Mobile Insight in Risk, Resilience and Online Referral (MIRROR): Evaluating the usage and psychometric properties of an online self-help test after potentially traumatic events

Merel Marjolein van Herpen, Manon Boeschoten, Hans te Brake, Niels van der Aa, Miranda Olff

Submitted to: Journal of Medical Internet Research on: April 30, 2020

Disclaimer: © The authors. All rights reserved. This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.
Table of Contents

Original Manuscript.. 4
Mobile Insight in Risk, Resilience and Online Referral (MIRROR): Evaluating the usage and psychometric properties of an online self-help test after potentially traumatic events

Merel Marjolein van Herpen MA, ; Manon Boeschoten PhD, ; Hans te Brake PhD, ; Niels van der Aa PhD, ; Miranda Olff PhD,

Corresponding Author:
Merel Marjolein van Herpen MA,
Phone: +31610082023
Email: m.van.herpen@impact.arq.org

Abstract

Background: Most people who experience a potentially traumatic event (PTE) recover on their own. A small group of individuals develops psychological complaints but is often not detected in time or guidance to care is suboptimal. To identify these individuals and encourage them to seek help, a web-based self-help test called MIRROR – Mobile Insight in Risk, Resilience and Online Referral – was developed. MIRROR takes an innovative approach since it integrates both negative and positive outcomes of PTEs and time since the event, and provides direct feedback to the user.

Objective: To assess MIRROR’s usage, examine its psychometric properties (factor structure, internal consistency, convergent and divergent validity) and evaluate how well it classifies respondents into different outcome categories compared to reference measures.

Methods: MIRROR was embedded in the website of Victim Support Netherlands so visitors could use it. We compared MIRROR’s outcomes to reference measures of PTSD symptoms (PTSD Checklist for DSM-5), depression, anxiety, stress (Depression Anxiety Stress Scale - 21), psychological resilience (Resilience Evaluation Scale) and positive mental health (Mental Health Continuum Short Form).

Results: showed good internal consistency, convergent and divergent validity. Exploratory and confirmatory factor analyses yielded a two-factor model with good model fit, conceptual meaning and parsimony. MIRROR correctly classified respondents into different outcome categories, compared to the reference measures.

Conclusions: MIRROR is a valid and reliable self-help test to identify negative (PTSD complaints) and positive outcomes (psychosocial functioning and resilience) of PTEs. MIRROR is an easily accessible online tool that can help victims of PTEs to timely identify psychological complaints and to find appropriate support, a tool that might be highly needed in times of the Coronavirus pandemic.

(JMIR Preprints 30/04/2020:19716)
DOI: https://doi.org/10.2196/preprints.19716

Preprint Settings

1) Would you like to publish your submitted manuscript as preprint?

✔ Please make my preprint PDF available to anyone at any time (recommended).
 Please make my preprint PDF available only to logged-in users; I understand that my title and abstract will remain visible to all users.
 Only make the preprint title and abstract visible.

No, I do not wish to publish my submitted manuscript as a preprint.

2) If accepted for publication in a JMIR journal, would you like the PDF to be visible to the public?

✔ Yes, please make my accepted manuscript PDF available to anyone at any time (Recommended).
 Yes, but please make my accepted manuscript PDF available only to logged-in users; I understand that the title and abstract will remain visible to all users.
 Yes, but only make the title and abstract visible (see Important note, above). I understand that if I later pay to participate in PubMed Now! service service, my accepted manuscript PDF will automatically be made openly available.

https://preprints.jmir.org/preprint/19716 [unpublished, non-peer-reviewed preprint]
Mobile Insight in Risk, Resilience and Online Referral (MIRROR): Evaluating the usage and psychometric properties of an online self-help test after potentially traumatic events

Abstract

Background: Most people who experience a potentially traumatic event (PTE) recover on their own. A small group of individuals develops psychological complaints but is often not detected in time or guidance to care is suboptimal. To identify these individuals and encourage them to seek help, a web-based self-help test called MIRROR—Mobile Insight in Risk, Resilience and Online Referral—was developed. MIRROR takes an innovative approach since it integrates both negative and positive outcomes of PTEs and time since the event, and provides direct feedback to the user.

Objective: To assess MIRROR’s usage, examine its psychometric properties (factor structure, internal consistency, convergent and divergent validity) and evaluate how well it classifies respondents into different outcome categories compared to reference measures.

Methods: MIRROR was embedded in the website of Victim Support Netherlands so visitors could use it. We compared MIRROR’s outcomes to reference measures of PTSD symptoms (PTSD Checklist for DSM-5), depression, anxiety, stress (Depression Anxiety Stress Scale - 21), psychological resilience (Resilience Evaluation Scale) and positive mental health (Mental Health Continuum Short Form).

Results: In six months, 1112 respondents completed MIRROR, of whom 663 also completed the reference measures. Results showed good internal consistency, convergent and divergent validity. Exploratory and confirmatory factor analyses yielded a two-factor model with good model fit, conceptual meaning and parsimony. MIRROR correctly classified respondents into different outcome categories, compared to the reference measures.

Conclusions: MIRROR is a valid and reliable self-help test to identify negative (PTSD complaints) and positive outcomes (psychosocial functioning and resilience) of PTEs. MIRROR is an easily accessible online tool that can help victims of PTEs to timely identify psychological complaints and to find appropriate support, a tool that might be highly needed in times of the Coronavirus pandemic.

Key words: Potentially traumatic events; mobile mental health; self-help; online; resilience; posttraumatic stress disorder
Introduction

Most people will experience at least one potentially traumatic event (PTE) in their lives [1-5]. The impact of PTEs is not the same for every individual. Research shows that most individuals are able to maintain a healthy level of functioning or resilience after experiencing a PTE and psychological complaints usually diminish over time without professional support [1, 6-10]. However, a small but significant group of individuals develops psychological complaints - such as post-traumatic stress disorder (PTSD) - that require care [2].

Experiencing psychological complaints a few days to weeks after a PTE is often considered normal [11-13]. The National Institute for Health and Care Excellence (NICE) advises to consider active monitoring - also known as watchful waiting – following a PTE, i.e., regular monitoring of people with some PTSD symptoms within one month of the event [14]. The TENTS guideline for post-disaster psychosocial care advises against formal screening of everyone affected by a PTE, but stresses the importance of identifying individuals in need of support. Once a PTSD has been diagnosed, early treatment is advised [14-18]. Taking these advices together, it could be concluded that support for victims of PTEs is necessary, preferably early and easily accessible.

Unfortunately, the small but significant group that develops persisting psychological complaints is often not detected in time or guidance to care is suboptimal [19, 20]. Guidance to care can be hindered due to people not recognizing their symptoms or having self-stigma, which prevents them from seeking help [21-24]. In addition, health care facilities may lack the resources to be able to reach victims of PTEs and identify the ones who need support [23, 25]. Also, general practitioners may not recognize PTSD symptoms [26] or other psychological complaints [27].

In order to prevent the development and persistence of trauma-related complaints, timely and accurate identification is needed [23, 28]. Short and easy to use screening instruments could enable individuals at risk of developing psychological complaints to self-identify and monitor possible symptoms after PTEs. Moreover, providing online or mobile self-help tests can aid in timely identification of symptoms in victims of PTEs, providing more information regarding normal psychological responses and in encouraging help seeking [29, 30].

Multiple studies show that when one chooses to assist victims of PTEs, it is important to support self-reliance and resilience [1, 11, 14]. Normalizing and validating emotional responses can promote the capacity to deal with these emotions [11]. Also, the extent to which individuals indicate themselves as being resilient is considered to positively influence post-trauma outcomes [31, 32]. Several self-report screening instruments are available to predict PTSD, such as the Trauma Screening Questionnaire, Impact of Event Scale-Revised or PTSD checklist for DSM-5 [33, 34].
However, most instruments only screen for complaints and do not inquire about protective factors - such as psychological resilience and psychosocial functioning [33, 34]. In addition, most screening instruments do not consider the time period that has passed since the event. Such information is necessary to determine whether or not reported complaints can be appraised as ‘normal’ given the stressful event just happened or whether referral to care is needed [14]. By not including time in classifying responses, screening can overlook or misappraise the different response trajectories that have been found after PTEs [9].

To incorporate above guideline advices and address the aforementioned concerns in the early support of victims of PTEs, MIRROR - Mobile Insight in Risk, Resilience and Online Referral – was developed. MIRROR is a web-based self-help test with the potential to reach large groups of victims of PTEs who are seeking reassurance on how they are coping. MIRROR takes an innovative approach since it integrates both negative and positive outcomes of PTEs and time since the event. In compliance with NICE, TENTS and DSM-5 guidelines [14, 15, 35], MIRROR’s algorithm includes as main weight factors: the severity of complaints, time passed since the event, and level of psychosocial functioning. MIRROR provides victims with personal advice and follow-up support options such as a reminder for self-monitoring. Giving personal feedback to users is recommended to augment the use of mobile self-tests after PTEs [36]. Also, arranging active monitoring with follow-up within one month is advised [14]. Of relevance, no difference has been found between responses on a PTSD self-report administered via a mobile device versus paper administration [37]. MIRROR aims to contribute to the early identification of those who are likely to develop psychological complaints and encourage them to seek help. At the same time, MIRROR aims to support self-reliance by facilitating self-monitoring and self-recovery through follow-up support options.

While it is recognized that mobile applications have the potential to improve timely identification of complaints and delivery of mental health support after PTEs, there is very little research on their validity, reliability, and effectiveness [29, 30, 38]. Therefore, the aims of this study were to: 1) assess MIRROR’s usage, 2) examine MIRROR’s psychometric properties (factor structure, internal consistency, convergent and divergent validity) and 3) evaluate how well MIRROR classifies respondents into different outcome categories compared to reference measures.

Methods

MIRROR

A multidisciplinary team of professionals in the field of psychotrauma (clinicians, researchers, and policy officers) and victim and crisis support developed MIRROR. The items and algorithm were
MIRROR consists of two parts. Part one includes items regarding event-related characteristics: type of event - measured with all events of the Dutch version of the Life Events Checklist for the DSM-5 [41], time passed since the event (measured in weeks), and relation to the event (happened to me, learned about it, witnessed it, part of my job). Part two consists of eight items divided in three sections. The first concerns ‘PTSD core symptoms’ (four items in total; one about intrusion, two about avoidance and one about arousal). The items are developed based on the clusters in the DSM-IV, DSM-5, ICD-10 and ICD-11. Higher scores reflect more PTSD symptoms. The second concerns the item ‘how would you rate your present functioning (at work/home)?’, based on the widely used Global Assessment of Functioning (GAF) score for which higher scores reflect a higher level of functioning. The third concerns ‘resilience’ (three items in total; about social support, self-reliance and problem solving), based on the resilience concept as introduced by Van der Meer et al. 2018 [42]. Higher scores reflect more resilience. PTSD and resilience items are answered on a 5-point response scale, ranging from 1 (never) to 5 (all the time). Functioning is rated on a scale from 1 to 10.

MIRROR’s algorithm aims to identify PTSD symptoms, psychosocial functioning and resilience; to normalize complaints – i.e. reassuring users that it is normal to experience distress shortly after a PTE; and to stimulate seeking support in users with persisting complaints. See the multimedia appendix for an overview of the algorithm. In the algorithm, MIRROR’s PTSD scale and functioning item are classified in three levels: low, moderate and high. Resilience is categorized as either low or high. The categorizations are based on the aforementioned existing protocols and best practices. MIRROR’s algorithm differentiates three phases of time passed since the event: 1) less than one week ago, 2) between one and four weeks and 3) more than four weeks or reoccurring. These were based on the assumption that complaints after PTEs may occur, but generally will diminish over time; as most people recover on their own [6]. Therefore, the occurrence of PTSD core complaints with moderate to low functioning shortly after an adverse event can be seen as normal [11-13], but if complaints and moderate to low functioning are present after one month guidance to care is needed [14-18]

MIRROR summarizes the outcome of its algorithm to respondents as either green, orange or red. Together with this color outcome respondents receive personal advice. The color outcome is based on the level of complaints, functioning and time passed since the event. MIRROR’s resilience
scale is not included in the color outcome because based on current research it is unclear precisely how resilience interacts with the development of PTSD complaints and functioning after PTEs. Nonetheless, resilience is integrated in the personal advice to stimulate the use of social support. If respondents score low on resilience they are encouraged to seek support from close ones and individuals who have experienced similar events.

A green outcome indicates little complaints and/or sufficient functioning. Therefore, the accompanying advice states no further action is needed. An orange outcome indicates complaints and moderate functioning in combination with a PTE that happened only recently (i.e. less than one month). The accompanying advice is directed at normalizing complaints – combined with promoting watchful waiting and encouraging to set a reminder to use MIRROR again in two weeks to assess if complaints have diminished. The red outcome indicates significant complaints (i.e. low functioning or complaints with moderate to low functioning for a longer period or due to a reoccurring event) which persisted for more than a month. Therefore, the advice aims to encourage the user to seek consultation with a general practitioner or to contact Victim Support Netherlands. MIRROR provides follow-up support options with its advice, such as the opportunity to get in touch with people who have had similar experiences, reading information about dealing with stress reactions or setting a reminder to use MIRROR again in two weeks.

Participants and procedure

MIRROR was available in the Dutch language on the website of Victim Support Netherlands (Slachtofferhulp Nederland). Website visitors were automatically led to MIRROR when searching for information regarding stress reactions following a PTE. To evaluate the psychometric properties of MIRROR, we added a research survey with reference measures (see details in ‘Measures’) after the MIRROR questions for a period of six months. Before starting MIRROR, respondents were invited to participate in the research survey. Participation was voluntary and completely anonymous.

Respondents received no incentive for completing MIRROR or the research survey. They were asked for informed consent to use their data for research purposes, in accordance with the European General Data Protection Regulation. The Medical Ethical Committee of the Academic Medical Center in Amsterdam exempted this study from formal review (W18_364 # 18.435).

Data collection took place between February and August 2019. Only original answers were saved in the database. That is, if respondents went back to change their answers once they already received their advice, changes were not saved. We followed data cleaning recommendations by Birnbaum [43] and Wood et al. [44]. Data were discarded when respondents did not complete all
survey items. In case of identical answers on all items of the different reference measures, other systematic answering patterns, or obvious unusual missing answers on certain measures, we reviewed individual results thoroughly and discarded the data in case of doubt.

Measures

PTSD symptoms

To measure PTSD symptoms, we used the Dutch version of the PTSD Checklist for DSM-5; PCL-5 [45, 46]. The PCL-5 consists of 20 items and measures symptoms of intrusion (cluster B, five items), avoidance (cluster C, two items), negative alterations in cognitions and mood (cluster D, seven items) and alterations in arousal and reactivity (cluster E, six items) in the past month. All items are answered on a 5-point scale, ranging from 0 (not at all) to 4 (extremely). The PCL-5 showed good psychometric properties in different languages [47-49]. The total score was calculated by adding all item scores. Scale scores per cluster were calculated by adding the scores of the corresponding items. Higher scores reflect more severe symptoms. Cronbach’s alphas in our sample ranged between .77 and .86 for the B, C, D and E clusters.

The DSM-5 rule to determine a provisional PTSD diagnosis was followed. This entails treating each item with a minimum score of 2 as a symptom endorsed and requiring at least one B symptom, one C symptom, two D symptoms, and two E symptoms [45].

Depression, anxiety, and stress

To assess other common psychological complaints after PTEs, we used the Dutch short version of the Depression Anxiety Stress scale (DASS-21) measuring depression (seven items), anxiety (seven items) and stress (seven items) [50, 51]. The DASS-21 is a valid and reliable measure [52, 53]. Item scores were summed to calculate scale scores and the total score. Higher scores reflect more severe symptoms. In our sample, Cronbach’s alphas were .92, .86 and .86 for depression, anxiety and stress scales respectively. A 4-point response scale measures the extent to which each state has been experienced over the past week ranging from 0 (not at all) to 4 (most certainly). To determine cut-off values, DASS-21 scale scores were multiplied by two, in accordance with the scale’s manual [51]. The manual provides cut-off scores for a Dutch clinical sample. These discriminate the following categories: normal (depression < 9, anxiety <7, stress <14), mild (depression 10-13, anxiety 8-9, stress 15-18), moderate (depression 14-20, anxiety 10-14, stress 19-25), severe (depression 21-27, anxiety 15-19, stress 26-33) and extremely severe (depression >28, anxiety >20, stress >34).
Psychological resilience

We used the Resilience Evaluation Scale (RES) to assess psychological resilience [42]. The 9 items are rated on a 5-point scale ranging from 0 (strongly disagree) to 4 (strongly agree). We calculated the total score by adding all items. Higher scores reflect more psychological resilience. The RES is a valid and reliable measure [42]. In this sample, Cronbach’s alpha of the total scale was .88.

Positive mental health

We assessed positive mental health with the Dutch version of the Mental Health Continuum Short Form (MHC-SF) [54, 55]. The MHC-SF measures emotional wellbeing (3 items), social wellbeing (5 items) and psychological wellbeing (6 items). Items were rated on a 5-point scale ranging from 0 (never) to 5 (every day). The MHC-SF is a valid and reliable instrument [55, 56]. We calculated the total score by summing all item scores. Higher scores reflect more positive mental health. In this sample, Cronbach’s alpha of the total scale was .93.

Google Analytics

Google Analytics data were collected between March and August 2019 to examine MIRROR’s usage. Due to technical problems, data from February 2019 were missing. The data provide information on the number of unique visitors, number of unique visits per page, number of visitors who have started MIRROR (defined as a visitor on MIRROR’s start page) and who have finished MIRROR (defined as visitors on MIRROR’s outcome and advice page). Google Analytics cannot determine to what extent the follow-up options were used, but it can detect how many respondents have visited the follow-up support option pages.

Statistical analyses

Sample

Since participation in the research survey was optional, this resulted in two samples. The “MIRROR-only sample” consists of respondents who only completed MIRROR. The “validation sample” includes respondents who completed MIRROR and the accompanied survey with reference measures before receiving their advice. The total sample combines these two samples, consisting of all respondents. To examine if the validation sample was representative of ‘the MIRROR user’, we used independent-samples t-tests in SPSS version 23 [57] to compare the MIRROR-only sample with the validation sample based on their MIRROR scores and event-related characteristics.
We used the total sample to evaluate MIRROR’s usage and to examine MIRROR’s factor structure and internal consistency, because for these analyses only data from MIRROR were needed. We used the validation sample to examine MIRROR’s convergent and divergent validity and to evaluate how well MIRROR classifies respondents into different outcome categories, because for these analyses data from MIRROR as well as reference measures from the accompanied survey were needed.

MIRROR’s factor structure

We used MPlus version 8 [58] to conduct exploratory factor analysis (EFA) using geomin rotation and confirmatory analysis (CFA). EFA assumes that any item may be associated with any factor. CFA specifies expected relationships between the items and their underlying latent factors. Because items of MIRROR’s PTSD and resilience section were categorical they were treated as ordinal and therefore the means and variance adjusted weighted least square (WLSMV) estimator was used. An underlying normal distribution was assumed for each ordinal item, where the five response categories were divided by four thresholds which were estimated from the data. MIRROR’s functioning item has ten response categories and was treated as continuous. Because MIRROR’s factor structure was not tested before, several models with different number of latent factors were examined using EFA. To assess the model with the optimal number of latent factors needed to adequately account for the correlations among item scores, we used Kaiser criterion (i.e. eigenvalues of the latent factors > 1) and model fit statistics. The model with the best balance between model fit, parsimony and conceptual interpretability was selected as the most optimal model. Subsequently, CFA was used to test the optimal model based on EFA. The difference in goodness-of-fit between nested models was evaluated with the ‘difftest’ option in MPlus for appropriate χ^2 difference testing with the WLSMV estimator [58]. The χ^2 difference test is highly sensitive to sample size such that even trivial differences between two nested models may be significant [59]. Therefore, we also assessed the difference in CFI. A difference in CFI < 0.01 indicates a better fit of the nested model compared to the more complex model [59]. For EFA and CFA, the model fit indices Comparative Fit Index (CFI), Tucker–Lewis Index (TLI), and Root Mean Square Error of Approximation (RMSEA) were used to evaluate model fit. Model fit can be considered good when CFI and TLI are close to .95, and RMSEA < .06 [60]. If RMSEA < .08 model fit can be considered adequate [60].
Internal consistency

We evaluated internal consistency of MIRROR’s PTSD and resilience section with inter-item correlations, corrected item-total correlations and Cronbach’s alpha in SPSS version 23 [57]. Internal consistency of MIRROR’s functioning section could not be evaluated since it is represented by only one item. When most inter-item correlations are in the recommended range of .15 - .50 (moderate magnitude) and Cronbach’s alpha for the scale is > .80, internal consistency can be considered as good [61]. Cronbach’s alpha is a function of scale length, and therefore is likely to be lower for MIRROR’s scales since they consist of 3 or 4 items [61]. Corrected item-total correlations were computed to assess whether item scores regarding PTSD and resilience are associated with overall PTSD and resilience scores.

Convergent and divergent validity

To evaluate MIRROR’s convergent and divergent validity, we calculated Pearson correlations between the MIRROR scales and reference measures. Convergent and divergent validity can be considered good when the correlations between a scale and equivalent measure (e.g. MIRROR’s PTSD scale and the PTSD scale of the PCL-5) are significant and high while correlations between this scale and other related measures (e.g. MIRROR’s PTSD scale and depression scale of the DASS-21) are lower and moderate or modest in magnitude.

MIRROR’s classification quality

To evaluate how well MIRROR classifies respondents into a red, orange, or green outcome, we tested whether respondents in these three outcome categories differed on related reference measures by using cross-tabs and ANOVA. If the assumption of equal variances was violated, we used the Welch F test and Games-Howell post hoc test. MIRROR’s PTSD scale score was calculated by summing the four PTSD items. Higher scores reflect more severe symptoms. MIRROR’s resilience scale score was calculated by summing the three items. Higher scores reflect more resilience. Provisional PTSD diagnosis based on PCL-5 were used to classify respondents. To examine the distribution on depression, anxiety and stress symptoms, respondents were classified by comparing their scores to a Dutch clinical reference group. Respondents with normal and mild complaints compared to the reference group were classified into one group representing sub-clinical complaints. Respondents with average, severe and very severe complaints compared to the reference group were classified into another group, representing clinical complaints. Since no reference groups were
available with regard to the RES and MHC-SF, the sample was divided into tertiles (i.e. three groups of equal size divided by the 33rd and 66th percentile) based on the total scores of the RES and MHC-SF. With regard to the RES, the first tertile (scores ≤ 17) was assumed to represent relatively low psychological resilience, the second tertile (scores between 18 - 24) relatively moderate psychological resilience, and the third tertile (scores between ≥ 25) relative high psychological resilience. With regard to the MHC-SF, the first (scores ≤ 23), second (scores between 24 - 47), and third tertile (scores ≥ 48) were respectively assumed to represent relatively low, moderate, and high positive mental health.

Results

Sample

MIRROR was completed 1314 times in the study period of six months. 682 (51.9%) respondents started the research survey. We deleted 51 respondents who indicated to have used MIRROR on behalf of a family member, partner, friend or colleague who experienced a PTE. We deleted 37 repeated measurements, completed by respondents who set a reminder. We excluded 95 respondents because they did not complete all research survey items. After thorough investigation of the answering patterns, we deleted 19 respondents because of unusual answering patterns. A total of 1112 respondents (84.6%) respondents were retained in the total sample, of whom 663 respondents (59.6%, validation sample) also completed all questionnaires of the accompanying research survey.

Table 1 presents the MIRROR scores, outcomes and event-related characteristics for the validation sample and MIRROR-only sample. We found no significant difference between the samples on MIRROR’s PTSD scale: t(1110) = -.401, P= .689; resilience scale: t(1110) = .752, P= .452; or level of functioning t(1110) = 1.547, P = .122. We found a significant association between sample and MIRROR outcome: χ^2(2, N= 1112) = 18.99, P<.001; the validation-sample consisted of more respondents with the red MIRROR outcome than the MIRROR-only sample. The event-related characteristics for both samples were similar, see Table 1. Overall, the validation sample can be considered representative of all MIRROR users in this study period. Table 2 presents the frequency distribution for MIRROR’s response categories.

Table 1. MIRROR scores, outcomes and event-related characteristics for the validation sample and MIRROR-only sample

MIRROR scores	Validation (N=663)	MIRROR-only (N=449)
M (SD)	M (SD)	
Table 2. Frequency distribution in percentages (%) of MIRROR items responses categories (N = 1112)

Scale	Item	Never (%)	Rarely (%)	Sometimes (%)	Often (%)	All the time (%)
MIRROR PTSD scale		14.88	14.80			(3.39)
		(3.39)	(3.28)			
MIRROR functioning		4.92	5.11			(1.96)
		(1.94)	(1.94)			
MIRROR resilience scale		10.08	10.91			(2.36)
		(2.37)	(2.37)			
MIRROR outcome						
Red		61.7	49.9			
Orange		34.7	47.7			
Green		3.6	2.4			
Type of event (LEC-5)						
Another very stressful event or experience		32.6	33.4			
Transportation accident		17.4	23.8			
Physical assault		16.5	11.1			
Sudden accidental death		5.7	4.5			
Serious accident at work, home, or during recreation		5	6.2			
Sexual assault		5	4			
Assault with a weapon		4.5	5.6			
Other unwanted or uncomfortable sexual experience		4.5	3.1			
Sudden violent death		3.6	3.6			
Severe human suffering		2.1	1.1			
Life-threatening illness or injury		1.5	1.1			
Fire or explosion		1.4	0.9			
Combat or exposure to a war-zone		0.2	0			
Captivity		0	0.9			
Serious injury, harm or death caused by you to someone else		0	0.7			
Natural disaster		0	0			
Relation to the event						
The event happened to me		72.5	69.3			
I have witnessed the event		19.5	20.9			
I learnt about the event		6.3	7.8			
Other*		1.7	2			
Work-related						
No		88.4	84.4			
Yes		11.6	15.6			
Time since the event						
Less than one week		36.3	48.6			
Over four weeks		32.3	25.2			
Between one and four weeks		21.7	20			
It happens repeatedly		9.7	6.2			

*If respondents could not select one of the event relations (happened to me, witnessed it, learnt about it, work-related) they are asked to specify their relation to the event.
A detailed overview of the scores of the validation sample on the reference measures can be found in the multimedia appendix. Overall, these show a high level of complaints in our sample and rather low levels of psychological resilience and positive mental health (see also Table 6. for measures of wellbeing in validation sample).

MIRROR’s usage

Google Analytics data provided insight in MIRROR’s usage. The number of visitors that started MIRROR was 2555, of whom 2247 (87.95%) finished it. The original database contained 1314 entries. This discrepancy can be explained by users having the opportunity to refuse to have their data saved before starting. Of all users, 1216 (47.59%) chose this option. Furthermore, of the follow-up support options the “seek contact with Victim Support Netherlands” page had most views (411 unique views), followed by “more information” (293 unique views), “send your advice to yourself or someone else” (235 unique views), “seek contact with people who have had similar experiences” (209 unique views) and “set a reminder” (161 unique views). Of the respondents who received the orange outcome and advise to fill out MIRROR again in two weeks (39.9% of the total sample) 36.9% immediately set a reminder to complete MIRROR again in two weeks, of whom 56.3% did at the time of data analyses.

MIRROR’s factor structure

Table 3 presents the factor loadings for the two-factor and three-factor solution model of MIRROR as estimated by EFA. EFA yielded a three-factor solution with good model fit based on all fit indices. The Kaiser criterion was met for the first two factors, eigenvalues of the third until eight factor were <1. The three-factor solution separated MIRROR’s PTSD items into two factors; one factor with the intrusion item and one factor with the avoidance and arousal/reactivity items. However, item 2 (“have you become jumpy and/or vigilant since the event?”) cross-loaded significantly on two

PTSD	1	2	3	4	5	6	7	8	9	10
	2.7	5.7	16.6	38.5	36.5					
2	5.1	8.5	19.3	27.4	39.6					
3	9.3	13.8	26.9	22.9	27.1					
4	8.5	11.4	26.7	26.8	26.6					

Resilience	6	7	8	9	10
	5.3	8.5	21.7	35.3	29.3
	7.3	15.6	35.2	30.5	11.5
	5.2	15.1	45.6	28.1	5.9

Functioning	5	6	7	8	9	10
	4.9	10.4	15.8	19.8	20.9	12.1
g	3	1.6	1.3			
factors within the model, with only a small difference between the two factor loadings ($\lambda = 0.030$). This indicates that item 2 did not sufficiently distinguish between both factors. The three-factor solution clustered the functioning item with the resilience items into a third factor.

Table 3. Geomin rotated factor loadings for the two-factor and three-factor solution model of MIRROR as estimated by EFA (N = 1112)

Item Description	2-factor solution	3-factor solution
1. Are you troubled by images of or thoughts about the event?	0.525*	0.813*
2. Have you become jumpy and/or vigilant since the event?	0.585*	0.308*
3. Do you try to avoid things that are related to the event?	0.789*	1.078
4. Do you try to avoid thinking about the event?	0.648*	0.459
5. How would you rate your present functioning (at work/home)?	-0.153*	0.004
6. Do you experience support from those close to you?	0.081*	0.160*
7. Are confident in yourself?	0.006	0.010
8. Are you able to deal with any problems you encounter?	-0.015	0.018

Eigenvalues: 1 = 2.777, 2 = 1.466, 3 = .927, 4 = .715, 5 = .668, 6 = .640, 7 = .437, 8 = .369. Model fit indices for the two-factor solution: $x^2 = 88.728$, $P<.001$, $df = 13$, $CFI = .969$, $TLI = .933$, $RMSEA = .072$. Model fit indices for the three-factor solution: $x^2 = 12.565$, $P = .084$, $df = 7$, $CFI = .998$, $TLI = .991$, $RMSEA = .027$. * $P<.05$.

EFA yielded a two factor solution with adequate model fit. The RMSEA and TLI indicated adequate model fit and CFI indicated good model fit (Table 3.). The Kaiser criterion was met for the first two factors, eigenvalues of the third until eight factor were <1. The first factor of the two-factor solution consisted of the PTSD items and the second factor consisted of the functioning and resilience items. No cross-loadings were observed in this model.

Next, we conducted CFA to further compare the two- and three-factor model that resulted from EFA. Table 4 presents the model fit indices based on CFA of both aforementioned models. The model fit indices were similar for both models; the CFI and TLI indicated good model fit, the RMSEA acceptable model fit. As indicated by the significant χ^2 difference test, the two-factor model has worse model fit compared to the three-factor model ($\chi^2 (2, N= 1112) = 13.63, P=.001$). However, the difference in CFI is < 0.01, indicating the two-factor model does not have worse model fit. We
selected the two-factor model as the best-fitting model to our data, given the \(\chi^2 \) difference test is sensitive to sample size, the CFI difference is <.001 and because it is more parsimonious and better interpretable at a conceptual level compared to the three-factor model. The two-factor model represents a clear distinction between negatively formulated outcomes (PTSD complaints) and positively formulated outcomes (psychosocial functioning and resilience) of PTEs. The positively formulated outcomes combine psychosocial functioning, social support, self-reliance and problem solving. We therefore propose to rename this factor “psychosocial resources”.

Table 4. Confirmatory factor analyses model fit indices (N= 1112)

Model	\(\chi^2 \)	\(P \)	df	CFI	TLI	RMSEA
Two-factor solution	107.780	<.001	19	.965	.948	.065
Three-factor solution	95.868	<.001	17	.969	.949	.064

Internal consistency

Inter-item correlations of MIRROR’s PTSD complaints scale ranged between .28 and .48 with a mean of .34. All of the inter-item correlations of the PTSD scale were in the recommended range of moderate magnitude of .15-.50, indicating that this scale has high internal consistency in combination with a differentiated item set. Corrected item-total correlations for this scale ranged between .39 and .54 with a mean of .46, indicating that high scores on the PTSD items are associated with high scores on the overall PTSD scale of MIRROR. Cronbach’s alpha coefficient for MIRROR’s PTSD scale was .68.

Inter-item correlations of MIRROR’s resilience scale ranged between .24 and .55, with a mean of .36. One - out of three - inter-item correlations was higher than the recommended range of moderate magnitude of .15-50 (between ‘are you confident in yourself’ and ‘are you able to deal with any problems you encounter’), indicating that this scale has high internal consistency in combination with a differentiated item set. Corrected item-total correlations ranged between .30 and .52 with a mean of .44, indicating that high scores on the resilience items are associated with high scores on the overall resilience scale of MIRROR. Cronbach’s alpha coefficient for MIRROR’s resilience scale was .62.

Convergent and divergent validity

Pearson correlations between MIRROR and reference measures are presented in Table 5. MIRROR’s
PTSD scale showed strongest correlations with PTSD as measured with the PCL-5, followed by a lower but still substantial correlation with psychological complaints as assessed with the DASS-21. The weakest correlations were observed between PTSD symptom severity as assessed with MIRROR and psychological resilience and positive mental health. MIRROR’s resilience scale showed strongest correlation with psychological resilience (RES), followed by a slightly lower correlation with positive mental health, psychological complaints (DASS-21) and PTSD (PCL-5). MIRROR’s functioning item showed strongest correlations with psychological complaints (DASS-21), followed by PTSD (PCL-5) and lower correlations with positive mental health (MHC-SF) and psychological resilience (RES). In conclusion, the correlational structure indicates good convergent and divergent validity of MIRROR’s PTSD subscale. The correlational structure with regard to MIRROR’s resilience scale and functioning item indicates adequate convergent and divergent validity.

Table 5. Correlations between MIRROR subscales and reference measures (N = 663)

MIRROR	PTSD P	Resilience P	Functioning P		
PCL-5 .665	<.001	-.507	<.001	-.442	<.001
DASS-21 .486	<.001	-.539	<.001	-.449	<.001
RES -.265	<.001	.612	<.001	.279	<.001
MHC-SF -.259	<.001	.603	<.001	.319	<.001

MIRROR’s outcome classification

We expected respondents with the red MIRROR outcome to report more PTSD symptoms and depression, anxiety and stress complaints, and lower psychological resilience and positive mental health compared to respondents with the green and orange MIRROR outcome. Table 6. presents the means and standard deviations on the reference measures for each MIRROR outcome category.

Table 6. Measures of wellbeing for each MIRROR outcome category (N = 663)

PTSD (PCL-5)	Green (N= 24)	Orange (N=200)	Red (N=439)
Mean (SD) 18.04 (12.49)	36.09 (15.77)	46.13 (14.04)	
PTSD diagnosis %	%	%	
Provisional PTSD diagnosis 12.5	54.5	74.3	
No provisional PTSD 87.5	45.5	25.7	
Depression (DASS-21)			
Mean (SD) 4.08 (8.10)	11.73 (11.54)	19.66 (11.54)	
Classification %	%	%	
Normal to mild 95.8	60.5	31.2	
We conducted several one-way between-groups analysis of variance (ANOVA) to investigate the difference in mean scores on the reference measures between MIRROR outcome categories. As can be seen, negative outcomes were highest for the red MIRROR outcome category and positive outcomes highest for the green outcome category. The ANOVA results are shown in table 7. We found significant differences in PTSD symptoms, depression anxiety and stress, psychological resilience and positive mental health between groups. Post hoc tests revealed that PTSD symptoms, depression, anxiety and stress complaints were significantly different between all groups ($P<.001$). Psychological resilience was significantly higher for the green and orange MIRROR outcome category compared to the red category ($P<.001$). It was also significantly higher for the green category compared to the orange category ($P=.010$). Positive mental health was significantly higher for the green and orange category compared to the red category ($P<.001$). There was no significant difference between the green and orange category ($P=.069$).

Table 7. One-Way Between-Groups Analysis of Variance (ANOVA) with MIRROR outcome categories and reference measures

	F	Cohen’s d	df between groups	df within groups	P
Anxiety (DASS-21)					
Mean (SD)	5.25 (6.72)	14.03 (10.27)	18.04 (10.30)		
Classification	%	%	%		
Normal to mild	79.1	38.5	22.5		
Average to very severe	20.9	61.5	78.5		
Stress (DASS-21)					
Mean (SD)	10.42 (7.32)	17.60 (9.20)	22.49 (9.37)		
Classification	%	%	%		
Normal to mild	87.5	52.5	29.4		
Average to very severe	12.5	47.5	70.6		
Psychological resilience (RES)					
Mean (SD)	25.58 (5.11)	22.04 (6.02)	18.82 (7.15)		
Classification	%	%	%		
Low	8.3	21	40.5		
Moderate	25	45	36.2		
High	66.7	34	23.2		
Positive mental health (MHC-SF)					
Mean (SD)	50 (12.05)	43.11 (14.89)	31.42 (14.28)		
Classification	%	%	%		
Low	4.2	11.5	32.3		
Moderate	20.8	45.5	51.5		
High	75	43	16.2		
Metric	Estimate	SE	df	t	p-value
---------------------------------	----------	-----	-----	-------	---------
PTSD symptoms	73.32	0.168	2	62.90	<0.00
Depression*	65.21	0.136	2	65.81	<0.00
Anxiety	42.48	0.072	2	67.37	<0.00
Stress	34.15	0.094	2	660	<0.00
Psychological resilience	30.13	0.068	2	65.44	<0.00
Positive mental health	57.79	0.069	2	660	<0.00

The assumption of equal variances was violated. Therefore, the Welch F test and Games-Howell post hoc test were used.

Discussion

Principal Results and Comparison With Prior Work

The purpose of this study was to evaluate the usage and psychometric and classification properties of MIRROR. MIRROR is an innovative web-based self-help test to identify individuals who develop psychological complaints after a potentially traumatic event (PTE), encourage them to seek help and support self-reliance. Our results indicated that MIRROR is a valid and reliable self-help test to identify negative outcomes (PTSD core symptoms) and positive outcomes (psychosocial functioning and resilience). MIRROR is able to correctly classify respondents according to their PTSD complaints and scores on reference measures. During the study period, 87.95% of respondents that started MIRROR completed it.

We found that MIRROR’s presupposed model of three factors (PTSD symptoms, psychosocial functioning and resilience) did not fit our data best. Instead, a two-factor solution showed good model fit, conceptual meaning and maximum parsimony. This model separates MIRROR’s PTSD items from the functioning and resilience items (social support, self-reliance and problem solving). In retrospect, the grouping of the functioning and resilience items is not entirely surprising. If we assume stress to be the result of an imbalance between perceived external and internal demands and perceived personal and social resources [62], it is likely that this distinction between demands and resources is reflected in the way people cope with PTEs. We propose to call the factor “psychosocial resources”. In accordance with this distinction, the two-factor model clearly separates negative (PTSD complaints) and positive (psychosocial resources) outcomes of PTE’s.
The convergent and divergent validity of MIRROR is supported by the correlations that were found between MIRROR and the reference measures. The results indicate good convergent and divergent validity for MIRROR’s PTSD items. As expected, MIRROR’s PTSD showed strongest correlations with PTSD (assessed with the PCL-5), followed by a lower but substantial correlation with psychological complaints (measured with the DASS-21). MIRROR’s PTSD items showed low correlations with positive reference measures (assessed with the RES and MHC-SF). The results indicate adequate convergent and divergent validity for MIRROR’s resilience items, but less distinct than MIRROR’s PTSD. MIRROR’s resilience items showed strongest correlations with psychological resilience, followed by slightly lower but substantial correlations with the other reference measures. The results in this study correspond with the finding of Van der Meer et al. [42] who found the RES total scale to be positively associated with established measures for resilience, self-esteem, self-efficacy and global functioning; and negatively associated with PTSD symptoms. Furthermore, the different patterns of correlations for MIRROR’s PTSD and resilience scales agrees with the notion that PTSD and resilience are two separate constructs [63-65]. MIRROR’s functioning item showed the strongest correlation with psychological complaints and PTSD and lower correlations with the positive reference measures. This indicates adequate convergent and divergent validity. The factor analyses revealed that functioning belongs to the resilience items of MIRROR. However, the correlation between MIRROR’s functioning item and psychological complaints and PTSD is in line with studies that show that psychosocial functioning can be impaired by psychological complaints [64, 66, 67].

We found that both MIRROR’s PTSD and resilience scales show good internal consistency. The Cronbach’s alpha coefficients for these scales are relatively low (.68 and .62, respectively), but not unusual given the (intentionally) short scales of MIRROR and given that Cronbach’s Alpha is a function of scale length [61]. Because MIRROR contains only few items, we calculated inter-item and item-total correlations. The results indicate that both scales have high internal consistency and that high scores on the items are associated with high scores on the overall scales.

MIRROR was able to correctly classify respondents into green (no further action needed), orange (encourage self-monitoring) or red (encourage seeking consultation) outcome categories and advices, compared to the other measures. Results showed that respondents with a red outcome reported to have more severe PTSD symptoms, more severe depression, anxiety and stress complaints and lower psychological resilience and positive mental health, compared to respondents
with a green or orange outcome. The occurrence of PTSD and other stress-related complaints like depression following traumatic exposure is in line with former results [68]. Importantly, MIRROR appears to adequately identify victims with more severe complaints and validly advises them to seek help. Our results seem to underline the relevance of including the factor ‘time since the event’ in MIRROR’s algorithm. According to the PCL-5 around half (54.45%) of the respondents with the orange outcome had a provisional PTSD diagnosis. However, their complaints could still diminish, considering the event happened only recently for these respondents and research has shown that in most individuals complaints usually diminish over time [1, 2, 11]. Therefore, in accordance with international guidelines [14], respondents with the orange outcome are advised to monitor how their complaints develop (by setting a reminder to use MIRROR again in two weeks).

The evaluation of MIRROR’s usage with Google Analytics showed that the number of users of MIRROR was substantial (N= 2555) and the completion rate was high (87.95%). These results are in line with former studies on applications assessing and monitoring mental health after PTEs indicating high usage [29, 30, 36] and high completion rate [48]. In general, the follow-up options were visited less frequently (161 – 411 unique visits) than the outcome and advice page (2247 unique visits). A reason for this could be that receiving MIRROR’s outcome and advice is sufficient initial support for victims of PTEs, providing insight into how they are coping. Part of the respondents who were advised to fill out MIRROR again immediately set a reminder (36.9%) and returned after two weeks to complete it again, suggesting MIRROR is able to support self-monitoring. Unfortunately, this study’s design and considerations of ethical nature did not enable us to assess usage in more depth.

Future Research and Limitations

Although guidelines on screening for PTSD complaints and post-disaster psychosocial care are widely available [7, 15, 69-71] the challenge remains how to reach and identify people at risk of developing psychological complaints after a PTE on a large scale. Future research could focus on investigating the implementation of MIRROR on a larger scale, for example after terrorist attacks or natural disasters. Literature is inconclusive about the benefits versus disadvantages of formal screening of an entire population after a disaster or crisis [14, 15, 69, 72]. Because of limited evidence of effectiveness and sensitivity of screening, organizational efforts related to screening and the often scarce resources available [25, 73] it is generally not recommended to perform formal screening of complaints among all involved people following incidents. At the same time, we know that early recognition and timely referral to help are essential for preventing and treating traumatic...
stress symptoms. This is supported by evidence of the effectiveness of early psychological interventions for individuals pre-screened with traumatic stress symptoms shortly following trauma, and no benefits in those not pre-screened for these symptoms [16]. Mobile applications such as MIRROR can make a contribution to solving the “screening dilemma” by supporting low key, accessible and easy to use self-assessment and -monitoring. In this view, MIRROR could be implemented as a first step in the support for victims of PTEs, before having to consult professional care [29, 36]. MIRROR might lower the barrier to seek help given its open accessibility and anonymity. Future research could focus on acquiring longitudinal data of MIRROR to assess the development of complaints, functioning and resilience over time and establish MIRROR’s ability to correctly classify users accordingly. Also, qualitative research might clarify what actions users take as a result of MIRROR’s personal advice.

Our study has some limitations. The sample is a specifically targeted sample, because it consisted of visitors of the website of Victim Support Netherlands. Considering website visitors were automatically led to MIRROR when searching for information regarding stress reactions following a PTE, a high prevalence of psychological complaints after traumatic exposure in our sample could be expected. It demonstrates that the intentionally targeted sample was reached. The main strength of this study is by comparing MIRROR to broader-used reference measures, it contributes to the highly needed evidence-base of mobile applications with the potential to improve timely identification of psychological complaints [29, 30].

Conclusions
Concluding, this study shows that MIRROR is a psychometrically sound, anonymous and easy-accessible self-help test for victims of PTEs. It is able to identify both negative (PTSD symptoms) and positive (psychosocial resources) outcomes of PTEs and to classify respondents in accordance with reference measures. This study will hopefully contribute to enhancing adequate and timely identification of people who suffer from psychological complaints after PTEs.

Acknowledgements
We would like to thank Victim Support Netherlands (Slachtofferhulp Nederland) for their help in facilitating this study.
Data Sharing Statement

The datasets generated and analysed during this study are available from the corresponding author on reasonable request.

Conflict of interest

This study has been conducted by the independent research center ARQ Centre of Expertise for the Impact of Disasters and Crises and ARQ Centre’45. The funders (ARQ National Psychotrauma Centre, Interreg North-West Europe and Victim Support Netherlands) had no influence on the outcomes of this study.

Funding

This study was partially funded by the Interreg North-West Europe Programme whom invested in the eMEN project, an EU-wide platform for e-mental health innovation and implementation formed by private and public partners in North West Europe [74]. This study was also funded by ARQ National Psychotrauma Centre and Victim Support Netherlands.

References

1. Bonanno GA, Westphal M, Mancini AD. Resilience to loss and potential trauma. Annu Rev Clin Psychol. 2011;7:511-35. PMID: 21091190. doi: 10.1146/annurev-clinpsy-032210-104526.
2. de Vries GJ, Olff M. The lifetime prevalence of traumatic events and posttraumatic stress disorder in the Netherlands. J Trauma Stress. 2009 Aug;22(4):259-67. PMID: 19645050. doi: 10.1002/jts.20429.
3. Benjet C, Bromet E, Karam EG, Kessler RC, McLaughlin KA, Ruscio AM, et al. The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. Psychol Med. 2016 Jan;46(2):327-43. PMID: 26511595. doi: 10.1017/S0033291715001981.
4. Kessler RC, Aguilar-Gaxiola S, Alonso J, Benjet C, Bromet EJ, Cardoso G, et al. Trauma and PTSD in the WHO World Mental Health Surveys. Eur J Psychotraumatol. 2017;8(sup5):1353383. PMID: 29075426. doi: 10.1080/20008198.2017.1353383.
5. Knipscheer J, Sleijpen M, Frank L, de Graaf R, Kleber R, ten Have M, et al. Prevalence of Potentially Traumatic Events, Other Life Events and Subsequent Reactions Indicative for Posttraumatic Stress Disorder in the Netherlands: A General Population Study Based on the Trauma Screening Questionnaire. International Journal of Environmental Research and Public Health. 2020;17(5):1725. doi: 10.3390/ijerph17051725.
6. Bonanno GA. Resilience in the face of potential trauma. Current directions in psychological
7. Silver RC, Holman EA, McIntosh DN, Poulin M, Gil-Rivas V. Nationwide Longitudinal Study of Psychological Responses to September 11. Journal of the American Medical Association. 2002;288(10):1235-44.
8. Forbes D, Creamer M, Phelps A, Bryant R, McFarlane A, Devilly GJ, et al. Australian guidelines for the treatment of adults with acute stress disorder and post-traumatic stress disorder. Aust N Z J Psychiatry. 2007 Aug;41(8):637-48. PMID: 17620160. doi: 10.1080/00048670701449161.
9. Galatzer-Levy IR, Huang SH, Bonanno GA. Trajectories of resilience and dysfunction following potential trauma: A review and statistical evaluation. Clin Psychol Rev. 2018 Jul;63:41-55. PMID: 29902711. doi: 10.1016/j.cpr.2018.05.008.
10. Olff M, Amstadter A, Armour C, Birkeland MS, Bui E, Cloitre M, et al. A decennial review of psychotraumatology: what did we learn and where are we going? Eur J Psychotraumatol. 2019;10(1):1672948. PMID: 31897268. doi: 10.1080/20008198.2019.1672948.
11. Hobfoll SE, Watson P, Bell CC, Bryant RA, Brymer MJ, Friedman MJ, et al. Five essential elements of immediate and mid-term mass trauma intervention: empirical evidence. Psychiatry. 2007 Winter;70(4):283-315; discussion 6-69. PMID: 18181708. doi: 10.1521/psyc.2007.70.4.283.
12. Bryant RA, Harvey AG, Guthrie RM, Moulds ML. Acute Psychophysiological Arousal and Posttraumatic Stress Disorder: A Two-Year Prospective Study. Journal of Traumatic Stress. 2003 October 01;16(5):439-43. doi: 10.1023/a:1025750209553.
13. Bryant RA. Acute stress reactions: can biological responses predict posttraumatic stress disorder? CNS Spectr. 2003 Sep;8(9):668-74. PMID: 15079140. doi: 10.1017/s1092852900008853.
14. National Institute for Health and Care Excellence. Guideline Post-Traumatic Stress Disorder [NG116]. Retrieved from: https://www.nice.org.uk/guidance/ng1162018.
15. Bisson JI, Tavakoly B, Witteveen AB, Ajdukovic D, Jehel L, Johansen VJ, et al. TENTS guidelines: development of post-disaster psychosocial care guidelines through a Delphi process. Br J Psychiatry. 2010 Jan;196(1):69-74. PMID: 20044665. doi: 10.1192/bjp.bp.109.066266.
16. Roberts NP, Kitchiner NJ, Kenardy J, Lewis CE, Bisson JI. Early psychological intervention following recent trauma: A systematic review and meta-analysis. Eur J Psychotraumatol. 2019;10(1):1695486. PMID: 31853332. doi: 10.1080/20008198.2019.1695486.
17. Boelen PA, Olff M, Smid GE. Traumatic loss: Mental health consequences and implications for treatment and prevention. European Journal of Psychotraumatology. 2019;10(1):1591331. doi: 10.1080/20008198.2019.1591331.
18. Oosterbaan V, Covers MLV, Bicanic IAE, Huntjens RJC, de Jongh A. Do early interventions prevent PTSD? A systematic review and meta-analysis of the safety and efficacy of early interventions after sexual assault. Eur J Psychotraumatol. 2019;10(1):1682932. PMID: 31762949. doi: 10.1080/20008198.2019.1682932.
19. Stene LE, Wentzel-Larsen T, Dyb G. Healthcare Needs, Experiences and Satisfaction after Terrorism: A Longitudinal Study of Survivors from the Utøya Attack. Frontiers in Psychology. 2016 November-24;7(1809). doi: 10.3389/fpsyg.2016.01809.
20. Jeavons S. Long-term needs of motor vehicle accident victims: are they being met? Australian Health Review. 2001;24(1):128-35.
21. Cheng H-L, Wang C, McDermott RC, Kridel M, Rislin JL. Self-Stigma, Mental Health Literacy, and Attitudes Toward Seeking Psychological Help. Journal of Counseling & Development. 2018;96(1):64-74. doi: 10.1002/jcad.12178.
22. Corrigan P. How stigma interferes with mental health care. The American Psychologist. 2004;59(7):614-25.
23. Shalev AY, Ankri YLE, Peleg T, Israeli-Shalev Y, Freedman S. Barriers to Receiving Early Care for...
PTSD: Results from the Jerusalem Trauma Outreach and Prevention Study. Psychiatric Services. 2011;62(7):765-73.

24. Stuber J, Galea S, Boscarino JA, Schlesinger M. Was there unmet mental health need after the September 11, 2001 terrorist attacks? Social Psychiatry and Psychiatric Epidemiology 2006;41(3):230-40.

25. Brewin CR, Fuchkan N, Huntley Z, Robertson M, Thompson M, Scragg P, et al. Outreach and screening following the 2005 London bombings: usage and outcomes. Psychol Med. 2010 Dec;40(12):2049-57. PMID: 20178677. doi: 10.1017/S0033291710000206.

26. Rosenbaum L. Post-traumatic stress disorder: a challenge for primary care - misunderstood and incognito British Journal of General Practice 2004;54(499):83-5.

27. Verhaak PF, Schellevis FG, Nuijen J, Volkers AC. Patients with a psychiatric disorder in general practice: determinants of general practitioners' psychological diagnosis. Gen Hosp Psychiatry. 2010 Mar-Apr;28(2):125-32. PMID: 16516062. doi: 10.1016/j.genhosppsych.2005.11.001.

28. Dekkers AMM, Olff M, Närings GWB. Identifying Persons at Risk for PTSD After Trauma with TSQ in The Netherlands. Community Mental Health Journal. 2010 February 01;46(1):20-5. doi: 10.1007/s10597-009-9195-6.

29. Olff M. Mobile mental health: a challenging research agenda. Eur J Psychotraumatol. 2015;6:27882. PMID: 25994025. doi: 10.3402/ejpt.v6.27882.

30. Price M, Yuen EK, Goetter EM, Herbert JD, Forman EM, Acinerio R, et al. mHealth: a mechanism to deliver more accessible, more effective mental health care. Clin Psychol Psychother. 2014 Sep-Oct;21(5):427-36. PMID: 23918764. doi: 10.1002/cpp.1855.

31. Connor KM. Assessment of Resilience in the Aftermath of Trauma. Journal of Clinical Psychiatry 2006;67(2):46-9.

32. Windle G, Bennett KM, Noyes J. A methodological review of resilience measurement scales. Health and Quality of Life Outcomes. 2011;9(8):1-18.

33. Mouthaan J, Sijbrandij M, Reitsma JB, Gersons BP, Olff M. Comparing screening instruments to predict posttraumatic stress disorder. PLoS One. 2014;9(5):e97183. PMID: 24816642. doi: 10.1371/journal.pone.0097183.

34. Brewin CR. Systematic review of screening instruments for adults at risk of PTSD. J Trauma Stress. 2005 Feb;18(1):53-62. PMID: 16281196. doi: 10.1002/jts.20007.

35. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing 2013.

36. Price M, Sawyer T, Harris M, Skalka C. Usability Evaluation of a Mobile Monitoring System to Assess Symptoms After a Traumatic Injury: A Mixed-Methods Study. JMIR Ment Health. 2016 Jan 11;3(1):e3. PMID: 26753673. doi: 10.2196/mental.5023.

37. Price M, Kuhn E, Hoffmann JE, Ruzek J, Acierio R. Comparison of the PTSD Checklist (PCL) Administered via a Mobile Device Relative to a Paper Form. Journal of Traumatic Stress. 2015;28(5):480-3. doi: 10.1002/jts.22037.

38. Donker T, Petrie K, Proudfoot J, Clarke J, Birch MR, Christensen H. Smartphones for smarter delivery of mental health programs: a systematic review. J Med Internet Res. 2013 Nov 15;15(11):e247. PMID: 24240579. doi: 10.2196/jmir.2791.

39. World Health Organization. ICD-10 : international statistical classification of diseases and related health problems : tenth revision, 2nd ed. World Health Organization 2004.

40. Impact. Multidisciplinary guideline for post-disaster psychosocial support. Diemen, the Netherlands 2014.

41. Boeschoten M, Bakker A, Jongedijk RA, Olff M. Life Events Checklist for DSM-5: Nederlandstalige versie: Stichting Centrum’45; 2014.
42. van der Meer CAI, Te Brake H, van der Aa N, Dashtgard P, Bakker A, Olff M. Assessing Psychological Resilience: Development and Psychometric Properties of the English and Dutch Version of the Resilience Evaluation Scale (RES). Front Psychiatry. 2018;9:169. PMID: 29867601. doi: 10.3389/fpsyt.2018.00169.

43. Birnbaum MH. Human research and data collection via the internet. Annu Rev Psychol. 2004;55:803-32. PMID: 14744235. doi: 10.1146/annurev.psych.55.090902.141601.

44. Wood RTA, Griffiths MD, Virginiaetough MA. Online Data Collection from Video Game Players: Methodological Issues. CYBERPSYCHOLOGY & BEHAVIOR. 2004;7(5):511-8.

45. Weathers FW, Litz BT, Keane TM, Palmieri PA, Marx BP, Schnurr PP. The PTSD Checklist for DSM-5 (PCL-5). Scale available from the National Center for PTSD at www.ptsd.va.gov. 2013.

46. Eidhof MB, Ter Heide FJJ, van Der Aa N, Schreckenbach M, Schmidt U, Brand BL, et al. The Dissociative Subtype of PTSD Interview (DSP-I): Development and Psychometric Properties. J Trauma Dissociation. 2019 Oct-Dec;20(5):564-81. PMID: 31132959. doi: 10.1080/15299732.2019.1597806.

47. Bovin MJ, Marx BP, Weathers FW, Gallagher MW, Rodríguez P, Schnurr PP, et al. Psychometric properties of the PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders–Fifth Edition (PCL-5) in veterans. Psychological Assessment. 2016;28(11):1379-91. doi: https://doi.org/10.1037/pas0000254.

48. van der Meer CAI, Bakker A, Schrieken BAL, Hoofwijk MC, Olff M. Screening for trauma-related symptoms via a smartphone app: The validity of Smart Assessment on your Mobile in referred police officers. Int J Methods Psychiatr Res. 2017 Sep;26(3). PMID: 28948699. doi: 10.1002/mpr.1579.

49. Kruger-Gottschalk A, Knaevelsrud C, Rau H, Dyer A, Schafer I, Schellong J, et al. The German version of the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): psychometric properties and diagnostic utility. BMC Psychiatry. 2017 Nov 28;17(1):379. PMID: 29183285. doi: 10.1186/s12888-017-1541-6.

50. Lovibond PF, Lovibond SH. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour research and therapy. 1995;33(3):335-43.

51. de Beurs E, van Dyck R, Marquenie LA, Lange A, Blonk RW. De DASS: een vragenlijst voor het meten van depressie, angst en stress. Gedragstherapie 2001;34(1):35-54.

52. Henry JD, Crawford JR. The short-form version of the Depression Anxiety Stress Scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. 2005 Jun;44(Pt 2):227-39. PMID: 16004657. doi: 10.1348/014466505X29657.

53. Lee D. The convergent, discriminant, and nomological validity of the Depression Anxiety Stress Scale-21 (DASS-21). Journal of Affective Disorders. 2019;259(1):136-42.

54. Keyes CL. Mental health in adolescence: is America’s youth flourishing? Am J Orthopsychiatry. 2006 Jul;76(3):395-402. PMID: 16981819. doi: 10.1037/0002-9432.76.3.395.

55. Lammers SM, Westerhof GJ, Bohlmeijer ET, ten Klooster PM, Keyes CL. Evaluating the psychometric properties of the Mental Health Continuum-Short Form (MHC-SF). J Clin Psychol. 2011 Jan;67(1):99-110. PMID: 20973032. doi: 10.1002/jclp.20741.

56. Keyes CL, Wissing M, Potgieter JP, Temane M, Kruger A, van Rooy S. Evaluation of the mental health continuum-short form (MHC-SF) in setswana-speaking South Africans. Clin Psychol Psychother. 2008 May-Jun;15(3):181-92. PMID: 19115439. doi: 10.1002/cpp.572.

57. IBM Corporation. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.; Released 2015.

58. Muthén LK, Muthén BO. Mplus User’s Guide. Eight Edition. Los Angeles, CA: Muthén & Muthén; 1998 - 2017.
59. Cheung GW, Rensvold RB. Evaluating goodness-of-fit indexes for testing measurement invariance. Structural equation modeling. 2002;9(2):233-55.
60. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal. 1991;6:1-55.
61. Clark LA, Watson D. Constructing validity: Basic issues in objective scale development. Psychological assessment. 1995;7(3):309.
62. Folkman S, Lazarus RS. Stress, appraisal, and coping: New York: Springer Publishing Company; 1984. ISBN: 0826141900.
63. Olff M. Bonding after trauma: on the role of social support and the oxytocin system in traumatic stress. Eur J Psychotraumatol. 2012;3. PMID: 22893838. doi: 10.3402/ejpt.v3i0.18597.
64. Kuhn E, Blanchard EB, Hickling EJ. Posttraumatic stress disorder and psychosocial functioning within two samples of MVA survivors. Behaviour Research and Therapy. 2003;41(9):1105-12. doi: https://doi.org/10.1016/S0005-7967(03)00071-8.
65. Ozer EJ, Best SR, Lipsey TL, Weiss DS. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull. 2003 Jan;129(1):52-73. PMID: 12555794. doi: 10.1037/0033-2909.129.1.52.
66. Palyo SA, Beck JG. Post-traumatic stress disorder symptoms, pain, and perceived life control: Associations with psychosocial and physical functioning. Pain. 2005;117(1-2):121-7.
67. Fried EI, Nesse RM. The Impact of Individual Depressive Symptoms on Impairment of Psychosocial Functioning. PLOS ONE. 2014;9(2):e90311. doi: 10.1371/journal.pone.0090311.
68. Meaghan L. O’Donnell, Ph.D., Mark Creamer, Ph.D., and, Phillipa Pattison, Ph.D. Posttraumatic Stress Disorder and Depression Following Trauma: Understanding Comorbidity. American Journal of Psychiatry. 2004;161(8):1390-6. PMID: 15285964. doi: 10.1176/appi.ajp.161.8.1390.
69. Te Brake H, Dückers M. Early psychosocial interventions after disasters, terrorism and other shocking events: is there a gap between norms and practice in Europe? European journal of psychotraumatology. 2013;4(1):19093.
70. Te Brake H, Dückers M, De Vries M, Van Duin D, Rooze M, Spreeuwenberg C. Early psychosocial interventions after disasters, terrorism, and other shocking events: Guideline development. Nursing & Health Sciences. 2009;11(4):336-43.
71. Jacobs J, Oosterbeek M, Tummers LG, Noordegraaf M, Yzermans CJ, Duckers MLA. The organization of post-disaster psychosocial support in the Netherlands: a meta-synthesis. Eur J Psychotraumatol. 2019;10(1):1544024. PMID: 30815232. doi: 10.1080/20008198.2018.1544024.
72. Australian Centre for Posttraumatic Mental Health (ACPMH). Australian Guidelines for the treatment of acute stress disorder and posttraumatic stress disorder Melbourne, Victoria: ACPMH; 2013.
73. Bisson JI, Weltch R, Maddern S, Shepherd JP. Implementing a screening programme for post-traumatic stress disorder following violent crime. Eur J Psychotraumatol. 2010;1. PMID: 22893799. doi: 10.3402/ejpt.v1i0.5541.
74. Interreg NWE. e-mental health innovation and transnational implementation platform North West Europe (eMEN). https://www.nweurope.eu/projects/project-search/e-mental-health-innovation-and-transnational-implementation-platform-north-west-europe-emen/.