Chemical niches and ionoregulatory traits: applying ionoregulatory physiology to the conservation management of freshwater fishes

Alex M. Zimmer1,*, Greg G. Goss1 and Chris N. Glover1,2

1Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
2Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, T9S 3A3, Canada
*Corresponding author: Department of Biological Sciences, University of Alberta CW 405, Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada. Email: zimmer1@ualberta.ca

Alterations in water chemistry can challenge resident fish species. More specifically, chemical changes that disrupt ion balance will negatively affect fish health and impact physiological and ecological performance. However, our understanding of which species and populations are at risk from ionoregulatory disturbances in response to changing freshwater environments is currently unclear. Therefore, we propose a novel framework for incorporating ionoregulatory physiology into conservation management of inland fishes. This framework introduces the concepts of fundamental chemical niche, which is the tolerable range of chemical conditions for a given species based on laboratory experiments, and realized chemical niche, which is the range of chemical conditions in which a species resides based on distribution surveys. By comparing these two niches, populations that may be at risk from ionoregulatory disturbances and thus require additional conservation considerations can be identified. We highlight the potential for commonly measured ionoregulatory traits to predict fundamental and realized chemical niches but caution that some traits may not serve as accurate predictors despite being important for understanding ionoregulatory mechanisms. As a sample application of our framework, the minimum pH distribution (realized niche) and survival limit pH (fundamental niche) of several North American fishes were determined by systematic review and were compared. We demonstrate that ionoregulatory capacity is significantly correlated with a realized niche for many species, highlighting the influence of ionoregulatory physiology on fish distribution patterns along chemical gradients. Our aim is that this framework will stimulate further research in this field and result in a broader integration of physiological data into conservation management decisions for inland waters.

Key words: Acid, calcium, salinity, sodium

Editor: Steven Cooke

Received 5 February 2021; Revised 29 April 2021; Editorial Decision 4 August 2021; Accepted 5 August 2021

Cite as: Zimmer AM, Goss GG, Glover CN (2021) Chemical niches and ionoregulatory traits: applying ionoregulatory physiology to the conservation management of freshwater fishes. Conserv Physiol 9(1): coab066; doi:10.1093/conphys/coab066.
Introduction

Freshwater fish populations are faced with numerous threats, including habitat loss and degradation, overexploitation, introduction of invasive species and climate change (Dudgeon et al., 2006; Arthington et al., 2016; Reid et al., 2019). In addition, trends across the globe demonstrate that the chemical composition of inland waters is changing, with salinization (Cañedo-Argüelles et al., 2013; Dugan et al., 2017), acidification (Dunford et al., 2012; Hasler et al., 2018), calcium loss (Keller et al., 2001; Skjelkvåle et al., 2005; Jeziorski et al., 2008), hypoxia (Jenny et al., 2016) and pollution by metals, organics and other emerging contaminants (Murray et al., 2010; Wood, 2012) being of particular concern. All of these factors contribute to inland fishes being among the most vulnerable of all vertebrate groups, with nearly 24% of species being threatened (IUCN, 2021) and significant reductions in taxonomic, functional and phylogenetic biodiversity occurring worldwide (Su et al., 2021). However, identification of the most sensitive fish species and/or the traits possessed by such species is lacking, a knowledge gap that hinders conservation efforts (Miquèlez et al., 2020).

Trait-based approaches to conservation management aim to predict species- or population-level responses to environmental change using individual-level characteristics (McGill et al., 2006; Kearney et al., 2010; Chown, 2012; Willis et al., 2015; Glover, 2018). Indeed, some physiological traits have been demonstrated to be important predictors of species/population outcomes, such as temperature tolerance and aerobic scope in sockeye salmon (Oncorhynchus nerka) (Eliason et al., 2011; Cooke et al., 2012; Patterson et al., 2016). Such examples, in part, have given rise to the field of conservation physiology (Seebacher and Franklin, 2012; Cooke et al., 2013; Coristine et al., 2014). In this Perspective, we propose a trait-based approach focused on ionoregulatory physiology as a tool for predicting the response of freshwater fishes to changing water chemistry conditions.

Virtually all freshwater fishes regulate concentrations of major ions (Na\(^+\), Cl\(^-\), Ca\(^{2+}\), K\(^+\), Mg\(^{2+}\), SO\(_4\)\(^{2-}\)) within a narrow range in the blood plasma. Maintaining ion balance involves a co-ordinated response of many organ systems (gills, gut, kidney) and imposes a significant metabolic cost, although estimates of this cost vary substantially across different studies (Kirschnier, 1995; Boeuf and Payan, 2001; Ern et al., 2014; Parker et al., 2020). Furthermore, disruption of ion balance in freshwater fishes can have detrimental effects, culminating in osmotic disturbances and consequent cardiovascular failure in severe cases (Milligan and Wood, 1982; Grosell et al., 2002). Therefore, ion regulation is clearly essential to the fitness of freshwater fishes, yet little attempt has been made to use our understanding of ionoregulatory physiology to predict population-level responses to environmental change. This oversight is particularly concerning considering that mechanisms of ion regulation in freshwater fishes are greatly influenced by water chemistry parameters such as pH (McDonald, 1983a), ion content (Gonzalez et al., 2005; Brauner et al., 2013) and contaminants (Wright, 1995; Wood, 2012; Alsop and Wood, 2013), all of which are affected by both climate change and anthropogenic activities.

In this Perspective, we discuss a novel proposal for incorporating ionoregulatory physiology into a framework that can be applied to the conservation management of freshwater fishes. This framework relies on (i) establishing species-specific chemical niches that can act as predictive tools and (ii) identifying ionoregulatory traits that may explain or predict how freshwater fish species will respond to changing water chemistry conditions. Adopting terms from niche theory (Hutchinson, 1957; McGill et al., 2006), we introduce the terms ‘fundamental chemical niche’ (i.e. the tolerable range of chemical conditions for a given species) and ‘realized chemical niche’ (i.e. the range of chemical conditions in which the species resides in nature) and discuss how comparing these niches, and identifying ionoregulatory traits that influence or predict chemical niches, will help inform conservation management decisions (Fig. 1).

Chemical niches

To predict whether a species or population may be at risk from changes in chemical conditions, it is necessary to understand both its physiological limitations within relevant ranges of chemical conditions (fundamental niche) and how these limitations compare to its natural distribution along chemical gradients in the wild (realized niche). For simplicity, our proposal addresses chemical niches as single variables (e.g. salinity niches, pH niches). Still, we recognize that, in reality, some of these variables co-vary in nature (e.g. ion content and pH) and also have interactive effects on ionoregulatory physiology (e.g. Ca\(^{2+}\) and pH). Fundamental chemical niches of freshwater fishes are determined in laboratory settings, resulting from studies examining the physiological limits of different species to characterize traits such as salinity tolerance (Dunson et al., 1993; Ostrand and Wilde, 2001; Kefford et al., 2004) or pH tolerance (Dunson et al., 1977, 1993; Gonzalez and Dunson, 1987, 1989a; Jellyman and Harding, 1987).
Realized chemical niches are based on field distribution studies, which to date have examined fish distributions with respect to dissolved oxygen, salinity and pH (Rahel and Magnuson, 1983; Davenport and Sayer, 1993; Graham, 1993; Tremblay and Richard, 1993; Jackson et al., 2001; Ostrand and Wilde, 2001; Kefford et al., 2004). In niche theory, the realized niche is considered a subset of the fundamental niche such that the fundamental niche is usually greater than the realized niche (Hutchinson, 1957; Soberón and Arroyo-Peña, 2017). In our framework, we acknowledge that a myriad of abiotic and biotic factors, which may or may not be related to ionoregulatory physiology, contribute to differences between fundamental and realized chemical niches (Fig. 1) and that teasing these factors apart is challenging. Indeed, comparison of the temperature niches of two temperate perch species native to Australia failed to demonstrate a relationship between fundamental niche (measured as swimming performance and aerobic capacity) and realized niche (temperature distribution), suggesting that other biotic or abiotic factors contributed to realized niche (Allen-Ankins and Stoffels, 2017). In contrast to this approach, our framework does not suggest that fundamental niche should predict realized niche, due to the many factors that might influence fish distributions, but rather that comparison of these niches can shed light on potential conservation concerns.

One of the abiotic influences on fundamental and realized niches that must be considered is water chemistry itself, with Ca^{2+} concentration being a particularly important modulator of ionoregulatory physiology. The capacity of fishes to maintain ion balance in response to low pH conditions or reductions in ionic strength is influenced by ambient Ca^{2+} concentrations (McDonald et al., 1980, 1983; McDonald, 1983b; McDonald and Rogano, 1986; Gonzalez and...
Dunson, 1989b; Val et al., 1998; Gonzalez and Preest, 1999) because Ca^{2+} is an integral component of tight junctions that contribute to gill permeability (Hunn, 1985). Realized niches can additionally be influenced by abiotic and biotic factors such as lake area/depth, habitat suitability, temperature, predator/prey interactions, competition or dispersal limitations (Jackson et al., 2001). Therefore, it is possible that differences in ionoregulatory capacity (i.e. fundamental chemical niche) have a negligible influence on species distributions when other abiotic/biotic factors have a greater impact. Nevertheless, our proposed framework aims to serve as a predictive tool for identifying instances where disruptions in ion balance may pose ecological risks for specific fish populations (Fig. 1).

Comparing fundamental and realized niches on species- and site-specific bases will allow conservation managers to identify populations that may be at risk from ionoregulatory disturbances. First, populations of fishes residing at the margins of their fundamental niche (i.e. fundamental niche = realized niche; Fig. 1A) are potentially at risk from deviations in chemical conditions. For instance, populations existing at the lower threshold of their fundamental salinity niche (i.e. inhabiting dilute soft waters) may be at particular risk to declines in Ca^{2+}. Reductions in Ca^{2+} concentration have been observed in many regions (Keller et al., 2001; Skjelkvåle et al., 2005; Jezierski et al., 2008) and will affect ionoregulatory capacity through the known importance of Ca^{2+} in the acclimation of fish to low ionic strength conditions (McDonald and Rogano, 1986). However, lower salinity thresholds are seldom measured in the laboratory, and this fundamental niche is currently poorly defined for most freshwater fishes. At the other extreme, some fishes inhabiting natural inland saline lakes may reside near the extent of their upper salinity tolerance, yet these environments are currently threatened by increasing salinity, driven by climate change and anthropogenic activities (Covich et al., 1997; Williams, 2002). There are reported instances where increases in salinity of these environments, attributed to diversion of freshwater inputs, have already been correlated to decreases in fish biodiversity (Williams, 2002). Therefore, in these examples, establishing fundamental salinity niches (both upper and lower salinity tolerance) is an important step towards identifying species and populations that may be at risk.

Second, fishes found outside their fundamental chemical niche (i.e. fundamental niche < realized niche; Fig. 1B) also represent a case where increased conservation efforts may be needed. In such scenarios, identified populations may have become locally adapted, residing outside the expected range of tolerable chemical conditions based on physiological limits determined in laboratory experiments, and therefore represent physiological biodiversity. For example, Atlantic salmon (Salmo salar) alevins of parents originating from a naturally acidic river (Tusket River, Nova Scotia, Canada; pH = 4.6–5.2) had higher survivorship under acidic rearing conditions than alevins of parents from non-acidic sites or a commercial farm (Fraser et al., 2008). This finding, where the realized chemical niche of this population (Tusket River) exceeded the fundamental chemical niche based on experiments using farmed fish, was attributed to local adaptation. Interestingly, interbreeding between acid-adapted and non-acid-adapted salmon, which might occur when farmed salmon escape from aquaculture settings, resulted in a decreased acid tolerance in the F1 generation, but not in the F2 generation (Fraser et al., 2008). Indeed, protecting locally adapted populations and their physiological diversity from introgression with non-adapted species is an important conservation concern (Rhymer and Simberloff, 1996; Bohling, 2016).

Finally, populations of fishes found within the extent of their fundamental chemical niche (fundamental niche > realized niche; Fig. 1C) are the groups of least conservation concern, at least in terms of ionoregulatory status. Under this scenario, there exists a buffer of physiological capacity against changes in environmental conditions. Notably, in all cases, it is important to consider whether the fundamental chemical niche was assessed using relevant water chemistry conditions, appropriate methods (e.g. abrupt versus gradual salinity acclimation; Kefford et al., 2004) or at appropriate life stages (e.g. DeLonay et al., 1993; Whiterod and Walker, 2006) before making conclusions regarding conservation risks.

Ionoregulatory traits

The fundamental chemical niche is ultimately a product of organismal physiology, described as a filter between environmental conditions and ecological success (Seebacher and Franklin, 2012). Consequently, the physiological traits underlying ionoregulatory performance are likely to be important in predicting how freshwater fish populations will respond to changes in water chemistry. Here, we define an ionoregulatory trait as any biological characteristic that contributes to, or explains variations in, ionoregulatory performance. Basic ionoregulatory traits such as ion fluxes (Giacomin et al., 2020), blood/tissue ion content (Blanchard and Gosell, 2006), transepithelial potential (Wood et al., 2020), stress indicators (e.g. cortisol/glucose responses; Kammerer et al., 2010), behaviour (DeLonay et al., 1993; Ikuta et al., 2003), metabolic rate/metabolic status (Parker et al., 2020) or general fitness traits (i.e. mortality, growth, development, reproduction) can underlie more complex traits like substrate affinity for ion uptake (e.g. Goss and Wood, 1990; Gonzalez et al., 2002; Boisen et al., 2003; Fig. 2), salinity/salt tolerance (e.g. Ostrand and Wilde, 2001; Kefford et al., 2004; Wood et al., 2020), pH tolerance (e.g. Freda and Mcdonald, 1988; Gonzalez and Dunson, 1989a; Wilkie and Wood, 1996), hypoxia tolerance (e.g. Wood et al., 2007; Ifikar et al., 2010; Giacomin et al., 2020), temperature tolerance (e.g. Goncalves et al., 2006) or trace metal tolerance (e.g. Gosell et al., 2002). Notably, some of these ionoregulatory traits, such as ion substrate transport affinity, salinity tolerance and pH tolerance, directly reflect ionoregulatory function. Conversely,
Michaelis–Menten relationship between ambient ion concentration and ion uptake rate. The Michaelis affinity constant (K_m) is the ambient ion concentration at which 50% maximal uptake rate (J_{max}) occurs. Relationship of the line is defined by the equation: ion uptake rate = ($J_{max} \times [\text{ion}]$) / ($K_m + [\text{ion}]$).

(B) Plot of K_m values for Na$^+$ uptake measured in freshwater fish species acclimated to $[\text{Na}^+] > 100 \mu\text{mol L}^{-1}$ (dark blue squares) or $[\text{Na}^+] < 100 \mu\text{mol L}^{-1}$ (light blue squares); 100 μmol L$^{-1}$ Na$^+$ is often used as a ‘low’ acclimation condition in the literature and was the median acclimation [Na$^+$] across the studies included in the plot. Species are listed in order of ascending K_m values. (Data obtained from Lauren and McDonald, 1987; Freda and McDonald, 1988; Gonzalez and Dunson, 1989a; Goss and Wood, 1990; Postlethwaite and McDonald, 1995; Gonzalez et al., 2017, 2018, 2021; Morgan et al., 1997; Gonzalez et al., 1997, 2002; Salama et al., 1999; Gonzalez and Preest, 1999; Gonzalez and Wilson, 2001; Grosell and Wood, 2002; Boisen et al., 2003; Matsuo et al., 2004; Preest et al., 2005; Matsuo and Val, 2007; Kumai et al., 2011; Glover et al., 2012; Duarte et al., 2013; Al-Reasi et al., 2016; Shartau et al., 2017; see Table S1 for further details.)

Although the contribution of various ionoregulatory traits to overall ionoregulatory performance has been well described in physiological studies, their predictive capacity for defining chemical niches is less clear. Therefore, an important step in our proposed framework is to test whether a given ionoregulatory trait, or set of traits, is predictive of fundamental chemical niches using laboratory tests and to address if and why the trait was predictive of realized niches using distribution surveys. Previous work has, in fact, already demonstrated that some ionoregulatory traits may be predictive of chemical niche.

For example, in two closely related sunfish species, Enneacanthus obsesus and Enneacanthus gloriosus, pH tolerance assessed in the laboratory was predictive of distribution (Gonzalez and Dunson, 1991). While both species are considered acid tolerant, E. obsesus has a higher tolerance than E. gloriosus. When the more sensitive species was exposed to pH 4, whole-body Na$^+$ content was significantly reduced after 1 week and growth rate was inhibited after 12 weeks. In contrast, no effects were observed following the same acid exposure in the more tolerant species (Gonzalez and Dunson, 1987, 1989a). These relative tolerance patterns observed in the laboratory reflect natural distributions, with E. gloriosus being excluded from the most acidic waters of the natural range of E. obsesus (Gonzalez and Dunson, 1991). Similarly, in yellow perch (Perca flavescens) and Atlantic salmon (S. salar), pH tolerance was higher in individuals of acidic water origin (pH 4–5) compared to those sourced from neutral environments (pH 7–8) (Rahel, 1983; Fraser et al., 2008).

Salinity tolerance measured in the laboratory can also be predictive of species distribution in the wild. For example, a strong correlation was found between experimental salinity tolerance (usually measured as the salinity concentration lethal to 50% of individuals; LC$_{50}$) and the maximum salinity at which the species occurred in the field (maximum field distribution) for a number of freshwater fish species native
to southeastern Australia (Kefferd et al., 2004). Notably, the method of assessing salinity LC50 (direct transfer or slow acclimation) resulted in different correlations, with slow salinity acclimation being more predictive of maximum field distribution (Kefferd et al., 2004). Salinity tolerance was also suggested to influence fish assemblages in streambed pools of the Brazos River Basin (TX, USA) that become saline due to evaporation (Ostrand and Wilde, 2001).

Ionoregulatory physiology also underpins the sensitivity of freshwater fishes to some trace metal pollutants, and disruption of Na+ balance in particular has been proposed as a lethal mechanism of action in response to exposure to a variety of pollutants (Gripp and Dunson, 1991; Alsop and Wood, 2013). Copper (Cu2+) and silver (Ag+), for example, are capable of mimicking Na+, gaining entry into a fish via Na+ uptake pathways, and thereafter disrupting Na+ balance through inhibition of the basolateral sodium pump that drives Na+ uptake (Bury and Wood, 1999; Grosell and Wood, 2002; Goss et al., 2011). This results in a scenario whereby individuals with higher Na+ turnover rates generally exhibit a greater risk for Cu2+/Ag+ accumulation and toxicity (Grosell et al., 2002; Harley and Glover, 2014). This physiological mechanism has been critically important in the development of predictive models for identifying fish species at greatest risk of toxicity from the presence of Cu2+ and Ag+ in freshwaters, forming part of the basis of regulatory decision-making tools for establishing water quality criteria for different metals (Paquin et al., 2002). Incorporating physiological data into these models/tools is a clear example of how ionoregulatory traits can be applied to conservation management for inland waters. Importantly, such models must account for multiple water chemistry parameters, as demonstrated by the case of aluminium (Al). This trace metal is an ionoregulatory toxicant (Goss and Wood, 1988; Wood et al., 1990) that is mobilized and becomes more soluble at low pH (Nelson and Campbell, 1991; Gensemer and Playle, 1999), highlighting the complexity of predicting population responses to multiple simultaneous alterations in water chemistry conditions.

On the other hand, some ionoregulatory traits that have contributed to our mechanistic understanding of ionoregulatory physiology may not necessarily be useful predictors of chemical niche. Substrate affinity for ion uptake, for instance, has been used to understand mechanisms of ion acquisition. Rates of ion absorption/influx/uptake in freshwater fishes are modelled by Michaelis–Menten kinetics (Fig. 2A), whereby ion uptake rate is a function of ambient ion concentration. Substrate affinity is defined by the Michaelis affinity constant (K_m), which differs across species and acclimation conditions such as environmental ion concentration (Fig. 2B). If this ionoregulatory trait was an important determinant of chemical niche, we would predict that fishes native to conditions that are Na+-deficient, for example, should have a low K_m value (i.e. high affinity) for Na+ uptake. This is true for the characiform fishes of the acidic and ion-poor Rio Negro in the Brazilian Amazon (Gymnocyrtus sp., Hypessobrycon sp., Nematobrycon palmeri, Paracheirodon sp., Thayeria boehlkei) that have a high affinity (K_m < 50 μmol L^-1) Na+ uptake system that matches their Na+-deficient environment (Na+ = 16.5 μmol L^-1; Gonzalez et al., 2005), but not true of the cichlid species Symphysodon discus and Satanoperca jurupari, also native to the Rio Negro (Fig. 2B). These cichlid species appear to utilize a different ionoregulatory strategy, one that minimizes rates of Na+ loss (Gonzalez et al., 2002, 2005; Duarte et al., 2013; Morris et al., 2021), thereby maintaining ion balance even when Na+ affinity does not match prevailing ionic conditions. Notably, it is not unusual that seemingly important traits fail to predict ecological performance or species distribution in relevant environmental gradients (e.g. upper thermal tolerance; Sunday et al., 2012; Cahill et al., 2013; Evans et al., 2015). Consequently, it is important to employ a broad assessment of ionoregulatory traits to determine which are likely to be useful for predicting or understanding chemical niches.

Applying the framework

To demonstrate how ionoregulatory traits can predict realized chemical niche, thereby highlighting the utility of our framework, we compared the realized and fundamental pH niches of several freshwater fish species in North America and related these niches to changes in Na+ content. First, we summarized the realized pH niches (minimum field pH) of 72 inland fish species in over 1000 lakes surveyed across several geographic regions of Canada and the USA (Fig. 3). In this figure, the species are arranged by phylogeny to highlight notable trends such as the apparent acid-tolerant nature of centrarchid fishes and the general acid sensitivity of fishes in the genus Notropis, with the exception of the ironcolor shiner (Notropis chalybaeus). These phylogenetic relationships may prove useful for broadly determining which species may be at risk from anthropogenic acidification or other chemical disturbances and for identifying species that may serve as representative models in future research. The common shiner (Luscius cornutus) (Figs 3, 4A), for instance, has been used as a representative acid-sensitive species in previous comparative physiology research (Freda and McDonald, 1988; McDonald et al., 1991).

Second, we performed a systematic literature review to determine the fundamental pH niche (survival limit pH) for as many species in Fig. 3 as possible. We considered the survival limit pH as the lowest pH in a given study that resulted in ≤20% mortality and restricted our search to studies that exposed fish for at least 24 h to avoid acutely toxic effects of H+. We did not control for life stage or water chemistry, except for the omission of experiments that co-exposed fish to low pH and trace metals (e.g. Al). Survival limit pH was determined for 25 species from Fig. 3. For many species, survival limit pH varied substantially across studies, which was likely a result of differences in water chemistry (e.g. Ca2+) and life stage. Survival limit pH also showed no apparent relationship
Figure 3: Minimum field pH of 72 freshwater fish species in over 1000 lakes surveyed in different geographic regions of North America in 7 studies. Species are arranged by phylogeny constructed using the NCBI Taxonomy Browser and Phylogeny.fr (Dereeper et al., 2008); text colour refers to the lowest minimum field pH reported for that species according to the legend in the figure. Symbols represent the study from which the minimum field pH data was obtained; see legend for details. Note that the study represented by diamonds consists of four different publications addressing different fishes in the same study lakes. (Data obtained from Rahel and Magnuson, 1983; Pauwels and Haines, 1986; Smith et al., 1986; Matuszek et al., 1990; Graham, 1993; Tremblay and Richard, 1993; Whittier et al., 1999, 2000, 2001; Halliwell et al., 2001.)
Figure 4: (A) Relationship between lowest minimum field pH and survival limit pH for 25 of the species included in Fig. 3. Relationships between % change in Na content at pH 4.0–4.6 and (B) minimum field pH and (C) minimum survival limit pH for 13 of the species included in Fig. 3. Species are represented as different symbol and colour combinations according to the figure legend. Survival limit data obtained from: rock bass (McCormick et al., 1989; Eaton et al., 1992); bluespotted sunfish (Gonzalez and Dunson, 1989a); banded sunfish (Gonzalez and Dunson, 1989a); smallmouth bass (Kwain et al., 1984; Kane and Rabeni, 1987; Holtze and Hutchinson, 1989); largemouth bass (Orsatti and Colgan, 1987; McCormick et al., 1989; Eaton et al., 1992; McCormick and Jensen, 1992); pumpkinseed (Fraser and Harvey, 1984); bluegill (Ellgaard and Gilmore III, 1984; Palmer et al., 1988); black crappie (McCormick et al., 1989); walleye (Holtze and Hutchinson, 1989); yellow perch
with minimum field pH (Fig. 4A). However, based on our framework, we would predict that species with data points falling along the line of conformity between minimum field pH and survival limit pH (Fig. 4A) have a fundamental pH niche equal to the realized pH niche (Fig. 1A) and may represent a concern for conservation management. Moreover, those species with data points above the line of conformity have a fundamental pH niche that is less than the realized pH niche (Fig. 1B). In these cases, where fishes reside in waters with a pH that has been demonstrated to be toxic in survival studies, it is possible that disturbances in water chemistry (e.g. ionic strength, Ca²⁺) or life stage between field sites and laboratory studies account for the mismatch between niches; however, these may also be cases of local acid adaptation/acclimation. We believe that this type of comparative analysis is the first step for identifying populations where further attention may be needed in terms of assessing ionoregulatory status and/or deciding upon conservation intervention.

Third, to determine the extent to which ionoregulatory physiology influences pH niches, an additional literature review was conducted to determine species-specific responses of plasma and/or whole-body Na levels to low pH exposure. This search was again limited to experiments of at least 24 h to avoid acute effects and further limited to studies that exposed fish to pH 4.0–4.6 because this pH level was generally the lower threshold of fundamental and realized niches of the most acid-tolerant species in our study (Figs 3, 4). Water chemistry was again not accounted for, except to exclude studies with trace metal co-exposure. The difference in plasma and/or whole-body Na content between fish exposed to pH 4.0–4.6 and fish exposed to control conditions (pH 6.5–8) was calculated as ‘% Change in Na content at pH 4.0–4.6’. This metric therefore represents ionoregulatory pH tolerance, whereby species with a lower value are considered more acid tolerant. A significant correlation (R² = 0.64; P = 0.0006) was found between minimum field pH and ionoregulatory pH tolerance (Fig. 4B), clearly demonstrating that this ionoregulatory trait is characteristic of realized pH niche and that greater ionoregulatory pH tolerance imparts a broader realized pH niche. Furthermore, based on this relationship, we would predict that species at risk from acid stress would display lower Na⁺ content relative to individuals in circumneutral waters. Interestingly, however, there was no significant relationship between ionoregulatory pH tolerance and minimum survival limit pH (i.e. fundamental pH niche) (Fig. 4C), indicating that ionoregulatory disturbances may not always be the lethal mechanism of action in low pH exposure. In addition to disruptions in ion balance, acid exposure may also result in acid-based dysregulation, respiratory disturbance and/or gill damage, which might contribute to lethality, depending on water chemistry conditions and species (McDonald, 1983a).

Overall, this systematic review highlights that ionoregulatory traits can influence the distribution of fishes along chemical gradients and that, at least for pH tolerance, the simple measurement of plasma or whole-body Na⁺ content may be a useful metric for assessing whether individuals in a given environment are experiencing ionoregulatory disturbances and may therefore be at risk from perturbations in water chemistry conditions. In an in situ caged bioassay study of brook trout in episodically acidified streams in Great Smoky Mountains National Park, USA, whole-body Na⁺ content was correlated with the natural differences in stream pH and Al concentration that occurred during the pulse episodes (Neff et al., 2009), further highlighting the applicability of this metric to conservation monitoring. Notably, however, a reduction in plasma Na may actually underlie the physiological acclimation response to low pH in some species (Audet et al., 1988; Gonzalez and Dunson, 1989a), complicating the applicability of this parameter. However, it is not known whether this reduction in Na content leaves these fishes more vulnerable to other environmental stressors (e.g. hypoxia, pollutants).

Limitations, perspectives and future directions

Ionoregulatory physiology appears to play a key role in determining the success or failure of inland fishes inhabiting chemically altered environments. Our proposed framework serves as a foundation for identifying situations of concern with regard to risk from ionoregulatory disturbances and provides a basis for building a broader understanding of the ecophysiological implications of ionoregulatory traits of freshwater fishes. By comparing the fundamental and realized
chemical niches of inland fishes, conservation managers can identify populations that may be at risk from future environmental change, such that individuals of these populations can be assessed for ionoregulatory disturbances using simple metrics such as ion content measurements. In addition, through this framework, cases can be identified where physiological data regarding ionoregulatory traits and fundamental chemical niches are lacking, thereby informing priorities for conservation/ionoregulatory physiology research.

It is important to note that several limitations to this framework currently exist. First, there is a lack of data regarding both fundamental and realized chemical niches for most freshwater fishes, particularly concerning potential shifts in niche over life history. The speciosity of freshwater fishes clearly represents a research challenge; however, a phylogenetic approach (Fig. 3) may allow researchers to identify broad trends for conservation management purposes and identify key species to act as representative models for laboratory research. Second, it is currently unclear which basic traits (e.g., ion content, metabolic rate, growth/body size) may serve as important indicators of potential niche mismatching (Figs 1A, B) for different chemical niches. While Na$^+$ content may be a reliable indicator for acid stress (Fig. 4B), it has its limitations and may not be a relevant indicator for other chemical niches. Third, most studies have examined the effects of altered water chemistry as single variables, but chemical niches will likely need to be multivariate given the covariance of many water chemistry parameters in nature and their interactive effects on ionoregulatory physiology. It is possible, however, to design multivariate studies tailored to address emerging environmental issues (e.g., interactions of Al, pH, and Ca$^{2+}$; Ingersoll et al., 1990b; Wood et al., 1990). Lastly, although controversial (Pulliam, 2000), niches are generally theorized as having dimensions, such as bell-shaped distributions (Hutchinson, 1957). Consequently, physiological/ecological performance is predicted to be optimal at a particular point along an environmental gradient. Presently, we have left the shape of chemical niches undefined (i.e. circles in Fig. 1) because chemical optima for ionoregulatory performance in fishes are still debated in comparative physiology (e.g. the salinity at which ionoregulatory costs are lowest; Ern et al., 2014). Therefore, determining these optima and establishing dimensionality for chemical niches remains a challenge for future applications of this niche framework.

There are a number of pressing environmental issues for which our proposed framework can be adopted to better understand and predict the fate of freshwater fishes. Ionoregulatory physiology has proven to be pivotal for understanding individual-level responses to emerging concerns such as salinization, calcium decline, acidification, deoxygenation and climate change (McDonald et al., 1980; McDonald, 1983a; Gonçalves et al., 2006; Iftikar et al., 2010; Wood et al., 2020), and incorporation of ionoregulatory traits into conservation efforts is therefore a critical step towards well-informed management decision-making. Moreover, given the general sentiment that environmental change tends to favor invasive species (Chown, 2012), primarily due to shifts in environmental conditions away from the optima of indigenous species adapted to prevailing conditions, a better understanding of the chemical niches of invasive species might contribute to forecasting invasion potential. For example, ecological niche-based modelling of the invasion potential of common carp (Cyprinus carpio) identified nine variables that predicted the presence/abundance of carp in lakes in MN and ND, USA, one of which was alkalinity, accounting for up to 15% of the predictive power of the model (Kulhanek et al., 2011). This finding is in general agreement with our analysis that identified carp as only moderately acid tolerant (fundamental/realized niche = pH 5.0–5.5; Figs 3, 4), and thus implies that the invasive potential of carp may be affected by ionoregulatory pH tolerance.

Overall, our goal is that this framework will act as a catalyst for directing new avenues of research and serve as a starting point for broader integration of physiological data into conservation management decisions for inland waters, similar to what has occurred with the establishment of water quality criteria for metal toxicants (Paquin et al., 2002).

Supplementary material

Supplementary material is available at Conservation Physiology online.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grants to C.N.G. [# 04314] and G.G.G. [#203736]. C.N.G. is supported by a Campus Alberta Innovates Program research chair.

Acknowledgements

We extend our gratitude to the two anonymous reviewers of our initial manuscript whose comments and critiques contributed greatly to the synthesis of this paper.

References

Al-Reesi HA, Smith SD, Wood CM (2016) The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio). J Exp Biol 219: 2289–2299.

Allen-Ankins S, Stoffels RJ (2017) Contrasting fundamental and realized niches: two fishes with similar thermal performance curves occupy different thermal habitats. Freshw Sci 36: 635–652.
Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ, Bohling JH (2016) Strategies to address the conservation threats posed by hybridization and genetic introgression. *Conserv Physiol* 31:157–172.

Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. *Philos Trans R Soc B Biol Sci* 367: 1615–1627.

Cleveland L, Little EE, Hamilton SJ, Buckler DR, Hunn JB (1986) Interactive toxicity of aluminum and acidity to early life stages of brook trout. *Trans Am Fish Soc* 115: 610–620.

Cooke SJ, Hinch SG, Donaldson MR, Clark TD, Eliason EJ, Crossin GT, Raby GD, Jeffries KM, Lapointe M, Miller K et al. (2012) Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration. *Philos Trans R Soc B Biol Sci* 367: 1757–1769.

Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. *Conserv Physiol* 1. https://doi.org/10.1093/conphys/cot001.

Coristine LE, Robillard CM, Kerr JT, O’Connor CM, Lapointe D, Cooke SJ (2014) A conceptual framework for the emerging discipline of conservation physiology. *Conserv Physiol* 2. https://doi.org/10.1093/conphys/cou033.

Covich AP, Fritz SC, Lamb PJ, Marzolf RD, Matthews WJ, Poiani KA, Prepas EE, Richman MB, Winter TC (1997) Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. *Hydrol Process* 11: 993–1021.

Davenport J, Sayer DJ (1993) Physiological determinants of distribution in fish. *J Fish Biol* 43: 121–145.

Daye PG, Garside ET (1975) Lethal levels of pH for brook trout, *Salvelinus fontinalis* (Mitchill). *Can J Zool* 53: 639–641.

Daye PG, Garside ET (1977) Lower lethal levels of pH for embryos and alevis of Atlantic salmon, *Salmo salar* L. *Can J Zool* 55: 1504–1508.

Daye PG, Garside ET (1979) Development and survival of embryos and alevis of the Atlantic salmon, *Salmo salar* L., continuously exposed to acidic levels of pH, from fertilization. *Can J Zool* 57: 1713–1718.

Dederen LHT, Leuven EW, Wendelaar Bonga SE, Oyen GFG (1986) Biology of the acid-tolerant fish species *Umbraprygmaea* (De Kay, 1842). *J Fish Biol* 28: 307–326.

DeLonay AJ, Little EE, Woodward DF, Brumbaugh WG, Farag AM, Raben CF (1993) Sensitivity of early-life-stage golden trout to low pH and elevated aluminum. *Environ Toxicol Chem* 12: 1223–1232.

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M et al. (2008) *Phylogeny.fr*: robust phylogenetic analysis for the non-specialist. *Nucleic Acids Res* 36: W465–W469.
Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Eaton JG, Swenson WA, McCormick JH, Simonson TD, Jensen KM (1992) Fivelstad S, Olsen AB, Stefansson S, Handeland S, Waagbo R, Kroglund F, Colt J (2004) Lack of long-term sublethal effects of reduced freshwater pH alone on Atlantic salmon (Salmo salar) smolts subsequently transferred to seawater. Can J Fish Aquat Sci 61: 511–518.

Dively JL, Mudge JE, Neff WH, Anthony A (1977) Blood PO2, PCO2 and pH changes in brook trout (Salvelinus fontinalis) exposed to sublethal levels of acidity. Comp Biochem Physiol A 57: 347–351.

Duarte RM, Ferreira MS, Wood CM, Val AL (2013) Effect of low pH exposure on Na+ regulation in two cichlid fish species of the Amazon. Comp Biochem Physiol A 166: 441–448.

Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ et al. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81: 163–182.

Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE, Skaff NK, Summers JC, Farrell KJ, McCullough IM, Morales-Williams AM et al. (2017) Salting our freshwater lakes. Proc Natl Acad Sci USA 114: 4453–4458.

Duini D, Huber-Todaro LE, Eberhard-Phillips S, Mesci G, Post JR (2013) Readers’ Guide to the Aquatic Sciences. Comp Biochem Physiol A 169: 343–379.

Farmer GJ, Saunders RL, Goff TR, Johnston CE, Henderson EB (1989) Some physiological responses of Atlantic salmon (Salmo salar) exposed to soft, acidic water during smolting. Aquaculture 82: 229–244.

Fivelstad S, Olsen AB, Stefansson S, Handeland S, Waagbo R, Kroglund F, Colt J (2004) Lack of long-term sublethal effects of reduced freshwater pH alone on Atlantic salmon (Salmo salar) smolts subsequently transferred to seawater. Can J Fish Aquat Sci 61: 511–518.

Dunson WA, Fricano P, Sadinski WJ (1993) Variation in tolerance to abiotic stresses among sympatric salt marsh fish. Wetlands 13: 16–24.

Dunson WA, Swarts F, Silvestri M (1977) Exceptional tolerance to low pH of some tropical blackwater fish. J Exp Zool 201: 157–162.

Dunford RW, Donoghue DNM, Burt TP (2012) Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions. Environ Pollut 167: 58–69.

Dumon RM, Chevalier F, Pichon E (1997) Reproduction, activity, and growth in juvenile brown trout (Salmo trutta L.) under low pH conditions. Aquat Sci 59: 207–216.

Eaton JG, Swenson WA, McCormick JH, Simonson TD, Jensen KM (1992) A field and laboratory investigation of acid effects on largemouth bass, rock bass, black crappie, and yellow perch. Trans Am Fish Soc 121: 644–658.

Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332: 109–112.

Elggaard EG, Gilmore JY III (1984) Effects of different acids on the bluegill sunfish, Lepomis macrochirus Rafnesque. J Fish Biol 25: 133–137.

Ern R, Huong DTT, Cong N, Bayley M, Wang T (2014) Effect of salinity on oxygen consumption in fishes: a review. J Fish Biol 84: 1210–1220.

Evans TG, Diamond SE, Kelly MW (2015) Mechanistic species distribution modelling as a link between physiology and conservation. Conserv Physiol 3. https://doi.org/10.1093/conphys/cov056.

Farmer GJ, Saunders RL, Goff TR, Johnston CE, Henderson EB (1989) Some physiological responses of Atlantic salmon (Salmo salar) exposed to soft, acidic water during smolting. Aquaculture 82: 229–244.

Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in osmoregulation and survival of large Atlantic salmon held at high water temperature. N Am J Aquac 68: 324–329.

Gonzalez RJ, Crudeau A, Guinnip M, Mitchell A, Reduta V (2018) South American characids share very similar ionoregulatory characteristics. Comp Biochem Physiol A 226: 17–21.

Gonzalez RJ, Dalton VM, Patrick ML (1997) Ion regulation in ion-poor acidic water by the blackskirt tetra (Gymnocorymbus ternetzi), a fish native to the Amazon river. Physiol Zool 70: 428–435.

Gonzalez RJ, Dunson WA (1987) Adaptations of sodium balance to low pH in a sunfish (Enneacanthus abesus) from naturally acidic waters. J Comp Physiol B 157: 555–566.

Gonzalez RJ, Dunson WA (1989a) Differences in low pH tolerance among closely related sunfish of the genus Enneacanthus. Environ Biol Fish 26: 303–310.

Gonzalez RJ, Dunson WA (1989b) Acclimation of sodium regulation to low pH and the role of calcium in the acid-tolerant sunfish Enneacanthus abesus. Physiol Zool 62: 977–992.

Gonzalez RJ, Dunson WA (1991) Does water pH control habitat segregation of sibling species of sunfish (Enneacanthus)? Wetlands 11: 313–324.

Gonzalez RJ, Dunson WA (2008) Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evol Appl 1: 501–512.

Gloves CN, Playle RC (1999) The bioavailability and toxicity of aluminium in aquatic environments. Crit Rev Environ Sci Technol 29: 315–450.
Gonzalez RJ, Hsu R, Mahaffey L, Rebagliatti D, Shami J (2021) Examination of ionoregulatory characteristics of South American cichlids. Comp Biochem Physiol A 253: 110854.

Gonzalez RJ, Jones SL, Nguyen TV (2017) Ionoregulatory characteristics of non-Rio Negro characiforms and cichlids. Physiol Biochem Zool 90: 407–414.

Gonzalez RJ, Mason CH, Dunson WA (1989) Anomalous tolerance to low pH in the estuarine killifish Fundulus heteroclitus. Comp Biochem Physiol C 94: 169–172.

Gonzalez RJ, Wilson RW (2001) Patterns of ion regulation in acidoophilic fish native to the ion-poor, acidic Rio Negro. J Fish Biol 58: 1680–1690.

Gonzalez RJ, Wilson RW, Wood CM (2005) Ionoregulation in tropical fishes from ion-poor, acidic blackwaters. In AL Val, VM Almeida-Val, DJ Randall, eds, Fish Physiology Vol 21. Academic Press, Waltham, MA, pp. 397–442.

Gonzalez RJ, Wilson RW, Wood CM, Patrick ML, Val AL (2002) Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol Biochem Zool 75: 37–47.

Goss G, Gilmour K, Hawkins G, Brumbach JH, Huynh M, Galvez F (2011) Mechanism of sodium uptake in PNA negative MR cells from rainbow trout, Oncorhyncus mykiss as revealed by silver and copper inhibition. Comp Biochem Physiol A 159: 234–241.

Goss GG, Wood CM (1988) The effects of acid and acid/aluminum exposure on circulating plasma cortisol levels and other blood parameters in the rainbow trout, Salmo gairdneri. J Fish Biol 32: 63–76.

Goss GG, Wood CM (1990) Na+ and Cl− uptake kinetics, diffusive effluxes and acid equivalent fluxes across the gills of rainbow trout I. Response to environmental hyperoxia. J Exp Biol 152: 521–547.

Graham JH (1993) Species diversity of fishes in naturally acidic lakes in New Jersey. Trans Am Fish Soc 122: 1043–1057.

Graham MS, Wood CM (1981) Toxicity of environmental acid to the rainbow trout: interactions of water hardness, acid type, and exercise. Can J Zool 59: 1518–1526.

Grippi RS, Dunson WA (1991) Use of whole body sodium loss from the fathead minnow (Pimephales promelas) as an indicator of acid and metal toxicity. Arch Environ Contam Toxicol 21: 289–296.

Grosell M, Nielsen C, Bianchini A (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C 133: 287–303.

Groesel M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205: 1179–1188.

Gunn JM, Noakes DLG (1987) Latent effects of pulse exposure to aluminum and low pH on size, ionic composition, and feeding efficiency of lake trout (Salvelinus namaycush) alevis. Can J Fish Aquat Sci 44: 1418–1424.

Halliwell DB, Whittier TR, Ringler NH (2001) Distributions of lake fishes of the northeast USA - III. Salmonidae and associated coldwater species. Northeast Nat 8: 189–206.

Harley RA, Glover CN (2014) The impacts of stress on sodium metabolism and copper accumulation in a freshwater fish. Aquat Toxicol 147: 41–47.

Hasler CT, Jeffrey JD, Schneider EVC, Hannon KD, Tix JA, Suski CD (2018) Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems. Hydrobiologia 806: 1–12.

Höbe H, Wood CM, McMahon BR (1984) Mechanisms of acid-base and ionoregulation in white suckers (Catostomus commersoni) in natural soft water I. Acute exposure to low ambient pH. J Comp Physiol B 154: 35–46.

Holtze KE, Hutchinson NJ (1989) Lethality of low pH and Al to early life stages of six fish species inhabiting Pre-Cambrian shield waters in Ontario. Can J Fish Aquat Sci 46: 1188–1202.

Hunn JB (1985) Role of calcium in gill function in freshwater fishes. Comp Biochem Physiol A 82: 543–547.

Hunn JB, Cleveland L, Little EE (1987) Influence of pH and aluminum on developing brook trout in a low calcium water. Environ Pollut 43: 63–73.

Hurley GV, Foyle TP, White WJ (1989) Differences in acid tolerance during the early life stages of three strains of brook trout, Salvelinus fontinalis. Water Air Soil Pollut 46: 387–398.

Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22: 75–96.

Hutchinson NJ, Holtze KE, Munro JR, Pawson TW (1989) Modifying effects of life stage, ionic strength and post-exposure mortality on lethality of H+ and Al to lake trout and brook trout. Aquat Toxicol 15: 1–26.

Iftikar FI, Matey V, Wood CM (2010) The ionoregulatory responses to hypoxia in the freshwater rainbow trout Oncorhyncus mykiss. Physiol Biochem Zool 83: 343–355.

Ikuta K, Suzuki Y, Kitamura S (2003) Effects of low pH on the reproductive behavior of salmonid fishes. Fish Physiol Biochem 28: 407–410.

Ingersoll CG, Culley DD, Mount DR, Mueller ME, Fernandez JD, Hockett JR, Bergman HL (1999a) Aluminium and acid toxicity to two strains of brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 47: 1641–1648.

Ingersoll CG, Mount DR, Gulley DD, La Point TW, Bergman HL (1999b) Effects of pH, aluminum, and calcium on survival and growth of eggs and fry of brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 47: 1580–1592.

IUCN (2021) The IUCN Red List of Threatened Species Version 2021-1. www.iucnredlist.org.
Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities—the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58: 157–170.

Jagoe CH, Haines TA, Kircheis FW (1984) Effects of reduced pH on three life stages of Sunapee char Salvelinus alpinus. Bull Environ Contam Toxicol 33: 430–438.

Jellyman PG, Harding JS (2014) Variable survival across low pH gradients in freshwater fish species. J Fish Biol 85: 1746–1752.

Jenny J, Francus P, Normandeau A (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Change Biol 22: 1481–1489.

Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller B, Weerer RC, McNicol DK, Palmer ME et al. (2008) The widespread threat of calcium decline in fresh waters. Science 322: 1374–1377.

Johansson N, Kihlström JE (1975) Pikes (Esox lucius L.) shown to be affected by low pH values during first weeks after hatching. Environ Res 9: 12–17.

Kammerer BD, Cech JJ, Kültz D (2010) Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integ Physiol 157: 260–265.

Kane DA, Rabeni CF (1987) Effects of aluminum and pH on the early life stages of smallmouth bass (Micropterus dolomieui). Water Res 21: 633–639.

Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Modelling the ecological niche from functional traits. Phil Trans R Soc B 365: 3469–3483.

Kefford BJ, Papas PJ, Metzeling L, Nugegoda D (2004) Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environ Pollut 129: 355–362.

Keinänen M, Peuranen S, Nikinmaa M, Tigerstedt C, Vuorinen PJ (2004) The occurrence of cyprinidae and other small fish species in relation to pH in Ontario lakes. Trans Am Fish Soc 119: 850–861.

McCormick JH, Jensen KM (1992) Osmoregulatory failure and death of first-year largemouth bass (Micropterus salmoides) exposed to low pH and elevated aluminum, at low temperature in soft water. Can J Fish Aquat Sci 49: 1189–1197.

McCormick JH, Jensen KM, Leino RL (1989) Survival, blood osmolality, and gill morphology of juvenile yellow perch, rock bass, black crappie, and largemouth bass exposed to acidified soft water. Trans Am Fish Soc 118: 386–399.

McDonald DG (1983a) The effects of H³⁺ upon the gills of freshwater fish. Can J Zool 61: 691–703.

McDonald DG (1983b) The interaction of environmental calcium and low pH on the physiology of rainbow trout, Salmo gairdneri. J Exp Biol 102: 123–140.

McDonald DG, Freda J, Cavdek V, Gonzalez R, Zia S (1991) Interspecific differences in gill morphology of freshwater fish in relation to tolerance of low-pH environments. Physiol Zool 64: 124–144.

McDonald DG, Höbe H, Wood CM (1980) The influence of calcium on the physiological responses of the rainbow trout, Salmo gairdneri, to low environmental pH. J Exp Biol 88: 109–131.

Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21: 203–213.

Kumari Y, Bahubeshi A, Steele S, Perry SF (2011) Strategies for maintaining Na⁺ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water. Comp Biochem Physiol A 160: 52–62.

Kwain W-H (1975) Effects of temperature on development and survival of rainbow trout, Salmo gairdneri, in acid waters. J Fish Res Board Can 32: 493–497.

Kwain W, Mccauley RW, Maclean JA (1984) Susceptibility of starved, juvenile smallmouth bass, Micropterus dolomieui (Lacépède) to low pH. J Fish Biol 25: 501–504.

Lacroix GL, Gordon DJ, Johnston DJ (1985) Effects of low environmental pH on the survival, growth, and ionic composition of postemergent Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 42: 768–775.

Lauren DJ, Mcdonald DG (1987) Acclimation to copper by rainbow trout, Salmo gairdneri: physiology. Can J Fish Aquat Sci 44: 99–104.

Matsuoy AO, Playle RC, Val AL, Wood CM (2004) Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and softwater. Aquat Toxicol 70: 63–81.

Matsuoy AO, Val AL (2007) Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in cardinal tetras Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J Fish Biol 70: 989–1000.
McDonald DG, Rogano MS (1986) Ion regulation by the rainbow trout, *Salmo gairdneri*, in ion-poor water. *Physiol Zool* 59: 318–331.

McDonald DG, Walker R, Wilkes PR (1983) The interaction of environmental calcium and low pH on the physiology of the rainbow trout, *Salmo gairdneri*. II. Branchial ionoregulatory mechanisms. *J Exp Biol* 102: 141–155.

McDonald DG, Wood CM (1981) Branchial and renal acid and ion fluxes in the rainbow trout, *Salmo gairdneri*, at low environmental pH. *J Exp Biol* 93: 101–118.

McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. *Trends Ecol Evol* 21: 178–185.

Menendez R (1976) Chronic effects of reduced pH on brook trout (*Salvelinus fontinalis*). *J Fish Res Board Can* 33: 118–123.

Milligan CL, Wood CM (1982) Disturbances in haematology, fluid volume distribution and circulatory function with low environmental pH in the rainbow trout, *Salmo gairdneri*. *J Exp Biol* 99: 397–415.

Miguelez I, Bohm M, Aríño AH, Miranda R (2020) Assessment gaps and biases in knowledge of conservation status of fishes. *Aquat Conserv Mar Freshw Ecosyst* 30: 225–236.

Morgan UJ, Henry RP, Wood CM (1997) The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (*Oncorhynchus mykiss*) in inhibition of gill Na⁺ and Cl⁻ transport. *Aquat Toxicol* 38: 145–163.

Morris C, Val AL, Brauner CJ, Wood CM (2021) The physiology of fish in acidic waters rich in dissolved organic carbon, with specific reference to the Amazon basin: ionoregulation, acid–base regulation, ammonia excretion, and metal toxicity. *J Exp Zool A Ecol Integr Physiol* 1–21. In press.

Mount DI (1973) Chronic effect of low pH on fathead minnow survival, growth and reproduction. *Water Res* 7: 987–993.

Murray KE, Thomas SM, Bodour AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. *Environ Pollut* 158: 3462–3471.

Neff KJ, Schwartz JS, Henry TB, Robinson RB, Moore SE, Kulp MA (2009) Physiological stress in native southern brook trout during episodic stream acidification in the Great Smoky Mountains National Park. *Arch Environ Contam Toxicol* 57: 366–376.

Nelson JA (1982) Physiological observations on developing rainbow trout, *Salmo gairdneri* (Richardson), exposed to low pH and varied calcium ion concentrations. *J Fish Biol* 20: 359–372.

Nelson WO, Campbell PGC (1991) The effects of acidification on the geochemistry of Al, Cd, Pb, and Hg in freshwater environments: a literature review. *Environ Pollut* 71: 91–130.

Neville CM (1979) Sublethal effects of environmental acidification on rainbow trout (*Salmo gairdneri*). *J Fish Res Board Can* 36: 84–87.

Orsatti SD, Colgan PW (1987) Effects of sulphuric acid exposure on the behaviour of largemouth bass, *Micropterus salmoides*. *Environ Biol Fishes* 19: 119–129.

Ostrand KG, Wilde GR (2001) Temperature, dissolved oxygen, and salinity tolerances of five prairie stream fishes and their role in explaining fish assemblage patterns. *Trans Am Fish Soc* 130: 742–749.

Oyen FGF, Camps LECMM, Wendelaar Bonga SE (1991) Effect of acid stress on the embryonic development of the common carp (*Cyprinus carpio*). *Aquat Toxicol* 19: 1–12.

Palmer RE, Klauda RJ, Jepson MA, Perry ES (1989) Acute sensitivity of early life stages of fathead minnow (*Pimephales promelas*) to acid and aluminum. *Water Res* 23: 1039–1047.

Palmer RE, Klauda RJ, Lewis TE (1988) Comparative sensitivities of bluegill, channel catfish and fathead minnow to pH and aluminum. *Environ Toxicol Chem* 7: 505–516.

Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F et al. (2002) The biotic ligand model: a historical overview. *Comp Biochem Physiol C* 133: 3–35.

Parker JJ, Zimmer AM, Perry SF (2020) Respirometry and cutaneous oxygen flux measurements reveal a negligible aerobic cost of ion regulation in larval zebrafish (*Danio rerio*). *J Exp Biol* 223: jeb.226753.

Patterson DA, Cooke SJ, Hinch SG, Robinson KA, Young N, Farrell AP, Miller KM (2016) A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (*Oncorhynchus nerka*). *Conserv Physiol* 4. https://doi.org/10.1093/conphys/cow026.

Pauwels SJ, Haines TA (1986) Fish species distribution in relation to water chemistry in selected Maine lakes. *Water Air Soil Pollut* 30: 477–488.

Peterson RH, Daye PG, Metcalfe JL (1980) Inhibition of Atlantic salmon (*Salmo salar*) hatching at low pH. *Can J Fish Aquat Sci* 37: 770–774.

Pinheiro PS, Windsor FM, Wilson RW, Tyler CR (2021) Global variation in freshwater physico-chemistry and its influence on chemical toxicity in aquatic wildlife. * Biol Rev* 96: 1528–1546.

PostlethwaiteEK,McDonaldDG (1995) Mechanisms of Na⁺ and Cl⁻ regulation in freshwater-adapted rainbow trout (*Oncorhynchus mykiss*) during exercise and stress. *J Exp Biol* 198: 295–304.

Preest MR, Gonzalez RJ, Wilson RW (2005) A pharmacological examination of Na⁺ and Cl⁻ transport in two species of freshwater fish. *Physiol Biochem Zool* 78: 259–272.

Pulliam HR (2000) On the relationship between niche and distribution. *Ecol Lett* 3: 349–361.

Rahel FJ (1983) Population differences in acid tolerance between yellow perch, *Perca flavescens*, from naturally acidic and alkaline lakes. *Can J Zool* 61: 147–152.

Rahel FJ, Magnuson JJ (1983) Low pH and the absence of fish species in naturally acidic Wisconsin Lakes: inferences for cultural acidification. *Can J Fish Aquat Sci* 40: 3–9.
Reader JP, Everall NC, Morris R (1989) The effects of eight trace metals in acid soft water on survival, mineral uptake and skeletal calcium deposition in yolk-sac fry of brown trout, *Salmo trutta* L. *J Fish Biol* 35: 187–198.

Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ et al. (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. *Biof Rev* 94: 849–873.

Reynolds C (2011) The effect of acidification on the survival of American eel. M.Sc. thesis (unpublished), Dalhousie University, Halifax, Nova Scotia, Canada.

Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. *Annu Rev Ecol Syst* 27: 83–109.

Salama A, Morgan IJ, Wood CM (1999) The linkage between Na⁺ uptake and ammonia excretion in rainbow trout: kinetic physiological analysis, the effects of (NH₄)₂SO₄ and NH₄HCO₃ infusion and the influence of gill boundary layer pH. *J Exp Biol* 202: 697–709.

Sapkale PH, Singh RK, Desai AS (2011) Optimal water temperature and pH for development of eggs and growth of spawn of common carp (*Cyprinus carpio*). *J Appl Anim Res* 39: 339–345.

Sayer MDJ, Reader JP, Morris R (1989) The effect of calcium concentration on the toxicity of copper, lead and zinc to yolk-sac fry of brown trout, *Salmo trutta* L., in soft, acid water. *J Fish Biol* 35: 323–332.

Sayer MDJ, Reader JP, Morris R (1991) Embryonic and larval development of brown trout, *Salmo trutta* L: exposure to aluminium, copper, lead or zinc in soft, acid water. *J Fish Biol* 38: 431–455.

Scherer E (1986) Locomotor activity and blood plasma parameters of acid-exposed lake whitefish, *Coregonus clupeaformis*. *Can J Fish Aquat Sci* 43: 1556–1561.

Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. *Philos Trans R Soc B Biol Sci* 367: 1607–1614.

Shartau RB, Brix KV, Brauner CJ (2017) Characterization of Na⁺ transport to gain insight into the mechanism of acid-base and ion regulation in white sturgeon (*Acipenser transmontanus*). *Comp Biochem Physiol A* 204: 197–204.

Skjelkvåle BL, Stoddard JL, Jeffries DS, Terseth K, Hagåsen T, Bowman J, Mannio J, Monteith DT, Mosello R, Rogora M et al. (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001. *Environ Pollut* 137: 165–176.

Smith DL, Underwood JK, Ogden JG III, Sabeen BC (1986) Fish species distribution and water chemistry in Nova Scotia lakes. *Water Air Soil Pollut* 30: 489–496.

Soberón J, Arroyo-Peña B (2017) Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. *PLoS One* 12: 1–14.

Stouthart AJHX, Spanings FAT, Lock RAC, Wendelaar Bonga SE (1994) Effects of low water pH on lead toxicity to early life stages of the common carp (*Cyprinus carpio*). *Aquat Toxicol* 30: 137–151.
Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. *Comp Biochem Physiol B* 113: 665–673.

Williams WD (2002) Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. *Environ Conserv* 29: 154–167.

Willis SG, Foden W, Baker DJ, Belle E, Burgess ND, Carr JA, Doswald N, Garcia RA, Hartley A, Hof C et al. (2015) Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. *Biol Conserv* 190: 167–178.

Wood CM (2012) An introduction to metals in fish physiology and toxicology; basic principles. In A Farrell, C Brauner, eds, *Fish Physiology* Vol 31A. Academic Press, New York, NY, pp. 2–40.

Wood CM, Kajimura M, Sloman KA, Scott GR, Walsh PJ, Almeida-Val VMF, Val AL (2007) Rapid regulation of Na\(^+\) fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, *Astronotus ocellatus*. *Am J Physiol Regul Integr Comp Physiol* 292: R2048–R2058.

Wood CM, McDonald DG, Ingersoll CG, Mount DR, Johannson OE, Landsberger S, Bergman HL (1990) Effects of water acidity, calcium, and aluminum on whole body ions of brook trout (*Salvelinus fontinalis*) continuously exposed from fertilization to swim-up: a study by instrumental neutron activation analysis. *Can J Fish Aquat Sci* 47: 1593–1603.

Wood CM, McDonald MD, Grosej M, Mount DR, Adams WJ, Po BHK, Brix KV (2020) The potential for salt toxicity: can the trans-epithelial potential (TEP) across the gills serve as a metric for major ion toxicity in fish? *Aquat Toxicol* 226: 105568.

Wood CM, Playle RC, Simons BP, Goss GG, McDonald DG (1988) Blood gases, acid-base status, ions, and hematology in adult brook trout (*Salvelinus fontinalis*) under acid/aluminum exposure. *Can J Fish Aquat Sci* 45: 1575–1586.

Wright DA (1995) Trace metal and major ion interactions in aquatic animals. *Mar Pollut Bull* 31: 8–18.

Wright PA, Wood CM, Wilson JM (2014) Rh versus pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish. *J Exp Biol* 217: 2855–2865.

Ye X, Randall DJ, He X (1991) The effect of acid water on oxygen consumption, circulating catecholamines and blood ionic and acid-base status in rainbow trout (*Salmo gairdneri*, Richardson). *Fish Physiol Biochem* 9: 23–30.