RESEARCH ARTICLE

H. M. Barakat

The maximal correlation for the generalized order statistics and dual generalized order statistics

Received: 16 April 2011 / Accepted: 3 October 2011 / Published online: 11 April 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract In each of three exhaustive and distinct cases, it is found a distribution for which the correlation coefficient between the elements of the generalized order statistics (gos) is maximal. The corresponding result for the dual generalized order statistics (dgos) is derived for other three different distributions. Moreover, some interesting relations for the regression curves between the elements of gos and dgos based on these distributions are obtained. As a consequence of this result, a non-parametric criterion of independence between gos and between dgos in a general setting is derived.

Mathematics Subject Classification (2010) 60F05 · 62E20 · 62E15 · 62G30

1 Introduction

Kamps [9] introduced the concept of the generalized order statistics (gos) as a unification of several models of ascendingly ordered random variables (rvs). It is known that ordinary order statistics (osos), upper record values, sequential order statistics and progressive type II censored order statistics are special cases of gos. Uniform gos $U^r(n) \equiv U(r, n, k, \tilde{m})$, $r = 1, 2, \ldots, n$, are defined by their density function

$$f_{U^r(1)\ldots U^r(n)}(u_1, \ldots, u_n) = \left(\prod_{j=1}^{n} \gamma_j \right) \left(\prod_{j=1}^{n-1} (1-u_j)^{\gamma_j-1} \right) (1-u_n)^{\gamma_n-1}$$

on the cone $\{u_1, \ldots, u_n : 0 \leq u_1 \leq \cdots \leq u_n < 1\} \subset \mathbb{R}^n$, with parameters $\gamma_1, \ldots, \gamma_n > 0$. The parameters $\gamma_1, \ldots, \gamma_n$ are defined by $\gamma_n = k > 0$ and $\gamma_r = k + n - r + M_r$, $r = 1, 2, \ldots, n - 1$, where $M_r = \sum_{j=1}^{n-1} m_j$ and $\tilde{m} = (m_1m_2 \ldots m_{n-1}) \in \mathbb{R}^{n-1}$. gos based on some distribution function (df) F are defined via the quantile

H. M. Barakat (✉)
Department of Mathematics, Faculty of Science, Zagazig University,
Zagazig, Egypt
E-mail: hbarakat2@hotmail.com
transformation $X^*(r) = F^{-1}(U^*(r))$, $r = 1, 2, \ldots, n$. Consequently, $X^*(1) \leq X^*(2) \leq \cdots \leq X^*(n)$ holds almost surely. Burkschat et al. [3] have introduced the concept of dual generalized order statistics (dgos) to enable a common approach to descendingly ordered rvs like reversed order statistics and lower record values. Uniform dgos $U_d^*(r) \equiv U_d(r, n, k, \tilde{m})$, $r = 1, 2, \ldots, n$, are defined by their density function

$$f_{U_d^*(1), \ldots, U_d^*(n)}(u_1, \ldots, u_n) = \left(\prod_{j=1}^{n} y_j \right) \left(\prod_{j=1}^{n-1} u_j^{-y_j} \right) u_n^{n-1}$$

on the cone $\{(u_1, \ldots, u_n) : 1 \leq u_1 \leq \cdots \leq u_n > 0 \} \subset \mathbb{R}^n$. The quantile transformation $X_d^*(r) = F_d^{-1}(U_d^*(r))$, $r = 1, 2, \ldots, n$, yields dgos based on arbitrary df F_d. Therefore, $X_d^*(1), \ldots, X_d^*(n)$ are arranged in descending order almost surely.

Let $B_j, 1 \leq j \leq n$, be independent rvs with respective Beta distribution $Beta(y_j, 1)$, i.e., B_j follows a power function distribution with exponent y_j. The central distribution theoretical result concerning gos and dgos is that they can, respectively, be defined by the product of the independent power function distributed rvs $B_j, 1 \leq j \leq n$ (see Cramer [5] and Burkschat et al. [3]). Namely,

$$X^*(r) \sim F^{-1}\left(1 - \prod_{j=1}^{r} B_j\right), \quad r = 1, 2, \ldots, n,$$ \hspace{1cm} (1.1)

and

$$X_d^*(r) \sim F_d^{-1}\left(\prod_{j=1}^{r} B_j\right), \quad r = 1, 2, \ldots, n.$$ \hspace{1cm} (1.2)

In the classical oos, where $\tilde{m} = (00 \cdots 0)$ and $k = 1$, Terrell [15] proved that, when the sample size $n = 2$, and if the oos $X_{1:2}$ and $X_{2:2}(X_{1:2} \leq X_{2:2})$ have finite variances, then their correlation coefficient satisfies the inequality $\text{corr}(X_{1:2}, X_{2:2}) \leq 1/2$ with equality if, and only if, F is uniformly distributed. Later, by considering the maximum correlation possible between any square-integrable functions of the uniform oos, and using the modified Jacobi polynomial, Székely and Móri [14] have shown that

$$\text{corr}(X_{r:n}, X_{s:n}) \leq \frac{r(n-s+1)}{s(n-r+1)}, \quad 1 \leq r < s \leq n,$$ \hspace{1cm} (1.3)

(here it is supposed that $\text{var}(X_{r:n})$ and $\text{var}(X_{s:n})$ are finite and the sample size can be arbitrary). An interesting alternative proof of (1.3) is given by Rohatgi and Székely [12] (see David and Nagaraja [6]). In this paper, using the method of Rohatgi and Székely [12], we extend the above result to a wide subclass of gos and dgos. Namely, for any $1 \leq r < s \leq n$, we consider the gos $X^*(r)$, $X^*(s)$ and the dgos $X_d^*(r)$, $X_d^*(s)$ for which $m_1 = m_2 = \cdots = m_{s-1} = m$. Moreover, we consider the three exhaustive and distinct cases $m+1 > 0$, $m+1 = 0$ and $m+1 < 0$. Clearly the m-gos and m-dgos, where $m_1 = m_2 = \cdots = m_{s-1} = m$ (see Kamps [9] and Burkschat et al. [3]), are special cases of these subclasses. Using the results of Kamps [9], Cramer [5] and Burkschat et al. [3], we can write explicitly the conditional density functions of $X^*(r)$ given $X^*(s)$, $X_d^*(s)$ given $X^*(r)$, $X_d^*(r)$ given $X^*(s)$ and $X_d^*(s)$ given $X^*(r)$, respectively, as:

$$f^*_{r|s}(x_r|x_s) = f^{X^*(r)|X^*(s)}(x_r|x_s) = \frac{(s-1)!}{(r-1)!(s-r-1)!} \frac{(1 - F(x_r))^m}{g_m^{-1}(F(x_r))g_m^{-1}(F(x_s))}$$

and

$$f^*_{d|r}(x_r|x_s) = f^{X_d^*(r)|X_d^*(s)}(x_r|x_s) = \frac{C_{s-1}}{C_{r-1}(s-r-1)!} \frac{(1 - F(x_r))^{-y_i + m + 1}}{(1 - F(x_s))^{-y_i}}$$

for $0 < x_r < x_s < F^{-1}(1)$.

$$f^*_{d|r}(x_r|x_s) = f^{X_d^*(r)|X_d^*(s)}(x_r|x_s) = \frac{(s-1)!}{(r-1)!(s-r-1)!} \frac{F_d^m(x_r)g_m^{r-1}(1 - F_d(x_r))}{g_m^{r-1}(1 - F_d(x_s))} \frac{[h_m(F(x_r)) - h_m(F(x_s))]^{s-r-1}}{(1 - F(x_r))g_m^{r-1}(1 - F_d(x_r))} f_d(x_r), \quad F_d^{-1}(0) < x_r < x_s < F_d^{-1}(1), \quad (1.5)$$

and

$$g_m^{r-1}(1 - F_d(x_s))[h_m(1 - F_d(x_s)) - h_m(1 - F_d(x_r))]^{s-r-1} f_d(x_r), \quad F_d^{-1}(0) < x_s < F_d^{-1}(1). \quad (1.6)$$
and
\[
f_d^x(x|x_r) = f^{X_d(r)}(X_d(r)|x_r|x_r) = \frac{C_{s-1}}{C_{r-1}(s-r-1)!} F_d^{-\gamma + m + 1}(x_r) F_d^{-\gamma - 1}(x_s)\]

\[h_m(1 - F_d(x_s)) - h_m(1 - F_d(x_r))^\gamma - 1 f_d(x_s), F_d^{-1}(0) < x_s < x_r < F_d^{-1}(1),\]

where
\[
g_m(x) = \begin{cases} \frac{1}{m+1}[1 - (1-x)^{m+1}], & m \neq -1, \\ -\log(1-x), & m = -1, \end{cases}
\]
\[
h_m(x) = \begin{cases} \frac{1}{m+1}(1-x)^{m+1}, & m \neq -1, \\ -\log(1-x), & m = -1, \end{cases}
\]

\[C_{r-1} = \prod_{i=1}^r \gamma_r, r = 1, 2, \ldots, n, \text{ with } \gamma_n = k, f(x) = \frac{\partial F(x)}{\partial x} \text{ and } f_d(x) = \frac{\partial F_d(x)}{\partial x}.
\]

Remark 1.1 For all \(1 \leq r < s \leq n\) and all values of \(m\), it is easy to prove the following relations

(1) \(\gamma_s - \gamma_r = -(s-r)(m+1)\)

(2) \(\frac{C_{r-1}}{C_{s-1}} = \prod_{i=r+1}^s \gamma_i = \frac{(m+1)^{s-r}}{\prod_{j=1}^{r-2}(m+1) + s - r - j, \ m \neq -1, \ m = -1.}
\]

2 The main result

Theorem 2.1 Let \(X^*(1) \leq X^*(2) \leq \cdots \leq X^*(n)\) and \(X^*_1(n) \leq X^*_2(n-1) \leq \cdots \leq X^*_d(1)\) be gos and dgos based on arbitrary continuous df’s \(F\) and \(F_d\), respectively, such that for any \(1 \leq r < s \leq n\) we have \(m_1 = m_2 = \cdots = m_{s-1} = m\). Furthermore, let \(X^*(r), X^*(s), X^*_d(r)\) and \(X^*_d(s)\) have finite variances. Then

\[
corr(X^*(r), X^*(s)) \leq \rho_n(r, s, m, \bar{\gamma}_s) = \frac{A_s(m) \times B_r(m) - A_r(m)}{A_r(m) \times B_s(m) - A_s(m)},
\]

and

\[
corr(X^*_d(r), X^*_d(s)) \leq \rho_n(r, s, m, \bar{\gamma}_s),
\]

where

\[
A_t(m) = \begin{cases} \prod_{i=1}^t \frac{\beta_i}{\beta_i + \beta_t}, & m \neq -1, \\ 1, & m = -1, \end{cases}
\]

\[
B_t(m) = \begin{cases} \prod_{i=1}^t \frac{\beta_i + 1}{\beta_i + 2}, & m \neq -1, \\ 1 + \sum_{j=1}^t \frac{1}{\beta_j}, & m = -1, \end{cases}
\]

\[\beta_j = \frac{\gamma_j}{m+1}, \text{ with } \beta_1 = \frac{\gamma_1}{m+1} < -2, \text{ if } m + 1 < 0, \text{ and } \bar{\gamma}_s = (\gamma_1 \gamma_2 \ldots \gamma_s). \text{ Moreover (2.1) and (2.2) are satisfied with equality if} \]

\[
F(x) = \begin{cases} F_1(x) = 1 - (1-x)^{m+1}, & 0 < x < 1, \text{ if } m + 1 > 0, \\ F_2(x) = 1 - e^{-x}, & 0 < x < \infty, \text{ if } m = -1, \\ F_3(x) = 1 - x^{m+1}, & 1 < x < \infty, \text{ if } m + 1 < 0, \end{cases}
\]

and

\[
F_d(x) = \begin{cases} F_{1d}(x) = x^{m+1}, & 0 < x < 1, \text{ if } m + 1 > 0, \\ F_{2d}(x) = e^x, & -\infty < x < 0, \text{ if } m = -1, \\ F_{3d}(x) = (1-x)^{m+1}, & -\infty < x < 0, \text{ if } m + 1 < 0. \end{cases}
\]
Corollary 2.1 Let \(\mu_i^{r|s}(x_i) = E(X_i^r(r)|X_i^s(s) = x_i) \) be the regression curve of \(X_i^r(r) \) given \(X_i^s(s) \) where \(X_i^r(r) \) and \(X_i^s(s) \) are the dgos based on the df \(F_i(x_i), i = 1, 2, 3 \). Similarly, let \(\mu_i^{|s|}(x_i) = E(X_i^r(r)|X_i^s(s) = x_i) \) be the regression curve of \(X_i^r(r) \) given \(X_i^s(s) \) where \(X_i^r(r) \) and \(X_i^s(s) \) are the dgos based on the df \(F_i(x_i), i = 1, 2, 3 \). Then, we have the following relations:

1. \(\mu_1^{r|s}(x_1) - \mu_1^{|s|}(x_1) = 1 - \frac{s}{r}, \) for all \(0 < x_1 < 1, m + 1 > 0 \).
2. \(\mu_1^{r|s}(x_1) - \mu_1^{r|1}(x_1) = \frac{(s-r)(m+1)}{r} \), for all \(0 < x_1 < 1, m + 1 > 0 \).
3. \(\mu_1^{r|s}(x_1) + \mu_2^{r|s}(x_1) = 0, \) for all \(0 < x_1 < \infty, m = -1 \).
4. \(\mu_2^{r|s}(x_1) + \mu_3^{r|s}(x_1) = 0, \) for all \(0 < x_1 < \infty, m = -1 \).
5. \(\mu_3^{r|s}(x_1) + \mu_3^{d|3}(x_1) = 1 - \frac{s}{r}, \) for all \(1 < x_1 < \infty, m + 1 > 0 \).
6. \(\mu_3^{r|s}(x_1) + \mu_3^{d|3}(x_1) = \frac{(s-r)(m+1)}{r} \), for all \(1 < x_1 < \infty, m + 1 > 0 \).

Proof of Theorem 2.1 Following the method of Rohatgi and Székely [12], we see that the proof of Theorem 2.1 will depend on the Sarmanov [13] result, which states that if \(X \) and \(Y \) are arbitrary rvs with finite variances and \(E(X|Y) \) and \(E(Y|X) \) are both linear, then for any measurable functions \(\phi \) and \(\psi \), for which \(\text{var}(\phi(X)) \) and \(\text{var}(\psi(Y)) \) are finite

\[
\sup_{\phi, \psi} \text{corr}(\phi(X), \psi(Y)) = |\text{corr}(X, Y)|, \quad (2.7)
\]

Therefore, the first step of our proof is to check the regression curves \(\mu_i^{r|s}(x_i), \mu_i^{r|1}(x_i), \mu_i^{r|d}(x_i) \) and \(\mu_i^{r|s}(x_i), i = 1, 2, 3 \). On the other hand, we have \(F_i(X_i^r(r)) = U^*(r), t = 1, 2, 3 \), where \(U^*(1) \leq \cdots \leq U^*(n) \) are the uniform df. Thus, for any m—gos \(X_i^r(r) \) based on an arbitrary continuous df \(F \), we get \(X_i^r(r) = F^{-1}(U_i^*(r)) = F^{-1}(F_i(X_i^r(r))), \) where \(t = 1, 2, 3 \) if \(m > -1, m = -1, m < -1 \), respectively. This means that, for every df \(F \), there exists a function \(\phi_i(x) \) such that \(X_i^r(r) = \phi_i(X_i^r(r)) \) and \(X_i^r(s) = \phi_i(X_i^r(s)), t = 1, 2, 3 \) (e.g., \(\phi_1(x) = F^{-1}(F_1(x)) = F^{-1}(1 - (1 - x)^{1/2}) \) and \(\phi_2(x) = F^{-1}(F_2(x)) = F^{-1}(1 - e^{-x}) \)). Moreover, for the case of the oos and the upper record values which are considered in Rohatgi and Székely [12], we have \(\phi_1(x) = F^{-1}(x) \) and \(\phi_2(x) = F^{-1}(1 - e^{-x}) \), with \(X_i^r(i) = U_{i:n} \) is the \(i \)th uniform oos and \(X_i^r(i) = R_i \) is the \(i \)th upper record value based on the exponential distribution. Thus (2.7) implies that

\[
\text{corr}(X_i^r(r), X_i^r(s)) \leq \text{corr}(X_i^r(r), X_i^r(s)),
\]

where \(t = 1 \) if \(m + 1 > 0, t = 2 \) if \(m + 1 = 0 \) and \(t = 3 \) if \(m + 1 < 0 \). A similar argument proves

\[
\text{corr}(X_i^r(r), X_i^r(s)) \leq \text{corr}(X_i^r(r), X_i^r(s)),
\]

where \(t = 1 \) if \(m + 1 > 0, t = 2 \) if \(m + 1 = 0 \) and \(t = 3 \) if \(m + 1 < 0 \).

Now, if \(m + 1 > 0 \), one can easily verify that

\[
\mu_1^{r|s}(x_1) = \int_{0}^{x_1} x_r f^{r|s}(x_r|x_1)dx_r = \frac{r}{s}x_1,
\]

using (1.4) with \(F_1 \) and the transformation \(x_r = x_1z \),

\[
\mu_1^{r|s}(x_1) = 1 - \int_{x_r}^{1} (1 - x_1)f^{r|s}(x_s|x_r)dx_s = \frac{y_s}{y_s + (s-r)(m+1)}x_r + \frac{(s-r)(m+1)}{y_s + (s-r)(m+1)},
\]

using (1.5) with \(F_1 \), the transformation \(1 - x_s = (1 - x_r)z \) and Remark (1.1),

\[
\mu_1^{r|s}(x_1) = \int_{x_s}^{x_1} x_r f^{r|s}(x_r|x_1)dx_r = \frac{r}{s}x_1 + \left(1 - \frac{r}{s}\right),
\]

(2.10)
using (1.6) with F_{1d} and the transformation $x_r = x_s + (1 - x_s)z$, and
\[
\mu_{1d}^{s|z}(x_r) = \int_{0}^{x_r} x_s f_d^{s|z}(x_s | x_r) dx_s = \frac{\gamma_s}{\gamma_s + (s-r)(m+1)} x_r, \tag{2.11}
\]
using (1.7) with F_{1d}, the transformation $x_s = x_r z$ and Remark (1.1). Similarly, if $m = -1$, we get
\[
\mu_{2d}^{s|z}(x_r) = \int_{0}^{x_r} x_r f_d^{s|z}(x_r | x_s) dx_r = \frac{r}{s} x_s, \tag{2.12}
\]
using (1.4) with F_{2} and the transformation $x_r = x_s z$,
\[
\mu_{2d}^{s|u}(x_r) = x_r + \int_{x_r}^{\infty} (x_s - x_r) f_d^{s|u}(x_s | x_r) dx_s = x_r + \frac{s-r}{\gamma_s}, \tag{2.13}
\]
using (1.5) with F_{2}, the transformation $x_s = x_r + z$ and Remark (1.1),
\[
\mu_{2d}^{s|u}(x_r) = \int_{0}^{x_r} x_r f_d^{s|u}(x_r | x_s) dx_r = \frac{r}{s} x_s, \tag{2.14}
\]
using (1.6) with F_{2d} and the transformation $x_r = x_s z$, and
\[
\mu_{2d}^{s|u}(x_r) = \int_{-\infty}^{x_r} x_s f_d^{s|u}(x_s | x_r) dx_s = x_r - \frac{s-r}{\gamma_s}, \tag{2.15}
\]
using (1.7) with F_{2d}, the transformation $x_s = x_r - z$ and Remark (1.1). Finally, if $m + 1 < 0$, one can easily check that
\[
\mu_{3d}^{s|u}(x_r) = \int_{0}^{x_r} x_r f_d^{s|u}(x_r | x_s) dx_r = \frac{r}{s} x_s + \left(1 - \frac{r}{s}\right), \tag{2.16}
\]
using (1.4) with F_{3} and the transformation $x_r = x_s + (1 - x_s)z$,
\[
\mu_{3d}^{s|u}(x_r) = \int_{0}^{x_r} x_r f_d^{s|u}(x_r | x_s) dx_r = \frac{\gamma_s}{\gamma_s + (s-r)(m+1)} x_r, \tag{2.17}
\]
using (1.5) with F_{3}, the transformation $x_s = \frac{z}{1-z}$ and Remark (1.1),
\[
\mu_{3d}^{s|u}(x_r) = \int_{0}^{x_r} x_r f_d^{s|u}(x_r | x_s) dx_r = \frac{r}{s} x_s, \tag{2.18}
\]
using (1.6) with F_{3d} and the transformation $x_r = x_s z$, and
\[
\mu_{3d}^{s|u}(x_r) = 1 - \int_{-\infty}^{x_r} (1 - x_s) f_d^{s|u}(x_s | x_r) dx_s = \frac{\gamma_s}{\gamma_s + (s-r)(m+1)} x_r + \frac{(s-r)(m+1)}{\gamma_s + (s-r)(m+1)}, \tag{2.19}
\]
using (1.7) with F_{3d}, the transformation $1 - x_s = \frac{1-x_s}{1-z}$ and Remark (1.1).

The relations (2.8)–(2.19) show that all the regression curves $\mu_i^{s|u}(x_s)$, $\mu_i^{s|u}(x_r)$, $\mu_{id}^{s|u}(x_s)$, and $\mu_{id}^{s|u}(x_r)$, $i = 1, 2, 3$, are linear. Finally, the following lemma completes the proof of Theorem 2.1.
Lemma 2.1 For any $1 \leq r < s \leq n$, we have

\[
corr(X^*_r(s), X^*_s(s)) = \frac{A_s(m) - A_r(m)}{B_r(m) - A_r(m)} = \rho_n(r,s,m,\gamma_s),
\]

where $A_t(m)$ and $B_t(m)$ are defined in (2.3) and (2.4), respectively.

Proof We first consider the case $i = 1$, i.e., $F_1(x)$, $F_{1d}(x)$. In this case (1.1) and (1.2) take, respectively, the forms $X^*_1(r) \sim 1 - \prod_{j=1}^r D_j$ and $X^*_1(d) \sim \prod_{j=1}^r D_j$, where $D_j = B_j^{m+1}$, $1 \leq j \leq n$, be independent rvs with respective power function distribution with exponent $\beta_j = \frac{\beta_1}{m+1}$. Therefore, $E(D_j^2) = \frac{\beta_j}{\beta_j + k}$, $k = 1, 2, \ldots$, and $E(X^*_1(r)) = 1 - A_r(m)$, $E(X^*_1(d)) = A_r(m)$. Also, it can be easily shown that $E(X^*_1(r)X^*_1(s)) = 1 - A_r(m) - A_s(m) + \prod_{j=1}^r \frac{\beta_j}{2+\beta_j} \prod_{j=r+1}^s \frac{\beta_j}{1+\beta_j}$ and $E(X^*_1(r)X^*_1(s)) = \prod_{j=1}^r \frac{\beta_j}{2+\beta_j} \prod_{j=r+1}^s \frac{\beta_j}{1+\beta_j}$. Thus, we get

\[
cov(X^*_r(r), X^*_s(s)) = \left(\prod_{j=1}^r \frac{\beta_j}{2+\beta_j} \prod_{j=r+1}^s \frac{\beta_j}{1+\beta_j} \right) - A_r(m)A_s(m)
\]

On the other hand, using (2.21), we get

\[
\var(X^*_1(r)) = \var(X^*_1(r)) = A_r(m)(B_r(m) - A_r(m)).
\]

By combining (2.21) with (2.22), we get the desired relation (2.20), in this case.

Second, we consider the case $F_2(x)$, $F_{2d}(x)$. In this case (1.1) and (1.2) take, respectively, the forms $X^*_2(r) \sim -\sum_{j=1}^r \log B_j$ and $X^*_2(d) \sim \sum_{j=1}^r \log B_j$, where B_j be independent rvs with respective Beta distribution $Beta(\gamma_j, 1)$. Therefore, $E((-\log B_j)^k) = \frac{\Gamma(k+1)}{\gamma_j^k}$, $k = 1, 2, \ldots$, and thus $E(X^*_2(r)) = \sum_{j=1}^r \frac{1}{\gamma_j}$ and $\var(X^*_2(r)) = \sum_{j=1}^r \frac{1}{\gamma_j^2}$. Moreover, we have

\[
E(X^*_2(r)X^*_2(s)) = E\left(\sum_{j=1}^r \left(\frac{1}{B_j} \right)^2 + \sum_{i=1}^r \sum_{j=1}^s \frac{1}{B_i B_j} \right) = \sum_{j=1}^r \frac{2}{\gamma_j^2} + \sum_{i=1}^r \sum_{j=1}^s \frac{1}{\gamma_i \gamma_j}
\]

Therefore, we get

\[
\cov(X^*_r(r), X^*_s(s)) = \sum_{j=1}^r \frac{2}{\gamma_j^2} + \sum_{i=1}^r \sum_{j=1}^s \frac{1}{\gamma_i \gamma_j} - \sum_{i=1}^r \sum_{j=r+1}^s \frac{1}{\gamma_i \gamma_j} = \sum_{j=1}^r \frac{1}{\gamma_j^2},
\]

and, thus

\[
corr(X^*_r(r), X^*_s(s)) = \sqrt{\frac{\sum_{j=1}^r \frac{1}{\gamma_j^2}}{\sum_{j=1}^s \frac{1}{\gamma_j^2}}} = \sqrt{\frac{A_s(-1) - A_r(-1)}{B_r(-1) - A_r(-1)}}.
\]
On the other hand, since \(X_{2d}^*(r) = -X_1^*(r) \), we get \(\text{corr}(X_{2d}^*(r), X_{2d}^*(s)) = \text{corr}(-X_1^*(r), -X_1^*(s)) = \text{corr}(X_1^*(r), X_1^*(s)) \). This completes the proof of (2.20), in the second case.

Finally, we consider the case \(F_3(x), F_{3d}(x) \). In this case (1.1) and (1.2) take, respectively, the forms

\[
X_1^*(r) \sim \prod_{j=1}^{f} D_j \quad \text{and} \quad X_{2d}^*(r) \sim 1 - \prod_{j=1}^{f} D_j,
\]

where \(D_j = B_{j+1}^{-1} \), \(1 \leq j \leq n \). Therefore, \(E(D_j) = \frac{\beta_j}{\beta_{j+k}}, k = 1, 2, \ldots, \) provided that \(\beta_j < -k \). Thus, the \(k \)th moments of \(X_1^*(l) \) and \(X_{2d}^*(l), l = r, s, \) exist provided that \(\beta_j < -k, j = 1, 2, \ldots, s \), or equivalently \(\gamma_j + k(m + 1) > 0, j = 1, 2, \ldots, s \). On the other hand, in view of Remark (1.1), we have \(\gamma_j + 2(m + 1) = \gamma_j + (m + 1), j = 1, 2, \ldots, s - 1 \). The last relation with the inequality \(\gamma_j + (m + 1) = \gamma_j + 2(m + 1), j = 1, 2, \ldots, s \), show that the condition \(\beta_j < -2 \) (or equivalently \(\gamma_1 + 2(m + 1) > 0 \)), implies there exist first and second moments of \(X_1^*(l) \) and \(X_{2d}^*(l), l = r, s \).

Now, we can easily see that the proof of (2.20) in this case is similar as the proof of the first case. The proof of Lemma 2.1, as well as the proof of Theorem 2.1, are completed.

Proof of Corollary 2.1 The proof immediately follows using the relations (2.8)–(2.19).

Remark 2.1 The maximal coefficient of correlation between a pair of rvs \((X, Y) \), introduced by [8], is defined by the left hand side of equation (2.7). Therefore,

\[
\rho_n(r, s, m, \tilde{y}_k) = \frac{A_r(m) \times B_r(m) - A_r(m)}{A_r(m) \times B_r(m) - A_s(m)}
\]

is the maximal coefficient of correlation between a pair of gos \((X^*(r), X^*(s)) \) and a pair of dgos \((X_d^*(r), X_d^*(s)) \), based on arbitrary continuous df’s \(F \) and \(F_{2d} \), respectively. Rényi [11] gives a set of seven postulates which a measure of dependence for a pair of rvs should satisfy. Of the dependence measures considered by Rényi, only the maximal coefficient of correlation satisfies all seven postulates. Consequently, the maximal coefficient of correlation is conveniently applied to problems whose solution is considerably determined by characteristics of stochastic dependence such as the statistical linearization (e.g., Chernyshov [4]). The maximal coefficient of correlation, besides being a convenient measure of dependence, plays a critical role in various areas of statistics including correspondence analysis, optimal transformation for regression, and the theory of Markov processes, see Yaming [16]. Finally, it is worth remarking that in Theorem 2.1 the maximal correlation coefficient between pairs of rvs is explicitly computed. Such exact computations are relatively rare. One well-known case, the Gaussian case, is due to Lancaster [10]; another example of such an explicit computation is the case of partial sums of i.i.d. rvs considered by Dembo et al. [7]. The third such case is order statistics given by (1.3).

Remark 2.2 In the classical case of oos, where \(m = 0 \) and \(\gamma_i = n - i + 1, 1 \leq i \leq n \), it is easy to show that

\[
\rho_n(r, s, m, \tilde{y}_k) = \frac{r(n-s+1)}{s(n-r+1)}.
\]

Moreover, \(F_1(x) = F_{1d}(x) = x, 0 < x < 1 \). This case is considered in Rohatgi and Székely [12] (the relation (1.3), with \(\text{corr}(X_{r:n}, X_{s:n}) = \text{corr}(X_{n-r+1:n}, X_{n-s+1:n}) \), where \(X^*(r) = X_{r:n}, X^*(s) = X_{s:n}, X_d^*(r) = X_{n-r+1:n}, \) and \(X_d^*(s) = X_{n-s+1:n} \)). Finally, in the case of the upper record values, where \(m = -1 \) and \(\gamma_i = 1, 1 \leq i \leq n \), it is easy to show that \(\rho_n(r, s, -1, 1) = \sqrt{\frac{r}{n}} \). Moreover, \(F_2(x) = 1 - e^{-x}, 0 < x < \infty \), which again leads to the result of Rohatgi and Székely [12] for the upper record values case (see relation 2 of Rohatgi and Székely [12]). For lower record values the above result holds with \(F_{2d}(x) = e^x, -\infty < x < 0 \). This result reflects the fact that the correlation coefficient between the elements of the upper records is maximal for the exponentially distributed populations, while the correlation coefficient between the elements of the lower records is maximal for the reflected exponential distribution \(F_{2d}(x) \). Moreover, the maximal correlation coefficient between the elements of the upper records is the same as the maximal correlation coefficient between the elements of the lower records.

Remark 2.3 In Barakat [1] it is proved that \(\rho_n(r, s, 0, \tilde{y}_k) = \sqrt{\frac{A_r(0) \times B_r(0) - A_r(0)}{A_s(0) \times B_s(0) - A_s(0)}} \) is the correlation coefficient between any two uniform gos \(U^*(r) \) and \(U^*(s) \) or any two uniform dgos \(U_d^*(r) \) and \(U_d^*(s) \), where no any restriction is imposed on the parameters \(k, m_1, m_2, \ldots, m_{n-1} \). Moreover, in the same paper, it is proved that the measure \(\sigma_{r,s,n}^* = 12\rho_n(r, s, 0, \tilde{y}_k) \) provides a non-parametric criterion of asymptotically independence.
between the elements of the parameters $k, m_1, m_2, \ldots, m_{n-1}$). In the case of the upper and the lower record values we have $\sigma_{r,s;n}^* = 12 \left(\frac{3}{4} \right)^{s-r} \left(\frac{1}{4} \right)^{r-1} \left(\frac{1}{2} \right)^{s-1}$ (see Barakat [1]). In other hand, in view of Theorem 2.1, we get $\sigma_{r,s;n}^* = 12 \left(\frac{3}{4} \right)^{s-r} \left(\frac{1}{4} \right)^{r-1} \left(\frac{1}{2} \right)^{s-1}$. The last relation reflects the fact that the asymptotic independence between any two oos $X_{r;n}$ and $X_{s;n}$ (which occurs, in view of the result of Barakat [1], if, and only if, $r \rightarrow 0$, as $n \rightarrow \infty$) implies the asymptotic independence between the upper records R_r^* and R_s^*, as well as the lower records L_r and L_s (the asymptotic independence between the upper records R_r^* and R_s^*, as well as the lower records, occurs, in view of the result of Barakat [1], if, and only if, $s-r \rightarrow \infty$, as $n \rightarrow \infty$).

Remark 2.4 Since (2.20), with (2.3) and (2.4), is proved using the relations (1.1) and (1.2), we deduce that $\rho_n(r, s, m, \tilde{\gamma}_s)$ is the correlation coefficient between any two gos $X_r^*(r)$ and $X_r^*(s)$ based on the df $F_1, t = 1, 2, 3$, or between any two dgos $X_{r;n}^*(r)$ and $X_{r;n}^*(s)$ based on the df $F_{1d}, t = 1, 2, 3$, where no any restriction imposed on the parameters $k, m_1, m_2, \ldots, m_{n-1}$. Consequently, in this case the parameter m in $\rho_n(r, s, m, \tilde{\gamma}_s)$ is related to the df’s F_1 and $F_{1d}, t = 1, 2, 3$, and not to the gos or dgos themselves.

3 Discussion and applications

The following two results are direct consequences of Theorem 2.1.

Corollary 3.1 For any $r < s$, we have

$$\rho_n(r, s, m, \tilde{\gamma}_s) \leq \min \left(\frac{A_r(m)}{A_r(m)}, \frac{B_r(m) - A_r(m)}{B_s(m) - A_s(m)} \right).$$

Moreover, the asymptotic independence between the gos $X_{r;n}^*$ and $X_{s;n}^*$ occurs if, and only if, at least one of the relations $A_r(m) \rightarrow 0$ and $B_s(m) - A_s(m) \rightarrow 0$ holds.

Proof Since $1 > \frac{1+\beta_j}{2+\beta_j} \geq \frac{\beta_j}{1+\beta_j} > 0$, for all j, we get $1 > B_k(m) \geq A_k(m) > 0$, for all k, and $1 > B_{k+l}(m) \geq A_{k+l}(m) > 0$, for all $k < l$, where $A_{k+l}(m) = \prod_{j=k+1}^{l} B_j(m)$ and $B_{k+l}(m) = \prod_{j=k+1}^{l} \frac{1+\beta_j}{2+\beta_j}$. The combination of the preceding relations yields $0 < \frac{B_r(m) - A_r(m)}{B_s(m) - A_s(m)} = \frac{B_r(m) - A_r(m)}{B_s(m) - A_s(m)} \frac{B_r(m) - A_r(m)}{B_s(m) - A_s(m)} A_r(m) < 1$, which completes the proof of (3.1), as well as the proof of Corollary 3.1. \square

Corollary 3.2 For any $r \neq s$ and any n, we have $X_{r;n}^*$ and $X_{s;n}^*$ are independent if, and only if, $X_{r;n}^*$ and $X_{s;n}^*$ are independent.

Theorem 2.1 shows that for the dfs given in (2.5) (as well as (2.6)) are the maximal correlation between the elements of the gos (as well as the elements of dgos) equals the (Pearson) correlation. Thus, the uncorrelatedness of these elements implies their independence. This fact implies that in any real-world problems the linear relationship is the only possible relation between these elements. For example, the linear relationship is the only possible relation between any two upper records and between any two lower records for the exponentially distributed populations, respectively. Moreover, Theorem 2.1 enables us to derive some interesting results concerning the rates of the convergence to the asymptotic independence between different types of gos as well as dgos. The following consequence gives some of these results for the oos. Although, the proof of this consequence is simple, but to the best of the author knowledge this result is new.

Corollary 3.3 Let $X_{r;n}^E, X_{2;r;n}^I, \overline{X}_{3;r;n}^I$, $X_{r;n}^C, \overline{X}_{3;r;n}^L$, and $\overline{X}_{5;r;n}^E$ be the rth lower extreme (where $r_1 =$ constant, w.r.t. n), the r_2th lower intermediate (where $r_2 \rightarrow \infty$, $\frac{\tilde{\gamma}}{n} \rightarrow 0$, as $n \rightarrow \infty$), the r_3th central (where $r_3 \rightarrow \infty$, $\frac{\tilde{\gamma}}{n} \rightarrow \lambda$, $\lambda \in (0, 1)$, as $n \rightarrow \infty$), the r_4th upper intermediate (where $r_4 \rightarrow \infty$, $\frac{\tilde{\gamma}}{n} \rightarrow 1$, as $n \rightarrow \infty$) and the r_5th upper extreme (where $n - s_5 =$ constant, w.r.t. n) order statistic, respectively. Then

1. The convergence to the asymptotic independence of the couple $(X_{r;n}^E, \overline{X}_{5;r;n}^E)$ is faster than the couple $(X_{2;r;n}^I, \overline{X}_{3;r;n}^I)$.

\[\text{Springer} \]
(II) the convergence to the asymptotic independence of the couple \((X_{r_1:n}^E, X_{r_3:n}^C)\) is faster than the couples \((X_{r_1:n}^E, X_{r_2:n}^I)\) and \((X_{r_2:n}^I, X_{r_3:n}^C)\).

(III) the convergence to the asymptotic independence of the couple \((X_{r_2:n}^I, X_{r_3:n}^C)\) is faster than the couple \((X_{r_1:n}^E, X_{r_2:n}^I)\). If and only if \(r_2 = o(\sqrt{n})\), as \(n \to \infty\).

Proof The proof of (I), (II) and (III) follows immediately by noting, respectively, that

(I) \(\rho_n(r_1, r_5, 0, \tilde{y}_{r_5}) = \rho_n(r_2, r_4, 0, \tilde{y}_{r_4}) \to 0\) and \(\rho_n(r_1, r_5, 0, \tilde{y}_{r_5}) \sim \frac{r_1(n - r_5 + 1)}{r_2(n - r_4 + 1)} \to 0\), as \(n \to \infty\), since \(r_1, n - r_5 + 1 = \text{constant w.r.t. } n\) and \(n - r_4 + 1 \to \infty\), as \(n \to \infty\).

(II) \(\rho_n(r_1, r_2, 0, \tilde{y}_{r_2}) = \rho_n(r_1, r_3, 0, \tilde{y}_{r_3}) = \rho_n(r_2, r_3, 0, \tilde{y}_{r_3}) \to 0\),

\[
\frac{\rho_n(r_1, r_2, 0, \tilde{y}_{r_2})}{\rho_n(r_1, r_2, 0, \tilde{y}_{r_2})} \sim \sqrt{\frac{1 - \lambda}{\lambda}} \times \frac{r_2}{n} \to 0 \quad \text{and} \quad \frac{\rho_n(r_1, r_3, 0, \tilde{y}_{r_3})}{\rho_n(r_2, r_3, 0, \tilde{y}_{r_3})} \sim \sqrt{\frac{1 - \lambda}{\lambda}} \times \frac{r_2}{r_1} \to 0, \quad \text{as } n \to \infty,
\]

since, \(r_1 = \text{constant w.r.t. } n\) and \(r_2 \to \infty\), as \(n \to \infty\), and

(III) \(\rho_n(r_1, r_2, 0, \tilde{y}_{r_2}) = \rho_n(r_2, r_3, 0, \tilde{y}_{r_3}) \to 0\) and \(\rho_n(r_2, r_3, 0, \tilde{y}_{r_3}) \sim \sqrt{\frac{1 - \lambda}{\lambda}} \times \frac{r_2}{\sqrt{n}} \to 0, \quad \text{as } n \to \infty, \)

if and only if \(r_2 = o(\sqrt{n})\), as \(n \to \infty\), since \(r_1 = \text{constant w.r.t. } n\), as \(n \to \infty\).

Example 3.1 (the determination of a suitable type of a given order statistic). As an interesting application of the above consequence, we consider a requirement of a certain statistical problem which stipulates the asymptotic independence between one order statistic of the two order statistics \(X_{10:100}\) and \(X_{50:100}\). For performing a goodness of fit test to identify the suitable limit distribution type of each of the statistics \(X_{10:100}\) and \(X_{50:100}\), we first have to choose their types (extreme type, intermediate type, etc.). The type of the order statistic \(X_{50:100}\) can reasonably regarded as a central type, i.e., \(X_{50:100} = X_{r_1:n}^C\). However, on the one side, the type of the order statistic \(X_{10:100}\) may be regarded as extreme type, i.e., \(X_{10:100} = X_{r_1:n}^E, r_1 = 10, n = 100\), but on the other side, it may be regarded as lower intermediate type \(X_{10:100} = X_{r_2:n}^I, r_2 = [\sqrt{100}], n = 100\). In view of our requirement, Corollary 3.3, part (II), enables us to decide that the choice of extreme type for the order statistic \(X_{10:100}\) is better than the choice of lower intermediate type.

Example 3.2 (type II right censored samples) Let the censoring scheme be \(R_1 = R_2 = \cdots = R_{M-1} = 0, R_M = n - M\). Therefore, we get \(\beta_j = \gamma_j = 2n + M - j + 1\). Thus, if \(r < s\), we get, after simple calculations,

\[
\frac{A_s(m)}{A_r(m)} = \frac{A_s(0)}{A_r(0)} = \frac{2n - M - s + 1}{2n - M - r + 1}
\]

and

\[
\frac{B_r(m) - A_r(m)}{B_s(m) - A_s(m)} = \frac{B_r(0) - A_r(0)}{B_s(0) - A_s(0)} = \frac{r}{s}.
\]

The last two relations, thus yield

\[
\rho_n(r, s, m, \tilde{y}_s) = \sqrt{\frac{r(2n - M - s + 1)}{s(2n - M - r + 1)}}.
\]

Therefore, if \(M\) is constant with respect to \(n\) then \(X^*(r)\) and \(X^*(s)\) as well as \(X^*_s(r)\) and \(X^*_s(s)\) are dependent for all \(r, s\) and \(n\). On the other hand, by assuming that \(M = M(n) \to \infty\) and \(\frac{M}{n} \to 0\), as \(n \to \infty\), we can easily deduce that Theorem 2.1 in [2], which is concerned with the asymptotic dependence between oos, will hold for this model.
Acknowledgments The author is grateful to the referees for constructive suggestions and comments that improved the presentation substantially.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Barakat, H.M.: Measuring the asymptotic dependence between generalized order statistics. J. Stat. Theory Appl. 6(2), 106–117 (2007)
2. Barakat, H.M.: Comments on the rate of convergence to asymptotic independence between order statistics. Stat. Probab. Lett. 76(1), 35–38 (2006)
3. Burkschat, M.; Cramer, E.; Kamps, U.: Dual generalized order statistics Metron LXI(1), 13–26 (2003)
4. Chernyshov, K.R.: Statistical linearization based on the maximal correlation. Control Commun. SIBCON 07, 29–36 (2007)
5. Cramer, E.: Contributions to Generalized Order Statistics. Habilitationsschrift, University of Oldenburg (2003, reprint)
6. David, H.A.; Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, New York (2003)
7. Dembo, A.; Kagan, A.; Shepp, L.A.: Remarks on the maximum correlation coefficient Bernoulli 7, 343–350 (2001)
8. Gebelein, H.: Das statistische problem der korrelation als variations und eigenwertproblem und sein zusammenhang mit der ausgleichsrechnung. Z. Angew. Math. Mech. 21, 364–379 (1941)
9. Kamps, U.: A Concept of Generalized Order Statistics. Teubner, Stuttgart (1995)
10. Lancaster, H.O.: Some properties of the bivariate normal distribution considered in the form of a contingency table. Biometrika 44, 289–292 (1957)
11. Rényi, A.: On measures of dependence. Acta Math. Acad. Sci. Hung. 10, 441–451 (1959)
12. Rohatgi, V.K.; Székely, G.J.: On the background of some correlation inequalities. J. Stat. Comput. Simul. 40, 260–262 (1992)
13. Sarmanov, O.V.: Maximum correlation (Russian). Dokl. Akad. Nauk SSSR, 120, 52–55, 715–718 (1958)
14. Székely, G.J.; Móri, T.F.: An extremal proerty of rectangular distributions. Statist. Probab. Lett. 3, 107–109 (1985)
15. Terrell, G.R.: A characterization of rectangular distribution. Ann. Probab. 11, 823–826 (1983)
16. Yaming, Yu.: On the maximal correlation coefficient. Stat. Probab. Lett. 78(9), 1072–1075 (2008)