Codes Associated with $O^+(2n, 2^r)$ and Power Moments of Kloosterman Sums

Dae San Kim, Member, IEEE

Abstract—In this paper, we construct three binary linear codes $C(SO^+(2, q))$, $C(O^+(2, q))$, and $C(SO^+(4, q))$, respectively associated with the orthogonal groups $SO^+(2, q)$, $O^+(2, q)$, and $SO^+(4, q)$, with q powers of two. Then we obtain recursive formulas for the power moments of Kloosterman and 2-dimensional Kloosterman sums in terms of the frequencies of weights in the codes. This is done via Pless power moment identity and by utilizing the explicit expressions of Gauss sums for the orthogonal groups. We emphasize that, when the recursive formulas for the power moments of Kloosterman sums are compared, the present one is computationally more effective than the previous one constructed from the special linear group $SL(2, q)$. We illustrate our results with some examples.

Index Terms—Kloosterman sum, 2-dimensional Kloosterman sum, orthogonal group, Pless power moment identity, weight distribution, Gauss sum.

I. INTRODUCTION

Let ψ be a nontrivial additive character of the finite field \mathbb{F}_q with $q = p^r$ elements (p a prime), and let m be a positive integer. Then the m-dimensional Kloosterman sum $K_m(\psi; a) ([11])$ is defined by

$$K_m(\psi; a) = \sum_{a_1, \ldots, a_m \in \mathbb{F}_q^*} \psi(a_1 + \cdots + a_m + a_1a_2^{-1} \cdots a_m^{-1}) \quad (a \in \mathbb{F}_q^*).$$

In particular, if $m = 1$, then $K_1(\psi; a)$ is simply denoted by $K(\psi; a)$, and is called the Kloosterman sum. The Kloosterman sum was introduced in 1926 ([9]) to give an estimate for the Fourier coefficients of modular forms.

For each nonnegative integer h, by $MK_m(\psi)^h$ we will denote the h-th moment of the m-dimensional Kloosterman sum $K_m(\psi; a)$. Namely, it is given by

$$MK_m(\psi)^h = \sum_{a \in \mathbb{F}_q^*} K_m(\psi; a)^h.$$

If $\psi = \lambda$ is the canonical additive character of \mathbb{F}_q, then $MK_m(\lambda)^h$ will be simply denoted by MK^h_m. If further $m = 1$, for brevity MK^h_1 will be indicated by MK^h. The power moments of Kloosterman sums can be used, for example, to give an estimate for the Kloosterman sums and have also been studied to solve a variety of problems in coding theory over finite fields of characteristic two.

From now on, let us assume that $q = 2^r$. Carlitz [1] evaluated MK^h, for $h \leq 4$, while Moisio [16] computed it for $h = 6$. Recently, Moisio was able to find explicit expressions of MK^h, for the other values of h for $h \leq 10$ (cf. [13]). Similar results exist also over the finite fields of characteristic three (cf. [4],[14])). This was done, via Pless power moment identity, by connecting moments of Kloosterman sums and the frequencies of weights in the binary Zetterberg code of length $q + 1$, which were known by the work of Schoof and Vlught in [18]. In [7], the binary linear codes $C(SL(n, q))$ associated with finite special linear groups $SL(n, q)$ were constructed when n, q are both powers of two. Then obtained was a recursive formula for the power moments of multi-dimensional Kloosterman sums in terms of the frequencies of weights in $C(SL(n, q))$. This was done via Pless power moment identity and by utilizing our previous result on the explicit expression of the Gauss sum for $SL(n, q)$. In particular, when $n = 2$, this gives a recursive formula for the power moments of Kloosterman sums.

In this paper, we will show the following theorem giving recursive formulas for the power moments of Kloosterman and 2-dimensional Kloosterman sums. To do that, we construct three binary linear codes $C(SO^+(2, q))$, $C(O^+(2, q))$, and $C(SO^+(4, q))$, respectively associated with $SO^+(2, q)$, $O^+(2, q)$, and $SO^+(4, q)$, and express those power moments in terms of the frequencies of weights in each code. Then, thanks to our previous results on the explicit expressions of “Gauss sums” for the orthogonal group $O^+(2n, q)$ and the special orthogonal group $SO^+(2n, q)$ [8], we can express the weight of each codeword in the duals of the codes in terms of Kloosterman or 2-dimensional Kloosterman sums. Then our formulas will follow immediately from the Pless power moment identity.

The recursive formula for power moments of Kloosterman sums in this paper (cf. (1), (2)) is computationally more effective than that in [7](cf. [7], (3)). This is because it is easier to compute the weight distribution of $C(SO^+(2, q))$ than that of $C(SL(2, q))$. Theorem 1 in the following is the main result of this paper.

Theorem 1: Let $q = 2^r$. Then we have the following.

(a) For $r \geq 3$, and $h = 1, 2, \ldots$,

$$MK^h = \sum_{l=0}^{h-1} (-1)^{h+l+1} \binom{h}{l} (q-1)^{h-l} MK^l + q \sum_{j=0}^{h} (-1)^{h+j} C_{1,j} \sum_{t=j}^{h} t! S(h, t) 2^{h-t} \binom{N_1 - j}{N_1 - t},$$

where $N_1 = |SO^+(2, q)| = q-1$, and $\{C_{1,j}\}_{j=0}^{N_1}$ is the weight

The author is with the Department of Mathematics, Sogang University, Seoul 121-742, Korea(e-mail; dskim@sogang.ac.kr).
distribution of $C(SO^+(2, q))$ given by

$$C_{1,j} = \sum_{\nu_0} \left(\frac{1}{\nu_0} \right) \prod_{j=0}^{2} \left(\frac{2}{\nu_0} \right) (j = 0, \ldots, N_1). \quad (2)$$

Here the sum is over all the sets of nonnegative integers \(\{\nu_0\} \cup \{\nu_0\}_{tr(\beta^{-1})=0}\) satisfying \(\nu_0 + \sum_{tr(\beta^{-1})=0} \nu_0 = j\) and \(\sum_{tr(\beta^{-1})=0} \nu_0 = 0\). In addition, \(S(h, t)\) is the Stirling number of the second kind defined by

$$S(h, t) = \frac{1}{h!} \sum_{j=0}^{t} (-1)^{t-j} \binom{t}{j} j^h. \quad (3)$$

(b) For \(r \geq 3\), and \(h = 1, 2, \ldots, \)

$$M^h_k = \sum_{l=0}^{h-1} (-1)^{h+l+1} \binom{h}{l} (q-1)^{h-l} M^{k_l}$$

$$+ q \sum_{j=0}^{h} (-1)^{h+j} C_{2,j} \sum_{t=0}^{h} t! S(h, t) 2^{h-l} \left(N_2 - j \right), \quad (4)$$

where \(N_2 = |O^+(2, q)| = 2(q - 1)\), and \(\{C_{2,j}\}_{j=0}^{N_2}\) is the weight distribution of \(C(O^+(2, q))\) given by

$$C_{2,j} = \sum_{\nu_0} \left(\frac{q}{\nu_0} \right) \prod_{j=0}^{2} \left(\frac{2}{\nu_0} \right) (j = 0, \ldots, N_2). \quad (5)$$

Here the sum is over all the sets of nonnegative integers \(\{\nu_0\} \cup \{\nu_0\}_{tr(\beta^{-1})=0}\) satisfying \(\nu_0 + \sum_{tr(\beta^{-1})=0} \nu_0 = j\) and \(\sum_{tr(\beta^{-1})=0} \nu_0 = 0\).

(c) For \(r \geq 2\), and \(h = 1, 2, \ldots, \)

$$M^h_k = \sum_{l=0}^{h-1} (-1)^{h+l+1} \binom{h}{l} (q^3 - q^2 + 1)^{h-l} M^{k_l}$$

$$+ q^{1-2h} \sum_{j=0}^{h} (-1)^{h+j} C_{3,j} \sum_{t=0}^{h} t! S(h, t) 2^{h-l} \left(N_3 - j \right), \quad (6)$$

where \(N_3 = |SO^+(4, q)| = q^2(q^2 - 1)^2\), and \(\{C_{3,j}\}_{j=0}^{N_3}\) is the weight distribution of \(C(SO^+(4, q))\) given by

$$C_{3,j} = \sum_{\nu_0} \left(\frac{m_0}{\nu_0} \right) \prod_{t=1, 2, 3, 4} \prod_{K(\lambda, \beta^{-1})=t} \left(\frac{m_t}{\nu_0} \right) (j = 0, \ldots, N_3). \quad (7)$$

Here the sum is over all the sets of nonnegative integers \(\{\nu_0\}_{\beta \in E}, \sum_{\beta \in E} \nu_0 = j\) and \(\sum_{\beta \in E} \nu_0 = 0\),

$$m_0 = q^3(2q^2 - q - 2),$$

and

$$m_t = q^2(q^3 - q^2 - 2q + t),$$

for all integers \(t\) satisfying \(|t| < 2\sqrt{q}\), and \(t \equiv -1 \pmod{4}\).

II. \(O^+(2n, q)\)

For more details about the results of this section, one is referred to the paper [8]. In addition, [19] is an excellent reference for matrix groups over finite fields.

Throughout this paper, the following notations will be used:

$$q = 2^r \quad (r \in \mathbb{Z} > 0),$$

$$\mathbb{F}_q = \text{the finite field with } q \text{ elements},$$

$$TrA = \text{the trace of } A \text{ for a square matrix } A,$$

$$tB = \text{the transpose of } B \text{ for any matrix } B.$$

Let \(\theta^+\) be the nondegenerate quadratic form on the vector space \(\mathbb{F}_q^{2n \times 1}\) of all \(2n \times 1\) column vectors over \(\mathbb{F}_q\), given by

$$\theta^+(\sum_{i=1}^{2n} x_i e^i) = \sum_{i=1}^{n} x_i x_{n+i},$$

where \(\{e^1 = [10 \ldots 0], e^2 = [-10 \ldots 0], \ldots, e^{2n} = [0 \ldots 1]\}\) is the standard basis of \(\mathbb{F}_q^{2n \times 1}\).

The group \(O^+(2n, q)\) of all isometries of \((\mathbb{F}_q^{2n \times 1}, \theta^+)\) is given by:

$$O^+(2n, q) = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in GL(2n, q) \mid \begin{array}{l} \text{AC, BD are alternating} \\
\text{tAD}^t + tBC = 1_n \end{array} \right\} = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in GL(2n, q) \mid \begin{array}{l} \text{AB, CD are alternating} \\
A^tD + B^tC = 1_n \end{array} \right\},$$

where \(A, B, C, D\) are of size \(n\).

An \(n \times n\) matrix \(A = (a_{ij})\) over \(\mathbb{F}_q\) is called alternating if

$$\begin{array}{l}
a_{ii} = 0, \quad \text{for } 1 \leq i \leq n, \\
a_{ij} = -a_{ji}, \quad \text{for } 1 \leq i < j \leq n.
\end{array}$$

\(P^+ = P^+(2n, q)\) is the maximal parabolic subgroup of \(O^+(2n, q)\) defined by:

$$P^+(2n, q) = \left\{ \begin{bmatrix} A & 0 \\ 0 & tA^{-1} \end{bmatrix} \mid \begin{array}{l} 1_n & B \\ 0 & 1_n \end{array} \mid A \in GL(n, q) \right\}.$$

Then, with respect to \(P^+ = P^+(2n, q)\), the Bruhat decomposition of \(O^+(2n, q)\) is given by:

$$O^+(2n, q) = \sum_{r=0}^{n} P^+ \sigma^+_r P^+, \quad (9)$$

where

$$\sigma^+_r = \begin{bmatrix} 0 & 0 & 1_r & 0 \\ 0 & 1_{n-r} & 0 & 0 \\ 1_r & 0 & 0 & 0 \\ 0 & 0 & 0 & 1_{n-r} \end{bmatrix} \in O^+(2n, q).$$
Put, for $0 \leq r \leq n$,

$$A^+_r = \{ w \in P^+(2n, q) \mid \sigma^+_r w(\sigma^+_r)^{-1} \in P^+(2n, q) \}.$$

Expressing $O^+(2n, q)$ as a disjoint union of right cosets of $P^+ = P^+(2n, q)$, the Bruhat decomposition in (9) can be written as

$$O^+(2n, q) = \bigoplus_{r=0}^{n-1} P^+ \sigma^+_r (A^+_r \backslash P^+).$$

(10)

The order of the general linear group $GL(n, q)$ is given by

$$g_n = \prod_{j=0}^{n-1} (q^n - q^j) = q^n \prod_{j=1}^{n}(q^j - 1).$$

For integers n, r with $0 \leq r \leq n$, the q-binomial coefficients are defined as:

$$[n]_q^r = \prod_{j=0}^{r-1} (q^n - q^j) / (q^r - q^j).$$

(11)

Then, for integers n, r with $0 \leq r \leq n$, we have

$$\frac{g_{n-r}}{g_{n-r} g_r} = q^{r(n-r)} [n]_q^r.$$

(12)

As it is shown in [8],

$$|A^+_r| = g_r g_{n-r} q(\zeta) q^{r(2n-3r+1)/2}.$$

(13)

Also, it is immediate to see that

$$|P^+(2n, q)| = q(\zeta) g_n.$$

(14)

Thus we get, from (12)-(14),

$$|A^+_r \backslash P^+(2n, q)| = [n]_q^r q(\zeta),$$

and

$$|P^+(2n, q)|^2 |A^+_r|^{-1} = q(\zeta)^2 g_n [n]_q^r q(\zeta).$$

(15)

So, from (10), (15), we get:

$$|O^+(2n, q)| = \sum_{r=0}^{n-1} \frac{|P^+(2n, q)|^2 |A^+_r|^{-1}}{r}$$

$$= 2q^{n^2 - n}(q^n - 1) \prod_{j=1}^{n-1}(q^j - 1),$$

(16)

where one can apply the following q-binomial theorem with $x = -1$.

$$\sum_{r=0}^{n} [n]_q^r (1)^r x^r = (x; q)_n,$$

(17)

with $(x; q)_n = (1 - x)(1 - qx) \cdots (1 - q^{n-1}x)$ (x an indeterminate, n a positive integer).

There is an epimorphism of groups $\delta^+ : O^+(2n, q) \to \mathbb{F}_2^+ (\mathbb{F}_2^+) \to \mathbb{F}_2$ denoting the additive group of \mathbb{F}_2, which is related to the Clifford algebra $C(\mathbb{F}_{2n \times 1}, \theta^+)$ of the quadratic space $(\mathbb{F}_q^{2n \times 1}, \theta^+)$, and is given by

$$\delta^+(w) = Tr(B^t C),$$

where

$$w = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in O^+(2n, q).$$

Then $SO^+(2n, q) := Ker \delta^+$ is given by

$$SO^+(2n, q) = \prod_{0 \leq r \leq n, \; r \; even} P^+ \sigma^+_r (A^+_r \backslash P^+),$$

(17)

and

$$|SO^+(2n, q)| = q^{n^2 - n}(q^n - 1) \prod_{j=1}^{n-1}(q^j - 1)(cf. (16)).$$

III. GAUSS SUMS FOR $O^+(2n, q)$

The following notations will be used throughout this paper.

$$tr(x) = x + x^2 + \cdots + x^{2r-1}$$

the trace function $F_q \to F_2$,

$$\lambda(x) = (-1)^{tr(x)}$$

the canonical additive character of F_q.

Then any nontrivial additive character ψ of F_q is given by

$$\psi(x) = \lambda(ax)$$

for a unique $a \in \mathbb{F}_q^*.$

For any nontrivial additive character ψ of F_q and $a \in \mathbb{F}_q^*$, the Kloosterman sum $K_{GL(t, q)}(\psi; a)$ for $GL(t, q)$ is defined as

$$K_{GL(t, q)}(\psi; a) = \sum_{w \in GL(t, q)} \psi(Trw + a Trw^{-1}).$$

(18)

Observe that, for $t = 1$, $K_{GL(1, q)}(\psi; a)$ denotes the Kloosterman sum $K(\psi; a)$.

For the Kloosterman sum $K(\psi; a)$, we have the Weil bound (cf. [11])

$$|K(\psi; a)| \leq 2\sqrt{q}.$$

(19)

In [6], it is shown that $K_{GL(t, q)}(\psi; a)$ satisfies the following recursive relation: for integers $t \geq 2$, $a \in \mathbb{F}_q^*$,

$$K_{GL(t, q)}(\psi; a) = q^{t-1} K_{GL(t-1, q)}(\psi; a)K(\psi; a) + q^{2(t-2)} (q^{r-1} - 1) K_{GL(t-2, q)}(\psi; a),$$

(20)

where we understand that $K_{GL(0, q)}(\psi; a) = 1$. From (20), in [6] an explicit expression of the Kloosterman sum for $GL(t, q)$ was derived.

Theorem 2 ([6]): For integers $t \geq 1$, and $a \in \mathbb{F}_q^*$, the Kloosterman sum $K_{GL(t, q)}(\psi; a)$ is given by

$$K_{GL(t, q)}(\psi; a) = q^{(t-2)(t+1)/2} \sum_{l=1}^{[t(t+2)/2]} q^l K(\psi; a)^{t+2-2l}$$

$$\times \sum_{l=1}^{l-1} \prod_{i=1}^{l-1}(q^{j_i - 2} - 1),$$

(21)

where $K(\psi; a)$ is the Kloosterman sum and the inner sum is over all integers j_1, \ldots, j_{t-1} satisfying $2l - 1 \leq j_{t-1} \leq j_{t-2} \leq \cdots \leq j_1 \leq t + 1$. Here we agree that the inner sum is 1 for $l = 1$.

In Section 6 of [8], it is shown that the Gauss sums for $O^+(2n, q)$ and $SO^+(2n, q)$ are respectively given by:
\[\sum_{w \in G_1(q)} \psi(T_{rw}) = \sum_{r = 0}^{n} |A_r^+ \setminus P^+| \sum_{w \in P^+} \psi(T_{rw \sigma_r^+}) \]
\[= q(2) \sum_{r = 0}^{n} [n]_q q(2rn - r^2 - r)/2s_r \times K_{GL(n-r,q)}(\psi; 1), \tag{22} \]
\[\sum_{w \in SO^+(2n,q)} \psi(T_{rw}) = \sum_{0 \leq r \leq n} |A_r^+ \setminus P^+| \sum_{w \in P^+} \psi(T_{rw \sigma_r^+}) \]
\[= q(2) \sum_{0 \leq r \leq n} [n]_q q(2rn - r^2 - r)/2s_r \times K_{GL(n-r,q)}(\psi; 1) \tag{23} \]

\[s_r = \begin{cases} q^{r(r+2)/4} \prod_{j=1}^{r/2}(q^{2j-1} - 1), & \text{for } r \text{ even}, \\ q^{(r^2-1)/4} \prod_{j=1}^{(r+1)/2}(q^{2j-1} - 1), & \text{for } r \text{ odd}, \end{cases} \tag{24} \]

\[G_1(q) = SO^+(2,q), G_2(q) = O^+(2,q), G_3(q) = SO^+(4,q). \tag{25} \]

Theorem 3: Let \(\psi \) be any nontrivial additive character of \(\mathbb{F}_q \). Then we have
\[\sum_{w \in G_1(q)} \psi(T_{rw}) = K(\psi; 1), \]
\[\sum_{w \in G_2(q)} \psi(T_{rw}) = K(\psi; 1) + q - 1, \]
\[\sum_{w \in G_3(q)} \psi(T_{rw}) = q^2(K(\psi; 1)^2 + q^3 - q). \]

For the following lemma, one notes that \((n, q - 1) = 1 \).

Lemma 4: With \(n = 2^s (s \in \mathbb{Z}_{\geq 0}) \), the map \(a \mapsto a^n : \mathbb{F}_q^* \rightarrow \mathbb{F}_q^* \) is bijection.

A result analogous to the following Corollary is also mentioned in [15].

Corollary 5: For \(n = 2^s (s \in \mathbb{Z}_{\geq 0}) \), and \(\psi \) a nontrivial additive character of \(\mathbb{F}_q \),
\[K(\psi; a^n) = K(\psi; a). \]

Proof:
\[K(\psi; a^n) = \sum_{a \in \mathbb{F}_q^*} \psi(\alpha + a^n \alpha^{-1}) \]
\[= \sum_{a \in \mathbb{F}_q^*} \psi(\alpha + a^n \alpha^{-n}) \text{(by Lemma 4)} \]
\[= \sum_{a \in \mathbb{F}_q^*} \psi(\alpha + a \alpha^{-1}) \]
\[= \sum_{a \in \mathbb{F}_q^*} \psi(\alpha + a \alpha^{-1})([11], \text{Theorem 2.23(v)}) \]
\[= K(\psi; a). \]

For the next corollary, we need a result of Carlitz.

Theorem 6 (2J): For the canonical additive character \(\lambda \) of \(\mathbb{F}_q \), and \(a \in \mathbb{F}_q^* \),
\[K_2(\lambda; a) = K(\lambda; a)^2 - q. \tag{26} \]

The next corollary follows from Theorems 3 and 6, Corollary 5, and by simple change of variables.

Corollary 7: Let \(\lambda \) be the canonical additive character of \(\mathbb{F}_q \), and let \(a \in \mathbb{F}_q^* \). Then we have
\[\sum_{w \in G_1(q)} \lambda(aTrw) = K(\lambda; a), \tag{27} \]
\[\sum_{w \in G_2(q)} \lambda(aTrw) = K(\lambda; a) + q - 1, \tag{28} \]
\[\sum_{w \in G_3(q)} \lambda(aTrw) = q^2(K(\lambda; a)^2 + q^3 - q) \tag{29} \]
\[= q^2(K_2(\lambda; a) + q^3). \tag{30} \]

Proposition 8: Let \(\lambda \) be the canonical additive character of \(\mathbb{F}_q \), \(m \in \mathbb{Z}_{\geq 0}, \beta \in \mathbb{F}_q \). Then
\[\sum_{a \in \mathbb{F}_q^*} \lambda(-a \beta)K_m(\lambda; a) \]
\[= \begin{cases} qK_{m-1}(\lambda; \beta^{-1}) + (-1)^{m+1}, & \text{if } \beta \neq 0, \\ (-1)^m, & \text{if } \beta = 0, \end{cases} \tag{31} \]

with the convention \(K_0(\lambda; \beta^{-1}) = \lambda(\beta^{-1}) \).

Proof: (31) is equal to
\[\sum_{\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q^*} \lambda(\alpha_1 + \cdots + \alpha_m) \sum_{\alpha \in \mathbb{F}_q^*} \lambda(\alpha^{-1} \cdots \alpha_m^{-1} - \beta) \]
\[= \sum_{\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q^*} \lambda(\alpha_1 + \cdots + \alpha_m) \sum_{\alpha \in \mathbb{F}_q^*} \lambda(\alpha^{-1} \cdots \alpha_m^{-1} - \beta) \]
\[- \sum_{\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q^*} \lambda(\alpha_1 + \cdots + \alpha_m) \]
\[= q \sum_{\alpha_1 + \cdots + \alpha_m} + (-1)^{m+1}. \]

Here the sum runs over all \(\alpha_1, \ldots, \alpha_m \in \mathbb{F}_q^* \) satisfying \(\alpha_1^{-1} \cdots \alpha_m^{-1} = \beta \), so that it is given by
\[\begin{cases} 0, & \text{if } \beta = 0, \\ K_{m-1}(\lambda; \beta^{-1}), & \text{if } \beta \neq 0, \text{ and } m > 1, \\ \lambda(\beta^{-1}), & \text{if } \beta \neq 0, \text{ and } m = 1. \end{cases} \]
Let $G(q)$ be one of finite classical groups over F_q. Then we put, for each $\beta \in F_q$,
\[
N_{G(q)}(\beta) = |\{ w \in G(q) \mid Tr(w) = \beta\}|.
\]
Then it is easy to see that
\[
qN_{G(q)}(\beta) = |G(q)| + \sum_{a \in F_q^*} \lambda(-a\beta) \sum_{w \in G(q)} \lambda(a\ Tr w).
\tag{32}
\]
For brevity, we write
\[
n_1(\beta) = N_{G_1(q)}(\beta), n_2(\beta) = N_{G_2(q)}(\beta), n_3(\beta) = N_{G_3(q)}(\beta).
\tag{33}
\]
Using (27), (28), (30)–(32), and (37), one derives the following.

Proposition 9: With $n_1(\beta), n_2(\beta), n_3(\beta)$ as in (33), we have
\[
\begin{align*}
n_1(\beta) &= \begin{cases} 1, & \text{if } \beta = 0, \\
2, & \text{if } \beta \neq 0 \text{ with } tr(\beta^{-1}) = 0, \\
0, & \text{if } \beta \neq 0 \text{ with } tr(\beta^{-1}) = 1,
\end{cases} \\
n_2(\beta) &= \begin{cases} q, & \text{if } \beta = 0, \\
2q, & \text{if } \beta \neq 0 \text{ with } tr(\beta^{-1}) = 0, \\
0, & \text{if } \beta \neq 0 \text{ with } tr(\beta^{-1}) = 1,
\end{cases} \\
n_3(\beta) &= \begin{cases} q^2(2q^2 - q - 2), & \beta = 0, \\
q^2(q(q + 1)(q - 2) + K(\lambda, \beta^{-1})), & \beta \neq 0.
\end{cases}
\end{align*}
\tag{34–36}
\]

IV. CONSTRUCTION OF CODES

Let
\[
N_1 = |G_1(q)| = q - 1, N_2 = |G_2(q)| = 2(q - 1), \\
N_3 = |G_3(q)| = q^2(q^2 - 1)^2.
\tag{37}
\]
Here we will construct three binary linear codes $C(G_1(q))$ of length N_1, $C(G_2(q))$ of length N_2, and $C(G_3(q))$ of length N_3, respectively associated with the orthogonal groups $G_1(q), G_2(q)$, and $G_3(q)$.

By abuse of notations, for $i = 1, 2, 3$, let $g_1, g_2, \ldots, g_{N_i}$ be a fixed ordering of the elements in the group $G_i(q)$. Also, for $i = 1, 2, 3$, we put
\[
v_i = (Tr g_1, Tr g_2, \ldots, Tr g_{N_i}) \in F_q^{N_i}.
\]
Then, for $i = 1, 2, 3$, the binary linear code $C(G_i(q))$ is defined as
\[
C(G_i(q)) = \{ u \in F_q^{N_i} \mid u \cdot v_i = 0\},
\tag{38}
\]
where the dot denotes the usual inner product in $F_q^{N_i}$.

The following Delsarte’s theorem is well-known.

Theorem 10 ([12]): Let B be a linear code over F_q. Then
\[
(B|_{F_2})^\perp = Tr(B^\perp).
\]
In view of this theorem, the dual $C(G_i(q))^\perp (i = 1, 2, 3)$ is given by
\[
C(G_i(q))^\perp = \{ c(a) = (Tr(aTr g_1), \ldots, Tr(aTr g_{N_i})) \mid a \in F_q \}.
\tag{39}
\]
Let F_q^+, F_q^- denote the additive groups of the fields F_2, F_3, respectively. Then, with $\Theta(x) = x^2 + x$ denoting the Artin–Schreier operator in characteristic two, we have the following exact sequence of groups:
\[
0 \to F_2^+ \to F_q^+ \to \Theta(F_q) \to 0.
\tag{40}
\]
Here the first map is the inclusion and the second one is given by $x \mapsto \Theta(x) = x^2 + x$. So
\[
\Theta(F_q) = \{ \alpha^2 + \alpha \mid \alpha \in F_q \}, \text{ and } |F_q^+ : \Theta(F_q)| = 2.
\tag{41}
\]

Theorem 11: Let λ be the canonical additive character of F_q, and let $\beta \in F_q^*$. Then
\[
(a) \sum_{\alpha \in F_q -\{0,1\}} \frac{\lambda(-\beta \alpha - \alpha^2)}{\beta} = K(\lambda, \beta) - 1,
\tag{42}
\]
\[
(b) \sum_{\alpha \in F_q^*} \lambda(\frac{\beta}{\alpha^2 + \alpha + a}) = -K(\lambda, \beta) - 1, \text{ if } x^2 + x + a(\in F_q) \text{ is irreducible over } F_q, \text{ or equivalently if } a \in F_q \setminus \Theta(F_q) \text{ (cf. (41)).}
\]

Proof: (a) We compute the following sum in two different ways:
\[
\sum_{\alpha \in F_q^*} \lambda(-\beta^{-1} \alpha)K(\lambda, \alpha)^2.
\tag{43}
\]
On the one hand, using (26) we see that (43) is equal to
\[
\sum_{\alpha \in F_q^*} \lambda(-\beta^{-1} \alpha)K(\lambda, \alpha) = -q + \sum_{\alpha \in F_q^*} \lambda(-\beta^{-1} \alpha)K_2(\lambda, \alpha)
\tag{44}
\]
On the other hand, we see that (43) equals
\[
\sum_{\alpha_1, \alpha_2 \in F_q^*} \lambda(\alpha_1 + \alpha_2) \sum_{\alpha \in F_q^*} \lambda(\alpha(\alpha_1^{-1} + \alpha_2^{-1} - \beta^{-1}))
\tag{45}
\]
(with the sum running over all $\alpha_1, \alpha_2 \in F_q^*$, satisfying $\alpha_1^{-1} + \alpha_2^{-1} = \beta^{-1}$)
\[
= q \sum_{\alpha_1 \in F_q -\{0,\beta\}} \lambda(\alpha_1 + (\alpha_1^{-1} + \beta^{-1})^{-1}) - 1
\tag{46}
\]
\[
= q \sum_{\alpha_1 \in F_q -\{0,\beta^{-1}\}} \lambda(\alpha_1^{-1} + (\alpha_1^{-1} + \beta^{-1})^{-1}) - 1(\alpha_1 \rightarrow \alpha_1^{-1})
\tag{47}
\]
Equating (44) and (45), the result (a) follows.
So
\[\sum_{\alpha \in \mathbb{F}_q} \lambda(\frac{\beta}{\alpha^2 + \alpha + a}) = 2 \sum_{\gamma \in \Theta F_q} \lambda(\frac{\beta}{\gamma + a})(cf.(41)) \]
\[= -2 - 2 \sum_{\gamma \in \Theta F_q-(0)} \lambda(\frac{\beta}{\gamma})(cf.(47)) \]
\[= -2 - \sum_{\alpha \in \mathbb{F}_q-(0,1)} \lambda(\frac{\beta}{\alpha^2 + \alpha})(cf.(46)) \]
\[= -2 - (K(\lambda; \beta) - 1)(cf.(42)) = -1 - K(\lambda; \beta). \]

Theorem 12: (a) For \(q = 2^r \), with \(r \geq 3 \), the map \(\mathbb{F}_q \rightarrow C(G_1(q)) \) is an \(\mathbb{F}_2 \)-linear isomorphism.
(b) For any \(q = 2^r \), the map \(\mathbb{F}_q \rightarrow C(G_1(q)) \) is an \(\mathbb{F}_2 \)-linear isomorphism.

Proof: (a) As \(G_2(q) = O^+(2, q) \) case can be shown in exactly the same manner, we will treat only \(G_1(q) = SO^+(2, q) \) case. The map is clearly \(\mathbb{F}_2 \)-linear and surjective. Let \(a \) be in the kernel of the map. Then \(tr(aTr g) = 0 \), for all \(g \in SO^+(2, q) \). Since \(n_1(\beta) = |\{g \in SO^+(2, q) | Tr(g) = \beta \}| = 2 \), for all \(\beta \in \mathbb{F}_q^* \) with \(tr(\beta^{-1}) = 0 \). Hilbert’s theorem 90 says that, for \(\gamma \in \mathbb{F}_q^*, tr(\gamma) = 0 \leftrightarrow \gamma = \alpha^2 + \alpha \), for some \(\alpha \in \mathbb{F}_q \). Thus \(tr(\frac{\alpha}{\alpha^2 + \alpha}) = 0 \), for all \(\alpha \in \mathbb{F}_q \).

So
\[\sum_{\alpha \in \mathbb{F}_q-(0,1)} \lambda(\frac{\alpha}{\alpha^2 + \alpha}) = q - 2. \] Assume now that \(a \neq 0 \).

Then, from (42), (19),
\[q - 2 = K(\lambda; a) - 1 \leq 2 \sqrt{q} - 1 \]
This implies that \(q \leq 2 \sqrt{q} + 1 \). But this is impossible, since \(x > 2 \sqrt{x} + 1 \), for \(x \geq 8 \).

(b) Again, the map is \(\mathbb{F}_2 \)-linear and surjective. From (36) and using the Weil bound in (19), it is elementary to see that \(n_3(\beta) = |\{g \in SO^+(4, q) | Tr(g) = \beta \}| > 0 \), for all \(\beta \in \mathbb{F}_q \). Let \(a \) be in the kernel. Then \(tr(aTr g) = 0 \), for all \(g \in SO^+(4, q) \), and hence \(tr(a\beta) = 0 \), for all \(\beta \in \mathbb{F}_q \).

This implies that \(a = 0 \), since otherwise \(tr : \mathbb{F}_q \rightarrow \mathbb{F}_2 \) would be the trivial map.

Remark: It is easy to check that, for \(i = 1, 2, \) and \(q = 2^r \) with \(r = 1, 2 \), the kernel of the map \(\mathbb{F}_q \rightarrow C(G_1(q)) \) is \(\mathbb{F}_2 \).

V. Power moments of Kloosterman sums

In this section, we will be able to find, via Pless power moment identity, a recursive formula for the power moments of Kloosterman sums in terms of the frequencies of weights in \(C(G_1(q)) \), for each \(i = 1, 2, 3 \).

Theorem 13 (Pless power moment identity): Let \(B \) be an \(q \)-ary \([n, k]\) code, and let \(B_i \) (resp. \(B_i^+ \)) denote the number of codewords of weight \(i \) in \(B \) (resp. in \(B^+ \)). Then, for \(h = 0, 1, 2, \ldots \),
\[\sum_{j=0}^{n} j^h B_j = \sum_{j=0}^{\min\{n, h\}} (-1)^j B_j^+ \times \sum_{i=0}^{h} tS(h, t)q^{k-t}(q-1)^{t-j} n^{-j} \] (48)
where \(S(h, t) \) is the Stirling number of the second kind defined in (3).

From now on, we will assume that \(r \geq 3 \), for \(i = 1, 2 \), and hence, for \(i = 1, 2, 3 \), every codeword in \(C(G_1(q))^\perp \) can be written as \(c(a) \), for a unique \(a \in \mathbb{F}_q \) (cf. Theorem 12, (39)). Further, we will assume \(r \geq 2 \), for \(i = 3 \), so that Theorem 17 can be used in (c) of Theorem 18.

Lemma 14: Let \(c(a) = (tr(aTr g_1), \ldots, tr(aTr g_N)) \in C(G_1(q))^\perp \), for \(a \in \mathbb{F}_q^* \), and \(i = 1, 2, 3 \). Then the Hamming weight \(w(c(a)) \) can be expressed as follows:
(a) For \(i = 1, 2 \),
\[w(c(a)) = \frac{1}{2} (q - 1 - K(\lambda; a)) \]
(b) For \(i = 3 \),
\[w(c(a)) = \frac{1}{2} q^2 (q^4 - q - 4q^2 - 4q + 1 - K(\lambda; a)^2) \]
\[= \frac{1}{2} q^2 (q^4 - q - 4q^2 + 1 - K_2(\lambda; a)). \]
(50)

Proof:
\[For \ i = 1, 2, 3, \ w(c(a)) = \frac{1}{2} \sum_{j=1}^{N_i} (1 - (-1)^j tr(aTr g_j)) \]
\[= \frac{1}{2} (N_i - \sum_{\beta \in G_1(q)} \lambda(aTr(\beta))). \]

Our results now follow from (37) and (27)-(30).

Fix \(i = 1, 2, 3 \), and let \(u = (u_1, \ldots, u_N) \in \mathbb{F}_2^N \), with \(\nu_\beta \) 1’s in the coordinate places where \(Tr(g_j) = \beta \), for each \(\beta \in \mathbb{F}_q \). Then we see from the definition of the code \(C(G_1(q))(cf. (38)) \) that \(u \) is a codeword with weight \(j \) if and only if \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \) and \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \) (an identity in \(\mathbb{F}_q \)). As there are \(\prod_{\beta \in \mathbb{F}_q} \binom{n_1(\beta)}{\nu_\beta} \) many such codewords with weight \(j \), we obtain the following result.

Proposition 15: Let \(\{C_\beta\}_{\beta \in \mathbb{F}_q} \) be the weight distribution of \(C(G_1(q)) \), for each \(i = 1, 2, 3 \), where \(C_i \) denotes the frequencies of the codewords with weight \(j \) in \(C(G_1(q)) \). Then
\[C_i = \prod_{\beta \in \mathbb{F}_q} \binom{n_1(\beta)}{\nu_\beta}, \]
(51)
where the sum runs over all the sets of integers \(\{\nu_\beta\}_{\beta \in \mathbb{F}_q} \) satisfying
\[\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j, \text{ and } \sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0 \]
(52)
Corollary 16: Let \(\{C_{i,j}\}_{j=0}^{N_i} \) be the weight distribution of \(C(G_i(q)) \), for \(i = 1, 2, 3 \). Then, for \(i = 1, 2, 3 \), we have:
\[
C_{i,j} = C_{i,N_i-j},
\]
for all \(j \), with \(0 \leq j \leq N_i \).

Proof: Under the replacements \(\nu_\beta \rightarrow n_i(\beta) - \nu_\beta \), for each \(\beta \in \mathbb{F}_q \), the first equation in (52) is changed to \(N_i - j \), while the second one in (52) and the summands in (51) are left unchanged. Here the second sum in (52) is left unchanged, since \(\sum_{\beta \in \mathbb{F}_q} n_i(\beta) \beta = 0 \), as one can see by using the explicit expressions of \(n_i(\beta) \) in (34)-(36).

Theorem 17 ([10]): Let \(q = 2^r \), with \(r \geq 2 \). Then the range \(R \) of \(K(\lambda; \alpha) \), as a varies over \(\mathbb{F}_q^* \), is given by:
\[
R = \{ t \in \mathbb{Z} \mid |t| < 2\sqrt{q}, t \equiv -1 (mod 4) \}.
\]
In addition, each value \(t \in R \) is attained exactly \(H(t^2 - q) \) times, where \(H(d) \) is the Kronecker class number of \(d \).

Now, we get the following formulas in (2), (5), and (8), by applying the formula in (51) to each \(C(G_i(q)) \), using the explicit values of \(n_i(\beta) \) in (34)-(36), and taking Theorem 17 into consideration.

Theorem 18: Let \(\{C_{i,j}\}_{j=0}^{N_i} \) be the weight distribution of \(C(G_i(q)) \), for \(i = 1, 2, 3 \). Then

(a) \(C_{1,j} = \sum \left(\frac{1}{\nu_0} \prod_{\nu_\beta} \left(\frac{2}{\nu_\beta} \right) \right) \) \((j = 0, \ldots, N_1) \),
where the sum is over all the sets of nonnegative integers \(\{\nu_0\} \cup \{\nu_\beta\} \) \(t_{\nu_\beta} = 0 \) satisfying \(\nu_0 + \sum_{t_{\nu_\beta} = 0} \nu_\beta = j \) and
\[
\sum_{t_{\nu_\beta} = 0} \nu_\beta \beta = 0.
\]

(b) \(C_{2,j} = \sum \left(\frac{q}{\nu_0} \prod_{t_{\nu_\beta} = 0} \left(\frac{2}{\nu_\beta} \right) \right) \) \((j = 0, \ldots, N_2) \),
where the sum is over all the sets of nonnegative integers \(\{\nu_0\} \cup \{\nu_\beta\} \) \(t_{\nu_\beta} = 0 \) satisfying \(\nu_0 + \sum_{t_{\nu_\beta} = 0} \nu_\beta = j \) and
\[
\sum_{t_{\nu_\beta} = 0} \nu_\beta \beta = 0.
\]

(c) \(C_{3,j} = \sum \left(\frac{m_0}{\nu_0} \prod_{t_{\nu_\beta} = 0} \left(\frac{m_\beta}{\nu_\beta} \right) \right) \) \((j = 0, \ldots, N_3) \),
where the sum is over all the sets of nonnegative integers \(\{\nu_0\} \cup \{\nu_\beta\} \) \(\beta \in \mathbb{F}_q \) satisfying \(\sum_{\beta \in \mathbb{F}_q} \nu_\beta = j \) and
\[
\sum_{\beta \in \mathbb{F}_q} \nu_\beta \beta = 0,
\]
\[
m_0 = q^3(2q^2 - q - 2),
\]
and
\[
m_t = q^2(q^3 - q^2 - 2q + t),
\]
for all integers \(t \) satisfying \(|t| < 2\sqrt{q} \) and \(t \equiv -1 (mod 4) \).

We now apply the Pless power moment identity in (48) to each \(C(G_i(q)) \), for \(i = 1, 2, 3 \), in order to obtain the results in Theorem 1(cf. (1), (4), (6), (7)) about recursive formulas. Then the left hand side of that identity in (48) is equal to
\[
\sum_{a \in \mathbb{F}_q^*} w(c(a))^h,
\]
with the \(w(c(a)) \) in each case given by (49), (50).

For \(i = 1, 2, 3 \) is
\[
\frac{1}{2^h} \sum_{a \in \mathbb{F}_q^*} (q - 1 - K(\lambda; \alpha))^h
\]
\[
= \frac{1}{2^h} \sum_{a \in \mathbb{F}_q^*} (-1)^l \binom{h}{l} (q - 1)^{h-l} K(\lambda; \alpha)^l
\]
\[
= \frac{1}{2^h} \sum_{l=0}^{h} (-1)^l \binom{h}{l} (q - 1)^{h-l} MK^l.
\]

Similarly, for \(i = 3, (53) \) equals
\[
\left(\frac{q^2}{2} \right)^h \sum_{l=0}^{h} (-1)^l \binom{h}{l} \left(q^4 - q^3 - 2q^2 + q + 1 \right)^{h-l} MK^l (55)
\]
\[
= \left(\frac{q^2}{2} \right)^h \sum_{l=0}^{h} (-1)^l \binom{h}{l} \left(q^4 - q^3 - 2q^2 + 1 \right)^{h-l} MK^l. (56)
\]

Note here that, in view of (26), obtaining power moments of 2-dimensional Kloosterman sums is equivalent to getting even power moments of Kloosterman sums. Also, one has to separate the term corresponding to \(l = h \) in (54)-(56), and notes \(dim_{\mathbb{F}_q} C(G_i) = r \).

VI. Remarks and Examples

The explicit computations about power moments of Kloosterman sums was begun with the paper [17] of Salié in 1931, where he showed, for any odd prime \(q \),
\[
MK^h = q^2(M_{h-1} - (q - 1)^{h-1} + 2(-1)^{h-1}(h \geq 1)). (57)
\]
However, this holds for any prime power \(q = p^r \) (p a prime). Here \(M_0 = 0 \), and for \(h \in \mathbb{Z}_{>0} \),
\[
M_h = \left\{ (\alpha_1, \ldots, \alpha_h) \in (\mathbb{F}_q)^h \mid \sum_{j=1}^{h} \alpha_j = 1 = \sum_{j=1}^{h} \alpha_j^{-1} \right\}.
\]

For positive integers \(h \), we let
\[
A_h = \left\{ (\alpha_1, \ldots, \alpha_h) \in (\mathbb{F}_q)^h \mid \sum_{j=1}^{h} \alpha_j = 0 = \sum_{j=1}^{h} \alpha_j^{-1} \right\}.
\]

Then \((q - 1)M_{h-1} = A_h \), for any \(h \in \mathbb{Z}_{>0} \). So (57) can be rewritten as
\[
MK^h = \frac{q^2}{q-1} A_h - (q - 1)^{h-1} + 2(-1)^{h-1}. (58)
\]

Iwaniec [5] showed the expression (58) for any prime \(q \). However, the proof given there works for any prime power \(q \), without any restriction. Also, this is a special case of Theorem 1 in [3], as mentioned in Remark 2 there.
For $q = p$ any prime, MK^h was determined for $h \leq 4$ (cf. [5], [17]).

\[
MK^1 = 1, \quad MK^2 = p^2 - p - 1, \\
MK^3 = \left(\frac{-3}{p}\right)p^2 + 2p + 1 \\
(MK^4 = \left\{ \begin{array}{ll} 2p^3 - 3p^2 - 3p - 1, & p \geq 3; \\
1, & p = 2. \end{array} \right)
\]

With the understanding $\left(\frac{-3}{2}\right) = -1, \left(\frac{-3}{3}\right) = 0$.

Except [1] for $1 \leq h \leq 4$ and [16] for $h = 6$, not much progress had been made until Moisio succeeded in evaluating MK^h, for the other values of h with $h \leq 10$ over the finite fields of characteristic two in [13] (Similar results exist also over the finite fields of characteristic three (cf. [4], [14])), So we have now closed form formulas for $h \leq 10$. His result was a breakthrough, but the way it was proved is too indirect, since the frequencies are expressed in terms of the Eichler Selberg trace formulas for the Hecke operators acting on certain spaces of cusp forms for $\Gamma_1(4)$. In addition, the power moments of Kloosterman sums are obtained only for $h \leq 10$ and not for any higher order moments. On the other hand, our formulas in (1) and (4) allow one, at least in principle, to compute moments of all orders for any given q.

In below, for small values of i, we compute, by using (1), (2), and MAGMA, the frequencies C_i of weights in $C(SO^+(2, 2^k))$, and the power moments MK^i of Kloosterman sums over \mathbb{F}_{2^k} and \mathbb{F}_{2^5}. In particular, our results confirm those of Moisio’s given in [13], when $q = 2^4$ and $q = 2^5$.

Table I

w	frequency	w	frequency	w	frequency	w	frequency
1	4	4	4	4	4	4	4
2	6	6	6	6	6	6	6
3	8	8	8	8	8	8	8

The weight distribution of $C(SO^+(2, 2^4))$.

Table II

i	MK^i
0	15
1	1
2	232
3	289
4	763
5	22081
6	300719
7	1343329
8	131118351
9	72973441

The power moments of Kloosterman sums over \mathbb{F}_{2^4}.

Table III

w	frequency
0	1
1	1
2	15
3	135
4	5369
5	23159

The weight distribution of $C(SO^+(2, 2^5))$.

Table IV

i	MK^i
0	31
1	999
2	4051
3	395211
4	5102431
5	67894217
6	460453521

The power moments of Kloosterman sums over \mathbb{F}_{2^5}.

References

[1] L. Carlitz, “Gauss sums over finite fields of order 2^n,” Acta Arith., vol. 15, pp. 247–265, 1969.
[2] L. Carlitz, “A note on exponential sums,” Pacific J. Math., vol. 30, pp. 35–37, 1969.
[3] Hi-joon Chae and D. S. Kim, “A generalization of power moments of Kloosterman sums,” Arch. Math.(Bazsl), vol. 89, pp. 152–156, 2007.
[4] G. van der Geer, R. Schoof, and M. van der Vlugt, “Weight formulas for ternary Melas codes,” Math. Comp., vol. 58, pp. 781–792, 1992.
[5] H. Iwaniec, “Topics in Classical Automorphic Forms,” Amer. Math. Soc., Providence, R. I., 1997.
[6] D. S. Kim, “Gauss sums for symplectic groups over a finite field,” Mh. Math., vol. 126, pp. 55–71, 1998.
[7] D. S. Kim, “Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums,” preprint(2008), [arXiv:0807.3991v1] [math.NT].
[8] D. S. Kim and Y. H. Park, “Gauss sums for orthogonal groups over a finite field of characteristic two,” Acta Arith., vol. 82, pp. 331–357, 1997.
[9] H. D. Kloosterman, “On the representation of numbers in the form $ax^2 + by^2 + cz^2 + dt^2$,” Acta. Math. vol. 49, pp. 407–464, 1926.
[10] G. Lachaud and J. Wolfmann, “The weights of the orthogonal of the extended quadratic binary Goppa codes,” IEEE Trans. Inform. Theory, vol. 36, pp. 686–692, 1990.
[11] R. Liu and H. Niederreiter, Finite Fields, 2nd ed, Cambridge, U. K.:Cambridge University Press, 1997, vol. 20, Encyclopedia of Mathematics and Its Applications.
[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1998.
[13] M. Moisio, “The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code,” IEEE Trans. Inform. Theory, vol. 53, pp. 843–847, 2007.
[14] M. Moisio, “On the moments of Kloosterman sums and fibre products of Kloosterman curves,” Finite Fields Appl., vol. 14, pp. 515–531, 2008.
[15] M. Moisio, “Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm,” Acta Arith., to appear.
[16] M. Moisio and K. Ranto, “Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros,” Finite Fields Appl., vol. 13, pp. 922–935, 2007.
[17] H. Salić, “Über die Kloostermanschen Summen $S(u, v; q)$,” Math. Z., vol. 34, pp. 91–109, 1931.
[18] R. Schoof and M. van der Vlugt, “Hecke operators and the weight distributions of certain codes,” J. Combin. Theory Ser. A, vol. 57, pp.163-186, 1991.

[19] Z.-X. Wan, “Geometry of Classical Groups over Finite Fields,” Studentlitteratur, Lund, 1993.