Modelling of the formulated solid rocket propellant characteristics

Oyedeko K.F.K 1, * and Egwenu S. O. 2

1Department of Chemical Engineering, Lagos State University, Lagos, Nigeria
2Rocket propellant unit, Centre for Space Transport and Propulsion, Epe, Lagos Nigeria

Global Journal of Engineering and Technology Advances, 2021, 06(02), 061–073

Publication history: Received on 10 January 2021; revised on 06 February 2021; accepted on 08 February 2021

Article DOI: https://doi.org/10.30574/gjeta.2021.6.2.0017

Abstract

This study is a mathematical model to obtain the characteristics performance of magnesium metal (powder) and carbon on a potassium nitrate-sucrose (KNSU) solid propellant formulation. Characterization of propellant is, as a general rule, important to determine its performance before it can be suitable for use for a rocket flight or any mission. Method of ballistic load cell evaluation was used to validate results and a mathematical model using the combustion exhaust products was solved to obtain the characteristics performance parameters of the propellant. The carbon constituent which acts as an opacifier and coolant was kept constant at 2% in order to arrest some of the heat during the combustion process and helped to lower the combustion temperature, because high combustion temperature could lead to combustion chamber rupture or failure. The effect of addition of magnesium which was optimized for 3% in the formulation contributed significantly in improving the overall performance of the propellant. The utilization of magnesium in KNSU propellant provided higher values parameters and better performance compared to when not included. This was confirmed with the model equations. The propellant combustion products equation was used to model and obtain the characteristics performance parameters. This gave propellant specific impulse (122.9s), combustion temperature (1821K), heat ratio (1.1592), molecular weight (36.89g/mole), propellant density (1912.5kg/m3) and characteristics velocity (1000m/s) result while maintaining the same chamber pressure.

Keywords: Magnesium metal; Mathematical model; Carbon; Potassium nitrate- sucrose; Ballistic load

1. Introduction

All Solid Rocket Motors have the same form of principle but there is universal design method to utilize for design of various subsystems of Solid Rocket Motors such as the propellant. For example, approach to propellant to be formulated may vary with mission scenario, background experience and class of application.

For applications of rocket either for unguided military mission for upper atmosphere or any launch vehicle for space missions, the optimum Solid Rocket Motors design has to satisfy optimum total impulse, an optimium thrust-time profile, an optimum nozzle configuration an optimum chamber pressure and a preferred solid propellant grain configuration [1,2]

Classification of propellants in respect of the physical state of the fuel and oxidizer constituents of the propellant are solid propellants, liquid propellants and hybrid propellants [3]. Solid propellants have been the commonly used due to reliability, cost effective and simple to design [4,5]. Different formulations of various combinations of chemical constituents would give propellants of different physical and chemical properties, as well as combustion characteristics and performance [4,5].
The preferable use of Solid Chemical propellant (SCP) by many designers and manufacturers in different forms of rockets are due mainly to the advantageous area over the others chemical propellants with respect to simplicity of production, cost effectiveness, and dependable in terms of storage time and performance chemical potential energy [6].

The selection of propellant is usually carried out at the early stage of Solid Rocket Motors design based on the performance of the rocket and the available knowledge of the designer and manufacturer. It is therefore important to explore propellants of better performance characteristics with less mass (weight) to hit higher attitudes.[2,7,8]

The specific impulse, burning rate, temperature sensitivity, density and specific heat ratio are propellant properties that represent independent design variables [9]

Researchers have been working extensively to obtain the optimal design for a rocket vehicle that would achieve the safety, operability, reliability, performance and cost objectives of a rocket [10]

One of the main objectives in many rocket optimisation is minimizing the gross lift off mass/weight [11,12,13,14,15,16]

Traditionally the total vehicle mass (inert mass and propellant mass) are seen as a primary driver towards the final vehicle cost, as cost is always an essential factor developing the rocket based vehicle [1]

Many researchers have been working over the years to improve and develop new propellant formulations significantly to meet the need of the type reaching targets and missions with less weight [4,5] and propellant mass fraction can be sometimes be up to 70-90% of the rocket total mass, then improving and developing new propellant formulations to meet this need is therefore very significant)[12,14,17]

The aim of this work is to improve the performance of a KNSU rocket propellant fuel using magnesium metal and carbon. As KNSU has some shortcomings of brittleness, hygroscopic nature and caramelization amongst others [6,18]. The objectives are to: model the thermodynamics characterization and ballistic properties of the propellant . Validate the predicted propellant properties such as pressure and thrust generated by the propellant to characterize the fuel. These are to achieve: higher specific impulse, less smoke or reduced smoke, more flame, less hygroscopic propellant, less brittle, thus it can withstand more stress during handling without breaking, lower propellant mass to reach higher altitude.

2. Material and methods

This method involves performance parameters measurements mathematical model development and model validation of the propellant. The propellant constituents used are oxidizer (potassium nitrate), fuel or binder (sucrose), fuel (magnesium) and opacifier (carbon). The propellant characteristics performance parameters of interest in this work are the specific impulse, density, combustion temperature, characteristic velocity, molecular weight and heat ratio of the propellant.

2.1. Mathematical Modeling of the Propellant Characterization

Mathematical modeling of the propellant performance parameters using the propellant combustion equation was used to relate the propellant formulation and to characterize it.

2.1.1. Combustion temperature modeling

A rocket motor operates on the basic principle of converting heat energy, from chemical reactions, to kinetic energy. Thus it is essential to know the temperature delivered by the propellant to the combustion chamber; analytically we can calculate the adiabatic flame temperature gotten from, as a result of our balanced chemical equation.

Using the propellant combustion products balance equation (assuming no changes in kinetic energy and potential energy)

\[
\begin{align*}
6.3KNO_3(s) &+ 0.9C_{12}H_{22}O_{11}(s) + 1.1Mg(s) + 1.4C(s) \rightarrow 6.4CO(g) + 6.1H_2O(g) + \\
3.35H_2 &+ 3.15N_2(g) + 3.1CO_2(g) + 2.7K_2CO_3(l) + 1.1MgO(s) + 0.9KOH(g)
\end{align*}
\] (1)

Enthalpy of reactants = Enthalpy of products.
\[H_R = H_P \] \hspace{1cm} (2)

\[\sum_R n_i \ [\bar{h}_f^o + \Delta h] = \sum_P n_e \ [\bar{h}_f^o + \Delta h]_o \] \hspace{1cm} (3)

The enthalpies of formation values are now applied to equation (1) as shown in Table 1

Table 1 Enthalpies of Formation of Elements and Compounds Used at 298.15K (Source: NIST chemistry web book).

Constituents	States	\(\bar{h}_f^o \) (KJ/mol)
KNO₃	Solid	-494.63
C₁₂H₂₂O₁₁	Solid	-2226.1
Mg	Solid	0
C	Solid	0
CO	Gas	-110.53
H₂O	Gas	-241.83
H₂	Gas	0
N₂	Gas	0
CO₂	Gas	-393.52
K₂CO₃	Liquid	-1150.18
MgO	Solid	-601.8
KOH	Gas	-424.72

The enthalpies of formation can be gotten from CRC hand book of chemistry and physics [19] or thermo-chemical tables NIST chemistry web book [20].

Using the above equation and substituting in the values for \(h_f \), \(n_i \) and \(n_e \) gives:

\[
6.3(-494.63 + 0) + 0.9(-2226.1 + 0) + 1.1(0) + 1.4(0) = 6.4(-110.53 + CO) + 6.1(-241.83 + H₂O) +
3.35(0 + H₂) + 3.15(0 + N₂) + 3.1(-393.52 + CO₂) + 2.7(-1150.18 + K₂CO₃) + 1.1(-601.8 + MgO) +
0.9(-424.72 + KOH)
\]

\[-5119.66 = (-707.2 + 6.4CO) + (-1475.16 + 6.1H₂O) + (0 + 3.35H₂) + (0 + 3.15N₂) +
(-1219.92 + 3.1CO₂) + (-3052.65 + 2.7K₂CO₃) + (-661.98 + 1.1MgO) + (-208.935 + 0.9KOH)\]

We collect like terms and thus:

\[-5119.66 + 7325.8 = 6.4CO + 6.1H₂O + 3.35H₂ + 3.15N₂ + 3.1CO₂ + 2.7K₂CO₃ + 1.1MgO + 0.9KOH\]

\[2206.184 = 6.4CO + 6.1H₂O + 3.35H₂ + 3.15N₂ + 3.1CO₂ + 2.7K₂CO₃ + 1.1MgO + 0.9KOH\]

The solution of the equation is obtained by simply substituting in values for at a certain temperature. This temperature is equal to the adiabatic flame temperature (AFT) when the right hand side of the equation is equal to the left hand side (=2206.184K).
After much iteration it was found out that AFT lies between say 1800K – 1900K. From Joint Army-Navy-NASA-Air Force (JANNAF) tables, [21] the values are as shown in Table 2.

Table 2 Enthalpy of Formation of Product Species at 1800K and 1900K.

Species	Values @1900K (KJ/mole)	Values @1800K (KJ/mole)
CO	53.126	49.526
H2O	67.706	62.693
H2	49.541	46.169
N2	52.548	48.978
CO2	85.419	79.431
K2CO3	302.542	281.622
MgO	81.065	75.558
KOH	88.052	82.216

Iterating at 1900K and substituting,

\[
2206.184 = 6.4(53.126) + 6.1(67.706) + 3.35(49.541) + 3.15(52.548) + 3.1(85.419) + 2.7(302.542) + 1.1(81.065) + 0.9(88.052) \\
= 2334.584 KJ/mol
\]

Iterating at 1800K and substituting,

\[
2206.184 = 6.4(49.526) + 6.1(62.693) + 3.35(46.169) + 3.15(48.978) + 3.1(79.431) + 2.7(281.622) + 1.1(75.558) + 0.9(82.216) \\
= 2172.064 KJ/mol
\]

From here, we can see that the adiabatic flame temperature for the reaction lies between 1800K and 1900K. Therefore we interpolate to locate the particular temperature as follows:

\[
\frac{1900 - 1800}{1900 - x^0K} = \frac{2334.584 - 2172.064}{2334.584 - 2206.184} \\
\frac{100}{1900 - xK} = \frac{162.520}{128.400} = 1.2657 \\
x(AFT) = 182K
\]

Thus the theoretical adiabatic flame temperature of the propellant is 182 K.
Specific heats ratio, k

The specific heat ratio of a mixture is defined by [4] the equation

$$k = \frac{C_{pmix}}{C_v}$$

(4)

$$k = \frac{C_{pmix}}{C_{pmix} - R}$$

(5)

$$k = \frac{1}{1 - \frac{R}{C_{pmix}}}$$

(6)

Where $C_{pmix} = \frac{1}{n_T \left[\sum (n_i C_{pi}) + (n_s C_{ps}) \right]}$

(7)

n_T = total number of gas moles

n_i = number of moles of gas component i

C_{pi} = specific heat capacity of gas component i

n_s = number of moles of condensed phase product

C_{ps} = specific heat capacity of condensed phase product

Specific heat determination

$$C_{p, spec} = \frac{1}{n_T} \left(n_{CO} C_{p_{CO}} + n_{H_2O} C_{p_{H_2O}} + n_{H_2} C_{p_{H_2}} + n_{N_2} C_{p_{N_2}} + n_{CO_2} C_{p_{CO_2}} + n_{K_2CO} C_{p_{K_2CO}} \right)$$

The specific heat (C_p) of species values at 1800K and 1900K as shown in Table 3.

Table 3 Specific Heat (C_p) of Product Species at 1800K and 1900K

Species	Values @ 1900K (J/kmol)	Values @ 1800K (J/kmol)
CO	36.091	35.911
H$_2$O	50.496	49.749
H$_2$	33.917	33.537
N$_2$	35.796	35.6
CO$_2$	85.419	59.701
K$_2$CO$_3$	209.2	209.2
MgO	55.278	54.204
KOH	58.504	58.204
By extrapolation, $C_p @ 1821K$, we have

Table 4 Extrapolated Specific Heat (Cp) of Product Species at 1821K (AFT)

Species	State	Values @ 1821K (J/kmol)
CO	Gas	35.949
H2O	Gas	49.906
H2	Gas	33.617
N2	Gas	35.6
CO2	Gas	59.701
K2CO3	Liquid	209.2
MgO	Solid	54.978
KOH	Gas	58.267

$n_{T_{gas}}$ = total number of gas moles

$n_{T_{mix}}$ = total number of moles in mixture

$n_{T_{gas}} = n_{CO} + n_{H_2O} + n_{H_2} + n_{N_2} + n_{CO_2} + n_{KOH}$

$n_{T_{gas}} = 6.4 + 6.1 + 3.35 + 3.15 + 3.1 + 0.9 = 23$ moles

$n_{T_{mix}} = n_{CO} + n_{H_2O} + n_{H_2} + n_{N_2} + n_{CO_2} + n_{K_2CO_3} + n_{MgO} + n_{KOH}$

$n_{T_{mix}} = n_{mix} = 6.4 + 6.1 + 3.35 + 3.15 + 2.7 + 1.1 + 0.9 = 26.8$ moles

$C_p = \frac{1}{23} \left(\frac{(6.4 \times 35.949) + (6.1 \times 49.906) + (3.35 \times 33.617) + (3.15 \times 35.641) + (3.1 \times 59.774)}{(0.9 \times 58.267)} \right)$

$C_{p_{mix}} = 43.70268(JK^{-1}mol^{-1})$

$C_p = \frac{1}{26.8} \left(\frac{(6.4 \times 35.949) + (6.1 \times 49.906) + (3.35 \times 33.617) + (3.15 \times 35.641) + (3.1 \times 59.774)}{(2.7 \times 209.2) + (1.1 \times 54.978) + (0.9 \times 58.267)} \right)$

$C_{p_{mix}} = 60.53887(JK^{-1}mol^{-1})$

Where R = universal gas constant, $R = 8.314(J/molK)$

$C_v = $ specific heat at constant volume

$C_v = 60.53887 - 8.314 = 52.22487$

$k_{mix} = \frac{C_p}{C_v} = \frac{60.53887}{52.22487} = 1.1591$
$k_{\text{mix}} = 1.1591$

Effective molecular weight of the mix calculation:

Using the combustion equation,

Table 5 Moles and Mass of the product species of the combustion equation

Product species	Moles, n	Mass of Products species, mp (g)
CO2	3.1	136.4295
CO	6.4	179.2646
H2O	6.1	109.8932
H2	3.35	6.7532
N2	3.15	88.2422
K2CO3	2.7	373.1549
KOH	0.9	50.4951
MgO	1.1	44.3348

Therefore, the molecular weight given as:

$$MW = \frac{\sum mp}{\sum n_i} = \frac{988.567}{26.8} = 36.8688 \text{ g/mol}$$

2.2. Other Characteristics Performance Parameters

The other mathematical calculation evaluation of the propellant performance parameters such as the propellant specific impulse, propellant density and molecular weight were computed using MATHCAD tool.

2.2.1. Propellant Specific impulse (Isp) calculation

Acceleration due to gravity: $g_{\text{acc}} = 9.81 \text{ m/s}^2$

Nozzle exit pressure: $P_e = 14.7 \text{ psi}$

Chamber combustion pressure: $P_o = 112 \text{ psi}$

Propellant specific impulse, Isp

$$I_{sp} = \frac{1}{g_{\text{acc}}} \left[2T_c \frac{R_g}{M} \left(\frac{k}{k-1} \right) \left[1 - \left(\frac{P_e}{P_o} \right)^{\frac{k-1}{k}} \right] \right]^\frac{1}{2}$$

$$I_{sp} = 122.9 \text{ S}$$
2.2.2. Characteristics Velocity, C-star

Temperature: \(T_c = 1821 \) K

The universal gas constant: \(R_u = 831 \text{ J/kgmol K} \)

The Molecular Weight of the propellant: \(M = 36.8868 \text{ g/mol} \)

The Propellant Gas Constant: \(R_g = \frac{R_u}{M} = 225.392 \text{ J/kgK} \)

The specific heat ratio: \(k = 1.15919 \)

Characteristic velocity, \(c_{\text{star}} \)

\[
C_{\text{star}} = \left[\left(\frac{R_g}{k} \right) \left(\frac{k + 1}{2} \right) \right]^{\frac{1}{2}}
\]

\[
C_{\text{star}} = 1000.264 \text{ m/s}
\]

2.2.3. Ideal Density of the Mix Calculation for KNSUMgC Propellant

% composition of oxidizer: \(F_{\text{KNO}_3} = 0.65 \)

% composition of sucrose fuel: \(F_{\text{SU}} = 0.30 \)

% composition of magnesium fuel: \(F_{\text{Mg}} = 0.03 \)

% composition of opacifier carbon: \(F_{\text{C}} = 0.02 \)

\[
F_{\text{total}} = F_{\text{KNO}_3} + F_{\text{SU}} + F_{\text{Mg}} + F_{\text{C}} =
\]

2.2.4. Ideal Density

Density of KNO3 oxidizer: \(\rho_{\text{KNO}_3} = 2110 \text{ kg/m}^3 \)

Density of Sucrose fuel: \(\rho_{\text{SU}} = 1590 \text{ kg/m}^3 \)

Density of Magnesium fuel: \(\rho_{\text{Mg}} = 1740 \text{ kg/m}^3 \)

Density of opacifier carbon: \(\rho_{\text{C}} = 2250 \text{ kg/m}^3 \)

\[\text{Density}_{\text{mix}} = \frac{1}{\left(\frac{F_{\text{KNO}_3}}{\rho_{\text{KNO}_3}}\right) + \left(\frac{F_{\text{SU}}}{\rho_{\text{SU}}}\right) + \left(\frac{F_{\text{Mg}}}{\rho_{\text{Mg}}}\right) + \left(\frac{F_{\text{C}}}{\rho_{\text{C}}}\right)} \text{ kg/m}^3 \]

\[\text{Density}_{\text{mix}} = 1912.534 \text{ kg/m}^3 \]

3. Results and discussion

The experimental results from the load cell, software results and mathematical calculations carried out are presented in Tables 6 to 8 and Figures 1 to 3.

Table 6 Results of Software, Validation Test and Mathematical Model

Parameter	Notation	PROPEP	VALIDATION TEST	MODEL	Unit
Specific impulse	Isp	118.5	117.9	122.9	s
Combustion Temperature	Tc	1873	1818	1821	K
Molecular Weight	MW	37.34	38.88	36.89	g/mole
Isentropic heat ratio	K	1.1317	1.1508	1.1592	-
Propellant Density	\(\rho_p\)	1910	1874.6	1912.5	kg/m³
Characteristic velocity	c-star	950	997.2	1000	m/s

Table 7 Ballistic Load Cell Results of Propellant Samples

Propellant Samples	%Mg Composition	Exit Temperature Te (K)	Thrust F(N)	Burn time tb(s)
Control	0	113	1017	3.93
1	0	1108	1013	3.9
2	1	1191	1018	4.0
3	2	1222	1022	3.88
4	3	1301	1027	4.0
5	4	1297	987	4.12
6	5	1278	934	4.26
7	6	1267	894	4.31
8	7	1214	887	4.33
9	8	1056	827	4.4
10	9	1034	805	4.51
11	10	1013	782	4.6
Table 8 Result of Propellant Characteristics Performance Parameters

Propellant Samples	Specific impulse, \(I_s\) (s)	Heat ratio, \(K\)	Chamber Temp., \(T_c\) (K)	Characteristic velocity, \(C_{star}\) (m/s)	Propellant density, \(\rho_p\) (kg/m³)	Molecular weight \(M_w\) (g/mole)
Control	114.8	1.1512	1576	973.2	1899	36.59
1	113.4	1.1547	1568	963.3	1904	36.86
2	116.9	1.1524	1677	989.4	1906	37.09
3	113.9	1.1511	1716	966.5	1908	37.24
4	118.0	1.1508	1826	997.2	1910	37.33
5	116.8	1.1497	1816	988.3	1912	37.36
6	114.3	1.1487	1786	969.4	1914	37.34
7	110.6	1.1468	1764	942.3	1916	37.28
8	110.3	1.1456	1686	939.6	1918	37.18
9	104.5	1.1444	1463	896.1	1920	37.06
10	104.2	1.1432	1429	894.3	1922	36.9
11	103.3	1.1425	1398	887.1	1924	36.74

Figure 1 Measured Thrust and Burn Time Curve
Figure 2 Thrust vs. Magnesium Mass Fraction Curve

Figure 3 Propellant burn time vs. Magnesium Mass Fraction Curve

4. Discussion

The load cell instrumentation was helpful in determining the thrust generated by the propellant and the duration of the burn, usually referred to as the burn time. The propellant combustion products equation (1) was used to model and obtain the characteristics performance parameters. This gave propellant specific impulse (122.9s), combustion temperature (1821K), heat ratio (1.1592), molecular weight (36.89g/mole), propellant density (1912.5kg/m3) and characteristics velocity (1000m/s) result while maintaining the same chamber pressure.

It was observed that utilization of a propellant evaluation program (software) to compare the propellant formulation with that of the mathematical model showed that their results were close to the result obtained indicating, that basic assumptions made in the mathematical solutions were valid.

Table 8 is the test results (samples 1-11) that showed the effect of addition of magnesium to the propellant formulation and revealed that parameters such as specific impulse, chamber temperature, characteristics velocity, heat ratio were
greatly improved as compared to when magnesium was not present in the formulation. Figure 3 showed the result of magnesium on the propellant burn time. Magnesium was found to be increasing the propellant burn time and forced the sucrose from burning so spontaneously and aggressively resulting in shorter burn time.

It was observed that addition of magnesium to the formulation really justified by the amount of improvement brought upon the propellant performance. The need to necessarily select and use a propellant of higher composition of magnesium of average cost for parameters such as specific impulse, thrust, characteristic velocity, chamber temperature, thrust coefficient and heat ratio are raised to desired points is justified (22).

The utilization of 2% carbon which acted as an opacifier and/or coolant helped to contain some of the heat during the combustion process from directly hitting the walls of the motor thereby limiting or reducing high combustion temperature that could lead to the rocket motor rupture or failure. In this case, when increased beyond this percentage, the propellant was excessively smoky. Smoky fuel is the presence of high magnesium oxide (MgO) and other solids in the combustion products which result in air pollution, and can be harmful to human lives and the environment. A Smoky fuel is usually avoided especially in military application. (22) Also, carbon helped in aiding the curing of the propellant, improve the physical and mechanical properties such as plasticity (rubbery-like) textures.

5. Conclusion

The mathematical modeling of the combustion exhaust products was employed to characterize the propellant and results well agreed with experimental ballistic test results as well as the software result—PROPEP, which is a software program designed for the characterization of solid rocket motor propellants. This also confirmed the experimental results that inclusion of magnesium in the propellant formulation significantly improved the overall performance parameters of the propellant. The higher the values of these parameters, the better the performance of the propellant.

The use of magnesium adequately reduces the challenge of a smoky propellant that the KNSU propellant produces, improved the specific impulse and thrust generated.

This work has therefore solved the challenge of hygroscopicity of sugar propellants and improved the characteristics parameters of such propellants.

Rocket-grade chemical ingredients are recommended to be used to get characteristics performance results close to that of the software performance results.

Compliance with ethical standards

Acknowledgments

We sincerely appreciate the contribution of Dr Adeniyi Gbadebo (head, rocket propellant unit), Engr Wole Onibon-oje, (head, combustion engines and rocket propellant division) and Dr Adetoro Lanre Moshood for the propulsion instrumentation used in this work (head, electronics and simulation division). All of Centre for Space Transport and Propulsion, Epe Lagos

Disclosure of conflict of interest

There are no conflicts of interest

References

[1] Bayley D, Hartfield R. Design Optimization of Space Launch Vehicles for Minimum Cost Using a Genetic Algorithm, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper. July 2007; 2007-5852
[2] Biblarz O, Sutton GP. Rocket Propulsion Elements, Wiley, New Jersey. 2010; 792.
[3] Space Travel Guide. Web, 5 January 2014
[4] Yildirim C, Arksel M. Numerical simulation of the grain burnback in Solid propellant rocket motor. In proceedings of the 4th AIAA/ASME/SAE/SEE Joint proportion Conference and Exhibition. Tucson Arizona, USA. 2005.
[5] Yildirim C. Analysis of Grain Burn back and Internal Flow In Solid Propellant Rocket Motors in 3-Dimensions, Ph. D. Dissertation, Department of Mechanical Engineering, METU. 2007; 110–118.

[6] Mahjub Ahmed, Mazlan, Nurul Musfirah, Abdullah MZ, Azam Qummarine. Design Optimization of Solid Rocket Propulsion: A Survey of Recent Advancements. Journal of Spacecraft and Rockets. November 2019.

[7] Sforzini R. An Automated Approach to Design of Solid Rockets Utilizing a Special Internal Ballistics Model, 16th Joint Propulsion Conference, AIAA Paper. June–July 1980; 1980–1135.

[8] Sforzini RH. Automated Approach to Design of Solid Rockets. Journal of Spacecraft and Rockets. 1981;18(3): 200–205.

[9] Solid Propellant Grain Design and Internal Ballistics, NASA SP-8076. 1972.

[10] Rowell LF, Korte JI. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment, NASA TM-. 2003;2003-212654.

[11] Anderson M, Burkhalter J, Jenkins R. Multi-Disciplinary Intelligent Systems Approach to Solid Rocket Motor Design. I. Single and Dual Goal Optimization, 37th Joint Propulsion Conference and Exhibit, AIAA Paper. 2001; 2001-3599.

[12] Gbadebo Omoniyi Adeniyi, Jamiu Adetayo Adeniran, Adewole Johnson Adesanmi, Funsho Alaba Akeredolu, Jacob Ademola Sonibare. Optimisation and performance evaluation of an environmentally friendly rocket composite propellant, Indian Chemical Engineer. 2018.

[13] Jodei J, Ebrahimi M, Roshanian J. Multi-disciplinary Design Optimization of a Small Solid Propellant Launch Vehicle Using System Sensitivity Analysis, "Structural and Multidisciplinary Optimization. 2009;38(1): 93–100.

[14] Rafique A, He L, Zeeshan Q, Kamran A, Nisar K. Multidisciplinary Design and Optimization of an Air Launched Satellite Launch Vehicle Using a Hybrid Heuristic Search Algorithm, Engineering Optimization. 2011;43(3): 305–328.

[15] Roshanian J, Ebrahimi M. Latin Hypercube Sampling Applied to Reliability-Based Multidisciplinary Design Optimization of a Launch Vehicle. Aerospace Science and Technology. 2013;28(1): 297–304.

[16] Tekinalp O, Utalay S. Simulated Annealing for Missile Trajectory Planning and Multidisciplinary Missile Design Optimization, 38th Aerospace Sciences Meeting and Exhibit, AIAA Paper. Jan. 2000; 2000-684.

[17] Oyedeko KF, Onyieagho A. Effect of Propellant Formulation on Propellant Properties. International Journal of Engineering Sciences & Research Technology. 2018; 7(8): 305-313.

[18] Sutton GP, Biblarz O. Rocket Propulsion Elements, Wiley, New York, USA, 7th Edition. 1992.

[19] Lide DA. CRC Handbook of Chemistry and Physics. 89th edition. Amazon.co. 2008.

[20] Thermo-Chemical Tables (National Institute of Standard Technology)NIST Chemistry. NO. 69 https://doi.org/10.18434/T4D303 2018.

[21] Joint Army-Navy-NASA-Air Force (JANNAF), 2020

[22] Nakka R. Solid Propellant Burn Rate, Experimental Rocketry Web. 2013;5, Nov.