Microvibration Modes Reconstruction Based on Micro-Doppler Coincidence Imaging

Shuang Liu, Chenjin Deng, Chaoran Wang, Zunwang Bo, Shensheng Han, and Zihuai Lin, Senior Member, IEEE

Abstract—Microvibration, a ubiquitous nature phenomenon, can be seen as a characteristic feature on the objects, and these vibrations always have tiny amplitudes which are much less than the wavelengths of the sensing systems, and thus these motions information can only be reflected in the phase item of echo. Normally, the conventional radar system can detect these microvibrations through time–frequency analysis, but these vibration characteristics can only be reflected by the time–frequency spectrum, and the spatial distribution of these microvibrations cannot be reconstructed precisely. Ghost imaging (GI), a novel imaging method also known as coincidence imaging that originated in the quantum and optical fields, can reconstruct unknown images using computational methods. To reconstruct the spatial distribution of microvibrations, this article proposes a new method based on a coincidence imaging system. A detailed model of target microvibration is created first, taking into account two categories: discrete and continuous targets. We use the first-order field correlation feature to obtain objective different microvibration distribution based on the complex target models and time–frequency analysis in this work.

Index Terms—Coincidence imaging, ghost imaging (GI), microvibration, mode imaging, phase reconstruction.

I. INTRODUCTION

MICROVIBRATION widely exists on the target surfaces as a motion characteristic, and there are many researches aiming at these microvibrations’ detection [1], [2]. These vibration detecting methods can be applied in many scenarios such as vital signs’ detection in earthquake relief [3], [4] or large structure vibration [5]. Normally, the vibrating objects contain two types of information, temporal change and spatial distribution. The existing single temporal information sensing systems can reconstruct the time–frequency modulation characteristics of vibrating objects in the field of view by analyzing micro-Doppler signatures [6], whereas the spatial information cannot be reconstructed efficiently. Even though there exist detection schemes of spatial vibration information.

Manuscript received 7 July 2022; revised 29 August 2022 and 26 October 2022; accepted 16 November 2022. Date of publication 18 November 2022. (Corresponding author: Shuang Liu.)

Shuang Liu, Chenjin Deng, Chaoran Wang, and Shensheng Han are with the Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China (e-mail: slu5388@uni.sydney.edu.au).

Zunwang Bo is with the Key Laboratory for Quantum Optics, Center for Cold Atom Physics of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.

Zihuai Lin is with the School of EIE, The University of Sydney, Sydney, NSW 2006, Australia.

Digital Object Identifier 10.1109/TGRS.2022.3223649

Ghost imaging (GI), also known as correlation imaging, is a nonlocal imaging method that reconstructs an unknown image by computing the correlation function between speckle field that passes through an object and 1-D signal received by a bucket detector which can collect the energy in the aperture. The spatial and temporal coding patterns modulated on the reference radiation fields are formed specifically [7], [8], [9], [10], [11], [12]. In principle, correlation imaging is to form an irradiated object with spatial fluctuation by modulating the radiation source and reconstruct the image of the object by correlating it with the intensity of the received signal of a bucket detector. This novel imaging technique overcomes the antenna aperture-induced limitation in imaging resolution and offers the benefits of forward-looking, staring, and fast-shooting imaging, which may be used in unmanned systems for monitoring and observation of crucial locations. The GI algorithm has been verified in different waveband systems, such as X-ray [13], [14], [15], microwave [16], [17], [18], [19], [20], terahertz [21], [22] and optical waveband [23], [24], [25].

In the present stage, it is easier for the optical system to detect the fluctuation of the light intensity rather than the complex light field, and thus, the light intensity detected by the bucket detector can be used for second-order correlation which is GI, namely, [26], [27], [28]. And it is possible to control and detect the form of a complex field for a microwave sensing system. Coding the transmitting microwave field and decoding the echo signal can obtain the target information, and this imaging algorithm using the first-order field correlation is named as coincidence imaging.

Most existing optical systems use the second-order correlation of light fields to reconstruct the object reflective image; in these scenarios, targets are modeled as real-valued reflectivity in the field of view. The first-order correlation method is proposed to realize phase imaging for static complex-valued object planes. Considering that the vibration features of the object surface and the detection radiation field produce space–time modulation in essence, it is possible to extract vibrating information from the phase changes in the echo. However, considering that microvibration is a state time-varying object characteristic, static phase recovery imaging cannot satisfy the detection requirements of object vibrating features. There are some attempts [29] to use the spatial correlation characteristic of GI to realize the spatial–temporal perception of vibrating, and it has verified the feasibility of this theory. Considering the microvibration can be seen as a temporal–spatial modulation toward the radiation field on the surface of the target plane in essence, we model the vibration...
II. STATIC TARGET PHASE RECONSTRUCT IN COINCIDENCE IMAGING THEORY

A novel microvibration mode detecting algorithm through the first-order field correlation is proposed in this section. Fig. 2 depicts the systematic diagram of a first-order field correlation radiation field imaging system. The positions of the radiation fields generated in the whole imaging procession are annotated in Fig. 2, and their physical meanings are shown below.

1) $E_s(x_s, t)$ is the radiation field with the spatial distribution characteristics, which is spatial modulated by the prefabricated speckle patterns' coding from a temporal modulated coherence radiation field source. $E_s(x_s, t)$ are transmitted by the transmitters and stand for the radiation field on the transmitters plane, where x_s stands for the spatial coordinates of the transmitters’ plane.

2) The radiation field reaching the target plane x_o is denoted as $E_o(x_o, t)$ after the propagation at distance Z_1, and it is worth noting that $E_o(x_o, t)$ has no interference with the target characteristic at the moment.

3) $E_{
u}(t)$ is the radiation field on the surface of the receiver plane after the propagation at distance Z_2, and the propagation at Z_1 and Z_2 is denoted as the transmitting path. Considering that single-pixel receiver only receives a single point of coherent field, the receiving radiation field is a 1-D complex signal.

4) $E_r(x_r, t)$ is the radiation field which can be calculated based on the system configuration and detecting information in an actual engineering system. The effect of reference field is to eliminate the phase interference of system and propagation by coherence in essence. $E_r(x_r, t)$ is denoted as the reference path.

5) $E_{LO}(t)$ is the local oscillator (LO) radiation field with no spatial characteristics output from the frequency shifter.

6) $i(t)$ is the 1-D electronic signal output from the coherent detector and this electronic signal is obtained by the coherence of the LO radiation field $E_{LO}(t)$ and the received radiation field $E_o(t)$. $i(t)$ can have first-order field correlation with the reference radiation field $E_r(x_r, t)$.

Assuming there is no signal modulated at the phase of the carrier, the radiation field $E_r(x_r, t)$ can be written as

$$ E_r(x_r, t) = E_o(x_o) \exp(j 2 \pi f_c t) $$ \hspace{1cm} (1)

where f_c is the frequency of carrier. After the propagation from the multiple transmitters to the single-pixel coherent receiver, the radiation field on the receiver reflected from the targets can be written as

$$ E_s(t) = \int_{x_s} dx_s E_s(x_s) h_{vi}(x_s, t) \times \exp \left\{ j 2 \pi f_c \left[t - \frac{Z_1(t) + Z_2(t)}{c} \right] \right\}. $$ \hspace{1cm} (2)

In (2), the distance items Z_1 and Z_2 are set as temporary variables $Z_1(t)$ and $Z_2(t)$ for universality, which are produced by the translation motions and microvibrations, and $h_{vi}(x_s, t)$ is the propagating function which can be written as

$$ h_{vi}(x_s, t) \propto \int_{x_o} dx_o T(x_o, t) \exp \left\{ \frac{j k_2}{2 Z_1(t)} (x_o - x_s)^2 \right\} \times \exp \left\{ \frac{j k_1}{2 Z_2(t)} (x_r - x_o)^2 \right\}. $$ \hspace{1cm} (3)

For a microvibration target model with a translation motion in receiving signal, we construct it as a complex-valued target.
consisting of a reflection coefficient and a complex function caused by two types of motions, and its detailed models will be elucidated in Section III. The coherent detector outputs 1-D electronic signal \(i(t) \) after the coherence between \(E_{x}(t) \) and \(E_{LO}(t) \)

\[
i(t) = \eta E_{x}(t) \cdot E_{LO}^{*}(t)
\]

(4)

where \(\eta \) is the receiving efficiency of the coherent single-pixel detector. In a realistic engineering system, the background noise is a low-frequency noise, and the frequency shift can ensure the received signal away from the influence of the low-frequency noise. Thus, the \(LO \) field output by the frequency shifter can be expressed as

\[
E_{LO}(t) = A_{LO} \exp(j 2\pi (f_{c} - f_{1R})t)
\]

(5)

where \(f_{1R} \) is the shifting frequency. Thus, the electronic signal \(i(t) \) which is the coherent result between \(E_{LO}(t) \) and \(E_{x}(t) \) can be expressed as

\[
i(t) = \eta A_{LO} \int_{x_{s}} dx_{c} E_{x}(x_{c}, t) h_{c}(x_{c}, t)
\]

\[
\times \exp[j 2\pi f_{1R}t] \exp\left[-j 2\pi f_{c} \frac{Z_{1}(t) + Z_{2}(t)}{c}\right]
\]

\[
\propto \int_{x_{s}} dx_{c} E_{c}(x_{c}, t) h_{c}(x_{c}, t)
\]

\[
\times \exp\left[-j 2\pi f_{c} \frac{Z_{1}(t) + Z_{2}(t)}{c}\right].
\]

(6)

For the output signal from coherent detector \(i(t) \), the signal will be first-order correlated with the target surface radiation field \(E_{c}(x_{c}, t) \), which can be calculated based on the prior knowledge of this detecting signal spatial distribution [30]. \(E_{c}(x_{c}, t) \) is known as the reference path field, which can be written as

\[
E_{c}(x_{c}, t) = \int_{x_{s}} dx_{c} E_{c}(x_{c}, t) h_{c}(x_{c}, x_{c}) \exp[j k_{2} Z_{2}(t)]
\]

(7)

where \(h_{c}(x_{c}, x_{c}) \) represents the propagation function from the source plane to the target plane, and it can be written as

\[
h_{c}(x_{c}, x_{c}) \propto \exp\left[\frac{j k_{2}}{2 Z_{1}(t)}(x_{c} - x_{c})^{2}\right].
\]

(8)

By this stage, the first-order correlation function associated with the reference path radiation field in (7) and the 1-D electronic signal in (6) can be given as

\[
G_{x_{1}}^{(1)}(x_{1}, t) = \langle E_{c}^{*}(x_{c}, t) i(t) \rangle = \eta \langle E_{c}^{*}(x_{c}, t) E_{c}(x_{c}, t) \cdot E_{LO}^{*}(t) \rangle
\]

\[
\propto \int_{x_{s}} dx_{c} \int_{x_{s}} dx_{c} E_{c}(x_{c}, t) E_{c}(x_{c})
\]

\[
\times h_{c}^{*}(x_{c}, x_{c}) h_{c}(x_{c}, t) \exp[-j k_{2} Z_{2}(t)]
\]

(9)

where \(G_{x_{1}}^{(1)} \) refers to the first-order correlation function of a fluctuating scalar wavefield, and this function analyzes the coherence phenomena of two radiation fields \(E_{c}(x_{c}, t) \) and \(E_{x}(t) \) in essence. At the present stage, there are different theories about the expression of the first-order field correlation function. For higher order correlations, some theories refer to \(G_{x_{1}}^{(M, N)} \) as the (space–time) cross correlation function of order \((M, N)\) of radiation fields, the correlation functions for which \(N = M \) are particularly useful. They are often referred to as correlation functions of order 2\(M \). This nomenclature is inconsistent because some authors [31] refer to \(G(M, M) \) as a correlation function of order \(M \) as opposed to 2\(M \). In this article, we will use \(G_{x_{1}}^{(1)} \) to represent the expression of the first-order correlation function. Substituting (3) and (8) into (9)

\[
G_{x_{1}}^{(1)}(x_{1}, t) \propto \exp[-j k_{2} Z_{2}(t)] \int_{x_{s}} dx_{c} \int_{x_{s}} dx_{c} E_{c}(x_{c}, t) E_{c}(x_{c})
\]

\[
\times \int_{x_{s}} dx_{c} \tilde{T}(x_{c}, t) \exp\left[\frac{jk_{c}}{2 z_{1}(t)}(x_{c}^{2} - x_{c}^{2})\right]
\]

\[
\times \exp\left[\frac{jk_{c}}{2 z_{2}(t)}(x_{c} - x_{c})^{2}\right].
\]

(10)

As items in (10) are temporal-varying, the result of the first-order correlation would obscure the complex values after ensemble average, and the information of a complex target cannot be reconstructed precisely. We assume that the target is a perfectly stationary model to discuss the time-varying target model. In this scenario, the target model can be rewritten as a static complex target \(\tilde{T}(x_{c}) \), and meanwhile it is assumed that the relative distance between the target and the detection system remains constant, which means \(Z_{1}(t) = Z_{1} \), \(Z_{2}(t) = Z_{2} \). Then the first-order correlation function can be rewritten under these conditions as

\[
G_{x_{1}}^{(1)}(x_{1}) \propto \exp(-j k_{2} Z_{2}) \int_{x_{s}} dx_{c} \int_{x_{s}} dx_{c} E_{c}(x_{c}, t) E_{c}(x_{c})
\]

\[
\times \tilde{T}(x_{c}, t) \exp\left[\frac{jk_{c}}{2 z_{1}(t)}(x_{c}^{2} - x_{c}^{2})\right]
\]

\[
\propto \exp\left[\frac{jk_{c}}{2 z_{2}(t)}(x_{c} - x_{c})^{2}\right].
\]

(11)

Assuming that the radiation field source is spatially completely incoherent and uniform in free space, then the first-order correlation function \(G_{x_{1}}^{(1)}(x_{1}, x_{1}^{'}) \) on the source surface can be expressed by the Dirac function [32]

\[
G_{x_{1}}^{(1)}(x_{1}, x_{1}^{'}) = I_{0} \delta(x_{1} - x_{1}^{'})
\]

(12)

where \(I_{0} \) stands for the intensity of the radiation field. Meanwhile, the first order of the light source’s integration can be expressed as

\[
\int_{x_{s}} dx_{s} \exp\left[\frac{jk_{c}}{2 z_{1}}(x_{s} - x_{s})^{2}\right] = \frac{D}{\lambda z_{1}}(x_{c} - x_{s})
\]

(13)

where \(D \) stands for the equivalent aperture of the multiple transmitters. Under the hypothesis of ideal resolution, the surface details of the target can be perfectly mapped to the reference plane. Based on the condition of ideal resolution, the target plane coordinate system \(x_{o} \) could be replaced with the reference path field coordinate system \(x_{c} \). Substituting (12) and (13) into (11)

\[
G_{x_{1}}^{(1)}(x_{1}) \propto \exp(-j k_{2} Z_{2}) \tilde{T}(x_{c}) \exp\left[\frac{jk_{c}}{2 z_{2}}(x_{c} - x_{c})^{2}\right].
\]

(14)
Fig. 3. Radar first-order field correlation system schematic, considering wavelength order of the optical systems; the phase coherence of the optical field is affected by atmospheric turbulence and systematic errors during transmission. And the reference path radiation field can be calculated more accurately in the microwave systems, and hence, the radar systems are more suitable for the remote sensing scenarios.

It can be seen that except for the target complex-valued item, there are some residual phase items produced by the field propagation from (14). The virtual parameters modulation can be introduced into the reference path field to eliminate these extra phase items, and the virtual modulated reference field can be rewritten as

$$E_{\text{vr}}(x_c, t) = E_c(x_c, t) U_{x_c}(x_c) \tag{15}$$

where $U_{x_c}(x_c)$ is a virtual compensation function which is computationally attached to the reference path. The purpose of the function $U_{x_c}(x_c)$ is to filter the complex phase surface of the target by compensation and its form can change according to system configuration, and thus, the first-order field correlation function can be rewritten as $G^{(1)}(x_c, t) = \langle E^*_c(x_c, t) i(t) \rangle$.

For a static target detection, $U_{x_c}(x_c)$ can be expressed as

$$U_{x_c}(x_c) = \exp(jk\lambda Z_2) \exp\left[\frac{-jk\lambda}{2Z_2}(x_r - x_c)^2\right]. \tag{16}$$

Thus, substituting the new reference field function into the first-order correlation function, the static complex target can be reconstructed perfectly as following:

$$G^{(1)}(x_c) \propto \overline{T}(x_c). \tag{17}$$

According to (17), the static target complex plane information can be reconstructed by calculating the first-order correlation function between the radiation field in the reference path and the 1-D electronic signal. Consequently, a correlation imaging system for complex-valued target phase restoration is presented in this section. Based on the theory of correlation imaging, the feasibility of this imaging scheme is demonstrated theoretically. It also provides a theoretical basis for the reconstruction of complex-valued object with dynamic change due to vibration.

Since light belongs to electromagnetic (EM) waves in essence and there is no corpuscular property involved in the reconstruction procedures, this method can be further adopted and introduced into microwave imaging applications. A schematic of a microwave coincidence radar is shown in Fig. 3, and since the phase item of the microwave can be controlled and recorded precisely, it is easier for the first-order field correlation to be realized in a microwave radar system than an optical system.

III. ECHO MODEL BASED ON THE TARGET MICROVIBRATION MODEL

The target is roughly modeled as a complex-valued model $T(x_c, t)$ in the prior section, and it is necessary to build the analytic expression of the target model for further microvibration characteristics research. The target model based on the echo model is elucidated in this section. Another condition that needs to be illustrated is that the discussion about the microvibration model is completed in 3-D coordinate in this section. Differing from the other sections of expressing a 2-D plane in terms of 1-D variable, this section uses three variables x, y, z to represent 3-D changes.

As illustrated in Fig. 4, the radar source plane is in plane $x_S0_y_S$ of a stationary spatial coordinate system (x_S, y_S, z_S), while the target is in plane $x_Q0_y_Q$ of the reference coo-
The vector representation of target translation ν is discussed below: assuming that θ and γ are the azimuth and elevation angle of the translation direction in the stationary coordinate system, respectively, and the translation vector can be written as

$$\nu(t) = (ot \cos \gamma \cos \theta, \nu \cos \gamma \sin \theta, \nu \sin \gamma).$$

At this point, the instantaneous distance between scattering point Q and radar source center S_0 can be rewritten as

$$Z(t) = Z_d + \nu(t) t + \eta \left[\cos \beta \cos \beta_Q \cos(\alpha - \alpha_Q) + \sin \beta \sin \beta_Q \right].$$

The motion model needs to be solved in the whole field of view, and based on the single point Q motion, the scattering point Q can be expanded to the detecting area, including the 2-D plane and the 3-D depth.

Because the radiation field in free space propagates as a spherical wave, every point on a 2-D plane with a center point at Z_d from the center of the source plane may have a phase difference with the center point. The phase difference caused by the transverse distance can be compensated by the propagating function $H(x_s, y_s, x_o, y_o)$ between the source plane and the target plane, and its expression is

$$H(x_s, y_s, x_o, y_o) = \exp \left\{ \frac{jk}{2Z_d} \left[(x_s - x_o)^2 + (y_s - y_o)^2 \right] \right\}.$$

The target can be seen as a rigid body for translation motion when the axial rotations do not exist, and all the scattering points of the whole target remain the same translation state. The relative function that characterizes the time-varying phase difference between scattered points is set as $w(x_o, z_o, t)$ for microvibration motions. Meanwhile, the angle function is set as $A(\alpha, \beta, \alpha_Q, \beta_Q) = \cos \beta \cos \beta_Q \cos(\alpha - \alpha_Q) + \sin \beta \sin \beta_Q$, and the distance function from each points on the target plane to the center of the source plane can be rewritten as

$$Z(x_o, y_o, z_o, t) = Z_d + \nu(t) t + w(x_o, y_o, z_o, t) A(\alpha, \beta, \alpha_Q, \beta_Q).$$

The single-pixel coherent receiver is located on the same plane of the source. In the microwave sensing system, the distance between the receiver and the source center can be ignored, and thus, the phase difference caused by the distance between the receiver and the transmitters can be ignored, and we can assume that the single-pixel receiver is also located at the center of the source plane. Differing from the conventional radar sensing systems, the radiation field generated by the transmitters has spatial modulated patterns, and thus, the radiation field on the target plane should have spatial coding characteristics, and it is assumed that the patterns illuminated that field of view can be represented by the function $P(x_o, y_o, z_o, t)$ which can be written as

$$P(x_o, y_o, z_o, t) = \int dx_s E_s(x_s, t) \exp(jkZ_d) \times H(x_s, y_s, x_o, y_o).$$

The relative function $\phi(x_o, y_o, z_o, t) = 4\pi Z(x_o, y_o, z_o, t) \lambda_c$ where λ_c is the carrier wavelength, and the function $\phi(x_o, y_o, z_o, t)$ represents...
all the distance-dependent phase changes. In the field of view I, the output electronic signal of the receiving radiation field detected by a single receiver after coherence with LO field can be written as

$$i(t) = \int d\sigma d\eta d\zeta \cdot P(\sigma, \eta, \zeta, t) \cdot T(\sigma, \eta, \zeta) \times \exp\left[j2\pi f_{IF} t + \phi(\sigma, \eta, \zeta, t)\right] \times H(\sigma, \eta, \xi, \psi) + o(t)$$

$$= \int d\sigma d\eta d\zeta \cdot T(\sigma, \eta, \zeta) \times \exp\left\{\frac{j4\pi}{\lambda_c} \left[\frac{f_{IF} t}{2} + Z_d + \omega(t)\right] + W(\sigma, \eta, \zeta, t)A(a, \beta, \alpha, \beta)\right\} \times H(\sigma, \eta, \xi, \psi) + n(t)$$

where f_c is the carrier frequency, c is the light speed, $n(t)$ is the background noise, $T(\sigma, \eta, \zeta)$ is the scattering coefficient of the whole target plane, and $H(\sigma, \eta, \xi, \psi)$ stands for the propagation function from the target plane to the receiving plane. According to the echo model, this article will keep on our research based on these reduced conditions introduced below.

1. When both the azimuth and elevation of a radar system are 0, then $a = 0 \text{ and } \beta = 0$.
2. When the azimuth and elevation of the scattering point Q vibration direction are 0 in the reference coordinate system, then $a_Q = 0 \text{ and } \beta_Q = 0$.
3. This article focuses on the microvibration modes’ spatial distribution and target microvibration characteristics’ recognition, and thus it is assumed that the target translation is 0, then $o(t) = 0$.
4. To keep things simple, this study solely discusses 2-D targets and ignores target depth, and hence, $Z_d = 0$.
5. Ideally, background noise is not considered, and thus $n(t) = 0$.

Based on these simplifications, (27) can be rewritten as

$$i(t) = \int d\sigma d\eta d\zeta \cdot P(\sigma, \eta, \zeta, t) \exp\left\{\frac{j4\pi}{\lambda_c} \left[\frac{f_{IF} t}{2} + Z_d + \omega(\sigma, \eta, \zeta, t)\right] \times H(\sigma, \eta, \xi, \psi) + n(t)\right\}$$

Consequently, according to (28), except for the phase changes due to propagation, the target complex model is determined; assuming there are k scattering points in the field of view, then the target complex model can be written as

$$\tilde{T}(x_o, t) = T(x_o)\delta(x_o - x_{o,k}) \exp\left\{j2k_z w(x_o, k, t)\right\}$$

where the Delta function stands for the location of the scattering points, and the detailed formation of vibration function $w(x_{o,k}, t)$ is different in discrete targets and continuous targets, which will be discussed in Section IV.

IV. DISCUSSIONS ABOUT TWO TYPES OF TARGET MICROVIBRATION MODELS

The detailed models of different objects will be proposed in this section. The objective periodical vibration remains stable during the whole correlation detection in the realistic scenarios. Targets can be classified into two categories based on their size and the minimal resolution unit in the field of view: discrete targets and continuous targets. For simplicity, we assume that the target does not lie on the boundary between the two resolution units, which might lead to ambiguity in the final picture. As shown in Fig. 5, when the single target size is smaller than a speckle in the field of view, this target can be seen as a scattering point; in this case, the microvibration of a single target has no spatial distribution. When the target is much greater than a single speckle scale, the microvibration characteristics of each scattering point on the target must conform to the constraint of function $w(x_o, t)$.

A. 2-D Discrete Microvibration Model

The objects to be detected are a group of scattered points that have no spatial relevance in essence in discrete targets’ detecting scenarios. Assuming that there are k objects in the field of view, then

$$w(x_{o,k}, t) = \sum_{k=1}^{K} w(x_o)\delta(x_o - x_{o,k}) Z_k \eta_k(t)$$

(30)

where Z_k stands for the amplitude of the kth vibrating objects. For the stable point periodical vibration, the microvibration function $\eta_k(t)$ can be expanded by the Fourier series. As a result, (30) can be rewritten as

$$w(x_{o,k}, t) = \sum_{k=1}^{K} \sum_{n=0}^{\infty} w(x_o)\delta(x_o - x_{o,k}) Z_k \cos(2\pi f_{k,n} t + \phi_{k,n})$$

(31)

Each of the Fourier components has two constant items: amplitude Z_n and initial phase ϕ_n. f_n is the schema of each vibration which can be detected in the frequency spectrum after the Fourier transform. Due to the fact that the discrete target can be equivalent to several scattering points, the echo consists of multiple scattering information superimposed, and when we have number k discrete targets, then the kth target
complex model can be rewritten as

\[
\tilde{T}(x_o, t) = \sum_{k=1}^{\infty} \sum_{n=0}^{\infty} T(x_o) \delta(x_o - x_{o,k}) \exp[j 2 k_{zw}(x_o) \delta(x_o - x_{o,k})] \\
\times Z_{k,n} \cos(2\pi f_{k,n} t + \phi_{k,n})]. \tag{32}
\]

B. 2-D Continuous Sheet Microvibration Model

Unlike discrete objects, the strain characteristics of non-grid bodies should be taken into account. Each scattering point is determined not only by longitudinal vibration but also by transverse propagation, with longitudinal expansion accompanied by lateral contraction. There are two types of transverse propagation systems for the objects: stationary wave systems and traveling wave systems. Whereas the objects to be measured in most of our detecting scenarios are stationary wave systems, the traveling wave systems model will not be discussed in this article.

The principal modes, also known as the transverse propagation distribution on the surface of the target, can be simplified into a 1-D superposition of \(M\) space fundamental modes based on the separation of space and time. The theoretical support of the 2-D continuous sheet model can be found in the Appendix. This stationary wave model allows the continuous object model to be expressed as

\[
\tilde{T}(x_o, t) = T(x_o) \exp[j 2 k_{zw}(x_o, t)] \\
= \sum_{m=0}^{\infty} T_m(x_o) \exp[j 2 k_z W_m(x_o) \eta_m(t)]. \tag{33}
\]

Every vibration has its corresponding space mode, even though each space mode normally corresponds to a single frequency vibration for realistic targets. Without loss of generality, the periodical vibration function \(\eta_m(t)\) can also be expanded by the \(n\)-order Fourier series, and thus, formula (33) can be further rewritten as

\[
\tilde{T}(x_o, t) = \sum_{m=0}^{M} T_m(x_o) \\
\times \exp\left[j 2 k_z W_m(x_o) \sum_{n=0}^{\infty} \cos(2\pi f_{mn} t + \phi_{mn})\right]. \tag{34}
\]

where \(T_m(x_o)\) is the reflectivity image of the \(M\)th principal mode. The constraint models of each reflection point in 2-D continuous target plane have been established explicitly from function (34). The whole target is composed of \(M\) principal modes, and each mode corresponds a vibration time-varying function. A time-varying function can be fit by the Fourier series without loss of generality. According to the target model, all the interesting information is contained in the phase item, and consequently, the phase reconstruction by the field correlation function provides theoretical support for further extraction of these mode information.

V. MICROVIBRATION MODES’ DETECTION ALGORITHM

Based on the target models introduced previously, this section proposes the methods to extract vibrating target time–spatial characteristic variables. The phase information including the vibration modes is generally lost in the traditional GI algorithms, and the phase information is not constant during correlation detection for vibrating objects. Thus, the core problem in the microvibration modes detection is how to smooth and eliminate the phase item time-varying feature during detection.

A. Discrete Targets’ Reconstructing Derivation

For discrete targets shown in (32), substituting the discrete target model into the first-order field correlation function shown in (10)

\[
G^{(1)}_{x_s}(x_c, t) = \exp(-jk_{zw} Z_s) \int x_s dx_s dx_c \int x_c dx_c E_s(x_c) E_s^*(x_c) \\
\times \sum_{k=1}^{\infty} \sum_{n=0}^{\infty} \int x_c dx_c T(x_c) \delta(x_c - x_{o,k}) \\
\times \exp[j 2 k_{zw}(x_c) \delta(x_c - x_{o,k})] \\
\times \exp(2\pi f_{k,n} t + \phi_{k,n}) \right]. \tag{35}
\]

From the preceding analysis, it can be seen that the characteristic curves’ extraction algorithm can hardly recover different objects motion mode, but the frequencies of vibration modes could be acquired readily. Considering that the prior vibration model for discrete objects has been established, the virtual time coding which is modulated in the speckle field of the reference path can be modified to eliminate the target time-varying microvibration. For a certain microvibration mode \(\epsilon\), its vibration frequency \(f_{x_s,n}\), amplitude \(Z_{s,n}\), and initial phase \(\phi_{x_s,n}\) are the parameters that can be found in the time–frequency spectrum, and their corresponding spatial distribution should be \(T(x_o,k)\). To extract the target microvibration spatial distribution image, this method needs to eliminate the phase vibration characteristics of the target and make the first-order field correlation, so that the target reflectance image will not be blurred with the ensemble averaging process. Based on the virtual modulation code function \(U_{x_s}(x_c)\) which is introduced in (15), we can rewrite the function (16) on the basis of the
discrete target model as

\[\tilde{U}_c(x_c) = \exp\left(jk_2 Z_2 \right) \exp\left(-\frac{jk_2}{2Z_2} (x_c - x_n)\right) \times \exp\left[-j2kZ_{\epsilon,n} \cos\left(2\pi f_{\epsilon,n} t + \phi_{\epsilon,n}\right)\right]. \]

Then substituting (36) into function (35), and arranging the first-order field correlation function in order

\[G^{(1)}(x_c, t) \propto T(x_c, \epsilon) \times \sum_{k=1}^{K} \sum_{n=0}^{\infty} T(x_n, k) \times \exp\left[j2kZ_{\epsilon,n} \cos\left(2\pi f_{\epsilon,n} t + \phi_{\epsilon,n}\right)\right]\]

\[\times \exp\left[-j2kZ_{\epsilon,n} \cos\left(2\pi f_{\epsilon,n} t + \phi_{\epsilon,n}\right)\right], \quad k \neq \epsilon. \]

It can be seen from (37) that for the spatial distribution of the target vibration mode \(f_{\epsilon} \), the relevancy is accumulated within the multiple sampling matches. Meanwhile, despite the fact that other modes have projection residues on the target mode due to their nonorthogonality, these residual items will be eliminated under the condition of ensemble average, and therefore, the field correlation function can be reformulated as follows:

\[G^{(1)}(x_c, t) \propto T(x_c, \epsilon). \]

Since then, the theoretical discrete target model of the spatial distribution reconstruction algorithm has been established from the result of (38). It can be seen that when different discrete targets share the same model, multiple scattering points can be seen in the final image, and this can help the imaging system to filtrate the collective targets based on their microvibration modes in the field of view.

B. Discrete Target Reconstructing Simulation Results

This method can be used in microwave radar systems whose emitting radiation field can be recorded and controlled by the multitransmitters as discussed before [16], [20]. For simulation, the systems still set as an optical system on the condition that the light complex field is the prior value. This wavelength belongs to the “atmospheric window” which can be transmitted in a long distance [33]. The parameters of light systems are set as given in Table I.

Different coding methods have different imaging resolutions, and we adopt Hadamard as our transmitting radiation field pattern as shown in Table I, and the imaging resolution of this encoding form is equal to the size of each speckle. There are some studies on super-resolution coding that can use varying speckles sizes to break through the resolution limits of the traditional coding methods [34], [35].

TABLE I

Lambda	\(\lambda = 1550e^{-9}\)m
Period	\(T=1s \)
Sampling Rate	\(f_s = 20s^{-1} \)
Coding Method	Hadamard
Pattern Size	\(32 \times 32 \)

Fig. 7. Field of view has several discrete point targets and their scale is smaller than the resolution of speckle field transmitted to the target plane; different vibration modes are remaining among them and the objects which own the same vibration modes can be seen as the collective objects. In this scenario, these objects will be set to three modes randomly.

For generality, (32) introduces that every vibration mode is expanded by the \(n \)-order Fourier series which can fit periodic vibrations of all the objects. However, the majority of practical targets only vibrate at a single frequency, and thus, we adjusted each vibration mode in the simulation to correspond to a single frequency.

Table II shows parameters for the three vibration modes. Assuming that 12 objects randomly appear in the field of view, and each of them has the same reflection coefficient. As shown in Fig. 7, all the targets only have single reflection points in the field of view.

Even though (38) explains that the residual items will be eliminated under the condition of an ensemble average of infinite sampling, in realistic sensing systems, these residual items will be reserved due to limited samples. Then a spatial relevance high-pass filter can be set on the final image, and these residual items can be perfectly filtered due to their noncorrelation with virtual modulation function \(\tilde{U}_c(x_c) \).

As shown in Fig. 8, it shows that several discrete targets share the same vibration mode, and by detecting a certain vibration mode, those targets which having the same mode can be reconstructed in the final image. Different vibrations are filtered under the different virtual reference path modulating functions \(\tilde{U}_c(x_c) \). Each mode reconstruction result has redundancy in each target edge, which is caused by the speckle field patterns modulated in the reference path. Based on the static meshing method of the speckle field, when the target place is in the boundary between the multiple subgrids of the speckle field, the target can be illuminated by several subgrids in one pulse, rather than by a single speckle spot. The boundary
target model up as follows:

\[v(t) = \sum_{m=0}^{M} T_m(x_o) \times \exp\left[j 2 k_j W_m(x_o) \sum_{n=0}^{\infty} \cos(2\pi f_{mn} t + \phi_{mn})\right]. \]

(39)

The principal mode \(W_m(x_o) \) can be interpreted as the spatial amplitude distribution in the 2-D target plane during the vibration process of the target. Each mode has a corresponding reflection coefficient image, and \(M \) spatial modal reflecting coefficient images constitute the final target reflecting coefficient image \(T(x_o) \). The virtual time domain coding method introduced in discrete targets’ vibration mode detection cannot be used in the 2-D continuous target sensing scenarios. The continuous target can be seen as a collection of discrete scattering points constrained by a transverse propagation function. There would be only several strong scattering points matched in the correlation with the virtual time coding reference path in continuous target detection, and it is meaningless for the reconstruction of the principal modes. Since the principal mode function \(W_m(x_o) \) of the signature objects has a distinct relevancy with material and shape characteristics, reconstructing the primary mode function \(W_m(x_o) \) will greatly improve the ability to obtain high-dimensional information for a sensing system. Thus, a new method is proposed in the continuous target detecting scenario, which can be called a time interval sampling method.

Because the first-order field correlation function can reconstruct static complex target imaginary values, a sampling interval time \(T \), which is also the period of target vibration, can be set in the echo sampling for a periodical vibration target. A new series of time sequences will be acquired at the new sampling time interval. The complex target plane remains consistent in this time sequence. According to the continuous target model, the target plane has limited number principal modes. For an echo which has a long enough sampling time, we can always find a new time sequence sampled at the sampling interval \(T \) from the original echo, and the target is equivalent to a static target in this new time sequence. For different values of sampling time interval \(T \), there are two types of reconstruction methods to have different target images.

Type 1: Because function \(\eta_m(t) \) represents the periodical vibration of the \(M \)th principal mode, a sampling interval \(N_t \) is set to eliminate the space vibration characteristic and make the phase item of the target plane remain consistent. To determine the value of \(N_t \), the frequencies of principal modes should be obtained first. As shown in the first branch of the flow diagram of Fig. 11, the time–frequency spectrum is acquired after the time–frequency analysis. The time–frequency spectrum shows \(m \times n \) time–frequency characteristic curves, which corresponds to its own vibration frequency \(f_{mn} \), overlapping in the spectrum. The period time of each vibration frequency \(f_{mn} \) is denoted as \(T_{mn} \) containing \(N_{mn} \) sampling points, so that the new sampling interval \(N_t \) could be equal to the least common multiple of all \(N_{mn} \) which could be determined in the time–frequency spectrum. Since \(t_0 \) is the initial sampling point, the continuous target model expressed by (34) can be rewritten as

\[T(x_o) = \sum_{m=0}^{\infty} T_m(x_o) \times \exp[j 2 k_j W_m(x_o) \eta(t_0)] \]

(40)

where, \(\eta_m(t_0) \) is a nontime-varying item. During all the sampling points in the new time sequence, the phase plane remains unchanged which means

\[\eta_m(t_0) = \eta_m(t_0 + n N_t T_p) \]

(41)

where \(T_p \) is the sampling interval between adjacent sampling points, and \(n \) is the serial number of new time sequence. Supposing that the output signal of the photoelectric receiver contains a total of \(N_t \) sampling points, then \(n = [(N_t/N_i)] \).

Thus, the first-order field correlation function in the continuous detecting scenarios can be rewritten as

\[G_{x_i}(x_c) \exp(-jk_i Z_2) \int_{x_i} d x_i \int_{x_o} d x_o \times E_j(x_i) E_j^*(x_o) \sum_{m=0}^{\infty} T_m(x_o) \]

\[\times \exp\left[\frac{ik}{2Z_2}(x_o^2 - x_i^2)\right] \times \exp\left[\frac{ik}{2Z_2}(x_c - x_o)2x_c\right] \times \exp\left[\frac{ik}{2Z_2}(x_c - x_i)2x_i\right]. \]

(42)
Sampling interval \(k \) for the 2-D Fourier transform below principal modes. The image shows the relationship between the target type and \(M \), as shown in Section II. A result, function (42) can be arranged as follows:

\[
G^{(1)}(x_c) \propto \sum_{m=1}^{\infty} T_m(x_c) \exp[j2k_zW_m(x_c)\eta_m(t_0)].
\]

Equation (44) and Fig. 9 show that there are \(N_i - 1 \) sequences which could be obtained through the interval sampling method theoretically with the change in the initial sampling point \(t_0 \), and it means that there are also \(N_i - 1 \) final images which can be obtained through the first-order field correlation. These images can demonstrate how the complex target plane changes over time \(T_pN_i \), and the sequences of images can also provide some target microvibration characteristics for further imaging processing.

Recalling the complex image derived from field correlation, the first-order field correlation result consists solely of \(M \) principal modes and their corresponding reflective coefficient at time \(t_0 \). The \(M \) principal modes have linear superposition in the same plane for this complex image, as demonstrated by the 2-D Fourier transform below

\[
|\mathcal{T}(u, v)| = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathcal{T}(x_0, t_0) \exp[-j2\pi(ux + vy)]dx dy. \tag{45}
\]

The \(M \) principal modes can be represented discretely in the \(K \)-space after 2-D Fourier transform. As \(t_0 \) changes, the frequency peak in \(K \)-space will not change except for the phase, and thus the \(K \)-space image of the reconstructed target image shows the relationship between the target type and principal modes.

Type 2: The method mentioned in **Type 1** whose new sampling interval \(N_i \) is equal to the least common multiple of all \(N_{mn} \) can fully reconstruct the superimposed image of all the principal modes with periodical changes. However, the time–frequency characteristics have been smoothed due to the interval sampling, and the spatial distribution of each frequency cannot be shown in the results. The new sampling time interval can be set equal to \(T_{mn} \) to solve the space distribution of each single principal mode problem, where \(T_{mn} \) is the period time corresponding to the \(m \)th principal mode and \(n \)-order frequency. Because the periodical time-varying function \(\eta(t) \) can be expanded by the Fourier series, the fundamental mode period \(T_m \) is integer multiples to all the high-order vibration period \(T_{mn} \). Periodical sampling of the fundamental mode vibration can also be carried out by periodical sampling of higher order mode vibrations. The same as **Type 1**, the mode frequency \(f_m \) can be determined in the time–frequency spectrum.

Assuming that the frequency awaits to be solved is \(f_z \), the new sampling time interval is \(T_i \), and the sampling points’ number containing in \(T_i \) is \(N_i \). According to corresponding relationships shown in Fig. 10, the corresponding speckle field patterns’ sequence can be found for the new sampling sequence. Since \(t_0 \) is the initial sampling point, the continuous target model can be rewritten from (34) as

\[
\mathcal{T}(x_0, n) = T_i(x_0) \exp[j2k_zW_i(x_0)\eta_i(t_0)]
\]

\[
+ \sum_{m=0}^{N_i-1} T_m(x_0) \times \exp[j2k_zW_m(x_0)\eta_m(t_0 + nT_pNi)], \quad m \neq i
\]

\[(46)\]

where \(n \) is a serial number of new sequence sampling points, and \(n = [(N_i/N_{11})] \) in this scenario. The target model contains the time-invariant items of the principal mode to be measured and time-varying coupling items of other modes as shown in (46). Substituting the result of (46) into the first-order field correlation function

\[
G^{(1)}(x_c, n) \propto \mathcal{T}_i(x_c) \exp[j2k_zW_i(x_c)\eta_i(t_0)]
\]

\[
\exp(-jE_i(x_c)E_i^*(x_c)\sum_{m=0}^{\infty} T_m(x_0))
\]

\[
\times \exp[j2k_zW_m(x_0)\eta(t_0 + nT_pNi)]\mathcal{U}_m(x_c)
\]

\[
\times \exp[jk_zd(x_c - x_0)^2] \exp[jk_zd(x_c - x_0)^2] \exp[jk_zd(x_c - x_0)^2]
\]

\[(47)\]

where \(m \neq i \). It can be seen that (47) consists of a constant complex item which is the space distribution of the filtering target principal mode \(W_i(x_0) \) and a residual item which is from the other modes’ coherence superposition at the interval \(T_i \). Since these principal modes have coherent aliasing in two dimensions. The same as discrete target reconstruction, there are other principal modes that have projection residues on the principal mode \(W_i(x_0) \) due to their nonorthogonality. Whereas in ideal infinite sampling ensemble average situation, the residual mathematical expected value is equal to zero. Consequently, the field correlation function can be rewritten as

\[
G^{(1)}(x_c) \propto \mathcal{T}_i(x_c) \exp[j2k_zW_i(x_c)\eta_i(t_0)].
\]

\[(48)\]
Fig. 10. Corresponding relationship between N speckle field patterns, N transmitting pulses, and N_s sampling points. For the interval sampling method, the new time sequence interval sampled from the original echo needs to find its matching speckle field pattern to process the field correlation.

Fig. 11. Flow diagram about two different types of the interval sampling method; type one method sampled at the interval N_t can finally obtain the linear superposition of all the principal mode images at time t_0, and from 2-D Fourier transform, all different principal modes have their corresponding independent frequency peak in K-space. Type two method shown in second row has new time interval N_i, and the final images obtained by this way can give the spatial distribution of each frequency detected in the time–frequency spectrum without spatial properties.

In this method, every vibration space distribution can be shown separately in images, and the same as Type 1 as shown in Fig. 9, $N_i - 1$ time sequences can be acquired by selecting different initial sampling point t_0. A series of resulting images can show complex plane changes in a single principal mode $W_i(x_o)$ in a period T_i. The result of the 2-D Fourier transform is not accurate considering the existence of the residual items in the resulting mode, and thus, the position in K-space is inaccurate for the Fourier spectrum analysis.

D. Continuous Model Reconstructing Simulation Results

The optical system is used as the sensor platform in continuous target detection scenario simulations. The configuration of the system is identical to the sensing systems in discrete target detecting scenarios except for the target model. As mentioned before, the scale of continuous targets is much greater than the single resolution of the speckle field. To have a better display of the simulation effect, the entire field of view has been set to a reflection plane where the scattering points have the same reflectivity. The continuous target parameters are shown in Table III.

As shown in Fig. 12, two types of principal modes, which are typically observed in practical circumstances, are put on the continuous target. Two same forced vibration source centers are placed in different positions to test the spatial resolving ability toward the same patterns, and such forced vibration sources are common in realistic detecting scenarios, such as the vibration of an engine, the beating of the heart, and the swing of a mechanical arm or a human arm. In addition, another type of free vibration is placed on the target surface; this type of principal mode vibration is more impacted by material properties.

The following are the premises of this continuous target vibration detection simulation.

1) All these modes are stationary wave vibration, and traveling wave systems are not discussed in this study.
2) The amplitude of forced vibration is far greater than the free vibration normally; to make the final image more obvious, the times of amplitudes of two types of vibration are limited within ten.
3) The time-varying vibration function $\eta_m(t)$ corresponding to the mth principal mode in this scene is set as a simple harmonic vibration for simplification.
Fig. 12. Principal modes’ images at time t_0; modes (a)–(c) are the three different principal modes, respectively, and (d) is the final image of these three modes superposition, where mode (a) and mode (b) are the same forced vibration; it can be seen as the target plane has two identical types of excitation sources in different locations. Mode (c) is a type of free vibration, the vibration of this principal mode is not forced by external source, and there is usually a strong material correlation between free vibration and target characteristics. Since it is realized under the framework of the optical detection system, the amplitude scale that can be detected is smaller than the wavelength of laser, which is 1550 nm in this simulation.

Fig. 13. Reconstruction results of principal modes at different time points. (a)–(d) Final image of these three modes’ superposition changes during a single period, and if the sampling rate is high enough, the step interval of t_0 can be shortened and a finer variation image of the target surface can be obtained.

The time–frequency analysis toward the receiving signal from the time–frequency spectrum is necessary for reconstructing the whole principal modes’ spatial distribution. According to the frequency obtained from the time–frequency spectrum, the required time sampling intervals N_t and N_i can be calculated. Since we propose two types of reconstruction methods for different requirements in continuous target detecting scenarios, the result can be divided into two parts. **Type 1**, we can see there are three vibration motions detected in the field of view as shown in Fig. 13, which can be recorded as f_m, $m = 1, 2, 3$. Combining with the sampling rate of the receiving system, the number of sampling points corresponding to each vibration period can be obtained, which can be recorded as N_m, $m = 1, 2, 3$. According to the time interval sampling method introduced in Fig. 9, the least common multiple N_t can be calculated from N_m. The new time sequence obtained by sampling at interval N_t points can be first-order correlated with the reference radiation field corresponding to the sampling time points. In a periodical sampling point N_t, the change in the principal modes on the whole target plane can be obtained by stepping the position of the first sampling point.

The time varying in a period of three principal modes can be seen explicitly as shown in Fig. 13. Taking t_0 equal to four different time points at the same interval in a period. All the images can theoretically be integrated into a video to better study the microvibrations’ characteristics of the target surface if the sampling number is large enough. Even though the image sequence of all the principal modes can be clearly observed, there is still no one-to-one correspondence between frequencies measured from echo time–frequency analysis and the spatial distributions of principal modes, but the method introduced in **Type 2** can solve this problem. Because the three vibration motions detected in the time–frequency spectrum are recorded as f_m. Assuming $N_i = N_m$, and $m = 1, 2, 3$, for the new time sampling points’ interval N_i. For a certain frequency f_i, its corresponding spatial distribution can be obtained. All the three types of principal modes can be reconstructed as shown in the first row of Fig. 14. Similarly, we set t_0 equal to four different time points at the same interval in a period, and then three sequences of three principal modes are obtained. Because the time sampling points obtained are far less than the complete time sampling sequence, the new time sequence involved in the first-order field correlation falls far short of the requirement for an ensemble average, as shown in (47), and the residual item of the other modes cannot be completely eliminated. Thus, in the nonideal situations,
Fig. 14. This figure shows the complex plane of three principal modes change in a period: Figures (a)-(d), (e)-(h), and (i)-(l) stand for the temporal change of different principal modes, respectively. Because of the insufficient sampling rate of realistic systems, the residual projection from the other principal modes to the mode to be measured are reserved in the final images, set the first row images as an example, the free vibration distribution can be clearly seen and except for the center are of forced vibration, the transverse propagation of this forced vibration is submerged with the residual items.

(47) can be rewritten as

\[G^{(1)}(x_c) \propto T_i(x_c) \exp[j 2 k \lambda W_i(x_c) \eta_i(t_0)] + \frac{1}{n} \sum_{n=1}^{N} \sum_{m=0}^{\infty} T_m(x_c) \exp[j 2 k \lambda W_m(x_c) \eta(t_0 + nT_p N_i)] \]

(49)

where \(N \) is the final serial number of the new sampled time sequence. According to (49) and the first row of Fig. 14, the residual item caused by the free vibration principal mode can be observed clearly, except for the forced vibration center, and other propagation characteristics of the target plane are obscured by the residuals of other principal modes. Meanwhile, in the third row of Fig. 14, two forced vibration centers can also be barely observed in the images. Generally speaking, the amplitude scale of the vibration usually reaches the micrometer level. The vibration of this magnitude level can be detected in the optical system, which is very important for future measurements of the optical system’s material characteristics. For microwave systems, the detection of this free vibration mode is also useful in some scenarios, such as the oscillation of a sea-crossing bridge or a skyscraper.

VI. CONCLUSION

In this work, the first-order field correlation imaging mode was first derived from a theoretical analysis of the target motion. We then proposed the microvibration mode reconstruction algorithm on the basis of the first-order field correlation. The feasibility of this theory is verified by numerical simulations. To the best of our knowledge, this is the first time for sensing systems to reconstruct the temporal–spatial distributions of different vibrating targets in a theoretical method. The simulation results showed that the target mode temporal–spatial distributions are well-reconstructed.
The proposed method in this study has a good combination of time-frequency spectrum filtering and spatial imaging compared with the conventional imaging systems. Hence, this study provides the spatial distribution information and time-domain information simultaneously. Due to the fact that we have only established the mathematical analytic model for the imaging process, there is still a great deal of work to be done on the effects, such as a more precise vibration mode, a method can overcome the residual on imaging caused by inadequate sampling, and a more efficient estimation method of target surface radiation field.

APPENDIX

The ratio of transverse strain to longitudinal strain is known as Poisson’s ratio of solid materials according to the solid material general feature [36]. Generalizing the equation of wave motion to a 2-D plane when the turning radius is rectangular section

\[\nabla^4 w + \frac{3\rho(1-\mu^2)}{Eh^2} \frac{\partial^2 w}{\partial t^2} = 0 \]

where \(\nabla^4 \) is the quadruple-harmonic operator, \(E \) is Young’s modulus of different materials, \(\mu \) is its Poisson’s ratio, \(\rho \) is its intensity, \(2h \) is the thickness, and \(w \) represents the vibration function in the time domain. Under the Kirchhoff \(G \) model, the target can be considered as a sheet when its thickness is substantially smaller than its surface size. This part establishes the small deflection bending theory of elastic sheets and provides an accurate model of transverse vibration of rectangular plates. For other types of objects, the vibration model is adaptable by modifying the initial conditions and boundary conditions, which will not be classified or discussed in this study. The basic assumptions can be summarized as follows: the middle plane bisecting the plate thickness is the central plane, set the central plane as \(xOy \) plane, and the \(Rt \) coordinate space system is established as shown in Fig. 6. When a sheet bends, the central plane becomes a curved surface known as an elastic surface, and the displacement of a random point on this plane is \(u \), \(v \), and \(w \), which correspond to the directions \(x \), \(y \), and \(z \), respectively, where \(w \) is the deflection.

1) Normal line hypothesis: The normal line which is perpendicular to the central plane remains straight in the whole process and also remains perpendicular to the curved surface of elasticity. In the other way, even though when the transverse shear stresses \(\tau_{xz} \) and \(\tau_{yz} \) are nonzero, the transverse shear deformations \(\gamma_{xz} \) and \(\gamma_{yz} \) are ignored.

2) The internal stresses of a bending plate are mainly \(\sigma_x \), \(\sigma_y \), and \(\tau_{xy} \), and the secondary stresses are \(\tau_{xz} \) and \(\tau_{yz} \), and the minimum stress is \(\sigma_z \).

3) The change in thickness should be ignored, i.e., \(\varepsilon_z = 0 \), so that every point on the line perpendicular to the elastic plate could have the same transverse displacement \(w \), which indicates that \(w \) has no relationship with \(z \).

4) Deflection \(w \) should be much less than the thickness of the sheet \(h \), that is to say, all the points on the surface of the central plane remain on the central plane during target deformation.

The rectangle infinitesimals \(dx \times dy \) on the central plane can be replaced by the infinitesimal bodies \(hdx \times dy \) based on the hypotheses listed above, so that the differential equation of the sheet’s transverse vibration can be written as

\[D_0 \nabla^4 w + \frac{\rho h^2\partial^2 w}{\partial t^2} = p(x, y, t) \]

where \(p(x, y, t) \) is a stress function, which represents the forced vibration on the target sheet, and \(D_0 = (Eh^3/12(1-\mu^2)) \) is the flexural rigidity of the sheet, and the equation should be transformed to a tensor form if the infinitesimal has not been replaced by rectangle infinitesimals

\[\sigma = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix}, \quad D_1 = \begin{pmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & \frac{-\mu}{2} \end{pmatrix} \]

where \(D_0 \) represents the scalar and \(D_1 \) represents the non-scalar. Equation (52) can be further organized as

\[\sigma = \frac{E}{1-\mu^2}D_1\varepsilon + \frac{E\varepsilon}{1-\mu^2}D_1\kappa \]

where \(\kappa \) is the transverse strain vector, and thus the torque tensor can be determined as follows:

\[M = \frac{E}{1-\mu^2}D_1\kappa \int_{h/2}^{-h/2} z^2 dz. \]

Simplifying boundary conditions, the boundary of the sheet has no deflection and no bending moment (\(x = 0 \)), and thus we could assume that the boundary conditions can be set as follows:

\[w \bigg|_{x=0} = 0, \quad \frac{\partial w}{\partial x} \bigg|_{x=0} = 0. \]

Assuming that all the vibrations composed by the forced vibrations can be seen as a linear superposition of free vibrations, we can discuss the free vibration of sheets first, and when \(p(x, y, t) = 0 \), the free vibration function can be acquired

\[D_0 \nabla^4 w + \rho h^2 \frac{\partial^2 w}{\partial t^2} = 0. \]

The vibration function should have a formal solution of separation of variables

\[w(x, y, t) = W(x, y) \sin(\omega t + \phi) \]

where \(W(x, y) \) is the principal mode, so \(\omega \) is the corresponding characteristic frequency. Substituting (58) into (57)

\[\nabla^4 W - \beta^4 W = 0 \]

where \(\beta^4 = (\rho h/D_0)\omega^2 \), and because of the homogeneity of the boundary conditions for \(W \), \(\omega \) can be rewritten as \(W \) directly. For the case of four-sided supporting, the exact principal mode vibration expression can be obtained as

\[W_{i,j}(x, y) = A_{i,j} \sin \frac{i\pi x}{a} \sin \frac{j\pi y}{b}, \quad i, j = 1, 2, 3, \ldots \]

where \(A_{i,j} \) is the amplitude corresponding to different order vibration. From (59), we can know that if we need the final
form of principal mode, we need to solve the differential equation (58), and \(\beta \) should satisfy the boundary condition
\[
\left[\left(\frac{i \pi}{a} \right)^2 + \left(\frac{j \pi}{b} \right)^2 \right] - \beta^4 = 0 \tag{60}
\]
which can be rewritten as the form of eigenfrequency
\[
\omega_{i,j} = \pi^2 \left(\frac{i^2}{a^2} + \frac{j^2}{b^2} \right). \tag{61}
\]
The precise orthogonality of eigenfrequency among the primary vibration can guarantee that decomposition is regular. However, our method of detection focuses on the whole plane, and we only need the variations’ form of the differential equation on the whole sheet plane \(\Omega \)
\[
\int \int_\Omega (D_0 \nabla^4 W - \omega^2 \rho W) \delta W dxdy = 0. \tag{62}
\]
The functional characteristic values of plate vibrations can also be obtained
\[
\omega^2 = \frac{\int \int_\Omega D_0 \boldsymbol{\kappa}^T D_1 \delta \boldsymbol{\kappa} dxdy}{\int \int_\Omega \rho W^2 dxdy}. \tag{63}
\]
The principal modes \(W_1(x, y) \) and \(W_2(x, y) \) have two different natural frequencies \(\omega_i \) and \(\omega_j \) under the condition of linear indexes, and thus \(W \) can be written as
\[
W = a_i W_i + a_j W_j \tag{64}
\]
where \(a_i \) and \(a_j \) are the constant coefficients of each components, respectively, considering \(\kappa \) is a linear tensor, and the relationship between \(W_i, W_j, \) and \(\kappa \) can be written as
\[
\kappa(W) = a_i \kappa(W_i) + a_j \kappa(W_j). \tag{65}
\]
Substituting (64) and (65) into (63), we can obtain
\[
\int \int_\Omega D_0 \kappa^T D_1 \delta \kappa dxdy = \int \int_\Omega D_0 \left[a_i \kappa(W_i) + a_j \kappa(W_j) \right]^T \times D_1 \left[a_i \kappa(W_i) + a_j \kappa(W_j) \right] dxdy
\]
\[
= a_i^2 k_{ii} + a_j a_i k_{ij} + a_j a_i k_{ji} + a_j^2 k_{jj}. \tag{66}
\]
and
\[
\int \int_\Omega \rho W^2 dxdy
\]
\[
= \int \int_\Omega \rho (a_i W_i + a_j W_j) (a_i W_i + a_j W_j) dxdy
\]
\[
= a_i^2 m_{ii} + a_j a_i m_{ij} + a_j a_i m_{ji} + a_j^2 m_{jj}. \tag{67}
\]
The constants in (66) and (67) satisfy
\[
k_{mn} = k_{nm} = \int \int_\Omega D_0 \kappa^T (W_m) D_1 \kappa(W_n) dxdy
\]
\[
m_{mn} = m_{nm} = \int \int_\Omega \rho W_m W_n dxdy. \tag{68}
\]
If the matrices \(K, M \) and the vector \(a \) are
\[
K = \begin{bmatrix} k_{ii} & k_{ij} \\ k_{ji} & k_{jj} \end{bmatrix}, \quad M = \begin{bmatrix} m_{ii} & m_{ij} \\ m_{ji} & m_{jj} \end{bmatrix}, \quad a = \begin{bmatrix} a_i \\ a_j \end{bmatrix} \tag{69}
\]
The characteristic value function (63) can be conveniently given by the quadratic form of the vector
\[
\omega^2 = \frac{a_i^2 K a_j}{a^T M a}. \tag{70}
\]
The vector \(a \) can be seen as a variable in (70), when the derivative of the characteristic value function is zero
\[
\delta(\omega^2) = 0 \tag{71}
\]
then we can have
\[
\frac{1}{(a^T M a)^2} \left[(a^T M a) \delta(a^T K a) - (a^T K a) \delta(a^T M a) \right] = 0. \tag{72}
\]
Consequently, (72) can be simplified based on (70)
\[
\delta^T(a)(K - \omega^2 M)a = 0. \tag{73}
\]
According to the arbitrary of \(\delta^T(a) \)
\[
(K - \omega^2 M)a = 0. \tag{74}
\]
Assigning \(a_i = 0, a_j = 1 \) and \(a_j = 0, a_i = 1 \), respectively, the difference is
\[
(\omega_i^2 - \omega_j^2)m_{ij} = 0 \tag{75}
\]
if \(\omega_i^2 \neq \omega_j^2 \), then \(m_{ij} = \delta_{ij} \). For the same, \(k_{ii} = \delta_{ij} \). When the characteristic value equation gives multiple roots, we can also make the nth multiple roots give the nth orthogonal principal modes through reasonable orthogonalization. Thus, the orthogonality among cross-indexes’ principal modes can be given as
\[
\int \int_\Omega D_0 \kappa^T (W_i) D_1 \kappa(W_m) dxdy = \omega_{mn}^2 \delta_{im} \delta_{jn} \tag{76}
\]
The forced vibration of rectangular sheet can be determined by the oscillator composition after we have the orthogonality among the principal modes on the surface of rectangular sheet. Expanding \(\omega \) to biseries as orthogonal principal modes
\[
\omega(x, y, t) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} W_{ij}(x, y) \eta_{ij}(t). \tag{77}
\]
Substituting (51)
\[
D_0 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} [\nabla^4 W_{ij}(x, y)] \eta_{ij}(t)
\]
\[
+ \rho \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} W_{ij}(x, y) \eta_{ij}(t) = p(x, y, t). \tag{78}
\]
Multiplying with \(W_{mn}(x, y) \) on both sides of (78) and integrating \(x \) and \(y \) over \(\Omega \)
\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \eta_{ij}(t) \int \int_\Omega D_0 [\nabla^4 W_{ij}(x, y)] W_{mn}(x, y) dxdy
\]
\[
+ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \eta_{ij}(t) \int \int_\Omega \rho W_{ij}(x, y) W_{mn}(x, y) dxdy
\]
\[
= \int \int_\Omega p(x, y, t) W_{mn}(x, y) dxdy. \tag{79}
\]
Then the canonical equation can be acquired using conditions of orthogonality

\[\eta_{mn}(t) + \omega^2_{mn} \eta_{mn}(t) = q_{mn}(t) \]

\[q_{mn}(t) = \int_{\Omega} p(x, y, t) W_{mn}(x, y) dx dy. \]

(80)

When the sheet satisfies the initial condition

\[\omega(x, y, 0) = \lambda_1(x, y), \quad \frac{\partial \omega}{\partial t}\bigg|_{t=0} = \lambda_2(x, y) \]

(81)

then we can determine the initial condition in canonical coordinate

\[\eta_{mn}(0) = \int_{\Omega} \rho \lambda_1(x, y) W_{mn}(x, y) dx dy \]

\[\eta_{mn}(0) = \int_{\Omega} \rho \lambda_2(x, y) W_{mn}(x, y) dx dy. \]

(82)

The solution of (80) should be

\[\eta_{mn}(t) = \eta_{mn}(0) \cos \omega_{mn}t + \frac{\eta_{mn}(0)}{\omega_{mn}} \sin \omega_{mn}t \]

\[+ \frac{1}{\omega_{mn}} \int_0^t \rho_{mn}(\tau) \sin \omega_{mn}(t - \tau) d\tau. \]

(83)

REFERENCES

[1] V. C. Chen, “Analysis of radar micro-Doppler with time-frequency transform,” in Proc. 10th IEEE Workshop Stat. Signal Array Process., Aug. 2000, pp. 463–466.

[2] Y. Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May 2006.

[3] D. T. Petkie, C. Benton, and E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” in Proc. IEEE Radar Conf., May 2009, pp. 1–3.

[4] T. J. Kao, Y. Yan, T.-M. Shen, A.-Y. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013.

[5] C. R. Farrar, T. W. Darling, A. Migliori, and W. E. Baker, “Microwave interferometers for non-contact vibration measurements on large structures,” Mech. Syst. Signal Process., vol. 13, no. 2, pp. 241–253, Mar. 1999.

[6] V. C. Chen, F. Li, S.-S. Ho, and H. Wechsler, “Analysis of micro-Doppler signatures,” IEEE Proc. Radar, Sonar Navig., vol. 150, no. 4, pp. 271–276, Aug. 2003.

[7] D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A, Gen. Phys., vol. 71, no. 1, Jan. 2005, Art. no. 013801.

[8] M. D’Angelo and Y. Shih, “Quantum imaging,” Laser Phys. Lett., vol. 2, no. 12, p. 567, 2005.

[9] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett., vol. 94, no. 18, May 2005, Art. no. 183602.

[10] A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Modern Opt., vol. 53, nos. 5–6, pp. 759–760, Mar. 2006.

[11] J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process., vol. 11, no. 4, pp. 949–993, Aug. 2012.

[12] D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett., vol. 30, no. 18, pp. 2354–2356, 2005.