Growth Modes and Chiral Selectivity of Single-Walled Carbon Nanotubes
Maoshuai He, Yann Magnin, Hua Jiang, Hakim Amara, Esko I. Kauppinen, Annick Loiseau, Christophe Bichara

To cite this version:
Maoshuai He, Yann Magnin, Hua Jiang, Hakim Amara, Esko I. Kauppinen, et al.. Growth Modes and Chiral Selectivity of Single-Walled Carbon Nanotubes. Nanoscale, Royal Society of Chemistry, In press. hal-01706361

HAL Id: hal-01706361
https://hal.archives-ouvertes.fr/hal-01706361
Submitted on 11 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Growth Modes and Chiral Selectivity of Single-Walled Carbon Nanotubes

Maoshuai He,1,2 Yann Magnin,3 Hua Jiang,4 Hakim Amara,5 Esko I. Kauppinen,4 Annick Loiseau,5 and Christophe Bichara3

1Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2School of Materials Science and Engineering, Shandong University of Science and Technology, 266590, Qingdao, People’s Republic of China.
3Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille University and CNRS, Campus de Luminy, Case 913, F-13288, Marseille, France.
4Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
5Laboratoire d’Etudes des Microstructures, ONERA-CNRS, BP 72, 92322 Châtenay Cedex, France.

(Dated: February 11, 2018)

Chemical vapor deposition synthesis of single-walled carbon nanotubes experiments, using Fe catalyst, and alternating methane and carbon monoxide as carbon feedstocks, lead to the reversible formation of junctions between tubes of different diameters. Combined with an atomistic modeling of the tube / catalyst interface, this shows that the ratio of diameters of the tube and its seeding particle, denoting the growth mode, depends on the carbon fraction inside the catalyst. With carbon monoxide, nanoparticles are strongly carbon enriched, and tend to dewet the tube, in a perpendicular growth mode. Cross-checking our results with available reports from the literature of the last decade strongly suggests that these latter conditions should favor the near armchair chiral selectivity observed empirically.

I. INTRODUCTION

Carbon Nanotubes (CNTs), among which single-walled ones (SWNTs) are most promising, have now reached a high level of maturity. A number of applications based on SWNTs outstanding electronic properties, such as transparent conductive films or electronic components have been proposed, and will be further developed if efficient and selective synthesis techniques are available for large scale production. Catalytic chemical vapor deposition (CVD) is the method of choice to synthesize SWNTs, because it can be upscaled to industrial requirements. In this process, carbon bearing molecules decompose on a nanosized catalyst particle, eventually giving rise to a tube that keeps growing until some event causes the growth to stop. All this takes place at high temperature (700-1400 K), in a complex ambient, with catalyst nanoparticles either bound to a substrate, or floating at the tip of the growing tube. Quite amazingly, more than 25 years after their discovery and first synthesis, a recent review still stresses the lack of complete understanding of the SWNT growth mechanisms. The control of the tubes’ properties by selective synthesis, clearly a major bottleneck towards applications, is consequently still elusive.

A pair of indices (n, m) defines the tube structure, for its “chirality”, or more properly, its “helicity”, or, and electronic properties. Starting with the pioneering work introducing the CoMoCAT catalyst, a number of catalytic systems have been proposed for chiral-selective SWNT growth. Since then, when some degree of chiral selectivity is reported in CVD growth experiments, it usually corresponds to a higher occurrence of large chiral-angle SWNTs (i.e. near-armchair) in the produced nanotube samples. Significant progress towards (n, m) selective synthesis using solid state catalyst has recently been reported. Unfortunately, no fully satisfactory model is available to explain these results, especially regarding the role of the catalyst and its influence on selectivity. This limited understanding of the growth mechanisms inhibits progress towards in-growth selectivity. Available theoretical modeling and experimental results suggest that the observed chiral distributions favoring near armchair SWNTs results from their faster growth rates. Further developments try to incorporate interfacial energy contributions, and address the atomic scale incorporation of carbon atoms in the tube, but fall at giving realistic tube chiral distributions. In this context, recent transmission electron microscopy (TEM) and electron diffraction (ED) analysis of a statistical number of SWNTs showed no correlation between the length and the chiral angle of tubes grown by CVD with Fe catalyst and CH₄ feedstock, thus casting doubts on the validity of these models.

In this paper, we show experimentally that a rational control of the tube growth mode, introduced by Fiawoo et al., is now possible. These modes were empirically characterized by the aspect ratio \(R_d = D_{CNT}/D_{NP}\) between the diameter of the tube (\(D_{CNT}\)) and that of the nanoparticle (NP) from which it grew (\(D_{NP}\)), from which perpendicular (\(R_d < 0.75\)) and tangential (\(R_d \geq 0.75\)) growth modes can be distinguished. Monte Carlo computer simulations on these nanosized objects meet previous knowledge of metallurgists relevant to steel carburization, to relate these modes to the way carbon is dissolved in the catalyst during growth. Systematic TEM analyses of the sizes of the SWNTs and the NPs from which they grew, as well as tubes’ helicity, indicate that
the sometimes reported near armchair selectivity only stands for tubes grown in perpendicular mode. Our results strongly suggest that a near armchair selectivity can be obtained under appropriate conditions by tuning the carburization level. This can be achieved by selecting the appropriate metal and carbon precursor, or acting on pressure and temperature, hence dewetting between the SWNT and the carbon-rich catalyst to favor the perpendicular mode.

II. METHODS

The Fe catalyst was prepared by hydrolysis of anhydrous ferric chloride in boiling water[27]. The prepared Fe colloid was diluted in ethanol and dispersed onto silicon nitride grid or Au grid covered by SiO_x membrane. Supported Fe particles were calcined (1073 K, 2 h) in air to remove organic residual and loaded into the center of a horizontal quartz tube CVD reactor. After heating to 1073 K under the protection of helium and being stabilized, the helium was switched off and the carbon source was introduced by alternating cycles of 1 min CH_4 and 1 min CO. Control experiments, with only CH_4 or CO were also performed. The morphologies of catalyst particles and carbon nanotubes were characterized by JEOL-2200FS FEG TEM/STEM. Structural assignments of the SWNTs were performed by analyzing their nanobeam patterns. On the basis of intrinsic layer line spacing strategy[28], the diffraction pattern was indexed and the chiral indices (n, m) of the SWNT were determined.

III. CONTROLLING SWNT GROWTH MODES IN FE-BASED CVD SYNTHESIS.

Tubes were grown at 1073 K using two different CVD reactors. The first one is a horizontal furnace, described in[25], that enables surface bound growth of SWNTs using Fe as a catalyst, and CO or CH_4 as carbon feedstocks. Catalyst preparation and experimental setups and protocols are described in section Methods. After growth, TEM and nanobeam electron diffraction were used to thoroughly characterize a statistically significant amount of SWNTs. Results of this analysis are presented in Fig.1. Tubes grown with CH_4 display a broad diameter distribution, with average around 3 nm, and no chiral selectivity. The diameter distribution of tubes grown with CO is narrower (average diameter around 1.5 nm), and a clear preference towards large chiral angles can be seen.

This preference for near armchair selectivity is even more pronounced in experiments using a floating catalyst CVD setup [29]. Another series of tubes were grown at 1073 K, using ferrocene (forming Fe catalyst NPs within the CVD reactor), and CO as a feedstock, and TEM-based statistical investigations were performed in a similar way. Results are displayed in Fig.2. Statistics over 166 measured tubes reveal a strong preference towards near armchair chiral angles and diameters around 1.3 nm. This tube diameter distribution is significantly sharper than for surface bound CVD, because of a narrower NP size distribution. The aspect ratio R_d distribution, displayed in Fig.2, peaked around 0.35, clearly indicates that, statistically, tubes are grown in a perpendicular mode. Similar results were already presented, in particular by Lolli et al.[30] and He et al.[31], but the present data go one step further by clearly indicating that a close to armchair selectivity is only obtained for tubes grown in perpendicular mode, with CO, and not those grown in tangential mode, with CH_4.

A second important step is to show that growth modes can be reversibly switched by alternating CO and CH_4 feedstocks, thus ruling out any change of the catalyst as a cause for the SWNT diameter change. To this end, surface bound CVD experiments with Fe at 1073 K were performed, alternating CO and CH_4 feedstocks (approximately 1 min each, up to 15 switches). Using previous data as control experiments, we could check that diameters obtained with each feedstock were in the same range, using either a single feedstock, or alternating both. Figure 3 presents TEM images of tubes obtained in such a way. Clearly, each SWNT consists of two or more segments with different diameters where the percentage of tubes with altered diameters is about 20% by changing carbon sources on the basis of TEM characterizations. For most SWNT junctions reported in previous studies, the diameter change along the tubes[32-34] ranges between 10 and 100 %. In our experiments, statistics show
that the diameter ratios of thick to thin segments for SWNT junctions range from 1.4 to 6.6, with a mean of 3.6, i.e. 260 % diameter difference. Because of the unknown incubation time and the possible tube nucleation at any time, the actual growth time to form each SWNT segment is not exactly known, making statistics on the segments’ length irrelevant.

It is important to notice that the diameter alternation along SWNT junctions is reversible (Figure 3(a-d)), corresponding to the reversible alternation of carbon sources during CVD reaction. This clearly rules out irreversible changes of the nanoparticle size, induced by either Ostwald ripening or coalescence, as suggested by Lolli et al.[30], as the cause of the diameter changes when using different carbon feedstocks.

These experiments, demonstrating a reversible diameter change of SWNTs by alternating feedstocks, leading to decomposition reactions with different thermochemical characteristics (exothermic for CO, endothermic for CH\textsubscript{4}[30]) call for an interpretation relying on a thermodynamic basis. Because the reaction of carbon rich precursors on bulk Fe is a key step for steel carburization, thermodynamics and kinetics of carburization of Fe, using either CH\textsubscript{4} or CO, have been extensively investigated for macroscopic systems. Such surface treatments can considerably improve mechanical and chemical properties of steels by controlling the carbon concentration inside the material. As determined experimentally, the rate constant for Fe carburization, resulting from CH\textsubscript{4} decomposition is low, equal to 1.9×10^{-6} mol/(cm2.s.bar) at 1193 K. The rate of CO carburization is two orders of magnitude larger, at 1.5×10^{-4} mol/(cm2.s.bar)[35]. Similar results were also reported by Hosmani et al.[36]. Consequently the carbon concentration in the NP delivered by CO disproportionation (Boudouard reaction) should be
much higher than that produced by CH$_4$ decomposition. Such differences, easy to measure for large systems, are hardly evidenced experimentally at the nanometric scale of the CVD process. We thus turn to atomistic computer simulations that are well suited for investigations at such small sizes.

IV. ATOMISTIC COMPUTER SIMULATION OF THE TUBE/CATALYST INTERFACE

Our previous studies of carbon solubility in nickel nanoparticles [37, 38], have shown that the wetting angle of a nanoparticle deposited on a graphene layer depends on the fraction of carbon dissolved in it, exhibiting a similar, though more marked trend as the experimental results of Naidich et al. [39] for macroscopic Ni drops on graphite. These results were obtained using our Tight Binding fourth moment model for Ni-C interactions [40], implemented in Monte Carlo simulations in canonical, or grand canonical ensemble [41]. The same technique is used here to study the equilibrium shape of nanoparticles with 219 Ni atoms, and fractions of carbon (x_c) between 0 and 23%, located at the tip of SWNTs with different chiralities and diameters between 0.8 and 1.2 nm. Sufficient tube length was allowed for the NP to be possibly entirely sucked in the tube, keeping a distance from both ends larger than the cut-off distance of our energy model. The different samples were relaxed at 1400 K for a long enough time, in order to reach equilibrium. For a macroscopic system true equilibrium should lead to a dissolution of enough carbon atoms from the tube to reach the solubility limit of the metal particle. Because of the nanometric size of the system, interfacial energy contributions become relatively more important, and modify this picture.

Typical results are displayed in Figure 4 showing that the equilibrium shape depends on the carbon fraction dissolved in the NP. Pure Ni NP tends to be completely sucked inside the tube, while fully carbon saturated ones remain completely outside the tube, with the tube edge as the remaining contact line between tube and nanoparticle. Between these two extremes, intermediate situations are found, with a part of the NP inside the tube, and another part outside. We also note that dissolved carbon atoms tend to remain in the outer part of the NP, while the inner part, in contact with the SWNT wall, remains essentially depleted of carbon. Such a depletion has already been observed experimentally in the case of a graphene layer deposited on a Ni (111) surface, using in situ XPS [42, 43] and explained [43] on the basis of Density Functional Theory (DFT) and tight binding calculations. Moreover, the stability of tubes attached to NPs which were either pure Ni or Ni with up to 20% C has been investigated by performing DFT calculations [44]. It was found that the adhesion of the tube is stronger with a pure Ni cluster than for a Ni NP containing C. Consequently, as long as the tube diameter remains small enough for dissolved carbon to ”feel” the SWNT wall, no carbon enters inside the tube with the Ni atoms. For very narrow tubes (below ≈ 0.7 nm), nor do metal atoms enter inside the tube.

![Figure 4](image_url)

FIG. 4. (Color online) Top: Three snapshots (A, B, C) of typical structures of a SWNT at the tip of a Ni$_{219}$ nanoparticle, with different fractions of carbon (x_c) between 0 and 23%, located at the tip of SWNTs with different chiralities and diameters between 0.8 and 1.2 nm. Sufficient tube length was allowed for the NP to be possibly entirely sucked in the tube, keeping a distance from both ends larger than the cut-off distance of our energy model. The different samples were relaxed at 1400 K for a long enough time, in order to reach equilibrium. For a macroscopic system true equilibrium should lead to a dissolution of enough carbon atoms from the tube to reach the solubility limit of the metal particle. Because of the nanometric size of the system, interfacial energy contributions become relatively more important, and modify this picture. Typical results are displayed in Figure 4 showing that the equilibrium shape depends on the carbon fraction dissolved in the NP. Pure Ni NP tends to be completely sucked inside the tube, while fully carbon saturated ones remain completely outside the tube, with the tube edge as the remaining contact line between tube and nanoparticle. Between these two extremes, intermediate situations are found, with a part of the NP inside the tube, and another part outside. We also note that dissolved carbon atoms tend to remain in the outer part of the NP, while the inner part, in contact with the SWNT wall, remains essentially depleted of carbon. Such a depletion has already been observed experimentally in the case of a graphene layer deposited on a Ni (111) surface, using in situ XPS [42, 43] and explained [43] on the basis of Density Functional Theory (DFT) and tight binding calculations. Moreover, the stability of tubes attached to NPs which were either pure Ni or Ni with up to 20% C has been investigated by performing DFT calculations [44]. It was found that the adhesion of the tube is stronger with a pure Ni cluster than for a Ni NP containing C. Consequently, as long as the tube diameter remains small enough for dissolved carbon to ”feel” the SWNT wall, no carbon enters inside the tube with the Ni atoms. For very narrow tubes (below ≈ 0.7 nm), nor do metal atoms enter inside the tube.

We can further analyze these computer simulation results in relation with our observation of tangential and perpendicular growth modes [29]. Pure metal NPs inserted inside the tube, with a large surface contact with the inner part of the carbon sp2 wall correspond to a tangential situation. Carbon saturated NPs, completely outside the tube, with no contact but the tube edge are so-called ”perpendicular”, even if the limited NP size used here makes this picture a bit inappropriate. Assuming a spherical shape for the outer part of the NP and an atomic density corresponding to liquid Ni at 1400 K, the aspect ratio R_d can be calculated. As shown in Figure 4, it depends strongly on the carbon fraction in the NP, and weakly on the tubes’ chirality. In addition, we note...
that the gradual change in diameter observed in the TEM images is fully consistent with the fact that, upon switching feedstocks, the gas phase composition in the reactor chamber changes smoothly, and so does the carbon concentration in the NP.

![Iron catalyst CO precursor](image1.png) ![Iron catalyst CH4 precursor](image2.png)

FIG. 5. (Color online) Top : TEM images of tubes grown by perpendicular (A) or tangential (B) growth modes. Bottom: Sketch of the relation between the chemical potential of carbon atoms delivered at the surface of the NP (μ_c), controlled by the precursor decomposition reaction, and the growth mode R_d, via the carbon fraction x_c in the NP. The left curve is a carbon sorption isotherm, as calculated in Diarra et al. [37].

This observation sheds a new light on the way to control the growth mode and tube aspect ratio (R_d), and on the interpretation of our experiments leading to the formation of nanotube junctions. The carbon concentration in the NP (x_c) depends on its chemical potential (μ_c) that is fixed by the thermochemistry of the catalyst decomposition of the NP surface [35]. The carbon sorption isotherms calculated in [37, 38] give quantitative estimates of (x_c) for different NP structures (fcc or icosahedral) and temperatures. Figure 5 qualitatively connects the growth mode, characterized by $R_d = D_{CNT}/D_{NP}$ and μ_c. Low (more negative) μ_c support tangential growth, while larger, less negative ones, lead to larger x_c, hence perpendicular growth. In CVD experiments, controlled parameters, such as pressure, temperature, the nature of the carbon feedstock or the ambient, can shift μ_c towards higher or lower values, according to the specific decomposition reaction considered, and hence control R_d and the growth mode. In the present experiments, Fe nanoparticles were used as catalyst, while a model for Ni was used in our calculations. However, as shown in [39], Ni, Co and Fe behave in the same way regarding the influence of carbon solubility on their wetting properties, that are indeed the key for controlling growth modes. We can thus safely use our calculated results on Ni to interpret the experimental trends observed with Co and Fe. We thus reasonably conclude that CO based growth leads to carbon saturated NPs, hence perpendicular growth, while CH$_4$ yields less C in the NP, favoring aspect ratios R_d closer to 1.

V. DISCUSSION AND CONCLUSION

SWNT synthesis experiments were performed, using Fe catalyst, and either CH$_4$ or CO as carbon feedstocks, coupled with systematic HR-TEM analysis of the link between the tubes and the NP from which they grew. Electron diffraction analysis of a few hundred tubes allowed for an unambiguous assignment of the tubes (n, m) index. With CO feedstock, tubes were grown in perpendicular mode, and a close to armchair preference was observed, for both supported and floating catalyst CVD, while those with CH$_4$ were closer to tangential mode, and displayed no selectivity. These different behaviors regarding selectivity was already noticed by He et al. [31, 40], but new experiments presented here, alternatively growing tubes with CH$_4$ or CO indicate that the NP size remains unaffected, while producing different tube diameters. The preference to large chiral angles, assigned here to tubes growing in perpendicular mode, has been explained by a combination of catalyst interface thermodynamics and a kinetic growth theory [24]. The calculated chiral distributions are however extremely sharply peaked, as compared to experimental ones, meaning that further developments are still required. On the basis of Monte Carlo simulations, we assign this change of growth mode to changes of the fraction of carbon dissolved in the NP. This understanding opens a way to control the tube/ NP diameter ratio, hence tube diameter, an important step forward, since many properties depend on it.

Indeed, on the basis of our present investigations, and revisiting a number of published results, we suggest that a key to achieve a higher degree of chiral selectivity is to promote a perpendicular growth mode, with an interface between the tube and its seeding particle limited to a line. In the case of catalysts displaying a significant carbon solubility and a moderate melting temperature, such as Fe, Co or Ni, this is achieved by tuning the degree of carburization of the nanoparticle, via the choice of the appropriate feedstock and growth (P, T) conditions. Under such conditions, a near armchair selectivity can be obtained. Although not explicitly stated as such, it appears that perpendicular growth mode is also observed or assumed for Co$_7$W$_6$[13], as well as WC and Mo$_2$C[19] that are very selective catalysts. An element to be taken into account to explain these results is that growing tubes in a fully perpendicular growth mode decouples the tube
Growing tubes in perpendicular growth modes somewhat alleviates these constraints, while putting more emphasis on the perpendicular contact between the tube and the catalyst. Under such conditions, the choice and the preparation of the catalyst appears as a key step for mastering the tube’s structure during the growth. In this context, we should note that new promising nanoparticles synthesis techniques for bimetallic catalysts based on the use of Prussian blue analogs have been developed to produce a wide range of homogenous bimetallic catalyst nanoparticles with controlled stoichiometry and sizes [17]. On the theoretical side, further investigations should be performed to guide the choice of catalysts favoring chiral selectivity.

ACKNOWLEDGMENTS

Supports from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 604472 (IRENA project) and from the French research funding agency (ANR), under grant 13-BS10-0015-01 (SYNAPSE), are gratefully acknowledged. M. He would also like to acknowledge the Natural Science Foundation of Shandong Province of China (No. ZR2016EMM110) and Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2016RCJJ001).

[1] A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, and E. I. Kauppinen, Nano Lett. 10, 4349 (2010).
[2] G. J. Brady, A. J. Way, N. S. Safron, H. T. Evensen, P. Gopalan, and M. S. Arnold, Science Advances 2, 1 (2016).
[3] V. Jourdain and C. Bichara, Carbon 58, 2 (2013).
[4] S. Iijima, Nature 354, 56 (1991).
[5] S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
[6] C. Liu and H. M. Cheng, J. Am. Chem. Soc. 138, 6690 (2016).
[7] S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, J. Am. Chem. Soc. 125, 11186 (2003).
[8] H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle, G. L. Haller, and Y. Chen, ACS Nano 7, 614 (2013).
[9] Y. Miyashita, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, Chem. Phys. Lett. 387, 198 (2004).
[10] B. Wang, C. H. Poo, L. Wei, L. J. Li, Y. Yang, and Y. Chen, J. Am. Chem. Soc. 129, 9014 (2007).
[11] X. Li, X. Tu, S. Zaric, K. Welsher, S. S. Won, W. Zhao, and H. Dai, J. Am. Chem. Soc. 129, 15770 (2007).
[12] K. Kajiwara, S. Suzuki, H. Sato, and K. Hata, Zeitschrift für Kristallographie 224, 5 (2009).
[13] W.-H. Chiang and R. M. Sankaran, Nat. Mater., 1 (2009).
[14] M. He, A. I. Chernov, P. V. Fedotov, E. D. Obraztsova, J. Sainio, E. Rikkonen, H. Jiang, Z. Zhu, Y. Tian, E. I. Kauppinen, M. Niemelä, M. Niemelä, and a. O. I. Krause, J. Am. Chem. Soc. 132, 13994 (2010).
[15] C. Zoiacan Loebick, R. Podila, J. Reppert, J. Chudow, F. Ren, G. Haller, A. Rao, and L. Pfefferle, J. Am. Chem. Soc. 132, 11125 (2010).
[16] M. Fouquet, B. C. Bayer, S. Esconjauregui, R. Blume, J. H. Warner, S. Hofmann, R. Schögöl, C. Thomsen, and J. Robertson, Phys. Rev. B 85, 235411 (2012).
[17] M. He, H. Jiang, I. Kauppi, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalceta, J. B. Wagner, T. W. Hansen, J. Sainio, E. Sairanen, J. Lehtonen, and E. I. Kauppinen, J. Mater. Chem. A 2, 5883 (2014).
[18] F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J.-Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522 (2014).
[19] S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang, Z. Wang, K. Qi, S. Deng, Q. Li, X. Bai, F. Ding, and J. Zhang, Nature (2017).
[20] F. Ding, A. R. Harutyunyan, and B. I. Yakobson, Proc. Natl. Acad. Sci. 106, 2506 (2009), arXiv:arXiv:1408.1149.
[21] J. Kim, A. J. Page, S. Irlé, and K. Morokuma, J. Am. Chem. Soc. 134, 9311 (2012).
[22] R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, and B. Maruyama, Nat. Mater. 11, 213 (2012).
[23] B. Liu, J. Liu, X. Tu, J. Zhang, M. Zheng, and C. Zhou, Nano Lett. 13, 4416 (2013).
[24] V. I. Artyukhov, E. S. Penev, and B. I. Yakobson, Nat. Commun. 5, 4892 (2014).
[25] M. He, Y. Magnin, H. Amara, H. Jiang, H. Cui, F. Fossard, A. Castan, E. I. Kauppinen, A. Loiseau, and C. Bichara, Carbon 113, 231 (2017).
[26] M. F. C. Fiawoo, A. M. Bonnot, H. Amara, C. Bichara, J. Thibault-Pénisson, and A. Loiseau, Phys. Rev. Lett. 108, 1 (2012).
[27] M. He, X. Duan, X. Wang, J. Zhang, Z. Liu, and C. Robinson, J. Phys. Chem. B 108, 12665 (2004).
[28] H. Jiang, A. G. Nasibulin, D. P. Brown, and E. I. Kauppinen, Carbon 45, 662 (2007).
[29] A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, and E. I. Kauppinen, Chem. Eng. Sci. 61, 4393 (2006).
[30] G. Lolli, L. Zhang, L. Balzano, Y. Tan, D. E. Resasco, and N. Sakulchaicharoen, J. Phys. Chem. B 120, 2108 (2006).
[31] M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalceta, J. B. Wagner, T. W. Hansen, I. V. Anoshkin, E. A. Obraztsova, A. V. Belkin, E. Sairanen, A. G. Nasibulin, J. Lehtonen, and E. I.
[32] M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, Science 291, 97 (2001).
[33] Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao, Y. T. Zhu, and Z. Liu, Nat. Mater. 6, 293 (2007).
[34] T. Thurakitseree, C. Kramberger, A. Kumamoto, S. Chishii, and E. Einarsson, ACS Nano 7, 2205 (2013).
[35] H. Jürgen Grabke, Archiv das Eisenhüttenwesen 46, 75 (1975).
[36] S. Hosmani, P. Goyal, and R. Kumar, An introduction to surface alloying of metals (Springer, 2014).
[37] M. Diarra, A. Zappelli, H. Amara, F. Ducastelle, and C. Bichara, Phys. Rev. Lett. 109, 185501 (2012).
[38] M. Diarra, H. Amara, F. Ducastelle, and C. Bichara, Phys. Status Solidi (B) 249, 2629 (2012).
[39] Y. Naidich and V. Perevertailo, Powder Metall. Ceram 1, 45 (1971).
[40] H. Amara, J. M. Roussel, C. Bichara, J. P. Gaspard, and F. Ducastelle, Phys. Rev. B 79, 1 (2009).
[41] D. Frenkel and B. Smith, Understanding Molecular Simulation (Academic Press: London, 2002).
[42] A. Benayad and X. S. Li, J. Phys. Chem. C 117, 4727 (2013).
[43] R. S. Weatherup, H. Amara, R. Blume, B. Dlubak, B. C. Bayer, M. Diarra, M. Bahri, A. Cabrero-Vilatela, S. Caneva, P. R. Kidambi, M.-B. Martin, C. Deranlot, P. Seneor, R. Schloegl, F. Ducastelle, C. Bichara, and S. Hofmann, J. Am. Chem. Soc. 136, 13698 (2014).
[44] A. Börjesson and K. Bolton, J. Phys. Chem. C 114, 18045 (2010).
[45] J. Snoeck, J. Catal. 169, 240 (1997).
[46] M. He, H. Jiang, E. I. Kauppinen, and J. Lehtonen, Nanoscale 4, 7394 (2012).
[47] A. Castan, S. Forel, L. Catala, I. Florea, F. Fossard, F. Bouanis, A. Andrieux-Ledier, S. Mazerat, T. Mallah, V. Huc, A. Loiseau, and C. Cojocaru, Carbon 123, 583 (2017).