Original Article

The Impact of Reusable Dialyzer Membrane on End-Stage Renal Disease Patients’ Quality of Life: A Multicenter Study in Jakarta, Indonesia

Lucky Aziza Abdullah Bawazir1, Maruhum Bonar Marbun1, Wicensius Sianipar2, Lies Luthariana3

1Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo National Referral Hospital, 2Faculty of Medicine, Universitas Indonesia, 3Department of Internal Medicine, Koja District Hospital, Jakarta, Indonesia

ABSTRACT. Data from 8th Report of the Indonesian Renal Registry in 2015 reported that there was an increase in the prevalence of hemodialysis (HD) patients in Indonesia. Measures had been taken to reduce the cost of HD such as utilizing reusable dialyzer membrane. However, little is known on the impact of reusable dialyzer membrane on patients’ quality of life (QOL), and hence, this study was conducted. We conducted a multicenter study at Cipto Mangunkusumo Hospital, Koja District Hospital, and Cengkareng District Hospital with a total of 389 patients. Cipto Mangunkusumo Hospital represented single-use dialyzer group while, Koja and Cengkareng District Hospital represented reusable dialyzer group. Face-to-face interviews were conducted using Kidney Disease QOL-Short Form 36 questionnaires. Single-use dialyzer group’s scores were significantly higher than reusable dialyzer group’s scores in the following dimensions: kidney disease component summary (KDCS; 74.2 vs. 66.3; P <0.001), physical component summary (PCS; 70.6 vs. 55.2; P <0.001), mental component summary (MCS; 76.1 vs. 70.7; P = 0.023), and overall health rating (73.4 vs. 64.9; P <0.001). In the linear regression model, reusable dialyzer was still a strong predictor in KDCS (coefficient β = −9.3; P <0.001) and PCS (coefficient β = −17.2; P <0.001). Reusable dialyzer was associated significantly with patients’ QOL impairment. Unemployment, age, and illiteracy also showed significant association with patients’ QOL.

Correspondence to:
Dr. Lucky Aziza Abdullah Bawazir,
Department of Internal Medicine,
Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo National Teaching Hospital, Jakarta, 10350, Indonesia.
E-mail: aziza.lucky17@gmail.com

Introduction

The cost of hemodialysis (HD) for patients with end-stage renal disease (ESRD) is an economic burden to developing countries, including Indonesia. According to the 8th Report of Indonesian Renal Registry in 2015, there was an increase of HD patients from
11,689 patients in 2014 to 30,554 patients in 2015. The Indonesian National Health Insurance System reported that 2.2 trillion Indonesian Rupiah (IDR); equivalent to 145 million United States Dollars (USD) was claimed for ESRD in 2014 and 2.7 trillion IDR (equivalent to 180 million USD) was claimed for ESRD in 2015.

To achieve cost efficiency in HD practice, methods for reusing dialyzer membrane were attempted. HD sessions were performed twice a week as regulated by The Indonesian Association of Nephrology and The National Health Insurance due to limited financial support. Practice of reusing dialyzer membrane was initiated in the United States in the 1980s. It was suggested that the reuse practice was more affordable than the single-use practice, with 14.97% of cost saving. However, the cheaper cost of reuse practice notwithstanding, studies suggested some controversies regarding the patients’ morbidity and mortality affected by the dialyzer membrane reuse, including blood contamination of residual germicides which could worsen patients’ clinical outcomes. A systematic review by Galvao et al stated that there was no significant difference between reusable and single-use dialyzer in the aspect of mortality risk.

Previous studies focused on the association between dialyzer membrane and mortality or morbidity of ESRD patients. However, the main goal of HD is to achieve optimal quality of life (QOL) of patients with ESRD, but there is still a knowledge gap on the association between dialyzer membrane and patients’ QOL. There have been no previous studies which focused on this matter.

It is important to identify the association between dialyzer membrane and ESRD patients’ QOL, and a previous study showed that dialyzer reuse could alter leukocyte activity which may affect patients’ clinical manifestations. It is hypothesized that there is an association between dialyzer membrane and ESRD patients’ QOL. This study was conducted to fill this knowledge gap on the association between dialyzer membrane and ESRD patients’ QOL.

Methods

Study design and setting
This was a cross-sectional study which aimed to determine the association between dialyzer membrane and ESRD patients’ QOL. The study was conducted during December 2017 to April 2018 at three public hospitals in Jakarta: Cipto Mangunkusumo National Referral Hospital, Cengkareng District Hospital, and Koja District Hospital. During the study, patients with ESRD at Cipto Mangunkusumo Hospital underwent HD with single-use dialyzer membrane, while patients with ESRD at Cengkareng District Hospital and Koja District Hospital underwent HD with dialyzer membrane reuse. In Indonesia, the regulation states that the maximum number of times a dialyzer can be reused seven. However, in certain conditions, such as more than 20% of membrane leakage, the reusable dialyzer membrane must be changed into a new dialyzer membrane. Ethical approval of this study protocol was issued by the Health Research Ethics Committee, Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo Hospital with the letter’s reference number being 229/UN2.F1/ETIK/2017.

Sampling methods
Total sampling approach was performed in this study. Patients with ESRD, aged ≥18 years, and underwent twice per week HD procedure for at least one year were included in this study. The diagnosis of ESRD was based on the criteria of Kidney Disease Improving Global Outcomes.

Procedures and instruments
Face-to-face interviews were conducted with ESRD patients during their routine HD visit. Prior to the interview, informed consent was obtained from all patients. The questionnaire used in this study was the Kidney Disease QOL-Short Form 36 (KDQOL-SF 36). Patients’ physical examination data and laboratory results were obtained from the most
Covariates and outcomes

The following characteristics of ESRD patients who underwent routine HD were recorded: age, sex, educational level, monthly income, ethnicity, religion, marital status, history of hospitalization, etiology of chronic kidney disease (CKD), vascular access type, duration of HD, hemoglobin, albumin, and glomerular filtration rate (GFR). Age was categorized into the following groups: <35 years, 35–60 years, and >60 years. Educational level was categorized into elementary school, junior high school, and college. Monthly income (in IDR) was categorized into <1 million, 1–3 million, 3–5 million, 5–10 million, 10–15 million, and >15 million (equal to <$65, $65–200, $200–350, $350–660, $660–1000, >$1000). Ethnicity was categorized into Javanese, Betawinese, Sundanese, and others. Religion was categorized into Islam, Christian, Buddhism, and Hinduism. Marital status was categorized into single/widowed/divorced and married. Etiology of CKD was categorized into hypertension, diabetes mellitus, glomerulonephritis, and others. Vascular access was categorized into arteriovenous fistula, femoral access, tunnel, and double-lumen catheter. Dialysis vintage was recorded as numerical data. Duration of hospitalization within the last six months was also recorded as numerical data. Hemoglobin and GFR were recorded as numerical data. The GFR was calculated based on the CKD Epidemiology Collaboration formula.9

The primary outcome of this study was the mean QOL of each group (dialyzer reuse group and single-use dialyzer group). The QOL was measured with the KDQOL-SF 36. The following are the three main dimensions of QOL measured in this questionnaire: kidney disease component (KDC), physical component (PC), and mental component (MC). Each of the components has specific dimensions. The KDC has eleven dimensions, which are symptoms, effects of kidney disease, burden of kidney disease, work status, cognitive function, quality of social interaction, sexual function, sleep, social support, dialysis staff encouragement, and patient satisfaction. The PC has four dimensions, which are physical functioning, role physical, pain, and general health perceptions. The MC has four dimensions, which are emotional well-being, role-emotional, social function, and energy/fatigue. All dimensions had scores ranging from 0 to 100.

Statistical Analysis

The categorical data are presented as frequencies (n) and percentages (%). The numerical data are presented as means and standard deviations (SDs). The numerical data of KDQOL dimensions were statistically analyzed with the numerical tests based on the normality of data distributions of each dimensions. The KDC, PC, and overall health rate dimensions were normally distributed and analyzed with unpaired t-test, while the other KDQOL dimensions were abnormally distributed and analyzed with Mann–Whitney test. Bivariate analysis using Spearman correlation test was performed to show association between patient’s characteristics and main components of QOL. Patient’s characteristics were included in the multivariate analysis to look for confounding factors. An arbitrary value of $P <0.25$ (obtained in the bivariate analysis between background characteristics and QOL) was used to include a variable of background characteristics into the multivariate analysis. The software used for statistical analysis was Statistical Package for the Social Sciences version 20.0 (IBM Corp., Armonk, NY, USA).

Results

Characteristics of end-stage renal disease patients

All 389 samples were taken from Cipto Mangunkusumo Hospital (13.6%), Koja District Hospital (42.2%), and Cengkareng District Hospital (44.2%). The Cipto Mangunkusumo Hospital represented the single use dialyzer group. The Koja and Cengkareng District Hospitals represented the dialyzer reuse group.
Table 1 shows the characteristics of patients in this study. The majority of patients were male (57.6%). Age group of 35–60 years was the largest proportion (71.5%) among the three age groups. Most of the patients had educational level of senior high school (39.1%). More than half of the patients were unemployed (63.2%). The majority of the patients had monthly income of IDR 1–3 million. Most of the patients were Javanese (35.5%). The majority of the patients had Islam as their religion. More than half of the individuals were married (87.1%). Hypertension was the most frequent etiology of ESRD (67.9%). Arteriovenous fistula was the most frequently used vascular access (76.9%). The mean dialysis vintage was 3.2 years (SD 3.1). The mean duration of hospitalization was 3.6 days (SD 8.0). The mean systolic blood pressure was 143.9 mm Hg (SD 28.1) and the mean diastolic blood pressure was 80.6 (SD 14.3). The mean body mass index (BMI) was

Characteristics	All individuals	Single-use dialyzer	Reusable dialyzer
	n (%) Mean (SD)	n (%) Mean (SD)	n (%) Mean (SD)
Number of patients	389 (100%)	53 (13.6%)	336 (86.4%)
Gender			
Male	224 (57.6%)	23 (43.4%)	201 (59.8%)
Female	165 (42.4%)	30 (56.6%)	135 (40.2%)
Age (years)			
<35 years	49 (11.5%)	5 (9.4%)	43 (11.3%)
35–60 years	278 (71.5%)	37 (69.8%)	241 (71.7%)
>60 years	68 (17.5%)	11 (20.8%)	57 (17%)
Highest educational level achieved			
Illiterate	10 (2.6%)	0 (0.0%)	10 (3.0%)
Elementary school	104 (26.7%)	7 (13.2%)	97 (28.9%)
Junior high school	54 (13.9%)	2 (3.8%)	52 (15.5%)
Senior high school	152 (39.1%)	21 (39.6%)	131 (39%)
College	69 (17.7%)	23 (43.4%)	46 (13.7%)
Employment			
Unemployed	246 (63.2%)	33 (62.3%)	213 (63.4%)
Employed	143 (36.8%)	20 (37.7%)	123 (36.6%)
Monthly income (Indonesian Rupiah)			
<1 million	38 (9.8%)	6 (11.3%)	32 (9.5%)
1–3 million	164 (42.2%)	4 (7.5%)	160 (47.6%)
3–5 million	99 (25.4%)	3 (5.7%)	96 (28.6%)
5–10 million	24 (6.2%)	11 (20.8%)	13 (3.9%)
10–15 million	7 (1.8%)	3 (5.7%)	4 (1.2%)
>15 million	57 (14.7%)	26 (49.1%)	31 (9.2%)
Ethnicity			
Javanese	138 (35.5%)	27 (50.9%)	111 (33.0%)
Betawinese	116 (29.8%)	9 (7.8%)	107 (31.8%)
Sundanese	59 (15.2%)	6 (11.3%)	53 (15.8%)
Others	76 (19.5%)	11 (20.8%)	65 (19.3%)
Religion			
Islam	346 (88.9%)	50 (94.3%)	296 (88.1%)
Christian	32 (8.2%)	2 (3.8%)	30 (8.9%)
Buddhism	6 (1.5%)	1 (1.9%)	5 (1.5%)
Hinduism	5 (1.3%)	0 (0.0%)	5 (1.5%)
Continuation of Table 1.

Marital status	Number (Percentage)
Single/widowed/divorced	50 (12.9%)
Married	339 (87.1%)
Etiology	
Hypertension	264 (67.9%)
Diabetes mellitus	77 (19.8%)
Glomerulonephritis	13 (3.3%)
Others	35 (9.0%)
Vascular access	
Arteriovenous fistula	299 (76.9%)
Femoral	12 (3.1%)
Tunnel and double lumen catheter	78 (20.1%)
Dialysis vintage (years)	3.2 (3.1)
Duration of hospitalization (days in the last 6 months)	3.6 (8.0)
Blood pressure	
SBP (mm Hg)	143.9 (28.1)
DBP (mm Hg)	80.6 (14.3)
BMI (kg/m²)	22.7 (4.1)
GFR (mL/min/1.73 m²)	8.9 (10.5)
Hemoglobin (g/dL)	9.5 (1.7)

SD: Standard deviation, GFR: Glomerular filtration rate, DBP: Diastolic blood pressure, BMI: Body mass index, SBP: Systolic blood pressure.

22.7 kg/m² (SD 4.1). The mean GFR was 8.9 mL/min/1.73 m² (SD 10.5) and the mean hemoglobin was 9.5 g/dL (SD 1.7).

Kidney Disease Quality of Life

Table 2 provides a summary of mean difference between the QOL of patients on single-use dialyzer and dialyzer reuse. The three main components of QOL (KDC, PC, and MC) had significantly different mean scores between the two groups of the study patients. The single-use dialyzer group had significantly higher mean score than dialyzer reuse group in the following dimensions: burden of kidney disease, cognitive function, quality of social interaction, sleep, social support, patient satisfaction, physical functioning, role physical, general health perceptions, emotional well-being, and energy/fatigue.

Bivariate analysis of associations with KDQOL main dimensions

Table 3 provides summary of the association between patients’ characteristics and main components of the KDQOL, which are the KDC, PC, and MC. Dialyzer reuse group was significantly associated with the three main components. Age, being illiterate, being unemployed, duration of hospitalization, and GFR were significantly associated with the KDC. The following factors were significantly associated with the PC: age, being unemployed, duration of hospitalization, hypertension, dialysis vintage, and GFR. The MC score was associated with the following variables: being female, being illiterate, being unemployed, and the GFR.

Multivariate analysis of associations with KDQOL main dimensions

The linear regression model associating patients’ characteristics and KDQOL main dimensions is summarized in Table 4. After adjustment with patients’ background characteristics, dialyzer reuse was still a strong predictor and negatively associated with KDC (Coefficient β = −9.26; P <0.001) and PC (Coefficient β = −17.20; P <0.001). In the associations with the KDC, age (P = 0.013) and being unemployed (P <0.001) were the
Table 2. Distributions of quality of life between single-use dialyzer group and dialyzer reuse group.

Quality of life dimensions	Single-use dialyzer group (n=53)	Dialyzer Reuse group (n=336)	P
Kidney disease component summary	74.2 (13.1)	66.3 (9.7)	<0.001*
Symptoms	79.8 (16.2)	77.6 (14.2)	0.116
Effects of kidney disease	76.9 (16.4)	79.6 (14.9)	0.225
Burden of kidney disease	71.1 (26.3)	43.5 (23.6)	<0.001*
Work status	32.1 (38.1)	39.9 (36.3)	0.110
Cognitive function	85.8 (18.2)	78.8 (19.9)	0.006*
Quality of social interaction	89.5 (16.7)	80.1 (16.4)	<0.001*
Sexual function	55.4 (42.7)	63.7 (34.1)	0.249
Sleep	76.8 (18.3)	55.3 (14.1)	<0.001*
Social support	85.2 (16.9)	69.6 (16.4)	<0.001*
Dialysis staff encouragement	91.9 (14.1)	89.5 (14.2)	0.188
Patient satisfaction	62.9 (15.5)	51.3 (7.1)	<0.001*
PC summary	70.6 (22.7)	55.2 (17.5)	<0.001*
Physical functioning	71.5 (27.7)	60.6 (27.2)	0.002*
Role – physical	66.0 (37.7)	26.3 (36.0)	<0.001*
Pain	75.9 (22.0)	75.5 (21.2)	0.793
General health perceptions	68.9 (18.1)	58.6 (15.0)	<0.001*
Mental component summary	76.1 (21.6)	70.7 (18.9)	0.023*
Emotional well-being	81.6 (17.0)	75.8 (17.6)	0.014*
Role – emotional	66.0 (40.5)	60.0 (40.5)	0.460
Social function	79.5 (24.5)	79.2 (21.2)	0.547
Energy/fatigue	77.3 (20.2)	67.2 (15.8)	<0.001*

*Means P <0.05, PC: Physical component.

Table 3. Bivariate analysis of background characteristics and main components of quality of life.

Variables	R	P
Kidney disease component		
Dialyzer reuse	−0.21	<0.001*
Age	−0.19	<0.001*
Female	0.04	0.422
Illiterate	−0.10	0.045*
Unemployed	−0.26	<0.001*
Income <1 million	−0.03	0.533
Javanese	0.06	0.260
Islam	0.02	0.718
Single/widowed/divorced	0.08	0.134
Duration of hospitalization	−0.13	0.008*
Hypertension	0.06	0.216
Arteriovenous fistula	0.01	0.848
Dialysis vintage	0.08	0.104
SBP	0.02	0.644
DBP	0.02	0.746
BMI	0.08	0.115
Hemoglobin	−0.01	0.819
GFR	−0.11	0.026*
PC		
Reusable dialyzer	−0.27	<0.001*
Age	−0.17	0.001*
significant predictors for the KDC. In the associations with the PC, age \((P = 0.024)\), being unemployed \((P = 0.001)\), and hypertension \((P = 0.004)\) were the significant predictors for the PC. Being unemployed contributed to the large impairment of the means scores in the KDC (Coefficient \(\beta = -5.29\)) and PC (Coefficient \(\beta = -6.79\)). In the impairment of the MC scores, it was in the second place (Coefficient \(\beta = -6.10\)) behind being illiterate (Coefficient \(\beta = -14.44\)).

Discussion

Maximizing patient’s QOL is one of the primary goals in chronic maintenance HD.\(^7\) HD itself could impair the patients’ QOL.\(^10\) Therefore, it is important to fill the knowledge gap in the relationship between dialyzer membrane and ESRD patients’ QOL.

The most unique feature of the patients’ characteristics was the most frequent etiology of ESRD, which was hypertension (67.9%).
This result was supported by Masina et al11 who showed that the most common cause of ESRD in their population was hypertension (40.9\%). However, these data were self-reported and need further confirmation because De Nicola and Zoccali12 stated that there was big gap between prevalence of CKD and its most prevalent risk factor such as hypertension and diabetes, which means that there are still some unknown risk factors.

In general, this study’s scores of main components such as PC and MC in both groups were higher than a study by Fukuhara13 (35.5 and 43.2, respectively) and Vasilieva14 (36.9 and 44.2, respectively). The mean score of single-use dialyzer was significantly higher than dialyzer reuse in KDC, PC, and MC. The mean score of single-use dialyzer was also significantly higher than dialyzer reuse in the following dimensions of KDC: burden of kidney disease, cognitive function, quality of social interaction, sleep, social support, and patient satisfaction. In the bivariate analysis using correlation test, the result showed that dialyzer reuse was negatively associated with KDC, PC, and MC. All the questions regarding these dimensions explored if patients’ daily activities were affected due to their kidney

Variables	Coefficient β	P
Kidney disease component		
Reusable dialyzer	−9.26	<0.001*
Age	−0.10	0.013*
Illiterate	−3.78	0.281
Unemployed	−5.29	<0.001*
Single/widowed/divorced	−1.28	0.412
Duration of hospitalization	−0.06	0.364
Hypertension	2.21	0.051
Dialysis vintage	−0.10	0.560
BMI	0.22	0.081
GFR	0.05	0.325
PC		
Reusable dialyzer	−17.20	<0.001*
Age	−0.18	0.024*
Illiterate	−3.61	0.524
Unemployed	−6.79	<0.001*
Duration of hospitalization	−0.23	0.052
Hypertension	5.90	0.004*
Arteriovenous fistula	2.77	0.221
Dialysis vintage	0.01	0.964
SBP	−0.05	0.085
BMI	0.07	0.752
GFR	−0.0	0.979
Mental component		
Reusable dialyzer	−5.11	0.109
Female	−2.26	0.294
Illiterate	−14.44	0.019*
Unemployed	−6.10	0.005*
Javanese	1.88	0.356
Dialysis vintage	0.02	0.962
GFR	0.07	0.488

* P <0.05, GFR: Glomerular filtration rate, PC: Physical component, BMI: Body mass index, SBP: Systolic blood pressure.
disease. Therefore, dialyzer reuse impairs patients’ daily activities.

The PC and MC questions explore the patients’ self-perception on their physical and mental well-being. The World Health Organization also defines QOL as “individual’s perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards, and concerns.”

Single-use dialyzer group had significantly higher score than the dialyzer reuse group in the following dimensions of PC and MC: physical functioning, role physical, general health perceptions, emotional well-being, and energy/fatigue. Based on this result, ESRD patients on dialyzer reuse had poorer self-perception of their life.

To the best of our knowledge, there have been no previous studies which focused on the relationship between dialyzer reuse and QOL. A study by Rao et al. showed that leukocyte function was altered by dialyzer reuse and recommended that further studies should be performed to confirm the effect on the clinical outcome. A study by Collins et al. stated that no-reuse practice had lower mortality risk compared with reuse practice.

In the association with KDC, multivariate analysis showed that age and being unemployed were the significant predictors for KDC and both associated negatively with KDC. The association with PC, age, being unemployed, and hypertension was negatively associated with PC. In the association with MC, being illiterate and unemployed associated negatively with MC. These results were supported by a study by Seica et al. which stated that age and low socioeconomic status were significantly associated with lower QOL scores. However, Seica et al. stated that higher educational level was associated with lower QOL score, which contradicted our finding that showed that being illiterate was associated with lower QOL score. Regarding duration of hospitalization, the result of this study was supported by Oliveira et al. which showed that duration of hospitalization was significantly associated with PC.

This study showed that dialysis vintage was a significant positive predictor for PC. This result was in contradiction with a study by Bayoumi et al. which showed that there was insignificant association between dialysis vintage and PC. The study by Bayoumi et al. showed that the significant association was found between dialysis vintage and social aspect. Another study by Joshi et al. also showed that HD duration was a significant predictor for social dimension of QOL.

We recommend a further prospective study to observe patients’ QOL and to confirm the causal relationship between dialyzer membrane and patients’ QOL.

Limitation of the Study

The limitation of the study is that we were unable to gather the data of Kt/V for every patient and hence omitted it from the statistical analysis. A study performed by Imelda et al. in Indonesia showed that >68% of HD patients reached Kt/V > 1.8 in a twice per week HD.

Conclusion

In conclusion, our results suggest that dialyzer reuse impairs ESRD patients’ QOL. However, adjustment with patients’ characteristics showed that age, socioeconomic status, duration of hospitalization, and dialysis vintage could also affect patients’ QOL.

Conflict of interest: None declared.

References

1. Perkumpulan Nefrologi Indonesia. 8th Report of Indonesian Renal Registry, Jakarta: Perkumpulan Nefrologi Indonesia; 2015.
2. Tania F, Thabrany H. Biyadgan outcome hemodialisis di rumahsakitkelas B dan C. J Kesehatan Indon 2016;1:54-64.
3. Upadhyay A, Sosa MA, Jaber BL. Single-use versus reusable dialyzers: The known unknowns. Clin J Am Soc Nephrol 2007;2:1079-86.
4. Qureshi R, Dhrolia MF, Nasir K, Imtiaz S, Ahmad A. Comparison of total direct cost of
conventional single use and mechanical reuse of dialyzers in patients of end-stage renal disease on maintenance hemodialysis: A single center study. Saudi J Kidney Dis Transpl 2016;27:774-80.

5. Denny GB, Golper TA. Does hemodialyzer reuse have a place in current ESRD care: “To be or not to be?” Semin Dial 2014;27:256-8.

6. Galvao TF, Silva MT, Araujo ME, Bulbol WS, Cardoso AL. Dialyzer reuse and mortality risk in patients with end-stage renal disease: A systematic review. Am J Nephrol 2012;35:249-58.

7. Finkelstein FO. Performance measures in dialysis facilities: What is the goal? Clin J Am Soc Nephrol 2015;10:156-8.

8. Rao M, Guo D, Jaber BL, et al. Dialyzer membrane type and reuse practice influence polymorphonuclear leukocyte function in hemodialysis patients. Kidney Int 2004;65:682-91.

9. Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 2010;55:622-7.

10. Jablonski KL, Chonchol M. Recent advances in the management of hemodialysis patients: A focus on cardiovascular disease. F1000Prime Rep 2014;6:72.

11. Masina T, Chimera B, Kamponda M, Dreyer G. Health related quality of life in patients with end stage kidney disease treated with haemodialysis in Malawi: A cross sectional study. BMC Nephrol 2016;17:61.

12. De Nicola L, Zoccali C. Chronic kidney disease prevalence in the general population: Heterogeneity and concerns. Nephrol Dial Transplant 2016;31:331-5.

13. Fukuhara S, Lopes AA, Bragg-Gresham JL, et al. Worldwide Dialysis Outcomes and Practice Patterns Study. Health-related quality of life among dialysis patients on three continents: the dialysis outcomes and practice patterns study. Kidney Int 2003;64:1903-10.

14. Vasilieva IA. Quality of life in chronic hemodialysis patients in Russia. Hemodial Int 2006;10:274-8.

15. Joshi VD. Quality of life in end stage renal disease patients. World J Nephrol 2014;3:308-16.

16. Collins AJ, Ma JZ, Constantini EG, Everson SE. Dialysis unit and patient characteristics associated with reuse practices and mortality: 1989-1993. J Am Soc Nephrol 1998;9:2108-17.

17. Seica A, Segall L, Verzan C, et al. Factors affecting the quality of life of haemodialysis patients from Romania: A multicentric study. Nephrol Dial Transplant 2009;24:626-9.

18. Oliveira AP, Schmidt DB, Amatneeks TM, Santos JC, Cavallet LH, Michel RB. Quality of life in hemodialysis patients and the relationship with mortality, hospitalizations and poor treatment adherence. J Bras Nefrol 2016;38:411-20.

19. Bayoumi M, Al Harbi A, Al Suwaida A, Al Ghonaim M, Al Wakeel J, Mishkiry A. Predictors of quality of life in hemodialysis patients. Saudi J Kidney Dis Transpl 2013;24:254-9.

20. Joshi U, Subedi R, Poudel P, Ghimire PR, Panta S, Sigdel MR. Assessment of quality of life in patients undergoing hemodialysis using WHOQOL-BREF questionnaire: A multicenter study. Int J Nephrol Renovasc Dis 2017;10:195-203.

21. Imelda F, Susalit E, Marbun MB, Rumende CM. Gambaran Klinis dan Kualitas Hidup Pasien Penyakit Ginjal Tahap Akhir yang Menjalani Hemodialisis Dua Kali Dibandingkan Tiga Kali Seminggu. J Penyakit Dalam Indonesia 2017;4:128-36.

Date of manuscript receipt: 1 September 2018.
Date of revised copy receipt: 4 October 2018.
Date of final acceptance: 4 October 2018.