Hattori-Stallings trace and character

Yang Han
KLMM, ISS, AMSS, Chinese Academy of Sciences, Beijing 100190, P.R. China.
E-mail: hany@iss.ac.cn

Dedicated to the memory of Dieter Happel

Abstract
It is shown that Hattori-Stallings trace induces a homomorphism of abelian groups, called Hattori-Stallings character, from the K_1-group of endomorphisms of the perfect derived category of an algebra to its zero-th Hochschild homology, which provides a new proof of Igusa-Liu-Paquette Theorem, i.e., the strong no loop conjecture for finite-dimensional elementary algebras, on the level of complexes. Moreover, the Hattori-Stallings traces of projective bimodules and one-sided projective bimodules are studied, which provides another proof of Igusa-Liu-Paquette Theorem on the level of modules.

Mathematics Subject Classification (2010) : 16G10, 16E30, 18E30, 18G10

Keywords : Hattori-Stallings trace, K_1-group of endomorphisms, Hattori-Stallings character.

1 Introduction
Global dimension is a quite important homological invariant of an algebra or a ring. The (in)finiteness of global dimension plays an important role in representation theory of algebras. For instance, the bounded derived category of a finite-dimensional algebra has Auslander-Reiten triangles if and only if the algebra is of finite global dimension [10][11]. There are some well-known conjectures related to the (in)finiteness of global dimension, such as no loop conjecture, Cartan determinant conjecture — the determinant of the Cartan
matrix of an artin ring of finite global dimension is 1 (ref. [5]), Hochschild homology dimension conjecture — a finite-dimensional algebra is of finite global dimension if and only if its Hochschild homology dimension is 0 (ref. [8]). To a finite-dimensional elementary algebra A, we can associate a quiver Q, called its Gabriel quiver (ref. [1, Page 65]). The (in)finiteness of the global dimension of A is closely related to the combinatorics of Q. If Q has no oriented cycles then $\text{gl.dim} A < \infty$ (ref. [4]). Obviously, its converse is not true in general. Nevertheless, if $\text{gl.dim} A < \infty$ then Q must have no loop, and 2-truncated cycle $[3]$. The former is due to the following conjecture:

No loop conjecture. *Let A be an artin algebra of finite global dimension. Then $\text{Ext}^1_A(S,S) = 0$ for every simple A-module S.***

The no loop conjecture was first explicitly established for artin algebras of global dimension two [6, Proposition]. For finite-dimensional elementary algebras, which is just the case that loop has its real geometric meaning, as shown in [13], this can be easily derived from an earlier result of Lenzing [16]. A stronger version of no loop conjecture is the following:

Strong no loop conjecture. *Let A be an artin algebra and S a simple A-module of finite projective dimension. Then $\text{Ext}^1_A(S,S) = 0$.***

The strong no loop conjecture is due to Zacharia [13], which is also listed as a conjecture in Auslander-Reiten-Smalø’s book [1, Page 410, Conjecture (7)]. For finite-dimensional elementary algebras, and particularly, for finite-dimensional algebras over an algebraically closed field, it was proved in [14]. Some special cases were solved in [7, 15, 17, 18, 19, 21].

In this paper, we shall show that Hattori-Stallings trace induces a homomorphism of abelian groups, called Hattori-Stallings character, from the K_1-group of endomorphisms of the perfect derived category of an algebra to its zero-th Hochschild homology (see Section 2), which provides a neat proof of Igusa-Liu-Paquette Theorem, i.e., the strong no loop conjecture for finite-dimensional elementary algebras, on the level of complexes (see Section 3). Moreover, in Section 4, we shall study the Hattori-Stallings traces of projective bimodules and one-sided projective bimodules, which provides a simpler proof of Igusa-Liu-Paquette Theorem on the level of modules. A key point is the bimodule characterization of the projective dimension of a simple module.
2 Hattori-Stallings character

In this section, we shall show that Hattori-Stallings trace induces a homomorphism of abelian groups, called Hattori-Stallings character, from the K_1-group of endomorphisms of the perfect derived category of an algebra to its zero-th Hochschild homology.

2.1 Hattori-Stallings traces

Let A be a ring with identity. Denote by $\text{Mod}A$ the category of right A-modules, and by $\text{proj}A$ the full subcategory of $\text{Mod}A$ consisting of all finitely generated projective right A-modules. Denote by $D(A)$ the unbounded derived categories of the complexes of right A-modules, and by $K^b(\text{proj}A)$ the homotopy category of the bounded complexes of finitely generated projective right A-modules, which is triangle equivalent to the perfect derived category of A.

For each $P \in \text{proj}A$, there is an isomorphism of abelian groups

$$\phi_P : P \otimes_A \text{Hom}_A(P,A) \rightarrow \text{End}_A(P)$$

defined by $\phi_P(p \otimes f)(p') = pf(p')$ for all $p, p' \in P$ and $f \in \text{Hom}_A(P,A)$. There is also a homomorphism of abelian groups

$$\psi_P : P \otimes_A \text{Hom}_A(P,A) \rightarrow A/[A,A]$$

defined by $\psi_P(p \otimes f) = f(p)$ for all $p \in P$ and $f \in \text{Hom}_A(P,A)$. Here, $[A,A]$ is the additive subgroup of A generated by all commutators $[a,b] := ab - ba$ with $a,b \in A$. It is well-known that the abelian group $A/[A,A]$ is isomorphic to the zero-th Hochschild homology group $HH_0(A)$ of A. The homomorphism of abelian groups

$$\text{tr}_P := \psi_P \phi_P^{-1} : \text{End}_A(P) \rightarrow A/[A,A]$$

is called the Hattori-Stallings trace of P.

Hattori-Stallings trace has the following properties:

Proposition 1. (Hattori [12], Stallings [20], Lenzing [16]) Let $P, P', P'' \in \text{proj}A$.

1. (HS1) If $f \in \text{End}_A(P)$ and $g \in \text{Hom}_A(P,P')$ is an isomorphism then $\text{tr}_P(f) = \text{tr}_{P'}(gf)$.
2. (HS2) If $f, f' \in \text{End}_A(P)$ then $\text{tr}_P(f + f') = \text{tr}_P(f) + \text{tr}_P(f')$.

3
(HS3) If \(f = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \in \text{End}_A(P \oplus P') \) then \(\text{tr}_{P \oplus P'}(f) = \text{tr}_P(f_{11}) + \text{tr}_P'(f_{22}) \).

(HS4) If \(f \in \text{Hom}_A(P, P') \) and \(g \in \text{Hom}_A(P', P) \) then \(\text{tr}_P(gf) = \text{tr}_{P'}(fg) \).

(HS5) If \(0 \rightarrow P' \rightarrow P \rightarrow \cdots \rightarrow P' \rightarrow 0 \) is a commutative diagram with exact rows then \(\text{tr}_P(f) = \text{tr}_{P'}(f') + \text{tr}_{P''}(f'') \).

(HS6) If \(l_a \in \text{End}_A(A) \) is the left multiplication by \(a \in A \) then \(\text{tr}_A(l_a) = \bar{a} \), the equivalence class of \(a \) in \(A/[A, A] \).

2.2 \(K_1 \)-groups of endomorphisms

Let \(\mathcal{C} \) be a category. Denote by \(\text{end} \mathcal{C} \) the category of endomorphisms of \(\mathcal{C} \), whose objects are all pairs \((C, f)\) with \(C \in \mathcal{C} \) and \(f \in \text{End}_\mathcal{C}(C) \) and whose Hom sets are \(\text{Hom}_{\text{end} \mathcal{C}}((C, f), (C', f')) := \{ g \in \text{Hom}_\mathcal{C}(C, C') | gf = f'g \} \). Obviously, if \(\mathcal{C} \) is a skeletally small category then so is \(\text{end} \mathcal{C} \).

For a skeletally small triangulated category \(\mathcal{T} \), we define its \(K_1 \)-group of endomorphisms (cf. [2, Chapter III]), denoted by \(K_1(\text{end} \mathcal{T}) \), to be the factor group of the free abelian group generated by all isomorphism classes of objects in \(\text{end} \mathcal{T} \) modulo the relations:

(K1) \([T, f + f'] = [(T, f)] + [(T, f')]\) for all \(T \in \mathcal{T} \) and \(f, f' \in \text{End}_\mathcal{T}(T) \).

(K2) \([T, f] = [(T', f')] + [(T'', f'')]\) for every commutative diagram

\[
\begin{array}{ccc}
T' & \longrightarrow & T & \longrightarrow & T'' \\
\downarrow f' & & \downarrow f & & \downarrow f'' \\
T' & \longrightarrow & T & \longrightarrow & T''
\end{array}
\]

with triangles as rows.

Clearly, if two skeletally small triangulated categories are triangle equivalent then their \(K_1 \)-groups of endomorphisms are isomorphic.

2.3 Hattori-Stallings character

For any ring \(A \) with identity, both the exact category \(\text{proj} A \) and the triangulated category \(K^b(\text{proj} A) \) are skeletally small. So is \(\text{end} K^b(\text{proj} A) \).

The main result in this section is the following:
Theorem 1. Let A be a ring with identity. Then the map

$$\text{tr}: K_1(\text{end}K^b(\text{proj}A)) \to A/[A,A], \quad [(P^*, f^*)] \mapsto \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f^i),$$

is a homomorphism of abelian groups, called the Hattori-Stallings character of A, which satisfies the trace property (TP):

$$\text{tr}([(P^*, g^* \circ f^*)]) = \text{tr}([(P^*, f^*)])$$

for all $f^* \in \text{Hom}_{K^b(\text{proj}A)}(P^*, P^*)$ and $g^* \in \text{Hom}_{K^b(\text{proj}A)}(P^*, P^*)$.

Proof. Since $P^* \in K^b(\text{proj}A)$, P^i is zero for almost all $i \in \mathbb{Z}$. Thus the sum $\sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f^i)$ makes sense.

Step 1. $\sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f^i)$ is independent of the choice of the representative f^* of the homotopy equivalence class f^*. Indeed, if $f^* = \overline{f^*}$, then $f^* - f'^* = s^{i+1}d^i + d^{i-1}s^i$ for some homotopy map s^*, where d^* is the differential of P^*. It follows from (HS2) and (HS4) that

$$\sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f'^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(s^{i+1}d^i + d^{i-1}s^i) = \sum_{i \in \mathbb{Z}} (-1)^i (\text{tr}_{P^i}(s^{i+1}d^i) + \text{tr}_{P^i}(d^{i-1}s^i)) = \sum_{i \in \mathbb{Z}} (-1)^i (\text{tr}_{P^i}(s^{i+1}d^i) + \text{tr}_{P^{i-1}}(s^i d^{i-1})) = 0.$$

Step 2. $\sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f^i)$ is also independent of the choice of the representative (P^*, f^*) of the isomorphism class $[(P^*, f^*)]$. Indeed, if $(P^*, f^*) \cong (P'^*, f'^*)$ then there are morphisms $g^* \in \text{Hom}_{K^b(\text{proj}A)}(P^*, P'^*)$ and $g'^* \in \text{Hom}_{K^b(\text{proj}A)}(P'^*, P^*)$ such that $g'^* \circ g^* = \overline{1}$, $g^* \circ g'^* = \overline{1}$, and $f'^* \circ g^* = g'^* \circ f^*$. Thus $\overline{f^*} = g'^* \circ g^* \circ f^*$ and $\overline{g^*} \circ f^* \circ g'^* = f'^* \circ g^* = g'^*$. It follows from Step 1 and (HS4) that

$$\sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(f^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(g^i f^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^i}(g^i f^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^{i}}(f'^i g'^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P^{i}}(f'^i g'^i).$$

Now we have shown that tr is well-defined on the free abelian group generated by the isomorphism classes of $\text{end}K^b(\text{proj}A)$.

Step 3. $\text{tr}([(P^*, f^* + f'^*)]) = \text{tr}([(P^*, f^*)]) + \text{tr}([(P^*, f'^*)])$ for all $P^* \in K^b(\text{proj}A)$ and $f^*, f'^* \in \text{End}_{K^b(\text{proj}A)}(P^*)$. Indeed, this is clear by (HS2).
Step 4. \(\text{tr}([([P^•, \overline{f}^•])]) = \text{tr}([([P'^•, \overline{f'}^•)])] + \text{tr}([([P''^•, \overline{f''}^•)])] \) for every commutative diagram

\[
\begin{array}{ccc}
P^• \xrightarrow{\overline{f}^•} P^• & \xrightarrow{\overline{f}^•} & P''^• \\
\downarrow{\overline{f}^•} & \downarrow{\overline{f}^•} & \downarrow{\overline{f}^•} \\
P'^• \xrightarrow{\overline{f'}^•} P'^• & \xrightarrow{\overline{f'}^•} & P''^•
\end{array}
\]

with triangles as rows. Indeed, in \(K^b(\text{proj} A) \) each triangle \(P^• \xrightarrow{\overline{f}^•} P^• \xrightarrow{\overline{f}^•} \) \(P''^• \rightarrow \) is isomorphic to a triangle

\[
P^• \xrightarrow{[1]} \text{Cyl}(u^•) \xrightarrow{[0 \ 1]} \text{Cone}(u^•)
\]

where \(\text{Cyl}(u^•) \) and \(\text{Cone}(u^•) \) are the cylinder and cone of the cochain map \(u^• : P^• \rightarrow P^• \) respectively. Thus, by Step 2, it is enough to consider the case that the following diagram

\[
\begin{array}{ccc}
P^• \xrightarrow{[1]} P^• \oplus P''^• \xrightarrow{[0 \ 1]} P''^• \\
\downarrow{\overline{f}^•} & \downarrow{\overline{f''}^•} & \downarrow{\overline{f''}^•} \\
P'^• \xrightarrow{[1]} P'^• \oplus P''^• & \xrightarrow{[0 \ 1]} P''^•
\end{array}
\]

with triangles as rows is commutative. In this case, by (HS3), we have
\[
\sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P'^•}(f'^i) + \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P''^•}(f''^i) = \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}_{P'^• \oplus P''^•}(\begin{bmatrix} f'^i & f''^i \\ 0 & f''^i \end{bmatrix}).
\]

Now we have shown that the Hattori-Stallings character \(\text{tr} \) is well-defined. Next, we prove that it satisfies trace property (TP).

Step 5. \(\text{tr}([([P^•, \overline{f}^• \circ \overline{g}^•])]) = \text{tr}([([P'^•, \overline{f'}^• \circ \overline{g'}^•)])] \) for all morphisms \(\overline{f^•} \in \text{Hom}_{K^b(\text{proj} A)}(P^•, P'^•) \) and \(\overline{g^•} \in \text{Hom}_{K^b(\text{proj} A)}(P'^•, P'') \). Indeed, this is clear by Step 2 and (HS4).

3 Igusa-Liu-Paquette Theorem

In this section, we shall apply Hattori-Stallings character to give a new proof of Igusa-Liu-Paquette Theorem on the level of complexes. From now
on, let k be a field and A a finite-dimensional elementary k-algebra, i.e., $A/J \cong k^n$ for some natural number n, where J denotes the Jacobson radical of A.

3.1 Projective dimension

Some homological properties on modules can be characterized by those of bimodules. For instance, Happel showed that for a finite-dimensional k-algebra A, $\text{gl.dim} A = \text{pd}_A e$ (ref. [9]). In this subsection, we shall give a bimodule characterization of the projective dimension of a simple module. For this, we need the following well-known result, which implies that $\text{top}_A = A/J$ is a “testing module” of the projective dimension of an A-module:

Lemma 1. Let A be an artin algebra, and $M \neq 0$ a finitely generated left A-module. Then $\text{pd}_AM = \sup\{i|\text{Ext}_A^i(M, A/J) \neq 0\} = \sup\{i|\text{Tor}_A^i(A/J, M) \neq 0\}$.

Proof. Let P^\bullet be a minimal projective resolution of the left A-module M. Then all the differentials of the complex $\text{Hom}_A(P^\bullet, A/J)$ are zero. Thus $\text{Ext}_A^i(M, A/J) = \text{Hom}_A(P^{-i}, A/J)$. Hence, $\text{pd}_AM = \sup\{i|P^{-i} \neq 0\} = \sup\{i|\text{Hom}_A(P^{-i}, A/J) \neq 0\} = \sup\{i|\text{Ext}_A^i(M, A/J) \neq 0\}$.

Similarly, all the differentials of the complex $A/J \otimes_A P^\bullet$ are zero. Thus $\text{Tor}_A^i(A/J, M) = A/J \otimes_A P^{-i}$. Therefore, $\text{pd}_AM = \sup\{i|P^{-i} \neq 0\} = \sup\{i|A/J \otimes_A P^{-i} \neq 0\} = \sup\{i|\text{Tor}_A^i(A/J, M) \neq 0\}$.

A key point of this paper is the following observation:

Lemma 2. Let A be a finite-dimensional elementary k-algebra, $S = Ae/Je$ the left simple A-module corresponding to a primitive idempotent e in A, and $\bar{A} := A/(1-e)A$. Then $\text{pd}_AS = \text{pd}_{A \otimes_k \bar{A}^{\text{op}}} \bar{A}$.

Proof. We have isomorphisms $\text{Tor}_A^i(A/J, S) \cong H^{-i}(A/J \otimes_A^L S) \cong H^{-i}(A/J \otimes_{\bar{A} \otimes_k \bar{A}^{\text{op}}} \bar{A}) \cong H^{-i}((A/J \otimes_k S) \otimes_{A \otimes_k \bar{A}^{\text{op}}} \bar{A}) \cong \text{Tor}_i^A(A/J \otimes_k S, \bar{A})$. Applying Lemma 1 twice, we obtain $\text{pd}_AS = \text{pd}_{A \otimes_k \bar{A}^{\text{op}}} \bar{A}$, since $A/J \otimes_k S = \text{top}(A \otimes_k \bar{A})$.

3.2 A new proof of Igusa-Liu-Paquette Theorem

Theorem 2. (Igusa-Liu-Paquette [14]) Let A be a finite-dimensional elementary k-algebra, S a left simple A-module, and $\text{pd}_AS < \infty$. Then $\text{Ext}_A^1(S, S) = 0$.

Proof. We may assume that S is the left simple A-module Ae/Je corresponding to a primitive idempotent e in A and $\bar{A} := A/A(1-e)A$.

We have the following commutative diagram in $D(A)$:

\[
\begin{array}{ccc}
J^{j+1} & \longrightarrow & J^j \\
\downarrow l_a & & \downarrow l_a \\
J^{j+1} & \longrightarrow & J^j / J^{j+1}
\end{array}
\]

with triangles as rows for all $a \in J$, the Jacobson radical of A, and $0 \leq j \leq t - 1$ where t is the Loewy length of A. Applying the derived tensor functor $- \otimes^L_A \bar{A}$ to the commutative diagram above, we obtain the following commutative diagram in $D(\bar{A})$:

\[
\begin{array}{ccc}
J^{j+1} \otimes^L_A \bar{A} & \longrightarrow & J^j \otimes^L_A \bar{A} \\
\downarrow l_a \otimes^L_A \bar{A} & & \downarrow l_a \otimes^L_A \bar{A} \\
J^{j+1} \otimes^L_A \bar{A} & \longrightarrow & J^j \otimes^L_A \bar{A}
\end{array}
\]

with triangles as rows for all $a \in J$ and $0 \leq j \leq t - 1$. By the assumption $\text{pd}_A S < \infty$ and Lemma 2, we have a bounded finitely generated projective $A\bar{A}$-bimodules resolution P^\bullet of \bar{A}. Thus we have the following commutative diagram in $K^b(\text{proj} \bar{A})$:

\[
\begin{array}{ccc}
J^{j+1} \otimes_A P^\bullet & \longrightarrow & J^j \otimes_A P^\bullet \\
\downarrow l_a & & \downarrow l_a \\
J^{j+1} \otimes_A P^\bullet & \longrightarrow & J^j \otimes_A P^\bullet
\end{array}
\]

with triangles as rows for all $a \in J$ and $0 \leq j \leq t - 1$. Therefore, for any $\bar{a} \in \bar{J}$, the Jacobson radical of \bar{A}, the equivalence class of \bar{a} in $\bar{A}/[\bar{A}, \bar{A}]$

\[
\bar{a} = \text{tr}([\bar{A}, l_a]) = \text{tr}([\bar{A}, l_a]) = \text{tr}([J^0 \otimes_A P^\bullet, l_a]) = \text{tr}([J^1 \otimes_A P^\bullet, l_a]) = \ldots
\]

Hence, $\bar{J} \subseteq [\bar{A}, \bar{A}]$.

Let $A' := \bar{A}/\bar{J}^2$ and $J' = \bar{J}/\bar{J}^2$ its Jacobson radical. Then A' is a local algebra with radical square zero, and thus commutative. Since $\bar{J} \subseteq [\bar{A}, \bar{A}]$, we have $J' \subseteq [A', A'] = 0$, i.e., $J' = 0$. Hence, $\text{Ext}^{1}_{\bar{A}}(S, S) \cong eJe/eJ^2e \cong J' = 0$. □
4 Hattori-Stallings traces of bimodules

In this section, we shall study the Hattori-Stallings traces of projective bimodules and one-sided projective bimodules, which provides another proof of Igusa-Liu-Paquette Theorem on the level of modules.

Firstly, we consider the Hattori-Stallings traces of finitely generated projective bimodules.

Proposition 2. Let A and B be finite-dimensional k-algebras, and P a finitely generated projective A-B-bimodule. Then $\text{tr}_{P}(l_a) = 0$ for all $a \in J$, the Jacobson radical of A.

Proof. We have the following commutative diagram in $\text{Mod}A$:

$$
\begin{array}{cccccc}
0 & \longrightarrow & J^{j+1} & \longrightarrow & J^j & \longrightarrow & J^j/J^{j+1} & \longrightarrow & 0 \\
0 & \longrightarrow & J^{j+1} & \longrightarrow & J^j & \longrightarrow & J^j/J^{j+1} & \longrightarrow & 0 \\
\end{array}
$$

with exact rows for all $a \in J$ and $0 \leq j \leq t - 1$ where t is the Loewy length of A. Since P is a finitely generated projective A-B-bimodule, we have the following commutative diagram in $\text{proj}B$:

$$
\begin{array}{cccccc}
0 & \longrightarrow & J^{j+1} \otimes_A P & \longrightarrow & J^j \otimes_A P & \longrightarrow & (J^j/J^{j+1}) \otimes_A P & \longrightarrow & 0 \\
0 & \longrightarrow & J^{j+1} \otimes_A P & \longrightarrow & J^j \otimes_A P & \longrightarrow & (J^j/J^{j+1}) \otimes_A P & \longrightarrow & 0 \\
\end{array}
$$

with exact rows for all $a \in J$ and $0 \leq j \leq t - 1$. It follows from (HS5) that $\text{tr}_{P}(l_a) = \text{tr}_{J^0 \otimes_A P_B}(l_a) = \text{tr}_{J^1 \otimes_A P_B}(l_a) = \cdots = \text{tr}_{J^{t-1} \otimes_A P_B}(l_a = 0) = 0$ for all $a \in J$.

Secondly, we consider the Hattori-Stallings traces of finitely generated one-sided projective bimodules.

Proposition 3. Let A and B be finite-dimensional k-algebras, M a finitely generated A-B-bimodule which is projective as a right B-module, and P^* a finitely generated projective A-B-bimodule resolution of M. Then

$$
\text{tr}_{M_B}(l_a) = (-1)^i \text{tr}_{\Omega_i(M)}(l_a)
$$

for all $a \in J$ and $i \in \mathbb{N}$, where $\Omega_i(M)$ is the i-th syzygy of M on P^*.

Proof. Since M_B is projective, all $\Omega_i(M)_B$’s are projective. We have the following commutative diagrams in $\text{proj} B$:
\[
\begin{array}{c}
0 & \rightarrow & \Omega_i(M) & \rightarrow & P^{i+1} & \rightarrow & \Omega_{i-1}(M) & \rightarrow & 0 \\
\downarrow l_a & & \downarrow l_a & & \downarrow l_a & & \downarrow l_a & & \\
0 & \rightarrow & \Omega_i(M) & \rightarrow & P^{i+1} & \rightarrow & \Omega_{i-1}(M) & \rightarrow & 0
\end{array}
\]
with exact rows for all $a \in J$ and $i \geq 1$. By Proposition 2 and (HS5), we obtain $\text{tr}_{\Omega_i(M)}(l_a) = -\text{tr}_{\Omega_{i-1}(M)}(l_a)$, thus $\text{tr}_{M_B}(l_a) = \text{tr}_{\Omega_0(M)}(l_a) = -\text{tr}_{\Omega_1(M)}(l_a) = \cdots = (-1)^i \text{tr}_{\Omega_i(M)}(l_a)$ for all $a \in J$ and $i \in \mathbb{N}$.

Finally, we provide another proof of Igusa-Liu-Paquette Theorem, i.e., Theorem 2, on the level of modules.

Proof. By the assumption $\text{pd}_{A^eS} < \infty$ and Lemma 2, we have $\text{pd}_{A_{kA^eA^e}} A < \infty$. It follows from Proposition 3 that, for any $\bar{a} \in J$, the equivalence class of \bar{a} in $A/[A,A]$, $\bar{a} = \text{tr}_A(l_a) = \text{tr}_{\bar{A}}(l_a) = (-1)^i \text{tr}_{\Omega_i(M)}(l_a)$ which equals 0 for $i > \text{pd}_{A_{kA^eA^e}} A$. Thus $J \subseteq [A,A]$. Then we may continue as the last paragraph of the proof of Theorem 2 in Section 3.2.

\section*{ACKNOWLEDGMENT.} The author is sponsored by Project 11171325 NSFC.

References

[1] M. Auslander, I. Reiten and S.O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995.

[2] H. Bass, K-theory and stable algebra, I.H.E.S. Publ. Math. 22 (1964), 5–60.

[3] P.A. Bergh, Y. Han and D. Madsen, Hochschild homology and truncated cycles, Proc. Amer. Math. Soc. 140 (2012), 1133–1139.

[4] S. Eilenberg, H. Nagao and T. Nakayama, On the dimension of modules and algebras. IV. Dimension of residue rings of hereditary rings, Nagoya Math. J. 10 (1956), 87–95.

[5] K.R. Fuller, The Cartan determinant and global dimension of Artinian rings, Contemp. Math. 124 (1992), 51–72.

[6] E.L. Green, W.H. Gustafson and D. Zacharia, Artin rings of global dimension two, J. Algebra 92 (1985), 375–379.

[7] E.L. Green, O. Solberg and D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (2001), 2915–2939.

[8] Y. Han, Hochschild (co)homology dimension. J. London Math. Soc. 73 (2006), 657–668.
[9] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lecture Notes in Math., Vol. 1404, Springer, Berlin, 1989, pp. 108–126.

[10] D. Happel, On the derived category of a finite dimensional algebra, Comment. Math. Helv. 62 (1987) 339–389.

[11] D. Happel, Auslander-Reiten triangles in derived categories of finite-dimensional algebras, Proc. Amer. Math. Soc. 112 (1991) 641–648.

[12] A. Hattori, Rank element of a projective module, Nagoya Math. J. 25 (1965), 113–120.

[13] K. Igusa, Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), 161–176.

[14] K. Igusa, S.P. Liu and C. Paquette, A proof of the strong no loop conjecture, Adv. Math. 228 (2011), 2731–2742.

[15] B.T. Jensen, Strong no-loop conjecture for algebras with two simples and radical cube zero, Colloq. Math. 102 (2005), 1–7.

[16] H. Lenzing, Nilpotente elemente in ringen von endlicher globaler dimension, Math. Z. 108 (1969), 313–324.

[17] S. Liu and J.P. Morin, The strong no loop conjecture for special biserial algebras, Proc. Amer. Math. Soc. 132 (2004), 3513–3523.

[18] N. Marmaridis and A. Papistas, Extensions of abelian categories and the strong no-loops conjecture, J. Algebra 178 (1995), 1–20.

[19] D. Skorodumov, The strong no loop conjecture for mild algebras, J. Algebra 336 (2011), 301–320.

[20] J. Stallings, Centerless groups — an algebraic formulation of Gottliebs theorem, Topology 4 (1965), 129–134.

[21] D. Zacharia, Special monomial algebras of finite global dimension, in: Perspectives in Ring Theory, Proc. NATO Adv. Res. Workshop, Antwerp/Belg. 1987, in: NATO ASI Ser. C, vol. 233, 1988, pp. 375–378.