Effects of the $\Lambda(1405)$ on the Structure of Multi-Antikaonic Nuclei

Takumi Mutoa, Toshiki Maruyamab, Toshitaka Tatsumic

aDepartment of Physics, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
bAdvanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
cDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

The effects of the $\Lambda(1405)$ (Λ^*) on the structure of the multi-antikaonic nucleus (MKN), in which several K^- mesons are embedded to form deeply bound states, are considered based on chiral symmetry combined with a relativistic mean-field theory. It is shown that additional attraction resulting from the Λ^* pole has a sizable contribution to not only the density profiles for the nucleons and K^- mesons but also the ground state energy of the K^- mesons and binding energy of the MKN as the number of the embedded K^- mesons increases.

Key words: multi-antikaonic nuclei, chiral symmetry, kaon condensation, subthreshold resonance $\Lambda(1405)$

PACS: 21.85.+d, 11.30.Rd, 21.65.Jk, 26.60.-c

1. Introduction

Exploring multi-strangeness systems is an important aspect of understanding hadron dynamics in dense matter. Kaon condensation in neutron stars may exist as a strangeness-nonconserving system, from normal matter through weak processes, $N + n \to N + p + K^-$, $N + e^- \to N + K^- + \nu_e$ ($N = p, n$)\(^\text{[1]}\). Recently multi-antikaonic nuclei (abbreviated as MKN), where several antikaons (K^- mesons) are bound in the ground state of the nucleus, have been investigated\(^\text{[2, 3]}\), stimulated by the proposal to explore deeply bound kaonic nuclear states and subsequent theoretical and experimental studies\(^\text{[4]}\). The MKN is a strangeness-conserving system and should be formed by embedding a K^- meson in the nucleus through strong processes. Both the kaon-condensed state in neutron-star matter and the MKN formed in experiments are cold, dense objects originating from the common $\bar{K} - N$ and $\bar{K} - \bar{K}$ interactions in dense matter, so that they may be closely related with each other.

We have considered properties of the MKN within the framework of a relativistic mean-field theory (RMF) coupled with the nonlinear effective chiral Lagrangian\(^\text{[5]}\). It has been shown that the lowest K^- energy, ω_{K^-}, increases as the number of embedded K^- mesons, $|S|$, becomes large and that it enters into the subthreshold resonance region of the $\Lambda(1405)$ (Λ^*), where $\omega_{K^-} = m_{\Lambda^*} - m_N = 467$ MeV. This is because the contribution to the energy from the repulsive $\bar{K} - \bar{K}$ interaction becomes sizable with the increase in $|S|$ as compared with the attractive $\bar{K} - N$ interaction. In this paper, we take into account the Λ^*-pole contribution as well as range terms and study these effects on the structure of the MKN.
2. Formulation

A spherical symmetry is assumed for the MKN, and the mass number A, the number of protons Z, and the number $|S|$ of embedded K^- mesons with the lowest energy $ω_{K^-}$ are kept fixed. We start with the effective chiral Lagrangian, which incorporates s-wave interactions between the (nonlinear) K mesons and nucleons of the scalar type simulated by the KN sigma term, $Σ_{KN}$, and of the vector type (Tomozawa-Weinberg term). The nonlinear K^- field $Σ$ is given as $Σ = \exp[2i(K^+T_{4+5} + K^-T_{4-5})/f]$, where $T_{4+5,4-5}$ is the SU(3) generator and f (= 93 MeV) the meson decay constant. The K^- field is represented as $K^{-}(r) = fθ(r)/\sqrt{2}$ with $θ(r)$ being the chiral angle in the condensate approximation[2]. These $K^{-}N$ interactions are replaced by those generated by the $σ$ and $ω$, $ρ$ mesons-exchanges, respectively, within the RMP[2].

The thermodynamic potential $Ω$ for the MKN is derived under a local density approximation for the nucleons[2]. The correction to the energy density, $Δε(r)$, from the $Λ^+$ is introduced through the second-order perturbation with respect to the axial current of hadrons, $A(r)$, the Coulomb potential $Ω_{Coul}$. The $Ω_{Coul}$ is given by

$$Ω_{Coul} = \frac{4}{3}πe^2\rho(r) - \frac{2}{3}πe^2\rho(r),$$

where the smooth parts $= d{ρ}_p, d{ρ}_n$ are the range terms with $ρ_p(r)$ ($ρ_n(r)$) being the scalar density of the proton (neutron) and the pole contribution comes from the $Λ^+$ with $γ_{Λ^+}$ being the width. These terms are absorbed into the effective nucleon masses. We call these contributions to the energy second-order effects (SOE)[1]. In Eq. (1), $\vec{ω}_{K} - r$ [$ω_{K^-} - V_{Coul}(r)$] is the lowest energy of the K^- shifted in the presence of the Coulomb potential. The parameters, d_p, d_n, $g_{Λ^+}$, and $γ_{Λ^+}$ are determined so as to reproduce the on-shell s-wave K^-N scattering lengths[3].

The classical K^- field equation is given from $δΩ/δθ = 0$ as

$$\nabla^2 θ(r) = \sin θ(r) \left(m_{K}^2(r) - 2ω_{K} - rX_0(r) - \vec{ω}_{K} - r \cos θ(r) \right) - \vec{ω}_{K} - r \cos θ(r) \left(ρ_p(r) + \frac{g_{Λ^+}}{2f} \left(\frac{m_{Λ^+} - m_N - ω_{K^-}}{m_{Λ^+} - m_N - ω_{K^-}} + γ_{Λ^+}^2 \right) \right) d{ρ}_p(r).$$

where $m_{K}^2(r) = m_{K}^2 - 2g_{σKx}mk(r)σ(r)$ is the square of the effective mass of the K^-, and $X_0(r) = g_{σx}\left(ω_{x}(r) + g_{ρx}R_{x}(r) \right)$ represents the K^-N vector interaction. In these quantities, $g_{σx} (i = σ, ω, ρ)$ are the coupling constants, while $σ(r), ω(r)$, and $R_{x}(r)$ are the mean fields of the $σ$ meson and the time components of the $ω$ and $ρ$ mesons, respectively. Together with Eq. (4) one obtains the coupled equations of motion (EOM) for the other mesons $σ, ω, ρ$, and the Poisson equation for the Coulomb potential $V_{Coul}(r)$:

$$\begin{align*}
-\nabla^2 σ(r) + m_σ^2σ(r) &= -\frac{dU}{dσ}(r) + g_{σN}(ρ_p^*(r) + ρ_n(r)) + 2g_{σKx}mf^2(1 - \cos θ(r)), \quad (3a) \\
-\nabla^2 ω_0(r) + m_ω^2ω_0(r) &= g_{ωN}(ρ_p^*(r) + ρ_n(r)) - 2g_{ωK}(ω_{K} - r) f^2(1 - \cos θ(r)), \quad (3b) \\
-\nabla^2 R_0(r) + m_ρ^2R_0(r) &= g_{ρN}(ρ_p^*(r) - ρ_n(r)) - 2g_{ρK}(ω_{K} - r) f^2(1 - \cos θ(r)), \quad (3c) \\
\n\n\n\n\n\n\n\n}\begin{align*}
-\nabla^2 V_{Coul}(r) &= 4πe^2(ρ_p(r) - ρ_N(r)). \quad (3d)
\end{align*}$$
where $\rho_i(r) (i = p, n, K^-)$ are the number densities and $g_{iN} (i = \sigma, \omega, \rho)$ the coupling constants. The coupled equations (2) and (3a) − (3d) are solved self-consistently, and the density distributions $\rho_i(r)$ and other quantities are obtained as functions of the radial distance r.

3. Numerical Results

We take the 15O ($A=15$, $Z=8$) as a reference nucleus. The K^- optical potential depth U_K is chosen to be $U_K = -80$ MeV.

3.1. Density profiles

The density distributions of the protons, neutrons, and the distribution of the strangeness density $[\rho_K(r) - \rho(r)]$ are shown for $|S|=4$ and 8 in Fig. 1. The solid lines are for the previous result without the SOE, and the dashed-dotted lines for the present result with the SOE. Due to the

\begin{align*}
\text{SOE, the } K^- \text{ mesons and the protons are attracted more to each other than the case without the SOE, since in the former the } K^- \text{ lies below the resonance region of the } \Lambda^* \text{ and feels an additional attraction through coupling with the } \Lambda^* \text{ pole. As a result, the central densities of the protons and } K^- \text{ mesons become larger. On the other hand, neutrons are pushed outward from the center of the MKN due to the weakly repulsive effect from the range term (} \propto d_n \rho_n s_n, d_n < 0 \text{ in Eq. (2)} \text{). These features become remarkable for a large value of } |S| (\text{Compare the cases of } |S| = 4 \text{ and } 8). \text{ The central baryon density } \rho_B(0) (=\rho_p(r = 0) + \rho_n(r = 0)) \text{ becomes } \rho_B^{(0)} \sim 3.5 \rho_0 \text{ with } \rho_0 = 0.153 \text{ fm}^{-3} \text{ for } |S| \sim 8. \text{ One can see a “neutron skin” structure with a thickness (1–2) fm for } |S| \sim 8. \text{ In addition, for a larger } |S|, \text{ the proton and } K^- \text{ density distributions tend to be more uniform near the center.}
\end{align*}

3.2. $|S|$-dependence of the lowest K^- energy and binding energy

In Fig. 2 the lowest energy of the K^-, ω_K^-, is shown as a function of $|S|$. The energy difference per unit of strangeness, $[E(A,Z,|S|) - E(A,Z,0)]/|S| (=m_K - B(A,Z,|S|)/|S|)$ with $B(A,Z,|S|)$ being the binding energy of the MKN, is shown as a function of $|S|$ in Fig. 3. In these figures the solid lines are for the result without the SOE, and the dashed-dotted lines for the result with the SOE. From Fig. 2 the ω_K^- is shown to be lowered by ~ 40 MeV from that without the SOE due to the additional attraction brought about from the Λ^* pole. Nevertheless, ω_K^- increases with
an increase in $|S|$ since the repulsive $\bar{K} - \bar{K}$ interaction overwhelms the attractive $\bar{K} - N$ interactions at large $|S|$. For $|S| \geq 12$ (in the case of $U_K = -80$ MeV), K^- mesons become unbound, where $\omega_K \gtrsim m_{\Lambda^*} - m_N$ above the Λ^*-resonance region.

From Fig. 3, the $B/|S|$ steadily increases with $|S|$ in the case in which the SOE is included, while it shows little dependence upon $|S|$ without the SOE. One finds that $m_K - B/|S| > m_{\Lambda(1116)} - m_N$, where $m_{\Lambda(1116)}$ is the free mass of the lightest hyperon $\Lambda(1116)$. Hence the MKN decays through strong processes such as $K^- NN \rightarrow \Lambda(1116) N$, so that it is not stable as a self-bound object. This result qualitatively agrees with that in Gazda et al.\cite{3}.

4. Concluding remarks

With regard to creating self-bound objects for the MKN, hyperon-mixing effects may be responsible for formation of more strongly bound states. It has been shown in a liquid-drop picture that coexistence of antikaons and hyperons leads to highly dense self-bound objects, which may decay only through weak processes\cite{7}. There is a controversy about the possible existence of such objects depending on the adopted models and approximations\cite{6}. A realistic framework including antikaons and hyperons as well as nucleons beyond the local density approximation for baryons is necessary for further investigation.

Acknowledgments

This work is supported in part by the Grant-in-Aid for Scientific Research (No. 20028009).

References

[1] H. Fujii, T. Manuyama, T. Muto and T. Tatsumi, Nucl. Phys. A 597 (1996) 645.
[2] T. Muto, T. Manuyama and T. Tatsumi, Phys. Rev. C 79 (2009) 035207.
[3] D. Gazda, E. Friedman, A. Gal, and J. Mareš, Phys. Rev. C 76 (2007) 055204; Phys. Rev. C 77 (2008) 045206.
[4] For a recent review, A. Gal and R. S. Hayano (Eds.), Nucl Phys. A 804 (2008) 1.
[5] A. D. Martin, Nucl. Phys. B 179 (1981) 33.
[6] D. Gazda, E. Friedman, A. Gal, and J. Mareš, Phys. Rev. C 80 (2009) 035205.
[7] T. Muto, Nucl Phys. A 804 (2008) 322.