Production and characterization of β-galactosidase from the fungus Thielaviopsis ethacetica Went.

DMS Dissanayaka1, SNT De Silva2*, DPSTG Attanayaka1 and EMM Vimukthi1

1 Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila.
2 Department of Material and NanoScience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kalyapitiya.

Submitted: 14 December 2020; Revised: 24 May 2021; Accepted: 03 August 2021

Abstract: β-galactosidase (EC 3.2.1.23) is an industrially important enzyme. It can catalyse two different types of reactions, namely lactose hydrolysis and transgalactosylation. β-galactosidase enzyme production by Thielaviopsis ethacetica, was investigated and the enzyme was partially purified and characterized in the present study. Qualitative assay for the pre β-galactosidase activity indicated the formation of water insoluble blue-green colour, dichloro-dibromo-indigo zone towards the edges of the fungal colony after a 72-hour incubation period. Quantitative assay recorded a maximum enzyme activity of 0.599 U/mL at 72 hours. The enzyme was partially purified from the crude enzyme using ammonium sulphate precipitation and dialysis. Fraction 40-60 % (fraction 2) had the highest specific enzymes activity of 1.65 U/mg with 8.68 purification fold and 28.3 % recovery. SDS-PAGE analysis of fraction 2 resulted three separate protein bands above 40 kDa. The protein band corresponding to 50 kDa molecular weight was confirmed as β-galactosidase. The optimum temperature and pH for the enzyme was at 60 ̊ C and 7.0, respectively. The present study reveals the fungal strain Thielaviopsis ethacetica with β-galactosidase activity. To our knowledge this is the first report about β-galactosidase activity of the strain T. ethacetica. This investigation suggests the potential use of this species in industrial applications.

Keywords: β-galactosidase, industrial enzyme, MALDI/MS, starch hydrolysis, Thielaviopsis ethacetica.

INTRODUCTION

β-galactosidase (EC 3.2.1.23), also known as β-D-galactohydrolase, β-D-galactoside galactohydrolase, galactosyltransferase or lactase is an enzyme that has a wide range of applications in the industrial sector. It catalyses two different reactions in organisms: the hydrolyzation of lactose into glucose and galactose (Akcan, 2011), and transgalactosylation reaction which synthesizes important prebiotics such as lactulose and galacto-oligosaccharides (GOS) (Lu et al., 2009). These prebiotics have numerous health benefits and thus β-galactosidase has high demand in both food (Mahoney & Adamchuk, 1980; Jokar & Karbassi, 2009; Princely et al., 2013; Klein et al., 2016; Saqib et al., 2017) and dairy industries (He et al., 2007; Pal et al., 2013; Erich et al., 2015).

β-galactosidases are widely distributed in different biological systems, e.g. microorganisms, plants such as almonds, peaches, apricots, and animal tissues such as brain and placenta (Kayukawa et al., 2020). β-galactosidases are members of the family of hydrolases that belongs to the group of saccharide-converting enzymes. Properties, activity and the structure of the enzyme such as position of the active site, molecular weight of the enzyme, length of the amino acid chain, thermal and pH stability vary with the sources from which the enzyme is obtained (Zhou & Chen, 2001). Therefore, source of the enzyme can be selected according to one’s choice, depending on reaction conditions. Among all the natural sources, production of the enzyme is focused on microorganisms as they have the ability to grow on low-cost substrates. Moreover, compared to plants and
animal sources, higher yields can be obtained while minimizing the cost of production (Santos et al., 1998). Microorganisms including yeast, fungi, bacteria and actinomycetes have been exploited for β-galactosidase production (Zadow, 1992; Fernandez, 1999; Bhanwar & Ganguli, 2014; Panesar et al., 2016; Xu et al., 2019). Among these microorganisms special attention is still paid to fungal sources as their enzymes are thermostable. Since the enzyme is extracellular, additional cost for the extraction is very low. Furthermore, fungi give higher yields, and their enzymes show broad stability profiles. Therefore, the commercially available β-galactosidases have been mainly obtained from fungi: yeast and moulds. The most important sources are Aspergillus and Kluveromyces species including A. oryzae, K. lactis, K. marxianus and K. fragilis (Zhou &d Chen, 2001; Roy & Gupta, 2003; Johnson & Echavarri-Erasun, 2011; Maccacari et al., 2012; Martarello et al., 2019). As the demand is high, finding new fungal source for the production of the enzyme is of current interest.

The objective of the present study was the optimisation of production, partial purification and characterisation of β-galactosidase secreted by Thielaviopsis ethacetica.

METHODOLOGY

The microorganism and culture conditions

Fungal strain Thielaviopsis ethacetica has been previously isolated from the topsoil and identified to exhibit alpha-amylose activity (Dissanayaka et al., 2019). The internal transcribed spacer (ITS) sequences have been deposited in the GenBank/NCBI (Accession no; MG062870.1). The fungus was stored in potato dextrose agar (PDA) slants for long term storage and subcultures were prepared once a month throughout the study period. After reviving on PDA supplemented with tetracycline, the fungus was transferred aseptically onto fresh PDA plates to get a single spore culture. All assays were carried out in triplicate.

β-galactosidase enzyme assay

β-galactosidase activity on soluble starch was assayed by using o-nitrophenol-galactopyranoside (o-NPG) (Miller, 1972).

Appropriately diluted 0.15 mL crude enzyme was mixed with 0.6 mL of substrate solution. 1 mM o-NPG was prepared in 0.1 M sodium phosphate buffer at pH 7.0. The reaction mixture was incubated at 40 °C for 30 min. The reaction was terminated by adding 1 mL of 1 m of Na2CO3. The concentration of o-nitrophenol (oNP) released from o-NPG was determined by measuring the absorbance at 420 nm by UV spectrophotometer using the standard calibration curve (Soydan, 2006; Konsoula & Liakopoulou-Kyriakides, 2007). For enzyme blank, 0.15 mL of sample was mixed with 0.6 mL of buffer and 1 mL of 1 M Na2CO3. For substrate blank, 0.15 mL of buffer was mixed with 0.6 mL of substrate solution and 1 mL of 1 M Na2CO3. Mean absorbance value of the triplicates was taken to calculate the unit enzyme activity.

Determining the time for optimal enzyme production

Pre-inoculum was prepared in 50 mL of fermentation medium comprising 2% soluble starch, 0.5% yeast extract, 0.03% MgSO4, 0.03% CaCl2 and 0.7% KH2PO4 at pH 4. Sterile medium was inoculated with 3 agar plugs of profusely growing fungi (6 mm diameter) and incubated at room temperature with shaking at 120 rpm. After 96 hours of incubation, 5 mL of homogenized pre-inoculum was carefully withdrawn and added to 50 mL of the fermentation medium.

Fermentation medium was incubated at 32 °C for 72 h in a rotary shaker at 120 rpm (Dissanayaka et al., 2019). β-galactosidase activity and total protein concentration was measured at 12-hour intervals by removing 150 µL from the fermentation medium. The concentration of o-nitrophenol (oNP) was measured at 12-hour intervals by removing 150 µL from the fermentation medium. All assays were carried out in triplicate.

Qualitative assay for the pre β-galactosidase activity

To observe the pre β-galactosidase activity, 6 mm diameter disc of mycelium cut from the growing edge of fungal colonies were transferred aseptically onto YpsS agar plates (2% agar, 0.4% yeast extract, 0.05% MgSO4, 7H2O, 0.1% KH2PO4 and 1.5% soluble starch), supplemented with 80 µg/mL X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) (Sigma). The plates were incubated at 32 °C for 72 h and the observations were made at every 24-hour intervals. In the presence of β-galactosidase enzyme, X-Gal would be cleaved at the β-1-4 bond between galactose and the 5-bromo-4-chloro-3-indolyl part of X-Gal producing a blue-green colour formation in culture plates.
Total protein content assay

Total protein concentration was assayed in triplicate using Qubit 3 Invitrogen™ Qubit™ 3.0 Fluorometer according to the given instructions in Qubit assay kit (Invitrogen™).

Partial purification of the β-galactosidase enzyme

Five hundred millilitres from the submerged fermentation medium containing 2% soluble starch were inoculated with the fungal strain *Thielaviopsis ethacetica* and incubated at 32 °C for 72 h. After the incubation, culture medium was centrifuged at 6000 rpm for 15 min at 40 °C and the supernatant was subjected to gradient ammonium sulphate fractionation. The supernatant was brought into 40% (Fraction 1) saturation followed by 60% (Fraction 2), 80% (Fraction 3), and 100% (Fraction 4). Ammonium sulphate was gradually added into the medium while stirring continuously using a magnetic stirrer (Wingfield, 2001). Saturated protein samples were then centrifuged at 12000 rpm for 15 min, at 40 °C and the protein pellets were recovered. Before the dialysis, each pellet was dissolved in a minimum volume of 0.1 M phosphate buffer at pH 7 separately. Dialysis was accompanied by continuous stirring over 24 hours at 40 °C against the same buffer and the buffer was changed intermittently. Finally, all the fractions were assayed for enzyme activity and total protein concentration.

Investigation the effect of temperature on β-galactosidase activity

To find the effect of temperature and pH on β-galactosidase activity, Fraction 2 (40–60%) with the highest enzyme activity was collected and used. The effect of temperature was evaluated at 20, 37, 40, 60 and 80 °C by incubating the reaction mixture for 30 min. β-galactosidase enzyme activity was determined as previously described.

Investigation of the effect of pH on β-galactosidase activity

The effect of pH on enzyme activity was evaluated by adjusting the pH of the substrate at 4, 5, 6, 7, and 8. The reaction mixture was incubated at 60 °C for 30 min under specific pH value and enzyme activity was determined as previously described.

Determination of the molecular weight of *Thielaviopsis ethacetica* β-galactosidase

Partially purified protein fraction 2 with the highest enzyme activity was freeze-dried (CHRIST Alpha 1-2 LDplus, Germany) and 1 mg of lyophilized protein sample was dissolved in an appropriate volume of sample buffer (Laemmli, 1970). To separate proteins in the sample, 10% sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) stained with Coomassie Brilliant Blue R-250 was used. To determine the molecular weight of the protein, a broad range molecular weight protein marker ranging from 10–100 kDa was used.

Protein identification using mass spectrometry peptide sequencing (MALDI/MS) method

Molecular weight of many fungal β-galactosidases lies around 40–75 kDa. Therefore, three separated protein bands representing more than 40 kDa were used for MALDI/MS identification. Immediate gel surface around these three bands were carefully separated and stored in an appropriate amount of sterilized distilled water. Three protein samples were sent to ALPHALYSE, Denmark for protein identification using Bruker Autoflex Speed MALDI TOF/TOF instrument. The resulted spectra were searched against available protein databases from UniProtKB using the Mascot software.

RESULTS AND DISCUSSION

Qualitative assay for the pre β-galactosidase activity

Although X-Gal is a commonly associated colourimetric method with lac operon in *E. coli*, the applicability of X-Gal for the detection of fungal β-galactosidase is still under assessment. In the present study, it has been attempted to determine the presence of an active fungal β-galactosidase in culture plates containing X-Gal. IPTG was not added to the culture plates as an inducer. After a 72-hour incubation period, a blue-green colour zone formation was observed towards the edges of the fungal colony. A similar finding has been reported by Fischer et al. (1995a), Soydan (2006), and Kishore and Kayastha (2012) with fungal β-galactosidase enzyme. This method will be a great advantage during the early screening procedures when the number of testing samples are high.

β-galactosidase enzyme assay

Thielaviopsis ethacetica containing fermentation medium gave a prominent peak for β-galactosidase enzyme activity during the 3rd day of the incubation. During the first 24 hours protein concentration gradually increased and then peaked at 48 hours (184.2 μg/mL), where β-galactosidase enzyme activity remained in lower points until 36 h. After 36 hours, enzyme activity
gradually increased reaching its maximum at 72 hours giving 0.599 U/mL maxima with a simultaneous drop in protein content to 67 μg/mL (Figure 1). After 72 hours, enzyme activity remained static where the protein concentration started to increase. Static enzyme activity may probably be due to the denaturation of protein resulted from unfavourable culture conditions during the latter part of the incubation period. Moreover, due to the depletion of initial substrate concentration, newly synthesised mycelia may be secreting other proteins extracellularly to degrade substrates other than starch, resulting in an increased protein concentration after 72 hours.

Figure 1: Total protein content and enzyme activity against incubation time. Error bars represents standard deviation

Optimum β-galactosidase enzyme activity was observed at 72 hours incubation period. Therefore, the extraction of β-galactosidase from T. ethacetica was fixed to 72 hours of incubation period. Late secretion of β-galactosidase enzyme was observed in many other organisms; for example, Bacillus sp., Rhizomucor sp. and Aspergillus sp. (Shaikh et al., 1997; Akcan, 2011; Martarello et al., 2019). Quantitative determination of the β-galactosidase activity is commonly accomplished by using colourimetric method. β-galactosidase is capable of catalysing substrates with b-D-galactopyranoside residues like o-nitrophenol-galactopyranoside (o-NPG). During the hydrolysing process it can form galactose and o-nitrophenol (oNP) with a yellow colour. oNP is capable of absorbing light at 420 nm, therefore the colour intensity can be used to detect β-galactosidase activity of complex biological systems (Miller, 1972).

The present study used starch as the substrate, instead of well-known β-galactosidase substrates containing b-D-galactopyranoside moiety or lactose. The results suggest that one of the intermediate or an end product such as maltose or malto dextrin produced during the starch hydrolysis may act as the substrate for β-galactosidase enzyme production. Konsoula and Liakopoulou-Kyriakides (2007) reported that there can be about 1.5 fold increment of β-galactosidase enzyme activity when using soluble starch as the fermentation medium instead of lactose under the co-production culture conditions of alpha-amylase enzyme. Further, it has been reported that the enzyme production is induced in the presence of yeast extract (Konsoula & Liakopoulou-Kyriakides, 2007). Nitrogen dependancy and carbon independancy of β-galactosidase have opened many arguments among the scientific community and still there is no strong conclusion regading its substrate specificity (Lind et al., 1989; Fischer et al., 1995; Konsoula & Liakopoulos, 2007).

Table 1: Enzyme activity and total protein content of ammonium sulphate fractions

Ammonium sulphate percentage	Total enzyme activity (u/mL)	Total protein content (mg)	Specific activity (u/mg)	Purification fold	Recovery (%)
Crude	8.75	45	0.19	1	100
0–40%	1.15	1.83	0.63	3.31	13.1
40–60%	2.475**	1.5	1.65	8.68	28.3
60–80%	1.776	1.25	1.42	7.47	20.3
80–100%	0.860	0.84	1.02	5.37	9.8

0 – 40% (fraction 1); 40–60 % (fraction 2); 60-80 % (fraction 3); 80-100 % (fraction 4)

**Indicates the highest enzyme activity for fraction 2
Partial purification of the β-galactosidase enzyme

During the partial purification of β-galactosidase, initially, the culture supernatant was saturated with ammonium sulphate from 0–40% (Fraction 1), 40–60% (Fraction 2), 60–80% (Fraction 3) and 80–100% (Fraction 4). Out of the four fractions, fraction 2 had the highest specific enzymes activity of 1.65 U/mg with an 8.68 purification fold and 28.28% recovery (Table 1). Therefore, Fraction 2 was selected for further assay.

Effect of temperature on β-galactosidase activity

Under the defined assay conditions maximum temperature for β-galactosidase enzyme activity was determined at temperatures ranging from 20–80°C. The optimum temperature for maximum T. ethacetica β-galactosidase activity was found to be around 60 °C (Figure 2). Many researchers have reported an optimum temperature around 60 °C for Aspergillus oryzae, A. niger, A. carbonarius, A. fonsecae, Rhizomucor sp., Mucor sp. and Fusarium sp. (Sorensen & Crisan, 1974; Park et al., 1979; Gonzalez & Monsan, 1991; Shaikh et al., 1997; O’Connell & Walsh, 2008; Martarello et al., 2019).

Effect of pH on β-galactosidase activity

Thielaviopsis ethacetica exhibited two prominent enzyme activity peaks for β-galactosidases at distinct pH values. The highest activity peak with 0.083 U/mL was observed at pH 7 and slightly lower second peak of 0.054 U/mL at pH 5 (Figure 3).

These results show similarities to the observations made by Fisher et al. (1995) for Thermomyces sp. In the literature it is reported that most fungal β-galactosidase showed high activity in two pH ranges from 3–5 and 6–7. Borglum and Sternberg (1972), Cardoso et al. (2017), Gekas and Lopez-Leiva (1985), Niu et al. (2017), and O’Connell and Walsh (2008) reported that most of the Aspergillus and Mucor species exhibited enhanced enzyme activity under low pH values. On the other hand, Dfrij and Ögel (2002), Fischer et al. (1995), Martarello et al. (2019) and Matioli et al. (2001) reported that the highest enzyme activity was near neutral pH with Aspergillus, Thermomyces and Kluyveromyces species. However, due to having two enzyme activity peaks in the acidic and neutral pH ranges, the present strain can give an additional advantage for use in industry. Considering the acid stability nature of the enzyme, it can be useful in the pharmaceutical industry, while its activity near neutral pH values can be useful in the dairy industry.
Determination of the molecular weight of *T. ethacetica* β-galactosidase

Partially purified lyophilised fraction 2 was run with a marker protein in SDS-PAGE. The resulted gel image is given in Figure 4. Three proteins bands designated by arrows were used for MALDI-MS/MS identification. MALDI-MS/MS analysis involved 15 partially sequenced peptides and identity searching against UniProtKB using Mascot software. The protein band corresponded to 50 kDa molecular weight was matched to *E. coli* β-galactosidase with 729 Mascot score value (> 95% confidence level). Identified peptides corresponding to *E. coli* β-galactosidase are shown in Figure 5 with 25% sequence coverage. MALDI/MS peptide mapping and sequencing permit the identification of peptide sequences in a mixture especially when it is difficult to obtain one single pure protein. During the SDS-PAGE, Coomassie Brilliant Blue R-250 was used for staining to minimize the interference during mass spectrometry. According to available data on the molecular weight summary report on β-galactosidase, its molecular weight can range from 12 kDa to 270 kDa depending on the species from which it has been isolated. β-galactosidase isolated from *Thermomyces* and *Thermotoganaphthophila* species had molecular weights between 75–80 kDa (Fischer *et al.*, 1995) and 70 kDa (Kong *et al.*, 2014), respectively, whereas the enzyme characteristics would have a significant impact on industrial-scale applications. Therefore, new opportunities exist for further research on enzyme production abilities of *T. ethacetica*.
of *Aspergillus* species reported to have a molecular weight range of 27–126 kDa (Tanaka et al., 1975; Park et al., 1979; Gonzalez & Monson, 1991; Saad, 2004; Todorova-Balvay et al., 2006). Considering the results of the protein sequencing analysis of the present study, it is indicated that majority of the starch hydrolase at 72 hours represent β-galactosidase enzyme.

CONCLUSION

The present study identified a fungal strain *Thielaviopsis ethacetica* with β-galactosidase activity and to the best of our knowledge this is the first report on β-galactosidase activity by *T. ethacetica*. Enzyme activity at high temperature, pH preference and substrate independency make the β-galactosidase produced by this strain suitable for industrial applications. Further, we emphasize the co-production ability of alpha amylase and β-galactosidase under starch fermentation medium, which can be readily substituted with low-cost substrates such as rice bran, banana peel and cassava starch (Dissanayaka et al., 2019). During the initial stages of growth, *T. ethacetica* secretes extracellular alpha-amylase to the medium and involves starch hydrolysing process. Subsequently, it begins and continues to secrete β-galactosidase up to its death phase. Fungal strains having such beneficial enzyme production characteristics would have a significant impact on industrial-scale applications. Therefore, new opportunities exist for further research on enzyme production abilities of *T. ethacetica* and optimization of such capabilities to fulfil the industrial demands on starch processing.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Authors wish to gratefully acknowledge the financial assistance provided by the National Science Foundation of Sri Lanka (NSF grant Number RG/2016/BT/01).

REFERENCES

Akcan N. (2011). High level production of extracellular β-galactosidase from Bacillus licheniformis ATCC 12759 in submerged fermentation. *African Journal of Microbiology Research* 5(26): 4615–4621. DOI: https://doi.org/10.5897/AJMR11.716

Bhanwar S. & Ganguli A. (2014). Alpha-amylase and β-galactosidase production on potato starch waste by *Lactococcus lactis* subsp lactis isolated from pickled yam. *Journal of Scientific and Industrial Research* 73(5): 324–330.

Borglum G.B. & Sternberg M.Z. (1972). Properties of a fungal lactase. *Journal of Food Science* 37: 619–623.

Cardoso B.B., Silvério S.C., Abrunhosa L., Teixeira J.A. & Rodrigues L.R. (2017). β-galactosidase from *Aspergillus lacticoffeatus*: A promising biocatalyst for the synthesis of novel prebiotics. *International Journal of Food Microbiology* 257: 67–74. DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.06.013

Drijf D.H. & Ögel Z. (2002). Production of neutral and alkaline proteases by the thermophilic fungus *Scytalidium thermophilum*, grown on microcrystalline cellulose. *Biotechnology Letters* 24: 1107–1110.

Dissanayaka D.M.S., De Silva S.N.T., Attanayaka D.P.S.T.G., Kurera M.J.M.S. & Fernando C.A.N. (2019). Characterization of alpha amylase producing *Thielaviopsis ethacetica* and its raw starch hydrolyzing ability on different agricultural substrates. *Microbiology and Biotechnology Letters* 47(3): 412–422. DOI: https://doi.org/10.4014/mbl.1812.12002

Erich S., Kuschel B., Schwarz T., Ewert J., Bohmer N., Niehaus F., Eck J., Lutz-Wahl S., Stresses T. & Fischer L. (2015). Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry. *Journal of Biotechnology* 210: 27–37. DOI: https://doi.org/10.1016/j.jbiotec.2015.06.011

Fernandez M. (1999). Duplication of the β-galactosidase gene in some *Lactobacillus plantarum* strains. *International Journal of Food Microbiology* 48(2): 113–123. DOI: https://doi.org/10.1016/S0168-1605(99)00031-8

Fischer L., Scheckermann C. & Wagner F. (1995). Purification and characterization of a thermotolerant β-galactosidase from *Thermomyces lanuginosus*. *Applied and Environmental Microbiology* 61(4): 1497–1501. DOI: https://doi.org/10.1128/AEM.61.4.1497-1501.1995

Gekas V. & Lopez-Leiva M. (1985). Hydrolysis of lactose: a literature review. *Process Biochemistry* 20: 2–11.

Gonzalez R.R. & Monsan P. (1991). Purification and some characteristics of β-galactosidase from *Aspergillus fonscaeus*. *Enzyme and Microbial Technology* 13: 349–352.

He T., Priebe M.G., Zhong Y., Huang C.,Harmsen H.J.M., Raangs G.C., Antoine J.M., Welling G.W. & Yonk R.J. (2007). Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. *Journal of Applied Microbiology* 104(2): 595–604. DOI: https://doi.org/10.1111/j.1365-2672.2007.03579.x

Johnson E.A. & Echavarri-Erasun C. (2011). Yeast biotechnology. In: *The Yeasts* (eds. C.P. Kurtzman, J.W. Fell & T. Boekhout), 5th edition, pp. 21–44. Elsevier, Netherlands. DOI: https://doi.org/10.1016/B978-0-444-52149-1.00003-3

Jokar A. & Karbassi A. (2009). Determination of proper conditions for the production of crude β-galactosidase

Journal of the National Science Foundation of Sri Lanka 49(4) December 2021
using Lactobacillus delbrueckii ssp. Bulgaricus. Journal of Agricultural Science and Technology 11(3). 301–308.
Kayukawa C.T.M., Oliveira M.A.S., Kaschak E., Sanchuki H.B.S., Igarashi-Mafra L. & Mafra M.R. (2020). Quillaja bark saponin effects on Kluyveromyces lactis β-galactosidase activity and structure. Food Chemistry 303: 125388.
DOI: https://doi.org/10.1016/j.foodchem.2019.125388
Kishore D. & Kayastha A.M. (2012). A β-galactosidase from chick pea (Cicer arietinum) seeds: Its purification, biochemical properties and industrial applications. Food Chemistry 134(2): 1113–1122.
DOI: https://doi.org/10.1016/j.foodchem.2012.03.032
Klein M.P., Hackenhaar C.R, Lorenzoni A.S.G., Rodrigues B.C., Costa M.H., Ninow J.L. & Hertz P.F. (2016). Chitosan crosslinked with genipin as support matrix for β-galactosidase immobilization. Carbohydrate Polymers 137: 184–190.
DOI: https://doi.org/10.1016/j.carbpol.2015.10.069
Kong F., Yeging W., Shugui C., Renjun G. & Guigiu X. (2014). Cloning, purification and characterization of a thermostable β-galactosidase from Thermotoga naphthophila RUK-10. Process Biochemistry 49: 775–782.
Konsoulia Z. & Liakopoulou-Kyriakides M. (2007). Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology 98(1): 150–157.
DOI: https://doi.org/10.1016/j.biortech.2005.11.001
Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
Lind D.L., Daniel R.M., Cowan D.A. & Morgan H.W. (1989). β-Galactosidase from a strain of the anaerobic thermophile, Thermoanaerobacter. Enzyme and Microbial Technology 11(3): 180–186.
DOI: https://doi.org/10.1016/0141-0229(89)90079-3
Luo L., Xiao M., Li Z., Li Y. & Wang F. (2009). A novel transglycosylating β-galactosidase from Enterobacter cloacae B5. Process Biochemistry 44(2): 232–236.
DOI: https://doi.org/10.1016/j.procbio.2008.10.010
Maccarferri S., Klinder A., Bridig P., Cavina P. & Costabile A. (2012). Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in CaCO-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Applied and Environmental Microbiology 78(4): 956–964.
DOI: https://doi.org/10.1128/AEM.06385-11
Mahoney R.R. & Adamchuk C. (1980). Effect of milk constituents on the hydrolysis of lactose by lactase from Kluyveromyces fragilis. Journal of Food Science 45(4): 962–964.
DOI: https://doi.org/10.1111/j.1365-2621.1980.tb07487.x
Martarello R.D., Cunha, L., Cardoso S.L., de Freitas M.M., Silveira D., Fonseca-Bazzo Y.M., de Mello M.H., Filho E.F. & Magalhaes P.O. (2019). Optimization and partial purification of β-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express 9: Article number 81 (2019).
DOI: https://doi.org/10.1186/s13568-019-0805-6
Matioli G., Farias de Moraes F. & Maria Zanin G. (2001). Hydrolysis of lactose by β-galactosidase from Kluyveromyces fragilis: characterization of the enzyme. Maringá 23: 655–659.
Miller J.H. (1972). Experiments in Molecular Genetics: Assay of β-Galactosidase, pp. 352–355. CSH Laboratory Press, Cold Spring Harbor, USA.
Niu D., Tian X., Mchunu N.P., Jia C., Singh S., Liu X., Prior B.A. & Lu F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Electronic Journal of Biotechnology 27: 37–43.
DOI: https://doi.org/10.1016/j.ejbt.2017.03.001
O’Connell S. & Walsh G. (2008). Application relevant studies of fungal β-galactosidases with potential application in the alleviation of lactose intolerance. Applied Biochemistry and Biotechnology 149(2): 129–138.
DOI: https://doi.org/10.1007/s12010-007-8098-7
Pal A., Melita L., M. & Khanum F. (2013). Extraction, purification and thermodynamic characterization of almond (Amygdalus communis) β-galactosidase for the preparation of delactosed milk. Food Technology and Biotechnology 51(1): 53–61.
Panesar P.S., Kaur R. & Singh R.S. (2016). Isolation and screening of fungal strains for β - isolation and screening of fungal strains for β -galactosidase production. International Journal of Nutrition and Food Engineering 10(7): 400–404.
Park Y.K., Santi M.S.S. & Pastore G.M. (1979). Production and characterization of β-galactosidase from Aspergillus oryzae. Journal of Food Science 44(1): 100–103.
DOI: https://doi.org/10.1111/j.1365-2621.1979.tb10016.x
Princely E.G., Basha S., Kirubakaran J. & Dhanaraj M.D. (2013). Biochemical characterization, partial purification, and production of an intracellular β-galactosidase from Streptococcus thermophilus grown in whey. Pelagia Research Library European Journal of Experimental Biology 3(2): 242–251.
Roy I. & Gupta M.N. (2003). Lactose hydrolysis by lactozym immobilized on cellulose beads in batch and fluidized bed modes. Process Biochemistry 39: 325–332.
DOI: https://doi.org/10.1016/S0031-9422(03)00086-4
Saad R.R. (2004). Purification and some properties of β-galactosidase from Aspergillus japonicus. Annals of Microbiology 54(3): 299–306.
Santos F.A.P., Huber J.T., Theurer C.B., Swingle R.S., Simas J.M., Chen K.H. & Yu P. (1998). Milk yield and composition of lactating cows fed steam-flaked sorghum and graded concentrations of ruminally degradable protein. Journal of Dairy Science 81(1): 215–220.
DOI: https://doi.org/10.1038/jds.2002-0302(98)75568-7
Saqib S., Akram A., Hali and Biotechnology 39(7): 400–404.
DOI: https://doi.org/10.3168/jds.S0022-0302(98)75568-7
Tassadug R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech 7(1): 79.
DOI: https://doi.org/10.1007/s13205-017-0645-5
β-galactosidase from fungi Thielaviopsis ethacetica

Shaikh S.A., Khire J.M. & Khan M.A. (1997). Production of β-galactosidase from thermophilic fungus *Rhizomucor* sp. *Journal of Industrial Microbiology and Bacteriology* **19**(4): 239–245.
DOI: https://doi.org/10.1038/sj.jim.2900452

Sorensen S.G. & Crisan E.V. (1974). Thermostable lactase from thermophilic fungi. *Journal of Food Science* **39**(6): 1184–1187.
DOI: https://doi.org/10.1111/j.1365-2621.1974.tb07349.x

Soydan M. (2006). Production of thermostable β-galactosidase from thermophilic fungi for use in low lactose milk production. *MSc thesis*. Middle East Technical University, Ankara, Turkey.

Tanaka T., Kagamiishi A., Kiuchi A. & Horiuchi T. (1975). Purification and properties of β-galactosidase from *Aspergillus oryzae*. *The Journal of Biochemistry* **77**(1): 241–247.
DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a130713

Todorova-Balvay D., Stoilova I., Gargova S. & Vijaylakshmi M.A. (2006). An efficient two step purification and molecular characterization of β-galactosidases from *Aspergillus oryzae*. *Journal of Molecular Recognition* **19**(4): 299–304.
DOI: https://doi.org/10.1002/jmr.788

Wingfield P.T. (2001). Protein precipitation using ammonium sulfate. *Current Protocols in Protein Science* **80**: 6.1.1–6.1.35.
DOI: https://doi.org/10.1002 / 0471140864.ps0601s80

Wingfield P.T. (2001). Protein precipitation using ammonium sulfate. *Current Protocols in Protein Science* **80**: 6.1.1–6.1.35.
DOI: https://doi.org/10.1002 / 0471140864.ps0601s80

Xu X., Fan X., Fan C., Qin X., Liu B., Nie C., Sun N., Yao Q., Zhang Y. & Zhang W. (2019). Production optimization of an active β-galactosidase of *Bifidobacterium animalis* in heterologous expression systems. *BioMed Research International* **2019**: 1–10.
DOI: https://doi.org/10.1155/2019/8010635

Zadow J.G. (1992). Lactose hydrolysis. In: *Whey and Lactose Processing* (ed. J.G. Zadow), pp 361. Elsevier Applied Sciences, London and New York.

Zhou Q.Z. & Chen X.D. (2001). Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from *Kluyveromyces lactis*. *Biochemical Engineering Journal* **9**(1): 33–40.
DOI: https://doi.org/10.1016/S1369-703X(01)00118-8