RINGS OVER WHICH EVERY MATRIX IS THE SUM OF TWO IDEMPOTENTS AND A NILPOTENT

HUANYIN CHEN AND MARJAN SHEIBANI

Abstract. A ring R is (strongly) 2-nil-clean if every element in R is the sum of two idempotents and a nilpotent (that commute). Fundamental properties of such rings are discussed. Let R be a 2-primal ring. If R is strongly 2-nil-clean, we show that $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$. We also prove that the matrix ring is 2-nil-clean for a strongly 2-nil-clean ring of bounded index. These provide many classes of rings over which every matrix is the sum of two idempotents and a nilpotent.

1. Introduction

Throughout, all rings are associative with an identity. A ring is called (strongly) nil-clean if every element can be written as the sum of an idempotent and a nilpotent (that commute). A ring R is weakly nil-clean provided that every element in R is the sum or difference of a nilpotent element and an idempotent. Such rings have been the object of much investigation over the last decade, as they are related to the well-studied clean rings of Nicholson. Though nil and weakly clean rings are popular, the conditions a bit restrictive (for example, there are even fields which are not weakly nil clean). The subjects of nil-clean and weakly nil-clean rings are interested for so many mathematicians, e.g., [1, 3, 4, 5, 9, 10, 12] and [13]. In the current paper, we seek to remedy this by looking at an interesting generalization of nil and weakly nil cleanness, which they call 2-nil-clean. That is, a ring R is (strongly) 2-nil-clean
provided that every element in \(R \) is the sum of two idempotents and a nilpotent (that commute). This new class enjoys many interesting properties and examples (for example, all tripotent rings are 2-nil-clean). We shall investigate when a matrix ring is 2-nil-clean, i.e., when every matrix over a ring can be written as the sum of two idempotents and a nilpotent. A ring \(R \) is 2-primal if its prime radical coincides with the set of nilpotent elements of the ring. Examples of 2-primal rings include commutative rings and reduced rings. Let \(R \) be a 2-primal ring. If \(R \) is strongly 2-nil-clean, we show that \(M_n(R) \) is 2-nil-clean for all \(n \in \mathbb{N} \). A ring \(R \) is of bounded index if there is a positive integer \(n \) such that \(a^n = 0 \) for each nilpotent element \(a \) of \(R \). We also prove that the matrix ring is 2-nil-clean for a strongly 2-nil-clean ring of bounded index. These provide many classes of rings over which every matrix is the sum of two idempotents and a nilpotent.

We use \(N(R) \) to denote the set of all nilpotent elements in \(R \) and \(J(R) \) the Jacobson radical of \(R \). \(\mathbb{N} \) stands for the set of all natural numbers.

2. Examples and Subclasses

The aim of this section is to construct examples of 2-nil-clean rings and investigate certain subclass of such rings. We begin with

Example 2.1. The class of 2-nil-clean rings contains many familiar examples.

(1) Every weakly nil-clean ring is 2-nil-clean, e.g., strongly nil-clean rings, nil-clean rings, Boolean rings, weakly Boolean rings.
(2) \(\mathbb{Z}_3 \times \mathbb{Z}_3 \) is 2-nil-clean, while it is not weakly nil-clean.
(3) A local ring \(R \) is 2-nil-clean if and only if \(R/J(R) \cong \mathbb{Z}_2 \) or \(\mathbb{Z}_3 \), and \(J(R) \) is nil.

We also provide some examples illustrating which ring-theoretic extensions of 2-nil-clean rings produce 2-nil-clean rings.

Example 2.2.

(1) Any quotient of a 2-nil-clean ring is 2-nil-clean.
(2) Any finite product of 2-nil-clean rings is 2-nil-clean. But
\(R = \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8 \times \) is an infinite product of 2-nil-clean rings, which is not 2-nil-clean. Here, the element \((0, 2, 2, 2, \cdots) \in R\) cannot be written as the sum of two idempotents and a nilpotent element.

(3) The triangular matrix ring \(T_n(R) \) over a 2-nil-clean ring \(R \) is 2-nil-clean.

(4) The quotient ring \(R[[x]]/(x^n)(n \geq 1) \) of a 2-nil-clean ring \(R \) is 2-nil-clean.

Theorem 2.3. Let \(I \) be a nil ideal of the ring \(R \). Then \(R \) is 2-nil-clean if and only if the quotient ring \(R/I \) is 2-nil-clean.

Proof. \(\Rightarrow \) It is obtained from Example 2.2 (1).

\(\Leftarrow \) Let \(a \in R \), there exist two idempotents \(\overline{e}, \overline{f} \in R/I \) and a nilpotent \(\overline{w} \in R/I \) such that \(\overline{a} = \overline{e} + \overline{f} + \overline{w} \). As idempotents and nilpotents lift modulo nil ideal, we can assume that \(e, f \) are idempotents in \(R \) and \(w \) is a nilpotent in \(R \). Then \(a = e + f + w + r \) for some \(r \in I \). Since \(w \in N(R) \), we may assume that \(w^k = 0 \) for some \(k \in \mathbb{N} \), this implies that \((w + r)^k \in I \) and so \(w + r \in N(R) \). This completes the proof. \(\square \)

We use \(P(R) \) to denote the prime radical of a ring \(R \). That is, \(P(R) = \bigcap\{P \mid P \text{ is a prime ideal of } R\} \). We have

Corollary 2.4. A ring \(R \) is 2-nil-clean if and only if the quotient ring \(R/P(R) \) is 2-nil-clean.

Proof. As \(P(R) \) is a nil ideal of \(R \), the result follows from Theorem 2.3. \(\square \)

Corollary 2.5. Let \(R \) be a ring. Then the following are equivalent:

1. \(R \) is 2-nil-clean.
2. \(T_n(R) \) is 2-nil-clean for all \(n \in \mathbb{N} \).
3. \(T_n(R) \) is 2-nil-clean for some \(n \in \mathbb{N} \).
Proof. (1) ⇒ (2) Let $I = \left\{ \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mid a_{ij} \in R \right\}$. Then I is an ideal of $T_n(R)$. Clearly, $T_n(R)/I \cong R \times R \times \cdots \times R$. In light of Example 2.2 and Theorem 2.3, we show that $T_n(R)$ is 2-nil-clean.

(2) ⇒ (3) is trivial.

(3) ⇒ (1) Straightforward. □

A ring R is tripotent if $a^3 = a$ for all $a \in R$. We have

Lemma 2.6. Let R be a ring. Then the following are equivalent:

1. R is tripotent.
2. R is a commutative ring in which every element is the sum of two idempotents.
3. R is the product of fields isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3.

Proof. (1) ⇔ (2) This is obvious, by [7, Theorem 1].

(1) ⇒ (3) Birkhoff’s Theorem, R is isomorphic to a subdirect product of subdirectly irreducible rings R_i. Thus, R_i satisfies the identity $x^3 = x$. In view of [7, Theorem 1], R_i is commutative. But R_i has no central idempotents except for 0 and 1. Thus, $x^2 = 0$ or $x^2 = 1$. Hence, $x = x^3 = 0$ or $x = 1$. If $x \neq 0, 1$, then $(x - 1)^2 = 1$, and $x(x - 2) = 0$. This implies that $x = 2$. Thus, $R_i \cong \mathbb{Z}_2$ or \mathbb{Z}_3, as desired.

(3) ⇒ (1) R is the product of fields isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3. As \mathbb{Z}_2 and \mathbb{Z}_3 satisfy the identity $x^3 = x$. This completes the proof. □

Clearly, strongly 2-nil-clean rings form a subclass of 2-nil-clean rings. For further use, we now consider strongly 2-nil-clean rings. We record the following.

Lemma 2.7. A ring R is strongly 2-nil-clean if and only if

1. $J(R)$ is nil;
2. $R/J(R)$ is tripotent.

Proof. \Rightarrow Let $a \in R$. Then we can find two idempotents $e, f \in R$ and a nilpotent $w \in R$ such that $a + 1 = e + f + w$ where e, f and w commute. Hence, $a = e - (1 - f) + w$. Clearly, $(e - (1 - f))^3 = $
e − (1 − f), we see that \(a^3 - a \in N(R)\). It follows by [8, Theorem A.1] that \(N(R)\) forms an ideal of \(R\). Hence, \(N(R) \subseteq J(R)\). This shows that every element in \(R/J(R)\) is the sum of two idempotents that commute. In view of Lemma 2.6, \(R/J(R)\) is tripotent. Let \(x \in J(R)\). Then \(x^3 - x \in N(R)\) by the preceding discussion. Hence, \(J(R)\) is nil, as desired.

\[\begin{align*}
\iff & \text{By hypothesis, } \overline{2} = \overline{2^3} \text{ in } R/J(R). \text{ Hence, } 6 \in J(R) \text{ is nil. Let } a \in R. \text{ Since } R/J(R) \text{ is tripotent, we see that } (a^2 - a) - (a^2 - a)^3, a^3 - a \in N(R), \text{ and so } 3a^2 - 3a \in N(R). \text{ This shows that } (-2a^2)^2 - (-2a^2) = 4a^4 + 2a^2 = (6a^4 - 4a^2) + 2a^2 = 6a^4 + 2a(a - a^3) \in N(R). \text{ Moreover, } (a + 2a^2)^2 - (a + 2a^2) = a^2 + 4a^3 + 4a^4 - a - 2a^2 = (3a^2 - 3a) + 4(a^3 - a) + 6a + 6a(a^3 - a) \in N(R). \text{ In light of [12, Lemma 3.5], there exist } f(t), g(t) \in \mathbb{Z}[t] \text{ such that } (-2a^2) - f(a), (a + 2a^2) - g(a) \in N(R), f(a) = f^2(a) \text{ and } g(a) = g^2(a). \text{ Therefore } a - (f(a) + g(a)) = ((a + 2a^2) - g(a)) + ((-2a^2) - f(a)) \in N(R). \text{ Hence, } a = f(a) + g(a) + w \text{ with } w \in N(R). \text{ One easily checks that } af(a) = f(a)a \text{ and } ag(a) = g(a)a, \text{ and then } f(a), g(a) \text{ and } w \text{ commute. Therefore } R \text{ is strongly } 2\text{-nil-clean, as asserted.}
\end{align*}\]

A ring \(R\) a right (left) quasi-duo ring if every maximal right (left) ideal of \(R\) is an ideal. For instance, local rings, duo rings and weakly right (left) duo rings are all right (left) quasi-duo rings. Every abelian exchange ring is a right (left) duo ring (cf. [16]).

Theorem 2.8. A ring \(R\) is strongly 2-nil-clean if and only if

1. \(R\) is 2-nil-clean;
2. \(R\) is right (left) quasi-duo;
3. \(J(R)\) is nil.

Proof. \(\implies (1)\) is obvious. By Lemma 2.7, \(R/J(R)\) is tripotent and then it is commutative. Let \(M\) be a right (left) maximal ideal of \(R\). Then \(M/J(R)\) is an ideal of \(R/J(R)\). Let \(x \in M, r \in R\). Then \(\overline{rx} \in M/J(R)\), and then \(rx \in M + J(R) \subseteq M\). This shows that \(M\) is an ideal of \(R\). Thus \(R\) is right (left) quasi-duo. \(\implies (3)\) is follows from Lemma 2.7.
As R is 2-nil-clean, $R/J(R)$ is 2-nil-clean. Since R right (left) is quasi-duo, then by [16, Lemma 2.3], every nilpotent in R contains in $J(R)$. Let $e \in R/J(R)$ be an idempotent. As $J(R)$ is nil, we can find an idempotent $f \in R$ such that $e = f + J(R)$. For any $r \in R$, $fr(1 - f) \in J(R)$, and then $efr = efre$. Likewise, $re = efr$. Thus, $efr = re$, i.e., $R/J(R)$ is abelian. Hence, $R/J(R)$ is tripotent, by Lemma 2.6. As $J(R)$ is nil, it follows by Lemma 2.7 that R is strongly 2-nil-clean. □

A natural problem is if the matrix ring over a strongly 2-nil-clean ring is strongly 2-nil-clean. The answer is negative as the following shows.

Example 2.9. Let $n \geq 2$. then matrix ring $M_n(R)$ is not strongly 2-nil-clean for any ring R.

Proof. Let R be a ring, and let $A = \begin{pmatrix} 1_R & 1_R \\ 1_R & 0 \end{pmatrix}$. Then $A^3 - A = \begin{pmatrix} 2 & 1_R \\ 1_R & 1_R \end{pmatrix}$. One checks that $\left(\begin{pmatrix} 2 & 1_R \\ 1_R & 1_R \end{pmatrix} \right)^{-1} = \begin{pmatrix} 1_R & -1_R \\ -1_R & 2 \end{pmatrix}$, and so $A^3 - A$ is not nilpotent. If $M_n(R)$ is strongly 2-nil-clean, as in the proof of Lemma 2.7, $A^3 - A$ is nilpotent, a contradiction, and we are done. □

3. 2-Nil-clean Matrix Rings

In [6, Corollary 1], Han and Nicholson proved that every matrix ring of a clean ring (i.e., every element is the sum of an idempotent and a unit) is clean. By using a similar route, we easily see that every matrix over a 2-nil-clean ring is the sum of two idempotent matrices and an invertible matrix. As seen in Example 2.9, there exist some matrices over an arbitrary strongly 2-nil-clean ring which is not strongly 2-nil-clean. The purpose of this section is to investigate certain strongly 2-nil-clean rings over which every matrix is 2-nil-clean. We have

Lemma 3.1. $M_n(\mathbb{Z}_3)$ is 2-nil-clean.

Proof. As every matrix over a field has a Frobenius normal form, and that 2-nil-clean matrix is invariant under the similarity, we may
assume that
\[A = \begin{pmatrix}
0 & c_0 \\
1 & c_1 \\
& \ddots & \ddots \\
& & 0 & c_{n-2} \\
& & & 1 & c_{n-1}
\end{pmatrix}. \]

Case I. \(c_{n-1} = 1 \). Choose
\[W = \begin{pmatrix}
0 & 0 \\
1 & 0 \\
& \ddots & \ddots \\
& & 0 & 0 \\
& & & 1 & 0
\end{pmatrix},
E = \begin{pmatrix}
0 & c_0 \\
0 & 0 \\
& \ddots & \ddots \\
& & 0 & c_{n-2} \\
& & & 0 & 1
\end{pmatrix}. \]
Then \(E^2 = E \), and so \(A = E + 0 + W \) is \(2 \)-nil-clean.

Case II. \(c_{n-1} = -1 \). Choose
\[W = \begin{pmatrix}
0 & 0 \\
1 & 0 \\
& \ddots & \ddots \\
& & 0 & 0 \\
& & & 1 & 0
\end{pmatrix},
E = \begin{pmatrix}
0 & c_0 \\
0 & 0 \\
& \ddots & \ddots \\
& & 0 & c_{n-2} \\
& & & 0 & -1
\end{pmatrix}. \]
Then \(E^2 = -E \), and so \(A = (I_2 - E) + I_2 + W \) is \(2 \)-nil-clean.

Case III. \(c_{n-1} = 0 \).
If \(n = 2 \), then
\[\begin{pmatrix}
0 & c_0 \\
1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} + \begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix} + \begin{pmatrix}
0 & c_0 - 1 \\
0 & 0
\end{pmatrix} \] is \(2 \)-nil-clean.

If \(n = 3 \), then
\[\begin{pmatrix}
0 & 0 & c_0 \\
1 & 0 & c_1 \\
0 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix} + \begin{pmatrix}
0 & 0 & 0 \\
1 & -1 & 1 \\
-1 & 1 & -1
\end{pmatrix} + \begin{pmatrix}
0 & 0 & c_0 \\
0 & 0 & c_1 - 1 \\
0 & 0 & 0
\end{pmatrix} \]
is 2-nil-clean. If $n \geq 4$, we have

$$A = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 \\
\end{pmatrix} + \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 \\
\end{pmatrix} + \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & 0 & c_0 \\
0 & 0 & \cdots & 0 & 0 & 0 & c_1 \\
0 & 0 & \cdots & 0 & 0 & 0 & c_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & c_{n-3} \\
0 & 0 & \cdots & 0 & 0 & 0 & c_{n-2} - 1 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\end{pmatrix}$$

is the sum of two idempotents and a nilpotent. This implies that $A \in M_n(\mathbb{Z}_3)$ is 2-nil-clean. Therefore $M_n(\mathbb{Z}_3)$ is 2-nil-clean. □

Lemma 3.2. Let R be tripotent. Then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. Let $A \in M_n(R)$, and let S be the subring of R generated by the entries of A. That is, S is formed by finite sums of monomials of the form: $a_1a_2\cdots a_m$, where a_1, \cdots, a_m are entries of A. Since R is a commutative ring in which $6 = 0$, S is a finite ring in which $x = x^3$ for all $x \in S$. By virtue of Lemma 2.6, S is isomorphic to finite direct product of \mathbb{Z}_2 and/or \mathbb{Z}_3. In terms of Lemma 3.1 and Example 2.2 (2), $M_n(S)$ is 2-nil-clean. As $A \in M_n(S)$, A is the sum of two idempotent matrices and a nilpotent matrix over S, as desired. □

Theorem 3.3. Let R be 2-primal. If R is strongly 2-nil-clean, then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. Since R is strongly 2-nil-clean, it follows by Lemma 2.7 that $J(R)$ is nil and $R/J(R)$ is tripotent. In virtue of Lemma 3.2,
THE SUM OF TWO IDEMPOTENTS AND A NILPOTENT

$M_n(R/J(R))$ is 2-nil-clean. Furthermore, $J(R) \subset N(R) = P(R) \subset J(R)$, we get $J(R) = P(R)$. Hence, $M_n(J(R)) = M_n(P(R)) = P(M_n(R))$ is nil. Since $M_n(R/J(R)) \cong M_n(R)/M_n(J(R))$, it follows by Theorem 2.3 that $M_n(R)$ is 2-nil-clean. This completes the proof.

Corollary 3.4. Let R be a commutative 2-nil-clean ring. Then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Corollary 3.5. Let R be a commutative weakly nil-clean ring. Then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. As every commutative weakly nil-clean ring is strongly 2-nil-clean 2-primal ring, we obtain the result, by Theorem 3.3. □

Example 3.6. Let $m = 2^k3^l (k, l \in \mathbb{N})$. Then $M_n(\mathbb{Z}_m)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. In light of [1, Example 9], \mathbb{Z}_m is a commutative weakly nil-clean ring, hence the result by Corollary 3.5. □

Lemma 3.7. ([10, Lemma 6.6]) Let R be of bounded index. If $J(R)$ is nil, then $M_n(R)$ is nil for all $n \in \mathbb{N}$.

Theorem 3.8. Let R be of bounded index. If R is strongly 2-nil-clean, then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. By virtue of Lemma 3.7, $M_n(J(R))$ is nil. In view of Lemma 2.7, $R/J(R)$ is tripotent. Thus, $M_n(R/J(R))$ is 2-nil-clean, in terms of Lemma 3.2. Since $M_n(R/J(R))/J(M_n(R)) \cong M_n(R/J(R))$, according to Theorem 2.3, $M_n(R)$ is 2-nil-clean. □

Corollary 3.9. Let R be a ring, and let $m \in \mathbb{N}$. If $(a - a^3)^m = 0$ for all $a \in R$, then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. Let $x \in J(R)$. Then $(x - x^3)^m = 0$, and so $x^m = 0$. This implies that $J(R)$ is nil. In light of [8, Theorem A.1], $N(R)$ forms an ideal of R, and so $N(R) \subset J(R)$. Hence, $J(R) = N(R)$ is nil. Further, $R/J(R)$ is tripotent. In light of Lemma 2.7, R is strongly 2-nil-clean. If $a^k = 0 (k \in \mathbb{N})$, then $1 - a, 1 + a \in U(R)$, and so $1 - a^2 = (1 - a)(1 + a) \in U(R)$. By hypothesis, $a^m(1 - a^2)^m = 0$. Hence, $a^m = 0$, and so R is of bounded index. This complete the proof, by Theorem 3.8. □
A ring R is a 2-Boolean ring provided that a^2 is an idempotent for all $a \in R$.

Corollary 3.10. Let R be a 2-Boolean ring. Then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. Let $a \in R$. Then $a^2 = a^4$. Hence, $a^2(1 - a^2) = 0$. This shows that $(1 - a^2)^2a^2(1 - a^2)a = 0$, i.e., $(a - a^3)^3 = 0$. In light of Corollary 3.9, the result follows. □

Let $n \geq 2$ be a fixed integer. Following Tominaga and Yaqub, a ring R is said to be generalized n-like provided that for any $a, b \in R$, $(ab)^n - ab^n - a^n b + ab = 0$ (\cite{14}).

Corollary 3.11. Let R be a generalized 3-like ring. Then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. Let $a \in R$. Then $(a - a^3)^2 = 0$, hence the result by Corollary 3.9. □

Recall that a ring R is strongly SIT-ring if every element in R is the sum of an idempotent and a tripotent that commute (cf. \cite{15}). We have

Corollary 3.12. Let R be a strongly SIT-ring. Then $M_n(R)$ is 2-nil-clean for all $n \in \mathbb{N}$.

Proof. Let R be a strongly SIT-ring, and let $a \in R$. In view of \cite[Theorem 3.10]{15}, we see that $a^6 = a^4$; hence, $a^4(1 - a^2) = 0$. This implies that $(a - a^3)^5 = 0$. In light of Corollary 3.9, we complete the proof. □

References

[1] S. Breaz; P. Danchev and Y. Zhou, Rings in which every element in either a sum or a difference of a nilpotent and an idempotent, *J. Algebra Appl.*, DOI: 10.1142/S0219498816501486.

[2] S. Breaz; G. Galugareanu; P. Danchev and T. Micu, Nil clean matrix rings, *Linear Algebra Appl.*, 439(2013), 3115–3119.

[3] H. Chen, *Rings Related Stable Range Conditions*, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
THE SUM OF TWO IDEMPOTENTS AND A NILPOTENT

[4] P.V. Danchev and W.W. McGovern, Commutative weakly nil clean unital rings, *J. Algebra*, 425(2015), 410–422.
[5] A.J. Diesl, Nil clean rings, *J. Algebra*, 383(2013), 197–211.
[6] J. Han and W.K. Nicholson, Extensions of clean rings, *Comm. Algebra*, 29(2001), 2589–2595.
[7] Y. Hirano and H. Tominaga, Rings in which every element is a sum of two idempotents, *Bull. Austral. Math. Soc.*, 37(1988), 161-C164.
[8] Y. Hirano; H. Tominaga and A. Yaqub, On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element, *Math. J. Okayama Univ.*, 30(1988), 33–40.
[9] M.T. Kosan; T.K. Lee and Y. Zhou, When is every matrix over a division ring a sum of an idempotent and a nilpotent? *Linear Algebra Appl.*, 4502014, 7–12.
[10] M.T. Kosan; Z. Wang and Y. Zhou, Nil-clean and strongly nil-clean rings, *J. Pure Appl. Algebra* (2015), http://dx.doi.org/10.1016/j.jpaa.2015.07.009.
[11] M.T. Kosan; Z. Ying and Y. Zhou, Rings in which every element is a sum of two tripotents *Bull. Can. Math.*, January 2016, DOI: 10.4153/CMB-2016-009-0.
[12] M.T. Kosan and Y. Zhou, On weakly nil-clean rings, *Front. Math. China*, June 2016, DOI: 10.1007/s11464-016-0555-6.
[13] A. Stancu, A note on commutative weakly nil clean rings, *J. Algebra Appl.*, 15(2016); DOI:10.1142/S021949881650012.
[14] H. Tominaga and A. Yaqub, On generated \(n \)-like rings and related rings, *Math. J. Okayama Univ.*, 23(1981), 199–202.
[15] Z.L. Ying; T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, *Canad. Math. Bull.*, http://dx.doi.org/10.4153/CMB-2016-009-0.
[16] H.P. Yu, On quasi-duo rings, *Glasg. Math. J.*, 37(1995), 21–31.

Department of Mathematics, Hangzhou Normal University, Hangzhou, China

E-mail address: <huanyinchen@aliyun.com>

Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran

E-mail address: <m.sheibani1@gmail.com>