Bioinsecticidal activity of *Vitex negundo* L. (Family: Verbenaceae) leaf extracts against *Sitophilus granarius* L. in stored maize grains

Nilesh Jawalkar and Sureshchandra Zambare

DOI: https://doi.org/10.22271/j.ento.2020.v8.i2z.6643

Abstract

The insecticidal property of dry leaves of *Vitex negundo* against the *Sitophilus granarius* in the laboratory at (28±3) °C and (78±3) % r. h. with Soxhlet extracted extracts of *V. negundo* leaves in ethanol, methanol, chloroform, acetone and n-Hexane were tested and found very effective to control the stored grain insect pest. The biopesticidal effects of extracts in different solvents were compared by calculating LD₉₀, LD₅₀, LD₁₀ and LD₅₀ values for 96 hrs. The Probit analysis of data demonstrated that LD values for ethanol, methanol, chloroform, acetone and n-Hexane extracts were LD₉₀ ~ 1.216, 1.141, 0.9298, 1.265, 0.5398 ml/Kg; LD₅₀ ~ 2.997, 3.106, 2.490, 3.727, 1.302 ml/Kg; LD₉₀ ~ 7.392, 8.457, 6.667, 10.98, 3.142 ml/Kg and LD₅₀ ~ 15.43, 19.14, 14.88, 26.50, 6.439 ml/Kg respectively, for 96 hrs. These results demonstrated that the mortality increased with increase in concentration of extract and exposure time. There was nearly zero fecundity and next generation was not observed in treated grains. The extracts of *V. negundo* leaf may be of high value in grain storage against *S. granarius*, especially in subsistence agriculture where the plants are locally available to local farmers. Hence, we conclude that the ethanol, chloroform and n-Hexane extracts from *V. negundo* leaf are more effective and useful. It served as being a potential insecticidal agent and could be applicable to the management of populations of stored-product insects particularly against the infestation by granary weevil, *S. granarius* after proper dose formulation.

Keywords: *Sitophilus granarius, Vitex negundo, soxhlet, bioinsecticide, stored grain, toxicity, mortality*

1. Introduction

Insect pests of stored products are create the serious problem throughout the world, because they reduce the quantity and quality of stored grains. The cereals are badly infested by the most destructive primary stored grain weevils, *Sitophilus granarius, Sitophilus oryzae* and *Siotroga cerealella* in warm climate areas. They multiplies very rapidly and cause up to 30-40% cereal grain loss in India as well as in other countries at conditions favorable to their development at about 25–35 °C and generally low relative humidity [1, 2]. Both the adult and larva feed voraciously on a variety of stored cereal grains viz. maize, rice, wheat, and sorghum causing serious losses, particularly in the monsoon. The species *Sitophilus zeamais* affects cereals quantitatively as well as qualitatively and contaminates grain with excrement and exuviae [3]. Few natural plant products that overcome insect damage to animals or plants by rendering them unattractive or offensive are called repellents. Their pungent odour, make them unattractive to host plants. Use of insect repellent offers a hope for protection of stored grains from insect attack. They are more effective, more persistent and more economical than the existing synthetics [4]. In the integrated protection of stored-products, phytochemicals may be used for (i) pest prevention by repelling pests from goods, (ii) early pest detection, attracting pests to lures or (iii) pest control by using toxic compounds [5].

The Nirgundi, *Vitex negundo* is an aromatic well-known large shrub or small tree mainly found on bank of rivers in villages and almost found throughout the India. The phytochemical screening of *Vitex negundo* revealed the presence of alkaloids, steroids, flavonoids, amino acids, phenols, quiones and starch [6]. Research aiming towards the development of new agents for insect-pest control based on natural products is increasingly important because it has consequences in integrated as well as biological pest management in agriculture [7]. Plant secondary metabolites play an important role in interactions of plant–insect and therefore such
compounds may have hormonal, insecticidal or antifeedant activity against insects [9]. The phytochemical analysis of V. negundo revealed that presence of various active phytochemicals. [9] Bameta et al., (2019), reported that chloroform crude extract of V. negundo leaves contain maximum number of phytoconstituents viz. reducing sugar, saponins, steroid and coumarin followed by hexane i.e. reducing sugar, phenol and coumarin. While ethanol, methanol and petroleum ether shows the presence of phenol, saponin, coumarin, respectively.

There is need for safe but effective, biodegradable pesticides with non-toxic effect on non-target organisms. Botanical insecticides are broad-spectrum in pest control and many are safe to apply.

2. Materials and Methods

2.1. Test insects

The rice weevil, Sitophilus granarius tested in this study was obtained and laboratory culture was maintained on pest free whole maize grains. Adult ±2 week old weevils (male and females) were separated and kept in the experimental environment to acclimatize for 5±7 days before commencement of the bioassays.

2.2. Test materials

Leaves of V. negundo plant not exposed to any pesticide were collected from local, rural region of Aurangabad (MS) district. After harvesting, test materials were air dried in room conditions.

2.3. Preparation of test materials for bioassay

The bioassay was carried out by applying the test materials on maize grains. For this purpose, test material was ground separately in a motorized high speed grinder and sieved through a 72 mm aperture mesh to obtain fine powder. Then a known amount of test material was extracted by Soxhlet’s extractor i.e. 1:10 ratio in the solvents ethanol, methanol, chloroform, acetone and n-Hexane, separately.

2.4. Toxicity of V. negundo leaf extract to adult insects

The stock culture of S. granarius reared in laboratory condition was used for experimentation. 50 gms of the pest free whole maize grains were taken in each of the plastic containers. The dried maize grains were held in a controlled environment room at 28±3 °C and 78±3% r. h. for 5±7 days to equilibrate them to 14% moisture content. The leaf extract of V. negundo was dissolved thoroughly with respective solvents to make 10 ml volume. From this stock, test concentrations 0.2, 0.4, 0.6 and 0.8 ml extract/50g were added in each plastic container containing 50 gm of whole maize grains. The untreated maize grains were kept as a control. The plastic containers were tied with muslin cloth and kept open for 48 hours in well ventilation room to evaporate the solvent. After 48 hours, 5 pairs (1±2 week old) of S. granarius adults acclimatized from stock culture were released in each of the control and experimental containers. The containers were completely covered with a piece of moist muslin cloth and fixed with the help of rubber band to prevent escapes. The whole experiment was repeated thrice.

2.5. Statistical analysis

The percentage mortality was calculated and corrected according to Abbott, (1925) [10] after every 24 hrs. and data collected was analyzed. The data transformed into Finney’s Probit values for the determination of LD₁₀, LD₅₀, LD₉₀ and LD₉₉ values for 96 hrs [11].

3. Observation and Results

The V. negundo leaf extract has strong toxicity against S. granarius adults. The mortality increased with raising concentration from 4 to 16 ml extract/Kg and with exposure times of 24 and 96 h. The range of statistical calculations and determination of LD₁₀, LD₅₀, LD₉₀ and LD₉₉ values as per [11] Finney’s, (1971) are given in Table No.1. The LD₁₀, LD₅₀, LD₉₀ and LD₉₉ values after calculation for ethanol extract were 1.216, 2.997, 7.392, 15.43 ml/Kg respectively. The LD₁₀, LD₅₀, LD₉₀ and LD₉₉ values for methanol extracts were 1.141, 3.106, 8.457 and 19.14 ml/Kg respectively. For chloroform extract the respective LD values were 0.9298, 2.490, 6.667 and 14.88 ml/Kg, for acetone extract, 1.265, 3.727, 10.98 and 26.50 ml/Kg. For n-Hexane extract the values were 0.5398, 1.302, 3.142 and 6.439 ml/Kg respectively. If we compare all values, the n-Hexane extracts of V. negundo acts as a potent insecticide against S. granarius and can be used for developing baits or to apply directly for managing this pest during storage. The acetone extracts of V. negundo shows higher lethal dose values; therefore it is not suitable even though it has biopesticidal activity against S. granarius.

The graph regarding empirical/improved expected probit against the log of concentration are given in (Figure 1-5) as regression and provisional lines for LD₁₀, LD₅₀, LD₉₀ and LD₉₉ values of Sitophilus granarius after the exposure to ethanol, methanol, chloroform, acetone and n-Hexane extract of Vitex negundo leaves for 96 hours.

3.1 Effects on fecundity and next generation (F)

The growth, fecundity, life cycle of insect depends on temperature and relative humidity favorable to them. Out of infected grains till death of adult S. granarius, very less or none of them shows adult insects emergence in all the solvent extracts cases. The rate of infected maize grains and adult emergence decreased with raising concentration from 4 to 16 ml extract/Kg and with exposure times of 24 and 96 hrs. In next generation, after exposure to all extracts, the emergence of adults S. granarius was observed in control and not in treated maize grains, because it may due to the bioactive compounds present in extracts and insects response to these secondary metabolites. Table No. 2 to 6 shows the effects of different solvent extracts of Vitex negundo leaves on the reproductive activity of the stored grain pest, Sitophilus granarius.

4. Discussion

Plant powders, their extracts and isolated pure compounds are effective and considered ecofriendly in storage insect’s control. The bioactivity of plant extracts against storage insects of maize have been studied by numerous authors [12-14]. The present results indicate that the ethanol, methanol, chloroform, acetone and n-Hexane extracts of V. negundo leaves were effective against S. granarius. [15] Jawalkar et al., (2016), reported that the LD₁₀, LD₅₀ and LD₉₀ values calculated for ethanol extract of D. stramonium seeds were 2.962 ml/Kg, 8.594 ml/Kg and 27.94 ml/Kg respectively. Similarly, the LD₁₀, LD₅₀ and LD₉₀ values calculated for chloroform extracts of D. stramonium seed were 3.080 ml/Kg, 7.379 ml/Kg and 17.67 ml/Kg respectively. For acetone extracts of D. stramonium seed it was 0.4752 ml/Kg, 1.185 ml/Kg and 2.957 ml/Kg respectively. [16] Sahaf et al., (2008),
reported that the fumigant toxicity of *V. pseudo-negundo* oil was toxic to *S. oryzae* and *T. castaneum*. The highest concentration (925.9 μL/L air) of the oil was able to induce more than 50% mortality after 6 h and achieved a level of 100% at 12 h after treatment. [17] Lee et al., (2001), also reported the potent fumigant toxicities of two essential oils i.e. eucalyptus and rosemery against the rice weevil. The oils lavender, thyme, ylang-ylang and grape fruit showed weak fumigant toxicity. [18] Derbalah et al., (2012), reported that the extracts from the plant *Caesalpinia gilliesii* (100%) was the most effective against the pests *Sitophilus oryzae* adults followed by *Chrysanthemum frutescens* (95.6%), *T. populnea var. acutiloba* (88%), *Euonymus japonicas* (85%), *Bauhinia purpurea* (75%), *Cassia senna* (80%) and *Cassia fistula* (70%) respectively. [19] Rajashekar et al., (2010), reported that the methanolic root extract of *Decalepis hamiltonii* was effective against the *Rhizopertha dominica*, *Sitophilus oryzae*, *Stegobium paniceum*, *Triobolium castaneum* and *Callosobruchus chinensis*. [20] Khani et al., (2011), reported that the petroleum ether and chloroform extracts of *P. nigrum* and petroleum ether extracts of *J. curcas* caused highest mortality rates for *Sitophilus oryzae* based on LC₅₀ values after 72 h. Petroleum ether and chloroform extracts of *P. nigrum* were more toxic with 99.56, 93.56% mortality rates than petroleum ether extract of *J. curcas* with 66.00% mortality rate, respectively. According to [21] Saloji et al., (2006) the effect of ethanolic extracts of Bakain drupes (*Melia azedarach*), Leaves of Habulas (*M. communis*), Leaves of mint (*Mentha longifolia*), Bakain leaves, Harmal shoots and seeds (*P. harmala*) and Roots of lemon grass (*C. citratus*) had repellent and lethal effects against rice weevil, *Sitophilus oryzae*. [22] Ikle and Ogungbile (2014), reported that powders and extracts of *Azadirachta indica*, *Zanthoxylum zanthoxyloides*, *Anacardium occidentale* and *Moringa oleifera* has high mortality effect against *Sitophilus oryzae*, *Oryzaephilus mercator* and *Rhizopertha dominica*. All the extracts, at all tested concentrations, achieved 100% mortality of *S. oryzae* within 72 hrs. of exposure except extract of *M. oleifera* at 2 and 4% which achieved 72% and 87.59% mortality respectively. [23] Ziaee et al., (2014), demonstrated fumigant toxicity of *C. cyminiunum* oil loaded nano gels (OLNs) against *S. graniarius* and *T. castaneum* and revealed OLN were most toxic and encapsulation improved the persistence of the oil. [24] Li et al., (2000), reported that isolated fraction from leaf of *Eupatorium advenophorus* inhibited insecticidal activity against *S. oryzae* (LD₅₀ = 15.5 mg/L). [25] Jayasekara et al., (2005) reported that root powder of *Securidaca longepedunculata*, its methanol extract and isolated compound methyl salicylate has repellent and toxic properties against *S. zeamais* adults. According to [26] Potenza et al., (2006), acetone extracts of *Dahlia pinnata*, *Ruta graveolens* and *Diefenbachia brasiliensis* at 5% concentration gave 87.0, 80.0 and 75.0% mortality for *S. zeamais* adults, respectively when tested for contact insecticidal activity. [27] Huang et al., (2007), reported 100% mortality of *R. dominica* at 48 h post-treatment with LD₅₀ - 19.94 μg/cm² after 72 h treatment when treated with ethanol extracts of *Trigonella foenum-graecum* extract at 0.39 mg/cm². [28] Boeke et al. (2004) reported that plant extracts inhibit the development of eggs and immature stages present inside the seed. [29] Dwiwedi and Garg (2000), reported that acetone extract of *Ipomoea palmata* showed 57.8% egg mortality of *C. cephalonica* at 100.0% concentration. In other work, flower extracts of *L. camara* exhibited higher larval mortality, reduced fecundity and prolonged development period of *R. dominica* [30]. [31] Khani et al., (2012a), reported that petroleum ether extract of *P. nigrum* and *Jatropha curcas* at concentrations of 2–10 μL/g showed strong inhibition on egg hatchability and adult emergence of *C. cephalonica*. [32] Zambare et al., (2012) reported that chloroform extract of *Argemone mexicana* at 4 mL concentration inhibited 60.02% egg hatching of *C. cephalonica*. [33] Fouad et al., (2014) reported that extracts of *Tithonia diversifolia* at 1% w/w discouraged egg laying and larval mortality of *S. cerealella*; potentiality of this plant extract is due to the presence of sesquiterpenes, lactones [34]. In another work, [35] Ileke (2014), reported that powders and extracts of *Capsicum frutescens*, *Cymbopogon citratus*, *Moringa oleifera* and *Anacardium occidentale* at the rate of 1, 2 and 3% concentration prevented egg hatching of *S. cerealella*. [36] Thein et al., (2013), reported that crude extracts of *Citronella* at 20% concentration had the strongest repellent effect on *Sitophilus* spp. and plant extract from *Alpinia pyramidata* at 7.5% provided protection to maize grain by completely inhibiting the F1 progeny emergence. Significant insecticidal activity against *T. castaneum* larvae and adults was observed by [37] Jbilou et al., (2006) with crude methanol extract from *P. harmala*, followed by extracts of *A. iva*, *Ari baetica* and *R. raphanistrum*. They reported the extract of *R. raphanistrum* reduced significantly the progeny production F1, while extracts of *P. harmala*, *A. iva* and *Ari baetica* inhibited completely F1 progeny production.

Name of plant	Solvent	Time of exposure in hrs.	Regression equation	LD₅₀ values in mL/Kg	LD₉₀ values in mL/Kg	LD₅₀ values in mL/Kg	LD₉₀ values in mL/Kg
Leaf extract of *Vitex negundo*	Ethanol	96	Y = 3.2709x – 0.1706	1.216	2.997	7.392	15.43
Melhanol	96	Y = 2.9467x + 6.0573	1.141	3.106	8.457	19.14	
Chloroform	96	Y = 2.9961x + 0.8169	0.9298	2.490	6.667	14.88	
Acetone	96	Y = 2.7307x + 0.709	1.265	3.727	10.98	26.50	
n-Hexane	96	Y = 3.3511x – 1.2645	0.5398	1.302	3.142	6.439	

Table 1: The LD₁₀, LD₉₀, LD₅₀ and LD₉₀ values and regression equation of *Vitex negundo* leaf extract to *Sitophilus granarius*.

Table 2: Effect of Ethanol extract of *Vitex negundo* leaves on the mortality, fecundity and development of the stored grain pest, *Sitophilus granarius*.

Dose in mL/Kg	Mortality (%) in hrs.	Infected grains till death of adults	Emergence of adults up to 42 days	
Control	-	78.66±3.05	17±2.66	
4	-	50	40.3±4.16	44±1.33
8	20	90	33±4.58	Nil
12	40	100	24.3±2.04	Nil
16	50	100	Nil	Nil

± indicates S. D. of three observations.
Table 3: Effect of Methanol extract of *Vitex negundo* leaves on the mortality, fecundity and development of the stored grain pest, *Sitophilus granarius*.

Dose in ml/Kg	Mortality (%) in hrs.	Infected grains till death of adults	Emergence of adults up to 42 days	
	24	96		
Control	-	-	78.66±3.05	17±2.66
4	20	60	43.33±6.11	5±0.87
8	30	90	49±4.58	2±0.00
12	40	100	Nil	Nil
16	60	100	Nil	Nil

± indicates S. D. of three observations.

Table 4: Effect of Acetone extract of *Vitex negundo* leaves on the mortality, fecundity and development of the stored grain pest, *Sitophilus granarius*.

Dose in ml/Kg	Mortality (%) in hrs.	Infected grains till death of adults	Emergence of adults up to 42 days	
	24	96		
Control	-	-	78.66±3.05	17±2.66
4	10	60	27.33±7.02	2±0.87
8	20	80	Nil	Nil
12	40	100	Nil	Nil
16	40	100	Nil	Nil

± indicates S. D. of three observations.

Table 5: Effect of Chloroform extract of *Vitex negundo* leaves on the mortality, fecundity and development of the stored grain pest, *Sitophilus granarius*.

Dose in ml/Kg	Mortality (%) in hrs.	Infected grains till death of adults	Emergence of adults up to 42 days	
	24	96		
Control	-	-	78.66±3.05	17±2.66
4	30	70	Nil	Nil
8	40	100	Nil	Nil
12	50	100	Nil	Nil
16	50	100	Nil	Nil

± indicates S. D. of three observations.

Table 6: Effect of n-Hexane extract of *Vitex negundo* leaves on the mortality, fecundity and development of the stored grain pest, *Sitophilus granarius*.

Dose in ml/Kg	Mortality (%) in hrs.	Infected grains till death of adults	Emergence of adults up to 42 days	
	24	96		
Control	-	-	78.66±3.05	17±2.66
4	-	20	21±4	8±1.73
8	20	50	18.33±3.05	3±1.33
12	30	80	Nil	Nil
16	40	100	Nil	Nil

± indicates S. D. of three observations.

Fig 1: Regression and Provisional line for LD_{10}, LD_{50}, LD_{90} and LD_{99} values of *Sitophilus granarius* after the exposure to ethanol extract of leaf of *Vitex negundo* for 96 hours.
Fig 2: Regression and Provisional line for LD10, LD50, LD90 and LD99 values of *Sitophilus granarius* after the exposure to methanol extract of leaf of *Vitex negundo* for 96 hours.

Fig 3: Regression and Provisional line for LD10, LD50, LD90 and LD99 values of *Sitophilus granarius* after the exposure to chloroform extract of leaf of *Vitex negundo* for 96 hours.

Fig 4: Regression and Provisional line for LD10, LD50, LD90 and LD99 values of *Sitophilus granarius* after the exposure to acetone extract of leaf of *Vitex negundo* for 96 hours.
5. Conclusion
The results obtained from this bioassay revealed that all extracts of *Vitex negundo* leaf have shown varying levels of insecticidal potential against *Sitophilus granarius*. The ethanol, chloroform and n-Hexane extracts from *V. negundo* leaf are more effective and useful for managing the population of granary weevil during storage. The importance of *V. negundo* for the control of storage pest such as *S. granarius* has been proved. This can be used as an alternative for the chemical insecticides and with this the safer storage of maize grains will be ensured.

6. Acknowledgements
The financial assistance of the Department of Science and Technology (DST), Government of India, New Delhi and the laboratory facilities from Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) are gratefully acknowledged.

7. References
1. Almaši R, Mastilović JS, Bodroža-Solarov M. Influence of rice weevil, (*Sitophilus oryzae* L.) and lesser grain borer, (*Rhiizopertha dominica* F.) population density on quality and flower backed goods according to cereal grain storage time. Žito-hleb. 2003; 30(6):235-240.
2. Baloch UK. Integrated Pest Management in Food Grains. Food and Agriculture Organization of the United Nations and Pakistan Agricultural Research Council, Islamabad, Pakistan. 1992, 117.
3. Gallo D, Nakano O, Silveira Neto S, Carvalho C, Baptista GC, Berti Filho E et al. Entomologia agricola, vol. 2. FEALQ, Piracicaba. 2002, 920.
4. Padin SB, Fuse CB, Urrutia MI, Dal Bello G. Toxicity and repellency of nine medicinal plants against *Tribolium castaneum* in stored wheat. Bulletin of Insectology. 2013; 66(1):45-49.
5. Adler C, Ždířková E, Hubert J, Lukáš J. Phytochemicals for stored product protection-chances and limitations. In COST Action 842 (1999-2004). Biological control of pest insects and mites, with special reference to entomophthorales. Proceedings of the First Meeting of Working Group 4: Bio-control of arthropod pests in the stored products, Lisbon, Portugal, 6-7th September 2001. Research Institute of Crop Production. 2002, 24-28.
6. Rose CM, Cathrine L. Preliminary phytochemical screening and antibacterial activity on *Vitex negundo*. International Journal of Current Pharmaceutical Research. 2011; 3(2):99-101.
7. Pascual-Villalobos MJ, Robledo A. Screening for anti-insect activity in Mediterranean plants. Industrial Crops and Products. 1998; 8(3):183-194.
8. Camps FM. Relaciones planta-insecto. Insecticidas de origen vegetal. Insecticidas Bioracionales. CSIC, Madrid. 1988, 69-86.
9. Bameta A, Sanwal S, Ambwani S. Phytochemical Screening and Antimicrobial Activity of *Vitex negundo* Leaf and Stem Extracts against Bacterial and Fungal Pathogens. International Journal of Current Microbiology and Applied Sciences. 2019; 8(12):1071-1081.
10. Abbott WS. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 1925; 18(2):265-267.
11. Finney DJ. Probit Analysis: 3rd Ed. Cambridge University Press; 1971, 333.
12. Ogendo JO, Deng AL, Belmain SR, Walker DJ, Musandu AA. Effect of insecticidal plant materials, *Lantana camara* L. and *Tephrosia vogelii* Hook, on the quality parameters of stored maize grains. Journal of Food Technology in Africa. 2004; 9(1):29-35.
13. Mihale MJ, Deng AL, Selemani HO, Kamatenesi MM, Kidukuli AW, Ogendo JO. Use of indigenous knowledge in the management of field and storage pests around Lake Victoria basin in Tanzania. African Journal of Environmental Science and Technology. 2009; 3(9):251-259.
14. Sori W. Effect of selected botanicals and local seed storage practices on maize insect pests and health of maize seeds in Jimma Zone. Singapore Journal of Scientific Research. 2014; 4:19-28.
15. Jawalkar NB, Zambare SP, Zanke SP. Insecticidal property of *Datura stramonium* L. seed extracts against *Sitophilus oryzae* L. (Coleoptera: Curculionidae) in stored wheat grains. Journal of Entomology and Zoology Studies 2016; 4(6):92-96.
16. Sahaf BZ, Moharramipour S, Meshkatalsadat MH. Fumigant toxicity of essential oil from *Vitex pseudo-negundo* against *Tribolium castaneum* (Herbst) and *Sitophilus oryzae* (L.). Journal of Asia-Pacific Entomology. 2008; 11(4):175-179.
17. Lee BH, Choi WS, Lee SE, Park BS. Fumigant toxicity...
of essential oils and their constituent compounds towards the rice weevil, *Sitophilus oryzae* (L.). *Crop Protection*. 2001; 20(4):317-320.

18. Derbalah AS, Hamza AM, Gazzy AA. Efficacy and safety of some plant extracts as alternatives for *Sitophilus oryzae* control in rice grains. *Journal of Entomology and Zoology Studies*. 2012; 9(2):57-67.

19. Rajashekar Y, Gunasekaran N, Shivanandappa T. Insecticidal activity of the root extract of *Decalepis hamiltonii* against stored-product insect pests and its application in grain protection. *Journal of Food Science and Technology*. 2010; 47(3):310-314.

20. Khani M, Awang RM, Omar D, Rahmani M, Rezazadeh S. Tropical medicinal plant extracts against rice weevil, *Sitophilus oryzae* L. *Journal of Medicinal Plants Research*. 2011; 5(2):259-265.

21. Saljoqi AU, Afridi MK, Khan SA. Effects of six plant extracts on rice weevil, *Sitophilus oryzae* L. in the stored wheat grains, *Journal of Agricultural and Biological Science*. 2006; 1(4).

22. Ileke KD, Ogungbíte OC. Entomocidal activity of powders and extracts of four medicinal plants against *Sitophilus oryzae* (L.), *Oryzaephilus mercator* (Four) and *Rhizophyra dominica* (Fabr.). *Jordan Journal of Biological Sciences*. 2014; 7(1):57-62.

23. Ziaee M, Moharrampour S, Mohsenifar A. MA-chitosan nanogel loaded with *Cuminum cuminum* essential oil for efficient management of two stored product beetle pests. *Journal of Pest Science*. 2014; 87(4):691-699.

24. Li Y, Zou H, Nai Z, Li W, Na X, Tang S et al. Insecticidal activity of different fractions of distilled oil extracted from *Eupatorium adenophorum* against 4 species of stored grain insects. *Journal of Southwest Agricultural University*. 2000; 22(4):331-332.

25. Jayasekara TK, Stevenson PC, Hall DR, Belmain SR. Effect of volatile constituents from *Securidaca longipedunculata* on insect pests of stored grain. *Journal of Chemical Ecology*. 2005; 31(2):303-313.

26. Potenza MR, Justi Junior J, Alves JN. Evaluation of contact activities of plant extracts against *Sitophilus zeamais* Motschulsky (*Coleoptera: Curculionidae*). In Proceedings of 9th *International Working Conference on Stored Product Protection*, 15–18th October 2006, Campinas, Sao Paulo, Brazil. *Brazilian Post-harvest Association ABRAPOS*, Passo Fundo, 811-815.

27. Huang YZ, Yang CJ, Xue D, Rotimi OA, Yao YJ. Contact and repellency activities of ethanol extracts from twenty medicinal plants against *Rhizophyra dominica* (Fab.) (*Coleoptera: Bostichidae*). *Acta Entomologica Sinica*. 2007; 50:118-124.

28. Boeke SJ, Baumgart IR, Van Loon JJA, Van Huis A, Dicke M, Kossou DK. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against *Callosobruchus maculatus*. *Journal of Stored Products Research*. 2004; 40(4):423-438.

29. Dwivedi SC, Garg S. Citrus clean- a promising ovicide against *Corcyra cephalonica* (Stainton). *Insect Environment*. 2000; 5(4):155-156.

30. Rao J, Prakash A. Evaluation of new botanicals on paddy grain protectants against lesser grain borer, *Rhizophyra dominica* Fabr. *Journal of Applied Zoological Researches*. 2002; 13(2, 3):258-259.

31. Khani M, Awang RM, Omar D, Rahmani M. Bioactivity effect of *Piper nigrum* L. and *Jatropha curcas* L. extracts against *Corcyra cephalonica* (Stainton). *Agrotechnology*. 2012a; 2(1):105.