High birth weight as an important risk factor for infant leukemia

S Koifman1, MS Pombo-de-Oliveira2,3 and The Brazilian Collaborative Study Group of Infant Acute Leukemia3

In this paper, we compared the birth weight distribution among 201 infant leukaemia (IL) cases with that of 440 noncancer controls enrolled in Brazil in 1999–2005. Compared with the general population and the stratum 2500–2999 g as reference, IL cases weighing 3000–3999 g presented an odds ratio (OR) of 1.68 (95% CI: 1.03–2.76), and those of 4000 g or more, an OR of 2.28 (95% CI: 1.08–4.75), P trend <0.01. Using hospital-based controls, the OR for 4000 g or more, compared to 2500–2999 g, was 1.30 (95% CI: 1.02–1.43) after adjusting for confounders (gender, income, maternal age, pesticide and hormonal exposure during pregnancy).

The results suggest that high birth weight is associated with increased risk of IL.

In this report, IL cases were included whenever birth weight data were available. Controls were children, matched for age strata and gender, with life-threatening conditions in the same hospitals as the cases, excluding malignancy. Data on birth weight were obtained from the health-care cards, regulated by the Brazilian National Health System.

Birth weight data from IL cases were either compared with hospital-based controls, or with population-based data relating to all births in the general population of Brazil in the year 2000, and consolidated by the Brazilian National Health System (Ministério da Saúde, 2007). We ascertained birth weight by gender, leukaemia type (ALL and AML) and MLL status. Crude and adjusted odds ratios (ORs), and their 95% confidence intervals, were ascertained for the birth weight strata (2500 g or less; 2500–2999 g; 3000–3499 g; 3500–3999 g; and 4000 g or more) adjusted for selected confounders (gender, income, maternal age, hormonal intake and pesticide exposure during pregnancy). The available national data on birth weight merged 3000–3499 g and 3500–3999 g strata, and this was followed with IL birth weight to allow the relevant comparisons. Statistical analyses were performed using unconditional logistic regression models, as described elsewhere (Pombo-de-Oliveira et al, 2006) and using the packages SSPS, version 13.5 (SPSS, Chicago, IL, USA). All collaborating institutions approved the BCSGIAL Study, and written consent was obtained for diagnostics procedures and for interviews with the mothers.

RESULTS

A total of 641 subjects, 201 cases (148 ALL and 53 AML) and 440 controls, stratified by age at diagnosis (0–12 versus 13–21 months), were enrolled in 1999–2005. The numbers of the main
clinical and laboratory data were same as described previously (Emerenciano et al, 2006), but eight AML cases were excluded due to lack of birth weight records. Eight cases, which were misclassified in the previous report as biphenotypic leukaemia with aberrant phenotype, were then categorized as ALL in the present analysis.

Low birth weight (< 2500 g) was found in 16 (8.0%) cases and in 74 (16.8%) controls. The comparison between IL and controls birth weight distributions showed that both ALL and AML weighed on average 3488 g at birth, compared with 3226 g among controls (P = 0.0002); median birth weights were 3310 and 3226 g for ALL and AML, respectively. Children with ALL had slightly higher birth weights than AML, while male infants were slightly heavier than female infants. The birth weight for male IL infants was 3349.2 g (s.d. = 49.6), with 95% CI: 3250.9 – 3447.5; for female IL infants, the birth weight was 3262.8 g (s.d. = 48.8), 95% CI: 3166.0 – 3359.7. Further stratification by age revealed minimal differences between the strata before or after 12 months of age at diagnosis of IL (data not shown). It should, however, be remarked that MLL status in the current study was unknown for a larger proportion of children with low birth weight.

Data were stratified according to MLL gene status (positive, negative and unknown). Mean birth weight in MLL-ve cases (n = 68) was 3340 g (s.d. = 64.85), while in MLL-ve cases (n = 80), it was 3310 g (s.d. = 51.2); the medians were 3310 and 3300 g, respectively.

The magnitude of the association with birth weight IL was also explored in increasing weight strata (Tables 1 and 2). Compared to birth weights 2500 – 2999 g, higher weights showed increased ORs for either ALL or AML regardless of the control, population or being hospital-based. Compared with the general population, ALL cases weighing 3000 – 3999 g showed an OR of 1.69 (95% CI: 1.03 – 2.76), and those weighing 4000 g or more, an OR of 2.28 (95% CI: 1.08 – 4.75; P = 0.001), with 95% CI: 3166.0 – 3359.7.

High birth weight as an important IL risk factor

Table 1

Birth weight (in g)	General population	IL	ALL	AML	MLL**	MLL**					
<2500	243835	16	1.52 (0.80–2.89)	11	1.50 (0.72–3.11)	5	1.59 (0.46–5.16)	6	1.56 (0.51–4.54)	3	0.61 (0.14–2.26)
2500–2999	696925	30	1.00	21	1.00	9	1.00	11	1.00	14	1.00
3000–3999	2036925	143	1.63 (1.08–2.47)	103	1.68 (1.03–2.76)	39	1.48 (0.64–3.28)	43	1.34 (0.67–2.75)	58	1.42 (0.77–2.66)
>3999	189476	13	1.59 (0.79–3.17)*	13	2.28 (1.08–4.75)*	0	—	8	2.68 (0.39–7.15)*	5	1.31 (0.41–3.89)*

ALL = acute lymphoblastic leukaemia; AML = acute myeloblastic leukaemia; CI = confidence interval; IL = infant leukaemia; OR = odds ratio. *χ² for trend = 4.60, P = 0.03. **χ² for trend = 6.66, P < 0.01; ***χ² for trend = 3.56, P = 0.059. +χ² for trend = 0.91, P = 0.34.

Table 2

Birth weight (in g)	Hospital-based controls	All IL	Adjusteda	ALL	Adjusteda	AML	Adjusteda			
<2500	74	16	0.87 (0.42–1.79)	0.88 (0.41–1.86)	11	0.86 (0.36–1.99)	0.99 (0.41–2.42)	5	0.91 (0.25–3.12)	0.74 (0.21–2.55)
2500–2999	121	30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
3000–3999	150	81	2.18 (1.31–3.63)	1.23 (1.04–1.46)	57	2.19 (1.18–2.93)	1.24 (1.02–1.50)	15	2.80 (1.08–7.36)	1.23 (0.98–1.55)*
>3999	72	62	3.47 (1.00–6.08)	1.29 (1.12–1.48)	46	3.68 (1.96–6.96)	1.30 (1.11–1.52)	15	2.80 (1.08–7.36)	1.23 (0.98–1.55)*

ALL = acute lymphoblastic leukaemia; AML = acute myeloblastic leukaemia; CI = confidence interval; IL = infant leukaemia; OR = odds ratio. Adjusted for sex, income, maternal age, pesticide exposure and hormonal intake during pregnancy; *χ² for trend = 5.51, P = 0.018. **χ² for trend = 16.70, P = 0.00004. +χ² for trend = 18.14, P = 0.00002.

DISCUSSION

Despite the many studies on childhood leukaemia and birth weight, few have focused on IL exclusively (Ross et al, 1997; Yeazel et al, 1997), which is in spite of the value of risk factors specifying the age group and the childhood leukaemia subtypes (Ma et al, 2005). The main strength of our study is probably the almost complete ascertainment of IL in all Brazil except the North region, Amazon.

In a population-based cohort, a positive linear relation was reported between birth weight, and childhood ALL and AML (Paltiel et al, 2004; Mclaughlin et al, 2006), more marked in AML among infants (hazard ratio = 8.14, 95% CI: 1.8 – 38.9 at age 0 – 1 years), being particularly strong among female infants (P = 0.001) (Paltiel et al, 2004). Among the variables included in this study, including maternal origin, socioeconomic status, birth weight of siblings higher than 3500 g and family size, only birth weight retained borderline significance (Paltiel et al, 2004). This association has been explored in the present study using different approaches, for IL ALL, AML and MLL status: according to a single weight cut-point, and also exploring the magnitude of association among subsequent birth weight strata. All approaches yielded results that suggested an association between high birth weight and IL.

In our study, low birth weight was more common among controls (16.8%) than IL cases (8.0%), which may have estimates of the magnitude of the association with birth weight (Figure 1). Comparisons with the general population were therefore important to control for bias in our hospital-based controls. In this connection, three different OR estimates with birth weight were obtained with the general population, providing unbiased estimates but without adjusting confounders, crude ORs using hospital controls and adjusted ORs using hospital controls.

Comparisons with the general population revealed an insignificantly increased trend in ORs between ALL and birth weight (Table 1) compared with children weighing 2500–2999 g at birth. Those weighing 3000–3999 g showed an OR of 1.69 at birth.
High birth weight as an important IL risk factor
S Kolman et al

Epidemiology

Figure 1 Birth weights (in g) strata distribution, IL cases, controls and the general population, Brazil.

(95% CI: 1.03 – 2.76), and those born with 4000 g or more, an OR of 2.28 (95% CI: 1.08 – 4.75), suggesting a dose–response effect (P < 0.01). A quite similar trend with a borderline statistical significance was also observed for MLL +ve cases (Table 1; P = 0.059).

Birth weight strata of hospital controls suggested a dose–response effect for IL, and also for AML and ALL subtypes after adjusting for certain confounders. For AML, discordant results have been reported with birth weight (Ross et al, 1997; Westergaard et al, 1997; Veazel et al, 1997; Hjalgrim et al, 2003). Despite no AML infants weighed more than 4000 g, suggestive dose–response trend was indeed observed.

With respect to the biological mechanisms underlying birth weight and IL development, one of the factor is hormone intake during pregnancy to induce abortion to the index pregnancy (Ou et al, 2002). In a previous report, we observed a high association between hormone intake during pregnancy and IL with an OR of 8.76, 95% CI: 2.85 – 26.93 (Pombo-de-Oliveira et al, 2006). Women used oral contraceptive pills in the belief that they caused miscarriage, because abortion is illegal in Brazil. Although it could be hypothesised that the association with birth weight was partly due to such hormonal intake during the pregnancy, inducing an increase in birth weight.

Although our results seem to point to an independent effect of birth weight, it has been suggested that rather than birth weight per se, the accelerated growth during pregnancy is the main process leading to IL (Milne et al, 2007). On the other hand, the United Kingdom Childhood Cancer Study has reported that babies who developed leukaemia were heavier at birth (> 4000 g, OR of 1.2, 95% CI: 1.0 – 1.4), as were their older siblings (> 4000 g, OR of 1.4, 95% CI: 1.0 – 1.9) (Roman et al, 2005). Other mechanisms suggested for the association with birth weight include the supposition that IL is initiated by aberrant gene fusions, mainly with MLL rearrangements (Ross et al, 1996a; Alexander et al, 2001). Interactions between high birth weight, prenatal oestrogen exposure and leukaemia risks have also been suggested (Ross et al, 1996a; Baik et al, 2005; Ross, 2006).

An association has recently been reported between ALL and birth weight among MLL +ve cases, but not among MLL –ve ones (Spector et al, 2007). In our study, a similar pattern was observed, with a borderline linear trend suggestive of a causal relationship. It has been suggested that insulin-like growth factor-1 (IGF-1) promotes a proliferative advantage to damaged cells (Ross et al, 1996a; Ross, 2006). The link between birth weight, steroid hormones and IGF-1 in pregnancy suggests that such hormones tend to increase the number of stem cells and, by extension, more proliferating immature cells are exposed to harmful events, and consequently become more susceptible to malignant transformation (Cavalieri et al, 1997; Boyne et al, 2003). Whether enhanced cell proliferation and genotoxic metabolites act jointly in an additive or synergistic fashion, resulting in expansion of clonal cells with gene fusion rearrangements, and clinical IL in high birth weight babies, warrants further investigation in experimental models.

ACKNOWLEDGEMENTS

This investigation was supported by the Brazilian National Research Council (CNPq), Instituto Nacional de Câncer-Fundação Ary Frazuino and the Swiss Bridge Foundation no. 2301504. SK and MSPO have scholarships from CNPq, Grants no. 307645/2004-5 and no. 308532/2003-1, respectively.

Conflict of interest

All authors disclose no financial and personal relationships with other people or organisations that could inappropriately influence this study.

REFERENCES

Alexander FE, Patheal AE, Sherry L, Biondi A, Brandalise S, Cabrera MH, Chan LC, Chen Z, Cimino G, Córdoa JC, Gu LG, Hussein H, Ishi E, Kamel AM, Labra S, Magalhães IQ, Mizutani S, Petridou E, Pombo-de-Oliveira M, Yeeu P, Wiemels J, Greaves MF (2001) Transplacental chemical exposure and risk of infant leukaemia with MLL gene fusion. Cancer Res 61: 2542 – 2546
Baik I, Devito WJ, Ballen K, Becker PS, Okulicz W, Liu Q, Delpapa E, Lagiou P, Sturgeon S, Trichopoulos D, Quenberry PJ, Hsieh CC (2005) Association of foetal hormones levels life roots of human cancer. Cancer Res 65: 358 – 363
Boynes SM, Thame M, Bennett FI, Osmond C, Mielli JP, Forrester TE (2003) The relationship among circulating insulin-like growth factor (IGF-1), IGF binding proteins-1 and -2, and birth anthropometry: a prospective study. J Clin Endocrinol Metab 88: 1687 – 1691
Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higinbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ramanathan R, Cerny RL, Rogan EG (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumour initiators. Proc Natl Acad Sci USA 94: 10937 – 10942
Emerenciano M, Arias DPA, Cova VM, Dantas G, Silva MLM, Pombo-de-Oliveira MS (2006) The molecular-cytogenetics findings of acute leukemia included in the Brazilian Collaborative Study Group of Infant Acute Leukemia. Pediatr Blood Cancer 47: 549 – 554
Felix CA, Lange BJ (1999) Leukemia in infants. Oncologist 4: 225 – 240
Hjalgrim LL, Westergaard T, Rostgaard K, Melbye M, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ross, 2006). Whether enhanced cell proliferation and genotoxic metabolites act jointly in an additive or synergistic fashion, resulting in expansion of clonal cells with gene fusion rearrangements, and clinical IL in high birth weight babies, warrants further investigation in experimental models.

British Journal of Cancer (2008) 98(3), 664 – 667 © 2008 Cancer Research UK
acute lymphocytic leukemia by immunophenotype (United States). Cancer Causes Control 13: 15–25
Paltiel O, Harlap S, Deutsch L, Knaanje A, Massalha S, Tirim E, Barchana M, Friedlander Y (2004) Birth weight and other risk factors for acute leukemia in Jerusalem Perinatal Study cohort. Cancer Epidemiol Biomarkers Prev 13: 1057–1064
Pombo-de-Oliveira MS, Koifman S, The Brazilian Collaborative Study Group of Infant Acute Leukemia (2006) Infant acute leukemia and maternal exposures during pregnancy. Cancer Epidemiol Biomarkers Prev 15: 2336–2341
Roman E, Simpson J, Ansell P, Lightfoot T, Mitchell C, Eden TOB, on behalf of the UKCC study investigator (2005) Perinatal and reproductive factors: a report on haematological malignancies from UKCCS. Eur J Cancer 41: 749–759
Ross JA (2006) High birthweight and cancer: evidence and implications. Cancer Epidemiol Biomarkers Prev 15: 1–2
Ross JA, Perentesis JP, Robison LL, Davies SM (1996a) Big babies and infant leukaemia a role for insulin-like growth factor-1. Cancer Causes Control 7: 553–559
Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL (1996b) Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children’s Cancer Group. Cancer Causes Control 7: 581–590
Ross AJ, Potter JD, Shu XO, Reaman GH, Lampkin B, Robison LL (1997) Evaluating the relationships among maternal reproductive history, birth characteristics, and infant leukaemia: a report from the Children’s Cancer group. Ann Epidemiol 7: 172–179
Spector LG, Davies SM, Robinson LL, Hilden JM, Rosler M, Ross JA (2007) Birth characteristics, maternal reproductive history, and the risk of infant leukemia: a report from Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev 16: 128–134
Westergaard T, Andersen PK, Pedersen JB, Olsen JH, Sorensen HT, Wohlfahrt J, Melbye M (1997) Birth characteristics, siblings’ patterns, and acute leukaemia risk in childhood: a population-based cohort study. J Natl Cancer Inst 89: 939–947
Yeazel MW, Ross JA, Buckley J, Woods WG, Ruccione K, Robison LL (1997) High birth weight and risk of specific childhood cancers: a report from the Children’s Cancer Group. J Pediatr 131: 671–677

APPENDIX

Brazilian Collaborative Study Group of Infant Acute Leukemia
Paulo Ivo C Araújo1, Jozina Aquino2, Jose Andréa Yunes3, Reinaldo Del Belo4, Ricardo Bigni5, Lilian Burlemaqui6, Tereza Cristina Cardoso, Maurício Dumond7, Fernando Augusto de Freitas8, Eni Guimarães Carvalho9, Virginia M Coser10, Maria Célia Moraes Guerra1, Maria Lucia Lee, Núbia Mendonça2, Isis Q Magalhães1, Flávia Pimenta4, Gilberto Ramos9, Terezinha JM Salles10, Edna Leite9, Carmen M Mendonça11, Flávia Nogueira2 and Fernando Werneck12
1Instituto de Pediatria e Puericultura Martagão Gesteira, UFRJ, Rio de Janeiro;
2Sociedade de Oncologia da Bahia, Salvador-Bahia;
3Centro Infantil de Investigações Hematológicas D Boldrini, Campinas, São Paulo;
4Centro de Pesquisa and Serviço de Hematologia, Instituto Nacional de Câncer, Rio de Janeiro;
5Hospital Martagão Gesteira, Salvador-Bahia;
6Departamento de Hematologia, Universidade de Santa Maria, Rio Grande do Sul;
7Hospital de Apoio Brasília, Unidade de Oncologia-Hematologia Pediatrícia, Brasília, DF;
8Hospital Nápolia de la Reina, João Pessoa, Paraíba;
9Departamento de Pediatria, Faculdade de Medicina, UFMG, Belo Horizonte, MG;
10Hospital Oswaldo Cruz, CEON, Recife, Pernambuco;
11Serviço de Oncologia do Hospital Joana de Gusmão Florianópolis, Santa Catarina;
12Departamento de Pediatria, Hospital dos Servidores do Estado do Rio de Janeiro, Rio de Janeiro

© 2008 Cancer Research UK
British Journal of Cancer (2008) 98(3), 664 – 667