CP asymmetries at D0

K Holubyev
Lancaster University, UK
E-mail: holubyev@fnal.gov

Abstract. Using two independent measurements of the semileptonic CP asymmetry in the B_s system, we constrain the CP-violating phase of the B_s system to be $\phi_s = -0.70^{+0.47}_{-0.39}$. The data sample corresponds to an integrated luminosity of 1.1 fb$^{-1}$ accumulated with D0 detector at the Fermilab Tevatron Collider. We also measure the direct CP violating asymmetry in the decay $B^+ \rightarrow J/\psi K^+$ to be $A_{CP}(B^+ \rightarrow J/\psi K^+) = +0.0067 \pm 0.0074$(stat)$\pm 0.0026$(syst). The data corresponds to an integrated luminosity of 1.6 fb$^{-1}$.

1. Semileptonic CP asymmetry in the B_s system

In the Standard Model (SM), the light (L) and heavy (H) mass eigenstates of the mixed B_s^0 system are expected to have sizable mass and decay width differences: $\Delta M_s \equiv M_H - M_L$ and $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$. The two mass eigenstates are expected to be almost pure CP eigenstates. The CP-violating mixing phase is predicted [1] to be $\phi_s = (4.2 \pm 1.4) \times 10^{-3}$. New phenomena may alter ϕ_s leading to a reduction of the observed $\Delta \Gamma_s$ compared to the SM prediction $\Delta \Gamma_{sSM}$:

$$\Delta \Gamma_s = \Delta \Gamma_{sSM} \times |\cos \phi_s|.$$

While $B^0_s - \bar{B}^0_s$ oscillations have been detected [2] and the mass difference has recently been measured [3], the CP-violating phase remains unknown.

Both CP-violating phase ϕ_s and decay width difference $\Delta \Gamma_s$ of the B_s system were for the first time directly constrained at D0 from the fit to the time-dependent angular distribution of the decay products in the decay sequence $B^0_s \rightarrow J/\psi \phi$, $J/\psi \rightarrow \mu \mu$, $\phi \rightarrow K^+K^-$ [6]. The result remained 4-fold ambiguous due to undefined CP-conserving strong phases. The semileptonic asymmetry in the B_s-system, which is in general defined as

$$A_{SL}^s = \frac{N(B_s^0 \rightarrow l^+X) - N(B_s^0 \rightarrow l^-X)}{N(B_s^0 \rightarrow l^+X) + N(B_s^0 \rightarrow l^-X)},$$

is related to both ϕ_s and $\Delta \Gamma_s$ via

$$A_{SL}^s = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s.$$

Its measurement gives independent access to ϕ_s, both resolving the mentioned ambiguity and adding statistics to the measurement.

Recently we at D0 accessed the semileptonic asymmetry A_{SL}^s indirectly, by measuring the dimuon asymmetry in the inclusive dimuon sample [4], and directly, by measuring the untagged asymmetry in the exclusive sample of events consistent with the decay $B_s^0 \rightarrow \mu \nu \phi D_s$, $D_s \rightarrow \phi \pi$ [5]. The combination of the two results gives the best estimate of the charge asymmetry in semileptonic B^0_s decays: $A_{SL}^s = 0.0001 \pm 0.0090$ [7]. Using (2) and the result $\Delta M_s = 17.8 \pm 0.1$...
ps$^{-1}$ from CDF experiment [3] we obtained $\Delta \Gamma_s \cdot \tan \phi_s = A_{S_L}^s \cdot \Delta M_s = 0.02 \pm 0.16$ ps$^{-1}$. Using this constraint we repeated the fit to the $B_D^0 \rightarrow J/\psi \phi$ data. In Fig. 1 we show the likelihood contours in $\Delta \Gamma_s$ vs ϕ_s plane without (dashed line) and with (solid line) the constraint from the measurements of the semileptonic asymmetry $A_{S_L}^s$ in the B_D^0 decays. The contours indicate error ellipses, $\Delta \ln(L) = 0.5$, corresponding to the confidence level of 39%.

Finally, from the fit likelihood profile we found for $\phi_s < 0$ the decay width difference and the CP-violating phase in the B_s-system to be $\Delta \Gamma_s = 0.13 \pm 0.09$ ps$^{-1}$, $\phi_s = -0.70^{+0.47}_{-0.40}$. The measurement uncertainty is dominated by limited statistics. The systematic uncertainties include a variation of the background model in the analysis of the decay $B_D^0 \rightarrow J/\psi \phi$, detector acceptance, and sensitivity to the details of track and vertex reconstruction. The results are consistent with the SM predictions [1].

2. Direct CP violation in the decay $B^+ \rightarrow J/\psi K^+$

A direct CP asymmetry in the decay $B^+ \rightarrow J/\psi K^+$, $A_{CP}(B^+ \rightarrow J/\psi K^+)$, has recently been measured at D0:

$$A_{CP}(B^+ \rightarrow J/\psi K^+) = \frac{N(B^- \rightarrow J/\psi K^-) - N(B^+ \rightarrow J/\psi K^+)}{N(B^- \rightarrow J/\psi K^-) + N(B^+ \rightarrow J/\psi K^+)}$$ (3)

This decay proceeds via $b \rightarrow c\bar{s}b$ transition which is predominantly tree level. The SM gives the order of magnitude estimate $A_{CP}(B^+ \rightarrow J/\psi K^+) = \mathcal{O}(0.003)$ [8], which in the realistic New Physics (NP) models can be enhanced to 0.01 or higher [8].

The events consistent with the decay chain $B^+ \rightarrow J/\psi K^+$, $J/\psi \rightarrow \mu^+\mu^-$ and its charge conjugate were selected. The $J/\psi K$ mass peak was modeled using unbinned likelihood fit to the sum of contributions from $B \rightarrow J/\psi K$, $B \rightarrow J/\psi \pi$, and $B \rightarrow J/\psi K^*$ decays, as well as combinatorial background, see Fig. 2.

The systematic shift from the detector-induced asymmetries was accounted for in the detector model (for the first time applied in [4]), which expresses the number of signal events with the kaon charge q, the sign of the kaon pseudorapidity γ, and the solenoid polarity at which the event was recorded β in terms of the kaon charge asymmetry A and various detector asymmetries A_i (see section IV of [4] for the explanation of N, ϵ^β, and different A_i):

$$n_{q\beta\gamma} = \frac{1}{4} N \epsilon^\beta (1 + qA)(1 + q\gamma A_{fb})(1 + \gamma A_{det})(1 + q\beta\gamma A_{q\beta\gamma})(1 + q\beta A_{q\beta})(1 + \beta\gamma A_{\beta\gamma}).$$ (4)

The initial data sample of Fig. 2 was divided into subsamples corresponding to eight possible combinations of β, γ, and q, in each subsample the unbinned fit was performed to find the number of events in the $J/\psi K$ peak, $n_{q\beta\gamma}$, and the system (4) was solved for all asymmetries.

A systematic shift from charge asymmetric kaon interactions with detector material was estimated from data by comparing the exclusive decay $c \rightarrow D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow \mu^+\nu\mu K^-$ and its charge conjugate. To account for the momentum dependence of the kaon cross-section [9], the kaon asymmetry in the D^* sample was measured in kaon momentum bins to convolve it with the PDF of the kaon momentum in the $J/\psi K$ sample.

Finally, after subtracting kaon asymmetry, we obtained $A_{CP}(B^+ \rightarrow J/\psi K^+) = +0.0067 \pm 0.0074$(stat)$\pm 0.0026$(syst), which is consistent with the PDG-2007 world average, $A_{CP}(B^+ \rightarrow J/\psi K^+) = +0.015 \pm 0.017$ [9], but has a factor of two better precision, thus providing the most stringent bounds for new models predicting large values of $A_{CP}(B^+ \rightarrow J/\psi K^+)$. The measurement uncertainty is mainly due to limited statistics. Systematic uncertainty is largely dominated by the variation of the $J/\psi K$ mass peak model.
Figure 1. The error ellipse ($\Delta \ln(L) = 0.5$) in the plane ($\Delta \Gamma_s$, ϕ_s) for the fit to the $B^0_s \rightarrow J/\psi \phi$ data (dashed line) and for the fit with the constraint from the two D0 measurements of the charge asymmetry A_{SL} in semileptonic B^0_s decays (solid line). The central values of four solutions of the unconstrained fit are indicated by squares. Also shown is the band representing the relation $\Delta \Gamma_s = \Delta \Gamma_s^{SM} \times |\cos \phi_s|$ with $\Delta \Gamma_s^{SM} = 0.088 \pm 0.017$ ps$^{-1}$ [1] (dark shade) and the area corresponding to $\Delta \Gamma_s \cdot \tan \phi_s = 0.02 \pm 0.16$ ps$^{-1}$ [3] (light shade).

Figure 2. Result from the unbinned fit of the invariant mass distribution of the $J/\psi K$ system in the $B^+ \rightarrow J/\psi K^+$ decay and its charge conjugate.

References

[1] A Lenz and U Nierste 2007 JHEP 0308:031 Preprint hep-ph/0612167
[2] D0 Collaboration, V M Abazov et al 2006 Phys. Rev. Lett. 97 021802 (Preprint hep-ex/0603029)
[3] CDF Collaboration, A Abulencia et al 2006 Phys. Rev. Lett. 97 242003 (Preprint hep-ex/0609040)
[4] D0 Collaboration, V M Abazov et al 2006 Phys. Rev. D 74 092001 (Preprint hep-ex/0609014)
[5] D0 Collaboration, V M Abazov et al 2007 Phys. Rev. Lett 98 151801 (Preprint hep-ex/0701007)
[6] D0 Collaboration, V M Abazov et al 2007 Phys. Rev. Lett 98 121801 (Preprint hep-ex/0701012)
[7] D0 Collaboration, V M Abazov et al 2007 Preprint hep-ex/0702030
[8] W-S Hou, M Nagashima and A Soddu 2006 Preprint hep-ph/0605080
[9] Particle Data Group (PDG), W-M Yao et al 2006 J. Phys. G 33 1 and 2007 partial update for edition 2008 (URL: http://pdg.lbl.gov)
[10] Heavy Flavor Averaging Group (HFAG), E Barberio et al 2006 Averages of b-hadron properties as of 2006, in preparation