The dark matter halos of dwarf galaxies: a challenge for the \(\Lambda \)CDM paradigm?

Ismael Ferrero1,2, Mario G. Abadi1,2, Julio F. Navarro3, Laura V. Sales4 and Sebastián Gurovich1,2

1Instituto de Astronomía Teórica y Experimental (IATE), Laprida 922 X5000BGR Córdoba, Argentina
2Observatorio Astronómico de Córdoba and CONICET, Laprida 854 X5000BGR Córdoba, Argentina
3Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
4Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85740 Garching, Germany

ABSTRACT
The cold dark matter halo mass function is much steeper than the galaxy stellar mass function on galactic and subgalactic scales. This difference is usually reconciled by assuming that the galaxy formation efficiency drops sharply with decreasing halo mass, so that virtually no dwarf galaxies form in halos less massive than \(\sim 10^{10} M_\odot \). In turn, this implies that, at any given radius, the dark mass enclosed by a galaxy must exceed a certain minimum. We use rotation curves of dwarf galaxies compiled from the literature to explore whether their enclosed mass is consistent with these constraints. We find that almost one half of the dwarfs in our sample with stellar mass in the range \(10^6 < M_{\text{gal}}/M_\odot < 10^7 \) are at odds with this restriction: either they live in halos with masses substantially below \(10^{10} M_\odot \) or there is a mechanism capable of reducing the dark mass enclosed by some of the faintest dwarfs. Neither possibility is easily accommodated within the standard \(\Lambda \)CDM scenario. Extending galaxy formation to halos well below \(10^{10} M_\odot \) would lead to large numbers of dwarf galaxies in excess of current estimates; at the same time, the extremely low stellar mass of the systems involved makes it unlikely that baryonic effects can reduce their dark matter content. Resolving this challenge seems to require new insights into dwarf galaxy formation, or perhaps a radical revision of the prevailing paradigm.

Key words: Galaxy: formation – Galaxy: kinematics and dynamics – Galaxy: structure

1 INTRODUCTION
Cosmological N-body simulations and theoretical insight have led to clear predictions for the mass function of dark matter halos that form in the current \(\Lambda \)CDM paradigm (Press & Schechter, 1974; Sheth et al., 2001; Jenkins et al., 2001; Springel et al., 2005). On galactic and subgalactic scales, this halo mass function is much steeper than the galaxy stellar mass function, suggesting a complex non-linear relation between the mass of a galaxy and that of its surrounding halo.

The need for such non-linear correspondence was recognized in early attempts to model hierarchical galaxy formation (e.g., White & Rees, 1978), and has been traditionally thought to imply that the “efficiency” of galaxy formation (i.e., the fraction of baryons in a halo that gets turned into stars and assembled into a galaxy) decreases steadily with decreasing halo mass so that effectively few galaxies, if any, form in halos below a certain minimum mass. With slight variations, this assumption has been a cornerstone of semi-analytic galaxy formation models (e.g., Kauffmann et al., 1993; Cole et al., 1994; Somerville & Primack, 1999), and underpins most attempts to reconcile the shallow faint end of the galaxy luminosity function with the steep slope of the halo mass function.

The latest results from the Sloan Digital Sky Survey (SDSS) have extended the galaxy stellar mass function down to \(\sim 10^7 M_\odot \) (Baldry et al., 2008; Li & White, 2009), and have led to even stricter constraints on how galaxies populate low mass halos. For example, using either simple abundance-matching techniques or a full-blown semi-analytic model applied to large cosmological N-body simulations, Guo et al. (2010, 2011) conclude that galaxies with
stellar mass, M_{gal}, exceeding $\sim 10^6 M_\odot$ must inhabit halos with virial* mass, M_{200}, typically exceeding $10^{10} M_\odot$.

The steep decline in the efficiency of galaxy formation near this minimum halo mass also implies that most faint galaxies must be surrounded by halos spanning a small mass range. In the model of Guo et al. (2010), for example, the halo mass of dwarfs in the stellar mass range $10^8 < M_{\text{gal}}/M_\odot < 10^9$ differ by less than a factor of ~ 5. These results provide readily testable predictions that have elicited some tension in the theoretical interpretation of available data on dwarfs.

For example, since dwarf galaxies tend to be dark matter dominated then having similar halos means that their rotation velocity should approach a characteristic value of ~ 30 km/s, the virial velocity of a halo of mass $\sim 10^{10} M_\odot$. This would result in a large number of dwarfs with that characteristic velocity or, equivalently, in a very steep dependence of the number of galaxies on rotation speed at the faint end, an effect that can be searched for in blind HI surveys such as HIPASS (Barnes et al., 2001) or ALFALFA (Giovanelli et al., 2005). The “velocity width function” of galaxies reported by such surveys, however, is much shallower than expected in the scenario outlined above, and shows no sign of a characteristic velocity (Zwaan et al., 2010; Papastergis et al., 2011).

A related problem has recently been highlighted by Boylan-Kolchin et al. (2011) in the context of Milky-Way satellites. These authors note that the kinematics and structure of dwarf spheroidal (dSph) galaxies suggest that they inhabit halos with circular velocities well below 30 km/s. This represents a challenge not only because it would mean that galaxies do form in low-mass halos, but also because, according to the latest N-body simulations, Milky Way-sized halos should host several massive subhalos which, apparently, have failed to form visible satellites (see also Parry et al., 2012; Boylan-Kolchin et al., 2012; di Cintio et al., 2011; Vera-Ciro et al., 2012).

In principle, these difficulties can be explained away with plausible arguments. For example, the dwarf spheroidal companions of the Milky Way have likely been orbiting in the tidal field of the Galaxy for several Gyrs. Their dark matter content could therefore have been affected by tidal stripping, thus hindering the interpretation of their inferred halo masses. One should also keep in mind that the apparent conflict concerns a small number of objects, and is therefore subject to substantial uncertainty. Good mass estimates are only available for nine Milky Way dSphs, and the theoretical comparison is based on just seven LCDM halo realizations, six from the Aquarius Project (Springel et al., 2008) plus the Via Lactea simulation (Diemand et al., 2007). The possibility that the Milky Way is simply an outlier either in halo mass or in subhalo content thus remains (Wang et al., 2012).

Further, as discussed by Papastergis et al. (2011), the velocity-width function discrepancy could be explained if the gas rotation velocity systematically underestimates the circular velocity of the surrounding dark halo. This may occur if the size of the galaxy is small relative to the radius where a halo reaches its characteristic velocity (Stoehr et al., 2002). Indeed, the circular velocity of cold dark matter halos rises gradually with radius (Navarro et al., 1996, 1997, hereafter NFW): a $10^{10} M_\odot$ halo typically reaches its maximum velocity (~ 37 km/s) only at $r \sim 5-6$ kpc, a radius larger than the size of the faintest dwarfs. The unexpectedly large number of galaxies with velocity widths below the expected characteristic velocity might then just reflect the fact that physically small galaxies trace the rising part of the halo circular velocity curve.

This hypothesis can be checked explicitly if spatially-resolved rotation curves are available, especially for galaxies where the inclination is well constrained by good photometry or by integral-field velocity data. Unfortunately, dwarf galaxies are typically unresolved in single-dish cm wavelength surveys such as ALFALFA, and the photometric data available are insufficient to estimate accurately the inclination information needed to turn velocity widths into circular velocity estimates.

We address these issues here by using a compilation of literature data for galaxies with spatially-resolved rotation curves and good photometric data. Since our interest lies in the scale of dwarfs, the dataset concerns mainly relatively isolated dwarf irregular galaxies drawn from eight recent studies. The data are heterogeneous, but they cover a wide range of galaxy stellar mass, from roughly 10^6 to $10^{10} M_\odot$, and should therefore provide insight into whether halo masses are in agreement with model predictions. This paper is organized as follows. We describe the data compilation in Sec. 2, present our results in Sec. 3, and summarize our main conclusions in Sec. 4.

2 THE DATASET

The main data used in our analysis are HI rotation curves and stellar masses (or absolute magnitudes) of galaxies compiled from the literature. The sample we use contains 7 galaxies from Côté et al. (2000), 69 from McGaugh (2005), 29 from Begum et al. (2008b)†, 5 from Oh et al. (2011), 70 from Swaters et al. (2009), 5 from Trachternach et al. (2009) and 25 from Wolf et al. (2010). We also include the 11 galaxies from Stark et al. (2009) not in the previous samples.

We are mainly interested in the total dark mass enclosed by a galaxy, so in practice we shall use the outermost point of the rotation curve, characterized by the radius, r_{out}, and rotation velocity, $V_{\text{out}} = V_{\text{rot}}(r_{\text{out}})$. In most cases, this is also the maximum rotation velocity measured for the galaxy, since rotation curves tend to be either rising or flat in the outer regions. In the rare cases of galaxies with peculiar rotation curves, such as a steeply-declining outer portion (suggestive of a warp), we choose instead the radius and velocity of the maximum of the rotation curve. As we shall see below, this is a conservative choice for the purpose of our analysis.

The galaxies from Wolf et al. (2010) lack rotation

† Complementary information for these galaxies was taken from the previous and more extended sample presented in Begum et al. (2008a).
The halo virial mass vs galaxy stellar mass relation derived by Guo et al. (2010) using abundance-matching techniques (solid line). Results from the semianalytic model of Guo et al. (2011) are shown by the solid triangles. Note how steep the relation becomes at the faint end, implying that essentially no galaxies with \(M_{\text{gal}} > 10^9 M_{\odot} \) should form in halos with mass below \(\sim 10^{10} M_{\odot} \). The dot-dashed line indicates the baryonic content of a halo according to the latest estimates of the universal baryon fraction, \(f_{\text{bar}} = 0.171 \). Right: The “Tully-Fisher” relation for a sample of nearby galaxies. Data are compiled from the sources listed in the figure label. Stellar masses are taken from each paper, when given, or estimated from their absolute magnitudes and colors as described in the text. Rotation velocities correspond to the outermost point of the published rotation curve, except for the data of Wolf et al. (2010), which correspond to circular velocities at the stellar half-mass radius. Note that the relation between rotation velocity and stellar mass is well approximated by a single power-law despite the strongly non-linear \(M_{\text{gal}} \) vs \(M_{200} \) relation shown in the left panel.

3 ANALYSIS

The solid curve in the left panel of Fig. 1 shows the galaxy-halo mass relation derived by Guo et al. (2010) assuming that the abundance of dark halos ranked by virial mass, \(M_{200} \), can be matched monotonically to the abundance of galaxies ranked by stellar mass, \(M_{\text{gal}} \). Despite the simplicity of this abundance-matching technique, more sophisticated semianalytic modeling (Guo et al., 2011) actually yields very similar results, as shown by the solid triangles in the same figure. A dot-dashed curve indicates the galaxy mass corresponding to all available baryons within the virial radius, assuming the universal baryon fraction, \(f_{\text{bar}} = \Omega_b/\Omega_M = 0.171 \).

The \(M_{\text{gal}} \)-\(M_{200} \) relation in Fig. 1 shows clearly the sharp decline in galaxy formation efficiency with decreasing halo mass alluded to in Sec. 1: the baryonic mass of a \(M_{200} = 10^{12} M_{\odot} \) halo is \(f_{\text{bar}} M_{200} = 1.7 \times 10^{10} M_{\odot} \) but it typically hosts a \(10^9 M_{\odot} \) galaxy containing \(\sim 6\% \) of its baryons in the form of stars. On the other hand, a \(10^9 M_{\odot} \) galaxy inhabiting a \(10^7 M_{\odot} \) halo would contain just \(0.06\% \) of its available baryons.

Thus, most dwarf galaxies (understood here as those with \(M_{\text{gal}} \lesssim 10^9 M_{\odot} \)) should be surrounded by halos in a fairly narrow range of mass, spanning less than a decade in \(M_{200} \), or just over a factor of 2 in circular velocity. Little sign of such characteristic scale is seen in the Tully-Fisher relation of galaxies in our sample. No obvious sign of convergence to a characteristic velocity is seen in these data, which span roughly 5 decades in galaxy mass (see also McGaugh & Wolf, 2010).

In the \(\Lambda \)CDM scenario, the nearly self-similar structure...
of dark matter halos allows an independent probe of halo mass based on the rotation curve of a galaxy. We illustrate this in Fig. 2, where the thick solid and thick dashed black curves in each panel indicate the circular velocity profiles of two NFW halos with virial mass 10^{10} and $10^{9} M_{\odot}$, respectively. The concentration parameter of each halo ($c = 10.8$ and 13.4, respectively) is chosen to be consistent with the results of Neto et al. (2007), corrected to the latest values of the cosmological parameters following Duffy et al. (2008).

The point to note here is that the more massive a halo the higher its circular velocity is at all radii. The difference is small at small radii (all circular velocities approach zero at the origin) but it becomes more appreciable further out. Rotation curves that extend far enough out in radius are therefore telling probes of the virial mass of the halo.

Fig. 2 shows as well the rotation curves of two dwarf galaxies. The left panel shows UGC 7559, a galaxy with stellar mass $M_{\text{gal}} \sim 1.7 \times 10^7 M_{\odot}$ (Swaters, 1999); the panel on the right shows the $M_{\text{gal}} \sim 2.6 \times 10^6 M_{\odot}$ Sagittarius Dwarf Irregular (SDIG, Côté et al., 2000). The published rotation curves are shown by the solid symbols with error bars; the smaller symbols connected by a dotted line shows the circular velocity profile once the contribution of the baryons (gas+stars) has been discounted. These two galaxies, like most faint galaxies in our sample, are clearly dark matter dominated in the outer regions. The velocity at the outermost point of the rotation curve, V_{out}, in particular, depends almost entirely on the enclosed dark mass within r_{out}, with little contribution from the baryons.

The red dashed lines in Fig. 2 indicate the circular velocity profile‡ expected if the halo mass of each galaxy were to coincide with the abundance-matching prediction shown in the left panel of Fig. 1. According to this model, the total mass of the halo inhabited by UGC 7559 ought to be $\sim 2.8 \times 10^{10} M_{\odot}$. The upper and lower limits of the shaded region corresponds to varying the concentration around the average by $\pm 20\%$, the rms scatter at fixed mass reported by Neto et al. (2007) in their analysis of thousands of halos in the Millennium Simulation. A similar procedure is followed in the right-hand panel to shade the region where the rotation curve of SDIG would be expected to lie if its surrounding halo mass is $\sim 1.4 \times 10^{10} M_{\odot}$, as suggested by the abundance-matching analysis.

As Fig. 2 makes clear, UGC 7559 is in rough agreement with the model expectation. Its rotation curve reaches a maximum of $V_{\text{out}} \sim 32 \text{ km/s}$, at $r_{\text{out}} = 2.1 \text{ kpc}$, only slightly below the $V_{\text{out}} \sim 40 \text{ km/s}$ expected at that radius according to the model. The same is not the case for SDIG, whose paltry peak rotation speed is just $V_{\text{out}} \sim 19 \text{ km/s}$, well below the $V_{\text{out}} \sim 30 \text{ km/s}$ expected at the outermost radius, $r_{\text{out}} = 1.3 \text{ kpc}$.‡

‡ The prediction assumes an NFW halo contracted to account for the effect of the baryonic component following Abadi et al. (2010). This correction is in practice negligible for dwarf galaxies since they are almost completely dark matter dominated.

© 2012 RAS, MNRAS 000, 000–000
This is clear indication that the SDIG halo mass is well below the abundance-matching expectation: a naive fit of the rotation curve yields $M_{200} \sim 10^7 M_\odot$, a factor of 10 below the mass expected from abundance-matching considerations. Unless the rotation curve measurements are grossly in error, which we deem unlikely, it is difficult to evade the conclusion that SDIG truly inhabits a halo of mass much lower than expected from the model. Note that having a spatially-resolved rotation curve that probes a large radial range is crucial to this conclusion. For example, if the data available were just a rotation velocity of 19 km/s from un-resolved data, or if that velocity was reached within, say, 500 pc, it would be difficult to discount the possibility that SDIG might inhabit a much more massive halo.

Could SDIG be instead surrounded by a halo of unusually low concentration? Indeed, a $M_{200} = 10^{10} M_\odot$ halo with $c = 5$ (3σ below the average) would match the observed $(r_{\text{out}}, V_{\text{out}})$ for this galaxy. If this were true, it would mean that SDIG is a rare outlier, a possibility that may be checked by considering the remainder galaxies in our sample.

The results are displayed in Fig. 3, where we show, in the left panel, the measured outermost velocities versus the velocities predicted (at each value of r_{out}) assuming halo masses derived from the abundance-matching M_{gal} vs M_{200} relation. Although massive galaxies seem to be in good agreement with the model, those with stellar masses below $\sim 3 \times 10^7 M_\odot$ (and also a few more massive ones) have velocities that fall systematically below the expected ~ 30 km/s corresponding to a halo mass of $\sim 10^{10} M_\odot$.

About 17% of galaxies in our sample with $10^7 < M_{\text{gal}}/M_\odot < 10^9$ have enclosed masses (within r_{out}) more than a factor of 2 smaller than expected from the abundance-matching model. This fraction increases to 45% when considering galaxies with $10^6 < M_{\text{gal}}/M_\odot < 10^7$, ruling out the possibility that galaxies like SDIG are just rare exceptions.

The right-hand panel of Fig. 3 illustrates the problem in a slightly different way. Here we show the outermost point of the rotation curves $(r_{\text{out}}, V_{\text{out}})$ of galaxies in our sample and compare them with the rotation curves expected for NFW halos of virial mass $10^{10} M_\odot$ and $5 \times 10^9 M_\odot$, respectively. (Shaded regions correspond to varying the concentration by ±20%, as in Fig. 2.) There are clearly many dwarf galaxies, like SDIG, with rotation curves that fall well below the boundaries imposed by the circular velocity of a halo as massive as $10^{10} M_\odot$.

What could be going on? One possibility is that the interpretation of the data is incorrect. The rotation velocity of neutral gas in dwarf irregulars is not a direct measure of the circular velocity, and must be corrected for the partial support provided by gas pressure, by the presence of non-circular motions, and by the non-negligible velocity dispersion of the gas. These corrections are uncertain, and although they are attempted in most published studies, they may require revision when better data and more sophisticated modeling are available. Indeed, the data available in the literature on dwarf irregulars are highly heterogeneous and of varying quality. For example, many of the galaxies in our sample taken from Begum et al. (2008a,b) have no pub-
our sample a halo mass, mass relation derived by assigning to each dwarf galaxy in the left-hand panel of this figure show the average galaxy-halo mass function, as shown in Fig. 4. The magenta circles in the abundance-matching or semianalytic models. This, however, e.g., Boylan-Kolchin et al., 2012; Governato et al., 2012). more thoroughly, the outlook does not seem promising (see, those of globular clusters could affect the central regions of a galaxy and alleviate the problem. It is unclear, however, how baryons in galaxies with stellar masses as small as those of globular clusters could affect the central regions of a $10^{10} M_{\odot}$ halo. Although this possibility should be explored more thoroughly, the outlook does not seem promising (see, e.g., Boylan-Kolchin et al., 2012; Governato et al., 2012).

Finally, the simplest interpretation is that many dwarf galaxies inhabit halos of much lower mass than posited by abundance-matching or semianalytic models. This, however, is inconsistent with a shallow faint end of the galaxy stellar mass function, as shown in Fig. 4. The magenta circles in the left-hand panel of this figure show the average galaxy-halo mass relation derived by assigning to each dwarf galaxy in our sample a halo mass, M_{200}, consistent with its value of r_{out} and V_{out}.

We estimate M_{200} for all $10^6 < M_{\text{gal}}/M_{\odot} < 10^9$ galaxies in our sample by finding the NFW halo (contracted to account for the effects of the baryons) whose circular velocity curve passes through $(r_{\text{out}}, V_{\text{out}})$ after accounting for the contribution of the gas and stars in the galaxy. We assume that halos follow the mean mass-concentration relation expected for ΛCDM halos (see discussion of Fig. 2 above). Further, we remove from the analysis the satellites of the Milky Way and M31 since their mass profiles may have been affected by tides.

The magenta circles in the left-hand panel of Fig. 4 show the resulting average galaxy mass as a function of halo mass, together with error bars denoting the dispersion in each bin computed after 3σ clipping a few outliers. The M_{halo} dependence of galaxy mass is clearly shallower than either the abundance-matching model results of Guo et al. (2010) (extrapolated to low halo masses, solid line) or the semianalytic model results of Guo et al. (2011), shown with filled triangles. We can parameterize this deviation by introducing a correction to the functional dependence advocated by Guo et al. (2010); i.e.,

$$\frac{M_{\text{gal}}}{M_{\text{halo}}} = C \left[1 + \left(\frac{M_{\text{halo}}}{M_1} \right)^{-2} \right]^{-\alpha} \left[\left(\frac{M_{\text{halo}}}{M_0} \right)^{-\alpha} + \left(\frac{M_{\text{halo}}}{M_0} \right)^{\beta} \right]^{-\gamma},$$

with $C = 0.129$, $M_0 = 10^{11.4} M_{\odot}$, $M_1 = 10^{16.65} M_{\odot}$, $\alpha = 0.75$, and $\beta = 0.75$. The magenta curve shows the average galaxy mass-halo mass relation; dashed curves assume 0.5 dex scatter. We assume the halo mass function of Jenkins et al. (2001), corrected to cosmological parameters consistent with the latest WMAP measurements. For reference, we also show with a dotted line the result of adopting cosmological parameters from the 1st-year WMAP data analysis. Note the large excess of dwarf galaxies expected if the galaxy-halo mass relation is as shallow as that suggested by the dwarf kinematic data.

Figure 4. Left: Galaxy stellar mass-halo virial mass relation. The black solid line indicates the abundance-matching model of Guo et al. (2010); solid triangles correspond to the semianalytic model of Guo et al. (2011). The dot-dashed line indicates the total baryon mass of a halo according to latest estimates of the universal baryon fraction, $f_{\text{bar}} = \Omega_{\text{bar}}/\Omega_{\text{M}}$. The magenta curve shows the average galaxy mass-halo mass relation derived from dwarf galaxies in our sample. Halo masses of individual galaxies are computed by fitting NFW halos to the kinematic data shown in the right-hand panel of Fig. 3. Circles indicate the average in each halo mass bin; the error bar indicates the dispersion, computed after 3σ clipping a few outliers. Colored solid curves correspond to various values of the parameter κ introduced in eq. 1; $\kappa = 0$ corresponds to the abundance-matching relation, higher values correspond to shallower halo mass dependence of galaxy mass. Right: Galaxy stellar mass function corresponding to the various M_{gal}-M_{200} relations shown in the left-hand panel, contrasted with the observational estimates of Baldry et al. (2008) (points with error bars). Solid curves are computed assuming a uniform scatter of 0.2 dex in the galaxy mass-halo mass relation; dashed curves assume 0.5 dex scatter. We assume the halo mass function of Jenkins et al. (2001), corrected to cosmological parameters consistent with the latest WMAP measurements. For reference, we also show with a dotted line the result of adopting cosmological parameters from the 1st-year WMAP data analysis.
The dark matter halos of dwarf galaxies

4 SUMMARY

We have analyzed literature data for a sample of galaxies with spatially-resolved HI rotation curves and good photometry in order to place constraints on their halo masses. Our sample spans 5 decades in galaxy stellar mass, $10^{6} < M_{\text{gal}}/M_{\odot} < 10^{11}$, with emphasis on galaxies at the faint end. We focus the analysis on comparing the (mainly dark) total mass enclosed by dwarf galaxies with expectations based on galaxy formation models and cosmological N-body simulations.

Contrary to the general prediction of abundance-matching or semianalytic models of galaxy formation, we find no evidence that dwarfs of widely differing stellar mass are surrounded by halos that span a narrow range in mass. Further, many of the galaxies in our sample have enclosed masses much lower than expected from halos as massive as $10^{10} M_{\odot}$, the characteristic halo mass below which galaxy formation must become extremely inefficient in order to reconcile a shallow faint end of the galaxy luminosity function with the steep dark halo mass function on galactic scales.

If the formation of dwarf galaxies with stellar masses exceeding $10^{6} M_{\odot}$ extends to halos with masses as low as a few times $10^{8} M_{\odot}$ then this would lead to a very steep faint end of the galaxy stellar mass function unless a mechanism is found to populate halos with galaxies almost stochastically and with extremely low efficiency. To our knowledge, no obvious candidate exists for such mechanism.

The difficulties could be alleviated if the measured rotation curves underestimate substantially the circular velocity of dwarf galaxies. The magnitude of the correction needed to bring observed velocities into agreement with the models appears too large for this to be a viable alternative. Resorting to baryonic processes to reduce the dark mass enclosed by dwarfs is similarly unappealing, especially considering that the discrepancy is clearest in the least massive systems, so mechanisms employed to baryonic processes to reduce the dark mass enclosed by dwarfs is similarly unappealing, especially considering that the discrepancy is clearest in the least massive systems, so mechanisms employed to resolve the discrepancy. Alternatively, we must concede that our understanding of how dwarf galaxies form in ΛCDM halos is primitive at best, and perhaps flawed. Neither alternative at this point permits more satisfactory candidates for such mechanism.

A more prosaic alternative is that current observations have missed a large number of faint galaxies, and that the galaxy stellar mass function does indeed have a sharp upturn on mass scales below $10^{8-9} M_{\odot}$. Should future observations fail to uphold this, however, our finding that many dwarf galaxies inhabit halos with virial masses well below $10^{10} M_{\odot}$ would add to the list of concerns brought about by the surprisingly low halo masses inferred for the dwarf spheroidal companions of the Milky Way (Boylan-Kolchin et al., 2011, 2012; Parry et al., 2012) and by the unexpectedly shallow velocity-width function found in blind HI surveys (Zwaan et al., 2010; Papastergis et al., 2011).

A radical view would take the puzzle we note here as indicative of the need to revise some of the basic tenets of the ΛCDM scenario. Models where low mass halos are substantially less concentrated or less abundant, such as in a universe dominated by warm dark matter, for example, might help to resolve the discrepancy. Alternatively, we must concede that our understanding of how dwarf galaxies form in ΛCDM halos is primitive at best, and perhaps flawed. Neither alternative at this point seems particularly palatable.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Mike Boylan-Kolchin and Simon White. IF and LVS are grateful for financial support from the CosmoComp/Marie Curie network.
REFERENCES

Abadi M. G., Navarro J. F., Fardal M., Babul A., Steinmetz M., 2010, MNRAS, 407, 435
Baldry I. K., Glazebrook K., Driver S. P., 2008, MNRAS, 388, 945
Barnes D. G., Staveley-Smith L., de Blok W. J. G., et al., 2001, MNRAS, 322, 486
Begum A., Chengalur J. N., Karachentsev I. D., Sharina M. E., 2008a, MNRAS, 386, 138
Begum A., Chengalur J. N., Karachentsev I. D., Sharina M. E., Kaisin S. S., 2008b, MNRAS, 386, 1667
Bell E. F., de Jong R. S., 2001, ApJ, 550, 212
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2011, MNRAS, 415, L40
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2012, MNRAS, 422, 1203
Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E., 1994, MNRAS, 271, 781
Côté S., Carignan C., Freeman K. C., 2000, AJ, 120, 3027
di Cintio A., Knebe A., Libeskind N. I., Yepes G., Gottlöber S., Hoffman Y., 2011, MNRAS, 417, L74
Diemand J., Kuhlen M., Madau P., 2007, ApJ, 657, 262
Duffy A. R., Schaye J., Kay S. T., Dalla Vecchia C., 2008, MNRAS, 390, L64
Giovanelli R., Haynes M. P., Kent B. R., et al., 2005, AJ, 130, 2598
Governato F., Zolotov A., Pontzen A., et al., 2012, MNRAS, 422, 1231
Guo Q., White S., Boylan-Kolchin M., et al., 2011, MNRAS, 413, 101
Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Jenkins A., Frenk C. S., White S. D. M., et al., 2001, MNRAS, 321, 372
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Li C., White S. D. M., 2009, MNRAS, 398, 2177
McGaugh S. S., 2005, ApJ, 632, 859
McGaugh S. S., Wolf J., 2010, ApJ, 722, 248
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Neto A. F., Gao L., Bett P., et al., 2007, MNRAS, 381, 1450
Oh S.-H., de Blok W. J. G., Brinks E., Walter F., Kennicutt Jr. R. C., 2011, AJ, 141, 193
Papastergis E., Martin A. M., Giovanelli R., Haynes M. P., 2011, ApJ, 739, 38
Parry O. H., Eke V. R., Frenk C. S., Okamoto T., 2012, MNRAS, 419, 3304
Pontzen A., Governato F., 2012, MNRAS, 421, 3464
Press W. H., Schechter P., 1974, ApJ, 187, 425
Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1
Somerville R. S., Primack J. R., 1999, MNRAS, 310, 1087
Springel V., Wang J., Vogelsberger M., et al., 2008, MNRAS, 391, 1685
Springel V., White S. D. M., Jenkins A., et al., 2005, Nature, 435, 629
Stark D. V., McGaugh S. S., Swaters R. A., 2009, AJ, 138, 392
Stoehr F., White S. D. M., Tormen G., Springel V., 2002, MNRAS, 335, L84
Swaters R. A., 1999, Dark Matter in Late-type Dwarf Galaxies, Ph.D. thesis, Rijksuniversiteit Groningen, (1999)
Swaters R. A., Sancisi R., van Albada T. S., van der Hulst J. M., 2009, A&A, 493, 871
Trachternach C., de Blok W. J. G., McGaugh S. S., van der Hulst J. M., Dettmar R.-J., 2009, A&A, 505, 577
Vera-Ciro C. A., Helmi A., Starkenburg E., Breddels M. A., 2012, ArXiv e-prints

Wang J., Frenk C. S., Navarro J. F., Gao L., Sawala T., 2012, MNRAS, 3369
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341
Wolf J., Martinez G. D., Bullock J. S., et al., 2010, MNRAS, 406, 1220
Zwaan M. A., Meyer M. J., Staveley-Smith L., 2010, MNRAS, 403, 1969

© 2012 RAS, MNRAS 000, 000–000