Effectiveness of sediment flushing by using under sluice flush canal

A Safanpo¹, Suripin² and I K Hadihardaja³

¹ Civil Engineering Department, Cenderawasih University, Makassar, Indonesia
² Civil Engineering Department, Diponegoro University, Semarang, Indonesia
³ Civil Engineering Department, Bandung Institute of Technology, Bandung, Indonesia

E-mail: safanpo2000@yahoo.com

Abstract. The objective of this study was to analyse the effectiveness of sediment flushing system of under sluice channel at a floodway. An empirical model of under sluice flushing were built to determine its effectiveness. The object model of this study was the Sedayulawas floodway, located in Lamongan, East Java, Indonesia. This study used Hydraulic Physical Model Test. The model conducted in the Laboratory of Surakarta River Center. The variables of this study were sediment weight of flush sediment, upstream water level, sediment mass density, sediment diameter, current velocity, and water discharge. The result of this research discovers that the upstream water level, sediment mass density, sediment diameter, current velocity, and the water discharge, directly proportional towards the weight of the flush sediment.

1. Introduction

A floodway was built in Babat, Lamongan, East Java to reduce flooding in Bengawan Solo River (figure 1). The floodway was built in 2000 with 12.3 km length, 100 m width, 0.0002433 slopes, and 640 m³/s rates of flow. This floodway has a stop lock door on its inlet (figure 2). In the downstream, there is a rubber dam, which has 4 x 25 mm width, 3 m height and a pillar prism that has thickness 5 mm on bottom and 1.67 m on top (figure 3).

Figure 1. Map for floodway of Sedayulawas.
Since 2010, in every rainy season, the Sedayulawas floodway is less able to function as it should be. In the upstream area, the water level is high. However, the water in the downstream still floods. The ineffective function of the floodway is caused by several factors, one of which is due to the high sedimentation along the floodway. The sedimentation in floodway can be reduced by building a flushing construction. The under sluice flush canal was chosen instead of other types of canals. The laboratory analysis is needed.

This research uses a hydraulic-physical model test method and held in Laboratory of Surakarta River Center. The physical model of Sedayulawas floodway was built using scale 1:66.667. Due to the capacity of the pump and the field area in laboratory (figure 4 and figure 5), the physical model is made 2,200 m length; 1,700 m from rubber dam into upstream area and 500 m from rubber dam into downstream area.

The characteristic of the drainage is surface water-free, the acceleration of Earth's gravity is the dominant parameter, so the requirement that should be fulfilled is the unvarying dynamic characteristic between the models and the prototypes. In this case, the Froude number (Fr) in the model must be the same as the prototype and the gravity in the prototype is the same with the model, so that the hydraulic physical model test parameters scale as shown in table 1.

Movable bed with the coal powder material was made an order to know the pattern of the sediment movement in the upstream of rubber dam. The physical model was created to examine the effect of changes in flow rate, and the width of the flushing door towards the flush sediment.
Figure 5. The model of flush canal.

Table 1. Hydraulic-physical model test parameter.

Parameter	Notation	Scale
Height	H	\(H = 66.667 \)
Length	L	\(L = 66.667 \)
Velocity	V	\(V = \left(\frac{H}{2} \right)^{1/2} = (66.667)^{1/2} = 8.165 \)
Time	T	\(T = \left(\frac{H}{2} \right)^{1/2} = (66.667)^{1/2} = 8.165 \)
Debit	Q	\(Q = \left(\frac{H}{2} \right)^{5/2} = (66.667)^{5/2} = 36289 \)
Manning value	N	\(N = \left(\frac{H}{2} \right)^{1/6} = (66.667)^{1/6} = 2.014 \)

2. Literature review

The research related to sediment flushing in the floodway and motion weir located at the mouth of the river or close to the waterfront has been widely reported. By using numerical models, Ji et al. The analyses the sediment flushing in the rubber dam at the mouth of the Nakdong River, South Korea, when the seawater at low tide conditions [1]. In the research, the study did not use the flush canal. The research simulated the opening door of the flood control in Dombo floodway, Sayung, Central Java, on the four conditions [2]. The research concluded that the door of the flood control on the floodway is ineffective. In the research, the study did not use the flush canal and did not take into account the influence of the tide. By using hydraulic model, the study analyses sediment flushing in Bojonegoro rubber dam, East Java. In this research, the study did not also use the flush canal and did not take into account the influence of the tide [3].

There are three types of hydraulic flushes, namely sluicing operation, venting of density current and flushing operation. Flushing operation is aimed to erode the settles sediment in the upstream, and it typically has larger granules (coarse material), so that the eroded sediment load will be carried to the downstream by the flow of water and flush out through the door of the flushing operation. Flushing sediment technique is applied by increasing the speed of water flow on the disposal door, so that the speed of water flow becomes greater and enough to grind or erode the sediment that has been accumulated through the door system, for example in the bottom outlet system [4-5].

Generally, flushing can be classified into two categories, Empty or Free-flow Flushing and Flushing with Partial Drawdown [6-7]. Empty or free-flow flushing is a flushing technique implemented by making the water reservoir empty, while the river water flow is maintained into the reservoir, then used the water as the sediment flush out through the bottom outlet.

3. Research methods

To identify the variables that should be investigated, this research uses non-dimensional numerical analysis by applied method of Buckingham \(\pi \) [8]. The influencing parameters are the height of water...
level in Sta. FW16 (H, in m), gravitation (g, in m/s2), mass density of sediment (ρ_s, in kg/m3), Current velocity (Q, in m3/s), velocity (v, in m/s), weight of sediment (W_s, in g), diameter of sediment (d_s, in m). Each of these parameters has been chosen based on the dimensions of M (mass), L (length), and T (time), as described in table 2 below.

Table 2. Parameter dimension.

Variable dimension	H	g	ρ_s	Q	v	W_s	d_s
M	0	0	1	0	0	1	0
L	1	1	-3	3	1	0	1
T	0	-2	0	-1	-1	0	0

The repeat parameters are H, g, dan ρ_s.

\[
\pi_1 = H^0 \cdot g^1 \cdot \rho_s^1 \cdot Q \quad (1)
\]

\[
\pi_1 = H^{-2.5} \cdot g^{-0.5} \cdot \rho_s^0 \cdot Q \quad (2)
\]

\[
\pi_1 = \frac{Q}{H^2 \sqrt{gH}} \quad (3)
\]

\[
\pi_2 = Hx \cdot gy \cdot \rho sz \cdot v \quad (4)
\]

\[
\pi_2 = H^{-0.5} \cdot g^{-0.5} \cdot \rho_s^0 \cdot v \quad (5)
\]

\[
\pi_2 = \frac{v}{\sqrt{gh}} \quad (6)
\]

\[
\pi_3 = Hx \cdot gy \cdot \rho sz \cdot Ws \quad (7)
\]

\[
\pi_3 = H^{-3} \cdot g^0 \cdot \rho s-1 \cdot Ws \quad (8)
\]

\[
\pi_3 = \frac{W_s}{H^2 \rho_s} \quad (9)
\]

\[
\pi_4 = Hx \cdot gy \cdot \rho sz \cdot ds \quad (10)
\]

\[
\pi_4 = H^{-1} \cdot g^0 \cdot \rho s0 \cdot ds \quad (11)
\]

\[
\pi_4 = \frac{d_s}{H} \quad (12)
\]
\[
f(\pi_1, \pi_2, \pi_3, \pi_4) = f \left(\frac{Q}{H^2 \sqrt{gH}}, \frac{v}{\sqrt{gH}}, \frac{W_s}{H^3 \rho_s}, \frac{d_s}{H} \right) = 0
\]

(13)

It is simplified by operating multiplication or division between non-dimensional between variables, then eliminating the constant value so that the formula becomes simpler.

\[
\pi_5 = \frac{\pi_2}{\pi_4} = \frac{W_s}{H^2 \rho_s d_s} \cdot \frac{H}{d_s} = \frac{W_s}{H^2 \rho_s d_s}
\]

(14)

\[
\pi_6 = \pi_1 \cdot \pi_2 = \frac{Q}{H^2 \sqrt{gH}} \cdot \frac{v}{\sqrt{gH}} = \frac{Qv}{H^3 g} = \frac{v Q}{H^3 g}
\]

(15)

\[
f(\pi_5, \pi_6) = f \left(\frac{W_s}{H^2 \rho_s d_s}, \frac{v Q}{H^3 g} \right) = 0
\]

(16)

\[
\frac{W_s}{H^2 \rho_s d_s} = f \left(\frac{v Q}{H^3 g} \right)
\]

(17)

\[
W_s = H^2 \rho_s d_s \cdot f \left(\frac{v Q}{H^3 g} \right)
\]

(18)

Based on the analysis of the non-dimensional number, the variables that should be investigated are \(H, \rho_s, d_s, Q, B, \Delta H, \) and \(W. \)

4. Results and discussions

The results were presented in Table 3, along with two non-dimensional numbers. A graph was made to show the relationship between the two non-dimensional numbers and its trendline (figure 6).

As shown in figure 6, the trendline is \(y = 21649 \cdot x^{0.948} \), since \(y = \frac{W_s}{H^2 \rho_s d_s} \) and \(x = \frac{V Q}{H^3 g} \) then

\[
\frac{W_s}{H^2 \rho_s d_s} = 21649 \left(\frac{v Q}{H^3 g} \right)^{0.948}
\]

Figure 6. The correlation of two non-dimensional number and its trendline.

The result of this research discovers that the upstream water level, sediment mass density, sediment diameter, current velocity, and the water discharge, directly proportional towards the weight of the flush sediment. The same reports were also reported by Atmojo and Suripin [9] and Guo et al. [10].
Table 3. Experimental data.

No	\(H_{FW16} \) (cm)	\(\nu \) (cm/s)	\(Q \) (cm³/s)	\(W_s \) (g)	\(vQ/(H_s^2 \rho_d) \)	\(W_s / (H_s^2 \rho_d) \)
1	1.65	13.34	2,783.20	27,250	7.1603	142,764
2	1.60	12.05	2,783.20	29,250	8.3465	162,969
3	1.58	12.24	2,783.20	30,250	8.8041	172,835
4	1.55	12.45	2,783.20	31,250	9.4853	185,527
5	1.50	13.13	2,783.20	33,250	11.0391	210,780
6	1.35	11.63	3,031.21	31,500	14.6107	245,526
7	1.25	12.36	3,031.21	34,500	19.5540	314,934
8	1.18	12.56	3,031.21	36,500	23.6206	373,894
9	1.15	12.76	3,031.21	38,500	25.9241	415,227
10	1.10	13.48	3,031.21	41,500	31.2839	489,196
11	1.20	11.80	3,141.43	35,800	21.8605	354,601
12	1.10	12.35	3,141.43	39,800	29.7131	469,156
13	1.05	12.73	3,141.43	42,800	35.2143	553,714
14	1.00	13.10	3,141.43	45,800	41.9498	653,259
15	0.95	13.66	3,141.43	49,800	51.0340	787,050
16	1.64	11.67	2,783.20	26,240	7.5081	139,154
17	1.59	12.36	2,783.20	29,240	8.7237	164,969
18	1.57	12.60	2,783.20	31,240	9.2373	180,772
19	1.54	12.84	2,783.20	33,240	9.9742	199,912
20	1.45	13.52	2,783.20	36,240	12.5831	245,851
21	1.30	11.81	3,031.21	35,080	16.6059	296,069
22	1.24	12.40	3,031.21	39,080	20.0957	362,519
23	1.17	12.75	3,031.21	42,080	24.5980	438,454
24	1.14	13.10	3,031.21	45,080	27.3214	494,760
25	1.09	13.68	3,031.21	49,080	32.6317	589,212
26	1.10	12.05	3,141.43	40,050	28.9828	472,103
27	1.00	12.70	3,141.43	45,050	40.6689	642,562
28	1.04	13.00	3,141.43	49,050	37.0085	646,833
29	0.99	13.30	3,141.43	53,050	43.8939	772,032
30	0.94	13.95	3,141.43	58,050	53.7975	937,058
31	1.63	11.77	2,783.20	28,700	7.7124	154,073
32	1.58	12.52	2,783.20	31,700	9.0055	181,119
33	1.56	12.71	2,783.20	32,700	9.4983	191,654
34	1.53	12.90	2,783.20	33,700	10.2186	205,337
35	1.44	13.64	2,783.20	36,700	12.9567	252,442
36	1.29	11.96	3,031.21	41,820	17.2217	358,447
37	1.23	12.66	3,031.21	46,820	21.0216	441,409
38	1.16	12.92	3,031.21	49,820	25.5761	528,090
39	1.13	13.18	3,031.21	52,820	28.2245	590,013
40	1.08	13.86	3,031.21	57,820	33.9938	707,051
41	1.09	12.14	3,141.43	51,300	30.0191	615,863
42	0.99	12.87	3,141.43	57,300	42.4901	833,881
43	1.03	13.07	3,141.43	62,300	38.3021	837,594
44	0.98	13.38	3,141.43	67,300	45.5214	999,500
45	0.93	13.96	3,141.43	73,300	55.5770	1,208,810
5. Conclusion
The results could be used as one starting point for the design of sediment flushing in Sedayulawas floodway, and others. This research does not consider the sediment flow patterns, so it is suggested that the next research will take it into account to determine the position of the under sluice flush door.

References

[1] Ji U, Julien P Y, and Park S K 2011 J. Hydraulic Eng. 137 11
[2] Muntolib D 2006 Evaluasi operasi pintu pengendali banjir pucang gading (Semarang: University of Diponegoro)
[3] Isnugroho 2008 The role of hydraulic model test in the designing of gate operation for Bojonegoro barrage (Bandung: Pusat Penelitian dan Pengembangan Sumber Daya Air, Kementerian Pekerjaan Umum)
[4] Chamoun S, De Cesare G, Schleiss A J 2016 Managing reservoir sedimentation by venting turbidity currents: A review International Journal of Sediment Research 31(3) 195-204
[5] Tomasi L 1996 Operation and maintenance problems due to sedimentation in reservoirs (Fort Collins: Colorado State University)
[6] Fan J, Jiang R 1980 On methods for the desiltation of reservoirs In International Seminar of Experts on Reservoir Desiltation, Tunis p 17
[7] Morris GL and Fan J 1998 Reservoir Sedimentation Handbook Design and Management of Dam, Reservoir, and Watersheds for Sustainable Use (New York: McGrow-Hill Companies, Inc)
[8] Kunes J 2012 Similarity and modelling in science and Engineering (Cambridge: Springer/International Science Publishing)
[9] Atmodjo P S and Suripin 2012 Int. J Waste of Resour. 2 22
[10] Guo Q, Fan C Y, Raghaven R, Field R 2004 Gate and vacuum flushing of sewer sediment: Laboratory testing Journal of hydraulic engineering 130(5) 463-466