Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis

Xiaofei Gao1,†, Qian Cui1†, Xiang Shi1,2†, Jing Su1, Zhihang Peng1, Xin Chen1, Na Lei1, Keqin Ding1, Lu Wang3, Rongbin Yu1* and Ning Wang3*

Abstract

Background: Blood transfusion is one of the most common transmission pathways of hepatitis C virus (HCV). This paper aims to provide a comprehensive and reliable tabulation of available data on the epidemiological characteristics and risk factors for HCV infection among blood donors in Chinese mainland, so as to help make prevention strategies and guide further research.

Methods: A systematic review was constructed based on the computerized literature database. Infection rates and 95% confidence intervals (95% CI) were calculated using the approximate normal distribution model. Odds ratios and 95% CI were calculated by fixed or random effects models. Data manipulation and statistical analyses were performed using STATA 10.0 and ArcGIS 9.3 was used for map construction.

Results: Two hundred and sixty-five studies met our inclusion criteria. The pooled prevalence of HCV infection among blood donors in Chinese mainland was 8.68% (95% CI: 8.01%-9.39%), and the epidemic was severer in North and Central China, especially in Henan and Hebei. While a significant lower rate was found in Yunnan. Notably, before 1998 the pooled prevalence of HCV infection was 12.87% (95%CI: 11.25%-14.56%) among blood donors, but decreased to 1.71% (95%CI: 1.43%-1.99%) after 1998. No significant difference was found in HCV infection rates between male and female blood donors, or among different blood type donors. The prevalence of HCV infection was found to increase with age. During 1994-1995, the prevalence rate reached the highest with a percentage of 15.78% (95%CI: 12.21%-19.75%), and showed a decreasing trend in the following years. A significant difference was found among groups with different blood donation types, Plasma donors had a relatively higher prevalence than whole blood donors of HCV infection (33.95% vs 7.9%).

Conclusions: The prevalence of HCV infection has rapidly decreased since 1998 and kept a low level in recent years, but some provinces showed relatively higher prevalence than the general population. It is urgent to make efficient measures to prevent HCV secondary transmission and control chronic progress, and the key to reduce the HCV incidence among blood donors is to encourage true voluntary blood donors, strictly implement blood donation law, and avoid cross-infection.

Keywords: hepatitis C virus infection, blood donors, meta-analysis
Background
Chronic infection with hepatitis C virus (HCV) is a major and growing public health problem, which could easily lead to chronic liver disease, cirrhosis and even hepatocellular carcinoma [1]. The prevention and control of HCV infection showed complexity and challenge in describing geographic distribution of HCV infection, determining its associated risk factors, and evaluating cofactors that accelerate hepatitis C progression. Estimated 170 million persons are infected with HCV worldwide and more than 3.5 million new sufferers occurred annually [2]. According to the national epidemiological survey of viral hepatitis from 1992 to 1995, average anti-HCV positive rate was 3.2% in the general Chinese population, amounting to more than 30 million infected individuals [3].

The rapid global spread of HCV is believed to have occurred primarily because of efficient transmission through blood transfusion and parenteral exposures with contaminated equipment [4]. Blood donors, particularly those that rely on blood donation as a source of income, had a very high prevalence of HCV infection [5]. Recent studies have reported that the current residual risk of transfusion-transmitted HCV infection in China is about 1 in 40,000-60,000 donations, higher than that found in more developed countries [6]. With the implementation of blood donation law in 1998, many blood centers relied on other methods to motivate donors, mostly through employer-organized blood collection, but these donors may not have been true volunteers, as they may be coerced by the employer to some extent. In recent years, the true voluntary donors are gradually becoming the main source of blood donation in many blood centers in China [7]. Among paid blood donors, the HCV prevalence has reached 5.7% or higher [8]. However, among employer-organized donors and volunteer donors, the HCV prevalence was reported at lower level between 1.1-2.3%, and 0.46%, respectively [7,9].

A large amount of studies have been done in the last decade on HCV infection and its associated risk factors among blood donors. However, many of them drew incompatible or even contradictory conclusion and the utilization of these statistics are therefore limited. This paper reviews on the available studies so as to provide comprehensive and reliable epidemiological characteristics of HCV infection among blood donors in China, which is speculated to help make prevention strategies and guide further research.

Methods

Literature search
Literatures on the HCV prevalence among blood donors in China were acquired through searching PubMed, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang Database from 1990 to 2010. In order to search and include related studies as many as possible, we used combinations of various key words, including hepatitis C virus or HCV, blood donors, and China or Chinese Mainland.

Selection and data abstraction
All the potentially relevant papers were reviewed independently by two investigators through assessing the eligibility of each article and abstracting data with standardized data-abstraction forms. Disagreements were resolved through discussion. The following information, though some studies did not contain all of them, were extracted from the literatures: first author’s name, publication date, study period, province of sample, blood donor recruitment methods (paid blood donors, employer-organized donors, or true volunteer donors), type of blood donation (categorized as plasma donors and whole blood donors), sampling size, the number of subjects infected with HCV, HBV, and HIV or co-infected with two or three of these viruses, gender, age (18-30 years and 31-60 years), and blood type, etc.

The inclusion criteria were: (1) studies in the mentioned four databases with full text; (2) studies using anti-HCV as a detection index of HCV. The exclusion criteria were: (1) studies without specific sample origins; (2) studies with overlapping time intervals of sample collection from the same origin; (3) studies with a sample size less than 50; (4) studies that failed to present data clearly enough or with obviously paradoxical data.

Statistical analysis
In our review, random effect models were used for meta-analysis, considering the possibility of significant heterogeneity between studies which was tested with the Q test ($P < 0.10$ was considered indicative of statistically significant heterogeneity) and the I^2 statistic (values of 25%, 50% and 75% are considered to represent low, medium and high heterogeneity respectively). Freeman-Tukey arcsin transform to stabilize variances, and after the meta-analysis, investigators can transform the summary estimate and the CI boundaries back to proportions using sin function, the specific conversion details can be seen in reference [10]. Stratified analyses were performed by study locations, gender, age, study period, blood donor recruitment methods, type of blood donation, and blood type. The Z or χ^2 test was used to assess the differences among the subgroups. Data manipulation and statistical analyses were undertaken using the Statistical Software Package (STATA) 10.0 (STATA Corporation, College Station, TX, USA, 2009), and ArcGIS 9.3.
(ESRI, Redlands, California, USA) was used for map construction.

Results
According to the literature search strategies, 726 studies (90 studies in PubMed, 636 studies in CNKI and Wanfang database) were identified, but 461 studies were excluded based on the inclusion and exclusion criteria (Figure 1). There were 11 studies in English [8,9,11-19] and 254 studies in Chinese [20-273] of the finally adopted 265 studies.

General information of samples
A total of 4519313 blood donors between the ages of 18 to 60 were included, with a wide range of blood donation frequency from 1 to more than 50 times. Some donors had a duration (the period from the first blood donation to when selected in original research) longer than 15 years. The majority of blood donors were men, approximately 57.72% (101319/175540), while women accounted for 42.28% (74221/175540). The occupation of blood donors was widely distributed. Voluntary blood donors mainly came from college students, health care providers, officials, and military from Chinese People’s Liberation Army (PLA), while paid blood donors were mostly from peasants, low-wage workers, and unemployed individuals.

The blood samples mainly came from blood banks, hospitals, and Centers for Disease Control and Prevention (CDC). The studies of our review involved in the following regions of 29 provinces and cities: Central China (Hunan, Hubei, Henan), North China (Beijing,
Hebei, Shanxi, Tianjin, Inner Mongolia), South China (Guangdong, Guangxi), Northwest China (Shanxi, Gansu, Ningxia, Qinghai, Xinjiang), Northeast China (Liaoning, Jilin, Heilongjiang), Southwest China (Yunnan, Guizhou, Sichuan, Chongqing), East China (Shandong, Jiangsu, Anhui, Zhejiang, Fujian, Shanghai, Jiangxi).

Prevalence of HCV infection among blood donors in Chinese mainland

Region
As seen in Table 1 and Figure 2, 3, the pooled prevalence of HCV infection among blood donors in Chinese mainland from 1990 to 2010 was 8.68% (95% CI: 8.01%-9.39%). Dramatic geographic difference in pooled HCV infection rates among blood donors was observed. The epidemic was severest in North and Central China, where the HCV infection rate were 13.45% (95%CI: 11.41%-15.67%) and 14.74% (95%CI: 11.06%-18.80%), respectively. The lowest prevalence was in South China with the rate of 2.88% (95% CI: 2.19%-3.64%). Before 1998, the pooled prevalence of HCV infection was 12.87% (95% CI: 11.25%-14.56%) among blood donors, with the highest rates found in Henan (35.04%, 95% CI: 23.62%-47.41%), then Hebei (29.26%, 95% CI: 19.63%-39.98%), and then the pooled

Table 1 Prevalence of HCV infection among blood donors at different regions

Study location	Province of study	Totalb	Before 1998	After 1998			
		No	Prevalence % (95%CI)	No	Prevalence % (95%CI)	No	Prevalence % (95%CI)
East China							
Anhui		21	11.25(6.56,17.04)	19	12.91(8.31,18.34)	2	0.90(0.01,3.14)
Fujian		4	3.38(2.19,4.83)	4	3.38(2.19,4.83)		
Jiangsu		21	11.41(6.12,18.07)	13	14.84(8.73,22.23)	7	3.83(0.75,9.13)
Jiangxi		6	5.65(1.52,12.21)	4	5.15(2.31,9.07)	1	0.38(0.06,2.05)
Shandong		27	6.34(5.00,7.80)	17	8.37(5.84,11.31)	7	1.64(1.26,2.07)
Shanghai		4	2.59(0.38,6.66)	4	2.59(0.38,6.66)		
Zhejiang		12	2.02(1.06,3.28)	8	3.08(1.40,5.42)	4	0.79(0.30,1.51)
Beijing		9	2.95(1.78,4.41)	7	3.53(1.84,5.74)		
North China							
Hebei		19	26.92(15.20,40.57)	18	29.26(19.63,39.98)	1	0.41(0.39,0.43)
Shanxi		9	14.63(8.73,21.74)	5	24.17(18.14,30.77)	2	0.41(0.06,2.31)
Tianjin		5	2.35(0.98,4.33)	2	1.97(0.32,5.02)	2	
IMa		4	9.36(3.00,18.76)	4	9.36(3.00,18.76)		
South China	Guangdong	13	1.05(0.65,1.54)	5	1.41(0.87,2.07)	8	0.91(0.49,1.47)
	Guangxi	8	9.75(6.94,12.98)	5	17.49(11.71,44.67)	2	3.31(0.08,10.90)
	Hubei	11	10.81(5.11,17.61)	8	13.06(6.41,21.61)	3	5.54(0.63,14.84)
Central China	Hunan	13	8.01(3.22,14.70)	8	17.11(9.81,25.95)	3	0.55(0.35,0.81)
	Henan	26	20.63(12.98,29.53)	16	35.04(23.62,47.41)	9	3.83(1.75,6.66)
Northwest	Shanxi	6	11.25(8.81,19.91)	4	17.42(10.80,28.61)	1	1.99(0.95,2.03)
	Ningxia	2	0.69(0.10,1.78)	1	1.18(0.03,3.35)	1	0.32(0.09,0.73)
	Qinghai	3	2.60(0.10,8.34)	2	3.59(0.00,13.69)	1	1.00(0.51,1.91)
	Gansu	6	2.60(0.44,4.19)	3	23.32(3.62,53.16)	2	0.83(0.29,1.64)
	Xinjiang	5	14.52(3.01,32.54)	4	19.67(7.39,43.83)	1	1.45(0.31,1.58)
Southwest	Sichuan	10	11.31(3.19,23.49)	8	15.60(7.61,25.77)	2	0.71(0.18,2.34)
	Yunnan	1	0.23(0.01,2.20)	1	0.23(0.01,0.29)		
	Guizhou	9	5.00(1.76,9.78)	6	6.91(2.88,12.51)	3	1.71(0.43,3.81)
Northeast	Liaoning	5	1.33(0.50,2.54)	2	2.22(0.19,6.36)	3	0.97(0.18,2.57)
	Heilongjiang	4	5.84(3.87,8.18)	5	5.00(3.29,7.06)	1	11.82(29.15,89)
	Jilin	5	5.38(0.26,9.69)	3	7.19(1.08,18.03)	2	3.59(0.17,16.81)
Pooled		268	8.68(8.01,9.39)	189	12.87(11.25,14.56)	69	1.71(1.43,1.99)

a. IM: Inner Mongolia.
b. When calculating the pooled prevalence rate either before or after 1998 respectively, the studies that spanned 1998 were excluded. In that case, number of total literatures is bigger than the sum of literature number before 1998 and after 1998.
prevalence decreased to 1.71% (95% CI: 1.43%-1.99%) after 1998.

Gender

A total of 79 studies have investigated the association between the prevalence rate of HCV infection and gender among blood donors. HCV infection rate of male blood donors was 9.87% (95% CI: 8.26%-11.63%), while female blood donors had a rate of 9.78% (95% CI: 7.88%-11.89%). There was no significant statistical difference between males and females (Z = 0.62, \(P = 0.54 \)).

Age

There were 30 studies indicating the association between the prevalence rate of HCV infection and age among blood donors. In most studies blood donors were divided into two groups by the age of 30 years old. HCV infection rate of individuals aged 18-30 was 4.91% (95% CI: 3.89%-6.05%), while the prevalence rate of individuals aged 31-60 was 8.99% (95% CI: 6.86%-11.37%), and there was significant statistical difference between two groups (Z = 6.60, \(P < 0.01 \)).

Time

As presented in Table 2, 179 studies were divided into 9 groups according to the study period, and Figure 4 was drawn on the prevalence of HCV in each group. During 1994-1995, the prevalence rate reached the highest, which was 15.78% (95% CI: 12.21%-19.75%). Since 1995, the rates showed a decreasing trend among blood donors, even as low as 0.36% (95% CI: 0.09%-0.81%) during 2006-2010.

Blood type

As displayed in Table 3, among blood type A, B, AB, and O donors, the HCV infection rates were 8.18% (95% CI: 4.55%-12.77%), 7.58% (95% CI: 4.26%-11.73%), 8.15% (95% CI: 4.64%-12.54%), and 7.85% (95% CI: 4.64%-11.82%), respectively. There was no significant statistical difference among four blood types (\(\chi^2 = 4.97, P = 0.17 \)).
Donation type
As seen in Table 4, HCV infection rate of voluntary blood donors and paid blood donors were 0.97% (95% CI: 0.79%-1.16%) and 15.53% (95% CI: 13.28%-17.91%) respectively. There was significant statistical difference ($Z = 3.2565, P < 0.01$). The prevalence of HCV infection differed significantly ($Z = 14.222, P < 0.01$) among plasma donors and whole blood donors, which was 7.90% (95%CI: 6.44%-9.51%) and 33.95% (95%CI: 29.80%-38.17%), respectively.

Table 2 Prevalence of HCV infection among blood donors at different study period

Study period	No. of studies	Prevalence of HCV % (95%CI)	Heterogeneity	Model
1990-1991	8	13.42(5.79, 23.62)	98.90%	0.00 REM
1992-1993	48	13.66(9.93,17.87)	99.07%	0.00 REM
1994-1995	57	15.78(12.21,19.75)	99.80%	0.00 REM
1996-1997	23	7.34(5.40,9.54)	99.30%	0.00 REM
1998-1999	13	3.97(2.67,5.54)	98.50%	0.00 REM
2000-2001	7	4.45(0.48,12.08)	99.90%	0.00 REM
2002-2003	14	2.34(1.17,3.87)	99.30%	0.00 REM
2004-2005	4	1.65(0.56,3.29)	97.40%	0.00 REM
2006-2010	5	0.36(0.09,0.81)	99.30%	0.00 REM

REM: random effect model.
Discussion

As a blood-borne pathogen, HCV virus was frequently detected among paid blood donors in China in the early 1990s [9]. To improve the safety of blood supply and reduce the risk of transfusion-transmitted diseases, the Chinese government has outlawed the use of paid blood donors since 1998. As a result, Chinese blood banks now rely on various other methods to recruit blood donors, mostly on employer-organized donors and true voluntary donors [274]. This transition in the blood donor recruitment methods has been associated with a gradual decrease in the prevalence of anti-HCV among donors. In addition, an HCV RNA screening strategy was implemented in 2010 in all Chinese blood banks, which has also contributed to the decline of HCV prevalence rate. This review shows that the pooled prevalence of HCV infection among blood donors was 8.68% (95% CI: 8.01% to 9.39%) from 1990 to 2010, significantly higher than the estimated 3.2% in the general population of China [1]. It is noteworthy that before 1998 the pooled prevalence of HCV infection was 12.87% among blood donors, but dramatically decreased to 1.71% after 1998. In economically developed regions, the decreasing trend was more prominent due to effective control measures.

Our results showed significant geographic difference of the prevalence of anti-HCV. Compared with other regions, North and Central China had relatively higher anti-HCV positive rates among blood donors, accounting for 13.45% and 14.74%. Meanwhile, the lowest epidemic rate was found in South China with a percentage of 2.88%. Notably, during the period through 1990 and 1998, the prevalence rates were commonly at high level among different regions of China. Especially in Henan and Hebei, the rates even reached 35.04% and 29.26% respectively. After 1998, the general epidemic rates have rapidly decreased, benefited from the government’s prohibition of using paid blood donors. However, the reduction of HCV prevalence was not that obvious in North and Central China. Possible reasons for this lack of reduction may include larger population migration, poor economic conditions, higher HCV infection rates in the general populations, or limited sampling.

According to the national epidemiological survey of viral hepatitis from 1992 to 1995, HCV infection rate among the general population increased gradually with age, but the prevalence rate had no significant difference between male and female [275], which is consistent with our findings that significant difference was found between two age groups but not between gender. The findings indicated that both male and female had the same susceptibility to HCV infection, while the older had increased chance of being HCV-infected. Since the paid donors were usually driven by economic benefits, the association of age with HCV infection may also be explained by increased exposure chances with a greater number of instances of blood donation times or longer duration of blood donation. It is early for a conclusive explanation until systematic investigations are performed and causal relation underneath is revealed [35,61,65,153,179].

By and large, the prevalence rate of HCV infection showed a rising trend among blood donors from 1990 to 1995, but significantly decreased from 1996 to 2010 (Figure 3). Our results revealed an outbreak of HCV infection in blood donors around 1995. As recalled, lots of plasma collection stations were established in different regions before 1995. However, the majority of them were illegal and severe cross-contamination on plasmapheresis frequently occurred due to those commonly existed nonstandard operations, such as neglecting sterilization, lacking accurate detection method of anti-HCV, improperly usage of non-disposable needles. In some places, the prevalence rate of HCV was reported as high as 80% [275]. Given the urgency of the situation, in

Donation type	No. of studies	Prevalence of HCV% (95%CI)	Heterogeneity	Model
voluntary donation	73	0.97(0.79,1.16)	99.60%	REM
paid donation	89	15.53(13.28,17.91)	99.70%	REM
whole blood donors	53	7.90(6.44,9.51)	98.50%	REM
plasma donors	64	33.95(29.80,38.17)	99.40%	REM

REM: random effect model.
1995 the government implemented strict management on blood stations. Besides, the detection technology of anti-HCV got greatly improved with better sensitivity and specificity in the following years [276]. With the implementation of Blood Donation Law of China in 1998, real voluntary blood donors replaced paid donors and became a steady and major source of the blood supply. All these measures lead to the great achievements in control and prevention of HCV infection. Nowadays reports of HCV infection among the true voluntary blood donors could rarely been seen in China.

Our study showed that among blood type A, B, AB, and O donors, the prevalence of HCV infection were 8.18%, 7.58%, 8.15%, and 7.85%, respectively. No significant difference was found between blood types and the epidemic rate of HCV, indicating that blood type is not associated with susceptibility to HCV infection. This finding was consistent with the studies of Lu KQ [52], Zhou ZD [119], and Pu SF [269]. While it was a different story in the study of Ye C [239], in which type O blood donors were reported to have a higher infection rate, and type AB showed relatively lower rate. Uneven distribution with blood type was also seen in Rui ZL’s study, in which type A blood donors were reported to have a higher rate [131]. However, the mechanism between blood type and HCV infection remained undefined, which may be related to red cell immune adherence function among persons with different blood types, but it need further study [131].

Numerous research has showed that paid blood donors are more likely to be infected with HCV than both employer-organized donors or true voluntary donors. Our results confirmed that HCV infection rate in paid blood donors was significantly higher than in voluntary blood donors (15.53% vs 0.97%). Those paid donors who were attracted by high compensation and chose to donate blood in illegal blood stations, also risked a greater risk of cross-contamination. The prevalence rate among plasma donors was significantly higher than among whole blood donors (33.95% vs 7.90%), possibly due to cross-contamination of blood collection equipment by HCV positive plasma donors [77]. The elimination of paid plasma and whole blood donation could contribute to a reduction in HCV infection among blood donors.

Several limitations in our study need to be addressed. First of all, the studies were observational and blood donors were not randomly chosen. Therefore selection bias and confounding seems inevitable. Secondly, many of our data were extracted from studies written in Chinese, which makes it difficult for non-Chinese reviewers, editors, and readers to trace back to the original materials. Thirdly, our ability to assess study quality was limited by the fact that many studies failed to offer detailed information of selected subjects or valid data on important factors. Besides, as with all meta-analyses, this study has potential limitation of publication bias. Negative trials are sometimes less likely to be published. However, we have confidence on our results since the included literatures were mostly from multi-resources and had large sample size, which should reduce publication bias to some extent.

Conclusions

This meta-analysis provides a comprehensive and reliable data on the prevalence and trend of HCV infection among blood donors. The pooled epidemic rate of HCV infection has rapidly decreased after 1998, though some provinces still showed relatively high prevalence. Achievements and lessons in previous work indicated that long-term, comprehensive and effective interventions and preventing are urgently needed. In particular, implementing and enforcing the “Blood Donation Law” and promoting HCV screening, diagnosis, and treatment among blood donors are very important measures to control the transmission of HCV infection. In addition, the key to reduce the incidence of HCV infection among blood donors is to encourage true voluntary blood donation, pay more attention to exclude those high-risk persons from the volunteers, and eliminate cross-infection completely when collecting single plasma.

Acknowledgements

This work was supported by the National Mega-project of Science Research (2008ZX10002-013 and 2009ZX1004-904). We appreciate Katie Reilly for revising the paper.

Author details

1Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, PR China. 2The First Clinical Medical College of Nanjing University, Nanjing 210029, PR China.

Authors’ contributions

XFG, QC, XS, JS and RBY were involved in the design, literature searching, assessment of study quality, and drafted the manuscript. JS and RBY revised critically the manuscript. XFG, QC, and ZHP performed statistical analysis and critically revised the manuscript. KQD, NL and XC constructed the maps. LW and NW critically revised original study design and the manuscript. All the authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 6 October 2010 Accepted: 9 April 2011 Published: 9 April 2011

References

1. Alter MJ: Epidemiology of hepatitis C virus infection. World J Gastroenterol 2007, 13:2436-41.

2. Perz JF, Farrington LA, Pecoraro C, Hutin YJF, Armstrong GL: Estimated global prevalence of hepatitis C Virus infection. 42nd Annual Meeting of the Infectious Diseases Society of America Boston, MA USA; 2004.
17. Wang Y, Chen HS, Fan MH, Liu HL, An P, Sawada N, Tanaka T, Tsuda F, Chen YD, Liu MY, Yu WL, Li JQ, Peng M, Dai Q, Liu X, Zhou ZQ: Public health works: Blood donation in urban communities. Transfusion 2007, 47:529-39.

18. Shang G, Yan Y, Yang B, Shao C, Wang F, Li Q, Seed CR: Epidemiology of hepatitis C virus. BMC Infectious Diseases 2007, 7:210-6.

19. Freeman MF, Tukey JW: Transformations related to the angular and square root. Ann Math Stat 1950, 21:607-611.

20. Qian HZ, Vermund SH, Kaslow RA, Coffey CS, Charnell E, Yang Z, Qiao X, Zhang Y, Shi X, Jiang J, Zhao Y, Wang N: Co-infection with HIV and hepatitis C virus in former plasma blood donors challenges for patient care in rural China. AIDS 2006, 20:1451-2.

21. Adams V, Erwin K, Le PV: Public health works: Blood donation in urban China. China Social Science & Medicine 2009, 68:410-418.

22. HZ Q, Yang Z, Shi X: Hepatitis C virus infection in former commercial plasma blood donors in rural Shanxi province, China. The China Integrated Programs for Research on AIDS. J Infect Dis 2005, 192:1912-7.

23. Chen YT, Jiang JJ: Residual risk of transfusion-transmitted viral infections in Shenzhen, China. Transfusion Medicine 2005, 15:23-37.

24. Shang G, Yan Y, Yang B, Shao C, Wang F, Li Q, Seed CR: A survey on HCV, ALT, HBsAg among 8745 volunteer blood donors in Hadian City. Chinese Journal of Health Laboratory Investigation 2005, 12:23-24, [in Chinese].

25. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].

26. Shang G, Yan Y, Yang B, Shao C, Wang F, Li Q, Seed CR: Two HBV DNA +/HBsAg-blood donors identified by HBV NAT in Shenzhen, China. Transfus Apher Sci 2009, 41:3-7.

27. Han S, Ren FR, Zhao HY, Zhang YZ, Wen GX, Yao FZ, Gao GJ, Yan LX, Jiang CF, Bai XH, Tiemuer MH, Tu YQ, Zhuo Z, Huang YR, Liu CL: Hepatitis C virus infection in former plasma blood donors challenge for patient care in rural China. AIDS 2006, 20:1451-2.

28. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].

29. Mi HW, Pan N, Guo XX, Lai ZW: Research on hepatitis C virus infection in healthy population. Pop Health Control 2000, 5:6-8, [in Chinese].

30. Hui TH: The investigation of anti-HCV infection among blood donors in Tianjin. Transfusion Medicine 1999, 12:49-50, [in Chinese].

31. Fang SC: Serological detection and analysis on chronic liver disease and anti-HCV among blood donors. Occupational and Health 1995, 5:36-37, [in Chinese].

32. Lu YF: Anti-HCV positive rate among blood donors at Ningxia Blood Transfusion Center. Ningxia Medical Journal 1996, 18:45, [in Chinese].

33. Hui TH: Analysis of the result of anti-HCV test among blood donors in Yinchuan. Transfusion Medicine 2007, 20:233-234, [in Chinese].

34. Tao QM, Wang Y, Wang H, Chen WR, Sun Y, Meng Q: A survey of 391 cases of serum anti-HCV in different population. Journal of Beijing Medical University 1990, 22:3-5, [in Chinese].

35. Hui TH: Analysis of the result of anti-HCV test among blood donors in Yinchuan. Transfusion Medicine 2007, 20:233-234, [in Chinese].

36. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].

37. Mi HW, Pan N, Guo XX, Lai ZW: Research on hepatitis C virus infection in healthy population. Pop Health Control 2000, 5:6-8, [in Chinese].

38. Hui TH: The investigation of anti-HCV infection among blood donors in Tianjin. Transfusion Medicine 1999, 12:49-50, [in Chinese].

39. Fang SC: Serological detection and analysis on chronic liver disease and anti-HCV among blood donors. Occupational and Health 1995, 5:36-37, [in Chinese].

40. Lu YF: Anti-HCV positive rate among blood donors at Ningxia Blood Transfusion Center. Ningxia Medical Journal 1996, 18:45, [in Chinese].

41. Hui TH: Analysis of the result of anti-HCV test among blood donors in Yinchuan. Transfusion Medicine 2007, 20:233-234, [in Chinese].

42. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].

43. Mi HW, Pan N, Guo XX, Lai ZW: Research on hepatitis C virus infection in healthy population. Pop Health Control 2000, 5:6-8, [in Chinese].

44. Hui TH: The investigation of anti-HCV infection among blood donors in Tianjin. Transfusion Medicine 1999, 12:49-50, [in Chinese].

45. Fang SC: Serological detection and analysis on chronic liver disease and anti-HCV among blood donors. Occupational and Health 1995, 5:36-37, [in Chinese].

46. Lu YF: Anti-HCV positive rate among blood donors at Ningxia Blood Transfusion Center. Ningxia Medical Journal 1996, 18:45, [in Chinese].

47. Hui TH: Analysis of the result of anti-HCV test among blood donors in Yinchuan. Transfusion Medicine 2007, 20:233-234, [in Chinese].

48. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].

49. Mi HW, Pan N, Guo XX, Lai ZW: Research on hepatitis C virus infection in healthy population. Pop Health Control 2000, 5:6-8, [in Chinese].

50. Hui TH: The investigation of anti-HCV infection among blood donors in Tianjin. Transfusion Medicine 1999, 12:49-50, [in Chinese].

51. Fang SC: Serological detection and analysis on chronic liver disease and anti-HCV among blood donors. Occupational and Health 1995, 5:36-37, [in Chinese].

52. Lu YF: Anti-HCV positive rate among blood donors at Ningxia Blood Transfusion Center. Ningxia Medical Journal 1996, 18:45, [in Chinese].

53. Hui TH: Analysis of the result of anti-HCV test among blood donors in Yinchuan. Transfusion Medicine 2007, 20:233-234, [in Chinese].

54. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].

55. Mi HW, Pan N, Guo XX, Lai ZW: Research on hepatitis C virus infection in healthy population. Pop Health Control 2000, 5:6-8, [in Chinese].

56. Hui TH: The investigation of anti-HCV infection among blood donors in Tianjin. Transfusion Medicine 1999, 12:49-50, [in Chinese].

57. Fang SC: Serological detection and analysis on chronic liver disease and anti-HCV among blood donors. Occupational and Health 1995, 5:36-37, [in Chinese].

58. Lu YF: Anti-HCV positive rate among blood donors at Ningxia Blood Transfusion Center. Ningxia Medical Journal 1996, 18:45, [in Chinese].

59. Hui TH: Analysis of the result of anti-HCV test among blood donors in Yinchuan. Transfusion Medicine 2007, 20:233-234, [in Chinese].

60. Liu SZ, Zhang D, Liu L: Investigation on blood donors and hepatitis C virus (HCV) infection. Chinese Journal of Health Laboratory Investigation 1999, 4:160, [in Chinese].
HBV and HCV infection monitoring among 100 professional blood donors infected with HBV and HCV.

Rui HF, Sun HX: The level of ALT could not be regarded as an indicator of HCV infection in blood donors. Guangzhou Pharmaceutics 2004, 6:59-60, [in Chinese].

Zhou YY, Shang GF, Yang LX, Qi ZB, Xu X, Wu Y: Detection of HCV core antigen as a "window period" infection marker. Transfusion 2004, 3:162-163, [in Chinese].

Ning X, Xia W, Wang M, Wang YZ, Zhen YR, Ye X, Luo GP, Wang CX, Bei CH, Fu YS: Seroepidemiological studies of HCV among first-time volunteer blood donors in Guangzhou, China. Transfusion 2009, 11:883-885, [in Chinese].

Yung Y, Yu LY, Gu XH: Analysis of ALT testing results and other epidemic indexes of the free blood donors. Preventive Medical Techniques 2005, 12:165-168, [in Chinese].

Nie DM, Wang F, Shang GF, Yang LX, Zhou H: Retrospective analysis of the infectious status of hepatitis C virus of blood donors in Shenzhen. Journal of Medical Laboratory 2006, 2:118-120, [in Chinese].

Zhou P, Luo J, Xie CY: Study on the infectious status of Hepatitis C Virus of first-time blood donors in Zhanjiang. Journal of Haman Medical College 2006, 2:115-117, [in Chinese].

Du YM, Li YX: Detection of anti-HCV among blood donors and its significance for hepatitis C virus infection control. Practical Medicine 1997, 13:154-155, [in Chinese].

Tang ZZ, Fang ZF, Liang YF, Huang CS: Recheck analysis for anti-HCV of source plasma in Guangxi Province during 1993 and 1995. Guangxi Preventive Medicine 1997, 3:30-32, [in Chinese].

Jiang FS: Review the results of anti-HCV detection among blood donors from 1998 to early 1999. Guangxi Preventive Medicine 2000, 6:255, [in Chinese].

He FQ, Wang JK, Li MY: Hepatitis C virus infection among 200 blood donors. Medical Anthology 1995, 6:518-519, [in Chinese].

Zhou ZZ, Huang LH: Analysis of HCV antibody among 27,518 blood donors of Zhanjiang nationality. Chinese Journal of Preventive Medicine 2000, 7:348-349, [in Chinese].

Li RY: Analysis of anti-HCV detection results among 280 blood donors. Journal of Youjiang Medical College 1996, 46:62-63, [in Chinese].

Chen XZ, Tan QF, Huang Y: HCV infection among voluntary blood donors of multi-ethnic in research. Chongqing Medicine 2009, 12:1443-1444, [in Chinese].

Huang SX: Analysis of HBV and HCV infection status among blood donors in Debao. Youjiang Medicine 1996, 1:25, [in Chinese].

Man HT: Report on blood donors infected with HBV and HCV. Journal of Guilan Medical College 1996, 3:348-354, [in Chinese].

Zhang RX: Report of hepatitis C antibody detection among blood donors. Journal of Shenzhen Medical College 1997, 19:14, [in Chinese].

Wang DL: HBV and HCV infection monitoring among 100 professional donors in Yihi, Xinhui. China Public Health 1995, 294, [in Chinese].

Tang XM, Dou J, Chen YH, Mou XY, Song QJ: Investigation of HCV infection and HCV genotype distribution among Xinjiang Uygur populations. Xinjiang University Medical Journal 1996, 1:111-112, [in Chinese].

Dai RD, Zhao XD, Zhang YP, Zhang RL: Serum HBsAg, anti-HCV, anti-HIV detection reports in 16,845 blood donors. Journal of Youjiang Medical College 2004, 14:47-48, [in Chinese].

Xu YN, Li ZY, Qian YZ, Zhang KZ: ALT, HBsAg and anti-HCV detection results analyzed in 1692 blood donors. Journal of Nanjing Medical University 1994, 2:261, [in Chinese].

Xue WG, Xu HF, Ma Z, Zhen HJ: HCV RNA assessment by PCR technique for screening post-transfusion HCV infection among blood donors. Journal of Hepatology 2002, 3:52-53, [in Chinese].

Rui HF, Sun HX: Seroepidemiological study on hepatitis C virus infection among blood donors with different donation types. Clinical Focus 1995, 21:996-997, [in Chinese].
Investigation on hepatitis C virus infection among blood donors in Haiyan. Practical Prevention Medicine 1994, 4:112, [in Chinese].

208. Zhang YQ, Zhu RC, Zhou LP: Hepatitis C virus infection in blood donors analyzed. Nanguo Medicine 1997, 9:81, [in Chinese].

209. Xie ZG, Xu ZP, Geng YL, Ye YH, Chen Z, Chen MH: Investigation of hepatitis B and hepatitis C virus infection among blood donors (37 cases). Journal of Medicine 1994, 655-56, [in Chinese].

210. Jin ZL, Chen SQ, Shi ZY, Fang L, Chen P, Cai J, Ji CL, Wang FC: Serological hepatitis C virus infection in plasmapheresis and blood donors. Journal of Epidemiology 1995, 4:234-236, [in Chinese].

211. Tang SX, Ma XK: Seroepidemiological studies on HCV infection in some area of China. Journal of Epidemiology 1993, 14:271-274, [in Chinese].

212. Lin HC, Zhou XC: Seroepidemiological survey of hepatitis C virus among blood donors. Hubei Journal of Preventive Medicine 1998, 9:26, [in Chinese].

213. Zhang YF: Study of HCV antibody with immunoenzymatic and recombinant immuno-blot method among healthy blood donors in China. Tongji Medical University 1992, 1-55, [in Chinese].

214. Yu CY, Liang M, Shu ZJ, Yao ZM: Blood donors and hepatitis C virus infection and the relationship between post-transfusion hepatitis. Traditional and Western Medicine on Liver Diseases 1994, 12:6-27, [in Chinese].

215. Zhang XF, Tang H, Luo XG, Chen HF: Study on the Serological states of HCV and HBV among HIV blood donors. Chinese Journal of AIDS & STD 2002, 4:229-230, [in Chinese].

216. Peng L, Tian HQ: Investigation on coinfection of spilhis and HCV. Chinese Journal of Medicine 2007, 16:108, [in Chinese].

217. Hui LC, Guo LS, Zhang YC, He JM, Wu HQ, Wang ZX, Huang YM, Wang GQ, Cheng YD: Investigation on hepatitis C virus infection among high-risk populations. Journal of Tongji Medical University 1999, 3:145-149, [in Chinese].

218. Wu XG, Xu CM: Survey on anti-HCV among certain groups of Shashi. Journal of Epidemiology 1993, 14:331-333, [in Chinese].

219. Zhang FL, Xie B, Xu SH, Deng LQ: Hepatitis C Virus antibody among 994 blood donors investigated in Yunneng, Anlu, and Xiaoan area of Hubei Province. Journal of Epidemiology 1994, 162, [in Chinese].

220. He TL, Qu SD, Huang JX, Zhou X, Dong XH: A serological survey on hepatitis C virus infection among blood donors in Fuzhou. Fujian Medical Journal 1997, 3:145-149, [in Chinese].

221. Huang ZH, Wang GZ: Serum detection of anti-HCV and HCV RNA screening of HCV infection among blood donors in research. Chinese Journal of Epidemiology 1999, 2:55, [in Chinese].

222. Li CZ, Hu GL, Zhang Z, Tan DM, Wu LF, Tang DX: Investigation on hepatitis C virus infection among high-risk populations. Practical Prevention Medicine 1996, 3:132-133, [in Chinese].

223. Pan C, Wang WX, Liu Y, Li QG, Cheng YD: Investigation on hepatitis C virus infection among voluntary blood donors in Lanzhou. Northwest National Defense Medical Journal 2008, 29:148, [in Chinese].

224. Guo ZH, Zhen BD, Xie C: Hepatitis A, B, C, and D virus infection among professional blood donors in research in Lanzhou. Journal of Lanzhou Medical College 1996, 1:70-71, [in Chinese].

225. Zhen BD, Yang YL, Guo ZH: A study of HCV infection among part of the blood donors and recipients in Lanzhou. Journal of Lanzhou Medical College 1996, 2:63-64, [in Chinese].

226. Sheng XM, Wang J, Chen BZ: Report of anti-HCV detection in blood donors. Microbiology and Immunology 1996, 3:15-16, [in Chinese].

227. Du GJ, Wang YN, Liu XF, Cao MY: A preliminary investigation on HCV infection among voluntary blood donors in four districts of Gansu. Military Medical University 2002, 23:379, [in Chinese].

228. Gao et al. BMC Infectious Diseases 2011, 11:88 http://www.biomedcentral.com/1471-2334/11/88
259. Lei YF, Wang YQ, Xu HL, Yang C, Jiang WD, Li HH: A report of hepatitis C virus infection in Hanzhong region. Shanxi Medical Journal 1994, 10:636-637, [in Chinese].

260. Yang SM, Yang ZL, Xie H, Hong BY: Hepatitis C virus infection and plasmapherdis donors. Journal of Epidemiology 1994, 4:277, [in Chinese].

261. Li LL, Zhang XQ, Mu SJ, Li CY, Chen C: Confection of HGV with hepatitis B virus and hepatitis C virus of blood donors in Xi’an area. Journal of Fourth Military Medical University 2000, 2146-147, [in Chinese].

262. Yao MJ, Li YN, Yang LY: Analysis of the results of blood unqualified and hepatitis epidemiology in unpaid blood donations in Xi’an city. Clinical Transfusion and Laboratory Medicine 2007, 1:25-27, [in Chinese].

263. Li LL, Zhang XQ, Mu SJ, Li CY, Chen C: Coinfection of HGV with hepatitis B virus and hepatitis C virus of blood donors in Xian area. Journal of Fourth Military Medical University 2000, 2:146-147, [in Chinese].

264. Qi Z: Anti-HCV detection among blood donors of Qinghai in research. Qinghai Medical Journal 1997, 11:34, [in Chinese].

265. Li XC: HBV and HCV infection detections among 864 Tibetans in Qinghai Province. Qinghai Medical Journal 2005, 2:59-60, [in Chinese].

266. Sun YQ, Zhang P, Zhang C, Wei GQ, Dan M: Hepatitis C virus detection results among 16,769 cases of blood donors analyzed. Harbin Medicine 1995, 3:19-20, [in Chinese].

267. Yin SH, Sun DM, Xiao Y, Wang YX: A investigation on anti-HCV in professional blood donors. Chinese Primary Health Care 1999, 6:107-108, [in Chinese].

268. Di Z, Zhang SJ, Pan HW: HIV infection monitoring results among blood donors analyzed in Jiamusi City. Disease Surveillance 1998, 11:24, [in Chinese].

269. Bu SF, Qu M, Shi JL, Zhang YT: Survey of hepatitis C infection in Qiqihar. Practical Preventive Medicine 1998, 1:10-11, [in Chinese].

270. Yang DL, Zhao XP, Tang ZY, Li FH, Yu ZQ, Wang YK, Hao L: Investigation on transmission of HCV infection among different groups. Shanghai of Preventive Medicine 1995, 7451-453, [in Chinese].

271. Zhen HJ, Xing WG, Zhuang H, Zhao BH: Viral hepatitis detection reports in more than 90 hospitals and blood banks all over the country. China Public Health 1995, 3:126, [in Chinese].

272. The Editorial Board: Investigation on anti-HCV positive rate among blood donors in some districts of China. Transfusion Medicine 1994, 7:98-99, [in Chinese].

273. Han S, Shen X: A survey of hepatitis C virus antibody among blood donors and outpatients with liver disease in Shanghai. Journal of Infectious Diseases 1992, 10:37-38, [in Chinese].

274. Fu Y, Xia W, Wang Y, Tian L, Pybus OG, Lu L, Nelson K: The seroprevalence of hepatitis C virus (HCV) among 559,890 first-time volunteer blood donors in China reflects regional heterogeneity in HCV prevalence and changes in blood donor recruitment models. Transfusion 2010, 50:1505-11.

275. Dai ZC, Qi GM: Viral hepatitis in China: serological surveys (volume 1). Beijing: Science Press; 1997, 60-71, [in Chinese].

276. Jin SY, Wang XJ: Occult hepatitis C virus and post-transfusion hepatitis C related. Liver 2008, 13:236-237, [in Chinese].

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2334/11/88/prepub

doi:10.1186/1471-2334-11-88
Cite this article as: Gao et al.: Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis. BMC Infectious Diseases 2011 11:88.