Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T_1–T_2 dual-mode magnetic resonance imaging probes

Li Yang1,†, Shengxiang Fu1,†, Zhongyuan Cai1, Li Liu1, Chunchao Xia2, Qiyong Gong3,4, Bin Song2 and Hua Ai1,2,*

1National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China; 2Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China and 4Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China

*Correspondence address. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China. Tel: 86-28-8541-3991; Fax: 86-28-8541-3991; E-mail: huaai@scu.edu.cn

†These authors contributed equally to this work.

Received 18 September 2021; revised 18 October 2021; accepted on 31 October 2021

Abstract

The T_1–T_2 dual-mode probes for magnetic resonance imaging (MRI) can non-invasively acquire comprehensive information of different tissues or generate self-complementary information of the same tissue at the same time, making MRI a more flexible imaging modality for complicated applications. In this work, three Gadolinium-diethylene-triaminepentaaceticacid (Gd-DTPA) complex conjugated superparamagnetic iron oxide (SPIO) nanoparticles with different Gd/Fe molar ratio (0.94, 1.28 and 1.67) were prepared as T_1–T_2 dual-mode MRI probes, named as SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67, respectively. All SPIO@PEG-GdDTPA nanocomposites with 8 nm spherical SPIO nanocrystals showed good Gd$^{3+}$ chelate stability. SPIO@PEG-GdDTPA0.94 nanocomposites with lowest Gd/Fe molar ratio show no cytotoxicity to Raw 264.7 cells as compared to SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67. SPIO@PEG-GdDTPA0.94 nanocomposites with r_1 (8.4 mM$^{-1}$ s$^{-1}$), r_2 (83.2 mM$^{-1}$ s$^{-1}$) and relatively ideal r_2/r_1 ratio (9.9) were selected for T_1–T_2 dual-mode MRI of blood vessels and liver tissue in vivo. Good contrast images were obtained for both cardiovascular system and liver in animal studies under a clinical 3 T scanner. Importantly, one can get high-quality contrast-enhanced blood vessel images within the first 2 h after contrast agent administration and acquire liver tissue anatomy information up to 24 h. Overall, the strategy of one shot of the dual mode MRI agent could bring numerous benefits not only for patients but also to the radiologists and clinicians, e.g. saving time, lowering side effects and collecting data of different organs sequentially.

Keywords: dual-mode imaging; contrast agents; magnetic resonance imaging; gadolinium; superparamagnetic iron oxide

Introduction

Providing cross-validation information and various radio frequency sequences endow unique advantages to magnetic resonance imaging (MRI) in clinical applications [1, 2]. For example, high-resolution blood vessel images can be obtained by magnetic resonance angiography (MRA) based on gradient recalled echo (GRE) sequences, and the soft tissue images of the liver or knee are often acquired by fast spin echo/turbo spin echo (TSE) sequences [3–5]. Based on the presence of the longitudinal (T_1) relaxation and transverse (T_2) relaxation in a magnetic field, the bulk
water protons can generate particular images with regulated repetition time (TR) or echo time (TE) [6].

Short TR and TE means the signal intensity of the T_1-weighted images governed by the longitudinal relaxation, while transverse relaxation determines the signal intensity of the images in the case of T_2-weighted sequences with long TR and TE [6]. Although the noninvasive and radiation-free imaging method provides multi-informative and high spatial resolution images, insufficient sensitivity usually requires contrast agents (CAs) to compensate, leading to the use of the gadolinium-based contrast agents in \sim30% of MRI routine exams [7].

Despite many concerns about potential trace deposition of gadolinium ions in body and generating nephrogenic systemic fibrosis [8–11], GBCAs can shorten the T_1 relaxation time effectively and provide brighter images in the regions of interest (ROIs), dominating the MRI CA market [12, 13]. However, limited by poor T_1 relaxtion efficiency and rapid renal excretion of GBCAs, the high dosage of Gd(III) is strived to be decreased by increasing T_1 relaxation efficiency (r_1) and improving circulation time [14–16]. For example, gadolinium-containing nanoparticles were developed as a capable T_1 CA for their superior r_1 relaxivity, by conjugating onto macromolecules or embedded in inorganic nanoparticles to prolong the rotational correlation time (τ_R) [17].

Different from T_1-weighted images, T_2-weighted images produced by T_2 or T_2^* sequence have advantages in distinguishing small lesions from normal tissues [18–20]. Due to their superparamagnetic properties and good biosafety, superparamagnetic iron oxide (SPIO) and other iron-based nanoparticles are the preferred T_2 CAs, improving the detection rate of lesion site by increasing the signal contrast of normal tissue around the lesion area [21–25].

The combination of the anatomical information and the lesion site provided by T_1- and T_2-weighted sequences, respectively, has attracted considerable interest in clinical diagnosis, and spawns the demand for excellent T_1-T_2 dual-mode CAs, which can enhance contrast ratio in both T_1- and T_2-weighted images [1]. Besides, injection one dosage brings unparalleled advantages to both patients and clinicians when multiple organ scans are required.

Ultra-small iron oxide nanoparticles (e.g., commercialized Ferumoxytol™), which could also serve as T_1 CAs due to surface spin-canting effect, have been evaluated as a candidate for T_1-T_2 dual-mode imaging [26]. Nevertheless, excessively small particle size leads to the undesirable change of the ability to shorten T_2 relaxation time, while larger diameter will decrease their T_1 contrast effect due to significantly increased magnetic moment [27]. Consequently, several promising synthetic strategies have been explored to design dual-mode CAs, such as doping paramagnetic metal, or coating/conjugating paramagnetic metal onto the iron oxide nanoparticle surface, providing high T_1 and T_2 relaxivities (r_1 and r_2) and ideal r_2/r_1 ratios simultaneously [1, 2, 17, 28]. Although the T_1-T_2 dual-mode CAs based on SPIO nanoparticles and Gd-DTPA has been reported, there are still some problems that need to be solved for simultaneous angiography and liver imaging applications with once injection. For example, the linker of small molecules cannot eliminate the quenching effect of SPIO on the T_1 relaxation efficiency of Gd-DTPA, and non-polyethylene glycol (PEG) polymers may cause short blood circulation time, which is not conducive to angiography [29, 30].

In this study, we designed and synthesized a promising T_1-T_2 dual-mode CA based on iron oxide nanoparticles conjugated with PEG-Gd-DTPA (Fig. 1). The as-synthesized nanoparticles were modified by dopamine-functionalized PEG, designed to reduce the non-specific adsorption of proteins and prolong the circulation time in blood vessels, demonstrating their feasibility as distinguished T_1 CAs for contrast-enhanced MRA (CE-MRA) in vivo experiments with Sprague-Dawley (SD) rats. On the other hand, the contrast-enhanced hepatic MR images indicate that they can also bring excellent T_2 contrast effect. Meanwhile, the hepatic T_1-weighted images

![Figure 1. Formulation of T_1-T_2 dual-mode contrast agents based on PEG-covered iron oxide conjugated with Gd-DTPA at the peripheral area](image-url)
based on TSE sequences revealed the potential in distinguishing hepatic vessels from hepatic parenchyma by lowering the intensity of hepatic parenchyma and improving the brightness of vessels simultaneously.

Materials and methods

Materials

Iron (III) acetylacetonate (97%), 1,2-hexadecanediol (90%), benzyl ether (98%), oleic acid (OA, 70%) and oleylamine (OAm, 70%) were purchased from Sigma-Aldrich Corporation. Diethylene triaminepentaacetic dihydride (98%) was purchased from TCI Chemical Industry Development Corporation. Diethylene triaminepentaacetic dianhydride (98%) was purchased from TCI Chemical Industry Development Corporation. NH2-PEG-dopamine (Mw 1 k and 2 k) were purchased from Shanghai Ponsure Biotech, Inc. (Shanghai, China). Gadolinium (III) chloride (GdCl3) and ethylendiaminetetraacetic acid disodium salt (EDTA2Na) were purchased from Aladdin Industrial Corporation. All other chemicals and solvents were of analytical grade and used without further purification.

Synthesis of SPIO nanocrystals

The synthesis of SPIO nanocrystals with a diameter of 8 nm was carried out according to a classic thermal decomposition method [31]. Briefly, iron(III) acetylacetonate (1 mmol), OAm (3 mmol), OA (3 mmol) and 1,2-hexadecanediol (5 mmol) were dissolved in benzyl ether (10 ml). Deoxidizing and dehydration in a two-necked flask by Schlenk technique, the mixture was vigorously stirred in nitrogen and slowly heated to 200 °C for 2 h. Then the solution was heated to reflux (~300 °C) and maintained for 30 min. After cooled to room temperature, ethanol (200 ml) was added to precipitate OA-SPIO nanocrystals, which was separated via centrifugation (8000 rpm, 10 min). The black precipitates were dispersed in n-hexane (10 ml) and the undispersed residue was removed via centrifugation (10 000 rpm, 10 min). The supernatant fluid was collected and the diameter of nanocrystals was confirmed by dynamic light scattering (DLS) and transmission electron microscope (TEM). During the synthesis of SPIO nanocrystals with a diameter of 4 nm, diphenyl ether (10 ml) was used instead of benzyl ether (10 ml). The mixture was stirred and maintained at 200 °C for 30 min, and the following procedures were the same as the synthesis of 8 nm OA-SPIO nanocrystals.

Synthesis of SPIO@PEG-DTPA

SPIO nanocrystals (10 mg) was dispersed in 6 ml anhydrous tetrahydrofuran (THF), NH2-PEG-dopamine (140 mg) in 3 ml of anhydrous N, N-dimethylformamide (DMF) was added dropwise to SPIO nanocrystals under N2. The solution was stirred at 50 °C for 12 h to obtain NH2-PEG-SPIO by ligand exchange. Then, the THF was removed by vacuum, and excess diethylenetriaminepentaacetic dihydride (60 mg) and anhydrous triethylamine (200 μl) in 3 ml anhydrous DMF was added to the solution of PEG/SPIO. The above solution was stirred at 50 °C for 24 h. Finally, the solution was diazylized with deionized water for 3 days and concentrated to obtain 6 ml of SPIO@PEG-DTPA.

Synthesis of SPIO@PEG-GdDTPA

To obtain SPIO@PEG-GdDTPA, excess GdCl3 (45 mg) in 4 ml of deionized water was added dropwise to above SPIO@PEG-DTPA (4 ml) solution and keep its pH at 7.4 through 0.1 M sodium hydroxide. The mixture was stirred at 60 °C for 24 h to chelate Gd3+ into DTPA. In order to remove the unstable chelated Gd3+, a small amount of EDTA2Na was added to the mixture for 30 min. Finally, the mixture was dialyzed with deionized water for 3 days and concentrated to obtain 2 ml of SPIO@PEG-GdDTPA. To pick out the most ideal T1 and T2 dual-mode MRI probe, Gd3+ DTPA-conjugated SPIO nanocomposites (SPIO@PEG-GdDTPA) with different Gd/Fe molar ratio was prepared by adjusting the amount of surface ligand added and subsequent DTPA conjugated. Three SPIO@PEG-GdDTPA nanocomposites were obtained with Gd/Fe molar ratio of 0.94, 1.28 and 1.67 measured by Inductively Coupled Plasma (ICP), and named as SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67, respectively.

Characterization of SPIO@PEG-GdDTPA nanocomposites

Fourier transform infrared (FTIR) spectra were delineated on a Perkin-Elmer spectrophotometer in the region of 4000–400 cm−1 with a powder sample on a KBr plate. X-ray diffraction (XRD) patterns were collected on a Dandong Fangyuan DX-1000 diffractometer (Haoyuan Instrument, China) with a Cu Kα radiation source (λ = 1.5418 Å) in the 20 range 20–80°. Thermogravimetric analysis of all samples was performed on NETZSCH TG209F1 Thermogravimetric Analyzer (NETZSCH Scientific Instruments Trading Ltd, Germany). Elemental analyses were performed by energy-dispersive spectrometer (EDS) on INCA PentaFETx3 (Oxford Instruments, UK). The size distribution and morphology of all samples were investigated by TEM (Tecnai G2 F20 S-TWIN, FEI), for which 10 μl of the samples were dried on a copper grid. The hydration diameter and zeta potential of all samples were tested by DLS on a Malvern Nanosizer (Zetasizer Nano ZS, UK). Iron and gadolinium concentration of all samples were evaluated by elemental analysis using an atomic absorption spectroscopy (AA800, Perkin-Elmer, USA). T1 and T2 relaxivities were recorded and calculated on a 1.5 T (μMR 588, United Imaging Healthcare, PRC) and 3.0 T clinical MRI scanner (Signa Architect, GE Medical systems, USA) at room temperature.

MR phantom study and relaxivity measurement of SPIO@PEG-GdDTPA nanocomposites

The T1 and T2 relaxivities of SPIO@PEG-GdDTPA were measured on a 1.5 T clinical MRI scanner system (μMR 588, United Imaging Healthcare) and a 3.0 T clinical MRI scanner system (Signa Architect, GE Medical systems) using the head RF coils. The samples were dispersed in deionized water with different paramagnetic metal ion concentrations at 0.5, 0.4, 0.3, 0.25, 0.15, 0.1, 0.06 and 0.03 (Fe + Gd) mM. Subsequently, longitudinal and transverse relaxation rates (the reciprocal of relaxation times) were, respectively, measured and used for calculating corresponding relaxivity by seeking the slopes of best fit lines of relaxation rates versus metal ion concentrations. T1- and T2-weighted MR images in vitro were acquired with a conventional SE sequence by the following parameters: T1-weighted images at 1.5 T (TE = 12.2 ms, TR = 125 ms, slice thickness = 3 mm, field of view = 200 × 120 mm, flip angle = 90°); T2-weighted images at 1.5 T (TE = 18 ms, TR = 3500 ms, slice thickness = 3 mm, field of view = 200 × 120 mm, flip angle = 90°).

Chelate stability study of SPIO@PEG-GdDTPA nanocomposites

Chelate stability of Gd3+ in SPIO@PEG-GdDTPA was evaluated by the absorption of Gd-arsenazo III complex referring previously
reported method [32–34]. Briefly, equal molar ratio of arsonazo III solution (ASIII, 5×10^{-5} M) and Gd(III) in SPIO@PEG-Gd-DTPA was mixed, and then the absorbance spectra were measured using an UV-vis spectrophotometer (U-3900, Hitachi) at 660 nm. The absorbance of ASIII/Gd(III), ASIII/SPIO@PEG-Gd-DTPA and ASIII were measured at different time points (24 h and 72 h) and pH (5.0 and 7.4).

In vitro cytotoxicity evaluation of SPIO@PEG-GdDTPA nanocomposites

The cytotoxicity of SPIO@PEG-GdDTPA against Raw 264.7 cells were evaluated by the CCK-8 assay. The Raw 264.7 cells were seeded in 96-well culture plates (10⁴ cells/well). After 24 h incubation, the SPIO@PEG-Gd-DTPA at different ion (Fe + Gd) concentrations were added to the culture plates and co-cultured with the cells for another 24 h. The medium was removed, the cells were washed by PBS twice and then continued to be incubated for 2 h in the dark with fresh medium containing 10% CCK-8. The fluorescence intensity of the solution at 450 nm (excitation wavelength 352 nm) was measured by microplate reader. The cell survival rate of the blank control group was set as 100%, and the cell viability was calculated.

In vivo MRI and MRA studies of SPIO@PEG-GdDTPA0.94 nanocomposites

All studies involving animals were performed in accordance with the protocols of the Institutional Animal Care and Use Committee of Sichuan University and approved by the Animal Ethics Committee of Sichuan University. MR images were acquired with a 3.0 T clinical MRI scanner system (Skyra, Siemens Healthineers) equipped at Sichuan University. MR images were acquired with a 3.0 T clinical MRI scanner system (Skyra, Siemens Healthineers) equipped at Sichuan University. MR images were acquired with a 3.0 T clinical MRI scanner system (Skyra, Siemens Healthineers) equipped at Sichuan University.

Hepatic T_1- and T_2-weighted SE sequence were successively conducted at the time point before and 10 min, 60 min, 2 h and 24 h after intravenous injection of SPIO@PEG-GdDTPA at a dose of 0.1 mmol (Fe + Gd) kg⁻¹ body weight, or SPIO@PEG and Magnevist™ at a dose of 0.1 mmol Fe or Gd kg⁻¹ body weight, respectively. The transverse MR images were obtained by the following parameters: T_1-weighted images (TE = 12 ms, TR = 647 ms, slice thickness = 1.5 mm, field of view = 80 × 80 mm, flip angle = 147°, acquisition matrix = 320 × 320, number of average = 3); T_2-weighted images (TE = 75 ms, TR = 3000 ms, slice thickness = 1.5 mm, field of view = 80 × 80 mm, flip angle = 150°, acquisition matrix = 256 × 256, number of average = 4).

MRA images were acquired at 0 min (scanning while injecting), 1 min, 2 min, 3 min, 5 min, 15 min, 60 min, 2 h and 24 h after intravenous injection by 3D CE-MRA sequence based on GRE with shortest both TE and TR, which uses the following parameters: TE = 2.93 ms, TR = 6.58 ms, slice thickness = 0.23 mm, field of view = 83 × 111 mm, flip angle = 25°, acquisition matrix = 192 × 144, number of average = 1. Besides, three-dimensional images of maximum intensity projection were reconstructed and rendered by the software RadiAnt DICOM Viewer, and image was used to measure the signal intensities and calculate the signal-to-noise ratio (SNR) in ROIs. All SNRs were calculated by the following equation [35]:

$$\text{SNR} = \frac{\text{Signal intensity value of ROI}}{\text{Standard deviation value in the background}}$$

Results and discussion

Synthesis and characterization of SPIO@PEG-GdDTPA nanocomposites

To obtain T_1–T_2 dual-mode MRI probe, SPIO nanocrystals were first synthesized by the thermal decomposition method and dispersed in organic solvent. Then, T_1–T_2 dual-mode MRI probe (SPIO@PEG-Gd-DTPA) with different Gd/Fe molar ratios were obtained through three steps including ligand exchange using NH₂-PEG-dopamine as the surface ligand of SPIO nanocrystals, DTPA conjugation and Gd³⁺ chelation at pH 7.4. XRD pattern showed that the main diffraction peak of SPIO nanocrystals were well matched with the (220), (311), (400), (422), (511), (440), (620) and (533) planes of Fe₃O₄ crystals (JCPDS card no 19-0629) (Fig. 2a). FTIR spectroscopy was performed to examine the ligand exchange and DTPA conjugation on the surface of SPIO (Fig. 2b). The characteristic peaks at 2850–2923 cm⁻¹ attributed to the C–H stretch was changed from the two peaks of oleyl chains to one higher peaks of PEG after ligand exchange and DTPA conjugation [36, 37]. The characteristic peaks at 1670 cm⁻¹ attributed to the carboxyl group of OA were replaced by the higher and wider peaks of carboxyl group in DTPA. In addition, the new characteristic peaks at 1100 cm⁻¹ assigned to the C–O–C of PEG appeared [36, 37]. The above results showed that SPIO@PEG-DTPA was successfully prepared through the two steps of ligand exchange and DTPA conjugation.
Figure 3. Elemental mapping and EDS of SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67
Figure 4. TEM images of OA/SPIO nanocrystals, SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67

Figure 5. (a) Hydrodynamic size and (b) zeta potential of SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67 before and after chelation with Gd^{3+}, respectively
The organic phase soluble SPIO nanoparticles have a spherical shape with an average diameter of 8 nm measured under TEM (Fig. 4). After ligand exchange and Gd$^{3+}$ complex conjugation, the morphology and particle size of SPIO nanocrystals are still similar to the original ones (Fig. 4). DLS measurement showed that the organic phase soluble SPIO nanoparticles had a size of 12 nm in hexane (Fig. S1), and increased to around 20–25 nm after ligand exchange and GdDTPA conjugation (Fig. 5a). The chelation of Gd$^{3+}$ showed no obvious effect on the hydration particle size of all SPIO@PEG-DTPA composites. Besides, all SPIO@PEG-DTPA composites had a negative zeta-potential (–25 to –40 mV) attributing to the conjugation of DTPA at pH 7.4 (Fig. 5b). After the chelation of cationic Gd$^{3+}$, the potential of SPIO@PEG-DTPA increased (–19 to –29 mV) (Fig. 5b).

Relaxation efficiency of SPIO@PEG-GdDTPA nanocomposites

The ability of SPIO@PEG-GdDTPA as a dual-mode CA for MRI was evaluated in vitro using PEG-coated magnetite and Magnevist$^\text{TM}$ (Gd-DTPA) as two control samples. Both T_1- and T_2-weighted phantom images at different paramagnetic metal concentrations were acquired by SE sequence under a 1.5 T magnetic field (Fig. 6), respectively. As shown in Fig. 6, higher metal concentrations of SPIO@PEG-GdDTPA nanoparticles increased signal intensities in T_1-weighted MR images and decreased signal intensities in T_2-weighted MR images, indicating the capability of SPIO@PEG-GdDTPA nanoparticles serving as both negative and positive CAs. As a comparison, the PEG-coated magnetite showed evident T_2 contrast effect but without obvious enhancement effect in T_1-weighted images, while the signal intensity of Magnevist$^\text{TM}$ was significantly lower than most of SPIO@PEG-GdDTPA at the same metal concentration both in T_1- and T_2-weighted images.

For quantitative evaluation, the signal intensities at different metal concentrations with different TE or TR parameters were measured and the Ti ($i=1$ or 2) relaxation times were calculated by the nonlinear least-squares fit of the signal intensities. The r_1, r_2 values and their r_2/r_1 ratios with different diameters of magnetite core and molecular weights of PEG coating were presented in Fig. 6, Table 1 and Table S1. As discussed previously, most of SPIO@PEG-GdDTPA composites showed both dominant r_1 and r_2 values comparing with the two control samples. Specifically, the SPIO composite nanoparticles with diameter of 4 nm revealed inferior T_2 contrast enhancement and SPIOs coated by low molecular weight (1 k) of PEG exhibited exorbitant r_2/r_1 ratio at the field of 1.5 T (Table S1). It is worth noting that SPIO$_\text{PEG@PEG2k-GdDTPA0.94}$ may be the best CA for T_1–T_2 dual-mode MR imaging among SPIO@PEG-GdDTPAx [36]. Comparing with the SPIO@PEG, the r_1 of SPIO@PEG-GdDTPA0.94 have increased by 79.8% with only a 30% decrease of r_2. And the r_2 of SPIO@PEG-GdDTPA0.94 is like the SPIO@PEG-GdDTPA1.28’s, while SPIO@PEG-GdDTPA0.94 have preferable r_2/r_1 ratio (9.9 vs 14.1). Although the r_2/r_1 of SPIO@PEG-GdDTPA1.67 is also intermediate, the r_1 and r_2 is significantly lower than SPIO@PEG-GdDTPA0.94 and the excessive Gd is not preferable due to the potential toxicity.

Chelate stability study of SPIO@PEG-GdDTPA nanocomposites

Free Gd$^{3+}$ leaked from the ligand may cause serious side effects such as NSF in patients with kidney dysfunctions [38]. Reliable chelate stability of Gd$^{3+}$ in their ligand is an important design factor one needs to consider. The existence of free Gd$^{3+}$ was assessed through the Arsenazo (III) colorimetric assay [33]. The combination of ASIII and Gd$^{3+}$ will present a new peak in the UV-vis spectrum of ASII at

Table 1. Relaxivities calculated by line-fitting of relaxation rates versus metal ion concentrations (mM, in terms of the total iron and gadolinium ions) of SPIO@PEG-GdDTPA0.94, SPIO@PEG and Magnevist$^\text{TM}$ at 1.5 T, respectively

Sample name	Relaxivities		
	r_1 (Mm$^{-1}s^{-1}$)	r_2 (mM$^{-1}s^{-1}$)	r_2/r_1
SPIO@PEG	4.7	120.4	25.8
SPIO@PEG-GdDTPA0.94	8.4	83.2	9.9
Gd-DTPA (Magnevist$^\text{TM}$)	3.6	5.2	1.4
660 nm (Fig. S2). To evaluate the chelate stability of SPIO@PEG-GdDTPA, equal molar ratio of ASIII and Gd$^{3+}$ (5×10^{-5} M) in SPIO@PEG-GdDTPA was mixed at different pHs (7.4 and 5.0) and incubated for either 24 or 72 h. There was no absorption at 660 nm for all samples even at a mildly acidic condition (pH 5.0) for 72 h (Fig. 7), indicating the absence of dissociative Gd$^{3+}$ and good chelation stability of all SPIO@PEG-GdDTPA composites.

In vitro cytotoxicity evaluation of SPIO@PEG-GdDTPA nanocomposites

The Raw 264.7 cells have been used to assess the cytotoxic profiles of all SPIO@PEG-GdDTPA nanocomposites at different metal ion (Gd + Fe) concentrations and different Gd/Fe molar ratios (Fig. S3). The SPIO@PEG-GdDTPA nanocomposites with lower Gd/Fe molar ratio (0.94 and 1.28) displayed no obvious toxicity to Raw 264.7 cells even at the ion (Gd + Fe) concentration of 200 μg/ml, higher than the peak plasma concentration of GdDTPA for clinical applications (>188.7 μg/ml). The SPIO@PEG-GdDTPA nanocomposites with the highest Gd/Fe molar ratio (1.67) showed mild toxicity to Raw 264.7 cells at the high concentration of 200 μg/ml, which is similar to the previously reported results of GdDTPA conjugated nanocomposites [39, 40].

In vivo MRI and MRA studies of SPIO@PEG-GdDTPA0.94 nanocomposites

The SPIO@PEG-GdDTPA nanocomposites with Gd/Fe molar ratio of 0.94 was selected for in vivo dual-mode MR imaging evaluation under a 3.0 T clinical MRI scanner, using SD rats as animal models. Abdominal scan is one of the most important studies for clinical applications, especially for liver diseases. SPIO-based CAs have shown good liver imaging capability due to their higher accumulation in the reticuloendothelial system, which are Kupffer cells in the liver [41, 42]. Both T_1- and T_2-weighted images exhibited obvious signal intensity changes before and after the intravenous injection of the CA SPIO@PEG-GdDTPA0.94. Thanks to the outstanding transverse relaxation of the injected nanocomposites, the T_2-weighted signal intensity of the liver parenchyma decreased rapidly in 10 min. To quantify the contrast enhancement of the liver parenchyma region, SNRs of ROIs were measured and normalized to the SNR of water controls. The normalized SNR (nSNR $= $ SNR$_{ROIs}$/SNR$_{water}$) was used to assess the signal intensity changes. The Fig. 8b indicated that there are significant nSNR changes of \sim 83% in the T_2-weighted images at the 10 min post-administration and \sim 73% in the T_1-weighted images at 2 h post-administration. However, the trend of nSNR change in T_1-weighted images was quite unique from our observation, the brightening effect was not
Figure 8. (a) T_1 and T_2 imaging of liver on a 3 T clinical MRI scanner at different time points. (b) $nSNR = \frac{SNR_{ROI}}{SNR_{water}}$ of the liver parenchyma in T_1- and T_2-weighted images at different time points ($n = 3/group$)
that obvious comparing to the small molecule agent Magnevist™ even the composite has a higher T_1 relaxivity. One possible reason for the unusual changes may be the relatively higher weight of T_2 signal caused by the relatively higher TR (647 ms) of the SE sequence.

GRE is another commonly used sequence in clinical applications, which is helpful to improve the weight of T_1 signal for smaller TR but demands to be matched by the patients holding their breath for reducing artifacts. CE-MRA based on GRE is a clinical tool for detecting and evaluating various cardiovascular system diseases [16]. Based on the desired T_1 relaxivity of SPIO@PEG-GdDTPA0.94, CE-MRA was performed to evaluate their contrast-enhanced performance with a 3.0 T clinical MRI scanner, using SD rats as animal models at a dose of 0.1 mmol Fe + Gd kg$^{-1}$ body weight. SNR$_{post}$/SNR$_{pre}$ values (SNR$_{post/pre}$) were calculated to quantify the contrast enhancement of the heart region.

As shown in Figs 9a and S4, significant signal intensity enhancement over the observation time in the heart region was clearly observed, maintaining the signal intensity for ~2 h and finally returning to the pre-injection level after 24 h (Fig. 9c). The PEG coating could effectively avoid nonspecific adsorption, and increase the blood circulation time of SPIO@PEG-GdDTPA0.94, bringing a sufficient study time window of the cardiovascular system to radiologists. By contrast, the weak and fast-disappeared signal intensity enhancement in the blood vessel after injection of Magnevist™ was mainly attributed to its low T_1 relaxivity and fast renal clearance.

Besides, it was beneficial to clearly identify the details of various vascular vessels even at 15-min post injection of SPIO@PEG-GdDTPA0.94, including arteria carotis communis, superior vena cava, axillary vein, subclavian vein, aortic arch, pulmonary trunk, inferior vena cava and descending aorta (Fig. 9b). Overall, the CE-MRA of rats indicated remarkable T_1 contrast performance of SPIO@PEG-GdDTPA0.94 with the high sensitivity and superior imaging time window. Importantly, radiologists and clinicians could extract more physiological and pathological information from this long observation window.

Clinically, there are many patients that require multiple scans or enhanced studies because more than one organ is involved in certain diseases or the situation is quite complicated. MRI scan certainly brings more subtle information of soft tissues than CT and other imaging techniques, but requires much longer acquisition time, generally from 20 to 40 min per patient. Developing one CA that can be used for multi-organ scans will be beneficial for both patients and clinicians. In this work, the dual T_1–T_2 mode agent SPIO@PEG-GdDTPA0.94 demonstrated this capability in animal studies under clinical MRI scans. Especially, one can get good information of cardiovascular system for the first 15 min after administration of the CA. Then, radiologists can continue to collect liver scan data up to 24 h. Cardiovascular system and liver are most studied systems in our body besides brain under MRI, the dual mode CA certainly brings unparalleled advantages for many patients when the two systems require examination.
Conclusions
In summary, we have developed GdDTPA complex conjugated SPIO (SPIO@PEG-GdDTPA) with different Gd/Fe molar ratio (0.94, 1.28 and 1.67) as T_1–T_2 dual-mode MRI probes. FTIR, XRD, elemental mapping, and EDS results indicate the successful preparation of SPIO nanocrystals and SPIO@PEG-GdDTPA nanocomposites. The SPIO nanocrystals have a diameter of around 8 nm and considered a good T_2 CA candidate. SPIO@PEG-GdDTPA nanocomposites with different Gd/Fe molar ratio shows good Gd$^{3+}$ chelate stability and no obvious cytotoxicity in cell culture studies. SPIO@PEG-GdDTPA nanocomposites with Gd/Fe molar ratio 0.94 have a relatively ideal r_2/r_1 ratio (9.9) were selected for studying of cardiovascular system and liver in vivo. Among them, blood vessels can be clearly identified within 2 h, while the reliable magnetic resonance signal enhancement of liver showed up to 24 h. In summary, SPIO@PEG-GdDTPA0.94 is tailored for the patients who need both cardiovascular angiography and liver imaging, which could be performed with only one injection. The recommended protocol is to begin with the cardiovascular angiography followed by the liver imaging.

Supplementary data
Supplementary data are available at REGIO online.

Conflict of interest statement.
The authors declare no competing financial interests.

Funding
This work was financially supported by National Natural Science Foundation of China (NSFC, No. 51903174 and 52073192) and Innovative Research Groups of the National Natural Science Foundation of China (81621003).

References
1. Wu C, Chen T, Deng L et al. Mn(II) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents. Nanoscale 2020;2:2752–7.
2. Zhou Z, Bai R, Munasingshe J et al. T1–T2 dual-modal magnetic resonance imaging: from molecular basis to contrast agents. ACS Nano 2017;11:5227–32.
3. Baltesperger A, Mirsky D, Maloney J et al. Cost and utility of routine contrast-enhanced neck MRA in a pediatric MRI stroke evaluation protocol. Am J Neuroradiol 2019;40:2143–5.
4. Donato H, França M, Candelária I et al. Liver MRI: from basic protocol to advanced techniques. Eur J Radiol 2017;93:30–9.
5. Escobedo EM, Hunter JC, Zink-Brody GC et al. Usefulness of turbo spin-echo MR imaging in the evaluation of meniscal tears: comparison with a conventional spin-echo sequence. Am J Roentgenol 1996;167:1223–7.
6. Bojorquez JZ, Bricq S, Acquitter C et al. What are normal relaxation times of tissues at 3 T? Magn Reson Imaging 2017;35:69–80.
7. Harvey HB, Gowda V, Cheng G. Gadolinium deposition disease: a new risk management threat. J Am Coll Radiol 2020;17:546–50.
8. Perazaella MA. Advanced kidney disease, gadolinium and nephrogenic systemic fibrosis: the perfect storm. Curr Opin Nephrol Hypertens 2009;18:519–25.
9. Runge VM. Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA’s pharmacovigilance and risk assessment committee recommendation for suspension of the marketing authorizations for 4 linear agents. Invest Radiol 2017;52:317–23.
10. Kanda T, Fukusato T, Matsuda M et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015;276:228–32.
11. Yang L, Fu S, Liu L et al. Tetraphenylethylene-conjugated polycarbonate covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging. Regener Biomater 2021;8:10023.
12. Robic C, Port M, Rousseaux O et al. Physicochemical and pharmacokinetic profiles of gadopiperyl: a new macrocyclic gadolinium chelate with high T1 relaxivity. Invest Radiol 2019;54:475–84.
13. Xu X, Gao JM, Liu SY et al. Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage. Regener Biomater 2021;8:1–13.
14. Wu C, Li D, Yang L et al. Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. J Mater Chem B 2015;3:1470–3.
15. Wu C, Yang L, Chen Z et al. Poly(ethylene glycol) modified Mn2+ complexes as contrast agents with a prolonged observation window in rat MRA. RSC Adv 2017;7:54603–9.
16. Fu S, Cai Z, Ai H. Stimulus-responsive nanoparticle magnetic resonance imaging contrast agents: design considerations and applications. Adv Healthcare Mater 2021;10:2001091.
17. Zhou Z, Huang D, Bao J et al. A synergistically enhanced T1–T2 dual-modal contrast agent. Adv Mater 2012;24:6223–8.
18. Lee N, Yoo D, Ling D et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 2015;115:10637–89.
19. Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484–99.
20. Chen XB, Zhang JL, Wu KT et al. Visualizing the in vivo evolution of an injectable and thermo-sensitive hydrogel using tri-modal bioimaging. Small Methods 2020;4:2000310.
21. Caravan P, Ellison JJ, McMurry TJ et al. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 1999;99:2293–352.
22. Ai H, Flask C, Weinberg B et al. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 2005;17:1949–52.
23. Duan J, Du J, Jin R et al. Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy. Regener Biomater 2019;6:221–9.
24. Yu J, Yang C, Li J et al. Multifunctional Fe3C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 2014;26:4114–20.
25. Wang Z, Li Z, Sun Z et al. Visualization nanolyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci Adv 2020;6:eabc8733.
26. McCullough BJ, Kolokythas O, Maki JH et al. Ferumoxytol in clinical practice: implications for MRI. J Magn Reson Imaging 2013;37:1476–9.
27. Santra S, Jatva SD, Kaittans C et al. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 2012;6:7281–94.
28. Chen Y, Ai K, Liu J et al. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 2016;77:198–206.
29. Zhao W, Huang H, Sun Y et al. T1-weighted and T2-weighted MRI probe based on Gd-DTPA surface conjugated SPIO nanomicles. RSC Adv 2015;5:97675–80.
30. Zhou Z, Yang L, Gao J et al. Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv Mater 2019;31:1804567.
31. Sun S, Zeng H, Robinson DB et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J Am Chem Soc 2004;126:237–9.
32. Xia B, Yan X, Fang W et al. Activatable cell-penetrating peptide conjugated polymeric nanoparticles with Gd-chelation and aggregation-
induced emission for bimodal MR and fluorescence imaging of tumors. ACS Appl Bio Mater 2020;3:1394–405.

33. Wang F, Wen L, Liu J et al. Albumin nanocomposites with MnO2/Gd2O3 motifs for precise MR imaging of acute myocardial infarction in rabbit models. Biomaterials 2020;230:119614.

34. Tweedle MF. Next-generation MRI contrast agents: still including gadolinium. Radiology 2020;294:127–8.

35. Wei R, Cai Z, Ren BW et al. Biodegradable and renal-clearable hollow porous iron oxide nanoboxes for in vivo imaging. Chem Mater 2018;30:7950–61.

36. Lu C, Dong P, Pi L et al. Hydroxyl–PEG–phosphonic acid-stabilized superparamagnetic manganese oxide-doped iron oxide nanoparticles with synergistic effects for dual-mode MR imaging. Langmuir 2019;35:9474–82.

37. Xie S, Zhang B, Wang L et al. Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains. Appl Surf Sci 2015;326:32–8.

38. Shen Z, Chen T, Ma X et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 2017;11:10992–1004.

39. Mi P, Cabral H, Kokuryo D et al. Gd-DTPA-loaded polymer–metal complex micelles with high relaxivity for MR cancer imaging. Biomaterials 2013;34:492–500.

40. Yang H, Zhaang Y, Sun Y et al. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 2011;32:4584–93.

41. Jin R, Lin B, Li D et al. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 2014;18:18–27.

42. Lu J, Ma S, Sun J et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 2009;30:2919–28.