Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Wenlong Huang
UC Berkeley

Pieter Abbeel
UC Berkeley

Deepak Pathak*
Carnegie Mellon University

Igor Mordatch*
Google

Abstract

Can world knowledge learned by large language models (LLMs) be used to act in interactive environments? In this paper, we investigate the possibility of grounding high-level tasks, expressed in natural language (e.g. "make breakfast"), to a chosen set of actionable steps (e.g. "open fridge"). While prior work focused on learning from explicit step-by-step examples of how to act, we surprisingly find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into mid-level plans without any further training. However, the plans produced naively by LLMs often cannot map precisely to admissible actions. We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions. Our evaluation in the recent VirtualHome environment shows that the resulting method substantially improves executability over the LLM baseline. The conducted human evaluation reveals a trade-off between executability and correctness but shows a promising sign towards extracting actionable knowledge from language models.

*Equal advising. Correspondence to Wenlong Huang <wenlong.huang@berkeley.edu>

Code and videos at https://huangwl18.github.io/language-planner

Figure 1: Executability v.s. semantic correctness of generated plans (left), sample plans by different models (right), and example environment execution (bottom). Large models can produce action plans indistinguishable from those by humans, but frequently are not executable in the environment. Using our techniques, we can significantly improve executability, albeit at the cost of correctness. More samples can be found in Appendix A.5.
1 Introduction

Large language models (LLMs) have made impressive advances in language generation and understanding in recent years [10, 39, 40, 5]. See [4] for a recent summary of their capabilities and impacts. Being trained on large corpora of human-produced language, these models are thought to contain a lot of information about the world [42, 23, 3] - albeit in linguistic form.

We ask whether we can use such knowledge contained in LLMs not just for linguistic tasks, but to make goal-driven decisions that can be enacted in interactive, embodied environments. But we are not simply interested in whether we can train models on a dataset of demonstrations collected for some specific environment – we are instead interested in whether LLMs already contain information necessary to accomplish goals without any additional training.

More specifically, we ask whether world knowledge about how to perform high-level tasks (such as “make breakfast”) can be expanded to a series of groundable actions (such as “open fridge”, “grab milk”, “close fridge”, etc) that can be executed in the environment. For our investigation, we use the recently proposed VirtualHome environment [38]. It can simulate a large variety of realistic human activities in a household environment and supports the ability to perform them via embodied actions defined with a verb-object syntax. However, due to the open-ended nature of the tasks, it is difficult to autonomously evaluate their success. We rely on human evaluation (conducted on Mechanical Turk) to decide whether sequences of actions meaningfully accomplish posed tasks.

We find that large GPT-3 [5] and Codex [7] models, when prompted with a single fixed example of a task description and its associated sequence of actions, can produce very plausible action plans for the task we’re interested in. Such completions reflect the information already stored in the model – no model fine-tuning is involved. Additionally, we only observe this effect in the larger models. Unfortunately, despite their semantic correctness, the produced action plans are often not executable in the environment. Produced actions may not map precisely to admissible actions, or may contain various linguistic ambiguities.

We propose several tools to improve executability of the model’s outputs. First, we enumerate all admissible actions and map the model’s output phrases to the most semantically-similar admissible action (we use similarity measure between sentence embeddings produced by a RoBERTa model [27] in this work, but other choices are possible). Second, we use the model to autoregressively generate actions in a plan by conditioning past actions that have been made admissible via the technique above. Such on-the-fly correction can keep generation anchored to admissible actions. Third, we provide weak supervision to the model by prompting the model with a known task example similar to the query task. This is somewhat reminiscent of prompt tuning approaches but does not require access to gradients or internals of the model.

Using the above tools to bias model generation, we find that we improve executability of action plans from 18% to 79% (see Figure 1) without any invasive modifications to model parameters or any extra gradient or internal information beyond what is returned from the model’s forward pass. This is advantageous because it does not require any modifications to the model training procedure and can fit within existing model serving pipelines. However, we do find there to be some drop in correctness of the action sequences generated with the above tools (as judged by humans), indicating a promising step, but requiring more research on the topic.

To summarize, our paper’s contributions are as follows:

- We show that without any training, large language models can be prompted to generate plausible goal-driven action plans, but such plans are frequently not executable in interactive environments.

- We propose several tools to improve executability of the model generation without invasive probing or modifications to the model.

- We conduct a human evaluation of multiple techniques and models and report on the trade-offs between executability and semantic correctness.
Task: Shave
Step 1: Grab razor
Step 2: Wash razor
Step 3: Switch on razor
Task: Apply lotion
Step 1: Pour lotion into right hand

Figure 2: We investigate the possibility of extracting actionable knowledge from pre-trained large language models (LLMs). We first show surprising finding that pre-trained causal LLMs can decompose high-level tasks into sensible mid-level action plans (left). To make the plans executable, we propose to translate each step into admissible action via another pre-trained masked LLM (middle). The translated action is appended to the prompt used for generating the remaining steps (right). All models are kept frozen without additional training.

2 Evaluation Framework

Simulating open-ended tasks that resemble naturalistic human activities requires an environment to support a rich set of diverse interactions, rendering most existing embodied environments unsuitable for our investigation. One exception is VirtualHome [38], which we evaluate on as it models complex human activities, though only in a household setting. To measure correctness of the generated action plans, for which evaluating computationally is inherently difficult for these open-ended tasks, we conduct a human evaluation similar to Puig et al. [38]. We note that since no further training is involved throughout our investigations, the observations and findings presented in this paper should also translate to similar embodied environments, likely even beyond the household domain.

2.1 Evaluated Environment: VirtualHome

Preliminaries In VirtualHome, activities are expressed as programs. Each program consists of a sequence of textual action steps, where each step is written as: \{action\} \{arg\}(idx). Each action refers to one of the 42 atomic actions supported in VirtualHome, such as “walk” and “open”. Full list of atomic actions can be found in Appendix A.4. Different actions take in different numbers of arg, such as “bedroom” and “fridge”, that are necessary for specifying an interaction. Associated with each arg is a unique id specifying the corresponding node in the environment graph, in case of multiple instances of the same object class are present in the graph. For the sake of simplicity, we omit the id in the remaining discussions of this paper and allow automatic assignment by the environment. An example program is shown below for the task “Relax on sofa”:

```
[WALK] \{living_room\}(1)
[WALK] \{television\}(1)
[FIND] \{television\}(1)
[SWITCHON] \{television\}(1)
[FIND] \{sofa\}(1)
[SIT] \{sofa\}(1)
[TURNTO] \{television\}(1)
[WATCH] \{television\}(1)
```

Evaluated Tasks We use the ActivityPrograms knowledge base collected by Puig et al. [38] for evaluation. It contains 2821 different entries annotated by Amazon Mechanical Turk (MTurk) workers. Each entry contains 1) a high-level task name (e.g. “Watch TV”), 2) detailed instructions expressed in natural language to complete the task (e.g. “Sit on my couch directly opposite my TV, switch on my TV with the remote control and watch”), and 3) an executable program containing all necessary steps for a robotic agent (example above). We omit the use of detailed instructions (2) as we desire direct extraction of executable programs (3) from only high-level task names (1). There are 292 distinct high-level tasks in the knowledge base, from which we randomly sample 88 held-out tasks for evaluation. The remaining 204 tasks are used as demonstration set from which we are allowed
Algorithm 1: Generating Action Plans from Pre-Trained Language Models

Notation Summary:

- LM_P: text completion language model (also referred as Planning LM)
- LM_T: text embedding language model (also referred as Translation LM)
- $\{(T_i, E_i)\}_{i=1}^{N}$: demonstration set, where T is task name and E is example plan for T
- C: cosine similarity function
- P: mean token log probability under LM_P

Input: query task name Q, e.g. “make breakfast”

Output: action plan consisting of admissible env actions, e.g. “open fridge”

Extract most similar example (T^*, E^*) whose T^* maximizes $C(LM_T(T), LM_T(Q))$

Initialize prompt with $(T^* + E^* + Q)$

while max step is not reached do
 Sample LM_P with current prompt to obtain k single-step action phrases
 for each sample \hat{a} and each admissible env action a_e do
 Calculate ranking score by $C(LM_T(\hat{a}), LM_T(a_e)) + \beta \cdot P(\hat{a})$
 end for
 Append highest-scoring env action a_e^* to prompt
 Append a_e^* to output
 if $> 50\%$ samples are 0-length or highest score $< \epsilon$ then break
 end if
end while

to select as example(s) for prompting language models, or in the case of supervised fine-tuning baselines, they are used to fine-tune pre-trained language models.

2.2 Metrics

A program that commands the agent to wander around in a household environment is highly executable but is mostly not correct. On the other hand, a program composed of natural language instructions annotated by humans is likely correct but cannot be executed, because its format is ambiguous and may lack necessary common-sense actions (e.g. fridge must be opened before an agent can grab things from it). We thus consider two axes for evaluation: executability and correctness.

Executability Executability measures whether an action plan can be correctly parsed and satisfies the common-sense constraints of the environment. To be correctly parsed, an action plan must be syntactically correct and contain only allowed actions and recognizable objects. To satisfy the common-sense constraints, each action step must not violate the set of its pre-conditions (e.g. the agent cannot grab milk from the fridge before opening it) and post-conditions (e.g. the state of the fridge changes from “closed” to “open” after the agent opens it). We report the average executability across all 88 tasks and all 7 VirtualHome scenes.

Correctness Unlike most embodied environments where the completion of a task can be easily judged, the ambiguous and multimodal nature of natural language task specification makes it impractical to obtain a gold-standard measurement of correctness\(^1\). Therefore, we conduct human evaluations for the main methods. For the remaining analysis, we rely on a match-based metric that measures how similar a generated program is to human annotations. Specifically, we follow Puig et al. [38] and calculate the longest common subsequence (LCS) between two programs, normalized by the maximum length of the two. In the presence of multiple human-written programs for a single task, we take the maximum LCS across them. However, we note that the majority of the tasks only have one human annotation, but there are often many plausible ways to complete a certain task, making

\(^1\)One approach could be measuring the similarity of the final environment state produced by executing predicted and human-written programs, but initial state must be kept fixed for each task, which are not appropriate for many tasks due to their open-ended nature.
this metric imperfect at evaluation program correctness\(^2\). Although correlation between the two is shown by Puig et al. [38], we consider it only as a proxy metric in replacement of unscalable human evaluation.

3 Method

In this section, we investigate the possibility of extracting actionable knowledge from pre-trained language models without further training. We first give an overview of the common approach to query large language models (LLMs) and how it may be used for embodied agents in Section 3.1. Then we describe an inference-time procedure that addresses several deficiencies of the LLM baseline and offers better executability in embodied environments. We break down the proposed procedure into three individual components, each discussed in Section 3.2, 3.3, 3.4. Pseudo-code is in Algorithm 1.

Since LMs excel at dealing with natural language text instead of the specific format required by VirtualHome as described in Section 2.1, we only expose natural language text to LMs. To do this, we define a bi-directional mapping for each atomic action that converts between the natural language format and the program format. For instance, “walk to living room” is mapped to \([\text{WALK}]\langle \text{living_room}\rangle(1)\). Full list of the mappings is in Appendix A.4.

3.1 Querying LLMs for Action Plans

Previous works have shown that large language models pre-trained on a colossal amount of data would internalize rich world knowledge that can be probed to perform various downstream tasks [39, 5]. Notably, autoregressive LLMs can even perform in-context learning, an ability to solve tasks using only contextual information without gradient updates [5]. Contextual information is given as part of the input prompt and LMs are asked to complete the remaining text. It often consists of natural language instructions and/or a number of examples containing the desired input/output pairs.

We adopt the same approach to query LLMs to generate action plans for high-level tasks. Specifically, we prepend one example high-level task and its annotated action plan from the demonstration set to the query task, as shown in Figure 2. To obtain text completion results, we sample from autoregressive LLM using temperature sampling and nucleus sampling [18]. We refer to this LM as Planning LM and the approach using this LM for plan generation as Vanilla \(\langle \text{LM} \rangle\), where \(\langle \text{LM} \rangle\) is replaced by specific language model such as GPT-3.

To improve the generation quality, we follow Chen et al. [7] to sample multiple outputs for each query. However, unlike Chen et al. [7] who investigate program synthesis and can choose the sample with highest unit test pass rate, we only consider the setting where one sample is allowed to be evaluated for each task. This is because repetitive trial-and-error is equivalent to probing the environment for privileged information, which should not be considered viable in our setting. For Vanilla \(\langle \text{LM} \rangle\), to choose the best action plan \(X^*\) among \(k\) samples \((X_1, X_2, \ldots, X_k)\), each consisting of \(n_i\) tokens \(X_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,n_i})\), we select the sample with highest mean log probability as follows:

\[
\arg\max_{X_i} \left(\frac{1}{n_i} \sum_{j=1}^{n_i} \log p_{\theta}(x_{i,j}|x_{i,<j}) \right) \quad \text{where } \theta \text{ parameterizes the Planning LM.} \quad (1)
\]

3.2 Admissible Action Parsing by Semantic Translation

One issue arises when naively following the above approach to generate action plans: the plan expressed in free-form language often cannot be mapped to unambiguous actionable steps and thus is not executable by a robotic agent. Many reasons can cause such failures: 1) the output does not follow pre-defined mappings of any atomic action (e.g. “I first walk to the bedroom” is not of the format “walk to \(\langle \text{PLACE} \rangle\)”), 2) the output may refer to atomic action and objects using words unrecognizable by the environment (e.g. “microwave the chocolate milk” where “microwave” and “chocolate milk” cannot be mapped to precise action and object), or 3) the output contains lexically ambiguous words (e.g. “open TV” should instead be “switch on TV”).

\(^2\)Although LCS has a mathematical range of \([0, 1]\), we measure the LCS between different human-written programs for the same task and find an empirical maximum of 0.489.
Instead of developing a set of rules to transform the free-form text into admissible action steps, we propose to again leverage world knowledge learned by language models to semantically translate the action. For each admissible environment action \(a_e \), we calculate its semantic distance to the predicted action phrase \(\hat{a} \) by cosine similarity:

\[
C(f(\hat{a}), f(a_e)) := \frac{f(\hat{a}) \cdot f(a_e)}{\|f(\hat{a})\| \|f(a_e)\|}
\]

where \(f \) is an embedding function. (2)

To embed the output action phrase and environment actions, we use a BERT-style LM \([10, 27]\) pre-trained with Sentence-BERT \([41]\) objective, to which we refer as Translation LM. The action embedding is obtained by mean-pooling the last layer hidden states across all tokens in that action phrase. While the set of admissible actions in our environment is discrete and possible to exhaustively enumerate, sampling or projection can be employed in larger discrete or continuous action spaces.

3.3 Autoregressive Trajectory Correction

Translating each step of the program after the entire program has been synthesized lacks consideration of achievability of individual steps and subjects to compounding errors. In practice, LLMs might output compounded instructions for a single step, even though it cannot be completed using one admissible action in the environment. To this end, we can instead interleave plan generation and action translation to allow for automatic trajectory correction. At each step, we first query Planning LM to generate \(k \) samples for a single action \(\hat{a}, \hat{a}_1, \ldots, \hat{a}_k \). For each sample \(\hat{a} \), we consider both its semantic soundness and its achievability in the environment. Specifically, we aim to find admissible environment action \(a_e \) by modifying the ranking scheme described in Equation 1 as follows:

\[
\max_{\hat{a}} \left[\max_a C(f(\hat{a}), f(a_e)) + \beta \cdot P_\theta(\hat{a}) \right]
\]

where \(\beta \) is a weighting coefficient. (3)

Then we append the translated environment action \(a_e \) to the unfinished text completion. This way all subsequent steps will be conditioned on admissible actions instead of free-form action phrases generated by Planning LM. Furthermore, we can use Translation LM to detect out-of-distribution actions, those outside the capabilities of a robot, and terminate a program early instead of mapping to a faulty action. This can be achieved by setting a threshold \(\epsilon \) such that if \(\max_{\hat{a}, a_e} C(f(\hat{a}), f(a_e)) + \beta \cdot P_\theta(\hat{a}) < \epsilon \) at step \(t \), the program is terminated early. Since we now sample Planning LM for individual steps instead of an entire sequence, another termination condition we consider is when > 50% of current-step samples are 0-length (excluding leading or trailing non-English text tokens).

3.4 Dynamic Example Selection for Improved Knowledge Extraction

So far in the text, we always give the same example in the prompt for all query tasks. However, consider the task of “ordering pizza”. Prompting LLMs with this task may give the assumption that the agent is initialized in front of a computer, and the LLMs may guide the agent to search for a pizza store and click “checkout my cart”. Although these are reasonable and feasible in the real world, such assumption cannot always be made as these interactions may not be supported in simulated environments. In fact, the closest series of actions that human experts give in VirtualHome may be “walking to a computer”, “switching on the computer”, and “typing the keyboard”. Without being fine-tuned on these data, LLMs would often fail at these tasks.

To provide weak supervision at inference time, we propose to select the most similar task \(T^* \) and its example plan \(E^* \) from the demonstration set to be used as the example in the prompt. Specifically, we re-use the same Translation LM introduced in Section 3.2 and select \((T^*, E^*) \) whose high-level task name \(T^* \) maximizes \(C(f(T), f(Q)) \), where \(Q \) is the query task. This approach bears resemblance to several recent works \([37, 13, 26, 43]\). An example is shown in Figure 2 where “Shave” is the most similar to the query task “Apply lotion”.

FINAL METHOD Combining the various improvement discussed above, we refer to the final method as Translated \(\text{LM} \), where \(\text{LM} \) is replaced by specific language model used such as GPT-3.

Note that this is a different LM than the GPT-style Planning LM. Using a single LM for both purposes could as well be possible and likely more efficient, but we leave such investigation to future works.
Figure 3: Visualization of VirtualHome programs generated by our approach. The top row shows the execution of the task “Complete Amazon Turk Surveys”, and the bottom row shows the task “Get Glass of Milk”. We show LLMs not only can generate sensible action plans given only high-level tasks but also contains the actionable knowledge that can be extracted for grounding in embodied environments.

4 Results

In this section, we first show that language models can generate sensible action plans for many high-level tasks, even without any additional training. Then we highlight its inadequacy when naively applied to embodied environments and demonstrate how this can be improved by again leveraging world knowledge learned by LLMs. Visualization of generated programs is shown in Figure 3.

Sampling from LMs Pre-trained LMs are sensitive to sampling parameters and the specific example given in the prompt. For all evaluated methods, we perform hyperparameter search over various sampling parameters, and for methods using a fixed prompt example, we report metrics averaged across three randomly chosen examples. To select the best run for each method, we rank the runs by the sum of LCS and executability, each normalized by human-expert scores. Further details are in Appendix A.1.

Model Choices For Planning LM, we evaluate a representative set of causal language models. For Translation LM, we mainly use Sentence-RoBERTa-355M and provide relevant ablations in Section 5.3. GPT-3 and Codex are accessed using OpenAI API, and the remaining models are accessed through open-source packages, Hugging Face Transformers [55] and SentenceTransformers [41], all without additional training (except for the fine-tuning baseline).

4.1 Do LLMs contain actionable knowledge for high-level tasks?

We first investigate whether LLMs can generate sensible action plans expressed in free-form language. We use the approach described in Section 3.1 to query pre-trained LLMs. To evaluate the correctness of generated action plans, we conduct human evaluations. For each model, we ask 10 human annotators to determine – by answering “Yes” or “No” – whether each task can be completed using provided action steps. To provide a reference of how humans might rate the action plans provided by other humans, we also ask annotators to rate the human-written action plans included in the VirtualHome dataset for the same set of tasks. In contrast to the free-form text output by LLMs, humans wrote the plans using a graphical programming interface that enforces strict syntax and a chosen set of atomic action vocabulary, which limit the expressivity and the completeness of their answers\(^4\). More details of our human evaluation procedure can be found in Appendix A.2.

We show the human evaluation results in Figure 1, where the y-axis shows correctness averaged across all tasks and all annotators. Surprisingly, when LLMs are large enough and without imposed syntactic constraints, they can generate highly realistic action plans whose correctness – as deemed by human annotators – even surpasses human-written action plans. We also observe some level of correctness for smaller models such as GPT-2. However, inspection of its produced output indicates

\(^4\) Puig et al. [38] also conduct a human evaluation on 100 randomly sampled human-written programs and show that 64\% of them are complete (i.e. contain all necessary steps). Readers are encouraged to refer to Puig et al. [38] for a more comprehensive analysis of the dataset.
that it often generates shorter plans by ignoring common-sense actions or by simply rephrasing
the given task (e.g. the task “Go to sleep” produces only a single step “Go to bed”). These failure
modes sometimes mislead human annotators to mark them correct as the annotators may ignore
common-sense actions in their judgment as well, resulting in a higher correctness rate than the quality
of the output shows.

4.2 How executable are the LLM action plans?

We analyze the executability of LLM plans by evaluating them in all 7 household scenes in Virtual-
Home. As shown in Table 1, we find action plans generated naively by LLMs are generally not very
executable. Although smaller models seem to have higher executability, we find that the majority of
these executable plans are produced by ignoring the queried task and repeating the given example of
a different task. This is validated by the fact that smaller models have lower LCS than larger models
despite having high executability, showing that this failure mode is prevalent among smaller models.
In contrast, larger models do not suffer severely from this failure mode. Yet as a result of being more
expressive, their generated programs are substantially less executable.

4.3 Can LLM action plans be made executable by proposed procedure?

We evaluate the effectiveness of our proposed procedure of action translation. We first create a bank
of all allowed 47522 action steps in the environment, including all possible combinations of atomic
actions and allowed arguments/objects. Then we use an off-the-shelf Sentence-RoBERTa [27, 41] as
Translation LM to create embeddings for actions and output text. For better computational efficiency,
we pre-compute the embeddings for all allowed actions, leaving minor computation overhead for
our procedure over the baseline methods at inference time. As shown in Table 1, executability of
generated programs is significantly improved. Furthermore, we also observe improved LCS because
the translated action steps precisely follow the program syntax and thus are more similar to the plans
produced by human experts. Sample output is shown in Figure 1 and a larger random subset of
generated samples can be found in Appendix A.5.

To validate their correctness, we again perform human evaluations using the same procedure from
Section 4.1. Results are shown in Table 1. We find that despite being more similar to human-written
plans as they follow strict syntax, the programs are deemed less correct by humans compared to their
vanilla counterparts. By examining the output, we observe two main sources of errors. First, we
find Translation LM is poor at mapping compounded instructions to a succinct admissible action,
e.g. “brush teeth with toothbrush and toothpaste”. Second, we find that the generated programs are
sometimes terminated too early. This is partly due to the imperfect expressivity of the environment;

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated
by large language models can match or even surpass human-written plans in correctness measure, they are
rarely executable. By translating the naive action plans, we show an important step towards grounding LLMs
in embodied environments, but we observe room to achieve this without trading executability for correctness.
We also observe a failure mode among smaller models that lead to high executability. For correctness measure,
standard error of the mean across 10 human annotators is reported in the parenthesis.
certain necessary actions or objects are not implemented to fully achieve some tasks, so Translation LM cannot map to a sufficiently similar action. This is also reflected by our human evaluation results of the programs written by other humans, as only 70% of the programs are considered complete.

5 Analysis and Discussions

5.1 Ablation of design decisions

We perform ablation studies for the three components of our proposed procedure, described in Section 3.2, 3.3, and 3.4 respectively. As shown in Table 2, leaving out any of the three components would all lead to decreased performance in both executability and LCS. An exception is Translated GPT-3 w/o Trajectory Correction, where we observe a slight improvement in LCS at the expense of a considerable drop in executability. Among the three proposed components, leaving out action translation leads to the most significant executability drop, showing the importance of action translation in extracting executable action plans from LLMs.

Methods	Executability	LCS
Translated Codex 12B	78.57%	24.72%
- w/o Action Translation	31.49%	22.53%
- w/o Dynamic Example	50.86%	22.84%
- w/o Trajectory Correction	55.19%	24.43%
Translated GPT-3 175B	73.05%	24.09%
- w/o Action Translation	36.04%	24.31%
- w/o Dynamic Example	60.82%	22.92%
- w/o Trajectory Correction	40.10%	24.98%

Table 2: Ablation of three proposed techniques.

5.2 Are the generated action plans grounded in the environment?

Since successful execution of correct action plans directly measures grounding, we calculate the percentage of generated action plans that are both correct and executable. We deem an action plan to be correct if 70% or more human annotators decide it is correct. Human-written plans are 100% executable, of which 65.91% are deemed correct. Results for LMs are shown in Figure 4.

Although smaller LMs such as GPT-2 can generate highly executable action plans as shown in Table 1, these executable plans mostly are not correct, as they often repeat the given example or do not contain all necessary steps. Increasing model parameters can lead to some improvement in generating plans that are both executable and correct, yet it scales poorly with the parameter count. In the meantime, action translation offers a promising way towards grounding actionable knowledge by producing executable and correct plans, though a large gap remains to be closed to reach human-level performance (65.91%).

![% of Executable & Correct Plans](image)

Figure 4: Percentage of both executable and correct action plans generated by LMs.
5.3 Effect of Different Translation LMs

In this section, we study the effect of using different Translation LMs. We compare two size variants of Sentence BERT and Sentence RoBERTa \cite{10, 27, 41} trained on the STS benchmark \cite{6} and a baseline using averaged GloVe embeddings \cite{35}. Results are shown in Table 3. Notably, we do not observe significant differences in executability and LCS across different variants of BERT and RoBERTa. We hypothesize that this is because any language models trained on reasonably large datasets should be capable of the single-step action phrase translation considered in this work. However, simply using average GloVe embeddings would lead to significantly reduced performance.

Translation LM	Parameter Count	Executability	LCS
CODEX 12B as PLANNING LM			
Avg. GloVe embeddings	-	46.92%	9.71%
Sentence Bert (base)	110M	73.21%	24.10%
Sentence Bert (large)	340M	75.16%	20.79%
Sentence RoBERTa (base)	125M	74.35%	22.82%
Sentence RoBERTa (large)	325M	78.57%	24.72%
GPT-3 175B as PLANNING LM			
Avg. GloVe embeddings	-	47.40%	12.16%
Sentence Bert (base)	110M	77.60%	24.49%
Sentence Bert (large)	340M	67.86%	21.24%
Sentence RoBERTa (base)	125M	72.73%	23.64%
Sentence RoBERTa (large)	325M	73.05%	24.09%

Table 3: Effect of different Translation LMs on executability and LCS.

5.4 Can LLMs generate actionable programs by following step-by-step instructions?

Prior works often focus on translating step-by-step instructions into executable programs. Specifically, instead of only providing a high-level task name, how-to instructions are also provided, as shown in Figure 5. Although this setting is easier as it does not require rich prior knowledge, how-to instructions can help resolve much ambiguity of exactly how to perform a high-level task when multiple solutions are possible. To investigate whether pre-trained LLMs are capable of doing this without additional training, we include these instructions in the prompt and evaluate LLMs with the proposed procedure. We compare to a supervised baseline from VirtualHome that trains an LSTM \cite{17} from scratch on human-annotated data. Since the code to train the baseline is not publicly released and a different train/test split is likely used, we only show results reported in Puig et al. \cite{38} as a crude reference. We also cannot compare executability as it is not reported. Results are shown in Table 4. Surprisingly, without being fine-tuned on any domain data, Translated Codex/GPT-3 can attain LCS close to supervised methods while generating highly executable programs.

Methods	Executability	LCS
Translated Codex 12B	78.57%	32.87%
Translated GPT-3 175B	74.15%	31.05%
Supervised LSTM	-	34.00%

Table 4: Executability and LCS when conditioned on step-by-step instructions.
5.5 Analysis of program length

Shorter programs have a natural advantage of being more executable as they need to satisfy less pre/post-conditions, albeit being prone to incompleteness. To validate the proposed approach does not simply generate very short programs, we calculate the average program length across the 88 evaluated tasks. Results are shown in Table 5. Mirroring the observations made in Section 4.1 and Section 4.2, we find smaller LMs such as GPT-2 tend to generate shorter programs than larger models do while frequently repeating the given executable example. In contrast, larger models like Codex and GPT-3 can generate more expressive programs with high realism, yet consequently, they often suffer from executability. We show proposed procedure can find appropriate balance and is capable of generating programs that are highly executable while maintaining reasonable expressiveness as measured by program length.

Methods	Executability	Average Length
Vanilla GPT-2 1.5B	39.40%	4.24
Vanilla Codex 12B	18.07%	7.22
Vanilla GPT-3 175B	7.79%	9.716
Translated Codex 12B	78.57%	7.13
Translated GPT-3 175B	73.05%	7.36
Human	100.00%	9.66

Table 5: Average executability & program length of different methods.

6 Related Works

Large-scale natural language modeling has witnessed rapid advances since the inception of the Transformer architecture [53]. It has been shown by recent works that large language models (LLMs) pre-trained on large unstructured text corpus not only can perform strongly on various down-stream NLP tasks [10, 39, 40, 5] but the learned representations can also be used to model relations of entities [23], retrieve matching visual features [19], synthesize code from docstrings [15, 7], solve math problems [8, 46], and even as valuable priors when applied to diverse tasks from different modalities [28, 52]. Notably, by pre-training on large-scale data, these models can also internalize an implicit knowledge base containing rich information about the world from which factual answers (e.g. “Dante was born in ⟨PLACE⟩”) can be extracted [36, 21, 9, 50, 42]. Compared to prior works in single-step knowledge extraction, we aim to extract sequential action plans to complete open-ended human activities while satisfying various constraints of an interactive environment.

Many prior works have looked into grounding natural language in embodied environments. A series of them parse language instructions into formal logic or rely mainly on lexical analysis to resolve various linguistic ambiguities for embodied agents [2, 33, 34, 51]. However, they often require many hand-designed rules or scale inadequately to more complex tasks and environments. Recently, many efforts have been put into creating more realistic environments with the goal to further advances in this area [38, 47, 48, 22, 44, 1]. At the same time, by leveraging the better representation power of neural architectures, a number of works have looked into creating instruction-following agents that can perform manipulation [29, 30], navigation [11, 54, 31], or both [49, 16, 12]. Recent works also use language as hierarchical abstractions to plan actions using imitation learning [45] and to guide exploration in reinforcement learning [32].

Notably, many prior works do not leverage full-blown pre-trained LLMs; most investigate smaller LMs that require considerable domain-specific data for fine-tuning to obtain reasonable performance. Perhaps more importantly, few works have evaluated LLMs in an embodiment setting that realizes the full potential of the actionable knowledge these models already contain by pre-training on large-scale unstructured text: the tasks evaluated are often generated from a handful of templates, which do not resemble the highly diverse activities that humans perform in daily lives [14, 20]. The development of VirtualHome environment [38] enables such possibility. However, relevant works [38, 25] rely on human-annotated data and perform supervised training from scratch. Due to the lack of rich world knowledge, these models can only generate action plans given detailed instructions of how to act or video demonstrations. Concurrent work by Li et al. [24] validates similar hypothesis that
LMs contain rich actionable knowledge. They fine-tune GPT-2 with demonstrations to incorporate environment context and to predict actions in VirtualHome, and evaluate on tasks that are generated from pre-defined predicates. In contrast, we investigate existing knowledge in LLMs without any additional training and evaluate on human activity tasks expressed in free-form language.

7 Conclusion, Limitations & Future Work

In this work, we investigate actionable knowledge already contained in pre-trained LLMs without any additional training. We present several techniques to extract this knowledge to perform common-sense grounding by planning actions for complex human activities.

Despite promising findings, there remain several limitations of this work which we discuss as follows:

Drop in Correctness Although our approach can significantly improve executability of the generated plans, we observe a considerable drop in correctness. In addition to the errors caused by the proposed action translation (discussed in Section 4.3), this is partially attributed to the limited expressivity of VirtualHome, as it may not support all necessary actions to fully complete all evaluated tasks (correctness is judged by humans). This is also reflected by that Vanilla LMs can even surpass human-written plans, which are restricted by environment expressivity.

Mid-Level Grounding Instead of grounding the LLM generation to low-level actions by using downstream data from a specific environment, we focus on high-level to mid-level grounding such that we evaluate raw knowledge of LLMs as closely and broadly as possible. Hence, we only consider the most prominent challenge in mid-level grounding that the generated plans must satisfy all common-sense constraints (characterized by executability metric). As a result, we assume there is a low-level controller that can execute these mid-level actions (such as “grab cup”), and we do not investigate the usefulness of LLMs for low-level sensorimotor behavior grounding. To perform sensorimotor grounding, such as navigation and interaction mask prediction, domain-specific data and fine-tuning are likely required.

Ignorant of Environment Context We do not incorporate observation context or feedback into our models. To some extent, we approach LLMs in the same way as how VirtualHome asks human annotators to write action plans for a given human activity by imagination, in which case humans similarly do not observe environment context. Similar to human-written plans, we assume the plans generated by LMs only refer to one instance of each object class. As a result, successful plan generation for tasks like “stack two plates on the right side of a cup” is not possible.

Evaluation Protocol We measure quality of plans by a combination of executability and correctness instead of one straightforward metric. To the best of our knowledge, there isn’t a known way to computationally assess the semantic correctness of the plans due to the tasks’ open-ended and multi-modal nature. Prior work also adopt similar combination of metrics [38]. We report two metrics individually to shine light on the deficiencies of existing LLMs which we hope could provide insights for future works. To provide a holistic view, we report results by combining two metrics in Section 5.2.

We believe addressing each of these shortcoming will lead to exciting future directions. We also hope these findings can inspire future investigations into using pre-trained LMs for goal-driven decision-making problems and grounding the learned knowledge in embodied environments.

Acknowledgment

We would like to thank OpenAI for providing academic access to the OpenAI API and Luke Metz for valuable feedback and discussions. This work was supported in part by Berkeley Deep Drive, NSF IIS-2024594, and GoodAI Research Award.
References

[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3674–3683, 2018.

[2] Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping instructions to actions. Transactions of the Association for Computational Linguistics, 1:49–62, 2013.

[3] BIG-bench collaboration. Beyond the imitation game: Measuring and extrapolating the capabilities of language models. In preparation, 2021. URL https://github.com/google/BIG-bench/.

[4] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quinncy Davis, Dora Demzsky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Etyaharajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karon Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Kohd, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jude Leskovec, Isabelle Levent, Xiang Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele MunyiKwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Niforosshan, Julian Nyarko, Giray Oğuz, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghu Nathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models, 2021.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[6] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055, 2017.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[9] Joe Davison, Joshua Feldman, and Alexander M Rush. Commonsense knowledge mining from pretrained models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1173–1178, 2019.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[11] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower models for vision-and-language navigation. arXiv preprint arXiv:1806.02724, 2018.

[12] Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals: Inverse reinforcement learning for vision-based instruction following. arXiv preprint arXiv:1902.07742, 2019.

[13] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. arXiv preprint arXiv:2012.15723, 2020.

[14] Brent Harrison and Mark O Riedl. Learning from stories: using crowdsourced narratives to train virtual agents. In Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference, 2016.

[15] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence with apps. arXiv preprint arXiv:2105.09938, 2021.

[16] Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human instruction-following with deep reinforcement learning via transfer-learning from text. arXiv preprint arXiv:2005.09382, 2020.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[18] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[19] Gabriel Ilharco, Rowan Zellers, Ali Farhadi, and Hannaneh Hajishirzi. Probing text models for common ground with visual representations. arXiv e-prints, pages arXiv–2005, 2020.

[20] Peter A Jansen. Visually-grounded planning without vision: Language models infer detailed plans from high-level instructions. arXiv preprint arXiv:2009.14259, 2020.

[21] Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

[22] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weils, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[23] Belinda Z Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning in neural language models. arXiv preprint arXiv:2106.00737, 2021.

[24] Shuang Li, Xavier Puig, Yilun Du, Clinton Wang, Ekin Akyurek, Antonio Torralba, Jacob Andreas, and Igor Mordatch. Pre-trained language models for interactive decision-making. arXiv preprint arXiv:2202.01771, 2022.

[25] Yuan-Hong Liao, Xavier Puig, Marko Boben, Antonio Torralba, and Sanja Fidler. Synthesizing environment-aware activities via activity sketches. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6291–6299, 2019.

[26] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[28] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as universal computation engines. arXiv preprint arXiv:2103.05247, 2021.
[29] Corey Lynch and Pierre Sermanet. Grounding language in play. arXiv preprint arXiv:2005.07648, 2020.

[30] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data. Proceedings of Robotics: Science and Systems. doi, 10, 2021.

[31] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh, and Dhruv Batra. Improving vision-and-language navigation with image-text pairs from the web. In European Conference on Computer Vision, pages 259–274. Springer, 2020.

[32] Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned language abstraction. arXiv preprint arXiv:2103.05825, 2021.

[33] Dipendra Misra, Kejia Tao, Percy Liang, and Ashutosh Saxena. Environment-driven lexicon induction for high-level instructions. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 992–1002, 2015.

[34] Dipendra Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-sensitive grounding of natural language to manipulation instructions. The International Journal of Robotics Research, 35(1-3):281–300, 2016.

[35] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[36] Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned language abstraction. arXiv preprint arXiv:2103.05825, 2021.

[37] Dipendra Misra, Kejia Tao, Percy Liang, and Ashutosh Saxena. Environment-driven lexicon induction for high-level instructions. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 992–1002, 2015.

[38] Dipendra Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-sensitive grounding of natural language to manipulation instructions. The International Journal of Robotics Research, 35(1-3):281–300, 2016.

[39] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[40] Fabio Petroni, Tim Rocktaeschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066, 2019.

[41] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the parameters of a language model? arXiv preprint arXiv:2002.08910, 2020.

[42] Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent language. arXiv preprint arXiv:2110.01517, 2021.

[43] Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun Liu. Generate & rank: A multi-task framework for math word problems. arXiv preprint arXiv:2109.03054, 2021.
[47] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mot-taghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10740–10749, 2020.

[48] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv preprint arXiv:2010.03768, 2020.

[49] Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and Gaurav Sukhatme. Embodied bert: A transformer model for embodied, language-guided visual task completion. arXiv preprint arXiv:2108.04927, 2021.

[50] Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olympics-on what language model pre-training captures. Transactions of the Association for Computational Linguistics, 8:743–758, 2020.

[51] Moritz Tenorth, Daniel Nyga, and Michael Beetz. Understanding and executing instructions for everyday manipulation tasks from the world wide web. In 2010 ieee international conference on robotics and automation, pages 1486–1491. IEEE, 2010.

[52] Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Multimodal few-shot learning with frozen language models. arXiv preprint arXiv:2106.13884, 2021.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017.

[54] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6629–6638, 2019.

[55] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.
A Appendix

A.1 Hyperparameter Search

For each evaluated method, we perform grid search over the following hyperparameters:

Name	Description	Search Values
ϵ	Out-of-distribution early termination threshold	{0, 0.4, 0.8}
temperature	sampling parameter adjusting relative token probabilities	{0.1, 0.3, 0.6}
k	number of samples generated by Planning LM	{1, 10}
β	weighting coefficient in action translation to trade off semantic and translation correctness	{0.3}
frequence_penalty	OpenAI API only: penalize new tokens based on their existing frequency in the text so far	{0.1, 0.3, 0.6, 0.9}
presence_penalty	OpenAI API only: penalize new tokens based on whether they appear in the text so far	{0.3, 0.5, 0.8}
repetition_penalty	Hugging Face Transformers only: penalize new tokens based on whether repeating existing text	{1.0, 1.2, 1.5, 1.8}

For methods that use fixed example across evaluated tasks, we search over the following three randomly chosen examples:

Example 1		Example 2		Example 3	
Task: Use computer		Task: Relax on sofa		Task: Read book	
Step 1: Walk to home office		Step 1: Walk to home office		Step 1: Walk to home office	
Step 2: Walk to chair		Step 2: Walk to couch		Step 2: Walk to novel	
Step 3: Find chair		Step 3: Find couch		Step 3: Find novel	
Step 4: Sit on chair		Step 4: Sit on couch		Step 4: Grab novel	
Step 5: Find computer		Step 5: Find pillow		Step 5: Find chair	
Step 6: Switch on computer		Step 6: Lie on couch		Step 6: Sit on chair	
Step 7: Turn to computer				Step 7: Read novel	
Step 8: Look at computer					
Step 9: Find keyboard					
Step 10: Type on keyboard					
A.2 Details of Human Evaluations

Human evaluations are conducted on Amazon Mechanical Turk. For each method, we generate action plans for all 88 high-level tasks. To account for the expressivity of the VirtualHome environment [38], we include action plans written by human experts from the VirtualHome dataset as references in our human evaluations. The evaluations are conducted in the form of questionnaires containing all action plans whose order is randomly shuffled and whose corresponding methods are unknown to the annotators. Human annotators are required to answer all the questions in the questionnaire. For each question, the annotators need to answer either “Yes” or “No” indicating if they believe the action plan completes the task. For each method, we report correctness percentage averaged across 10 participated human annotators and all 88 tasks. We further report the standard error of the mean across human annotators. Screenshot can be found in Figure 6.

![Task Completion Questions](image)

Figure 6: Screenshot of human evaluation interface, conducted as a Google Forms questionnaire.
A.3 All Evaluated Tasks

The evaluated tasks are part of the ActivityPrograms dataset collected by Puig et al. [38]. Some of the task names may contain misspelling(s).

1. Apply lotion
2. Arrange folders
3. Breakfast
4. Browse internet
5. Brush teeth
6. Change clothes
7. Change sheets and pillow cases
8. Collect napkin rings
9. Complete surveys on amazon turk
10. Compute
11. Decorate it
12. Do homework
13. Do work
14. Draft home
15. Draw picture
16. Dry soap bottles
17. Dust
18. Eat cereal
19. Eat cheese
20. Eat snacks and drink tea
21. Empty dishwasher and fill dishwasher
22. Entertain
23. Feed me
24. Find dictionary
25. Fix snack
26. Get glass of milk
27. Give milk to cat
28. Go to sleep
29. Grab things
30. Hand washing
31. Hang keys
32. Hang pictures
33. Iron shirt
34. Keep cats inside while door is open
35. Keep cats out of room
36. Leave home
37. Listen to music
38. Look at mirror
39. Look at painting
40. Make bed
41. Make popcorn
42. Organize closet
43. Organize pantry
44. Paint ceiling
45. Pay bills
46. Pick up toys
47. Play musical chairs
48. Prepare pot of boiling water
49. Push all chairs in
50. Push in desk chair
51. Put alarm clock in bedroom
52. Put away groceries
53. Put away toys
54. Put clothes away
55. Put mail in mail organizer
56. Put on your shoes
57. Put out flowers
58. Put up decoration
59. Read
60. Read newspaper
61. Read on sofa
62. Read to child
63. Read yourself to sleep
64. Receive credit card
65. Restock
66. Scrubbing living room tile floor is once week activity for me
67. Style hair
68. Switch on lamp
69. Take jacket off
70. Take shoes off
71. Take off shoes
72. Throw away paper
73. Try yourself off
74. Turn off TV
75. Turn on TV with remote
76. Turn on radio
77. Type up document
78. Unload various items from pockets and place them in bowl on table
79. Use laptop
80. Vacuum
81. Walk to room
82. Wash dirty dishes
83. Wash face
84. Wash monitor
85. Wash teeth
86. Watch horror movie
87. Wipe down sink
88. Write book
A.4 Natural Language Templates for All Atomic Actions

VirtualHome requires action steps specified in a specific format, yet language models are trained to deal with mostly natural language. We thus define a natural language template for each atomic action and only expose the converted natural language text in all operations involving language models, i.e. autoregressive generation and action translation. After we obtain an entire generated program expressed in natural language, such as those in Figure 1 and Figure 2, we then convert each action step to the VirtualHome syntax. Full list of the atomic actions and their natural language templates can be found below.

Atomic Action in VirtualHome Syntax	Natural Language Template
[CLOSE] ⟨arg1⟩(1)	close ⟨arg1⟩
[CUT] ⟨arg1⟩(1)	cut ⟨arg1⟩
[DRINK] ⟨arg1⟩(1)	drink ⟨arg1⟩
[DROP] ⟨arg1⟩(1)	drop ⟨arg1⟩
[EAT] ⟨arg1⟩(1)	eat ⟨arg1⟩
[FIND] ⟨arg1⟩(1)	find ⟨arg1⟩
[GRAB] ⟨arg1⟩(1)	grab ⟨arg1⟩
[GREET] ⟨arg1⟩(1)	greet ⟨arg1⟩
[LIE] ⟨arg1⟩(1)	lie on ⟨arg1⟩
[LOOKAT] ⟨arg1⟩(1)	look at ⟨arg1⟩
[MOVE] ⟨arg1⟩(1)	move ⟨arg1⟩
[OPEN] ⟨arg1⟩(1)	open ⟨arg1⟩
[PLUGIN] ⟨arg1⟩(1)	plug in ⟨arg1⟩
[PLUGOUT] ⟨arg1⟩(1)	plug out ⟨arg1⟩
[POINTAT] ⟨arg1⟩(1)	point at ⟨arg1⟩
[POUR] ⟨arg1⟩(1) ⟨arg2⟩(1)	pour ⟨arg1⟩ into ⟨arg2⟩
[PULL] ⟨arg1⟩(1)	pull ⟨arg1⟩
[PUSH] ⟨arg1⟩(1)	push ⟨arg1⟩
[PUTBACK] ⟨arg1⟩(1) ⟨arg2⟩(1)	put ⟨arg1⟩ on ⟨arg2⟩
[PUTIN] ⟨arg1⟩(1) ⟨arg2⟩(1)	put ⟨arg1⟩ in ⟨arg2⟩
[PUTOBJBACK] ⟨arg1⟩(1)	put back ⟨arg1⟩
[PUTOFF] ⟨arg1⟩(1)	take off ⟨arg1⟩
[PUTON] ⟨arg1⟩(1)	put on ⟨arg1⟩
[READ] ⟨arg1⟩(1)	read ⟨arg1⟩
[RELEASE]	release
[RINSE] ⟨arg1⟩(1)	rinse ⟨arg1⟩
[RUN] ⟨arg1⟩(1)	run to ⟨arg1⟩
[SCRUB] ⟨arg1⟩(1)	scrub ⟨arg1⟩
[SIT] ⟨arg1⟩(1)	sit on ⟨arg1⟩
[SLEEP]	sleep
[SQUEEZE] ⟨arg1⟩(1)	squeeze ⟨arg1⟩
[STANDUP]	stand up
[SWITCHOFF] ⟨arg1⟩(1)	switch off ⟨arg1⟩
[SWITCHON] ⟨arg1⟩(1)	switch on ⟨arg1⟩
[TOUCH] ⟨arg1⟩(1)	touch ⟨arg1⟩
[TURNTO] ⟨arg1⟩(1)	turn to ⟨arg1⟩
[TYPE] ⟨arg1⟩(1)	type on ⟨arg1⟩
[WAKEUP]	wake up
[WALK] ⟨arg1⟩(1)	walk to ⟨arg1⟩
[WASH] ⟨arg1⟩(1)	wash ⟨arg1⟩
[WATCH] ⟨arg1⟩(1)	watch ⟨arg1⟩
[WIPE] ⟨arg1⟩(1)	wipe ⟨arg1⟩
A.5 Random Samples of Action Plans

Human	Vanilla GPT-175B	Translated GPT-3-175B (Ours)
Task: Go to sleep	Task: Go to sleep	Task: Go to sleep
Step 1: Walk to bedroom	Step 1: Walk to bedroom	Step 1: Walk to bedroom
Step 2: Walk to bed	Step 2: Walk to bed	Step 2: Walk to bed
Step 3: Find bed	Step 3: Find pajamas	Step 3: Lie on bed
Step 4: Turn to bed	Step 4: Put on pajamas	Step 4: Sleep
Step 5: Look at bed	Step 5: Find slippers	
Step 6: Sit on bed	Step 6: Put on slippers	
Step 7: Sleep	Step 7: Get in bed	Step 8: Sleep

Task: Go to sleep	Task: Go to sleep	Task: Go to sleep
Step 1: Walk to bedroom	Step 1: Walk to bedroom	Step 1: Walk to bedroom
Step 2: Walk to bed	Step 2: Walk to bed	Step 2: Walk to bed
Step 3: Find bed	Step 3: Find pajamas	Step 3: Lie on bed
Step 4: Turn to bed	Step 4: Put on pajamas	Step 4: Sleep
Step 5: Look at bed	Step 5: Find slippers	
Step 6: Sit on bed	Step 6: Put on slippers	
Step 7: Sleep	Step 7: Get in bed	Step 8: Sleep

Task: Browse internet	Task: Browse internet	Task: Browse internet
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to chair	Step 2: Walk to computer	Step 2: Walk to desk
Step 3: Find chair	Step 3: Find computer	Step 3: Find chair
Step 4: Sit on chair	Step 4: Grab computer	Step 4: Sit on chair
Step 5: Find computer	Step 5: Find chair	Step 5: Find computer
Step 6: Switch on computer	Step 6: Sit on chair	Step 6: Switch on computer
Step 7: Turn to computer	Step 7: Browse internet	Step 7: Find mouse
Step 8: Look at computer		Step 8: Grab mouse
Step 9: Find keyboard		Step 9: Turn to computer
Step 10: Type on keyboard		Step 10: Point at computer

Task: Wash teeth	Task: Wash teeth	Task: Wash teeth
Step 1: Stand up	Step 1: Walk to bathroom	Step 1: Walk to bathroom
Step 2: Walk to bathroom	Step 2: Walk to sink	Step 2: Walk to sink
Step 3: Walk to sink	Step 3: Turn on faucet	Step 3: Find faucet
Step 4: Find sink	Step 4: Grab toothbrush	Step 4: Switch on faucet
Step 5: Turn to sink	Step 5: Put toothpaste on toothbrush	Step 5: Walk to toothbrush
Step 6: Look at sink	Step 6: Put toothbrush in mouth	Step 6: Grab toothbrush
Step 7: Find teeth	Step 7: Brush teeth	
Step 8: Wash teeth	Step 8: Rinse mouth out with water	
	Step 9: Turn off faucet	
	Step 10: Walk back to bedroom	

Task: Brush teeth	Task: Brush teeth	Task: Brush teeth
Step 1: Walk to bathroom	Step 1: Walk to bathroom	Step 1: Find toothbrush
Step 2: Walk to tooth paste	Step 2: Walk to sink	Step 2: Turn to toothbrush
Step 3: Find tooth paste	Step 3: Turn on water	Step 3: Point at toothbrush
Step 4: Grab tooth paste	Step 4: Grab toothbrush	Step 4: Wash toothbrush
Step 5: Find toothbrush	Step 5: Put toothpaste on toothbrush	
Step 6: Grab toothbrush	Step 6: Put toothbrush in mouth	
	Step 7: Brush teeth	

Task: Vacuum	Task: Vacuum	Task: Vacuum
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to computer	Step 2: Walk to vacuum	Step 2: Walk to dresser
Step 3: Find vacuum cleaner	Step 3: Find vacuum	Step 3: Open dresser
Step 4: Switch on vacuum cleaner	Step 4: Grab vacuum	Step 4: Find vacuum cleaner
Step 5: Switch off vacuum cleaner	Step 5: Find chair	Step 5: Grab vacuum cleaner
	Step 6: Sit on chair	Step 6: Pull vacuum cleaner
	Step 7: Vacuum	Step 7: Plug in vacuum cleaner
		Step 8: Switch on vacuum cleaner
Task: Change sheets and pillow cases	Task: Change sheets and pillow cases	Task: Change sheets and pillow cases
--------------------------------------	--------------------------------------	--------------------------------------
Step 1: Find pillow	Step 4: Walk to bedroom	Step 1: Find pillow
Step 2: Turn to pillow	Step 5: Walk to bed	Step 2: Turn to pillow
Step 3: Look at pillow	Step 6: Wash sheets and pillow cases	Step 3: Look at pillow
Step 4: Grab pillow	Step 7: Walk to bedroom	Step 4: Grab pillow
	Step 8: Put sheets and pillow cases on bed	Step 5: Find pillow
	Step 9: Walk to living room	Step 6: Grab pillow
	Step 10: Sit on couch	

Task: Wash dirty dishes	Task: Wash dirty dishes	Task: Wash dirty dishes
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to dining room
Step 2: Walk to sink	Step 2: Walk to sink	Step 2: Walk to sink
Step 3: Find sponge	Step 3: Wash dishes	Step 3: Find faucet
Step 4: Grab sponge	Step 4: Dry dishes	Step 4: Switch on faucet
Step 5: Find faucet	Step 5: Put dishes away	Step 5: Walk to plate
Step 6: Switch on faucet		Step 6: Grab plate
Step 7: Put sponge on sink		
Step 8: Grab sponge		
Step 9: Find dish soap		
Step 10: Grab dish soap		
Step 11: Pour dish soap into sponge		
Step 12: Put back dish soap		
Step 13: Find plate		
Step 14: Grab plate		
Step 15: Scrub plate		
Step 16: Rinse plate		
Step 17: Find dishrack		
Step 18: Put plate on dishrack		
Step 19: Find plate		
Step 20: Grab plate		
Step 21: Scrub plate		
Step 22: Rinse plate		
Step 23: Put plate on dishrack		
Step 24: Rinse sponge		
Step 25: Put back sponge		
Step 26: Switch off faucet		
Task: Feed me	Task: Feed me	Task: Feed me
---------------	---------------	---------------
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to dining room
Step 2: Walk to plate	Step 2: Walk to refrigerator	Step 2: Walk to table
Step 3: Find plate	Step 3: Open refrigerator	Step 3: Find table
Step 4: Grab plate	Step 4: Grab food	Step 4: Turn to table
Step 5: Find food	Step 5: Find plate	Step 5: Find chair
Step 6: Grab food	Step 6: Put food on plate	Step 6: Sit on chair
Step 7: Put food on plate	Step 7: Find fork	Step 7: Find food
Step 8: Find food	Step 8: Put fork on plate	Step 8: Grab food
Step 9: Grab food	Step 9: Find spoon	Step 9: Find plate
Step 10: Put food on plate	Step 10: Put spoon on plate	Step 10: Put food on plate
Step 11: Find fork	Step 11: Find cup	
Step 12: Grab fork	Step 12: Pour water in cup	
Step 13: Eat plate	Step 13: Walk to table	
Step 14: Eat plate	Step 14: Sit at table	

Task: Breakfast	Task: Breakfast	Task: Breakfast
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to dining room
Step 2: Walk to food	Step 2: Find cereal	Step 2: Walk to freezer
Step 3: Grab food	Step 3: Pour cereal into bowl	Step 3: Find freezer
Step 4: Walk to bedroom	Step 4: Pour milk into bowl	Step 4: Open freezer
Step 5: Walk to television	Step 5: Walk to living room	Step 5: Find bread
Step 6: Switch on television	Step 6: Sit on couch	Step 6: Grab bread
Step 7: Walk to bed	Step 7: Eat cereal	Step 7: Close freezer
Step 8: Lie on bed		Step 8: Find toaster
Step 9: Turn to television		Step 9: Plug in toaster
Step 10: Watch television		Step 10: Put bread on plate
Step 11: Eat food		Step 11: Switch on toaster

Task: Read	Task: Read	Task: Read
Step 1: Find novel	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Grab novel	Step 2: Walk to novel	Step 2: Walk to light
Step 3: Walk to bedroom	Step 3: Find novel	Step 3: Find light
Step 4: Walk to chair	Step 4: Grab novel	Step 4: Switch on light
Step 5: Sit on chair	Step 5: Find chair	Step 5: Find novel
Step 6: Read novel	Step 6: Sit on chair	Step 6: Grab novel
	Step 7: Read novel	Step 7: Find chair
		Step 8: Sit on chair
		Step 9: Read novel

Task: Style hair	Task: Style hair	Task: Style hair
Step 1: Find towel	Step 1: Walk to bathroom	Step 1: Walk to bathroom
Step 2: Turn to towel	Step 2: Walk to mirror	Step 2: Walk to mirror
Step 3: Point at towel	Step 3: Find hairbrush	Step 3: Find hair
Step 4: Wash towel	Step 4: Grab hairbrush	Step 4: Grab hair
Step 5: Turn to towel	Step 5: Find chair	Step 5: Find comb
Step 6: Look at towel	Step 6: Sit on chair	Step 6: Grab comb
Step 7: Squeeze towel	Step 7: Style hair	Step 7: Find brush
Step 8: Walk to bathroom	Step 8: Grab brush	
Task: Pick up toys	Task: Pick up toys	Task: Pick up toys
-------------------	-------------------	-------------------
Step 1: Walk to bedroom	Step 1: Walk to living room	Step 1: Find toy
Step 2: Walk to toy	Step 2: Walk to toy box	Step 2: Turn to toy
Step 3: Find toy	Step 3: Find toy box	Step 3: Point at toy
Step 4: Grab toy	Step 4: Grab toy box	Step 4: Wash toy
Step 5: Walk to filing cabinet	Step 5: Find chair	
Step 6: Open filing cabinet	Step 6: Sit on chair	
Step 7: Put toy on filing cabinet	Step 7: Pick up toys	
Step 8: Find toy		
Step 9: Grab toy		
Step 10: Walk to filing cabinet		
Step 11: Put toy on filing cabinet		
Step 12: Find toy		
Step 13: Grab toy		
Step 14: Walk to filing cabinet		
Step 15: Put toy on filing cabinet		
Step 16: Close filing cabinet		

Task: Decorate it	Task: Decorate it	Task: Decorate it
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to centerpiece	Step 2: Walk to centerpiece	Step 2: Walk to centerpiece
Step 3: Find centerpiece	Step 3: Find centerpiece	Step 3: Find centerpiece
Step 4: Grab centerpiece	Step 4: Grab centerpiece	Step 4: Grab centerpiece
Step 5: Walk to table	Step 5: Walk to table	Step 5: Walk to table
Step 6: Put centerpiece on table	Step 6: Sight on chair	Step 6: Sight on chair
Step 7: Find drawing	Step 7: Read novel	Step 7: Read novel
Step 8: Grab drawing	Step 8: Decorate it	Step 8: Decorate it
Step 9: Find wall		
Step 10: Turn to wall		
Step 11: Put drawing on wall		
Step 12: Find drawing		
Step 13: Grab drawing		
Step 14: Turn to wall		
Step 15: Put drawing on wall		

Task: Put away groceries	Task: Put away groceries	Task: Put away groceries
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to kitchen
Step 2: Walk to freezer	Step 2: Walk to refrigerator	Step 2: Walk to refrigerator
Step 3: Find freezer	Step 3: Open refrigerator	Step 3: Open refrigerator
Step 4: Open freezer	Step 4: Grab milk and eggs	Step 4: Grab milk and eggs
Step 5: Find food	Step 5: Close refrigerator	Step 5: Close refrigerator
Step 6: Grab food	Step 6: Walk to counter	Step 6: Walk to counter
Step 7: Put food in freezer	Step 7: Put milk and eggs on counter	Step 7: Put milk and eggs on counter
Step 8: Close freezer	Step 8: Walk to cabinet	Step 8: Walk to cabinet
	Step 9: Open cabinet	Step 9: Open cabinet
	Step 10: Put away milk and eggs	Step 10: Put away milk and eggs
	Step 11: Close cabinet	Step 11: Close cabinet
	Step 12: Walk to refrigerator	Step 12: Walk to refrigerator
	Step 13: Grab orange juice and bread	Step 13: Grab orange juice and bread
	Step 14: Close refrigerator	Step 14: Close refrigerator
Task: Draw picture	Task: Draw picture	Task: Draw picture
-------------------	-------------------	-------------------
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to chair	Step 2: Walk to pencils	Step 2: Walk to wall
Step 3: Find chair	Step 3: Find pencils	Step 3: Walk to drawing
Step 4: Sit on chair	Step 4: Grab pencils	Step 4: Find drawing
Step 5: Find desk	Step 5: Find paper	Step 5: Turn to drawing
Step 6: Open desk	Step 6: Sit on chair	Step 6: Look at drawing
Step 7: Find check	Step 7: Draw picture	Step 7: Touch drawing
Step 8: Grab check		Step 8: Pull drawing
Step 9: Put check on desk		Step 9: Push drawing
Step 10: Find pencil		
Step 11: Grab pencil		
Step 12: Close desk		

Task: Entertain	Task: Entertain	Task: Entertain
Step 1: Walk to home office	Step 1: Walk to living room	Step 1: Walk to living room
Step 2: Walk to cheese	Step 2: Walk to entertainment center	Step 2: Walk to couch
Step 3: Find cheese	Step 3: Find remote	Step 3: Find couch
Step 4: Find food	Step 4: Grab remote	Step 4: Sit on couch
Step 5: Find couch	Step 5: Find chair	
Step 6: Sit on couch	Step 6: Sit on chair	
Step 7: Find wine glass	Step 7: Entertain self	
Step 8: Grab wine glass		
Step 9: Drink wine glass		

Task: Type up document	Task: Type up document	Task: Type up document
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to chair	Step 2: Walk to keyboard	Step 2: Walk to computer
Step 3: Find chair	Step 3: Find keyboard	Step 3: Find computer
Step 4: Sit on chair	Step 4: Grab keyboard	Step 4: Switch on computer
Step 5: Find computer	Step 5: Find chair	Step 5: Find chair
Step 6: Switch on computer	Step 6: Sit on chair	Step 6: Sit on chair
Step 7: Turn to computer	Step 7: Type document	Step 7: Turn to computer
Step 8: Look at computer		Step 8: Look at computer
Step 9: Find check		Step 9: Find keyboard
Step 10: Grab check		Step 10: Grab keyboard
Step 11: Read check		Step 11: Type on keyboard
Step 12: Find coffee cup		Step 12: Stand up
Step 13: Grab coffee cup		Step 13: Find printer
Step 14: Drink coffee cup		Step 14: Switch on printer
Step 15: Put back coffee cup		Step 15: Find printing paper
Step 16: Find keyboard		
Step 17: Type on keyboard		

Task: Put on your shoes	Task: Put on your shoes	Task: Put on your shoes
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to shoes	Step 2: Walk to shoes	Step 2: Turn to shoes
Step 3: Find shoes	Step 3: Find shoes	Step 3: Point at shoes
Step 4: Grab shoes	Step 4: Grab shoes	Step 4: Wash shoes
Step 5: Find chair	Step 5: Find chair	
Step 6: Sit on chair	Step 6: Sit on chair	
Step 7: Find feet both	Step 7: Put on shoes	
Step 8: Put shoes on feet both		
Task: Watch horror movie	Task: Watch horror movie	Task: Watch horror movie
-------------------------	-------------------------	-------------------------
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Find television
Step 2: Walk to remote control	Step 2: Walk to horror movie	Step 2: Switch on television
Step 3: Find remote control	Step 3: Find horror movie	Step 3: Find cd player
Step 4: Grab remote control	Step 4: Grab horror movie	Step 4: Switch on cd player
Step 5: Find couch	Step 5: Find chair	Step 5: Switch off cd player
Step 6: Sit on couch	Step 6: Sit on chair	Step 6: Find remote control
Step 7: Find television	Step 7: Watch horror movie	Step 7: Switch on remote control
Step 8: Switch on television	Step 8: Switch off remote control	
Step 9: Turn to television		Task: Turn on radio
Step 10: Watch television		Step 1: Walk to home office

Task: Turn on radio	Task: Turn on radio	Task: Turn on radio
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to stereo	Step 2: Walk to radio	Step 2: Walk to chair
Step 3: Find stereo	Step 3: Find radio	Step 3: Find chair
Step 4: Find electrical outlet	Step 4: Grab radio	Step 4: Sit on chair
Step 5: Turn to electrical outlet	Step 5: Find chair	Step 5: Find remote control
Step 6: Plug in stereo	Step 6: Sit on chair	Step 6: Grab remote control
Step 7: Switch on electrical outlet	Step 7: Turn on radio	Step 7: Find radio
Step 8: Switch on stereo	Step 8: Point at radio	Step 8: Point at radio
	Step 9: Switch on radio	Step 9: Switch on radio
	Step 10: Put back remote control	Step 10: Put back remote control

Task: Look at mirror	Task: Look at mirror	Task: Look at mirror
Step 1: Walk to bathroom	Step 1: Walk to bathroom	Step 1: Walk to bedroom
Step 2: Walk to mirror	Step 2: Walk to mirror	Step 2: Walk to chair
Step 3: Find mirror	Step 3: Look in mirror	Step 3: Find mirror
Step 4: Turn to mirror		Step 4: Turn to mirror
Step 5: Look at mirror		Step 5: Look at mirror
		Step 6: Find face
		Step 7: Turn to face
		Step 8: Look at face
		Step 9: Find hair
		Step 10: Turn to hair
		Step 11: Look at hair
		Step 12: Find dress
		Step 13: Turn to dress
		Step 14: Look at dress

Task: Leave home	Task: Leave home	Task: Leave home	
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Find shoes	
Step 2: Walk to shoes	Step 2: Open front door	Step 2: Grab shoes	
Step 3: Find shoes	Step 3: Walk to car	Step 3: Put on shoes	
Step 4: Grab shoes	Step 4: Open car door		
Step 5: Put on shoes	Step 5: Get in car		
	Step 6: Close car door		
	Step 7: Drive to work		

Task: Walk to room	Task: Walk to room	Task: Walk to room	
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to dining room	
Step 2: Walk to home office	Step 2: Walk to novel	Step 2: Walk to livingroom	
	Step 3: Find novel	Step 3: Walk to bedroom	
	Step 4: Grab novel		
	Step 5: Find chair		
	Step 6: Sit on chair		
	Step 7: Read novel		

27
Task: Hang pictures	Task: Hang pictures	Task: Hang pictures
Step 1: Walk to bedroom	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to drawing	Step 2: Walk to box of pictures	Step 2: Walk to table
Step 3: Find drawing	Step 3: Find box of pictures	Step 3: Find keys
Step 4: Grab drawing	Step 4: Grab box of pictures	Step 4: Grab keys
Step 5: Find wall	Step 5: Walk to wall	Step 5: Walk to wall
Step 6: Put drawing on wall	Step 6: Hang pictures on wall	Step 6: Find hanger
Step 7: Turn to drawing		Step 7: Put keys on hanger
Step 8: Look at drawing		
Step 9: Find drawing		
Step 10: Grab drawing		
Step 11: Put drawing on wall		
Step 12: Turn to drawing		
Step 13: Look at drawing		

Task: Wipe down sink	Task: Wipe down sink	Task: Wipe down sink
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to bathroom
Step 2: Walk to rag	Step 2: Walk to sink	Step 2: Walk to cleaning solution
Step 3: Find rag	Step 3: Grab sponge	Step 3: Find cleaning solution
Step 4: Grab rag	Step 4: Wipe down sink	Step 4: Grab cleaning solution
Step 5: Walk to sink	Step 5: Rinse sponge	Step 5: Find sink
Step 6: Wipe sink	Step 6: Put sponge away	Step 6: Pour cleaning solution
Step 7: Put back rag	Step 7: Wash hands	into sink
		Step 7: Find faucet
		Step 8: Switch on faucet
		Step 9: Scrub sink
		Step 10: Wash sink

Task: Take shoes off	Task: Take shoes off	Task: Take shoes off
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to shoes	Step 2: Walk to shoes	Step 2: Walk to shoes
Step 3: Find shoes	Step 3: Find shoes	Step 3: Find shoes
Step 4: Find shoes	Step 4: Grab shoes	
Step 5: Take off shoes	Step 5: Find chair	
Step 6: Find dresser	Step 6: Sit on chair	
Step 7: Open dresser	Step 7: Take shoes off	
Step 8: Grab shoes		
Step 9: Put shoes in dresser		
Step 10: Close dresser		

Task: Give milk to cat	Task: Give milk to cat	Task: Give milk to cat
Step 1: Walk to home office	Step 1: Walk to kitchen	Step 1: Find cat
Step 2: Walk to cat	Step 2: Walk to fridge	Step 2: Touch cat
Step 3: Find cat	Step 3: Open fridge	Step 3: Open fridge
Step 4: Turn to cat	Step 4: Grab milk	Step 4: Touch milk
Step 5: Point at cat	Step 5: Walk to cat	Step 5: Pour milk into bowl
Step 6: Pull cat	Step 6: Pour milk into bowl	
Step 7: Find milk	Step 7: Put bowl on floor	
Step 8: Grab milk	Step 8: Walk away from cat	
Step 9: Find plate		
Step 10: Pour milk into plate		
Step 11: Touch cat		
Step 12: Scrub cat		

28
Task: Grab things	Task: Use laptop	Task: Organize pantry
Step 1: Walk to novel	Step 1: Walk to home office	Step 1: Walk to kitchen
Step 2: Turn to novel	Step 2: Walk to novel	Step 2: Walk to pantry
Step 3: Grab novel	Step 3: Find novel	Step 3: Find food
	Step 4: Grab novel	Step 4: Grab dry pasta
	Step 5: Find chair	Step 5: Turn to food
	Step 6: Sit on chair	Step 6: Look at food
	Step 7: Read novel	Step 7: Find garbage can
	Step 8: Grab things	Step 8: Put food on garbage can
		Step 9: Find vegetable
		Step 10: Grab vegetable
		Step 11: Turn to vegetable
		Step 12: Look at vegetable
		Step 13: Put vegetable on
		garbage can
		Step 14: Find dry pasta
		Step 15: Grab dry pasta
		Step 16: Turn to dry pasta
		Step 17: Look at dry pasta
		Step 18: Put back dry pasta
		Step 19: Find food
		Step 20: Turn to food
		Step 21: Look at food
		Step 22: Push food
		Step 23: Find noodles
		Step 24: Grab noodles
		Step 25: Turn to noodles
		Step 26: Look at noodles
		Step 27: Put back noodles
		Step 28: Put back noodles
Task: Change clothes	Task: Change clothes	Task: Change clothes
---	---	---
Step 1: Walk to bedroom	Step 1: Walk to bedroom	Step 1: Walk to bedroom
Step 2: Walk to dresser	Step 2: Walk to closet	Step 2: Walk to dresser
Step 3: Open dresser	Step 3: Find clothes	Step 3: Find dresser
Step 4: Find dress	Step 4: Grab clothes	Step 4: Open dresser
Step 5: Grab dress	Step 5: Find chair	Step 5: Find pants
Step 6: Put on dress	Step 6: Sit on chair	Step 6: Grab pants
Step 7: Close dresser	Step 7: Change clothes	Step 7: Put on pants

Task: Put up decoration	Task: Put up decoration	Task: Put up decoration
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to livingroom
Step 2: Walk to drawing	Step 2: Walk to decoration	Step 2: Walk to table
Step 3: Find drawing	Step 3: Find decoration	
Step 4: Find centerpiece	Step 4: Grab decoration	
Step 5: Grab centerpiece	Step 5: Find chair	
Step 6: Walk to wall	Step 6: Sit on chair	
Step 7: Grab drawing	Step 7: Put up decoration	
Step 8: Put drawing on wall		
Step 9: Find centerpiece		
Step 10: Grab centerpiece		
Step 11: Walk to table		
Step 12: Put centerpiece on table		

Task: Make bed	Task: Make bed	Task: Make bed
Step 1: Walk to bedroom	Step 1: Walk to bedroom	Step 1: Stand up
Step 2: Walk to bed	Step 2: Walk to bed	Step 2: Find sheets
Step 3: Find sheets	Step 3: Find sheets	Step 3: Find blanket
Step 4: Grab sheets	Step 4: Find blanket	Step 4: Find pillow
Step 5: Pull sheets	Step 5: Find pillow	Step 5: Find comforter
		Step 6: Find bed
		Step 7: Put blanket on bed
		Step 8: Put pillow on bed

Task: Scrubbing living room tile floor is once week activity for me	Task: Scrubbing living room tile floor is once week activity for me	Task: Scrubbing living room tile floor is once week activity for me
Step 1: Find mop	Step 1: Walk to living room	Step 1: Walk to livingroom
Step 2: Turn to mop	Step 2: Walk to tile floor	Step 2: Walk to mop
Step 3: Point at mop	Step 3: Find scrub brush	Step 3: Find mop
Step 4: Wash mop	Step 4: Grab scrub brush	Step 4: Grab mop
Step 5: Turn to mop	Step 5: Scrub tile floor	Step 5: Walk to bathroom
Step 6: Look at mop	Step 6: Put down scrub brush	Step 6: Find bucket
	Step 7: Walk to kitchen	Step 7: Switch on faucet

Task: Read yourself to sleep	Task: Read yourself to sleep	Task: Read yourself to sleep
Step 1: Walk to bedroom	Step 1: Walk to bedroom	Step 1: Walk to bedroom
Step 2: Walk to novel	Step 2: Walk to bed	Step 2: Walk to bed
Step 3: Find novel	Step 3: Find book	Step 3: Lie on bed
Step 4: Grab novel	Step 4: Grab book	Step 4: Sleep
Step 5: Find bed	Step 5: Find chair	Step 5: Read book
Step 6: Sit on bed	Step 6: Sit on chair	
Step 7: Find bookmark	Step 7: Read book	
Step 8: Grab bookmark	Step 8: Sleep	
Step 9: Read novel		
Step 10: Put bookmark on novel		
Step 11: Sleep		

30
Task: Hand washing	Task: Hand washing	Task: Hand washing
Step 1: Walk to bathroom	Step 1: Walk to bathroom	Step 1: Walk to bathroom
Step 2: Walk to sink	Step 2: Walk to sink	Step 2: Walk to sink
Step 3: Find faucet	Step 3: Turn on faucet	Step 3: Find faucet
Step 4: Switch on faucet	Step 4: Grab soap	Step 4: Turn to faucet
Step 5: Find soap	Step 5: Wash hands	Step 5: Find hands both
Step 6: Grab soap	Step 6: Rinse hands	Step 6: Wash hands both
Step 7: Find hands both	Step 7: Dry hands	
Step 8: Scrub hands both		
Step 9: Put back soap		
Step 10: Wash hands both		
Step 11: Switch off faucet		
Step 12: Find towel		
Step 13: Grab towel		
Step 14: Wipe hands both		

Task: Throw away paper	Task: Throw away paper	Task: Throw away paper
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to desk	Step 2: Walk to wastebasket	Step 2: Walk to table
Step 3: Find desk	Step 3: Find wastebasket	Step 3: Find table
Step 4: Turn to desk	Step 4: Grab wastebasket	Step 4: Turn to table
Step 5: Find chair	Step 5: Walk to desk	Step 5: Find paper
Step 6: Sit on chair	Step 6: Drop paper in wastebasket	Step 6: Grab paper
Step 7: Find check		Step 7: Walk to trashcan
Step 8: Grab check		Step 8: Open trashcan
Step 9: Squeeze check		Step 9: Put paper on trashcan
Step 10: Stand up		Step 10: Close trashcan
Step 11: Walk to trashcan		
Step 12: Put check on trashcan		

Task: Take off shoes	Task: Take off shoes	Task: Take off shoes	
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Walk to home office	
Step 2: Walk to shoes	Step 2: Walk to novel	Step 2: Walk to shoes	
Step 3: Find shoes	Step 3: Find novel	Step 3: Find shoes	
Step 4: Find shoes	Step 4: Grab novel		
Step 5: Take off shoes	Step 5: Find chair		
Step 6: Grab shoes	Step 6: Sit on chair		
Step 7: Find mat	Step 7: Read novel		
Step 8: Put shoes on mat			

Task: Hang keys	Task: Hang keys	Task: Hang keys	
Step 1: Walk to bedroom	Step 1: Walk to home office	Step 1: Walk to home office	
Step 2: Walk to dresser	Step 2: Walk to key hook	Step 2: Walk to table	
Step 3: Find purse	Step 3: Find key hook	Step 3: Find keys	
Step 4: Grab purse	Step 4: Grab key hook	Step 4: Grab keys	
Step 5: Open purse	Step 5: Find keys	Step 5: Walk to wall	
Step 6: Find keys	Step 6: Hang keys on key hook	Step 6: Find hanger	
Step 7: Grab keys	Step 7: Walk to front door	Step 7: Put keys on hanger	
Step 8: Find bowl			
Step 9: Put keys on bowl			
Step 10: Close purse			
Step 11: Put back purse			
Task: Make popcorn	Task: Make popcorn	Task: Make popcorn	
---------------------	---------------------	---------------------	
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to kitchen	
Step 2: Walk to food	Step 2: Walk to microwave	Step 2: Walk to microwave	
Step 3: Find food	Step 3: Open microwave	Step 3: Find microwave	
Step 4: Grab food	Step 4: Put bag of popcorn in microwave	Step 4: Open microwave	
Step 5: Walk to microwave	Step 5: Close microwave		
Step 6: Turn to microwave	Step 6: Push buttons on microwave		
Step 7: Open microwave	Step 7: Wait for popcorn to pop		
Step 8: Put food in microwave	Step 8: Get bowl out of cupboard		
Step 9: Close microwave	Step 9: Get butter out of fridge		
Step 10: Switch on microwave	Step 10: Get salt out of cupboard		
	Step 11: Pour popcorn into bowl		
	Step 12: Add butter and salt to bowl		
	Step 13:		

Task: Receive credit card	Task: Receive credit card	Task: Receive credit card
Step 1: Walk to home office	Step 1: Walk to mailbox	Step 1: Walk to home office
Step 2: Walk to envelope	Step 2: Open mailbox	Step 2: Walk to cabinet
Step 3: Find envelope	Step 3: Grab credit card	Step 3: Find cabinet
Step 4: Grab envelope	Step 4: Walk to home office	Step 4: Open cabinet
Step 5: Walk to home office	Step 5: Walk to desk	
Step 6: Walk to scissors	Step 6: Put credit card on desk	
Step 7: Find scissors	Step 7: Sit at desk	
Step 8: Open envelope	Step 8: Look at credit card	
Step 9: Find creditcard		
Step 10: Grab creditcard		

Task: Read to child	Task: Read to child	Task: Read to child
Step 1: Walk to bedroom	Step 1: Walk to home office	Step 1: Walk to child
Step 2: Walk to child	Step 2: Walk to novel	Step 2: Read book
Step 3: Find child	Step 3: Find novel	
Step 4: Greet child	Step 4: Grab novel	
Step 5: Walk to filing cabinet	Step 5: Find chair	
Step 6: Open filing cabinet	Step 6: Sit on chair	
Step 7: Find novel	Step 7: Read novel	
Step 8: Grab novel		
Step 9: Walk to chair		
Step 10: Pull chair		
Step 11: Sit on chair		
Step 12: Turn to novel		
Step 13: Look at novel		
Step 14: Turn to novel		
Step 15: Point at novel		
Step 16: Turn to novel		
Step 17: Point at novel		
Step 18: Read novel		
Step 19: Read novel		
Step 20: Read novel		
Task: Eat cheese	Task: Eat cheese	Task: Eat cheese
---	---	---
Step 1: Walk to dining room	Step 1: Walk to kitchen	Step 1: Walk to dining room
Step 2: Walk to freezer	Step 2: Walk to refrigerator	Step 2: Walk to dining room
Step 3: Open freezer	Step 3: Open refrigerator	Step 3: Open freezer
Step 4: Find cheese	Step 4: Grab cheese	Step 4: Find cheese
Step 5: Grab cheese	Step 5: Eat cheese	Step 5: Find chair
Step 6: Eat cheese		Step 6: Sit on chair
		Step 7: Find food
		Step 8: Grab food
		Step 9: Find plate
		Step 10: Put food on plate
Task: Unload various items from pockets	Task: Unload various items from pockets	Task: Unload various items from pockets
and place them in bowl on table	and place them in bowl on table	and place them in bowl on table
Step 1: Walk to home office	Step 1: Walk to home office	Step 1: Find bowl
Step 2: Walk to table	Step 2: Walk to table	Step 2: Turn to bowl
Step 3: Find bowl	Step 3: Find bowl on table	Step 3: Point at bowl
Step 4: Grab bowl	Step 4: Grab bowl on table	Step 4: Wash bowl
Step 5: Put bowl on table	Step 5: Unload various items from pockets	
Step 6: Find pants	and place them in bowl on table	
Step 7: Find bills		
Step 8: Grab bills		
Step 9: Find phone		
Step 10: Grab phone		
Task: Switch on lamp	Task: Switch on lamp	Task: Switch on lamp
Step 1: Walk to bedroom	Step 1: Walk to lamp	Step 1: Walk to bedroom
Step 2: Walk to floor lamp	Step 2: Switch on lamp	Step 2: Walk to floor lamp
Step 3: Find floor lamp	Step 3: Walk to chair	Step 3: Find floor lamp
Step 4: Switch on floor lamp	Step 4: Sit on chair	Step 4: Turn to floor lamp
	Step 5: Read book	Step 5: Switch on floor lamp
		Step 6: Find bed
		Step 7: Lie on bed
Task: Take jacket off	Task: Take jacket off	Task: Take jacket off
Step 1: Walk to bedroom	Step 1: Walk to home office	Step 1: Walk to home office
Step 2: Walk to jacket	Step 2: Walk to jacket	Step 2: Walk to jacket
Step 3: Find jacket	Step 3: Find jacket	Step 3: Find jacket
Step 4: Find jacket	Step 4: Grab jacket	Step 5: Find chair
Step 5: Take off jacket	Step 5: Find chair	Step 6: Sit on chair
Step 6: Find dresser	Step 7: Take jacket off	
Step 7: Open dresser		
Step 8: Close dresser		