Building Up While Shutting Down: An Academic Health System Educational Response to the COVID-19 Pandemic

Karina Clemmons[1], Karl Boehme[1], Martin Cannon[1], James Graham[1], Riley Lipschitz[1]

Abstract

The disruptive influence of the novel Coronavirus Disease 2019 (COVID-19) pandemic was felt worldwide, shutting down global activities and with it standard medical educational processes of face-to-face classroom sessions and clinical clerkship education. In the midst of suspending our face-to-face educational events to support safety for students, faculty, patients, and the community, we recognized the urgent need to build and implement online medical education coursework focused on the COVID-19 pandemic. In this innovative educational experience, we created a comprehensive approach to learning about the COVID-19 pandemic, including not only basic science and clinical knowledge, but also incorporating information in health system science, public health, and health equity. This study examined that perspective of third and fourth year medical students enrolled in a rapidly created two-week online COVID-19 Pandemic course. A course evaluation was completed by 266 of 347 students enrolled in the course. The evaluation included 10 Likert-scale items and 3 open response items. Results indicated an appreciation of basic science and clinical content of the course and serve to inform quality improvement for future iterations of the course or other institutions seeking to develop or improve COVID-19 coursework.

Keywords: COVID-19 pandemic course; virtual learning; curriculum planning; evaluation

Introduction

The disruptive influence of the novel Coronavirus Disease 2019 (COVID-19) pandemic was felt worldwide, shutting down activities across the globe and effectively eliminating the traditional educational operations. The impact on medical education was striking, as face-to-face classroom and clinical clerkship activities were rapidly suspended for the safety of students, faculty, patients, and the community. For the third and fourth year medical students who will
quickly become the next wave of physicians providing care during this health crisis, there was an urgent need to build virtual medical education coursework related to the COVID-19 pandemic.

Recent articles describe a need to both prioritize student safety and wellness while offering opportunities for education and participation with appropriate safety protocols that minimize risk (Ahmed et al., 2020; Ashokka et al., 2020; Miller et al., 2020; Wang et al., 2020; Woywodt, et al., 2020). Documented COVID-19 responses in medical education include using rapidly created student response teams (Soled et al., 2020) and moving to virtual coursework to comply with social distancing guidelines (Fernandez-Altuna et al., 2020; Rose et al., 2020; Singh et al., 2020). Medical student commentary and interviews indicate that students are interested in being prepared to help in clinical settings with broad education related to COVID-19, including clinical care, communication skills, mental health care, crisis management, and public health (Tabari et al., 2020; Theoret and Ming, 2020).

In response to the COVID-19 pandemic, a growing number of medical schools have made changes in medical education. The American Association of Medical Colleges (AAMC) Response Dashboard indicated that at least 61% of medical schools reported developing a COVID-19 course in order to address student needs (AAMC, 2020). Though one study assessed students’ perceptions of on an online learning platform created to allow virtual learning during the COVID-19 pandemic (Singh et al., 2020), to our knowledge, this is the first reported description and corresponding evaluation of the educational content of a COVID-19 pandemic course in a medical school setting. While many medical schools have implemented COVID-19 coursework, there is a need to research the perceived quality of such course materials from the students’ perspectives.

The primary objective of this study was to assess whether the COVID-19 course materials were perceived as useful to students. A secondary objective was to use the evaluation data for course improvement. The course material would be used again within a month by second year (M2) medical students who would shortly enter the clinical clerkship phase of their medical education to treat patients potentially exposed to COVID-19.

Methods

The COVID-19 Pandemic online course was developed over a period of two week period for initial use by third year (M3) and fourth year (M4) medical students immediately after these students were removed from their clinical clerkship rotations. Traditional clerkships were suspended the second week of March and this course began the fourth week of March. Course evaluations were sent electronically to all enrolled students (n=347) at the completion of the course. The course evaluation process was completely anonymous and voluntary. Course evaluations included Likert-scale rating items and open response questions.

Setting: The College of Medicine (COM) at the University of Arkansas for Medical Sciences (UAMS) offers a four-year M.D. degree. The COM, a Liaison Committee on Medical Education (LCME) accredited public institution, is the only M.D.-granting medical school in Arkansas, a mid-sized largely rural Southern state. Our mission is to educate and train physicians who will serve the medical needs of our state. This study was reviewed by the Institutional Review Board for ethics and deemed exempt.

COVID-19 Pandemic Education: It was immediately apparent that our M3 and M4 students who had been abruptly removed from their clinical clerkships and other face-to-face classes needed rapid education on the COVID-19 virus in a virtual, self-directed learning format.

Students: All M3 and M4 students (n=347) were enrolled in the course within 2 weeks of being removed from their
clinical clerkship rotations due to safety concerns.

Faculty Resources: The course included substantial contributions from faculty with varying backgrounds and expertise. Clinical M.D. faculty from the specialty areas of Cardiology, Infectious Disease, Internal Medicine, Pathology, Pediatrics, Psychiatry, and Pulmonary Critical Care participated. Basic Science Ed. D. and Ph.D. faculty in the special areas of Education, Ethics, Diversity, Immunology, Microbiology, Psychology, Public Health, and Pulmonary Physiology participated. In addition to COM faculty, we invited contributions from the Arkansas Department of Health, the Vice Mayor of the City of Little Rock, the Executive Director of the Arkansas Minority Health Commission, and several local non-profit leaders.

Course Design: The entirely online course was designed to offer M3 and M4 students 2 weeks of immediately applicable education related to the COVID-19 pandemic. Course materials were designed for students to complete approximately 3 learning events and associated study per day. The learning events included a variety of media including faculty recorded lectures, narrated PowerPoint slides, educational videos, reading materials, and select live sessions using the video conferencing platform Zoom.

It was a priority for faculty that student received well-rounded education that addressed not only the medical implications of COVID-19, but also elucidated the broad impact of this public health crisis beyond clinical care. We designed the course to address four major areas of learning: basic science and pathophysiology, clinical care, health system science, and health equity. "Fireside Chats" were moderated, live sessions using the video conferencing platform Zoom. The course began with a live session to acknowledge the emotional impact of the rapidly evolving COVID-19 pandemic and student stress management. This was moderated by course co-directors and representatives from faculty wellness. The course was concluded with a "Lessons for the Future" wrap up session (Table 1).

Table 1. COVID-19 Pandemic Course Outline

Lecture Title	Lecture Theme	Modality:	Learning Objectives
Course introduction	Synchronous/Recorded	• Live event to re-orient students after in-person classes were suspended due to COVID-19	
• Discuss course goals and expectations, stress and time management, etc.			
Biology of coronaviruses	Basic Science & Pathophysiology	Asynchronous	• Understand the classification and nomenclature of coronaviruses
• Appreciate the origin of SARS CoV2			
• Understand coronaviruses structure			
• Describe the coronavirus replication cycle			
Topic	Subject	Delivery Method	Objectives
-------------------------------------	-----------------------------	-----------------	---
Normal Pulmonary Function	Basic Science & Pathophysiology	Asynchronous	• Review steps in the movement of O_2 from atmospheric air to alveoli to arterial blood to tissue
• Define arterial hypoxemia and distinguish it from tissue hypoxia			
• List the causes of tissue hypoxia and arterial hypoxemia; recognize which of these cause elevated Alveolar-arterial (A-a) PO_2 gradient			
• Be able to calculate the Alveolar-arterial PO_2 gradient and recognize when the A-a gradient is elevated			
• Describe the use of the ratio PaO_2/FIO_2 as an index of gas exchange			
COVID-19 Pathogenesis	Basic Science & Pathophysiology	Asynchronous	• Consider disease statistics
• Think about the spectrum of symptoms and their timing			
• Discuss basics of pathogenesis in the lung			
• Highlight risk factors for severe disease			
• Compare SARS-CoV-2 and other emergent coronaviruses			
Epidemiology of COVID-19	Basic Science & Pathophysiology	Asynchronous	• Gain basic knowledge of the conditions needed for pandemic spread
• Appreciate the similarities and differences between spread of SARS and SARS-COV-2			
• Understand the impact of flattening the curve of case incidence on healthcare management			
• Understand the impact of R_0, S, and secondary attack rates on disease progression			
COVID-19 Transmission and Control	Basic Science & Pathophysiology & Clinical Care	Asynchronous	• Define how SARS-CoV2 is transmitted
• Understand the potential role of asymptomatic carriers in spreading SARS-CoV2			
• Appreciate measures used to control SARS-CoV2 transmission			
COVID-19 Treatments	Basic Science & Pathophysiology	Asynchronous	• Appreciate supportive care measures for treating COVID-19
• Understand the current status of pharmacologic treatments for COVID-19			
Immune responses to COVID-19	Basic Science & Pathophysiology	Asynchronous	• Acquire working knowledge of the course of an immune response in mild and severe COVID-19 infections
• Understand the potential benefits and limitations of plasma therapy			
• Understand the impact and benefits of widespread COVID-19 antibody screening			
• Understand the challenges involved in achieving herd immunity while minimizing morbidity and mortality			
Course Title	Module Type	Study Mode	Goals
---	-------------	-------------	--
Coronavirus vaccines	Basic Science & Pathophysiology	Asynchronous	• Understand vaccines against veterinary coronaviruses
			• Understand the current state of vaccine development against SARS-CoV1, MERS, and SARS-CoV2
			• Appreciate the development and approval process for vaccines
Health Disparities and COVID-19	Health Equity	Asynchronous	• Evaluate the role of population health management in public health emergencies
			• Define vulnerable populations during a pandemic
			• Recognize the impact of social determinants of health for patients and communities facing a public health crisis
Fireside Chat: COVID-19 & Racial Disparities	Health Equity	Synchronous/Recorded	• Live, interactive forum to discuss how the COVID-19 pandemic
Exam 1	Week 1 Content	Asynchronous	• Approximately 3 questions per learning event
Ethics & the COVID-19 Pandemic	Health System Science	Asynchronous	• Explain the shift to public health ethics and some major ethical issues that arise during a pandemic.
			• Analyze the ethical dimensions of triage protocols.
			• Describe sources of moral distress during the COVID-19 pandemic, and assess methods for alleviating moral distress.
COVID-19 Case presentation	Clinical Care	Asynchronous	• Understand signs and symptoms associated with COVID-19
			• Understand the effect of treatment on COVID-19 disease progression
COVID-19 Screening	Clinical Care	Asynchronous	• Understand the reasons for testing an individual for SARS-CoV2
			• Describe how specimens are collected for SARS-CoV2 testing
			• Appreciate the different laboratory tests used for SARS-CoV2
			• Understand what a "positive" test result means
			• Describe what to do with a positive test?
COVID-19 Overview	Clinical Care	Asynchronous	• Overview of COVID19 to date with epidemiology, treatment data/trials, and clinical progression
Severe COVID-19 Complications – An ICU Primer	Clinical Care	Asynchronous	• Recognize the mechanism of critical illness in COVID-19
			• Understand the basic pathophysiology of ARDS
			• Review the management of severe ARDS
			• Review other supportive measures
Infection Control	Clinical Care	Asynchronous	• Understand the measures taken in the clinic to prevent SARS-CoV2 spread
• Explain the containment/isolation procedures for COVID-19 patients			
• Understand what PPE is required for treating COVID-19 patients			
• Know how to don & doff PPE			
Social media and the COVID-19 Pandemic	Health Equity	Asynchronous	• Appreciate how false and misleading reports contribute to confusion during the COVID-19 pandemic
• Understand how social media influences public perception of the medical establishment			
• Understand how to separate public and private social media presence			
Public Health Emergencies and Response	Health System Science	Asynchronous	• Appreciate how the Arkansas Department of Health (ADH) responded to the COVID-19 pandemic
• Understand the role of ADH in future efforts to track and manage SARS-CoV2 spread in Arkansas			
Pre-TSD: COVID19 and Mental Health	Health System Science	Asynchronous	• Increase understanding of the psychosocial impacts of pandemics on healthcare workers and patients.
• Introduce skills to support personal wellbeing for the duration of the COVID-19 outbreak and after.			
• Introduce skills to support trauma-informed care of patients.			
Fireside Chat: Clinical wrap-up	Clinical Care	Synchronous/Recorded	• Live event to allow students to ask questions about COVID-19 clinical care
COVID19: UAMS’ Response to a Population Health Emergency	Health System Science	Asynchronous	• Review population health concepts related to "vulnerable populations"
• Introduce "Population Health Emergencies" related to COVID19 pandemic			
• Discuss UAMS’ response to COVID19 Population Health Emergencies through case examples:			
○ Quarantined employees and students			
○ Homelessness and patient discharge			
○ Undocumented, Spanish-speaking population in Arkansas			
Fireside Chat: COVID19 and Vulnerable Populations	Health Equity	Synchronous/Recorded	• Live event to help students:
 ○ Evaluate the role of population health management in public health emergencies
 ○ Define vulnerable populations during a pandemic
 ○ Recognize the impact of social determinants of health for patients and communities facing a public health crisis |
Lessons for the Future

| Asynchronous | • Course wrap-up and important questions about COVID-19 going forward
| • Discussion of how response to COVID-19 can aid preparation for future pandemics

| Exam 2 | Week 2 Content | Asynchronous | • Approximately 3 questions per learning event

Asynchronous/Synchronous-Recorded Learning Events: To allow students maximum flexibility to complete course assignments, given unexpected disruptions to study time, space, and methods, the course was designed with mixed asynchronous and synchronous-recorded learning events. Asynchronous events allowed students to complete the learning event when convenient, considering other educational, personal, and family responsibilities. The faculty also recognized that many students may feel isolated due to rapidly enacted social distancing requirements and thus scheduled synchronous-recorded leaning events via the video conferencing software Zoom. This allowed faculty-student interaction through both the live video and the typed chat feature during the learning event. These synchronous, interactive events were also recorded and posted to the online learning management software for all students to view at another time, if more convenient.

Exams: Two scheduled online exams included approximately 3 questions per learning event. Students were allowed flexibility to complete each exam in their own testing location. Each exam was available for student to initiate within a 2.5 day period following the week of learning events. The time available for each test was calculated by 90 seconds per question which mirrors the average length of time allotted per question for the United States Medical Licensure Exam (USMLE) Step 1. After submitting their answers, students were allotted an additional 5 minutes to review incorrect answers, and read answer rationales. No test security monitoring software was used, though students were reminded of the college honor code prohibiting consulting with others or other resources during the exam. It was also anticipated that a short amount of time allotted per question would reduce the likelihood of cheating.

Course Evaluation Instrument: The 13-item course evaluation was sent to students electronically and included 10 questions that asked students to rate each item using a 5-point Likert-scale of Strongly Disagree, Disagree, Neither Agree nor Disagree, Agree, and Strongly Agree, and 3 open-ended questions that prompted students to write about course strengths, opportunities for improvement, and additional comments. The course evaluation was anonymous and voluntary.

Results/Analysis

A total of 266 students completed the course evaluation of 347 students enrolled in the course, giving a response rate of 76.7%.

Quantitative: Data indicate that the majority of students ranked all course evaluation prompts with responses of "Strongly Agree" and "Agree" combined (Table 2). The items that students ranked the highest in combined ratings of "Strongly Agree" and "Agree" were "How well do think this course prepared you to understand the scientific background of the COVID-19 pandemic" (94.23%), "Testing: Material on exams was related to material covered either in class or in course assignments; students were treated equitably" (90.97%), and "How well do you think the course prepared you with knowledge of appropriate protocols for use of Personal Protective Equipment" (89.96%). The items that students ranked the lowest in combined rating of "Strongly Agree" and "Agree" were "How well do you think this course prepared you to manage patients with COVID-19?" (80.76%), "How well do you think this course prepared you to understand the social determinants of health that contribute to public health crises?" (84.11%), and "Clarity: Goals and educational objectives of course were clear, faculty expectations of students were
clear, grading policy was clearly explained." (86.84%)

Table 2. Student Course Evaluation Responses (n=266)
Question

Organization: Course was well organized, material was presented in a logical sequence, instructional time was used effectively, important points were emphasized.
Clarity: Goals and educational objectives of course were clear, faculty expectations of students were clear, grading policy was clearly explained.
Testing: Material on exams was related to material covered either in class or in course assignments; students were treated equitably.
Materials: Syllabi/course outline was well prepared, relevant to the course and understandable.
Content: Course content facilitated student ability to achieve course goals and objectives and was relevant to career preparation.
Overall: The quality of this course is outstanding.
How well do you think this course prepared you to understand the scientific background of the COVID-19 pandemic?
How well do you think this course prepared you to manage patients with COVID-19?

Percentage	Rating
1.15%	4.04
5.00%	0.86
13.08%	4.25
50.38%	0.84
30.38%	4.36
4.04	0.74

How well do you think this course prepared you to understand the social determinants of health that contribute to public health crises?

Percentage	Rating
1.55%	1.16
1.16%	13.18
13.18%	39.15
39.15%	44.96
44.96%	4.25
4.25	0.84

How well do you think the course material prepared you with knowledge of appropriate protocols for use of Personal Protective Equipment?

Percentage	Rating
1.16%	4.36
0.00%	0.74
8.88%	4.36
42.08%	0.74
42.08%	4.36
47.88%	0.74
47.88%	4.36

Qualitative: Data were sourced from three open-ended questions included in the course evaluations.

1. Describe some of the strengths of the course in your opinion.
2. Describe possible areas of improvement for the course in your opinion.
3. Enter any additional comments in the space provided.

Themes that emerged from the wide range of comments included (1) an appreciation of timely course development to allow relevant continuity of medical education during the pandemic, (2) an appreciation of COVID-19 specific basic science educational content to provide vital knowledge for medical students during the pandemic, and (3) constructive comments that called for more course learning events that covered clinical applications. Student comments included, "Very informative material and helped me feel more knowledgeable about the virus and confident in being able to intelligently discuss the pandemic and share information," and, "I would have loved a few more lectures on the specifics of actually managing a COVID patient, i.e. ventilator settings, working through a few vignettes, etc. Overall, thank you for organizing such a wonderful course so quickly."

Discussion

It was challenging to create a course on evolving content as knowledge, expectations, protocols, and daily routines were also changing for all. Nonetheless, we realized that the charge to create timely, relevant medical educational content was imperative. To the best of our knowledge, this is the first published survey of medical students’ evaluation of a rapidly created COVID-19 Pandemic course that sought to balance salient basic science, clinical, ethical, wellness, public health, and health equity topics surrounding the COVID-19 Pandemic.

As expected, quantitative rating and qualitative comment themes aligned in regard to strengths and opportunities for the course in future iterations. Students recognized the monumental effort involved to create and curate educational content in such a short amount of time. Additionally, students appreciated the inclusion of high yield basic science information, and lectures related to the scientific underpinnings of the COVID-19 pandemic received the highest evaluations in ratings and in comments.

Also expected, student feedback indicated that the greatest potential area for course improvement was related to clinical application of knowledge, specifically case presentation, case management, and personal safety. It is
important to note that students enrolled in the course were in their third and fourth years of medical school and had been abruptly removed from their clinical clerkship rotations for their and others’ safety. These students felt a great amount of concern and fear as they were quickly going to be reintroduced to the clinical environment and any COVID-19 related knowledge would be immediately relevant.

Addressing the clinical concerns posed two distinct challenges. First, course content required clinician input and was difficult to develop quickly given the two-week development time frame and many clinician educators were largely unavailable due to patient treatment responsibilities. Second, the clinical implications for treatment and management of COVID-19 patients were rapidly changing from day-to-day during the early phase of this pandemic and keeping abreast of clinically appropriate information while simultaneously building a curriculum proved challenging. The planning processes for future iterations of the course for future groups of students will incorporate these findings and will have the benefit of clinical treatment experiences at the initial stages of this noel COVID-19 pandemic.

One unexpected finding was not related to the results of the student responses in the course evaluation. Faculty review of student results on Exam 1 and Exam 2 seemed to indicate individual effort, i.e., that the students were not collaborating with others or using outside materials during the testing. Exam 1 percentage correct scores ranged from a low of 79% to high of 100%. Exam 2 percentage correct scores ranged from a low of 84% to a high of 100%. This may have resulted from the brief average time allotted for the exam questions, the result of social distancing, or intrinsic motivation to test one’s knowledge related to such an important societal medical concern.

A limitation of this study is that this course evaluation was a one-time survey of students in a single institution faced with unprecedented and rapidly evolving circumstances of the COVID-19 pandemic. It is possible that perceived needs may change over time. Nevertheless, the findings of this study provide valuable insight to schools who want to initiate or improve their COVID-19 pandemic education. This evaluation will be used to make future improvements to our COVID-19 education for medical students and other students across health care programs at our university, as well as continuing education for physicians and other health care workers across our state.

Conclusion

Building up educational content for medical students while in the midst of shutting down traditional educational processes at our academic health system proved a formidable challenge; but one of vital importance for those medical students who will shortly become practicing physicians in a world forever changed by the COVID-19 pandemic.

Several findings of the study would be helpful for other schools as they plan the development or improvement of coursework that covers the COVID-19 pandemic. Education related to the virology and epidemiology of the COVID-19 virus is likely to be well accepted. However, medical students are acutely aware of the need for thorough clinical education related to COVID-19, specifically in the areas of diagnosis, management, safety protocols, and personal protective equipment. In addition, addressing the larger context of health equity, physician mental health, and community response beyond the clinical environment offers an important opportunity to prepare well rounded future physicians.

Clinician input is essential to COVID-19 education, but clinical physician time is stretched thin during a pandemic, making it less likely that clinicians will have the ability to set aside time to leave clinical service in order to prepare separate educational content on short notice for medical students. Medical education programs may need to explore novel options that allow students to learn from clinical experiences without adding additional time and effort to practicing clinicians. One such option may a “Day in the Life” type video recording that maintains patient anonymity.
but allows medical students to be virtually present for the clinical experience. A recording could then be edited by clinical educators working with educational technology experts to develop instructional material that could be organized by topic and include imbedded learning objectives and associated assignments for students.

Take Home Messages

- COVID-19 medical education should seek to balance basic science content, clinical applications as well as public health and health equity considerations.
- Student feedback indicates that practical clinical knowledge and applications for managing patients with COVID-19 is valued.
- Innovative educational content should prioritize designing virtual clinical content that seamlessly integrates into practicing clinicians' regular clinical responsibilities.

Notes On Contributors

Karina R. Clemmons, Ed.D., is an Associate Professor at the University of Arkansas for Medical Sciences College of Medicine, Department of Medical Humanities and Bioethics.

Karl Boehme, Ph.D., is an Associate Professor at the University of Arkansas for Medical Sciences College of Medicine, Department of Microbiology and Immunology.

Martin Cannon, Ph.D., is a Professor at the University of Arkansas for Medical Sciences College of Medicine, Department of Microbiology and Immunology.

James Graham, M.D., is a Professor at the University of Arkansas for Medical Sciences College of Medicine, Department of Pediatrics.

Riley Lipschitz, M.D., is an Assistant Professor at the University for Medical Sciences College of Medicine, Department of Internal Medicine.

Acknowledgements

The authors are indebted to Jennifer VanEcko and JR Thomas for educational coordination and technology assistance, to numerous faculty members and staff who worked tirelessly to bring this content to students, and to community leaders for their willingness to contribute to the course on short notice.

Bibliography/References

Ahmed, H., Allaf, M. and Elghazaly, H. (2020) ‘COVID-19 and medical education’, [published online ahead of print, 2020 Mar 23] [published correction appears in *Lancet Infect Dis.* 2020 May;20(5):e79]. *Lancet Infectious Diseases.* 2020;S1473-3099(20)30226-7. https://doi.org/10.1016/S1473-3099(20)30226-7

American Association of Medical Colleges. (2020) ‘COVID-19 Response Dashboard Snapshot 27/04/20’. https://www.aamc.org/coronavirus/covid-19-response-dashboard (Accessed: 27 April 2020).

Ashokka, B., Ong, S. Y., Tay, K. H., Loh, N. H., *et al.* (2020) ‘Coordinated responses of academic medical centres
to pandemics: Sustaining medical education during COVID-19', Medical Teacher. http://doi.org/10.1080/0142159X.2020.1757634

Fernandez-Altuna, M., Rayon, D. G., Resendiz, M. R., Mendez, P. C. et al. ‘Experience of the biggest medical school in Mexico during the COVID-19 pandemic’, MedEdPublish. https://doi.org/10.15694/mep.2020.000101.1

Miller, D. G., Pierson, L. and Doernberg, S. (2020) ‘The role of medical students during the COVID-19 Pandemic’, Annals of Internal Medicine: M20-1281. http://doi.org/10.7326/M20-1281

Rose, S. (2020) ‘Medical student education in the time of COVID-19’, Journal of the American Medical Association. Published online March 31, 2020. https://doi.org/10.1001/jama.2020.5227

Singh, K., Srivastav, S., Bhardwaj, A., Dixit, A. et al. (2020) ‘Medical education during the COVID-19 pandemic: A single institution experience’, Indian Pediatrics, 2020 May 4. PII: S097475591600174. [Epub ahead of print]

Soled, D., Goel, S., Barry, D., Erfani, P., et al. (2020) ‘Medical student mobilization during a crisis: Lessons from a COVID-19 medical student response team, Academic Medicine. https://doi.org/10.1097/ACM.0000000000003401 [Epub ahead of print]

Tabari, P., Amini, M. and Moosavi, M. (2020) ‘Lessons learned from COVID-19 epidemic in Iran: The role of medical education’, Medical Teacher. http://doi.org/10.1080/0142159X.2020.1754376

Theoret, C. and Ming, X. (2020) ‘Our education, our concerns: Medical student education impact due to COVID-19’ [published online ahead of print, 2020 Apr 20]. Medical Education. https://doi.org/10.1111/medu.14181

Wang, J. H., Tan, S. and Raubenheimer, K. (2020) ‘Rethinking the role of senior medical students in the COVID-19 response. Medical Journal of Australia. https://doi.org/10.5694/mja2.50601

Woywodt, A., Breed, H. and Lumsden, C. (2020) ‘COVID-19 – the ultimate disruptor?’ MedEdPublish. https://doi.org/10.15694/mep.2020.000104.1

Appendices

None.

Declarations

The author has declared that there are no conflicts of interest.

This has been published under Creative Commons "CC BY 4.0" (https://creativecommons.org/licenses/by-sa/4.0/)

Ethics Statement

Study approved by the University of Arkansas for Medical Sciences Institutional Review Board, approval number 261142.
External Funding

This article has not had any External Funding

MedEdPublish: rapid, post-publication, peer-reviewed articles on healthcare professions’ education. For more information please visit www.mededpublish.org or contact mededpublish@dundee.ac.uk.