Nut-charged black holes in matter-coupled $\mathcal{N} = 2, D = 4$ gauged supergravity

Marta Colleonia and Dietmar Klemmab

a Dipartimento di Fisica, Università di Milano, Via Celoria 16, I-20133 Milano.
b INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano.

Abstract: Using the results of arXiv:0804.0009, where all timelike supersymmetric backgrounds of $\mathcal{N} = 2, D = 4$ matter-coupled supergravity with Fayet-Iliopoulos gauging were classified, we construct genuine nut-charged BPS black holes in AdS$_4$ with nonconstant moduli. The calculations are exemplified for the SU(1, 1)/U(1) model with prepotential $F = -iX^0 X^1$. The resulting supersymmetric black holes have a hyperbolic horizon and carry two electric, two magnetic and one nut charge, which are however not all independent, but are given in terms of three free parameters. We find that turning on a nut charge lifts the flat directions in the effective black hole potential, such that the horizon values of the scalars are completely fixed by the charges. We also oxidize the solutions to eleven dimensions, and find that they generalize the geometry found in hep-th/0105250 corresponding to membranes wrapping holomorphic curves in a Calabi-Yau five-fold. Finally, a class of nut-charged Nernst branes is constructed as well, but these have curvature singularities at the horizon.

Keywords: Black Holes in String Theory, AdS-CFT Correspondence, Superstring Vacua
1. Introduction

Black holes in anti-de Sitter (AdS) spaces provide an important testground to address fundamental questions of quantum gravity like holography. These ideas originally emerged from string theory, but became then interesting in their own right, for instance in recent applications to condensed matter physics (cf. [1] for a review), where black holes play again an essential role, since they provide the dual description of certain condensed matter systems at finite temperature. In particular, models of the type that we shall consider here, that contain Einstein gravity coupled to U(1) gauge fields and neutral scalars\(^1\) have been instrumental to study transitions from Fermi-liquid to non-Fermi-liquid behaviour, cf. [2, 3] and references therein.

On the other hand, among the extremal black holes (which have zero Hawking temperature), those preserving a sufficient amount of supersymmetry are of particular

\(^1\)The necessity of a bulk U(1) gauge field arises, because a basic ingredient of realistic condensed matter systems is the presence of a finite density of charge carriers. A further step in modeling strongly coupled holographic systems is to include the leading relevant (scalar) operator in the dynamics. This is generically uncharged, and is dual to a neutral scalar field in the bulk.
interest, as this allows (owing to non-renormalization theorems) to extrapolate an entropy computation at weak string coupling (when the system is generically described by a bound state of strings and branes) to the strong-coupling regime, where a description in terms of a black hole is valid [4]. However, this picture, which has been essential for our current understanding of black hole microstates, might be modified in gauged supergravity (arising from flux compactifications) due to the presence of a potential for the moduli, generated by the fluxes. This could even lead to a stabilization of the dilaton, so that one cannot extrapolate between weak and strong coupling anymore. Obviously, the explicit knowledge of supersymmetric black hole solutions in AdS is a necessary ingredient if one wants to study this new scenario.

A first step in this direction was made in [5,6], where the first examples of extremal static or rotating BPS black holes in AdS$_4$ with nontrivial scalar field profiles were constructed. Thereby, essential use was made of the results of [7], where all supersymmetric backgrounds (with a timelike Killing spinor) of $\mathcal{N} = 2$, $D = 4$ matter-coupled supergravity with Fayet-Iliopoulos gauging were classified. This provides a systematic method to obtain BPS solutions, without the necessity to guess some suitable ansatzes. Perhaps one of the most important results of [5] was the construction of genuine static supersymmetric black holes with spherical symmetry in the stu model. A crucial ingredient for the existence of these solutions is the presence of nonconstant scalar fields. These black holes were then further studied and generalized in [8,9].

In this paper, we shall go one step further with respect to [5], and include also nut charge. Apart from the supersymmetric Reissner-Nordström-Taub-Nut-AdS family in minimal gauged supergravity [10], there are, to the best of our knowledge, no other known BPS solutions of this type. In addition to providing an interesting scenario to study holography [11–13], these are intriguing for the following reason: In gauged supergravity, electric-magnetic duality invariance is obviously broken due to the minimal coupling of the gravitinos to the vector potential (unless one introduces also a magnetic gauging, but we shall not do this in what follows). Nevertheless, it was discovered in [10] that supersymmetric solutions of minimal gauged supergravity still enjoy a sort of electric-magnetic duality invariance in which electric and magnetic charges and mass and nut charge are rotated simultaneously. A deeper understanding of this mysterious duality might reveal unexpected geometric structures underlying gauged supergravity theories.

In addition to the motivation given above, a further reason for considering supersymmetric nut-charged AdS black holes is the attractor mechanism [14–18], that has been the subject of extensive research in the asymptotically flat case, but for which only little is known for spacetimes that asymptote to AdS. First steps towards a systematic analysis of the attractor flow in gauged supergravity were made in [19,20] for the
non-BPS and in [5,9,21,22] for the BPS case, but it would be interesting to generalize these results to include also nut charge. In fact, what we shall find here is that (at least for the simple prepotential considered below) the flat directions in the effective black hole potential (which generically occur in the BPS flow in gauged supergravity [5]) are lifted by turning on a nut charge.

The remainder of this paper is organized as follows: In the next section, we briefly review $\mathcal{N} = 2$, $D = 4$ gauged supergravity coupled to abelian vector multiplets (presence of U(1) Fayet-Iliopoulos terms) and give the general recipe to construct supersymmetric solutions found in [7]. In [3], the equations of [7] are solved for the SU(1, 1)/U(1) model with prepotential $F = -iX^0X^1$, and a class of one-quarter BPS black holes carrying two electric, two magnetic and one nut charge is constructed. We also discuss the attractor mechanism for this solution and its near-horizon limit. Moreover, it is shown how the results of [10] are recovered in the case of constant moduli. In section [4], we oxidize the solution to eleven dimensions and comment on its M-theory interpretation. Section [5] contains our conclusions and some final remarks.

2. The supersymmetric backgrounds of $\mathcal{N} = 2$, $D = 4$ gauged supergravity

We consider $\mathcal{N} = 2$, $D = 4$ gauged supergravity coupled to n_V abelian vector multiplets [23]. Apart from the vierbein e^μ_a, the bosonic field content includes the vectors A^I_μ enumerated by $I = 0, \ldots, n_V$, and the complex scalars z^α where $\alpha = 1, \ldots, n_V$. These scalars parametrize a special Kähler manifold, i.e., an n_V-dimensional Hodge-Kähler manifold that is the base of a symplectic bundle, with the covariantly holomorphic sections

$$\mathcal{V} = \begin{pmatrix} X^I \\ F_I \end{pmatrix}, \quad \mathcal{D}_\alpha \mathcal{V} = \partial_\alpha \mathcal{V} - \frac{1}{2} (\partial_\alpha \mathcal{K}) \mathcal{V} = 0,$$

where \mathcal{K} is the Kähler potential and \mathcal{D} denotes the Kähler-covariant derivative. \mathcal{V} obeys the symplectic constraint

$$\langle \mathcal{V}, \bar{\mathcal{V}} \rangle = X^I \bar{F}_I - F_I \bar{X}^I = i.$$

To solve this condition, one defines

$$\mathcal{V} = e^{\mathcal{K}(z, \bar{z})/2} v(z),$$

where $v(z)$ is a holomorphic symplectic vector,

$$v(z) = \begin{pmatrix} Z^I(z) \\ \frac{\partial}{\partial z^I} F(Z) \end{pmatrix}.$$

2Throughout this paper, we use the notations and conventions of [24].
F is a homogeneous function of degree two, called the prepotential, whose existence is assumed to obtain the last expression. The Kähler potential is then
\[e^{-K(z,\bar{z})} = -i\langle v, \bar{v} \rangle. \] (2.5)

The matrix \(N_{IJ} \) determining the coupling between the scalars \(z^\alpha \) and the vectors \(A_\mu^I \) is defined by the relations
\[F_I = N_{IJ}X^J, \quad D_\alpha \bar{F}_I = N_{IJ}D_\alpha \bar{X}^J. \] (2.6)

The bosonic action reads
\[e^{-1}L_{\text{bos}} = 1/2 R + 1/4(\text{Im} N)_{IJ}F_\mu^IF_\rho^J - 1/8(\text{Re} N)_{IJ}e^{-1}\epsilon^{\mu\nu\rho\sigma}F_\mu^IF_\rho^J, \]
\[-g_{\alpha\beta}\partial_\mu z^\alpha \partial_\mu \bar{z}^\beta - V, \] (2.7)

with the scalar potential
\[V = -2g^2\xi_I\xi_J([\text{Im} N]^{-1/2} + 8\bar{X}^IX^J), \] (2.8)

that results from U(1) Fayet-Iliopoulos gauging. Here, \(g \) denotes the gauge coupling and the \(\xi_I \) are constants. In what follows, we define \(g_I = g\xi_I \).

The most general timelike supersymmetric background of the theory described above was constructed in [7], and is given by
\[ds^2 = -4|b|^2(dt + \sigma)^2 + |b|^{-2}(dz^2 + e^{2\Phi}dwd\bar{w}) , \] (2.9)

where the complex function \(b(z, w, \bar{w}) \), the real function \(\Phi(z, w, \bar{w}) \) and the one-form \(\sigma = \sigma_w dw + \sigma_{\bar{w}} d\bar{w} \), together with the symplectic section \([2.13]^3\) are determined by the equations
\[\partial_z \Phi = 2ig_I \left(\frac{\bar{X}^I}{b} - \frac{X^I}{b} \right), \] (2.10)
\[4\partial\bar{\partial} \left(\frac{X^I}{b} - \frac{\bar{X}^I}{b} \right) + \partial_z \left[e^{2\Phi} \partial_z \left(\frac{X^I}{b} - \frac{\bar{X}^I}{b} \right) \right] \]
\[-2ig_I \partial_z \left\{ e^{2\Phi} \left[|b|^{-2}(\text{Im} N)^{-1/2} + 2 \left(\frac{X^I}{b} + \frac{\bar{X}^I}{b} \right) \right] \right\} = 0, \] (2.11)
\[4\partial\bar{\partial} \left(\frac{F_I}{b} - \frac{\bar{F}_I}{b} \right) + \partial_z \left[e^{2\Phi} \partial_z \left(\frac{F_I}{b} - \frac{\bar{F}_I}{b} \right) \right] \]
\[-2ig_I \partial_z \left\{ e^{2\Phi} \left[|b|^{-2}\text{Re} N_{IJ}(\text{Im} N)^{-1/2} + 2 \left(\frac{F_I}{b} + \frac{\bar{F}_I}{b} \right) \left(\frac{X^J}{b} + \frac{\bar{X}^J}{b} \right) \right] \right\} \]
\[-8ig_I e^{2\Phi} \left[\langle T, \partial_z T \rangle - \frac{g_J}{|b|^2} \left(\frac{X^J}{b} + \frac{\bar{X}^J}{b} \right) \right] = 0, \] (2.12)

Note that also \(\sigma \) and \(V \) are independent of \(t \).
\[2 \partial \bar{\partial} \Phi = e^{2\Phi} \left[ig_1 \partial_z \left(\frac{X^I}{b} - \frac{\bar{X}^I}{\bar{b}} \right) + \frac{2}{|b|^2} g_{IJ} (\text{Im} \mathcal{N})^{-1} + 4 \left(\frac{g_I X^I}{b} + \frac{g_I \bar{X}^I}{\bar{b}} \right)^2 \right], \]

\[d\sigma + 2 *^{(3)} (\mathcal{I}, d\mathcal{I}) - \frac{i}{|b|^2} g_I \left(\frac{\bar{X}^I}{\bar{b}} + \frac{X^I}{b} \right) e^{2\Phi} dw \wedge d\bar{w} = 0. \]

Here \(*^{(3)}\) is the Hodge star on the three-dimensional base with metric

\[ds^2_3 = dz^2 + e^{2\Phi} dw \wedge d\bar{w}, \]

and we defined \(\partial = \partial_w \), \(\bar{\partial} = \partial_{\bar{w}} \), as well as

\[\mathcal{I} = \text{Im} \left(\mathcal{V}/\bar{b} \right). \]

Given \(b, \Phi, \sigma \) and \(\mathcal{V} \), the fluxes read

\[F^I = 2(dt + \sigma) \wedge d b X^I + b^{-2} dz \wedge d\bar{w} \left[\bar{X}^I (\bar{\partial} b + iA_w \bar{b}) + (\mathcal{D}_\alpha X^I) b \partial z^\alpha - X^I (\bar{\partial} b - iA_{\bar{w}} b) - (\mathcal{D}_{\bar{\alpha}} \bar{X}^I) \bar{b} \bar{\partial} z^{\bar{\alpha}} \right] - |b|^{-2} dz \wedge dw \left[\bar{X}^I (\partial b + iA_w \bar{b}) + (\mathcal{D}_\alpha X^I) b \partial z^\alpha - X^I (\partial b - iA_{\bar{w}} b) - (\mathcal{D}_{\bar{\alpha}} \bar{X}^I) \bar{b} \bar{\partial} z^{\bar{\alpha}} \right] - \frac{1}{2} |b|^{-2} e^{2\Phi} dw \wedge d\bar{w} \left[X^I (\partial b + iA_w \bar{b}) + (\mathcal{D}_\alpha X^I) b \partial z^\alpha - X^I (\partial b - iA_{\bar{w}} b) - (\mathcal{D}_{\bar{\alpha}} \bar{X}^I) \bar{b} \bar{\partial} z^{\bar{\alpha}} - 2i g_J (\text{Im} \mathcal{N})^{-1} \right]. \]

In (2.17), \(A_\mu \) is the gauge field of the Kähler U(1),

\[A_\mu = -\frac{i}{2} (\partial_\alpha K \partial_\mu z^\alpha - \partial_{\bar{\alpha}} K \partial_\mu \bar{z}^{\bar{\alpha}}). \]

3. Constructing nut-charged black holes

In this section we shall obtain supersymmetric nut-charged black holes, which have nontrivial moduli turned on. In order to solve the system (2.10)-(2.14) we shall assume that both \(z^\alpha \) and \(b \) depend on the coordinate \(z \) only, and use the separation ansatz \(\Phi = \psi(z) + \gamma(w, \bar{w}) \). Then (2.10) becomes

\[\psi' = 2i \left(\frac{\bar{X}}{\bar{b}} - \frac{X}{b} \right), \]
where a prime denotes differentiation with respect to \(z \) and \(X \equiv g_I X^I \). Furthermore, we can integrate (2.11) once, with the result
\[
e^{2\psi} \partial_z \left(\frac{X^I}{b} - \frac{\bar{X}^I}{\bar{b}} \right) - 2ie^{2\psi} \left[|b|^{-2} (\text{Im} \mathcal{N})^{-1/2} g_J + \right.
\]
\[
+ 2 \left(\frac{X^I}{b} + \frac{\bar{X}^I}{\bar{b}} \right) \left(\frac{X}{b} + \frac{\bar{X}}{\bar{b}} \right) \right] = -4\pi i p^I, \tag{3.2}
\]
where \(p^I \) are related to the magnetic charges, as we shall see later. Using the contraction of (3.2) with \(g_I \), (2.13) boils down to
\[
-4\partial \bar{\partial} \gamma = \kappa e^{2\gamma}, \quad \kappa = -8\pi g_I p^I. \tag{3.3}
\]
This is the Liouville equation, which implies that the metric \(e^{2\gamma} d\tau d\bar{\tau} \) has constant curvature \(\kappa \), determined by the \(p^I \).

3.1 SU(1,1)/U(1) model

In what follows we shall specialize to the SU(1,1)/U(1) model with prepotential \(F = -iX^0 X^1 \), that has \(n_V = 1 \) (one vector multiplet), and thus just one complex scalar \(\tau \). Choosing \(Z^0 = 1 \), \(Z^1 = \tau \), the symplectic vector \(v \) becomes
\[
v = \begin{pmatrix} 1 \\ \tau \\ -i\tau \\ -i \end{pmatrix}. \tag{3.4}
\]
The Kähler potential, metric and kinetic matrix for the vectors are given respectively by
\[
e^{-K} = 2(\tau + \bar{\tau}), \quad g_{\tau \bar{\tau}} = \partial_\tau \partial_{\bar{\tau}} K = (\tau + \bar{\tau})^{-2}, \tag{3.5}
\]
\[
\mathcal{N} = \begin{pmatrix} -i\tau & 0 \\ 0 & -\frac{i}{\tau} \end{pmatrix}. \tag{3.6}
\]
Note that positivity of the kinetic terms in the action requires \(\text{Re} \tau > 0 \). For the scalar potential one obtains
\[
V = -\frac{4}{\tau + \bar{\tau}} \left(g_0^2 + 2g_0 g_1 \tau + 2g_0 g_1 \bar{\tau} + g_1^2 \tau \bar{\tau} \right), \tag{3.7}
\]
which has an extremum at \(\tau = \bar{\tau} = |g_0/g_1| \). In what follows we assume \(g_I > 0 \). Notice also that \(F_I = -i\eta_{IJ} X^J \), where
\[
\eta_{IJ} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \tag{3.8}
\]
Moreover, \((\text{Im} \mathcal{N})^{-1} = -4 \text{diag}(\{|X^0|^2|, |X^1|^2|)\).

For this model, (2.12) becomes
\[
\begin{align*}
\partial_z & \left[e^{2\psi} (2i\eta_{IL}) \partial_z \text{Re} \left(\frac{X^J}{b} \right) \right] - 2i\partial_z \left\{ e^{2\psi} \left[|b|^{-2} \text{Re} \mathcal{N}_{IL} (\text{Im} \mathcal{N})^{-1/JL} g_J + \right. \
+ & 8 \text{Re} \left(\frac{F_I}{b} \right) \text{Re} \left(\frac{X}{b} \right) \right\} - 8ig_I e^{2\psi} \left[-\frac{i}{2} \delta_{KJ} \left(\frac{X^K}{b} \partial_z \frac{X^J}{b} - \frac{X^K}{b} \partial_z \frac{\bar{X}^J}{b} \right) + \frac{1}{2} \left| \bar{b} \right|^{-2} \left(\frac{X}{b} + \frac{\bar{X}}{b} \right) \right] = 0. \quad (3.9)
\end{align*}
\]

We now make the ansatz
\[
\frac{X^I}{b} = \frac{\alpha^I z + \beta^I}{A z^2 + B z + C}, \quad (3.10)
\]
where \(A, B, C, \alpha^I\) and \(\beta^I\) are complex constants. Without loss of generality, we can take \(A = 1\) and \(B = iD\), with \(D \in \mathbb{R}\), since we are free to shift \(z \mapsto z - \text{Re}B/2\). As a consequence, (3.1) reduces to
\[
\psi' = 4 \frac{\text{Im} \alpha z^3 + z^2 (\text{Im} \beta - D \text{Re} \alpha) - z (\text{Im} (\bar{\alpha} C) + D \text{Re} \beta) - \text{Im}(\bar{\beta} C)}{z^4 + z^2 (2 \text{Re} C + D^2) + 2 D z \text{Im} C + |C|^2}, \quad (3.11)
\]
with \(\alpha \equiv g_I \alpha^I, \ \beta \equiv g_I \beta^I\). Inspired by minimal gauged supergravity [25], we choose
\[
\text{Im} \beta - D \text{Re} \alpha = 0, \quad (3.12)
\]
\[
-4 (\text{Im} (\bar{\alpha} C) + D \text{Re} \beta) = 2 \text{Im} \alpha (2 \text{Re} C + D^2), \quad (3.13)
\]
\[
-4 \text{Im}(\bar{\beta} C) = 2 D \text{Im} \alpha \text{Im} C, \quad (3.14)
\]
so that (3.11) simplifies to
\[
\psi' = \frac{4 z^3 + 2(2 \text{Re} C + D^2) z + 2 D \text{Im} C}{z^4 + z^2 (2 \text{Re} C + D^2) + 2 D z \text{Im} C + |C|^2} \text{Im} \alpha, \quad (3.15)
\]
which can be integrated once to give
\[
\psi = \text{Im} \alpha \left(\ln \left[z^4 + z^2 (2 \text{Re} C + D^2) + 2 D z \text{Im} C + |C|^2 \right] + \ln \tilde{C} \right), \quad (3.16)
\]
where \(\tilde{C}\) denotes an integration constant that can be set to 1 without loss of generality by using the scaling symmetry \(\psi \mapsto \psi - \ln \lambda, \ \gamma \mapsto \gamma + \ln \lambda, \ \kappa \mapsto \kappa/\lambda^2, \ p^I \mapsto p^I/\lambda^2\), with \(\ln \lambda = \text{Im} \alpha \ln \tilde{C}\), that leaves (3.1), (3.2) and (3.3) invariant.

\footnote{Note that (3.10) generalizes the ansatz used in [5] to obtain black holes without nut charge.}
In order to solve (3.2), we take into account that
\[|b|^{-2}(\text{Im} \mathcal{N})^{-1} |l^I| g_J = -4 \frac{|X^I|^2}{|b|^2} g_I, \]
where there is of course no summation over \(I \) on the rhs. Then (3.2) becomes
\[
-4\pi i p^I = \left[(z^2 + iDz + C) \left(z^2 - iDz + \bar{C} \right) \right]^{2\text{Im} \alpha} \times \left\{ \left[-\alpha^I z^2 - 2\beta^I z + \alpha^I C - \beta^I iD \right] \right. \\
\left. \left(z^2 + iDz + C \right)^2 \right. + \left. \bar{\alpha}^I z^2 + 2\bar{\beta}^I z - \bar{\alpha}^I \bar{C} - \bar{\beta}^I iD \right] \left(z^2 - iDz + \bar{C} \right)^2 \\
-2i \left[-4gi \left| \begin{array}{c} \alpha^I z + \beta^I \\ z^2 + iDz + C \end{array} \right|^2 + 8\text{Re} \left(\frac{\alpha^I z + \beta^I}{z^2 + iDz + C} \right) \text{Re} \left(\frac{\alpha z + \beta}{z^2 + iDz + C} \right) \right], \tag{3.17}
\]
In order to simplify the calculations further, we shall also take \(\text{Im} \alpha = 1/2 \), so that (3.17) boils down to a sixth order polynomial equation,
\[
A_0 + A_1 z + A_2 z^2 + A_3 z^3 + A_4 z^4 + A_5 z^5 + A_6 z^6 = 0, \tag{3.18}
\]
where \(A_6 = 0 \) iff
\[
-\text{Im} \alpha^I + 4gi|\alpha^I|^2 - 8\text{Re} \alpha \text{Re} \alpha^I = 0, \tag{3.19}
\]
and thus
\[
\text{Im} \alpha^I = \frac{1 \pm \sqrt{1 - 16gi(4gi \text{Re}^2 \alpha^I - 8\text{Re} \alpha \text{Re} \alpha^I)}}{8gi}. \tag{3.20}
\]
Using \(\text{Im} \alpha = 1/2 \), and defining \(8g_0 \text{Re} \alpha^0 \equiv x, 8g_1 \text{Re} \alpha^1 \equiv y \), this yields
\[
x^4 + y^4 - 8(x^2 + y^2) - 2x^2 y^2 - 32xy = 0. \tag{3.21}
\]
To proceed further, recall that
\[
\tau = \frac{Z^1}{Z^0} = \frac{X^1}{X^0} = \frac{\alpha^1 z + \beta^1}{\alpha^0 z + \beta^0}. \tag{3.22}
\]
If we require that the scalar asymptotically approaches the AdS vacuum, that is \(\tau \to g_0/g_1 \) for \(z \to \infty \), we must have \(\alpha^1/\alpha^0 = g_0/g_1 \), and thus \(x = y \). (3.21) implies then \(x = 0 \), hence \(\text{Re} \alpha^I = 0 \). Plugging this into (3.20) gives\(^6\)
\[
\text{Im} \alpha^I = \frac{1}{4gi}. \tag{3.23}
\]
\(^6\)Taking the lower sign yields \(\text{Im} \alpha^I = 0 \), and thus a constant scalar.
(3.12) and (3.13) reduce respectively to

\[\text{Im} \beta = 0, \quad \text{Re} \beta = -\frac{D}{4}, \]

(3.24)

implying

\[\beta = -\frac{D}{4}. \]

(3.25)

Using the above results, one finds that (3.14) is identically satisfied.

Let us go back to (3.18). Requiring \(A_0 = 0 \) leads to

\[-4\pi p^I = \frac{\text{Re}C}{2g_I} + 8g_I|\beta^I|^2 + 2D\text{Re}\beta^I, \]

(3.26)

which gives the magnetic charges in terms of some numerical constants. Note that the above equation, together with (3.25), implies

\[g_0p^0 = g_1p^1, \quad \kappa = -16\pi g_0p^0 = -16\pi g_1p^1. \]

(3.27)

Eventually, one finds that \(A_6 = 0 \) and \(A_0 = 0 \) are sufficient conditions for (3.18) to be satisfied.

We now turn to (2.12). After some lengthy calculations, one gets

\[e^{2\psi} \left[\langle I, \partial_z I \rangle - |b|^{-2} \left(\frac{X}{b} + \bar{X} \right) \right] = -\frac{D}{16g_0g_1}, \]

(3.28)

and thus (2.12) can be integrated once to give

\[e^{2\psi} \partial_z \left[2i \text{Im} \left(\frac{F_I}{b} \right) \right] - 2ig_Je^{2\psi} \left[|b|^{-2} \text{Re}N_{IL} (\text{Im}N)^{-1|JL} +
ight. \]

\[+ 8\text{Re} \left(\frac{F_I}{b} \right) \text{Re} \left(\frac{X^J}{b} \right) \right] + i g_I D \frac{g_J}{2g_0g_1} z = -4\pi iq_I, \]

(3.29)

where \(q_I \) are related to the electric charges. In order to solve (3.29), notice that

\[\text{Re}N = \frac{X^0X^1 - \bar{X}^1X^0}{2i} \begin{pmatrix} |X^0|^{-2} & 0 \\ 0 & -|X^1|^{-2} \end{pmatrix}, \]

(3.30)

from which

\[\text{Re}N_{IL} (\text{Im}N)^{-1|JL} g_J = 2i \left(\bar{X}^0X^1 - \bar{X}^1X^0 \right) (-1)^I g_I \quad \text{(no summation over } I). \]

Using this, (3.29) boils down to a fifth order polynomial equation,

\[B_0 + B_1z + B_2z^2 + B_3z^3 + B_4z^4 + B_5z^5 = 0. \]

(3.31)
One finds that B_5 vanishes identically provided that (3.24) holds. Requiring $B_0 = 0$ yields
\[\eta_{IJ} \left(\frac{\text{Im}C}{4g_{IJ}} - D\text{Im} \beta^J \right) + 4(-1)^I g_I \text{Im}(\beta^1 \bar{\beta}^0) = 2\pi q_I , \] (3.32)
which determines the electric charges. Given that (3.23) holds, the above equation leads to
\[g_I^{-1} \text{Im}C = 8 \left(\pi \eta^{IJ} q_J + \text{Im} \beta^J D \right) , \] (3.33)
where η^{IJ} denotes the inverse of η_{IJ}. Note that (3.32) implies also
\[\text{Im}C = 4\pi (g_1 q_0 + g_0 q_1) , \] (3.34)
which, combined with (3.33), yields (no summation over I)
\[(-1)^I g_I \text{Im} \beta^I = \frac{\pi (g_1 q_0 - g_0 q_1)}{2D} . \] (3.35)
It turns out that then all coefficients in (3.31) vanish, and thus (3.29) is satisfied.

Finally, taking
\[e^{2\gamma} = \left(1 + \frac{\kappa}{4} w \bar{w} \right)^{-2} \] (3.36)
as a solution of the Liouville equation (3.3), one can compute the shift vector from (2.14), with the result
\[\sigma = \frac{iD}{32 g_0 g_1} \frac{wd\bar{w} - \bar{w}dw}{1 + \frac{\kappa}{4} w \bar{w}} . \] (3.37)
Note that $d\sigma$ is proportional to the Kähler form on the two-space with metric $e^{2\gamma} dwd\bar{w}$.

The four-dimensional line element reads
\[ds^2 = -4 |b|^2 (dt + \sigma)^2 + \frac{dz^2}{|b|^2} + \frac{z^2 + 16 g_0 g_1 \text{Re}(\beta^1 \bar{\beta}^0)}{4g_0 g_1} \frac{dwd\bar{w}}{(1 + \frac{\kappa}{4} w \bar{w})^2} , \] (3.38)
where
\[|b|^2 = 4g_0 g_1 \frac{|z^2 + iDz + C|^2}{z^2 + 16 g_0 g_1 \text{Re}(\beta^1 \bar{\beta}^0)} . \] (3.39)
As we said, positivity of the kinetic terms in the action requires $\text{Re} \tau > 0$. From (3.22) one sees that this is equivalent to
\[z^2 > -16 g_0 g_1 \text{Re}(\beta^1 \bar{\beta}^0) . \] (3.40)
As can be seen from (3.39), $|b|$ diverges when $\text{Re} \tau = 0$, signaling the presence of a curvature singularity at the point where ghost modes appear. The solution we have
found will have an event horizon for some \(z = z_h \), with \(z_h^2 + iDz_h + C = 0 \), and thus \(z_h^2 = -\text{Re}C \) and \(Dz_h = -\text{Im}C \), which in turn imply

\[
\text{Im}^2C = -D^2\text{Re}C, \tag{3.41}
\]

and therefore \(\text{Re}C < 0 \). Putting these results together, we can be more specific about the geometry of the horizon. First of all, contracting (3.26) with \(g_I \) and taking into account (3.25) and the second equation of (3.3) yields

\[
\kappa = 2\text{Re}C + 16 \sum_I g_I^2|\beta_I|^2 - D^2. \tag{3.42}
\]

If we want the dangerous point where ghost modes appear to be hidden behind the horizon, we must have

\[
-\text{Re}C > -16g_0g_1\text{Re}(\beta^1\bar{\beta}^0). \tag{3.43}
\]

which, together with (3.25), yields \(\kappa < 0 \), so that the horizon must be hyperbolic. Note that one can also have solutions with spherical instead of hyperbolic symmetry, but these are naked singularities. A special case occurs for \(\kappa = 0 \), i.e., for a flat horizon. Then, the point where ghost modes appear coincides with the horizon. The resulting geometry describes a Nernst brane [26], whose entropy vanishes at zero temperature.

Solutions of this type have potential applications in AdS/cond-mat, but unfortunately for \(\kappa = 0 \) the spacetime (3.38) has a curvature singularity at \(z = z_h \), where

\[
R_{\mu\nu\rho\sigma} \sim (z - z_h)^{-2}. \tag{3.44}
\]

Coming back to the case of arbitrary \(\kappa \), the fluxes can be computed from (2.17), with the result (no summation over \(I \))

\[
F^I = (dt + \sigma) \wedge dz \quad \frac{16g_0g_1}{(z^2 + 16g_0g_1\text{Re}(\beta^0\bar{\beta}^1))^2} \left[\left(\frac{\text{Im}C}{4g_I} + D\text{Im}\beta^I \right) (16g_0g_1\text{Re}(\beta^0\bar{\beta}^1) - z^2) + 2z \left(16g_0g_1\text{Re}(\beta^0\bar{\beta}^1) \left(\text{Re}\beta^I + \frac{D}{4g_I} \right) - \text{Re}(\beta^I\bar{C}) \right) \right] - \frac{ie^2dw \wedge d\bar{w}}{z^2 + 16g_0g_1\text{Re}(\beta^0\bar{\beta}^1)} \\
\cdot \left[\left(\frac{D^2}{4g_I} + D\text{Re}\beta^I + \frac{\kappa}{8g_I} \right) z^2 + D \left(\frac{\text{Im}C}{4g_I} + D\text{Im}\beta^I \right) z + D\text{Re}(\beta^I\bar{C}) \right] + \frac{\kappa}{8g_I} \left(\text{Re}C - \frac{\kappa}{2} \right). \tag{3.45}
\]

To sum up, the metric is given by (3.38), the U(1) field strengths by (3.43), and the complex scalar \(\tau \) reads

\[
\tau = \frac{g_0z - 4ig_1\beta^1}{g_1z - 4ig_0\bar{\beta}^0}, \tag{3.46}
\]
where the constants $\beta^I \in \mathbb{C}$ are constrained by (3.25). A priori, the solution is labelled by the 7 real parameters β^I, C, D, but (3.25), together with (3.42), leave 4 independent constants. Note that κ can be set to 0, \pm 1 without loss of generality by using the scaling symmetry $(t,z,w,C,D,\beta^I,\kappa) \mapsto (t/\lambda,\lambda z,\lambda w/\lambda,\lambda^2 C,\lambda D,\lambda \beta^I,\lambda^2 \kappa)$ leaving the metric, fluxes and scalar invariant. A convenient way of parametrizing the constraint (3.25) is

$$g_0 \text{Im} \beta^0 = -g_1 \text{Im} \beta^1 = \frac{\nu}{4}, \quad g_0 \text{Re} \beta^0 = \frac{\mu - n}{4}, \quad g_1 \text{Re} \beta^1 = -\frac{\mu + n}{4},$$

(3.47)

where $n = D/2$. Then, (3.39) becomes

$$|b|^2 = 4g_0g_1 \frac{|z^2 + 2inz + C|^2}{z^2 - \mu^2 - \nu^2 + n^2},$$

(3.48)

with

$$\text{Re} C = \frac{\kappa}{2} - \mu^2 - \nu^2 + n^2.$$

(3.49)

If, in addition, we want the metric to have a horizon, the additional constraint (3.41) must be satisfied. We have thus obtained a three-parameter family (μ, ν, n) of black holes, whose nut charge is given by n.

The magnetic and electric charges read respectively

$$P^I = \frac{1}{4\pi} \int_{\Sigma_{\infty}} F^I = \left[p^I - \frac{D^2}{8\pi g_I} - \frac{D}{2\pi} \text{Re} \beta^I \right] V,$$

$$Q_I = \frac{1}{4\pi} \int_{\Sigma_{\infty}} G_I = \left[q_I + \frac{D}{2\pi} \eta_{IJ} \text{Im} \beta^J \right] V,$$

(3.50)

where $G_{+I} = \mathcal{N}_{IJ} F^{+J}$ [24], Σ_{∞} denotes a surface of constant t,z for $z \to \infty$, and V is defined by

$$V = \frac{i}{2} \int e^{2\gamma} dw \wedge d\bar{w}.$$

(3.51)

For $\kappa = -1$, this yields in terms of the parameters μ, ν, n

$$P^0 = -\frac{V}{4\pi g_0} \left[n^2 + n\mu - \frac{1}{4} \right], \quad P^1 = -\frac{V}{4\pi g_1} \left[n^2 - n\mu - \frac{1}{4} \right],$$

$$Q_0 = \frac{nV}{4\pi g_1} \left[\sqrt{\frac{1}{2} + \mu^2 + \nu^2 - n^2 + \nu} \right], \quad Q_1 = \frac{nV}{4\pi g_0} \left[\sqrt{\frac{1}{2} + \mu^2 + \nu^2 - n^2 - \nu} \right].$$

(3.52)

The value of the scalar field on the horizon and the entropy are

$$\tau_h = \frac{g_0}{g_1} \sqrt{\frac{1}{2} + \mu^2 + \nu^2 - n^2 - \nu + i(\mu + n)}, \quad S = \frac{A_h}{4G} = \frac{\pi V}{4g_0g_1},$$

(3.53)
where we have taken into account that $8\pi G = 1$ in our conventions. If the horizon is compactified to a Riemann surface of genus $h > 1$, we can use Gauss-Bonnet to get $V = 4\pi(h - 1)$, and thus

$$S = \frac{\pi^2(h - 1)}{g_0 g_1}. \quad (3.54)$$

For a noncompact horizon, V is infinite, but the entropy- and charge densities are finite. If we define the complex charge

$$z^I = P^I + i\eta^I J Q_J, \quad (3.55)$$

as well as the symplectic vector

$$\mathcal{Z} = \begin{pmatrix} z^I \\ -i\eta_{IJ} z^J \end{pmatrix}, \quad (3.56)$$

the Bekenstein-Hawking entropy can be rewritten in the form

$$S = -\frac{16 i \pi^3}{V} \langle \mathcal{Z}, \bar{\mathcal{Z}} \rangle, \quad (3.57)$$

where $\langle \cdot, \cdot \rangle$ denotes the symplectic product. For nonvanishing nut parameter n, one can express τ_h in terms of the charges,

$$\tau_h = \frac{g_0 1 - 16\pi g_0 z^0 / V}{g_1 1 - 16\pi g_1 z^1 / V}. \quad (3.58)$$

If the nut charge is zero, both the nominator and the denominator of (3.58) vanish, and τ_h ceases to be a function of the charges: In this case we have $Q_I = 0$, $P^I = V/(16\pi g_1)$, while τ_h depends on the two parameters μ, ν which are independent of the charges.

The scalar field is thus not stabilized for $n = 0$; τ_h takes values in the moduli space $SU(1, 1)/U(1)^7$. These flat directions are lifted by turning on a nut parameter, since then τ_h is completely fixed by the charges, cf. (3.58).

3.2 Near-horizon limit

The near-horizon limit is obtained by setting $z = z_h + \epsilon \hat{z}$, $t = \hat{t}/(2\epsilon)$, and taking the limit $\epsilon \to 0$. Then the metric (3.38) boils down to

$$ds^2 = -\frac{\hat{z}^2}{L^2} dt^2 + L^2 \frac{d\hat{z}^2}{\hat{z}^2} + \frac{e^{2\gamma} dwd\bar{w}}{8g_0 g_1}, \quad (3.59)$$

Nevertheless, the entropy is independent of the values of the moduli on the horizon not fixed by the charges, in agreement with the attractor mechanism [14–18].
which is $\text{AdS}_2 \times H^2$, with the AdS length scale L set by

$$L^{-2} = 16g_0g_1(1 + 2\mu^2 + 2\nu^2).$$

Note that the shift vector σ is scaled away in this limit. The near-horizon limit of the fluxes (3.45) can be cast into the form

$$F^I = -8\text{Im}(X^I\bar{X}^J\gamma)dt \wedge \bar{d}z + 2\pi i p^I e^{2\gamma} dw \wedge d\bar{w}. \quad (3.60)$$

3.3 Constant scalars

In order to shed further light on the physical meaning of the parameters appearing in (3.38), and to compare with the results of [10], we will now consider the case of constant scalars. As we are interested in solutions with genuine horizons, we take $\kappa = -1$ in what follows.

First of all, from (3.46) it is clear that τ is constant iff $g_0\beta^0 = g_1\beta^1$. Taking into account (3.25), this implies

$$\beta^I = -\frac{D}{8g_I}. \quad (3.61)$$

Since $\tau = g_0/g_1$, the scalar potential V in (2.7) reduces to a cosmological constant $\Lambda = -3/l^2$, with $l^{-2} = 4g_0g_1$. Setting

$$z = \frac{r}{l}, \quad w = 2e^{i\phi} \tanh \frac{\theta}{2}, \quad (3.62)$$

as well as

$$\text{Re}C = \frac{N^2}{l^2} - \frac{1}{2}, \quad \text{Im}C = -\frac{M}{2N}, \quad D = \frac{2N}{l}, \quad (3.63)$$

and transforming the time coordinate according to $t \mapsto l(N \phi - t/2)$, the metric (3.38) becomes

$$ds^2 = -\frac{\lambda}{r^2 + N^2}(dt - 2N \cosh \theta d\phi)^2 + \frac{r^2 + N^2}{\lambda} dr^2 + (r^2 + N^2)(d\theta^2 + \sinh^2 \theta d\phi^2), \quad (3.64)$$

with λ given by

$$\lambda = \frac{1}{l^2}(r^2 + N^2)^2 + \left(1 + \frac{4N^2}{l^2}\right)(r^2 - N^2) - 2Mr + \left(\frac{2N^2}{l} - \frac{l}{2}\right)^2 + \frac{l^2M^2}{4N^2}. \quad (3.65)$$

This represents a subclass of the (hyperbolic) Reissner-Nordström-Taub-NUT-AdS spacetime. The fluxes (3.45) boil down to

$$F^I = -(dt - 2N \cosh \theta d\phi) \wedge \frac{dr}{2lg_I(r^2 + N^2)^2} \left[\frac{MI}{2N}(r^2 - N^2) + 2rN \left(\frac{2N^2}{l} - \frac{l}{2}\right)\right]$$

$$- \frac{\sinh \theta d\theta \wedge d\phi}{2lg_I(r^2 + N^2)} \left[\left(\frac{2N^2}{l} - \frac{l}{2}\right)(r^2 - N^2) - Mlr\right]. \quad (3.66)$$

8Notice that, with (3.61) and (3.63), the constraint (3.42) is automatically satisfied.
It is not difficult to see that the action (2.7) reduces to the one of minimal gauged supergravity considered in [10] for \(g_0 F^0 = g_1 F^1 \equiv F/(2l) \). The field strength \(F \) computed this way from (3.66) coincides exactly with the expression following from the RN-TN-AdS gauge potential (2.4) of [10] if we identify

\[Q = -\frac{M l}{2N}, \quad P = \frac{2 N^2 l}{l} - \frac{l}{2} \]

(3.67)

These are precisely the conditions on the electric and magnetic charge found in [10], for which the Reissner-Nordström-Taub-NUT-AdS solution is supersymmetric\(^9\). Moreover, if (3.67) holds, the function (3.65) reduces to equ. (2.1) of [10]. As a nontrivial consistency check, we have thus reproduced the known BPS conditions of minimal gauged supergravity. As we said, in order to have a horizon, the additional constraint (3.41) must be satisfied. In this case, (3.41) leads to

\[M = \frac{4 N^2 l}{l} \left(\frac{1}{2} - \frac{N^2}{l^2} \right) \]

(3.68)

This leaves a one-parameter family of supersymmetric black holes, labelled by the nut charge \(N \). From (3.63) it is also clear that the imaginary part of \(C \) is related to the black hole mass.

4. Lifting to M-theory

We now want to uplift the black hole solutions obtained in section 3.1 to M-theory, and comment on their higher-dimensional interpretation. The Kaluza-Klein ansatz given in [27] allows to reduce eleven-dimensional supergravity to \(\mathcal{N} = 4 \) SO(4) gauged supergravity in four dimensions, which can be further truncated to the \(F = -i X^0 X^1 \) model of section 3.1. The reduction ansatz for the metric reads [27]

\[
d s_{11}^2 = \Delta^{2/3} d s_4^2 + \frac{2 \Delta^{2/3}}{g^2} d \xi^2 + \frac{\Delta^{2/3}}{2 g^2} \left[\frac{c^2 X^2 + s^2}{s^2 X^2 + c^2} \sum_{i=1}^{3} (h^i)^2 + \frac{s^2}{s^2 X^2 + c^2} \sum_{i=1}^{3} (\tilde{h}^i)^2 \right],
\]

(4.1)

where

\[
\begin{align*}
\tilde{X} &= X^{-1} q, & q^2 &= 1 + \chi^2 X^4, \\
\Delta &= \left[(c^2 X^2 + s^2)(s^2 \tilde{X}^2 + c^2) \right]^{1/2}, \\
c &= \cos \xi, & s &= \sin \xi, & h^i &= \sigma_i - g A_{(1)}^i, & \tilde{h}^i &= \bar{\sigma}_i - g \tilde{A}_{(1)}^i.
\end{align*}
\]

\(^9\)Actually, the conditions given in [10] are \(Q = \pm M l/(2N) \) and \(P = \pm (2 N^2 / l - l/2) \), corresponding to vanishing \(B_\tau \) in (3.10), (3.12) of [10]. We have here the upper sign, but the lower one can easily be generated by the CPT transformation \(\phi \mapsto -\phi, \ t \mapsto -t \) (that leaves the metric invariant).
Here, the σ_i are left-invariant 1-forms on $S^3 = SU(2)$, and $\tilde{\sigma}_i$ are left-invariant 1-forms on a second S^3. They satisfy
\[
\begin{align*}
 d\sigma_i = -\frac{1}{2} e_{ijk} \sigma_j \wedge \sigma_k,
 \quad d\tilde{\sigma}_i = -\frac{1}{2} e_{ijk} \tilde{\sigma}_j \wedge \tilde{\sigma}_k.
\end{align*}
\tag{4.3}
\]

$A^i_{(1)}$, $\tilde{A}^i_{(1)}$ denote the $su(2) \times su(2) \cong so(4)$ Yang-Mills potentials, g is the gauge coupling constant, and $X = \exp(\phi/2)$. ϕ and χ are the dilaton and axion of the $\mathcal{N} = 4$, $D = 4$ theory respectively. The ansatz for the 4-form is given by [27]
\[
F(4) = -g\sqrt{2}U \epsilon(4) - \frac{4sc}{g\sqrt{2}} X^{-1} * dX \wedge d\xi + \frac{\sqrt{2}sc}{g} \chi X^4 * d\chi \wedge d\xi + F'(4) + F''(4),
\tag{4.4}
\]
with $*$ the Hodge dual operator of ds^4, and $\epsilon(4)$ the corresponding volume form. The expressions for $F'(4)$ and $F''(4)$ are rather lengthy, and can be found in eqns. (9) and (10) of [27]. U is defined by
\[
U = X^2 e^2 + \tilde{X}^2 s^2 + 2.
\tag{4.5}
\]

Plugging the above reduction ansätze into the eleven-dimensional equations of motion gives rise to the equations of motion of $\mathcal{N} = 4$, $D = 4$ gauged supergravity. If we truncate further by setting $A^1_{(1)} = A^2_{(1)} = \tilde{A}^1_{(1)} = \tilde{A}^2_{(1)} = 0$ (which corresponds to considering only the Cartan subgroup $U(1) \times U(1)$ of $SO(4)$), the bosonic Lagrangian in four dimensions becomes [27]
\[
\begin{align*}
\mathcal{L}_4 &= R * 1 - \frac{1}{2} * d\phi \wedge d\phi - \frac{1}{2} e^{2\phi} * d\chi \wedge d\chi - V * 1 - \frac{1}{2} e^{-\phi} * F^3(2) \wedge F^3(2)
 \quad - \frac{1}{2} e^\phi \chi \frac{e^{2\phi}}{1 + \chi^2 e^{2\phi}} \tilde{F}^3(2) \wedge \tilde{F}^3(2) - \frac{1}{2} \chi F^3(2) \wedge F^3(2)
 \quad + \frac{1}{2} \chi e^{2\phi} \tilde{F}^3(2) \wedge \tilde{F}^3(2),
\end{align*}
\tag{4.6}
\]
where $F^3(2) = dA^3_{(1)}$, $\tilde{F}^3(2) = d\tilde{A}^3_{(1)}$, and the scalar potential reads
\[
V = -2g^2(4 + 2 \cosh \phi + \chi^2 e^{\phi}).
\tag{4.7}
\]

This is (up to a constant prefactor) equal to the Lagrangian [2.7] for the prepotential $F = -iX^0 X^1$, if we identify
\[
F^0 = \frac{1}{\sqrt{2}} F^3(2), \quad F^1 = \frac{1}{\sqrt{2}} \tilde{F}^3(2), \quad \tau = e^{-\phi} - i\chi,
\tag{4.8}
\]
and take $g_0 = g_1 = g/\sqrt{2}$ for the gauge coupling constants. This allows to oxidize the solution (3.38), (3.45), (3.46) to eleven dimensions. The functions X, \tilde{X} are then given by
\[
X^2 = \frac{(z + \nu)^2 + (n - \mu)^2}{z^2 - \mu^2 - \nu^2 + n^2}, \quad \tilde{X}^2 = \frac{(z - \nu)^2 + (n + \mu)^2}{z^2 - \mu^2 - \nu^2 + n^2}.
\tag{4.9}
\]
Choosing Euler angles ψ, ϑ, φ on the first S^3 and Ψ, Θ, Φ on the second S^3, we have for the left-invariant 1-forms

$$\sigma_1 = \sin \psi d\vartheta - \cos \psi \sin \vartheta d\varphi,$$
$$\sigma_2 = \cos \psi d\vartheta + \sin \psi \sin \vartheta d\varphi,$$
$$\sigma_3 = d\psi + \cos \vartheta d\varphi,$$

and similar for $\tilde{\sigma}_i$. After that, the expressions $\sum_i(h^i)^2$ and $\sum_i(\tilde{h}^i)^2$ in (4.1) simplify in our case to

$$\sum_{i=1}^{3}(h^i)^2 = d\vartheta^2 + \sin^2 \vartheta d\varphi^2 + (d\psi + \cos \vartheta d\varphi - gA^3_{(1)})^2,$$
$$\sum_{i=1}^{3}(\tilde{h}^i)^2 = d\Theta^2 + \sin^2 \Theta d\Phi^2 + (d\Psi + \cos \Theta d\Phi - g\tilde{A}^3_{(1)})^2,$$

where

$$A^3_{(1)w} = -\frac{i\bar{w}}{2g(1 + \frac{2}{4}w\bar{w})(z^2 - \mu^2 - \nu^2 + n^2)} \left[\left(n^2 + n\mu + \frac{\kappa}{4} \right) z^2 + nz(2\nu + \text{Im} C) + \left(\frac{\kappa}{2} - \mu^2 - \nu^2 + n^2 \right) \left(\frac{\kappa}{4} - n^2 + n\mu \right) + n\nu \text{Im} C - \frac{n^2}{8} \right],$$

$A^3_{(1)w} = (A^3_{(1)w})^*$ and $A^3_{(1)z} = 0$. The expressions for $\tilde{A}^3_{(1)}$ result from those for $A^3_{(1)}$ by replacing $\mu \rightarrow -\mu$ and $\nu \rightarrow -\nu$.

For $\mu = \nu = n = 0$, the solution (4.1) can be interpreted as the gravity dual corresponding to membranes wrapping holomorphic curves in a Calabi-Yau five-fold [28]. It would be interesting to see whether the general solution (4.1) (for $\mu, \nu, n \neq 0$) has a similar interpretation. This might allow for a microscopic entropy computation of the four-dimensional black hole (3.38), which can then be compared with the macroscopic Bekenstein-Hawking result (3.54).

5. Final remarks

In this paper, we constructed a family of one-quarter BPS black holes in $\mathcal{N} = 2, D = 4$ FI-gauged supergravity carrying two electric, two magnetic and one nut charge. The solution is given in terms of three free parameters, and has a hyperbolic horizon. We saw that for vanishing nut charge, there are flat directions in the effective black hole
potential, in agreement with the results of [5], where a general near-horizon analysis was done. Turning on a nut parameter lifts these flat directions, so that the horizon value of the moduli are completely fixed in terms of the charges.

A possible extension of our work would be to use the eleven-dimensional interpretation of our solution, cf. the oxidized metric obtained in section 3, to compute microscopically the entropy, which can then be compared with the classical Bekenstein-Hawking result (3.53). Moreover, it would be interesting to consider other prepotentials, for instance the t^3 model, which allows for supersymmetric black holes with spherical symmetry [5], and try to add rotation and nut charge to the known static black holes [5,8,9]. We hope to come back to these points in a future publication.

Acknowledgments

This work was partially supported by INFN and MIUR-PRIN contract 2009-KHZKRX.

References

[1] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26 (2009) 224002. [arXiv:0903.3246 [hep-th]].

[2] C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, “Effective holographic theories for low-temperature condensed matter systems,” JHEP 1011 (2010) 151 [arXiv:1005.4690 [hep-th]].

[3] N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, “Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity,” JHEP 1201 (2012) 094 [arXiv:1105.1162 [hep-th]].

[4] A. Strominger, C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B379 (1996) 99-104. [hep-th/9601029].

[5] S. L. Cacciatori and D. Klemm, “Supersymmetric AdS$_4$ black holes and attractors,” JHEP 1001 (2010) 085. [arXiv:0911.4926 [hep-th]].

[6] D. Klemm, “Rotating BPS black holes in matter-coupled AdS$_4$ supergravity,” JHEP 1107 (2011) 019 [arXiv:1103.4699 [hep-th]].

[7] S. L. Cacciatori, D. Klemm, D. S. Mansi and E. Zorzan, “All timelike supersymmetric solutions of $\mathcal{N} = 2$, $D = 4$ gauged supergravity coupled to abelian vector multiplets,” JHEP 0805 (2008) 097 [arXiv:0804.0009 [hep-th]].

[8] K. Hristov and S. Vandoren, “Static supersymmetric black holes in AdS$_4$ with spherical symmetry,” JHEP 1104 (2011) 047 [arXiv:1012.4314 [hep-th]].
[9] G. Dall'Agata, A. Gncchi, “Flow equations and attractors for black holes in $\mathcal{N} = 2$ U(1) gauged supergravity,” JHEP 1103 (2011) 037. [arXiv:1012.3756 [hep-th]].

[10] N. Alonso-Alberca, P. Meessen and T. Ortín, “Supersymmetry of topological Kerr-Newman-Taub-NUT-adS spacetimes,” Class. Quant. Grav. 17 (2000) 2783 [arXiv:hep-th/0003071].

[11] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, “Large N phases, gravitational instantons and the nuts and bolts of AdS holography,” Phys. Rev. D 59 (1999) 064010 [hep-th/9808177].

[12] S. W. Hawking, C. J. Hunter and D. N. Page, “Nut charge, anti-de Sitter space and entropy,” Phys. Rev. D 59 (1999) 044033 [hep-th/9809035].

[13] R. G. Leigh, A. C. Petkou and P. M. Petropoulos, “Holographic three-dimensional fluids with nontrivial vorticity,” arXiv:1108.1393 [hep-th].

[14] S. Ferrara, R. Kallosh and A. Strominger, “$\mathcal{N} = 2$ extremal black holes,” Phys. Rev. D 52 (1995) 5412 [arXiv:hep-th/9508072].

[15] A. Strominger, “Macroscopic entropy of $\mathcal{N} = 2$ extremal black holes,” Phys. Lett. B 383 (1996) 39 [arXiv:hep-th/9602111].

[16] S. Ferrara and R. Kallosh, “Supersymmetry and attractors,” Phys. Rev. D 54 (1996) 1514 [arXiv:hep-th/9602136].

[17] S. Ferrara and R. Kallosh, “Universality of supersymmetric attractors,” Phys. Rev. D 54 (1996) 1525 [arXiv:hep-th/9603090].

[18] S. Ferrara, G. W. Gibbons and R. Kallosh, “Black holes and critical points in moduli space,” Nucl. Phys. B 500 (1997) 75 [arXiv:hep-th/9702103].

[19] J. F. Morales and H. Samtleben, “Entropy function and attractors for AdS black holes,” JHEP 0610 (2006) 074 [arXiv:hep-th/0608044].

[20] S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, “$D = 4$ black hole attractors in $\mathcal{N} = 2$ supergravity with Fayet-Iliopoulos terms,” Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141 [hep-th]].

[21] M. Huebscher, P. Meessen, T. Ortín and S. Vaulà, “Supersymmetric $\mathcal{N} = 2$ Einstein-Yang-Mills monopoles and covariant attractors,” Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530 [hep-th]].

[22] S. Kachru, R. Kallosh and M. Shmakova, “Generalized attractor points in gauged supergravity,” Phys. Rev. D 84 (2011) 046003 [arXiv:1104.2884 [hep-th]].
[23] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré and T. Magri, “$\mathcal{N} = 2$ supergravity and $\mathcal{N} = 2$ super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map,” J. Geom. Phys. 23 (1997) 111 [arXiv:hep-th/9605032].

[24] A. Van Proeyen, “$\mathcal{N} = 2$ supergravity in $d = 4, 5, 6$ and its matter couplings,” extended version of lectures given during the semester “Supergravity, superstrings and M-theory” at Institut Henri Poincaré, Paris, november 2000; http://itf.fys.kuleuven.ac.be/~toine/home.htm#B

[25] M. M. Caldarelli and D. Klemm, “All supersymmetric solutions of $\mathcal{N} = 2, D = 4$ gauged supergravity,” JHEP 0309 (2003) 019 [hep-th/0307022].

[26] S. Barisch, G. Lopes Cardoso, M. Haack, S. Nampuri and N. A. Obers, “Nernst branes in gauged supergravity,” JHEP 1111 (2011) 090 [arXiv:1108.0296 [hep-th]].

[27] M. Cvetič, H. Lü, C. N. Pope, “Four-dimensional $\mathcal{N} = 4$, SO(4) gauged supergravity from $D = 11$,” Nucl. Phys. B574 (2000) 761-781. [hep-th/9910252].

[28] J. P. Gauntlett, N. Kim, S. Pakis, D. Waldram, “Membranes wrapped on holomorphic curves,” Phys. Rev. D65 (2002) 026003. [hep-th/0105250].