Satiety behavior is regulated by ASI/ASH reciprocal antagonism

Kristen C. Davis¹, Young-In Choi¹, Jeongho Kim² & Young-Jai You¹,³

Appropriate decision-making is essential for ensuring survival; one such decision is whether to eat. Overall metabolic state and the safety of food are the two factors we examined using C. elegans to ask whether the metabolic state regulates neuronal activities and corresponding feeding behavior. We monitored the activity of sensory neurons that are activated by nutritious (or appetitive) stimuli (ASI) and aversive stimuli (ASH) in starved vs. well-fed worms during stimuli presentation. Starvation reduces ASH activity to aversive stimuli while increasing ASI activity to nutritious stimuli, showing the responsiveness of each neuron is modulated by overall metabolic state. When we monitored satiety quiescence behavior that reflects the overall metabolic state, ablation of ASI and ASH produce the opposite behavior, showing the two neurons interact to control the decision to eat or not. This circuit provides a simple approach to how neurons handle sensory conflict and reach a decision that is translated to behavior.

Making the correct behavioral choices is essential for any organism’s survival. To make the correct choices, an organism integrates their sensory input to evaluate whether the condition is beneficial or harmful. This holds true from complex organisms such as humans to simpler organisms such as bacteria. In nature, an animal often faces conflicting cues and the choice could, in turn, decide the animal’s survival. Behavioral decision-making is influenced heavily by the inputs from sensory neurons and the internal state of the animal. In some cases, these decisions are made through sensory integration at the interneuron level. As an example, upon the discovery of a potentially harmful yet nutritious source, an animal must sense its current nutritional status to weigh the nutritional benefit against the potential harm from consuming it. The more starved an animal is, the more risk the animal is willing to take. Determining how these conditions weigh against each other, which neural structures make these calculations, and where the threshold is set for each behavior is a challenging task.

Here we elucidate the C. elegans neural circuit that integrates conflicting information given by an aversive (bad) and an appetitive (good) food cue. C. elegans have a simple nervous system, consisting of 302 neurons with known connectivity based on a reconstruction of electron micrographs. In addition to a simple, and transparent, nervous system, various optogenetic tools can be used to measure and manipulate the neural activity of a single neuron. Moreover, we previously showed that C. elegans exhibits hunger and satiety behaviors similar to those of mammals, showing that C. elegans is a good genetic model system with conserved behavioral features to study neuro-behavioral mechanisms by which an animal makes its feeding decisions.

We found that the ASI sensory neurons are activated by nutrients (appetitive stimulus), however, this activation is reduced in the presence of an aversive stimulus, which activates the ASH sensory neurons. The ASI neurons promote satiety quiescence that mimics post-prandial sleep in mammals (cessation of movement and feeding following food consumption). The ASH neurons, in contrast, antagonize this satiety quiescence behavior. The antagonistic relationship between ASI and ASH activation by appetitive and aversive stimuli respectively, is modulated by the nutritional status of the animal. Our results identify the neural substrate and its modulation by the animals’ internal state by which conflicting sensory stimuli are processed to result in a behavioral outcome.

Materials and Methods

General Methods and Strains. Worms were cultured and handled as described previously with the following modifications: worms were routinely grown on NGMSR plates, which contain 200 μg/mL streptomycin sulfate, 10 μg/mL nystatin, and 2% instead of 1.7% agar. All worms were maintained at 20°C on E. coli strain HB101 unless indicated otherwise. The wild-type strain was C. elegans variant Bristol, strain N2. The other strains used were JN1713 pels1713 [sra-6p: mCasp1], CX10979 kyEx2865 [sra-6p: GCaMP3, ofm-1::gfp], and

¹Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
²Department of Biological Sciences, Inha University, Incheon, 22212, South Korea.
³Nagoya Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.

Received: 16 February 2017
Accepted: 5 April 2018
Published online: 02 May 2018
CaMP2.2, unc-122::dsRed] generated from PY6554 17 integrated via gamma irradiation then outcrossed eight times against N2, YJ216 ysls216[gya-4p::GCaMP2.2, unc-122::dsRed]; lite-1(ce314); ljIs114[pgpa-13::HFLPase, Pena-6::HTFFCHKR2H YFP], YJ217 ysls84 [gya-4p::TU813, gcy-27p::eGFP, unc-122::DsRed]; pels1713 [sra-6p::mCasp1, unc-122::dsRed].

Preparation of Bacteria for Locomotion Assays and Locomotion Monitoring Assays. This assay was conducted as previously described8. Briefly, worms were selected as mid to late L4 larvae and cultivated for 8 hours at 20℃ until they reached the young pre-reproductive adult stage. In the fasted condition, these worms were starved on NGMSR plates for 12–14 hours. In the unfasted condition, worms were left on food throughout the assay. Upon reaching the aforementioned adult stage, fasted and unfasted worms were transferred to a 35 mm plate with food and recorded for 1 hour.

Calcium Imaging. All calcium-imaging experiments were performed on an Axio Observer.A1 with a 63× oil immersion DIC objective and a Hamamatsu C11440 digital camera. Analysis of the imaging data was performed with a custom written program in Mathematica, with one region of interest placed on the neuron of interest and a second placed nearby to measure background.

Young adult worms were picked and placed in a microfluidic device that restrains the worm with the tip of the head (where the ASI and ASH sensory neurons are located) in a stream that can be rapidly switched18, “the olfactory chip”). Images were recorded at a rate of 10 frames/second for 60 seconds. Each worm was recorded for a 15 second baseline, followed by exposure to the stimulus for 15 seconds, 15 seconds no stimulus, and a second 15 second exposure to stimulus. During the 15 seconds baseline and the 15 seconds without stimulus, worms were exposed to buffer across their noses. Worms exposed to a treatment during calcium imaging received that treatment for 1–5 minutes prior to the start of the imaging session and received the treatment during the baseline and 15 second period without stimulus.

Optogenetic Activation of ASH. Worms with channel rhodopsin expressed in ASH were grown their entire lives on either ethanol (21.8 mM) or ethanol containing all trans-retinol (63 μM ATR in 21.8 mM EtOH) and were kept in the dark. Experiments with these worms were performed the same as the other calcium imaging experiments.

Statistics. All bar graphs denote mean ± SEM. Statistical tests (independent t-tests and one-way analysis of variance [ANOVA]) were done using Excel, Prism, MatLab, and Mathematica programming tools. The satiety assay was analyzed using a custom written worm tracking program in MatLab which provides the coordinate data for the centroid of each worm. This data is used to calculate the speed of the worm at various times in the recordings and via a Hidden Markov Model, the percentage of their time spent in the three behavioral states described is determined10. Statistical tests for calcium imaging were conducted using data which had been bootstrapped, each set of experiments were randomly resampled up to n available for each set of experiments 1000 times to provide a new, larger sample. For example, if 12 experiments were in the original dataset, the bootstrap randomly selected from this set of experiments for 12 data points and the random selection was performed 1000 times. Bootstrapping was completed to smooth the data and make it possible to compare calcium traces between conditions for statistical testing.

Results and Discussion

Aversive stimulus via ASH inhibits ASI activation to nutrients. ASI are a pair of head sensory neurons in C. elegans which are required for satiety behavior and for suppression of food intake. As we showed previously, ASI are activated by Luria Broth (LB), a mixture of nutrients (Fig. 1A)8. The LB-induced activation of ASI is reduced by treatment with 2 M NaCl compared to ASI activation in the absence of NaCl (P = 0.0002, Fig. 1B), showing that a high concentration of NaCl, an aversive stimulus, inhibits ASI activation by nutrients. This shows that when two conflicting cues exist, the aversive cue suppresses the appetitive cue. As an aversive stimulus induces avoidance in the animal mainly via a pair of head sensory neuron ASH, we hypothesized the ASH are activated by NaCl and this activation in turn inhibits ASI activation by nutrients. 2 M NaCl strongly activates ASH (Fig. 1C), showing that NaCl is a proper stimulus for ASH19. Next, we tested animals whose ASH are genetically ablated and asked if NaCl suppresses ASI activation to LB in an ASH dependent manner. In worms with ASH genetically ablated, ASI activation to LB is intact (Fig. 1D). Moreover, we see a full restoration of ASI's response to LB following continuous exposure to NaCl (Fig. 1E), demonstrating ASI inhibition is mediated by ASH. To exclude any potential interference caused by NaCl treatment, we tested the ASI activation by LB after optogenetically activating ASH. When we activated ASH directly and acutely using channel rhodopsin in ASH without any exogenous stimulus, ASI activation to LB is greatly reduced to an extent comparable to continuous exposure to NaCl (Fig. 2A), whereas control animals show normal LB activation (Fig. 2B). This result shows ASH is sufficient to inhibit ASI activation to LB. Therefore, we conclude that ASI activation to LB, an appetitive cue, is inhibited by ASH, which are activated by an aversive stimulus.

ASI and ASH interact to regulate satiety behavior. To understand the behavioral implications of the interaction between ASI and ASH neurons, we examined satiety quiescence of animals in which the two neuron pairs were genetically ablated individually and in combination. We measured satiety behavior using the automated system we built8. Briefly, a user-built 9 camera monitoring system records individual animal's locomotion. Then the data is analyzed by a Hidden Markov Model to measure the percentage of time the animal spends in each behavioral state: the three behavior states are roaming (searching for food), dwelling (browsing current food source), and satiety quiescence (not eating or moving)8. After starvation and refeeding, conditions under which
Figure 1. Relationship between ASI & ASH. Graphs A–E are the result of calcium imaging using GCaMP. The gray sections indicate the onset and presence of a stimulus. The white sections indicate buffer flowing across the worm’s nose instead of a stimulus. The darkest line in the traces is the average and the lines above and below the mean are the standard errors of the mean. *Statistically significant ($p = 0.05$). (A) Activation to LB in ASI measured using GCaMP ($n = 17$). (B) 2 M NaCl suppresses LB activation in ASI of well-fed worms ($n = 10$). (C) ASH’s activation to 2 M NaCl. (D) Genetic ablation of ASH restores ASI’s LB activation after NaCl ($n = 10$). (E) ASI is still capable of LB activation without ASH ($n = 12$). (F) The + row of data is the concurrent N2 data for each experiment. The + row is above. Significance indicated in this graph is based on a comparison between the concurrently tested N2 and ablation in the row. Satiet quiescence assay results of ASI genetic-ablation fasted ($n = 7$ for ASI$^-$, $n = 16$ for ASI$^+$) and unfasted ($n = 11$ for ASI$^-$, $n = 20$ for ASI$^+$), ASH genetic-ablation fasted ($n = 27$ for ASH$^-$, $n = 13$ for ASH$^+$) and unfasted ($n = 24$ for ASH$^-$, $n = 15$ for ASH$^+$), and a double genetic-ablation of ASI and ASH fasted ($n = 27$ for ASI$^-$/ASH$^-$, $n = 14$ for ASI$^+$/ASH$^+$) and unfasted ($n = 28$ for ASI$^-$/ASH$^-$, $n = 14$ for ASI$^+$/ASH$^+$).
Figure 2. ChR in ASH suppresses ASI and ASI’s activation changes based on nutritional status. Graphs A–J are the result of calcium imaging using GCaMP. The gray sections indicate the onset and presence of a stimulus. The white sections indicate buffer flowing across the worm’s nose instead of a stimulus except in graphs I and J, in these graphs NaCl is flowing across worm’s nose. The darkest line in the traces is the average and the lines above and below the mean are the standard errors of the mean. (A) ASH activation by ChR2 decreases ASI’s LB activation (n = 10). (B) Ethanol control for ChR2 (n = 5). (C) ASI’s activation to 100% LB under a well-fed condition (n = 17). (D) ASI’s activation to 100% LB following 6 hours of starvation (n = 12). (E) ASI’s activation to 50% LB under a well-fed condition (n = 10). (F) ASI’s activation to 50% LB following 6 hours of starvation (n = 10). (G) ASI’s activation to 10% LB under a well-fed condition (n = 10). (H) ASI’s activation to 10% LB following 6 hours of starvation (n = 13). (I) Suppression of ASI’s activation to LB under a well-fed condition following exposure to 0.5 M NaCl (n = 10). (J) Suppression of ASI’s activation to LB following 6 hours of starvation and exposure to 0.5 M NaCl (n = 11).
Figure 3. ASH activation is influenced by feeding status. Graphs A–H are the result of calcium imaging using GCaMP. The gray sections indicate the onset and presence of a stimulus. The white sections indicate buffer flowing across the worm’s nose instead of a stimulus except in graphs E and H. The darkest line in the traces is the average and the lines above and below the mean are the standard errors of the mean. (A) ASH’s activation to 1 M NaCl (n = 13). (B) ASH’s activation to 2 M NaCl *This is the same data shown in Fig. 1C, it is included here for comparison to the other NaCl concentrations (n = 12). (C) ASH’s activation to 3 M NaCl (n = 13). (D) ASH’s activation to 4 M NaCl (n = 14). (E) Suppression of ASI’s activation to LB following exposure to 4 M NaCl (n = 12). (F) ASI’s activation to LB before or after (alternating conditions) experiments with 4 M NaCl (n = 14). (G) ASH’s activation to 2 M NaCl following 6 hours of starvation (n = 7). (H) Suppression of ASH’s activation to 2 M NaCl following exposure to LB and 6 hours of starvation (n = 10). (I) ASH’s activation to 2 M NaCl (n = 10), same day control for J. (J) ASH’s activation to 2 M NaCl after exposure to LB (n = 11).
Figure 4. Proposed model for ASI and ASH activity influenced by internal and external cues. (A) Under well-fed conditions the balance between ASI and ASH favors the activity of ASH when nutrients and a noxious stimulus are present. (B) During fasting conditions the balance between ASI and ASH favors the activity of ASI when nutrients and a noxious stimulus are present.

Next we tested whether the nutritional status also influences ASH activation by the aversive stimulus. We hypothesized that if the animals are starved, the response to the aversive stimulus could be altered in the presence of a nutritious cue. This could be relevant for a starved animal in the wild that encounters potentially dangerous food. Reduction of ASH activity to the dangerous cue in the presence of a nutritious cue could allow the animal to take the risk of eating the harmful food. All four concentrations we tested (1, 2, 3, 4 M NaCl) activated ASH in the well-fed animals (Fig. 3A–D), the highest level of activation was seen with 2 M NaCl (Fig. 3B). This could be because 3 M or 4 M NaCl might inhibit the neuronal activity and the relevant feeding behavior when the animal is well-fed.

Consideration of our work and the work of others examining the interaction between ASI and ASH suggests a reciprocal antagonism between ASI and ASH which could be regulated by the metabolic state. In this model, metabolic state switches the hierarchy of the interaction so that the animals prioritize their choice; hungry animals with reduced ASH and enhanced ASI responsiveness could take the risk of eating food with an aversive cue, while satiated animals with enhanced ASH and reduced ASI responsiveness would avoid it.
Previous work has shown reciprocal suppression of ASI and ASH in the context of heavy metal chemotaxis but not in the context of feeding behavior or aversive and nutritious stimuli. We suggest that our work could further support the importance of this circuit in decision-making that is relevant to the essential choice of feeding based on nutritional status. Based on our results, we suggest that under well-fed conditions, ASH is capable of suppressing ASI’s activation to nutrients (Fig. 4A). However, under certain conditions, ASI might be able to suppress ASH’s activation to aversive stimuli. This crosstalk between two neurons will enhance or suppress feeding behaviors based on the integration of internal and environmental cues. We speculate that this integration could be mediated by a set of interneurons acting as a sensory integrator between these two opposing signals. Previous work has demonstrated an interneuron pair, AIA, are involved in a behavioral choice between diacetyl (appetitive stimulus) and copper (aversive stimulus) by changing its expression profiles. The ASI-ASH crosstalk could incorporate the integrating function of AIA to make behavioral decisions regarding feeding. Further work would be required to reach this conclusion without speculation.

References

1. Adler, J. & Tsou, W.-W. Decision-making in Bacteria: Chemotactic Response of Escherichia coli to Competing Stimuli. Science (80-.). 184, 1292–1294 (1974).
2. Egger, T., Delano, M. & Hirsch, J. Separate conflict-specific cognitive control mechanisms in the human brain. Neuroimage 35, 940–948 (2007).
3. Heikeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nat. Rev. 9, 467–479 (2008).
4. McFarland, D. J. Decision making in animals. Nat. Rev. 269 (1977).
5. Shinkai, Y. et al. Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCRY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans. J. Neurosci. 31, 3007–3013 (2011).
6. Chalfie, M. & White, J. In The Nematode Caenorhabditis elegans 337–391 (1988).
7. You, Y., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7, 249–57 (2008).
8. Gallagher, T., Kim, J., Oldenbroek, M., Kerr, R. & You, Y.-J. ASI regulates satiety quiescence in C. elegans. J. Neurosci. 33, 9716–24 (2013).
9. Gallagher, T., Bjorness, T., Greene, R., You, Y. J. & Avery, L. The Geometry of Locomotive Behavioral States in C. elegans. PLoS One 8 (2013).
10. Sulston, J. & Hodgkin, J. In The Nematode Caenorhabditis elegans pp 587–606 (Cold Spring Harbor Press., 1988).
11. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).
12. Shintoda, B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102 (2006).
13. Avery, L. & Shintoda, B. R. Food transport in the C. elegans pharynx. J. Exp. Biol. 244–2457, https://doi.org/10.1242/jeb.00433 (2003).
14. Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
15. Yoshida, K. et al. Odor concentration-dependent olfactory preference change in C. elegans. Nat. Commun. 3, 711–739 (2012).
16. Larsch, J., Ventimiglia, D., Bargmann, C. I. & Albrecht, D. R. High-throughput imaging of neuronal activity in Caenorhabditis elegans. PNAS 110, E2466–E4273 (2013).
17. Beverley, M., Anbl, S. & Sengupta, P. Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in Caenorhabditis elegans. J. Neurosci. 31, 11718–11727 (2011).
18. Chronis, N., Zimmer, M. & Bargmann, C. Microrheology for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).
19. Chatzigeorgiou, M., Bang, S., Hwang, S. W. & Schafer, W. R. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494, 95–9 (2013).
20. Guo, M. et al. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat. Commun. 6, 1–13 (2015).

Acknowledgements

We thank Drs. Bargmann, Schaeffer, Hirotsu, Iino, Ishihara, and the Caenorhabditis Genetics Center for strains (NIH grant P40 OD010440). We thank Drs. Gallaghers, Avery, Davies, and Raizen for invaluable discussion. We thank Lindsey Lopes for providing feedback on the manuscript. We thank Dr. Zimmer for initially providing the olfactory chips for this project. This work was supported by NIH grant 5R01DK083593 (YY, KD), Inha University (JK), Medical School of Virginia Commonwealth University (YY, KD) and Nagoya Neuroscience Institute (YY).

Author Contributions

K.D. and Y.-J.C. conducted the experiments. K.D., J.K. and Y.-J.Y. designed the experiments. K.D. and Y.-J.Y. wrote the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018