Real-time evolution of a subtelomeric gene family in *Candida albicans*

Matthew Z. Anderson*, Lauren J. Wigen*, Laura S. Burrack*, and Judith Berman*§‡

*Department of Genetics, Cell Biology and Development

University of Minnesota – Twin Cities

Minneapolis, MN 55455

§Department of Microbiology and Biotechnology

George S. Wise Faculty of Life Sciences

Tel Aviv University,

Ramat Aviv 69978, Israel.
To whom correspondence should be addressed:
Department of Molecular Microbiology & Biotechnology
George S. Wise Faculty of Life Sciences
Tel Aviv University
Ramat Aviv, 69978 Israel,
Telephone: +972-3-640-7633
FAX: +972-3-640-7535
Judithberman11@gmail.com

Running Title: Real-time evolution of a subtelomeric gene family

Keywords: *Candida*, telomere, experimental evolution, gene families, recombination
ABSTRACT

Subtelomeric regions of the genome are notable for high rates of sequence evolution and rapid gene turnover. Evidence of subtelomeric evolution has relied heavily on comparisons of historical evolutionary patterns to infer trends and frequencies of these events. Here, we describe evolution of the subtelomeric TLO gene family in Candida albicans during laboratory passaging for over four-thousand generations. C. albicans is a commensal and opportunistic pathogen of humans and the TLO gene family encodes a subunit of the Mediator complex that regulates transcription and affects a range of virulence factors. We identified sixteen distinct subtelomeric recombination events that altered the TLO repertoire. Ectopic recombination between subtelomeres on different chromosome ends occurred approximately once per 5,000 generations and was often followed by loss of heterozygosity, resulting in the complete loss of one TLO gene sequence with expansion of another. In one case, recombination within TLO genes produced a novel TLO gene sequence. TLO copy number changes were biased, with some TLOs preferentially being copied to novel chromosome arms, and other TLO genes being frequently lost. The majority of these non-reciprocal recombination events occurred either within the 3’ end of the TLO coding sequence, or within a conserved 50 base pair sequence element centromere-proximal to TLO coding sequence. Thus, subtelomeric recombination is a rapid mechanism of generating genotypic diversity through alterations in the number and sequence of related gene family members.
Telomeres, the sequences at the ends of linear chromosomes, protect the chromosome from terminal degradation. Telomere-adjacent sequences, termed subtelomeres (PRYDE et al. 1997), are often defined by repeat-rich and gene-poor heterochromatic sequence of variable length (MEFFORD AND TRASK 2002; KUPIEC 2014). The repetitive nature and high sequence similarity (LOUIS AND HABER 1990b; GARDNER et al. 2002) of subtelomeres complicates their inclusion in whole genome sequence assemblies (KELLIS et al. 2003) and, as a result, subtelomere sequence and organization are often poorly characterized. Accordingly, genes within subtelomeric regions are often excluded from comparative genomics analyses, due to a lack of accurate assembly and sequence read assignment (HAHN et al. 2005; WAPINSKI et al. 2007).

Subtelomeres are comprised of two segments with different levels of repetitiveness and divergence. Telomere-proximal sequences include short tandem repeats; whereas, telomere-distal domains encode unique genes, gene families and repetitive elements of varying frequency (PRYDE et al. 1997). Across eukaryotes, subtelomere variability is due, in part, to frequent acquisition of single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) (CUOMO et al. 2007; DRESZER et al. 2007; ANDERSON et al. 2008; CARRETO et al. 2008), as well as copy number variation in subtelomeric gene families (BROWN et al. 2010). Thus, subtelomeres are often the most variable region of the genome (WINZELER et al. 2003; CUOMO et al. 2007; CARRETO et al. 2008; KASUGA et al. 2009; BROWN et al. 2010) both in genome-wide studies of DNA sequence variation (FARMAN AND KIM 2005; DRESZER et al. 2007) as well as in
studies of gene copy number variation (DUJON et al. 2004; CARRETO et al. 2008; GRESHAM et al. 2008). As such, subtelomeres provide ideal environments for the rapid evolution of genes upon which selection can then act. Accordingly, comparison of S. cerevisiae strains that produce beer, sherry or champagne revealed increased copy numbers of subtelomeric MAL, SUC or MEL genes, respectively (NAUMOV et al. 1995; NAUMOVA et al. 2005; BROWN et al. 2010; DUNN et al. 2012). This highlights the ability of subtelomeric regions to facilitate the rapid amplification of genes that provide a selective advantage under different growth conditions. However, the mechanisms that give rise to these changes and how rapidly they arise have not been well studied.

Recombination operates extensively at subtelomeres in all eukaryote kingdoms, including protists, animals and plants (LOUIS et al. 1994; LINARDOPOLLOU et al. 2005; GAUT et al. 2007; RUDD et al. 2007). Studies in protozoa and fungi found that subtelomeric recombination is particularly common in non-coding sequences (CORCORAN et al. 1988; REHMeyer et al. 2006; BOOTHROYD et al. 2009; GLOVER et al. 2013), although it also occurs within coding sequences (KRAEMER et al. 2007; FAN et al. 2008). For example, in S. cerevisiae, the most common subtelomeric recombination junctions are the Y' elements, a family of helicase homologs of varying functional integrity (LOUIS and HABER 1990a; LOUIS et al. 1994). In the malaria parasite Plasmodium falciparum, immune evasion is mediated by extensive recombination among subtelomeric var gene paralogs (KRAEMER et al. 2007; KYES et al. 2007). Recombination progresses through different mechanisms at subtelomeres including gene conversion (MORRISON et al. 2009; CLAESSENS et al. 2014) and break-induced replication (BIR) (BOOTHROYD et al. 2009; HOVEL-MINER et al. 2012) (Figure S1).
However, the kinetics and stability of var switching events have been difficult to define (Bopp et al. 2013) because selection against deleterious genotypes likely discards many subtelomeric recombination events before they become fixed to a detectable level in natural populations.

The majority of subtelomeres include gene families that are important for adaptation to the ecological niches occupied by that organism (Celenza and Carlson 1985; Dujon et al. 2004; Kyes et al. 2007). For example, fluctuations frequently occur in S. cerevisiae subtelomeric metabolic gene families through selective pressures for efficient utilization of available carbon sources (Turakainen et al. 1993; Brown et al. 2010; Wenger et al. 2011; Dunn et al. 2012). Interestingly, natural S. cerevisiae populations produce new family member variants via recombination between previously established family members (Van Mulders et al. 2010; Christiaens et al. 2012). Consequently, recombination exploits existing paralog diversity to construct novel variant genes without requiring extensive mutation. Furthermore, gene noise and expression plasticity at subtelomeres is primarily due to stochastic transcriptional silencing (Gottschling et al. 1990; Fischer et al. 1997; Mondoux and Zakian 2007; Choi et al. 2008; Halliwell et al. 2012; Anderson et al. 2014) and facilitates a bet-hedging mechanism in which new variant genotypes can be tested without committing all cells in a population to a given expression pattern.

In Candida albicans, the telomere-associated (TLO) genes are the only widespread subtelomeric gene family (Vanh het Hoog et al. 2007), and the 13 subtelomeric paralogs are found at all but three chromosome arms (Chr2R, 6R, and 7L) (Vanh het Hoog et al. 2007; Anderson et al. 2012). TLOs underwent a recent expansion
from 1 copy in most *Candida* species to 14 paralogs in *C. albicans* (Butler et al. 2009).

All **TLO** genes are oriented similarly in the subtelomere, with transcription proceeding towards the centromere (Figure 1C). Sequence homology comparisons distinguish three **TLO** clades, α, β, and γ, which also exhibit different transcriptional levels and cellular localization patterns (Van Heth Hoog et al. 2007; Anderson et al. 2012).

Insertions/deletions (indels) distinguish the lengths of **TLO** genes in a clade-specific manner: the seven **TLO**γ clade genes are shortest (~ 525 basepairs (bp)), the five **TLO**α clade genes are longer, (675-750 bp), and the single **TLO**β gene is the longest at 822 bp. Within a clade, **TLOs** are ~97% identical and between clades they are 82% identical (when excluding indels). All **TLOs** encode a conserved N-terminal Med2 domain followed by a gene-specific repetitive region of variable length and a C-terminal region that distinguishes the three clades (Anderson et al. 2012; Zhang et al. 2012).

Investigation of the subtelomeric **TLO** gene family composition uncovered differences between the original SC5314 reference genome (Jones et al. 2004) and subsequently sequenced SC5314 isolates, including homologous chromosomes encoding two different **TLO** genes at the same position (Hirakawa et al. 2014) and a previously unidentified **TLO** (Anderson et al. 2012).

All TLOs encode a Med2 domain-containing protein, such that the 14 paralogs (13 subtelomeric and one internal on Chr1L) are thought to encode interchangeable components of the Mediator transcriptional regulation complex (Zhang et al. 2012). In *C. albicans*, **MED3**, which associates with **TLOs**, affects the stability of white-opaque switching (Zhang et al. 2013), which is necessary for mating and important for formation of some types of biofilms (Park et al. 2013; Jones et al. 2014). In the closely-related
species *C. dubliniensis*, which has only two *TLO* genes, deletion analysis revealed that these *TLOs* contribute to filamentous growth forms, biofilm formation and sugar metabolism (JACKSON *et al.* 2009).

Here, we describe the genome changes that occurred to members of the *TLO* subtelomeric gene family during the course of laboratory passaging. Sequencing of subtelomeres in passaged isolates revealed 16 changes in the *TLO* gene repertoire where one *TLO* gene had replaced another one on a different chromosome arm. These *TLO* ‘movement’ events appear to involve a non-reciprocal recombination mechanism that occurs frequently, suggesting that *TLO* repertoires change frequently and most likely provide a biologically relevant mechanism for generating genetic diversity in *C. albicans*.

MATERIALS AND METHODS

Strain construction and passaging

Yeast cells were passaged on solid rich medium (YPAD) agar plates at 30°C in standard conditions. Two set of nine strains were restruck to fresh plates every two days from the thick part of the streak, which minimizes bottlenecking of the population. One set, termed “stress passaged”, was exposed immediately after being restruck to one hour at 4°C and then one hour at 37°C prior to incubation at 30°C every three passages.

The number of generations traversed between passages was determined by cell counts before and after two days of growth on YPAD agar plates. Cells from two progenitor strains were struck onto YPAD plates identical to the passaged isolates. Cell counts of a
streak through the struck population immediately after plating and following two days of growth were performed using a hemocytometer to allow for calculation of generations per passage, $P_f = P_i \times 2^N$, where P_i and P_f are the final and initial cell counts. Slightly elevated but not significant numbers of generations were found among end-point passaged strains.

PCR amplification of gene sequences

SC5314 DNA was collected as previously described (Hoffman and Winston 1987). PCR of TLO genes was performed using arm-specific primers for all chromosomes together with a pan-TLO primer. The arm-specific primers were designed against the closest region of unique sequence centromere-proximal to the TLO or of similar homology on chromosome arms lacking a TLO gene. Attempts to sequence beyond the TLO gene were complicated by sequences not matching the expected chromosomal locations from the genome reference sequence.

Amplification of the core centromere sequence was performed for each of the eight $C.\ albicans$ chromosomes. Amplification of $ENO1$, $LIP4$, $SAP1$, and $SAP7$ was performed independently. Primers are listed in Table S1. All amplicons were amplified and sequenced twice independently using nested internal primers.

Analysis of TLO sequences

Sequenced amplicons were aligned to the reference $C.\ albicans$ SC5314 genome (http://candidagenome.org/) using BLAST. Sequences were also independently aligned to the SC5314 TLO sequences using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm at http://www.ebi.ac.uk/Tools/muscle/index.html
Assignment of TLO encoded at specific arms was determined by TLO-and/or clade- specific SNPs (Table S2) and insertions/deletion (indels) and comparison to the amplicon generated from the progenitor strain. Chromatographs were viewed using Sequencher (Gene Codes Corporation, Ann Arbor, MI) and Snapgene Viewer (GSL Biotech, Chicago, IL).

Mapping chromosome heterozygosity

Chromosome heterozygosity was determined using single nucleotide polymorphism-restriction fragment length polymorphism (SNP-RFLP) analysis of previously described SNP positions (FORCHE et al. 2009).

Competitive growth assay

Competitive growth assays were performed for YJB9929 evolved strains relative to an RM1000 $ENO1$-GFP strain (CAY12638) as described in (THOMPSON et al. 2006). Briefly, 5×10^6 cells / milliliter (ml) of each evolved and reference strain were mixed and seeded into 3 ml of YPAD. The ratio of the two competitors was quantified at both the initial and final (72 hour) time points by microscopic visualization of 10 fields of view using a Zeiss Inverted Microscope (Axio Observer. Z1) fitted with an AxioCam HR. The selection coefficients were calculated as $s = (\ln (E_f / R_f) - \ln (E_i / R_i)) / T$ where E and R are the numbers of evolved and reference cells, subscripts are the final and initial populations, and T is the number of generations that reference cells have grown during the competition.

Statistical Analysis
Statistics were performed using R (R DEVELOPMENT CORE TEAM 2013) or SPSS Statistics for Windows (IBM CORP 2013).

RESULTS

Sequence discrepancies between the SC5314 reference genome and SC5314 isolates suggested the TLO gene family may be continuing to evolve. To determine the time scale of subtelomere evolution, we investigated TLO gene organization in strains that had been passaged continuously for over 30 months (457 passages, ~4,570 divisions) under laboratory conditions. Two duplicate sets of nine SC5314-derived lines were passaged every two days on solid, rich-media agar plates. Both sets (non-stressed and stressed) were propagated on YPD medium at 30°C; additionally, the stressed set was exposed to a cold shock (1 hour at 4°C) followed by a heat shock (1 hour at 37°C) every three passages (Figure 1A). After 30 months of passaging, we PCR-amplified the sixteen subtelomeric regions including TLOs from the populations of eighteen independently evolved lines, using a chromosome arm-specific primer anchored in centromere-proximal, unique sequences together with a single, pan-TLO primer that bound to a sequence immediately downstream of the start codon and that is conserved among all TLO homologs (Figure 1B). Therefore, only chromosome arms encoding TLOs could produce amplicons that were captured for analysis. The subtelomeric composition of the progenitor strains was identical; thirteen chromosome arms encoded a TLO gene (Figure 1C). Only the chromosome arms encoding TLOs in the parental strain generated PCR products for analysis in the passaged isolates, suggesting no TLO had moved to a previously unoccupied chromosome arm.
To determine the resident TLO on all amplified chromosome arms, we sequenced the PCR products and analyzed the sequence for homology among the TLO paralogs. Most subtelomeric amplicons were comprised of a single nucleotide sequence, indicated by single, uniform peaks throughout the sequence trace. However, some sequence traces began as a single uniform sequence in the centromere-proximal end of the amplicon and transitioned to a heterogeneous sequence composed of double peaks as the sequence extended towards the telomere, suggesting that each homolog on that particular chromosome arm encoded distinct TLO sequences. The new TLO sequence was inferred by subtracting out the previously established TLO sequence for that chromosome arm from the double peaks (Figure 1D). This process was performed for the thirteen chromosome arms with TLOs in eighteen passaged strains for a total of 234 unique data points.

Timing of TLO recombination events

Fourteen major subtelomeric rearrangement events were evident following 30 months of strain passage (Figure 2A, Table 1). This was defined as any detectable alteration in the TLO repertoire resulting from chromosome homozygosis and/or “movement” of specific TLO gene family members between subtelomeres during passage.

To further refine the timing of the TLO recombination events, we assayed isolates at intermediate time points during passaging for either the ancestral or evolved TLO organization. Rearrangements occurred throughout the time course from the first month to the final month of passaging (Figure 2A). Recombination occurred randomly
throughout passaging (p=1.0, one-way ANOVA). Furthermore, no clear environmental
perturbations or alterations in the passaging protocol coincided with these time points.
Additionally, sequencing the subtelomeres at the earliest time points following
recombination failed to identify co-occurrence of other subtelomeric recombination
events with the exception of events at both arms of chromosome 4 (Chr4L and 4R)
in YJB9929. Thus, TLO gene family changes occurred at random times throughout the
passaging experiment.

Most studies of genome evolution compare static representations of a continuous
and ongoing process. The experimentally practical time scales of TLO recombination
allowed transitional phases to be captured by experimental evolution. For example, in
strain YJB9929, the ancestral TLOα9/TLOα10 configuration on Chr4R had
homozygosed to two copies of TLOα10 by the end of passaging (Table 1). Interestingly,
this involved two transitional states of Chr4R prior to the final TLOα10/TLOα10
arrangement (Figure 2B). The first transition, seen in passage 137, was loss of TLOα9
by homozygosis of the Chr4R TLOα10 allele; the second transition, seen between
passages 168 and 184, was introduction of one copy of TLOγ8 from Chr3R and loss of
a TLOα10 allele; and the final transition, between passage 372 and 403, was
homozygosis of TLOα10. Identification of these different transition states during
passaging suggests that additional recombination events are often missed when
comparing static representatives of genome evolution.

Capture of these transitional recombination events also provided a more
accurate measure of the rate of TLO evolution. Strains underwent approximately 4,570
divisions during the course of the experiment based on estimates of approximately ten cell divisions between passages (data not shown). Therefore, we can estimate \(TLO \) “movement” to occur in \(\sim 1:5,142 \) cell divisions or \(1:82,260 \) chromosome arms per division. These rates are orders of magnitude greater than either genome average per-base-pair mutation rates or insertion/deletion rates per cell division (\(\sim 10^{-9} \)) (Lang and Murray 2008; Lynch et al. 2008). Thus, subtelomeric recombination provides an opportunity for high frequency gene evolution.

Population-level strain passage requires that the detected recombination events rose to significant prominence in the passaged population. To determine the requirement and kinetics of event fixation, we sequenced the recombination site of twenty-four single colonies from strain YJB9929 from passage 411, immediately following recombination (\(TLO\alpha_{10}/TLO\gamma_{8} \rightarrow TLO\alpha_{10}/TLO\alpha_{10} \)). Twenty-three of 24 colonies had undergone recombination that homozygosed \(TLO\alpha_{10} \) at this time point (Figure S2), demonstrating that the detected recombination events rapidly dominate the population but are not completely fixed at the earliest time points.

Types of \(TLO \) recombination events

All of the evolved strains originated from the same genetic background with little time to accumulate unique, independent mutations prior to passaging. Thus, we assume that each strain and each \(TLO \) had an equal probability of recombination. Based on this assumption, there was no obvious effect of stress on either the number of strains that underwent \(TLO \) recombination (5 stressed vs. 5 unstressed) or the number of recombination events that occurred over the course of the passaging experiment (6
stressed vs. 10 unstressed). The distribution of recombination events among strains was random with the exception of a single strain (YJB9929) that underwent six separate events (Figure S3, Table 1).

The distribution of TLOs involved in recombination events suggested specific patterns of recombination among the TLO genes. Recombination events were significantly clustered at certain chromosome arms, $\chi^2 (N=32) = 56.3; p=0.0005; \text{Monte Carlo}$). Interestingly, recombination was much more prevalent in alpha clade TLOs than in TLOs of the beta and gamma clades.

We separated TLO genes that ‘moved’ into two groups, the donor gene, which was copied, and the recipient gene, which was lost (Figure 3). In all cases, a copy of the donor gene remained unaltered at its native locus. TLO recombination occurred extensively between some TLOs/chromosome arms (TLOα9, TLOα10, and TLOα12) and was excluded from others (TLOβ2, TLOγ4, TLOγ5, and TLOγ16). Some loci were overrepresented as gained or as lost during TLO recombination (gained, $\chi^2 (N=16) = 57.1; p<0.0005; \text{Monte Carlo}$); lost, $\chi^2 (N=16) = 62.0; p<0.0005; \text{Monte Carlo}$). For example, TLO$\alpha$12 always increased in copy number by expanding to other chromosome arms such as Chr4L, where TLOα9 consequently reduced in copy number.

Two general types of recombination mechanisms were evident from TLO sequencing. The majority was ectopic recombination events; no recipient-specific sequence was seen telomere-proximal to the initial conversion tract. Thus, these were most likely due to BIR or gene conversion that extended to the end of the chromosome
(Figure S1). No reciprocal genetic exchange was detected. The second set of TLO "movements" occurred due to LOH of a previously heterozygous TLO locus following ectopic recombination for 7 events (Table 1, Table 2). The recipient TLO loci were completely lost in these 7 events because the donor TLO was homozygosed at the recipient subtelomere, resulting in a net increase of two copies of the donor TLO. TLOα10 was lost in two independent isolates, suggesting that it may be either particularly susceptible to invasion or more dispensable under the passaging conditions. Complete loss of the native TLO in the strain following homozygosis of a donor TLO was significantly more prevalent in stress-passaged than unstressed strains (83.3% vs 14.3%, χ^2, df=1; p=0.024; Fischer’s exact test).

Gene loss following invasion and LOH can alter the TLO repertoire both at the gene and clade level. The majority of the recombination events (11/16) were between TLOα genes, one was between TLOγ genes and 4 were inter-clade recombinations. Of the four inter-clade events, including the LOH events on Chr4R in YJB9929 (Figure 2B), TLOα and TLOγ were equally likely to be the donor or the recipient.

Sequence elements associated with subtelomeric recombination events

The prevalence of intra-clade recombination events suggests specific DNA regions may facilitate sequence-dependent recombination (MYERS et al. 2008). To ask if recombination sites clustered at specific subtelomeric positions, we mapped the recombination site for each event using the junction sequence between the donor and recipient chromosome arm sequences (Figure 4A). Six of fourteen recombination events occurred in the 3’ end of the TLO open reading frame (ORF), and two additional
recombination events occurred immediately centromere-proximal of the 3' UTR. All of these events were products of intra-clade recombination, likely due to clade-specific sequence homology at the 3' end of the TLO ORF. Three recombination events occurred within a highly conserved 50bp sequence element found at all TLO-containing chromosome ends except for TLOβ2 and TLOγ16 and absent from chromosome arms lacking TLOs (Figure 4B, S4). Previous attempts to assemble the subtelomeric regions from SC5314 whole genome sequencing were problematic specifically due to the presence of this same sequence element that we termed the Bermuda Triangle Sequence (BTS). Importantly, two of these events involved members of different TLO clades. Furthermore, the parental SC5314 background encodes a six nucleotide tandem duplication within the BTS that appeared at the same position that the TLOα10 sequence on Chr4R became heterozygous for TLOα9/TLOα10 (Figure S5, Homolog 2 sequence). This suggests that recombination in the BTS produced the TLOα9/TLOα10 heterozygous organization on Chr4R.

Sequencing of the subtelomeric region surrounding the TLO genes failed to identify a recombination site for three of the 16 gene “movement” events. To determine if recombination occurred centromere-proximal to the sequenced subtelomere, the heterozygosity of the altered chromosome was interrogated by SNP-RFLP using loci on each chromosome arm. In all three instances (YJB9929-RL, YJB9929-4R recombination #1, and YJB9929-4R recombination #3), heterozygosity was maintained across the SNP markers on both arms of the chromosome (Figure S6). Therefore, it is most likely that recombination occurred centromere-proximal to the subtelomere but distal to the SNP-RFLP markers.
Recombination within gene family ORFs can produce novel recombinant proteins that may have unique properties. In one case, a crossover within the 3' ends of *TLOα9* and *TLOα12* produced a hybrid gene on Chr4L based on acquisition of a single SNP (T→C). This synonymous mutation altered the codon usage for Asp238 and the 3' non-coding region of the gene was different (Figure 4C). Interestingly, 5 isolates underwent a very similar recombination event (Figure 4C, Tables 1 and 2). Subsequently, the recombinant *TLO* was homozygosed in four of the strains, such that the *TLOα12-α9* hybrid became the only *TLO* at Chr4L (Tables 1 and 2).

The other case of inter-*TLO* recombination produced a *TLOα12-TLOα10* hybrid in strain YJB9907. In this case, a single crossover between codon 164 (265 nt upstream of the stop codon) in *TLOα12* and codon 168 (151 nt upstream of the stop codon) in *TLOα10* resulted in a protein that differed from *TLOα12* by the loss of 37 amino acids in the gene-specific region of variable length and six new SNPs in the clade-specific, conserved C-terminus, including two non-synonymous codon changes (P203H and I209N) (Table S3, Figure 4D). Thus, the recombination event produced a novel *TLO* variant protein, *TLOα12-10*.

To ask if specific chromosome arms were biased towards specific recombination sites, we categorized recombination border locations for each subtelomere. We divided the chromosome arm into defined regions with different sequence properties represented by the *TLO* gene (~500-700 bp), the UTR/immediately downstream of the *TLO* gene (UTR, ~300 bp), the BTS (50bp), and any sequence centromere-proximal to the BTS, and inferred the frequency of recombination in each region within the
passaged strains. All four regions underwent recombination with different distributions dependent on the chromosome arm (Figure 5). For example, five of the six recombination events on Chr4L occurred within the 3’ region of the TLO gene whereas recombination on Chr4R was more evenly divided among the four categories. This suggests that the types of subtelomeric regions prone to recombination differ depending on the chromosome arm.

TLO sequence evolution during passaging

Elevated levels of polymorphism in subtelomeres, in addition to recombination, contribute to gene evolution at chromosome ends (CUOMO et al. 2007; DRESZER et al. 2007). To investigate the potential for nucleotide polymorphisms to contribute to TLO gene evolution during passaging, we analyzed the TLO sequences for acquisition of new SNPs during passage. TLOα and TLOγ clade members accumulated 12 and 19 novel SNPs within the ORFs, respectively. In contrast, no new SNPs were identified in the single TLOβ family member, TLOβ2. The total number of polymorphisms and non-synonymous changes in individual genes varied considerably (Figure 6A, Table S4); overall, there were similar numbers of total non-synonymous polymorphisms within genes of the TLOα and the TLOγ clades (7 vs. 9, respectively). Thus, in contrast to the frequency of recombination (Figure 3), the frequency of SNP accumulation was similar between the two clades.

The TLO gene can be divided into three distinct regions with specific sequence properties. The N-terminal 300 nucleotides (nt) encode the Med2 domain that provides the basis for assembly into the Mediator complex. This is followed by a short repetitive
region of variable length that is gene-specific, and a C-terminal region of approximately 250-350 nt that is clade-specific. In $TLO\alpha$ genes, new SNPs were primarily distributed across the clade-specific region evenly (Figure 6B); in the $TLO\gamma$ genes, new SNPs were clustered at different points along the gene and were enriched in the Med2 domain. Therefore, there may be clade-specific selective pressures exerted on the TLO genes during laboratory passaging.

Previous investigation of sequence evolution among *Candida* species determined that centromeres evolve more rapidly than other loci (PADMANABHAN et al. 2008). Thus, we compared the rate of evolution at TLOs relative to centromeres by interrogating an 800bp segment of the central core of all eight *C. albicans* centromeres for SNPs that arose during passaging. Eleven SNPs accumulated across the 8 centromere core regions in the 9 isolates (total of 11 SNPs /12,800 bp (800 bp x 8 centromeres x 2 alleles)). The distribution of mutations among the centromeres was highly skewed; a single centromere, CEN2, accumulated 8 new mutations, CENR accumulated two mutations, and CEN5 acquired a single mutation (Figure 6A, Table S5); in contrast, TLO genes acquired 31 novel mutations in 13 ORFs analyzed across a total of 15,970 bp (average of 614 bp x 13 telomeres x 2 alleles).

As a control for the evolution of expanded gene family members (BUTLER et al. 2009), we also analyzed 1600 bp (800 bp x 1 gene per strain x 2 alleles) within *LIP4*, a lipase within the *C. albicans* expanded *LIP* family, and two members of the expanded serine aspartyl protease (*SAP*) family, *SAP1* and *SAP7*. Sequencing detected a single SNP (C877A) within *LIP4* and two SNPs in each of the *SAP* open reading frames (Figure 6A, Table S6). Additionally, the *ENO1* open reading frame, which encodes a
metabolic enolase, did not acquire any novel SNPs following passaging of these strains (Figure 6A). Thus, the TLO genes as a group accumulated more mutations per locus and per bp during the 457 passages (2.58 per TLO and 19.4/10 kbp) compared to the centromere core region (1.13 per centromere and 8.59/10 kbp) and other genes with multiple family members (1 per LIP4 and 6.25/10 kbp and 2 per SAP and 12.5/10 kbp), indicating that telomeric genes have the potential to evolve at least as rapidly as the quickly evolving centromere regions and other expanded gene families that are acted on by host selection.

Phenotypic consequences of recombination

We next asked if the evolved strains that underwent subtelomeric recombination had acquired a fitness advantage under the passaging conditions using competitive fitness assays. We mixed equal cell concentrations of a related GFP-marked reference strain and one of several YJB9929 isolates from different passaging timepoints. We then allowed the cell mixtures to grow in liquid YPAD medium at 30°C for 72 hours (~30 generations). Comparison of final and initial frequencies of the two strains identified a significant increase in the competitive index of the evolved isolates after 1000 or more generations (Figure 7).

DISCUSSION

Evolutionary histories of a wide range of species often point to subtelomeres as highly dynamic regions with rapid gene turnover (KRAEMER et al. 2007; LINARDOPOULOU et al. 2007; ANDERSON et al. 2008; CARRETO et al. 2008; DUNN et al. 2012). The degree of change and the dynamics with which it occurs have been largely underappreciated,
due to the complexity of repeats at subtelomeres, which obviates detailed analysis by
next generation sequencing. Here, we followed the dynamic evolution of subtelomeres
over relatively short time scales in nine related isolates evolved with or without a mild
temperature stress. We found that the genes in subtelomeric regions evolve rapidly,
undergoing ectopic recombination events and acquiring 31 point mutations (1 per 515
bp) in the course of over ~450 passages and ~4,500 cell divisions. Furthermore, some
types of changes were recurrent and transient (e.g., Chr4R changes in strain YJB9929,
Figure 2, Table 1), such that they likely would be missed by more static analyses.

Recombination resulting in the duplication of some \textit{TLO} family genes and the
loss of others was frequent, occurring once per ~5,000 divisions. Specific \textit{TLOs}
preferentially increased or decreased in copy number during recombination. Not
surprisingly, exchanges between genes within the same clade were more frequent
(75\%) than inter-clade recombination events. Recombination was most frequent within
the C-terminal clade-specific regions of \textit{TLO} ORFs or within the highly similar BTS
sequence element (88\% similarity across 11 subtelomeres) and occurred via either LOH
or ectopic crossover events. Point mutations accumulated across the \textit{TLO} coding
sequences and were clustered toward the N-terminal Med2 domain in \textit{TLO}_\gamma clade
genes and toward the 3’ clade-specific region in \textit{TLO}_\alpha clade genes (Figure 4).

The rates of subtelomeric recombination measured here are likely
underestimates of recombination frequency at \textit{C. albicans} subtelomeres.
Recombination events that arise at low frequency are not captured when screening at
the population level. Thus, only fixed or high frequency recombination events could be
used to calculate subtelomeric recombination rates. Furthermore, rare recombination
via translocation might occur between subtelomeres and chromosome-internal positions (i.e. \textit{TLO}_\alpha34) and would not have been detected in these experiments (Fan et al. 2008).

Subtelomeric regions typically evolve at faster rates (Dreszer et al. 2007) and are the sites of more frequent gene duplication events (Ames et al. 2010) than other genomic regions. Accordingly, subtelomeres have been proposed to be “hotbeds” for genomic evolution (Brown et al. 2010). \textit{C. albicans} subtelomeres appear to undergo a similar process of sampling evolutionary space through recombination, gene duplication, and mutation. \textit{TLO}s are predicted to encode the same Med2 protein that is incorporated, as a monomer, into the Mediator tail, and thus to regulate transcription of downstream gene sets (Ansari et al. 2012). Expansion of some \textit{TLO} paralogs relative to others allows drift to operate on that gene and can result in the establishment of new interacting partners without disrupting the molecular role of the original gene. Novel \textit{TLO} genes, produced either by mutation or recombination, result in the same molecular outcome but are likely under heavier selective pressure to be retained. We suggest that, together these novel functions may modify Mediator interactions that significantly alter transcriptional responses and the phenotypes that they proscribe (Haran et al. 2014).

Selection appears to favor some \textit{TLO} family genes over others. For example, two \textit{TLO}s, \textit{TLO}_\gamma7 and \textit{TLO}_\alpha10, were completely lost from the genome during passaging of some strains, while \textit{TLO}_\alpha12 was gained eight times during recombination and was subsequently homozygosed in six independent isolates. Interestingly, the copy number of \textit{TLO}_\alpha9 was reduced in eight separate events, yet it was never lost: all strains
encoded at least one copy of $TLO_\alpha 9$ at the end of the passaging experiment. Therefore, the presence of some $TLO_\alpha 9$ might provide a selective role in passaged strains.

Most of the observed recombination events occurred between TLO_α clade members, which fractionate as a single stoichiometric component of the Mediator complex in $C. albicans$ (ZHANG et al. 2012). Thus, the recombination events observed likely alter the relative availability of different TLO_α paralogs for incorporation into Mediator. While paralogous Mediator subunits have distinct transcriptional patterns and interacting proteins in other organisms (TSUTSUI et al. 2008; FUKASAWA et al. 2012), the results here suggest that some $TLO Med2$ copies are dispensable, while others are favored for $C. albicans$ growth, at least under the in vitro passaging conditions used here.

A trend towards fixation of the recombination events identified here occurred rapidly. There was no strong evidence in the sequence traces for mixed populations comprised of an ancestral and recently invaded subtelomeric population, Furthermore, targeted sequencing of individual colonies following recombination found only a single instance of the ancestral subtelomeric configuration (Figure S2). Additionally, we detected homozygosis of seven recombination events within 160 generations (one month) of the initial invasion. Consistent with a model of constant recombination between homologous chromosome ends, most new mutations became homozygous following continued passaging (data not shown). Recombination rates are elevated near telomere across many eukaryotes (LINARDOPOULOU et al. 2005; RUDD et al. 2007) and homozygosity may be a byproduct of constant subtelomeric recombination between
sister homologs. However, it is unclear if this phenomenon is a common feature in other organisms, as all previously published experiments studied tractable subtelomeric evolution in haploid organisms (Bopp et al. 2013).

In *S. cerevisiae* different classes of subtelomeric genes are amplified in strains grown on different sugar sources (e.g., maltose, sucrose, or melibiose) (Naumov et al. 1995; Djjon et al. 2004; Naumova et al. 2005; Brown et al. 2010). In this study *C. albicans* was grown under standard laboratory conditions (30°C, rich medium) with and without occasional mild temperature stress. While it is possible that this passaging regime selected for genome evolution and *TLO* recombination, the *Candida albicans* subtelomeres studied here were under selective pressures very different from, and likely less stressful than, those they encounter in their mammalian hosts. Therefore, the rates of recombination and mutation acting on *C. albicans* subtelomeres may be different in the mammalian host relative to those *in vitro*, but the relative amount of recombination that occurs at telomeres is likely higher than at other loci. Recombination frequency differences between specific subtelomeres may be influenced by the presence of recombination hotspots (Blitzblau et al. 2007) and sequence conservation among subsets of chromosome arms.

TLO recombination was most frequent within the C-terminal third of the *TLO* ORFs, a domain that includes clade-specific sequences. This is consistent with the higher frequency of recombination events among *TLO* paralogs with greater sequence homology (intra-clade versus inter-clade recombination). The second most frequent site for recombination between different *TLOs* was the BTS, which is 3’ (centromere proximal) to the *TLO* ORFs and was named the “Bermuda Triangle Sequence” because
this sequence is very similar on eleven chromosomes arms and complicates the
determination of the chromosome arm location of a given TLO gene (Figure 4B).

Neither of these two sites of TLO recombination overlaps with recombination-prone
features such as transposable elements or tandemly repeated sequences, that can
promote recombination at other loci (Rehmeyer et al. 2006; Boothroyd et al. 2009;
Gemayel et al. 2010).

BTS recombination events should result in copying of one gene to a new
chromosome arm, without affecting the TLO coding sequence. The benefit of moving a
TLO to another chromosome arm is not clear, nor is it clear to what degree different
subtelomeric positions affect the level of expression of a given TLO gene. In fact, genes
expressed at different TLO loci appear to be affected more by Sir2p-mediated silencing
and telomere-associated gene expression noise than by being located at a specific
telomere (Anderson et al. 2014). Importantly, recombination in the BTS accounted for
two of three inter-clade recombination events and may contribute more heavily to major
alterations in the TLO repertoire over time compared to recombination at other points.
Furthermore, the BTS is specific to C. albicans, which may be connected to the
mechanism of TLO amplification in C. albicans. While we did not detect any
amplification events or introduction of TLOs to chromosome arms that did not have
TLOs or a BTS previously, we presume that such non-homologous events are relatively
rare.

In C. albicans, little is known about the subtelomeric recombination sites.
Recombination within subtelomeric gene ORFs has been observed for Y' genes in S.
cerevisiae (Louis and Haber 1990a; Louis and Haber 1990b) and for the surface
antigen ORFs in parasitic protozoa (Jiang et al. 2011; Bopp et al. 2013). However, in protozoa, 70 bp sequences flanking subtelomeric surface antigen genes promote intergenic recombination (Boothroyd et al. 2009). Accordingly, we propose that the 50 bp BTS element may be analogous to the 70 bp motif that promotes homologous recombination between different subtelomeres in Trypanosoma brucei (Boothroyd et al. 2009).

A major mechanism for the construction of novel genes is recombination, as inferred from phylogenetic reconstruction of intergenic recombination events, like those that produced the TLOα9/α12 chimeras (Kraemer et al. 2007; Kyes et al. 2007; Sander et al. 2014). Both of the major sites of TLO recombination encode physically unstable (TAA) repeats, which can promote break-induced replication after DNA replication stalling (Oshima et al. 1996; Barry and McCulloch 2001). The gain and loss of TLO genes and the sequence conservation between chromosome arms at the site of the cross-over event strongly suggests ectopic recombination (Haber 2000) produced most TLO recombination events. The absence of reciprocal exchange and the loss of nucleotide information from the recipient TLO suggest that break-induced replication/crossover or gene conversion is likely the major mechanisms responsible for TLO recombination. Consistent with this, BIR between subtelomeric Y' elements is a common 'ALT' mechanism in telomere replication and repair in yeasts (Lundblad and Blackburn 1993; Teng et al. 2000) and leads to elevated mutation rates through error-prone DNA synthesis machinery (Deem et al. 2011). Although close proximity to the poorly characterized chromosome end makes it difficult to differentiate between gene conversion and BIR/XO, both mechanisms would result in the same general
phenomenon: the apparent “movement” of TLO genes via loss of one TLO gene copy and expansion of another.

Candida albicans and C. dubliniensis diverged ~20 MYA and C. dubliniensis has only two TLO genes. Thus, the TLO gene family expansion appears to have been a recent event in C. albicans. The expansion of gene families at chromosome ends is associated with a high prevalence of pseudogene fragments scattered across subtelomeric regions (LOUIS AND HABER 1992; GARDNER et al. 2002; MARCELLO AND BARRY 2007). C. albicans has only a single TLO pseudogene (ANDERSON et al. 2012), which appears to have been produced through insertion of a long terminal repeat (LTR) retrotransposon, rather than by recombination or cumulative mutation (ANDERSON et al. 2012). The lack of extensive, degenerate TLO copies is consistent with the recent origin of the TLO expansion but could also be due to the acquisition of non-redundant functions among TLO paralogs. It is tempting to speculate that the bias in expansion and contraction of some family members reflects specialized roles for individual TLO genes in shaping the Mediator activity within the cell. This view is consistent with previous work that subtelomeric evolution facilitates adaptation to new environmental conditions in other eukaryotes, including other yeasts (CARRETO et al. 2008; CHUMA et al. 2011; HARAN et al. 2014). It also suggests that analysis of TLO changes in strains isolated from different host niches may offer insights into the functional specialization of specific TLO genes.
REFERENCES

Ames, R. M., B. M. Rash, K. E. Hentges, D. L. Robertson, D. Delheri et al., 2010 Gene duplication and environmental adaptation within yeast populations. Genome Biol Evol 2: 591-601.

Anderson, J. A., Y. S. Song and C. H. Langley, 2008 Molecular population genetics of Drosophila subtelomeric DNA. Genetics 178: 477-487.

Anderson, M. Z., J. A. Baller, K. Dulmage, L. Wigen and J. Berman, 2012 The three clades of the telomere-associated TLO gene family of Candida albicans have different splicing, localization, and expression features. Eukaryot Cell 11: 1268-1275.

Anderson, M. Z., A. C. Gerstein, L. Wigen, J. A. Baller and J. Berman, 2014 Silencing is noisy: population and cell level noise in telomere-adjacent genes is dependent on telomere position and sir2. PLoS Genet 10: e1004436.

Ansari, S. A., M. Ganapathi, J. J. Benschop, F. C. Holstege, J. T. Wade et al., 2012 Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 31: 44-57.

Barry, J. D., and R. McCulloch, 2001 Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49: 1-70.

Blitzblau, H. G., G. W. Bell, J. Rodriguez, S. P. Bell and A. Hochwagen, 2007 Mapping of meiotic single-stranded DNA reveals double-stranded-break hotspots near centromeres and telomeres. Curr Biol 17: 2003-2012.

Boothroyd, C. E., O. Dreesen, T. Leonova, K. I. Ly, L. M. Figueiredo et al., 2009 A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459: 278-281.

Bopp, S. E., M. J. Manary, A. T. Bright, G. L. Johnston, N. V. Dharia et al., 2013 Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet 9: e1003293.

Brown, C. A., A. W. Murray and K. J. Verstrepen, 2010 Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol 20: 895-903.

Butler, G., M. D. Rasmussen, M. F. Lin, M. A. Santos, S. Sakthikumar et al., 2009 Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657-662.

Carreto, L., M. F. Eiriz, A. C. Gomes, P. M. Pereira, D. Schuller et al., 2008 Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9: 524.

Celenza, J. L., and M. Carlson, 1985 Rearrangement of the genetic map of chromosome VII of Saccharomyces cerevisiae. Genetics 109: 661-664.

Choi, J. K., S. Hwang and Y. J. Kim, 2008 Stochastic and regulatory role of chromatin silencing in genomic response to environmental changes. PLoS One 3: e3002.

Christiaens, J. F., S. E. Van Mulders, J. Duitama, C. A. Brown, M. G. Ghequire et al., 2012 Functional divergence of gene duplicates through ectopic recombination. EMBO Rep 13: 1145-1151.

Chuma, I., C. Isobe, Y. Hotta, K. Ibaragi, N. Futamata et al., 2011 Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7: e1002147.

Claessens, A., W. L. Hamilton, M. Kekre, T. D. Otto, A. Faizullahbhooy et al., 2014 Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet 10: e1004812.

Corcoran, L. M., J. K. Thompson, D. Walliker and D. J. Kemp, 1988 Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 53: 807-813.
Cuomo, C. A., U. Guldener, J. R. Xu, F. Trail, B. G. Turgeon et al., 2007 The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: 1400-1402.

Deem, A., A. Keszthelyi, T. Blackgrove, A. Vayl, B. Coffey et al., 2011 Break-induced replication is highly inaccurate. PLoS Biol 9: e1000594.

Dreszer, T. R., G. D. Wall, D. Haussler and K. S. Pollard, 2007 Biased clustered substitutions in the human genome: The footprints of male-driven biased gene conversion. Genome Research 17: 1420-1430.

Dujon, B., D. Sherman, G. Fischer, P. Durrens, S. Casaregola et al., 2004 Genome evolution in yeasts. Nature 430: 35-44.

Dunn, B., C. Richter, D. J. Kvitek, T. Pugh and G. Sherlock, 2012 Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 22: 908-924.

Edgar, R. C., 2004 MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.

Fan, C., Y. Zhang, Y. Yu, S. Rounsley, M. Long et al., 2008 The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice. Mol Plant 1: 839-850.

Farman, M. L., and Y. S. Kim, 2005 Telomere hypervariability in Magnaporthe oryzae. Mol Plant Pathol 6: 287-298.

Fischer, K., P. Horrocks, M. Preuss, J. Wiesner, S. Wunsch et al., 1997 Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. Mol Cell Biol 17: 3679-3686.

Forche, A., M. Steinbach and J. Berman, 2009 Efficient and rapid identification of Candida albicans allelic status using SNP-RFLP. FEMS Yeast Res 9: 1061-1069.

Fukasawa, R., T. Tsutsui, Y. Hirose, A. Tanaka and Y. Ohkuma, 2012 Mediator CDK subunits are platforms for interactions with various chromatin regulatory complexes. J Biochem 152: 241-249.

Gardner, M. J., N. Hall, E. Fung, O. White, M. Berriman et al., 2002 Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498-511.

Gaut, B. S., S. I. Wright, C. Rizzon, J. Dvorak and L. K. Anderson, 2007 Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8: 77-84.

Gemayel, R., M. D. Vinces, M. Legendre and K. J. Verstrepen, 2010 Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44: 445-477.

Glover, L., S. Alsford and D. Horn, 2013 DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. PLoS Pathog 9: e1003260.

Gottschling, D. E., O. M. Aparicio, B. L. Billington and V. A. Zakian, 1990 Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751-762.

Gresham, D., M. M. Desai, C. M. Tucker, H. T. Jenq, D. A. Pai et al., 2008 The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4: e100303.

Haber, J. E., 2000 Partners and pathwaysrepairing a double-strand break. Trends Genet 16: 259-264.

Hahn, M. W., T. De Bie, J. E. Stajich, C. Nguyen and N. Cristianini, 2005 Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15: 1153-1160.

Halliwell, S. C., M. C. Smith, P. Muston, S. L. Holland and S. V. Avery, 2012 Heterogeneous expression of the virulence-related adhesin Epa1 between individual cells and strains of the pathogen Candida glabrata. Eukaryot Cell 11: 141-150.

Haran, J., H. Boyle, K. Hokamp, T. Yeomans, Z. Liu et al., 2014 Telomeric ORFs (TLOs) in Candida spp. Encode mediator subunits that regulate distinct virulence traits. PLoS Genet 10: e1004658.
Hirakawa, M. P., D. A. Martinez, S. Sakthikumar, M. Anderson, A. Berlin et al., 2014 Genetic and phenotypic intra-species variation in Candida albicans. Genome Res.

Hoffman, C. S., and F. Winston, 1987 A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272.

Hovel-Miner, G. A., C. E. Boothroyd, M. Mugnier, O. Dreessen, G. A. Cross et al., 2012 Telomere length affects the frequency and mechanism of antigenic variation in Trypanosoma brucei. PLoS Pathog 8: e1002900.

IBM Corp, 2013 IBM SPSS Statistics for Windows, pp. IBM Corp, Armonk, NY.

Jackson, A. P., J. A. Gamble, T. Yeomans, G. P. Moran, D. Saunders et al., 2009 Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 19: 2231-2244.

Jiang, H., N. Li, V. Gopalan, M. M. Zilversmit, S. Varma et al., 2011 High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol 12: R33.

Jones, S. K., Jr., M. P. Hirakawa and R. J. Bennett, 2014 Sexual biofilm formation in Candida tropicalis opaque cells. Mol Microbiol 92: 383-398.

Jones, T., N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman et al., 2004 The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101: 7329-7334.

Kasuga, T., G. Mannhaupt and N. L. Glass, 2009 Relationship between phylogenetic distribution and genomic features in Neurospora crassa. PLoS One 4: e5286.

Kellis, M., N. Patterson, M. Endrizzi, B. Birren and E. S. Lander, 2003 Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241-254.

Kraemer, S. M., S. A. Kyes, G. Aggarwal, A. L. Springer, S. O. Nelson et al., 2007 Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8: 45.

Kupiec, M., 2014 Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev 38: 144-171.

Kyes, S. A., S. M. Kraemer and J. D. Smith, 2007 Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family. Eukaryot Cell 6: 1511-1520.

Lang, G. I., and A. W. Murray, 2008 Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178: 67-82.

Linardopoulou, E. V., S. S. Parghi, C. Friedman, G. E. Osborn, S. M. Parkhurst et al., 2007 Human subtelomeric WASP genes encode a new subclass of the WASP family. PLoS Genet 3: e237.

Linardopoulou, E. V., E. M. Williams, Y. Fan, C. Friedman, J. M. Young et al., 2005 Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94-100.

Louis, E. J., and J. E. Haber, 1990a Mitotic recombination among subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics 124: 547-559.

Louis, E. J., and J. E. Haber, 1990b The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics 124: 533-545.

Louis, E. J., and J. E. Haber, 1992 The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics 131: 559-574.

Louis, E. J., E. S. Naumova, A. Lee, G. Naumov and J. E. Haber, 1994 The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136: 789-802.

Lundblad, V., and E. H. Blackburn, 1993 An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73: 347-360.

Lynch, M., W. Sung, K. Morris, N. Coffey, C. R. Landry et al., 2008 A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105: 9272-9277.

Marcello, L., and J. D. Barry, 2007 Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res 17: 1344-1352.
Mefford, H. C., and B. J. Trask, 2002 The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3: 91-102.

Mondoux, M. A., and V. A. Zakian, 2007 Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres. Genetics 177: 2541-2546.

Morrison, L. J., L. Marcello and R. McCulloch, 2009 Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity. Cell Microbiol 11: 1724-1734.

Myers, S., C. Freeman, A. Auton, P. Donnelly and G. McVean, 2008 A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40: 1124-1129.

Naumov, G. I., E. S. Naumova and M. P. Korhola, 1995 Chromosomal polymorphism of MEL genes in some populations of Saccharomyces cerevisiae. FEMS Microbiol Lett 127: 41-45.

Naumova, E. S., V. Ivannikova Iu and G. I. Naumov, 2005 [Genetic differentiation of the sherry yeasts Saccharomyces cerevisiae]. Prikl Biokhim Mikrobiol 41: 656-661.

Ohshima, K., S. Kang, J. E. Larson and R. D. Wells, 1996 TTA.TAA triplet repeats in plasmids form a non-H bonded structure. J Biol Chem 271: 16784-16791.

Padmanabhan, S., J. Thakur, R. Siddharthan and K. Sanyal, 2008 Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci U S A 105: 19797-19802.

Park, Y. N., K. J. Daniels, C. Pujol, T. Srikantha and D. R. Soll, 2013 Candida albicans forms a specialized "sexual" as well as "pathogenic" biofilm. Eukaryot Cell 12: 1120-1131.

Pryde, F. E., H. C. Gorham and E. J. Louis, 1997 Chromosome ends: all the same under their caps. Curr Opin Genet Dev 7: 822-828.

R Development Core Team, 2013 R: A language and environment for statistical computing,. pp. R Foundation for Statistical Computing, Vienna, Austria.

Rehmeyer, C., W. Li, M. Kusaba, Y. S. Kim, D. Brown et al., 2006 Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 34: 4685-4701.

Rudd, M. K., C. Friedman, S. S. Parghi, E. V. Linardopoulou, L. Hsu et al., 2007 Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet 3: e32.

Sander, A. F., T. Lavstsen, T. S. Rask, M. Lisby, A. Salanti et al., 2014 DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res 42: 2270-2281.

Teng, S. C., J. Chang, B. McCowan and V. A. Zakian, 2000 Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6: 947-952.

Thompson, D. A., M. M. Desai and A. W. Murray, 2006 Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol 16: 1518-1590.

Tsutsui, T., H. Umemura, A. Tanaka, F. Mizuki, Y. Hirose et al., 2008 Human mediator kinase subunit CDK11 plays a negative role in viral activator VP16-dependent transcriptional regulation. Genes Cells 13: 817-826.

Turakainen, H., G. Naumov, E. Naumova and M. Korhola, 1993 Physical mapping of the MEL gene family in Saccharomyces cerevisiae. Curr Genet 24: 461-464.

van het Hoog, M., T. J. Rast, M. Martchenko, S. Grindle, D. Dignard et al., 2007 Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8: R52.

Van Mulders, S. E., M. Ghequire, L. Daenen, P. J. Verbelen, K. J. Verstrepen et al., 2010 Flocculation gene variability in industrial brewer's yeast strains. Appl Microbiol Biotechnol 88: 1321-1331.

Wapinski, I., A. Pfeffer, N. Friedman and A. Regev, 2007 Natural history and evolutionary principles of gene duplication in fungi. Nature 449: 54-61.
Wenger, J. W., J. Piotrowski, S. Nagarajan, K. Chiotti, G. Sherlock et al., 2011 Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7: e1002202.

Winzeler, E. A., C. I. Castillo-Davis, G. Oshiro, D. Liang, D. R. Richards et al., 2003 Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163: 79-89.

Zhang, A., Z. Liu and L. C. Myers, 2013 Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator. Eukaryot Cell 12: 1293-1304.

Zhang, A., K. O. Petrov, E. R. Hyun, Z. Liu, S. A. Gerber et al., 2012 The Tlo proteins are stoichiometric components of Candida albicans mediator anchored via the Med3 subunit. Eukaryot Cell 11: 874-884.

FIGURE LEGENDS

Figure 1. Evolution and sequencing of *C. albicans* subtelomeres. A. Strains were evolved by passaging to new rich media agar plates every two days for 30 months using cells from the thick part of the streak to avoid bottlenecks during propagation. Passaging was performed either without stress, as described above, or with a 1 hour cold shock (4°C) followed by a 1 hour mild heat shock (37°C) immediately after being restruck every third passage. B. *TLO* genes were amplified from each chromosome arm using primers represented as half arrows. Amplicons were sequenced from chromosome arm-specific unique sequence to the start codon of the *TLO* genes (pan-*TLO* primer). C. Location of *TLO* genes in the SC5314 strain prior to passaging is shown. *TLO* clade is denoted by color. D. Amplicons composed of mixed sequences as indicated in the chromatograph were separated using the chromosome arm sequence as a template to identify the second sequence. Once separated, these sequences were used to identify the second donor *TLO* gene.

Figure 2. Evolution of subtelomeric *TLOs* during passaging. A. The timing of identified recombination events was determined by screening archived isolates. The most narrow time frame for each event is displayed visually as a filled bar for each strain. The strain used and the chromosome arm affected by recombination are indicated on the Y-axis. Black or purple bars delimit the time frames during which the recombination events became detectable in the different strains. Black bars indicate a one month interval and purple bars indicate longer intervals because isolates were archived less frequently over these intervals. The lower panel shows the moving average for recombination events occurring at 15 passage intervals during the experiment. B. Sequential recombination events on the right arm of chromosome 4 resulted in homozygosis of Chr4R in strain YJB9929.

Figure 3. Inventory of *TLO* events. The *TLO* family members affected by subtelomeric recombination were separated into those lost (replaced by another paralog) and those gained (copied to other subtelomeric loci). Some *TLOs* were significantly overrepresented in the identified recombination events.
Figure 4. Recombination clusters at defined subtelomeric regions. A. Conversion tracts were mapped onto a representation of the C. albicans subtelomere and enriched regions of recombination were identified in the C-terminal portion of the TLO coding sequence and the centromeric BTS. Arrows indicate specific sites of recombination and horizontal lines indicate a region within which a single recombination event occurred. TLO replacements resulting from LOH were not included in the map. B. Alignment of the eleven subtelomeric BTS elements reveals strong sequence conservation. C. Recombination between the TLOα12 and TLOα9 ORFs produced a hybrid TLOα12-α9 sequence. Recombination occurred within a region of strong homology that is demarked by gene-specific SNPs and did not alter the Tloα12 protein sequence. The recombination region is shaded intermediate to either TLO gene. D. Recombination between the TLOα12 and TLOα10 ORFs produced a hybrid TLOα12-α10 sequence with a unique protein sequence. The novel Tloα12-α10 sequence is characterized by a 111 nt deletion at the site of recombination and the incorporation of non-synonymous SNPs between the TLO genes.

Figure 5. Association of recombination site and chromosome arm. The region of recombination was defined for all recipient chromosome arms as either within the TLO, between the TLO and BTS (Mid), within the BTS, or centromeric of the BTS (Cen). Binning of the number of recombination events within each region for a given chromosome arm revealed bias in the recombination site for certain chromosome arms.

Figure 6. SNP accumulation during passaging. A. SNPs arising during strain propagation were identified by comparison to the progenitor strain. The number of SNPs per 100 basepairs for each subtelomeric TLO (5 for TLOα, 1 for TLOβ, and 7 for TLOγ), eight centromere core regions (CEN), ENO1, LIP4, SAP1, and SAP7 were plotted as individual data points for each locus. B. Identified SNPs were grouped by clade of origin and plotted along the length of the TLO coding sequence. TLOγ clade SNPs clustered towards the Med2 domain at the 5’ end and TLOα SNPs arose primarily in the clade-specific region at the 3’ end of the gene.

Figure 7. Increased growth rates during strain passaging. Passaged isolates from several time points associated with subtelomeric recombination were assayed for fitness using competition assays against a GFP-marked reference strain. The specific recombination events that arose in this passaged strain are illustrated for each chromosome arm by an arrow that is aligned with the time points on the X-axis below. As expected, relative fitness, as measured by the selection coefficient, increased with continued passaging.
Strain	Chr arm	Pre-movement	Post-movement	Inferred event window	Recombination relative to CDS stop codon
YJB8648	4L	TLOα9/TLOα9	TLOα12-α9/TLOα12-α9	Chr4: 1612-1524	CDS 3’ end (-135, -47)
YJB8648s	4R	TLOα9/TLOα10	TLOα12/TLOα12	Chr4: 1597170-1597206	137-174bp centromeric
YJB9907	4R	TLOα9/TLOα10	TLOα12/TLOα12-α10	Chr4: 1597488-1597612	CDS 3’ end (-265, -151)
YJB9915	4L	TLOα9/TLOα9	TLOα9/TLOα12-α9	Chr4: 1669-1519	9nt centromeric
YJB9916s	3L	TLOγ7/TLOγ7	TLOγ11/TLOγ11	Chr3: 14321-14089	56nt centromeric of the unspliced form
	4L	TLOα9/TLOα9	TLOα12-α9/TLOα12-α9	Chr4: 1614-1527	CDS 3’ end (-133, -45)
YJB9929	RL	TLOα1/TLOα1	TLOα1/TLOγ13	Centromeric	Centromeric
	1L	TLOα3/TLOα3	TLOα3/TLOα1	Chr1: 11547-11543	55-60bp centromeric
	4L	TLOα9/TLOα9	TLOα9/TLOα12	Chr4: 1666-1516	6nt 3’ to -144bp into 3’ of CDS
	4R	TLOα9/TLOα10	TLOα10/TLOα10	Centromeric	Centromeric
	4R	TLOα10/TLOγ8	TLOα10/TLOα10	Chr4: 1597146-1597167	191-170bp centromeric
	4R	TLOα10/TLOγ8	TLOα10/TLOα10	Centromeric	Centromeric
YJB9929s	4L	TLOα9/TLOα9	TLOα12-α9/TLOα12-α9	Chr4: 1614-1527	CDS 3’ end (-133, -45)
YJB10777s	4L	TLOα9/TLOα9	TLOα12-α9/TLOα12-α9	Chr4: 1614-1527	CDS 3’ end (-133, -45)
YJB10779	4R	TLOα9/TLOα10	TLOα9/TLOα9	Chr4: 1597327-1597336	1-7nt centromeric
YJB10780s	1L	TLOα3/TLOα3	TLOα3/TLOγ11	Chr1: 11695-11669	180bp centromeric
Table 2. Subtelomeric recombination mechanisms.

Recombination mechanism	Movement
Crossover:	YJB9907-4R
	YJB9929-4L
	YJB10780s-1L
Crossover, then LOH	YJB8648-4L
	YJB9916s-4L
	YJB9929s-4L
	YJB10777s-4L
Gene conversion:	YJB9915-4L
	YJB9929-RL
	YJB9929-1L
	YJB9929-4R, 12 months
Gene conversion, then LOH:	YJB8648s-4R
	YJB9916s-3L
LOH:	YJB9929-4R, 8 months
	YJB9929-4R, 25 months
	YJB10779-4R
Two days +/- stress +/- stress

A B

Sequencing primer

pan-TLO primer

arm-specific primer

0 300 600 900 1200 1500 1800 2100 nt

C D

homozygous

heterozygous

Sequence 1: TACAATTTAAAGTAGT

Sequence 2: TTAAAGTAGTTGGCC...
Table: Frequency of Gene involvement in recombination event

Gene involved in recombination event	Lost TLO	Gained TLO		
TLOα1				
TLOα3				
TLOα9				
TLOα10				
TLOγ11				
TLOγ13				
TLOγ16				
TLOγ7				
TLOγ8				
TLOγ5				
TLOγ4				
TLOβ2				
	TLO	3' UTR	BTS	Arm
----	-----	--------	-----	-----
RL	0	0	0	1
1L	0	1	1	0
3L	0	1	0	0
4L	5	1	0	0
4R	1	1	2	2
