Selection indices in Bread Wheat \textit{[Triticum aestivum L.]} \\

Siddhi Shah, D.R. Mehta and Lata Raval \\

Department of Genetics and Plant Breeding,
Junagadh Agricultural University, Junagadh-362001, Gujarat, India \\

(Received: August 2015, Accepted: August 2016) \\

Abstract

The discriminant-function technique was used to construct selection indices in 52 genotypes of bread wheat \textit{(Triticum aestivum L.).} Sixty-three selection indices involving grain yield per plant and its five components were constructed using discriminant function technique. In general, the more the number of characters included in a selection index, the better was its performance. The index based on five characters viz., grain yield per plant, 100-grain weight, days to maturity, harvest index and number of effective tillers per plant which had highest genetic advance and relative efficiency of 155.77g and 1867.41%, respectively followed by an index based on five characters i.e. grain yield per plant, biological yield per plant, 100-grain weight, days to maturity, harvest index which possessed genetic gain and relative efficiency of 53.85g and 1856.78% respectively. The use of both these indices is advocated for selecting high yielding genotypes of bread wheat.

Keyword: Selection indices, discriminant function, bread wheat. \\

Introduction

Due to great importance of bread wheat as cereal crops, very wide research work has been done on construction of selection indices in bread wheat. It is now well recognized that grain yield is a complex polygenic character and depends upon the action and interaction of a number of factors. It is felt that progress can be accelerated if simultaneous selection for most of the economic characters contributing to grain yield is considered. For this purpose, the utilization of an appropriate multiple selection criteria based on the selection indices would be more desirable. An application of discriminant function developed by Fisher (1936) and first applied by Smith (1936) helps to identify important combination of yield components useful for selection by formulating suitable selection indices. Therefore, the object of the present study was to construct and assesses the efficiency of selection indices in bread wheat.

Materials and Methods

A field trial was conducted using fifty-two diverse genotypes of bread wheat during \textit{Rabi} 2013-14 in a randomized block design with three replications at Wheat Research Station, Junagadh Agricultural University, Junagadh. Each entry was sown in a single row of 4.0 m length with a spacing of 22.5 × 10 cm. Observations were recorded on five randomly plants selected for the grain yield per plant (X_1), biological yield per plant (X_2), 100-grain weight (X_3), days to maturity (X_4), harvest index (X_5), number of effective tillers per plant (X_6). For constructing the selection indices, the characters with high and significant genetic correlation coefficients and sizable direct effects on grain yield were considered. The model suggested by Robinson et al. (1951) was used for the construction of selection indices and the development of required discriminant function. A total of 63 selection indices were constructed using six traits. The respective genetic advance through selection was also calculated as per the formula suggested by Robinson \textit{et al.} (1951). The relative efficiency of different discriminant functions in relation to straight selection for grain yield were assessed and compared, assuming the efficiency of selection for grain yield per plant as 100%.

Results and Discussion

Selection indices for grain yield per plant and other characters were constructed and examined to identify their relative efficiency in the selection of superior genotypes. The results on selection indices, discriminant functions, expected genetic gain and relative efficiency are presented in Table 1. The results showed that the genetic advance and relative efficiency assessed for different indices were higher than straight selection when the selection was based on component characters which further increased considerably with the inclusion of two or more characters. The highest efficiency was noted when five characters viz., (X_1+X_2+X_3+X_4+X_6) or (X_1+X_2+X_3+X_4+X_5) were considered. Thus, selection indices are more reliable and realistic for selecting desirable genotypes since they are constructed by giving proper weightage on the characters associated with the grain yield per plant.

The maximum genetic advance (GA) and relative efficiency (RI) in single character discriminant function was 0.55g and 448.93% respectively for 100-grain weight which, however, genetic advance (GA), relative efficiency (RI) and relative efficiency per character increased

http://ejplantbreeding.com
upto 8.20g, 927.46% and 463.73% respectively in two character combinations (X₃+X₄) and 10.12g, 837.55% and 279.18%, respectively in three characters combinations (X₂+X₃+X₄). Thus, there was an increase in the genetic gain as well as on relative efficiency with an increase in the character combinations. In four character combinations (X₂+X₃+X₄+X₅), the highest genetic advance, relative efficiency and relative efficiency per character were 1710g, 1267.48% and 316.87% respectively. For character combinations i.e. X₃+X₄+X₅+X₆ also recorded second highest genetic advance (2147g), relative efficiency (1242.75%) and relative efficiency per character (310.68%). Whereas the maximum genetic advance, relative efficiency and relative efficiency per character in the five character combinations (X₁+X₂+X₃+X₄+X₅) were 155.77g, 1867.41% and 373.48 respectively followed by X₁+X₂+X₃+X₄+X₅ with genetic advance of 1856.78% and relative efficiency per character of 371.35%. All the six character combinations decline the value of relative efficiency up to 566.19%. Robinson et al. (1951) recorded a progressive increase in efficiency of selection indices with inclusion of every additional character in the index formula. Hazel and Lush (1943) also stated that the superiority of selection based on index increased with an increase in the number of characters under selection. In bread wheat, Ferdouset et al. (2010) and Kemelew (2011) were also reported that an increase in characters resulted in an increase in genetic gain and that the selection indices improved the efficiency than the straight selection for grain yield alone.

Further, it was observed that the straight selection for grain yield was not that much rewarding (GA=2.83g, RI=100%) as it was through its components like biological yield per plant (GA=5.24g, RI=107.06%), 100-grain weight (GA=0.55g, RI=448.93%), days to maturity (GA=11.20g, RI=111.94%), harvest index (GA=2.49g, RI=107.06%), number of effective tillers per plant (GA=0.51g, RI=107.06%) and/or in their combinations. The efficiency in selection for grain yield was exhibited by a discriminant function involving grain yield per plant, 100-grain weight, days to maturity, harvest index and number of effective tillers per plant (X₁+X₂+X₃+X₄+X₅) which had a genetic advance, relative efficiency and relative efficiency per character of 155.77g, 1867.41% and 373.48%, respectively. High efficiency in selection based on grain yield per plant, biological yield per plant, days to maturity and number of effective tillers per plant or in combination of all these four characters has also been reported by Patel (2006).

The present study showed consistent increase in the relative efficiency of the succeeding index with simultaneous inclusion of each character up to five characters. However, in practice, the plant breeders might be interested in maximum gain with minimum number of characters. With this view, relative efficiency per character (463.73%) was also worked out for each selection index. It was observed that maximum relative efficiency per character was observed in selection index comprised of biological yield per plant and harvest index (X₂+X₃) followed by 421.17% value in case of biological yield per plant and days to maturity (X₁+X₂). Therefore, due weightage should be given to days to maturity, biological yield per plant and harvest index while formulating selection index of wheat crop. Overall, selection index consisting of five traits viz., grain yield per plant, 100-grain weight, days to maturity, harvest index and number of effective tillers per plant could be advantageously exploited in the bread wheat breeding programmes. The present study also revealed that the discriminant function method of making selections in plants appears to be the most useful than the straight selection for grain yield alone and hence, due weightage should be given to the important selection indices while making selection for grain yield advancement in bread wheat.

References
Ferdous, M. F., Shamsuddin, A. K. M., Hasna D. and Bhuiyan, M. M. R. (2010). Study on relationship and selection index for yield and yield contributing characters in spring wheat. J. Bangladesh Agril. Univ., 8: 191–194.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen. 7: 179.
Hazel, L. N. and Lush, J. L. (1943). The efficiency of three methods of selection. J. Hered., 33: 393–399.
Kemelew, M. (2011). Selection index in durum wheat (Triticum turgidum var. durum) variety development. Academic J. Pl. Sci., 4: 77-83.
Patel, V. V. (2006). Character association and selection indices in bread wheat (Triticum aestivum L.). Unpublished M.Sc. (Agr.) thesis submitted to Junagadh Agricultural University, Junagadh.
Robinson, H. F.; Comstock, R. E. and Harvey, P. H. (1951). Genotypic and phenotypic correlations in corn and their implications in selection. Agron. J., 43: 282-287.
Smith, H. F. (1936). A discriminant function for plant selection. Ann. Eugen. 7: 240-250.
Table 1: Selection index, discriminant function, expected genetic advance in grain yield and relative efficiency from the use of different selection indices of bread wheat

Sr. No.	Selection index	Discriminant function	Expected genetic advance	Relative efficiency (%)	Relative efficiency per character (%)														
1	X_1: Grain yield per plant	$0.501X_1$	2.830	100.000	100.000														
2	X_2: Biological yield per plant	$0.595 X_2$	5.241	192.801	192.801														
3	X_3: 100-grain weight	$0.397 X_3$	0.555	448.931	448.931														
4	X_4: Days to maturity	$0.877 X_4$	11.200	111.946	111.946														
5	X_5: Harvest index	$0.213 X_5$	2.499	107.068	107.068														
6	X_6: No. of effective tillers per plant	$0.145 X_6$	0.518	348.200	348.200														
7	$X_1 + X_2$	$1.766X_1 - 0.733X_2$	7.392	214.006	107.003														
8	$X_1 + X_3$	$-3.368X_1 + 2.453X_3$	17.212	302.400	151.200														
9	$X_1 + X_4$	$0.629X_1 - 0.058X_4$	4.291	506.521	253.256														
10	$X_1 + X_5$	$1.014X_1 - 0.478X_5$	4.104	101.122	50.561														
11	$X_2 + X_3$	$2.874X_2 - 1.403X_3$	11.593	200.209	100.104														
12	$X_2 + X_4$	$-1.445X_2 + 1.508X_4$	12.209	321.502	160.751														
13	$X_2 + X_5$	$1.960X_2 - 0.812X_5$	8.204	927.465	463.732														
14	$X_2 + X_6$	$2.874X_2 - 1.403X_6$	11.593	200.209	100.104														
15	$X_3 + X_4$	$-3.856X_3 + 2.773X_4$	19.420	321.502	160.751														
16	$X_3 + X_5$	$-0.760X_3 + 0.552X_5$	3.877	400.991	200.495														
17	$X_3 + X_6$	$1.900X_3 - 0.908X_6$	0.149	206.990	103.495														
18	$X_4 + X_5$	$7.998X_4 - 3.707X_5$	32.296	164.319	82.159														
19	$X_4 + X_6$	$8.819 X_4 - 4.361X_6$	35.559	387.507	193.753														
20	$X_5 + X_6$	$1.900X_5 - 0.908X_6$	7.676	171.127	85.563														
21	$X_1 + X_2 + X_3$	$1.003X_1 - 0.056X_2 - 0.261X_3$	6.192	95.592	31.864														
22	$X_1 + X_2 + X_4$	$0.621X_1 - 0.278X_2 + 1.270X_4$	15.374	241.341	80.447														
23	$X_1 + X_3 + X_4$	$1.145X_1 - 0.168X_2 + 0.193X_4$	7.936	202.113	67.371														
24	$X_1 + X_2 + X_5$	$1.035X_1 - 0.068X_2 - 0.222X_5$	6.300	125.717	41.905														
25	$X_1 + X_3 + X_5$	$0.542X_1 - 0.440X_3 + 1.286X_5$	14.857	433.333	144.444														
26	$X_1 + X_3 + X_6$	$0.993X_1 - 0.310X_3 + 0.254X_6$	6.561	304.251	101.417														
	\(X_1 + X_2 + X_3\)	\(X_1 + X_2 + X_4\)	\(X_1 + X_2 + X_5\)	\(X_1 + X_2 + X_6\)	\(X_1 + X_3 + X_4\)	\(X_1 + X_3 + X_5\)	\(X_1 + X_3 + X_6\)	\(X_1 + X_4 + X_5\)	\(X_1 + X_4 + X_6\)	\(X_1 + X_5 + X_6\)	\(X_2 + X_3 + X_4\)	\(X_2 + X_3 + X_5\)	\(X_2 + X_3 + X_6\)	\(X_2 + X_4 + X_5\)	\(X_2 + X_4 + X_6\)	\(X_2 + X_5 + X_6\)	\(X_3 + X_4 + X_5\)	\(X_3 + X_4 + X_6\)	\(X_3 + X_5 + X_6\)
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
28	\(0.714X_1 - 0.167X_2 - 0.057X_5\)	3.665	249.531	83.177															
29	\(-0.215X_1 + 0.361X_2 + 0.327X_4\)	9.253	264.058	88.019															
30	\(-0.057X_1 + 0.392X_2 - 0.252X_6\)	7.749	242.514	80.838															
31	\(0.841X_1 - 0.089X_2 - 0.129X_6\)	4.820	270.579	90.193															
32	\(1.627X_1 + 0.682X_2 + 1.121X_4\)	16.614	335.316	111.772															
33	\(2.140X_2 - 0.570X_3 + 0.097X_5\)	11.665	255.816	85.272															
34	\(1.876X_2 - 0.431X_3 + 0.212X_6\)	9.567	55.503	18.501															
35	\(0.870X_2 + 0.110X_3 + 0.182X_5\)	10.124	837.559	279.186															
36	\(1.042X_2 + 0.137X_3 + 0.396X_6\)	9.298	435.159	145.053															
37	\(1.990X_2 - 0.353X_3 - 0.273X_6\)	10.374	262.806	87.602															
38	\(-1.975X_3 + 0.737X_4 + 0.476X_2 - 0.476X_5\)	12.856	414.397	138.132															
39	\(-1.398X_3 + 0.647X_4 - 0.0512X_6\)	9.808	544.914	181.638															
40	\(-0.290X_3 + 0.135X_4 + 0.030X_6\)	2.126	369.812	123.270															
41	\(6.274X_4 - 1.276X_3 - 0.900X_4\)	32.112	225.404	75.134															
42	\(1.399X_1 + 0.0052X_2 - 0.295X_3 + 1.099X_4\)	16.684	515.258	128.814															
43	\(1.403X_1 - 0.053X_2 - 0.309X_3 + 0.414X_4\)	10.076	397.731	99.432															
44	\(0.658X_1 - 0.255X_2 + 1.299X_3 + 0.214X_5\)	15.888	188.237	47.059															
45	\(0.792X_1 - 0.244X_2 + 1.574X_3 + 0.756X_6\)	20.892	265.102	66.275															
46	\(1.222X_1 + 0.766X_2 + 0.971X_3 + 0.365X_6\)	17.982	560.042	140.010															
47	\(1.179X_1 - 0.156X_2 + 0.238X_3 + 0.157X_6\)	8.642	446.035	111.508															
48	\(0.874X_1 - 0.504X_2 + 1.582X_3 + 0.561X_5\)	19.755	319.379	79.844															
49	\(0.620X_1 - 0.447X_2 + 1.307X_4 + 0.108X_6\)	15.249	287.167	71.791															
50	\(1.068X_1 - 0.328X_2 + 0.291X_4 + 0.060X_5\)	7.217	356.129	89.032															
51	\(-0.1981X_1 + 0.394X_4 + 0.386X_2 + 0.290X_6\)	10.164	140.497	35.124															
	Expression	Coefficient 1	Coefficient 2	Coefficient 3															
---	-----------------------------------	---------------	---------------	---------------															
52	$X_2 + X_3 + X_4 + X_5$	1.950X_2 - 0.749X_3 + 1.416X_4 + 0.530X_5	21.472	1242.757	310.689														
53	$X_2 + X_3 + X_4 + X_6$	1.713X_2 - 0.695X_3 + 1.138X_4 + 0.079X_6	17.102	1267.480	316.87														
54	$X_2 + X_3 + X_4 + X_6$	2.222X_2 - 0.593X_3 + 0.130X_4 + 0.031X_6	12.246	463.559	115.889														
55	$X_2 + X_4 + X_5 + X_6$	0.894X_2 + 0.137X_4 + 0.237X_5 + 0.261X_6	11.110	406.015	101.503														
56	$X_3 + X_4 + X_5 + X_6$	-2.063X_3 + 0.794X_4 + 0.549X_5 + 0.294X_6	13.655	426.945	106.738														
57	$X_1 + X_2 + X_3 + X_4 + X_5$	38.867X_1 + 0.449X_2 - 3.283X_3 + 0.066X_4 - 1.327X_5	53.848	1856.781	371.356														
58	$X_1 + X_2 + X_3 + X_4 + X_6$	35.513X_1 + 0.463X_2 - 1.034X_3 + 0.055X_4 - 2.687X_6	47.724	465.959	93.191														
59	$X_1 + X_2 + X_3 + X_4 + X_6$	41.066X_1 + 0.253X_2 + 3.162X_3 - 2.319X_5 - 2.805X_6	48.595	370.522	74.104														
60	$X_1 + X_2 + X_4 + X_5 + X_6$	61.647X_1 + 0.027X_2 + 129.151X_4 - 5.364X_5 - 9.792X_6	177.804	565.206	113.041														
61	$X_1 + X_2 + X_4 + X_5 + X_6$	43.659X_1 - 0.691X_2 + 116.291X_4 - 4.028X_5 - 7.956X_6	155.776	1867.414	373.482														
62	$X_2 + X_3 + X_4 + X_5 + X_6$	64.627X_2 - 1.014X_3 + 116.302X_4 - 5.787X_5 - 9.261X_6	163.518	481.072	96.214														
63	$X_1 + X_2 + X_3 + X_4 + X_5 + X_6$	71.890X_1 + 0.3282X_2 + 1.140X_3 - 2.070X_4 - 1.566X_5 - 3.603X_6	71.189	566.190	94.365														