Association between cyclooxygenase-2 (COX-2) 8473 T > C polymorphism and cancer risk: a meta-analysis and trial sequential analysis

Qiuping Li, Chao Ma, Zhihui Zhang, Suhua Chen, Weiguo Zhi, Lei Zhang, Guoyao Zhang, Lei Shi, Fei Cao and Tianjiang Ma*

Abstract

Background: Numerous studies have investigated the relationship between COX-2 8473 T > C polymorphism and cancer susceptibility, however, the results remain controversial. Therefore, we carried out the present meta-analysis to obtain a more accurate assessment of this potential association.

Methods: In this meta-analysis, 79 case-control studies were included with a total of 38,634 cases and 55,206 controls. We searched all relevant articles published in PubMed, EMBASE, OVID, Web of Science, CNKI and Wanfang Data, till September 29, 2017. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the association. We performed subgroup analysis according to ethnicity, source of controls, genotyping method and cancer type. Moreover, Trial sequential analysis (TSA) was implemented to decrease the risk of type I error and estimate whether the current evidence of the results was sufficient and conclusive.

Results: Overall, our results indicated that 8473 T > C polymorphism was not associated with cancer susceptibility. However, stratified analysis showed that the polymorphism was associated with a statistically significant decreased risk for nasopharyngeal cancer and bladder cancer, but an increased risk for esophageal cancer and skin cancer. Interestingly, TSA demonstrated that the evidence of the result was sufficient in this study.

Conclusion: No significant association between COX-2 8473 T > C polymorphism and cancer risk was detected.

Keywords: COX-2 gene, 8473 T > C polymorphism, Cancer, Risk, Meta-analysis

Background

Currently, cancer is still considered as a global public health problem and the leading cause of human death [1], with an estimate of 14.1 million new cancer cases and 8.2 million cancer deaths in 2012 worldwide [2]. A large number of epidemiological and biological researches have demonstrated that cancer, as a multifactorial disease, is caused by a series of potential risk factors, including genetic and environmental factors [3]. However, the accurate mechanisms of carcinogenesis remained unclear. In recent years, many studies have pointed that the expression of tumor suppressor genes and oncogenes is closely associated with inflammation, which can also promote the transformation of cancer [4–6].

Cyclooxygenase-2 (COX-2), also called prostaglandin endoperoxide synthetase (PTGS-2), is an inducible isofrom of COX enzyme that converts arachidonic acid to prostaglandins, and prostaglandins are generally regarded as the effective mediators of inflammation [7]. By producing prostaglandins, COX-2 is considered to participate in several biological processes, such as carcinogenesis, cell proliferation, angiogenesis and mediating immune suppression. More and more evidence has pointed that increased expression of COX-2 is closely associated with malignant progression [8–10]. In addition, it is also shown that carcinogenesis could be prevented by using selective...
COX-2 inhibitors [11]. The human COX-2 gene, with a length of 8.3 kb and consisting of 10 exons, is located on chromosome 1q25.2-q25.3. Different polymorphism sites in the COX-2 gene have been clarified. One of these functional polymorphisms, the 8473 T > C polymorphism in the 3′-untranslated region (3′UTR) of COX-2 gene is the most widely investigated polymorphism.

Previous functional researches have indicated that 8473 T > C polymorphism is related to the alteration of the mRNA level of COX-2 gene via playing an important role in message stability and translational efficiency [12]. There are numerous case-control studies that have investigated the role of 8473 T > C polymorphism in cancer risk. However, the results of these studies remain inconclusive. Therefore, to draw a more precise conclusion, we conduct the present meta-analysis to evaluate the association of 8473 T > C polymorphism in COX-2 gene with cancer susceptibility.

Methods

Identification and eligibility of relevant studies

Literature in electronic databases, including PubMed, EMBASE, OVID and Web of Science, were systematically searched using the following terms: “cyclooxygenase-2 or COX-2 or PTGS2” and “polymorphism or variant or genotype” and “cancer or carcinoma or neoplasm”. To expand our investigation, we also searched China National Knowledge Infrastructure (CNKI) and Wanfang Data using the corresponding Chinese terms. Furthermore, references cited in each included study were also searched manually to identify potential additional relevant studies. When the information provided in the article was unclear, we contacted the author for detailed raw data. If data were overlapping, we adopted the most recent and comprehensive research for this meta-analysis. The last search date was September 29, 2017.

Inclusion and exclusion criteria

The inclusion criteria were as follows: studies investigating the association of COX-2 8473 T > C polymorphism with cancer risk; studies with essential information on genotype or allele frequencies to estimate ORs and 95% CIs; studies with human subjects; and case-controlled studies. Exclusion criteria included: reviews or meta-analyses; animal or cytology experiments; duplicate publications; studies not involving cancer; no controls, not according with Hardy-Weinberg equilibrium (P_{HWE} < 0.05) in the control group, and studies published neither in English nor Chinese.

Data extraction

From all eligible publications, the following data, including the first author, year of publication, population ethnicity, country, source of controls, cancer type, detection genotype methods of COX-2 8473 T > C polymorphism, and number of cases and controls, were carefully extracted by two authors (Qiuping Li and Chao Ma) independently. Inconsistencies were resolved after discussion, and a consensus was reached for all extracted data.

Quality assessment

The quality of the included studies was evaluated using the Newcastle–Ottawa scale (NOS) [13] with eight items (Additional file 1: Table S1). We awarded a study a maximum of nine star scale based on selection (four stars maximum), comparability (two stars maximum) and exposure (three stars maximum). Studies with NOS scores of 1–3, 4–6 and 7–9 were considered as low-quality, medium-quality and high-quality studies, respectively. Medium-quality and high-quality studies were included in the present meta-analysis.

Statistical analysis

We analyzed the association of COX-2 8473 T > C polymorphism with cancer risk using Stata software (Version 11.0; StataCorp, College Station, TX). Cumulative ORs and the corresponding 95% CIs were employed to measure the strength of associations. All p values were two-sided, and p < 0.05 was considered statistically significant. Heterogeneity was assessed using a Q statistic (considered significant heterogeneity among the studies if P value < 0.10) and an I-squared (I2) value [14]. When heterogeneity of studies was significant, the DerSimonian and Laird random-effects model [15] was performed to calculate the pooled ORs. Otherwise, the Mantel–Haenszel fixed-effects model was used [16]. We performed the sensitivity analysis to explore heterogeneity when significant heterogeneity was detected. Subgroup analysis was used to explore the effect of ethnicity, study design, cancer type and genotype method. Moreover, publication bias was evaluated quantitatively using Begg’s [17] and Egger’s [18] tests. Significant publication bias was indicated if P value < 0.05.

Trial sequential analysis

Type I errors may be caused by meta-analysis due to random error because of insufficient sample size in this meta-analysis. And the conclusions of the meta-analysis tended to be changed by later studies with a larger sample size [19]. When TSA was performed in a meta-analysis, both inadequate information size and false positive conclusions were revealed, and the above limitations were also overcome [19, 20]. Therefore, we used TSA software version 0.9 beta in this meta-analysis on the basis of two-sided tests, with an overall type I error risk of 5%, a statistical test power of 80%, and relative risk reduction of 10%. Trails were ignored in interim due to too low information to use (< 1.0%) by the TSA software. When the cumulative Z-curve in results crosses the TSA boundary.
or enters the insignificance area, a sufficient level of evidence has been reached, and no further studies are necessary. However, when the Z curve does not exceed any of the boundaries and the required sample size has not been reached, evidence to reach a conclusion is insufficient [21].

Results

Characteristics of the included studies
A detailed flow chart of included studies is shown in Fig. 1. A systematic search through five electronic databases yielded 652 citations after duplicate removal. After reviewing the titles, abstracts and full texts, articles that were not related with this analysis, meeting, animal or cytology experiments and reviews were removed, leading to the exclusion of 561 publications. The remaining 91 articles were further evaluated for eligibility. Finally, 65 full-text articles (79 studies) that met the inclusion criteria were included in the present meta-analysis.

The primary characteristics of the 79 included studies in this meta-analysis are summarized in Table 1. In our included studies, 38,634 cases and 55,206 controls surveyed the association between COX-2 8473 T > C polymorphism and cancer risk. Among these publications, there were 12 colorectal cancer [22–31], 1 ampulla of vater (AV) cancer [32], 4 bladder cancer [33–36], 13 breast cancer [37–46], 2 cervical cancer [47, 48], 1 endometrial cancer [49], 4 esophageal cancer [50–53], 1 extrahepatic bile duct (EHBD) cancer [32], 2 gallbladder cancer [32, 54], 4 gastric cancer [55–58], 1 glioma [59], 2 hepatocellular cancer (HCC) [60, 61], 1 head and neck (HN) cancer [62], 2 laryngeal cancer [50, 63], 11 lung cancer [64–74], 3 nasopharyngeal cancer [50, 75, 76], 3 oral cancer [50, 63, 77], 2 ovarian cancer [78], 1 pancreatic cancer [79], 6 prostate cancer [80–83] and 3 skin cancer [84–86]. Ethnic subgroups were divided into Asian, Caucasian, Australian and African. If it was difficult to distinguish the ethnicity of participants according to content included in the study, ethnicity of the study was termed “Mixed”. Study designs were categorized as PB and HB. The COX2 8473 T > C polymorphism was primarily detected by genotyping methods including TaqMan, PCR-RFLP and PCR-PIRA, in addition to the methods of SNPlex, SNP-IT, PCR-KASP, Invader, Illumina GoldenGate, Pyrosequencing and MassARRAY. We used subgroup analysis to search the effects of ethnicity, study design, genotype method and cancer type for the relationship of COX2 8473 T > C polymorphism with cancer risk.

Meta-analysis

Overall analysis
The main results of our meta-analysis are listed in Table 2. The association between COX2 8473 T > C polymorphism and cancer risk was evaluated in five comparison models: homozygote comparison, heterozygote comparison, dominant model, recessive model and allele analysis. When the homozygote and heterozygote comparisons were carried out, no significant association was found (CC vs. TT: OR = 1.01, 95% CI = 0.93–1.11, $p = 0.799$; TC vs. TT: OR = 0.99, 95% CI = 0.95–1.03, $p = 0.462$). Furthermore, neither dominant nor recessive model discovered significant associations of 8473 T > C polymorphism with cancer risk ((CC + TC) vs. TT: OR = 0.99, 95% CI = 0.95–1.03, $p = 0.644$; CC vs. (TC + TT): OR = 1.01, 95%CI = 0.94–1.09, $p = 0.779$).

Fig. 1 Flow chart of literature search and study selection
First author	Year	Ethnicity	Country	Control source	Cancer type	Genotype method	cases	controls	HWE	MAF
Cox, D.G.	2004	Caucasian	Spain	HB colorectal	Invader	140 121 29	126 120 25	0.639 0.314		
Campa, D.	2004	Caucasian	France	PB lung	TaqMan	31 107 112	65 99 50	0.304 0.465		
Hu, Z.	2005	Asian	China	HB lung	PCR-PIRA	234 83 5	209 107 7	0.113 0.187		
Sorensen, M.	2005	Caucasian	Denmark	PB lung	TaqMan	127 111 18	115 126 27	0.377 0.336		
Campa, D.	2005	Caucasian	France	PB lung	TaqMan	855 886 224	805 904 228	0.285 0.351		
Sakoda, L.C.	2006	Asian	China	PB AV	TaqMan	30 11 4	541 216 21	0.920 0.166		
Gallicchio, L.	2006	Mixed	USA	PB breast	TaqMan	9 5 0	158 164 34	0.360 0.326		
Gallicchio, L.	2006	Mixed	USA	PB breast	TaqMan	29 26 11	396 416 95	0.353 0.334		
Siezen, C.L.	2006	Caucasian	Netherlands	PB colorectal	Pyrosequencing	97 83 20	190 163 35	0.996 0.300		
Siezen, C.L.	2006	Caucasian	Netherlands	PB colorectal	Pyrosequencing	216 171 55	339 281 73	0.198 0.308		
Sakoda, L.C.	2006	Asian	China	PB EHBD	TaqMan	70 51 5	541 216 21	0.920 0.166		
Sakoda, L.C.	2006	Asian	China	PB gallbladder	TaqMan	165 61 10	541 216 21	0.920 0.166		
Park, J.M.	2006	Asian	Korea	HB lung	PCR-PIRA	352 205 25	330 220 32	0.552 0.244		
Shahedi, K.	2006	Caucasian	Sweden	PB prostate	MassARRAY	571 618 158	306 363 88	0.208 0.356		
Cox, D.G.	2007	Mixed	USA	PB breast	TaqMan	541 567 141	699 808 213	0.383 0.359		
Cox, D.G.	2007	Mixed	USA	PB breast	TaqMan	140 131 30	270 259 81	0.134 0.345		
Gao, J.	2007	Asian	China	HB breast	PCR-RFLP	404 179 18	429 194 20	0.733 0.182		
Vogel, U.	2007	Caucasian	Denmark	PB breast	PCR-RFLP	167 150 44	155 165 41	0.770 0.342		
Lee, T.S.	2007	Asian	Korea	HB cervical	SNP-IT	115 52 8	101 50 2	0.124 0.176		
Campa, D.	2007	Caucasian	France	PB esophageal	TaqMan	64 84 11	389 377 87	0.756 0.323		
Jiang, G.J.	2007	Asian	China	HB gastric	PCR-PIRA	159 86 9	199 96 9	0.525 0.188		
Hou, L.F.	2007	Caucasian	Poland	PB gastric	TaqMan	137 132 35	165 202 49	0.279 0.361		
Campa, D.	2007	Caucasian	France	PB laryngeal	TaqMan	139 120 22	313 321 77	0.694 0.334		
Campa, D.	2007	Caucasian	France	PB nasopharyngeal	TaqMan	41 47 11	313 321 77	0.694 0.334		
Campa, D.	2007	Caucasian	France	PB oral	TaqMan	72 70 11	313 321 77	0.694 0.334		
Cheng, I.	2007	African	USA	HB prostate	TaqMan	12 39 38 11	49 29 162 0.601			
Cheng, I.	2007	Caucasian	USA	HB prostate	TaqMan	183 199 34	196 177 44	0.668 0.318		
Lira, M.G.	2007	Caucasian	Italy	HB skin	PCR-RFLP	44 47 12	64 51 15	0.330 0.312		
Vogel, U.	2007	Caucasian	Denmark	PB skin	TaqMan	123 140 41	145 148 22	0.054 0.305		
Yang, H	2008	Mixed	USA	HB bladder	SNPlex	279 268 76	236 312 85	0.255 0.381		
Song, D.K.	2008	Asian	China	HB bladder	PCR-PIRA	132 39 4	113 61 5	0.337 0.198		
Ferguson, H.R.	2008	Caucasian	UK	HB esophageal	TaqMan	73 106 30	111 113 24	0.537 0.325		
Vogel, U.	2008	Caucasian	Denmark	PB lung	PCR-RFLP	182 183 38	310 341 93	0.959 0.354		
Danforth, K.N.	2008	Caucasian	USA	PB prostate	TaqMan	488 515 143	641 605 137	0.741 0.318		
Danforth, K.N.	2008	Caucasian	USA	PB prostate	TaqMan	517 507 113	501 517 117	0.332 0.331		
Abraham, J.E.	2009	Caucasian	UK	PB breast	TaqMan	927 985 260	996 1010 259	0.903 0.337		
Andersen, V	2009	Caucasian	Denmark	PB colorectal	TaqMan	147 178 34	315 355 95	0.745 0.356		
Gong, Z.H	2009	Mixed	USA	PB colorectal	PCR-RFLP	64 70 28	69 109 33	0.351 0.415		
Thompson, C.L.	2009	Caucasian	USA	PB colorectal	TaqMan	176 189 56	216 199 65	0.081 0.343		
Upadhyay, R.	2009	Asian	India	HB esophageal	PCR-RFLP	63 89 22	81 102 33	0.924 0.389		
Srivastava, K.	2009	Asian	India	HB gallbladder	PCR-RFLP	51 91 25	67 88 29	0.991 0.397		
Piranda, D.N.	2010	Mixed	Brazil	PB breast	TaqMan	125 149 20	120 99 25	0.496 0.305		
The allele analysis also didn’t find significant association (C allele vs. T allele: OR = 1.00, 95% CI = 0.96–1.04, p = 0.921). Overall, the results of this meta-analysis showed no significant association between COX-2 8473 T > C polymorphism and cancer risk.

Subgroup analysis

In order to estimate the effects of specific study characteristics on the relationship between COX-2 8473 T > C polymorphism and cancer risk, we carried out subgroup analysis in control source, ethnicity, genotyping method, and cancer type.
Genetic model	Group/subgroup	Studies	Heterogeneity test	Statistical model	Test for overall effect		
			I² (%) Phet OR (95% CI)				
CC vs. TT	Overall	79	57.4 0	R	1.01 (0.93 – 1.11)	0.799	
	PB	42	58.6 0	R	1.01 (0.92 – 1.11)	0.870	
	HB	37	57.3 0	R	1.01 (0.83 – 1.23)	0.915	
	Asian	32	55.8 0	R	1.10 (0.88 – 1.37)	0.403	
	Caucasian	33	65.9 0	R	1.03 (0.90 – 1.18)	0.652	
	Taqman	41	63.9 0	R	1.08 (0.94 – 1.23)	0.272	
	PCR-RFLP	23	60.4 0	R	0.94 (0.74 – 1.20)	0.615	
	PCR-PIRA	5	0 0.802	F	0.83 (0.56 – 1.23)	0.345	
	bladder cancer	4	13.1 0.327	F	0.74 (0.55 – 0.99)	0.040	
	breast cancer	13	53.5 0.012	R	1.01 (0.87 – 1.17)	0.939	
	cervical cancer	2	82.6 0.016	R	1.04 (0.11 – 9.53)	0.971	
	colorectal cancer	12	17.7 0.270	F	0.95 (0.86 – 1.06)	0.340	
	esophageal cancer	4	61.1 0.052	R	1.30 (0.72 – 2.33)	0.390	
	gallbladder cancer	2	0 0.532	F	1.28 (0.78 – 2.12)	0.326	
	gastric cancer	4	52.4 0.098	R	1.34 (0.85 – 2.13)	0.210	
	HCC	2	59.9 0.114	F	1.54 (0.88 – 2.70)	0.128	
	laryngeal cancer	2	67.3 0.080	R	0.98 (0.35 – 2.75)	0.973	
	lung cancer	11	80.5 0	R	0.97 (0.65 – 1.45)	0.883	
	nasopharyngeal cancer	3	56.1 0.103	F	0.59 (0.40 – 0.86)	0.007	
	oral cancer	3	0 0.404	F	0.68 (0.40 – 1.16)	0.158	
	ovarian cancer	2	51.6 0.151	F	0.84 (0.64 – 1.10)	0.205	
	prostate cancer	6	42.8 0.120	F	1.10 (0.95 – 1.28)	0.192	
	skin cancer	3	42.6 0.175	F	1.51 (1.02 – 2.25)	0.041	
	TC vs. TT	Overall	79	33.1 0.003	R	0.99 (0.95 – 1.03)	0.462
	PB	42	28.4 0.047	R	1.00 (0.96 – 1.04)	0.908	
	HB	37	37.7 0.012	R	0.96 (0.88 – 1.04)	0.303	
	Asian	32	43.4 0.005	R	0.98 (0.90 – 1.07)	0.675	
	Caucasian	33	23.1 0.119	F	0.99 (0.95 – 1.04)	0.679	
	Taqman	41	36.2 0.012	R	1.03 (0.97 – 1.09)	0.313	
	PCR-RFLP	23	11.6 0.303	F	0.97 (0.90 – 1.05)	0.494	
	PCR-PIRA	5	50.4 0.089	R	0.78 (0.61 – 0.99)	0.037	
	bladder cancer	4	49.4 0.115	F	0.75 (0.62 – 0.90)	0.002	
	breast cancer	13	0 0.540	F	0.99 (0.94 – 1.04)	0.676	
	cervical cancer	2	0 0.604	F	1.00 (0.74 – 1.37)	0.980	
	colorectal cancer	12	3.8 0.408	F	0.97 (0.90 – 1.03)	0.305	
	esophageal cancer	4	0 0.772	F	1.35 (1.10 – 1.66)	0.004	
	gallbladder cancer	2	41.6 0.191	F	1.05 (0.80 – 1.38)	0.706	
	gastric cancer	4	57.2 0.071	R	1.10 (0.89 – 1.36)	0.389	
	HCC	2	52.2 0.148	F	1.11 (0.85 – 1.44)	0.467	
	laryngeal cancer	2	0 0.542	F	0.88 (0.69 – 1.13)	0.322	
	lung cancer	11	51.3 0.025	R	0.90 (0.79 – 1.03)	0.140	
	nasopharyngeal cancer	3	33.3 0.223	F	0.84 (0.67 – 1.06)	0.135	
	oral cancer	3	0 0.867	F	0.88 (0.69 – 1.12)	0.307	
Genetic model	Group/subgroup	Studies	Heterogeneity test	Statistical model	Test for overall effect		
---------------	----------------	---------	--------------------	-------------------	------------------------		
	ovarian cancer	2	14.7	0.279	F		
	prostate cancer	6	3.1	0.397	F		
	skin cancer	3	0	0.806	F		
(CC + TC) vs. TT	Overall	79	50.0	0	R		
	PB	42	46.4	0.001	R		
	HB	37	53.9	0	R		
	Asian	32	57.0	0	R		
	Caucasian	33	51.5	0	R		
	Taqman	41	53.3	0	R		
	PCR-RFLP	23	43.4	0.015	R		
	PCR-PIRA	5	48.8	0.099	R		
	bladder cancer	4	52.9	0.095	R		
	breast cancer	13	19.0	0.251	F		
	cervical cancer	2	0	0.862	F		
	colorectal cancer	12	4.3	0.403	F		
	esophageal cancer	4	0	0.414	F		
	gallbladder cancer	2	2.2	0.312	F		
	gastric cancer	4	65.6	0.033	R		
	HCC	2	67.1	0.081	R		
	laryngeal cancer	2	7.3	0.299	F		
	lung cancer	11	72.7	0	R		
	nasopharyngeal cancer	3	47.0	0.152	F		
	oral cancer	3	0	0.856	F		
	ovarian cancer	2	0	0.565	F		
	prostate cancer	6	21.0	0.275	F		
	skin cancer	3	0	0.979	F		
CC vs. (TC + TT)	Overall	79	52.6	0	R		
	PB	42	53.2	0	R		
	HB	37	53.3	0	R		
	Asian	32	52.9	0	R		
	Caucasian	33	58.5	0	R		
	Taqman	41	60.9	0	R		
	PCR-RFLP	23	55.3	0.001	R		
	PCR-PIRA	5	0	0.845	F		
	bladder cancer	4	25.9	0.256	F		
	breast cancer	13	53.4	0.012	R		
	cervical cancer	2	83.8	0.013	R		
	colorectal cancer	12	19.1	0.256	F		
	esophageal cancer	4	60.8	0.054	R		
	gallbladder cancer	2	13.5	0.282	F		
	gastric cancer	4	27.8	0.245	F		
	HCC	2	42.5	0.187	F		
	laryngeal cancer	2	62.6	0.102	F		
and type of cancer under a variety of genetic models. For control source subgroup, whether the source of controls was population-based (PB) or hospital-based (HB), no association between 8473 T > C polymorphism and cancer risk was found. When stratified according to ethnicity, we observed no significant associations in Asians or Caucasians. Stratified by genotyping method, no relationship was detected in TaqMan and PCR-RFLP. However, by comparison, we discovered statistically significant decreased cancer risk in PCR-PIRA (TC vs. TT: OR = 0.78, 95% CI: 0.61–0.99, p = 0.037; (CC + TC) vs. TT: OR = 0.79, 95% CI: 0.63–0.78, P = 0.035; C allele vs. T allele: OR = 0.84, 95% CI: 0.74–0.96, P = 0.010). According to cancer type, 8473 T > C polymorphism was associated with a statistically significant decreased risk for nasopharyngeal cancer except for heterozygote comparison (CC vs. TT: OR = 0.59, 95% CI: 0.40–0.86, P = 0.007; (CC + TC) vs. TT: OR = 0.79, 95% CI: 0.64–0.98, P = 0.030; CC vs. (TC + TT): OR = 0.65, 95%CI: 0.46–0.94, P = 0.020; C allele vs. T allele: OR = 0.80, 95% CI: 0.68–0.94, P = 0.007). In the group with bladder cancer, we also found a decreased risk in the homozygote comparison, heterozygote comparison and allele analysis (CC vs. TT: OR = 0.74, 95% CI = 0.55–0.99, P = 0.040; TC vs. TT: OR = 0.75, 95% CI = 0.62–0.90, P = 0.002; C allele vs. T allele: OR = 0.76, 95% CI = 0.60–0.96, P = 0.020), but not in the dominant model and

Genetic model	Group/subgroup	Studies	Heterogeneity test	Statistical model	Test for overall effect	
	lung cancer	11	75.4	0	R	0.99(0.70–1.38) 0.932
	nasopharyngeal cancer	3	46.9	0.152	F	0.65(0.46–0.94) 0.020
	oral cancer	3	0	0.388	F	0.71(0.42–1.18) 0.182
	ovarian cancer	2	65.5	0.088	R	0.75(0.42–1.34) 0.336
	prostate cancer	6	44.6	0.108	F	1.11(0.97–1.27) 0.137
	skin cancer	3	57.6	0.095	R	1.01(0.94–1.09) 0.454
	C allele vs. T allele Overall	79	62.0	0	R	1.00(0.96–1.04) 0.921
		PB	42	59.9	0	1.01(0.96–1.05) 0.810
		HB	37	64.8	0	0.98(0.90–1.07) 0.656
		Asian	32	66.4	0	1.00(0.91–1.09) 0.956
		Caucasian	33	66.9	0	1.02(0.96–1.08) 0.573
		Taqman	41	66.5	0	1.04(0.98–1.10) 0.239
		PCR-RFLP	23	61.4	0	0.99(0.89–1.09) 0.794
		PCR-PIRA	5	39.9	0.155	F 0.84(0.74–0.96) 0.010
	bladder cancer	4	57.4	0.070	R	0.76(0.60–0.96) 0.020
	breast cancer	13	47.8	0.028	R	1.00(0.94–1.06) 0.938
	cervical cancer	2	9.5	0.293	F	0.95(0.75–1.22) 0.699
	colorectal cancer	12	12.8	0.319	F	0.97(0.93–1.02) 0.222
	esophageal cancer	4	56.6	0.075	R	1.21(0.96–1.52) 0.100
	gallbladder cancer	2	0	0.759	F	1.07(0.88–1.31) 0.496
	gastric cancer	4	67.7	0.026	R	1.14(0.94–1.38) 0.195
	HCC	2	73.4	0.052	R	1.10(0.71–1.71) 0.658
	laryngeal cancer	2	47.3	0.168	F	0.88(0.73–1.06) 0.183
	lung cancer	11	83.0	0	R	0.96(0.82–1.14) 0.661
	nasopharyngeal cancer	3	54.1	0.113	F	0.80(0.68–0.94) 0.007
	oral cancer	3	0	0.669	F	0.85(0.70–1.03) 0.106
	ovarian cancer	2	0	0.850	F	0.95(0.85–1.07) 0.428
	prostate cancer	6	44.2	0.111	F	1.05(0.98–1.12) 0.188
	skin cancer	3	0	0.589	F	1.21(1.02–1.45) 0.031

Abbreviations: OR odds ratios, CI confidence intervals, R random effects model, F fixed effects model, HB hospital based, PB population based, PCR-RFLP polymorphism chain reaction restriction fragment length polymorphism, PCR-PIRA polymorphism chain reaction based primer-introduced restriction analysis, HCC hepatocellular carcinoma

The results are in bold italic if P <0.05
recessive model. However, for the esophageal cancer group, the COX-2 8473 T > C polymorphism was significantly associated with an increased risk in the homozygote comparison and dominant model (TC vs. TT: OR = 1.35, 95% CI = 1.10–1.66, \(P = 0.004 \); (CC + TC) vs. TT: OR = 1.33, 95% CI = 1.10–1.63, \(P = 0.004 \)), but not in the homozygote comparison, recessive model and allele analysis. For the group of skin cancer, we also observed the association of a significantly increased risk in the homozygote comparison and allele analysis (CC vs. TT: OR = 1.51, 95% CI = 1.02–2.25, \(P = 0.041 \); C allele vs. T allele: OR = 1.21, 95% CI = 1.02–1.45, \(P = 0.031 \), respectively), but not in homozygote comparison, dominant model and recessive model. On the contrary, the result of breast cancer indicated no relationship with this polymorphism. Similarly, we also observed no significant association of 8473 T > C polymorphism with other cancers, including cervical cancer, colorectal cancer, gallbladder cancer, gastric cancer, HCC, lung cancer, oral cancer, ovarian cancer and prostate cancer. The detailed results were shown in Table 2.

Test of heterogeneity and sensitivity analysis
Significant heterogeneity was obvious in all the comparisons of COX-2 8473 T > C polymorphism (Table 2). Studies were excluded one by one to evaluate their influence on the test of heterogeneity and the credibility of our results. The results revealed that the corresponding pooled ORs and 95% CIs were not changed (Additional file 2: Figure S1, Additional file 3: Figure S2, Additional file 4: Figure S3 and Additional file 5: Figure S4), implying that the results of the present meta-analysis were credible and robust.

Publication bias
The Begg’s and Egger’s tests were performed to quantitatively assess the publication bias of this meta-analysis. \(P < 0.05 \) observed in the allelic genetic models was considered representative of statistically significant publication bias. The \(P \) details for bias were presented in Table 3. There was no significant publication bias in the overall analysis under each model. Moreover, the funnel plots quantitatively evaluating the publication bias did not reveal any evidence of obvious asymmetry in any model (Fig. 2).

Table 3 Results of publication bias test

Compared genotype	Begg’s test	Egger’s test		
	\(z \) value	\(P \) value	\(t \) value	\(P \) value
CC vs. TT	1.10	0.273	0.34	0.734
TC vs. TT	−0.16	0.876	−0.14	0.890
(CC + TC) vs. TT	0.64	0.523	0.06	0.951
CC vs. (TC + TT)	0.93	0.354	0.24	0.807
C allele vs. T allele	0.79	0.429	0.14	0.891

\(P \) value < 0.05 was considered as significant publication bias

Trial sequential analysis (TSA) results
As shown in Fig. 3, in order to prove the conclusions, the sample size required in the overall analysis was 50,558 cases for homozygote comparison, and 68,302 cases for heterozygote comparison. The results showed that the cumulative \(Z \)-cure didn’t exceed the TSA boundary, but the total number of cases and controls exceeded the required sample size, indicating that adequate evidence of our conclusions were established and no further relevant trials were needed.

Discussion
Inflammation has been considered as an acting element for the pathogenesis of cancer. Prostaglandins are important molecules in the inflammatory response, and they are produced from arachidonic acid through the catalytic activity of COX-2. COX-2 cannot be detected under normal conditions, but rapidly induced in response to various inflammatory stimuli [7]. The expression level of COX-2 gene is regulated by a series of regulatory elements located in COX-2 promoter region, including nuclear factor-kb(NF-kB)/nuclear factor interleukin-6 (NF-IL6)/CCAAT/enhancer-binding protein (C/EBP) binding sites, cyclic AMP-response element (CRE) and activation protein 1 (AP-1) [87]. Further studies indicated that 3′UTR of COX-2 gene of murine also contains several regulatory elements affecting the stability of mRNA and the efficiency of translation [12], which played vital roles in stabilization, degradation, and translation of the transcripts [88, 89]. According to the above studies, many researchers hypothesized that polymorphism sites in 3′UTR of COX-2 gene, with 8473 T > C polymorphism included, might increase the expression of COX-2 and affect the susceptibility of cancer. Therefore, the correlation between 8473 T > C polymorphism in 3′UTR of COX-2 gene and cancer susceptibility has been of great interest in polymorphism research. In this meta-analysis, not only did we try to make sure whether 8473 T > C polymorphism has any relationship with the susceptibility of overall cancer, but we also performed TSA to efficiently decrease the risk of type I error and evaluate whether our results were stable.

In the present meta-analysis, we comprehensively researched the association of the 8473 T > C polymorphism in the 3′UTR region of COX-2 with cancer risk in all population through 79 studies. The results showed that no significant association between 8473 T > C polymorphism we studied and overall cancer risk was detected under all five genetic comparisons. However, we discovered significant heterogeneity among studies, therefore, further sensitivity analyses were conducted. Though the studies were eliminated one by one, heterogeneity remained significant. Moreover, several subgroup analyses, performed according to control source, ethnicity, genotyping method...
and type of cancer in all compared genetic models, could not explain the source of heterogeneity. In control source subgroup, no statistical significance association was found neither in PB nor HB. For ethnicity subgroup, whether in Asians or Caucasians, the polymorphism had no influence on cancer risk. The results might indicate that different individuals in the studies have the same risk to cancer. Moreover, only in the subgroup of PCR-PIRA, 8473 T > C polymorphism was linked to decrease risk to overall cancer in heterozygote comparison, recessive model and allele analysis, suggesting that different genotype detecting methods used in studies might influence the results. In the stratification analysis by type of cancer, the results indicated that the 8473 T > C polymorphism was associated with a statistically significant decreased risk for nasopharyngeal cancer in other four models except for heterozygote comparison, and bladder cancer in the homozygote comparison, heterozygote comparison and allele analysis. However, we observed an increased risk for esophageal cancer in heterozygote comparison and dominant model, and for skin cancer in homozygote comparison and allele analysis. The factors that contributed to this contradiction might include the following three aspects. Firstly, inconsistent results might be attributed to the different pathogenesis of the cancer. Secondly, 8473 T > C polymorphism might play different roles in different cancers. Most importantly, the influence of COX-2 gene 8473 T > C polymorphism on cancer risk might be affected by complex interactions between gene and environment. For example, smoking, the most important risk factor of lung cancer, could induce COX-2 expression [90].

![Funnel plots for the publication bias test in the overall analysis](image)

Fig. 2 a. Funnel plots for the publication bias test in the overall analysis under homozygote comparison. b. Funnel plots for the publication bias test in the overall analysis under heterozygote comparison. c. Funnel plots for the publication bias test in the overall analysis under dominant model. d. Funnel plots for the publication bias test in the overall analysis under recessive model. e. Funnel plots for the publication bias test in the overall analysis under allele analysis.
Currently, some meta-analysis have investigated the relationship of 8473 T > C polymorphism with susceptibility to some types of cancer. Interestingly, part of the previous studies found some strong associations inconsistent with the result of our meta-analysis. Such as the report by Liu et al. [91] indicated that COX-2 gene 8473 T > C polymorphism was a factor for suffering from lung cancer, and Zhu et al. [92] suggested that 8473 T > C polymorphism might cause a decreased risk of lung cancer. Like Pan et al. [93], the current study supports the view that no significant association between 8473 T > C polymorphism and lung cancer risk. The reasons for this result may be as follows, firstly, the quality of original studies directly influences the reliability of the meta-analysis. In our meta-analysis the quality assessment of all the studies related with cancer was performed by using NOS, and low-quality studies were excluded. Secondly, the studies with the most recent or larger sample size were included, we therefore carried out a more systematic review of all eligible studies on the COX-2 8473 T > C polymorphisms and risk of lung cancer. Thirdly, the result of this polymorphism on cancer susceptibility might be influenced by some environmental factors or other polymorphisms, such as smoking. Meanwhile, some significant correlations we found were not shown in previous meta-analysis. For example, 8473 T > C polymorphism was associated with a decreased risk in nasopharyngeal cancer. When later studies were included in the meta-analysis, the contradiction didn’t appear, suggesting that the conclusions of previous meta-analysis with less number of studies might be reliable. More studies are required to achieve a more reliable result.

Fig. 3 a. TSA for overall analysis under homozygote comparison. **b.** TSA for overall analysis under heterozygote comparison. The required information size was calculated based on a two side $\alpha = 5\%$, $\beta = 20\%$ (power 80%), and an anticipated relative risk reduction of 10%.
Obviously, we clarified the association in this meta-analysis, including more studies with the larger information size. Besides, it is the first TSA that comprehensively elaborated the influence of COX-2 8473 T > C polymorphism in response to cancer risk. However, several limitations should be taken into consideration in this meta-analysis. To begin with, only publications written in English or Chinese were included in our analysis. Therefore, selection bias might be inevitable. Secondly, there was significant heterogeneity in this meta-analysis between the polymorphism and cancer under all five genetic models. Moreover, the source of heterogeneity could not be explained by using subgroup and sensitivity analysis. Finally, as a complicated disease, the pathogenesis of cancer is strongly associated with environmental factors and the interactions with multifarious genetic factors rather than the effect of any single gene. Therefore, gene-to-environment interactions play a vital role in evaluating genetic polymorphisms. More original studies are required to estimate potential interactions between gene and gene, as well as gene and environment.

Conclusions

The results of this meta-analysis manifested that the association between COX-2 8473 T > C polymorphism and overall cancer was not detected under all five genetic comparisons. In the stratification analysis of cancer type, 8473 T > C polymorphism might be associated with a statistically significant decreased risk for nasopharyngeal cancer and bladder cancer, but an increased risk for esophageal cancer and skin cancer. And most importantly, in order to verify the conclusions of this analysis, further studies are needed to assess the potential gene-gene and gene-environment interactions.

Additional files

Additional file 1: Table S1. Results of Newcastle–Ottawa scale (NOS) assessment for the included studies. (DOCX 23 kb)

Additional file 2: Figure S1. A. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in H8 subgroup under homozygote comparison. B. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in PB subgroup under homozygote comparison. (TIF 4832 kb)

Additional file 3: Figure S2. A. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in Asians under homozygote comparison. B. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in Caucasians under homozygote comparison. (TIF 4809 kb)

Additional file 4: Figure S3. A. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in TaqMan under homozygote comparison. B. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in PCR-RFLP under homozygote comparison. (TIF 4661 kb)

Additional file 5: Figure S4. A. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in breast cancer under homozygote comparison. B. Sensitivity analysis of 8473 T > C polymorphism and cancer risk in lung cancer under homozygote comparison. (TIF 4758 kb)

Abbreviations

AV: Ampulla of vater; CI: Confidence intervals; EHBD: Extrahepatic bile duct; F: Fixed effects model; HB: Hospital based; HCC: Hepatocellular carcinoma; HN: Head and neck; HWE: Hardy-Weinberg equilibrium; IGG: Illumina GoldenGate; MAF: Minor allele frequency; OR: Odds ratios; PB: Population based; PCR-KASP: Polymorphism chain reaction based competitive allele specific; PCR-PIRA: Polymorphism chain reaction based primer-introduced restriction analysis; PCR-RFLP: Polymorphism chain reaction restriction fragment length polymorphism; R: Random effects model

Acknowledgements

We would like to thank the reviewers whose comments and suggestions greatly improved this manuscript.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

QPL and TJM were responsible for conception and design of the study. QPL and CM did the studies selection, data extraction and provided statistical expertise. QPL, WQZ and LZ contributed to the literature search, studies selection and figures. ZHZ and TJM reviewed and edited the manuscript extensively. All authors were involved in interpretation of results, read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
3. Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4(11):850–60.
4. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interleaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37–49.
5. Griewenkovik SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.
6. O’Callaghan DS, O’Dell D, O’Connell F, O’Byrne KJ. The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thoracic Oncol. 2010;5(12):2024–36.
7. Hla T, Bishop-Bailey D, Liu CH, Schaifers HJ, Trifan OC. Cyclooxygenase-1 and -2 isoenzymes. Int J Biochem Cell Biol. 1999;31(5):551–7.
8. Trifan OC, Hla T. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med. 2003;7(3):207–22.
9. Gately SK. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev. 2000;19(1–2):19–27.
10. van Rees BP, Ristimäki A. Cyclooxygenase-2 in carcinogenesis of the gastrointestinal tract. Scand J Gastroenterol. 2001;36(9):897–903.

11. Gasparini G, Longo R, Sarmiento R, Morabito A. Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol. 2003;4(10):605–15.

12. Cok SJ, Morrison AR. The 3'-untranslated region of murine cyclo-oxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem. 2001;276(25):2371–85.

13. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

14. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

15. DeSimonean R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1988;9(3):177–88.

16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

17. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994(50):1088–101.

18. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

19. Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in meta-analyses. J Clin Epidemiol. 2008;61(8):763–9.

20. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61(1):64–75.

21. Thorlund K, Imberger G, Wetterslev J, Brok J, Gluud C. Comments on ‘Sequential meta-analysis: an efficient decision-making tool’ by I van der Tweel and C Bollen. Clin Trials. 2010;7(6):752–3. author reply 754.

22. Cox DG, Pontes C, Guino E, Navarro M, Osorio A, Canzian F, Moreno V. Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br J Cancer. 2004;91(2):339–43.

23. Siezen CL, Bueno-de-Mesquita HB, Peeters PH, Kram NR, van Doeselaar M, van Kranen HJ. Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer. Int J Cancer. 2006;119(2):297–303.

24. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjonneland A, Vogel U. Polymorphisms in the xenobiotic transporter multdrug resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case–control study. BMC Cancer. 2009;9:407.

25. Gong Z, Bostick RM, Xie D, Hurley TG, Deng D, Dixon DA, Zhang J, Hebert JR. Genetic polymorphisms in the cyclooxygenase-1 and cyclooxygenase-2 genes and risk of colorectal adenoma. Int J Color Dis. 2005;24(6):647–54.

26. Thompson CL, Plummer SJ, Merkulova A, Cheng J, Tucker TC, Casey G, Li L. No association between cyclooxygenase-2 and uridine diphosphate-glucuronosyltransferase 1A6 genetic polymorphisms and colon cancer risk. World J Gastroenterol. 2009;15(18):2240–4.

27. Pereira C, Pimentel-Nunes P, Brandao C, Moreira-Dias L, Medeiros R, Dinis-Ribeiro M. COX-2 polymorphisms and colorectal cancer risk: a strategy for chemoprevention. Eur J Gastroenterol Hepatol. 2010;22(5):607–13.

28. Andersen V, Holst R, Kopp T, Tjonneland A, Vogel U. Interactions between diet, lifestyle and IL10, IL18, and PTGS2/COX2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study. PLoS One. 2013;8(10):e78366.

29. Makar KW, Poole EM, Resler AJ, Seuffert B, Curtin K, Kleinstein SE, Duggan D, Kulkarni RJ, Hsu L, Whitten J, et al. COX1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations. Cancer Causes Control. 2013;24(12):2059–75.

30. Ruan YF, Sun J, Wu F. Relationship between cyclooxygenase-2 polymorphisms and colorectal cancer risk. Int J Dig Dis. 2013;33(4):260–9.

31. Vogel LK, Saebo M, Hoyer H, Kopp T, Vogel U, Godskesen S, Frenzel FB, Harrard J, Bowitz-Lothe IM, Johnson E, et al. Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS One. 2014;9(8):e105254.

32. Sakoda LC, Gao YT, Chen BE, Chen J, Rosenberg PS, Rashid A, Deng J, Shen MC, Wang BS, Han TQ, et al. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene polymorphisms and risk of biliary tract cancer and gallstones: a population-based study in shanghai, China. Carcinogenesis. 2006;27(6):1251–6.
52. Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squamous cell carcinoma. Mutat Res. 2009;663(1–2):52–9.

53. Lu YJ, Zhang HY, Dai SW. Influence of cyclooxygenase 2.3 untranslated regions genetic polymorphism and interaction with smoking and Helicobacter pylori infection on the invasion of esophageal cancer. China Gen Med J. 2013;16(5):1733–5.

54. Srivastava K, Srivastava A, Pandey SN, Kumar A, Mittal B. Functional polymorphisms of the cyclooxygenase (PTGS2) gene and risk for gallbladder cancer in a north Indian population. J Gastroenterol. 2009;44(7):774–80.

55. Jiang GJ, Wang HM, Zhou Y. The correlation study between the nucleotide polymorphism of cyclooxygenase-2 gene and the susceptibility to gastric cancer. Acta Universitatis Medicinalis Nanjing. 2007;27(8):890–4.

56. Hou L, Grillo P, Zhu ZZ, Lissowska J, Yeager M, Zatonski W, Zhu G, Jiang GJ, Wang HM, Zhou Y. Association of a common polymorphism in the 3′UTR of cyclooxygenase-2 gene with the risk of non-cardiac gastric cancer. Cancer Res Prev Treat. 2015;4(2):470–3.

57. Li JN, Yao CY, Ren DX. Association between genetic polymorphisms of PTGS2 and glioma in a Chinese population. Genet Mol Res. 2015;14(2):3142–8.

58. Akkiz H, Bayram S, Bekar A, Akgollu E, Ulger Y. Functional polymorphisms of cyclooxygenase-2 gene and risk for hepatocellular carcinoma. Mol Cell Biochem. 2013;374(1–2):201–8.

59. Shao SS, Fu ZZ, Wang GX. Association of COX-2 8473T>C genetic variant and risk of primary hepatic carcinoma. J Hepatol. 2014;62(1):141–2.

60. Chang JS, Lo HL, Wong TY, Huang CC, Lee WT, Tsai ST, Chen KC, Yen CJ, Wu H, Hsieh WT, et al. Investigating the association between oral hygiene and head and neck cancer. Oral Oncol. 2013;49(10):1010–7.

61. Niu Y, Yuan H, Shen M, Li H, Hu Y, Chen N. Association between cyclooxygenase-2 gene polymorphisms and head and neck squamous cell carcinoma risk. J Craniofac Surg. 2014;25(2):333–7.

62. Campa D, Ziolodlinski S, Maggini V, Skagv V, Haugen A, Canziani F. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis. 2004;25(2):229–35.

63. Hsu Z, Miao X, Ma H, Wang X, Tan W, Wei Q, Lin D, Shen H. A common polymorphism in the 3′UTR of cyclooxygenase 2/prostaglandin synthase 2 gene and risk of lung cancer in a Chinese population. Lung Cancer. 2005;48(1):11–7.

64. Sorensen M, Astrap H, Tjonneland A, Overvad K, Raaschou-Nielsen O. A genetic polymorphism in prostaglandin synthase 2 (8473, T-->C) and the risk of lung cancer. Cancer Lett. 2005;226(1):49–54.

65. Campa D, Hung RJ, Mates D, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Fabianova E, Bencko V, Foretova L, et al. Lack of association between polymorphisms in inflammatory genes and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2015;24(2):338–9.

66. Park JM, Choi JE, Chae MH, Lee WK, Cha SI, Son JW, Kim CH, Kim S, Kang YM, Jung TH, et al. Relationship between cyclooxygenase 8473T>C polymorphism and the risk of lung cancer: a case-control study. BMC Cancer. 2006;6:70.

67. Vogel U, Christensen J, Wallin H, Friis S, Nexø BA, Tjonneland A. Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutat Res. 2007;617(1–2):38–46.

68. Gomez-Lira M, Tessari G, Mazzola S, Malerba G, Ortombina M, Naldi L, Remuzzi G, Lira MG, Mazzola S, Tessari G, Malerba G, Ortombina M, Naldi L, Remuzzi G, Moraes AB, Poh WT, et al. Polymorphisms in inflammatory pathway genes, inflammatory response and interaction with NSAID use or smoking in gastric cancer after organ transplantation. Br J Dermatol. 2007;157(1):49–57.

69. Wang JM, Ko CY, Chen LC, Wang WL, Chang WC. Functional role of NF-κB and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase-2 gene. Nucleic Acids Res. 2006;34(11):217–31.

70. Sheng H, Shao J, Dixon DA, Williams CS, Prescott SM, DuBois RN, Beauchamp RD. Transforming growth factor-beta1 enhances ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem. 2002;277(9):6628–35.

71. Kuersten S, Goodwin EB. The power of the 3′ UTR: translational control and development. Nat Rev Genet. 2003;4(6):557–61.

72. Lira MG, Mazzola S, Tessari G, Malerba G, Ortombina M, Naldi L, Remuzzi G, Moraes AB, Poh WT, et al. Polymorphisms in inflammatory pathway genes, inflammatory response and interaction with NSAID use or smoking in gastric cancer after organ transplantation. Br J Dermatol. 2007;157(1):49–57.

73. Yu K, Sakoda LC, Huang WY, Chen BE, Jiang J, Andreille GL, Calvet EM, et al. Polymorphic variants in PTGS2 and prostate cancer risk: results from two large nested case-control studies. Carcinogenesis. 2009;29(3):568–72.

74. Mandal RK, Mittal RD. Polymorphisms in COX-2 gene influence prostate cancer susceptibility in a northern Indian cohort. Arch Med Res. 2011;42(7):620–6.

75. Lira MG, Mazzola S, Tessari G, Malerba G, Ortombina M, Naldi L, Remuzzi G, Moraes AB, Poh WT, et al. Polymorphisms in inflammatory pathway genes, inflammatory response and interaction with NSAID use or smoking in gastric cancer after organ transplantation. Br J Dermatol. 2007;157(1):49–57.

76. Vogel U, Christensen J, Wallin H, Friis S, Nexø BA, Tjonneland A. Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutat Res. 2007;617(1–2):38–46.

77. Gomez-Lira M, Tessari G, Mazzola S, Malerba G, Ortombina M, Naldi L, Remuzzi G, Lira MG, Mazzola S, Tessari G, Malerba G, Ortombina M, Naldi L, Remuzzi G, Moraes AB, Poh WT, et al. Polymorphisms in inflammatory pathway genes, inflammatory response and interaction with NSAID use or smoking in gastric cancer after organ transplantation. Br J Dermatol. 2007;157(1):49–57.

78. Wang JM, Ko CY, Chen LC, Wang WL, Chang WC. Functional role of NF-κB and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase-2 gene. Nucleic Acids Res. 2006;34(11):217–31.

79. Sheng H, Shao J, Dixon DA, Williams CS, Prescott SM, DuBois RN, Beauchamp RD. Transforming growth factor-beta1 enhances ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem. 2002;277(9):6628–35.

80. Kuersten S, Goodwin EB. The power of the 3′ UTR: translational control and development. Nat Rev Genet. 2003;4(6):557–61.

81. Moraitis D, Du B, De Lorenzo MS, Boyle JO, Weksler BB, Cohen EG, Carew JF, Altorki NK, Kopelovich L, Subbaramaiah K, et al. Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers: evidence for the role of epidermal growth factor receptor and its ligands. Cancer Res. 2005;65(23):6664–70.

82. Liu F, Ye Y, Peng X, Wang W, Yang X. Association of the 8473C>C polymorphism in COX-2 (cyclooxygenase-2) gene polymorphism with lung cancer risk in Asians. Asian Pac J Cancer Prev. 2010;11(5):1257–62.

83. Zhu W, Wei BB, Shao X. L. -765G>C and 8473T>C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case-control studies. Mol Biol Rep. 2010;37(1):277–88.

84. Pan F, Tian J, Pan Y, Zhang Y. Lack of association of the cyclooxygenase 8473T>C polymorphism with lung cancer evidence from 9841 subjects. Asian Pac J Cancer Prev. 2011;12(8):1941–5.