Prediction of Times to Failure of Censored Units in Progressive Hybrid Censored Samples for the Proportional Hazards Family

Samaneh Ameli†, Majid Rezaie‡ and Jafar Ahmadi‡

† University of Birjand
‡ Ferdowsi University of Mashhad

Received: 2/27/2016 Approved: 11/25/2017

Abstract. In this paper, the problem of predicting times to failure of units censored in multiple stages of progressively hybrid censoring for the proportional hazards family is considered. We discuss different classical predictors. The best unbiased predictor (BUP), the maximum likelihood predictor (MLP) and conditional median predictor (CMP) are all derived. As an example, the obtained results are computed for exponential distribution. A numerical example is presented to illustrate the prediction methods discussed here. Using simulation studies, the predictors are compared in terms of bias and mean squared prediction error ($MSPE$).

Keywords. Best unbiased predictor; conditional median predictor; maximum likelihood predictor; mean square prediction error; Monte-Carlo simulation; point predictor; progressive hybrid censoring.

MSC 2010: 62N01; 62N05.

* Corresponding author
1 Introduction

Quite often, survival data come in a form called “censoring” which occurs when exact survival times are known only for a portion of individuals or units under study. In this paper, we focus on progressive hybrid censoring. Kundu and Joarder (2006) and Childs et al. (2008) proposed, respectively, Type-I and Type-II progressive hybrid censoring procedure by introducing stopping time T^* to a progressive Type-II censored experiment. The termination times are defined by a given (fixed) threshold time T as follows:

(i) $T^*_1 = \min\{X_{m;m:n}; T\}$, this procedure is called Type-I progressive hybrid censoring scheme, where $X_{i;m:n}$ is the ith progressively Type-II censored order statistic from a sample of size n with censoring scheme (R_1, R_2, \ldots, R_m) and prefixed number of removals m. In addition R_i is the number of units that are randomly withdrawn from surviving units in the ith stage of censoring. The life testing experiment is stopped when either m failure have been observed or the threshold time T has been exceeded. The number of observations may be zero (when $X_{1;m:n} > T$), see Kundu and Joarder (2006).

(ii) $T^*_2 = \max\{X_{m;m:n}, T\}$, this procedure is called Type-II progressive hybrid censoring scheme. The number of observation is between m and $R_m + m$.

For Type-II censored data the first stopping point has been proposed by Epstein (1954) and the second one by Childs et al. (2008). According to the above setting, the number of observation is random. In particular, it’s possible to have less than m observations in Type-I progressive hybrid censoring, while we will have at least m observations in Type-II progressive hybrid censoring. In the set up of Type-I progressive hybrid censoring, the life testing experiment is stopped when either m failures have been observed.
Figure 2. Generation process of Type-II progressive hybrid censored order statistics

or threshold time T has been exceeded. Figure 1 depicts the generation procedure of Type-I progressive hybrid censored order statistics. The random variable Δ represents the removals at the termination time. It’s given by

$$\Delta = \begin{cases} R_m, & X_{m:m:n} \leq T, \\ n - k - R_1 - \cdots - R_k, & X_{m:m:n} \geq T. \end{cases}$$

It is worthwhile to mention that the number of observations may be zero, i.e., for the case when $X_{1:m:n} \geq T$. As mentioned before, in Type-II progressive hybrid censoring the number of observations is at least m. In fact, more precisely, it is between m and $R_m + m$. The idea of this procedure is to guarantee a minimum number of m observations as well as to come as close as possible to a minimum test duration specified by T. If $X_{m:m:n} \geq T$, the experiment terminates as the mth failure so that the progressive censoring procedure is carried out as initially planned. For $X_{m:m:n} \leq T$, we want to come as close as possible from below to the threshold T. This means that after the mth failure, all occurring failures are observed until the threshold T is exceeded. Therefore, the censoring scheme is modified as follows:

$$R^* = (R_1, R_2, \ldots, R_{m-1}, 0^{R_m+1}) \in \zeta_{R_m+m,n}^R ;$$

where $\zeta_{R_m,n}^R$ is the set of all admissible (Type-II) censoring schemes as

$$\zeta_{R_m,n}^R = \{(R_1, R_2, \ldots, R_m) \in \mathbb{N}_0^m ; \sum_{i=1}^m R_i = n - m \}.$$

and the notation 0^{*k} is used for k successive zeros.

The resulting sample is given by $X_{1:R_m+m:n}^{R^*}, \ldots, X_{k:R_m+m:n}^{R^*}$ where k stands with the inequality $X_{k:R_m+m:n}^{R^*} < X_{k+1:R_m+m:n}^{R^*} \cdots X_{R_m+m+1:R_m+m:n}^{R^*} = \infty$. Figure 2 depicts the generation procedure of Type-II progressive hybrid censored order statistics, where $m^* = R_m + m$ and Δ is defined as $n - k -$
$\sum_{j=1}^{m-1} R_j$.

A short review on progressive hybrid censoring, distributions and properties has been provided by Balakrishnan and Kundu (2013). For more details of progressive hybrid censoring readers are referred to, for example, Balakrishnan and Cramer (2014) and Lin and Huang (2012).

In this paper we consider various situations that may occur in both Type of progressive hybrid censoring schemes under different circumstances:

In Progressive Hybrid Censoring Type-I:

(i) If $X_{m:m:n} \leq T$ then censoring method performs similar to the ordinary progressive censoring with predetermined censoring scheme (R_1, R_2, \ldots, R_m).

(ii) If $X_{k:m:n} \leq T < X_{k+1:m:n}$; $k < m$ then R_i units are randomly withdrawn at the ith stage $i = 1, 2, \ldots, k$ and R_T units are withdrawn at time T. Here R_T is the number of survived units at time T. Then predetermined censoring scheme changes to $(R_1, R_2, \ldots, R_k, R_T)$ where $R_T = n - k - \sum_{i=1}^{k} R_i$.

In Progressive Hybrid Censoring Type-II:

(iii) If $X_{k:m:n} \leq T < X_{(k+1):m:n}$; $k \geq m$ then R_i units are randomly withdrawn at the ith stage $i = 1, 2, \ldots, m - 1$. Denoting R_T as in progressive hybrid censoring Type-I (ii), R_T units are withdrawn at time T. Therefore in this case the predetermined censoring scheme changes to $(R_1, R_2, \ldots, R_{m-1}, 0^{*k-m+1}, R_T)$ where $R_T = n - k - \sum_{i=1}^{m-1} R_i$.

(iv) If $X_{m:m:n} > T$ and $X_{k:m:n} \leq T < X_{(k+1):m:n}$ censoring method is similar to the ordinary progressive censoring with censoring scheme $(R_1, R_2, \ldots, R_k, 0^{*m-k-1}, R_m)$ where $R_m = n - m - \sum_{i=1}^{k} R_i$.

Let $F_0(\cdot)$ be a cumulative distribution function (cdf) with a corresponding hazard rate function $r_0(\cdot)$. The family of random variables with hazard rate function of the form $\{\theta r_0(\cdot) : \theta > 0\}$ is called proportional hazard rate (PHR) family and cdf $F_0(\cdot)$ is known as the baseline cdf of that family. Therefore, if X is a member of proportional hazard family with the baseline cdf $F_0(\cdot)$, then cdf of X becomes

$$F(x; \theta) = 1 - [\bar{F}_0(x)]^\theta \quad x \in B, \theta > 0 ;$$ (1)
where \(F_0(x) = 1 - F_0(x) \) is the baseline survival function with support \(B \). Note that the baseline cdf \(F_0(x) \) corresponds to the case \(\theta = 1 \). This model is originally proposed by Cox (1972) and has been extensively discussed in statistical and reliability literature. The PHR family includes several well-known lifetime distributions such as exponential, Pareto (Type-I and Type-II), beta, Burr Type-XII and so on, see Ahmadi et al. (2009a, 2009b) and Asgharzadeh and Valiollahi (2009, 2010). Furthermore as an extension, in PHR model introduced by Cox (1972), \(\theta \) is considered as a random variable which is a function of the covariates \(z = (z_1, z_2, \ldots, z_k) \). By taking into account this, the resulting model is

\[
 r(x|\theta(z)) = r(x)\theta(z).
\]

Two most commonly used covariate functions in the literatures are the linear

\[
 \theta(z) = \beta z,
\]

and the log linear

\[
 \theta(z) = \exp(\beta z),
\]

models, where \(\beta \) may be a vector parameter. When \(\theta = \theta(z) \) has the form log linear, the resulting model is often called cox model. Other functions of the covariates are some times used. For further details, see Lawless (2003) and Marshall and Olkin (2007).

From PHR model in (1) the probability density function (pdf) is given by

\[
 f(x; \theta) = \theta f_0(x)[F_0(x)]^{\theta - 1}, \quad x \in B;
\]

(2)

where \(f_0(\cdot) \) is the pdf of \(F_0(\cdot) \). In what follows, for simplification, we will use \(Y_i \) in place of \(X_{i:n} \) when \(X_1, X_2, \ldots, X_n \) denotes the failure times of \(n \) independent units placed in a life testing experiment. Assume sample \(X_1, X_2, \ldots, X_n \) is drawn from the PHR model given in (1). The aim of this paper is to discuss the prediction of life-length \(Y_{j:R_i} \) \((j = 1, 2, \ldots, R_i; i = 1, 2, \ldots, k) \) of all censored units in all \(k \) stages of censoring and \(Y_{j:T} \) \((j = 1, 2, \ldots, R_T) \). Here \(Y_{j:R_i} \) denotes the \(j \)th-order statistic out of \(R_i \) removed units at stage \(i = 1, 2, \ldots, k \) and \(Y_{j:T} \) denotes the \(j \)th-order statistic out of \(R_T \) removed units at time \(T \). Note that we only observe \(Y = (Y_1, Y_2, \ldots, Y_k) \). We inspired the idea from prediction of times to failure of \(Y_{j:R_i} \) at progressive
censored data discussed by Basak et al. (2006), Basak and Balakrishnan (2009) and Asgharzadeh and Valiollahi (2010). However, later Asgharzadeh and Valiollahi (2012, 2015) obtained prediction of time to failure in hybrid censored sample. See also Zhang and Shi (2017). We illustrate a brief description of different predictors in Section 2. In Sections 3, 4 and 5 we focus on \textit{BUP}, \textit{MLP} and \textit{CMP}, respectively. In Section 6 a numerical example and Monte Carlo simulations are provided to validate the prediction methods presented in this paper. Here, we also compare \textit{CMP} with \textit{BUP} and \textit{MLP} in terms of \textit{MSPE} for exponential distribution. Concluding remarks are given in Section 7.

2 Point Predictors

Let Y_1, Y_2, \ldots, Y_k be a progressive hybrid censoring sample with final censoring scheme $(R_1, R_2, \ldots, R_k, R_T)$. Our interest is to predict $Y_{j;R_i}$ ($j = 1, 2, \ldots, R_i$), $(i = 1, 2, \ldots, k)$ and $Y_{j;R_T}$ ($j = 1, 2, \ldots, R_T$) based on the observed progressive hybrid right censored sample $Y = (Y_1, \ldots, Y_k)$. A statistic T which is used to predict $Y_{j;R_i}$ is called a predictor of $Y_{j;R_i}$. T is an unbiased predictor if the prediction error $T - Y_{j;R_i}$ has a mean zero. Also a predictor is a linear predictor if it has the form $c_1Y_1 + c_2Y_2 + \cdots + c_mY_m$ for real c_i’s. Moreover, the conditional distribution of $Y_{j;R_i}$ given Y is equal to the conditional distribution of $Y_{j;R_i}$ given Y_i due to a Markovian property of progressive right censored order statistic (see Balakrishnan and Aggarawala, 2000); that is

$$f_{Y_{j;R_i}}(y) = f_{Y_{j;R_i}|Y_i}(y), \quad i = 1, 2, \ldots, m. \quad (3)$$

In view of (3), \textit{BUP} of $Y_{j;R_i}$ ($j = 1, 2, \ldots, R_i$), $(i = 1, 2, \ldots, k)$; $E\{Y_{j;R_i}|Y\}$ is nothing but $E\{Y_{j;R_i}|Y_i\}$, hence it depends only on Y_i. If the parameter θ is unknown it has to be estimated. A technique to obtain \textit{BUP}, when the parameter is unknown, is to apply the result obtained by Ishii and Tokeiteki (1978) and mentioned in Takada (1981). It states that an unbiased predictor $Y^*_{j;R_i}$ of $Y_{j;R_i}$ is its \textit{BUP} if and only if

$$E_\theta((Y_{j;R_i} - Y^*_{j;R_i})\gamma(Y)) = 0, \quad \text{for all } \theta,$$

where $\gamma(\cdot)$ is an unbiased estimator of zero. As the best of our knowledge, the most popular predictor of censored order-statistics, for a location-scale family
F is the best linear unbiased predictor (BLUP). Kaminsky and Nelson (1975) obtained BLUP of censored order-statistics by applying the results of Goldberger (1962) in the context of ordinary Type-II right censored samples. Raqab and Nagaraja (1997) used order statistics $X_{1:n}, X_{2:n}, \ldots, X_{r:n}$ to predict the future order statistics $X_{s:n}$ for $1 \leq r < s \leq n$.

In the literature, one frequently used predictor is MLP which has been discussed by Kaminsky and Rhodin (1985) for ordinary Type-II right censored samples. CMP is another possible predictor. A statistic T is said to be the CMP of $Y_{j:R_i}$ if it is the median of the conditional distribution of $Y_{j:R_i}$ given Y_j. A CMP is a special type of median unbiased predictor (MUP). The idea of median unbiasedness is used to define a MUP. A statistic T is said MUP of $Y_{j:R_i}$ if for all θ,

$$P_{\theta}(T \leq Y_{j:R_i}) = P_{\theta}(T \geq Y_{j:R_i}).$$

Takada (1991) discussed some properties of MUP in the case of ordinary Type-II right censored samples. He showed that for a location-scale family, a particular MUP is better than the BLUP under Pitman’s measure of closeness (PMC). It is known that under PMC, the predictor T_1 is better than T_2 for predicting $Y_{j:R_i}$ if

$$P_{\theta}(|T_1 - Y_{j:R_i}| \leq |T_2 - Y_{j:R_i}|) \geq \frac{1}{2}, \quad \text{for all } \theta.$$

Our contribution in Section 3 and 4 is to discuss BUP and MLP of $Y_{j:R_i}$ respectively. We have focused on exponential population there. In Section 5 Takada’s CMP of $Y_{j:R_i}$ is considered. In Section 6, a set of numerical simulation is provided to validate all the proposed prediction methods discussed in this paper. We also set comparison between CMP, BUP and MLP in terms of MSPE for exponential distribution. Throughout this paper we will use the following notations:

- $X \overset{d}{=} Y$: X and Y are identically distributed
- $X \sim F$: X is distributed as F
- $\text{Exp}(\theta)$: exponential distribution with support $(0, \infty)$ and mean $\frac{1}{\theta}$
- $Y_{j:R_i}$: jth order statistic out of R_i units of Y
138 Prediction of Times in Progressive Hybrid Censored Samples

\[Y_{j:R_i}^* : \text{BUP of } Y_{j:R_i} \]
\[Y_{j:R_i}^L : \text{MLP of } Y_{j:R_i} \]
\[Y_{j:R_i}^{CM} : \text{CMP of } Y_{j:R_i} \]

3 Best Unbiased Predictor

A statistic \(Y_{j:R_i}^* \), which is used to predict \(Y_{j:R_i} \), is called BUP of \(Y_{j:R_i} \), if the \(\text{var}(Y_{j:R_i} - Y_{j:R_i}) \) has a mean zero and its prediction error variance, i.e., \(\text{var}(Y_{j:R_i} - Y_{j:R_i}) \) is less than or equal to that of any other unbiased predictor of \(Y_{j:R_i} \).

Since the conditional distribution of \(Y_{j:R_i} \) given \(Y_i \) is just the distribution of \(Y_{j:R_i} \) given \(Y_i \), therefore the BUP of \(Y_{j:R_i} \) is

\[Y_{j:R_i}^* = \hat{Y}_{BUP} = \frac{1}{R_i} \sum_{j=1}^{R_i} Y_j, \]

see Nayak (2000).

As mentioned before due to the Markovian property of progressive censored order statistic the density of \(Y_{j:R_i} \) given \(Y_i = y_i \) is the same as the density of \(Y_j \)th order statistic out of \(R_i \) units from the population with density \(f(y) \)

\[f(y; \theta) = \frac{R_i}{j} \sum_{j=1}^{R_i} \frac{f_0(y)}{F_0(y)} \left[F_0(y) - F_0(y_i) \right]^{j-1} \left[1 - F_0(y) \right]^{R_i-j} \left[1 - F_0(y_i) \right]^{-R_i}. \] (4)

Using (2), (4) reduces to

\[f(y; \theta) = \frac{R_i}{j} \theta \left(\frac{f_0(y)}{F_0(y)} \right) \left[F_0(y) - F_0(y_i) \right]^{j-1} \left[1 - F_0(y) \right]^{R_i-j} \left[1 - F_0(y_i) \right]^{-R_i} ; y \geq y_i. \] (5)

Likewise, for cases (ii) and (iii) \(f_{Y_{j:R_i}}(y|y_i) \) takes the form (4) for \(i = 1, 2, \ldots, k \), in other cases due to Markovian property of progressive censored order statistic, it is well-known that \(f_{Y_{j:R_T}}(y|y, T) \) is the density of \(Y_{j:R_T} \) given \(Y = y \) and \(T \) is the same as the density of \(j \)th order statistic out of \(R_T \) units from the population with density \(\frac{f(y)}{1 - F_T(y)} \), \(y \geq T \) (left truncated density at \(T \)). Therefore the conditional density of \(Y_{j:R_T} \)
given T for $y \geq T$ is derived by:

$$f(y; \theta) = \int \theta \left(\frac{R_T}{y} \right) \theta \frac{F_0(y)}{F_0^T(y)} [\bar{F}_0^\theta (T) - \bar{F}_0^\theta (y)]^{j-1} [\bar{F}_0^\theta (y)]^{R_T-j+1} [\bar{F}_0^\theta (T)]^{-R_T}; \ y \geq T. \ \ (6)$$

By (5) and (6) we have

$$E(Y_{j:R_i} | Y_i = y_i) = \int_{y_i}^{\infty} y f(y|y_i) dy = \int_{0}^{y_i} \bar{F}_0^{-1}(u \frac{\bar{F}_0(y_i)}{\bar{F}_0^\theta (y_i)}) \frac{u^{R_T-j}(1-u)^{j-1}}{Beta(R_i - j + 1, j)} du. \ \ (7)$$

$$E(Y_{j:R_T} | T) = \int_{y_i}^{\infty} y f(y|y_i) dy = \int_{0}^{y_i} \bar{F}_0^{-1}(u \frac{\bar{F}_0(T)}{\bar{F}_0^\theta (T)}) \frac{u^{R_T-j}(1-u)^{j-1}}{Beta(R_T - j + 1, j)} du. \ \ (8)$$

We consider exponential distribution as an example in order to illustrate our achievements. Suppose that the lifetimes of the n units put on test are independent and identically distributed as exponential random variables with pdf $\bar{F}_0^\theta (x) = e^{-\theta x}$ so $\bar{F}_0^\theta (x) = e^{-x}$ then we compute BUP of Y as:

$$E(Y_{j:R_i} | Y_i = y_i) = \int_{0}^{1} -\ln(u \frac{\bar{F}_0(y_i)}{\bar{F}_0^\theta (y_i)}) \frac{u^{R_T-j}(1-u)^{j-1}}{Beta(R_i - j + 1, j)} du$$

$$= y_i + \frac{1}{\theta} E(-\ln U), \ \ (9)$$

where random variable U has beta distribution with parameters $R_i - j + 1$ and j. So in this case

$$Y_{j:R_i}^* = y_i + \frac{1}{\theta} E(-\ln U)$$

$$= y_i + \frac{1}{\theta} E(Z_{j:R_i})$$

$$= y_i + \frac{1}{\theta} \sum_{r=R_i-j+1}^{R_T} \frac{1}{r}, \ \ (10)$$

where $Z_{j:R_i}$ stands for the jth order statistic of sample size R_i from standard exponential distribution.

Hence analogously

$$Y_{j:R_T}^* = T + \frac{1}{\theta} \sum_{r=R_T-j+1}^{R_T} \frac{1}{r}. \ \ (11)$$
If θ is unknown we can approximate it by using its MLE and plug it into (10) and (11). In case exponential distribution MLE of θ under progressive hybrid censoring scheme obtained by Childs et al. (2008)

$$
\hat{\theta} = \left\{ \begin{array}{ll}
\frac{k}{\sum_{l=1}^{k}(R_l+1)y_l+TR_T} & \text{for } k \neq m \\
\frac{m}{\sum_{l=1}^{m}(R_l+1)y_l} & \text{for } k = m.
\end{array} \right.
$$

4 Maximum Likelihood Predictor

Regarding the prediction context, the maximum likelihood (ML) methodology has been the solution of many problems in statistics and reliability analysis. For this, see, Kaminsky and Rhodin (1985), Basak and Balakrishnan (2003) and Basak et al. (2006).

In MLP, the principle of maximum likelihood is applied to the joint prediction and estimation of future random variable and an unknown parameter.

Let $Y = (Y_1, Y_2, \ldots, Y_k)$ and $Y_{j;R_i}$ have the joint pdf $f(y, \theta)$. We know that both cases (i) and (iv) are similar to the ordinary progressive censoring so the predictive likelihood function (PLF) of $Y_{j;R_i}$ and θ is given by

$$L = L(y, \theta, y) = f_\theta(y, y) = f_{\theta, Y_{j;R_i};Y}(y|y) f_{Y, \theta}(y) = f_{\theta, Y_{j;R_i};Y}(y|y_i) f_{Y, \theta}(y).$$

In addition note that in cases (i) and (iv):

$$f_{Y}(y; \theta) = c \prod_{l=1}^{m} \frac{f_0(y_l)}{F_0(y_l)} \theta^{(R_l+1)},$$

and in cases (ii) and (iii)

$$f_{Y,T}(y; \theta) = c \theta^k \prod_{l=1}^{k} \frac{f_0(y_l)}{F_0(y_l)} (F_0(y_l))^{\theta(R_l+1)} F^{R_T \theta}(T),$$

where k is the number of failure before time T. We can assume $R_T = 0$ and
In cases (i) and (iv), we have the general form
\[f_{Y,T}(y; \theta) = c \prod_{l=1}^{k} f(y_l) F_{0}(y_l)^{R_l} (T) \]
\[= c \prod_{l=1}^{k} \frac{f(y_l)}{F_{0}(y_l)} (F_{0}(y_l))^{\theta(R_l+1)} F_{0}(T)^{R_l} (T). \] (12)

From (5) and (12), one can write
\[L = L(y, \theta; y) = c \prod_{l=1}^{m} \frac{f(y_l)}{F_{0}(y_l)} (F_{0}(y_l))^{\theta(R_l+1)} \frac{f(y)}{F_{0}(y)} \]
\[\times [F_{0}(y_i) - F_{0}(y)]^{-1} (F_{0}(y))^{R_l - j + 1} [F_{0}(y_i)]^{-R_l}, \quad y \geq y_i. \]

So
\[\ln L(y, \theta; y) = \ln f_{0}(y) + (j - 1) \ln [F_{0}(y) - F_{0}(y_i)] + (R_l - j) \ln [1 - F(y, \theta)] \]
\[+ \sum_{l=1}^{m} \ln f_{0}(y_l) + \sum_{l=1, l \neq i}^{m} R_l \ln [1 - F_{0}(y_l)], \quad y \geq y_i. \]

Again from (5) and (12) we have
\[\ln L(y, \theta; y) = (m + 1) \ln \theta + \ln \left(\frac{f_{0}(y)}{F_{0}(y)} \right) + (j - 1) \ln \left(1 - \left(\frac{F_{0}(y)}{F_{0}(y_i)} \right)^{\theta} \right) \]
\[+ \theta (R_l - j + 1) \ln F_{0}(y) - \ln F_{0}(y_i) + \theta \sum_{l=1}^{m} (R_l + 1) \ln F_{0}(y_l). \] (13)

Assuming \(Y_{j,R_l}^{L} = t(Y) \) and \(\theta^{**} = u(Y) \) are two statistics such that \(L(t(y), u(y); y) = \sup_{y, \theta} L(y, \theta; y) \), then \(t(Y) \) is said to be the \(MLP \) of \(Y_{j,R_l} \) and \(u(Y) \) is the predictive maximum likelihood estimator (PMLE) of \(\theta \). Since \(f \) is continuous then \(L \) converges to zero as \(y \downarrow y_i \) and \(y \uparrow \infty \) also \(L > 0 \) for \(y > y_i \). This means that if there exists a unique solution \(Y_{j,R_l}^{L} \) of the likelihood equation \(\frac{\partial \ln L}{\partial y} = 0 \), then \(Y_{j,R_l}^{L} \) must be the unique \(MLP \) of \(Y_{j,R_l} \).
From (13), predictive likelihood equations for y and θ are given by:

$$\frac{\partial \ln L(y, \theta; y)}{\partial \theta} = \frac{m + 1}{\theta} + (R_i - j + 1)[\ln \bar{F}_0(y) - \ln \bar{F}_0(y_i)]$$

$$+ \sum_{l=1}^{m} (R_l + 1) \ln \bar{F}_0(y_l)$$

$$- (j - 1) \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)^{\theta} \frac{\ln \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)}{1 - \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)} = 0,$$

(14)

and

$$\frac{\partial \ln L(y, \theta; y)}{\partial y} = \frac{1}{F_0(y)} \left[f_0(y) \bar{F}_0(y) + f_0^2(y) \right] + \theta (j - 1) \frac{f_0(y) \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)^{\theta}}{1 - \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)}$$

$$- \theta (R_i - j + 1) f_0(y) \right] = 0.$$

(15)

Going back to (i) and (iv), if θ is known we can find $Y_{j:R_i}$ by solving equation (15), but if θ is unknown we have to solve (14) and (15) simultaneously. Similarly for cases (ii) and (iii), from (12) we have

$$L(y, \theta, y) = c\theta^{k+1} \prod_{l=1}^{k} \frac{f_0(y_l) \bar{F}_0(y_l)^{\theta(R_l + 1)}}{f_0(y_l) \bar{F}_0(y_l)^{\theta}} \frac{f_0(y) \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)^{\theta}}{1 - \left(\frac{\bar{F}_0(y)}{\bar{F}_0(y_i)} \right)}$$

$$\times \left[\bar{F}_0^\theta(T) - \bar{F}_0^\theta(y) \right]^{j-1} \left[\bar{F}_0^\theta(y) \right]^{R_T - j + 1}, \ y > T,$$

consequently we write

$$\ln L(y, \theta; y) = (k + 1) \ln \theta + (j - 1) \ln \left[1 - \left(\frac{\bar{F}_0(y)}{\bar{F}_0(T)} \right)^{\theta} \right] + \ln \left(\frac{f_0(y)}{\bar{F}_0(y)} \right)$$

© 2017, SRTC Iran
\[
+ \theta \sum_{l=1}^{m} (R_l + 1) \ln F_0(y_l) + \theta R_T \ln \bar{F}_0(T) \\
+ \theta(R_T - j + 1)[\ln \bar{F}_0(y) - \ln \bar{F}_0(T)].
\]

(16)

Now, the expression (16) implies

\[
\frac{\partial \ln L(y, \theta; y, T)}{\partial y} = \frac{1}{F_0(y)} \left[f'_0(y) \bar{F}_0(y) + f''_0(y) \right] + \theta (j - 1) \frac{f_0(y)}{1 - \left(\frac{\bar{F}_0(y)}{\bar{F}_0(T)} \right)} \\
- \theta(R_T - j + 1) f_0(y) = 0,
\]

(17)

\[
\frac{\partial \ln L(y, \theta; y, T)}{\partial \theta} = \frac{k + 1}{\theta} + (R_T - j + 1)[\ln \bar{F}_0(y) - \ln \bar{F}_0(T)] + R_T \ln \bar{F}_0(T) \\
+ \sum_{j=1}^{k} (R_l + 1) \ln \bar{F}_0(y_l) \\
- (j - 1) \left(\frac{\bar{F}_0(y)}{\bar{F}_0(T)} \right)^\theta \ln \left(1 - \left(\frac{\bar{F}_0(y)}{\bar{F}_0(T)} \right) \right) = 0.
\]

(18)

As an example, let \(F_0 \) be standard exponential distribution, then the predictive likelihood equations reduce to:

\[
\frac{\partial \ln L(y, \theta; y)}{\partial \theta} = \frac{m + 1}{\theta} + (R_i - j + 1)(y_i - y) \\
- \sum_{l=1}^{m} (R_l + 1)y_l(R_l + 1) - (j - 1) \left(\frac{y_i - y}{1 - e^{-\theta (y_i - y)}} \right) = 0,
\]

and

\[
\frac{\partial \ln L(y, \theta; y)}{\partial y} = -\theta(R_i - j + 1) + \theta(j - 1) \frac{e^{\theta(y_i - y)}}{1 - e^{\theta(y_i - y)}} = 0.
\]

J. Statist. Res. Iran 14 (2017): 131–155
In all four cases (i)-(iv), for \(j = 1, 2, \ldots, R_i \) and \(i = 1, 2, \ldots, k \), MLP of \(Y_{j;R_i} \) is obtained by

\[
Y_{j;R_i}^L = Y_i + \frac{1}{\hat{\theta}} \ln \frac{R_i}{R_i - j + 1},
\]

where \(\hat{\theta} \) stands with the PMLE of \(\theta \) is given by

\[
\hat{\theta} = \frac{m + 1}{\sum_{l=1}^{m} (R_l + 1)Y_l}.
\]

In this regard, we again consider cases (ii) and (iii), so we have

\[
Y_{j;R_T}^L = T + \frac{1}{\hat{\theta}} \ln \frac{R_T}{R_T - j + 1},
\]

where \(\hat{\theta} \) is the PMLE of \(\theta \) and is given by

\[
\hat{\theta} = \frac{k + 1}{\sum_{l=1}^{k} (R_l + 1)Y_l + R_T T}.
\]

5 Conditional Median Predictor

For the first time, Raqab and Nagaraja (1997) introduced the CMP. In their work the predictor \(Y_{j;R_i}^{CMP} \) is called CMP of \(Y_{j;R_i} \), if it is the median of the conditional distribution of \(Y_{j;R_i} \) given \(Y_i = y_i \). So, the analytical interpretation would be

\[
P_\theta(Y_{j;R_i} \leq Y_{j;R_i}^{CMP}|Y_i = y_i) = P_\theta(Y_{j;R_i} \geq Y_{j;R_i}^{CMP}|Y_i = y_i).
\]

On the other side we know

\[
P_\theta(Y_{j;R_i} \leq Y_{j;R_i}^{CMP}|Y_i = y_i) = P_\theta \left[\left(\frac{\bar{F}_0(Y)}{F_0(Y_i)} \right)^\theta \geq \left(\frac{\bar{F}_0(Y_{j;R_i}^{CMP})}{F_0(Y_i)} \right)^\theta \right] |Y_i = y_i.
\]

By using the fact that expression \(\left(\frac{\bar{F}_0(Y)}{F_0(Y_i)} \right)^\theta \) given \(Y_i = y_i \) has the Beta(\(R_i - j + 1, k - j + 1 \)) distribution.

© 2017, SRTC Iran
distribution, we have

\[Y_{jR_i}^{CMP} = \bar{F}_0^{-1} \left(\bar{F}_0(y_i) \left(\text{med}(U) \right)^{\frac{1}{\theta}} \right), \]

(23)

here \(\text{med}(U) \) stands for median of \(U = \left(\frac{\bar{F}_0(Y)}{\bar{F}_0(y_i)} \right)^{\theta} \).

Also, for (ii) and (iii) we have

\[Y_{jR_T}^{CMP} = \bar{F}_0^{-1} \left(\bar{F}_0(T) \left(\text{med}(V) \right)^{\frac{1}{\theta}} \right), \]

(24)

where \(V = \left(\frac{\bar{F}_0(Y)}{\bar{F}_0(T)} \right)^{\theta} \sim \text{Beta}(R_T - j + 1, j) \).

Remember again that we substitute the \(MLE \) \(\hat{\theta} \) when the parameter \(\theta \) is unknown.

As an example assume \(\bar{F}_0(x) = e^{-x}, \ x > 0 \), then we have

\[Y_{jR_i}^{CMP} = -\ln \left(e^{-Y_i \left(\text{med}(U) \right)^{\frac{1}{\hat{\theta}}}} \right) \]
\[= Y_i + \frac{1}{\hat{\theta}} \left[\text{med}(\ln U) \right] \]
\[= Y_i + \frac{1}{\hat{\theta}} \left(\text{med}(Z_{jR_i}) \right), \]

(25)

here \(Z_{jR_i} \) denotes \(j \)th order statistic out of \(R_i \) units from a standard exponential distribution. In addition for (ii) and (iii) we can obtain

\[Y_{jR_T}^{CMP} = T + \frac{1}{\hat{\theta}} \left(\text{med}(Z_{jR_i}) \right). \]

(26)

6 Numerical Computations

In this section, we intend to present the result of numerical study to investigate the performances of the different methods of prediction discussed in previous sections with respect to biases and mean squared prediction error from progressive hybrid Type-I censored data. In this regard, some results
Table 1. Progressively hybrid type-I censored data.

i	1	2	3	4	5	6	7	$T = 1$
Y_i	0.0123	0.0533	0.0656	0.0944	0.1247	0.4286	0.6615	
R_i	0	0	3	0	0	3	0	6

Based on Monte-Carlo simulations are presented. In obtaining the numerical results, we used the statistical software R. As a special case of PHR family, we consider the exponential distribution with cdf

$$F_\theta(x) = \theta e^{-\theta x}, \quad x > 0, \quad \theta > 0,$$

the baseline cdf is

$$F_0(x) = e^{-x}, \quad x > 0.$$

For generating progressive hybrid Type-I censored data, we first generate progressive Type-II censored sample Y_1, \ldots, Y_m according to the algorithm presented in Balakrishnan and Aggarawala (2000). Then if $Y_m < T$ then, above progressive Type-II censored sample is also progressive hybrid Type-I. If $Y_m > T$, then we find k such that $Y_k < T < Y_{k+1}$. In this case, the progressive hybrid Type-I sample becomes Y_1, \ldots, Y_k.

We draw $m = 8$ progressively hybrid Type-I censored samples from exponential distribution with parameter $\theta = 1.952$, $n = 19$ and $T = 1$. Also the censoring scheme here is $R = (0, 0.3, 0, 0.3, 0.5)$. The sample is stated in Table 1. Moreover, the point predictors MLP, BUP and CMP for Y_{j,R_i} ($j = 1, 2, \ldots, R_i; \ i = 1, 2, \ldots, k$) and Y_{j,R_T} ($j = 1, 2, \ldots, R_T$) are given in Table 2.

In Table 1 we see that $k = 7$ which means $Y_7 < T < Y_8$.

Table 2 shows that an analytical comparison of predictors is not possible. We use Monte Carlo approximation method to evaluate the biases and $MSPE$ for three predictors BUP, MLP and CMP when sample is drawn from exponential distribution. Randomly, we generate 1000 progressively hybrid Type-I censored samples from exponential distribution with parameters $\theta = 0.75$, $\theta = 1$ and $\theta = 2$. We consider threshold time $T = 1$ and use two censoring scheme $R_1 = (0, 0.3, 0.3, 0.5)$, $R_2 = (0, 0.3, 0.5)$. Results obtained from this simulation study are presented in Tables 3 to 8. In these
Table 2. Different point predictions.

\(\theta = 1.952 \)	\(\text{BUP} \)	\(\text{MLP} \)	\(\text{CMP} \)	\(Y_{j,R_i} \)
\(Y_{1,R_3} \)	0.1494	0.0656	0.1237	0.1590
\(Y_{2,R_3} \)	0.2751	0.1675	0.2398	0.4020
\(Y_{3,R_3} \)	0.5265	0.3418	0.4624	0.7426
\(Y_{1,R_6} \)	0.2085	0.1247	0.1828	0.3369
\(Y_{2,R_6} \)	0.3342	0.2266	0.2989	1.2434
\(Y_{3,R_6} \)	0.5856	0.4009	0.5215	1.4249
\(Y_{1,R_T} \)	1.0419	1.0000	1.0290	1.0119
\(Y_{2,R_T} \)	1.0922	1.0458	1.0772	1.1125
\(Y_{3,R_T} \)	1.1550	1.1019	1.1375	1.3332
\(Y_{4,R_T} \)	1.2388	1.1743	1.2172	1.3973
\(Y_{5,R_T} \)	1.3650	1.2762	1.3344	1.4604
\(Y_{6,R_T} \)	1.6159	1.4504	1.5569	1.6704

Tables provide the \(MSPEs \) and biases of different predictors of \(Y_{j,R_i} \) and \(Y_{j,R_T} \). The \(BUP \) has smaller bias and \(MSPE \) than \(CMP \) and \(CMP \) has smaller bias and \(MSPE \) than \(MLP \). So it is observed that \(BUP \) is better than \(CMP \) and \(CMP \) is better than \(MLP \).

7 Discussion

In this paper, we have considered different predictor of failure times of units censored in multiple stages of progressively hybrid censored sample. A numerical simulation has been conducted to compare the performances of different point predictors. We generated 1000 random values of \(Y_{j,R_i} \) truncated at \(Y_i \) from exponential distribution. Bias and \(MSPE \) of this \(Y_{j,R_i} \) for each predictors are generated and reported. According to Tables 3 to 8 one can find that \(BUP \) has smaller bias and \(MSPE \) than \(CMP \) and \(CMP \) has smaller bias and \(MSPE \) than \(MLP \). So it is observed that \(BUP \) is better than \(CMP \) and \(CMP \) is better than \(MLP \).
Table 3. Biases and MSPEs of point predictors for the censoring scheme R_1.

$\theta = 0.75$ and $T = 1$	BUP	MLP	CMP
Y_{1,R_1} Bias	0.1368	0.4369	0.2289
Y_{1,R_1} MSPE	0.1987	0.3664	0.2291
Y_{2,R_1} Bias	0.3450	0.7753	0.4720
Y_{2,R_1} MSPE	0.8205	1.2677	0.9097
Y_{3,R_1} Bias	0.7952	1.5769	1.0246
Y_{3,R_1} MSPE	3.2153	4.8855	3.5656
Y_{1,R_5} Bias	0.1525	0.4531	0.2448
Y_{1,R_5} MSPE	0.2544	0.4331	0.2881
Y_{2,R_5} Bias	0.3684	0.7986	0.4949
Y_{2,R_5} MSPE	0.7985	1.2596	0.8917
Y_{3,R_5} Bias	0.7595	1.5420	0.9890
Y_{3,R_5} MSPE	3.2182	4.8246	3.5496
Y_{1,R_8} Bias	0.0677	0.2705	0.1299
Y_{1,R_8} MSPE	0.0759	0.1434	0.0873
Y_{2,R_8} Bias	0.1609	0.4159	0.2353
Y_{2,R_8} MSPE	0.2356	0.3727	0.2613
Y_{3,R_8} Bias	0.2986	0.6204	0.3782
Y_{3,R_8} MSPE	0.5439	0.8188	0.5956
Y_{4,R_8} Bias	0.4717	0.9467	0.5977
Y_{4,R_8} MSPE	1.1788	1.7926	1.2949
Y_{5,R_8} Bias	0.7621	1.6260	1.0041
Y_{5,R_8} MSPE	3.0673	4.9506	3.4350
Y_{1,R_T} Bias	0.0983	0.2105	0.1328
Y_{1,R_T} MSPE	0.0609	0.0949	0.0681
Y_{2,R_T} Bias	0.2029	0.3424	0.2425
Y_{2,R_T} MSPE	0.1551	0.2272	0.1712
Y_{3,R_T} Bias	0.3165	0.4915	0.3619
Y_{3,R_T} MSPE	0.3165	0.4506	0.3450
Y_{4,R_T} Bias	0.4649	0.6898	0.5199
Y_{4,R_T} MSPE	0.5819	0.8290	0.6319
Y_{5,R_T} Bias	0.6074	1.003	0.7687
Y_{5,R_T} MSPE	1.1437	1.6435	1.2436
Y_{6,R_T} Bias	1.1592	1.6493	1.2798
Y_{6,R_T} MSPE	3.2225	4.6450	3.5317
Y_{7,R_T} Bias	1.2021	1.8457	1.3561
Y_{7,R_T} MSPE	4.3246	6.1577	4.6839
Y_{8,R_T} Bias	1.0497	1.8834	1.2405
Y_{8,R_T} MSPE	4.6839	7.0791	5.0882
Y_{9,R_T} Bias	0.5165	0.8015	0.5579
Y_{9,R_T} MSPE	0.6837	0.9649	0.7127
Y_{10,R_T} Bias	0.9380	1.2975	0.9914
Y_{10,R_T} MSPE	1.6036	2.1990	1.6727
Table 4. Biases and MSPEs of point predictors for the censoring scheme R_2.

$\theta = 0.75$ and $T = 1$	BUP	MLP	CMP
$Y_{1.5}$	Bias 0.0458	0.2518	0.1090
	MSPE 0.0703	0.12599	0.0774
$Y_{2.5}$	Bias 0.1458	0.4178	0.2214
	MSPE 0.2281	0.3027	0.2492
$Y_{3.5}$	Bias 0.2479	0.6163	0.3408
	MSPE 0.4765	0.7490	0.5170
$Y_{4.5}$	Bias 0.4339	0.9693	0.5620
	MSPE 1.1610	1.8089	1.2586
$Y_{5.5}$	Bias 0.7366	1.7071	0.9827
	MSPE 3.6209	5.6630	3.9425
$Y_{6.5}$	Bias 0.1348	0.2019	0.1554
	MSPE 0.0652	0.0875	0.0709
$Y_{7.5}$	Bias 0.3210	0.4116	0.3448
	MSPE 0.2337	0.2973	0.2486
$Y_{8.5}$	Bias 0.5095	0.6301	0.5368
	MSPE 0.4843	0.6187	0.5121
$Y_{9.5}$	Bias 0.7419	0.9036	0.7748
	MSPE 0.8828	1.1440	0.9316
$Y_{10.5}$	Bias 1.1252	1.3515	1.1690
	MSPE 1.9420	6.9540	2.0420
$Y_{11.5}$	Bias 1.8534	2.2221	1.9303
	MSPE 5.4555	2.4944	5.7523
$Y_{12.5}$	Bias 2.0870	2.5418	2.1711
	MSPE 6.6571	8.6936	7.005
$Y_{13.5}$	Bias 2.4374	3.0599	2.5391
	MSPE 8.4680	11.7869	8.9441
$Y_{14.5}$	Bias 1.4608	2.5083	1.5082
	MSPE 3.1412	7.7821	3.5949

J. Statist. Res. Iran 14 (2017): 131–155
Table 5. Biases and MSPEs of point predictors for the censoring scheme R_1.

$\theta = 1$ and $T = 1$	BUP	MLP	CMP
Y_{1,R_1} Bias	0.04210	0.3238	0.1285
Y_{1,R_1} MSPE	0.1056	0.1991	0.1158
Y_{2,R_1} Bias	0.1209	0.5215	0.2393
Y_{2,R_1} MSPE	0.3972	0.6158	0.4253
Y_{3,R_1} Bias	0.2845	1.0111	0.4999
Y_{3,R_1} MSPE	1.6639	2.4236	1.7681
Y_{1,R_5} Bias	0.0531	0.3349	0.1396
Y_{1,R_5} MSPE	0.1219	0.2245	0.1349
Y_{2,R_5} Bias	0.1126	0.5132	0.2310
Y_{2,R_5} MSPE	0.4596	0.6754	0.4868
Y_{3,R_5} Bias	0.3518	1.0784	0.5672
Y_{3,R_5} MSPE	1.7798	2.6696	1.9229
Y_{1,R_8} Bias	0.0118	0.1903	0.0666
Y_{1,R_8} MSPE	0.0352	0.0698	0.0385
Y_{2,R_8} Bias	0.0551	0.2796	0.1205
Y_{2,R_8} MSPE	0.1159	0.1839	0.1245
Y_{3,R_8} Bias	0.1023	0.3961	0.1828
Y_{3,R_8} MSPE	0.2607	0.3891	0.2774
Y_{4,R_8} Bias	0.1392	0.5575	0.2502
Y_{4,R_8} MSPE	0.5586	0.7968	0.5851
Y_{5,R_8} Bias	0.2612	1.0219	0.4743
Y_{5,R_8} MSPE	1.7428	2.5295	1.8376
Y_{1,R_T} Bias	0.0589	0.1564	0.0889
Y_{1,R_T} MSPE	0.0250	0.0453	0.0291
Y_{2,R_T} Bias	0.1355	0.2567	0.1701
Y_{2,R_T} MSPE	0.0749	0.1209	0.0848
Y_{3,R_T} Bias	0.2188	0.3714	0.2588
Y_{3,R_T} MSPE	0.1711	0.2549	0.1882
Y_{4,R_T} Bias	0.3314	0.5293	0.3800
Y_{4,R_T} MSPE	0.3165	0.4769	0.3482
Y_{5,R_T} Bias	0.4641	0.7389	0.5298
Y_{5,R_T} MSPE	0.6099	0.9225	0.6705
Y_{6,R_T} Bias	0.7611	1.2274	0.8805
Y_{6,R_T} MSPE	1.7756	2.6623	1.961
Y_{7,R_T} Bias	0.8795	1.4711	1.0237
Y_{7,R_T} MSPE	2.4874	3.6653	2.704
Y_{8,R_T} Bias	-0.0509	0.8235	0.1523
Y_{8,R_T} MSPE	1.1802	1.6007	1.1357
Table 6. Biases and MSPEs of point predictors for the censoring scheme R_2.

$\theta = 1$ and $T = 1$	\(BUP \)	\(MLP \)	\(CMP \)	
Y_{1,R_5} Bias	0.0294	0.2046	0.0832	
	MSPE	0.0419	0.0796	0.0461
Y_{2,R_5} Bias	0.0584	0.2896	0.1227	
	MSPE	0.1231	0.1873	0.1288
Y_{3,R_5} Bias	0.1067	0.4198	0.1856	
	MSPE	0.2919	0.414	0.3018
Y_{4,R_5} Bias	0.1895	0.6446	0.2984	
	MSPE	0.6829	0.9622	0.7070
Y_{5,R_5} Bias	0.3241	1.149	0.5333	
	MSPE	2.2402	3.0859	2.3087
Y_{1,R_T} Bias	0.111	0.1800	0.1326	
	MSPE	0.0452	0.0634	0.0497
Y_{2,R_T} Bias	0.1939	0.2858	0.2182	
	MSPE	0.1012	0.3328	0.1104
Y_{3,R_T} Bias	0.3283	0.4592	0.3564	
	MSPE	0.2422	0.1425	0.2603
Y_{4,R_T} Bias	0.5464	0.7101	0.5804	
	MSPE	0.5177	0.7172	0.5547
Y_{5,R_T} Bias	0.8149	1.0458	0.8608	
	MSPE	1.1200	1.5304	1.1933
Y_{6,R_T} Bias	1.3423	1.7275	1.4252	
	MSPE	3.5855	4.4793	3.5772
Y_{7,R_T} Bias	1.1803	1.6669	1.2727	
	MSPE	2.2093	3.5065	2.4124
Y_{8,R_T} Bias	1.2488	1.9268	1.3654	
	MSPE	3.3043	4.9799	3.5136
Table 7. Biases and MSPEs of point predictors for the censoring scheme R_1.

$\theta = 2$ and $T = 1$	BUP	MLP	CMP	
Y_{1,R_3} Bias	-0.0052	0.1607	0.0457	
	MSPE	0.0322	0.0546	0.0326
Y_{2,R_3} Bias	0.0023	0.2378	0.0721	
	MSPE	0.1186	0.1584	0.1174
Y_{3,R_3} Bias	0.0105	0.4371	0.1375	
	MSPE	0.4778	0.5974	0.4708
Y_{1,R_5} Bias	0.0071	0.1731	0.0581	
	MSPE	0.0341	0.0607	0.0357
Y_{2,R_5} Bias	-0.0063	0.2291	0.0634	
	MSPE	0.1045	0.1401	0.1021
Y_{3,R_5} Bias	0.0408	0.4673	0.1677	
	MSPE	0.4842	0.6239	0.4832
Y_{1,R_8} Bias	0.0009	0.1005	0.0315	
	MSPE	0.0128	0.0219	0.0133
Y_{2,R_8} Bias	-0.0009	0.1243	0.0356	
	MSPE	0.0330	0.0435	0.0324
Y_{3,R_8} Bias	-0.0035	0.1604	0.0414	
	MSPE	0.0730	0.0864	0.0707
Y_{4,R_8} Bias	-0.010	0.2233	0.0518	
	MSPE	0.1605	0.1802	0.1538

Table 8. Biases and MSPEs of point predictors for the censoring scheme R_2.

$\theta = 2$ and $T = 1$	BUP	MLP	CMP	
Y_{1,R_5} Bias	-0.0007	0.0977	0.0295	
	MSPE	0.0109	0.0186	0.0108
Y_{2,R_5} Bias	0.0055	0.1355	0.0416	
	MSPE	0.034	0.0446	0.0331
Y_{3,R_5} Bias	0.0219	0.1979	0.0663	
	MSPE	0.0837	0.1027	0.0815
Y_{4,R_5} Bias	0.0312	0.2871	0.09245	
	MSPE	0.1921	0.2262	0.1860
Y_{5,R_5} Bias	0.0581	0.5219	0.1757	
	MSPE	0.6461	0.7552	0.6251
References

Ahmadi, J., Jafari Jozani, M., Marchand, E. and Parsian, A. (2009). Prediction of k-records from a General Class of Distributions under Balanced Type Loss Functions. *Metrika*, **70**, 19-33.

Ahmadi, J., Jafari Jozani, M., Marchand, E. and Parsian, A. (2009). Bayes Estimation based on k-record Data from a General Class of Distributions under Balanced Type Loss Functions. *J. Statist. Plann. Inference*. **139**, 1180-1189.

Asgharzadeh, A. and Valiollahi, R. (2009). Inference for the Proportional Hazards Family under Progressive Type-II Censoring. *J. Iranian Statist. Soc.*, **8**, 35-53.

Asgharzadeh, A. and Valiollahi, R. (2010). Point Prediction for the Proportional Hazards Family under Progressive Type-II Censoring. *J. Iranian Statist. Soc.*, **9**, 127-148.

Asgharzadeh, A. and Valiollahi, R. (2012). Prediction of Times to Failure of Censored Units in Hybrid Censored Samples from Exponential Distribution for the Proportional Hazards Family under Progressive Type-II Censoring. *J. Statist. Res. Iran*, **9**, 11-30.

Asgharzadeh, A., Valiollahi, R. and Kundu, D. (2015). Prediction for Future Failures in Weibull Distribution under Hybrid Censoring. *J. Stat. Comput. Simul.*, **85**, 824-838.

Balakrishnan, N. and Aggarwala, R. (2000). *Progressive Censoring: Theory, Methods, and Applications*. Birkhäuser, Boston.

Balakrishnan, N. and Kundu, D. (2013). Hybrid Censoring: Models, Inferential Results and Applications (with Discussions). *J. Comput. Stat. Data. Anal.*, **57**, 166-209.

Balakrishnan, N. and Cramer, E. (2014). *The Art of Progressive Censoring: Applications to Reliability and Quality*. Birkhäuser, Boston.

Basak, P. and Balakrishnan, N. (2003). Maximum Likelihood Prediction of Future Record Statistic. Mathematical and Statistical Methods in Reliability. In: Lindquist, B.H., Doksum, K.A., (Eds.), *Series on Quality, Reliability and Engineering Statistics*. World Scientific Publishing, Singapore. 159-175.

Basak, I., Basak, P. and Balakrishnan, N. (2006). On Some Predictors of Times to Failure of Censored Items in Progressively Censored Samples. *J. Comput. Stat. Data. Anal.*, **50**, 1313-1337.

Basak, I. and Balakrishnan, N. (2009). Predictors of Failure Times of Censored Units in Progressively Censored samples from Normal Distribution. *Sankhyā*, **71-B**, 222-247.

Childs, A., Chandrasekar, B. and Balakrishnan, N. (2008). Exact Likelihood Inference for an Exponential Parameter under Progressive Hybrid Censoring Schemes. In: Vonta, F., Nikulin, M., Limnios, N., Huber-Carol, C. (Eds.), *Statistical Models and Methods for Biomedical and Technical Systems*. Birkhäuser, Boston. 323-334.
Cox, D.R. (1972). Regression Models and Life Tables (with Discussion). *J. R. Stat. Soc. Ser B*, (methodol.), 34, 187-220.

Epstein, B. (1954). Truncated Life Tests in the Exponential Case. *Ann. Math. Stat.*, 25, 555-564.

Goldberger, A.S. (1962). Best Linear unbiased Prediction in the Generalized Linear Regression Model. *J. Amer. Statist. Assoc.*, 57, 369-375.

Ishii, G. and Tokeiteki, Y. (1978). *Statistical Prediction*. Basic Sugaku. vol. 7, Gendai-Sugakusha, Tokyo, Japan.

Kaminsky, K.S. and Nelson, P.I. (1975). Best Linear unbiased Prediction of Order Statistic in Location and Scale Families. *J. Amer. Statist. Assoc.*, 70, 145-150.

Kaminsky, K.S. and Rhodin, L.S. (1985). Maximum Likelihood Prediction. *Ann. Inst. Statist. Math.*, 37, 707-717.

Kundu, D. and Joarder, A. (2006). Analysis of Type-II Progressively Hybrid Censored Data. *J. Comput. Stat. Data Anal.*, 50, 2509-2528.

Lawless, J.F. (2003). *Statistical Models and Methods for Life Time Data*. John Wiley and Sons, New York.

Lin, Ch. and Huang, Y. (2012). On Progressive Hybrid Censored Exponential Distribution. *J. Stat. Comput. Simul.*, 82, 689-709.

Marshall, A.W. and Olkin, O. (2007). *Life Distributions*. Springer, New York.

Nayak, T.K. (2000). On Best unbiased Prediction and its Relationships to unbiased Estimation. *J. Statist. Plann. Inference*, 84, 171-189.

Raqab, M.Z. and Nagaraja, H.N. (1997). On Some Predictors of Future Order Statistics. *Austral. J. Statist.*, 39, 69-78.

Takada, Y. (1981). Relation of the Best Invariant Prediction and the Best unbiased Predictor in Location and Scale Families. *Ann. Statist.*, 9, 917-921.

Takada, Y. (1991). Median unbiasedness in an Invariant Prediction Problem. *Statist. Probab. Lett.*, 12, 281-283.

Zhang, Ch. and Shi, Y. (2017). Statistical Prediction of Failure Times under Generalized Progressive Hybrid Censoring in a Simple Step-stress Accelerated Competing Risks Model. *J. Syst. Eng. Electron.*, 28, 282-291.

© 2017, SRTC Iran
Samaneh Ameli
Department of Statistics,
School of Mathematical Sciences
and Statistics,
University of Birjand,
Birjand, Iran.
email: s.ameli@birjand.ac.ir

Majid Rezaei
Department of Statistics,
School of Mathematical Sciences
and Statistics,
University of Birjand,
Birjand, Iran.
email: mjrezaei@birjand.ac.ir

Jafar Ahmadi
Department of Statistics,
Ferdowsi University of Mashhad,
Mashhad, Iran.
email: ahmadi-j@um.ac.ir
