Effect of Lithium on Organic Ion Transport in Rat Kidney Cortical Slices

Munekazu GEMBA, Naoko MIKURIYA, Akemi TACHIBANA and Mayumi NAKAJIMA

Department of Pharmacology, Osaka College of Pharmacy,
Kawai, Matsubara, Osaka 580, Japan

Accepted November 2, 1983

Lithium is presently well-known as a pharmacological agent for use in the treatment of manic-depressive mental disorders. However, the renal effects of lithium compounds have been reviewed as side effects (1, 2). Previous studies reported the lithium-induced histological changes in proximal tubules as well as in the distal and collecting tubules in the kidney (3, 4). A recent report has indicated that lithium-induced damage was morphologically evident in connecting, collecting and distal tubules, but not observed in the proximal ones (5). Though further studies on the exact anatomic sites of lithium-induced renal damage are necessary, it would be interesting to obtain information about the biochemical effects of lithium salts on the physiological process in proximal tubules. It has already been reported that an administration of lithium to rats resulted in reduced function of the proximal tubules by affecting the transport of electrolytes (6). The secretion of p-aminohippurate (PAH) and tetraethylammonium (TEA) as representatives of organic acids and bases, respectively, is also one of important functions of proximal tubules in the kidney (7). It is probable that in vitro concentrative uptake of organic ions by renal slices reflects, at least qualitatively, in vivo tubular secretion (8, 9). This study was to investigate the effect of lithium on organic ion transport using kidney cortical slices.

Kidney cortical slices were prepared from male Sprague-Dawley rats as described previously (10), and the slice technique used in this study has also been described previously (11). To be brief, the slices were placed in an ice-cold medium containing 137 mM NaCl, 5.9 mM KCl, 1.5 mM CaCl₂, 1.2 mM MgCl₂, 11.5 mM glucose and 5.8 mM Hepes (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer, pH 7.4. Thereafter, the slices were incubated for 30 min at 37°C with a gas phase of 100% oxygen in 10 ml of incubation medium; its composition was identical to the medium described above, except that it further contained 0.074 mM PAH and 1% inulin, which was added to estimate the extracellular space of the slices. After incubation, the slices were homogenized with 10% trichloroacetic acid and then centrifuged. A sample of the medium was deproteinized by adding trichloroacetic acid. Supernatants obtained by centrifugation of the extracts of the slices and media samples were used for the spectrophotometric analyses of PAH and inulin. For the experiment of TEA accumulation in the slices, the incubation medium contained 0.1 mM TEA, 5 nCi/ml ¹⁴C-TEA (4.4 mCi/m mole, New England Nuclear) and 100 nCi/ml methoxy-³H-inulin (384 mCi/g, New England Nuclear) instead of PAH and inulin. Radioactivities of ³H and ¹⁴C in the slices digested in NaOH and media were measured after being mixed with scintillator as described previously (12). The accumulation of PAH and TEA was calculated as the ratio of the concentrations of these compounds in the intracellular fluid to those in the medium (S/M ratio). Statistical analyses were performed by Student’s t-test.

Table 1 shows the effects of lithium salts on PAH accumulation in the slices. At a concentration of 0.3 mM, Li₂CO₃ significantly inhibited the accumulation of PAH by 12.3%. There was no significant difference among the S/M ratios of PAH accumulation.

Lithium is presently well-known as a pharmacological agent for use in the treatment of manic-depressive mental disorders. However, the renal effects of lithium compounds have been reviewed as side effects (1, 2). Previous studies reported the lithium-induced histological changes in proximal tubules as well as in the distal and collecting tubules in the kidney (3, 4). A recent report has indicated that lithium-induced damage was morphologically evident in connecting, collecting and distal tubules, but not observed in the proximal ones (5). Though further studies on the exact anatomic sites of lithium-induced renal damage are necessary, it would be interesting to obtain information about the biochemical effects of lithium salts on the physiological process in proximal tubules. It has already been reported that an administration of lithium to rats resulted in reduced function of the proximal tubules by affecting the transport of electrolytes (6). The secretion of p-aminohippurate (PAH) and tetraethylammonium (TEA) as representatives of organic acids and bases, respectively, is also one of important functions of proximal tubules in the kidney (7). It is probable that in vitro concentrative uptake of organic ions by renal slices reflects, at least qualitatively, in vivo tubular secretion (8, 9). This study was to investigate the effect of lithium on organic ion transport using kidney cortical slices.

Kidney cortical slices were prepared from male Sprague-Dawley rats as described previously (10), and the slice technique used in this study has also been described previously (11). To be brief, the slices were placed in an ice-cold medium containing 137 mM NaCl, 5.9 mM KCl, 1.5 mM CaCl₂, 1.2 mM MgCl₂, 11.5 mM glucose and 5.8 mM Hepes (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer, pH 7.4. Thereafter, the slices were incubated for 30 min at 37°C with a gas phase of 100% oxygen in 10 ml of incubation medium; its composition was identical to the medium described above, except that it further contained 0.074 mM PAH and 1% inulin, which was added to estimate the extracellular space of the slices. After incubation, the slices were homogenized with 10% trichloroacetic acid and then centrifuged. A sample of the medium was deproteinized by adding trichloroacetic acid. Supernatants obtained by centrifugation of the extracts of the slices and media samples were used for the spectrophotometric analyses of PAH and inulin. For the experiment of TEA accumulation in the slices, the incubation medium contained 0.1 mM TEA, 5 nCi/ml ¹⁴C-TEA (4.4 mCi/m mole, New England Nuclear) and 100 nCi/ml methoxy-³H-inulin (384 mCi/g, New England Nuclear) instead of PAH and inulin. Radioactivities of ³H and ¹⁴C in the slices digested in NaOH and media were measured after being mixed with scintillator as described previously (12). The accumulation of PAH and TEA was calculated as the ratio of the concentrations of these compounds in the intracellular fluid to those in the medium (S/M ratio). Statistical analyses were performed by Student’s t-test.

Table 1 shows the effects of lithium salts on PAH accumulation in the slices. At a concentration of 0.3 mM, Li₂CO₃ significantly inhibited the accumulation of PAH by 12.3%. There was no significant difference among the S/M ratios of PAH accumulation.
decreased by \(\text{Li}_2\text{CO}_3 \) (1 mM), \(\text{LiCl} \) (2 mM) and \(\text{LiNO}_3 \) (2 mM). These data suggest that with respect to the anion form of the lithium salts, the relative inhibitory potency of lithium salts was almost in the same order as that for PAH accumulation when the same equivalents of lithium ions (2 mEq/L) were present in the medium.

As shown in Table 2, though TEA was avidly taken up by the slices, LiCl up to 5 mM had no effect on the accumulation of TEA in the slices.

Previous investigations speculated that lithium increased renal excretion of dicarboxylic acids by reducing renal tubular reabsorption (13, 14). Recently, Wright et al. demonstrated that lithium acted as a potent inhibitor of the Na\(^+\)-dependent uptake of a dicarboxylic acid, succinate, into renal luminal membrane vesicles, but did not inhibit Na\(^+\)-coupled glucose and amino acid transport into the vesicles (15). The present study indicated that lithium was a potent inhibitor of PAH transport in rat kidney cortical slices. PAH accumulation by slices is Na\(^+\)-dependent (16, 17), and the accumulation in slices reflects preponderantly the process localized at the antiluminal membranes (18, 19). Our study offered another demonstration for the effect of lithium on the Na\(^+\)-dependent membrane transport system in the kidney.

In contrast to the effect of lithium on PAH accumulation in the slices, TEA accumulation was unaffected by lithium, thus confirming the selective action of lithium on organic anion transport processes. The mechanism by which lithium inhibits PAH accumulation, however, remains to be elucidated. It could be speculated that lithium affects the pharmacokinetics of organic anionic drugs in rats by reducing their renal tubular secretion. This assumption is only suggestive based on the present in vitro results, but can be investigated further by in vivo experiments. Further study is in progress along this line.

Table 1. Effects of lithium salts on PAH accumulation by kidney cortical slices

Additions	N	PAH accumulation (S/M)
None	7	12.32±0.32
\(\text{Li}_2\text{CO}_3 \) 0.3 mM	5	10.81±0.38*
\(\text{Li}_2\text{CO}_3 \) 1.0 mM	5	7.64±0.57**
LiCl	5	7.10±0.65**
\(\text{LiNO}_3 \) 2.0 mM	5	6.81±0.33**

The slices were incubated at 37°C for 30 min in the medium containing the indicated concentration of lithium salt. The pH value of the medium containing 1.0 mM \(\text{Li}_2\text{CO}_3 \) was higher than that of the "None" control medium (7.66 vs 7.40). There was no significant difference in PAH accumulation between both pH values of the media in the absence of \(\text{Li}_2\text{CO}_3 \). N: The number of experiments. S/M: Slice-to-medium concentration ratio of p-aminophenylphosphate (PAH). Data are expressed as the mean±S.E. *: Significantly different from the "None" control at \(P<0.02 \) and \(P<0.001 \), respectively.

Table 2. Effect of LiCl on TEA accumulation by kidney cortical slices

Additions	TEA accumulation (S/M)
None	24.04±1.70
LiCl 1.0 mM	23.43±1.78 N.S.
LiCl 5.0 mM	20.75±0.74 N.S.

The slices were incubated at 37°C for 30 min in the medium containing the indicated concentration of LiCl. S/M: Slice-to-medium concentration ratio of tetraethylammonium (TEA). Data are expressed as the mean±S.E. of six experiments. N.S.: Not significant.
References

1. Reisberg, B. and Gershon, S.: Side effects associated with lithium therapy. Arch. Gen. Psychiatry 36, 879–887 (1979)

2. Jenner, F.A.: Lithium and the question of kidney damage. Arch. Gen. Psychiatry 36, 888–890 (1979)

3. Schou, M.: Lithium studies. 1. Toxicity. Acta Pharmacol. Toxicol. 15, 70–84 (1958)

4. Hestbech, J., Olesen, O.V. and Thomsen, K.: Lithium-induced focal interstitial fibrosis in the rat kidney. Acta Pathol. Microbiol. Scand. [A] 86, 195–197 (1978)

5. McAuliffe, W.G. and Olesen, O.V.: Effects of lithium on the structure of the rat kidney. Nephron 34, 114–124 (1983)

6. Hecht, B., Kashgarian, M., Forrest, J.N., Jr. and Hayslett, J.P.: Micropuncture study on the effects of lithium on proximal and distal tubule function in the rat kidney. Pfluegers Arch. 377, 69–74 (1978)

7. Weiner, I.M.: Transport of weak acids and bases. In Handbook of Physiology, Section 8: Renal Physiology, Edited by Geiger, S.R., Orloff, J. and Berliner, R.W., p. 521–554, American Physiological Society, Washington, D.C. (1973)

8. Cross, R.J. and Taggart, J.V.: Renal tubular transport: Accumulation of p-aminobenzoate by rabbit kidney slices. Am. J. Physiol. 161, 181–190 (1950)

9. Berndt, W.O.: Use of the tissue slice technique for evaluation of renal transport processes. Environ. Health Perspec. 15, 73–88 (1976)

10. Matsushima, Y. and Gemba, M.: Divalent cation transport in kidney slices. I. Properties of calcium transport in slices of rat kidney cortex and the effects of diuretics. Japan. J. Pharmacol. 29, 367–374 (1979)

11. Gemba, M., Taniguchi, M. and Matsushima, Y.: Effect of Bumetanide on p-aminobenzoate transport in renal cortical slices. J. Pharmacobiodyn. 4, 162–168 (1981)

12. Matsushima, Y. and Gemba, M.: Stimulatory effect of calcium ions on p-aminobenzoate accumulation by rat kidney cortical slices. Renal Physiol. 4, 191–198 (1981)

13. Bond, P.A., Jenner, F.A., Lee, C.R., Lenton, E., Pollitt, R.J. and Sampson, G.A.: The effect of lithium salts on the urinary excretion of α-oxoglutarate in man. Br. J. Pharmacol. 46, 116–123 (1972)

14. Bond, P.A. and Jenner, F.A.: The effect of lithium and related metal ions on the urinary excretion of 2-oxoglutarate and citrate in the rat. Br. J. Pharmacol. 50, 283–289 (1974)

15. Wright, E.M., Wright, S.H., Hirayama, B. and Kippen, I.: Interactions between lithium and renal transport of Krebs cycle intermediates. Proc. Natl. Acad. Sci. U.S.A. 79, 7514–7517 (1982)

16. Chung, S.T., Park, Y.S. and Hong, S.K.: Effect of cations on transport of weak organic acids in rabbit kidney slices. Am. J. Physiol. 219, 30–33 (1970)

17. Podevin, R.A. and Boumendil-Podevin, E.F.: Monovalent cation and ouabain effects on PAH uptake by rabbit kidney slices. Am. J. Physiol. 232, F239–F247 (1977)

18. Foulkes, E.C. and Miller, B.F.: Steps in p-aminobenzoate transport by kidney slices. Am. J. Physiol. 196, 86–92 (1959)

19. Foulkes, E.C.: Effects of heavy metals on renal aspartate transport and the nature of solute movement in kidney cortex slices. Biochim. Biophys. Acta 241, 815–822 (1971)