binding of Sp1 to its target sites (40). The role of cell type-specific and developmental control of Sp1 and Sp3 expression, and the putative role of phosphorylation of Sp1 in the regulation of SP-B gene expression in fetal lung, remain to be investigated. Since Sp3 has the potential to function as a transcriptional repressor, developmental and cell type-specific regulation of SP-B gene expression might be maintained by a dynamic positive and negative regulation exerted by Sp1 and Sp3. The putative role of Sp1-related transcription factors in the control of other lung-specific genes, particularly other surfactant protein genes, is not known. The recent identification of binding sites for Sp1 and Sp3 proteins in the minimal promoter of rat Clara cell-specific protein (41) suggests that Sp1-related transcription factors might serve as important regulators of lung-specific gene expression.

Recent studies have suggested that ETS proteins can interact with other transcription factors to modulate promoter activity (32). Studies have also suggested that ETS proteins play important roles in the control of growth and differentiation (32). Specifically ETS 1 expression increases during fetal development, and high levels of expression are found in fetal lung (42). The role of ETS 1 in control of lung growth and differentiation is not known. Rabbit SP-B promoter contains a number of putative binding sites for ETS proteins. Results of mutational analysis of ETS binding sites showed that the element at −51 can function as a weak suppressor of SP-B promoter activity. Proteins that bound to ETS sites were not recognized by an antibody capable of cross-reacting with members of ETS family transcription factors, suggesting that the proteins are either unrelated to ETS proteins or that they represent new members of the ETS family of transcription factors. Further investigations are needed to define the role of the ETS binding site at −51 and of other putative ETS sites in the control of SP-B promoter activity.

SP-B promoter contained putative Myc-Max binding sites at −115 and +30. Mutation of the site at +30 did not alter SP-B promoter activity, but mutation of site at −115 reduced SP-B promoter activity by nearly 40%. The site at −115 overlaps with TTF-1 binding site; whether reduction in SP-B promoter activity as a result of mutation in the Myc-Max element is due to interference with binding of TTF-1 remains to be investigated.

TTF-1 activates surfactant protein (SP)-A (43), SP-B, SP-C, as well as Clara cell-specific protein (14) promoters, suggesting that it plays an important role in the control of lung-specific gene expression. TTF-1 has also been shown to be a key regulator of thyroid-specific gene expression (44). Our studies of the control of SP-B promoter activity have demonstrated that significant differences exist between TTF-1-regulated control of gene expression in thyroid and lung. Whereas lung-specific expression of SP-B is controlled by combined interactions of multiple transcription factors with the promoter, thyroid-specific expression of thyroglobulin and thyroid peroxidase genes is dependent on mutually exclusive interactions of TTF-1 and Pax-8 factors (45).

Functional analysis of 5′-flanking regions has shown that human (27, 46) and rabbit (13) SP-B proximal promoter regions comprising nucleotides −218 to +436 and −236 to +39 are sufficient for high level expression of the CAT reporter gene in NCI-H441 cells, but further deletion of 5′ DNA to −130 nucleotides significantly reduces CAT expression. Functionally important transcription factor binding sites thus far identified in human and rabbit SP-B promoter regions, namely TTF-1, HNF-3α, and Sp1 and Sp3 sites, are located within −130 nucleotides, suggesting that factors binding to upstream sequences are necessary for activation of the promoter.

In summary our studies have identified Sp1 and Sp3 transcription factors as important regulators of SP-B promoter activity and that combined or cooperative effects of Sp1, Sp3, and TTF-1 and HNF-3α proteins on SP-B promoter is required for activation of promoter. Further characterization of regulatory DNA elements and interacting proteins of SP-B promoter region −236 to −136 will aid in understanding mechanisms that mediate lung cell-specific activation of SP-B gene transcription.

Acknowledgments—We thank Dr. Shiko Kimura, National Cancer Institute, for providing pCMV4-T/EBP-1 and antibodies to rat T/EBP and Guns. Gunther Schutz and Wolfgang Schmid German Cancer Research Center, Heidelberg, Germany for providing antibodies to HNF-3 proteins.

REFERENCES

1. Weaver, T. E., and Whisette, J. A. (1991) Biochem. J. 273, 249–264
2. Nogee, L. M., Demello, D. E., Dehner, L. P., and Colten, H. R. (1993) N. Engl. J. Med. 329, 406–410
3. Clark, J. C., Wert, S. E., Bachurski, C. J., Stripp, B. R., Sfyroeras, G., and Hall, P. F. (1987) J. Biol. Chem. 262, 15618–15623
4. Liley, H. G., White, R. T., Warr, R. G., Benson, B. J., Kawgood, S., and Ballard, P. L. (1989) J. Clin. Invest. 83, 1191–1197, 1989
5. Floros, J., Gross, J., Nichols, K. V., Veletzka, S. V., Dynia, D., Lu, H., Wilson, C. M., and Peteree, S. J. (1994) Am. J. Respir. Cell Mol. Biol. 4, 449–454
6. Xu, J., and Possemato, F. (1993) Biochim. Biophys. Acta 1160, 146–155, 1993
7. Margana, R. K., and Boggaram, V. (1995) Am. J. Physiol. 268, L481–L490
8. Mitchell, P. J., and Tjian, R. (1989) Science 245, 371–376
9. Goodrich, J. A., Cutler, G., and Tjian, R. (1989) Cell 64, 825–830
10. Margana, R. K., and Boggaram, V. (1996) Am. J. Physiol. 270, L601–L612
11. Bohnski, R. A., Di Lauro, R., and Whisette, J. A. (1994) Mol. Cell. Biol. 14, 5671–5681
12. Clevendon, D. E., Overdier, D. G., Peterson, R. S., Porcella, A., Ye, H., Eric Paulson, K., and Costa, R. H. (1994) Dev. Biol. 166, 385–399
13. Dazza, A., Price, M., De Felice, M., and Di Lauro, R. (1995) Development (Camb.) 113, 1093–1104
14. Monagh, A. P., Kaestner, K. H., Grau, E., and Shute, E. F. (1994) Development (Camb.) 119, 563–578
15. Boggaram, V., and Margana, R. K. (1996) FASEB J. 10, A1122
16. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. B., Seidman, J. G., Smith, J. A., and Struhl, K. (1995) Current Protocols: Wiley Interscience, New York
17. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
18. Lakin, N. D. (1993) Transcription Factors: A Practical Approach (Latchman, D. S., ed.), IRL Press, Oxford
19. Lam, J., Yu, N., Irias, S., Cooj, J. L., and Veg, E. (1991) BioTechniques 10, 423–425
20. Nelson, R. N., and Long, G. L. (1989) Annu. Rev. Biochem. 58, 147–151
21. O'Reilly, M. A., Gazdar, A. F., Morris, R. E., and Whitsett, J. A. (1988) Biochim. Biophys. Acta 970, 194–204
22. Seed, B., and Sheen, J. Y. (1989) Gene (Amst.) 67, 271–277
23. Plotet-Mattias, T. J., Kister, S. E., Lawrence Fox, J., Kropp, K., Glasser, S. W., and Whisette, J. A. (1989) DNA (N.Y.) 8, 75–86
24. Bohinski, R. J., Huffman, J. A., Whisette, J. A., and Lattier, D. L. (1993) J. Biol. Chem. 268, 11160–11166
25. Guazzi, S., Price, M., De Felice, M., Kramm, G., Demante, G., Mattei, M. G., and Di Lauro, R. (1990) EMBO J. 9, 3631–3639
26. Jackson, D. A., Rowader, K. E., Stevens, K. Y., Jiang, C., Milos, P., and Zaret, K. S. (1993) Mol. Cell. Biol. 13, 2441–2440
27. Faisst, S., and Mayer, S. (1992) Nucleic Acids Res. 20, 3–26
28. Krivacki, R. W., Schultz, S. C., Steitz, T. A., and Caradonna, J. P. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 9759–9763
29. Janknecht, R., and Nordheim, A. (1995) Biochim. Biophys. Acta 1155, 346–356
30. Zervos, A. S., Gyuris, J., and Brent, R. (1995) Cell 77, 223–232
31. Bohnski, R. A., Bohnski, R. J., Carter, J. C., Poss, K. A., and Whisette, J. A. (1995) Am. J. Physiol. 268, L381–L389
32. Kingsley, C., and Winoto, A. (1992) Mol. Cell. Biol. 12, 4251–4261
33. Hagen, G., Muller, S., Beato, M., and Suske, G. (1992) Nucleic Acids Res. 20, 3519–3525
34. Majello, B., De Luca, P., Hagen, G., Suske, G., and Lania, L. (1994) Nucleic Acids Res. 22, 4914–4921
35. Hagen, G., Denning, J., Preißl, A., Beato, M., and Suske, G. (1995) J. Biol. Neurodegeneration.
39. Saffer, J. D., Jackson, S. P., and Annarella, M. B. (1991) Mol. Cell. Biol. 11, 2189–2199
40. Leggett, R. W., Armstrong, S. A., Barry, D., and Mueller, C. R. (1995) J. Biol. Chem. 270, 25879–25884
41. Toonen, R. F. G., Gowan, S., and Bingle, C. D. (1996) Biochem. J. 316, 467–473
42. Kola, I., Brookes, S., Green, A. R., Garber, R., Tymms, M., Papas, T. S., and Seth, A. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 7588–7592
43. Bruno, M. D., Bohinski, R. J., Huelser, K. M., Whitsett, J. A., and Korfhagen, T. R. (1995) J. Biol. Chem. 270, 6531–6536
44. Francis-Lang, H., Price, M., Polycarpou-Schwarz, M., and Di Lauro, R. (1992) Mol. Cell. Biol. 12, 576–588
45. Zannini, M., Francis-lang, H., Plachov, D., and Di Lauro, R. (1992) Mol. Cell. Biol. 12, 4230–4241
46. Venkatesh, V. C., Pliner, B. C., Schwartz, M., Vanderbilt, J. N., Tyler White, R., and Ballard, P. L. (1995) Am. J. Physiol. 268, L674–L682