Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3,3-di(indolyl)indolin-2-ones

Mardi Santosoa,*, Li Lin Ongb,c, Nur Pasca Aijijiyah a, First Ambar Watia a, Azminah Azminahd, Rose Malina Annuura, Arif Fadlan a, Zaher M.A. Judehe, c

a Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
b School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-14, 637459, Singapore
c NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Research Techno Plaza, XFrontiers Block, #02-07, 50 Nanyang Drive, 637553, Singapore
d Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, 60284, Indonesia
e Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

ARTICLE INFO

Keywords:
3,3-Di(indolyl)indolin-2-ones
Diabetes
α-glucosidase inhibition
α-amylase inhibition
Docking studies

ABSTRACT

The synthesized 3,3-di(indolyl)indolin-2-ones 1a–p showed desired higher α-glucosidase inhibitory activities and lower α-amylase inhibitory activities than standard drug acarbose. Particularly, compound 11 showed favorable higher α-glucosidase % inhibition of 67 ± 13 and lower α-amylase % inhibition of 51 ± 4 in comparison to acarbose with % inhibition activities of 19 ± 5 and 90 ± 2, respectively. Docking studies of selected 3,3-di(indolyl)indolin-2-ones revealed key interactions with the active sites of both α-glucosidase and α-amylase, further supporting the observed % inhibitory activities. Furthermore, the binding energies are consistent with the % inhibition values. The results suggest that 3,3-di(indolyl)indolin-2-ones may be developed as suitable Alpha Glucosidase Inhibitors (AGIs) and the lower α-amylase activities should be advantageous to reduce the side effects exhibited by commercial AGIs.

1. Introduction

Diabetes mellitus is a metabolic disease associated with high levels of sugars in the blood (hyperglycemia) [1]. Diabetes Type 1 accounts for ~10% and occurs in patients whose pancreas is not able to produce enough insulin. Type 2 diabetes accounts for ~90% and occurs when the body cannot use the secreted insulin effectively [2, 3]. Diabetes causes severe problems including cardiovascular diseases, nephropathy, neuropathy, retinopathy, etc [2, 3].

There are several approaches to control hyperglycemia in the blood each with its advantages and disadvantages. Such approaches mainly enhance insulin availability or remove sugar more effectively [1, 2]. An effective approach to limit the amount of sugar entering the bloodstream is to uses α-glucosidase inhibitors (AGIs) [4] which inhibit the α-glucosidase enzyme. Unfortunately, commercial AGIs cause undesirable strong inhibition of α-amylase enzymes and are associated with severe side effects. α-Amylase enzymes in the saliva and pancreatic juices hydrolyze α-1,4-glycosidic bonds of starch to simpler dextrins, disaccharides, and oligosaccharides [5, 6]. As the food travels to the small intestine, the brush border cells of the epithelium secretes α-glucosidases enzymes which hydrolyze disaccharides and oligosaccharides giving α-D-glucose that pass to the bloodstream [7]. Consequently, inhibition of α-glucosidase limits the amount of α-D-glucose that passes to the bloodstream [8]. Current commercial AGI drugs represented by Acarbose, Miglitol, and Voglibose are effective inhibitors of α-glucosidase. However, they cause flatulence, diarrhea, bloating, abdominal pain, and discomfort [4]. It is thought that the side-effects result from fermentation of undigested carbohydrates due to strong inhibition of α-amylase [9]. Therefore, it is desirable to design new selective AGIs having strong inhibition of α-glucosidase and low inhibition of α-amylase.

Indole-based compounds are abundant in the plant kingdom and show many bioactivities including antimalarial [10], antifungal [11], anticancer [12], antibacterial [12], anti-diabetic [13], anti helminthic [14] activities. Several indole-based drugs such as Sunitinib, indolidan, dela verdine, indomethacin, indoxole, and vinblastine are marketed for the treatment of various diseases while others are at various stages of clinical trials [15, 16, 17].

* Corresponding author.
E-mail addresses: ts09@chem.its.ac.id, ts09@yahoo.com (M. Santosos).

https://doi.org/10.1016/j.heliyon.2022.e09045
Received 6 June 2021; Received in revised form 3 August 2021; Accepted 1 March 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Oxindoles also exhibit many activities including antiviral, antimicrobial, antifungal, anticancer, anti-inflammatory, antihypertensive, serotonergic, analgesic and sleep-inducing activities [17]. Oxindoles of the 3,3-di(indoly)indolin-2-ones type (Scheme 1) show antidiabetic [18], antimicrobial [19], anticancer [20], and spemidial [21] activities. Recently, Wang and co-workers [18] reported promising \(\alpha \)-glucosidase inhibition activities of several 3,3-di(indoly)indolin-2-ones. However, the authors did not examine the \(\alpha \)-amylase inhibition activities pro of several 3,3-di(indoly)indolin-2-ones. Therefore, at this stage, the overall inhibitory activity profile of 3,3-di(indoly)indolin-2-ones remains unclear.

Herein, we report the synthesis of diverse 3,3-di(indoly)indolin-2-ones and examine their \(\alpha \)-glucosidase and \(\alpha \)-amylase inhibition activities to provide a clear understanding of their overall inhibition effectiveness. To complement our study, we also report molecular docking studies to elucidate the mechanism of action of these compounds.

2. Materials and methods

The starting materials, solvents, and reagents were purchased from Sigma-Aldrich, Merck, and Fluka, and were used without further purification unless stated. Thin-layer chromatography was performed on Merck 0.20 mm precoated silica gel aluminum plates (Kieselgel 60, F254) and examined under UV light. 1H and 13C NMR spectra were recorded using Jeol JNM-ECA300 (300 MHz), Jeol JNM-ECS400 (400 MHz), Bruker Avance DPX 300 (300 MHz), or Hitachi R-1900 FT NMR (90 MHz). 1H NMR spectra were recorded at 270 MHz on Jeol JNM-ECA300 (300 MHz), 100 MHz on Jeol JNM-ECS400 (400 MHz), and 75.47 MHz on a Bruker Avance DPX 300. Mass spectra were obtained using a Xevo G2-XS QToF, Hitachi QP-5000, or Waters LCT Premier XE instrument.

2.1. Chemistry

2.1.1. General procedure for the synthesis of 3,3-di(indoly)indolin-2-one

A solution of the isatin or its alkyl derivative and indole or its alkyl derivative in methanol (~100 ml per 1g of isatin) was treated with a catalytic amount of BF\(_3\) or H\(_2\)SO\(_4\) (2–3 drops per 1 g of isatin) and stirred at 40–60 °C for 1–2 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with ice-cold water (50 ml per 1 g of isatin). The resulting precipitates were filtered under vacuum, washed with an excess of ice-cold water (3 x 50 ml), and then were dried under vacuum to give the pure product. This general procedure was used to prepare 3,3-di(indoly)indolin-2-one derivatives (1a-1c, 1f, 1-1p).

3,3-Di(1H-indole-3-yl)indolin-2-one (1a): Isatin (0.30 g, 2.04 mmol) and indole (0.47 g, 4.00 mmol) reacted to give 1a as white powder, 0.71 g, 97% yield), m.p. 320–321 °C (lit [22]. 317–319 °C). \(\alpha \) NMR (90 MHz, DMSO-d\(_6\)): \(\delta \) 6.70–7.40 (m, 14H). 10.54 (s, 2H), 10.91 (s, 1H). Mass spectrum (EI): \(m/z \) 363 (M, 80%), 334 (100%), 247 (10), 219 (50).

3,3-Di(1H-indole-3-yl)indolin-2-one (1b): Isatin (0.25 g, 1.70 mmol) and 1-methylindole (0.44 g, 3.35 mmol) reacted to give 1b as white powder (0.58 g, 88% yield), m.p. 329–330 °C (lit [23]. 330–332 °C). \(\alpha \) NMR (90 MHz, CD\(_3\)SO\(_2\)CO): \(\delta \) 3.76 (s, 6H), 6.74–7.45 (m, 14H), 9.45 (bs, 1H). Mass spectrum (EI): \(m/z \) 392 (M+1, 10%), 391 (M, 60), 376 (5), 362 (100), 233 (20).

Reagents and conditions: (i) BF\(_3\) or H\(_2\)SO\(_4\), MeOH, 2 h, 40–60 °C; (ii) Mel, or EtI or Me\(_2\)SO\(_4\), KOH, DMSO, 2 h, 0 °C to r.t.

Scheme 1. Synthesis of 3,3-di(indoly)indolin-2-ones 1a-1p.
3,3-Di(1H-indole-3-yl)-1-benzyl-5-nitroindolin-2-one (1l): 1-Benzyl-5-nitroisatin (0.070 g, 0.25 mmol) and 1-methylindole (0.060 g, 0.51 mmol) reacted to give 1l as a yellow solid (0.10 g, 9% yield), m.p. 219–219°C (lit [23]. 232–234°C).1H NMR (CDCl3): δ 3.32 (s, 3H), 3.66 (s, 6H), 6.82–7.48 (m, 14H). Mass spectrum (EI): m/z 406 (M+–1, 30%), 405 (M, 100), 390 (10), 376 (90), 275 (40), 247 (70), 233 (20).

3,3-Di(1-ethyl-1H-indole-3-yl)-1-ethylindolin-2-one (1e): A mixture of 1e (0.10 g, 0.24 mmol) and KOH (0.066 g, 1.18 mmol) in anhydrous DMSO (10 mL) reacted with ethyl iodide (0.04 mL, 0.48 mmol) to give 1e as white solid (0.10 g, 91% yield), m.p. 169–170°C (lit [27]. 272–274°C).1H NMR (CDCl3): δ 1.23–1.29 (m, 9H), 3.83 (q, J = 6.0 Hz, 2H), 4.13 (q, J = 6.0 Hz, 4H), 6.83 (t, J = 9.0 Hz, 2H), 6.92 (s, 2H), 6.98–7.10 (m, 3H), 7.17–7.27 (m, 3H), 7.32 (d, J = 6.0 Hz, 2H), 7.43 (d, J = 9.0 Hz, 2H). Mass spectrum (EI): m/z 448 (M+–1, 30%), 447 (M, 100), 418 (75), 404 (30), 390 (20), 303 (40), 275 (40), 247 (70), 233 (20).

3,3-Di(1-methyl-1H-indole-3-yl)-5-bromo-1-methylindolin-2-one (1q): A mixture of 3,3-di(1-methyl-1H-indole-3-yl)-5-bromoindolin-2-one (0.030 g, 0.048 mmol) and KOH (0.036 g, 0.64 mmol) in anhydrous DMSO (15 mL) reacted with dimethyl sulfate (0.06 mL, 0.63 mmol) to give 1q as light orange solid (0.029 g, 94% yield), m.p. 287–288°C.1H NMR (KBr disc): 2918, 1713, 1507, 1474, 1422, 1326, 1337, 1273, 1219, 1144, 1049, 1049, 789 cm–1.1H NMR (500 MHz, CDCl3): δ 3.25 (s, 3H), 3.73 (s, 6H), 7.02 (s, 2H), 7.21 (d, J = 8.8 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 7.25 (d, J = 2.0 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H), 7.31 (d, J = 2.0 Hz, 1H), 7.43 (d, J = 9.1 Hz, 2H), 7.59 (dd, J = 8.4, 2.0 Hz, 1H).13C NMR (125 MHz, CDCl3): δ 26.5, 32.7, 51.7, 111.2, 111.6, 111.7, 114.2, 122.5, 123.9, 127.2, 130.2, 131.2, 134.8, 136.2, 141.8, 175.9. Mass spectrum (ES): m/z calcd for C29H21BrN2O3, [M + H]+ 639.9235; Found 639.9280.

2.1.2. General procedures for the synthesis of substituted 3,3-di(indolyl) indolin-2-one through N-alkylation

A mixture of the 3,3-di(indolyl)indolin-2-one and freshly crude KOH in anhydrous DMSO was stirred at room temperature for 1 h. After cooling to ice-bath temperature, the alkylating agent was added and the mixture was stirred further at room temperature for 1 h. After completion of the reaction as indicated by TLC, the resulting mixture was diluted with ice-cold water (~50 mL per 0.5 mL of stirring 3-indolin-2-one). The resulting precipitate was filtered under vacuum, washed with an excess of ice-cold water (3 x 50 mL), and dried to give the pure product. This general procedure was used to make compounds 1d, 1e, and 1g.

3,3-Di(1H-indole-3-yl)-1-methylindolin-2-one (1d): A mixture of 1b (0.20 g, 0.51 mmol) and KOH (0.11 g, 1.96 mmol) in anhydrous DMSO (15 mL) reacted with methyl iodide (0.06 mL, 0.96 mmol) to give 1d as white solid (0.19 g, 90% yield), m.p. 218–219°C (lit [23]. 232–234°C).1H NMR (CDCl3): δ 3.32 (s, 3H), 3.66 (s, 6H), 6.82–7.48 (m, 14H). Mass spectrum (EI): m/z 406 (M+–1, 30%), 405 (M, 100), 390 (10), 376 (90), 275 (40), 247 (70), 233 (20).
absorbance was measured at 405 nm. The percentage of inhibition was calculated as Eq. (1):

\[
\left(\frac{Abs_{\text{positive control}} - Abs_{\text{compound}}}{Abs_{\text{positive control}}} \right) \times 100\%
\]

(1)

All measurements are performed in triplicates and the values are represented as mean ± standard deviation.

2.3. α-Amylase inhibition assay

Phan and co-workers method was used for testing α-amylase inhibitory activity [29]. Solution corresponding to 50 μg/mL in DMSO was prepared. To each test tube, 50 μL of these test solutions, 100 μL of α-amylase (5U/mL of porcine pancreatic α-amylase in 0.05 sodium phosphate buffer pH 6.8) and 460 μL of 0.05 M sodium phosphate buffer pH 6.8 were added. ‘Blank’ and ‘Positive Control’ were prepared similarly but 50 μL of DMSO was added instead of the inhibitor. In the case of ‘Blank’, the enzyme solution was replaced by 100 μL of the buffer. Results were compared to Acarbose as the standard drug. The test tubes were shaken for 10 min at 37 °C whereupon 450 μL of a 0.5% starch solution was added to each tube and the shaking continued for another 20 min. At this point, 500 μL of dinitro salicylic acid (DNSA) reagent was added to each tube. The tubes were incubated in a boiling water bath for 15 min and the absorbance was then measured at 405 nm. The percentage of inhibition was calculated using Eq. (1). All measurements were performed in triplicates and the values are represented as mean ± standard deviation. Note that the DNSA solution is prepared directly drawn using MarvinSketch program [32]. The docking simulation was conducted using Autodock 4.2.6 software [33]. The docking center was set to be the center of protein and the docking pocket size was set to be large enough to cover the whole protein molecule. The docking results were visualized using Discovery studio (Dassault Systèmes, San Diego) [34].

3. Results and discussions

3.1. Synthesis of 3,3-di(indolyl)indolin-2-ones 1a–p

The route to synthesize 3,3-di(indolyl)indolin-2-ones 1a–p is shown in Scheme 1. The reaction between indoles 2 and isatins 3 in the presence of a catalytic amount of BF3 or H2SO4 at 40–60 °C afforded the desired products 1a–1c, 1f, and 1i–1p in high 68–97% yields within 2 h. Compounds 1d, 1e, and 1g were obtained conveniently in high 90–94% yields by alkylating their corresponding counterparts. The 3,3-di(indolyl) indolin-2-ones 1a–p were characterized using MS, IR, 1H NMR and 13C NMR and the spectral data were consistent with the structures and are typical for oxindole systems.18 For an illustrative example, the 1H NMR spectrum of 1n recorded in DMSO-d6 showed 21 protons. Singlet signals at δ4.97 and 11.02 ppm were assigned to methylene group protons and –NH protons respectively. The 13C NMR spectrum showed signals at δc 42.5 and 52.4 ppm correspond to a methylene carbon and a spiro carbon respectively, and a signal at δc 176.6 ppm indicates the presence of carbonyl carbon. The IR spectrum of compound 1n showed peak at 1715 revealing the presence of lactam amide (–NH–CO–). MS data was acquired in the positive ionization mode, exhibited peak at m/z = 633.9542 [M + Na]+.

3.2. α-Glucosidase and α-amylase inhibition studies

The α-glucosidase and α-amylase % inhibition activities of the synthesized 3,3-di(indolyl)indolin-2-ones 1a–p along with that of acarbose as the positive standard drug are summarized in Table 1. In general, while the compounds showed high to excellent inhibition activities for both enzymes, they showed stronger α-glucosidase inhibitory activity and desired lower α-amylase inhibitory activity in comparison to standard AGI drug acarbose.

Table 1. Percentage inhibition of α-glucosidase and α-amylase by 3,3-di(indolyl)indolin-2-ones 1a–p with acarbose as the reference standard.

No	Indolin-2-one	R1	R2	R3	R4	% α-glucosidase inhibition	% α-amylase inhibition
1	1a	H	H	H	H	16 ± 6	92 ± 4
2	1b	H	H	CH3	H	37 ± 11	81 ± 6
3	1c	H	H	CH3	CH2	73 ± 6	72 ± 5
4	1d	H	H	CH3	CH2	86 ± 7	77 ± 8
5	1e	H	H	CH3	CH2	50 ± 11	74 ± 9
6	1f	H	Br	H	H	76 ± 8	86 ± 10
7	1g	Br	Br	CH3	CH2	61 ± 1	79 ± 4
8	1h	H	NH2	H	H	17 ± 3	79 ± 9
9	1i	OH	NO2	H	H	67 ± 13	51 ± 4
10	1j	H	NO2	H	H	79 ± 5	93 ± 6
11	1k	H	NO2	CH3	H	86 ± 6	91 ± 5
12	1l	H	NO2	H	Benzy	76 ± 8	86 ± 0
13	1m	H	Br	H	Benzy	92 ± 3	80 ± 3
14	1n	H	Br	H	4-Br-benzy	94 ± 3	73 ± 5
15	1o	H	Cl	H	H	83 ± 2	87 ± 6
16	1p	H	Cl	CH3	H	84 ± 2	81 ± 7
17	Acarbose*a					19 ± 5	90 ± 2

*a Inhibition was measured at a concentration of 50 μg/mL. Inhibition values are expressed as means ± SD; n = 3.
3.2.1. α-Glucosidase inhibition activities

All the compounds showed higher % α-glucosidase inhibition activities ranging from 37 ± 11 to 94 ± 3 in comparison to acarbose with % inhibition activity of 19 ± 5, all measured at a concentration of 50 μg/ml. Exceptions are compounds 1a and 1h which showed % inhibition activities of 16 ± 6 and 17 ± 3, respectively (Table 1, entries 1 and 8).

Considering the compounds in Table 1, the type of substituent and their position played a role in the inhibition activities to different extents. Compound 1a with no substituents showed the lowest % inhibition activity of 16 ± 6. In the study conducted by Wang et al. [18], the same compound 1a showed the lowest IC50 value of 145.95 ± 0.46 μM. Introduction of a methyl moiety at the indole rings as in 1b lead to doubling of the % inhibition activity to 37 ± 11 while the introduction of an ethyl moiety as in 1c increases the activity to more than four folds to 73 ± 6. Interestingly, while the introduction of methyl moiety to the oxindole ring increased the inhibition activity of 1d to 86 ± 7, the introduction of a corresponding ethyl moiety as in 1e reduced the activity to 50 ± 11. This unpredicted result underscores the effect of small structural changes on inhibitory activity. Compound 1f with bromine moiety enhanced the % inhibition activity of its parent 1a by five-folds from 16 ± 6 to 76 ± 8. However, compound 1g with the bromine at the same position but with another at the indole rings gave lower inhibition activity of 61 ± 1 in comparison to its parent 1d with inhibition activity of 86 ± 7. The introduction of strong electron-donating NH2 group on the oxindole ring of 1a to give 1h did not significantly affect the % inhibition activity (17 ± 3 vs 16 ± 6, entry 8 vs entry 1, Table 1). However, the introduction of additional OH groups on the indole rings of 1h and replacing its NH2 group with NO2 group to give 1i, significantly increased the % inhibition activity from 17 ± 3 to 67 ± 13 (Table 1, entry 8 vs entry 9). Additionally, stronger electron-withdrawing NO2 groups of

Figure 1. Binding interaction of (a) indolin-2-one 1a; (b) indolin-2-one 1i; and (c) indolin-2-one 1n in with α-glucosidase (PDB ID: 5NN5).
increased its activity to almost five-fold (79 ± 5 vs 16 ± 6, Table 1, entry 10 vs entry 1). At this stage, we predicted that the introduction of N-alkyl substituents to 1j will increase its inhibition activities. However, while compound 1k with methyl substituents showed a moderate increase in the % inhibition activity to 86 ± 6, compound 1l with benzyl substituent decreased the % inhibition activity to 76 ± 8 perhaps due to stearic effects which prevented better fitting with the enzyme active sites. A significant increase in the activity occurred by changing the strong electron-withdrawing NO2 group of 1l to bromine as in 1m which showed % inhibition of 92 ± 3, or related 1n which showed % inhibition of 94 ± 3. Replacement of bromine of 1f with chlorine to get 1o resulted in a small increase in the % inhibition activity (Table 1, entries 1–5). The same is also observed for compounds 1f and 1g. The situation becomes ambiguous when we consider the effects of electron-withdrawing and donating substituents which gave no obvious trend. For example, the parent compound 1a showed very high % inhibition activity similar to compounds 1j with 93 ± 6 and 1k with 91 ± 5 having strong electron-withdrawing group NO2 and donating methyl moieties. The inhibition values in Table 1 suggest that compounds 1a–h and 1j–p have a similar mode of interactions with α-amylase enzymes and that mode is different in the case of 1i. As mentioned in the introduction section, lower α-amylase inhibition is desired to overcome the 3.2.2. α-Amylase inhibition activities

The tested compounds in Table 1 showed high to very high α-amylase % inhibition activities ranging from 72 ± 5 to 92 ± 4, except 1i which showed a % inhibition value of 51 ± 4, all measured at a concentration of 50 μg/ml. Overall, the differences in activities between structurally related compounds are not as pronounced as in the α-glucosidase case. Interestingly, compound 1a which showed the lowest α-glucosidase inhibitory activity exhibited one of the highest α-amylase % inhibition activity of 92 ± 4. The inhibition activity varied with the size/number of the substituents. For example, as the size/number of the substituents increases in compounds 1a–e, the corresponding inhibition values decrease (Table 1, entries 1–5). The same is also observed for compounds 1f and 1g. The situation becomes ambiguous when we consider the effects of electron-withdrawing and donating substituents which gave no obvious trend. For example, the parent compound 1a showed very high % inhibition activity similar to compounds 1j with 93 ± 6 and 1k with 91 ± 5 having strong electron-withdrawing group NO2 and donating methyl moieties. The inhibition values in Table 1 suggest that compounds 1a–h and 1j–p have a similar mode of interactions with α-amylase enzymes and that mode is different in the case of 1i. As mentioned in the introduction section, lower α-amylase inhibition is desired to overcome the
gastrointestinal side-effects. Therefore, compound 1i serves this purpose considering that it has the lowest α-amylase activity and high α-glucosidase activity.

3.3. Molecular docking studies

Docking simulations were performed on 3,3-di(indolyl)indolin-2-ones 1a, 1i, and 1n to predict the binding interaction of these compounds in the active site of both enzymes. These compounds were selected because they showed the highest contrasting α-glucosidase and α-amylase inhibition values (Table 1, entries 1, 9, and 14). In the docking simulation, all the 3,3-di(indolyl)indolin-2-ones 1a, 1i, and 1n recognized the binding pocket of both enzymes correctly. These indolin-2-ones formed stable key interactions with the active sites of both enzymes.

In the case of α-glucosidase, the binding affinities of the three indolin-2-ones is in the order 1a (−7.45 kcal/mol) > 1i (−7.84 kcal/mol) > 1n (−8.26 kcal/mol) which is consistent with the experimental % inhibition trend values 16 ± 6 < 67 ± 13 < 94 ± 3, respectively. The theoretical binding modes of compounds 1a, 1i, and 1n with α-glucosidase are shown in Figure 1. Indolin-2-one 1a formed hydrophobic π-σ interaction with the Trp376. One of the indole rings formed π-T-shaped interaction with Phe649 and Trp481 while the other indole rings formed π-alkyl with Leu650 and Ala284. Both of the indole rings also formed π-anion interaction with Asp616. From the docking analysis, hydrogen bonds were observed between NH of each indole rings with Met519 (bond length: 2.93 Å) and Asp282 (bond length: 1.88 Å). Indolin-2-one 1i which has an NO₂ and OH groups formed new hydrogen bonds with Leu677 (bond length: 2.34 Å) and Asp404 (bond length: 2.76 Å), respectively, while maintaining the hydrogen bond between the NH of the other indole rings and Asp282 (bond length: 2.06 Å). Additionally, the NO₂ group not only formed a conventional hydrogen bond, but also a non-classical or carbon-hydrogen bond with the Ser676. The OH group formed π-π lone pair interaction with Trp376. However, it was different from indolin-2-one 1n which did not show the presence of any hydrogen bonds. The p-bromobenzyl group on the indolin-2-one ring in indolin-2-one 1n formed hydrophobic π-π stacking and π-alkyl interactions with Phe649, His674, Trp613, and Trp516 residues. In addition, the benzene ring of the p-bromobenzyl group formed a π-anion interaction with Asp518. Besides, both indolin-2-ones 1i and 1n maintained the hydrophobic interaction with Trp376, Leu650, and Ala284 residues.

In the case of docking with α-amylase, the binding affinities of indolin-2-ones were in the order 1i (−8.42 kcal/mol) > 1a (−8.47 kcal/mol) > 1n (−8.75 kcal/mol) which is different from the trend with α-glucosidase. The binding modes of indolin-2-ones 1a, 1i, and 1n with α-amylase are shown in Figure 2. The protein-ligand complex analysis of compound 1a showed there were two kinds of hydrogen bonds observed on the indolin-2-one ring which were conventional and non-classical hydrogen bonds. The NH of the indolin-2-one ring formed the conventional hydrogen bond with Asp197 (bond length: 1.74 Å) while the carbonyl group of the indolin-2-one ring formed the non-classical hydrogen bond with His101 (bond length: 3.52 Å). The indole rings of compound 1a formed several hydrophobic interactions which were π-σ interaction with Ile235 and Leu162, π-alkyl interaction with Ala198, Leu165, and Leu162. Moreover, there were electrostatic interactions via a π-cation interaction between the indolin-2-one ring and Glu233 then a π-anion interaction between one of the indole rings and His201. From the docking analysis, the carbonyl group of the indolin-2-one ring in compound 1i formed a non-classical hydrogen bond with His101 (bond length: 3.02 Å). One of the indole rings of compound 1i formed π-alkyl, π-σ, and π-anion interactions with Ala198, Leu162, and His 201, respectively. The other indole rings formed π-T-shaped and π-anion interactions with Tyr62 and GluA233, respectively. Meanwhile, the substitution of the OH group in the indole rings formed hydrogen bonds with Glu233 (bond length: 1.72 Å) and Asp300 (bond length: 1.83 Å). In this receptor, again, compound 1n showed no hydrogen bond but had five types of hydrophobic interaction in its protein-ligand complex. The bromo group of the indolin-2-one ring formed an alkyl hydrophobic interaction with Leu165, while bromo group of the p-bromobenzyl of the indolin-2-one ring formed alkyl and π-alkyl interaction with Ile235 and His201, respectively. The p-bromobenzyl group also formed π-σ and π-cation interaction with Ile235 and His201, respectively. The indole rings of compound 1n formed π-σ stacking and π-π T-shaped interactions with Trp58 and Tyr62, respectively. Also, the indole rings formed π-anion interaction with Asp300 and Glu233.

4. Conclusions

We have synthesized a series of 3,3-di(indolyl)indolin-2-ones 1a-p and examined their α-glucosidase and α-amylase inhibitory activities. Overall, the compounds showed desired higher α-glucosidase activities and desired lower α-amylase activities than standard drug AGI acarbose. The inhibitory activity against α-glucosidase varied greatly in comparison to α-amylase concerning the substituents on the core structure. Molecular docking studies showed that the tested compounds interacted with the active sites of both α-glucosidase and α-amylase and the trend in the binding energy values parallel with the % inhibition values. The results suggest that 3,3-di(indolyl)indolin-2-ones, especially indolin-2-one 1i, are promising AGIs.

Declarations

Author contribution statement

Mardi Santoso, Azminah Azminah, Zaher M. A. Judeh: Conceived and design the experiments; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Li Lin Ong, Nur Pasca Ajiyija, First Ambar Wati, Rose Malina Annuur, Arif Fadlan: Performed the experiments; Analyzed and interpreted the data.

Funding statement

This work was supported by Ministry of Education, Culture, Research, and Technology, Indonesia (WCP Program, PDUPT grant no. 925/PKS/ITS/2021) and Nanyang Technological University (RG142/16).

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] A. Mitra, D. Dewanjee, B. Dey, Mechanistic studies of lifestyle interventions in type 2 diabetes, World J. Diabetes 3 (2012) 201–207.

[2] M. Blair, Diabetes mellitus review, Urol. Nurs. 36 (2016) 27–36 [PMID: 27093761].

[3] R.A. DeFronzo, E. Ferrannini, L. Groop, R.R. Henry, W.H. Herman, J.J. Holst, F.B. Hu, C.R. Kahn, I. Raz, G.I. Shulman, D.C. Simonson, M.A. Testa, R. Weiss, Type 2 diabetes mellitus, Nat Rev Dis Primers 1 (2015) 15019.

[4] G. Derosa, P. Maffioli, Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice, Arch. Med. Sci. 8 (2012) 899–906.

[5] A.F. Arië, E.M. Kamel, A.A. Khalil, M.F.E. Fawzi, M.M. Houseny, Purification and characterization of α-amylase from Penicillium olsonii under the effect of some antioxidant vitamins, Glob. J. Biotechnol. Biochem. 3 (2008) 14–21.

[6] Y.-L Kwon, E. Apostolidis, K. Sherty, Evaluation of Pepper (Capsicum Annuum) for Management of diabetes and Hypertension, J. Food Biochem. 31 (2007) 370–385.
Editors and staff

18 April 2023

Heliyon editors and staff

For biographical details about our editors and staff, please see our editors and staff page. For a detailed listing of our advisory board, please see our advisory board page.

Lead editor
Christian Schulz

Senior scientific editor
Pinak Chincholkar

Publisher
On Ching Lo

Editorial team leaders
Sahar Farajnia (Medical sciences)
Harry McGee (Physical and applied sciences)
Sujitha Shiny (Social sciences)
Fiona Ye (Life sciences)

Deputy editorial team leaders
Luca Cannatella
Sahana Krishnan

Associate scientific editors
Submit your article

Guide for authors

Elsevier scientific managing editors
Gayatri Bakshi
Anirban Basu
Sawati Basu
Banu Bayram
Rauf Bhat
Stefano Brini
Natalie Browes
Elena Brusamarello
Sebastian Caro Ortiz
Jessy Ceha
Rohan Chakrabarty
Amisha Chauhan
Chun Mann (Andy) Chin
Yuan Chu
Oksana Coban
Leticya Coelho
Raffaele Colosimo
Gabriele Coniglio
Peter DaBell
Morteza Davarpanah
Swathi Desireddy
Mouboni Dutta
Jordan Emery
Bibin Jacob Emmanuel
Elaine Fabre
Rong Fan
Salvatore Federico
Andréas Flaireau
Marta Gambucci
Neha Garg
Adrià Garriga
Archita Ghoshal
Hamid Gilvari
Isabel Hofman
Wouter Hoogenboom
Elena Jarocinska
Ashitha Jose
Alise Kalteniece
Shrikant Kawale
Surajit Kayal
Madhuprasad Kigga
Vincent Lasseur
Jing Li
Chang Liu
Matt Liu
Panpan Liu
Yang Liu
Joyeeta Lodh
Vasiliki Lolou
Nicola Lopizzo
Laura Luzia
Bulbul Maira
Paresh Majhi
Giulia Maurizi
Nupur Anoop Nagar
Mo Chong Ng
Hakan Nigar
Karthik Panchabikesan
Francesco Papi
Jeffrey Poon
Said Elias A. Rahimi
Shuang Qiao
Ean-Jeong Seo
Roberto Sole
Nikita Sondhi
Flavian Stokker Cheregi
Yuandong Sun
Volume 8, Issue 3
March 2022

Receive an update when the latest issues in this journal are published

Sign in to set up alerts

Research article Open access
The impact of body mass index on the prognostic performance of the Simplified Acute Physiology Score 3: A prospective cohort study
Isabella B.B. Ferreira, Rodrigo C. Menezes, Matheus L. Otero, Thomas A. Carmo, ... Bruno B. Andrade
Article e09188

Research article Open access
Cytotoxicity and 3H NMR metabolomics analyses of microalgal extracts for synergistic application with Tamoxifen on breast cancer cells with reduced toxicity against Vero cells
Hanaa Ali Hussein, Murni Nur Islamiah Kassim, M. Maulidiani, Faridah Abas, Mohd Azmuddin Abdullah
Article e09192

Research article Open access
Vector learning representation for generalized speech emotion recognition
Sattaya Singkul, Kuntpong Woraratpanya
Article e09196
Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis

Levi Yafetto
Article e09173

Enhanced light olefins production via n-pentane cracking using modified MFI catalysts

Ziyauddin S. Qureshi, Palani Arudra, M.A. Bari Siddiqui, Abdullah M. Aitani, ... Hassan Alasiri
Article e09181

Aerobic exercise with diet induces hormonal, metabolic, and psychological changes in postmenopausal obese women

Marwa M. Elsayed, Ghada E. El Refaye, Ahmed Rabiee, Sameh Abouzeid, Hany F. Elsisi
Article e09165

Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by Burkholderia cepacia JC-1 from various carbon sources

Julian Hock-Chye Chin, Mohd Razip Samian, Yahaya M. Normi
Article e09174

BEBIG ⁶⁰Co HDR brachytherapy source dosimetric parameters validation using GATE Geant4-based simulation code

Musa Joya, Hassan Ali Nedaie, Ghazale Geraily, Mahdi Ghorbani, ... Mahmud Naraqi Arani
Article e09168

Sorghum (Sorghum bicolor L.) yield response to rainwater harvesting practices in the semi-arid farming environments of Zimbabwe: A meta-analysis

Friday N.M. Kubiku, Ronald Mandumbu, Justice Nyamangara, George Nyamadzawo
Article e09164
A stability-indicating HPLC-UV method for the quantification of anthocyanin in Roselle (*Hibiscus Sabdariffa* L.) spray-dried extract, oral powder, and lozenges

Nasir Hayat Khan, Ibrahim M. Abdulbaqi, Yusrida Darwis, Naifu Aminu, Siok-Yee Chan
Article e09177

Research article Open access

Technological insights on the Early-Middle Bronze Age pottery of Monte Meana cave (Sardinia, Italy)

Giacomo Paglietti, Giuseppa Tanda, Rita Teresa Melis, Anna Musinu, ... Mariano Casu
Article e09171

Research article Open access

Assessing attentive monitoring levels in dynamic environments through visual neuro-assisted approach

Yu Fei Li, Sun Woh Lye, Yuvaraj Rajamanickam
Article e09067

Research article Open access

On the spectral radius and energy of signless Laplacian matrix of digraphs

Hilal A. Ganie, Yilun Shang
Article e09186

Research article Open access

Wetland monitoring technification for the Ecuadorian Andean region based on a multi-agent framework

Esteban Valencia, Iván Changoluisa, Kevin Palma, Patricio Cruz, ... Diana Puga
Article e09054

Research article Open access

Impact of a Scratch programming intervention on student engagement in a Nigerian polytechnic first-year class: verdict from the observers

Oladele O. Campbell, Harrison I. Atagana
Article e09191

Research article Open access
A study on the association between the inferior nasal turbinate volume and the maxillary sinus mucosal lining using cone beam tomography
Shishir Ram Shetty, Saad Wahby Al-Bayatti, Sausan Al Kawas, Natheer Hashim Al-Rawi, ... Leena David
Article e09190

The axis of long non-coding RNA MALAT1/miR-1-3p/CXCR4 is dysregulated in patients with diabetic neuropathy
Donya Ashjari, Negin Karamali, Misagh Rajabinejad, Seyedeh Sara Hassani, ... Alireza Rezaie-Manesh
Article e09178

Evaluation of the diagnostic performance and the utility of Helicobacter pylori stool antigen lateral immunochromatography assay
Shaymaa Abdelmalek, Wafy Hamed, Neven Nagy, Karim Shokry, Hisham Abdelrahman
Article e09189

The effect of ultraviolet radiation on the incidence and severity of major mental illness using birth month, birth year, and sunspot data
George E. Davis, Matthew J. Davis, Walter E. Lowell
Article e09197

The effects of extreme climate on the invasive plant Guttenbergia cordifolia: implications for its future management in savannah ecosystems
Herieth A. Nyarobi, Issakwisa B. Ngondya, Linus K. Munishi
Article e09172

Corrigendum to “Evaluation of in-house cefoxitin screening broth to determine methicillin-resistant staphylococci” [Heliyon 8, (2), (2022), e08950]
Natkanom Saenhom, Rada Kansan, Preechanika Chusjitt, Parichart Boueroy, ... Anusak Kerdinis
Article e09149
Submit your article | Guide for authors | T cell cytokine

Menu

Submit your article

Guide for authors

T cell cytokine

Daniele Paradó-Rodríguez, Fabiola Casso, José Mateus, John Menendez, ... Claudia Coelho

Article e09182

- View PDF
- Article preview

Research article Open access

Dual-pool, three-phase kinetic model of anaerobic digestion in batch mode

Bruno Gouveia, Elizabeth Duarte, Aires dos Santos, Edgar Fernandes

Article e09194

- View PDF
- Article preview

Research article Open access

Effectiveness of cattle dung biogas digestate on spinach growth and nutrient uptake

Bridget Tshikalange, Olusola Oloade, Chipa Jonas, Zaid A. Bello

Article e09195

- View PDF
- Article preview

Research article Open access

A differential equation, deduced from a DNA-type genetic algorithm with the lagging-strand-biased mutagenesis

Ichiro Fujihara, Mitsuru Furusawa

Article e09155

- View PDF
- Article preview

Research article Open access

Structural indices of indigenous goats reared under traditional management systems in East Gojjam Zone, Amhara Region, Ethiopia

Mezgebu Getanech, Mengistie Taye, Damitie Kebede, Dereje Andualem

Article e09180

- View PDF
- Article preview

Research article Open access

The quality of life of people with ASD through physical activity and sports

José Luis Cuesta-Gómez, Raquel De la Fuente-Anuncibay R, Ruth Vidriales-Fernández, Maria Teresa Ortega-Camarero

Article e09193

- View PDF
- Article preview

Research article Open access

Husbandry practices and constraints of smallholder dairy production in Dilla Zuriya district, Gedeo Zone, Ethiopia

Sara Endale Hailemariam, Biruh Tesfahun Tezera, Demeke Haile Haigashet

Article e09151
Empirical analysis of factors influencing student satisfaction with online learning systems during the COVID-19 pandemic in Thailand
Piriya Kornpitack, Sudaporn Sawmong
Article e09183

Molecular characterization of chlorpyrifos degrading bacteria isolated from contaminated dairy farm soils in Nakuru County, Kenya
Micah Nyabiba Asamba, Ezekiel Njeru Mugendi, Paul Sifuna Oshule, Suliman Essuman, ... Norbert Adum Atego
Article e09176

Academic integrity policies against assessment fraud in postgraduate studies: An analysis of the situation in Spanish universities
Antoni Cerdà-Navarro, Carmen Touza, Mercè Morey-López, Elvira Curiel
Article e09170

Measuring changes in hydrolysis concept of students taught by inquiry model: stacking and racking analysis techniques in Rasch model
Lukman Abdul Raif Laliyo, Bambang Sumintono, Citra Panigoro
Article e09126

Structure and biological activity of particles produced from highly activated carbon adsorbent
Veronika Sarnatskaya, Yuliia Shlapa, Alexandra Lykhova, Olga Brieieva, ... Vladimir Nikolaev
Article e09163

Cucumeropsis mammii seed oil (CMSO) attenuates alterations in testicular biochemistry and histology against Bisphenol a-induced toxicity in male Wister albino rats
Patranee Leelapatan, Nareudee Limpuangthip
Article e09161
View PDF Article preview

Review article Open access
Active revegetation after mining: what is the contribution of peer-reviewed studies?
Silvia E. Navarro-Ramos, Javier Sparacino, Juan M. Rodríguez, Edith Filippini, ... Romina C. Torres
Article e09179
View PDF Article preview

Research article Open access
Detection in influx sources and estimation of microplastics abundance in surface waters of Rawal Lake, Pakistan
Atif Bashir, Imran Hashmi
Article e09166
View PDF Article preview

Research article Open access
Scientific career tracks and publication performance - relationships discovered in the Hungarian academic promotion system
Peter Sasvari, Gyula Bakacsi, Anna Urbanovics
Article e09159
View PDF Article preview

Research article Open access
Extended air pollution index (API) as tool of sustainable indicator in the air quality assessment: El-Nino events with climate change driven
C.M. Payus, M.S. Nur Syazni, J. Sentian
Article e09157
View PDF Article preview

Research article Open access
Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness
M.F. Uddin, M.G. Hafer, S.A. Iqbal
Article e09199
View PDF Article preview

Research article Open access
Techno-economics of coconut coir bioadsorbent utilization on free fatty acid level reduction in crude palm
Gedefaw Kindu Wubet, Lemma Zemeda, Bosena Tegegne
Article e09142

Research article Open access
Short-term renewable energy consumption and generation forecasting: A case study of Western Australia
Bilal Abu-Salih, Pornpit Wongthongham, Greg Morrison, Kevin Coutinho, ..., Ammar Hueiti
Article e09152

Research article Open access
Evaluation of water quality and potential scaling of corrosion in the water supply using water quality and stability indices: A case study of Juja water distribution network, Kenya
Gbetingan Marien Patern Balolitcha, Alfred O. Mayabi, Patrick G. Home
Article e09141

Research article Open access
Lowering nitrogen rates under the system of rice intensification enhanced rice productivity and nitrogen use efficiency in irrigated lowland rice
Primitiva Andrea Mboyerwa, Kibebew Kibret, Peter Mtakwa, Abebe Aschalew
Article e09140

Research article Open access
Evaluation of cowpea [Vigna unguiculata (L) Walp.] lines for high grain and fodder yields in the dry season of Niger republic
Souleymane Abdou
Article e09147

Research article Open access
Natural killer cells activity against multiple myeloma cells is modulated by osteoblast-induced IL-6 and IL-10 production
Christopher Uhl, Themba Nyirenda, David S. Siegel, Woo Y. Lee, Jenny Zilberberg
Article e09167

Research article Open access
Emergency management for severe burn (EMSB) course for the nurses in Bangladesh: opportunity and way forward
Kombolcha, an urbanizing secondary city

Mulugeta Maru, Hailu Worku
Article e09137

Research article Open access

Level of compassionate health care service provision and its associated factors among health professionals working in public hospitals of Addis Ababa: health professionals’ perspective

Mulugeta Abate, Nigussie Tadesse, Kindie Mitiku
Article e09160

Research article Open access

An experimental method for diagnostic of incipient broken rotor bar fault in induction machines

Hamza Sabir, Mohammed Ouassaid, Nabil Ngote
Article e09136

Research article Open access

Fertilizing benefits of biogenic phosphorous nanomaterials on *Solanum lycopersicum* in soils with variable pH

Ayushi Priyam, Natasha Yadav, Pallavolu M. Reddy, Luis O.B. Afonso, ... Pushpita Prasad Singh
Article e09144

Research article Open access

Assessing author willingness to enter study information into structured data templates as part of the manuscript submission process: A pilot study

A. Amina Wilkins, Paul Whaley, Amanda S. Persad, Ingrid L. Druwe, ... Kristina A. Thayer
Article e09095

Research article Open access

Microstructural and physicochemical properties of biodegradable films developed from false banana (*Ensete ventricosum*) starch

Bulyaminu A. Alimi, Tilahun S. Workneh, Bashir A. Zubair
Article e09148

Research article Open access
Assessing the performance of environmental management in academic research laboratories

M. Ladyman, E. Gutierrez-Carazo, F. Persico, T. Temple, F. Coulon
Article e09135

Novel antibacterial hydrogels based on gelatin/polyvinyl-alcohol and graphene oxide/silver nanoconjugates: formulation, characterization, and preliminary biocompatibility evaluation

Jorge Luis Patarroyo, Javier Cifuentes, Laura N. Muñoz, Juan C. Cruz, Luis H. Reyes
Article e09145

A screening-level human health risk assessment for microplastics and organic contaminants in near-shore marine environments in American Samoa

Beth Polidoro, Tiffany Lewis, Cassandra Clement
Article e09101

One-step synthesis of lead zirconate titanate particles using a solid-state reaction method

Darmawan Hidayat, Mohammad Taufik, Setianto Setianto
Article e09125

Both Zn biofortification and nutrient distribution pattern in cherry tomato plants are influenced by the application of ZnO nanofertilizer

Patricia Almendros, Demetrio González, María Dolores Fernández, Concepción García-Gómez, Ana Obrador
Article e09130

Assessment of ecotoxicological effects of agrochemicals on bees using the PRIMET model, in the Tiko plain (South-West Cameroon)

Daniel Brice Nkotcheu Kenko, Norbert Tchamadeu Ngameni
Article e09154
Improving global gross primary productivity estimation by fusing multi-source data products

Yahai Zhang, Aizhong Ye
Article e09153

Predicting the strength of concrete made with stone dust and nylon fiber using artificial neural network

Sourav Ray, Mohaiminul Haque, Tanvir Ahmed, Ayesha Ferdous Mita, ... Md Mafus Alom
Article e09129

A cross-sectional survey of COVID-19: attitude and prevention practice among Syrians

Batoul Bakkar, Fatema Mohsen, Humam Armashi, Marah Marrawi, Nizar Aldaher
Article e09124

Empowering rural society through non-formal environmental education: An empirical study of environment and forest development community projects in Ethiopia

Mekonnen Hailemariam Zikargae, Amanuel Gebru Woldearegay, Terje Skjerdal
Article e09127

Ileum transcriptional response to prolonged supplementation with phytophagic product containing menthol, carvacrol and carvone

Yadav S. Bajagai, Friedrich Petranyi, Darwin Horyanto, Romeo Batacan, ... Dragana Stanley
Article e09131

Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention

Charles Obinwanne Okoye, Emmanuel Sunday Okeke, Kingsley Chukwuebuka Okoye, Daniel Echude, ... Chigozie Damian Ezemonyiaku
Article e09143
Bioactive and antimicrobial macro-/micro-nanoporous selective laser melted Ti–6Al–4V alloy for biomedical applications

Archana Rajendran, Deepak K. Pattanayak
Article e09122

Restoring trilinearity with the purpose of advanced modeling: towards a more effective analysis of *Pericarpium Cistri Reticulatae* during storage periods

Yaping Li, Qing Cao, Min He, Xinyue Yang, ... Weiguo Cao
Article e09138

Plaque removal effectiveness of 3D printed dental hygiene chews with various infill structures through artificial dog teeth

Su Hyun Lee, Hyun Woo Kim, Hyun Jin Park
Article e09096

Lytic cocktail: An effective method to alleviate severe burn induced hyper-metabolism through regulating white adipose tissue browning

Meng Zhang, Peilang Yang, Tianyi Yu, Martin C. Harmsen, ... Xiong Zhang
Article e09128

Interactive effects of citizen trust and cultural values on pro-environmental behaviors: A time-lag study from Indonesia

Irawan, Andrie Elia, Benius
Article e09139

Evaluation of inhibitive corrosion potential of symmetrical hydrazine derivatives containing nitrophenyl moiety in 1M HCl for G38 steel: experimental and theoretical studies

Zouhair Lakbaibi, Mohamed Damej, Abdu Molhi, Mohammed Benmessaoud, ... Mohamed Tabyaoui
Article e09087
Photophysical properties of ammonium, pyrrolidinium, piperidinium, imidazolium, and pyridinium as a guide to prepare ionic-organic hybrid materials

Yuly Kusumawati, Athar L. Ivansyah, Badrut T.E. Ali, Kiki A. Kurnia, ... Hamzah Fansuri
Article e09121

Socio-spatial vulnerability assessment of heritage buildings through using space syntax

Yasmine Sabry Hegazi, Doaa Tahoon, Noura Anwar Abdel-Fattah, Mahmoud Fathi El-Alfi
Article e09133

Jmjd6 regulates ES cell homeostasis and enhances reprogramming efficiency

Guanxu Ji, Xiaoxiao Xiao, Min Huang, Qiang Wu
Article e09105

Entourage effect for phenolic compounds on production and metabolism of mammary epithelial cells

Y. Shalev, O. Hadaya, R. Bransi-Nicola, S.Y. Landau, ... N. Argov-Argaman
Article e09025

Mental health of students amidst the COVID-19 pandemic: An empirical study

Md. Ashraful Alam, Ahmed Ishmum Uddin, Md. Afaq Uddin, Salma Begum, ... Abdul Gaffar Khan
Article e09111

Cultural adaption and psychometric validation of the Danish Illness Identity Questionnaire (IIQ-DK) in adolescents and emerging adults with type 1 diabetes

Marianne Vie Ingersgaard, Dan Grabowski, Kasper Olesen
Article e09109
Drivers of household demand for cooking energy: A case of Central Uganda
Edmond Nyuyi Mainimo, Daniel Micheal Okello, Wilson Mambo, Basil Mugonola
Article e09118
View PDF Article preview

Theoretical insights into a high-efficiency Sb2Se3-based dual-heterojunction solar cell
Bipanke Kumar Mondal, Shaikh Khaled Mostaque, Jaker Hossain
Article e09120
View PDF Article preview

Response surface methodology for optimization of cellulose extraction from banana stem using NaOH-EDTA for pulp and papermaking
Nurul Amal Nadhirah Mohamad, Junaidah Jai
Article e09114
View PDF Article preview

Feminism and literary translation: A systematic review
Isra Irshad, Musarat Yasmin
Article e09082
View PDF Article preview

Academic-faculty environment and graduate employability: variation of work-readiness perceptions
Bianca Ifeoma Chigbu, Fhulu. H. Nkwewe
Article e09117
View PDF Article preview

Knowledge, practices, and patterns of data confidentiality among pharmacists in a developing country
Lobna Gharaibeh, Sayer I. Al-Azzam, Karem H. Alzoubi, Reema A. Karasneh, Rana Abu-Farha
Article e09115
View PDF Article preview
Bibliometrics as a promising tool for solving publication ethics issues

Vadim N. Gureyev, Nikolay A. Mazov
Article e09123

Combined distal median nerve block and local anesthesia with lidocaine:epinephrine for carpal tunnel release

Yusef Sallum, Lucian Fodor, George Mărginean, Florian Bodog
Article e09119

Plastic recycling and their use as raw material for the synthesis of carbonaceous materials

Rodrigo A. Muñoz Meneses, Gerardo Cabrera-Papamija, Fiderman Machuca-Martínez, Luis A. Rodríguez, ... Edgar Mosquera-Vargas
Article e09028

Single dose oral pharmacokinetic profile rubraxanthone in mice

Meri Susanti, Riski Darmianti, Yahdiana Harahap, Afrizal Itam, Dachriyanus Hamidi
Article e09104

Does information and communication technology impede environmental degradation? fresh insights from non-parametric approaches

Tomīwa Sunday Adebayo, Ephraim Bonah Agyekum, Mehmet Altuntaş, Sadридdin Khudoyqulov, ... Salah Kamel
Article e09108

Peptostreptococcus faecalis sp. nov., new bacterial species isolated from healthy indigenous congolese volunteer

Fatimamekhalif, Rita Zghelibe, Jean Akiana, Melhem Bilen, ... Cheikh Ibrahima Lo
Article e09102
Heliyon

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
Netherlands | Multidisciplinary | Elsevier BV | 69

PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	24058440	2015-2023	Homepage
How to publish in this journal
c.schulz@cell.com |

SCOPE

Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.

Join the conversation about this journal
Rank	Journal Name	Country	Similarity
1	Journal of Advanced Research	EGY	53%
2	Scientific African Technology	NLD	51%
3	Journal of Global Pharmaceutical	IND	50%
4	Current Pharmaceutical Biotechnology	NLD	49%
5	Saudi Journal of Biological Sciences	SAU	48%
Metrics based on Scopus® data as of April 2023

Mabbasher muair 6 months ago

Hi

What is the status of journal in 2022?

Is it recognized yet?

reply

Melanie Ortiz 6 months ago

Dear Mabbasher,

Thank you very much for your comment. All the metadata have been provided by Scopus®/Elsevier in their last update sent to SCImago, including the Coverage period data. The SJR for 2021 was released on 11 May 2022. We suggest you revisit the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day. The Scopus® update list can also be consulted here: https://www.elsevier.com/solutions/scopus/how-scopus-works/content

Best Regards, SCImago Team

Sofia 3 year ago

Dear Sir,

Could you provide me if this journal is included in the Scopus and Clarivate list?

Regards
Sofia
