Body composition as an indicator of the nutritional status in children with newly diagnosed ulcerative colitis and Crohn’s disease – a prospective study

Paweł Więch1,2, Monika Binkowska-Bury1,2, Bartosz Korczowski3

1Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
2Centre for Medical and Natural Sciences Research and Innovation, University of Rzeszow, Rzeszow, Poland
3Paediatric Department, State Hospital, Medical College, University of Rzeszow, Rzeszow, Poland

Gastroenterology Rev 2017; 12 (1): 55–59
DOI: 10.5114/pg.2016.64601

Key words: inflammatory bowel disease, nutritional status, body composition, children.

Address for correspondence: Paweł Więch DHSc, Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, 2a mjr. W. Kopisto St, 35-310 Rzeszow, Poland, phone: +48 667 192 696, e-mail: p.k.wiech@gmail.com

Abstract

Introduction: The prevalence of nutritional status disorders in children with ulcerative colitis (UC) is much lower than in the case of Crohn’s disease (CD). The largest variability in the components of body composition occurs at the time of a new diagnosis and in periods of disease exacerbation.

Aim: Assessment of body composition in children with UC and CD.

Material and methods: The preliminary study included 59 children with inflammatory bowel disease (IBD) (34 children with UC vs. 25 children with CD) aged 4–18 years. The final analysis included 26 newly diagnosed children (16 children with UC vs. 10 children with CD). The evaluation of body composition was conducted by means of BIA-101 bioimpedance analyser.

Results: Decreased values of lean mass were found in children with newly diagnosed IBD (UC: 41.13 kg vs. control group: 42.06 kg; CD: 35.50 kg vs. control group: 45.50 kg). After a year interval, an increase in fat (UC 1: 7.67 kg vs. UC 2: 10.33 kg; CD 1: 7.36 kg vs. CD 2: 9.47 kg) as well as lean body mass (UC 1: 35.22 kg vs. UC 2: 39.00 kg; CD 1: 35.99 kg vs. CD 2: 42.41 kg) was found in children.

Conclusions: Children with newly diagnosed IBD were highly vulnerable to nutritional status disturbances. The increase in fat and lean body mass in an annual interval may be due to the treatment regime and control of the children.

Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD), which are collectively referred to as inflammatory bowel disease (IBD), have their onset in childhood in nearly 25% of cases [1, 2]. Despite the development of various methods in IBD diagnosis, including the important role of biomarkers [3], still work is being conducted to find the most efficient way of diagnosis.

Disorders of fat absorption and acute malnutrition can occur in children with IBD [4]. Accordingly, an important aspect of monitoring of IBD patients is the assessment of nutritional status oriented at abnormalities in the body composition. The incidence of malnutrition in children with UC is much lower than in the case of CD; however, it may increase in exacerbation periods [5]. Malabsorption or protein loss in patients with CD in the active stage of the disease deteriorate the above condition [6]. Despite the improvement of nutritional status during remission, disturbances in the individual components of body composition still can be seen [7]. The most common consequences are weight loss, exhaustion of energy reserves [8], and a significant decrease in fat free body mass [9, 10], including the so-called “dry weight” [11]. Malnutrition in CD occurs in 32% of children at the time of diagnosis of the disease, and in 15% in subsequent years of its duration [12]. Bearing in mind the diagnosis of the disease at the level of 8.7% (persons under 16 years of age) in Poland, and the increase in the incidence of CD in recent years [13], careful analysis of body composition has become of particular significance. Some reports found overweight in 20–30% of children with
Table I. Demographic and clinical characteristics of 59 children with IBD

| Parameter                                      | Value                                      |
|-----------------------------------------------|--------------------------------------------|
| Age of respondents, mean ± SD [years]         | 13.5 ±3.41 (UC) vs. 13.8 ±3.12 (CD)        |
| UC, n                                         | 34 (17 girls vs. 17 boys)                  |
| CD, n                                         | 25 (8 girls vs. 17 boys)                   |
| Disease activity (PUCAI/PCDAI):               |                                            |
| Lack                                          | 12 (UC) vs. 7 (CD)                         |
| Mild                                          | 8 (UC) vs. 5 (CD)                          |
| Moderate                                      | 10 (UC) vs. 9 (CD)                         |
| Severe                                        | 4 (UC) vs. 4 (CD)                          |
| Duration of the disease:                      |                                            |
| New diagnosis                                 | 16 (UC) vs. 10 (CD)                        |
| Up to 1 year                                  | 4 (UC) vs. 3 (CD)                          |
| More than 1 year                              | 14 (UC) vs. 12 (CD)                        |
| Location of UC lesions (the Paris classification): |                                    |
| Pancolitis                                    | 27 (13 girls vs. 14 boys)                  |
| Left-sided                                    | 3 (2 girls vs. 1 boys)                     |
| Extensive                                     | 4 (2 girls vs. 2 boys)                     |
| Location of CD lesions (the Paris classification): |                                    |
| 1/3 of the distal section of ileum (L1)       | 1 child                                   |
| The colon (L2)                                | 2 children                                |
| The ileum and colon (L3)                      | 3 children                                |
| The upper section distally to the ligament of Treitz and proximally to 1/3 of the distal section of ileum (L4b) | 1 child |
| 1/3 of the distal section of ileum and the upper section distally to the ligament of Treitz and proximally to 1/3 of the distal section of ileum (L1/L4b) | 2 children |
| 1/3 of the distal section of ileum and the upper section of the alimentary canal proximally to the ligament of Treitz (L3/L4a) | 6 children |
| The ileum, colon, and the upper section of alimentary canal proximally to the ligament of Treitz (L3/L4a) | 10 children |

IBD – inflammatory bowel diseases, UC – ulcerative colitis, CD – Crohn’s disease, PUCAI – Paediatric Ulcerative Colitis Activity Index, PCDAI – Paediatric Crohn’s Disease Activity Index.
Body composition as an indicator of the nutritional status in children with newly diagnosed ulcerative colitis and Crohn’s disease – a prospective study

Gastroenterology Review 2017; 12 (1)

sured current 800 µA, sinusoidal, 50 kHz), before noon (7:00–12:00), in supine position, with abducted upper (30°) and lower (45°) extremities, on an empty stomach, after 5 min of rest. To ensure high reliability of the results obtained, two measurement cycles were performed (one after another). Disposable electrodes were placed on the dorsal surface of the right upper (over the wrist) and right lower limb (the ankle). The measurement results were transferred to specialised software (Bodygram1_31 by AKERN).

Disease activity in cases of UC was assessed by means of the Paediatric Ulcerative Colitis Activity Index (PUCAI), whereas CD was assessed by the Paediatric Crohn’s Disease Activity Index (PCDAI) modified by Ryżko and Woynarowski. The classification of Paris was adopted to assess the location of the lesions in the gastrointestinal tracts of all children.

Ethical approval

The study was approved by the Bioethical Commission of the Faculty of Medicine, University of Rzeszow in Rzeszow (No.5/02/2012). The study was conducted in accordance with the Declaration of Helsinki.

Statistical analysis

Parametric and non-parametric tests of significance were used for statistical analysis of the obtained data. Meeting the conditions for application of parametric tests allowed the use of t-test for independent samples, one-way analysis of variance (ANOVA), and Pearson’s correlation. The level of significance was adopted at p < 0.05 for statistically significant relationship; p < 0.01 for a very statistically significant relationship; and p < 0.001 for a highly statistically significant relationship [16]. The calculations were conducted by means of IBM SPSS Statistics 20 software.

Results

The comparison of selected components of body composition in children newly diagnosed with UC to the control group showed lower values of fat-free mass (FFM) (UC: 12.95 ±41.13 kg vs. control group: 14.50 ±42.06 kg) and individual components of body cell mass (BCM) (UC: 21.19 ±8.78 kg vs. control group: 23.06 ±9.11 kg) and muscle mass (MM) (UC: 10.51 ±26.06 kg vs. control group: 10.99 ±28.19 kg). The differences were not at the level of statistical significance (p > 0.05). The fat mass (FM) and total body water (TBW) were comparable in both groups.

Comparative analysis of body composition in children newly diagnosed with CD showed significantly lower values of FFM than in the children from the control group (CD: 35.50 ±11.07 kg vs. control group: 45.50 ±9.95 kg; p = 0.047). Particularly significant differences were related to the values of BCM components (CD: 17.40 ±5.58 kg vs. control group: 25.30 ±5.79 kg; p = 0.006), MM (CD: 21.50 ±7.01 kg vs. control group: 31.00 ±7.13 kg; p = 0.007), and TBW (CD: 28.60 ±6.36 l vs. control group: 34.80 ±6.75 l; p = 0.048). Lower FM values were also observed, but in the absence of statistical significance.

The annual interval in children with UC showed an increase in fat as well as fat-free body mass. A particularly significant increase was observed among the components of the cell mass, muscle mass, and total body water (Table II). A follow-up after a year in children with CD showed statistically significant increase in FM and FFM. This trend was also visible in the components of the BCM, MM, and TBW (Table III).

Discussion

In the medical literature there are numerous reports that analyse the nutritional status of children with IBD using simple screening assessment indicators [12, 14,

| Components | UC1 | UC2 | P-value* |
|------------|-----|-----|----------|
| FM | 9 | 7.67 ±3.08 | 9 | 10.33 ±3.74 | 0.285 |
| FFM | 9 | 35.22 ±14.85 | 9 | 39.00 ±13.87 | 0.007* |
| BCM | 9 | 16.63 ±8.79 | 9 | 20.64 ±8.73 | 0.007* |
| MM | 9 | 20.88 ±10.50 | 9 | 25.43 ±10.51 | 0.007* |
| TBW | 9 | 26.90 ±10.92 | 9 | 29.52 ±9.73 | 0.007* |

FM – fat mass [kg], FFM – fat-free mass [kg], BCM – body cell mass [kg], MM – muscle mass [kg], TBW – total body water [l], UC1 – the first test (2012), UC2 – the second test (2013); *p < 0.05.
Unfortunately, in many cases the results may not reflect an appropriate level of disturbance in the analysed group of children. The issue is confirmed by the long-term results of Sladek et al., characterising the clinical picture of 146 newly diagnosed paediatric cases of CD. Despite the fact that patients reported weight loss (43.0%) or lack of its expected increase (48.0%), in most cases (64.8%) body mass index (BMI) values were in the range of the 5th–85th percentile [18]. In addition, the researchers pointed to a possible lack of precision in detecting loss in a FFM using only body weight or BMI [21, 22]. The answer to the presented issue is attempts of thorough analysis of nutritional status assessment, including the components of body composition in children with UC and CD [10, 19, 22].

Our study showed lower values of FFM and its individual components in children newly diagnosed with UC and CD. In children with CD, the results were characterised by high statistical significance (p = 0.047). These results were confirmed by previous observations regarding the lower values of FFM in children with inflammatory bowel disease [22–24] and in particular with CD [10, 11]. The reasons for this phenomenon should be seen in the exhaustion of energy reserves, due to high dynamics and the severity of the inflammation in the early stages of the disease.

The lack of statistically significant differences in fat mass in our study also proved the specificity of the course of nutritional status disorders in IBD, as described in the publication by Gerasimidis et al., who pointed to weight loss and wasting that manifested in FFM disorders while FM remained stable [24].

Analysis of long-term changes in body composition in the present study showed a statistically significant increase in FM and FFM components. These results can be explained primarily by the influence of the recommended treatment, which in the long-term perspective caused remission in most cases. In the study by Sylvester et al., analysing children with CD in a 2-year follow-up, no significant increase in FFM was demonstrated; however, in both studies, the values of body composition components were lower than the figures reported in the healthy children from the control group [25]. The differences may be the result of different duration of the disease and therefore, potentially more frequent changes in its activity. Valentini et al. also reported a decline of cell mass observed even in remission [26]. In conclusion, it should be emphasised that the chronically low figures in FFM in children with IBD (particularly muscle and cell mass) may result in a number of developmental disorders including disorders in skeleton growth and consequently osteoporosis or osteopaenia [27, 28]. Constant analysis of changes in the trend of body composition will allow a more accurate assessment of nutritional status in children at risk, including children with IBD.

## Conclusions

Children with newly diagnosed IBD were highly vulnerable to nutritional status disturbances resulting in low levels of body composition. The increase in fat and lean body mass in an annual interval may be due to the treatment regime and control of the children.

## Acknowledgments

The study was conducted under the grant for statutory activity (Research Potential) of the Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow for the years 2013 and 2014. The authors would like to express their gratitude to the Director of St. Jadwiga Regional Hospital No. 2 in Rzeszow, and to the whole team of the Paediatric Ward and Gastroenterology Clinic at St. Jadwiga Regional Hospital No. 2 in Rzeszow for allowing to conduct presented research results. The authors would also like to thank Paweł Gudyka for his help and thorough sta-

### Table III. The values of selected components of body composition in children with newly diagnosed CD in the annual time period

| Components | CD1 N | Mean ± SD | CD2 N | Mean ± SD | P-value* |
|------------|-------|-----------|-------|-----------|----------|
| FM | 9 | 7.36 ±1.96 | 9 | 9.47 ±2.96 | 0.020* |
| FFM | 9 | 35.99 ±11.14 | 9 | 42.41 ±15.37 | 0.024* |
| BCM | 9 | 17.50 ±5.30 | 9 | 21.41 ±7.20 | 0.024* |
| MM | 9 | 21.82 ±6.66 | 9 | 26.37 ±8.79 | 0.028* |
| TBW | 9 | 29.01 ±6.57 | 9 | 31.02 ±7.77 | 0.028* |

FM – fat mass [kg], FFM – fat-free mass [kg], BCM – body cell mass [kg], MM – muscle mass [kg], TBW – total body water [l]. CD1 – the first test (2012), CD2 – the second test (2013); *p < 0.05.
tistical analysis in this study, and Agnieszka Bylak and all gastroenterology nurses from Children’s Specialised Clinic at Provincial Hospital No. 2 in Rzeszow, for assistance in organising the above tests.

Conflict of interest
The authors declare no conflict of interest.

References
1. Gurram B, Joeckel R, Stephens M. Nutrition in pediatric inflammatory bowel disease. Pract Gastroenterol 2012; 4: 56-62.
2. Hansen R, Cameron FL, Hold GL, et al. Inflammatory bowel disease. Paediatr Child Health 2010; 20: 473-8.
3. Moniuszko A, Wiśniewska A, Rydzewska G. Biomarkers in management of inflammatory bowel disease. Prz Gastroenterol 2013; 8: 275-83.
4. Socha R Pyzyk J, Koletzko B, et al. Essential fatty acid depletion in children with inflammatory bowel disease. Scand J Gastroenterol 2005; 40: 573-7.
5. Rocha R, Santana GO, Almeida N, et al. Analysis of fat and muscle mass in patients with inflammatory bowel disease during remission and active phase. Br J Nutr 2009; 101: 676-9.
6. Łodyga M, Eder P, Bartnik W, et al. The Guidelines of the Working Group of the National Consultant for Gastroenterology and Polish Society of Gastroenterology for management of a patient with Crohn’s disease [Polish]. Prz Gastroenterol 2012; 7: 317-38.
7. Hartman C, Elakim R, Shamir R. Nutritional status and nutritional therapy in inflammatory bowel diseases. World J Gastroenterol 2009; 15: 2570-8.
8. Jahnson J, Falch JA, Mowinckel P, et al. Body composition in patients with inflammatory bowel disease: a population-based study. Am J Gastroenterol 2003; 98: 1556-62.
9. Tjellesen L, Nielsen PK, Staun M. Body composition by dual energy X-ray absorptiometry in patients with Crohn’s disease. Scand J Gastroenterol 1998; 33: 956-60.
10. Azcue M, Rashid M, Griffiths A, et al. Energy expenditure and body composition in children with Crohn’s disease: effect of enteral nutrition and treatment with prednisolone. Gut 1997; 41: 203-8.
11. Burnham JM, Shults J, Semeao E, et al. Body-composition alterations consistent with cachexia in children and young adults with Crohn disease. Am J Clin Nutr 2005; 82: 413-20.
12. Vasseur F, Gower-Rousseau C, Vernier-Massouille G, et al. Nutritional status and growth in pediatric Crohn’s disease: a population-based study. Am J Gastroenterol 2010; 105: 1893-900.
13. Witanowska A, Rydzewska G, Rawa T, et al. Epidemiology and clinical characteristic of Crohn’s disease in Polish population – preliminary data. J Crohns Colitis 2009; 3: S109-10.
14. Kugathasan S, Nebel J, Skelton JA, et al. Body mass index in children with newly diagnosed inflammatory bowel disease: observations from two multicenter North American inception cohorts. J Pediatr 2007; 151: 523-7.
15. Kanof ME, Lake AM, Bayless TM. Decreased height velocity in children and adolescents before the diagnosis of Crohn’s disease. Gastroenterology 1988; 95: 1523-7.

Received: 20.08.2015
Accepted: 22.11.2015