Opinion

Pregnancy hypertension diagnosis and care in COVID-19 era and beyond

L. A.Magee^{1,2,3,*}, A. Khalil^{4,5}© and P. Von DaeleSzen^{1,2,3}

¹Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicines, King’s College London, London, UK; ²King’s Health Partners, London, UK; ³Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada; ⁴Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, University of London, London, UK; ⁵Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK

*Correspondence. (e-mail: laura.a.magee@kcl.ac.uk)

The coronavirus disease 2019 (COVID-19) pandemic has led to an abrupt transition to virtual healthcare in pregnancy in order to reduce dependence on hospital-based care and minimize the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which appears to carry a similar risk in pregnancy compared with that in non-pregnant adults¹. This is true for all women, including the approximately 10% who have pregnancy hypertension and receive specialist hypertension care².

Specific guidance for hypertensive pregnant women during the COVID-19 pandemic has been provided in some jurisdictions³ and has focused on provision of self-monitoring at home and virtual consultation whenever possible. This is most likely for women with chronic or gestational hypertension, who can self-monitor blood pressure (BP) at home, undertake proteinuria testing, and receive only remote review by the maternity-care team unless otherwise attending hospital (such as for maternal blood tests or fetal ultrasound). While women with pre-eclampsia may be cared for as outpatients, they are still advised to attend face-to-face visits frequently³. Regardless, key aspects of pregnancy-hypertension care must be provided for all hypertensive pregnant women and within the constraints of the current healthcare system.

Measure BP with device validated for use in pregnancy

While home BP monitoring (HBPM) has been undertaken informally in maternity care, the COVID-19 pandemic has facilitated rapid implementation of this practice. HBPM is a key part of a remote monitoring strategy in pregnancy, and is recommended based on acceptability to women, widespread informal use and lack of safety concerns⁴. Women with chronic hypertension are ideally suited for HBPM and may have practiced this before pregnancy. Women with gestational hypertension are also capable of undertaking HBPM⁵

As a national example, HBPM is being facilitated for use in the UK. First, the Royal College of Obstetricians and Gynaecologists (RCOG) provides guidance on BP monitoring devices that are appropriate for home use and validated for use in pregnancy and pre-eclampsia specifically (https://STRIDEBP.org/BP-monitors), along with clear patient instructions for BP device loans and details of monitoring⁴. Second, UK government agencies have procured and validated BP monitors for purchase by hospitals, for domiciliary use by hypertensive pregnant women. Third, use of BP apps is being encouraged to facilitate recording of BP and transmission of BP values to care providers; K2 Hampton (https://www.k2ms.com) is the only pregnancy BP app certified as a Class-I medical device in the UK and extensively evaluated within the NHS^{5–7}.

It is unclear whether HBPM targets should be the same as those used in the clinical setting for either screening (among previously normotensive women, whether they are at low or increased risk of pre-eclampsia) or management among hypertensive women. While BP measured at home (<i>vs</i> the clinic) may be lower, at least among hypertensive women (by up to 16 mmHg systolic and 7 mmHg diastolic), there is wide variation between women⁸. As such, it is difficult to justify routine use of lower target BP values at home.

The implications on pregnancy outcomes and costs of a reliance on HBPM to replace many clinic measurements are unknown. Preliminary evidence in hypertensive women attending for specialist care suggests that use of HBPM and a BP app may reduce outpatient healthcare utilization (even among women with recently diagnosed gestational hypertension³) and costs⁷.

Assess risk of pre-eclampsia at antenatal care booking and prescribe aspirin for women at increased risk

Low-dose aspirin decreases the risk of pre-eclampsia, particularly preterm pre-eclampsia, when 150 mg/day of aspirin is administered to women identified as being at high risk based on first-trimester multivariable screening⁹. While concerns have been raised about use of non-steroidal anti-inflammatory drugs (NSAIDs) and an associated risk of disease progression, this remains unproven, and the World Health Organization considers use of NSAIDs acceptable for relief of COVID-19 symptoms¹⁰. The dose of aspirin for pre-eclampsia prevention is lower than that used to achieve anti-inflammatory effects, and there are no reports of accelerated COVID-19 disease progression in patients so-treated. Furthermore,
it is even more important to decrease the risk of pre-eclampsia in this era of virtual care.

Treat hypertension (BP ≥ 140/90 mmHg) with antihypertensive therapy

Oral antihypertensive therapy halves the risk of severe hypertension (systematic review, 31 trials, 3485 women)\(^{11}\), which is an outcome that warrants face-to-face assessment in all jurisdictions, even during the COVID-19 pandemic. As avoidance of unnecessary face-to-face visits is an objective goal during this pandemic, avoidance of severe hypertension is a particularly worthy goal.

The international Control of Hypertension In Pregnancy Study (CHIPS) trial showed that ‘tight’ control (aiming for a target diastolic BP of 85 mmHg) was better than ‘less-tight’ control (aiming for a target diastolic BP of 100 mmHg to minimize use of antihypertensive therapy), not only to reduce the incidence of severe hypertension, but also that of a platelet count < 100 × 10⁹/L and elevated liver enzymes with symptoms\(^{12}\). Importantly, there was no impact (positive or negative) of ‘tight’ control on perinatal mortality or morbidity, birth weight < 10⁻³⁵ centile or preterm birth\(^{13}\). BP control was achieved by a simple algorithm of up or down titration of antihypertensive medication (Figure 1), using single or multiple medications; in Figure 2, we provide practical advice and a protocol for dosing escalation from starting to maximum dosage and medication combinations. Initial antihypertensive therapy should be monotherapy using an accepted first-line drug; while no antihypertensive agent has been proven superior to others, oral labetalol (as used by the majority of women in CHIPS), nifedipine and methyldopa are used most commonly in pregnancy\(^{11,14}\). As is the case outside of pregnancy, pregnant women of African or Caribbean ethnic origin would be expected to respond best to a calcium-channel blocker based on the high prevalence of low-renin hypertension in this population, but the majority still respond to oral labetalol\(^{15}\). Additional antihypertensive drugs should be used if target BP levels are not achieved with standard-dose monotherapy\(^{16}\), at least to a mid-range dose; add-on drugs should be from a different drug class chosen from first- or second-line options\(^{16}\).

Define pre-eclampsia broadly and assess risk of adverse maternal outcomes

Chronic (≈ 25%) or gestational (up to ≈ 35%) hypertension frequently evolves into pre-eclampsia. Detection of this progression is why professional societies and advocacy groups emphasize evaluation of maternal symptoms\(^{14}\), and many societies have adopted a broad definition of pre-eclampsia that includes maternal/fetoplacental end-organ involvement (including symptoms)\(^{17}\).

In a systematic review of maternal risk stratification in pregnancy hypertension (32 studies), miniPIERS (Pre-eclampsia Integrated Estimate of Risk Score) was the only model for all pregnancy hypertension types\(^{18}\). Importantly, during the COVID-19 pandemic, miniPIERS can also be used for outpatients. miniPIERS has been externally validated\(^{19}\) and quantifies the risk of adverse maternal outcome by BP, symptoms, urinalysis (if performed), gestational age and parity (of particular importance for nulliparous women who have no history of ongoing pregnancy)\(^{19}\). According to the model, women are classified as being at high risk if their predicted probability of adverse outcome is ≥ 25%, which as a ‘rule-in’ test has a good likelihood ratio (5.1) and classifies correctly 86% of women.

Any woman with suspected pre-eclampsia requires a face-to-face evaluation by her healthcare team. Angiogenic markers have been recommended as part of this evaluation in the UK\(^{20}\), based on their good-to-excellent performance at ruling out a diagnosis of pre-eclampsia (defined as new-onset proteinuria) within 7 days or pre-eclampsia requiring delivery within 14 days\(^{21–24}\). However, angiogenic markers may be useful even if women meet diagnostic criteria for pre-eclampsia; many

Figure 1 Algorithm for ‘tight’ blood-pressure (BP) control in CHIPS trial. *If systolic BP is ≥ 160 mmHg, increase dose of existing medication or start new antihypertensive medication to get systolic BP < 160 mmHg, regardless of diastolic BP (dBP). Figure adapted from Magee et al.\(^{13}\).
First-line drug

Low dose*	Medium dose	High dose†	Maximum dose†
Labetalol	100 mg TID to QID	200 mg TID to QID	300 mg TID to QID
PA or MR nifedipine	10 mg BID to TID	20 mg BID to TID	30 mg BID to TID
XL or LA nifedipine	30 mg OD	30 mg BID or 60 mg OD	30 mg QAM and 60 mg QPM
Methyldopa	250 mg TID to QID	500 mg TID to QID	750 mg TID

If BP not controlled, proceed to medium dose of same low-dose medication

If BP not controlled, consider adding another low-dose medication, rather than going to high dose of same medication(s), for maximum of three medications

Titrated to effect up to maximum dose, as required

women in ‘suspected’ pre-eclampsia studies likely had pre-eclampsia at baseline, and preliminary evidence suggests that angiogenic markers may further improve prediction of the need for delivery and guide place of care.

Time delivery from 37 weeks for women with pre-eclampsia

By global consensus, women with preterm pre-eclampsia who reach 37 + 0 weeks, and those who develop pre-eclampsia at term gestational age, should be induced within 24 h in order to decrease the risk of maternal disease progression and complications. While guidelines are inconsistent regarding timed delivery for women with chronic or gestational hypertension, local standard of care should be maintained. When considering induction of labor, if a woman is also symptomatic with COVID-19, it may be advisable to delay induction if possible; under those circumstances, strict attention to BP control would be prudent as severe hypertension is the most common complication avoided by labor induction.

Use antenatal corticosteroids for fetal lung maturation

Dexamethasone is being evaluated as a therapeutic intervention for SARS-CoV-2 infection requiring hospitalization outside of pregnancy. One trial found that HBPM and postnatal down-titration of antihypertensives improved BP control. The most commonly used antihypertensives, and most others, are acceptable for use when breastfeeding. Given that BP rises postpartum and peaks on days 3–6 after birth, by which time women have usually left hospital, and as hypertension increases the risk of postnatal stroke, it would be reasonable to continue ‘tight’ BP control for the first 6 weeks postpartum.

While drugs that block the renin-angiotensin system may be used for postpartum hypertension, based on low drug levels in breast milk, the effect of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) on the natural history of COVID-19 has been questioned. Mechanisms have been postulated for both harmful and beneficial effects mediated through upregulation of membrane-bound...
ACE-2 by ACE inhibitors or ARBs5,11. While reassuring information is emerging12, given the greater difficulty in placental growth factor ratio: ruling out pre-eclampsia (Triage PlGF test, Elecsys immunoassay sFlt-1/PIGF ratio, DELFIA Xpress PlGF 1-2-3 test, and BRAHMS fHl-1 Kryptor/BRAHMS PIGF plus Kryptor PE ratio). 2016; https://www.ncbi.nlm.nih.gov/books/NBK501922/?term=lactmed

20. National Institute for Health and Care Excellence (NICE). Diagnostic Guidance DG23. PGf-based testing to help diagnose suspected pre-eclampsia (Triage PlGF test, Elecsys immunoassay sFlt-1/PIGF ratio, DELFIA Xpress PlGF 1-2-3 test, and BRAHMS fHl-1 Kryptor/BRAHMS PIGF plus Kryptor PE ratio). 2016; https://www.ncbi.nlm.nih.gov/books/NBK501922/?term=lactmed

21. Bian X, Biwsa A, Huang X, Lee Kj, Li T, Masahyama Y, Ohkuuki A, Park J, Saito S, Tan KH, Yamamoto T, Dierf A, Grill S, Verhagen-Kameerbro WDM, Shim JY, Hund M. Short-Term Prediction of Adverse Outcomes Using the fHl-1 Soluble fms-Like Tyrosine Kinase 1/PlGF (Placental Growth Factor) Ratio in Asian Women With Suspected Pre-eclampsia. Hypertension 2019; 74: 164–172.

22. Chappell LC, Duckworth S, Seed PT, Griffith M, Myers J, Mackillop L, Simpson N, Waugh A, Anumba D, Kenny LC, Redman CW, Sibell M, Hund S, Mort S, Mollison J, Tarassenko L, McManus RJ; SNAP-HT Investigators. Self-management of postnatal hypertension: The SNAP-HT Trial. BMJ Open 2017; 7: e018696.

23. Cairos AE, Tucker KL, Leeson P, Mackillop LH, Santos M, Velardo C, Salvi D, Mort S, Mollison J, Tarassenko L, McManus RJ. SNAP-HT Investigators. Self-management of postnatal Hypertension: The SNAP-HT Trial. Hypertension 2018; 72: 452–453.

24. Drugs and Lactation Database (LactMed) [Internet]. National Library of Medicine: Bethesda, MD, USA, 2006. https://www.ncbi.nlm.nih.gov/books/NBK501922/?term=lactmed

25. Lappin JM, Darke S, Duffoo J, Kaye S, Farrell M. Fatal Stroke in Pregnancy and the Puerperium. Stroke 2018; 49: 3035–3035.

26. Brett AS, Rind DM. ACE inhibitors and ARBs during the COVID-19 pandemic. 2020. https://www.jwcat.org/n51345/2020/04/9/ace-inhibitors-and- arbs-during-covid-19-pandemic

27. Jarcho JA, Ingelfinger JR, Hamel MB, D’Agostino RB Sr., Harrington DF. Inhibitors of the Renin-Angiotensin-Aldosterone System and Covid-19. N Engl J Med 2020. DOI: 10.1056/NEJMc202924

REFERENCES

1. Khalid A, Kafafar E, Benloglia C, O’Brian P, Morris E, Draycott T, Thangaratnam S, Le Douare K, Heath P, Ladhams S, von Dadelszen P, Magee L. SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine 2020; in press.

2. Magee LA, Sharma S, Nathan HL, Adetoro OO, Bellad MB, Goudar S, Macuacua SE, Malliapcz A, Qureshi R, Severe E, Sotuna J, Vali A, Lee T, Payne BA, Vidler M, Shennan AH, Blutta ZA, von Dadelszen P; CLIP Study Group. The incidence of pregnancy hypertension in India, Pakistan, Mozambique, and Nigeria: A prospective population-level analysis. PLoS Med 2019; 16: e1002783.

3. Royal College of Obstetricians and Gynaecologists (RCOG). Guidance for maternal medicine in the evolving coronavirus (COVID-19) pandemic - Information for healthcare professionals. Version 8. 2020. rcog.org.uk/globalassets/documents/guidelines/2020-04-17-coronavirus-covid-19-infection-in-pregnancy.pdf

4. Royal College of Obstetricians and Gynaecologists (RCOG). Self-monitoring of blood pressure in pregnancy. Information for healthcare professionals. 2020. rcog.org.uk/globalassets/documents/guidelines/2020-03-30-self-monitoring-of-blood-pressure-in-pregnancy.pdf

5. Kalafat E, Leslie K, Bhide A, Thilaganathan B, Khalil A. Pregnancy outcomes following home blood pressure monitoring in gestational hypertension. Pregnancy Hypertens 2019; 18: 14–20.

6. Perry H, Sheehan E, Thilaganathan B, Khalil A. Pregnancy outcomes following home blood pressure monitoring in a hypertensive pregnant population. Ultrasound Obstet Gynecol 2018; 51: 524–530.

7. Xydocoulou G, Perry H, Sheehan E, Thilaganathan B, Fordham R, Khalil A. Home blood-pressure monitoring in a hypertensive pregnant population: cost-minimization study. Ultrasound Obstet Gynecol 2019; 53: 496–502.

8. Tucker KL, Batikhead C, Hodgkinson J, Roberts N, Stevens R, Heneghan C, Rey E, Lo C, Chandiramani M, Taylor RS, North RA, Khalil A, Mark K, Waugh J, Brown M, Crawford C, Taylor KS, Mackillop L, McManus RJ. How Do Home and Clinic Blood Pressure Readings Compare in Pregnancy? Hypertension 2018; 72: 686–694.

9. Reinkil DL, Wright D, Poon LG, O’Gorman N, Syrkelagi A, de Paco Matallana C, Akolkar R, Cisero S, Janda D, Singh MI, Molina JS, Persico N, Jans JC, Plascencia W, Papasavvann G, Tenenbaum-Gavini K, Meiri H, Gauziron S, Madlajan K, Nicolades KH. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Pre-eclampsia. N Engl J Med 2017; 379: 613–622.

10. Kvitkowksi S, Borowski D, Kurdyl A, Poon LG, Rokita W, Wielgo SM. Why should we not stop giving aspirin to pregnant women during the COVID-19 pandemic. Ultrasound Obstet Gynecol 2020; 55: 841–843.

11. Abalos E, Dudley J, Steen DW, Galdini C. Ambulatory blood pressure monitoring: a hypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev 2018; 10: CD002252.

12. Magee LA, von Dadelszen P, Rey E, Ross S, Azizfaras E, Murphy KE, Minnies J, Sanchez I, Singer J, Gafin A, Gruanin A, Meheva M, Hutton E, Lee SK, Lee T, Logan AG, Ganzevoot W, Welch R, Thornton JG, Moutquin J. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med 2013; 372: 407–417.

13. Magee LA, Rey E, Azizfaras E, Hutton E, Singer J, Meheva M, Lee T, Logan AG, Ganzevoot W, Welch R, Thornton JG, von Dadelszen P, Management of non-severe pregnancy hypertension. Summary of a Cochrane systematic review of the CDHPS Trial (Control of Hypertension in Pregnancy Study) research publications. Pregnancy Hypertens 2019; 18: 156–162.

14. Webster K, Fishburn S, Maresch M, Findlay SC, Chappell LC, Guideline C. Diagnosis and management of hypertension in pregnancy: summary of updated NICE guidance. BMJ 2019; 366: 15119.

15. Stott D, Rolten M, Saladman M, Parasciv D, Douiri A, Kametas NA. A prediction model for the response to oral labetalol for the treatment of antenatal hypertension. J Hum Hypertens 2017; 31: 126–131.

16. Butalia S, Audibert F, Cote AM, Firoz T, Logan AG, Magee L, Mundle W, Rey E, Rahi DM, Daksalapourou SS, Nerenberg KA; Hypertension Canada. Hypertension Canada’s 2018 Guidelines for the Management of Hypertension in Pregnancy. Can J Cardiol 2018; 34: 526–531.

17. Gillon TE, Pels A, von Dadelszen P, MacDonnell K, Magee LA. Hypertensive disorders of pregnancy: a systematic review of international clinical practice guidelines. PLoS One 2014; 9: e113715.

18. Uklh VA, De Silva DA, Payne B, Magee LA, Hutcheon JA, Brown H, Ansermino JM, Lee T, von Dadelszen P. Prediction of adverse maternal outcomes from pre-eclampsia and other hypertensive disorders of pregnancy: A systematic review. Pregnancy Hypertens 2018; 11: 115–123.

19. Payne BA, Hutcheon JA, Ansermino JM, Hall DR, Blutta ZA, Blutta SZ, Buyaharaema C, Grobman WA, Groen H, Haniuf F, Li J, Magee L, Marsaudil M, Nakimuli A, Qu Z, Sikandar R, Saws N, Sawchuck D, Stenwy DWN, Widmer M, Zhou J, von Dadelszen P; miniPIERS Study Working Group. A risk prediction model for the prognosis and triage of women with hypertensive disorders of pregnancy in low-resource settings: the miniPIERS (Pre-eclampsia Integrated Estimate of Risk) multi-country prospective cohort study. PLoS Med 2014; 11: e1001589.