CROSSTALK

CrossTalk proposal: The benefits of e-cigarettes outweigh the harms

Rachna Begh and Paul Aveyard
Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
Email: rachna.begh@phc.ox.ac.uk
Edited by: Francisco Sepúlveda & Ken O’Halloran

Linked articles: This article is part of a CrossTalk debate. Click the links to read the other articles in this debate: https://doi.org/10.1113/JP279271, https://doi.org/10.1113/JP280092, https://doi.org/10.1113/JP280093.

Tobacco use kills over 8 million people annually and costs billions in healthcare worldwide (World Health Organization, 2019). Addiction to smoking explains why smoking persists into adulthood, with 96% of unaided attempts to quit ending in failure (Hughes et al. 2004). Treatment, pharmacotherapy and behavioural support, can increase success rates severalfold (Stead et al. 2016). Countries such as the UK that have made such treatment available advertise this to the public and clinicians refer to such services. Despite this, the uptake of e-cigarettes eclipsed the uptake of known effective and safe options, even before big business moved into the e-cigarette industry and advertised the products. It is this ability to provide an attractive alternative to smoking that creates the potential for e-cigarettes to improve public health.

When cigarettes were first discovered to be harmful, most adults had smoked for many years and epidemiology was able to estimate the risks. In a world in which nearly everyone who vapes has smoked or currently smokes, and where people who vape have done so for <10 years, epidemiology will not be able to assess long-term risks. Here we argue that it is possible from appropriately conducted toxicological studies and emerging epidemiological data to conclude that e-cigarettes are substantially less risky than smoking, even if the precise risks remain uncertain. In light of evidence that e-cigarettes promote switching from smoking and not to smoking, we argue that the benefits outweigh the harms.

Vaping is comparatively less harmful than smoking

There is overwhelming evidence that smoking causes substantial harm to smokers and bystanders. In smokers, smoking increases the risk of heart disease and stroke 2–4 times, respiratory disease 12–13 times, and lung cancer 25 times (US Department of Health & Human Services, 2014). The corollary of this is that stopping smoking reduces the risk of developing serious illnesses and disease progression, even in those who have smoked for >40 years (Critchley & Capewell, 2003).

There are now many toxicological studies of the effects of e-cigarettes. A common trope is to apply e-liquid (the liquid used to fill an e-cigarette) to a cell culture and incubate, find abnormalities, and then publish a paper and press release claiming that e-cigarettes are toxic. A systematic review concluded that, while most in vitro studies suggest e-cigarettes are toxic, they are less toxic than comparable use of cigarettes or solutions (Wang et al. 2019) – the relevant comparison for most vapers. They key overarching conclusion was that the field desperately needs standards to define the dose of e-liquid components applied and the relevant cell cultures they are applied to, developing study paradigms that mimic the repetitive but intermittent exposures relevant to human vaping. Even in vivo studies of e-cigarettes vaped in laboratory studies can mislead. One study raised concerns that concentrations of toxic aldehydes, including formaldehyde, acrolein and acetaldehyde, were higher from vaping than from smoking (Jensen et al. 2015). However, a replication study involving human vapers showed that such concentrations only occur under ‘dry puff’ conditions, in which overheated e-liquid produces a foul taste that all vapers recognised and avoided. At tolerable vaping conditions, aldehyde concentrations were low (Farsalinos et al. 2015b, 2017).

Tobacco cigarette smoke contains thousands of toxic chemicals, many of which are carcinogenic and are present in tobacco or derived from its combustion. In contrast, e-cigarettes do not contain tobacco, nor do they involve combustion, and so many toxins present in cigarette smoke are either absent or occur at much lower concentrations in e-cigarette aerosol (Goniewicz et al. 2014; Hajek et al. 2014). Biomarker of exposure studies have found that, compared to smokers, long-term e-cigarette users had substantially reduced their exposure to tobacco-specific nitrosamines, particularly metabolites of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (Shahab et al. 2014). E-liquids contain nicotine of varying strengths; while some concerns lie in its addictive potential, nicotine itself does not significantly contribute to smoking-related disease (Benowitz, 1997) and it is widely accepted and effective in the form of nicotine replacement therapy as a substitute for smoking.

Additional concerns have been reported for toxins released from flavoured e-liquids, including diacetyl and acetyl propionyl. These compounds have been associated with bronchiolitis obliterans, but no cases have been reported due to e-cigarette use and the concentrations are hundreds of...
times lower than observed in tobacco smoke (Farsalinos et al. 2015a). Heavy metals in e-cigarette aerosol have also caused alarm, given that inhalation in larger quantities may cause respiratory diseases; however, the levels detected in e-cigarette aerosols are, again, considerably lower than that found in cigarette smoke (Farsalinos & Rodu, 2018). As e-cigarette technology improves, emissions could be reduced (Royal College of Physicians, 2016).

Limited clinical data show no cause for concern in people vaping after stopping smoking for up to 2 years (Hartmann-Booce et al. 2016). Most commonly reported adverse events are throat or mouth irritation and dry cough (Hajek et al. 2014), with recent trial evidence showing a greater decline in the incidence of cough over a 1 year period in smokers who had switched to e-cigarette use compared to those using nicotine replacement therapy (Hajek et al. 2019). People with asthma and chronic obstructive pulmonary disease have generally shown improvements in respiratory health, rather than a worsening, following a sustained switch to e-cigarettes from smoking (Polosa et al. 2016, 2018). A recent trial found that smokers who switched to e-cigarette for 1 month showed significant improvements in endothelial function, arterial stiffness and systolic blood pressure compared with continuing smoking (George et al. 2019).

The recent outbreak of severe lung injury in predominantly young men in the USA has been clearly associated with vaping in predominantly young men in the USA (Blount et al. 2019). While e-cigarettes have rapidly grown in popularity both in the UK and USA, smoking prevalence has declined (Wang et al. 2018; Office for National Statistics, 2019). In the UK, data from a time series analysis found that an increase in the use of e-cigarettes by smokers in England was positively associated with an increase in overall quit rates and quit success rates (Beard et al. 2020). These findings are supported by a population-level survey in the USA showing a significant increase in smoking cessation rates among e-cigarette users (Zhu et al. 2017). Although these data are observational and cannot show causality, they do add to evidence that e-cigarettes are not undermining the decline in smoking prevalence. There is no evidence that e-cigarette use is slowing the rate of decline in smoking among young people (Bauld et al. 2017), despite the rise in uptake and experimentation in both the UK and USA. In fact, smoking rates in US adolescents have decreased more rapidly since e-cigarettes became popular (Jamal et al. 2017). Never-smokers who take up vaping do expose themselves to avoidable health risks, but less than 1% of never-smokers become regular vapers in the UK (Action on Smoking & Health, 2019).

Closing remarks

E-cigarettes help people stop smoking and while some vapers continue to vape long-term, the harm they experience from this is likely to be substantially less than that from smoking. While it may seem natural to urge caution, Sweden shows the dangers of over-zealous ‘cautious’ regulation. When Sweden joined the EU, Sweden, the EU, snus, a nicotine-containing oral tobacco pouch, was used commonly by men. The EU banned snus use everywhere but exempted Sweden. In Sweden, oral tobacco use prevalence is high (20%) but Sweden has the lowest rates of daily cigarette use in the EU (5% compared to the EU 24%) (The European Commission, 2017). Swedish men have the lowest rates of tobacco-related mortality and lung cancer in Europe (Ramström & Wikmans, 2014), while snus use poses only a fraction of the risk of smoking (Gartner et al. 2007). This example highlights the danger of over-regulation of harm-reduction products, which appear to be able to break the tenacious hold that smoking has on many people and substantially reduce avoidable morbidity and mortality.

Call for comments

Readers are invited to give their views on this and the accompanying CrossTalk articles in this issue by submitting a brief (250 word) comment. Comments may be submitted up to 6 weeks after publication of the article, at which point the discussion will close and the CrossTalk authors will be invited to submit a ‘LastWord’. Please email your comment, including a title and a declaration of interest, to jphysiol@physoc.org. Comments will be moderated and accepted comments will be published online only as ‘supporting information’ to the original debate articles once discussion has closed.

References

Action on Smoking and Health (2019). Use of e-cigarettes (vapourisers) among adults in Great Britain. https://ash.org.uk/wp-content/uploads/2019/09/Use-of-e-cigarettes-among-adults-2019.pdf.

Bauld L, MacKintosh AM, Eastwood B, Ford A, Moore G, Dockrell M, Arndt D, Cheeseman H & McNell A (2017). Young people’s use of e-cigarettes across the United Kingdom: findings from five surveys 2015–2017. Int J Environ Res Public Health 14, 973.

Beard E, West R, Michie S & Brown J (2020). Association of prevalence of electronic cigarette use with smoking cessation and cigarette consumption in England: a time-series analysis between 2006 and 2017. Addiction 115, 961–974.

Benowitz NL (1997). The role of nicotine in smoking-related cardiovascular disease. Prev Med 26, 412–417.

Blount BC, Karwowski MP, Shields PG, Morel-Espinosa M, Valentin-Blasini L, Gardner M, Braselton M, Brosius CR, Caron KT, Chambers D, Corstvet J, Cowan E, De Jesus VR, Espinosa P, Fernandez C, Holder C, Kuklenyik Z, Kusovschi JD, Newman C, Reis GR, Rees I, Reese C, Silva L, Seyler T, Song M-A, Sosnoff C, Spitzer CR, Tevis D, Wang L, Watson C, Wewers MD, Xia B, Heitkemper DT, Ghina I, Layden J, Briss P, King BA, Delaney LJ, Jones CM, Baldwin GT, Patel A, Meaney-Delman D, Rose D, Krishnasamy V, Barr JR, Thomas J & Pirkle JL (2019). Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl J Med 382, 697–705.

Crichtley JA & Capewell S (2003). Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. JAMA 290, 86–97.
Farsalinos KE, Gillman IG, Melvin MS, Paolantonio AR, Gardow WJ, Humphries KE, Brown SE, Poulas K & Voudris V (2015a). Nicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids. *Int J Environ Res Public Health* **12**, 3439–3452.

Farsalinos KE & Rodu B (2018). Metal emissions from e-cigarettes: a risk assessment analysis of a recently-published study. *Inhal Toxicol* **30**, 321–326.

Farsalinos KE, Voudris V & Poulas K (2015b). E-cigarettes generate high levels of aldehydes only in ‘dry puff’ conditions. *Addiction* **110**, 1352–1356.

Farsalinos KE, Voudris V, Spyrou A & Poulas K (2017). E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions. *Food Chem Toxicol* **109**, 90–94.

Gartner CE, Hall WD, Vos T, Bertram MY, Wallace AL & Lim SS (2007). Assessment of Swedish snus for tobacco harm reduction: an epidemiological modelling study. *Lancet North Am Ed* **369**, 2010–2014.

George J, Hussain M, Vadiveloo T, Ireland S, Khan F & Lang CC (2019). Cardiovascular effects of switching from tobacco cigarettes to electronic cigarettes. *J Am Coll Cardiol* **74**, 3112–3120.

Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, Prokopowicz A, Jablonska-Czapla M, Rosik-Dulewska C, Havel C, Jacob P 3rd & Benowitz N (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. *Tob Control* **23**, 133–139.

Hajek P, Ettet J-F, Benowitz N, Eisenberg T & McRobbie H (2014). Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. *Addiction* **109**, 1801–1810.

Hajek P, Phillips-Waller A, Pruzil D, Pesola F, Myers Smith K, Batal N, Li J, Parrott S, Sasieni P, Dawkins L, Ross L, Goniewicz M, Wu Q & McRobbie HJ (2019). A randomized trial of e-cigarettes versus nicotine-replacement therapy. *N Engl J Med* **380**, 629–637.

Hartmann-Boyce J, McRobbie H, Bullen C, Begh R, Stead LF & Hajek P (2016). Electronic cigarettes for smoking cessation. *Cochrane Database Syst Rev* **9**, CD010216.

Hartnett KP, Kite-Powell A, Patel MT, Haag BL, Sheppard MJ, Dias TP, King BA, Melstrom PC, Ritchey MD, Stein Z, Idaikkadar N, Viveloo-Kantor AM, Rose DA, Briss PA, Layden JE, Rodgers L & Adjemian J (2020). Syndromic surveillance for e-cigarettes, or vaping, product use-associated lung injury. *N Engl J Med* **382**, 766–772.

Hughes JR, Keely J & Naud S (2004). Shape of the relapse curve and long-term abstinence among untreated smokers. *Addiction* **99**, 29–38.

Jamal A, Gentzke A, Hu SS, Cullen KA, Apelberg BJ, Homa DM & King BA (2017). Tobacco use among middle and high school students – United States, 2011–2016. *MMWR Morb Mortal Wkly Rep* **66**, 597–603.

Jensen RP, Luo W, Pankow JF, Strongin RM & Peyton DH (2015). Hidden formaldehyde in e-cigarette aerosols. *N Engl J Med* **372**, 392–394.

Office for National Statistics (2019). Adult smoking habits in the UK. 2018. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeprojects/bulletins/adultsmoking/englandandwales2018.

Polosa R, Morjaria JB, Caponnetto P, Caruso M, Campagna D, Amaradio MD, Giampi G, Russo C & Fischella A (2016). Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. *Discur Med* **21**, 99–108.

Polosa R, Morjaria JB, Prosperini U, Russo C, Pennisi A, Puleo R, Caruso M & Caponnetto P (2018). Health effects in COPD smokers who switch to electronic cigarettes: a retrospective-prospective 3-year follow-up. *Int J Chron Obstruct Pulmon Dis* **13**, 2533–2542.

Ramström L & Vikmans T (2014). Mortality attributable to tobacco among men in Sweden and other European countries: an analysis of data in a WHO report. *Tob Induc Dis* **12**, 14.

Royal College of Physicians (2016). *Nicotine Without Smoke: Tobacco Harm Reduction*. Royal College of Physicians, London.

Shahab L, Goniewicz ML, Blount BC, Brown J, McNeill A, Alwis KU, Feng J, Wang L & West R (2017). Nicotine, carcinogen, and toxin exposure in long-term e-cigarette and nicotine replacement therapy users: a cross-sectional study. *Ann Intern Med* **166**, 390–400.

Stead LF, Koilpillai P, Fanshawe TR & Lancaster T (2016). Combined pharmacotherapy and behavioural interventions for smoking cessation. *Cochrane Database Syst Rev* **3**, CD008286.

The European Commission (2017). *Attitudes of Europeans Towards Tobacco and Electronic Cigarettes*. Special Eurobarometer 458. European Commission, Brussels.

US Department of Health and Human Services (2014). *The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General*. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Atlanta.

Wang G, Liu W & Song W (2019). Toxicity assessment of electronic cigarettes. *Inhal Toxicol* **31**, 259–273.

Wang TW, Asman K, Gentzke AS, Cullen KA, Holder-Hayes E, Reyes-Guzman C, Jamal A, Neff L & King BA (2018). Tobacco product use among adults – United States, 2017. *MMWR Morb Mortal Wkly Rep* **67**, 1225–1232.

World Health Organization (2019). Tobacco. https://www.who.int/news-room/fact-sheets/detail/tobacco.

Zhu SH, Zhuang YL, Wong S, Cummins SE & Tedeschi GJ (2017). E-cigarette use and associated changes in population smoking cessation: evidence from US current population surveys. *BMJ* **358**, j3262.

Additional information

Competing interests

None.

Author contributions

Both authors have contributed to the conception or design of the work and drafting the work or revising it critically for important intellectual content. Both authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Funding

The National Institute for Health Research (NIHR) is cordially acknowledged for funding R.B. (PDF-2016-09-043). P.A. is an NIHR senior investigator and funded by the NIHR Oxford Biomedical Research Centre and Applied Research Centre. The views expressed in this publication are those of the authors and not necessarily those of the NIHR, NHS, Health Education England or the Department of Health and Social Care.

Keywords

electronic cigarettes, harm reduction, smoking cessation, tobacco control