PolyCat: A Resource for Genome Categorization of Sequencing Reads From Allopolyploid Organisms

Justin T. Page,* Alan R. Gingle,† and Joshua A. Udall*†

*Plant and Wildlife Science Department, Brigham Young University, Provo, Utah 84062, and †Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30602

ABSTRACT Read mapping is a fundamental part of next-generation genomic research but is complicated by genome duplication in many plants. Categorizing DNA sequence reads into their respective genomes enables current methods to analyze polyploid genomes as if they were diploid. We present PolyCat—a pipeline for mapping and categorizing all types of next-generation sequence data produced from allopolyploid organisms. PolyCat uses GSNAP’s single-nucleotide polymorphism (SNP)-tolerant mapping to minimize the mapping efficiency bias caused by SNPs between genomes. PolyCat then uses SNPs between genomes to categorize reads according to their respective genomes. Bisulfite-treated reads have a significant reduction in nucleotide complexity because nucleotide conversion events are confounded with transition substitutions. PolyCat includes special provisions to properly handle bisulfite-treated data. We demonstrate the functionality of PolyCat on allotetraploid cotton, Gossypium hirsutum, and create a functional SNP index for efficiently mapping sequence reads to the D-genome sequence of G. raimondii. PolyCat is appropriate for all allopolyploids and all types of next-generation genome analysis, including differential expression (RNA sequencing), differential methylation (bisulfite sequencing), differential DNA-protein binding (chromatin immunoprecipitation sequencing), and population diversity.

Read-mapping is a fundamental part of next-generation genomic research. Read-mapping was the essential first-step in pioneering studies of gene expression (Mortazavi et al. 2008; Wang et al. 2009), quantification of genome methylation (Lister et al. 2008; 2009), estimation of DNA—protein interactions (Park 2009; Wilbanks and Facciotti 2010), and assessment of population diversity (Sabeti et al. 2007; Durbin et al. 2010; Chia et al. 2012). Researchers have largely applied these methodologies to diploid genomes of model organisms, including Arabidopsis thaliana (Zhang et al. 2006; Vaughn et al. 2007; Cokus et al. 2008; Lister et al. 2008; Kaufmann et al. 2010), Drosophila melanogaster (Graveley et al. 2010; McManus et al. 2010; Nègre et al. 2011), and Homo sapiens (Mortazavi et al. 2008; Valouev et al. 2008; Lister et al. 2009; Trapnell et al. 2010).

Keywords
read mapping polyploid cotton SNP homoeo-SNP

Read-mapping will also be used to analyze the polyploid genomes of many important plants. It has been recently established that all seed plants are paleopolyploids, with all angiosperms sharing an additional event (Jiao et al. 2011). Thus, all flowering plants have undergone at least two paleopolyploid events in its history. Although all flowering plants have a history of whole-genome duplication (Stebbins 1950; Adams and Wendel 2005; Paterson et al. 2005; Cui 2006; Wood et al. 2009; 2011), ancient duplications do not significantly complicate read-mapping because duplicated loci diverge over time, permitting confident placement of a large majority of sequencing reads. On the other hand, more recent whole-genome duplications challenge read mapping by causing a twofold increase in chromosome number and DNA sequence while preserving gene order, coding and noncoding sequence, and chromosomal elements such as centromeres and telomeres. The increasing capacity of DNA sequencing will allow future studies to address the evolutionary and molecular hypothesis of recent polyploidization events (Osborn et al. 2003; Adams and Wendel 2005; de Peer et al. 2009; Flagel and Wendel 2009) and the effects of polyploidization on plant phenotypes (Gaeta and Pires 2010; Solis et al. 2004; Schnarz 2000; Dubcovsky and Dvorak 2007). Accurate assignment of sequencing reads to their genomes-of-origin will be essential to elucidate the underlying principles and consequences of polyploid evolution.

Because most read-mapping software has been written for the analysis of diploid genomes (Griffith et al. 2010; Wu and Nacu 2010;
Garber et al. 2011; Langmead and Salzberg 2012), they are unsuited for mapping sequencing reads from polyploid samples for two reasons. First, mapping reads from a polyploid to a related diploid genome results in differential mapping efficiencies because one cosedent genome matches the reference better than the other. Differential mapping efficiency biases subsequent comparisons of the two genomes and skews quantitative analyses. Second, existing tools cannot distinguish between the two genomes to assign quantitative results to one or the other. Other phenomena, such as copy number variation, cause different problems for interpreting read mapping results and are not the focus of this effort (Kitzman et al. 2012).

The problems related to analysis of polyploid data can be mitigated by a priori single-nucleotide polymorphism (SNP) identification within and between extant diploid relatives. Most of these SNPs are vertically inherited from diploid ancestors to allopolyploid derivatives, so they are present both between diploid relatives and between cosedent homeologous genomes of the allopolyploid. These “homeo-SNPs” can be used to reduce mapping efficiency bias through the use of SNP-tolerant mapping, as with heterozygous genes in humans (Wu and Nacu 2010). After mapping, the genome of origin for individual reads can be identified based on a comparison between the bases at the homeo-SNP locus and the respective bases of related diploid species—a process we call read categorization.

Bisulfitetreated data present additional challenges to read mapping and read categorization because transition SNPs cannot be distinguished from bisulfite (BS) conversion events. Because transition SNPs comprise a majority of all SNPs, including homeo-SNPs, treatment with BS causes a majority of homeo-SNPs to be potentially uninformative for categorizing BS sequencing (BS-seq) reads.

Here we present PolyCat: a pipeline for mapping and categorizing sequencing reads from allopolyploid genomes. PolyCat was developed and tested on data derived from various species of cotton (genus Gossypium). The most common form of domesticated cotton (Gossypium hirsutum) is an allopolyploid composed of homeologous AT- and DT-genomes, where the ‘T’ subscript indicates genomes within the tetraploid nucleus (Wendel and Cronn 2003). Two extant diploid cotton species have genomes closely related to those contained in the polyploid nucleus, namely the A2-genome of G. arboreum and the D2-genome of Gossypium raimondii. The A2-genome is more closely related to the AT-genome than the D5 genome to the DT-genome (Senchina 2003; Flagel 2012), however, the diploid D5-genome recently was sequenced (Kitzman et al. 2012). This characterized trio of genomes was used to develop and evaluate the read mapping and read categorization of PolyCat.

The PolyCat source code and the current cotton SNP-index is publically available for other studies (http://cottonrevolution.info), along with a web portal in which evaluation sequence data sets may be submitted for mapping and categorizing. PolyCat produces genome-specific BAM files as output, which may be immediately used by most current bioinformatics tools for downstream analyses, such as differential expression (RNA-sequencing [RNA-seq]), differential methylation (BS-seq), differential DNA-protein binding (chromatin immunoprecipitation sequencing), and population diversity.

Table 1: Contribution of different DNA and RNA sources to construction of a SNP index

Sequence Source	A2	D5	SRA IDs
ISU fiber, leaf, buds, floral parts, seed (RNA-seq)	1,032,531,096	931,721,308	SRA061240 SRA061456
BYU Petal RNA-seq	42,047,506	39,974,015	SRA062614
Whole G. Shotgen (Genomic DNA)	2,996,073,656	168,243,740	SRA062615
Total	4,070,652,258	1,139,939,063	

SNP, single-nucleotide polymorphism; SRA, Sequence Read Archive (National Center for Biotechnology Information).

MATERIALS AND METHODS

Sequence preprocessing and SNP index generation from diploid-derived data

Sickle (https://github.com/najoshi/sickle) was used to trim all sequence reads with a quality cutoff of 20. We used the Genomic Short-read Nucleotide Alignment Program (GSNAP) (Wu and Nacu 2010) to map 1,140,550,335 reads from G. raimondii (D5), and 4,070,680,434 reads from G. arboreum (A2) to the G. raimondii reference genome (Paterson et al. 2012), accepting only unique best hits and allowing for novel splice sites (Table 1). SAMtools (Li et al. 2009) was used to generate two pileups, one for A2 and one for D5. We compared the resulting pileups with each other and with the D5 reference at each nucleotide position to identify homeo-SNPs between the genomes, as well as allelic SNPs within the A2 and D5 genomes with at least 4x coverage and a minor allele frequency of 40%. Sequences used in this effort are available through the National Center for Biotechnology Information Sequence Read Archive (Table 1).

RNA-seq read categorization

We illustrate read categorization with RNA-seq reads from cotton petals in two allopolyploid cotton species: G. hirsutum (cv. Maxxa Acala and referred to as Maxxa) and Gossypium tomentosum, an endemic polyploid cotton species of Hawaii. Because the cotton AT and DT genomes are more similar to their extant diploid relatives than they are to each other (Flagel et al. 2012), SNPSSS between diplonids approximated SNPs between their respective allopolyploid genomes and were considered putative homeo-SNPs. These SNPs were used to catego...
conversions indicated ‘+’ strand, whereas more G→A conversions indicated ‘−’ strand. Ambiguous strands were counted as half reads for both strands. For ‘+’ strand reads, PolyCat accepted a thymine as a match for a cytosine allele; for ‘−’ strand reads, PolyCat accepted an adenosine as a match for a guanine. Knowing the strand origin allowed PolyCat to maximize information from each SNP. Because transition SNPs comprised the majority of the SNP index (Table 2), most reads would be uncategorizable if transition SNPs were made uninformative. However, C-T SNPs were uninformative only on the ‘+’ strand, and G-A SNPs only on the ‘−’ strand (Figure 2). So PolyCat could use C-T SNPs to categorize ‘−’ strand reads and G-A SNPs to categorize ‘+’ strand reads to minimize data loss.

After categorizing each read, PolyCat reported the number of cytosines and thymines, or guanines and adenosines, at each cytosine or guanine reference position, along with the methylation context—CG, CHG, or CHH—according to the D5-genome reference (Lister and Ecker 2009). Separate columns reported the total number of cytosines and thymines, as well as the counts for each genome (AT, DT, X, or N).

RESULTS

Homeologous SNP index

A SNP index largely composed of differences between homeologous loci was created by comparing the alignments of reads from A- and D-genome diploid species (A2 and D5, respectively) to the D5-genome reference. We refer to these single-nucleotide differences between homeologous loci as homoeo-SNPs. Our SNP index consisted of 2,633,689 SNPs (Table 2). Of these, 1,543,513 (~58.6%) were transitions (tr) and 1,055,479 were transversions (tv), a ratio of approximately 1.5 (34,697 SNPs had multiple allele possibilities in one of the two genomes and could not be classified). The gene-dense Maize HapMap 1 had a tr/tv ratio of approximately 1.0 (Gore et al. 2009), and the more uniform Maize HapMap 2 has a tr/tv ratio of approximately 2.0 (Chia et al. 2012), demonstrating a greater abundance of transition SNPs in intergenic regions in which natural selection does not prevent spontaneous cytosine to thymine mutations (Coulondre et al. 1978). These values, together with the cotton SNP-index tr/tv ratio of 1.5, suggest a correlation between the genic skew of a SNP collection and the tr/tv ratio (Supporting Information, Table S1).

SNPs were distributed evenly across the genome, reflecting the gene density of the G. raimondii genome. The average SNP density across all chromosomes was approximately 3.51 SNPs/kbp (Table S2). Chromosomes 6, 7, and 9 had slightly more than 4 SNPs/kbp, whereas Chromosomes 5, 10, and 13 had slightly less than 3 SNPs/kbp. The remaining chromosomes had between 3 and 4 SNPs/kbp.

A total of 1,123,129 SNPs were in annotated genes, including 579,259 in exonic sequence (9.4 SNPs/kbp). This increased SNP density in genes was likely due to increased sequence conservation between the A- and D-genomes. (Cronn et al. 2002; Senchina 2003). The number of SNPs varied greatly between genes (Figure 3). A binomial distribution of genes with 9.4 SNPs/kbp and 1.6 kbp of average length predicted 0 genes with no coding homoeo-SNPs, but 4161 genes actually had no coding homoeo-SNPs. These data suggest strong purifying selection on these genes, possibly due to their connectedness (Birchler et al. 2005; Freeling and Thomas 2006).

SNP-tolerant mapping efficiency

SNPs between diploid relatives can approximate homoeo-SNPs between coreident genomes of an allopolyploid (Bancroft et al. 2011; Harper et al. 2012; Lai et al. 2012). SNP-tolerant mapping uses these SNPs to improve mapping efficiencies of sequence reads from allopolyploid genomes, but previous efforts (e.g., Brassica napus and Tuber aestivum) have not used SNP-tolerant mapping. To demonstrate the effectiveness of SNP-tolerant mapping, GSNAP (Wu and Nacu 2010) was used to map sequence reads from A2, D5, Maxxa, and a synthetic F1 hybrid to
than Bowtie, and a substantial increase of mapping efficiency was observed with SNP-tolerant mapping enabled. Of that increase, approximately 50% was observed whereas mapping A2 BS-treated reads to the D5 reference (Figure 4). The mapping efficiency of D5 reads to the D-genome reference was unchanged. GSNAP mapped more A2 reads than Bowtie, and a substantial increase of mapping efficiency was observed with SNP-tolerant mapping enabled. Of that increase, approximately 50% was observed whereas mapping A2 BS-treated reads because of the reduced sequence complexity typical of BS treatment (Lister and Ecker 2009; Laird 2010; Krueger et al. 2012). The overall mapping efficiency also improved for the allopolyploid reads in allopolyploid reads included both A_T-genome and D_T-genome reads. The improved efficiency of allopolyploid cotton reads was a result of accurate mapping of A-genome reads to the diploid D-genome reference.

Read categorization of sequence reads

After mapping, PolyCat categorized each read based on matches to the SNP index (Figure 5). To test accuracy, reads from diploids were also categorized. Most reads were assigned to their correct genome (0.3% of D_T reads categorized as A_T and 0.8% of A2 reads categorized as D_T). Erroneous categorization occurred most frequently in BS-treated reads (2.1%). A small number of reads from diploids (<1%) were categorized as chimeric, indicating nucleotide matches at separate loci (within a read) to both the A- and D-genomes. Chimeric reads were slightly more common in A_T than D_T. The low level of erroneous or chimeric categorization shows that PolyCat successfully categorized the vast majority of sequence reads.

For allopolyploid reads, erroneous categorization was impossible to definitively identify, but the rate of chimeric categorization was low, albeit greater than in reads from diploids (4.4% in RNA-seq and 3.8% in BS-treated reads). Two factors may explain the increase in chimeric categorization in reads from allopolyploids: (1) The SNP index was based on A_T and D_T, so it includes false homoelogous SNPs that are really allelic SNPs specific to A_T or D_T. (2) After polyploidization, gene (or intergene) conversion events between the allopolyploid genomes could have replaced the nucleotides of one genome with the nucleotides of the other. At homoelogous SNP positions, conversion events can be detected in reads from an allopolyploid (Salmon et al. 2009; Flagel et al. 2012), and the rate of nonreciprocal homeologous exchange had been extrapolated to be approximately 2% between the two genomes (Salmon et al. 2009). A greater rate of nonreciprocal homeologous exchange (6.8%) was recently detected in a global assembly of expressed sequence tags from G. hirsutum and G. barbadense (Flagel et al. 2012). If homeologous exchanges did not overlap a homoelogous SNP position or if they were larger than individual read (or expressed sequence tags), then they were not detected. Thus, these numbers likely underestimate the true number of historical exchanges between the two genomes.

Approximately one-half of the polyploid reads could not be categorized because they did not overlap a homoelogous SNP. The uncategorized fraction of reads varied by length and by quality of reads. In the reference genome, only 163 Mb of 749 Mbp were

Table 2 Composition of SNP index by SNP type

SNP type	At-genome	Dt-genome		
	A	T	C	G
A	0	190,935	132,443	409,059
T	190,468	0	407,605	132,678
C	117,349	363,240	0	86,903
G	363,609	117,194	87,509	0

The D_T reference. The mappings were performed with and without SNP-tolerant mapping. For comparison, Bowtie also was used to map the WGS reads from A_T and D_T to the D_T reference (Langmead et al. 2009). The SNP-tolerant mapping substantially improved the mapping efficiency of reads from A_T or allopolyploid cotton to the D_T-genome reference (Figure 4). The mapping efficiency of D_T reads to the D-genome reference was unchanged. GSNAP mapped more A_T reads than Bowtie, and a substantial increase of mapping efficiency was observed with SNP-tolerant mapping enabled. Of that increase, approximately 50% was observed whereas mapping A_T BS-treated reads because of the reduced sequence complexity typical of BS treatment (Lister and Ecker 2009; Laird 2010; Krueger et al. 2012). The overall mapping efficiency also improved for the allopolyploid reads in allopolyploid reads included both A_T-genome and D_T-genome reads. The improved efficiency of allopolyploid cotton reads was a result of accurate mapping of A-genome reads to the diploid D-genome reference.

Read categorization of sequence reads

After mapping, PolyCat categorized each read based on matches to the SNP index (Figure 5). To test accuracy, reads from diploids were also categorized. Most reads were assigned to their correct genome (0.3% of D_T reads categorized as A_T and 0.8% of A2 reads categorized as D_T). Erroneous categorization occurred most frequently in BS-treated reads (2.1%). A small number of reads from diploids (<1%) were categorized as chimeric, indicating nucleotide matches at separate loci (within a read) to both the A- and D-genomes. Chimeric reads were slightly more common in A_T than D_T. The low level of erroneous or chimeric categorization shows that PolyCat successfully categorized the vast majority of sequence reads.

For allopolyploid reads, erroneous categorization was impossible to definitively identify, but the rate of chimeric categorization was low, albeit greater than in reads from diploids (4.4% in RNA-seq and 3.8% in BS-treated reads). Two factors may explain the increase in chimeric categorization in reads from allopolyploids: (1) The SNP index was based on A_T and D_T, so it includes false homoelogous SNPs that are really allelic SNPs specific to A_T or D_T. (2) After polyploidization, gene (or intergene) conversion events between the allopolyploid genomes could have replaced the nucleotides of one genome with the nucleotides of the other. At homoelogous SNP positions, conversion events can be detected in reads from an allopolyploid (Salmon et al. 2009; Flagel et al. 2012), and the rate of nonreciprocal homeologous exchange had been extrapolated to be approximately 2% between the two genomes (Salmon et al. 2009). A greater rate of nonreciprocal homeologous exchange (6.8%) was recently detected in a global assembly of expressed sequence tags from G. hirsutum and G. barbadense (Flagel et al. 2012). If homeologous exchanges did not overlap a homoelogous SNP position or if they were larger than individual read (or expressed sequence tags), then they were not detected. Thus, these numbers likely underestimate the true number of historical exchanges between the two genomes.

Approximately one-half of the polyploid reads could not be categorized because they did not overlap a homoelogous SNP. The uncategorized fraction of reads varied by length and by quality of reads. In the reference genome, only 163 Mb of 749 Mbp were
within 100 bp (the length of Illumina HiSeq reads in our dataset) of a homoeo-SNP, resulting in a 21.78% theoretical probability of any whole genome shotgun read being categorized. Genic regions (120 Mbp) had a greater density of putative homoeo-SNPs than intergenic regions because of our large collection of diploid RNA-seq data. In these regions, the theoretical probability of categorization was higher (60.7%) than the remainder of the genome (Figure 5). These data illustrate the dependency of polyploid reads categorization on SNP density.

The BS-treated reads had a decreased level of uncategorized reads because of the information loss caused by BS conversion. Each transition homoeo-SNP was only informative for half of the reads (C-T SNPs for ‘+’ strand reads and A-G SNPs for ‘−’ strand reads).

Although the same portion of the genome (120 Mbp) could have been theoretically categorized after BS treatment, the combination of transitions confounded with BS treatment and of uneven distribution of homoeo-SNP density (e.g., < single homoeo-SNP/read) caused fewer reads to be categorized in some regions than would have been

Figure 3 Histogram of SNP frequencies by gene as annotated in the initial draft of the D-genome reference sequence. Most genes (mode) had between 20 and 30 SNPs. A total of 7235 genes with low coverage (RNA-seq or WGS) from the diploid datasets were removed from the distribution.

Figure 4 Mapping efficiency with and without SNP-tolerant mapping. Reads were mapped by Bowtie (WGS only), GSNAP, and GSNAP with SNP-tolerant mapping (GSNAP-snp). WGS reads from *G. arboreum* (A2), *G. raimondii* (D5), were mapped to the reference genome of *G. raimondii*. Subsequently, RNA-seq and BS-seq reads from A2, D5, *G. hirsutum* (Mx) and the F1 diploid hybrid (F1) also mapped using SNP-tolerant mapping.
otherwise categorized had only one of the individual causes been a factor.

Allele-SNPs within individual allopolyploid genomes

After read categorization, SAMtools (Li et al. 2009) was used to call allele-SNPs within each genome-specific assembly (A_T and D_T). These allele-SNPs represented loci that were heterozygous within the subgenomes of *G. hirsutum* and *G. tomentosum* (Figure 6). *G. tomentosum* had slightly more allele-SNPs, representing slightly more genes, than *G. hirsutum* (Table S3). The D_T-genomes had more allele-SNPs, representing more genes, than their coresident A_T-genomes. Approximately 75% of allele-SNPs were novel (i.e., not indexed). A small number of indexed homoeo-SNPs also appeared as allele-SNPs within the genome-specific assemblies. These SNPs may reflect homeologous gene conversion events, or they may be false homoeo-SNPs.

By comparing the A_T and D_T alignments, we found that only a small number of novel homoeo-SNPs were identified in genic regions (77 in *G. hirsutum* and 59 in *G. tomentosum*), which suggests that most existing homoeo-SNPs between the A_T- and D_T-genomes were identified using the diploid genomes as surrogates. Therefore, increased sequencing of tetraploid transcriptomes will only minimally augment the number of "new" homoeo-SNPs; however, it would likely decrease the number of false-positive homoeo-SNPs resulting from diploid specific nucleotides.

DISCUSSION

The phylogenetic context of SNPs

Read mapping in polyploid genomes is a natural application of DNA sequencing, although the practical challenges of mapping to the duplicated loci of polyploid genomes have not received much attention. These challenges include (1) mapping duplicated reads to a single reference genome, (2) the difference in similarity between the subgenomes of an allopolyploid and the diploid reference sequence, (3) gene conversion, (4) allopolyploid autapomorphies, and (5) diploid autapomorphies. Carefully classified SNPs can be used to address some of these challenges, despite the lack of a read-mapping program capable of mapping to a duplicated reference genome. For evolutionary and plant improvement studies, reads are best classified within a phylogenetic context using SNP positions and their corresponding nucleotides.

In the simplest case involving allopolyploid formation, the genomes of Parent 1 (P₁) and Parent 2 (P₂) are combined into a common nucleus and form an F₁ (Figure 7A). Assuming that such a sexually reproducing hybrid could be created, little nucleotide substitution will have occurred between the parental genomes and their counterparts within the polyploid F₁ hybrid. Thus, SNPs between the diploid parents accurately predict homoeo-SNPs between the subgenomes of the F₁, allowing for improvements in polyploid F₁ read mapping efficiency and read categorization. For example, a sterile cotton diploid F₁ hybrid (a nascent allopolyploid) was created by a recent hybridization.

Figure 5 Percentages of read categorization. Reads were mapped to the *G. raimondii* reference with GSNAP and SNP-tolerant mapping, then categorized as A-genome (A), D-genome (D), chimeric (X), or unknown (N).

Figure 6 SNPs in *G. hirsutum* and *G. tomentosum* compared with the SNP index. Numbers inside blue circles represent the total number of SNPs for that genome, whereas underlined numbers between blue circles represent SNPs that are shared between two different allopolyploid genomes. This is not a formal Venn diagram because the numbers between blue circles are represented twice—once inside the circle(s) and once between the circles. They simply indicate the number of shared SNPs between the blue circles. Numbers inside the large red circle are indexed, while those outside were not contained within the SNP index.
Categorization of reads from F_1 had fewer chimeric (X) reads than reads from the natural allopolyploids (Figure 5).

This simple model of allopolyploidization lacks the passage of time since polyploid formation, during which additional nucleotide substitutions will have accumulated (autapomorphies in the diploid and polyploid genomes; Figure 7B). The nucleotide substitutions within each genome after polyploid formation are called allele-SNPs because (1) they occurred independently in various allopolyploid individuals (e.g., accessions) and (2) they originated in only one genome and in only one of two germline chromosomes. After a single base substitution, drift, selection, or both will move the allele frequency of the derived base toward fixation or elimination. Thus, allele-SNPs can be found within individual genomes where a particular accession is heterozygous or by the comparison of two different homozygous accessions. These allele-SNPs would independently assort during meiosis after nucleotide substitution, regardless if they were identified in a heterozygote as opposed to a homozygote (Bancroft et al. 2011; Harper et al. 2012). We do not use that context-dependent terminology in cotton.

Allele-SNPs can be identified by remapping categorized reads to the reference sequence and searching the alignments using common SNP-finding tools developed for diploid genomes (Li et al. 2009; McKenna et al. 2010). As an example, by using SAMtools we identified more than 1000 new allele-SNPs within both allopolyploid genomes of G. hirsutum and G. tomentosum (Figure 6). These allele-SNPs would be the most useful type of SNPs for cotton improvement because they have been bioinformatically discriminated from homoeo-SNPs and because they could be expected to segregate in Mendelian fashion (Van Deynze et al. 2009; Byers et al. 2012; Yu et al. 2012).

Comparison of independent alignments of categorized reads identified a limited number of new homoeo-SNPs because the extant diploid relatives used for initial homoeo-SNP identification were not perfect surrogates for the actual ancestral genomes that formed the ancestral allopolyploid, AND because of autapomorphic substitutions since polyploid formation (Figure 7). Resequencing multiple diploid accessions from each genome could identify the true diploid autapomorphies and reduce the number of SNPs erroneously classified as homoeo-SNPs. With our current dataset, these two SNP types were indistinguishable in our SNP index. Fortunately, the rate of false-positive homoeo-SNP (or false-positive allele-SNPs) had a negligible impact on read mapping because neither allele was penalized as a mismatch during SNP-tolerant read mapping. Thus, PolyCat used a conservative approach where if any SNP were included in the index (regardless of its source) its respective bases would be essentially masked during mapping.

Finally, SNPs can be placed on a traditional phylogenetic tree, but only a portion of those SNPs (homoeo-SNPs and allele-SNPs within the allopolyploid) impact mapping of sequence reads from allopolyploids (Figure 7). Allele-SNPs identified in subsequent re-sequencing of additional allopolyploid accessions can be easily added to the SNP index. Thus, improvement and extension of the PolyCat’s SNP index will be an iterative process (although SNP discovery will likely reach a saturation point and plateau). The combination of both types of SNPs (homoeo- and allelic) was included in the cotton SNP index for read mapping, and a similar collection of SNPs could be compiled for other allopolyploid genomes such as Brassica napus (Bancroft et al. 2011; Harper et al. 2012) and Triticum aestivum (Lai et al. 2012).

Effectiveness of the PolyCat pipeline

The SNP index and read categorization process facilitated the analysis of allopolyploid cotton by reducing the bias in mapping efficiency between the two genomes and by providing a means to separate data generated for each allopolyploid genome (A_{1} and D_{1}-genomes in cotton). Mapping all sequence reads to a single genome reference allowed for an aligned, comparative analysis between the two genomes within a given accession, as well as for more accurate analyses between accessions. Although these tools have been developed for cotton, they can be readily applied to any allopolyploid by providing an appropriate genome reference FASTA file, SNP index, and sequencing reads.

PolyCat is ultimately limited by the density of homoeo-SNPs across the genome. Reads belonging to a particular region of the genome can only be categorized if it has one or more homoeo-SNPs because every categorized read must overlap at least one SNP. The use of longer reads could improve the rate of categorization.

PolyCat is written in C++ and Perl, using BamTools (https://github.com/pezmaster33/bamtools) and Bioperl (Stajich et al. 2002). The custom scripts, the cotton SNP index, and a demo web application for demonstration of allopolyploid cotton read categorization are...
available online (http://bioinfo3.pgml.uga.edu/polyCat/upload.html). In the online version, 1 GB of sequence reads (non BS-seq) in FASTQ format can be categorized by PolyCat in approximately 15 min. Additional sequencing and development of software algorithms and tools will provide continued insights into polyploid genomes, their interactions, and their resultant phenotypes.

ACKNOWLEDGMENTS
We thank Michael Gore and Jonathan F. Wendel for valuable comments and discussion. We also thank all primary contributors of public cotton sequence data, particularly Jeremy Schmutz, Andrew H. Paterson (D-genome WGS and reference sequences), and Allen Van Deynze (A-genome WGS sequence). We thank the Brigham Young University Mentored Environment Grants, the National Science Foundation Plant Genome Program, and Cotton Inc. for generous support.

LITERATURE CITED
Adams, K. L., and J. F. Wendel, 2005 Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8: 135–141.
Bancroft, I., C. Morgan, F. Fraser, J. Higgins, R. Wells et al., 2011 Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat. Biotechnol. 29: 762–766.
Birchler, J. A., N. C. Riddle, D. L. Auger, and R. A. Veitia, 2005 Dosage compensation in plants. Curr. Opin. Plant Biol. 8: 135–141.
Byers, R. L., D. B. Harker, S. M. Yourstone, P. J. Maughan, and J. A. Udall, 2012 Development and mapping of SNP assays in allotetraploid cotton. Theor. Appl. Genet. 124: 1201–1214.
Cokus, S., S. Feng, X. Zhang, Z. Chen, and B. Merriman, 2008 Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219.
Coulondre, C., J. H. Miller, P. J. Farabaugh, and W. Gilbert, 1978 Molecular basis of base substitution hotspots in Escherichia coli. Nature 274: 775–780.
Crone, R. C., R. L. Small, T. Haselkorn, and J. F. Wendel, 2002 Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am. J. Bot. 89: 707–725.
De peer, Y. V., S. Maere, and A. Meyer, 2009 The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10: 725.
Dubcovsky, J., and J. Dvorak, 2007 Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316: 1862–1866.
Durbin, R. M., D. L. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley et al., 2010 A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073.
Flagg, L. E., and J. F. Wendel, 2009 Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557–564.
Flagg, L. E., J. F. Wendel, and J. A. Udall, 2012 Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allotetraploid cotton. BMC Genomics 13: 302.
Freeling, M., and B. C. Thomas, 2006 Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16: 805–814.
Gaeta, R. T., and J. C. Pires, 2010 Homoeologous recombination in allopolyploids: the allopolyploid ratchet. New Phytol. 186: 18–28.
Garber, M., M. G. Grabherr, M. Gutmann, and C. Trapnell, 2011 Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods 8: 469–477.
Gore, M., J. Chia, R. Elshire, Q. Sun, and E. Ersoz, 2009 A first-generation haplotype map of maize. Science 326: 1115–1117.
Graveley, B. R., A. N. Brooks, J. W. Carlson, M. O. Duff, J. M. Landolin et al., 2010 The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479.
Griffith, M., O. L. Griffith, J. Mwenifumbo, R. Goya, A. S. Morrissey et al., 2010 Alternative expression analysis by RNA sequencing. Nat. Methods 7: 843–847.
Harper, A. L., M. Trick, J. Higgins, F. Fraser, L. Clissold et al., 2012 Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat. Biotechnol. 30: 798–802.
Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chandlerbari, L. Landherr et al., 2011 Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100.
Kaufmann, K., J. M. Muñio, M. Österäs, L. Farinelli, P. Krajevski et al., 2010 Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat. Protoc. 5: 457–472.
Kitzman, J. O., M. W. Snyder, M. Ventura, A. P. Lewis, R. Qiu et al., 2012 Noninvasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 4: 137ra76.
Krueger, F., B. Kreek, A. Franke, and S. R. Andrews, 2012 DNA methylation analysis using short bisulfite sequencing data. Nat. Methods 9: 145–151.
Lai, K., C. Duran, P. J. Berkman, M. T. Lorenc, J. Stiller et al., 2012 Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol. J. 10: 743–749.
Laird, P. W., 2010 Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11: 191–203.
Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359.
Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg, 2009 Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: R25.
Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al.1000 Genome Project Data Processing Subgroup., 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
Lister, R., and J. R. Ecker, 2009 Finding the fifth base: Genome-wide sequencing of cytosine methylation. Genome Res. 19: 959–966.
Lister, R., R. C. O’Malley, J. Tonti-Filippini, B. D. Gregory, C. C. Berry et al., 2008 Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523–536.
Lister, R., M. Pelizzola, R. H. Dowen, R. D. Hawkins, G. Hon et al., 2009 Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315–322.
Mckenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., 2010 The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20: 1297–1303.
McManus, C. J., J. D. Coolon, M. O. Duff, J. Eipper-Mains, B. R. Graveley et al., 2010 Regulatory divergence in Drosophila revealed by miRNA-seq. Genome Res. 20: 816–825.
Mortazavi, A., B. A. Williams, K.McCue, L. Schaeffer, and B. Wold, 2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621–628.
Nègre, N., C. D. Brown, L. Ma, C. A. Bristow, S. W. Miller et al., 2011 A cis-regulatory map of the Drosophila genome. Nature 471: 527–531.
Osborn, T. C., J. Chris Pires, J. A. Birchler, D. L. Auger, Z. Jeffery Chen et al., 2003 Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19: 141–147.
Park, P. J., 2009 ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10: 669–680.
Paterson, A. H., J. E. Bowers, Y. Van de Peer, and K. Vandepoele, 2005 Ancient duplication of cereal genomes. New Phytol. 165: 658–661.
Paterson, A. H., J. F. Wendel, H. Gundlach, H. Guo, J. Jenkins et al., 2012 Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibers. Nature 492: 427–427.
Sabeti, P. C., P. Varilly, B. Fry, J. Lohmueller, E. Hostetter et al., 2007 Genome-wide detection and characterization of positive selection in human populations. Nature 449: 913–918.
Salmon, A., L. Flagel, B. Ying, J. A. Udall, and J. F. Wendel, 2009 Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol. 186: 123–134.

Schrantz, M. E., 2000 Novel flowering time variation in the resynthesized polyploid Brassica napus. J. Hered. 91: 242–246.

Senchina, D. S., 2003 Rate Variation Among Nuclear Genes and the Age of Polyploidy in Gossypium. Mol. Biol. Evol. 20: 633–643.

Soltis, D. E., P. S. Soltis, J. C. Pires, A. Kovarik, J. A. Tate et al., 2004 Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol. J. Linn. Soc. Lond. 82: 485–501.

Stajich, J. E., D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz et al., 2002 The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12: 1611–1618.

Stebbins, G. L., 1950 Variation and Evolution in Plants. Columbia University Press, New York.

Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan et al., 2010 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28: 511–515.

Udall, J. A., 2006a A global assembly of cotton ESTs. Genome Res. 16: 441–450.

Udall, J. A., 2006b A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173: 1823–1827.

Valouev, A., D. S. Johnson, A. Sundquist, C. Medina, E. Anton et al., 2008 Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5: 829–834.

Van Deynze, A., K. Stoffel, M. Lee, T. A. Wilkins, A. Kozik et al., 2009 Sampling nucleotide diversity in cotton. BMC Plant Biol. 9: 125.

Vaughn, M. W., M. Tanurdžić, Z. Lippman, H. Jiang, R. Carrasquillo et al., 2007 Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174.

Wang, Z., M. Gerstein, and M. Snyder, 2009 RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 57–63.

Wendel, J. F., and R. C. Cronn, 2003 Polyploidy and the evolutionary history of cotton. Adv. Agronomy 78: 139–186.

Wilbanks, E., and M. Facciotti, 2010 Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE 5: e11471.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon et al., 2009 The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106: 13875–13879.

Wu, T. D., and S. Nacu, 2010 Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873–881.

Yang, S. S., F. Cheung, J. J. Lee, M. Ha, N. E. Wei et al., 2006 Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J. 47: 761–775.

Yu, J. Z., R. J. Kohel, D. D. Fang, J. Cho, A. Van Deynze et al., 2012 A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3 (Bethesda) 2: 43–58.

Zhang, X., J. Yazaki, A. Sundaresan, S. Cokus, S. Chan et al., 2006 Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189–2001.

Communicating editor: R. W. Doerge