The Colonoscopist’s Expertise Affects The Characteristics of Detected Polyps.

Da Kyoung Jung, MD, Tae Oh Kim, MD, Mi Seon Kang, MD, Mo Se Kim, MD, Min Sik Kim, MD, Young Soo Moon, MD
Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea

Corresponding author’s contact information
Dakyoung Jung, MD
Department of Internal Medicine, Good Moonhwa Hospital, 119 Beom-il, Dong-gu, Busan, 601-803, Republic of Korea.
E-mail: qufehdrhdwn@hanmail.net
Tel: +82.51-644-0730
Phone: +82.10-3594-5289

Running title: Coloscopist and Polyp detection rate

ABSTRACT
Objectives: The impact of the endoscopist on polyp detection is underappreciated in clinical practice. Moreover, flat lesions or lesions of the proximal colon are more difficult to detect. Here,
we evaluated the differences in the polyp detection rate (PDR) and the characteristics of detected polyps according to colonoscopic experience.

Method: We collected data on 2549 patients who underwent screening colonoscopy performed by three fellows. The PDR was calculated according to the percentage of patients who had at least one polyp (method A) and according to the percentage of detected lesions (method B). The primary outcome included the change in the PDR, and the secondary outcome included the change in the characteristics of the detected polyps with increasing experience in colonoscopy.

Result: There was no proportional correlation between the PDR and increasing experience in colonoscopy using method A; however, with method B, the PDR increased after 400 colonoscopies ($P = 0.0209$). Using method B, the detection rates of small polyps (<5 mm) ($P = 0.0015$) and polyps in proximal sites ($P = 0.0050$) increased after 300 colonoscopies.

Conclusion: Our study demonstrated that the quality of a colonoscopy, measured using the PDR, may increase when performed by experienced fellows.

Key word: Colon polyps, Colonoscopy, Experience

INTRODUCTION

Colon cancer is the third most common malignancy in Korea. Colonoscopy is regarded as the gold standard for detecting cancer and precancerous polyps in the colorectum, and it is the current standard procedure used to identify and remove adenomatous colon polyps $^{1-4}$. Although it was initially estimated that colonoscopy with polypectomy can decrease the incidence of colon cancer by as much as 76–90% 1,5, several studies reported that a significant number of polyps are missed during routine colonoscopy $^{1,5-6}$; furthermore, missed adenomas might reduce the preventive efficacy of colonoscopy against colon cancer $^{4,7-8}$. Certain risk factors associated with missed polyps have been reported. Missed polyps were mainly associated with several factors, such as patient-related factors, polyp location, and the adequacy of bowel preparation. A recent prospective multicenter study 9 reported miss rates of 28% for polyps and 20% for adenomas of
all sizes. The authors found that flat polyps and polyps in the right colon were associated with an increased polyp miss rate \(^4,9\). In addition, colonoscopy has inherent limitations, which may be both technical and operator-dependent \(^10\). The operator-dependent nature of this procedure was well noted in several clinical studies, which demonstrated different detection rates of colorectal cancers and adenomas between experienced colonoscopists \(^11-13\). Therefore, the polyp detection rate (PDR) will be affected by the level of expertise of the colonoscopist \(^14-15\), and flat lesions often remain undetected during regular standard white-light colonoscopy \(^16\). Previous studies that assessed whether the presence of an additional observer—more specifically, a gastrointestinal (GI) fellow—during colonoscopy can enhance the detection of all polyps and adenomas have yielded conflicting results, and factors such as polyp size, location, and shape have not been rigorously evaluated \(^14,16-18\). Hence, in the present study, we aimed to evaluate the changes in the PDR in relation to the size, location, and shape of polyps with increasing experience in colonoscopy. Three fellows who were trained in colonoscopy participated in this study, and outpatients who wanted to undergo colonoscopy for screening purposes were enrolled.

METHODS
Data collection

The computerized clinical and endoscopic chart database of Haeundae Paik Hospital in Busan, Korea, served as the data source for this retrospective study. The computerized charts of patients who underwent colonoscopy between March 2010 and February 2011 in the general outpatient practice setting were reviewed. Patient information regarding age, sex, race, and family history of colon cancer was collected. The colonoscopic information collected included the quality of bowel preparation, indications for colonoscopy (screening, surveillance, or diagnostic), endoscopist, and withdrawal time. The characteristics of the polyps detected during colonoscopy (size, location, and shape) were also recorded. This study was approved by the Institutional Review Board of our institution(2012-079).
Study Population

Subjects were scheduled to undergo a colonoscopy during a previous visit to the gastroenterology clinic from March 2010 to February 2011. The inclusion criteria were asymptomatic patients older than 50 years in whom screening colonoscopy was performed during the study period, with a withdrawal time of >6 min. The exclusion criteria were (1) emergency colonoscopy, (2) colon obstruction, (3) a history of colon operations, (4) a history of therapeutic procedures (including polypectomy), (5) surveillance of inflammatory bowel disease, and (6) a familial history of polyposis syndrome (familial adenomatous polyposis, hereditary nonpolyposis colorectal cancer, and juvenile polyposis). Three first-year GI fellows participated in this study. The starting level of training involved the observation of colonoscopies performed by seniors (at least 100 cases), and the training also included an understanding of the indications, performance of procedures, patient monitoring, use of sedatives and analgesics, interpretation of the findings, and avoidance of complications.

Colonoscopy information

All colonoscopies in our practice were performed in the white-light imaging mode as the primary method of detection. Endoscopists used adult variable-stiffness video colonoscopes (CF-H260AL colonoscope; Olympus, Tokyo, Japan). Bowel preparation was uniform and consisted of 4 L of polyethylene glycol; patients were instructed to ingest 2 L of PEG solution at 6 PM on the day before the procedure, to begin the ingestion of the remaining 2 L 5 h prior to the procedure, and to finish the ingestion of the dose 3 h prior to the colonoscopy on the day of the procedure. Subjects received conscious sedation with intravenous midazolam plus meperidine. At this level of sedation, the patient is able to make a purposeful response to verbal or tactile stimulation, and both ventilatory and cardiovascular function are maintained. The starting dose of midazolam is 3-4 mg given slowly intravenously and titrating to the desired effect by 1 mg every 2 to 3 minutes.
if needed. The usual total dose is 5 to 7 mg. Smaller doses (4 mg) may be used in the elderly. Larger doses (7 mg) may be necessary in some patients to achieve the desired effect. The usual dose of meperidine is 25 to 50 mg. Some patients may require larger doses (50 mg) to achieve the desired effect. The endoscopy nurse recorded times for the following procedural events: colonoscope insertion into the rectum, identification of the base of the cecum, and withdrawal of the colonoscope across the anus, with times rounded to the nearest minute. We defined the colonoscopic insertion time as the time from insertion into the rectum to identification of the base of the cecum and the withdrawal time as the time from cecal identification to withdrawal of the colonoscope across the anus. This withdrawal time excluded time taken for maneuvers such as polypectomy that were performed during the withdrawal phase of the examination. The number, size, locations, and method of polyp removal were recorded by the fellow who performed the procedure. Bowel preparation quality was calculated the score using the Ottawa bowel preparation scale 19, the scale assesses three components of the large intestine. The scale has a range from 0 (perfect) to 14 (a completely unprepared colon). Patients over 10 scores with inadequate bowel preparation were excluded from this study. We estimated the sizes of the lesions at the time of the colonoscopy through an in vivo comparison by using standard endoscopic instruments including open-biopsy forceps (7 mm) (FB 24-U-1, Olympus, Tokyo, Japan). Colonoscopists were instructed to remove all the detected polyps.

Assessment of outcome

The primary outcome of this study included the change in the PDR in proportion to the accumulation of experience in colonoscopy. The secondary outcome included the change in the PDR in relation to the features that make polyps difficult to detect (e.g., less than 5 mm in size, flat shape, and location in proximal sites), which was based on an increase in the number of colonoscopies. Flat polyps were defined according to the definition of The Japanese Research Society Classification, which defines flat polyps as those with a height of less than one-half the
measured diameter 20-21. Proximal sites were defined as the cecum, ascending colon, and transverse colon. In this study, the PDR was expressed in two ways. First, the percentage of people who had polyps (even if only one polyp was found, the polyp was included in the PDR) was used as method A, and this method is commonly used in several existing papers 13-14, 17. With this method, one cannot perform an analysis that distinguishes between patients according to the number of polyps detected. In other words, although there was a difference in the detection rate according to the number of polyps, it is impossible to distinguish between two subjects with different numbers of polyps using method A, thus representing a limitation of this method. Therefore, we attempted to compare the detection rates of polyps using method B, in which the PDR was calculated as a percentage of the total number of polyps detected 13.

Statistical analysis

Patient characteristics were summarized using descriptive statistical methods. Categorical characteristics were analyzed using the chi-square test for differences between groups, and continuous characteristics were analyzed using analysis of variance. The PDR was estimated and the exact 95% confidence interval was also reported using the Clopper-Pearson method. The numbers of polyps were summarized using the mean ± SD and PROC GLM, and a CONTRAST statement was employed for testing linear trends. P values lower than 0.05 were considered statistically significant. The study was explorative in nature, and therefore, no adjustment for multiple testing was made. All statistical analyses were conducted using SAS 9.2 statistical software.

RESULTS

In total, 2549 asymptomatic patients who underwent screening colonoscopy between March 2010 and February 2011 were enrolled in the study. The mean age of the patients was 54.9 ± 12.7 years. The patients included 1279 men (50.2%) and 1270 women (49.8%), and none had a history
of surgery. The endoscopist-assessed quality of the bowel preparation was comparatively acceptable, and the mean Ottawa scale score was 4.7 ± 2.3 points. Patient characteristics and the polyp detection data are summarized in Table 1. There were no significant differences in the number of cases and the age and gender of the patients treated by the three fellows. Total number of detected polyps were 889, the polyps less than 5mm were most common, 151 for A fellow, 136 for B fellow and 187 for C fellow (P = 0.0073). Type was subdivided into flat, pedunculated, semipedunculated, sessile, and lateral spreading tumor. Location was divided into proximal and distal, polyps in distal colon were noted 110 for A fellow, 142 for B fellow and 156 for C fellow (P = 0.0154). There were no serious complications among the three groups. Statistical differences in the PDR were not observed among the three fellows.

Primary outcome

The PDR and adenoma detection rate (ADR) were compared separately 100 times (to the accumulation of experience in colonoscopy) and were also assessed among the three fellows (Table 2). Adenoma included the presence of tubular adenoma with low-, moderate-, or high-grade dysplasia, tubulovillous adenoma, villous adenoma, serrated adenoma and adenocarcinoma in the histopathological examination. Table 2 presents a diagram obtained by using method A (the percentage of people who have polyps). A comparison of the PDRs and ADRs of the three fellows revealed no statistically significant differences. Thus, the overall PDR and ADR, which were obtained by summing the data for all patients who had polyps in three groups, are shown as a bar graph in Figure 1. The PDR tended to decrease with increasing experience up to 500 procedures, followed by an increase up to 700 procedures, and a subsequent decline with increasing experience thereafter. The ADR declined with increasing experience up to 400 procedures, followed by an increase up to 700 procedures, and a subsequent decline with increasing experience thereafter (Figure 1). Thus, when using method A to compare the PDR and ADR, no correlation between the detection rates and increasing experience in colonoscopy was
observed, probably because method A did not differentiate between the number of polyps detected in patients. Thus, method A has a limitation in comparing the PDRs because the number of polyps detected is not considered. Consequently, the PDR was calculated using method B, which accounts for the total number of polyps detected. Figure 2 presents a comparison of the PDRs using the two methods per 100 colonoscopies. Because the procedures were summed for the three fellows, each increment in the colonoscopies by 100 included a total of 300 procedures. As stated previously, the PDR did not display a proportional relationship to experience in colonoscopy using methods A (Figure 2-A). However, using method B, although the PDR was not uniformly increased with increasing experience with the procedure (Figure 2-B), a significant increase was observed with experience of more than 400 colonoscopies ($P = 0.029$).

Secondary outcome

To determine whether there was an association between the detection rate of polyps with characteristics that make them difficult to detect and experience with colonoscopy, the PDR was calculated by evaluating the detected polyps according to size (<5 mm or larger), shape (flat forms were more difficult to detect), and location (polyps in proximal sites were easier to miss). A correlation between the detection rate of polyps less than 5 mm and experience with colonoscopy was rarely observed using method A (Figures 3-A), using method B, as shown in Figure 3-B, the detection rate of polyps less than 5 mm increased slightly, but significantly, with an accumulation of experience in colonoscopy of more than 300 colonoscopies ($P = 0.0015$).

With increasing experience with colonoscopy, the detection rate of flat polyps did not increase using either method A or B (Figures 4-A [method A] and 4-B [method B]).

For the right colon, the rate of missed polyps is known to be high, we compared the PDRs for the proximal colon using the two methods. The PDR determined using method A, began to increase steadily after 200 procedures, although it declined slightly after 700 procedures (Figure 5-A), it is not possible to clarify the proportional relationship between the PDR and increased
experience in colonoscopy (P = 0.5347). On the other hand, using method B, the PDR for proximal sites was not constant over time, but increased steadily after 300 colonoscopies (Figure 5-B); moreover, the observed difference was statistically significant (P = 0.0050).

DISCUSSION

Colonoscopy is recognized as the most effective method of colon screening in patients at risk of certain conditions, considering the fact that colonoscopy and polypectomy have effectively reduced the incidence of colorectal cancer \(^1,^2\). There have been many studies on the learning curve of GI fellows, and they concluded that fellows should perform at least 100–200 procedures to be considered technically competent in diagnostic colonoscopy \(^22^-^24\). A fellow's colonoscopy success rate depends on the number of colonoscopies completed \(^25\). The success rate significantly improves and reaches the standard of competence (>90%) after 150 procedures \(^25\). In fact, the earliest level at which any of fellows reached the >90% colonoscopy independence rate was 330 colonoscopies, and all fellows achieved a 90% colonoscopy independence rate by 500 colonoscopies \(^26\). This finding suggests that 500 colonoscopies may be a more appropriate minimal threshold to ensure competence, if competence is solely defined as >90% colonoscopy independence \(^26\). However, considering these data, how does the PDR change after the threshold of the learning curve is reached? To our knowledge, a study on the correlation between the learning curve and PDR has not been performed. The PDR is the most widely used means of measuring the quality of colonoscopy, and in the present study, we aimed to establish the effect of a GI fellow's expertise in performing screening colonoscopies. We observed that the PDR increased with increasing experience of the fellow, and with the experience of more than 300 colonoscopies, small, clinically nonsignificant polyps and polyps deemed difficult to detect could be detected at higher rates. The fact that the PDR increased with higher levels of training suggests that the colonoscopist's expertise is an important factor in the quality of screening colonoscopy. Thus, colonoscopy can be considered as technically demanding procedure that
requires considerable training and experience for optimal performance. And caution must be exercised when assessing the data for fellows with an experience of more than 800 procedures, as there were only 149 cases available instead of 300.

This study has several strengths. The retrospective design eliminates the possibility of observer bias (gastroenterologists might be more aggressive than usual in polyp detection when they are aware that their detection rates are being recorded). Misclassification of polyps was unlikely because every screening colonoscopy report was reviewed. Colonoscopy withdrawal times have been demonstrated to strongly affect PDR \(12-13\), and the withdrawal phase for colonoscopy should average at least 6-10 min, according to an observational study \(27\). It is possible that slower withdrawal times could explain the observed differences in detection rates. Therefore, only colonoscopies for which the withdrawal time exceeded 6 min were assessed in this study \(13\).

This study has some limitations. First, this was a single-center study of procedures performed by three fellows. Therefore, these results are not adequate to permit generalization, and interobserver variation may exist. To minimize these limitations, we conducted frequent study meetings and provided standardized instructions for assessment. Moreover, three first-year GI fellows with less experience were included in this study, in order to achieve clinical significance, three groups of endoscopists who were classified on the basis of their year of training (first, second of third) should be compared. Second, the enrolled patients were outpatients without significant medical problems, and we excluded subjects who underwent colorectal surgery. Considering that colonoscopy is performed mostly in outpatients in our country, we conducted the study in an outpatient setting. The results of our study require further confirmation through multicenter randomized trials including an unselected group of patients. Third, multiple factors have been implicated in polyp detection, including colonoscopy imaging techniques; the participation of an experienced nurse; patient sex, age, and body mass index; the time at which the procedure is performed. As examination techniques improve, the PDR is likely to increase \(27-29\). Our study exclusively used wide-angle (170°), high-definition colonoscopes that may have contributed to our
average PDR, although evidence addressing the advantages of these technologies is limited. 30-34 A recent study by Dellon et al. 35 indicated that the experience of the endoscopy nurse influences PDRs, as the detection rate is lower for colonoscopies involving less experienced nurses. The incidence of polyps has been found to correlate with increased age and male gender 36-37, and patient body mass index has an association with preparation quality 38-39. A number of studies evaluated the influence of the time of day on colonoscopy performance, including polyp detection and cecal intubation rates, and most studies reported an inverse association between later time and the PDR 40-41. We could not control for various factors that affected the PDR in our analyses. Therefore, this study should not account for the observed differences in PDR without error.

CONCLUSION

In conclusion, this study illustrated that the expertise of GI fellows influences the PDR during screening colonoscopies. Furthermore, the level of fellow training clearly affects the detection rates for small (<5 mm) and proximal site polyps, with higher rates observed with experience of more than 300 colonoscopies. This study suggests that in addition to technological advances and improvements in the field of view and imaging, ensuring that the procedure is performed by a trained fellow might greatly improve PDRs. However, future prospective studies are needed to determine the factors that affect the PDR.

REFERENCES

1. Winawer SJ, Zauber AG, Ho MN et al. The National Polyp Study Workgroup, "Prevention of colorectal cancer by colonoscopic polypectomy," N Engl J Med 1993;329:1977–1781.
2. Citarda F, Tomaselli G, Capocaccia R, et al. Efficacy in standard clinical practice of colonoscopic polypectomy in reducing colorectal cancer incidence. Gut 2001;48:812–815.
3. Lieberman DA, Weiss DG, Bond JH, et al. Veterans Affairs Cooperative Study Group 380, "Use of
colonoscopy to screen asymptomatic adults for colorectal cancer. N Engl J Med 2000;343:162–168.

4. Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterol 1997;112:24–28.

5. Winawer SJ, Stewart ET, Zauber AG, et al. National Polyp Study Work Group, “A comparison of colonoscopy and double-contrast barium enema for surveillance after polypectomy,” N Engl J Med 2000;342:1766–1772.

6. Winawer SJ and Zauber AG. Colonoscopic polypectomy and the incidence of colorectal cancer. Gut 2001;48:753–754.

7. Pohl H and Robertson DJ. Colorectal cancers detected after colonoscopy frequently result from missed lesions. Clin Gastroenterol Hepatol 2010;8:858–864.

8. Hixson LJ, Fennerty MB, Sampliner RE, and Garewal HS. Prospective blinded trial of the colonoscopic miss-rate of large colorectal polyps. Gastrointest Endosc 1991;37:125–127.

9. Heresbach D, Barrioz T, Lapalus MG, et al. Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back videocolonoscopies. Endoscopy 2008;40:284–290.

10. Lieberman D. A call to action--measuring the quality of colonoscopy. N Engl J Med 2006;355:2588–2589.

11. Chen SC and Rex DK. Endoscopist can be more powerful than age and male gender in predicting adenoma detection at colonoscopy. Am J Gastroenterol 2007;102:856–861.

12. Rex DK. Colonoscopic withdrawal technique is associated with adenoma miss rates. Gastrointest Endosc 2000;51:33–36.

13. Barclay RL, Vicari JJ, Doughty AS, Johanson JF, and Greenlaw RL. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med 2006;355:2533–2541.

14. Peters SL, Hasan AG, Jacobson NB, et al. Level of fellowship training increases adenoma detection rates. Clin Gastroenterol Hepatol 2010;8:439–442.

15. Lee SH, Chung IK, Kim SJ, et al. An adequate level of training for technical competence in screening and diagnostic colonoscopy: a prospective multicenter evaluation of the learning curve.
16. Rex DK. Maximizing detection of adenomas and cancers during colonoscopy. Am J Gastroenterol 2006;101:2866–2877.

17. Rogart JN, Siddiqui UD, Jamidar PE, et al. Fellow involvement may increase adenoma detection rates during colonoscopy. Am J Gastroenterol 2008;103:2841–2846.

18. Eckardt AJ, Swales C, Bhattacharya K, et al. Does trainee participation affect adenoma detection rates? Dis Colon Rectum 2009;52:1337–1344.

19. Kudo S, Kashida H, and Tamura T. Early colorectal cancer: flat or depressed type. J Gastroenterol Hepatol 2000;15:D66–D70.

20. Kudo S, Lambert R, Allen JI, et al. Nonpolypoid neoplastic lesions of the colorectal mucosa. Gastrointest Endosc 2008;68:S3–S47.

21. Kudo S, Tamura S, Hirota S, et al. The problem of de novo colorectal carcinoma. Eur J Cancer 1995;31A:1118–1120.

22. American Society for Gastrointestinal Endoscopy. Guidelines for credentialing and granting privileges for gastrointestinal endoscopy. Gastrointest Endosc 1998;48: 679–682.

23. Cass OW, Freeman ML, Peine CJ, et al. Objective evaluation of endoscopy skills during training. Annals Int Med 1993;118:40–44.

24. Cass OW, Freeman ML, Cohen J, et al. Acquisition of competency in endoscopic skills (ACES) during training; a multicenter study [abstract]. Gastrointest Endosc 1996;43:308.

25. Lee SH, Chung IK, Kim SJ, et al. An adequate level of training for technical competence in screening and diagnostic colonoscopy: a prospective multicenter evaluation of the learning curve. Gastrointest Endosc 2008;67:683–689.

26. Spier BJ, Benson M, Pfau PR, et al. Colonoscopy training in gastroenterology fellowships: determining competence. Gastrointest Endosc 2010;71:319–324.

27. Rex DK, Bond JH, Winawer S, et al. Quality in the technical performance of colonoscopy and the continuous quality improvement process for colonoscopy: recommendations of the U.S. Multi-
Society Task Force on Colorectal Cancer. Am J Gastroenterol 2002;97:1296–1308.

28. Kiesslich R, M. von Bergh, Hahn M, et al. Chromoendoscopy with indigocarmine improves the detection of adenomatous and nonadenomatous lesions in the colon. Endoscopy 2001;33:1001–1006.

29. Brooker J, Saunders B, Shah S, et al. Total colonic dye-spray increases the detection of diminutive adenomas during routine colonoscopy: A randomized controlled trial. Gastrointestinal Endoscopy 2002;56:333–338.

30. Rex DK and Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow-band imaging. Gastroenterol 2007;133:42–47.

31. Rex D, Chadalawada V, and Helper DJ. Wide-angle colonoscopy with a prototype instrument: Impact on miss rates and efficiency determined by back-to-back colonoscopies. Am J Gastroenterol 2003;98:2000–2005.

32. Deenadayalu VP, Chadalawada V, and Rex DK. 170 degrees wide-angle colonoscope: Effect on efficiency and miss rates. Am J Gastroenterol 2004;99:2138–2142.

33. Fatima H, Rex D, Rahmani E, et al. Wide-angle (170 degree angle of view) versus standard (140 degree) colonoscopy. Am J Gastroenterol 2006;101:AB1382.

34. Shenoy K and Friedenberg FK. Performance of high-definition colonoscopy for the detection of colorectal neoplasia. Gastrointest Endosc 2007;65:AB347.

35. Dellon ES, Lippmann QK, Sandler RS, et al. Gastrointestinal endoscopy nurse experience and polyp detection during screening colonoscopy. Clin Gastroenterol Hepatol 2008;6:1342–1347.

36. Rex D, Sledge G, Harper P, et al. Colonic neoplasia in asymptomatic persons with negative fecal occult blood tests: Influence of age, gender, and family history. Am J Gastroenterol 1993;88:825–831.

37. Imperiale T, Wagner D, Lin C, et al. Risk of advanced proximal neoplasms in asymptomatic adults according to the distal colorectal findings. N Engl J Med 2000;343:169–174.

38. Harewood CG, Sharma VK, and P. de Garmo. Impact of colonoscopy preparation quality on
detection of suspected colonic neoplasia. Gastrointest Endosc 2003;58:76–79.

39. Froehlich F, Wietlisbach V, Gonvers JJ, et al. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: The European Panel of Appropriateness of Gastrointestinal Endoscopy European multicenter study. Gastrointest Endosc 2005;61:378–384.

40. Chiu HM, Lin JT, Wang HP, et al. The impact of colon preparation timing on colonoscopic detection of colorectal neoplasms—a prospective endoscopist-blinded randomized trial. Am J Gastroenterol 2006;101:2719–2725.

41. Sanchez W, Harewood GC, and Peterson BT. Evaluation of polyp detection in relation to procedure time of screening or surveillance colonoscopy. Am J Gastroenterol 2004;99:1941–1945.
Table 1. Patient characteristics and the detected polyp data

Variable	Overall	A	B	C	P value
All patients	2549 (100.0)	837	852	860	
Age					
mean±SD	54.9±12.7	55.3±12.8	54.7±12.4	54.6±12.7	0.4847
Sex					
male	1279 (50.2)	427 (51.0)	420 (49.3)	432 (50.2)	0.7784
female	1270 (49.8)	410 (49.0)	432 (50.7)	428 (49.8)	
Size (n = 889)					
<5mm	474 (53.3)	151 (56.7)	136 (44.7)	187 (58.6)	0.0073
5–10mm	281 (31.6)	83 (31.2)	120 (39.5)	78 (24.5)	0.0019
>10mm	134 (15.0)	32 (12.1)	48 (15.8)	54 (16.9)	0.0683
Type (n = 889)					
flat	207 (23.2)	66 (24.9)	60 (19.7)	81 (25.4)	0.0572
pedunculated	81 (9.2)	26 (9.8)	34 (11.2)	21 (6.6)	0.7556
semipedunculated	75 (8.5)	15 (5.7)	42 (13.8)	18 (5.6)	0.0001
sessile	504 (56.7)	154 (57.8)	161 (53.0)	189 (59.2)	0.0604
lateral spreading tumor	22 (2.4)	5 (1.8)	7 (2.3)	10 (3.2)	0.1028
Location (n = 889)					
proximal	481 (54.1)	152 (57.0)	164 (53.9)	165 (51.7)	0.5627
distal	408 (45.9)	114 (43.0)	140 (46.1)	154 (48.3)	0.0154
Table 2. The comparison of PDR and ADR to the accumulation of experience in colonoscopy, by dividing each of the three fellows’ patients groups

	Fellow				
	Overall	A	B	C	P value
PDR 1~100 (times)	86 (28.7)	25 (25.0)	29 (29.0)	32 (32.0)	0.5471
PDR 101~200	87 (29.0)	26 (26.0)	31 (31.0)	30 (30.0)	0.7118
PDR 201~300	80 (26.7)	25 (25.0)	30 (30.0)	25 (25.0)	0.6530
PDR 301~400	75 (25.0)	17 (17.0)	28 (28.0)	30 (30.0)	0.0733
PDR 401~500	73 (24.3)	22 (22.0)	24 (24.0)	27 (27.0)	0.7089
PDR 501~600	81 (27.0)	25 (25.0)	29 (29.0)	27 (27.0)	0.8163
PDR 601~700	89 (29.7)	31 (31.0)	25 (25.0)	33 (33.0)	0.4357
PDR 701~800	84 (28.0)	25 (25.0)	30 (30.0)	29 (29.0)	0.7066
PDR 801~ (149 cases)	35 (23.5)	11 (29.7)	7 (13.5)	17 (28.3)	0.1057
total	690 (27.1)	207 (24.7)	233 (33.8)	250 (36.2)	0.1291

	Fellow			
	A	B	C	
ADR 1~100 (times)	59 (19.7)	16 (16.0)	19 (19.0)	24 (24.0)
ADR 101~200	47 (15.7)	17 (17.0)	18 (18.0)	12 (12.0)
ADR 201~300	49 (16.3)	13 (13.0)	21 (21.0)	15 (15.0)
ADR 301~400	42 (14.0)	10 (10.0)	18 (18.0)	14 (14.0)
ADR 401~500	49 (16.3)	13 (13.0)	17 (17.0)	19 (19.0)
ADR 501~600	54 (18.0)	18 (18.0)	19 (19.0)	17 (17.0)
ADR 601~700	62 (20.7)	22 (22.0)	17 (17.0)	23 (23.0)
ADR 701~800	58 (19.4)	16 (16.0)	22 (22.0)	20 (20.0)
ADR 801~ (149 cases)	25 (16.8)	9 (24.3)	3 (5.8)	13 (21.7)
total	445 (17.5)	134 (16.0)	154 (18.1)	157 (18.3)

* PDR : polyp detection rate
* ADR : adenoma detection rate
* More than 800 procedures, there were only 149 cases available instead of 300.
Figure 1. The overall polyp detection rate and adenoma detection rate by summing all of the patients who had polyps in three fellows’ groups.
Figure 2-A The detection rate of polyps of methods A
Figure 2-B The detection rate of polyps of methods B
Figure 3-A The detection rate of polyps less than 5mm using method A
Figure 3-B The detection rate of polyps less than 5mm using method B
Figure 4-A The detection rate of flat polyps by method A
Figure 4-B The detection rate of flat polyps by method B
Figure 5-A The detection rate of polyps at proximal position by method A

Proximal polyp detection rate (%)
Figure 5-B The detection rate of polyps at proximal position by method B