Morphological and biochemical responses of *Macrotyloma uniflorum* (Lam.) Verdc. to allelopathic effects of *Mikania micrantha* Kunth extracts

Pallavi Jalia, Ipsita Priyadarsini Samal, Sameer Jena, Gyanranjan Mahalik

Department of Botany, Utkal University, Bhubaneswar, India
Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India

HIGHLIGHTS

- Allelopathic impacts of *Mikania micrantha* Kunth were investigated on the rate of seed germination, growth, biomass, photosynthetic pigments, total soluble protein, phenolics and proline content of *Macrotyloma uniflorum* (Lam.) Verdc.
- The extracts inhibited germination, growth, biomass, chlorophyll, carotenoid and protein contents. The protein content of *M. uniflorum* decreased to 8.48 mg/g at 200 mg/ml. Similarly, shoot length, root length also decreased up to 5.11 cm, 0.85 cm respectively and water content increased with increasing concentration of weed extracts.
- The leaf extracts resulted in an increase in the phenolics (19.66 mg) and proline (24.49 mg) content of the crop plant. The aqueous extracts of leaves caused detrimental impact on growth and physiology of the crop plant and this might be due to the release of secondary metabolites.
- This present investigation may further lead to the identification of certain secondary metabolites or allelo-chemicals that may have an important agricultural application for sustainability and may enhance the level of crop protection against several other harmful plant species.

ARTICLE INFO

Keywords:
Allelopathy
Mikania micrantha
Macrotyloma uniflorum
Phenolics
Proline
Secondary metabolites

ABSTRACT

Yield loss due to noxious weeds is one among several reasons for the reduced economy for the developing countries. Impacts of one such weed i.e. *Mikania micrantha* were investigated on the rate of seed germination, growth, biomass, photosynthetic pigments, total soluble protein, phenolics and proline content of leaves of *Macrotyloma uniflorum* (an important pulse). In a completely randomized setup, control and four concentrations (10 mg/ml, 50 mg/ml, 100 mg/ml and 200 mg/ml) of the aqueous leaf extracts of *M. micrantha* were tested on the seeds of *M. uniflorum*. The extracts inhibited germination, growth, biomass, chlorophyll, carotenoid and protein contents. The protein content of *M. uniflorum* decreased to 8.48 mg/g at 200 mg/ml. Similarly, shoot length and root length were also decreased up to 5.11 cm and 0.85 cm respectively and water content increased with the increasing concentration of weed extracts. The leaf extracts resulted in an increase in the phenolics (19.66 mg) and proline (24.49 mg) content of the crop plant. The preliminary study indicated that the aqueous leaf extracts of weed plant resulted in negative or detrimental impact on growth and physiology of the plant and this might be due to the release of secondary metabolites. The present investigation may further lead to the identification of certain secondary metabolites or allelo-chemicals that may have an important agricultural application for sustainability and may enhance the level of crop protection against several other harmful plant species.

1. Introduction

A biological phenomenon by virtue of which an organism produces biochemical substances which influence the morphology and physiology of another organism is referred to as allelopathy (Cheng and Cheng, 2015). Root exudation, leaching, deposition of leaf particles and volatilization are the process involved in transport of the chemicals from one plant to another (Liza and Ram, 2017). The biochemicals or allelo-chemicals are secondary metabolites which are not required for growth, development and reproduction (Stamp, 2003; Langenheim, 1994). They could have detrimental effects on the target organisms. Allelo-chemicals are an important part of defense...
mechanisms in plants such as herbivory, microbial attack etc. (Stamp, 2003; Fraenkel, 1981).

Macrotyloma uniflorum belongs to family Fabaceae or leguminosae. It is a short day, twining, succulent and annual climbing herb. *M. uniflorum* has excellent nutritional as well as ethnomedicinal properties (Kumar, 2006; Singh, 1991; Ranasinghe and ERHSS, 2017). It has various properties like anti-obesity, anti-diabetic, antioxidant etc. (Kaundal et al., 2019). It is a rich source of vitamins, proteins and minerals used in developing countries to meet nutritional requirements.

Mikania micrantha is an invasive species which is responsible to alter the morphology and physiology of indigenous crop plants (Stamp, 2003; Matawali et al., 2016a,b). *Mikania micrantha* (weed plant) is known to grow in such a way that other plant growth and activities are retarded. It is known to release substances that hamper the growth and development of other plant species (Tiwari et al., 2005). In this way, the weed plants deteriorate young plantations as well as nurseries which have become a threat to today’s sustainable agriculture system. In the current study, for exploring the allelopathic potential of *M. micrantha*, aqueous leaf extracts were used against an important ethnomedicinal pulse *Macrotyloma uniflorum*. The biochemical changes of the crop plant (*Macrotyloma uniflorum*) were recorded to verify the negative impact of *Mikania micrantha*. Allelopathic impacts may be studied further as an important mechanism to know the chemicals or metabolites involved and also may be utilized to inhibit some unwanted growth of plant species. This approach may further lead to sustainable agriculture and crop protection.

1.1. Study of different weeds on plant system

Allelopathic plant	Effect on different plant systems
Black walnut	Reduced corn yield
Leucaena	Reduced the yield of wheat and turmeric
Lantana	Germination and growth of milkweed vine
Sour orange	Inhibited seed germination and root growth of pigweed, bermudagrass, and lambsquarters
Red maple, swamp chestnut	Inhibited lettuce seed
Elaeagnus	
Chaste tree or box elder	retarded the growth of panglingrass, a pasture grass

Figure 1. Seeds of *Macrotyloma uniflorum*.

2. Materials and methods

The experiments were conducted to study the potential allelopathic effects of *M. micrantha* on *M. uniflorum*.

2.1. Collection of plant materials

The weed *Mikania micrantha* were collected from Centurion University of Technology and Management (CUTM), Jatni campus, Odisha, India (Sahoo and Mahalik, 2020). The high quality and viable seeds of *Macrotyloma uniflorum* were collected from the Plant Breeding and Genetics department, Orissa University of Agriculture and Technology (OUAT), Odisha (Figure 1).

2.2. Preparation of aqueous extracts of plant material

Plant leaves were separated from the shoots and were shade dried until removal of moisture. Samples were crushed to powdered form and stored in the airtight glass jars until further use. Sample solutions of varied concentrations with increasing order (10, 50, 100 and 200 mg/ml) were prepared and stored at 4 °C in a refrigerator and used within 24–48 h to treat the *M. uniflorum* seeds.

2.3. Seed germination assay and screening

Healthy and fresh seeds of *M. uniflorum* were kept on moist filter paper soaked with different concentrations of *M. micrantha* aqueous extracts. Controls were treated with 20 ml of distilled water (Bhatt et al., 2016; Mitra et al., 2004). The seeds were kept under dark for four days in a controlled room temperature. The germination was considered when the radicals were 2 mm or more in length. The radical length was measured after 4 days of germination. The seedling vigour index (Abdul-Baki and Anderson, 1973), plant tolerance index (Turner and Marshall, 1972) and phytotoxicity percent (Chou and Lin, 1976) were calculated as follows:

\[
\text{SVI} = \frac{\text{Radical length of control - Radical length of treatment}}{\text{Radical length of control}} \times 100
\]

\[
\text{PTI} = \frac{\text{Radical length of the treatment}}{\text{Radical length of control}} \times 100
\]

Phytotoxicity percent = Root length of control-root length of treatment x 100

2.4. Water content and biomass

Biomass was determined after 14 days of treatment with aqueous extracts of *Mikania micrantha* by taking the single whole plant (*Macrotyloma uniflorum*) including shoots and roots. The seedlings were taken and properly washed with distilled water, dried using blotting paper and later the fresh weights were recorded. The samples were dried at 60 °C for 2–3 days in an oven and later the dry weights (DW) were measured (Kim et al., 2005).

2.5. Photosynthetic pigments

500 mg fresh and healthy leaves were properly homogenized in 80% chilled acetone. The homogenized samples were then centrifuged for 10 min at 4 °C, 10,000 rpm in the dark. Supernatant was taken and the absorbances were recorded (Arnon, 1949).

2.6. Total leaf protein

The soluble proteins were extracted using Acetone-TCA method (Parida et al., 2002; Lowry et al., 1951). After the extraction, samples were centrifuged at 14,000 rpm for 20 min and the supernatant was collected. Sample (0.2 ml) was taken to which 1 ml de-ionized water was added. Further alkaline Copper (5 ml) solution was added and kept for 10
min. Folin-Ciocalteau reagent (0.5 ml) was added and then incubated for 30 min in the dark. Later the absorbance at 660 nm was recorded.

2.7. Total phenolics

Sample extraction was carried out using 80% ethanol and estimated using Folin – Ciocalteau reagent (Parida et al., 2002; Mallik and Singh, 1980). 0.5 g leaf samples were homogenized using 3% sulfoisalicylic acid. The homogenates were centrifuged for 20 min at 10,000 rpm. Residues were re-extracted several times with 80% ethanol by centrifugation. The supernatant collected was evaporated and the residues after evaporation were dissolved with distilled water (5 ml). 2 ml sample was taken and the mixture was vigorously shaken for a few seconds. The separated aqueous layer of toluene was warmed at room temperature; the colored sample was measured at 520nm wavelength. The reaction was later stopped by keeping test tubes in an ice bucket. Toluene (2 ml) was added and the mixture was vigorously shaken for a few seconds. The separated aqueous layer of toluene was warmed at room temperature; the colored sample was measured at 520nm wavelength.

2.9. Statistical analysis

Data represented through mean along with the standard deviation calculated from five number of replicates and three experiments consecutively. DMRT was used as a post hoc test after running ANOVA to analyze and compare the allelopathic effect of *M. micrantha* on *M. uniflorum* at p < 0.05 (5% significance level).

3. Results and discussion

3.1. Seed germination assay and plant growth

The rate of germination of *M. uniflorum* seeds responded differently manner to different concentrations of *M. micrantha* aqueous extracts.

Table 1. Germination percentage, Radical length, Seedling vigour index (SVI), Plant tolerance index (PTI) and Phytotoxicity percentage of *M. uniflorum*.

Sample	*M. micrantha* extracts (mg/ml)	Germination (%)	Radical length (cm)	SVI	PTI	% Phytotoxicity
M. uniflorum	0	85.55 ± 0.74a	4.26 ± 0.65a	373.54	100	0
	10	83.75 ± 0.94a	4.12 ± 0.61a	343.37	96.09	166
	50	76.25 ± 1.69b	2.61 ± 0.33b	198.25	60.93	258
	100	50.78 ± 1.69c	1.76 ± 0.12c	89.71	41.41	283
	200	30.44 ± 0.94d	1.26 ± 0.21d	38.55	29.68	329

*Values represent mean ± SD, letters represent significant differences among treatments at 5% level of significance (P ≤ 0.05) as per the DMRT analysis.

Germination rate decreased with increasing concentration of *M. micrantha* extracts and the detrimental effect was more pronounced at 200 mg/ml concentration (Table 1). The germination percentage was observed to be 85.55% (control), 83.75% (10 mg), 76.25% (50 mg), 50.78% (100 mg) and 30.44% (200 mg). The radical length decreased with increasing aqueous extract concentrations of *M. micrantha* that accounted for 4.12 cm and 1.26 cm for 10 mg and 200 mg respectively (Table 1). The seedling vigor index of *M. uniflorum* was found to be 343.37 and 38.55 in 10 mg and 200 mg treatment respectively. Plant tolerance index was observed to show a decreasing trend from 10 mg to 200 mg aqueous extracts of *M. micrantha*. Tolerance to *M. micrantha* decreased when treatment reached to 200 mg amounting to 29.68.

3.2. Effect of *M. micrantha* on growth of *M. uniflorum*

* M. micrantha* extracts in the experimental conditions a showed significant amount of growth reduction in *M. uniflorum*. Growth of shoots were affected significantly at 200 mg (5.11 cm), 100 mg (5.67 cm), 50 mg (6.43 cm) and 10 mg (9.59 cm) as compared to control (12.61 cm) (Table 2, Figure 2). Root length indicated growth reduction in all the samples i.e. 2.48 cm, 1.56 cm, 1.31 cm and 0.85 cm at 10 mg, 50 mg, 100 mg and 200 mg respectively (Table 2).

Abiotic stress is known to be highly toxic and have severe deleterious impacts on the growth of the plant (Rubio et al., 1994; Watanabe and Suzuki, 2002; Maksymiec and Krupa, 2006). In the growth medium it is observed to have significant shoot and root length reduction (Dong et al., 2005) (Figure 3). The most noticeable symptoms of abiotic toxicity were found to be the stunted growth (Huang et al., 2000; Li and Jin, 2010; Kaur and Malhotra, 2012). Similar results regarding the effects of leaf extracts of different weeds (Parthenium hysterophorus, Tridax Pro-cumbens and Hypis Sasevelens) on Vigna mungo germination and growth were observed (Babu et al., 2014).

Table 2. Effect of *M. micrantha* on growth of *M. uniflorum*.

Treatments (mg/ml)	Shoot length (cm)	Root length (cm)
Control	12.61 ± 0.16a	4.14 ± 0.24a
10	9.59 ± 0.12b	2.48 ± 0.19b
50	6.43 ± 0.19c	1.56 ± 0.01c
100	5.67 ± 0.21d	1.31 ± 0.21d
200	5.11 ± 0.13e	0.85 ± 0.07e

*Values represent mean ± SD, letters represent significant differences among treatments at 5% level of significance (P ≤ 0.05) as per the DMRT analysis.

Germination rate decreased with increasing concentration of *M. micrantha* extracts and the detrimental effect was more pronounced at 200 mg/ml concentration (Table 1). The germination percentage was observed to be 85.55% (control), 83.75% (10 mg), 76.25% (50 mg), 50.78% (100 mg) and 30.44% (200 mg). The radical length decreased with increasing aqueous extract concentrations of *M. micrantha* that accounted for 4.12 cm and 1.26 cm for 10 mg and 200 mg respectively (Table 1). The seedling vigor index of *M. uniflorum* was found to be 343.37 and 38.55 in 10 mg and 200 mg treatment respectively. Plant tolerance index was observed to show a decreasing trend from 10 mg to 200 mg aqueous extracts of *M. micrantha*. Tolerance to *M. micrantha* decreased when treatment reached to 200 mg amounting to 29.68.

3.2. Effect of *M. micrantha* on growth of *M. uniflorum*

* M. micrantha* extracts in the experimental conditions a showed significant amount of growth reduction in *M. uniflorum*. Growth of shoots were affected significantly at 200 mg (5.11 cm), 100 mg (5.67 cm), 50 mg (6.43 cm) and 10 mg (9.59 cm) as compared to control (12.61 cm) (Table 2, Figure 2). Root length indicated growth reduction in all the samples i.e. 2.48 cm, 1.56 cm, 1.31 cm and 0.85 cm at 10 mg, 50 mg, 100 mg and 200 mg respectively (Table 2).

Abiotic stress is known to be highly toxic and have severe deleterious impacts on the growth of the plant (Rubio et al., 1994; Watanabe and Suzuki, 2002; Maksymiec and Krupa, 2006). In the growth medium it is observed to have significant shoot and root length reduction (Dong et al., 2005) (Figure 3). The most noticeable symptoms of abiotic toxicity were found to be the stunted growth (Huang et al., 2000; Li and Jin, 2010; Kaur and Malhotra, 2012). Similar results regarding the effects of leaf extracts of different weeds (Parthenium hysterophorus, Tridax Procumbens and Hypis Sasevelens) on Vigna mungo germination and growth were observed (Babu et al., 2014).

Table 2. Effect of *M. micrantha* on growth of *M. uniflorum*.

Treatments (mg/ml)	Shoot length (cm)	Root length (cm)
Control	12.61 ± 0.16a	4.14 ± 0.24a
10	9.59 ± 0.12b	2.48 ± 0.19b
50	6.43 ± 0.19c	1.56 ± 0.01c
100	5.67 ± 0.21d	1.31 ± 0.21d
200	5.11 ± 0.13e	0.85 ± 0.07e

*Values represent mean ± SD, letters represent significant differences among treatments at 5% level of significance (P ≤ 0.05) as per the DMRT analysis.
3.3. Effect of M. micrantha on biomass of M. uni
florum

M. micrantha extracts showed significant biomass reduction in M. uni
florum plants. Biomass was significantly affected by M. micrantha treated aqueous extracts to Macrotyloma uni
florum plants i.e. 10 mg (90.56%), 50 mg (89.18%), 100 mg (90.32%) and 200 mg (94.73%) as compared to control (44.25%) plants (Table 3). Growth reduction affects biomass of the plant (Ismail and Mah., 1993; Day et al., 2016). With an increase in concentrations of the weed extracts, there was a noticeable reduction of biomass of M. uni
florum.

3.4. Changes in concentrations of photosynthetic pigments

The quantity of pigments (Chl a, Chl b, total chlorophyll and carotenoids) under different M. micrantha aqueous extract concentrations were studied. Total Chlorophyll and carotenoid contents of M. uni
florum decreased significantly with an increase in M. micrantha levels compared to control plants (Figure 4). The Chl a, Chl b and carotenoid contents showed decreasing effects upon exposure to M. micrantha extracts. Chl a contents were recorded 234.31 μg/g and 89.07 μg/g at 10 mg/ml and 200 mg/ml respectively. Carotenoids showed 28.19 μg/g, 37.02 μg/g, 56.11 μg/g and 69.42 μg/g upon exposure to 200, 100, 50, 10 mg/ml of extracts of M. micrantha respectively whereas control carotenoid levels showed 83.13 μg/g.

Extracts of M. micrantha effectively inhibit the photosynthetic pigments of M. uni
florum at various concentrations. This might be due to the release of secondary metabolites (CEN et al., 2004; Huang et al., 2012; Jyothilakshmi et al., 2015; Matawali et al., 2016a,b) that resulted in the reduction or inhibition of the photosynthetic activity or destruction of some chloroplasts. It was observed that Chl a, Chl b and carotenoid contents significantly decreased due to reduction in cellular Mg²⁺ ion concentration, which is essential for the biosynthesis of chlorophyll (Yildirim et al., 2008; Mohamed and Gomaa, 2012). Earlier it was reported that a decrease in the chlorophyll content might be due to failure

Treatments (mg/ml)	Fresh Weight (g)	Dry Weight (g)	Water Content (%)
Control	0.62 ± 0.26a	0.11 ± 0.14a	82.25
10	0.53 ± 0.22b	0.05 ± 0.11b	90.56
50	0.37 ± 0.09b	0.04 ± 0.11b	89.18
100	0.31 ± 0.11c	0.03 ± 0.31b	90.32
200	0.19 ± 0.03d	0.01 ± 0.27c	94.73

*Values represents mean ± SD, letters represent significant differences among treatments at 5% level of significance (P ≤ 0.05) as per the DMRT analysis.

Figure 3. Morphological changes of M. uni
florum upon exposure to M. micrantha extracts.
The total protein contents reduced significantly as the result of exposure to the allelochemicals released. This phenomenon was also observed in plants exposed to both biotic and abiotic stress (Parida et al., 2004; Jali et al., 2019). The decline in protein level may be due to the disruption in translation pathway after the inherent capacity of the plants to respond to different stress conditions. Higher the amount of phenolics and proline, higher the level of stress builds up in the plant system. In the present study, the weed extracts inhibit the crop plant’s growth and physiology. This study will definitely lead to the identification of few phytochemicals having beneficial agricultural applications for sustainability in near future. Sensitivity to the allelochemicals and extent of inhibition vary from crop to crop but it will enhance future aspects of crop protection from several harmful plant species.

3.5. Changes in soluble protein content

Total soluble leaf protein of *M. uniflorum* (obtained in mg/ml fr wt.) showed remarkable variations when treated with different extracts of this weed (Figure 5) 14.96 mg/g, 12.69 mg/g, 10.48 mg/g and 8.48 mg/g at 10, 50, 100 and 200 mg/ml respectively as compared to control plants (16.63 mg/g). The above results showed that upon exposure to stress, 10, 50, 100 and 200 mg/ml aqueous extracts respectively which is significantly higher than control (Figure 5). Enhanced phenolic metabolism produces antioxidative activity which focuses to decrease the toxic and negative effects of the stress (Zheng et al., 2011; Dai et al., 2006; Kovacsiluk and Backor, 2007). Extracts of *M. micrantha* slow down the germination and growth of a number of plant species (Zhang et al., 2002). At least three sesquiterpenoids (secondary metabolites) have been recognized that produce this effect (Shao et al., 2005; Matawali et al., 2016). Low dose of phenolic compounds stimulates protein synthesis and activation of antioxidant enzymes (Baziramakenga et al., 1995) which are effective in plant protection (Kleiner et al., 1999), while high levels of phenolic application result in plant damage (Politycka et al., 2004). Proline accumulation in leaf tissues was more pronounced with an increase in *M. micrantha* treated samples of *M. uniflorum*. In *M. uniflorum*, the maximum proline level was reported at 200 mg/ml (24.49 mg/g) followed by 100 mg (20.19 mg/g), 50 mg/ml (13.13 mg/g) and 50 mg/ml (14.83 mg/g) (Figure 5). Proline accumulation is a general phenomenon in all stressed plants (Saradhi and Vani, 1993; Lee and Liu, 1999; Hernandez et al., 2000; Bhir et al., 2004; Ahmad et al., 2006; Koca et al., 2007; Parida and Jha, 2010; Shabbaz et al., 2013). Proline also acts as a major reservoir of nitrogen and energy, that can be utilised in resuming the growth of the plant after removal of the stress (Chandrashekar and Sandhyarani, 1996).

4. Conclusions

The rate of seed germination, plant growth, biochemical parameters of *M. uniflorum* increased in control conditions as compared with plant exposed to different concentrations of *M. micrantha* extract. There was a noticeable reduction in seed germination, plant growth (shoot and root length), photosynthetic pigments and protein content in plants treated with weed extracts, while there was an increase in total phenolics and proline content. The decrease of biomolecules of *M. uniflorum* in the present study might be due to the release of secondary metabolites from *M. micrantha*. The increase in phenolics and proline content might be due to the inherent capacity of the plants to respond to different stress conditions. Higher the amount of phenolics and proline, higher the level of stress builds up in the plant system. In the present study, the weed extracts inhibit the crop plant’s growth and physiology. This study will definitely lead to the identification of few phytochemicals or metabolites having beneficial agricultural applications for sustainability in near future. Sensitivity to the allelochemicals and extent of inhibition vary from crop to crop but it will enhance future aspects of crop protection from several harmful plant species.

Declarations

Author contribution statement

Pallavi Jali; Gyanranjan Mahalik: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Ipsita Priyadarssini Samal; Sameer Jena: Performed the experiments; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

The authors do not have permission to share data.
Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors highly acknowledge Department of Botany, School of Applied Sciences, Centurion University of Technology and Management (CUTM), Odisha, India for necessary support to conduct the present research work. Nevertheless, authors are very much thankful to the Dean, SoAS and Head, Department of Botany for necessary Laboratory facilities to carry out the work. The research work has no funding.

References

Abdul-Baki, A.A., Anderson, J.D., 1973. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13, 630–633.

Ahmad, P., Sharma, S., Srivastava, P.S., 2006. Differential physio-biochemical responses of high yielding varieties of mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro. Physiol. Mol. Biol. Plants 12, 54.

Ahmad, P., Sharma, S., Srivastava, P.S., 2007. In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hortic. Sci. (Prague) 34, 114–122.

Aron, D.L., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidases in Beta vulgaris. Plant Physiol. 24, 1.

Babu, G.P., Vinita, H., Audishekhamma, K., Paramagreetham, C.H., 2014. Allelopathic effects of some weeds on germination and growth of Vigna mungo (L) Hepper. Int. J. Current Microbiol. Appl. Sci. 3, 122–128.

Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207.

Baziramakenga, R., Leroux, G.D., Simard, R.R., 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21, 1271–1285.

Bhatt, A., Santo, A., Gallacher, D., 2016. Seed mucilage effect on water uptake and germination in five species from the hyper-arid Arabian desert. J. Arid Environ. 128, 73–79.

Cen, Y.J., Pang, X.F., Ling, B., Kong, C.H., 2004. Study on the active components of oviposition repellency of Mikania micrantha HBK against citrus red mite, Panonychus citri McGregor. Acta Ecol. Sin. 11.

Chandrasekhar, K.R., Sandhyarani, S., 1996. Salinity induced chemical changes in Crotonus aurita DC plants. Indian J. Plant Physiol. 1, 44–48.

Cheng, F., Chong, Z., 2015. Research progress on the use of plant allelopathy in agriculture and some physiological and ecological effects of allelopathy. Front. Plant Sci. 6, 1020.

Chou, C.H., Lin, H.J., 1976. Autoxidation mechanism of Orzya sativa I. Phytoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2, 353–367.

Dai, L.P., Xiong, Z.T., Huang, Y., Li, M.J., 2006. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Ctenopteris imbricata. Environ. Toxicol. 21, 505–512.

Day, M.D., Clements, D.R., Gile, C., Senaratne, W.K., Shen, S., Weston, L.A., Zhang, F., 2016. Biology and impacts of pacific islands invasive species. 13. Mikania micrantha Kunth (Asteraceae) I. J. Pac. Sci. 70 (3), 257–285.

Dhir, B., Sharmila, P., Saradhi, P.P., 2004. Hydrophates lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Ayurat. Toxicol. 66, 141–147.

Dong, J., Wu, F.B., Zhang, G.P., 2005. Effect of cadmium on growth and photosynthesis of tomato seedlings. J. Zhejiang Univ. - Sci. 6, 974.

Fransen, G., 1981. Importance of Allelochemics in plant insect relations. In: The Ecology of Bruchidis Attacking Legumes (Pulses). Springer, Dordrecht, pp. 57–66.

Hernandez, S., Deleu, C., Larher, F., 2000. Proline accumulation by tomato leaf tissue in response to methanol and cadmium. J. Plant Physiol. 157, 107–113.

Huang, Y.L., Fang, X.T., Lu, L., Yan, Y.B., Chen, S.F., Hu, L., Shi, S.H., 2012. The effect of decomposing rice residues in soil. J. Chem. Ecol. 2, 353–367.

Ismail, B.S., Mah, L.S., 1993. Effects of Mikania micrantha HBK on germination and growth of weed species. Plant Sci. 93, 125–137.

Jyothilakshmi, M., Jyothi, M., Latha, M.S., 2015. Antidermatophytic activity of Mikania micrantha Kunth: an invasive weed. PharmacoL Res. 7, 520.
Tiwari, S., Siwaloti, M., Adhikari, B., Subedi, K., 2005. An Inventory Assessment of Invasive Alien Plant Species of Nepal. IUCN Nepal.
Turner, R.G., Marshall, C., 1972. The accumulation of zinc by subcellular fractions of roots of *Agrostis tenuis* Sibth. in relation to zinc tolerance. New Phytol. 71, 671–676.
Watanabe, M., Suzuki, T., 2002. Involvement of reactive oxygen stress in cadmium-induced cellular damage in *Euglena gracilis*. Comp. Biochem. Physio. Part C: Toxicol. Pharmacol. 131, 491–500.
Zhang, M., Ling, B., Kong, C., Zhao, H., Pang, X., 2002. Allelopathic potential of volatile oil from *Mikania micrantha*. J. Appl. Ecol. 13, 1300–1302.
Zheng, Y., Zheng, W., Lin, F., Zhang, Y., Yi, Y., Wang, R., Wu, W., 2011. AVR1-CO39 is a predominant locus governing the broad avirulence of *Magnaporthe oryzae 2539* on cultivated rice (*Oryza sativa* L.). Mol. Plant Microbe Interact. 24, 13–17.

Yildirim, E., Turan, M., Guvenc, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nutr. 31, 593–612.