Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Evolutionary biology of human hepatitis viruses

Graphical abstract

Authors
Andrea Rasche, Anna-Lena Sander, Victor Max Corman, Jan Felix Drexler

Correspondence
felix.drexler@charite.de
(J.F. Drexler)

Summary
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.

http://dx.doi.org/10.1016/j.jhep.2018.11.010
© 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. J. Hepatol. 2019, 70, 501–520
Evolutionary biology of human hepatitis viruses
Andrea Rasche1,2, Anna-Lena Sander1, Victor Max Corman1,2, Jan Felix Drexler1,2,*

Summary
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
© 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Introduction
Approximately 1.3 million people die annually from viral hepatitis worldwide.1 These deaths are predominantly associated with cirrhosis and hepatocellular carcinoma (HCC) resulting from chronic infections with hepatitis B virus (HBV; 887,000 deaths) and hepatitis C virus (HCV; 399,000 deaths),2 as well as hepatitis and liver failure resulting from acute infections with hepatitis A virus (HAV; 11,000 deaths) and hepatitis E virus (HEV; 44,000 deaths).1 Worldwide, approximately 5% of people infected with HBV are simultaneously infected with hepatitis delta virus (HDV).1,2
The recent discoveries of novel hepatitis viruses from animals allow revisiting the enigmatic evolutionary origins of human hepatitis viruses. In chapter 1 of this review, we discuss the diverse animal homologues of all human hepatitis viruses that were discovered over the last decades. In chapter 2, we analyse hepatitis virus evolution based on the unique genomic and morphologic properties of human and non-human hepatitis viruses. In chapter 3, we discuss the level of evolutionary conservation of the characteristic infection patterns of human hepatitis viruses and review the ability to translate the recent virus discoveries into tractable animal models. Finally, in chapter 4, we discuss the evolutionary origins of human hepatitis viruses in the context of a plethora of newly discovered animal homologues. In this chapter, we also evaluate the potential of animal homologues for past and present cross-species transmission and compare macro-evolutionary patterns of the different hepatitis virus families.

Chapter 1: Milestones towards the understanding of the evolutionary origins of hepatitis viruses
In the following section, we outline the path towards the discovery of human hepatitis viruses and provide detail on the huge expansion in the number of animal homologues discovered during the last decade.

The discovery of human hepatitis viruses
The path towards the discovery of human hepatitis viruses started with the differentiation between 2 forms of transmissible jaundice. Infectious hepatitis linked to epidemic outbreaks of faecal-orally transmitted jaundice (termed hepatitis A) was differentiated from a parenterally transmitted jaundice with a relatively longer incubation period (termed hepatitis B).3,5 Following the discoveries of the causative HAV and HBV in 1973 and 1970,6,7 the HBV-associated HDV was discovered in 1980.8 In parallel, it was noted that most cases of post-transfusion hepatitis were linked to infection with HAV, nor HBV.9 However, it was not until 1989 that the causative HCV was finally described.10 HEV was discovered in 1983 as the cause of a predominantly water-borne acute non-A, non-B hepatitis.11 The discoveries of human hepatitis viruses were followed by milestones of major clinical relevance, including tools for reliable diagnosis (e.g., described in12,13), the development of direct-acting antiviral treatments against HCV and preventive vaccinations against HAV and HBV14 (Fig. 1). Notably, scientific progress was not evenly distributed among human hepatitis viruses. The clinical relevance of HBV and HCV likely contributed to the enormous achievements attained continuously for these 2 viruses (Fig. 1).

A new era of virus discovery
The first discoveries of non-human hepatitis viruses were ground breaking, yet sporadic. In 1978, a genetically distant relative of HBV, the woodchuck hepatitis virus (WHV), was identified in American woodchucks, a marmot-like rodent species.15 The discovery of WHV was followed by the discovery of duck hepatitis B virus (DHBV),...
HBV variants in apes, and a divergent HBV species termed woolly monkey hepatitis B virus (WMHBV). For hepatitis viruses other than HBV, knowledge on potential non-human hosts remained scarce. In the 1990s, a distinct HAV type was detected in macaques and HEV was recovered from swine. In 1995, a non-human primate (NHP) virus distantly related to HCV, termed GB virus-B (GBV-B) was isolated from a laboratory tamarin. The tamarin had been inoculated with the serum of a patient with hepatitis, but since GBV-B was never detected in humans, it was most likely a tamarin virus.

Over the last decades there has been an explosive expansion of the recognized viral diversity in animals, driven by novel sequencing techniques and an unprecedented focus on zoonotic pathogens which followed the identification of highly pathogenic viruses such as Ebola virus and SARS-coronavirus in bats.

Key point
Diverse animals host hepatitis viruses, but ongoing zoonotic transmission is documented only for hepatitis E virus.
camelids, rabbits and rats. In addition, divergent HEV-related viruses were described in bats, ferrets, rodents, birds, and fish. In sum, homologues of all human hepatitis viruses exist in diverse animals. Apart from the detection of zoonotic HEV strains, none of the recent studies into viral diversity in animals revealed any direct ancestor of human hepatitis viruses, as outlined below.

Chapter 2: Conservation and de novo emergence of unique properties of hepatitis viruses

Human hepatitis viruses are assigned to diverse virus families and genera (Table 1). Namely, they belong to the families Picornaviridae, genus Hepatovirus (HAV), Hepadnaviridae, genus Orthohepadnavirus (HBV), Flaviviridae, genus Hepacivirus (HCV), and Hepeviridae, genus Orthohepevirus (HEV). The genus Deltavirus (HDV) is unassigned to any virus family. In general, human and non-human hepatitis virus homologues resemble each other in major genomic properties such as structure of the genomic nucleic acid, open reading frame (ORF) composition, genome length and presence and type of noncoding regions (Table 1, Fig. 2). Nonetheless, there are striking differences among viruses from the same family or genus. Hypothetically, de novo emergence of genomic features and recombination events during evolution may have contributed to the rise of viruses eventually pathogenic to humans. A prototypic example for micro-evolutionary events within animal reservoirs enabling efficient human infection is the recombination event leading to the functional tetherin antagonist in chimpanzee-associated ancestors of the HIV-1 group M.

Envelopment might not be conserved among animal hepatitis viruses

Recent studies revealed that HAV and HEV, thought previously to be non-enveloped viruses, exist in an enveloped form in blood, referred to as quasi-envelopment (Fig. 2). In contrast to enveloped viruses, there is no hint of virus-encoded proteins in the quasi-envelope of HAV and HEV, which raises questions on how quasi-enveloped viruses enter susceptible cells (summarised in). Interestingly, some non-primate HAV- and HEV-related viruses (henceforth, hepatoviruses and hepeviruses) lack critical genome structures involved in quasi-envelopment. This includes the apparent absence of a C-terminal VP1 capsid protein extension termed pX in some HAV-related bat viruses and the lack of short amino acid motifs termed late domain motifs in several divergent hepeviruses from diverse mammals and birds. In contrast, HBV-related viruses (henceforth, hepadnaviruses) are enveloped viruses, yet fish were recently found to host a non-enveloped Hepadnaviridae sister family, termed Nackednaviridae. The discovery of nackednaviruses suggested that envelopment emerged de novo in hepadnaviruses capable of infecting mammals and ultimately humans. A hallmark of HCV infection is the formation of lipoviral particles, which incorporate both host-derived lipoproteins and virus-derived glycoproteins. Interestingly, equine hepacivirus capsid proteins associate with intracellular lipid components, suggesting similarities between the replication of HCV and non-human HCV-related viruses (henceforth, hepaciviruses). However, whether the formation of lipoviral particles is evolutionarily conserved among non-human hepaciviruses remains unknown.

On the one hand, it is thus possible that envelopment and quasi-envelopment are not conserved among animal hepatitis viruses. On the other hand, ancestral animal hepatitis viruses may exploit unknown strategies for envelopment that differ from those found in human viruses.

Recombination events occurred during hepatitis virus evolution

Recombination events among viruses can occur when 1 cell is co-infected with 2 different viruses that interact during replication. For all human hepatitis viruses, recombination has been exhaustively described. The plethora of recently discovered viruses has enabled revisiting the occurrence of recombination events during the genealogy of human hepatitis viruses and their animal homologues. For hepatoviruses there is evidence for recombination in the coding sequence of very distantly related viruses associated with different host orders, which hints at a broad host range. In addition, variations in the 5′-genome ends of animal hepatoviruses harbouring the internal ribosome entry site (IRES) hint at ancient recombination events involving different viral families. For hepadnaviruses, the mosaic genome structure of extinct and extant HBV genotypes suggests that recombination has been a major micro-evolutionary feature of HBV evolution. Recombination among viruses associated with different host species was also described among primate and bird hepadnaviruses. Whether inter-host recombination events also occurred during the genealogy of the newly identified bat and cat hepadnaviruses demands further investigation. For non-human hepaciviruses, recombination events among diverse hosts have not been unambiguously proven yet. However, as with hepatoviruses, hints for ancient recombination events are found in the 5′-genome ends of non-primate hepaciviruses, likely involving viruses belonging to different genera. For hepeviruses, there is evidence for recombination involving different host orders, similar to hepatoviruses. Importantly, the camelid-associated HEV genotypes 7 and 8 show

Key point

The de novo emergence of virus properties such as envelopment and recombination events may have contributed to the rise of viruses eventually pathogenic for humans.
evidence of recombination at the boundary of ORFs encoding non-structural and structural proteins. Whether recombination events in these HEV strains contribute to their zoonotic potential is an intriguing question. Notably, recombination events likely enabled the rise of the family Hepeviridae per se, as the different hepevirus ORFs are derived from diverse alphavirus- and astrovirus-like ancestors.

To summarise, recombination was likely a frequent event during the genealogy of hepatitis viruses. Whether transmission to humans is a consequence of recombination events in animal reservoirs requires further elucidation.

Distinct features of HDV
HDV is not a complete virus but a subviral agent with a very short, circular RNA genome which can replicate autonomously within a cell but requires the surface proteins of HBV for cell release and uptake (Fig. 2). Of all human hepatitis viruses, the least is known about the origin of HDV. HDV has been hypothesised to have originated from plant viroids, via recombination with cellular mRNA, or from RNA intermediates of HBV. However, these theories are conflicting and not supported by experimental evidence. Interestingly, HDV-like agents were recently detected in a pool of oropharyngeal and cloacal samples of ducks and in various tissues of snakes. The apparent lack of detectable hepadnaviruses in these preliminary investigations seems consistent with the lack of a predicted large delta antigen containing the C-terminal farnesylation signal required for interaction with the HBV envelope (Fig. 2). On the one hand, this may indicate that the unique association of HDV with HBV is not evolutionarily conserved. On the other hand, divergent helper viruses and divergent mechanisms of envelopment cannot be excluded based on present knowledge. Although snake and duck HDV-like agents are genetically clearly distinct from human HDV, they show typical HDV genome properties, including the ORF encoding the small delta antigen, genomic and antigenomic ribozymes mediating autocatalytic cleavage and an extremely high degree of genomic self-complementarity of the circular genome. The detection of these divergent viruses in ancient vertebrates strongly suggests that other HDV-like viruses exist, which might include ancestors of human HDV.

Chapter 3: Evolutionary conservation of infection patterns
The comparison of hepatitis virus infection patterns among human and non-human hosts might reveal unique viral properties that eventually enabled human infection. For example, chronic courses of viral infections in animal reservoirs were found to be a strong predictor of human-to-human transmissibility after zoonotic introduction into humans. Here, we compare transmission routes, organ tropism, disease outcomes, receptor usage and immune evasion strategies among human and non-human hepatitis viruses.

Conservation of transmission routes among hepatitis viruses
Human hepatitis viruses differ in their transmission routes. HAV and HEV are mainly transmitted through the enteric route. Similarly, faecal shedding has been observed invariably in non-human hosts of hepatoviruses and hepeviruses (Table 2). In contrast, HBV and HDV are transmitted via blood and other body fluids, including semen and vaginal secretions. In addition, there is a
high risk of perinatal transmission of HBV. Like in humans, both perinatal and horizontal HBV transmission has been described for gibbons. For non-primate hosts, vertical hepadnavirus transmission is known to be effective in rodents and birds. Based on a higher prevalence in female tent-making bats compared to males, predominantly sexual virus transmission has been suggested for the Tent-making bat HBV (TBHBV). Transmission routes for other bat or cat hepadnaviruses remain unknown. HCV is a blood-borne virus. However, perinatal transmission rates are much lower for HCV than HBV and sexual transmission is rare. HCV is mainly transmitted via blood transfusions, sharing of equipment in injecting drug use and reuse of injection needles in healthcare, which raises questions on the transmission mode of HCV in scattered prehistoric human populations. Here, fights, use of weapons or tools as well as cultural
or religious practices such as tattooing, circumcision, acupuncture or scarification might have enabled virus transmission.100 Transmission routes among non-human hepaciviruses are unclear. In small mammals, transmission of hepaciviruses through biting and scratching associated with mating and territorial behaviour is conceivable.101 In horses, parenteral transmission of equine hepacivirus has been suggested,102,103 possibly including sexual transmission and veterinary practices.41,102 Transmission via human-aided routes would suggest a relatively recent spread of this virus among equines worldwide and is consistent with the low virus diversity found in equines.38,41,102,104 Similar transmission routes are conceivable for cattle hepaciviruses.44,45

In sum, virus transmission seems to be evolutionary conserved among enteric hepatitis viruses and their homologues, while transmission routes of non-human hepadnaviruses and hepaciviruses are poorly understood.

Hallmarks of human infection	Naturally or experimentally infected with autochthonous virus	Experimentally infected with human virus
HAV Long faecal shedding; Quasi-envelopment; Never chronic but may cause protracted infections of up to one year; Faecal-oral transmission	Rat, rodent, hedgehog, shrew: Acute infection; Faecal shedding; Hepatotropism99	Chimpanzee: Faecal shedding; Quasi-envelopment; Acute hepatitis7,3,106,107
HBV Oncogenic (HCC); Age-dependent chronicity rate; Vertical, parenteral, sexual transmission; Acute, fulminating courses in adults	New World primates: Acute and chronic; Hepatitis; Vertical transmission17,33 Old World primates: Acute and chronic; Horizontal and vertical transmission; Hepatitis108–110 Bats: Apparently acute and chronic; Sexual transmission10,2,54 Woodchuck: Acute and chronic; Hepatitis; Oncogenic; Hepatotropism114 (summarised in115) Squirrels: Hepatitis116; Oncogenic117 Cat: Viremia118 Duck: Acute and chronic119; Hepatitis; Vertical transmission; Not oncogenic; No exclusive hepatotropism (summarised in115,119)	Chimpanzee: Acute and chronic; Hepatitis; Oncogenic (summarised in120,121) Tupaia: Acute and chronic; Hepatitis122; Low viremia (summarised in123)
HCV Oncogenic (HCC); High chronicity rate; Parenteral transmission	Cattle: Apparently acute and chronic; Hepatotropism110,111 Horse: Apparently acute and chronic; Hepatotropism102 Rat: Hepatotropism123 Bank vole: Hepatotropism42 Marmoset: Acute and chronic; Hepatitis126 Tamarin: Acute hepatitis; High viral titres27	Chimpanzee: Acute and chronic; Hepatitis; Oncogenic124,125 (summarised in121) Tupaia: Mild hepatitis; Acute and chronic; Oncogenic128
HDV HBV-dependent infection; Co-infection with HBV: Mild to severe acute disease; Superinfection with HBV: Mostly chronic, worsens disease outcome compared to HBV mono-infection	Snake: No hepatotropism; Apparently independent of HBV48	Chimpanzee: Hepatotropism; HBV co-infection and superinfection; Co-infection: Mild disease; Superinfection: Acute severe disease, >50% subclinical chronic HDV infection129,130 (summarised in131); Woodchuck: Uses WHV envelope; Hepatotropism; Acute and chronic (summarised in131)
HEV Low chronicity rate; Quasi-envelopment; Mainly faecal-oral transmission; Zoonotic	Rabbit: Faecal shedding; Acute and chronic hepatitis; Viremia112 Rat: Faecal shedding; Apparent hepatotropism; Mild hepatitis133,134 Ferret: Faecal shedding; Viremia; Acute and chronic hepatitis135 Bat: Faecal shedding; Viremia116 Swine: Faecal shedding; Viremia; Acute and chronic130,137 Moose: Faecal shedding; Mild hepatitis138 Chicken: Hepatitis-splenomegaly syndrome59 Camel: Faecal shedding; Viremia115,12	Chimpanzee: Severe acute hepatitis139 Macaque: Faecal shedding; Viremia; Hepatitis140,141 Swine: Faecal shedding; Mild hepatitis142

HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitis delta virus; HEV, hepatitis E virus; HCC, hepatocellular carcinoma; WHV, woodchuck hepatitis virus.
Determinants of hepatotropism are poorly understood

For HAV and HEV, little is known about the viral and host factors that promote liver tropism in humans. In bat hepatoviruses, but in none of the other non-primate hepatoviruses, almost equal amounts of virus were detectable in the liver and spleen. However, whether this is due to sequestered macrophages containing hepatovirus genetic material, as observed during experimental infections of mice with HAV, or due to extrahaematogenous viral replication remains to be determined.

For HBV and HDV, after low-specific binding to heparin-sulfate proteoglycans (summarised in144), hepatocyte entry is mediated via the sodium taurocholate co-transporting polypeptide (NTCP for the human receptor, Ntcp for the homologous receptor in animals). These liver-specific receptors likely govern the hepatotropism of HBV and HDV. Interestingly, the avian hepadnavirus DHBV does not show a strict hepatotropism (summarised in118). This is potentially explained by the usage of a receptor that differs from that used by HBV. Notably, even among mammalian hepadnaviruses, Ntcp usage might not be conserved, as illustrated by the apparent lack of hNTCP usage of some bat hepadnaviruses and WHV.145,147 In the snake delta-like agent, the apparent lack of hepatotropism may be associated with the absence of a detectable hepadnavirus (Table 2).38

For HCV, an important, yet not exclusive factor determining hepatotropism in humans is its interaction with the liver-specific micro RNA-122 (miR-122). All known non-human hepaciviruses contain at least one miR-122 binding site in their 5'-genome ends, which may contribute to their apparently conserved hepatotropism.147,148

Liver tropism is thus a widely, yet not perfectly conserved attribute of the animal homologues of human hepatitis viruses. Because the factors determining hepatotropism of human hepatitis viruses are not entirely understood, systems allowing experimental infections with the newly discovered animal viruses will hopefully provide urgently needed insights into the determinants of viral hepatotropism.

Chronic courses of infection occur in diverse hepatitis virus hosts

Prehistoric human populations were small and scattered, raising the question of how hepatitis viruses survived in these populations. This is illustrated by the disappearance of HAV in isolated populations due to the live-long immunity HAV infections engender (summarised in25). In contrast to prehistoric humans, other hepatovirus hosts such as small mammals were abundant and widespread, which presumably aided viral survival in these populations.25

In contrast to HAV, both HBV and HCV establish chronic infections in humans, which presumably favoured virus maintenance in prehistoric human populations and among NHPs. Chronic hepatitis virus infections are commonly defined as infections that persist for more than 6 months for HBV and HCV, and 3 months for HEV.149–151 The chronicity rate varies drastically among human hepatitis viruses. Chronic HEV infections are very rare (<1% of infections) and almost exclusively occur in immunocompromised patients. In contrast, chronic HCV infections are very frequent at up to 80–85% (Table 1).63 For HBV, the chronicity rate varies depending on the age at which the infection occurs, with rates of up to 90% for infected neonates, 30% for children aged 1–5 years and less than 5% for older children and adults (summarised in62).

Interestingly, chronic courses of infection are not unique for human HBV and HCV. Similar to human HBV infection, the chronicity rate of the rodent-associated WHV is age-dependent. While animals infected as newborns generally develop chronic infections, WHV usually causes acute self-limiting infections in animals infected at older ages (summarised in115). Chronic courses of hepadnavirus infections also occur in ducks, squirrels, and NHPs (Table 2).30,96,112,113,116–118,153 Whether chronic hepadnavirus infections occur in bats is unclear.30

Among non-human hepaciviruses, studies reporting chronic infections are scarce. Chronic hepacivirus infections with prolonged viremia for more than 6 months were sporadically observed in experimentally infected horses and naturally infected cattle.44,102,154 The chronicity rates in horses and cattle thus seem to be much lower than in human HCV infections.44,102,103 For other non-human hepaciviruses, whether chronic infections occur remains unknown. Similarly, chronic courses of hepevirus infections in non-human hosts are largely unknown. Nonetheless, an apparent chronic HEV infection in wild boars and prolonged viral shedding in experimentally infected immunocompromised domestic swine, rabbits, and ferrets suggest that chronicity is not limited to human HEV infections.132,135,137,155

To conclude, many questions regarding chronic infections in animal hepatitis viruses are still unanswered. Translational animal models to assess therapeutics for chronic hepatitis B and E, and investigating viral pathogenesis will require some correlate of chronic infection, which may be conceivable given the evolutionary conservation of chronicity among several animal hepadnaviruses and hepaciviruses.

Mechanisms leading to HCC differ among hepatitis viruses

Chronic hepatitis virus infections can result in severe disease outcomes, including cirrhosis and HCC.156 In humans, chronic HBV infections result in HCC in 15–40% of cases157 and chronic HCV infections in approximately 2.5% of cases.158

Key point

Chronicity may have aided hepatitis B and hepatitis C virus survival in scattered prehistoric human populations.
Interestingly, woodchucks infected with WHV and ground squirrels infected with the genetically related ground squirrel hepatitis virus are at a high risk of developing HCC when infected at birth (summarised in Table 2). While oncogenesis in woodchucks is mainly caused by N-myc gene activation via targeted insertion of hepadnaviral DNA into host DNA, oncogenesis in ground squirrels is associated with an activation of c-myc genes. For human HBV, the mechanisms of oncogenesis remain poorly understood. HBV DNA fragments can integrate into the hepatocyte genome during viral replication. However, in contrast to rodent hepadnaviruses, no specific integration site associated with oncogenesis has been identified. Accumulation of integration events into genes that may enhance oncogenesis, such as those encoding the telomerase reverse transcriptase (TERT), a histone H3 lysine 4 methyltransferase (MLL4), and cyclin E1 (CCNE1) have been described, but their contribution to oncogenesis is unclear. Furthermore, integration sites in tumour cells seem to be enhanced in sites critical for chromosome stability, such as in proximity to telomeres. In addition, the viral HBx protein promotes oncogenesis through complex interactions with the host cell, such as altering the expression of host oncogenes and tumour suppressors, stimulating cell-cycle entry by activating cyclins and cyclin-dependent kinase pathways and blocking apoptosis (summarised in). In humans, HBx also interacts with the structural maintenance of chromosomes (Smc) complex Smc5/6 and stabilises the extrachromosomal cccDNA (covalently closed circular DNA) produced during HBV replication. Interestingly, HBx presumably emerged de novo in mammals during hepadnavirus evolution. Although the role of the HBx protein in non-human hepadnavirus infections is unknown, conservation of the HBx gene in mammalian orthohepadnaviruses suggests that HBx-mediated oncogenesis may be conceivable in diverse mammals. In concordance, ducks infected with avian hepadnaviruses lacking an HBx do not develop HCC (summarised in).

In contrast to HBV, integration of viral genetic material into the host genome does not occur during HCV infections. Here, the core protein and non-structural proteins NS3 and NS5A promote HCC development by altering the expression of host genes involved in diverse oncogenic pathways, including proteins involved in cell-cycle control (such as p53, p21, cyclins) and apoptosis (summarised in). Strikingly, HCC development has not been observed in any non-human hepacivirus host yet. Hypothetically, oncogenesis might either be unique to human HCV infections, or oncogenesis in animals has not been observed due to the relatively short life spans of the investigated animals, e.g. mice and rats infected with rat hepacviruses. In contrast to these rodents, some bat species have a comparatively long life span of up to 30 years. However, whether bats can get chronically infected with hepacviruses and if this infection leads to oncogenesis is unknown. In addition, it has been hypothesised that bats may have a lower risk of developing cancer than other mammals, potentially because of their unique physiological and immunological properties. In horses and cattle, chronic courses of hepacivirus infections have been described and it would be intriguing to study whether these large and relatively long-lived animals develop HCC. However, costly long-term infection studies and longitudinal epidemiological investigations will be needed to address this question.

If and how animals infected with hepatitis viruses develop HCC is not well understood. HCC can be induced in mice, but this requires genetic engineering of the mouse genome, the use of chemotoxic agents, injection of tumour cells or xenograft approaches (summarised in). Both HBV and HCV can cause chronic infections and HCC in chimpanzees, but using chimpanzees as animal models is strongly restricted for ethical reasons. An essential step towards an animal model for oncogenic hepatitis is the identification of a tractable, long-living host with oncogenic mechanisms similar to human HBV and HCV infections.

Receptor usage differs across hepatitis virus homologues

A crucial step during viral infection and a major factor limiting cross-species transmission is the interaction of viral proteins with host cell membrane structures enabling viral attachment and entry into cells. Strikingly, the cellular receptor molecules of HAV and HEV are still unknown. Recent data revealed that contrary to textbook knowledge, TIM1 is not essential for HAV entry into hepatocytes or epithelial cells.

HBV host specificity seems to be determined by a few essential amino acids of the cellular receptor NTCP/Ntcp. Interestingly, human HBV can use the Ntcp of great apes and New World monkeys, but 1 specific amino acid exchange in the Ntcp is needed for a cross-species transmission of human HBV to Old World monkeys. Similarly, 1 amino acid exchange in the woodchuck Ntcp enables an efficient infection with HBV. However, additional unidentified host-specific co-factors might be essential for viral entry and infection. For example, while HDV infection of mouse hepatocytes can be enabled by alteration of just 3 amino acid residues in the murine Ntcp, HBV infection is not possible in these animals. In addition, HBV infection can be enabled in pig and macaque hepatocytes expressing the human Ntcp, but not in similarly engineered hepatocytes of mouse, rat, and dog origin. Strikingly, HBV can readily infect primary hepatocytes of the Asian tree shrew, which implies that both the HBV cellular receptor and potential co-factors are conserved in this animal.

Key point

Some biological properties, such as hepatotropism, receptor usage or mechanisms leading to HCC differ among human hepatitis viruses and ancestral viruses carried by animals other than primates.
For HCV, a complex interaction of various receptor molecules has been described (Table 1). Like HBV, the host range of HCV seems to be limited by its receptors. Interestingly, rodents can be infected with HCV following modifications of either the host or the virus. On the host side, human liver-chimeric mice susceptible to HCV provide promising opportunities to circumvent host specificity. Among non-human hepatitis viruses, entry mechanisms have not been well studied, but the inability of the equine hepacivirus to infect human cells in vitro suggests a high level of host specificity. Recently detected hepaciviruses might provide exciting new opportunities for animal models, as exemplified by a rat hepacivirus capable of infecting immunocompetent laboratory mice and rats. Notably, any tractable animal model of human hepatitis would greatly benefit from susceptibility to human viruses or recombinants thereof, which has rarely been achieved.

Viral immune evasion strategies differ in host specificity

In addition to viral entry, cross-species transmission is limited by host immune responses and the ability of viruses to evade these responses after host switching. Among other mechanisms, HAV and HCV evade the human innate immune response by cleavage of the mitochondrial antiviral signalling protein (MAVS). MAVS is an essential part of interferon pathways induced by viral double-stranded RNA. MAVS is cleaved by the HAV protease precursor 3ABC and the HCV protease NS3/4A at different sites. Strikingly, different levels of host specificity are evident in HAV- and HCV-mediated MAVS cleavage. HAV-mediated MAVS cleavage seems to be rather host-specific based on the inability of human HAV to cleave murine MAVS. The ability of non-human hepatoviruses to cleave cognate and homologous MAVS has not been studied yet and requires further investigation. Interestingly, for hepaciviruses, MAVS cleavage via the NS3/4A protease is conserved among equine, bat, rodent, and primate hepaciviruses, hence reflecting a conserved immune evasion strategy. Strikingly, human MAVS can be cleaved by all of these diverse non-human hepaciviruses, hinting at a less host-specific mechanism compared to HAV.

In conclusion, both virus-receptor interactions and host immune responses can restrict cross-species transmission. Understanding the underlying mechanisms is essential for adapting potential novel animal models to human hepatitis viruses.

Chapter 4: Evolutionary origins of hepatitis viruses

The plethora of newly discovered viruses provides insights into the genealogy of human hepatitis viruses. Here, we discuss hypotheses on the when, the whence, and the where of human hepatitis virus evolution.

The age of human hepatitis viruses is underestimated

For all hepatitis viruses, projections of the most recent common ancestors (MRCA) based on extant viruses yield surprisingly similar results in the range of several thousand years before present. Hypothetically, environmental factors such as the formation of large human populations, rearing of livestock and changes in land use might have contributed to the rise of hepatitis viruses in humans and explain the similarities of calculated MRCA. However, projections of ancient MRCA need to be treated with caution, because of the technical constraints of bioinformatic programmes, recombination events, and an inevitable sampling bias. These limitations are best illustrated by variations of the projected origins of HBV, which vary by several orders of magnitude. In addition, ancient HBV sequences from mummies and human remains revealed that HBV strains closely related to contemporary strains already occurred in the Neolithic, strongly suggesting that HBV is much older than previously thought. The avian-associated hepadnaviruses were dated to have emerged around 6,000 years ago and thus again in a similar range as those yielded by projections of human-associated hepatitis virus MRCA. Again, the limitations of such projections become evident when endogenous hepadnavirus elements were identified in the genomes of birds and reptiles. According to these molecular fossils, hepadnaviruses have must have occurred in the Early Mesozoic > 200 million years ago (mya), predating the rise of mammals (Fig. 3A) and again exceeding the MRCA from bioinformatic calculations by several orders of magnitude.

Ancient origins of non-human hepatitis viruses

Interestingly, hepatitis viruses are found in diverse vertebrate taxa (Fig. 3A), hinting at a long evolutionary association between vertebrates and hepatitis viruses. The common ancestors of vertebrates date back to the Ordovician, approximately 450 mya, from where they diversified into fish, amphibians, reptiles, birds, and mammals. Notably, all of these vertebrate taxa harbour viruses with some genetic relationship to human hepatitis viruses. Remarkably, viruses and viral elements with genetic or structural relationships to hepatoviruses, hepadnaviruses, hepaciviruses, and hepeviruses also exist in arthropods, which are evolutionarily ancient animals that evolved approximately 500 mya. These recent
Hepatitis viruses are much older than previously thought, with hepatitis B virus ancestors predating the rise of mammals.

Key point

Hepatitis viruses are much older than previously thought, with hepatitis B virus ancestors predating the rise of mammals.
taxa suggests that evolution in non-human hosts generally preceded the introduction of hepatitis viruses into the human lineage.

Complex macro-evolutionary events during hepatitis virus evolution

Hypothetically, hepatitis viruses may have accompanied speciation of their hosts. Indeed, similarities in the topologies of relatively old vertebrate lineages such as fish, amphibians and birds and their hepato-, hepadna- and hepaciviruses may hint at virus-host co-speciation. In addition, evidence for co-speciation exists for the New World monkey hepadnaviruses CMHBV and WMHBV. However, cross-species transmission must also have occurred during the evolution of hepatitis viruses. Apart from the zoonotic HEV genotypes, examples of cross-species transmission events include hepatoviruses in marsupials that are of likely rodent origin, horse-associated hepatitis viruses. Apart from the zoonotic HEV genotypes, examples of cross-species transmission events include hepatoviruses in marsupials that are of likely rodent origin, horse-associated hepatitis viruses in dogs and donkeys, gorillas and rat hepeviruses in shrews. In addition, the tentative HBV genotype J likely emerged from a recombination event involving human- and gibbon-associated parental strains, hinting at cross-species viral transmission from gibbons to humans (summarised in). Evidence for cross-species transmission events in hepatitis viruses might indicate that humans or their primate precursors acquired hepatitis viruses from another animal host.

It remains unclear when this hypothetical host switching into primates occurred. Nonetheless, a relatively recent introduction of hepatitis viruses into humans or their primate precursors is strongly supported by the lack of genetic diversity among primate viruses compared to non-primate hepatitis virus homologues, and by the complete absence of human viruses clustering in basal positions in phylogenetic reconstructions (Fig. 4A-E).

Interestingly, the frequency of predicted cross-species transmission events varies among the different hepatitis virus families. While cross-species transmission may be relatively frequent in the enterically transmitted hepato- and hepeviruses, it seems to be comparably infrequent in bloodborne hepadna- and hepaciviruses. Possible explanations for this observation include potentially easier transmission of highly stable enterically transmitted viruses compared to viruses likely transmitted exclusively through contact with body fluids. Additionally, different levels of host specificity due to receptor interactions or viral immune evasion strategies may play a role, as outlined earlier.

The macro-evolutionary patterns of hepatitis virus are thus complex and likely include both co-speciation and cross-species transmission events. Apart from certain HEV strains, no recent zoonotic event is evident in the phylogenetic reconstructions of human hepatitis viruses.

A recent NHP origin of human hepatitis viruses is unlikely

Since genetic relatedness of hosts facilitates cross-species transmission of viruses, one could assume human hepatitis virus origins in NHPs, similar to the origins of HIV in monkeys and apes. Indeed, relatives of HAV, HBV, and HCV are found in NHPs (Fig. 4A). However, for HAV and HCV these detections are sporadic and the viruses are not genetically diversified in NHPs. In addition, hepatitis viruses from NHPs do not share a recent common ancestor with human HCV (Fig. 4C), suggesting a non-recent host switch into NHPs from an unknown source. Among primate HBV, diversified strains from Old World apes are intermixed with human strains and recombination events among these viruses hint at past cross-species transmission. However, the relatively large genetic diversity of hepatitis viruses compared to viruses from Old World apes may hint at an origin of HBV in the human stem lineage. Interestingly, both the WHMBV and the CMHBV surface proteins can use the hNTCP for cell entry, suggesting zoonotic potential of these divergent HBV species from New World monkeys. Nonetheless, the phylogenetic relationships of primate HBV suggest that neither CMHBV, nor WMHBV are direct ancestors of human HBV. Hence, our current knowledge on primate HAV, HBV and HCV diversity does not support a recent origin of human viruses in NHP. Thus, studies investigating hepatitis virus diversity in diverse NHP species and NHP remains are urgently needed.

The complex where and whence of human hepatitis viruses

Small mammals such as bats and rodents are particularly relevant animal reservoirs of human pathogens. Their important role as hosts for zoonotic pathogens has been linked to their species richness, abundance, worldwide distribution, the synanthropic behaviour of some species, the ability of bats to fly, to gregarious populations of some bat species and to unique immunological properties of bats. Interestingly, highly diversified homologues of HAV, HBV, HCV, and HEV were detected in these 2 mammalian orders (Fig. 4), hinting at the importance of small mammals during hepatitis virus evolution.

One can assume that the diversity of viruses is highest in areas of prolonged circulation. Based on this assumption, the origins of human hepatitis viruses can be mainly projected to the Old World (Fig. 5). In addition, diverse viruses assigned to HAV and HBV are found in Old World NHPs which hints at a relatively long association of hepatitis viruses with primates in the Old World.
compared to the New World. However, divergent HBV and HDV genotypes occur in American natives, namely HBV genotypes F and H and HDV genotype 3. Prior to the novel animal delta-like agents, it was not possible to root the phylogenetic tree of HDV. Now, upon inclusion of the novel snake and duck delta-like agents, surprising similarities are found in the sister relationship of the New World HBV and HDV genotypes and Old World genotypes (Fig. 4D). Notably, the existence of these divergent New World genotypes does not necessarily suggest ancient origins of HBV and HDV in the New World, because these genotypes show only limited genetic diversity compared to the Old World genotypes. It seems plausible that the ancestors of New World HBV and HDV genotypes were introduced to the New World during the peopling of the Americas via
the Beringian land bridge approximately 15–23 thousand years ago, before then going extinct in the Old World.

The evolutionary ancestors of human hepatitis viruses are unknown. Presumably, a zoonotic introduction into humans or their primate precursors occurred non-recently in the Old World. Further evidence elucidating the genealogy of human hepatitis viruses can be expected in the coming years.

Concluding remarks
Major progress has been made in the study of human hepatitis viruses during the last 60 years. However, crucial aspects of hepatitis virus evolution and pathogenesis remain poorly understood. At the same time, properties we took for certain have been called into question, such as the predominant association of hepatitis viruses with human hosts, the determinants of hepatotropism and the distinction of typically either enveloped or non-enveloped viruses. In this review, we discussed pathogenesis, evolutionary origins and zoonotic risks of human hepatitis viruses in light of recent discoveries of a plethora of animal homologues.

It is anticipated that the newly discovered animal viruses will help to answer crucial questions regarding the pathogenesis of hepatitis viruses, e.g., whether the existence of quasi-enveloped particles of HAV and HEV is evolutionarily conserved, and which viral determinants are involved in oncogenesis and the potential to cause chronic infections. Although hepatotropism is not fully understood even for the well-investigated HAV, HCV and HEV, the recent detection of HDV-like agents in animals apparently showing both a broad organ tropism and a lack of detectable helper viruses emphasises the need to investigate the bases underlying the unique biological properties of human hepatitis viruses. The evolutionary origins of human hepatitis viruses have remained enigmatic. The recent discoveries of highly diverse animal homologues hint at the evolutionary origins of all human hepatitis viruses in non-human hosts. These origins may be rather ancient, and involve old vertebrate lineages such as reptiles, amphibians, birds, fish and potentially even arthropods (Fig. 6A). Among mammals, small mammals such as bats and rodents harbour particularly diversified hepatitis viruses. One may speculate that arthropod-borne hepatitis virus precursors may have been passed to insectivorous small mammals via the blood-borne route or by ingestion of insects. These hosts hypothetically acted as a point of entry for ancient viruses carried by arthropods or lower vertebrates into mammals. In small mammals, viruses may then have diversified and eventually have been transmitted directly or via intermediate hosts to humans. It is also conceivable that several independent introductions of hepatitis viruses into different vertebrate lineages from arthropods, lower vertebrates and yet unknown sources have occurred (Fig. 6B). Presumably, hepatitis virus evolution combined both

Key point
Animal homologues of hepatitis B and C viruses provide novel opportunities for in vivo studies of viral pathogenesis.
long-term virus-host associations and cross-species transmission events, such as those projected for other viruses.29,34,36,119,203,218 Future discoveries of viruses will identify missing links in hepatitis virus evolution and may identify direct ancestors of human hepatitis viruses.

Finally, there is an increasing drive towards the elimination of viral hepatitis B and C as aspired by the World Health Organization.1 Notably, a prerequisite for the eradication of hepatitis viruses in humans is the absence of an animal reservoir. The discovery of hepatitis virus homologues in non-human hosts might imply that reintroductions into the human population after successful eradication and cessation of vaccination in the case of HBV may be possible. This is best illustrated by the ability of the surface proteins of the bat-borne TBHBV to confer viral entry into human hepatocytes, hinting at the zoonotic potential of this bat hepadnavirus.30

In summary, the last decades have yielded unprecedented insight into the evolution of human hepatitis viruses, refuting their conceptualisation as predominantly human pathogens in all cases. Beyond enhancing our understanding of viral evolution, the diverse animal homologues of human hepatitis viruses allow conceptualisation of new animal models for preclinical testing of urgently needed therapeutics for chronic hepatitis B and C, and for determining the many unknowns of hepatitis virus pathogenesis.

Financial support
This study was supported by a stipend from the German Center for Infection Research to AR and by funding from the German Research Foundation (DFG, DR 810/1-1) to JFD.

Conflict of interest
The authors declare no conflicts of interest that pertain to this work.

Please refer to the accompanying ICMJE disclosure forms for further details.

Acknowledgements
We thank Dieter Glebe for critical reading of the manuscript.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2018.11.010.
References
[1] (WHO) WHO. Global hepatitis report, 2017. https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/
[2] (WHO) WHO. Hepatitis C fact sheet. 2017; http://www.who.int/news-room/fact-sheets/detail/hepatitis-c.
[3] Romero R, Del Ninno E, Rumi M, Russo A, Sangiovanni A, de Franchis R, et al. A 28-year study of the course of hepatitis Delta infection: a risk factor for cirrhosis and hepatocellular carcinoma. Gastroenterology 2009;136:1629–1639.
[4] Krugman S, Giles JP, Hammond J. Infectious hepatitis. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. JAMA 1967;200:365–373.
[5] MacCurn FO. Homologous serum hepatitis. Proc R Soc Med 1946;39:655–657.
[6] Feinstein SM, Kapikian AZ, Purcell RH. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science 1973;182:1026–1028.
[7] Dene DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1970;1:695–698.
[8] Rizzotto M, Canese MG, Gerlin JL, London WT, Syl DL, Purcell RH. Transmission of the hepatitis B virus-associated delta antigen to chimpanzees. J Infect Dis 1980;141:590–602.
[9] Feinstein SM, Kapikian AZ, Purcell RH, Alter HJ, Holland PV. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N Engl J Med 1975;292:767–770.
[10] Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B virus-related serum hepatitis. Science 1989;244:359–362.
[11] Balayan MS, Andjaparidze AG, Savinskaya SS, Ketiladze ES, Braginsky DS, Edelman M, Sze DY, Sarnik C. Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. J Virol 1998;72:9714–9721.
[12] Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, et al. Bats are a major natural reservoir for hepaciviruses and equine pegiviruses in horses and other mammalian species. The Journal of General Virology. 2014;95:1701–1711.
[13] Yang C, Tao L, Zhang R, Wang L, Guo Y, et al. Identification of a novel hepacivirus in domestic cattle from China. J Virol 2015;89:11801–11811.
[14] Drexler JF, Corman VM, Muller MA, Kukushkin AN, Gnilko A, Keenan J, et al. Evidence for novel hepaciviruses in rodents. PLoS Pathog 2013;9:e1003438.
[15] Brenner PD, Dubovoi EV, Simmonds P, Medina JL, Henriquez JA, Mishra N, et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 2012;86:6717–6718.
Review

[51] Woo PC, Lau SK, Teng JL, Tsang AK, Joseph M, Wong EW, et al. New hepatitis E virus genotype in camels, the Middle East. Emerg Infect Dis 2014;20:1044–1048.

[52] Rasche A, Saqib M, Liljander AM, Bornstein S, Zohaib A, Renneker S, et al. Hepatitis E virus infection in dromedaries and North, East Africa, United Arab Emirates, and Pakistan, 1983–2015. Emerg Infect Dis 2016;22:1249–1252.

[53] Raj VS, Smits SL, Pas SD, Provacía LB, Moorman-Roest H, Osterhaus AD, et al. Novel hepatitis E virus in ferrets, the Netherlands. Emerg Infect Dis 2012;18:1369–1370.

[54] Dreider JF, Seelen A, Corman VM, Fumie Tateau A, Cottentot V, Melim Zerbinati R, et al. Bats worldwide carry hepatitis E virus–related viruses that form a putative novel genotype within the family Hepadnaviridae. J Virol 2012;86:9134–9147.

[55] Johnne R, Heckel G, Plenge-Bonig A, Maresch C, Kindler E, Maresch A, et al. Novel hepatitis E virus genotype in Norway rats, Germany. Emerg Infect Dis 2010;16:1452–1455.

[56] Batt S, Yun S, Hedrick R, Winton J. A novel member of the family Apodemus chevrieri (Onchorynchus clarkii). Virus Res 2011;158:116–123.

[57] de Souza WM, Romeiro MF, Sabino-Santos Jr G, Maia FGM, Fumagalli MJ, Modha S, et al. Novel orthohepoviruses in wild rodents from Sao Paulo State, Brazil. Virology 2018;519:12–16.

[58] Wang B, Li W, Zhou JH, Li B, Zhang W, Yang WH, et al. Chevrier's field mouse (Apodemus chevrieri) and Pere David's Vole (Eothenomys melanogaster) in China carry orthohepoviruses that form two putative novel genotypes within the species orthohepavirus C. Virol Sin. 2018;33:44–58.

[59] Payne CJ, Ellis TM, Plant SL, Gregory AR, Wilcox GE. Naked viruses that aren’t always naked: quasi-enveloped agents of acute hepatitis. Annu Rev Virol 2014;1:539–560.

[60] Catanese MT, Uyku K, Kopp M, Edwards TJ, Andrus L, Rice WJ, et al. Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 2013;110:9505–9510.

[61] Tanaka T, Kasi H, Yamashita A, Okuyama-Dobashi K, Yasumoto J, Maekawa S, et al. Hallmarks of hepatitis C virus in equine hepativiruses. J Virol 2014;88:13352–13366.

[62] Lemon SM, Murphy PC, Shields PA, Ping LH, Feinestone SM, Cromeans T, et al. Antigenic and genetic variation in cytopathic hepatitis A virus variants arising during persistent infection: evidence for genetic recombination. J Virol 1991;65:2056–2065.

[63] Chen X, Zhang Q, He C, Zhang L, Li J, Zhang W, et al. Recombination and natural selection in hepatitis E virus genotypes. J Med Virol 2012;84:1396–1407.

[64] Lescaume S, Littlejohn M, Aziz MN, Yuen L. Possible origins and evolution of the hepatitis B virus (HBV). Semin Cancer Biol 2013;23:561–575.

[65] Kalinina O, Norder H, Mukomolov S, Magnus I. A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. J Virol 2002;76:4034–4043.

[66] Lin CC, Lee CC, Lin SH, Huang PJ, Li HP, Chang YS, et al. RNA recombination in Hepatitis delta virus: identification of a novel naturally occurring recombinant. J Microbiol Immunol Infect 2017;50:771–780.

[67] Sy BT, Nguyen HM, Toan NL, Song LH, Tong HV, Wolboldt C, et al. Identification of a natural intergenotypic recombinant hepatitis delta virus genotype 1 and 2 in Vietnamese HBsAg-positive patients. J Virol Hepat 2015;22:55–63.

[68] Yang J, Xi Q, Deng R, Wang J, Hou J, Wang X. Identification of interspecies recombination among hepadnaviruses infecting cross–species hosts. J Med Virol 2007;79:1741–1750.

[69] Theze J, Lowes S, Parker J, Pybus OG. Evolutionary and phylogenetic analysis of the hepaciviruses and pegiviruses, Genome Biol Evol 2015;7:2996–3008.

[70] Kelly AG, Netzelr NE, White PA. Ancient recombination events and the evolution of hepatitis E virus. Vet Microbiol 1999;68:119–125.

[71] Webster DP, Klenerman P, Dusheiko GM. Hepatitis C. Lancet 2002;360:1112–1125.

[72] Johne R, Heckel G, Langer G, Plenge-Bonig A, Kindler E, Maresch C, et al. Molecular epidemiology of gibbon hepatitis B virus infection initiates with a reassortment event. Int J Womens Health 2014;6:605–611.

[73] Kelly AG. Hepatitis E: Reassortment and natural selection. World J Virol 2015;4:313–322.

[74] Polson AH, Bass BL, Casey JL. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 1999;390:454–456.

[75] Otto JC, Casey JL. The hepatitis delta virus large antigen is farnesylated both in vitro and in animal cells. J Biol Chem 1996;271:4569–4572.

[76] Geoghegan JL, Senior AM, Di Giannaforte F, Holmes EC. Virological factors that increase the transmissibility of emerging human viruses. Proc Natl Acad Sci U S A 2016;113:4170–4175.

[77] Hughes SA, Wedemeyer H, Harrison PM. Hepatitis delta virus. Lancet 2011;378:73–85.

[78] Robertson HD. How did replicating and coding RNAs first get together? Science 1996;274:64–67.

[79] Taylor JM. Host RNA circles and the origin of hepatitis delta virus. World J Gastroenterol 2014;20:2971–2978.

[80] Cunha T, Tavares JP, Gudima S. Hepatitis delta virus: a fascinating and neglected pathogen. World J Virol 2015;4:313–322.

[81] Noppornpanth S, Haagmans BL, Bhattarakosol P, Ratanakorn P, Niesters HG, Osterhaus AD, et al. Identification of a natural intergenotypic recombinant hepatitis delta virus genotype 1 and 2 in Vietnamese HBsAg-positive patients. J Virol Hepat 2015;22:55–63.

[82] Schulze A, Grippon P, Urban S. Hepatitis B virus infection initiates with a large surface protein–dependent binding to hepatic sulfate proteoglycans. Hepatology 2007;46:1759–1768.

[83] Noppornpanth S, Haagmans BL, Bhattarakosol P, Ratanakorn P, Niesters HG, Osterhaus AD, et al. Molecular epidemiology of gibbon hepatitis B virus infection initiates with a reassortment event. Int J Womens Health 2014;6:605–611.

[84] Noppornpanth S, Haagmans BL, Bhattarakosol P, Ratanakorn P, Niesters HG, Osterhaus AD, et al. Molecular epidemiology of gibbon hepatitis B virus transmission. J Gen Virol 2003;84:147–155.

[85] Catalano R, Millman L. Vertical transmission of woodchuck hepatitis virus. J Med Virol 1988;26:233–242.

[86] Simmonds P. The origin of hepatitis C virus. Curr TopMicrobiol Immunol 2013;369:1–15.

[87] Schmid J, Rasche A, Ebner G, Jaworsowski L, Page RA, Corman VM, et al. Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting landscapes with various degrees of human environmental change. Oecologia 2018;188:290–302.

[88] Pfaender S, Cavalleri JM, Wang S, Doerbeck J, Campagna B, Brown RJ, et al. Clinical course of infection and viral tissue tropism of hepatitis C
hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018;67:1560–1599.

Kamar N, Izopet J, Dalton HR. Chronic hepatitis e virus infection and treatment. J Clin Exp Hepatol 2013;3:134–140.

Westbrook RH, Dushenko G. Natural history of hepatitis C. J Hepatol 2014;61:S55–S64.

Kamar N, Izopet J, Pavlo N, Aggarwal R, Labrique A, Wedemeyer H, et al. Hepatitis E virus infection. Nat Rev Dis Primers 2017;3:17086.

Hu X, Margolis HS, Purcell RH, Ebert J, Robertson BH. Identification of hepatitis B virus indigenous to chimpanzees. Proc Natl Acad Sci U S A 2000;97:1661–1664.

Scheel TK, Kapoor A, Nishiuchi E, Brock KV, Yu Y, Andrus L, et al. Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc Natl Acad Sci U S A 2015;112:2192–2197.

Cao D, Cao QM, Subramaniam S, Yugo DM, Heffron CL, Rogers AJ, et al. Pig model mimicking chronic hepatitis E virus infection in immuno-compromised patients to assess immune correlates during chronicity. Proc Natl Acad Sci U S A 2017;114:6914–6923.

Global Burden of Disease Liver Cancer C, Akinyemiju T, Abraha S, Ahmed M, Alam N, Alemayohu MA, et al. The Burden of Primary Liver Cancer and Underlying Etologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol 2017;3:1683–1691.

Lok AS. Chronic hepatitis B. N Engl J Med 2002;346:1682–1683.

Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1.

Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology 2015;479–480:672–686.

Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012;44:765–769.

Zhao L, Liu X, Yan GX, Li WY, Zeng X, Yang Y, et al. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat Commun 2016;7:12992.

Hansen LJ, Tennant BC, Seeger C, Ganem D. Differential activation of myc gene family members in hepatocarcinogenesis by closely related hepatitis B viruses. Mol Cell Biol 1993;13:659–667.

Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Nat Rev Gastroenterol Hepatol 2018;15:536–554.

Decorsiere A, Mueller H, van Breugel PC, Abdul F, Gerossi L, Beran RK, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 2016;531:386–389.

Trivedi S, Murthy S, Sharma H, Hartlage AS, Kumar A, Gadi SV, et al. Viral persistence, liver disease, and host response in a hepatitis C-like virus rat model. Hepatology 2017.

Wilkinson GS, South JM. Life history, ecology and longevity in bats. Proc Biol Sci R Soc 2014;281:20141122.

Wang LF, Walker PJ, Poon LL. Mass extinctions, biodiversity and human health. PLoS One 2012;7:e42481.

Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS, Kim JW, et al. Human viral oncogenesis: a cancer hallmark analysis. Cell Host Microbe 2014;15:266–282.

Wang LF, Walker PJ. Mass extinctions, biodiversity and human health. PLoS One 2012;7:e42481.
[252] Ramulu HG, Raoult D, Pontarotti P. The rhizome of life: what about metazoa? Front Cell Infect Microbiol 2012;2:50.

[253] Sridhar S, Yip CCY, Wu S, Cai J, Zhang AJ, Leung KH, et al. Rat Hepatitis E Virus as Cause of Persistent Hepatitis after Liver Transplant. Emerging Infect Dis 2018;24:2241–2250.

[254] Hiller T, Rasche A, Brändel SD, König A, Jeworowski L, Teague O'Mara M, et al. Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. EcoHealth 2019. https://doi.org/10.1007/s10393-018-1387-5, in press.