Derivation of a new multiscale model: II. Deriving a modified Hall-Petch relation from the multiscale model and testing it for nano, micro, and macro materials

Sadeem Abbas Fadhil1,2, Mohsen A. Hassan3,4, Jazeel H. Azeez5 and Munaf S. Majeed1
1Al-Nahrain Nano renewable Energy Research Center (NNERC), Al-Nahrain University, 10072 Baghdad, Iraq.
2Center for Advanced Materials, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
3School of Innovative Design Engineering, Department of Materials Science and Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt.
4Department of Mechanical Engineering, Assiut University, Assiut 71516, Egypt
5Physics Department, College of Science, Al-Nahrain University, 10072 Baghdad, Iraq.
Corresponding author email: sadeemfadhil@yahoo.com

Abstract. In the present work, a multiscale Hall-Petch relation is derived from a new multiscale model and applied for all ranges of grain sizes. The derived multiscale Hall-Petch relation has a superior over the previous models represented by its direct applicability on any material without the need for prior knowledge of grain size distribution. The new multiscale relation applicability is tested with three elements Mg, Zn, and Fe due to their importance in industrial applications. The comparison among the coefficients of different materials suggested a criterion to predict the reverse Hall-Petch relation.

1. Introduction
Quantum mechanics and classical mechanics offer a cumulative picture of the properties of the material. Within the small dimensions; quantum mechanics is dominant and offers the proper interpretation for the phenomena that occur in the atomistic and molecular scale [1]. On the other hand, classical mechanics shows enough description of large-scale materials without tremendous computation challenges [2–4]. However, there is a transition region that still stands as a heavy rock in front of both mechanics, this region is the mesoscale region [5]. The mesoscale represents a difficulty that faces the quantum mechanics, because of the extreme computation capabilities required to do the calculations, while the classical mechanics is not compatible with many experimental results within such region [6–8]. One of the relations that face such a challenge is the Hall-Petch relation [9]. This relation applies well to the classical scale of grain sizes above 100 nm while below a certain grain size, usually close to 10 nm, a relation reversal to the traditional Hall-Petch relation appears experimentally for many materials [10]. Many works were done to interpret (or predict) such a reverse relation; however, the problem is still not solved [11–16].

One of the reasons, that prevent reaching a cumulative Hall-Petch relation for all grain sizes, is the absence of a sufficient multiscale model; that is capable of describing the physical phenomena at all ranges of grain sizes [17]. In previous work, the multiscale Hall-Petch relation was applied directly without derivation following the concepts of a new theory called the time of events theory [18,19].

Published under licence by IOP Publishing Ltd
new multiscale model will be used in the present work to derive a multiscale Hall-Petch relation that is capable of describing the experimental results for different materials. A criterion is suggested to predict the reverse Hall-Petch relation for any material from the parameters of the present model.

2. Derivation of a multiscale Hall-Petch relation

The time of events theory is based on assuming two spacetimes; the first is a dynamic space-time and the second is a static space-time. From a mathematical perspective, both spacetimes together form a complex space-time. The dynamic space-time represents the real space-time; in figure (1) is shown through x', t', and x_r axes. The dynamic space-time moves at the speed of light at the direction of the real axis, x_r, which represents the middle axis between x' and t'. While the static space-time represents the imaginary space-time; in figure (1) is shown through t_i and x_i axes. The ct' and ct_i are time axes, whereas x_r, x' and x_i are spatial axes. Therefore, the particle’s motion will have two velocity components; real v_r and imaginary v_i as shown in figure 1. According to ref. [20]; as the particle’s mass decreases the angle θ, (shown in figure 1) between the particle’s velocity and the real axis, decreases. In other words, when the angle θ increases the real component decreases and the reverse is true for the imaginary component.

To derive the multiscale Hall-Petch relation, we will start from the equation of the total energy as in the first paper [20]:

$$\left(\frac{2K}{m}\right)(\cos \theta + i \sin \theta)^2 - \left(\frac{2V_{pi}}{m}\right)(\cos \theta + i \sin \theta)^2 = \left(\frac{2E_i}{m}\right)(\cos \theta + i \sin \theta)^2 \quad (1)$$

Where m and θ are the particle’s mass and the angle of the particle’s velocity with the real axis respectively, K_i is the kinetic energy operator, V_{pi} is the potential energy operator, and E_i is the eigenvalue of the total energy. For several n particles in the assembly, we can sum the energy equations as follows:

$$\sum_{i=1}^{n} \left(\frac{K_i}{m_i}\right)(\cos \theta_i + i \sin \theta_i)^2 - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{V_{ij}}{m_i}\right)(\cos \theta_i + i \sin \theta_j)^2 = \sum_{i=1}^{n} \left(\frac{E_i}{m_i}\right)(\cos \theta_i + i \sin \theta_i)^2 \quad (2)$$

Where V_{ij} is the potential energy between the i^{th} particle and the j^{th} particle. Taking the knowledge that we are targeting grains with masses heavier than the proton, therefore for the real part in equation (2),
only the $\sin^2 \theta_i$ terms will be saved, because the angle θ_i is close to 90°. For the same previous reason, the imaginary part in equation (2) will be ignored. Accordingly, equation (2) becomes:

$$
\sum_{i=1}^{n} \left(\frac{K_{ai}}{m_i} \right) - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{V_{ij}}{m_j} \right) = \sum_{i=1}^{n} \left(\frac{E_i}{m_i} \right)
$$

(3)

For the grains, the right-hand side in equation (3) becomes continuous, due to large values of the principal quantum number. Therefore, it is better to replace the eigenvalue terms with a total energy term E_i, besides, the sign for the potential energy term will be assumed negative, because within the granular scale only the attraction forces play the major role, therefore equation (3) becomes:

$$
\sum_{i=1}^{n} \left(\frac{K_{ai}}{m_i} \right) - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{V_{ij}}{m_j} \right) = E_i \sum_{i=1}^{n} \frac{1}{m_i}
$$

(4)

The number of particles included in the summation depends on the force’s type between the grains and the geometry of the studied system. Equation (4) is a general equation and can be considered the starting point for studying different materials’ properties and at different grain sizes. It is clear that the new multiscale model, unlike other models, contains the mass term in the denominator, which is crucial in deriving the general Hall-Petch relation as will be done in section (3).

3. Deriving a general Hall-Petch relation for different grain sizes:

In studying the mechanical properties, it is important to note that the fracture in any material starts at its weakest point. Usually, the weakest points for a material lie on the grain boundaries. On the grain boundaries, the atoms or molecules either connect with other atoms or molecules at the same grain or connect with atoms or molecules on the neighbouring grain. Usually, the fractures start on the grain boundaries or in the region between grains in composite materials. In general, and according to the Hall-Petch relation; the larger grains are less resistant to the fracture initiation than the smaller ones. Therefore, in deriving the right model, we need to focus on the larger grains [12]. To simplify the problem, we will separate the atoms manipulation from the grains. From equation (5), if we consider a system of grains with masses, M_{gi}, are connected to neighboring atoms with masses, m_i, then equation (5) can be rewritten in terms of grains and atoms as follows:

$$
\sum_{i=1}^{n} \left(\frac{K_{ai}}{m_i} \right) + \sum_{i=1}^{N} \left(\frac{K_{gi}}{M_{gi}} \right) - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{V_{aij}}{m_j} \right) - \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{V_{gij}}{M_{gi}} \right)

= E_{ai} \sum_{i=1}^{n} \frac{1}{m_i} + E_{gi} \sum_{j=1}^{N} \frac{1}{M_{gi}}
$$

(5)

Where K_{ai} and K_{gi} are the kinetic energies for the i^{th} atom and grain respectively. n and N are the numbers of atoms and grains respectively. m is the number of atoms on the grain boundary. V_{aij} and V_{gij} are the potential energies from the interaction between the i^{th} atom (or grain) and the j^{th} atom (or grain) respectively. V_{aij} is the potential energy from the interaction between the i^{th} atom and the j^{th} grain. V_{gij} is the potential energy from the interaction between the i^{th} grain and the j^{th} atom. E_{ai} and E_{gi} are the total energies for the atoms and grains respectively. For the isotropic composition of atoms, the term can be expressed as:

$$
\sum_{i=1}^{n} \frac{1}{m_i} = \frac{n}{m_a}
$$

(5)

Substituting equation (6) in equation (5) and after neglecting the grain terms in the total energy and the kinetic energy due to relatively large grain masses, equation (5) becomes after multiplying with m_a/n and simplifications:
\[K_a = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{V_{ij}}{n} \right) - \sum_{i=1}^{N} \sum_{j=1}^{N} V_{gij} \left(\frac{m_a}{nM_{gi}} \right) \]

\[-\sum_{i=1}^{m} \sum_{j=1}^{m} V_{gij} \left(\frac{1}{n} \right) \left(1 + \left(\frac{m_a}{M_{gi}} \right) \right) \]

\[= E_{at} \]

Assuming the same density for the atoms and grains then Equation (7) can be used to conclude the modified Hall-Petch relation that can fit for different grain sizes from nano to macro scales. We need to focus on the weakest terms in the potential energy to conclude the right relationship for the yield stress versus the grain size. The first term in the potential energy is between atoms (or molecules) within the grain. This term is usually larger than other terms and its effect on fracture and yield stress is undetected, therefore it will be ignored here. The second term in the potential energy contains the factor \(m_a / M_{gi} \).

The factor \(m_a / M_{gi} \) is proportional to \(d_a^3 / d_g^3 \), where \(d_a \) and \(d_g \) are the atom’s and the grain’s diameter respectively. The potential energy from the interaction between grains \(V_{gij} \) is directly proportional to the surface area of the grains, i.e., \(V_{gij} \propto d_g^2 \), therefore, the second term in the potential energy \(V_{gij} \left(m_a / nM_{gi} \right) \propto (1 / d_g) \). The third term in the potential energy contains two terms; the first one is \(\sum_{i=1}^{m} \sum_{j=1}^{m} V_{gij} (1 / n) \). The number of atoms \(m \) on the boundaries which have contact with the grains is proportional to the surface area of the grain, accordingly \(\sum_{i=1}^{m} \sum_{j=1}^{m} V_{gij} (1 / n) \propto d_g^2 \). The other term is \(\sum_{i=1}^{m} \sum_{j=1}^{m} V_{gij} (1 / n) \left(m_a / M_{gi} \right) \), which contains two elements depend on the grain size; the first is proportional with \(d_g^2 \) and the other one from the grain mass is inversely proportional with \(d_g^3 \), therefore the resultant is \(\sum_{i=1}^{m} \sum_{j=1}^{m} V_{gij} (1 / n) \left(m_a / M_{gi} \right) \propto (1 / d_g) \), which is similar to the first term in the potential energy.

To have a complete description for the yield stress versus grain size relation we need to consider the Coble creep effect [21], which is inversely proportional with \(d_g^3 \), accordingly, the modified Hall-Petch relation to predict the yield stress \(\tau \) should contain the following terms:

\[\tau \propto \frac{1}{d_g} + d_g^2 + \frac{1}{d_g^3} \]

(8)

The approximations followed to conclude equation (8) from equation (7) have considered a constant grain size, which is an ideal case. To consider the different grain sizes we need to take the square root of each of the above terms [22], therefore:

\[\tau \propto \frac{1}{d_g^{3/2}} + d_g + \frac{1}{d_g^{3/2}} \]

(9)

There is still another case, in which all the above factors are found to work together. The term describing such a case is given through multiplying all the terms, which yields \(1/d_g \) after averaging through taking the square root. Therefore, the final equation after adding the constants will be as follows:

\[\tau = c_o + \frac{c_1}{d_g^{1/2}} + c_2d_g + \frac{c_3}{d_g^{3/2}} + \frac{c_4}{d_g} \]

(10)

Where \(c_o, c_1, c_2, c_3, \) and \(c_4 \) are the proportionality constants. From equation (10), it is obvious, that the first two terms represent the usual Hall-Petch relation. These terms are found inherently in equation (7). The third term is the grain’s surface area term. This term has also appeared previously in equation (7). It is related to the number of atoms connected with a certain grain. The fourth term represents the...
Coble's creep term. This term doesn't appear in equation (7), because it is related to a temperature-controlled phenomenon, whereas equation (7) is under stable temperature conditions. Therefore, we need to add the term independently. The fifth term is the cumulative term, represents all the previous terms working together. The Coble's creep term, represented by the constant c_4, acts for small grain sizes below 30 nm [21]. The surface area term; constant c_2, works in the range between the Coble creep and the classical Hall-Petch; i.e., between 30 nm and 100 nm, where the surface area for the grains has more impact on the yield stress. The first two terms c_o and c_1 work for the grain sizes above 100 nm. The cumulative term value can give an idea about the interference between different terms, which are related to different mechanisms; acting on the value of the yield stress.

4. Results and Discussion:
To test the present model through the whole range of grain sizes; the elements Zn, Mg, and Fe will be adopted. The present model applied to the experimental data for Mg from the references [23–32], for Zn from the references [32–40], and for Fe from the references [32, 41, 42–49, 50–58]. The resulted curves are in figures 2, 3, and 4 for Mg, Zn, and Fe respectively. The fitting parameters are listed in table 1.

The element	c_o	c_1	c_2	c_3	c_4
Mg	21.88	160	0.01719	1.354	62.66
Zn	55.86	180.1	0.06247	5.272	59.35
Fe	62.3	846.9	0.0009634	5.644	112.2

The fitting curves for both Mg and Zn show clearly the traditional and the reverse Hall-Petch manner. We chose these elements because of the reverse Hall-Petch appeared in part of their yield. The model can also fit well for the other types of elements and composites, that do not show the reverse Hall-Petch within their small grains range, as shown in figure 4 for Fe. Table 1 shows relatively large values for the classical coefficients c_o and c_1 in addition to the cumulative coefficient c_4, which implicitly includes the classical pile-up effects, that usually occur between grains. The relatively large values for the classical terms are reasonable, because these coefficients are the leading ones within the classical region, while the surface and the Coble creep effects appeared only within the small grains range. The surface term represents a new addition from the present model. This term becomes more important when the surface effects are not-negligible; usually within nanoscale grain sizes. Generally, the model does not need prior knowledge of grain size distribution to be applied. Indeed, it can give a rough estimate for the grain size distribution of the studied material, but with a proper calibration procedure. The fitting results for the present elements data showed a similar manner with the Cu and Ni in previous work [19]. The classical coefficient, c_1, for Fe is much larger than in Mg and Zn. Unlike the classical coefficients, the c_2 coefficient in Fe is smaller with an order of magnitude than in Mg and Zn, which indicates that the surface term is of minor effect in Fe. This gives an interpretation of why there is no reverse Hall-Petch relation in Fe. The large classical coefficient and a relatively small surface coefficient for Fe extended the applicability of the classical Hall-Petch relation to relatively small grain sizes, below 30 nm.
Figure 2. Fitting from the modified Hall-Petch relation for the Mg specific yield stress versus the grain size. The points of the experimental data are from the references [23-32].

Figure 3. Fitting from the modified Hall-Petch relation for the Zn specific yield stress from the tensile compression tests versus the grain size. The points of the experimental data are from the references [32-40].
Figure 4. Fitting from the modified Hall-Petch relation for the specific yield stress of Fe versus grain size. The points of the experimental data are from the references [38-55, 29].

5. Conclusions:
In the present work, a new multiscale Hall-Petch relation is concluded from a new multiscale model then applied to three materials Mg, Zn, and Fe. The new multiscale relation brings with it the classical terms in the Hall-Petch relation with a new term which is the surface term; the coefficient c_2. This term and the Coble’s creep effect term are responsible for the reverse Hall-Petch at the small grain sizes below 30 nm. According to the present model, when the grain size reached a certain value, critical grain size, the pile-up mechanism will be overcome by the forces connecting the neighbouring grains, which is increased with increasing the number of atoms on the boundaries, i.e. at that range it is proportional with the square of the grain size. The reverse Hall-Petch relation found in Mg and Zn, whereas it didn’t appear in Fe. Comparing the coefficients c_1 and c_2; reveals the c_1 coefficient is larger in Fe, while c_2 coefficient is smaller with an order of magnitude relative to Mg and Zn. This means that the surface effects, due to the relatively increased surface area, are relatively small in Fe compared with the forces between grains. In other words, the forces between grains are mainly dominating the binding forces between grains, not the number of surface atoms connected with the neighbouring grains. The surface term value can represent the criteria to predict the reverse Hall-Petch relation. The relatively larger value for the surface term is related to the reverse Hall-Petch relation appearance.

Acknowledgments
This work was supported by the University of Malaya Grant Numbers UMRG-RP021B-13AET and UM.C/625/1/HIR/040. The first author would like to acknowledge Prof. Dr. A.S. MD. A. Haseeb for the support from his grant and Dr. Bilal K. Jassim for the useful discussions about the paper.
References

[1] Liu W K, Karpov E G, Zhang S and Park H S 2004 An introduction to computational nanomechanics and materials Comput. Methods Appl. Mech. Eng. 193 1529–78

[2] Carter E A 2008 Challenges in Modeling Materials Properties Without Experimental Input Science (80-.). 321 800 LP – 803

[3] Ahmad, A. K.; Rasen, F. A.; Fadhil S A 2008 A Mathematical Model to Describe the Densification Process During the Sintering of Ceramic Compacts Iraqi J. Appl. Phys. 4 11–8

[4] Ahmad A K, Fadhil S A and Rasen F A 2016 A Mathematical Model to Study the Effect of Pore Sizes Distribution on Densification Process in Ceramic Compacts J. Phys. Sci. Appl. 6 10–5

[5] Zhao P 2015 Mesoscale modeling of mechanical deformation of metallic glasses (Ph.D. thesis: The Ohio State University)

[6] Young D C 2001 Mesoscale Methods (New York: John Wiley & Sons, Inc)

[7] Fadhil S A, Hassan M A, Haseeb A S M, S M A, Jaafar H I, Al-Ajaj E A, Alrawi A H and Maher I 2019 Manufacturing of porous aluminum 2024 alloy samples with impressive compression properties Mater. Res. Express 6 076509

[8] Jaffé, Harith Ibrahim; Al-Ajaj, Ekram Atta; Fadhil S A 2011 A Study of the mechanical properties of aluminum composite materials Iraqi J. Phys. 9 75–85

[9] Xu W and Dávila L P 2018 Tensile nanomechanics and the Hall-Petch effect in nanocrystalline aluminium Mater. Sci. Eng. A 710 413–8

[10] Mishnaeovsky L and Levashov E 2015 Micromechanical modelling of nanocrystalline and ultrafine grained metals: A short overview Comput. Mater. Sci. 96 365–73

[11] Zhang Z, Wang B and Zhang X 2014 A maximum in the hardness of nanotwinned cadmium telluride Scr. Mater. 72–73 39–42

[12] Yin F, Cheng G J, Xu R, Zhao K, Li Q, Jian J, Hu S, Sun S, An L and Han Q 2018 Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale Scr. Mater. 155 26–31

[13] Shafiei Mohammadabadi A and Dehghani K 2008 A New Model for Inverse Hall–Petch Relation of Nanocrystalline Materials J. Mater. Eng. Perform. 17 662–6

[14] Koch C C and Narayan J 2000 The Inverse Hall–Petch Effect—Fact or Artifact? MRS Proc. 634 B5.1.1

[15] Ito Y, Edalati K and Horita Z 2017 High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of Hall–Petch relationship in the nanoscale Mater. Sci. Eng. A 679 428–43

[16] Guo D, Song S, Luo R, Goddard W A, Chen M, Reddy K M and An Q 2018 Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall–Petch Relation in Superhard Nanocrystalline Boron Carbide Phys. Rev. Lett. 121 145504

[17] Ghoniem N M, Busso E P, Kioussis N and Huang H 2003 Multiscale modelling of nanomechanics and micromechanics: an overview Philos. Mag. 83 3475–528

[18] Fadhil S A, Azeez J H and Whahaeb A F 2014 Solving the instantaneous response paradox of entangled particles using the time of events theory Eur. Phys. J. Plus 129 23

[19] Fadhil S A, Alrawi A H, Azeez J H and Hassan M A 2018 A new multiscale model to describe a modified Hall-Petch relation at different scales for nano and micro materials AIP proceedings 1948 020006

[20] Fadhil S A, Azeez J H and Hassan M A 2020 Derivation of a new multiscale model: I. Derivation of the model for the atomic, molecular and nano material scales Accept. Indian J. Phys.

[21] Fan G J, Choo H, Liaw P K and Lavernia E J 2005 A model for the inverse Hall–Petch relation of nanocrystalline materials Mater. Sci. Eng. A 409 243–8

[22] Mittemeijer E J 2011 Fundamentals of Materials Science (Berlin: Springer-Verlag Berlin Heidelberg)

[23] Hauser F E, Landon P R and Dorn J E 1957 Fracture of Magnesium Alloys at Low Temperature Trans Am Inst Met. Eng 48 589–93
[24] Sharon J A, Zhang Y, Mompiou F, Legros M and Henker K J 2014 Discerning size effect strengthening in ultrafine-grained Mg thin films Scr. Mater. 75 10–3
[25] Caceres C H, Mann G E and Griffiths J R 2011 Grain Size Hardening in Mg and Mg-Zn Solid Solutions Metall. Mater. Trans. A 42 1950–9
[26] Li J, Xu W, Wu X, Ding H and Xia K 2011 Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature Mater. Sci. Eng. A 528 5993–8
[27] Ono N, Nowak R and Miura S 2004 Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium Mater. Lett. 58 39–43
[28] Wilson D 1970 Ductility of polycrystalline magnesium below 300 K J Inst Met 98 133–143
[29] Rao G S and Prasad Y V R K 1982 Grain boundary strengthening in strongly textured magnesium produced by hot rolling Metall. Trans. A 13 2219–26
[30] Wilson D V and Chapman J A 1963 Effects of preferred orientation on the grain size dependence of yield strength in metals Philos. Mag. A J. Theor. Exp. Appl. Phys. 8 1543–51
[31] Choi H J, Kim Y, Shin J H and Bae D H 2010 Deformation behavior of magnesium in the grain size spectrum from nano- to micrometer Mater. Sci. Eng. A 527 1565–70
[32] Cordero Z C, Knight B E and Schuh C A 2016 Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals Int. Mater. Rev. 61 495–512
[33] Armstrong R, Codd I, Dowthwaite R M and Petch N J 1962 The plastic deformation of polycrystalline aggregates Philos. Mag. A J. Theor. Exp. Appl. Phys. 7 45–58
[34] Zhu X K, Zhang X, Wang H, Sergueeva A V, Mukherjee A K, Scattergood R O, Narayan J and Koch C C 2003 Synthesis of bulk nanostructured Zn by combinations of cryomilling and powder consolidation by room temperature milling: optimizing mechanical properties Scr. Mater. 49 429–33
[35] Zhang X, Wang H, Scattergood R O, Narayan J and Koch C C 2003 Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling Mater. Sci. Eng. A 344 175–81
[36] Chmelík F, Trojanová Z, Lukáč P and Převorovský Z 1993 Acoustic emission from zinc deformed at room temperature Part II The influence of grain size on deformation behaviour and acoustic emission of pure zinc J. Mater. Sci. Lett. 12 1166–8
[37] Mueller H and Haessner F 1981 Influence of grain size and texture on the flow stress of zinc Scr. Metall. 15 487–92
[38] Conrad H and Narayan J 2002 Mechanisms for grain size hardening and softening in Zn Acta Mater. 50 5067–78
[39] Narayan J, Venkatesan R K and Kvit A 2002 Structure and Properties of Nanocrystalline Zinc Films J. Nanoparticle Res. 4 265–9
[40] Hutchison M M 1963 The temperature dependence of the yield stress of polycrystalline iron Philos. Mag. A J. Theor. Exp. Appl. Phys. 8 121–7
[41] Dingley D J and McLean D 1967 Components of the flow stress of iron Acta Metall. 15 885–901
[42] Jago R A and Hansen N 1986 Grain size effects in the deformation of polycrystalline iron Acta Metall. 34 1711–20
[43] Tjerkstra H H 1961 The effect of grain size on the stress-strain curve of α-iron and the connection with the plastic deformation of the grain boundaries Acta Metall. 9 259–63
[44] Codd I and Petch N J 1960 Dislocation-locking by carbon, nitrogen and boron in α-iron Philos. Mag. A J. Theor. Exp. Appl. Phys. 5 30–42
[45] Cracknell A and Petch N J 1955 Frictional forces on dislocation arrays at the lower yield point in iron Acta Metall. 3 186–9
[46] Heslop J and Petch N J 1956 LXXXVIII. The stress to move a free dislocation in alpha iron Philos. Mag. A J. Theor. Exp. Appl. Phys. 1 866–73
[47] Heslop J and Petch N J 1958 The ductile-brittle transition in the fracture of α-iron: II Philos. Mag. A J. Theor. Exp. Appl. Phys. 3 1128–36
[48] Conrad H and Schoeck G 1960 Cottrell locking and the flow stress in iron Acta Metall. 8 791–6
3rd International Conference on Sustainable Engineering Techniques (ICSET 2020) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 881 (2020) 012098 doi:10.1088/1757-899X/881/1/012098

[49] Jang J S C and Koch C C 1990 The hall-petch relationship in nanocrystalline iron produced by ball milling Scr. Metall. Mater. 24 1599–604
[50] Malow T R and Koch C C 1998 Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition Metall. Mater. Trans. A 29 2285–95
[51] Jang D and Atzmon M 2003 Grain-size dependence of plastic deformation in nanocrystalline Fe J. Appl. Phys. 93 9282–6
[52] Anderson E, Law D, King W and J S 1968 The relationship between lower yield stress and grain size in Armco iron Trans Am Inst Met. Eng 242 115–9
[53] Butler J F 1962 Lüders front propagation in low carbon steels J. Mech. Phys. Solids 10 313–8
[54] Hull D and Mogford I L 1958 Ductile-brittle transition in steels irradiated with neutrons Philos. Mag. A J. Theor. Exp. Appl. Phys. 3 1213–22
[55] Shen T D, Schwarz R B, Feng S, Swadener J G, Huang J Y, Tang M, Zhang J, Vogel S C and Zhao Y 2007 Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation Acta Mater. 55 5007–13
[56] Savader J B, Scanlon M R, Cammarata R C, Smith D T and Hayzelden C 1997 Nanoindentation study of sputtered nanocrystalline iron thin films Scr. Mater. 36 29–34
[57] Morrison W B 1966 The effect of grain size on the stress-strain relationship in low-carbon steel Trans Am Inst Met. Eng 59 824–46
[58] Gao S, Chen M, Joshi M, Shibata A and Tsuji N 2014 Yielding behavior and its effect on uniform elongation in IF steel with various grain sizes J. Mater. Sci. 49 6536–42