Direct Behavior Specification via Constrained Reinforcement Learning

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, Christopher Pal

Abstract

The standard formulation of Reinforcement Learning lacks a practical way of specifying what are admissible and forbidden behaviors. Most often, practitioners go about the task of behavior specification by manually engineering the reward function, a counter-intuitive process that requires several iterations and is prone to reward hacking by the agent. In this work, we argue that constrained RL, which has almost exclusively been used for safe RL, also has the potential to significantly reduce the amount of work spent for reward specification in applied RL projects. To this end, we propose to specify behavioral preferences in the CMDP framework and to use Lagrangian methods to automatically weigh each of these behavioral constraints. Specifically, we investigate how CMDPs can be adapted to solve goal-based tasks while adhering to several constraints simultaneously. We evaluate this framework on a set of continuous control tasks relevant to the application of Reinforcement Learning for NPC design in video games.

1 Introduction

Reinforcement Learning (RL) has shown rapid progress and lead to many successful applications over the past few years [Mnih et al., 2013; Silver et al., 2017; Andrychowicz et al., 2020]. The RL framework is predicated on the simple idea that all tasks could be defined as a single scalar function to maximise, an idea generally referred to as the reward hypothesis [Silver et al., 2016; Abel et al., 2021]. This idea has proven very useful to develop the theory and concentrate research on a single theoretical framework. However, it can be significantly limiting when translating a real-life problem into an RL problem, since the question of where the reward function comes from is completely ignored [Singh et al., 2009]. In practice, human-designed reward functions often lead to unforeseen behaviors and represent a serious obstacle to the reliable application of RL in the industry [Amodei et al., 2016].

Concretely, for an engineer working on applying RL methods to an industrial problem, the task of reward specification implies to: (1) characterise the desired behavior that the system should exhibit, (2) write in a computer program a reward function for which the optimal policy corresponds to that desired behavior, (3) train an RL agent on that task using one of the methods available in the literature and (4) evaluate whether the agent exhibits the expected behavior. Multiple design iterations of that reward function are generally required, each time accompanied by costly trainings of the policy [Hadfield-Menell et al., 2017; Dulac-Arnold et al., 2019]. This inefficient design loop is exacerbated by the fact that current Deep RL algorithms cannot be guaranteed to find the optimal policy [Sutton and Barto, 2018], meaning that the reward function could be correctly specified but still fail to lead to the desired behavior. The design problem thus becomes “What reward function would lead SAC [Haarnoja et al., 2018] or PPO [Schulman et al., 2017] to give me a policy that I find satisfactory?”; a difficult puzzle that every RL practitioner has had to deal with.

Most published work on Reinforcement Learning focuses on point (3) i.e. improving the reliability and efficiency with which these algorithms can yield a near-optimal policy for a given reward function. This line of work is crucial to allow RL to tackle difficult problems. However, as agents become more and more capable of solving the tasks we present them with, our ability to (2) correctly specify these reward function will only become more critical [Dewey, 2014].

Constrained Markov Decision Processes [Altman, 1999] offer an alternative framework for sequential decision making. The agent still seeks to maximise a single reward function, but must do so while respecting a set of constraints defined by additional cost functions. While it is generally recognised that this formulation has the potential to allow for an easier task definition from the end user [Ray et al., 2019], most work on CMDPs focus on the safety aspect of this framework i.e. that the constraint-satisfying behavior be maintained throughout the entire exploration process [Achiam et al., 2017; Zhang et al., 2020; Turchetta et al., 2020]. In this paper we specifically focus on the benefits of CMDPs relating to behavior specification. We make the following contributions: (1) we show experimentally that reward engineering poorly scales with the complexity of the target behavior, (2) we propose a solution where a designer can di-
2 The problem with reward engineering

In this section, we motivate the impracticality of using reward engineering to shape behavior. We consider a navigation task in which the agent has to reach a goal location while avoiding forbidden terrain. We envision this being done with a robotic platform that is capable of running out of energy also 99% of the time and (3) avoiding to run out of energy also 99% of the time. The environment is depicted in Figure 1 (left) and the details are presented in Appendix B. The reward function for this task is of the form:

\[R'(s, a) = R(s, a) - \beta \pi^{\text{not-looking}} - \gamma \pi^{\text{lava}} - \xi \pi^{\text{no-energy}} \quad (1) \]

where \(R(s, a) \) gives a small shaping reward for progressing towards the goal and a terminal reward for reaching the goal, and the \(\pi \)'s are indicator functions which are only active if their corresponding behavior is exhibited.

The main challenge for an RL practitioner is to determine the correct values of the weights \(\beta \text{not-looking}, \gamma \text{lava} \) and \(\xi \text{no-energy} \) such that the agent maximises its performance on the main task while respecting the behavioral requirements, a problem often referred to as reward engineering. Setting these weights too low results in an agent that ignores these requirements while setting them too high distracts the agent from completing the main task. In general, knowing how to scale these components relatively to one another is not intuitive and is often performed by trial and error across the space of reward coefficients \(\pi' \). To illustrate where the desired solutions can be found for this particular problem, we perform 3 grid searches on 7 different values for each of these weights, ranging from 0.1 to 10 times the scale of the main reward function, for the cases of 1, 2 and 3 behavioral constraints.

The searches thus respectively must go through 7, 49 and 343
training runs. Figure 2 (and Figure 6 in Appendix D) show the results of these experiments. We can see that a smaller and smaller proportion of these trials lead to successful policies as the number of behavioral constraints grows. For an engineer searching to find the right trade-off, they find themselves cornered between two undesirable solutions: an ad-hoc manual approach guided by intuition or to run a computationally demanding grid-search. While expert knowledge or other search strategies can partially alleviate this burden, the approach of reward engineering clearly does not scale as the control problem grows in complexity.

On the relationship between the reward hypothesis and constrained Markov decision processes. It is important to note that the practical limitations of using a single reward function to define the task does not depend on the exactitude of the reward hypothesis. As an analogy, consider the Universal Approximation Theorem [Hornik et al., 1989]. While it has been proven that an arbitrarily wide single-layer neural network can model any function arbitrarily precisely, this result hasn’t lead the Machine Learning community to only construct neural networks on rich and large datasets have much more to do with the optimisation challenge of finding the best solution in the parameter space than about the theoretical expressivity of our parametric models. Similarly, even if it was proven to be correct, the reward hypothesis should not be seen as a restrictive design principle when translating real-life problems into RL problems. While it could be the case that all tasks can in principle be defined as a single scalar function to maximise, it does not guarantee that this reward function has a simple form. It could very well be that for many complex behaviors which encapsulate several different desiderata, the reward functions for which such behaviors are optimal are extremely complex, making them nearly impossible to discover and write by hand.

3 Background

Markov Decision Processes (MDPs) [Sutton and Barto, 2018] are defined as tuples \((S, A, P, R)\). At timestep \(t\), an agent finds itself in state \(s_t \in S\) and picks an action \(a_t \in A(s_t)\). The transition distribution \(P\) denotes the probability \(P(s_{t+1} | s_t, a_t)\) of transitioning to the next state \(s_{t+1}\), at which point an immediate reward \(r_t\) is obtained through a reward function \(R : S \times A \rightarrow \mathbb{R}\). A policy \(\pi\) is a state-conditional distribution over actions, where \(\pi(a | s)\) denotes the probability of taking action \(a\) in state \(s\). Given any scalar function of states and actions \(f : S \times A \rightarrow \mathbb{R}\), the expected discounted sum of \(f\) is defined as:

\[
J_f(\pi) := \mathbb{E}_{\tau \sim P_\pi} \left[\sum_{t=0}^{T} \gamma^t f(s_t, a_t) \right]
\]

where \(\gamma \in [0, 1]\) is a discount factor, a trajectory \(\tau = (s_0, a_0, \ldots, s_T, a_T, s_{T+1})\) is a sequence of states and actions encountered by the agent, and \(P_\pi\) is the trajectory distribution induced by the agent’s policy \(P_\pi(\tau) := P_0(s_0) \prod_{t=0}^{T} P(s_{t+1} | s_t, a_t) \pi(a_t | s_t)\). Under the expected discounted return criterion, the goal is to learn a policy that maximises the discounted sum of rewards (called the return) in expectation over trajectories: \(\pi^* = \arg \max_{\pi \in \Pi} J_R(\pi)\), where \(\Pi\) is the set of all policies. Finally, the visitation distribution \(\pi_\tau(s, a) := \frac{1}{\mathbb{E}_{\tau} J_R(\pi)} \sum_{t=0}^{T} \gamma^t p_{\tau,t}(s_t = s, A_t = a)\), is defined as the normalised discounted sum of the state-action marginal distribution induced by the agent’s policy, where \(p_{\tau,t}(s, a)\) is the marginal state-action distribution at timestep \(t\) and \(Z(\gamma, T) = \sum_{t=0}^{T} \gamma^t\) is a normalising constant.

Constrained MDPs (CMDPs) [Altman, 1999] allow for additional cost functions \(C_k : S \times A \rightarrow \mathbb{R}\) and their corresponding thresholds \(d_k \in \mathbb{R}\), with \(k = 1, \ldots, K\) to be taken into account when finding optimal policies. CMDPs allow for such constraints to be expressed in terms of their expectation over trajectories having to remain under a specified threshold. The set of such constrained optimal policies then becomes \(\Pi_C = \{ \pi \in \Pi : J_{C_k}(\pi) \leq d_k, k = 1, \ldots, K\}\). A policy is said to be feasible if it satisfies all constraints, i.e. \(\pi \in \Pi_C\). A constrained Markov Decision Problem then corresponds to the following constrained optimisation problem:

\[
\pi^* = \arg \max_{\pi \in \Pi} J_R(\pi), \text{ s.t. } J_{C_k}(\pi) \leq d_k, k = 1, \ldots, K
\]

4 Proposed Framework

In Reinforcement Learning, the reward function is often assumed to be already provided. For example, in most RL
benchmarking environments this is indeed the case and researchers can focus on improving current algorithms at finding better policies, faster and more reliably. In industrial applications however, several desiderata are often required for the agent’s behavior, and balancing these components into a single reward function is highly non-trivial. In the next sections, we describe a framework in which CMDPs can be used for efficient behavior specification.

4.1 Indicator cost functions

The difficulty of integrating all the different desiderata into a single reward function stems from the need to tune the relative scale of each reward component. Moreover, finding the most appropriate ratio becomes more elusive as the number of reward components increases (see Section 2). Notably, the prioritisation and saturation characteristics of CMDPs does not fully solve them problem [Ray et al., 2019], as there remains important design challenges caused by the arbitrary form of cost functions that the CMDP framework allows. Specifically, specifying the appropriate thresholds \(d_k \) is difficult to do solely based on intuition. For example, in the mujoco experiments performed by Zhang [2020], the authors had to run an unconstrained version of PPO to evaluate what level of cost-infringement was reached in order to further constrain it. Luckily there is a sub-family of CMDPs that allows for a more intuitive connection between the chosen cost functions \(C_k \) and their expected returns \(J_{C_k} \). More specifically, we restrict our attention to CMDPs where the cost functions are defined as indicators of the form:

\[
C_k(s, a) = I(\text{behavior } k \text{ is met in } (s, a)) \tag{5}
\]

which simply expresses whether an agent showcases some particular behavior \(k \) when selecting action \(a \) in state \(s \).

An interesting property of this design choice is that, by rewriting the expected discounted sum of these indicator cost functions as an expectation over the visitation distribution of the agent, we can interpret this quantity as a re-scaled probability that the agent exhibits behavior \(k \) at any given time during its interactions with the environment:

\[
J_{C_k}(\pi) = Z(\gamma, T) \mathbb{E}_{(s, a) \sim x_\pi(s, a)}[C_k(s, a)] \tag{6}
\]

\[
= Z(\gamma, T) \mathbb{E}_{(s, a) \sim x_\pi(s, a)}[I(\text{behavior } k \text{ met in } (s, a))] \tag{7}
\]

\[
= Z(\gamma, T) \text{Pr}(\text{behavior } k \text{ met in } (s, a)), \ (s, a) \sim x_\pi \tag{8}
\]

Dividing each side by \(Z(\gamma, T) \), we are left with a normalized constraint threshold \(d_k \) for constraint \(k \) which represents the desired rate of encountering the behavior designated by the indicator cost function \(C_k \). While the class of cost functions defined in Equation 5 still allows for modelling a large variety of behavioral preferences, it also informs the user on the range of thresholds that is appropriate, \(d_k \in [0, 1] \), and hints toward their effect on the agent’s behavior (assuming that the constraint is binding and that a feasible policy is found). This effectivly allows for minimal to no tuning behavior specification (or “zero-shot” behavior specification). In practice, we simply compute the average cost function across the batch to give equal weighting to all state-action pairs regardless of their position \(t \) in the trajectory

\[
\hat{J}_{C_k}(\pi) := \frac{1}{N} \sum_{i=1}^{N} C_k(s_i, a_i) \text{ where } i \text{ is the sample index from the batch. We also train the corresponding critic } Q^{(k)} \text{ using a discount factor } \gamma_k < 1 \text{ for numerical stability.}
\]

Finally, indicator cost functions also have the practical advantage of allowing to capture both desired and undesired behaviors without affecting the termination tendencies of the agent. Indeed, when using an arbitrary cost function, it could be tempting to simply flip its sign to enforce the opposite behavior. However, as noted in previous work [Kostrikov et al., 2018], the choice of whether to enforce behaviors through bonuses or penalties should instead be thought about with the termination conditions in mind. A positive bonus could cause the agent to delay termination in order to accumulate more bonuses while negative penalties could shape the agent behavior such that it seeks to trigger the termination of the episode as soon as possible. Indicator cost functions are thus very handy in that they offer a straightforward way to enforce the opposite behavior by simply inverting the indicator function \(N(\text{of } (I(s, a)) = 1 - I(s, a) \) without affecting the sign of the constraint (penalties v.s. bonuses).

4.2 Multiplier normalisation

When the constraint \(k \) is violated, the multiplier \(\lambda_k \) associated with that constraint increases to put more emphasis on that aspect of the overall behavior. While it is essential for the multipliers to be able to grow sufficiently compared to the main objective, a constraint that enforces a behavior which is long to discover can end up reaching very large multiplier values. It then leads to very large policy updates and destabilizes the learning dynamics.

To maintain the ability of one constraint to dominate the policy updates when necessary while keeping the scale of the updates bounded, we propose to normalize the multipliers. This can be readily implemented by using a softmax layer:

\[
\lambda_k = \frac{\exp(z_k)}{\exp(a_0) + \sum_{k'=1}^{K} \exp(z_{k'})}, \ k = 1, \ldots, K \tag{9}
\]

where \(z_k \) are the base parameters for each one of the multipliers and \(a_0 \) is a dummy variable used to obtain a normalized weight \(\lambda_0 := 1 - \sum_{k=1}^{K} \lambda_k \) for the main objective \(J_\pi(\pi) \). The min-max problem becomes:

\[
\max_{\pi} \min_{i, a \geq 0} \mathcal{L}(\pi, \lambda), \mathcal{L}(\pi, \lambda) = \lambda_0 J_\pi(\pi) - \sum_{k=1}^{K} \lambda_k (J_{C_k}(\pi) - d_k) \tag{10}
\]

4.3 Bootstrap Constraint

In the presence of many constraints, one difficulty that emerges with the above multiplier normalisation is that the coefficient of the Lagrangian function that weights the main objective is constrained to be \(\lambda_0 = 1 - \sum_{k=1}^{K} \lambda_k \), which leaves very little to no traction to improve on the main task while the process is looking for a feasible policy. Furthermore, as more constraints are added, the optimisation path becomes discontinuous between regions of feasible policies, preventing learning progress on the main task objective.

A possible solution is to grant the main objective the same powers as the behavioral constraints that we are trying to enforce. This can be done by defining an additional function
function, we still need to keep using a true maximisation objective over the main reward function when enforcing that constraint. However, to main-
due to a variety of factors which include the difficulty of shaping behavior, interpretability, and compute limitations at run-time [Jacob et al., 2020]. Still, there has been a recent push in the video game industry to build NPCs (Non Player Characters) using RL, for applications including navigation [Alonso et al., 2020; Devlin et al., 2021], automated testing [Bergdahl et al., 2020; Gordillo et al., 2021] and content generation [Gisslén et al., 2021].

RL in video games. Video games have been used as a benchmark for Deep RL for several years [Shao et al., 2019; Berner et al., 2019; Vinyals et al., 2019]. However, examples of RL being used in a video game production are limited due to a variety of factors which include the difficulty of shaping behavior, interpretability, and compute limitations at run-time [Jacob et al., 2020]. Still, there has been a recent push in the video game industry to build NPCs (Non Player Characters) using RL, for applications including navigation [Alonso et al., 2020; Devlin et al., 2021], automated testing [Bergdahl et al., 2020; Gordillo et al., 2021] and content generation [Gisslén et al., 2021].

6 Experiments

To evaluate the proposed framework, we train SAC agents [Haarnoja et al., 2018] to solve navigation tasks with up to 5 constraints imposed on their behavior. Many of these constraints interact with the main task and with one another which significantly restricts the space of admissible policies. We conduct most of our experiments in the Arena environment (see Figure 1, left)\(^1\) where we seek to verify the capacity of the proposed framework to allow for easy specification of the desired behavior and the ability of the algorithm to deal with a large number of constraints simultaneously. We also perform an experiment in the OpenWorld environment (see Figure 1, right), a much larger and richer map generated using the GameRLand map generator [Beeching et al., 2021], where we seek to verify the scalability of that approach and whether it fits the needs of agent behavior specification for the video game industry. We present the results for the Arena environment below and those for the OpenWorld environment below.

\(^1\)The algorithm is presented in Appendix A. The code for the Arena environment experiments will be released upon publication of this work.
Figure 3: The multiplier normalisation keeps the learning dynamics stable when discovering a constraint-satisfying behavior takes a large amount of time. To simulate such a case, an impossible constraint is set for 7.5M steps and then replaced by a feasible one for the last 2.5M steps. The method using unnormalized multipliers (red) keeps taking larger and larger steps in policy space leading to the divergence of its learning dynamics and complete collapse of its performance.

Figure 4: Each column presents the results for an experiment in which the agent is trained for 3M steps with a single constraint enforced on its behavior. Training is halted after every 20,000 environment steps and the agent is evaluated for 10 episodes. All curves show the average over 5 seeds and envelopes show the standard error around that mean. The top row shows the average return, the bottom row shows the average behavior rate on which the constraint is enforced. The black dotted lines mark the constraint thresholds.

Figure 5: Each row presents the results of an experiment in which an agent is trained for 10M steps. Training is halted after every 20,000 environment steps and the agent is evaluated for 10 episodes. All curves show the average over 5 seeds and envelopes show the standard error around that mean. (a) Unconstrained SAC agent; none of the behavioral preferences are enforced and consequently improvement on performance is very fast but none of the constraints are satisfied. (b) SAC-Lagrangian with the 5 behavioral constraints enforced. While each constraint was successfully dealt with when imposed one by one (see Figure 4), maximising the main objective when subject to all the constraints simultaneously proves to be much harder. The agent does not find a policy that improves on the main task while keeping the constraints in check. (c) By using an additional success constraint (that the agent should reach its goal in 99% of episodes), the agent can cut through infeasible policy space to start improving on the main task and optimise the remaining constraints later on. (d) By using the success constraint as a bootstrap constraint (bound to the main reward function) improvement on the main task is much faster as the agent benefits from the dense reward function to improve on the goal-reaching task.
in Appendix D. See Appendices B and C for a detailed description of both experimental setups.

Multiplier Normalization Our first set of experiments showcases the effect of normalizing the Lagrange multipliers. For illustrative purposes, we designed a simple scenario where one of the constraints is not satisfied for a long period of time. Specifically, the agent is attempting to satisfy an impossible constraint of never touching the ground. Figure 3 (in red) shows that the multiplier on the unsatisfied constraint endlessly increases in magnitude, eventually harming the entire learning system; the loss on the critic diverges and the performance collapses. When using our normalization technique, Figure 3 (in blue) shows that the multiplier and critic losses remain bounded, avoiding such instabilities.

Single Constraint satisfaction Figure 4 shows that SAC-Lagrangian can solve the task while respecting the behavioral requirements when imposed with constraints individually.

Multiple Constraints Satisfaction In Figure 5 we see that when imposed with all of the constraints simultaneously, the agent learns a feasible policy but fails at solving the main task entirely. The agent effectively settles on a trivial behavior in which it only focuses on satisfying the constraints, but from which it is very hard to move away without breaking the constraints. By introducing a success constraint, the agent at convergence is able to satisfy all of the constraints as well as succeeding in the navigation task. This additional incentive to traverse infeasible regions of the policy space allows to find feasible but better performing solutions. Our best results are obtained when using the success constraint as a bootstrap constraint, effectively lending λ_{K+1} to the main reward while the agent is still looking for a feasible policy.

7 Discussion

Our work showed that CMDPs offer compelling properties when it comes to task specification in reinforcement learning. More specifically, we developed an approach where the agent behavior is defined by the frequency of occurrence for given indicator events, which we view as constraints in a CMDP formulation. We showed through experiments that this methodology is preferable over the alternative where we have to do an extensive hyper-parameter search over possible reward functions. We evaluated this framework on the many constraints case in two different environments. Our experiments showed that simultaneously satisfying a large number of constraints is difficult and can systematically prevent the agent from improving on the main task. We then addressed this problem by normalizing the constraint multipliers, which resulted in improved stability during training and proposed to bootstrap the learning on the main objective to avoid getting trapped by the composing constraint set. Our overall method is easy to implement over existing policy gradient code bases and can scale across domains easily. We hope that these insights can contribute to a wider use of Constrained RL methods in industrial application projects, and that such adoption can be mutually beneficial to the industrial and research RL communities.

Acknowledgments

We wish to thank Philippe Marcotte, Maxim Peter, Rémi Labory, Pierre Le Pelletier, Julien Varnier, Pierre Fältiska, Vincent Martineau, Olivier Pomarez and Tristan Deleu as well as the entire research team at Ubisoft La Forge for providing technical support and insightful comments on this work. We also acknowledge funding in support of this work from Fonds de Recherche Nature et Technologies (FRQNT), Mitacs Accelerate Program, Institut de valorisation des données (IVADO) and Ubisoft La Forge.

References

[Abel et al., 2021] David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and Satinder Singh. On the expressivity of markov reward. Advances in Neural Information Processing Systems, 34, 2021.

[Achiam et al., 2017] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In International Conference on Machine Learning, pages 22–31. PMLR, 2017.

[Alonso et al., 2020] Eloi Alonso, Maxim Peter, David Goumard, and Joshua Romoff. Deep reinforcement learning for navigation in aaa video games. arXiv preprint arXiv:2011.04764, 2020.

[Altman, 1999] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[Amodei et al., 2016] Dario Amodei, Chris Olah, John Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[Andrychowicz et al., 2020] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.

[Beeching et al., 2021] Edward Beeching, Maxim Peter, Philippe Marcotte, Jilles Debangoye, Olivier Simonin, Joshua Romoff, and Christian Wolf. Graph augmented deep reinforcement learning in the gameerland3d environment. arXiv preprint arXiv:2112.11731, 2021.

[Bergdahl et al., 2020] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. Augmenting automated game testing with deep reinforcement learning. In 2020 IEEE Conference on Games (CoG), pages 600–603. IEEE, 2020.

[Berner et al., 2019] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[Borkar, 2005] Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems & control letters, 54(3):207–213, 2005.

[Calian et al., 2020] Dan A Calian, Daniel J Mankowitz, Tom Zahavy, Zhongwen Xu, Junhyuk Oh, Nir Levine, and Timothy Mann. Balancing constraints and rewards with meta-gradient d4pg. arXiv preprint arXiv:2010.06324, 2020.

[Chow et al., 2019] Yinlam Chow, Ofer Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint arXiv:1901.10031, 2019.
[Christiano et al., 2017] Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. arXiv preprint arXiv:1706.03741, 2017.

[Dalal et al., 2018] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[Devlin et al., 2020] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Reinforcement learning by pid approximation to reward shaping. In Icml, volume 99, pages 278–287, 1999.

[Dewey, 2014] Daniel Dewey. Reinforcement learning and the reward engineering principle. In 2014 AAAI Spring Symposium Series, 2014.

[Dulac-Arnold et al., 2019] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

[Gisslén et al., 2021] Linus Gisslén, Andy Eakins, Camilo Gordillo, Joakim Bergdahl, and Konrad Tollmar. Adversarial reinforcement learning for procedural content generation. arXiv preprint arXiv:2103.04847, 2021.

[Gordillo et al., 2021] Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. Improving playtesting coverage via curiosity driven reinforcement learning agents. arXiv preprint arXiv:2103.13798, 2021.

[Goyal et al., 2019] Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping in reinforcement learning. arXiv preprint arXiv:1903.02020, 2019.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

[Hadfield-Menell et al., 2017] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca Dragan. Inverse reward design. arXiv preprint arXiv:1711.02827, 2017.

[Hornik et al., 1989] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[Jacob et al., 2020] Mikhail Jacob, Sam Devlin, and Katja Hofmann. “it’s unwieldy and it takes a lot of time”—challenges and opportunities for creating agents in commercial games. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 16, pages 88–94, 2020.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[Kostrikov et al., 2018] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation learning. arXiv preprint arXiv:1809.02925, 2018.

[MacGlashan et al., 2015] James MacGlashan, Monica Babes-Vroman, Marie desJardins, Michael L Littman, Smaranda Muresan, Shawn Squire, Stefanie Telfix, Dilip Arumugam, and Lei Yang. Grounding english commands to reward functions. In Robotics: Science and Systems, 2015.

[Mindermann et al., 2018] Sören Mindermann, Rohin Shah, Adam Gleave, and Dylan Hadfield-Menell. Active inverse reward design. arXiv preprint arXiv:1809.03060, 2018.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[Ng et al., 1999] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287, 1999.

[Ratner et al., 2018] Ellis Ratner, Dylan Hadfield-Menell, and Anca D Dragan. Simplifying reward design through divide-and-conquer. arXiv preprint arXiv:1806.02501, 2018.

[Ray et al., 2019] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning. arXiv preprint arXiv:1910.01708, 7, 2019.

[Saunders et al., 2017] William Saunders, Girish Sastry, Andreas Stuhlmüller, and Owain Evans. Trial without error: Towards safe reinforcement learning via human intervention. arXiv preprint arXiv:1707.05173, 2017.

[Schulman et al., 2017] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[Shao et al., 2019] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nan Nan Li, and Dongbin Zhao. A survey of deep reinforcement learning in video games. arXiv preprint arXiv:1912.10944, 2019.

[Silver et al., 2017] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[Silver et al., 2021] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial Intelligence, page 103535, 2021.

[Singh et al., 2009] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from? In Proceedings of the annual conference of the cognitive science society, pages 2601–2606. Cognitive Science Society, 2009.

[Stooke et al., 2020] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143. PMLR, 2020.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[Tessler et al., 2018] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv preprint arXiv:1805.11074, 2018.

[Turchetta et al., 2020] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe reinforcement learning via curriculum induction. arXiv preprint arXiv:2006.12136, 2020.

[Vinyals et al., 2019] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.
[Yang et al., 2020] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

[Zhang et al., 2020] Yiming Zhang, Quan Vuong, and Keith W Ross. First order constrained optimization in policy space. arXiv preprint arXiv:2002.06506, 2020.

[Zheng et al., 2021] Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor Tsang, and Fang Chen. Imitation learning: Progress, taxonomies and opportunities. arXiv preprint arXiv:2106.12177, 2021.
A Algorithm

Our implementation of the SAC-Lagrangian algorithm is presented below. The exact values of each hyper-parameter for all of our experiments are listed in Tables 1 and 2. One notable difference between an unconstrained Soft-Actor Critic [Haarnoja et al., 2018] and our constrained version is that SAC is typically updated after every environment step to maximise the sample efficiency of the algorithm. In the constrained case however, since the constraints are optimized on-policy, updating the SAC agent at every environment step would only allow for one-sample estimates of the multiplier’s objective. On the other hand, freezing the SAC-agent for as many environment steps as the Lagrange multiplier batch-size N_λ makes the overall algorithm significantly less sample efficient. One could disregard the “on-policyness” of the multiplier’s objective but in preliminary experiments we found that, unsurprisingly, updating the Lagrange multipliers very frequently while using a large set of samples (many of which were collected using previous versions of the policy) lead to significant overshoot and harms the ability of the multipliers to converge to a stable behavior. There is thus a tradeoff to make between the variance of the multiplier’s objective (many of which were collected using previous versions of the policy) and the values for λmultipliers to converge to a stable behavior. There is thus a tradeoff to make between the variance of the multiplier’s objective (many of which were collected using previous versions of the policy) and the values for λmultipliers to converge to a stable behavior. There is thus a tradeoff to make between the variance of the multiplier’s objective (many of which were collected using previous versions of the policy) and the values for λmultipliers to converge to a stable behavior. There is thus a tradeoff to make between the variance of the multiplier’s objective (many of which were collected using previous versions of the policy) and the values for λ

Algorithm 1 SAC-Lagrangian with Bootstrap Constraint

Require: learning rate β, replay buffer B, entropy coefficient α and minibatch sizes N_θ and N_λ

Require: Initialise the policy π_θ and value-functions $Q_{\phi_0}^{(k)}$, randomly, $k = 0, \ldots, K + 1$

Require: Initialise the Lagrange multiplier parameters λ_k

Require: Collect enough transitions to fill B with max(N_θ, N_λ) samples

for updates $u = 1, \ldots$ (until convergence) do
 # Data collection
 Sample from the current policy: $a \sim \pi_\theta(\cdot|s)$
 Query next state, reward and indicators $(s', r, \{c\}_{k=1}^{K+1})$ by interacting with the environment
 Append transition $(s, a, r, s', \{c\}_{k=1}^{K+1})$ to the replay buffer B

 # Policy Gradient update
 if $u \% M_\theta == 0$ then
 Sample a minibatch of N_θ transitions uniformly from the replay buffer
 Sample next actions: $a'_i \sim \pi_\theta(\cdot|s'_i)$, $i = 1, \ldots, N_\theta$
 for $k = 0, \ldots, K + 1$ do
 Set the “rewards” to their corresponding values: $r_i^{(0)} = r_i$ and $r_i^{(k)} = e^{(k)}$
 Compute the Q-targets: $y_i^{(k)} = -\alpha \log \pi_\theta(a'_i|s'_i) + \min_{j \in \{1,2\}} Q_{\phi_j}^{(k)}(s'_i, a'_i)$
 Adam descent on Q-nets with: $\nabla_{\phi_j} \frac{1}{N_\theta} \sum_{i=1}^{N_\theta} ||Q_{\phi_j}^{(k)}(s_i, a_i) - (r_i^{(k)} + (1 - \text{done})\gamma y_i^{(k)})||_2$
 end for
 Re-sample the current actions: $a_i \sim \pi_\theta(\cdot|s_i)$, $i = 1, \ldots, N_\theta$
 Adam ascent on policy with:
 $\nabla_\theta \frac{1}{N_\theta} \sum_{i=1}^{N_\theta} -\alpha \log \pi_\theta(a_i|s_i) + \max(\lambda_0, \lambda_{K+1}) \min_j Q_{\phi_j}^{(0)}(s_i, a_i) + \lambda_{K+1} \min_j Q_{\phi_j}^{(K+1)}(s_i, a_i) - \sum_{k=1}^{K} \lambda_k \min_j Q_{\phi_j}^{(k)}(s_i, a_i)$
 end if

 # Multipliers update
 if $u \% M_\lambda == 0$ then
 Draw from the replay buffer a minibatch composed of the last N_λ transitions
 for $k = 0, \ldots, K + 1$ do
 Compute average costs: $\bar{J}_C_k(\pi) = \frac{1}{N_\lambda} \sum_{i=1}^{N_\lambda} e^{(k)}$
 Adam descent on multipliers with: $\nabla_{\lambda_k} \lambda_k(\bar{J}_C_k(\pi) - \bar{d}_k)$ if $k = K + 1$ else $\nabla_{\lambda_k} \lambda_k(\bar{d}_k - \bar{J}_C_k(\pi))$
 end for
 end if
B Details for experiments in the Arena environment

B.1 Environment details

In the Arena Environment, the agent’s main goal is to navigate to the green tile (see Figure 1, left). The constraints that we explore in this environment are \{On-Ground, Not-in-Lava, Looking-At-Marker, Under-Speed-Limit and Above-Energy-Limit\}. It receives as observations its XYZ position, direction and velocity, the relative XZ position of the goal, its distance to the goal, as well as an indicator for whether it is on the ground. For the looking-at constraint, it also receives the XZ vector for the direction it is looking at, its Y-angular velocity, the marker’s relative XZ position and distance, the normalised angle between the agent’s looking direction and the marker as well as an indicator for whether the marker is within its field of view (a fixed-angle cone in front of the agent). For the energy constraint, the agent receives the normalised value of its energy bar and an indicator for whether it is currently recharging. Finally for the lava constraint, the agent receives an indicator of whether it currently stands in lava as well as an indicator for 25 vertical raycast of its surrounding (0 indicating safe ground and 1 indicating lava). We also add to the agent’s observations the per-episode rates of indicator cost functions to the agent observation for each of the constraint as well a normalised representation of the remaining time-steps before reaching the time limit condition, leading to a total dimensionality of 53 for the observation vector. The action space is composed of 5 continuous actions (clamped between -1 and 1) which represent its XZ velocity and Y-angular velocity, a jump action (jump is triggered when the agent outputs a value above 0 for that dimensionality) and a recharge action (also with threshold of 0). The reward function is simply 1 when the agent reaches the goal (causing termination), 0 otherwise, and augmented with a small shaping reward function [Ng et al., 1999] based on whether the agent got closer or further away from the goal location.

B.2 Hyper-parameters

Most of the hyper-parameters are the same as in the original unconstrained Soft Actor-Critic (SAC) [Haarnoja et al., 2018]. Some additional hyper-parameters emerge from the constraint enforcement aspect of our version of SAC-Lagrangian and are described in the Algorithm section above. We use the Adam optimizer [Kingma and Ba, 2014] for all parameter updates (policy, critics and Lagrange multipliers). For all experiments taking place in the Arena Environment, the policy is parameterized as a two layer neural networks that outputs the parameters of a Gaussian distribution with a diagonal covariance matrix. The hidden layers are composed of 256 units and followed by a \tanh{} activation function. The first hidden layer also uses layer-normalisation before the application of the \tanh{} function. The first hidden layer also uses layer-normalisation before the application of the \tanh{} function. We use \(K + 1 \) fully independent critic models to estimate the expected discount sum of each of the constraint and of the main reward function. The critic models are also parameterized with two-hidden-layers neural networks with the same size for the hidden layers as the policy but instead followed by \textit{relu} activation functions. Table 1 shows the hyper-parameters used in our experiments conducted in the Arena environment.

Hyper-parameter	Value
GENERAL	
Discount factor \(\gamma \)	0.9
Number of random exploration steps	10000
Number of buffer warmup steps	2560
SAC AGENT	
Learning rate \(\beta \)	0.0003
Transitions between updates \(M_\theta \)	200
Batch size \(N_\theta \)	256
Replay buffer size	1,000,000
Initial entropy coefficient \(\alpha \)	0.02
Target networks soft-update coefficient \(\tau \)	0.005
LAGRANGE MULTIPLIERS	
Learning rate \(\beta \)	0.03
Initial multiplier parameters value \(z_k \)	0.02
Transitions between updates \(M_\lambda \)	2000
Batch size \(N_\lambda \)	2000
CONSTRAINT THRESHOLDS	
Has reached goal (lower-bound)	0.99
Not looking at marker	0.10
Not on ground	0.40
In lava	0.01
Above speed limit	0.01
Is under the minimum energy level	0.01

Table 1: Hyper-parameters for experiments in the Arena Environment.
C Details for experiments in the OpenWorld environment

C.1 Environment details

The OpenWorld environment is a large environment (approximately 30,000 times larger than the agent) that includes multiple multi-storey buildings with staircases, mountains, tunnels, natural bridges and lava. In addition, the environment includes 50 jump-pads that propel the agent into the air when it steps on one of them. The agent is tasked with navigating towards a goal randomly placed in the environment at the beginning of every episode. The agent controls include translation in the XY frame (2 inputs), a jumping action (1 input), a rotation action controlling where the agent is looking independent of its direction of travel (1 input), and a recharging action which allows the agent to recharge its energy level (1 input). The recharging action immobilizes the agent, i.e., it does not allow the agent to progress towards its goal. The environment also includes a look-at marker which we would like the agent to look at while it accomplishes its main navigation task.

At every timestep, the agent receives as observations its XYZ position relative to the goal as well as its normalized velocity and acceleration in the environment. In addition, it receives its relative position to the nearest jump-pad in the environment. For looking at the marker, as in the Arena environment, the agent receives the marker’s relative XZ position and distance, the normalised angle between the agent’s looking direction and the marker, as well as an indicator for whether the marker is within its field of view (a fixed-angle cone in front of the agent). For the energy-limit constraint, the agent obtains the value of its energy level, a boolean describing if it is currently recharging and a Boolean indicating if it was recharging in the previous timestep. The agent also receives a series of indicators denoting whether it is currently standing in lava, if it is touching the ground, and if the agent is currently below the minimum energy level. In order for the agent to observe lava and other elements it can collide with in the environment (e.g., buildings, doors, mountains), the agent receives 2 channels of 8×8 raycasts around the agent.

C.2 Hyper-parameters

The SAC agent in the OpenWorld environment uses the same architecture and similar hyper-parameters as in [Alonso et al., 2020]. The raycasts and raw state described above are processed using two separate embedding models. For the raycasts, we employ a CNN with 3 convolutional layers, each with a corresponding ReLU layer. The raw state is processed using a separate 3-layer MLP with 1024 hidden units at each layer. The two representations are concatenated into a single vector representing the current state. The policy is parameterized by a 3-layer MLP that receives as input the concatenated representation and outputs the parameters of a Gaussian distribution with a diagonal covariance matrix. Each hidden layer is composed of 1024 hidden units and is followed by a ReLU activation function. The critic models are also parameterized by 3-layer MLP, are composed of 1024 hidden units and use ReLU activation functions. Table 2 shows some of these hyper-parameters with a focus on the constrained enforcement aspect of our version of SAC-Lagrangian.

HYPER-PARAMETER	VALUE
GENERAL	
DISCOUNT FACTOR γ	0.99
NUMBER OF RANDOM EXPLORATION STEPS β	200
NUMBER OF BUFFER WARMUP STEPS β	2560
SAC AGENT	
LEARNING RATE β	0.0001
BATCH SIZE N_θ	2560
REPLY BUFFER SIZE	4,000,000
INITIAL ENTROPY COEFFICIENT α	0.005
TARGET NETWORKS SOFT-UPDATE COEFFICIENT τ	0.005
LAGRANGE MULTIPLIERS	
LEARNING RATE β	0.00005
INITIAL MULTIPLIER PARAMETERS VALUE z_k	0.02
TRANSGITIONS BETWEEN UPDATES	EVERY TIMESTEP
BATCH SIZE N_λ	5000
CONSTRAINT THRESHOLDS	
HAS REACHED GOAL (LOWER-BOUND)	0.80
NOT LOOKING AT MARKER	0.10
NOT ON GROUND	0.40
IN LAVA	0.001
IS UNDER THE MINIMUM ENERGY LEVEL	0.01
D Additional experiments

D.1 Experiments on reward engineering

See Section 2 for the description of our experiments motivating against the use of reward engineering for behavior specification. Figure 6 below shows the results for the biggest of the 3 grid searches performed to showcase the difficulty of finding a reward function that fits the behavioral requirements when the number of requirements grows.

Figure 6: Also see Figure 2. When enforcing 3 behavioral requirements with reward engineering, an ever larger proportion of the experiments are wasted finding either low-performing policies or policies that do not satisfy the behavioral constraints. In this case, none of the 343 experiments yielded a feasible policy that also solves the task (success rate near 1.0), showcasing that reward engineering scales poorly with the number of constraints due to the curse of dimensionality and to the composing effect of the multiple constraints in narrowing the space of feasible policies.
D.2 Experiment in the OpenWorld environment

In the OpenWorld environment, we seek to verify that the proposed solution scales well to more challenging and realistic tasks. Contrarily to the Arena environment, the OpenWorld contains uneven terrain, buildings, and interactable objects like jump-pads, which brings this evaluation setting much closer to an actual RL application in the video game industry. For this experiment, we trained a SAC-Lagrangian agent to solve the navigation problem with four constraints on its behavior: On-Ground, Not-In-Lava, Looking-At-Marker and Above-Energy-Limit. The SAC component uses the same hyper-parameters as in Alonso [2020]. The results are shown in Figure 7. While training the agent in this larger and more complex environment now requires up to 50M environment steps, the agent still succeeds at completing the task and respecting the constraints, favourably supporting the scalability of the proposed framework for direct behavior specification. The code for the OpenWorld environment is currently proprietary but may be released eventually.

Figure 7: A SAC-Lagrangian agent trained to solve the navigation problem in the OpenWorld environment while respecting four constraints and imposing the bootstrap constraint. Results suggest that our SAC-Lagrangian method using indicator cost functions, normalised multipliers and bootstrap constraint scales well to larger and more complex environments.