Fractal Analysis of Black Carbon in the Coal Mine Regions of India

Sidhu J SMakkhan1,3*, K S Parmar2, S Kaushal1, K Soni4

1Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India-144411.

2Department of Mathematics, I K Gujral Punjab Technical University, Jalandhar, Punjab, India-144603.

3Department of Mathematics, Sri Guru AngadDev College, Khadoor Sahib, Tarn Taran, Punjab, India-143117.

4CSIR-National Physical Laboratory, New Delhi, India-110012.

Corresponding author: *sidhujatinder78@gmail.com

Abstract. Time series display irregular patterns and self-similar microstructures usually termed as fractals over a period of time, depending on several factors like climate, season, market fluctuations, growth cycles etc. Various methods are developed in mathematical modeling to investigate such trends in the time series. Black carbon is one of the major air pollutants released during several mining activities having dangerous effect on climate and human health. In this paper we aim to study the behavioral pattern and trends in the time series of black carbon concentration over the three major coal mines of India namely Raniganj, Jharia and Bokaro considering a long term time series data of past 38 years using regression and fractal dimensional analysis of black carbon between the major coal mines with the help statistical tools like Hurst exponent, predictability index and trend percent. In this comparative study it is observed that the time series display anti persistent behavior with positive and large variation then the past time. The results and comparisons obtained will be helpful in studying the behavior and trends in the concentration of black carbon over the coal mines regions. The significance of the study will be helpful to gather the interest of researcher’s, NGO’s and government towards the black carbon concentration over the coal mines so that preventive measures and new policies be framed to keep a check on black carbon concentration in these areas.

Keywords: Black carbon, Mathematical modeling, Fractals, Hurst exponent, Trend.

1. Introduction

Estimation and interpretation of climatic changes is one of the main areas of research nowadays. These changes are often found to have complex patterns and irregular shapes termed as fractals. Fractals were introduced by Benoit Mandelbrot in 1960’s [1-4] in a series of papers to capture the idea of fragmentation, for modeling irregular patterns which may sometimes be difficult to describe by geometrical scales and that tend to repeat each other as we zoom in, commonly occurring in the science, economy cycles and nature such as, galaxy formation, eroded coastlines, cauliflower etc. Fractals are also used nowadays to study the behavior of time series, various studies have shown that time series display a wide variety of fluctuations which had been studied using fractals dimensional analysis for geophysical time series [5-7]. It has been used to observe changes due to climate, market
fluctuations, recovery, recession and time period at local, regional, state, national and global level and thus study their fluctuations to analyze the variability and trends for a given time series [8-12].

Black carbon is a major component released during combustion activities in indoor as well as outdoor conditions. In indoors it is mainly released due to combustion of fossil fuels, wood, animal manure etc. while in outdoor it is released from automobiles, smoke from steel plants, oil refineries, coal industries along with various other [13]. Black carbon (BC) has severe harmful effects on climatic conditions, human health, rainfall patterns and ecological cycle. Studies related to the time series behavior of such pollutants contributing to air, water, and soil pollution are the major focus areas for researchers in this decade [14-19]. Coal is the major sources of energy for developing country like India, so coal mining industries has flourished in the states of India to meet the need ever increasing demand for coal. This has led to a vital growth in the black carbon concentration and air pollution index which is leading to adverse effect on the climate and health of the nation [20-21]. Time series is a set of data points arranged in sequential order over a period of time, mathematical modeling has been used to study the behavior of time series involving air, water and soil pollutants data to make future forecast and study the fluctuations in it over a period of time using several time series models [22-27].

The present study aims to develop a fractal analysis for black carbon concentration in the major coal mines of India considering a long term time series data of past 38 years so as to study the behavior of our time series using Hurst exponent, predictability index, fractal dimension and trend percent [28-36].

2. Research methodology

2.1 R square

R square is used to measure the amount of total variation in the series. Both R-squared value and stationary R-squared value are used as goodness of fit measures for a time series model also termed as the coefficient of determination for a model. The value of stationary R-squared varies from -∞ to 1 and it is used to compare the stationary part of the model to a simple mean model while the value of R square varies from 0 to 1, closer the value to 1 in both indicates that the model under consideration is better than the baseline model.

2.2 Regression analysis

This technique is used for predicting the value of the dependent variable (parameter) by using the values of the independent variable required and by holding the other variable as fixed after developing the equation of the regression line as described below, using this for modeling we can predict future or missing values and analyze the present variables of the sample. It helps in understanding the variation in value of the dependent variable due to change in the independent variables. Regression equation of line with dependent variable Y in terms of the independent variable X is defined as,

\[Y = b_{yx}X + C \]

(1)

Where C is the constant of integration. \(b_{yx} \) is the regression coefficient = \(r \times \frac{\sigma_Y}{\sigma_X} \).

Here \(r \) represents the coefficient of correlation and it is given by,

\[\rho_{xy} = r = Correlation \ coefficient = \frac{\text{cov}(XY)}{\sigma_X \sigma_Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{(E(X)^2) - (E(X))^2)(E(Y)^2) - (E(Y))^2)}} \]

(2)

\(E(X) \) denotes the expected value of the independent variable X, while \(E(Y) \) and \(E(XY) \) represents the expected value of the dependent variable Y and XY. \(\sigma_X \), \(\sigma_Y \) denotes the standard deviation of the variables X and Y respectively [28].
2.3 Hurst exponent (H)

It is a statistical measure used in time series for predictability; it determines the relative direction for a time series. The value of H varies from 0 to 1; depending on this value of H we determine the pattern of trend in the time series. If H = 0.5 then the series is random and also termed as a Brownian time series, in this there is no relation between the past and the future values and the series is hard to predict. If H > 0.5 then it indicates a trend in the reinforcing series and the series exhibits a ‘persistent behavior’ along with positive auto correlation in the time series, while if H < 0.5 then the trend indicates an ‘anti-persistent behavior’ also termed as ‘mean reversion’ along with negative auto correlation values, in this the trend in the series is subsequent such as, a rise followed by a fall and then again by a rise. The closer the value of H to 0 or 1 indicates the greater strength of the trend in the series and thus the model leads to more accurate forecast of the time series [29].

Mathematically it is calculated as,

\[H = \frac{\log \sigma - \log \sigma_0}{\log \log \sigma} \]

(3)

Also Hurst exponent can be derived by the power law of decay as,

\[p(k) = Ck^{-\alpha} \]

Where \(p(k) \) is the auto correlation function at lag \(k \) related to \(\alpha \) by the relation,

\[H = 1 - \frac{\alpha}{2} \]

2.4 Fractal dimension

Fractal dimension (D) is a statistical measure used to find the appearance of fractals in empty spaces as we further zoom into finer scales. If D > 1.5 then anti persistent behavior is observed while for D < 1.5 persistent behavior exists. For D = 1.5 Brownian motion is observed and thus leading to unpredictability. It is calculated as [29],

\[D = 2 - H \]

(4)

2.5 Predictability index

The ability to make accurate and timely forecast is termed as predictability index. It is used to reduce the gap between actual and predicted results thus enabling to determine the future performance of a time series; its value depends on the value of fractal dimension (D) and is calculated as [29],

\[PI = 2 \left| D - \frac{3}{2} \right| \]

(5)

2.6 Trend percent

The amount of variation in the parameter over an extended period of time is termed as trend percent; it is used to determine the future movement of the time series considering the past observations. Trends can be both upward and downward and trend percent can be obtained by [29],

\[Trend\% = \frac{N \cdot \alpha \cdot 100}{\bar{x}} \]

(6)

Where \(\bar{x} \) denotes the average of the time series, \(N \) is the number of data values (monthly), \(\alpha \) represents the slope of the regression line.

3. Results and Discussion

Study sites: Raniganj (23°40’N 87°05’E) in West Bengal, Jharia (23°50’N 86°33’E) and Bokaro (23°46’N 85°55’E) in Jharkhand which are among the major coal mines of India are the sample sites for the current study. A long term time series data is collected and processed by NASA (http://nasa.gov/) for the amount of black carbon concentration of past 38 years from Jan 1980 to May
2018 have been considered at these three sites. The time series for the three study locations namely Raniganj, Jharia and Bokaro are shown in Fig.1 below, the unit for the magnitude of black carbon concentration in the time series expressed is in volume as $e^{-11} \text{kg m}^{-3}$ units.

A comparison of black carbon concentration among the major coal mines of India namely Raniganj, Jharia and Bokaro is done using fractal analysis. As shown in Table 1 below regression equation of lines are obtained for these locations comparatively using eq. (1). R square also termed as coefficient of determination is usually used in trend analysis to measure the amount of variability between two variables or time series. Its value ranges between 0 and 1, closer the value to 1 in all the cases, indicates that the dependent series can be accurately predicted from the independent series with least prediction error and can be used as good tool for predicting future outcomes. The value of Hurst exponent H obtained using eq. (3) is less than 0.5 and that of fractal dimension D obtained using eq. (4) is greater than 1.5 in all the comparisons indicating that the time series display anti-persistent behavior also called as mean reversion. This indicates that the trend pattern in the time series is anti-persistent in which a rise is followed by a fall and then gain by a rise for a period and this behavior repeats itself regularly. The value of predictability index obtained using eq. (5) is close to 1 in all the cases indicating that the prediction model generated is very good and can lead to accurate forecasts.
Table 1. Fractal analysis of black carbon between the major coal mines.

Site wise comparison	Regression equation \((R^2) \)	Regression coefficient \((b_{yx}) \)	Hurst exponent \(H(\text{abs}) \)	Fractal \((D) \)	Predictability index \((PI) \)
Raniganj with Jharia	\(y = 0.9742x + 0.096 \) \(R^2 = 0.9206 \)	0.9742	0.0129	1.9871	0.9742
Jharia with Raniganj	\(y = 0.945x + 0.0833 \) \(R^2 = 0.9206 \)	0.945	0.0275	1.9725	0.945
Jharia with Bokaro	\(y = 0.9628x + 0.1203 \) \(R^2 = 0.9086 \)	0.9628	0.0186	1.9814	0.9628
Bokaro with Jharia	\(y = 0.8988x + 0.2188 \) \(R^2 = 0.8652 \)	0.8988	0.0506	1.9494	0.8988
Bokaro with Raniganj	\(y = 0.9443x + 0.0496 \) \(R^2 = 0.9379 \)	0.9443	0.02785	1.97215	0.9443
Raniganj with Bokaro	\(y = 0.9912x + 0.0667 \) \(R^2 = 0.8899 \)	0.9912	0.0044	1.9956	0.9912

As shown in Table 2. The monthly trend percentage for Raniganj, Jharia and Bokaro are 10.5%, 14.45% and 18.28% respectively. This shows that the trend in the time series for all three locations is positive with sufficient amount of variation compared to the previous time at all the three sample sites and the highest is observed at Bokaro.

Table 2. Trend percent analysis of black carbon between the major coal mines.

Site	Trend%
Raniganj	10.5113
Jharia	14.45501
Bokaro	18.28012

4. Conclusion

Mathematical parameters like regression equation of line, coefficient of determination, fractals, Hurst exponent, predictability Index (PI), and trend percent have been used to analyze trends and the behavior of time series of black carbon concentration in the major coal mine regions of India. The results are compared and tested at 95% confidence intervals. It is observed that the values of Hurst exponent are very near to 0 in all the cases thus the time series at all the three locations display anti-persistent behavior due to which the time series have a higher tendency to revert towards its long term mean value due to which a rise is followed by a fall for a period of time and this behavior continues in future. Since the time series does not display Brownian motion therefore different time series models can be applied over these time series to obtain future forecasts. The monthly trend percentage at all the three locations namely, Raniganj, Jharia and Bokaro are 10.5%, 14.45% and 18.28% respectively. Thus the time series exhibit positive trends at all the locations with sufficient amount of variation compared to the previous time and the highest trend value is observed at Bokaro. The results obtained will help us to develop an insight of the behavior of the time series over the coal mines of India by studying the irregular patterns in it with the help of fractals, enabling us to forecast and understand their future behavior.
Acknowledgement

The authors are thankful to CSIR-National Physical Laboratory, New Delhi for providing the data for research. We also grateful to Lovely Professional University Punjab, I.K. Gujral Punjab Technical University Jalandhar for providing facilities for research work. Author would also like to thank NASA website (http://nasa.gov/) for processing of data.

References

[1] Mandelbrot BB 1983 The Fractal Geometry of Nature (Freeman WH and Company, New York)
[2] Mandelbrot BB and Wallis JR 1968a Noah, Joseph and operational hydrology Water Resour. Res. 4 909–18
[3] Mandelbrot BB and Van Ness JW 1968b Fractional Brownian motions, fractional noises and applications SIAM Rev. 10 422–37
[4] Mandelbrot BB and Wallis JR 1969 Some long-run properties of geophysical records, Water Resources Res. 5 321-40
[5] Movahed MS and Hermanis E 2008 Fractal analysis of river flow fluctuations Physica A: Statistical Mechanics and its Applications 387(4) 915-32
[6] Livina V, Ashkenazy Y, Braun P, Monetti R, Bunde A and Havlin S 2003 Nonlinear volatility of river flux fluctuations Phys. Rev. E. 67 042101
[7] Liang Z, Feng B and Guangxiang XU 2012 Comparison of fractal dimension calculation methods for channel bed profiles Procedia. Engineering 28 252–57
[8] Flugeman Jr RH and Snow RS 1989 Fractal analysis of long-range paleoclimatic data: oxygen isotope record of Pacific core V28–239 Pure Appl. Geophys. 131 307–13
[9] Hsui AT, Rust KA and Klein GD 1993 A fractal analysis of Quaternary, Cenozoic–Mesozoic, and Late Pennsylvanian sea level changes J. Geophys. Res. 98B 21963–67
[10] Turcotte DL 1992 Fractals and chaos in geology and geophysics (New York: Cambridge University Press)
[11] Kahyaa E and Kalayci b S (2004) Trend analysis of streamflow in Turkey Journal of Hydrology 289 128–44
[12] Burn HB and Elnur MAH 2002 Detection of hydrologic trends and variability Journal of Hydrology 255 107–22
[13] Crosson ER 2008 A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapor Appl. Phys. B 92 403–08
[14] Highwood J E and Kinnersley RP 2006 When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health Environment International 32 560–66
[15] Horvath H 1993 Atmospheric light absorption – a review Atmospheric Environment 27 293–317
[16] Jacobson MZ 2001 Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols Nature 409 695–97
[17] Jansen KL, Larson TV, Koenig JQ, Mar T F, Fields C, Stewart J and Lippmann M 2005 Associations between health effects and particulate matter and black carbon in subjects with respiratory disease Environmental Health Perspectives 113 1741–1746
[18] Ramanathan V and Carmichael G 2008 Global and regional climate changes due to black carbon Nature geoscience 1 221-27
[19] Liang WM, Wei HY and Kuo HW 2009 Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan Environ. Res. 109(1) 51–58
[20] Menon S, Hansen J, Nazaenko L and Luo Y (2002) Climate effects of BC aerosols in China and India Science 297 2250–53
[21] Japar SM, Brachaczek WW, Gorse RA, Norbeck JM and Pierson WR 1986 The contribution of elemental carbon to the optical properties of rural atmospheric aerosols Atmospheric Environment 20 1281–89
[22] Kumar M, Parmar KS, Kumar DB, Mhawisha A, Broday DM, Malla RK and Banerjeea T 2018 Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields Atmospheric Environment 180 37–50
[23] Sirocko F, Sarntinein M, Erlenkeuser H, Lang H, Arnold M and Duplessy JC 1993 Century-scale events in monsoonal climate over past 24000 years Nature 364 322–24
[24] Campo EV, Duplessy JC and Rossignol-Strick M 1982 Climatic conditions deduced from a 150 kyr oxygen-isotope-pollen record from the Arabian sea Nature 296 56–59
[25] Barnett TP, Dumenil L, Schlese U, Roeckner E and Latif M 1989 The effect of Eurasian snow cover on regional and global climate variations J. Atmos. Sci. 46 661–85
[26] Hurst HE, Black RP and Simaika YM 1965 Long-term storage: an experimental study (London: Constable)
[27] Rangarajan G and Ding M 2000 Integrated approach to the assessment of long range correlation in time series data, Physical ReviewE 61(5A) 4991-5001
[28] Parmar KS and Bhardwaj R 2013 Water quality index and fractal dimension analysis of water parameters Int. J. Environ. Sci. Technol. 10 151–64
[29] Parmar KS and Bhardwaj R 2015 Statistical, time series, and fractal analysis of full stretch of river Yamuna (India) for water quality management Environ. Sci. Pollut. Res. 22 397–414
[30] Rangarajan G and Sant DA 1997 A climate predictability index and its applications Geophysical research letters 24(10) 1239-42
[31] Hsu AT, Rust KA, and Klein GD 1993 A fractal analysis of Quarternary,CenozoicMesozoiacln, d late Pennsylvanian sea-level changes J. Geophys. Res. 98B 21963-67
[32] Turcotte DL 1992 Fractals and Chaos in Geology and Geophysics (Cambridge University Press, New York)
[33] Su S, Li D, Zhang Q, Xiao R, Huang F and Wu J (2011) Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China Water Res. 45(4) 1781–95
[34] Soni K, Parmar K S and Kapoor S 2015 Time series model prediction and trend variability of aerosol optical depth over coal mines in India Environ. Sci. Pollut. Res. 22 3652–71
[35] Yeniguna K and Ecer R 2013 Overlay mapping trend analysis technique and its application in Euphrates Basin. Turkey Meteorol. Appl. 20 427-38
[36] Sharma S, Lavoue D, Cachier H, Barrie LA and Gong SL 2004 Long-term trends of the black carbon concentrations in the Canadian Arctic Journal of Geophysical Research 109:D15203