Targeting ERBB2 (HER2) Amplification Identified by Next-Generation Sequencing in Patients With Advanced or Metastatic Solid Tumors Beyond Conventional Indications

Ecaterina E. Ileana Dumbrava, MD1; Kavitha Balaji, PhD1,2; Kanwal Raghav, MD1; Kenneth Hess, PhD1; Milind Javle, MD1; Mariela Blum-Murphy, MD1; Jaffer Ajani, MD1; Apostolia M. Tsimberidou, MD, PhD1; Vivek Subbiah, MD1; David S. Hong, MD1; Jordi Rodon, MD, PhD1; Scott Kopetz, MD, PhD1; Russell Broaddus, MD, PhD1; Mark Routbort, MD, PhD1; Mehmet Demirhan, MD1; Xiaofeng Zheng, PhD1; Shubham Pant, MD1; Sarina A. Piha-Paul, MD1; and Funda Meric-Bernstam, MD1

PURPOSE Human epidermal growth factor receptor 2 (HER2) is an effective therapeutic target in breast and gastric and gastroesophageal junction cancers. However, less is known about the prevalence of ERBB2 (HER2) amplification and the efficacy of HER2-targeted treatment in other tumors.

PATIENTS AND METHODS We assessed HER2 amplification status among 5,002 patients with advanced disease (excluding breast cancer) who underwent next-generation sequencing. We evaluated the clinical benefit of HER2-targeted therapy by measuring the time-dependent overall survival (OS) from the genomic testing results, progression-free survival (PFS), and PFS during HER2-targeted therapy (PFS2) compared with PFS during prior therapy (PFS1).

RESULTS Overall, 122 patients (2.4%) had HER2 amplification, including patients with endometrial (5.3%), bladder (5.2%), biliary or gallbladder (4.9%), salivary (4.7%), and colorectal cancer (3.6%). Forty patients (38%) with nongastric, nongastroesophageal junction, or nonesophageal cancers received at least one line of HER2-targeted therapy. Patients receiving HER2-targeted therapy had a median OS of 18.6 months, compared with 10.9 months for patients who did not receive HER2-targeted therapy (P = .070). On multivariable analysis, HER2-targeted therapy was significantly associated with increased OS (hazard ratio, 0.5; 95% CI, 0.27 to 0.93; P = .029), regardless of sex, age, or number of prior lines of treatment. The PFS2-to-PFS1 ratio was 1.3 or greater in 21 (57%) of 37 patients who received HER2-targeted therapy not in the first line of systemic treatment, and the median PFS2 and PFS1 times were 24 and 13 weeks, respectively (P < .001).

CONCLUSION HER2 amplifications using next-generation sequencing can be identified in a variety of tumor types. HER2-targeted therapy may confer clinical benefit in tumor types other than those for which HER2 inhibitors are approved.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION Personalized cancer therapy is becoming more histology agnostic as treatments are chosen based on tumor genomics rather than tumor type.1,2 Human epidermal growth factor receptor 2 (HER2) is a transmembrane tyrosine kinase receptor that belongs to the epidermal growth factor receptor family and is encoded by the ERBB2 (HER2) gene (chromosome 17q12). Overexpression of HER2 protein occurs through HER2 gene amplification or through other transcriptional or translational mechanisms3 and can result in the formation of spontaneous receptor homodimers, resulting in the initiation of downstream signaling cascades and malignant transformation.4,5 HER2 amplification is a prognostic biomarker for worse survival in the absence of anti-HER2 therapy.6,7 HER2 is a compelling therapeutic target in patients with breast6,8-10 and gastric or gastroesophageal junction (GEJ) cancers.11 For HER2-overexpressing or HER2-amplified breast cancer, several HER2-targeted therapies are approved for use in the adjuvant and metastatic settings, including trastuzumab (metastatic and adjuvant), pertuzumab (metastatic and adjuvant), lapatinib (metastatic), ado-trastuzumab emtansine (metastatic), and neratinib (adjuvant). Trastuzumab is also approved, in combination with cisplatin and a fluoropyrimidine (capecitabine or fluorouracil), for the treatment of metastatic gastric or GEJ cancers. Furthermore, several promising novel HER2-targeted
CONTEXT

Key Objective

Our study focused on assessment of ERBB2 (HER2) amplification in patients with solid tumors, excluding breast cancer, who underwent next-generation sequencing. We evaluated the clinical benefit of HER2-targeted therapy by measuring the time-dependent overall survival from the genomic testing results, progression-free survival (PFS), and PFS during HER2-targeted therapy compared with PFS during prior therapy.

Knowledge Generated

We showed that HER2 amplification is present in a clinically relevant proportion of tumors and that HER2-targeted therapy may confer clinical benefit, with increased survival in patients with tumor types other than those for which HER2 inhibitors are approved.

Relevance

HER2 is an established effective therapeutic target in breast, gastric, and gastroesophageal junction cancers; however, less is known about the prevalence of HER2 amplification and efficacy of HER2-targeted treatment in other tumors. The results showed HER2 amplifications in patients with various tumor types, including endometrial (5.3%), bladder (5.2%), biliary or gallbladder (4.9%), salivary (4.7%), and colorectal cancer (3.6%). Patients who received matched HER2-targeted therapies had significantly increased PFS on HER2-targeted therapy compared with previous treatment and increased overall survival. Validation of these results in a larger study could focus on determining the associations of copy number, simultaneous HER2 mutations, and other coalterations with response to HER2-targeted therapies.

The main mechanism of HER2 overexpression is HER2 gene amplification, which occurs in 18% to 20% of patients with breast cancer\(^14,15\) and 7% to 34% of patients with gastric or GEJ cancers.\(^11,16,17\) ASCO and the College of American Pathologists recommended testing in breast and gastric or GEJ cancers using immunohistochemistry (IHC) for HER2 protein expression or in situ hybridization (fluorescence in situ hybridization [FISH], chromogenic in situ hybridization, or silver in situ hybridization) for HER2 gene amplification.\(^14,18\) Other techniques, such as comparative genomic hybridization, can also be used to detect copy number variations.\(^19-21\) However, with the development and integration of next-generation sequencing (NGS) in cancer care and the increasing capacity of NGS to determine copy number variations concurrently with other alterations such as mutations, NGS has become a more cost-effective and tissue-efficient alternative to current single-gene assessment methods.\(^22\)

HER2 amplification also occurs in other carcinomas at differing frequency.\(^23-25\) Although relatively little is known about the role of HER2 in other tumor types, emerging data indicate that HER2-targeted therapy may have efficacy in other HER2-positive tumors.\(^26\)

We hypothesized that HER2-targeted therapy could be associated with clinical benefit in tumor types other than breast and gastric or GEJ cancers. To test this hypothesis, we determined the prevalence of HER2 amplification determined by NGS in different tumor types and compared progression-free survival (PFS) during matched HER2-targeted therapy with PFS during prior therapy. We also compared the overall survival (OS) of patients who received HER2-targeted therapy with the OS of patients who did not.

PATIENTS AND METHODS

Selection of Patients

Patients with advanced or metastatic solid tumors (excluding breast cancer and lymphoma) underwent NGS in Clinical Laboratory Improvement Amendments–certified laboratories using multiple platforms to facilitate personalized cancer therapy between January 2011 and June 2017. For the current study, the NGS analysis was performed using four platforms, including the Oncomine Comprehensive Assay (ThermoFisher, Waltham, MA) or Ion AmpliSeq Comprehensive Cancer Panels (ThermoFisher) performed at The University of Texas MD Anderson Cancer Center Molecular Diagnostic Laboratory,\(^27\) FoundationOne or FoundationOne Heme (Foundation Medicine, Cambridge, MA) tumor testing, or Guardant360 (Guardant Health, Redwood City, CA) circulating cell-free DNA (cfDNA) testing. We excluded patients in whom HER2 amplification was detected by NGS on platforms that do not systematically report copy number variation. The genomic testing results were annotated by the Precision Oncology Decision Support System at The University of Texas MD Anderson Cancer Center.\(^28\)

The patients’ relevant clinical and molecular characteristics were collected from electronic medical records and prospectively maintained institutional databases (Table 1). The diagnosis was obtained from the pathology reports that had been verified by board-certified pathologists at The University of Texas MD Anderson Cancer Center. Other profiling, such as IHC for HER2 protein expression and FISH
for HER2 amplification, was performed in some patients and was also reviewed in this study.

The HER2-targeted clinical trials had been individually approved and conducted at The University of Texas MD Anderson Cancer Center in accordance with institutional review board guidelines, and this reported analysis was conducted under an institutional review board–approved protocol.

HER2 Amplification and Overexpression Analysis

HER2 amplification determined by NGS was defined according to each platform’s analytic pipeline, was based on the resulting reports and validation, and varied between greater than five to greater than seven estimated copy numbers for reporting high-confidence amplification. For patients who underwent cfDNA analysis, digital sequencing was performed by Guardant Health, using a 54-gene panel (Guardant360). HER2 plasma copy numbers of 2.5 to 4.0 are reported as ++ amplification, and greater than 4.0 copy numbers are reported as +++ amplification, representing the 50th to 90th and greater than 90th percentiles, respectively, of all copy number alteration calls in the Guardant360 database. IHC staining for HER2-neu and HER2 FISH analysis were performed on specimens from some patients with HER2 amplification (Appendix).

Clinical Benefit on HER2-Targeted Therapy

We investigated the anticancer treatments received by patients with HER2 amplifications. To determine the clinical benefit of HER2-targeted therapy, we measured PFS during matched HER2-targeted therapy (PFS2) and compared it with PFS during prior therapy (PFS1). PFS was defined as the time from the start of treatment until disease progression or death. Response to treatment and progression were determined using Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, as measured by radiologists or investigators. Patients who received HER2-targeted therapy as the first systemic treatment were excluded from the PFS2-to-PFS1 analysis.

We also evaluated the OS of patients who received HER2-targeted therapy and compared it with the OS of patients who did not receive HER2-targeted therapy. OS was calculated as a time-dependent indicator variable in both the Kaplan-Meier and Cox proportional hazards analyses from the genomic testing result until death from any cause. Last news and death date were determined based on the electronic medical records, and survival follow-up was updated in March 2019. The Royal Marsden Hospital prognostic score for predicting survival in phase I trials (including albumin, lactate dehydrogenase [LDH], and number of metastatic sites), number of prior lines of treatment, disease stage, and Eastern Cooperative Oncology Group (ECOG) performance status at the time of genomic testing were also analyzed.

Statistical Analysis

We used descriptive statistics to summarize the characteristics of patients with HER2 amplifications. Concordance between NGS and IHC and between NGS and FISH tests was calculated by dividing the number of samples that had concordant results by the total number of samples. Univariable and multivariable Cox proportional hazards models were fit to assess the association between prognostic factors and OS, in which the prognostic factors included HER2-targeted therapy, sex, age, histology, ECOG performance status, number of prior therapies, number of metastatic sites, disease stage, LDH, albumin, and number of metastatic sites at time of genomic testing. All statistical analyses were carried out using SPSS version 24 (SPSS, Chicago, IL), Prism 7 (Graphpad, San Diego, CA), or RStudio (https://www.rstudio.com/).

RESULTS

Prevalence of HER2 Amplification

A total of 5,002 patients with advanced solid tumors met our eligibility criteria. HER2 amplification was found by NGS in 122 patients (2.4%). All patients with HER2 amplifications had advanced or metastatic solid tumors and had received an average of two prior lines of treatment
before the genomic testing. One hundred six patients were found to have HER2 amplification on tumor tissue analysis on the FoundationOne, Oncomine Comprehensive Assay, or Ion Torrent AmpliSeq Comprehensive Cancer platforms, and 24 patients were found to have HER2 amplifications on cfDNA analysis using Guardant360 technology (Fig 1). Ten patients had testing on more than one panel.

The frequency of HER2 amplifications identified by NGS (in tumor types with > 10 patients) ranged from 0.3% in melanoma to 11.9% in gastric or GEJ cancers. The most frequent HER2-amplified tumor types included gastric or GEJ, esophageal, endometrial, bladder, biliary or gall-bladder, salivary gland, colorectal, and cervical tumors (Fig 2). In contrast, no HER2 amplification was detected by NGS in 382 patients with sarcomas, 224 patients with glioblastomas, 132 patients with thyroid cancers, 97 patients with renal cell carcinomas, 66 patients with neuroendocrine tumors, 50 patients with lymphoma, and 37 patients with appendiceal carcinoma.

Concordance of HER2 Amplification Between NGS, IHC, and FISH

NGS was performed on two or more platforms in 24 patients (20%), with seven patients having three or more NGS tests. We compared the concordance of the results of HER2 amplification and HER2 protein expression.

Forty-two (34%) of 122 patients with HER2 amplifications on NGS also underwent HER2 IHC testing. Of these 42 patients, 31 (74%) had HER2 protein overexpression (3+), four (9%) had equivocal expression (2+), two (5%) had low expression (1+), and five (12%) had no HER2 expression. Among the seven patients who were found to have low or no HER2 expression on IHC, three had equivocal HER2 amplification on NGS and two had 1+ HER2 amplification on cfDNA testing.

Sixteen patients had testing by FISH in addition to NGS. Fourteen FISH results (88%) were concordant with the NGS result for HER2 amplification. Of the two patients with discordant results, one had low-level (1+) HER2 amplification on cfDNA, and the other had equivocal amplification on FoundationOne.

Twenty-four patients had positive HER2 amplification on the Guardant360 platform for cfDNA. Of these, 11 patients (46%) had a strong (2+, n = 6) or very strong (3+, n = 5) positive result. Among these 11 patients, five also had IHC testing, all with concordant positive HER2 protein expression, and HER2 amplification was confirmed in all three patients who had FISH testing (Appendix Table A1).

Clinical Benefit of HER2-Targeted Therapy

We studied the clinical actionability of HER2 amplification and clinical benefit of HER2-targeted therapy in 122 evaluable patients who had the molecular testing done more than 6 weeks from the current analysis. Response to treatment was determined by RECIST version 1.1, except in three patients who had clinical progression without radiologic documentation of progressive disease.

Forty patients with other tumor types than the ones for which HER2 inhibitors are approved (38%) received at least one line of HER2-targeted therapy, with eight patients receiving more than one line of HER2-targeted therapy. Most patients (93%) received trastuzumab in combination...
with chemotherapy or other targeted therapies. Across different lines of treatment, 27 patients received trastuzumab with other targeted therapies such as pertuzumab, 14 patients received trastuzumab and chemotherapy, three patients received small-molecule inhibitors targeting HER2, three patients received antibody-drug conjugates or bispecific antibodies against HER2, and two patients received trastuzumab alone. For three patients with nongastric or non-GEJ cancers, the HER2-targeted therapy was the first line of treatment.

After the exclusion of patients with gastric, GEJ, or esophageal cancers, patients receiving HER2-targeted therapy had a longer median OS than patients who did not receive such therapy (18.6 and 10.9 months, respectively; hazard ratio, 0.60; 95% CI, 0.34 to 1.06; P = .07; Fig 3). Receiving HER2-targeted therapy was associated with improved OS in multivariable Cox proportional hazards analysis in patients without gastric, GEJ, or esophageal cancers (hazard ratio, 0.50; 95% CI, 0.27 to 0.93). Other factors associated with a longer OS were ECOG performance status of 0 or 1, a Royal Marsden Hospital prognostic score of 0 or 1 (normal albumin and LDH levels and two or fewer metastatic sites), and colorectal cancer tumor type as compared with other histologies (Table 2).

Among 37 patients with cancers other than gastric, GEJ, or esophageal cancers, patients receiving HER2-targeted treatment was given in the second line or later and for whom previous treatment information was available, the PFS2-to-PFS1 ratio was 1.3 or greater in 21 patients (57%), and the median PFS2 and PFS1 times were 24 and 13 weeks, respectively (P < .001; Fig 4).

Twelve (30%) of 40 patients with tumor types other than gastric cancer achieved an objective response as defined by complete or partial response per RECIST version 1.1, with seven patients receiving trastuzumab and pertuzumab, four patients receiving trastuzumab with chemotherapy, and one patient receiving an HER2 antibody-drug conjugate. In addition, nine patients had stable disease per RECIST version 1.1 for at least 24 weeks.

FIG 2. Prevalence of HER2 amplification. CMS400, Ion AmpliSeq Comprehensive Cancer panel; HER2, human epidermal growth factor receptor 2; HNSCC, head and neck squamous cell carcinoma; Oncomine, Oncomine Comprehensive Assay panel.

FIG 3. Overall survival (OS) of patients with human epidermal growth factor receptor 2 (HER2) amplification, excluding patients with gastric or gastroesophageal junction cancers. HR, hazard ratio.
Progression-free survival (PFS) of patients with human epidermal growth factor receptor 2 (HER2)–amplification, excluding patients with gastric or gastroesophageal junction cancers. PFS during HER2-targeted therapy (PFS2) compared with PFS during prior therapy (PFS1). HR, hazard ratio.

Determinants of Enrollment on HER2-Targeted Therapy

The median time between NGS showing an HER2 amplification and start of HER2-targeted therapy was 16 weeks. We investigated the reasons why 68 patients did not receive HER2-targeted therapy after their NGS results showed HER2 amplification. The leading cause was noneligibility for an HER2-targeted clinical trial (n = 28; 41%) because of equivocal HER2 amplification results, insurance denial, or clinical issues such as poor performance status, chronic tumor-related bleeding, or inadequate organ function (Appendix Fig A1).

DISCUSSION

In a large cohort of patients who underwent targeted NGS to facilitate personalized cancer treatment, we found HER2 amplification in tumor types other than breast and gastric or GEJ cancers. HER2-matched targeted therapy in patients with tumor types other than those for which HER2 inhibitors are approved was associated with a clinically significant increase in OS but with only a trend toward a statistically significant increase (P = .070).

Until recently, almost all studies of HER2 status focused on one type of malignancy, making it difficult to compare the rate of HER2 positivity across studies and tumor types.36-40 Furthermore, HER2 overexpression or amplification is most often evaluated by IHC or FISH, rather than NGS.41,42 However, in the current era of personalized cancer therapy, NGS is becoming more widely used. NGS has been shown to meet the sensitivity of detection for mutations used in clinical trials, permitting simultaneous testing of copy number variations in hundreds of genes.28,40,43 Currently, there are several ongoing clinical trials evaluating prevalence of HER2 alterations and the benefit of targeting HER2 in different tumor types (eg, ClinicalTrials.gov identifiers: NCT02465060, NCT02675829, NCT02091141, NCT02693535). The recently published results from the MyPathway trial26,45 studying treatment with trastuzumab and pertuzumab in colorectal cancer showed an overall response rate of 40% in patients without KRAS mutations, confirming preliminary data that HER2 testing could be integrated in future guidelines for biomarker testing in other tumor types, such as colorectal,44,46 salivary, bladder, and biliary cancers. On the basis of these findings, the National Comprehensive Cancer Network colorectal cancer guidelines were updated recently to include pertuzumab plus trastuzumab and lapatinib as category 2B recommendations for HER2-positive colorectal cancer.47

In this study, NGS identified HER2 amplification in 2.4% of patients across 20 tumor types. Although HER2 amplifications were found in many different epithelial cancers, positive results were rare, and often nonexistent, in malignancies of nonepithelial origin. This finding was consistent with the HER2 overexpression results reported by Yan et al42 in 37,992 patients. Furthermore, our frequency of HER2 amplification in colorectal cancer (3.6%) is consistent with a previously reported prevalence between 2% and 6%.48

TABLE 2. Multivariable Analysis of Prognostic Factors in Overall Survival in Patients With HER2 Amplifications

Factor	Patients With Nongastric, Non-GEJ, or Nonesophageal Cancers
Received HER2 targeted therapy: yes v no	.029 0.50 (0.27 to 0.93)
ECOG performance status: 0-1 v 2-3	< .001 3.16 (1.77 to 5.64)
RMS (albumin level, LDH level, No. of metastatic sites): 0-1 v 2-3	< .001 1.81 (1.36 to 2.43)
Sex: female v male	.24 0.75 (0.46 to 1.22)
Age: < 60 years v > 60 years	.15 1.59 (0.99 to 2.56)
Tumor type: colorectal v other tumor types	.0063 0.44 (0.25 to 0.79)
No. of prior lines of treatment: 0-2 v 3-7	.63 0.88 (0.53 to 1.47)

Abbreviations: ECOG, Eastern Cooperative Oncology Group; GEJ, gastroesophageal junction; HER2, human epidermal growth factor receptor 2; LDH, lactate dehydrogenase; RMS, Royal Marsden Hospital prognostic score.
In contrast with breast cancer, for which HER2-targeted therapies have been established for a long time with five treatment options approved by the US Food and Drug Administration, for gastric, GEJ, or esophageal cancers, less is known about the prognostic role of HER2, and therapeutic options are limited to trastuzumab in combination with chemotherapy. Our results suggest there is a clinical benefit in patients with indications beyond gastric or GEJ cancers. In tissue samples, the thresholds for reporting are higher for NGS than for FISH; therefore, the tissue-based NGS test used in our study may have underestimated the rate of HER2 amplification. In contrast, we also included cfDNA testing, in which amplification of 1+ corresponds to less than 2.4 copy numbers. Furthermore, the patient population referred for genomic testing and consideration for participation in clinical trials might be different from the overall population. Our results on testing for HER2 status by NGS compared with IHC and FISH are consistent with a previous report of high concordance between IHC and FISH in colorectal cancer.

Many patients were not eligible for HER2-targeted therapies, highlighting the importance of patient selection for genomic testing. However, as evidence for actionability of HER2 increases, HER2 testing should be considered earlier in the treatment course for tumor types in which HER2 is more frequently amplified (eg, colorectal cancer). Sequential testing by IHC and FISH and further mutation analyses may lead to tissue exhaustion before the completion of all necessary testing. Thus, early incorporation of NGS into clinical practice for diseases with frequent actionable genomic alterations has the advantage of screening for multiple therapeutic options simultaneously while sparing tissue.

Our study has several limitations that might limit the generalizability of our findings. Our cohort was heterogeneous, and a limited number of patients were treated in clinical trials with strict eligibility criteria, making conclusive determinations problematic. Although NGS has many advantages, samples with low tumor content, heterogeneity, and low levels of amplification may result in false-negative results where HER2 amplification might have been detected on FISH; thus, we are likely underestimating the frequency of HER2 amplification. A higher prevalence of HER2 amplification on liquid biopsies could be, at least in part, related to a selection bias and may be consistent with emergence of HER2 amplification as a mechanism of resistance to epidermal growth factor receptor–targeted therapy, explaining the higher discordance rates when compared with gold standard tissue-based tests. However, patients with HER2 amplification detected on NGS may have higher levels of amplification and therefore may have greater benefit from HER2-targeted therapy.

NGS reveals HER2 amplification in a clinically relevant proportion of tumors and in a variety of tumor types, and HER2-targeted therapy may confer clinical benefit in tumor types beyond those for which HER2 inhibitors are approved. Our results showed an increased survival with matched HER2-targeted therapies in patients with HER2 amplifications. Further studies are needed to confirm these results and to determine the associations of copy number, simultaneous HER2 mutations, and other coalterations with response to HER2-targeted therapies. The association of HER2 amplifications with genomic alterations in other oncogenic drivers provides rationale for novel therapeutic combinations.

AFFILIATIONS

1 The University of Texas MD Anderson Cancer Center, Houston, TX
2 Lexicon Pharmaceuticals, Houston, TX
† Deceased.

CORRESPONDING AUTHOR

Funda Meric-Bernstam, MD, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Twitter: @cathy_ileana_md, @MDAndersonNews; e-mail: fmeric@mdanderson.org.

PRIOR PRESENTATION

Presented at the American Association for Cancer Research—National Cancer Institute–European Organisation for Research and Treatment of Cancer International Conference on Molecular Targets and Cancer Therapeutics: Discovery, Biology, and Clinical Applications, Philadelphia, PA, October 26-30, 2017.

SUPPORT

Supported, in part, by the Cancer Prevention Research Institute of Texas Precision Oncology Decision Support Core Grant No. RP150535, Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, Foundation Medicine, Guardant Health, National Center for Advancing Translational Sciences Grant No. UL1 TR000371 (Center for Clinical and Translational Sciences), and The University of Texas MD Anderson Cancer Center Support Grant No. P30 CA016672 from the National Institutes of Health and National Cancer Institute.

AUTHOR CONTRIBUTIONS

Conception and design: Ecaterina E. Ileana Dumbrava, Milind Javle, Funda Meric-Bernstam

Financial support: Kenna M. Shaw

Administrative support: Ecaterina E. Ileana Dumbrava, Mariela Blum-Murphy, Kenna M. Shaw, Funda Meric-Bernstam

Provision of study materials or patients: Ecaterina E. Ileana Dumbrava, Milind Javle, Apostolia M. Tsimberidou, Vivek Subbiah, David S. Hong, Kenna M. Shaw, Funda Meric-Bernstam

Collection and assembly of data: Ecaterina E. Ileana Dumbrava, Kavitha Balaji, Milind Javle, Mariela Blum-Murphy, Scott Kopetz, Russell Broadus, Mark Routbort, Mehrmeh Demirhan, Xiaofeng Zheng, Vivek Subbiah, David S. Hong, Jordi Rodon, Kenna M. Shaw

Data analysis and interpretation: Ecaterina E. Ileana Dumbrava, Kanwal Raghav, Kenneth Hess, Milind Javle, Jaffer Ajani, Russell Broadus, Mark Routbort, Shubham Pant, Apostolia M. Tsimberidou, Vivek Subbiah, Jordi Rodon, Sarina A. Piha-Paul, Funda Meric-Bernstam

Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Kavitha Balaji
Employment: Lexicon
Stock and Other Ownership Interests: Lexicon
Travel, Accommodations, Expenses: Lexicon

Kanwal Raghav
Honoraria: Bayer, Eisai
Consulting or Advisory Role: Bayer (Inst)
Travel, Accommodations, Expenses: TRACON Pharmaceuticals

Mariela Blum-Murphy
Honoraria: EMD Serono
Research Funding: Bristol-Myers Squibb (Inst), Genentech (Inst)

Jaffer Ajani
Honoraria: Eli Lilly, Bristol-Myers Squibb, Merck, Aduro Biotech
Consulting or Advisory Role: American Cancer Society, BeGenie, Vaccinogen, Insys Therapeutics, Merck, Bristol-Myers Squibb
Research Funding: Novartis, Bristol-Myers Squibb, Taiho Pharmaceutical, Genentech, Amgen, Eli Lilly/ImClone, Merck, Delta-Fly Pharma, Gilead Sciences, Takeda, MedImmune

Scott Kopetz
Stock and Other Ownership Interests: MolecularMatch, Navire Pharma
Consulting or Advisory Role: Roche, Genentech, EMD Serono, Merck, Karyopharm Therapeutics, Amal Therapeutics, Navire Pharma, Symphogen, Holy Stone, Biocarts, Amgen, Novartis, Eli Lilly, Boehringer Ingelheim, Boston Biomedical, AstraZeneca/MedImmune, Bayer Health, Pierre Fabre
Research Funding: Amgen (Inst), Sanofi (Inst), Biocarts (Inst), Guardant Health (Inst), Array BioPharma (Inst), Genentech (Inst), EMD Serono (Inst), MedImmune (Inst), Novartis (Inst)

Shubham Pant
Honoraria: 4D Pharma
Consulting or Advisory Role: TYME
Research Funding: Mirati Therapeutics (Inst), Eli Lilly (Inst), RedHill Biopharma (Inst), Xencor (Inst), Five Prime Therapeutics (Inst), Novartis (Inst), Rgenix (Inst), Sanofi (Inst), ArQuile (Inst), Bristol-Myers Squibb (Inst), Onco Response (Inst), GlaxoSmithKline (Inst)

Apostolos M. Tsirmbiridou
Honoraria: Covance, Genentech
Consulting or Advisory Role: Roche
Research Funding: EMD Serono (Inst), Baxter (Inst), Foundation Medicine (Inst), Onyx (Inst), Bayer (Inst), Boston Biomedical (Inst), Placon (Inst), Immatics (Inst), Karus Therapeutics (Inst), Stem Cells (Inst), OBI Pharma (Inst)

Vivek Subbiah
Consulting or Advisory Role: MedImmune
Research Funding: Novartis (Inst), GlaxoSmithKline (Inst), NanoCarrier (Inst), Northwest Biotherapeutics (Inst), Genentech (Inst), Berg Pharma (Inst), Bayer (Inst), Incyte (Inst), Fujifilm (Inst), PharmaMar (Inst), D3 Oncology Solutions (Inst), Pfizer (Inst), Amgen (Inst), AbbVie (Inst), Multivir (Inst), Blueprint Medicines (Inst), Loxo (Inst), Vegenics (Inst), Takeda (Inst), Alfasigma (Inst), Agensys (Inst), Idera (Inst), Boston Biomedical (Inst), Inhibrx (Inst), Exelixis (Inst)
Travel, Accommodations, Expenses: PharmaMar, Bayer

David S. Hong
Stock and Other Ownership Interests: MolecularMatch, Oncoreona, Presagia
Honoraria: Adaptimmune, Baxter, Merrimack, Bayer
Consulting or Advisory Role: Baxter, Bayer, Guidepoint Global, Janssen, Genentech, Eisai, GLG, Alpha Insights, Axiom Biotechnologies, Adaptimmune, GroupH, Merrimack, Medscape, Numab, Pfizer, Seattle Genetics, Takeda, Trieza Therapeutics
Research Funding: Novartis, Genentech, Eisai, AstraZeneca, Pfizer, miRNA Therapeutics, Amgen, Daiich Sankyo, Merck, Mirati Therapeutics, Eli Lilly, Adaptimmune, AbbVie, Bayer, Bristol-Myers Squibb, Genmab, Igra, Infinity Pharmaceuticals, Kite Pharma, Kyowa Hakko Kirin, Loxo, MedImmune, Molecular Templates, Takeda, Seattle Genetics, Amgen, Fate Therapeutics, Mologen, National Cancer Institute Cancer Therapy Evaluation Program
Travel, Accommodations, Expenses: Loxo, miRNA Therapeutics, Genmab

Jordi Rodon
Consulting or Advisory Role: Novartis, Eli Lilly/ImClone, Servier, Orion Pharma, Peptomyc, Kelun Pharmaceuticals, Merck Sharp & Dohme, Spectrum Pharmaceuticals, Pfizer
Research Funding: Novartis, Bayer

Kenna M. Shaw
Research Funding: Guardant Health (Inst), Tempus (Inst)

Sarina A. Piha-Paul
Research Funding: GlaxoSmithKline (Inst), XuanZhu (Inst), Puma Biotechnology (Inst), Novartis (Inst), Merck Sharp & Dohme (Inst), Curis (Inst), Principa Biopharma (Inst), Helix BioPharma (Inst), Bayer (Inst), Abbvie (Inst), Incyte (Inst), Five Prime Therapeutics (Inst), MedImmune (Inst), Medivation (Inst), BlueLink (Inst), Pfizer (Inst), Teseo (Inst), Pieris Pharmaceuticals (Inst), Bristol-Myers Squibb (Inst), Samumed (Inst), Amgen (Inst), TransThera (Inst), Genmab (Inst), Seattle Genetics (Inst), Taiho Pharmaceutical (Inst), Cerulean Pharma (Inst), TransThera (Inst), Boehringer Ingelheim (Inst), Chuang Pharma (Inst), Jacobio (Inst)

Funda Meric-Bernstam
Honoraria: Sumitomo Group, Dialectica
Consulting or Advisory Role: Genentech, Inflection Biosciences, Pieris Pharmaceuticals, ClearLight Diagnostics, Darwin Health, Samsung Bioepis, Spectrum Pharmaceuticals, Aduro Biotech, Origmed, Xencor, Debiopharm Group, Mersana
Research Funding: Novartis, AstraZeneca, Taiho Pharmaceutical, Genentech, Calithera Biosciences, Debiopharm Group, Bayer, Alleron Therapeutics, Puma Biotechnology, CytoMx Therapeutics, Jouunce Therapeutics, Zymeworks, Curis, Pfizer, eFFECTOR Therapeutics, AbbVie, Boehringer Ingelheim (I), Guardant Health (Inst), Daiichi Sankyo, GlaxoSmithKline

No other potential conflicts of interest were reported.

ACKNOWLEDGMENT
We thank Bryan Tutt in the Department of Scientific Publications for his editorial assistance.
REFERENCES

1. Massard C, Michiels S, Ferté C, et al: High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: Results of the MOSCATO 01 trial. Cancer Discov 7:586-595, 2017

2. Meric-Bernstam F, Johnson A, Holla V, et al: A decision support framework for genomically informed investigational cancer therapy. J Natl Cancer Inst 107:1-9, 2015

3. Haran D, Yarden Y: Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19:6102-6114, 2000

4. Hendriks BS, Opresko LK, Wiley HS, et al: Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis. Distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem 278:23343-23351, 2003

5. Moasser MM: The oncogene HER2: Its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469-6487, 2007

6. Slamon DJ, Leyland-Jones B, Shak S, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783-792, 2001

7. Smith I, Proctor M, Gelber RD, et al: 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: A randomised controlled trial. Lancet 369:29-36, 2007

8. Swain SM, Kim SB, Cortés J, et al: Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): Overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 14:461-471, 2013

9. Chan A, Delaige S, Holmes FA, et al: Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17:367-377, 2016

10. Verma S, Miles D, Gianni L, et al: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783-1791, 2012

11. Bang YJ, Van Cutsem E, Feyereislova A, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 376:687-697, 2010

12. Meric-Bernstam F, Beeram M, Blum MA, et al: Phase 1 dose escalation of ZW25, a HER2-targeted bispeciﬁc antibody, in heavily pretreated HER2 expressing solid tumors. J Clin Oncol 35, 2017 (suppl 15; abstr 1035)

13. Doi T, Iwata H, Tsurutani J, et al: Single agent activity of DS-8201a, a HER2-targeting antibody-drug conjugate, in heavily pretreated HER2 expressing solid tumors. J Clin Oncol 35:108, 2017 (suppl 15; abstr 108)

14. Wolff AC, Hammond MEH, Hicks DG, et al: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997-4013, 2013

15. Yaziji H, Goldstein LC, Barry TS, et al: HER-2 testing by fluorescent in situ hybridization (FISH): Comparison of the ASCO-College of American Pathologists guidelines with FISH scores used for enrollment in Breast Cancer International Research Group clinical trials. J Clin Oncol 34:3518-3528, 2016

16. Press MF, Sauter G, Buyse M, et al: HER2 gene amplification testing by fluorescent in situ hybridization (FISH): Comparison of the ASCO-College of American Pathologists guidelines with FISH scores used for enrollment in Breast Cancer International Research Group clinical trials. J Clin Oncol 34:3518-3528, 2016

17. Yeh I-T, Martin MA, Robetoye RS, et al: Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Mod Pathol 22:1169-1175, 2009

18. Ross DS, Zehir A, Cheng DT, et al: Next-generation assessment of human growth factor receptor 2 (ERBB2) amplification status: Clinical validation in the context of a hybrid capture-based, comprehensive solid tumor genomic profiling assay. J Mol Diagn 24:244-254, 2017

19. Carter NP: Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39:516-521, 2007 (suppl 7)

20. Zhao M, Wang Q, Wang Q, et al: Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinformatics 14:51, 2013 (suppl 11)

21. Mazieres J, Peters S, Lepage B, et al: Lung cancer that harbors an HER2 mutation: Epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31:1997-2003, 2013

22. Pectasides E, Bass AJ: ERBB2 emerges as a new target for colorectal cancer. Cancer Discov 5:799-801, 2015

23. Yoon HH, Sukov WR, Shi Q, et al: HER-2/neu gene amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: Correlation with overall survival. Cancer 120:415-424, 2014

24. Kato S, Chattopadhyay R, Kato S, et al: Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Cancer Res 77:5419-5427, 2017

25. Hainsworth JD, Meric-Bernstam F, Swanton C, et al: Targeted therapy for advanced solid tumors on the basis of molecular proﬁles: Results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 36:536-542, 2018

26. Singh RR, Patel KP, Rourtob J, et al: Clinical massively parallel next-generation sequencing analysis of 409 cancer-related genes for mutations and copy number variations in solid tumours. J Clin Oncol 111:2014-2023, 2014

27. Kumir KC, Dumbraeva EE, Litzenburger B, et al: Precision oncology decision support: Current approaches and strategies for the future. Clin Cancer Res 24:2719-2731, 2018

28. Frampston GM, Fichtenholtz A, Otto GA, et al: Development and validation of a clinical cancer genomic proﬁling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023-1031, 2013

29. Hovelson DH, McDaniel AS, Cani AK, et al: Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia 17:385-399, 2015

30. Schweizer M, Chattopadhyay R, Kato S, et al: Genomic alterations in circulating tumor DNA from diverse cancer patients identiﬁed by next-generation sequencing. Cancer Res 77:5419-5427, 2017

31. Yoon HH, Sukov WR, Shi Q, et al: HER-2/neu gene amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: Correlation with overall survival. Cancer 120:415-424, 2014

32. von Hoff DD: There are no bad anticancer agents, only bad clinical trial designs: Twenty-ﬁrst Richard and Hinda Rosenthal Foundation Award Lecture. Clin Cancer Res 14:1079-1086, 1998

33. Mill R, Crowley JJ, Carroll RJ: Phase II clinical trial design for noncytotoxic anticancer agents for which time to disease progression is the primary endpoint. Control Clin Trials 21:343-350, 1999

34. Eisenhauer EA, Therasse P, Bogatets J, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45:228-247, 2009

35. Arkenau H, Barni SU, Olmos D, et al: Prospective validation of a prognostic score to improve patient selection for oncology phase I trials. J Clin Oncol 27:2692-2696, 2009

36. Saffari B, Jones LA, el-Naggar A, et al: Ampliﬁcation and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: Correlation with overall survival. Cancer Res 55:5693-5698, 1995
37. Press MF, Pike MC, Hung G, et al: Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: Correlation with poor prognosis. Cancer Res 54:5675-5682, 1994
38. Gatzemeier U, Groth G, Butts C, et al: Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol 15:19-27, 2004
39. Serrano-Olvera A, Dueñas-González A, Gallardo-Rincón D, et al: Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer. Cancer Treat Rev 32:180-190, 2006
40. Yan M, Parker BA, Schwab R, et al: HER2 aberrations in cancer: Implications for therapy. Cancer Treat Rev 40:770-780, 2014
41. Kallioniemi OP, Kallioniemi A, Kurisu W, et al: ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA 89:5321-5325, 1992
42. Yan M, Schwaederle M, Arguello D, et al: HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev 34:157-164, 2015
43. Lanman RB, Mortimer SA, Zill OA, et al: Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One 10:e0140712, 2015
44. Sartore-Bianchi A, Trusolino L, Martino C, et al: Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 17:738-746, 2016
45. Meric-Bernstam F, Hurwitz H, Raghav KPS, et al: Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): An updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 20:e518-530, 2019
46. Sartore-Bianchi A, Marsoni S, Siena S: Human epidermal growth factor receptor 2 as a molecular biomarker for metastatic colorectal cancer. JAMA Oncol 4:19-20, 2018
47. National Comprehensive Cancer Network: Colon Cancer NCCN Evidence Blocks Version 2.2019. https://www.nccn.org/evidenceblocks/
48. Richman SD, Southward K, Chambers P, et al: HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: Analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J Pathol 238:562-570, 2016
49. Seo AN, Kwak Y, Kim DW, et al: HER2 status in colorectal cancer: Its clinical significance and the relationship between HER2 gene amplification and expression. PLoS One 9:e98528, 2014
50. Vicario R, Pegg V, Moroncho B, et al: Patterns of HER2 gene amplification and response to anti-HER2 therapies. PLoS One 10:e0129876, 2015
51. Mittendorf EA, Wu Y, Scaltriti M, et al: Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin Cancer Res 15:7381-7388, 2009
52. Takezawa K, Pirazzoli V, Arcila ME, et al: HER2 amplification: A potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFR_T790M mutation. Cancer Discov 2:922-933, 2012
53. Raghav KPS, Overman MJ, Yu R, et al: HER2 amplification as a negative predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. J Clin Oncol 34:3517, 2016 (suppl 15)
54. McGranahan N, Favier F, de Bruin EC, et al: Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 7.283ra54, 2015
APPENDIX

ERBB2 Amplification by Circulating Cell-Free DNA Analysis (Guardant360)

Human epidermal growth factor receptor 2 (HER2) plasma copy numbers of 2.5 to 4.0 are reported as ++ amplification, and copy numbers greater than 4.0 are reported as +++ amplification, representing the 50th to 90th and greater than 90th percentiles, respectively, of all copy number alteration calls in the Guardant360 (Guardant Health, Redwood City, CA) database.

HER2 Overexpression by Immunohistochemistry

HER2 overexpression was defined as strong, complete, homogenous membrane staining in more than 30% of invasive tumor cells (score, 3+). Negative results were defined as those with no staining (score, 0) or faint or barely perceptible membranous staining (score, 1+) in less than 10% of the invasive tumor cells. Equivocal results were defined as those with weak to moderate complete, basolateral, or lateral membranous reactivity in at least 10% of invasive tumor cells (score, 2+).

HER2 Amplification by Fluorescent In Situ Hybridization

HER2 fluorescent in situ hybridization was also performed in some patients, and HER2 amplification was defined as an overall ratio of 2.0 or greater with an average HER2 copy number of greater than 4.0 signals per cell; an overall ratio of 2.0 or greater with an average HER2 copy number of less than 4.0 signals per cell; an average ratio of 2.0 or greater with an average HER2 copy number of 4.0 or more but less than 6 signals per cell; or an average ratio of less than 2.0 with an average HER2 copy number of 6.0 or more signals per cell.

FIG A1. Determinants of enrollment in human epidermal growth factor receptor (HER2)–targeted therapy trials. MDACC, MD Anderson Cancer Center.
Level of Amplification (Guardant Health)	No. of Patients With HER2 Amplification on cfDNA	No. of Patients With Multiple NGS Tests	No. of Discordant Results	Comments	No. of Patients Who Had IHC or/and FISH Testing	Concordance of IHC/FISH and cfDNA HER2 Amplification (%)
3+	5	3	1	Increased CN; however, did not meet the test threshold for amplification	2	100
2+	6	3	2	Tissue and cfDNA testing was done 1 and 3 years apart, respectively, and patients received targeted therapy in between	3	100
1+	13	4	3	0	3	0

Abbreviations: cfDNA, circulating cell-free DNA; CN, copy number; FISH, fluorescent in situ hybridization; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; NGS, next-generation sequencing.