Supplementary Materials

A multi-analytical approach for the characterization of seventeenth century decorative wall paintings in two Norwegian stave churches: a case study at Eidsborg and Heddal, Norway

Ashley Amanda Freeman 1*, Lavinia de Ferri 2, Joy Mazurek 3, Fabrizio Andriulo 2 and Chiara Bertolin 1*

1 Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Richard Birkelands vei 2B, Gløshaugen, 7491 Trondheim, Norway
2 Department of Collection Management-Museum of Cultural History, University of Oslo, Kabelgaten 34, 0580 Oslo, Norway; l.de.ferri@khm.uio.no (L.d.F.); fabrizio.andriulo@khm.uio.no (F.A.)
3 Getty Conservation Institute, Science Department 1200 Getty Center Drive, Suite 700, Los Angeles, CA 90049, USA; JMazurek@getty.edu
* Correspondence: ashley.a.freeman@ntnu.no; chiara.bertolin@ntnu.no

Pigments within the Norwegian artists’ palette

Table S1: List of pigments found in distemper wall paintings in Norwegian stave churches. Table S1 is adapted from Table 3 in Olstad [1] which complies the findings from two studies using IR spectroscopy, SEM, microscopic examination, and/or microchemical analysis [2, 3].

Colour	Pigment	Time period
White	Chalk	1600s-1700s
Yellow	Orpiment	1600s-1700s
	Yellow ochre / iron oxide	1600s-1700s
Red	Cinnabar	1600s-1700s
	Red lead	Medieval
	Red ochre/ iron oxide	1600s-1700s
Blue	Indigo	1600s-1700s
	Smalt	1600s-1700s
Black	Charcoal Black	1600s-1700s
	Bone charcoal	Medieval & 1600s-1700s

Table S2: Colour and pigment assumption for the decor in Heddal and Eidsborg, as cited in conservation reports [4-6].

Colour	Pigment assumption	Heddal [4, 5]	Eidsborg [6]
Beige	Raw umbra and chalk		
Black	Carbon based		Charcoal black
Green	Green earth and chalk		
Pale green	Indigo and orpiment		
Grey-brown	Raw umbra		
Light grey	Chalk and carbon black		Chalk and charcoal black
Orange			Orpiment and English red
Pale pink / pink	Organic dye (possibly kermes or madder lake)		English red and chalk
Reddish yellow	Orpiment and English red		
Brownish red	English red		
Warm red	Cinnabar		Orpiment and English red
Year	Heddal [4, 5]	Eidsborg [6]	
-------	---------------	--------------	
1200-1300	Constructed in 1200s	Constructed 1250-1300	
1600s	In the late 1600s, fixtures were mounted to the walls, galleries were added to the nave, and the medieval décor was overpainted with a glue-based paint.	The northern wall of the nave was rendered in 1604, whereas the southern wall is dated as 1640/49.	
1800s	Between 1849 and 1851, the Baroque restorations were removed, and the decorative wall paintings were covered with panels. Concurrently, the structure underwent its first reconstruction.	Eidsborg was rebuilt twice, once in 1826 and later in 1845. During these reconstructions, the nave was extended, widows were inserted into the nave’s southern wall, and the interior décor was covered with panels.	
1900s	The third and final restoration of the interior was performed between 1930 and 1955, in which the 19th century panelling was removed revealing the 17th century distemper paint and fragmented medieval décor. Additionally, in the 1950s, the wooden structure was “restored” to its medieval configuration.	In the 1920s, in an attempt to return the church to its medieval appearance, most of the 19th century alterations were removed. The wall panelling was taken down and the large 19th century windows were replaced with smaller ones. During this reconstruction, the décor on the nave’s southern wall suffered and consequently preservation measures were taken.	
2000s	Prior to the 2009 consolidation treatment, dust and debris removal was carried out with a brush, whereas spot cleaning was performed with a damp compress. In addition, thick adhesive layers from the 1950s treatment, were softened with water and mechanically removed from the wall. For both churches, localized consolidation was achieved by applying sturgeon glue to the flaking paint through Japanese tissue paper. Specifically, for Eidsborg it was found that a 2.5 % solution of sturgeon glue was most ideal, whereas in Heddal a 2 % solution was used. Following this treatment, and before drying, excess glue was removed from the Japanese paper by blotting.	Due to the overall fragility of the décor within Eidsborg (i.e., water sensitivity and loss in cohesive and adhesive properties), neither aqueous cleaning nor dusting was conducted prior to the 2007 consolidation treatment. Although after the consolidant dried, localized debris removal was achievable from the décor’s surface. In 2013 an assessment of these consolidation treatments was performed, and further adhesive or cohesive failure was observed [7]. Consequently, in 2014 NIKU and Riksantikvaren developed a joint project to better understand the overall effects of sturgeon glue. The Sturgeon Glue Project is still ongoing.	

Structural and interior changes of Heddal and Eidsborg

Table S 3: Brief history of structural and interior changes of Heddal and Eidsborg, described in the conservation reports of Wedvik [4, 5] and Solberg, Norsted, and Spaarschuh [6].
Sample collection

On 27th of September 2018, a sampling campaign was carried out at Heddal and Eidsborg stave church, within the framework of Sustainable Management of heritage Buildings in a Long-term perspective (SyMBoL) Project (Project No. 274749). The sampling concentrated on areas of red pigments within the distemper decorative wall paintings.

Table S 4: Sample description and sampling location in nave of Heddal and Eidsborg. Sample naming convention: name of church, sample category (1 – treated with sturgeon glue, 2- untreated, 3- treated with sturgeon glue and in poor condition), letter signifying specific sample. See Figure S 1 for visual representation of sampling location and specimen collected. See manuscript for map of sampling points (Figure 3).

Sample description and sampling location										
H1a: four-layered stratigraphy (red, grey, orange, white)										
Northern wall 2nd plank from the north-west post 180 cm from the floor 25 cm from the north-west post										
H1b: four-layered stratigraphy (red, grey, orange, white)										
Northern wall 3rd plank from the north-west post 166 cm from the floor 66 cm from the north-west post										
H1c: four-layered stratigraphy (red, grey, orange, white)										
Northern wall 3rd plank from the north-west post 193 cm from the floor 84 cm from the north-west post										
H1d: three-layered stratigraphy (red, grey, white)										
Northern wall 2nd plank from the door’s proper right 228 cm from the floor 75 cm to the right from the door in the middle of the wall										
H1e: four-layered stratigraphy (red, grey, black, white)										
Northern wall 2nd plank from the door’s proper right 233 cm from the floor 58 cm from the door to the right										
H2a: three-layered stratigraphy (red, grey, white)										
Northern wall 1st plank from the north-east post 310 cm from the floor 22 cm from the post to the right.										
H2b: four-layered stratigraphy (red, grey, black, white)										
Northern wall 4th plank from the north-east post 332 cm from the floor 96 cm from the post to the right.										
H2c: four-layered stratigraphy (red and white, grey, red, white)										
Northern wall 3rd plank from the north-east post 341 cm from the floor 57 cm from the post to the right.										
H2d: four-layered stratigraphy (red, grey, orange, white)										
Northern wall 6th plank from the north door 285 cm from the floor 232 cm from the north portal.										
H2e: four-layered stratigraphy (red, grey, orange, white)										
Northern wall 6th plank from the north eastern corner post 260 cm from the floor 202 cm from the north portal.										
H3a: five-layered stratigraphy (red and white, grey, black, orange, white)	E1a: three-layered stratigraphy (red, black, white)	E1b: two-layered stratigraphy (red on white)	E1c: three-layered stratigraphy (red, black, white)	E1d: two-layered stratigraphy (red on white)	E1e: three-layered stratigraphy (red, black, white)	E2a: three-layered stratigraphy (red, black, white)	E2b: three-layered stratigraphy (red, black, white)	E2c: three-layered stratigraphy (red, black, white)	E2d: three-layered stratigraphy (red, black, white)	E3a: two-layered stratigraphy (red on white)
---	---	---	---	---	---	---	---	---	---	---
Northern wall	3rd plank from the post to the left	150 cm from the floor	65 cm from the post to the left							
Southern wall	8th plank from main entrance	158 cm from the floor	10 cm from the windowsill							
E1: three-layered stratigraphy (red, black, white)	E2: three-layered stratigraphy (red, black, white)	E3: two-layered stratigraphy (red on white)								
Southern wall	8th plank from main entrance	192 cm from the floor	8 cm from the windowsill							
Southern wall	4th plank from the post to the left	164 cm from the floor	141 cm from the post to the left							
Southern wall	2nd plank from the post to the left	181 cm from the floor	65 cm from the windowsill							
Southern wall	3rd plank from main entrance	153 cm from the floor	190 cm from the post to the right							
Northern wall	4th plank from the north-west post	220 cm from the floor	145 cm from the north-west post							
Northern wall	5th plank from the north-west post	183 cm from the floor	181 cm from the north-west post							
Northern wall	5th plank from the north-west post	183 cm from the floor	179.5 cm from the north-west post							
Northern wall	7th plank from the north-east post	188 cm from the floor	235 cm from the north-east post							
Southern wall	1st plank from the south-west post	270 cm from the floor	27 cm from the south-west post							
Figure S 1: Image of sample location within Eidsborg and Heddal and microscopic image of collected specimen. (Left image): Arrow identifying sample location prior to sampling. (Right image): microscope image of collected sample (100x). Refer to Table S 4 for numerical location of sampling and description.

Chemical Composition of intermediate layers

All Heddal samples contained a grey pigmented layer, which similarly to the white ground layer, mainly consists of a Ca-based material (Figure S 5). In [5, 6], the light grey/whitish-grey layer found for both churches is assumed to be a mixture of chalk and carbon black. Although, it is not possible to identify carbon black by means of SEM-EDS. Two of these Heddal samples (H1a and H1b) also contained an orange layer (Figure S 2) which displayed similar EDS results compared to that of the red layer. These results suggest that, like the red pigmented layer, the orange layer is also an ochre pigment. Although the orange layer probably contains goethite (FeOOH) as dominant colouring phase, which is in agreement with previous findings of 1600s -1700s distemper paints from other stave churches [1].

Three of the examined cross-sectional samples contained a black layer (E1a, E1c, and H1e). The EDS results obtained for this layer showed the occurrence of Ca, Si, and Al, as the most common constituents. The most prevalent difference between the black layers within these two churches is the weight percentage of these elements. The results for Eidsborg are rich in Ca (>89 wt. %) and contain relevantly low amounts (1-3 wt. %) of Si and Al, whereas these three components are considered as a major component (>10 wt. %) for the Heddal specimen (H1e). Additionally, H1e contained minor amounts of P (3 wt. %). Although only one sample from Heddal contained a black layer (H1e), the combined presence of Ca and P in this sample is suggestive of a bone black pigment. However, the FT-IR spectrum acquired from H1e did not permit a definitive confirmation of calcium phosphate (presumably in form of hydroxyapatite) as hypothesized from EDS data: its main band could contribute to the shoulder observed at ~1114 cm⁻¹, even if the total amount of such phase is (if present) probably too low to be actively responsible for any of the identified features. Although, previous examination of other Norwegian 1600s-1700s polychrome wall paintings has identified the black layer as charcoal black or bone char [1] (Table S 1), which is in agreement of the pigment assumptions of Heddal[4] and Eidsborg [6] (complied in Table S 2).
Microscopic analysis: optical microscopy and scanning electron microscopy

Figure S 2: Microscopy images of cross-sectional samples from Heddal and Eidsborg; a) H1a, b) H1b, c) H1d, d) H1e, e) H2a, f) E1a, g) E1b, h) E1c, i) E1d, and j) E2a. Cross-sectional samples were prepared by embedding distemper paint fragments in Technovit® 2000 LC (Heraeus Kulzer, Germany)

Table S 5: Summary of cross-sectional sample's stratigraphy through microscopy analysis, where ND means not detected. See Figure S 1 for corresponding microscopic image of samples.

Thickness of layer (μm)	H1a	H1b	H1d	H1e	H2a	E1a	E1b	E1c	E1d	E2a
Red	27 - 33	10 - 14	15 - 20	17 - 28	7 - 13	ND	19-35	53 - 78	18 - 28	15 - 25
Grey	39 - 79	33 - 79	38 - 144	43 - 74	34 - 49					
Orange	14 – 20	26 - 61								
Black		12 - 27	ND							40 - 54
White	93 - 127	49 - 65	37 - 61	82 - 85	13 - 24	ND	45 - 87	21 - 46	87 - 103	80 - 90
Figure S 3: SEM-BSE images of cross-sectional from Heddal and Eidsborg: a) H1a, b) H1b, c) H1d, d) H1e, e) H2a, f) E1a, g) E1b, h) E1c, i) E1d, and j) E2a. See Figure S 2 for microscopic image of cross-sectional samples.
Figure S 4: Spot analysis images of cross-sectional samples
Figure S 5: EDS spectrum of historic paint samples from Heddal and Eidsborg
Table S6: Summary of common ESEM-EDS results of samples from Eidsborg and Heddal. Concentrations higher than 10 weight per cent (wt. %) are considered major, whereas minor concentrations are between 1 - 10 wt.%. Values lower than 1 are not listed. See following tables for wt.% values.

Colour	SEM-EDS Major constitutes	Minor constitutes	Sample location
Red	Fe, Ca, Al, Si	Mg, S, K	H1a, H1d
	Fe, Ca, Al	Si, Mg, S, K	E2a
	Fe, Ca	Al, Si, Mg, S, K	E1c, H1b, H2a
	Fe, Ca	Al, Si, Mg, S, K, Pb	E1a', E1b
	Fe, Ca, Al, Si	Mg, S, K, Pb	E1d
Grey	Ca	Al, Si, Mg	H1a, H1b, H1d, H1e, H2a
Orange	Fe, Ca, Al, Si	Fe, Ca, Pb, Mg, Pb, Mg	H1b
	Fe, Ca	Fe, Ca, Al, Si*, Pb, Mg	H1a
Black	Ca, Al, Si	Fe, Pb, P, Mg, P	H1e
	Ca	Al, Si, Fe, Pb, P, Mg	E1a, E1c, E2a
	Ca	Al, Si, Mg	H1a, H1b, H1e, H2a, E1a, E1b, E1c, E1d
White	Ca	Al, Si, Mg, Na	H1d
	Ca	Al, Si, Mg, Pb	E2a

Fe was not found using EDS spot analysis, but was confirmed with XRD
Concentrations higher than 10 wt.% can be considered major, whereas minor concentrations are between 1 - 10 wt.%, and concentrations lower than 1 are not listed.

Table S 7: EDS results of red layer

sample name	spot	Al	Si	Ca	Fe	Pb	K	Mg	Mo	W	S
E1a	3	1.81	1.72	91.48	4.58						
E1a	4			96.17		3.83					
E1b	1	1.23		98.19							
E1b	2	5.47	9.33	63.77	10.83	4.79	4.64	1.18			
E1c	1	1.44	1.90	90.55		1.49	3.00				
E1c	2	2.58	3.99	79.12	3.96		1.58	8.76			
E1d	1	2.51		95.29							
E1d	2	12.60	16.77	41.93	15.89	9.52		3.28			
E2a	1	13.77	5.85	67.45	1.15		2.90	8.23			
E2a	2	97.08									
H1a	1	37.52	45.88	7.31	1.92	5.50	1.87				
H1a	2	43.69	47.86	8.45							
H1b	1	7.13	7.34	76.26	4.13		1.48	3.66			
H1b	2	3.28	3.28	85.82							
H1d	1	43.15	47.60	6.32	1.26		1.66				
H1d	2	7.96	8.44	10.05	73.55						
H2a	1	1.55	2.06	92.71		1.41	92.71				
H2a	2	1.61	2.11	92.07		1.01	3.39				

Table S 8: EDS results of black layer and black particles

sample name	spot	Al	Si	Ca	Fe	Pb	P	Ti	Mg	Mo	S
H1a	1	37.52	45.88	7.31	1.92	5.50	1.87				
H1a	2	43.69	47.86	8.45							
H1b	1	7.13	7.34	76.26	4.13		1.48	3.66			
H1b	2	3.28	3.28	85.82							
H1d	1	43.15	47.60	6.32	1.26		1.66				
H1d	2	7.96	8.44	10.05	73.55						
H2a	1	1.55	2.06	92.71		1.41	92.71				
H2a	2	1.61	2.11	92.07		1.01	3.39				
E1a	1	2.51	3.04	94.16							
-----	-----	------	------	-------							
E1a	2	1.36	96.46	1.84							
E1c	3	1.81	2.55	87.05	4.43	1.43	2.73				
E1c	4	1.36	1.94	89.53	1.58	5.59					
H1e	5	13.43	16.48	62.49	1.84	5.76					
H1e	6	20.00	29.97	33.00	4.46	3.45	2.96	6.17			

Black Particles
E2a
E2a

Table S 9: EDS results of grey layer

Grey Layer	sample name	spot	Al	Si	Ca	Mg	Mo
	Weight %	Weight %	Weight %	Weight %	Weight %	Weight %	Weight %
H1a	3	99.04					
H1a	4	98.84					
H1b	3	1.21	1.60	97.19			
H1b	4	98.95					
H1d	3	1.02	1.32	97.66			
H1d	4	98.52					
H1e	7	0.98	98.59				
H1e	8	1.21	1.78	94.49	1.93		
H2a	3	1.20	98.53				
H2a	4	1.07	1.68	93.95	2.48		

Table S 10: EDS results of orange layer

Orange Layer	sample name	spot	Al	Si	Ca	Fe	Pb	Mg	Mo
	Weight %	Weight %	Weight %	Weight %	Weight %	Weight %	Weight %	Weight %	Weight %
Table S 11: EDS results of white layer

sample name	spot	Na	Al	Si	Ca	Pb	Mg	Mo
E1a	5	1.22	98.44					
E1a	6	1.18	97.94					
E1b	3	1.26	98.74					
E1b	4	1.03	98.97					
E1c	5							98.56
E1c	6	1.62	1.51	96.87				
E1d	3	1.32	1.39	96.15	1.14			
E1d	4	1.17	1.50	96.14	2.82	1.49	2.98	
E2a	3	1.78	1.67	89.26	2.82	1.49	2.98	
E2a	4	1.71	1.46	91.22	3.81	1.80		
H1a	5							
H1a	6	1.29	1.81	96.89				
H1b	5	1.40	1.66	95.65	1.29			
H1b	6	1.06	98.70					
H1d	5							98.98
H1d	6	1.85	1.19	1.00	91.69	2.18	2.08	
H1e	1							99.09
H1e	2							99.12
H1e	3	1.07	1.72	92.59				4.62
H1e	4							98.65
Fourier-Transform Infrared Spectroscopy

Table S 12: Spectral interpretation of historic paint samples, with assignment of the main absorption bands according to literature. \(\nu\) = stretching; \(\nu_s\) = symmetric stretching; \(\nu_a\) = asymmetric stretching; \(\delta\) = bending; \(\delta_s\) = symmetric bending; \(\delta_a\) = asymmetric bend

Compound assignment	Vibrational wavenumber (cm\(^{-1}\))	Vibrational mode	Ref. no
Ca sulphates	\(\nu(SO_4)\)^\(\delta a\) 672	\(\delta\) H-O-H 1619	[8]
Calcite (CaCO\(_3\))	711 - 2878 \((CO_3)^\nu\)		[9-11]
	-2921-2929	attributed to 2\(\nu\) in dolomite (MgCaCO\(_3\)) or to organic material (\(\nu\) CH\(_2\))	[10, 12]
Dolomite	1446 sh \(\nu(CO_3)^\nu\)		[10]
Quartz	-696 \(\delta O-Si-O\)		
	779 -1153 \(\nu Si-O\)		[13]
	1105/1159 sh; 1057-1166 \(\nu Si-O\)		
	755 OH translation		[14]
	-788 amorphous silica (\(\nu Si-O\))		
	-850 \(\delta\) OH in Al-Mg(OH)		
	-914 \(\delta\) OH inner hydroxyl groups / \(\delta\) Al-O-H (linked to 2Al\(^3+)\)		
	-941 \(\delta\) Al-O-H		
Clay mineral (Kaolin/ montmorillonite/degraded clays/ amorphous silica)	1010 sh, 1006-1116 \(\nu Si-O\)		
	-1642, 1162, -1640 \(\delta H-O-H\)		[15-19]
	1642 \(C=O + C-C\) vibrations (aromatic ketones) / \(\delta\) H-O-H		
	-3621 \(\nu\) OH (inner oxydrils, between the tetrahedral and octahedral sheets)		
	-3657 \(\nu\) OH out of plane (octahedral surface of layers)		
	-3696 \(\nu\) OH in-phase (octahedral surface of layers)		
General clay minerals	780 amorphous silica (\(\nu Si-O\))		
	-850 \(\delta\) OH in Al-Mg(OH)		[15-17]
	1038 sh, -1114 \(\nu Si-O\)		
Wavenumber	Description		
------------	---		
~1642	δ H-O-H		
902	ν C-H (in-plane)		
~1035	$\sim \nu$ C-O *		
~1056	ν C-O and ν C-C		
~1116	ν C-O-C		
~1162	ν C-O + ν C-C		
~1238	ν C-O in Xylene and syringyl ring		
~1282	ν C-O in guaiacyl ring + OH and $\sim \nu$ C-H		
~1326	Syringyl ring breathing with C-O stretching and C1-O vibration in syringyl derivatives of lignin + C-H vibration of cellulose		
~1372-1382	δ CH$_3$ groups and δ CH$_2$ groups		
1421	ν aromatic structure		
1467sh	δ CH$_3$ in methoxyl groups		
1511sh	ν aromatic structure C=C		
1619-1644	δ H-O-H		
~1643	C=O + C=C vibrations (aromatic ketones)/H-O-H bending		
~1731	unconjugated ν C=O in a carbonyl group		
1741	C=O + C=C vibrations (aromatic ketones)/H-O-H bending		
~2851	ν unconjugated C=O related to a carbonyl group		
~2961	ν C-H		
~3388, 3400sh	ν O-H		

Wood

Wavenumber	Description
1549	COOH overtones
~2591	ν O-H, overtone/combined bands
~1644	ν C=O-N-H + δ NH$_3$
~2873, 2891, 2935, 2985, 2983sh	ν CH$_3$
~2921, ~2934, ~2985, 3378	ν CH$_3$
2853	ν CH$_3$
3300	ν NH
3350, 3366	ν NH/ ν CH$_3$

Pine resin (abietic acid/dehydroabietic acid)

Wavenumber	Description
1549	COOH overtones
~2591	ν O-H, overtone/combined bands
~1644	ν C=O-N-H + δ NH$_3$
~2873, 2891, 2935, 2985, 2983sh	ν CH$_3$
~2921, ~2934, ~2985, 3378	ν CH$_3$
2853	ν CH$_3$
3300	ν NH
3350, 3366	ν NH/ ν CH$_3$

Animal protein/animal glue

Wavenumber	Description
~1644	ν C=O-N-H + δ NH$_3$
~2873, 2891, 2935, 2985, 2983sh	ν CH$_3$
~2921, ~2934, ~2985, 3378	ν CH$_3$
2853	ν CH$_3$
3300	ν NH
3350, 3366	ν NH/ ν CH$_3$
669	Unsaturated cycles
-----	-------------------
−711	γ-(C-H)
721	Rocking (CH2)/cis C=C-(C-H) out of plane deformation
983 sh	trans-trans conjugated ω(C-H)
−1158	ν(C-O) in triglycerides ester linkage + ν(C-O) of C-CO-O of higher aliphatic esters
1234	ν(C-O) in triglycerides ester linkage + ν(C-CO-O)
1372	Deformation CH in methyl/ω(CH3)
−1415	ν C=O in COOH
1421, 1708 sh	ν(C=O) in COOH
1623	(C=C) conjugated
−1642	Weak cis C=C
1723	ν C=O
−1743, 1738 sh	ν(C=O) ketones, ester, acid carbonyl
−2853	ν (CH) - CH2
−2955, 2954 sh	ν(CH)CH3
−3004, −3395	ν(CH)-CH=CH=CH unconjugated cis double bonds
3263, −3341, 3430, 3482, 3538, 3480 sh, 3540 sh	ν OH
797, 1143, 1452	not attributed

| linseed oil |

1172	ν-C(O)-OCH3-
1417	ν C=O in COOH
1642	Weak cis C=C
2851	ν(CH)CH3
2923	ν CH3
3350	ν OH

| cured/aged linseed oil |

1172	ν-C(O)-OCH3-
1417	ν C=O in COOH
1642	Weak cis C=C
2851	ν(CH)CH3
2923	ν CH3
3350	ν OH
Absorbance (a.u.)

H1e

All paint layers

Absorbance (a.u.)

H2b

All paint layers

Absorbance (a.u.)

H2c

All paint layers

Absorbance (a.u.)

H3a

All paint layers

Absorbance (a.u.)

E1a

Absorbance (a.u.)

E1b

All paint layers

Absorbance (a.u.)
Figure S 6: FT-IR spectrum in the region 4000–600 cm⁻¹ for all samples, with layer isolation when possible.

Table S 13: Signals assigned to FT-IR analysis of pigments. See Table S 12 for attributions and references.

Sample name	Ca sulphates/ gypsum	Calcite	Quartz	Dolomite (CaMg(CO3)2)	Clay mineral (general clay minerals/ Kaolin/montmorillonite/ degraded clays/ amorphous silica)
H1a	711, 877, 1085, 1421, 1793, 2512, 2873			788, 850, 914, 1010, 1035, 1116, 1162, 3696	
H1b	672, 1619	713, 877, 1085, 1415, 1795, 2512, 2929		790	1045, 1108, 1640
H1c	713, 877, 1089, 1438, 1795, 2510, 2873	779, 794, 1162	848, 914, 941, 1006, 1037, 1114, 1644, 3621, 3657, 3698		
Sample name	Wood	Pine resin (abietic acid / dehydroabietic acid)	animal protein (animal glue / animal protein)	Linseed oil	
-------------	------	---	---	------------	
H1d	877, 1081 sh, 1411, 1444, 1795, 2512, 2877	794	755,848, 914, 939, 1008, 1033, 1116, 3621, 3694		
H1e	712, 876, 1083, 1409, 1448, 1795, 2850, 2875, 2929	784, 1153	848, 915, 1010 sh, 1035, 1116, 1642, 3617, 3696		
H2a	713, 877, 1079, 1403, 1795, 2510, 2873	790, 850, 914, 1008, 1031, 1108, 1644, 3621, 3694			
H2b	713, 877, 1089, 1423, 1795, 2512, 2878	786, 848, 914, 937, 1008, 1035, 1114, 1640, 3619, 3698			
H2c	711, 877, 1078, 1413, 1793, 2510, 2923	779, 800, 1162	1446 SH	748, 850, 912, 1010, 1031, 1112, 1644, 3619, 3656, 3696	
H3a	713, 877, 1074, 1415, 1795, 2512, 2921	912, 1033, 1112, 1642			
E1a	713, 877, 1079, 1417, 1795, 2510, 2923				
E1b	711, 877, 1079, 1415, 1795, 2512, 2875, 2923	780, 800, 1166	780, 850, 1018 sh, 1114, 1642		
E1c	711, 877, 1081, 1411, 1795, 2510, 2877, 2923	779, 798, 1164	850, 1114, 1644		
E1d	711, 875, 1083, 1413, 1797, 2512, 2875, 2923	846, 1110, 1646			
E1e	711, 875, 1075, 1413, 1795, 2512, 2923	850 sh, 1116 (low), 1642			
E2a	711, 875, 1090, 1421, 1795, 2512, 2923	696, 779, 798, 1056 sh, 1164	846, 1112, 1643		
E2b	875, 1413, 2875, 2923	779, 800			
E2c					
E2d		695, 781, 794, 1159 sh			
E3a	712, 876, 1426, 1796, 2512, 2922	782, 797, 1057, 1160	851, 1036 sh, 1114, 1648		

Table S 14. Signals assigned to FT-IR analysis of organic material (wood fractions, animal protein, and linseed oil). See **Table S 12** for attributions and references.
	1035, 1116, 1162, 1326, 1643	2935, 2985, 3300	
H1b	1108, 1282, 1324, 1619, 1640, 2851, 3388		
H1c	1037, 1114, 1162, 1280, 1328, 1644, 2848, 3355	1644, 2873, 1644, 2873, 2891, 2923	
H1d	1033, 1116, 1326, 3374	2934, 2977	
H1e	1035, 1116, 1326, 1642, 2961, 3366, 2591, 1642, 2875, 2983, 2929, 3366		
H2a	1108, 1162, 1641, 2967, 3386, 2597		
H2b	1035, 1114, 1160, 1326, 1618, 1640, 3388		
H2c	1031, 1112, 1162, 1644, 1730, 2850, 3380, 3397	2875, 2985	
H3a	1033, 1112, 1160, 1280, 1324, 1642, 1731, 2851, 2961, 3378	1642, 1642, 2921, 3378	
E1a	1326, 2851, 3350 (low)	1642, 1642, 2923, 3350	
E1b	1114, 1324, 1642, 2853, 2958, 3395	1642, 1642, 2923, 2985	669, 711, 1642, 1743, 2853, 2923 (low), 3395
E1c	1114, 1164, 1324, 1644, 1741, 2853, 2961, 3351 (low), 3399	1644, 1644, 2923, 2986, 3351	
E1d	1045, 1158, 1326, 1741, 2851, 2958, 3320 (low)	1646, 1646, 2923, 2986, 3320	711, 1413, 1646, 1741, 2851, 2923 (low)
E1e	1047, 1116, 1162, 1324, 1642, 1743, 2851, 2958, 3357 (low)	711, 983 sh, 1413, 1642, 1743, 2851, 2923	
E2a	1112, 1164, 1324, 1623, 1643, 1739, 2852, 2954, 3400, 3405, 3430	1643, 1643, 2923, 2985	711, 1143, 1228 (low), 1623, 1643, 1739, 2852, 2923 (low), 3263, 3405, 3430, 3482, 3538
E2b	1035, 1110, 1160, 1228, 1322, 1382, 1467 sh, 1640, 1741 sh, 2853, 2958, 3347 (low)	721, 1158, 1234, 1372, 1421, 1645, 1708 sh, 1745 sh, 2851, 2924, 2959, 3343	
E2c	902, 1035, 1056, 1106, 1158, 1234, 1323, 1372, 1421, 1511 sh, 1645, 1745 sh, 2851, 3390		
E2d	903, 1038 sh, 1159 sh, 1227 sh, 1325, 1376, 1418, 1649, 1736 sh, 2854		
E3a	1036 sh, 1160, 1238, 1324, 1648, 1744, 2853, 3400 sh	1648, 2853	1648, 2853, 2922, 2983 sh, 1160, 1648, 1744, 2853, 2922, 2955, 2930, 3341, 3341, 3480 sh, 3540 sh
Figure S 7: XRD patterns of samples from Heddal. The intensity increase of weddellite’s signals is shown. Considered reflections are marked with a grey dot.

Gas Chromatography-Mass Spectrometry and ELISA

Table S 15: GC-MS testing configuration and parameters

Protocol	Separation column	Oven program
Meth-Prep II: natural plant resins and oils	Zebron™ ZB-5HT (Phenomenex); 30 m x 0.25 mm x 0.10 μm	80°C for 2 min; temperature was then increased by 10°C/min until 210°C; after which the temperature was increased 20°C/min to 360°C; and lastly the temperature was increase 40°C/min to 380°C.
Amino Acid: proteins INNOWAX; 25 M x 0.2 mm x 0.2 μm

70 °C for 1 min; temperature was then increased by 20 °C/min until 250 °C; held at 250 °C for 3.5 min.

Helium was the carry gas (1 mL/min); splitless injection and transfer line at 240 °C
Three layered sample (red/black/white ground)

E1a

White ground layer

E1b

Three layered sample (red/black/white ground)

E1c

Bottom two layers (black/white ground)

Top two layers (red/black)

E1d

White ground layer

E1e

Two layered sample (red/white)

White ground layer

Red top layer

E2a

Three layered sample (red/black/white ground)
Figure S 8: Monocarboxylic and dicarboxylic fatty acids (lauric(C12:0), palmitic (C16:0), oleic (C18:1), stearic (C18:0), and pimelic(C7), suberic(C8), azelaic(C9), sebacic acids(C10), respectively) and glycerol peaks derived from Meth Prep analysis.

Table S 16: List of amino acid compositions from historic paints samples by GC-MS analysis (parts per million).

Sample location & description	alanine	glycine	valine	leucine	isoleucine	proline	serine	threonine	phenylalanine	hydroxyproline	
White ground layer											
E1a Three layered sample (red/black/white ground)	226.8	81	222	25	36	21	69	50	53	20	55
E1b Two layered sample (red/white ground)	842.3	158	483	42	59	40	164	97	81	37	92
E1c Top two layers (red/black)	515.2	179	507	58	113	55	185	155	191	65	130
E1d Red top layer	467.6	140	366	61	86	49	139	109	82	45	77
E1e White ground layer	289.4	63	213	20	34	20	51	47	60	18	41
Bottom two layers (black/white ground)	48.0	7	17	2	2	1	6	6	6	2	14
Three layered sample (red/black/white ground)	131.3	15	34	4	4	3	11	17	19	2	34
White ground layer	585.9	121	357	32	43	24	116	72	75	36	89
E1d Red top layer	581.4	150	460	43	43	29	135	91	109	31	120
E1e White ground layer	194.5	42	89	16	23	12	49	42	39	14	43
E1e Two layered sample with insect (red/white)	470.0	0	1	0	0	0	0	0	2	0	5
E1e White ground layer	368.5	258	669	55	60	35	175	129	150	42	206
Table S 17: Fatty acid content (ppm) from paint samples analysed, where ND denotes not detected or below the detection limit

Sample location & description	weight, μg	Pimelic	Suberic	Lauric	Oleic	Myristic	Palmitic	Stearic	Oleic
Blank vial	N.D.	N.D.	N.D.	N.D.	1,65	2,35	N.D.	N.D.	N.D.
E1a White ground layer	226.8	0	0	0	0	0	3.62	3.61	0
E1a Three layered sample (red/black/white ground)	842.3	0	0	0	0	0	3.34	3.65	0
E1a Wood specimen	515.2	4.08	7.11	0	12.07	1.81	11.82	11.43	2.22

37
Layer Description
Two layered sample (red/white)
Wood specimen
White ground layer
Bottom two layers (black/white ground)
Top two layers (red/black)
Three layered sample (red/black/white ground)
White ground layer
Red top layer
Two layered sample with insect (red/white)
White ground layer
Three layered sample (red/black/white ground)
Three layered sample (red/black/white ground)
Wood specimen
White ground layer
Two layered sample (red/white)
Four layered sample (red/grey/reddish-brown/white)
White ground layer
White ground layer with trace amounts of reddish-brown
Four layered sample (red/grey/reddish-brown/white)
Red top layer
White ground layer
Lower three layers (grey/reddish-brown/white)
Four layered sample (Red/grey/reddish-brown/white)
Bottom two layers (grey/white ground)
Top two layer (Red/grey)
Wood specimen
White ground layer
Lower three layers (black/reddish-brown/white)
Top two layer (red and white/grey)

Values	467.6	1.01	3.21	0	3.99	0	5.35	3.86	0
	225.3	2.09	3.35	0	5.27	0	2.73	2.36	0
	289.4	0	0	0	1.03	0	6.36	3.9	2.15
	48.0	0	0	0	0	0	1.65	2.21	0
	131.3	0	0	0	0	0	1.95	2.51	0
	585.9	0	1.05	0	1.26	0	3.23	2.91	0
	581.4	0	1.02	0	0	0	2.17	2.08	0
	194.5	0	1.78	0	1.73	0	3.9	3.41	0
	470.0	0	0	0	0	0	1.63	2.01	0
	368.5	1.08	1.21	0	1.31	0	3.38	2.91	0
	683.1	1.53	1.45	0	1.32	0	2.68	2.57	0
	191.9	0	0	0	1.07	0	3.99	4.28	0
	207.4	2.57	1.93	0	3.96	0	2.85	2.67	0
	224.5	0	0	0	0	0	4.46	4.03	0
	1114.7	0	0	0	1.39	0	5.56	5.31	0
	102.1	0	0	0	1.03	0	2.38	2.74	0
	511.1	0	1.43	0	2.1	0	3.53	2.98	0
	189.0	0	0	0	1.03	0	3.58	2.97	0
	123.0	0	0	0	0	0	3.05	3.01	0
	636.6	0	3.25	0	3.83	0	6.59	4.34	0
	522.1	0	2.57	0	4.05	0	5.75	4.08	0
	123.1	0	0	0	0	0	3.23	2.92	0
	256.9	0	0	0	0	0	1.86	2.12	0
	618.2	1.02	3.36	0	5.01	0	7.62	4.66	2.36
	392.6	0	0	0	0	0	2.97	2.85	0
	303.2	0	0	0	1.4	0	3.43	3.17	0
	211.4	0	0.99	0	2.7	0	3.49	2.65	0
	116.2	0	0	0	0	0	3.78	3.31	0
	258.4	0	1.87	0	2.29	0	7.56	5.72	1.88
	1069.7	1.8	8.27	0	14.25	1.2	20.54	13.49	0
Figure S 9: Chart of plat reading results at OD45, where blue bars are absorbency reading for fish collagen and orange bars are for mammal collagen.

References

1. Olstad TM. To the Glory of God and the Church’s Adornment. In: Bakken K, editor. Preserving the Stave Churches Craftmanship and Research: Riksantikvaren; Pax Forlag; 2016.
2. Olstad TM, Solberg K. Eight seventeenth-century decorative paintings-one painter? Studies in Conservation. 1998;43(sup1):175-9.
3. Olstad TM, K. Solberg. Analytical Report, Centre for Art Technological Studies and Conservation (CATS) Copenhagen; 2015.
4. Wedvik B. A 167 Heddal stavkirke. Konsolidering av limfargedekor i koret. Prosjektets del 1: Nordvegg og apsis i koret no 49/2008. 2008.
5. Wedvik B. A 167 Heddal stavkirke. Konsolidering av limfargedekor i skip og sørvegg i koret no. 121/2009. 2009.
6. Solberg K, Norsted T, Spaarschuh C. Eidsborg stavkirke. Konservering av veggmalerier fra 1600-tallet og paneler fra middelalderen no35/2007. 2007.
7. Olstad TM, Ørnhøi AA. Konsolidert limfargedekor i stavkirkene- en oversikt. Vurdering av storlim. Konsolidering av limfarge på tre. Delprosjekt 1, NIKU Oppdragsrapport 62/2014, Oslo. 2014.
8. Liu Y, Wang A, Freemen J. Raman, MIR, and NIR spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite. LPI. 2009:2128.
9. Weir C, Lippincott ER. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards Section A, Physics and Chemistry. 1961;65(3):173.
10. Gunasekaran S, Anbalagan G, Pandi S. Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of
Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 2006;37(9):892-9.

11. Andersen FA, Brecevic L. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem Scand. 1991;45(10):1018-24.

12. Kovač N, Faganeli J, Bajt O, Orel B, Vuk Š. Investigation of sediment samples from the Gulf of Trieste (northern Adriatic) by FTIR spectroscopy. Mater Geoenvi. 2005;52(1):81-5.

13. Müller CM, Pejčic B, Esteban L, Delle Piane C, Raven M, Mizaikoff B. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems. Scientific reports. 2014;4:6764.

14. Frost RL, Vassallo AM. The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays and Clay minerals. 1996;44(5):635-51.

15. Madejová J. FTIR techniques in clay mineral studies. Vibrational spectroscopy. 2003;31(1):1-10.

16. Vaculikova L, Plevova E, Vallova S, Koutnik I. Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. 2011.

17. Saikia BJ, Parthasarathy G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J Mod Phys. 2010;1(4):206-10.

18. Bikiaris D, Danilia S, Sotiroupoulou S, Katsimbiri O, Pavlidou E, Moutsatsou A, et al. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 1999;56(1):3-18.

19. Ganitis V, Pavlidou E, Zorba F, Paraskevopoulos K, Bikiaris D. A post-Byzantine icon of St Nicholas painted on a leather support. Microanalysis and characterisation of technique. Journal of Cultural Heritage. 2004;5(4):349-60.

20. Moosavinejad SM, Madhoushi M, Vakili M, Rasouli D. Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy. Maderas Ciencia y tecnología. 2019(AHEAD):0-.

21. Timar MC, Varodi AM, Hacibektasoglu M, Campean M. Color and FTIR analysis of chemical changes in beech wood (Fagus sylvatica L.) after light steaming and heat treatment in two different environments. BioResources. 2016;11(4):8325-43.

22. Esteves B, Velez Marques A, Domingos I, Pereira H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Ciencia y tecnología. 2013;15(2):245-58.

23. Mei Y, Liu R. Effect of temperature of ceramic hot vapor filter in a fluidized bed reactor on chemical composition and structure of bio-oil and reaction mechanism of pine sawdust fast pyrolysis. Fuel Processing Technology. 2017;161:204-19.

24. Beltran V, Salvadô N, Buti S, Pradell T. Ageing of resin from Pinus species assessed by infrared spectroscopy. Analytical and bioanalytical chemistry. 2016;408(15):4073-82.

25. Rosi F, Federici A, Brunetti BG, Giammellotti A, Clementi S, Miliani C. Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Analytical and Bioanalytical Chemistry. 2011;399(9):3133-45.

26. Invernizzi C, Rovetta T, Licchelli M, Malagodi M. Mid and Near-Infrared Reflection Spectral Database of Natural Organic Materials in the Cultural Heritage Field. International Journal of Analytical Chemistry. 2018;2018:16.

27. Azadi Boyaghchi M, Nemati Babaylou A, Mosavi Majd A. Identification of the Stain Structure Caused by Hand Contact on Historical Papers of the Pebdeni Museum of Old Manuscripts, Iran. Journal of Research on Archaeometry. 2017;3(2):31-44.

28. Manzano E, Romero-Pastor J, Navas N, Rodriguez-Simón L, Cardell C. A study of the interaction between rabbit glue binder and blue copper pigment under UV radiation: a spectroscopic and PCA approach. Vibrational Spectroscopy. 2010;53(2):260-8.
29. de Viguerie L, Payard PA, Portero E, Walter P, Cotte M. The drying of linseed oil investigated by Fourier transform infrared spectroscopy: Historical recipes and influence of lead compounds. Progress in Organic Coatings. 2016;93:46-60.

30. Bassas M, Marques A, Manresa A. Study of the crosslinking reaction (natural and UV induced) in polyunsaturated PHA from linseed oil. Biochemical engineering journal. 2008;40(2):275-83.