ABSTRACT This paper presents a low-voltage low-power current-mode third-order low-pass filter (LPF) based on voltage second generation current conveyor (VCII). The VCII utilizes the bulk-driven MOS transistor technique to achieve a wide input voltage range at low supply voltage of 0.5 V. Also, the VCII operates in the subthreshold region to achieve nano-power consumption of 390 nW. A third-order low-pass filter that is presented as an application of the VCII can operate as both current- and transimpedance-mode filters. The filter consumes 2.73 μW and the total harmonic distortion (THD) is below 1% for sine-wave input signal below 350 nA$_{pp}$ @ 10 Hz. The post-layout simulation results based on TSMC 0.18 μm CMOS process are presented and confirm the futures of the filter.

INDEX TERMS Voltage second generation current conveyor, third-order low-pass filter, current-mode filter, low-voltage low-power, analog circuit.

I. INTRODUCTION

Recently, there is a gaining research interest for current-mode technique of the filter design. Compared with the voltage-mode counterparts the current-mode filters have been presented in the literature exhibiting improved performance [1]. There are several current-mode building blocks for realization high-order current-mode filters such as current differencing buffered amplifier (CDBA) [2], current-mirror [3] and current differencing transconductance amplifier (CDTA) [4], [5] available in literature. The developed filter topologies provide a higher maximum frequency of operation and a more accuracy of transfer function due to smaller parasitic parameters compared with the filters realized using voltage-mode op-amp configurations [6].

The high-order filter can be applied to biomedical systems devoted to applications in electroencephalograph (EEG), electromyographic (EMG), and electrocardiographic (ECG) systems. The frequency/amplitude ranges for EEG, EMG and ECG signals are respectively 0.05–60 Hz/15–100 μV, 10–200 Hz/0.1–5 mV and 0.05–250 Hz/100 μV–5 mV [7].

Since these signals attributes small amplitude and low frequency, high-order filters for applications to these systems should be designed to meet high dynamic range and low-power consumption. The analog low-pass filter is usually required to select the frequency range and eliminate out-of-band noise in the front-end of biomedical systems. The high-order filter based on the RLC prototype is usually required due to lower pass-band sensitivity compared with the cascade approach using biquads.

Voltage second generation current conveyor (VCII) was introduced in [8]–[10]. Conventional VCII has three terminals (y, x, and z), the first stage between y and x terminals is a current follower and cascaded by a voltage follower between x and z terminals as the second stage. This device is designed to obtain a low impedance voltage output node for avoiding an extra voltage buffer for application requiring a voltage output signal [11]. The required additional voltage buffer can lead to higher power consumption and a large chip area. A number of VCII structures have been reported recently in literature [11]–[18]. Unfortunately, these structures are designed by rather high supply voltage and high-power consumption such as ±1.65 V/330 μW in [11], ±0.9 V/120 μW in [12], ±1.65 V/320 μW in [13], ±0.9 V/664 μW in [16], ...
\[\pm 0.45 \text{ V}/79.3 \text{ } \mu\text{W} \text{ in [18]. Therefore, these VCIIIs are not suitable for applications to ultra-low power analog signal processing. There are interesting applications of VCII available literature such as simulated inductor [15], universal filter [19]–[21], first-order all-pass filter [22], capacitance sensors [23], and full wave rectifier [24].}

In this work, a current-mode third-order low-pass filter based on voltage second generation current conveyor for bio-sensor applications is proposed. The proposed VCII is designed using bulk-driven (BD) MOS technique to provide wide input voltage range while the MOS operates in subthreshold region to obtain low-voltage low-power operation. The VCII is designed to work with voltage supply \(V_{DD} = 0.5 \text{ V} \) and power consumption is 390 nW. The proposed third-order filter was designed and simulated in the Cadence environment using a 0.18 \(\mu\text{m} \) CMOS process from TSMC. Post-layout Simulation results show that the filter offers a bandwidth (BW) of 250 Hz, and a power consumption of 2.73 \(\mu\text{W} \).

II. PROPOSED CIRCUIT

A. 0.5 V VCII

Fig. 1(a) shows the symbol of VCII and its equivalent circuit is shown in Fig. 1(b). The relation between the terminal voltages and current can be described by

\[
\begin{bmatrix}
i_x \\
\bar{i}_v \\
i_z
\end{bmatrix} =
\begin{bmatrix}
1/r_x & \beta & 0 \\
0 & r_x & 0 \\
\alpha & 0 & r_z
\end{bmatrix}
\begin{bmatrix}
v_x \\
\bar{i}_v \\
v_z
\end{bmatrix}
\]
(1)

where \(\beta \) is the current gain and \(\alpha \) is the voltage gain of VCII (unity for the ideal case). It should be noted from (1) that the relation between \(x \) and \(y \) terminals is the current follower and the relation between \(z \) and \(x \) is the voltage follower, where \(r_y, r_x, \) and \(r_z \) are respectively the parasitic resistance at \(y, x, \) and \(z \) terminals.

Fig. 2 shows the proposed VCII that consists of two op-amps operating in unity gain feedback, firstly presented in [25], [26]. The first op-amp has two outputs and is created by transistors \(M_1-M_4 \) and \(M_9-M_{12} \) that ensure the unity gain current transfer \(I_x = I_y \). The second op-amp is created by \(M_3-M_7 \) and \(M_{13}-M_{15} \) that ensure the unity gain voltage transfer \(V_z = V_x \). The bias current \(I_B \) and transistor \(M_S \) set the currents of the VCII. For the first op-amp, transistor \(M_1, M_2 \) create non-tailed differential amplifier loaded by current mirrors \(M_9, M_{10} \), the second stage is created by transistor \(M_3 \) loaded by the current source \(M_{11} \). The bulk-drain terminals of \(M_3 \) and the bulk terminal of \(M_2 \) are connected together that creates a negative unity feedback connection. Transistors \(M_4, M_{12} \) create a copy of the current \(M_3, M_{11} \). The minimum voltage supply of this structure is:

\[V_{DDmin} = \max (V_{SGM2} + V_{DSsatM10}) \]
(2)

where \(V_{SG} \) and \(V_{DSsat} \) are the source-gate voltage and saturation voltage of the MOS transistor, respectively.

B. PROPOSED FILTER

Fig. 3 shows the doubly terminated RLC ladder third-order low-pass filter by \(R_E \) and \(R_L \) are connecting at the input and output ports respectively. Using KCL routine analysis the voltage and current relationship in several nodes can be written as:

\[
I_1 = I_{in} - \frac{V_1}{R_E} - I_2
\]
(7)

\[
V_1 = \frac{I_1}{sC_1}
\]
(8)

\[
I_2 = \frac{V_1 - V_2}{sL_2}
\]
(9)

\[
V_3 = \frac{I_2 - I_{RL}}{sC_2}
\]
(10)
\[I_3 = I_2 - I_{RL} \] (11)

where \(I_{RL} = I_{out} \) and \(V_3 = V_{out} \). Using (7)-(9), signal flow graph of RLC low-pass filter can be shown in Fig. 4. It should be noted that three lossless integrators are required for realizing third-order low-pass filter.

III. SIMULATION RESULTS

The VCII was designed and verified in Cadence Analog Environment using 0.18 \(\mu \)m TSMC CMOS technology. The supply voltage was 0.5 V (\(V_{DD} = -V_{SS} = 0.25 \) V) and the bias current \(I_B \) was 20 nA. The transistors aspect ratio in \(\mu \)m/\(\mu \)m were for \(M_1, M_2, M_5, M_6, M_8 = 50/1 \), \(M_3, M_4, M_7 = 5 \times 50.1 \), \(M_9, M_{10}, M_{13}, M_{14} = 100/1 \), \(M_{11}, M_{12}, M_{15} = 5 \times 100.1 \). The layout of the VCII is shown in Fig. 6 with chip area 158 \(\mu \)m \(\times \) 140 \(\mu \)m.

Fig. 5 shows the proposed current-mode third-order low-pass filter using VCIIIs. The VCII1, VCII2, \(C_1 \) are worked as a first integrator while VCII3, VCII4, \(C_{L1} \) are worked as a second integrator and VCII5, VCII6, \(C_2 \) are worked as a third integrator. The inductor \(L_2 \) in the RLC prototype can be converted to the capacitor \(C_{L1} \) through the VCII and \(R \) by \(L_2 = C_{L1} R^2 \). The VCII3 is used to provide high-output impedance for current-mode circuit. Thus, the proposed current-mode filter offers low-input impedance and high-output impedance which is meet for current-mode circuit. From the property of VCII such as \(V_z = V_x \), node \(V_3 \) can also be used as output voltage terminal (\(V_{out} \)). In this case, the filter works as a transimpedance-mode filter which is meet a low-input impedance and a low-output impedance. The VCII7 can be vanished and the resistor \(R_L \) must be connected to ground if it works as a transimpedance-mode filter.
enjoys high output resistance $R_X = 16.1 \, \text{M} \Omega$ while the resistances $R_Y = R_Z = 5.63 \, \text{k} \Omega$. The value of these parasitic resistances of Y and Z terminals should be taken into account during the design of the applications. The voltage and current input-referred noises (IRN) of the VCII at Z and X node, respectively, are shown in Fig. 10. The voltage IRN is 500nV, while the current IRN is 0.481pA @ 1 kHz.

The performances of the VCII are presented in the Table 1 and compared to most recent VCIIIs presented in the literature [12], [13], [18], [22]. It is evident that the proposed structure has the lowest supply voltage, lowest power consumption with extended input voltage range $\pm 200 \, \text{mV}$ that make it suitable for bio-sensor applications. Also the efficient of the design and the low voltage operation capability are confirmed by the figure of merits $(V_{TH}/V_{DD}) \times 100 (%)$ and $(V_{in-max}/V_{DD}) \times 100 (%)$.
TABLE 1. Compassion between proposed VCII and others.

	Proposed	CSSP [18]	IET [22]	2020	[12] 2019	[13] 2020
Technology (µm)	0.18	0.18	0.18	0.15	0.35	
Voltage supply (V)	0.5	0.9	1.8	1.8	3.3	
Power consumption (nW)	390	79 300	458 000	120 000	320 000	
Current gain β	0.999	0.987	1.017	0.996	0.987	
Voltage gain α	0.999	0.972	0.978	0.973	0.992	
DC linearity of current gain (nA)	±190	±250000	NA	±500000	NA	
DC linearity of voltage gain (mV)	±200	±60	NA	±800	NA	
Bandwidth of current gain (kHz)	351.8	225 000	NA	165 000	22 400	
Bandwidth of voltage gain (kHz)	74.3	49300	NA	55 000	220 000	
g_t (kΩ)	5.63	2.7	0.0237	0.023	2E-6	
r_t (MΩ)	16.1	0.1565	0.00068	522	0.37	
r_e (kΩ)	5.63	0.0382	0.0237	0.16	2E-6	
Offset voltage (mV)	2*	NA	NA	NA	NA	
Offset current (nA)	1.75*	300	NA	NA	NA	
Voltage IRN (mV/kHz)	500 @ 1 kHz	21.67 @ 10 MHz	NA	NA	154	
Current IRN (µA/Hz)	0.481 @ 1 kHz	4.96 @ 10 MHz	NA	NA	NA	
Chip area (µm²)	22 120	509.6	NA	NA	75 155	
V_{MM}/V_{DD}<100 (%)	100	55.5	27.7	33.3	21.2	
V_{MM}/V_{DD}>100 (%)	80	6.6	NA	88.8	NA	

* 3sigma

FIGURE 12. Frequency characteristics of the proposed filter with various R.

The process, voltage and temperature (PVT) corners analysis were carried out with transistor corners: ss, sf, fs, ff, voltage supply corners ±10% of V_{DD}, and temperature corners −20 °C to 70 °C. The results of the frequency characteristics of the proposed filter with PVT corner analysis are shown in Fig. 14. The minimum $−3$ dB BW = 238.2 Hz and the maximum = 250 Hz. The minimums and maximum gain were around $−6.67$ dB and $−6.98$ dB, respectively.

The transient analysis of the filter is shown in Fig. 15. The input sine wave signal applied to the filter $IN = 50$ nA@ 10 Hz. The THD of the output signal is 0.09 %. The filter was tested for different peak-to-peak signal value is around 248.3 Hz with standard deviation around 1.93 Hz.

and with 100 Hz, the results of THD is shown in Fig. 16. The THD is below 1 % for input signal below 350 nA.

FIGURE 13. The histogram of the filter: a) gain and b) $−3$ dB bandwidth.
IV. CONCLUSION

This paper presents a third order low pass filter based on low-voltage low-power VCII. The VCII is capable to work with supply voltage of 0.5V while offering a wide input voltage range thanks to using the bulk-driven MOST technique operating in the subthreshold region. The filter can be operated as both current-mode and transimpedance-mode filters. The filter consumes 2.73 μW and the THD is below 1% for input signal below 350 nA$_{pp}$ @ 10Hz. Intensive postlayout simulation including MC and corner analysis confirm the performance of the filter.

REFERENCES

[1] G. W. Roberts and A. S. Sedra, “All current-mode frequency selective circuits,” Electron. Lett., vol. 25, no. 12, pp. 759–761, Jun. 1989, doi: 10.1049/el:19890513.

[2] W. Tangsirirat, W. Surakampontorn, and N. Fuji, “Realization of leapfrog filters using current differential buffered amplifiers,” IEICE Trans. Fundamentals Electron., Commun. Comput. Sci., vol. E86-A, pp. 318–326, Feb. 2003.

[3] G. Souliotis and C. Psychalinos, “Current-mode linear transformation filters using current mirrors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 6, pp. 541–545, Jun. 2008, doi: 10.1109/TCSI.2007.914909.

[4] A. Uygur and H. Kuntman, “Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs,” AEU-Int. J. Electron. Commun., vol. 61, no. 5, pp. 320–328, May 2007, doi: 10.1016/j.aeue.2006.06.002.

[5] I. M. Filanovsky, “Current conveyor, voltage conveyor, gyrator,” in Proc. 44th IEEE Midwest Symp. Circuits Systems. MWSCAS, Dayton, OH, USA, Aug. 2001, pp. 314–317, doi: 10.1109/MWSCAS.2001.986176.

[6] L. Safari, G. Ferri, L. Safari, and V. Stornelli, “A modified CDTA (MCDTA) and its applications: Designing current-mode sixth-order elliptic band-pass filter,” Circuits, Syst., Signal Process., vol. 30, no. 6, pp. 1383–1390, Dec. 2011, doi: 10.1007/s00034-011-9329-2.

[7] I. M. Filanovsky and K. A. Stromsmoe, “Current-voltage conveyor,” Electron. Lett., vol. 17, no. 3, pp. 129–130, Feb. 1981, doi: 10.1049/el:19810092.

[8] I. M. Filanovsky and K. A. Stromsmoe, “A new rail-to-rail second generation voltage conveyor,” in Proc. 43rd IEEE Midwest Symp. Circuits Systems. MWSCAS, Dayton, OH, USA, Aug. 2000, pp. 314–317, doi: 10.1109/MWSCAS.2000.986176.

[9] I. M. Filanovsky and K. A. Stromsmoe, “Current-voltage converter,” Electron. Lett., vol. 17, no. 3, pp. 129–130, Feb. 1981, doi: 10.1049/el:19810092.

[10] L. Safari, G. Barile, V. Stornelli, and G. Ferri, “An overview on the second generation voltage conveyor: Features, design and applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 4, pp. 547–551, Apr. 2019, doi: 10.1109/TCSI.2018.2868744.

[11] L. Safari, G. Barile, V. Stornelli, and G. Ferri, “A new rail-to-rail second generation voltage conveyor,” Electronics, vol. 8, no. 11, p. 1292, Nov. 2019, doi: 10.3390/electronics8111292.

[12] L. Safari, G. Barile, V. Stornelli, and G. Ferri, “A new high drive class-AB FVF-based second generation voltage conveyor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 3, pp. 405–409, Mar. 2020, doi: 10.1109/TCSI.2019.2915814.

[13] L. Safari, G. Barile, V. Stornelli, and G. Ferri, “A new high drive class-AB VFV-based second generation voltage conveyor,” Int. J. Circuit Theory Appl., vol. 48, no. 7, pp. 1180–1193, Jul. 2020, doi: 10.1002/cta.2770.

[14] L. Safari, E. Yuce, S. Minaei, G. Ferri, and V. Stornelli, “A second-generation voltage conveyor (VCII)–based simulated grounded inductor,” Int. J. Circuit Theory Appl., vol. 48, no. 11, pp. 2023–2038, Nov. 2020, doi: 10.1002/cta.2879.

[15] G. Barile, L. Safari, G. Ferri, and V. Stornelli, “A second-generation voltage conveyor (VCII)–based simulated grounded inductor,” Int. J. Circuit Theory Appl., vol. 48, no. 11, pp. 2023–2038, Nov. 2020, doi: 10.1002/cta.2879.

[16] L. Safari, E. Yuce, S. Minaei, G. Ferri, and V. Stornelli, “A second-generation voltage conveyor (VCII)–based simulated grounded inductor,” Int. J. Circuit Theory Appl., vol. 48, no. 7, pp. 1180–1193, Jul. 2020, doi: 10.1002/cta.2770.

[17] L. Safari, E. Yuce, S. Minaei, G. Ferri, and V. Stornelli, “A second-generation voltage conveyor (VCII)–based simulated grounded inductor,” Int. J. Circuit Theory Appl., vol. 48, no. 11, pp. 2023–2038, Nov. 2020, doi: 10.1002/cta.2879.

[18] V. Stornelli, L. Safari, G. Barile, and G. Ferri, “A new extremely low power temperature insensitive electronically tunable VCII-based grounded capacitance multiplier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 1, pp. 72–76, Jan. 2021, doi: 10.1109/TCSI.2020.3005524.

[19] A. Yesil and S. Minaei, “New simple transistor realizations of second-generation voltage conveyor,” Int. J. Circuit Theory Appl., vol. 48, no. 11, pp. 2023–2038, Nov. 2020, doi: 10.1002/cta.2879.

[20] L. Safari, E. Yuce, S. Minaei, G. Ferri, and V. Stornelli, “A second-generation voltage conveyor (VCII)–based simulated grounded inductor,” Int. J. Circuit Theory Appl., vol. 48, no. 7, pp. 1180–1193, Jul. 2020, doi: 10.1002/cta.2770.
MONTREE KUMNGERN received the B.S.Ind.Ed. degree from the King Mongkut’s University of Technology Thonburi, Thailand, in 1998, and the M.Eng. and D.Eng. degrees from the King Mongkut’s Institute of Technology Ladkrabang, Thailand, in 2002 and 2006, respectively. In 2007, he served as a Lecturer with the Department of Telecommunications Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, where he served as an Assistant Professor, from 2010 to 2017, and currently an Associate Professor. He has authored or coauthored over 200 publications in journals and proceedings of international conferences. His research interests include analog and digital integrated circuits, discrete-time analog filters, non-linear circuits, data converters, and ultra-low voltage building blocks for biomedical applications.

M. Kumngern et al.: 0.5 V Current-Mode LPF Based on VCII for Bio-Sensor Applications

FABIAN KHATEB received the M.Sc. degree in electrical engineering and communication, the M.Sc. degree in business and management, the Ph.D. degree in electrical engineering and communication, and the Ph.D. degree in business and management from the Brno University of Technology, Czech Republic, in 2002, 2003, 2005, and 2007, respectively. He is currently a Professor with the Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology; and the Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague. He holds five patents. He has authored or coauthored over 100 publications in journals and proceedings of international conferences. He has expertise in new principles of designing low-voltage low-power analog circuits, particularly biomedical applications. He is a member of the Editorial Board of Microelectronics Journal, Sensors, Electronics, and Journal of Low Power Electronics and Applications. He is also an Associate Editor of IEEE Access, Circuits, Systems, and Signal Processing, IET Circuits, Devices & Systems, and the International Journal of Electronics. He was a Lead Guest Editor of the Special Issues on Low Voltage Integrated Circuits and Systems on Circuits, Systems, and Signal Processing in 2017, IET Circuits, Devices and Systems in 2018, and Microelectronics Journal in 2019. He was also a Guest Editor of the Special Issue on Current-Mode Circuits and Systems; Recent Advances, Design and Applications of the International Journal of Electronics and Communications in 2017.

TOMASZ KULEJ received the M.Sc. and Ph.D. degrees from the Gdańsk University of Technology, Gdańsk, Poland, in 1990 and 1996, respectively. He was a Senior Design Analysis Engineer with the Polish Branch, Chipworks Inc., Ottawa, Canada. He is currently an Associate Professor with the Department of Electrical Engineering, ČZestochowa University of Technology, Poland, where he conducts lectures on electronics fundamentals, analog circuits, and computer aided design. He has authored or coauthored over 80 publications in peer-reviewed journals and conferences. He holds three patents. His recent research interests include analog integrated circuits in CMOS technology, with emphasis to low-voltage and low-power solutions. He also serves as an Associate Editor of the Circuits, Systems, and Signal Processing and IET Circuits, Devices and Systems. He was also a Guest Editor for the Special Issues on Low Voltage Integrated Circuits on Circuits, Systems, and Signal Processing in 2017, IET Circuits, Devices and Systems in 2018, and Microelectronics Journal in 2019.
