Defects and dopants in zinc-blende aluminum arsenide: a first-principles study

Jiangming Cao, Menglin Huang, Dingrong Liu, Zenghua Cai, Yu-Ning Wu, Xiang Ye and Shiyou Chen

1 Department of Physics, Shanghai Normal University, Shanghai 200234, People’s Republic of China
2 Key Laboratory of Polar Materials and Devices (MOE), and Department of Electronics, East China Normal University, Shanghai 200241, People’s Republic of China
3 Department of Physics and Key Laboratory for Computational Physical Science (MOE), Fudan University, Shanghai 200433, People’s Republic of China
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China

* Authors to whom any correspondence should be addressed.
E-mail: yexiang@shnu.edu.cn, ynwu@phy.ecnu.edu.cn and chensy@ee.ecnu.edu.cn

Keywords: semiconductors, defect and impurity, first-principles simulations

Abstract
AlAs is a semiconductor that can form heterostructure, superlattice, and ternary alloy with GaAs. We systematically investigate the formation energies, transition energy levels, as well as defect and carrier densities of intrinsic defects and extrinsic impurities in AlAs using first-principles simulations. Most of the intrinsic defects, including vacancies, antisites and interstitials, show similar features as those of GaAs. Intrinsic defects are found not to be the origin of the n-type or p-type conductivity due to their high formation energies. For extrinsic dopants (Si, C, Mg and Cu), Mg can be an effective p-type dopant under both As-rich and As-poor conditions. Si-doping can introduce either n-type or p-type, depending on the specific growth condition. C serves as a p-type dopant under As-poor and As-moderate conditions, and Cu-doping has little effect on the conductivity.

1. Introduction
Zinc-blende AlAs is a III–V semiconductor that has not only the same crystal structure and nearly same lattice constant with GaAs, but also a wider band gap (2.16 eV vs 1.42 eV), making AlAs and GaAs an excellent semiconductor pair to grow alloys [1], heterostructures [2, 3] and superlattices [4]. Due to the superb miscibility and high carrier mobility of GaAs and AlAs, these structures can be applied in high-speed digital, high-frequency microwave, electronic and electro-optic devices [1, 4], such as high electron mobility transistors [1, 3, 4] and quantum well infrared photodetectors [5].

As defects and impurities inevitably exist in the semiconductors, their effects on the electronic and optical properties are essential for the performance. First-principles simulations can provide rich theoretical insights for understanding the defects and impurities [6–12]. The defect properties of AlAs/GaAs alloy and heterostructure, as well as GaAs have been extensively studied [13–19], however, a systematic study of defects in AlAs has not been reported yet. Jiang et al [16] investigated six types of intrinsic defects of AlAs in their neutral states, including interstitials (Al and As), antisites (AlAs and AsAl), and vacancies (VAl and VAs). It was found that the neutral AsAl antisite has the lowest formation energy among these defects, but the defects in charged states, which normally have significant impact, were not considered. Chroneos et al [20–23] studied more intrinsic defects with more charge states using Perdew–Burke–Ernzerhof (PBE) and local-density approximation functionals, but the underestimated band gap may introduce inaccuracy into the defect calculations. Besides the intrinsic defects, extrinsic dopants/impurities may have a significant effect on the properties. Spectrographic analysis reveals that AlAs can be mostly contaminated by Si, as well as Mg, and Cu impurities [24]. Their properties such as formation energies and transition energy levels...
have not been investigated theoretically. Moreover, both n-type and p-type conductivity have been observed in AlAs samples with these extrinsic dopants [24–30], however, the origins of such conductivities have not been well understood from a theoretical perspective. Overall, a systematic study of the intrinsic and extrinsic defects in AlAs is in need for better understanding of the electronic and optical performance of AlAs and related semiconductors.

In this work, we systematically study the intrinsic defects and dopants (Si, C, Mg and Cu) in AlAs using first-principles calculations. Three chemical conditions including As-rich (Al-poor), As-moderate and As-poor (Al-rich) are considered. Our results show that most of the intrinsic defects, including vacancies, antisites and interstitials, exhibit similar properties as GaAs. All intrinsic defects are determined to have low concentrations. Neither n-type nor p-type conductivity is predicted to exist in AlAs with merely intrinsic defects considered, however, doping of extrinsic element Si makes the materials n-type or p-type, and C and Mg doping makes it p-type. Doping of Cu leads to weak n-type conductivity. Our finding explains the origin of the measured n-type and p-type conductivity in AlAs samples containing Si [24–26], as well as the strong p-type conductivity induced by C- and Mg-doping in other experiments [27–30]. We also predict that Cu-doping is not the source of p-type or n-type conductivity in previous experiments [24].

2. Computational details

Our first-principles simulations based on density functional theory (DFT) [31, 32] are performed using the Vienna _ab initio_ simulation package [33–35]. The PBE [36] and Heyd–Scuseria–Ernzerhof (HSE06) [37] exchange–correlation functionals are adopted for structural optimization and electronic structure calculation, respectively. Based on PBE functional, HSE06 functional replaces 25% short-range exchange with Hartree–Fock exact exchange, and the range-separation parameter is selected as 0.11 bohr\(^{-1}\). The projector augmented waves method is utilized to treat the atomic core regions [38]. The cutoff energy is chosen as 400 eV, and a 216-atom supercell is used to simulate the defects. The first Brillouin zones of the primitive cell and the supercell are sampled by \(2 \times 2 \times 2\) and \(1 \times 1 \times 1\) Monkhorst–Pack [39] \(k\)-point mesh, respectively. Spin polarization is considered for charge states with unpaired spins. The energy convergence of electronic steps is set as \(10^{-5}\) eV.

In terms of defects, the formation energy \(\Delta H_f(\alpha, q)\) of a point defect \(\alpha\) with charge state \(q\) is determined by

\[
\Delta H_f(\alpha, q) = \Delta E(\alpha, q) + \sum n_i \mu_i + qE_F, \tag{1}
\]

where \(\Delta E(\alpha, q) = E(\alpha, q) - E(\text{host}) + \sum n_i E_i + q\varepsilon_{\text{VBM}}(\text{host})\). \(E(\text{host})\) and \(E(\alpha, q)\) are the total energies of the supercells without and with defect \(\alpha\), respectively. \(n_i\) is the number of type-\(i\) defect atoms, and \(\mu_i\) and \(E_i\) are the chemical potential and energy per \(i\) element in its pure phase. For charged defects, \(\Delta H_f(\alpha, q)\) depends on not only the Fermi level \(E_F\), which is referenced to the valence band maximum (VBM), or \(\varepsilon_{\text{VBM}}(\text{host})\), but also the chemical potentials of component elements. The potential alignment and image charge correction are used in the calculation of the energies of charged defects [40, 41].

There exist several thermal dynamic conditions of the chemical potentials for the growth of the material under equilibrium. To avoid Al, As and other involved elements \(X\) forming their elemental phases, it is required that

\[
\mu_{\text{Al}} \leq 0, \mu_{\text{As}} \leq 0, \mu_X \leq 0. \tag{2}
\]

In addition, AlAs should be stable under equilibrium, meaning

\[
\mu_{\text{Al}} + \mu_{\text{As}} = \Delta H_f(\text{AlAs}) \tag{3}
\]

In equation (3), \(\Delta H_f(\text{AlAs})\) is the formation energy of the compound AlAs. \(\Delta H_f(\text{AlAs})\) is calculated as \(-1.2787\) eV, which is consistent with the experimental values around \(-1.26\) eV [42–44]. Furthermore, the formation of other possible secondary compounds involving the host and dopant elements, or \(\text{Al}_mX_n\) and \(X_n\text{As}_m\), should also be avoided, which requires

\[
m\mu_X + m\mu_{\text{Al}} \leq \Delta H_f(\text{Al}_mX_n), \tag{4}
\]

and

\[
m\mu_X + m\mu_{\text{As}} \leq \Delta H_f(X_n\text{As}_m). \tag{5}
\]

For instance, the formation energy of \(\text{SiAs}_2\) is \(-1.24\) eV, so the highest possible \(\mu_{\text{Si}}\) is \(-1.24\) eV under As-rich condition (\(\mu_{\text{As}} = 0, \mu_{\text{Al}} = -1.28\) eV) and 0 eV under Al-rich condition (\(\mu_{\text{As}} = -1.28\) eV, \(\mu_{\text{Al}} = 0\)). The sample will have no residue of the secondary compounds for instance \(\text{SiAs}_2\) in the Si-doped AlAs only when these chemical potential conditions are met.
The carrier concentrations are investigated using the approach as described in reference [45]. The hole and electron concentrations are given by

\[p_0 = N_v e^{\frac{E_g}{k_B T}}, \quad \text{and} \quad n_0 = N_c e^{\frac{E_g}{k_B T}}, \] (6)

where \(E_g \) is the band gap of AlAs (2.16 eV), \(k_B \) is Boltzmann constant, and \(T \) is temperature. \(N_v \) and \(N_c \) are the effective densities of states of the valance bands and conduction bands, respectively. \(N_v \) and \(N_c \) are given by

\[N_v = \frac{2(2\pi m^*_v k_B T)^{3/2}}{\hbar^3} \quad \text{and} \quad N_c = \frac{2(2\pi m^*_c k_B T)^{3/2}}{\hbar^3}. \] (7)

The effective mass of hole \((m^*_p) \) and electron \((m^*_e) \) are 0.195 \(m_0 \) and 0.517 \(m_0 \), respectively. The charge neutrality condition without dopants satisfies

\[n_0 = p_0. \] (8)

In case of doping, with the concentrations of acceptors \(N_A^- \) and donors \(N_D^+ \), the charge neutrality condition gives

\[n_0 + N_A^- = p_0 + N_D^+. \] (9)

By solving this equation, we can obtain the Fermi energy and hole/electron concentrations at equilibrium as a function of temperature and dopant concentrations.

Finally, defect concentration for defect \(\alpha \) in charge state \(q \) is given by

\[c(\alpha, q) = N_{\text{sites}} g_q e^{\frac{\Delta U(\alpha, q)}{k_B T}}, \] (10)

where \(N_{\text{sites}} \) is the density of possible atomic sites of defects, \(g_q \) is degeneracy factor [45].

3. Results and discussion

3.1. Electronic structure

For zinc-blende lattice of AlAs, the lattice parameter is calculated as 5.67 Å using HSE06, agreeing with the experimental value of 5.66 Å [46]. The calculated Al–As bond length is 2.48 Å. Based on the optimized structure, we further calculate the electronic band structure as well as the density of state (shown in figure 1). AlAs exhibits an indirect bandgap of 2.16 eV, with VBM located at \(\Gamma \) point, and the conduction band minimum (CBM) located at \(X \) point (0.5, 0.5, 0). Our calculated band gap size is highly consistent with the experimental values 2.23–2.25 eV [47–49].

The orbital-projected density of state is displayed in figure 1. The valence band is mostly composed of Al–3p and As–4p orbitals, whereas the conduction band is mainly contributed by Al–3s, Al–3p and As–4p electrons.
3.2. Intrinsic defects

The calculated formation energies as functions of the Fermi level under As-rich conditions are shown in figure 2(a). Among all the defects, \(\text{As}_2^{2+} \text{Al} \) is found to have the lowest formation energy when the Fermi level is close to VBM. Its positive charge state indicates that it is a donor defect. As Fermi level increases to 0.53 eV and 1.02 eV, its charge state transits to \(1^+ \) and neutral states, respectively. The \((-0/0) \) transition energy level is found to be comparatively close to CBM. With Al substituted by As, the Al–As bonds are broken, and the As 4p states in the conduction band (figure 1) move down, leading to the deep \((0^+/2^+) \) and \((2^-/0^-) \) defect levels in the middle of the gap. For Fermi level higher than 1.87 eV above VBM, \(\text{V}_{\text{As}}^3 \text{Al} \) is determined to have the lowest formation energy, while the \(\text{As}_{\text{Al}} \) becomes the second favorable defect. In this regime, \(\text{V}_{\text{As}}^3 \text{Al} \) serves as an acceptor and a significant donor-passivating defect. Its \((2^-/0^-) \) and \((3^-/2^-) \) transition energy levels lie at 1.40 eV and 1.01 eV below the CBM, respectively. The transition energy levels of the main defects are also summarized in figure 3.

Under the As-poor condition, as shown in figure 2(b), \(\text{Al}_i \) is the defect that has the lowest formation energy for Fermi energy between VBM and 0.98 eV above. \(\text{Al}_i \) bonds with the neighboring As (Al – As bond length is 2.48 Å), as well as a nearby Al (Al–Al bond length is also 2.48 Å). The \((2^-/3^+) \) transition energy level of \(\text{Al}_i \) is approximately 0.73 eV above the VBM, as shown in figure 3. The formation energy of \(\text{Al}_i^0 \) is lower than that of \(\text{As}_i^0 \) under As-poor condition, which is similar to the formation of \(\text{Ga}_i^0 \) being lower than \(\text{As}_i^0 \) in GaAs under the same condition [16]. \(\text{Al}_{\text{As}} \) becomes the defect with lowest formation energy for Fermi energy between 0.98 eV and CBM. Other defects and defect clusters (\(\text{V}_{\text{As}}-\text{V}_\text{Al}, \text{Al}_{\text{As}}-\text{As}_{\text{Al}} \) and \(\text{As}_i \)) have much higher formation energies in both As-rich or As-poor cases, and thus their concentration is very low.

Following equations (6) – (10), we calculate the Fermi energy, concentrations of defects and carriers at 300 K as a function of the chemical potentials \(\mu_{\text{As}} \). As shown in figure 2(c), although the maximum
Figure 3. Summary of the transition energy levels of the intrinsic point defects in the band gap of AlAs.

Figure 4. Formation energies of Si-doped AlAs as a function of Fermi level under (a) As-rich and (b) As-poor conditions. (c) Fermi energy, concentrations of defects and carriers at room temperature for Si-doped AlAs as a function of μ_{As} from As-rich to As-poor.

Concentrations of $\text{As}_{\text{Al}}^{0}$ and V_{As}^{0} are 10^{16} cm$^{-3}$ and 10^{14} cm$^{-3}$ respectively, neutral defects have no effect on carrier concentration and conductivity. The Fermi level and carrier density show nonmonotonic behavior.
between As-moderate and As-poor condition, which is caused by the rising of the $\text{Al}_{\text{As}}^\text{−}$. The electron concentration at any chemical potential μ_{As} is determined to be relatively low ($10^7–10^8 \text{ cm}^{-3}$), which is not only caused by Fermi level being pinned moderately above the middle of the band gap, but also the high formation energies of the intrinsic defects under both As-rich and As-poor conditions (figure 2). Such low carrier density indicates the non-conductivity in AlAs with only intrinsic defects considered. It also indicates that the experimentally observed conductivity comes from impurities [24–26] rather than intrinsic defects.

3.3. Extrinsic dopants/impurities
We also study the common impurity defects, such as Si, C, Mg and Cu. These impurities are found in the sample during growth and postprocessing [24–26]. Our discussion below will reveal that Mg can be an effective p-type dopant, only Si doping under the As-rich or As-moderate conditions can introduce high n-type conductivity, while other dopants, e.g. C leads to p-type conductivity. In addition, Cu doping has relatively weak effect on conductivity.

3.3.1. Si and C doping
The formation energies of Si-doping, as well as some important intrinsic defects are summarized in figure 4. Under As-rich condition, as plotted in figure 4(a), $\text{Si}_{\text{Al}}^{1+}$ is determined to have the lowest formation energy between 0.36 and 1.20 eV above VBM, taking over the place from As_{Al} in this Fermi level range. Formation energy of Si_{Al} is generally lower than those of Si_{As} and Si_i, indicating that the Si impurities mostly exists in the form of Si_{Al} under As-rich condition. As presented in figure 4(a), the $(-/+/)$ transition

Figure 5. Formation energies of C-doped AlAs as a function of Fermi level under (a) As-rich and (b) As-poor conditions. (c) Fermi energy, concentrations of defects and carriers at room temperature for C-doped AlAs as μ_{As} changes from As-rich to As-poor.
Figure 6. Formation energies of Mg-doped AlAs as a function of Fermi level under (a) As-rich and (b) As-poor conditions. (c) Fermi energy, concentrations of defects and carriers at room temperature for Mg-doped AlAs as μ\textsubscript{As} changes from As-rich to As-poor.

energy level is of Si\textsubscript{Al} is 0.12 eV below the CBM. Si\textsubscript{Al} is an acceptor above this level while a donor below this level.

Under As-poor condition, as shown in figure 4(b), Si1+\textsubscript{Al} is a donor defect that has the lowest formation energy defects for Fermi energy between VBM and 0.80 eV above. In the rest energy range, Si−\textsubscript{As} is the most energetically favorable. Si\textsubscript{As} is a donor when the Fermi level is near VBM, and serves as an acceptor in a larger Fermi level range above the (−/0) transition energy level.

Figure 4(c) shows the defect and carriers concentrations as functions of μ\textsubscript{As} for Si-doping. Si-doped AlAs exhibits n-type conductivity under As-rich and As-moderate condition. The densities of electron carrier is calculated to be around 2 × 1016 cm−3 under As-rich and As-moderate condition, one order of magnitude lower than the measured values in experiments (6 × 1017–8.5 × 1017 cm−3) [24, 25]. The Si1+\textsubscript{Al} concentration is around 1017 cm−3 under aforesaid condition, also slightly less than the measured values in experimental values (1018 cm−3) [24]. High electron carrier density in Si-doped AlAs indicates its strong n-type conductivity. Si-doping pushes the Fermi level close to the CBM under the As-rich and As-moderate condition [figure 4(c)]. Under As-poor condition, the Si1−\textsubscript{As} acceptor and the Si1+\textsubscript{Al} donor correspond to their lowest formation energies. Fermi level is relatively close to VBM level, leading to the relatively weak p-type conductivity. Therefore, the conductivity transits from strong n-type to weak p-type as μ\textsubscript{As} decreases to As-poor condition.

For C doping, intrinsic defects have lower formation energies than most of C-induced defects, such as C\textsubscript{i} and C\textsubscript{Al} under As-rich condition [figure 5(a)]. The C-induced defect with the lowest formation energy is C\textsubscript{As}. C\textsubscript{As} has a (0/+) transition energy level at 0.02 eV and a (−/0) level at 0.19 eV in figure 8. Defects C\textsubscript{Al} and C\textsubscript{i} have much higher formation energies in both As-rich or As-poor conditions, so they have low impact on the carrier densities. Under As-poor condition [figure 5(b)], intrinsic defect Al1+\textsubscript{i} has the lowest...
Figure 7. Formation energies of Cu-doped AlAs as a function of Fermi level under (a) As-rich and (b) As-poor conditions. (c) Fermi energy, concentrations of defects and carriers at room temperature for Cu-doped AlAs as μ_{As} changes from As-rich to As-poor.

formation energy between VBM and 0.50 eV above, and C_{As}^{-} take over for Fermi levels higher than 0.50 eV above VBM. The defects concentration as a function of μ_{As} are plotted for C-doping in figure 5(c). The highest concentration of C_{As}^{-} defect is in the order of 10^{16} cm$^{-3}$ for most of the μ_{As} values. Under As-poor and As-moderate conditions, the Fermi level is pinned at around 0.18 eV above VBM, indicating that the conductivity is p-type under this condition. The hole density of 2×10^{16} cm$^{-3}$ [see figure 5(c)] in As-poor condition is smaller than the values (10^{19} cm$^{-3}$) measured in Raman, photoluminescence spectroscopy and other experiments [28–30].

3.3.2. Mg and Cu doping
Figure 6 shows the formation energies of defects related to Mg doping, as well as the intrinsic defects. Mg-doping mainly introduces two types of defects, Mg$_2^{2+}$ and Mg$_{\text{Al}}^{-}$, with lower formation energies than intrinsic defects. Under both conditions, the defect with lowest formation energy is Mg$_2^{2+}$ for Fermi energies on the VBM side, while it transits to Mg$_{\text{Al}}^{-}$ on CBM side. The energies for this transition are 0.26 eV and 0.67 eV above VBM for As-rich and As-poor conditions, respectively.

Mg$_{\text{Al}}$ is an acceptor in most part of the Fermi level range. Its (0/+ and −/0) transition energy levels lie at 0.02 eV and 0.19 eV above the VBM, respectively, as shown in figure 8. The Mg$_2^{2+}$ concentration is $10^{19} \sim 10^{22}$ cm$^{-3}$, higher than the experimental value (2×10^{17} cm$^{-3}$) [24]. Mg$_{\text{Al}}^{-}$ concentration is also high, but neutral state does not contribute to electrical conductivity. The concentration of Mg$_2^{2+}$ is calculated to be significantly high (9×10^{21} cm$^{-3}$) under As-rich condition, due to its low formation energies [figure 6(c)]. Meanwhile, it should be noticed that the carrier (hole) density (6×10^{15} cm$^{-3}$) of Mg-doping, and its Fermi level is pinned 0.27 eV above VBM. Thus, Mg-doping is a suitable way to improve the p-type conductivity, which is similar to Mg-doped GaAs in experiments [50, 51].
Figure 8. Charge transition energy levels of four dopants (Si, C, Mg and Cu) in AlAs.

For Cu-doping, the formation energies of Cu-doping as a function of Fermi level are shown in figures 7(a) and (b), as well as charge transition energy levels of Cu-doping in AlAs as presented in figure 8. Under As-rich condition [figure 7(a)], Cu$_{Al}^{2-}$ emerges with the lowest formation energy between 1.01 eV above VBM and CBM, whereas Cu$_{Al}^{1+}$ has slightly lower formation energy than the lowest intrinsic As$_{Al}$ for a small energy range in the middle of the band gap. Under As-poor condition in figure 7(b), Cu$_{Al}^{1+}$ and Cu$_{Al}^{2-}$ exhibit lower formation energies than all intrinsic defects for Fermi energy higher than 0.16 eV above VBM. As shown in figure 7(c), the densities of Cu$_{Al}^{1-}$ and Cu$_{Al}^{1+}$ both decreases monotonically from 1017 cm$^{-3}$, as μ_{As} varies from the As-rich to As-poor condition. The calculated Cu concentration (1017 cm$^{-3}$) agree with the detected values in experiments (8.4 \times 1017 cm$^{-3}$) [24]. Cu$_{Al}^{2-}$ and Cu$_{Al}^{1+}$ pin the Fermi level at 0.70 eV below the CBM under As-poor condition, while it makes the Fermi level not close to CBM under As-rich condition. The carrier (electron) density of Cu-doping is 6 \times 1012 cm$^{-3}$ under As-poor condition, while it is close to 0 under As-rich condition. As a result, the conductivity is barely affected by Cu-doping under As-rich condition, while weakly n-type conductivity is introduced by Cu-doping under As-poor condition.

4. Conclusion

In summary, we have investigated the formation energies, transition energy levels, and the defect and carrier concentrations of the intrinsic defects and several common extrinsic dopants in AlAs. For intrinsic defects, As$_{Al}$ and V$_{Al}$ are determined to have the lowest formation energies under As-rich condition, whereas Al$_{i}$ and Al$_{AS}$ have the lowest formation energies with different Fermi energy range under As-poor condition. Though their formation energies are calculated to be lower than other intrinsic defects, they are still generally high, causing low defect concentrations. As a result, the intrinsic defects cannot be the source of n-type or p-type conductivity. For extrinsic doping, doping of Si, C, Mg, and Cu all shows lower formation energies for related defects depending on the growth chemical conditions, leading to higher defect and carrier concentrations. Si-doping introduces high electron concentration and n-type conductivity under As-rich condition, and high hole concentration and p-type conductivity under As-poor condition. C-doping can make AlAs p-type conductive under As-poor and As-moderate conditions, while Mg is an efficient p-type dopant under any growth condition. In addition, Cu is not an effective n-/p-type dopant according to our calculations. Our results provide insights for optimizing the performance of the AlAs-related semiconductors.

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 61722402 and 91833302, Shanghai Academic/Technology Research Leader (19XD1421300), Eastern Scholar Program, Fok Ying Tung Education Foundation (161060) and the Fundamental Research Funds for the Central Universities.
Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Yu-Ning Wu https://orcid.org/0000-0003-3970-3160
Xiang Ye https://orcid.org/0000-0002-9034-0046
Shiyou Chen https://orcid.org/0000-0002-4039-8549

References

[1] Adachi S 1985 GaAs, AlAs, and Al_{1-x}Ga_xAs: material parameters for use in research and device applications J. Appl. Phys. 58 R1–R29
[2] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 Band parameters for III–V compound semiconductors and their alloys J. Appl. Phys. 89 5815–75
[3] Adachi S 1994 GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (Singapore: World Scientific)
[4] Holonyak N, Kolbas R, Dupuis R and Dakkus P 1980 Quantum-well heterostructure lasers IEEE J. Quantum Electron. 16 170–86
[5] Osothchan T, Chin V W L, Vaughan M K, Tansley T L and Goldys E M 1994 Electronic band structure of Al_{1-x}Ga_xAs and Al_{1-x}Ga_xAs/GaAs double-barrier superlattices Phys. Rev. B 50 2409–19
[6] Xu P, Chen S, Xiang H-J, Gong X-G and Wei S-H 2014 Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI₃ Chem. Mater. 26 6068–72
[7] Chen S, Gong X G, Walsh A and Wei S-H 2010 Defect physics of the kesterite thin-film solar cell absorber Cu₂ZnSnS₄ Appl. Phys. Lett. 96 021902
[8] Chen S, Walsh A, Gong X-G and Wei S-H 2013 Classification of lattice defects in the kesterite Cu₂ZnSnS₄ and Cu₂ZnSnSe₄ earth-abundant solar cell absorbers Adv. Mater. 25 1522–39
[9] Chen S, Yang J-H, Gong X-G, Walsh A and Wei S-H 2010 Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu₂ZnSnS₄ Phys. Rev. B 81 245204
[10] Chen S, Narang P, Atwater H A and Wang L-W 2014 Phase stability and defect physics of a ternary ZnSnS₂ semiconductor: first principles insights Adv. Mater. 26 311–5
[11] Wu Y-N, Zhang X-G and Pantelides S T 2017 Fundamental resolution of difficulties in the theory of charged point defects in semiconductors Semicond. Sci. Technol. 31 110501
[12] Wu Y-N, Zhang X G and Pantelides S T 2017 First-principles calculations reveal controlling principles for carrier mobilities in semiconductors Semicond. Sci. Technol. 31 110501
[13] Escaño M C, Nguyen T Q, Osanai Y, Kasai H and Tani M 2019 Large-scale spin-polarized DFT calculation of electronic properties of GaAs with defects Mater. Res. Express 6 055914
[14] Schultz P A 2016 Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations Phys. Rev. B 93 125201
[15] Schultz P A and von Lilienfeld O A 2009 Simple intrinsic defects in gallium arsenide Modelling Simul. Mater. Sci. Eng. 17 084007
[16] Jiang M, Xiao H, Peng S, Qiao L, Yang G, Liu Z and Zu X 2018 First-principles study of point defects in GaAs/AlAs superlattice: the phase stability and the effects on the band structure and carrier mobility Nanoscale Res. Lett. 13 301
[17] Kahaly M U, Nazir S and Schwingenschlögl U 2011 Band structure engineering and vacancy induced metallicity at the Ga_xAs/Al_{1-x}As interface Appl. Phys. Lett. 99 123501
[18] Zollo G, Tarus J and Nieminen R M 2004 Reliability of analytical potentials for point-defect simulation in GaAs Phys. Rev. B 70 125201
[19] Ignat H 1989 Cation self-diffusion mediated by arsenic-antisite point defect in GaAs and AlAs–GaAs superlattices Japan. J. Appl. Phys. 28 2115–8
[20] Chronoes A, Tahimi H A, Schwingenschlögl U and Grimes R W 2014 Antisites in III–V semiconductors: density functional theory calculations J. Appl. Phys. 116 023505
[21] Schultz P A 2012 First Principles Predictions of Intrinsic Defects in Aluminum Arsenide, AlAs: Numerical Supplement SANDIA Reports
[22] Tahimi H A, Chronoes A, Murphy S T, Schwingenschlögl U and Grimes R W 2013 Vacancies and defect levels in III–V semiconductors J. Appl. Phys. 114 063517
[23] Puska M J 1989 Electronic structures of point defects in III–V compound semiconductors J. Phys.: Condens. Matter. 1 37–66
[24] Whitaker I 1965 Electrical properties of n-type aluminium arsenide Solid-State Electron. 8 49–52
[25] Bolger D E and Barry B E 1963 Preparation of aluminium arsenide by a vapour phase transport reaction Nature 199 1287
[26] Willardson R and Goering H 1962 Compound Semiconductors (New York: Reinhold Pub. Corp.) 1 p184
[27] Kopf R F, Schubert E F, Downey S W and Emerson A B 1992 N-and P-type dopant profiles in distributed Bragg reflector structures and their effect on resistance Appl. Phys. Lett. 61 1820–2
[28] Davidson B R, Newman R C, Robbie D A, Sangster M J L, Wagner J, Fischer A and Ploog K 1993 The lattice sites of carbon in highly doped AlAs: C grown by molecular beam epitaxy Semicond. Sci. Technol. 8 611–4
[29] Wagner J, Fischer A and Ploog K 1993 Resonant Raman scattering and photoluminescence at the E_L band gap of carbon-doped AlAs Appl. Phys. Lett. 62 3482–4
[30] Jones R and Oberg S 1994 Theory of carbon complexes in aluminium arsenide Phys. Rev. B 49 5306–12
[31] Hohenberg P and Kohn W 1964 Inhomogeneous electron gas Phys. Rev. 136 B864–71
[32] Kohn W and Sham L J 1965 Self-consistent equations including exchange and correlation effects Phys. Rev. A105501
[33] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–36
[34] Kresse G and Hafner J 1993 Ab initio molecular dynamics for liquid metals Phys. Rev. B 47 558–61
[35] Kresse G and Furthmüller J 1996 Efficiency of \textit{ab initio} total energy calculations for metals and semiconductors using a plane-wave basis set \textit{Comput. Mater. Sci.} \textbf{6} 15–50

[36] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple \textit{Phys. Rev. Lett.} \textbf{77} 3865–8

[37] Heyd J, Scuseria G E and Ernzerhof M 2003 Hybrid functionals based on a screened Coulomb potential \textit{J. Chem. Phys.} \textbf{118} 8207–15

[38] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method \textit{Phys. Rev. B} \textbf{59} 1758–75

[39] Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations \textit{Phys. Rev. B} \textbf{13} 5188–92

[40] Kohler L and Kresse G 2004 Density functional study of CO on Rh(111) \textit{Phys. Rev. B} \textbf{70} 165405

[41] Lany S and Zunger A 2008 Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs \textit{Phys. Rev. B} \textbf{78} 235104

[42] Barin I 1995 \textit{Thermochemical Data of Pure Substances: Parts I and II} 3rd edn (Weinheim: VCH Verlagsgesellschaft)

[43] Wagman D D, Evans W H, Parker V B, Schumm R H, Halow I, Bailey S M, Churney K L and Nuttall R L 1989 Erratum: the NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)] \textit{J. Phys. Chem. Ref. Data} \textbf{18} 1807–12

[44] Lagally M G 1990 \textit{Kinetics of Ordering and Growth at Surfaces} (New York: Plenum Press) 239 p248

[45] Ma J, Wei S-H, Gessert T A and Chin K K 2011 Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: case of Cu impurities in CdTe \textit{Phys. Rev. B} \textbf{83} 245207

[46] Gaber A, Zillgen H, Ehrhart P, Partyka P and Averback R S 1997 Lattice parameter changes and point defect reactions in low temperature electron irradiated AlAs \textit{J. Appl. Phys.} \textbf{82} 5348–51

[47] Dumke W P, Lorenz M R and Pettit G D 1972 Enhanced indirect optical absorption in AlAs and GaP \textit{Phys. Rev. B} \textbf{5} 2978–85

[48] Guzzi M, Grilli E, Oggioni S, Staehli J L, Bossio C and Pavesi L 1992 Indirect-energy-gap dependence on Al concentration in AlxGa1−xAs alloys \textit{Phys. Rev. B} \textbf{45} 10951–7

[49] Monemar B 1973 Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra \textit{Phys. Rev. B} \textbf{8} 5711–8

[50] Cavins J R, Yeo Y K and Hengehold R L 1988 Excited states of the Mg acceptor in GaAs \textit{J. Appl. Phys.} \textbf{64} 6761–6

[51] Choe B D, Yeo Y K and Park Y S 1980 Distribution of electrically active Mg implants in GaAs \textit{J. Appl. Phys.} \textbf{51} 4742–6