Necessary and Sufficient Conditions for Local Unitary Equivalence of Multi-qubit States

A. M. Martins
Departamento de Física, Instituto Superior Técnico,
Universidade de Lisboa, 1049-001 Lisboa, Portugal

Abstract

We derive necessary and sufficient conditions for the LU-equivalence of two general (pure or mixed) \(n \)-qubit states as well as we determine the local unitary operators connecting them. Almost all relevant information is contained in the 1-qubit reduced matrices of the multiqubit states under investigation. Our technique relies on identifying \textit{ab initio} all local symmetries and the corresponding local cyclic unitary operators. To derive the above conditions we use the reference forms of the multiqubit states whose definition requires the diagonalization of the 1-qubit reduced matrices. Based on those conditions we propose a straightforward protocol to decide whether or not two \(n \)-qubit states are LU-equivalent.

PACS number(s) 03.67.-a, 03.67.Mn, 03.65.Aa, 02.20.Hj
1 Introduction

Measuring and classifying quantum entanglement has been the object of extensive research work. The motivations are related to applications in quantum information and computation tasks [1, 2] as well as to the foundations of quantum physics [3, 4]. An exhaustive bibliography about these different aspects can be found in a recent review article by Horodecki and al. [5]

A very fruitful approach to understand entanglement, was launched by the seminal work of Linden and al. [6, 7] who first used group-theoretic methods to classify entanglement in multi-qubit systems through their classes of local unitary (LU) equivalent states. Two quantum states that can be transformed into each other by LU operations, have the same amount of entanglement and are characterized by a complete set of polynomials, invariant under those local unitary transformations. Several authors analyzed the LU-equivalence along the paradigm of the polynomial invariants [8]-[11], however this approach becomes less and less operational as the number of subsystems increases. Kraus in [12] launched a new paradigm to the study of the LU-equivalence of multipartite pure states based on the concept of standard form. More recently other techniques have been proposed to tackle the multipartite LU-equivalence problem, like the matrix realignment and partial transposition [13] and the generalized Bloch representation [14].

In this work we derive necessary and sufficient conditions for the LU-equivalence of two general (pure or mixed) n-qubit states as well as we identify the local unitary operators connecting them. The core of our approach relies in the 1-qubit reduced states of the given multiqubit states. We start by identifying the possible existence of local symmetries which are related with the invariance of the 1-qubit reduced states under local unitary operators. Such local operators, named cyclic or noneffective [15, 16, 17], belong to the stabilizer subgroup of the reduced state that is left invariant under its action and may originate nonlocal effects in the global multiqubit state. Maximally mixed 1-qubit reduced states are fixed by the whole group of local unitary operators, i.e., by $G = SU(2)^\otimes n$. Expressing any non maximally mixed 1-qubit state in the Pauli basis, we are able to identify the subgroup of unitary operators that leave that state invariant, and we show that it is isomorphic to
the subgroup of the 3-dimensional rotations around the Bloch vector of the state. The next step consists in transforming each 1-qubit reduced states to its diagonal form by the action of unitary operators, which hereinafter are used to compute the reference forms of the two multiqubit states. Finally, we derive the relation obeyed by the reference forms of the \(n \)-qubit states when they are LU-equivalent. Based on this relation we develop an operational way, in a form of a protocol, to decide the LU-equivalence of two \(n \)-qubit states.

Our technique differs from the one proposed in the recent work [14], because it relies on identifying \textit{ab initio} all possible local symmetries and on computing the local unitary cyclic operators instead of computing the high order singular value decomposition as done in [14]. Moreover, our necessary and sufficient conditions give explicit expressions for the local unitary operators.

The paper is organized as follows. In Section 2, we use the generalized Pauli basis to express the multiqubit states and show how to identify local symmetries and the associated local cyclic operators. In Section 3, we define the reference form a multiqubit state and derive necessary and sufficient conditions for LU-equivalence. The process here developed takes into account the different types of local symmetry and provides explicit expressions for the local unitary operators. In Section 4, we present an operational way, in the form of a protocol, to decide whether two given \(n \)-qubit states are LU-equivalent. Section 5 solves an explicit example. Finally we conclude in Section 5.

2 Local symmetries

A suitable choice of the basis set to develop the density matrices may simplify considerably solving specific physical problems, or may help to identify new properties of the system. In this work, where systems are formed by \(n \) similar 2-level constituents, and where the partial trace operators play a determinant role, the natural choice of basis set is the generalized Pauli vector basis.

Let \(\mathcal{V_j} \) denote the 4-dimensional Hilbert space of \(2 \times 2 \) Hermitian matrices. A conve-
nient basis for \mathcal{V}_j is $\mathcal{B}_j = \{\sigma_{\alpha_j}; \alpha_j = 0, 1, 2, 3\}$, where $\sigma_{\alpha_j}(\alpha_j = 1, 2, 3)$ represents the usual Pauli matrices, and $\sigma_0 = 1$, is the 2×2 identity matrix. Using in \mathcal{V}_j the Hilbert-Schmidt inner product $(\sigma_{\alpha_i}, \sigma_{\alpha_k}) = Tr\{\sigma_{\alpha_i}\sigma_{\alpha_k}\} = 2\delta_{ij}$, then \mathcal{B}_j is an orthogonal basis set. We are going to consider the set $\mathcal{B}_{\mathcal{V}^\otimes n} = \{\sigma_{\vec{\alpha}}\}$, where

$$\sigma_{\vec{\alpha}} = \otimes_{j=1}^{n} \sigma_{\alpha_j}$$

(1)

The vector index $\vec{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ is a n-tuple containing the n indices α_j. There exist 4^n such matrices all being traceless, except for $\sigma_{\vec{0}} = \otimes_{j=1}^{n} 1$, which corresponds to the $2^n \times 2^n$ identity matrix with trace $Tr\{\sigma_{\vec{0}}\} = 2^n$.

$\mathcal{B}_{\mathcal{V}^\otimes n}$ is an orthogonal basis set of the complex 4^n-dimensional Hilbert-Schmidt vector space $\mathcal{V}^\otimes n = \otimes_{j=1}^{n} \mathcal{V}_j$. Every complex square matrix, $(2^n \times 2^n)$, can be seen as a vector \mathbf{v}, uniquely written in the form

$$\mathbf{v} = \sum_{\vec{\alpha}} v_{\vec{\alpha}} \; \sigma_{\vec{\alpha}}$$

(2)

where the components $v_{\vec{\alpha}}$ are given by

$$v_{\vec{\alpha}} = \frac{1}{2^n} Tr\{\sigma_{\vec{\alpha}} \; \mathbf{v}^\dagger\}$$

(3)

Any n-qubit quantum state $\rho = \sum_{\vec{\alpha}} r_{\vec{\alpha}} \sigma_{\vec{\alpha}} \in \mathcal{V}^\otimes n$, must be hermitian, $\rho = \rho^\dagger$, definite positive $\rho \geq 0$, and normalized $Tr\{\rho\} = 1$. These requirements on ρ impose certain constraints to the components $r_{\vec{\alpha}}$: (a) $\forall \vec{\alpha}, r_{\vec{\alpha}} \in \mathbb{R}$, (b) $r_{\vec{0}} = \frac{1}{2^n}$, (c) $r_{\vec{\alpha}} = \frac{1}{2^n} Tr\{\sigma_{\vec{\alpha}} \; \rho\}$ and (d) $\sum_{\vec{\alpha}} r_{\vec{\alpha}}^2 \leq 1$, the equality is attained for pure states.

The translated vector, $\bar{\rho} = \rho - 1^\otimes n/2^n$, $(1^\otimes n = \otimes_{j=1}^{n} 1)$, characterizes completely the quantum state ρ and is the well known generalized Bloch vector representation of dimension $(4^n - 1)$.

The reduced density matrix of the k-qubits (i_1, \ldots, i_k) is given by

$$\rho_{i_1,\ldots,i_k} = Tr_{n/\{i_1,\ldots,i_k\}}\{\rho\} \quad (i_l = 1, \ldots, n)$$

(4)

where $Tr_{n/\{i_1,\ldots,i_k\}}\{\}$ is the partial trace operator over $(n - k), (k < n)$ qubits, except qubits (i_1, \ldots, i_k). For instance, when $(k = 1)$ eq.(4) gives the 1-qubit density matrix ρ_i, and when $k = 2$, it gives the 2-qubit density matrix $\rho_{i,j}$.
A local unitary transformation $U \in G$ acts on a n-qubit state ρ via the adjoint action,

$$\rho_U = \text{ad} \ U[\rho] = U \rho U^\dagger = \left(\otimes_{j=1}^n U_j \right) \rho \left(\otimes_{j=1}^n U_j^\dagger \right)$$ \hfill (5)

where $G = SU(2)^\otimes n$ is a $3n$-dimensional Lie group and $\mathcal{L} = su(2) \oplus su(2) \oplus \cdots \oplus su(2)$ is the corresponding Lie algebra. The set $B_L = \{ b_{\alpha_i} = \otimes_{k=1}^{i-1} 1_k \otimes \sigma_{\alpha_i} \otimes_{k'=i+1}^n 1_{k'}; \ \alpha_i = 1, 2, 3 \}$ and $i = 1, ..., n,$ is a basis set for \mathcal{L} whose elements are the generators of G.

When two states ρ_U and ρ are LU-equivalent, then their k-qubit reduced states $\rho_{U_{i_1,...,i_k}}$ and $\rho_{i_1,...,i_k}$ are related by

$$\rho_{U_{i_1,...,i_k}} = \left(\otimes_{j=i_1}^{i_k} U_j \right) \rho_{i_1,...,i_k} \left(\otimes_{j=i_1}^{i_k} U_j^\dagger \right)$$ \hfill (6)

For a single qubit this expression reduces to

$$\rho_{U_{i}} = U_{i} \rho_{i} U_{i}^\dagger$$ \hfill (7)

Two situations can happen:

1) $\forall_{i=1,...,n}, \ \rho_{U_{i}} \neq \rho_{i},$ i.e., there is no local symmetry. Note that when $\rho_{i} \neq \rho_{U_{i}},$ then $\rho_{i} \neq \frac{1}{2}.$

2) There is at least one l such that $\rho_{U_{l}} = \rho_{l},$ i.e., qubit l exhibits a local symmetry:

2.a) Weak, when $\rho_{l} \neq \frac{1}{2},$

2.b) Strong, when $\rho_{l} = \rho_{l}^* = \frac{1}{2}$ is the maximally mixed 1-qubit state.

When there is a local symmetry in qubit $i,$ weak or strong, then

$$[\rho_{i}, U_{i}^*] = 0 \ \Leftrightarrow \ \rho_{i} = U_{i}^* \rho_{i} U_{i}^{*\dagger}$$ \hfill (8)

U_{i}^* is a cyclic local unitary operator [15, 16]. The set of local unitary operators $U_{i}^* \in SU(2)$ obeying the cyclic condition (8) is the stabilizer subgroup of $\rho_{i},$ named $S(\rho_{i}).$ When ρ_{i} is maximally mixed, situation (2.b), then the stabilizer subgroup is the entire group $G.$ Using eq.(8) in eq.(7) we obtain

$$\rho_{U_{i}} = (U_{i} U_{i}^*) \rho_{i} (U_{i}^{*\dagger} U_{i}^\dagger)$$ \hfill (9)
This is, any local operator \(U_i U_i^* \), belonging to the left coset of the stabilizer subgroup of \(\rho_i \), with respect to \(U_i \), is also a LU operator connecting the states \(\rho'_i \) and \(\rho_i \). When \(U_i \in S(\rho_i) \) then \(U_i U_i^* \in S(\rho_i) \). The indeterminacy in the local unitary operator can, in principle, be solved due to global effects in multiqubit states.

A generic local unitary operator \(U_i \in SU(2) \) is a three real continuous parameter operator, \(U(\phi_i, \theta_i, \varphi_i) = e^{i\vec{s}_i \cdot \vec{\sigma}(i)} = \cos(\frac{\phi_i}{2})1_i + i \sin(\frac{\phi_i}{2})\hat{n}_{\vec{s}_i}(i) \sigma(i) \), with the following matrix form

\[
U_i = U(\phi_i, \theta_i, \varphi_i) = \begin{pmatrix}
\cos \frac{\phi_i}{2} + i \cos \theta_i \sin \frac{\phi_i}{2} & \sin \frac{\phi_i}{2} \sin \theta_i e^{-i\varphi_i} \\
-\sin \frac{\phi_i}{2} \sin \theta_i e^{i\varphi_i} & \cos \frac{\phi_i}{2} - i \cos \theta_i \sin \frac{\phi_i}{2}
\end{pmatrix}
\]

(10)

\(\hat{n}_{\vec{s}_i} = \vec{s}_i / |\vec{s}_i| = (n_{i_1}, n_{i_2}, n_{i_3}) \equiv (\cos \phi_i \sin \theta_i, \sin \phi_i \sin \theta_i, \cos \theta_i) \) is a unit vector in the 3-dimensional Euclidian space (Bloch space of qubit \(i \)), parametrized by the azimuthal angle, \(0 \leq \phi_i \leq 2\pi \), and the polar angle, \(0 \leq \theta_i \leq \pi \). The third parameter is \(\varphi_i = 2 |\vec{s}_i| \) \((0 \leq \varphi_i \leq \pi) \).

Any non maximally mixed 1-qubit density matrix \(\rho_i \) can be expressed in the Bloch basis by

\[
\rho_i = \frac{1}{2} (1_i + \vec{r}(i) \cdot \vec{\sigma}(i))
\]

(11)

where \(\vec{r}(i) \neq 0 \) is the 3-dimensional Bloch vector, \(\vec{\sigma}(i) = (\sigma_1, \sigma_2, \sigma_3) \). In the Appendix 1 we show that the unitary operator \(U_i^* \), that commutes with \(\rho_i \) is given by \(U_i^* = e^{i\omega_i \hat{n}_{\vec{r}(i)} \cdot \vec{\sigma}(i)} \), with \(\vec{n}_{\vec{r}(i)} = \vec{r}(i)/||\vec{r}(i)|| \) and \(\omega_i \) is a real continuous parameter such that \(0 \leq \omega_i \leq 2\pi \).

Invoking the local isomorphism between SU(2) and SO(3) we see that the unitary operator \(U_i^* \), represents a rotation of an angle, \(\varphi_i = \frac{\omega_i}{2} \), around the vector \(\vec{r}(i) \) of the Bloch sphere of qubit \(i \). When \(\vec{r}(i) = 0 \) then \(\rho_i = \frac{1}{2}1_i \), and the unitary operator obeying condition (8), is a generic unitary operator (10), which represents a rotation of an angle \(\varphi_i \) around an axis with direction \(\hat{n}_{\vec{s}_i} \) of the Bloch sphere.
3 Necessary and sufficient conditions for LU-equivalence

Let V_i be the unitary operator that diagonalizes ρ_i, i.e., $\rho_i = V_i D_i V_i^\dagger$, where $D_i = \text{diag}(\lambda_1, \lambda_2)$ is a diagonal matrix, ($\lambda_1 \leq \lambda_2$). Introducing $V_i D_i V_i^\dagger$ in eq.(9) we conclude that $V_i' = U_i U_i^* V_i$ is the unitary operator that diagonalizes ρ_{U_i}, i.e. $\rho_{U_i} = V_i' D_i V_i'^\dagger$ and $U_i = V_i' V_i^\dagger U_i^\dagger$.

Proposition 1: Let ρ and ρ' be n-qubit states and let D_i and D_i' be the diagonal matrices associated with the reduced states ρ_i and ρ'_i. If there is at least one i, such that $(D_i' - D_i) \neq 0$, then ρ and ρ' are not LU-equivalent.

Proof: If ρ and ρ' are LU-equivalent then, $\forall i=1,..,n$, there exist a local unitary operator U_i such that $\rho'_i = U_i \rho_i U_i^*$ which implies $D_i' = D_i$. Therefore, if $(D_i' - D_i) \neq 0$ then the states ρ' and ρ are not LU-equivalent. \square

Let us define the reference forms $\rho^{(r)}$ and $\rho'^{(r)}$ of two states ρ and ρ' by

$$\rho^{(r)} = (\otimes^n_{i=1} V_i^\dagger) \rho (\otimes^n_{i=1} V_i) \quad (12)$$

$$\rho'^{(r)} = (\otimes^n_{i=1} V_i'^\dagger) \rho' (\otimes^n_{i=1} V'_i) \quad (13)$$

whenever $\rho'_i = \rho_i$ then $V_i' = V_i$. If $\rho_i = \rho_i^* = 1/2$ then $V_i' = V_i = 1$. If $\forall i=1,..,n$, ρ_i is maximally mixed, then $\rho^{(r)} = \rho$ and $\rho'^{(r)} = \rho'$.

Taking the partial trace over $(n - k)$ qubits, in eqs.(12) and (13), we obtain the reference forms of the reduced k-qubit state. They are

$$\rho^{(r)}_{i_1,..,i_k} = (\otimes_{i=1}^{i_k} V_i^\dagger) \rho_{i_1,..,i_k} (\otimes_{i=1}^{i_k} V_i) \quad (14)$$

$$\rho'^{(r)}_{i_1,..,i_k} = (\otimes_{i=1}^{n} V_i'^\dagger) \rho'_{i_1,..,i_k} (\otimes_{i=1}^{i_k} V'_i) \quad (15)$$

Based on the reference forms we are going to derive necessary and sufficient conditions for the LU-equivalence between two n-qubit states ρ and ρ'.

Theorem 1: Let ρ' and ρ be two n-qubit states. The states ρ' and ρ are LU-equivalent iff their reference forms are related by,

$$\rho'^{(r)} = (\otimes_{i=1}^{n} \tilde{U}_i) \rho^{(r)} (\otimes_{i=1}^{n} \tilde{U}_i^\dagger) \quad (16)$$
\[\bar{U}_i = U(\omega_i) = \begin{pmatrix} e^{-i\omega_i} & 0 \\ 0 & e^{i\omega_i} \end{pmatrix} \] (17)

if \(\rho'_i \neq \rho_i \). Where \(U_i = U(\omega_i)^\dagger \), if \(\rho'_i = \rho_i \neq \frac{1}{2} \). And where \(U_i = U(\varphi_i, \phi_i, \theta_i) \), if \(\rho_i = \frac{1}{2} \).

The parameter \(\omega_i \) is computed in Corollary 3 and the parameters \((\varphi_i, \phi_i, \theta_i)\) are computed in Corollary 4 of Appendix 2. When they are LU-equivalent the local unitary operators relating them are given by \(U_i = V_i^* V_i^\dagger U_i^* \), if \(\rho'_i \neq \rho_i \), by \(U_i = U_i^* = e^{i\omega_i \hat{n}_r(i) \cdot \hat{n}_i} \), if \(\rho'_i = \rho_i \neq \frac{1}{2} \) and by \(U_i = U_i^* = U(\varphi_i, \phi_i, \theta_i) \).

Proof: Sufficient condition: If \(\rho' \) is LU-equivalent to \(\rho \) then there is a \(U = \bigotimes_{i=1}^n U_i \) such that \(\rho' = \rho_U = U \rho U^\dagger \). Using the definitions (12) and (13), we show that the reference forms of \(\rho \) and of \(\rho' = \rho_U \), are related by (16) where \(\bar{U}_i = V_i^\dagger U_i V_i \). If \(\rho'_i \neq \rho_i \) then \(V_i' \neq V_i \) and \(U_i = V_i' V_i^\dagger U_i^* \), therefore \(\bar{U}_i = V_i^\dagger U_i^* V_i \). If \(\rho'_i = \rho_i \neq \frac{1}{2} \) then \(V_i' = V_i \) and \(U_i = U_i^* \), therefore \(\bar{U}_i = V_i^\dagger U_i^* V_i \). Using Proposition 3 of Appendix 2 we show that \(\bar{U}_i \) is given by (17) in the first case and by \(\bar{U}_i = U(\omega_i)^\dagger \) in the second case. Finally, if \(\rho_i = \frac{1}{2} \) then \(V_i' = V_i = 1 \) and \(\bar{U}_i = U_i^* = U(\varphi_i, \phi_i, \theta_i) \) given by eq.(10) with the parameters computed in Corollary 4.

Necessary condition: Let us assume that the reference forms \(\rho'(r) \) and \(\rho(r) \) are related by (16). Replacing \(\rho' \) given by eq.(13) in the left side of eq.(16) and solving for \(\rho' \) we obtain

\[
\rho' = (\bigotimes_{i=1}^n V_i^\dagger U_i V_i^\dagger) \rho (\bigotimes_{i=1}^n V_i U_i^\dagger V_i^\dagger) \tag{18}
\]

where, by hypothesis, \(\bar{U}_i \) is given: by (17) if \(\rho'_i \neq \rho_i \), by \(\bar{U}_i = U(\omega_i)^\dagger \), if \(\rho'_i = \rho_i \neq \frac{1}{2} \) and by \(\bar{U}_i = U(\varphi_i, \phi_i, \theta_i) \), if \(\rho_i = \frac{1}{2} \). Eq.(18) shows that \(\rho \) and \(\rho' \) are LU-equivalent and at the same time it gives the local unitary operators \(U_i \) that relate the two states. They are \(U_i = V_i^\dagger \bar{U}_i V_i^\dagger \). If \(\bar{U}_i \) is given by (17) or by \(\bar{U}_i = U(\omega_i)^\dagger \), then by Corollary 2, \(\bar{U}_i = V_i U_i^* V_i^\dagger \) or \(\bar{U}_i = V_i^\dagger U_i^* V_i \), where \(U_i^* = e^{i\omega_i \hat{n}_r(i) \cdot \hat{n}_i} \) (commutes with \(\rho_i \)) and \(U_i = V_i^\dagger V_i U_i^\dagger \), if \(\rho'_i \neq \rho_i \), or \(U_i = U_i^* \) if \(\rho'_i = \rho_i \neq \frac{1}{2} \). The angle \(\omega_i \) is computed in Corollary 3. Finally, if \(\rho_i = \frac{1}{2} \) then \(V_i' = V_i = 1 \) and \(\bar{U}_i = U_i = U(\varphi_i, \phi_i, \theta_i) \). □

If all the coefficients of the 2-qubit correlation terms are null, we compute the parameters of the LU operators using the 3-qubit correlation terms using a reasoning similar to
the Corollaries 3 and 4. If all the coefficients till the \(k \)-qubit correlation terms are null we use the \(k + 1 \)-qubit correlation terms.

Corollary 1: Let \(\rho' \) and \(\rho \) be two LU-equivalent, \(n \)-qubit states. Then the reference forms of the \(k \)-qubit reduced states \(\rho_{i_1,...,i_k}' \) and \(\rho_{i_1,...,i_k} \), are related by

\[
\rho_{i_1,...,i_k}' = (\otimes_{l=i_1}^{i_k} \tilde{U}_l) \rho_{i_1,...,i_k} (\otimes_{l=i_1}^{i_k} \tilde{U}_l^\dagger) \tag{19}
\]

Proof: Taking the partial trace of eq.(16), over \((n - k)\) qubits, except qubits \(i \) and \(j \), we obtain (19). \(\Box \)

This Corollary is going to be used in Appendix 2 to derive parameters \(\omega_i \) and \((\phi_i, \theta_i) \) using \(k \)-qubit reduced standard forms. When no coefficients of the second order correlation term is null our technique is very easy to be applied to any multiqubit state. It becomes more complex when all the coefficients of the second order correlation functions are zero. In the next section we propose an operational way to check if two given multiqubit states are LU-equivalent and, in the affirmative case, it computes the local unitary operators relating them.

4 Operational way to determine the LU-equivalence

Let us assume that we were given two \(n \)-qubit states \(\rho \) and \(\rho' \) and we were asked to check whether they are LU-equivalent. An operational way to answer to this question is given by the following protocol:

1 - Do \(i = 1 \).

2 - Compute: (a) the reduced states \(\rho_i \) and \(\rho_i' \), (b) the diagonal matrices \(D_i = diag(\lambda_1, \lambda_2) \) and \(D_i' = diag(\lambda'_1, \lambda'_2) \), with \(\lambda_1 \leq \lambda_2 \), \(\lambda'_1 \leq \lambda'_2 \), (c) the corresponding unitary operators \(V_i \) and \(V_i' \).

3 - Do \(i = i + 1 \)

4 - If \(i = n + 1 \), go to step 5. If not, go to step 2.

5 - Compute \((D_i' - D_i)\). If it is null, go to step 6. If not, go to step 29.
6 - Do $i = i + 1$

7 - If $i = n + 1$, go to step 8. If not, go to step 5.

8 - Do $i = 1$

9 - Compute $(D'_i - \frac{1}{2})$. If it is null, go to step 10. If not, go to step 12.

10 - Do $i = i + 1$.

11 - If $i = n + 1$, go to step 25. If not, go to step 9.

12 - Do $j = i$.

13 - Do $i = 1$.

14 - Compute $(\rho'_i - \rho_i)$. If it is null, go to step 18. If not, go to step 15.

15 - Compute ω_i as in Corollary 3, compute $\bar{U}_i = U(\omega_i)$, $U^*_i = e^{i\omega_i \hat{n}_{\tau(i)} \cdot \hat{d}(i)}$ and $U_i = V'_i V_i^\dagger U_i^*$.

16 - Do $i = i + 1$.

17 - If $i = n + 1$ go to step 26. If not go to step 14.

18 - Compute $(\rho_i - \frac{1}{2})$. If it is null, go to step 22. If not go to step 19.

19 - Compute ω_i as in Corollary 3, compute $\bar{U}_i = U(\omega_i)^\dagger$. Do $\bar{U}_i U(\omega_i)^\dagger$ and $U^*_i = e^{i\omega_i \hat{n}_{\tau(i)} \cdot \hat{d}(i)}$ and $U_i = U_i^*$.

20 - Do $i = i + 1$.

21 - If $i = n + 1$, go to step 26. If not, go to step 14.

22 - Compute $(\phi_i, \phi_i, \theta_i)$ as in Corollary 4. Compute $\bar{U}_i = U(\phi_i, \phi_i, \theta_i)$ and $U_i = U(\phi_i, \phi_i, \theta_i)$.

23 - Do $i = i + 1$.

24 - If $i = n$, go to step 26. If not, go to step 14.

25 - Compute $(\phi_i, \phi_i, \theta_i)$ by solving eqs.(71).

26 - Compute $\rho^{(r)}$ and $\rho^{(r)}$ using eqs.(12) and (13).
27 - Compute \(\rho^{(r)} - \left(\otimes_{i=1}^{n} U_i \right) \rho^{(r)} \left(\otimes_{i=1}^{n} U_i^\dagger \right) \). If null, go to step 28. If not, go to step 29.

28 - \(\rho \) and \(\rho' \) are LU-equivalent. Write \(U_i \); (\(i = 1,..,n \)).

29 - \(\rho \) and \(\rho' \) are not LU-equivalent.

5 Explicit example

We apply the above technique to the following pure states

\[|\psi\rangle = \frac{3}{5}|00\rangle + \frac{4}{5}|11\rangle \] \hspace{1cm} (20)

\[|\psi'\rangle = \frac{1}{10}|00\rangle - \frac{7}{10}|01\rangle - \frac{7}{10}|10\rangle - \frac{7}{10}|11\rangle \] \hspace{1cm} (21)

The corresponding density operators expressed in the Pauli basis are

\[\rho = \frac{1}{4}1_1 \otimes 1_2 - \frac{7}{100}1_1 \otimes \sigma_{3_2} - \frac{7}{100}\sigma_{3_1} \otimes 1_2 + \frac{6}{25}\sigma_{1_1} \otimes \sigma_{1_2} - \frac{6}{25}\sigma_{2_1} \otimes \sigma_{2_2} + \frac{1}{4}\sigma_{3_1} \otimes \sigma_{3_2} \] \hspace{1cm} (22)

\[\rho' = \frac{1}{4}1_1 \otimes 1_2 - \frac{7}{100}1_1 \otimes \sigma_{1_2} - \frac{7}{100}\sigma_{1_1} \otimes 1_2 + \frac{6}{25}\sigma_{1_1} \otimes \sigma_{1_2} + \frac{6}{25}\sigma_{2_1} \otimes \sigma_{2_2} - \frac{6}{25}\sigma_{3_1} \otimes \sigma_{3_2} \] \hspace{1cm} (23)

and the 1-qubit density matrices are

\[\rho_1 = \frac{1}{2}1_1 - \frac{7}{50}\sigma_{3_1} ; \rho_2 = \frac{1}{2}1_2 - \frac{7}{50}\sigma_{3_2} \] \hspace{1cm} (24)

\[\rho'_1 = \frac{1}{2}1_1 - \frac{7}{50}\sigma_{1_1} ; \rho'_2 = \frac{1}{2}1_2 - \frac{7}{50}\sigma_{1_2} \] \hspace{1cm} (25)

The diagonal matrices are \(D_1 = D_2 = D'_1 = D'_2 = (\frac{9}{25}, \frac{16}{25}) \) and the unitary operators that diagonalize \(\rho_1, \rho_2, \rho'_1 \) and \(\rho'_2 \) are \(V_1 = V_2 = 1 \) and

\[V'_1 = V'_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \] \hspace{1cm} (26)

The reference forms expressed in the Pauli basis are given by

\[\rho^{(r)} = \frac{1}{4}1_1 \otimes 1_2 - \frac{7}{100}1_1 \otimes \sigma_{3_2} - \frac{7}{100}\sigma_{3_1} \otimes 1_2 + \frac{6}{25}\sigma_{1_1} \otimes \sigma_{1_2} - \frac{6}{25}\sigma_{2_1} \otimes \sigma_{2_2} + \frac{1}{4}\sigma_{3_1} \otimes \sigma_{3_2} \] \hspace{1cm} (27)

\[\rho'^{(r)} = \frac{1}{4}1_1 \otimes 1_2 - \frac{7}{100}1_1 \otimes \sigma_{3_2} - \frac{7}{100}\sigma_{3_1} \otimes 1_2 - \frac{6}{25}\sigma_{1_1} \otimes \sigma_{1_2} + \frac{6}{25}\sigma_{2_1} \otimes \sigma_{2_2} + \frac{1}{4}\sigma_{3_1} \otimes \sigma_{3_2} \] \hspace{1cm} (28)
whose matrix form is

\[
\rho^{(r)} = \frac{1}{25} \begin{pmatrix}
9 & 0 & 0 & 12 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
12 & 0 & 0 & 16
\end{pmatrix}
\] (29)

and

\[
\rho'^{(r)} = \frac{1}{25} \begin{pmatrix}
9 & 0 & 0 & -12 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-12 & 0 & 0 & 16
\end{pmatrix}
\] (30)

In this example \(r_{132} = r_{2132} = 0\) and we cannot use eqs.(51), instead we use eqs.(52) which applied to these states are

\[
\cos(2\omega_1) \cos(\omega_2) - \sin(2\omega_1) \sin(\omega_2) = -1
\] (31)

\[
\sin(2\omega_1) \cos(\omega_2) + \cos(2\omega_1) \sin(\omega_2) = 0
\] (32)

or equivalently

\[
\cos[2(\omega_1 + \omega_2)] = -1 ; \quad \sin[2(\omega_1 + \omega_2)] = 0
\] (33)

with solution \(\omega_1 = \frac{\pi}{2} - \omega_2\). All the parameters \(\omega_1\) and \(\omega_2\) verifying this relation give

\[
\bar{U}_1 \otimes \bar{U}_2 = \begin{pmatrix}
-i & 0 & 0 & 0 \\
0 & ie^{-2i\omega_1} & 0 & 0 \\
0 & 0 & -ie^{2i\omega_1} & 0 \\
0 & 0 & 0 & i
\end{pmatrix}
\] (34)

and

\[
\rho'^{(r)} - (\bar{U}_1 \otimes \bar{U}_2) \rho^{(r)} (\bar{U}_1^\dagger \otimes \bar{U}_2^\dagger) = 0
\] (35)

The LU operators \(U_1\) and \(U_2\) such that \(\rho' = (U_1 \otimes U_2) \rho (U_1 \otimes U_2)^\dagger\) are given by \(U_i = V_i^\dagger U_i^\dagger\), with

\[
U_1^* = \cos \omega_1 \sigma_1 - \sin \omega_1 \sigma_3 ; \quad U_2^* = \sin \omega_1 \sigma_2 - \cos \omega_1 \sigma_3
\] (36)

\section{Concluding remarks}

In this work we have derived necessary and sufficient conditions for the LU-equivalence of \(n\)-qubit states as well as explicit expressions for the local unitary operators that connect two LU-equivalent states.
Our technique differs from the one proposed in the recent work [14], because it is based in identifying \textit{ab initio} all possible local symmetries or, equivalently, all local unitary cyclic operators. This is done by computing the 1-qubit reduced matrices of the two multiqubit states. Whenever the two reduced matrices of a given qubit are equal, we are in presence of a potential local symmetry that can be \textit{strong}, if the reduced state is maximally mixed, or \textit{weak}, if not. The symmetry will be real only if the two states are LU-equivalent. The other important role played by the 1-qubit reduced states lays in determining the unitary matrices that take them to its diagonal form. These unitary matrices are then employed to compute the reference forms of the two multiqubit states which are the main ingredient to derive the necessary and sufficient condition for LU-equivalence. Based on the 1-qubit diagonal matrix we derive a simple criterium for LU-equivalence. If the coefficients of the second order correlation terms are not all zero, we derive explicit expressions for the local unitary operators. This is simpler then doing the high order singular value decomposition as in [14]. Moreover, in the absence of local \textit{strong} symmetries the computation of the local unitary operators of an extreme simplicity as shown in Theorem 1. Finally, we propose an easily implementable protocol to check for the existence of LU-equivalence.

The technique here developed can be applied to multiqudit states \((d \geq 2)\) if explicit forms for local cyclic operators are known.

Appendix 1

Proposition 2: The commutation relation \([U_i, \rho_i] = 0\), where the 1-qubit reduced state is, \(\rho_i = \frac{1}{2} (1 + \vec{r}(i).\vec{\sigma}(i))\), with \(\vec{r}_i \neq 0\), is verified iff

\[
U_i = U(\xi_i) = e^{i\omega_i \hat{n}_{\vec{r}(i)}.\vec{\sigma}(i)} = \cos(\omega_i)1_i + i \sin(\omega_i)\hat{n}_{\vec{r}(i)}.\vec{\sigma}(i) \tag{37}
\]

is a single parameter unitary operator where \(\omega_i = \xi_i \parallel \vec{r}(i) \parallel\) where \(\xi_i \in \mathbb{R}\).

Proof: The cyclic condition is equivalent to \(U_i \rho_i U_i^\dagger = \rho_i \Leftrightarrow U_i [\vec{r}(i).\vec{\sigma}(i)] U_i^\dagger = \vec{r}(i).\vec{\sigma}(i)\). Replacing \(U_i\), by \(e^{i\vec{s}(i).\vec{\sigma}(i)} = \cos(\parallel \vec{s}(i) \parallel)1 + i \sin(\parallel \vec{s}(i) \parallel)\hat{n}_{\vec{s}(i)}.\vec{\sigma}(i)\), in the last equality, we get

\[
[\vec{s}(i).\vec{\sigma}(i), \vec{r}(i).\vec{\sigma}(i)] = 0 \tag{38}
\]
Computing the above commutator, we obtain
\[
[s, \sigma, r, \sigma] = \sum_{k=1}^{3} \sum_{l=1}^{3} s_{jk} r_{jl} [\sigma_k, \sigma_l] = 2i \left(\sum_{k=1}^{3} \sum_{l=1}^{3} s_{kl} \epsilon_{klu} \right) \sigma_u
\] (39)
where \(\epsilon_{klu}\) is the Levi-Civita symbol. After some straightforward calculations we show that the commutator will be zero iff, \(s(i) = \xi_i r(i)\), i.e., iff the vector \(s(i)\) is proportional to the vector \(r(i)\) with \(\xi_i \in \mathbb{R}\).

B Appendix 2

Proposition 3: Let \(V_i\) be the unitary operator that diagonalizes \(\rho_i = \frac{1}{2}(1_i + r(i) \cdot \bar{\sigma}(i))\), \(r(i) \neq 0\) and let \(U_i^*\) be a local unitary operator that commutes with \(\rho_i\). Then \(\bar{U}_i = V_i^* U_i^* V_i\) is given by eq.(17).

Proof: Eq.(11) can be expressed in the equivalent form
\[
\hat{n}_{\bar{r}(i)} \cdot \bar{\sigma}(i) = \frac{1}{||r(i)||}(2\rho_i - 1_i)
\] (40)
where \(\hat{n}_{\bar{r}(i)} = \frac{\bar{r}(i)}{||r(i)||}\). If \(V_i\) diagonalizes \(\rho_i\) then
\[
V_i^\dagger \left(\hat{n}_{\bar{r}(i)} \cdot \bar{\sigma}(i) \right) V_i = \frac{1}{||r(i)||}(2D_i - 1_i) = \frac{1}{||r(i)||} \left(\begin{array}{cc} 2\lambda_1 - 1 & 0 \\ 0 & -(2\lambda_1 - 1) \end{array} \right)
\] (41)
From where we obtain
\[
Tr\{V_i^\dagger \left(\hat{n}_{\bar{r}(i)} \cdot \bar{\sigma}(i) \right) V_i^2 \} = \frac{2}{||r(i)||^2} (1 - 2\lambda_i)^2 = 2
\] (42)
therefore \(||r(i)|| = 2\lambda_1 - 1\). Introducing this result in eq.(41) we get
\[
V_i^\dagger \left(\hat{n}_{\bar{r}(i)} \cdot \bar{\sigma}(i) \right) V_i = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)
\] (43)
If \(U_i\) commutes with \(\rho_i\) then, by Proposition 2, \(U_i = U_i^* = \cos \omega_i 1 + i \sin \omega_i (\hat{n}_{\bar{r}(i)} \cdot \bar{\sigma}(i))\), and
\[
\bar{U}_i = V_i^\dagger U_i^* V_i = V_i^\dagger \left(\cos \omega_i 1 - i \sin \omega_i (\hat{n}_{\bar{r}(i)} \cdot \bar{\sigma}(i)) \right) V_i = \left(\begin{array}{cc} e^{-i\omega_i} & 0 \\ 0 & e^{i\omega_i} \end{array} \right) = U(\omega_i)
\] (44)
equally we show that \(V_i^\dagger U_i^* V_i = U(\omega_i)^\dagger \square\)
Corollary 2: Let V_i be the unitary operator that diagonalizes $\rho_i = \frac{1}{2}(1 + \vec{r}(i) \cdot \vec{\sigma}(i))$, $\vec{r}(i) \neq 0$ and let \bar{U}_i be a unitary operator given by eq.(17). Then the unitary operator $U_i = V_i \bar{U}_i V_i^\dagger$ commutes with ρ_i and is given by $U_i = e^{i\omega_i \hat{n}_{\vec{r}(i)} \cdot \vec{\sigma}(i)}$.

Proof: The operator \bar{U}_i given by (17) can be written in the form

$$\bar{U}_i = \cos(\omega_i)1 + i \sin(\omega_i) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$ (45)

and

$$U_i = V_i \bar{U}_i V_i^\dagger = \cos(\omega_i)1 + i \sin(\omega_i)V_i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} V_i^\dagger$$ (46)

If V_i is the unitary operator that diagonalizes $\rho_i = \frac{1}{2}(1 + \vec{r}(i) \cdot \vec{\sigma}(i))$, $\vec{r}(i) \neq 0$ then, by (43),

$$V_i = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} V_i^\dagger = \hat{n}_{\vec{r}(i)} \cdot \vec{\sigma}(i)$$ (47)

which introduced in (46) gives $U_i = \cos(\omega_i)1 + i \sin(\omega_i) \left(\hat{n}_{\vec{r}(i)} \cdot \vec{\sigma}(i) \right) = e^{i\omega_i \hat{n}_{\vec{r}(i)} \cdot \vec{\sigma}(i)}$. Finally, by Proposition 2, $[U_i, \rho_i] = 0$. \square

The action of \bar{U}_i, given by (44), in the three Pauli Matrices is the following

$$\bar{U}_i \sigma_1 \bar{U}_i^\dagger = \cos(2\omega_i)\sigma_1 + \sin(2\omega_i)\sigma_2$$ (48)

$$\bar{U}_i \sigma_2 \bar{U}_i^\dagger = -\sin(2\omega_i)\sigma_1 + \cos(2\omega_i)\sigma_2$$ (49)

$$\bar{U}_i \sigma_3 \bar{U}_i^\dagger = \sigma_3$$ (50)

Corollary 3: Let ρ and ρ' be two n-qubits states. Let us assume that $\rho_i \neq \frac{1}{2}$ and that there is at least a $j \neq i$ such that $\rho_j \neq \frac{1}{2}$. If ρ' is LU-equivalent to ρ, then the angle ω_i in eq.(17) is given by

$$\cos(2\omega_i) = \frac{r_{1,3,j}^{(r)} r_{2,3,j}^{(r)} + r_{2,3,j}^{(r)} r_{1,3,j}^{(r)}}{r_{1,3,j}^{(r)2} + r_{2,3,j}^{(r)2}}$$

$$\sin(2\omega_i) = \frac{r_{2,3,j}^{(r)} r_{1,3,j}^{(r)} - r_{1,3,j}^{(r)} r_{2,3,j}^{(r)}}{r_{1,3,j}^{(r)2} + r_{2,3,j}^{(r)2}}$$ (51)
if \(r_{1,3}^{(r)} \neq 0 \) or \(r_{2,3}^{(r)} \neq 0 \) or by the solution of the following system of linear equations

\[
M \vec{x} = \vec{r}^{(r)}
\]

(52)

if \(r_{1,3}^{(r)} = r_{2,3}^{(r)} = 0 \), where the vectors \(\vec{r}^{(r)} = (r_{1,1}^{(r)}, r_{2,2}^{(r)}, r_{1,1}^{(r)}, r_{2,2}^{(r)})^T \) and \(\vec{x} = (x_1, x_2, x_3, x_4)^T \) is vector of the variables, with \(x_1 = \cos(2\omega_i) \cos(2\omega_j) \), \(x_2 = \cos(2\omega_i) \sin(2\omega_j) \), \(x_3 = \sin(2\omega_i) \cos(2\omega_j) \) and \(x_4 = \sin(2\omega_i) \sin(2\omega_j) \). \(M \) is the matrix of the coefficients given by

\[
M = \begin{pmatrix}
 r_{1,1}^{(r)} & -r_{1,2}^{(r)} & -r_{2,1}^{(r)} & r_{2,2}^{(r)} \\
 r_{2,1}^{(r)} & r_{2,2}^{(r)} & r_{2,1}^{(r)} & r_{1,1}^{(r)} \\
 r_{1,2}^{(r)} & r_{1,1}^{(r)} & -r_{2,2}^{(r)} & -r_{2,1}^{(r)} \\
 r_{2,1}^{(r)} & -r_{2,2}^{(r)} & r_{1,1}^{(r)} & -r_{1,1}^{(r)}
\end{pmatrix}
\]

(53)

and where \(r_{\alpha_i,\alpha_j}^{(r)} = r_{0_1,0_2,1_0_3,0_4,1_0_5}^{(r)} \) are the coefficients of the reference form \(\rho^{(r)} \) along the the Pauli vector \(\left(\otimes_{k=1}^{i=1} 1_k \otimes \sigma_{\alpha_i} \otimes 1_k \right) \) and \(r_{\alpha_i,\alpha_j}^{(r)} \) along the same vector.

Proof: If \(\rho' \) is LU-equivalent to \(\rho \), then by Corollary 1, the reference forms of 2-qubit reduced states verify the equation

\[
\rho_{i,j}^{(r)} - (\bar{U}_i \otimes \bar{U}_j) \rho_{i,j}^{(r)} (\bar{U}_i \otimes \bar{U}_j)^\dagger = 0
\]

(54)

Expressing the \(\rho_{i,j}^{(r)} \) and \(\rho_{i,j}^{(r)} \) in the Pauli basis, we obtain

\[
\frac{1}{2^2} \sum_{\alpha_j=1}^{3} \sum_{\alpha_i=1}^{3} \left(\rho_{\alpha_i,\alpha_j}^{(r)} - r_{\alpha_i,\alpha_j}^{(r)} \left(\bar{U}_i \sigma_{\alpha_i} \bar{U}_i^\dagger \right) \otimes (\bar{U}_j \sigma_{\alpha_j} \bar{U}_j^\dagger) \right) = 0
\]

(55)

where \(r_{\alpha_i,\alpha_j}^{(r)} = r_{0_1,0_2,1_0_3,0_4,1_0_5}^{(r)} \). Let us assume that \(\rho_i \neq \frac{1}{2} \) and that there is a \(j \neq i \) such that \(\rho_j \neq \frac{1}{2} \). Then \(\bar{U}_k \sigma_{\alpha_k} \bar{U}_k^\dagger \) is given by eqs.(48, 49, 50). Attending to the linear independence of the Pauli basis vectors, whenever eq.(55) is verified, then

\[
\begin{align*}
 r_{1,3}^{(r)} &= r_{1,3}^{(r)} \cos(2\omega_i) + r_{2,3}^{(r)} \sin(2\omega_i) \\
 r_{2,3}^{(r)} &= r_{2,3}^{(r)} \cos(2\omega_i) - r_{1,3}^{(r)} \sin(2\omega_i) \\
 r_{3,3}^{(r)} &= r_{3,3}^{(r)}
\end{align*}
\]
and eqs. (52) is also are verified. When \(r_{1,3}^{(r)} \neq 0 \) or \(r_{2,3}^{(r)} \neq 0 \) we can solve the two first eqs. (56) in order to \(\cos(2\omega_i) \) and \(\sin(2\omega_i) \) obtaining eqs. (51). When \(r_{1,3}^{(r)} = r_{2,3}^{(r)} = 0 \), then we solve the system of eqs. (52) in order to \(\vec{x} \), which allows us to compute \(\cos(2\omega_k) \) and \(\sin(2\omega_k) \) with \(k = i, j \). □

If all the second order coefficients are null we have to use 3-qubit reduced reference forms, this is, we compute

\[
\rho_{i_1,i_2,i_3}^{(r)} - (\otimes_{i = 1}^{i_3} \bar{U}_i) \rho_{i_1,i_2,i_3}^{(r)} (\otimes_{i = 1}^{i_3} \bar{U}_j)^\dagger = 0
\]

(56)

and proceed as in Corollary 3. We express \(\cos \omega_i \) and \(\sin \omega_i \) in terms of the three order coefficients \(r_{\alpha_{i_1},\alpha_{i_2},\alpha_{i_3}}^{(r)} = r_{0_{i_1-1},0_{i_1+1},0_{i_2-1},0_{i_2+1},0_{i_3-1},0_{i_3+1}} \). In general if all the coefficients of order \(k < n \) are null we apply a similar procedure to the coefficients of order \(k + 1 \).

Corollary 4: Let \(\rho \) and \(\rho' \) be two \(n \)-qubits states with one or more \(\rho_i = \frac{1}{2} \). Let us assume that there is at least a \(j \neq i \) such that \(\rho_j \neq \frac{1}{2} \). If \(\rho' \) is LU-equivalent to \(\rho \), then the 3 parameters \((\varphi_i, \phi_i, \theta_i) \) of \(U(\varphi_i, \phi_i, \theta_i) \) defined in eq. (10) are given by

\[
\varphi_i = \frac{1}{2} \arccos \left(\frac{\vec{r}_{3_j} \cdot \vec{r}_{3_j}'}{\| \vec{r}_{3_j} \| \cdot \| \vec{r}_{3_j}' \|} \right)
\]

(57)

\[
\theta_i = \frac{1}{2} \arccos(n_{3_i})
\]

(58)

\[
\phi_i = \frac{1}{2} \arctan \left(\frac{n_{3_i}}{n_{1_i}} \right)
\]

(59)

where \(\vec{r}_{3_j} = (r_{3_j,1_i}, r_{3_j,2_i}, r_{3_j,3_i}) \) and \(\vec{r}_{3_j}' = (r_{3_j,1_i}', r_{3_j,2_i}', r_{3_j,3_i}') \) if \(\vec{r}_{3_j} \neq 0 \) or \(\vec{r}_{3_j}' \neq 0 \). The parameters \(n_{3_i} \) is defined by

\[
n_{3_i} = \frac{\vec{r}_{3_j} \wedge \vec{r}_{3_j}'}{\| \vec{r}_{3_j} \| \cdot \| \vec{r}_{3_j}' \|} \cdot \vec{e}_i
\]

(60)

\(\vec{e}_i \) \((i = 1, 2, 3) \) are unit vectors of the 3-dimensional reference frame.

Proof: If \(\rho' \) is LU-equivalent to \(\rho \), then by Corollary 3, the reference forms of 2-qubit states verify the eq. (55). If \(\rho_i = \frac{1}{2} \) for some \(i \) then, \(\bar{U}_i = U(\varphi_i, \phi_i, \theta_i) \) is the most general local unitary matrix given by (10). If there is at least one \(j \neq i \) such that \(\rho_j \neq \frac{1}{2} \) then
$U_j \sigma_3^j U_j^\dagger = \sigma_3^j$. Attending to the linear independence of the Pauli vectors, whenever eq.(55) is verified, then
\[
\sum_{\alpha_i=1}^{3} \left(r^{(r)}_{\alpha_i,3_j} \sigma_{\alpha_i} - r^{(r)}_{\alpha_i,3_j} (\bar{U}_i \sigma_{\alpha_i} \bar{U}_i^\dagger) \right) \otimes \sigma_3^j = 0 \tag{61}
\]
invoking the local isomorphism between SU(2) and SO(3), then the second term inside the parenthesis of the last equation can be written
\[
\sum_{\alpha_i=1}^{3} r^{(r)}_{\alpha_i,3_j} (\bar{U}_i \sigma_{\alpha_i} \bar{U}_i^\dagger) = \sum_{\alpha_i=1}^{3} \bar{r}^{(r)}_{\alpha_i,3_j} \sigma_{\alpha_i} \tag{62}
\]
with
\[
\bar{r}^{(r)}_{\alpha_i,3_j} = \sum_{\alpha_i'=1}^{3} R_{\alpha_i,\alpha_i'} r^{(r)}_{\alpha_i,3_j} \tag{63}
\]
where $R_{\alpha_i,\alpha_i'}$ is a 3-dimensional orthogonal matrix, more precisely, it is the rotation matrix $R(\hat{n}_i, \varphi_i)$ of an angle φ_i about a unit vector $\hat{n}_i = (n_{1_i}, n_{2_i}, n_{3_i})$, that transform the vector $\vec{r}_{3_j} = (r_{3_j,1}, r_{3_j,2}, r_{3_j,3})$ into the vector $\vec{r}_{3_j}' = (\bar{r}_{3_j,1}, \bar{r}_{3_j,2}, \bar{r}_{3_j,3})$. Introducing the left side of eq.(62) in eq.(61) we obtain $\vec{r}_{3_j}' = \vec{r}_{3_j}'$, with φ_i and n_{3_i} given by eqs.(57) and (60). Equations (58) and (59) come from the definition of $n_{1_i} = \cos \phi_i \sin \theta_i$, $n_{2_i} = \sin \phi_i \sin \theta_i$ and $n_{3_i} = \cos \theta_i$. □

If there are $(n - 1)$ reduced density matrices such that $\rho_j = \frac{1}{2}$ and sole $\rho_k \neq \frac{1}{2} (k \neq j)$ then we use Corollary 4 to compute the $(n - 1)$ cyclic operators U_j. The operator \bar{U}_k will be determined after knowing at least one U_j, using Corollary 3.

If all 1-qubit reduced density matrices are maximally mixed it is also possible to obtain the local unitary operators $U(\varphi_i, \phi_i, \theta_i)$ using the second part of equation (55)
\[
\sum_{\alpha_j=1}^{3} \left(\sum_{\alpha_i=1}^{3} r^{(r)}_{\alpha_i,\alpha_j} \sigma_{\alpha_i} - r^{(r)}_{\alpha_i,\alpha_j} (\bar{U}_i \sigma_{\alpha_j} \bar{U}_i^\dagger) \right) \otimes (U_j \sigma_{\alpha_j} U_j^\dagger) = 0 \tag{64}
\]
similarly with the reasoning developed in Corollary 4, the following identities are valid
\[
\sum_{\alpha_i=1}^{3} r^{(r)}_{\alpha_i,\alpha_j} (U_i \sigma_{\alpha_i} U_i^\dagger) = \sum_{\alpha_i=1}^{3} \bar{r}^{(r)}_{\alpha_i,\alpha_j} \sigma_{\alpha_i} \tag{65}
\]
Replacing in (64) we obtain
\[\sum_{\alpha_i=1}^{3} \sigma_{\alpha_i} \otimes \sum_{\alpha_j=1}^{3} \left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) (\bar{U}_j \sigma_{\alpha_j} \bar{U}_j^\dagger) = 0 \] (66)
with
\[\sum_{\alpha_j=1}^{3} \left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) (\bar{U}_j \sigma_{\alpha_j} \bar{U}_j^\dagger) = \sum_{\alpha_j=1}^{3} \left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) \sigma_{\alpha_j} \] (67)
where
\[\left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) = \sum_{\alpha_j'=1}^{3} R'_{\alpha_j',\alpha_j} \left(r^{(r)}_{\alpha_j',\alpha_j} - \bar{r}^{(r)}_{\alpha_j',\alpha_j} \right) \] (68)
where R'_{α_j',α_j} is also a 3-dimensional orthogonal matrix in the Bloch sphere of qubit j. Going back to eq.(64) we get
\[\sum_{\alpha_i=1}^{3} \sum_{\alpha_j=1}^{3} \left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) \sigma_{\alpha_i} \otimes \sigma_{\alpha_j} = 0 \] (69)
From where we obtain nine equations
\[\left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) = 0 \] (70)
or equivalently
\[\left(r^{(r)}_{\alpha_i,\alpha_j} - \bar{r}^{(r)}_{\alpha_i,\alpha_j} \right) = \sum_{\alpha_j'=1}^{3} R'_{\alpha_j',\alpha_j} \left(r^{(r)}_{\alpha_j',\alpha_j} - \sum_{\alpha_i'=1}^{3} R_{\alpha_i',\alpha_i} r^{(r)}_{\alpha_i',\alpha_i} \right) = 0 \] (71)
where the unknowns are the six angles $(\varphi_j, \phi_j, \theta_j)$ and $(\varphi_i, \phi_i, \theta_i)$ of the rotation matrices $R_{\alpha_i,\alpha_i'}$ and $R'_{\alpha_j,\alpha_j'}$. We don’t present explicit solutions of eqs.(71), they will be easier to solve given concrete values for $r^{(r)}_{\alpha_i,\alpha_j}$ and $r^{(r)}_{\alpha_j',\alpha_j}$. Once known the parameters $(\varphi_i, \phi_i, \theta_i)$ for one of the maximally mixed qubits, then the parameters for any other qubit $k \neq i$ will be computed very easily using eqs.(57)-(60).

Once again, if the coefficients of the 2-qubit reference forms are null we have to use the coefficients of the 3rd-order and so on. The procedure to compute the angles $(\varphi_i, \phi_i, \theta_i)$ get more complex as higher order coefficients have to be used.
References

[1] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[3] G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 81, 062348 (2010).

[4] M. F. Pusey, J. Barrett, and T. Rudolph, Nature Phys., 8, 476 (2012).

[5] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865942 (2009).

[6] N. Linden and S. Popescu, Fortsch. Phys. 46, 567-578, (1998).

[7] N. Linden, S. Popescu, and A. Sudbery, Phys.Rev.Lett. 83, 243-247 (1999).

[8] M. Grassl, M. Rotteler and T. Beth, Phys. Rev. A 58, 1833 (1998).

[9] A. Sudbery, J.Phys.A 34, 643-652 (2001).

[10] S. Albeverio, S.M. Fei, and D.Goswami, Phys. Lett. A 340, 37 (2005).

[11] C. Zhou, T.G. Zhang, S.M. Fei, N. Jing, and X. Li-Jost, Phys. Rev. A 86(R), 010303 (2012).

[12] B. Kraus, Phys. Rev. Lett. 104, 020504 (2010); Phys. Rev.A 82, 032121 (2010).

[13] T.G. Zhang, M.J. Zhao, M. Li, S.M. Fei, and X. Li-Jost, Phys. Rev. A, 88, 042304 (2013).

[14] M. Li, T. Zhang, S.-M. Fei, X. Li-Jost, and N. Jing, arxiv:1406.617v1 (2014).

[15] L. B. Fu, Europhys. Lett. 75, 1 (2006).

[16] S. Gharibian, H. Kampermann, D. Bruss, Journal Quantum Information and Compu-
 tation, 9, pp. 1013-1029 (2009).
[17] A. Monras, G. Adesso, S. M. Giampaolo, G. Gualdi, G. B. Davies, and F. Illuminati, Phys. Rev. A 84, 012301 (2011).