WHEN IS A SPACE Menger AT INFINITY?

LEANDRO F. AURICHI¹ AND ANGELO BELLA²

Abstract. We try to characterize those Tychonoff spaces X such that $\beta X \setminus X$ has the Menger property.

1. Introduction

A space X is Menger (or has the Menger property) if for any sequence of open coverings $\{U_n : n < \omega\}$ one may pick finite sets $V_n \subseteq U_n$ in such a way that $\bigcup \{V_n : n < \omega\}$ is a covering. This equivals to say that X satisfies the selection principle $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$. It is easy to see the following chain of implications:

$$\sigma\text{-compact} \rightarrow \text{Menger} \rightarrow \text{Lindelöf}$$

An important result of Hurewicz [4] states that a space X is Menger if and only if player 1 does not have a winning strategy in the associated game $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$ played on X. This highlights the game-theoretic nature of the Menger property, see [6] for more.

Henriksen and Isbell [3] proposed the following:

Definition 1.1. A Tychonoff space X is Lindelöf at infinity if $\beta X \setminus X$ is Lindelöf.

They discovered a very elegant duality in the following:

Proposition 1.2. [3] A Tychonoff space is Lindelöf at infinity if and only if it is of countable type.

A space X is of countable type provided that every compact set can be included in a compact set of countable character in X.

A much easier and well-known fact is:

Proposition 1.3. A Tychonoff space is Čech-complete if and only if it is σ-compact at infinity.

These two propositions suggest the following:

Question 1.4. When is a Tychonoff space Menger at infinity?

Before beginning our discussion here, it is useful to note these well known facts:

Proposition 1.5. The Menger property is invariant by perfect maps.

Corollary 1.6. X is Menger at infinity if, and only if, for any Y compactification of X, $Y \setminus X$ is Menger.

¹ Partially supported by FAPESP (2013/05469-7) and by GNSAGA.
Fremlin and Miller \cite{Fremlin1984} proved the existence of a Menger subspace X of the unit interval $[0,1]$ which is not σ-compact. The space X can be taken nowhere locally compact and so $Y = [0,1] \setminus X$ is dense in $[0,1]$. Since the Menger property is invariant under perfect mappings, we see that $\beta Y \setminus Y$ is still Menger. Therefore, a space can be Menger at infinity and not σ-compact at infinity. Another example of this kind, stronger but not second countable, is Example 3.1 in the last section.

On the other hand, the irrational line shows that a space can be Lindelöf at infinity and not Menger at infinity.

Consequently, the property \mathcal{M} characterizing a space to be Menger at infinity strictly lies between countable type and Čech-complete.

Of course, taking into account the formal definition of the Menger property, we cannot expect to have an answer to Question 1.4 as elegant as Henriksen-Isbell’s result.

2. A characterization

\textbf{Definition 2.1.} Let $K \subset X$. We say that a family \mathcal{F} is a \textbf{closed net at K} if each $F \in \mathcal{F}$ is a closed set such that $K \subset F$ and for every open A such that $K \subset A$, there is an $F \in \mathcal{F}$ such that $F \subset A$.

\textbf{Lemma 2.2.} Let X be a T_1 space. If $(F_n)_{n \in \omega}$ is a closed net at K, for $K \subset X$ compact, then $K = \bigcap_{n \in \omega} F_n$.

\textbf{Proof.} Simply note that for each $x \notin K$, there is an open set V such that $K \subset V$ and $x \notin V$. \hfill \Box

\textbf{Lemma 2.3.} Let Y be a regular space and let X be a dense subspace of Y. Let $K \subset X$ be a compact subset. If $(F_n)_{n \in \omega}$ is a closed net at K in X, then $(\overline{F_n}^Y)_{n \in \omega}$ is a closed net at K in Y.

\textbf{Proof.} In the following, all the closures are taken in Y. Let A be an open set in Y such that $K \subset A$. By the compactness of Y and the regularity of Y, there is an open set B such that $K \subset B \subset \overline{B} \subset A$. Thus, there is an $n \in \omega$ such that $K \subset F_n \subset B \cap X$. Note that $K \subset F_n \subset \overline{B} \subset A$. \hfill \Box

\textbf{Lemma 2.4.} Let X be a compact Hausdorff space. If $K = \bigcap_{n \in \omega} F_n$, where $(F_n)_{n \in \omega}$ is a decreasing sequence of closed sets, then $(F_n)_{n \in \omega}$ is a closed net at K.

\textbf{Proof.} If not, then there is an open set V such that $K \subset V$ and, for every $n \in \omega$, $F_n \setminus V \neq \emptyset$. By compactness, there is an $x \in \bigcap_{n \in \omega} F_n \setminus V = K \setminus V$. Contradiction with the fact that $K \subset V$. \hfill \Box

\textbf{Theorem 2.5.} Let X be a Tychonoff space. X is Menger at infinity if, and only if, X is of countable type and for every sequence $(K_n)_{n \in \omega}$ of compact subsets of X, if $(F_p^n)_{p \in \omega}$ is a decreasing closed net at K_n for each n, then there is an $f : \omega \longrightarrow \omega$ such that $K = \bigcap_{n \in \omega} F_{f(n)}^n$ is compact and $(\bigcap_{k \leq n} F_k^f)_{n \in \omega}$ is a closed net for K.

\textbf{Proof.} In the following, every closure is taken in βX.

Suppose that X is Menger at infinity. By \cite{Aurichi2020} X is of countable type. Let $(F_p^n)_{p, n \in \omega}$ be as in the statement. Note that, by Lemma 2.3 and Lemma 2.2, $\bigcap_{p \in \omega} F_p^n = \bigcap_{p \in \omega} \overline{F_p^n}$ for each $n \in \omega$. Thus, for each $n \in \omega$, $(V_p^n)_{p \in \omega}$, where $V_p^n = \beta X \setminus \overline{F_p^n}$, is an increasing covering for $\beta X \setminus X$. Since $\beta X \setminus X$ is Menger, there is an $f : \omega \longrightarrow \omega$ such that $\beta X \setminus X \subset \bigcup_{n \in \omega} V_{f(n)}^n$. Note that $K = \bigcap_{n \in \omega} \overline{F_{f(n)}^n}$.
is compact and it is a subset of X. By Lemma 2.3, $(\bigcap_{k \leq n} F^k_{f(k)})_{n \in \omega}$ is a closed net at K in βX, therefore, $(\bigcap_{k \leq n} F^k_{f(k)})_{n \in \omega}$ is a closed net at K in X. Conversely, for each $n \in \omega$, let W_n be an open covering for $\beta X \setminus X$. We may suppose that each $W \in W_n$ is open in βX. By regularity, we can take a refinement V_n of W_n such that, for every $x \in \beta X \setminus X$, there is a $V \in V_n$ such that $x \in V \subset \overline{V} \subset W_V$ for some $W_V \in W_n$. Since X is of countable type, By 2.2 we may suppose that each V_n is countable. Fix an enumeration for each $V_n = (V^n_n)_{k \in \omega}$. Define $A_k^F = \beta X \setminus (\bigcup_{j \leq k} \overline{V}_j^n)$). Note that each $K_n = \bigcap_{k \in \omega} A_k^F$ is compact and a subset of X. By Lemma 2.3, $(A_k^F)_{k \in \omega}$ is a closed net at K_n. Thus, $(\overline{A_k^F} \cap X)_{k \in \omega}$ is a closed net at K_n in X. Therefore, there is $f : \omega \to \omega$ such that $K = \bigcap_{n \in \omega} \overline{A_{f(n)}^F} \cap X$ is compact and $(\bigcap_{k \leq f(n)} \overline{A_k^F} \cap X)_{n \in \omega}$ is a closed net at K. So, by Lemma 2.3, $K = \bigcap_{n \in \omega} \overline{A_{f(n)}^F} \cap X$. Since $\bigcap_{n \in \omega} \overline{A_{f(n)}^F} \cap X = \bigcap_{n \in \omega} \overline{A_{f(n)}^F}$ and by the fact that $K \subset X$, it follows that $\beta X \setminus X \subset \bigcup_{n \in \omega} \beta X \setminus \overline{A_{f(n)}^F} \cap X \subset \bigcup_{n \in \omega} \text{Int}(\bigcup_{j \leq f(n)} \overline{V}_j^n) \cap \bigcup_{n \in \omega} \bigcup_{j \leq f(n)} W_{V_j}$. Therefore, letting $U_n = \{W_{V_j} : j \leq f(n)\} \subset W_n$, we see that the collection $\bigcup_{n \in \omega} U_n$ covers $\beta X \setminus X$, and we are done.

Property M given in the above theorem does not look very nice and we wonder whether there is a simpler way to describe it, at least in some special cases.

Recall that a metrizable space is always of countable type. Moreover, a metrizable space is complete if and only if it is σ-compact at infinity. Therefore, we could hope for a “nicer” M in this case.

Question 2.6. What kind of weak completeness characterizes those metrizable spaces which are Menger at infinity?

Proposition 2.7. Let X be a Tychonoff space. If X is Menger at infinity then for every sequence $(K_n)_{n \in \omega}$ of compact sets, there is a sequence $(Q_n)_{n \in \omega}$ of compact sets such that:

1. each $K_n \subset Q_n$;
2. each Q_n has a countable base at X;
3. for every sequence $(B^n_k)_{k \in \omega}$ such that, for every $n \in \omega$, $(B^n_k)_{k \in \omega}$ is a decreasing base at K_n then there is a function $f : \omega \to \omega$ such that $K = \bigcap_{n \in \omega} \overline{B_{f(n)}^n}$ is compact and $(\bigcap_{k \leq n} \overline{B_k^F})_{n \in \omega}$ is a closed net at K.

Proof. Suppose X is Menger at infinity. Let $(K_n)_{n \in \omega}$ be a sequence of compact sets. Since X is Menger at infinity, X is Lindelöf at infinity. Thus, by Proposition 1.2, for each K_n, there is a compact $Q_n \supset K_n$ such that Q_n has a countable base. Now, let $(B^n_k)_{k \in \omega}$ be as in 3. Since each Q_n is compact and X is regular, each $(B^n_k)_{k \in \omega}$ is a decreasing closed net at Q_n. Thus, by Proposition 2.5 there is an $f : \omega \to \omega$ as we need.

We end this section presenting a selection principle that at first glance could be related with the Menger at infinity property.

Definition 2.8. We say that a family \mathcal{U} of open sets of X is an almost covering for X if $X \setminus \bigcup \mathcal{U}$ is compact. We call \mathcal{A} the family of all almost coverings for X.

Note that the property “being Menger at infinity” looks like something as $S_{\text{fin}}(\mathcal{A}, \mathcal{A})$, but for a narrow class of \mathcal{A}. We will see that the “narrow” part is important.
Proposition 2.9. If X satisfies $S_{\aleph_0}(\mathcal{A}, \mathcal{A})$, then X is Menger.

Proof. Let $(U_n)_{n \in \omega}$ be a sequence of coverings of X. By definition, for each $n \in \omega$, there is a finite $U_n \subset U_n$ such that $K = X \setminus \bigcup_{n \in \omega} U_n$ is compact. Therefore, there is a finite $W \subset U_n$ such that $K \subset W$. Thus, $X = W \cup \bigcup_{n \in \omega} U_n$. \hfill \Box

Example 2.10. The space of the irrationals is an example of a space that is Menger at infinity but does not satisfy $S_{\aleph_0}(\mathcal{A}, \mathcal{A})$ (by the Proposition 2.7).

Example 2.11. The one-point Lindelöfication of a discrete space of cardinality \aleph_1 is an example of a Menger space which does not satisfy $S_{\aleph_0}(\mathcal{A}, \mathcal{A})$.

Example 2.12. ω is an example of a space that satisfies $S_{\aleph_0}(\mathcal{A}, \mathcal{A})$, but it is not compact.

Proof. Let $(V_n)_{n \in \omega}$ be a sequence of almost coverings for ω. Therefore, for each n, $F_n = \omega \setminus \bigcup V_n$ is finite. For each n, let $V_n \subset V_n$ be a finite subset such that $F_{n+1} \setminus F_n \subset \bigcup V_n$ and $\min(\omega \setminus \bigcup_{k<n} V_k) \in V_n$. Note that $\omega \setminus \bigcup_{n \in \omega} V_n = F_0$. \hfill \Box

3. More than Menger at infinity

One may wonder whether the hypothesis “player 2 has a winning strategy in the Menger game $G_{\aleph_0}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$” is strong enough to guarantee that X is Čech-complete. It turns out this is not the case, as the following example shows.

Example 3.1. Take the usual space of rational numbers \mathbb{Q} and an uncountable discrete space D. Let $Y = \mathbb{Q} \times D \cup \{p\}$ be the one-point Lindelöfication of the space $\mathbb{Q} \times D$ and then let $X = \beta Y \setminus Y$. Since Y is nowhere locally compact, we have $Y = \beta X \setminus X$. X is not Čech-complete, since Y is not σ-compact, but player 2 has a winning strategy in $G_{\aleph_0}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$. The latter assertion easily follows by observing that any open set containing p leaves out countably many points.

Therefore, to ensure the Čech-completeness of X, we need to assume something more on the space (see for instance Corollary 3.3 below). Moreover, the first example presented in the introduction shows that a metrizable space (actually a subspace of the real line) can be Menger at infinity, but not favorable for player 2 in the Menger game at infinity (see again Corollary 3.3).

Recall that a space X is sieve complete \mathcal{S} if there is an indexed collection of open coverings $(\{U_i : i \in I_n\} : n < \omega)$ together with maps $\pi_n : I_{n+1} \to I_n$ such that $U_i = X$ for each $i \in I_0$ and $U_i = \bigcup \{U_j : j \in \pi_n^{-1}(i)\}$ for all $i \in I_n$. Moreover, we require that for any sequence of indexes $\langle i_n : n < \omega \rangle$ satisfying $\pi_n(i_{n+1}) = i_n$ if \mathcal{F} is a filterbase in X and U_{i_n} contains an element of \mathcal{F} for each $n < \omega$, then \mathcal{F} has a cluster point.

Every Čech-complete space is sieve complete and every sieve complete space contains a dense Čech-complete subspace. In addition, a paracompact sieve complete space is Čech-complete and a sieve complete space is of countable type \mathcal{S}.

Telgársky presented a characterization of sieve completeness in terms of the Menger game played on $\beta X \setminus X$ (note that in $\mathcal{H}(X)$ the Menger game is called the Hurewicz game and is denoted by $H(X)$):

Theorem 3.2 (Telgársky \mathcal{H}). Let X be a Tychonoff space. $\beta X \setminus X$ is favorable for player 2 in the Menger game if and only if X is sieve complete.

Since a paracompact sieve-complete space is Čech-complete, we immediately get:
Corollary 3.3. Let X be a paracompact Tychonoff space. X is Čech-complete if and only if player 2 has a winning strategy in the game $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$.

In particular:

Corollary 3.4. A metrizable space X is complete if and only if player 2 has a winning strategy in $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$ played on $\beta X \setminus X$.

Corollary 3.5. A topological group G is Čech-complete if and only if player 2 has a winning strategy in $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$ played on $\beta G \setminus G$.

Proof. Every topological group of countable type is paracompact. \hfill \Box

References

[1] L. F. Aurichi and A. Bella. On a game theoretic cardinality bound. *Topology Appl.*: To appear.
[2] A. Miller and D. Fremlin. On some properties of Hurewicz, Menger and Rothberger. *Fund. Math.*: 129, 17-33, 1988.
[3] M. Henriksen and J. Isbell. Some properties of compactifications. *Duke Math. Journ.*: 25, 83-106, 1958.
[4] W. Hurewicz. Über eine verallgemeinerung des Borelschen theorems. *Mathematische Zeitschrift*: 24, 401-421, 1925.
[5] E. Michael. Complete spaces and triquotient maps. *Illinois J. Math.*: 21, 716-733, 1977.
[6] M. Sakai and M. Scheepers. The combinatorics of open covers. *Recent progress in General Topology III*, J. van Mill and K. P. Hart ed., 731-778, 2014.
[7] R. Telgarsky. On games of Topsoe. *Math. Scand.*: 54, 170-176, 1984.
[8] F. Topsoe. Topological games and Čech-completeness. *Proceedings of the V Prague Topological Symposium, 1981*, J. Novak ed.: 613-630, Eldermann Verlag, Berlin, 1982.

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO (ICMC-USP), UNIVERSIDADE DE SÃO PAULO, SÃO CARLOS, BRAZIL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CATANIA, CATANIA, ITALY