Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development

Jeong-Ryul Hwang1, Yeongseon Byeon1, Donghwan Kim1 and Sung-Gyoo Park

Abstract

T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector lineages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.

Introduction

As antigens enter the body, they are processed and presented by major histocompatibility complex (MHC) molecules expressed on the surface of antigen-presenting cells and recognized by T cell receptors (TCRs) on the surface of T cells. TCR signaling, in cooperation with signaling pathways induced by cytokines, costimulatory molecules, chemokines, integrins, and metabolites, drives the differentiation of activated T cells into specific T cell subtypes. This results in the generation of various types of T cells with different specialized functions. Effector T cells fight against pathogens at initial exposure, and memory T cells provide defense against future infection. CD4+ T cells can differentiate into specialized effector subtypes, including T helper type 1 (Th1), Th2, Th17, follicular helper T, and regulatory T (Treg) cells. These subtypes regulate the immune response to address diverse types of pathogens. By generating specific T cell subtypes, the immune system can fine-tune itself and protect against inappropriate activation. It must achieve a delicate balance of sufficient activation to control infectious agents while preventing autoimmunity. Thus precise regulation of the T cell activation process is crucial for overall immune homeostasis. Recent data suggest that TCR signaling is crucial for T cell differentiation and memory. How the fate of T cell differentiation is regulated has been widely investigated. T cells are part of the adaptive immune system and fight against various infections and cancers. However, abnormal T cell function can cause autoimmune and inflammatory diseases. Naive T cells are initially activated through their TCRs by antigen/MHC complexes expressed by antigen-presenting cells. Subsequent signals, including environmental cues and signaling through CD28 or other costimulatory receptors, are required for T cell activation. Various signaling pathways, including the Ras-extracellular signal-related kinase (ERK)-activator protein (AP)-1 pathway, the inositol triphosphate (IP3)-Ca2+-nuclear factor of activated T cells (NFAT) pathway, the protein kinase C (PKC)θ-IκB kinase (IKK)-nuclear factor (NF)-κB pathway, and the tuberous sclerosis complex (TSC)1/2-mammalian target

Correspondence: Sung-Gyoo Park (sgpark@gist.ac.kr)

© The Author(s) 2020

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Official journal of the Korean Society for Biochemistry and Molecular Biology
of rapamycin (mTOR) pathway, are involved in TCR signaling (Fig. 1). Furthermore, several membrane proteins, such as lymphocyte function-associated antigen 1 and linker for activation of T cells, regulate T cell activation and function. For example, lymphocyte function-associated antigen 1 mediates TCR-induced T cell migration and activation by recruiting actinin and talin for the polymerization of filamentous actin. Wiskott–Aldrich syndrome protein and cell division control protein 42 are also involved in actin filament polymerization, the activity of which can be regulated by a protein complex composed of VAV1, noncatalytic region of tyrosine kinase adaptor protein, and adhesion and degranulation-promoting-adaptor protein, which associates with linker for activation of T cells-Src homology (SH)2 domain-containing leukocyte protein 76. However, hematopoietic progenitor kinase 1 inhibits this complex by phosphorylating SH2 domain-containing leukocyte protein 76. Genetic/epigenetic controls also regulate T cell functions and activity.

Overview of TCR signaling and T cell development

The TCR complex

The structural components of the TCR complex were revealed in the 1980s through intense investigation and advances in molecular biology and biochemistry techniques. The TCR complex consists of TCRα/β chains and CD3γ/δ/ε/ζ subunits, which associate through hydrophobic interactions. Somatic VDJ recombination enables the generation of distinct TCRα and TCRβ beta chains, and TCRα/β heterodimers are responsible for antigen recognition by binding to peptide–MHC complexes. CD3 transmits the TCR-triggered signal through immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic tail, but it is not directly involved in antigen recognition. ITAMs are tandem duplications of a tyrosine-containing sequence (YXXL/I), and the CD3γ/δ/ε chains each contain one ITAM, while the CD3ζ chain contains three. As a consequence of TCR engagement, ITAM phosphorylation is induced by protein tyrosine kinases (PTKs), which allow other effector molecules to interact with the TCR complex.

Protein tyrosine kinases

The importance of tyrosine phosphorylation in TCR signaling was revealed by studies using PTK inhibitors. TCR engagement triggers the activation and recruitment of PTKs, including Src family PTKs such as Lck and Fyn and the Syk family PTK zeta chain of TCR-associated protein 70 (ZAP-70). Evidence from Lck- or Fyn-null mice shows that Lck is crucial for T cell development, while Fyn is not essential for T cell development, as other Src family kinases can compensate for Fyn. Lck is regulated by C-terminal Src kinase-mediated phosphorylation at its Y505 residue, which switches Lck to an inactive state. The CD45 tyrosine phosphatase dephosphorylates inhibitory phosphorylation at Y505 and dephosphorylates positive regulatory autophosphorylation at Y394, although less efficiently. This tight regulation of Lck activity protects against hyperactivation of T cells and autoimmunity, thus maintaining T cell homeostasis. Activated Lck or Fyn phosphorylates the tyrosine residues of the ITAMs in the CD3 subunits. Tyrosine phosphorylation of CD3ζ provides the binding site for ZAP-70 via its SH2 domain, and then Lck or Fyn activates ZAP-70 by phosphorylation. Therefore, recruitment of ZAP-70 to the activated TCR complex results in the formation of a signaling complex at the plasma membrane by recruiting other proteins through phosphorylation or activation.

T cell development

T cells develop from thymus-migrant hematopoietic lineage cells, particularly common lymphoid progenitors or lymphoid-primed multipotent progenitors derived from the bone marrow or the fetal liver. Developing T cells in the thymus progress through four double-negative (DN1–4) stages, then a double-positive (DP) stage, and finally mature into single-positive (SP) naive T cells. DN1–4 cells are distinguished by their expression of CD44 and CD25: DN1, CD44+CD25−; DN2, CD44+CD25−; DN3, CD44−CD25+; and DN4, CD44−CD25−. At the DN3 stage, a pre-TCR complex that consists of a pre-TCRα chain and a mature β chain first appears. The mature β chain in this complex is a product of somatic DNA rearrangement by recombination activating gene 1/2. T cells with a functional pre-TCR are positively selected by β selection, and they undergo massive proliferation and begin to rearrange the Tcra gene. At the DP stage, both the CD4 and CD8 coreceptors are expressed (CD4+CD8+), and the αβ TCR is formed by replacing the pre-TCRα chain with the Tcra chain. DP T cells encounter other checkpoints: DP T cells expressing αβ TCRs that recognize their MHC molecules through Tcra rearrangement are positively selected, and self-reactive T cells are deleted through negative selection. In addition, DP T cells with dysfunctional TCRs that cannot receive or transduce TCR-mediated signals undergo apoptosis, while the selected cells further develop into CD4 or CD8 SP cells.

The strength of TCR signaling and T cell differentiation

TCR stimulation is a fundamental step in most T cell responses. When TCRs are stimulated, the quality or quantity of the resulting signaling is affected by various factors, such as the strength and length of stimulation. Interestingly, differences in the affinities of stimulatory agonists for the TCR are sufficient to cause differences in
Fig. 1 (See legend on next page.)
T cell physiology. When naive CD4+ T cells are subjected to strong TCR stimulation, Th1 cell differentiation is favored over Th2 cell differentiation, both in vitro and in vivo46,47. Conversely, weak TCR signals favor Th2 cell differentiation46,47. Whether differences in TCR signaling strength affect Th1 cell differentiation remains controversial48,49. Importantly, the strength of TCR signaling also regulates Treg cell differentiation. Although thymus-derived Treg cells are induced by a broad range of antigen stimuli20,21, T regulatory cells are also regulated by extracellular signals that repress or activate transcription factors, and TCR-induced signal strength62,63.

Positive TCR signaling pathways
The Ras-ERK1/2 pathway
Ras proteins make up a family of small GTPases expressed in animal cells that includes H-Ras, N-Ras, K-Ras4A, and K-Ras4B57. These isozymes have conserved effector binding domains but different carboxy-terminal regions, which enables them to selectively associate with various cell membranes, resulting in their intracellular compartmentalization57. Ras functions as a binary signal switch: as Ras is switched on, it transmits signals to other proteins, turning on genes involved in cell growth, differentiation, and survival58. If Ras is permanently activated by mutation, it can signal constitutively in the absence of activating signals, resulting in cell transformation59. All Ras isoforms are expressed in lymphocytes and are involved in TCR signaling and T cell development and function60.

The ERK1/2 pathway is a downstream signaling pathway of Ras, and it can be activated by persistent Ras signaling61. ERK1/2 is regulated by a feedback mechanism targeting ERK1/2 itself or its upstream activators. ERK1/2 inactivation is controlled by mitogen-activated protein (MAP) kinase phosphatases, which have dual specificity for Ser/Thr and Tyr residues. ERK1/2 signaling has an important role in controlling T cell development, differentiation, and TCR-induced signal strength62,63.

AP-1 is a basic leucine zipper transcription factor composed of homodimers or heterodimers of Jun, Fos, and activating transcription factor (ATF). AP-1 activity is regulated by extracellular signals that repress or activate AP-1 transcription64,65. For example, the basic leucine zipper ATF-like transcription factor, which belongs to the AP-1 family, can regulate osteoarthritic cartilage destruction by controlling anabolic and catabolic gene expression in chondrocytes66. Basic leucine zipper ATF-like transcription factor/Jun heterodimers can bind to AP-1-binding sites and regulate gene expression. The AP-1 family is also involved in Th17 differentiation67,68.

As upstream signals including TCR, Lck/Fyn, ZAP-70, and growth factor receptor-bound protein 2/son of sevenless are transmitted to Ras, GDP on Ras is exchanged for GTP by son of sevenless69,70. Ras is activated by GTP exchange, resulting in the sequential activation of the kinases Raf, MAP kinase/ERK kinase 1/2, and ERK1/2, resulting in the transcription of c-Fos and JunB. This results in the formation of the AP-1 complex, which induces interleukin (IL)-2 transcription71,72. The c-Jun transcription factor can be activated through the Rac/cell division control protein 42-MAP kinase 4/7-c-Jun N-terminal kinase pathway and related proteins73,74. In addition, p38 MAP kinase can also regulate the activity of AP-175,76.
a second messenger. When IP₃ binds to its receptor on the membrane of the endoplasmic reticulum, Ca²⁺ is released from the endoplasmic reticulum into the cytosol, resulting in the activation of various signaling pathways. The calcium release-activated calcium channel controls the intracellular Ca²⁺ concentration in lymphocytes. Ca²⁺ is a universal second messenger in T cells. T cell proliferation, differentiation, and effector functions are regulated by Ca²⁺. There are two types of Ca²⁺ signaling pathways in T cells, long term and short term. NFAT is a transcription factor that is activated by Ca²⁺, resulting in the activation of NF-κB. When TCR/CD28 ligation occurs, NF-κB signaling is activated. PKCθ efficiently activates PKCθ via the phosphoinositide-3-kinase pathway. Activated PKC phosphorylates a serine residue located in the membrane-associated guanylate kinase domain of CARMA1. Then BCL10 and MALT1 are recruited, resulting in the formation of the active CARMA1-BCL10-MALT1 signaling complex. This promotes IKK complex activation and IκB degradation, which allows NF-κB to translocate to the nucleus, initiating the transcription of genes that are required for T cell activation.

CARMA1, also called CARD11, is a scaffold protein that is considered a hallmark of IKK/NF-κB activation. CARMA1 contains several domains, including a caspase recruitment domain and coiled-coil, SH3, guanylate kinase, and PDZ domains. Except for the PDZ domain, each of these domains is required for CARMA1 to activate NF-κB. CARMA1 is constitutively associated with the plasma membrane and recruited into lipid rafts after TCR stimulation. CARMA1 activation is mediated by several mechanisms, including phosphorylation. PKC phosphorylates CARMA1 between its coiled coil and PDZ domains after it is activated by TCR/CD28 ligation. Phosphorylated CARMA1 undergoes a conformational change, enabling it to associate with BCL10 and MALT1.

TSC1/**mTOR** signaling

TSC1 and TSC2 are tumor suppressors. They heterodimerize and regulate downstream signaling. mTOR is involved in T cell activation, differentiation, and function. Rapamycin is an immunosuppressant that promotes G1 arrest and inhibits downregulation of the cyclin-dependent kinase inhibitor p27. Treatment of T cells with rapamycin inhibits their proliferation and leads to anergy. The ability of rapamycin to promote Treg cell generation underlies its ability to induce T cell anergy. mTOR is activated by various signals, including growth factors, nutrients, and cellular stress signals, and regulates the growth, proliferation, and survival of cells. Two different mTOR complexes, mTORC1 and mTORC2, are involved in mTOR signaling. mTORC1 and mTORC2 both include the scaffolding proteins Raptor and Rictor. Activation of mTORC1 results in phosphorylation of S6 kinase 1 and translation of 4E-BP1, while activation of mTORC2 results in phosphorylation of the kinase AKT. Recently, a relationship between TSC1/2 and mTOR was reported. When TSC2 is phosphorylated by AKT, the GAP activity of the TSC1/2 complex is inhibited, leading to mTORC1 activation and cell growth.
Ubiquitination and degradation

There is increasing interest in understanding the role of proteolytic mechanisms in the regulation of TCR signal transduction. Proteolysis is primarily caused by proteasomal or lysosomal processes. Many short-lived proteins selectively undergo ubiquitination before their proteasomal degradation. Ubiquitination results from the conjugation of ubiquitin to proteins through a series of enzymatic reactions. Ubiquitination is initiated when the E1 ubiquitin-activating enzyme releases ubiquitin from the inactive state. Active ubiquitin is then transferred to an E2 ubiquitin-conjugating enzyme. Finally, the E3 ubiquitin ligase transfers activated ubiquitin from the E2 enzyme to the target protein. Thus the E3 ligase facilitates the actual attachment of ubiquitin to the substrate and therefore controls the specificity of substrate targeting. Although many types of E3 ligases have been reported, the mechanisms determining their substrate specificity are not clearly understood.

DAG kinases

DAG is an important signaling molecule involved in several signaling cascades. DAG kinases (DGKs) are lipid kinases that convert DAG to phosphatidic acid by phosphorylation, thereby regulating the subcellular DAG level. Ten isoforms of mammalian DGKs have been identified, among which DGKα and DGKζ act as crucial regulators downstream of the TCR. When DGKζ expression increases in T cells, TCR-induced Ras-ERK signaling is reduced. In addition, T cells exhibiting loss of DGKα and/or DGKζ show increased TCR-induced signaling, including Ras-MAP kinase/ERK kinase-AP-1, PKCθ-NF-κB, and mTOR pathway signaling, leading to hyperactivation, impaired induction of anergy, and reduced antiviral responses in CD8+ T cells. DGKα/DGKζ double-knockout mice show impaired T cell development, and phosphatidic acid treatment partially rescues T cell development, suggesting that DGKs not only terminate DAG signaling but also initiate phosphatidic acid-mediated signaling.
T cell development pathways

Transcriptional control of T cell development

Ikaros

Members of the Ikaros transcription factor family, including Helios and Aiolos, possess zinc-finger motifs. They are most abundant in hematopoietic lineages and are mainly lymphocyte restricted. Mice with a homozygous mutation in the DNA-binding domain of Ikaros lack T, B, and natural killer cells, as well as their earliest progenitors. In another study, functionally Ikaros-null mutant mice were generated by deleting the C-terminal region to avoid a dominant-negative effect due to the loss of the DNA-binding domain. These mice show an absence or large reduction in fetal T and B cells and in adult γδ T, B, natural killer, and thymic antigen-presenting cells and show aberrant proliferation and differentiation into CD4 lineage T cells postnatally. These studies suggest that Ikaros promotes the differentiation of hematopoietic stem cells into lymphocytes and establishes early branch points in postnatal T cell development (Fig. 2). In addition, Ikaros regulates checkpoints in T cell development, such as β selection and the transition from the DP to the SP stage.

GATA-3

GATA transcription factor family proteins contain zinc-finger motifs that recognize the consensus DNA sequence W\{A

Fig. 2 Transcriptional controls of T cell development. CLP common lymphoid progenitor, DN double negative, DP double positive.
Notch

Notch was first identified as a regulator of cell fate decisions during neuronal and epidermal cell differentiation in Drosophila\(^1\). In mammals, it is a transmembrane receptor of the Delta/Serrate/Lag-2 family that interacts with membrane-associated ligands, Jagged 1/Serrate 1, Jagged 2/Serrate 2, Delta 1, Delta 2, and Delta 3\(^1\). Interaction between cells expressing Notch and cells expressing Delta/Serrate/Lag-2 ligands causes proteolytic cleavage of Notch, which migrates to the nucleus and releases intracellular domains that interact with recombination signal-binding protein for immunoglobulin kappa J region, leading to gene regulation\(^1\).\(^7\)\(^6\)\(^7\). Targets of activated recombination signal-binding protein for immunoglobulin kappa J region are incompletely characterized. One known target is hairy and enhancer of split 1, which is upregulated by Notch and acts as a transcriptional repressor.

Further evidence for the role of Notch in T cell lineage determination comes from experiments in which mice were reconstituted with bone marrow stem cells expressing constitutively active Notch1. The differentiation of stem cells into B cells was completely blocked in these mice, which developed a thymus-dependent population of T cells in the bone marrow\(^1\). In contrast, deletion of Notch1 or inhibition of Notch1 signaling in hematopoietic stem cells drives B cell development, while T cell development is blocked\(^1\)\(^7\)\(^8\)\(^–\)\(^1\)\(^0\). Thus lymphocyte progenitor cells develop into T cells via Notch signaling, but without these signals, the B cell fate is chosen (Fig. 2).

Conclusions

The signals initiated by the activated TCR complex play essential roles in T cell-mediated immune responses. In recent decades, extensive efforts by researchers and advances in molecular, genetic, and biochemical techniques have made it possible to elucidate the structure and signaling molecules of the TCR complex. Engagement of the TCR complex is a prerequisite for the initiation of the TCR signaling cascades that were summarized in this review. TCR signaling is important for many aspects of T cell regulation, including development, differentiation, activation, proliferation, and survival. Therefore, TCR signaling must be tightly regulated. In this regard, therapeutics have been developed that target the TCR complex, mainly for immune suppression. For example, muromonab-CD3 (orthoclone OKT3) is the first mouse anti-human CD3 monoclonal antibody to be used in the clinic. It binds to CD3\(\varepsilon\) in circulating T cells and elicits immune suppression by inducing apoptosis. In an attempt to reduce its side effects related to its mouse origin, chimeric or humanized anti-CD3 monoclonal antibodies, such as otelixizumab, teplizumab, and visilizumab, have been developed and are under clinical trials for the treatment of various diseases.

The regulation of TCR signaling is a complicated process and is controlled by a large number of effector molecules, and there are still many aspects of T cell activation and development that are poorly understood. The integration of TCR-induced signaling and CD28-induced signaling is relatively well understood, but the effect of imbalances between these two signaling cascades on T cell differentiation and function is not well understood. For example, strong CD28 signaling blocks Th17 differentiation. Thus there are unknown regulatory mechanisms controlling T cell-mediated immune responses. A more comprehensive understanding of these processes will enable us to therapeutically modulate immune responses for the treatment of autoimmune disease and other immune-related diseases.

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (grants NRF-2016R1A5A1007318 and NRF-2017R1E1A1A01074299) and by a grant from the GIST Research Institute (GR).

Author contributions

All authors wrote the paper, and S.-G.P. oversaw the drafting of and reviewed the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 December 2019 Revised: 26 March 2020 Accepted: 8 April 2020.
Published online: 21 May 2020.

References

1. Daniels, M. A. & Teixeiro, E. TCR signaling in T cell memory. *Front. Immunol.* **6**, 617 (2015).
2. Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. *Trends Biochem. Sci.* **43**, 108–123 (2018).
3. Huang, W. & August, A. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. *J. Leukoc. Biol.* **97**, 477–485 (2015).
4. Walling, B. L. & Kim, M. LFA-1 in T cell migration and differentiation. *Front. Immunol.* **9**, 952 (2018).
5. Evans, R. et al. Integrins in immunity. *J. Cell Sci.* **122**, 215–225 (2009).
6. Billadeau, D. D., Nolz, J. C. & Gomez, T. S. Regulation of T-cell activation by the cytoskeleton. *Nat. Rev. Immunol.* **7**, 131–143 (2007).
7. Shui, J. W. et al. Hematopoietic progenitor kinase 1 negatively regulates T cell receptor signaling and T cell-mediated immune responses. *Nat. Immunol.* **8**, 84–91 (2007).
8. Lee, S. et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. *J. Allergy Clin. Immunol.* **137**, 327–330 (2016).
9. Kang, J. A. et al. Epigenetic regulation of Kcnq3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. *Proc. Natl Acad. Sci. USA* **113**, 8771–8776 (2016).
10. Oh, H. & Ghosh, S. NF-kappaB: roles and regulation in different CD4(+) T-cell subsets. *Immunol. Rev.* **252**, 41–51 (2013).
11. Coudronniere, N., Villalba, M., Englund, N. & Altman, A. NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. *Proc. Natl Acad. Sci. USA* 97, 3394–3399 (2000).

12. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. *Annu. Rev. Immunol.* 27, 591–619 (2009).

13. Hedrick, S. M., Cohen, D. I., Nielsen, E. A. & Davis, M. M. Isolation of CDNA clones encoding T cell-specific membrane-associated proteins. 1984. *J. Immunol.* 157, 2771–2775 (2005).

14. Malissen, M. et al. Mouse T cell antigen receptor. structure and organization of constant and joining gene segments encoding the beta polypeptide. 37, 1101–1110 (1984).

15. Bortz, J. et al. The delta- and epsilon-chains of the human T3/T-cell receptor complex are distinct polypeptides. *Nature* 312, 455–458 (1984).

16. Saito, T. & Germain, R. N. Predictable acquisition of a new MHC recognition repertoire. *Cell* 505, 425–437 (1991).

17. Dembic, Z. et al. Transfer of specificity by murine alpha and beta T-cell receptor genes. *Nature* 320, 232–238 (1986).

18. Leclerc, F., Klauser, R. D. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. *Science* 255, 79–82 (1992).

19. Samelson, L. E., Patel, M. D., Weissman, A. M., Harford, J. B. & Klauser, R. D. Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. 46, 1083–1090 (1986).

20. Yoo, X. R., Flav winkel, H., Reth, M. & Scott, D. W. Immune receptor tyrosine-based activation motif is required to signal pathways of receptor-mediated growth arrest and apoptosis in murine B lymphoma cells. *J. Immunol.* 155, 652–661 (1995).

21. Bu, J. Y., Shaw, A. S. & Chan, A. C. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. *Proc. Natl Acad. Sci. USA* 92, 5106–5110 (1995).

22. Mustelin, T., Coggeshall, K. M., Isakov, N. & Altman, A. T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation. *Science* 247, 1584–1587 (1990).

23. June, C. H. et al. Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction. *Proc. Natl Acad. Sci. USA* 87, 7722–7726 (1990).

24. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. *Cell* 92, 83–92 (1998).

25. Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display T cell function involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8-triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. *J. Immunol.* 150, 4244–4252 (1993).

26. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. *Annu. Rev. Immunol.* 15, 433–452 (1997).

27. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. *Science* 259, 822–825 (1993).

28. Grootertup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor beta chain and a 33 kd glycoprotein. *Cell* 75, 283–294 (1993).

29. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. *Cell* 68, 869–877 (1992).

30. Keslasky, T. et al. beta-Selection-induced proliferation is required for alphabeta T cell differentiation. *Immunity* 37, 840–853 (2012).

31. Carpenter, A. C. & Bosselet, R. Decision checkpoints in the thymus. *Nat. Immunol.* 11, 666–673 (2010).

32. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. *Annu. Rev. Immunol.* 21, 139–176 (2003).

33. Mancini, S. J. et al. TCRa gene rearrangement in immature thymocytes in absence of CD3, pre-TCR, and TCR signaling. *J. Immunol.* 167, 4485–4493 (2001).

34. Zhang, N., Harig, H., Dzhevakoglu, J., Draper, D. & Hey, Y. W. The role of apoptosis in the development and function of T lymphocytes. *Cell Res.* 15, 749–769 (2005).

35. Brogdon, J. L., Leitenberg, D. & Bottomly, K. The potency of TCR signaling differentially regulates NFATc/p activity and early L4 transcription in naive CD4+ T cells. *J. Immunol.* 168, 3825–3832 (2002).

36. Constant, S., Pfeiffer, C., Woodward, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. *J. Exp. Med.* 182, 1591–1596 (1995).

37. Gomez-Rodriguez, J. et al. Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. *Immunity* 31, 587–597 (2009).

38. Purves, H. A. et al. Low-strength T cell activation promotes Th17 responses. *Blood* 116, 4829–4837 (2010).

39. Lee, H. M., Bautista, J. L., Scott-Browne, J., Mohan, J. F. & Hsieh, C. S. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. *Immunity* 37, 475–486 (2012).

40. Moran, A. E. et al. T cell receptor signal strength in Treg and InKt cell development demonstrated by a novel fluorescent reporter mouse. *J. Exp. Med.* 208, 1279–1289 (2011).

41. Gottschalk, R. A., Corse, E. & Allison, J. P. TCR ligand density and affinity determine peripheral induction of Foxp3+ in vivo. *J. Exp. Med.* 207, 1701–1711 (2010).

42. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. *Nat. Immunol.* 10, 375–384 (2009).

43. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. *Cell* 153, 785–796 (2013).

44. Maru, S., Jin, G., Schell, T. D. & Lukacher, A. E. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection. *PLoS Pathog.* 13, e1006318 (2017).

45. Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. *Nature* 458, 211–214 (2009).

46. Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. *J. Cell Sci.* 129, 1287–1292 (2016).

47. Rommel, C. & Hafen, E. Ras—a versatile cellular switch. *Curr. Opin. Genet. Dev.* 8, 412–418 (1998).

48. Koeffler, H. P., McCormick, F. & Denny, C. Molecular mechanisms of cancer. *West. J. Med.* 155, 505–514 (1991).

49. Iborra, S. et al. N-ras couples antigen receptor signaling to Bcl-2 and to functional CD4+ T cell memory but not to effector differentiation. *J. Exp. Med.* 210, 1463–1479 (2013).

50. Mebratu, Y. & Tesfafi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? *Cell Cycle* 8, 1168–1175 (2009).

51. Jia, H., Xu, M., Bo, Y., Li, W. & Zhou, R. Ras-ERK1/2 signaling accelerates the progression of colorectal cancer via mediation of H2BK3ac. *Life Sci.* 230, 89–96 (2019).

52. Bertin, S. et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in L-deficient mice. *Mucosal Immunol.* 8, 505–515 (2015).
64. Konick, B. W., Xia, X., Rajavashisth, T. & Harrington, M. A. Regulation of mouse colony-stimulating factor-1 gene promoter activity by AP1 and cellular nucleic acid-binding protein. DNA Cell Biol. 17, 799–809 (1998).
65. Angel, P. & Karin, M. The role of Jun, Fos, and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129–157 (1991).
66. Rhee, J. et al. Inhibition of BATF/JUN transcriptional activity protects against osteoarthritic cartilage destruction. Annu. Rheum. Dis. 76, 427–434 (2017).
67. Park, S. H. et al. BATF regulates collagen-induced arthritis by regulating T helper cell differentiation. Arthritis Res Ther 20, 161 (2018).
68. Carr, T. M., Wheaton, J. D., Houtz, G. M. & Ciocan, M. Jun B promotes Th17 cell identity and restraining alternative CD4+ T-cell programs during inflammation. Nat. Commun. 8, 301 (2017).
69. Wessimuller, L. & Wittinghofer, F. Signal transduction pathways involving Ras. Minireview. Cell. Signal. 6, 247–267 (1994).
70. Buday, L., Egan, S. E., Rodriguez Viciana, P., Cantrell, D. A. & Downward, J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tropomyosine phosphorylase is implicated in ras activation in vivo. J. Biol. Chem. 272, 3323–3330 (2000).
71. Liu, Y. et al. Regulation of protein kinase Cheta function during T cell activation by Lck-mediated tyrosine phosphorylation. J. Biol. Chem. 275, 3603–3609 (2000).
72. Park, S. G. et al. The kinase PDK1 is essential for B cell receptor mediated survival signaling. PLOS ONE 8, e55378 (2013).
73. Wang, X., Destrument, A. & Tournier, C. Physiological roles of MKK4 and MKK7. FEBS Lett. 542, 44–47 (2003).
74. Wiesmuller, L. & Wittinghofer, F. Signal transduction pathways involving Ras. Minireview. Cell. Signal. 6, 247–267 (1994).
75. Dodeller, F. & Schulze-Koops, H. The p38 mitogen-activated protein kinase. Curr. Opin. Immunol. 16, 353–547 (2003).
76. Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).
77. Park, S. H. et al. BATF regulates collagen-induced arthritis by regulating T cell function. J. Immunol. 190, 539–545 (2004).
78. Rhee, S. G. & Choi, K. D. Regulation of inositol phospholipid-specific phospholipase C beta. Annu. Rev. Biochem. 75, 157–184 (2006).
79. Joseph, N., Reich, B. & Barad-Saad, M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. Biochim. Biophys. Acta 1838, 557–568 (2014).
80. Hwang et al. 75. Dodeller, F. & Schulze-Koops, H. The p38 mitogen-activated protein kinase.
120. Nagaishi, T. et al. SHP1 phosphatase-dependent T cell inhibition by CEACAM1 adhesion molecule isoforms. *Immunity* 25, 769–781 (2006).

121. Stefanova, I. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. *Nat. Immunol.* 4, 248–254 (2003).

122. Mikhalik, A. et al. A phosphatase activity of S1t-1 contributes to the suppression of TCR signaling. *Mol. Cell* 27, 486–497 (2007).

123. Carpino, N. et al. Regulation of ZAP-70 activation and TCR signaling by two related proteins, S1t-1 and S1t-2. *Immunity* 20, 37–46 (2004).

124. Caunt, C. J., Armstrong, S. P., Rivers, C. A., Norman, M. R. & Mc Ardle, C. A. Spatialtemporal regulation of ERK2 by dual specificity phosphatases. *J. Biol. Chem.* 283, 26612–26623 (2008).

125. Sambolic, V. et al. Negative regulation of PKN/Akt-dependent cell survival by the tumor suppressor PTEN. *Cell* 95, 29–39 (1998).

126. Hershko, A. & Ciechanover, A. The ubiquitin system. *Annu. Rev. Biochem.* 67, 425–479 (1998).

127. Pickart, C. M. Mechanisms underlying ubiquitination. *Annu. Rev. Biochem.* 70, 503–533 (2001).

128. Dessen, J. J. & Joazeiro, C. A. Ring domain E3 ubiquitin ligases. *Annu. Rev. Biochem.* 78, 399–434 (2009).

129. Hu, H. & Sun, S. C. Ubiquitin signaling in immune responses. *Cell Res.* 26, 457–483 (2016).

130. Park, Y., Jin, H. S., Ahn, D. E., Lee, J. I. & Liu, Y. C. The ubiquitin system in immune system. *Adv. Immunol.* 124, 17–64 (2014).

131. Hsu, T. S., Hsiao, W. T., Wu, P. J., Liu, W. H. & Lai, M. Z. Deltex1 promotes protein kinase Cheta degradation and sustains Casitas B-lineage lymphoma expression. *J. Immunol.* 193, 1672–1680 (2014).

132. Huang, F. & Gu, H. Negative regulation of lymphocyte development and function by the Cbl family of proteins. *Immunity* 24, 229–238 (2008).

133. Heissmeyer, V. et al. Calciulin imparts T cell unresponsiveness through targeted proteolysis of signaling proteins. *Nat. Immunol.* 5, 255–265 (2004).

134. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. *Science* 306, 271–275 (2004).

135. Wang, H. Y. et al. E3 ubiquitin ligase promotes ubiquitination of the T cell receptor zeta through an adaptor function of Zap-70. *J. Biol. Chem.* 276, 26004–26011 (2001).

136. Huang, H. et al. K33-linked polyubiquitination of T-cell receptor-zeta regulates proteolysis-independent T cell signaling. *Immunity* 33, 60–70 (2010).

137. Mueller, D. L. E3 ubiquitin ligases as T cell anergy factors. *Nat. Immunol.* 5, 883–890 (2004).

138. Zhang, Q. et al. New insights into the RNA-binding and E3 ubiquitin ligase function of Roquin. *Sci. Rep.* 5, 15660 (2015).

139. Vogel, K. U. & Roquin paradigms 1 and 2 redundantly repress the lcos and Qavl co-stimulator mRNAs and control follicular helper T cell differentiation. *Immunity* 38, 655–666 (2013).

140. Chen, Z. et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. *Genes Dev.* 9, 1586–1597 (1995).

141. Brown, K., Park, S., Kanno, T., Franzoso, G. & Seibel, U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. *Proc. Natl. Acad. Sci. USA* 90, 2532–2536 (1993).

142. Zhao, H. et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. *Nature* 427, 167–171 (2004).

143. Sun, L., Deng, L., Eo, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IRK activation by BCL10 and MALT1 in T lymphocytes. *Mol. Cell* 14, 289–301 (2004).

144. Deng, L. et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. *Cell* 103, 351–361 (2000).

145. Merida, I., Avila-Flores, A. & Merino, E. Dicylglycerol kinases: at the hub of cell signaling. *Biochem. J.* 409, 1–18 (2008).

146. Reise, M. J., Moon, E. K., Johnson, B. D. & Albelda, S. M. Dicylglycerol kinases (DGKs): novel targets for improving T cell activity in cancer. *Front. Cell Dev. Biol.* 4, 108 (2016).

147. Shirai, Y. & Saito, N. Dicylglycerol kinase as a possible therapeutic target for neural diseases. *J. Biomed. Sci.* 21, 28 (2014).

148. Zhong, X. P. et al. Regulation of T cell receptor-induced activation of the Ras-ERK pathway by dicylglycerol kinase zeta. *J. Biol. Chem.* 277, 31089–31098 (2002).

149. Shin, J., O’Brien, T. F., Grayson, J. M. & Zhong, X. P. Differential regulation of primary and memory CD8 T cell immune responses by dicylglycerol kinases. *J. Immunol.* 188, 2111–2117 (2012).
177. Pu, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. *Immunity* **11**, 299–308 (1999).

178. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. *Immunity* **16**, 231–243 (2002).

179. Wilson, A., MacDonald, H. R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. *J. Exp. Med.* **194**, 1003–1012 (2001).

180. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. *Immunity* **15**, 225–236 (2001).