ROSA: Robust Salient Object Detection against Adversarial Attacks

Haofeng Li, Guanbin Li, Yizhou Yu

Abstract—Recently salient object detection has witnessed remarkable improvement owing to the deep convolutional neural networks which can harvest powerful features for images. In particular, state-of-the-art salient object detection methods enjoy high accuracy and efficiency from fully convolutional network (FCN) based frameworks which are trained from end to end and predict pixel-wise labels. However, such framework suffers from adversarial attacks which confuse neural networks via adding quasi-imperceptible noises to input images without changing the ground truth annotated by human subjects. To our knowledge, this paper is the first one that mounts successful adversarial attacks on salient object detection models and verifies that adversarial samples are effective on a wide range of existing methods. Furthermore, this paper proposes a novel end-to-end trainable framework to enhance the robustness for arbitrary FCN-based salient object detection models against adversarial attacks. The proposed framework adopts a novel idea that first introduces some generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for input images with the introduced noise. Specifically, our proposed method consists of a segment-wise shielding component, which preserves boundaries and destroys delicate adversarial noise patterns and a context-aware restoration component, which refines saliency maps through global contrast modeling. Experimental results suggest that our proposed framework improves the performance significantly for state-of-the-art models on a series of datasets.

Index Terms—Deep Neural Network, Adversarial Attack, Salient Object Detection.

I. INTRODUCTION

Salient object detection aims at locating and segmenting objects, which are most visually distinctive to human subjects, in an image or a video frame. Designing a salient object detection model for simulating this process not only improves our understanding of the inner mechanism of human vision and psychology, but also benefits many applications in the field of computer vision and graphics. For example, salient object detection has been widely studied and applied to robotics [1], context-aware image editing [2], object segmentation [3] [4] and person re-identification [5]. Since salient object detection algorithms are usually adopted during the initialization or pre-processing stage of a system, efficiency and robustness are of considerable importance. Imagine if the performance of the pre-processing stage is seriously affected by corrupt input images, succeeding stages might produce unpromising results, which could be a catastrophe to the entire system.

For the last several years, significant successes have been achieved in the computer vision community, as training deep convolutional neural networks (CNN) on large-scale datasets becomes feasible. A deep CNN is composed of stacked convolution filters with learnable parameters. Since those filters harvest information naturally from local neighborhoods in the input image and their parameters are adaptively determined by a training set, deep CNNs demonstrate a high fitting capacity superior to traditional methods using handcrafted features. Nowadays deep learning has been widely employed in image classification, semantic segmentation, object localization as well as salient object detection.

Deep learning based salient object detection models can be roughly divided into two groups. One group adopts segment-wise labeling while the other group predicts pixel-level results. Segment-wise labeling methods first divide an image into regions. Pixels in the same region share the same saliency values. CNN features for each region are then extracted to evaluate its saliency. In contrast, pixel-wise methods usually embrace fully convolutional network architectures, which take a whole image as input and yield a dense saliency map directly. Such methods not only demonstrate higher efficiency but also achieve state-of-the-art accuracy in virtue of their end-to-end trainable property.
However, those FCN driven approaches have weaknesses that might degrade their performance in practice. First, being end-to-end trainable allows gradients propagated easily from supervision target to the input image, which puts the salient object detection models at the risk of adversarial attacks. Adversarial attacks generate adversarial samples that do not change the ground truth assigned by human subjects but increase the prediction error of neural models by making visually imperceptible changes to the image, as shown in Figure 1. Second, dense labeling models do not explicitly model contrast among different image parts but implicitly estimate saliency in a single FCN. Once input images are polluted by adversarial noise, low-level features and high-level features that cannot correct themselves will be affected as well. Third, current largest training datasets of salient object detection contain only several thousands of images, in comparison to some image classification benchmark with millions of samples [2]. At the same time, the salient object categories included are very limited. Thus to some extent existing models are fitting bias within the data, for example, detecting objects frequently appearing in training set rather than locating the most distinctive ones. Those approaches might rely on capturing too much high-level semantics and could be sensitive to low-level perturbations, such as adversarial noises.

Segment-wise labeling approaches enjoy higher robustness as they model contrast explicitly and determine saliency score depending on multiple regions, such as the considered segment and its context. For different segments, gradients calculated by the same target might conflict when propagating on the input image, since different regions could share the same local or global context. Nevertheless, it is inefficient to adopt sparse labeling methods in practice, due to evaluating hundreds of segments.

To enhance robustness and maintain efficiency for existing dense labeling methods, this paper proposes a novel framework ROSA (named after RObust SAliency) that can take any FCN architecture as its backbone. We first observe that adversarial noise itself is fragile as it is computed accurately by backward propagation. Adversarial noise forms some subtle curve-like pattern that may play an important role. Destructing such patterns could reduce the attack effects. And then we notice that convolutional neural networks are less sensitive to some generic noise than adversarial noises, since adversarial samples are aimed at neural models. We also consider a priori that nearby pixels with similar low-level features have similar saliency values. Thus we come up with a novel framework that first destroys adversarial perturbations by introducing some new generic noise, and then learns to adaptively predict saliency maps against the new introduced noise. To destroy adversarial noises, we develop a segment-wise shielding component placed before the backbone network. Segment-wise shielding component divides an image into small parts according to low-level similarity and shuffles pixels in each part randomly. It introduces another generic noise to destroy the structural pattern in adversarial samples and therefore alleviates the attack effect. To refine results affected by the newly introduced noise, we conceive another component known as context-ware restoration placed after the backbone network. The restoration component adjusts saliency score at some position according to similarities among raw pixel values of the position and its context. The overall system with a backbone network is fine-tuned end-to-end in the training stage.

Our proposed framework demonstrates several strengths in the following. First, the ROSA framework is not so susceptible to adversarial attacks. Since the shielding component has no learnable parameters, it does not support backward propagating gradients onto the input image to generate adversarial samples. Even when adversarial samples are found, their adversarial noise can still be destroyed by the shielding component during the testing stage. Second, the shielding component shuffles pixels in the same segment and thus does boundary less harm. Moreover, ROSA adopts a FCN based model as its backbone and the restoration component is implemented by convolutional operator that supports parallel computing. Both designs help maintain acceptable efficiency for the entire system.

In short, our contributions have three folds.

• We for the first time launch adversarial attacks on state-of-the-art salient object detection models successfully.
• We propose a novel salient object detection framework that first introduces some new noise to resist adversarial perturbations, and then adaptively predicts saliency maps for inputs with the new introduced noises. The proposed framework is instantiated by an arbitrary FCN backbone and two strongly coupled and complementary components.
• Experimental results verify that the implemented adversarial attacks are effective for a wide range of existing salient object detection models. Moreover, extensive experiments demonstrate that the our proposed framework is resistant to adversarial samples, and more robust than existing defense baselines.

II. RELATED WORK

In this section we brief several groups of previous work related to our proposed approach, salient object detection, adversarial attacks and defenses against adversarial attacks.

A. Salient Object Detection

Algorithms for detecting salient objects can be separated into two categories. One category is the conventional methods that do not use neural networks but resort to prior knowledge and handcrafted features [8], [9], [10], [11], [12], [2], [13], [14], [15], [16], [17]. Ranking saliency [16] is a saliency detection algorithm based on graph-based manifold ranking, which ranks the relevances of images elements to foreground or background seeds. Another category driven by deep convolutional neural networks can be categorized as two groups, sparse labeling and dense labeling. Sparse labeling methods [18], [19] appeared in early years. Li and Yu [18], [20] trained a binary classifier to estimate visual saliency for each superpixel with multi-scale learned CNN features. Wang et al. [21] developed a local DNN estimating coarse saliency for object proposals and a global DNN evaluating weights to combine different proposals. Zhao et al. [22] employed deep
CNN to predict visual saliency for single superpixel with local context and global context. Qin et al. [23] introduce Single-layer Cellular Automata (SCA) which can exploit the intrinsic relevance of similar image regions to detect salient objects, based on extracted deep features. Since these methods take a region as a unit of computation and contain two separate steps of feature extraction and salient value inference, they are generally inefficient and require a large amount of space for feature storage. Inspired by the successful application of fully convolutional networks in pixel-level semantic segmentation, recently dense labeling approaches have established the new state-of-the-art in salient object detection [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Li and Yu [34] modeled visual saliency by combining a fully convolutional stream with a segment-wise spatial pooling stream. Wang et al. [35] employed fully convolutional networks to refine coarse saliency maps based on prior knowledge in a recurrent way. Hou et al. [6] adapted Holistically-Nested Edge Detector (HED) [36] architecture by introducing short connections to the skip-layer structures.

B. Adversarial Attack

Existing adversarial attacks consist of several groups, one-step gradient-based methods [37], iterative methods [38], [39], [40], [41], [42], [43], [44], optimization-based methods [45], [46] and generative networks [47], [48] based methods. The fast gradient sign method (FGSM) [37] computes one-step gradient to maximize the loss \(L(\cdot) \) between model output and the ground truth, within some \(L_\infty \) norm bound \(\epsilon \). FGSM generates adversarial sample as in Equation 1:

\[
x^* = x + \epsilon \cdot \text{sign}(\nabla_x L(f(x; \theta), y))
\]

where \(x^*, x, y \) are the adversarial sample, original image, and ground truth respectively. Before synthesizing the adversarial sample, it requires a neural network pre-trained on salient object detection. To generate adversarial samples, it requires a neural network pre-trained on salient object detection model \(f \), and it can be directly used to attack other detection models as well. Most of the existing visual saliency models have similar FCN-based network architectures and are usually initialized by the same pre-trained image classification model [60], [61]. Adversarial samples can be divided into two categories. Targeted adversarial samples make attacked models produce specific results as predicted saliency maps while non-targeted ones maximize mean absolute error (MAE) and/or minimize \(F_\beta \) measure. In this paper, only non-targeted attacks are concerned and targeted samples may be investigated in the future.

Inspired by [62], we implement an iterative gradient-based pipeline to synthesize adversarial samples. To generate those samples, it requires a neural network pre-trained on salient object detection, some natural images and their corresponding saliency maps densely labeled at pixel level. Let \(f(\cdot; \theta) \) be the pre-trained model with parameters \(\theta \), \(x \), \(x^* \) and \(y \) denote a natural image, its corresponding adversarial sample and ground truth, respectively. Before synthesizing the adversarial sample, \(x \) is subtracted by mean pixel values. After the generation, \(x^* \) is enlarged to the range of \([0, 255]\) and rounded to RGB image. Each element \(y_i \) of \(y \) belongs to \([0, 1]\), with 0 denoting non-salient and 1 denoting salient. To ensure the
Adversarial perturbation unnoticeable, parameter ϵ is set as upper bound of L_∞ norm such that $\|x - x^*\| \leq \epsilon$. The maximum number of iterations T limits the overall running time cost. Once T iterations are finished or the L_∞ norm bound is reached, the generation stops and returns adversarial sample obtained at current time step.

In each iteration t, supposing that adversarial sample x_t^* from previous time step or initialization is prepared, we update the adversarial sample as in Equation 3

$$x_0^* = x, x_{t+1}^* = x_t^* + p_t$$

where p_t denotes adversarial perturbation computed at t-th step. We formulate the goal making the predictions of all pixels in x go wrong as $\forall i, \text{argmax}_c \{f_i,c(x_t^* + p_t; \theta)\} \neq y_i$. Here, i denotes one of all n pixels in x and c denotes two categories: salient and non-salient. To determine p_t, gradient descent algorithm is applied as in Equation 4

$$p_t = \sum_{i \in S_t} [\nabla_{x_t^*} f_{i,1-y_i}(x_t^*; \theta) - \nabla_{x_t} f_{i,y_i}(x_t^*; \theta)]$$

where S_t denotes the set of pixels that f still can classify correctly. Then p_t is obtained by normalization as $\alpha \cdot p_t / \|p_t\|_{\infty}$ where α is a fixed step length. The pseudocode of the entire generation pipeline is shown in Algorithm 1.

Algorithm 1 Adversarial Sample Generation
Require: natural image x;
corresponding saliency annotation y;
pre-trained visual saliency model $f(\cdot; \theta)$;
pixels set $S = \{1, 2, ..., n\}$ of x;
maximum number of iterations T;
step length α; upper bound ϵ of L_∞ norm;
$x_0^* \leftarrow x, p \leftarrow 0, t \leftarrow 0, e \leftarrow 0, S_0 = S$;
while $t < T$ and $e \leq \epsilon$ and $
calculate p_t by Equation 1;
$p_t \leftarrow \alpha \cdot \|p_t\|_{\infty}$;
$p \leftarrow p + p_t$;
calculate x_{t+1}^* by Equation 3;
$e \leftarrow \|x_{t+1}^* - x\|_\infty$;
$t \leftarrow t + 1$;
$S_t \leftarrow \{i
end while
$x^* \leftarrow x_t^* + p$;
$x^* \leftarrow \text{round}(x^*)$;
return x^*;

and the restoration component play an important role in improving the robustness of the proposed framework.

A segment-wise shielding component destroys potential adversarial noise patterns in an input image before sending it to the backbone, by introducing some “shuffling” noise that is easier to resist. The observation behind is that adversarial noises are some delicate perturbations deliberately synthesized for convolutional neural networks, while CNN is not sensitive to and can adapt to some other noise. To alleviate harms caused by the new noise, the shielding component first divides the input image into non-overlapping regions, namely superpixels. We follow the region decomposition method developed by [63]. Specifically, k cluster centers in the joint space of color and pixel position are initialized by sampling pixels at regular grid steps. Then we assign each pixel to the cluster

![Fig. 2. ROSA, Robust Salient Object Detection Framework. To defend against adversarial samples, the proposed method exploits a novel idea that first introduces some novel generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for images with the introduced generic noise. Such idea is different from those resorting to image smoothing or transformations before feeding input images into target networks. As shown in the above, the segment-wise shielding component introduces some generic noise to perturb the adversarial noises. Then a fully convolutional network (FCN) based backbone takes the noisy image as input, and yields a coarse saliency map. Afterwards, a context-aware restoration component utilizes a graph model to refine the coarse saliency map, with a smoothed image providing pairwise pixel-level similarity. The smoothed image is obtained by applying bilateral filter on the input image. Lastly, a pixel-wise binary cross-entropy loss function is calculated between the refined saliency map and the ground truth. The FCN-based backbone network and the context-aware restoration component are end-to-end trained to adapt to the input images with the introduced noise. The proposed method can theoretically incorporate arbitrary FCN-based backbone network.](image-url)
center with minimum distance, and update each cluster center as the mean vector of pixels belonging to the cluster, in an iterative way. The iteration ends when L2 norm error between new location and previous location of each cluster center converges.

After region decomposition, we permute all pixels within the same superpixel randomly. Such shuffling operation strongly destroy the adversarial perturbation while it limits the introduced noise within each single superpixel. Thus object boundaries that those superpixels are adhere to are not spoiled and the noisy saliency map output by the backbone network has a chance to be restored. Some may suggest an option that smooths each superpixel by averaging pixels inside. Recall what we argue in the introduction, existing FCN models overfit too much high-level semantics in visual saliency data. The random permutation makes capturing high-level semantics more difficult and enforces neural networks to harvest low-level contrast among regions. It also plays a role in augmenting dataset and reducing the overfitting issue.

A context-aware restoration component exploits low-level similarity between each pixel and its context to refine the saliency scores provided by the backbone network. As adversarial perturbations aim at parameterized convolution filters, the restoration component adopts a complete graph model instead of CNN architecture. We measure similarity among pixels in low-level color space and spatial position, since previous high-level convolutional features have been polluted. The restoration component adjusts saliency maps by minimizing some energy function as Equation 5:

\[E(y^*) = \sum_i E_a(y^*_i; y_i) + \sum_{i<j} E_p(y^*_i, y^*_j) \]

where \(y \) denotes the coarse saliency map and \(y^* \) denotes the resulted saliency map. The first unary energy term measures the cost (inverse likelihood) of assigning \(i \) with \(y^*_i \). The second term pairwise energy measures the cost of assigning \(i \) and \(j \) with \(y^*_i \) and \(y^*_j \) at the same time. It encourages similar nearby pixels to be labeled the same. The pairwise energy is defined as Equation 6 where \(p \) denotes pixel position and \(x'_i \) denotes pixel color. \(x' \) is a smoothed image output by the bilateral filter that takes the adversarial sample \(x' \) as input, as shown in Figure 2. \(\omega_1 \) and \(\omega_2 \) are tuned by training. \(\theta_\alpha, \theta_\beta \) and \(\theta_\gamma \) are chosen as 160, 3 and 3 respectively. \(\mu \) is a learnable label compatibility function that penalizes assigning \(i \) and \(j \) with different labels.

\[E_p(y^*_i, y^*_j) = \mu(y^*_i, y^*_j) \left\{ \omega_1 \exp\left(\frac{-|p_i - p_j|^2}{2\theta_\alpha^2}\right) - \frac{|x'_i - x'_j|^2}{2\theta_\beta^2} + \omega_2 \exp\left(-\frac{|p_i - p_j|^2}{2\theta_\gamma^2}\right) \right\} \]

We realize the component following some previous work [64], [65] that solves Equation 5 as densely connected conditional random field with a recurrent neural network. The neural network is implemented with and enjoys efficiency from \(1 \times 1 \) convolutional layers. Since the restoration component makes use of global context to refine results, it is more difficult to change the prediction by adversarial noises of some limited perturbation strength. In order to influence the prediction results of pixels at certain specific locations, intricate changes involving a larger range of feature vectors may be required, which in turn results in larger pixel value perturbations.

C. Training Scheme

The following explains how we train the entire framework in an end-to-end scheme. In the beginning, the FCN-based backbone of ROSA framework is initialized as some pre-trained visual saliency model while the parameters of context-aware restoration component are set up according to [63]. Then the parameters of the backbone network and the restoration component are fine-tuned together. As the segment-wise shielding component contains no learnable parameters, gradients are not passed backward through that component. To maintain generalization ability against different kinds of adversarial perturbation, our training set does not include adversarial samples but only natural images. These training samples are fed into the segment-wise shielding component. As shown in Figure 2, a pixel-wise cross-entropy loss function is computed between the ground truth saliency map and the output of the context-aware restoration component. SGD algorithm is used to train the proposed method. The learning rate of the context-aware restoration component is set as \(10^{-10} \) while that of other parts is selected as \(10^{-13} \). The momentum and weight decay are set as 0.9 and 0.0005 respectively. For each backbone FCN in this paper, fine-tuning with our proposed framework takes no more than 5 epochs.

We adopt early-stopping strategy and terminate the training if the performance on validation set is not improved after 2 consecutive epochs. If the proposed method adopts DSS as its backbone, a forward pass on an image costs about 0.8 seconds.

IV. Experiment

In this section, we conduct three groups of experiments. First, we launch adversarial attacks on existing visual saliency models and investigate how they are affected. Then, we integrate our proposed framework with current models to present how the proposed framework enhances robustness for those models. Lastly, we verify the effectiveness of each component in the ROSA framework.

A. Dataset

In this paper, we conduct experiments on MSRA-B dataset [66], HKU-IS dataset [18], DUT-OMRON dataset [9] and ECSSD dataset [67]. MSRA-B dataset contains a train set of 2500 images, a validation set of 500 images and a test set of 2000 images. HKU-IS dataset includes 2500 images, 500 images and 1447 images in train set, validation set and test set respectively. We follow the released data split in MSRA-B and HKU-IS dataset. For DUT-OMRON dataset, we randomly separate all the 5186 images into a train set of 2500 images, a validation set of 500 images and a test set of 2168 images. For ECSSD dataset, all 1000 images are taken as testing samples.
TABLE I
F_{β} measure and MAE on Natural and Adversarial Examples

Model	F_{β} measure	MAE		
	Original	Adversarial	Original	Adversarial
DSS	87.13%	51.08%	0.0491	0.2251
DCL	86.82%	56.84%	0.0583	0.1921
RFCN	87.68%	75.39%	0.0544	0.0976
Amulet	84.94%	75.63%	0.0511	0.0906
UCF	81.64%	75.03%	0.0734	0.1107
LEGS	76.39%	75.43%	0.1192	0.1231
MC	75.31%	74.65%	0.0982	0.0999
MDF	82.05%	80.99%	0.0946	0.0999

B. Evaluation

We select Mean Absolute Error (MAE), precision, recall, F_{β} measure and PR curves as evaluation metrics. MAE measures pixel-level difference between the saliency map S and ground truth G as Equation (7):

$$MAE = \frac{1}{W \times H} \sum_{i=1}^{W} \sum_{j=1}^{H} |S_{i,j} - G_{i,j}|$$ (7)

where W and H denote the width and height of the saliency map respectively. To compute F_{β} measure, we binarize each saliency map with an image-dependent threshold proposed by [63]. The threshold T is calculated as Equation (8):

$$T = \frac{2}{W \times H} \sum_{i=1}^{W} \sum_{j=1}^{H} S_{i,j}$$ (8)

where W and H denote width and height of the saliency map S. Pixels with saliency value larger than T form the predicted salient region. Precision is the ratio of ground truth salient pixels in the predicted salient area while recall is the ratio of predicted salient pixels in the ground truth salient area. F_{β} measure is defined as Equation (9) [63]:

$$F_{\beta} = \frac{(1 + \beta^2) \times Precision \times Recall}{\beta \times Precision + Recall}$$ (9)

where β^2 is set as 0.3 to emphasize the precision. To draw PR curves, a list of equally spaced thresholds are sampled. For each threshold value, each predicted saliency map in the benchmark is quantized into a binary mask. Precision and recall are calculated with each binary mask and its ground truth annotation. The precision and the recall corresponding to each threshold are computed by respectively taking average of precision and recall for all binary masks. Then we obtain a list of (precision, recall) pairs and plot it as a PR curve.

C. Effectiveness of Adversarial Attack

We demonstrate the performance of eight state-of-the-art visual saliency models: DSS [6], DCL [34], RFCN [35], Amulet [28], UCF [29], MC [22], LEGS [21] and MDF [18] on natural images and adversarial samples which are synthesized with a pre-trained DSS model. For efficiency, the above neural models are trained on the train set of MSRA-B and tested on the test set of HKU-IS. The upper bound of L_{∞} norm ϵ is chosen as 20. Qualitative results can be found in Figure 5 where each sample consists of two rows. The upper are natural image and its predicted saliency maps while the lower are adversarial samples and their corresponding results. The second column from the left are the ground truth saliency maps denoted as GT. DSS, DCL, RFCN, Amulet and UCF. Predicted saliency maps on adversarial samples change significantly, compared with that on natural images. For MC, LEGS and MDF, predictions on adversarial samples and that on original images are visually approximate.

As shown in Table II F_{β} measure of DSS and DCL drop 30%-36% when exposed to the adversarial samples. The adversarial attack reduces F_{β} measure of RFCN, Amulet and UCF by 6%-12% while it only lowers F_{β} of MC, LEGS, MDF by 0.7%-1.1%. As shown in Table II MAE of DSS and DCL are increased by 0.176 and 0.1338 on the adversarial samples while that of RFCN, Amulet and UCF are raised by around 0.04. MAE of MC, LEGS, MDF change less than 0.01. These results indicate that DSS suffers most from the adversarial attack for the adversarial samples are synthesized using a DSS model. DCL, RFCN, Amulet and UCF are affected to
different extent, which may depend on the similarity between their architectures and the pre-trained model used to launch attacks.

Figure 5 demonstrates the comparison of PR curves w.r.t these above-mentioned salient object detection models tested on natural images and adversarial samples. N-adv denotes some neural network N tested on adversarial samples. The results tested on adversarial samples are plotted using blue solid curves while those tested on original images are drawn with orange dashed curves. As shown in Figure 5, the PR curves of DSS and DCL are significantly higher than DSS-adv and DCL-adv. It indicates that DSS and DCL suffer the most from adversarial samples. Because the adversarial samples are synthesized using exactly the same DSS model. DCL also severely affected by the adversarial attacks, possibly because it has similar network structure with DSS. The PR curves of RFCN-adv, Amulet-adv and UCF-adv also decline by a considerable margin respectively, in comparison to RFCN, Amulet and UCF. That is to say, adversarial samples generated by some FCN based model are transferable to degrade other FCN based methods to different extent. Even attackers are unaware of the target neural network, they still have chances to launch successful attacks using some arbitrary FCN model. It reveals that existing visual saliency models based on dense labeling are threatened by adversarial attacks. For MC, LEGS and MDF, their PR curves on natural images and adversarial samples almost completely overlap. It suggests that sparse labeling methods are quite robust against existing gradient-based attacks, since gradients propagated from different segments to the same image position very possibly conflict with each other.

Figure 4 are the bar diagrams of existing visual saliency methods tested on natural images and adversarial samples. P, R, F denote precision, recall and Fβ measure respectively in the color of blue, green and yellow. The results shown in Figure 4 draws similar conclusions with Figure 3. Precision, recall and Fβ of DSS and DCL decrease the most seriously against adversarial attacks. For RFCN, Amulet and UCF, their precision, recall and Fβ are also harmed by adversarial samples to some degree. Segment based models such MC, LEGS and MDF are more robust and present negligible degeneration.

D. Robustness of the Robust Salient Object Detection Framework

To demonstrate the robustness of ROSA, we present extensive experiments on four datasets (HKU-IS, ECSSD, DUT-OMRON and MSRA-B), with three state-of-the-art saliency models (DSS, DCL and RFCN) as baselines. All models in the section are trained on a dataset that includes training sets of HKU-IS, DUT-OMRON and MSRAB. Adversarial samples are synthesized with a DSS model pre-trained on the above-mentioned dataset. The L_∞ norm upper bound ϵ of the adversarial noise is chosen as 25. We also compare our proposed method with severl existing defending algorithms, which are developed for robust image classification and can be transferred to other tasks. Smooth denotes a spatial smooth filter in [68]. JPEG [69], [54] denotes applying JPEG compression on input images before feeding them into target networks. The quality of the compressed image is set to 75 according to [54]. Quant [70] denotes bit reduction that quantizes 8-bit RGB images into pixel values with less bits. We reduce images to 3 bits following [54]. TVM [54] denotes total variation minimization that aims at reducing difference between adjacent pixels. TVM is implemented using [71]. Table II, Table III and Table IV are the numeric results with a baseline model as DSS, DCL and RFCN respectively. D-adv denotes experiments on the adversarial samples of dataset D. N+M denotes the neural network N equipped with the defense method M.

As Table II shows, DSS+ours outperforms DSS* by 71.9%-86.2% w.r.t F_β measure on adversarial samples. DSS* displays severely degraded F_β lower than 1.0% because the adversarial samples are synthesized with the same DSS model. For fair comparison, we also attack DSS+ours with samples produced by its own DSS backbone, which is denoted as DSS+ours*. DSS+ours* still significantly surpasses DSS* by 71.86%-86.05% F_β. The difference of the performance between DSS+ours* and DSS+ours is quite small and less than 0.78% F_β. Note that on natural images DSS+ours* and DSS+ours have exactly the same numerical results, since their difference lies in using DSS models of different weights to synthesize adversarial samples. For simplicity, the cell corresponding to DSS+ours tested on original images leave a blank. Compared with existing defense baselines, DSS+ours exceeds the second best DSS+TVM by 6.08% F_β and 0.0337 MAE on the adversarial samples of HKU-IS dataset. On ECSSD-adv dataset, our proposed method outperforms TVM by 2.92% F_β and 0.0327 MAE. DSS+ours surpasses the second best DSS+TVM by 6.05% F_β and 0.0206 MAE on DUT-OMRON-adv dataset. On the adversarial samples of MSRA-B, the proposed framework also obtains higher F_β and smaller MAE than other defense methods. As for natural images, the performances of different models are close to each other, because of no threats caused by adversarial noises. Existing defense approaches act as small variations on input images and result in slight degeneration on performance. In most cases, the proposed framework achieves the best F_β measure and MAE on clean input images, which suggests that our method improve the backbone model on both adversarial samples and natural images.

In the case of DCL shown in Table III, our proposed methods presents the highest F_β and the smallest MAE on both original images and adversarial samples of all four benchmarks. For example, DCL+ours outperforms DCL+TVM by 3.35% F_β and DCL+Quant by 0.0112 MAE on HKU-IS-adv. F_β and MAE of DCL+ours are superior to those of DCL by 1.65% and 0.0033 on HKU-IS dataset. On MSRA-B-adv data, our proposed defense framework surpasses the second best TVM by 2.24% and Smooth by 0.013. On the natural images of MSRA-B, DCL+ours also obtains better F_β and MAE than the second best DCL+Smooth and DCL by 1.33% and 0.0042 respectively. In the case of RFCN shown in Table IV, the proposed defense framework achieves the best F_β and MAE on the adversarial samples of all four benchmarks. For example, RFCN+ours outperforms the second best RFCN+TVM by 4.09% F_β and RFCN+Quant by 0.0318 MAE on ECSSD-adv dataset. RFCN+ours surpasses
Fig. 5. Effectiveness of Adversarial Attack. The leftmost column are input images in which the upper one is a natural image and the lower one is the corresponding adversarial samples. The second column from the left are ground truth saliency maps in which the lower position leave vacant because natural images and their adversarial samples share the same ground truth. As shown in the above examples, saliency maps predicted by FCN based salient object detection models including DSS, DCL, RFCN, Amulet, UCF are deteriorated by input images with adversarial perturbations. Segment based models such as MC, LEGS and MDF produce more consistent results between natural images and adversarial samples.

Fig. 6. Robustness of ROSA. The leftmost column are original natural images. The second column from the left are the corresponding adversarial samples. The rightmost column are ground truth. N+ours denotes some neural model N incorporated with our proposed method ROSA. All salient object detection models in the above are tested on adversarial samples. As shown in the above examples, our proposed framework enhances the prediction accuracy of three backbone network DSS, DCL and RFCN.

Dataset	Metric	DSS+ours*	DSS+ours*	DSS+ours*	DSS+Smooth	DSS+JPEG	DSS+Quant	DSS+TVM
HKU-IS-adv	F_β	0.74%	83.18%	83.52%	54.93%	12.61%	31.80%	77.44%
	MAE	0.7495	0.0654	0.0644	0.1831	0.4638	0.3224	0.0981
HKU-IS	F_β	87.50%	88.48%	83.92%	87.28%	87.07%	84.39%	84.39%
	MAE	0.0436	0.0341	0.0528	0.0446	0.0479	0.0679	0.0679
ECSSD-adv	F_β	0.90%	81.48%	82.26%	55.09%	12.91%	34.84%	79.34%
	MAE	0.07763	0.0940	0.0915	0.2202	0.4960	0.3428	0.1242
ECSSD	F_β	87.39%	87.33%	86.56%	87.59%	87.23%	85.62%	85.62%
	MAE	0.0608	0.0475	0.0712	0.0618	0.0689	0.0891	0.0891
DUT-OMRON-adv	F_β	0.41%	72.27%	72.31%	35.41%	22.62%	26.83%	66.26%
	MAE	0.8038	0.0687	0.0690	0.2265	0.3409	0.2885	0.0896
DUT-OMRON	F_β	76.20%	79.63%	74.96%	76.19%	75.22%	73.70%	73.70%
	MAE	0.0547	0.0469	0.0591	0.0547	0.0581	0.0675	0.0675
MSRA-B-adv	F_β	0.51%	86.56%	86.71%	49.79%	35.48%	46.35%	84.11%
	MAE	0.8021	0.0549	0.0548	0.2460	0.3376	0.2608	0.0812
MSRA-B	F_β	89.39%	89.76%	89.11%	89.58%	89.06%	88.63%	88.63%
	MAE	0.0440	0.0366	0.0484	0.0440	0.0489	0.0567	0.0567
TABLE III
ROBUSTNESS OF ROSA WITH DCL

Dataset	Metric	DCL	DCL+ours	DCL+Smooth	DCL+JPEG	DCL+Quant	DCL+TVM
HKU-IS-adv	$F_β$	77.84%	84.38%	79.89%	79.36%	79.53%	81.03%
	MAE	0.0866	0.0695	0.0843	0.0810	0.0807	0.0911
HKU-IS	$F_β$	85.22%	86.87%	84.67%	85.08%	84.72%	83.59%
	MAE	0.0530	0.0507	0.0671	0.0550	0.0579	0.0797
ECSSD-adv	$F_β$	79.22%	83.76%	80.50%	80.85%	80.58%	82.28%
	MAE	0.1070	0.0960	0.1081	0.1008	0.1047	0.1229
ECSSD	$F_β$	85.82%	86.25%	84.67%	85.08%	84.72%	83.59%
	MAE	0.0698	0.0677	0.0867	0.0712	0.0783	0.1093
DUT-OMRON-adv	$F_β$	60.46%	69.68%	60.34%	64.46%	62.54%	67.93%
	MAE	0.1091	0.0794	0.1092	0.0934	0.0995	0.0912
MSRA-B-adv	$F_β$	79.87%	87.82%	83.62%	83.53%	82.68%	85.85%
	MAE	0.0960	0.0645	0.0775	0.0783	0.0819	0.0837
MSRA-B	$F_β$	87.80%	89.29%	87.96%	87.76%	87.02%	87.19%
	MAE	0.0563	0.0521	0.0595	0.0563	0.0609	0.0743

TABLE IV
ROBUSTNESS OF ROSA WITH RFCN

Dataset	Metric	RFCN	RFCN+ours	RFCN+Smooth	RFCN+JPEG	RFCN+Quant	RFCN+TVM
HKU-IS-adv	$F_β$	76.58%	85.76%	76.38%	78.36%	79.83%	78.72%
	MAE	0.0985	0.0599	0.1036	0.0916	0.0862	0.1068
HKU-IS	$F_β$	86.94%	87.18%	85.12%	86.24%	85.65%	82.69%
	MAE	0.0533	0.0535	0.0668	0.0563	0.0612	0.0893
ECSSD-adv	$F_β$	77.24%	84.89%	78.27%	79.69%	80.61%	80.80%
	MAE	0.1290	0.0836	0.1319	0.1190	0.1154	0.1382
ECSSD	$F_β$	87.22%	85.76%	85.73%	86.77%	86.04%	84.05%
	MAE	0.0735	0.0802	0.0911	0.0770	0.0869	0.1207
DUT-OMRON-adv	$F_β$	56.09%	72.57%	60.60%	63.79%	62.30%	66.21%
	MAE	0.1257	0.0691	0.1132	0.1092	0.1408	0.1029
DUT-OMRON	$F_β$	72.18%	74.37%	71.28%	72.15%	70.02%	70.14%
	MAE	0.0726	0.0638	0.0786	0.0728	0.0802	0.0918
MSRA-B-adv	$F_β$	76.32%	89.68%	79.96%	83.46%	83.36%	85.14%
	MAE	0.1210	0.0507	0.1053	0.0852	0.0848	0.0912
MSRA-B	$F_β$	89.45%	90.53%	88.43%	89.45%	88.25%	87.47%
	MAE	0.0518	0.0469	0.0605	0.0519	0.0604	0.0769

Fig. 7. Quantitative Analysis on the robustness of ROSA in terms of PR Curve. It shows the PR curves of existing defense methods and our proposed framework with DSS, DCL and RFCN respectively. Solid curves denote our proposed method while dashed curves denote other defense algorithms. DSS+ROSA* denotes DSS+ROSA tested on the adversarial samples synthesized by the DSS backbone of DSS+ROSA itself. As shown in the above figures, our proposed method achieves higher PR curves than other defense baselines with DSS, DCL and RFCN.

the second best RFCN+TVM by 4.54% and RFCN+Quant by 0.0341 MAE on MSRA-B-adv dataset. As for natural images, our proposed method RFCN+ours achieves competitive or better results than RFCN.

Figure 7 demonstrates the PR curves of existing defense baselines and the proposed method with three backbone net-
the above models are trained on MSRA-B train set and tested on HKU-IS test set. SWS denotes Segment-Wise Shielding component and CAR denotes Context-Aware Restoration component. To validate the effect of CAR/SWS, we compare *+SWS/*+CAR with *+ROSA. According to Table 3, even though *+CAR exceed *+ROSA by 5.22%, 3.5% and 2.75% F_β on natural images, *+ROSA outperforms *+CAR by 28.32%, 21.29% and 5.85% against adversarial attacks, which indicates the effectiveness of SWS. MAE results in Table 3 also draw a similar conclusion. Even though MAE of *+CAR are 0.0113, 0.0079 and 0.0054 less than that of *+ROSA on natural images, *+ROSA lowers MAE by 0.1486, 0.1046 and 0.0216 on adversarial samples by a larger margin. As for components *+SWS, *+ROSA surpasses *+SWS by 2.89%, 6.67%, 8.98% F_β on original samples and 3.09%, 7.26%, 9.38% F_β on adversarial samples. Besides, *+ROSA reduces MAE by 0.0119, 0.0273, 0.0313 on natural images and 0.0119, 0.0307, 0.0316 on adversarial samples in comparison to *+SWS, which authenticates the effectiveness of CAR. We claim that SWS and CAR are two strongly coupled components. For example, DCL obtains 56.84% F_β against adversarial samples as shown in Table 1 while DCL+CAR achieves 60.17% F_β. CAR improves DCL by 3.33% F_β. However, DCL+ours (SWS+CAR) outperforms DCL+SWS by 7.26% F_β more than 3.33%. That is to say, with SWS component, the effectiveness of CAR is more significant. The cases of DSS and RFCN draw the same conclusion. Thus SWS and CAR are not separated processing but two complementary steps of one core idea, adaptively predicting saliency for inputs with the new introduced noise to resist adversarial attacks. In short, CAR component can refine saliency maps predicted by models with SWS component. These two components are complementary and contribute to the robustness of our proposed method.

Figure 8 compares the entire proposed framework with its internal components with DSS, DCL and RFCN, on PR curves and bar diagrams of precision-recall-F_β. The upper row are PR curves while the lower one are bar diagrams. Among these PR curves, the blue solid ones denote the internal components SWS and CAR. In the bar diagrams, P, R and F denote precision, recall and F_β in the color of blue, green and yellow respectively. In Figure 8 the entire proposed framework displays better PR curves than the second best TVM with DSS as backbone. On the case of DCL and RFCN, the PR curves of our proposed method are also higher than the second best Quant by a considerable margin.

The existing defense algorithms perform significantly worse with DSS than DCL and RFCN, since the adversarial samples are synthesized using a DSS model. In short, our proposed framework not only significantly enhances the robustness of backbone against adversarial attacks but also demonstrates comparable or better performance on natural images. Figure 7 presents some qualitative comparisons on the robustness of ROSA.

E. Ablation Study

This section verifies the effectiveness of each part in the proposed ROSA framework. We integrate each component of ROSA with DSS, DCL and RFCN respectively. For simplicity,
of the proposed adversarial attack. We also study how our proposed defense method performs against adversarial attacks of different strengths. For efficiency, 500 images are randomly selected from the test set of MSRA-B dataset. These 500 images are named MSRA-B500. A list of ϵ is sampled in the range of $[0, 30]$. For each ϵ, a set of adversarial samples is synthesized for the whole MSRA-B500. These adversarial samples are computed using some pre-trained DSS model as target network. Each set of adversarial samples is tested by another trained DSS model, and our proposed method with DSS respectively. F_{β}-measure and MAE are calculated for each set of adversarial samples. We plot these results as Fmeasure-Epsilon curves and MAE-Epsilon curves in Figure 10. As Figure 10 shows, the blue curve denotes the performance of DSS while the red one represents the proposed method (denoted as DSS+ROSA). As ϵ increases, the F_{β} of DSS drops dramatically. It suggests that the strength of an adversarial attack grows with the increase of its L_{∞} norm upper bound. Notice that as ϵ rises, the performance of our proposed method only degrades slightly and then becomes stable. It indicates that the proposed defense framework is robust to adversarial samples of different strengths. Figure 9 demonstrates a qualitative comparison among adversarial attacks of different strengths. Setting ϵ as 30 achieves the strongest attack and DSS incorrectly predicts the reverse of the ground truth as salient regions. However, the adversarial noise is perceptible and curve-like patterns can be observed in the top right of the adversarial sample. For $\epsilon = 20$, the adversarial perturbations are hard to spot and the DSS model is still seriously affected. Thus we suggest that choosing ϵ around 20 helps launch a strong and quasi-imperceptible adversarial attack on salient object detection models.

V. Conclusion

In this paper we for the first time achieve successful attacks on state-of-the-art visual saliency methods. We experimentally confirm that existing FCN-based models are sensitive to adversarial perturbation. In addition, this paper proposes a novel salient object detection framework that first brings some new generic noise to input images, and then adaptively detects salient objects for the inputs with the new noise. The proposed framework is instantiated by an arbitrary FCN based backbone network, a segment-wise shielding component and a context-aware restoration component. Experimental results suggest that these two components are strongly coupled and significantly complement each other. Besides, extensive comparisons show that the entire framework can effectively strengthen the robustness of FCN-based saliency models, superior to existing defense baselines. We believe that developing an accurate, fast and robust model will be a new trend in salient object detection.

REFERENCES

[1] Y. Yu, G. K. Mann, and R. G. Gosine, “An object-based visual attention model for robotic applications,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 5, pp. 1398–1412, 2010.
[2] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 1915–1926, 2012.
[3] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng, Y. Zhao, and S. Yan, “Stc: A simple to complex framework for weakly-supervised semantic segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 11, pp. 2314–2320, 2017.
[4] C. Wang, Y. Guo, J. Zhu, L. Wang, and W. Wang, “Video object co-segmentation via subspace clustering and quadratic pseudo-boolean optimization in an mrf framework,” Trans. Multi., vol. 16, no. 4, pp. 903–916, Jun. 2014. [Online]. Available: https://doi.org/10.1109/TMM.2014.2306393.
[51] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[52] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial perturbations,” Proceedings of International Conference on Learning Representations, 2017.

[53] J. Lu, T. Issaranon, and D. A. Forsyth, “Safetynet: Detecting and rejecting adversarial examples robustly,” in Proceedings of International Conference on Computer Vision, 2017, pp. 446–454.

[54] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adversarial images using input transformations,” in Proceedings of International Conference on Learning Representations, 2018. [Online]. Available: https://openreview.net/forum?id=SyJ7ClWCb

[55] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating adversarial effects through randomization,” Proceedings of International Conference on Learning Representations, 2018.

[56] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Leveraging generative models to understand and defend against adversarial examples,” Proceedings of International Conference on Learning Representations, 2018.

[57] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against universal adversarial perturbations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2018.

[58] N. Akhtar, J. Liu, and A. Mian, “Defense against universal adversarial perturbations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2018.

[59] C. Wang, J. Zhu, Y. Guo, and W. Wang, “Video vectorization via tetrahedral remeshing,” Transaction on Image Processing, vol. 26, no. 4, pp. 1833–1844, Apr. 2017. [Online]. Available: https://doi.org/10.1109/TIP.2017.2666742

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[61] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[62] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial examples for semantic segmentation and object detection,” in Proceedings of International Conference on Computer Vision, 2017.

[63] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with gaussian edge potentials,” in Proceedings of Advances in Neural Information Processing Systems, 2011, pp. 109–117.

[64] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr, “Conditional random fields as recurrent neural networks,” Proceedings of International Conference on Computer Vision, pp. 1529–1537, 2015.

[65] T. Liu, J. Sun, N. N. Zheng, X. Tang, and H. Y. Shum, “Learning to detect a salient object,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[66] J. Shi, Q. Yan, L. Xu, and J. Jia, “Hierarchical image saliency detection on extended ccssd,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 4, pp. 717–729, 2016.

[67] X. Li and F. Li, “Adversarial examples detection in deep networks with convolutional filter statistics,” in Proceedings of International Conference on Computer Vision, 2017, pp. 5775–5783.

[68] N. Das, M. Shanbhogue, S. Chen, F. Hohman, S. Li, L. Chen, M. E. Kounavis, and D. H. Chau, “Shield: Fast, practical defense and vaccination for deep learning using jpeg compression,” knowledge discovery and data mining, pp. 196–204, 2018.

[69] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep neural networks,” network and distributed system security symposium, 2018.

[70] P. Getreuer, “Rudin-osher-fatemi total variation denoising using split bregman,” Image Processing On Line, vol. 2, pp. 74–95, 05 2012.

Guanbin Li (M’15) is currently an associate professor in School of Data and Computer Science, Sun Yat-Sen University. He received his PhD degree from the University of Hong Kong in 2016. He was a recipient of Hong Kong PhD Fellowship. His current research interests include computer vision, image processing, and deep learning. He has authored and co-authored on more than 20 papers in top-tier academic journals and conferences. He serves as an area chair for the conference of VISAPP. He has been serving as a reviewer for numerous academic journals and conferences such as TPAMI, TIP, TMM, TC, CVPR, AAAI and IJCAI.

Yizhou Yu (M’10, SM’12, F’19) received the PhD degree from University of California at Berkeley in 2000. He is a professor at The University of Hong Kong, and was a faculty member at University of Illinois at Urbana-Champaign for twelve years. He is a recipient of 2002 US National Science Foundation CAREER Award, 2007 NNSF China Overseas Distinguished Young Investigator Award, and ACCV 2018 Best Application Paper Award. Prof Yu has served on the editorial board of IET Computer Vision, The Visual Computer, and IEEE Transactions on Visualization and Computer Graphics. He has also served on the program committee of many leading international conferences, including SIGGRAPH, SIGGRAPH Asia, and International Conference on Computer Vision. His current research interests include computer vision, deep learning, biomedical data analysis, computational visual media and geometric computing.