SLC25A23 augments mitochondrial Ca\(^{2+}\) uptake, interacts with MCU, and induces oxidative stress–mediated cell death

Nicholas E. Hoffman\(^{a,b}\), Harish C. Chandramoorthy\(^{a,b}\), Santhanam Shanmugapriya\(^{a,b}\), Xueqian Q. Zhang\(^b\), Sandhya Vallem\(^b\), Patrick J. Doonan\(^{a,b,*}\), Karthik Malliankaraman\(^{a,b,†}\), Shuchi Guo\(^b\), Sudarsan Rajan\(^{a,b}\), John W. Elrod\(^b\), Walter J. Koch\(^b\), Joseph Y. Cheung\(^b\), and Muniswamy Madesh\(^{a,b}\)

\(^{a}\)Department of Biochemistry and \(^{b}\)Center for Translational Medicine, Temple University, Philadelphia, PA 19140

ABSTRACT

Emerging findings suggest that two lineages of mitochondrial Ca\(^{2+}\) uptake participate during active and resting states: 1) the major eukaryotic membrane potential–dependent mitochondrial Ca\(^{2+}\) uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca\(^{2+}\) across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca\(^{2+}\) accumulation are unclear. Solute carriers—solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25—represent a family of EF-hand–containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference–mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca\(^{2+}\) uptake and reduces cytosolic Ca\(^{2+}\) clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand–domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca\(^{2+}\) uptake. In addition, SLC25A23 interacts with mitochondrial Ca\(^{2+}\) uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing in MCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA–insensitive SLC25A23 cDNA restores mitochondrial Ca\(^{2+}\) uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca\(^{2+}\) influx.

INTRODUCTION

The Ca\(^{2+}\) signals in the mitochondria regulate key cellular functions such as energy production and cell death. The transport of Ca\(^{2+}\) across the inner mitochondrial membrane is an essential signaling pathway for cellular metabolic functions. Although basal cytosolic Ca\(^{2+}\) levels are maintained at \(~ 100\) nM, upon agonist-induced cytosolic Ca\(^{2+}\) increase, Ca\(^{2+}\) is sequestered by Ca\(^{2+}\)-binding proteins, the endoplasmic reticulum (ER), and mitochondria, which accumulate large amounts of Ca\(^{2+}\) (Nicholls, 2005; Rizzuto et al., 2012). Although the mitochondrial Ca\(^{2+}\) uniporter (MCU) has low affinity, mitochondrial Ca\(^{2+}\) overload can occur during times of stress because mitochondria are in close proximity to the ER (Rizzuto et al., 1998, 2004). In addition to the MCU (Baughman et al., 2011; De Stefani et al., 2011), its regulators, mitochondrial Ca\(^{2+}\) uptake1 (MICU1) and mitochondrial Ca\(^{2+}\) uniporter regulator 1 (MCUR1), were also identified (Perocchi et al., 2010; Malliankaraman et al., 2012a,b; Hoffman et al., 2013). The recent discovery of molecular MCU constituents raises the possibility of examining Ca\(^{2+}\) uptake relationships between different mitochondrial protein systems. Here we examine the relationship between MCU and a distinct family of solute carriers (SLC family).

Solute carriers in the mitochondria can be divided into two major groups: aspartate/glutamate carriers (Palmieri et al., 2001) and ATP-magnesium carriers (Satrustegui et al., 2007b), of which solute...
 carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25 are paralogues. SLC25A23 and SLC25A24 transport adenine nucleotides in response to Ca\(^{2+}\) (Aprille, 1988; Fiermonte et al., 2004; Tewari et al., 2012; Traba et al., 2012; Amigo et al., 2013), but the functional interplay with mitochondrial Ca\(^{2+}\) uptake has not yet been rigorously characterized. However, it has been reported that the deletion of SLC25A23 diminishes oxidative phosphorylation (Amigo et al., 2013). Further, SLC25A23, SLC25A24, and SLC25A25 contain functional EF hands (Bassi et al., 2005), which makes their Mg-ATP-Pi carrier function Ca\(^{2+}\) sensitive, similar to other Ca\(^{2+}\)-activated channels and carriers. Mitochondrial solute carriers are widespread in eukaryotes and well conserved (Cafaro and Lehninger, 1971; Uribe et al., 1992; Palmieri, 2004, 2013). For example, Sal1 is a yeast homologue to SLC25A23 that also contains EF-hand domains (Kucejova et al., 2008). The double inactivation of yeast Sal1 and ATP/ADP translocase (acon) leads to abnormal mitochondrial DNA. The activation of these solute carriers occurs on the exterior of the inner mitochondrial membrane (Haynes et al., 1986; Nosek et al., 1990; Palmieri et al., 2001), and activators include Ca\(^{2+}\), adenosine 3’5’-cyclic monophosphate, protein kinases, and inositol polyphosphates (Dransfield and Aprille, 1993). Members of the SLC25 family have been identified as the cause of Stanley syndrome (SLC25A20) and Amish microcephaly (SLC20A19), suggesting the family have been identified as the cause of Stanley syndrome (Supplemental Figure S2). The intact and permeabilized cell data indicate a SLC25A23 role in mitochondrial Ca\(^{2+}\) uptake without altering efflux rate.

RESULTS

Silencing of SLC25A23 modulates mitochondrial Ca\(^{2+}\) uptake

To explore the role of SLC25 isoforms, we stably knocked down SLC25A23, SLC25A24, and SLC25A25 using lentiviral short hairpin RNA (shRNA; Mallilankaraman et al., 2012a). We subjected puromycin-resistant, stably expressing lentiviral shRNA HeLa cell clones to quantitative real-time (qRT) PCR to assess SLC25 mRNA levels (Figure 1, A–C). We next examined whether the SLC25A23 #864 shRNA was exclusively on-target, by assessing mRNA levels of SLC25A23, SLC25A24, and SLC25A25 in the SLC25A23 #864 shRNA HeLa clone. As expected, SLC25A23 but not SLC25A24 or SLC25A25 mRNA was knocked down (Supplemental Figure S1), confirming the specificity of the #864 shRNA. HeLa cell maximal knockdown clones #864, #594, and #739 for SLC25A23, SLC25A24, and SLC25A25, respectively, were assayed using confocal microscopy for cytosolic Ca\(^{2+}\) (Fluo-4) and mitochondrial Ca\(^{2+}\) (Rhod-2 AM) dynamics after stimulation with the G-protein–coupled receptor (GPCR) agonist histamine (100 μM; Madesh et al., 2005; Hawkins et al., 2010a,b; Davidson and Duchen, 2012; Mallilankaraman et al., 2012a,b). SLC25A23 knockdown (KD) but not SLC25A24 KD or SLC25A25 KD exhibited diminished mitochondrial Ca\(^{2+}\) uptake (Figure 1, D–F, bottom left). To complement the rhod-2 AM results, we transfected HeLa SLC25A23 KD, SLC25A24 KD, and SLC25A25 KD clones with the genetic mitochondrial Ca\(^{2+}\) reporter GCaMP2-mt and assayed after histamine (100 μM) stimulation. GCaMP2-mt fluorescence corroborated that SLC25A23 KD reduces mitochondrial Ca\(^{2+}\) uptake, whereas SLC25A24 KD and SLC25A25 KD are unaltered (Figure 1, G–J). Having observed a reduction of mitochondrial Ca\(^{2+}\) uptake by SLC25A23 KD but not SLC25A24 KD or SLC25A25 KD, we assessed cytosolic Ca\(^{2+}\) clearance after histamine stimulation. Cytosolic Ca\(^{2+}\) measured by Fluo-4 was examined in an extended time interval to evaluate whether decreased mitochondrial Ca\(^{2+}\) uptake in SLC25A23 KD reciprocally sustained cytosolic Ca\(^{2+}\) (Ca\(^{2+}\)*) (Quintana et al., 2007). HeLa SLC25A23 KD and Neg shRNA cells were challenged with histamine, and fluorescence was recorded for 1000 s (Figure 1K). Quantitation of the cytosolic Ca\(^{2+}\) fluorescence area under the curve demonstrated marked deceleration of cytosolic Ca\(^{2+}\) clearance (Figure 1L).

SLC25A23 KD decreases mitochondrial Ca\(^{2+}\) uptake without altering efflux rate

To demonstrate that indeed SLC25A23 KD reduced mitochondrial Ca\(^{2+}\) uptake, we suspended permeabilized HeLa cells in intracellular matrix (ICM) buffer containing succinate to energize the mitochondria, altering efflux rate.

SLC25A23 EF hands are necessary for mitochondrial Ca\(^{2+}\) uptake

Further, SLC25A23, SLC25A24, and SLC25A25 contain functional EF hands (Bassi et al., 2005), which makes their Mg-ATP-Pi carrier function Ca\(^{2+}\) sensitive, similar to other Ca\(^{2+}\)-activated channels and carriers. Mitochondrial solute carriers are widespread in eukaryotes and well conserved (Cafaro and Lehninger, 1971; Uribe et al., 1992; Palmieri, 2004, 2013). For example, Sal1 is a yeast homologue to SLC25A23 that also contains EF-hand domains (Kucejova et al., 2008). The double inactivation of yeast Sal1 and ATP/ADP translocase (acon) leads to abnormal mitochondrial DNA. The activation of these solute carriers occurs on the exterior of the inner mitochondrial membrane (Haynes et al., 1986; Nosek et al., 1990; Palmieri et al., 2001), and activators include Ca\(^{2+}\), adenosine 3’5’-cyclic monophosphate, protein kinases, and inositol polyphosphates (Dransfield and Aprille, 1993). Members of the SLC25 family have been identified as the cause of Stanley syndrome (SLC25A20) and Amish microcephaly (SLC20A19), suggesting the family have been identified as the cause of Stanley syndrome (Supplemental Figure S2). The intact and permeabilized cell data indicate a SLC25A23 role in mitochondrial Ca\(^{2+}\) uptake without altering efflux rate. Although the influx pathway is described by the rapid Ca\(^{2+}\) uptake channel MCU, Ca\(^{2+}\) efflux is mediated by the Na\(^{+}\)/Ca\(^{2+}\) exchanger, with a distinct, relatively slow kinetic rate. Ca\(^{2+}\) efflux was measured by blocking the major Ca\(^{2+}\) uptake channel, the mitochondrial uniporter, with Ru360 (Zhou et al., 1998; Hajnoczy et al., 2006), followed by blockage of the mitochondrial Na\(^{+}\)/Ca\(^{2+}\) exchanger with CGB37157 (Cox et al., 1993; Palty et al., 2010; Wei et al., 2011). Finally, uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was added to trigger release of all mitochondria-stored Ca\(^{2+}\), thus validating that equal amounts of total Ca\(^{2+}\) were released. SLC25A23 KD only altered mitochondrial Ca\(^{2+}\) influx (Figure 2, A–C), whereas efflux rate and total mitochondrial Ca\(^{2+}\) were unchanged (Figure 2, A, D, and E). Although statistically insignificant, a trend seemed to exist in the SLC25A23 KD total Ca\(^{2+}\) in which total SLC25A23 KD Ca\(^{2+}\) was reduced from Neg shRNA, presumably due to reduced influx rate. Knockdown of SLC25A24 and SLC25A25 did not alter influx rate, efflux rate, and total mitochondrial Ca\(^{2+}\) (Supplemental Figure S2). The intact and permeabilized cell data indicate a SLC25A23 role in mitochondrial Ca\(^{2+}\) uptake. SLC25A23 EF hands are necessary for mitochondrial Ca\(^{2+}\) uptake

SLC25A23 is predicted to be a multitransmembrane, mitochondrial-resident protein with three EF-hand motifs. After examining the EF-hand consensus sequence, we determined that only two of the three EF-hand motifs contain functional Ca\(^{2+}\)-binding sites. To investigate the role of Ca\(^{2+}\)-sensing properties of SLC25A23, we overexpressed GFP-tagged mutants of the two EF hands (EF1 D22A/E33K and EF2 D90A/E101K) in SLC25A23 KD cells

Volume 25 March 15, 2014 SLC25A23 regulates mitochondrial Ca\(^{2+}\) | 937
cells were subjected to immunoprecipitation and Western blot analysis. Immunoprecipitation of GFP-tagged MCU pulled down SLC25A23 (Figure 4A) with MCU/MICU1 known interaction serving as a positive control. Correspondingly, HA-tagged MICU1 pulled down SLC25A23 (Figure 4B). The results of the coimmunoprecipitation demonstrate that SLC25A23 interacts with MCU and MICU1, two proteins believed to be of critical importance to mitochondrial Ca^{2+} influx.

Given that SLC25A23 interacts with MCU, we next sought to determine whether the knockdown of SLC25A23 modulates MCU activity (I_{MCU}). To measure I_{MCU}, we performed mitoplast patch clamp measurements. In the patch clamp of whole-mitoplast configuration, the addition of 5 mM Ca^{2+} to the bath triggered an inwardly rectifying Ca^{2+} current, which was reduced in SLC25A23 KD mitoplasts in the nominal phosphate buffer condition (Figure 4, C and E). Because SLC25A23 was previously described as a Mg-ATP/Pi carrier (Fiermonte et al., 2004), we measured the I_{MCU} in Neg shRNA and SLC25A23 KD mitoplasts. These data suggest that the EF hands are essential for SLC25A23 Ca^{2+} sensing and that SLC25A23 EF hands function to increase mitochondrial Ca^{2+} uptake.

SLC25A23 interacts with mitochondrial Ca^{2+} uniporter complex components MCU and MICU1

To determine the mechanism by which SLC25A23 modulates mitochondrial Ca^{2+} uptake, we asked whether SLC25A23 interacts with MCU or MICU1. Flag-tagged SLC25A23 was transfected into COS7 cells stably expressing GFP-tagged, full-length MCU or hemagglutinin (HA)-tagged full-length MICU1. The cell lysates from transfected cells were subjected to immunoprecipitation and Western blot analysis. Immunoprecipitation of GFP-tagged MCU pulled down SLC25A23 (Figure 4A) with MCU/MICU1 known interaction serving as a positive control. Correspondingly, HA-tagged MICU1 pulled down SLC25A23 (Figure 4B). The results of the coimmunoprecipitation demonstrate that SLC25A23 interacts with MCU and MICU1, two proteins believed to be of critical importance to mitochondrial Ca^{2+} influx.
SLC25A23 increases basal reactive oxygen species and decreases antioxidant levels

Because SLC25A23 is involved in Ca$^{2+}$-activated adenine nucleotide transport, we examined mitochondrial DNA (mtDNA) copy number. Depletion of mitochondrial DNA copy number results in disassembly of electron transport chain components and thus drives reactive oxygen species (ROS) overproduction and mitochondrial malfunction (Hom et al., 2010). We found that KD of SLC25A23 did not alter mtDNA copy number in HeLa cells when compared with either negative or partial KD (#863) shRNA clones (Figure 6, A and B), supporting our finding of no gross mitochondrial abnormalities. In complement, we also studied the mitochondrial oxygen consumption rate (OCR) and NAD(P)H levels. Silencing of SLC25A23 in HeLa cells did not significantly alter mitochondrial OCR and NAD(P)H content (Supplemental Figure S4). We next investigated whether SLC25A23 KD mitoplasts supplemented with 300 μM phosphate (Zoccarato and Nicholls, 1982; Figure 4, D and E). The I_{MCU} was increased by the presence of phosphate in Neg shRNA but not in SLC25A23 KD mitoplasts (Figure 4, C–E). This result suggests that the Mg-ATP/Pi carrier function of SLC25A23 enhances I_{MCU} activity.

Mitochondrial Ca$^{2+}$ uptake reduction by SLC25A23 KD preserves ΔΨ$_{m}$

Because mitochondrial Ca$^{2+}$ uptake relies on ΔΨ$_{m}$ as a driving force, we asked whether the reduced mitochondrial Ca$^{2+}$ uptake exhibited by SLC25A23 knockdown was due to a difference in basal driving force, ΔΨ$_{m}$. HeLa cells with maximal knockdown (clone 864) and moderate knockdown (clone 863) and a SLC25A23 rescue construct (Figure 1A and Supplemental Figure S3) showed neither ΔΨ$_{m}$ nor basal morphological phenotype changes when compared with a Neg shRNA HeLa cell clone, using two different ΔΨ$_{m}$ indicators, TMRE and rhodamine 123 (Figure 5, A and B). These data show that SLC25A23 knockdown does not alter basal ΔΨ$_{m}$.

We next examined active-state mitochondrial Ca$^{2+}$ handling and ΔΨ$_{m}$ simultaneously using a permeabilized cell system loaded with cytosolic Ca$^{2+}$ indicator Fura-2FF and ΔΨ$_{m}$ indicator JC-1 (Madesh and Hajnoczky, 2001; Madesh et al., 2002, 2009; Roy et al., 2009; Mallilankaraman et al., 2012a,b). JC-1 is preferred to DiOC$_{6}$ and rhodamine 123 in ΔΨ$_{m}$ studies when ΔΨ$_{m}$ may collapse (Salvioli et al., 1997), which occurs when excessive Ca$^{2+}$ is taken into the mitochondria. We found that the extramitochondrial delivery of Ca$^{2+}$ pulses promoted a larger decay of ΔΨ$_{m}$ in control shRNA HeLa cells than with SLC25A23 #864 knockdown HeLa cells (Figure 5, C and D). Intermediate knockdown of SLC25A23 (#863) partially preserved ΔΨ$_{m}$ (Figure 5, C, bottom left, and D). We next verified SLC25A23's role by reexpressing #864 shRNA–insensitive SLC25A23 cDNA. We were able to restore Ca$^{2+}$ flux and associated ΔΨ$_{m}$ (Figure 3, C, bottom right, and D). These results suggest that SLC25A23 participates in mitochondrial Ca$^{2+}$-uptake regulation.
reconstitution of SLC25A23 in clone #864 partially restored the mROS levels (Figure 6, C and D). However, mROS levels in SLC25A24 KD and SLC25A25 KD were similar to those in Neg shRNA cells. We next assessed whether levels of the major antioxidant glutathione changed in SLC25A23 KD cells. Indeed, reduced glutathione levels are higher in SLC25A23 KD (Figure 6, E and F). Together these results demonstrate that knockdown of SLC25A23 has no effect on basal mitochondrial bioenergetics but lowers basal mROS.

Knockdown of SLC25A23 protects cells from oxidative stress

Having observed reduction of mitochondrial Ca\(^{2+}\) uptake and mROS production during the basal state, we finally examined whether knockdown of SLC25A23 alleviates cell death during active mitochondrial Ca\(^{2+}\)-overload conditions. SLC25A23 knockdown #864 and partial knockdown #863 both exhibited strong global preservation of ATP when compared with negative shRNA after ROS stressors (Figure 7A). Because ATP levels were preserved in the SLC25A23 KD, we performed a cell death assay using t-butyl hydroperoxide (t-BH) challenge. Oxidant-treated cells were stained with cell death markers annexin V and propidium iodide and imaged using confocal microscopy. Similar to the observed preservation of ATP levels, SLC25A23 KD was protective against t-BH stress, whereas SLC25A23 #864 rescue exhibited cell death comparable to negative shRNA HeLa cells (Figure 7, B and C). These results establish the role of SLC25A23 as a link between mitochondrial Ca\(^{2+}\) uptake and cell death after oxidative stress.

DISCUSSION

The main finding of our work is that SLC25A23 participates in mitochondrial Ca\(^{2+}\) uptake while interacting with key mitochondrial Ca\(^{2+}\)-uniporter molecules MCU and MICU1. The RNA interference–mediated silencing of SLC25A23 demonstrated SLC25A23's role as a facilitator of mitochondrial Ca\(^{2+}\) uptake and mROS production and subsequently alters cell death. In addition, SLC25A23 EF hands are necessary for mitochondrial Ca\(^{2+}\) function of SLC25A23.

The MCU channel complex and the mitochondrial solute carriers functionally integrate to create the physiological mitochondrial Ca\(^{2+}\) transportome, which comprehensively drives kinetics and maintains equilibrium. Recent findings regarding the interactions of MCU, both distal and proximal, are the emerging focus of mitochondrial biology (Mori et al., 2011; Mallilankaraman et al., 2012a,b). A further example of the signal interaction of MCU and solute carriers is SLC25A12, which is a protein of the mitochondrial inner membrane.
SLC25A23 regulates mitochondrial Ca$^{2+}$

FIGURE 4: SLC25A23 interacts with MCU and MICU1 and modulates I_{MCU}. (A) Stably MCU-GFP–expressing COS7 cells were transfected with Flag-tagged, full-length MICU1 or SLC25A23. After immunoprecipitation with GFP antibody, total cell lysates and immunoprecipitated materials were subjected to Western blot analysis. Cell lysates were probed with anti-Flag (top left) or anti-GFP antibodies (bottom left) to serve as inputs. Immunoprecipitated samples were probed with anti-Flag (top right) or anti-GFP antibodies (bottom right). Anti-GFP antibodies coimmunoprecipitate full-length MICU1 and SLC25A23. $n = 3$. (B) Stably MICU1-HA–expressing COS7 cells were transfected with Flag-tagged SLC25A23. After immunoprecipitation with HA antibody, total cell lysates and immunoprecipitated materials were subjected to Western blot analysis. Cell lysates were probed with anti-Flag (top left) or anti-HA antibodies (bottom left) to serve as inputs. Immunoprecipitated samples were probed with anti-Flag (top right) or anti-HA antibodies (bottom right). Anti-HA antibodies coimmunoprecipitate Flag-tagged SLC25A23. $n = 3$. (C) Mitoplast current (I_{MCU}) from HeLa cells was recorded before and after application of 5 mM Ca$^{2+}$ to the bath medium. Currents were measured during a voltage ramp as indicated. Traces are a representative single recording of I_{MCU} from Neg shRNA (black) and SLC25A23 KD (gray). $n = 5$ or 6. (D) Traces are a representative single recording of I_{MCU}. The I_{MCU} was recorded in the presence of 5 mM Ca$^{2+}$ and 300 μM P$_i$ in Neg shRNA (black) and SLC25A23 KD (gray). $n = 6$. (E) I_{MCU} densities (pA/pF) for Neg shRNA (black) and SLC25A23 KD (gray). Mean ± SEM; *$p < 0.05$, **$p < 0.001$; ns, not significant; $n = 5$ or 6.

(del Arco and Satrustegui, 1998) and responds to Ca$^{2+}$ by intermembrane-space EF hands (Pardo et al., 2006; Marmol et al., 2009). In this case, the direct Ca$^{2+}$-induced function of SLC25A12 is to increase mitochondrial levels of NAD(P)H (Satrustegui et al., 2007a; Wibom et al., 2009). In addition, correlative gene expression analysis in cancer cell lines strongly supports our conclusion that SLC25A23 Ca$^{2+}$...
FIGURE 5: SLC25A23 knockdown prevents mitochondrial Ca\(^{2+}\) uptake and subsequently preserves \(\Delta \Psi_m\).
(A) Mitochondrial morphology and \(\Delta \Psi_m\) was assessed by confocal microscopy using TMRE and rhodamine 123. Hoechst 33342 was used as a nuclear marker. (B) Quantitation of confocal TMRE fluorescence. (C) Representative traces of permeabilized (40 μg/ml digitonin) HeLa cells loaded with the ratiometric Ca\(^{2+}\) indicator Fura-2FF and ratiometric \(\Delta \Psi_m\) fluorophore JC-1 and pulsed with 10 μM Ca\(^{2+}\) to trigger \(\Delta \Psi_m\) loss, followed by addition of the uncoupler CCCP (1 μM). \(\Delta \Psi_m\) loss was similar between Neg shRNA control and partial knockdown clone 863. Clone 864 shows abrogated \(\Delta \Psi_m\) loss after six Ca\(^{2+}\) pulses, and the first pulse is not completely cleared from the cytosol. (D) Quantitation after the addition of the uncoupler CCCP shows \(\Delta \Psi_m\) preservation in clone 864. Data are mean ± SEM (n = 3–5). *p < 0.05, **p < 0.01, and ns, not significant compared with Neg shRNA.
SLC25A23 regulates mitochondrial Ca\(^{2+}\) uptake plays a role in ROS-dependent cell death but does not alter mitochondrial bioenergetics (Huang et al., 2004). Further, SLC25A23, SLC25A37, and SLC25A4 were implicated in cancer-related fatigue, a major quality-of-life determinant (Hsiao et al., 2013).

Surprisingly, not only does SLC25A23 functionally regulate MCU Ca\(^{2+}\) influx, possibly by Ca\(^{2+}\)-activated phosphate anion flow, which balances the net charge of matrix ion influx, but also the multipass transmembrane SLC25A23 interacts with MCU, perhaps due to hydrophobic interactions in the transmembrane portions. SLC25A23 interaction with MICU1 may be indirect through MCU, or SLC25A23 could sequester MICU1, thus increasing \(I_{\text{MCU}}\). The functional regulation of MCU by SLC25A23 and the biophysical characterization of SLC25A23/MCU/MICU1 complex need further investigation. Our results show evidence of SLC25A23 interaction with MCU and functional \(I_{\text{MCU}}\) modulation of MCU by SLC25A23, suggesting a supercomplex integrating channels and carriers in microdomains for enhanced sensitivity. In support of this concept, a recent SILAC MS/MS study identified SLC25A3 (phosphate carrier; Palmieri, 2004) as a possible MCU transportome component in the 293T cell line (Sancak et al., 2013). Although SLC25A23 was not detected in this pull-down approach (Sancak et al., 2013), it is possible that cell type and the solute carrier conserved domain are key factors in solute carrier/MCU interaction. SLC25A23 expression was reported to be nominal in kidney (293T is a human embryonic kidney epithelial cell line) and other tissues as compared with brain and liver (Traba et al., 2012). Together these findings suggest that rigorous interaction studies are warranted to define the MCU supercomplex. Although we show that MCU-mediated Ca\(^{2+}\) uptake interacts with the function of SLC25A23, the two systems are distinct, as SLC25A23 is derived from a separate lineage (Bick et al., 2012). However, both MCU and SLC25A23 have orthologues extending back to the common
FIGURE 7: Knockdown of SLC25A23 preserves cellular ATP levels and cell viability. (A) Knockdown of SLC25A23 preserves ATP levels after oxidant challenge. HeLa cells (Neg shRNA, #863, and #864) were challenged with superoxide generation system (xanthine + xanthine oxidase), hydrogen peroxide (H_2O_2), t-butyl hydroperoxide, or ionomycin. After 6 h, cellular ATP levels were assessed using the CellTiter-Glo Luminescent kit. (B) HeLa cells (Neg shRNA, #863, and #864) were treated with t-butyl hydroperoxide for 6 h and then stained with the cell death markers annexin V and propidium iodide. (C) Quantitation of annexin V–positive staining. Data are mean ± SEM (n = 3). *p < 0.05, **p < 0.01, and ***p < 0.001, and ns, not significant compared with Neg shRNA or #864 shRNA.

Mitochondrial Ca$^{2+}$ overload often results in loss of $\Delta\Psi_m$, causing bioenergetic collapse (Bernardi et al., 1999; Rizzuto et al., 2012). SLC25A23 silencing preserved $\Delta\Psi_m$ while reducing Ca$^{2+}$ uptake after GPCR stimulation. In addition, we found that SLC25A23 has a ROS-dependent cell death function, as knockdown of SLC25A23 preserves ATP, indicative of maintained $\Delta\Psi_m$, intact proton pumping, and decreased cell death. In particular, the enhanced survival after t-BT is especially significant, as t-BH induction of cell death requires Ca$^{2+}$ (Crompton and Costi, 1988) and can be rescued by ethylene glycol tetraacetic acid (EGTA) (Crompton et al., 1987), establishing a link through SLC25A23 from Ca$^{2+}$ to t-BH–induced cell death.

Our results as a whole demonstrate that SLC25A23 enhances mitochondrial Ca$^{2+}$ uptake. Functionally, SLC25A23 senses Ca$^{2+}$ after GPCR stimulation and provides a response that enhances MCU-mediated mitochondrial Ca$^{2+}$ uptake. Since the identification of mitochondrial Ca$^{2+}$ current (Kirichok et al., 2004), several molecules, including uncoupling proteins 2 and 3 (Trenker et al., 2007), LETM1 (Jiang et al., 2009), MICU1 (Perocchi et al., 2010; Malilankaraman et al., 2012b; Hoffman et al., 2013), MCU (Baughman et al., 2011; De Stefani et al., 2011), MCUR1 (Malilankaraman et al., 2012a), MICU2 (Plovanich et al., 2013), MUCb (Raffaello et al., 2013), and EMRE (Sancak et al., 2013), have been described as mitochondrial Ca$^{2+}$ signal integrators. In total, our study reveals SLC25A23 as a mitochondrial Ca$^{2+}$-uptake regulator with significant ROS and cell death implications, providing a mechanism for targeting of MCU-dependent Ca$^{2+}$ overload.

MATERIALS AND METHODS

Mitochondrial Ca$^{2+}$ uptake and $\Delta\Psi_m$ measurement in permeabilized cell system

Mitochondrial Ca$^{2+}$ uptake and $\Delta\Psi_m$ were determined by simultaneous monitoring of cytosolic Ca$^{2+}$ with Fura-2FF (0.5 μM; Life Technologies, Grand Island, NY) and $\Delta\Psi_m$ with the lipophilic cationic dye 5,5′,6,6′-tetrachloro-3,3′-tetraethylbenzimidazolocarbocyanine (JC-1; 800 nM; Life Technologies) changes. Cells grown in T-75 flasks were trypsinized, neutralized with fetal bovine serum, centrifuged at 1500 rpm for 5 min, aspirated, resuspended in 20 ml of phosphate-buffered saline, centrifuged at 800 rpm for 3 min, aspirated, and then resuspended in ICM buffer containing 40 μg/ml digitonin to permeabilize the cells, protease inhibitors (EDTA-free complete tablets; Roche Applied Science, Indianapolis, IN), and 2 μM thapsigargin to block the SERCA pump. Mitochondria were energized with 2 mM of succinate (Hawkins et al., 2010b), and then 8 × 105 cells were resuspended in 1 ml of ICM buffer and followed by Fura-2FF as a cytosolic Ca$^{2+}$ indicator. After 20 s of data recording, JC-1 was added. At 480 s and every 120 s thereafter, 10 μM Ca$^{2+}$ was added. CCCP, 2 μM, was added at 1200 s. Fluorescence was measured using a dual-wavelength fluorimeter (PTI) with 490-nm excitation and 535-nm emission for monomeric JC-1 and 570/595 nm for the J-aggregate. The $\Delta\Psi_m$ was calculated as the ratio of J-aggregate and the monomer (Irrinki et al., 2011).
Cell culture
HeLa cells were cultured using low-glucose DMEM (GIBCO, Life Technologies) containing 10% fetal bovine serum and 1% penicillin/ streptomycin, with or without 2 μg/ml puromycin and with or without G418 (500 μg/ml). For each isoform—SLC25A23, SLC25A24, and SLC25A25—five shRNA constructs were expressed.

Generation of stable SLC25A23, SLC25A24, and SLC25A25 shRNA knockdown and rescue HeLa cell clones
The following shRNA sequences were obtained from Open Biosystems, Pittsburgh, PA: for SLC25A23, #863, CCTGACTCAGATATCCTT; #864, CGATGCTATGCTCTACCT; #865, CGGCTGACTAAGCATA; and #867, CTGCATCCATTCTCACTTC. For SLC25A24, #592, GACCATCGGTACTATTC; #593, TTTAGGATCTACATTTAG; #594, TGCCCTTCTCGACAGATAT; #595, TTCCGGGTGTTACATT; and #720 ATGAGCCTCTGAGTCTTAT; and for SLC25A25, #736, AGACCGAGTTCCAGAATCT; #737, CTGCCGACTGAGCTATT; and #740 CCCTGCTCATGTTTCACAGTCTT. HeLa cells (5 × 10^5/well) grown in six-well plates were transduced with the lentivirus for knockdown. Two days posttransduction, the cells were selected with puromycin (2 mg/ml) for 6–10 d and expanded. For the rescue studies, a SLC25A23 construct resistant to #864 shRNA knockdown was created (Orgi Technologies, Rockville, MD). The rescue plasmid encoding SLC25A23 cDNA harbored four silent point mutations in the region complementary to SLC25A23 shRNA. The #864 knockdown cells were transfected with SLC25A23 rescue construct, and the knockdown cells expressing shRNA-resistant SLC25A23 cDNAs were selected with 500 μg/ml G418 (Life Technologies).

qRT PCR analysis
The knockdown and overexpression were assessed by qRT PCR. Briefly, total RNA was isolated from HeLa wild type (WT), Neg shRNA, SLC25A23 KD, SLC25A24 KD, and SLC25A25 KD and rescue cells, using the RNeasy Mini Kit (Qiagen, Valencia, CA) in accordance with the manufacturer’s instructions. Total RNA (1 μg) was reverse transcribed with the Verso cDNA Kit (Abgene, Cambridge, United Kingdom). Real-time qPCRs were performed with the gene-specific Solaris qPCR gene expression assay kit (Abgene) as per the manufacturer’s instructions. (SLC25A23: forward primer, AACAGGGTATCTCTTGAG; reverse primer, AGTCTTGAGCCGACCCAG; and probe, AGTCTTGAGCCGACCCAG.; SLC25A24: forward primer, ATGCGAGCTCAGCCATGT; reverse primer, GCCCTGTAATGTCGTAATGT; and probe, TTCCAGAGGGAATCTCAATCTAATC. The relative gene expression was calibrated with WT type using 7300 Real Time PCR system RQ study software (Applied Biosystems, Carlsbad, CA).

Cytosolic and mitochondrial Ca^{2+} dynamics
HeLa cells were grown on 25-mm glass coverslips for 48 h and loaded with 2 μM Rhod-2 AM (50 min) and 5 μM Fluo-4 AM (30 min) (Life Technologies) in extracellular medium (Madesh et al., 2005; Mallilankaraman et al., 2012a). After 1 min of baseline recording, agonist (histamine, 100 μM) was added, and confocal images were recorded every 3 s (510 Meta; Carl Zeiss, Thornwood, NY) at 488- and 561-nm excitation using a 63× oil objective to simultaneously monitor cytoplasmic and mitochondrial Ca^{2+} dynamics. Images were analyzed and quantified using ImageJ (National Institutes of Health, Bethesda, MD) and custom-made software (Spectralyzer, Elmsford, NY).

Assessment of mitochondrial Ca^{2+} influx and efflux rates
HeLa cells were permeabilized and loaded with the ratiometric Ca^{2+}-indicator Fura2-FF. Cells were pulsed with 10 μM Ca^{2+} to 350 s to measure mitochondrial Ca^{2+} uptake, followed by addition of 1 μM Ru360 at 550 s, 10 μM CGP37157 at 610 s, and 2 μM CCCP at 750 s.

Coimmunoprecipitation assay
Cell extracts were prepared from either stably or transiently transfected COS-7 cells using RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.25% deoxycholic acid, 1 mM EDTA, 1% NP-40, protease inhibitor cocktail [Complete; Roche, Indianapolis, IN], and 1 mM phenylmethylsulfonyl fluoride). To study the interaction of MCU with SLC25A23, we used GFP-tagged MCU and Flag-tagged SLC25A23. Flag-tagged MCU1 was used as a positive control (Hoffman et al., 2013). Stably MCU-GFP–expressing COS7 cells were transfected with Flag-tagged, full-length MCU1 or SLC25A23. Similarly for understanding the interaction of SLC25A23 with MCU1, stably MCU1–HA–expressing COS7 cells were transfected with Flag-tagged SLC25A23. After immunoprecipitation with anti-GFP (Eurogen, Moscow, Russia) or anti-HA (Thermo Scientific, Waltham, MA) antibody, total cell lysates and immunoprecipitated materials were subjected to Western blot analysis. Ten percent of cell lysates were probed with anti-Flag (Sigma-Aldrich, St. Louis, MO), anti-GFP or anti-HA antibodies to serve as inputs, and similarly, immunoprecipitated samples were probed with their corresponding antibodies.

Mitoplast patch clamp recordings were conducted at 30°C as previously described (Kirichok et al., 2004; Hoffman et al., 2013). Mitoplast was recorded using a computer-controlled Axon200b patch-clamp amplifier with a Digidata 1320A acquisition board (pClamp 10.0 software; Axon Instruments, Sunnyvale, CA). Mitoplasts were baths in CaCl_2 (5 mM) ± P (300 μM), sodiumglutamate (150 mM), KCl (5.4 mM), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mM), pH 7.2. The pipette solution contained sodiumglutamate (150 mM), NaCl (5 mM), sucrose (135 mM), HEPES (10 mM), and EGTA (1.5 mM), pH 7.2. After formation of G2 seals (pipette resistance, 15–25 MΩ), the mitoplasts were ruptured with 200–400-mV pulses varying from 2- to 6-ms duration. Mitoplast capacitance was measured (2.2–3.8 pF). After capacitance compensation, mitoplasts were held at 0 mV, and ILMCU was elicited with a voltage ramp from −160 to 80 mV, 120 mV/s.

Oxygen consumption rate
HeLa cells (1 × 10^5) were permeabilized with 20 μg/ml digitonin in 140 μl of intracellular medium (120 mM KCl, 10 mM NaCl, 1 mM KH_2PO_4, 20 mM HEPES–Tris, pH 7.2), and oxygen consumption rate was measured using a MT200A MitoCell Clark-type electrode and MT200A MitoCell chamber (Strathkelvin Instruments, Motherwell, United Kingdom) during constant stirring (Irinik et al., 2011). Next, in 1-min intervals, 5 mM complex I substrates malate/pyruvate, 100 mM complex I inhibitor rotenone, 5 mM complex II substrate succinate, 50 mM complex II inhibitor antimycin A, 0.4 mM complex V substrates tetramethylphenylenediamine/2.5 mM ascorbate, and 1 μM complex IV inhibitor sodium azide were added (Irinik et al., 2011).

NAD(P)H autofluorescence measurement
NAD(P)H autofluorescence was measured through the change in autofluorescence of NAD(P)H at 350/460 nm (excitation/emission)
with a multiwavelength-excitation, dual-wavelength-emission fluorimeter (Delta RAM; PTI, Birmingham, NJ; Jones et al., 2007). Briefly, cells (8 × 10⁶ cells) were suspended in Hank’s balanced salt solution (Sigma-Aldrich) and permeabilized with digitonin (Hawkins et al., 2010b). NAD(P)H levels were monitored before and after 10 μM rotenone.

Confocal ΔΨm measurement
HeLa cells were plated in six-well plates containing 0.2% gelatin–coated glass coverslips (Thapa et al., 2011), and 100 nM TMRE per-chlorate was added to cells and incubated for 30 min at 37°C. Nuclear DNA stain, 2-(4-ethoxyphenyl)-6-[6-(4-methylpiperezin-1-yl)-1H-benzimidazol-2-yl]-1H-benzimidazole (Hoescht 33342), was added for 5 min. Image acquisition was performed using a Carl Zeiss 510 confocal microscope using a 63× oil objective with excitation at 561 and 405 nm, respectively. Images were quantified using ImageJ (Madesh et al., 2005).

Mitochondrial ROS measurement
HeLa cells were loaded with the mitochondrial superoxide–sensitive fluorophore MitoSOX Red (Life Technologies; 10 μM) in extracellular matrix (ECM) containing 2% bovine serum albumin (BSA) at 37°C for 10 min. Cells were incubated with Hoescht 33342 for an additional 5 min at room temperature. Cells were then washed, resuspended in ECM containing 0.2% BSA, and imaged using a Carl Zeiss 710 two-photon confocal microscope with a 20× liquid immersion objective at 405 and 561 nm for Hoescht 33342 and MitoSOX Red, respectively (Robinson et al., 2006; Mikhopadhyay et al., 2007).

Mitochondrial DNA content measurement
HeLa cells were transiently transfected with the mitochondrial marker monomeric yellow fluorescent protein plasmid construct. After 48 h, cells were fixed and stained for mitochondrial DNA using monoclonal anti-DNA antibody conjugated with secondary goat anti-mouse immunoglobulin M–Alexa Fluor 594 (Life Technologies). Slides were mounted using ProLong Gold Antifade reagent (Molecular Probes). Images were acquired using a Carl Zeiss 710 two-photon confocal microscope with a 63× oil objective. mtDNA was quantified using ImageJ software.

ATP measurement
ATP levels were measured using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI) as per the manufacturer’s instructions. ATP levels (luminescence) were measured in a model 96F nontreated white microwell plate (Nunc, Rochester, NY) as per the manufacturer’s instructions. ATP levels were measured using the CellTiter-Glo Luminescent ATP measurement kit (Molecular Probes). Images were acquired using a Carl Zeiss 710 confocal microscope using a 63× oil objective with excitation at 561 and 405 nm, respectively. Images were quantified using ImageJ software.

Assessment of cell death
HeLa cells were challenged with tert-butyl hydroperoxide (200 μM). After treatment, the cells were labeled with annexin V–Alexa 405 conjugate for 25 min with annexin binding buffer (Molecular Probes, Life Technologies). During annexin V binding, propidium iodide (0.5 μg/ml) was also loaded to visualize plasma membrane integrity. Cell death was monitored using a Carl Zeiss 510 Meta confocal imaging system (Madesh et al., 2002, 2005, 2009).

Statistical analysis
All experiments were performed three or more times. Data from multiple experiments were quantified and are expressed as mean ± SEM, and differences between groups were analyzed by using a two-tailed Student’s t test. p < 0.05 was considered significant in all analyses. Data were plotted with either GraphPad Prism (La Jolla, CA), version 5.0, or SigmaPlot 11.0 software.

ACKNOWLEDGMENTS
We thank Xinhua Wang and Heping Cheng for sharing the GSTAMP-2mt plasmid construct. We also thank Donald L. Gill, Dale Haines, and Jonathan Soboloff for their comments. This work was supported by National Institutes of Health Grants HL086699, HL086699-01A2S1, and 1S1OR027327-01 to M.M.

REFERENCES
Amigo I, Traba J, Gonzalez-Barroso MM, Rueda CB, Fernandez M, Rial E, Sanchez A, Satrustegui J, Del Arco A (2013). Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier. J Biol Chem 288, 7791–7802.

Bassi MT, Manzoni M, Bresciani R, Pizzo MT, Della Monica A, Barlati S, Monti E, Borsani G (2005). Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. Gene 345, 173–182.

Baughman JM et al. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345.

Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999). Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264, 687–701.

Bick AG, Calvo SE, Mootha VK (2012). Evolutionary diversity of the mitochondrial calcium uniporter. Science 336, 886.

Carafoli E, Lehninger AL (1971). A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J 122, 681–690.

Cox DA, Conforti L, Sperelakis N, Matlib MA (1993). Selectivity of inhibition of mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. FASEB J 2, 2547–2556.

Crompton M, Costi A (1988). Kinetic evidence for a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 259, 499–504.

Crompton M, Costi A, Hayat L (1987). Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 245, 915–918.

Davidson SM, Duchen MR (2012). Imaging mitochondrial calcium signalling with fluorescent probes and single or two photon confocal microscopy. Methods Mol Biol 810, 219–234.

de Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Science 336, 886.

Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006). Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40, 553–560.

Hawkins BJ et al. (2010a). S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190, 391–405.
Hawkins BJ, Levin MD, Doanon PJ, Petrenko NB, Davis CW, Patel VV, Madesh M (2010b). Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 285, 26494–26505.

Haynes RC Jr, Picking RA, Zaks WJ (1986). Control of mitochondrial content of adenine nucleotides by submicromolar calcium concentrations and its relationship to hormonal effects. J Biol Chem 261, 16121–16125.

Hoffman NE et al. (2013). micu1 motifs define mitochondrial calcium uniporter binding and activity. Cell Rep 5, 1576–1588.

Hom J, Y Tu, Yoon Y, Porter G, Sheu SS (2010). Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta 1797, 913–921.

Hsiao CF, Wang D, Kausal A, Saligan L (2013). Mitochondria-related gene expression changes are associated with fatigue in patients with non-metastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs 36, 189–197.

Huang Y, Andriele P, Bussweiller B, Baracioru C, Shankavaram U, Dai Z, Reinhold WC, Papp A, Weinstein JN, Sadee W (2004). Membrane transporters and channels: role of the transportome in cancer chemosensitiv- ity and chemoresistance. Cancer Res 64, 4294–4301.

Iijima M, Yamamoto Y, Takada N, Ohata H, Momose K (2001). Changes in Ca2+ signaling and contractile protein isoforms in smooth muscle cells from guinea pig ileum during culture. J Smooth Muscle Res 37, 53–66.

Irini KM et al. (2011). Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol Cell Biol 31, 3745–3758.

Jiang D, Zhao G, Clapham DE (2004). The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32, 2362–2376.

Rizzuto R, De Stefani D, Raffaello A, Mannuccini C (2012). Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13, 566–574.

Rizzuto R, Duchen MR, Pozzan T (2004). Flirting in little space: the ER/mito- chondria Ca2+ liaison. Sci STKE 2004, re1.

Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998). Close contacts with the endoplasmic reticulum as de- terminants of mitochondrial Ca2+ responses. Science 280, 1763–1766.

Rizzuto R, De Stefani D, Raffaello A, Mannuccini C (2012). Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13, 566–574.

Salvioli S, Arzdorff J, Franceschi C, Cossarizza A (1997). JC-1, but not rhodamine 123, is a reliable fluorescent probe to assess the mitochondrial status in intact cells: implications for studies on mitochondrial fission-functionality during apoptosis. FEBS Lett 411, 77–82.

Sancak Y et al. (2013). EMRE is an essential component of the mitochondrial Ca2+ uniporter complex. Science 342, 1379–1382.

Satrustegui J, Contreras L, Ramos M, Marmol P, del Arco A, Saheti K, Pardo B (2007). Role of aralar and its Ca2+-binding sites in Ca2+ signal transduction in mitochondria from INS-1 clonal beta-cells. J Biol Chem 282, 21957–21964.

Satrustegui J, Pardo B, Del Arco A (2007b). Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87, 29–67.

Sewa SG, Dash RK, Beard DA, Bazil JN (2012). A biophysical model of the mitochondrial calcium uniporter binding and activity. Cell Rep 5, 1576–1588.

Silliker MJ, Beg AA, Madesh M, Balachandran S (2011). NF-kappaB pro- tects cells from gamma interferon-induced RIP1-dependent necroptosis. Mol Cell Biol 31, 2934–2946.

Trab J, Del Arco A, Duchen MR, Szabadkai G, Satrustegui J (2012). SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca2+ buffering. Cell Death Differ 19, 650–660.

Tranker M, Malli R, Fertsch I, Levak-Frank S, Graier WF (2007). Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uptake. J Cell Biol 9, 445–452.

Uribe S, Rangel P, Pardo JP (1992). Interactions of calcium with yeast mito- chondria. Cell Calcium 13, 211–217.

Wei AC, Liu T, Torrents S, Winslow RL, Rouleau B (2011). Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim Biophys Acta 1813, 1373–1381.

Wibom R et al. (2009). AGC1 deficiency associated with global cerebral hy- pomyelination. N Engl J Med 361, 489–495.

Zhou Z, Matlib MA, Bers DM (1998). Cytosolic and mitochondrial Ca2+ signals in patch-clamped mammalian ventricular myocytes. J Physiol 507, 379–403.

Zoccarato F, Nicholls D (2012). Role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria. Eur J Biochem/FEBS 127, 333–338.