Immunophenotypes of Acute Myeloid Leukemia From Flow Cytometry Data Using Templates

Ariful Azad\(^1\), Bartek Rajwa\(^2\) and Alex Pothen\(^3\)*

\(^1\)azad@lbl.gov, Computational Research Division, Lawrence Berkeley National Laboratory, California, USA
\(^2\)brajwa@purdue.edu, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
\(^3\)apothen@purdue.edu, Department of Computer Science, Purdue University, West Lafayette, Indiana, USA

ABSTRACT

Motivation: We investigate whether a template-based classification pipeline could be used to identify immunophenotypes in (and thereby classify) a heterogeneous disease with many subtypes. The disease we consider here is Acute Myeloid Leukemia, which is heterogeneous at the morphologic, cytogenetic and molecular levels, with several known subtypes. The prognosis and treatment for AML depends on the subtype.

Results: We apply flowMatch, an algorithmic pipeline for flow cytometry data created in earlier work, to compute templates succinctly summarizing classes of AML and healthy samples. We develop a scoring function that accounts for features of the AML data such as heterogeneity to identify immunophenotypes corresponding to various AML subtypes, including APL. All of the AML samples in the test set are classified correctly with high confidence.

Availability: flowMatch is available at www.bioconductor.org/packages/devel/bioc/html/FlowMatch.html; programs specific to immunophenotyping AML are at www.cs.purdue.edu/homes/azad/software.html

Contact: apothen@purdue.edu

1 INTRODUCTION

Can Acute Myeloid Leukemia (AML) samples be distinguished from healthy ones using flow cytometry data from blood or bone marrow with a template-based classification method? This method builds a template for each class to summarize the samples belonging to the class, and uses them to classify new samples. This question is interesting because AML is a heterogeneous disease with several subtypes and hence it is not clear that a template can succinctly describe all types of AML. Furthermore, we wish to identify immunophenotypes (cell types in the bone marrow and blood) that are known to be characteristic of subtypes of AML. Pathologists use these immunophenotypes to visualize AML and its subtypes, and a computational procedure that can provide this information would be more helpful in clinical practice than a classification score that indicates if an individual is healthy or has AML.

In earlier work, we have developed a template-based classification method for analyzing flow cytometry (FC) data, which consists of measurements of morphology (from scattering) and the expression of multiple biomarkers (from fluorescence) at the single-cell level. Each FC sample consists of hundreds of thousands or more of such single-cell measurements, and a study could consist of thousands of samples from different individuals at different time points under different experimental conditions [Aghaeepour et al. 2013; Shapiro 2005]. We have developed an algorithmic pipeline for various steps in processing this data [Azad et al. 2013; 2010; 2012]. We summarize each sample by means of the cell populations that it contains. (These terms are defined in Table 1 and illustrated in Fig. 1). Similar samples belonging to the same class are described by a template for the class. A template consists of meta-clusters that characterize the cell populations present in the samples that constitute the class. We compute templates from the samples, and organize the templates into a template tree. Given a sample to classify, we compare it with the nodes in the template tree, and classify it to the template that it is closest to. A combinatorial measure for the dissimilarity of two samples or two templates, computed by means of a mixed edge cover in a graph model (described in the next section), is at the heart of this approach.

We have applied our algorithmic pipeline for template-based classification to various problems: to distinguish the phosphorylation state of T cells; to study the biological, temporal, and technical variability of cell types in the blood of healthy individuals; to characterize changes in the immune cells of Multiple Sclerosis patients undergoing drug treatments; and to predict the vaccination status of HIV patients. However, it is not clear if the AML data set can be successfully analyzed with this scheme, since AML is a heterogeneous disease at the morphologic, cytogenetic and molecular levels, and a few templates may not describe all of its subtypes.

AML is a disease of myeloid stem cells that differentiate to form several types of cells in the blood and marrow. It is characterized by the profusion of immature myeloid cells, which are usually prevented from maturing due to the disease. The myeloid stem cell differentiates in several steps to form myeloblasts and other cell types in a hierarchical process. This hierarchical differentiation process could be blocked at different cell types, leading to the multiple subtypes of AML. Eight different subtypes of AML based on cell lineage are included in the French-American-British Cooperative Group (FAB) classification scheme (Bennett et al. 1985). (A different World Health Organization (WHO) classification scheme has also been published.) Since the prognosis and treatment varies greatly among the subtypes of AML, accurate diagnosis is critical.

We extend our earlier work on template-based classification here by developing a scoring function that accounts for the subtleties of FC data of AML samples. Only a small number of the myeloid cell populations in AML samples are specific to AML, and there are a larger number of cell populations that these samples share with healthy samples. Furthermore, the scoring function needs to account for the diversity of the myeloid cell populations in the various subtypes of AML.

Our work has the advantage of identifying immunophenotypes of clinical interest in AML from the templates. Earlier work on the AML dataset we work with has classified AML samples using methods such as nearest neighbor classification, logistic regression,
and the challenge is to determine the disease status of the rest of the samples, 20 AML and 157 healthy, based only on the information in the training set. The complete dataset is available at http://flowrepository.org/.

The side scatter (SS) and all of the fluorescence channels are transformed logarithmically, but the forward scatter (FS) is linearly transformed to the interval [0,1] so that all channels have values in the same range. This removes any bias towards FS channel in the multi-dimensional clustering phase. After preprocessing, an FC sample is stored as an $n \times p$ matrix A, where the element $A(i,j)$ quantifies the j^{th} feature in the i^{th} cell, and p is the number of features measured in each of n cells. In this dataset, $p = 7$ for each tube and n varies among the samples.

2.2 Identifying cell populations in each sample

We employ a two-stage clustering approach for identifying phenotypically similar cell populations (homogeneous clusters of cells) in each sample. At first, we apply the k-means clustering algorithm for a wide range of values for k, and select the optimum number of clusters k^* by simultaneously optimizing the Calinski-Harabasz and S_Dbw cluster validation methods (Halkidi et al., 2001). Next, we model the clusters identified by the k-means algorithm with a finite mixture model of multivariate normal distributions. In the mixture model, the i^{th} cluster is represented by two distribution parameters μ_i, the p-dimensional mean vector, and Σ_i, the $p \times p$ covariance matrix. The distribution parameters for each cluster are then estimated using the Expectation-Maximization (EM) algorithm. The statistical parameters of a cluster are used to describe the corresponding cell population in the rest of the analysis.

2.3 Dissimilarity between samples

We calculate the dissimilarity between a pair of cell populations by the Mahalanobis distance between their distributions. Let $c_1(\mu_1, \Sigma_1)$ and $c_2(\mu_2, \Sigma_2)$ be two normally distributed clusters and Σ_1 and Σ_2 be the pooled variance of Σ_1 and Σ_2. The Mahalanobis distance $d(c_1, c_2)$ between the clusters is computed as follows:

$$d(c_1, c_2) = \frac{1}{2} (\mu_1 - \mu_2)^\top \Sigma^{-1} (\mu_1 - \mu_2),$$

where

$$\Sigma_p = ((n_1 - 1) \cdot \Sigma_1 + (n_2 - 1) \cdot \Sigma_2)/(n_1 + n_2 - 2).$$

We compute the dissimilarity between a pair of samples by optimally matching (in a graph-theoretic model) similar cell clusters and summing up the dissimilarities of the matched clusters. In earlier work, we have developed a robust variant of a graph matching algorithm called the Mixed Edge Cover (MEC) algorithm that allows a cluster in one sample to be matched with zero, one, or more clusters in the second sample (Azad et al., 2010). The cell population in the first sample could be either absent, or present, or split into two or more cell populations in the second sample. These can happen due to changes in biological conditions or due to artifacts in clustering.

Consider two FC samples A and B consisting of k_a and k_b cell populations such that $A = \{a_1, a_2, ... , a_{k_a}\}$, and $B = \{b_1, b_2, ... , b_{k_b}\}$ where a_i is the i^{th} cluster from sample A and b_j is the j^{th} cluster from B. The mixed edge cover computes a mapping mec, of clusters across A and B such that $\text{mec}(a_i) \in \mathcal{P}(B)$ and $\text{mec}(b_j) \in \mathcal{P}(A)$, where $\mathcal{P}(A)$ ($\mathcal{P}(B)$) is the power set of A (B). When a cluster a_i (or b_j) remains unmatched under mec, i.e.,
Template tree consists of mixed edge covers that can be computed by a modified minimum-weight edge cover algorithm. A template tree is created from four hypothetical samples, clusters, or meta-clusters. Fig. 1 shows an example of a template tree. An internal node represents a template created from its children, and a node is characterized by a finite mixture of distributions. The cost of a mixed edge cover is the squared deviation across all dimensions is less than one. The cost of a mixed edge cover is minimized to compute a score $D(A, B)$ between a pair of samples A and B:

$$\min_{\text{mixed edge covers, } \text{mec}} \left(\sum_{1 \leq i < j \leq k, (a, b) \in \text{mec}(c_i)} d(a_i, b_j) + \sum_{1 \leq i < j \leq k, (a, b) \in \text{mec}(c_i)} d(b_i, a_j) \right),$$

where $d(a_i, b_j)$ is computed from Equation (1). A minimum cost mixed edge cover can be computed by a modified minimum weight perfect matching algorithm in $O(k^3 \log k)$ time where k is the maximum number of clusters in a sample [Azad et al., 2010]. The number of cell clusters k is typically small (fewer than fifty for the AML data), and the dissimilarity between a pair of samples can be computed in less than a second on a desktop computer.

2.4 Creating templates from a collection of samples

We have designed a hierarchical matching-and-merging (HM&M) algorithm that arranges a set of similar samples into a binary template tree data structure [Azad et al., 2012]. A node in the tree represents either a sample (leaf node) or a template (internal node). In both cases, a node is characterized by a finite mixture of multivariate normal distributions each component of which is a cluster or meta-cluster. Fig. 1 shows an example of a template tree created from four hypothetical samples, S_1, S_2, S_3, and S_4.

Let a node v_i (representing either a sample or a template) in the template tree consist of k_i clusters or meta-clusters $c^i_1, c^i_2, \ldots, c^i_{k_i}$.

A node v_i is called an “orphan” if it does not have a parent in the template tree. Consider N flow cytometry samples S_1, S_2, \ldots, S_N belonging to a class. Then the HM&M algorithm for creating a template tree from these samples can be described by the following three steps.

1. **Initialization**: Create a node v_i for each of the N samples S_i. Initialize all these nodes to the set of orphan nodes. Repeat the matching and merging steps until a single orphan node remains.

2. **Matching**: Compute the dissimilarity $D(v_i, v_j)$ between every pair of nodes v_i and v_j in the current orphan set with the mixed edge cover algorithm (using Equation (2)).

3. **Merging**: Find a pair of orphan nodes (v_i, v_j) with minimum dissimilarity $D(v_i, v_j)$ and merge them to create a new node v_c. Let mec be a function denoting the mapping of clusters from v_i to v_j. That is, if $c^i_x \in v_i$ is matched to $c^j_y \in v_j$, then $c^i_x \in \text{mec}(c^j_y)$, where $1 \leq x \leq k_i$ and $1 \leq y \leq k_j$. Create a new meta-cluster c^i_j from each set of matched clusters, $c^i_j = \{c^i_x \cup \text{mec}(c^j_y)\}$. Let k_b be the number of the new meta-clusters created above. Then the new node v_c is created as a collection of these newly created meta-clusters, i.e., $v_c = \{c^i_{j1}, c^i_{j2}, \ldots, c^i_{jk_b}\}$. The distribution parameters, (μ^i_s, Σ^i_s), of each of the newly formed meta-clusters c^i_j are estimated by the EM algorithm. The height of v_c is set to $D(v_i, v_j)$. The node v_c becomes the parent of v_i and v_j, and the set of orphan nodes is updated by including v_i and deleting v_i and v_j from it. If there are orphan nodes remaining, we return to the matching step, and otherwise, we terminate.

When the class labels of samples are not known a priori, the roots of well-separated branches of tree give different class templates. However, if samples belong to the same class as is the case for the AML dataset studied in this paper, the root of the template tree gives the class-template. The HM&M algorithm requires $O(N^2)$ dissimilarity computations and $O(N)$ merging operations for creating a template from a collection of N samples. Let k be the maximum number of clusters or meta-clusters in any of the nodes of the template tree. Then a dissimilarity computation takes $O(k^3 \log k)$ time whereas the merge operation takes $O(k)$ time when distribution parameters of the meta-clusters are computed by maximum likelihood estimation. Hence, the time complexity of the algorithm is $O(N^2 k^3 \log k)$, which is $O(N^2)$ for bounded k. The complexity of the algorithm can be reduced to $O(N \log N)$ by avoiding the computation of all pairwise dissimilarities between the samples, for larger numbers of samples N, but we did not need to do this here.

2.5 Classification score of a sample in AML dataset

Consider a sample X consisting of k cell populations $S = \{c_1, c_2, \ldots, c_k\}$, with the i^{th} cluster c_i containing $|c_i|$ cells. Let T^+ and T^- be the templates created from AML-negative (healthy) and AML-positive training samples, respectively. We now describe how to compute a score $f(X)$ in order to classify the sample X to either the healthy class or the AML class.

The intuition behind the score is as follows. An AML sample contains two kinds of cell populations: (1) AML-specific myeloblasts and myeloid cells, and (2) AML-unrelated cell populations, such as lymphocytes. The former cell populations correspond to the immunophenotypes of AML-specific metaclusters in the AML template, and hence when we compute a mixed edge cover between the AML template and an AML sample, these
clusters get matched to each other. (Such clusters in the sample do not match to any metaclass in the healthy template.) Hence we assign a positive score to a cluster in sample when it satisfies this condition, signifying that it is indicative of AML. AML-unrelated cell populations in a sample could match to meta-clusters in the healthy template, and also to AML-unrelated meta-clusters in the AML template. When either of these conditions is satisfied, a cluster gets a negative score, signifying that it is not indicative of AML. Since AML affects only the myeloid cell line and its progenitors, it affects only a small number of AML-specific cell populations in an AML sample. Furthermore, different subtypes of AML affect different cell types in the myeloid cell line. Hence there are many more clusters common to healthy samples than there are AML-specific clusters common to AML samples. (This is illustrated later in Fig. 3 (c) and (d).) Thus we make the range of positive scores relatively higher than the range of negative scores. This scoring system is designed to reduce the possibility of a false negative (an undetected AML-positive patient), since this is more serious in the diagnosis of AML. Additional data such as chromosomal translocations and images of bone marrow from microscopy could confirm an initial diagnosis of AML from flow cytometry.

In the light of the discussion above, we need to identify AML-specific metaclass clusters initially. Given the templates T^+ and T^-, we create a complete bipartite graph with the meta-clusters in each template as vertices, and with each edge weighted by the Mahalanobis distance between its endpoints. When we compute a minimum cost mixed edge cover in this graph, we will match meta-clusters common to both templates, and such meta-clusters represent non-myeloid cell populations that are not AML-specific. On the other hand, meta-clusters in the AML template T^+ that are not matched to a meta-cluster in the healthy template T^- correspond to AML-specific metaclass clusters. We denote such meta-clusters in the AML template T^+ by the set M^+.

Now we can proceed to compare a sample against the template for healthy samples and the template for AML. We compute a minimum cost mixed edge cover between a sample X and the healthy template T^-, and let $\text{mecl}^-(c_i)$ denote the set of meta-clusters in T^- mapped to a cluster c_i in the sample X. Similarly, we compute a minimum cost mixed edge cover between X and the AML template T^+, and let $\text{mecl}^+(c_i)$ denote the set of meta-clusters in T^+ mapped to a cluster c_i. These sets could be empty if c_i is unmatched in the mixed edge cover. We compute the average Mahalanobis distance between c_i and the meta-clusters matched to it in the template T^-, and define this as the dissimilarity $d(c_i, \text{mecl}^-(c_i))$. From the formulation of the mixed edge cover in (Azad et al. 2010), we have $d(c_i, \text{mecl}^-(c_i)) \leq 2\lambda$. Hence we define the similarity between c_i and $\text{mecl}^+(c_i)$ as $s(c_i, \text{mecl}^+(c_i)) = 2\lambda - d(c_i, \text{mecl}^-(c_i))$. By analogous reasoning, the similarity between c_i and $\text{mecl}^+(c_i)$ is defined as $s(c_i, \text{mecl}^+(c_i)) = 2\lambda - d(c_i, \text{mecl}^+(c_i))$.

The score of a sample is the sum of the scores of its clusters. We define the score of a cluster c_i, $f(c_i)$, as the sum of two functions $f^+(c_i)$ and $f^-(c_i)$ multiplied with suitable weights. A positive score indicates that the sample belongs to AML, and a negative score indicates that it is healthy.

The function $f^+(c_i)$ contributes a positive score to the sum if c_i is matched to an AML-specific meta-cluster in the mixed edge cover between the sample X and the AML template T^+, and a non-positive score otherwise. For the latter case, there are two subcases: If c_i is unmatched in the mixed edge cover, it corresponds to none of the meta-clusters in the template T^+, and we assign it a zero score. If c_i is matched only to non-AML specific meta-clusters in the AML template T^+, then we assign it a small negative score to indicate that it likely belongs to the healthy class (recall that k is the number of clusters in sample X). Hence

$$f^+(c_i) = \begin{cases} \sum_{c_i \in X} \frac{|c_i|}{|X|} 2f^+(c_i) + f^-(c_i), & \text{if } \text{mecl}^+(c_i) \cap M^+ \neq \emptyset, \\ -\frac{1}{k} \sum_{c_i \in X} \frac{|c_i|}{|X|} 2f^+(c_i) + f^-(c_i), & \text{if } \text{mecl}^+(c_i) \cap M^+ = \emptyset, \\ 0, & \text{if } \text{mecl}^+(c_i) \cap M^+ = \emptyset, \end{cases}$$

The function $f^-(c_i)$ contributes a negative score to a cluster c_i in the sample X if it is matched with some meta-cluster in the healthy template T^-, indicating that it likely belongs to the healthy class. If it is not matched to any meta-cluster in T^-, then we assign it a positive score λ. This latter subcase accounts for AML-specific clusters in the sample, or a cluster that is in neither template. In this last case, we acknowledge the diversity of cell populations in AML samples. Hence we have

$$f^-(c_i) = \begin{cases} \lambda, & \text{if } \text{mecl}^-(c_i) \neq \emptyset, \\ 0, & \text{if } \text{mecl}^-(c_i) = \emptyset. \end{cases}$$

Finally, we define

$$f(X) = \sum_{c_i \in X} \frac{|c_i|}{|X|} 2f^+(c_i) + f^-(c_i).$$

Here $|X|$ is the number of cells in the sample X. The score of a cluster c_i is weighted by the fractional abundance of cells in it.

3 RESULTS

3.1 Cell populations in healthy and AML samples

In each tube, we identify cell populations in the samples using the clustering algorithm described in Section 2.2. Each sample contains five major cell types that can be seen when cell clusters are projected on the side scatter (SS) and CD45 channels, as depicted in Fig. 2 (Blast cells are immature progenitors of myeloid cells or lymphocytes.) The side scatter measures the granularity of cells, whereas CD45 is variably expressed by different white blood cells (leukocytes). AML is initially diagnosed by rapid growth of immature myeloid blast cells with medium SS and CD45 expressions (Lacombe et al. 1997) marked in red in Fig. 2. According to the WHO guidelines, AML is initially confirmed when the sample contains more than 20% blasts. This is the case for all, except one of the AML samples in the DREAM6/FlowCAP2 training set, and the latter will be discussed later.

3.2 Healthy and AML templates

From each tube of the AML dataset, using the training samples, we build two templates: one for healthy samples, and one for AML. As described in Section 2.2, the HM&M algorithm organizes samples of the same class into a binary template tree whose root represents the class template. The template trees created from the healthy and AML training samples in Tube 6 are shown in Subfigures a and b respectively. The height of an internal node in the template tree measures the dissimilarity between its left and right children,
Fig. 3. The healthy and AML templates created from Tube 6. (a) The template-tree created from 156 healthy samples in the training set. (b) The template-tree created from 23 AML samples in the training set. Samples in the red subtree exhibit the characteristics of Acute Promyelocytic Leukemia (APL) as shown in Subfigure (f). (c) Fraction of 156 healthy samples present in each of the 22 meta-clusters in the healthy template. Nine meta-clusters, each of them shared by at least 60% of the healthy samples, form the core of the healthy template. (d) Fraction of 23 AML samples present in each of the 40 meta-clusters in the AML template. The AML samples, unlike the healthy ones, are heterogeneously distributed over the meta-clusters. (e) The expression levels of markers in the meta-cluster shown with red bar in Subfigure (d). This meta-cluster denotes myeloblast cells as defined by the SS and CD45 levels. This meta-cluster expresses HLA-DR−CD117+CD34−CD38+, a characteristic immunophenotype of APL. Five AML samples sharing this meta-cluster are similar to each other as shown in the red subtree in Subfigure (b).
whereas the horizontal placement of a sample is arbitrary. In these trees, we observe twice as much heterogeneity in the AML samples than among the healthy samples (in the dissimilarity measure), despite the number of healthy samples being five times as numerous as the AML samples. The larger heterogeneity among AML samples is observed in other tubes as well. The template-tree for AML partitions these samples into different subtrees that possibly denote different subtypes of AML. For example, the subtree in Fig. 3(b) that is colored red includes samples (with subject ids 37, 58, 67, 89, and 117) with immunophenotypes of Acute Promyelocytic Leukemia (APL) (discussed later in this section).

Together, the meta-clusters in a healthy template represent a healthy immune profile in the feature space of a tube from which the template is created. We obtained 22 meta-clusters in the healthy template created from Tube 6. The percentage of samples from the training set participating in each of these meta-clusters is shown in Table 2. Observe that 60% or more of the healthy samples participate in the nine most common meta-clusters (these constitute the core of the healthy template). The remaining thirteen meta-clusters include populations from a small fraction of samples. These populations could correspond to biological variability in the healthy samples, variations in the FC experimental protocols, and possibly also from the splitting of populations that could be an artifact of the clustering algorithm.

The AML template created from Tube 6 consists of forty meta-clusters (almost twice the number in the more numerous healthy samples). Fig. 3(d) shows that, unlike the healthy samples, the AML samples are heterogeneous with respect to the meta-clusters they participate in: There are 21 meta-clusters that include cell populations from at least 20% of the AML samples. Some of the meta-clusters common to a large number of AML samples represent non-AML specific cell populations. For example, Fig. 3(e) shows the average marker expressions of the meta-cluster shown in the blue bar in Fig. 3(d). This meta-cluster has low to medium side scatter and high CD45 expression, and therefore represents lymphocytes (Fig. 2). Since lymphocytes are not affected by AML, this meta-cluster does not express any AML-related markers, and hence can be described as HLA-DR−CD117−CD34−CD38−, as expected. Fig. 3(f) shows the expression profile of another meta-cluster shown in the red bar in Fig. 3(d). This meta-cluster consists of five cell populations from five AML samples (with subject ids 37, 58, 67, 89, and 117) and exhibits medium side scatter and CD45 expression and therefore, represents myeloid blast cells. Furthermore, this meta-cluster is HLA-DR−CD117+CD34−CD38−, and represents a profile known to be that of Acute Promyelocytic Leukemia (APL) (Paclt et al., 2003). APL is subtype M3 in the FAB classification of AML (Bennett et al., 1985) and is characterized by chromosomal translocation of retinoic acid receptor-alpha (RARα) gene on chromosome 17 with the promyelocytic leukemia gene (PML) on chromosome 15, a translocation denoted as t(15;17). In the feature space of Tube 6, these APL samples are similar to each other while significantly different from the other AML samples. Our template-based classification algorithm groups these samples together in the subtree colored red in the AML template tree shown in Fig. 3(b).

3.3 Identifying meta-clusters symptomatic of AML

In each tube, we register meta-clusters across the AML and healthy templates using the mixed edge cover (MEC) algorithm. Meta-clusters in the AML template that are not matched to any meta-clusters in the healthy template represent the abnormal, AML-specific immunophenotypes while the matched meta-clusters represent healthy or non-AML-relevant cell populations. Table 3 lists several unmatched meta-clusters indicative of AML from different tubes. As expected, every unmatched meta-cluster displays medium side scatter and CD45 expression characteristic of myeloid blast cells, and therefore we omit FS, SS, and CD45 values in Table 3. We briefly discuss the immunophenotypes represented by each AML-specific meta-cluster in each tube, omitting the isotype control Tube 1 and unstained Tube 8.

Table 2. Some of the meta-clusters characteristic of AML for the 23 AML samples in the training set. In the second column, ‘−’, ‘low’, and ‘+’ denote very low, low and high, abundance of a marker, respectively, and ± denotes a marker that is positively expressed by some samples and negatively expressed by others. The number of samples participating in a meta-cluster is shown in the third column. The average fraction of cells in a sample participating in a meta-cluster, and the standard deviation, are shown in the fourth column.

Tube	Marker expression	#Samples	Fraction of cells ± standard deviation
2	Kappaα+Lambdaα+CD19+CD20−	5	6.3%±(6.8)
3	CD7+CD4−CD8−CD2−	4	18.0%±(4.8)
4	CD15−CD13+CD16−CD56−	17	16.6%±(6.9)
5	CD15−CD13+CD16−CD56+	8	11.1%±(5.7)
6	CD14−CD11c+CD64−CD33+	10	13.5%±(5.2)
7	CD14−CD11c+CD64−CD33+	18	10.8%±(3.8)
8	CD14+CD11c+CD64+CD33−	6	13.8%±(4.3)
9	HLA-DR+CD117+CD34+CD38+	11	13.3%±(2.6)
10	HLA-DR−CD117−CD34−CD38+	13	17.3%±(6.6)
11	HLA-DR−CD117−CD34−CD38−	5	12.9%±(4.7)
12	CD5−CD19+CD3−CD10−	3	12.3%±(2.4)
13	CD5+CD19−CD3−CD10+	3	10.0%±(8.5)
14	CD5−CD19−CD3−CD10+	1	9.9%±(3.4)

Tube 6 is the most important panel for diagnosing AML since it includes several markers expressed by AML blasts. HLA-DR is an MHC class II cell surface receptor complex that is expressed on antigen-presenting cells, e.g., B cells, dendritic cells, macrophages, and activated T cells. It is expressed by myeloblasts in most subtypes of AML except M3 and M7 (Campana and Behm, 2000). CD117 is a tyrosine kinase receptor (c-KIT) expressed in blasts of some cases (30–100%) of AML (Campana and Behm, 2000). CD34 is a cell adhesion molecule expressed on different stem cells and on the blast cells of many cases of AML (40%) (Mason et al., 2006). CD38 is a glycoprotein found on the surface of blasts of several subtypes of AML but usually not expressed in the M3 subtypes of AML (Keyhanian et al., 2000). In Tube 6, we have identified two meta-clusters with high expressions of HLA-DR and CD34. One of them also expresses CD117 and CD34, and Fig. 3(c) shows the bivariate contour plots of the cell populations contained in this meta-cluster. The second meta-cluster expresses positive but low levels of CD117 and CD34. These two HLA-DR+CD34+ meta-clusters together are present in 18 out of the 23 training AML samples. The remaining five samples (subject id: 5, 7, 103, 165, 174) express HLA-DR−CD117−CD34−CD38+ myeloblasts, which is an immunophenotype of APL (Paclt et al., 2003) as was discussed earlier. Fig. 3(d) shows the bivariate contour plots of this APL-specific meta-cluster.

Tube 5 contains several antigens typically expressed by AML blasts, of which CD33 is the most important. CD33 is a
transmembrane receptor protein usually expressed on immature myeloid cells of the majority of cases of AML (91% reported in [LeGrand et al. 2000]). The AML specific meta-clusters identified from markers in Tube 5 (see Table 2) include CD33+ myeloblasts from every sample in the training set. Several of the CD33+ populations also express CD11c, a type 1 transmembrane protein found on monocytes, macrophages and neutrophils. CD11c is usually expressed by blast cells in acute myelomonocytic leukemia (M4 subclass of AML), and acute monocytic leukemia (M5 subclass of AML) (Campana and Behn 2000). Therefore CD14+CD11c+CD64+CD33+ meta-cluster could represent patients with M4 and M5 subclasses of AML. We show the bivariate contour plots of this meta-cluster in Fig.4(b).

Tube 4 includes several markers usually expressed by AML blasts, of which CD13 is the most important. CD13 is a zinc-metalloproteinase enzyme that binds to the cell membrane and degrades regulatory peptides (Mason et al. 2006). CD13 is expressed on the blast cells of the majority of cases of AML (95% as reported in [LeGrand et al. 2000]). Table 2 shows two AML-specific meta-clusters detected from the blast cells in Tube 4. In addition to CD13, eight AML samples express CD56 glycoprotein that is naturally expressed on NK cells, a subset of CD4+ T cells and a subset of CD8+ T cells. Raspadori et al. (Raspadori et al. 2001) reported that CD56 was more often expressed by myeloblasts in FAB subclasses M2 and M5, which covers about 42% of AML cases in a study by LeGrand et al. (Legrand et al. 2000). In this dataset, we observe more AML samples expressing CD13+CD56+ blasts than expressing CD13+CD56− blasts, which conforms to the findings of Raspadori et al. (Raspadori et al. 2001). Fig. 4(a) shows the bivariate contour plots of the CD13+CD56+ meta-cluster.

Tube 2 is a B cell panel measuring B cell markers CD19 and CD20, and Kappa (κ) and Lambda (λ), immunoglobulin light chains present on the surface of antibodies produced by B lymphocytes. B-cell specific markers are occasionally co-expressed with myeloid antigens especially in FAB M2 subtype of AML (with chromosomal translocation t(8,21)) (Campana and Behn 2000). Walter et al. 2010. In Tube 2, we have identified a meta-cluster in the myeloblasts that expresses high levels of CD19 and low levels of Kappa and Lambda. The five samples with subject ids 5, 7, 103, 165, and 174 participating in this meta-cluster possibly belong to the FAB-M2 subtype of AML. Tube 3 is a T cell panel measuring T cell specific markers CD4, CD8, CD2, and CD7. Tube 7 is a lymphocyte panel with several markers expressed on T and B lymphocytes and is less important in detecting AML since they are infrequently expressed by AML blasts.

3.4 Impact of each tube in the classification

As discussed in the methods section, we build six independent classifiers based on the healthy and AML templates created from Tubes 2-7 of the AML dataset. A sample is classified as an AML sample if the classification score is positive, and as a healthy sample otherwise. Let true positives (TP) be the number of AML samples correctly classified, true negatives (TN) be the number of healthy samples correctly classified, false positives (FP) be the number of healthy samples incorrectly classified as AML, and false negatives (FN) be the number of AML samples incorrectly classified as healthy. Then, we evaluate the performance of each template-based classifier with the well-known four statistical measures: Precision, Recall(Sensitivity), Specificity, and F-value, defined as Precision = TP/(TP+FP), Recall(Sensitivity) = TP/(TP+FN), Specificity = TN/(TN+FP), and F-value = 2(Precision+Recall)/(Precision+Recall). These four measures take values in the interval [0,1], and the higher the values the better the classifier.

First, we evaluate the impact of each tube in the classification of the training samples. For a training sample X, the classification score is computed by comparing it with the healthy and AML templates created from the training set after removing X. The predicted status of X is then compared against true status to evaluate the classification accuracy. Table 3 (left panel) shows various statistical measures for the classifiers defined in Tubes 2-7 of the training set. The classifiers based on Tubes 4, 5, and 6 have the highest sensitivity because these tubes include several markers relevant to AML diagnosis (Campana and Behn 2000). Paetel (2003). The number of true negatives TN is high in every tube since the identification of healthy samples does not depend on the detection of AML-specific markers. Hence specificity is close to one for all tubes. Analogously, FP is low for most tubes, and we observe high precision for most tubes. The F-value is a harmonic mean of precision and recall, and denotes the superior classification ability of markers in Tubes 4-6. Averaging scores from all tubes does not improve the sensitivity and F-value dramatically. However, combining Tubes 4-6 gives almost perfect classification with one misclassification for the training set. We plot the average classification scores from Tubes 4-6 for the training samples in Fig. 5(a). The class labels of samples are also shown (blue circles for healthy and red triangles for AML samples).

In Fig. 5(a), we observe an AML sample (subject id 116) with score below the classification boundary. In this subject, the proportion of myeloid blasts is 4.4%, which is lower than the minimum 20% AML blasts necessary to recognize a patient to be AML-positive according to the WHO guidelines (Estey and Döhner 2006) (the FAB threshold is even higher, at 30%). Hence this is either a rare case of AML, or one with minimal residual disease after therapy, or perhaps it was incorrectly labeled as AML in the training set. Subject 116 was classified with the healthy samples by methods in other published work (Biehl et al. 2013).

3.5 Classifying test samples

Now we turn to the test samples. For each tube, we compute the classification score for each sample in the test set using templates created from the training set and applying Eq. 3. Since the average classification score from Tubes 4-6 performs best for the training set, we use it as a classifier for the test set as well. Since the status of test samples was released after the DREAM6/FlowCAP2 challenge, we can determine the classification accuracy of the test samples. Fig. 5(b) shows the classification scores of the test samples, where samples are placed in ascending order of classification scores. In Fig. 5(b), we observe perfect classification in the test set. Similar to the training set, we tabulate statistical measures for the classifiers in Table 3.

When classifying a sample X, we assume the null hypothesis: X is healthy (non-leukemic). The sample X receives a positive score if it contains AML-specific immunophenotypes, and the higher the score, the stronger the evidence against the null hypothesis. Since Tube 1 (isotype control) does not include any AML-specific markers, it can provide a background distribution for the classification scores. In Tube 1, 174 out of 179 training samples
Table 3. Four statistical measures evaluating the performance of the template-based classification in the training set and test set of the AML data. The statistical measures are computed for each tube separately and two combinations of tubes.

Tubes	Training set	Test set						
	Precision	Recall	Specificity	F-value	Precision	Recall	Specificity	F-value
4	0.94	0.74	0.99	0.83	1.00	0.75	1.00	0.86
5	0.75	0.91	0.96	0.82	0.65	0.85	0.94	0.74
6	1.00	0.70	1.00	0.82	1.00	0.80	1.00	0.89
All (2-7)	1.00	0.74	1.00	0.85	1.00	0.85	1.00	0.92
4,5,6	1.00	0.96	1.00	0.98	1.00	1.00	1.00	1.00

Fig. 4. Bivariate contour plots (side scatter vs. individual marker) for two meta-clusters (one in each row) indicative of AML. The ellipses in a subplot denote the 95th quantile contour lines of cell populations included in the corresponding meta-cluster. Myeloblast cells have medium side scatter (SS) and CD45 expressions. The red lines indicate approximate myeloblast boundaries (located on the left-most subfigures in each row and extended horizontally to the subfigures on the right) and confirm that these meta-clusters represent immunophenotypes of myeloblast cells. Blue vertical lines denote the +/- boundaries of a marker. Gray subplots show contour plots of dominant markers defining the meta-cluster in the same row. (a) HLA-DR+CD117+CD34+CD38+ meta-cluster shared by 11 AML samples in Tube 6. (b) HLA-DR−CD117±CD34−CD38+ meta-cluster shared by 5 AML samples in Tube 6. This meta-cluster is indicative of acute promyelocytic leukemia (APL). These bivariate plots are shown for illustration only, since the populations of specific cell types are identified from seven-dimensional data.

Fig. 5. Average classification score from Tubes 4,5,6 for each sample in the (a) training set and (b) test set. Samples with scores above the horizontal line are classified as AML, and as healthy otherwise. The actual class of each sample is also shown. An AML sample (subject id 116) is always misclassified in the training set, and this is discussed in the text.

Table 3. Four statistical measures evaluating the performance of the template-based classification in the training set and test set of the AML data. The statistical measures are computed for each tube separately and two combinations of tubes.
trees for APL and the other AML samples in the training set (cf. Fig 3(b)).

Finally, we state the computational times required on an iMac with four 2.7 GHz cores and 8 GB memory. Our code is in R. Consider a single tube with 359 samples in it. The k-means clustering of all samples took one hour, primarily because we need to run the algorithm multiple times (about ten on the average) to find the optimal value of the number of clusters. Creating the healthy template from 156 samples in the training set required 10 seconds (s) on one core, and the AML template for 23 AML samples took 0.5s on one core. Cross validation (leave one out) of the training set took 30 minutes, and computing the classification score for the 180 test samples took 15s, both on four cores. We could have reduced the running time by executing the code in parallel on more cores. We have made the dominant step, the k-means clustering of all the samples with an optimal number of clusters, faster using a GPU, reducing the total time to a few minutes.

4 CONCLUSIONS
We have demonstrated that an algorithmic pipeline for template-based classification can successfully identify immunophenotypes of clinical interest in AML. These could be used to differentiate the subtypes of AML, which is advantageous since prognosis and treatment depends on the subtype. The templates enable us to classify AML samples in spite of their heterogeneity. This was accomplished by creating a scoring function that accounts for the subtleties in cell populations within AML samples. We are currently applying this approach to a larger AML data set, and intend to analyze other heterogeneous data sets.

ACKNOWLEDGMENTS
This research was supported by NIH grant IR21EB015707-01, NSF grant CCF-1218916, and DOE grant 13SC-003242.

REFERENCES
Aghaeepour, N., Finak, G., Hoos, H., Mosmann, T. R., Brinkman, R., Gottardo, R., Scheuermann, R. H., et al. (2013). Critical assessment of automated flow cytometry data analysis techniques. Nature Methods, 10(3), 228–238.
Azad, A., Langguth, J., Fang, Y., Qi, A., and Pothen, A. (2010). Identifying rare cell populations in comparative flow cytometry. Lecture Notes in Computer Science, 6293, 162–175.
Azad, A., Pyne, S., and Pothen, A. (2012). Matching phosphorylation response patterns of antigen-receptor-stimulated T cells via flow cytometry. BMC Bioinformatics, 13(Suppl 2), S10.
Azad, A., Khan, A., Rajwa, B., Pyne, S., and Pothen, A. (2013). Classifying immunophenotypes with templates from flow cytometry. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (ACM BCB), page 256. ACM.
Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., and Sultan, C. (1985). Proposed revised criteria for the classification of acute myeloid leukemia: A report of the French-American-British Cooperative Group. Annals of Internal Medicine, 103(4), 620–625.
Biehl, M., Bunte, K., and Schneider, P. (2013). Analysis of flow cytometry data by matrix relevance learning vector quantization. PLoS One, 8(3), e59401.
Campana, D. and Behm, F. G. (2000). Immunophenotyping of leukemia. Journal of Immunological Methods, 243(1), 59–75.
Estey, E. and Döhner, H. (2006). Acute myeloid leukaemia. The Lancet, 368(9550), 1894–1907.
Finak, G., Perez, J., Weng, A., and Gottardo, R. (2010). Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics, 11(1), 546.
Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2-3), 107–145.
Keyhani, A., Huh, Y. O., Jendrioba, D., Pagliaro, L., Cortez, J., Pierce, S., Pearlman, M., Estey, E., Kantarjian, H., and Freireich, E. J. (2000). Increased CD38 expression is associated with favorable prognosis in adult acute leukemia. Leukemia Research, 24(2), 153–159.
Lacombe, F., Durrieu, F., Briais, A., Dumain, P., Belloc, F., Bascans, E., Reiffers, J., Boisseau, M., and Bernard, P. (1997). Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia, 11(11), 1878–1886.
Legrand, O., Perrot, J.-Y., Baudard, M., Cordier, A., Lautier, R., Simonin, G., Zittoun, R., Casadevall, N., and Marie, J.-P. (2000). The immunophenotype of 177 adults with acute myeloid leukaemia: proposal of a prognostic score. Blood, 96(3), 870–877.
Manninen, T., Huttunen, H., Ruusuvuori, E., and Nykter, M. (2013). Leukemia prediction using sparse logistic regression. PLoS One, 8(8), e72932.
Mason, K. D., Juneja, S. K., and Szer, J. (2006). The immunophenotype of acute myeloid leukemia: is there a relationship with prognosis? Blood Reviews, 20(2), 71–82.
Paietta, E. (2003). Expression of cell-surface antigens in acute promyelocytic leukaemia. Best Practice & Research Clinical Haematology, 16(3), 369–385.
Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T., Maier, L., Baecher-Allan, C., McLachlan, G., Tamayo, P., Hafler, D., et al. (2009). Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences, 106(21), 8519–8524.
Qu, P. (2012). Inferring phenotypic properties from single-cell characteristics. PLoS One, 7(5), e37038.
Raspadori, D., Damiani, D., Lenoci, M., Rondelli, D., Testoni, N., Nardi, G., Sestigiani, C., Mariotti, C., Birtolo, S., Tozzi, M., et al. (2001). CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia, 15(8), 1161–1164.
Shapiro, H. M. (2005). Practical Flow Cytometry. Wiley-Liss.
Spidlen, J., Barsky, A., Breuer, K., Carr, P., Nazaire, M.-D., Hill, B. A., Qian, Y., Liefeld, T., Reich, M., Mesirov, J. P., et al. (2013). Genepattern flow cytometry suite. Source Code for Biology and Medicine, 8(1), 1–8.
Walter, K., Cockerill, P., Barlow, R., Clarke, D., Hoogenkamp, M., Follows, G., Richards, S., Cullen, M., Bonifer, C., and Tagoh, H. (2010). Aberrant expression of CD19 in AML with t (8; 21) involves a poised chromatin structure and pax5. Oncogene, 29(20), 2927–2937.