Solution of the Linear Ordering Problem
(NP=P)

G. Bolotashvili
Email: bolotashvili@yahoo.com

We consider the following problem

\[
\begin{align*}
\text{max} & \quad \sum_{i=1, i \neq j}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\text{s. t.} & \quad 0 \leq x_{ij} \leq 1, \\
& \quad x_{ij} + x_{ji} = 1, \\
& \quad 0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1, i \neq j, i \neq k, j \neq k, i, j, k = 1, \ldots, n.
\end{align*}
\]

We denote the corresponding polytope by \(B_n \). The polytope \(B_n \) has integer vertices corresponding to feasible solutions of the linear ordering problem as well as non-integer vertices. We denote the polytope of integer vertices as \(P_n \).

Let us give an example of non-integer vertex in \(B_n \) and describe an exact facet cut. In what follows we will interested only in generating exact facet cuts.

Fig. 1 shows a graph interpretation of a non-integer vertex \([1]\),
where \(\{i_1, ..., i_m\} \), \(\{j_1, ..., j_m\} \subset \{1, ..., n\} \); \(i_1, ..., i_m \cap j_1, ..., j_m = \emptyset \);
\(x_{ij} = 0, x_{qij} = 1, l \neq q, l, q = 1, ..., m \); the other variables that are not shown at the Figure 1 are equal to \(\frac{1}{2} \). This is the simplest non-integer vertex of the polytope \(B_n \). For this vertex all adjacent integer vertices can be written as:

\[\alpha_k i_k j_k \beta_k, \quad \text{where } \alpha_k \text{ is any ordering from the set } \{j_1, ..., j_m\} \{j_k\}, \]

\[\beta_k \text{ is any ordering from the set } \{i_1, ..., i_m\} \{i_k\}, \]

\[\alpha_{kp} i_k j_k i_p j_p \beta_{kp}, \quad \text{where } \alpha_{kp} \text{ is any ordering from the set } \{j_1, ..., j_m\} \{j_k, j_p\}, \]

\[\beta_{kp} \text{ is any ordering from the set } \{i_1, ..., i_m\} \{i_k, i_p\}, \]

\[k \neq p, k, p = 1, ..., m. \]

All adjacent integer vertices, which number is equal to
\[m \left((m - 1)! \right)^2 + \frac{m(m - 1)}{2} [(m - 2)!]^2 \]
lie in one hyperplane

\[f(x) = 2 \sum_{l=1}^{m} x_{ij} - \sum_{l=1}^{m} \sum_{q=1}^{m} x_{qij} = 1. \]

This hyperplane for \(f(x) \leq 1 \) is a facet of the polytope \(P_n \).

Our aim is to determine exact facet cuts for any non-integer vertex of \(B_n \) (and not only for them) in an analogous fashion.

Figures 2 and 3 show non-integer vertices of the polytope \(B_n \):

Noninteger vertex at Figure 2 has an oriented chain 7583 of the length 3, and non-integer vertex at Figure 3 has an oriented 614 chain of the length
2. The oriented chain 758 at Figure 2 is independent, that is if we exchange the chain 758 with any other chain the rest of the graph does not change, while the chains 81 at Figure 2 and 614 at Figure 3 are dependent. We define corresponding dependent and independent oriented chains.

The following Theorems take place.

Theorem 1 Let x^0 be a noninteger vertex in B_n and assume that in graph interpretation there is a graph vertex i which is the begin or the end of all adjacent arcs. Assume that the vertex i can be repeated arbitrarily many times such that each of the new vertices has the same location with the other part of the graph as the vertex i. Then the new noninteger vertex, corresponding to the new graph, is a noninteger vertex of B_n, and in the new graph the vertices i and new inserted vertices may be put in any order.

Theorem 2 Let x^0 be a noninteger vertex in B_n. Then there does not exist corresponding dependent oriented chains of the length 4.

The polytope B_n has noninteger vertices whose fractional components are equal to $\frac{l}{r}$, $r \geq 2$, $l < r$, as well.

For $r = 2$ after matrix transformation we get in all cases the following non unimodular minimal standard matrix:

$$
\begin{pmatrix}
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{pmatrix}.
$$

For $r = 3$ after matrix transformation we get in all cases the known combination of two minimal standard matrices:

$$
\begin{pmatrix}
1 & -1 & 0 & -1 & 0 \\
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix}.
$$

For any r after matrix transformation we get known combination of $r - 1$ minimal standard matrices.
Theorem 3 Let \(x^0 \) be a noninteger vertex of \(B_n \), which has fractional components \(\frac{l_1}{r_1} \), \(l_1 < r_1, r_1 \geq 3 \). Then we pass to an adjacent noninteger vertex with fractional components \(\frac{l_2}{r_2} \), \(r_2 < r_1, l_2 < r_2 \), by changing an equality in a basis (thus changing one or more minimal standard matrices).

Let \(I_1, I_2, \ldots, I_s \subset \{1, \ldots, n\} \), and assume that each set \(I_p, p = 1, \ldots, s \), corresponds to noninteger components of a vertex. Then for each \(I_p, p = 1, \ldots, s \), we can construct a facet cut. If \(s = 1 \) a noninteger vertex is called simple. A noninteger vertex is called complex if \(s \geq 2 \).

Thus we have given a general description of the polytope \(B_n \).

Theorem 4 Let \(x^0 \) be a simple noninteger vertex of the polytope \(B_n \) with fractional components \(\frac{1}{2} \), assume further that there does not exist dependent oriented chains with the length 3. Then all adjacent integer vertices lie in one hyperplane, this hyperplane is a facet of the polytope \(P_n \), and it can be constructed by a polynomial algorithm.

Now we describe the principle for constructing facets.

Consider a noninteger vertex \(x^0 \). It can be defined as the solution of the following system of the linear basic equalities

\[
\begin{align*}
 x_{i,l} & = 0, \quad l = 1, \ldots, q; \quad (1) \\
 x_{i,l} + x_{j,k,l} - x_{i,k,l} & = 0, \quad l = q + 1, \ldots, \frac{n^2 - n}{2}.
\end{align*}
\]

We introduce artificial variables \(x_{j,n} = 0, x_{i,n} = 0 \), into the first \(q \) equalities of the system (1):

\[
x_{i,j,l} + x_{j,n+1} - x_{i,n+1} = 0, \quad l = 1, \ldots, q.
\]

With the help of the notation

\[
x_{i,j,l} + x_{j,k,l} - x_{i,k,l} := x(i_l, j_l, k_l), \quad l = 1, \ldots, \frac{n^2 - n}{2},
\]

we rewrite the system (1) as follows:

\[
x(i_l, j_l, k_l) = 0, \quad l = 1, \ldots, \frac{n^2 - n}{2}.
\]
We can determine \(\frac{n^2 - n}{2} \) linear independent adjacent integer vertices

\[
x^q(i_s, j_s, k_s) = \delta^q(i_s, j_s, k_s), \quad s, q = 1, \ldots, \frac{n^2 - n}{2},
\]

where \(\delta^q \) is either 1 or 0. We can prove that all adjacent integer vertices lie in the hyperplane:

\[
f(x) = \begin{vmatrix}
 x(i_1, j_1, k_1) & \cdots & x(i_m, j_m, k_m) & 1 \\
 \delta^1(i_1, j_1, k_1) & \cdots & \delta^1(i_m, j_m, k_m) & 1 \\
 \vdots & & \vdots & \vdots \\
 \delta^m(i_1, j_1, k_1) & \cdots & \delta^m(i_m, j_m, k_m) & 1
\end{vmatrix} = 0
\]

where \(m = \frac{n^2 - n}{2} \).

Theorem 5 Let \(x^0 \) be a simple noninteger vertex of the polytope \(B_n \) with fractional components \(\frac{1}{2} \), assume further that there exist \(\tau \) dependent oriented chains with the length 3. Then all adjacent integer vertices lie in \(2^\tau \) hyperplanes, each of them is a facet of the polytope \(P_n \), and can be constructed by a polynomial algorithm.

Theorem 6 Let \(x^0 \) be a simple noninteger vertex of the polytope \(B_n \) with fractional components \(\frac{1}{2}, r \geq 3, l < r \). Then we can construct all minimal standard matrices and corresponding noninteger vertices with fractional components \(\frac{1}{2} \). For every such vertex we can construct facet cuts.

Theorem 7 Let \(x^0 \) be a complex noninteger vertex of the polytope \(B_n \), and \(I_1, I_2, \ldots, I_s \) correspond to noninteger values. Then we can construct facet cuts for each set \(I_p, p = 1, \ldots, s \).

Assume we have generated facet cuts. Solving the problem again we get the noninteger vertex \(x^1 \) of the polytope

\[
0 \leq x_{ij} \leq 1, \\
x_{ij} + x_{ji} = 1, \\
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1, \quad i \neq j, \quad i \neq k, \quad j \neq k, \quad i, j, k = 1, \ldots, n, \\
f^1_s \leq f_s(x) \leq f^2_s, \quad s = 1, \ldots, q.
\]
Without loss of generality we may assume that the noninteger vertex x^1 satisfies the following linear system:

\[x(i_s, j_s, k_s) = 1, \quad i = 1, \ldots, p, \]
\[f_s(x) = f_s^2, \quad s = 1, \ldots, q. \]

Now we find all adjacent integer vertices. If all of them lie in one hyperplane and this hyperplane is a facet of P_n then we generate this facet and re-solve the problem with a new facet. In case we cannot determine the facet we solve the auxiliary problem:

\[
\max \left(\sum_{s=1}^{p} x(i_s, j_s, k_s) + \sum_{s=1}^{q} \frac{f_s(x) - f_s^1}{f_s^2 - f_s^1} \right),
\]
\[
0 \leq x_{ij} \leq 1,
\]
\[
x_{ij} + x_{ji} = 1,
\]
\[
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1, \quad i \neq j, \quad i \neq k, \quad j \neq k, \quad i, j, k = 1, \ldots, n.
\]

With the solution of this problem we can construct the facet of the polytope P_n. In the case of theorems 5 and 6 we can construct the necessary facets by means of a polynomial algorithm.

References

[1] Bolotashvili G., Kovalev M., Girlich E. New Facets of the linear ordering Polytope. SIAM J. Discrete Mathematics 12(3):326-336, 1999.