

correspondence

Huppert’s conjecture for character codegrees

Alexander Moretó

Departmento de Matemáticas, Universidad de Valencia, Valencia, Spain

Correspondence
Alexander Moretó, Departamento de Matemáticas, Universidad de Valencia, Valencia, Spain.
Email: Alexander.Moreto@uv.es

Research supported by Ministerio de Ciencia e Innovación PID-2019-103854GB-100, FEDER funds and Generalitat Valenciana AICO/2020/298.

Funding information
Ministerio de Ciencia e Innovación, Grant/Award Number: PID-2019-103854GB-100; Generalitat Valenciana, Grant/Award Number: AICO/2020/298

Abstract

Huppert’s ρ-σ conjecture is one of the main open problems on character degrees of finite groups. A number of ρ-σ problems have been studied. For instance, T. Keller and J. Zhang considered the ρ-σ problem for element orders in the 1990s. Recently, a lot of research is being done on character codegrees. Y. Yang and G. Qian studied the ρ-σ problem for character codegrees in 2017. In this note, we obtain a sharp bound for groups with trivial solvable radical. As a consequence, we improve the general bound of Yang and Qian. For solvable groups, we notice that the ρ-σ problem for character codegrees is very closely related to the ρ-σ problem for element orders. In particular, we give a partial negative answer to a speculation by Yang and Qian on the exact bound for the ρ-σ problem for character codegrees.

Key words

character codegrees, character degrees, element orders, Huppert’s ρ-σ conjecture

MSC (2020)

20C15

1 | INTRODUCTION

One of the main problems on character degrees of finite groups is Huppert’s ρ-σ conjecture. Given an integer n, $\pi(n)$ is the set of prime divisors of n. If G is a group, then $\pi(G)$ stands for the set of prime divisors of $|G|$, $\rho(G)$ is the set of primes that divide the degree of some irreducible character of G and

$$\sigma(G) = \max\{|\pi(\chi(1))| \mid \chi \in \text{Irr}(G)\}.$$

The ρ-σ conjecture asserts that $|\rho(G)|$ is bounded in terms of $\sigma(G)$ and that, if G is solvable, then $|\rho(G)| \leq 2\sigma(G)$. The first bound for the general ρ-σ conjecture was obtained in [11]. The bound in [11] was improved by C. Casolo and S. Dolfi in [1] to a linear bound, namely,

$$|\rho(G)| \leq 7\sigma(G).$$

It is expected that $|\rho(G)| \leq 3\sigma(G)$ holds, but this is still unproven. For solvable groups, the first bound was obtained by M. Isaacs in [4]. Isaacs’ bound was subsequently improved in a number of papers. The best known bound, due to O. Manz

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Mathematische Nachrichten published by Wiley-VCH GmbH
and T. Wolf [9], is

$$|\rho(G)| \leq 3\sigma(G) + 2.$$

Several particular cases of the ρ-σ conjecture are known to be true, for instance when $\sigma(G) \leq 2$, but finding the exact bounds for any group G or when G is solvable seems a very tough problem.

There have been a number of variations on Huppert’s ρ-σ conjecture. One of them will be very relevant in this note: the ρ-σ problem for element orders, especially for solvable groups. If

$$\sigma_e(G) = \max \{|\pi(o(g))| \mid g \in G\},$$

it was proved by J. Zhang [15] that there exists a quadratic bound for $|\pi(G)|$ in terms of $\sigma_e(G)$. This was improved to a linear bound by T. Keller in [8]. He proved that

$$|\pi(G)| \leq C(\sigma_e(G))\sigma_e(G),$$

where $C(n)$ is a function that decreases to 4 when $n \to \infty$. It is believed that, perhaps, $|\pi(G)| \leq 3\sigma_e(G)$ holds.

Recently, a variation on character degrees is gaining interest: character codegrees. This concept was defined in [13] as follows. If $\chi \in \text{Irr}(G)$, the codegree of χ is

$$\chi^c(1) = \frac{|G : \text{Ker}\chi|}{\chi(1)}.$$

The ρ-σ problem for character codegrees was studied by Y. Yang and G. Qian in [14]. If

$$\sigma^c(G) = \max \{|\pi(\chi^c(1))| \mid \chi \in \text{Irr}(G)\},$$

they proved that

$$|\pi(|G|)| \leq (K + 3)\sigma^c(G),$$

where K is an upper bound for Keller’s function $C(n)$. This answered the first part of Question A of [13]. The connection between character codegrees and element orders comes from a beautiful theorem of Isaacs [6]: if G is a group and $g \in G$ then there exists $\chi \in \text{Irr}(G)$ such that $\pi(o(g)) \subseteq \pi(\chi^c(1))$. (The case of solvable groups had been first proved by Qian [12].)

Our goal in this note is threefold. First, we give a negative answer to the second part of Question A of [13], where it was asked whether the number of prime divisors of a group with $\sigma^c(G) = 2$ was at most 4.

Theorem 1.1. There exist solvable groups G such that

1. $|G|$ is divisible by 5 different primes and $\sigma^c(G) = 2$.
2. $|G|$ is divisible by 8 different primes and $\sigma^c(G) = 3$.
3. $|G|$ is divisible by 12 different primes and $\sigma^c(G) = 4$.

Theorem 1.1 also gives a partial negative answer to a speculation in [14], where it was mentioned that it would be interesting to find the best possible constant k such that $|\pi(|G|)| \leq k\sigma^c(G)$ and it was guessed by the authors that $k = 2$ or 3 (see p. 219). Theorem 1.1(3) shows that there is not any bound better than $|\pi(|G|)| \leq 3\sigma^c(G)$. The examples used to prove Theorem 1.1 are not original. They were built by Zhang (in the case of part (1)) and by Keller (parts (2) and (3)) as examples of groups with at most 2, 3 and 4 prime divisors of element orders, respectively, and many primes dividing the order of the group.

Our second goal in this paper is to remark that, as already indicated by the examples in Theorem 1.1, the connection between element orders and character codegrees in solvable groups is perhaps even stronger than expected. We propose the following question, which is the converse of the above mentioned theorem of Isaacs and Qian for solvable groups.

Question 1.2. Let G be a solvable group and $\chi \in \text{Irr}(G)$. Does there exist $g \in G$ such that $\pi(\chi^c(1)) \subseteq \pi(o(g))$?
At first, we were convinced that there would be plenty of counterexamples. However, we have been unable to find any such example and it seems that, if they exist, they are rare. This suggests that the problem of finding sharp bounds for the ρ-σ problem for character codegrees of solvable groups is very closely related to the ρ-σ problem for element orders.

As has always been the case with all the variations of the ρ-σ problems for arbitrary groups, the proof of Yang and Qian in [14] is divided into two parts. First, they find a bound for groups with trivial solvable radical and then they find a bound for solvable groups (which is an immediate consequence of Keller’s bound for the problem for element orders in this case). “Gluing” both parts they get the bound for arbitrary groups. They proved that $|\pi(G)| \leq 3\sigma^c(G)$ for groups with trivial solvable radical. Our third goal is to obtain a sharp bound in this case.

Theorem 1.3. Let G be a group with trivial solvable radical. Then

$$|\pi(G)| \leq \frac{3}{2}\sigma^c(G).$$

For simple groups, we obtain a much better bound than Theorem 1.3 provides: with 3 sporadic groups as exceptions, if G is simple then $|\pi(G)| \leq \sigma^c(G) + 1$, i.e., there exists an irreducible character whose codegree if divisible by all the prime divisors of $|G|$ except for, perhaps, one. It is interesting to observe that, unlike for solvable groups, character codegrees of simple groups are divisible by many more primes than element orders. In particular, we will see that any nonabelian simple group would be a counterexample to Question 1.2 if we removed the solvability hypothesis.

Using Theorem 1.3, we deduce the following improvement on the main theorem of [14].

Corollary 1.4. Let G be a finite group. Then

$$|\pi(G)| \leq \left(K + \frac{3}{2}\right)\sigma^c(G),$$

where K is an upper bound for Keller’s function.

2 PROOFS

We start with the proof of Theorem 1.3. We consider first the case of simple groups.

Lemma 2.1. Let G be a nonabelian simple group. Then the following hold:

1. If $G \notin \{J_4, F_{24}^t, M\}$ there exists $\chi \in \text{Irr}(G)$ that extends to $\text{Aut}(G)$ such that such that $|\pi(\chi^c(1))| \geq |\pi(G)| - 1$.
2. If $G = J_4$ or F_{24}^t then there exists $\chi \in \text{Irr}(G)$ that extends to $\text{Aut}(G)$ such that such that $|\pi(\chi^c(1))| = |\pi(G)| - 2$.
3. If $G = M$ then there exists $\chi \in \text{Irr}(G)$ (that extends to $\text{Aut}(G) = G$) such that such that $|\pi(\chi^c(1))| = |\pi(G)| - 3$.

In particular, for this character χ, $|\pi(\chi^c(1))| \geq 2|\pi(G)|/3$.

Proof. For the sporadic groups, this can be checked in the Atlas [2]. For the groups of Lie type, consider the Steinberg character. (It was shown in [3] that it extends to $\text{Aut}(G)$.)

Assume now that $G = A_n$, with $n > 6$ (A_5 and A_6 are groups of Lie type), and consider the irreducible character $\chi \in \text{Irr}(G)$ of degree $n - 1$. If $n - 1$ is a prime power, the result is clear. Assume now that $n - 1$ is not a prime power. Let $p > 2$ be a prime divisor of $n - 1$. Then $n - 1 \geq 2(n - 1)_{p^2}$, so

$$(n/2)_p \geq (n - 1)^2_{p^2}.$$

This implies that p divides the codegree of the irreducible character of G of degree $n - 1$. Notice also that $(n - 1)_2 < |G|_2$, so 2 also divides the codegree of the irreducible character of G of degree $n - 1$. Hence $\chi^c(1)$ is divisible by all the prime divisors of $|G|$ and $|\pi(\chi^c(1))| = |\pi(G)|$ in this case. \qed
Notice that these bounds are best possible, as shown by A_5. One can check that if G is any simple group then there exists $\chi \in \text{Irr}(G)$ such that for every $g \in G$, $\pi(\chi(1)) \notin \pi(o(g))$, so any simple group would be a counterexample to Question 1.2 if we removed the solvability hypothesis.

Now, we complete the proof of Theorem 1.3. Recall that if G is a finite group with trivial solvable radical then the generalized Fitting subgroup $F^*(G)$ is the direct product of the minimal normal subgroups of G, and G is isomorphic to a subgroup of $\text{Aut}(F^*(G))$.

Proof of Theorem 1.3. Write $F = F^*(G) = N_1 \times \cdots \times N_t$ as a direct product of the minimal normal subgroups of G. Each N_i is a direct product of n_i copies of a nonabelian simple group U_i. Let $\alpha_i \in \text{Irr}(U_i)$ be the irreducible character whose existence is guaranteed by the previous lemma and let $\beta_i = \alpha_i \times \cdots \times \alpha_i \in \text{Irr}(N_i)$. Put $\delta = \beta_1 \times \cdots \times \beta_t \in \text{Irr}(F)$. We claim that δ extends to G.

In order to see this, notice that G is isomorphic to a subgroup of the direct product $\Gamma = \text{Aut}(U_i) \wr S_{n_i}$, where S_{n_i} is the symmetric group on n_i letters. We will see that δ extends to Γ. Equivalently, it suffices to see that β_i extends to $\tilde{\beta}_i = \tilde{\alpha}_i \times \cdots \times \tilde{\alpha}_i \in \text{Irr}(B_i)$, where B_i is the base group of Γ. Now, the claim follows from Lemma 1.3 of [10].

Let $\chi \in \text{Irr}(G)$ be an extension of δ. Since χ_{N_i} is a multiple of β_i, $N_i \notin \text{Ker} \chi$ for every i. This implies that χ is faithful. Hence,

$$\chi^c(1) = \frac{|G|}{\chi(1)} = \frac{|F|}{|\delta(1)|}.$$ \hspace{1cm} (2.1)

Note that

$$\pi \left(\frac{|F|}{\delta(1)} \right) = \pi \left(\frac{|U_1|}{\alpha_1(1)} \right) \cup \cdots \cup \pi \left(\frac{|U_t|}{\alpha_t(1)} \right) = \pi \left(\alpha_1^c(1) \cdots \alpha_t^c(1) \right).$$

By Lemma 2.1 $|\pi(\alpha_i^c(1))| \geq \frac{2}{3}|\pi(|U_i|)|$, so

$$\pi \left(\frac{|F|}{\delta(1)} \right) \geq \frac{2}{3}|\pi(|F|)|.$$

By (2.1),

$$|\pi(\chi^c(1))| \geq \frac{2}{3}|\pi(|G|)|.$$

Therefore

$$|\pi(|G|)| \leq \frac{3}{2}\sigma(G),$$

as desired. \hfill \Box

Proof of Corollary 1.4. Let R be the solvable radical of G. By Theorem 1.3,

$$|\pi(G/R)| \leq \frac{3}{2}\sigma(G/R) \leq \frac{3}{2}\sigma(G).$$

On the other hand, by [8] and [6] (or [12]),

$$|\pi(R)| \leq K\sigma_e(R) \leq K\sigma_e(R) \leq K\sigma^e(G).$$

The result follows from the fact that $|\pi(G)| \leq |\pi(G/R)| + |\pi(R)|$. \hfill \Box

As the proof above illustrates, this “gluing” process is an obstacle to obtaining best possible bounds in any variation of the ρ-σ conjecture for arbitrary groups. It would be interesting to find some new idea that avoids this argument.

Now, we sketch the proof of Theorem 1.1. The group that shows (1) appears in the example on page 43 of [15]. The groups that show (2) and (3) appear on p. 632 and p. 631 of [7], respectively. The proof is a tedious analysis of the kernels.
and degrees of all the irreducible characters of each of these groups. For this reason, we will just give some details using Zhang’s example with Keller’s notation, and leave the remaining cases to the interested reader. We prove the following.

Theorem 2.2. There exists a solvable group G with $\sigma^c(G) = 2$ and $|\pi(G)| = 5$.

Proof. Let G be the example on p. 43 of [15]. Write $V_1 = GF(13^4)$ and V_2 be the cyclic group of order 29. Let $N = R_1 \times R_2 = C_5 \times C_7$ be the cyclic subgroup of order 35 of the multiplicative group $GF(13^4)^\times$ and let Q_1 be a field automorphism of order 2. We have that R_2 and Q_1 act fixed point freely on V_2. Note that $G = Q_1 R_1 R_2 V_1 V_2$.

First, we consider a nonprincipal character $\lambda_2 \in \text{Irr}(V_2)$ and want to see that if $\chi \in \text{Irr}(G|\lambda_2)$, then $\chi^c(1)$ is divisible by at most 2 primes. Notice that $I_G(\lambda_2) = R_1 V_1 V_2$ and λ_2 extends to $I_G(\lambda_2)$. By Clifford’s correspondence and Gallagher’s theorem (Corollary 6.17 of [5]),

$$\text{Irr}(G|\lambda_2) = \left\{ (\lambda_2 \varphi)^G \mid \varphi \in \text{Irr}(I_G(\lambda_2)/V_2) \right\}.$$

Notice also that $I_G(\lambda_2)/V_2$ is a Frobenius group with kernel V_1 and complement R_1.

If φ is a linear character, then $V_1 \leq \text{Ker}(\lambda_2 \varphi)^G$. This implies that 13 does not divide the codegree of this character and since it induces irreducibly from $R_1 V_1 V_2$, 2 and 7 do not divide this codegree either. It follows that there are at most 2 prime divisors for the codegree of this character. If φ is not linear, then $2 \cdot 5 \cdot 7$ divides $(\lambda_2 \varphi)^G(1)$ and again the codegree of this irreducible character is divisible by at most 2 primes.

Now, it suffices to consider the irreducible characters whose kernels contain V_2. Let $\lambda_1 \in \text{Irr}(V_1 V_2/V_2)$ be nonprincipal and consider $\chi \in \text{Irr}(G/V_2|\lambda_1)$. By the construction of G, $V_1 V_2 \leq I_G(\lambda_1) \leq Q_1 V_1 V_2$. If $I_G(\lambda_1) = V_1 V_2$ then $2 \cdot 5 \cdot 7$ divides the degree of the irreducible characters of G lying over λ_1 so there are at most 2 primes dividing the codegree of such characters. Hence, we may assume that $I_G(\lambda_1) = Q_1 V_1 V_2$. In this case, 5 and 7 divide the degree of the characters of G lying over λ_2 and 29 divides the size of the kernel of such characters. It follows that at most 13 and 2 divide the codegree, as desired.

Finally, it remains to consider the characters in $\text{Irr}(G/V_1 V_2)$. In this case it is immediate to see that at most 2 primes divide the codegrees.

\[\square \]

ORCID

Alexander Moretó https://orcid.org/0000-0001-9914-1652

REFERENCES

[1] C. Casolo and S. Dolfi, Prime divisors of irreducible character degrees and of conjugacy class sizes in finite groups, J. Group Theory 10 (2007), no. 5, 571–583.

[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.

[3] W. Feit, Extending Steinberg characters, Linear Algebraic Groups and Their Representations, Contemp. Math. 153 (1993), 1–9.

[4] M. Isaacs, Solvable groups character degrees and sets of primes, J. Algebra 104 (1986), no. 2, 209–219.

[5] M. Isaacs, Character theory of finite groups, Dover, New York, 1994.

[6] M. Isaacs, Element orders and character codegrees, Arch. Math. 97 (2011), no. 6, 499–501.

[7] T. Keller, Solvable groups with a small number of prime divisors in the element orders, J. Algebra 170 (1994), no. 2, 625–648.

[8] T. Keller, A linear bound for $\rho(n)$, J. Algebra 178 (1995), no. 2, 643–652.

[9] O. Manz and T. Wolf, Arithmetically long orbits of solvable linear groups, Illinois J. Math. 37 (1993), no. 4, 652–665.

[10] S. Mattarei, On character tables of wreath products, J. Algebra 175 (1995), no. 1, 157–178.

[11] A. Moretô, A proof of Huppert’s ρ-σ conjectures for nonsolvable groups, Int. Math. Res. Not. IMRN 54 (2005), 3375–3383.

[12] G. Qian, A note on element orders and character codegrees, Arch. Math. 97 (2011), no. 2, 99–103.

[13] G. Qian, Y. Wang, and H. Wei, Co-degrees of irreducible characters in finite groups, J. Algebra 312 (2007), no. 2, 946–955.

[14] Y. Yang and G. Qian, The analog of Huppert’s ρ-σ conjecture on character codegrees, J. Algebra 478 (2017), 215–219.

[15] Y. Zhang and G. Qian, Arithmetical conditions on element orders and group structure, Proc. Amer. Math. Soc. 123 (1995), no. 1, 39–44.

How to cite this article: Moretô A. Huppert’s conjecture for character codegrees. Mathematische Nachrichten. 2021;294:2232–2236. https://doi.org/10.1002/mana.202000568