Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart Study)

Darae Ko
Boston University

Et al.

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Cardiology Commons, and the Cardiovascular Diseases Commons

Repository Citation
Ko D, McManus DD, Rienstra M. (2016). Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart Study). Open Access Publications by UMMS Authors. https://doi.org/10.1016/j.amjcard.2016.08.010. Retrieved from https://escholarship.umassmed.edu/oapubs/2990

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart Study)

Darae Ko, MDa,b,c, Eric M. Riles, MD, MPHd, Ernaldo G. Marcos, MDc, Jared W. Magnani, MD, MScd, Steven A. Lubitz, MD, MPHf,g, Honghuang Lin, PhDh, Michelle T. Long, MDi, Renate B. Schnabel, MD, MSCi, David D. McManus, MDi, Patrick T. Ellinor, MD, PhDj,g, Vasan S. Ramachandran, MDb,d,h,li,m, Thomas J. Wang, MDn, Robert E. Gerszten, MDf, Emelia J. Benjamin, MD, ScMc,di,j,l,m, Xiaoyan Yin, PhDc, and Michiel Rienstra, MD, PhDc,*

Previous studies have shown several metabolic biomarkers to be associated with prevalent and incident atrial fibrillation (AF), but the results have not been replicated. We investigated metabolite profiles of 2,458 European ancestry participants from the Framingham Heart Study without AF at the index examination and followed them for 10 years for new-onset AF. Amino acids, organic acids, lipids, and other plasma metabolites were profiled by liquid chromatography—tandem mass spectrometry using fasting plasma samples. We conducted Cox proportional hazard analyses for association between metabolites and new-onset AF. We performed hypothesis-generating analysis to identify novel metabolites and hypothesis-testing analysis to confirm the previously reported associations between metabolites and AF. Mean age was 55.1 ± 9.9 years, and 53% were women. Incident AF developed in 156 participants (6.3%) in 10 years of follow-up. A total of 217 metabolites were examined, consisting of 54 positively charged metabolites, 59 negatively charged metabolites, and 104 lipids. None of the 217 metabolites met our a priori specified Bonferroni corrected level of significance in the multivariate analyses. We were unable to replicate previous results demonstrating associations between metabolites that we had measured and AF. In conclusion, in our metabolomics approach, none of the metabolites we tested were significantly associated with the risk of future AF. © 2016 Elsevier Inc. All rights reserved. (Am J Cardiol 2016;118:1493–1496)

Funding: Dr. Ko is supported by 5T32HL007224-38 and UL1TR000157. Dr. Benjamin is supported in part through NIH/NHLBI HHSN268201500001H; N01-HC25195, 2R01HL092577, 1R01 HL102214, 1R01 HL128914, and 1R1HL101056. Dr. Ellinor is supported by grants from the National Institutes of Health (2R01HL092577, 1K24HL105780), an Established Investigator Award from the American Heart Association (13EIA14220013), and the Fondation Leducq (14CVD01). Dr. Lubitz is supported by an NIH Career Development Award (K23HL114724) and Doris Duke Charitable Foundation Clinical Scientist Development Award (2014105). Dr. Magnani is supported by a Doris Duke Charitable Foundation Clinical Scientist Development Award (2015084). Dr. R. Schnabel has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement No 648131), German Ministry of Research and Education (BMBF 01ZX1408A), German Research Foundation Emmy Noether Program SCHN 11493/1. Dr. Rienstra is supported by a grant from the Netherlands Organization for Scientific Research (Veni grant 016.136.055). The project was funded by NIH R01-DK-HL081572.

See page 1496 for disclosure information.

*Corresponding author: Tel: (+31) 50-3612355; fax: (+31) 50-3614391.
E-mail address: m.riestra@umcg.nl (M. Rienstra).
Methods

We studied participants from the Framingham Heart Study Offspring cohort, which was initiated in 1971. Participants (n = 5,124) underwent medical and laboratory evaluation every 4 to 8 years. Our study involved the fifth examination, consisting of 3,799 participants evaluated from 1991 to 1995. Metabolites were measured on 2,526 participants, in whom 49 were excluded because of prevalent AF and 19 because of missing covariates. Institutional Review Boards at Boston University Medical Center and Massachusetts General Hospital approved the study protocols. All participants provided written informed consent.

Fasting EDTA plasma metabolites were analyzed using targeted liquid chromatography–tandem mass spectrometry using 3 methods focusing on amino acids and amines,15,16 organic acids,17 and lipids.18 Data were acquired using either an AB SCIEX 4000 QTRAP triple quadrupole mass spectrometer (positively charged polar compounds and lipids) or an AB SCIEX 5500 QTRAP triple quadrupole mass spectrometer (negatively charged polar compounds). Briefly, polar, positively charged metabolites were separated using hydrophobic interaction liquid chromatography and analyzed using multiple reaction monitoring in the positive ion mode. Polar, negatively charged compounds, including central and polar phosphorylated metabolites, were separated using a Luna NH2 column (150 × 2 mm, Luna NH2; Phenomenex, Torrance, California) and analyzed using multiple reaction monitoring in the negative ion mode. Lipids were separated on a Prosphere C4 HPLC column and underwent full scan mass spectrometer analysis in the positive ion mode. MultiQuant software version 1.2 (AB SCIEX, Concord, Ontario, Canada) was used for automated peak integration and manual review of data quality before statistical analysis. For all 3 profiling platforms, a pooled plasma sample also was run after every 20 samples, and the peak areas in samples were normalized to metabolite peak areas in the nearest pooled plasma. We have previously published that coefficient of variabilities (CVs) for ∼80% of the analytes are <20%.15,17–19

Physicians measured systolic and diastolic blood pressures twice in seated participants. Medications and tobacco use were ascertained by self-report. Tobacco use was defined as routine smoking of ≥1 cigarettes/day within the year before the Framingham Heart Study clinic visit. Diabetes was defined by fasting serum glucose of ≥126 mg/dl or use of insulin or oral hypoglycemic agents. Serum lipid and glucose concentrations were collected after an overnight fast. Myocardial infarction and heart failure were determined by a panel of 3 physicians if either AF or atrial flutter was noted on electrocardiogram. Cardiologists at the Framingham Heart Study confirmed the incident AF electrocardiographic diagnoses.

We present baseline characteristics as mean ± standard deviation for continuous covariates and counts (%) for dichotomous covariates. Each metabolite was rank normalized before the analysis using Blom’s method.21 For the 209 metabolites, we used the corrected p values of ≤0.00024 (0.05/209) for hypothesis generating. For the 8 metabolites previously reported in the literature to be associated with AF (β hydroxybuterate, glycine, phosphocreatine, glucose, creatine, alanine, glutamine, betaine), we used the Bonferroni corrected significance level of p ≤0.00625 (0.05/8) for hypothesis testing. We conducted Cox proportional hazard analyses for association between baseline metabolite (rank normalized values) and incident AF, adjusting for age and gender. We additionally adjusted for height, weight, systolic and diastolic blood pressures, current tobacco use, antihypertensive medication use, diabetes, myocardial infarction, heart failure, and statin use.22 We analyzed 10-year risk of AF by censoring on death, last contact, or 10 years from examination last date, whichever came first. Hazard ratios (HR) are expressed per SD of the metabolites. Analyses were conducted with SAS version 9.4 software (SAS Institute, Cary, North Carolina).

Results

Baseline characteristics of the study sample are provided in Table 1. Of 2,458 participants, incident AF developed in 156 participants (6.3%) during 10 years of follow-up. A total of 217 metabolites were identified from the baseline

Table 1	Baseline characteristics of study sample
Variable	Total Population (n = 2,477)
Age (years)	55.1±9.9
Women	1296 (53%)
Height (cm)	168±9.3
Weight (kg)	78±16
Current smoker	459 (19%)
Systolic blood pressure (mmHg)	126±19
Diastolic blood pressure (mmHg)	75±10
Antihypertensive medication use	482 (20%)
Statin use	96 (4%)
Diabetes mellitus	169 (7%)
Prevalent heart failure	7 (0.3%)
Prevalent myocardial infarction	51 (2%)

Values are n (%), or mean ± SD.

Table 2	Age- and sex-adjusted associations of candidate metabolites with incident AF	
Metabolite	Hazard Ratio (95% confidence interval)	p Value
Beta hydroxybuterate	1.07 (0.88-1.29)	0.50
Glycine	1.05 (0.87-1.26)	0.63
Phosphocreatine	0.87 (0.72-1.05)	0.15
Creatine	0.91 (0.77-1.08)	0.28
Alanine	1.16 (0.98-1.36)	0.08
Glutamine	1.01 (0.87-1.18)	0.86
Betaine	1.03 (0.87-1.22)	0.03
Glucose/fructose/galactose	1.39 (1.17-1.65)	0.0002

* Hazard ratio expressed per standard deviation of the metabolite.
† Significance level of p ≤0.00625 (0.05/8) for hypothesis testing.
samples of the entire cohort, consisting of 54 positively charged metabolites, 59 negatively charged metabolites, and 104 lipids (Supplementary Table).

In our Cox proportional analysis for association between previously reported baseline metabolites and incident AF, only fructose, glucose, and/or galactose met our a priori specified Bonferroni corrected level of significance when adjusted for age and gender (Table 2). None of the metabolites met our corrected level of significance with additional adjustments.

None of the 217 metabolites met our a priori specified Bonferroni corrected level of significance with multivariate adjustments (Supplementary Table).

Given our sample size (n = 2,458) and number of participants with incident AF, there was 80% of power to replicate previously reported metabolites with HR ≥1.37 at α = 0.00625 level; there was 80% of power to discover metabolites with HR ≥1.49 at α = 0.00024 level.

Discussion

In our longitudinal analysis of participants of the Framingham Heart Study, we found no plasma metabolites to be associated with the risk of future AF at our a priori specified level of significance. Both metabolomics and nonmetabolomics studies have examined associations between biomarkers and the risk of AF (Table 3). Recently, the community-based Atherosclerotic Risk in Communities Study reported associations between serum metabolites identified through nontargeted metabolomics approach and the risk of new-onset AF.14 In their analysis, bile acids, glycolithocholate sulfate, and glycocholenate sulfate, were significantly associated with the risk of new-onset AF after multivariate adjustments.14 Our targeted liquid chromatography–tandem mass spectrometry platform did not detect either of the metabolites; it detected bile salts, glycocholate, and glycodeoxycholate, which were not significantly associated with the risk of new-onset AF. Before the Atherosclerotic Risk in Communities Study, Mayr et al.1 identified several metabolites using human atrial tissues as potential markers of increased risk of AF after cardiac surgery, and De Souza et al.2 found various metabolites using canine atrial tissues as markers of increased risk of heart failure–induced AF (Table 3). Our metabolomics profiling did not confirm the results of the 3 studies.

Additional nonmetabolomics studies have focused on specific metabolites and demonstrated significant variation by AF status in the circulating and tissue concentrations of several metabolites in both animals and humans (Table 3).3–5,8–10 The molecules studied include phosphocreatine, cyclic guanosine monophosphate, uric acid, 3-nitrotyrosine, myofibrillar creatine kinase, glutathione, and peroxide. Phosphocreatine was detected in our study but not conﬁrmed the results of the 3 studies.

ADP = adenosine diphosphate; AF = atrial fibrillation; ATP = adenosine triphosphate; cAMP = cyclic (c) adenosine monophosphate (AMP); cGMP = cyclic (c) guanosine monophosphate (GMP); GDP = guanosine diphosphate; GTP = guanosine triphosphate; MM-CK = myofibrillar creatine kinase; NAD = nicotinamide adenine dinucleotide (NAD) + hydrogen (H).
et al. were both cross-sectional in design. The Atherosclerotic Risk in Communities Study analyzed African-Americans free of AF at baseline. The study by Mayr et al. examined the risk of postoperative AF among the patients undergoing cardiac surgery. De Souza et al. used an animal model to investigate heart failure—induced AF.

There are several limitations to our study. First, metabolite profiles may be tissue specific; sampling from the plasma may have failed to detect metabolite associations in other samples such as serum or at the atrial tissue level. Second, we may have underestimated new-onset AF because AF is frequently clinically unrecognized. Third, the CVs of some of the metabolites may have led to a substantial misclassification which may have biased the results toward the null. Fourth, we may have had modest power to detect small effect sizes. Fifth, our study predominantly included middle-aged to older subjects of European ancestry, which may not generalize to other ethnicities or age groups. There is some evidence that metabolomics patterns differ by race. Finally, our AF population includes all types of AF, and we may have missed association between the metabolites with specific AF subtypes such as atrial flutter, paroxysmal, persistent, or permanent AF.

Disclosures
Dr. Ellinor is a principal investigator on a grant from Bayer HealthCare to the Broad Institute. All other authors have nothing to disclose.

Supplementary Data
Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.amjcard.2016.08.010.

1. Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, Ladroue C, Madhu B, Roberts N, De Souza A, Fredericks S, Stubbs M, Griffiths JR, Jahangiri M, Xu Q, Camm AJ. Combined metabolic and proteomic analysis of human atrial fibrillation. *J Am Coll Cardiol* 2008;51:585–594.
2. De Souza AJ, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, Camm AJ, Natei S. Proteomic and metabolic analysis of atrial profibrillatory remodelling in congestive heart failure. *J Mol Cell Cardiol* 2010;49:851–863.
3. Ausma J, Coumans WA, Duimel H, Van der Vusse GJ, Allessie MA, Borgers M. Atrial high energy phosphate content and mitochondrial enzyme activity during chronic atrial fibrillation. *Cardiovasc Res* 2000;47:788–796.
4. Uno T, Kanayama H, Miyazaki Y, Ogawa K, Satake T. Increased cyclic GMP in atrial fibrillation. *J Electrocardiol* 1986;19:51–57.
5. Tamariz L, Aggarwal S, Soliman EZ, Chamberlain AM, Prineas R, Folsom AR, Ambrose M, Alonso A. Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities (ARIC) study). *Am J Cardiol* 2011;108:1272–1276.
6. Suzuki S, Sagara Y, Otsuka T, Funada R, Uejima T, Borgers M. Atrial high energy phosphate content and mitochondrial energetics and oxidative stress expressed by urinary level of 8-hydroxy-2′-deoxyguanosine and biopirrinn in atrial fibrillation: effect of sinus rhythm restoration. *Int J Cardiol* 2013;168:80–85.
7. Wu JH, Marchioli R, Silletta MG, Masson S, Sellke FW, Libby P, Milne GL, Brown NJ, Lombardi F, Damiano RJ, Marsala J, Rinaldi M, Domenech A, Simon C, Tavazzi L, Mozaffarian D. Oxidative stress biomarkers and incidence of postoperative atrial fibrillation in the Omega-3 Fatty Acids for Prevention of Postoperative Atrial Fibrillation (OPERA) trial. *J Am Heart Assoc* 2015;4:e001886.
8. Alonso A, Yu B, Qureshi WT, Grams ME, Selvin E, Solomon EZ, Loehr LR, Chen LY, Aggarwal SK, Alexander D, Boerwinkle E. Metabolomics and incidence of atrial fibrillation in African Americans: the Atherosclerosis Risk in Communities (ARIC) Study. *PLoS One* 2016;11:e0142610.
9. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerstenrein G. Metabolite profiles and the risk of developing diabetes. *Nat Med* 2011;17:448–453.
10. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL, Deik AA, Magnusson M, Fox CS, O’Donnell CJ, Vasan RS, Melander O, Clish CB, Gerstenrein G, Wang TJ. Metabolite profiling identifies pathways associated with metabolic risk in humans. *Circulation* 2012;125:2222–2231.
11. Wang TJ, Ngo D, Psychogiios N, Dejam A, Larson MG, Ghorbani A, Sullivan J, Cheng S, Rhee EP, Sinha S, McCabe E, Fox CS, O’Donnell CJ, Ho JE, Florez JC, Magnusson M, Pierce KA, Souza AL, Yu Y, Cramer C, Light PE, Melander O, Clish CB, Gerstenrein G. 2-Aminooxidcideic acid is a biomarker for diabetes risk. *J Clin Invest* 2013;123:4309–4317.
12. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, Yang E, Farrell L, Fox CS, O’Donnell CJ, Carr SA, Vasan RS, Florez JC, Clish CB, Wang TJ, Gerstenrein G. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. *J Clin Invest* 2011;121:1402–1411.
13. Roberts LD, Souza AL, Gerstenrein G, Clish CB. Targeted metabolomics. *Curr Protoc Mol Biol* 2012; Chapter 30:Unit 30.2.1–24.
14. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. *N Engl J Med* 1971;285:1441–1446.
15. Bloom G. Statistical Estimates and Transformed Beta-variables. New York: Wiley, 1958:176.
16. Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Wilhelmsen L, De Souza AI, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, Camm AJ, Natei S. Proteomic and metabolic analysis of atrial profibrillatory remodelling in congestive heart failure. *J Mol Cell Cardiol* 2010;49:851–863.
17. Wang TJ, Ngo D, Psychogiios N, Dejam A, Larson MG, Vasan RS, Ghorbani A, Sullivan J, Cheng S, Rhee EP, Sinha S, McCabe E, Fox CS, O’Donnell CJ, Ho JE, Florez JC, Magnusson M, Pierce KA, Souza AL, Yu Y, Cramer C, Light PE, Melander O, Clish CB, Gerstenrein G. 2-Aminooxidic acid is a biomarker for diabetes risk. *J Clin Invest* 2013;123:4309–4317.
18. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, Yang E, Farrell L, Fox CS, O’Donnell CJ, Carr SA, Vasan RS, Florez JC, Clish CB, Wang TJ, Gerstenrein G. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. *J Clin Invest* 2011;121:1402–1411.
19. Roberts LD, Souza AL, Gerstenrein G, Clish CB. Targeted metabolomics. *Curr Protoc Mol Biol* 2012; Chapter 30:Unit 30.2.1–24.
20. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. *N Engl J Med* 1971;285:1441–1446.
21. Bloom G. Statistical Estimates and Transformed Beta-variables. New York: Wiley, 1958:176.
22. Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Wilhelmsen L, De Souza AI, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, Camm AJ, Natei S. Proteomic and metabolic analysis of atrial profibrillatory remodelling in congestive heart failure. *J Mol Cell Cardiol* 2010;49:851–863.
23. Ausma J, Coumans WA, Duimel H, Van der Vusse GJ, Allessie MA, Borgers M. Atrial high energy phosphate content and mitochondrial enzyme activity during chronic atrial fibrillation. *Cardiovasc Res* 2000;47:788–796.
24. Uno T, Kanayama H, Miyazaki Y, Ogawa K, Satake T. Increased cyclic GMP in atrial fibrillation. *J Electrocardiol* 1986;19:51–57.
25. Tamariz L, Aggarwal S, Soliman EZ, Chamberlain AM, Prineas R, Folsom AR, Ambrose M, Alonso A. Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities (ARIC) study). *Am J Cardiol* 2011;108:1272–1276.
26. Suzuki S, Sagara Y, Otsuka T, Matsuno S, Funada R, Uejima T, Oikawa Y, Koike A, Nasaghima K, Kirigaya H, Yajima A, Sawada H, Aizawa T, Yamashita T. Gender-specific relationship between serum uric acid level and atrial fibrillation prevalence. *Circ J* 2012;76:607–611.
27. Tekin G, Tekin YK, Erbay AR, Turhan H, Yetkin E. Serum uric acid levels are associated with atrial fibrillation in patients with ischemic heart failure. *Angiology* 2013;64:300–303.
28. Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. *Circulation* 2001;104:174–180.