Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies. Molecular & Cellular Proteomics 3: 675–691, 2004.

The plasma membrane (PM) is an organized system serving as a structural and communication interface with the extracellular environment for exchanges of information and substances. In animal cells, PM proteins represent a point for potential therapeutic intervention, making the PM a source of drug targets, for instance in cancer research (1). In plant cells too, as signaling processes controlling responses to biotic and abiotic factors occur in PM, a better knowledge of the PM proteome would help developing defense strategies. Indeed, in plant cells as well as in animal cells, the PM is controlling many primary cellular functions, such as metabolite and ion transport, endocytosis, cell differentiation and proliferation, etc. All these processes involve a large array of proteins with highly diverse structure and function. In addition, the strength of their association to the membrane varies, some being well embedded in the membrane lipid core while others are more peripheral proteins, sometimes reversibly associated with the membrane. However, due to their poor solubility, only a minority of integral membrane proteins have been identified, and most of them came out from in silico analyses since the genome of the model plant Arabidopsis thaliana was completed (2). The Arabidopsis Membrane Protein Library (AMPL; www.biosci.cbs.umn.edu/Arabidopsis/) was established by clustering the predicted membrane proteins based on sequence and sorted into families of known, predicted, or unknown functions (3). In ARAMEMNON, dedicated to Arabidopsis integral membrane proteins, averaging the predictions from seven publicly available programs led to the identification of ~6,500 proteins displaying at least one transmembrane domain (TM) of the 25,500 predicted protein sequences (aranemnon.botanik.uni-koeln.de) (4). Some 1,800 of these proteins contain four TM or more and are possibly linked to transport functions. Among those, it is not possible to identify PM proteins because no signal peptide or specific signature specifying the targeting to PM have been identified so far. On

1 The abbreviations used are: PM, plasma membrane; Cyt b5, cytochrome b5; 2-D, two-dimensional; GFP, green fluorescent protein; GRAYV, grand average of hydrophathy; pl, isoelectric point; TM, transmembrane segment; MALDI, matrix-assisted laser desorption/ionization; TOF, time-of-flight; ESI, electrospray ionization; MS/MS, tandem mass spectrometry; LC, liquid chromatography; PEG, polyethylene glycol; MOPS, 4-morpholinepropanesulfonic acid; DTT, dithiothreitol; C/M, chloroform/methanol; TIP, tonoplast intrinsic protein; PIP, PM intrinsic proteins; VDAC, voltage-dependent anion channel.
the basis of two-dimensional (2-D) gel electrophoresis, Masson and Rossignol (5) estimated that 500 polypeptides were present in the PM, corresponding to about 3% of total cellular proteins identified at that time. The total number of ~750 PM proteins can now be inferred from the entire Arabidopsis proteome (2).

Nowadays, the real challenge is to find the way of extracting and identifying the whole set of PM proteins, including especially the integral proteins. Several methods have been developed on various animal and plant biological systems and already allowed identification of plant integral or PM-associated proteins. First, immunoscreening of a cDNA expression library with an antiserum raised against PM proteins was used to identify genes encoding PM proteins in soybean (6) and A. thaliana (7). Then, the sequence trap technique was designed to clone, in mammalian COS cells, cDNAs encoding secreted or membrane-associated proteins (8). However, the most commonly used technique for all organisms to identify new membrane proteins has been the solubilization of proteins from membrane-enriched fractions with detergents and their separation by 2-D gel electrophoresis (9–12). Though numerous PM-specific proteins were identified by this method, most of these studies highlighted the fact that 2-D gel separation was not appropriate for a comprehensive mapping of membrane proteins. The first major problem is the chemical heterogeneity of proteins (isoelectric point (pI), molecular mass, and solubility). New 2-D PAGE procedures were developed to overcome this problem (13, 14). The second major limitation of this technique concerns protein solubility and/or hydrophobicity leading to an under-representation of the most hydrophobic proteins in 2-D gels (15, 16). Indeed, such proteins often precipitate or aggregate during the isoelectric focusing electrophoresis. The solubility of membrane proteins in 2-D gels has been improved with the use of new zwitterionic detergents during sample preparation (17), and combined with the development of mass spectrometry analysis, many new proteins were identified in PM from bacteria (18), human cells (1), and Arabidopsis plants (19). However, the majority of proteins identified by this technique remains mainly peripheral proteins (20). The last major problem is linked to the dynamics of protein expression in the cell. Low-abundance proteins, including regulatory proteins and rare membrane proteins, are out of the scope of standard proteomic techniques. One way to bring low-abundance proteins into view is to analyze subproteomes based on subcellular compartmentation (21). For instance, mammalian phagolysosome (22) and nuclear pore complex (23), PM in plant cells (9, 24) or animal cells (1), mitochondria from mammals (25) and plants (26), and different chloroplast membranes (27–29). Complexity of the membrane fractions to be analyzed can be reduced using different strategies such as chloroform/methanol extraction (30), reverse-phase chromatography (31), or blue natives gels (32).

The aim of this work was to uncover new membrane proteins from Arabidopsis cell PM and especially new transport systems and ion channels. In addition, by focusing on proteins of the most intrinsic core of the membrane, which are difficult to pick up with classical proteomic approaches, we expected to complement previous studies of membrane proteins separated by 2-D PAGE. In this article, we report mass spectrometry analyses of proteins solubilized from PM fractions from Arabidopsis cell suspensions. As an informative subcellular proteomic approach requires highly purified subfractions to be obtained, the purity of PM prepared from Arabidopsis cell suspensions was systematically assessed. Then, proteins were extracted from PM using different procedures in order to retrieve proteins within a wide range of hydrophobicity, i.e. chloroform/methanol extraction and alkaline treatment. Mass spectrometry analyses (matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF), electrospray ionization (ESI) tandem mass spectrometry (MS/MS), and nano-liquid chromatography (LC)-MS/MS) led to the identification of 102 different proteins. Database annotations and predictions indicate that more than 50% of them are integral proteins with 1–12 TM domains. Most of these proteins had never been identified before in the course of 2-D gel analysis of Arabidopsis PM (33). Moreover, PM localization of five new proteins was demonstrated by confocal microscopy. As to our objective, 34 proteins with at least four TM domains were identified, among which 20 proteins had been already characterized as transporters, and nine proteins display characteristics compatible with a transport function.

EXPERIMENTAL PROCEDURES

Cell Culture and PM Purification

A. thaliana cells were cultured in complete medium (34) under controlled conditions, continuous light, 23 °C, and 150 rotations per minute. Cells were collected after 5 days of culture, during the exponential phase. A microsomal fraction was obtained after grinding the cells and applying a series of differential centrifugations (35). A PM-enriched fraction was purified from microsomes by the two-phase partitioning between polyethyleneglycol (PEG) and dextran (6.4% w/w) (36). In this condition, the PEG upper phase is enriched in PM vesicles though the dextran lower phase, named endomembrane fraction, contains all other membranes. To eliminate contamination of the PM fraction with PEG, the PM fraction was again partitioned in a two-phases partition system consisting of 0.7 M PEG/K-PO4, pH 7 (37). In this system, PM is recovered in the saline lower phase. After an ultracentrifugation (110,000 × g), PM is recovered in the pellet. Proteins were resuspended in 50 mM 4-morpholinepropanesulfonic acid (MOPS)/NaOH, pH 7.8, 1 mM dithiothreitol (DTT). Protein amounts were estimated using Bradford procedure (38), and the proteins were concentrated at 10 mg/ml. The sensitivity of the Mg2+-ATPase activity to vanadate and KNO3 was used as a marker of PM and tonoplast, respectively (39). Cytochrome c oxidase activity was used as a marker of mitochondria (39).

Chloroform/Methanol (C/M) Extraction

Hydrophobic proteins were extracted from the purified PM fraction using a C/M (v/v) treatment as described by Seigneurin-Berny et al. (27). For the standard conditions, 0.2 ml (2 mg) of PM fraction was slowly diluted in 1.8 ml of cold 5/4 C/M solution. The resulting mixture was stored for 15 min on ice before centrifugation (4 °C) for 20 min at
17,600 × g. Insoluble proteins in the organic phase were recovered as a white pellet at the bottom of the tube. The organic phase, which contains the proteins soluble in C/M solutions, was removed for further protein analyses. C/M-soluble proteins were dried under nitrogen, precipitated with acetone (80%), resuspended in 20 μl of SDS-PAGE buffer (4×), and stored at −80 °C. Before SDS-PAGE separation, the proteins were solubilized at 95 °C in Laemmli buffer.

To analyze the effect of pH on the extraction efficiency, a 20 mM NaPi, pH 6 buffer was used instead of the classical 50 mM MOPS/NaOH, pH 7.8. To increase the diversity of extracted proteins, in some experiments the PM fraction was pretreated by 0.5% Triton X-100. After centrifugation (18,000 × g, 4 °C), the pellet and the supernatant were resuspended independently in the same volume and in the same buffer, leading to two subfractions, soluble and insoluble Triton (ST and IT). In that case, both ST and IT were used for C/M extraction. Denaturation at 37 °C before the SDS-PAGE was also tested, some proteins being damaged at 95 °C.

Treatment of PM Proteins with NaOH or Nonionic Detergents

The PM proteins (0.2 mg) were diluted in 0.2 ml of solubilization solution (50 mM MOPS/NaOH, pH 7.8, 1 mM DTT) containing either 1% (v/v) Triton X-100 or 0.1 M NaOH. After 30 min incubation on ice, the mixture was centrifuged (17,600 × g, 15 min, 4 °C) to separate two fractions: the supernatant containing proteins solubilized by the treatment and the pellet containing the insoluble proteins. The pellet proteins were then suspended in 50 μl of the initial solubilization solution (50 mM MOPS/NaOH, pH 7.8, 1 mM DTT) and both fractions were analyzed by SDS-PAGE as described above for C/M extracts.

SDS-PAGE and Western Blot Analyses

The different samples were separated on 10 or 12% acrylamide gels for SDS-PAGE analyses. Both gels (stacking and separation) and migration buffers contained 0.1% SDS. For some analyses, protein migration was stopped just between the stacking and the separating gels so that proteins were concentrated on a very thin band for further nanoLC-MS/MS analyses (30). Western blot analyses were performed after SDS-PAGE analysis of cell subfractions (mesosome, endomembrane and PM fractions) as described by Maniatis et al. (40), each fraction contained 20 μg of proteins. Western blot experiments were performed with markers of different membrane compartments. The anti-H^+ -ATPase (P-type) antibody is raised against the PM H^+ -ATPase of Nicotiana plumbaginifolia (used at 1/250) (kindly provided by M. Brouy). The anti-E 37 antibody is raised against a tobacco tonoplast protein (used at 1/2,000) (kindly provided by M. Boutry). The anti-E 37 antibody is raised against a protein from the inner envelope membrane of spinach chloroplast (used at 1/20,000). The anti-tonoplast intrinsic protein (TIP) antibody is directed against a tobacco tonoplast protein (used at 1/2,000) (kindly provided by C. Maurel and P. Gerbeau). The anti-Nad 9 antibody is raised against an extrinsic protein of the wheat mitochondrial inner membrane (used at 1/2,000), and the anti-TOM 40 antibody recognizes an outer membrane protein of yeast mitochondria (used at 1/2,000) (both kindly provided by J. M. Grienenberger and G. Bonnard). These antibodies were detected using alkaline phosphatase staining. The corresponding pre-immune sera were tested and gave no signal on blots.

Mass Spectrometry and Protein Identification

The in-gel digestion was carried out as previously described (41). Briefly, after separation by SDS-PAGE, individual bands were excised from the Coomassie blue-stained gel and washed with 50% acetonitrile and 25 μM NH₄HCO₃. Gel pieces were dried in a vacuum centrifuge and reswollen in 20 μl of 25 μM NH₄HCO₃ containing 0.5 μg of trypsin (sequencing grade; Promega, Madison, WI). After 4-h incubation at 37 °C, a 0.5-μl aliquot was removed for MALDI-TOF analysis and spotted onto the MALDI sample probe on top of a dried 0.5-μl mixture of 4 volumes solution of saturated n-cyano-4-hydroxy-trans-cinnamic acid in acetonitrile and 3 volumes of nitrocellulose (10 mg/ml) dissolved in acetone/isopropanol 1/1 (v/v). Samples were rinsed by placing a 5-μl volume of 0.1% (v/v) trifluoroacetic acid on the matrix surface after the analyte solution had dried completely. After 2 min, the liquid was blown off by pressurized air. Tryptic digests were then subjected to MALDI-MS analysis on an Autoflex instrument (Bruker, Billerica, MA) in order to obtain peptide mass fingerprints. For protein identification purposes, mass spectrometric data were searched using the MS-Fit (prospector.ucsf.edu) or the Mascot softwares (www.matrixscience.com). Searching parameters were as follows: one missed cleavage, 100 ppm mass accuracy, six peptides allowed. For hits that did not fit with the tolerated mass accuracy and the occurrence of six peptides per protein, protein identification was achieved by MS/MS analysis.

For ESI-MS/MS analyses, after in-gel tryptic digestion the gel pieces were then extracted with 5% (v/v) formic acid solution and acetonitrile. The extracts were combined with the original digest, and the sample was evaporated to dryness in vacuum centrifuge. The residues were dissolved in 0.1% (v/v) formic acid and desalted by using C18 Zip Tips (Millipore, Bedford, MA). Elution of the peptides was performed with 5–10 μl of a 50:50:0.1 (v/v) acetonitrile/H₂O/formic acid solution. The peptide solution was introduced into a glass capillary (Protana, Odense, Denmark) for nanoESI. MS/MS experiments were carried out on a quadrupole TOF (QTOF) hybrid mass spectrometer (Waters, Micromass, Manchester, United Kingdom). Interpretation of MS/MS spectra was achieved manually and with the help of the PEPSEQ program (MassLynx software; Micromass). MS/MS sequence information was used for database searching by using either BLAST (www.ncbi.nlm.nih.gov/blast) or MS pattern (prospector.ucsf.edu) programs.

For the LC-MS/MS, after the in-gel digestion gel pieces were then extracted with 5% (v/v) formic acid solution and acetonitrile. After drying, tryptic peptides were resuspended in 0.5% aqueous trifluoroacetic acid. The samples were injected into a LC-Packings (Dionex, Sunnyvale, CA) or a CapLC (Waters) nanoLC system and first preconcentrated on a 300 μM × 5 mm PepMap C18 precolumn. The peptides were then eluted onto a C18 column (75 μm × 150 mm). The chromatographic separation used a gradient of solution A (5% acetonitrile:95% water:0.1% formic acid) to solution B (95% acetonitrile:5% water:0.1% formic acid) over 60 min at a flow rate of 200 nl/min. The LC system was directly coupled to QTOF1 or QTOF Ultima mass spectrometer (Waters), MS and MS/MS data were acquired and processed automatically using MassLynx 3.5 software. Database searching was carried out using the MASCOT 1.7 program available via internet. The parameters for Mascot searches were as follows: two missed cleavages; 2 and 0.4 Da mass accuracy allowed for parent and the fragment ions, respectively, carbamidomethyl as fixed modification, oxidized methionine, acetylation of the peptide or for parent and the fragment ions, respectively, carbamidomethyl as fixed modification, oxidized methionine, acetylation of the peptide or for parent and the fragment ions, respectively, carbamidomethyl as fixed modification, oxidized methionine, acetylation of the peptide or...
A. thaliana database (NCBI A. thaliana specified or TAIR (ftp.arabidopsis.org/home/tair/) databases).

Prediction Methods

Predictions for membrane-spanning regions were achieved by using the ARAMEMNON database (aramemnon.botanik.uni-koeln.de) (4). The GRAVY (grand average of hydropathicity) was obtained using the software program ProtParam tool (42). The same software program was used to analyze the other parameters (pl and molecular mass) (us.expasy.org/tools/protparam.html). The presence of conserved domain in all proteins was searched on the NCBI conserved domain database (CCD; www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). CCD currently contains domains derived from two commonly used collections, Smart and Pfam, plus contributions from colleagues at NCBI, such as COG.

Transient Expression of Protein Fusions in Onion Epidermal Cells or in Arabidopsis Protoplasts

The AtNRAMP3 and AtNRAMP4 plasmids were kindly provided by S. Thomine. cDNAs encoding translational fusions between P31 or P24 and the green fluorescent protein (GFP), RS(35S-GFP), (43, 44), were constructed as follows. To remove the stop codon and introduce BamHI and XbaI restriction sites, P31 cDNA was amplified with the oligonucleotides Xba-P31 (5'-GGT TAG AAT GGG GAA TTA TCT CAG GCC C-3') and Bam-P31 (5'-GGA TCG AGG CAT TGT TGG CCT G-3'). P24 cDNA was amplified with the oligonucleotides Xba-P24 (5'-GGT TAG AAT GGG TTA CTG GAA TCA CAA G-3') and Bam-P24 (5'-GGA TCG TCT GGT GTG CAG CC-3'). P31 and P24 were subsequently cloned in the BamHI and XbaI sites in the plant transient expression vector CD3-327 (weedsworld.arabidopsis.org.uk/vol3ii/sol-modGFP.html) to generate a fusion with the GFP as an additional C-terminal domain, under the control of the CaMV 35S promoter. To construct a cDNA encoding a translational fusion between POR2 and the DsRed2, Cyt b5 and DsRed2 were isolated from protoplasts by PEG-mediated transformation as described in Thomine et al. (45). Briefly, Arabidopsis suspension cells were digested in Gamborg's B5 medium supplemented with 0.17 mM glucose, 0.17 mM mannitol, 1% cell wall-degrading enzyme. The protoplasts were isolated from Arabidopsis suspension cells and used as a control for the CaMV 35S promoter.

Enzymatic characterization of the PM fraction

Activity	Value	n
Vanadate-sensitive ATPase activity	3.7 ± 0.3a	9
Nitrate-sensitive ATPase activity	0.9 ± 0.1a	9
Cyt. c oxidase activity	2.9 × 10^3a	6
Vanadate-sensitive ATPase activity (PM)	91.6%	7
Total ATPase activity (PM)		

*: Ratio between the activity of the plasma membrane fraction and the activity of the microsomal fraction. Cyt. c, cytochrome c. n = number of independent experiments.

Fluorescence Visualization

Fluorescent cells were imaged by confocal microscopy (Leica TCS SP2; Leica Microsystems, Wetzlar, Germany) upon excitation by an argon laser at 488 nm, the fluorescence emission signal of GFP was recovered between 495 and 530 nm. Upon excitation by a helium-neon laser at 543 nm, the emission signal was recovered between 555 and 620 nm for DsRed2. In co-localization experiments, the wavelength windows for collecting the two fluorescence signals at the same time were narrowed, in order to avoid any emission of one fluorescent protein into the observation range of the other one.

RESULTS AND DISCUSSION

Extraction and Analysis of Hydrophilic Proteins from Arabidopsis PM

Protein Extraction—PM fractions were isolated from Arabidopsis cell suspensions using the two-phase partitioning method (36). The purity of membrane preparations was estimated from enzymatic assays (Table I). The enrichment in PM was estimated at 3.5–4 times compared with the microsomal fraction. A slight decrease in the ratio of NO_3^- sensitive ATPase activities in both fractions revealed a depletion of tonoplast in the PM fraction. A major part (92%) of the total ATPase activity associated with the PM fraction was vana-date-sensitive. This suggests that the PM contamination by tonoplast and other membranes displaying ATPase activities (endoplasmic reticulum, mitochondria, chloroplasts) was at most 8%, a likely overestimation considering the relative lack of specificity of the inhibitors used in the enzymatic assays.
Cytochrome c oxidase activity, an enzymatic marker of mitochondria, was almost undetectable in the PM fraction (Table I). This set of results was completed by immunological tests using antibodies against antigens specifically associated with various membrane systems. Western blot profiles (Fig. 1) show that antigens from the vacuolar membrane (γ-TIP), mitochondrial membranes (Nad9 and TOM 40 residing in the inner and outer membranes, respectively), or chloroplast membranes (E37 from the inner envelope) are present in microsomal fractions but cannot be detected in PM fractions. The anti-H⁺-ATPase IgG preparation does recognize this P-type enzyme mostly in the PM fraction, further illustrating the enrichment detected by the enzymatic test. These data confirm the high degree of enrichment in the PM fraction and its low level of contamination by organelles and endomembranes.

A survey of the literature shows that hydrophilic proteins are routinely extracted by nonionic detergents like Triton X-100 or by alkaline treatments such as NaOH leading to the recovery, after centrifugation, of hydrophobic proteins in the pellet (11, 46). Organic solvents have been used successfully for solubilizing highly hydrophobic proteins from membranes of the chloroplast envelope (27) and thylakoids (41). Preliminary experiments showed that it was also efficient on PM proteins. Several extraction conditions were compared: various C/M ratios (3/6, 5/4, 7/2), different extraction pH (6.0, 7.8) and temperatures for protein solubilization in Laemmli buffer (37 °C, 95 °C). Besides the solubilization in organic solvents, a Triton X-100 treatment or an alkaline wash (NaOH) of the membrane samples was performed to increase the diversity of recovered proteins. Whatever the method used, proteins were then submitted to one-dimensional SDS-PAGE analyses. The polypeptide profiles of the different fractions (soluble and insoluble) obtained after C/M extraction (C/M ratio 5/4, pH 7.8, and solubilization temperature 95 °C) and NaOH treatment are shown in Figure 2, A and B, respectively. When varying the C/M extraction conditions, almost similar profiles were obtained, except a few new bands appearing in the extreme molecular masses. Triton X-100 extraction led to polypeptide profiles that were similar for soluble and insoluble fractions and was not used in further experiments (data not shown). The most hydrophobic proteins contained in the soluble C/M fractions and in the NaOH pellet were analyzed. Discrete bands were excised from the gels and digested by trypsin prior to mass spectrometry analyses using MALDI-TOF and ESI-MS/MS techniques. Moreover, to detect the low-abundance proteins, new C/M and NaOH fractions were prepared and analyzed by nanoLC-MS/MS.

In Silico Characterization of the Hydrophobic Proteins Analyzed by Mass Spectrometry—A total of 468 different peptides were sequenced and matched with 102 different proteins. Because we were using *Arabidopsis*, which has been completely sequenced, the analysis of a single peptide containing about 10 amino acids is usually sufficient for identifying the protein, though some sequenced peptides belong to several proteins of a same family, which might led to at most 125 identified proteins. Among the identified proteins, 59 were solubilized in the C/M mixture and 60 were recovered in the insoluble NaOH pellet, including 17 proteins that are common to both extraction conditions. Among the NaOH-insoluble phase, we identified five ribosomal proteins, showing that alkaline treatment does not totally eliminate major soluble proteins. These ribosomal proteins were considered as contaminants and were excluded from further analyses. In silico analyses of the whole set of 97 proteins were performed combining the use of several programs for physico-chemical parameters and structure predictions (see Tables II to V).
The molecular masses of the identified proteins ranged from 8 to 112 kDa, with 67% of them ranging from 20 to 40 kDa. The values of their pI are also largely scattered, between 4 and 11. By averaging the data obtained from seven different prediction programs (ARAMEMNON, Ref. 4) based on the detection of hydrophobic or amphiphilic \(\alpha \)-helices, 51% of the proteins were classified as TM candidate proteins, displaying at least one predicted TM span. Among them, 16% exhibited one to three TM, 20% showed four to six TM, and 15% had seven to 12 TM (Fig. 3A). This classification, based on the presence of putative \(\alpha \)-helices, shows its limit in the identification of membrane proteins, because the proteins of the

The following table summarizes the membrane transporters identified:

AGI Acc. no.	kDa	pI	TM/M	GRAVY	AtDB annotations	Conserved domains	T	NbP	C/M	NaOH
ATPases										
At2g18960	104.2	6.25	10	0.077	Plasma membrane proton ATPase type 1 (PMA1)	MgtA, ZntA, KdpB, E1–E2-ATPase, Hydrolase, ZntA, KdpB, Cation-ATPase	L*	2	X	X
At4g30190	16.6	8.62	4	0.954	H\(^+\)-transporting ATPase 16K chain, vacuolar (ava-p1)		L	2		
Transporters										
At2g38940	58.6	8.35	11	0.323	Phosphate transporter (ATP2)	Sugar-tr	E*	8	X	X
At5g43360	57.3	9.11	12	0.388	Inorganic phosphate transporter (PHT3)	Sugar-tr, MelB, UhpC,	L	2	X	
Transporters										
At4g27720	50.9	6.82	9	0.510	Putative transporter		L	1	X	
At5g95920	38.3	5.99	8	0.529	Zinc transporter ZIP2	Zip, Predicted divalent heavy-metal cations transporter	L	1	X	
Channels										
At4g1430	30.7	9.14	6	0.367	PIP1;1	MIP	L	5	X	X
At2g59600	30.6	9.16	6	0.405	PIP1;2	MIP	L*	4	X	X
At4g23400	30.6	9.02	6	0.381	PIP1;3	MIP	L*	4	X	
At4g00430	31.6	9.00	6	0.405	Probable PIP1;4	MIP	L	2	X	
At3g34200	30.5	8.89	6	0.401	Probable PIP1;5	MIP	L*	2	X	X
At3g17180	30.4	7.69	6	0.506	PIP2;1	MIP	L*	6	X	X
At2g37170	29.6	8.82	6	0.486	PIP2;7	MIP, GlpF, GlpF	L*	6	X	X
At4g35100	25.8	4.92	7	0.791	TIP1;2 (\(\gamma \))	MIP	L	1	X	
At4g26240	25.0	5.30	6	0.974	TIP2;1 (\(\delta \))	MIP	E*	1	X	X
At4g18910	31.3	8.63	6	0.446	NIP2;2 (NOD26-like)	MIP	L	1	X	
At5g15090	29.2	7.84	0	−0.183	Putative porin (POR2)	Euk-porin	M*	22	X	
At3g01280	29.4	8.77	0	−0.114	Putative porin (POR1)	Euk-porin	L	1	X	
At4g57490	30.9	7.93	0	−0.166	Putative porin	Euk-porin	L	1	X	

The functions and conserved domains were assumed according to the BLAST and BLAST smart domains as sources. T, mass spectrometry techniques permitting the protein identification; M, MALDI-TOF; E, ESI-MS/MS; L, LC-MS/MS. Asterisks indicate protein found at least twice in two different gels. NbP, number of different sequences from the corresponding protein. C/M, protein extracted by C/M. NaOH, Proteins identified in the membrane after NaOH 0.1 M washing.
AGI Acc. no.	kDa	pl	TM/M	GRAVY	AtDB annotations	Conserved domains	T	NbP	C/M	NaOH
Receptors										
At2g01210	78.3	5.75	1	−0.118	TM protein kinase putative	Pkinase, S-TKc, TyrKc, SPS1, LRR	L	1	X	
At3g02880	67.7	8.60	2	−0.091	TM protein kinase putative	Pkinase, S-TKc, TyrKc, SPS1, LRR	L*	2	X	
At4g02600	59.1	8.71	7	0.192	AtMlo-h1-like protein	Mlo	L	1	X	
GTP binding and related proteins										
At4g02080	22.0	6.97	0	−0.170	SAR1/GTP-binding secretory factor	SAR, ARF, GTPase, SAR1	L	1	X	
At3g62560	23.0	5.21	0/pr	−0.386	GTP-binding protein RAB7D putative	RAB, RAS, SAR1, RHO, RAN, ARF	L	1	X	
At1g56330	22.6	5.02	0/pr	−0.374	GTP-binding protein ara-5	RAS, GTPase, SAR1	L	2	X	
At3g7410	24.3	4.74	0/pr	−0.364	GTP-binding protein putative	RAS, GTPase, SAR1	L	1	X	
At5g7520	24.4	5.98	0/pr	−0.323	GTP-binding protein putative	RAS, GTPase, SAR1	L	1	X	
At1g16920	24.0	5.59	0/pr	−0.341	GTP-binding protein Rab11	RAS, GTPase, SAR1	L	1	X	
At4g18800	30.2	7.74	5	0.367	Putative protein	Yip1, Rab GTPase-interacting factor	L	1	X	
At5g7200	22.3	5.27	0/pr	−0.290	Ras-related small GTP-binding protein like	RAS, GTPase, SAR1	L	3	X	
At4g17530	22.3	5.27	0/pr	−0.273	Ras-related small GTP-binding protein RAB1c	RAS, GTPase, SAR1	L	4	X	
At3g53610	23.9	8.36	0/pr	−0.346	Ras-related small GTP-binding protein putative	RAS, GTPase, SAR1, RHO	L	3	X	
At5g59840	23.8	8.36	0/pr	−0.298	Putative GTP-binding protein	RAS, RAB, GTPase, SAR1	L	5	X	
At3g60600	23.8	7.65	0/pr	−0.296	GTP-binding protein ara-3	RAS, RAB, GTPase, SAR1	L	5	X	
At1g07940	49.5	9.19	0	−0.325	Elongation factor 1 α (EF-1α)	GTP-EFTU-D2, D3, ATP-binding	L*	2	X	
At5g60390	21.2	6.91	0/my	−0.182	ADP-ribosylation factor putative	ARF, SAR, GTPase, SAR1, RAS, RAB	L	1	X	
At1g10630	20.4	7.64	0/my	−0.029	ADP-ribosylation-like protein	ARF, SAR, GTPase, SAR1, RAS, RAB	L	1	X	
Cellular traffic proteins										
At1g04920	49.5	4.93	0	−0.195	Tubulin α2/α4 chain	Tubulin, tubulin C	L	1	X	
At3g97470	30.0	5.09	1	−0.515	Syntaxin SYP71	t-SNARE	L	3	X	
At3g11820	38.0	9.06	1	−0.573	Syntaxin SYP121(At-SYR1)	SynN, t-SNARE, Syntaxin, Synaptobrevin, SNC1	L	1	X	
At2g33120	24.9	9.07	1	−0.122	Synaptobrevin protein (AtVAMP722)	Synaptobrevin	L	3	X	
At3g17440	30.4	6.86	1	−0.548	Novel plant SNARE 13 (AtNPSN13)	t-SNARE	L	2	X	
At1g84240	71.7	6.11	6	−0.095	Unknown protein	PuO, Type II secretory pathway	L	1	X	
Stress induced proteins										
At3g01290	31.3	5.67	0/my	−0.069	Expressed protein (P31)	Band-7, HflC Membrane protease subunits, PHB	M*	15	X	X
At5g62740	31.4	5.29	0/my	−0.101	Hypersensitive-induced response protein	Band-7, HflC Membrane protease subunits, PHB	L	7	X	
TABLE III—continued

AGI Acc. no.	kDa	pl	TM/M	GRAVY	AtDB annotations	Conserved domains	T	NbP	C/M	NaOH
At3g63080	19.3	9.28	0/my	−0.343	Prohibitin-related	Band-7, HflC Membrane protase subunits, PHB	L*	2	X	
At4g11600	18.6	6.59	0	−0.253			L*	7	X	
At5g53560	15.0	5.11	1	−0.342			E*	1	X	
At4g03280	24.4	8.80	1	−0.087			E*	5	X	
At4g27270	22.3	6.30	1	−0.084			M*	4	X	
At4g27890	21.5	6.84	0	−0.028			M*	4	X	
At5g54500	30.4	6.99	1/my	−0.108			E*	5	X	
At4g93750	28.7	5.17	0	−0.210			E*	5	X	
At1g13440	36.9	6.67	0	−0.137			L*	2	X	
At5g10730	32.6	9.34	0	0.056	Expressed protein		L	1	X	
At2g02400	34.8	5.82	0	0.049			E	1	X	
At3g02600	40.8	6.23	5	0.079			L	1	X	
At1g80050	21.0	5.69	1	0.229			L	1	X	
At4g25100	23.8	6.06	0	0.291			M*	6	X	
At1g63290	24.1	5.72	0	0.082			E*	3	X	

TABLE IV

Metabolism

AGI Acc. no.	kDa	pl	TM/M	GRAVY	AtDB annotations	Conserved domains	T	NbP	C/M	NaOH

Stress regulated proteins

AGI Acc. no.	kDa	pl	TM/M	GRAVY	AtDB annotations	Conserved domains	T	NbP	C/M	NaOH
At3g61260	23.1	5.55	0	−0.765	Putative DNA binding protein	Remorin-N, remorin-C	M*	8	X	
At2g55820	21.0	8.63	0	−0.814	Remorin	Remorin-N, remorin-C	L	1	X	
AT4g12420	65.6	9.16	4	−0.236	Pollen-specific protein (SKU5), predicted GPI-anchored protein	Cu-oxidase, SufI	M*	14	X	

Plant Plasma Membrane Proteomic

Molecular & Cellular Proteomics 3.7
porin-type, known to form a β-barrel embedded in the membrane lipid bilayer, have no α-helices and are therefore not predicted as TM proteins (Table II). Some of the proteins lacking putative α-helices can be predicted to be anchored to the membrane owing to hydrophobic tails: eight proteins have putative myristoylation sites and 10 proteins have putative prenylation sites (Table III).

In the literature, the GRAVY index is also commonly used to describe the hydrophobicity properties of proteins. The GRAVY score (42) takes into account the size and the charge of the whole protein and ranges for instance from –2 to +2 in the whole proteome predicted from the Escherichia coli genome sequence (16), positive values referring to hydrophobic proteins. The GRAVY of the Arabidopsis plasma membrane proteins analyzed ranges from –1.6 to +1 (Fig. 3B). Only 20% of the proteins display a GRAVY value higher than +0.4 and can thus be considered as highly hydrophobic, such as the glucose transporter STP1 (+0.482, Table II). The majority of the analyzed proteins has a GRAVY between +0.4 and –0.4, which could not discriminate their hydrophobic or hydrophilic nature (11, 20). For instance, on one hand, the P-

AGI Acc. no.	kDa	pI	TM/M	GRAVY	AtDB annotations	Conserved domains	T	NbP	C/M	NaOH
At1g32050	30.0	7.66	4	0.233	Secretory carrier membrane protein putative	SCAMP	L	1	X	
At1g61250	32.6	8.87	4	0.185	Putative secretory carrier membrane protein	SCAMP	L	1	X	
At3g45600	31.9	8.93	4	0.246	Putative protein senescence-associated transmembrane 4	Transmembrane 4	L	2	X	
At2g23810	30.6	8.86	4	0.230	Hypothetical protein senescence-associated transmembrane 4	Transmembrane 4	L	1	X	
At1g73650	33.0	9.14	7	0.516	Expressed protein	Predicted membrane protein	L	2	X	
At1g18180	33.6	9.22	7	0.466	Hypothetical protein	Predicted membrane protein	L	1	X	
At3g61560	29.8	6.36	3	-0.010	Putative protein	Reticulon	L	1	X	
At4g23630	30.5	8.32	3	-0.068	Putative protein	Reticulon	L	1	X	
At1g75500	42.6	9.16	9	0.566	Nodulin-like protein	DUF6, DUF6 RhaT	L	1	X	
At4g15630	20.1	9.90	4	0.658	Expressed protein	DUF588	L	2	X	
At5g24670	27.8	9.60	3	-0.125	Unknown protein	Tim17, lipoprotein lipid attachment site	L	1	X	
At4g38840	11.1	6.56	0	-0.115	Auxin-induced protein-like	Auxin-inducible	L	1	X	
At2g37970	23.7	7.74	0/amy	-0.407	Expressed protein	SOUL heme-binding protein	L	1	X	
At1g18380	25.7	5.55	2	-0.076	Unknown protein		L*	2	X	
At4g20260	24.6	4.99	0	-0.706	Endomembrane-associated protein (P24)		M*	5	X	X
At1g13930	16.1	4.82	0	-0.883	Unknown protein		E	2	X	
At2g30930	16.9	4.92	0	-0.251	Expressed protein	E*	4	X		
At5g11680	23.1	6.35	0	-0.199	Putative protein		L	2	X	
At5g39730	20.0	5.01	0	-0.703	Avirulence-induced gene (AIG) like		L	1	X	
At5g44610	18.5	4.92	0	-0.886	Expressed protein		L	1	X	
At1g81080	15.1	11.07	0	-1.006	Expressed protein		L	1	X	
At5g53880	7.8	9.19	0	-1.564	Expressed protein		L	1	X	
At2g1420	10.7	4.31	0	-0.946	Unknown protein, proline-rich protein family		L	1	X	
At3g22231	8.5	4.39	0	-0.130	Expressed protein		L	1	X	
At5g12010	56.8	5.68	0	-0.504	Putative protein		L	1	X	

Fig. 3. Classification of PM proteins according to physicochemical properties. A, classification according to the number of TM segments. TM were predicted using ARAEMMON database accessible at aramemnon.botanik.uni-koeln.de (4). B, protein distribution according to the GRAVY indexes (42). GRAVY values were automatically calculated using the ProtParam tool on the ExPasy server at expasy.hcuge.ch/sprot/protparam.html.
On the other hand, the D-ribulose-5-phosphate 3-epimerase, without predicted TM domain, has a GRAVY of only -0.082 (Table IV). To better define subclasses in the population, the GRAVY index was plotted versus pI (Fig. 4). Basically, three groups of proteins can be distinguished, those with relatively low pI (between 4 and 7) and mainly negative GRAVY (class I), those with high pI (from 7 to 10) and negative GRAVY (class II), and the third class (class III) displaying high pI (pI > 8.8) and high hydrophobicity expressed as the ratio of the number of amino acid residues per number of predicted TM (Res/TM < 100). Our analysis of the PM hydrophobic proteome did not reveal any particular characteristic trait specifying PM proteins, as pI values were spread over 7 pH units and Res/TM ratios were often higher than 100. The difference between these two hydrophobic proteomes might be related to the lipid composition of these membranes, as well as to the structure of PM proteins, which often exhibit longer extracellular and cytosolic loops and longer N- and C-terminal extensions when compared with envelope proteins. In other respects, none of the different parameters used in the present study (number of TM, GRAVY index) was sufficient on its own to characterize the hydrophobicity of the PM proteins. It thus appeared necessary to validate experimentally their association with the PM.

Confirmation of the PM Localization of Newly Identified PM Proteins

The quality of the purified PM fraction, as assessed by enzymatic and immunological assays, was the first criterion for establishing the PM localization of the proteins identified in the course of this study. Indeed, mass spectrometry analyses.
did not reveal the presence of major proteins from other organelles, such as the phosphate/triose-phosphate translocator or the RuBisCo for the chloroplasts, or of elements of the NADH dehydrogenase, the HSP60 complex, the F0F1-ATP synthase, or the cytochrome c reductase, the four dominant protein complexes of mitochondria. Moreover, several proteins identified (H+\text{-}ATPase, PM intrinsic proteins (PIPs)) were already well-known PM proteins. Other proteins, already described as PM resident proteins but in other plants, are present in the \textit{Arabidopsis} PM fraction, thus strengthening their PM localization. This is the case for remorins, close to potato remorins (53), the phosphate transporters AtPT1 and AtPT2 homologous to LePT1 identified in tomato (54), AtSYR1 similar to the tobacco syntaxin Nt-Syr1 (55), and the metal transporter ZIP2 (56).

Despite these observations, it remains an uncertainty in the subcellular localization of previously unknown gene products. Moreover, some gene products (such as porins, TIP, or Rieske protein) were previously described in membrane compartments other than PM. Even if no major proteins from other organelles were identified in the PM fraction, it might contain minute amounts of contaminating proteins from other cell compartments, and some proteins may have a dual localization. Therefore, we decided to investigate the subcellular compartmentation of several of the identified proteins with uncertain localization to validate our PM proteomic strategy. The first chosen proteins were unknown abundant proteins, identified from the first MALDI-TOF analyses, exhibiting negative GRAVY values and belonging to class I: a protein with prohibitin motives (P31; Table III), a protein previously described as endomembrane-associated (P24; Table V), and Cyt \textit{b5} (Table IV), which is often described in internal membrane compartments (57, 58). Transient expression of fusion proteins with fluorescent protein reporters, such as GFP or DsRed2, was performed in protoplasts isolated from \textit{Arabidopsis} cell suspensions and followed by confocal microscopy observations (Fig. 5). Green fluorescence associated with the GFP marker clearly delineated the PM upon expression of p24::GFP or p31::GFP fusions. The Cyt\textit{b5}::DsRed2 fusion was co-expressed with GFP fused to AtNRAMP3, a metal transporter targeted to the vacuolar membrane (45). Red and green fluorescence signals appear very close to each other, but a close-up view of the nucleus area reveals distinct green labeling of the tonoplast and red labeling of the PM, thus confirming the PM localization of Cyt \textit{b5} (Fig. 5). The expression of another GFP fusion with a protein from the quinone reductase family (P22; Table IV) led to a strong labeling of the PM together with a fluorescence background in the cytosol (data not shown). In other respects, a porin-like protein (POR2; Table II) was identified in the PM fraction, though members of this family are commonly described as mitochondrial components (59, 60). In our classification, POR2 belongs to class II with regards to its properties, no predicted TM, negative GRAVY, and high pI. As the overexpression of POR2::GFP was lethal for \textit{Arabidopsis} protoplasts, onion epidermal cells were used as an alternative transient expression system. Co-expression of a POR2::DsRed2 fusion with a tonoplast metal transporter, AtNRAMP4::GFP (S. Thomine, personal communication), was performed (Fig. 6). The merge of red and green fluorescence signals clearly showed a PM localization for the POR2 protein in reference to the tonoplast targeting of the AtNRAMP4 protein. PM localization could thus be demonstrated by confocal microscopy for the five proteins chosen for further investigation, even when \textit{in silico} analyses did not predict a TM structure. A significant proportion of the proteins identified in the hydrophobic PM fraction are in fact peripheral proteins, most likely because they are more abundant than integral proteins, as previously sug-

![PM targeting of P24, P31 and Cyt b5 in Arabidopsis protoplasts.](image)
The Rieske protein (At4g03280) (31, 67, 68), has been found to be a component of the chloroplastic cytochrome complex, although its role is still under investigation. Robinson et al. (66) also observed an im-munological labeling of TIP proteins associated with the PM. The latter hypothesis, Robinson et al. (66) also observed an immunological labeling of TIP proteins associated with the PM. Concerning putative protein contaminants of the PM fraction, members from several protein families usually described as residing in other membrane compartments have been identified in the hydrophobic PM proteome. Proteins such as the V-ATPase and the porins are classically accepted to reside in the tonoplast (61) and in the mitochondrial membrane (60), respectively. However, they were found here in the PM fraction. It is surprising to find this protein in the present PM proteome because no abundant chloroplastic protein was present.

Functional Survey of the Analyzed PM Proteins

Among the 100 proteins identified in the course of this study, only 23% were present in protein databases. All others were only previously described at the level of either cDNA (67%) or even only from genomic sequence (10%). Sequence analyses using programs for domain predictions were used to classify the protein population. The percentage of known proteins (or paralogues of known proteins) is 49%, whereas putative (proteins with a low homology with known proteins) and unknown proteins represent 19 and 32%, respectively.

Based on sequence homologies with known proteins and on identified functional domains, putative functional classes could be assigned for ~75% of the proteins. The whole set of proteins can be divided mainly in three large functional groups (Tables II–IV). In each group, several proteins share common putative function or at least functional domains, thus defining families. The unknown proteins are grouped in a fourth class (Table V).

Membrane Transporters (Table II)—Several transporters, pumps, and channels were identified in the hydrophobic PM fraction. Among them, it is not surprising to find the P-type H\(^+\)-ATPase (PMA1 and/or PMA2 forms), the most representative integral protein of the PM (49). In contrast, we identified the two subunits 16K and G of the V-type H\(^+\)-ATPase in the PM fraction, although they have been described as associated with the tonoplast (61). Such a surprising localization is in fact supported by previous observations: Rouquié et al. (69) identified the G subunit in tobacco PM, whereas Robinson et al. (66) identified by immuno-localization studies the 16K subunit in pea PM, in agreement with the localization observed in many other eukaryotic cells (62). In addition to such components of the proton pump, the PM fraction contained the phosphate transporters AtPT1 and AtPT2 homologous to LePT1 identified in tomato. LePT1 was previously shown to be localized in PM by Western blot experiments (54). Furthermore, glucose transporters of the STP family, STP1 and STP4, are known to function as monosaccharide/H\(^+\) symporters through the PM (47, 70). Very recently, MtZIP2, the orthologue of the metal transporter AtZIP2, has been localized in PM (56). Interestingly, the family of PIPs is well represented in the population of hydrophobic proteins extracted from PM as at least eight different PIPs are present. The physiological role of PIPs is well documented (71, 72), and evidence for their localization in the PM were brought for PIP2;1 (51), PIP2;3 (73), and more recently for several isoforms of PIP1 and PIP2 (24). Our study provides further evidence for the plasma membrane association of a large number of PIP proteins. The presence of two TIPs in the population, δ-TIP found in each analyzed fraction and γ-TIP found only once, could result from...
the extraction of small specialized vacuoles together with PM vesicles, to which they are associated, storage vacuoles in the case of δ-TIP and lytic vacuoles for γ-TIP (65).

Porins from the voltage-dependent anion channel (VDAC) family have also been identified in the PM hydrophobic fraction. These proteins are peculiar as they show no predicted TM domain, though they are integral membrane proteins characterized by the presence of 12 β-sheets forming a TM β-barrel structure within the membrane. VDAC proteins have been found in most of the organisms and are often described as membrane proteins forming a pore in the outer membrane of mitochondria and playing an essential role in apoptosis (59, 60). However, several studies based on electrophysiology, immunological techniques (74, 75), and, more recently, on the use of chimeric proteins VDAC::GFP in mammalian cells (64, 76, 77) demonstrated the presence of VDAC proteins at the cell surface in the PM. By confocal microscopy experiments, we confirm here for the first time that one VDAC, POR2, identified by MS in the PM fraction, is indeed targeted to the PM in plant cells (Fig. 6).

Signaling and Cellular Traffic Components (Table III)—We have identified three TM receptors, among which are two protein kinases, sharing 35% identity at the protein level and belonging to the large family of the leucine-rich repeats (LRR) receptor kinases. These proteins were described only as mRNA in databases, and this work provides evidence for the existence of the two proteins and their presence at the PM. A Mlo-h1-like protein, another type of receptor characterized by seven TM domains, is present in the PM fraction. Mlo-h1 is a genetic locus for resistance to mildew in barley (78), and the protein was identified by Western blot in PM vesicles from *A. thaliana* (79).

The great majority of proteins in Table III belongs to the superfAMILY of small GTP-binding proteins and related proteins (ADP-ribosylation factors), which play key roles in signaling pathways, and in vesicular traffic and targeting to the PM (80). This classification is based on the identification in the sequences of conserved domains like RAB, RAS, ARF, or SAR domains. Membrane anchoring of these proteins is a prerequisite to their activity and/or their interaction with effector proteins. Their association to membranes is mediated by post-translational modifications such as prenylation, palmitoylation, or myristoylation (81, 82). All the GTP-binding proteins found here show a putative site of prenylation in their C-terminus, and the two ADP-ribosylation factors are predicted to be myristoylated (83, 84). Their presence in the PM is well documented; it relies on immunological evidence (85, 86) and, more recently, on subcellular localization studies using GFP fusions (87, 88). Several other proteins, displaying a t-SNARE domain, are also associated with the PM fraction as expected from the role of that membrane as a target for vesicular traffic. Moreover, the tobacco syntaxin Nt-Sy1, highly similar to the *Arabidopsis* SYP121 (72% identity), has been localized by immunogold labeling in PM (55).

Members from the PID (proliferation, ion, and death) superfamily, as defined by Nadimpalli *et al.* (89) in a study performed on maize, are also present in our hydrophobic fraction. They include two prohibitins usually involved in cell proliferation and three HIR (hypersensitive-induced reaction) proteins, associated with HR (hypersensitive response), cell death, and resistance to pathogens. These proteins are described in the literature as containing a short TM helix in their N-terminal region (90), and, in animal cells, Terashima *et al.* (91) have already shown the PM localization of two prohibitins from B lymphocytes. One of the *Arabidopsis* HIR proteins identified here is predicted to possess one TM using the ARAMEMNON database, and the four others have a putative site of myristoylation. One of them (At5g62740), corresponding to P31, has been localized during the present work in the PM by expression of a GFP fusion. Other proteins involved in defense responses, remorins, are recovered in the PM fraction, in good agreement with the PM localization of potato remorin reported by Raymond *et al.* (53). Finally, we also found SKU5 in the group of signaling proteins. This PM protein acts on cell wall components in a signaling pathway affecting directed cell expansion (50).

Metabolism (Table IV)—Most of the enzymatic proteins found in the hydrophobic PM fraction are biotic and abiotic stress-regulated enzymes. They are responsible for electron transfer to a large variety of membrane-associated substrates, leading to membrane antioxidant protection. This is the case for phospholipid hyperoxide glutathione peroxidases (PHGPX), Cyt b5 protein, and FMN-reductases. PHGPX proteins are membrane-bound as previously shown in rat (92), and the plastid targeting of PHGPX isoforms indicates the existence of membrane-associated activity in plants too (93). The Cyt b5 protein has been described in microsomal membranes from developing safflower cotyledons where it functions as an intermediate electron donor in fatty acid desaturation (94). The Cyt b5 isoform found in this study, among at least six different isoforms encoded by the *Arabidopsis* genome, was localized in the PM (this work), whereas the other isoforms are found in different cell compartments (57, 58). In agreement with our data, FMN-reductases, known to participate in cell detoxication during oxidative stress, have been shown to be strongly bound to the PM (95, 96).

Cinnamoyl-CoA reductase (CCR), displaying a 3β-HSD domain, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are also stress-regulated proteins. In particular, CCR genes are differentially expressed in response to infection by pathogenic bacteria (97). These proteins have no predicted TM domains. However, a PM localization, at least transient, would be in agreement with their physiological role. The GAPDH, already identified in a PM proteome of *Arabidopsis* (9), is known, in mammal cells to have a NO-dependent membrane association catalyzing membrane fusion (98, 99).

Superoxide dismutase (SOD) and one enzyme from the pentose phosphate pathway, α-ribulose 5-phosphate 3-epi-
Phosphoribosyltransferases (APRT) and phosphatidate phosphatases (LPP) are both involved in second messenger synthesis, but their localization is still controversial. Investigating the respective contributions of three APRT isoforms of Arabidopsis to adenine and cytokinin metabolism, Allen et al. (102) provided evidence for the cytosolic localization of APRT1 and APRT3 proteins but could not conclude on the localization of APRT2. We propose that the isoform we identified, APRT2, might be PM-associated. The LPP (PAP2) identified here corresponds to AtLPP3p (103), thus suggesting the presence of this protein in the PM. This is in agreement with the localization attributed to the animal phosphatidate phosphohydrolase PAP type 2 from porcine thymus (104) or LPP1/1a from rat lung (105).

Unknown Proteins (Table V)—Database analyses reveal that more than 30% of the proteins identified in this work are considered as unknown proteins, which have no match with proteins of already known functions in other organisms. About 5%, though unknown, possess functional domains allowing their classification in the categories described above. This is the case for “expressed proteins” displaying t-SNARE domains and likely participating in the secretory pathway (Table III). The 25% unknown proteins left are gathered in Table V. Among these, P24, initially referred to as EMAP (endomembrane-associated protein), is the only gene product that had been previously identified as a protein and localized at the PM (9), like its tobacco orthologue (106). Moreover, its localization to the PM was further confirmed by our confocal microscopy experiments with EMAP::GFP fusion protein (Fig. 5).

Proteins belonging to four families identified on the basis of the presence of conserved domains (“SCAMP,” “transmembrane 4,” “predicted membrane protein,” and “reticulon”) were present in our fraction. This suggests that these families might be specific for the PM, although their functions still remain unknown.

CONCLUDING REMARKS

In this article, we report an inventory of the hydrophobic proteins of a highly purified PM fraction isolated from Arabidopsis cell suspensions. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses, about 100 proteins could be identified; 95% of them represent newly identified PM proteins.

The proteins of the hydrophobic PM proteome have been grouped in three main functional classes: transport systems, proteins involved in signaling and cellular traffic, and different enzymes from metabolism (Fig. 7). Like for chloroplast envelope proteins (30), the PM proteome reveals a correlation between the putative functions of the identified proteins and the expected roles for the PM. Part of the proteins identified as putative PM proteins have no TM, but are anchored, likely transiently, to the PM through myristoylation or prenylation (GTP-binding proteins) or other uncharacterized process (P24, for instance). The presence of peripheral proteins, already localized in PM by Santoni et al. (9), is in agreement with one of the main PM functions, cellular signaling. It is noteworthy that the hydrophobic PM proteome contains a large part of stress-regulated proteins, illustrating the role of PM as a barrier to environment. The high number of unknown proteins reflects the poor knowledge of the PM due to difficulties in extracting and separating hydrophobic proteins for mass spectrometry identification. Although the inventory remains incomplete, this proteomic approach leads to the identification of a significant number of new PM proteins and brings new insights for developing functional studies on plant PM.

Our objective was aiming at the identification of new transport systems and ion channels. Indeed, our study allowed us to identify, for the first time, numerous TM proteins, 34 of them containing at least four TM. Among them, nine proteins are good candidates as new putative transporters of PM on the basis of their physico-chemical properties (Tables II and V). In addition, we have also localized an anion channel, POR2, at the PM. In this particular case, we confirmed our proteomic analyses by confocal microscopy analysis of the subcellular localization of POR2::DsRed2 fusion proteins. This is the first time that a channel belonging to the large VDAC family is identified in the PM of plant cells, in agreement with previous reports in mammalian cells (76). The expression of the gene encoding this protein was shown to be induced during the HR triggered by the infection of Arabidopsis cells by pathogenic bacteria (107), pointing to a role of PM in the control of cell death mechanisms. These new putative transport systems are now available for functional studies combining several complementary approaches like electrophysiol-
ology, yeast mutant complementation, subcellular localization, and plant mutant characterization.

Acknowledgments—We would like to thank L. Kuhn, S. Brugière, and M. Court for their contribution to the LC-MS/MS analyses. We thank also M. Bourtou (Unité de Biochimie Physiologique, Université Catholique de Louvain, Belgique) for providing anti-A TPase IgG, C. Maurel and P. Gerbeau (Biochimie et Physiologie Moléculaire des Plantes, AGRO/M/Institut National de la Recherche Agronomique (INRA)/Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5004, Montpellier, France) for anti-TIP IgG, and J. M. Grienenberger and G. Bonnard (Unité de Biologie Mixte de Recherche (UMR) 5004, Montpellier, France) for anti-TIP IgGs. We are very grateful to S. Thomine (Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France) for the gift of AtNRMPP.: and AtNRMPP4::GFP fusion plasmids, and to I. Small (Unité de Recherche en Génomique Végétale (URGV), CNRS-INRA, Evry, France) for pOL-DSRed2 plasmid. We also thank S. Brown and C. Talbot for offering confocal microscopy facilities of the Cell Biology Platform of Institute Fédéral de Recherche (IFR) 87 “La Plante et son Environnement” (Institut des Sciences du Végétal (ISV), CNRS, Gif sur Yvette).

* This project was supported by the Centre National de la Recherche Scientifique (CNRS) and the Génopole plant programs, NO 19993663 and NO 2001027. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[5] The on-line version of this manuscript (available at http://www.mcponline.org) contains supplemental material.

[6] Current address: Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique (INRA)/École Nationale Superieure d’Agronomie de Montpellier (EN-SAM)/CNRS Unité de Recherche Associée (URA) 2133, place Vilaia, 34060 Montpellier Cedex 1, France.

** To whom correspondence should be addressed: Institut des Sciences du Végétal, Bâtiment 22, CNRS–UPR 2355, F-91198 Gif sur Yvette Cedex, France. Tel.: 33–(0)1–69–82–37–93; Fax: 33–(0)1–69–82–37 68; E-mail: Genevieve.Epiphithikine@isiv.cnrs-gif.fr.

REFERENCES

1. Harvey, S., Zhang, Y., Landry, F., Miller, C., and Smith, J. W. (2001) Insights into a plasma membrane signature. Physiol. Genomics 5, 129–136
2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815
3. Ward, J. M. (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17, 560–563
4. Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W. B., Flugge, U. I., and Kunze, R. (2003) ARAEMMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–26
5. Masson, F., and Rossignol, M. (1995) Basic plasticity of protein expression in tobacco leaf plasma membrane. Plant J. 8, 77–85
6. Shi, J., Dixon, R. A., Gonzales, R. A., Kjellbom, P., and Bhattacharyya, M. K. (1995) Identification of CDNA clones encoding valosin-containing protein and other plant plasma membrane-associated proteins by a general immunoscreening strategy. Proc. Natl. Acad. Sci. U. S. A. 92, 4457–4461
7. Galaud, J. P., Caference, M., Pauly, N., Canut, H., Chalon, P., Caput, D., and Pont-Lezica, R. F. (1999) Construction of two ordered cDNA libraries enriched in genes encoding plasmalemma and tonoplast proteins from a high-efficiency expression library. Plant J. 17, 111–118
8. Kristoffersen, P., Teichmann, T., Stracke, R., and Palme, K. (1996) Signal sequence trap to clone cDNAs encoding secreted or membrane-associated plant proteins. Anal. Biochem. 243, 127–132
9. Santoni, V., Rouquie, D., Doumas, P., Mansoni, M., Bourtou, M., Degand, H., Dubois, P., Packman, L., Sherrier, J., Prime, T., Baul, G., Posada, E., Rouze, P., Derais, P., Sahounou, I., Barlier, L., and Rossignol, M. (1998) Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J. 16, 633–641
10. Rouquie, D., Peltier, J. B., Marquis-Mansion, M., Tournaire, C., Doumas, P., and Rossignol, M. (1997) Construction of a directory of tobacco plasma membrane proteins by combined two-dimensional gel electrophoresis and protein sequencing. Electrophoresis 18, 654–660
11. Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J. C., Hochstrasser, D. F., Williams, K. L., and Gooley, A. A. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19, 837–844
12. Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J., Moritz, R. L., and Reid, G. E. (2000) Proteomic analysis of the human colon carcinoma cell line (LIM 1215): Development of a membrane protein database. Electrophoresis 21, 1707–1732
13. Gong, A., Bougth, G., Obermaier, C., and Weiss, W. (1998) Two-dimensional electrophoresis of proteins in an immobilized pH 4–12 gradient. Electrophoresis 19, 1516–1519
14. Luche, S., Santoni, V., and Rabilloud, T. (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3, 249–253
15. Adessi, C., Miege, C., Abrieux, C., and Rabilloud, T. (1997) Two-dimensional electrophoresis of membrane proteins: a current challenge for immobilized pH gradients. Electrophoresis 18, 127–135
16. Wilkins, M. R., Gasteiger, E., Sanchez, J. C., Bairou, A., and Hochstrasser, D. F. (1998) Two-dimensional gel electrophoresis for proteome projects: The effects of protein hydrophobicity and copy number. Electrophoresis 19, 1501–1505
17. Chevallet, M., Santoni, V., Poinas, A., Rouquie, D., Fuchs, A., Kieffer, S., Rossignol, M., Lunardi, J., Garin, J., and Rabilloud, T. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909
18. le Coutre, J., Whitelegge, J. P., Gross, A., Turk, E., Wright, E. M., Kaback, H. R., and Faul, K. F. (2000) Proteomics on full-length membrane proteins using mass spectrometry. Biochimica et Biophysica Acta 1539, 4237–4242
19. Santoni, V., Kieffer, S., Descliaux, D., Masson, F., and Rabilloud, T. (2000) Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21, 3329–3344
20. Santoni, V., Molloy, M., and Rabilloud, T. (2000) Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21, 1054–1070
21. Dreger, M. (2003) Subcellular proteomics. Mass Spectrom. Rev. 22, 27–56
22. Garin, J., Diez, R., Kieffer, S., Deremie, J. F., Duclos, S., Gagnon, E., Sadoul, R., Rondeau, C., and Desjardins, M. (2001) The phagosome proteome: Insight into phagosome functions. J. Cell. Biol. 152, 165–180
23. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chat, B. T., and Matunis, M. J. (2002) Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927
24. Santoni, V., Vinh, J., Pfieger, D., Sommerer, N., and Maurel, C. (2003) A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. Biochem. J. 373, 289–296
25. Hansson, B. J., Schulenberg, B., Patton, W. F., and Capaldi, R. A. (2001) A novel subfractionation approach for mitochondrial proteins: A three-dimensional mitochondrial proteome map. Electrophoresis 22, 950–959
26. Kruft, V., Euebel, H., Jansch, L., Werhahn, W., and Braun, H. P. (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol. 127, 1694–1710
27. Seigneurin-Berny, D., Rolland, N., Garin, J., and Joyard, J. (1999) Technical Advance: Differential extraction of hydrophobic proteins from chloroplast envelope membranes: A subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J. 19, 217–228
28. Peltier, J. B., Friso, G., Kalume, D. E., Roepstorff, P., Nilsson, F., Adamska, I., and van Wijk, K. J. (2000) Proteomics of the chloroplast: Systematic
identification and targeting analysis of luminal and peripheral thylakoid proteins. Plant Cell 12, 319–341

29. Ferro, M., Salvi, D., Rivière-Rolland, H., Vermat, T., Seigneurin-Berny, D., Grunwald, D., Garin, J., Joyard, J., and Rolland, N. (2003) Integral membrane proteins of the chloroplast envelope: Identification and subcellular localization of new transporters. Proc. Natl. Acad. Sci. U. S. A. 99, 11487–11492

30. Ferro, M., Salvi, D., Brugliere, S., Miras, S., Kowalski, S., Louwagne, M., Garin, J., Joyard, J., and Rolland, N. (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol. Cell. Proteomics 2, 323–345

31. Gomez, S. M., Nishio, J. N., Faull, K. F., and Whitelegge, J. P. (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol. Cell. Proteomics 1, 46–59

32. Camacho-Carvajal, M. M., Wollschleger, B., Aebersold, R.,steimle, V., and Schambel, W. W. (2004) Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: A proteomics approach. Mol. Cell. Proteomics 3, 178–182

33. Santoni, V., Doumas, P., Rouque, D., Mansion, M., Rabilloud, T., and Rossignol, M. (1999) Large scale characterization of plant plasma membrane proteins. Biochimie 81, 655–661

34. Jouanneau, J. P., and Pèaud-Lenoir, C. (1987) Croissance et synthèse des protéines de suspensions cellulaires de tabac sensibles à la kinétine. Physiol. Plantarum 20, 834–850

35. Canut, H., Baudracco, S., Cabané, M., Boudet, A. M., and Marigo, G. (1991) Preparation of sealed tonoplast and plasma-membrane vesicles from Catharanthus roseus (L.) G. Don. cells by free-flow electrophoresis. Plants 164, 448–456

36. Larsson, C., Wide, S., and Kjellbom, P. (1987) Preparation of high-purity plasma membranes. Methods Enzymol. 148, 558–568

37. Busby, T. F., and Ingham, K. C. (1980) Removal of polyethylene glycol from proteins by salt-induced phase separation. Vox Sang. 39, 93–100

38. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

39. Briskin, D. P., Leonard, R. T., and Hodges, T. K. (1987) Isolation of the plant plasma membrane: Membrane markers and general principles. Methods Enzymol. 148, 542–558

40. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

41. Ferro, M., Seigneurin-Berny, D., Rolland, N., Chapel, A., Salvi, D., Garin, J., and Joyard, J. (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21, 3517–3526

42. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132

43. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein isoforms as markers for vacuolar functions. Plant Cell 11, 1867–1882

44. Robinson, D. G., Haschke, H. P., Hinz, G., Hoh, B., Maeshima, M., and Marty, F. (1996) Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Plants 198, 95–103

45. Whitelegge, J. P., Zhang, H., Aguilera, R., Taylor, R. M., and Cramer, W. A. (2002) Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS–) of an oligomeric membrane protein: Cytochrome b_{5f} complex from spinach and the cyanobacterium Mastigocladus laminosus. Mol. Cell. Proteomics 1, 816–827

46. Gomez, S. M., Blé, K. Y., Aguilera, R., Nishio, J. N., Faul, K. F., and Whitelegge, J. P. (2003) Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol. Cell. Proteomics 2, 1068–1085

47. Rouqué, D., Tournaire-Roux, C., Szponarski, W., Rossignol, M., and Doumas, P. (1998) Cloning of the V-ATPase subunit G protein in plant: Functional expression and sub-cellular localization. FEBS Lett. 437, 287–292

48. Sauer, N., Baier, K., Gahrtz, M., Stadler, R., Stolz, J., and Truernit, E. (1994) Sugar transport across the plasma membranes of higher plants. Plant Physiol. 26, 1671–1677

49. Maurel, C., Jaquier, V., Lauerengeat, V., Gerbeau, P., Tournaire, C., Santoni, V., and Heyes, J. (2002) Molecular physiology of aquaporins in plants. Int. Rev. Cytol. 215, 105–148

50. Baiges, I., Schaffner, A. R., Affenzeller, M. J., and Mas, A. (2002) Plant
91. Terashima, M., Kim, K. M., Adachi, T., Nielsen, P. J., Reth, M., Kohler, G., and Lamers, M. C. (1994) The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J. 13, 3782–3792

92. Roversi, A., Maiorino, M., Nisii, C., and Ursini, F. (1994) Purification and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes. Biochim. Biophys. Acta 1208, 211–221

93. Mullineaux, P. M., Karpinski, S., Jimenez, A., Cleary, S. P., Robinson, C., and Creissen, G. P. (1998) Identification of cDNAs encoding plastid-targeted glutathione peroxidase. Plant J. 13, 375–379

94. Smith, M. A., Cross, A. R., Jones, O. T., Griffiths, W. T., Stymne, S., and Stobart, K. (1990) Electron-transport components of the 1-acyl-2-oleoyl-sn-glycerol-3-phosphocholine delta 12-desaturase (delta 12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem. J. 272, 23–29

95. Serrano, A., Cordoba, F., Gonzalez-Reyes, J. A., Navas, P., and Villalba, J. M. (1994) Purification and characterization of two distinct NAPDH dehydrogenases from onion (Allium cepa L) root plasma membrane. Plant Physiol. 106, 87–96

96. Trost, P., Foscarini, S., Preger, V., Bonora, P., Vitale, L., and Pupillo, P. (1997) Dissecting the diphenylene iodinum-sensitive NAD(P)H:quinone oxidoreductase of zucchini plasma membrane. Plant Physiol. 114, 737–746

97. Glaser, P. E., Han, X., and Gross, R. W. (2002) Tubulin is the endogenous inhibitor of the glyceraldehyde-3-phosphate dehydrogenase that catalyzes membrane fusion: Implications for the coordinated regulation of glycolysis and membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 99, 14104–14109

98. Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-Pettenati, J. (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57, 1187–1195

99. Galli, F., Rovidati, S., Gibelli, L., and Canestrari, F. (1998) S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase decreases the enzyme affinity to the erythrocyte membrane. Nitric Oxide 2, 17–27

100. Glaser, P. E., Han, X., and Gross, R. W. (2002) Tubulin is the endogenous inhibitor of the glyceraldehyde-3-phosphate dehydrogenase isoform that catalyzes membrane fusion: Implications for the coordinated regulation of glycolysis and membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 99, 14104–14109

101. Kopriva, S., Koprivova, A., and Suss, K. H. (2000) Identification, cloning, and properties of cytosolic c-ribulose-5-phosphate 3-epimerase from higher plants. J. Biol. Chem. 275, 1294–1299

102. Zaka, R., Vandecasteele, C. M., and Misset, M. T. (2002) Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae). J. Exp. Bot. 53, 1979–1987

103. Allen, M., Qin, W., Moreau, F., and Moffatt, B. (2002) Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytidine metabolism. Physiol. Plant. 115, 56–68

104. Pierrugues, O., Bruscesco, C., Oshiro, J., Gouy, M., Deveaux, Y., Carman, G. M., Thuriaux, P., and Kazmaier, M. (2001) Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLP1 gene in response to stress. J. Biol. Chem. 276, 20300–20308

105. Kai, M., Wada, I., Imai, S., Sakane, F., and Kanoh, H. (1996) Identification and cDNA cloning of 35-kDa mitochondrial NADPH oxidoreductase. J. Biol. Chem. 271, 18931–18938

106. Nanjundan, M., and Possmayer, F. (2001) Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms. Biochem. J. 366, 637–646

107. Logan, D. C., Domergue, O., Teyssendier de la Serve, B., and Rossignol, M. (1997) A new family of plasma membrane polyglyc peptides differentially regulated during plant development. Biochem. Mol. Biol. Int. 43, 1051–1062

108. Lacomme, C., and Roby, D. (1997) Identification of new early markers of the hypersensitive response in Arabidopsis thaliana. FEBS Lett. 459, 149–153

aquaporins. Physiol Plant. 115, 175–182

73. Daniels, M. J., Mirkov, T. E., and Chrispeels, M. J. (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplastic water channel protein TIP. Plant Physiol. 106, 1325–1333

74. Thines, F. P. (1992) Evidence for extra-mitochondrial localization of the VDAC/porin channel in eucaryotic cells. J. Bioenerg. Biophys. 24, 71–75

75. Yu, W. H., and Forte, M. (1996) Is there VDAC in cell compartments other than the mitochondria? J. Bioenerg. Biophys. 29, 93–100

76. Buettner, R., Papoutsoglou, G., Scemes, E., Spray, D. C., and Dermietzel, R. (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc. Natl. Acad. Sci. U. S. A. 97, 3201–3206

77. Baker, M. A., Lane, D. J., Ly, J. D., De Pinto, V., and Lawen, A. (2003) VDAC1 is a transmembrane domain-containing protein of the plasma membrane in plants. J. Biol. Chem. 278, 4811–4819

78. Buschges, R., Hohliner, K., Fritsch, M., Zahn, T., Aderka, P., and Veldre, J. (2000) Potential role in senescence, development, and tumor suppression. J. Biol. Chem. 275, 28979–28986

79. Allen, M., Qin, W., Moreau, F., and Moffatt, B. (2002) Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytidine metabolism. Physiol. Plant. 115, 56–68

80. Perdue, D. O., and Lomax, T. L. (1992) Characterization of NAPDH oxidoreductase. J. Biol. Chem. 267, 79–90

81. Ueda, T., Yamaguchi, S., and De Vries, R. T. (1995) Prohibitin: Potential role in senescence, development, and tumor suppression. Exp Gerontol. 30, 99–124

82. Epple, T., Yamaguchi, S., and Nakano, A. (2001) Ara6, a plant-specific novel type Rab GTPTase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 20, 4730–4741

83. Terashima, M., Kim, K. M., Adachi, T., Nielsen, P. J., Reth, M., Kohler, G., and Lamers, M. C. (1994) The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J. 13, 3782–3792

84. Mulineaux, P. M., Karpinski, S., Jimenez, A., Cleary, S. P., Robinson, C., and Creissen, G. P. (1998) Identification of cDNAs encoding plastid-targeted glutathione peroxidase. Plant J. 13, 375–379

85. Smith, M. A., Cross, A. R., Jones, O. T., Griffiths, W. T., Stymne, S., and Stobart, K. (1990) Electron-transport components of the 1-acyl-2-oleoyl-sn-glycerol-3-phosphocholine delta 12-desaturase (delta 12-desaturase) in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochem. J. 272, 23–29

86. Epple, T., Yamaguchi, S., and De Vries, R. T. (1995) Prohibitin: Potential role in senescence, development, and tumor suppression. Exp Gerontol. 30, 99–124