Cooperativity and Rapid Evolution of Cobound Transcription Factors in Closely Related Mammals

Klara Stefflova,1,8 David Thybert,2,8 Michael D. Wilson,3 Ian Streeter,2 Jelena Aleksic,4,5 Panagiota Karagianni,6 Alvis Brazma,8 David J. Adams,7 Iannis Talianidis,6 John C. Marioni,2 Paul Flicek,2,7,8 and Duncan T. Odom1,7,8

1Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
2European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
3Genetics & Genome Biology Program, Hospital for Sick Children (SickKids) and Department of Molecular Genetics, University of Toronto, 101 College Street, East Tower, Toronto, ON M5G 1L7, Canada
4Department of Genetics, University of Cambridge, Cambridge CB1 3QA, UK
5Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QR, UK
6Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
7Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
8These authors contributed equally to this work and are listed alphabetically
*Correspondence: flicek@ebi.ac.uk (P.F.), duncan.odom@cruk.cam.ac.uk (D.T.O.)
http://dx.doi.org/10.1016/j.cell.2013.07.007
Open access under CC BY license.

SUMMARY

To mechanistically characterize the microevolutionary processes active in altering transcription factor (TF) binding among closely related mammals, we compared the genome-wide binding of three tissue-specific TFs that control liver gene expression in six rodents. Despite an overall fast turnover of TF binding locations between species, we identified thousands of TF regions of highly constrained TF binding intensity. Although individual mutations in bound sequence motifs can influence TF binding, most binding differences occur in the absence of nearby sequence variations. Instead, combinatorial binding was found to be significant for genetic and evolutionary stability; cobound TFs tend to disappear in concert and were sensitive to genetic knockout of partner TFs. The large, qualitative differences in genomic regions bound between closely related mammals, when contrasted with the smaller, quantitative TF binding differences among Drosophila species, illustrate how genome structure and population genetics together shape regulatory evolution.

INTRODUCTION

The phenotypic differences observed both among different individuals within one species and between closely related species are often the result of genetic differences within regulatory regions (Stone and Wray, 2001; Wray, 2007). These regulatory regions are bound by tissue-specific transcription factors (TFs) to control complex gene expression phenotypes (Bradley et al., 2010; ENCODE, 2012; Zinzen et al., 2009).

A typical higher eukaryotic TF binds tens to hundreds of thousands of DNA sites and yet may directly control only a few hundred genes (Biggin, 2001). Studies in Drosophila suggest that much of this widespread TF binding represents low occupancy, functionally neutral interactions (Bradley et al., 2010; Fisher et al., 2012; MacArthur et al., 2009) that are driven thermodynamically by the relatively high concentrations of TF proteins in nuclei (Lin and Riggs, 1975). Indeed, most tissue-specific TFs bind short, somewhat degenerate DNA sequences that facilitate widespread genomic binding (Jolma et al., 2013), often in clusters that contain multiple different TFs (e.g., combinatorially) (Bradley et al., 2010; ENCODE, 2012; Kvon et al., 2012; MacArthur et al., 2009; Biggin, 2011). Clustered TF binding appears to result in large part from indirect cooperativity to open chromatin regions, as opposed to direct TF-TF protein interactions (Kaplan et al., 2011; Miller and Widom, 2003; Minny, 2010). For binding sites within a nucleosome-length distance, each TF contributes partially to a competitive displacement of specific nucleosomes by indirect collaboration with other TFs, mutually aiding each others’ binding to DNA. TFs within a cluster can have different regulatory roles depending on their motif strength and ability to compete with nucleosomes (Zinzen et al., 2009). In such a scenario, TF binding would be determined not only by the presence and strength of DNA motifs but also by the cobinding of other TFs to open a DNA-binding region.

Although some studies have shown that TF binding can persist in the absence of sequence constraint (Piano et al., 1999; Ludwig et al., 2000), strong, combinatorial TF binding is thought to most often occur preferentially near target genes at genetic sequences that show evidence of high sequence constraint (He et al., 2011b). In contrast, poorly bound sequences are less constrained and do not drive reporter gene expression (Fisher et al., 2012). This model for transcriptional regulation predicts that strong and functional TF binding will be under greater selective pressure, and thus the protein-DNA contact itself should be
preferentially maintained during evolution—particularly in closely related species and possibly by positive selection (He et al., 2011a). Comparison of one developmental TF (Twist) in fruit fly embryos from multiple species in a single genus indicated high conservation of TF binding, which was found to be greatest near direct target genes (He et al., 2011b). A similar analysis of the binding of six TFs in embryos from two closely related Drosophila species found that most TF binding differences are quantitative (e.g., subtle alterations in TF binding strength) and are rarely complete gains or losses (Bradley et al., 2010). Furthermore, in flies, TF binding differences between species are highly correlated when they occur in combinatorial clusters, which are preferentially maintained between species and may be linked to chromatin accessibility via binding of the TF vrl (also known as Zelda) (Bradley et al., 2010; Harrison et al., 2011; Nien et al., 2011).

In contrast, the microevolutionary mechanisms that result in differences in TF binding among closely related mammals have not been studied in detail. Mammalian similarities with other animal lineages include the fact that TFs bind predominantly in a combinatorial manner in genetically heterogeneous human cell lines (Reddy et al., 2012; see also Odom et al., 2006). Some TF binding differences between alleles were associated with single nucleotide variations (SNVs) at bound regions, but most allelic differences were not associated with underlying sequence differences (Reddy et al., 2012; see also Kasowski et al., 2010; McDaniell et al., 2010; Spielman et al., 2007; Spivakov et al., 2012). Also similar to the case in flies (Li et al., 2011), open chromatin and TF cobianding can help direct de novo binding of the induced glucocorticoid receptor (Biddie et al., 2011; John et al., 2011).

Despite the many similarities between vertebrate and insect gene regulation, important differences in TF binding evolution have been observed. First, a small proportion of human TF binding events were found to be shared between human and chicken (<2% for CEBPA), whereas apparently more distant Drosophila species show almost no changes in TF binding (He et al., 2011b). Second, TF binding events occurring near direct target genes are only modestly more likely to be shared between mouse and human when compared with random TF binding, most of which is likely functionally neutral (Kunarso et al., 2010; Schmidt et al., 2010). Third, human regions strongly bound by TFs do not appear to be preferentially conserved in mice (Schmidt et al., 2010). It is not yet known how these observations relate to shorter evolutionary timescales (e.g., within a given order), but a quantitative understanding of the first steps in TF binding evolution in closely related mammals would help to answer important questions, including the following: are there particular types of binding sites more robust to evolutionary changes? Do they have identifiable molecular characteristics? Is there a direct (or perhaps causal) relationship between genetic divergence and TF binding divergence? How are the sequence variations near binding sites translated into differences in TF occupancy?

To address these questions, we have generated quantitative, in vivo TF occupancy data for three tissue-specific TFs (HNF4A, CEBPA, and FOXA1) in embryos from five closely related mouse species (Keane et al., 2011), and rat. Our experiments revealed the rate at which differences in TF binding accumulate in mammals with high accuracy, established the relative contribution of sequence variations toward TF binding occupancy differences, and revealed coordinated changes in TF binding intensities that occur within cobound TF clusters. Finally, by performing additional TF binding experiments in genetically engineered mice lacking either HNF4A or CEBPA, we were able to compare the genetic robustness and cooperativity of clusters of TF binding sites with their evolutionary stability.

RESULTS

All data have been deposited in ArrayExpress with accession numbers E-MTAB-1414 for mouse and E-MTAB-1415 for rat. The methods are described in the Extended Experimental Procedures, organized by their appearance in the Results.

Determination of TF-Bound Regions in Five Closely Related Mammals

We performed our experiments using tissues from rodents at evolutionary distances ranging from 1 million to 20 million years (Figure 1). The inbred species we used were from mammalian genus Mus (Figure S1A available online), namely laboratory strains C57BL/6J and A/J (mostly Mus musculus domesticus [Mmd] [Yang et al., 2011]), wild-derived CAST/EiJ (mostly subspecies Mus musculus castaneus, separated from Mmd by 1 million years [MY]), as well as two more distant species—SPRET/EiJ (Mus spretus, separated by 3 MY) and Caroli/EiJ (Mus caroli, separated by ~4–6 MY), with Rattus norvegicus (separated by 15–20 MY) as an outgroup. The genomes of four of these mouse species were recently reported (Keane et al., 2011), and the genome of Caroli/EiJ was sequenced specifically for this study (D.T., J.C.M., A.B., D.J.A., and P.F., unpublished data). Although the mice in this study are a combination of strains, subspecies, and species, for the sake of simplicity, we refer to all as different mouse species.

Exploiting multiple species of inbred mice unlocked a number of powerful analytical approaches to explore the quantitative and qualitative changes occurring in TF binding evolution. Relative to the reference mouse genome, our study’s mouse species have had few large-scale genome rearrangements, simplifying the identification of orthologous TF binding (Keane et al., 2011). Sequence changes between mouse species were sufficiently modest to assign a specific site of genetic variation to a corresponding TF binding location, often unambiguously. Each species has a different but well-characterized evolutionary distance from the reference C57BL/6J, which enabled analyses demanding the reliable reconstruction of ancestral regulatory states.

We determined the genome-wide binding in layers of five mouse species and rat for CEBPA, HNF4A, and FOXA1 by performing chromatin immunoprecipitation (ChIP) experiments coupled to high-throughput sequencing in biological duplicates (Figures 1 and S1A). We analyzed ChIP experiments using a native genome for each species (e.g., SPRET/EiJ ChIP experiments were analyzed against the SPRET/EiJ genome). These TFs were selected, in part, because they are representative TFs that evolve and function similar to other tissue-specific regulators in mammals (Kunarso et al., 2010; Schmidt et al., 2010). The amino acid sequences of the three TFs are highly conserved;
few changes occurred between mouse species, and none were in DNA binding domains or antibody recognition sites. We defined transcription-factor-bound regions (TFBRs) as those called in both individual biological replicates and in the pooled sample; this definition removed the very lowest intensity and sporadic TF binding sites (Figure S1B). These TFBRs were the basis of all further analysis, except when clearly indicated in direct comparison of single replicates. We found similar numbers of TFBRs in all four species of mice (on average, /C24 \(\frac{1}{4} \) 46,000 TFBRs for CEBPA, 60,000 for HNF4A, and 55,000 for FOXA1, SD between 6,200 and 10,900; Figure S1C). Although our data showed that the total number of TFBRs changes little between these closely related species, Caroli/EiJ was found to have overall fewer bound locations, most likely due to differences in the genome qualities (Figure S1C).

For each data set, we estimated our false positive rate to be less than 1% by comparing our ChIP experiments to either a mock ChIP lacking the specific antibody or input DNA from the livers; this false positive rate is similar to prior studies (ENCODE, 2012; Pickrell et al., 2011). TFBRs were found to almost always center on a sequence match for the known TF binding motif (Figure S1D); similarly, computational analyses of the sets of TFBRs with either highest or lowest ChIP intensities readily produced the known position weight matrix (PWM) when subjected to de novo motif discovery (Figure S1D). Although some fraction of TF binding likely captures indirect interactions, the high occurrence of motifs at peak summits, even in the least intense ChIP enrichment, is consistent with a substantial fraction of identified TFBRs representing direct protein-DNA contacts. Furthermore, prior studies have validated that a TF’s direct DNA occupancy at specific genomic sites is accurately captured by the in vivo crosslinking that precedes ChIP experiments (Kaplan et al., 2011; MacArthur et al., 2009). For additional methodological details, please see the section “Determination of TF-Bound Regions in Five Closely Related Mammals” in the Extended Experimental Procedures.

In sum, our experiments identified reproducible, genome-wide binding data for three liver-specific TFs with highly conserved protein sequences and cellular functions in matched tissues from five mouse species.
The Accumulation of Differences in TF Binding in Different Mouse Species Corresponds with Interspecies Evolutionary Distance

We first assessed how rapidly TF binding differences accumulate among these five mouse genomes by determining the proportion of HNF4A, CEBPA, and FOXA1 TFBRs that reciprocally overlap between species in a qualitative manner; that is, how often TF binding in one species was evaluated as not identified in the homologous position in a second mouse species when comparing present-absent binding calls. This qualitative evaluation categorized TFBRs as either shared or unshared in a particular pair of species; the choice of binding cutoff and effect of varying this cutoff is explored in Figure S1E.

Qualitative differences in mammalian TF binding, even in short evolutionary distances, appear to accumulate at an exponential rate of $e^{-0.12v_{\text{(Million Years)}}}$ (Figures 1B, S2A, and S2B). Because this rate is higher than that observed for Drosophila species, estimated to be at considerably greater evolutionary distances (Bradley et al., 2010; He et al., 2011b), we attempted to control for as many nonbiological sources of variation as possible. We first confirmed that the addition of ChIP data from humans and dogs did not alter this decay rate (Figure S2). We then established that our calculation was robust to (1) the choice of anchor species for the analysis (Figures S2B–S2E); (2) whether we consider the entire mouse genome or only those regions alignable with rat, which controls for the potential effect of Mus lineage-specific large indels on the rate of TF binding divergence (Figures S2B–S2E); and (3) the particular binding threshold chosen to define TFBRs (Figure S1E). For (3), we analyzed whether using a threshold during our peak calling for TFBR, which removed lowest-intensity peaks, caused us to overestimate the rate at which TF binding differences accumulate between species. We took the complete set of TFBRs in all five species and identified the orthologous aligned regions that were called as unbound in any mouse lineage or lineages. Specifically within this set of orthologous unbound regions, we systematically recalculated the rate at which differences accumulate by increasing the leniency of the peak-calling threshold (Figure S1E). Regardless of the threshold used, TF binding differences always appeared to accumulate at rates near to $e^{-0.12v_{\text{(Million Years)}}}$.

We sought to establish whether homologous TF binding sites showed quantitative differences in their genomic occupancy between any two mouse species, similar to that observed among fruit fly species (Bradley et al., 2010). Similar mechanisms have been suggested to contribute toward interindividual variability in genetically heterogeneous humans (Kasowski et al., 2010; McDaniel et al., 2010). We first compared how replicate binding experiments for the same TF differ among distinct C57BL/6J individuals by plotting ChIP intensities against each other in an X-Y scatterplot. Both on a site-specific and genome-wide basis, TF binding profiles of different individuals with the same genetic background were highly similar (Figures 1 and S2F). Across the Mus genus, SNVs in directly bound sequences largely independent of the information content of the base where SNVs occurred (data not shown). For instance, the maximum fraction of the changes in TF binding between C57BL/6J and binding between individuals and technical aspects of the ChIP protocol.

We then performed similar analysis for the shared TFBRs defined above to establish how rapidly TFBR intensities diverge between different mouse species. This revealed greater variability between any two mouse species than within one species in the relative TF binding intensities; importantly, this variability increased in correspondence with evolutionary distance (Figures 1 and S2F). We considered the possibility that inaccuracies in our assembly of the underlying mouse genomes may contribute to the observed TF binding differences by estimating the maximum possible contribution this could make to our data. We mapped the C57BL/6J sequencing reads from ChIP experiments onto the genomes of each of the other species and then inspected the resulting loss of correlation. Little difference was observed except in the case of the most divergent species Caroli/EIj (Figure S2G) and, in all cases, the differences were less pronounced than the observed loss of intensity correlation in our experiments. For additional methodological details, please see the section “The Accumulation of Difference in TF Binding in Different Mouse Species Corresponds with Interspecies Evolutionary Distance” in the Extended Experimental Procedures.

In sum, the qualitative differences (i.e., fraction of unshared TF binding) between closely related mouse species appear to accumulate considerably more quickly than was found in highly divergent Drosophila species (He et al., 2011b), which are thought to be at a chicken-human distance (Lin et al., 2008). In mammals, both the location and the intensity of TF binding differ rapidly with the increasing evolutionary distance.

Variations in Bound Genetic Sequences Can Account for Only a Fraction of TF Binding Differences among Closely Related Mammals

We sought to estimate the maximal extent to which SNVs between mammalian species could be directly responsible for the qualitative differences in TF binding. We additionally reanalyzed published ChIP-seq data for HNF4A and CEBPA in human, dog, and opossum to capture more distant evolutionary outgroups (Schmidt et al., 2010). Analyzing each species pair separately, we categorized the TF binding in C57BL/6J by whether it was present in an orthologous location in the second species (Figure 2, left-hand y axis). For the shared and unshared TF binding, we then identified the sequences matching the TF’s known binding motif nearest to the TF binding maximum in C57BL/6J and asked whether these motifs contained an SNV in the second species (Figure 2, right-hand y axis).

The resulting plot revealed that, as expected, the frequency of motifs with SNVs increases steadily with increasing evolutionary distance from C57BL/6J in both shared and unshared TFBRs; somewhat unexpectedly, in every mouse species, the large majority of both shared and unshared TFBRs are bound to genetic sequences with no sequence variations in their motifs. Across the Mus genus, SNVs in directly bound sequences matching the canonical motif could account for less than a third of TF binding differences between species; the overall result was largely independent of the information content of the base where SNVs occurred (data not shown). For instance, the maximum fraction of the changes in TF binding between C57BL/6J and
Figure 2. Evolutionary Differences in TF Binding Cannot Be Explained Purely by Genetic Variation in Directly Bound Motif Sequences

We categorized CEBPA binding events by whether they were unshared (top bar chart) or shared (bottom bar chart) between C57BL/6J and a second species. We then identified whether the directly bound motif was identical (black shaded) or contains genetic variation (white shaded). Variation increased with evolutionary distance; unshared binding events had SNVs in their bound motif, whereas shared events had genetic sequences at a slightly higher frequency (p < 2.2 × 10^{-16} with Fisher’s exact test). The vast majority of peaks do not have genetic sequence variations within their directly bound motifs; importantly, this is true for unshared peaks where, for instance, less than a quarter of C57BL/6J peaks not found in SPRET/EiJ have variation from the C57BL/6J reference. See also Figure S3.

Carol/EiJ that might be assigned purely to genetic changes in the bound motif was typically near a quarter of the total (31.2% [CEBPA], 29.6% [HNF4A], and 27.5% [FOXA1]). Typical, a sixth of the peaks shared between C57BL/6J and Carol/EiJ have an SNV in the directly bound motif (14.1% [CEBPA], 20.9% [HNF4A], and 18.6% [FOXA1]) (Figures S3A and S3B), which consistent with recent reports (Kasowski et al., 2010; Reddy et al.; 2012). Thus, differences in genetic sequences can be the primary determinant only for a modest fraction (typically 10%–20%) of TF binding differences between these mammalian genomes.

We searched for the exact types of sequence variations associated with altered TF binding that were more likely to be causal. By mapping the specific variants associated with either increased or decreased intensity of TF binding between species, we discovered that, in the minority of cases in which SNVs were associated with TF binding differences, the base variations that introduced preferred high-information content bases within the motif tended to increase the strength of associated TF binding. Our results therefore support prior reports that motif positions with high information content can be more important for TF binding (Figures S3C–S3E) (Reddy et al., 2012; Schmidt et al., 2012; Spivakov et al., 2012).

Still, the large majority of TF binding differences are not associated with genetic changes during evolution to the directly bound sequence motifs, and shared TF binding peaks with conserved intensity (discussed below) were more likely to show depletion of nucleotide substitutions (Figure S3F) and heightened sequence constraint (Figure S3G). For additional methodological details, please see the section “Variations in Bound Genetic Sequences Can Account for Only a Fraction of TF Binding Differences among Closely Related Mammals” in the Extended Experimental Procedures.

In sum, TF binding can be conserved where directly bound genomic motifs differ; on the other hand, the large majority of changes in TF binding among closely related species are not associated with changes in the observed motifs. This complex relationship between differences in TF binding and differences in underlying genetic sequences between closely related mammals is similar to prior reports in more divergent Drosophila species (Biggin, 2011; Bradley et al., 2010; He et al., 2011b).

TF Binding in Combinatorial Clusters Evolves Coordinately

Because few differences in TF binding between mouse species could be connected to specific SNVs in the motif, we explored whether the extent of combinatorial binding among CEBPA, FOXA1, and HNF4A could help to explain these differences. Within each species, we first identified the singleton 1TF positions where a binding event for any one of the TFs in this study occurred in complete isolation. We then categorized the remaining regions with overlapping binding of HNF4A, CEBPA, and/or FOXA1 as clusters of TF co-binding. We defined 2TF and 3TF binding clusters as locations bound by two or three TFs within a 300 bp window with strictly singular TF binding (e.g., a 3TF cluster has exactly one TFBR for each component factor). The 1TF, 2TF, and 3TF categories captured the large majority of TF binding events (Figures S4A and S4B). The remaining TFBRs were assigned to a category containing regions of binding multiplicity representing locations in which the same TF binds repeatedly in close proximity. Our categorization of the C57BL/6J binding data was typical—1TF singletons represented 49% of the regions bound in the genome, 2TFs were 23%, 3TFs were 18%, and multiplicity locations were 9%; other species of mouse showed similar distributions. For full methodological details, please see the section “TF Binding in Combinatorial Clusters Evolves Coordinately” in the Extended Experimental Procedures.

We discovered that the more mammalian TFs were present in a cluster, the less likely a component TF binding site was to be entirely lost between species (Figures 3 and S4C). For instance, the fraction of FOXA1 binding regions shared between C57BL/6J and A/J steadily increased from 73.4% (1TF) to 77.0% (2TF) to 88.5% (3TF). Indeed, isolated TF binding appears to be relatively unstable; fully a quarter of 1TF sites vary between the closely related strains C57BL/6J and A/J (Figure S4C). It is important to note that our cluster categorization is limited by the fact that it uses only a modest subset of the liver-specific TFs known to control tissue-specific gene expression (Odom et al., 2006); inclusion of more TFs may reveal that regions with higher combinatorial binding (e.g., 4TF and 5TF clusters) would be even more often shared among different mouse species.

In summary, increasing the number of TFs within a specific genetic locus greatly increased the probability that component TF binding would be shared between closely related mammals.

TF Binding Intensities within Clusters Coevolve

We further considered the possibility that TF binding intensities are coevolving, as has been observed for Drosophila (Bradley et al., 2010). Coevolution in this case means that, if the TF binding intensity of a component TF within a cluster differs between two mouse species, then the intensities of cobound TFs are more likely to differ as well and in a coherent direction. For instance,
suppose there was a region directly bound by both HNF4A-FOXA1 in C57BL/6J where the homologous FOXA1 binding in SPRET/EiJ had greater binding intensity—would HNF4A intensity also be greater?

Within the 2TF and 3TF clusters, we identified pairs of TFs whose binding was shared between two mouse species and then plotted the change in binding intensity of each TF against the other (as shown for C57BL/6J and SPRET/EiJ in Figure 4; see also Figure S4D and the section “TF Binding Intensities within Clusters Coevolve” in the Extended Experimental Procedures). We consistently found positive correlations between all pairs of TFs (typical values $R^2 = 0.4$). This result is consistent with a model in which indirect influences, such as changes in the local chromatin environment (John et al., 2011; Li et al., 2011), additional coacting transcriptional regulators (Biddle et al., 2011; Harrison et al., 2011; Nien et al., 2011), and/or indirect cooperativity among cobound TFs (Mirny, 2010) have substantial influence on levels of combinatorial TF binding.

Thus, in clusters of combinatorial TF binding, differences in binding intensities between species appear to occur coordinately, and the component HNF4A, CEBPA, and FOXA1 binding sites increase and decrease their genomic binding strengths in a coherent, directional manner.

A Large Core Set of TF Binding Intensities Is Evolutionarily Stable across All Five Mouse Species but Is Decoupled from Functional Target Genes

We then asked whether TF binding intensity also correlated with the probability that TF binding was shared in closely related mammals. Results from prior studies in mammals (Kunarso et al., 2010; Schmidt et al., 2010) and Drosophila (Bradley et al., 2010; He et al., 2011b) have appeared contradictory. In mammals, there appears to be minimal correlation, if any, between TF binding intensity and their presence at orthologous regions in divergent vertebrate species; however, in flies, TF binding intensity and TF binding conservation appear to correspond closely.

We therefore categorized TFBRs based on how many mouse species they occurred in and discovered that, within one mammalian genus, there are steadily increasing intensities for each TF with increasing depth of TF binding conservation (Figures 5 and S5). Regions containing a deeply shared TF binding site were also more likely to have combinatorial TF binding (Figures 5B and S5C) and to be tolerant of genetic variations within bound motifs (Figures 5C and S5D). Together, our data indicate that a large set of highly conserved, combinatorial, and intense binding regions exist in all five mouse species, showing molecular features similar to those observed in TF binding comparisons between more divergent Drosophila species (Bradley et al., 2010; He et al., 2011b).

We then tested three key predictions of recent models proposed for TF binding evolution and function in animals (Biggin, 2011): (1) that TF binding intensities (as opposed to the genetic sequences) of the bound regions present in all mouse species should be under strong constraint; (2) that regions bound strongly and consistently in multiple species should capture the known TF functionality; and (3) that TF binding near functional target genes should be of stronger intensity.

To test the first hypothesis, for each TF, we analyzed all five species’ worth of ChIP data to identify a set of ~14,000 binding events bound across all mouse species and inferred the TF binding intensity profiles of four common ancestors using Wagner parsimony (Figure 5D). Subsequently, we classified each TFBR into one of three categories: (1) conserved intensity, similar intensities across all ancestral states; (2) progressively changing intensity, the intensity of successive ancestral TFBRs progressively increases or decreases; (3) randomly changing intensity, when a locus has neither a conserved nor progressive profile.

![Figure 3. Regions Bound by Multiple TFs in C57BL/6J Are More Likely to Be Found in a Second Mouse Species](image-url)
As a control, we repeated this analysis after reassigning the TFBR intensities randomly within each species to different loci, which generated a background expectation that assumes random divergence.

For the three TFs in our study, approximately half (47%–56%) of all TFBRs have conserved intensities, somewhat fewer of them (40%–46%) are random, and a small percentage (4.0%–6.4%) are progressive. When compared with the randomized expected background, these distributions reveal strong enrichment toward conservation at the expense of both progressive and stochastic evolution (p < 10^{-6}) (Figure 5). This result is robust to the definition of intensity classes, the definition of similarity, and the inclusion or exclusion of missing binding events.

We then asked whether conserved binding in multiple mouse species could predict functionality. We first identified the TFBRs located near genes whose transcription is altered by CEBPA knockout in a genetically engineered mouse (Hatzis et al., 2006; Schmidt et al., 2010) and then used the GREAT algorithm (McLean et al., 2010) to compare the functional enrichments of specific TFBRs relative to the entire set of TFBRs in C57BL/6J. As expected, these positive-control TFBRs showed extremely specific TFBRs relative to the entire set of TFBRs in C57BL/6J.

The Genetic Deletion of a Single TF Has a Direct Effect on the Stability of the Remaining TFs within a Cobound Cluster

We asked what effect genetic deletion of single component TFs would have on the stability of combinatorial TF binding and how the genetic stability is related to the evolutionary conservation of the TF binding within these clusters. We obtained livers from genetically engineered mice lacking either HNF4A or CEBPA. Although we cannot entirely rule out the influence of indirect effects, each TF knockout had minimal effect on the gene expression of the other liver-specific TFs (Kyrmiä et al., 2006; data not shown). We then performed ChIP-seq experiments against HNF4A, CEBPA, and FOXA1. These experiments further confirmed that both genetic knockouts were successful and that the targeted TF was largely absent from liver (Figure 6).

We then asked what effect these genetic deletions have on 2TF and 3TF clusters that were consistently bound across all species of mice, expecting that these would be most robust to perturbations. We used two internal controls that should be unaffected by the deletion of a specific TF: (1) CTCF binding, which occurs in the genome independently of tissue-specific TF clusters (Faure et al., 2012); and (2) the 2TF clusters not containing the deleted factor (Figure 6A). Our data confirmed that CTCF binding was unperturbed by knockout of the unrelated factor, as was TF binding in the 2TF clusters lacking the deleted regulator. The use of multiple internal controls afforded robustness to our analysis.

We consistently found that deletion of HNF4A or CEBPA from a combinatorially bound region caused loss of cobound partner.
TFs (Figure 6). For instance, genetic deletion of HNF4A has no effect on the deeply shared CEBPA-FOXA1 2TF clusters (96% overlap with wild-type [WT]) but significantly destabilizes the CEBPA-HNF4A 2TF clusters (66% overlap with WT: p < 10^{-15}, Fisher’s exact test). We also observed a more modest effect on cobinding TFs within the 3TF clusters versus the 2TF clusters. The differential intensity of the different categories of TF binding could not explain the loss of TF binding observed in the knockout experiments; regardless of the details of the conservation of the 3TF clusters in WT C57BL/6J, TF binding was roughly equally likely to be lost in the knockout mouse (Figures S6A–S6C). For additional methodological details, please see the section “The Genetic Deletion of a Single TF has a Direct Effect on the Stability of the Remaining TFs within a Cobound Cluster” in the Extended Experimental Procedures.

DISCUSSION

To elucidate the first steps of TF binding evolution and the underlying mechanisms in mammals, we characterized the binding profiles of three tissue-specific TFs, CEBPA, HNF4A, and FOXA1, in livers from six inbred rodents. The recent divergence times of the selected mammals represents an optimal phylogenetic window to study the mechanisms of TF binding evolution. The evolutionary branch lengths among these five members of the Mus genus are an order of magnitude less than that between human and mouse, which shared a common ancestor 80 MYA. The short branch lengths between mouse species allowed us to identify how genetic variations between species contribute to the earliest interspecies differences in TF binding.

Our results demonstrate that features of tissue-specific TF binding evolution predicted from studies in other eukaryotic
The presence of more cobound TFs in a cluster corresponds with a higher probability of TF binding conservation, suggesting that a TF’s binding may influence, at least in part, the stability of cobound TFs. We functionally tested this by genetically deleting one component of the clusters and then interrogating what effect this deletion had on the stability of the cobound regulators. We found that there was a concomitant, systemic destabilization of combinatorial TF binding in the clusters containing the genetically removed TF, which was of a similar magnitude for both CEBPA and HNF4A. This general effect would be consistent with a model in which TFs compete with nucleosomes for DNA occupancy (Mirny, 2010). Similar coordinated and quantitative changes in binding being mediated via cooperativity have been identified in Drosophila, in which sequence changes in recognition motifs for vfl (Zelda) can explain, in part, differences in DNA binding by gap A-P TFs among closely related fruit fly species (Bradley et al., 2010).

We have discovered two striking contrasts in how TF binding evolution occurs in mammals and flies. First and most prominently, differences in TF binding locations (that is, qualitative gains and losses) accumulate between closely related mammals at an exponential rate; at 6 MY from a common ancestor, Mus musculus domesticus (C57BL/6J) and Mus caroli typically share only half of experimentally determined binding sites for these three liver master regulators. In sharp contrast, almost no variations in TF binding locations were observed between Drosophila melanogaster and yakuba (Bradley et al., 2010), which are thought to have a molecular distance greater than mouse-rat (Lin et al., 2008). Comparison of twist (twi) binding in extremely diverse fruit fly species showed that, at a molecular distance thought to be the same as chicken-human, well over half of TF binding events were found at the same homologous location in every Drosophila species (He et al., 2011b). Overall, despite the presence of a subpopulation of conserved TFBRs, TF binding in mammals appears to be considerably more evolutionarily labile than in flies.

Second, in flies, those genomic regions most strongly bound by a TF tend to be near the functional target genes, and this TF binding near functional target genes is present in more fruit fly species and is stronger in intensity overall (Bradley et al., 2010; Fisher et al., 2012; He et al., 2011b; MacArthur et al., 2009), which was reviewed in Biggin (2011). In our mammalian data, we observed no such clear correspondences. The TFBRs with highest genomic occupancy showed little evidence of functional enrichment relative to other TF binding events, and the well-characterized functional targets of HNF4A and CEBPA were only modestly enriched for strong TF binding. Furthermore, TF binding locations present in all five species of mice are not preferentially located near known TF target genes. Our study’s results also appear to differ from certain studies in mammals that have suggested that strength of TF binding corresponds with circadian phase-specific DNA binding (Rey et al., 2011) and possibly even dictates functionality (Rey et al., 2011; Whyte et al., 2013).

If the many molecular similarities in TF binding between flies and human are attributed to the shared biochemistry behind lineage (Biggin, 2011) also occur in mammals. First, mammals show widespread quantitative alterations in TF binding intensities, even in closely related species (as per Bradley et al., 2010). Second, although SNVs in and near directly bound motifs may be responsible for a modest fraction of these differences, other influences appear to play a larger role (Bradley et al., 2010; Kasowski et al., 2010; Reddy et al., 2012). Third, genomic regions bound by multiple regulators show coordinated alterations in their TF binding between species (Bradley et al., 2010), as during development (Li et al., 2011). Finally, when compared with isolated TF binding locations, combinatorially bound regions in mammals are more evolutionarily stable, as found for flies (He et al., 2011b). We also newly reveal that combinatorial binding is more robust to sequence variations in directly bound motifs and that the more species in which a TF binding region is found, the stronger the genomic occupancy. In short, the bio-
protein-DNA contacts, then what drives the profound differences in TF binding stability between species? One possibility is the different developmental time points when fruit fly and mammalian TFs have been profiled. Drosophila TFs have almost always been examined at early developmental points; however, TFs active in mammalian embryonic stem cells show even greater divergence (Kunarso et al., 2010).

A stronger candidate would seem to be the different population genetics of flies and mammals, which have shaped dramatically different genome architectures along each lineage (González and Petrov, 2012; Lynch, 2007). Drosophila (with enormous breeding populations) have 15,000 genes covering 24 Mb of codons, located within a 120 Mb euchromatic genome, ~80 Mb of which is under selective constraint (Halligan and Keightley, 2006; Stark et al., 2007; Keane et al., 2011). Mammals (with much smaller breeding populations) typically have 26,000 genes covering 45 Mb of codons, located within a 2,850 Mb euchromatic genome, 126 Mb of which is under selective constraint (Waterston et al., 2002; Lindblad-Toh et al., 2011; Ponting and Hardison, 2011). In other words, on average, every mammalian gene has about the same number of constrained noncoding regulatory bases as a Drosophila gene, but in mammals, they are spread across twenty times more euchromatic DNA that is not under obvious selective constraint.

Based on Lin and Riggs (1975), to compensate for dilution of functional, noncoding DNA, a corresponding increase in regulatory protein in the nucleus would be required in order to fully occupy functional TF binding sites, simultaneously resulting in many more nonfunctional sites. This increase in (nonfunctional) TF binding site numbers thus potentially explains the two major discrepancies between flies and mammals. First, because eukaryotic TF binding occurs over relatively narrow occupancy ranges (10–100-fold enrichments) (Biggin, 2011), the 20-fold increase in the number of potential TF binding sites per gene in mammals could be masking the simple intensity-function connection observed in Drosophila in part by complicating attempts to associate TFBRs with regulatory target genes. Second, the presence of 20-fold more potential TF binding locations could both facilitate migration of functionality between nearby sites as well as explain the rapid gain and loss of specific TF sites observed in closely related mammals.

In sum, our results confirm that the subtle quantitative differences in TF binding between species of mammals (like flies) are very likely the result of protein-DNA biosynthesis that has long been investigated. In contrast, the accumulation of qualitative gains and losses of TF binding between species (slower in flies and faster in mammals) appears to reflect the structure of their respective genomes, as determined by population genetics.

EXPERIMENTAL PROCEDURES

Experimental and computational procedures, including ChIP-seq, mouse genome sequencing, interspecies TF binding analysis, and knockout mouse functional analyses, were performed as detailed the Supplemental Information.

ACCESSION NUMBERS

All data have been deposited in ArrayExpress with accession numbers E-MTAB-1414 for mouse and E-MTAB-1415 for rat.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and six figures and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2013.07.007.

ACKNOWLEDGMENTS

We thank the CRUK-CI Genomics and Bioinformatics Cores for technical assistance, the EBI’s systems team for management of computational resources, and the thoughtful anonymous peer reviewers. This research was supported by the European Molecular Biology Laboratory (A.B., J.C.M., and P.F.), Cancer Research UK (K.S., M.D.W., D.J.A., and D.T.O.), the Wellcome Trust (WT095908 to D.T. and P.F.) and (WT098051 to P.F., D.J.A., and D.T.O.), Marie Curie Reintegration Award (K.S.), and the European Research Council and EMBO Young Investigator Programme (D.T.O.). The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2010-2014) under grant agreement 244356 (NextGen) and for a Reintegration Fellowship (K.S.).

Received: December 19, 2012
Revised: May 22, 2013
Accepted: July 8, 2013
Published: August 1, 2013

REFERENCES

Biddle, S.C., John, S., Sabo, P.J., Thurman, R.E., Johnson, T.A., Schiltz, R.L., Miranda, T.B., Sung, M.H., Trump, S., Lightman, S.L., et al. (2011). Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43, 145–155.

Biggin, M.D. (2011). Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626.

Boj, S.F., Servitja, J.M., Martin, D., Rios, M., Talianidis, I., Guigo, R., and Ferrer, J. (2009). Functional targets of the monogenic diabetes transcription factors HNF-1alpha and HNF-4alpha are highly conserved between mice and humans. Diabetes 58, 1245–1253.

Bradley, R.K., Li, X.-Y., Trappell, C., Davidson, S., Pachter, L., Chu, H.C., Tonkin, L.A., Biggin, M.D., and Eisen, M.B. (2010). Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol. 8, e1000343.

ENCODE. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.

Faure, A.J., Schmidt, D., Watt, S., Schwalle, P.C., Wilson, M.D., Xu, H., Ramsay, R.G., Odom, D.T., and Flicek, P. (2012). Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res. 22, 2163–2179.

Fisher, W.W., Li, J.J., Hammonds, A.S., Brown, J.B., Pfeiffer, B.D., Weitzmann, R., MacArthur, S., Thomas, S., Stamatiouannopoulos, J.A., Eisen, M.B., et al. (2012). DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc. Natl. Acad. Sci. USA 109, 21330–21335.

González, J., and Petrov, D.A. (2012). Evolution of genome content: population dynamics of transposable elements in flies and humans. Methods Mol. Biol. 855, 361–383.

Halligan, D.L., and Keightley, P.D. (2006). Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res. 16, 875–884.

Harrison, M.M., Li, X.Y., Kaplan, T., Botchan, M.R., and Eisen, M.B. (2011). Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet. 7, e1002266.

Hatzis, P., Kyrziz, I., and Talianidis, I. (2006). Mitogen-activated protein kinase-mediated disruption of enhancer-promoter communication inhibits hepatocyte nuclear factor 4alpha expression. Mol. Cell. Biol. 26, 7017–7029.
Miller, J.A., and Widom, J. (2003). Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol. 23, 1623–1632.

Mimy, L.A. (2010). Nucleosome-mediated cooperativity between transcription factors. Proc. Natl. Acad. Sci. USA 107, 22534–22539.

Nien, C.Y., Liang, H.L., Butcher, S., Sun, Y., Fu, S., Gocha, T., Kirov, N., Manak, J.R., and Rushlow, C. (2011). Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet. 7, e1002339.

Odom, D.T., Dowell, R.D., Jacobsen, E.S., Nekludova, L., Rolfe, P.A., Danford, T.W., Gifford, D.K., Fraenkel, E., Bell, G.I., and Young, R.A. (2006). Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol. 2, 2006.0017.

Piano, F., Parisi, M.J., Karess, R., and Kambysellis, M.P. (1999). Evidence for redundancy but not trans factor-cis element coevolution in the regulation of Drosophila Yp genes. Genetics 152, 605–616.

Pickrell, J.K., Gaffney, D.J., Glid, Y., and Pritchard, J.K. (2011). False positive peaks in Chip-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27, 2144–2146.

Ponting, C.P., and Hardison, R.W. (2011). What fraction of the human genome is functional? Genome Res. 21, 1769–1776.

Reddy, T.E., Gertz, J., Pauli, F., Kucera, K.S., Varley, K.E., Newberry, K.M., Marinov, G.K., Mortazavi, A., Williams, B.A., Song, L., et al. (2012). Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 22, 860–869.

Rey, G., Cesbron, F., Rougemont, J., Reinke, H., Brunner, M., and Nael, F. (2011). Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595.

Schmidt, D., Wilson, M.D., Ballester, B., Schwalie, P.C., Brown, G.D., Marshall, A., Kutter, C., Watt, S., Martinez-Jime'nez, C.P., Mackay, S., et al. (2010). Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040.

Schmidt, D., Schwalie, P.C., Wilson, M.D., Ballester, B., Goncalves, A., Kutter, C., Brown, G.D., Marshall, A., Flieck, P., and Odom, D.T. (2012). Waves of retrotroponson expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348.

Spigelman, R.S., Bastone, L.A., Burdick, J.T., Morley, M., Ewens, W.J., and Cheung, V.G. (2007). Common genetic variants account for differences in gene expression among ethnic groups. Nat. Genet. 39, 226–231.

Spivakov, M., Akhtar, J., Kheradpour, P., Beal, K., Girardot, C., Koscienly, G., Herrero, J., Kellis, M., Fure, E.E., and Birney, E. (2012). Analysis of variation at transcription factor binding sites in Drosophila and humans. Genome Biol. 13, R49.

Stark, A., Lin, M.F., Kheradpour, P., Pedersen, J.S., Parts, L., Carlsson, J.W., Crosby, M.A., Rasmussen, M.D., Roy, S., et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450, 219–232.

Stone, J.R., and Wray, G.A. (2001). Rapid evolution of cis-regulatory sequences via local point mutations. Mol. Biol. Evol. 18, 1764–1770.

Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., April, J.F., Agarwala, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., et al.; Mouse Genome Sequencing Consortium. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 502–520.

Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., et al.; Mouse Genome Sequencing Consortium. (2003). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–317.

Wray, G.A. (2007). The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216.

Yang, H., Wang, J.R., Didion, J.P., Buus, R.J., Bell, T.A., Welsh, C.E., Bonhomme, F., Yu, A.H.-T., Nachman, M.W., Pialek, J., et al. (2011). Subspecies origin and haplotype diversity in the laboratory mouse. Nat. Genet. 43, 648–655.

Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M., and Furlong, E.E.M. (2009). Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462, 65–70.