KARLSSON–MINTON TYPE HYPERGEOMETRIC FUNCTIONS ON THE ROOT SYSTEM C_n

HJALMAR ROSEGREN

Abstract. We prove a reduction formula for Karlsson–Minton type hypergeometric series on the root system C_n and derive some consequences of this identity. In particular, when combined with a similar reduction formula for A_n, it implies a C_n Watson transformation due to Milne and Lilly.

1. Introduction

The Karlsson–Minton summation formula [Mi, Ka] is the hypergeometric identity

$$p+2F_{p+1} \left(\begin{array}{c} a, b, c_1 + m_1, \ldots, c_p + m_p \cr b+1, c_1, \ldots, c_p \end{array} ; 1 \right) = \frac{\Gamma(b+1)\Gamma(1-a)}{\Gamma(1+b-a)} \prod_{i=1}^{p} \frac{(c_i - b)_{m_i}}{(c_i)_{m_i}},$$

which holds for m_i non-negative integers and $\Re(a + |m|) < 1$. Accordingly, hypergeometric series with integral parameter differences have been called Karlsson–Minton type hypergeometric series; other results for such series may be found in [C, G1, G2, S1, S2].

In recent work [R], we have derived a very general reduction formula for series of Karlsson–Minton type. We recall it in its most general form as (4) below; here we only state a very degenerate case, namely,

$$p+2F_{p+1} \left(\begin{array}{c} a, b, c_1 + m_1, \ldots, c_p + m_p \cr d, c_1, \ldots, c_p \end{array} ; 1 \right) = \frac{\Gamma(d)\Gamma(d-a-b)}{\Gamma(d-a)\Gamma(d-b)} \prod_{i=1}^{p} \frac{(c_i + 1 - d)_{m_i}}{(c_i)_{m_i}} \times \prod_{x_1, \ldots, x_p = 0} \left(\prod_{1 \leq i < j \leq p} \frac{c_i + x_i - c_j - x_j}{c_i - c_j} \frac{(b+1-d)_{|x|}}{(1-|m| - a)_{|x|}} \right) \times \prod_{i=1}^{p} \frac{(c_i - a)_{x_i}}{(1+c_i - d)_{x_i}} \prod_{i,k=1}^{p} \frac{(c_i - c_k - m_k)_{x_i}}{(1+c_i - c_k)_{x_i}},$$

which holds for m_i non-negative integers and $\Re(a + |m| + b - d) < 0$. Note that the case $d = b+1$ is (1); similarly, the more general identity (4) implies a large number of results for Karlsson–Minton type hypergeometric series from the papers mentioned above.

The right-hand side of (2) is a multivariable hypergeometric sum on the root system A_n, a type of series that were first introduced by Biedenharn, Holman and Louck [HBL], motivated by $6j$-symbols of the group SU(n). During the last 25 years, hypergeometric series on root systems has been a very active area of research with many applications. In the more general identity (4), both the left- and the right-hand sides of (2) are

2000 Mathematics Subject Classification. 33D67.
side are hypergeometric series on A_n (with different dimension n). The connection between Karlsson–Minton type series and hypergeometric series on A_n encoded in (4) allows one to recover many identities also for the latter type of series; for instance, if we let $b = 0$ in (2), so that the left-hand side is 1, we obtain the case $q = 1$ of one of Milne’s multivariable q-Saalschütz summations [M, Theorem 4.1]. More generally, (4) implies multivariable $10W_9$ transformations due to Milne and Newcomb [MN] and Kajihara [K].

The purpose of the present paper is to find results analogous to those of [R] for the root system C_n. In [R], our starting point was an $A_n \psi_6$ summation of Gustafson [Gu1]; here we use instead Gustafson’s $C_n \psi_6$ sum from [Gu2]. Our main result is Theorem 3.1, which reduces a very general multilateral Karlsson–Minton type series on C_n to a finite sum. In Section 4 we state some corollaries of Theorem 3.1. These include a transformation and a summation formula for Karlsson–Minton type series on C_n, Corollaries 4.1 and 4.2, respectively. One special case of Theorem 3.1 is a rather curious transformation formula between finite sums, Corollary 4.4. Another interesting case is when the Karlsson–Minton type series is one-variable, that is, connected to the root system C_1. In agreement with the coincidence of root systems $C_1 = A_1$, the same series may arise as a left-hand side of (4). This leads to a transformation formula relating finite hypergeometric sums on the root systems A_n and C_n, which turns out to be a multivariable Watson transformation due to Milne and Lilly [ML], given here as Corollary 4.7.

2. Preliminaries

We will work with q-series rather than classical hypergeometric series, with q a fixed complex number such that $0 < |q| < 1$. We will use the standard notation of [GR], but since q is fixed we suppress it from the notation. Thus we write (this must not be confused with the standard notation for classical hypergeometric series used in the introduction)

$$ (a)_k = \prod_{j=0}^{k-1} \frac{1 - aq^j}{1 - aq^{j+k}} = \begin{cases} \frac{(1-a)(1-aq)\cdots(1-aq^{k-1})}{(1-aq^{-1})(1-aq^{-2})\cdots(1-aq^k)}, & k \geq 0, \\ \frac{1}{(1-aq^{-1})(1-aq^{-2})\cdots(1-aq^k)}, & k < 0, \end{cases} $$

and analogously for infinite products $(a)_\infty = \prod_{j=0}^{\infty} (1 - aq^j)$.

For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ we write $|z| = z_1 + \cdots + z_n$ and use the corresponding capital letter to denote the product of the coordinates: $Z = z_1 \cdots z_n$.

We let

$$ W(z) = \prod_{1 \leq j \leq k \leq n} (1 - z_j z_k) \prod_{1 \leq j < k \leq n} (z_j - z_k), $$

which may be viewed as the Weyl denominator for the root system C_n or the Lie group $Sp(n)$. Basic hypergeometric series on C_n are characterized by the factor

$$ \frac{W(zq^y)}{W(z)} = \prod_{1 \leq j \leq k \leq n} \frac{1 - z_j z_k q^{y_j + y_k}}{1 - z_j z_k} \prod_{1 \leq j < k \leq n} q^{y_j z_j - q^{y_k} z_k}, $$
where the z_j are fixed parameters and the y_j summation indices. It will be useful to note that

\[
W(z_1, \ldots, z_{n-1}, z_n) = \frac{1 - \lambda z_n}{1 - z_n^2} \prod_{k=1}^{n-1} \frac{(1 - \lambda z_n z_k)(1 - \lambda z_n/z_k)}{(1 - z_n z_k)(1 - z_n/z_k)}.
\]

We will also write

\[
\frac{\Delta(zq^y)}{\Delta(z)} = \prod_{1 \leq j < n} q^{y_j} z_j - q^{y_k} z_k;
\]

this factor characterizes hypergeometric functions on A_n.

For comparison we recall the main result of [R], namely, the identity

\[
\sum_{y_1, \ldots, y_n = -\infty}^{y_1 + \ldots + y_n = 0} \frac{\Delta(zq^y)}{\Delta(z)} \prod_{1 \leq i \leq p} \frac{(c_i z_k q^{m_i})_{y_k}}{(c_i z_k)_{y_k}} \prod_{i=1}^{n} \frac{(a_i z_k)_{y_k}}{(b_i z_k)_{y_k}}
\]

\[
= \frac{(q^{1-m}/AZ, q^{1-n}BZ)_{\infty}}{(q, q^{1-m-n}B/A)^{\infty}} \prod_{i=1}^{n} \frac{(b_i/a_k, qz_k/z_i)_{\infty}}{(q/a_k z_i, b_i z_k)_{\infty}} \prod_{1 \leq k \leq n} \frac{(q^{-m} b_k/c_i)_{m_i}}{(q^{1-m} c_i z_k)_{m_i}}
\]

\[
\times \sum_{x_1, \ldots, x_p = 0}^{m_1, \ldots, m_p} \frac{\Delta(cq^x)}{\Delta(c)} q_{|x|} \frac{(BZ)^{|x|}}{(q^{1-m}/AZ)^{|x|}} \prod_{1 \leq k \leq p} \frac{(c_i/a_k)_{x_i}}{(q c_i/b_k)_{x_i}} \prod_{i=1}^{p} \frac{q^{-m} c_i / c_k)_{x_i}}{(q c_i / c_k)_{x_i}}.
\]

Here, m_i are non-negative integers, $|q^{1-m}B/A| < 1$, and it is assumed that no denominators vanish. The case $m_i \equiv 0$ of (4) is Gustafson’s A_n analogue of Bailey’s $6\psi_6$ summation [Gu3]. The proof of (4) is based on induction on the m_i, with Gustafson’s identity as the starting point.

In the present paper we will imitate the analysis of [R], starting from Gustafson’s C_n Bailey summation [Gu2], which we write as

\[
\sum_{y_1, \ldots, y_n = -\infty}^{y_1 + \ldots + y_n = 0} \frac{W(zq^y)}{W(z)} \prod_{1 \leq j \leq n} \frac{(a_j z_k)_{y_k}}{(q z_k/a_j)_{y_k}} \left(\frac{q}{A}\right)^{|y|}
\]

\[
= \prod_{1 \leq j < k \leq 2n+2} \frac{(q z_j z_k, q/z_j z_k)_{\infty}}{(q z_k/a_j, q/a_j z_k)_{\infty}} \prod_{1 \leq j \leq n, 1 \leq j \leq 2n+2} \frac{(q/a_j a_k)_{\infty}}{(q/A)_{\infty}}
\]

This holds for $|q/A| < 1$, as long as no denominators vanish. The case $n = 1$ of (5) is Bailey’s $6\psi_6$ summation formula [GR, Equation (II.33)].

3. A Reduction Formula

Our main result is the following identity, which reduces a very general multilateral Karlsson–Minton type hypergeometric series on the root system C_n to a finite sum.

Theorem 3.1. Let m_i be non-negative integers and a_j, c_j, z_j parameters such that $|q^{1-m}/A| < 1$ and none of the denominators in (5) vanishes. Then the following
identity holds:

\[
(6) \quad \sum_{y_1, \ldots, y_n = -\infty}^{\infty} \frac{W(zq^y)}{W(z)} \prod_{1 \leq k \leq n} (q^{m_j} c_j z_k, q z_k / c_j)_{y_k} \prod_{1 \leq k \leq n} (a_j z_k)_{y_k} \left(\frac{1 - |m|}{A} \right)^{|y|} \\
= \prod_{1 \leq j \leq k \leq n} (q z_j z_k, q / z_j z_k)_{\infty} \prod_{j,k=1}^{n} (q z_k / z_j)_{\infty} \prod_{1 \leq j \leq k \leq 2n+2} (q / a_j a_k)_{\infty} \\
\times \prod_{1 \leq k \leq n, 1 \leq j \leq \infty} (c_j z_k, c_j / z_k)_{m_j} \prod_{j,k=1}^{p} (c_j c_k)_{m_j+m_k} \prod_{j,k=1}^{p} (q - 1 c_j c_k, q^{-m_k} c_j / c_k)_{x_j} \left(Aq^{|m|} \right)^{|x|}.
\]

The condition \(|q^{1-|m|}/A| < 1\) ensures that that the series on the left-hand side is absolutely convergent, so that the series manipulations occurring in the proof are justified.

Proof. To organize the computations, it will be convenient to write, for \(a \in \mathbb{C}^{2n+2}, z \in \mathbb{C}^n, y \in \mathbb{Z}^n, c \in \mathbb{C}^p\) and \(m, x \in \mathbb{N}^p\),

\[
P_y(a, z, c, m) = \frac{W(zq^y)}{W(z)} \prod_{1 \leq k \leq n} (q^{m_j} c_j z_k, q z_k / c_j)_{y_k} \prod_{1 \leq k \leq n} (a_j z_k)_{y_k} \left(\frac{1 - |m|}{A} \right)^{|y|},
\]

\[
U(a, z) = \prod_{1 \leq j \leq k \leq n} (q z_j z_k, q / z_j z_k)_{\infty} \prod_{j,k=1}^{n} (q z_k / z_j)_{\infty} \prod_{1 \leq j \leq k \leq 2n+2} (q / a_j a_k)_{\infty} \\
\times \prod_{1 \leq k \leq n, 1 \leq j \leq \infty} (c_j z_k, c_j / z_k)_{m_j} \prod_{j,k=1}^{p} (c_j c_k)_{m_j+m_k} \prod_{j,k=1}^{p} (q - 1 c_j c_k, q^{-m_k} c_j / c_k)_{x_j} \left(Aq^{|m|} \right)^{|x|},
\]

\[
V(a, z, c, m) = \prod_{1 \leq j \leq k \leq 2n+2, 1 \leq j \leq \infty} (c_j z_k, c_j / z_k)_{m_j} \prod_{j,k=1}^{p} (c_j c_k)_{m_j+m_k} \prod_{j,k=1}^{p} (q - 1 c_j c_k, q^{-m_k} c_j / c_k)_{x_j} \left(Aq^{|m|} \right)^{|x|},
\]

\[
Q_x(a, c, m) = \frac{W(q^{1-c}c q^{x})}{W(q^{1-c})} \prod_{1 \leq k \leq n} (c_j z_k)_{x_j} \prod_{j,k=1}^{p} (q^{-1} c_j c_k, q^{-m_k} c_j / c_k)_{x_j} \left(Aq^{|m|} \right)^{|x|},
\]

so that (6) may be written as

\[
(7) \quad \sum_{y_1, \ldots, y_n = -\infty}^{\infty} P_y(a, z, c, m) = U(a, z) V(a, z, c, m) \sum_{x_1, \ldots, x_p = 0}^{m_1, \ldots, m_p} Q_x(a, c, m).
\]

We will prove the theorem by induction on \(|m|\), the case \(m_j \equiv 0\) being Gustafson’s identity (4). Thus we assume that (6) holds for fixed \(p\) and \(|m|\) and the other parameters free. Since both sides are invariant under simultaneous permutations of the \(m_j\) and \(c_j\), it is enough to prove that (7) also holds when \(m\) is replaced by

\[
m^+ = (m_1, \ldots, m_{p-1}, m_p + 1).
\]
It will be convenient to replace \(n \) by \(n + 1 \) in (6) and write

\[
a = (a_1, \ldots, a_{2n+2}), \quad z = (z_1, \ldots, z_n), \quad y = (y_1, \ldots, y_n),
\]

\[
a^+ = (a_1, \ldots, a_{2n+4}), \quad z^+ = (z_1, \ldots, z_{n+1}), \quad y^+ = (y_1, \ldots, y_{n+1}).
\]

We also specialize to the case \(a_{2n+4} = z_{n+1} \). Then the factor \(1/(qz_{n+1}/a_{2n+4}) \) on the left-hand side vanishes unless \(y_{n+1} \geq 0 \), so that the series is supported on a half-space. Next we let \(a_{2n+3} = q/z_{n+1} \), which will cause most factors involving \(z_{n+1} \) to cancel. (In general it is not allowed to put \(a_{2n+3} = q/z_{n+1} \) in (6), but the choice of \(a_{2n+4} \) removes this singularity.) We denote the corresponding left-hand side of (7) by \(S \) and decompose it as

\[
S = \sum_{y_1, \ldots, y_{n+1} \in \mathbb{Z}, y_{n+1} \geq 0} P_{y^+}(a^+, z^+, c, m) = \sum_{y_{n+1} = 0} + \sum_{y_{n+1} \geq 1} = S_1 + S_2.
\]

Considering first \(S_1 \), we have

\[
\frac{W(z^+ q^{y_0})}{W(z^+)} = \frac{W(z q^y)}{W(z)} \prod_{k=1}^n \frac{(1 - q^{y_k} z_k z_{n+1})(1 - q^{y_k} z_k/z_{n+1})}{(1 - z_k z_{n+1})(1 - z_k/z_{n+1})}
\]

\[
= \frac{W(z q^y)}{W(z)} \prod_{k=1}^n (z_k z_{n+1}, z_k/z_{n+1})
\]

In particular, if we choose

\[
(8) \quad z_{n+1} = q^{-m_p}/c_p,
\]

the Weyl denominators combine with the factors involving \(m_p \) as

\[
\frac{W(z^+ q^{y_0})}{W(z^+)} \prod_{k=1}^n (q^{m_p c_p} z_k)_{y_k} = \frac{W(z q^y)}{W(z)} \prod_{k=1}^n (q^{m_p + 1} c_p z_k)_{y_k},
\]

which gives

\[
P_{y_0}(a^+, z^+, c, m) = P_y(a, z, c, m^+).
\]

Thus, \(S_1 \) is a sum as in the theorem, but with \(m \) replaced by \(m^+ \). To complete the induction, we must prove that

\[
S_1 = U(a, z) V(a, z, c, m^+) \sum_{x_1, \ldots, x_p = 0}^{m_{1, \ldots, m_{p-1}, m_p + 1}} Q_x(a, c, m^+).
\]

This will be achieved by verifying the two identities

\[
(9) \quad S = U(a, z) V(a, z, c, m^+) \sum_{x_1, \ldots, x_p = 0}^{m_{1, \ldots, m_p}} Q_x(a, c, m^+),
\]

\[
(10) \quad S_2 = -U(a, z) V(a, z, c, m^+) \sum_{x_1, \ldots, x_{p-1} = 0}^{m_{1, \ldots, m_{p-1}}} Q_{x, m_{p-1}}(a, c, m^+).
\]
Starting with (8), we know already that

\[S = U(a^+, z^+) V(a^+, z^+, c, m) \sum_{x_1, \ldots, x_p=0} Q_x(a^+, c, m). \]

It is not hard to check that (as explained above, when substituting \(a^+ \) it is necessary to first let \(a_{2n+4} = z_{n+1} \) and afterwards \(a_{2n+3} = q/z_{n+1} \))

\[
\frac{U(a^+, z^+)}{U(a, z)} = \frac{1}{1 - A \prod_{k=1}^{n+1} (1 - z_{n+1}/a_k)} \prod_{k=1}^{2n+2} (1 - z_{n+1}/a_k) \\
= \frac{1}{1 - 1/A \prod_{k=1}^{n+1} (1 - z_{n+1}z_k)} \prod_{k=1}^{n} (1 - z_{n+1}/z_k) \\
\prod_{k=1}^{2n+2} (1 - a_k/z_{n+1}).
\]

(11)

\[
\frac{V(a^+, z^+, c, m)}{V(a, z, c, m)} = \frac{1 - A \prod_{j=1}^{p} (1 - q_j c_j/z_{n+1})}{1 - Aq^{m_1} \prod_{j=1}^{p} (1 - q_j c_j/z_{n+1})},
\]

(12)

\[
\frac{Q_x(a^+, c, m)}{Q_x(a, c, m)} = q^{c_1} \prod_{j=1}^{p} \frac{(1 - c_j/z_{n+1})(1 - q^{-c_j} z_{n+1})}{(1 - q^{c_j} c_j/z_{n+1})(1 - q^{c_j-1} c_j z_{n+1})},
\]

(13)

Combining this with the similarly derived identities

\[
\frac{V(a, z, c, m^+)}{V(a, z, c, m)} = \frac{1}{1 - Aq^{m_1} \prod_{j=1}^{p-1} (1 - q^{m_j+m_p} c_j c_p) \prod_{j=1}^{p} (1 - q^{m_j} c_j c_p) \prod_{j=1}^{p} (1 - q^{m_j+m_p} c_j c_p)} \\
\]

(14)

\[
\frac{Q_x(a, c, m^+)}{Q_x(a, c, m)} = q^{x_1} \prod_{j=1}^{p} \frac{(1 - q^{-m_j} c_j c_p)(1 - q^{m_j} c_j c_p)}{(1 - q^{x_j-m_j} c_j c_p)(1 - q^{x_j+m_j} c_j c_p)},
\]

and using \(z_{n+1} = q^{-m_p}/c_p \), we find that

\[U(a^+, z^+) V(a^+, z^+, c, m) Q_x(a^+, c, m) = U(a, z) V(a, z, c, m^+) Q_x(a, c, m^+), \]

which proves (8).

Next we show that \(S_2 \) is a sum of the same type of \(S \). The choice (8) of \(z_{n+1} \) corresponds to a removable singularity of \(S_2 \). Namely, we must write

\[\frac{(q^{m_p} c_p z_{n+1})_{y_{n+1}}}{(c_p z_{n+1})_{y_{n+1}}} = \frac{(q^{y_{n+1}} c_p z_{n+1})_{m_p}}{(c_p z_{n+1})_{m_p}} = \frac{(q^{y_{n+1}-m_p})_{m_p}}{(q^{-m_p})_{m_p}}, \]

(15)

which vanishes for \(1 \leq y_{n+1} \leq m_p \). To obtain a sum with \(y_{n+1} \geq 0 \) we therefore replace \(y_{n+1} \) with \(y_{n+1} + m_p + 1 \) in the summation. This gives rise to factors of the form

\[(\lambda z_{n+1})_{y_k+m_p+1} \prod_{k=1}^{n+1} (\lambda z_{k})_{y_k} = (\lambda z_{n+1})_{m_p+1} \prod_{k=1}^{n+1} (\lambda w_k)_{y_k}, \]

where \(w^+ = (w_1, \ldots, w_{n+1}) = (z_1, \ldots, z_n, q^{m_p+1} z_{n+1}) = (z_1, \ldots, z_n, q/c_p) \).
Thus, the change of summation variables gives

\[S_2 = \sum_{y_1, \ldots, y_{n+1} \in \mathbb{Z}, y_{n+1} \geq 1} P_{y^+}(a^+, z^+, c, m) = M \sum_{y_1, \ldots, y_n \in \mathbb{Z}, y_{n+1} \geq 0} P_{y^+}(a^+, w^+, c, m), \]

where, using (15) with \(y_{n+1} \) replaced by \(1 + m_p \),

\[
M = \frac{W(w^+)}{W(z^+)} \frac{(q)_{m_p}}{(q^{-m_p})_{m_p}} \prod_{j=1}^{p-1} \frac{(q^{m_j}c_j z_{n+1})_{m_p+1}}{(c_j z_{n+1})_{m_p+1}} \prod_{j=1}^{p} \frac{(q z_{n+1}/c_j)_{m_p+1}}{(q^{1-m_j} z_{n+1}/c_j)_{m_p+1}} \times \prod_{k=1}^{2n+2} \frac{(a_k z_{n+1})_{m_p+1}}{(q z_{n+1}/a_k)_{m_p+1}} \left(\frac{q^{-m_l}}{A} \right)^{m_p+1}.
\]

(16)

We first rewrite the multiplier \(M \). By (3),

\[
\frac{W(w^+)}{W(z^+)} = \frac{1 - q^2/c_p^2}{1 - q^{-2m_p}/c_p^2} \prod_{k=1}^{n} \frac{(1 - q z_k/c_p)(1 - q/z_k c_p)}{(1 - q^{-m_p}z_k/c_p)(1 - q^{-m_p}/z_k c_p)}.
\]

Plugging this into (16), and using (8) and the standard identities

\[
\frac{(a)_n}{(b)_n} = \left(\frac{a}{b} \right)^n \frac{(1-n)_n}{(1-n/b)_n}, \quad \frac{(q)_n}{(q^{-n})_n} = (-1)^n q^{n(n+1)/2},
\]

we obtain

\[
M = (-1)^{m_p} \left(Aq^{m_l-\frac{1}{2}m_p} \right)^{m_p+1} \frac{1 - q^{-2m_p}/c_p^2}{1 - q^{2m_p}/c_p^2} \prod_{k=1}^{n} \frac{(1 - q^{-1}c_p z_k)(1 - q^{-1}/z_k c_p)}{(1 - q^{m_p}c_p z_k)(1 - q^{-m_p}/z_k c_p)} \times \prod_{k=1}^{2n+2} \frac{(c_p/a_k)_{m_p+1}}{(q^{-1}c_p a_k)_{m_p+1}} \prod_{j=1}^{p-1} \frac{(q^{-m_j}c_p/c_j)_{m_p+1}}{(c_p/c_j)_{m_p+1}} \prod_{j=1}^{p} \frac{(q^{m_j}c_p/c_j)_{m_p+1}}{(q^{m_j+1}c_p/c_j)_{m_p+1}}.
\]

(17)

By our induction hypothesis, we have

\[
S_2 = M U(a^+, z^+) V(a^+, z^+, c, m) \sum_{x_1, \ldots, x_p = 0}^{m_1, \ldots, m_p} Q_x(a^+, c, m),
\]

where \(a_{2n+3} \) and \(a_{2n+4} \) are related to \(z_{n+1} \) as above, but where instead of (8) we have that \(z_{n+1} = q/c_p \). Using (11), (12) and (14) with \(z_{n+1} = q/c_p \) gives

\[
\frac{U(a^+, z^+) V(a^+, z^+, c, m)}{U(a, z) V(a, z, c, m^+)} = \frac{1 - q^{2m_p}c_p^2}{1 - q^{-2m_p}/c_p^2} \prod_{k=1}^{2n+2} \frac{1 - q^{-1}a_k c_p}{1 - q^{m_p}a_k c_p} \times \prod_{k=1}^{n} \frac{(1 - q^{m_p}c_p z_k)(1 - q^{m_p}/z_k c_p)}{(1 - q^{-1}c_p z_k)(1 - q^{-1}/z_k c_p)} \prod_{j=1}^{p} \frac{(1 - q^{m_j}c_j c_p)(1 - q^{m_j+1}c_j c_p)}{(1 - q^{-1}c_j c_p)(1 - q^{m_j-1}c_j c_p)}.
\]

(19)

When \(z_{n+1} = q/c_p \), (13) vanishes unless \(x_p = 0 \), in which case

\[
\frac{Q_{(x,0)}(a^+, c, m)}{Q_{(x,0)}(a, c, m)} = q^x \prod_{j=1}^{p-1} \frac{(1 - c_j/c_p)(1 - q^{-1}c_j c_p)}{(1 - q^{x_j}c_j/c_p)(1 - q^{x_j-1}c_j c_p)}.
\]

(20)
Finally we want to compare \(Q_{(x,0)}(a,c,m) \) and \(Q_{(x,m_p+1)}(a,c,m^+) \). Again using (3), we have

\[
\frac{W(q^{-\frac{3}{2}}c q^{(x,m_p+1)})}{W(q^{-\frac{3}{2}}c q^{(x,0)})} = \frac{1 - q^{2m_p+1}c_p^2 p^{-1}}{1 - q^{-1}c_p^2} \prod_{j=1}^{p-1} \left(1 - q^{x_j+c_p} (1 - q^{1-x_j+m_p c_p/c_j}) \right),
\]

which gives, after simplifications,

\[
\frac{Q_{(x,m_p+1)}(a,c,m^+)}{Q_{(x,0)}(a,c,m)} = (-1)^{m_p+1} q^{\left| y \right|} \left(Aq^{n-\frac{3}{2}m_p} \right)^{m_p+1} \frac{(c_p^2/m_p)}{(q^{m_p+1}c_p^2/m_p)}
\]

(21)

\[
\times \prod_{k=1}^{2n+2} (c_p/a_k)^{m_p+1} \prod_{j=1}^{p-1} \left(\frac{1 - q^{-1}c_p (1 - c_j/c_p)}{(1 - q^{-1}c_p) (1 - q^{1-c_j/c_p})} \right)
\]

Combining the equations (17), (18), (19), (20) and (21), we eventually obtain (10). This completes the proof.

\[\square \]

4. Corollaries

In this section we point out some interesting consequences and special cases of Theorem 3.1. Throughout, it is assumed that the \(n \) on the left. The case of the resulting identity is due to Schlosser \[S2, Corollary 4.2\].

One of the most conspicuous features of (3) is that the sum on the right is independent of the parameters \(z_j \). This implies a transformation formula for the series on the left. The case \(n = 1 \) of the resulting identity is due to Schlosser \[S2, Corollary 8.6\]. Schlosser also gave a generalization to the root system \(A_n \) \[S1, Theorem 4.2\]; cf. also \[R, Corollary 4.2\].

Corollary 4.1. For \(|q^{1-\left|m\right|}/A| < 1 \), the following identity holds:

\[
\sum_{y_1,\ldots,y_n=-\infty}^{\infty} \frac{W(z q^y)}{W(z)} \prod_{1 \leq k \leq n} \prod_{1 \leq j \leq p} \frac{(m_k c_j z_k, q z_k/c_j)_{y_k}}{(c_j z_k, q^{1-m_k z_k/c_j} y_k)} \prod_{1 \leq k \leq n} \prod_{1 \leq j \leq 2n+2} ^{\left| y \right|} \frac{(a_j z_k)_{y_k}}{(q z_k/a_j)_{y_k}} \left(q^{-\left|m\right|}/A \right)
\]

\[
\times \prod_{1 \leq k \leq n} \prod_{1 \leq j \leq 2n+2} \left(q z_k/a_j, q/a_j z_k \right) \prod_{1 \leq k \leq n} \prod_{1 \leq j \leq 2n+2} \left(c_j z_k, c_j z_k \right)_{m_j}
\]

\[
\times \sum_{y_1,\ldots,y_n=-\infty}^{\infty} \frac{W(w q^y)}{W(w)} \prod_{1 \leq k \leq n} \prod_{1 \leq j \leq p} \frac{(m_k c_j z_k, q z_k/c_j)_{y_k}}{(c_j z_k, q^{1-m_k z_k/c_j} y_k)} \prod_{1 \leq k \leq n} \prod_{1 \leq j \leq 2n+2} ^{\left| y \right|} \frac{(a_j w_k)_{y_k}}{(q w_k/a_j)_{y_k}} \left(q^{-\left|m\right|}/A \right)
\]

If we assume that \(a_{n+j} = a_j^{-1} \) for \(1 \leq j \leq n \) and choose \(w_j = a_j \) in Corollary 4.1, the factor \((w_{n+j}/a_j)_{y_j}/(q w_{j}/a_j)_{y_j} = (1)_{y_j}/(q)_{y_j} \) on the right vanishes for \(y_j \neq 0 \), so that the sum reduces to 1. Alternatively, we may in this situation use Corollary 4.3 below to compute the right-hand side of (6). Writing \(a_{2n+1} = b, a_{2n+2} = d \), either of these methods gives the following identity. When \(n = 1 \), it reduces to an identity of
For A_n analogues of Chu’s identity, cf. [S1, Corollary 4.3], [R, Corollaries 4.3 and 4.4].

Corollary 4.2. For $|q^{1-m}|/bd < 1$, the following identity holds:

$$\sum_{y_1, y_2 = -\infty}^{\infty} \frac{W(zq^y)}{W(z)} \prod_{1 \leq k \leq n} \frac{(q^{m_j} c_j z_k, q z_k/c_j)_{y_k}}{(c_j z_k, q^{1-m_j} z_k/c_j)_{y_k}} \prod_{j,k=1}^{n} \frac{(a_j z_k, z_k/a_j)_{y_k}}{(q a_j z_k, q z_k/a_j)_{y_k}} \times \prod_{k=1}^{n} \frac{(b z_k, d z_k)_{y_k}}{(q z_k/b, q z_k/d)_{y_k}} \left(\frac{|y|}{bd}\right)$$

$$= \prod_{j,k=1}^{n} \frac{(q z_k/a_j, q/a_j z_k)_{\infty}}{(q z_k/b, q z_k/b, q z_k/d, q z_k/d)_{\infty}} \prod_{1 \leq j < k \leq n} \frac{(q a_j a_k, q/a_j a_k)_{\infty}}{(c_j a_k, c_j/a_k)_{m_j}}$$

To obtain an identity closer to the original Karlsson–Minton summation formula [P] one should specialize the parameters in Corollary 4.2 so that the summation indices are bounded from below. Essentially, this forces $n = 2$, when we may choose $b = z_1, d = z_2$. The resulting identity seems interesting enough to write out explicitly; it is a C_2 version of Gasper’s well-poised Karlsson–Minton type summation from [G2].

Corollary 4.3. For $|q^{1-m}|/z_1 z_2 < 1$, the following identity holds:

$$\sum_{y_1, y_2 = 0}^{\infty} \frac{W(zq^y)}{W(z)} \prod_{1 \leq k \leq 2} \frac{(q^{m_j} c_j z_k, q z_k/c_j)_{y_k}}{(c_j z_k, q^{1-m_j} z_k/c_j)_{y_k}} \prod_{j,k=1}^{2} \frac{(a_j z_k, z_k/a_j, z_j z_k)_{y_k}}{(q a_j z_k, q z_k/a_j, q z_k/z_j)_{y_k}} \left(\frac{|y|}{z_1 z_2}\right)$$

$$= \frac{(q z_1^2, q z_2 z_1, q z_2, q a_1 a_2, q/a_1 a_2)_{\infty}}{(q/z_1 z_2)_{\infty}} \prod_{j,k=1}^{2} \frac{(q a_k/a_j)_{\infty}}{(q z_k/a_j, q z_k/a_j)_{\infty}} \prod_{1 \leq k \leq 2} \frac{(c_j a_k, c_j/a_k)_{m_j}}{(c_j z_k, c_j/z_k)_{m_j}}.$$

More generally, one may choose the parameters so that the summation indices on the left-hand side of (3) are bounded from below or above. A particularly symmetric case arises when both these conditions hold, so that we have a finite sum. To this end we choose $a_j = z_j, a_{n+j} = q^{-l_j}/z_j, 1 \leq j \leq n$ in Theorem 3.1, and write $a_{2n+1} = b, a_{2n+2} = d$. Since we have a rational identity in b, d the condition $|q^{1-\lambda}|/A = |q^{1-\lambda}|/bd < 1$ is then superfluous. The resulting identity is reminiscent of transformation formulas for A_n hypergeometric series recently obtained by Kajihara [K].
Corollary 4.4. The following identity holds:

$$\sum_{y_1, \ldots, y_n=0}^{t_1, \ldots, t_n} \left(\frac{W(zq^y)}{W(z)} \prod_{1 \leq k \leq n}^{y_k} \frac{(q^{m_k}c_jz_k, qz_k/c_j)_{y_k}}{(c_jz_k, q^{1-m_k}z_k/c_j)_{y_k}} \prod_{j,k=1}^{n} \frac{(z_jz_k, q^{-k}z_k/z_j)_{y_k}}{(qz_k/z_j, q^{1+k}z_jz_k)_{y_k}} \right)$$

$$\times \prod_{k=1}^{n} \frac{(bz_k, dz_k)_{y_k}}{(qz_k/b, qz_k/d)_{y_k}} \left(\frac{q^{1-|m|+|l|}}{|y|} \right) \left(\frac{q}{bd} \right)^{|y|} = \prod_{j=1}^{p} \prod_{m=1}^{p} \frac{(q^{-k}c_jz_k, qz_k/c_j)_{x_j}}{(c_jz_k, q^{-k}c_jz_k)_{x_j}} \prod_{j,k=1}^{n} \frac{(q^{m_k}c_jz_k, qz_k/c_j)_{x_j}}{(q^{m_k}c_jz_k, qz_k/c_j)_{x_j}} \prod_{j,k=1}^{n} \frac{(c_jz_k, q^{-k}c_jz_k)_{x_j}}{(c_jz_k, q^{-k}c_jz_k)_{x_j}} \left(q^{m-|m|} |bd|^{x_j} \right).$$

Theorem 3.3 has some interesting consequences for low values of n. An inspection of the proof shows that it holds for $n = 0$, if the left-hand side of (3) is interpreted as 1. This leads to a C_n analogue of the terminating qW_5 summation formula, which is in fact the special case $a_j = z_j$, $a_{n+j} = q^{-m_j}z_j$, $1 \leq j \leq n$ of Gustafson’s identity (5) (cf. also [LM]), or, equivalently, the case $m_j = 0$ of Corollary 4.4. We include it here as a first illustration of how Theorem 3.3 is related to known results for “classical” (i.e. not of Karlsson–Minton type) C_n hypergeometric series. Compared to Theorem 3.3 we have replaced p with n and c_j, a_1, a_2 with $q^{1/2}z_j$, $q^{1/2}a$, $q^{1/2}b$, respectively.

Corollary 4.5 (Gustafson). The following identity holds:

$$\sum_{x_1, \ldots, x_n=0}^{m_1, \ldots, m_n} \frac{W(zq^x)}{W(z)} \prod_{j=1}^{n} \frac{(z_j/a, z_j/b)_{x_j}}{(qz_ja, qz_jb)_{x_j}} \prod_{j,k=1}^{n} \frac{(z_jz_k, q^{m_k}z_j/z_k)_{x_j}}{(qz_jz_k, q^{m_k+1}z_jz_k)_{x_j}} \left(abq^{m+1} \right)^{|x|}$$

$$= \frac{(qab)^{|m|}}{\prod_{j=1}^{n} (qaz_j, qbz_j)_{m_j}} \prod_{1 \leq j < k \leq n} (qz_jz_k)_{m_j+m_k}.$$
Corollary 4.6. For $|a^2q^{1-|m|}/bcde| < 1$, the following identity holds:

$$
\sum_{y=-\infty}^{\infty} \frac{1 - aq^{2y}}{1 - a} \frac{(b, c, d, e)_y}{(aq/b, aq/c, aq/d, aq/e)_y} \prod_{j=1}^{p} \frac{(f_j, aq^{1+m_j}/f_j)_y}{(q^{-m_j}f_j, aq/f_j)_y} \left(\frac{a^2q^{1-|m|}}{bcde} \right)^y
= \frac{(q, aq/q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de)_{\infty}}{(q/b, q/c, q/d, q/e, aq/b, aq/c, aq/d, aq/e, a^2q/bcde)_{\infty}} \frac{1}{(bcde/a^2)_{|m|}}
\prod_{j=1}^{p} \frac{(qb/f_j, qc/f_j, qd/f_j, qe/f_j)_{m_j}}{(aq/f_j, q/f_j)_{m_j}} \prod_{1 \leq j < k \leq p} (aq^2/f_j f_k)_{m_j+m_k}
\prod_{j<k} (aq/bf_j, aq/cf_j, aq/df_j, aq/ef_j)_{x_j}
\times \prod_{j,k=1}^{m_1,...,m_p} \frac{(aq/f_j f_k, q^{-m_k}f_k/f_j)_{x_j}}{(qf_k/f_j, aq^{2+m_k}/f_j f_k)_{x_j}} \left(\frac{bcde q^{m_k}}{a^2} \right)^{|x_j|}.
$$

(22)

We remark that the factor

$$
\frac{W(\sqrt{aq} q^x/f)}{W(\sqrt{aq}/f)} = \prod_{1 \leq j \leq k \leq p} \frac{1 - aq^{x_j+x_k+1}/f_j f_k}{1 - aq/f_j f_k} \prod_{1 \leq j < k \leq p} \frac{q^{x_j}/f_j - q^{x_k}/f_k}{1/f_j - 1/f_k}
$$

does not depend on the choice of square root.

Corollary 4.6 may be compared with Corollary 4.11 of [3], which is just the case $n = 2$ of [4]. It says that the left-hand side of (22) equals

$$
\frac{(q, aq/q/a, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de)_{\infty}}{(q/b, q/c, q/d, q/e, aq/b, aq/c, aq/d, aq/e, a^2q/bcde)_{\infty}}
\times \prod_{j=1}^{p} \frac{(bq/f_j, cq/f_j)_{m_j}}{(aq/f_j, q/f_j)_{m_j}} \frac{(de/a)_{|m|}}{(bcde/a^2)_{|m|}}
\times \sum_{x_1,...,x_p=0}^{m_1,...,m_p} \frac{\Delta(q^{x_j}/f)}{\Delta(1/f)} \frac{(bc/a)_{|x|}}{(aq^{1-|m|}/de)_{|x|}} \prod_{j=1}^{p} \frac{(aq/df_j, aq/ef_j)_{x_j}}{(gb/f_j, qc/f_j)_{x_j}} \prod_{j,k=1}^{p} \frac{(q^{-m_k}f_k/f_j)_{x_j}}{(qf_k/f_j)_{x_j}} q^{x_j}.
$$

That this quantity equals the right-hand side of (22) is equivalent to a multivariable Watson transformation due to Milne and Lilly [ML, Theorem 6.6]. After replacing p with n, f_j with \sqrt{aq}/z_j and (b, c, d, e) with $\sqrt{aq}(b^{-1}, c^{-1}, d^{-1}, e^{-1})$, it takes the following form.
Corollary 4.7 (Milne and Lilly). One has the identity

\[
\sum_{x_1, \ldots, x_n=0}^{m_1, \ldots, m_n} \left(\frac{W(zq^x)}{W(z)} \prod_{j=1}^{n} \frac{(b z_j, c z_j, d z_j, e z_j)_{x_j}}{(q z_j/b, q z_j/c, q z_j/d, q z_j/e)_{x_j}} \right) \times \prod_{j,k=1}^{n} \frac{(z_j z_k, q^{-m_k} z_j / z_k)_{x_j}}{(q z_j/z_k, q^{1+m_k} z_j z_k)_{x_j}} \left(\frac{q^{m_j+2}}{bcde} \right)^{[x_j]} = \prod_{j=1}^{n} (q z_j z_k)_{m_j} \times \sum_{x_1, \ldots, x_n=0}^{m_1, \ldots, m_n} \frac{\Delta(zq^x)}{\Delta(z)} \Delta(z) \frac{(q/|de|)_{[x_j]}}{(q^{-m|de|})_{[x_j]}} \prod_{j=1}^{n} \frac{(d z_j, e z_j)_{x_j}}{(q z_j/b, q z_j/c)_{x_j}} \prod_{j,k=1}^{n} \frac{(q^{-m_k} z_j / z_k)_{x_j}}{(q z_j/z_k)_{x_j}} q^{[x_j]}.
\]

The proof of Corollary 4.7 obtained here gives a nice explanation of why such a transformation formula, relating a C_n $8W_7$ series and an A_n $4\phi_3$, exists: on the level of Karlsson–Minton type hypergeometric series it reflects the coincidence of root systems $A_1 = C_1$. It is appropriate to remark here that our proof of Theorem 3.1 depended on guessing the explicit expression for the right-hand side of \((\text{4})\). This task was much simplified by having access to the Milne–Lilly transformation, and thus (given also the results of \([\text{R}]\)) knowing the identity in advance for $n = 1$.

A generalization of Corollary 4.7 to the level of multivariable balanced $10W_9$ series has been obtained by Bhatnagar and Schlosser [BS, Theorem 2.1]. We have not been able to obtain this identity in our approach. Note that, when $n = 2$, the right-hand side of \((\text{4})\) is a p-variable $10W_9$, but to make it balanced one must let $A = q^{1-m}$, which corresponds to a pole of the left-hand side.

References

[BS] G. Bhatnagar and M. Schlosser, C_n and D_n very-well-poised $10\phi_9$ transformations, Constr. Approx. 14 (1998), 531–567.

[C] W. Chu, Partial-fraction expansions and well-poised bilateral series, Acta Sci. Math. (Szeged) 64 (1998), 495–513.

[G1] G. Gasper, Summation formulas for basic hypergeometric series, SIAM J. Math. Anal. 12 (1981), 196–200.

[G2] G. Gasper, Elementary derivations of summation and transformation formulas for q-series, Special Functions, q-Series and Related Topics, 55–70, Fields Inst. Commun. 14, Providence, RI, 1997.

[GR] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

[Gu1] R. A. Gustafson, Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$, SIAM J. Math. Anal. 18 (1987), 1576–1596.

[Gu2] R. A. Gustafson, The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras, Ramanujan International Symposium on Analysis (Pune, 1987), 185–224, Macmillan of India, New Delhi, 1989.

[HBL] W. J. Holman, L. C. Biedenharn and J. D. Louck, On hypergeometric series well-poised in $SU(n)$, SIAM J. Math. Anal. 7 (1976), 529–541.

[K] Y. Kajihara, Euler transformation formulas for multiple basic hypergeometric series of type A and some applications, Adv. Math., to appear.

[Ka] P. W. Karlsson, Hypergeometric functions with integral parameter differences, J. Math. Phys. 12 (1971), 270–271.

[LM] G. M. Lilly and S. C. Milne, The C_ℓ Bailey transform and Bailey lemma, Constr. Approx. 9 (1993), 473–500.

[M] S. C. Milne, Balanced $3\phi_2$ summation theorems for $U(n)$ basic hypergeometric series, Adv. Math. 131 (1997), 93–187.

[ML] S. C. Milne and G. M. Lilly, Consequences of the A_1 and C_3 Bailey transform and Bailey lemma, Discrete Math. 139 (1995), 319–346.
[MN] S. C. Milne and J. W. Newcomb, U(n) very-well-poised 10φ9 transformations, J. Comput. Appl. Math. 68 (1996), 239–285.

[Mi] B. Minton, Generalized hypergeometric function of unit argument, J. Math. Phys. 11 (1970), 1375–1376.

[R] H. Rosengren, Reduction formulae for Karlsson–Minton type hypergeometric functions, \url{http://arxiv.org/abs/math/0202232} (math.CA/0202232).

[S1] M. Schlosser, Multilateral transformations of q-series with quotients of parameters that are nonnegative integral powers of q, Contemp. Math. 291 (2001), 203–227.

[S2] M. Schlosser, Elementary derivations of identities for bilateral basic hypergeometric series, Selecta Math., to appear.

Department of Mathematics, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden

E-mail address: hjalmar@math.chalmers.se