Autoregressive prediction analysis using machine deep learning

Mohammad S. Khrisat¹, Anwar Alabadi², Saleh Khawatreh¹, Majed Omar Al-Dwairi¹, Ziad A. Alqadi¹

¹Electrical Engineering Department, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, Jordan
²Computer Engineering Department, Faculty of Engineering, AlAlhiyya Amman University, Amman, Jordan

Abstract

Regression analysis, in statistic a modelling, is a set of statistical processes that can be used to estimate the relationship between a dependent variable, commonly known as the outcome or response, and more independent variables generally called predictors of covariant. On the other hand, autoregression, which is based on regression equations, is a sequential model that uses time to predict the next step data from the previous step. Given the importance of accurate modelling and reliable predictions, in this paper we have analyzed the most popular methods used for data prediction. Nonlinear autoregressive methods were introduced, and then the machine deep learning approach was used to apply prediction based on a selected input data set. The mean square error was calculated for various artificial neural networks architecture to reach the optimal architecture, which minimized the error. Different artificial neural network (ANN) architectures were trained, tested, and validated using various regressive models, a recommendation was raised according to the obtained and analyzed experimental results. It was shown that using the concepts of machine deep learning will enhance the response of the prediction model.

Keywords:
Artificial neural network
Machine deep learning
Mean square error
Nonlinear autoregressive model
Regression analysis model

This is an open access article under the CC BY-SA license.

1. Introduction

In statistics, random data cannot be fully evaluated by visual inspection. While there are many types of regression analysis, at their core all methods examine the effects of one or more independent variables on a dependent variable. The regression analysis model (RAM) is the simple and effective model used to predict an output based on a selected input data set [1]-[3]. The implementation of RAM leads to a calculated regression coefficient, which was used in forming the predicted output equations as shown in Figure 1 [4], [5].

\[y = \beta_0 + \beta_1 + \cdots + \beta_n + \epsilon \]

(1)

Figure 1. RAM equation
The regression means square error tells us how close the line is to a set of points. It was called the mean square error as it’s used in finding the average set of errors. Squaring was needed to eliminate the negative signs in MSE. The lower the MSE the better the forecast. The regression means square error (MSE) between the calculated and the target outputs may be high, causing a poor effective prediction. thus, the machine deep learning approach can be used to minimize MSE and enhance the prediction process accuracy [6], [7]. The machine deep learning (MDL) approach is a process of using an artificial neural network (ANN) [8]-[10] as a prediction tool. MDL can be treated using complicated ANN models, more calculations and big input data set, as shown in Figure 2 [11]-[14].

![Figure 2. ANN using MDL](image1)

The minimum description length principle (MDL) is based on the concept of describing the data in full using fewer symbols. MDL, which was originated from algorithmic coding theory in computer science, regards both the model and the data as codes. The idea of MDL was to reduce redundancies by compression algorithms [15], [16]. Therefore, we can uncover irregular data and enhance the MSE results. In MDL the big input data set can be divided into training, testing, and validating data sets as shown in Figure 3. Artificial Neural Networks (ANNs) are computational algorithms s. Originally, it was intended to simulate biological systems composed of “neurons”. ANN is capable of machine learning and pattern recognition based on the model of human neurons. The interconnected neuron can compute values from inputs. ANNs are information process techniques that can be used for classifications and regression of continuous target attributes [17], [18]. This work will have a complicated architecture with a big number of neurons in the hidden layer, the selected number of training iterations must lead to MSE minimization [19]-[21].

![Figure 3. ANN deep learning](image2)
A nonlinear autoregressive model (NARM) can be built based on (1) and (2). In (1) the predicted output can be treated as a function of previous inputs and outputs as shown in Figure 4, while in (2) the predicted output is treated as a function of previous inputs only. We can see that there’s a feedback connection between the input and the output to get previous input [22], [23].

\[y(t) = F(x(t), x(t - 1), x(t - 2), ..., x(t - d), y(t - 2), ..., y(t - d)) \]

\[y(t) = F(x(t), x(t - 1), x(t - 2), ..., x(t - d)) \]

![Figure 4. NARM based on equation 1](image)

Figure 4. NARM based on equation 1

2. RESEARCH METHOD

A pollution input data set was selected [2]–[5]. This data set contains a 2D matrix with 8 rows and 508 columns, each column represents the values of PM (temperature, relative humidity, carbon monoxide, sulfur dioxide, nitrogen dioxide, hydrocarbons, ozone) [24], [25]. The target data is a 2D matrix with 3 rows and 508 column, each row represents the values of the pollution negative effects (total mortality, respiratory mortality, cardiovascular mortality). Figure 5 shows a sample of the input data set. The input data set was divided into 3 parts: training, testing and validating data, the various ANN architectures were selected to be trained and used as a prediction tool. Figure 6 shows the steps required to test each selected ANN.

![Figure 5. Samples of the input data set](image)
3. RESULTS AND DISCUSSION

The selected input data set and targets were treated using the regression model presented by Matlab code. Figure 7 shows the obtained regression coefficients, using these coefficients the targets formulas were calculated and the value of MSE was around 5.37425, as shown in Figure 8. To reduce MSE value NARM was built and tested. First, we used (1), where the output is a function of the previous inputs and outputs, and Figure 9 shows the architecture of the used ANN. Here we changed the number of neurons in the hidden layer and the number of delays, Figure 10 shows one of the responses of the executed model. The previous model was treated using a variant number of neurons in the hidden layer and various numbers of delays, Table 1 shows the obtained values for MSE.

	t_1	t_2	t_3
t_1	220.3519	15.3448	134.3318
t_2	-0.6580	-0.1126	-0.5661
t_3	-0.2183	-0.0158	-0.1015
t_4	1.3875	0.0779	1.0582
t_5	2.4276	-0.0530	3.4070
t_6	-0.9017	-0.0227	-0.5651
t_7	0.1590	0.0216	0.1169
t_8	0.7085	0.0199	0.2887
t_9	0.0725	0.0182	0.0162

Figure 7. Calculated regression coefficients
Autoregressive prediction analysis using machine deep learning (Mohammad S. Khrisat)

Figure 8. Regression errors between the targets and calculated outputs

Figure 9. NARM based on (1)

Figure 10. Model-based on (1) response

Table 1. Obtained results of executing model 1

Neuron /delay	8	4	2
128	0.004428	0.216104	7.0705*e-14
64	1.30904	0.144605	31.89164
32	1.80656	23.46777	14.88772
16	4.29606	12.18773	29.02915
8	15.30561	16.25447	29.33317
From Table 1 we can see that increasing the number of neurons keeping the delay equal to 2 will enhance the model response by decreasing the MSE value, this is also shown in Table 2. Another model was built and tested based on (2), where the outputs were calculated as functions of the previous inputs, Figure 11 shows the basic architecture of the used model. Here we also changed the number of neurons in the hidden layer and the number of delays, Figure 12 shows one of the responses of the executed model. This model was treated using a variant number of neurons in the hidden and various numbers of delays, Table 3 shows the obtained values for MSE. From Table 3 we can see that increasing the number of neurons in the hidden layer with a bigger number of delays will enhance the model response by decreasing MSE values. Examining the obtained result using the regression model, model 1 and model 2 we can see the following facts: i) both NAR models enhance the regression performance compared with the regression model; ii) applying MDL by increasing the number of neurons in the ANN hidden layer will enhance the model response by decreasing MSE values; iii) it is better to use model 2 for prediction by increasing the number of neurons in the ANN hidden layer and keeping the number of delays small; and iv) model 1 has a better performance compared with mode 2.

Table 2. Effects of an increasing number of neurons keeping delay equal to 2

No of Neuron	MSE
128	7.07005*e^-14
256	1.43335*e^-14
512	1.77292*e^-26

Figure 11. NARM based on (2)

Figure 12. Model-based on (2) response

Table 3. Obtained results of executing model 1

Neuron /Delay	8	4	
256	3.20000e-4	2.88122e-2	1.49598
128	1.02681e-2	1.051855	37.54507
64	1.85082	13.86173	1.41662
32	3.21381e-3	21.91815	11.36876
16	53.68127	19.18600	39.52439
8	57.33899	53.65321	38.15894
4. CONCLUSION

A pollution data set was selected, the various target prediction models were built and tested, and the experimental results were examined and analyzed. It was shown that using the concepts of machine deep learning will enhance the response of the prediction model. Based on the obtained experimental results we recommend using either model 1 or model 2 for target prediction, increasing the number of neurons in model 1 and keeping the number of delays small will lead to better performance by minimizing MSE values.

REFERENCES

[1] K. L. Khine and T. S. Nyunt, “Predictive geospatial analytics with principal component regression,” International Journal of Electrical and Computer Engineering (IJEECE), vol. 10, no. 3, pp. 2651–2658, Jun. 2020, doi: 10.11591/ijeece.v10i3.pp2651-2658.

[2] B. Dhaval and A. Deshpande, “Short-term load forecasting with using multiple linear regression,” International Journal of Electrical and Computer Engineering (IJEECE), vol. 10, no. 4, pp. 3911–3917, Aug. 2020, doi: 10.11591/ijeece.v10i4.pp3911-3917.

[3] I. Kavati, G. K. Kumar, S. Kesagani, and K. S. Rao, “Signboard text translator: a guide to tourist,” International Journal of Electrical and Computer Engineering (IJEECE), vol. 7, no. 5, pp. 2496–2501, Oct. 2017, doi: 10.11591/ijeece.v7i5.pp2496-2501.

[4] S. Bhanja and A. Das, “A hybrid deep learning model for air quality time series prediction,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 22, no. 3, pp. 1611–1618, Jun. 2021, doi: 10.11591/ijeeecs.v22i3.pp1611-1618.

[5] N. Z. Salih and W. Khalaf, “Prediction of student’s performance through education data mining techniques,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 3, pp. 1708–1715, Jun. 2021, doi: 10.11591/ijeeecs.v22i3.pp1708-1715.

[6] M. S. Khirisat, A. Manasreh, H. G. Zaini, and Z. A. Alqaqdi, “Cover image rearrangement to secure LSB method of data steganography,” ARPN Journal of Engineering and Applied Sciences, vol. 17, no. 3, pp. 295–302, 2022.

[7] M. S. Khirisat, H. G. Zaini, and Z. A. Alqaqdi, “Simple, flexible method to extract digital image features,” Traitement du Signal, vol. 38, no. 5, pp. 1509–1514, Oct. 2021, doi: 10.18280/tsg.380527.

[8] M. S. Khirisat, R. S. A. Zneit, H. G. Zaini, and Z. A. Alqaqdi, “Analysis methods used to extract fingerprints features,” Traitement du Signal, vol. 38, no. 3, pp. 711–717, Jun. 2021, doi: 10.18280/tsg.380318.

[9] S. Mohamed and A. Ezzati, “A data mining process using classification techniques for employability prediction,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 14, no. 2, pp. 1025–1029, May 2019, doi: 10.11591/ijeeecs.v14i2.pp1025-1029.

[10] A. Al-Qaisi, A. Manasreh, A. Sharadqah, and Z. Alqaqdi, “Digital color image classification based on modified local binary pattern using neural network,” International Journal on Communications Antenna and Propagation (RECAP), vol. 9, no. 6, p. 403, Dec. 2019, doi: 10.15866/recap.v9i6.18425.

[11] H. Mosavat-Jahromi, Y. Li, L. Cai, and J. Pan, “Prediction and modeling of spectrum occupancy for dynamic spectrum access systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 3, pp. 715–728, Sep. 2021, doi: 10.1109/TCCN.2020.3048105.

[12] L. M. Padrayon, M. S. Atayan, J. S. Panelo, and C. R. Fagela, Jr, “Mining the crime data using naive Bayes model,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 2, pp. 1084–1092, Aug. 2021, doi: 10.11591/ijeeecs.v23i2.pp1084-1092.

[13] A. Law and A. Ghosh, “Multi-label classification using a cascade of stacked autoencoder and extreme learning machines,” Neurocomputing, vol. 358, pp. 222–234, Sep. 2019, doi: 10.1016/j.neucom.2019.05.051.

[14] Y. Zhang, Y. Wang, X.-Y. Liu, S. Mi, and M.-L. Zhang, “Large-scale multi-label classification using unknown streaming images,” Pattern Recognition, vol. 99, 2020, DOI: 10.1016/j.patcog.2019.107100.

[15] O. Ozyegen, S. Mohammadjafari, E. Kavurmacioglu, J. Maidens and A. B. Bener, “Self-organizing spectrum prediction in land mobile radio bands,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 2, pp. 771-782, June 2020, doi: 10.1109/TCCN.2019.2958639.

[16] B. S. Shawel, D. H. Woledegebre and S. Pollin, “Deep-learning based cooperative spectrum prediction for cognitive networks,” in 2018 International Conference on Information and Communication Technology Convergence (ICTC), 2018, pp. 133-137, doi: 10.1109/ICTC.2018.8539570.

[17] J. Wang and T. Zhang, “Degradation prediction method by use of autoregressive algorithm,” in 2008 IEEE International Conference on Industrial Technology, 2008, pp. 1-6, doi: 10.1109/ICIT.2008.4608519.

[18] N. Chakravarty, A. Spanias, L. D. Iasemidis, and K. Tsakalas, “Autoregressive modeling and feature analysis of dna sequences,” EURASIP J. Adv. Signal Process, 2004, doi: 10.1155/S111086570409252X.

[19] M. D. Eastin, E. Delmelle, I. Casas, J. Wexler, and C. Self, “Intra- and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia,” The American journal of tropical medicine and hygiene, vol. 91, no. 3, pp. 598-610, 2014, doi: 10.4269/ajtmh.13-0303.

[20] A. AlQaisi, M. AtTarawneh, Z. A. Alqaqdi, and A. A. Sharadqah, “Analysis of color image features extraction using texture methods,” TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 17, no. 3, 2017, p. 9922, doi: 10.12928/TELEKOMNIKA.v17i3.9922.

[21] R. Kuc and H. Li, “Reduced-order autoregressive modeling for center-frequency estimation,” Ultrasonic Imaging, vol. 7, no. 3, pp. 244-251, 1985, doi: 10.1016/1046-734X(85)90004-5.

[22] A. Abdullahi, N. A. Samsudin, M. H. A. Rahim, S. K. A. Khalid, and R. Efendi, “Multi-label classification approach for Quranic verses labelling,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 24, no. 1, pp. 484-490, 2021, doi: 10.11591/ijeeecs.v24i1.pp484-490.

[23] E. T. Alshammari, “Towards an accurate Ground-Level Ozone Prediction,” International journal of electrical and Computer Engineering (IJEECE), vol. 8, no. 2, 2018, doi: 10.11591/ijeece.v8i2.pp1131-1139.

[24] M. S. Khirisat and Z. A. Alqaqdi, “Solving multiple linear regression problem using artificial neural network,” International Journal of Electrical and Computer Engineering (IJEECE), vol. 12, no. 1, p. 770, 2022, doi: 10.11591/ijeece.v12i1.pp770-775.

[25] L. S. Mezher, “Design and implementation hammer neural network with VHDL,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 19, no. 3, pp. 1469-1479, 2020, doi: 10.11591/ijeeecs.v19i3.pp1469-1479.

Autoregressive prediction analysis using machine deep learning (Mohammad S. Khirisat)
BIOGRAPHIES OF AUTHORS

Mohammad S. Khrisat
assistentes professor in faculty of engineering technology Balqaa applied university Amman Jordan received the Ph.D. in the mechatronics engineering from People friendship university of Russia in 2017 and get the master’s degree in computer engineering from NYIT and B.Sc. in electronic Engineering from Yarmouk university Irbid Jordan. He can be contacted at email: mkhrisat@bau.edu.jo.

Anwar Alabadi
Master’s in Electrical Engineering, 1995 UND, USA. Bachelor of Science in Electrical and Computer Engineering, Minnesota State University, Mankato, USA working in Balqaa applied university electrical engineering department. He can be contacted at email: anwar@bau.edu.jo.

Saleh Khawatreh
Associate Professor in the faculty of engineering, Al Ahliyya Amman University, Amman–Jordan get the Ph.D. From Arab Academy/Jordan in CIS. He can be contacted at email: skhawatreh@ammanu.edu.jo.

Majed Omar Al-Dwairi
PhD in Radio Engineering and Television Systems/Multichannel Communication Odessa National Academy of Telecommunications, Ukraine-Odessa Jun 1998 Dissertation: The Analysis and Synthesis of the Telecommunication System with Polynomial Signals. He can be contacted at email: majeddw@bau.edu.jo.

Ziad A. Alqadi
professor in Balqaa applied university faculty of engineering technology electrical engineering department, received the Ph.D. in computer engineering from Igor Sikorsky Kyiv Polytechnic Institute 1986 and frim the same university get the master and the B.Sc. in the computer engineering, He can be contacted at email: dr.ziad.alqadi@bau.edu.jo.