Unusually high critical current of clean P-doped BaFe$_2$As$_2$ single crystalline thin film

F. Kurth,*, C. Tarantini, V. Grinenko,1 J. Hänsch,4 J. Jaroszynski,3 E. Reich,1 Y. Mori,5 A. Sakagami,5 T. Kawaguchi,5 J. Engelmann,1,2 L. Schultz,1,2 B. Holzapfel,4 H. Ikuta,5 R. Hühne,1 and K. Iida5,*

1) Institute for Metallic Materials, IFW Dresden, 01171 Dresden, Germany
2) TU Dresden, 01062 Dresden, Germany
3) Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
4) Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
5) Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603, Japan

Microstructurally clean, isovalently P-doped BaFe$_2$As$_2$ (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T_c) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e. 0.33). The enhanced T_c at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J_c) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J_c exceeds 0.1 MA/cm2 at $\mu_0H = 35$ T for $H || ab$ and $\mu_0H = 18$ T for $H || c$ at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T_c. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J_c to a strong enhancement of the vortex core energy at optimal T_c, driven by in-plane strain and doping. These unusually high J_c make P-doped Ba-122 very favorable for high-field magnet applications.

PACS numbers: 74.70.Xa, 74.15.Ha, 74.25.F-, 76.34.Jr, 07.80.Er

Microstructurally clean, isovalently P-doped BaFe$_2$As$_2$ (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T_c) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e. 0.33). The enhanced T_c at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J_c) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J_c exceeds 0.1 MA/cm2 at $\mu_0H = 35$ T for $H || ab$ and $\mu_0H = 18$ T for $H || c$ at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T_c. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J_c to a strong enhancement of the vortex core energy at optimal T_c, driven by in-plane strain and doping. These unusually high J_c make P-doped Ba-122 very favorable for high-field magnet applications.

PACS numbers: 74.70.Xa, 74.15.Ha, 74.25.F-, 76.34.Jr, 07.80.Er

Microstructurally clean, isovalently P-doped BaFe$_2$As$_2$ (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T_c) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e. 0.33). The enhanced T_c at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J_c) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J_c exceeds 0.1 MA/cm2 at $\mu_0H = 35$ T for $H || ab$ and $\mu_0H = 18$ T for $H || c$ at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T_c. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J_c to a strong enhancement of the vortex core energy at optimal T_c, driven by in-plane strain and doping. These unusually high J_c make P-doped Ba-122 very favorable for high-field magnet applications.

PACS numbers: 74.70.Xa, 74.15.Ha, 74.25.F-, 76.34.Jr, 07.80.Er

Microstructurally clean, isovalently P-doped BaFe$_2$As$_2$ (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T_c) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e. 0.33). The enhanced T_c at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J_c) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J_c exceeds 0.1 MA/cm2 at $\mu_0H = 35$ T for $H || ab$ and $\mu_0H = 18$ T for $H || c$ at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T_c. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J_c to a strong enhancement of the vortex core energy at optimal T_c, driven by in-plane strain and doping. These unusually high J_c make P-doped Ba-122 very favorable for high-field magnet applications.

PACS numbers: 74.70.Xa, 74.15.Ha, 74.25.F-, 76.34.Jr, 07.80.Er

Microstructurally clean, isovalently P-doped BaFe$_2$As$_2$ (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T_c) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e. 0.33). The enhanced T_c at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J_c) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J_c exceeds 0.1 MA/cm2 at $\mu_0H = 35$ T for $H || ab$ and $\mu_0H = 18$ T for $H || c$ at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T_c. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J_c to a strong enhancement of the vortex core energy at optimal T_c, driven by in-plane strain and doping. These unusually high J_c make P-doped Ba-122 very favorable for high-field magnet applications.

PACS numbers: 74.70.Xa, 74.15.Ha, 74.25.F-, 76.34.Jr, 07.80.Er
Figure 1: Structural data of the P-doped Ba-122 thin film. (a) $\theta - 2\theta$ scan showing the c-axis oriented growth. (b) ϕ-scan of the (103) reflection of the Ba-122 and the (220) reflection of the MgO substrate proving the cube-on-cube film growth. (c) Rocking curve of the (004) reflection (d) TEM image near the interface between the MgO substrate and the Ba-122 phase.

Figure 2: Field dependence of the resistive transition for the P-doped Ba-122 thin film for $H\|ab$ (top) and $H\|c$ direction (bottom). The field steps are 2.5 T. The inset shows the temperature dependence of the resistivity from 2 K up to 300 K in zero field.
tensile strain in the underdoped regime for P-doped Ba-122 enhances T_c. The normal state resistivity shows a linear temperature dependence below 100 K (inset of Fig. 2), which is a typical behavior for optimally P-doped Ba-122. Therefore, the tensile strain shifts the superconducting transition of our film to higher values compared to a T_c of higher P concentrations without strain, a dependency which has been observed for Co-doped Ba-122 thin films as well.

In Fig. 3, the temperature dependence of the upper critical field J_c for our P-doped Ba-122 film is compared to other J_c results reported for FeSCs. It is seen that P-doped Ba-122 shows the highest self-field J_c values among other FeSCs. Note, that even SmFeAs(O,F) (Sm-1111) with a much higher T_c of 54 K shows smaller J_c values. Our clean P-doped Ba-122 film presents a self-field J_c of about 6.3 MA/cm2 at 4.2 K, which is almost 7% of the depairing current density. We assume that this J_c could be further increased by adding additional pinning centers. As can be seen in Fig. 3, the film prepared by the same method but with an excess of Fe content during the growth has twice the value of J_c. The field dependence of J_c at various temperatures is summarized in Fig. 4a. The J_c values for $H \parallel c$ ($J_{c,H \parallel c}$) are always lower than those for $H \parallel ab$, and no feature close to $H \parallel c$ is observed in Fig. 4a. These findings indicate the absence of c-axis correlated pinning and that the material anisotropy dominates the general J_c trend. The pinning force density (F_p) calculated according to $F_p = H \times J_c$ at 4.2 K shows values up to 77 GN/m3 (at 15 T) for $H \parallel ab$. The data for $H \parallel c$ show a maximum of around 35 GN/m3 at around 10 T. Compared to the results presented by Miura et al. and Adachi et al., our film showed slightly higher values which might be due to the higher T_c. In particular, J_c at 35 T $H \parallel c$ is as high as $J_{c,H \parallel c} = 1.1 \times 10^4$ A/cm2. In general, J_c of optimally P-doped films is quite robust against applied magnetic fields. The question arises why our microstructurally clean film exhibits such high J_c values. Usually, a high density of defects is necessary to achieve high J_c. However, we did observe neither crystal structure defects nor impurity phases in our films (Fig. 1). Alternatively, it has been shown by Putzke et al. that the vortex core energy of the flux lines is enhanced close to the optimal doping. Therefore, we suppose that this high vortex core energy is a key factor responsible for the unusually high J_c in optimally P-doped Ba-122. In this context, comparable J_c values of the P-doped Ba-122 with T_c around 25 K containing BaZrO$_3$ particles or strong pinning centers could be explained by the reduction of the vortex core energy due to non optimal T_c.

In Fig. 3, the angular dependence of J_c ($J_c(\theta)$) measured at 4.2 K and various fields up to 35 T. J_c has a broad maximum positioned at $\theta = 0^\circ$ ($H \parallel ab$) and no prominent J_c peaks at $\theta = 90^\circ$ ($H \parallel c$). Low $J_c(H)$-anisotropy values ($\gamma_{J_c} = J_{c,H \parallel ab}/J_{c,H \parallel c}$) of around 2 approaches to 15 T at 4.2 K are observed, increasing for higher fields. Noteworthy is the observation of a small shoulder near the ab-peak, marked with arrows. It shifts to lower angles when the magnetic field is increased. Such shoulders are known from cuprates and exist usually due to strong correlated defects, such as in double-perovskite-doped YBa$_2$Cu$_3$O$_7$ (YBCO) thin films, or due to uncorrelated defects, as shown in Fig. 4c: these findings indicate the absence of c-axis correlated pinning and that the material anisotropy dominates the general J_c trend. The pinning force density (F_p) calculated according to $F_p = H \times J_c$ at 4.2 K shows values up to 77 GN/m3 (at 15 T) for $H \parallel ab$. The data for $H \parallel ab$ show a maximum of around 35 GN/m3 at around 10 T. Compared to the results presented by Miura et al. and Adachi et al., our film showed slightly higher values which might be due to the higher T_c. In particular, J_c at 35 T $H \parallel c$ is as high as $J_{c,H \parallel c} = 1.1 \times 10^4$ A/cm2. In general, J_c of optimally P-doped films is quite robust against applied magnetic fields. The question arises why our microstructurally clean film exhibits such high J_c values. Usually, a high density of defects is necessary to achieve high J_c. However, we did observe neither crystal structure defects nor impurity phases in our films (Fig. 1). Alternatively, it has been shown by Putzke et al. that the vortex core energy of the flux lines is enhanced close to the optimal doping. Therefore, we suppose that this high vortex core energy is a key factor responsible for the unusually high J_c in optimally P-doped Ba-122. In this context, comparable J_c values of the P-doped Ba-122 with T_c around 25 K containing BaZrO$_3$ particles or strong pinning centers could be explained by the reduction of the vortex core energy due to non optimal T_c.

Figure 3 shows the angular dependence of J_c ($J_c(\theta)$) measured at 4.2 K and various fields up to 35 T. J_c has a broad maximum positioned at $\theta = 0^\circ$ ($H \parallel ab$) and no prominent J_c peaks at $\theta = 90^\circ$ ($H \parallel c$). Low $J_c(H)$-anisotropy values ($\gamma_{J_c} = J_{c,H \parallel ab}/J_{c,H \parallel c}$) of around 2 approaches to 15 T at 4.2 K are observed, increasing for higher fields. Noteworthy is the observation of a small shoulder near the ab-peak, marked with arrows. It shifts to lower angles when the magnetic field is increased. Such shoulders are known from cuprates and exist usually due to strong correlated defects, such as in double-perovskite-doped YBa$_2$Cu$_3$O$_7$ (YBCO) thin films, or due to uncorrelated defects, as shown in Fig. 4c: these findings indicate the absence of c-axis correlated pinning and that the material anisotropy dominates the general J_c trend. The pinning force density (F_p) calculated according to $F_p = H \times J_c$ at 4.2 K shows values up to 77 GN/m3 (at 15 T) for $H \parallel ab$. The data for $H \parallel ab$ show a maximum of around 35 GN/m3 at around 10 T. Compared to the results presented by Miura et al. and Adachi et al., our film showed slightly higher values which might be due to the higher T_c. In particular, J_c at 35 T $H \parallel c$ is as high as $J_{c,H \parallel c} = 1.1 \times 10^4$ A/cm2. In general, J_c of optimally P-doped films is quite robust against applied magnetic fields. The question arises why our microstructurally clean film exhibits such high J_c values. Usually, a high density of defects is necessary to achieve high J_c. However, we did observe neither crystal structure defects nor impurity phases in our films (Fig. 1). Alternatively, it has been shown by Putzke et al. that the vortex core energy of the flux lines is enhanced close to the optimal doping. Therefore, we suppose that this high vortex core energy is a key factor responsible for the unusually high J_c in optimally P-doped Ba-122. In this context, comparable J_c values of the P-doped Ba-122 with T_c around 25 K containing BaZrO$_3$ particles or strong pinning centers could be explained by the reduction of the vortex core energy due to non optimal T_c.
by extended structural defects and often also by a strong c-axis peak in a certain magnetic field range. For our films, we did not observe any extended or correlated defects in TEM images nor any sign of off-axis peak by XRD. Therefore, the reason for these shoulders may lie in a possible variation of the P-content. For example, nanoscale regions of non-optimal P-content (not observable in TEM) of size slightly larger than the coherence lengths might act as uncorrelated strong pinning centers due to the unusually strong P-content dependence of the vortex core energy. These possible P-inhomogeneities in combination with the inequality of λ and ξ anisotropy as in the FeSCs can lead to such shoulders, as was shown by van der Beek et al. The presence of the pinning centers is further evidenced by the \(J_c(T) \) dependence at intermediate and high temperatures (Fig. 4b). Additional artificial disorder in the form of Fe impurities enhances the strong pinning resulting in a \(J_c(T) \) dependence consistent with the \(\delta \) pinning scenario in the whole temperature range. Thus, we believe pinning driven by differences in the vortex core energy enhances \(J_c \) values of the optimally P-doped Ba-122 well above all other FeSCs.

There is still room for further increase in \(J_c \) of the P-doped Ba-122 thin films, like doping with pinning-promoting particles the way it was done by Miura et al. in combination with optimal growth, and high crystalline quality. Additionally, a high concentration of a secondary phase like Fe can be incorporated into the superconducting matrix as artificial pinning centers for \(J_c \) increase without detrimental decrease in \(T_c \). This implies that the \(J_c \) anisotropy can be reduced while maintaining high \(T_c \) as well as \(J_c \). The unusually high critical currents makes the P-doped Ba-122 one of the most promising materials among FeSCs for the study of the superconducting pairing mechanisms and high field applications.

To conclude, using MBE we have fabricated P-doped Ba-122 thin film directly on MgO achieving epitaxy and phase purity with a high \(T_c \) of 30.7 K. We measured the field and the angle dependence of \(J_c \) up to 35 T. A very high self field \(J_c \) of 6.3 MA/cm² at 4.2 K was observed even though no structural defects were found in TEM and XRD. This observation suggests that in the optimally doped P-doped Ba-122 compound rather weak structural...
inhomogeneities result in strong pinning centers. This unusual pinning enhancement is explained by a sharp maximum in the vortex core energy near to the optimal doping.

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under agreement number 283141 (IRON-SEA) and the EU–Japan project (No. 283204 SUPER-IRON) for support. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy. This research has also been supported by the Strategic International Collaborative Research Program (SICORP), Japan Science and Technology Agency and by a Grant-in-Aid from MEXT, Japan. J.E. acknowledges the graduate school GRK 1621.

REFERENCES

1. K. Tanabe and H. Hosono, Jpn. J. Appl. Phys. 51, 010005 (2012).
2. A. Takemori, K. Nakao, Y. Oshikubo, and K. Tanabe, Nat Commun 5, 5679 (2014).
3. T. Shibata, A. Carrington, and Y. Matsuda, Annu. Rev. Cond. Matt. Phys. 5, 113 (2014).
4. P. Kurth, K. Iida, S. Trommler, J. Hänisch, K. Nenkov, J. Engelmann, S. Oswald, J. Werner, L. Schultz, B. Holzapfel, and S. Haindl, Supercond. Sci. Technol. 26, 052014 (2013).
5. J. Hänisch, K. Iida, S. Händl, F. Kurth, A. Kaufmann, M. Kidszun, T. Thersleff, J. Freudengerber, L. Schultz, and B. Holzapfel, Applied Superconductivity, IEEE Transactions on Appl. Supercond., IEEE Transactions on 21, 2887 (2011).
6. C. Tarantini, A. Gurevich, J. Jaroszyński, F. Balakirev, E. Bellingeri, I. Pallecchi, C. Ferdeghini, B. Shen, H. H. Wen, and D. C. Larbalestier, Phys. Rev. B 84, 184522 (2011).
7. C. Chaparro, L. Fang, H. Claus, A. Rydz, G. W. Crabtree, V. Stanev, W. K. Kwok, and U. Welp, Phys. Rev. B 85, 184525 (2012).
8. N. R. Werthamer, E. Helland, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
9. V. Grinenko, K. Kikoïn, S.-L. Drechsler, G. Fuchs, K. Nenkov, S. Wurmehl, F. Hammerath, G. Lang, H.-J. Grafe, B. Holzapfel, J. van den Brink, B. Bückner, and L. Schultz, Phys. Rev. B 84, 134516 (2011).
10. G. Fuchs, S.-L. Drechsler, N. Kozlova, M. Bartkowiak, J. E. Hamann-Borrero, G. Behr, K. Nenkov, H.-K. Klauss, H. Maeter, A. Amato, H. Luettken, A. Kwadrin, R. Khasanov, J. Freudengerber, A. Köhler, M. Knupfer, E. Arushanov, H. Rosner, B. Bückner, and L. Schultz, New J. Phys. 11, 075007 (2009).
11. H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457, 565 (2009).
12. K. Iida, J. Hänisch, C. Tarantini, F. Kurth, J. Jaroszyński, S. Ueda, M. Naito, A. Ichinose, I. Tsukada, E. Reich, V. Grinenko, L. Schultz, and B. Holzapfel, Sci. Rep. 3, 2139 (2013).
13. D. L. Sun, Y. Liu, and C. T. Lin, Phys. Rev. B 80, 144515 (2009).
14. C. Tarantini, F. Karantini, S. Lee, J. Jiang, J. D. Weiss, J. Jaroszyński, E. E. Hellstom, C. Eom, and D. C. Larbalestier, Sci. Rep. 4, 7305 (2014).
15. K. Hashimoto, M. Yamashita, S. Kasahara, Y. Senshii, N. Nakata, S. Tonegawa, K. Ikada, A. Serafin, A. Carrington, T. Terasima, H. Ikeda, T. Shibata, and Y. Matsuda, Phys. Rev. B 81, 220501 (2010).
16. H. Sato, H. Hiramatsu, T. Kuniyama, and H. Hosono, Appl. Phys. Lett. 104, 182603 (2014).
17. G. Ercolano, K. Miura, M. Tachikawa, T. Shiokawa, H. Hiramatsu, and H. Hosono, Supercond. Sci. Technol. 26, 056501 (2013).
18. T. Katase, H. Kojima, A. Tsukamoto, H. Hiramatsu, T. Kamiya, K. Tanabe, and H. Hosono, Nat. Commun. 2, 409 (2011).
19. T. Kawaguchi, A. Sakagami, Y. Morii, M. Tabuchi, T. Ujihara, Y. Takeda, and H. Ikuta, Supercond. Sci. Technol. 27, 065005 (2014).
20. S. Kasahara, T. Shibata, H. Yamashita, K. Ikada, S. Tonegawa, R. Otsuki, H. Shishido, H. Ikeda, H. Takeya, K. Hikata, T. Terasima, and Y. Matsuda, Phys. Rev. B 81, 184519 (2010).
21. R. Jiang, H. Xing, G. Xuan, C. Wang, Z. Ren, C. Feng, J. Dai, Z. Xu, and G. Cao, J. Phys.: Cond. Mat. 21, 382203 (2009).
22. R. M. Langford, Microsc. Res. Techniq. 69, 538 (2006).
23. S. Adachi, T. Shimode, M. Miura, N. Chikumoto, A. Takemori, K. Nakao, Y. Oshikubo, and K. Tanabe, Supercond. Sci. Technol. 25, 105015 (2012).