The aftermath of COVID-19 pandemic: Rhino-orbital mucormycosis

INTRODUCTION

Coronavirus disease (COVID)-19 causes over-activation of the innate immune response leading to multi-organ damage. In addition to affecting the major systems like respiratory, cardiovascular and gastrointestinal tract (GIT), it targets retinal vessels also causing pyogranulomatous uveitis, choroiditis and macular micro-vascular impairment. It also remains dormant in paranasal sinuses for months after acute phase infection is cured and precipitates rhino-orbital mucormycosis.

Fungal rhino-sinusitis is an ascending infection with serious life and vision-threatening consequences. We are reporting 10 such cases that were operated for functional endoscopic sinus surgery (FESS) within a period of less than 3 months after COVID-19 infection. This brief clinical overview is about the increasing cases of mucormycosis and the related anaesthesia concerns in convalescent COVID-19 patients.

These cases have highlighted the challenges before the anaesthesiologists which also emphasises the need to study the management of pandemics so that the medical fraternity would be able to manage pandemics in an efficient manner.

CASE HISTORY

The patients reported are adults (age-group 35-75 years) either known or newly diagnosed diabetics; they had history of hypertension and ischaemic heart disease (IHD) and had recently recovered from COVID-19 infection. The presenting complaints for rhinootolaryngology consultation were headache, swelling and pain in either eye and pain over face on the same side. They were receiving all medications as per physician advice. Oral hypoglycaemics were discontinued and patients were shifted to insulin regimens with strict blood glucose monitoring pre-operatively. Anti-hypertensives, statins and anti-inflammatory agents were continued. Anti-fungal regimen, either conventional or lipophilic amphotericin B was continued with monitoring of renal functions.

Pre-anaesthetic airway evaluation was done after taking due COVID-19 precautions. All routine investigations were done [Table 1]. Patients were ambulatory; six-minute walk test results were provided by chest physician. Most of the cases had anticipated difficulty in intubation due to compromised oral and dental hygiene, fungal discoloration and occasional bleeding on touch of throat and palate. Mask holding was also difficult due to pain and proptosis. Positioning for airway ease was restricted due to pain and stiffness in diabetics. Pre-operative preparation included pre- and intra-operative optimisation of blood sugar, control of hydration status due to post- COVID-19 poor general condition and inability to drink and swallow freely due to painful and/or obstructing fungal lesions and anticipated hypotension due to ongoing anti-fungal therapy.

After ensuring use of adequate personal protective equipment (PPE) including N95 masks, face shields and availability of aerosol control measures, appropriate risk consent and temperature were checked and intravenous line was accessed. Electrocardiography (ECG), pulse oximetry, non-invasive blood pressure (NIBP) monitors were connected. A difficult intubation cart was kept ready. Patients were pre-medicated with injection glycopyrrolate 4 μg/kg, injection fentanyl 2 μg/kg, intravenously. After pre-oxygenation with 100% oxygen, they were induced with injection propofol 2 mg/kg in titrated doses. The palatal perforation if present (Case no. 10) was covered with gauze and intubation performed with proper size cuffed reinforced endotracheal tube after relaxation with injection succinylcholine 1.5 mg/kg. Injection xylocard (Lignocaine Hydrochloride 2%) 1.5 mg/kg was used to attenuate laryngoscopy response. In cases of difficulty, C-MAC video laryngoscope (KARL STORZ) was used to accomplish safe intubation.

Intra-operative blood sugar monitoring was done. The patients were maintained on oxygen, nitrous oxide (50:50) and isoflurane 1% or sevoflurane with controlled ventilation. Muscle relaxation was maintained with injection atracurium 0.5 mg/kg. Intra-operative endoscopic views of the fungal infection were obtained [Figure 1]. On completion of surgery, neuromuscular blockade was reversed and after ascertaining adequate muscle power, patients were extubated and shifted to recovery with oxygen 2 L/min via Hudson-mask. The rest of the post-operative period...
Table 1a: Case details

Serial number	1	2	3	4	5
Age (years)	47	60	70	43	53
Gender (M/F)	M	M	M	M	M
Pre-operative					
COVID status	Positive on 12-2-21	Positive- 14.03.21 and 25.03.21	Positive in Dec 2020	Positive on 28-12-20	Negative when operated
Oxygen support during COVID	Via nasal prongs	On Bipap for 5 days during COVID	Via nasal prongs	Via nasal prongs	Not known
Presenting complaints-	+	+	+	+	+
Facial pain and swelling	+	+	+	+	+
Toothache and loosening	+	+	+	+	+
Duration of presenting complaints	1 week	5 days	4-5 days	1 week	5 days
Co-morbidities-	+	+	+	+	+
New onset DM					
Past H/O	IHD since 10 years	DM- 5 years. Operated CABG- 3 years	DM-recent onset HT since 2 years	DM-recent onset HT since 2 years	DM since 2 years
On Treatment-	T. Aldactone 50 mgOD	T. Rosuvastatin 10 mg HS	T. Digoxin 0.125 mg OD	T. Aldactone 50 mgOD	T. Rosuvastatin 10 mg OD
	T. Insulin Glargin 20 U BD	T. Aspirin 75 mg OD	T. Amlo 5 mg OD	T. Altonovastatin 40 mg HS	T. Insulin Glargin 20 U BD
Present treatment	L. Amp B 300 mg in 5% Dextrose	L. Amp B 250 mg in 5% Dextrose	L. Amp B 250 mg in 5% Dextrose	L. Amp B 300 mg in 5% Dextrose	L. Amp B 300 mg in 5% Dextrose
Investigations	HB- 10 g/dl, RBS- 112 mg%	MRI- Sinusitis with bone destruction intracranial and intra orbital with optic neuritis with right temporal lobe abscess	CT Thorax-Patchy areas of Ground Oactacles, crazy paving appearance, subpleural fibrotic bands	MRI- Sinusitis with bone destruction intracranial and intra orbital with optic neuritis	CT Thorax-Multiple patchy confluent ground glass opacities with interstitial thickening in peribronchovascular and peripheral subpleural regions of both lungs
BP	130/86 96%	140/90 93% on room air 97% on supplementation	110/70 97%	150/92 98%	120/70 93%
SpO2					
Other remarkable points in general examination if any					

Contd...
Table 1a: Contd...

Systemic examination	CVS/RS/CNS/PA	Normal	Fine basal crepts	Normal	Normal	Normal	Normal
MO	3 fingers	3	2 fingers	2 fingers	3 fingers		
MPC	3	3	3	3	3		
Palate/Teeth/NE	N/upper incisors loose	Black crusts	Black crusts	Loose premolars			
Airway examination	Video L'scope	Macintosh L'scope	Video L'scope	Video L'scope	Macintosh L'scope		
Incentive	Advised	Advised	Advised	Advised	Advised		
Spirometry							
Six min. walk test result	92%	92%	95%	97%	87%		
Intraoperative events	Hypotension	Hypoglycaemia	Hypotension	Hypertension	-		
Extubated on table or ICU shifted for monitoring or ICU shifted for ventilation	Extubated	ICU-ventilated	Extubated	ICU monitoring	Extubated		

Table 1b: Case details

Serial number	6	7	8	9	10
Age (years)	42	54	41	59	31
Gender (M/F)	M	F	M	F	M
Pre-operative COVID status	Negative when operated	Positive in Feb 2021	Negative when operated	Positive on 17.3.21	Negative when operated
Oxygen support during COVID	Not known	Via nasal prongs	Not known	Via nasal prongs	Via nasal prongs
Presenting complaints	+	+	+	+	+
Facial pain and swelling	+	+	+	+	
Toothache and loosening	+	+	+		
Orbital pain and swelling					
Duration of presenting complaints	1 week	10 days	10 days	1 week	15 days
Present on Treatment- New onset DM	DM since 1 year	DM-recent onset	DM-recent onset	IHD	DM-recent onset
DM					
Insulin Glargine 20 U SC HS	T. Glimepiride 2 OD	Inj. Insulin NPH 6-0-6	Inj. Insulin (P) 6-6-4	T. Aspirin 75 mg OD	T. Telmisartan 40 mg
Insulin (P) 8-6-4 SC	Inj. Insulin NPH 8-0-8	Inj. Insulin (P) 8-6-4		T. Atorvastatin 40 mg	
Present treatment	L. Amp B 150 mg in 5% Dextrose	L. Amp B 300 mg in 5% Dextrose	L. Amp B 300 mg in 5% Dextrose	L. Amp B 150 mg in 5% Dextrose	L. Amp B 300 mg in 5% Dextrose

Contd...
was monitored either in the ward with analgesic cover of 15 mg/kg IV paracetamol or in the intensive care unit (ICU) on elective ventilation depending upon the clinical condition [Table 1].

DISCUSSION

Occurrence of sinusitis, either allergic, non-allergic or infective, is commonly reported in the general population. Up to 90% cases are of fungal aetiology. In the year 2021, we noticed a steep rise (almost four times) in number of FESS cases in our institution for removal of mucormycosis, when compared to the last two years.

Chakraborty *et al.* have reported that the rational approach towards prognosis and treatment of fungal sinusitis is not yet standardised and therefore the incidence is high. They proposed the classification of fungal sinusitis as invasive and non-invasive.[4]

Fungal rhinosinusitis is often an ascending infection affecting the orbit via vascular invasion of fungal hyphae of mucorales. It is an opportunistic infection found in immunocompromised patients.[3]

Patients with invasive fungal infections have Cryptococci or Pneumocystis infections. The use of antifungal agents is said to change the epidemiology of Candida albicans to non-albican Candida strains The
Hooli, et al.: Mucormycosis, COVID-19 aftermath

552

Indian Journal of Anaesthesia | Volume 65 | Issue 7 | July 2021

explanation for high mortality rates of such patients are due to resistance to antifungal agents, underlying serious medical diseases, seropositive status and inability to achieve early source control.\cite{6} Castelnuovo et al.\cite{7} studied fungal sinusitis cases (1050 patients) over a period of three years and found Aspergillus fumigatus (76.9% cases) to be the most often occurring mycetes. They reported patients presenting with facial pain followed by nasal obstruction with computed tomography (CT) showing focal areas of non-homogeneous intensity and metal like endo-sinus calcifications in 84.4% cases.

The acute pulmonary injury in COVID-19 is due to release of pro-inflammatory cytokines like interleukin (IL-1, 2, and 6) and tumour necrosis factor (TNF)-alpha. National Health Commission of China has included tocilizumab, a novel monoclonal antibody that competitively inhibits binding of IL-6 to its receptor in COVID-19 treatment and our protocol also includes the same. Tocilizumab binds soluble as well as bound IL-6 receptors and hinders pro-inflammatory effects of the virus.\cite{8} Our reported cases were post-COVID and had received steroids and/or tocilizumab treatment as per department protocol.

FESS has been reported to be curative for fungal ball. In cases of fulminant invasive mycoses, surgery prevents endo-cranial complications.

High doses of systemic amphotericin B are given to control underlying disease; it is given as an infusion over 2-6 hours to reduce the severity and frequency of side effects of rapid administration. Amphotericin B is the primary antifungal therapy for patients with opportunistic fungal infections although antifungals have poor penetration ability at the site of infection.\cite{9}

Our patients received it in a dose of 1 mg/kg body weight titrated over 3 days. Hypokalaemia, hypomagnesemia, fever, chills, dyspnoea, and hypotension are common side effects of Amphotericin B. Allergic reactions, seizures, anaemia, and thrombocytopenia are less likely to occur but are well-documented. Renal function is also impaired, and a permanent decrease in the glomerular filtration rate is likely.

Our patients frequently had difficult airway, intraoperative hypotension with occasional arrhythmias that responded to treatment with lidocaine. We were careful about renal, electrolyte, coagulopathy, haemodynamic, and respiratory aberrancies during the anaesthetic management of these patients because of the risk associated with all major systemic functions.\cite{10}

CONCLUSION

Rhino-orbital mucormycosis is a serious aftermath of COVID-19. An effective multi-disciplinary approach can help to tackle this deadly disease.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the legal guardian has given his consent for images and other clinical information to be reported in the journal. The guardian understands that names and initials will not be published and due efforts will be made to conceal identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Suhas Ashok Hooli, Vaijayanti Nitin Gadre, Sunita Bagde\(^1\), Manoj Dnyanba Gilvarkar

Departments of Anaesthesiology and \(^1\)Ear Nose Throat, Grant GMC, Mumbai, Maharashtra, India

Address for correspondence:

Dr. Vaijayanti Nitin Gadre, C/O Shri. Nitin R. Gadre, “Suniti”- 11, General Jagannath Bhosale Marg, Near Sachivalaya Gymkhana, Oppo- Mantralaya, Mumbai - 21, Maharashtra, India.

E-mail: vaijayantingadre@gmail.com

Submitted: 28-Apr-2021

Revised: 05-Jun-2021

Accepted: 05-Jun-2021

Published: 23-Jul-2021

Figure 1: Fungal Black Eschar and Polyps

![Image of Fungal Black Eschar and Polyps](image_url)
REFERENCES

1. Savastano MC, Gambini G, Cozzupoli GM, Crincoli E, Savastano A, De Vico U, et al. Retinal capillary involvement in early post-COVID-19 patients: A healthy controlled study. Graefes Arch Clin Exp Ophthalmol. 2021;1-9. doi: 10.1007/s00417-020-05070-3. Online ahead of print.

2. Bhatnagar S, Mehdiratta L, Karthik AR. Corona pandemic: Bringing anaesthesiologist's professional role and other skills to the fore. Indian J Anaesth 2020;64(Suppl 2):S87-90.

3. Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H. 'Eosinophilic fungal rhinosinusitis': A common disorder in Europe? Laryngoscope 2003;113:264-9.

4. Chakrabarti A, Das A, Panda NK. Controversies surrounding the categorization of fungal sinusitis. Med Mycol 2009;47(Supplement 1):S299-308.

5. Infectious rhinosinusitis in adults: Classification, etiology and management. International rhinosinusitis advisory board. Ear Nose Throat J 1997;76(12 Suppl):1-22.

6. Enoch DA, Yang H, Aliyu SH, Micallef C. The changing epidemiology of invasive fungal infections. Methods Mol Biol 2017;1508:17-65.

7. Castelnuovo P, Gera R, Di Giulio G, Canevari FR, Benazzo M, Emanuelli E, et al. [Paranasal sinus mycoses]. Acta Otolaryngol Ital 2000;20:6-15.

8. Shoenfeld Y. Corona (COVID-19) time musings. Our involvements in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev 2020;19:102538.

9. Laniado-Laborin R, Cabrales-Vargas MN. Amphotericin B: Side effects and toxicity. Rev Iberoam Micol 2009;26:223-7.

10. Bajwa SJ, Kurdi M, Stroumpoulis K. Difficult airway management in COVID times. Indian J Anaesth 2020;64(Suppl 2):S116-9.

How to cite this article: Hooli SA, Gadre VN, Bage S, Gilvarkar MD. The aftermath of COVID-19 pandemic: Rhino-orbital mucormycosis. Indian J Anaesth 2021;65:548-53.