A Note on Time Measurements in LAMMPS

Daniel Tameling, Paolo Bientinesi, and Ahmed E. Ismail

Aachen Institute for Advanced Study in Computational Engineering Science

Financial support from the Deutsche Forschungsgemeinschaft (German Research Foundation) through grant GSC 111 is gratefully acknowledged.
A Note on Time Measurements in LAMMPS

Daniel Tameling∗1, Paolo Bientinesi1, and Ahmed E. Ismail1,2

1AICES Graduate School, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany
2Aachener Verfahrenstechnik: Molecular Simulations and Transformations, Faculty of Mechanical Engineering, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany

June 9, 2021

Abstract

We examine the issue of assessing the efficiency of components of a parallel program at the example of the MD package LAMMPS. In particular, we look at how LAMMPS deals with the issue and explain why the approach adopted might lead to inaccurate conclusions. The misleading nature of this approach is subsequently verified experimentally with a case study. Afterwards, we demonstrate how one should correctly determine the efficiency of the components and show what changes to the code base of LAMMPS are necessary in order to get the correct behavior.

One of the governing themes of our times is the efficient use of resources. The rule of this theme is not just limited to natural resources like oil but it extends as well to computational resources. In particular, the efficient usage of computational resources constitutes a pressing issue for extremely demanding applications like molecular dynamics (MD) simulations. However, in contrast to the natural resources, the main concern here is not to go easy on the resources; it is feasibility. To be efficient can make in this context the difference between getting the results of a simulation towards the end of the century and getting them within a few weeks. So to increase the efficiency can be the key to make it possible at all to carry out crucial research. Even if one is in the lucky situation that the simulation takes

∗tameling@aices.rwth-aachen.de
only a few weeks, any substantial improvement in its efficiency will save a significant amount of simulation time. But in order to improve the efficiency of such a simulation, it is vital to know how much time is consumed by each of its elements. Thus, we will discuss in this note how timings are measured by the MD package LAMMPS [5], and why the presentation of these measurements can constitute an inaccurate representation of the efficiency of the executed components.

The main purpose of this note is to raise the awareness in the MD community for how timings are measured correctly in parallel applications. While the discussed issues are relevant for every discipline that uses parallel applications, we have the feeling that in this particular community there exists a lack of the knowledge about the discussed matter, which is the reason why LAMMPS outputs misleading information. Despite the fact that we pick LAMMPS as an example, the unfolding discussion is equally relevant for the authors and users of other MD packages, such as GROMACS [3], and NAMD [4]. Moreover, because of the nature of the discussed matter, it is the case the presented recommendations are also valuable for researchers in other fields if they rely on parallel programs, and we want to stress that this note does not require any prerequisite knowledge about MD.

The challenge that this note is going to address is the difficulty of producing reliable and at the same time easily understandable information about the efficiency of parts of a parallel program. In case of a serial application, this task is trivial: the efficiency of a part is directly correlated to the wall-clock time consumed by this component. But in a parallel application, there exists such a timing for each process that in general differ from each other. The question is now how to extract representative information about the efficiency of the respective component from this potentially vast amount of data. Ideally, each efficiency should be represented reliably by a single number. Therefore, we will discuss here what value is suitable for assessing the efficiency of the different elements of a parallel application. Ideally, each element would have for this purpose just a single number, which is exactly what LAMMPS attempts. However, as we are going to show, the methodology that LAMMPS uses to produce this number is inappropriate and can be misleading.

Before we take a closer look at LAMMPS, there are some questions that need to be answered. In particular, these questions are why the MD community uses timings as a measure for the efficiency of their programs and why are the timings of parts of a program relevant at all. The answer to the first question is that the efficiency of a MD program is usually simply unknown. The traditional definition of the efficiency of a computer program is the number of executed flops divided by the number of flops theoretically possible within the time spanned by the simulation. However, as MD programs constitute complex applications, the amount of executed flops remains typically unknown. Moreover, users of MD applications
are normally not interested in the efficiency of a program; they only care how long they have to wait until they get a solution. Therefore, they commonly use as metric for the efficiency of their program the time to solution.

Meanwhile, instead of the time to solution, the MD community often relies on a different quantity that is normally completely equivalent: the average time per step. The reason for this is that a typical MD simulation consists of a large number of steps. Moreover, it is the case that in real applications the time spent for initialization and finalization is negligible. Accordingly, the average time per step times the number of steps equals approximately the time to solution.

After answering the first question, we proceed with addressing the other one. In particular, we are going to disclose why the knowledge of the timings of parts of a program constitutes a valuable information. The first reason is that these timings indicate which parts are the most promising candidates for optimization attempts. Furthermore, to know that a certain component takes longer than a specific amount of time can mean that it would be faster to employ an alternative method to fulfill the given task. Finally, the knowledge of how much time a certain method takes can be a vital ingredient for the task of selecting its parameters optimally. Therefore, it is immensely valuable to be aware of how long the execution of crucial components of an application takes. At the same time, this means that it can be extremely harmful to misrepresent the execution time of these elements, like LAMMPS does.

The reason why LAMMPS produces misleading information is that the package always averages the timings across the individual processes. To illustrate why the average is problematic, we will review its effects for a simple example: a parallel program with \(n \) processes that consists of just one component that is executed for a single time step. This example is depicted graphically in Figure 1. The program terminates as soon as all processes complete; correspondingly, the execution time \(T_{\text{exec}} \) equals the maximum of the individual timings \(T_{\text{max}} \). One would expect that the reported timing for the only component would equal this maximum. But if one puts the average of all the timings in relation to the execution time, one obtains

\[
T_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} T_i \leq \frac{1}{n} \sum_{i=1}^{n} T_{\text{max}} = \frac{1}{n} \cdot n \cdot T_{\text{max}} = T_{\text{max}} = T_{\text{exec}}.
\]

(1)

Here one has to realize that the equality holds only when all processes take the same amount of time. But for MD simulations it is highly unlikely that all of the individual timings would exhibit the exact same value. Therefore, the average of the timings would be misleading; it would be lower than the real time consumption of the respective component.

How treacherous the average potentially is can be demonstrated by looking at how it behaves in scaling experiments of the example program. Meanwhile, in order to judge the results of the average, one needs something to compare them to.
Figure 1: The average across all ranks for a function consisting of one part is smaller than the actual run time, which equals the maximum.

For this, we use the best possible scaling. Moreover, we introduce the assumption that the parallelization introduced no overhead. Consequently, in the optimal case, the execution time on n processes will equal

$$T^n_{\text{exec}} = \frac{T_0}{n}, \quad (2)$$

where T_0 denotes the serial run time. One has to notice that this optimal reduction occurs only if the work is equally distributed among the processes; if the individual timings of the involved processes are not exactly the same, the execution time will be larger than indicated by this equation.

Now we look at how the average of the individual timings behaves. For this, we exploit that there is no overhead associated with the parallelization. Consequently, it is the case that the sum of the individual timings equals the serial time:

$$T_0 = \sum_{i=1}^{n} T_i. \quad (3)$$

This relation can now be used to calculate the average of the individual timings T_i:

$$T_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} T_i = \frac{T_0}{n}, \quad (4)$$

which surprisingly equals the expression of Equation 2, which signifies the optimal time reduction. But here, we never assumed anything about the distribution of the timings. In particular, we did not introduce that the work is equally distributed. Therefore, no matter how imbalanced the workload is in reality, considering the average of the timings will always indicate the optimal scaling. But this is not the case. As we have shown above, the run time of our example program is actually the maximum of the individual timings. Therefore, the average of the timings can
mislead the user regarding the scaling of the program. By which degree depends totally on the distribution of the workload. In fact, using an extremely poor parallelization strategy, such as having one process execute the serial program while the other \(n - 1 \) processes remain idle, we would have optimal speedup if we consider the average, while the actual run time of the program would not improve at all.

Meanwhile, it might be the case that in realistic MD simulations all the components are always perfectly load balanced. Even if that is not the case, maybe the deviations of the average from the correct result are so small that they are negligible. Therefore, it is now the time to put the theoretical considerations to the test. To do this, we will use two different test systems. The first has an homogeneous and the second an inhomogeneous particle distribution. Correspondingly, there should be no load imbalance, except for small statistical variations that occur in typical atomic systems. But this case constitutes the best case scenario; the load balancing with any realistic system will not be better than this. Hence, no matter how large the deviation of the average from the correct result will be in this scenario, it will never be significantly smaller. In contrast, the second system does not exemplify the worst case scenario. Sometimes one has to live with even larger inhomogeneities in order to be able to simulate the system.

For the component whose timings we are going to investigate we picked a standard task that is part of basically every MD simulation \(^1\text{,}^2\). Specifically, the component will concentrate on is the force calculation with a cutoff, which in LAMMPS is reported under the label “Pair”. Moreover, we kept the physical nature systems as simple as possible. Accordingly, we set up the system as a Lennard-Jones fluid to which we applied a cutoff of \(3\sigma \). Finally, we want to mention that despite the simplicity of the system, the simulation consists of more components than the cutoff-based computation. Nevertheless, in the following we consider only the timings of this component.

First of all, we look at the results of the best case scenario, i.e. the homogeneous system. This system was created by filling the whole domain with particles. As it is the best case scenario, the difference between the maximum and the average should be as small as it can become in practice. This is what makes the results that are depicted in the left plot of Figure 2 particularly disappointing. Even for a relatively low number of processes, one can observe that it makes a significant difference whether one considers the average or the maximum. Moreover, the disagreement becomes worse as the number of processes is increased. The conclusion is that even under optimal circumstances the usage of the average to assess the performance of a part of the simulation is inadequate.

Nevertheless, it is also important to be aware of how bad the disagreement can become. Therefore, we discuss in this paragraph the results for the inhomogenous
system. Here it should be noted that we created the inhomogeneity so that in all simulations the particles are assigned to only half of the employed processes. The consequence of this setup is that during the considered cutoff-computation half of the processes are idle. Thus, one can expect that the parallel efficiency is at best at 50%. As one can see in the right plot of Figure 2, this expectation is fulfilled by the maximum of the individual timings: for any parallel runs, it measures an efficiency below 50%. By contrast, the average gives a completely different impression: it looks like the scaling is almost perfect. The transported message constitutes just a gross inconsistency with reality. Moreover, as mentioned, there are even worse inhomogeneities in realistic systems. Thus, given the right circumstances, the corresponding prediction of the average will become arbitrarily wrong. Together with its behavior in the homogeneous experiments, the overall verdict for the average can only be that it is totally inappropriate for assessing the performance of components of parallel application.

But what are the alternatives to using the average? Well, one solution is hidden in the source code of LAMMPS. The function that is responsible for the timings contains an interesting comment:

```cpp
void Timer::stamp(int which)
{
    // uncomment if want synchronized timing
    // MPI_Barrier(world);
    double current_time = MPI_Wtime();
    array[which] += current_time - previous_time;
    previous_time = current_time;
}
```

Figure 2: Parallel efficiency as indicated by the average of the individual timings and their maximum. Left: Homogeneous system. Right: Inhomogenous system.
What happens if the comment is removed? Every element whose time is measured will start simultaneously across all processes, and even if one process finishes the corresponding tasks, it will wait until all of them completed these tasks. Thus, all the processes will measure the time that the slowest process took. Accordingly, as all processes spent the same time in every component, the average the individual timings produces a correct assessment of the corresponding performance. (Meanwhile, one could also just report the timings of an arbitrary process; the result would be the same.) However, it has its reasons why the barrier is commented; its usage comes at a price. As illustrated in Figure 3, the barrier can namely reduce the performance. This would be an issue if the goal is to assess an element that extends across multiple components as it is, for example, the case for a long-range solver. Furthermore, since typical MD simulations last from days to weeks, even the tiniest slowdown is intolerable. In conclusion, because it might harm the performance of the program, it is not recommended to introduce a barrier between its different components.

Figure 3: Barriers help to separate individual tasks, but usually will lead to a reduction in performance.

Is there a better solution than the barrier? Yes, there is: to use the maximum of the timings. In the example program that was discussed in the beginning, the maximum provided always a correct assessment of the performance. Moreover, in the conducted experiments, the use of the maximum resulted in predictions of the efficiency that were in agreement with the general expectations. In fact, the comparison in Figure 4 reveals that the maximum behaves similarly as the total time to solution. This is again a sign for the quality of the maximum since it is the considered cutoff-computation that dominates the cost of the simulation. To sum up, the maximum of the timings is the appropriate measure for the performance.

To use the maximum instead of the average requires only very small changes to the code base of LAMMPS. Specifically, one has to modify a few lines in the finish.cpp file. Specifically, whenever the average of timings is calculated as in

```c++
// default version with average of timings
time = timer->array[TIME_PAIR];
```
The following modifications are sufficient:

```c
// changed version with maximum of timings
time = timer->array[TIME_PAIR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_MAX,world);
```

Basically, one has to replace the `MPI_SUM` in the corresponding `allreduce` calls by an `MPI_MAX`, and one has to remove the divisions by the number of processes.

If one uses the maximum of the timings, there is one thing one should be aware of: the sum of the maxima of all components will in general be larger than the total execution time. This behavior can be observed in Figure 3: the sum of the maxima is $T_{21} + T_{12}$, whereas the execution equals $T_{21} + T_{22}$. One consequence of this phenomenon is always present in addition to the timings of the components also the total execution time. There is another reason why presenting the total execution time is important. It is namely also relevant for comparing different timings of a single component. For example, for the case depicted in Figure 3, one could optimize the code and reduce T_{12} to one half of its original value. As the maximum value of the timings of the second component of the program would also been cut in half, one could claim that the optimization was extremely successful. However, the overall execution time would remain the same. Therefore, the optimization achieved no real benefit, which exemplifies why it is important to discuss the total execution time.
In this note we explored the difficulties associated with assessing the timings of elements of parallel applications at the example of the MD package LAMMPS. We demonstrated the problems with the methodology that is currently employed by default in this package and how to resolve the existing problems. Specifically, for a realistic assessment of the time consumption of a component, it is inevitable to use the maximum of the corresponding timings across the corresponding processes.

References

[1] D. Frenkel and B. Smit. *Understanding molecular simulation: from algorithms to applications*, volume 1. Academic press, 2001.

[2] M. Griebel, S. Knapek, and G. Zumbusch. *Numerical simulation in molecular dynamics*. Springer, Berlin, Heidelberg, 2007.

[3] B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. *J. Chem. Theory Comput.*, 4(3):435–447, 2008.

[4] L. Kalè, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. NAMD2: greater scalability for parallel molecular dynamics. *J. Comput. Phys.*, 151(1):283–312, 1999.

[5] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. *J. Comput. Phys.*, 117:1–19, 1995.