THE FROBENIUS-VIRASORO ALGEBRA AND EULER EQUATIONS

DAFENG ZUO

ABSTRACT. We introduce an \(\mathfrak{F} \)-valued generalization of the Virasoro algebra, called the Frobenius-Virasoro algebra \(\text{vir}_{\mathfrak{F}} \), where \(\mathfrak{F} \) is a Frobenius algebra over \(\mathbb{R} \). We also study Euler equations on the regular dual of \(\text{vir}_{\mathfrak{F}} \), including the \(\mathfrak{F} \)-KdV equation and the \(\mathfrak{F} \)-CH equation and the \(\mathfrak{F} \)-HS equation, and discuss their Hamiltonian properties.

CONTENTS

1. Introduction 1
2. Euler equations on \(\text{vir}_{\mathfrak{F}}^\ast \)
 2.1. The Frobenius-Virasoro algebra \(\text{vir}_{\mathfrak{F}} \)
 2.2. Euler equations on \(\text{vir}_{\mathfrak{F}}^\ast \)
 2.3. Hamiltonian structures of the Euler equation (2.7)
 2.4. Examples
 2.5. Euler equations on \(\text{vir}_{\mathfrak{F}}^\ast \) for general product \(P_{\alpha_0,\ldots,\alpha_n} \)
3. Conclusion 12
References 12

1. INTRODUCTION

Let \(\mathfrak{G} \) be a Lie algebra and \(\mathfrak{G}^\ast \) (the regular part of) its dual, and let \(\langle \ , \ \rangle^\ast \) denote a natural pairing between \(\mathfrak{G} \) and \(\mathfrak{G}^\ast \).

Definition 1.1. The Euler equation on \(\mathfrak{G}^\ast \) is defined by the following system (e.g., [2, 7]):

\[
\frac{dm}{dt} = -ad_{A^{-1}}^x m,
\]

(1.1)

Date: March 4, 2014.

Key words and phrases. Frobenius-Virasoro algebra, Euler equations.
as an evolution of a point \(m \in \mathfrak{g}^* \), where \(A : \mathfrak{g} \to \mathfrak{g}^* \) is an invertible self-adjoint operator, called the inertia operator.

It is well known that the KdV equation

\[
 u_t + 3uu_x + cu_{xxx} = 0
\]

and the Camassa-Holm (CH in brief) equation

\[
 m_t + 2mu_x + m_xu + cu_{xxx} = 0, \quad m = u - u_{xx}
\]

and the Hunter-Saxton (HS in brief) equation

\[
 m_t + 2mu_x + m_xu + cu_{xxx} = 0, \quad m = -u_{xx}
\]

could be regarded as Euler equations on the dual of Virasoro algebra \(\mathfrak{vir} \) with different inner products (\([7, 9, 11, 12]\)). Let us remark that V.I.Arnold in \([1]\) suggested a general framework for the Euler equation on an arbitrary Lie group \(G \), which is useful to characterize a variety of conservative dynamical systems, please see e.g., \([2, 6, 7, 8, 9, 11, 12, 15, 17, 18]\) and references therein. If the corresponding Lie algebra is \(\mathfrak{g} \), then the Euler equation (1.1) on \(\mathfrak{g}^* \) could describe a geodesic flow w.r.t a suitable one-side invariant Riemannian metric on Lie group \(G \).

In our recent works \([16, 19]\), we studied the relation between Frobenius manifolds and Frobenius algebra-valued integrable systems.

Definition 1.2. A Frobenius algebra \((\mathfrak{F}, g_\mathfrak{F}, 1_\mathfrak{F}, \circ)\) over \(\mathbb{R} \) is a free \(\mathbb{R} \)-module \(\mathfrak{F} \) of finite rank \(l \), equipped with a commutative and associative multiplication \(\circ \) and a unit \(1_\mathfrak{F} \), and a \(\mathbb{R} \)-bilinear symmetric nondegenerate form \(g_\mathfrak{F} : \mathfrak{F} \times \mathfrak{F} \to \mathbb{R} \) satisfying

\[
 g_\mathfrak{F}(a \circ b, c) = g_\mathfrak{F}(a, b \circ c).
\]

Having this nondegenerate form \(g_\mathfrak{F} \) is equivalent to having a linear form \(\text{tr}_\mathfrak{F} : \mathfrak{F} \to \mathbb{R} \) whose kernel contains no trivial ideas. This linear form is often called a trace map. Indeed, given \(g_\mathfrak{F} \), we put \(\text{tr}_\mathfrak{F}(a) := g_\mathfrak{F}(a, 1_\mathfrak{F}) \). Conversely, given \(\text{tr}_\mathfrak{F} \), we could define \(g_\mathfrak{F}(a, b) := \text{tr}_\mathfrak{F}(a \circ b) \).

Observe that an \(\mathfrak{F} \)-valued KdV (\(\mathfrak{F} \)-KdV) equation

\[
 u_t + 3u \circ u_x + \zeta \circ u_{xxx} = 0, \quad \zeta \in \mathfrak{F}
\]

has been derived in \([16, 19]\), where \(u \) is a smooth \(\mathfrak{F} \)-valued function. A natural question is to ask:

“Could the \(\mathfrak{F} \)-KdV equation (1.2) be regarded as a Euler equation on the regular dual of an infinite-dimensional Lie algebra \(\mathfrak{g} \) ?”
Our work is inspired by this question. This paper is to give an affirmative answer and organized as follows. Firstly, we introduce an infinite dimensional Lie algebra, called the Frobenius-Virasoro algebra $\text{vir}_{\mathfrak{F}}$, which is an \mathfrak{F}-valued generalization of the Virasoro algebra. Afterwards, we compute Euler equations on the regular dual $\text{vir}_{\mathfrak{F}}^*$ of $\text{vir}_{\mathfrak{F}}$ for certain products, including the \mathfrak{F}-KdV equation, the \mathfrak{F}-CH equation and the \mathfrak{F}-HS equation. Moreover we show that all resulted Euler equations for the inner product $P_{\alpha,\beta}$ are local bihamiltonian. Let us remark that in order to define the Euler equation on $\text{vir}_{\mathfrak{F}}^*$, it is enough to require a commutative and associative algebra $(\mathfrak{F}, 1_{\mathfrak{F}}, \circ)$. In other words, we don’t require the existence of trace map $\text{tr}_{\mathfrak{F}}$. An interesting fact (also noted in [16]) is that if on $(\mathfrak{F}, 1_{\mathfrak{F}}, \circ)$, there are many different trace maps, then the corresponding \mathfrak{F}-valued Euler equation has many different (bi)hamiltonian structures. Finally we discuss some examples to illustrate our construction.

2. Euler equations on $\text{vir}_{\mathfrak{F}}^*$

Throughout this paper, we assume that the Frobenius algebra $\mathfrak{F} := (\mathfrak{F}, \text{tr}_{\mathfrak{F}}, 1_{\mathfrak{F}}, \circ)$ has the basis $e_1 = 1_{\mathfrak{F}}, e_2, \cdots, e_l$.

2.1. The Frobenius-Virasoro algebra $\text{vir}_{\mathfrak{F}}$. We begin with some definitions.

Definition 2.1. We define an infinite-dimensional Lie algebra $(\mathfrak{X}, [\ , \])$ over \mathbb{R} by

$$\mathfrak{X} := \{ u(x)\frac{d}{dx} | u \in C^\infty (\mathbb{S}^1, \mathfrak{F}) \} , \quad [u\partial, v\partial] := (u \circ v_x - u_x \circ v)\partial, \quad \partial = \frac{d}{dx}.$$ \hfill (2.1)

We remark that \mathfrak{X} is different from the loop algebra $L\mathfrak{F}$ of \mathfrak{F}. As vector spaces, they are isomorphic under the map

$$\Psi : L\mathfrak{F} \to \mathfrak{X}, \quad \Psi(u) = u\partial.$$

But as Lie algebras, Ψ is not a Lie algebra homomorphism.

Lemma 2.2. The map $\omega_{\mathfrak{F}} : \mathfrak{X} \times \mathfrak{X} \to \mathfrak{F}$ defined by

$$\omega_{\mathfrak{F}}(u\partial, v\partial) = \int_{\mathbb{S}^1} u \circ v_{xxx} dx$$ \hfill (2.2)

is a nontrivial 2-cocycle on \mathfrak{X}, called the \mathfrak{F}-valued Gelfand-Fuchs cocycle.

Proof. Observe that the Frobenius algebra \mathfrak{F} is commutative and associative, then we have

(i). $\omega_{\mathfrak{F}}(u\partial, v\partial) = -\omega_{\mathfrak{F}}(v\partial, u\partial); \quad$ (ii). $\omega_{\mathfrak{F}}(u\partial, [v\partial, w\partial]) + c.p. = 0,$

which follow the desired result. \hfill \square
Definition 2.3. The central extension of \(\mathfrak{X} \) is called the Frobenius-Virasoro algebra, denoted by \(\mathfrak{vir}_{\mathfrak{F}} \) with the Lie bracket
\[
[(u\partial, a), (v\partial, b)] := (u\partial(v\partial), \omega_{\mathfrak{F}}(u\partial, v\partial)).
\] (2.3)

When one chooses the Frobenius algebra \(\mathfrak{F} \) to be \(\mathbb{R} \), \(\mathfrak{vir}_{\mathfrak{F}} \) is exactly the Virasoro algebra and \(\mathfrak{X} = \text{Vect}(S^1) \). It is well known (e.g. [8, 13]) that the second continuous cohomology group \(H^2(\text{Vect}(S^1), \mathbb{R}) \cong \mathbb{R} \) is generated by the Gefland-Fuchs cocycle. Generally when \(\dim \mathfrak{F} > 1 \), \(H^2(\mathfrak{X}, \mathfrak{F}) \) is not generated by the \(\mathfrak{F} \)-valued Gelfand-Fuchs cocycle \(\omega_{\mathfrak{F}} \). An interesting problem is to compute \(H^2(\mathfrak{X}, \mathfrak{F}) \).

2.2. Euler equations on \(\mathfrak{vir}_{\mathfrak{F}}^\ast \). We denote the regular dual of the Frobenius-Virasoro algebra \(\mathfrak{vir}_{\mathfrak{F}} \) by \(\mathfrak{vir}_{\mathfrak{F}}^\ast = \{ (m(x, t)(dx)^2, \zeta(t)) | m(x, t) \text{ and } \zeta(t) \text{ are smooth } \mathfrak{F}-\text{valued functions} \} \) with respect to the paring
\[
\langle (mdx^2, \zeta), (u\partial, a) \rangle^\ast = \text{tr}_{\mathfrak{F}} \int_{S^1} m \circ ud\xi + \text{tr}_{\mathfrak{F}} (\zeta \circ a).
\] (2.4)

Write \(\hat{m} = (mdx^2, \zeta) \in \mathfrak{vir}_{\mathfrak{F}}^\ast \) and \(\hat{u} = (u\partial, a) \), \(\hat{v} = (v\partial, b) \in \mathfrak{vir}_{\mathfrak{F}}^\ast \). By the definition,
\[
\langle \text{ad}^\ast_{\hat{u}}(\hat{m}), \hat{v} \rangle^\ast = -\langle \hat{m}, [\hat{u}, \hat{v}] \rangle^\ast = \text{tr}_{\mathfrak{F}} \int_{S^1} (2m \circ u_x + m_x \circ u + \zeta \circ u_{xxx}) \circ v d\xi
\]
which yields that the coadjoint action of \(\mathfrak{vir}_{\mathfrak{F}} \) on \(\mathfrak{vir}_{\mathfrak{F}}^\ast \) is given by
\[
\text{ad}^\ast_{\hat{u}} \hat{m} = \left((2m \circ u_x + m_x \circ u + \zeta \circ u_{xxx})(dx)^2, 0 \right).
\] (2.5)

On \(\mathfrak{vir}_{\mathfrak{F}} \), we introduce a two-parameter family of inner product \(P_{\alpha, \beta}, \alpha, \beta \in \mathfrak{F} \) defined by
\[
\langle \hat{u}, \hat{v} \rangle = \text{tr}_{\mathfrak{F}} \int_{S^1} (a \circ u_x + \beta \circ u_x \circ v_x) d\xi + \text{tr}_{\mathfrak{F}} (a \circ b).
\] (2.6)

Observe that for the \(P_{\alpha, \beta} \), the inertia operator \(\mathcal{A} : \mathfrak{vir}_{\mathfrak{F}} \rightarrow \mathfrak{vir}_{\mathfrak{F}}^\ast \) is defined by \(\langle \hat{u}, \hat{v} \rangle = \langle \mathcal{A}(\hat{u}), \hat{v} \rangle^\ast \). In other words, \(\mathcal{A}(\hat{a}) = (\Lambda(u), a) \), where \(\Lambda = \alpha - \beta \partial^2 \) is an \(\mathfrak{F} \)-valued differential operator. So we have

Proposition 2.4. The Euler equation (1.1) on \(\mathfrak{vir}_{\mathfrak{F}}^\ast \) for \(P_{\alpha, \beta} \) reads
\[
m_t + 2m \circ u_x + m_x \circ u + \zeta \circ u_{xxx} = 0, \quad \zeta_t = 0,
\] (2.7)
where \(m = \Lambda(u) = \alpha \circ u - \beta \circ u_{xx} \).
When $\zeta = 0$, the system (2.7) could be regarded as the Euler equation on \mathfrak{X}^*. When the Frobenius algebra \mathfrak{F} is one-dimensional, i.e., \mathbb{R}, the system (2.7) is the Euler equation on vir^* (e.g., [7]). Generally, when $\alpha \neq 0$, $\beta = 0$ and $0 \neq \zeta \in \mathfrak{F}$, the system (2.7) reads the \mathfrak{F}-KdV equation
\begin{equation}
\alpha \circ u_t + 3\alpha \circ u_x + \zeta \circ u_{xxx} = 0.
\tag{2.8}
\end{equation}
When $\alpha \neq 0$, $\beta \neq 0$ and $\zeta \in \mathfrak{F}$, the system (2.7) becomes the \mathfrak{F}-CH equation
\begin{equation}
m_t + 2m \circ u_x + m_x \circ u + \zeta \circ u_{xxx} = 0, \quad m = \alpha \circ u - \beta \circ u_{xx}.
\tag{2.9}
\end{equation}
When $\alpha = 0$, $\beta \neq 0$ and $\zeta \in \mathfrak{F}$, the system (2.7) reduces to the \mathfrak{F}-HS equation
\begin{equation}
\beta \circ (u_{xx} + 2u_{xx} \circ u_x + u_{xxx} \circ u) - \zeta \circ u_{xxx} = 0, \quad m = -\beta \circ u_{xx}.
\tag{2.10}
\end{equation}

Example 2.5. Let $\mathcal{Z}_2^\varepsilon$ be a 2-dimensional commutative and associative algebra over \mathbb{R} with the basis $e_1 = 1_\mathfrak{F}, e_2$ satisfying
\begin{align*}
e_1 \circ e_1 &= e_1, \quad e_1 \circ e_2 = e_2, \quad e_2 \circ e_2 = \varepsilon e_1, \quad \varepsilon \in \mathbb{R}.
\end{align*}
Thus for any $A \in \mathcal{Z}_2^\varepsilon$, we could write $A = a_1 e_1 + a_2 e_2$, $a_k \in \mathbb{R}$ and define two “basic” trace-type maps as follows
\begin{equation}
\text{tr}_2 \circ(A) = a_k + a_2 (1 - \delta_{k,2}) \delta \varepsilon, \quad k = 1, 2.
\tag{2.11}
\end{equation}
So $(\mathcal{Z}_2^\varepsilon, \text{tr}_2 \circ, 1_\mathfrak{F}, \circ)$ for $k = 1, 2$ are the Frobenius algebras ([16]). The $\mathcal{Z}_2^\varepsilon$-valued Euler equation with $\zeta \in \mathcal{Z}_2^\varepsilon$ is given by
\begin{equation}
m_t + 2m \circ u_x + m_x \circ u + \zeta \circ u_{xxx} = 0, \quad m = \alpha \circ u - \beta \circ u_{xx}.
\tag{2.12}
\end{equation}
(i). When $\alpha = \zeta = 1_\mathfrak{F}$ and $\beta = 0$, the system (2.12) reduces to the $\mathcal{Z}_2^\varepsilon$-KdV equation ([16] [19])
\begin{equation}
u_t + 3\nu \circ \nu_x + \nu_{xxx} + 3\varepsilon \nu \circ \nu_x = 0, \quad \nu = ve_1 + we_2
\tag{2.13}
\end{equation}
equivalently in componentwise forms,
\begin{equation}
v_t + 3vv_x + v_{xxx} + 3\varepsilon vw_x = 0, \quad w_t + 3(vw)_x + w_{xxx} = 0.
\tag{2.13}
\end{equation}
When $\varepsilon = 0$, the system (2.13) is the coupled KdV equation in [3] [15]. When $\varepsilon = -1$, the system (2.13) is a complexification of the KdV equation.

(ii). When $\alpha = \beta = 1_\mathfrak{F}$ and $\zeta = 0$, the system (2.12) reduces to the $\mathcal{Z}_2^\varepsilon$-CH equation
\begin{equation}
m_t + 2m \circ u_x + m_x \circ u = 0, \quad m = u - u_{xx}, \quad u = ve_1 + we_2,
\tag{2.12}
\end{equation}
equivalently in componentwise forms,

\[p_t + 2pv_x + pxv + \varepsilon (2qw_x + qxw) = 0, \quad p = v - v_{xx}, \quad (2.14) \]
\[q_t + 2qv_x + qxv + 2pw_x + pxw = 0, \quad q = w - w_{xx}. \]

When \(\varepsilon = -1 \), the system (2.14) is the complex-CH equation (e.g., [14]).

(iii). When \(\alpha = 0 \) and \(\beta = \zeta = 1_3 \), the system (2.12) reduces to the \(\mathbb{Z}_2^\varepsilon \)-HS equation

\[m_t + 2m \circ u_x + m_x \circ u = 0, \quad m = -u_{xx}, \quad u = ve_1 + we_2, \]
equivalently in componentwise forms,

\[p_t + 2pv_x + pxv + \varepsilon (2qw_x + qxw) = 0, \quad p = -v_{xx}, \quad (2.15) \]
\[q_t + 2qv_x + qxv + 2pw_x + pxw = 0, \quad q = -w_{xx}. \]

2.3. Hamiltonian structures of the Euler equation (2.7).

Let us take two arbitrary smooth functionals

\(\tilde{F}_i : \text{vir}_{\mathbb{S}}^* \rightarrow \mathbb{R}, \quad \tilde{F}_i(\hat{m}) = \int_{S^1} \text{tr}_\mathbb{S} F_i(m) dx = \int_{S^1} f_i(m_1, \ldots, m_l) dx, \quad i = 1, 2, \)

where \(m = \sum_{k=1}^l m_k e_k \). The variational derivative \(\frac{\delta \tilde{F}_i}{\delta m} \) is defined as

\[\delta \tilde{F}_i = \left(\frac{\delta F_i}{\delta m} \partial, 0 \right) \in \text{vir}_{\mathbb{S}}, \quad (2.16) \]

where \(\frac{\delta F_i}{\delta m} \) is implicitly determined by

\[\tilde{F}_i(m + \delta m) - \tilde{F}_i(m) = \int_{S^1} \text{tr}_\mathbb{S} \left(\delta F_i \circ \delta m + o(\delta m) \right) dx \]
\[= \int_{S^1} \left(\sum_{k=1}^l \frac{\delta f_i}{\delta m_k} \delta m_k + o(\delta m) \right) dx \quad (2.17) \]

and \(\frac{\delta f_i}{\delta m_k} \) is the usual variational derivative. This formula (2.17) is very crucial to construct the bihamiltonian representation of the Euler equation. On \(\text{vir}_{\mathbb{S}}^* \), there is a canonical Lie-Poisson bracket

\[\mathcal{P}_2 := \{ \tilde{F}_1, \tilde{F}_2 \}(\hat{m}) = \langle m, \left[\frac{\delta \tilde{F}_1}{\delta m}, \frac{\delta \tilde{F}_2}{\delta m} \right] \rangle^* = \text{tr}_\mathbb{S} \int_{S^1} \frac{\delta F_1}{\delta m} \circ J_2 \circ \frac{\delta F_2}{\delta m} dx \quad (2.18) \]
where $J_2 = -(m \partial + \partial m + \zeta \partial^3)$ and $\hat{m} = (mdx^2, \zeta) \in \text{vir}_\mathfrak{g}^*$. Taking a fixed point $\hat{m}_0 = (\frac{\alpha}{2} dx^2, -\beta)$, we get another compatible Poisson bracket denoted by

$$P_1 = \{\bar{F}_1, \bar{F}_2\}_1(\hat{m}) := \text{tr}_3 \int_{S^1} \frac{\delta F_1}{\delta \hat{m}} \circ J_1 \circ \frac{\delta F_2}{\delta \hat{m}} dx,$$

i.e., $P_1 = P_2|\hat{m} = \hat{m}_0$, (2.19)

where $J_1 := J_2|\hat{m} = \hat{m}_0 = \beta \partial^3 - \alpha \partial = -\partial \Lambda$.

Theorem 2.6. The \mathfrak{g}-valued Euler equation (2.7) with $\zeta \in \mathfrak{g}$ is local bihamiltonian with the freezing point $\hat{m}_0 = (\frac{\alpha}{2} dx^2, -\beta) \in \text{vir}_\mathfrak{g}^*$.

Proof. Setting

$$H_1 = \frac{1}{2} \text{tr}_3 \int_{S^1} m \circ udx, \quad H_2 = \frac{1}{2} \text{tr}_3 \int_{S^1} \left(\zeta \circ u \circ u_{xx} + \alpha \circ u^3 - \frac{1}{2} \beta \circ u^2 \circ u_{xx} \right) dx.$$

With the formula (2.16), we get

$$\frac{\delta H_1}{\delta u} = \Lambda(u), \quad \frac{\delta H_2}{\delta u} = \zeta \circ u_{xx} + 3 \alpha \circ u^2 - \frac{1}{2} \beta \circ u_x - \beta \circ u \circ u_{xx}.$$

By using $m = \Lambda(u)$, then

$$\frac{\delta H_1}{\delta m} = \Lambda^{-1} \circ \frac{\delta H_1}{\delta u} = u, \quad \frac{\delta H_2}{\delta m} = \Lambda^{-1} \circ \frac{\delta H_2}{\delta u}.$$

So the system (2.7) could be written as

$$m_t = J_1 \circ \frac{\delta H_2}{\delta m} = J_2 \circ \frac{\delta H_1}{\delta m}. \quad (2.20)$$

Furthermore using the formula (2.17), in componentwise forms the Euler equation (2.7) has the following bihamiltonian representation

$$m_{k,t} = \{m_k, H_2\}_1 = \{m_k, H_1\}_2, \quad k = 1, \ldots, l, \quad (2.21)$$

where two compatible Poisson brackets $\{\ , \}_i, i = 1, 2$ are defined in (2.18) and (2.19) respectively.

Remark 2.7. Let us remark that when choose \mathfrak{g} as the Frobenius algebra $(\mathcal{Z}_l, \text{tr}_l)$ ([3, 10, 19]), the Frobenius-Virasoro algebra $\text{vir}_\mathfrak{g}$ coincides with the polynomial Virasoro algebra introduced by P. Casati and G. Ortenzi in [4]. They also computed Euler equations on $\text{vir}_\mathfrak{g}^*$ and proved that they admitted a local bihamiltonian structure by using the trace-type map tr_l. Actually in [16], it has been shown that there are at least l “basic” different ways to regard the algebra \mathcal{Z}_l as the Frobenius algebra $(\mathcal{Z}_l, \omega_k)$ for $k = 0, \ldots, l - 1$. We want to mention that the trace map tr_l is a linear combination
of “basic” trace maps given by \(\text{tr}_l = \sum_{k=0}^{l-1} \omega_k - (l-1) \omega_{l-1} \). Using Theorem 2.6 we thus obtain

Corollary 2.8. The \(\mathbb{Z}_l \)-valued Euler equation (2.7) has at least \(l \) “basic” local bihamiltonian structures.

2.4. Examples

According to Example 2.5, \((\mathbb{Z}_2, \text{tr}_2, \iota, \circ)\) for \(k = 1, 2 \) are the Frobenius algebras. We thus have

Corollary 2.9. The \(\mathbb{Z}_2 \)-valued Euler equation (2.12) has at least two kinds of “basic” local bihamiltonian structures.

Naturally, we know that the \(\mathbb{Z}_2 \)-CH equation (2.9) and the \(\mathbb{Z}_2 \)-HS equation (2.10) have at least two kinds of “basic” local bihamiltonian structures. For the \(\mathbb{Z}_2 \)-KdV equation (2.9), two kinds of “basic” local bihamiltonian structures have been obtained in [16, 19] by other methods. Based on our construction, more precisely we have

Example 2.10. We consider the case: \([\varepsilon \neq 0]\).

(i). The \(\mathbb{Z}_2 \)-KdV equation (2.13)

\[
v_t + 3vv_x + v_{xxx} + 3\varepsilon ww_x = 0, \quad w_t + 3(vw)_x + w_{xxx} = 0
\]

could be rewritten as

\[
\left(\begin{array}{c}
v \\
w
\end{array} \right)_t = - \left(\begin{array}{cc} 0 & \partial \\ \partial & 0 \end{array} \right) \left(\begin{array}{c} \frac{\delta H_2}{\delta v} \\ \frac{\delta H_2}{\delta w} \end{array} \right) = - \left(\begin{array}{cc} \varepsilon J_1 & J_0 \\ J_0 & J_1 \end{array} \right) \left(\begin{array}{c} \frac{\delta H_1}{\delta v} \\ \frac{\delta H_1}{\delta w} \end{array} \right)
\]

with Hamiltonians

\[
H_1 = \int_{\mathbb{S}^1} vwdx, \quad H_2 = \frac{1}{2} \int_{\mathbb{S}^1} (3v^2w + \varepsilon w^3 + 2vw_{xx})dx
\]

and

\[
\left(\begin{array}{c}
v \\
w
\end{array} \right)_t = - \left(\begin{array}{cc} \partial & 0 \\ 0 & \frac{1}{\varepsilon} \partial \end{array} \right) \left(\begin{array}{c} \frac{\delta \tilde{H}_2}{\delta v} \\ \frac{\delta \tilde{H}_2}{\delta w} \end{array} \right) = - \left(\begin{array}{cc} J_0 & J_1 \\ J_1 & \frac{1}{\varepsilon} J_0 \end{array} \right) \left(\begin{array}{c} \frac{\delta \tilde{H}_1}{\delta v} \\ \frac{\delta \tilde{H}_1}{\delta w} \end{array} \right)
\]

with Hamiltonians

\[
\tilde{H}_1 = \frac{1}{2} \int_{\mathbb{S}^1} (v^2 + \varepsilon w^2)dx, \quad \tilde{H}_2 = \frac{1}{2} \int_{\mathbb{S}^1} (v^3 + vv_{xx} + 3\varepsilon vw^2 + \varepsilon w_{xxx})dx
\]

where \(J_0 = \partial^3 + v\partial + \partial v \) and \(J_1 = w\partial + \partial w \).
(ii). The \mathbb{Z}_2-CH equation (2.14)

\[
p_t + 2pv_x + px_v + \varepsilon(2qw_x + qx_w) = 0, \quad p = v - v_{xx},
\]

\[
q_t + 2qv_x + qx_v + 2pw_x + px_w = 0, \quad q = w - w_{xx},
\]
could be rewritten as

\[
\begin{pmatrix}
 p \\
 q
\end{pmatrix}_t = \begin{pmatrix}
 0 & \partial^3 - \partial \\
 \partial^3 - \partial & 0
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_2}{\partial p} \\
 \frac{\delta H_2}{\partial q}
\end{pmatrix} = - \begin{pmatrix}
 \varepsilon K_1 & K_0 \\
 K_0 & K_1
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_1}{\partial p} \\
 \frac{\delta H_1}{\partial q}
\end{pmatrix}
\]

with Hamiltonians

\[
H_1 = \frac{1}{2} \int_{\mathbb{S}^1} (qv + pw) dx, \quad H_2 = \frac{1}{4} \int_{\mathbb{S}^1} (2vw_{xx} + 2wv_{xx} - 2wvw_{xx} - \varepsilon w^2_{xx}) dx,
\]

and

\[
\begin{pmatrix}
 p \\
 q
\end{pmatrix}_t = \begin{pmatrix}
 \partial^3 - \partial & 0 \\
 0 & 1/\varepsilon (\partial^3 - \partial)
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_2}{\partial p} \\
 \frac{\delta H_2}{\partial q}
\end{pmatrix} = - \begin{pmatrix}
 K_0 & K_1 \\
 1/\varepsilon K_0 & K_1
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_1}{\partial p} \\
 \frac{\delta H_1}{\partial q}
\end{pmatrix}
\]

with Hamiltonians

\[
\tilde{H}_1 = \frac{1}{2} \int_{\mathbb{S}^1} (pv + \varepsilon qw) dx, \quad \tilde{H}_2 = \frac{1}{4} \int_{\mathbb{S}^1} (2vw + \varepsilon pq + \varepsilon w^2 q) dx,
\]

where $K_0 = p\partial + \partial p$ and $K_1 = q\partial + \partial q$.

(iii). The \mathbb{Z}_2-HS equation (2.15)

\[
p_t + 2pv_x + px_v + \varepsilon(2qw_x + qx_w) = 0, \quad p = -v_{xx},
\]

\[
q_t + 2qv_x + qx_v + 2pw_x + px_w = 0, \quad q = -w_{xx},
\]
could be rewritten as

\[
\begin{pmatrix}
 p \\
 q
\end{pmatrix}_t = \begin{pmatrix}
 \partial^3 & 0 \\
 0 & \partial^3
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_2}{\partial p} \\
 \frac{\delta H_2}{\partial q}
\end{pmatrix} = - \begin{pmatrix}
 \varepsilon K_1 & K_0 \\
 K_0 & K_1
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_1}{\partial p} \\
 \frac{\delta H_1}{\partial q}
\end{pmatrix}
\]

with Hamiltonians

\[
H_1 = \frac{1}{2} \int_{\mathbb{S}^1} (qv + pw) dx, \quad H_2 = \frac{1}{4} \int_{\mathbb{S}^1} (2wvp + v^2 q + \varepsilon w^2 q) dx,
\]

and

\[
\begin{pmatrix}
 p \\
 q
\end{pmatrix}_t = \begin{pmatrix}
 0 & 1/\varepsilon \partial^3 \\
 \partial^3 & 0
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_2}{\partial p} \\
 \frac{\delta H_2}{\partial q}
\end{pmatrix} = - \begin{pmatrix}
 K_0 & K_1 \\
 1/\varepsilon K_0 & K_1
\end{pmatrix} \begin{pmatrix}
 \frac{\delta H_1}{\partial p} \\
 \frac{\delta H_1}{\partial q}
\end{pmatrix}
\]

with Hamiltonians

\[
\tilde{H}_1 = \frac{1}{2} \int_{\mathbb{S}^1} (pv + \varepsilon qw) dx, \quad \tilde{H}_2 = \frac{1}{4} \int_{\mathbb{S}^1} (pv^2 + \varepsilon pw^2 + 2\varepsilon vwpq) dx,
\]

where $K_0 = p\partial + \partial p$ and $K_1 = q\partial + \partial q$.
Example 2.11. We consider another case: \(\varepsilon = 0 \).

(i) The \(\mathbb{Z}_2^0 \)-KdV equation \((2.13)\)

\[
v_t + 3vv_x + v_{xxx} = 0, \quad w_t + 3(vw)_x + w_{xxx} = 0
\]

could be rewritten as

\[
\begin{pmatrix}
v \\
w
\end{pmatrix}_t = - \begin{pmatrix}
0 & \partial \\
\partial & 0
\end{pmatrix} \begin{pmatrix}
\frac{\delta H_2}{\delta v} \\
\frac{\delta H_2}{\delta w}
\end{pmatrix} = - \begin{pmatrix}
0 & J_0 \\
J_0 & J_1 - J_0
\end{pmatrix} \begin{pmatrix}
\frac{\delta H_1}{\delta v} \\
\frac{\delta H_1}{\delta w}
\end{pmatrix}
\]

with Hamiltonians

\[
H_1 = \int_{S^1} vwdx, \quad H_2 = \frac{1}{2} \int_{S^1} (3v^2w + 2vw_{xx})dx
\]

and

\[
\begin{pmatrix}
v \\
w
\end{pmatrix}_t = - \begin{pmatrix}
0 & \partial \\
\partial & -\partial
\end{pmatrix} \begin{pmatrix}
\frac{\delta H_2}{\delta v} \\
\frac{\delta H_2}{\delta w}
\end{pmatrix} = - \begin{pmatrix}
0 & J_0 \\
J_0 & J_1 - J_0
\end{pmatrix} \begin{pmatrix}
\frac{\delta \tilde{H}_1}{\delta v} \\
\frac{\delta \tilde{H}_1}{\delta w}
\end{pmatrix}
\]

with Hamiltonians

\[
\tilde{H}_1 = \frac{1}{2} \int_{S^1} (v^2 + 2vw)dx, \quad \tilde{H}_2 = \frac{1}{2} \int_{S^1} (v^3 + vv_{xx} + 3v^2w + 2vw_{xx})dx
\]

where \(J_0 = \partial^3 + v\partial + \partial v \) and \(J_1 = w\partial + \partial w \).

(ii) The \(\mathbb{Z}_2^0 \)-CH equation \((2.14)\)

\[
p_t + 2pv_x + p_x v = 0, \quad p = v - v_{xx}, \quad p = v - v_{xx},
\]

\[
q_t + 2qv_x + q_x v + 2pw_x + p_x w = 0, \quad q = w - w_{xx}
\]

could be rewritten as

\[
\begin{pmatrix}
p \\
q
\end{pmatrix}_t = \begin{pmatrix}
0 & \partial^3 - \partial \\
\partial^3 - \partial & 0
\end{pmatrix} \begin{pmatrix}
\frac{\delta H_2}{\delta p} \\
\frac{\delta H_2}{\delta q}
\end{pmatrix} = - \begin{pmatrix}
0 & K_0 \\
K_0 & K_1 - K_0
\end{pmatrix} \begin{pmatrix}
\frac{\delta H_1}{\delta p} \\
\frac{\delta H_1}{\delta q}
\end{pmatrix}
\]

with Hamiltonians

\[
H_1 = \frac{1}{2} \int_{S^1} (qv + pw)dx, \quad H_2 = \frac{1}{4} \int_{S^1} (2vww_{xx} + 2vww_{xx} - 2wvw_{xx} - v^2w_{xx})dx
\]

and

\[
\begin{pmatrix}
p \\
q
\end{pmatrix}_t = \begin{pmatrix}
0 & \partial^3 - \partial \\
\partial^3 - \partial & 0
\end{pmatrix} \begin{pmatrix}
\frac{\delta \tilde{H}_2}{\delta p} \\
\frac{\delta \tilde{H}_2}{\delta q}
\end{pmatrix} = - \begin{pmatrix}
0 & K_0 \\
K_0 & K_1 - K_0
\end{pmatrix} \begin{pmatrix}
\frac{\delta \tilde{H}_1}{\delta p} \\
\frac{\delta \tilde{H}_1}{\delta q}
\end{pmatrix}
\]

with Hamiltonians

\[
\tilde{H}_1 = \frac{1}{2} \int_{S^1} (pv + qv + pw)dx
\]
and
\[\tilde{H}_2 = \frac{1}{4} \int_{S^1} (2vw_{xx} + 2wv_{xx} - 2wvv_{xx} - v^2w_{xx} + 2vv_{xx} - v^2v_{xx}) \, dx, \]
where \(K_0 = p\partial + \partial p \) and \(K_1 = q\partial + \partial q \).

(iii). The \(Z^0_2\)-HS equation (2.15)
\[p_t + 2pv_x + p_x v = 0, \quad p = -v_{xx}, \]
\[q_t + 2qv_x + q_x v + 2pw_x + p_x w = 0, \quad q = -w_{xx} \]
could be rewritten as
\[\begin{pmatrix} p \\ q \end{pmatrix}_t = \begin{pmatrix} 0 & \partial^3 \\ \partial^3 & 0 \end{pmatrix} \begin{pmatrix} \delta H_2 \\ \delta p \\ \delta H_2 \\ \delta q \end{pmatrix} = - \begin{pmatrix} 0 & K_0 \\ K_0 & 0 \end{pmatrix} \begin{pmatrix} \delta H_1 \\ \delta p \\ \delta H_1 \\ \delta q \end{pmatrix} \]
with Hamiltonians
\[H_1 = \frac{1}{2} \int_{S^1} (qv + pw) \, dx, \quad H_2 = \frac{1}{4} \int_{S^1} (2wp + v^2q) \, dx, \]
and
\[\begin{pmatrix} p \\ q \end{pmatrix}_t = \begin{pmatrix} 0 & \partial^3 - \partial \\ \partial^3 - \partial & 0 \end{pmatrix} \begin{pmatrix} \delta H_2 \\ \delta p \\ \delta H_2 \\ \delta q \end{pmatrix} = - \begin{pmatrix} 0 & K_0 \\ K_0 & 0 \end{pmatrix} \begin{pmatrix} \delta H_1 \\ \delta p \\ \delta H_1 \\ \delta q \end{pmatrix} \]
with Hamiltonians
\[\tilde{H}_1 = \frac{1}{2} \int_{S^1} (pv + qv + pw) \, dx, \quad \tilde{H}_2 = \frac{1}{4} \int_{S^1} (pv + 2wp + v^2q) \, dx, \]
where \(K_0 = p\partial + \partial p \) and \(K_1 = q\partial + \partial q \).

2.5. Euler equations on \(\text{vir}_\delta^* \) for general product \(P_{\alpha_0, \ldots, \alpha_n} \). To end up this section, on \(\text{vir}_\delta \) we introduce a general product \(P_{\alpha_0, \ldots, \alpha_n} \) given by
\[\langle \hat{u}, \hat{v} \rangle = \text{tr}_\delta \int_{S^1} \left(\alpha_0 \circ u \circ v + \sum_{k=1}^{n} \alpha_k \circ u^{(k)} \circ v^{(k)} \right) \, dx + \text{tr}_\delta (a \circ b), \quad u^{(k)} = \frac{d^k u}{dx^k}. \] (2.22)
By analogy with the above discussions, we have

Proposition 2.12. The Euler equation (1.1) on \(\text{vir}_\delta^* \) for \(P_{\alpha_0, \ldots, \alpha_n} \) reads
\[m_t + 2m \circ u_x + m_x u + \zeta \circ u_{xxx} = 0, \quad \zeta_t = 0, \] (2.23)
where \(m = \alpha_0 \circ u + \sum_{k=1}^{n} (-1)^k \alpha_k \circ u^{(2k)} \). Moreover, the system (2.23) with \(\zeta \in \mathfrak{g} \) could be written as
\[m_{k,t} = \{ m_k, H_1 \}_2, \quad H_1 = \frac{1}{2} \text{tr}_\delta \int_{S^1} m \circ u \, dx \] (2.24)
where \(\{ , \}_2 \) is defined in (2.18).
Generally, when \(n \geq 2 \), the system (2.23) isn’t a bihamiltonian system. But if there are many different ways to realize the algebra \((\mathfrak{g}, \mathfrak{g}, \circ)\) as the Frobenius algebras, then it follows from Proposition 2.12 that the system (2.23) has many different Hamiltonian structures. For instance,

Corollary 2.13. The \(\mathbb{Z}_2^\varepsilon \)-valued Euler equation (2.23) with \(\zeta \in \mathbb{Z}_2^\varepsilon \) admits at least two “basic” local Hamiltonian structures.

3. Conclusion

In order to understand Eulerian nature of the \(\mathfrak{g} \)-valued KdV equation, we have introduced the Frobenius-Virasoro algebra \(\text{vir}_\mathfrak{g} \) and also described Euler equations on \(\text{vir}_\mathfrak{g}^* \) under the product \(P_{\alpha_0, \ldots, \alpha_n} \) and proved that all resulted Euler equations for \(P_{\alpha, \beta} \) are local bihamiltonian systems. Here we only studied the Euler equation associated with \(\text{vir}_\mathfrak{g} \). In subsequent publications we hope to address those problems related to algebraic properties of \(\text{vir}_\mathfrak{g} \), such as

Q1. What is the second continuous cohomology group \(H^2(\mathfrak{g}, \mathfrak{g}) \)?

Q2. How about the representation theory of \(\text{vir}_\mathfrak{g} \)?

Q3. If exists, what is the corresponding Lie group \(G_\mathfrak{g} \) of \(\text{vir}_\mathfrak{g} \)? For instance, \(G_\mathbb{R} \) is the Bott-Virasoro group.

Acknowledgements. The author is grateful to Professors Qing Chen, Yi Cheng and Youjin Zhang for constant supports and Professor Ian A.B. Strachan, Dr. Ying Shi for fruitful discussions. This work is partially supported by NCET-13-0550, NSFC (11271345, 11371138), SRF for ROCS, SEM and OATF, USTC.

References

[1] V.I.Arnold, *Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits*, Ann. Inst. Fourier Grenoble 16 (1966) 319–361.

[2] V.I.Arnold and B.Khesin, *Topological methods in hydrodynamics*, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, (1998) pp. xv+374.

[3] P.Casati and G.Ortenzi, *New integrable hierarchies from vertex operator representations of polynomial Lie algebras*. J.Geom.Phys. 56(2006)418–449.

[4] P.Casati and G.Ortenzi, *Bihamiltonian Equations on Polynomial Virasoro algebras*. J.Nonl. Math. Phys., 3(2006) 352–364.

[5] A.P.Fordy, A.G.Reyman and M.A.Semenov-Tian-Shansky, *Classical r-matrices and compatible Poisson brackets for coupled KdV systems*, Lett. Math. Phys. 17 (1989) 25–29.

[6] P.Guha and P.J.Olver, *Geodesic flow and two (super) component analog of the Camassa-Holm equation*, Symmetry Integrability Geom. Methods Appl. (SIGMA), 2 (2006) Paper 054, 9 pp.
[7] B.Khesin and G.Misiolek, *Euler equations on homogeneous spaces and Virasoro orbits*, Adv. Math., 176(2003)116–144.

[8] B.Khesin and R.Wendt, *The Geometry of Infinite-Dimensional Groups*, Springer-Verlag, New York, 2009.

[9] B.Kolev, *Bihamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations*, Phil. Trans. R. Soc. A 365 (2007)2333–2357.

[10] J.van de Leur, *Bäcklund transformations for new integrable hierarchies related to the polynomial Lie algebra $gl(n)$*, J.Geom.Phys. 57(2007)435–447.

[11] G.Misiolek, *A shallow water equation as a geodesic flow on the Bott-Virasoro group*, J.Geom. Phys., 24 (1998)203–208.

[12] V.Yu.Ovsienko and B. Khesin, *The (super) KdV equation as an Euler equation*, Funct.Anal. Appl., 21 (1987) 329–331.

[13] A.Pressley and G.Segal, *Loop Groups*, Oxford University Press, Oxford, 1986.

[14] C.Z.Qu, J.F.Song and R.X.Yao, *Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries*, Symmetry Integrability Geom. Methods Appl. (SIGMA), 9 (2013) Paper 001, 19 pp.

[15] Ian A.B.Strachan and B.M.Szablikowski, *Novikov algebras and a classification of multicomponent Camassa-Holm equations*, To appear in Stud.in Appl.Math. [arXiv:1309.3188].

[16] Ian A.B.Strachan and D.Zuo, *Frobenius manifolds and Frobenius algebra-valued Integrable systems*, arXiv:1403.?.

[17] D.Zuo, *A two-component μ-Hunter-Saxton equation*, Inverse Problems, 26 (2010) 085003, 9pp.

[18] D.Zuo, *Euler Equations Related to the Generalized Neveu-Schwarz Algebra*, Symmetry Integrability Geom. Methods Appl. (SIGMA), 9 (2013) Paper 045, 12pp.

[19] D.Zuo, *Local matrix generalizations of W-algebras*, arXiv:1401.2216.

School of Mathematical Science, University of Science and Technology of China, Hefei 230026, P.R.China

Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences

School of Mathematics and Statistics, University of Glasgow

E-mail address: dfzuo@ustc.edu.cn