Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Proteomic analysis of Chilo iridescent virus

Ikbal Agah Ince a,c,d, Sjef A. Boeren b, Monique M. van Oers a,⁎, Jacques J.M. Vervoort b, Just M. Vlak a

a Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
b Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
c Department of Biology, Faculty of Arts and Sciences, Giresun University, 28049, Giresun, Turkey
d Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey

ARTICLE INFO

Article history:
Received 15 April 2010
Returned to author for revision 6 May 2010
Accepted 28 May 2010
Available online 2 July 2010

Keywords:
Chilo iridescent virus
Invertebrate iridovirus 6
Proteomics
LC-MS/MS

ABSTRACT

In this first proteomic analysis of an invertebrate iridovirus, 46 viral proteins were detected in the virions of Chilo iridescent virus (CIV) based on the detection of 2 or more distinct peptides; an additional 8 proteins were found based on a single peptide. Thirty-six of the 54 identified proteins have homologs in another invertebrate and/or in one or more vertebrate iridoviruses. The genes for 5 of the identified proteins, 22L (putative helicase), 118L, 142R (putative RNaseIII), 274L (major capsid protein) and 295L, are shared by all iridoviruses for which the complete nucleotide sequence is known and may therefore be considered as iridovirus core genes. Three identified proteins have homologs only in ascoviruses. The remaining 15 identified proteins are so far unique to CIV. In addition to broadening our insight in the structure and assembly of CIV virions, this knowledge is pivotal to unravel the initial steps in the infection process.

Introduction

Chilo iridescent virus (CIV), also known as Invertebrate iridovirus 6, belongs to the family Iridoviridae and is the type species of the genus Iridovirus (Fauquet et al., 2005; Williams, 1996; Williams et al, 2005; Willis, 1990). Iridoviruses are large, cytoplasmic, icosahedral viruses with a linear double-stranded DNA genome, which is both circularly permuted and terminally redundant (Darai et al., 1983; Goorha and Murti, 1982). The CIV virion consists of an unusual three layer structure containing an outer proteinaceous capsid, an intermediate lipid membrane, and a core DNA–protein complex containing the 212, 482 bp genome (Jakob et al., 2001; Williams, 1996; Williams et al., 2005). Up to now, thirteen complete sequences of iridovirus genomes have been published, including CIV (Huang et al., 2009; Williams et al., 2005). The availability of the CIV sequence facilitates the identification and functional analysis of the proteome of CIV virions. Replication of CIV occurs in the nucleus of infected cells and the assembly takes place in the cytoplasm (Goorha and Murti, 1982).

Many questions remain to be answered concerning the structure and scaffolding of the virus particles, the nature of virus–host interactions and the initial steps in virus infection, including the mechanism behind the onset of transcription of CIV genes. Viral structural proteins are likely to play crucial roles in these processes. Initiation of viral transcription for instance requires one or more virion proteins, since CIV DNA alone is not infectious, similar to what has been shown for the vertebrate iridovirus Frog virus 3 (Willis and Granoff, 1985). In previous studies, efforts have been made to characterize the polypeptides in CIV virions by one- or two-dimensional SDS-PAGE. The presence of 21–28 polypeptides was revealed by one-dimensional SDS-PAGE, while 35 polypeptides were observed in two-dimensional SDS-PAGE (Barray and Devauchelle, 1979, 1985; Cerutti and Devauchelle, 1985; Kelly and Tinsley, 1972; Orange and Devauchelle, 1987). The size of these polypeptides ranged from 11 to 300 kDa. However, most of these proteins were not further characterized and it is unknown, except for the major capsid protein MCP, by which CIV genes they are encoded.

In the current study we identified the CIV virion proteins by a proteomic approach, based on a combination of one-dimensional SDS-PAGE and Liquid Chromatography/Mass Spectrometry/Liquid Spectrometry (LC-MS/MS). The data obtained were analyzed by searches against a CIV ORF database. This provided a fast and highly sensitive method for the identification of genes through the sequences of the encoded proteins (Pandey and Mann, 2000).

Results

To identify the virion proteins of CIV, the proteins of purified virion particles were separated by one-dimensional SDS-PAGE. Staining of the gel with colloidal blue revealed at least 21 proteins ranging from 10 to 250 kDa (Fig. 1) much in line to what has been found previously (Barray and Devauchelle, 1979, 1985; Cerutti and Devauchelle, 1985; Kelly and Tinsley, 1972; Orange and Devauchelle, 1987). The gel lane was divided into 6 slices containing proteins with a molecular mass lower than 26 kDa, ranging from 26–34 kDa, 34–43 kDa, 43–55 kDa or 55–95 kDa and higher than 95 kDa, respectively. The proteins were digested with trypsin and analyzed by LC-MS/MS. A decoy database strategy (Elias and Gygi, 2007) was used which, after applying the appropriate filters,
resulted in 89 protein hits: 54 CIV proteins, 34 contaminants and 1 decoy hit giving a False Discovery Rate of 1.1%. Out of the 54 CIV proteins, 46 of the more abundant proteins were identified with 2 or more peptides (Table 1), while relatively small proteins like ORFs 342R, 227L or 104L as well as some less abundant proteins could be identified with one peptide only (Table 2). The proteins with one hit were manually verified to correlate well to the theoretical b+y ion spectrum and to be unique for one protein only (see also Supplementary Material S1).

The proteins identified are indicated in Fig. 1. A genomic map of CIV ORFs that encode polypeptides represented in the proteome of CIV particles is shown in Fig. 2. For individual CIV virion proteins, 2.7% to 70% of the amino acid sequence was covered with peptides retrieved from the analysis. The major capsid protein (MCP) encoded by ORF 274L is one of the most abundant CIV proteins (Barray and Devauchelle, 1979, 1985; Cerutti and Devauchelle, 1985; Kelly and Tinsley, 1972) and this is clearly re-
have evolved from invertebrate iridoviruses (Stasiak et al., 2003). The kinase, and ATPase III, and led to the hypothesis that ascoviruses may have homology to an entomopoxvirus gene (Table 1, Fig. 2). These results underscore the evolutionary distance of iridoviruses from both baculoviruses and entomopoxviruses and the closer relation to ascoviruses. Despite the proposed close evolutionary relation between the symbiotic ascoviruses, but not in other iridoviruses (209T, 422L and 374R). One of these (422L) is the only CIV virion ORF with a baculovirus homolog in the 34 ORFs with all iridoviruses: 022L, 118L, 142L, 274L (MCP) and 295L, and these may be considered to belong to the major capsid protein activity (Tan et al., 2009b) is notable in the CIV genome. Three of the identified CIV virion ORFs are found in one or more ascoviruses, but not in other iridoviruses (209T, 422L and 374R). One of these (422L) is the only CIV virion ORF with a baculovirus homolog (Cydia pomonella granulovirus ORF34). The gene products of six of the eleven SfAV1a homologs were also found in the proteome of SfAV1a virions (Tan et al., 2009a). A homolog of the SfAV1a virion protein P64, which was recently shown to be a major DNA binding protein with proposed DNA condensing activity (Tan et al., 2009b) is not encoded in the CIV genome. (DpAV4a). The gene products of six of the eleven SfAV1a homologs were also found in the proteome of SfAV1a virions (Tan et al., 2009a). A homolog of the SfAV1a virion protein P64, which was recently shown to be a major DNA binding protein with proposed DNA condensing activity (Tan et al., 2009b) is not encoded in the CIV genome. Three of the identified CIV virion ORFs are found in one or more ascoviruses, but not in other iridoviruses (209T, 422L and 374R). One of these (422L) is the only CIV virion ORF with a baculovirus homolog (Cydia pomonella granulovirus ORF34; genus Betabaculovirus). ORF 337L shares thirteen viral protein homologs with Singapore grouper iridovirus (SGIV) virion proteins identified by two independent mass spectrometric approaches (Chen et al., 2008; Song et al., 2004). Fifteen of the 34 ORFs with homologs in IV3, also have homologs in one or more vertebrate iridoviruses. The CIV proteome shares five ORFs with all iridoviruses: 022L, 118L, 142L, 274L (MCP) and 295L, and these may be considered to belong to the iridovirus core genes. The Rana gryllus iridovirus (RGI) ORF 53R, which is a homolog of the putative core gene 118L, has been shown to encode a novel iridovirus envelope protein (Zhao et al., 2008). The CIV proteome shares thirteen viral protein homologs with Singapore grouper iridovirus (SGIV) virion proteins identified by two independent mass spectrometric approaches (Chen et al., 2008; Song et al., 2004). Previous phylogenetic studies on ascoviruses were based on comparative analyses of the capsid protein, DNA polymerase, thymidine kinase, and ATPase III, and led to the hypothesis that ascoviruses may have evolved from invertebrate iridoviruses (Stasiak et al., 2003). The proteomic analysis of CIV performed here showed that 16 ORFs encoding CIV virion proteins have homologs in one or more ascoviruses (Asgari et al., 2007; Bideshi et al., 2006; Bigot et al., 2008; Stasiak et al., 2000; Wang et al., 2006). Nine CIV structural proteins have homologs in Heliothis virescens ascovirus 3e (HvAV3e), thirteen have homologs in Trichoplusia ni ascovirus 2c (TnAV2c), eleven in Spodoptera frugiperda ascovirus (SfAV1a) and six in Diadromus pulchellus ascovirus 4a (DpAV4a). The gene products of six of the eleven SfAV1a homologs were also found in the proteome of SfAV1a virions (Tan et al., 2009a). A homolog of the SfAV1a virion protein P64, which was recently shown to be a major DNA binding protein with proposed DNA condensing activity (Tan et al., 2009b) is not encoded in the CIV genome. (DpAV4a). The gene products of six of the eleven SfAV1a homologs were also found in the proteome of SfAV1a virions (Tan et al., 2009a). A homolog of the SfAV1a virion protein P64, which was recently shown to be a major DNA binding protein with proposed DNA condensing activity (Tan et al., 2009b) is not encoded in the CIV genome. (DpAV4a). The gene products of six of the eleven SfAV1a homologs were also found in the proteome of SfAV1a virions (Tan et al., 2009a). A homolog of the SfAV1a virion protein P64, which was recently shown to be a major DNA binding protein with proposed DNA condensing activity (Tan et al., 2009b) is not encoded in the CIV genome.
ascovirus DpAv4a and Chilo iridescent virus (Bigot et al., 2009) the number of CIV virion proteins with homologs in DpAv4a is limited in comparison to the other ascoviruses.

Although the morphology of the virions of members of the family Ascoviridae differs considerably from that of viruses of the family Iridoviridae, evidence is mounting that the ascoviruses and iridoviruses shared a common ancestor. Phylogenetic analyses based on proteins found in most enveloped dsDNA viruses provide strong evidence that ascoviruses evolved from iridoviruses, despite the marked differences in the characteristics of the virions belonging to these two families and differences in their cytopathology (Bigot et al., 2008). The conservation of structural proteins between CIV and ascoviruses further supports the hypothesis of common ancestry.

In conclusion, this is the first detailed study towards the determination of the virion proteins of an invertebrate iridovirus. This study will contribute to a better understanding of the molecular mechanisms underlying CIV virion assembly, CIV entry into cells, the initial steps of early iridovirus gene expression and the cell to cell movement of this virus.

Materials and methods

Preparation of virus particles and gel electrophoresis

CIV was propagated in larvae of the wax moth, Galleria mellonella, isolated as described by Marina et al. (1999) and further purified by 25–65% sucrose density gradient centrifugation. The purified CIV particles were checked for quality by transmission electron microscopy and quantified by UV spectroscopy. The purified particles were denatured and the proteins were separated by 12% one-dimensional SDS-PAGE. The gel was stained with colloidal blue and the gel lane containing the virion proteins was cut into six segments based on a comparison with molecular markers. Each gel piece was sliced and dehydrated with acetonitrile (100%) (ACN). After vacuum drying, the gel segments were incubated in 10 mM dithiothreitol in 50 mM ammonium bicarbonate (ABC buffer) at 57 °C for 1 h and subsequently in 55 mM iodoacetamide (Sigma) in ABC buffer at room temperature for 1 h. After a final wash step with ABC buffer the gel material was dried.

Trypsin digestion and LC-MS/MS

In-gel protein digestions were performed using sequencing grade modified porcine trypsin (Promega, Madison, WI) in ABC buffer at 37 °C for 15 h, after which the digests were centrifuged at 6000 g. The supernatants were collected, and the remaining gel pieces were extracted with 5% trifluoroacetic acid (TFA) and then with 15% ACN /1% TFA. The extracts were combined with the supernatants of the original digests, vacuum-dried, and the dried material was dissolved in 20 μl 0.1% formic acid in water. The peptides resulting from this digestion were analyzed by LC-MS/MS. To this aim, 18 μl of the samples were concentrated over a 0.10×32 mm Prontosil 300-5-C18H (Bischoff, Germany) pre-

Table 2

ORF NCBI Accession No	Molecular mass (kDa)	Peptide sequence	Protein coverage (% by amino acids)	MH+ (ppm)	Delta m/z (ppm)	z	Xcorr
317L AAK82178	43.95	IVNLIPQGQFQAK	3.11	1455.832	−0.30	2	1.77
130R AAB94451	23.18	ICFSEQPPLDFSNIK	7.46	1812.847	1.04	2	2.86
307L AAK82168	22.86	LKPLGYNLSIQ	5.58	1245.720	0.33	2	1.81
395R AAK82255	17.28	YAINNENQYR	6.62	1284.597	−0.72	2	2.54
010R AAK81948	12.84	TGSMVCSSTR	8.33	1065.471	3.19	2	2.34
342R AAK82203	9.33	IQAQNYATMGCLN-QCSQR*	21.59	2156.055	2.74	2	3.73
227L AAK82088	7.72	TFAVEVPR*	14.30	1095.583	1.49	2	2.61
104L AAB94434	7.05	RVACSPR*	12.30	845.441	2.01	2	2.78

* The same peptide was measured multiple times in different gel slices.

Fig. 2. Linearized genomic presentation of the 54 CIV structural protein ORFs determined by LC-MS/MS. Arrows indicate the positions and the direction of gene transcription (R or L). Red arrows are ORFs unique to CIV, green arrows represent ORFs present in all sequenced iridovirus genomes. The yellow and the white ORFs, have an entomopox- and baculovirus homolog, respectively. The remaining ORFs are indicated in blue. Genomic positions are indicated on the right in base pair number.
Table 3

List of CIV virion proteins identified by LC-MS/MS ordered by mass with homolog in other iridoviruses and/or ascoviruses.¹

Invertebrate	Vertebrate	Lympoviroidea	Megaloviroidea	Ascoviridae
Irido-virus	Chlorido-virus	Ranavirus	LCDVvirus	ISKNV
CIV	III	ATTV	LCDV-C	ISKNV
443L	91L	72R	234R	76L
295L	16L	45R	92R	72L
179L	32L	41L	29L	75L
022L	67L	57L	45R	144R
261L	91L	27L	110R	93R
209L		78L	76L	84L
390L	01L, 8L	80L	59L	128L
268L	74L	30L	63L	96R
149L	113L	11L	61L	161R
232R	84L	21R	85L	90R
439L	35R		110R	141R
361L	24L		114L	140R
380R	10L		111L	101R
213R	51L			114R
118L	6R			118R
158L	69L	53L	35L	157L
274L	14L	55R	7L	51L
229L	46R	88L	8L	150L
337L	47R	49L	8L	151L
329R	59R	157R	8L	154R
219L	36R, 91L	35R	85L	158R
142R	101R	28R	85R	161R
155L	113L	85L	83R	168R
401R	68R	85L	85R	26R
117L	107R	111L	85R	94R
415R	18L	113L	85R	22R
309L	63R	83L	83R	181L
422L		20R	85R	109R
307L	33L	038L	16L	109R
378R	100L	123R	23R	100R
355R	104L	152L	43L	103L
374R		98L	43L	109L
203L	85L	98L	83L	109L
395R	1L	85L	85R	109L
453L	41R	32R	85R	114R
366R	63R	32R	85R	114R
010R	43R	35R	85R	114R
342R	115R			114R

¹ORFs in bold are conserved in all analyzed iridovirus- and ascovirus genomes.

The a-d indices for the ascovirus ORFs refer to the following species:

- HvAV3 (Jancovich et al., 2003)
- TFV (Tidona and Darai, 1997)
- ISKNV (Tsai et al., 2005)
- STIV (Huang et al., 2009)
- LCDV-C (Wang et al., 2006)
- ATV (Asgari et al., 2007)
- Diadromus pulchellus ascovirus 4a (Wang et al., 2006)
- Spodoptera frugiperda ascovirus 1a (Bideshi et al., 2006)

The peptide mass tolerance for peptide precursor ions was set to 10 ppm (0.010% m/z 1000 amu) and for MS/MS fragment ions to 0.5 Da. An Invertebrate iridescent virus 6 protein database was used for the analysis (AF303741; created July 31, 2001; downloaded from www.ncbi.nlm.nih.gov/sites/entrez) after adding a list of commonly observed contaminants like: BSA (P02769, bovine serum albumin precursor), trypsin (P00760, bovine), trypsin (P00761, porcin), keratin K22E (P35908, human), keratin K1C9 (P35527, human), keratin K22E (P35908, human), keratin K1C9 (P35527, human). A decoy database was created by adding the reversed sequences using the program SequenceReverser from the MaxQuant package (Cox and Mann, 2008). The names of the other viruses are abbreviated as follows: CIV, Chilo iridescent virus (Jakob et al., 2001); IV3, Aedes taeniorhynchus iridescent virus (Delhox et al., 2006); ATV, Ambystoma tigrinum stebbensi virus (Jancovich et al., 2003); TVP, Tiger frog virus (He et al., 2002); FV3, Frog virus 3 (Tan et al., 2004); SGV, Singapore group iridovirus (Song et al., 2004); GIV, Grouper iridovirus (Tsai et al., 2005); STIV, Soft-shelled turtle iridovirus (Huang et al., 2009); LCDV-C, Lymphocystis disease virus – isolate China (Zhang et al., 2004); LCDV-1, Lymphocystis disease virus 1 (Tidona and Darai, 1997); ISKNV, Infectious spleen and kidney necrosis virus (He et al., 2001); RBIV, Rock bream iridovirus (Do et al., 2004); OSGIV, Orange-spotted grouper iridovirus (Li et al., 2005).
charge state 2+, Xcorr > 3.3 for charge state 3+ and Xcorr > 3.5 for charge state 4+ (Peng et al., 2003). Only those proteins that showed a Bioworks Score factor (SF) larger then 0.6 were considered.

Acknowledgments

This research was supported by a grant from the Scientific and Technological Research Council of Turkey and a Research Project Grant from the Graduate School for Production Ecology and Resource Conservation of Wageningen University, the Netherlands, to likal Agah Ince. Monique M. van Oers was supported by a MEERVOUD grant from the Research Council of Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO). All proteomic LC-MS/MS measurements were done at Biqualys Wageningen (www.biqualys.nl).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jvirol.2010.05.038.

References

Asgari, S., Davis, J., Wood, D., Wilson, P., McGrath, A., 2007. Sequence and organization of the Heliosco virensce ascovirus genome. J. Gen. Virol. 88, 1120–1132.
Barray, S., Devauchelle, G., 1979. Étude des polypeptides de structure du virus ascovirus du Liban. Arch. Virol. 62, 315–326.
Barray, S., Devauchelle, G., 1985. Protein synthesis in cells infected by Chlorella virus (Iridovirus, type 6). Arch. Virol. 86, 315–326.
Chen, L.M., Tran, B.N., Lin, Q., Lim, T.K., Wang, F., Hew, C.-L., 2008. iTRAQ analysis of mosquito iridescent virus genome. J. Gen. Virol. 89, 2869–2876.
Wang, L., Xue, J., Seaborn, C.P., Arif, B.M., Cheng, X.W., 2006. Sequence and organization of the Grouper iridovirus and comparison of genomic curation and localization of CiPV polypeptides. Virology 145, 123.
Zhang, Q.-Y., Xie, J., Li, Z.-Q., Gui, J.-F., 2004. Complete genome sequence of an invertebrate Iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 323, 70–84.
Zhou, S.Y., Long, Q.X., Wang, X.Z., Chan, S.-M., 2001. Complete genome analysis of the Mandarin fish infectious spleen and kidney necrosis virus. Virology 291, 126–139.
Zhao, Z., Ke, F., Huang, Y.-H., Zhao, J.-G., Gui, J.-F., Zhang, Q.-Y., 2008. Identification and characterization of a novel envelope protein in Rana glug virus. J. Gen. Virol. 89, 1866–1872.

He, J.G., Deng, M., Weng, S.P., Li, Z., Zhou, S.Y., Long, Q.X., Wang, X.Z., Chan, S.-M., 2001. Complete genome analysis of the Mandarin fish infectious spleen and kidney necrosis virus. Virology 291, 126–139.
He, J.G., Li, L., Deng, M., He, H.H., Weng, S.P., Wang, X.H., Zhou, S.Y., Long, Q.X., Wang, X.Z., Chan, S.-M., 2002. Sequence analysis of the complete genome of an iridovirus isolated from the Tiger frog. Virology 292, 185–197.
Huang, Y., Huang, X., Liu, H., Cong, J., Duyang, Z., Cui, H., Cao, J., Zhao, Y., Wang, X., Jiang, Y., Qin, Q., 2009. Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae. BMC Genomics 10, 224.
Jaksch, N.-J., Mueller, K., Bahr, U., Darai, G., 2001. Analysis of the first complete DNA sequence of an invertebrate Iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 286, 182–196.
Jancovich, J.K., Mao, J., Chinchar, V.G., Wyatt, C., Case, S.T., Kumar, S., Valente, G., Subramanian, S., Davidson, E.W., Collins, J.P., Jacobs, B.L., 2003. Genomic sequence of a ranavirus (family Iridoviridae) associated with salmonid mortalities in North America. Virology 316, 90–103.
Kelly, D.C., Tinsley, T.W., 1972. The proteins of iridovirus type 2 and 6. J. Invertebr. Pathol. 19, 273–274.
Lü, L., Zhou, S.Y., Chen, C., Weng, S.P., Chan, S.-M., He, J.G., 2005. Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coioides. Virology 339, 81–100.
Marina, C.F., Arredondo-Jimenez, J.I., Castillo, A., Williams, T., 1999. Sublethal effects of iridovirus disease in a mosquito. Oecologia 119, 383–388.
Orange, N., Devauchelle, C., 1987. Lipophilic polypeptides of Chilo iridescent virus (CiV, type 6) membrane. PEMS Microbiol. Lett. 48, 59–64.
Pandey, A., Mann, M., 2000. Proteomics to study genes and genomes. Nature 405, 837–864.
Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.J., Cygi, S.P., 2003. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/IC-MS/MS) for large-scale protein analysis: The yeast proteome. J. Proteome Res. 2, 43–50.
Song, W.J., Qin, Q.W., Qiu, J., Huang, C.H., Wang, F., Hew, C.L., 2004. Functional genomic analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. J. Virol. 78, 12576–12590.
Stasiak, K., Demattei, M.-V., Federici, B.A., Bigot, Y., 2000. Phylogenetic position of the Diadromus pulchellus ascovirus DNA polymerase among viruses with large double-stranded DNA genomes. J. Gen. Virol. 81, 3059–3072.
Stasiak, K., Renault, S., Demattei, M.-V., Bigot, Y., Federici, B.-A., 2003. Evidence for the evolution of ascoviruses from iridoviruses. J. Gen. Virol. 84, 2999–3009.
Tan, W.G.H., Barkman, T.J., Gregory Chinchar, V., Essani, K., 2004. Comparative genomic analysis of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). Virology 323, 70–84.
Tan, Y., Bideshi, D.K., Johnson, J.J., Bigot, Y., Federici, B.A., 2009a. Proteomic analysis of the Spodoptera frugiperda ascovirus 1a virus reveals 21 proteins. J. Gen. Virol. 90, 359–365.
Tan, Y., Spears, T., Bideshi, D.K., Johnson, J.J., Hice, R., Bigot, Y., Federici, B.A., 2009b. Pea4, a novel major virion DNA-binding protein potentially involved in condensing the Spodoptera frugiperda Ascovirus 1a genome. J. Virol. 83, 2708–2714.
Tidona, C.A., Darai, G., 1997. The complete DNA sequence of lymphocystis disease virus. Virology 230, 207–216.
Tsai, C.-T., Ting, J.-W., Wu, M.-H., Wu, M.-F., Guo, I.-C., Chang, C.-Y., 2005. Complete genomic sequence of the Grouper iridovirus and comparison of genomic organization with those of other iridoviruses. J. Gen. Virol. 89, 1001–1023.
Wang, L., Xue, J., Seaborn, C.P., Arif, B.M., Cheng, X.W., 2006. Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. Virology 354, 167–177.
Williams, T., 1996. The iridoviruses. Adv. Virus Res. 46, 345–412.
Williams, T., Barbosa-Solomieu, V., Chinchar, V.G., 2005. A decade of advances in iridovirus research. Adv. Virus Res. 65, 173–248.
Willis, D.B., 1990. Taxonomy of Iridoviruses. In: Darai, G. (Ed.), Molecular biology of iridoviruses. Kluwer, Boston.
Willis, D.B., Granoff, A., 1985. Trans activation of an immediate-early frog virus 3 promoter by a virion protein. J. Virol. 56, 495–501.
Yan, X., Yu, Z., Zhang, P., Battisti, A.J., Holdaway, H.A., Chipman, P.R., Bajaj, C., Bergoin, M., Rossmann, M.G., Baier, T.S., 2009. The capsid proteins of a large, icosahedral dsDNA virus. J. Mol. Biol. 385, 1287–1299.
Zhang, Q.-Y., Xiao, F., Xie, J., Li, Z.-Q., Gui, J.-F., 2004. Complete genome sequence of Lymphocystis disease virus isolated from China. J. Virol. 78, 6982–6994.
Zhou, Z., He, F., Huang, Y.-H., Zhao, J.-G., Gui, J.-F., Zhang, Q.-Y., 2008. Identification and characterization of a novel envelope protein in Rana glug virus. J. Gen. Virol. 89, 1866–1872.