On \(p \)-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups

Alexander Trofimuk

Communicated by Communicated person

21.04.2018

Abstract. Let \(G \) be a finite group and \(P \) be a \(p \)-subgroup of \(G \). If \(P \) is a Sylow subgroup of some normal subgroup of \(G \), then we say that \(P \) is normally embedded in \(G \). Groups with normally embedded maximal subgroups of Sylow \(p \)-subgroup, where \((|G|, p - 1) = 1 \), are studied. In particular, the \(p \)-nilpotency of such groups is proved.

Introduction

All groups considered in this paper will be finite. Our notation is standard and taken mainly from [1], [2].

Let \(\mathcal{M}(G) \) be the set of all maximal subgroups of Sylow subgroups of a group \(G \). One of the first results related to the study of the structure of a group with given restrictions on \(\mathcal{M}(G) \) belongs to Srinivasan, see [3]. In particular, in [3] proved that a group \(G \) is supersolvable, if every subgroup of \(\mathcal{M}(G) \) is normal in \(G \). Subsequently, groups with restrictions on subgroups of \(\mathcal{M}(G) \) have been studied in the works of many authors, see the literature in [4].

A subgroup \(H \) of \(G \) is said to be \(S \)-embedded in \(G \), see [5], if \(G \) has a normal subgroup \(N \) such that \(HN \) is \(S \)-permutable in \(G \) and \(H \cap N \leq H_{sG} \), where \(H_{sG} \) is the largest \(S \)-permutable subgroup of \(G \) contained

2001 Mathematics Subject Classification: 20D10.
Key words and phrases: \(p \)-supersolvable group, normally embedded subgroup, maximal subgroup, Sylow subgroup.
On p-nilpotency of finite group

in H. In the paper [5] the structure of the groups depending on S-embedded subgroups is studied. In particular, by Theorem 2.3 [5], follows the p-nilpotency of a group G for which every subgroup of $M(P)$ is S-embedded in G, where P is a Sylow p-subgroup of G and $p \in \pi(G)$ such that $(|G|, p - 1) = 1$.

In the present paper, we study another generalization of normality.

Definition. A subgroup H of a group G is said normally embedded in G, if for every Sylow subgroup P of H, there is a normal subgroup K of G such that P is Sylow subgroup of K, see [6, I.7.1].

A series of results related to the structure of a group with normally embedded subgroups is presented in [6].

The following examples show that S-embedded and normally embedded are different concepts.

In the symmetric group S_5 of degree 5 some maximal subgroup H of a Sylow 2-subgroup is a Sylow 2-subgroup in the normal alternating subgroup A_5 of degree 5, i.e. H is normally embedded in S_5. But, H is not S-embedded. In the alternating group A_4 of degree 4 some maximal subgroup M of a Sylow 2-subgroup is not normally embedded in A_4. But, M is S-embedded.

In this paper, the structure of a group G under the condition that every subgroup of $M(P)$ is normally embedded in G is studied, where P is a Sylow p-subgroup of G and $p \in \pi(G)$ such that $(|G|, p - 1) = 1$.

The following theorem is proved.

Theorem. Let G be a group, H be a normal subgroup of G such that G/H is p-nilpotent and P be a Sylow p-subgroup of H, where $p \in \pi(G)$ with $(|G|, p - 1) = 1$. If every subgroup of $M(P)$ is normally embedded in G, then G is p-nilpotent.

1. **Preliminaries**

In this section we collect lemmas used in the proof of the main theorem presented in Section 2.

The Fitting subgroup and the Frattini subgroup of G are denoted by $F(G)$ and $\Phi(G)$, respectively; we write \mathbb{Z}_m for a cyclic groups of orders m; $O_p(G)$ and $O'_p(G)$ denote the greatest normal p-subgroup of G and the greatest normal p'-subgroup of G, respectively. By $\pi(G)$ denote the set of all prime divisors of the order of G; by H^G denote the normal closure of a subgroup H in a group G, i.e. the smallest normal subgroup of G containing H. We write $H \unlhd G$ for normally embedded subgroup H of G and $G = [A]B$ for the semidirect product of some subgroups A and B with the normal subgroup A.
If the orders of chief factors of G are either equal to p or not divisible on p then G is called p-supersolvable. We denote by pA the class of all p-supersolvable groups. A group that has a normal Sylow p-subgroup is called p-closed and a group that has a normal p'-Hall subgroup is called p-nilpotent.

Let G be a group of order $p_1^{a_1}p_2^{a_2} \cdots p_k^{a_k}$, where $p_1 > p_2 > \ldots > p_k$. We say that G has an ordered Sylow tower of supersolvable type if there exists a series

$$1 = G_0 < G_1 < G_2 < \ldots < G_{k-1} < G_k = G$$

of normal subgroups of G such that G_i/G_{i-1} is isomorphic to a Sylow p_i-subgroup of G for each $i = 1, 2, \ldots, k$.

Lemma 1. ([6, I.7.3]) Let U be a normally embedded p-subgroup of a group G, K a normal subgroup of G. Then:

1. if $U \leq H \leq G$, then $U \neq H$;
2. $UK/K \neq G/K$;
3. $U \cap K \neq G$;
4. if K is a p-group, then $UK \neq G$ and $U \cap K$ is normal in G;
5. $U^g \neq H$ for all $g \in G$.

Lemma 2. Let H be a normal subgroup of G and every maximal subgroup of Sylow p-subgroup of H is normally embedded in G. If N is normal in G, then every maximal subgroup of every Sylow p-subgroup of HN/N is normally embedded in G/N. In particular, if N is normal in G and every maximal subgroup of Sylow p-subgroup of G is normally embedded in G, then every maximal subgroup of every Sylow p-subgroup of G/N is normally embedded in G/N.

Proof. By Lemma 1 (5), follows that X_1 is normally embedded in G for any Sylow p-subgroup X of H and any maximal subgroup X_1 of X. Let $T_1 = X/N$ is a maximal subgroup of Sylow p-subgroup T of HN/N. Then $N \leq X \leq HN$ and there exists a Sylow p-subgroup P in HN such that $T = P/N$. By [1, VI.4.6], there exist the Sylow p-subgroups H_p in H and N_p in N such that $P = H_pN_p$. Hence $T = H_pN/N$. Further, $N \leq X < PN \leq H_pN$ and $X = (X \cap H_p)N$ by Dedekind’s identity. Since $H_p \cap N = X \cap H_p \cap N$, we have

$$p = |P : T_1| = |H_pN/N : X/N| = |H_pN : X| =$$

$$= |H_pN : (X \cap H_p)N| = \frac{|H_p||N||X \cap H_p \cap N|}{|H_p \cap N||X \cap H_p||N|} = |H_p : X \cap H_p|.$$
So, \(X \cap H_p \) is a maximal subgroup in \(H_p \). By hypothesis, \(X \cap H_p \) is normally embedded in \(G \). By Lemma 1(2), \((X \cap H_p)N/N = X/N \) is normally embedded in \(G/N \).

For \(H = G \) we obtain the second part of the lemma.

Lemma 3. ([7, Lemma 5]) Let \(G \) be a \(p \)-solvable group. Assume that \(G \) does not belong to \(p\mathfrak{A} \), but \(G/K \in p\mathfrak{A} \) for all non-trivial normal subgroups \(K \) of \(G \). Then:

1. \(Z(G) = O_{p'}(G) = \Phi(G) = 1 \);
2. \(G \) contains a unique minimal normal subgroup \(N, N = F(G) = O_p(G) = C_G(N) \);
3. \(G \) is primitive; \(G = [N]M, \) where \(M \) is maximal in \(G \) with trivial core;
4. \(N \) is an elementary Abelian subgroup of order \(p^n, n > 1 \);
5. if \(M \) is Abelian, then \(M \) is cyclic of order dividing \(p^n - 1 \), and \(n \) is the smallest natural number such that \(p^n \equiv 1 \pmod{|M|} \).

A non-nilpotent group whose proper subgroups are all nilpotent is called a Schmidt group.

Lemma 4. ([8] Let \(S \) be a Schmidt group. Then:

1. \(S = [P]Q \), where \(P \) is a normal Sylow \(p \)-subgroup, \(Q \) is a non-normal Sylow \(q \)-subgroup, \(p \) and \(q \) are distinct primes;
2. \(Q = < y > \) is cyclic and \(y^q \in Z(S) \);
3. \(|P/P'| = p^m \), where \(m \) is the order of \(p \) modulo \(q \);
4. the chief series of \(S \) has the following system of indexes: \(p, p, ..., p, p^m, q, ..., q \); number of indexes equal to \(p \) coincides with \(n \), where \(p^n = |P'| \); number of indexes equal to \(q \) coincides with \(b \), where \(q^b = |Q| \).

Lemma 5. Let \(p \in \pi(G) \) and \((|G|, p - 1) = 1 \). Then \(G \) is \(p \)-supersolvable if and only if \(G \) is \(p \)-nilpotent. In particular, if a Sylow \(p \)-subgroup is cyclic, then \(G \) is \(p \)-nilpotent.

Proof. It is clear that every \(p \)-nilpotent group is \(p \)-supersolvable. Conversely. Let \(G \) be a group of the smallest order such that \(G \) is \(p \)-supersolvable, but is not \(p \)-nilpotent. Let \(H \) be an arbitrary proper subgroup of \(G \). Then \(H \) is \(p \)-supersolvable and \((|H|, p - 1) = 1 \). Therefore in view of the choice \(G \), the subgroup \(H \) is \(p \)-nilpotent and \(G \) is a minimal non-\(p \)-nilpotent group. By [9, Theorem 10.3.3], \(G \) is a Schmidt group. By Lemma 4(1), \(G = [P]Q \), where \(P \) is a Sylow \(p \)-subgroup and \(Q \) is a cyclic Sylow \(q \)-subgroup. Since \(G \) is \(p \)-supersolvable, then by Lemma 4(4), the order of \(p \) modulo \(q \) is equal 1, i.e. \(m = 1 \). Hence \(q \) divides \(p - 1 \). This is a contradiction.
In particular, if a Sylow \(p \)-subgroup is cyclic, then \(G \) is \(p \)-supersolvable. Then \(G \) is \(p \)-nilpotent by what has been proved above. The lemma is proved.

Corollary 1. Let \(p \) be the smallest prime of \(\pi(G) \). Then \(G \) is \(p \)-supersolvable if and only if \(G \) is \(p \)-nilpotent.

Example 1. The symmetric group \(G = S_3 \) of degree 3 is 3-supersolvable, but is not 3-nilpotent. Hence, the condition \((|G|, p - 1) = 1 \) in Lemma 5 can not be removed.

Example 2. A group \(G = \mathbb{Z}_5 \times ([\mathbb{Z}_7] \mathbb{Z}_3) \) is 5-supersolvable and is 5-nilpotent. In addition, \((|G|, 5 - 1) = 1 \), and the prime divisor 5 of \(|G| \) is not the smallest.

Evidently, if a \(p \)-subgroup \(P \) of \(G \) is normally embedded in \(G \), then \(P \) is a Sylow subgroup of \(P^G \).

Lemma 6. Let \(G \) be a group, \(\Phi(G) = 1 \), \(P \) be a Sylow subgroup of \(G \) with unprimary order and \(N \) be a unique minimal normal subgroup of \(G \). If every subgroup of \(M(P) \) is normally embedded in \(G \) and \(N \) is Abelian, then \(N \) is not contained in \(P \).

Proof. Suppose that \(N \leq P \). If \(N = P \), then by hypothesis, every maximal subgroup \(S \) of \(P \) is normally embedded in \(G \). Then by Lemma 1 (4), \(S \) is normal in \(G \). Since the order of \(P \) is not equal to a prime, we have a contradiction with the fact that \(N \) is a minimal normal subgroup in \(G \).

In the following we assume that \(N < P \). Since \(\Phi(G) = 1 \), it follows that there exists a maximal subgroup \(M \) of \(G \) such that \(N \) is not contained in \(M \). Hence \(G = NM \). By [2, Lemma 2.36], \(N \cap M = 1 \) and \(G = [N]M \). Then by Dedekind’s identity, \(P = P \cap [N]M = [N](P \cap M) \), where \(P \cap M \neq 1 \). Let \(T \) be a maximal subgroup of \(P \) such that \(P \cap M \leq T \). Since \(N \) is a unique minimal normal subgroup of \(G \), it follows that \(N \leq T^G \). Now, \(P = NT \leq T^G \), but by hypothesis, \(T \) is a Sylow subgroup of \(T^G \), a contradiction.

Lemma 7. Let \(P \) be a Sylow \(p \)-subgroup of \(G \). If every subgroup of \(M(P) \) is normally embedded in \(G \) and \((|G|, p - 1) = 1 \), then \(G \) is \(p \)-nilpotent.

Proof. We use induction on the order of \(G \). Since \((|G/N|, p - 1) = 1 \) and by Lemma 2, every maximal subgroup of every Sylow \(p \)-subgroup of \(G/N \) is normally embedded in \(G/N \) for any normal subgroup \(N \neq 1 \) of \(G \), then all quotients of \(G \) satisfy the hypotheses of the lemma.
By the inductive hypothesis, $O_{p'}(G) = 1$. Since the class of all p-nilpotent groups is a saturated formation, then $\Phi(G) = 1$ and $N = F(G) = O_p(G)$ is a unique minimal normal subgroup G. Hence there is a Sylow p-subgroup R of G such that $N \subseteq R$. Since R and P are conjugate in G, then by Lemma 1 (5), follows that every maximal subgroup of R is normally embedded in G. If $|R| = p$, then G is p-nilpotent by Lemma 5. Therefore, we further assume that $|R| > p$. By Lemma 6, N is not contained in R. This is a contradiction. The lemma is proved.

2. Proof of Theorem

Theorem. Let G be a group, H be a normal subgroup of G such that G/H is p-nilpotent and P be a Sylow p-subgroup of H, where $p \in \pi(G)$ with $|G|, p - 1) = 1$. If every subgroup of $\mathcal{M}(P)$ is normally embedded in G, then G is p-nilpotent.

Proof. In view of Lemma 5, we prove that G is p-supersolvable.

By Lemma 1 (1), every maximal subgroup of Sylow p-subgroup P of H is normally embedded in H and $(|H|, p - 1) = 1$. By Lemma 7, H is p-nilpotent. Since by hypothesis, G/H is p-nilpotent, then G is p-solvable.

We use induction on the order of G. Let N be an arbitrary non-trivial normal subgroup of G. Clearly, HN/N is normal in G/N and

$$(G/N)/(HN/N) \cong G/(HN) \cong (G/H)/(HN/H)$$

is p-nilpotent. Besides, by Lemma 2, every maximal subgroup of every Sylow p-subgroup of HN/N is normally embedded in G/N and $(|G/N|, p - 1) = 1$. Hence the quotients G/N satisfy the hypotheses of the theorem.

By the inductive hypothesis, G/N is p-supersolvable. By Lemma 3, $Z(G) = O_{p'}(G) = \Phi(G) = 1$, G contains a unique minimal normal subgroup

$$N = F(G) = O_p(G) = C_G(N), \ G = [N]M,$$

N is an elementary Abelian subgroup of order p^n, $n > 1$, M is a maximal subgroup of G.

Since $N \leq H$, then N is contained in every Sylow p-subgroup P of H. By Lemma 6, we have a contradiction. The theorem is proved.

Corollary 2. Let G be a group, H be a normal subgroup of group G such that G/H is p-nilpotent and P be a Sylow p-subgroup of H, where p is
the smallest in $\pi(G)$. If every subgroup of $\mathcal{M}(P)$ is normally embedded in G, then G is p-nilpotent.

Corollary 3. Let G be a group and P be a Sylow p-subgroup of G, where $p \in \pi(G)$ with $|G|, p - 1 = 1$. If every subgroup of $\mathcal{M}(P)$ is normally embedded in G, then G is p-nilpotent.

Corollary 4. Let G be a group and P be a Sylow p-subgroup of G, where p is the smallest in $\pi(G)$. If every subgroup of $\mathcal{M}(P)$ is normally embedded in G, then G is p-nilpotent.

Corollary 5. Let G be a group. If every subgroup of $\mathcal{M}(G)$ is normally embedded in G, then G possesses an ordered Sylow tower of supersolvable type.

Proof. Let p be the smallest prime of $\pi(G)$ and P be a Sylow p-subgroup of G. Then by hypothesis, every subgroup of $\mathcal{M}(P)$ is normally embedded in G. By Corollary 4, G is p-nilpotent. By Lemma 1 (1) and by the inductive hypothesis, a Hall p'-subgroup of G has an ordered Sylow tower of supersolvable type. Consequently, G has an ordered Sylow tower of supersolvable type. □

References

[1] B. Huppert, *Endliche Gruppen I*. Berlin-Heidelberg-New York, Springer, 1967.

[2] V. S. Monakhov, *Introduction to the Theory of Final Groups and Their Classes* [in Russian]. Vysh. Shkola, Minsk, 2006.

[3] S. Srinivasan, *Two sufficient conditions for supersolvability of finite groups*, Israel J. Math., 35, 1980, pp.210–214.

[4] V. S. Monakhov, A. A. Trofimuk, *Finite groups with subnormal non-cyclic subgroups*, J. Group Theory, 17(5), 2014, pp.889–895.

[5] W. Guo, Y. Lu, W. Niu, *S-embedded subgroups of finite groups*, Algebra Logika, 49(4), 2010, pp.433–450.

[6] K. Doerk and T. Hawkes, *Finite soluble groups*. Berlin-New York: Walter de Gruyter, 1992.

[7] V. S. Monakhov, I. K. Chirik, *On the p-supersolvability of a finite factorizable group with normal factors*, Proceedings of the Institute of Mathematics and Mechanics (Trudy Instituta Matematiki I Mekhaniki), 21(3), 2015, pp.256–267.

[8] O. Yu. Schmidt, *Groups whose all subgroups are special*, Mat.Sb., 31, 1924, pp.366-372.

[9] D. Robinson, *A course in the theory of groups, 2nd ed.*, Graduate Texts in Mathematics, Springer-Verlag, New York (1996)

Contact information
A. Trofimuk
Department of Mathematics, Gomel Francisk Skorina State University, Gomel 246019, Belarus
E-Mail: alexander.trofimuk@gmail.com
URL: