Fabrication of g-C$_3$N$_4$ Nanosheets Anchored With Controllable CdS Nanoparticles for Enhanced Visible-Light Photocatalytic Performance

Minggui Wang1,2, Min Wang1, Fang Peng1, Xiaohuan Sun2 and Jie Han2*

1Guangling College, Yangzhou University, Yangzhou, China, 2School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China

Herein, g-C$_3$N$_4$/CdS hybrids with controllable CdS nanoparticles anchoring on g-C$_3$N$_4$ nanosheets were constructed. The effects of CdS nanoparticles on photocatalytic H$_2$ production and organic molecule degradation for g-C$_3$N$_4$/CdS hybrids were investigated. The maximum rate of H$_2$ production for g-C$_3$N$_4$/CdS sample was 1,070.9 μmol g$^{-1}$ h$^{-1}$, which was about four times higher than that of the individual g-C$_3$N$_4$ nanosheet sample. The enhanced photocatalytic performance for prepared hybrids could be mainly attributed to the following causes: the formed heterojunctions can contribute to the light absorption and separation of photogenerated electrons and holes, the two-dimensional layered structure facilitates the transmission and transfer of electrons, and high specific surface area could provide more exposed active sites.

Keywords: G-C3N4, CdS, hybrids, photocatalyst, visible light

INTRODUCTION

Semiconductor materials have received widespread attention as promising photocatalysts for clean energy production and environmental problems. (Tong et al., 2012; Chang et al., 2016; Yu et al., 2017; Qi et al., 2018; Cao et al., 2019; Ng et al., 2021). Recently, g-C$_3$N$_4$ has received considerable attention as a promising photocatalyst, owing to its ease of preparation, high stability, low cost, clean and low toxicity, narrowed bandgap (\sim2.7 eV), and special two-dimensional (2D) layered structure (Shi et al., 2016; Teng et al., 2017; Han et al., 2018; Deng et al., 2019; Ong et al., 2020; Vu et al., 2020; Yu et al., 2021); however, diverse drawbacks include poor efficiency of light utilization and low separation of photogenerated charges during the application, making g-C$_3$N$_4$ less attractive for photocatalyst construction. (Tahir et al., 2014; Liu et al., 2017; Al Marzouqi et al., 2019; Fu et al., 2019; Fan et al., 2020). In addition, bulk g-C$_3$N$_4$ with a low surface area and irregular morphology prepared through the conventional method leads to the low transfer rate of interfacial charge and poor photocatalytic activity (Teng et al., 2017; Niu et al., 2018).

For the sake of the improved photocatalytic performance of pure g-C$_3$N$_4$, many strategies have been made to develop cheaper and recyclable catalysts, such as nanostructure design (Sun et al., 2012; Bai et al., 2013; Tahir et al., 2014; Lin et al., 2016; Zhou et al., 2018; Yang et al., 2019), loading with noble metals (Zhang et al., 2016; Duan et al., 2019; Wan et al., 2020) or doping non-metal elements (Guo et al., 2017; Liu et al., 2018; Li et al., 2020), and heterojunction construction (Zhang et al., 2013; Shi et al., 2017; Ji et al., 2018). However, noble metals are rare and too
reported g-C₃N₄/CdS composites showed higher photocatalytic performance of g-C₃N₄/CdS hybrids. It has been investigated that the photocatalytic activity and stability than individual g-C₃N₄ and CdS, which effectively promote the charge separation and transfer. Although numerous heterostructure photocatalysts have been designed, the remarkable improvement of the photocatalytic effect has not been obtained. It was probably caused by large bulk volume or unreasonable contacted interfaces among the two or more components in photocatalysts. It has been investigated that the photocatalytic activity could be influenced by the following factors, such as particle sizes, morphology and structures, and preparation methods. Therefore, in order to optimize the photocatalytic performances of g-C₃N₄/CdS hybrids, some important factors should be taken into account, such as effective contact between two components, well-controlled morphology structure and particle size, and sufficiently exposed reactive active sites. However, few works have found using the chemical deposition of CdS nanoparticles with controllable intensity and particle size onto g-C₃N₄ nanosheets to construct heterojunctions.

Herein, we realize the construction of the highly efficient heterostructured photocatalyst for the photocatalytic hydrogen evolution and degradation of pollutant molecules, where CdS nanoparticles with controllable particle sizes are obtained to modify g-C₃N₄ nanosheets through a facile chemical deposition process. It is found that the controllable CdS particle size has a significant effect on morphology, specific surface area, light absorption, and photocatalytic activity for prepared hybrids. The hydrogen generation rate of g-C₃N₄/CdS hybrids could reach up to 1.070.9 μmol g⁻¹ h⁻¹. The effects of CdS nanoparticles for the light absorption and photoinduced charge transport, and the enhanced photocatalytic activities were systematically discussed.

EXPERIMENTAL

Synthesis

First, g-C₃N₄ nanosheets were prepared according to the previous report (Fan et al., 2020). Briefly, the amount of urea was heated at 570°C under air for 3 h, and the yellow product was obtained for further use. Then 10.0 mg of g-C₃N₄ nanosheets were dispersed into 20.0 ml aqueous solution containing different amounts of CdCl₂·2.5H₂O (with 7.50, 15.0, and 22.5 mg CdCl₂·2.5H₂O, respectively) by ultrasonication for 30 min. Then 0.25 ml NH₃·H₂O and 5.0 ml thiourea (TAA) solution (with 5.5 mg TAA) was added, followed by a water bath at 60°C for 3 h. The resultant products were washed with water and ethanol three times and collected by centrifugation, followed by drying at 60°C for 4 h. After that, the as-prepared products were annealed at 300°C for 2 h in the nitrogen atmosphere by a tubular furnace to improve the crystallinity CdS. The as-prepared g-C₃N₄/CdS hybrids were denoted as g-C₃N₄/CdS-1, g-C₃N₄/CdS-2, and g-C₃N₄/CdS-3, respectively.

Photocatalytic Activity Tests

Photocatalytic degradation of organic pollutants was carried out in a photoreactor system (Xujiang XPA-7) with 5.0 mg of samples dispersed in a 25.0 ml target molecule solution (2.0 × 10⁻⁶ M). After that, a 400 W metal halide lamp with a filter (λ >400 nm) was irradiated to trigger the photocatalytic reaction. The concentration of the degraded solution was detected by a UV-vis spectrophotometer.

The photocatalytic H₂ production was measured in a closed quartz reaction system (300 W Xe lamp with a filter as the light source, λ >400 nm) using triethanolamine as the sacrificial reagent. 100 ml solution (with 20% triethanolamine and dispersed 10.0 mg samples) was continuously stirred at a fixed speed. The amount of H₂ was determined by the online gas chromatography (CEAULIGHT, GC-7920). During the photocatalytic tests, a cooling system was used to maintain the temperature constant.

Characterization

TEM (JEOL, JEM-2100) and HRTEM (FEI, Tecnai G2 F30 S-Twin TEM) were measured for imaging. The phase composition was measured by the Bruker D8 ADVANCE X-ray diffractometer (XRD). BET-specific surface areas and pore structures were determined by a Beishide 3H-2000PS2 system. XPS measurement was performed on a Thermo Scientific ESCALAB 250Xi spectrometer. The photocurrent response experiment was performed on a photoelectrochemical workstation (CIMPS-2, Zahner) with a three-electrode system; 300 W Xe lamp and Na₂SO₄ aqueous solution (0.1 M) were used as the light source and electrolyte solution, respectively. The hydroxyl radicals were detected using a fluorescence spectrophotometer (Hitachi F-7000).
RESULTS AND DISCUSSIONS

Morphologies and Structural Characterization

The synthesis processes of g-C$_3$N$_4$/CdS hybrids are shown in Scheme 1. The morphology and structure of g-C$_3$N$_4$/CdS samples were characterized by SEM and TEM, as given in Figure 1. Supplementary Figure S1 is the TEM image of the pure g-C$_3$N$_4$ sample with a layered structure, which can offer a substrate for the arching of CdS nanoparticles. For the g-C$_3$N$_4$/CdS samples (Figure 1), it should be noted that the CdS nanoparticles are well loaded onto the g-C$_3$N$_4$ nanosheets. The amount and particle sizes of CdS nanoparticles can be tuned by changing the amount of the CdCl$_2$ precursor. As demonstrated in Figures 1A,D, for the sample g-C$_3$N$_4$/CdS-1, CdS nanoparticles were evenly dispersed on g-C$_3$N$_4$ nanosheets with a size narrowed by about 11.5 nm. With increasing the amount of the CdCl$_2$ precursor, more nanoparticles with a larger size, up to 18.0 nm, can be observed for sample g-C$_3$N$_4$/CdS-2 (Figures 1B,E). When the amount of CdCl$_2$ was increased to 22.5 mg, for sample g-C$_3$N$_4$/CdS-3, the size distribution of CdS nanoparticles turns to be wider, and CdS nanoparticles with a diameter of ~23.5 and ~8.8 nm can be observed (Figures 1C,F). The statistical size distributions of CdS nanoparticles for g-C$_3$N$_4$/CdS-1/2/3 hybrids are also given in Figure 1.

As seen from Figures 2A–C, TEM, HRTEM, and EDX mapping indicated the successful loading of CdS nanoparticles on a g-C$_3$N$_4$ nanosheet. The TEM image (Figure 2A) shows a high distribution of CdS nanoparticles with average sizes of about ~18 nm dispersed on g-C$_3$N$_4$ nanosheets. The HRTEM image (Figure 2B) gives two sets of distinct lattice fringes, whereas the spacing of about 0.316 and 0.321 nm, corresponding to the (101) and (002) planes of CdS and g-C$_3$N$_4$, respectively (Wang et al., 2017a; Zhang et al., 2017; Chiu et al., 2019). Obviously, EDX mappings demonstrate the existence of C, N, Cd, and S (Figures 2D–H), suggesting the uniform distribution of Cd and S elements from g-C$_3$N$_4$/CdS (Figure 2C), confirming the good connection between CdS and g-C$_3$N$_4$.

The crystal phases of g-C$_3$N$_4$, CdS, and g-C$_3$N$_4$/CdS samples were analyzed by XRD. As shown in Figure 3A, all diffraction peaks for g-C$_3$N$_4$ and CdS can be observed. The two strong diffraction peaks clearly shown at 12.8° and 27.6° can be ascribed to (100) and (002) crystal planes of g-C$_3$N$_4$ (PDF#50-1,250), which can be associated with typical in-plane tri-s-triazine and graphitic stacking of g-C$_3$N$_4$ (Xu et al., 2020). Furthermore, diffraction peaks at 24.8°, 26.5°, and 28.3° are well matched.
The surface composition of the g-C$_3$N$_4$, CdS, and g-C$_3$N$_4$/CdS samples was studied by XPS analyses, as shown in Figure 4. The survey XPS spectra (Figure 4A) provide the C 1s and N 1s peaks for g-C$_3$N$_4$, as well as S 2p and Cd 3d peaks for CdS. As shown in Figure 4B, the C 1s peak for g-C$_3$N$_4$/CdS at 284.3 eV, which is assigned to sp2 C-C bonds from graphitic carbon. The other two peaks at 286.2 and 288.1 eV are attributed to N-C=N and π-excitation, respectively (Gao et al., 2014; Liang et al., 2019; Xu et al., 2020). These peaks show a slight shift while compared with g-C$_3$N$_4$. In Figure 4C, the two peaks at 405.5 and 412.2 eV could be ascribed to Cd 3d$_{5/2}$ and Cd 3d$_{3/2}$ of CdS from g-C$_3$N$_4$/CdS. In addition, the peaks at 161.1 and 162.3 eV are associated with S 2p$_{3/2}$ and S 2p$_{1/2}$ of CdS, respectively (Figure 4D; Ren et al., 2019; Wang et al., 2019; Ai et al., 2020). These peaks show a slight shift while compared with pristine CdS or g-C$_3$N$_4$, which confirm the interaction between the heterojunctions.

Photocatalytic Performances and Mechanism Discussion

The photocatalytic activities of g-C$_3$N$_4$, CdS, and g-C$_3$N$_4$/CdS samples were first evaluated with degradation of organic pollution, as given in Figure 5. It can be seen from Figures 5A,B that coupling with CdS shows a significant effect on RhB degradation for g-C$_3$N$_4$/CdS. The photocatalytic activity shows a trend of initially increasing and then decreasing with the increasing of CdS contents. The degradation efficiency of RhB can reach up to 99% within 40 min for g-C$_3$N$_4$/CdS-2 hybrids, which is remarkably enhanced than that for individual g-C$_3$N$_4$, CdS nanoparticles and CdS nanoparticles. The photocatalytic rate constant for the prepared g-C$_3$N$_4$/CdS-2 is 0.0849 min$^{-1}$, about 5.5 times higher than that for g-C$_3$N$_4$. The photocatalytic results demonstrate that the anchoring of CdS nanoparticles onto g-C$_3$N$_4$ nanosheets and CdS nanoparticles can remarkably be conducive to photocatalytic performance. The enhanced activity for sample g-C$_3$N$_4$/CdS-2 can be attributed to well-contacted interfaces, effective charge separation, stronger light absorption, and a higher surface area. Furthermore, the TOC analyzer was measured to investigate the mineralization of RhB. The changed TOC values during the photocatalytic process were tested, as shown in Supplementary Table S1 and Supplementary Figure S3. The decayed TOC values suggest that RhB was decomposed into inorganic small molecules. As for MB (Figures 5C,D) and phenol (Figures 5E,F) degradation, g-C$_3$N$_4$/CdS-2 sample also exhibits much higher activity than others, where 96% of MB and 95% of phenol are degraded within 40 and 50 min, respectively. The degradation rate constants k for MB and phenol of prepared samples follow the same order with RhB degradation (Figure 6A). Moreover, the g-C$_3$N$_4$/CdS-2 sample can be recycled for six cycles without obviously decayed activity, and no scattering of CdS particles was found, indicating their excellent recyclability and stability (Figure 6B and Supplementary Figure S4).

The photocatalytic hydrogen evolution of prepared samples was investigated under visible-light irradiation with triethanolamine as the sacrificial reagent. As shown in Figures 7A,B, within 4 h measurement, pure g-C$_3$N$_4$ shows poor catalytic
FIGURE 3 | (A) XRD patterns and (B) nitrogen adsorption-desorption isotherms of g-C₃N₄, CdS, and g-C₃N₄/CdS. Inset in Figure 3B is the corresponding BJH pore size distribution. (C) UV-Vis of absorption spectra and (D) the corresponding $\alpha_{\text{Ephoton}}^{0.5}$ vs photon energy curves.

FIGURE 4 | Fully scanned XPS spectra of (A) g-C₃N₄, CdS, and g-C₃N₄/CdS; high-resolution XPS plots of (B) C 1s, (C) Cd 3 days, and (D) S 2p.
activity with the hydrogen generation rate of $237.8 \, \mu\text{mol g}^{-1}\text{h}^{-1}$, and the hydrogen generation rate using g-C$_3$N$_4$ nanosheets is obviously improved after anchoring with CdS. The hydrogen evolution rate is increased first and then decayed with increasing CdS content, and the g-C$_3$N$_4$/CdS-2 sample exhibits the best hydrogen evolution rate ($1,070.9 \, \mu\text{mol g}^{-1}\text{h}^{-1}$), about 4 times as high as that for pure g-C$_3$N$_4$. The photocatalytic performance for g-C$_3$N$_4$/CdS-2 sample also surpasses the reported g-C$_3$N$_4$/CdS hybrids (Supplementary Table S2). In addition, the recyclability of photocatalytic hydrogen evolution was also measured, as shown in Supplementary Figure S5a. It can be seen that the hydrogen evolution performance of g-C$_3$N$_4$/CdS-2 shows no remarkable decline after 12 h, confirming its good stability.

As observed in Figure 8A, the photocurrent response of prepared samples is detected by photoelectrochemical testing to study the charge separation. It can be found that g-C$_3$N$_4$/CdS heterostructured samples show much higher photocurrent intensity than individual CdS and g-C$_3$N$_4$, which can possibly be ascribed to the heterostructure-induced acceleration of charge separation and transfer. (Tian et al., 2017; Ren et al., 2018; Zhu et al., 2019; Xu et al., 2019; Putri et al., 2020). In order to conduct an in-depth study on photocatalytic degradation, the scavenger test was performed using methanol as the scavenger. As shown in Supplementary Figure S5b, the photocatalytic performance of the RhB photodegradation rate is remarkably decreased after adding methanol, suggesting that the photogenerated holes play an important role in the photocatalytic process. In view of the results, a possible mechanism for g-C$_3$N$_4$/CdS sample with enhanced photocatalytic performance is put forward. The narrowed bandgap semiconductors g-C$_3$N$_4$ and CdS can be excited under light irradiation. Briefly, the electrons produced from g-C$_3$N$_4$ will transfer to CdS owing to the well-contacted interface, and the excited holes can move from CdS to the VB of g-C$_3$N$_4$. Consequently, the separation of photoinduced electrons and holes is effectively improved, and the lifetime of charges is improved (Scheme 2). The transferred strongly oxidizing holes on the VB of g-C$_3$N$_4$ can not only effectively inhibit photocorrosive damage to CdS during the reaction process but also directly degrade...
the target molecules. In the process of photocatalytic reaction, the photoexcited electrons may reduce H\(^+\) into hydrogen. Meanwhile, the accumulated electrons on the surface of CdS can oxidize the adsorbed dissolved O\(_2\) to produce \(\bullet\)O\(_2\)^{-} and subsequently form \(\bullet\)OH. The formation of powerful reactive species (\(\bullet\)O\(_2\)^{-} and \(\bullet\)OH) can effectively degrade the organic pollutant molecules (Huo et al., 2012; Wu et al., 2018). The produced hydroxyl radicals can be measured by the fluorescence method with terephthalic acid as the probe reactant (Xiao et al., 2008; Yu et al., 2009; Wang et al., 2017b). The fluorescence spectra of all samples are shown in Figure 8B.
where sample g-C₃N₄/CdS-2 can produce the largest amount of hydroxyl radicals. The obtained results are well consistent with those of the photocatalytic tests. The higher photocatalytic activity for g-C₃N₄/CdS sample can be ascribed to two main factors: 1) the significantly promoted charge separation by the constructed heterojunctions and 2) the higher specific surface area and excellent dispersion of prepared samples.

CONCLUSION

Heterostructured g-C₃N₄/CdS hybrids with controllable CdS nanoparticle anchoring on g-C₃N₄ nanosheets have been successfully prepared. The as-prepared samples show remarkably improved photocatalytic activity for organic pollutant degradation and hydrogen generation under visible light. The experimental results demonstrate that the g-C₃N₄/CdS heterostructures exhibited superior photocatalytic hydrogen generation activity than individual g-C₃N₄ nanosheets and CdS nanoparticles, and the g-C₃N₄/CdS heterojunctions sample has the highest visible light hydrogen generation rate as 1,070.9 μmol h⁻¹ g⁻¹, which is 4 times higher than that for pure g-C₃N₄. The enhanced activity and stability are attributed to the intimate heterojunction between g-C₃N₄ nanosheets and CdS nanoparticles, which promotes interfacial charge separation and transportation. Finally, the well-dispersed CdS nanoparticles offer more reactive sites. The g-C₃N₄/CdS hybrids demonstrate high photocatalytic activity, stability, and recyclability, and hold great promise for practical application. This work could provide new perspective into the construction and manufacture of heterojunctions with highly efficient charge separation and migration for the solar energy conversion.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

MGW performed the main experiment. JH conceived and directed the project. MGW, MW, and FP analyzed all the data and drew the figures. MGW wrote the manuscript with the help of XHS and JH. All authors agreed to the published version of the manuscript.

FUNDING

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (21922202), the Natural Science Research Project of Jiangsu Higher Education Institutions (19KJB150043 and 18KJB430031), and Qing Lan Project of Jiangsu Higher Education Institutions. We would also like to acknowledge the technical support received at the Testing Center of Yangzhou University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.746031/full#supplementary-material

REFERENCES

Ai, Z., Zhang, K., Shi, D., Chang, B., Shao, Y., Zhang, L., et al. (2020). Band-matching Transformation between CdS and BCNNTs with Tunable P-N Homojunction for Enhanced Photocatalytic Pure Water Splitting. Nano Energy 69, 104408. doi:10.1016/j.nanoen.2019.104408
Al Marzouqi, F., Kim, Y., and Selvaraj, R. (2019). Shifting of the Band Edge and Investigation of Charge Carrier Pathways in the CdS/g-C₃n₄ Heterostructure for Enhanced Photocatalytic Degradation of Levofloxacin. New J. Chem. 43, 9784–9792. doi:10.1039/c9nj01782h
Bai, X., Wang, L., Zong, R., and Zhu, Y. (2013). Photocatalytic Activity Enhanced via G-C₃n₄ Nanoplates to Nanorods. J. Phys. Chem. C. 117, 9952–9961. doi:10.1021/jp402062d
Cao, R., Yang, H., Zhang, S., and Xu, X. (2019). Engineering of Z-Scheme 2D/3D Architectures with Ni(OH)₂ on 3D Porous G-C₃n₄ for Efficiently Photocatalytic H₂ Evolution. Appl. Catal. B: Environ. 258, 117997. doi:10.1016/j.apcatb.2019.117997
Wan, C., Zhou, L., Sun, L., Xu, L., Cheng, D.-g., Chen, F., et al. (2020). Boosting Visible-Light-Driven Hydrogen Evolution from Formic Acid over AgPd/2D G-C3N4 Nanosheets Mott-Schottky Photocatalyst. Chem. Eng. J. 396, 125229. doi:10.1016/j.cej.2020.125229

Wang, M., Han, J., Hu, Y., and Guo. Mesoporous C, N-Codoped TiO2 Hybrid Shells with Enhanced Visible Light Photocatalytic Performance. RSC Adv. 7, 15513–15520. doi:10.1039/c7ra00985b

Wang, P., Wu, T., Wang, C., Hou, J., Qian, J., and Ao, Y. (2017). Combining Heterojunction Engineering with Surface Cocatalyst Modification to Synergistically Enhance the Photocatalytic Hydrogen Evolution Performance of Cadmium Sulfide Nanorods. ACS Sustain. Chem. Eng. 5, 7670–7677. doi:10.1021/acssuschemeng.7b01043

Wang, S., Zhu, B., Liu, M., Zhang, L., Yu, J., and Zhou, M. (2019). Direct Z-Scheme ZnO/CdS Hierarchical Photocatalyst for Enhanced Photocatalytic H2-Production Activity. Appl. Catal. B: Environ. 243, 19–26. doi:10.1016/j.apcatb.2018.10.019

Wu, Y., Wang, H., Tu, W., Wu, S., Liu, Y., Tan, Y. Z., et al. (2018). Petal-like CdS Nanostructures Coated with Exfoliated Sulfur-Doped Carbon Nitride via Chemically Activated Chain Termination for Enhanced Visible-Light-Driven Photocatalytic Water Purification and H2 Generation. Appl. Catal. B: Environ. 229, 181–191. doi:10.1016/j.apcatb.2018.02.029

Xiao, Q., Si, Z., Zhang, J., Xiao, C., and Tan, X. (2008). Photoinduced Hydroxyl Radical and Photocatalytic Activity of Samarium-Doped TiO2 Nanocrystalline. J. Hazard. Mater. 150, 62–67. doi:10.1016/j.jhazmat.2007.04.045

Xu, F., Mo, Z., Yan, J., Fu, J., Song, Y., El-Alami, W., et al. (2020). Nitrogen-rich Graphitic Carbon Nitride Nanotubes for Photocatalytic Hydrogen Evolution with Simultaneous Contaminant Degradation. J. Colloid Interf. Sci. 560, 555–564. doi:10.1016/j.jcis.2019.10.089

Xu, H., Wang, Y., Dong, X., Zheng, N., Ma, H., and Zhang, X. (2019). Fabrication of In2O3/In2S3 Microsphere Heterostructures for Efficient and Stable Photocatalytic Nitrogen Fixation. Appl. Catal. B: Environ. 257, 117932. doi:10.1016/j.apcatb.2019.117932

Yang, F., Liu, D., Li, Y., Cheng, L., and Ye, J. (2019). Salt-template-assisted Construction of Honeycomb-like Structured G-C3N4 with Tunable Band Structure for Enhanced Photocatalytic H2 Production. Appl. Catal. B: Environ. 240, 64–71. doi:10.1016/j.apcatb.2018.08.072

Yu, H., Shi, B., Zhao, Y., Bian, T., Zhao, Y., Zhou, C., et al. (2017). Alkali-assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 29, 1605148. doi:10.1002/adma.201605148

Yu, J., Wang, W., Cheng, B., and Su, B.-L. (2009). Enhancement of Photocatalytic Activity of Mesoporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment. J. Phys. Chem. C. 113, 6743–6750. doi:10.1021/jp900156q

Yu, X., Ng, S. F., Putri, L. K., Tan, L. L., Mohamed, A. R., and Ong, W. J. (2021). Point-Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g-C 3 N 4) Photocatalysts toward Artificial Photosynthesis. Small, 2006851. doi:10.1002/smll.202006851

Zhang, G., Lan, Z.-A., Lin, L., Lin, S., and Wang, X. (2016). Overall Water Splitting by Pt/g-C3N4photocatalysts without Using Sacrificial Agents. Chem. Sci. 7, 3062–3066. doi:10.1039/c5sc04572

Zhang, J., Wang, Y., Jin, J., Zhang, L., Zhao, Y., Zhou, C., et al. (2013). Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS@g-C3n4 Nanowires. ACS Appl. Mater. Inter. 5, 10317–10324. doi:10.1021/am403327g

Zhang, P., Liu, Y., Tian, B., Luo, Y., and Zhang, J. (2017). Synthesis of Core-Shell Structured CdS@CeO2 and CdS@TiO2 Composites and Comparison of Their Photocatalytic Activities for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde. Catal. Today 281, 181–188. doi:10.1016/j.cattod.2016.05.042

Zhou, C., Shi, R., Shang, L., Wu, L.-Z., Tung, C.-H., and Zhang, T. (2018). Template-free Large-Scale Synthesis of G-C3n4 Microtubes for Enhanced Visible-Light-Driven Photocatalytic H2 Production. Nano Res. 11, 3462–3468. doi:10.1007/s12274-018-2003-2

Zhu, Q., Qiu, B., Duan, H., Gong, Y., Qin, Z., Shen, B., et al. (2019). Electron Directed Migration Coordinated with Thermodynamic Regulation over Bimetallic NiFeP/g-C3n4 for Enhanced Photocatalytic Hydrogen Evolution. Appl. Catal. B: Environ. 259, 118078. doi:10.1016/j.apcatb.2019.118078

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Wang, Wang, Peng, Sun and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.