Table 1: Baseline population characteristics stratified by whether the patient underwent intracranial vascular imaging.

	Intracranial vascular imaging (n=2,013)	No Intracranial vascular imaging (n=485)	p-value
Mean age (SD)	67.4 (15.1)	66.8 (18.4)	0.45
Male sex (%)	1009 (50.1)	210 (43.3)	0.007
Caucasian (%)	1890 (93.9)	401 (89.1)	0.88
Hypertension (%)	1033 (51.3)	223 (50.9)	0.17
Diabetes mellitus (%)	251 (12.5)	65 (14.9)	0.25
Hyperlipidaemia (%)	635 (31.5)	125 (28.7)	0.53
Current smoker (%)	284 (14.1)	56 (13.0)	0.001
Atrial fibrillation (%)	270 (13.4)	87 (19.9)	0.001
Any vascular disease§ (%)	536 (26.6)	156 (35.9)	<0.0001
History of stroke or TIA (%)	279 (13.9)	70 (16.0)	0.25
PVD (%)	110 (5.5)	55 (12.6)	<0.0001
IHD (%)	232 (11.5)	72 (16.6)	0.004
Event type			
TIA (%)	1022 (50.8)	121 (24.9)	
Minor stroke (%)	587 (29.2)	108 (22.3)	<0.0001
Other diagnosis (%)	404 (20.1)	256 (52.8)	

PVD= peripheral vascular disease, IHD= ischemic heart disease, MRA= magnetic resonance angiography, CTA= computed tomography angiography.

§Vascular disease= prior ischemic stroke/ TIA, PVD or IHD.
Supplementary Table 2: Baseline population characteristics stratified by the presence of asymptomatic unruptured intracranial aneurysm and discharge diagnosis.

Characteristic	Patients with intracranial vascular imaging (n= 2,013)					
	No UIA (n= 1,918)	Other diagnosis (n= 391)	p-value	Stroke/ TIA (n= 82)	Other diagnosis (n= 13)	p-value
Mean age (SD)	69.0 (14.0)	60.4 (17.3)	<0.0001	71.2 (12.4)	65.2 (15.1)	0.12
Male sex (%)	802 (52.5)	177 (45.3)	0.010	28 (34.1)	2 (15.4)	0.18
Caucasian (%)	1441 (94.4)	358 (91.6)	0.046	79 (96.3)	12 (92.3)	0.45
Hypertension (%)	822 (53.8)	153 (39.1)	<0.0001	56 (68.3)	4 (30.8)	**0.009**
Diabetes mellitus (%)	201 (13.2)	38 (9.7)	0.066	10 (12.2)	2 (15.4)	0.75
Hyperlipidemia (%)	508 (33.3)	100 (25.6)	0.0040	22 (26.8)	5 (38.5)	0.39
Current smoker (%)	216 (14.1)	49 (12.5)	0.41	17 (20.7)	2 (15.4)	0.65
Atrial fibrillation (%)	228 (14.9)	33 (8.4)	0.001	9 (11.0)	0 (0)	0.21
Any vascular disease§ (%)	408 (26.7)	102 (26.1)	0.80	24 (29.3)	2 (15.4)	0.30
History of stroke or TIA (%)	210 (13.8)	53 (13.6)	0.92	14 (17.1)	2 (15.4)	0.88
PVD (%)	88 (5.8)	19 (4.9)	0.49	3 (3.7)	0 (0)	0.48
IHD (%)	187 (12.2)	37 (9.5)	0.13	8 (9.8)	0 (0)	0.24
Imaging modality						
CTA (%)	247 (16.2)	92 (23.5)	0.001	15 (18.3)	1 (7.7)	0.69
MRA (%)	1280 (83.8)	299 (76.5)	67 (81.7)	12 (92.3)	12 (92.3)	0.69
Supplementary Table 3: Studies identified by systematic review of the prevalence of unruptured intracranial aneurysms in ischaemic stroke or TIA patients.

Study	Location	Sample size	Cohort description	Mean age (years)	Females (%)	Imaging modality	UIA n (%)	UIA outcome
Nagashima 1993¹	Japan	2540	Single centre, investigation of symptomatic CAS	-	-	CA	127 (5.0)	45 (35%) surgically clipped, 5 SAH at mean interval 5.6 years
Griffiths 1996²	UK	100	Single centre, investigation of symptomatic CAS	62	48	CA	9 (9.0)	5 (56%) surgically clipped
Pappada 1996³	Italy	389	Multi-centre, investigation of symptomatic CAS	67	20	CA	10 (2.6)	8 (80%) surgically clipped
Kann 1997⁴	USA	209	Single centre, investigation of symptomatic CAS	68	-	CA	10 (4.8)	-
Kappelle 2000⁵	USA	2885	Symptomatic CAS patients recruited to NASCET	66	30	CA	90 (3.1)	8 (9%) surgically clipped. 1 SAH during mean follow-up 5 years
Ballotta 2006⁶	Italy	474	Single centre, investigation of symptomatic CAS	72	-	CA	11 (2.3)	No intervention and no SAH during mean follow-up 5 years
Heman 2009⁷	Netherlands	194	Single centre, investigation of symptomatic CAS	70	34	CTA	8 (4.1)	-
Ishikawa 2010⁸	Japan	374	Single centre, IS inpatients	70	38	MRA	13 (3.5)	No SAH in 3 months follow-up
Edwards 2012⁹	USA	236	Single centre, IS pre-thrombolysis work-up	-	-	CTA/ MRA	19 (8.1)	1 (5%) SAH 24 hours after thrombolysis
Kim 2012¹⁰	Korea	194	Single centre, thrombolysed IS patients	70	39	CTA/ MRA	6 (3.1)	-
Study	Country	N	Setting	CTA/MRA	SAH	Follow-up Details		
------------------	---------	------	------------------------------	---------	-----	--		
Sheth 2012	USA	172	Single centre, IS inpatients	62	53	8 (4.7)		
Mittal 2013	USA	105	Single centre, IS pre-thrombolysis work-up	69	44	10 (9.5) No SAH in mean follow-up 18 months		
Oh 2013	Korea	314	Single centre, IS inpatients	66	39	19 (6.1) No intervention. No SAH in mean follow-up 2 years		
Goyal 2015	International	1398	Multi-centre, IS pre-thrombolysis work-up	-	-	42 (3.0)		
Kim 2016	Korea	955	Single centre, IS inpatients	65	39	74 (7.7) 8 (12%) patients surgically clipped, 3 SAH in mean follow-up 18 months		
Zibold 2016	Germany	300	Single centre, IS patients receiving EVT	70	46	11 (3.5)		
Doyle 2018	USA	176*	Single centre, IS inpatients	68	51	5 (2.8)		
Kanesa-Thasan	USA	225	Single centre, IS endovascular therapy candidates	65	53	16 (7.1)		
Chen 2018	USA	1541	Single centre, IS inpatients	66	49	176 (11.4)		

UIA = unruptured intracranial aneurysm, CAS = carotid artery stenosis, IS = ischemic stroke, CA = catheter angiography, CTA = computed tomography angiography, NASCET = North American Symptomatic Carotid Endarterectomy Trial, SAH = subarachnoid hemorrhage; EVT = endovascular thrombectomy.

*p=patients with intracranial vascular imaging, demographics relate to whole cohort (n= 200)
Supplementary Figure 1: Flow diagram of systematic review inclusion/exclusion for prevalence of unruptured intracranial aneurysms in TIA/stroke patients and Ovid MEDLINE and Embase search terms.

Embase search terms
1. exp intracranial aneurysm/
2. (intracranial adj3 aneurysm).ti,ab.
3. berry aneurysm.mp.
4. saccular aneurysm.mp.
5. 1 or 2 or 3 or 4
6. Prevalence/
7. Prevalen*.ti,ab.
8. 6 or 7
9. 5 and 8

Ovid MEDLINE search terms
1. intracranial aneurysm/
2. (intracranial adj3 aneurysm).ti,ab.
3. berry aneurysm.mp.
4. saccular aneurysm.mp.
5. 1 or 2 or 3 or 4
6. Prevalence/
7. Prevalen*.ti,ab.
8. 6 or 7
9. 5 and 8

Studies identified using Ovid MEDLINE and Embase electronic databases (since inception)
(n=1,483)

Excluded (n=1,456)
Abstracts were not relevant, reviews, conference abstracts, case reports, duplicates or did not report prevalence.

Papers and references reviewed
(n=27)

Excluded (n=8)
Asymptomatic carotid stenosis cohort (n=5), duplicate cohort (n=1), unruptured aneurysm cohort (n=1), systematic review (n=1).

Included in systematic review
(n=19)
Supplementary Figure 2: Prevalence of patients with unruptured intracranial aneurysms categorized by the number of risk factors (female sex, hypertension and current smoker); P<0.0001
Supplementary Figure 3: Proportion of patients with UIA categories in 10-year age bands.
References

1. Nagashima M, Nemoto M, Hadeishi H, Suzuki A, Yasui N. Unruptured aneurysms associated with ischaemic cerebrovascular diseases. Surgical indication. Acta Neurochir (Wien). Austria; 1993;124:71–78.

2. Griffiths PD, Worthy S, Gholkar A. Incidental intracranial vascular pathology in patients investigated for carotid stenosis. Neuroradiology. Germany; 1996;38:25–30.

3. Pappada G, Fiori L, Marina R, Vaiani S, Gaini SM. Management of symptomatic carotid stenoses with coincidental intracranial aneurysms. Acta Neurochir (Wien). Austria; 1996;138:1386–1390.

4. Kann BR, Matsumoto T, Kerstein MD. Safety of carotid endarterectomy associated with small intracranial aneurysms. South Med J. United States; 1997;90:1213–1216.

5. Kappelle LJ, Eliasziw M, Fox AJ, Barnett HJ. Small, unruptured intracranial aneurysms and management of symptomatic carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Group. Neurology. United States; 2000;55:307–309.

6. Ballotta E, Da Giau G, Manara R, Baracchini C. Extracranial severe carotid stenosis and incidental intracranial aneurysms. Ann Vasc Surg. Netherlands; 2006;20:5–8.

7. Heman LM, Jongen LM, van der Worp HB, Rinkel GJE, Hendrikse J. Incidental intracranial aneurysms in patients with internal carotid artery stenosis: a CT angiography study and a metaanalysis. Stroke. United States; 2009;40:1341–1346.

8. Ishikawa Y, Hirayama T, Nakamura Y, Ikeda K. Incidental cerebral aneurysms in acute stroke patients: comparison of asymptomatic healthy controls. J Neurol Sci. Netherlands; 2010;298:42–45.

9. Edwards NJ, Kamel H, Josephson SA. The safety of intravenous thrombolysis for ischemic stroke in patients with pre-existing cerebral aneurysms: a case series and review of the literature. Stroke. United States; 2012;43:412–416.

10. Kim J-T, Park M-S, Yoon W, Cho K-H. Detection and significance of incidental unruptured cerebral aneurysms in patients undergoing intravenous thrombolysis for acute ischemic stroke. J Neuroimaging. United States; 2012;22:197–200.

11. Sheth KN, Shah N, Morovati T, Hermann LD, Cronin CA. Intravenous rt-PA is not associated with increased risk of hemorrhage in patients with intracranial aneurysms. Neurocrit Care. United States; 2012;17:199–203.

12. Mittal MK, Seet RCS, Zhang Y, Brown RDJ, Rabinstein AA. Safety of intravenous thrombolysis in acute ischemic stroke patients with saccular intracranial aneurysms. J Stroke Cerebrovasc Dis. United States; 2013;22:639–643.

13. Oh Y-S, Shon Y-M, Kim BS, Cho A-H. Long-term follow-up of incidental intracranial aneurysms in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. United States; 2013;22:329–333.

14. Goyal N, Tsivgoulis G, Zand R, et al. Systemic thrombolysis in acute ischemic stroke patients with unruptured intracranial aneurysms. Neurology. United States; 2015;85:1452–1458.

15. Kim JH, Suh SH, Chung J, Oh Y-J, Ahn SJ, Lee K-Y. Prevalence and Characteristics of Unruptured Cerebral Aneurysms in Ischemic Stroke Patients. J stroke. Korea (South); 2016;18:321–327.
16. Zibold F, Kleine JF, Zimmer C, Poppert H, Boeckh-Behrens T. Aneurysms in the target vessels of stroke patients subjected to mechanical thrombectomy: prevalence and impact on treatment. J Neurointerv Surg. England; 2016;8:1016–1020.

17. Doyle SJ, George BP, Holloway RG, Kelly AG. Incidental Findings in Radiographic Imaging for Inpatients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis. United States; 2018;27:3131–3136.

18. Kanesa-Thanan R, Cox M, Patel M, et al. Actionable vascular and other incidental findings on CTA in patients undergoing acute stroke intervention. Neuroradiol J. United States; 2018;31:572–577.

19. Chen ML, Gupta A, Chatterjee A, et al. Association Between Unruptured Intracranial Aneurysms and Downstream Stroke. Stroke. United States; 2018;49:2029–2033.