Kondo Effect of Quantum Dots in the Quantum Hall Regime

Mahn-Soo Choi, Nak Yeon Hwang, and S.-R. Eric Yang

Department of Physics, Korea University, 1 5-ka Anam-dong, Seoul 136-701, Korea

We report on the Kondo effect of quantum dots involving the precursor of the Landau level filling factor $\nu = 1$ state in the quantum Hall regime. We argue that pairs of degenerate single Slater determinant states may give rise to a Kondo effect which can be mapped into an ordinary Kondo effect in a fictitious magnetic field. We report on several properties of this Kondo effect using scaling and numerical renormalization group analysis. We suggest an experiment to investigate this Kondo effect.

PACS numbers: 75.20.Hr, 73.21.La, 73.23.Hk

The Kondo effect, one of the most extensively studied phenomena in condensed-matter physics, has recently enjoyed a revival in mesoscopic systems. Examples include quantum dots, quantum point contacts, and carbon nanotube coupled to superconductors. The main attraction of the Kondo effect in such systems is its tunability, which makes it possible to test various aspects of the Kondo effect that cannot be directly investigated in bulk solids. For example, a scattering phase shift at the Kondo resonance in a quantum dot has been measured using a two-path interferometer. In mesoscopic systems the role of magnetic impurities embedded in bulk solids is played by nanoscale “artificial atoms”, like quantum dots or carbon nanotube (as a whole) coupled to electrodes. The Kondo effect arises essentially from the spin-degenerate energy levels associated with a single unpaired electron in the artificial atom, and is accompanied by the Kondo resonance at the Fermi level. In quantum dots a Kondo effect may arise when an external magnetic field. Also our investigation suggests that the effects of the fictitious field may be removed by moving off the phase boundary. Our analysis indicates that a similar effect can arise at each phase boundary between $|N_{\uparrow}, N_{\downarrow}\rangle$ and $|N_{\uparrow} - 1, N_{\downarrow} + 1\rangle$ ground states. We report on several properties of this Kondo effect using scaling and numerical renormalization group (NRG) analysis. We also suggest an experiment to investigate this Kondo effect.

We first describe briefly our model for a quantum dot in a strong magnetic field. It consists of two dimensional electrons confined to a finite area that is coupled to two leads. The confining potential is regarded parabolic, $V(x, y) = \frac{1}{2} m \ast \Omega^2 (x^2 + y^2)$, where $m \ast$ is the effective electron mass and Ω is the frequency scale. A magnetic field B is applied perpendicular to the quantum dot, i.e., in the z-direction. The field is assumed to be so strong that the Landau level spacing $\hbar \omega_c$, where $\omega_c = eB/m \ast c$, is sufficiently large compared with the confinement energy $\hbar \Omega$ and the electron-electron interaction.

In this paper we report on the Kondo effect of quantum dots involving the precursor of the Landau level filling factor $\nu = 1$ state in the quantum Hall regime. An attractive feature of these quantum dots is that single-Slater-determinant states are exact groundstates of the many-body Hamiltonian under certain circumstances. The Slater-determinant states, denoted by $|N_{\uparrow}, N_{\downarrow}\rangle$, have N_{\uparrow} spin-up and N_{\downarrow} spin-down electrons, see Eq. (9). In this work we focus on the parameter region where $|N, 0\rangle$ and $|N - 1, 1\rangle$ become nearly degenerate ground states (see Fig. 1). The degeneracy of $|N, 0\rangle$ and $|N - 1, 1\rangle$ results from the interplay of many-body interaction, parabolic confinement energy, and (real) Zeeman energy. These states are stable ground states in wide regions of the parameter space and are easily probed in experiments. We show that this pair of degenerate many-body ground states give rise to a Kondo effect which can be mapped into an ordinary Kondo problem with a fictitious magnetic field. Also our investigation suggests that the effects of the fictitious field may be removed by moving off the phase boundary. Our analysis indicates that a similar effect can arise at each phase boundary between $|N_{\uparrow}, N_{\downarrow}\rangle$ and $|N_{\uparrow} - 1, N_{\downarrow} + 1\rangle$ ground states.

FIG. 1: Energy level structure of single-Slater-determinant states $|N_{\uparrow}, N_{\downarrow}\rangle$ for $N = 6$. The energies are in units of $e^2/\epsilon \ell$. States $|6, 0\rangle$ and $|5, 1\rangle$ are degenerate ground states for certain values of the parameters (see the text). The virtual states that are relevant to the Kondo effect are also Slater determinants since ground states are given by Slater determinants. The arrows connect degenerate ground states to Slater determinant states with one more or less total electron number.

Inset: Density profiles of the maximum-density droplet state $|N, 0\rangle$ and the state $|N - 1, 1\rangle$ with one spin flipped.
The single-particle energy of an orbit with m and σ is given by $\epsilon_{m,\sigma} = \gamma(1+m) + \frac{2}{3}g\mu_B B\sigma$ where $\gamma = \hbar \omega_c (\Omega/\omega_c)^2$ and $g\mu_B B$ is the Zeeman splitting.

The many-body Hamiltonian of an isolated quantum dot in a strong magnetic field is then given by

\[
H_0 = \sum_{m,\sigma} \epsilon_{m,\sigma} d_{m,\sigma}^\dagger d_{m,\sigma} + \sum_{m_1, m_2} \sum_{\sigma_1, \sigma_2} U_{m_1', m_2', m_1, m_2} d_{m_1', \sigma_2}^\dagger d_{m_1, \sigma_1}^\dagger d_{m_2, \sigma_2} d_{m_2', \sigma_2} ,
\]

where $d_{m,\sigma}^\dagger$ ($d_{m,\sigma}$) creates (annihilates) an electron in the state m, σ, and U_{m_1', m_2', m_1, m_2} are the matrix elements of the electron-electron Coulomb interaction. As mentioned above, in quantum dots in a strong magnetic field the single-Slater-determinant state of the form

\[
|N_\uparrow, N_\downarrow\rangle = d_{N_\downarrow, -1, \downarrow}^\dagger \cdots d_{0, -1, \downarrow}^\dagger d_{0, 0, \uparrow}^\dagger d_{0, 0, \downarrow}^\dagger |0\rangle ,
\]

so-called maximum density droplet states, can be an exact eigenstate of the many-body Hamiltonian, Eq. (1), in a wide range of parameters $\tilde{\gamma} \equiv \gamma/(e^2/\ell)$ and $\tilde{g} = g\mu_B B/(e^2/\ell)$ (see Figs. 1 and 2 in Ref. [15]).

In the presence of the coupling to the leads, the many-body states in the quantum dot is hybridized with the conduction bands of the leads. The coupling can be considered within the tunneling model

\[
H_T = \sum_{k,m,\sigma} V \left(d_{m,\sigma}^\dagger c_{k,\sigma} + c_{k,\sigma}^\dagger d_{m,\sigma} \right) ,
\]

where $c_{k,\sigma}$ and $c_{k,\sigma}^\dagger$ are operators for conduction electrons, and V is the tunneling amplitude (we ignore the m-dependence of V for simplicity, see below). We assume that there are N electrons in the quantum dot in equilibrium, and that the Fermi level E_F of the leads lies between the successive electro-chemical potentials μ_{N-1} and μ_N of the quantum dot [20]. $\mu_{N-1} < E_F < \mu_N$. Here notice that the electro-chemical potential of the quantum dot includes the contribution from the gate voltage V_g applied to the quantum dot, which is given by $\mu_N \equiv E_{N+1}^0 - E_N^0 + eV_g$ where E_{N}^0 is the N-electron ground-state energy.

Below we consider the Kondo effect in the limit $\Gamma \ll E_F - \mu_{N-1}$ and $\Gamma \ll \mu_N - E_F$ ($\Gamma \equiv 2\pi\rho_0|V|^2$). We emphasize, however, that the spins involved here is not real spins but pseudo-spin corresponding to the degenerate ground states $|N, 0\rangle$ and $|N-1, 1\rangle$.

Given the setup prescribed above, transport of the conduction electrons through the quantum dot via sequential tunneling is highly suppressed. The hybridization of the dot levels are possible only through the virtual tunneling processes. To simplify the discussion, we will further assume that $\mu_N - E_F \gg E_F - \mu_{N-1}$. The dominant contributions then come from the virtual processes involving the $(N-1)$-electron states $|N-1, 0\rangle$ and $|N-2, 1\rangle$, while the processes involving the virtual states with $(N+1)$ electrons in the dot can be ignored. [In the NRG study to be discussed below, however, we have taken into account all the virtual processes with $(N-1)$- and $(N+1)$-electron states.] Effectively, the tunneling Hamiltonian takes the form (see also Fig. 3)

\[
H_T = \sum_k V \left(c_{k,\uparrow}^\dagger |N-1, 0\rangle \langle N, 0| + c_{k,\downarrow}^\dagger |N-1, 0\rangle \langle N-1, 1| - c_{k,\downarrow}^\dagger |N-2, 1\rangle \langle N-1, 1| \right) + h.c. \tag{4}
\]

Each term in Eq. (4) leads to one of the virtual processes listed in Fig. 2. Within the spirit of the Schrieffer-Wolf transformation taking into account these virtual processes, one can show that for small Γ and at low temperatures, the impurity model $H = H_D + H_e + H_T$ is equivalent to a Kondo-like model:

\[
H = -\sum_{k,q} J_{\perp} \left(S^+ c_{q,\uparrow}^\dagger c_{k,\uparrow}^\dagger + S^- c_{q,\downarrow}^\dagger c_{k,\downarrow}^\dagger \right) - \sum_{k,q} S^z \left(J_+ c_{q,\uparrow}^\dagger c_{k,\uparrow} - J_- c_{q,\downarrow}^\dagger c_{k,\downarrow} \right) , \tag{5}
\]

where we have adopted the notation $S^\pm = |N, 0\rangle \langle N-1, 1|, S^- = |N-1, 0\rangle \langle N, 0|$, and $S^z = (|N, 0\rangle \langle N, 0| - |N-1, 1\rangle \langle N-1, 1|)/2$ to emphasize the roles of the states $|\uparrow\rangle \equiv |N, 0\rangle$ and $|\downarrow\rangle \equiv |N-1, 1\rangle$ as pseudo-spin components.

The coupling constants J_{\perp}, J_+, and J_- in Eq. (5) are given by

\[
J_{\perp} = \frac{|V|^2}{E_F + E_{N-1,0} - E_{N,0} - eV_g} , \tag{6}
\]

\[
J_+ = \frac{|V|^2}{E_F + E_{N-1,0} - E_{N,0} - eV_g - \frac{|V|^2}{E_F + E_{N-2,1} - E_{N-1,1} - eV_g}} , \tag{7}
\]
In the Anderson model, the degenerate states are spin model studied in Ref. 9, and the usual Anderson model. The important difference between our impurity problem, the in Eq. (4). This additional channel is responsible for the effect studied in Ref. 9 become degenerate to the third term in the parenthesis in Eq. (3). It is reminiscent of the original Kondo impurity in an external magnetic field. It should be emphasized, however, that in our case the fictitious field arises intrinsically. Moreover, as we see below, the effects of can be removed by detuning the levels of and (i.e., going off the phase boundary in the parameter space). The two degenerate states involved in the Kondo effect studied in Ref. 9 become degenerate due to competition between the single-particle orbital-level spacing and the Zeeman energy. In the case of the Kondo effect near the singlet-triplet transition studied in Ref. 10, 11, the degeneracy purely comes from the many-body exchange interaction, and is four-fold (ignoring very small Zeeman energy). In our case, it is a result of interplay between many-body interaction, parabolic confinement energy, and (real) Zeeman effect. We also remark that the tunneling amplitude in Eq. 6 should, in general, depend on the orbital m. Its effect introduces another contribution to the fictitious Zeeman splitting, and does not affect the results qualitatively.

To investigate the low-energy physical properties of the Kondo-like model, Eq. 5, we first follow the poor man’s scaling approach and trace out the conduction electrons in the range and . The resultant renormalization group (RG) equations are given by

\[
\frac{d}{d\ell} J_\perp = 2\rho_0 J_\perp, \quad \frac{d}{d\ell} J_\parallel = 2\rho_0 J_\parallel^2, \quad \frac{d}{d\ell} \Delta_z = 0, \tag{9}
\]

where \(J_\parallel \equiv (J_\parallel + J_\perp)/2 \) and \(\ell \equiv -\ln(\rho_0 D) \). The first two RG equations in Eq. 9 are exactly the same as those of the usual Anderson model, which exhibit a Kosterlitz-Thouless-type RG flow diagram. This implies that the effective impurity model in question exhibits a Kondo effect. The additional coupling constant \(\Delta_z \) in Eq. 9 plays a role of a fictitious magnetic field on the pseudospin. Therefore, for \(\Delta_z \) larger than the Kondo temperature \(T_K \), the Kondo resonance peak at the Fermi level will be splitted into two peaks with separation given by \(\Delta_z \). The spectral weights of the splitted peaks will be diminished. Further, since \(\Delta_z \) arises intrinsically in our model, the effect of this fictitious field may be removed by detuning the levels of and . All these arguments are confirmed by the NRG calculations, see below.

The RG equation, Eqs. 9, and the corresponding arguments above are based on a second-order perturbation in \(J_\perp, J_\parallel, \) and \(J_\varepsilon \). One may question the validity of the perturbative RG analysis, in particular, the marginal behavior of \(\Delta_z \) in Eq. 9. We perform a NRG calculation, 21, 22, 23, 24, and justify that the above conclusions are qualitatively correct. Figure 3 shows the local density of states of the quantum dot in a strong magnetic field. For the calculations we have chosen \(\Gamma = 0.025D \) and \(E_F - (E_{N,0} - E_{N-1,0} + eV_g) = 0.085D \). Near the Fermi level, there are two Kondo peaks separated by \(\Delta_z \approx 0.01D \). Since this fictitious Zeeman splitting comes from the differences in the kinetic energy gains for and states, it can be removed by detuning the degenerate levels \(E_{N,0} \) and \(E_{N-1,1} \). In Fig. 4 we have detuned the energy levels of \(E_{N,0} \) and \(E_{N-1,1} \) by amount \(\Delta_z \), i.e., \(E_F - (E_{N,0} - E_{N-1,0} + eV_g) = (0.085 - 0.005)D \) and \(E_F - (E_{N-1,1} - E_{N-1,0} + eV_g) = (0.085 + 0.005)D \). One can clearly see that the Kondo resonance peak at the Fermi level has been recovered.

Before concluding we briefly discuss possible experiments. The maximum density droplet states have already been probed in transport measurements through vertically and laterally quantum dots. The ordinary Kondo

\[
J_\perp = \frac{|V|^2}{E_F + E_{N-1,0} - E_{N-1,1} - eV_g}. \tag{8}
\]
effects have also been observed in quantum dots. To observe a Kondo effect involving the maximum density of states, vertical quantum dots are particularly convenient. One advantage is that they provide a relatively strong confinement potential. Another important advantage of vertical dots is that the leads can be made of bulk electrodes. In bulk electrodes, the densities of states for both spins near the Fermi level are insensitive to the energy (we assume the Zeeman energy is small compared with the Fermi energy) and the spin-polarization effects can be safely neglected. We estimate the typical values of the relevant parameters to be $N \sim 15$, $B \sim 5$ T, $(g\mu_B B \sim 0.15$ meV), $\hbar \Omega \sim 3$ meV, $T_K \sim 0.05–0.1$ K, and $\Delta_z \sim 0.1$ meV.

We have reported on the Kondo effect of quantum dots in the quantum Hall regime, involving the precursor of the Landau level filling factor $\nu = 1$ state. Unlike the ordinary Anderson impurity model, we find that the Kondo resonance splits due to an internally generated fictitious magnetic field. We showed that by detuning the energies of states involved in the Kondo effect, the resonance peak at the Fermi level may be restored. We have argued that these effects may be observed in vertical dots.

We thank Hangmo Yi for very useful discussions. M.-S.C. acknowledges the supports from the Swiss-Korean Outstanding Research Efforts Award (SKOREA) program and by the KOSEF through the eSSC at POSTECH. S.R.E.Y was supported by the KOSEF Quantum-functional Semiconductor Research Center at Dongguk University and by Grant No. R01-1999-00018 from the interdisciplinary Research program of the KOSEF.

1. A. C. Hewson, *The Kondo Problem to Heavy Fermions* (Cambridge University Press, Cambridge, 1993).
2. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abus-Magder, U. Meirav, and M. A. Kastner, Nature 391, 156 (1998).
3. D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).
4. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).
5. W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven, Science 290, 2105 (2000).
6. Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu, and H. Shtrikman, Science 290, 779 (2000).
7. S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Phys. Rev. Lett. 88, 226 805 (2002).
8. M. R. Buitelaar, T. Nussbaumer, and C. Schönenberger, Phys. Rev. Lett. 89, 256 801 (2002).
9. M. Pustilnik, Y. Avishai, and K. Kikoin, Phys. Rev. Lett. 84, 1756 (2000).
10. M. Eto and Y. V. Nazarov, Phys. Rev. Lett. 85, 1306 (2000); Phys. Rev. B 64, 085 322 (2001); Phys. Rev. B 66, 153 319 (2002); M. Pustilnik and L. I. Glazman, Phys. Rev. Lett. 85, 2903 (2000); Phys. Rev. B 64, 045 328 (2001).
11. W. Izumida, O. Sakai, and S. Tarucha, Phys. Rev. Lett. 87, 216 803 (2001).
12. S. Sasaki, S. D. Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha, and L. P. Kouwenhoven, Nature 405, 764 (2002).
13. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 70, 2601 (1993).
14. N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11 040 (1994).
15. S.-R. E. Yang, A. H. MacDonald, and M. D. Johnson, Phys. Rev. Lett. 71, 3194 (1993).
16. A. H. MacDonald, S.-R. E. Yang, and M. D. Johnson, Aust. J. Phys. 46, 345 (1993).
17. S.-R. E. Yang and A. H. MacDonald, Phys. Rev. B 66, 41 304(R) (2002).
18. T. H. Oosterkamp, J. W. Janssen, L. P. Kouwenhoven, D. G. Austing, T. Honda, and S. Tarucha, Phys. Rev. Lett. 82, 2931 (1999).
19. O. Klein, C. de C. Chamon, D. Tang, D. M. Abus-Magder, U. Meirav, X.-G. Wen, and M. A. Kastner, Phys. Rev. Lett. 74, 785 (1995).
20. H. van Houten and C. W. J. Beenakker, in *Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostruc*
tures, edited by H. Grabert and M. Devoret (Plenum Press, New York, 1992).

21 R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 45 103 (2001).

22 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1044 (1980).

23 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980).

24 K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

25 There is one-to-one correspondence between our impurity problem and the common Anderson model (in the $U \to \infty$ limit): $\epsilon_d \leftrightarrow E_F - (E_{N,0} - E_{N-1,0} + eV_g)$, $|0\rangle \leftrightarrow |N - 1, 0\rangle$, $|\uparrow\rangle \leftrightarrow |\uparrow\rangle$, and $|\downarrow\rangle \leftrightarrow |\downarrow\rangle$.