A new species of terrestrial frog Pristimantis (Strabomantidae) from the upper basin of the Pastaza River, Ecuador

Carolina Reyes-Puig1,2, Juan Pablo Reyes-Puig2,3, Daniel A. Velarde-Garcéz1, Nicolás Dávalos1, Emilio Mancero1, María José Navarrete4, Mario H. Yáñez-Muñoz2, Diego F. Cisneros-Heredia1,2,5, Santiago R. Ron4

1 Instituto de Zoología Terrestre & Museo de Zoología, Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Quito, Ecuador 2 Unidad de Investigación, Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador 3 Fundación Red de Protección de Bosques ECOMINGA, Fundación Oscar Efrén Reyes, Departamento de Ambiente, Baños, Ecuador 4 Museo de Zoología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador 5 King's College London, Department of Geography, London, UK

Corresponding author: Carolina Reyes-Puig (carolina_reyes.88@hotmail.com)

Abstract
We describe a new species of Pristimantis from the montane forest of the Río Zuñag Ecological Reserve, upper basin of the Pastaza River, Ecuador. Pristimantis mallii sp. n. is characterized by a snout-vent length of 11.6–21.3 mm in adult males (n = 12), 22.6–34.3 mm in adult females (n = 8), and is compared morphologically and genetically with Pristimantis miktos and with other relevant species of Pristimantis. The new species is characterized by having skin on dorsum and flanks shagreen, distinctive scapular folds, snout broadly rounded in dorsal view, upper eyelid bearing one or two subconical tubercles and some rounded tubercles, dorsum and flanks light brown to brown, with irregular dark brown marks bounded by dirty cream and groin with irregular yellowish marks.

Keywords
Montane forest, Pristimantis mallii sp. n., Río Zuñag Reserve, Terrarana
Resumen
Describimos una nueva especie de *Pristimantis* del bosque montano de la Reserva Ecológica Río Zuñag, cuenca alta del río Pastaza, Ecuador. *Pristimantis mallii* sp. n es caracterizada por una longitud rostro-cloacal de 11.6–21.3 mm en machos adultos ($n = 12$), 22.6–34.3 mm en hembras adultas ($n = 8$), y es comparada morfológica y genéticamente con *Pristimantis miktos* y con otras especies relevantes de *Pristimantis*. La especie nueva se caracteriza por tener la piel del dorso y flancos finamente granular, pliegues escapulares distintivos, hocico redondeado en vista dorsal, párpado superior con uno dos tubérculos subcónicos y algunos redondeados, dorso y flancos café claro a café, con marcas irregulares café oscuras bordeadas de crema sucio y marcas irregulares amarillentas en las ingles.

Palabras clave
Bosque montano, *Pristimantis mallii* sp. n., Reserva Río Zuñag, Terrarana

Introduction
The genus *Pristimantis* is an endemic group of terrestrial frogs of the Neotropical region; with more than 525 species, it is the largest genus of all vertebrates (Frost 2018). Its highest diversity is found in the Andean montane forests of Colombia, Ecuador, and Peru (Heinicke et al. 2007; Frost 2018). In Ecuador, this genus represents 38.5% of the amphibians, with 230 species currently described, of which 125 are endemic (Ron et al. 2018). In the last five years, 37 species of *Pristimantis* in Ecuador have been described (Ron et al. 2018). This rapid and continuous increase of the known species suggests that this number will keep rising, considering the many regions that still remain unexplored in the Ecuadorian Andes. Presumably, the high diversity of this terrestrial group is explained by the success of their direct development, which allows individuals to be independent of water and to colonize new terrestrial niches (Hedges et al. 2008). Most of the species of this genus are characterized by having small distributions (Lynch and Duellman 1980; Terán-Valdez and Guayasamin 2010; Yáñez-Muñoz et al. 2016). This could explain the high rate of discovery in the eastern Andes of Ecuador, where recently several species have been described (e.g. Reyes-Puig et al. 2010, 2013, 2014; Reyes-Puig and Yáñez-Muñoz 2012; Batallas and Brito 2014; Brito et al. 2014, 2016, 2017a, b; Yáñez-Muñoz et al. 2014; Navarrete et al. 2016).

The upper basin of the Pastaza River is an important endemic region, mainly because the Río Pastaza is a major Ecuadorian tributary of the Amazon (i.e. biogeographic barrier), with a rugged topography of volcanic and granitic origin (Kennerly and Bromley 1971; Gradstein et al. 2004; Sánchez et al. 2018). These characteristics have allowed the presence of flora and fauna distributed only in this restricted region (e.g. Gradstein et al. 2004; Reyes-Puig et al. 2010, 2013, 2014, 2015; Jost and Shepard 2017). Here we describe a new species of direct-developing frog of the genus *Pristimantis* from the montane forest of the Pastaza River basin, with morphological and phylogenetic analyzes based on lab and field work executed by several institutions.
Materials and methods

DNA extraction, amplification and sequencing

DNA extraction and amplification processes took place at the Laboratorio de Biología Molecular of the Museo de Zoología, Pontificia Universidad Católica del Ecuador (QCAZ). Total DNA was extracted from liver and muscular tissue preserved in 95% ethanol by applying the Guanidinium thiocyanate (GITC) protocol (Esselstyn et al. 2008). Samples were quantified on a nanodrop (Thermo Scientific) and diluted by aliquots at a 20 ng/µl concentration. Standard PCR procedures were used to amplify the mitochondrial gene 16S rRNA (16S) and the nuclear recombination-activating genes (RAG1). The primers used were 16L19 and 16H36E for 16S (Heinicke et al. 2007) as well as RAG1FF2 and RAG1FR2 for RAG (Heinicke et al. 2007). The amplified results were purified by the ExoSap tool and sent to the Macrogen company (Macrogen Inc., Seoul, Korea) for sequencing. Additionally, the genetic sample included various 12S rRNA (12S) mitochondrial gene sequences obtained from the GenBank database.

The sequences generated de novo were assembled and edited manually on the GeniousPro 5.4.6 software (Biomatters Ltd). Both ends of the sequence were cut during editing to avoid low quality base pairs. GenBank Access codes were assigned to new sequences presented in this study are MK391384, RAG1; MK391386, 16S, tRNAs, ND1 for QCAZ 52473 (*Pristimantis mallii* sp. n.). MK391383, RAG1; MK391385, 16S, tRNAs, ND1 for QCAZ 55445 (*Pristimantis miktos*).

Phylogenetic Analysis

New sequences were compared to the GenBank sequences using the BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to confirm their genetic identity and determine similar species that allow the evaluation of the phylogenetic position of the new taxon. The search showed a high likeness between the new species and *Pristimantis riveti*. Therefore, we have included comparisons with *P. riveti* and other closely related species (sensu Padial et al. 2014), as well as other representative species from the *Pristimantis* clade. Sequences from *Diasporus*, *Eleutherodactylus*, *Holoaden*, *Hypodactylus*, *Ischnocnema*, *Lynchius*, *Oreobates*, and *Strabomantis* were also used as external groups. GenBank sequences employed correspond to data previously reported by Darst and Cannatella (2004), Faivovich et al. (2005), Elmer et al. (2007), Heinicke et al. (2007, 2009, 2015), Hedges et al. (2008), Arteaga-Navarr and Guayasamin (2011), Fouquet et al. (2012), Kok et al. (2012, 2018), Lehr et al. (2012, 2017), Lehr and Von May (2017), Pinto-Sánchez et al. (2012), Arteaga et al. (2013, 2016), Barrio-Amorós et al. (2013), Crawford et al. (2013), Zhang et al. (2013), Ortega-Andrade and Venegas (2014), Rivera-Prieto et al. (2014), Hutter and Guayasamin (2015), Rivera-Correa and Daza (2015), Chávez and Catenazzi (2016), de Oliveira et al. (2017), García-R. et al. (2012), Shepack et al. (2016), Székely et al. (2016), González-Durán et al. (2017), Guayasamin et al.
Multiple sequence alignment was done on the GeneiousPro 5.4.6 software under the MUSCLE algorithm (Robert 2004). Revision and manual correction of the matrix was performed on the Mesquite v2.75 software (Maddison and Maddison 2011). The codifying loci (RAG) were translated in amino acids to evaluate and avoid the presence of stop codons. In total, the combined DNA matrix showed 2968 base pairs. The best model for trait evolution and the best partition outline for our data were estimated simultaneously in the PartitionFinder v1.1.1 software (Lanfear et al. 2012), by means of five partitions of the a priori configured matrix: one for 12S, one for 16S and one partition for each RAG codon.

Phylogenetic trees were rebuilt based on Bayesian inference and maximum likelihood estimation (MLE). For the MLE analyses, 4 independent searches of one replica each were performed, two of them under the systematized starting command stepwise (streefname = stepwise) and the remaining two were configured under the alternative command random (streefname = random). Phylogenetic searches ended after 2000000 degenerations with no improvement in the tree’s topology (genthreshfortopoterm = 2000000). The support of each branch was estimated considering 200 bootstrap replications obtained under the same configuration parameters used to determine the best tree. The consensus tree was estimated in the Mesquite v2.75 software by a 50% majority consensus rule. Bayesian inference analyses took place on the Mrbayes v3.2 software (Ronquist et al. 2012) available online on the CIPRES Science Gateway portal (Miller et al. 2010). The search consisted of five parallel runs of Markov Monte Carlo chain, each one configured at 20 × 106 search generations, four chains at standard temperature values. 50% of the generations were removed as burn-in. By using the TRACER v1.6 (Rambaut and Drummond 2007) software we confirmed the convergence in our searches, with an effective stationary distribution and sample size (ESS > 200). Finally, non-corrected p genetic distances were estimated based on the 16S gene for the new species and related clades using the Mega 6 (Tamura et al. 2013) software. The reference threshold for genetic separation used in the present study is 3% to determine different species (Fouquet et al. 2007).

Morphological data

Description, measurements and terminology follow the standardized format of Lynch and Duellman (1997). The diagnostic characters follow the definitions of Duellman and Lehr (2009). The collected specimens were sacrificed with lidocaine, fixed in 10% formalin and preserved in 70% ethanol. The sex and age of the specimens were determined by secondary sexual characteristics (nuptial pads, vocal slits and size) and direct inspection of the gonads through a dorsolateral incision. The following measurements were taken by the same person at least three times and were averaged with calipers to the nearest 0.1 mm: snout-vent length (SVL), tibia length (TL), foot length (FL), head
width (HW), head length (HL), interorbital distance (IOD), width of the upper eyelid (EW), internarial distance (IND), eye-nostril distance (EN), tympanum diameter (TD), eye diameter (ED). The life coloration pattern of the specimens was recorded with field notes and in-field color photography. The localities, coordinates and elevations were determined from field notes of the collectors and taken with a GPS receiver. The examined specimens were deposited in the Museo de Zoología, Universidad San Francisco de Quito (ZSFQ); Museo de Zoología, Pontificia Universidad Católica del Ecuador (QCAZ); and Sección de Herpetología, Instituto Nacional de Biodiversidad (DHMECN). All institutions are located in Quito, Ecuador.

Results

Phylogenetic relationships and genetic distances (Fig. 1)

Placement of Pristimantis mallii sp. n. in the genus Pristimantis was strongly supported, and according to the available information, the new species is sister to Pristimantis miktos. Both species form a clade with high support (Fig. 1) sister to a clade composed of Pristimantis cryophilius, P. spinosus, P. phoxocephalus, P. riveti, P. versicolor, and P. hampatusami. The uncorrected p-genetic distance between the new species and P. miktos is 11.9% (gene16S).

Figure 1. Phylogeny of Pristimantis showing the relationships of Pristimantis mallii sp. n. (red). The phylogram was derived from analysis of 2968 bp of mitochondrial (gene fragments 12S and 16S) and nuclear (gene fragment RAG) DNA sequences. Branch support is presented for each clade as Bayesian posterior probabilities × 100 (left of the slash) and non-parametric bootstrap (right of the slash). Asterisks indicate support values of 100. The external group is not shown. For each specimen, museum catalog number, locality, and GenBank accession number (in parentheses) are reported. Abbreviations: E. R. = Ecological Reserve.
Systematic accounts

Pristimantis mallii sp. n.
http://zoobank.org/6B898DBA-743A-470A-ABC3-7B123648DFB5

Figures 2–6

Proposed standard English name: Malli’s Rain Frog
Proposed standard Spanish name: Cutín de Malli

Holotype. QCAZ 52473 (field no. SC-PUCE 35222; Figs 3, 4), adult female, collected by Fernando Ayala, Diego Paucar, Yerka Sagredo, Juan Pablo Reyes-Puig, Fausto Recalde, Luis Recalde and Santiago Recalde on January 17, 2012 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.36740S, 78.14573W; 2140 m elev.).

Paratypes (7 females, 12 males). QCAZ 39777, adult female, collected by Diego Páez on January 1, 2009 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.349399S, 78.15870W; 2127 m elev.). QCAZ 52476, 52477, adult females, collected by Fernando Ayala, Diego Paucar, Yerka Sagredo, Juan Pablo Reyes-Puig, Fausto Recalde, Luis Recalde and Santiago Recalde on January 17, 2012 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.36761S, 78.14584W; 2153 m elev.). QCAZ 52494, adult female, collected by Fernando Ayala, Diego Paucar, Yerka Sagredo, Juan Pablo Reyes-Puig, Fausto Recalde, Luis Recalde and Santiago Recalde on January 17, 2012 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.37220S, 78.15386W; 1823 m elev.). DHMECN 5236, 5264, adult females, collected by Mario Yánez-Muñoz, Miguel Urgilés and Andrés Laguna on May, 2008 at Reserva Río Zuñag, Baños, Province of Tungurahua, Ecuador (1.40045S, 78.186776W; 1300 m). ZSFQ 1305, adult female, collected by Carolina Reyes-Puig, Nicolás Dávalos, Daniel Velarde and Emilio Mancero on October 7, 2017 at at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.36761S, 78.14583W; 2190 m elev.). QCAZ 52512, subadult male, collected by Fernando Ayala, Diego Paucar, Yerka Sagredo, Juan Pablo Reyes-Puig, Fausto Recalde, Luis Recalde and Santiago Recalde on January 20, 2012 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.37513S, 78.16363W; 1532 m elev.). QCAZ 52471, 52474, adult males with the same data of the holotype. QCAZ 52478, adult male, collected by Fernando Ayala, Diego Paucar, Yerka Sagredo, Juan Pablo Reyes-Puig, Fausto Recalde, Luis Recalde and Santiago Recalde on January 17, 2012 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.36761S, 78.14583W; 2146 m elev.). QCAZ 52480, 52481, adult males, collected by Fernando Ayala, Diego Paucar, Yerka Sagredo, Juan Pablo Reyes-Puig, Fausto Recalde, Luis Recalde and Santiago Recalde on January 17, 2012 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.36765S, 78.14594W; 2135 m elev.). DHMECN 5233–5235, 5238, adult males, collected by Mario Yánez-Muñoz, Miguel Urgiles and Andrés Laguna on May, 2008 at Reserva Río Zuñag, Baños, Province of Tungurahua,
A new species of terrestrial frog Pristimantis from Ecuador

Figure 2. Coloration in life of Pristimantis mallii sp. n. Dorsal view. A ZSFQ 1305, SVL = 34.3 mm, adult female B DHMECN 5236, SVL = 30.9 mm, adult female C QCAZ 52473, SVL = 28.8 mm, holotype, adult female; Second line from left to right D QCAZ 52494, SVL = 29.3 mm, adult female E QCAZ 52512, SVL = 10.3 mm, subadult male F QCAZ 52474, SVL = 11.6 mm, adult male. Ventral view G DHMECN 5236, SVL = 30.9 mm, adult female H QCAZ 52473, SVL = 28.8 mm, holotype, adult female I QCAZ 52474, SVL = 11.6 mm, adult male. Pictures are not to scale.

Ecuador (1.40045S, 78.186776W; 1269 m elev.). ZSFQ 1306, 1327, adult males, collected by Carolina Reyes-Puig, Nicolás Dávalos, Daniel Velarde and Emilio Mancero on October 7, 2017 at Reserva Río Zuñag, Fundación EcoMinga, Baños, province of Tungurahua, Ecuador (1.36761S, 78.14583W; 2190 m elev.).

Generic placement. We assign the new species in Pristimantis based on our molecular data (Fig. 1).

Diagnosis. A new species of Pristimantis having the following combination of characters: (1) skin on dorsum and flanks shagreen, with rounded tubercles scattered towards the axillary region, with “)” shaped scapular folds (evident in life); dorsolateral folds absent; skin on venter areolate; discoidal fold slightly defined; (2) tympanic membrane and tympanic annulus present, round, equivalent to 45% of ED; supratym-
panic fold present; (3) snout broadly rounded in dorsal view, moderate in length and rounded in lateral view; (4) upper eyelid with one or two subconical tubercles on the center of eyelid and some rounded tubercles (less evident in preserved specimens); EW 100% of IOD; cranial crests absent (5) dentigerous processes of vomers oblique in outline, with five to seven teeth, moderately separated, posteromedial to choanae; (6) vocals slits and nuptial pads present; (7) Finger I shorter that Finger II; discs of digits expanded, truncate; two times the width of the digits on Fingers III and IV; (8) fingers with lateral fringes; (9) ulnar tubercles present, rounded; (10) heel bearing one or two subconical tubercles (less evident in preserved specimens) surrounded by few lower rounded tubercles; inner tarsal fold present, it extends up to 1/4 of the tarsus; (11) inner metatarsal tubercle oval, 5–6× as large as outer metatarsal tubercle that is subconical; supernumerary plantar tubercles indistinct; (12) toes with slightly defined lateral fringes; webbing absent; Toe V longer that Toe III, disc on Toe V reach the distal sub-articular tubercle on Toe IV; (13) in life, dorsum and flanks light brown to brown, with irregular dark brown marks bounded by dirty cream, light brown or greenish cream; hidden surfaces of thighs brown splashed with dirty cream; groin with irregular yellowish marks; venter light gray or cream, spotted to densely spotted with brown. Golden coppery iris with black reticulations and a reddish-brown horizontal stripe; (14) SVL in adult males 16.7 ± 4.5 (11.6–21.3 mm); females with 27.6 ± 3.9 (22.6–34.3).
Comparisons with other species. *Pristimantis mallii* is most similar to its sister species *P. miktos* (Ortega-Andrade and Venegas 2014) (characters in parentheses) from the eastern lowlands of Ecuador. However, *P. mallii* can be easily distinguished for having " (" shaped scapular folds (W- or X-shaped scapular fold); snout broadly rounded in dorsal view (subacuminate); upper eyelid bearing one or two subconical tubercles and some rounded tubercles (one small non-conical tubercle); dentigerous processes of vomers with 5–7 teeth (2 or 3 teeth); vocal slits in males present (absent); lateral fringes present (absent); dorsum and flanks light brown to brown, with irregular dark brown marks bounded by dirty cream, light brown or greenish cream (dorsum reddish-brown with some greenish-orange stains in scapular region, with or without yellowish-pale spots); golden cophery iris with black reticulations and a reddish-brown horizontal stripe (deep orange finely reticulated with black).

Other species of *Pristimantis* from the eastern lowlands of Ecuador, that can be confused with the new species by having dermal ridges in the scapular region, are *P. kichwarum* (Elmer and Cannatella 2008) and *P. luscombei* (Duellman and Mendelson 1995). Nonetheless, these two species have W-shaped dermal ridges (" (" shaped fold in *P. mallii*); snout subacuminate in dorsal view (broadly rounded in *P. mallii*); ulnar tubercles absent or low (present, rounded in *P. mallii*); and nuptial pads in males absent (present in *P. mallii*). Other species of rain frogs from the eastern Andean slopes of Ecuador that are morphologically similar to *Pristimantis mallii* are *P. marcoreyesi* (Reyes-Puig et al., 2014), *P. yanezi* (Navarrete et al., 2016) and *P. spinosus* (Lynch, 1979). In males of *Pristimantis marcoreyesi*, *P. yanezi* and *P. spinosus* the vocal slits and nuptial pads are absent (present in *P. mallii*). The snout in *P. marcoreyesi* and *P. spinosus* is subacuminate in dorsal view (broadly rounded in *P. mallii*); furthermore, *P. marcoreyesi* has dorsolateral folds slightly defined (absent in *P. mallii*), *P. spinosus* has the skin of dorsum finely tuberculate (shagreen in *P. mallii*), and the groin is black enclosing white spots (groin with irregular yellowish marks in *P. mallii*). Besides, *P. yanezi* can be distinguished by having one conical tubercle on the upper eyelid (one or two subconical in *P. mallii*); discoidal fold absent (present, slightly defined in *P. mallii*); fingers and toes without lateral fringes (present in *P. mallii*); dorsum yellowish brown to dark brown with scattered pale brown or orange blotches and black flecks, bearing a faint mid-dorsal hourglass-shaped band (dorsum and flanks light brown to brown, with irregular dark brown marks bounded by dirty cream, light brown or greenish cream).

Description of the holotype. Adult female. Measurements (in mm): SVL 28.7; tibia length 15.6; foot length 15.2; head length 11.7; head width 12.8; eye diameter 4.7; tympanum diameter 2.5; interorbital distance 3.6; upper eyelid width 3.7; inter-narial distance 3.5; eye–nostril distance 4.6. Head slightly wider than long (12.8 mm vs 11.7); head width 44.4% of SVL; head length 41% of SVL; snout broadly rounded in dorsal view, moderate in length and rounded in lateral view (Fig. 4); eye–nostril distance 16% of SVL; canthus rostralis slightly concave in lateral view, nostrils directed laterally; interorbital area flat, as wide as the upper eyelid; cranial crests absent; upper eyelid with one or two subconical tubercles (reduced by preservation effects), and some rounded tubercles; upper eyelid width 100% of IOD; tympanic membrane differen-
Figure 4. Preserved holotype of *Pristimantis mallii* sp. n., QCAZ 52473, adult female, SVL = 28.8 mm

A palmar and plantar surfaces B dorsal and lateral views of the head.

Skin on dorsum and flanks shagreen, with rounded tubercles scattered towards the axillary region, with “)” shaped scapular folds (evident in life); dorsolateral folds absent; skin on venter areolate; discoidal fold slightly defined; cloaca with rounded tubercles on the inferoposterior margin. Forearms slender, ulnar tubercles present, rounded; palmar tubercle heart-shaped, bilobed, approximately twice the size of oval thenar tubercle (the tubercles are slightly defined); subarticular tubercles rounded, defined, few supernumerary tubercles, indistinct; fingers with narrow lateral fringes; Finger I shorter than Finger II; disc on Finger I rounded and on Finger II expanded, twice the width of the digits on Fingers III and IV, truncate; pads on fingers well defined by circumferential grooves on all fingers (Fig. 4).

Hindlimbs slender, tibia length 54% of SVL; foot length 53% of SVL heel; upper surfaces of hindlimbs shagreen; posterior surfaces of thighs smooth, ventral surfaces areolate; heel bearing one or two subconical tubercles (less evident by preservation

tiated, tympanic annulus present, with upper margins covered by a supratympanic fold; tympanum diameter 54% of eye diameter; three subconical postrictal tubercles. Choanae moderately in size, with a drop-shaped outline, not concealed by palatal shelf of maxilla; dentigerous processes of vomer oblique in outline, moderately separated, posteromedial to choanae, with six to seven teeth; tongue wider than long, notched posteriorly, approximately 40% of it fixed to the mouth floor.
A new species of terrestrial frog *Pristimantis* from Ecuador

Effect) surrounded by few lower rounded tubercles; inner tarsal fold present, it extends up to 1/4 of the tarsus; inner metatarsal tubercle oval, 5–6× as large as outer metatarsal tubercle that is subconical; supernumerary plantar tubercles indistinct; toes with slightly defined lateral fringes; webbing absent; discs on Fingers I and II rounded, discs in Fingers III, IV and V expanded, twice the width of the digit; all toes with ventral pads well defined by circumferential grooves; Toe V longer than Toe III, disc on Toe V reach the distal subarticular tubercle on Toe IV (Fig. 4).

Color of holotype in life. (based on digital photographs, Fig. 2) Dorsum light brown with irregular brown marks bounded by dirty cream; black “) (“ shaped scapular fold; head with dirty cream marks, one located behind the nostrils; flanks with brown oblique stripes delineated of dirty cream, with marbled brown marks concentrated towards axillary region; with two diagonal dark brown subocular stripes. Ventral areas of body, limbs and palms cream spotted with minute brown dots; throat cream spotted with brown dots, aggregates towards the outer edge of the jaw; forearms and hindlimbs with transversal brown bars separated by dirty cream interspaces; posterior surfaces of thigh dark brown; groin with irregular pale-yellowish marks. Golden coppery iris with black reticulations and a reddish-brown horizontal stripe.

Color of holotype in ethanol 70%. (Fig. 3) Dorsum light brown with irregular brown marks slightly bounded by cream; black “) (“ shaped scapular fold; with two black longitudinal lines above and behind the tympanum; with two diagonal brown subocular stripes; dorsal surfaces limbs, fingers and toes with transversal brown bars separated by dirty cream; the anterior surfaces of flanks light brown, with marbled brown marks concentrated towards axillary region; posterior surfaces of flanks and groin grayish cream. Ventral areas of body, limbs and palms cream spotted with minute brown dots aggregates towards the outer edge of the jaw, carpus, ulnar surfaces, flanks, posterior surfaces of thigh and tarsus. Golden olive iris.

Variation. Preserved individuals (Figs 5, 6). In the type series, adult males (10.2–21.3 mm) are smaller than females (22.6–34.3). See Table 1 for measurements of the type specimens. Males have vocals slits located in the posteromedial region of the floor.

Characters	Females (n = 8)	Males (n = 12)
SVL	22.6–34.3 (27.6±3.9)	10.2–21.3 (16.7±4.5)
TL	13.1–16.0 (15.3±1.0)	8.8–11.4 (10.7±1.0)
FL	12.2–15.0 (14.3±1.2)	8.2–11.4 (9.6±1.1)
HW	9.4–14 (11.8±1.4)	5.8–8.9 (7.4±0.9)
HL	9.5–14.2 (12.1±1.4)	6.2–8.2 (8.1±0.9)
IOD	2.7–4.2 (3.6±0.4)	1.7–2.8 (2.3±0.3)
EW	3.0–4.0 (3.5±0.3)	1.9–3.2 (2.6±0.3)
IND	1.8–3.7 (3.1±0.6)	1.1–2.9 (2.1±0.5)
EN	3.1–4.6 (4.0±0.5)	2.0–2.8 (2.4±0.2)
TD	1.5–3.0 (2.1±0.5)	1.0–1.7 (1.2±0.2)
ED	3.6–5.0 (4.4±0.5)	2.7–4.1 (3.4±0.4)
Figure 5. Preserved individuals of *Pristimantis mallii* sp. n. showing dorsal and ventral variation in adult females A–G dorsal view H–N ventral view. A, H ZSFQ 1305, SVL = 34.3 mm B, I DHMECN 5236, SVL = 30.9 mm C, J QCAZ 52494, SVL = 29.3 mm D, K QCAZ 52473, SVL = 28.8 mm, holotype E, L QCAZ 39777, SVL = 26.5 mm F, M QCAZ 52477, SVL = 24.7 mm G, N QCAZ 52476, SVL = 24.0 mm.

Figure 6. Preserved individuals of *Pristimantis mallii* sp. n. showing dorsal and ventral variation in males A–G dorsal view H–N ventral view. A, H ZSFQ 1306, SVL = 21.3 mm B, I QCAZ 52480, SVL = 21.1 mm C, J QCAZ 52481, SVL = 15.6 mm D, K QCAZ 52471, SVL = 12.9 mm E, L QCAZ 52474, SVL = 11.6 mm F, M QCAZ 52478, SVL = 12.2 mm G, N QCAZ 52512, SVL = 10.3 mm.

of the mouth; and nuptial pads located in the lower external portion of the Finger I. The “)” shaped scapular fold is present in all individuals, but is black in all females, while it is not in some males (ZSFQ 1306, QCAZ 52481) (Figs 5, 6). Background coloration varies from gray or light brown to brown. Marks on dorsum and flanks are similar in all the type series, except for the adult males (ZSFQ 1306, QCAZ 52481) that
A new species of terrestrial frog Pristimantis from Ecuador

Figure 7. Map showing the four known localities for *Pristimantis mallii* sp. n. Localities are based on type specimens deposited at the QCAZ, DHMECN and ZSFQ collections. Triangle represents the holotype locality; circles represents the paratypes localities.

have a dorsum without irregular marks and exhibit an internarial cream brand (Fig. 6). Some males present a gray patch on the head between the narinal and postorbital region (QCAZ 52471, QCAZ 52474, QCAZ 52478, and QCAZ 52512); this pattern is not present in any female (Figs 5, 6). The males (QCAZ 52512 and DHMECN 5234) have a gray spot in the middorsal region (Fig. 6). One male presents a dorsal pattern with longitudinal stripes on the dorsum (QCAZ 52480) (Fig. 6). In general, males have more variable dorsal patterns than females. Ventral coloration varies from cream to light brown; from slightly spotted (ZSFQ 1305, QCAZ 52473) to roughly spotted with brown (DHMECN 5236, QCAZ 52474, QCAZ 52212) (Figs 5, 6).

Coloration in life. (based on digital photographs of the type specimens, Fig. 2).

Dorsum and flanks light brown (QCAZ 52473) to brown (QCAZ 52494, QCAZ 52512), with irregular dark brown marks bounded by dirty cream (QCAZ 52473), light brown (DHMECN 5236) or greenish cream (ZSFQ 1305) (Fig. 2); hidden surfaces of thighs brown splashed with dirty cream; groin with irregular yellowish marks; venter light gray (QCAZ 52474) or cream (QCAZ 52473) spotted to densely spotted (QCAZ 52474, DHMECN 5236, QCAZ 5212) with brown. Golden coppery iris with black reticulations and a reddish horizontal stripe (Fig. 2).

Distribution and natural history. *Pristimantis mallii* is only known from Fundación EcoMinga’s Río Zuñag Ecological Reserve, which is located in the southeastern buffer zone of the Llanganates National Park, in Baños, Río Negro, Tungurahua.
province, in the upper basin of the Pastaza River, on the east-central slope of the Andes in Ecuador. This locality comprises montane cloud forest (MAE 2012). The elevation range is 1300–2190 m above sea level.

All specimens were found on herbaceous and shrub vegetation inside mature forest, where they perched on herbs, shrubs, palms, ferns, bromeliads and Araceae between 100 and 450 cm above the ground. A couple in amplexus was found in January 2012, and the female deposited an egg clutch in a field bag, in the time passed between being collected in the field and reaching the base camp. Additionally, two couples in amplexus and an adult female were found in October 2017.

Etymology. The new species is named in honor of the late Dr V. N. Mallikarjuna “Malli” Rao, of Wilmington, Delaware, USA. A winner of the Lavosier Medal at DuPont, he helped develop an environmentally safe alternative to the fluorocarbons that were depleting the ozone layer. His donation to EcoMinga in 2007 started the Río Zuñag Reserve, the type locality of *P. mallii*.

Discussion

Pristimantis mallii is part of a clade of *Pristimantis* distributed in the Andes of central and southern Ecuador. The only non-Andean species of the group is *P. miktos*, which occurs in the Amazon basin below 300 m. We refrain from assigning the new species to a named species group. Most species groups in *Pristimantis* have been shown to be non-monophyletic, especially the large *P. unistrigatus* group (sensu Hedges et al. 2008). Of note, the clade presented in this paper is distributed in Andean forests, has a medium-sized SVL, lives in shrubby habits, and the majority of species have cryptic dorsal colorations and irregular diffuse flash marks on the hidden surfaces of the groin (Lynch 1979; Ortega-Andrade and Venegas 2014; Yánez-Muñoz et al. 2015; Ron et al. 2018).

The upper basin of the Pastaza River has proven to be a priority area for the conservation of *Pristimantis* due to its high alpha and beta diversity and high endemism (Reyes-Puig et al. 2013, 2014). In the last decade, nine species of *Pristimantis* have been described in this important region (Reyes-Puig et al. 2010, 2013, 2014, 2015; Yánez-Muñoz et al. 2010; Reyes-Puig and Yánez-Muñoz 2012). The discovery of *P. mallii*, represents the tenth species of *Pristimantis* discovered and described from the upper basin of the Pastaza River after one decade of herpetological research by the Instituto Nacional de Biodiversidad and the EcoMinga Foundation. These discoveries have helped biodiversity conservation outside government protected areas. The upper basin of the Pastaza River is a region with high diversity and endemism of several vertebrates (Reyes-Puig et al. 2013; Ríos-Alvear and Reyes-Puig 2015; Rodríguez-Galarza et al. 2017), but also of plants (e.g. Jost and Shepard 2017). The EcoMinga Foundation’s reserves function as a corridor between two large National Parks (i.e. Llanganates and Sangay) and contribute to the protection and connectivity of this important area. Coincidentally, this tenth new species of *Pristimantis* corresponds to ten years of herpetological research by EcoMinga which now manages ten ecological reserves. The total area protected within those reserves approximates 10,000 hectares.
A new species of terrestrial frog Pristimantis from Ecuador

Acknowledgements

We thank to Fernando Ayala, Diego Paucar, Yerka Sagredo, Fausto Recalde, Luis Recalde, Santiago Recalde, Diego Páez, Josué Picho, Jackie Álvarez, Claudia Herrera, Carlos Guarderas, Christian Puertas, Ayla Hickey, Benjamín Arias, Guillem Rius, and Javier Robayo for their field assistance. EcoMinga Foundation would like to thank Henri Botter, Ardy van Ooij, IUCN-Netherlands and Netherlands Postcode Lottery for financing surveys and support assistance of the Rio Zuñag Reserve, and World Land Trust, Rainforest Trust, Orchid Conservation Alliance, Vera Lee, and the late Malli Rao for supporting our land purchases in this area. We also thank to World Wildlife Fund (WWF) for their support to field researches and the consolidation of protected areas. Field work of the INABIO had the support of Miguel Urgilés, Diego Inclán and Francisco Prieto. Ministerio del Ambiente issued collection permits No. 0018-09icfaudnb/MA, 001-018-FAU-DNBAPVS/MA, No. 18-2017-IC-FAU-DNB/MAE. Field and laboratory work by QCAZ personnel was funded by grants from Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT, Arca de Noé Initiative; Omar Torres and SRR principal investigators) and PUCE-DGA. We are extremely grateful to Lou Jost for reviewing the language and grammar throughout the manuscript. Publication of this article was funded by the Universidad San Francisco de Quito USFQ Research Publication Fund (HUBI ID: 41, 48, 12268).

References

Arteaga-Navarro AF, Guayasamin JM (2011) A new frog of the genus Pristimantis (Amphibia: Strabomantidae) from the high Andes of southeastern Ecuador, discovered using morphological and molecular data. Zootaxa 2876(1): 17–29. https://doi.org/10.11646/zootaxa.2876.1.2

Arteaga A, Bustamante L, Guayasamin JM (2013) The Amphibians and Reptiles of Mindo: Life in the Cloudforest. Universidad Tecnológica Indoamérica, Quito, 258 pp.

Arteaga A, Pyron RA, Peñaflie N, Romero-Barreto P, Culebras J, Bustamante L, Yanez-Muñoz MH, Guayasamin JM (2016) Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. Plos ONE 11(4): e0151746. https://doi.org/10.1371/journal.pone.0151746

Barrio-Amorós CL, Heinicke MP, Hedges SB (2013) A new tuberculated Pristimantis (Anura, Terrarana, Strabomantidae) from the Venezuelan Andes, redescription of Pristimantis pleurostriatus, and variation within Pristimantis vanadisae. Zootaxa 3647(1): 43–62. https://doi.org/10.11646/zootaxa.3647.1.2

Batallas D, Brito J (2014) Nueva especie de rana del género Pristimantis del grupo lacrimosus (Amphibia: Craugastoridae) del Parque Nacional Sangay, Ecuador. Papéis Avulsos de Zoologia 54(5): 51–62. https://doi.org/10.1590/0031-1049.2014.54.05

Brito J, Batallas D, Velalcázar D (2014) Nueva especie de rana terrestre del género Pristimantis (Amphibia: Craugastoridae), meseta de la Dordillera del Cóndor. Papéis Avulsos de Zoologia 54(30): 435–466. https://doi.org/10.1590/0031-1049.2014.54.30
Brito J, Ojala-Barbour R, Batallas RD, Almendáriz CA (2016) A new species of *Pristimantis* (Amphibia: Strabomantidae) from the cloud forest of Sangay National Park, Ecuador. Journal of Herpetology 50 (2): 337–344. https://doi.org/10.1670/13-103

Brito J, Almendáriz AC, Batallas D, Ron SR (2017a) Nueva especie de rana bromelícola del género *Pristimantis* (Amphibia: Craugastoridae), meseta de la Cordillera del Cóndor, Ecuador. Papéis Avulsos de Zoologia 57 (15): 177–195. https://doi.org/10.11606/0031-1049.2017.57.15

Brito J, Batallas D, Yáñez-Muñoz MH (2017b) Ranas terrestres *Pristimantis* (Anura: Craugastoridae) de los bosques montanos del río Upano, Ecuador: lista anotada, patrones de diversidad y descripción de cuatro especies nuevas. Neotropical Biodiversity 3(1): 125–156. https://doi.org/10.1080/23766808.2017.1299529

Chávez G, Catenazzi A (2016) A new species of frog of the genus *Pristimantis* from Tingo María National Park, Huánuco Department, central Peru (Anura, Craugastoridae). ZooKeys 610: 113–130. https://doi.org/10.3897/zookeys.610.8507

Crawford AJ, Cruz C, Griffith E, Ross H, Ibáñez R, Lips KR, Driskell AC, Bermingham E, Crump P (2013) DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations. Molecular Ecology Resources 13(6): 1005–1018. https://doi.org/10.1111/1755-0998.12054

Darst CR, Cannatella DC (2004) Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 31(2): 462–475. https://doi.org/10.1016/j.ympev.2003.09.003

De Oliveira EA, Rodrigues LR, Kaefer IL, Pinto KC, Hernández-Ruz EJ (2017) A new species of *Pristimantis* from eastern Brazilian Amazonia (Anura, Craugastoridae). ZooKeys 687: 101–129. https://doi.org/10.3897/zookeys.687.13221

Duellman WE, Mendelson JR (1995) Amphibians and reptiles from northern Departamento Loreto, Peru: taxonomy and biogeography. The University of Kansas Science Bulletin 55: 329–376. https://doi.org/10.5962/bhl.part.779

Duellman WE, Lehr E (2009) Terrestrial-breeding Frogs (Strabomantidae) in Peru. Natur Und Tier-Verlag, Norwich, 384pp.

Elmer KR, Dávila JA, y Lougheed SC (2007) Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, *Eleutherodactylus ockendeni*. BMC Evolutionary Biology 7(1): 247. https://doi.org/10.1186/1471-2148-7-247

Elmer KR, Cannatella DC (2008) Three new species of leaflitter frogs from the upper Amazon forests: cryptic diversity within *Pristimantis* “ockendeni” (Anura: Strabomantidae) in Ecuador. Zooaxa 1784: 11–38.

Esselstyn JA, García HJD, Saulog MG, Heaney LR (2008) A new species of *Desmalopex* (Pteropodidae) from the Philippines, with a phylogenetic analysis of the Pteropodini. Journal of Mammalogy 89(4): 815–825. https://doi.org/10.1644/07-MAMM-A-285.1

Faivovich J, Haddad CFB, Garcia PC, Frost DR, Campbell JA, Wheeler WC (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History 294(1): 240. https://doi.org/10.1206/0003-0090(2005)294[0001:SROTTF]2.0.CO;2

Fouquet A, Gilles A, Vences M, Marty C, Blanc M (2007) Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS ONE 2(10): e1109. https://doi.org/10.1371/journal.pone.0001109
A new species of terrestrial frog Pristimantis from Ecuador

Fouquet A, Noonan BP, Rodrigues MT, Pech N, Gilles A, Gemmell NJ (2012) Multiple Quaternary refugia in the Eastern Guiana Shield revealed by comparative phylogeography of 12 frog species. Systematic Biology 61: 461–489. https://doi.org/10.1093/sysbio/syr130

Frost DR (2018) Amphibian Species of the World: an Online Reference. Version 6.0. American Museum of Natural History, New York. http://research.amnh.org/herpetology/amphibia [Accessed on: 2017-2-11]

García-R JC, Crawford AJ, Mendoza ÁM, Ospina O, Cárdenas H, Castro F (2012) Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. PLoS ONE 7(9): 1–9. https://doi.org/10.1371/journal.pone.0046077

González-Durán GA, Targino M, Rada M, Grant T (2017) Phylogenetic relationships and morphology of the Pristimantis leptolophus species group (Amphibia: Anura: Brachycephaloidea), with the recognition of a new species group in Pristimantis Jiménez de la Espada, 1870. Zootaxa 4243(1): 42–74. https://doi.org/10.11646/zootaxa.4243.1.2

Gradstein SR, Reiner-Drehwald ME, Jost I. (2004) The systematic position and distribution of Myriacoela irronta (Lejeuneaceae), an endangered liverwort of the Ecuadorian Andes. The Journal of the Hattori Botanical Laboratory 95: 235–248.

Guayasamin JM, Krynak T, Krynak K, Culebras J, Hutter CR (2015) Phenotypic plasticity raises questions for taxonomically important traits: a remarkable new Andean rainfrog (Pristimantis) with the ability to change skin texture. Zoological Journal of the Linnean Society 173(4): 913–928. https://doi.org/10.1111/zoj.12222

Guayasamin JM, Hutter CR, Tapia EE, Culebrás J, Peñafiel N, Pyron RA, Morochz C, Funk C, Arreaga A (2017) Diversification of the rainfrog Pristimantis ornatisimus in the lowlands and Andean foothills of Ecuador. PLoS ONE 12(3): e0172615. https://doi.org/10.1371/journal.pone.0172615

Hedges SB, Duellman WE, Heinicke MP (2008) New World direct-developing frogs (Anura: Terrarana): molecular phylogeny, classification, biogeography, and conservation. Zootaxa 1737(1): 1–182.

Heinicke MP, Duellman WE, Hedges SB (2007) Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proceedings of the National Academy of Sciences 104(24): 10092–10097. https://doi.org/10.1073/pnas.0611051104

Heinicke MP, Duellman WE, Trueb L, Means BD, Macculloch RD, Hedges SB (2009) A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny. Zootaxa 2211: 1–35.

Heinicke MP, Barrio-Amorós CL, Hedges SB (2015) Molecular and morphological data support recognition of a new genus of New World direct-developing frog (Anura: Terrarana) from an under-sampled region of South America. Zootaxa 3986(2): 151–172. https://doi.org/10.11646/zootaxa.3986.2.1

Hutter CR, Guayasamin JM (2015) Cryptic diversity concealed in the Andean cloud forests: two new species of rainfrogs (Pristimantis) uncovered by molecular and bioacoustic data. Neotropical Biodiversity 1(1): 36–59. https://doi.org/10.1080/23766808.2015.1100376

Jablonski D, Grula D, Barrio-amorós CL, Kok PJR (2017) Correspondence Molecular phylogenetic relationships among Pristimantis summit populations in the eastern tepui chain: insights from P. aureoventris (Anura : Craugastoridae). Salamandra 53(3): 473–478.
Jost L, Shepard A (2017) Four new *Teagueia* (Orchidaceae: Pleurothallidinae) from the upper río Pastaza watershed of east-central Ecuador. Lankesteriana 17(2): 261–278. https://doi.org/10.15517/lank.v17i2.30159

Kennerly J, Bromley R (1971) Geology and Geomorphology of the Llanganati Mountains, Ecuador. Editorial Minerva, Quito, 16 pp.

Kok PJR, Dezfulian R, Means DB, Fouquet A, Barrio-Amorós CL (2018) Amended diagnosis and redescription of *Pristimantis marmoratus* (Boulenger, 1900) (Amphibia: Craugastoridae), with a description of its advertisement call and notes on its breeding ecology and phylogenetic relationships. European Journal of Taxonomy 397: 1–30. https://doi.org/10.5852/ejt.2018.397

Kok PJR, MacCulloch RD, Means DB, Roelants K, Van Bocxlaer I, Bossuyt F (2012) Low genetic diversity in tepui summit vertebrates. Current Biology 22(15): R589–R590. https://doi.org/10.1016/j.cub.2012.06.034

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701. https://doi.org/10.1093/molbev/ms202

Lehr E, Moravec J, Cusi JC (2012) Two new species of *Phrynopus* (Anura, Strabomantidae) from high elevations in the Yanachaga-Chemillén National park in Peru (Departamento de Pasco). ZooKeys 235: 51–71. https://doi.org/10.3897/zookeys.235.3885

Lehr E, Moravec J, Cusi JC, Gvoždík V (2017) A new minute species of *Pristimantis* (Amphibia: Anura: Craugastoridae) with a large head from the Yanachaga-Chemillén National Park in central Peru, with comments on the phylogenetic diversity of *Pristimantis* occurring in the Cordillera Yanachaga. European Journal of Taxonomy 325: 1–22. https://doi.org/10.5852/ejt.2017.325

Lehr E, Von May R (2017) A new species of terrestrial-breeding frog (Amphibia, Craugastoridae, *Pristimantis*) from high elevations of the Pui Pui protected forest in Central Peru. ZooKeys 660: 17–42. https://doi.org/10.3897/zookeys.660.11394

Lynch JD (1979) Leptodactylid frogs of the genus *Eleutherodactylus* from the Andes of southern Ecuador. Lawrence: Kansas University. https://doi.org/10.5962/bhl.title.16268

Lynch JD, Duellman WE (1980) The *Eleutherodactylus* of the Amazonian slopes of the Ecuadorian Andes (Anura: Leptodactylidae). Miscellaneous Publication (University of Kansas, Museum of Natural History) 69: 1–86. https://doi.org/10.5962/bhl.title.16222

Lynch JD, Duellman WE (1997) Frogs of the Genus *Eleutherodactylus* in Western Ecuador. University of Kansas, Natural History Museum, Special Publication 23: 1–236. https://doi.org/10.5962/bhl.title.7951

Maddison WP, Maddison DR (2011) Mesquite: a Modular System for Evolutionary Analysis. Version 3.10. http://mesquiteproject.org [Accessed on: 2017-05-01]

MAE [Ministerio del Ambiente del Ecuador] (2012) Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Quito, 32 pp.

Navarrete MJ, Venegas PJ, Ron SR (2016) Two new species of frogs of the genus *Pristimantis* from Llanganates National Park in Ecuador with comments on the regional diversity of Ecuadorian *Pristimantis* (Anura, Craugastoridae). ZooKeys 593: 139–162. https://doi.org/10.3897/zookeys.593.8063

Ortega-Andrade HM, Venegas PJ (2014) A new synonym for *Pristimantis luscombei* (Duellman and Mendelson 1995) and the description of a new species of *Pristimantis* from the upper...
A new species of terrestrial frog Pristimantis from Ecuador

131

per Amazon basin (Amphibia: Craugastoridae). Zootaxa 3895(1): 31–57. https://doi.org/10.11646/zootaxa.3895.1.2

Padial JM, Grant T, Frost DR (2014) Molecular systematic of terraranas (Anura: Brachycepha-

loidea) with an assessment of the effects of alignment and optimality criteria. Zootaxa 3825: 1–132. https://doi.org/10.11646/zootaxa.3825.1.1

Pinto-Sánchez NR, Ibáñez R, Madriñán S, Sanjur OI, Bermingham E, Crawford AJ (2012) The Great American Biotic Interchange in frogs: multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molecular Phy-

logenetics and Evolution 62(3): 954–972. https://doi.org/10.1016/j.ympev.2011.11.022

Rambaut A, Drummond AJ (2007) Tracer v1.6. University of Edinburgh. http://beast.bio.
ed.ac.uk/Tracer

Reyes-Puig JP, Yáñez-Muñoz MH, Cisneros-Heredia DF, Ramírez-Jaramillo SR (2010) Una nueva especie de rana Pristimantis (Terraranas: Strabomantidae) de los bosques nublados de la cuenca alta del río Pastaza, Ecuador. ACI Avances en Ciencias e Ingenierías 2(3): B78–B82. https://doi.org/10.18272/aci.v2i3.48

Reyes-Puig JP, Yáñez-Muñoz MH (2012) Una nueva especie de Pristimantis (Anura: Craugast-
oridae) del corredor ecológico Llangantes-Sangay, Andes de Ecuador. Papéis Avulsos de Zoologia 52(6): 81–91. https://doi.org/10.1590/S0031-10492012000600001

Reyes-Puig MM, Reyes-Puig JP, Yáñez-Muñoz MH (2013) Ranas terrestres del género Pristimantis (Anura: Craugastoridae) de la Reserva Ecológica Río Zúñag, Tungurahua, Ecuador: Lista anotada y descripción de una especie nueva. ACI Avances en Ciencias e Ingenierías 5(2): B5–B13. https://doi.org/10.18272/aci.v5i2.133

Reyes-Puig JP, Reyes-Puig CP, Ramírez-Jaramillo SR, Pérez-Lara MB, Yáñez-Muñoz MH (2014) Tres nuevas especies de ranas terrestres Pristimantis (Anura: Craugastoridae) de la cuenca alta del Río Pastaza, Ecuador. ACI Avances en Ciencias e Ingenierías 6(2): B51–B62. https://doi.org/10.18272/aci.v6i2.179

Reyes-Puig JP, Reyes-Puig CP, Pérez-Lara MB, Yáñez-Muñoz MH (2015) Dos nuevas especies de ranas Pristimantis (Craugastoridae) de la cordillera de los Sacha Llanganatis, vertiente oriental de los Andes de Ecuador. ACI Avances en Ciencias e Ingenierías 7(2): B61–B74. https://doi.org/10.18272/aci.v7i2.258

Ríos-Alvear GR, Reyes-Puig C (2015) Corredor ecológico Llanganates-Sangay: un acercamien-
to hacia su manejo y funcionalidad. Yachana Revista Científica 4(2):11–21.

Rivera-Correa M, Daza JM (2015) Molecular phylogenetics of the Pristimantis lacrimosus spe-
cies group (Anura: Craugastoridae) with the description of a new species from Colombia. Acta Herpetologica 10(2): 129–134. https://doi.org/10.13128/Acta_Herpetol-16434

Rivera-Prieto DA, Rivera-Correa M, Daza JM (2014) A new colorful species of Pristimantis (Anura: Craugastoridae) from the eastern flank of the Cordillera Central in Colombia. Zootaxa 3900(2): 223–242. https://doi.org/10.11646/zootaxa.3900.2.3

Robert EC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–97. https://doi.org/10.1093/nar/gkh340

Rodríguez-Galarza FE, Valdiviezo-Rivera J, Reyes-Puig JP, Yánez-Cajo DJ (2017) Ictiofauna de los ríos Zuñag y Anzu en el Corredor Ecológico Llanganates–Sangay, Provincias de Pastaza y Tungurahua, Ecuador. Serie Zoológica 12(13): 33–52.
Ron SR, Yanez-Muñoz MH, MerinoViteri A, Ortiz DA (2018) Anfibios del Ecuador. Version 2018.0. Museo de Zoología, Pontificia Universidad Católica del Ecuador. https://bioweb.bio/faunaweb/amphibiaweb [Accessed on: 2018-7]

Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Sánchez D, Merlo J, Haro R, Acosta M, Bernal G (2018) Soils from the Amazonia. In: Espinosa J, et al. (Eds) The Soils of Ecuador – World Soils Book Series. Springer, Cham, 113–138. https://doi.org/10.1007/978-3-319-25319-0_4

Shepack A, Von May R, Ttito A, Catenazzi A (2016) A new species of Pristimantis (Amphibia, anura, craugastoridae) from the foothills of the Andes in Manu National Park, Southeastern Peru. ZooKeys 594: 143–164. https://doi.org/10.3897/zookeys.594.8295

Székely P, Cogălniceanu D, Székely D, Páez N, Ron SR (2016) A new species of Pristimantis from southern Ecuador (Anura, Craugastoridae). ZooKeys 606: 77–97. https://doi.org/10.3897/zookeys.606.9121

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197

Terán-Valdez A, Guayasamin JM (2010) The smallest terrestrial vertebrate of Ecuador: A new frog of the genus Pristimantis (Amphibia: Strabomantidae) from the Cordillera del Cóndor. Zootaxa 2447: 53–68. https://doi.org/10.11646/zootaxa.2447.1.2

von May R, Catenazzi A, Cord A, Santa-Cruz R, Carnaval AC, Moritz C (2017) Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecology and Evolution 7(9): 3257–3267. https://doi.org/10.1002/ece3.2929

Yánez-Muñoz MH, Cisneros-Heredia DF, Reyes-Puig JP (2010) Una nueva especie de rana terrestre Pristimantis (Anura: Terrarana: Strabomantidae) de la cuenca alta del Río Pastaza, Ecuador. ACI Avances en Ciencias e Ingenierías 2(3): 28–32. https://doi.org/10.18272/aci.v2i3.41

Yánez-Muñoz MH, Bejarano-Muñoz P, Brito J, Batallas D (2014) Ranas terrestres de los Andes Surorientales de Ecuador II: Una nueva especie de Pristimantis verde espinosa de los bosques montanos del Parque Nacional Sangay (Anura: Craugastoridae). ACI Avances en Ciencias e Ingenierías 6(2): B63–B77. https://doi.org/10.18272/aci.v6i2.180

Yánez-Muñoz M, Sánchez-Nivicela JC, Reyes-Puig C (2016) Tres nuevas especies de ranas terrestres Pristimantis (Anura: Craugastoridae) de la Provincia de El Oro, Ecuador. ACI Avances en Ciencias e Ingenierías 8(1): 5–25. https://doi.org/10.18272/aci.v8i1.455

Zhang P, Liang D, Mao RL, Hillis DM, Wake DB, Cannatella DC (2013) Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Molecular Biology and Evolution 30(8): 1899–1915. https://doi.org/10.1093/molbev/mst091
Appendix I

Additional specimens examined

Pristimantis kichwarum: Ecuador, Orellana: QCAZ 22679, 22680, Parque Nacional Yasuní, 265 m; QCAZ 54894, Parque Nacional Yasuní, 290 m; QCAZ 20447, Parque Nacional Yasuní, vía Pompeya sur, 230 m; QCAZ 56572, Parque Nacional Yasuní, Tambococha, 203 m. _Pristimantis luscombei_: Ecuador, Pastaza: QCAZ 25456–25463, Kapawi Lodge, 239 m; QCAZ 54019, 54021–54023, Curaray, 240 m; Perú, Loreto: QCAZ 55640, 55649, 55650, Curaray Paiche, 200 m. _Pristimantis marcoreyesi_: Ecuador, Tungurahua: DHMECN 11343m Patate, Río Alisal, 3131 m; DHMECN 4816, 4819, 4822, Baños, Nahuazo Runtrún, 2720 m. DHMECN 4825, 4830, San Antonio, Río Pucayacu, 2500 m; DHMECN 4818, 4823, 4824, 5084, Bosque Protector Cerro La Candelaria, 2700 m. _Pristimantis miktos_: Ecuador, Morona Santiago: QCAZ 53272, 53273, Tukupi, 211 m; Orellana: QCAZ 55445, Parque Nacional Yasuní, 175 m; QCAZ 49228–49229, Parque Nacional Yasuní, 230 m; Pastaza: QCAZ 53581, 53582, Juyuintza, 200 m; QCAZ 54987, Lorocachi, 200 m; Perú, Loreto: QCAZ 55639, 55644, 55646, Curaray Paiche, 200 m. _Pristimantis yanezi_: Ecuador, Napo: QCAZ 46156, 46229, Tena, Carretera Salcedo Tena, 2253 m; QCAZ 46257–46259, Tena, Vía Salcedo Tena km 60, 2095 m; QCAZ 70089–70090, Tena Parque Nacional Llanganates, 2347 m; Pastaza: 66385, 66541, 66546, 66549, Mera, Reserva Comunitaria Ankaku, 2216 m.