ACTUALIZATION OF THE DISTRIBUTED KNOWLEDGE BASE OF ERGATIC SYSTEM USING THE METHOD OF FUZZY CLASSIFICATION

Viktor Perederii, Eugene Borchik
Nikolaev Sukhomlinskii National University, Department of Computer Systems and Networks

Abstract: In the article a method of actualization the distributed knowledge base of ergatic system using the method of fuzzy classification is proposed. As an example we consider the request choice formation of an alternative of decision-making from the knowledge base, according to the values of the input parameters. Genetic algorithm is used for finding optimal solutions. For automation of calculations MATLAB software package was used.

Keywords: knowledge base, fuzzy classification, membership functions, objects

Introduction

One of the most important components of ergatic decision support systems, at the management of complex technical objects, is a Knowledge Base (KB), which is realized as a special kind of database, developed for operating knowledge. KBs should contain structured information covering some area of knowledge for using with a specific purpose. Modern KBs contain not only factual information, but also the rules of inference, reasoning about newly inputted facts, meaningful information processing but also work together with the information retrieval systems and have classification structure and format of knowledge representation.

The most important and time-consuming affair in creating knowledge base is to support its relevance. Considered in [2-5, 8] the ways of supporting the relevance of KB in our opinion are quite complex, involving technical knowledge, moreover, presupposes the existence of large arrays of address databases received from various sources. In [1, 7] there are considered the methods of examination and diagnosis in order to maintain the relevance of KB.

All considered expert methods are widely used and is described in detail in the modern literature.

The disadvantages of expert methods are subjectivism, the limited application, the high costs of their conduct, so these methods are appropriate to use at the initial stage of filling KB.

This paper proposes a method for updating knowledge base to build alternatives to decision-making in real time, taking into account the cognitive state of users based on fuzzy classification method.

1. Methods

In a distributed KB there is stored information in the form of alternatives, which maintains records of direct and indirect data influencing the process of making relevant decisions. Full information structure of formation of the alternatives presented in figure 1, where:

- X1 - information on the characteristics of the external environment, which directly affects DM (noise, temperature, low-frequency vibration, light level, etc.).
- X2 - information about psychological characteristics of DM (test results, physiological state of DM, pulse, pressure, etc.);
- X3 - information about technological process, as well the range of deviations.

Fig. 1. The information structure of formation the alternatives. Request for the alternative of accepting solution R is passes through three stages

The first stage is a function (F1) of separation from the main flow of the set of "X1", which carries information about the characteristics of the external environment impact on DM. This function handles the flow of R into variable flow R1 and an array of values X1. Function (F1):

\[X1 = R / R1 \] (1)

The second stage is a function (F2) of separation from variable flow R1 of the set of "X2", in which there is stored information about the psychological characteristics of DM. This function handles the thread R1 into variable flow R2 and the array value of X2. Function (F2):

\[X2 = R1 / R2 \] (2)

The third stage is represented by the function (F3) of converting the variable flow R2 in into the set of "X3", in which there is stored information about the technological process. This function handles the flow of R2 into the array value of X3. Function (F3):

\[X3 = R2 \] (3)

Consider the example of choice on request of Ri from KB alternative decision-making, in accordance with the established dependencies, from the values of the parameters x1, x2, x3, and which may vary in limits, presented in Table 1.

It is required to select an alternative for any set of parameter values x1, x2, x3, wherein the values of some or all of the parameters do not belong the intervals, specified in Table 1.

To solve this problem we use the method of fuzzy classification [8]. Classification problem consists in assigning an object, specified by the vector of informative signs \(V = (x_1, x_2, ..., x_n) \), to one of advance certain classes \(\{A_1, A_2, ..., A_m\} \), that is, consists in performing of mapping the form: \(V = (x_1, x_2, ..., x_n) \rightarrow U \in \{A_1, A_2, ..., A_m\} \).

artoł recenzowany/revised paper
Classification based on fuzzy inference is made on the knowledge base in the form:

\[\Omega_{m}^{j} x_j = \tilde{a}_{ij} \] with weight \(w_j \rightarrow U_j = A_j, j = 1, m, \) \(A_j \) - consequent value of \(j \)-th rule; \(\tilde{a}_{ij} \) - a fuzzy term, valuating the criteria \(x_j(i = 1, m) \) in the \(j \)-th rule.

The degree of membership of classification object, informative characteristics is given by a vector \(V = (x_1, x_2, ..., x_n) \), classes \(A_j \) from knowledge base, is calculated as:

\[\mu_{A_j}(V^*) = w_j \Lambda \omega \left[\tilde{a}_{ij}(x_i) \right], j = 1, m. \] (5)

where \(\mu_{A_j}(x_i) \) - is a degree of membership values \(x_i \) of fuzzy terms \(\tilde{a}_{ij}; A \) - operation of finding the minimum.

As a solution, there is selected class with a maximum degree of membership:

\[U^* = \arg \max \{ \mu_{A_1}(V^*), \mu_{A_2}(V^*), ..., \mu_{A_m}(V^*) \} \] (6)

In the problem under consideration, vector of informative features of object classification is \(V = (x_1, x_2, x_3) \), and alternatives \(A_1, A_2, ..., A_{27} \) - classes of solutions. The fuzzy knowledge base of mapping \(V \rightarrow U \in \{ A_1, A_2, ..., A_{27} \} \) we build, taking into account dependency, presented in Table 2, where L, A, H are denoted the terms “low”, “average”, “high”.

Table 1. Limits of variation of the input parameters

\(x_1 \)	\(x_2 \)	\(x_3 \)	\(\tilde{A}_j \)
[10,15]	[1,2]	[80,120]	\(A_1 \)
[10,15]	[7,8]	[80,140]	\(A_2 \)
[10,15]	[11,13]	[80,140]	\(A_3 \)
[10,15]	[1,2]	[250,320]	\(A_4 \)
[10,15]	[7,8]	[250,320]	\(A_5 \)
[10,15]	[11,13]	[250,320]	\(A_6 \)
[10,15]	[1,2]	[420,500]	\(A_7 \)
[10,15]	[7,8]	[420,500]	\(A_8 \)
[10,15]	[11,13]	[420,500]	\(A_9 \)
[30,40]	[1,2]	[80,120]	\(A_{10} \)
[30,40]	[7,8]	[80,120]	\(A_{11} \)
[30,40]	[11,13]	[80,120]	\(A_{12} \)
[30,40]	[1,2]	[250,320]	\(A_{13} \)
[30,40]	[7,8]	[250,320]	\(A_{14} \)
[30,40]	[11,13]	[250,320]	\(A_{15} \)
[30,40]	[1,2]	[420,500]	\(A_{16} \)
[30,40]	[7,8]	[420,500]	\(A_{17} \)
[30,40]	[11,13]	[420,500]	\(A_{18} \)
[60,70]	[1,2]	[80,120]	\(A_{19} \)
[60,70]	[7,8]	[80,120]	\(A_{20} \)
[60,70]	[11,13]	[80,120]	\(A_{21} \)
[60,70]	[1,2]	[250,320]	\(A_{22} \)
[60,70]	[7,8]	[250,320]	\(A_{23} \)
[60,70]	[11,13]	[250,320]	\(A_{24} \)
[60,70]	[1,2]	[420,500]	\(A_{25} \)
[60,70]	[7,8]	[420,500]	\(A_{26} \)
[60,70]	[11,13]	[420,500]	\(A_{27} \)

Table 2. The fuzzy knowledge base of mapping

If \(x_1 = L \) and \(x_2 = L \) and \(x_3 = L \) then \(U_1 = A_{10}; \)
If \(x_1 = L \) and \(x_2 = A \) and \(x_3 = L \) then \(U_2 = A_{20}; \)
If \(x_1 = L \) and \(x_2 = H \) and \(x_3 = L \) then \(U_3 = A_{25}; \)
If \(x_1 = L \) and \(x_2 = L \) and \(x_3 = A \) then \(U_4 = A_{16}; \)
If \(x_1 = L \) and \(x_2 = A \) and \(x_3 = A \) then \(U_5 = A_{26}; \)
If \(x_1 = L \) and \(x_2 = H \) and \(x_3 = A \) then \(U_6 = A_{20}; \)
If \(x_1 = L \) and \(x_2 = A \) and \(x_3 = H \) then \(U_7 = A_{26}; \)
If \(x_1 = L \) and \(x_2 = A \) and \(x_3 = H \) then \(U_8 = A_{20}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{10} = A_{10}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{11} = A_{20}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{12} = A_{26}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{13} = A_{20}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{14} = A_{26}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{15} = A_{20}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{16} = A_{26}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{17} = A_{20}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{18} = A_{26}; \)
If \(x_1 = A \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{19} = A_{20}; \)
If \(x_1 = H \) and \(x_2 = L \) and \(x_3 = L \) then \(U_{20} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{21} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{22} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{23} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{24} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{25} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{26} = A_{25}; \)
If \(x_1 = H \) and \(x_2 = A \) and \(x_3 = L \) then \(U_{27} = A_{25}; \)

Membership functions of terms of the input variable \(x_1 \) are shown in Figure 2.

![Fig. 2. Membership functions of terms of the input variable \(x_1 \)](image-url)
As a criterion of training fuzzy classifier [8] let us choose the simplest criterion:

$$
\frac{100}{N} \sum_{k=1}^{N} \Delta_k(P) \to \min,
$$

(7)

where:

$$
\Delta_k(P) = \begin{cases}
1, & \text{if } u_k \neq F(P, V_k) \\
0, & \text{if } u_k = F(P, V_k)
\end{cases}
$$

N - the number of pairs of input-output \((V_k, u_k)\), \(k = 1, N\) training sample;

\(P\) is the vector of the parameters of the membership function of the fuzzy terms of knowledge base (1);

\(F(P, V_k)\) is the result of the classification on the fuzzy basis with parameters \(P\) if the input value is \(V_k\).

Training fuzzy classifier, therefore, is to find the vector \(P\) that minimizes the distance between the results of the logical inference and experimental data from the sample \((V_k, u_k)\).

When training fuzzy classifier in considered task, do the following. First, select the parameter vector membership function of a fuzzy terms \(\mu(x)\) as follows:

$$
P_0 = (15, 25, 15, 30, 45, 60, 50, 60).
$$

Choose from the k-th row of Table 1 random values \(x_1, x_2, x_3\), belonging to the respective intervals of changing the values of variables in the considered string. Get input vector \(V_k\). According to Table 1, it belongs to the class \(u_k = A_2\). Considering all rows we will receive 27 pairs of “output” \((V_k, u_k)\), \(k = 1, 37\) training sample.

Using (2), (3), produce a classification based on fuzzy input data \(V_k\). The calculation is made in MATLAB environment; assume the weights \(w_k\) equal to zero. While classification result \(F(P, V_k)\) on the fuzzy basis with the parameters \(P_0\) when the input value \(V_k\) differs from a clear exit \(u_k\) 15% of the trials.

To increase the accuracy of the fuzzy classification we will use the criterion of (4).

As the minimized function is an integer, the most appropriate is the genetic algorithm for finding extreme. For its realization we use “gatool” MATLAB function.

Using components of the vector \(P_0\) for setting in “gatool” the limits of changing the function arguments (4), we obtain the solution

$$
P^* = (18, 53; 23, 66; 14, 2; 34, 88; 76; 45, 63; 59, 72; 46, 44; 58, 88).
$$

(8)

Now differences between the results of fuzzy classification and a clear exit are not observed.

Below are the results of the fuzzy selection of alternatives for the vector of parameters of membership functions (5) and some input values \(x_1, x_2\) and \(x_3\):

Table 3. The results of calculations of forming alternatives

\(x_1\)	19	22	21	22.5	22.3	22.1	22	2
\(x_2\)	6	6	5	7	13	2	4.2	13
\(x_3\)	420	400	410	410	385	380	430	380

\(A_1\)	\(A_4\)	\(A_5\)	\(A_{14}\)	\(A_{15}\)	\(A_{13}\)	\(A_6\)

In the case, for example, when \(V = (22, 5; 7, 410)\) selection of alternatives is ambiguous: either \(A_{14}\) or \(A_{17}\). As a solution we should accept the new formed alternative that after assessing the relevance will be recorded into a knowledge base:

$$
A^* = A_{14} \cup A_{17}.
$$

2. Results

The proposed method allows increasing the efficiency of the process of actualization of the distributed knowledge base through automation fuzzy classification components of alternatives in multilevel ergatic decision support systems in the management of complex technical objects in the real time.

References

[1] Asuncion A., Newman D.J.: UCI Machine Learning Repository. Irvine (USA), University of California, School of Information and Computer Science, 2007.

[2] Kovalenko I.I.: Koncepciya postroenija sistem s informacionnymi tekhnologijami. Sibirskij institut informatiki i automatizacii sanitarnoj i bytovoj technologij [Concept of building system of information technologies] (in Russian). Novosibirsk, Informatica, 2010, p. 74–88.

[3] Perederij V.I.: Zastosuvannya merezhi Bajasu z ocinki stupenya znachimosti vplivayuchikh faktorov na operatory v avtomatizovanih sistemax prijnyattya relevantnix rishen [Application of Bayesian network to assess the significance of the influencing factors on the operator in automated systems relevant decision-making]. Perederij V.I., Litvinenko V.I.: Kompyuternye sistemy [Computer Science and Information Technology]. Bulletin of the National University “Lviv Polytechnic”. 73/12 (2012), pp. 120–128 (in Ukrainian).

[4] Rotshtein A.P.: Intellektualnyye tehnologii identifikacii: nechetkaya logika, geneticheskie algoritmy, neurony [Intelligent identification technologies: fuzzy logic, genetic algorithms, neural networks]. Universum, Vinitsa 1999 (in Russian).

[5] Saponov Yu.G.: Ekspertiza i diagnostika obektov i sistem servisa [Examination and diagnostics of objects and systems of service]. Academia, Moscow 2008 (in Russian).

[6] Shchovba S.D.: Vvedenie v teoriyu nechetkix mnozhestv i nechetkuyu logiku [Introduction to the theory of fuzzy sets and fuzzy logic]. http://matlab.expometa.ru/fuzzylogic/book1, (in Russian).

[7] Uzga-Reskobe O.: Neotechniy operator podderzhki ekspertnogo analiza scenariev [The concept of building system support for expert analysis of scenarios]. Kovalenko I.I., Perederij V.I., Shved A.V.: Sistemi sostoyaniy [System technologies]. Regional interuniversity collection of scientific works. 6 (71), 2010, p. 74–88.

[8] matlib.exponenta.ru/fuzzylogic/book1/1/7_5_5.php

Ph.D. Viktor Perederiy
e-mail: viperkms@yandex.ua

Ph.D. assistant professor, head of Department of Computer Systems and Networking, Nikolaev National V.A. Sukhomlinsky University, Ukraine, Nikolaev, Nikolashy str., 24, tel.: 050-9516143.

Ph.D. Eugene Borchik
e-mail: borchikuu@gmail.com

Ph.D., assistant professor, Nikolaev National V.A. Sukhomlinsky University, Ukraine, Nikolaev, Nikolashy str., 24, tel.0972305264.

otrzymano/received: 01.06.2014 przyjęto do druku/accepted: 23.06.2014