Greenformer: Factorization Toolkit for Efficient Deep Neural Networks

Samuel Cahyawijaya*, Genta Indra Winata*, Holy Lovenia*, Bryan Wilie*, Wenliang Dai, Etsuko Ishii, Elham J. Barezi, Pascale Fung

Center for Artificial Intelligence Research (CAiRE)
The Hong Kong University of Science and Technology
scahyawijaya@connect.ust.hk

Abstract

While the recent advances in deep neural networks (DNN) bring remarkable success, the computational cost also increases considerably. In this paper, we introduce Greenformer, a toolkit to accelerate the computation of neural networks through matrix factorization while maintaining performance. Greenformer can be easily applied with a single line of code to any DNN model. Our experimental results show that Greenformer is effective for a wide range of scenarios. We provide the showcase of Greenformer at https://samuelcahyawijaya.github.io/greenformer-demo/.

Introduction

With the significant computational growth of DNN models (Hernandez and Brown 2020), AI researchers all around the globe have started to promote and adopt the concept of ‘Green AI’ (Schwartz et al. 2020). Many recent works (Strubell, Ganesh, and McCallum 2019; Lacoste et al. 2019; Patterson et al. 2021; Dai et al. 2021; Menghani 2021) address the environmental challenges such as energy usage and carbon emission level of DNN models and develop more efficient deep learning solutions. In response to this problem, we introduce a robust and easy-to-use low-rank matrix factorization toolkit which reduces not only the computational cost but also the model size, with minimal performance loss.

Low-rank matrix factorization is done by decomposing a large matrix into two or more smaller matrices, reducing computation and memory costs. Post-training factorization methods with singular-value decomposition (SVD) (Golub and Reinsch 1970) and non-negative matrix factorization (NMF) (Lee and Seung 2001) have been applied to approximate the weight matrix of a trained model (Winata et al. 2019; Ben Noach and Goldberg 2020). On the other line of work, factorization-by-design applies matrix factorization is directly to the model structure prior to the training. This method produces impressive results with the compressed model is not only smaller and faster but also able to outperform the uncompressed model (Winata et al. 2020; Cahyawijaya 2021; Kuchaiev and Ginsburg 2017).

Despite the fact that many works have been published on low-rank matrix factorization, all the solutions are model-dependent, making applicability to different model architecture difficult and cumbersome. To improve the generalization and applicability of the low-rank matrix factorization method, we introduce Greenformer, an eloquent low-rank matrix factorization toolkit that supports multiple use cases of matrix factorization and is currently implemented for the PyTorch framework (Paszke et al. 2019). As shown in Figure 1 with Greenformer, we can easily factorize any deep neural networks to perform both factorization-by-design and post-training factorization. We further demonstrate the effectiveness of our Greenformer toolkit for three different use cases: 1) factorization-by-design, 2) post-training factorization, and 3) few-shot via in-context learning factorization.

Design and Consideration

Greenformer performs decomposition to the weight matrices of linear and convolution layers. Namely, a weight matrix $W \in \mathbb{R}^{m \times n}$ is decomposed into two low-rank matrices $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$, where $r \ll \min\{m, n\}$.

Greenformer decomposes a matrix by utilizing a factor-

*The authors contributed equally to this work.

Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
The decomposed matrices and/or tensors are then wrapped into a compatible low-rank module which is then used to replace the original linear an/or convolution layers of the model. Specifically, we replace a linear layer into a Linear Encoder-Decoder (LED) layer and replace a convolution layer into a Convolution Encoder-Decoder (CED) layer. The depiction of LED and/or CED layers work is shown in Figure 3. Both LED, and CED have the same input and output with the linear and convolution layers; hence, they can maintain compatibility with the model.

To maximize the outcome of automatic factorization, Greenformer only performs factorization when the low-rank r is less than the maximum low-rank r_{max} to ensure reduction of the theoretical computational cost. For a given weight matrix $W \in \mathbb{R}^{m \times n}$ the maximum low-rank is defined as:

$$r_{\text{max}} = \frac{(m \cdot n)}{(m + n)}$$ (1)

To improve its flexibility, Greenformer supports factorization with a dynamic rank across all layers by computing the rank based on a ratio to the maximum rank r_{max} of the corresponding layer. Additionally, we also observe that applying factorization to all layers of large pretrained models leads to significant performance loss. To address this problem, Greenformer is equipped with a filtering feature that enables factorization only on a specific set of modules.

We test our toolkit on three use cases: 1) Factorization-by-design, where we train models prior to the training; 2) post-training factorization, where we factorize models prior to evaluation phase; and in-context learning factorization, where we apply factorization to large pretrained language models and perform in-context learning following Brown et al. (2020). We test our toolkit on 3 text classification tasks and 2 image classification tasks. We show the effectiveness of our Greenformer toolkit in all use cases in Figure 2.

Conclusion

We present Greenformer, an automatic factorization toolkit that provides significant efficiency improvement while maintaining the model performance. In addition, Greenformer is flexible, easy-to-use, and applicable for multiple scenarios. For future work, it is interesting to extend Greenformer for more energy-intensive use cases, such as on large models pretraining and network architecture search.
References

Ben Noach, M.; and Goldberg, Y. 2020. Compressing Pre-trained Language Models by Matrix Decomposition. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 884–889. Suzhou, China: Association for Computational Linguistics.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; and Amodei, D. 2020. Language Models are Few-Shot Learners. arXiv:2005.14165.

Cahyawijaya, S. 2021. Greenformers: Improving Computation and Memory Efficiency in Transformer Models via Low-Rank Approximation. arXiv:2108.10808.

Dai, W.; Cahyawijaya, S.; Liu, Z.; and Fung, P. 2021. Multimodal End-to-End Sparse Model for Emotion Recognition. In NAACL.

Golub, G. H.; and Reinsch, C. 1970. Singular Value Decomposition and Least Squares Solutions. Numer. Math., 14(5): 403–420.

Hernandez, D.; and Brown, T. B. 2020. Measuring the Algorithmic Efficiency of Neural Networks. arXiv:2005.04305.

Kuchaiev, O.; and Ginsburg, B. 2017. Factorization tricks for LSTM networks. ICLR Workshop.

Lacoste, A.; Luccioni, A.; Schmidt, V.; and Dandres, T. 2019. Quantifying the Carbon Emissions of Machine Learning. Workshop on Tackling Climate Change with Machine Learning at NeurIPS 2019.

Lee, D.; and Seung, H. S. 2001. Algorithms for Non-negative Matrix Factorization. In Leen, T.; Dietterich, T.; and Tresp, V., eds., Advances in Neural Information Processing Systems, volume 13. MIT Press.

Menghani, G. 2021. Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better. arXiv:2106.08962.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; and Chintala, S. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Wallach, H.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in Neural Information Processing Systems 32, 8024–8035. Curran Associates, Inc.

Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.-M.; Rothchild, D.; So, D.; Texier, M.; and Dean, J. 2021. Carbon Emissions and Large Neural Network Training. arXiv:2104.10350.

Schwartz, R.; Dodge, J.; Smith, N. A.; and Etzioni, O. 2020. Green AI. Commun. ACM, 63(12): 54–63.

Strubell, E.; Ganesh, A.; and McCallum, A. 2019. Energy and Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650. Florence, Italy: Association for Computational Linguistics.

Winata, G. I.; Cahyawijaya, S.; Lin, Z.; Liu, Z.; and Fung, P. 2020. Lightweight and Efficient End-To-End Speech Recognition Using Low-Rank Transformer. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, May 4-8, 2020, 6144–6148. IEEE.

Winata, G. I.; Madotto, A.; Shin, J.; Barezi, E. J.; and Fung, P. 2019. On the Effectiveness of Low-Rank Matrix Factorization for LSTM Model Compression. In Proceedings of the 33rd Pacific Asia Conference on Language, Information and Computation, 253–262. Waseda Institute for the Study of Language and Information.