DronePose: The identification, segmentation, and orientation detection of drones via neural networks

Stirling Scholes¹, Alice Ruget¹, Germán Mora-Martín², Feng Zhu¹, Istvan Gyongy², and, Jonathan Leach¹.∗

¹School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
²School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FF, UK
∗j.leach@hw.ac.uk

Abstract

The growing ubiquity of drones has raised concerns over the ability of traditional air-space monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type, orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts (engines, body, and camera). We also provide a computer model for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool in the image processing chain where it may build upon existing drone detection technologies to provide complete drone characterisation over wide areas.

1 Introduction

The proliferation of semi-autonomous aerial vehicles, i.e. drones, into the consumer and industrial spaces, combined with the growing number of drone related incidents (infractions into commercial airspace, [1, 2] or the use of drones by militant groups, [3, 4]) has raised concerns over the ability of existing aerial detection systems to accurately characterise such vehicles [5–7]. Specifically, many existing air-space monitoring technologies are optimized to detect the presence of a vehicle, identify its type, and, track its position over time but they lack the resolution to determine target specific features. This, in conjunction with drones ability to decouple their motion in space from their assigned task e.g. simultaneously translate and rotate to keep a subject in frame whilst filming, means that presence, type and position are often insufficient to accurately identify the intent of a vehicle.

To accurately assess the intent of a drone it is necessary to fully characterize its ‘pose’ i.e., not only identify its type but also segment it into functional components and identify the orientation of these components in 3D space. Fig. 1 conceptually illustrates this process showing a DJI Mavic 2 drone segmented into colour-coded components and placed within a 3D Gimbal corresponding to its orientation.

To address the problem of drone characterization a wide variety of machine learning assisted drone detection systems have been developed. For example, radio based methods, which eavesdrop on the...
communications between drones and pilots and apply the statistical analyses of control signals \[8\,11\]. Convolutional Neural Networks (CNNs) analysing the spectagram \[12\,15\], K-Nearest Neighbours (KNNs) \[16\] clustering of signals, cyclostationary feature extractors \[17\], decision trees \[18\] and random forest techniques \[19\], bit-analysis \[20\], and, residual \[21\], recurrent \[22\] and hierarchical networks \[23\]. Additionally, acoustic based methods analysing the noise of a drones motors and propellers have also been developed using Mel Frequency Cepstral Coefficients (MFCC) \[24\,29\] or by converting the signal to a spectagram \[27\,30\,31\]. Once obtained, the MFCC or spectagram feature set can be used to train Long-Short Term Memory (LSTM) models \[24\], or Convolution type models such as CNNs \[31\,36\]. Recurrent Neural Networks (RNNs) \[32\,34\] which incorporate temporal and Convolutional-RNNs (CRNNs) \[33\,34\]. The feature set can also be used to train vector type models including, Support Vector Machines (SVMs) \[27\,28\,30\,35\], Gaussian Mixture Models \[32\] and KNNs \[37\] or, retrain existing models such as random forests \[38\], ResNet \[25\] and LeNet \[39\].

Despite the relative efficacy of acoustic and radio based systems the introduction of quiet micro-drones and fully autonomous drones (which do not require radio commands) has rendered them progressively less versatile and has necessitated the development of radar and optical based sensor systems. Radar in particular has seen extensive development including pulsed systems \[40\,42\], Doppler systems \[43\,47\], and Frequency Modulated Continuous Wave (FMCW) systems \[48\,50\] all at multiple wavelengths \[51\,60\]. The reader is directed to Refs \[61\,64\] for a comprehensive review. Whilst radar based systems are able to monitor a large area and are robust to atmospheric conditions, their reliance on micro-Doppler information for drone type identification and poor transverse resolution has prevented their application to problems beyond target detection and tracking. Hence, in parallel to radar systems, machine learning assisted optical drone detection systems have been developed. Such systems have been extensively used to identify the presence of drones in an image and construct bounding boxes at ranges comparable to that of radar systems \[65\,66\].

The most common approach to optical drone detection is to train existing CNN based networks such as You Only Look Once (YOLO) \[67\,68\] and ResNet \[69\,70\] on colour camera images. These networks include coupling to pan-tilt and zoom camera mounts to track moving objects \[71\], using multi-camera systems to increase the field of view \[72\,73\], utilising the high speed nature of YOLO to identify drones at video frame rates \[74\], comparing the performance of YOLO v2 and YOLO v3 on drones at short range against static backgrounds \[75\], examining the effect of incorrect images labels on YOLO \[76\] and, modified YOLO implementations \[77\].

More complex optical CNN architectures have also been developed where features in the image (such as moving objects) are enhanced before being sent to a second network for identification. These multi-stage networks have proven to generally be more effective at discriminating drones from drone-like objects in images such as birds \[78\,81\]. Such networks have been developed using background subtraction with image stabilization \[82\] and CNNs \[83\,84\], subtracting successive frames and clustering using an SVM \[85\], HAAR filters \[86\] for edge and feature detection, foreground background separation \[87\], ResNet for feature extraction and SVMs for classification \[88\], Kalman filters and ResNet \[89\], Faster-RCNN and ResNet \[90\], and, using trajectory mapping to suppress erroneous YOLO identifications \[91\]. Additionally, several other networks have been used for drone identification. These include identifying regions of interest in an image \[92\] using Histogram of Gradient (HOG) descriptors with thresholding or Fourier descriptors \[93\], simultaneous image upsampling and downsampling \[94\], Inception Net v3 \[95\], generic Fourier descriptors \[96\,97\], Faster-RCNN \[98\] and, TIB-Net with CenterNet, lightweight networks optimised for speed of processing \[99\,100\].

Finally, a number of more niche applications have also been investigated such as, controlling the flight of a drone based on external camera observations \[101\] and, using cameras mounted on multiple drones to track and even intercept hostile drones \[102\,105\]. For a review of the different machine learning implementations listed above the reader is directed to Refs \[106\,108\]. Despite the numerous optical systems developed to date characterisation of drones beyond presence, location and type remains rare with demonstrations limited to determining if a drone is carrying a payload \[109\] or the identification of key points on a single drone at short range \[110\].

A promising avenue for the more complete characterisation of drones is given by sensor fusion in which multiple sensors are combined. For example, using a large field-of-view low resolution sensor to direct a small field-of-view high resolution sensor with such systems seeing improvements in performance of up to 15% \[72\,111\,112\]. In the case of optical drone detection systems one such example is the develop-
ment of depth sensing time-of-flight systems such as LIDARS. LIDARS active illumination allows them to operate when no passive light source is available (such as at night), detect targets which themselves emit no thermal radiation, and, operate to a limited degree through obscurance. Scanning LIDARS have been shown to be effective at drone detection at ranges up to 2 km when coupled with a Variable Radially Bounded Nearest Neighbour (V-RBNN) network to analyse the point cloud [113, 114]. Further, flash LIDAR systems such as those employing Single Photon Avalanche Detector (SPAD) array cameras allow for the simultaneous capture of a ‘traditional’ high transverse resolution intensity image as well as a lower transverse resolution depth image (where ‘depth’ refers to the distance between the camera and the object for each pixel). Such systems have been shown to be effective at identifying the pose of objects at short range [115, 116] but have yet to be applied to the problem of drone characterization.

Here, we present a CNN which provides the complete characterization of drones. The network takes as input an intensity image as well as depth data and outputs: the identity of the drone i.e., the type of drone in the data; the segmentation of the drone in which each pixel in the intensity image is classified according to the drone component it represents; and, the orientation, the angle of the drone about its three principle axes of rotation, yaw, pitch, and, roll. We examine the performance of the network in multiple scenarios including, different drones, different ranges of motion and different data inputs. Additionally, we outline a system for producing large quantities of accurately labelled simulated data on which we train our network. To verify both our network structure and our simulated training data we demonstrate the ability of our network to accurately characterize an image of a real DJI Mavic 2 Zoom drone in flight as captured by a Quantic4x4 SPAD camera [117]. The SPAD camera represents a state-of-the-art sensor fusion system combining a functional transverse resolution of 80×240 pixels for intensity and 20×60 pixels for depth. Further, each depth pixel outputs a depth histogram with 500 picosecond temporal resolution. Finally, the architecture of the chip has the potential for the alternating acquisition of visible spectrum intensity images and depth histograms at rates in excess of 1000 frames per second [115].

2 Network Architecture

We present a network architecture built on a decision tree coupled with an ensemble network. The decision tree identifies the type of drone after which a set of drone-specific pretrained networks are applied in parallel to perform the orientation and segmentation operations. Specifically, the orientation is determined by three identical networks each trained to identify a single axis (roll, pitch or yaw) while the segmentation is performed by an additional U-Net [118] type network. This structure allows multiple drone parameters to be identified simultaneously through network parallelization whilst allowing each network to be optimized on a specific parameter yielding superior overall performance.

The lack of high quality drone image training datasets remains an obstacle for machine learning assisted drone classification. To address this, several publications have examined data augmentation [119] techniques such as, super-imposing drone images onto unrelated backgrounds [120], super-resolution upsampling [121] and, generating new images from Generational-Adverserial Networks (GANs) [122]. Here, we leverage the capability of the Unreal Engine video game development environment to rapidly produce a large set of photo-realistic, accurately labelled training data as illustrated by Fig. 2. This approach allows us to explore the parameter space of drone types, orientation limits (e.g. the upside down Inspire Mavic 2 and Inspire 2 drone in flight. a) Intensity images generated by the Unreal engine of a DJI Mavic 2 and (an upside down) DJI Inspire 2 drone in flight. b) Unreal engine depth images corresponding to the drones in the top panels. c) Segmentation labels from the Unreal engine for the drones in the top panels showing the body (in blue), the engines (in red), and, the cameras (in green).
2 in Fig. 2), lighting conditions and image qualities to an extent which would be impractical experimentally. The Unreal code is publicly available and can be found at https://github.com/HWQuantum/. Fig. 3 shows examples of the images processed by the network. The simulated images produced by the Unreal environment (Fig. 3a)) are processed before being passed to the network. The simulated intensity image is noised with a Poisson filter (Fig. 3b)) and resized to 80×240 pixels, while the depth is downsampled and converted to a histogram with a dimensionality of 20×60×15. Fig. 3c) shows the images produced by a Quantic4x4 SPAD array camera of a real drone in flight which the simulated data is designed to mimic. We stress that the image sizes used in the simulated data were selected only to match the physical parameters of the QuantIC4x4 SPAD sensor, and the network can be reshaped to any dataset with both intensity and depth information.

Fig. 4 shows a summary of the identification, orientation and segmentation networks. At the core of these networks is the Drone Feature Encoder (DFE) which reduces the input data to a latent feature space. The DFE takes as input both a histogram of depths (of size $r_h$ rows, $c_h$ columns, and $p_h$ pages) and an intensity image (of size $(r_i, c_i)$). The histogram is passed twice through two 3D convolutional layers (each with 32 filters) and axial max-poolings to extract its depth features and reduce it to a dimensionality of $(r_h, c_h, 1)$. The intensity image is passed through

![Intensity vs Depth](image.png)

Figure 3: Processed images from Unreal Engine compared to Quantic4x4 SPAD camera images. a) The intensity and depth images produced by the Unreal environment. b) The data used to train the network. The intensity image is noised with a Poisson filter while the depth image is down-sampled and converted to a histogram of depths (visualised here as a depth image). c) Images captured by a Quantic4x4 SPAD camera of a real drone in flight. Note that the intensity images have been enhanced in contrast for better visualization.

![Diagram](image.png)

Figure 4: A summary of the ensemble network structure, here the common components of the networks have been drawn together while in practice each network in the ensemble is distinct. The networks take in a high transverse resolution intensity image and a low transverse resolution histogram of depth. Using convolution, pooling, and, concatenation the inputs are reduced to a dense latent space. The identification network connects this latent space to a dense layer and then to a single Sigmoid activated neuron for drone type classification. By contrast, the three orientation networks use an identical structure but employ ReLu activation in the final neuron to output a continuous value corresponding to the angle in a given axis. Segmentation is performed by up-sampling the latent space to a final convolution with filters corresponding to the components being identified.
two 2D convolution layers (each with 32 filters) and a max-pooling such that it is reduced to a dimensionality of \((r_n, c_n, 1)\). The intensity and depth tensors are then concatenated and passed twice through a set of two 2D convolutions (each with 32 filters) and max-poolings ultimately reducing the network inputs to a latent space of \(1 \times 3 \times 32\) filters. The DFE is identical in all the networks with each network distinguished by how it handles the data in this latent space.

In the case of the identification network which defines the decision tree, the latent space is flattened to a 96 element vector and connected to a dense layer with 64 neurons. These neurons are in turn connected to the single output node with a Sigmoid activation. This network is trained using cross-entropy loss function.

\[
\text{Loss} = \min[|l - p|, |l - p - 360\degree|]^2, \quad (1)
\]

where \(l\) is the label, \(p\) is the networks prediction, and, \(\text{abs}\) is the absolute value function. The segmentation network attaches a U-Net to the DFE. This U-Net up-samples the latent space to a set of segmentation predictions of size \((r_n, c_n, n)\) where \(n\) corresponds to the number of components being identified. Each layer of the U-Net mirrors the DFE, undoing the max-pooling and using skip connections to concatenate the tensors. These concatenated tensors are then passed through two 2D convolutions each with 32 filters. The network was trained using categorical cross-entropy. The final output is a single convolutional layer with (in this case) three filters corresponding to the three components being identified; the body of the drone, the engines of the drone, and, the camera on the drone.

3 Results

3.1 Results on simulated data

Two drones were used for testing, a DJI Mavic 2 Zoom and a DJI Inspire 2. High fidelity models of these drones were placed in the Unreal environment and a total of 72,000 simulated SPAD images generated. From these images 10% were reserved for network testing. The networks were trained until the loss converged and the networks with the best performance on the testing data saved. These models were then validated on a set of 3600 unseen validation images. A summary of the results for the identification, segmentation and orientation networks is presented in Table 1.

| Metric   | Full angle | Reduced angle |
|----------|------------|---------------|
| Orientation | (accuracy ± std)(%) | (accuracy ± std)(%) |
| Roll     | 88.3 ± 13.0 | 99.6 ± 0.4 |
| Pitch    | 99.2 ± 0.8  | 99.7 ± 0.3 |
| Yaw      | 92.3 ± 9.7  | 96.3 ± 5.0 |

| Segmentation | Full angle | Reduced angle |
|--------------|------------|---------------|
| Body         | 97 ± 1     | 96 ± 1       |
| Engine       | 86 ± 9     | 86 ± 5       |
| Camera       | 85 ± 13    | 85 ± 16      |
| Identification | 100 ± 0   | 100 ± 0      |

| Orientation | Full angle | Reduced angle |
|------------|------------|---------------|
| Roll       | 95.3 ± 5.6 | 98.8 ± 0.9 |
| Pitch      | 99.6 ± 0.4 | 97.5 ± 1.4 |
| Yaw        | 92.4 ± 8.5 | 96.0 ± 4.1 |

| Segmentation | Full angle | Reduced angle |
|--------------|------------|---------------|
| Body         | 91 ± 2     | 92 ± 2       |
| Engine       | 82 ± 9     | 84 ± 5       |
| Camera       | 81 ± 10    | 88 ± 6       |
| Identification | 100 ± 0   | 100 ± 0      |

To ensure non-negative angular values in all drone orientations a coordinate system was established in which level flight facing away from the camera corresponded to, yaw = 180\degree, roll = 180\degree and pitch = 90\degree. Within this coordinate system two angular regimes were examined, the ‘full angle’ regime and the ‘reduced angle’ regime. In the full angle regime the drone models had the following range of motion: yaw \(\in [0\degree, 360\degree]\); roll \(\in [0\degree, 360\degree]\); and, pitch \(\in [0\degree, 180\degree]\) (with pitch limited to \(\in [0\degree, 180\degree]\) to negate gimbal-lock). In the reduced angle regime the models were constrained to within the manufacturer’s limits specifically: yaw \(\in [0\degree, 360\degree]\); roll \(\in [140\degree, 220\degree]\); and, pitch \(\in [140\degree, 220\degree]\). By examining these regimes we evaluate the network’s ability to characterise drones.
flying in both conventional flight modes and more exotic flight modes (such as upside down).

Fig. 5 displays the predictions of the orientation networks for the full angle and reduced angle regimes. The theta coordinate represents the angle and the radial coordinate represents the error with $-180^\circ$ error at the center and $+180^\circ$ error at the circumference. The solid red ring indicates the ground truth. Network under and over predictions fall inside of and outside of the red ring respectively. Predictions made by the network trained on the full range of angles are shown as blue triangles. Predictions made by the network trained on the reduced range of angles (indicated by the shaded region) are shown as green dots.

By examining the radial distribution of the predictions, the accuracy of the networks in each axis and in each regime can be compared and the following

Figure 5: The results of the orientation prediction networks for the two drones in the full angle and reduced angle regimes. The theta coordinate represents the angle with the solid red ring indicating the ground truth. The radial coordinate represents the error (up to a maximum of $\pm 180^\circ$) with network under and over predictions falling inside of and outside of the red ring respectively. Predictions made by the network trained on the full range of angles are shown as blue triangles. Predictions made by the network trained on the reduced range of angles (indicated by the shaded region) are shown as green dots.

Figure 6: Qualitative and quantitative analyses of the segmentation networks. The quantitative analyses uses the IoU percentage for the two drones in the full angle and reduced angle regimes. The number in, as well as the size of each coloured region corresponds to the nearest integer IoU percentage. Note that the sizes of the regions have been scaled logarithmically for clearer representation.
observations made. First, the accuracy of the networks is contingent upon the number of images-per-angle the network is given to train on. In the full angle regime where the pitch is restricted to half the range of the roll and yaw the network accuracy improves significantly since for the same number of total training images the number of examples-per-degree is doubled to ∼400. This is also why in the reduced angle regime where the roll is restricted its accuracy matches that of the pitch, while the yaw does not, even when the same total number of training images is used. Second, the accuracy of the networks is coupled i.e., for a reduced range of motion in one axis the accuracy of the remaining axes will increase. While this effect is less pronounced than that of examples-per-degree it can be observed in Table 1 where a 4° increase in yaw accuracy is observed for both drones in the reduced angle regime. This despite the range of motion in that axis remaining constant. The improvement can be attributed to the reduced variance (roll and pitch range) in the images which the yaw network must learn. Third, the accuracy of the networks is somewhat contingent on the symmetry of the drone. Specifically, the Mavic 2 is nearly perfectly symmetric about its roll axis, consequently the accuracy of the Mavic 2 roll network in the full angle regime is the worst. This is because there are the fewest features to unambiguously identify the roll at angles outside of a 90° to 270° range.

Examining the Intersection over Union (IoU) scores in Fig. 6 it is apparent that the networks can effectively segment both drones into their components regardless of their orientation. The score relating to the ‘body’ label is the highest in all cases indicating that the network is most accurate at predicting this component. This is likely because it is the most prevalent in terms of pixels in the image. Additionally, the fact that the rows and columns of the IoU scores do not sum to 100 indicates a conservative predictor. This means the network leaves some pixels (particularly around the perimeter of the drone) unclassified, reducing the total accuracy but also minimising misclassification.

### 3.2 Reduced input results

To further examine the functioning of the networks an ablation study was conducted. Specifically, the effect of removing one input channel, either the histograms or the intensity was quantified. Given that all networks share the DFE it was determined to be sufficient to retrain only the orientation network for the Mavic 2 in the full angle regime since changes in performance in this network would be indicative of changes in all networks. Table 2 presents a summary of the findings with the network predictions visualized in Fig. 7. Table 2 and Fig. 7 indicate that the orientation of a drone can be more accurately determined from a depth input than an intensity input although the relative improvement is small. It should be noted however, that the images on which the network was trained do not contain a background. In real world cases where drones could be optically camouflaged the ability for depth sensing devices to isolate volumes of space ahead of background objects using time-of-flight gating may significantly enhance their robustness in orientation detection. Additionally, given that the segmentation net-
Table 2: Summary of the Mavic 2’s orientation network accuracy when trained using only an intensity input or a depth input in the full angle regime.

| Metric | Histogram only | Change |
|--------|----------------|--------|
|        | (accuracy ± std)(%) | (accuracy ; std)(%) |
| Roll   | 87.4±13.7       | -0.9 ; +0.7 |
| Pitch  | 99.1±0.9        | -0.1 ; +0.1 |
| Yaw    | 91.9±10.1       | -0.4 ; +0.4 |

Intensity only

| Metric | Orientation (accuracy ± std)(%) | Change |
|--------|---------------------------------|--------|
|        | (accuracy ; std)(%)              |        |
| Roll   | 86.6±14.2                       | -1.7 ; +1.2 |
| Pitch  | 98.8±1.2                        | -0.4 ; +0.4 |
| Yaw    | 88.6±13.1                       | -3.6 ; +3.4 |

Work can only reliably produce images up to the size of it’s largest input (due to its U-Net structure) there is a benefit to providing the network with a high transverse resolution image.

3.3 Results on real data

To demonstrate the real world applicability of our system, we applied the reduced angle network (trained only on simulated data) to an image of a real DJI Mavic

2 Zoom drone captured in flight using a Quantic 4x4 SPAD camera. Fig. summarizes the predictions made by the networks and highlights their ability to fully characterise drones in real world conditions. The network correctly identified the drone type and suffered only a small loss in accuracy when performing the segmentation and orientation operations. This reduction in accuracy can be attributed to the reduction in quality between the simulated data and the input data from the Quantic-4x4 (as seen in Fig. [5c])

4 Conclusion

We present a CNN using a decision tree and ensemble structure to fully characterise i.e., determine the type, orientation and segmentation of drones in flight with accuracies in excess of 90%. We provide a system for the rapid generation of large quantities of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to allow the system to accurately characterise real drones in flight. Our network provides a valuable tool in the image processing chain and can be used in combination with existing drone detection technologies to provide complete drone characterisation over wide areas. Finally, our approach may be readily extended to multiple 3D imaging and sensor fusion systems enabling pose detection for a wide range of vehicles.

Acknowledgements

The authors gratefully acknowledge the funding support of the Defence Science Technologies Laboratory through project Dstlx-1000147352. This work was supported by EPSRC through grants EP/T00097X/1 and EP/S026428/1.

References

[1] D. Gettinger and A. H. Michel, “Drone sightings and close encounters: An analysis,” Center for the Study of the Drone, Bard College, Annandale-on-Hudson, NY, USA, 2015.

[2] A. M. Mehta, L. Tam, D. A. Greer, and K. Letheren, “Before crisis: How near-miss affects organizational trust and industry transference in emerging industries,” Public Relations Review, vol. 46, no. 2, p. 101886, 2020.

[3] A. Rossiter, “Drone usage by militant groups: exploring variation in adoption,” Defense & Security Analysis, vol. 34, no. 2, pp. 113–126, 2018.
[4] T. Hammes, “The democratization of airpower: The insurgent and the drone,” *War on the Rocks*, vol. 18, 2016.

[5] D. Schneider, “Regulators seek ways to down rogue drones: Growing antidrone industry offers radar, remote id, and other tools-[news],” *IEEE Spectrum*, vol. 56, no. 4, pp. 10–11, 2019.

[6] P. Nguyen, T. Kim, J. Miao, D. Hesselius, E. Kenneally, D. Massey, E. Frew, R. Han, and T. Vu, “Towards rf-based localization of a drone and its controller,” in *Proceedings of the 5th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications*, pp. 21–26, 2019.

[7] J. O’Malley, “The no drone zone,” *Engineering & Technology*, vol. 14, no. 2, pp. 34–38, 2019.

[8] I. Bisio, C. Garibotto, F. Lavagetto, A. Sciaronne, and S. Zappatore, “Unauthorized amateur uav detection based on wifi statistical fingerprint analysis,” *Ieee Communications Magazine*, vol. 56, no. 4, pp. 106–111, 2018.

[9] H. Zhang, C. H. Cao, L. W. Xu, and T. A. Gulliver, “A uav detection algorithm based on an artificial neural network,” *Ieee Access*, vol. 6, pp. 24720–24728, 2018.

[10] M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, I. Guvenc, and Ieee, *Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques*. IEEE Aerospace Conference Proceedings, New York: Ieee, 2019.

[11] A. Bello, B. Biswal, S. Shetty, C. Kamhoua, and K. Gold, *Radio Frequency Classification Toolbox for Drone Detection*, vol. 11006 of *Proceedings of SPIE*. Bellingham: Spie-Int Soc Optical Engineering, 2019.

[12] A. Shoufan, H. M. Al-Angari, M. F. A. Sheikh, and E. Damiani, “Drone pilot identification by classifying radio-control signals,” *Ieee Transactions on Information Forensics and Security*, vol. 13, no. 10, pp. 2439–2447, 2018.

[13] D. Shorten, A. Williamson, S. Srivastava, J. C. Murray, and M. Assoc Comp, *Localisation of Drone Controllers from RF Signals using a Deep Learning Approach*. Prai 2018: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, New York: Assoc Computing Machinery, 2018.
[24] H. Kolamunna, T. Dahanayaka, J. Li, S. Seneviratne, K. Thilakaratne, A. Y. Zomaya, and A. Seneviratne, “Droneprint: Acoustic signatures for open-set drone detection and identification with online data,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 5, no. 1, pp. 1–31, 2021.

[25] S. Song, Y. Son, and Y. Kim, “Flying drone classification based on visualization of acoustic signals with deep neural networks,” in 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 546–548, IEEE.

[26] J. Garcia-Gomez, M. Bautista-Duran, R. Gil-Pita, I. Mohino-Herranz, M. Aguilar-Ortega, and C. Clares-Crespo, Cost-constrained Drone Presence Detection through Smart Sound Processing. Icpram: Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods, Setubal: Scitepress, 2019.

[27] M. Z. Anwar, Z. Kaleem, and A. Jamalipour, “Machine learning inspired sound-based amateur drone detection for public safety applications,” Ieee Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2526–2534, 2019.

[28] B. W. Yang, E. T. Matson, A. H. Smith, J. E. Dietz, J. C. Gallagher, and Ieee, UAV Detection System with Multiple Acoustic Nodes Using Machine Learning Models. 2019 Third Ieee International Conference on Robotic Computing, New York: Ieee, 2019.

[29] S. Salman, J. Mir, M. T. Farooq, A. N. Malik, and R. Haleemdeen, Machine Learning Inspired Efficient Audio Drone Detection using Acoustic Features, pp. 335–339. International Bhurban Conference on Applied Sciences and Technology, New York: Ieee, 2021.

[30] Y. J. He, I. Ahmad, L. Shi, and K. Chang, “Svm-based drone sound recognition using the combination of hla and wpt techniques in practical noisy environment,” Ksii Transactions on Internet and Information Systems, vol. 13, no. 10, pp. 5078–5094, 2019.

[31] G. Ciaburro and G. Iannace, “Improving smart cities safety using sound events detection based on deep neural network algorithms,” Informatics-Basel, vol. 7, no. 3, p. 17, 2020.

[32] S. Jeon, J. W. Shin, Y. J. Lee, W. H. Kim, Y. Kwon, H. Y. Yang, and Ieee, Empirical Study of Drone Sound Detection in Real-Life Environment with Deep Neural Networks, pp. 1858–1862. European Signal Processing Conference, New York: Ieee, 2017.

[33] S. Al-Emadi, A. Al-Ali, and A. Al-Ali, “Audio-based drone detection and identification using deep learning techniques with dataset enhancement through generative adversarial networks,” Sensors, vol. 21, no. 15, p. 26, 2021.

[34] S. Al-Emadi, A. Al-Ali, A. Mohammad, A. Al-Ali, and Ieee, Audio Based Drone Detection and Identification using Deep Learning, pp. 459–464. International Wireless Communications and Mobile Computing Conference, New York: Ieee, 2019.

[35] M. Ohlenbusch, A. Ahrens, C. Rollwage, J. Bitzer, and Ieee, Robust Drone Detection for Acoustic Monitoring Applications, pp. 6–10. European Signal Processing Conference, New York: Ieee, 2021.

[36] Y. Seo, B. Jang, S. Im, and Ieee, Drone Detection Using Convolutional Neural Networks with Acoustic STFT Features. 2018 15th Ieee International Conference on Advanced Video and Signal Based Surveillance, New York: Ieee, 2018.

[37] J. Kim, C. Park, J. Ahn, Y. Ko, J. Park, J. C. Gallagher, and Ieee, Real-time UAV Sound Detection and Analysis System. 2017 Ieee Sensors Applications Symposium, New York: Ieee, 2017.

[38] N. Siriphun, S. Kashihara, D. Fall, and A. Khurat, “Distinguishing drone types based on acoustic wave by iot device,” in 2018 22nd International Computer Science and Engineering Conference (ICSEC), pp. 1–4, IEEE.

[39] S. Yoo and H. Oh, “Analysis of commercial drone sounds and its identification,” in Proceedings of the International Conference on Research in Adaptive and Convergent Systems, pp. 47–52.

[40] A. E. Ananenkov, D. V. Marin, V. M. Nuzhdin, V. V. Rastorguev, and P. V. Sokolov, Possibilities to Observe Small-Size UAVs in the Prospective Airfield Radar. International Conference on Transparent Optical Networks-ICTON, New York: Ieee, 2018.

[41] T. Al-Nuaim, M. Alam, and A. Aldowesh, Low-Cost Implementation of a Multiple-Input
Multiple-Output Radar Prototype for Drone Detection, pp. 183–186. ELMAR Proceedings, New York: Ieee, 2019.

[42] A. Aldowesh, T. BinKhamis, T. Alnuaim, and A. Alzogaiby, “Low power digital array radar for drone detection and micro-doppler classification,” in 2019 Signal Processing Symposium (SPSympo), pp. 203–206, IEEE.

[43] Y. C. Zhao and Y. Su, “The extraction of micro-doppler signal with emd algorithm for radar-based small uavs’ detection,” Ieee Transactions on Instrumentation and Measurement, vol. 69, no. 3, pp. 929–940, 2020.

[44] Y. C. Zhao and Y. Su, “Cyclostationary phase analysis on micro-doppler parameters for radar-based small uavs detection,” Ieee Transactions on Instrumentation and Measurement, vol. 67, no. 9, pp. 2048–2057, 2018.

[45] H. B. Sun, B. S. Oh, X. Guo, and Z. P. Lin, “Improving the doppler resolution of ground-based surveillance radar for drone detection,” Ieee Transactions on Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3667–3673, 2019.

[46] A. D. Huang, P. Sevigny, H. Balajit, S. Rajan, and Ieee, Radar Micro-Doppler-based Rotary Drone Detection using Parametric Spectral Estimation Methods. IEEE Sensors, New York: Ieee, 2020.

[47] J. F. Ren and X. D. Jiang, “A three-step classification framework to handle complex data distribution for radar uav detection,” Pattern Recognition, vol. 111, p. 11, 2021.

[48] S. Zulkifi, A. Balleri, and Ieee, Design and Development of K-Band FMCW Radar for NanoDrone Detection. IEEE Radar Conference, New York: Ieee, 2020.

[49] W. Y. Zhang and G. Li, “Detection of multiple micro-drones via cadence velocity diagram analysis,” Electronics Letters, vol. 54, no. 7, pp. 441–442, 2018.

[50] G. Sacco, E. Pittella, E. Piuuzzi, S. Pisa, and Ieee, A MISO radar system for drone localization, pp. 549–553. IEEE Metrology for AeroSpace, New York: Ieee, 2018.

[51] C. Ozdemir, “Radar cross section analysis of unmanned aerial vehicles using predics,” International Journal of Engineering and Geosciences, vol. 5, no. 3, pp. 144–149, 2020.

[52] V. Semkin, M. S. Yin, Y. Q. Hu, M. Mezzavilla, S. Rangan, and Ieee, Drone Detection and Classification Based on Radar Cross Section Signatures. 2020 International Symposium on Antennas and Propagation, New York: Ieee, 2021.

[53] A. D. de Quevedo, F. I. Urzaiz, J. G. Menoyo, A. A. Lopez, and Ieee, Drone Detection and RCS Measurements with Ubiquitous Radar. 2018 International Conference on Radar, New York: Ieee, 2018.

[54] S. Rzewuski, K. Kulpa, B. Salski, P. Kopyt, K. Borowiec, M. Malanowski, and P. Samczyński, “Drone rcs estimation using simple experimental measurement in the wifi bands,” in 2018 22nd International Microwave and Radar Conference (MIKON), pp. 695–698, IEEE.

[55] M. Guo, Y. Lin, Z. S. Sun, Y. Q. Fu, and Ieee, Research on Monostatic Radar Cross Section Simulation of Small Unmanned Aerial Vehicles. 2018 International Conference on Microwave and Millimeter Wave Technology, New York: Ieee, 2018.

[56] R. Nakamura and H. Hadama, “Characteristics of ultra-wideband radar echoes from a drone,” Ieice Communications Express, vol. 6, no. 9, pp. 530–534, 2017.

[57] R. Nakamura, H. Hadama, and A. Kajiwara, “Ultra-wideband radar reflectivity of a drone in millimeter wave band,” Ieice Communications Express, vol. 7, no. 9, pp. 341–346, 2018.

[58] T. Mizushima, R. Nakamura, H. Hadama, and Ieee, Reflection Characteristics of Ultra-wideband Radar Echoes from Various Drones in Flight, pp. 30–33. IEEE Topical Conference on Wireless Sensors and Sensor Networks, New York: Ieee, 2020.

[59] M. Passafiume, N. Rojhani, G. Collodi, and A. Cidronali, “Modeling small uav micro-doppler signature using millimeter-wave fmcw radar,” Electronics, vol. 10, no. 6, p. 16, 2021.

[60] J. Ochodnický, Z. Matousek, M. Babjak, and J. Kurty, “Drone detection by ku-band battlefield radar,” in 2017 International Conference on Military Technologies (ICMT), pp. 613–616, IEEE.

[61] J. S. Patel, F. Fioranelli, and D. Anderson, “Review of radar classification and rcs characterisation techniques for small uavs or drones,” Jet Radar Sonar and Navigation, vol. 12, no. 9, pp. 911–919, 2018.
[62] S. A. Musa, R. Abdullah, A. Sali, A. Ismail, N. E. A. Rashid, I. P. Ibrahim, and A. A. Salah, “A review of copter drone detection using radar systems,” Def. S&T Tech. Bull., vol. 12, no. 1, pp. 16–38, 2019.

[63] A. Coluccia, G. Parisi, and A. Fascista, “Detection and classification of multirotor drones in radar sensor networks: A review,” Sensors, vol. 20, no. 15, p. 22, 2020.

[64] B. Taha and A. Shoufan, “Machine learning-based drone detection and classification: State-of-the-art in research,” Ieee Access, vol. 7, pp. 138669–138682, 2019.

[65] A. Carrio, S. Vemprala, A. Ripoll, S. Saripalli, and P. Campoy, Drone Detection Using Depth Maps, pp. 1032–1037. IEEE International Conference on Intelligent Robots and Systems, New York: Ieee, 2018.

[66] J. Ryu and S. Kim, Small infrared target detection by data-driven proposal and deep learning-based classification, vol. 10624 of Proceedings of SPIE. Bellingham: Spie-Int Soc Optical Engineering, 2018.

[67] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.

[68] D. K. Behera, A. B. Raj, and Ieee, Drone Detection and Classification using Deep Learning. Proceedings of the International Conference on Intelligent Computing and Control Systems, New York: Ieee, 2020.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[70] X. D. Zhang and K. Chandramouli, Critical Infrastructure Security Against Drone Attacks Using Visual Analytics, vol. 11754 of Lecture Notes in Computer Science, pp. 713–722. Cham: Springer International Publishing Ag, 2019.

[71] J. Park, D. H. Kim, Y. S. Shin, S. H. Lee, and Ieee, A Comparison of Convolutional Object Detectors for Real-time Drone Tracking Using a PTZ Camera, pp. 696–699. International Conference on Control Automation and Systems, New York: Ieee, 2017.

[72] H. Liu, F. C. Qu, Y. J. Liu, W. Zhao, Y. T. Chen, and Iop, A drone detection with aircraft classification based on a camera array, vol. 322 of IOP Conference Series-Materials Science and Engineering. Bristol: Iop Publishing Ltd, 2018.

[73] E. Unlu, E. Zenou, N. Riviere, and P.-E. Dupouy, “Deep learning-based strategies for the detection and tracking of drones using several cameras,” IPSJ Transactions on Computer Vision and Applications, vol. 11, no. 1, pp. 1–13, 2019.

[74] M. Wu, W. Xie, X. Shi, P. Shao, and Z. Shi, “Real-time drone detection using deep learning approach,” in International Conference on Machine Learning and Intelligent Communications, pp. 22–32, Springer.

[75] S. A. Hassan, T. Rahim, S. Y. Shin, and Ieee, Real-time UAV Detection based on Deep Learning Network, pp. 630–632. International Conference on Information and Communication Technology Convergence, New York: Ieee, 2019.

[76] A. Koksal, K. G. Ince, and A. Alatan, “Effect of annotation errors on drone detection with yolov3,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1030–1031.

[77] K. Madasamy, V. Shanmuganathan, V. Kandasamy, M. Y. Lee, and M. Thangadurai, “Osddy: embedded system-based object surveillance detection system with small drone using deep yolo,” Eurasip Journal on Image and Video Processing, vol. 2021, no. 1, p. 14, 2021.

[78] A. Schumann, L. Sommer, J. Klatte, T. Schuchert, J. Beyerer, and Ieee, Deep Cross-Domain Flying Object Classification for Robust UAV Detection. 2017 14th Ieee International Conference on Advanced Video and Signal Based Surveillance, New York: Ieee, 2017.

[79] A. Coluccia, A. Fascista, A. Schumann, L. Sommer, M. Gheneescu, T. Piatrik, G. De Cubber, M. Nalamati, A. Kapoor, M. Saqib, N. Sharma, M. Blumenstein, V. Magoulanti, D. Ataloglou, A. Dimou, D. Zarpalas, P. Daras, C. Craye, S. Ardjoune, D. de la Iglesia, M. Mendez, R. Dosil, I. Gonzalez, and Ieee, Drone-vs-Bird Detection Challenge at IEEE AVSS2019. 2019 16th Ieee International Conference on Advanced Video and Signal Based Surveillance, New York: Ieee, 2019.
[80] C. Craye, S. Ardjoune, and Ieee, *Spatio-temporal Semantic Segmentation for Drone Detection*. 2019 16th Ieee International Conference on Advanced Video and Signal Based Surveillance, New York: Ieee, 2019.

[81] A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, M. Mendez, D. de la Iglesia, I. Gonzalez, J. P. Mercier, G. Gagne, A. Mitra, and S. Rajashekar, “Drone vs. bird detection: Deep learning algorithms and results from a grand challenge,” *Sensors*, vol. 21, no. 8, p. 27, 2021.

[82] L. Du, C. Q. Gao, Q. Feng, C. Wang, and J. Liu, *Small UAV Detection in Videos from a Single Moving Camera*, vol. 773 of Communications in Computer and Information Science, pp. 187–197. Singapore: Springer-Verlag Singapore Pte Ltd, 2017.

[83] U. Seidaliyeva, D. Akhmetov, L. Ilipbayeva, and E. T. Matson, “Real-time and accurate drone detection in a video with a static background,” *Sensors*, vol. 20, no. 14, p. 19, 2020.

[84] A. Sharjeel, S. A. Z. Naqvi, and M. Ahsan, “Real time drone detection by moving camera using corola and cnn algorithm,” *Journal of the Chinese Institute of Engineers*, vol. 44, no. 2, pp. 128–137, 2021.

[85] P. Neduchal, F. Berka, and M. Zelezny, *Stationary Device for Drone Detection in Urban Areas*, vol. 10459 of Lecture Notes in Artificial Intelligence, pp. 162–169. Cham: Springer International Publishing Ag, 2017.

[86] D. Lee, W. G. La, H. Kim, and Ieee, *Drone Detection and Identification System using Artificial Intelligence*, pp. 1131–1133. International Conference on Information and Communication Technology Convergence, New York: Ieee, 2018.

[87] P. A. Prates, R. Mendonça, A.Lourenço, F. Marques, J. P. Matos-Carvalho, and J. Barata, “Vision-based uav detection and tracking using motion signatures,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 482–487, Ieee.

[88] K. Abbasi, A. Batool, M. A. Asghar, A. Saeed, M. J. Khan, and M. ur Rehman, “A vision-based amateur drone detection algorithm for public safety applications,” in 2019 UK/China Emerging Technologies (UCET), pp. 1–5, IEEE.

[89] A. Fernandes, M. Baptista, L. Fernandes, P. Chaves, and Ieee, *Drone, Aircraft and Bird Identification in Video Images Using Object Tracking and Residual Neural Networks*. International Conference on Electronics Computers and Artificial Intelligence, New York: Ieee, 2019.

[90] A. J. Garcia, J. M. Lee, and D. S. Kim, “Antidrone system: A visual-based drone detection using neural networks,” in 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 559–561, Ieee.

[91] S. Srigrarom, N. J. L. Sie, H. M. Cheng, K. H. Chew, M. Lee, P. Ratsamee, and Ieee, *Multi-camera Multi-drone Detection, Tracking and Localization with Trajectory-based Re-identification*. 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics, New York: Ieee, 2021.

[92] Q. Dong and Q. H. Zou, *Visual UAV detection method with online feature classification*. Proceedings of 2017 Ieee 2nd Information Technology, Networking, Electronic and Automation Control Conference, New York: Ieee, 2017.

[93] Z. Z. Wang, L. Qi, Y. Tie, Y. Ding, Y. Bai, and Ieee, *Drone Detection Based On FD-HOG Descriptor*, pp. 433–436. International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, New York: Ieee, 2018.

[94] H. Sun, W. Geng, J. Q. Shen, N. Z. Liu, D. Liang, and H. Y. Zhou, “Deeper ssd: Simultaneous up-sampling and down-sampling for drone detection,” Ksii Transactions on Internet and Information Systems, vol. 14, no. 12, pp. 4795–4815, 2020.

[95] N. Shijith, P. Poornachandran, V. G. Sujadevi, M. M. Dharmana, and Ieee, *Breach Detection and Mitigation of UAVs Using Deep Neural Network*. 2017 Recent Developments in Control, Automation and Power Engineering, New York: Ieee, 2017.

[96] E. Unlu, E. Zenou, and N. Riviere, *Generic Fourier Descriptors for Autonomous UAV Detection*. Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, Setubal: Scitepress, 2018.

[97] E. Unlu, E. Zenou, and N. Riviere, “Using shape descriptors for uav detection,” *Electronic Imaging*, vol. 2018, no. 9, pp. 128–1–128–5, 2018.
M. Nalamati, A. Kapoor, M. Saqib, N. Sharma, M. Blumenstein, and Ieee, *Drone Detection in Long-range Surveillance Videos*. 2019 16th Ieee International Conference on Advanced Video and Signal Based Surveillance, New York: Ieee, 2019.

H. Sun, J. Yang, J. Q. Shen, D. Liang, N. Z. Liu, and H. Y. Zhou, “Tib-net: Drone detection network with tiny iterative backbone,” *Ieee Access*, vol. 8, pp. 130697–130707, 2020.

L. Tao, T. Hong, Y. C. Guo, H. Y. Chen, J. M. Zhang, and Ieee, *Drone identification based on CenterNet-TensorRT*. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, New York: Ieee, 2020.

A. Hernandez, C. Copot, R. De Keyser, T. Vlas, and I. Nascu, *Identification and Path Following Control of an AR.Drone Quadrotor*. 2013 17th International Conference on System Theory, Control and Computing, New York: Ieee, 2013.

C. Shinde, R. Lima, K. Das, and Ieee, *Multi-view Geometry and Deep Learning Based Drone Detection and Localization*. 2019 Fifth Indian Control Conference, New York: Ieee, 2019.

L. Wang, J. Ai, L. Zhang, and Z. Xing, “Design of airport obstacle-free zone monitoring uav system based on computer vision,” *Sensors*, vol. 20, no. 9, p. 2475, 2020.

D. T. W. Xun, Y. L. Lim, S. Srigrarom, and Ieee, *Drone detection using YOLOv3 with transfer learning on NVIDIA Jetson TX2*. 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics, New York: Ieee, 2021.

C. Ruiz, X. L. Chen, P. Zhang, and Ieee, *Poster Abstract: Hybrid and Adaptive Drone Identification through Motion Actuation and Vision Feature Matching*. 2017 16th Acm/Ieee International Conference on Information Processing in Sensor Networks, New York: Ieee, 2017.

D. H. Lee, “Cnn-based single object detection and tracking in videos and its application to drone detection,” *Multimedia Tools and Applications*, p. 12.

M. Saqib, N. Sharma, S. D. Khan, M. Blumenstein, and Ieee, *A Study on Detecting Drones Using Deep Convolutional Neural Networks*. 2017 14th Ieee International Conference on Advanced Video and Signal Based Surveillance, New York: Ieee, 2017.

H. M. Oh, H. Lee, M. Y. Kim, and Ieee, *Comparing Convolutional Neural Network(CNN) models for machine learning-based drone and bird classification of anti-drone system*, pp. 87–90. International Conference on Control Automation and Systems, New York: Ieee, 2019.

U. Seidaliyeva, M. Alduraibi, L. Ilipbayeva, and A. Almagambetov, “Detection of loaded and unloaded uav using deep neural network,” in *2020 Fourth IEEE International Conference on Robotic Computing (IRC)*, pp. 490–494, IEEE.

R. Jin, J. Q. Jiang, Y. H. Qi, D. F. Lin, and T. Song, “Drone detection and pose estimation using relational graph networks,” *Sensors*, vol. 19, no. 6, p. 20, 2019.

S. Jamil, Fawad, M. Rahman, A. Ullah, S. Badnava, M. Forsat, and S. S. Mirjavadi, “Malicious uav detection using integrated audio and visual features for public safety applications,” *Sensors*, vol. 20, no. 14, p. 16, 2020.

B. H. Kim, D. Khan, C. Bohak, W. Choi, H. J. Lee, and M. Y. Kim, “V-rbnn based small drone detection in augmented datasets for 3d ladar system,” *Sensors*, vol. 18, no. 11, p. 16, 2018.

B. H. Kim, D. Khan, W. Choi, and M. Y. Kim, *Real Time Counter-UAV System for Long Distance Small Drones using Double Pan-Tilt Scan Laser Radar*, vol. 11005 of *Proceedings of SPIE*. Bellingham: Spie-Int Soc Optical Engineering, 2019.

I. Gyongy, S. W. Hutchings, A. Halimi, M. Tyler, S. Chan, F. Zhu, S. McLaughlin, R. K. Henderson, and J. Leach, “High-speed 3d sensing via hybrid-mode imaging and guided up-sampling,” *Optica*, vol. 7, no. 10, pp. 1253–1260, 2020.

G. Mora-Martín, A. Turpin, A. Ruget, A. Halimi, R. Henderson, J. Leach, and I. Gyongy, “High-speed object detection with a single-photon time-of-flight image sensor,” *Optics Express*, vol. 29, no. 21, pp. 33184–33196, 2021.
[117] S. W. Hutchings, N. Johnston, I. Gyongy, T. Al Abbas, N. A. Dutton, M. Tyler, S. Chan, J. Leach, and R. K. Henderson, “A reconfigurable 3-d-stacked spad imager with in-pixel histogramming for flash lidar or high-speed time-of-flight imaging,” IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 2947–2956, 2019.

[118] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

[119] Y. Wang, Y. Chen, J. Choi, and C.-C. J. Kuo, “Towards visible and thermal drone monitoring with convolutional neural networks,” APSIPA Transactions on Signal and Information Processing, vol. 8, 2019.

[120] Y. R. Chen, P. Aggarwal, J. Choi, C. C. J. Kuo, and Ieee, A Deep Learning Approach to Drone Monitoring, pp. 686–691. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, New York: Ieee, 2017.

[121] V. Magoulianitis, D. Ataloglou, A. Dimou, D. Zarpalas, and P. Daras, “Does deep super-resolution enhance uav detection?,” in 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, IEEE.

[122] S. R. Yellapantula, Synthesizing realistic data for vision based drone-to-drone detection. Thesis, 2019.