UVODNIK

Poštovana čitateljice / Poštovani čitatelju,

Pred Vama je posebni broj 1/2013 časopisa AUTOMATIKA s radovima iz područja slijednih sustava. Odabrani su radovi prikazani na znanstvenom skupu 12th IEEE International Workshop in Advanced Motion Control, AMC 2012, koji je održan u Sarajevu, 25.-27. ožujka 2012. godine. Industrija i akademska zajednica uključene su u razvoj učinkovitih postupaka projektiranja slijednih sustava s ciljem zadovoljenja sve stražih zahtjeva za brzim i preciznim gibanjem. Slijedni se sustavi primjenjuju u mnogim drugim sustavima, kao što su visoko precizni proizvodni alati, minijaturni proizvodi, sklopovi s mikro i nano komponentama, električna vozila, novi izvori energije itd. Široko područje primjena slijednih sustava privuklo je veliki broj znanstvenika i istraživača da se njime bave. Širina primjena slijednih sustava vidljiva je i iz jedanaest članaka uvrštenih u ovaj posebni broj.

U prvom je radu predložen praktičan postupak sinteze regulatora za mikro pomake pomocu kugličnih ležajeva uzimajući u obzir nelinearna svojstva trenja u mehanizmu u području mikro-pomaka kao i Coulombova i viskoznog trenja u području makro pomaka. Drugi se rad bavi problemom sinteze konturnog regulatora za visoko precizne slijedne sustave. U radu su razmatrani algoritam generiranja trajektorije, postupak konstrukcije pogreške konture, te postupak sinteze konturnog regulatora. Za generiranje referentne trajektorije korištena je kombinacija eliptičnih Fourierovih opisnika (EFD) i vremenska aproksimacija splajnovima (TBSA).

Upravljanje rezonantnim sustavima s komunikacijskim kašnjenjem primjenom valnog kompenzatora analizirano je u trećem radu. Predloženo se rješenje temelji na primjeni reflektiranog vala primjenom DOB te valnog kompenzatora zasnovanog na CDOB u vanjskoj petlji s ciljem potiskivanja vibracija.

Problematica haptičkih aplikacija razmatrana je u četvrтом i petom radu. U četvrтом je radu predložen indikator vrednovanja za analizu složenosti gibanja u paralelnom haptičkom sustavu s više stupnjeva slobode. U radu je pokazano da se modalna informacija može prikazati korištenjem Fourierovih koeficijenata. Predloženo je ukupno harmoničko izoblječenje (THD) haptičke modalne informacije kao indikator složenosti gibanja te njegovo prikazano njegovo korištenje za slučaj sustava s više stupnjeva slobode. U petom je radu opisana FPGA implementacija na kliznom režimu zasnovanog regulatora za bilateralnu teleoperaciju. Predložena implementacija unapređuje dodirnu pouzdanost proširenjem upravljačkog propusnog pojasa. Prikazana metodologija za projektiranje FPGA sklopnja koristi osnovne optimizacijske metode s ciljem postizanja potrebnih upravljačkih perioda i zahtijevane fizičke iskorištenosti sklopninja.

Upravljanje silom razmatrano je u šestom i sedmom radu. Šesti rad predlaže postupak poboljšanja performansi upravljanja rezonantnim omjerom. Ti su postupci zasnovani na a) estimaciji poremećaja na strani tereta, b) primjeni CDM postupka za određivanje pojačanja regulatora i c) određivanju koeficijenta elastičnosti fleksibilnog robotskog sustava. U sedmom je radu opisan sustav upravljanja magnetskom levitacijom i silom kod manipulatora s spiralnim motorom. Nadalje, u radu je dan model mišićno-koštanog manipulatora pogonjenog spiralnim motorom.

Osmi rad obrađuje na kvarove otporno upravljanje generatorom za vjetroturbine s promjenjivim zakretom lopatica koje je primjenjivo neovisno o tipu generatora. Naglasak je u radu stavljen na problem oštećenja izolacije unutar namota jedne faze statora generatora koje se može dijagnosticirati i okarakterizirati prije aktiviranja sustava zaštite. Predložena je nadogradnja posto
ječeg sustava upravljanja vjetroagregatom koja sprječava širenje kvara i pritom postiže čim manje smanjenje proizvodnje električne energije u odnosu na normalan režim rada.

Problem raspodjele pogonske sile električnih vozila s četiri kotača na skliskoj površini razmotren je u devetom radu. U radu je predložen novi postupak raspodjele pogonske sile te je potvrđena njegova učinkovitost u smislu smanjenja ukupne pogonske sile i eliminacije zakretnog momenta.

Deseti rad prikazuje sustav upravljanja gibanjem redundantnog mehanizma zasnovanog na savijanju s piezoelektričnim aktuatorom. Zadatak je upravljanja eliminacija parazitskog gibanja, koje je posljedica pogreške proizvodnje i montaže, primjenom kliznog režima upravljanja i estimadora poremećaja. Analiziran je utjecaj estimadora poremećaja i upravljanja u zatvorenoj petlji usporedbom s upravljanjem u otvorenoj petlji.

Jedanaest rad obrađuje problem upravljanja mehatroničkim sustavom primjenom modularnog automata s konačnim brojem stanja (MFSM), sustava događajno uvjetovanih radnji (ECA), sustava upravljanja s estimacijom tereta, kao i primer DSP sustava. Komentirana su ograničenja i značajke svake od tih metoda i prikazana je tablica stanja s mogućnošću prikazivanja paralelnih asinkronih slijednih procesa.

Gostujući urednici:
Prof. Asif Šabanović, Sabanci University, Turska
Prof. Toshiaki Tsuji, Saitama University, Japan
Prof. Kiyoshi Ohishi, Nagaoka University of Technology, Japan
Prof. Makoto Iwasaki, Nagoya Institute of Technology, Japan
EDITORIAL

Dear reader,

In front of you is the special issue of AUTOMATIKA, with papers related to motion control systems. These papers have been selected from the presentations at 12th IEEE International Workshop in Advanced Motion Control, AMC 2012, held in Sarajevo March 25-27, 2012. Both industry and academia have been involved in fulfilling real-world needs in developing efficient design methods that will support never-ending requirements for faster and accurate motion control systems. High-precision manufacturing tools, product miniaturization, the assembly of micro and nanoparts, a need for high accuracy and fidelity of motion in robot-assisted surgery, electric vehicles, new energy sources, mass storages devices – in one way or another employ motion control. The range of applications of motion control systems attracted many researchers in this very diverse area. This could be seen by looking at the papers selected for this special issue. This issue contains eleven papers covering different areas of motion control application.

First paper presents a practical feedback controller design of a ball screw-driven table system for the micro-displacement positioning taking into account nonlinear elastic properties of friction of the mechanism in the micro-displacement region as well as Coulomb and/or viscous friction in the macro-displacement. These characteristics result in different positioning responses and frequency characteristics of the plant in the micro- and macro-displacement regions. Second paper deals with design of the contouring controller for high precision control systems. The trajectory generation algorithm, contour error construction method and finally the contour controller design are discussed. A combination of elliptical Fourier descriptors (EFD) and time-based spline approximation (TBSA) is used to generate reference trajectory.

The control of resonant systems with communication time delay using a wave compensator is discussed in third paper. The solution is based on the usage of the reflected wave rejection using DOB and then using wave compensator based on CDOB in the outer loop to suppress vibrations.

The haptics applications are discussed in the fourth and fifth paper. Fourth paper proposes an evaluation index for the analysis of the motion complexity in parallel multi DOF haptic system. It has been shown that modal information can be represented by the Fourier coefficients. In the paper a total harmonic distortion (THD) of the haptic modal information as a haptic motion index is proposed and its utilization shown for multi DOF system. Fifth paper presents the FPGA implementation of the sliding mode control for bilateral teleoperation. The proposed implementation improves haptic fidelity by the widening the control bandwidth. The presented FPGA design methodology applies optimization in order to meet the requirements in terms of the control period and the hardware resource utilization.

Force control is discussed in the sixth and seventh paper. Sixth paper proposes techniques for improving the performance of resonance ratio control method. These are based on (a) a multi encoder based disturbance observer for load side disturbance estimation, (b) application of coefficient diagram method for controller gain selection and (c) estimation of the spring coefficient of flexible robot system. In the seventh paper zero-power magnetic levitation control and force control have been proposed for manipulators with spiral motor. In addition, a model of a musculoskeletal biped robot equipped with spiral motors is introduced.

Eight paper introduces a generator fault-tolerant control scheme for variable-speed variable-pitch wind turbines that can be applied regardless to the AC generator used. The focus is on gen-
erator stator isolation inter-turn fault that can be diagnosed and characterized before triggering the safety device. An extension of the conventional wind turbine control structure is proposed that prevents the fault propagation while power delivery under fault is deteriorated as less as possible compared to healthy machine conditions.

The driving force distribution in four-wheel road electric vehicle on a split slippery road is discussed in the ninth paper. New distribution force method is proposed. Its effectiveness in reduction of total driving force and elimination of yaw-moment is confirmed.

The tenth paper presents motion control in redundant flexure mechanism with PZT actuation. The aims of the work are to eliminate the parasitic motions of the stage, misalignments of the actuators, errors of manufacturing and hysteresis of the actuators by having a redundant mechanism with the implementation of a sliding mode control and a disturbance observe. The effect of the observer and closed loop control is presented by comparing the results with open loop control.

The eleventh paper discusses the design of motion control in mechatronics systems using the MFSM (Modular Finite State Machine), ECA (Event-Condition-Action) system, motion generation, motion control with load estimation, and an example of a DSP system. The limitations and attributes of each technique are discussed, and a state-table format is presented with the capability of representing parallel asynchronous sequential processes.

Guest Editors
Prof. Asif Šabanović, PhD, Sabanci University, Turkey
Prof. Toshiaki Tsuji, PhD, Saitama University, Japan
Prof. Kiyoshi Ohishi, PhD, Nagaoka University of Technology, Japan
Prof. Makoto Iwasaki PhD, Nagoya Institute of Technology, Japan