On Π-supplemented subgroups of a finite group

Xiaoyu Chen, Wenbin Guo†
Department of Mathematics, University of Science and Technology of China,
Hefei 230026, P. R. China
E-mail: jelly@mail.ustc.edu.cn, wbguo@ustc.edu.cn

Abstract

A subgroup H of a finite group G is said to satisfy Π-property in G if for every chief factor L/K of G, $|G/K : N_{G/K}(HK/K \cap L/K)|$ is a $\pi(HK/K \cap L/K)$-number. A subgroup H of G is called to be Π-supplemented in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T \leq I \leq H$, where I satisfies Π-property in G. In this paper, we investigate the structure of a finite group G under the assumption that some primary subgroups of G are Π-supplemented in G. The main result we proved improves a large number of earlier results.

1 Introduction

Throughout this paper, all groups mentioned are finite, G always denotes a finite group and p denotes a prime. Let π denote a set of some primes, $\pi(G)$ denote the set of all prime divisors of $|G|$, and $|G|_p$ denote the order of the Sylow p-subgroups of G. An integer n is called a π-number if all prime divisors of n belong to π. For a subgroup H of G, let H^G denote the normal closure of H in G, that is, $H^G = \langle H^g : g \in G \rangle$.

Recall that a class of groups \mathcal{F} is called a formation if \mathcal{F} is closed under taking homomorphic images and subdirect products. A formation \mathcal{F} is said to be saturated (resp. solubly saturated) if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$ (resp. $G/\Phi(N) \in \mathcal{F}$ for a soluble normal subgroup N of G). A chief factor L/K of G is said to be \mathcal{F}-central in G if $(L/K) \rtimes (G/C_G(L/K)) \in \mathcal{F}$.

*Research is supported by a NNSF grant of China (grant #11371335) and Research Fund for the Doctoral Program of Higher Education of China (Grant 20113402110036).
†Corresponding author.

Keywords: Π-property, Π-supplemented subgroups, supersolubility, Sylow subgroups.

Mathematics Subject Classification (2000): 20D10, 20D15, 20D20.
A normal subgroup \(N \) of \(G \) is called to be \(\mathcal{F} \)-hypercentral in \(G \) if every chief factor of \(G \) below \(N \) is \(\mathcal{F} \)-central in \(G \). Let \(Z_{\mathcal{F}}(G) \) denote the \(\mathcal{F} \)-hypercentre of \(G \), that is, the product of all \(\mathcal{F} \)-hypercentral normal subgroups of \(G \). We use \(\mathcal{U} \) (resp. \(\mathcal{U}_p \)) to denote the class of finite supersoluble (resp. \(p \)-supersoluble) groups and \(\mathcal{G}_\pi \) to denote the class of all finite \(\pi \)-groups.

Recall that \(G \) is said to be quasinilpotent if for every chief factor \(L/K \) of \(G \) and every element \(x \in G \), \(x \) induces an inner automorphism on \(L/K \). The generalized Fitting subgroup \(F^*(G) \) of \(G \) is the quasinilpotent radical of \(G \) (for details, see \cite{21} Chapter X). All notations and terminology not mentioned above are standard, as in \cite{9, 14, 20}.

In \cite{23}, Li introduced the concepts of \(\Pi \)-property and \(\Pi \)-supplemented subgroup as follows:

Definition 1.1. \cite{23} A subgroup \(H \) of \(G \) is said to satisfy \(\Pi \)-property in \(G \) if for every chief factor \(L/K \) of \(G \), \(|G/K : N_{G/K}(HK/K \cap L/K)| \) is a \(\pi \)-(\(HK/K \cap L/K \))-number.

A subgroup \(H \) of \(G \) is called to be \(\Pi \)-supplemented in \(G \) if there exists a subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq I \leq H \), where \(I \) satisfies \(\Pi \)-property in \(G \).

As we showed in Section 4 below, the concept of \(\Pi \)-supplemented subgroup generalizes many known embedding properties. However, besides \cite{24}, this concept has not been deeply investigated. In this paper, we will continue to study the properties of \(\Pi \)-supplemented subgroups, and arrive at the following main result.

Theorem A. Let \(\mathcal{F} \) be a solubly saturated formation containing \(\mathcal{U} \) and \(E \) a normal subgroup of \(G \) with \(G/E \in \mathcal{F} \). Let \(X \leq G \) such that \(F^*(E) \leq X \leq E \). For every prime \(p \in \pi(X) \) and every non-cyclic Sylow \(p \)-subgroup \(P \) of \(X \), suppose that \(P \) has a subgroup \(D \) such that \(1 \leq |D| < |P| \) and every proper subgroup \(H \) of \(P \) with \(|H| = p^n|D| \) (\(n = 0, 1 \)) either is \(\Pi \)-supplemented in \(G \) or has a \(p \)-supersoluble supplement in \(G \). If \(P \) is not quaternion-free and \(|D| \neq 1 \), suppose further that every cyclic subgroup of \(P \) of order 4 either is \(\Pi \)-supplemented in \(G \) or has a 2-supersoluble supplement in \(G \). Then \(G \in \mathcal{F} \).

Recall that a subgroup \(H \) of \(G \) is said to be \(c \)-supplemented \cite{5} in \(G \) if there exists a subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \leq H_G \), where \(H_G \) denotes the largest normal subgroup of \(G \) contained in \(H \). It is easy to find that all \(c \)-supplemented subgroups of \(G \) are \(\Pi \)-supplemented in \(G \), and the converse does not hold. For example, let \(G = \langle a, b \mid a^5 = b^4 = 1, b^{-1}ab = a^2 \rangle \) and \(H = \langle b^2 \rangle \). Then \(H \) is \(\Pi \)-supplemented, but not \(c \)-supplemented in \(G \). In \cite{2}, M. Asaad proved the following excellent theorem.

Theorem 1.2. \cite{2} Theorems 1.5 and 1.6 Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{U} \) and \(E \) a normal subgroup of \(G \) with \(G/E \in \mathcal{F} \). Let \(X \leq G \) such that \(X = E \) or \(X = F^*(E) \). For any Sylow subgroup \(P \) of \(X \), let \(D \) be a subgroup of \(P \) such that \(1 \leq |D| < |P| \). Suppose that every subgroup \(H \) of \(P \) with \(|H| = p^n|D| \) (\(n = 0, 1 \)) is \(c \)-supplemented in \(G \). If \(P \) is a non-abelian 2-group and \(|D| = 1 \), suppose further that every cyclic subgroup of \(P \) of order 4
is c-supplemented in G. Then $G \in \mathcal{F}$.

One can see that Theorem A can be viewed as a large improvement of M. Asaad’s result. The following theorems are the main stages of the proof of Theorem A.

Theorem B. Let P be a normal p-subgroup of G. Suppose that P has a subgroup D such that $1 \leq |D| < |P|$ and every proper subgroup H of P with $|H| = p^n|D|$ $(n = 0, 1)$ either is Π-supplemented in G or has a p-supersoluble supplement in G. If P is not quaternion-free and $|D| = 1$, suppose further that every cyclic subgroup of P of order 4 either is Π-supplemented in G or has a 2-supersoluble supplement in G. Then $P \leq Z_4(G)$.

Theorem C. Let E be a normal subgroup of G and P a Sylow p-subgroup of E with $(|E|, p - 1) = 1$. Suppose that P has a subgroup D such that $1 \leq |D| < |P|$ and every proper subgroup H of P with $|H| = p^n|D|$ $(n = 0, 1)$ either is Π-supplemented in G or has a p-supersoluble supplement in G. If P is not quaternion-free and $|D| = 1$, suppose further that every cyclic subgroup of P of order 4 either is Π-supplemented in G or has a 2-supersoluble supplement in G. Then E is p-nilpotent.

Finally, the following corollaries can be deduced immediately from Theorem A.

Corollary 1.3. Let \mathcal{F} be a solubly saturated formation containing \mathcal{U} and E a normal subgroup of G with $G/E \in \mathcal{F}$. Let $X \unlhd G$ such that $F^*(E) \leq X \leq E$. For every prime $p \in \pi(X)$ and every non-cyclic Sylow p-subgroup P of X, suppose that every maximal subgroup of P either is Π-supplemented in G or has a p-supersoluble supplement in G. Then $G \in \mathcal{F}$.

Corollary 1.4. Let \mathcal{F} be a solubly saturated formation containing \mathcal{U} and E a normal subgroup of G with $G/E \in \mathcal{F}$. Let $X \unlhd G$ such that $F^*(E) \leq X \leq E$. For every prime $p \in \pi(X)$ and every non-cyclic Sylow p-subgroup P of X, suppose that every cyclic subgroup of P of prime order or order 4 (when P is not quaternion-free) either is Π-supplemented in G or has a p-supersoluble supplement in G. Then $G \in \mathcal{F}$.

2 Basic Properties

Lemma 2.1. [23] Proposition 2.1] Let $H \leq G$ and $N \leq G$.

1. If H satisfies Π-property in G, then HN/N satisfies Π-property in G/N.

2. If either $N \leq H$ or $(|H|, |N|) = 1$ and H is Π-supplemented in G, then HN/N is Π-supplemented in G/N.

Lemma 2.2. Let $H \leq G$, $N \unlhd G$ such that $N \leq H$ and P be a Sylow p-subgroup of H. Suppose that P has a subgroup D such that $|N|_p \leq |D| < |P|$ and every subgroup of P of order $|D|$ either is Π-supplemented in G or has a p-supersoluble supplement in G. Then every
subgroup of \(PN/N \) of order \(|D|/|N|_p \) either is \(\Pi \)-supplemented in \(G/N \) or has a \(p \)-supersoluble supplement in \(G/N \).

Proof. Let \(X/N \) be a subgroup of \(PN/N \) of order \(|D|/|N|_p \). Then \(X = (P \cap X)N \), and so \(X/N \cong P \cap X/P \cap N \). Hence \(|P \cap X| = |D|\). By hypothesis, \(P \cap X \) either is \(\Pi \)-supplemented in \(G \) or has a \(p \)-supersoluble supplement in \(G \). Then \(P \cap X \) has a supplement \(T \) in \(G \) such that either \(T \) is \(p \)-supersoluble or \(P \cap X \cap T \leq I \leq P \cap X \), where \(I \) satisfies \(\Pi \)-property in \(G \). Obviously, \(G/N = (X/N)(TN/N) \). Since \(|N : P \cap N|, |N : T \cap N| = 1 \), \(N = (P \cap N)(T \cap N) \).

This deduces that \(X \cap TN = (P \cap X)N \cap TN = (P \cap X \cap T)N \). Therefore, either \(TN/N \) is \(p \)-supersoluble or \(X/N \cap TN/N = (P \cap X \cap T)N/N \leq IN/N \leq X/N \), where \(IN/N \) satisfies \(\Pi \)-property in \(G/N \) by Lemma 2.1(1). Consequently, \(X/N \) either is \(\Pi \)-supplemented in \(G/N \) or has a \(p \)-supersoluble supplement in \(G/N \). \(\square \)

For any function \(f: \mathbb{P} \cup \{0\} \longrightarrow \{\text{formations of groups}\} \). Following [27], let

\[
CF(f) = \{G \text{ is a group } | G/C_G(H/K) \in f(0) \text{ for each non-abelian chief factor}
\]

\[
H/K \text{ of } G \text{ and } G/C_G(H/K) \in f(p) \text{ for each abelian } p\text{-chief factor } H/K \text{ of } G\}.
\]

Lemma 2.3. [27] For any non-empty solubly saturated formation \(\mathcal{F} \), there exists a unique function \(F: \mathbb{P} \cup \{0\} \longrightarrow \{\text{formations of groups}\} \) such that \(\mathcal{F} = CF(F), F(p) = G_pF(p) \subseteq \mathcal{F} \) for all \(p \in \mathbb{P} \) and \(F(0) = \mathcal{F} \).

The function \(F \) in Lemma 2.3 is called the canonical composition satellite of \(\mathcal{F} \).

Lemma 2.4. [18 Lemma 2.14] Let \(\mathcal{F} \) be a saturated \((\text{resp. solubly saturated}) \) formation and \(F \) the canonical local \((\text{resp. the canonical composition}) \) satellite of \(\mathcal{F} \) \((\text{for the details of canonical local satellite, see [9, Chapter IV, Definition 3.9]}\) \). Let \(E \) be a normal \(p \)-subgroup of \(G \). Then \(E \leq Z_F(G) \) if and only if \(G/C_G(E) \in F(p) \).

Lemma 2.5. [12 Lemma 2.4] Let \(P \) be a \(p \)-group. If \(\alpha \) is a \(p' \)-automorphism of \(P \) which centralizes \(\Omega_1(P) \), then \(\alpha = 1 \) unless \(P \) is a non-abelian 2-group. If \([\alpha, \Omega_2(P)] = 1 \), then \(\alpha = 1 \) without restriction.

Lemma 2.6. [10 Lemma 2.15] If \(\sigma \) is an automorphism of odd order of the quaternion-free 2-group \(P \) and \(\sigma \) acts trivially on \(\Omega_1(P) \), then \(\sigma = 1 \).

Lemma 2.7. [13 Chapter 5, Theorem 3.13] A \(p \)-group \(P \) possesses a characteristic subgroup \(C \) (which is called a Thompson critical subgroup of \(P \)) with the following properties:

1. The nilpotent class of \(C \) is at most 2, and \(C/Z(C) \) is elementary abelian.
2. \([P, C] \leq Z(C)\).
3. \(C_P(C) = Z(C)\).
(4) Every nontrivial p'-automorphism of P induces a nontrivial automorphism of C.

If P is either an odd order p-group or a quaternion-free 2-group, then let $\Omega(P)$ denote the subgroup $\Omega_1(P)$, otherwise $\Omega(P)$ denotes $\Omega_2(P)$. The following lemma is a generalization of [6, Lemma 2.12], which is attributed to A. N. Skiba.

Lemma 2.8. Let \mathcal{F} be a solubly saturated formation, P a normal p-subgroup of G and C a Thompson critical subgroup of P. If either $P/\Phi(P) \leq Z_\mathcal{F}(G/\Phi(P))$ or $\Omega(C) \leq Z_\mathcal{F}(G)$, then $P \leq Z_\mathcal{F}(G)$.

Proof. Let F be the canonical composition satellite of \mathcal{F}. Suppose that $P/\Phi(P) \leq Z_\mathcal{F}(G/\Phi(P))$. Then by Lemma 2.4, $G/C_G(P/\Phi(P)) \in \mathcal{F}(p)$. Note that by [13] Chapter 5, Theorem 1.4, $C_G(P/\Phi(P))/C_G(P)$ is a p-group. This implies that $G/C_G(P) \in \mathcal{G}_pF(p) = F(p)$. Hence by Lemma 2.4 again, $P \leq Z_\mathcal{F}(G)$.

Now assume that $\Omega(C) \leq Z_\mathcal{F}(G)$. Then by Lemma 2.4, $G/C_G(\Omega(C)) \in \mathcal{F}(p)$. Since $C_G(\Omega(C))/C_G(C)$ is a p-group by Lemmas 2.5 and 2.6, we have that $G/C_G(C) \in \mathcal{G}_pF(p) = F(p)$. It follows from Lemma 2.7(4) that $C_G(C)/C_G(P)$ is a p-group, and so $G/C_G(P) \in \mathcal{G}_pF(p) = F(p)$. Thus by Lemma 2.4 again, $P \leq Z_\mathcal{F}(G)$. \hfill \square

Lemma 2.9. [28] Lemma 3.1 Let G be a non-abelian quaternion-free 2-group. Then G has a characteristic subgroup of index 2.

Lemma 2.10. Let C be a Thompson critical subgroup of a nontrivial p-group P.

1. If p is odd, then the exponent of $\Omega_1(C)$ is p.
2. If P is an abelian 2-group, then the exponent of $\Omega_1(C)$ is 2.
3. If $p = 2$, then the exponent of $\Omega_2(C)$ is at most 4.

Proof. (1) Since the nilpotent class of C is at most 2 by Lemma 2.7(1), the statement (1) directly follows from [13] Chapter 5, Lemma 3.9(i)].

Statement (2) is clear.

(3) Let x and y be elements of C of order 4. Then by Lemma 2.7(1) and [13] Chapter 2, Lemma 2.2], we have that $[x, y]^2 = [x^2, y] = 1$, and so $(yx)^4 = [x, y]^6y^4x^4 = 1$. This shows that the order of yx is at most 4, and thus the exponent of $\Omega_2(C)$ is at most 4. \hfill \square

Recall that G is said to be π-closed if G has a normal Hall π-subgroup. Also, G is said to be a C_π-group if G has a Hall π-subgroup and any two Hall π-subgroups of G are conjugate in G.

Lemma 2.11. Let p be a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. Suppose that G has a Hall p'-subgroup. Then G is a $C_{p'}$-group.

Proof. If $p > 2$, then $2 \nmid |G|$. By Feit-Thompson Theorem, G is soluble, and so G is a $C_{p'}$-group. If $p = 2$, then by [8] Theorem A], G is also a $C_{p'}$-group. \hfill \square
Lemma 2.12. [18, Corollary 3.7] Let P be a p-subgroup of G. Suppose that G is a C_π-group for some set of primes π with $p \notin \pi$. If every maximal subgroup of P has a π-closed supplement in G, then G is π-closed.

The next lemma is well-known.

Lemma 2.13. Let p be a prime divisor of $|G|$ with $(|G|, p - 1) = 1$.

1. If G has cyclic Sylow p-subgroups, then G is p-nilpotent.
2. If E is a normal subgroup of G such that $|E|_p \leq p$ and G/E is p-nilpotent, then G is p-nilpotent.
3. If H is a subgroup of G such that $|G:H| = p$, then $H \trianglelefteq G$.

Lemma 2.14. [1, Lemma 2.6] If G possesses two subgroups K and T such that $|G:K| = 2^r$ and $|G:T| = 2^{r+1}$ ($r \geq 3$) and T is not a 2'-Hall subgroup of G, then G is not a non-abelian simple group.

Recall that a subgroup H of G is said to be complemented in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T = 1$. In this case, T is called a complement of H in G.

Lemma 2.15. Let P be a Sylow p-subgroup of G with $(|G|, p - 1) = 1$. If every subgroup of P of order p is complemented in G, then G is p-nilpotent.

Proof. Let H be a subgroup of P of order p and T a complement of H in G. Then by Lemma 2.13(3), $T \trianglelefteq G$. If $p \nmid |T|$, then G is p-nilpotent. Thus $p \mid |T|$. Clearly, $P \cap T$ is a Sylow p-subgroup of T and every subgroup of $P \cap T$ of order p is complemented in T. Then by induction, T is p-nilpotent. Since the normal p-complement of T is the normal p-complement of G, G is also p-nilpotent. □

Lemma 2.16. [4, Lemma 3.1] Let \mathcal{F} be a saturated formation of characteristic π and H a subnormal subgroup of G containing $O_\pi(\Phi(G))$ such that $H/O_\pi(\Phi(G)) \in \mathcal{F}$. Then $H \in \mathcal{F}$.

Lemma 2.17. [26, Theorem B] Let \mathcal{F} be any formation. If $E \trianglelefteq G$ and $F^*(E) \leq Z_{\mathcal{F}}(G)$, then $E \leq Z_{\mathcal{F}}(G)$.

Lemma 2.18. [18, Lemma 2.13] Let $\mathcal{F} = CF(F)$ be a solubly saturated formation, where F is the canonical composition satellite of \mathcal{F}. Let H/K be a chief factor of G. Then H/K is \mathcal{F}-central in G if and only if $G/C_G(H/K) \in F(p)$ in the case where H/K is a p-group, and $G/C_G(H/K) \in F(0) = \mathcal{F}$ in the case where H/K is non-abelian.

3 Proofs of Theorems

Proof of Theorem B. Suppose that the result is false and let (G, P) be a counterexample for which $|G| + |P|$ is minimal. We proceed via the following steps.
(1) \(|D| \geq p^2\).

If \(|D| \leq p\), we may assume that \(|D| = 1\) (in the conditions of the theorem, the case \(|D| = p\) can be viewed as a special case of \(|D| = 1\)). Then:

(i) \(G\) has a unique normal subgroup \(N\) such that \(P/N\) is a chief factor of \(G\), \(N \leq Z_u(G)\) and \(|P/N| > p\).

Let \(P/N\) be a chief factor of \(G\). Then \((G, N)\) satisfies the hypothesis of this theorem. By the choice of \((G, P)\), we have that \(N \leq Z_u(G)\). If \(P/N \leq Z_u(G/N)\), then \(P \leq Z_u(G)\), which is impossible. Hence \(P/N \not\leq Z_u(G/N)\), and so \(|P/N| > p\). Now let \(P/R\) be a chief factor of \(G\), which is different from \(P/N\). Then we can obtain that \(R \leq Z_u(G)\) similarly as above. This implies that \(P/N \leq Z_u(G/N)\) by \(G\)-isomorphism \(P/N = NR/N \cong R/N \cap R\), a contradiction.

(ii) Let \(C\) be a Thompson critical subgroup of \(P\). Then \(P = \Omega(C)\).

If not, then \(\Omega(C) \leq N \leq Z_u(G)\) by (i). Thus by Lemma 2.8, \(P \leq Z_u(G)\), which is absurd.

(iii) The exponent of \(P\) is 4 (when \(P\) is not quaternion-free).

If \(P\) is a non-abelian quaternion-free 2-group, then \(P\) has a characteristic subgroup \(T\) of index 2 by Lemma 2.9. It follows from (i) that \(T \leq N\), and so \(|P/N| = 2\), which is impossible.

Hence by (ii) and Lemma 2.10, the exponent of \(P\) is \(p\) or 4 (when \(P\) is not quaternion-free).

(iv) Final contradiction of (1).

Let \(G_p\) be a Sylow \(p\)-subgroup of \(G\). Since \(P/N \cap Z(G_p/N) > 1\), we may take a subgroup \(V/N\) of \(P/N \cap Z(G_p/N)\) of order \(p\). Let \(l \in V \setminus N\) and \(H = \langle l \rangle\). Then \(V = HN\) and \(H\) is a group of order \(p\) or 4 (when \(P\) is not quaternion-free) by (iii). By hypothesis, \(H\) either is \(\Pi\)-supplemented in \(G\) or has a \(\Pi\)-supersoluble supplement in \(G\). Let \(X\) be any supplement of \(H\) in \(G\). If \(P \not\leq X\), then \(P \cap X < P\). Since \((P \cap X)^G = (P \cap X)^P < P\), we have that \(P \cap X \leq N\) by (i). This implies that \(P/N\) is cyclic for \(P/P \cap X \cong H/H \cap X\) is cyclic, and so \(|P/N| = p\), which contradicts (i). Therefore, \(P \leq X\), and thereby \(X = G\). Consequently, \(G\) is the unique supplement of \(H\) in \(G\). If \(H\) has a \(\Pi\)-supersoluble supplement in \(G\), then \(G\) is \(p\)-supersoluble. It follows that \(P \leq Z_u(G)\), which is impossible. Hence \(H\) is \(\Pi\)-supplemented in \(G\), and so \(H\) satisfies \(\Pi\)-property in \(G\). Then \(|G : N_G(V)| = |G : N_G(HN)|\) is a \(p\)-number. This induces that \(V \leq G\). Then by (i), \(P = V\), and so \(|P/N| = p\), a contradiction. This completes the proof of (1).

(2) \(\Phi(P) = 1\), and so \(P\) is an elementary abelian \(p\)-group.

Suppose that \(\Phi(P) > 1\). If \(|\Phi(P)| > |D|\), then \((G, \Phi(P))\) satisfies the hypothesis of this theorem. By the choice of \((G, P)\), we have that \(\Phi(P) \leq Z_u(G)\). Let \(L\) be a minimal normal subgroup of \(G\) contained in \(\Phi(P)\). Then \(|L| = p\). Since \(|D| > |L| = p\) by (1), \((G/L, P/L)\) satisfies the hypothesis of this theorem by Lemma 2.1(2). By the choice of \((G, P)\), \(P/L \leq Z_u(G/L)\). It follows that \(P \leq Z_u(G)\), which is absurd.

Hence \(|\Phi(P)| \leq |D|\). Now we shall show that \(P/\Phi(P) \leq Z_u(G/\Phi(P))\). If \(|\Phi(P)| < |D|\),
then by Lemma 2.1(2), \((G/\Phi(P), P/\Phi(P))\) satisfies the hypothesis of this theorem. The choice of \((G, P)\) implies that \(P/\Phi(P) \leq Z_\ell(G/\Phi(P))\). Hence we may consider that \(|\Phi(P)| = |D|\). If \(p|D| = |P|\), then clearly, \(P/\Phi(P) \leq Z_\ell(G/\Phi(P))\). If \(p|D| < |P|\), then by Lemma 2.1(2), every subgroup of \(P/\Phi(P)\) of order \(p\) either is \(\Pi\)-supplemented in \(G/\Phi(P)\) or has a \(p\)-supersoluble supplement in \(G/\Phi(P)\). This shows that \((G/\Phi(P), P/\Phi(P))\) satisfies the hypothesis of this theorem, and so \(P/\Phi(P) \leq Z_\ell(G/\Phi(P))\) by the choice of \((G, P)\). Then by Lemma 2.8, \(P \leq Z_\ell(G)\), which is impossible. Therefore, \(\Phi(P) = 1\).

(3) \(G\) has a unique minimal normal subgroup \(N\) contained in \(P\), \(P/N \leq Z_\ell(G/N)\) and \(p < |N| \leq |D|\).

Let \(G_p\) be a Sylow \(p\)-subgroup of \(G\) and \(N\) a minimal normal subgroup of \(G\) contained in \(P\). If \(N = P\), then \(P\) is a minimal normal subgroup of \(G\). Let \(H\) be a subgroup of \(P\) of order \(|D|\) such that \(H \leq G_p\). By hypothesis, \(H\) either is \(\Pi\)-supplemented in \(G\) or has a \(p\)-supersoluble supplement in \(G\). For any supplement \(X\) of \(H\) in \(G\), we have that \(P \cap X \leq G\). If \(P \cap X = 1\), then \(H = P\), which is impossible. This induces that \(P \cap X = P\), and so \(X = G\). Therefore, \(G\) is the unique supplement of \(H\) in \(G\). Since \(G\) is not \(p\)-supersoluble, \(H\) satisfies \(\Pi\)-property in \(G\). It follows that \(|G : N_G(H)|\) is a \(p\)-number. Hence \(H \leq G\), a contradiction. Consequently, \(N < P\). If \(|N| > |D|\), then \((G, N)\) satisfies the hypothesis of this theorem. By the choice of \((G, P)\), we have that \(N \leq Z_\ell(G)\). This shows that \(|N| = p > |D|\), which contradicts (1). Therefore, \(|N| \leq |D|\).

Now we claim that \(P/N \leq Z_\ell(G/N)\). If \(|N| < |D|\), then by Lemma 2.1(2), \((G/N, P/N)\) satisfies the hypothesis of this theorem. By the choice of \((G, P)\), \(P/N \leq Z_\ell(G/N)\). Hence we may assume that \(|N| = |D|\). If \(|N| = |D|\), then clearly, \(P/N \leq Z_\ell(G/N)\). If \(|N| > |D|\), then by Lemma 2.1(2), every subgroup of \(P/N\) of order \(p\) either is \(\Pi\)-supplemented in \(G/N\) or has a \(p\)-supersoluble supplement in \(G/N\). Since \(P\) is abelian, \((G/N, P/N)\) satisfies the hypothesis of this theorem. Then by the choice of \((G, P)\), we also have that \(P/N \leq Z_\ell(G/N)\). Consequently, our claim holds. If \(|N| = N\), then \(N \leq Z_\ell(G)\), and so \(P \leq Z_\ell(G)\), which is absurd. Thus \(|N| > p\). If \(G\) has a minimal normal subgroup \(R\) contained in \(P\), which is different from \(N\), then we get that \(G/R \leq Z_\ell(G/R)\) similarly as above. It follows that \(NR/R \leq Z_\ell(G/R)\), and so \(N \leq Z_\ell(G)\) for \(G\)-isomorphism \(N \cong NR/R\). This implies that \(P \leq Z_\ell(G)\), a contradiction. Hence (3) holds.

(4) \(|p|D| = |P|\).

If \(|p|D| < |P|\), then since \(P/N \leq Z_\ell(G/N)\), \(G\) has a normal subgroup \(K\) properly contained in \(P\) such that \(N \leq K\) and \(|K| = p|D|\). Then \((G, K)\) satisfies the hypothesis of this theorem. By the choice of \((G, P)\), we have that \(K \leq Z_\ell(G)\), and thus \(|N| = p\), which contradicts (3). This shows that (4) holds.

(5) Final contradiction.
Since \(\Phi(P) = 1 \), \(N \) has a complement \(S \) in \(P \). Let \(L \) be a maximal subgroup of \(N \) such that \(L \leq G_p \). Then \(L \neq 1 \) and \(H = LS \) is a maximal subgroup of \(P \). By hypothesis and (4), \(H \) either is \(\Pi \)-supplemented in \(G \) or has a \(p \)-supersoluble supplement in \(G \). For any supplement \(X \) of \(H \) in \(G \), since \(P \) is abelian, we have that \(P \cap X \leq G \). If \(P \cap X = 1 \), then \(H = P \), which is impossible. Hence \(P \cap X > 1 \), and so \(N \leq X \) by (3). Suppose that \(H \) is \(\Pi \)-supplemented in \(G \). Then \(H \) has a supplement \(T \) in \(G \) such that \(H \cap T \leq I \leq H \), where \(I \) satisfies \(\Pi \)-property in \(G \). Since \(H \cap T = I \cap T \) and \(N \leq T \), \(L = H \cap N = I \cap N \). It follows that \(|G : N_G(L)| = |G : N_G(I \cap N)| \) is a \(p \)-number. As \(L \leq G_p \), we have that \(L \leq G \).

Then by (3), \(L = 1 \), and so \(|N| = p \), a contradiction. We may therefore, assume that \(H \) has a \(p \)-supersoluble supplement \(T \) in \(G \). Let \(F \) be the canonical local satellite of \(U_p \) such that \(F(p) = G_p F(p) = U_p \cap G_p A(p − 1) \), where \(A(p − 1) \) denotes the class of finite abelian groups of exponent \(p − 1 \) and \(F(q) = U_p \) for all primes \(q \neq p \). By Lemma 2.4, \(T/C_T(N) \in F(p) \).

Since \(P \leq C_G(N) \), we have that \(G/C_G(N) \cong T/C_T(N) \in F(p) \). Then by Lemma 2.4 again, \(N \leq Z_{U_p}(G) \), and so \(|N| = p \). The final contradiction ends the proof. \(\square \)

Proof of Theorem C. Suppose that the result is false and let \((G, E) \) be a counterexample for which \(|G| + |E| \) is minimal. We proceed via the following steps.

1. \(O_{p'}(G) = 1 \).

 If not, by Lemma 2.1(2), \((G/O_{p'}(G), EO_{p'}(G)/O_{p'}(G)) \) satisfies the hypothesis of this theorem. By the choice of \((G, E) \), we have that \(EO_{p'}(G)/O_{p'}(G) \) is \(p \)-nilpotent, and so \(E \) is \(p \)-nilpotent, a contradiction.

2. \(O_p(E) > 1 \).

 Suppose that \(O_p(E) = 1 \) and let \(N \) be a minimal normal subgroup of \(G \) contained in \(E \).

 Since \(O_{p'}(G) = 1 \), \(p \mid |N| \). Then we discuss three possible cases below:

 - **Case 1:** \(|N|_p < |D| \).

 In this case, by Lemma 2.2, \((G/N, E/N) \) satisfies the hypothesis of this theorem. By the choice of \((G, E) \), \(E/N \) is \(p \)-nilpotent. Let \(A/N \) be the normal \(p \)-complement of \(E/N \). Then obviously, \(A \leq G \) and \(|A|_p = |N|_p < |D| \). By Lemma 2.2, \((G/A, E/A) \) satisfies the hypothesis of Theorem B. Therefore, \(E/A \leq Z_{U_p}(G/A) \). If \(p|D| < |P| \), then we may take a normal subgroup \(L \) of \(G \) such that \(A \leq L < E \) and \(|L|_p = p|D| \). Clearly, \(G/L \) satisfies the hypothesis of this theorem. Then by the choice of \((G, E) \), \(L \) is \(p \)-nilpotent, and so \(N \) is \(p \)-nilpotent. Since \(O_{p'}(G) = 1 \), \(N \) is a \(p \)-group. Hence \(N \leq O_p(E) \), which is absurd.

 Thus we have that \(p|D| = |P| \). Then by hypothesis, every maximal subgroup of \(P \) either is \(\Pi \)-supplemented in \(G \) or has a \(p \)-supersoluble supplement in \(G \). If every maximal subgroup of \(P \) has a \(p \)-supersoluble supplement in \(E \), then since \((|E|, p − 1) = 1 \), every maximal subgroup of \(P \) has a \(p \)-nilpotent supplement in \(E \). By Lemmas 2.11 and 2.12, \(E \) is \(p \)-nilpotent, a contradiction. Hence \(P \) has a maximal subgroup \(P_1 \) such that \(P_1 \) is \(\Pi \)-supplemented in \(G \).
and P_1 does not have a p-supersoluble supplement in E. Then P_1 has a supplement T in G such that $T \cap E$ is not p-supersoluble and $P_1 \cap T \leq I \leq P_1$, where I satisfies Π-property in G. This implies that $|G : N_G(I \cap N)|$ is a p-number, and so $I \cap N \leq O_p(E) = 1$. It follows that $P_1 \cap T \cap N = I \cap N = 1$. As $|T \cap E : P \cap T| = |E : P|$, $P \cap T$ is a Sylow p-subgroup of $T \cap E$. This induces that $P \cap T \cap N$ is a Sylow p-subgroup of $T \cap N$. Note that $|P \cap T \cap N| = |P \cap T \cap N : P_1 \cap T \cap N| = |P_1(P \cap T \cap N) : P_1| \leq p$. Hence $|T \cap N|_p \leq p$. Since $T \cap E/T \cap N \cong (TN \cap E)/N \leq E/N$ is p-nilpotent, by Lemma 2.13(2), $T \cap E$ is p-nilpotent, a contradiction.

(ii) Case 2 : $|N|_p > |D|$.

In this case, if $N < E$, then (G, N) satisfies the hypothesis of this theorem. By the choice of (G, E), N is p-nilpotent. Since $O_p(G) = 1$, N is a p-group, which is absurd. Hence $N = E$. By hypothesis, for every proper subgroup H of P with $|H| = p^n|D|$ ($n = 0, 1$) or 4 (when $|D| = 1$ and P is not quaternion-free), H either is Π-supplemented in G or has a p-supersoluble supplement in G. If H is Π-supplemented in G, then H has a supplement T in G such that $H \cap T \leq I \leq H$, where I satisfies Π-property in G. It follows that $|G : N_G(I)|$ is a p-number, and so $I \leq O_p(E) = 1$. Hence H either is complemented in G or has a p-supersoluble supplement in G. If $E < G$, then clearly, H either is complemented in E or has a p-supersoluble supplement in E. This shows that (G, E) satisfies the hypothesis of this theorem. By the choice of (G, E), E is p-nilpotent, a contradiction. Thus $G = E$ is a non-abelian simple group. By Feit-Thompson Theorem, $p = 2$.

If every maximal subgroup of P has a 2-supersoluble supplement in G, then by Lemmas 2.11 and 2.12, G is 2-nilpotent, which is impossible. This shows that P has a maximal subgroup which does not have a 2-supersoluble supplement in G. Suppose that $2|D| < |P|$. Then P has subgroups H_1 and H_2 with $|H_1| = |D|$ and $|H_2| = 2|D|$ such that H_1 and H_2 are complemented in G. Let T_1 and T_2 be complements of H_1 and H_2 in G, respectively. Then $|G : T_1| = 2^r$ and $|G : T_2| = 2^{r+1}$ such that T_2 is not a 2^r-Hall subgroup of G. If $T_1 = G$, then $|G : T_2| = 2$, and so $T_2 \leq G$, which is absurd. Hence $r \geq 1$. If $r \leq 2$, then $G \cong G/(T_1)_G \leq S_4$, where S_4 denotes the symmetric group of degree 4, and so G is soluble, a contradiction. Thus $r \geq 3$. By Lemma 2.14, G is not a non-abelian simple group, which is impossible. Now assume that $2|D| = |P|$. Then P has a maximal subgroup H such that H is complemented in G such that every complement T of H in G is not 2-supersoluble. However, since $|T|_2 = 2$, T is 2-supersoluble, which contradicts our assumption.

(iii) Case 3 : $|N|_p = |D|$.

In this case, if $p|D| = |P|$, then $|E/N|_p = p$. Hence by Lemma 2.13(2), E/N is p-nilpotent. With a similar argument as in the proof of Case 1 of (2), we can get a contradiction. Now assume that $p|D| < |P|$. Let E/A be a chief factor of G such that $N \leq A$. If $|A|_p > |N|_p = |D|$,
then \((G,A)\) satisfies the hypothesis of this theorem. By the choice of \((G,E)\), \(A\) is \(p\)-nilpotent. Since \(O_\nu\cdot(G) = 1\), \(A\) is a \(p\)-group, a contradiction. Hence \(|A|_p = |N|_p = |D|\). By hypothesis, every subgroup of \(P\) of order \(|H| = p|D|\) either is \(\Pi\)-supplemented in \(G\) or has a \(p\)-supersoluble supplement in \(G\). Then by Lemma 2.2, every subgroup of \(PA/A\) of order \(p\) either is \(\Pi\)-supplemented in \(G/A\) or has a \(p\)-supersoluble supplement in \(G/A\).

Suppose that there exists a subgroup \(H\cdot(A)\) of \(PA/A\) of order \(p\) such that \(H/A\) is \(\Pi\)-supplemented, but not complemented in \(G/A\). Then clearly, \(H/A\) satisfies \(\Pi\)-property in \(G/A\). This implies that \(|G/A : N_{G/A}(H/A)|\) is a \(p\)-number, and so \(H/A \leq O_p(E/A)\). Hence \(E/A = O_p(E/A)\) for \(E/A\) is a chief factor of \(G\). Consequently, \(E/A\) is an elementary abelian \(p\)-group. Then \((G/A,E/A)\) satisfies the hypothesis of Theorem B. Thus \(E/A \leq Z_d(G/A)\). This induces that \(|E/A| = p\), and so \(p|D| = p|A|_p = |P|\), which is contrary to our assumption. Therefore, every subgroup of \(PA/A\) of order \(p\) either is complemented in \(G/A\) or has a \(p\)-supersoluble supplement in \(G/A\). Now we will show that \(E/A\) is \(p\)-nilpotent. If \(PA/A\) has a subgroup of order \(p\) which has a \(p\)-supersoluble supplement in \(G/A\), but is not complemented in \(G/A\), then clearly, \(G/A\) is \(p\)-supersoluble, and so is \(E/A\). Since \((|E/A|, p - 1) = 1\), \(E/A\) is \(p\)-nilpotent. Now consider that every subgroup of \(PA/A\) of order \(p\) is complemented in \(G/A\). Then by Lemma 2.15, \(E/A\) is also \(p\)-nilpotent. Since \(p \mid |E/A|\), \(E/A\) is an elementary abelian \(p\)-group. As discussed above, we can obtain that \(|E/A| = p\), and thus \(p|D| = p|A|_p = |P|\). The final contradiction shows that (2) holds.

(3) Final contradiction.

Since \(O_p(E) > 1\), let \(N\) be a minimal normal subgroup of \(G\) contained in \(O_p(E)\). Then we discuss three possible cases as follows:

(i) Case 1 : \(|N| < |D|\).

In this case, by Lemma 2.1(2), \((G/N,E/N)\) satisfies the hypothesis of this theorem. By the choice of \((G,E)\), \(E/N\) is \(p\)-nilpotent. Let \(A/N\) be the normal \(p\)-complement of \(E/N\). Since \(|A|_p = |N| < |D|\), by Lemma 2.2, \((G/A,E/A)\) satisfies the hypothesis of Theorem B, and so \(E/A \leq Z_d(G/A)\). If \(p|D| < |P|\), then we may take a normal subgroup \(L\) of \(G\) such that \(A \leq L < E\) and \(|L|_p = p|D|\). It is easy to see that \((G,L)\) satisfies the hypothesis of this theorem. Then by the choice of \((G,E)\), \(L\) is \(p\)-nilpotent. Since \(O_{p'}(G) = 1\), \(L\) is a \(p\)-group. It follows that \(E\) is a \(p\)-group, a contradiction.

We may, therefore, assume that \(p|D| = |P|\). By hypothesis, every maximal subgroup of \(P\) either is \(\Pi\)-supplemented in \(G\) or has a \(p\)-supersoluble supplement in \(G\). Since \(E/N\) is \(p\)-nilpotent, by Lemma 2.16, \(N \notin \Phi(G)\). Thus \(G\) has a maximal subgroup \(M\) such that \(N \notin M\). Obviously, \(M \cap N = 1\). As \(E/N\) is \(p\)-nilpotent, \(M \cap E\) is \(p\)-nilpotent. Let \(G_p\) be a Sylow \(p\)-subgroup of \(G\) and \(G_{p_1}\) a maximal subgroup of \(G_p\) containing \(G_p \cap M\). Then \(G_p = G_{p_1}(N)\). Let \(P_1 = G_{p_1} \cap P\). Since \(|P : P_1| = |G_p : G_{p_1}| = p\), \(P_1\) is a maximal subgroup of \(P\) such
that $P = P_1 N$. If P_1 is Π-supplemented in G, then P_1 has a supplement T in G such that $P_1 \cap T \leq I \leq P_1$, where I satisfies Π-property in G. It follows that $|G : N_G(I \cap N)|$ is a p-number. If $I \cap N > 1$, then $N = (I \cap N)^G = (I \cap N)^G_{p_1} \leq G_{p_1}$, a contradiction. Hence $I \cap N = 1$, and thus $P_1 \cap T \cap N = 1$. Since $T \cap E/T \cap N \cong (TN \cap E)/N$ is p-nilpotent and $|T \cap N| = |T \cap N : P_1 \cap T \cap N| = |P_1(T \cap N) : P_1| \leq p$, $T \cap E$ is p-nilpotent by Lemma 2.13.(2). Consequently, no matter P_1 is Π-supplemented in G or has a p-supersoluble supplement in G, P_1 has a p-nilpotent supplement T_1 in E for $(|E|, p - 1) = 1$. Let $(M \cap E)_{p'}$ and $(T_1)_{p'}$ be the normal p-complements of $M \cap E$ and T_1, respectively. Then $(M \cap E)_{p'}$ and $(T_1)_{p'}$ are p'-Hall subgroups of E. By Lemma 2.11, E is a $C_{p'}$-group. This implies that E has an element g such that $(T_1)_{p'}^g = (M \cap E)_{p'}$. Considering the fact that $T_1 \leq N_E((T_1)_{p'})$, we may let $g \in P_1$. It follows that $E = P_1 N_E((T_1)_{p'})^g = P_1 N_E((M \cap E)_{p'})$. Since $O_{p'}(G) = 1$ and $M \leq N_G((M \cap E)_{p'})$, we have that $N_G((M \cap E)_{p'}) = M$. This implies that $E = P_1(M \cap E)$. As $P \cap M \leq G_{p_1} \cap P = P_1$, $P = P_1(P \cap M) = P_1$, which is impossible.

(ii) Case 2: $|N| > |D|$.

In this case, (G, N) satisfies the hypothesis of Theorem B. Hence $N \leq Z_{d}(G)$, and so $|N| = p$. It follows that $|D| = 1$. As $(G, O_p(E))$ satisfies the hypothesis of Theorem B, $O_p(E) \leq Z_d(G) \leq Z_d(E)$. Since $(|E|, p - 1) = 1$, it is easy to see that $O_p(E) \leq Z_{\infty}(E)$. Let $A/O_p(E)$ be a chief factor of G below E. If $A < E$, then (G, A) satisfies the hypothesis of this theorem. By the choice of (G, E), A is p-nilpotent. Then since $O_{p'}(G) = 1$, A is a p-group. This shows that $A \leq O_p(E)$, which is absurd. Hence $E/O_p(E)$ is a chief factor of G. If $p \nmid |E/O_p(E)|$, then E is p-nilpotent for $O_p(E) \leq Z_{\infty}(E)$, a contradiction. Thus $p \mid |E/O_p(E)|$. Obviously, E is not soluble. Thus by Feit-Thompson Theorem, $p = 2$.

Now let V be a minimal non-2-nilpotent group contained in E. By [20, Chapter IV, Satz 5.4], V is a minimal non-nilpotent group such that $V = V_2 \times V_q$, where V_2 is the Sylow 2-subgroup of V and V_q is a Sylow q-subgroup of V with $q > 2$. Without loss of generality, we may let $V_2 \leq P$. Then by [9, Chapter VII, Theorem 6.18], $V_2/\Phi(V_2)$ is a V-chief factor; $\Phi(V) = Z_{\infty}(V)$; $\Phi(V_2) = V_2 \cap \Phi(V)$; and V_2 has exponent 2 or 4 (when V_2 is non-abelian). It follows that $O_2(E) \cap V_2 \leq Z_{\infty}(E) \cap V_2 \leq Z_{\infty}(V) \cap V_2 = \Phi(V) \cap V_2 = \Phi(V_2)$. Therefore, V_2 has an element x which is not contained in $O_2(E)$. Let $H = \langle x \rangle$. Then $|H| = 2$ or 4 (when V_2 is non-abelian). If V_2 is non-abelian and quaternion-free, then V_2 has a characteristic subgroup of index 2 by Lemma 2.9. This implies that $|V_2/\Phi(V_2)| = 2$, and so V_2 is cyclic, which contradicts our assumption. Therefore, $|H| = 2$ or 4 (when V_2 is non-nilpotent). If V_2 is non-abelian and quaternion-free, then V_2 has a characteristic subgroup of index 2 by Lemma 2.9. This implies that $|V_2/\Phi(V_2)| = 2$, and so V_2 is cyclic, which contradicts our assumption. Therefore, $|H| = 2$ or 4 (when V_2 is non-nilpotent). By hypothesis, H either is Π-supplemented in G or has a p-supersoluble supplement in G. Let X be any supplement of H in G. Suppose that $X < G$. Then $G/X_2 \leq S_4$ for $|G : X| \leq 4$, where S_4 denotes the symmetric group of degree 4. Thus $E/X_2 \cap E$ is soluble. Since $X_2 \cap E < E$ and $(G, X_2 \cap E)$ satisfies the hypothesis of this theorem, $X_2 \cap E = 2$-nilpotent by the choice
Therefore, we obtain that X is soluble, which is impossible. Therefore, G is the unique supplement of H in G. Since G is not 2-supersoluble, H is Π-supplemented in G, and so H satisfies Π-property in G. Then $|G : N_G(HO_2(E))|$ is a 2-number. This implies that $H \leq O_2(E)$, a final contradiction of (ii).

(iii) Case 3: $|N| = |D|$.

In this case, if $p|D| = |P|$, then $|E/N|_p = p$, and thus E/N is p-nilpotent by Lemma 2.13(2). With a similar discussion as in the proof of Case 1 of (3), we can get a contradiction. Hence $p|D| < |P|$. Let E/A be a chief factor of G such that $N \leq A$. If $|A|_p = |N| = |D|$, then a contradiction can be derived in a similar way as in Case 3 of (2). Now we may assume that $|A|_p > |N| = |D|$. Then (G, A) satisfies the hypothesis of this theorem. By the choice of (G, E), A is p-nilpotent. Since $O_{p'}(G) = 1$, A is a p-group. It follows that (G, A) satisfies the hypothesis of Theorem B. Hence $A \leq Z_{p}(G)$, and so $|N| = |D| = p$. This case can be viewed as a special case of Case 2 of (3) (we may take $|N| = p$ and $|D| = 1$), and this fact yields a contradiction. The theorem is thus proved. \hfill \square

Proof of Theorem A. Let p be the smallest prime divisor of $|X|$ and P a Sylow p-subgroup of X. If P is cyclic, then by Lemma 2.13(1), X is p-nilpotent. Now assume that P is not cyclic. Then by Theorem C, X is also p-nilpotent. Let $X_{p'}$ be the normal p-complement of X. Then $X_{p'} \unlhd G$. If P is cyclic, then $X/X_{p'} \leq Z_{p'}(G/X_{p'})$. Now consider that P is not cyclic. Then by Lemma 2.1(2), $(G/X_{p'}, X/X_{p'})$ satisfies the hypothesis of Theorem B. Hence we also have that $X/X_{p'} \leq Z_{p'}(G/X_{p'})$.

Let q be the second smallest prime divisor of $|X|$ and Q a Sylow q-subgroup of X. With a similar argument as above, we can get that $X_{p'}$ is q-nilpotent and $X_{p'}/X_{(p,q)'} \leq Z_{p'}(G/X_{(p,q)'}))$, where $X_{(p,q)'}$ is the normal q-complement of $X_{p'}$. The rest may be deduced by analogy. Therefore, we obtain that $X \leq Z_{p'}(G) \leq Z_{\mathcal{F}}(G)$. It follows from Lemma 2.17 that $E \leq Z_{\mathcal{F}}(G)$. Then by Lemma 2.18, $G \in \mathcal{F}$ as desired. \hfill \square

4 Further Applications

In this section, we will show that the subgroups of G which satisfy a certain known embedding property mentioned below are all Π-supplemented in G. For the sake of simplicity, we only focus on most recent embedding properties.

Recall that a subgroup H of G is called to be a **CAP-subgroup** if H either covers or avoids every chief factor of G. Let \mathcal{F} be a saturated formation. A subgroup H of G is said to be \mathcal{F}-hypercentrally embedded [1] in G if $H^G/H_G \leq Z_{\mathcal{F}}(G/H_G)$. A subgroup H of G is called to be **S-quasinormal** (or S-permutable) in G if H permutes with every Sylow subgroup of G. A subgroup H of G is said to be **S-semipermutable** [7] in G if H permutes with every Sylow
A subgroup H of G is called to be S-quasinormally embedded \[3\] in G if every Sylow subgroup of H is a Sylow subgroup of some S-quasinormal subgroup of G. A subgroup H of G is said to be S-conditionally permutable \[19\] in G if H permutes with at least one Sylow p-subgroup of G for every $p \in \pi(G)$.

Proposition 4.1. Let H be a subgroup of G. Then H satisfies Π-property in G if one of the following holds:

1. H is a CAP-subgroup of G.
2. H is U-hypercentrally embedded in G.
3. H is S-quasinormal in G.
4. H is a p-group and H is S-semipermutable in G.
5. H^G is soluble and H is S-quasinormally embedded in G.
6. H^G is soluble and H is S-conditionally permutable in G.

Proof. Statements (1)-(3) and (5)-(6) were proved in \[23\], and the proof of \[23, Proposition 2.4\] still works for statement (4).

Recall that a subgroup H of G is called to be a CAS-subgroup \[29\] if there exists a subgroup T of G such that $G = HT$ and $H \cap T$ is a CAP-subgroup of G. Let F be a saturated formation. A subgroup H of G is said to be F-supplemented \[15\] in G if there exists a subgroup T of G such that $G = HT$ and $(H \cap T)H_G / H_G \leq Z_F(G/H_G)$. A subgroup H of G is called to be weakly s-supplemented \[25\] in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T \leq H_{sG}$, where H_{sG} denotes the subgroup generated by all those subgroups of H which are S-quasinormal in G. A subgroup H of G is said to be weakly \bar{s}-supplemented \[30\] in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T \leq H_{\bar{s}G}$, where $H_{\bar{s}G}$ denotes the subgroup generated by all those subgroups of H which are S-semipermutable in G. A subgroup H of G is called to be weakly s-supplementally embedded \[31\] in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T \leq H_{se}$, where H_{se} denotes an S-quasinormally embedded subgroup of G contained in H. A subgroup H of G is said to be completely c-permutable \[17\] in G if for every subgroup T of G, there exists some $x \in \langle H, T \rangle$ such that $HT^x = T^xH$. A subgroup H of G is called to be weakly c-permutable \[16\] in G if there exists a subgroup T of G such that $G = HT$ and $H \cap T$ is completely c-permutable in G.

Proposition 4.2. Let H be a subgroup of G. Then H is Π-supplemented in G if one of the following holds:

1. H is a CAS-subgroup of G.
2. H is U-supplemented in G.
3. H is weakly s-supplemented in G.
4. H is a p-group and H is weakly \bar{s}-supplemented in G.
5. H^G is soluble and H is weakly s-supplementally embedded in G.

(6) H^G is soluble and H is weakly c-permutable in G.

Proof. Note that by [22, Satz 2], H_{sG} is S-quasinormal in G, and if H is a p-group, then by definition, H_{sG} is S-semipermutable in G. Also, every completely c-permutable subgroup of G is clearly S-conditionally permutable in G. Then Proposition 4.2 directly follows from Proposition 4.1.

By the above proposition, a large number of previous results are immediate consequences of our theorems. We omit further details, and readers may refer to the relevant literature for more information.

References

[1] M. Asaad. Finite groups with certain subgroups of Sylow subgroups complemented. *J. Algebra*, 323:1958–1965, 2010.
[2] M. Asaad. On c-supplemented subgroups of finite groups. *J. Algebra*, 362:1–11, 2012.
[3] A. Ballester-Bolinches and M. C. Pedraza-Aguilera. Sufficient conditions for supersolubility of finite groups. *J. Pure Appl. Algebra*, 127:113–118, 1998.
[4] A. Ballester-Bolinches and M. D. Pérez-Ramos. On \mathfrak{S}-subnormal subgroups and Frattini-like subgroups of a finite group. *Glasgow Math. J.*, 36:241–247, 1994.
[5] A. Ballester-Bolinches, Y. Wang, and X. Guo. c-supplemented subgroups of finite groups. *Glasgow Math. J.*, 42:383–389, 2000.
[6] X. Chen, W. Guo, and A. N. Skiba. Some conditions under which a finite group belongs to a Baer-local formation. *Comm. Algebra*, 2013. (accepted).
[7] Z. Chen. On a theorem of Srinivasan (in Chinese). *J. Southwest Normal Univ. Nat. Sci.*, 12(1):1–4, 1987.
[8] F. Cross. Conjugacy of odd order Hall subgroups. *Bull. London Math. Soc.*, 19:311–319, 1987.
[9] K. Doerk and T. Hawkes. *Finite Soluble Groups*. Walter de Gruyter, Berlin/New York, 1992.
[10] L. Dornhoff. M-groups and 2-groups. *Math. Z.*, 100:226–256, 1967.
[11] L. M. Ezquerro and X. Soler-Escrivà. Some permutability properties related to \mathcal{F}-hypercentrally embedded subgroups of finite groups. *J. Algebra*, 264:279–295, 2003.
[12] T. M. Gagen. *Topics in Finite Groups*. Cambridge, London/New York/Melbourne, 1976.
[13] D. Gorenstein. *Finite Groups*. Harper & Row Publishers, New York/Evanston/London, 1968.
[14] W. Guo. *The Theory of Classes of Groups*. Kluwer, Dordrecht, 2000.
[15] W. Guo. On F-supplemented subgroups of finite groups. *Manuscripta Math.*, 127:139–150, 2008.

[16] W. Guo and S. Chen. Weakly c-permutable subgroups of finite groups. *J. Algebra*, 324:2369–2381, 2010.

[17] W. Guo, K. P. Shum, and A. N. Skiba. Conditionally permutable subgroups and supersolubility of finite groups. *Southeast Asian Bull. Math.*, 29:493–510, 2005.

[18] W. Guo and A. N. Skiba. On $\mathcal{F}\Phi^*$-hypercentral subgroups of finite groups. *J. Algebra*, 372:275–292, 2012.

[19] J. Huang and W. Guo. S-conditionally permutable subgroups of finite groups (in Chinese). *Chin. Ann. Math. Ser. A*, 28(1):17–26, 2007.

[20] B. Huppert. *Endliche Gruppen I*. Springer-Verlag, 1968.

[21] B. Huppert and N. Blackburn. *Finite groups III*. Springer-Verlag, Berlin/Heidelberg, 1982.

[22] O. H. Kegel. Sylow-gruppen und subnormalteiler endlicher gruppen. *Math. Z.*, 78:205–221, 1962.

[23] B. Li. On II-property and II-normality of subgroups of finite groups. *J. Algebra*, 334:321–337, 2011.

[24] B. Li. Finite groups with II-supplemented minimal subgroups. *Comm. Algebra*, 41:2060–2070, 2013.

[25] A. N. Skiba. On weakly s-permutable subgroups of finite groups. *J. Algebra*, 315:192–209, 2007.

[26] A. N. Skiba. On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups. *J. Group Theory*, 13:841–850, 2010.

[27] A. N. Skiba and L. A. Shemetkov. Multiply \mathcal{L}-composition formations of finite groups. *Ukr. Math. J.*, 52(6):898–913, 2000.

[28] H. N. Ward. Automorphisms of quaternion-free 2-groups. *Math. Z.*, 112:52–58, 1969.

[29] H. Wei and Y. Wang. On CAS-subgroups of finite groups. *Israel J. Math.*, 159:175–188, 2007.

[30] Y. Xu and X. Li. Weakly s-semi-permutable subgroups of finite groups. *Front. Math. China*, 6(1):161–175, 2011.

[31] T. Zhao, X. Li, and Y. Xu. On weakly s-supplementally embedded subgroups of finite groups. *Proc. Edinburgh Math. Soc.*, 54:799–807, 2011.