Analysis of Three - Channel SW Interference Adaptive Cancellation System

Mingyang LI¹, Yunhao JIANG¹, Jian YANG¹, Shiqi LIU¹ and Xing LI¹
¹Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, China

Abstract. Aiming at the adjacent channel interference problem of short-wave, a model of three-way short-wave interference signals has been established. The interference cancellation of the short-wave interference signal of three adjacent channels is analyzed, and the time-domain characteristics of the adaptive interference cancellation system are simulated. The theoretical and simulation analysis of the adaptive system show that the offset of the bypass signal will be affected when the intermediate signal frequency is biased to one side because of the existence of the intermediate channel bandwidth.

1 Introduction

Due to its simple structure and low cost, the short-wave communication is still widely used in military communications. In the short-wave communication between ships, the multiple transmitters and receivers are usually working on the ship at the same time. When the two are working, the receiving antenna will receive the transmitting signal of the transmitting antenna through coupling, and the signal is received. The antenna is an interference signal that affects the receiver receiving useful signals. Not only will the receiver block, but also will seriously affect the performance of short-wave communication[1]. With the development of adaptive interference cancellation technology, it provides a strong support for solving such problems.

Adaptive interference cancellation technology is an effective way to solve this problem. The previous Widrow B literature has been introduced in detail[2]. For the study of signal interference, we only need to extract the relevant reference signal input from the noise, and then it can be attenuated or filtered out from the useful signal by the relevant system to obtain the useful signal we want. Later, J.Glover studied the adaptive interference cancellation of sinusoidal signals from the perspective of frequency domain. Then people have studied a lot of research on adaptive interference cancellation technology and corresponding performance improvement[3-6].

In this paper, the problem of adjacent channel interference of short-wave signals has been studied. A model of three-way short-wave interference signals has been established, and adaptive interference cancellation technology has been used to suppress interference[7]. In the system simulation process, it is assumed that the interference signal is a narrowband signal, and the influence of the frequency fluctuation of the interference signal in the intermediate channel on the interference cancellation of the adjacent channel signal is theoretically and simulated. In this paper, the steady-state characteristics and cancellation performance of the system are analyzed from the perspective of time domain. Finally, the corresponding simulation results and analysis are given.

2 The system model

The model of adaptive interference cancellation system is shown in fig 1. I(t) is the interference signal received by the receiving antenna, I(t) is the offset error signal, and I(t) is reference signals obtained through the transmitting antenna and passed through the orthogonal network. The M(t) is weights, O(t) is the weighted output signal, O(t) is the weighted output composite signal, the k is the system gain, t is the time constant.

Let reference signal be

I(t) = \sum_{i=1}^{M} I_i \cos(\omega t - \alpha_i) \tag{1}

, where I_i is the amplitude of the ith signal component of the reference signal, \omega is the angular frequency, \alpha_i is the initial phase.

and interference signal be
\[I_i(t) = \sum_{j=1}^{3} I_{ij} \cos(\omega t - \phi) \] \hspace{1cm} (2)

where, \(I_i \) is the amplitude of the \(i \)th signal component of the interfering signal, \(\alpha \) is the angular frequency of the interfering signal, \(\alpha_i \) is the initial phase of the interfering signal.

As can be seen from Figure 1, the offset residual signal can be expressed as

\[I_{\varepsilon}(t) = I_i(t) - [M_i(t)I_{ij}(t) + M_2(t)I_{jk}(t)] \] \hspace{1cm} (3)

3 Time domain analysis

It can be obtained from Fig. 1 and formula (1) that two orthogonal reference signals are

\[
\begin{pmatrix}
I_1(t) \\
I_2(t)
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{3} I_i \cos(\omega t - \alpha) \\
\sum_{i=1}^{3} I_i \sin(\omega t - \alpha)
\end{pmatrix}
\]

According to the method of [8], the product of reference signal and error signal can be represented as

\[
\begin{pmatrix}
\delta_\varepsilon(T) \\
\delta_\varepsilon(T)
\end{pmatrix} = \begin{pmatrix}
I_1(t) \\
I_2(t)
\end{pmatrix} \cdot \frac{d}{dt} \begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix}
\]

\[
\begin{pmatrix}
\sum_{j=1}^{3} I_{ij} \cos(\omega t - \phi) \sum_{j=1}^{3} I_{ij} \sin(\omega t - \phi) \\
\sum_{j=1}^{3} I_{ij} \cos(\omega t - \phi) \sum_{j=1}^{3} I_{ij} \sin(\omega t - \phi)
\end{pmatrix}
\]

\[
\begin{pmatrix}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{pmatrix} \begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix}
\]

Where, \(d_{11}, d_{12}, d_{21}, \) and \(d_{22} \) are

\[
d_{11} = \sum_{i=1}^{3} I_i \cos(\omega t - \alpha) \sum_{j=1}^{3} I_{ij} \cos(\omega t - \phi)
\]

\[
d_{12} = \sum_{i=1}^{3} I_i \cos(\omega t - \alpha) \sum_{j=1}^{3} I_{ij} \sin(\omega t - \phi)
\]

\[
d_{21} = \sum_{i=1}^{3} I_i \sin(\omega t - \alpha) \sum_{j=1}^{3} I_{ij} \cos(\omega t - \phi)
\]

\[
d_{22} = \sum_{i=1}^{3} I_i \sin(\omega t - \alpha) \sum_{j=1}^{3} I_{ij} \sin(\omega t - \phi)
\]

After considering the input-output relationship of the system, the differential equation of weights can be expressed by the first-order differential equation as

\[\frac{d}{dt} \begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix} = \begin{pmatrix}
\delta_\varepsilon(T) \\
\delta_\varepsilon(T)
\end{pmatrix} \begin{pmatrix}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{pmatrix} \begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix}
\]

Substituting equation (6) into equation (8)

\[\frac{d}{dt} \begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix} = \begin{pmatrix}
\delta_\varepsilon(T) \\
\delta_\varepsilon(T)
\end{pmatrix} \begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\omega t - \phi) \\
\sum_{i=1}^{3} I_{ij} \sin(\omega t - \phi)
\end{pmatrix}
\]

\[\begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{3} I_i \cos(\omega t - \alpha) \\
\sum_{i=1}^{3} I_i \sin(\omega t - \alpha)
\end{pmatrix}
\]

Because the \(i \) and \(j \) are uncertain in the above formula, the differential equation is a time-varying differential equation and is not easy to solve. Here, the simplification analysis is performed from its average model. Taking the average of equation (9) means removing the amount of communication, removing the amount of communication and reducing it to

\[\frac{d}{dt} \begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix}
\]

\[\begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix}
\]

Solving the equation, we find

\[\begin{pmatrix}
M_1(t) \\
M_2(t)
\end{pmatrix} = \begin{pmatrix}
M_1(0) \\
M_2(0)
\end{pmatrix} e^{(\frac{-1}{k} \sum_{i=1}^{3} I_{ij}^2)} + \frac{k}{1 + \frac{k}{2} \sum_{i=1}^{3} I_{ij}^2}
\]

Analyzing the above formula, when \(t \to \infty \), the steady weight of the system can be obtained.

\[\begin{pmatrix}
M_1(\infty) \\
M_2(\infty)
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix}
\]

From (6) and (12) we can find residual error is

\[I_{\varepsilon}(t) = I_i(t) - [M_1(\infty)I_{ij}(t) + M_2(\infty)I_{jk}(t)] \]

\[= \frac{1}{k} \sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) - \frac{1}{k} \sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\]

\[\begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix} \]

\[\begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix} \]

\[\begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix} \]

\[\begin{pmatrix}
\sum_{i=1}^{3} I_{ij} \cos(\phi - \alpha) \\
\sum_{i=1}^{3} I_{ij} \sin(\phi - \alpha)
\end{pmatrix} \]

Where,
\[
Q_j = I_{j1} \cos(\phi_j - \alpha_j) = \frac{1_n}{k} + \sum_{r=1}^{3} I_{r1} \cos(\phi - \alpha)
\]
\[
P_j = I_{j1} \sin(\phi_j - \alpha_j) = \frac{1_n}{k} + \sum_{r=1}^{3} I_{r1} \sin(\phi - \alpha)
\]

So, the ICR of each signal is

\[
ICR_j = 20 \log\left(\frac{I_{j1}}{|I_j(t)|}\right) = 20 \log\left(\frac{1_n}{\sqrt{Q_j^2 + P_j^2}}\right)
\] \tag{15}

For this issue, we take ICR2 as an example. The simplification formula is equation (16).

\[
ICR_2 = 10 \log\left(\frac{k^2 I_{11}^2 I_{21}^2 I_{31}^2 + 2 \cos[(\phi - \alpha) - (\phi - \alpha)] I_{j1} I_{j1} I_{j1} + I_{j1} I_{j1} - 2k I_{j1} I_{j1} I_{j1} I_{j1}}{I_{j1}^2 (2 + k(I_{j1}^2 + I_{j1}^2))}\right)
\]

\[
+ \cos[(\phi - \alpha) - (\phi - \alpha)] I_{j1} I_{j1} (2 + k(I_{j1}^2 + I_{j1}^2)) + I_{j1}^2 (2 + k(I_{j1}^2 + I_{j1}^2))\right)
\] \tag{16}

4 Simulation results and analysis

We take a narrowband signal as an example, we take its carrier frequency and keep the amplitudes of three adjacent signals equal. And the channel bandwidth of the short-wave signal is 3.7 KHz, the channel spacing (narrowband) is 12.5 KHz, and the system gain is taken as k=100[8]. \(f_1, f_2, \text{ and } f_3\) are the frequencies of the three signals, and the values are as shown in Table 1.

frequency	Value
\(f_1\)	5016200
\(f_2\)	4987500-5012500
\(f_3\)	4983800

The ICR of the three signals varies with the frequency of the signal 2 as shown in Fig. 2(a), (b), (c). The ICR of each signal in the figure is the variation curve calculated according to the formula theory. Fig. 3(a), (b), (c) shows the results obtained by simulation using the system model. It can be seen that the two changes are basically the same. As the frequency of the signal 2 shifts, the ICR of the side channel signal changes accordingly.
5 Conclusion

In this paper, the steady-state performance of the three-channel adaptive interference cancellation system is derived and analyzed. The influence of the intermediate signal frequency variation on the bypass signal interference ratio is deeply studied and analyzed. The simulation results confirm that the correctness of the theoretical theory analysis. The main conclusions are as follows:

There is a certain mutual influence between the adjacent channel signal interference cancellation ratio. When the intermediate signal fluctuates within its channel, the offset signal ratio of the adjacent channel signal will be slightly reduced, and the interference cancellation ratio of the adjacent adjacent channel signal will increase slightly. However, the fluctuation range is within the acceptable range. The result of simulation indicates that the adaptive cancellation system has good cancellation performance.

ACKNOWLEDGMENT

This work was supported by the Natural Science Foundation of China (61771187).

References

1. Feng Liu, Xueyao Li, Zhilan Liang. Short-wave aviation communication signal analysis and aircraft classification.[C].International Multi-symposiums on Computer and Computational Sciences. IEEE, 2008:114-118.

2. Widrow B, et al. Adaptive noise cancelling: principles and applications[J]. Proceedings of the IEEE, 1975, 63(12):1692-1716.

3. Widrow B, Kamenetsky M. On the statistical efficiency of the LMS family of adaptive algorithms[C]. Proceedings of the International Joint Conference on Neural Networks, 2003:2872-2880.

4. Flores A, Widrow B. Assessment of the efficiency of the LMS algorithm based on spectral information[C]. Conference Record and Computers, 2004:120-124.

5. Kamenetsky M, Widrow B. A variable leaky LMS adaptive algorithm[C]. Conference Record of the 38th Asilomar Conference on signal, Systems and Computers, 2004:125-128.

6. Akhtar M T, Abe M, Kawamata M. A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems[J]. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(2):720-726.

7. Yunhao Jiang, Weiming Ma, Zhihua Zhao. Influence of Non Quadrature of Phase Shifter to Adaptive Interference Cancellation System[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics. IEEE, 2009:359-363.

8. Yunhao Jiang, Zhihua Zhao. Influence of different gains to adaptive interference cancellation system[C]. Asia-Pacific International Symposium on Electromagnetic Compatibility. IEEE, 2010:1394-1397.