On singular elliptic equations involving critical Sobolev exponent

K Tahri
Preparatory School in Economics, Business and Management Sciences
Department of Mathematics. B.P 1085 Bouhannak, Tlemcen. Algeria.
E-mail: tahri_kamel@yahoo.fr

Abstract. Given a n–dimensional compact Riemannian manifold (M, g) with $n \geq 5$, we consider the following semi-linear elliptic equation:

$$P_g(u) := \Delta_g^2 u + \text{div}_g (a(x) \nabla_g u) + b(x) u = f(x) |u|^{N-2} u + \lambda h(x) |u|^{q-2} u$$

where the functions a, b and h are in suitable Lebesgue spaces, $2 < q < N$ and $\lambda > 0$ a real parameter, f is a smooth positive function and the operator P_g is coercive. Under some additional conditions, we obtain results concerning the existence of strong solutions of the above equation in $H^2_0(M)$.

1. Introduction

In 1983 Paneitz discovered a particular conformally fourth-order operator defined on 4–dimensional smooth Riemannian manifolds [1]. In 1987, Branson generalized the definition to higher dimensions in [2] as follows. Let (M, g) be smooth, compact n–dimensional Riemannian manifold with $n \geq 5$, and $u \in C^4(M)$. The Paneitz-Branson operator P^n_g is then defined via [2]:

$$P^n_g(u) = \Delta_g^2 u - \text{div}_g (a_n(x) du) + Q^n_g u$$

where

$$a_n(x) = \frac{(n-2)^2 + 4}{2(n-2)(n-1)} S_g g - \frac{4}{n-2} \text{Ric}_g,$$

$$Q^n_g = \frac{1}{(n-1)(n-4)} \Delta_g S_g + \frac{n^3 - 4n^2 + 16n - 16}{4(n-1)^2(n-2)^2(n-4)} S_g^2 - \frac{4}{(n-4)(n-2)^2} \text{[Ric}_g]_2^2,$$

being Δ_g, S_g and Ric_g the Laplace-Beltrami operator, the scalar and the Ricci curvatures of g, respectively. The Paneitz-Branson operator enjoys interesting conformal properties that are very similar to those of the conformal Laplacian operator. Remark that if $\tilde{g} = \varphi^{\frac{4}{n-2}} g$, with φ a positive function of class $C^4(M)$, is a conformal metric to g, then for all $u \in C^4(M)$,

$$P^n_{\tilde{g}}(u \varphi) = \varphi^{\frac{n+4}{n-4}} P^n_g(u).$$

In particular, if $u \equiv 1$ then $P^n_g(\varphi) = Q^n_{\tilde{g}} \varphi^{\frac{n+4}{n-4}}$.

Many interesting results on Paneitz-Branson operator and related topics have been recently obtained by several authors, we refer the reader to Refs. [3]–[10]. Here we recall a few of these...
results that are pertinent to our investigation, see the list P1)-P3) below.

Let \((M, g)\) be an \(n\)-dimensional compact, smooth and oriented Riemannian manifold with \(n \geq 5\), \(H^2_n(M)\) be the standard Sobolev space consisting of function in \(L^2(M)\) whose derivatives up to the second order are in \(L^2(M)\), and let \(N = \frac{2n}{n-4}\) be the associated Sobolev critical exponent. Now, we define the best constant \(K_o\) of the embedding \(H^2_n(\mathbb{R}^n) \subset L^N(\mathbb{R}^n)\) given by

\[
\frac{1}{K_o} = \frac{n(n^2 - 4)(n-4)\omega_n^4}{16}
\]

where \(\omega_n\) is the volume of the unit Euclidean \(n\)-sphere \((S^n, h)\).

P1) In 2002, F. Robert and P. Esposito in [10] considered the following equation

\[
\Delta^2_0 u + \text{div}_g (a(x)\nabla g u) + b(x)u = f(x)|u|^{N-2} u + h(x)|u|^{q-2} u
\]

where: i) \(a \in \Lambda^{1,\infty}_{(2,0)}(M)\) is a smooth symmetric \((2,0)\)-tensor field, ii) \(b, h, f\) are smooth functions in \(M\), with \(f\) positive, and iii) \(2 < q < N\). They established the following remarkable result:

Theorem 1 Let \((M, g)\) be an \(n\)-dimensional compact Einsteinian manifold with \(n \geq 8\). Assume that \(P^m_n\) is coercive and let \(f \in C^\infty(M)\), \(f > 0\) such that there exists \(x_0 \in M\) with \(f(x_0) = \max_{x \in M} f(x), \Delta f(x_0) = 0\) and

\[
\frac{4(n^2 - 4n - 4)}{3(n+2)}|Wcg_f(x_0)|^2 + (n-6)(n-8)\frac{\Delta^2_0 f(x_0)}{f(x_0)} + 2(n-6)(n-8)\frac{(\nabla g f(x_0), Ric_g(x_0))}{f(x_0)} > 0.
\]

Then, there exists \(\tilde{g}\) conformal to \(g\) such that \(Q^2_{\tilde{g}}(x) = f(x)\).

P2) In 2010, M. Benalili in [5] considered the equation:

\[
\Delta^2_0 u + \text{div}_g (a(x)\nabla g u) + b(x)u = f(x)|u|^{N-2} u
\]

where \(f\) is a positive \(C^\infty\)-function on \(M\), \(a \in L^r(M)\) and \(b \in L^s(M)\), with \(r > \frac{n}{2}, s > \frac{n}{4}\). He established the following result:

Theorem 2 Let \((M, g)\) is an \(n\)-dimensional compact manifold with \(n \geq 8\) and for \(2 < p < 5, \frac{3}{2} < s < 11\) or \(n = 7, \frac{7}{2} < p < 9, \frac{7}{4} < s < 9\) assume that there exists \(x_0 \in M\) such that \(f(x_0) = \max_{x \in M} f(x)\) and

\[
\frac{n^2 + 4n - 20}{6(n-6)(n^2 - 4)}S_g(x_0) + \frac{(n-4)}{2n(n-2)}\frac{\Delta_g f(x_0)}{f(x_0)} > 0.
\]

For \(n = 6, \frac{3}{2} < p < 2, 3 < s < 4\), assume that \(S_g(x_0) > 0\). Then, the equation (1) has a weak solution in \(H^2_n(M)\).

P3) Recently, M. Benalili and the author proved in [7], the following result:

Theorem 3 Let \((M, g)\) be a compact manifold of dimension \(n \geq 6, a \in L^r(M), b \in L^s(M)\), with \(r > \frac{n}{2}, s > \frac{n}{4}\), \(0 < q < 2\) and \(f\) a positive \(C^\infty\)-function on \(M\). We suppose that \(P_g\) is coercive and the existence of a point \(x_0 \in M\) such \(f(x_0) = \max_{x \in M} f(x)\) and

\[
\begin{align*}
\frac{\Delta_g f(x_0)}{f(x_0)} < & \frac{1}{3} \left(\frac{(n-1)n(n^2 + 4n - 20)}{(n-6)(n-4)(n^2 - 4)} (1 + \|a\|_r + \|b\|_s)^{\frac{4}{n}} - \right) S_g(x_0) \quad &\text{if } n > 6 \\
S_g(x_0) > & 0 \quad &\text{if } n = 6
\end{align*}
\]
Throughout this section, we consider the energy functional J. Theorem 5 Let

$$\| \lambda \| \leq h \left(\frac{|N-2|}{2} \right) \Lambda^2 \left(\max \left(\left(1+\varepsilon \right) K_\alpha, A \right) \right)^{-\frac{1}{2}} \| h \|_{\alpha}^{-1}.$$

Our main results state as follows:

Theorem 4 Let (M, g) be an $n-$dimensional compact, smooth and oriented Riemannian manifold with $n > 6$ and f a smooth positive function on M. Let $a \in L^r(M)$, $b \in L^s(M)$ and $h \in L^d(M)$, with $r > \frac{n}{2}$, $s > \frac{n}{4}$, $d > \frac{N}{N-q}$ and $2 < q < N$. We assume that the conditions (h^1), (h^2) and (h^3) are satisfied and that there exists $x_0 \in M$ such that $f(x_0) = \max_{x \in M} f(x)$ and

$$\left(\frac{n(n-2\sqrt{6}+2)(n+2\sqrt{6}+2)-(n-6)(n-4)^3(n+2)}{3(n+2)(n-4)^2(n-6)(1+\|a\|_r+\|b\|_s)^\frac{4}{3}} S_g(x_0) - \left(\frac{n-4}{2} \right) \Delta f(x_0) \right) > 0.$$

Then, the equation (2) possesses a nontrivial solution in $H^2_{2}(M)$.

Theorem 5 Let (M, g) be a compact, smooth and oriented Riemannian manifold of dimension $n = 6$ under the same conditions of theorem 4 with

$$S_g(x_0) > 0$$

Then, the equation (2) possesses a nontrivial solution in $H^2_{2}(M)$.

2. Generic existence result

Throughout this section, we consider the energy functional J_{λ}, for each $u \in H^2_{2}(M)$,

$$J_{\lambda}(u) = \frac{1}{2} \int_M \left(\left(\Delta g \right) u^2 - a(x) |\nabla g u|^2 + b(x) u^2 \right) dv(g) - \frac{\lambda}{q} \int_M h(x) |u|^q dv(g) - \frac{1}{N} \int_M f(x) |u|^N dv(g)$$

First, we have the following lemma, whose proof is easy and can be found in [7].

Lemma 6 $\| u \| = \left(\int_M \left(\left(\Delta g \right) u^2 - a(x) |\nabla g u|^2 + b(x) u^2 \right) dv(g) \right)^{\frac{1}{2}}$ is an equivalent norm of the usual one of $H^2_{2}(M)$ if only if the operator P_g is coercive.
Proof. We follow closely the method used in [7].

Let \(J \in C^1(E, \mathbb{R}) \) where \((E, \| \cdot \|) \) is a Banach space. We assume that:

(i) \(J(0) = 0 \).

(ii) \(\exists r, R > 0 \) such that \(J(u) \geq R > 0 \) for all \(u \in E \) such that \(\| u \| = r \).

(iii) \(\exists v \in E \) such that \(\lim \sup_{t \to +\infty} J(tv) < 0 \).

If

\[
 c = \min_{\eta \in \Gamma} \max_{t \in [0,1]} J(\eta(t))
\]

where \(\Gamma = \{ \eta \in C^1([0,1]; E) : \eta(0) = 0, \eta(1) = v \} \)

then there exists a sequence \((u_n)_n\) in \(E \) such that:

\[
 J(u_n) \to c \quad \text{and} \quad \nabla J(u_n) \to 0 \quad \text{in } E^*
\]

where \(E^* \) is the dual space of \(E \). Moreover, we have that: \(c \leq \sup_{t \geq 0} J(tv) \).

It is easily seen that \(J_\lambda \) is a \(C^1 \) functional and its Fréchet derivative is given by:

\[
 \langle \nabla J_\lambda(u), v \rangle = \int_M \left(\Delta_g u \Delta_g v - a(x)g(\nabla_g u, \nabla_g v) + b(x)uv \right) dv(g) + \nonumber \\
 -\lambda \int_M h(x) |u|^{q-2} uv dv(g) - \int_M f(x) |u|^{N-2} uv dv(g).
\]

Moreover, the functional \(J_\lambda \) verifies the Mountain-Pass conditions, namely:

Lemma 8 Suppose that the conditions of (h\(^1\)), (h\(^2\)) and (h\(^3\)) of section 1 are satisfied. Then \(J_\lambda \) fulfills the following properties

1. There exist constants \(r, R > 0 \) such that \(J_\lambda(u) \geq R > 0 \), \(\| u \| = r \).

2. There exists \(v \in H^2_\lambda(M) \), with \(\| v \| > r \), such that \(J_\lambda(v) < 0 \).

Lemma 9 Let \((M, g)\) be a \(n \)-dimensional compact, smooth and oriented Riemannian manifold with \(n \geq 5 \) and suppose that conditions (h\(^1\))-(h\(^2\)) are satisfied. Then each Palais-Smale sequence at level \(c_\lambda \) is bounded in \(H^2_\lambda(M) \).

Proof. The proof follows from the coerciveness of the operator \(P_\lambda \), the Sobolev’s inequality and the condition (h\(^2\)).

Theorem 10 Let \((M, g)\) is an \(n \)-dimensional compact, smooth and oriented Riemannian manifold with \(n \geq 5 \). Let \((u_n)_m\) be a Palais-Šmalse sequence at level \(c_\lambda \). Assume that conditions (h\(^1\))-(h\(^2\)) and (h\(^3\)) are satisfied and that

\[
 c_\lambda < \frac{1}{(1 + \varepsilon)^{\frac{n}{2}}} \frac{n}{K_0} \max_{x \in M} f(x).
\]

Then, there is a subsequence of \((u_m)_m\) converging strongly in \(H^2_\lambda(M) \).

Proof. We follow closely the method used in [7].
3. The sharp case
Let \(P \in M \), we define the distance function \(\rho \) on \(M \) by
\[
\rho_P(Q) = \begin{cases}
\delta(M) & \text{if } d(P, Q) \geq i_g(M) \\
\frac{d(P, Q)}{i_g(M)} & \text{if } d(P, Q) < i_g(M)
\end{cases}
\]
and \(i_g(M) \) is the injectivity radius of \(M \). Furthermore, we define the space \(L^p(M, \rho^\gamma) \) as follows.

Definition 11 Let \((M, g)\) be a compact \(5 \leq n \)-dimensional Riemannian manifold. We consider the space \(L^p(M, \rho^\gamma) \) where \(1 \leq p \leq +\infty \) of measurable functions \(u \) on \(M \) such that \(\rho^\gamma |u|^p \) is integrable, i.e.
\[
\|u\|_{p, \rho^\gamma}^p := \int_M \rho^\gamma |u|^p \, dv < +\infty
\]

Now, we use the following Hardy-Sobolev inequalities proven in [5] (the Hardy-Sobolev inequalities for the singular Yamabe equation was proven in [9]).

Theorem 12 [5] Let \((M, g)\) be a compact \(5 \leq n \)-dimensional Riemannian manifold and \(p, q \) and \(\gamma \) three real numbers satisfying \(\frac{n}{q} = \frac{n}{p} - \frac{n}{2} - 2 \) and \(2 \leq p \leq \frac{2n}{n-2} \).

For any \(\epsilon > 0 \), there is a constant \(A(\epsilon, q, \gamma) \) such that
\[
\forall u \in H^2(M) : \|u\|_{p, \rho^\gamma}^2 \leq (1 + \epsilon) K(n, 2, \gamma)^2 \|\Delta_g u\|_{L^2}^2 + A(\epsilon, q, \gamma) \|u\|_2^2
\]

In particular: \(K(n, 2, 0)^2 = K_0 \) is the optimal constant of Sobolev inequality.

Theorem 13 [5] Let \((M, g)\) be a compact \(5 \leq n \)-dimensional Riemannian manifold and \(p, q \) and \(\gamma \) three real numbers satisfying: \(1 \leq q \leq p \leq \frac{n}{n-2} \) and \(\gamma < 0 \).

- If \(\frac{n}{q} = n \left(\frac{1}{q} - \frac{1}{p} \right) - 2 \), then the imbedding \(H^2(M) \subset L^p(M, \rho^\gamma) \) is continuous.
- If \(\frac{n}{q} > n \left(\frac{1}{q} - \frac{1}{p} \right) - 2 \), then the imbedding \(H^2(M) \subset L^p(M, \rho^\gamma) \) is compact.

We consider the following equation:
\[
\Delta^2 u + div_g \left(\frac{a(x)}{\rho^\sigma} \nabla_g u \right) + \frac{b(x)}{\rho^\mu} u = f(x) |u|^{N-2} u + \lambda \frac{h(x)}{\rho^\beta} |u|^{q-2} u \tag{3}
\]
where \(a, b \) and \(h \) are three smooth functions and the distance function defined before in section 1, \(2 < q < N \) and \(\lambda > 0 \) a real parameter. The energy functional \(J_\lambda : H^2_2(M) \to \mathbb{R} \) associated to equation (3) is defined as:
\[
J_\lambda(u) = \frac{1}{2} \int_M \left((\Delta_g u)^2 - \frac{a(x)}{\rho^\sigma} |\nabla_g u|^2 + \frac{b(x)}{\rho^\mu} u^2 \right) \, dv(g) + \frac{\lambda}{q} \int_M \frac{h(x)}{\rho^\beta} |u|^q \, dv(g) - \frac{1}{N} \int_M f(x) |u|^N \, dv(g),
\]
where \(u \in H^2_2(M) \) and it is well-known that the critical points of \(J_\lambda \) are the weak solutions of (3).

Theorem 14 Let \(0 < \sigma < \frac{n}{2} < 2, \ 0 < \mu < \frac{n}{2} < 4 \) and \(0 < \beta < \frac{N}{\alpha} < N - q \). We suppose that the conditions \((h^1), (h^2)\) and \((b^3)\) are satisfied and
\[
\sup_{u \in H^2_2(M)} J^{\sigma, \mu, \beta}_{\sigma, \mu, \beta} (u) < \frac{2}{nK_0^{\frac{q}{2}}(f(x_0))^{\frac{2}{q}}}.
\]

Then, the equation (3) has a non trivial solution \(u_{\sigma, \mu, \beta} \in H^2_2(M) \).

Proof. The result follows in that if we put \(\tilde{a} = \frac{a(x)}{\rho^\sigma}, \tilde{b}(x) = \frac{b(x)}{\rho^\mu} \) and \(\tilde{h}(x) = \frac{h(x)}{\rho^\beta} \), then \(\tilde{a} \in L^r(M), \tilde{b} \in L^s(M) \) and \(\tilde{h} \in L^d(M), \) with \(r > \frac{n}{2}, s > \frac{n}{2} \) and \(d > \frac{N}{N-q} \).
4. Critical cases

Strategies developed in [7] and [8] enable us to derive another result, that refers to the critical cases when \(\sigma = 2, \mu = 4, \) and \(\beta = \frac{n(q-2)}{2} - 2q. \)

Theorem 15 Let \((M,g) \) be an \(n \)-dimensional compact, smooth and oriented Riemannian manifold with \(n \geq 5 \) and suppose that the conditions \((h^1), (h^2) \) and \((h^3) \) are satisfied. In addition, let \((u_m)_m := (u_{\sigma, \mu, \beta})_m \) be a sequence in \(H^2_2(M) \) such that:

\[
\begin{cases}
J^\sigma_{\lambda, \mu, \beta}(u_m) \to c^\sigma_{\lambda, \mu, \beta} \\
\nabla J^\sigma_{\lambda, \mu, \beta}(u_m) \to 0
\end{cases}
\text{ for all } n \in \mathbb{N} \quad \text{weakly in } H^2_2(M)
\]

with \(c^\sigma_{\lambda, \mu, \beta} < \frac{2}{nK^2_0(f(x_0))^{\frac{n-2}{4}}} \) \((4) \)

and

\[
1 + a^- \max(K(n,2,\sigma); A(\epsilon,\sigma)) + b^- \max(K(n,2,\mu); A(\epsilon,\mu)) > 0. \quad (5)
\]

Then, the equation

\[
\Delta^2 u + \text{div}_g\left(\frac{a(x)}{\rho^2} \nabla_g u\right) + \frac{b(x)}{\rho^2} u = f(x) |u|^{N-2} u + \lambda \frac{h(x)}{\rho^2} |u|^{q-2} u
\]

has a nontrivial solution \(u_{\sigma, \mu, \beta} \in H^2_2(M) \).

Proof. We follow closely the method used in [7] and [8]. First by using the condition \((5) \) we obtain, as in [7], that the sequence \((\Lambda_{\alpha, \mu})_{\alpha, \mu} \) of constants of coerciveness of the operator

\[
u \to \Delta^2 u + \text{div}_g\left(\frac{a(x)}{\rho^2} \nabla_g u\right) + \frac{b(x)}{\rho^2} u
\]

is bounded below by a constant \(\Lambda > 0 \) as \((\alpha, \mu) \to (2^-,4^-) \).

Let \((u_m)_m \subset H^2_2(M) \), such that :

\[
J^\sigma_{\lambda, \mu, \beta}(u_m) = c^\sigma_{\lambda, \mu, \beta} + o(1) \quad \text{and} \quad \nabla J^\sigma_{\lambda, \mu, \beta}(u_m) = o(1) \quad \text{in } (H^2_2(M))^*
\]

Then we have:

\[
J^\sigma_{\lambda, \mu, \beta}(u_m) - \frac{1}{N} \left(J^\sigma_{\lambda, \mu, \beta}(u_m), u_m\right) = \left(\frac{1}{2} - \frac{1}{N}\right) \|u_m\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{N}\right) \int_M h(x) |u_m|^q dv(g)
\]

By Hölder and Sobolev inequalities, we get that

\[
J^\sigma_{\lambda, \mu, \beta}(u_m) - \frac{1}{N} \left(J^\sigma_{\lambda, \mu, \beta}(u_m), u_m\right) = c^\sigma_{\lambda, \mu, \beta} + o(1)
\]

and

\[
c^\sigma_{\lambda, \mu, \beta} + o(1) \geq \left(\frac{1}{2} - \frac{1}{N}\right) \|u_m\|^2 - \left(\frac{1}{q} - \frac{1}{N}\right) \left(\max((1 + \varepsilon)K_0, A_\varepsilon)\right)^\frac{q}{2} \|h\|_\alpha \|u_m\|^q_{H^2_2(M)}
\]

In addition the hypothesis \((h^1) \) and \((h^2) \) are satisfied and if we have \(\|u_m\| \geq 1 \), then we obtain

\[
\|u_m\| \leq \left[\left(\frac{N-2}{2} - \lambda \frac{N-q}{q} \Lambda^\frac{q}{2} (\max((1 + \varepsilon)K_0, A_\varepsilon)) \|h\|_\alpha\right)^{-\frac{1}{2}} \right]^{\frac{1}{q}} \text{ o}(1)
\]

Then \((u_m)_m \) is bounded in \(H^2_2(M) \). The rest of the proof is the same as in Theorem 10. \(\square \)
Concluding remark. To prove main Theorems given in the Introduction, let \(\delta \in \left(\frac{i^*}2, 2 \right) \) and \(\eta \in C^\infty(M) \) such that:

\[
\eta(x) = \begin{cases}
1 & \text{if } x \in B(x_0, \delta) \\
0 & \text{if } x \in M - B(x_0, 2\delta)
\end{cases}
\]

For \(\epsilon > 0 \), we define the radial function \(u_\epsilon \) by:

\[
u_\epsilon(x) := \frac{\eta(x)}{(\epsilon^2 + (\xi\rho)^2)^{\frac{n-4}{4}}} \quad \text{with} \quad \xi = (1 + \|a\|_r + \|b\|_s)\frac{1}{n} \tag{6}\]

We next point out that, by resorting to the strategy outlined in \[7, 8\], the function given by (6) can be proved to verify condition (4) of the generic theorem. This step completes our discussion on the solutions of Equation (2).

References

[1] Paneitz S 2008 A quartic conformally covariant differential operator for arbitrary pseudo Riemannian manifolds SIGMA 4
[2] Branson T P 1987 Group representation arising from Lorentz conformal geometry J. Funct. Anal. 74 199
[3] Benalili M 2009 Existence and multiplicity of solutions to elliptic equations of fourth order on compact manifolds Dynamics of PDE, 3 203
[4] Benalili M 2010 Existence and multiplicity of solutions to fourth order elliptic equations with critical exponent on compact manifolds Bull. Belg. Math. Soc. Simon Stevin 17
[5] Benalili M 2013 On singular Q-curvature type equations J. Diff. Eq. 254 547
[6] Benalili M and Tahri K 2011 Nonlinear elliptic fourth order equations existence and multiplicity results Nonlin. Differ. Equ. Appl. 18 539
[7] Benalili M and Tahri K 2013 Existence of solutions to singular fourth-order elliptic equations Electron. J. Diff. Equ. 2013 No. 63, pp. 1
[8] Benalili M and Tahri K 2012 Multiple solutions to singular fourth order elliptic equations, (preprint: arXiv:1209.3764v1 [math.DG] 16 Sep 2012)
[9] Madani F 2008 Le problème de Yamabe avec singularités, (preprint: ArXiv: 1717v1 [mathAP]).
[10] Robert F and Esposito P 2002 Mountain-Pass critical points for Paneitz-Branson operators Calc. of Variations and Partial Diff. Eq. 15 493