Decoupling, exponential sums and the Riemann zeta function

J. Bourgain

August 26, 2014

Abstract

We establish a new decoupling inequality for curves in the spirit of [B-D1],[B-D2] which implies a new mean value theorem for certain exponential sums crucial to the Bombieri-Iwaniec method as developed further in [H]. In particular, this leads to an improved bound $|\zeta(1/2+it)| \ll t^{53/342+\epsilon}$ for the zeta function on the critical line.

0 Introduction

The main result of the paper is the essentially sharp bound on the mean-value expression for $r = 6$ (see [H] for details)

$$A_r\left(\frac{1}{N^2}, \frac{1}{N}\right) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sum_{n \leq N} e(nx_1 + n^2x_2 + N^{\frac{3}{2}}x_3 + N^{\frac{1}{2}}x_4)^{2r} \, dx_1dx_2dx_3dx_4.$$

(0.1)

It is proven indeed that $A_6 \ll N^{6+\epsilon}$ (see Theorem 2 below). The bound $A_6(\delta, \delta N) \ll \delta N^{7+\epsilon}$, $\frac{1}{N} \leq \delta \leq \frac{1}{N}$, established in [H-K], plays a key role in the refinement of the Bombieri-Iwaniec approach [B-I1] to exponential sums as developed mainly by Huxley (see [H] for an expository presentation). As pointed out in [H], obtaining good bounds on A_6 leads to further improvements and this objective was our main motivation.

In [B], we recovered the [H-K] A_5-result (in fact in a sharper form) as a consequence of certain general decoupling inequalities related to the harmonic analysis of curves in \mathbb{R}^d. Those inequalities were derived from the results in [B-D1] (see also [B-D2]). Theorem 2 will similarly be derived from a decoupling theorem, formulated as Theorem 1. At this point, we do not yet have a full understanding of all the decoupling phenomena for curves and Theorem 1, stated in a more general form than required for the later needs, is a further contribution in this direction.

Let us next briefly recall the structure of the Bombieri-Iwaniec argument. Given an exponential sum

$$\sum_{n \sim M} e(TF(\frac{m}{M}))$$

with $T > M$ and F a smooth function satisfying appropriate derivative conditions, the sum $\sum_{n \sim M}$ is replaced by shorter sums $\sum_{m \in I}$, I ranging over size-N intervals (N a parameter to be chosen). For each I, the phase may be replaced by a cubic polynomial and, by Poisson summation, the exponential sum $\sum_{m \in I} e(TF(\frac{m}{M}))$ transformed in a sum of the form

$$\sum_{h \leq H} e(x_1(I)h + x_2(I)h^2 + x_3(I)h^{3/2} + x_4(I)h^{1/2})$$

(0.2)

where the vector $x(I) = (x_j(I))_{1 \leq j \leq 4} \in \mathbb{R}^4$ depends on the interval I.

At this point, one needs to analyze the distributions of
\[(h, h^2, h^{3/2}, h^{1/2}) \quad (1 \leq h \leq H) \] (0.3)
and
\[x(I) \text{ with } I \subset \left[\frac{M}{2}, M \right] \text{ of size } N \] (0.4)
which Huxley refers to as the first and second spacing problems.

Before applying a large sieve estimate, one takes an \(r \)-fold convolution of (0.3) which \(L^2 \)-norm is expressed by mean values of the form (0.1). Roughly speaking, the \(L^2 \)-norm of the distribution (0.4) is bounded by a certain parameter \(B \), which evaluation is highly non-trivial and so far sub-optimal. The only input of this paper is to provide an optimal result for the first spacing problem. It may be applied in various instances discussed in [H] to the effect of providing better bounds. Rather than exploring fully the implications, we limit ourselves here to combining Theorem 2 with the treatment in [H1] and record the corresponding improved bound on \(\zeta \left(\frac{1}{2} + it \right) \).

Recall that the original Bombieri-Iwaniec argument provided the estimate \(|\zeta \left(\frac{1}{2} + it \right)| \ll |t|^{\frac{9}{56} + \varepsilon} \), \(\frac{9}{56} = 0, 16071 \), see [B-I1] [B-I2]. The work of Huxley in [H1] (resp. [H2]) produced the exponents \(\frac{89}{570} = 0, 15614... \) and \(\frac{32}{205} = 0, 15609... \), resp.

while our \(A_6 \)-bound leads to the exponent \(\frac{53}{342} = 0, 15447... \).

Here, we rely on the estimate of the \(B \)-parameter obtained in [H1] and possibly the subsequent work on this matter may lead to a further small improvement.

Acknowledgement

The author is grateful to C. Demeter for various comments leading to simplification of an earlier version.

1 A decoupling inequality for curves

Let \(\Phi = (\phi_1, \ldots, \phi_d) : [0, 1] \rightarrow \Gamma \subset \mathbb{R}^d \) be a smooth parametrization of a non-degenerate curve in \(\mathbb{R}^d \), more specifically we assume the Wronskian determinant
\[
\det[\phi_j^{(s)}(t)]_{1 \leq j, s \leq d} \neq 0 \text{ for all } t_1, \ldots, t_d \in [0, 1].
\] (1.1)

Let us assume moreover that \(d \) is even. For \(\Omega \subset \mathbb{R}^d \) a bounded set of positive measure, denote \(\|f\|_{L^p_\Omega} = \left(\frac{1}{|\Omega|} \int_{\Omega} |f|^p dx \right)^{\frac{1}{p}} \) the average \(L^p \)-norm and let \(B_\rho \) be the \(\rho \)-cube in \(\mathbb{R}^d \) centered at 0. We prove the following decoupling property in the spirit of results in [B], [B-D2].

Theorem 1. Let \(\Gamma \) be as above and \(I_1, \ldots, I_d \subset [0, 1] \) subintervals that are \(O(1) \)-separated, let \(N \) be large and
\[\{I_\tau\} \text{ a partition of } [0, 1] \text{ in } N^{-\frac{1}{d}}\text{-intervals. Then for arbitrary coefficient functions } a_j = a_j(t) \]

\[
\left\| \prod_{j=1}^{d/2} \int_{I_\tau} a_j(t) e(x, \Phi(t)) dt \right\|_{L^2_\#(B_N)}^{2/d} \ll
\]

\[
N^{\frac{1}{2} + \varepsilon} \prod_{j=1}^{d/2} \left[\sum_{\tau \cap I_\tau < I_\tau} \left\| \int_{I_\tau} a_j(t) e(x, \Phi(t)) dt \right\|_{L^6_\#(B_N)}^6 \right]^{\frac{1}{6d}}
\]

(1.2)

holds, with \(\varepsilon > 0\) arbitrary.

Here \(e(z)\) stands for \(e^{2\pi i z}\) as usual. Strictly speaking, \(L^6_\#(B_N)\) in the r.h.s. of (1.2) should be some weighted space \(L^6_\#(w_N)\) with weight \(1_{B_N}(x) \lesssim w_N(x) \leq (1 + \frac{|x|^2}{N})^{-10d}\), \(\text{supp } \tilde{w}_N \subset B_{\frac{1}{N}}\) (cf. [B-D1] and [B-D2]). For simplicity, this technical point will be ignored here and in the sequel.

Remarks.

(1.3) Obviously (1.2) implies the same inequality for \(B_N\) replaced by any translate.

(1.4) The case \(d = 2\) is an immediate consequence of the \(L^6\)-decoupling inequality for planar curves of non-vanishing curvature

\[
\left\| \int_0^1 a(t) e(x, \Phi(t)) dt \right\|_{L^6(B_N)} \ll N^\varepsilon \left(\sum_{\tau} \left\| \int_{I_\tau} a(t) e(x, \Phi(t)) dt \right\|_{L^6(B_N)}^2 \right)^{\frac{1}{2}}
\]

(1.5)

where \(\Phi : [0,1] \to \Gamma \subset \mathbb{R}^2\) and \(\{I_\tau\}\) as above, established in [B-D1]. In fact, (1.5) will be the main analytical input required for the proof of (1.2).

(1.6) In the language of [B-D1], [B-D2], (1.2) may be reformulated as follows. Let \(\Gamma_1, \ldots, \Gamma_{d/2} \subset \Gamma\) be \(O(1)\)-separated arcs and \(f_1, \ldots, f_\frac{d}{2} \in L^1(\mathbb{R}^d)\) satisfy \(\text{supp } \hat{f}_j \subset \Gamma_j + B_{\frac{1}{N}}\). Denote \(f_\tau = (\hat{f}_{\tau(\cdot)} + B_{\frac{1}{N}})\). The Fourier restriction of \(f\) to the \(\frac{1}{N} \times \cdots \times \frac{1}{N} \times 1_{\mathbb{N}}^{-1} \times 1_{\mathbb{N}}\) tube \(\Phi(I_\tau) + B_{\frac{1}{N}}\).

Then

\[
\left\| \prod_{j=1}^{d/2} \left| f_j \right|^{2/d} \right\|_{L^6_\#(B_N)} \ll N^{\frac{1}{2} + \varepsilon} \prod_{j=1}^{d/2} \left(\sum_{\tau} \left\| f_{\tau,j} \right\|_{L^6_\#(B_N)}^6 \right)^{\frac{1}{6d}}.
\]

(1.7)

(1.8) It may be worthwhile to explain the relation between (1.7) and other known decoupling inequalities for curves in \(\mathbb{R}^d\).

Firstly, with \(\Gamma\) as above and \(\Gamma_1, \ldots, \Gamma_d \subset \Gamma\) \(O(1)\)-separated, one has a \(d\)-linear inequality (the analogue of [B-C-T] for curves)

\[
\left\| \prod_{j=1}^{d} \left| f_j \right|^{\frac{1}{d}} \right\|_{L^2_\#(B_N)} \leq c \prod_{j=1}^{d} \left(\sum_{\tau} \left\| f_{\tau,j} \right\|_{L^2_\#(B_N)}^2 \right)^{\frac{1}{2d}}.
\]

(1.9)

This inequality turns out to be elementary. Using the fact that the map \(I_1 \times \cdots \times I_d \to \mathbb{R}^d : (t_1, \ldots, t_d) \to \Phi(t_1) + \cdots + \Phi(t_d)\) is a diffeomorphism for \(I_1, \ldots, I_d\) \(O(1)\)-separated by assumption (1.1) and Parseval’s theorem,
one sees indeed that
\[
\left\| \prod_{j=1}^{d} \int_{I_j} a_j(t) e(x, \Phi(t)) \, dt \right\|_{L^2(B_N)} \leq c \prod_{j=1}^{d} \| a_j \|_{L^2(I_j)}.
\] (1.10)

On the other hand, one has the \((d - 1)\)-linear inequality (see [B-D2])
\[
\left\| \prod_{j=1}^{d-1} \left| f_j \right| \right\|_{L^{2(d+1)}(B_N)} \lesssim N^{\frac{2}{2(d+1)}} \prod_{j=1}^{d-1} \left[\sum_{\tau} \left\| f_{j, \tau} \right\|_{L^{2(d+1)}(B_N)} \right]^{\frac{1}{2(d+1)}}
\] (1.11)
and one observes, for \(d\) even, that the pair \((2d + 1, \frac{2(d+1)}{d+1})\) in (1.11) is obtained by interpolation between the pairs \((2d, 2)\) from (1.9) and \((3d, 6)\) from (1.7). The issue of what’s the analogue of Theorem 1 for odd \(d\) will not be considered here. In fact, our main interest is \(d = 4\), which provides the required ingredient for the exponential sum application.

Before passing to the proof of Theorem 1, we make a few preliminary observations.

Note that in the setting of Theorem 1, (1.9) also implies the inequality
\[
\left\| \prod_{j=1}^{d/2} \left[\sum_{\tau \subset I_j} \int_{I_{\tau}} a_j(t) e(x, \Phi(t)) \, dt \right] \right\|_{L^2(B_N)} \leq c \prod_{j=1}^{d/2} \left[\sum_{\tau \subset I_j} \left\| \int_{I_{\tau}} a_j(t) e(x, \Phi(t)) \, dt \right\|_{L^2(B_N)} \right]^{\frac{1}{2}},
\] (1.12)
To see this, take \(f_j(x) = \frac{1}{N} \sum_{0 \leq k < N} \varepsilon_k e(x, \Phi(k/n))\) for \(j = \frac{d}{2} + 1, \ldots, d\) with \(\varepsilon_k = \pm 1\) independent random variables and average over \(\{\varepsilon_k\}\), noting that \(\mathbb{E}_\varepsilon [|f_j|^2] \asymp 1\) and \(\mathbb{E}_\varepsilon [|f_{\tau}|^2] \asymp N^{-\frac{1}{2}}\).

There is also the trivial bound
\[
\left\| \prod_{j=1}^{d/2} \int_{I_j} a_j(t) e(x, \Phi(t)) \, dt \right\|_{L^\infty(B_N)} \leq N^{\frac{d}{2}} \prod_{j=1}^{d/2} \left\| \int_{I_j} a_j(t) e(x, \Phi(t)) \, dt \right\|_{L^\infty(B_N)}^{1/2},
\] (1.13)

Interpolation between (1.12) and (1.13) using appropriate wave packet decomposition as explained in [B-D1] (note that it is essential here that the \(I_r\) are \(N^{-\frac{1}{2}}\)-intervals) gives
\[
\left\| \prod_{j=1}^{d/2} \int_{I_j} a_j(t) e(x, \Phi(t)) \, dt \right\|_{L^{3d}(B_N)} \leq CN^{d/2} \prod_{j=1}^{d/2} \left[\sum_{\tau \subset I_j} \left\| \int_{I_{\tau}} a_j(t) e(x, \Phi(t)) \, dt \right\|_{L^6(B_N)}^6 \right]^{1/6},
\] (1.14)
with \(\{I_r\}\) a partition in \(N^{-\frac{1}{2}}\)-intervals.
More generally, if $\Delta = \Delta_K \subset \mathbb{R}^d$ is a K-cube, we have (by translation)

\[
\left\| \prod_{j=1}^{d/2} \int_{I_j} a_j(t)e(x.\Phi(t))dt \right\|_{L^d_\infty(\Delta)}^{2/d} \leq CK^{1/3} \prod_{j=1}^{d/2} \left[\sum_{I_{\tau} \subset I_j} \left\| \int_{I_{\tau}} a_j(t)e(x.\Phi(t))dt \right\|_{L^6_\infty(\Delta)}^6 \right]^{1/3} \tag{1.15}
\]

where $\{I_\tau\}$ is now a partition in $K^{-\frac{d}{3}}$-intervals.

The main point of (1.15) is to provide a preliminary $L^6 - L^3$ inequality; the prefactor $K^{1/3}$ is not important for what follows as it will be improved to K^{ε} using a bootstrap argument.

Returning to (1.1), it follows from the mean value theorem that

\[
| \det[\phi_i'(t_j)]_{1 \leq i,j \leq d} | \sim \prod_{i \neq j} |t_i - t_j| \tag{1.16}
\]

By (1.16) and since $\phi''(t) = \lim_{s \to 0} \frac{1}{s} (\phi'(t + s) - \phi'(t))$, it follows that for $t_1 < \cdots < t_{d/2} \in [0,1]$ $O(1)$-separated,

\[
| \phi'(t_1) \wedge \phi''(t_1) \wedge \phi'(t_2) \wedge \phi''(t_2) \wedge \cdots \wedge \phi'(t_{d/2}) \wedge \phi''(t_{d/2}) | > c \tag{1.17}
\]

holds.

Proof of Theorem 1.

Introduce numbers $b(N) > 0$ for which the inequality, with arbitrary $\{a_j\}$,

\[
\left\| \prod_{j=1}^{d/2} \int_{I_j} a_j(t)e(x.\Phi(t))dt \right\|_{L^d_\infty(B_N)}^{2/d} \leq b(N)N^{\frac{d}{6}} \prod_{j=1}^{d/2} \left[\sum_{I_{\tau} \subset I_j} \left\| \int_{I_{\tau}} a_j(t)e(x.\Phi(t))dt \right\|_{L^6_\infty(B_N)}^6 \right]^{1/3} \tag{1.18}
\]

holds. Our aim is to establish a bootstrap inequality. By (1.14), $b(N) \leq N^{1/6}$. With $K < N$ to specify, partition B_N in K-cubes $\Delta = \Delta_K$. We may bound for each Δ (since the inequalities for B_K and Δ_K are equivalent)

\[
\int_\Delta \left\| \prod_{j=1}^{d/2} \int_{I_j} a_j(t)e(x.\Phi(t))dt \right\|_{L^6_\infty(\Delta)}^6 \ leq \tag{1.19}
\]

\[
b(K)^{3d} K^{d/2} \prod_{j=1}^{d/2} \left[\sum_{I_{\tau} \subset I_j} \left\| \int_{I_{\tau}} a_j(t)e(x.\Phi(t))dt \right\|_{L^6_\infty(\Delta)}^6 \right]
\]
with \(\{ I_\sigma \} \) a partition in \(K^{-\frac{1}{2}} \)-intervals. Summation over \(\Delta \subset B_N \) implies then

\[
\int_{B_N} \prod_{j=1}^{d/2} \left| \int_{I_j} a_j(t) c(x, \Phi(t)) dt \right|^6 dx \leq b(K)^{3d} K^{\frac{d}{2}} \sum_{I_{\sigma_1} \subset I_1, \ldots, I_{\sigma_d/2} \subset I_{d/2}} \left\{ \int_{B_N} \prod_{j=1}^{d/2} \left| \int_{I_{\sigma_j}} a_j(t) c((x + z_j), \Phi(t)) dt \right|^6 dx \right\} \prod_j dz_j.
\]

(1.20)

Fix \(I_{\sigma_j} = [t_j, t_j + K^{-\frac{1}{2}}] \subset I_j \) and write for \(t = t_j + s \in I_{\sigma_j} \)

\[
(x + z_j)_j t \Phi(t) = (x + z_j)_j t \Phi(t_j) + (x + z_j)_j t \Phi'(t_j) s + \frac{1}{2}(x + z_j)_j t \Phi''(t_j) s^2 + o(1)
\]

(1.21)

provided

\[
N = o(K^{3/2}).
\]

(1.22)

The inner integral in (1.20) may then be replaced by

\[
\int_{B_N} \prod_{j=1}^{d/2} \left| \int_0^{K^{-\frac{1}{2}}} a_j(t_j + s) c((x + z_j)_j t \Phi'(t_j) s + \frac{1}{2}(x + z_j)_j t \Phi''(t_j) s^2) ds \right|^6 dx
\]

(1.23)

the \(o(1) \)-term in (1.21) producing a harmless smooth Fourier multiplier that may be ignored.

Next, since \(t_1 < t_2 < \cdots < t_{d/2} \) are \(O(1) \)-separated, (1.17) applies and therefore the map \(\mathbb{R}^d \to \mathbb{R}^d : x \mapsto (x, \Phi'(t_1), \frac{1}{2} x, \Phi''(t_1), \ldots, x, \Phi'(t_{d/2}), \frac{1}{2} x, \Phi''(t_{d/2})) \) is a linear homeomorphism. The image measure of the normalized measure on \(B_N \) may be bounded by the normalized measure on \(B_{CN} \), up to a factor and

\[
(1.23) \lesssim \prod_{j=1}^{d/2} \int_{|u||v|<CN} \left| \int_0^{K^{-\frac{1}{2}}} a_j(t_j + s) e(us + vs^2) ds \right|^6 du dv.
\]

(1.24)

This factorization is the main point in the argument.

We may now apply (after rescaling \(s = k^{-\frac{1}{2}} s_1 \)) to each factor in (1.24) the \(2D \)-decoupling inequality (1.5) with \(\Gamma \) the parabola \((s_1, s_1^2)\) and perform a decoupling at scale \((CN)\frac{1}{2} \). Thus, by another change of variables,

\[
(1.24) \ll N^\frac{e}{K} \prod_{j=1}^{d/2} \left[\sum_{I_\tau \subset I_{\sigma_j}} \left\| \int_{I_\tau} a_j(t) c(x, \Phi(t)) dt \right\|_{L^6_p(\mathbb{R}^d)} \right]^3
\]

with \(\{ I_\tau \} \) a partition in \(N^{-\frac{1}{2}} \)-intervals

\[
\ll N^\frac{e}{K} \left(\frac{N}{K} \right)^\frac{d}{2} \prod_{j=1}^{d/2} \left[\sum_{I_\tau \subset I_{\sigma_j}} \left\| \int_{I_\tau} a_j(t) c(x, \Phi(t)) dt \right\|_{L^6_p(B_N)} \right]^3.
\]

(1.25)

Substituting (1.25) in (1.20) leads to the estimate

\[
b(K)^{3d} N^\frac{e}{K} \prod_{j=1}^{d/2} \left[\sum_{I_\tau \subset I_j} \left\| \int_{I_\tau} a_j(t) c(x, \Phi(t)) dt \right\|_{L^6_p(B_N)} \right]^3.
\]

(1.26)
Recalling (1.22), one may conclude that
\[b(N) \ll b(N^{2/3})N^\varepsilon \]
and Theorem 1 follows.

\section{A mean value theorem}

From now on, we focus on \(d = 4 \) (in view of the application to exponential sums) and consider \(\Phi : [0, 1] \to \Gamma \subset \mathbb{R}^4 \) satisfying (1.1). If \(I_1, I_2 \subset \{1, \ldots, N\} \) are \(\sim N \) separated, we get from Theorem 1

\[\left\| \prod_{j=1}^2 \sum_{n \in I_j} a_n e \left(\Phi \left(\frac{n}{N} \right) \cdot x \right) \right\|_{L^2_\mu(B_N)} \ll \]

\[N^{\frac{1}{2} + \varepsilon} \prod_{j=1}^2 \left(\sum_{J \subset I_j} \sum_{n \in J} a_n e \left(\Phi \left(\frac{n}{N} \right) \cdot x \right) \right)^6 \] \(L^6_\mu(B_N) \) \(\alpha \)

with \(\{J\} \) a partition of \(\{1, \ldots, N\} \) in \(N^{\frac{1}{2}} \)-intervals.

Again in view of the application, specify

\[\phi_1(t) = t, \phi_2(t) = t^2 \] \((2.2) \)

and assume

\[|\phi'''_3| > c. \] \((2.3) \)

In order to perform a further decoupling in (2.1), we enlarge the domain \(B_N \), considering first

\[\Omega = [0, N] \times [0, N^{3/2}] \times [0, N^{3/2}] \times [0, N] \]

which we partition in \(N \)-cubes \(\Delta_N \).

Let \(I_1, I_2 \) be as above. Application of (2.1) on \(\Delta_N \) gives

\[\left\| \prod_{j=1}^2 \sum_{n \in I_j} a_n e \left(\Phi \left(\frac{n}{N} \right) \cdot x \right) \right\|_{L^2_\mu(\Delta_N)} \ll \]

\[N^{\frac{1}{2} + \varepsilon} \left[\prod_{j=1}^2 \left(\sum_{J \subset I_j} \sum_{n \in J} a_n e \left(\Phi \left(\frac{n}{N} \right) \cdot x \right) \right)^6 \right] \] \(L^6_\mu(\Delta_N) \) \(\alpha \)

and summing over \(\Delta_N \)

\[\left\| \prod_{j=1}^2 \sum_{n \in I_j} \cdots \right\|_{L^2_\mu(\Omega)} \ll \]

\[N^{\frac{1}{2} + \varepsilon} \left[\sum_{J_1 \subset I_1} \int_{B_N \times B_N} dz dz' \int_{\Omega} dx \sum_{n \in J_1} a_n e \left(\Phi \left(\frac{n}{N} \right) \cdot (x + z) \right)^6 \right] \sum_{n \in J_2} a_n e \left(\Phi \left(\frac{n}{N} \right) \cdot (x + z') \right)^6. \] \((2.4) \)
Let \(J_1 = [h_1, h_1 + N^{\frac{1}{2}}] \), \(J_2 = [h_2, h_2 + N^{\frac{1}{2}}] \) with \(h_1 - h_2 \asymp N \). Write for \(n \in J_1 \), \(n = h_1 + m \), recalling (2.2)

\[
\Phi \left(\frac{n}{N} \right) (x + z) = \Phi \left(\frac{h_1}{N} \right) (x + z) + \frac{m}{N} \left(x_1 + z_1 + \frac{2h_1}{N} (x_2 + z_2) + \phi'(\frac{h_1}{N}) (x_3 + z_3) + \phi''(\frac{h_1}{N}) (x_4 + z_4) \right) + \frac{m^2}{N^2} \left(x_2 + \frac{1}{2} \phi''(\frac{h_1}{N}) x_3 \right) + O(1) \tag{2.5}
\]

recalling that \(|x| < N \) and \(|y_2|, |y_3| < N^{3/2}, |y_4| < N \) while \(|m| < N^{\frac{1}{4}} \). Proceed similarly for \(\Phi \left(\frac{n}{N} \right) (x + z'), n \in J_2 \).

Observe that \(z_1, z_1' \) have range \([0, N] \), so that periodicity considerations and a change of variables in \(z_1, z_1' \) permit to replace the phase (2.5) by

\[
\frac{m}{N} z_1 + \frac{m^2}{N^2} \left(x_2 + \frac{1}{2} \phi''(\frac{h_1}{N}) x_3 \right)
\]

and

\[
\frac{m}{N} z_1' + \frac{m^2}{N^2} \left(x_2 + \frac{1}{2} \phi''(\frac{h_2}{N}) x_3 \right).
\]

Since \(h_1 - h_2 \asymp N \) and (2.3), one more change of variables in \(x_2, x_3 \) gives the phases

\[
\begin{cases}
m u_1 + \frac{m^2}{N^{1/2}} w_1 \\
m u_2 + \frac{m^2}{N^{1/2}} w_2
\end{cases}
\tag{2.6}
\]

with \(u_1, u_2, w_1, w_2 \) ranging in \([0, 1]\). Hence we obtain again a factorization of the integrand in (2.4), i.e.

\[
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} du_1 du_2 dw_1 dw_2 \left| \sum_{m_1 < \sqrt{N}} a_{h_1 + m_1} e \left(m_1 u_1 + \frac{m_1^2}{N^{1/2}} w_1 \right) \right|^6 \left| \sum_{m_2 < \sqrt{N}} a_{h_2 + m_2} e \left(m_2 u_2 + \frac{m_2^2}{N^{1/2}} w_2 \right) \right|^6 \tag{2.7}
\]

and the 2D-decoupling result applied to each factor enables to make a further decoupling at scale \(N^{1/4} \). This clearly permits to bound (2.4) by

\[
N^{\frac{1}{4} + \varepsilon} N^{-\frac{1}{2} + \varepsilon} \left[\sum_{j'_1 \subset J_1} \int_{j'_1} \int_{0}^{1} \left| \sum_{n \in j'_1'} a_n e(nu_1) \right|^6 \left| \sum_{n \in j'_2} a_n e(nu_2) \right|^6 d u_1 d u_2 \right]^{\frac{1}{12}} \tag{2.8}
\]

with \(\{j'_i\} \) a partition in \(N^{\frac{1}{4}} \)-intervals.

If instead we consider a translate \(\Omega + y \) of \(\Omega \), the expression (2.8) needs to be modified replacing \(a_n \) by \(a_n e \left(\Phi \left(\frac{n}{N} \right) y \right) \).

Finally, consider the domain (according to Huxley’s \(A_6 \)-problem)

\[
\tilde{\Omega} = [0, N] \times [0, N^2] \times [0, N^2] \times [0, N]
\]
which we partition in domains $\Omega_\alpha = \Omega + y_\alpha$ with Ω as above. Thus for each α (2.8) implies

$$\left\| \prod_{j=1}^2 \left[\sum_{n \in I_j} \prod_{k=1}^4 a_n \ e\left(\frac{n}{N} \cdot \nu_0 \right) e\left(n u_1 \right) \right] \right\|_{L^1(\Omega_\alpha)} \ll N^{\frac{1}{2} + \varepsilon} \left[\sum_{J_1 \subset I_1} \int_0^1 \int_0^1 \left| \sum_{n \in J_1} a_n \ e\left(\frac{n}{N} \cdot \nu_0 \right) \right| \left| \sum_{n \in J_1} a_n \ e\left(n u_1 \right) \right| \right]^6 \left| \int_0^1 \cdots \int_0^1 \int_0^1 \int_0^1 du_1 du_2 \right|^\frac{1}{18}.$$

and

$$\left\| \prod_{j=1}^2 \left[\sum_{n \in I_j} \prod_{k=1}^4 a_n \ e\left(\frac{n}{N} \cdot \nu_0 \right) e\left(n u_1 \right) \right] \right\|_{L^1(\Omega)} \ll N^{\frac{1}{2} + \varepsilon} \left[\sum_{J_1 \subset I_1} \int_0^1 \int_0^1 \left| \sum_{n \in J_1} a_n \ e\left(\frac{n}{N} \cdot \nu_0 \right) \right| \left| \sum_{n \in J_1} a_n \ e\left(n u_1 \right) \right| \right]^6 \left| \int_0^1 \cdots \int_0^1 \int_0^1 \int_0^1 dydu_1 du_2 \right|^\frac{1}{18}. \quad (2.9)$$

Proceeding as before, let $J_1' = [h_1, h_1 + N^{\frac{1}{2}}], J_2' = [h_2, h_2 + N^{\frac{1}{2}}], h_1 - h_2 \approx N$.

Write for $n \in J_1', n = h_1 + m$

$$\Phi\left(\frac{n}{N} \right) \cdot \nu + n u_1 =$$

$$\Phi\left(\frac{h_1}{N} \right) \cdot \nu + h_1 u_1 + m\left(u_1 + \frac{y_1}{N} + 2\left(\frac{h_1}{N} \right) y_2 + \frac{1}{N} \phi'_3\left(\frac{h_1}{N} \right) y_3 + \frac{1}{N} \phi'_4\left(\frac{h_1}{N} \right) y_4 \right)$$

$$+ \frac{m^2}{N^2} \left(y_2 + \frac{1}{N} \phi''_3\left(\frac{h_1}{N} \right) y_3 \right) + O(1).$$

Since $|y_2|, |y_3| < N^2, |y_4| < N$ and $|m| < N^{\frac{1}{2}}$.

Again by periodicity, (2.3) and change of variables, we obtain the phases

$$m u_1 + m^2 w_1$$

and

$$m u_2 + m^2 w_2$$

with $u_1, u_2, w_1, w_2 \in [0, 1]$ and the L^6-norms are bounded by the ℓ^2-norms of the coefficients. In conclusion, we proved that

$$\left\| \prod_{j=1}^2 \left[\sum_{n \in I_j} a_n e\left(\frac{n}{N} \cdot x \right) \right] \right\|_{L^1(\Omega)} \ll N^{\frac{1}{2} + \varepsilon} ||a||_{\infty} \quad (2.10)$$

with Φ satisfying (1.1), (2.2), (2.3), i.e.

$$\phi_1(t) = t, \phi_2(t) = t^2, |\phi_3''| > c \text{ and } \left| \begin{array}{cc} \phi''_3(s) & \phi''_4(s) \\ \phi''_3(t) & \phi''_4(t) \end{array} \right| > c \text{ for } s, t \in [0, 1]. \quad (2.11)$$

The following statement is the mean value estimate for A_6 in $[H]$.

9
Theorem 2.

\[\int_0^1 \int_0^1 \int_0^1 \int_0^1 \left| \sum_{n \leq N} e(nx_1 + n^2 x_2 + N^{\frac{3}{2}} n^{3/2} x_3 + N^{\frac{5}{2}} n^2 x_4) \right|^{12} dx_1 dx_2 dx_3 dx_4 \leq N^{6 + \varepsilon}. \]

(2.12)

Proof. Let \(I \subset [1, N] \) be an interval of the form \([N_0, N_0 + M]\), \(100M < N_0 \leq N \), and assume \(I_1, I_2 \subset I \) subintervals of size \(\sim M \) that are \(\sim M \)-separated.

We first estimate

\[\int \left\{ \prod_{j=1}^2 \left| \sum_{n \in I_j} e(nx_1 + n^2 x_2 + N^{1/2} n^{3/2} x_3 + N^{1/2} n^{1/2} x_4) \right|^6 \right\} dx. \]

(2.13)

Clearly (2.13) amounts to the number of solutions of the system

\[
\begin{align*}
& m_1 + m_2 + m_3 - m_4 - m_5 - m_6 = m_7 + m_8 + m_9 - m_{10} - m_{11} - m_{12} \\
& m_1^2 + m_2^2 + m_3^2 - m_4^2 - m_5^2 - m_6^2 = m_7^2 + m_8^2 + m_9^2 - m_{10}^2 - m_{11}^2 - m_{12}^2 \\
& (N_0 + m_1)^{3/2} + (N_0 + m_2)^{3/2} + (N_0 + m_3)^{3/2} - (N_0 + m_4)^{3/2} - (N_0 + m_5)^{3/2} - (N_0 + m_6)^{3/2} = \\
& (N_0 + m_7)^{3/2} + (N_0 + m_8)^{3/2} + (N_0 + m_9)^{3/2} - (N_0 + m_{10})^{3/2} - (N_0 + m_{11})^{3/2} - (N_0 + m_{12})^{3/2} + O(N^{-\frac{1}{2}}) \\
& (N_0 + m_1)^{\frac{1}{2}} + \cdots + (N_0 + m_6)^{1/2} = \\
& (N_0 + m_7)^{\frac{1}{2}} + \cdots + (N_0 + m_{12})^{1/2} + O(N^{-\frac{1}{2}}). \\
\end{align*}
\]

(2.14)

(2.15)

(2.16)

(2.17)

with \(m_1, \ldots, m_6 \in I_1' = I_1 - N_0; m_7, \ldots, m_{12} \in I_2' = I_2 - N_0 \).

Write \((N_0 + m)^{3/2}, (N_0 + m)^{1/2} \) in the form

\[
(1 + O\left(\frac{M}{N_0}\right)t + \cdots), \phi_4(t) \sim t^4.
\]

Hence \(\Phi(t) = (t, t^2, \phi_3(t), \phi_4(t)) \) satisfies (2.11).

From (2.14), (2.15), (2.18), (2.19), inequalities (2.16), (2.17) may be replaced by

\[
\phi_3\left(\frac{m_1}{M}\right) + \cdots + \phi_3\left(\frac{m_{12}}{M}\right) < O(N^{-\frac{1}{2}} N_0^{3/2} M^{-3})
\]

(2.20)

\[
\phi_4\left(\frac{m_1}{M}\right) + \cdots + \phi_4\left(\frac{m_{12}}{M}\right) < O(N^{-\frac{1}{2}} N_0^{7/2} M^{-4}).
\]

(2.21)

The number of solutions of (2.14), (2.15), (2.20), (2.21) may be evaluated by

\[\int \left\{ \prod_{j=1}^2 \left| \sum_{m \in I_j'} e(mx_1 + m^2 x_2 + \frac{N^\frac{3}{2} M^3}{N_0^{3/2}} \phi_3\left(\frac{m}{M}\right) x_3 + \frac{N^\frac{5}{2} M^4}{N_0^{7/2}} \phi_4\left(\frac{m}{M}\right) x_4 \right|^6 \right\} dx. \]

(2.22)
According to (2.10), (2.22) and hence (2.13) are bounded by

\[
M^{6+\varepsilon} \left\{ 1 + \frac{N_0^{3/2}}{N^{2} M} \right\} \left\{ 1 + \frac{N_0^{7/2}}{N^{1/2} M^3} \right\} \ll N^{4+\varepsilon} M^2. \tag{2.23}
\]

Returning to (2.12), let \(B(N)N^6 \) be a bound on the l.h.s. We use the same reduction procedure to multi-linear (here bi-linear) inequalities as in \([\text{B, B-D2}](\text{and originating from [B-G]}). \) Denote \(K \) a large constant and partition \([1, N] \) in intervals \(I_0, I_1, \ldots, I_K, \) where \(|I_0| = \frac{100N}{K} \) and \(|I_s| = \left(1 - \frac{40}{K} \right) \frac{N}{K} = M_0 \) for \(1 \leq s \leq K. \)

Bound

\[
\int \left| \sum_{n \leq N} \right|_{12}^2 \leq 2^{12} \int \left| \sum_{n \in I_0} \right|_{12}^2 + (2K)^{12} \sum_{1 \leq s \leq K} \int \left| \sum_{n \in I_s} \right|_{12}^2. \tag{2.24}
\]

The first term of (2.24) is bounded by \(2^{12}100^6K^{-6}b \left(\frac{100N}{K} \right) N^6. \)

For the remaining terms, write \(I_s = [N_s, N_s + M_0], \) \(N_s > 100M_0, \) and make a further partition of \(I_s \) in consecutive intervals \(I_{s,1}, \ldots, I_{s,K} \) of size \(M_1 = M_0 \). The key point (going back to \([\text{B-G}]) is an estimate of the form

\[
\int \left| \sum_{n \in I_s} \right|_{12}^2 \leq 4^{12} \sum_{s_1 \leq K} \int \left| \sum_{n \in I_{s_1}} \right|_{12}^2 + K^{18} \sum_{s_1, s_2 \leq K} \int \left\{ \left| \sum_{n \in I_{s_1}} \right|_{6} \left| \sum_{n \in I_{s_2}} \right|_{6} \right\}. \tag{2.25}
\]

Recall that (2.25) follows from considering the (pointwise in \(x \)) decreasing rearrangement \(\eta_1 \geq \eta_2 \geq \cdots \geq \eta_K \) of the sequence \(\left| \sum_{n \in I_{s_1}} \right|_{1 \leq s_1 \leq K} \) and distinguishing the cases \(\eta_4 < \frac{1}{K} \eta_1 \) and \(\eta_4 \geq \frac{1}{K} \eta_1. \)

Application of (2.23) gives for \(|s_1 - s_2| \geq 2 \)

\[
\int \left\{ \left| \sum_{n \in I_{s_1}} \right|_{6} \left| \sum_{n \in I_{s_2}} \right|_{6} \right\} \ll N^{6+\varepsilon}
\]

and the second sum in (2.25) contributes at most for \(C(K)N^{6+\varepsilon}. \) Replace the second term in the r.h.s. of (2.24) by

\[
(2K)^{12}4^{12} \sum_{s \leq s_1 \leq K} \int \left| \sum_{n \in I_{s_1}} \right|_{12}^2.
\]

Repeating the procedure, partition each \(I_{s,s_1} \) in intervals \(I_{s,s_1,s_2} \) of size \(M_2 = \frac{M_1}{K} \) and apply the decomposition (2.25) for each \(\sum_{n \in I_{s,s_1}} \) etc.

In general, one gets bilinear contributions of the form

\[
(2K)^{12}4^{12\alpha} K^{18} \sum_{J,J'} \int \left\{ \left| \sum_{n \in J} \right|_{6} \left| \sum_{n \in J'} \right|_{6} \right\}. \tag{2.26}
\]

where the sum extends over pairs \(J, J' \) of intervals of size \(M_\alpha = \frac{N}{K^{\alpha+1}}, \alpha \geq 1 \) that are at least \(M_\alpha \)-separated and contained in an interval of the form \([N_0, N_0 + KM_\alpha], KM_\alpha < \frac{1}{100}N_0. \) Again by (2.23)

\[
\int \left\{ \left| \sum_{n \in J} \right|_{6} \left| \sum_{n \in J'} \right|_{6} \right\} \ll N^{4+\varepsilon} M_\alpha^2
\]

implying that

\[
(2.26) \ll C(K)^{4^{12\alpha}} \frac{N}{M_\alpha} N^{4+\varepsilon} M_\alpha^2 \ll N^{6+\varepsilon} \left(\frac{4^{12}}{K} \right)^{\alpha}.
\]
Summing over α eventually leads to the bound
\[2^{12}100^6 K^{-6} b\left(\frac{100N}{K}\right) N^6 + N^{6+\varepsilon}. \] (2.27)

On the l.h.s. of (2.24). Therefore
\[b(N) \leq 2^{12}100^6 K^{-6} b\left(\frac{100N}{K}\right) + C_\varepsilon N^\varepsilon \]
implying $b(N) \ll N^\varepsilon$ and Theorem 2.

Using the notation from [H], Theorem 2 implies

Corollary 3. Let $\frac{1}{N^2} \leq \delta \leq 1, \frac{1}{N} \leq \Delta \leq 1$. Then
\[A_6(\delta, \Delta) = \int \left| \sum_{n \leq N} e\left(n x_1 + n^2 x_2 + \frac{1}{\delta} \left(\frac{n}{N} \right)^{3/2} x_3 \right) + \frac{1}{\Delta} \left(\frac{n}{N} \right)^{1/2} x_4 \right|^{12} dx \ll \delta \Delta N^{9+\varepsilon}. \] (2.28)

Considering the major arc contribution, (2.28) is clearly seen to be essentially best possible.

3 Applications to exponential sums

Let F be a smooth function on $[\frac{1}{T}, 1]$ satisfying the condition
\[|F'''(x)| > c > 0 \] (3.1)
and define
\[S = \sum_{m=M} e\left(FT\left(\frac{m}{M} \right) \right). \] (3.2)

In what follows, we assume $M < \sqrt{T}$, in view of the application to $|\zeta(\frac{1}{2} + it)|$. We use notation and background from [H] and also rely on [H-W] and §8 in [H1]. For simplicity we ignore logarithmic and T^ε factors.

Once the parameter $1 \ll N < M$ is chosen, R is defined by the relation
\[M^3 \sim R^2 NT. \] (3.3)

From the large sieve bound (cf. [H-W], (3.14)), we obtain
\[|S|^r \ll \frac{M^r}{N^{r/2}} + \sum_{Q} \left(\frac{MR}{NQ} \right)^{r-1} \frac{R^r}{Q^{r/2}} \left[A_r BH^5 N R^2 \left(1 + \frac{Q}{N} \right) \right]^{r/2} \] (3.4)
with Q running over dyadic values in the range $R < Q < R^2$, $H = \frac{NQ}{R^2}$, and where with the notation of Corollary 3
\[A_r = A_r(\delta, H\delta), \delta = \frac{R^2}{N^2} \] (3.5)
and $B = B(Q)$ is a quantity related to the so-called ‘second spacing problem’ mentioned in the Introduction. At
this point, we invoke the treatment and estimate (8.8) from [H1]

\[B \ll \left(\frac{Q}{R} \right)^{2/3} \frac{M^2 R^{14}}{N^{20}}. \]

(3.6)

Huxley sets \(r = 5 \) and relies on the bound \(A_5(\delta, \delta H) \ll \delta H^7 \) obtained in [H-K].

Using our estimate (2.28), it follows that

\[A_6 \ll \delta^2 H^9. \]

(3.7)

Applying (3.4) with \(r = 6 \) and (3.7) leads to a bound

\[|S|^6 \ll \frac{M^6}{N^3} + \sum Q \frac{M^6}{N^7/3} \frac{R}{Q^{5/3}} \left(1 + \frac{Q}{N} \right)^{1/2} \ll \frac{M^6}{N^3} + \frac{M^6}{N^7/3 R^{2/3}} \]

(3.8)

\[|S| \ll \frac{M}{N^{7/18} R^{1/9}} \]

(3.9)

(recalling that \(N \geq R \)).

We choose \(N \) and \(R \) according to [H1] in order to obtain the bound (3.6) on \(B \). Note that this discussion relates to the second spacing problem and is independent of the choice of \(r \).

Thus for \(T^{1/2} \gg M \gg T^{114} \), set

\[N \asymp MT^{-1/4}, \quad R \asymp MT^{-5/12} \]

(3.10)

which gives

\[|S| \ll M^{1/2} T^{-5/12} + \varepsilon. \]

(3.11)

For \(T^{1/2} \ll M \ll T^{114} \), set

\[N \asymp M^{1/2} T^{-1/4}, \quad R \asymp M^{1/2} T^{-5/12} \]

(3.12)

and (3.9) implies

\[|S| \ll M^{1/2} T^{-1/4} + \varepsilon. \]

(3.13)

For \(T^{1/3} \ll M \ll T^{2/7} \), set

\[N \asymp R^2 \asymp \left(\frac{M^3}{T} \right)^{1/2} \]

(3.14)

which gives

\[|S| \ll M^{1/3} T^{-4/7} + \varepsilon. \]

(3.15)

It follows from (3.11), (3.13), (3.15) that

\[\frac{1}{\sqrt{M}} |S| \ll T^{123/19} + \varepsilon \]

(3.16)

as long as \(M > T^{114}, \quad \frac{23}{31} = 0.4035 \ldots \)

Finally, we invoke the estimate with \(M = T^{\alpha} \) (see [H1], Theorem 3)

\[|S| \ll T^{(4+103\alpha)+\varepsilon} \text{ for } 0, 3870 \ldots = \frac{12}{31} < \alpha < 1 \]

(3.17)

to conclude (3.16) if \(\alpha \leq 0, 406 \ldots \) while the exponent pair \((\frac{4299}{43860}, \frac{29507}{43860}) \) from Table 17.3 in [H] gives (3.16) for \(\alpha < 0, 3896 \ldots \).
In conclusion, we proved

Theorem 4.

\[\left| \zeta\left(\frac{1}{2} + it\right) \right| \ll T^{\frac{53}{342}} + \epsilon. \]

References

[B] J. Bourgain, *Decoupling inequalities and some mean-value theorems*, preprint available on arxiv.

[B-D1] J. Bourgain, C. Demeter, *The proof of the l^2-decoupling conjecture*, arXiv: 1405335.

[B-D2] J. Bourgain, C. Demeter, *ℓ^p decouplings for hypersurfaces with nonzero Gaussian curvature*, arXiv:14070291.

[B-I1] E. Bombieri, H. Iwaniec, *On the order of $\zeta\left(\frac{1}{2} + it\right)$*, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 13 (1986), 449–472.

[B-I2] E. Bombieri, H. Iwaniec, *Some mean value theorems for exponential sums*, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 13 (1986), 473–486.

[B-G] J. Bourgain, L. Guth, *Bounds on oscillatory integral operators based on multilinear estimates*, GAFA 21 (2011), no 6, 1239-1295.

[B-C-T] J. Bennett, A. Carberry, T. Tao, *On the multilinear restriction and Kakeya conjectures*, Acta Math. 196 (2006), no 2, 261–302.

[H] M.N. Huxley, *Ares, Lattice Points and Exponential Sums*, LMS monographs, 13 (1996).

[H1] M.N. Huxley, *Exponential sums and the Riemann zeta function, IV*, Proc. London Math. Soc. (3) 66 (1993), 1–40.

[H2] M.N. Huxley, *Exponential sums and the Riemann zeta function, V*, Proc. London Math. Soc (3) 90 (2005), 1–41.

[H-K] M.N. Huxley, G. Kolesnik, *Exponential sums and the Riemann zeta function III*, Proc. London Math. Soc. (3) 62 (1991), 449–468.

[H-W] M.N. Huxley, N. Watt, *Exponential sums with a parameter*, Proc LN Math. Soc (3) 59 (1989), 233–252.