Post-production protein stability: trouble beyond the cell factory

Esther Vazquez1,2,3, José Luis Corchero3,1,2 and Antonio Villaverde1,2,3*

Abstract

Being protein function a conformation-dependent issue, avoiding aggregation during production is a major challenge in biotechnological processes, what is often successfully addressed by convenient upstream, midstream or downstream approaches. Even when obtained in soluble forms, proteins tend to aggregate, especially if stored and manipulated at high concentrations, as is the case of protein drugs for human therapy. Post-production protein aggregation is then a major concern in the pharmaceutical industry, as protein stability, pharmacokinetics, bioavailability, immunogenicity and side effects are largely dependent on the extent of aggregates formation. Apart from acting at the formulation level, the recombinant nature of protein drugs allows intervening at upstream stages through protein engineering, to produce analogue protein versions with higher stability and enhanced therapeutic values.

Aggregation and associated conformational stress of cell factories (both prokaryotic and eukaryotic) are major concerns in recombinant protein production, resulting in low yields, unstable production and limited solubility and biological activity of the products \cite{1-9}. Basic research on protein folding and the routine implementation of several analytical procedures such as circular dichroism, mass spectrometry and infrared spectroscopy (mostly incorporated from amyloid research) \cite{4,10-16} have expanded our understanding of how polypeptide chains cross-interact and aggregate in vivo. In bacteria, probably the most studied cell factories, aggregation as inclusion bodies, a quite common event during production of heterologous polypeptides \cite{17,18}, is now observed as a complex physiological event in which cellular agents, including chaperones \cite{6,19,20}, proteases \cite{21-23} and actin-like proteins \cite{24} are coordinately acting \cite{24,25} in the frame of the cell’s protein quality control machinery \cite{26-28}. Despite aggregation as inclusion bodies might represent a source of relatively pure proteins for further refolding or extraction \cite{29-33}, or unexpectedly, a new type of nano-microparticulate biomaterials for biotechnological and biomedical applications \cite{34-39}, the use of recombinant proteins for most of biotechnological and biomedical applications requires fully soluble protein versions. A particular issue in recombinant protein aggregation is the occurrence of soluble aggregates (less apparent that large aggregates), that are being progressively recognized in production processes. These soluble clusters adopt a spectrum of forms (mainly fibrilar, spherical or amorphous) \cite{40,41} and might be the in vivo physiological precursors and structural components of bacterial inclusion bodies \cite{24,42}. Very different approaches have been explored at upstream, midstream and downstream levels to minimize aggregation during recombinant protein production (Figure 1). Such strategies, eventhough being mostly a trial-and-error process, often result in significant improvements of protein solubility \cite{43-46}.

Desirably, soluble versions of recombinant proteins should keep such soluble status in post-production stages, that is, during storage and use. This need is specially acute in the case of proteins intended for therapeutic uses \cite{47,48}. Protein drugs are commonly administered parenterally \cite{49}, what makes protein aggregation in stocks or upon administration a main concern in the Pharma industry (see for instance, http://www.eahp.eu/content/download/25193/164355/.../CoverStory20-21.pdf). The high concentration at which proteins drugs are stored and administered \cite{50} specifically favors aggregation \cite{51}. In this context, diverse analytical procedures have been developed and
specifically adapted to the detection of therapeutic protein aggregation [52-54]. Importantly, aggregation does not only render drug inactivation during storage, and fast clearance, reduction of activity, limited bioavailability and proteolytic digestion upon administration, but it also stimulates undesired immunogenicity [55]. This is a critical issue in clinics as severe side effects observed upon prolonged protein administration (as in the case of insulins, interferons, erythropoietin and growth hormone) are antibody-dependent [56-59].

Chemical modification of proteins and the use of appropriate excipients (Figure 1) are the most taken approaches for protein drug stabilization [60-62]. Obviously, emerging concepts in Nanotechnology, Nanomedicine and in Material Sciences offer new biocompatible vehicles for protein encapsulation or
embedding, mainly at the nanoscale, through which the stability, tissue targeting and bioavailability during drug delivery are dramatically enhanced [63,64]. Many among those such nanostructured materials are from bacterial origin [65].

Being proteins flexible molecules suitable to be re-designed by genetic methods, upstream protein engineering, one of the main approaches to prevent aggregation during production (Table 1, up), is also useful to stabilize protein drugs during use (Table 1, bottom). In addition, modification of the protein primary sequence permits a fine tuning of protein features such as oligomerization, activity, cell targeting and cell penetration, that represent additional values in the performance of a protein drug (Table 1; Figure 1, bottom). In this regard, protein engineering is revealed as an extremely flexible approach to enhance the stability of proteins during production, storage and use, but also to improve their performance in \textit{in vivo} uses. Reduction of aggregation is expected to minimize immunogenicity, increase proteolytic stability, improve bioavailability and limit side-effects, as aggregation has a pivotal role in all these issues [55,59,66-69]. In addition, protein modification can offer added values to protein drugs, by conferring novel functions that improve pharmacological performance without necessarily enhancing solubility (Figure 1, green framed box). These include cell or tissue targeting or enhanced cell penetration by the fusion to a cell receptor ligand or an antibody [70-74], enhancing half-life and bioavailability by fusion to transferrin [75], albumin [76], or albumin-binding peptides [77] and crossing the brain-blood barrier (BBB) by the incorporation of cationic peptides [78]. Creating multifunctional proteins by the appropriate combination of protein domains in a single polypeptide chain is being especially explored for the construction of protein-only artificial viruses, in

Table 1 Protein engineering strategies to reduce aggregation or derived effects during either production or administration, illustrated by representative examples.

Protein engineering strategy	Result	Protein	Reference
Improving protein folding during production			
Cys\textrightarrow;Ser point mutations	Reduced aggregation, enhanced proteolytic stability	bFGFa	[100]
Point mutations in an hydrophobic stretch	Reduced aggregation	11 beta-HSD1	[101]
Directed evolution/point mutations	Reduced aggregation	Cytochrome P450sca-2	[102]
Fusion of SUMO tag	Improved refolding	Fgf15	[103]
Polycationic amino acid tag fusion	Reduced aggregation	\textit{Candida antarctica} lipase B	[104]
Fusion to polylsines or polycarminines	Reduced aggregation	BPTI-22	[105]
Fusion to MBP	Reduced aggregation	Ribonuclease inhibitor	[106]
Fusion to GrpE	Reduced aggregation	hIL-3	[107]
Fusion to NusA	Reduced aggregation, enhanced proteolytic stability	E8R viral protein	[108]
Improving protein folding, stability and performance during administration			
Single amino acid substitution	Inhibited oligomer formation; enhanced bioavailability	Insulin Asparta	[109]
Single amino acid substitution	Improved folding	INF-\textbeta-1b (Betaferona)	[110]
N-terminal peptide deletion	Enhanced stability	KGF	[111]
Fusion with albumin	Extended half-life	Albinterferon \textalpha-2b	[76]
Fusion with transferrin	Enhanced gastrointestinal adsorption	hGH	[75]
Artificial consensus protein sequence	Enhanced activity	Interferon \textalpha-con-1 (Infergena)	[112]
Fusion of a HIV Tat segment	Enhanced solubility	p53	[113]
Fusion of a HIV Tat protein and ODD	Enhanced stability and activity in hypoxic tumor cells	Casp-3	[114]
Fusion of a HIV Tat protein and sequence modification	Cell penetration and selective activation in HIV-infected cells	Casp-3	[115]
Ligand incorporation (mainly antibody fragments)	Enhanced stability and bioavailability	IL-2	[71]

a Abbreviations are: 11 beta-HSD1, 11 beta-Hydroxysteroid dehydrogenase type 1; aFGF, acidic fibroblast growth factor; bFGF: Fgf15, Fibroblast growth factor 15; BPTI-22, Bovine pancreatic trypsin inhibitor variant 22; Casp-3, caspase 3; HIV, human immunodeficiency virus; hFGF, Human basic fibroblast growth factor; BSA, bovine serum albumin; HAS, human serum albumin; hGH, human growth hormone; hIL-3, human interleukin-3; KGF, Keratinocyte growth factor; IL, Interleukin; MAGOH, Protein mago nashi homolog; MBP, maltose-binding protein; OOD, oxygen-dependent degradation domain of hypoxia-inducible factor-1alpha; rhDNase, recombinant human DNAse; SUMO, small ubiquitin-related modifier.
which the therapeutic nucleic acids are encapsulated by chimerical protein building blocks [72,79-81]. Further exploration of protein engineering focused on post-production issues is strongly required and it should allow the emergence of optimized drugs to fulfill their increasing demand.

Conclusions

Stability and solubility of recombinant proteins is a critical issue at both production and post-production stages. For a biopharmaceutical use of proteins as pharmaceuticals, high solubility not only supports stability but it also enhances bioavailability and reduces immunogenicity and undesired toxic effects. Among other approaches to stabilize protein drugs, such as chemical modification, proper formulation and encapsulation, protein engineering is a very flexible route to improve protein folding during production and reduce aggregation during storage and in vivo. Furthermore, the modification of protein primary sequence permits to confer additional functional values, such as binding to serum albumin, binding to cell surface receptors and cell membrane (or BBB) crossing, thus improving biodistribution, expanding the half-life and enhancing the biological potential of the drug. The wide spectrum of possibilities of post-production-addressed protein engineering is probably to be yet realized.

Acknowledgements

We appreciate the financial support received for the design and microbial production of recombinant proteins for biomedical applications from FIS5 (PS09/001665), MICINN (BFU2010-17450, ACI2009-0919, T2009-0021, EUJ2008-03610, AGAUR (2009SGR-108), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain, and from the European Science Foundation, which is also funded by the European Commission, Contract no. ERAS-CT-2003-980409 of the Sixth Framework Programme (ERANET-IB 08-007). The authors also appreciate the financial support through the project ‘Development of nanomedicines for enzymatic replacement therapy in Fabey disease’ created by the Fundació Marató TV3.

Author details

1. Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. 2. Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. 3. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.

Competing interests

The authors declare that they have no competing interests.

Received: 25 July 2011 Accepted: 1 August 2011 Published: 1 August 2011

References

1. Gasser B, Saloheimo M, Rinus U, Dragostis M, Rodriguez-Camona E, Baumann K, et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbiol Cell Fact 2008, 7:11.

2. Ciplys E, Samuel D, Juzapaitis M, Sainauskas K, Silbanskas R. Overexpression of human virus surface glycoprotein precursors induces cytotoxic unfolded protein response in Saccharomyces cerevisiae. Microbiol Cell Fact 2011, 10:37.

3. Parrilli E, Giuliani M, Marino G, Tutino ML. Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microbiol Cell Fact 2010, 9:19.

4. Ami D, Natalello A, Schultz T, Gatti-Lafranconi P, Lotti M, Doglia SM, et al. Effects of recombinant protein misfolding and aggregation on bacterial membranes. Biochim Biophys Acta 2009, 1794:263-269.

5. Guillenette T, van Peij NN, Goosen T, Lenthaler K, Robson GD, Van Den Hoondel CA, et al. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 2007, 8:158.

6. Martinez-Alonso M, Garcia-Frutos E, Ferrer-Miralles N, Rinas U, Villaverde A. Side effects of chaperone gene co-expression in recombinant protein production. Microbiol Cell Fact 2010, 9:64.

7. Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Frutos E, Villaverde A. Learning about protein solubility from bacterial inclusion bodies. Microbiol Cell Fact 2009, 8:4.

8. Dragostis M, Frascoti G, Bernard-Granger L, Vazquez F, Giuliani M, Baumann K, et al. Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnol Prog 2011, 27:58-66.

9. Mattanovich D, Dassu B, Hohenthum H, Sauer M. Stress in recombinant protein producing yeasts. J Biotechnol 2004, 113:121-135.

10. Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S. Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 2005, 347:1025-1037.

11. Oberg K, Chrunguy BA, Wetzel R, Fink AC. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry 1994, 33:3526-3534.

12. Doglia SM, Ami D, Natalello A, Gatti-Lafranconi P, Lotti M. Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies. Biotechnol J 2008, 3:193-201.

13. Gonzalez-Montalban N, Natalello A, Garcia-Frutos E, Villaverde A, Doglia SM. In situ protein folding and activation in bacterial inclusion bodies. Biotechnol Bioeng 2008, 100:797-802.

14. Ami D, Natalello A, Taylor G, Tonon G, Maria DS. Structural analysis of protein inclusion bodies by Fourier transform infrared microspectroscopy. Biochim Biophys Acta 2006, 1764:793-799.

15. Ami D, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett 2005, 579:3433-3436.

16. Ami D, Bonecchi L, Cali S, Orsini G, Tonon G, Doglia SM. FT-IR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim Biophys Acta 2003, 1624:10.

17. Villaverde A, Carrio MM. Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 2003, 25:1385-1395.

18. Banex F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 2004, 22:1399-1408.

19. Gonzalez-Montalban N, Ami MM, Cuarterasas S, Aris A, Villaverde A. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J Biotechnol 2005, 118(4):406-412.

20. Carrio MM, Villaverde A. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 2005, 187:3599-3601.

21. Jurgen B, Breitenstein A, Urlacher V, Buttner K, Lin H, Hecker M, et al. Quality control of inclusion bodies in Escherichia coli. Microbiol Cell Fact 2010, 9:41.

22. Vera A, Aris A, Carrio M, Gonzalez-Montalban N, Villaverde A, Lon and CipP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 2005, 119:163-171.

23. Carbonell X, Villaverde A. Protein aggregated into bacterial inclusion bodies does not result in protection from proteolytic digestion. Biotechnology Letters 2002, 24:1939-1944.

24. Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I, Oppenheim AB. coli transports aggregated proteins to the poles by a specific and energy-dependent process. J Mol Biol 2009, 392:589-601.

25. Garcia-Frutos E, Martinez-Alonso M, Gonzalez-Montalban N, Valli M, Mattanovich D, Villaverde A. Divergent Genetic Control of Protein Solubility and Conformational Quality in Escherichia coli. J Mol Biol 2007, 374:195-205.
26. Ventura S, Villaverde A: Protein quality in bacterial inclusion bodies. Trends Biotechnol 2006, 24:179-185.
27. Tyedmers J, Moog A, Bukau B: Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010, 11(11):777-788.
28. Gonzalez-Montalban N, Garcia-Fruites E, Villaverde A: Recombinant protein solubility—does more mean better? Nat Biotechnol 2007, 25:718-720.
29. Peternel S, Grdadolinj K, Gaberc-Porek V, Komel R: Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact 2008, 7:34.
30. Jungbauer A, Kaar W: Current status of technical protein refolding. J Biotechnol 2007, 128:587-596.
31. Singh SM, Panda AK: Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 2005, 99:303-310.
32. Vallejo LF, Rinas U: Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 2004, 3:11.
33. Cabrita LD, Bottomley SP: Protein expression and refolding - A practical guide to getting the most out of inclusion bodies. Biotechnol Annu Rev 2004, 10:31-53.
34. Garcia-Fruites E, Villaverde A: Friendly production of bacterial inclusion bodies. Korean J Chem Eng 2010, 27:385-389.
35. Vazquez E, Villaverde A: Engineering building blocks for self-assembling protein nanoparticles. Microb Cell Fact 2010, 9:101.
36. Villaverde A: Nanotechnology, biomimicry and microbial cell factories. Microb Cell Fact 2010, 9:53.
37. Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruites E: Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact 2010, 9:71.
38. Peternel S, Komel R: Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact 2010, 9:66.
39. Garcia-Fruites E: Inclusion bodies: a new concept. Microb Cell Fact 2010, 9:80.
40. de Marco A, Sevastyanovich YR, Cole JA: Minimal information for protein functional evaluation (MIPFE) workshop. N Biotechnol 2009, 25:170.
41. de Marco A: Minimal information: an urgent need to assess the functional reliability of recombinant proteins used in biological experiments. Microb Cell Fact 2008, 7:20.
42. Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, et al: Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 2008, 1783:1815-1825.
43. Soerensen HP, Mortensen KK: Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 2005, 4:1.
44. Makino T, Soretas G, Georgiou G: Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact 2011, 10:32.
45. Kolaj O, Spada S, Robin S, Wall JG: Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 2009, 8:10.
46. Soerensen HP, Mortensen KK: Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005, 115:113-128.
47. Ferrer-Miralles N, Domingo-Espin J, Corchoja JL, Vazquez E, Villaverde A: Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009, 8:17.
48. Leader B, Baca QJ, Golan DE: Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 2008, 7:21-39.
49. Antosova Z, Mackova M, Kral V, Macek T, Mackova M: Protein aggregation in crowded environments. Nanostructured bacterial materials for innovative medicines. Trends Microbiol 2010, 18:423-430.
50. Antonelli G: Reflections on the immunogenicity of therapeutic proteins. Clin Microbiol Infect 2008, 14:731-733.
51. De Groot AS, Scott DW: Immunochemistry of protein therapeutics. Trends Immunol 2007, 28:482-490.
52. Hermeling S, Schellekens H, Mass C, Cebeenck MF, Cremmeln DJ, Jiskoot W: Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J Pharm Sci 2006, 95:1084-1096.
53. Schellekens H: Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 2002, 1:457-462.
54. Partridge WM: Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release 2007, 122(3):345-348.
55. Sondel PM, Hank JA, Gan J, Neal Z, Albertini MR: Preclinical and clinical development of immunocytokines. Curr Opin Investig Drugs 2003, 4:696-700.
56. Vazquez E, Ferrer-Miralles N, Manques R, Corchoja JL, Schwartz S Jr, Villaverde A: Modular protein engineering in emerging cancer therapies. Curr Pharm Des 2009, 15:893-916.
57. Boado RJ, Zhang Y, Zhang Y, Partridge WM: Genetic engineering, expression, and activity of a fusion protein of a human neutrophil and a molecular Trojan horse for delivery across the human blood-brain barrier. Biotechnol Bioeng 2007, 97:1376-1386.
58. Dietz GP, Bahr M: Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2004, 27:85-131.
59. Arnet N, Wang W, Shen WC: Human growth hormone-transferin fusion protein for oral delivery in hypophysectomized rats. J Control Release 2010, 141:177-182.
60. Subramanian GA, Fiscella M, Lamousse-Smith A, Zeuzem S, MikecHon JG: Albinferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol 2007, 25:1411-1419.
61. Dennis MS, Zhang M, Meng YG, Kadihodayan M, Kirkhoffer D, Combos D, et al: Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 2002, 277:35035-35043.
62. de Boer AG, Gailard PJ: Drug targeting to the brain. Annu Rev Pharmacol Toxicol 2007, 47:323-355.
63. Aris A, Villaverde A: Modular protein engineering for non-viral gene therapy. Trends Biotechnol 2004, 22:371-377.
64. Vazquez E, Ferrer-Miralles N, Villaverde A: Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discov Today 2008, 13:1067-1074.
81. Ferrer-Miralles N, Vazquez E, Villaverde A. Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends Biotechnol 2008, 26:267-275.
82. Rosano GL, Coccarelli EA. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 2009, 8:41.
83. Lee Y, Zhou T, Tartaglia GG, Vendruscolo M, Wilke CO. Translationally optimal codons associate with aggregation-prone sites in proteins. Proteomics 2010, 10:4163-4171.
84. Kamokola M. Engineering of therapeutics proteins production in Escherichia coli. Curr Pharm Biotechnol 2011, 12:268-274.
85. Vera A, Gonzalez-Montalban N, Aris A, Villaverde A. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 2007, 96:1101-1106.
86. Strandberg L, Ensors SF. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol 1991, 57:1669-1674.
87. de Marco A, Develing E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 2007, 7:32.
88. de Marco A. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2007, 2:2632-2639.
89. de Marco A. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2007, 2:2632-2639.
90. Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 1996, 60:512-538.
91. Gleeson MA, White CE, Meininger DP, Komives EA. Generation of protease-deficient strains and their use in heterologous protein expression. Methods Mol Biol 1998, 103:81-94.
92. de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microbe Cell Fact 2009, 8:26.
93. Gibson TJ, McCarty K, Mcfadyen IJ, Cash E, Dalmonte P, Hinds KD, et al. Application of a high-throughput screening procedure with PEG-induced precipitation to compare relative protein solubility during formulation development with IgG1 monoclonal antibodies. J Pharm Sci 2011, 100:1009-1021.
94. Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification. Anal Chem 2003, 75:223-231.
95. Gálovánar AF, Haußbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc 2004, 126:8933-8939.
96. Ducat T, Declercq N, Gostan T, Kochoyan M, Demene H. Rapid determination of protein solubility and stability conditions for NMR studies using incomplete factorial design. J Biomol NMR 2006, 34:137-151.
97. Gossavi RA, Mueser TC, Schall CA. Optimization of buffer solutions for protein crystallization. Acta Crystallogr D Biol Crystallogr 2008, 64:506-514.
98. Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog 2008, 24:504-514.
99. Tiwari AK, Gajbhiye V, Sharma R, Jain NK. Carrier mediated protein and peptide stabilization. Drug Deliv 2010, 17:605-616.
100. Rinas U, Tsai LB, Lyons D, Fox GM, Stearns G, Fiebschko I, et al. Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Biotechnology NY 1992, 10:435-440.
101. Lawson AJ, Walker EA, White SA, Dafforn TR, Stewart PM, Rade JP. Mutations of key hydrophobic surface residues of 11 beta-hydroxysteroid dehydrogenase type 1 increase solubility and monodispersity in a bacterial expression system. Protein Sci 2009, 18:1552-1563.
102. Li P, Guan H, Li J, Lin Z. Heterologous expression, purification, and characterization of cytochrome P450sc-a-2 and mutants with improved solubility in Escherichia coli. Protein Expr Purif 2009, 65:190-203.
103. Kong B, Guo GJ. Enhanced In Vitro Refolding of Fibroblast Growth Factor 15 with the Assistance of SUMO Fusion Partner. PLoS One 2011, 6:e20307.
104. Jung HJ, Kim SK, Min WK, Lee SS, Park K, Park YC, et al. Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli. Bioprocess Biosyst Eng 2011.