Introduction

Infectious viral diseases, both emerging and re-emerging, pose a continuous health threat and disease burden to humans. Many important human pathogens are zoonotic or originated as zoonoses before adapting to humans [1–4]. This is exemplified by recently emerged diseases in which mortality ranged from a few hundred people due to infection with H5N1 avian influenza A virus to millions of HIV-infected people from acquired immunodeficiency syndrome [5–8]. Severe acute respiratory syndrome (SARS) coronavirus and the pandemic influenza A/H1N1(2009) virus in humans were linked to transmission from animal to human hosts as well and have highlighted this problem [9–11]. An ongoing systematic global effort to monitor for emerging and re-emerging pathogens in animals, especially those in key reservoir species that have previously shown to represent an imminent health threat to humans, is crucial in countering the potential public health threat caused by these viruses.

Relatively few studies have been conducted on diseases of non-domestic carnivores, especially regarding diseases of small carnivores (e.g. mustelids). Ferrets (Mustela putorius furo) can carry bacteria and parasites such as Campylobacter, Giardia, and Cryptosporidium in their intestinal tract and potentially spread them to people [12,13]. In addition, they can transmit influenza A virus to humans and possibly on rare occasions rabies virus as well [14–16]. Because of their susceptibility to several human respiratory viruses, including human and avian influenza viruses, SARS coronavirus, nipah virus, and morbilliviruses [17–21], ferrets have been used as small animal model for these viruses. To further characterize this important animal model and to obtain epidemiological baseline information about pathogens in ferrets, the fecal viral flora of ferrets was studied using a metagenomics approach. Both known and new viruses were identified.

Materials and Methods

Clinical specimens

Rectal swabs were collected from 39 ferrets (Mustela putorius furo) in the Netherlands and Sweden and stored at −80°C (Table 1) from 2010–2012. The first cohort consisted of rectal swabs from ferrets from a farm in The Netherlands in 2010 (n = 12). The second cohort consisted of rectal swabs from ferrets (Sweden) that were used in an experimental procedure that consisted of 3 weeks of immunosuppression [22] gathered in March 2012 (n = 12). The third cohort were rectal swabs from household ferrets (the Netherlands) with (n = 3) or without (n = 12) diarrhea gathered in 2010. This study was carried out in strict accordance with European guidelines (EU directive on animal testing 86/609/EEC) and Dutch legislation (Experiments on Animals Act, 1997). In compliance with relevant laws and institutional guidelines, no ethical approval is required for most of the samples in this study, because live animals were not primarily and purposefully sampled to obtain material for scientific purposes, but for health care purposes, such as surveillance of viruses that could cause underlying ferret disease. Some of the samples from the ferrets in this study were obtained under ethical approval by the independent animal experimentation ethical review committee of the Netherlands Vaccine Institute [permit number 2011D0286] in compliance with relevant laws and institutional guidelines. All efforts were made to minimize animal suffering and the owners of the ferrets gave permission for their animals to be used in this study.
Table 1. Summary of mammalian viruses found in ferret fecal material.

Ferret Housing	Total no. reads	Eukaryotic viruses (No. of reads)	Virus in-depth	Taqman
1 Farm NL	3981	Picobirnavirus (2)		
2 Farm NL	10149	Papillomavirus (3)		
3 Farm NL	5186	Coronavirus (17)		
		Picobirnavirus (10)		
		Kobuvirus (75)		
4 Farm NL	8919	Torque teno virus (3)		
5 Farm NL	71706			
6 Farm NL	7710			
7 Farm NL	7344			
8 Farm NL	7686	Aleutian mink disease virus (2)		
9 Farm NL	9576			
10 Farm NL	7702	Aleutian mink disease virus (2)		
11 Farm NL	1149			
12 Farm NL	4351			
13 Farm SE	4947			
14 Farm SE	6560			
15 Farm SE	4632	Coronavirus (116)		
16 Farm SE	5985	Papillomavirus (92)		
17 Farm SE	4766	Papillomavirus (92)	MpvPV1	MpvPV1
18 Farm SE	4728			
19 Farm SE	3641	Coronavirus (19)		
		Kobuvirus (90)		
20 Farm SE	5627	Kobuvirus (11)		
21 Farm SE	6091	Coronavirus (43)		
		Torque teno virus (48)		
22 Farm SE	3422			
23 Farm SE	706			
24 Farm SE	3099	Coronavirus (22)		
25 Household	6249			
26 Household	7745	Astrovirus (636)		
		Coronavirus (13)		
		Picobirnavirus (3)		
27 Household	10002			
28 Household	13634			
29 Household	4298			
30 Household	4886	Picobirnavirus (9)		
		Polymavirus (3)		
31 Household	8959			
32 Household	8369	Kobuvirus (4280)	MpvPV1	MpvPV1
			Polymavirus (2)	
33 Household	8459	Herpesvirus (2)		
		Kobuvirus (2039)		
		Hepevirus (562)		
		Coronavirus (35)		
34 Household	7116			
35 Household	1167	Hepevirus (898)		
36 Household	9539	Kobuvirus (50)		
		Parechovirus (71)		
37 Household	5069	Astrovirus (1464)		
Sequence-independent RNA and DNA virus screening of ferret rectal swabs

Large scale molecular virus screening, based on host nucleic acid depletion, viral nucleic acid isolation, sequence-independent amplification and next generation sequencing with a 454 GS Junior Instrument (Roche) was performed as described previously and by the manufacturer [23–26] on 39 rectal swabs from ferrets. More than 253,000 trimmed reads were assembled using de novo assembly in CLC Genomics Workbench 4.5.1 (CLC Bio; [27]) and analyzed according to nucleotide (contigs and singletons) and translated nucleotide BLAST searches (contigs) [28]. Sequences were classified into eukaryotic viruses, phages, bacteria, and eukaryotes based on the taxonomic origin of the best-hit sequence using MEGAN 4.40 [29,30]. E values of 0.001 and 10^{-10} were used as the cutoff value of significant virus hits for BLASTn and BLASTx, respectively.

PCR amplification and Sanger sequencing

Sequence information obtained from the large scale molecular virus screening using next-generation sequencing was used to design specific primers for amplification of the papillomavirus genome MpPV1 using AmpliTaq Gold DNA polymerase (Roche), according to instructions of the manufacturer to confirm and/or extend 454-sequence reads. Primer sequences are available on request. Products were sequenced as described previously [26]. A diagnostic MpPV1 real time PCR was developed, using primers and probe VS736 (5′-ATGTGTGACATTGGCTTTGGA-3′), VS738 (5′-CTGCAATATGACTGCTCTCGC-3′), and VS737 (5′-FAM-CTAGAGCTGAGGTTCCTATAG-TAMRA-3′) that target the L1 genome region (KF006988) and TaqMan® Fast Virus 1-Step Master Mix (Applied Biosystems) according to instructions of the manufacturer. In addition, diagnostic ferret kobu- and parechovirus real time RT-PCRs were developed, using primers and probes VS730 (5′-CCTCCAGCTCCGCTGGCTCAATTAACAGGCT-3′), VS732 (5′-CACTCCTGCATCCATTAGT-3′), and VS731 (5′-FAM- CCACCTCTCTCCTGGCAGACCTTTCTAG-TAMRA-3′) that target the L1 genome region of ferret kobuvirus (KF006985) and TaqMan® Fast Virus 1-Step Master Mix (Applied Biosystems) according to instructions of the manufacturer. Similarly, a diagnostic ferret hepatitis E virus real time RT-PCR was used, using primers and probe VS739 (5′-AA-
GATGCCTTTTGTTCTCCTTGCT-3', VS740 (5'-CCGGAGCCCTCCCTGA-3'), and VS741 (5'-FAM-TGCTCGCCCGCCCGATGTACC-TAMRA-3') that target the ORF2/3 genome region of ferret hepatitis E virus (JN998606). A diagnostic ferret coronavirus real time RT-PCR was used with primers and probe as described previously (22).
Phylogenetic analysis

Multiple alignments were created using ClustalX (2.0.10) [31]. Phylogenetic analyses were carried out with Molecular Evolutionary Genetics Analysis (MEGA), version 5 [32]. Picornavirus cleavage sites were predicted by NetPicoRNA 1.0 server (http://www.cbs.dtu.dk/services/NetPicoRNA/) or predicted based on alignments with other picornaviruses. The similarity between different picornaviruses was measured using Simplot version 3.5.1 with the Kimura-2 parameter, a transition/transversion (Ts/Tv) ratio of 3.0 and window and step sizes of 600 and 20 nucleotides, respectively [33].

Genbank accession numbers

The genomes of identified viruses described in detail here were deposited in GenBank under the following accession numbers: ferret kobuviruses MpKoV38, KF006985; MpKoV32, KF006987; MpKoV39, KF006986; ferret parechovirus (MpPeV1), KF006989; ferret papillomavirus (MpPV1), KF006988; ferret anellovirus (MpfTTV1), KF006990.

Table 2. Pairwise amino acid identity in the P1, P2, and P3 regions between ferret kobuvirus 38 (MpKoV38; KF006985) and bovine kobuvirus (BKoV; AB084788), human aichivirus (AIV; FJ890523), porcine kobuvirus (PKoV; GU292559), and klassevirus (Klasse; GQ184145).

Region and virus	BKoV	AIV	PKoV	Klasse
P1				
MpKoV38	80.8	52.1	63.2	41.7
BKoV	52.2	63.1	41.7	
AIV	56.2	44.2		
PKoV		41.9		
P2				
MpKoV38	83.3	62.7	70.4	36.0
BKoV	62.4	72.0	35.5	
AIV	63.7	34.2		
PKoV		35.4		
P3				
MpKoV38	89.5	63.8	72.3	42.8
BKoV	64.5	74.0	42.5	
AIV	66.0	45.0		
PKoV		43.3		

doi:10.1371/journal.pone.0071595.t002

Table 3. Pairwise amino acid identity in the polyprotein P1, P2, and P3 regions between different parechovirus species.

Region and virus	HPeV1	HPeV2	Ljungan
P1			
MpPeV1	40.1	40.3	43.1
HPeV1	79.3	50.5	
HPeV2	50.4		
P2			
MpPeV1	40.6	40.1	46.2
HPeV1	94.9	47.7	
HPeV2	48.8		
P3			
MpPeV1	37.5	37.5	40.0
HPeV1	93.6	46.3	
HPeV2	46.6		

Different parechovirus HPeV1 (JX575746), HPeV2 (AF055846), Ljungan (NC_003976), MpPeV1 (KF006989).

doi:10.1371/journal.pone.0071595.t003

Figure 3. Genome organization and phylogenetic analysis of ferret parechovirus. (A) Predicted genome organization of ferret parechovirus showing amino acid positions of predicted cleavage sites in the polyprotein (numbering based on the ferret parechovirus polyprotein sequence). Sites were predicted by NetPicoRNA analysis and by alignment with other parechoviruses. (B) A phylogenetic tree of the polyprotein sequence of ferret parechovirus (MpPeV1) and representative human (HPeV1-8) and bank vole parechoviruses (Ljungan virus) was generated using MEGAS, with the neighbor-joining method with p-distance and 1,000 bootstrap replicates and human rhinovirus A 86 as an outgroup (HRV-A 86). Significant bootstrap values are shown. Genbank accession numbers are shown in Table S1.

doi:10.1371/journal.pone.0071595.g003
Results

Large scale molecular virus screening was performed on 39 rectal swabs from ferrets (Mustela putorius furo). More than 253,000 trimmed sequence reads were generated and the sequences from each animal were assembled de novo. Sequences were classified into eukaryotic viruses, phages, bacteria, and eukaryotes based on the taxonomic origin of the best hit sequence. Many of the identified sequences were of eukaryotic or bacterial origin, and a large proportion of the total reads did not have any significant hits for nucleotide or amino acid sequences in GenBank in agreement with viral metagenomic studies of feces from bats, turkeys, rodents, pine marten, and humans [25,34–36]. Fecal samples of ferrets revealed a large degree of microbial diversity.

Virome overview

Almost all samples showed evidence for the presence of bacteriophages from the order Caudovirales and/or family Microviridae. In seven rectal swabs, evidence for a number of different avian viruses, among which chicken anemia virus, chicken astrovirus, chicken parvovirus, turkey hepatitis virus, fowl adenovirus, and turkey parvovirus. Six of these animals were bred on a farm and one animal was a household pet. These avian viruses may originate from the ferrets’ diet (they were fed chicken) and do not represent genuine enteric infections in the ferrets. Eukaryotic viruses with relatively high homology (85–100% on the amino acid level) to ferret coronavirus [(37); family Coronavirusae], ferret hepatitis E virus [(38); family Hepeviridae], and Aleutian mink disease virus [(39); family Parvoviridae], were detected (Table 1). The species demarcation criteria are not strongly defined for Coronavirusae and Hepeviridae, but based on host range and genetic similarity they should qualify as the same species as ferret coronavirus and ferret hepatitis E virus. The presence of corona- and hepeviruses was confirmed by real time PCR assays (Table 1). Of note, ferret hepatitis E virus sequences were only detected in household ferrets, whereas coronaviruses were found both in household as well as farm ferrets, (Fig. 1; Table 1). A near complete and a partial genome of an astrovirus (family Astroviridae) were obtained from ferrets 37 and 26 respectively with ~95% identity on the nucleotide level to murine astrovirus STL1 that was recently described (Table 1) [39,40]. In addition, a number of ferret viruses with homology to torque teno virus (family Anelloviridae), picobirnavirus (family Picobirnaviridae), kobu- and parechovirus (family Picornaviridae), and papillomavirus (family Papillomaviridae) were identified (Table 1). We further characterized some of these novel mammalian viral sequences by full or near full genome sequencing and compared them to their closest relatives by phylogenetic analyses.

Ferret kobovirus

Kobovirus is a viral genus belonging to the family Picornaviridae. The genus is composed of three species, called Aichivirus A, B, and C. Aichiviruses A, B, and C have been found in humans [41], cows [42], and pigs [43], respectively. More recently, kobuviruses from Canyon mouse (Peromyscus crinitus) [44], dogs (Canis lupus familiaris) [45,46] and sheep [47] have been identified. This virus may be associated with diarrhea [48]. Kobuviruses are small, nonenveloped viruses with a single stranded positive sense RNA genome of ~8 kb. The genome encodes a single polyprotein that is cleaved by virus-encoded proteases into the structural and nonstructural proteins [48].

A near-complete kobovirus genome containing the complete coding region was obtained by 454-sequencing from a rectal swab from ferret 38. In addition, two partial polyprotein sequences were

Figure 5. Phylogenetic analysis of ferret anellovirus. A phylogenetic tree of the partial ORF1 nucleotide sequence of ferret torque teno virus (MpfTTV1) and the corresponding region of representative human and animal anelloviruses was generated using MEGAS, with the neighbor-joining method with p-distance and 1,000 bootstrap replicates. Significant bootstrap values are shown. Genbank accession numbers are shown in Table S1.

doi:10.1371/journal.pone.0071595.g005
obtained from rectal swabs of household ferrets 32 and 39. The ferret kobuvirus (MpKoV) from ferret 38 encodes a 2,402-amino-acid polyprotein flanked on each side by untranslated regions (UTRs) (Fig. 2A). Polyprotein cleavage sites were predicted by NetPicoRNA analysis and based on kobuvirus alignments (Fig. 2A). NetPicoRNA predictions were strong for the L/VP0, VP1/2A, 2A/2B, 2B/2C, and 2C/3A, all containing Q/G residues on either side of the predicted site. A Q/S cleavage site between 3C and 3D equivalent to that of aichiviruses was predicted at position 1202–2013 of MpKoV38. Q/H and Q/A cleavage sites in the P1 region were predicted by comparison with aichivirus sites. The 3A/3B and 3B/3C sites were tentatively placed at position 1790 (DQAQ/AAYT) and at position 1820 (VVRQ/SGPS) based on alignments with other kobuviruses.

The genetic relationship of MpKoV38 with other known kobuviruses was assessed by determining the pairwise distance to the corresponding genome regions of other picornaviruses (Table 2; Fig. 2B–E). MpKoV38 showed the greatest sequence identity with bovine and ovine kobuvirus throughout the genome (Table 2; Fig. 2B–E). According to the 9th ICTV Report [49], members of kobuvirus species share greater than 70% amino acid identity in the polyprotein, greater than 70% amino acid identity in P1 genome region, greater than 80% amino acid identity in 2C and 3CD genome regions, and share a common genome organization, suggesting that ferret kobuvirus belongs to aichivirus species B. The diversity of ferret kobuvirus from bovine and ovine kobuviruses, however, was consistently greater than that observed within different isolates of human aichiviruses or different ferret kobuvirus isolates, confirming its identity as a separate type (Fig. 2C–E). No evidence of genetic recombination among ferret KoV or other kobuviruses was observed (Table 2, Fig. 2B–E).

To obtain insight in the prevalence of ferret kobuvirus in ferrets, a ferret kobuvirus-specific real time PCR targeting the 3D/3′NTR region of the kobuvirus genome was performed on the total set of 39 rectal samples. Besides samples 32, 38, and 39, in which ferret kobuvirus was identified, three other rectal samples were positive as well, resulting in an overall prevalence of ~15% (Table 1; Fig. 1). As was observed for ferret hepatitis E virus, ferret kobuvirus is significantly more often detected in household ferrets than in farm ferrets using a real time PCR assay (Fig. 1).

Ferret parechovirus

Parechovirus is a viral genus in the family *Picornaviridae*. The genus is composed of two species, human parechovirus and Ljungan virus from bank voles. Parechoviruses are small, non-enveloped viruses with a single stranded positive sense RNA genome of ~7.5 kb. The genome encodes a single polyprotein that is cleaved by virus-encoded proteases into the structural and nonstructural proteins. Human parechoviruses are widely spread infectious pathogens that are associated with mild gastroenteritis, respiratory disease, flaccid paralysis, encephalitis, and myocarditis in young children [50–53].

A near-complete parechovirus genome containing the complete coding region was obtained by 454-sequencing from a rectal swab from household ferret 36 without diarrhea. The ferret parechovirus from ferret 36 (MpPeV1) encodes a 2,207-amino-acid polyprotein flanked on each side by untranslated regions (UTRs) (Fig. 3A). Cleavage sites were predicted by NetPicoRNA analysis and alignments with other parechoviruses (Fig. 3A). The pairwise identity of the MpPeV1 polyprotein with the corresponding genome regions of other parechoviruses was assessed (Table 3; Fig. 3B). The *Parechovirus* Study Group of ICTV determined that members of a species of the parechovirus genus share greater than 70% amino acid identity in the polyprotein, and share a natural host range and genome organization. Members of a picornavirus genus should normally share phylogenetically related P1, P2 and P3 genome regions, each sharing >40%, >40% and >50% amino acid identity, respectively [49]. MpPeV1 has a typical parechovirus genome organization (Fig. 2A), but shares less than 43% identity on the amino acid level in the entire polyprotein compared to human parechoviruses and Ljungan virus (Table 3) and has been identified in a host different from bank vole and human and thus MpPeV1 constitutes a new species in the genus parechovirus, and may even represent the first species in a new genus in the *Picornaviridae* family.

To obtain insight in the prevalence of MpPeV1 in ferrets, a MpPeV1-specific real time PCR targeting the 3D region of the parechovirus genome was performed on the total set of rectal samples from 39 ferrets. Besides the sample in which MpPeV1 was identified, no samples were positive (Table 1).

Ferret papillomavirus

Papillomaviruses (PVs) are a highly diverse family of viruses with double stranded circular DNA genomes of ~8 kb in size. They infect a wide variety of mammals, as well as birds and reptiles, and are highly species specific. Some papillomaviruses cause benign or malignant epithelial tumors of the skin and mucous membranes in their natural hosts [54].

A full-length papillomavirus genome sequence was amplified and sequenced from a rectal swab of ferret 17, to complete and/or confirm the findings by next-generation sequencing. The circular genome organization of the ferret papillomavirus (MpPV1) was typical for papillomaviruses, consisting of a long control region (LCR), and early (E6, E7, E1, E2, E4) and late regions (L1, L2) (Fig. 4A). Whole genome sequence alignments revealed that the most closely related papillomavirus to MpPV1 was canine papillomavirus 2 (60% identity) from the genus *Taupapillomavirus* (Fig. 4B). Papillomaviruses are classified based on nucleotide sequence identity in the L1 ORF and their biological and pathological properties [54,55]. A papillomavirus strain is a new type if the complete genome has been sequenced and the L1 ORF shares less than 90% homology with the closest known papillomavirus type [54,55]. L1 is the most conserved region among papillomaviruses and according to the current genus classification, most papillomaviruses types within a genus share more than 60% nucleotide identity in L1. Based on these criteria, MpPV1 could be designated as a new papillomavirus type in the genus *Taupapillomavirus* (Fig. 4C), as MpPV1 L1 shares 68.2% nucleotide identity to canine papillomavirus 2.

To obtain insight in the prevalence of MpPV1 in ferrets, a MpPV1-specific real time PCR targeting the L1 region of the papillomavirus genome was performed on the total set of 39 rectal samples. Besides the sample in which MpPV1 was identified, no samples were positive for MpPV1 (Table 1).

Ferret anellovirus

The partial anellovirus genome sequence from sample 21 was designated MpTTV1 for *Mustela putorius furo* torque teno virus 1. This sequence encodes for a partial open reading frame 1 (ORF1) as determined by alignment with ORF1 amino acid sequences from representative torque teno viruses. A taxonomic proposal submitted to the International Committee on the Taxonomy of Viruses (ICTV) by the *Anelloviridae-Circoviridae* Study Group proposes that genera in the family *Anelloviridae* be defined as having >56% divergence in the nucleotide sequence of ORF1 [56]. Divergence analysis using p-distance calculated with MEGA5 [32] demonstrated that the partial ORF1 nucleotide sequence of anellovirus MpTTV1 was in general >56% divergent.
on the nucleotide level from anelloviruses identified in wildlife, with the exception of MpfTTV1 (~50%) (data not shown). Neighbor-joining phylogenetic trees were generated using the partial ORF1 nucleotide alignments, which underlined the nucleotide divergence analysis (Fig. 5). Our data therefore suggest that the torque teno virus species identified in ferrets belongs to the genus Xitorquevirus.

Discussion

Previously, virus discovery in animals has focused on pathogenic infections or on animals that on the basis of relevance to (re-)emerging viruses are thought to represent a key risk host for emerging virus-associated disease in humans [57]. With the recent advances in the metagenomics field, a substantial increase in studies looking at virus epidemiological baseline levels in different (wildlife) animals has been observed [25,36,46,57–68]. Even though ferrets are a very important animal model for a number of human viral infections, not much is known about viruses that naturally occur in ferrets [17–21]. This study describes the viral communities in fecal material of ferrets (*M. putorius furo*).

Sequences closely related to known viral sequences were identified, with homology to ferret coronavirus, ferret hepatitis E virus, Aleutian mink disease virus, different avian viruses and murine astrovirus STTL [37,38,40]. The avian viruses may be a reflection of the diet of these ferrets, which were fed chicken. It is of note that both the viral screening with random amplification and next-generation sequencing and a specific ferret hepatitis E virus tagman assay indicated that household ferrets that are kept as pets are significantly more likely to excrete ferret hepatitis E virus in their fecal material than farm animals in this study. Such a correlation was not observed for ferret coronavirus excretion for which prevalence in both cohorts seemed similar, but not as high as previously reported [37]. Sporadic cases of human hepatitis E virus infections seem to be increasing and several observations suggest that these cases are caused by zoonotic spread of infection from wild or domestic animals [69–71]. Follow-up studies into seroprevalence and/or virus prevalence in household ferrets, their owners, and possibly other pets may provide indications for cross species transmission.

We report on the first identification of a kobuvirus, parechovirus, papillomavirus and anellovirus in ferrets. The kobu- and parechovirus belong to the family *Picornaviridae* that currently comprises 17 genera and many more different virus species [49]. They infect a wide range of mammals and are well-known for their involvement in gastroenteritis [49]. Our phylogenetic analysis revealed that the ferret kobuvirus clustered with bovine and ovine kobuvirus in species Aichivirus B. The close relationship between bovine, ovine, and ferret kobuviruses may indicate past cross species transmission events and subsequent evolution in the separate host species resulting in the distinct types seen today. As was observed for ferret hepatitis E virus but not ferret coronavirus, ferret kobuvirus is significantly more often detected in household ferrets than in farm ferrets by a specific ferret kobuvirus tagman assay, although random amplification and next-generation sequencing suggested the presence of kobuvirus in two additional samples from farm ferrets, which could reflect the presence of another divergent kobuvirus species. Also here follow-up studies into seroprevalence and/or virus prevalence in household ferrets, their owners, and possibly other pets should be performed. An overall kobuvirus prevalence of ~15% was observed in this study. Two out of 3 animals (67%) with diarrhea and 4 animals out of 36 (11%) without diarrhea were positive by tagman for ferret kobuvirus. Because of the small sample size and the fact that other causes for diarrhea were not excluded, further in depth studies are needed to show that these viruses can cause diarrhea in ferrets.

The ferret parechovirus is the third parechovirus species identified to date. It is highly divergent from human parechovirus and Ljungan virus and may even constitute a new genus in the family *Picornaviridae* based on the observed sequence diversity. Interestingly, the P3 genome region of MpPeV1, encoding the nonstructural proteins NSSA–3D, is not more conserved than the P1 genome region, encoding the structural capsid proteins, when compared to the corresponding regions of human parechoviruses 1 and 2. This has been observed for Ljungan virus as well by us and others [72] and requires more in-depth studies. Only 1 out of 39 ferrets was positive for MpPeV1, suggesting that the ferret parechovirus prevalence may be relatively low (<2.5%). In humans, parechovirus infections are most common in young children and the prevalence in adults may be low as well [73]. It is of note that the parechovirus-positive animal did not show any signs of gastroenteritis. Low virus prevalence was observed for the identified ferret papillomavirus as well. Papillomaviruses are, however, not typically detected in fecal material or associated with gastroenteritis like parechoviruses. Although recently a full-length papillomavirus genome was characterized from fecal material of a deer mouse as well [36]. Not much knowledge exists on papillomatosis in ferrets as a disease, or the virus(es) causing them. The impact of papillomavirus infections on ferrets in general and the specific role of MpPV1 thus has to be further addressed.

Like many other mammals, it seems that ferrets also harbor anelloviruses. The ferret anellovirus MpfTTV1 is most closely related to the recently identified anellovirus from pine marten [25]. Based on phylogenetic analysis, we propose that MpfTTV1 should be placed in the proposed new anellovirus genus, *Xitorquevirus*, in analogy to the classification of torque teno viruses in nine genera named Alpha-, Beta-, Gamma-, Delta-, Epsilon-, Eta-, Iota-, Theta-, and Zetatorquevirus, and the proposed five genera Kappa-, Lambda-, Mu-, Nu-, and Xisorquevirus [25,56,74]. A closely related virus to MpfTTV1 seemed to be present in one other ferret (Table 1) besides ferret 21, resulting in a virus prevalence of ~5% in this study. Anelloviruses do not generally seem to be as abundant present in fecal material as in serum, as evidenced by fecal virome studies in different host species [25,35,44,46,56,58,59,66].

Ferrets are carnivores that are significantly affected by a number of human pathogens and hence are widely used as a small animal model for viral infections [17–21]. In addition, they are capable of spreading viral infections to humans, among which influenza A virus and on rare occasions rabies virus [14–16]. The characterization of the fecal virome of ferrets provides epidemiological baseline information about pathogens which allows the swift identification of possible sources of future zoonotic infections and their subsequent control. Especially the seemingly interesting correlation between certain viral infections in ferrets and their presence in human households as pets needs to be further addressed. In addition, this study shows that ferrets can be infected with a wide range of different viruses, some of which may influence the outcome in experimental virus infection studies, thus delivering a strong argument in favor of development of specific pathogen-free ferret colonies.

Supporting Information

Table S1 GenBank accession numbers of representative parecho-, papilloma-, and anellovirus strains.

(DOC)
References

1. Kuiken T, Leighton FA, Murphy-Corb M, Perrelli JS, et al. (2005) Public health. Pathogen surveillance in animals. Science 309: 1680–1681. 309/5741/309.1680 [pii];10.1126/science.1113310 [doi].

2. Taylor LH, Nahum SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356: 983–989. 10.1098/rstb.2001.0880 [doi].

3. Woolhouse ME, Gowtage-Sequeria S (2005) Host range and emerging and re-emerging infections. J Clin Microbiol 43: 2543–2550. 2543–2550 [pii];10.1128/JCM.43.7.2543-2550.2005 [doi].

4. Osterhaus A (2001) Catastrophes after crossing species barriers. Philos Trans R Soc Lond B Biol Sci 356: 791–793. 10.1098/rstb.2001.0856 [doi].

5. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, et al. (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397: 436–441. 10.1038/17130 [doi].

6. Hirsch VM, Olmsted RA, Murphy-Corb M, Purcell RH, Johnson PR (1989) An African 1990 pandemic (Mv) HIV-1 closely related to HIV-2. Nature 341: 389–392. 341/6258/341.389 [pii];10.1038/341389a0 [doi].

7. Osterhaus A (2001) Pathogenesis of species jumps. Trends Ecol Evol 26: 238–244. 10.1016/j.tree.2000.09.009 [doi].

8. Osterhaus A, Mink J, Munecke U, Jordan W, Stohrer M, et al. (1995) Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol Evol 20: 682–687. 10.1016/0169-5347(95)80037-1 [pii];10.1016/0169-5347(95)80037-1 [doi].

9. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, et al. (2003) Virology: SARS virus infection of cats and ferrets. Nature 425: 915. 10.1038/425916a [doi].

10. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, et al. (2005) Cross-host identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 98: 12891–12896. 10.1073/pnas.050466198 [pii];10.1073/pnas.050466198 [doi].

11. Smith SG, Gijsbers MC, van den Brand JM, van Leeuwen M, van den Brand JM, et al. (2010) Human picobirnaviruses identified by molecular screening of diarrhea samples. J Clin Microbiol 48: 1787–1794. 10.1128/JCM.02452-09 [doi].

12. Abe N, Read C, Thompson RC, Iseki M (2005) Zoonotic genotype of Giardia duodenalis in the United States and Europe. J Clin Microbiol 43: 479–487. 10.1128/JCM.43.2.479-487.2005 [doi].

13. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (Mega) software version 4.0. Mol Biol Evol 24: 1596–1599. mm0992 [pii];10.1093/molbev/msm099 [doi].

14. Lole KS, Bollinger RG, Paranjape RS, Gadkari D, Kulkarni SS, et al. (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intertype recombination. J Virol 73: 152–160.

15. Niedrig M, ten Berge JWG, van der Hoek L, et al. (2003) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 100: 2430–2435. 10.1073/pnas.0409608102 [pii];10.1073/pnas.0409608102 [doi].

16. Marini RP, Adkins JA, Fox JG (1989) Proven or potential zoonotic diseases of domestic animals. Comp Med 53: 579–604.

17. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, et al. (2009) A ferret model of acute nipah virus infection. PLoS Pathog 5: e1000642. 10.1371/journal.ppat.1000642.

18. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, et al. (2003) Virology: SARS virus infection of cats and ferrets. Proc Natl Acad Sci U S A 100: 2430–2435. 10.1073/pnas.0409608102 [pii];10.1073/pnas.0409608102 [doi].

19. van den Brand JM, van Leeuwen M, van den Brand JM, et al. (2010) Concurrent 2009 pandemic influenza A (H1N1) virus infection in ferrets and in humans. Proc Natl Acad Sci U S A 107: 1842–1847.

20. van Leeuwen M, Williams MM, Koraka P, Simon JH, Smits SL, et al. (2010) Human parvoviruses identified by molecular screening of diarrhea samples. J Clin Microbiol 48: 1787–1794. 10.1128/JCM.02452-09 [doi].

21. Zitzow LA, Rowe T, Morken T, Shieh WJ, Zaki S, et al. (2002) Pathogenesis of SARS Coronaviruses in Ferrets. J Virol 76: 12068–12071. 12068–12071 [pii];10.1128/JVI.76.23.12068-12071.2002 [doi].

22. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, et al. (2003) Virology: SARS virus infection of cats and ferrets. Nature 425: 415–419. 10.1038/nature02110 [doi].

23. van den Brand JM, van Leeuwen M, van den Brand JM, et al. (2010) Concurrent 2009 pandemic influenza A (H1N1) virus infection in ferrets and in humans. Proc Natl Acad Sci U S A 107: 1842–1847.

24. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, et al. (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A 102: 12891–12896. 10.1073/pnas.0504661102 [pii];10.1073/pnas.0504661102 [doi].

Acknowledgments

Dr. A.D.M.E. Osterhaus and Dr. S.L. Smits are part time chief scientific officer and senior scientist respectively of Virotech Bioscience B.V.

Author Contributions

Conceived and designed the experiments: SLS VJS ADMEO KJS. Contributed reagents/materials/analysis tools: KJS. Wrote the paper: SLS Smits.

New Viruses in Ferrets
48. Reuter G, Beros A, Pankovics P (2011) Kobuviruses – a comprehensive review. Rev Med Virol 21: 32–41. 10.1002/rmv.677 [doi].

49. Knowles NJ, Hovi T, Hyspa T, King AMQ, Lindberg AM, et al. (2012) Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier. 855–880.

50. Bozin G, Abed Y, Boucher FD (2005) Human parechovirus 3 and neonatal infections. Emerg Infect Dis 11: 103–105. 10.3201/eid1101.040606 [doi].

51. Harvala H, Robertson I, McWilliam Leitch EC, Benschop K, et al. (2008) Epidemiology and clinical associations of human parechovirus respiratory infections. J Clin Microbiol 46: 3446–3453. JCM.01207-08 [pii];10.1128/JCM.01207-08 [doi].

52. Levron RE, Jantausch BA, Wiedermann BL, Spiegel HM, Campos JM (2009) Human anelloviruses and the central nervous system. Rev Med Virol 20: 392–407. 10.1002/rmv.668 [doi].

53. Verboon-Maciolek MA, Groenendaal F, Hahn CD, Hellmann J, van Loon AM, et al. (2008) Human parechovirus causes encephalitis with white matter injury in neonates. Ann Neurol 64: 266–273. 10.1002/ana.21445 [doi].

54. de Villers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. (2004) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 324: 17–27. 10.1016/j.virol.2004.03.033 [doi]; S004268220400220X [pii].

55. Bernard HU, Burk RD, Chen Z, Van DK, Hausen H, et al. (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 324: 17–27. 10.1016/j.virol.2004.03.033 [doi]; S004268220400220X [pii].

56. Maggi F, Bendinelli M (2010) Human anelloviruses and the central nervous system. Rev Med Virol 20: 392–407. 10.1002/rmv.668 [doi].

57. Mokili JL, Rohwer F, Duttilleul P (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2: 63–77. S1879-6257(11)00190-8 [pii];10.1016/j.co.viro.2011.12.004 [doi].

58. Ge X, Li Y, Yang X, Zhang H, Zhou P, et al. (2012) Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol 86: 4620–4630. JVI.06671-11 [pii];10.1128/JVI.06671-11 [doi].

59. Li L, Shan T, Wang C, Moeser A, et al. (2011) The fecal virome of California sea lions. J Virol 86: 4620–4630. JVI.06671-11 [pii];10.1128/JVI.06671-11 [doi].

60. Li L, Pesavento PA, Woods L, Clifford DL, Lu/f J, et al. (2011) Novel amdovirus in gray foxes. Emerg Infect Dis 17: 1876–1876. 10.3201/eid1710.110233 [doi].

61. Li L, Peasavento PA, Woods L, Clifford DL, Lu/f J, et al. (2011) Novel amdovirus in gray foxes. Emerg Infect Dis 17: 1876–1876. 10.3201/eid1710.110233 [doi].

62. Lipkin WI (2010) Microbe hunting. Microbiol Mol Biol Rev 74: 363–377. 74/3/363 [pii];10.1128/MMBR.00070-10 [doi].

63. Li L, Kapoor A, Sasai K, Bamilde OS, Wang C, et al. (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84: 1674–1682. JVI.02109-09 [pii];10.1128/JVI.02109-09 [doi].