Introduction

Since the introduction of the human immunodeficiency virus (HIV), 78 million people have been infected with the virus, with a prevalence of approximately 0.7% in people aged 15-49 by the end of 2019 (1). According to the World Health Organization (WHO), the number of Iranian people with recent HIV infection was 4400 in 2019 (2).

HIV is associated with several endocrine and metabolic disorders (3). The disorders of the endocrine system, including thyroid, gonadal, adrenal, and metabolic disorders have largely been reported in HIV-infected patients (4-6). The systemic effects of HIV, along with the complications of highly active antiretroviral therapy (HAART) have been suggested as underlying reasons for the endocrine disorders in HIV patients (7, 8). Some studies have implicated the adrenal gland as the most common endocrine target in HIV-positive patients (9, 10).

The Prevalence of Metabolic and Endocrine Disorders Among HIV-infected Patients in a Population From the South of Iran

Parivash Davoodian1, Marzieh Nourozian2, Ali AtashAbParvar3, Ghazal Zoghi4, Mahsa Ghasemi5, Masoumeh Kheirandish3

1Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
2Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
3Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
4Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
5Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Abstract

Background: Since the beginning of the acquired immunodeficiency syndrome (AIDS) pandemic, the number of people infected with human immunodeficiency virus (HIV) has shown a steady increase. Previous evidence exists regarding the evaluation of endocrine dysfunction in HIV-infected individuals. The present study sought to investigate the prevalence of metabolic and endocrine disorders in HIV-positive patients.

Materials and Methods: In this cross-sectional study, 72 HIV-positive patients supported by the Behavioral Diseases Center of Bandar Abbas, Iran were recruited from April, 2016 to September, 2017. Patients who did not consent to participate were excluded from the study. Several parameters were measured, including serum free T3, free T4, thyroid-stimulating hormone (TSH), luteinizing hormone (LH), adrenocorticotropic hormone (ACTH), free testosterone, cortisol, fasting plasma glucose (FPG), 2-hour plasma glucose, cholesterol, triglyceride, and low- and high-density lipoprotein levels. Finally, data were analyzed using chi-square and Mann-Whitney tests.

Results: High serum lipoprotein levels, diabetes, and prediabetes were observed in 28/72 (38.9%), 13/72 (18.1%), and 17/72 (23.6%) patients, respectively. The prevalence of overt hypothyroidism and subclinical hypothyroidism, as well as overt hyperthyroidism and subclinical hyperthyroidism was 32.8% (22/67), 9% (6/67), 1.5% (1/67), and 7.5% (5/67), respectively. Primary and secondary gonadal dysfunction were found in 1/47 (2.1%) and 9/47 (19.1%) patients, respectively. Primary and secondary adrenal insufficiency were detected in 8/53 (15.1%) and 1/53 (1.9%) patients, respectively. Diabetes was significantly more frequent among older patients and those with a history of addiction.

Conclusions: The results of this study indicated a relatively high frequency of metabolic and endocrine disorders, especially dyslipidemia and hypothyroidism in HIV-positive patients.

Keywords: HIV, Metabolic disorder, Endocrinopathy

Received: May 11, 2021, Accepted: July 26, 2021, ePublished: January 1, 2022

© 2022 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Endocrine disorders substantially affect organ development, muscle mass, and sexual function, leading to a significant reduction in the quality of life in HIV-infected individuals (11). Limited data exist on the clinical symptoms of thyroid disorders in these patients (12). Considering that endocrine disorders are easily controlled by hormone replacement therapy (13), accurate estimates of the prevalence of these disorders in HIV-positive patients are of importance. Hypogonadism is another common endocrine disorder in HIV-positive patients. Low CD4+ cell count, disease progression, and weight loss are associated with low testosterone levels, indicating testicular dysfunction (14). The association of HIV with diabetes has also been well described (11), and diabetes may exist before or after the onset of HIV infection. The pathogenesis of diabetes is mainly insulin resistance rather than insulin deficiency in HIV infection.

Given the significance of metabolic and endocrine disorders in HIV-positive patients, the straightforward management of these conditions, and the required clinical attention in the case of a considerable prevalence, the present study was conducted to investigate the frequency of metabolic and endocrine disorders in HIV-positive patients in Bandar Abbas in 2016-2017.

Materials and Methods

Study Population

This cross-sectional study was conducted on HIV-positive patients in Bandar Abbas, Iran. Patients were selected by the census method, and 72 HIV-positive patients supported by the Behavioral Diseases Center of Bandar Abbas were recruited from April 2016 to September 2017. Written informed consent was obtained from all the patients. Patients who did not consent to participate were excluded from the study.

Sampling and Data Collection

Patients’ demographic data including age, gender, history of addiction, and history of tuberculosis were collected through face-to-face interviews. The symptoms of endocrine diseases, including weight loss, muscle weakness, polydipsia, polyuria, impotence, and intolerance to cold and heat, along with amenorrhea and oligomenorrhea in afflicted women were evaluated. Subsequently, patients were examined in terms of thyroid, height, weight, and wasting. Other data such as the duration of HIV infection, the presence of AIDS, and antiviral treatments were recorded as well.

Patients’ CD4+ cell count, plasma glucose, and lipid profile had been measured on a monthly basis. The results of the latest tests were recorded, including CD4+ cell count, fasting plasma glucose (FPG), 2-hour postprandial plasma glucose (2-h PPG), total cholesterol, triglyceride, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels. In addition, patients’ blood samples were sent to the laboratory of Shahid Mohammadi Hospital of Bandar Abbas for further investigations. Due to a history of injectable drug use, the blood samples of some patients were not sufficient for the performance of all tests. Thus, thyroid function tests were prioritized in these patients.

The serum cortisol levels were evaluated in the fasting blood samples of 47 patients using the chemiluminescence method via the Abbott ARCHITECT® Instrument System. Furthermore, serum levels of thyroid-stimulating hormone (TSH), free T4, and free T3 were measured in 72 patients, using the same system. Then, serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and adrenocorticotropic hormone (ACTH) were estimated in 47 patients using the Elecsys® kit and the Roche Cobas E411 analyzer. Next, enzyme-linked immunosorbent assay (ELISA) was used to measure free testosterone in 47 patients in blood samples collected at 8:00 in the morning after 10 hours of fasting.

Variable Definition

Diabetes was defined as FPG ≥126 mg/dL and/or 2-hour plasma glucose ≥200 mg/dL after the ingestion of 75g oral glucose.

Primary adrenal insufficiency was defined as serum cortisol <18-20 g/dL and ACTH above the normal limit, while secondary adrenal insufficiency was defined as ACTH lower than or within normal limits.

Primary hypogonadism in men or hypogonadotropic hypogonadism was defined as decreased serum free testosterone due to a decrease in LH and FSH, whereas secondary hypogonadism was defined as decreased serum free testosterone level with elevated LH and FSH.

Hypothyroidism was characterized as TSH above the normal limit and decreased FT4. Subclinical hypothyroidism was defined as TSH above the normal limit and FT4 within normal limits.

Likewise, dyslipidemia was determined as the presence of at least one abnormality of any lipid profile components, including total cholesterol, LDL, triglyceride values above the normal limit, and HDL lower than normal value according to the lipid guideline (15).

Statistical Analysis

The Statistical Package for the Social Sciences (SPSS) software (Version 25.0, SPSS Inc., Chicago, IL, USA) was applied for analysis. Data were analyzed using descriptive statistics (i.e., percentage, mean, standard deviation, and the like) and chi-square and Mann-Whitney tests. P values <0.05 were considered statistically significant.

Results

Demographic Findings

The mean age of the participants was 43±9 years, including 43 (59.7%) men and 29 (40.3%) women. The
mean weight and height of the patients were 61.1±11.5 kg and 169±8 cm, respectively. The body mass index (BMI) of 35 (48.6%) patients was within the normal range while 24 (33.3%), 12 (16.7%), and 2 (2.8%) patients were underweight, overweight, and obese, respectively.

The average duration of HIV infection was 4±7 years, and more than half of the patients had been infected with the virus for more than 8 years.

Thirty-four patients (47.2%) had a history of tuberculosis and 63 (87.5%) received HAART. The most common type of treatment was zidovudine + lamivudine + efavirenz or Vonavir (Table 1). Table 2 presents the laboratory findings of HIV-positive patients.

Diabetes

Metabolic and endocrine disorders were statistically analyzed by age, gender, BMI, history of tuberculosis, duration of virus infection, CD4+ cell count, and HAART treatment (Tables 3-6). Among 72 HIV-positive patients, 41 cases had normal FPG and 2-hour PPG. However, 17/72 (23.6%) and 13/72 (18.1%) patients had prediabetes and diabetes based on FPG, respectively. The correlation analysis of glycemic complications including FPG, 2-h PPG, prediabetes, and diabetes by age, gender, BMI, history of tuberculosis, duration of virus infection, CD4+ cell count, and HAART treatment showed that patients with a history of addiction were more frequently diabetic or prediabetic. A significant correlation was observed between glycemic disorders and age (P = 0.025), and the rate of glycemic disorders was higher at older ages.

Dyslipidemia

Metabolic and endocrine disorders were statistically analyzed by age, gender, BMI, history of tuberculosis, duration of viral infection, CD4+ cell count, and HAART treatment. Among 72 HIV-positive patients, 44 tested normal for cholesterol, triglycerides, HDL, and LDL. Cholesterol, triglyceride, HDL, and LDL levels were at the borderline of dyslipidemia in 14/72 (19.4%) patients. In addition, 14/72 (19.4%) patients had high levels of cholesterol, triglyceride, HDL, and LDL. There was no significant difference regarding dyslipidemia and normal serum levels of cholesterol, triglyceride, HDL, and LDL by age, gender, BMI, history of addiction, history of tuberculosis, duration of virus infection, CD4+ count, and HAART treatment.

Thyroid Dysfunction

The results of TSH, T3, and T4 tests were normal in 33 patients. One patient had overt hyperthyroidism, and 5/67 (7.5%), 6/67 (9%), and 22/67 (32.8%) patients had subclinical hyperthyroidism, subclinical hypothyroidism, and overt hypothyroidism, respectively. Statistical analysis
demonstrated no significant correlation between thyroid disorders and age, gender, BMI, history of addiction, history of tuberculosis, duration of virus infection, CD4+ count, and HAART treatment.

Hypogonadism
Thirty-seven HIV-positive patients had a normal gonadal function. One patient had primary gonadal dysfunction while 9/47 (19.1%) had secondary gonadal dysfunction. Based on statistical analysis, no significant relationship was found between hypogonadism and age, gender, BMI, history of addiction, history of tuberculosis, duration of virus infection, CD4+ count, and HAART treatment.

Table 3. Metabolic and Endocrine Disorders by Age in HIV-Positive Patients

| Metabolic and Endocrine Conditions | Age |
|-----------------------------------|-----|---
| | Mean ± SD |
| Glycemic status | |
| Normal | 41.05 ± 8.24 |
| Abnormal | 44.53 ± 8.43 | 0.025
Prediabetes	
Diabetes	45.85 ± 9.44
Lipid status	
Normal	43.34 ± 9.37
Abnormal	41.29 ± 8.32
Borderline	
High	42.29 ± 6.62
Adrenal axis	
Normal	44.07 ± 6.50
Insufficiency	
Primary	37.63 ± 11.65
Secondary	51.00 ± 0.00
Gonad axis	
Normal	42.78 ± 8.20
Hypogonadism	
Primary	48.00 ± 0.00
Secondary	47.00 ± 5.36
Thyroid axis	
Normal	45.00 ± 7.71
Subclinical hypothyroidism	40.5 ± 9.07
Overt hypothyroidism	40.32 ± 10.25
Subclinical hyperthyroidism	42.2 ± 9.04
Overt hyperthyroidism	42.0 ± 0.00

Table 4. Metabolic and Endocrine Disorders by Gender in HIV-positive Patients

Metabolic and Endocrine Conditions	Gender		
	Male No. (%)	Female No. (%)	P-value
Glycemic status			
Normal	23 (53.5)	19 (65.6)	0.310
Abnormal	12 (27.9)	5 (17.2)	
Prediabetes	8 (18.6)	5 (17.2)	
Diabetes			
Lipid status			
Normal	27 (62.8)	17 (58.8)	
Abnormal	8 (18.6)	6 (20.6)	0.722
Borderline	8 (18.6)	6 (20.6)	
High			
Adrenal axis			
Normal	23 (85.2)	21 (80.8)	
Insufficiency	3 (11.1)	5 (19.2)	0.728
Primary	1 (3.7)	0 (0.0)	
Secondary			
Gonad axis			
Normal	19 (70.4)	18 (90.0)	
Hypogonadism	0 (0.0)	1 (5.0)	0.104
Primary	8 (29.6)	1 (5.0)	
Secondary			
Thyroid axis			
Normal	20 (50.0)	11 (48.1)	
Subclinical hypothyroidism	5 (12.5)	1 (3.8)	
Overt hypothyroidism	11 (27.5)	11 (40.7)	0.882
Subclinical hyperthyroidism	3 (7.5)	2 (7.4)	
Overt hyperthyroidism	1 (2.5)	0 (0.0)	

Note. SD: Standard deviation; HIV: Human immunodeficiency virus.
Table 5. Metabolic and Endocrine Disorders by CD4 Count in HIV-positive Patients

Metabolic and Endocrine Conditions	CD4 Count			
	Low N (%)	Normal N (%)	P Value	
Glycemic status				
Normal	19 (61.3)	22 (55.0)	0.595	
Abnormal	7 (22.6)	10 (25.0)		
Prediabetes	5 (16.1)	8 (20.0)		
Abnormal				
Lipid status				
Normal	22 (71.0)	21 (52.5)	0.114	
Abnormal	4 (12.9)	10 (25.0)		
Borderline	5 (16.1)	9 (22.5)		
Adrenal axis				
Normal	21 (84.0)	23 (82.1)	1.000	
Insufficiency	4 (16.0)	4 (14.3)		
Primary	0 (0.0)	1 (3.6)		
Secondary				
Gonad axis				
Normal	20 (87.0)	17 (70.8)	0.286	
Hypogonadism	1 (4.4)	0 (0.0)		
Secondary	2 (8.6)	7 (29.1)		
Thyroid axis				
Normal	13 (44.8)	20 (54.0)		
Subclinical hypothyroidism	5 (17.3)	1 (2.7)		
Overt hypothyroidism	9 (31.0)	12 (32.5)	0.457	
Subclinical hyperthyroidism	2 (6.9)	3 (8.1)		
Overt hyperthyroidism	0 (0.0)	1 (2.7)		

Note. CD4: Cluster of differentiation 4; HIV: Human immunodeficiency virus.

Table 6. Metabolic and Endocrine Disorders by HAART in 72 HIV-positive Patients

Metabolic and Endocrine Conditions	HAART		
	Negative No. (%)	Positive No. (%)	P Value
Glycemic status			
Normal	6 (66.7)	36 (57.1)	0.726
Abnormal	2 (22.2)	15 (23.8)	
Prediabetes	1 (11.1)	12 (19.1)	
Abnormal			
Lipid status			
Normal	7 (77.8)	37 (58.7)	0.467
Abnormal	2 (22.2)	12 (19.1)	
Borderline	0 (0.0)	14 (22.2)	
Adrenal axis			
Normal	4 (80.0)	40 (63.3)	1.000
Insufficiency	1 (20.0)	7 (36.7)	
Primary	0 (0.0)	1 (2.1)	
Secondary			
Gonad axis			
Normal	2 (66.7)	35 (79.5)	
Hypogonadism	0 (0.0)	1 (2.3)	0.521
Secondary	1 (33.3)	8 (18.2)	
Thyroid axis			
Normal	3 (33.3)	30 (51.7)	
Subclinical hypothyroidism	2 (22.2)	4 (6.8)	
Overt hypothyroidism	4 (45.5)	18 (31.1)	0.536
Subclinical hyperthyroidism	0 (0.0)	5 (8.7)	
Overt hyperthyroidism	0 (0.0)	1 (1.7)	

Note. HAART: Highly active antiretroviral therapy; HIV: Human immunodeficiency virus.
Adrenal Insufficiency
among HIV-positive patients; it was shown that the prevalence of gonadal hypothyroidism was lower than 20%, which contradicts those of Thongam et al., Bongiovanni et al., and Dev et al (22-24) regarding the function of gonads in HIV-positive patients. In the current study, the frequency of diabetes was 18.1%, whereas that of dyslipidemia was 19.4%, which was lower compared to previous studies. The prevalence of thyroid dysfunction in HIV-infected individuals was also estimated in the current study. The frequency of hypothyroidism was extremely higher than other thyroid disorders in the patients. Given the similarity of hypothyroidism symptoms with those of AIDS (12, 22-24), it seems that routine thyroid function tests are necessary for the diagnosis and treatment of thyroid disorders in HIV-positive patients (12). The results of the present study regarding hypothyroidism are in line with those of Thongam et al., Bongiovanni et al., and Dev et al (22-24) regarding the function of gonads in HIV-positive patients; it was shown that the prevalence of gonadal hypothyroidism was lower than 20%, which contradicts the results of Tripathy et al. with a prevalence of over 85% (13). However, our findings are in agreement with those of Rietschel et al (25). Overall, these results indicated a high prevalence of gonadal hypothyroidism in HIV-positive patients despite using HAART treatment. Although adrenal insufficiency is considered the most common endocrine disorder in HIV-positive patients, its clinical evidence has seldom been reported in the literature (9). Conforming to the results of other studies, a high prevalence of endocrine disorder was also found in HIV-positive patients.

The limitations of this study were attempts for convincing HIV-positive patients to participate in the study and difficulty drawing blood samples in patients with injectable drug abuse. Furthermore, definitive stimulation tests were not performed for the adrenal axis. These limitations could have influenced the results of our study, and thus the results should be generalized with caution.

Conclusion
In general, our findings showed that the frequency of metabolic and endocrine disorders was high in HIV-positive patients regardless of age, gender, or BMI. Future studies, including larger populations of HIV-positive patients, focusing on a single endocrine disorder while comparing the results to healthy individuals, would definitely help evaluate the prevalence of metabolic and endocrine disorders in HIV-positive patients.

Acknowledgments
We would like to express our sincere gratitude toward the volunteer patients who took part in the current study and the personnel of the central laboratory of Shahid Mohammadi Hospital, Bandar Abbas, Iran, as well as the Behavioral Diseases Center of Bandar Abbas for their dedicated efforts and cooperation.

Authors' Contributions
MK designed the study and MN wrote the manuscript. PD and MG analyzed and interpreted the data. GZ performed the technical revision of the manuscript. All authors read and approved the final manuscript.

Availability of Data and Materials
The applied and/or analyzed datasets during the current study are available from the corresponding author upon reasonable request.

Ethical Statement
The study was approved by the Institutional Review Board of Hormozgan University of Medical Sciences, and it complies with the statements of the Declaration of Helsinki (with the ethics code of IR.HUMS.REC.1399.404). Informed consent was obtained from all subjects.

Funding/Sponsorship
This study was financially supported by Hormozgan University of Medical Sciences.

References
1. Prevalence of HIV among adults aged 15 to 49 (%). Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-hiv-among-adults-aged-15-to-49-()%
2. Iran - HIV Country Profile 2019. WHO website. Available from: https://cfs.hivci.org/country-factsheet.html.
3. Girei BA, Fatima SB. Endocrine manifestations of HIV infection. In: Saxena SK, ed. Current Perspectives in HIV Infection. IntechOpen; 2013. p. 243-59. doi: 10.5772/52684.
4. Dobs AS, Dempsey MA, Ladenson PW, Polk BF. Endocrine disorders in men infected with human immunodeficiency virus. Am J Med. 1988;84(3 Pt 2):611-6. doi: 10.1016/0002-
5. Mandel SJ, Larsen PR, Davies TF, Melmed S, Polonsky KS, Larsen PR, et al. Williams Textbook of Endocrinology. Philadelphia: Saunders; 2011.
6. Verges B, Chavanet P, Desgres J, Vaillant G, Waldner A, Brun JM, et al. Adrenal function in HIV-infected patients. Acta Endocrinol (Copenh). 1989;121(5):633-7. doi: 10.1530/acta.0.1210633.
7. Anurad E, Semrad A, Berglund L. Human immunodeficiency virus and highly active antiretroviral therapy-associated metabolic disorders and risk factors for cardiovascular disease. Metab Syndr Relat Disord. 2009;7(5):401-10. doi: 10.1089/ndm.2008.0096.
8. Dyrka K, Miedziaszczyk M, Szalek E, Łącka K. Endocrine abnormalities induced by the antiviral drugs and frequency of their occurrence. Pol Merkur Lekarski. 2020;48(285):209-14.
9. Gallant J, Hsue PY, Shreay S, Meyer N. Comorbidities among US patients with prevalent HIV infection-a trend analysis. J Infect Dis. 2017;216(12):1525-33. doi: 10.1093/infdis/jix518.
10. Huang YW, Chang CC, Sun HY, Chen MY, Hung CC, Chang SC. Primary adrenal insufficiency in patients with acquired immunodeficiency syndrome: report of four cases. J Microbiol Immunol Infect. 2004;37(4):250-3.
11. Bhasin S, Singh AB, Javanbakht M. Neuroendocrine abnormalities associated with HIV infection. Endocrinol Metab Clin North Am. 2001;30(3):749-64. doi: 10.1016/s0889-8529(05)0210-3.
12. Beltran S, Lescour JP, Desailloud R, Douadi Y, Smail A, El Esper I, et al. Increased prevalence of hypothyroidism among human immunodeficiency virus-infected patients: a need for screening. Clin Infect Dis. 2003;37(4):579-83. doi: 10.1086/376626.
13. Tripathy SK, Agravala RK, Baliarsingh AK. Endocrine alterations in HIV-infected patients. Indian J Endocrinol Metab. 2015;19(1):143-7. doi: 10.4103/2230-8210.146870.
14. Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815-9. doi: 10.2337/diacare.15.7.815.
15. Downs JR, O'Malley PG. Management of dyslipidemia for cardiovascular disease risk reduction: synopsis of the 2014 U.S. Department of Veterans Affairs and U.S. Department of Defense clinical practice guideline. Ann Intern Med. 2015;163(4):291-7. doi: 10.7326/m15-0840.
16. Madeddu G, Spanu A, Chessa F, Calia GM, Loviggi C, Solinas P, et al. Thyroid function in human immunodeficiency virus patients treated with highly active antiretroviral therapy (HAART): a longitudinal study. Clin Endocrinol (Oxf). 2006;64(4):375-83. doi: 10.1111/j.1365-2265.2006.02472.x.
17. Quirino T, Bongiovanni M, Ricci E, Chebat E, Carradon S, Martinelli C, et al. Hypothyroidism in HIV-infected patients who have or have not received HAART. Clin Infect Dis. 2004;38(4):596-7. doi: 10.1086/381442.
18. Shlay JC, Visnegarwala F, Bartsch G, Wang J, Peng G, El-Sadr WM, et al. Body composition and metabolic changes in antiretroviral-naive patients randomized to didanosine and stavudine vs. abacavir and lamivudine. J Acquir Immune Defic Syndr. 2005;38(2):147-55. doi: 10.1097/01.qai.0000143599.64234.15.
19. Alencastro PR, Fuchs SC, Wolf F, Ikeda ML, Brandão AB, Barcellos NT. Independent predictors of metabolic syndrome in HIV-infected patients. AIDS Patient Care STDS. 2011;25(11):627-34. doi: 10.1089/apc.2010.0360.
20. Bonfanti P, Giannattasio C, Ricci E, Facchetti R, Rosella E, Franzetti M, et al. HIV and metabolic syndrome: a comparison with the general population. J Acquir Immune Defic Syndr. 2007;45(4):426-31. doi: 10.1097/QAI.0b013e318074ef83.
21. Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarbinski J. Is diabetes prevalence higher among HIV-infected individuals compared with the general population? evidence from MMP and NHANES 2009-2010. BMJ Open Diabetes Res Care. 2017;5(1):e000304. doi: 10.1136/bmjdrc-2016-000304.
22. Bongiovanni M, Adorni F, Casana M, Tordato F, Tincati C, Cicconi P, et al. Subclinical hypothyroidism in HIV-infected subjects. J Antimicrob Chemother. 2006;58(4):1086-9. doi: 10.1093/jac/dkl360.
23. Dev N, Sahoo R, Kulsheertha B, Gadpayale AK, Sharma SC. Prevalence of thyroid dysfunction and its correlation with CD4 count in newly-diagnosed HIV-positive adults—a cross-sectional study. Int J STD AIDS. 2015;26(13):965-70. doi: 10.1097/01.inf.0000421181.73935.9c.
24. Thongam S, Keithelakpam S, Singh TY, Singh RL, Singh AM, Ranabir S. Thyroid dysfunction in human immunodeficiency virus-infected children and its correlation with CD4+ T lymphocyte count. Indian J Endocrinol Metab. 2015;19(2):272-6. doi: 10.4103/2230-8210.149321.
25. Rietschel P, Corcoran C, Stanley T, Basgoz N, Klibanski A, Grinspoon S. Prevalence of hypogonadism among men with weight loss related to human immunodeficiency virus infection who were receiving highly active antiretroviral therapy. Clin Infect Dis. 2000;31(5):1240-4. doi: 10.1086/317457.