The *APOE* ε4 allele is associated with a reduction in FEV₁/FVC in women: A cross-sectional analysis of the Long Life Family Study

Alexander M. Kulminski¹*, Amisha V. Barochia², Yury Loika¹, Nalini Raghavachari³, Konstantin G. Arbeev¹, Mary K. Wojczynski⁴, Bharat Thyagarajan⁶, Badri N. Vardarajan⁶, Kaare Christensen^{7,8}, Anatoliy I. Yashin¹, Stewart J. Levine²*

1 Biodemography of Aging Research Unit, Social Sciences Research Institute, Duke University, Durham, NC, United States of America, 2 Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America, 3 National Institute on Aging, Gateway Building, Suite, Bethesda, MD, United States of America, 4 Division of Statistical Genomics, Department of Genetics, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America, 5 Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States of America, 6 Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States of America, 7 The Danish Aging Research Center, University of Southern Denmark, Odense C, Denmark, 8 Department of Clinical Genetics and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark

* These authors contributed equally to this work.

* Alexander.Kulminski@duke.edu (AMK); levines@nhlbi.nih.gov (SJL)

Abstract

Introduction

Murine studies have shown that apolipoprotein E modulates pulmonary function during development, aging, and allergen-induced airway disease. It is not known whether the polymorphic human *APOE* gene influences pulmonary function.

Objectives

We assessed whether an association exists between the polymorphic human *APOE* ε2, ε3, and ε4 alleles and pulmonary function among participants in the Long Life Family Study.

Methods

Data from 4,468 Caucasian subjects who had genotyping performed for the *APOE* ε2, ε3, and ε4 alleles were analyzed, with and without stratification by sex. Statistical models were fitted considering the effects of the ε2 allele, defined as ε2/2 or ε2/3 genotypes, and the ε4 allele, defined as ε3/4 or ε4/4 genotypes, which were compared to the ε3/3 genotype.

Results

The mean FEV₁/FVC ratio (the forced expiratory volume in one second divided by the forced vital capacity) was lower among women with the ε4 allele as compared to women with the
ε3/3 genotype or the ε2 allele. Carriage of the APOE ε4 allele was associated with FEV₁/FVC, which implied lower values. Further analysis showed that the association primarily reflected women without lung disease who were older than 70 years. The association was not mediated by lipid levels, smoking status, body mass index, or cardiovascular disease.

Conclusions

This study for the first time identifies that the APOE gene is associated with modified lung physiology in women. This suggests that a link may exist between the APOE ε4 allele, female sex, and a reduction in the FEV₁/FVC ratio in older individuals.

Introduction

Apolipoprotein E (APOE) plays an essential role in normal lipid homeostasis by removing tri-glyceride- and cholesterol-containing lipoprotein particles from plasma by binding to cellular receptors of the LDL receptor (LDLR) family[1–3]. Consistent with this, individuals with familial APOE deficiency have severely disrupted lipid catabolism with type III hyperlipoproteinemia and premature cardiovascular disease[4]. In addition to lipid transport, APOE also has important anti-oxidant and anti-inflammatory properties[5–7]. The APOE protein is primarily synthesized by the liver and circulates in plasma[2, 3]. APOE is also expressed by macrophages, alveolar epithelial cells and pulmonary artery smooth muscle cells in the lung, where it may regulate respiratory health and disease[7–12]. For example, a role for APOE in normal lung development has been suggested as male Apoe-deficient mice have increased airway resistance in early adulthood and more rapid loss of lung recoil with age[13, 14]. This suggested that altered lipid metabolism in the absence of APOE may increase inflammation and oxidative stress with resultant abnormal lung mechanics. APOE may also modulate normal surfactant phospholipid synthesis by type II airway epithelial cells. Apoe-deficient mice have increased alveolar levels of the major surfactant lipid, disaturated phosphatidylcholine, which occurs as a consequence of elevated serum levels of triglycerides and very low-density lipoproteins (VLDL)[15]. Studies in murine models have shown that feeding Apoε-deficient mice a high-fat Western diet causes cholesterol accumulation in the lung with resultant pathogenic changes resembling emphysema, pulmonary fibrosis, pulmonary hypertension, and sarcoidosis[7, 16–21]. APOE also has been shown to have protective roles in murine models of asthma, acute lung injury (ALI), emphysema, and pulmonary hypertension[7, 10, 12, 22–25]. For example, APOE can directly bind and neutralize lipopolysaccharide from the cell walls of gram-negative bacteria, which may be a protective mechanism in ALI[26–29]. APOE also can bind mycobacterial lipid antigens, which are then internalized by antigen-presenting cells, which promotes adaptive immune responses to Mycobacterium tuberculosis[30].

It is not known whether the polymorphic human APOE gene influences pulmonary function. Here, we hypothesized that the common polymorphic APOE alleles, ε2, ε3 and ε4, might be associated with modified lung function among 4,554 participants of the Long Life Family Study (LLFS), which is a family-based cohort study that has the goal of identifying factors related to human longevity. We focused on spirometric measures of lung function, including the forced expiratory volume in one second (FEV₁), the forced vital capacity (FVC), and the FEV₁/FVC ratio (FEV₁ divided by the FVC). These are standardized, universal measurements of air flow in and out of lungs that are routinely used, in both clinical care and research, to...
quantify and monitor obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), as well as restrictive lung disease, such as pulmonary fibrosis.

Methods

The Long-life family study

Baseline information from 4,954 U.S. and Danish LLFS participants was collected at four field centers using similar questionnaires and in-home physical examinations between 2006 and 2009 on families showing exceptional familial longevity ranked on the basis of a Family Longevity Selection Score, which is a summary-measure of the survival experience of the oldest living generation of siblings relative to what would be expected based on the life tables of a normal population. Disease information was assessed both retrospectively, from self-reports at baseline, and prospectively through 2015. Other eligibility criteria, as well as the design of the LLFS study have previously been described [31–35]. In brief, the U.S. families eligible for the LLFS study must have at least two living siblings aged 80+ years, two living offspring, and a living spouse of either siblings or offspring. Eligible families were enrolled in LLFS if at least three living members (a proband, at least one sibling, and one of their offspring) were willing to participate. In Denmark, individuals who would be aged 90+ years according the Danish National Register of Person were identified and contacted to further assess the family’s eligibility using criteria parallel to those used in the U.S.[34]. Thus, the LLFS includes long-living individuals (probands and siblings), their offspring, and spouses of probands and offspring.

Local institutional review boards of all participating centers approved the LLFS (University of Southern Denmark S-VF-2003227; Boston University H-25140; Columbia University AAAP4119; University of Pittsburgh IRB0509062 and PRO14050142) and all participants provided informed consent[36].

Sample collection and processing

Baseline blood samples were collected from all LLFS participants and processed within 48 to 72 hours to isolate serum, plasma, DNA and cryopreserved lymphocytes. DNA was isolated from white blood cells using the automated Autopure DNA extraction method (Qiagen Inc., Gaithersburg, MD). For the 4% of participants from whom blood could not be obtained, DNA was isolated from buccal samples using Oragene kits (DNA Genotek, Ottawa, ON, Canada). The data presented in this manuscript utilized DNA from both sources. Lipid measurements were made from serum.

APOE genotyping

Genotyping of the APOE ε2, ε3, and ε4 alleles for LLFS study participants was performed at the Biomedical Genomics Center at the University of Minnesota[37]. APOE genotyping was based on SNPs rs7412 and rs429358 using the Taqman genotyping platform and concordance among genotypes for both SNPs was 100% based on blinded duplicates. The frequencies of the APOE genotypes in a sample of 4,554 LLFS participants were ε2/ε2 (n = 32, 0.7%); ε2/ε3 (n = 683, 15.0%); ε2/ε4 (n = 86, 1.9%); ε3/ε3 (n = 2959, 65.0%); ε3/ε4 (n = 746, 16.4%); and ε4/ε4 (n = 48, 1.0%). The APOE genotypes were in Hardy-Weinberg equilibrium (p = 0.754), thereby implying that the observed genotype distribution did not deviate from the expected distribution in this population. Given the small number of carriers of the three uncommon genotypes, ε2/ε2, ε2/ε4, and ε4/ε4 (3.6% of the LLFS participants), we selected three groups for analysis. The ε2 allele was defined as ε2/ε2 or ε2/ε3 genotypes, the ε4 allele was defined as ε3/ε4 or ε4/ε4 genotypes, and the ε3/ε3 genotype was designated as the reference group for
the association analyses using regression models (see Analysis section). Statistical models were fitted considering the effect of the ε2 and ε4 alleles as compared to the common ε3/ε3 reference genotype.

We prospectively determined that participants with the ε2/ε4 genotype would not be included in the models to avoid biasing the effects of the ε4 allele on pulmonary function by the ε2 allele. After exclusion of carriers of the APOE ε2/ε4 genotype, 4,468 Caucasian LLFS participants were analyzed. They included long-living (LL) individuals (N = 1,302), their offspring (N = 2,259), spouses of LL individuals (N = 158), and spouses of offspring (N = 749).

Lung function outcomes

Quantitative markers of lung function, FEV₁, FVC, and FEV₁/FVC (%), were considered as outcomes. Lung function was measured with a portable spirometer (EasyOne, ndd Medical Technologies, Andover, MA) using American Thoracic Society guidelines[38].

Analysis

In the initial analyses, mean values (age, BMI, FEV₁, FVC, FEV₁/FVC) and proportions (sex, smoking) over three groups of individuals carrying the ε2 allele (ε2/ε2 or ε2/ε3 genotypes), the ε3/ε3 genotype, and the ε4 allele (ε4/ε4 or ε3/ε4 genotypes) were compared using one-way ANOVA with 2 degrees of freedom that does not require correction for multiple comparisons. Associations of the selected APOE genotypes with outcomes were characterized by a two-level mixed effects linear regression model (lme4 package in R) with a random effect to adjust for the LLFS familial structure. Measurement of FEV₁, FVC and FEV₁/FVC were used in their natural scale because no noticeable skewness of their frequency distributions was detected. These statistical models were fitted considering the effect of the ε2 and ε4 alleles as compared to the common ε3/ε3 reference genotype.

Analyses of pooled samples and sex-stratified samples were performed. A test of multiplicative interactions was conducted to quantify differences in the effects between men and women. All statistical tests were adjusted for age, field center, family groups (i.e., probands, their offspring, and spouses) and sex, when applicable.

We investigated whether height, smoking, lipids, and body mass index (BMI) modulated associations of the APOE genotypes with FEV₁, FVC and FEV₁/FVC using models adjusted for each of these factors. BMI was calculated as weight (kg)/height (m)². Standing height was measured using a Handi-stat set square (Perspective Enterprises, Portage, MI) to the nearest 0.1 cm. Weight was measured using an electronic digital scale (SECA 841, Hanover, MD) to the nearest 0.1 kg. Smoking was defined as current smokers. Total cholesterol, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), and triglycerides were measured in serum on a Roche/Modular P Chemistry Analyzer (Roche Diagnostics Corporation) using samples obtained after a 6-hour fast, which could occur during any time of the day. Total cholesterol was measured using a cholesterol oxidase enzymatic method and triglycerides were measured using a glycerol blanking enzymatic method (Roche Diagnostics, Indianapolis, IN). LDL-C was calculated using the Friedewald equation[39].

All analyses were conducted in R.

Results

The 4,468 LLFS participants had a mean age of 70.06 ± 0.23 years and included 2,041 (44.82%) men. 636 subjects reported having lung disease, while 3,832 subjects were without lung disease. The frequencies of the selected three common APOE genotypes among men and women combined, as well as separately are shown in Table 1. The ε3/3 genotype was carried by 66.2% of
LLFS participants (men and women combined), followed by ε4 and ε2 being carried by 17.8% and 16.0%, respectively. Carriers of the ε4 allele were the youngest and carriers of the ε2 allele were the oldest. The proportion of men was smallest among the ε3/ε3 carriers and largest among the ε2 carriers. Mean values of FEV1 and FVC were larger among ε4 carriers as

Table 1. Baseline demographic characteristics and outcomes used in the analyses of the genotyped LLFS participants for men and women combined and separately.

Factor	APOE	p-value (ANOVA)		
	ε2 = ε2/ε2 or ε2/ε3	ε3/ε3	ε4 = ε4/ε4 or ε3/ε4	
Men and Women				
N (%)	715 (16.00)	2959 (66.23)	794 (17.77)	
Age, mean (SE), years	71.23 (0.63)	70.58 (0.29)	67.23 (0.49)	<0.001*
Sex, Male, N (%)	345 (48.25)	1292 (43.66)	369 (46.47)	.053
Smoking, N (%)	302 (42.30)	1238 (41.95)	358 (45.32)	.233
BMI, mean (SE), kg/m²	27.40 (10.01)	27.14 (9.43)	26.90 (9.75)	.151
CVD, N (%)	189 (26.43)	789 (26.66)	185 (23.30)	.153
FEV₁, mean (SE), [mL]	2398 (33)	2400 (16)	2571 (31)	<0.001*
FVC, mean (SE), [mL]	3121 (41)	3129 (20)	3366 (38)	<0.001*
FEV₁/FVC, mean (SE) [%]	76.40 (0.28)	76.29 (0.14)	75.82 (0.27)	.261
Men				
N (%)	345 (17.20)	1292 (64.41)	369 (18.39)	
Age, mean (SE), years	71.54 (0.88)	71.08 (0.43)	67.91 (0.71)	<0.001*
Smoking, N (%)	166 (48.26)	639 (49.57)	185 (50.41)	.845
BMI, mean (SE), kg/m²	27.83 (8.33)	27.60 (7.98)	27.21 (7.92)	.124
CVD, N (%)	100 (28.99)	406 (31.42)	106 (28.73)	.487
FEV₁, mean (SE), [mL]	2806 (49)	2841 (25)	3040 (46)	<0.001*
FVC, mean (SE), [mL]	3664 (58)	3735 (29)	3989 (53)	<0.001*
FEV₁/FVC, mean (SE) [%]	76.00 (0.44)	75.46 (0.23)	75.67 (0.39)	.553
Women				
N (%)	370 (15.03)	1667 (67.71)	425 (17.26)	
Age, mean (SE), years	70.94 (0.90)	70.18 (0.40)	66.64 (0.68)	<0.001*
Smoking, N (%)	136 (36.76)	599 (36.04)	173 (40.90)	.181
BMI, mean (SE), kg/m²	27.00 (11.31)	26.79 (10.38)	26.63 (11.10)	.651
CVD, N (%)	89 (24.05)	383 (22.98)	79 (18.59)	.108
FEV₁, mean (SE), [mL]	2018 (35)	2055 (17)	2169 (31)	.003*
FVC, mean (SE), [mL]	2615 (43)	2655 (20)	2834 (36)	<0.001*
FEV₁/FVC, mean (SE) [%]	76.76 (0.36)	76.95 (0.17)	75.95 (0.38)	.044*

* denotes significant result (p-value < 0.05).
† Percentage is within the considered group of the genotyped sample.
N denotes sample size.
Age is accessed at baseline.
Smoking status was defined as a cumulative smoking history of more than 100 cigarettes.
FEV₁ denotes forced expiratory volume in 1 second.
FVC denotes forced vital capacity.
FEV₁/FVC is the ratio (%) of FEV₁ to FVC.
CVD denotes prevalence of cardiovascular diseases, which included coronary heart disease, heart failure, and stroke.
SE denotes standard error.
Baseline demographic characteristics and phenotypes for lung disease cases and controls without lung disease are given in Table 2.
P-values for the comparison of mean values (age, BMI, FEV₁, FVC, FEV₁/FVC) and proportions (sex, smoking) amongst three groups of individuals carrying the ε2 allele (ε2/ε2 or ε2/ε3 genotypes), the ε3/ε3 genotype, and the ε4 allele (ε4/ε4 or ε3/ε4 genotypes) were assessed by one-way ANOVA with 2 degrees of freedom.

https://doi.org/10.1371/journal.pone.0206873.t001
compared to carriers of the ε3/ε3 genotype and ε2 allele when men and women were combined, as well as when stratified by sex. In contrast, the FEV1/FVC ratio was significantly lower among ε4 female carriers, whereas there was no significant difference in the FEV1/FVC ratio between APOE allele groups among men and women combined or among men.

Next, we assessed whether an association existed between spirometric values and APOE alleles in the LLFS participants. Table 2 shows that the ε4 allele is significantly associated with a 0.70% reduction in FEV1/FVC in the sample of men and women combined (p = 0.0214), thereby implying that the ε4 allele carriers have smaller FEV1/FVC values. Sex-stratified analysis showed that this effect is mostly attributed to women with a 1.24% reduction in the FEV1/FVC ratio (p = 0.0014). We also verified that the association with reduced FEV1/FVC in the sample of men and women combined did not reflect a potential bias related to population admixture (S1 Table). Further analyses showed that height, smoking, BMI (S2 Table), and lipids (S3 Table) did not mediate the associations of the APOE alleles with FEV1, FVC and FEV1/FVC. There were no significant interactions between the ε4 allele and BMI or smoking (S4 Table). There were also no significant interactions between the ε4 allele and lipids, except for HDL-C in men, in relationship to the FEV1/FVC ratio (S5 Table). Furthermore, the ε4 allele was significantly associated with FEV1/FVC in women with or without cardiovascular disease (S6 Table).

We next assessed whether this association persisted when we analyzed the large sub-group of 3,832 control subjects without lung disease (Table 3). This analysis showed a significant association between the ε4 allele and a 0.72% reduction in FEV1/FVC in the sample of men and women combined (p = 0.0164), as well as a 1.04% reduction in FEV1/FVC in women alone (p = 0.0078). We also assessed whether the association between the ε4 allele and FEV1/FVC in women was specifically related to aging (Table 4). This analysis showed that the association between the ε4 allele and FEV1/FVC was significant in long-living women (age 90.8 ± 6.9 years, mean ± standard deviation), but not in the spouses or children of long-living individuals, or in the spouses of offspring of long-living individuals. Similarly, the association between the ε4 allele and the FEV1/FVC was significant in LLFS women subjects ≥ 70 years, but not in LLFS women subjects < 70 years.

Lastly, an analysis of interactions showed that sex modified the effect of the ε4 allele on FEV1, FVC, and FEV1/FVC in the LLFS participants (Table 5). The interaction between the ε4 allele and sex gained nominal significance (p = 0.045) for FEV1/FVC, while there was a trend

Table 2. Associations of the APOE ε2 and ε4 alleles with FEV1, FVC, and FEV1/FVC of the genotyped LLFS participants for men and women combined and separately.

Trait	Effect allele	Men & Women	Men	Women	
	Beta (SE)	P-value	Beta (SE)	P-value	
FEV1	ε2	-11.24 (22.40)	.616	9.42 (37.63)	.370
	ε4	1.98 (21.70)	.927	39.50 (37.97)	.298
FVC	ε2	-34.41 (23.09)	.211	-44.68 (46.19)	.333
	ε4	23.09 (26.08)	.376	58.15 (45.10)	.495
FEV1/FVC	ε2	0.12 (0.32)	.021	-0.18 (0.47)	.595
	ε4	-0.70 (0.30)	.376	0.53 (0.50)	.288

The ε3/ε3 genotype was considered as the reference.

SE denotes standard error.
Beta denotes the effect size.
* denotes significant result (p-value < 0.05).

https://doi.org/10.1371/journal.pone.0206873.t002
These results suggest a sexual dimorphism in the associations between the APOE ε4 allele and FEV₁ and FEV₁/FVC.

Discussion

The human APOE gene is polymorphic and encodes three distinct protein isoforms, APOE2, APOE3, and APOE4, which differ by single amino acid substitutions at amino acids 112 and 158[1, 3]. APOE3 is the most common isoform and contains a cysteine at position 112 and an arginine at position 158[1]. Although these polymorphisms do not involve the receptor- or lipid-binding domains of APOE, they significantly alter its structural and functional properties. APOE2 has markedly

Table 3. Associations of the APOE ε2 and ε4 alleles with FEV₁, FVC and FEV₁/FVC in the sub-group of 3,832 genotyped LLFS participants without lung disease.

Trait	Effect allele	Men & Women	Men	Women						
	Beta	SE	P-value	Beta	SE	P-value	Beta	SE	P-value	
FEV₁	ε2	-5.44	22.92	.812	12.01	37.73	.750	-23.90	26.13	.360
	ε4	10.21	22.15	.645	44.26	38.25	.247	0.11	24.45	.996
FVC	ε2	-29.89	29.36	.309	-48.00	48.70	.324	-21.31	33.67	.527
	ε4	33.57	27.47	.222	70.34	46.89	.134	31.26	34.12	.320
FEV₁/FVC	ε2	0.16	0.32	.605	0.45	0.48	.349	-0.03	0.42	.936
	ε4	-0.72	0.30	.016	-0.46	0.46	.312	-1.04	0.39	.008 *

The models were fitted with adjustments by age, sex, family groups, and field center. Controls subjects without lung disease are defined in the Methods section. The ε3/ε3 genotype was considered as the reference. * denotes significant result (p-value < 0.05).

https://doi.org/10.1371/journal.pone.0206873.t003

Table 4. Associations of the APOE ε2 and ε4 alleles with FEV₁/FVC in different age groups of LLFS participants.

Trait	Effect allele	N	Beta	SE	P-value	N	Beta	SE	P-value	N	Beta	SE	P-value
FEV₁/FVC	ε2	968	0.41	0.73	.575	468	0.34	1.04	.745	500	0.48	1.02	.639
LL individuals	ε4	907	-1.47	0.87	.098	437	0.05	1.21	.967	470	-2.98	1.23	.027 *
FEV₁/FVC	ε2	112	1.25	1.76	.513	23	2.75	3.11	.388	89	1.76	2.11	.466
LL spouses	ε4	121	-3.08	1.63	.200	26	-0.30	2.62	.909	95	-4.05	2.01	.294
FEV₁/FVC	ε2	1696	-0.27	0.36	.450	713	0.31	0.60	.612	983	-0.59	0.42	.169
LL offspring	ε4	1739	-0.36	0.34	.286	731	-0.27	0.54	.623	1008	-0.55	0.43	.206
FEV₁/FVC	ε2	533	0.67	0.85	.436	277	1.40	1.27	.282	256	-0.43	1.07	.694
Offspring spouses	ε4	630	-0.55	0.62	.378	315	-0.37	1.01	.714	315	-0.87	0.71	.225
FEV₁/FVC	ε2	1914	-0.21	0.35	.554	826	0.43	0.37	.450	1088	-0.58	0.42	.169
age < 70	ε4	2051	-0.30	0.31	.340	886	-0.24	0.50	.629	1165	-0.39	0.39	.318
FEV₁/FVC	ε2	1395	0.59	0.58	.307	655	0.89	0.86	.305	740	0.34	0.77	.657
age ≥ 70	ε4	1346	-1.76	0.63	.006 *	623	-0.06	0.95	.947	723	-3.19	0.84	<0.001 *

LL indicates long-living individuals. Mean age and standard deviation (SD) for LL individuals were: 90.4 ± 6.4 years (men and women combined), 89.8 ± 5.7 years (men) and 90.8 ± 6.9 years (women). Mean age and SD for spouses of LL individuals were: 83.1 ± 7.0 years (men and women combined), 85.3 ± 5.5 years (men) and 82.5 ± 7.3 years (women). Mean age and SD for offspring of LL individuals were: 60.5 ± 8.2 years (men and women combined), 60.6 ± 8.2 years (men) and 60.5 ± 8.2 years (women). Mean age and SD for spouses of offspring were: 60.9 ± 8.6 years (men and women combined), 63.1 ± 7.9 years (men) and 58.4 ± 8.7 years (women). LLFS participants were also divided into subjects < or ≥ 70 years of age. * denotes significant result (p-value < 0.05).

https://doi.org/10.1371/journal.pone.0206873.t004

The APOE ε4 allele is associated with a reduction of FEV₁/FVC in women (p = 0.060). These results suggest a sexual dimorphism in the associations between the APOE ε4 allele and FEV₁ and FEV₁/FVC.
impaired LDLR binding capabilities, which is less than 2% of APOE3 and APOE4[2]. The APOE4 isoform has normal LDLR binding, but has altered lipid binding characteristics, with preferential binding to triglyceride-rich VLDL and chylomicron remnants instead of phospholipid-rich high-density lipoproteins[2].

The APOE ε4 allele is the minor allele in modern humans and is a major genetic risk factor for Alzheimer’s disease[1, 2, 40]. The APOE ε4 allele also increases atherosclerosis risk and decreases lifespan[2, 40]. APOE ε4 is the ancestral APOE allele, as it is present in all great apes, while the shift to the APOE ε3 and APOE ε2 alleles may have reflected selective pressure from infectious diseases[2]. Consistent with this, the human APOE ε4 allele modifies host responses to infection, such as the human immunodeficiency virus[2, 40]. Transgenic knock-in mice expressing the human APOE ε4 allele have increased morbidity and mortality in experimental sepsis models[7, 41]. Similarly, human subjects heterozygous for APOE ε3/ε4 have increased innate immune responses to LPS as compared to individuals with the APOE ε3/ε3 genotype[41]. Furthermore, the APOE ε4 allele has been associated with increased coagulation system failure in European Americans with severe sepsis[41]. Susceptibility to infection by the intracellular bacterial pathogen, Chlamydia pneumoniae, may also be enhanced by the APOE ε4 allele by a mechanism involving increased attachment to host cells[42].

The APOE alleles, however, are not known to modulate pulmonary function in human subjects and have not been linked to pulmonary function in genome-wide association studies[43–51]. Although a prior genome-wide association study of LLFS participants identified a linkage peak on chromosome 2 for FEV1/FVC, the APOE ε2, ε3 and ε4 alleles were not included in that dataset[48]. Here, we show that the mean FEV1/FVC ratio was lower among women with the ε4 allele as compared to women with either the ε3/3 genotype or the ε2 allele. In addition, carriage of the APOE ε4 allele in the LLFS participants was associated with the FEV1/FVC ratio, which implied a smaller value, as compared to carriers of the APOE ε3 allele. Although a reduction in the FEV1/FVC ratio could reflect the presence of airflow obstruction, both the FVC and FEV1 were increased in carriers of the APOE ε4 allele as compared to carriers of the ε3/3 genotype or the ε2 allele. This suggests that the reduction in the FEV1/FVC ratio in carriers of the APOE ε4 allele might instead represent modified lung physiology reflected by a proportionally larger FVC than FEV1. For example, dysanaptic or unequal lung growth has been reported to occur in teenagers, where growth of the airways, as reflected by the FEV1, relative to lung volumes, as reflected by the FVC, occurs more slowly in girls than boys[52, 53]. Furthermore, dysanaptic lung growth has been reported in the setting of chronic hypoxia and

Table 5. Associations of the APOE ε2 and ε4 alleles with FEV1, FVC, and FEV1/FVC and their multiplicative interactions with sex in the genotyped LLFS participants.

Trait	apoE	apoE	apoE×sex			
	Beta	SE	P-value	Beta	SE	P-value
FEV1	-29.44	30.83	.340	13.36	43.82	.761
ε2	-33.60	29.03	.247	79.36	42.20	.060
ε4	-28.98	36.97	.433	-12.70	52.56	.810
FVC	-8.92	34.56	.796	69.46	50.21	.167
ε2	-0.20	0.43	.643	0.70	0.62	.258
ε4	-1.22	0.40	.003*	1.18	0.59	.045*

The models with interactions considered men as a reference category.
The ε3/ε3 genotype was considered as the reference.
* denotes significant result (p-value < 0.05).

https://doi.org/10.1371/journal.pone.0206873.t005
post-infectious bronchiolitis obliterans, which results in a decrease in the FEV$_1$/FVC ratio [53, 54]. Since the reduction in FEV$_1$/FVC in carriers of the APOE ε4 allele was specific for individuals over 70 years of age, we believe that it is unlikely that dysanaptic lung development is the explanation for this finding. The FEV$_1$/FVC ratio is well-known to decrease with advancing age, which suggests that the reduction in FEV$_1$/FVC among carriers of the APOE ε4 allele might instead reflect modified lung aging in older individuals [55–58]. This finding will need to be confirmed by future studies that assess whether the reduction in FEV$_1$/FVC among carriers of the APOE ε4 allele is limited to older individuals, in which case it would not be generalizable to younger study populations. Similarly, future studies would be required to assess whether this finding is limited to individuals with exceptional familial longevity or is also generalizable to populations with normal longevity.

The association between the APOE ε4 allele and a lower FEV$_1$/FVC ratio persisted when the sub-group of LLFS women without lung disease was analyzed. To the best of our knowledge, this demonstrates for the first time that an association exists between the polymorphic APOE alleles and lung function in human subjects. Although the effect size on FEV$_1$/FVC was modest, the effect of an individual allele on a complex genetic trait is often relatively small. In addition, since the effect was present in individuals without lung disease, a large magnitude of change was not expected. Furthermore, our results suggest that a link might exist between the APOE ε4 allele, female sex, and a lower FEV$_1$/FVC ratio in older individuals. This may provide a new insight regarding how the polymorphic APOE alleles might influence human lung physiology in a gender-specific fashion during aging.

These data also raise the hypothesis that the APOE alleles might modify disease pathogenesis or severity in obstructive airway diseases, such as asthma, COPD, or asthma-COPD overlap syndrome. In a prior study we showed that serum apoE levels were similar in normals and asthmatics and were not correlated with FEV$_1$, however, subjects were not stratified by APOE genotype [59]. A limitation of this current study is that we were not able to assess if the APOE alleles modified pulmonary function in subjects with lung disease. We did not include a sub-group analysis of cases with lung disease for several reasons. First, lung disease was self-reported by participants at baseline and during follow up, but the diagnosis of lung disease was not confirmed. Second, because the types of lung disease were heterogeneous regarding diagnoses, severity, and duration, and the number of cases with lung disease was small, an analysis of this sub-group would likely not have sufficient power to identify an association between the APOE alleles and pulmonary function. Third, a subset of the cases with lung disease were utilizing lung disease medications, such as bronchodilators and corticosteroids, which could have modified their pulmonary function results. Therefore, additional studies will be required to assess whether the APOE ε4 allele is associated with modified pulmonary function in individuals with lung disease. Another limitation of this study is that LLFS participants were selected based upon the trait of exceptional familial longevity. Therefore, additional studies will be needed to assess whether the association between the FEV$_1$/FVC ratio and the APOE ε4 allele in older women is also present in individuals who do not have long-living families.

The mechanisms by which the APOE ε4 allele might be associated with a relative reduction in airflow in women without lung disease are not known. Prior murine studies have identified that the APOE/LDLR pathway is present in the lung, with the LDLR being expressed by ciliated airway epithelial cells where it could potentially modify airway physiology [10]. Furthermore, studies using Apoe- and Ldlr-deficient mice have shown that these genes participate in developmental alveologenesis in a sexually dimorphic fashion [13, 14]. In addition, Apoe- and Ldlr-deficient mice that have been sensitized and challenged with house dust mite have abnormal airway function with increased mucous cell metaplasia and airway hyperreactivity to methacholine [10]. The APOE ε4 allele has also been associated with enhanced risk and accelerated decline in cognitive
function secondary to Alzheimer’s disease in women as compared to men [60]. The APOE ε4 allele was also highly significantly associated with shorter lifespan in women as compared to men in the LLFS study and the Framingham Heart Study [61]. Furthermore, prior studies have supported the concept of sexual dimorphism of the ε4 allele in relationship to APOE-related mortality and heart disease [62–65]. Gender-specific effects of the APOE gene might be attributed to differential hormonal and insulin regulation in each sex [62]. Collectively, these findings provide additional evidence to support a gender-specific effect of the ε4 allele on the FEV₁/FVC ratio.

Based upon differences in height and lung volume, absolute values for FEV₁ and FVC are known to be lower in adult women than adult men [66, 67]. Consistent with this, we found that the absolute values for FEV₁ and FVC were significantly lower in women than men, irrespective of whether they carried the APOE ε2, ε3, or ε4 allele, as evidenced by well-separated 95% confidence intervals for FEV₁ and FVC measured in men and women as +/- 1.96 * SE (Table 1). In contrast, the FEV₁/FVC ratio was not different between men and women when the sample population was not stratified by age. Therefore, we believe that our finding of a significant reduction in the FEV₁/FVC ratio limited to the subset of older women greater or equal to 70 years of age who carried the APOE ε4 allele did not merely reflect a compounding effect of genotype in individuals who already had lower values by virtue of sex.

In conclusion, we have identified that carriage of the APOE ε4 allele was associated with a decrease in the FEV₁/FVC ratio as compared to carriers of the APOE ε3 allele among women without lung disease who participated in the LLFS. This suggests that carriage of the APOE ε4 allele may be linked to modified lung physiology in a sexually dimorphic fashion in older individuals.

Supporting information

S1 Table. The role of potential population structure in the associations of the APOE ε2 and ε4 alleles with FEV₁, FVC and FEV₁/FVC in the genotyped LLFS participants.

(DOCX)

S2 Table. The role of height, smoking, and BMI in the associations of the APOE ε2 and ε4 alleles with FEV₁, FVC and FEV₁/FVC in the genotyped LLFS participants.

(DOCX)

S3 Table. The role of lipids in the associations of the APOE ε2 and ε4 alleles with FEV₁, FVC and FEV₁/FVC in the genotyped LLFS participants.

(DOCX)

S4 Table. Interactions of the APOE ε2 and ε4 alleles with smoking and BMI in the relationship to FEV₁/FVC.

(DOCX)

S5 Table. Interactions of the APOE ε2 and ε4 alleles with lipids in the relationship to FEV₁/FVC.

(DOCX)

S6 Table. Associations of the APOE ε2 and ε4 alleles with FEV₁/FVC in individuals with and without cardiovascular disease (CVD).

(DOCX)

Author Contributions

Conceptualization: Alexander M. Kulminski, Amisha V. Barochia, Nalini Raghavachari, Stewart J. Levine.
Data curation: Alexander M. Kulminski, Yury Loika, Konstantin G. Wojczynski, Bharat Thyagarajan.

Formal analysis: Alexander M. Kulminski, Yury Loika.

Funding acquisition: Kaare Christensen, Anatoliy I. Yashin.

Methodology: Alexander M. Kulminski, Amisha V. Barochia, Nalini Raghavachari, Mary K. Wojczynski, Bharat Thyagarajan, Badri N. Vardarajan, Stewart J. Levine.

Writing – original draft: Alexander M. Kulminski, Amisha V. Barochia, Stewart J. Levine.

Writing – review & editing: Alexander M. Kulminski, Amisha V. Barochia, Yury Loika, Nalini Raghavachari, Konstantin G. Arbeev, Mary K. Wojczynski, Bharat Thyagarajan, Badri N. Vardarajan, Kaare Christensen, Anatoliy I. Yashin, Stewart J. Levine.

References

1. Hatters DM, Peters-Libeu CA, Weisgraber KH. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006; 31(8):445–54. https://doi.org/10.1016/j.tibs.2006.06.008 PMID: 16830298

2. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res. 2009; 50 Suppl:S183–8. https://doi.org/10.1194/jlr.R800069-JLR200 PMID: 19106071

3. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009; 10(5):333–44. https://doi.org/10.1038/nrn2620 PMID: 19339974

4. Schaefer EJ, Gregg RE, Ghiselli G, Forte TM, Ordovas JM, Zech LA, et al. Familial apolipoprotein E deficiency. J Clin Invest. 1986; 78(5):1206–19. https://doi.org/10.1172/JCI112704 PMID: 3771793

5. Christensen DJ, Ohkubo N, Oddo J, Van Kanegan MJ, Neil J, Li F, et al. Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J Immunol. 2011; 186(4):2535–42. https://doi.org/10.4049/jimmunol.1002847 PMID: 21289314

6. Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet. 1996; 14(1):55–61. https://doi.org/10.1038/ng0996-55 PMID: 8782820

7. Yao X, Gordon EM, Figueroa DM, Barochia AV, Levine SJ. The Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease. Am J Respir Cell Mol Biol. 2016; 55(2):159–69. https://doi.org/10.1165/rcmb.2016-0060TR PMID: 27073871

8. Takemura R, Werb Z. Modulation of apoprotein E secretion in response to receptor-mediated endocytosis in resident and inflammatory macrophages. J Exp Med. 1984; 159(1):167–78. PMID: 6196420

9. Lin CT, Xu YF, Wu JY, Chan L. Immunoreactive apolipoprotein E is a widely distributed cellular protein. Immunohistochemical localization of apolipoprotein E in baboon tissues. J Clin Invest. 1986; 78(4):947–58. https://doi.org/10.1172/JCI112685 PMID: 3531238

10. Yao X, Fredriksson K, Yu ZX, Xu X, Raghavachari N, Keeran KJ, et al. Apolipoprotein E negatively regulates house dust mite-induced asthma via a low-density lipoprotein receptor-mediated pathway. Am J Respir Crit Care Med. 2010; 182(10):1228–38. https://doi.org/10.1164/rccm.201002-0308OC PMID: 20622028

11. Chen J, Chen Z, Chintagari NR, Bhaskaran M, Jin N, Narasaraju T, et al. Alveolar type I cells protect rat lung epithelium from oxidative injury. J Physiol. 2006; 572(Pt 3):625–38. https://doi.org/10.1113/jphysiol.2005.093465 PMID: 16497717

12. Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C, Bekker JM, et al. An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest. 2008; 118(5):1846–57. https://doi.org/10.1172/JCI32503 PMID: 18392765

13. Massaro D, Massaro GD. Apoeε4tm1Unc mice have impaired alveologenesis, low lung function, and rapid loss of lung function. Am J Physiol Lung Cell Mol Physiol. 2008; 294(5):L891–7. https://doi.org/10.1152/ajplung.00013.2008 PMID: 18344414

14. Massaro D, Massaro GD. Developmental alveologenesis: new roles for ApoE and LDL receptor. Pediatr research. 2011; 70(5):456–61. https://doi.org/10.1203/PDR.0b013e31822f4d PMID: 21796016

15. Ryan AJ, Medh JD, McCoy DM, Salome RG, Mallampalli RK. Maternal loading with very low-density lipoproteins stimulates fetal surfactant synthesis. Am J Physiol Lung Cell Mol Physiol. 2002; 283(2):L310–8. https://doi.org/10.1152/ajplung.00021.2002 PMID: 12114192
16. Goldklang M, Golovatch P, Zelonica T, Trischler J, Rabinowitz D, Lemaitre V, et al. Activation of the TLR4 signaling pathway and abnormal cholesterol efflux lead to emphysema in ApoE-deficient mice. Am J Physiol Lung Cell Mol Physiol. 2012; 302(11):L1200–8. https://doi.org/10.1152/ajplung.00454.2010 PMID: 22447954

17. Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007; 115(10):1275–84. https://doi.org/10.1161/CIRCULATIONAHA.106.663120 PMID: 17339547

18. Lawrie A, Hameed AG, Chamberlain J, Arnold N, Kennerley A, Hopkinson K, et al. Paigen diet-fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin-1-dependent manner. Am J Pathol. 2011; 179(4):1683–705. https://doi.org/10.1016/j.ajpath.2011.06.037 PMID: 21835155

19. Naura AS, Hans CP, Zerfaoui M, Ju J, Kim H, et al. High-fat diet induces lung remodeling in ApoE-deficient mice: an association with an increase in circulatory and lung inflammatory factors. Lab Invest. 2009; 89(1):124–51. https://doi.org/10.1038/labinvest.2009.98 PMID: 19752857

20. Ouyang Q, Huang Z, Lin H, Ni J, Lu H, Chen X, et al. Apolipoprotein E deficiency and high-fat diet cooperate to trigger lipidosis and inflammation in the lung via the toll-like receptor 4 pathway. Mol Med Rep. 2015; 12(2):2589–97. https://doi.org/10.3892/mmr.2015.3774 PMID: 25975841

21. Samokhin AO, Buhling F, Theissig F, Bromme D. ApoE-deficient mice on cholate-containing high-fat diet reveal a pathology similar to lung sarcoidosis. Am J Pathol. 2010; 176(3):1148–56. https://doi.org/10.2353/ajpath.2010.090857 PMID: 20093498

22. Jacobsen NR, Moller P, Jensa K, Vogel U, Loft S, et al. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoEε4 mice. Particle and Fibre Toxicology. 2009; 6;2. https://doi.org/10.1186/1743-8977-6-2 PMID: 19138394

23. Arunachalam G, Sundar IK, Hwang JW, Yao H, Rahman I. Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke: implications in comorbidities of COPD. Journal of Inflammation. 2010; 7:34. https://doi.org/10.1186/1476-9255-7-34 PMID: 20663153

24. Yamashita CM, Fessler MB, Vasanthanamohan L, Lac J, Madenspacher J, McCaig L, et al. Apolipoprotein E-deficient mice are susceptible to the development of acute lung injury. Respirat. 2014; 87(6):416–27. https://doi.org/10.1159/000358438 PMID: 24662316

25. Venosa A, Malaviya R, Choi H, Gow AJ, Laskin JD, Laskin DL. Characterization of Distinct Macrophage Subpopulations During Nitrogen Mustard-Induced Injury and Fibrosis. Am J Respir Cell Mol Biol. 2015.

26. Li L, Thompson PA, Kitchens RL. Infection induces a positive acute phase apolipoprotein E response to a negative acute phase gene: role of hepatic LDL receptors. J Lipid Res. 2008; 49(8):1782–93. https://doi.org/10.1194/jlr.M800172-JLR200 PMID: 18497424

27. Madenspacher JH, Azzam KM, Gong W, Gowdy KM, Vitek MP, Laskowitz DT, et al. Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity. J Biol Chem. 2012; 287(2):43730–40. https://doi.org/10.1074/jbc.M112.377192 PMID: 23118226

28. Rensen PC, Oosten M, Blit E, Eck M, Kuiper J, Berkel TJ. Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats in vivo. J Clin Invest. 1997; 99(10):2438–45. https://doi.org/10.1172/JCI119427 PMID: 9152867

29. van Oosten M, Rensen PC, Van Amersfoort ES, Van Eck M, Van Dam AM, Breve JJ, et al. Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. J Biol Chem. 2001; 276(12):8820–4. https://doi.org/10.1074/jbc.M0093120 PMID: 11136731

30. van den Elzen P, Gang S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature. 2005; 437(7060):906–10. https://doi.org/10.1038/ nature04001 PMID: 16208376

31. Sebastiani P, Hadley EC, Province M, Christensen K, Rossi W, Perls TT, et al. A family longevity selection score: ranking sibs by their longevity, size, and availability for study. Am J Epidemiol. 2009; 170 (12):1555–62. https://doi.org/10.1093/aje/kwp309 PMID: 19910380

32. Yashin AI, Arbeev KG, Kulminski A, Borecki I, Christensen K, Bamarda M, et al. “Predicting” parental longevity from offspring endphenotypes: data from the Long Life Family Study (LLFS). Mech Ageing Dev. 2010; 131(3):215–22. https://doi.org/10.1016/j.mad.2010.02.001 PMID: 20184914

33. Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, et al. Health and function of participants in the Long Life Family Study: A comparison with other cohorts. Aging (Albany NY). 2011; 3 (1):63–76.

34. Pedersen CB, Gotzsche H, Moller JO, Mortensen PB. The Danish Civil Registration System. A cohort of eight million persons. Dan Med Bull. 2006; 53(4):441–8. PMID: 17150149
35. Province MA, Hadley E, Barmada M, Schupf N, Sebastiani P, Costa R, et al. Familial Clustering of Longevity Pathway Phenotypes in the Long Life Family Study (LLFS). Gerontologist. 2009; 49:171.

36. Sanders JL, Singh J, Minster RL, Walston JD, Matteini AM, Christensen K, et al. Association Between Mortality and Heritability of the Scale of Aging Vigor in Epidemiology. J Am Geriatr Soc. 2016; 64(8):1679–83. https://doi.org/10.1111/jgs.14190 PMID: 27294813

37. Schupf N, Barral S, Perls T, Newman A, Christensen K, Thyagarajan B, et al. Apolipoprotein E and familial longevity. Neurobiol Aging. 2013; 34(4):1287–91. https://doi.org/10.1016/j.neurobiolaging.2012.08.019 PMID: 23040522

38. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005; 26(2):319–38. https://doi.org/10.1183/09031936.05.0034805 PMID: 16055882

39. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6):499–502. PMID: 4337382

40. Finch CE. Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci U S A. 2010; 107 Suppl 1:1718–24.

41. Gale SC, Gao L, Mikacenic C, Coyle SM, Rafae1s N, Murray Dudenkov T, et al. APOEpsilon4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol. 2014; 134(1):127–34. https://doi.org/10.1016/j.jaci.2014.01.032 PMID: 24655576

42. Gerard HC, Fomicheva E, Whitum-Hudson JA, Hudson AP. Apolipoprotein E4 enhances attachment of Chlamydia pneumoniae elementary bodies to host cells. Microbial pathogenesis. 2008; 44(4):279–85. https://doi.org/10.1016/j.micpath.2007.10.002 PMID: 17977273

43. Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, Brandljer BJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009; 5(3):e1000429. https://doi.org/10.1371/journal.pgen.1000429 PMID: 19300500

44. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010; 42(1):45–52. https://doi.org/10.1038/ng.500 PMID: 20010835

45. Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, et al. Genome-wide association studies identify five loci associated with lung function. Nat Genet. 2010; 42(1):36–44. https://doi.org/10.1038/ng.501 PMID: 20010834

46. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci associated with lung function. Nat Genet. 2011; 43(11):1082–90. https://doi.org/10.1038/ng.941 PMID: 21946350

47. Yao TC, Du G, Han L, Sun Y, Hu D, Yang JJ, et al. Genome-wide association study of lung function phenotypes in a founder population. J Allergy Clin Immunol. 2014; 133(1):248–55 e1-10. https://doi.org/10.1016/j.jaci.2013.06.018 PMID: 23932459

48. Thyagarajan B, Wojczynski M, Minster RL, Sanders J, Barral S, Christiansen L, et al. Genetic variants associated with lung function: the long life family study. Respir Res. 2014; 15:134. https://doi.org/10.1186/s12931-014-0134-x PMID: 25409777

49. Soler Artigas M, Wain LV, Miller S, Kheirallah AK, Huffman JE, Ntalla I, et al. Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat Commun. 2015; 6:8658. https://doi.org/10.1038/ncomms9658 PMID: 26635082

50. Wain LV, Shrine N, Jackson VE, Ntalla I, Soler Artigas M, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. The Lancet Respiratory medicine. 2015; 3(10):769–81. https://doi.org/10.1016/S2213-2600(15)00283-0 PMID: 26423011

51. van der Plaat DA, de Jong K, Lahousse L, Faiz A, Veron JM, van Diemen CC, et al. Genome-wide association study on the FEV₁/FVC ratio in never-smokers identifies HHIP and FAM13A. J Allergy Clin Immunol. 2017; 139(2):533–540. https://doi.org/10.1016/j.jaci.2016.06.062 PMID: 27612410

52. Merkus P, Borsboom GJ, Van Pett W, Schrader PC, Van Houwelingen HC, Kerrebijn KF, et al. Growth of airways and air spaces in teenagers is related to sex but not to symptoms. J Appl Physiol (1985). 1993; 75(5):2045–53.

53. Mosquera RA, Hashmi SS, Pacheco SE, Reverdin A, Chevallier J, Colasurdo GN. Dysanaptic growth of lung and airway in children with post-infectious bronchiolitis obliterans. Clin Respir J. 2014; 8(1):63–71. https://doi.org/10.1111/crj.12037 PMID: 23800208
54. Llapur CJ, Martinez MR, Grassino PT, Stok A, Altieri HH, Bonilla F, et al. Chronic Hypoxia Accentuates Dysanaptic Lung Growth. Am J Respir Crit Care Med. 2016; 194(3):327–32. https://doi.org/10.1164/rcrm.201509-1851OC PMID: 26840053

55. Celli BR, Halbert RJ, Isonaka S, Schau B. Population impact of different definitions of airway obstruction. Eur Respir J. 2003; 22(2):268–73. PMID: 12952259

56. Lundback B, Gulsvik A, Albers M, Bakke P, Ronmark E, van den Boom G, et al. Epidemiological aspects and early detection of chronic obstructive airway diseases in the elderly. Eur Respir J Suppl. 2003; 40:3s–9s. PMID: 12762567

57. Medbo A, Melbye H. Lung function testing in the elderly—can we still use FEV1/FVC<70 % as a criterion of COPD? Respir Med. 2007; 101(6):1097–105. https://doi.org/10.1016/j.rmed.2006.11.019 PMID: 17239575

58. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005; 26(5):948–68. https://doi.org/10.1183/09031936.05.00035205 PMID: 16264058

59. Barochia AV, Kaler M, Cuento RA, Gordon EM, Weir NA, Sampson M, et al. Serum Apolipoprotein A-I and Large High-density Lipoprotein Particles are Positively Correlated with FEV1 in Atopic Asthma. Am J Respir Crit Care Med. 2015; 191(9):990–1000. https://doi.org/10.1164/rccm.201411-1990OC PMID: 25692941

60. Riedel BC, Thompson PM, Brinton RD. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J Steroid Biochem Mol Biol. 2016; 160:134–47. https://doi.org/10.1016/j.jsbmb.2016.03.012 PMID: 26969397

61. Kulinski AM, Arbee KG, Culminskaya I, Arbeeva L, Ukrainsteva SV, Stallard E, et al. Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan. PLoS Genet. 2014; 10(1):e1004141. https://doi.org/10.1371/journal.pgen.1004141 PMID: 24497847

62. Kolovou G, Damaskos D, Anagnostopoulou K, Cokkinos DV. Apolipoprotein E gene polymorphism and gender. Ann Clin Lab Sci. 2009; 39(2):120–33. PMID: 19429797

63. Kulinski AM, Culminskaya I, Arbee KG, Ukrainsteva SV, Stallard E, Arbeeva L, et al. The role of lipid-related genes, aging-related processes, and environment in healthspan. Aging Cell. 2013; 12(2):237–46. https://doi.org/10.1111/acel.12046 PMID: 23320904

64. Hirashiki A, Yamada Y, Murase Y, Suzuki Y, Kataoka H, Morimoto Y, et al. Association of gene polymorphisms with coronary artery disease in low- or high-risk subjects defined by conventional risk factors. J Am Coll Cardiol. 2003; 42(8):1429–37. PMID: 14563588

65. Rosvall L, Rizzuto D, Wang HX, Winblad B, Graff C, Fratiglioni L. APOE-related mortality: effect of dementia, cardiovascular disease and gender. Neurobiol Aging. 2009; 30(10):1545–51. https://doi.org/10.1016/j.neurobiolaging.2007.12.003 PMID: 18237822

66. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012; 40 (6):1324–43. https://doi.org/10.1183/09031936.00080312 PMID: 22743675

67. National Institute for Occupational Safety and Health. Spirometry Training Program. NHANES III Reference Values. 2015. https://www.cdc.gov/niosh/topics/spirometry/nhanes.html.