Dual Connections and Holonomy

Paolo Perrone

November 25, 2015

Dual affine connections on Riemannian manifolds have played a central role in the field of information geometry since their introduction in [1].

Here I would like to extend the notion of dual connections to general vector bundles with an inner product, in the same way as a unitary connection generalizes a metric affine connection, using Cartan decompositions of Lie algebras. This gives a natural geometric interpretation for the Amari tensor, as a “connection form term” which generates dilations, and which is reversed for the dual connections.

Contents

Abstract ... 1
Contents ... 1

1 Cartan Decomposition .. 2
2 Holonomy .. 3
3 Dual Connection .. 5
4 Acknowledgements .. 6
Bibliography ... 6
1 Cartan Decomposition

Let $\mathfrak{gl}(n, \mathbb{R})$ be the Lie algebra of $\text{GL}(n, \mathbb{R})$. If X^* denotes the transpose in \mathfrak{gl}, then the map $\theta : \mathfrak{gl} \to \mathfrak{gl}$ given by $\theta(x) := -x^*$ has the following properties.

1. It is a (linear) isomorphism of \mathfrak{gl}.
2. It respects Lie brackets: $\theta[x, y] = [\theta x, \theta y]$.
3. It is an involution: $\theta \circ \theta = id$.
4. If B is the Killing form, then $B_\theta(x, y) := -B(x, \theta y)$ is a positive definite symmetric bilinear form.

Definition 1.1. A homomorphic involution of a Lie algebra \mathfrak{g} which satisfies the properties above is called a *Cartan involution*.

Any real semisimple Lie algebra admits a Cartan involution, which is unique up to inner isomorphisms. A Cartan involution θ divides \mathfrak{g} into two eigenspaces:

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p},$$

where the eigenvalues are respectively $+1$ and -1. For \mathfrak{gl}, this corresponds intuitively to the "direction of rotations", and "direction of dilations". We will see that dualizing a connection reverses precisely only the second subspace.

We have that:

1. $[\mathfrak{k}, \mathfrak{k}] = \mathfrak{k}$,
2. $[\mathfrak{k}, \mathfrak{p}] = \mathfrak{p}$,
3. $[\mathfrak{p}, \mathfrak{p}] = \mathfrak{k}$,

which imply that:

- \mathfrak{k} is a Lie subalgebra of \mathfrak{g}.
- \mathfrak{p} in general is not, and its Lie subalgebras are all commutative (and 1-dimensional).
- \mathfrak{k} and \mathfrak{p} are orthogonal for the Killing form and for B_θ.

2
For \mathfrak{gl}, the subalgebra \mathfrak{k} is precisely \mathfrak{so}, on which indeed θ is the identity. In other words, we can decompose any element x of \mathfrak{g} into:

$$x = x^+ + x^-,$$

(2)

where:

$$x^+ := \frac{x + \theta x}{2}, \quad x^- := \frac{x - \theta x}{2}.$$

(3)

There is a corresponding involution for Lie groups, which for GL corresponds to $M \mapsto (M^*)^{-1}$. This map is called $\Theta : G \to G$ and it has the property that for $x \in \mathfrak{g}$:

$$\Theta e^x = e^{\theta x}.$$

(4)

We call K the subgroup of G which is fixed by Θ. For GL it is precisely SO. In general it is generated by exponentials of \mathfrak{k}. Every element of G can be expressed as a product:

$$M = e^k e^p,$$

(5)

where $k \in \mathfrak{k}$ and $p \in \mathfrak{p}$. Note that in general this is not equal to e^{k+p}, as k and p may not commute. What is true, though, is the following.

Proposition 1.1. Let $e^{k+p} = e^{k'} e^{p'}$, with $k, k' \in \mathfrak{k}$ and $p, p' \in \mathfrak{p}$ possibly different. Then:

$$e^{k-p} = e^{k'} e^{-p'}.$$

(6)

To see this, it is sufficient to notice that the quantity above is precisely:

$$\Theta e^{k+p} = e^{\theta(k+p)}.$$

(7)

For GL, this implies that any element M can be written as $M = OP$, where O is orthogonal, and P is positive definite (and given by $P = M^* M$).

For all the details on Cartan involutions and decompositions, see [2], Chapter VI.

2 Holonomy

Let V be a vector bundle over X of rank n. Let $p \in X$ and let L_p be the set of loops pointed at $p \in X$ equipped with the usual composition of loops (see [3]).

We can view a connection on V as a smooth mapping $\nabla : L_p \to \text{Aut}(V_p)$, where V_p is the fiber at p, such that $\nabla(l)$ is the transformation that a vector at p undergoes after parallel transport along l. It has the following properties:
1. ∇ maps the trivial loop to the identity.

2. ∇ preserves composition: $\nabla(ll') = \nabla(l') \circ \nabla(l)$.

3. If $-l$ it the inverse loop of l, then $\nabla(-l) = (\nabla(l))^{-1}$.

These properties, which remind of a group homomorphism, can indeed define a homomorphism provided that a suitable group structure is defined on the space of loops, through quotienting. But we will not need it here. Even without defining a group structure for loops, the properties above imply that:

Proposition 2.1. The image of ∇ is a Lie subgroup of $\text{Aut}(V_p)$.

We call such image the holonomy group of ∇ at p, and we denote it by $\text{Hol}_p(\nabla)$. If X is path connected, all holonomy groups are isomorphic. In that case we drop the reference to the base point, and simply write $\text{Hol}(\nabla)$. Local coordinates around p give an isomorphism between $\text{Aut}(V_p)$ and $GL(n, \mathbb{R})$, so that $\text{Hol}(\nabla)$ is isomorphic to a subgroup of GL. For example:

- A trivial connection has trivial holonomy group.
- A general affine connection may have the whole GL as holonomy group.
- A metric connection has holonomy group isomorphic to (a subgroup of) $O(n)$. Different metrics (or different coordinates) yield different isomorphisms.
- A connection on an oriented bundle has holonomy group isomorphic to (a subgroup of) $SL(n)$. A metric connection here will yield $SO(n)$.
- Special subgroups of $O(n)$, like for example $SU(n/2)$ for n even, are the holonomy groups of the so-called manifolds of special holonomies.

Let $\text{hol}(\nabla)$ be the Lie algebra of the holonomy group. Then we can express the connection ∇ locally, in suitable coordinates, as a 1-form ω with values in $\text{hol}(\nabla)$, i.e., an element of $T^*X \otimes \text{hol}(\nabla)$, mapping linearly a tangent vector v to an element x of the Lie algebra. If we also choose coordinates on the fiber, we have a mapping from tangent vectors to a subalgebra of $\mathfrak{gl}(n)$.

For details about holonomy, the reader is referred to [3].
3 Dual Connection

We can put together the results of the previous two sections, and define dual connections. Let $\nabla : L_p \to \text{Aut}(V_p)$ be a connection on V. Since $\text{Aut}(V_p)$ is isomorphic to \mathfrak{gl}, it admits Cartan involutions. Let Θ be such a Cartan involution. Then $\nabla^* : L_p \to \text{Aut}(V_p)$ defined by $\Theta \circ \nabla$ is called the dual connection with respect to the Cartan involution Θ.

Different Cartan involutions will yield different dual connections, and this is equivalent to choosing a different inner product on V (if V is the tangent bundle, a Riemannian metric). This is done by indentifying the metric adjoint $M \mapsto \Theta(M^{-1})$.

Let now be \langle , \rangle an inner product on V. Let l be a loop at p. Then we can decompose the parallel transport according to Cartan as:

$$\nabla(l) = e^k e^p.$$ (8)

The dual connection will instead yield (see Proposition 1.1):

$$\nabla^*(l) = e^k e^{-p},$$ (9)

so that if v, w are vectors of V_p:

$$\langle \nabla^*(l)v, \nabla(l)w \rangle = \langle e^k e^{-p}v, e^k e^p w \rangle = \langle v, (e^k e^{-p})e^k e^p w \rangle = \langle v, \Theta(e^k e^{-p})^{-1}e^k e^p w \rangle = \langle v, \Theta(e^{-p})^{-1}\Theta(e^k)^{-1}e^k e^p w \rangle = \langle v, \Theta(e^p)e^p w \rangle = \langle v, e^{-p}e^p w \rangle = \langle v, w \rangle,$$ (10)

which is the property traditionally defining dual connections (see [4]).

At the Lie algebra level, the connection form ω^* of the dual connection ∇^* is obtained by ω as the mapping $\omega^* : TX \to \text{hol}(\nabla)$ given by $\theta \circ \omega$.

Applying the decomposition (2) to ω, we get that:

$$\omega = \omega^+ + \omega^-,$$ (16)

$$\omega^* = \omega^+ - \omega^-.$$ (17)

Equivalently:

$$\omega^* = \omega - 2\omega^-.$$ (18)
If $\omega^- = 0$ we have a metric connection (see the Ambrose-Singer holonomy theorem in [3]). In general ω^- measure how much our connection tends to change the length of the vectors, and the dual connection does the opposite.

On Riemannian manifolds, if ∇ is torsion free, then $\omega^- = 0$ gives precisely the Levi-Civita connection. In general ω^- is precisely proportional to the Amari tensor (see [4]). This suggests that we can generalize the concept of α-connections to general vector bundles, by taking:

$$\omega^\alpha = \omega^+ + \alpha \omega^-,$$
$$\omega^{-\alpha} = \omega^+ - \alpha \omega^-.$$

Moreover, this way we have a very natural geometric interpretation of the Amari tensor: it can be written as a 1-form with values in p, i.e. a subspace of $\text{hol}(\nabla)$ orthogonal to $\mathfrak{k} \equiv \mathfrak{so}$. Intuitively, it is the part of the connection which generates dilations. Since every subalgebra of p is 1-dimensional, the parameter α spans it completely.

4 Acknowledgements

This idea came after the very interesting conversations with prof. Jun Zhang the University of Chicago, whom I would like to thank, during a conference in Edinburgh.

References

[1] H. Nagaoka and S. Amari. Differential geometry of smooth families of probability distributions. *Technical Report METR 82-7, Univ. of Tokyo*, 1982.

[2] A. W. Knapp. *Lie Groups Beyond an Introduction*. Birkhaeuser, 2002.

[3] Dominic D. Joyce. *Riemannian Holonomy Groups and Calibrated Geometry*. Oxford, 2007.

[4] S. Amari and H. Nagaoka. *Methods of Information Geometry*. Oxford, 1993.