Metabolic Syndrome in Aging Heart: Molecular Insights

Julia Díaz-Juárez1, Gustavo Pastelin1 and Jorge Suarez2*

1Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
2Department of Medicine, University of California, San Diego, USA

Corresponding author: Jorge Suarez, Department of Medicine, University of California, San Diego, USA, Tel: (858) 534-9931; Fax: (858) 534-9932; E-mail: jsuarez@ucsd.edu

Received date: July 27, 2017; Accepted date: August 04, 2017; Published date: August 12, 2017

Copyright: © 2017 Díaz-Juárez J, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Risk factors that define the metabolic syndrome (MetS) develop with age increasing its prevalence. Therefore, MetS can be considered an age-related health problem. Mechanism involved in aging and MetS are incompletely understood. The goal of this review is to highlight novel molecular maladaptive mechanism that trigger cardiac disease and common in aging and MetS. We focus on mitochondrial energetic function as well as mitochondrial calcium handling. In addition, we analyzed the role of O-GlcNAcylation which is a posttranslational modification that triggers multiple signaling pathways.

Keywords: Aging; Heart; Metabolic syndrome; Molecular mechanisms; Mitochondrial calcium; O-GlcNAcylation

Introduction

Metabolic syndrome (MetS) is an arrangement of cardiovascular and metabolic risk factors that dramatically increase cardiovascular mortality and morbidity and type 2 diabetes [1-3]. MetS is a growing public health problem worldwide. The magnitude of the prevalence of MetS also signals to the complexity of the problem.

MetS is characterized by central obesity, dyslipidemia, compromised fasting glucose, and hypertension [4]. However, the pathophysiologic mechanisms that lead to MetS are incompletely understood.

The prevalence of MetS increases with age and cardiovascular disease being the most frequent outcome. Therefore, MetS can be considered an age-related disease.

Only after decades of intense research efforts worldwide we have identified important molecular targets of the aging process that lead to cardiovascular disease. We only describe some novel discoveries at the molecular level that revealed new therapeutic targets that have not been investigated.

Aging and decreased cardiac function

The process of general aging-related changes in model organisms has been explored recently [5-7]. The rate of aging is a controlled process governed by epigenetic pathways and biochemical processes which are conserved in evolution [6]. Aging is generally characterized by progressively impaired organ function and an increased propensity to death. This process indeed occurs in the heart. Of special relevance is that aging causes dysregulation of nutrient sensing, with abnormal metabolism and mitochondrial (Mito) dysfunction [5-7]. Though some studies have suggested that Reactive Oxygen Species (ROS) production may be implicated in the aging process, the role of ROS as a primary cause of cellular senescence has also been questioned [6,8]. Beyond these general concepts, it is clear that humans older than 65 years have an increased propensity for heart failure (HF) (e.g. 11/1000 persons) and that HF is enhanced further with increased age (e.g. 43/1000 in humans >80 years old) [9,10]. MetS further worsen these data. This is relevant since HF is always associated with recurrent hospitalization, decreased quality of life and a reduction in life span [11].

Alterations contributing to aging-related decreases in cardiac and Mito energetic function

The heart is a highly active metabolic organ which is very rich in Mito [12] and therefore susceptible to decreased Mito energetic function. Several converging mechanisms contribute to decreased Mito function with aging, including decreased Mito biogenesis, decreased Mito quality and decreased energetic function of Mito normalized for Mito quantity [6,13,14]. Some reports find no significant changes [14] and others find decreases in the function of specific Mito complexes and increased ROS production [13,15].

Mito Ca2+ handling, [Ca2+]M and Mito energetic function

Mito free calcium concentration ([Ca2+]M) is an important signaling mechanism for Mito energetic activity by enhancing the activity of oxidative phosphorylation, especially complex III, and the Vmax of Complex V [16]. In addition, several dehydrogenases in the Mito matrix are activated by [Ca2+]M including the Pyruvate Dehydrogenase Complex (PDC) which is the key enzyme for glucose oxidation (GOX) [17]. There are limited findings reported regarding aging-related changes in substrate consumption. A positron emission-based approach was used to show that myocardial glucose utilization could be stimulated by dobutamine, only in young, but not old hearts [18]. Without an adequate compensatory increase in glucose utilization and GOX, a decrease in high-energy phosphate generation will prevail in the aging heart.

[Ca2+]M is controlled by a complex set of mechanisms influencing Mito matrix Ca2+ uptake and release which have been reviewed [19,20]. Briefly, the outer Mito membrane (OMM) is quite Ca2+-permeable [21], but import across the inner Mito membrane (IMM) is highly regulated. The most important contributor to Mito Ca2+ uptake...
During the systolic and diastolic phase of a heartbeat, inter-myofibrillar Mito (IFM) which are in close proximity to the sarcoplasmic reticulum (SR), are exposed to the changing levels of the cytosolic Ca\(^{2+}\) transient. The cardiac myocyte cytosolic calcium concentration ([Ca\(^{2+}\)]\(_{i}\)) increases from about 100nM during diastole, to about 500 nM in systole; however in the privileged micro-domain of MCU have generated interesting findings. Mice with conditional cardiac exporters like the mNCX [31]. Feedback loops exist that regulate increased Mito import and resultant increased Ca\(^{2+}\) release [33]. EMRE [22-27]. MCU is an integral membrane protein with two transmembrane domains that forms the pore through which Mito Ca\(^{2+}\) export is mediated by the Mito Na\(^{+}/Ca^{2+}\) Exchanger (mNCX) and the Mito H\(^{+}/Ca^{2+}\) Exchanger (mHCX) which have also been recently identified [31,32]. Short term opening of the Mito Permeability Transition Pore (MPTP) can also contribute to Mito Ca\(^{2+}\) depletion of MCU [43,44] found that MCU Ca\(^{2+}\) conductance activity matches energetic supply with cardiac workload during an acute stress mediated by β adrenergic stimulation [44]. It should be noted that the control mice and the mice with MCU deletion are in a normal “unstressed” physiological state, unless submitted to β adrenergic stimulation or a sprint exercise [43,44]. Old mice are known to be submitted to aging-related “stresses” including decreasing cardiac function and have difficulty responding to an increased demand for cardiac work [45]. This may lead to post-translational modifications of MCU or of other MCUC members impairing Mito Ca\(^{2+}\) conductance functions independent of acute β adrenergic stimulation. Other work has shown that post-translational modification of MCU by phosphorylation markedly enhances the Ca\(^{2+}\) conductance of MCU [46]. Using Tg mice with expression of a dominant negative form of MCU, no acute β adrenergic stimulus was needed for MCU to function as Mito Ca\(^{2+}\) importer [47]. A new report demonstrated that simulated hyperglycemia in cardiac myocytes reduces [Ca\(^{2+}\)]\(_{m}\), and glucose oxidation with an increase in fatty acid oxidation [18]. Furthermore, Diaz-Juarez et al. demonstrated in the same report that restoring [Ca\(^{2+}\)]\(_{m}\) concentration to normal levels by genetically expressing MCU normalized glucose and fatty acid metabolism in spite of simulated hyperglycemia. These findings point out a possible pathophysiological role of MCUC in simulated ischemia.

Excessive O-GlcNAcylation of CM and Mito proteins and Mito energetic function

O-GlcNAcylation of serine or threonine residues of nuclear, cytoplasmic and Mito proteins is a dynamic and ubiquitous protein modification [48-50]. This process has emerged as a key regulator of critical biological functions including transcription and translational processes [51], and of Mito function [52], as was also shown by prior work [53]. Post-translational protein modifications by phosphorylation (O-P) and O-GlcNac can have reciprocal effects on protein function and are mediated by different types of dynamic interplays. In addition, competitive and alternate modification of adjacent sites occurs as well as other interactions [49]. Overall modification of protein function by O-GlcNac derives from the interplay between protein modification by O-P and O-GlcNac.

The O-GlcNac status of proteins is regulated by O-GlcNac transferase (OGT) and O-GlcNacase (GCA), which catalyze the addition and removal of O-GlcNac residues, respectively [54-58]. The overall catalytic activity of OGT is positively controlled by the concentration of its donor substrate UDP-GlcNac, making it an excellent metabolic sensor. OGT is O-GlcNacylated and tyrosine-phosphorylated [49,56]. Recent evidence indicates that a shorter GCA splice variant, which has enzyme activity, occurs [59] and can be Mito-directed. Recently, several Mito proteins of the respiratory chain complex that undergo O-GlcNAcylation in the diabetic heart have been identified [53]. Interestingly, increased O-GlcNacylation of cardiac proteins occurs in the aging heart [60].

Conclusions

It is currently unclear if the decrease in Mito energetic and metabolic function that occurs in the aging heart can be restored. Research is needed to explore this by using two novel interventions: 1) Rectifying [Ca\(^{2+}\)]\(_{m}\) through normalizing MCU levels and MCUC function, and 2) Reversing the excessive O-GlcNacylation of cardiac myocytes and especially Mito proteins, including MCU. Currently no
data are available in the literature for Mito Ca\(^{2+}\) handling, \([\text{Ca}^{2+}]_{\text{m}}\) or MCUC levels in cardiac myocytes from aging heart. Increased O-GlcNAcylation of cardiac myocyte proteins from aging heart has been reported [60], but no attempt has been made to reverse the excessive Mito protein O-GlcNAcylation of aging heart and determine if this can improve cardiac function in aging heart. Assuming that these questions can be answered, innovative therapeutic approaches for the declining function of the aging heart and its increased propensity to develop heart failure may result.

Funding

This Manuscript was supported by Grant from UC-MEXUS CONACyT (CN 15-1489).

References

1. Dekker JM, Girman C, Rhodes T, Nijpels G, Stehouwer CD, et al. (2005) Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn Study. Circulation 112: 666-673.
2. Galassi A, Reynolds K, He J (2006) Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 119: 812-819.
3. Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, et al. (2001) 10-Year incidence of type 2 diabetes in the Hoorn Study. Diabetologia 44: 721-727.
4. Galassi A, Reynolds K, He J (2006) Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 119: 812-819.
5. Ziegler DV, Wiley CD and Velarde MC (2015) Mitochondrial molecular mechanisms of aging on myocardial metabolic response to dobutamine. Am J Physiol Heart Circ Physiol 285: H2158-2164.
6. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, et al. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca\(^{2+}\) responses. Science 280: 1763-1766.
7. Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797: 807-912.
8. Balaban RS (2012) Role of mitochondrial Ca\(^{2+}\) in the regulation of cellular energetics. Biochemistry 51: 2959-2973.
9. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787: 1309-1316.
10. Soto PF, Herrero P, Kates AM, Dence CS, Elsana AA, et al. (2003) Impact of aging on myocardial metabolic response to dobutamine. Am J Physiol Heart Circ Physiol 285: H2158-2164.
11. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755-786.
12. Baughman JM, Pocock E, Gregis HS, Plovanich M, Belcher-Timme CA, et al. (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476: 341-345.
13. De Stefani D, Raffaello A, Teardo E, Szabo I and Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476: 336-340.
14. Pocock F, Gohil VM, Gregis HS, Bao XR, McCombs JE, et al. (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca\(^{2+}\) uptake. Nature 467: 291-296.
15. Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, et al. (2013) MCU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8: e55785.
16. Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, et al. (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32: 2362-2376.
17. Sancak Y, Markhard AL, Ikitani T, Kovacs-Bogdan E, Kamer KJ, et al. (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342: 1379-1382.
18. Csordás G, Golenár T, Seifert EL, Kamer KJ, Sancak Y, et al. (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca\(^{2+}\) uniporter. Cell Metab 17: 976-987.
19. Dorn GW 2nd, Maack C (2013) SR and mitochondria: calcium cross-talk between kissing cousins. J Mol Cell Cardiol 55: 42-49.
20. Dragó I, Pizzo P, Pozzan T (2011) After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 30: 4119-4125.
21. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, et al. (2010) NCLX is an essential component of mitochondrial Na/Ca\(^{2+}\) exchange. Proc Natl Acad Sci USA 107: 436-441.
22. Rottenberg H, Marbach M (1990) The Na(+)-independent Ca\(^{2+}\) efflux system in mitochondria is a Ca\(^{2+}\)/2H\(^{+}\) exchange system. EBS Lett 274: 65-68.
23. Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca\(^{2+}\) release channel: new answers to an old question. Cell Calcium 52: 22-27.
24. Williams GS, Boyman L, Chikand AO, Khairallah R, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci USA 110: 10479-10486.
25. Andrienko TN, Picht E and Bers DM (2009) Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J Mol Cell Cardiol 46: 1027-1036.
26. Bassani JW, Qi M, Samarel AM, Bers DM (1994) Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells. Circ Res 74: 991-997.
27. Drago I, De Stefani D, Rizzuto R, Pozzan T (2012) Mitochondrial Ca\(^{2+}\) uptake contributes to buffering cytoplasmic Ca\(^{2+}\) peaks in cardiomyocytes. Proc Natl Acad Sci USA 109: 12986-12991.
28. Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, et al. (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78: 142-153.
29. Pan X, Liu J, Nguyen T, Liu C, Sun J, et al. (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15: 1464-1472.
40. Murphy E, Pan X, Nguyen T, Liu J, Holmström KM, et al. (2014) Unresolved questions from the analysis of mice lacking MCU expression. Biochem Biophys Res Commun 449: 384-385.

41. Fernandez-Sada E, Silva-Platas C, Rivero SL, Willis BC, et al. (2014) Cardiac responses to beta-adrenoceptor stimulation is partly dependent on mitochondrial calcium uniporter activity. Br J Pharmacol 171: 4207-4221.

42. Wu Y, Rasmussen TP, Koval OM, Joiner ML, Hall DD, et al. (2015) The mitochondrial uniporter controls fight or flight heart rate increases. Nat Commun 6: 6081.

43. Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, et al. (2015) The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Rep 12: 15-22.

44. Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, et al. (2015) The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell Rep 12: 23-34.

45. Butkinaree C, Park K, Hart GW (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800: 96-106.

46. Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 112: 6050-6055.

47. Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, et al. (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284: 547-555.

48. Brandman I, Carroll M, Dance N, Robinson D, Poenaru L, et al. (1974) Characterisation of human N-acetyl-beta-hexosaminidase C. FEBS Lett 41: 181-184.

49. Gao Y, Wells L, Comer FL, Parker GL, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276: 9388-9485.

50. Kreppel IK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272: 9308-9315.

51. Lubas WA, Frank DW, Krause M, Hanover JA (1997) O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 272: 9316-9324.

52. O'Donnell N, Zachara NE, Hart GW, Marth JD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24: 1680-1690.

53. Kim EJ, Kang DO, Love DC, Hanover JA (2006) Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate. Carbohydr Res 341: 971-982.

54. Fulop N, Feng W, Xing D, He K, Not LG, et al. (2008) Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biochim Biophys Acta 1800: 57-66.