Antibacterial activities of fourteen medicinal plants from the endemic plant diversity of Madagascar
V.E. Razafintsalama, S. T. Ralambonirina Rasoarivelo, F. Randriamialinoro, L. Ranarivelo, S. R. Rakotonandrasana, Thomas Petit, Samira Sarter

To cite this version:
V.E. Razafintsalama, S. T. Ralambonirina Rasoarivelo, F. Randriamialinoro, L. Ranarivelo, S. R. Rakotonandrasana, et al.. Antibacterial activities of fourteen medicinal plants from the endemic plant diversity of Madagascar. South African Journal of Botany, Elsevier, 2017, 112, pp.303-306. 10.1016/j.sajb.2017.06.006 . hal-01625279

HAL Id: hal-01625279
https://hal.univ-reunion.fr/hal-01625279
Submitted on 27 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Antibacterial activities of fourteen medicinal plants from the endemic plant diversity of Madagascar

V.E. Razafintsalam a, S.T. Ralambonirina Rasarivo a, F. Randriamialinor a, c, L. Ranarive a, S.R. Rakotonandrasana a, T. Petit b, d, S. Sarter e,⁎

a Centre National d'Application des Recherches Pharmaceutiques, Ambodivoanjo-Ambohibijotovo, Rue BP, Raharizaraza Antoine de Padoux, BP 702, 101 Antananarivo, Madagascar
b Université de La Réunion, Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, LCNSSA, EA 2212, 15 Avenue René Cassin, 97490 Sainte Clotilde, La Réunion, France
c Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, La Réunion, France
d Centre National d'Application des Recherches Pharmaceutiques, Ambodivoanjo-Ambohibijotovo, Rue BP, Raharizaraza Antoine de Padoux, BP 702, 101 Antananarivo, Madagascar
e CIRAD, UMR ISEM, F-34398 Montpellier, France

⁎ Corresponding author at: CIRAD, 73 rue Jean François Breton, 34398 Montpellier Cedex 5, France.
E-mail address: samira.sarter@cirad.fr (S. Sarter).

ABSTRACT

Methanolic extracts of 14 plant species used in traditional medicine in Madagascar were investigated for their antibacterial activities. Several extracts showed high inhibitory activities (Maytenus polyacantha, Mystroxylon aethiopicum, Psychotria bridsioniae, Dombeya tsaratananensis, Psychotria oreotrephes, Razafimandibisonia sambiranensis) against Listeria monocytogenes, Staphylococcus aureus and Streptococcus pyogenes strains, some of which reached a MIC value lower than 0.1 mg/ml. The extract of P. oreotrephes was the most active against Clostridium perfringens, Proteus mirabilis and Yersinia enterocolitica. Escherichia coli and Salmonella Enteritidis were resistant to all tested extracts. This study demonstrates that plant extracts from species belonging to the Lauraceae, Proteaceae, Celastraceae, Malvaceae and Rubiaceae families have high antibacterial activity, some of which are bactericidal, against Gram-positive pathogenic bacteria that are known to cause infectious diseases.

1. Introduction

Plant use in traditional medicine remains a major practice of the health care system in Madagascar based on a rich know-how from the population and that the country represents a hot spot for biodiversity in the world. Some studies have already been reported on the activities of some plants used in the traditional medicine in Madagascar. A methanol extract of Tetradenia riparia was active against Staphylococcus aureus, Escherichia coli, Bacillus cereus, Shigella flexneri, and Klebsiella pneumoniae with MIC values ranging between 1 and 10 mg/ml (Ndamane et al., 2013). Active molecules have been elucidated from the ethyl acetate leaf extract of Diloebia thouarsii Roem and Schult., which is used as decoctions for diarrhea and skin infections (Rabesa, 1986; Razafintsalam a et al., 2013a). Fourteen species endemic to Madagascar and which have been reported in the literature for their use in traditional medicine for treatment of gastroenteritis, diarrhea, skin infections and fatigue were selected for this study (Bost, 1961; Debray et al., 1971; Schmitt, 1971; Boiteau, 1975; Boiteau, 1986; Rabesa, 1986; Rakotobe et al., 1993; Boiteau et al., 1999). These include Beilschmiedia microphylla Kosterm (Lauraceae); Cryptocarya dealbata Baker (Lauraceae); Cryptocarya floribunda Baill. (Lauraceae); Ravensara affinis (Kosterm.) Kosterm (Lauraceae); D. thouarsii Roem. & Schult. (Proteaceae); Maytenus polyacantha (Sond.) Marais (Celastraceae); Mystroxylon aethiopicum (Thum.) Loes. (Celastraceae); Dombeya tsaratananensis (Hoehr.) Arènes (Malvaceae); Hyperacanthus poivre (Drake) Rakotonas. & A. P. Davis (Rubiaceae); Hyperacanthus sp.1 (Rubiaceae); Hyperacanthus sp.2 (Rubiaceae); Psychotria bridsioniae A. Davis & Govaerts (Rubiaceae); Psychotria oreotrephes (Bremaek) A. Davis & Govaerts (Rubiaceae) and Razafimandibisonia sambiranensis (Homolle ex Cavaco) Kainul. & B. Bremer (Rubiaceae). The aim of this study was to assess the antibacterial activities of their methanolic extracts in order to provide a better characterization of the biological activity of the plants endemic to Madagascar and scientific validation for their traditional use.

2. Material and methods

2.1. Preparation of extracts

Voucher specimens of collected plant samples from different regions of Madagascar (around Tsaratanana Mountain, Mandraka, Arivonimamo) (Fig. 1) were deposited at the Botany Department of the “Centre National d’Application des Recherches Pharmaceutiques” (CNRP, Antananarivo, Madagascar). Once shade-dried, plant samples were ground into
powder and stored at room temperature before performing individual methanol extraction procedure. The powder (500 mg) was extracted successively through maceration using 500 ml × 4 of methanol. Methanol is among the best solvents used for extraction of antimicrobial substances when compared to other solvents, such as water, ethanol and hexane (Eloff, 1998). The solvent was evaporated under reduced pressure to yield methanol extracts. Extracts were stored in glass vials at room temperature until use.

2.2. Antibacterial activity

Four Gram-positive and five Gram-negative strains (Table 1) were used for susceptibility-screening tests using the disc diffusion method (Kil et al., 2009). Sterilized filter paper discs of 6 mm (Biomérieux, Marcy l’Etoile, France) were saturated with 10 μl of the methanol extract (1 mg/disc). Kanamycin 30 μg and Streptomycin 10 μg (Bio-Rad, Marnes-la-Coquette, France) were used as positive controls. Tests were performed in triplicate. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were evaluated using the microdilution method (Razafintsalama et al., 2013b). Each extract concentration (100 μl), ranging from 0.001 to 5 mg/ml, was distributed in a well (96-well microplate) containing 95 μl of Mueller–Hinton broth and 5 μl of the inoculum (10⁶ CFU/ml by adjusting the optical density to 0.125 at 600 nm corresponding to 0.5 McFarland) and incubated for 24 h at 37 °C. The MIC of each extract was the lowest concentration that inhibited the bacterial growth which was visually

Fig. 1. Geographic repartition of the 14 medicinal plants collected in Madagascar.
Table 1
Antibacterial activities of the methanolic extracts (n = 16) from different endemic plants species of Madagascar against Gram-negative and Gram-positive bacteria.

Plant extracts (part) and antibiotics	Gram-negative bacteria	Gram-positive bacteria																						
	Proteus mirabilis	Escherichia coli	Shigella flexneri	Salmonella Enteritidis	Yersinia enterocolitica	Listeria monocytogenes	Clostridium perfringens	Staphylococcus aureus	Streptococcus pyogenes															
	ATCC35659	ATCC8739	ATCC12022	ATCC13076	ATCC23715	ATCC19114	ATCC13124	ATCC11632	ATCC19615															
	DD	MIC	MBC																					
Beilschmiedia microphylla (fruit)	–	–	–	–	–	–	7	3.52d	3.52a	10	3.500d	3.500a	8	0.310ab	2.250e	12	3.500d	3.500a	10	2.257	–	–		
Cryptocarya dealbata (fruit)	–	–	–	–	–	–	8	0.783c	1.583d	10	2.257	–	–	–	–	7	2.257	–	13	0.177b	–			
Cryptocarya floribunda (fruit)	–	–	–	–	–	–	–	–	–	7	0.783b	1.583a	–	–	–	–	–	–	7	0.620b	2.510d	11	0.177b	–
Diloeia thouarsii (bark)	10	0.437b	2.00e	–	–	–	–	–	–	14	0.833f	1.75d	7	0.870b	1.750a	12	0.310b	5.00f	10	0.197b	1.750b	–		
Dombeya tsaratananensis (bark)	10	0.870d	1.750e	–	–	–	–	–	–	12	0.537f	3.5f	11	3.167d	3.166e	11	0.027	0.026a	18	3.167	3.164	–		
Hyperacanthus poivrei (stem with leaves)	–	–	–	–	–	–	–	–	–	7	2.5g	2.5f	–	–	–	–	7	2.503d	10	2.500d	2.500e	–		
Hyperacanthus sp.1 (leaves)	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	7	1.167d	–	11	0.156	–	–		
Hyperacanthus sp.2 (leaves)	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	7	3.167	–	11	0.157	–	–		
Maytenus polyacantha (wood)	10	2.500e	–	–	–	–	19	0.002a	0.008a	8	2.500f	2.500a	10	0.310ab	1.583b	15	0.003	0.008a	–					
Mystroxylon aethiopicum 1 (bark)	–	–	–	12	0.001	0.75d	11	0.708e	–	11	0.040a	2.265e	10	0.750b	2.500f	–	–	–	–					
Mystroxylon aethiopicum 2 (roots)	14	0.667c	2.500f	–	–	–	–	7	0.667b	0.667e	8	0.667b	–	–	–	–	9	0.040a	2.265e	15	0.901b	2.500f	–	
Psychotria bridsoniae (inflorescence)	12	0.667c	1.417d	–	–	–	–	10	0.667b	1.417e	8	0.667ab	1.416e	11	0.040	5.0f	16	0.004b	0.008a	–				
P. oreotrephes (stem with leaves and fruits)	8	0.240a	0.875c	–	7	3.167b	3.167a	–	10	0.240a	1.583d	10	0.240a	0.240b	8	0.437c	1.750a	–	12	0.003	0.240a	–	–	
R. sambiranensis 1 (bark)	14	0.281	2.500f	–	7	0.310a	2.833a	–	10	0.310	2.833d	13	0.667	–	8	2.500	2.500a	11	0.167	2.250f	25	0.002	2.500f	–
R. sambiranensis 2 (leaves)	14	0.875c	3.167d	–	7	0.437c	2.233e	–	10	0.437	0.875ab	13	0.395	0.395c	8	0.875c	3.166c	10	0.154	2.51f	11	0.173	3.167d	–
Kanamyacin (30 µg/disc)	27	NT	NT	25	NT	NT	21	NT	NT	19	NT	NT	20	NT	NT	20	NT	NT	35	0.008	NT	–		
Streptomycin (10 µg/disc)	20	NT	NT	15	NT	NT	20	NT	NT	17	NT	NT	22	NT	NT	15	NT	NT	35	0.009	NT	–		

Values are means of triplicate.
DD: Disc Diffusion (diameter of inhibition zone including disc diameter of 6 mm).
MIC: Minimum Inhibitory Concentration (mg/ml).
MBC: Minimum Bactericidal Concentration (mg/ml).
NT: not tested.
–: no growth inhibition.
Values followed by different letters within a column are significantly different according to the Fisher LSD test (P < 0.05).
evaluated based on the degree of turbidity and the measure of absorbance at 600 nm. Thereafter, 5 μl from each well was deposited on to Mueller–Hinton agar. The MBC was determined as the lowest concentration at which no colony growth occurred on the plates after incubation for 24 h at 37 °C.

2.3. Statistical analysis

For comparison of MIC and MBC values, analysis of variance was performed using ANOVA. Significant differences between mean values were determined by Fisher LSD test at the threshold of P < 0.05.

3. Results and discussion

Inhibition zones of extracts were lower than those of the antibiotics for all strains (Table 1). Gram-positive strains were more sensitive than Gram-negative strains with MIC values lower than 0.1 mg/ml, which can be considered as significant activity according to Kuete (2010) and reaching in some cases values lower than 0.01 mg/ml which are noteworthy (Maytenus spp., Mystroxylon spp., Psychotria spp., R. sambiranensis bark). Plants displaying moderate activity (0.1 mg/ml < MIC < 0.625 mg/ml) were more frequent for Gram-positive bacteria as well. Streptococcus pyogenes was the most sensitive (MIC range of 0.002–0.197 mg/ml) for the most active group (R. sambiranensis 1–2, R. affinis, D. thouarsii, P. ooreutheples, P. brissoniae, Hyperacanthus sp.1–sp.2, C. floribunda) (P < 0.001). R. sambiranensis bark, M. aethiopicum 1–2, P. brissoniae and D. tsaranatananesis showed the highest activity (P < 0.001) against S. aureus (MICs from 0.027 mg/ml to 0.167 mg/ml). Both M. aethiopicum extracts were the most active against Listeria spp. (P < 0.001), showing the lowest MIC values of 0.001–0.004 mg/ml, which are noteworthy. E. coli and Salmonella spp. were resistant to all extracts, as was observed by Khan et al. (2009) for the crude ethanolic extracts of Terminalia arjuna and Eucalyptus globulus. Higher resistance of Gram-negative bacteria has been attributed to the greater complexity of their double membrane-containing cell wall in contrast with the single membrane-glycoprotein/teichoic acid of Gram-positive bacteria (Ndamane et al., 2013). Considering the ratio of MBC/MIC < 4 (Oussou et al., 2008), several extracts (D. thouarsii, P. brissoniae, P. ooreutheples, R. sambiranensis) were bactericidal against Listeria spp., Clostridium spp. and Streptococcus spp. Different parts of the plant may possess varying antimicrobial properties including the flowers, bark, stems, leaves, twigs or roots (Oigibo et al., 2009). For instance, the MICs of the bark extract from R. sambiranensis (0.002 mg/ml) or Mystroxylon spp. (0.75 mg/ml) were, respectively, lower than those from the leaf extracts (0.173 mg/ml) or the roots (0.9 mg/ml) of both plants against Streptococcus spp.

To the best of our knowledge, this is the first study that demonstrates the antibacterial activity of the selected parts of the plants belonging to the Lauraceae, Proteaceae, Celastraceae, Malvaceae and Rubiaceae families, some of which are noteworthy, and may contribute to support the traditional use against bacterial infections.

Acknowledgments

This work was financially supported by a scholarship from the French Embassy (797345D) at Antananarivo-Madagascar (2013). The authors are thankful to Dr. Michel Ratsimbason for his support.

References

Boiteau, P., 1975. Dictionnaire des noms malgaches de végétaux. Fitoterapia 5, 201–237.
Boiteau, P., 1986. Médecine traditionnelle et pharmacopée: Précis de matière médicale malgache. Agence de Coopération Culturelle et Technique, Antananarivo.
Boiteau, P., Boiteau, M., Allorge-Boiteau, L., 1999. Dictionnaire des noms de végétaux (Éditions Alzieu).
Bost, R., 1961. Pharmacopée malgache. Institut Scientifique de Madagascar X 2, 159–234.
Debray, M., Jacquierm, H., Razafindramba, R., 1971. Contribution à l’inventaire des plantes médicinales de Madagascar. ORSTOM, Paris.
Eloff, J., 1998. Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology 60, 1–8.
Khan, R., Islam, B., Akram, M., Shaki, S., Ahmad, A.A., Ali, S.M., Siddiqui, M., Khan, A.U., 2009. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14, 586–597.
Kil, H.Y., Seong, E.S., Ghimire, B.K., Chung, I.-M., Kwon, S.S., Goh, E.J., Heo, K., Kim, M.J., Lim, J.D., Lee, D., 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chemistry 115, 1234–1239.
Kuete, V., 2010. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Medica 76, 1479–1491.
Ndamane, Y., Kambizi, L., Songca, S.P., Oussou, K.R., Yolou, S., Boti, J.B., Guessennd, K.N., 2008. Etude chimique et activité anti-infectieuse d’un extrait d’un plant rhizomateux de la famille des Myristicaceae. Journal of Botany 87, 1–9.
Oigibo, R., Anuagasi, C., Amadi, J., 2009. Advances in selected medicinal and aromatic plants indigenous to Africa. Journal of Medicinal Plant Research 3, 866–869.
Oussou, K.R., Yolou, S., Boti, J.B., Guesendn, K.N., 2008. Etude chimique et activité anti-infectieuse d’un extrait d’un plant rhizomateux de la famille des Myristicaceae. Journal of Botany 87, 1–9.
Rakotobe, E.A., Rasolomananana, C., Antanarivo, S., 1993. Pharmacopées de l’Ambongo et du Boina. Centre d’Information et de Documentation Scientifique et Technique, Antananarivo.
Razafintsalama, V., Girardot, M., Randrianiao, R., Rakoto, D., Sarer, S., Petit, T., Ralambonirina, S., Deville, A., Grelletier, P., Jeannoda, V., 2013a. Dilobenol A–G, diprenylated dihydroflavonols from the leaves of Dilobecia thouarsii. European Journal of Organic Chemistry 2013, 1929–1936.
Razafinsalama, V., Sarer, S., Mambu, L., Randrianoyalisa, R., Petit, T., Rajaonarison, J.F., Mertz, C., Rakoto, D., Jeannoda, V., 2013b. Antimicrobial activities of Dilobecia thouarsii. Roemer and Schulte, a traditional medicinal plant from Madagascar. South African Journal of Botany 87, 1–3.
Schmitt, J.P., 1971. Contribution à l’inventaire des plantes médicinales de Madagascar. ORSTOM, Antananarivo.