Analysis of the state and prospects of application of the plasma sputtering method for obtaining wear-resistant coatings

G I Bondareva1,3, S K Toigambayev 2, N M Tambovsky 2

1All-Russia Research Institute of Hydraulic Engineering and Land Reclamation of A. N. Kostyakov, Moscow, 127434, Russia
2Russian State Agrarian University-Moscow Agricultural Academy named after K. A. Timiryazev, Moscow, 127550 Russia

3E-mail: boss2569@yandex.ru

Abstract. The analysis of the properties of structural materials according to the wear resistance criterion is carried out. The prospects for the application of the plasma spraying method for obtaining wear-resistant coatings are given. Practice shows that methods of increasing the wear resistance of parts by applying on them thin coatings of ceramic, cermet and other highly wear-resistant materials by surfacing, vapor deposition, detonation and plasma spraying are very effective.

1. Introduction

The most important performance indicator of the quality of a material is its wear resistance. If we analyze the properties of known structural materials, it turns out that the level of wear resistance of most of them is low. And as you know, the durability, reliability and efficiency of friction units are largely determined by their ability to resist wear. This explains the relevance of research in the direction of developing technologies that would improve the wear resistance of the working surfaces of parts that have small tolerances for final processing and are made of easily processed and cheap materials.

The literature gives many examples indicating the high-performance properties of coatings obtained by these methods. However, there is no information on a specific technology for obtaining such coatings either in the literature on this topic known to us, or in the practice of manufacturing friction units. If we consider wear resistance as the resistance of a material to separation under dry friction in a system of two solids, then the whole variety of friction patterns can ultimately be represented by five types of frictional interaction: elastic displacement, plastic deformation, cutting, adhesive interaction of the film surface, seizure accompanied by deep pulling out of the material. \cite{1,2}. Under certain conditions, these types of interaction can change the value of the contribution to the total friction force, passing from the predominant type to the accompanying one.

2. Research methods and results

Ordinary functioning of friction units is possible if the first, second and fourth types of interaction make a contribution to the magnitude of the frictional contact. The third and fifth types of interaction are
manifested as the main ones only in emergency situations and therefore, when designing a unit, friction should be minimized [3].

Table 1 shows the mechanical properties and wear resistance of some structural materials, as well as the properties of plasma-sprayed materials according to various literature sources. It is stimulating to note that despite the huge number of structural plasmatrons, feeders, power sources and types of powders, the properties of materials sprayed in the optimal mode are approximately at the same level, an order of magnitude or more inferior to the properties of compact materials, even substantiated the fundamental impossibility of obtaining other properties as an order of magnitude or more inferior to the properties of compact materials, even substantiated the fundamental impossibility of obtaining other properties associated with ultimately with a discrete nature of the solidification of particles during spraying, which is a distinctive feature of the method.

Structural materials	\(\rho \), kg/m\(^3\)	\(\sigma_s \), kg/mm\(^2\)	\(H_v \), kg/mm\(^2\)	E-10\(^6\), kg/mm\(^2\)	\(\alpha \cdot 10^{-6}, \) l/deg	Relative wear resistance	Conditions of receiving
Beryllium	1850	40	320	30	12	44	Sintering
Tungsten	19300	100	250-400	36	7	60	-
Molybdenum	10200	50	250	32	5,5	40	-
SNGN-60	7700-7900	40	860	13.5	5.5	40	Reflow at 1100 °C
Relit	16500	40	2500	72	4,5	330	Casting
NK-8	14600	150	1200	55	4,5	30	-
Microlite	3960	9	2100	37,6	8,5	55	-

Plasma-sprayed materials	Be	W	Mo	Relit	WC+Co	\(Al_2O_3 \)	Zr\(O_2 \)
Density, kg/m\(^3\)	1840	19250	10300	13000-15000	1400	2800-3200	5700
Porosity, P	90%	80-90%	87-90%	7-11%	1-4%	8-25%	16-28%
Hardness, kg/mm\(^2\)	330-390	320-370	100-250	700	1000	640-800	
Strength, kg/m\(^2\)	2	4.4	4.3	2-10	9	4-11	0.4-0.8
\(\alpha \cdot 10^{-6}, \) l/deg	-	2.7-3	3-3.5	-	-	8-8.5	-

Table 1. Properties of some structural and plasma-sprayed materials.

Within the framework of the accepted assumptions, this conclusion is correct, which is confirmed by the overwhelming majority of the results of determining the properties of sprayed materials, some of which are presented in table 1. Taking into account the established relationships between the strength characteristics of materials and their wear resistance, it can be argued that the possibilities for using sprayed coatings obtained within this method, as frictional or wear-resistant, are minimal, due to the low mechanical properties of the sprayed layers, and attempts to solve this problem by selecting any combination of initial powders and finding the traditional optimum in terms of current, distance, granulation, gas consumption, relative movement rates, etc. to fail.

This is the first important conclusion drawn from the analysis of the relationship between the strength characteristics of materials and their wear resistance. It is also confirmed by the fact that there is no information in the literature on the successful use of plasma-sprayed materials in friction units obtained by one-step spraying technology in air or in a controlled atmosphere; the field of application of sprayed materials having serious practical value, today, in essence, is limited only to heat-resistant, heat-protective and corrosion-resistant coatings based on \(W, Mo, Ni, Al_2O_3, ZrO_2 \), respectively; tests of molybdenum coatings sprayed by conventional technology as friction disc brakes and coatings based on \(Al_2O_3 \) as wear-resistant coatings did not give positive results.

Successful use of nickel-cobalt alloy steels as wear-resistant sprayed coatings is due solely to the operation of subsequent reflow. The properties of these coatings immediately after spraying do not
fundamentally differ from the properties of other sprayed materials and, therefore, this case goes beyond the scope of processes that limit the method of high-temperature spraying [4].

Consequently, without a qualitative improvement in the properties of plasma-sprayed coatings, their use to increase wear resistance in the overwhelming majority of practically important cases (under conditions of real specific loads and sliding velocities of a rubbing pair) is fundamentally impossible. What are the possible ways of such a qualitative improvement in the strength properties of coatings? In our opinion, today, there are 2 promising areas, effective to varying degrees:

1. Application of multi-operational technologies, including operations for the following high-temperature treatment: spraying and subsequent reflow; spraying and heat treatment.

2. More complete utilization of the heat contained in the applied material particles by increasing the compactness of the metallization jet, provided that inert atmospheres are used where necessary.

The prospects of the first of these directions are confirmed by the successes achieved in obtaining wear-resistant coatings by plasma spraying of alloys based on Ni-Cr-B-Si [5].

There are, however, significant difficulties that limit the possibilities of improving the quality of sprayed coatings by this group of techniques. These difficulties are as follows: the obligatory combination of a more refractory substrate with a less refractory coating; the need for uniformity of mechanophysical properties (thermal expansion coefficient, elastic modulus), which makes it possible to jointly heat up to temperatures close to the melting temperatures of the coating, the coated part, while not all materials allow prolonged heating to such high temperatures, due to irreversible changes in the chemical and phase composition, leading to a sharp deterioration in their properties.

In our opinion, the success in the creation of technologies for obtaining wear-resistant coatings by the plasma method will largely depend on the success in overcoming the listed difficulties.

The essence of the second direction of qualitative improvement of the properties of sprayed coatings is described in detail in [6]. Here we would like to dwell only briefly on some features of the method, the results obtained and the prospects for further research in this direction in relation to the problem of obtaining wear-resistant coatings.

The main difference of this method from the classical method of plasma spraying is that when spraying in a compact jet mode, it is possible to use the cumulative thermal effect of the deposited particles in order to create conditions for favorable thermodynamic and metallurgical reactions. Under certain conditions, the high-temperature region turns out to be localized in a thin surface layer of the coating, which makes it possible to almost completely eliminate the heating of the substrate and thereby make it possible to obtain high-strength coatings on materials with a significantly lower melting point and strongly differing in their physical and mechanical properties from similar properties of the applied cover. For example, it was possible to obtain Al oxide coatings containing from 80 to 90% of the α-phase on sintered aluminum alloy substrates. The coatings were tested for wear in a pair with sintered tungsten carbide and showed characteristics close to the wear resistance of a microlite.

Structures of coatings made of Al₂O₃ with additives of magnesium and chromium oxides, zirconium samples obtained in the mode of a non-compact and compact jet show that in the latter case, the structure of the material is characterized by the absence of layering, typical for plasma coatings, with a small number of dead-end pores. By comparing some of the obtained etched structures with the atlas of microlite microstructures, it was possible to establish their identity. Other properties of alumina coatings and wear test results when paired with other materials are shown in Table 2.

Table 2. Properties of plasma sputtered alumina coatings in compact jet mode.

Original structure	Microhardness coverings	Phase structure	Porosity, %	Diameter blocks, micron	Surface cleanliness class
Al₂C₂ 99.99%	2200	α - Al₃O₃ - 95	9.4	11.4	11-12
Al₂O₃ +1.5+2%	2400	α - Al₃O₃ - 96	7.65	14.8	11-12
Cr₂O₃					
Al₂O₃ +1%MgO 2100 a – Al₂O₃-93-96% 6.25 7.2 11-12 -
Al₂O₃ +1%MgO +3% ZrO₂ 2100 AlMgO₄-3-5% 4.4 5 10-12 -
CM -322 2182 x – Al₂O₃-98% 4.7 1-3 10-11 -

Sample	Counterbody	Friction coefficient	Pressure, kg/cm²	Speed, m/s	Phase composition	E=ΔH/T
Al₂O₃	Al₂O₃	0.127-0.133	2.7	0.5-0.8	γ – Al₂O₃	10⁻²
Al₂O₃	Steel 2X13	0.24-0.44	5-14	0.5-0.8	70-100%	10⁻³
Al₂O₃	Cast iron ZhCHKh	0.33-0.39	32	0.5-0.8	γ – Al₂O₃	10⁻⁷
	+ 0.5Cr₂O₃				90% α –	
	+ 0.7MgO				Al₂O₃	
	+ 0.5BeO					

Analysis of the results obtained allows a more optimistic assessment of the capabilities of the plasma spraying method in order to obtain wear-resistant coatings. The creation of the required temperature regime in the macro-volumes of the coating formation region (determined experimentally so far) allows bringing the mechanical characteristics of the sprayed layers to a level close to the corresponding characteristics of compact materials [7].

The data available on the structure, strength, and wear resistance of ceramics sprayed in a compact jet mode indicate the identity of the listed properties and properties of sintered ceramics. Thus, the possibility of obtaining plasma-sprayed materials with the properties of known structural materials, including the property of wear resistance, has been proved in principle. At the same time, all the advantages of the economic nature of the plasma method, considered at the beginning of the article, are preserved.

Further studies related to the second of the listed areas of qualitative improvement of the properties of sprayed coatings should be carried out in order to study the conditions for obtaining wear-resistant coatings on a Monolit-type installation from other materials, both homogeneous (metal, ceramic) and composite (cermet). The main task of these studies is to find a correct quantitative description of the relationship between the deposition conditions and the values of nonstationary temperature fields in the forming coating and substrate [8].

3. Conclusion

The possibilities of using plasma-sprayed coatings obtained within the framework of the traditional "classical" method of high-temperature spraying as wear-resistant are minimal, due to the low strength properties of these coatings.

Progress in this matter can be achieved in 2 ways: 1) through the use of multi-operational technologies for obtaining sprayed coatings, which necessarily include the operations of subsequent high-temperature processing; 2) by improving the existing plasma spraying process by making the most complete use of the heat contained in the deposited material particles during the formation of coatings on the substrate.

References
[1] Bondareva G I 2011 Redistribution of residual stress in plasma-sprayed coatings Russian Engineering Research 9 853-5
[2] Bondareva G I, Evgrafova A V and Ermolaeva A Yu 2020 Metrological support characteristics for life cycle of agricultural machines Journal of Physics Conference Series 1515 042087
[3] Karymsakova I B, Denissova N F and Krak I V 2017 Criteria for implants classification for coating implants using plasma spraying by robotic complex Eurasian Journal of Mathematical
and Computer Applications 3 44-52

[4] Kravchenko I N, Kuznetsov Yu A, Goncharenko V V and Kalashnikova L V 2020 Investigation of influence of plasma spraying process parameters on the level of residual stresses Key Engineering Materials 864 198-203

[5] Zhao X, Zhuo Y, Liu S, Zhou Y, Zhao C, Wang C and Yang Q 2016 Investigation on WC/TIC interface relationship in wear-resistant coating by first-principles Surface and Coatings Technology 305 200-7

[6] Karpuzov V, Golinitksiy P, Cherkasova E, Antonova U and Toygambaev S 2020 Development of knowledge management process at the enterprise of technical service of the agro-industrial complex Journal of Physics: Conference Series 1691 12031

[7] Sorokin G M and Malyshev V N 2013 Materials science and corrosion protection method for ranking steels based on wear resistance and strength characteristics Chemical and Petroleum Engineering 48 583-8

[8] Stukhlyak D P, Mytnyk M M, Holotenko S, Dobrotvor G, Skorokhod Z and Marukha V 2019 Modeling of the wear resistance of epoxy composites according to changes in their mechanical characteristics Materials Science 54 697-704