Nickel-catalyzed trifluoromethylthiolation of Csp2–O bonds†

Alexander B. Dür,‡ Guoyin Yin,‡ Indrek Kalvet, François Napoly and Franziska Schoenebeck*

While nickel catalysts have previously been shown to activate even the least reactive Csp2–O bonds, i.e. aryl ethers, in the context of C–C bond formation, little is known about the reactivity limits and molecular requirements for the introduction of valuable functional groups under homogeneous nickel catalysis. We identified that due to the high reactivity of Ni-catalysts, they are also prone to react with existing or installed functional groups, which ultimately causes catalyst deactivation. The scope of the Ni-catalyzed coupling protocol will therefore be dictated by the reactivity of the functional groups towards the catalyst. Herein, we showed that the application of computational tools allowed the identification of matching functional groups in terms of suitable leaving groups and tolerated functional groups. This allowed for the development of the first efficient protocol to trifluoromethylthiolate Csp2–O bonds, giving the mild and operationally simple C–SCF\textsubscript{3} coupling of a range of aryl, vinyl triflates and nonaflates. The novel methodology was also applied to biologically active and pharmaceutical relevant targets, showcasing its robustness and wide applicability.

As a suitable test case, we focused on the nickel-catalyzed trifluoromethylthiolation of Csp2–O bonds.8

The SCF\textsubscript{3} group makes molecules more lipophilic, increasing their membrane permeability and bioavailability.9 These properties are of considerable interest in a pharmaceutical and agrochemical context. Consequently, numerous efforts have been undertaken to synthesize aryltrifluoromethyl sulfides.10,11 In particular the direct catalytic introduction of SCF\textsubscript{3} is an attractive approach. While aryl halides12 or boronic acids13 have successfully been converted to C–SCF\textsubscript{3} via metal catalyzed cross-coupling strategies or oxidative protocols,14 to date, there is no report of a direct and catalytic trifluoromethylthiolation of Csp2–O bonds.

Results and discussion

Given the widespread abundance of phenols, the trifluoromethylthiolation of phenol derivatives would be highly attractive for synthetic diversity. In this context, the scope could in principle range from more activated derivatives (e.g. aryl triflates) to the least reactive derivatives, i.e. aryl ethers which are present in biomass feedstocks (such as lignin)15. However, while Ni-catalysis has recently been successfully utilized to activate aromatic ethers,6 we hypothesized that there might be a fundamental reactivity conflict in introducing SCF\textsubscript{3}: the created SCF\textsubscript{3}-product would be expected to be inherently more reactive towards oxidative addition16 which may impede further transformation.
To test this, we subjected Ni(cod)$_2$/dpff to PhSCF$_3$ 1 (see Fig. 1). We recently showed that this system triggers the mild trifluoromethylthiolation of aryl chlorides, proceeding via Ni0/NiII catalysis with [(dpff)Ni(cod)] formed as the active catalyst.12 In accordance with our hypothesis, the reaction of the [Ni0] catalyst with PhSCF$_3$ is indeed seen, even under mild reaction conditions (45 °C), as judged by 31P-NMR spectroscopic analysis. A complete disappearance of the characteristic 31P-NMR singlet signal of [(dpff)Ni0] occurred, and the formation of a new species was seen that appears as two triplets at 30.8 ppm (with $J = 23.0$ Hz) and at 22.1 ppm (with $J = 37.6$ Hz) by 31P-NMR spectroscopic analysis (see Fig. 1). While our efforts to structurally characterize the latter by X-ray crystallography have so far been unsuccessful, the formed species clearly constitutes a catalyst deactivation product. The subject of this paper is that this species (or also stoichiometrically) in the trifluoromethylthiolation of aryl chlorides did not yield ArSCF$_3$. This indicates that oxidative addition by a [Ni0] catalyst to the product is facile and eventually leads to catalytically inactive species. To achieve productive catalysis and high overall conversion, it is therefore of utmost importance to avoid this deactivation process.

Our computational assessment17 of the oxidative addition of [(dpff)Ni(cod)] to PhSCF$_3$ 1 suggests an activation free energy barrier of $\Delta G^\ddagger = 19.2$ kcal mol$^{-1}$, and it uses the M06L method with a CPCM solvation model to account for toluene and the mixed 6-311++G(d,p) and LANL2DZ (for Ni, Fe) basis set.17,18

This value now sets the bar for the possible reaction scope. The ‘to-be-transformed’ bond must show a barrier lower than 19.2 kcal mol$^{-1}$ to avoid catalyst loss via an unproductive reaction with the product (ArSCF$_3$).

Identification of suitable leaving groups – computational assessment & experimental tests

We subsequently undertook computational studies to identify matching leaving groups ‘OR’ (Fig. 2) that would show the desired greater reactivity than the Csp2-SCF$_3$ bond. For the cleavage of the C–O bonds, mechanistic support for Ni0/NiII and also Ni0 catalysis19 has previously been reported. However, on the basis of our previous mechanistic study12 and the observation that (dpff)NiCl is ineffective as a catalyst in C—SCF$_3$ bond formation,12,20 as a first approximation, we calculated the activation barrier of oxidative addition using [(dpff)Ni0] to a range of phenol derivatives (Ph—OR), with R = alkyl (ether), R’C=O (pivalate), SO$_2$R$^{''}$ (sulfonic esters). Fig. 2 presents the results. This computational assessment suggests that in the context of C—O to C—SCF$_3$, conversion, the inherently high reactivity of C—SCF$_3$ only allows for triflate precursors as suitable starting materials. Alternative C–O leaving groups that have previously been employed in the Ni-catalyzed construction of inert C–C bonds, such as aryl ethers (OME), mesylates (OMs), tosylates (OTs) or pivalates (OPiv)19 are predicted to be incompatible with Ni0 catalyzed trifluoromethylthiolation, as they would generally be less reactive than ArSCF$_3$, hence favoring catalyst deactivation via reaction with the product.21

To experimentally test this computationally predicted trend, we subjected Ni(cod)$_2$/dpff along with the easily accessible SCF$_3$-source (Me$_4$N)SCF$_3$ to Ar—OR derivatives (in toluene at 45 °C), ranging from the predicted low (aryl ether) to high (aryl triflate) reactivity (Fig. 2). In accordance with expectations, at best, a low conversion was seen for phenyl mesylates (5%), tosylates (1%) or pivalates (0%). In stark contrast, phenyl triflate showed excellent conversion to PhSCF$_3$ (83%).

We additionally followed the conversion ArOTf \rightarrow ArSCF$_3$ with ReactIR®. This analysis showed that the transformation was rapid, being essentially complete in 1.5 h with only little increase in conversion over the subsequent hours (see ESI, Fig. S17). We also analyzed the reactions of those substrates that showed little conversion (≤5%), i.e. ArOMs and ArOTs, by 31P-NMR spectroscopic analyses. We observed that essentially all of the [Ni0] catalyst had transformed to the catalytically inactive species described in Fig. 1 within 3 h reaction time. This clearly highlights that while [Ni0] is in fact capable of reacting with Ph–OMs or –OTs, the catalyst is rapidly consumed as soon as some of the more reactive PhSCF$_3$ molecules are generated. This corroborates with the strict requirement of suitably matching functionality and tailored reactivity progression from a “more” to “less reactive” functionality.
Computational assessment of functional group tolerance

We subsequently set out to test for the generality of the identified Ni-catalyzed trifluoromethylthiolation of activated C–O bonds and computationally assess the functional group (FG) tolerance (see Fig. 3). As we determined a barrier of $\Delta G^\ddagger = 14.4$ kcal mol$^{-1}$ for the oxidative addition of $[(dppf)Ni(0)(cod)]$ to Ph–OTf, all additional functional groups (FG) in the substrates will only be compatible if the reactivity of the C–FG bond is lower than that of Ph–OTf.

The computational results depicted in Fig. 3 suggest a tolerance of the protocol to ketone functional groups, C–O or benzylic C–O bonds. In all cases, the requirement of $\Delta G_{C-FG}^\ddagger > 14.4$ kcal mol$^{-1}$ is fulfilled. Even aromatic C–CN bonds that were previously shown to be reactive under Ni-catalysis conditions22 are predicted to be compatible.

SCF$_3$-coupling of aryl triflates

On the basis of this computationally guided substrate scope, we subjected a range of aryl triflates to standard catalysis conditions. Table 1 presents the results. A number of aryl- and heteroaryl triflates were coupled in good to excellent yields. The transformation was compatible with ketone (6, 7 and 8, Table 1), ether (9) and cyano (5) functional groups. Two heterocyclic examples (10, 11) were also trifluoromethylthiolated in good yields (see Table 1).

We next searched for bioactive molecules of greater complexity that would fulfil our reactivity requirements and show compatibility with the computationally predicted scope. Estrone (an estrogenic hormone), 6-hydroxy flavanone (a plant secondary metabolite used inter alia as an antioxidant) and δ-tocopherol (vitamin E) show an excellent functional group match, containing predominantly ketone and benzylic C–O bonds that are predicted to be less reactive than C–OTf and C–SCF$_3$. Trifluoromethylthiolation was successfully accomplished in 62–96% yield, highlighting the potential of this method for pharmaceutical applications (see Scheme 1).

SCF$_3$-coupling of vinyl triflates

Vinyl SCF$_3$-compounds are also of significance, finding applications as herbicides for example.23 However, the current methodological repertoire to access these compounds relies predominantly on indirect strategies24 or requiring stoichiometric amounts of metal.13b,25 The direct construction of C$_{\text{vinyl}}$–SCF$_3$ was successfully accomplished in 62–96% yield, highlighting the potential of this method for pharmaceutical applications (see Scheme 1).

Table 1 Ni(0)-catalyzed trifluoromethylthiolation of Ar-OTf

R	Yield (%)
MeO	90%
Ph	90%
Me	80%
(Me$_4$N)SCF$_3$	104 mg, 0.6 mmol
SCF$_3$	1.83%
SCF$_3$	2.94%
SCF$_3$	3.81%
SCF$_3$	4.80%
SCF$_3$	5.86%
SCF$_3$	6.80%
SCF$_3$	7.90%
SCF$_3$	8.90%
SCF$_3$	9.80%
SCF$_3$	10.89%
SCF$_3$	11.70%
SCF₃ in a catalytic manner would be a highly attractive approach. It has been accomplished via the Cu-catalyzed trifluoromethylthiolation of vinyl boronic acids with electrophilic SCF₃-sources.¹⁻¹² In a nucleophilic context, the catalytic installation of Cᵥ vinyl–SCF₃ is limited to vinyl iodides and requires harsh reaction conditions (110 °C).²⁶

A mild Ni-catalyzed conversion of readily accessible Cᵥ vinyl–OR derivatives to Cᵥ vinyl–SCF₃ would thus substantially widen the synthetic repertoire.

Our calculation of the barrier for the oxidative addition of [Ni(0)] to Cᵥ vinyl–SCF₃ indicated ΔG‡ = 18.8 kcal mol⁻¹. This barrier constitutes the upper limit for the reactivity of a potential leaving group (OR). Cᵥ vinyl–OPiv and Cᵥ vinyl–OMs show higher or similarly high barriers for oxidative addition (ΔG‡ = 22.1 and 17.7 kcal mol⁻¹) and are hence ruled out. Cᵥ vinyl–OTf on the other hand is predicted to be highly reactive (ΔG‡ = 5.2 kcal mol⁻¹) and should hence be a compatible match.

After applying standard catalysis conditions,²⁷ we successfully transformed a number of vinyl triflates to the corresponding trifluoromethylthiolated counterparts (see Table 2).

The protocol proved to be compatible with a heterocyclic moiety (20, Table 2), a benzyl protecting group (17), and was successful for fully aliphatic (15) as well as conjugated (18, 19) vinyl triflate derivatives. Compound 19 (Table 2) was afforded in a slightly lower yield (44%). However, upon closer inspection, it became clear that this was related to the inherent instability of the vinyl triflate starting material.

Assessment of aryl and vinyl nonaflates

We therefore shifted our attention to potentially more stable analogues and considered nonaflates.²⁸ Both, aryl and vinyl nonaflates are computationally predicted to be compatible with Ni-catalyzed trifluoromethylthiolation, showing similarly low or even lower barriers for oxidative addition by [Ni(0)] than the corresponding triflates (ΔG‡ = 4.8 for addition to Cᵥ vinyl–ONf and ΔG‡ = 10.6 kcal mol⁻¹ for addition to Ph–ONf). In accordance with these computational predictions, excellent conversions to aryl and Cᵥ vinyl–SCF₃ were observed (see Table 3). Particularly notable is the synthesis of 19' (Table 3) which was now high-yielding (as opposed to its preparation in Table 2), reflecting the greater robustness of vinyl nonaflates over vinyl triflates.²⁹

Conclusions

The inherently high reactivities of Ni-catalysts may be fundamentally at conflict with introducing a wide range of functional groups, as shown here for the introduction of the pharmaceutically and agrochemically valuable SCF₃ group. We identified that the reaction of the Ni-catalyst with the desired product, ArSCF₃, triggers undesirable catalyst deactivation reactions that ultimately inhibit catalysis. The overall substrate scope is therefore dictated by the reactivity of the desired functionality towards the catalyst (here: C–SCF₃). The application of computational tools allowed for the identification of matching

Table 2 Ni(0)-catalyzed trifluoromethylthiolation of vinyl–OTf

R	Yield (%)
PhSCF₃	15. 97%b
PhSCF₃	16. 81%
PhSCF₃	17. 97%
PhSCF₃	18. 71%
PhSCF₃	19. 44%b
PhSCF₃	20. 76%

a Ni(cod)₂ (5.5 mg, 0.02 mmol), dpff (11.1 mg, 0.02 mmol), vinyl triflate (0.2 mmol), (Me₄N)SCF₃ (52 mg, 0.3 mmol), PhCN (20.6 mg, 0.2 mmol),²⁷ toluene (1 mL), under inert atmosphere, isolated yield. b Yield determined by ¹⁹F-NMR analysis using PhCF₃ as the internal standard.

Table 3 Ni(0)-catalyzed trifluoromethylthiolation of vinyl and aryl nonaflates

R	Yield (%)
PhSCF₃	16. 81%
PhSCF₃	17. 97%
PhSCF₃	19. 79%
PhSCF₃	21. 96%

a Conditions for the coupling of vinyl nonaflates: Ni(cod)₂ (5.5 mg, 0.02 mmol), dpff (11.1 mg, 0.02 mmol), vinyl nonaflate (0.2 mmol), (Me₄N)SCF₃ (52 mg, 0.3 mmol), PhCN (20.6 mg, 0.2 mmol),²⁷ toluene (1 mL), under inert atmosphere, isolated yield. Trifluoromethylthiolation of vinyl and aryl nonaflates: Ni(cod)₂ (11.0 mg, 0.04 mmol), dpff (22.2 mg, 0.04 mmol), aryl nonaflate (0.4 mmol), (Me₄N)SCF₃ (104 mg, 0.6 mmol), toluene (2 mL), under inert atmosphere, isolated yield. Reaction performed with MeCN (16.4 mg, 0.4 mmol). Yield determined by ¹⁹F-NMR analysis using PhCF₃ as the internal standard.
functional groups in terms of suitable leaving groups and tolerated functional groups. As a result, the first Ni-catalyzed C–SCF₃ coupling of aryl and vinyl C–O bonds has been developed. Given the highly reactive nature of C–SCF₃, only those C–OR derivatives of even greater reactivity, i.e. triflates and nonaflates, allow for efficient C–SCF₃ coupling. The protocol is mild, general and operationally simple.

Given that computational methods, software and hardware have evolved to a level, at which calculations can nowadays frequently be done faster than experiments, we anticipate that the herein applied approach will find applications in the development of, but not limited to, homogeneous Ni-catalysis.

Acknowledgements

We thank the MIWF NRW and the RWTH Aachen University for financial support. The authors gratefully acknowledge the computing time granted on the RWTH Bull Cluster in Aachen (grant number JARA0091).

Notes and references

1 For reviews, see: (a) Y. Tamaru, in Modern Organonickel Chemistry, Wiley-VCH, Weinheim, 2005; (b) R. Jana, T. P. Pathak and M. S. Sigman, Chem. Rev., 2011, 111, 1417; (c) F.-S. Han, Chem. Soc. Rev., 2013, 42, 5270; (d) J. Montgomery, Organonickel Chemistry, in Organometallics in Synthesis: Fourth Manual, ed. B. H. Lipszutz, Wiley, Hoboken, N.J., 2013, pp. 319–428.

2 C. C. J. Seechurn, M. O. Kitching, T. J. Colacoct and V. Snieckus, Angew. Chem., Int. Ed., 2012, 51, 5062.

3 For an overview, see: S. Z. Tasker, E. A. Standley and T. F. Jamison, Nature, 2014, 509, 299.

4 Examples of Ni-catalyzed C–F activation, see: (a) T. Braun, S. P. Foxon, R. N. Perutz and P. H. Walton, Angew. Chem., Int. Ed., 1999, 38, 3326; (b) L. Ackermann, R. Born, J. H. Spatz and D. Meyer, Angew. Chem., Int. Ed., 2005, 44, 7216; (c) S. A. Johnson, C. W. Huff, F. Ferheen Mustafa and M. Saliba, J. Am. Chem. Soc., 2008, 130, 17278; (d) M. Tobisu, T. Xu, T. Shimasaki and N. Chatani, J. Am. Chem. Soc., 2011, 133, 19505.

5 For examples, see: (a) J. W. Dankwardt, Angew. Chem., Int. Ed., 2004, 43, 2428; (b) M. Tobisu, T. Shimasaki and N. Chatani, Angew. Chem., Int. Ed., 2008, 47, 4866; (c) B.-T. Guan, S.-K. Xiang, T. Wu, Z.-P. Sun, B.-Q. Wang, K.-Q. Zhao and Z.-J. Shi, Chem. Commun., 2008, 1437; (d) P. Alvarez-Bercedo and R. Martin, J. Am. Chem. Soc., 2010, 132, 17352; (e) A. G. Sergeev and J. F. Hartwig, Science, 2011, 332, 439; (f) M. Tobisu, K. Yamakawa, T. Shimasaki and N. Chatani, Chem. Commun., 2011, 47, 2946; (g) A. G. Sergeev, J. D. Webb and J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, 20226; (h) A. R. Ehle, Q. Zhou and M. P. Watson, Org. Lett., 2012, 14, 1202; (i) K. Muto, J. Yamaguchi, A. Lei and K. Itami, J. Am. Chem. Soc., 2013, 135, 16384; (j) Y. Hoshimoto, H. J. Yabuki, R. Kumar, H. Suzuki, M. Ohashi and S. Ogoshi, J. Am. Chem. Soc., 2014, 136, 16752.

6 For recent reviews on Ni-catalyzed C–O bond cleavages, see: (a) B. Su, Z.-C. Cao and Z.-J. Shi, Acc. Chem. Res., 2015, 48, 886; (b) J. Cornella, C. Zarate and R. Martin, Chem. Soc. Rev., 2014, 43, 8081; (c) T. Mesgankaw and N. K. Garg, Org. Process Res. Dev., 2013, 17, 29; (d) J. Yamaguchi, K. Muto and K. Itami, Eur. J. Org. Chem., 2013, 19; (e) A. Correa, J. Cornella and R. Martin, Angew. Chem., Int. Ed., 2013, 52, 1878; (f) B.-J. Li, D.-G. Yu, C.-L. Sun and Z.-J. Shi, Chem.–Eur. J., 2011, 17, 1728; (g) B. M. Rosen, K. W. Quados, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K. Garg and V. Perec, Chem., Rev., 2011, 111, 1346; (h) D.-G. Yu, B.-J. Li and Z.-J. Shi, Acc. Chem. Res., 2010, 43, 1486.

7 For recent reviews on combining experiment and computation, see: (a) K. J. Bonney and F. Schoenebeck, Chem. Soc. Rev., 2014, 43, 6609; (b) A. S.-K. Tsang, I. A. Sanhuzua and F. Schoenebeck, Chem.–Eur. J., 2014, 20, 16432; (c) G.-J. Cheng, X. Zhang, L. W. Chung, L. Xu and Y.-D. Wu, J. Am. Chem. Soc., 2015, 137, 1706.

8 For examples of our activities to introduce fluorine containing groups, see: (a) P. Anstaet and F. Schoenebeck, Chem.–Eur. J., 2011, 17, 12340; (b) I. A. Sanhuzua, M. C. Nielsen, M. Ottiger and F. Schoenebeck, Helv. Chim. Acta, 2012, 95, 2231; (c) I. A. Sanhuzua, K. J. Bonney, M. C. Nielsen and F. Schoenebeck, J. Org. Chem., 2013, 78, 7749; (d) M. C. Nielsen, K. J. Bonney and F. Schoenebeck, Angew. Chem., Int. Ed., 2014, 53, 5903; (e) M. Auffiero, T. Sperger, A. S.-K. Tsang and F. Schoenebeck, Angew. Chem., Int. Ed., 2015, 54, 10322.

9 (a) A. Leo, P. Y. C. Jow, C. Silipo and C. Hansch, J. Med. Chem., 1975, 18, 865; (b) C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.

10 For non-catalytic or indirect synthetic methods to generate ArSCF₃ from aryl sulfoxides or disulfides with trifluoromethylation reagents, see: (a) V. N. Boiko, G. M. Shchupak and L. M. Yagupolskii, Journal of Organic Chemistry of the USSR, 1977, 13, 972; (b) C. Wakselsmann and M. Tordeux, Chem. Commun., 1984, 793; (c) T. Umemoto and S. Ishihara, Tetrahedron Lett., 1990, 31, 3579; (d) C. Wakselsmann, M. Tordeux, J. L. Clavel and B. R. Langlois, Chem. Commun., 1991, 993; (e) N. Roques, J. Fluorine Chem., 2001, 107, 311; (f) G. Blond, T. Billard and B. R. Langlois, Tetrahedron Lett., 2001, 42, 2473; (g) C. Pooput, M. Medebielle and W. R. Dobler, Org. Lett., 2004, 6, 301; (h) F. Leroux, P. Jesche and M. Schlosser, Chem. Rev., 2005, 105, 827. For syntheses in which ‘SCF₃’ functions as nucleophile or electrophile, see: (i) T. Billard and B. R. Langlois, Tetrahedron Lett., 1996, 37, 6865; (j) D. J. Adams, A. Goddard, J. H. Clark and D. J. Macquarrie, Chem. Commun., 2000, 987; (k) D. J. Adams and J. H. Clark, J. Org. Chem., 2000, 65, 1456; (l) I. Kielsch, P. Eisenberger and A. Togni, Angew. Chem., Int. Ed., 2007, 46, 754; (m) S. Capone, I. Kielsch, O. Flögel, G. Lelais, A. Togni and D. Seebach, Helv. Chim. Acta, 2008, 91, 2035; (n) K. Stanek, R. Koller and A. Togni, J. Org. Chem., 2008, 73, 7678; (o) B. Manteau, S. Pazenok, J.-P. Vors and F. R. Leroux, J. Fluorine Chem., 2010, 131, 140; (p) F. Baert, J. Colomb and T. Billard, Angew. Chem., Int. Ed., 2012, 51, 10382.
For recent reviews, see: (a) G. Landelle, A. Panossian, S. Paznek, J.-P. Vors and F. R. Leroux, *Beilstein J. Org. Chem.*, 2013, 9, 2476; (b) P. Chen and G. Liu, *Synthesis*, 2013, 45, 2919; (c) T. Liang, C. N. Neumann and T. Ritter, *Angew. Chem., Int. Ed.*, 2013, 52, 8214; (d) F. Toulgoat, S. Alazet and T. Billard, *Eur. J. Org. Chem.*, 2014, 2415.

(12) G. Teverowski, D. S. Surry and S. L. Buchwald, *Angew. Chem., Int. Ed.*, 2011, 50, 7312; (b) C.-P. Zhang and D. A. Vicic, *J. Am. Chem. Soc.*, 2012, 134, 183; (c) Z. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. Lai, D. Kong, Y. Yuan and K.-W. Huang, *Angew. Chem., Int. Ed.*, 2013, 52, 1548; (d) J. Xu, X. Mu, P. Chen, J. Ye and G. Liu, *Org. Lett.*, 2014, 16, 3942; (e) G. Yin, I. Kalvet, U. Englert and F. Schoenebeck, *J. Am. Chem. Soc.*, 2015, 137, 4164; (f) G. Yin, I. Kalvet and F. Schoenebeck, *Angew. Chem., Int. Ed.*, 2015, 54, 6809.

For precedence of aryl sulfoxide cleavage under Ni-catalysis, see: (a) L. D. Tran, I. Popov and O. Daugulis, *J. Am. Chem. Soc.*, 2012, 134, 18237; (b) C. Xu and Q. Shen, *Org. Lett.*, 2014, 16, 2046.

For examples of metal-catalyzed C–H trifluoromethylthiolation of arenes, see: (a) A. J. Nett, K. N. Houk and J. Montgomery, *J. Am. Chem. Soc.*, 2014, 136, 17495; (c) T. Mesganaw, A. L. Silverstein, S. D. Ramgren, N. Fine Nathel, X. Hong, P. Liu and N. K. Garg, *Chem. Sci.*, 2011, 2, 1766; (d) For mechanistic support of Ni(0) as catalyst in C–O cleavage, see: J. Cornella, E. Gomez-Bengo and R. Martin, *J. Am. Chem. Soc.*, 2013, 135, 1997.

Using 10 mol% of [[dppf]Ni(0)] complex as catalyst for the trifluoromethylthiolation of PhOTf with (Me4N)(SCF3)2 at 45 °C for 12 h in toluene, no reaction was seen.

We did not consider the influence of other substituents or alternative mechanisms on this trend. It is likely, that specialized substrates with electronic bias may also allow for selected examples of these functional groups to be converted. The goal of this assessment was to identify compatible functionality that would allow for widest possible scope in the context of [Ni(0)] catalysis.

(a) J. J. Garcia, N. M. Brunkan and W. D. Jones, *J. Am. Chem. Soc.*, 2002, 124, 9547; (b) D.-G. Yu, M. Yu, B.-T. Guan, B.-J. Li, Y. Zheng, Z.-H. Wu and Z.-J. Shi, *Org. Lett.*, 2009, 11, 3374; (c) J.-S. Zhang, T. Chen, J. Yang and L.-B. Han, *Chem. Commun.*, 2015, 51, 7540.

S. Scheiblich, T. Maier and H. Baltruschat, PCT Int. Appl., CODEN: PIXXD2, WO 01/36410A1, 2001, 41 pp.

For a review, see: A. Y. Sizov, A. N. Kovregin and A. F. Ermolov, *Russ. Chem. Rev.*, 2003, 72, 357.

Y. Huang, J. Ding, C. Wu, H. Zheng and Z. Weng, *J. Org. Chem.*, 2015, 80, 2912.

M. Rueping, N. Tolstoluzhsky and P. Nikolaenko, *Chem.–Eur. J.*, 2013, 19, 14043.

PhCN was also added. For the beneficial effect of nitrile, see: ref. 12e.

J. Högermeier and H.-U. Reissig, *Adv. Synth. Catal.*, 2009, 351, 2747.

For examples of the superiority of nonaflate: (a) S. Bräse and A. de Meijere, *Angew. Chem., Int. Ed.*, 1995, 34, 2545; (b) K. Voigt, P. von Zeeutschitz, K. Rosauer, A. Lansky, A. Adams, O. Reiser and A. de Meijere, *Eur. J. Org. Chem.*, 1998, 152; (c) A. E. Jensen, W. Dohle and P. Knochel, *Tetrahedron*, 2000, 56, 4197; (d) G. Dunet and P. Knochel, *Synlett*, 2006, 407.

The total time necessary for optimization, frequency and energy calculation of the oxidative addition TSs was on average 11.5 h (using 6 cores and 10GB memory on a MPI-S node of the RWTH Bull cluster).