Numerical tracking of impurities by dust ablation in HT-6M plasma

N Somboonkittichai, P Kijamnajsuk, A Fukuyama, M Coppins, M Nisoa and P Nipakul

1 Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 Thailand.
2 Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan.
3 Blackett Laboratory, Imperial College London, South Kensington, London SW7 2AZ, UK.
4 Department of Physics, Faculty of Science, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand.

E-mail: fscinrso@ku.ac.th

Abstract. HT-6M will be officially installed in Thailand in next few years. Some computational studies of possible experiments should be helpful in case of its experiment planning. The authors are interested on the scenario of macro-particle, i.e. dust and droplet, transporting in HT-6M. The study was carried out by the Dust and Droplet Tracking (DDT) code, consisting of basic equations and physical models involving with charging, heating, equation of motion and ablation on macro-particle in a tokamak plasma. DDT implemented a set of HT-6M core plasma profiles from the Transport Analyzing System for tokamak (TASK) code and a set of HT-6M edge plasma profiles approximated from simple SOL model. We observed that relatively small macro-particles, i.e. initial sizes are less than 10^{-6} m, significantly involve with impurity generation near plasma facing components (PFCs). In addition, the 10^{-5}-m macro-particles mostly ablate in SOL. The 10^{-3}-m and 10^{-4}-m macro-particles completely ablate if they transport towards core plasma, but some with the inclination with respect to the horizontal direction obtain longer lifetimes. Moreover, few of them can achieve abnormal high speed. The mechanism for this is the acceleration by rocket force due to partial ablation near core plasma.

1. Introduction

Recently, HT-6M, a tokamak owned by Institute of Plasma Physics, Chinese Academy of Science (ASIPP), China, has been officially donated to Thailand Institute of Nuclear Technology (TINT), Thailand. Currently, the tokamak is being refurbished and it will be transferred to and installed in TINT in next few years. However, it is expected that the refurbished HT-6M will not significantly differ from the original one [1]. In order to serve its preparation plan, the authors are believed that the computational simulations on scenarios in HT-6M are unavoidable. One of possible experiments which may be achieved by this kind of devices is macro-particle, i.e. dust, droplet, powder and granule, ablation and transport. For a background, such macro-particles are produced through heat deposition during plasma surface interactions (PSIs). Melting, cracking and flaking on plasma facing
components (PFCs) leads to production of macro-particles [2]. In HT-6M, it should mainly result from disjuction, arc and plasma dislocation. PSIs should be intense at PFCs of a poloidal limiter. After macro-particles are produced, they remain inside a tokamak, so it is possible for them to re-mobilize and continuously degrade a plasma. Macro-particles degrade performance of confinement via dilution of fuel and radiation cooling because macro-particles can penetrate into core plasma and its impurity inventory can be enhanced by ablation of macro-particles. However, it is found that macro-particles made of Li can suppress Type-I ELMs but trigger Type-III ELMs instead, and eventually eliminate ELMs [3-5]. This means that it is valuable to develop understanding of dust transport in aspects of advantages and disadvantages.

The aim of the work is to carry out basic computational study on iron (Fe) macro-particle transport and ablation under the HT-6M plasma profiles. Fe macro-particles should be produced a lot because Fe is a main composition in HT-6M PFCs. The study was conducted via the use of Dust and Droplet Tracking (DDT) code. Section 2 will outline the main HT-6M parameters, the physical models corresponding to charging, heating, equation of motion and ablation on a macro-particle included in DDT, the core HT-6M plasma profiles generated by Transport Analyzing System for tokamak (TASK) [6] and the edge HT-6M plasma profiles assumed by the use of simple SOL model [7]. The following sections will illustrate and summarize the ablation behaviors of Fe macro-particles and the trends of the macro-particle positions and velocities dependent of initial momentum of each of macro-particle.

2. Physical Models

In this section, we aim to outline the physical backgrounds under the Dust and Droplet Tracking (DDT) code. The physical models included in DDT are the theory for determining macro-particle floating potential, the equation of motion in a rotational frame of reference for determining position and velocity of macro-particle, the heating equation for evolving macro-particle temperature, the Modified Young-Laplace Equation (MYLE) for determining net pressure on macro-particle, the models for determining mass loss and size of macro-particle during its flight. DDT was used to perform Fe macro-particle transport in HT-6M under the steady state condition. Therefore, we needed the HT-6M plasma profiles in steady state. Such data for the core plasma profiles were output from the Transport Analyzing System for tokamak (TASK) code [6]. The data were numerically fitted and outlined in this section. The simple SOL model [7] with some assumptions explains the edge plasma profiles. It must be noted that table 1 and tables 2 and 3 show the definition of variables used in the following expressions and the values of parameters used in this study, respectively.

2.1. HT-6M

HT-6M [8-10] is a circular poloidal cross-section tokamak. This is not a divertor tokamak. It is installed by a poloidal limiter. Its PFCs of main vessel and limiter are made of stainless steel mostly consisting of Fe.

2.2. Dust and Droplet Tracking (DDT) code

A phenomenon related to a small object moving in a plasma are generally controlled by ion and electron depositions on its surfaces. This leads to rapid charging. In general, because the charging is very rapid, which is characterized by plasma frequency, we can assume that the charges on its surface are at equilibrium and then the object is occupied by floating potential. The equilibrium floating potential are a potential difference between the object surface and the bulk plasma in steady state. Because macro-particle is assumed to be a small sphere, so DDT includes the Orbital Motion Limited (OML) theory which is well-known as one of theories to determine macro-particle floating potential (Φ_d) [14-18],

$$\exp (-\Phi_d) = \sqrt{\frac{\beta_T m_e}{A m_p}} \left(1 + \frac{\Phi_d}{\beta_T} \right); \quad u = 0, \quad r_d \ll \lambda_D,$$

(1)
where $\Phi_{sd} = -\frac{1}{2} \ln \left(\frac{2 \pi m_s}{\lambda_{D}^2} \right)$, $\Phi_d = \frac{\phi_d r_d^3}{T_d}$, $u = \frac{v_d}{c_{is}}$, $c_{is} = \sqrt{\frac{\varepsilon T_d (1 + \frac{\rho T_d}{\lambda_{D}^2})}{\lambda_{D}^2}}$, and $\lambda_{D} = \sqrt{\frac{\varepsilon T_d}{n_e e^2}}$. Refs. [14-15] refer to eq. 1 and refs. [16-18] refer to eqs. 2-4. $r_d \ll \lambda_D$ and $r_d \gg \lambda_D$ represent small and large dust sizes. The linear interpolation explains the transition from eqs. 1 and 2 to eqs. 3 and 4, respectively [16-18].

DDT temporally evolves macro-particle temperature (T_d) through heat equation,

$$\Delta T_d = \frac{(Q_i + Q_s - Q_{rad}) \Delta t}{m_d c},$$

where $Q_i = 2eT_d \Gamma_i$, $Q_s = 2e \beta_T T_i \Gamma_i$, and $Q_{rad} = \sigma(\epsilon_s T_d^4 - \epsilon_u T_u^4)$. Due to the assumption that rapid charging leads to steady state very quickly, $\Gamma_i = \Gamma_s = n_s^i \sqrt{\frac{e T_u}{2 \pi m_s}} \exp(-\Phi_d)$. If $T_d \geq T_m$, we implement Hertz-Knudsen-Langmuir (HKL) equation and Kelvin term [19],

$$\left| (\Delta r_d)_{\text{vap}} \right| = \frac{(P_{sf} - P_{es})}{\sqrt{2 \pi m k_B T_d}} \exp \left(\frac{2 \gamma m}{\rho k_B T_d} \right) \frac{\Delta t}{\rho},$$

where $P_{sf} = \frac{2 \gamma}{r_d}$ and $P_{es} = \frac{\sqrt{2 \pi m k_B T_d}}{2 \pi r_d^2}$, to evaluate a change in droplet radius during normal vaporization in liquid phase. If $T_d > T_b$, strong and rapid vaporization on droplet by superheating occurs and explain by the following expression,

$$| (\Delta r_d)_{sb} | = \frac{r_d c(T_d - T_b)}{3 H_{\text{vap}}}. $$

By considering Modified Young-Laplace Equation (MYLE) [20-22] a droplet can undergo electrostatic breakups [23] when

$$P_{\text{ele}} = P_{sf} + P_i + P_e - P_{es} \rightarrow 0,$$

where $P_i = 0.5 n_i e \beta_T T_e \left(\frac{\phi_i}{\phi_d} \right) \sqrt{\frac{\Phi_d}{\pi r_d^2}} + \exp \left(\frac{\phi_d}{\beta_T} \right) \exp \left(\sqrt{\frac{\phi_d}{\beta_T}} \right)$ and $P_e = 0.5 n_e e T_e \exp(-\Phi_d)$ [23]. Electrostatic breakups trigger at which $P_{es} \geq P_{sf} + P_i + P_e$. In this case, the whole droplet mass is assumed to be completely vaporized, so $| (\Delta r_d)_{es} | = r_d$. We can find mass loss during the flight of macro-particle by

$$| \Delta m_d | = \frac{4 \pi \rho}{3} \left(3 r_d^2 | \Delta r_d | + 3 r_d | \Delta r_d |^2 + | \Delta r_d |^3 \right),$$

where $| \Delta r_d | = | (\Delta r_d)_{\text{vap}} | + | (\Delta r_d)_{sb} | + | (\Delta r_d)_{es} |$.

The code temporally solves the equation of a single macro-particle motion for updating v_d, i.e.

$$\Delta v_d = \frac{\Delta t}{m_d} \left(q_d (E + v_d \times B) + F_i + m_d g + f + v_d \frac{| \Delta m_d |}{\Delta t} \right),$$

where $q_d = C \phi_d$ and $C = \Delta \varepsilon_0 \varepsilon_0$. Currently, ion drag force (F_i) included in DDT is only due to physical momentum transfer between plasma charges and macro-particle [24] as follows.
\[F_i = \pi r_i^2 A n_i m_p (v_p - v_d) \left(1 - \frac{\pi \Phi_d}{4 \beta} \right) \sqrt{\frac{8e\beta T_e e V}{A \pi m_p}}. \] (11)

The fictitious force \(f \) is due to the rotational frame of reference. It consists of centrifugal force \(\left(\frac{v_d^2 R}{R^2} \right) \) and coriolis force \((2v_d \times \left(R \times v_d \right)) \). Rocket force \((v_d \frac{\Delta m_p}{\Delta t}) \) due to mass loss during its flight is also taken into account.

2.3. Plasma Profiles

TASK [6], solving 1-D diffusive transport equation, together with the main parameters of HT-6M shown in table 2 generated the raw data of core plasma parameters, i.e. \(n_e, n_i, T_e, T_i, E_{tor}, E_{pol}, B_{pol}, v_{p,tor}, \) and \(v_{p,pol} \). Subsequently, the raw data are numerically fitted by the series of the \(n \)th polynomials, \(f(x) = \sum_{n=1}^{N} A_n x^n \) where \(A_n \) is an \(n \)th order coefficient, summarized in tables 4 and 5, and \(x = r'/a \).

Figure 1 illustrates their details. The HT-6M plasma parameters in edge plasma are assumed by the use of simple SOL model [7], \(n_e = n_i = n_e(x = 1) \exp \left(\frac{1-x}{\lambda_n} \right), \) \(T_e = T_e(x = 1) \exp \left(\frac{1-x}{\lambda_T} \right), \) \(T_i = T_i(x = 1) \exp \left(\frac{1-x}{\lambda_T} \right), \) \(E_{tor} = -\frac{2T_e}{\pi R_n}, \) \(B_{pol} = \frac{B_{pol}(x=1)}{x} \), where \(\lambda_T = \lambda_n = 0.056 \) for decay length \(\approx 1.0 \) cm, \(E_{pol} = 0 \) and \(v_{p,pol} = 0 \). Only the function of toroidal magnetic field, \(B_{tor} = \frac{R'B_T}{R^2 + x \cos \theta} \), is applied to both core and edge plasmas, where \(R' = 3.6 \). We assume \(\nu_{p,tor} = 0 \) in core and \(\nu_{p,tor} = \nu_{s,tor} \) in edge.

![Figure 1. HT-6M plasma profiles.](image-url)
Table 1. Definitions of Variables.

Variables	Definition	Variables	Definition
v_d	macro-particle velocity	r_d	macro-particle radius
ϕ_d	macro-particle floating potential	Φ_d	normalized floating potential
Φ_d	normalized potential difference between macro-particle and sheath edge	T_d	macro-particle temperature
q_d	macro-particle charges	m_d	macro-particle mass
\mathbf{E}	electric field	B	magnetic field
\mathbf{F}_l	ion drag force	g	gravitational acceleration
f	fictitious force	ν_p	plasma or ion velocity
β_T	ion to electron temperatures	t	time
m_e	single electron mass	n_e	ion number density
ϵ	elementary charge	m_p	proton mass
T_e	electron temperature	T_i	ion temperature
n_e	electron number density	ϵ_0	vacuum permittivity
A	ion mass number	C	macro-particle capacitance
c_{se}	ion sound speed	u	normalized plasma or ion velocity
λ_D	Debye length	c	heat capacity of macro-particle material
Δr_d	change in r_d by normal vaporization	Δr_d	change in r_d by superheating
γ	surface tension	Q_s	heat by ion flux
Q_e	heat by electron flux	Q_{s+d}	heat by thermal radiation
Γ_e	electron flux	Γ_i	ion flux
ϵ_d	macro-particle emissivity	ϵ_w	wall material emissivity
σ	Stefan-Boltzmann constant	T_w	wall temperature
κ_m	molecular/atomic mass	k_B	Boltzmann constant
$P_{e,fs}$	pressure due to surface tension	$P_{e,s}$	electrostatic pressure
P_i	ion pressure	P_s	electron pressure
P_{net}	net pressure on macro-particle	H_{vap}	latent heat of vaporization
T_m	melting temperature	T_b	boiling temperature
E_{tori}	toroidal electric field	E_{poli}	poloidal electric field
B_{tori}	toroidal magnetic field	B_{poli}	poloidal magnetic field
r'	position in minor radius	x	normalized minor radius
R_T	aspect ratio ($=R_B/a$)	ϕ	poloidal angle
λ_T	normalized T_e and T_i decay length	λ_n	normalized η_e and η_i decay length

Table 2. Main parameters of HT-6M [8-10]

Parameters	Values	Parameters	Values
Major Radius, R_0 (m)	0.65	Minor Radius, r (m)	0.20
Center Toroidal Magnetic Field, B_{tori} (T)	1.0	Plasma Minor Radius (assumed), a (m)	0.18
Center Electron Density, $n_e,0$ (m$^{-3}$)	1.6×10^{19}	Electron Density at LCFS, $n_{e,\alpha}$ (m$^{-3}$)	1.0×10^{18}
Center Electron Temperature, $T_e,0$ (eV)	700	Electron Temperature at LCFS, $T_{e,\alpha}$ (eV)	10
Ratio Ion to Electron Density (assumed)	1.0	Plasma Current, I_p (A)	6.5×10^4
Table 3. Additional values of parameters used in this study.

A	c(J/kg · K) [11]	ε_d = ε_0 [12]	T_m(K) [11]	γ(N · m) [13]	m[kg] [11]
1	449	0.365	1810.9	1.547	9.288 × 10^{-26}

Table 4. A_n of each core HT-6M numerical fit plasma profiles.

9th	8th	7th	6th	5th	4th	3rd	2nd	1st	0th	
T_e (eV)	0	0	0	0	0.69	-2.32	3.28	-2.56	0.91	
T_i (eV)	0	0	0	0	0.048	-0.098	0.056	-0.091	0.089	
n_i = n_e (10^{20} m^{-3})	-38.94	160.88	-278.06	260.45	-143.26	-46.85	-8.81	0.79	-0.037	0.16
B_pol (T)	0	0	0	-1.33	5.00	-7.78	6.55	-3.27	0.88	0.012
E_{tor} (V/m)	0	0	0	0.017	-0.067	0.10	-0.075	0.023	0.00099	0.30
E_{pol} (10^6 V/m)	-1.294	5.17	-8.592	7.664	-3.97	1.205	-0.207	0.019	0.0016	54.96 × 10^{-6}

Table 5. A_n of each core HT-6M numerical fit plasma profiles (continued).

9th	8th	7th	6th	5th	4th	
v_{p,pol} (10^5 m/s); 0 ≤ x < 0.2	4932082	-5461607	2652578	-741258.7	131238.7	-15238.46
v_{p,pol} (10^7 m/s); 0 ≤ x < 0.2	1154.854	-54.28096	13.90819	-6.840530	1.351546	-5.504321 × 10^{-5}
v_{p,pol} (10^8 m/s); 0.2 ≤ x < 0.97	-6.840530	13.90819	-11.05964	4.837070		
v_{p,pol} (10^9 m/s); 0.97 ≤ x < 1.0	0	1.215742	-2.409025	1.192937		

Figure 2. show poloidal trajectories of the 10^{-4}-m and 10^{-3}-m solid macro-particles and their radii and velocities with respect to time of flights, where solid line represents $r_{d, init} = 10^{-4}$ m and dash line represents $r_{d, init} = 10^{-3}$ m.
3. Results and Discussions
In this study, we assume that He_2 is discharged in HT-6M. We focus on Fe macro-particles mostly accumulated at the bottom of HT-6M. Therefore, Fe macro-particles are assumed to initially move from the bottom that is far from the poloidal limiter. The magnitude of initial velocity is 10 m/s. The angles of the initial velocities with respect to the vertical direction are -60°, -30°, 0°, 30° and 60°. Initial macro-particle phases are solid and liquid. Initial macro-particle radii are 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6} and 10^{-7} m. In general, the macro-particle motion is not symmetric between inward and outward initial trajectories because of fictitious force in rotational frame of reference. The fictitious force tends to cause macro-particles going back to outer SOL. In addition, initial momentum of macro-particle also indicates how difficult a net force in a tokamak affects its trajectory. Furthermore, initial trajectory of macro-particle which is adjacent to the horizontal direction may lead to longer lifetime in tokamaks.

Overall, the macro-particles with the initial radii of an order of 10^{-6} m or less, we found that they completely ablate near PFCs. This leads to the source of impurities accumulated near the surfaces. Their final velocities and positions do not significantly differ from the initial ones. Their temperatures are not remarkably evolved, i.e. near initial temperature (323 K) for dust and melting temperature (1810 K) for droplet. The macro-particles, the initial radius of which is an order of 10^{-5} m, can survive longer and then completely ablate in SOL. The final velocities are approximately less than 100 m/s for dust and 40 m/s for droplet, and the final temperatures are approximately less than 1000 K for dust and 2100 K for droplet. From this observation, we anticipate that these relatively small macro-particles contribute to impurity accumulation in edge plasma of HT-6M.

We observed behaviors of relatively large macro-particles, the initial radii of which are in an order of 10^{-4} m or more, during their flight in HT-6M plasma. As can be seen in figure 2, the macro-particles with the initial radii of 10^{-3} and 10^{-4} m and the initial angle of 0° completely ablate in core plasma. With the initial angles of 30° (and -30°), the 10^{-3}-m macro-particles ablate completely in core plasma but the 10^{-4}-m macro-particles partially ablate. The trend exhibits for both dust and droplet. With the initial angles of 60° (and -60°), mostly macro-particles have longer lifetimes in SOL because they avoid intensive vaporization by hot core plasma. They contribute to impurities in SOL plasma. This suggests that the complete ablation of macro-particles in core plasma should be lessen by reductions in their sizes because the net force can efficiently accelerate smaller macro-particles towards outer SOL. In addition, inclination near horizontal direction also contributes to how many macro-particles survive and stay in SOL.

In figure 2, we observed notable transport of macro-particles with the initial radius of 10^{-3}, and 10^{-4} m and the initial angles of 60°. We found that both dust and droplet drift towards the HT-6M outer wall. During their flights, they partially ablate by core plasma and move back to SOL plasma. Mass loss by partial ablation provides extra momentum through rocket force to the macro-particles, the size of which are in an order of 10^{-6} m when they come back to outer SOL. Their velocities abruptly increase and exceed a few km/s with longer lifetimes. This can be achieved only by partial ablation and parallel flow towards poloidal limiter. The trend corresponds to the report of high speed dust observed at mid-plane in FTU [25-26], which is also a circular limiter tokamak.

4. Conclusions
By using DDT and HT-6M plasma profiles, we can learn the dynamics of Fe macro-particles inside HT-6M. We found that macro-particles tend to completely ablate if they cannot avoid core plasma. This causes by initial inclination, which is direct towards core plasma, and large initial momentum. Therefore, suitable initial inclination and momentum increase macro-particle lifetime. In addition, it is possible for survived macro-particle to achieve abnormal high speed by rocket force due to partial ablation done by core plasma.
Acknowledgement
This work is funded by Kasetsart University Research Development Institute (KURDI), Kasetsart University, Thailand. We appreciate the past and present developers of TASK. We also appreciate T. Onjun (Deputy Executive Director, Thailand Institute of Nuclear Technology, Thailand), M. K. Kim (National Fusion Research Institute, Korea), A. Tamman (Thailand Institute of Nuclear Technology, Thailand) and N. Jinuntuya (Kasetsart University, Thailand) for good discussions and supports.

References
[1] Onjun T and Tamman A 2019 private communication
[2] Winter J 1998 Plasma Phys. Control. Fusion 40(6) 1201
[3] Mansfield D K et al 2013 Nucl. Fusion 53 113023
[4] Lunsford R et al 2018 Nucl. Fusion 58 036007
[5] Maingi R et al 2018 Nucl. Fusion 58 024003
[6] Honda M and Fukuyama A 2006 Nucl. Fusion 46(5) 580
[7] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (CRC Press)
[8] Gao X et al 1994 Chin. Phys. Lett. 11(3) 161
[9] Li J et al 1997 J. Nucl. Mater. 241-243 878-882
[10] Wan B et al 1999 Nucl. Fusion 39 1865
[11] Haynes W M 2014 CRC Handbook of Chemistry and Physics (CRC Press)
[12] Burgess G K and Waltenberg R G 1915 The Emissivity of Metals and Oxides (US Government Printing Office)
[13] Keene B J 1993 Int. Mater. Rev. 38(4) 157
[14] Allen J E 1992 Phys. Scr. 45 497
[15] Kennedy R V and Allen J E 2003 J. Plasma Phys. 69 485
[16] Willis C T N et al 2010 Plasma Sources Sci. Technol. 19 065022
[17] Willis C T N et al 2010 37th EPS Conference on Plasma Physics P2.325
[18] Willis C T N et al 2012 Phys. Rev. E 85 036403
[19] Frohn A and Roth N 2013 Dynamics of Droplets (Springer Science and Business Media)
[20] Somboonkittichai N 2015 Computational and Theoretical Studies of Metallic Dust Transport in Tokamaks (Imperial College London)
[21] Somboonkittichai N and Coppins M 2017 J. Phys.: Conf. Series 901 012143
[22] Somboonkittichai N et al 2017 2nd IAEA Technical Meeting on Divertor Concepts P-34
[23] Coppins M 2010 Phys. Rev. Lett. 104 065003
[24] Barnes M S et al 1992 Phys. Rev. Lett. 68 313
[25] Castaldo C et al 2007 Nucl. Fusion 47 L5
[26] Ratynskaia S et al 2008 Nucl. Fusion 48 015006