Isolation of phosphate solubilizing bacteria from the rhizosphere of local aromatic rice in Bada Valley Central Sulawesi, Indonesia

S Sudewi1,2, A Ala3, B Patandjeng4 and M Farid B D R3

1Agriculture Study Program, Graduate School Hasanuddin University Makassar 90245 Indonesia
2Department of Agrotechnology Faculty of Agriculture, Alkhairaat University Palu 94221 Indonesia
3Department of Agrotechnology, Faculty of Agriculture, Hasanuddin University Makassar 90245 Indonesia
4Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University Makassar 90245 Indonesia

E-mail: srisudewirahim@gmail.com

Abstract. Phosphate Solubilizing Bacteria (PSB) can be used to increase the efficiency and availability of P in the soil as it can help the process of releasing the bound of P elements so that they become available to the plants. This study aims to isolate and determine the morphological characteristics of the PSB colonies in the rhizosphere of the local aromatic rice plant, analyze the phosphate solubility of each isolate. A total of eleven rhizospheres bacterial isolates were successfully isolated from the local aromatic rice rhizosphere. The morphological characteristics, including the size, edge, shape, elevation, and color of the colony, were obtained vary. The bacteria found were gram-positive and gram-negative, which are 81.81% and 18.18%, respectively. The result of the catalase reaction test showed 72.72% positive and 27.27% negative catalase. Furthermore, eight bacterial isolates formed a clear zone with an area of 0.84–2.66 cm. The Phosphate solubility was 116.67–133.00, and the Phosphate dissolving index was 2.17–2.33 at acidic pH between 4.27–5.67. The concentration of dissolved phosphate was 5.152 mg L\(^{-1}\)–9.382 mg L\(^{-1}\). The results showed that the PSB has a potential being an alternative way to be developed as a biological fertilizer agent in supporting sustainable agriculture.

1. Introduction
Phosphorus is an important nutrient after large amounts of nitrogen needed by plants as it plays a role in all processes of plant metabolism, cell division, activation/inactivation of enzymes and carbohydrate metabolism [1]. Its presence in abundant soil in the form of both P-organic and P-inorganic [2] is mostly in an insoluble form (around 95-99%) so that it becomes unavailable for plants to be absorbed [3].

Plants can absorb phosphate in the form of H\(_2\)PO\(_4^-\) and HPO\(_4^{2-}\) ions. To dissolve phosphate into an available form, it needs assistance from soil microorganisms, one of them is PSB. The mechanism between PSB and plant roots results in phosphatase enzymes (in case if the availability of phosphate in the soil is low), and the more dominant is the phosphatase produced by microorganisms. The
phosphatase enzyme plays a role in releasing phosphates bound by organic compounds (Citric Acid, Glutamate, Succinate, Lactate, Oxalate, Glycooolsalat, Fumarate, Tartaric and Alpha-Ketobutiric Acid) into forms that are available and can be absorbed by plant roots. PSB not only dissolves and releases P from insoluble compounds but also releases other nutrients [3].

Sources of the food supply in the form of rice, especially upland rice (> 700 m above sea level), have an important role for people who live in unspoiled mountain areas such as the people in Bada Valley Poso Regency, Central Sulawesi. This region’s rice is known to have a distinctive aroma (fragrant) that has a fluffier taste, clean white color, and good storability after being cooked into the rice so that it remains cultivated by the local community. Both fluffier taste and its fragrant aroma are the advantages of these aromatic rice types. The local aromatic rice "Kamba" especially in Bada Valley, is generally cultivated with the traditional cultivation system following the customs of the local community based on local wisdom without the use of fertilizers, pesticides, and other chemicals. This rice plant can survive even though it is cultivated by a traditional cultivation system. With environmental conditions that are still awake and natural, it will certainly create an environment of growth and biodiversity of abundant microorganisms in the soil.

The PSB is one of the microorganisms that can be used as an alternative of P-availability in the soil so that it is very potential to be developed as biological fertilizer by inoculating with the soil directly [4] given directly to the seeds seed coating [5] or by adding PSB isolates to carrier media such as composted organic waste, for example, worm compost [6] cow dung, phosphate rock, and biogas mud [7]. Some studies showed the PSB utilization in various cases such as PSB isolated from heavy metal contaminated soil and the combination of PSB with biochar as heavy metal remediation [8]. PSB also can be inoculated with rocks phosphate, animal bone waste, eggshells, tea pulp, and pig bones as fertilizer [9]. PSB has the potential as a biopesticide, bioinoculant, and biosurfactant [10,11], in which a combination of PSB with silicon [12] can be mixed with nitrogen fixation bacteria [13], hydroxylapatite clay mineral (HAp), and montmorillonite (Mt.) [14]. Besides, the use of PSB (both fungi and bacteria) combined with several other fertilizers can substitute the use of chemical fertilizers [15]. Types of PSB have been identified, including Enterobacter sp [16,17] Bacillus sp, Enterococcus sp, and Serratia sp, Staphylococcus haemolyticus [18], Aneurinibacillus aneurinilyticus [19] Paenibacillus sp, Paenibacillus polymyxa [20] Pseudomonas spp, Pseudomonas aeruginosa [10], Alcaligenes aquatilis, Burkholderia cep. Sp [21], Pantoea cyripedi [22], Virgibacillus sp., Leclercia adecarboxylata [8], Gluconacetobacter sp [23], Acinetobacter sp, Sinorhizobium sp, Staphylococcus sp [24] and others. Thus, the potential of PSB (both fungi or bacteria) as biological fertilizers or biological agents is the most effective and efficient to increase crop production, support the sustainable management of biological resources and agriculture as it is able to substitute the use of chemical fertilizers and is environmentally friendly [14].

2. Materials and Methods

2.1. Sampling
The composite sampling method was adopted to get a soil sample [25]. These samples were taken around the rooting area (rhizosphere) of healthy local aromatic Kamba rice plants from five random sampling points. Sampling locations in Bakekau and Lelio Village in Bada Valley Poso Regency, Central Sulawesi. The plant was pulled out slowly, then the soil attached to the plant roots was taken in a composite up to 300 g, then was put in a sterile envelope, stored in a cooler box a while until it reached to the Laboratory.

2.2. The isolation and morphological characterization of the PSB
The isolates were carried out using a dilution method, 1 gram of soil sample was put into a fresh tube and then dissolved with 1 ml of sterile water then homogenized using a vortex. 1 mL of the solution was put in 9 mL of sterile water in the fresh tube so that a dilution rate obtained was 10^3. The same procedures were performed until dilution 10^{-5}. 0.1 mL resulting from the dilution of 10^{-5} to 10^{-6} was
spread on the Pikovskaya media and incubated at 28°C for 24 hours. Growing bacteria were selected and purified using the zig-zag scratch method and then were morphologically characterized by observing the size, shape, edges, elevation, and color of the colony.

The gram reaction analysis was adopted using a method by [26]. One loop of the pure culture of a single colony that has been cultivated was taken using an ose needle and rubbed to the glass object that has been added with two drops of 3% Potassium Hydroxide solution then was stirred clockwise repeatedly and removed gently. The Gram-negative (-) was detected with the appearance of the slimy colony, while the Gram-positive (+) was not.

The catalase reaction test was done by adding one loop (full loop) of pure single colony culture and then rubbed on the glass object that has been given two drops of 3% Hydrogen Peroxide solution. The appearance of gas bubbles showed that the reaction was positive, while the negative reaction was not.

2.3. The Ability of Phosphate Solubilizing Bacteria

The ability of bacteria to dissolve phosphate was determined by the formation of clear zones around the colony which can be analyzed using Pikovskaya media referring to [27] modified with the addition of 0.01 g L\(^{-1}\) bromophenol blue into Pikovskaya media then bacterial isolates were grown with the spot inoculation method and incubated for three days at 28°C. The qualitative testing was done by observing the growing colonies that are able to form a clear zone around the colony. This showed that the isolates are able to dissolve the phosphate. The measurement of the phosphate solubilization efficiency (PSE) and phosphate solubilization index (PSI) used these following formula:

\[
PSE = \frac{\text{The diameter of clear zone}}{\text{The colony diameter}} \times 100
\]

\[
PSI = \frac{\text{The colony diameter} + \text{The diameter of clear zone}}{\text{The colony diameter}}
\]

The other analysis to determine the ability of the isolates to dissolve phosphate was using liquid Pikovskaya media by adding Tricalcium Phosphate Ca\(_3\)(PO\(_4\))\(_2\), then was incubated for seven days at 28°C. After seven days, the bacterial suspension 1.5 mL was centrifuged for 15 minutes at 10,000 pm. 5 mL of supernatant was taken and added with 0.5 mL of P reagent concentrated, then shook gently for a few minutes and let stand for 30 minutes. The quantitative analysis was done by measuring the absorbance level of phosphate dissolution concentration with a UV-VIS spectrophotometer at 693 nm. The acidity (pH) was measured before and after cultivation. The phosphate concentration was measured using (standard Titrisol curve (PO\(_4\)) made from the dilution with Titrisol concentration ranging from 0 to 2.5 mg L\(^{-1}\) with a regression equation \(Y = 0.1911x + 0.0265\) where \(R2 = 0.9659\) (See Figure 1).
3. Results and Discussion

3.1. Isolation and Morphological Characterization of PSB Isolates

The isolation and selection of bacterial colonies from local aromatic rice at Poso, Central Sulawesi produce eleven pure isolates with varying characteristics (See Table 1). These isolates have a circular shape, including nine with the flat edge, one serrate, and one undulate. The size of the colonies varies from small, moderate, and large, which are dominated by seven small colonies. While the elevation resulted are six flat, four raised, and one umbonate. The color of colonies observed in five cream, four yellow, and two white isolates (See Table 1).

Isolate Code	Size	Colony Form	Colony Edge	Elevation	Colony Colour	Gram (+/-)	Catalase (+/-)
KBA3	Moderate	Circular	Entire	Flat	Cream	(+)	(-)
KBA6	Small	Circular	Entire	Umbonate	Yellow	(+)	(+)
KBA11	Small	Circular	Entire	Raised	White	(+)	(-)
KBA12	Large	Circular	Serrate	Flat	Cream	(+)	(+)
KBA13	Large	Circular	Undulate	Flat	White	(+)	(+)
KBA15	Small	Circular	Entire	Raised	Yellow	(+)	(-)
KBA16	Small	Circular	Entire	Flat	Cream	(+)	(+)
KBA17	Small	Circular	Entire	Flat	Cream	(+)	(+)
KBA19	Moderate	Circular	Entire	Flat	Cream	(+)	(+)
KLE2	Small	Circular	Entire	Raised	Yellow	(-)	(+)
KLE4	Small	Circular	Entire	Raised	Yellow	(-)	(+)

The characteristics differences among isolates colony are due to the expression of genes derived from different types of bacteria. Furthermore, the colony color differences that appear in (Table 1) show that bacterial isolates have different pigments to produce different colors. Carotenoid pigments in bacteria will result in red and yellow color; Melanin gives brown, black, and orange color, and Tripirilmethenes pigment results from orange, yellow, dark orange, and orange-red color.
The result of the Gram reaction test indicates it varies the amount of gram-positive and gram-negative, which are 81.81% and 18.18%, respectively. The catalase reaction test is dominated by positive catalase reactions of 72.72% and a negative catalase of 27.27%. Almost all living things that are exposed by oxygen will produce a catalase enzyme that can break down hydrogen peroxide into water and oxygen [28].

3.2. The phosphate dissolution ability in bacterial isolates
3.2.1. The result of the qualitative analysis of PSB isolates. The result of the qualitative analysis of PSB isolate is presented in Figure 3. The bacterial isolates that are grown on the Tricalcium Phosphate media then added with Bromophenol blue show different phosphate solubility ability. The clear zone formed around the colony is an indicator of the presence or absence of phosphate dissolution by bacterial isolates on the media. The best phosphate solvent bacteria are able to produce the largest area of the halo zone diameter compared to other colonies. In contrast, isolates that do not form clear zones are unable to dissolve phosphate.
Figure 3. (a) Control (Tricalcium Phosphate agar media without bacteria), (b,c,d) Bacterial isolates which do not form clear zones, (e,f,g,h,i,j,k,l) Bacterial isolates which form clear zones.

Results show that only eight bacterial isolates which are able to form the halo zone with different areas. KBA12 forms the largest area of the halo zone and can be indicated as a superior phosphate solvent isolate, while the smallest is KLE4. Whilst KBA6, KBA17, and KLE2 isolate do not form the halo zone. Thus, these isolates do not result in an index or efficiency of phosphate dissolution (See Figure 3). The variation in the width of the halo zone produced by bacterial isolates is due to the differences ability of each isolate to secrete organic acid extracellular. Whereas the changes in the medium around the colony from turbid to clear are due to the decreasing of pH on the medium used [29].

3.2.2. The result of the quantitative analysis of phosphate dissolution ability in bacterial isolates. The ability of PSB quantitatively is presented in Table 2 and Figure 4. The result of PSI measurement shows eight from eleven bacterial isolates are able to dissolve phosphate, which varies from 2.17 to 2.33. The highest PSI is resulted by KBA12, which is 2.33 with PSE 133.00 at pH 5.19. At the same time, the lowest PSI resulted in KLE4, which is 2.17, with PSE of 116.67 at pH 5.50. The pH value used in this study varies between (4.27–5.83) on Pikovskaya media, which is categorized as acidic pH (See Table 2).

Table 2. The quantitative analysis of phosphate dissolution ability in bacterial isolates.

Isolate code	pH	The diameter of the clear zone (cm)	Colony diameter (cm)	Phosphate Solubilization Efficiency (PSE)	Phosphate Solubilization Index (PSI)
KBA3	5.02	1.15	0.95	121.05	2.21
KBA11	5.09	0.98	0.76	128.95	2.29
KBA12	5.19	2.66	2.00	133.00	2.33
KBA13	4.27	1.05	0.85	123.53	2.24
KBA15	5.35	1.00	0.83	120.48	2.20
KBA16	4.88	0.91	0.76	128.95	2.29
KBA19	5.67	0.91	0.76	119.74	2.20
KLE4	5.50	0.84	0.72	116.67	2.17

The PSI of each bacterial isolate shows its ability to dissolve phosphate. The higher the value of PSI showed, the stronger the activity of the enzyme phosphatase in releasing P from organic compounds, and the wider clear zone will be obtained as the insoluble phosphate was processed into a soluble form by PSB.
The result shows that the clear zone diameter, PSE, and PSI from bacterial isolates cannot be used as indicators for the level of phosphate solubility concentration as there are isolates with large clear zone diameters and a high value of both PSE and PSI but results in a low dissolved phosphate concentration (See Figure 4).

The quantitative analysis of phosphate dissolution ability on PSB isolates is determined by growing a pure culture of bacterial isolates on the liquid Pikovskaya media. The dissolved P-content contained in the liquid media is measured using a UV-VIS 693 nm spectrophotometer (See Figure 4). The result shows that the PSB result varies the amount of soluble phosphate concentration with the highest value obtained by KBA15 then followed by KLE4, KBA19, and KBA3, which are 9.382 mg L$^{-1}$, 9.099 mg L$^{-1}$, 9.010 mg L$^{-1}$ dan 9.000 mg L$^{-1}$ respectively. The lowest phosphate solubility concentration is resulted by KBA13 bacterial isolate with a value of 5.152 mg L$^{-1}$.

![Figure 4. The quantitative analysis of phosphate dissolution ability on PSB isolates using Spectrophotometer UV-VIS 693 nm.](image)

The different concentrations of PSB are influenced by the type of bacterial strain and environmental condition. The study done by [30] stated that rhizobacterial isolates from chili [31], sugar cane and rice plant had a concentration of inorganic phosphate dissolution ranging from 50.07 - 717.99 ppm while the PSI of the rhizosphere soil of *Cicer arietinum*, *Vigna radiata*, *Zea mays*, *Oryza sativa*, *Colocasia esculenta*, *Allium cepa* ranges from 5.3 to 7.43 [32].

4. **Conclusion**
The research we have done by isolating phosphate solubilizing bacteria from the rhizosphere of local aromatic rice at Central Sulawesi can produce various phosphate solubility activities among isolate tested. KBA12 is superior bacterial isolates through the parameter of both clear zone diameter and PSI as it forms the largest clear zone area of 2.66 cm and the highest PSI value of 2.33. However, KBA15 also shows the highest concentration value of phosphate dissolution, which is 9.382 mg L$^{-1}$. It can be concluded that these PSB isolates have the potential to be developed and utilized thus further research is still needed to explore the potential of these PSB isolates as biological agents of biological fertilizers on increasing the plant growth and production to support sustainable agriculture and genetic stability of local aromatic rice at Central Sulawesi.

Acknowledgment
The authors would like to thank Kemenristekdikti-LPDP (Institute of Education Fund Management) of Indonesia for providing financial support of this research and all parties involved to help and facilitate all the processes.
References

[1] Razaq M, Zhang P, Shen H L and Salahuddin 2017 Influence of nitrogen and phosphorus on the growth and root morphology of Acer mono PLoS One 12 1–13

[2] Kumar A and Rai L C 2017 Soil Organic Carbon and Availability of Soil Phosphorus Regulate Abundance of Culturable Phosphate Solubilizing Bacteria in Paddy Fields of the Indo-Gangetic Plain Pedosphere 0160

[3] Oteino N, Lally R D, Kiwanuka S, Lloyd A, Ryan D, Germaine K J and Dowling D N 2015 Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates Front. Microbiol. 6 1–9

[4] Ghorchiani M, Etesami H and Alikhani H A 2018 Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers Agric. Ecosyst. Environ. 258 59–70

[5] Mukhtar S, Shahid I, Mehnaz S and Malik K A 2017 Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.) Microbiol. Res. 205 107–17

[6] Parastesh F, Alikhani H A and Etesami H 2019 Vermicompost enriched with phosphate-solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions J. Clean. Prod. 221 27–37

[7] Tahir M, Khalid U, Ijaz M, Shah G M, Naem M A, Shahid M, Mahmood K, Ahmad N and Kareem F 2018 Combined application of bio-organic phosphate and phosphate solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate Brazilian J. Microbiol. 49 15–24

[8] Teng Z, Shao W, Zhang K, Huo Y and Li M 2019 Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization J. Environ. Manage. 231 189–97

[9] Jayakumar N, Paulraj P, Sajeesh P, Sajna K and Zinneera A 2019 Application of native phosphate solubilizing bacteria for the use of cheap organic and inorganic phosphate source in agricultural practise of Capsicum annum (Chili) - A pilot scale field study Mater. Today Proc. 16 1630–9

[10] Rasul M, Yasmin S, Zubair M, Mahreen N, Yousaf S, Arif M, Sajid Z I and Mirza M S 2019 Phosphate solubilizers as antagonists for bacterial leaf blight with improved rice growth in phosphorus deficit soil Biol. Control 136 103997

[11] Kumari P, Meena M and Upadhyay R S 2018 Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean) Biocatal. Agric. Biotechnol. 16 155–62

[12] Rezakhani L, Motesharezedeh B, Tehrani M M, Etesami H and Mirseyed Hosseini H 2019 Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source Ecotoxicol. Environ. Saf. 173 504–13

[13] Iyer B, Rajput M S and Rajkumar S 2017 Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth Microbiol. Res. 202 43–50

[14] Su M, Han F, Wu Y, Yan Z, Lv Z, Tian D, Wang S, Hu S, Shen Z and Li Z 2019 Effects of phosphate-solubilizing bacteria on phosphorous release and sorption on montmorillonite Appl. Clay Sci. 181 105227

[15] Mukherjee S and Sen S K 2014 Exploration of novel rhizospheric yeast isolate as fertilizing soil inoculant for improvement of maize cultivation J. Sci. Food Agric. 95 1491–9

[16] Jiang Z, Zhang X, Wang Z, Cao B, Deng S, Bi M and Zhang Y 2019 Enhanced biodegradation of atrazine by Arthrobacter sp. DNS10 during co-culture with a phosphorus solubilizing bacteria: Enterobacter sp. P1 Ecotoxicol. Environ. Saf. 172 159–66

[17] Bakhshandeh E, Pirdashti H and Lendeh K S 2017 Phosphate and potassium-solubilizing
bacteria effect on the growth of rice *Ecol. Eng.* **103** 164–9

[18] Biswas J K, Banerjee A, Rai M, Naidu R, Biswas B, Vithanage M, Dash M C, Sarkar S K and Meers E 2018 Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (*Metaphire posthuma*) in plant growth promotion *Geoderma* **330** 117–24

[19] Chauhan A, Guleria S, Balgir P P, Walia A, Mahajan R, Mehta P and Shirkot C K 2017 Tricalcium phosphate solubilization and nitrogen fixation by newly isolated *Aneurinibacillus aneurinilyticus* CKMV1 from rhizosphere of *Valeriana jatamansi* and its growth promotional effect *Brazilian J. Microbiol.* **48** 294–304

[20] Cherchali A, Boukhelata N, Kaci Y, Abrous Belbachir O and Djebbar R 2019 Isolation and identification of a phosphate-solubilizing *Paenibacillus polymyxa* strain GOL 0202 from durum wheat (*Triticum durum* Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters *Biocatal. Agric. Biotechnol.* **19** 101087

[21] Pande A, Pandey P, Mehra S, Singh M and Kaushik S 2017 Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize *J. Genet. Eng. Biotechnol.* **15** 379–91

[22] Kaur G and Reddy M S 2015 Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics *Pedosphere* **25** 428–37

[23] Stephen J, Shabanamol S, Rishad K S and Jisha M S 2015 Growth enhancement of rice (*Oryza sativa*) by phosphate solubilizing *Glucanacetobacter* sp. (MTCC 8368) and *Burkholderia* sp. (MTCC 8369) under greenhouse conditions *3 Biotech* **5** 831–7

[24] Zhang T, Hu F and Ma L 2019 Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth *Open Life Sci.* **14** 246–54

[25] Swe A, Jeewon R, Pointing S B and Hyde K D 2009 Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats *Biodivers. Conserv.* **18** 1695–714

[26] Susew T, Schroth M and Isaka M 1982 Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining *Am. Phytopathol. Soc. Sci.* **72** 917–8

[27] Verma D K and Srivastav P P 2017 Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice *Rice Sci.* **24** 21–31

[28] Fu S F, Sun P F, Lu H Y, Wei J Y, Xiao H S, Fang W T, Cheng B Y and Chou J Y 2016 Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of *Drosera spatulata* Lab. *Fungal Biol.* **120** 433–48

[29] Paul D and Sinha S N 2016 Isolation and characterization of phosphate solubilizing bacterium *Pseudomonas aeruginosa* KUPSB12 with antibacterial potential from river Ganga, India *Ann. Agrar. Sci.* **15** 130–6

[30] Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, Nasir I A and Husnain T 2017 Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice *Biocatal. Agric. Biotechnol.* **11** 312–21

[31] Masniawaty, Mustari K, Astuti, Gusmiaty, Larekeng H, Yani A and Rahim I 2019 Exploration of bacteria associated with chili peppers’ rhizosphere and their capacity to absorb and produce gibberelin hormone *IOP Conf. Ser. Earth Environ. Sci.* **343** 012059

[32] Batool S and Iqbal A 2018 Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of *Triticum aestivum* (Var. Galaxy 2013) *Saudi J. Biol. Sci.*