On Relating Edges in Graphs without Cycles of Length 4

Vadim E. Levit and David Tankus
Department of Computer Science and Mathematics
Ariel University Center of Samaria, ISRAEL
{levitv, davidta}@ariel.ac.il

Abstract

An edge \(xy \) is relating in the graph \(G \) if there is an independent set \(S \), containing neither \(x \) nor \(y \), such that \(S \cup \{x\} \) and \(S \cup \{y\} \) are both maximal independent sets in \(G \). It is an \(\text{NP} \)-complete problem to decide whether an edge is relating \([1]\). We show that the problem remains \(\text{NP} \)-complete even for graphs without cycles of length 4 and 5. On the other hand, for graphs without cycles of length 4 and 6, the problem can be solved in polynomial time.

1 Introduction

Throughout this paper \(G = (V, E) \) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set \(V = V(G) \) and edge set \(E = E(G) \).

Let \(S \subseteq V \) be a set of vertices, and let \(i \in \mathbb{N} \). Then

\[
N_i(S) = \{ w \in V | \min_{s \in S} d(w, s) = i \},
\]

where \(d(x, y) \) is the minimal number of edges required to construct a path between \(x \) and \(y \). If \(i \neq j \) then \(N_i(S) \cap N_j(S) = \emptyset \). If \(S = \{v\} \) for some \(v \in V \), then \(N_i(\{v\}) \) is abbreviated to \(N_i(v) \).

A set of vertices \(S \subseteq V \) is independent if for every \(x, y \in S \), \(x \) and \(y \) are not adjacent. It is clear that an empty set is independent. The independence number of \(G \), denoted by \(\alpha(G) \), is the cardinality of the maximum size independent set in the graph.

A graph is well-covered if every maximal independent set has the same cardinality, \(\alpha(G) \).

Let \(T \subseteq V \). Then \(S \) dominates \(T \) if \(S \cup N_1(S) \supseteq T \). If \(S \) and \(T \) are both empty, then \(N_1(S) = \emptyset \), and therefore \(S \) dominates \(T \). If \(S \) is a maximal independent set of \(G \), then it dominates the whole graph.

Two adjacent vertices, \(x \) and \(y \), in \(G \) are said to be related if there is an independent set \(S \), containing neither \(x \) nor \(y \), such that \(S \cup \{x\} \) and \(S \cup \{y\} \) are both maximal independent sets in the graph. If \(x \) and \(y \) are related, then \(xy \) is a relating edge. To decide whether an edge in an input graph is relating is an \(\text{NP} \)-complete problem \([1]\).

Theorem 1.1 \([1]\) The following problem is \(\text{NP} \)-complete:

Input: A graph \(G = (V, E) \), and an edge \(xy \in E \).
Question: Is \(xy \) a relating edge in \(G \)?
In [1], Brown, Nowakowski and Zverovich investigate well-covered graphs with no cycles of length 4. They denote the set of such graphs by $WC(\hat{C}_4)$, and prove the following.

Theorem 1.2 [1] Let $G \in WC(\hat{C}_4)$. If xy is an edge in G, but x and y are not related, then $G - xy$ is well-covered and $\alpha(G) = \alpha(G - xy)$.

In this paper we continue the investigation of the structure of graphs with no cycles of length 4. We denote the set of graphs without cycles of sizes k and l by $G(\hat{C}_k, \hat{C}_l)$. We prove that Theorem 1.1 holds even for the case, where the input graph does not contain cycles of length 4 and 5, i.e., $G \in G(\hat{C}_4, \hat{C}_5)$. On the other hand, if the input graph does not contain cycles of length 4 and 6, i.e., $G \in G(\hat{C}_4, \hat{C}_6)$, then the problem of identifying relating edges turns out to be polynomial.

The fact that identifying relating edges is NP-complete for the input restricted to $G(\hat{C}_4, \hat{C}_5)$ is important, because the analogous problem concerning well-covered graphs is known to be polynomial [5].

Theorem 1.3 [2] The following problem can be solved in polynomial time:

Input: A graph $G \in G(\hat{C}_4, \hat{C}_5)$.

Question: Is G well-covered?

2 Main Results

Let $X = \{x_1, ..., x_n\}$ be a set of 0-1 variables. We define the set of literals L_X over X by $L_X = \{x_i, \overline{x_i} : i = 1, ..., n\}$, where \overline{x} is the negation of x. A truth assignment to X is a mapping $t: X \rightarrow \{0, 1\}$ that assigns a value $t(x_i) \in \{0, 1\}$ to each variable $x_i \in X$. We extend t to L_X by putting $t(\overline{x}) = \overline{t(x_i)}$. A literal $l \in L_X$ is true under t if $t(l) = 1$. A clause over X is a conjunction of some literals of L_X. Let $C = \{c_1, ..., c_m\}$ be a set of clauses over X. A truth assignment t to X satisfies a clause $c_j \in C$ if c_j involves at least one true literal under t.

SAT is a well-known NP-complete problem [6]. It is defined as follows.

Input: A set of variables $X = \{x_1, ..., x_n\}$, and a set of clauses $C = \{c_1, ..., c_m\}$ over X.

Question: Is there a truth assignment to X which satisfies all clauses of C?

Theorem 2.1 The following problem is NP-complete:

Input: A graph $G = (V, E) \in G(\hat{C}_4, \hat{C}_5)$, and an edge $xy \in E$.

Question: Is xy a relating edge in G?

Proof. Clearly, the problem is in NP. We use a polynomial time reduction from SAT. Let $(X = \{x_1, ..., x_n\}, C = \{c_1, ..., c_m\})$ be an instance of SAT. We construct a graph $G = G_{X,C}$ as follows (see Figure 1).

The vertex set of G contains:

- Two vertices, x and y.
- A set $T = \{x_i, t_i, f_i : 1 \leq i \leq n\}$.
- A set $C = \{c_j : 1 \leq j \leq m\}$.
• A set \(I_T = \{ t_{i,j} : 1 \leq i \leq n, 1 \leq j \leq m, x_i \text{ appears in } c_j \} \).
• A set \(I_F = \{ f_{i,j} : 1 \leq i \leq n, 1 \leq j \leq m, \overline{x_i} \text{ appears in } c_j \} \).

The edge set of \(G \) contains:
• The edge \(xy \).
• All edges \(yx_i \), for \(1 \leq i \leq n \).
• All triangles \((x_i, t_i, f_i) \), for \(1 \leq i \leq n \).
• An edge \(t_i f_{i,j} \), if \(x_i \text{ appears in } c_j \), for \(1 \leq i \leq n \) and \(1 \leq j \leq m \).
• An edge \(f_i t_{i,j} \), if \(\overline{x_i} \text{ appears in } c_j \), for \(1 \leq i \leq n \) and \(1 \leq j \leq m \).
• An edge \(t_{i,j} c_j \), if \(x_i \text{ appears in } c_j \), for \(1 \leq i \leq n \) and \(1 \leq j \leq m \).
• An edge \(f_{i,j} c_j \), if \(x_i \text{ appears in } c_j \), for \(1 \leq i \leq n \) and \(1 \leq j \leq m \).
• All edges \(xc_j \), for \(1 \leq j \leq m \).

![Figure 1: The structure of the graph \(G_{X,C} \).](image)

The graph \(G \) does not contain cycles of length 4 and 5. We show that \(xy \) is a relating edge in \(G \) if and only if \((X, C) \) has a satisfying truth assignment.

Let \(\Phi \) be a satisfying truth assignment for \((X, C) \). Define \(S = \{ t_i, t_{i,j} : \Phi(x_i) = 1 \} \cup \{ f_i, f_{i,j} : \Phi(x_i) = 0 \} \). Clearly, \(S \) is independent. The fact that \(\Phi \) is a satisfying truth assignment implies that \(S \) dominates \(C \). Hence, \(S \cup \{ x \} \) and \(S \cup \{ y \} \) are both maximal independent sets in \(G \), and \(xy \) is a relating edge.
Conversely, assume \(xy \) is a relating edge. Let \(S \) be an independent set, such that \(S \cup \{x\} \) and \(S \cup \{y\} \) are both maximal independent sets in \(G \). Clearly, \(S \) does not contain vertices of \(C \cup \{x_1, \ldots, x_n\} \). Hence, for each \(1 \leq i \leq n \) exactly one of \(t_i \) and \(f_i \) belongs to \(S \). If \(t_i \in S \) then \(t_{i,j} \in S \) for each possible \(j \). If \(f_i \in S \) then \(f_{i,j} \in S \) for each possible \(j \). Define a truth assignment \(\Phi \): If \(t_i \in S \) then \(\Phi(x_i) = 1 \), else \(\Phi(x_i) = 0 \), for every \(1 \leq i \leq n \). The fact that \(C \) is dominated by \(S \) implies that every clause of \(C \) involves a true literal. Therefore, \(\Phi \) is a satisfying truth assignment for \((X, C)\).

Theorem 2.2 The following problem can be solved in polynomial time:

Input: A graph \(G = (V, E) \in \mathcal{G}(\hat{C}_4, \hat{C}_6) \), and an edge \(xy \in E \).

Question: Is \(xy \) a relating edge in \(G \)?

Proof. For every \(v \in \{x, y\} \), let \(u = \{x, y\} - \{v\} \), and define:
\[
M_1(v) = N_1(v) \cap N_2(u), \quad M_2(v) = N_1(M_1(v)) - \{v\}.
\]

The vertices \(x \) and \(y \) are related if and only if there exists an independent set in \(M_2(x) \cup M_2(y) \) which dominates \(M_1(x) \cup M_1(y) \).

The fact that the graph does not contain cycles of length 6 implies the following 3 conclusions:

- There are no edges which connect vertices of \(M_2(x) \) with vertices of \(M_2(y) \).
- The set \(M_2(x) \cap M_2(y) \) is independent.
- There are no edges between \(M_2(x) \cap M_2(y) \) and other vertices of \(M_2(x) \cup M_2(y) \).

Hence, if \(S_x \subseteq M_2(x) \) and \(S_y \subseteq M_2(y) \) are independent, then \(S_x \cup S_y \) is independent, as well. Therefore, it is enough to prove that one can decide in polynomial time whether there exists an independent set in \(M_2(v) \) which dominates \(M_1(v) \), where \(v \in \{x, y\} \).

Let \(v \) be any vertex in \(\{x, y\} \). Every vertex of \(M_2(v) \) is adjacent to exactly one vertex of \(M_1(v) \), or otherwise the graph contains a \(C_6 \). Every connectivity component of \(M_2(v) \) contains at most 2 vertices, or otherwise the graph contains either a \(C_4 \) or a \(C_6 \). Let \(A_1, \ldots, A_k \) be the connectivity components of \(M_2(v) \).

Define a flow network \(F_v = \{G_F = (V_F, E_F), s \in V_F, t \in V_F, w : E_F \to R\} \) as follows.

Let \(V_F = M_1(v) \cup M_2(v) \cup \{a_1, \ldots, a_k, s, t\} \), where \(a_1, \ldots, a_k, s, t \) are new vertices, \(s \) and \(t \) are the source and sink of the network, respectively.

The directed edges \(E_F \) are:

- the directed edges from \(s \) to each vertex of \(M_1(v) \);
- all directed edges \(v_1v_2 \) s.t. \(v_1 \in M_1(v) \), \(v_2 \in M_2(v) \) and \(v_1v_2 \in E \);
- the directed edges \(aw_i \), for each \(1 \leq i \leq k \) and for each \(v \in A_i \);
- the directed edges \(a_it \), for each \(1 \leq i \leq k \).

Let \(w \equiv 1 \). Invoke any polynomial time algorithm for finding a maximum flow in the network, for example Ford and Fulkerson’s algorithm. Let \(S_v \) be the set of vertices in \(M_2(v) \) in which there is a positive flow. Clearly, \(S_v \) is independent. The maximality of \(S_v \) implies that \(|M_2(v) \cap N_1(S_v)| \geq |M_2(v) \cap N_1(S_v')| \), for any independent set \(S_v' \) of \(M_2(v) \).

Let us conclude the proof with the recognition algorithm for relating edges.
For each $v \in \{x, y\}$, build a flow network F_v as described above, and find a maximum flow. Let S_v be the set of vertices in $M_2(v)$ in which there is a positive flow. If S_v does not dominate $M_1(v)$ the algorithm terminates announcing that x and y are not related. Otherwise, let S be any maximal independent set of $G - \{x, y\}$ which contains $S_x \cup S_y$. Each of $S \cup \{x\}$ and $S \cup \{y\}$ is a maximal independent set of G, and x, y are related.

This algorithm can be implemented in polynomial time: One iteration of Ford and Fulkerson’s algorithm includes:

- Updating the flow function. (In the first iteration the flow is equal to 0.)
- Constructing the residual graph.
- Finding an augmenting path, if exists. It is worth mentioning that the residual capacity of every augmenting path equals 1.

Each of the above can be implemented in $O(|V| + |E|)$ time. In each iteration the number of vertices in $M_2(v)$ with a positive flow increases by 1. Therefore, the number of iterations can not exceed $|V|$, and Ford and Fulkerson’s algorithm terminates in $O(|V|(|V| + |E|))$ time. Our algorithm invokes Ford and Fulkerson’s algorithm twice, and terminates in $O(|V|(|V| + |E|))$ time.

3 Conjectures

Our main conjecture reads as follows.

Conjecture 3.1 For every integer $k \geq 7$, the following recognition problem is NP-complete.

Input: A graph $G = (V, E) \in \mathcal{G}(C_4, \hat{C}_k)$, and an edge $xy \in E$.

Question: Is xy a relating edge in G?

References

[1] J. I. Brown, R. J. Nowakowski, I. E. Zverovich, *The structure of well-covered graphs with no cycles of length 4*, Discrete Mathematics *307* (2007) 2235 – 2245.

[2] Y. Caro, N. Ellingham, G. F. Ramey, *Local structure when all maximal independent sets have equal weight*, SIAM Journal on Discrete Mathematics *11* (1998) 644-654.

[3] Y. Caro, A. Sebő, M. Tarsi, *Recognizing greedy structures*, Journal of Algorithms *20* (1996) 137-156.

[4] A. Finbow, B. Hartnell, R. Nowakowski, *A characterization of well-covered graphs of girth 5 or greater*, Journal of Combinatorial Theory Ser. B. *57* (1993) 44-68.

[5] A. Finbow, B. Hartnell, R. Nowakowski *A characterization of well-covered graphs that contain neither 4- nor 5-cycles*, Journal of Graph Theory *18* (1994) 713-721.

[6] M. R. Garey, D. S. Johnson, *Computers and Intractability: A guide to the theory of NP-completeness*, A series of books in the mathematical sciences, ed. Victor Klee, Bell Laboratories, Murray Hill, New Jersey, W.H. Freeman and Company, New York (1979).
[7] D. Tankus, M. Tarsi, *Well-covered claw-free graphs*, Journal of Combinatorial Theory Ser. B. **66** (1996) 293-302.

[8] D. Tankus, M. Tarsi, *The structure of well-covered graphs and the complexity of their recognition problems*, Journal of Combinatorial Theory Ser. B. **69** (1997) 230-233.