FOOD SCIENCE & TECHNOLOGY | REVIEW ARTICLE

Occurrence, importance and control of mycotoxins: A review
Marta Tola¹ and Bedaso Kebede²*

Abstract: Mycotoxins are poisonous chemical compounds produced by certain fungi. There are five mycotoxins or groups of mycotoxins that occur quite often in food: deoxynivalenol/Nivalenol, zearalenone, ochratoxin, fumonisins and aflatoxins. The fungi that produce mycotoxins in food fall broadly into two groups: those that invade before harvest, commonly called field fungi, and those that occur only after harvest, called storage fungi. There are three types of toxicogenic field fungi: plant pathogens such as Fusarium graminearum (deoxynivalenol, nivalenol); fungi that grow on senescent or stressed plants, such as Fusarium moniliforme (fumonisin) and sometimes Aspergillus flavus (aflatoxin); and fungi that initially colonize the plant before harvest and predispose the commodity to mycotoxin contamination after harvest, such as Penicillium verrucosum (ochratoxin) and A. flavus (aflatoxin). The favourable conditions for mycotoxins production are instigated with poor hygienic conditions at the time of transportation and storage, high temperature and moisture content and heavy rains. Mycotoxins are distributed in different items such as animal feeds, cereal crops, leguminous plants and animal products. Noug cake and sorghum was warranted as the main source of aflatoxin contaminant among those concentrated animal feeds. Health effects occur in companion animals, livestock, poultry and humans because aflatoxins are potent hepatotoxins, immunosuppressant, and mutagens and carcinogens. Factors that affect mycotoxins production and

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
contamination can be categorized as physical, chemical and biological. Therefore, African countries particularly Ethiopian governmental jurisdictions should implement and regulate level of mycotoxins in animal feed stuffs and human foods.

Subjects: Bioscience; Environment & Agriculture; Environmental Studies & Management; Food Science & Technology

Keywords: mycotoxins; occurrence; importance and control

1. Introduction

Mycotoxins are poisonous chemical compounds and secondary metabolites produced by fungus or moulds. Those mycotoxins that do occur in food and/or feedstuffs have great significance in the health of humans and livestock. Since they are produced by fungi, mycotoxins are associated with diseased or mouldy crops, although the visible mould contamination can be superficial. The effects of some food-borne mycotoxins are acute, symptoms of severe illness appearing very quickly. Other mycotoxins occurring in food have longer term chronic or cumulative effects on health, including the induction of cancers and immune deficiency. There are five mycotoxins or groups of mycotoxins that occur in food: deoxynivalenol/Nivalenol, zearalenone, ochratoxin, fumonisins and aflatoxins. The fungi that produce mycotoxins in food fall broadly into two groups: those that invade before harvest, commonly called field fungi, and those that occur only after harvest, called storage fungi. There are three types of toxigenic field fungi: plant pathogens such as Funkucie graminearum (deoxynivalenol, nivalenol); fungi that grow on senescent or stressed plants, such as Fusarium moniliforme (fumonisin) and sometimes Aspergillus flavus (aflatoxin); and fungi that initially colonize the plant before harvest and predispose the commodity to mycotoxin contamination after harvest, such as Penicillium verrucosum (ochratoxin) and A. flavus (aflatoxin) (Ayalew, 2010). The favourable conditions for mycotoxins production are instigate with poor hygienic conditions at the time of transportation and storage, high temperature and moisture content and heavy rains (Food Nutrition and Agriculture (FAO), 1991, see Table 1).

Mycotoxins are ubiquitous and accessible in different materials. It occurs in animal feeds, human foods, animal products and soil. Animal feeds commonly harbour mycotoxins are wheat bran, noug cake, pea hulls and maize grain. An animal product like milk is the source of mycotoxins for human being (Gizachew, Szyong, Tegegne, Hanson, & Grace, 2016). Aflatoxigenic fungi have worldwide distribution. In temperate and tropical areas these species of Aspergillus have ubiquitous distribution and are found in soil used for growing crops (Gourami & Bullerman, 1995). These fungi also have distribution in storage areas, processing facilities and in the distribution systems for manufactured products. The production of aflatoxins is associated with spore production by species of Aspergillus (Calvo, Wilson, Bok, & Keller, 2002). Strains of A. flavus can vary in aflatoxin capability from non-toxic to highly toxigenic and are more likely to produce more aflatoxin (Aflatoxin B1 (AFB1)) than AFG1. Strains of Aspergillus parasiticus generally have less variation in toxigenicity and generally produce AFB1 and varying amounts of AFB2, AFG1 and AFG2. Fusarium moulds or fungi are the most economically important source of trichothecone mycotoxins. Trichothecones are produced by several genera of fungi, including Fusarium, Stachybotrys, Myrothecium, Trichothecium, Trichoderma, Cephalosporium, Cylindrocarpon, Verticicinosporium, and Phomopsis (Scott, 1989). The genus includes many field fungi capable of infecting wheat, corn, barley, oats, and forages. Fusarium is most common in temperate climates, but contamination of grains is reported worldwide. Trichothecones are potent inhibitors of protein synthesis and are toxic to moulds, bacteria, plants, and animals (Council for Agriculture, Science & Technology, 2003; Joint FAO/WHO Expert Committee on Food Additives, 2001; Placinta, D’Mello, & Macdonald, 1999). Fusarium is a major agricultural plant pathogen of temperate growing regions, where it causes Fusarium head blight in wheat, barley, triticale, and other grains. F. graminearum has an optimum temperature range for growth of 26–28°C at a water activity (aw) greater than 0.88. Fusarium culmorum grows optimally at 21°C when aw 0.87. While increased rainfall will increase Fusarium head blight, the incidence of blight is primarily affected by moisture at anthesis when the temperature is in the optimum range (Miller, 2002). Moisture
No	Mycotoxins chemical structures and names	Analytical methods	Maximum limit permitted
1	![Aflatoxin G1](https://via.placeholder.com/150)	LC-MS, HPLC-FL (Zöllner & Mayer-Helm, 2006)	10 μg/kg (FAO, 1997)
2	![Aflatoxin B1](https://via.placeholder.com/150)	TLC (Ostry & Skarkova, 2000); HPLC (Walker & Meier, 1998)	750 μg/kg (FAO, 1997)
3	![Deoxynivalenol](https://via.placeholder.com/150)	HPLC-FL (Krska, Welzig, & Boudra, 2007; Mateo, Mateo, Hinojo, Llorens, & Jiménez, 2002; Urraca, Benito-Peña, Pérez-Conde, Moreno-Bondi, & Pestka, 2005; Urraca, Marazuela, & Moreno-Bondi, 2004; Visconti & Pascale, 1998), LC-MS (Berthiller et al., 2006)	1000 μg/kg (FAO, 1997)
4	![Zearalenone](https://via.placeholder.com/150)	HPLC-FL (Wilkes & Sutherland, 1998), LC-MS (Zöllner & Mayer-Helm, 2006)	1000 μg/kg (FAO, 1997)
5	![Ochratoxin A](https://via.placeholder.com/150)	LC-FL (Becker, Dagelmann, Herderich, Schreier, & Humpf, 1998; Wilkes & Sutherland, 1998), LC-MS and HPLC-FL (Zöllner & Mayer-Helm, 2006)	5 μg/kg (FAO, 1997)
6	![Fumonisins B1](https://via.placeholder.com/150)	HPLC-FL (Wilkes & Sutherland, 1998), LC-MS (Zöllner & Mayer-Helm, 2006)	1000 μg/kg (FAO, 1997)
7	![Hydrolyzed Fumonisin B1](https://via.placeholder.com/150)		
at silk emergence and wet weather later in the season increase Gibberella or pink ear rot caused by *F. graminearum* in corn. OTA occurs naturally with a greater frequency in a variety of cereal grains (barley, wheat, oats, corn, and beans), peanuts, dried fruits, grapes/raisins, cheese, and other food products. OTA accumulates in the food chain because of its long half life. Citrinin usually co-occurs with OTA, and commonly contaminates cereal grains, including wheat, barley, oats, corn, and rice. Citrinin also contaminates peanuts and fruits. Tremorgen-producing fungi grow on a wide variety of foodstuffs, including dairy or grain-containing products intended for human consumption (e.g. cheeses and pastas), stored grains and nuts (e.g. peanuts and walnuts) and a number of forages (e.g. legumes and grasses) consumed by livestock species, and even garbage and compost piles can be sources of tremorgenic mycotoxins (Boysen et al., 2002; Burrows & Tyrl, 2001; Young, Villar, Carson, Imerman, & Moore, 2003).

Mycotoxins are endangering human health, animal production and countries economy (World Health Organization, 2006). Significantly visible health problems are cancer, immunosuppression and impaired growth (Bondy & Pestka, 2000; Gong et al., 2004; Khlangwiset, Shephard, & Wu, 2011). Aflatoxins, on a worldwide scale, are important mycotoxins in human foods and animal feedstuffs (Williams et al., 2004). Aflatoxin contamination causes economic losses of corn, cottonseed, peanuts, sorghum, wheat, rice and other commodities, and economic losses of processed food and feedstuffs. Commodities considered unsafe for human consumption can be incorporated into animal feedstuffs (Coppock & Swanson, 1986). Systemic aspergillosis by aflatoxigenic fungi was considered to contribute to immunosuppression (Mori et al., 1998). Aflatoxins are teratogenic (Robens & Richard, 1992). Aflatoxicosis in the human population, especially in areas stricken by poverty and drought and other adverse growing conditions is an important public health problem (Williams et al., 2004). Fungi belonging to the genera Penicillium, Aspergillus, Claviceps, and Neotyphodium can produce tremorgenic mycotoxins, which are secondary fungal metabolites that elicit either intermittent or sustained tremors in vertebrate species (Burrows & Tyrl, 2001; Cole & Cox, 1981; Selala, Daelemans, & Schepens, 1989). Slaframine is an alkaloidal mycotoxin produced by the fungus *Rhyzoctonia leguminicola* that causes profuse salivation (slobbering) in animals. *R. leguminicola* is a common fungal pathogen of red clover (*Trifolium pratense*) and causes a syndrome known as black patch disease in the plant (Gupta, 2007).

The most commonly recognized aflatoxigenic fungi are *A. flavus*, *A. parasiticus* and *A. nomius*. Other fungi reported to produce aflatoxins are *Aspergillus bombycis*, *Aspergillus ochraceus* and *Aspergillus pseudotamari* (Bennett & Kllich, 2003; Kllich, Mullaney, Daly, & Cary, 2000; Mishra & Das, 2003). *A. flavus* and *Aspergillus fumigatus* have also been identified as pathogenic to animals and humans (Barton, Daft, Read, Kinde, & Bickford, 1992; Drakos et al., 1993; Pepeljnjak, Slobodnjak, Šegvić, Peraica, & Pavlović, 2004). Aflatoxins can be produced in tissues by toxigenic fungi. Assays of cultured *A. flavus* and *A. fumigatus* isolated from tissues have shown these fungi can produce aflatoxins, and chemical analyses of infected tissues have shown aflatoxins to be present (Matsumura & Mori, 1998; Mori et al., 1998; Pepeljnjak et al., 2004). Aflatoxins being produced in tissues have not been shown to cause liver lesions typical of aflatoxicosis.

Zearalenone is a nonsteroidal estrogenic mycotoxin produced by several species of *Fusarium* fungi. The primary producer of zearalenone is *F. graminearum* (teleomorph *Gibberella zeae*). Additional Fusarium fungi capable of producing zearalenone include *F. culmorum*, *Fusarium verticillioides* (moniliforme), *sporotrichioides*, *semitectum*, *equseti*, and *oxysporum*. Contamination of cereal grains by zearalenone has been reported worldwide, primarily in temperate climates. Typically, zearalenone concentrations are low in grain contaminated in the field, but increase under storage conditions with moisture greater than 30–40% (Gupta, 2007). Zearalenone is commonly detected in grains with another *Fusarium* mycotoxin deoxynivalenol. Zearalenone is heat stable, but can be partially destroyed during extrusion cooking of cereals (Castells, Marin, Sanchis, & Ramos, 2005).

Fumonisins B1 and B2 are a group of naturally occurring mycotoxins produced by the fungus, *F. verticillioides* (formerly *F. moniliforme*). Ochratoxins and citrinin are produced by several species of
genera Aspergillus and Penicillium. The two most common species that produce ochratoxin A (OTA) are *Aspergillus ochraceus* and *P. verrucosum*. These fungi are ubiquitous and the potential for contamination of animal feed and human food is widespread. Aspergillus spp. appears to produce ochratoxins at conditions of high humidity and temperature, whereas some Penicillium spp. may produce ochratoxins at temperatures as low as 5°C. OTA has been found in a variety of food/feed, with levels in commodities used as feed ranging up to 27 ppm, and with levels in foodstuffs for human consumption in the range of trace to about 100 ppb (Gupta, 2007). The levels of OTA and citrinin have been found far lower in human food than in raw animal feed, because during processing and baking of human food citrinin is almost eliminated and OTA is significantly reduced.

Most governmental jurisdictions regulate the levels of mycotoxins allowed in animal feedstuffs and human foods because of their toxicity. Worldwide, mycotoxins because of their prevalence and toxicity are important in public health. Public health concerns centre on both primary poisoning from aflatoxins in commodities, food and feedstuffs, and relay poisoning from aflatoxins in milk. The allowable levels of aflatoxins in animal feedstuffs and human foods vary with governmental jurisdictions. However, in Ethiopia there are little studies on mycotoxins and paucity of information on the importance, occurrence and control of the mycotoxins. Therefore, the objective of this review is to overview occurrence, importance and control of mycotoxins.

2. Occurrence and distribution of mycotoxins

Mycotoxins are available in different items such as animal feeds, cereal crops, leguminous plants and animal products. All cereal crops can contain aflatoxins. Intensive cropping practices and decreased genetic diversity in cereal crops probably contribute to increased preharvest infections of commodities with fungi that produce aflatoxins (Brown, Chen, Cleveland, & Russin, 1999; Lillehoj, 1992). Preharvest contamination of crops with aflatoxins occurs in the temperate and tropical regions. The seeds in growth-stressed plants are the most susceptible to fungal invasion and aflatoxin production. The most common recognized plant stressors are drought, insect damage and timing of irrigation. Postharvest contamination occurs worldwide when conditions in the storage unit exist for the growth of Aflatoxigenic fungi. Aflatoxigenic fungi can grow in feedlot manure (Hendrickson & Grant, 1971). Insects spread the spores of aflatoxigenic fungi to plants and the fungi colonize areas of insect damage. The flower and silk in corn can be portals of entry for species of *Aspergillus* (Diener et al., 1987). Cottonseed can be a source of aflatoxins in animal diets. Preharvest contamination of cottonseed occurs (Jaime-Garcia & Cotty, 2003). Insect damage, timing of irrigation or rain, relative humidity around the bolls, stage of maturity and variety of cotton can be factors in causing preharvest contamination of cottonseed with aflatoxins (Lillehoj, Wall, & Bowers, 1987; Russell, Watson, & Ryan, 1976). In stored cottonseed growth of aflatoxigenic fungi may occur when the average moisture level in stored cottonseed is greater than 7–8%. The lipids and proteins in cottonseed enhance aflatoxin production (Mellon & Cotty, 1998; Mellon, Cotty, & Dowd, 2000). Peanut hay, peanuts and peanut by-products are an important source of mycotoxins (Cullen & Newberne, 1994; McKenzie, Blaney, Conhole, & Fitzpatrick, 1981). Aflatoxins generally are the most concentrated in the seeds. The growth of aflatoxigenic fungi can occur in stored peanuts when moisture exceeds 8% and ambient temperature is above 25°C. Drought-stressed peanuts have decreased native resistance to infection by aflatoxin producing fungi (Wotton & Strange, 1987). Phytoalexin produced by the infected peanut seed increased and inhibited the growth of *A. flavus*, but aflatoxin levels continue to increase for an additional day. Drought-stressed peanut seeds have decreased production of phytoalexin and aflatoxin production in drought-stressed peanut kernels is limited by available moisture. Distillers’ by-products can be a source of aflatoxin (Hesseltine, 1984). Corn and other high starch commodities contaminated with aflatoxins can be salvaged by using them for alcohol production. Aflatoxins are not destroyed by the fermentation process. On a dry matter basis, the concentration of aflatoxins in the stillage, compared to aflatoxins in the feedstock, is increased due to the loss of starch. Approximately 40% of the aflatoxins are in the syrup (distillers’ solubles) fraction and 60% are in the solids fraction. Zearalenone can be produced on numerous substrates, including wheat, barley, corn, corn silage, rice, sorghum, and occasionally in forages. Commercial corn-based human feedstuffs...
from retail outlets in several countries frequently contain fumonisins (Pittet, Parisod, & Schellenberg, 1992; Stack & Eppley, 1992; Sydenham, Shephard, Thiel, Marasas, & Stockenstrom, 1991).

Concentrated animal feedstuffs harbour highest level of mycotoxins. For instance, the lowest level of aflatoxin B1 contamination recorded from silage feed, which is roughages, was 7 μg/kg. However, the highest level of aflatoxin B1 contamination traced about 419 μg/kg in concentrate animal feeds like wheat bran, noug cake and sweat pea hull. Noug cake was warranted as the main source of aflatoxin contaminant among those concentrated animal feeds. Because, Noug is indigenous and contributes up to 50% oil-seed crop with its oil content varying from 30 to 50%. The oil factories produce cooking oil by pressing the noug seed and extracting the oil while the remaining noug cake is sold as animal feed to the feed processors or directly to the farmers. Noug cake is increasingly used in Ethiopia for its high nutrient content to increase animal productivity in small scale or intensifying system. It is also exported to North America and Europe, where it is mainly used for bird–feed (Gizachew et al., 2016).

Mycotoxins contamination intensity in leguminous crop varies geographically and groundnut is main source of mycotoxins. According to study on natural occurrence of Toxigenic fungi species and aflatoxins in four different location like Tankua abergele (53.3 ppb), Rama research centre (33.9 ppb) and the rest two Merebleke and Tahtay adiabo were less than 20 ppb toxin contaminant and it indicates that rate of contamination fluctuated based on location (Assefa, Teare, & Skinnes, 2012). Groundnut seed is predominantly infected with \textit{A. flavus} and \textit{Aspergillus niger} (Gebreselassie, Dereje, & Solomon, 2014).

Cereal crops like barley, sorghum, teff and wheat are the main source of mycotoxins. Deoxynivalenol occurred in barley, wheat and sorghum with an overall incidence 48.8% of 84 suspected samples. Despite Fumonisins and Zearalenone occurred only in sorghum sample. Hence, Aflatoxin and Ochratoxin detected from wheat, sorghum, teff and barley. Among these cereal crops sorghum is the major source of mycotoxin contaminant because of wide spread storage of sorghum grain underground rise (pits) leading to elevated seed moisture contents. Aflatoxin B1 was detected in 8.8% of the 352 samples analysed at concentrations ranging from trace to 26 μg/kg. Ochratoxin occurred in 24.3% of 321 samples at a mean concentration of 54.1 μg/kg and a maximum of 2106 μg/kg. Deoxynivalenol occurred in barley, sorghum and wheat at 40 - 2340 μg/kg. Nivalenol was detected at 40 μg/kg in a wheat sample and at 50, 380 and 490 μg/kg in three sorghum samples. Fumonisins and Zearalenone occurred only in sorghum samples with low frequencies at concentrations reaching 2.17 and 32 μg/kg, respectively (Ayalew, Ferhmann, Lepschy, Beck, & Abate, 2006).

An animal product like milk is the main source of aflatoxin contamination for human being. A total of 110 raw milk samples collected only nine (8.2%) of the samples contained less than or equal to 0.05 μg/l of Aflatoxin M1. However, 29(26.3%) milk samples exceeded 0.5 μg/l (Gizachew et al., 2016).

3. Importance of mycotoxins

Mycotoxicoses in human like other toxicological syndromes can be categorized as acute or chronic. Acute toxicity has a rapid onset and an obvious toxic response, while chronic toxicity is characterized by low dose exposure over a long time period leading to cancer and other generally reversible effects (James, 2005). Aflatoxin contributes factor for the disease like Kwashiorkor and Reye's syndrome when children suffering it (Blunden, Roch, Rogers, Coker, & Bradburn, 1991); immunosuppression in children (Turner, Moore, Hall, Prentice, & Wild, 2003). Despite this, ruminants are less affected than non ruminant animals. However, production (milk, beef or wool), reproduction and growth can be altered when ruminants consume mycotoxin contaminated feed for extended periods of time (Hussein & Brasel, 2001).

Health effects occur in companion animals, livestock, poultry and humans because aflatoxins are potent hepatotoxins, immunosuppressant, and mutagens and carcinogens (Eaton & Gallagher, 1994). Zearalenone has major effects on reproduction that can lead to hyperestrogenism. Prepubertal
swine are the most sensitive species. Typical clinical signs of hyperestrogenism are swelling of the vulva, increase in uterine size and secretions, mammary gland hyperplasia and secretion, prolonged oestrus, anestrus, increased incidence of pseudopregnancy, infertility, decreased libido, and secondary complications of rectal and vaginal prolapses, stillbirths and small litters (Gupta, 2007). Fumonisins (B1 and B2) toxic metabolites that are usually found in corn have been implicated in field cases of porcine pulmonary oedema (PPE) (Colvin, Cooley, & Beaver, 1993; Harrison, Colvin, Greene, Newman, & Cole, 1990; Osweiler et al., 1992) and equine leukoencephalomalacia (ELEM) (Wilson et al., 1990). Experimentally, fumonisin has been shown to cause liver damage in multiple species including pigs, horses, cattle, rabbits, and primates (Gumprecht et al., 1995; Haschek et al., 1992; Jaskiewicz, Marasos, & Taljaard, 1987; Osweiler et al., 1993; Ross et al., 1993; Voss, Norred, Plattner, & Bacon, 1989) as well as species-specific target organ toxicity, such as lung in pigs (Haschek et al., 1992), brain in horses (Ross et al., 1993), kidney in rats, rabbits, and sheep (Edrington et al., 1995; Gumprecht et al., 1995; Voss et al., 1989), and oesophagus in rats and pigs (Casteel, Turk, & Rottinghaus, 1994; Lim, Parker, Vesonder, & Haschek, 1996). Epidemiologic data has linked ingestion of corn contaminated with F. verticillioides to human oesophageal cancer (Rheeder et al., 1992), and fumonisins have been shown to be hepatocarcinogenic in rats and mice (Gelderblom et al., 1988; Howard et al., 2001). Both OTA and citrinin cause nephropathy in animals and they have also been implicated as the cause of Balkan endemic nephropathy in humans. Both OTA and citrinin are well-known nephrotoxins. OTA is also carcinogenic to rodents (Creppy et al., 1985) and possesses teratogenic (Arora, Frölén, & Fellner-Feldegg, 1983), immunotoxic (Stermer & Lea, 1995), neurotoxic (Bruinink & Sidler, 1997; Sava, Reunova, Velasquez, Harbison, & Sanchezramos, 2006), mutagenic (Stetina & Votava, 1986), and genotoxic (Meisner, Cimbala, & Hanson, 1983) properties. Compared to OTA, ochratoxin B is rarely found and very less toxic. Ingestion of clover hay containing slaframine causes salivary episodes that last from several hours to over 3 days in ruminants and horses (Gupta, 2007).

4. Factors affecting mycotoxins production and contamination of foods and feeds
Mycotoxins to human and animal health have multiple factors affecting production and/or presence of mycotoxins in foods or feeds. Hence, isolation and confirmation of mycotoxigenic fungal species in foods or feeds doesn't indicate the presence of mycotoxins. Upon development of accurate and sensitive techniques for qualitative and quantitative analysis of mycotoxins, researchers have found that various factors operation interdependently to affect fungal colonization and/or production of the mycotoxins. Factors that affect mycotoxins production and contamination can be categorized as physical, chemical and biological. Physical factors include environmental conditions conducive to fungal colonization and mycotoxin production such as temperature, relative humidity and insect infestation. Chemical factors include the use of fungicides and/or fertilizers. Biological factors are based on the interaction between the colonizing toxigenic fungal species and substrate (D’Mello & Macdonald, 1997).

5. Control of mycotoxins problems
Control of Mycotoxins is for the purpose of public health importance and economic improvement in the country. Hence, a number of strategies for reduction and control of mycotoxins have been considered in different areas of world including African countries. The control of mycotoxins in Africa involves: 1, Prevention of mould or fungus growth in crops and other feedstuffs; 2, Decontamination of mycotoxin contaminated feeds/foods as a secondary strategy; 3, Continuous surveillance of mycotoxins in agricultural crops, animal feedstuffs and human food.

5.1. Prevention of mould or fungus growth in crops and other feedstuffs
It could be achieved by following strict hygienic precautions during harvesting, storage and processing of agricultural crops and feedstuffs. Early harvesting of groundnuts resulted in lower Aflatoxin levels (Rachaputi, Wright, & Krosch, 2002). Proper drying and storage of crops are effective tools for reduction of mould growth and mycotoxin production. According to a trail in Guinea focused on through drying and proper storage of groundnuts, and it achieved a 60% reduction in mean Aflatoxin contamination levels (Turner et al., 2005).
5.2. Decontamination of mycotoxin contaminated feeds/foods
Includes physical, chemical and biological approaches. Physical approaches enlist as sorting, washing and crushing combined with de-hulling of maize grains, were effective in removal of Aflatoxin and Fumonisin in Benin (Fandohan, Gnnonlonfin, Hell, Marasas, & Wingfield, 2005). Chemical approaches are the activities incorporating application of fungicides such as prochloraz, propiconazole, epoxyconazole, tebuconazole, cyproconazole, Oltipraz, chlorophylin and azoxystrobin for reduction of Fumonisin and Aflatoxin contamination (Haidukowski et al., 2005; Hayes et al., 1998; Ni & Streett, 2005). Biological approaches depend on the development of atoxigenic fungi that compete with toxigenic fungi in the environment. Introduction of atoxigenic strains of \textit{A. flavus} and \textit{A. parasiticus} to soil of developing crops resulted in 74.3 to 99.9% reduction in the Aflatoxin contamination of peanuts in USA (Dorner, Cole, & Blankenship, 1998).

5.3. Continuous surveillance of mycotoxins in agricultural crops, animal feedstuffs and human food and awareness creation
It is a long term intervention strategy which has been advocated by World Health Organization (2006) and James (2005). It is attractive for African countries to strengthen a nationwide surveillance, increase food and feed inspections to ensure food safety and local education and assistance to ensure that food grains and animal feeds are harvested correctly, dried completely and stored properly. This could be achieved through awareness creation on the areas of what danger mycotoxins are posing to human and animal health and productivity. It could be performed through government bodies, private organizations, and national media networks interns of newspapers and magazines as well as preparation of seminar and workshop that are used as avenue and bridge of information exchange and dissemination between researchers and peoples.

6. Conclusion and recommendations
Mycotoxins are poisonous chemical compounds produced by certain fungi. There are five mycotoxins or groups of mycotoxins that occur quite often in food: deoxynivalenol/Nivalenol, zearealenone, ochratoxin, fumonisins and aflatoxins. The fungi that produce mycotoxins in food fall broadly into two groups: those that invade before harvest, commonly called field fungi, and those that occur only after harvest, called storage fungi. There are three types of toxicogenic field fungi: plant pathogens such as \textit{F. graminearum} (deoxynivalenol, nivalenol); fungi that grow on senescent or stressed plants, such as \textit{F. moniliforme} (fumonisin) and sometimes \textit{A. flavus} (aflatoxin); and fungi that initially colonize the plant before harvest and predispose the commodity to mycotoxin contamination after harvest, such as \textit{P. verrucosum} (ochratoxin) and \textit{A. flavus} (aflatoxin). The favourable conditions for mycotoxins production are instigate with poor hygienic conditions at the time of transportation and storage, high temperature and moisture content and heavy rains. Therefore, the following points should be forwarded as recommendations:

- Further study on the occurrence, economic and public health importance of mycotoxins should be undertaken.
- Owners or farmers should aware about mycotoxins and its impact and sources.
- Mycotoxins levels regulation should be implemented in African countries particularly in Ethiopia by government jurisdictions.

Funding
The authors received no direct funding for this research.

Competing Interests
The authors declare no competing interest.

Author details
Marta Tola1
E-mail: marta.alemu@yahoo.com
Bedaso Kebede2
E-mail: kebede.bedaso@yahoo.com
ORCID ID: http://orcid.org/0000-0002-9767-1745
1 Bedelle Regional Laboratory, Bedelle, Ethiopia.
2 Veterinary Drug and Animal Feed Administration and Control Authority, Ministry of Livestock and Fisheries, Addis Ababa, Ethiopia.

Citation information
Cite this article as: Occurrence, importance and control of mycotoxins: A review, Marta Tola & Bedaso Kebede, Cogent Food & Agriculture (2016), 2: 1191103.

References
Arora, R. G., Frölén, H., & Fellner-Feldegg, H. (1983). Inhibition of ochratoxin a teratogenesis by zearealenone and diethylstilboestrol. \textit{Food and Chemical Toxicology}, 21, 779-783. http://dx.doi.org/10.1016/0278-6915(83)90212-0
Ayalew, A. (2010). Mycotoxins and surface and internal fungi of maize in Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 10, 4109–4123.
Ayalew, A., Fehrmann, H., Lepschy, J., Beck, R., & Abate, D. (2006). Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia, 162, 57–63.
Barton, J. T., Daft, B. M., Read, D. H., Kinde, H., & Bickford, A. A. (1991). Trochael aspergillosis in 6 1/2-week-old chickens caused by Aspergillus flavus. Avian Diseases, 36, 1081–1085.
Berthiller, F., Werner, U., Sulyok, M., Krska, R., Hauser, M. T., & Krska, R. (1997). The neurotoxic effects of ochratoxin-A on mice. Food Additives and Contaminants, 14, 119–1200.
Blunden, G., Roch, O. G., Rogers, D. J., Coker, R. D., & Bradburn, N. (1991). Mycotoxins in food. Medical Laboratory Sciences, 48, 271–282.
Bondy, G. S., & Pestka, J. J. (2000). Immunomodulation by fungal toxins. Journal of Toxicology and Environmental Health Part B: Critical review, 3, 109–163.
Boysen, S. R., Ronzanski, E. A., Chan, D. L., Grobe, T. L., Fallon, M. J., & Rush, J. E. (2002). Tremorgenic mycotoxicosis in four dogs from a single household. Journal of the American Veterinary Medical Association, 221, 1441–1444.
Brunink, A., & Sidler, C. (1997). The neurotoxic effects of ochratoxin-A are reduced by protein binding but are not affected by-phenylalanine. Toxicology and Applied Pharmacology, 146, 173–179.
Castells, M., Marín, S., Sanchis, V., & Ramos, A. J. (2005). Fate of mycotoxins in cereals during extrusion cooking: A review. Food Additives and Contaminants, 22, 150–157.
Colvin, B. M., Cooley, A. J., & Beever, R. W. (1993). Fumonisins in swine: Clinical and pathological findings. Journal of Veterinary Diagnostic Investigation, 5, 232–241.
Coppock, R. W., & Swanson, S. P. (1986). Aflatoxins. In J. L. Howard (Eds.), Current veterinary therapy: Food animal practice (2nd ed., pp. 363–366). Philadelphia, PA: Saunders.
Council for Agriculture, Science and Technology. (2003). Mycotoxins: Risks in plant, animal, and human systems (Task Force Report No. 130). Ames, IA: Author.
Creppy, E. E., Kane, A., Dirheimer, G., Lafarge-Froyssinet, C., Mousset, S., & Froyssinet, C. (1986). Genotoxicity of ochratoxin A in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicology Letters, 28, 29–35.
Cullen, J. M., & Newberne, P. M. (1994). Acute hepatotoxicity of aflatoxins. In D. L. Eaton & J. D. Groopman (Eds.), The Toxicology of Aflatoxins (pp. 3–26). Toronto, ON: Academic Press.
D’Mello, J. P. F., & Macdonald, A. M. C. (1997). Mycotoxins. Animal Feed Science and Technology, 69, 155–166.
Diener, U. L., Cole, R. J., Sanders, T. H., Payne, G. A., Lee, L. S., & Klich, F. (1987). Epidemiology of aflatoxin formation by aspergillus flavus. Annual Review of Phytopathology, 25, 249–270.
Dorner, J. W., Cole, R. J., & Blankenship, P. D. (1998). Effect of inoculum rate of biological control agents on preharvest aflatoxin contamination of peanuts. Biological Control, 12, 171–176.
Drakos, P. E., Nagler, A., Or, R., Naparstek, E., Kapelushnik, J., Engelhard, D., … Slavin, S. (1993). Invasive fungal sinusitis in patients undergoing bone marrow transplantation. Bone Marrow Transplantation, 12, 203–208.
Eaton, D. L., & Gallagher, E. P. (1994). Mechanisms of aflatoxin carcinogenesis. Annual Review of Pharmacology and Toxicology, 34, 135–172.
Edrington, T. S., Kamps-Holtzapple, C. A., Harvey, R. B., Kubena, L. F., Elissalde, M. H., & Rottinghaus, G. E. (1995). Acute hepatic and renal toxicity in lambs dosed with fumonisin-containing culture material. Journal of Animal Science, 72, 508–515.
Fonfahon, P., Gnollonf, B., Hell, K., Marassas, W. F. O., & Wingfield, M. J. (2005). Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. International Journal of Food Microbiology, 99, 173–183.
FAO. (1997). Worldwide Regulations for mycotoxins 1995. A compendium. (FAO Food and Nutrition Paper No. 64). Rome: Author.
Food Nutrition and Agriculture (FAO). (1991). Food for the future. FAO.
Gebreselasie, R., Dereje, A., & Solomon, H. (2014). On farm pre harvest agronomic management practices of aspergillus infection on groundnut in Abergele, Tigray. Journal of Plant Pathology & Microbiology, 5, 228. doi:10.1177/104063879300500128
Gelderblom, W. C. A., Jaskiewicz, K., Marassas, W. F. O., Thiel, P. G., Horak, R. M., Vleggaar, R., & Kriek, N. P. J. (1988). Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied & Environmental Microbiology, 54, 1806–1811.
Gleizes, D., Szyrny, B., Tegegne, A., Hanson, J., & Grace, D. (2016). Aflatoxin contamination of milk and dairy feeds in the Greater Addis Ababa milk shed, Ethiopia. Food Control, 59, 773–779.
http://dx.doi.org/10.1016/j.foodcont.2015.06.060
Gong, Y., Hounsa, A., Egal, S., Turner, P. C., Sutcliffe, A. E., Hall, A. J., ... Wild, C. P. (2004). Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environmental Health Perspectives, 112, 1334–1338. http://dx.doi.org/10.1289/ehp.6554

Gourami, H., & Bullerman, L. B. (1993). Aspergillus flavus and Aspergillus parasiticus: Aflatoxicogenic fungi of concern in foods and feeds: A review. Journal Food Protection, 58, 1395–1404.

Gumpricht, L. A., Marrucci, A., Weigel, R. M., Vesonder, R. E., Riley, R. T., Shoewher, J. L., ... Haschef, W. M. (1993). Effects of intravenous fumonisin B1 in rabbits: Nephrotoxicity and sphingolipid alterations. Natural Toxins, 3, 395–403. http://dx.doi.org/10.1002/(ISSN)1056-9014

Gupta, R. C. (2007). Basic and clinical principles of veterinary toxicology (pp. 903–1018). New York, NY: Elsevier.

Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C., & Visconti, A. (2005). Effect of fumoniscin on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culurnorum. Journal of the Science of Food and Agriculture, 85, 191–198. http://dx.doi.org/10.1002/(ISSN)1097-0100

Harrison, L. R., Colvin, B. M., Greene, J. T., Newman, L. E., & Cole, Jr. (1984). Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of fusarium moniliforme. Journal of Veterinary Diagnostic Investigation, 2, 217–221. http://dx.doi.org/10.1177/1046687000200312

Haschef, W. M., Motelin, G., Ness, D. K., Harlin, K. S., Hall, W. F., Vesonder, R. F., Peterson, R. E., & Beasley, V. (1991). Characterization of fumonisin toxicity in orally and intravenously dosed swine. Mycopathologia, 117, 83–96. http://dx.doi.org/10.1007/BF00047283

Hayes, J. D., Pulford, D. J., Ellis, E. M., McLeod, J., James, R. F. L., Seidengard, J., ... Neal, G. E. (1998). Regulation of rat glutathione-S-transferase A5 by cancer chemopreventive agents: Mechanisms of inducible resistance to aflatoxin B1. Chemico-Biological Interactions, 111–112, 51–67. http://dx.doi.org/10.1016/S0009-2797(97)00155-8

Hendrickson, D. A., & Grant, D. W. (1971). Aflatoxin formation in sterilized feedlot manure and fate during simulated water treatment procedures. Bulletin of Environmental Contamination and Toxicology, 6, 525–531. http://dx.doi.org/10.1007/BF00968601

Hesseltine, C. W. (1984). Mycotoxins and alcohol production: A quality control. Benin: International Institute of Tropical Agriculture.

Hussein, H. S., & Brasel, J. M. (2001). Toxicity. Metabolism and impact of mycotoxins on humans and animals Toxicology. 167, 101–134.

Jaime-Garcia, R., & Cotty, P. J. (2003). Aflatoxin contamination of commercial cottonseed in South Texas. Phytopathology, 93, 1190–1200. http://dx.doi.org/10.1094/PHYTO.2003.93.11.1190

James, B. (2005). Public awareness of aflatoxins and food quality control. Benin: International Institute of Tropical Agriculture.

Jasklewicz, K., Marasas, W. F. O., & Taljaard, J. J. F. (1987). Hepatits in vervet monkeys caused by Fusarium moniliforme. Journal of Comparative Pathology, 97, 281–291. http://dx.doi.org/10.1016/0021-9957(87)90092-2

Joint FAO/WHO Expert Committee on Food Additives. (2001). Trichothecenes. In Joint FAO/WHO Expert Committee on Food Additives (Ed.). Safety evaluation of certain mycotoxins in food (FAO Food and Nutrition Paper 74/ WHO Food Additives Series 47, pp. 419–680). Geneva: World Health Organization.

Khlangwiset, P., Shepherd, G. S., & Wu, F. (2011). Aflatoxins and growth impairment: A review. Critical Reviews in Toxicology, 41, 740–755. http://dx.doi.org/10.3109/10408444.2011.575766

Klich, M. A., Mullenay, E. J., Daly, C. B., & Cary, J. W. (2000). Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamaii and A. ochraceoroseus. Applied Microbiology and Biotechnology, 53, 605–609. http://dx.doi.org/10.1007/s002530051664

Krisa, R., Welzig, E., & Boudra, H. (2007). Analysis of Fusarium toxins in feed. Animal Feed Science and Technology, 137, 241–264. http://dx.doi.org/10.1016/j.anifeedsci.2007.06.004

Lillehoj, E. B. (1992). Aflatoxin: Genetic mobilization agent. In D.Bhatnagar, E. B. Lillehoj, D K. Arora (Eds.), Handbook of applied mycology. Mycotoxins in ecological systems (Vol. 5, pp. 11–22). New York, NY: Marcell Dekker.

Lillehoj, E. B., Wall, J. H., & Bowes, E. J. (1987). Preharvest aflatoxin contamination: Effect of moisture and substrate variation in developing cottonseed and corn kernels. Applied & Environmental Microbiology, 53, 584–586.

Lim, C. W., Parker, H. M., Vesonder, R. F., & Haschef, W. M. (1996). Intravenous fumonisin B1 induces cell proliferation and apoptosis in the rat. Natural Toxins, 4, 33–41.

Mateo, J. J., Mateo, R., Hinojo, M. J., Llorens, A., & Jiménez, M. (2002). Liquid chromatographic determination of toxicogenic secondary metabolites produced by Fusarium strains. Journal of Chromatography A, 955, 245–256. http://dx.doi.org/10.1016/S0021-9673(02)00214-5

Matsumura, M., & Mori, T. (1998). Detection of aflatoxin in autopsied materials from a patient infected with Aspergillus flavus. Nippon Ishinkin Gakkai Zasshi, 39, 167–171. http://dx.doi.org/10.3314/jigmm.39.167

Mckenzie, R. A., Blaney, B. J., Connole, M. D., & Fitzpatrick, L. A. (1991). Acute aflatoxicosis in calves fed peanut hay. Australian Veterinary Journal, 57, 284–286. http://dx.doi.org/10.1111/j.1751-0813.1981.tb05816.x

Meisner, H., Cimbala, M. A., & Hanson, R. W. (1983). Decrease of renal phosphoenolpyruvate carboxykinase RNA and poly(A)+ RNA level by ochratoxin A. Journal of the Science of Food and Agriculture, 34, 264–270. http://dx.doi.org/10.1002/jsfa.9551-0-09

Mellon, J. E., & Cotty, P. J. (1998). Effects of oilseed storage proteins on aflatoxin production by Aspergillus flavus. Journal of the American Oil Chemists’ Society, 75, 1085–1089. http://dx.doi.org/10.11746-998-0294-2

Mellon, J. E., Cotty, P. J., & Dowd, M. K. (2003). Influence of lipids with and without other cottonseed reserve materials on aflatoxin B1 production by Aspergillus flavus. Journal of Agricultural and Food Chemistry, 48, 3611–3615. http://dx.doi.org/10.1021/jf0008787

Miller, J. D. (2002). Aspects of the ecology of Fusarium toxins in cereals. In J. W. DeVries, M. W. Truckess, L. S. Jackson (Eds.), Mycotoxins and food safety, Advances in Experimental Medicine and Biology, 504, 19–27. Kluwer Academic/Plenum, New York, NY. http://dx.doi.org/10.1007/978-1-4615-0629-4

Mishra, H. N., & Das, C. (2003). A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition, 43, 245–264. http://dx.doi.org/10.1080/10408690390826518

Mori, T., Matsumura, M., Yamada, K., Irie, S., Oshimi, K., Suda, K., ... Ichinoe, M. (1998). Systemic aspergillosis caused by
on aflatoxin-producing strain of Aspergillus flavus. Medical Mycology, 36, 107–112.

http://dx.doi.org/10.1002/med.121988000171

Ni, X., & Streeter, D. A. (2005). Modulation of water activity on fungicide activity on Aspergillus niger growth in Sabouraud dextrose agar medium: Letters in Applied Microbiology, 41, 428–433.

http://dx.doi.org/10.1111/lam.2005.41.issue-5

Ostry, V., & Skarkova, J. (2000). Development of an HPTLC method for the determination of deoxynivalenol in cereal products. Journal of Planar Chromatography-Modern TLC, 13, 443–446.

Oswiler, G. D., Kehrli, M. E., Stabel, J. R., Thurston, J. R., Ross, P. F., & Wilson, T. M. (1993). Effects of fumonisin-contaminated corn screenings on growth and health of feeder calves. Journal of animal science, 71, 459–466.

Oswiler, G. D., Ross, P. F., Wilson, T. M., Nelson, P. E., Witte, S. T., Carson, T. L., … Nelson, H. A. (1992). Characterization of an epizootic of pulmonary edema in swine associated with fumonisin in corn screenings. Journal of Veterinary Diagnostic Investigation, 4, 53–59.

http://dx.doi.org/10.1177/104063879200400112

Pepelnjak, S., Slobodnik, Z., Segvic, M., Perica, M., & Pavlovic, M. (2004). The ability of fungal isolates from human lung aspergillosis to produce mycotoxins. Human & Experimental Toxicology, 23, 15–19.

http://dx.doi.org/10.1177/01406736920200112

Pittet, A., Parisod, V., & Schellenberg, M. (1992). Occurrence of fumonisins B1 and B2 in corn-based products from the Swiss market. Journal of Agricultural and Food Chemistry, 40, 1352–1354.

http://dx.doi.org/10.1021/jf00020012

Placinto, C. M., D’Mello, J. P. F., & Macdonald, A. M. C. (1999). A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science and Technology, 78, 21–37.

http://dx.doi.org/10.1016/S0377-8401(98)00027-8

Rachapati, N. R., Wright, G. C., & Krosch, S. (2002). Management practices to minimize pre-harvest aflatoxin contamination in Australian groundnuts. Australian Journal of Experimental Agriculture, 42, 595–605.

http://dx.doi.org/10.1071/EX01119

Rheeder, J. P., Morasch, W. F., O., Thiel, P. G., Sydenham, E. W., Shepherd, G. S., & van Schalkwyk, D. J. (1992). Fusarium moniliforme and Fumonisins in corn in relation to human esophageal cancer in transkei. Phytopathology, 82, 353–357.

http://dx.doi.org/10.1094/Phyto-82-353

Robens, J. F., & Richard, J. L. (1992). Aflatoxins in animal and human health. Reviews of Environmental Contamination and Toxicology, 127, 69–94.

Ross, P. F., Ledet, A. E., Owens, D. L., Rice, L. G., Nelson, H. A., Osweiler, G. D., & Wilson, T. M. (1993). Experimental equine leukoencephalomalacia, toxic hepatitis, and encephalopathy caused by corn naturally contaminated with fumonisins. Journal of Veterinary Diagnostic Investigation, 5, 69–74.

http://dx.doi.org/10.1177/104063879300500115

Russel, T. E., Watson, T. F., & Ryan, G. F. (1976). Field accumulation of aflatoxin in cottonseed as influenced by irrigation termination dates and pink bollworm infestation. Applied & Environmental Microbiology, 31, 711–713.

Sava, V., Reunova, O., Velasquez, A., Harbison, R., & Sanchezramos, J. (2006). Acute neurotoxic effects of the fungal metabolite ochratoxin A. NeuroToxicology, 27, 82–92.

http://dx.doi.org/10.1016/j.neuro.2005.07.004

Scott, P. M. (1989). The natural occurrence of trichothecene toxicosis: Pathological effects (Vol. 1, pp. 2–26). Boca Raton FL: CRC Press.

Selala, M. I., Doelennens, F., & Scheppens, P. J. C. (1989). Fungal tremorgens: The mechanism of action of single nitrogen containing toxins - a hypothesis. Drug and Chemical Toxicology, 12, 237–257.

http://dx.doi.org/10.1080/036025398089899156

Stack, M. E., & Eppeley, R. M. (1992). Liquid chromatographic determination of fumonisins B1 and B2 in corn and corn products. Journal of Association Official Analytical Chemists, 75, 834–837.

Stetina, R., & Votava, M. (1986). Induction of DNA single-stranded breaks and DNA synthesis inhibition by patulin, ochratoxin A, citrinin, and aflatoxin B, in cell lines CHO and AWFR. Folia biologica, 32, 128–144.

Starrer, F. C., & Lea, T. (1995). Effects of ochratoxin a upon early and late events in human T-cell proliferation. Toxicology, 95, 45–50.

http://dx.doi.org/10.1016/0300-483X(94)02873-S

Sydenham, E. W., Thiel, P. G., Morasch, W. F., O., & Stockenstrom, S. (1991). Fumonisins contamination of commercial corn-based human foodstuffs. Journal of Agricultural and Food Chemistry, 39, 2014–2018.

http://dx.doi.org/10.1021/jf00110028

Turner, P. C., Moore, S. E., Hall, A. J., Prentice, A. M., & Wild, C. P. (1996). Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environmental Health Perspectives, 111, 217–220.

Turner, P. C., Sylla, A., Gong, Y., Dioula, M., Sutcliffe, A., Hall, A., & Wild, C. (2005). Reduction in exposure to carcinogenic aflatoxins by postharvest intervention measures in west Africa: A community-based intervention study. The Lancet, 365, 1950–1956.

http://dx.doi.org/10.1016/S0140-6736(05)66661-5

Urraca, J. L., Benito-Peña, E., Pérez-Conde, C., Moreno-Bondi, M. C., Pestska, J. J. (2005). Analysis of zearalenone in cereal and swine feed samples using an automated flow-through immunosensor. Journal of Agricultural and Food Chemistry, 53, 3338–3344.

http://dx.doi.org/10.1021/jf048092p

Urraca, J. L., Marazuela, M. D., & Moreno-Bondi, M. C. (2006). Analysis for zearalenone and α-zearalenol in cereals and swine feed using accelerated solvent extraction and liquid chromatography with fluorescence detection. Analytica Chimica Acta, 526, 175–183.

http://dx.doi.org/10.1016/j.aca.2004.03.093

Visconti, A., & Pascale, M. (1998). Determination of zearalenone in corn by means of immunofinity clean up and high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 815, 133–140.

http://dx.doi.org/10.1016/S0021-9731(98)00296-9

Voss, K. A., Norred, W. P., Plattner, R. D., & Bacon, C. W. (1989). Hepatotoxicity and renal toxicity in rats of corn products. Food and Chemical Toxicology, 27, 89–96.

http://dx.doi.org/10.1016/0278-6915(89)90002-1

Walker, F., & Meier, B. (1998). Determination of the Fusarium mycotoxins nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol and 15-0-acetyl-3-deoxynivalenol in contaminated whole wheat flour by liquid chromatography with diode array detection and gas chromatography with electron capture detection. Journal of ADAC International, 81, 741–748.

Wilkes, J. G., & Sutherland, J. B. (1998). Sample preparation and high-resolution separation of mycotoxins possessing carbonyl groups. Journal of Chromatography B: Biomedical Sciences and Applications, 717, 135–156.

http://dx.doi.org/10.1016/S0140-6736(97)00732-3

Williams, J. H., Phillips, T. D., Jolly, P. E., Stile, J. K., Jolly, C. M., & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential...
health consequences, and interventions. Am J Clin Nutr, 80, 1106–1122.

Wilson, T. M., Ross, P. F., Rice, L. G., Osweiler, G. D., Nelson, H. A., Owens, D. L., ... Pickrell, J. W. (1996). Fumonisin B1 levels associated with an epizootic of equine leukoencephalomalacia. Journal of Veterinary Diagnostic Investigation, 2, 213–216. http://dx.doi.org/10.1177/104063879600200311

World Health Organization. (2006). Mycotoxins in African foods: Implications to food safety and health (AFRO Food safety (FOS), Issue No. July 2006).

Wotton, H. R., & Strange, R. N. (1987). Increased susceptibility and reduced phytoalexin accumulation in drought-stress peanut kernels challenged with Aspergillus flavus. Applied & Environmental Microbiology, 53, 270–273.

Young, K. L., Villar, D., Carson, T. L., Imerman, P. M., Moore, R. A., & Bottof, M. R. (2003). Tremorgenic mycotoxin intoxication with penitrem A and roquefortine in two dogs. Journal of the American Veterinary Medical Association, 222, 52–53. http://dx.doi.org/10.2460/javma.2003.222.issue-1

Zöllner, P., & Mayer-Helm, B. (2006). Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography–atmospheric pressure ionisation mass spectrometry. Journal of Chromatography A, 1136, 123–169. http://dx.doi.org/10.1016/j.chroma.2006.09.055