Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Clinical advances and ongoing trials of mRNA vaccines for cancer treatment

Cathrine Lund Lorentzen, John B Haanen, Özcan Met, Inge Marie Svane

Years of research exploring mRNA vaccines for cancer treatment in preclinical and clinical trials have set the stage for the rapid development of mRNA vaccines during the COVID-19 pandemic. Therapeutic cancer vaccines based on mRNA are well tolerated, and the inherent advantage in ease of production, which rivals the best available conventional vaccine manufacture methods, renders mRNA vaccines a promising option for cancer immunotherapy. Technological advances have optimised mRNA-based vaccine stability, structure, and delivery methods, and multiple clinical trials investigating mRNA vaccine therapy are now enrolling patients with various cancer diagnoses. Although therapeutic mRNA-based cancer vaccines have not yet been approved for standard treatment, encouraging results from early clinical trials with mRNA vaccines as monotherapy and in combination with checkpoint inhibitors have been obtained. This Review summarises the latest clinical advances in mRNA-based vaccines for cancer treatment and reflects on future perspectives and challenges for this new and promising treatment approach.

Introduction
The COVID-19 pandemic has directed worldwide focus towards mRNA-based vaccines. Indeed, the foundation for the rapid COVID-19 vaccine development and production was based on years of research exploring mRNA vaccines as a therapeutic strategy against cancer in preclinical and clinical trials.1 mRNA brings several benefits to a vaccine setting (panel). Firstly, mRNA-based vaccines are well tolerated, easily degraded, and do not integrate into the host genome.2-4 Secondly, mRNA molecules are non-infectious, and mRNA vaccines have the potential to induce both humoral and cell-mediated immunity (figure).5,6 Lastly, the production of mRNA vaccines is fast and inexpensive.7

In 1996, the first mRNA-based cancer vaccine study tested dendritic cells pulsed with RNA in vitro.8 Nowadays, technological advances have led to optimised mRNA structure, stability, and delivery methods, and multiple clinical trials are now enrolling patients with cancer for mRNA-based vaccine treatments (tables 1, 2).9,10 mRNA vaccine administration routes include intra-dermal, subcutaneous, intranasal, intranodal, intramuscular, intratumoural, and intravenous delivery.9 The ex-vivo engineering of autologous dendritic cells with mRNA has been the method of choice for tumour antigen delivery, but most mRNA vaccine approaches focus on direct mRNA administration using lipid nanoparticulate formulation carriers (table 1).

The clinical efficacy and immunogenicity of mRNA vaccines have been evaluated across cancer diagnoses and administration methods (table 3). A few trials have reported durable objective responses in patients with cancer after mRNA-based vaccine treatment, without unmanageable toxic effects.11,12-19 mRNA vaccines are promising therapeutic candidates for future cancer treatments, especially in combination with additional immunotherapies.11-13,15 However, no phase 3 studies are ongoing, and, at the time of writing, the US Food and Drug Administration (FDA) has not yet approved a therapeutic mRNA-based cancer vaccine.20

This Review summarises the latest clinical advances in therapeutic mRNA-based cancer vaccines, with a focus on direct mRNA administration methods.

mRNA-based cancer vaccine trials
The aim of mRNA-based vaccination is to induce or boost an effective anti-tumour immune response.22 Synthetic mRNA encoding tumour-associated or tumour-specific antigens is delivered through autologous dendritic cells engineered with mRNA ex vivo or through formulated or non-formulated mRNA injections.23 After vaccination and cellular uptake by antigen-presenting cells, mRNA is transported to the cytoplasm and undergoes antigen processing and enters the MHC presentation cascade. Thus, antigen-presenting cells present tumour-associated antigens on MHC class I and MHC class II to activate CD8+ and CD4+ T cells. In addition, CD4+ T cells can co-activate antigen-specific B cells and induce a humoral immune response. B cells that function as antigen-presenting cells can conversely activate CD4+ T cells after internalisation of extracellular proteins and presentation on B cells’ MHC class II (figure).24

Several clinical trials (eg, NCT04534205, NCT03313778, and NCT04503278) are enrolling patients for various mRNA-based cancer vaccine therapy studies with the

Panel: Advantages of mRNA vaccines for the treatment of cancer

- Well tolerated: adverse events are generally manageable and transient
- No genome integration: eliminates the risk of insertional mutagenesis
- Non-infectious: no pathogenic viral agents are used
- Easily degraded: reduces risk of toxicity
- Humoral and cellular immunity: necessary for activating and sustaining anti-tumour responses
- Fast and inexpensive production: laboratory-based and cell-free production

Lancet Oncol 2022; 23: e450-58

This online publication has been corrected. The corrected version first appeared at thelancet.com/oncology on October 7, 2022

National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Hørlev, Denmark; (C L Lorentzen MD, O Met PhD, Prof I M Svane MD PhD); Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands (Prof J B Haanen MD PhD)

Correspondence to: Prof Inge Marie Svane, National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Hørlev 2730, Denmark; inge.marie.svane@regionh.dk

www.thelancet.com/oncology Vol 23 October 2022 e450
aim of inducing an mRNA-based anti-tumour response (tables 1, 2).

Non-formulated (naked) mRNA-based cancer vaccines

Naked or non-formulated mRNA vaccines contain mRNA molecules in a buffer solution. The non-formulated vaccines are administered either intradermally or intranodally. The administration of non-formulated mRNA intranodally enables the delivery of antigens to antigen-presenting cells at the actual location of T-cell activation, thereby avoiding the requirement for antigen-presenting cell migration. Several studies have shown that dendritic cells can take up intranodally injected non-formulated mRNA and induce potent anti-tumour T-cell responses.

Only a few clinical trials have treated patients with cancer with non-formulated mRNA vaccines in the past 5 years (table 3). In a phase 1 clinical trial, non-formulated mRNA vaccines were administered intranodally in 13 patients with stage III or IV melanoma with stable disease, partial response, or complete response after previous treatment. This neoepitope-targeting vaccine encoded a unique and individualised tumour mutation signature with ten selected neoepitopes for each patient. All patients developed T-cell responses against numerous vaccine-encoded neoepitopes, and vaccine-related clinical responses were observed in two (40%) of the five patients with stage IV melanoma. In a recently concluded phase 1 clinical trial (NCT03394937), 20 patients with resected melanoma (stages IIC, III, and IV) received an intranodally injected non-formulated mRNA vaccine (ECI-006). The vaccine included mRNAs encoding three dendritic cell-activating molecules (TriMix) and five tumour-associated antigens (table 3). In a second study cohort (NCT03394937), patients with metastatic melanoma with stable disease after 3–12 months of standard treatment received the ECI-006 vaccine in combination with standard anti-PD-1 therapy; results are not yet published. No clinical trials registered at ClinicalTrials.gov are currently recruiting patients for non-formulated mRNA cancer vaccine treatment.

Formulated mRNA-based cancer vaccines

Non-formulated mRNA is easily degraded by extracellular RNases. Consequently, several nanocarrier pharmaceutical systems, generally containing polymers such as peptides or lipids, have been developed to optimise mRNA preservation and facilitate mRNA uptake by antigen-presenting cells.

Protamine-formulated mRNA-based cancer vaccines

Protamines are positively charged polycationic peptides that form complexes with negatively charged mRNA and protect the molecules from degradation. Protamine-formulated mRNA vaccines have been evaluated in diverse clinical trials in the form of RNAActive vaccines. RNAActive vaccines incorporate nucleotide modified mRNA molecules complexed with protamine to enhance protein expression and immunogenicity. At the time of writing, no clinical trials registered at ClinicalTrials.gov are recruiting patients for protamine-formulated mRNA cancer vaccine studies.

An RNAActive vaccine encoding six prostate cancer-specific antigens (CV9104) was investigated in a placebo-controlled phase 1/2 study in patients with metastatic castration-resistant prostate cancer. The vaccine was clinically safe for the patients but did not improve overall survival and progression-free survival compared with the placebo.

The RNAActive immunisation technology was also investigated in a phase 1/2 dose-escalation trial in patients with non-small-cell lung cancer (NSCLC). Patients had reached stable disease after first-line therapy before receiving the protamine-formulated mRNA

Figure: mRNA-based vaccine mode of action

mRNA is taken up by antigen-presenting cells and peptides are loaded on MHC class I for antigen-specific CD8 T-cell activation. Extracellular proteins are cross-presented on MHC class I or loaded on MHC class II for CD4 T-cell activation. CD4 T cells can co-activate protein-specific B cells, and B cells can activate CD4 T cells after B-cell receptor-mediated antigen internalisation.

www.thelancet.com/oncology Vol 23 October 2022
vaccine (CV9201) encoding five NSCLC tumour-associated antigens. Seven patients with stage IIIb NSCLC and 39 patients with stage IV NSCLC received five intradermal injections of CV9201. The vaccines were well tolerated, and T-cell responses against at least one tumour-associated antigen were detected in 19 (63%) of 30 evaluable patients, but the therapy did not improve overall survival when compared with historical controls.13

A third phase 1b clinical trial evaluated an RNActive vaccine treatment in combination with local irradiation in patients with stage IV NSCLC. In this trial, RNActive encoding six tumour-associated antigens (CV9202; the five tumour-associated antigens used in CV9201 plus MUC-1) was administered to patients intradermally. The patients were divided into three strata according to their NSCLC pathology. Two of the three patient strata continued chemotherapy or tyrosine-kinase inhibitor treatment. The vaccine therapy was well tolerated, and CV9202 antigen-specific immunity was detected in 21 (84%) of 25 evaluable patients. One (3.8%) patient had a partial response and 12 (46.2%) of 26 evaluable patients reached stable disease across the three patient strata.14

The CV9202 vaccine was also evaluated in a recently completed two-arm phase 1/2 study (NCT03164772), in which patients with metastatic NSCLC received CV9202 in combination with either durvalumab (a PD-L1 antibody), or durvalumab plus tremelimumab (anti-CTLA-4 antibody); results are not yet published.
mRNA-based lipoplex vaccines

The mRNA lipoplex vaccine is a hybrid carrier combining a complex of mRNA with a polycationic component, within a lipid shell. Positively charged cationic lipids naturally form complexes with negatively charged mRNA and facilitate antigen-presenting cell endocytosis, and are therefore often used for the construction of lipoplexes. Ongoing mRNA lipoplex vaccine trials are listed in table 1. Clinical trial results are listed in table 3.

A phase 1 dose-escalation trial (NCT02410733) evaluated the safety and efficacy of an mRNA lipoplex vaccine (BNT111) encoding four melanoma tumour-associated antigens in patients with advanced melanoma expressing at least one of the four antigens. BNT111 was the first in the series of fixed combinations of shared cancer antigens (FixVac) mRNA vaccines that included a fixed combination of shared tumour-associated antigens. Immune responses against one or more tumour-associated antigens were detected in over 39 (75%) of 50 patients, and BNT111 induced both CD4+ and CD8+ T-cell responses. 17 patients received BNT111 plus standard anti-PD-1 therapy; six (35%) of these patients had a partial response and two (12%) patients

Table 2: mRNA-based dendritic cell cancer vaccines

Trial phase	Target antigen	Cancer type	Combination	Vaccine route of administration	Sponsor
NCT05000801	Not described	WT1, hTERT, and survivin-loaded dendritic cells	Acute myeloid leukaemia	With follow-up care	Not described
NCT01686334	2	WT1	Acute myeloid leukaemia	With follow-up care	Intradural
NCT02649829	1/2	WT1	Pleural mesothelioma	With standard therapy	Intradural
NCT04911621	1/2	WT1	High-grade glioma and diffuse intrinsic pontine glioma	With chemoradiation (with or without standard therapy)	Intradural
NCT02649382	1/2	WT1	Glioblastoma multiforme	With temozolomide	Intradural
NCT04157127	1	Pancreatic adenocarcinoma mRNA and lysate	Pancreatic adenocarcinoma	With standard therapy	Intradural
NCT00639639	1	Cytomegalovirus pp65-LAMP	Glioblastoma multiforme	With autologous lymphocyte transfer and Td	Intradural
NCT03688178	2 (randomised)	Cytomegalovirus pp65-FLAMP	Glioblastoma multiforme	With temozolomide, varilumab, and Td	Intradural
NCT04335890	1	Autologous tumour RNA with ga100, tyrosinase, PRAE, MAGE-A3, IDO, and different driver mutations	Uveal melanoma	With standard therapy	Intravenous
NCT02465268	2 (randomised)	HCMV pp65-shLAMP or pp65-FLAMP	Glioblastoma multiforme	With temozolomide, GM-CSF, and Td	Not described
NCT01995708	1	CT7, MAGE-A3, and WT1 (Langerhans-type dendritic cells)	Multiple myeloma	With standard treatment	Intradural
NCT01456104	1	Tp2 (Langerhans-type dendritic cells)	Melanoma	None	Not described
NCT01197625	1/2	hTERT, survivin, and mRNA from primary prostate cancer tissue	Prostate cancer	None	Not described
NCT0354571	2/3	hTERT, survivin, and mRNA from autologous tumour stem cells	Glioblastoma multiforme	With temozolomide	Intradural
NCT01983748	3 (randomised)	Autologous tumour RNA	Uveal melanoma	None	Intravenous
NCT03083054	1/2	WT1	Myelodysplastic syndromes, acute myeloid leukaemia	None	Not described
NCT04963413	1	Cytomegalovirus pp65-FLAMP	Glioblastoma multiforme	With temozolomide, GM-CSF, and Td	Not described
NCT03196575	1	TTRNA	Brainstem gliomas	With cyclophosphamide, fludarabine, temozolomide, TTRNA-xALT, autologous haematopoietic stem cells, GM-CSF, and Td	Intradural
NCT013626104	1/2	TTRNA	Medulloblastoma, neuroectodermal tumour	With TTRNA-xALT	Intradural

Trials with recruitment status: “not yet recruiting,” “recruiting,” and “active, not recruiting” were found on ClinicalTrial.gov with the search terms: “cancer” and “RNA, vaccine” on Feb 7, 2022, and through a PubMed search (see Search strategy and selection criteria panel). Td=tetanus-diphtheria toxoid vaccine. TTRNA=tumour mRNA-pulsed autologous dendritic cells. TTRNA-xALT=tumour-specific autologous lymphocyte transfer.

www.thelancet.com/oncology Vol 23 October 2022
reached stable disease. 25 patients were given single-agent BNT111, with three (12%) patients reaching partial response and seven (28%) patients reaching stable disease. FixVac BNT111 is being evaluated in a randomised phase 2 trial (NCT04526899), alone or in combination with the anti-PD-1 antibody cemiplimab, in patients with anti-PD-1-refractory or relapsed unresectable stage III and IV melanoma.

Multiple active clinical trials are assessing FixVac mRNA lipoplex vaccines. A phase 1/2, four-arm expansion trial (NCT04382898) is evaluating the cancer vaccine BNT112, encoding five tumour-associated antigens, alone or in combination with cemiplimab in patients with metastatic castration-resistant prostate cancer. The FixVac BNT113 encodes three ovarian-specific tumour-associated antigens and is being evaluated in a phase 1 study (NCT04163094), administered both before and in combination with adjuvant and neoadjuvant chemotherapies in patients with ovarian cancer. A randomised phase 2 clinical trial (NCT04534205) is evaluating the anti-human papillomavirus (HPV)-16-derived oncoprotein-encoding mRNA BNT113 in

Trial phase	Target antigen	Cancer type	Patients, n	Combination	Immune response	Clinical response
Non-formulated (naked)	An individualised tumour mutation signature with ten selected neoepitopes for each patient	Melanoma (stages III and IV)	13	None	T-cell responses against numerous vaccine neoepitopes	One (8%) patient had complete response and another patient (8%) had partial response
	CD40L, CD70, caTLR4, tumour-associated antigens: tyrosinase, gp100, MAGE-A3, MAGE-C2, and PRAME	Resected melanoma (stages IIC, III, and IV)	20	None	Vaccine-induced immune responses in four (40%) of ten patients (low dose) and three (33%) of nine patients (high dose)	Not reported
Protamine formulation						
NCT01817738	PSA, PSMA, PS, STEAP1, PAP, and MUC1	Metastatic castration-resistant prostate cancer	197	None	Not reported	No significant differences in progression-free survival
NCT00923312	MAGE-C1, MAGE-C2, NY-ESO-1, survivin, and ST4	Non-small-cell lung cancer (stages IIIb and IV)	46	None	T-cell responses against at least one tumour-associated antigen in 19 (63%) patients	No objective responses; progression-free survival and overall survival not improved
NCT01915524	MAGE-C1, MAGE-C2, NY-ESO-1, survivin, ST4, and MUC-1	Non-small-cell lung cancer (stage IV)	26	With local irradiation (with or without pemetrexed and with or without EGFR tyrosine-kinase inhibitor)	Detectable antigen-specific immunity in 21 (84%) patients	One (4%) patient had partial response in combination with chemotherapy treatment, and 12 (46%) patients had stable disease
Lipoplex formulation						
NCT02410733	NY-ESO-1, tyrosinase, MAGE-A3, and TPTE	Melanoma	25 (monotherapy), 17 (combination)	With or without standard PD-1 therapy	Immune responses against a minimum of one tumour-associated antigen in 39 (75%) patients	mRNA vaccine with anti-PD-1 therapy: six (35%) patients had partial response and two (12%) had stable disease; mRNA vaccine monotherapy: three (12%) patients had partial response, and seven (28%) had stable disease
NCT04503278	CLDN6 (CARVac)	Solid tumours (CLDN6 CAR T cells with CARVac)	7	With CLDN6 CAR T cells	Engraftment of CAR T cells in all patients	Four (57%) patients had partial response and one (14%) patient had stable disease at the 6-week evaluation
Lipid nanoparticle formulation						
NCT03480152	Neoantigen-specific mRNA	Gastrointestinal cancer	4	None	Mutation-specific CD4+ and CD8+ T-cell responses against predicted neoepitopes in three (75%) of four patients	No objective clinical responses
NCT03313778	Personalised cancer vaccine encoding several neoantigens	Solid tumours (resected)	13 (monotherapy), 19 (combination)	With pembrolizumab	Detectable neoantigen T-cell responses	Vaccine monotherapy: 12 patients were cancer-free on study treatment with a median follow-up of 8 months; combination treatment: one patient had complete response before vaccination, two patients had partial response, five patients had stable disease, five had disease progression, and two had unconfirmed disease progression

Table 3: A summary of the published results (2017–22) from mRNA cancer vaccine trials by type of formulation.
combination with the PD-1 inhibitor pembrolizumab in patients with HPV16-positive and PD-L1-positive head and neck squamous cell carcinoma. BNT113 is also being evaluated in a two-arm, phase 1/2 vaccine dose-escalation study (NCT03418480) in patients with previously treated HPV16-positive head and neck squamous cell carcinoma or advanced HPV16-positive head and neck squamous cell carcinoma. A fifth clinical trial (NCT05142189) is evaluating the FixVac vaccine BNT116 in combination with cemiplimab or docetaxel in a phase 1 study in patients with advanced or metastatic NSCLC.

In addition to FixVac vaccines, several studies are exploring the mRNA lipoplex vaccine platform called individualised neoantigen-specific immunotherapy (iNeST) or BNT122. iNeST includes mRNA lipoplex vaccines that encode individual tumour mutations, and the treatment is being evaluated in clinical trials across multiple solid tumour diagnoses (NCT03289962, NCT03815058, NCT04486378, and NCT0416755). iNeST is also being assessed in combination with another lipoplex-formulated mRNA encoding tumour-associated antigens (BNT114) and RNA encoding p53 in patients with triple-negative breast cancer (NCT02316457). Finally, an ongoing phase 1/2 clinical study (NCT04503278) is investigating a CLDN6-encoding mRNA lipoplex vaccine, CARvac, in patients with relapsed or refractory CLDN6-positive advanced solid tumours. CARVac is administered intravenously in combination with an autologous CLDN6 targeting CAR T-cell therapy, BNT211, and aims to improve CAR T-cell therapy. Early data showed that four (57%) of seven evaluable patients treated with CLDN6 CAR T-cell therapy and CARVac together had partial response and one (14%) patient had stable disease at the 6-week evaluation; ongoing responses were reported at the 12-week evaluation. Efficacy data showed no dose-limiting, drug-related serious adverse events in the evaluated patients. Manageable, low-grade cytokine release syndrome was observed in eight patients in total.16,17

mRNA-based dendritic cell cancer vaccines

Dendritic cells have been of particular interest in immune therapy approaches because of their unique ability not only to initiate immunity, but also to control and regulate the type of immune response, making them attractive candidates as vehicles for mRNA delivery.7,8 Over the past 30 years, research has focused on generating an ex-vivo population of antigen-loaded dendritic cells that are able to stimulate robust and long-lasting CD8+ and CD4+ T-cell responses in patients with cancer.9 Of note, though, is the current inability to fully recapitulate the development of immunopotent dendritic cells ex vivo for effective anti-tumour immune responses.40 Obtaining the source of dendritic cells and the ex-vivo manipulation of them in addition to antigen preparation and loading are laborious and time-consuming compared with the manufacture of formulated and non-formulated mRNA vaccines.41 Ongoing mRNA dendritic cell vaccine clinical trials are listed in table 2.

In general, mRNA-loaded dendritic cell vaccines induce modest T-cell responses and have low clinical efficacy.42 However, some studies suggest that the mRNA-based dendritic vaccines can prevent or delay disease relapse and potentially prolong overall survival.43,44 In the past 5 years of published trials, dendritic cell vaccines have been investigated in patients with various cancer diagnoses either as monotherapy or in combination with chemotherapy or immunotherapy. Patients with metastatic renal cell carcinoma were given dendritic cells loaded with amplified tumour RNA and mRNA encoding
CD40L in combination with the tyrosine-kinase inhibitor sunitinib in a phase 3 trial," however, the vaccine did not significantly improve patient survival. In a phase 2 trial,[4] patients with metastatic castration-resistant prostate cancer were given dendritic cells loaded with mRNA encoding tumour-associated antigens, but the vaccine did not significantly improve patient survival either. In a phase 2 trial, patients with advanced melanoma were given TriMix dendritic cells with tumour-associated antigen-encoding mRNA in combination with the anti-CTLA-4 antibody ipilimumab. Of the 39 treated patients, 15 (38%) reached either a partial response or a complete response with the combination therapy, but no direct comparison was made between responses to the two treatments.20 Patients with acute myeloid leukaemia in remission were vaccinated with dendritic cells loaded with a tumour-associated antigen-encoding mRNA. 5-year overall survival of the vaccinated patients compared favourably with historical controls, and prevention or delay of relapse was observed in 43% of patients.41 Finally, patients with glioblastoma multiforme were given dendritic cells loaded with mRNA encoding a cytomegalovirus antigen in different phase 1 clinical studies (eg, NCT00639639, NCT00626483, and NCT02529072). The choice of antigen was based on the high expression of cytomegalovirus proteins in glioblastomas. Trial results indicate long-lasting overall survival compared with non-transfected dendritic cell vaccines and historical controls.40–46 Six active clinical trials are evaluating mRNA-based dendritic cell vaccines in different treatment combinations in patients with glioblastoma multiforme (NCT03688178, NCT02465268, NCT00639639, NCT04963413, NCT02649582, and NCT03548571; table 2).

Challenges and future perspectives for mRNA-based cancer vaccines

The number of clinical trials with therapeutic mRNA cancer vaccines is rapidly expanding, taking advantage of recent research advances that have optimised mRNA delivery, simplified administration methods, and improved translational efficiency.2,3 Despite substantial progress, several challenges to mRNA vaccine immunogenicity and efficacy remain. Thus, one of the most important advances in therapeutic clinical cancer vaccines is the ability to identify individual cancer neoantigens. However, identifying tumour-specific mutations or non-conforming sequences and predicting corresponding neoepitopes for individual HLA alleles remains difficult.44–46 Furthermore, the technological and regulatory hurdles that will arise from the need for rapid and large-scale good manufacturing practice production of individualised mRNA vaccines are future obstacles that will need to be addressed.

Another challenge is to validate the most feasible vaccine administration methods. The administration route determines mRNA distribution and influences vaccine efficacy. mRNA that is injected intradermally and subcutaneously is easily processed by regional antigen-presenting cells, but the administrations often induce considerable local injection-site reactions.79 Intranasal administered mRNA reaches antigen-presenting cells in the peripheral lymph nodes, and intranodal injections reach lymphatic antigen-presenting cells directly, but the delivery methods are cumbersome and only allow for small injection volumes. The same limitations apply to intratumoural injections, and this administration route primarily aims to induce local inflammation with mRNA encoding co-activating molecules.53 Muscle tissue is highly vascularised, contains diverse immune cells for mRNA processing, and intramuscular injection induces fewer injection-site reactions in general. Intramuscular administration is, therefore, a common and feasible vaccination route, and the current approved mRNA SARS-CoV-2 vaccines are administered intramuscularly.52 Intravenous injections allow mRNA to reach numerous lymphoid organs, and this administration method has been shown to induce a robust CD8+ T-cell response compared with local injections.54–55 CD8+ T cells have a central role in anti-tumour responses, and intravenous injection is the most common direct administration route in active therapeutic mRNA cancer vaccine trials (table 1).

Most mRNA-based cancer vaccines are therapeutic rather than prophylactic, and require multiple administrations and substantial vaccine potency to induce a tumour response when given as monotherapy. Monotherapy mRNA-based vaccines could be an effective treatment for patients diagnosed with early-stage cancer or in an adjuvant setting, but it appears unlikely that the vaccines will succeed as a monotherapy treatment for advanced cancers because of challenges regarding the highly immunosuppressive tumour microenvironment of this setting.

Therapeutic mRNA cancer vaccines are more likely to succeed in combination with other immunotherapeutic treatment methods such as immune checkpoint inhibitors, oncolytic viruses, and adoptive cell therapy. Indeed, patients receiving these combinations show encouraging clinical treatment responses across cancer diagnoses.54–57 There is a need for new treatment combinations that increase response rates and progression-free survival without inducing severe side-effects, and an mRNA cancer vaccine with low toxicity is an obvious combination partner. Several trials are already combining mRNA vaccines with checkpoint inhibitors (tables 1–3). Moderna (MA, USA) has recently expanded its vaccine development programme with a new checkpoint-targeting cancer vaccine, mRNA-4359. The mRNA vaccine encodes indoleamine 2,3-dioxigenase and PD-L1 antigens, and will be administered to patients with NSCLC and advanced or metastatic cutaneous melanoma.58 In addition, BioNTech (Mainz, Germany) combines the mRNA-based FixVac platform with cemiplimab for patients with various cancer diagnoses...
The future for therapeutic mRNA-based cancer vaccines is promising. Many clinical trials of mRNA vaccines are still early phase studies, but the field is moving fast. For example, in November, 2021, BioNTech received a FDA Fast Track Designation for BNT111 in patients with stage III or IV melanoma on the basis of the phase 1 trial results listed in table 3 (NCT02410733).

Conclusion
The rapid development and worldwide approval of mRNA vaccines against SARS-CoV-2 have showcased the vast potential of mRNA technology. The response to the COVID-19 pandemic has leveraged data from years of research to improve the design of therapeutic mRNA cancer vaccines. Results from early clinical trials have shown only modest indications of clinical efficacy. However, with the optimisation of mRNA vaccine structure, stability, and delivery methods, and with the associated advantages of personalised preparations, low manufacturing costs, and the fast and scalable production required for a patient group that often experiences rapid disease progression (panel), mRNA vaccines are reaching their potential as a future crucial strategy for cancer treatment.

Contributors
CLL did the literature and clinical trial searches, created the tables and figure, and wrote the original draft. JBH, OM, and IMS contributed to the writing of the original draft and revisions.

Declaration of interests
IMS reports having lectured for or having had advisory board relationships with Bristol Myers Squibb, MSD, Sanofi, and Novartis; had advisory board relationships with Achilles Therapeutics, BioNTech, Bristol Myers Squibb, Ipsen, Iovance Bio, Instil Bio, MSD, Merck Serono, Neogene Therapeutics, Novartis, Pfizer, PoseAcel, Roche, Sanofi, and T-Knife; and holds stock options in Neogene Therapeutics, a company that is developing T-cell receptor gene modified T cells targeting neoantigens. The first neoantigen-specific T-cell receptor gene therapy for the treatment of solid cancers is planned for testing in a phase 1 clinical trial. Neogene Therapeutics has no interests in RNA vaccines. CLL and OM declare no competing interests.

References
1. Dolgan E. The tangled history of mRNA vaccines. Nature 2021; 597: 118–24.
2. Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008; 16: 1831–40.
3. Guan S, Rosenzecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 2017; 24: 133–43.
4. Thess A, Grund S, Mui BL, et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 2015; 23: 1456–64.
5. Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F. mRNA-based vaccines. Vaccines 2021; 9: 390.
6. Faghfuri E, Pourfarzi F, Faghfouri AH, Abboli Shadbad M, Hajjaqghzhadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2021; 21: 201–18.
7. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 2018; 17: 261–79.
8. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with mRNA are potent antigen-presentation cells in vitro and in vivo. J Exp Med 1996; 184: 465–72.
9. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6: 1078–94.
10. Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize polyclonal therapeutic immunity against cancer. Nature 2017; 547: 222–26.
11. Arance Fernandez AM, Baruain J-F, Vulteke C, et al. A phase I study (E011-MEL) of a TriMix-based mRNA immunotherapy (ECI-006) in resected melanoma patients: analysis of safety and immunogenicity. J Clin Oncol 2019; 37: 2641.
12. Stenzl A, Feyerabend S, Syndikus I, et al. Results of the randomized, placebo-controlled phase I/II trial of CV9104, an mRNA based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol 2017; 28: v408–09.
13. Sebastian M, Schröder A, Scheel B, et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIIB/IV non-small cell lung cancer. Cancer Immunol Immunother 2019; 68: 799–812.
14. Papachristoflou A, Hipp MM, Klinkhardt U, et al. Phase Ib evaluation of a self-advantaged protamine formulated mRNA-based active cancer immunotherapy, BI1136849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer 2019; 7: 18.
15. Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020; 585: 107–12.
16. Mackensen A, Koerence C, Haenen J, et al. BNT211: a phase I/Ii trial to evaluate the efficacy of CLLING CAR-T cells and vaccine-mediated in vivo expansion in patients with CLLDNG-positive advanced solid tumors. J Immunother Cancer 2021; 9: A1008.
Mol Ther patients. 990–99. 2011; immune responses and induce clinical benefit in vaccinated Immunity 2018; with a virus-derived nanoparticle antigen. 14: Expert Rev Vaccines 2015; initiate class switching in a primary T-dependent response. J Immunol 1998; mRNA-1273 SARS-CoV-2 vaccine. 2021; delivery. mRNA messenger: advances in technologies for therapeutic mRNA delivery of genes. J Control Release 116: 86: 1989; 2017; 125: 81–89. anti-tumor immunity of mRNA-based vaccination. Biomaterials 2263–76. 2013; 9: 2016; mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2015; 221–34. mRNA vaccine for cancer 2015; 4: 7. Hong S, Zhang Z, Liu H, et al. B cells are the dominant antigen-presenting cells that activate naïve CD4+ T cells upon immunization with a virus-derived nanoparticle antigen. Immunity 2018; 49: 695–708.e4. Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011; 19: 990–99. Diken M, Kreiter S, Selmi A, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011; 18: 702–08. Tsui NBY, Ng EKO, Lo YMD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 2002; 48: 1647–53. Midoux P, Pichot C. Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines 2015; 14: 223–34. Reichnuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016; 7: 319–34. Zeng C, Zhang C, Walker PG, Dong Y. Formulation and delivery technologies for mRNA vaccines. Curr Top Microbiol Immunol 2020; 2: 1–40. Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive®(S) vaccines. Hum Vaccin Immunother 2013; 9: 2263–76. Persano S, Guevara ML, Li Z, et al. Lipopolysaccharide potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials 2017; 125: 81–89. Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 1989; 86: 6077–81. Wasungu L, Hookstra D. Cationic lipids, lipopolysaccharide and intracellular delivery of genes. J Control Release 2006; 116: 255–64. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther 2019; 27: 710–28. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020; 383: 2603–15. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384: 403–16. Wykes M, Pornho A, Jenkins C, MacPherson GG. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J Immunol 1998; 161: 1313–19. Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2015; 14: 161–76.