ORIGINAL RESEARCH

Prevalence and Prognostic Significance of Malnutrition in Older Japanese Adults at High Surgical Risk Undergoing Transcatheter Aortic Valve Implantation

Kenichi Ishizu MD, Shinichi Shirai MD, Hiroaki Tashiro MD, Kazuki Kitano MD, Hiroyuki Tabata MD, Miho Nakamura MD, Toru Morofuji MD, Naoto Murakami MD PhD, Takashi Morinaga MD, Masaomi Hayashi MD, Akihiro Isotani MD, Yoshio Arai MD, Nobuhisa Ohno MD PhD, Shinichi Kakumoto MD, Kenji Ando MD

BACKGROUND: The usefulness of preprocedural nutritional status to stratify prognosis after transcatheter aortic valve implantation has been evaluated; however, the studies conducted so far have been relatively small and/or focused on a single nutritional index. This study sought to assess the prevalence and prognostic impact of malnutrition in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation.

METHODS AND RESULTS: We applied the Controlling Nutritional Status score, Geriatric Nutritional Risk Index, and Prognostic Nutritional Index to 1040 consecutive older Japanese patients at high surgical risk who underwent transcatheter aortic valve implantation. According to the Controlling Nutritional Status score, Geriatric Nutritional Risk Index, and Prognostic Nutritional Index, 16.6%, 60.5%, and 13.8% patients had moderate or severe malnutrition, respectively; 89.3% were at least mildly malnourished by at least 1 score. Worse nutritional status was associated with older age, lower body mass index, higher degree of frailty, worse symptoms and renal function, atrial fibrillation, and anemia. During a median follow-up of 986 days (interquartile range, 556–1402 days), 273 (26.3%) patients died. Compared with normal nutrition, malnutrition was associated with an increased risk for all-cause death (adjusted hazard ratio for moderate and severe malnutrition, respectively: 2.19 (95% CI, 1.45–3.31; \(P<0.001\)) and 6.13 (95% CI, 2.75–13.70; \(P<0.001\)) for the Controlling Nutritional Status score, 2.02 (95% CI, 1.36–3.02; \(P=0.001\)) and 3.24 (95% CI, 1.86–5.65; \(P<0.001\)) for the Geriatric Nutritional Risk Index, and 1.60 (95% CI, 1.06–2.39; \(P=0.024\)) and 2.32 (95% CI, 1.50–3.60; \(P<0.001\)) for the Prognostic Nutritional Index).

CONCLUSIONS: Malnutrition is common in patients undergoing transcatheter aortic valve implantation and is associated with increased mortality.

Keywords: body mass index ■ frailty ■ nutrition assessment ■ nutritional status ■ prognosis ■ transcatheter aortic valve replacement

See Editorial by Pompeu et al.

Transcatheter aortic valve implantation (TAVI) was established as a therapeutic alternative to surgical aortic valve replacement for inoperable or high-risk patients with severe aortic stenosis.1–3 Although indications for TAVI have been expanded to include patients who are at a lower surgical risk,4–6 long-term prognosis after TAVI remains poor. Thus, optimal patient risk stratification based on modifiable clinical characteristics is essential to improve prognosis after TAVI.
Malnutrition, a risk factor that is modifiable by providing intervention in terms of dietary patterns, is known as a driver of disease progression by causing cytokine activation and is associated with poor prognosis irrespective of body mass index, Society of Thoracic Surgeons Predicted Risk of Mortality score, Clinical Frailty Scale, left ventricular ejection fraction, or renal function.

What Are the Clinical Implications?
• These data support the importance of evaluating nutritional status of all candidates for transcatheter aortic valve implantation.
• Prospective multicenter studies are warranted to assess the impact of nutritional interventions on outcomes of patients undergoing transcatheter aortic valve implantation.

Computed Tomographic Data Analysis
All computed tomographic examinations were performed as previously described. Images were reconstructed and assessed by using 3mensio Valves software version 7.0 or 8.0 (Pie Medical Imaging, Maastricht, The Netherlands). The aortic annulus and left ventricular outflow tract (LVOT) area were measured in the mid-systole. The LVOT calcification was classified in a semiquantitative fashion as previously described: mild calcification was recorded in the presence of 1 nodule of calcification extending <5 mm in any dimension and covering <10% of the perimeter of the LVOT, moderate calcification was documented in the presence of 2 nodules of calcification or 1 extending >5 mm in any direction or covering >10% of the perimeter of the LVOT, and severe calcification was considered in cases of multiple nodules of calcification of a single focus extending >10 mm in length or covering >20% of the perimeter of the LVOT.
Malnutrition Screening Tools
All patients were screened for malnutrition using 3 scoring systems (Figure 2A). The CONUT score was developed by Ulíbarri et al in 2005 as a screening tool for malnutrition among patients admitted in a hospital.16 It takes into account serum albumin level, total cholesterol level, and lymphocyte count. A score of 0 to 1 is considered normal; scores of 2 to 4, 5 to 8, and 9 to 12 reflect mild, moderate, and severe malnutrition, respectively.

The GNRI, which is also a widely used index for assessing nutritional status, is calculated using the following formula: 1.489×serum albumin (g/L) + 41.7×(current body weight [kg]/ideal body weight [kg]).17 The ideal body weight is calculated as follows: body height (cm)−100−[(body height [cm]−150)/4] for male patients, and body height (cm)−100−[(body height [cm]−150)/2.5] for female patients.18 As defined in previous studies, a score of ≥100 was considered normal; scores of 97.50 to 99.99, 83.50 to 97.49, and <83.50 reflected mild, moderate, and severe malnutrition, respectively.

The PNI was calculated using the following formula: 10×serum albumin (g/dL) + 0.005×total lymphocyte count (/μL).19 A score of >38 is considered normal; scores of 35 to 38 and <35 reflect moderate and severe malnutrition, respectively. Note that there is no “mild” category for the PNI.

Outcome Measures and Follow-Up
The primary outcome measure of this study was all-cause mortality after TAVI. The causes of death were categorized as cardiovascular and noncardiovascular deaths. The definition of cardiovascular mortality was also applied to the Valve Academic Research Consortium–2 criteria and included death attributed to cardiac causes and noncoronary vascular conditions, such as stroke associated with neurological events, procedure-related aortic dissection, rupture, or other vascular diseases. All procedure- and valve-associated deaths and sudden, unwitnessed, and unknown deaths were also classified as cardiovascular mortality. The secondary end point was heart failure hospitalization after TAVI. For patients with multiple hospitalizations, only the first episode was included in the analysis. Information on the occurrence of adverse events after discharge was obtained from follow-up outpatient visits or telephone interviews conducted on the 30th day, the sixth month, and annually thereafter. The study conformed to the principles outlined in the Declaration of Helsinki and was approved by the local ethics committee. Written informed consent was obtained from all patients before the TAVI procedure.

Statistical Analysis
Categorical variables were described as numbers and percentages and compared using the χ2 test. Continuous variables were described as mean±SD or median (interquartile range [IQR]) and were compared using the independent Student t test or Kruskal–Wallis test depending on their distributions. Venn diagrams were used to illustrate the relationship between the 3 nutritional scoring systems.

The cumulative event rates were analyzed using the Kaplan–Meier estimation. Poisson models were used to estimate the incidence rates. A Cox proportional hazards regression analysis was performed to identify predictors of mortality. To test the predictive ability of the nutritional status, multivariable Cox proportional hazard models were constructed, which comprised variables known to be associated with poor prognosis based on clinical plausibility20,21 or P values <0.05 in the univariate analysis. Model 1 was adjusted for...
preprocedural variables, and model 2 was additionally adjusted for postprocedural variables including echocardiographic data and in-hospital outcomes. For post hoc analyses, we dichotomized patients based on (1) age (at the median of 85 years), (2) sex, (3) BMI level (at the median of 22 kg/m²), (4) Clinical Frailty Scale (CFS) (at the median score of 3), (5) chronic renal failure status, and (6) left ventricular ejection fraction (LVEF) (“preserved [≥50%]” or not) to assess the interaction of nutritional status with these factors.

Receiver operating characteristic curves were used to illustrate and assess the predictive performance of the 3 nutritional indexes for mortality, and the best discriminatory thresholds were calculated by determining the Youden index. Moreover, the areas under the curve between the indexes were compared using the method of DeLong et al.²²

All statistical analyses were performed using JMP 14.2.0 (SAS Institute Inc., Cary, NC) and R version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria).

Figure 2. Prevalence of malnutrition according to the 3 scoring indexes. A, Formula and prevalence of malnutrition for each nutritional index. B, Venn diagrams demonstrating the frequency of malnutrition according to each nutritional index with the percentages of the total 1040 patients. The overlapping area shows the frequency with which the identification of malnutrition by an index overlaps with the others. CONUT indicates Controlling Nutritional Status; GNRI, Geriatric Nutritional Risk Index; and PNI, Prognostic Nutritional Index.
Austria). All reported P values were 2-tailed, and P values <0.05 were considered statistically significant.

RESULTS
Baseline Patient Characteristics
A total of 1040 patients (median age, 85 years; 32.9% men; and median Society of Thoracic Surgeons Predicted Risk of Mortality score of 6.0%) were included in the analysis. Of the patients, 142 (13.7%) patients were underweight (BMI<18.5 kg/m²), 679 (65.3%) patients had normal weight (18.5≤BMI≤24.9 kg/m²), 190 (18.3%) patients were overweight (25.0≤BMI≤29.9 kg/m²), and 29 (2.8%) patients were obese (BMI≥30.0 kg/m²). Common comorbidities were hypertension (85.4%), dyslipidemia (54.9%), coronary artery disease (33.7%), diabetes (22.0%), and atrial fibrillation (22.0%). Additional data on the baseline clinical characteristics are outlined in Table 1.

Prevalence and Clinical Associations of Malnutrition
The prevalence of malnutrition differed according to the 3 nutritional indexes as follows: 72.2% with the CONUT score, 75.3% with the GNRI, and 13.8% with the PNI. Among them, the CONUT score, GNRI, and PNI, 172 (16.6%), 629 (60.5%), and 144 (13.8%) patients had moderate to severe malnutrition, respectively (Figure 2A). Although the 3 nutritional indexes were correlated with each other (CONUT score versus GNRI, r=-0.63, P<0.001; CONUT score versus PNI, r=-0.81, P<0.001; GNRI versus PNI, r=0.83, P<0.001), only 144 (13.8%) patients were categorized as undernourished (any degree of malnutrition) in all 3 indexes, and only 111 (10.7%) patients were categorized as normally nourished in any of the indexes (Figure 2B). The prevalence of malnutrition was higher in men than in women based on the CONUT score (79.0% versus 68.9%; P<0.001); whereas the prevalence of malnutrition did not differ significantly according to sex based on the GNRI (72.2% versus 76.8%; P=0.126) and NRI (14.6% versus 13.5%; P=0.633). The prevalence of malnutrition was higher in patients with a BMI<22 kg/m² than in those with a BMI≥22 kg/m² (78.8% versus 65.5% for the CONUT score, 89.1% versus 61.2% for the GNRI, 18.5% versus 9.1% for the PNI; P<0.001 for all comparisons) and was also higher in patients with a CFS>4 than in those with a CFS≤3 (78.5% versus 66.0% for the CONUT score, 84.1% versus 66.5% for the GNRI, 19.7% versus 8.0% for the PNI; P<0.001 for all comparisons) (Table 2).

Compared with patients with normal nutrition, those with malnutrition according to any of the 3 nutritional indexes were older, leaner, and fatter and had worse New York Heart Association functional class and higher Society of Thoracic Surgeons scores. They also had a higher prevalence of atrial fibrillation, anemia, and kidney dysfunction. Moreover, echocardiographic data showed that lower LVEF and mean aortic gradient and higher degrees of mitral and tricuspid regurgitation were observed in patients with worse nutritional status (Tables S1A through S1C).

Procedural Characteristics and In-Hospital Outcomes
The procedural characteristics and in-hospital outcomes are listed in Table 3. Most patients (86.6%) underwent TAVI via the transfemoral approach. TAVI was performed using balloon-expandable and self-expandable valves in 801 (77.0%) and 239 (23.0%) patients, respectively. Emergent and urgent procedures were performed in 45 (3.3%) patients and were more frequently performed in patients with worse nutritional status according to any of the 3 nutritional indexes. In-hospital death was identified in 15 (1.4%) patients, including cardiovascular death in 7 patients and noncardiovascular death in 8 patients. Compared with patients with normal nutrition, those with malnutrition had a higher in-hospital mortality rate and a longer hospital stay after TAVI (Tables S2A through S2C).

Postprocedural Echocardiographic Data
All patients underwent the postprocedural echocardiographic follow-up (Table 4). On the whole, acceptable THV function was obtained (indexed effective orifice area of 1.17 cm² [IQR, 1.00–1.36 cm²]; mean pressure gradient of 10.5 mm Hg [IQR 8.0–13.5 mm Hg]), whereas moderate and severe prosthesis–patient mismatches were identified in 76 (7.3%) and 8 (0.8%) patients, respectively. Moderate to severe paravalvular leakage was observed in only 2 (0.2%) patients. Compared with patients with normal nutrition, those with malnutrition had a lower mean pressure gradient for any of the 3 nutritional indexes, whereas larger indexed effective orifice area was observed in those with worse nutritional status according to the GNRI only. The incidence of prosthesis–patient mismatch was comparable between patients with each nutritional status based on any of the 3 indexes (Tables S3A through S3C).

Nutritional Scores and Long-Term Clinical Outcomes
At a median follow-up of 985.9 days (IQR, 556.0–1402.3 days), a total of 274 patients with all-cause death were identified: 59 (21.5%) patients died for cardiac reasons, and the remaining 215 (78.5%) patients died for noncardiac reasons (Figure 3). Rehospitalization attributed to heart failure was required in 91 patients. The results of the univariate analysis for the association
Table 1. Baseline Characteristics of Patients

	Total (N=1040)	CONUT score								
		Normal/mild, 0–4 (N=868)	Moderate/severe, 5–12 (N=172)	P value	Normal/mild, ≥97.5 (N=411)	Moderate/severe, <97.5 (N=629)	P value	Normal, >38 (N=896)	Moderate/severe, ≤38 (N=144)	P value
Demographics										
Age, y	85 (82–88)	85 (82–88)	87 (83–90)	0.004	84 (80–87)	86 (83–89)	<0.001	85 (82–88)	87 (83–90)	0.002
Male sex	342 (32.9)	269 (31.0)	73 (42.4)	0.004	137 (33.3)	205 (32.6)	0.803	292 (32.6)	50 (34.7)	0.614
Height, cm	146.7 (142.9–156.2)	148.5 (142.9–155.9)	150.0 (142.9–159.0)	0.142	149.0 (143.0–158.5)	148.5 (142.5–155.5)	0.066	148.6 (143.0–156.4)	149.4 (142.1–155.7)	0.810
Weight, kg	49.2 (42.2–56.8)	49.8 (42.5–57.3)	46.8 (40.6–55.1)	0.032	53.8 (47.0–60.7)	45.9 (40.0–53.8)	<0.001	49.9 (42.6–57.5)	45.8 (40.0–54.0)	<0.001
Body mass index, kg/m²	22.0 (19.7–24.4)	22.3 (19.9–24.6)	21.2 (18.8–23.6)	<0.001	23.6 (21.8–25.7)	20.7 (18.7–23.2)	<0.001	22.3 (19.9–24.6)	20.6 (18.6–23.2)	<0.001
Clinical Frailty Scale	3 (3–4)	3 (3–4)	4 (3–5)	<0.001	3 (3–4)	4 (3–4)	<0.001	3 (3–4)	4 (3–6)	<0.001
NYHA functional class III/IV	465 (44.7)	358 (41.2)	107 (62.2)	<0.001	148 (36.0)	317 (50.4)	<0.001	375 (41.9)	90 (62.5)	<0.001
STS-PROM score, %	6.0 (4.1–8.9)	5.6 (3.9–8.3)	8.2 (5.4–12.9)	<0.001	5.0 (3.6–7.5)	6.7 (4.5–9.9)	<0.001	5.6 (3.9–8.3)	8.3 (5.8–13.8)	<0.001
Comorbidities										
Hypertension	888 (85.4)	744 (85.7)	144 (83.7)	0.504	370 (90.0)	518 (82.4)	0.001	771 (86.1)	117 (81.3)	0.142
Dyslipidemia	571 (54.9)	495 (57.0)	76 (44.2)	0.002	275 (65.9)	296 (47.1)	<0.001	508 (56.7)	63 (43.8)	0.004
Diabetes	229 (22.0)	194 (22.4)	35 (20.4)	0.560	109 (26.5)	120 (19.1)	0.005	198 (22.1)	31 (21.5)	0.878
Atrial fibrillation	229 (22.0)	164 (18.9)	65 (37.8)	<0.001	70 (17.0)	159 (25.3)	0.002	173 (19.3)	56 (38.9)	<0.001
Coronary artery disease	350 (33.7)	279 (32.1)	71 (41.3)	0.022	150 (36.5)	200 (31.8)	0.118	290 (32.4)	60 (41.7)	0.031
Previous coronary bypass	53 (5.1)	44 (5.1)	9 (5.2)	0.929	27 (6.6)	26 (4.1)	0.084	47 (5.3)	6 (4.2)	0.575
Previous valve surgery	26 (2.5)	22 (2.5)	4 (2.3)	0.871	12 (2.9)	14 (2.2)	0.487	23 (2.6)	3 (2.1)	0.724
Peripheral artery disease	90 (8.7)	70 (8.1)	20 (11.6)	0.143	30 (7.3)	60 (9.5)	0.205	75 (8.4)	15 (10.4)	0.429
Chronic obstructive pulmonary disease	107 (10.3)	87 (10.0)	20 (11.6)	0.533	45 (11.0)	62 (9.9)	0.572	88 (9.8)	19 (13.2)	0.231
Cerebrovascular disease	120 (11.5)	98 (11.3)	22 (12.8)	0.578	40 (9.7)	80 (12.7)	0.137	101 (11.3)	19 (13.2)	0.510
Active cancer	53 (5.1)	43 (5.0)	10 (5.8)	0.645	15 (3.7)	38 (6.0)	0.080	48 (5.4)	5 (3.5)	0.316
Blood tests										
Hemoglobin, g/dL	11.2 (10.1–12.3)	11.4 (10.3–12.5)	10.2 (9.2–11.2)	<0.001	11.8 (10.8–12.8)	10.8 (9.7–11.9)	<0.001	11.4 (10.3–12.5)	10.1 (9.1–11.1)	<0.001

(Continued)
Table 1. (Continued)

Echocardiographic data	Total (N=1040)	CONUT score	GNRI	PNI						
	Normal/mild, 0–4 (N=868)	Moderate/severe, 5–12 (N=172)	P value	Normal/mild, ≥97.5 (N=411)	Moderate/severe, <97.5 (N=629)	P value	Normal, >38 (N=896)	Moderate/severe, ≤38 (N=144)	P value	
eGFR, mL/min per 1.73 m²	51.2 (38.4–64.4)	52.0 (39.2–65.6)	47.6 (31.4–57.9)	<0.001	52.7 (39.3–65.0)	49.5 (37.7–64.0)	0.043	51.9 (39.2–65.0)	43.3 (30.7–57.7)	<0.001
Albumin, g/dL	3.8 (3.4–4.1)	3.9 (3.6–4.1)	3.1 (2.9–3.4)	<0.001	4.1 (3.9–4.3)	3.5 (3.3–3.7)	<0.001	3.8 (3.6–4.1)	3.0 (2.8–3.2)	<0.001
Total cholesterol, mg/dL	168 (146–193)	173 (153–197)	142 (122–164)	<0.001	177 (155–199)	164 (143–188)	<0.001	171 (150–195)	152 (131–177)	<0.001
eGFR, mL/min per 1.73 m²	51.2 (38.4–64.4)	52.0 (39.2–65.6)	47.6 (31.4–57.9)	<0.001	52.7 (39.3–65.0)	49.5 (37.7–64.0)	0.043	51.9 (39.2–65.0)	43.3 (30.7–57.7)	<0.001
Albumin, g/dL	3.8 (3.4–4.1)	3.9 (3.6–4.1)	3.1 (2.9–3.4)	<0.001	4.1 (3.9–4.3)	3.5 (3.3–3.7)	<0.001	3.8 (3.6–4.1)	3.0 (2.8–3.2)	<0.001
Total cholesterol, mg/dL	168 (146–193)	173 (153–197)	142 (122–164)	<0.001	177 (155–199)	164 (143–188)	<0.001	171 (150–195)	152 (131–177)	<0.001

Echocardiographic data

Echocardiographic data	Total (N=1040)	CONUT score	GNRI	PNI						
	Normal/mild, 0–4 (N=868)	Moderate/severe, 5–12 (N=172)	P value	Normal/mild, ≥97.5 (N=411)	Moderate/severe, <97.5 (N=629)	P value	Normal, >38 (N=896)	Moderate/severe, ≤38 (N=144)	P value	
Aortic valve area, cm²	0.66 (0.55–0.76)	0.66 (0.56–0.77)	0.64 (0.52–0.72)	0.002	0.69 (0.60–0.78)	0.64 (0.53–0.75)	<0.001	0.66 (0.56–0.77)	0.64 (0.53–0.75)	0.071
Indexed aortic valve area, cm²/m²	0.50 (0.42–0.57)	0.50 (0.40–0.51)	0.40 (0.30–0.50)	0.006	0.50 (0.40–0.50)	0.50 (0.40–0.50)	0.005	0.50 (0.40–0.50)	0.50 (0.40–0.50)	0.005
Mean aortic gradient, mm Hg	46.0 (35.6–60.2)	46.1 (36.3–60.2)	44.5 (32.1–59.7)	0.006	47.0 (37.7–60.2)	45.3 (34.2–60.1)	0.250	46.7 (36.5–60.5)	43.0 (30.4–57.3)	0.006
Left ventricular ejection fraction, %	62.3 (55.1–66.5)	62.6 (56.5–65.9)	58.1 (46.7–64.1)	<0.001	63.3 (56.0–66.3)	61.5 (52.7–65.2)	<0.001	62.7 (56.4–65.9)	58.0 (46.8–63.9)	<0.001
Systolic pulmonary arterial pressure, mm Hg	31.8 (26.0–38.0)	31.0 (26.0–37.0)	35.0 (28.0–44.0)	<0.001	30.0 (26.0–36.0)	32.6 (27.0–40.0)	<0.001	31.0 (26.0–37.0)	35.0 (29.0–45.0)	<0.001

MDCT data

MDCT data	Total (N=1040)	CONUT score	GNRI	PNI						
	Normal/mild, 0–4 (N=868)	Moderate/severe, 5–12 (N=172)	P value	Normal/mild, ≥97.5 (N=411)	Moderate/severe, <97.5 (N=629)	P value	Normal, >38 (N=896)	Moderate/severe, ≤38 (N=144)	P value	
Annulus area, mm²	396.1 (351.4–453.5)	392.7 (349.7–446.4)	419.4 (366.4–493.0)	<0.001	394.0 (352.8–484.6)	398.0 (350.9–455.7)	0.497	393.1 (350.4–449.1)	408.6 (369.2–466.8)	0.007
Annulus perimeter, mm	71.4 (67.6–76.3)	71.2 (67.4–75.8)	73.0 (68.7–79.5)	<0.001	71.3 (67.8–75.9)	71.5 (67.5–76.5)	0.524	71.3 (67.4–76.2)	72.2 (68.7–77.2)	0.036
LVOT area, mm²	390.4 (329.8–477.6)	384.9 (325.6–467.3)	422.9 (357.9–529.5)	<0.001	386.5 (324.0–468.4)	392.1 (334.5–483.7)	0.227	388.6 (326.7–475.2)	407.2 (353.7–503.2)	0.033
Table 1. (Continued)

Constrast	Total (N=1040)	CONUT score	GNRI	PNI						
	Normal/mild, 0–4 (N=868)	Moderate/severe, 5–12 (N=172)	P value	Normal/mild, ≥97.5 (N=411)	Moderate/severe, <97.5 (N=629)	P value	Normal, >38 (N=896)	Moderate/severe, ≤38 (N=144)	P value	
STJ height, mm	18.6 (16.8–20.6)	16.8 (16.8–20.5)	19.1 (16.8–21.3)	0.102	18.7 (16.8–20.7)	18.6 (16.8–20.6)	0.723	18.6 (16.8–20.6)	18.8 (16.7–21.2)	0.731
STJ diameter, mm	24.6 (22.8–27.0)	24.5 (22.6–26.8)	25.7 (23.3–27.4)	0.001	24.6 (22.6–26.9)	24.8 (22.8–27.1)	0.304	24.6 (22.7–26.9)	25.2 (23.3–27.3)	0.022
Mean SOV diameter, mm	29.5 (27.7–31.8)	29.3 (27.7–31.5)	30.4 (28.2–32.6)	0.001	29.3 (27.7–31.8)	29.6 (27.7–31.8)	0.539	29.4 (27.7–31.7)	29.8 (28.2–32.3)	0.054
Left coronary artery height, mm	13.4 (11.9–14.8)	13.4 (11.8–14.8)	13.4 (12.1–14.6)	0.928	13.4 (11.9–14.8)	13.4 (11.9–14.8)	0.997	13.4 (11.8–14.8)	13.1 (12.3–14.3)	0.389
Right coronary artery height, mm	15.0 (13.1–17.0)	14.9 (13.0–16.9)	15.3 (13.5–17.3)	0.053	14.9 (13.0–17.0)	15.0 (13.2–17.0)	0.620	15.0 (13.1–17.1)	15.0 (13.3–17.0)	0.705
LVOT calcification ≥moderate	68 (6.5)	47 (5.4)	21 (12.2)	0.002	18 (4.4)	50 (8.0)	0.020	50 (5.6)	18 (12.5)	0.004

Values are number (percentage) or median (interquartile range). CONUT indicates Controlling Nutritional Status; eGFR, estimated glomerular filtration rate; GNRI, Geriatric Nutritional Risk Index; LVOT, left ventricular outflow tract; MDCT, multidetector computed tomography; NYHA, New York Heart Association; PNI, Prognostic Nutritional Index; SOV, sinus of Valsalva; STJ, sinotubular junction; and STS-PROM, Society of Thoracic Surgeons Predicted Risk of Mortality.

Table 2. Prevalence of Malnutrition by Sex, Body Mass Index, and Clinical Frailty Scale

CONUT score	Male sex (N=342)	Female sex (N=698)	P value	BMI<22 kg/m² (N=524)	BM≥22 kg/m² (N=516)	P value	CFS<3 (N=523)	CFS≥4 (N=517)	P value
Normal	72 (21.1)	217 (31.1)	0.001	111 (21.2)	178 (34.5)	<0.001	178 (34.0)	111 (21.5)	<0.001
Mild	197 (57.6)	382 (54.7)	0.214	305 (57.8)	276 (53.5)	0.001	284 (54.3)	295 (57.1)	
Moderate	68 (19.9)	91 (13.0)	101 (19.3)	58 (11.2)	58 (11.1)	101 (19.5)			
Severe	5 (1.5)	8 (1.2)	9 (1.7)	4 (0.8)	3 (0.6)	10 (1.8)			

GNRI	Male sex (N=342)	Female sex (N=698)	P value	BMI<22 kg/m² (N=524)	BM≥22 kg/m² (N=516)	P value	CFS<3 (N=523)	CFS≥4 (N=517)	P value
Normal	95 (27.8)	162 (23.2)	0.214	57 (10.9)	200 (38.8)	<0.001	175 (33.5)	82 (15.9)	<0.001
Mild	42 (12.3)	112 (16.1)	52 (9.9)	102 (19.8)	84 (16.1)	30 (13.5)			
Moderate	175 (52.2)	355 (50.9)	327 (62.4)	203 (39.3)	236 (45.1)	294 (56.9)			
Severe	30 (8.8)	69 (9.9)	88 (16.8)	11 (2.1)	25 (5.4)	71 (13.7)			

PNI	Male sex (N=342)	Female sex (N=698)	P value	BMI<22 kg/m² (N=524)	BM≥22 kg/m² (N=516)	P value	CFS<3 (N=523)	CFS≥4 (N=517)	P value
Normal	292 (85.4)	604 (86.5)	0.877	427 (81.5)	469 (90.9)	<0.001	481 (92.0)	415 (80.3)	<0.001
Mild			
Moderate	27 (7.9)	50 (7.2)	49 (9.4)	28 (5.4)	25 (4.8)	52 (10.1)			
Severe	23 (6.7)	44 (6.3)	48 (9.2)	19 (3.7)	17 (3.3)	50 (9.7)			

Values are number (percentage). BMI indicates body mass index; CFS, Clinical Frailty Scale; CONUT, Controlling Nutritional Status; GNRI, Geriatric Nutritional Risk Index; and PNI, Prognostic Nutritional Index.
Table 3. Procedure Characteristics and In-Hospital Outcomes

Total (N=1040)	CONUT score	GNRI	PNI	CONUT score	GNRI	PNI				
	Normal/ mild, 0–4 (N=868)	Moderate/severe, 5–12 (N=172)	P value	Normal/ mild, ≤97.5 (N=411)	Moderate/severe, >97.5 (N=629)	P value	Normal, >38 (N=896)	Moderate/severe, ≤38 (N=144)	P value	
Local anesthesia	636 (61.1)	537 (61.9)	98 (57.0)	0.232	253 (61.6)	382 (60.7)	0.789	541 (60.4)	94 (65.3)	0.260
Emergent and urgent procedure	45 (3.3)	21 (2.4)	24 (14.0)	<0.001	4 (1.0)	41 (6.5)	<0.001	20 (2.2)	25 (17.4)	<0.001
Access site										
Transfemoral	901 (86.6)	753 (86.8)	148 (86.1)	0.805	362 (88.1)	539 (85.7)	0.266	768 (85.7)	133 (92.4)	0.021
Alternative	139 (13.4)	115 (13.3)	24 (14.0)	0.948	49 (11.9)	90 (14.3)	0.232	128 (14.3)	11 (7.6)	0.058
Prosthesis type										
SAPIEN XT	214 (20.6)	184 (21.2)	30 (17.4)	0.563	95 (23.1)	119 (18.9)	0.179	197 (22.0)	17 (11.8)	0.016
SAPIEN 3	587 (56.4)	482 (55.5)	105 (61.1)	0.805	234 (56.9)	353 (56.1)	0.266	344 (40.0)	96 (66.7)	0.001
Evolut R/PRO	222 (21.3)	188 (21.7)	34 (19.8)	0.887	76 (18.5)	146 (23.2)	0.266	193 (21.5)	29 (20.1)	0.016
Prosthesis size										
20mm	15 (1.4)	11 (1.3)	4 (2.3)	0.004	5 (1.2)	10 (1.6)	0.799	11 (1.2)	4 (2.8)	0.061
23mm	437 (42.1)	379 (43.7)	58 (33.9)	0.001	180 (43.8)	257 (40.9)	0.385	387 (43.2)	50 (35.0)	0.001
26mm	437 (42.1)	367 (42.3)	70 (40.9)	0.001	168 (40.9)	269 (42.8)	0.385	377 (42.1)	60 (42.0)	0.001
29mm	150 (14.4)	111 (12.8)	39 (22.8)	0.001	58 (14.1)	92 (14.7)	0.001	121 (13.5)	29 (20.3)	0.001
Length of hospital stay after TAVI, days	9 (6–14)	9 (6–13)	13 (7–21)	<0.001	8 (6–12)	10 (7–15)	<0.001	9 (6–13)	14 (8–25)	<0.001
All-cause mortality	15 (1.4)	9 (1.0)	6 (3.5)	0.396	4 (1.0)	11 (1.8)	0.291	9 (1.0)	6 (4.2)	0.012
Acute kidney injury	57 (5.5)	36 (4.2)	21 (12.2)	<0.001	20 (4.9)	37 (5.9)	0.479	40 (4.5)	17 (11.8)	0.001
Disabling stroke	14 (1.3)	11 (1.3)	3 (1.7)	0.632	3 (0.7)	11 (1.8)	0.146	10 (1.1)	4 (2.8)	0.149
PVL≥moderate	2 (0.2)	1 (0.1)	1 (0.6)	0.275	2 (0.5)	0	0.054	2 (0.2)	0	0.440
Life-threatening/disabling bleeding	41 (3.9)	32 (3.7)	9 (5.2)	0.361	10 (2.4)	31 (4.9)	0.037	30 (3.4)	11 (7.6)	0.027
Coronary obstruction	7 (0.7)	5 (0.6)	2 (1.2)	0.432	3 (0.7)	4 (0.6)	0.857	6 (0.7)	1 (0.7)	0.973
Major vascular complications	44 (4.2)	37 (4.3)	7 (4.1)	0.908	17 (4.1)	27 (4.3)	0.903	36 (4.0)	8 (5.6)	0.413
Conversion to open surgery	11 (1.1)	8 (0.9)	3 (1.7)	0.369	2 (0.5)	9 (1.4)	0.125	7 (0.8)	4 (2.8)	0.060
New pacemaker implantation	80 (7.7)	65 (7.5)	15 (8.7)	0.588	26 (6.3)	54 (8.6)	0.174	72 (8.0)	8 (5.6)	0.279

Values are number (percentage) or median (interquartile range). CONUT indicates Controlling Nutritional Status; GNRI, Geriatric Nutritional Risk Index; PNI, Prognostic Nutritional Index; PVL, paravalvular leakage; and TAVI, transcatheter aortic valve implantation.
between all-cause mortality and clinical findings are presented in Table S4. Worsening malnutrition status as a continuous variable was associated with a higher incidence of all-cause mortality for any malnutrition indexes (Figure 4). The Kaplan–Meier analysis also showed that moderate to severe malnutrition was related to a higher incidence of all-cause mortality than the other nutritional groups regardless of the malnutrition index used. Patients with mild malnutrition had a higher mortality rate than those with normal nutritional status by the CONUT score, whereas comparable mortality rates between the 2 groups were observed by the GNRI. Similarly for cardiovascular mortality and heart failure hospitalization, worsening malnutrition status was associated with worse prognoses by the CONUT score and the PNI, whereas there was a trend for a higher event rate in the worse malnutrition groups, albeit with no significant group difference by the GNRI (Figure 5).

In the multivariable analyses, compared with normal nutritional status, moderate or severe malnutrition was independently associated with the risk of all-cause death during the follow-up period, irrespective of the malnutrition indexes used (Table 5). In addition, we dichotomized patients according to the median age of 85 years, the median BMI of 22 kg/m², the median CFS of 3, the LVEF of 50%, chronic renal failure status, and sex. Regardless of the stratification based on these factors, worsening malnutrition status was independently
associated with a higher incidence of mortality without significant interactions (Figure S1A through S1C).

The c-statistics did not differ among the 3 nutritional indexes for all-cause mortality, cardiovascular mortality, and heart failure hospitalization. However, the CONUT score and the PNI have higher sensitivity than the GNRI for all of these outcomes (Figure 6).

Nutritional Status at 1-Year Follow-Up

We also retrospectively collected data on the nutritional status at 1 year after TAVI of 934 patients who survived at 1-year follow-up and assessed temporal changes of nutritional status according to each nutritional index (Figures S2A to S2C). Of a total of 934 patients, 98 (10.5%) patients had no follow-up data on nutritional status, who also tended to be in worse preprocedural nutritional status. Improved, stable, and worsened nutritional categories were, respectively, observed in 212 (22.7%), 483 (51.7%), and 141 (15.1%) patients for the CONUT score; in 212 (22.7%), 452 (48.4%), and 172 (18.4%) patients for the GNRI; and in 64 (6.9%), 707 (75.7%), and 65 (7.0%) patients for the PNI.

DISCUSSION

In this study, we evaluated the prevalence and prognostic impact of malnutrition, which was assessed by 3 existing indexes, in patients undergoing TAVI. Malnutrition was common but was associated with a poor prognosis after TAVI, regardless of the nutrition index used and irrespective of age, sex, BMI, frailty, kidney function, and LVEF.

Few previous studies have assessed the prevalence of malnutrition in patients undergoing TAVI. Honda et al reported that two-thirds of 150 patients undergoing TAVI were malnourished using the CONUT score, and Doi et al also reported that 65% of 288 patients undergoing TAVI were malnourished or at risk of malnutrition using the Mini Nutritional Assessment–Short Form. Aortic stenosis is a chronic, progressive disease with a prolonged inflammatory process that may cause reduced mobility, loss of muscle mass, decreased appetite, and poor nutritional status. Moreover, most of the patients undergoing TAVI are elderly, although indications for TAVI have recently been expanded to include younger patients. Aging also decreases one’s metabolic reserve of albumin, and therefore, the nutritional status of the elderly can be easily affected by relatively small stresses. Nevertheless, malnutrition in candidates for TAVI is often unrecognized and, thus, untreated in clinical practice. In our study, comparing the clinical significance of 3 nutritional indexes in a large cohort of 1040 patients, the prevalence of malnutrition depended on the nutritional index used, ranging from 13.8% with the PNI, to 72.2% with the CONUT score, and to 75.3% with the GNRI. In particular, the PNI identified far fewer patients as malnourished compared with the other indexes. Because the PNI only identifies patients as moderately or severely malnourished, it may therefore underestimate the overall prevalence of malnutrition. Indeed, a higher concordance for the prevalence of moderate to severe malnutrition was observed between the PNI (13.8%) and the CONUT score (16.6%), perhaps reflecting the similarity of the variables on which these 2 indexes are based; on the other hand, a higher prevalence of moderate to severe malnutrition was found with the GNRI (60.5%), which considers anthropometric factors and serum markers. Therefore, clinical cardiologists should understand that...
Malnutrition is prevalent in candidates for TAVI and that the nutritional indexes are often not interchangeable. Lower BMI, which is believed to reflect undernourishment, is associated with worse prognosis in patients with heart failure, a phenomenon that is often termed the obesity paradox. In our study, patients with a lower BMI had higher degrees of malnutrition; however, it should be noted that malnutrition was highly prevalent also in those with a BMI >22 kg/m² using the CONUT and GNRI criteria (65.5% and 61.2%, respectively). A high prevalence of malnutrition in patients who were overweight or obese has also been reported in previous investigations on acute coronary syndrome and heart failure, highlighting that malnutrition does not simply manifest as being underweight. In addition, it is important to note that malnutrition is not only common in patients who are frail with CFS≥4 but also is relatively prevalent in patients with CFS≤3. Indeed, as shown in Figure 5, malnutrition degrees and clinical outcomes.

Figure 5. Malnutrition degrees and clinical outcomes. Kaplan–Meier curves for (left) all-cause mortality, (middle) cardiovascular mortality, and (right) heart failure hospitalization by the CONUT score, GNRI, and PNI. CONUT indicates Controlling Nutritional Status; GNRI, Geriatric Nutritional Risk Index; and PNI, Prognostic Nutritional Index.
Figures S1A to S1C, multivariable analyses revealed no significant interaction between the malnutrition groups and BMI groups and between the malnutrition groups and CFS groups regarding overall survival. Therefore, we should be quantitatively screening nutritional status using objective indexes without being bound by anthropometric and visual factors.

This study demonstrated that worsening malnutrition status was associated with increased long-term mortality in patients undergoing TAVI, irrespective of age, sex, BMI, frailty, kidney function, and LVEF. The predictive role of malnutrition indexes in mortality was also confirmed after adjusting by clinical variables with known poor prognosis, including CFS, Society of Thoracic Surgeons Predicted Risk of Mortality score, dyslipidemia, atrial fibrillation, peripheral artery disease, active cancer, hemoglobin, estimated glomerular filtration rate, brain natriuretic peptide, left ventricular ejection fraction, moderate to severe mitral regurgitation, transfemoral approach, and moderate to severe left ventricular outflow tract calcification. Model 2 was additionally adjusted for the following postprocedural variables: conversion to open surgery, new pacemaker implantation, prostheses–patient mismatch, and moderate to severe paravalvular leakage. CONUT indicates Controlling Nutritional Status; GNRI, Geriatric Nutritional Risk Index; HR, hazard ratio; and PNI, Prognostic Nutritional Index.

Table 5. Multivariable Cox Regression Analyses of Malnutrition for All-Cause Mortality

Multivariable analysis	CONUT score	GNRI	PNI						
	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value
Normal nutrition	Reference	Reference	Reference
Mild malnutrition	1.22	0.87–1.72	0.26	1.06	0.63–1.79	0.82
Moderate malnutrition	2.22	1.46–3.35	<0.001	2.02	1.36–3.01	0.001	1.64	1.09–2.46	0.018
Severe malnutrition	6.20	2.76–13.91	<0.001	3.26	1.87–5.69	<0.001	2.32	1.50–3.60	<0.001

Model 1 was adjusted for the following preprocedural variables: age, sex, body mass index, Clinical Frailty Scale, New York Heart Association class III/IV, Society of Thoracic Surgeons Predicted Risk of Mortality score, dyslipidemia, atrial fibrillation, peripheral artery disease, active cancer, hemoglobin, estimated glomerular filtration rate, brain natriuretic peptide, left ventricular ejection fraction, moderate to severe mitral regurgitation, transfemoral approach, and moderate to severe left ventricular outflow tract calcification. Model 2 was additionally adjusted for the following postprocedural variables: conversion to open surgery, new pacemaker implantation, prostheses–patient mismatch, and moderate to severe paravalvular leakage. CONUT indicates Controlling Nutritional Status; GNRI, Geriatric Nutritional Risk Index; HR, hazard ratio; and PNI, Prognostic Nutritional Index.
option to consider palliative care instead of a futile invasive procedure for these patients is increasingly recognized. Futility risk models after TAVI, consisting of many comorbidities such as atrial fibrillation, chronic renal failure, liver disease, pulmonary disease, anemia, and cancer, were previously reported; however, these models did not include a detailed evaluation of nutritional status. Our study showed a prohibitive risk of mortality (80%) at 5 years in patients with preprocedural moderate or severe malnutrition, which was observed in 20% of the study population. We ought to acknowledge that worse nutritional status as a potential surrogate marker for diminished physiological reserve is associated with early mortality after TAVI. Objective nutritional indexes such as the CONUT score, GNRI, and PNI would be useful for the preprocedural risk stratification.

Limitations
This study has several limitations that warrant discussion. First, this is a single-center observational study including a retrospective analysis with all inherent limitations. Data are limited to Asian patients, without information regarding educational background, family structure, or socioeconomic status, which may improve understanding of the causes of malnutrition. Therefore, confirmation of our findings by other investigators and in other countries with different health care and social systems is important. Second, the nutritional status assessed by the 3 simple objective scoring systems was not validated by more complex comprehensive nutritional assessments, such as subjective evaluation (eg, the Subjective Global Assessment and Mini Nutritional Assessment). In addition, we did not compare the prognostic value of these 3 scoring tools with comprehensive nutritional assessments. However, some subjective nutritional evaluations may be inaccurate for older patients with cognitive impairments, most of whom have indication for TAVI rather than surgical aortic valve replacement. From this perspective, the objective nutritional indexes assessed in this study will be useful for the nutritional screening of candidates for TAVI. Third, although nutritional status was assessed not only at the TAVI procedure but also at the 1-year follow-up, the clinical effect of nutritional interventions for patients who were undernourished was not determined. Fourth, we did not routinely perform the follow-up computed tomography. Therefore, the presence of leaflet thrombosis on THV, which might have affected outcomes after TAVI, was not assessed in this study.

CONCLUSIONS
Malnutrition is common in patients undergoing TAVI and is associated with a poor prognosis after TAVI. Adequate nutritional assessment before TAVI may
allow clinicians to identify patients at elevated risk for all-cause mortality and cardiovascular events and who may benefit from nutritional support. These findings warrant further investigation into the clinical effect of nutritional interventions for patients who are undernourished.

ARTICLE INFORMATION
Received March 29, 2022; accepted July 27, 2022.
Affiliations
Department of Cardiology (K.I., S.S., H.T., K.K., H.T., M.N., T.M., N.M., T.M., M.H., A.J., K.A.), Department of Cardiovascular Surgery (Y.A., N.O.), and Department of Anesthesiology (S.K.), Kokura Memorial Hospital, Kitakyushu, Japan.
Sources of Funding
None.
Disclosures
Dr Shinichi Shirai is the proctor of transfemoral-TAVI for Edwards Lifesciences Japan. The other authors have no conflicts of interest to declare.
Supplemental Material
Table S1–S4.

REFERENCES
1. Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, Webb JG, Douglas PS, Anderson WN, Blackstone EH, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis [PARTNER 1]: a randomised controlled trial. Lancet. 2015;385:2477–2484. doi: 10.1016/S0140-6736(15)60308-7
2. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, Thourani VH, Tuzcu EM, Miller DC, Herrmann HC, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–1620. doi: 10.1056/NEJMoa1514616
3. Kodali S, Thourani VH, White J, Malaisrie SC, Lim S, Greason KL, Williams M, Guerrero M, Eisenhauser AC, Kapadia S, et al. Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis. Eur Heart J. 2016;37:2252–2262. doi: 10.1093/eurheartj/ehw112
4. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, Jneid H, Mack MJ, McLeod CJ, O’Gara PT, et al. AHA/ACC focused update of the 2014 AHA/ACC guideline for the Management of Patients with Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017;135:e1159–e1195. doi: 10.1161/CIR.0000000000000503
5. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PU, Jung B, Lancellotti P, Lansac E, Rodriguez Muñoz D, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–2791. doi: 10.1093/eurheartj/ehx391
6. Vandvik PO, Otto CM, Siemieniuk RA, Bagur R, Guyatt GH, Lytvyn L, Whitlock R, Vartdal T, Brieger D, Aertgeerts B, et al. Transcatheter or surgical aortic valve replacement for patients with severe, symptomatic, aortic stenosis at low to intermediate surgical risk: a clinical practice guideline. BMJ. 2016;354:i5085. doi: 10.1136/bmj.i5085
7. Kalantar-Zadeh K, Anker SD, Horwich TB, Fonarow GC. Nutritional and anti-inflammatory interventions in chronic heart failure. Am J Cardiol. 2008;101:S89–S103. doi: 10.1016/j.amjcard.2008.03.007
8. Sze S, Pellicori P, Kazmi S, Rigby A, Cleland JGF, Wong K, Clark AL. Prevalence and prognostic significance of malnutrition using 3 scoring systems among outpatients with heart failure: a comparison with body mass index. JACC Heart Fail. 2018;6:476–486. doi: 10.1016/j.jchf.2018.02.018
9. Raposeiras Roubin S, Abu Assi E, Cespon Fernandez M, Barreiro Pardo C, Lizancos Castro A, Parada JA, Perez DO, Blanco Prieto S, Rossello X, Ibanez B, et al. Prevalence and prognostic significance of malnutrition in patients with acute coronary syndrome. J Am Coll Cardiol. 2020;76:826–840. doi: 10.1016/j.jacc.2020.06.058
10. Yoshimura M, Watanabe T, Otsuka Y, Watanabe K, Toshima T, Sugai T, Takahashi T, Kinoshita D, Tamura H, Nishiya S, et al. Impact of objective malnutrition status on the clinical outcomes in patients with peripheral artery disease following endovascular therapy. Circ J. 2018;82:847–856. doi: 10.1253/circj.CJ-17-0731
11. Honda Y, Yamawaki M, Shigemitsu S, Kenji M, Tokuda T, Tsutumi M, Morisaka T, Sakamoto Y, Kobayashi N, Araki M, et al. Prognostic value of objective nutritional status after transcatheter aortic valve replacement. J Cardiovasc Dev Regen Med. 2019;7:401–407. doi: 10.1016/j.jcdd.2018.11.013
12. Okuno T, Koseki K, Nakashishi T, Sato K, Ninomiya K, Tomi D, Tanaka T, Sato Y, Horiuchi Y, Koike H, et al. Evaluation of objective nutritional indexes as predictors of one-year outcomes after transcatheter aortic valve implantation. J Cardiovasc Dev Regen Med. 2019;10:34–39. doi: 10.1016/j.jcdm.2019.02.017
13. Kappetein AP, Head SJ, Genereux P, Piazza N, van Mieghem NM, Blackstone EH, Brott TG, Cohen DJ, Cutlip DE, van Es GA, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research Consortium-2 consensus document. J Thorac Cardiovasc Surg. 2013;145:S-23. doi: 10.1016/j.jtcs.2012.09.002
14. Ishizu K, Shirai S, Kawaguchi T, Taniguchi T, Hayashi M, Isonati A, Arai Y, Soga Y, Kakumoto S, Ando K. Effect of radiolucent line-guided balloon-expandable transcatheter aortic valve implantation on subsequent pacemaker rate. Am J Cardiol. 2022;165:72–80. doi: 10.1016/j.amjcard.2021.11.010
15. Okuno T, Asami M, Heg D, Lanz J, Praz F, Hagemeyer D, Brugger N, Gräni C, Huber A, Spirito A, et al. Impact of left ventricular outflow tract calcification on procedural outcomes after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2020;13:1789–1799. doi: 10.1016/j.jcin.2020.04.015
16. Ignacio de Ulbarri J, González-Madroño A, de Villar NG, González P, González B, Mancha A, Rodríguez F, Fernández G, CONUT: a tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp. 2005;20:38–45. doi: 10.3305/nh.2005.20.1.17
17. Bouillame O, Morineau G, Dupont C, Coulombel I, Vincent J-P, Nicolis I, Benazeth S, Cynober L, Ausset C. Geriatric nutritional risk index: a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr. 2005;82:777–783. doi: 10.1093/ajcn/82.4.777
18. Minamisawa M, Seidelmann SB, Claggett B, Hegde SM, Shah AM, Desai AS, Lewis EF, Shah SJ, Switzer NK, Fong JC, et al. Impact of malnutrition using geriatric nutritional risk index in heart failure with preserved ejection fraction. JACC Heart Fail. 2019;7:684–675. doi: 10.1016/j.jchf.2019.04.020
19. Buzby GP, Mullen JL, Matthews DC, Hobbs CL, Rosato EF. Prognostic nutritional index in gastrointestinal surgery. Am J Surg. 1980;139:160–167. doi: 10.1016/0002-9610(80)90246-9
20. Ishizu K, Shirai S, Isonati A, Hayashi M, Kawaguchi T, Taniguchi T, Ando K, Yoshina F, Tada N, Yamawaki M, et al. Long-term prognostic value of the Society of Thoracic Surgery Risk Score in patients undergoing transcatheter aortic valve implantation (from the OCEAN-TAVI registry). Am J Cardiol. 2021;127:86–94. doi: 10.1016/j.amjcard.2021.03.027
21. Ludman PF, Moat N, De Beider MA, Blackman DJ, Duncan A, Banywa Y, Maccarthy PA, Cunningham D, Wendler O, Marrie D, et al. Transcatheter aortic valve implantation in the United Kingdom. Circulation. 2015;131:1181–1190. doi: 10.1161/CIRCULATIONAHA.114.019474
22. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595
23. Doti S, Ashikaga K, Kida K, Watanabe M, Yoneyama K, Suzuki N, Kusuba S, Kahiara T, Koga M, Okuyama K, et al. Prognostic value of mini nutritional assessment—short form with aortic valve stenosis following transcatheter aortic valve implantation. ESC Heart Fail. 2020;7:4024–4031. doi: 10.1002/ehf2.13007
24. Bhatia N, Basra SS, Skolnick AH, Wenger NK. Aortic valve disease in the older adult. J Geriatr Cardiol. 2016;13:941–944. doi: 10.11909/j.ssc.1671-5411.2016.12.004
25. Beberashvili I, Azar A, Sinuani I, Shapiro G, Feldman L, Sandbank J, Stav K, Efrati S. Geriatric nutritional risk index, muscle function, quality of life and clinical outcome in hemodialysis patients. Clin Nutr. 2016;35:1522–1529. doi: 10.1016/j.clnu.2016.04.010

26. Van Mieghem NM, Van Der Boon RM, Nuis R-J, Schultz C, Van Geuns R-J, Serruys PW, Kappetein A-P, Van Domburg RT, De Jaegere PP. Cause of death after transcatheter aortic valve implantation. Catheter and Cardiovasc Interv. 2014;83:E277–E282. doi: 10.1002/ccd.24497

27. Saia F, Latib A, Ciucu C, Gasparetto V, Napodano M, Sticchi A, Anderlucci L, Marrozziini C, Naganuma T, Aliferi O, et al. Causes and timing of death during long-term follow-up after transcatheter aortic valve replacement. Am Heart J. 2014;168:798–806. doi: 10.1016/j.ahj.2014.07.023

28. Lehrke M, Millington SC, Letterova M, Cumaranatunge RG, Szapary P, Wilsensky R, Rader DJ, Lazar MA, Reilly MP, CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49:442–449. doi: 10.1016/j.jacc.2006.09.034

29. Otto CM, Kumbhani DJ, Alexander KP, Calhoon JH, Desai MY, Kaul S, Lee JC, Ruiz CE, Vassileva CM. 2017 ACC expert consensus decision pathway for transcatheter aortic valve replacement in the Management of Adults with Aortic Stenosis: a report of the American College of Cardiology Task Force on clinical expert consensus documents. J Am Coll Cardiol. 2017;69:1313–1346. doi: 10.1016/j.jacc.2016.12.006

30. Zusman O, Barbash ML, Guetta V, Finkelstein A, Assali A, Segev A, Orvin K, Barsheshet A, Younis A, Witberg G, et al. Predicting the risk of late futile outcome after transcatheter aortic valve implantation. Catheter Cardiovasc Interv. 2020;96:E695–E702.

31. Lantelme P, Lacour T, Bisson A, Herbert J, Ivanes F, Bourguignon T, Quilliet L, Angoulevant D, Harbaoui B, Babuty D, et al. Futility risk model for predicting outcome after transcatheter aortic valve implantation. Am J Cardiol. 2020;130:100–107. doi: 10.1016/j.amjcard.2020.05.043
SUPPLEMENTAL MATERIAL
Table S1A. Baseline Characteristics According to CONUT Score

Demographics	CONUT score	0-1 Normal (N = 289)	2-4 Mild (N = 579)	5-8 Moderate (N = 159)	9-12 Severe (N = 13)	P value
Age, years	84.0 (80.5-87.0)	85.0 (82.0-89.0)	87.0 (84.0-90.0)	84.0 (79.5-89.5)	<0.001	
Male	72 (24.9)	197 (34.0)	68 (42.8)	5 (38.5)	0.001	
Height, cm	148.6 (143.3-155.1)	148.3 (142.5-157.0)	150.0 (142.0-159.0)	151.0 (146.6-157.0)	0.421	
Weight, kg	51.0 (44.5-58.7)	49.0 (42.0-56.4)	46.8 (40.7-55.1)	45.9 (39.4-56.4)	0.010	
Body mass index, kg/m²	23.1 (20.3-25.4)	21.8 (19.8-24.1)	21.3 (18.9-23.6)	19.9 (17.0-24.2)	<0.001	
Clinical Frailty Scale	3 (3-4)	4 (3-4)	4 (3-5)	5 (4-7)	<0.001	
NYHA functional class III/IV	106 (36.7)	252 (43.5)	96 (60.4)	11 (84.6)	<0.001	
STS-PROM score, %	5.1 (3.6-7.5)	5.9 (4.1-8.6)	8.0 (5.3-12.5)	11.7 (6.2-23.4)	<0.001	

Comorbidities	CONUT score	0-1 Normal (N = 289)	2-4 Mild (N = 579)	5-8 Moderate (N = 159)	9-12 Severe (N = 13)	P value
Hypertension	249 (86.2)	495 (85.5)	136 (85.5)	8 (61.5)	0.205	
Dyslipidemia	159 (55.0)	336 (58.0)	71 (44.7)	5 (38.5)	0.015	
Diabetes mellitus	55 (19.0)	139 (24.0)	32 (20.1)	3 (23.1)	0.361	
Atrial fibrillation	42 (14.5)	122 (21.1)	55 (34.6)	10 (76.9)	<0.001	
Coronary artery disease	80 (27.7)	199 (34.4)	68 (42.8)	3 (23.1)	0.010	
Previous coronary bypass	16 (5.5)	28 (4.8)	8 (5.0)	1 (7.7)	0.950	
Previous valve surgery	4 (1.4)	18 (3.1)	4 (2.5)	0 (0)	0.357	
Peripheral artery disease	18 (6.2)	52 (9.0)	19 (12.0)	1 (7.7)	0.219	
Chronic obstructive pulmonary disease	34 (11.8)	53 (9.2)	19 (12.0)	1 (7.7)	0.562	
	Cerebrovascular disease	Active cancer				
--------------------------------	-------------------------	--------------	---	---	---	
	35 (12.1)	63 (10.9)	19 (12.0)	3 (23.1)	0.630	
Blood tests						
Hemoglobin, g/dl	11.8 (10.9-12.8)	11.3 (10.0-12.3)	10.2 (9.3-11.2)	9.6 (8.7-11.4)	<0.001	
eGFR, ml/min/1.73 m²	55.1 (44.0-66.9)	50.6 (38.1-65.0)	46.2 (31.0-56.8)	54.5 (41.2-72.7)	<0.001	
Albumin, g/dl	4.0 (3.7-4.2)	3.8 (3.5-4.1)	3.2 (2.9-3.4)	2.4 (2.3-2.8)	<0.001	
Total cholesterol, mg/dl	193.0 (178.5-213.5)	163.0 (146.0-183.0)	143.0 (127.0-165.0)	120.0 (97.5-141.0)	<0.001	
Lymphocyte count, μl	1693 (1434-2006)	1154 (979-1402)	1043 (763-1180)	806 (738-1035)	<0.001	
Brain natriuretic peptide, pg/ml	108.9 (61.3-254.9)	191.9 (76.9-440.3)	346.9 (164.8-647.7)	701.8 (371.8-1515.9)	<0.001	
Echocardiographic data						
Aortic valve area, cm²	0.67 (0.57-0.77)	0.66 (0.56-0.77)	0.64 (0.52-0.73)	0.58 (0.51-0.70)	0.011	
Indexed aortic valve area, cm²/m²	0.50 (0.40-0.51)	0.50 (0.40-0.51)	0.41 (0.40-0.50)	0.40 (0.30-0.50)	0.018	
Mean aortic gradient, mmHg	46.0 (35.8-58.7)	46.7 (36.6-61.0)	45.5 (23.7-60.5)	36.5 (23.6-42.5)	0.039	
Left ventricular ejection fraction, %	64.0 (59.2-66.2)	62.1 (55.1-65.5)	59.0 (47.0-64.1)	53.3 (37.6-59.2)	<0.001	
Left ventricular end-diastolic diameter, mm	42.9 (39.9-46.4)	44.4 (40.4-48.1)	45.3 (40.7-50.8)	45.4 (38.0-48.4)	0.002	
Aortic regurgitation ≥ moderate	10 (3.5)	35 (6.0)	15 (9.4)	1 (7.7)	0.080	
Mitral regurgitation ≥ moderate	7 (2.4)	22 (3.8)	14 (8.8)	5 (38.5)	<0.001	
Tricuspid regurgitation ≥ moderate	6 (2.1)	16 (2.8)	10 (6.3)	4 (30.8)	0.001	
Systolic pulmonary arterial pressure, mmHg	31.0 (26.0-36.1)	31.0 (26.0-37.0)	35.0 (27.3-43.3)	45.0 (36.2-52.0)	<0.001	
MDCT data						
Annulus area, mm²	389.7 (344.8-433.9)	393.7 (353.8-456.5)	416.1 (365.8-493.5)	422.9 (371.2-463.7)	<0.001	
Annulus perimeter, mm	70.9 (66.8-74.8)	71.4 (67.8-76.6)	72.9 (68.6-79.6)	73.1 (68.8-77.4)	0.001	
LVOT area, mm²	368.3 (314.0-442.4)	391.1 (333.3-482.0)	422.6 (354.7-536.7)	442.8 (388.7-501.7)	<0.001	
STJ height, mm	18.4 (16.8-20.0)	18.6 (16.8-20.6)	19.1 (16.8-21.4)	18.8 (17.0-20.7)	0.190	
	Group 1	Group 2	Group 3	Group 4	P-value	
------------------------	-------------	-------------	-------------	-------------	---------	
STJ diameter, mm	24.2 (22.4-26.3)	24.7 (22.7-27.1)	25.7 (23.3-27.4)	25.0 (23.3-28.1)	0.001	
Mean SOV diameter, mm	28.8 (27.4-30.9)	29.7 (27.7-31.9)	30.5 (28.3-32.7)	30.0 (27.9-31.8)	<0.001	
Left coronary artery height, mm	13.1 (11.5-14.5)	13.5 (11.9-15.0)	13.3 (12.0-14.6)	13.9 (12.8-14.4)	0.068	
Right coronary artery height, mm	14.8 (12.9-16.7)	14.9 (13.1-17.0)	15.4 (13.5-17.3)	14.9 (13.4-17.9)	0.179	
LVOT calcification ≥ moderate	15 (5.2)	32 (5.5)	20 (12.6)	1 (7.7)	0.023	

Values are n (%) or median (interquartile range).

CONUT = Controlling Nutritional Status; eGFR = estimated glomerular filtration rate; LVOT = left ventricular outflow tract; MDCT = multidetector computed tomography; NYHA = New York Heart Association; SOV = sinus of Valsalva; STJ = sinotubular junction; STS-PROM = Society of Thoracic Surgeons predicted risk of mortality
Table S1B. Baseline Characteristics According to GNRI

GNRI	≥100 Normal (N = 257)	97.50-99.99 Mild (N = 154)	83.50-97.49 Moderate (N = 530)	<83.50 Severe (N = 99)	P value
Demographics					
Age, years	84.0 (80.0-86.5)	85.0 (81.0-88.0)	86.0 (83.0-89.0)	88.0 (84.0-90.0)	<0.001
Male	95 (40.0)	42 (27.3)	175 (33.0)	30 (30.3)	0.214
Height, cm	150.1 (144.4-159.0)	146.8 (142.0-155.8)	148.5 (142.0-155.7)	149.0 (143.4-154.7)	0.007
Weight, kg	54.6 (49.1-62.1)	51.9 (45.3-58.8)	46.7 (40.8-54.5)	40.6 (35.9-46.3)	<0.001
Body mass index, kg/m²	23.8 (22.3-25.8)	23.1 (21.0-25.3)	21.1 (19.1-23.5)	18.4 (16.9-20.2)	<0.001
Clinical Frailty Scale	3 (3-4)	3 (3-4)	4 (3-4)	4 (3-6)	<0.001
NYHA functional class III/IV	87 (33.9)	61 (39.6)	261 (49.3)	56 (56.6)	<0.001
STS-PROM score, %	4.6 (3.2-7.3)	5.6 (4.1-8.1)	6.4 (4.3-9.0)	8.9 (6.2-13.5)	<0.001
Comorbidities					
Hypertension	229 (89.1)	141 (91.6)	438 (82.6)	80 (80.8)	0.005
Dyslipidemia	176 (68.5)	99 (64.3)	256 (48.3)	40 (40.4)	<0.001
Diabetes mellitus	71 (27.6)	38 (24.7)	102 (19.3)	18 (18.2)	0.038
Atrial fibrillation	49 (19.1)	21 (13.6)	117 (22.1)	42 (42.4)	<0.001
Coronary artery disease	91 (35.4)	59 (38.1)	165 (31.1)	35 (35.4)	0.324
Previous coronary bypass	20 (7.8)	7 (4.6)	24 (4.5)	2 (2.0)	0.099
Previous valve surgery	8 (3.1)	4 (2.6)	11 (2.1)	3 (3.0)	0.826
Peripheral artery disease	20 (7.8)	10 (6.5)	47 (8.9)	13 (13.1)	0.325
Chronic obstructive pulmonary disease	30 (11.7)	15 (9.7)	50 (9.4)	12 (12.1)	0.720
	27 (10.5)	13 (8.4)	67 (12.6)	13 (13.1)	0.439
--------------------------------	-----------	----------	-----------	-----------	-------
Cerebrovascular disease					
Active cancer	13 (5.1)	2 (1.3)	32 (6.0)	6 (6.1)	0.056

Blood tests

Test	Mean (95% CI)
Hemoglobin, g/dl	12.0 (11.0-13.2)
eGFR, ml/min/1.73 m²	53.2 (40.2-67.4)
Albumin, g/dl	4.2 (4.1-4.4)
Total cholesterol, mg/dl	180.0 (158.0-202.5)
Lymphocyte count, μl	1304 (1077-1592)
Brain natriuretic peptide, pg/ml	95.4 (56.1-211.5)

Echocardiographic data

Test	Mean (95% CI)
Aortic valve area, cm²	0.69 (0.61-0.79)
Indexed aortic valve area, cm²/m²	0.50 (0.40-0.50)
Mean aortic gradient, mmHg	46.0 (36.7-58.4)
Left ventricular ejection fraction, %	62.9 (58.7-66.2)
Left ventricular end-diastolic diameter, mm	44.9 (41.6-47.4)
Aortic regurgitation ≥ moderate	18 (7.0)
Mitral regurgitation ≥ moderate	0 (0)
Tricuspid regurgitation ≥ moderate	4 (1.6)
Systolic pulmonary arterial pressure, mmHg	30.0 (26.0-35.0)

MDCT data

Test	Mean (95% CI)				
Annulus area, mm²	398.7 (351.8-452.8)				
Annulus perimeter, mm	72.1 (67.8-76.4)				
LVOT area, mm²	398.3 (328.2-469.0)				
STJ height, mm	19.0 (17.1-20.7)				
--------------------------	----------------	----------------	----------------	----------------	----------
STJ diameter, mm	24.6 (22.8-26.8)	24.5 (22.5-27.0)	25.0 (22.8-27.3)	24.3 (22.9-26.1)	0.262
Mean SOV diameter, mm	29.3 (27.8-31.7)	29.0 (27.7-31.9)	29.7 (27.7-31.8)	29.1 (27.8-31.0)	0.581
Left coronary artery height, mm	13.4 (12.2-14.8)	13.4 (11.5-14.7)	13.4 (11.8-14.8)	13.0 (12.3-14.3)	0.800
Right coronary artery height, mm	14.8 (12.9-17.2)	14.9 (13.0-16.7)	15.0 (12.9-17.1)	14.9 (13.3-16.5)	0.947
LVOT calcification ≥ moderate	14 (5.5)	4 (2.6)	36 (6.8)	14 (14.1)	0.005

Values are n (%) or median (interquartile range).
eGFR = estimated glomerular filtration rate; GNRI = Geriatric Nutrition Risk Index; LVOT = left ventricular outflow tract; MDCT = multidetector computed tomography; NYHA = New York Heart Association; SOV = sinus of Valsalva; STJ = sinotubular junction; STS-PROM = Society of Thoracic Surgeons predicted risk of mortality.
Demographics	>38 Normal (N = 896)	35-38 Moderate (N = 77)	<35 Severe (N = 67)	P value
Age, years	85.0 (82.0-88.0)	87.0 (84.0-90.0)	87.0 (82.0-91.0)	0.004
Male	292 (32.6)	27 (35.1)	23 (34.3)	0.877
Height, cm	148.6 (143.0-156.4)	150.0 (142.0-157.7)	149.0 (142.3-155.0)	0.966
Weight, kg	49.9 (42.6-57.5)	45.8 (40.1-54.2)	45.2 (39.8-52.7)	0.001
Body mass index, kg/m²	22.3 (19.9-24.6)	21.1 (18.6-24.1)	20.4 (18.4-22.5)	<0.001
Clinical Frailty Scale	3 (3-4)	4 (3-5)	5 (3-7)	<0.001
NYHA functional class III/IV	375 (41.9)	49 (63.6)	41 (61.2)	<0.001
STS-PROM score, %	5.6 (3.9-8.3)	7.9 (5.4-13.7)	8.5 (6.1-14.5)	<0.001
Hypertension	771 (86.1)	63 (81.8)	54 (80.6)	0.334
Dyslipidemia	508 (56.7)	35 (45.5)	28 (41.8)	0.014
Diabetes mellitus	198 (22.1)	19 (24.7)	12 (17.9)	0.606
Atrial fibrillation	173 (19.3)	28 (36.4)	28 (41.8)	<0.001
Coronary artery disease	290 (32.4)	31 (40.3)	29 (43.3)	0.090
Previous coronary bypass	47 (5.3)	2 (2.6)	4 (6.0)	0.511
Previous valve surgery	23 (2.6)	1 (1.3)	2 (3.0)	0.730
Peripheral artery disease	75 (8.4)	9 (11.7)	6 (9.0)	0.633
Chronic obstructive pulmonary disease	88 (9.8)	9 (11.7)	10 (14.9)	0.414
	Count	Mean	95% CI	p-value
--------------------------	-------	-------	---------	---------
Cerebrovascular disease	101 (11.3)	10 (13.0)	9 (13.4)	0.802
Active cancer	48 (5.4)	3 (3.9)	2 (3.0)	0.579

Blood tests

Test	Count	Mean	95% CI	p-value
Hemoglobin, g/dl	11.4 (10.3-12.5)	10.2 (9.3-11.3)	9.7 (8.8-10.8)	<0.001
eGFR, ml/min/1.73 m²	51.9 (39.2-65.0)	44.4 (31.6-55.0)	42.0 (27.8-61.1)	<0.001
Albumin, g/dl	3.8 (3.6-4.1)	3.2 (3.0-3.3)	2.8 (2.6-3.0)	<0.001
Total cholesterol, mg/dl	171.0 (150.0-195.0)	158.0 (139.5-178.0)	146.0 (122.0-175.0)	<0.001
Lymphocyte count, μl	1305 (1056-1637)	1054 (785-1196)	945 (699-1161)	<0.001
Brain natriuretic peptide, pg/ml	162.7 (72.7-353.0)	316.0 (180.0-581.2)	530.6 (230.9-954.4)	<0.001

Echocardiographic data

Test	Count	Mean	95% CI	p-value
Aortic valve area, cm²	0.66 (0.56-0.77)	0.64 (0.54-0.72)	0.62 (0.50-0.76)	0.189
Indexed aortic valve area, cm²/m²	0.50 (0.40-0.50)	0.50 (0.40-0.52)	0.49 (0.37-0.60)	0.876
Mean aortic gradient, mmHg	46.7 (36.5-60.5)	45.5 (34.4-56.8)	39.0 (29.1-57.9)	0.011
Left ventricular ejection fraction, %	62.7 (56.4-65.9)	58.3 (47.2-63.8)	56.4 (44.7-64.4)	<0.001
Left ventricular end-diastolic diameter, mm	44.0 (40.2-47.6)	46.0 (41.0-50.9)	44.0 (40.6-48.1)	0.093
Aortic regurgitation ≥ moderate	45 (5.0)	9 (11.7)	7 (10.5)	0.030
Mitral regurgitation ≥ moderate	29 (3.2)	6 (7.8)	13 (19.4)	<0.001
Tricuspid regurgitation ≥ moderate	25 (2.8)	3 (3.9)	8 (11.9)	0.006
Systolic pulmonary arterial pressure, mmHg	31.0 (26.0-37.0)	35.0 (29.0-45.8)	36.0 (29.0-45.0)	<0.001

MDCT data

Test	Count	Mean	95% CI	p-value
Annulus area, mm²	393.1 (350.4-449.1)	419.2 (387.2-479.7)	398.0 (360.0-455.7)	0.009
Annulus perimeter, mm	71.3 (67.4-76.2)	72.9 (70.1-78.2)	71.2 (67.5-76.2)	0.024
LVOT area, mm²	388.6 (326.7-475.2)	410.0 (363.9-528.9)	392.5 (334.7-488.2)	0.068
STJ height, mm	18.6 (16.8-20.6)	19.0 (16.4-21.7)	18.6 (16.8-20.7)	0.915
Metric	Group 1	Group 2	Group 3	p-value
--	------------------	------------------	------------------	---------
STJ diameter, mm	24.6 (22.7-26.9)	25.9 (23.3-27.8)	24.6 (23.3-26.8)	0.041
Mean SOV diameter, mm	29.4 (27.7-31.7)	30.1 (28.5-32.8)	29.6 (28.0-32.1)	0.097
Left coronary artery height, mm	13.4 (11.8-14.9)	13.2 (12.0-14.4)	13.0 (12.3-14.3)	0.690
Right coronary artery height, mm	15.0 (13.1-17.1)	15.3 (13.3-17.3)	14.8 (13.2-16.5)	0.346
LVOT calcification ≥ moderate	50 (5.6)	10 (13.0)	8 (11.9)	0.017

Values are n (%) or median (interquartile range).
eGFR = estimated glomerular filtration rate; LVOT = left ventricular outflow tract; MDCT = multidetector computed tomography; NYHA = New York Heart Association; PNI = Prognostic Nutritional Index; SOV = sinus of Valsalva; STJ = sinotubular junction; STS-PROM = Society of Thoracic Surgeons predicted risk of mortality.
CONUT score	0-1 Normal (N = 289)	2-4 Mild (N = 579)	5-8 Moderate (N = 159)	9-12 Severe (N = 13)	P value
Local anesthesia	194 (67.1)	343 (59.2)	92 (57.9)	6 (46.2)	0.065
Emergent and urgent procedure	1 (0.4)	20 (3.5)	18 (11.3)	6 (46.2)	<0.001
Access site					
Transfemoral	250 (86.5)	503 (86.9)	136 (85.5)	12 (92.3)	0.894
Alternative	39 (13.5)	76 (13.1)	23 (14.5)	1 (7.7)	
Prosthesis type					
SAPIEN XT	59 (20.4)	125 (21.6)	29 (18.2)	1 (7.7)	0.205
SAPIEN 3	161 (55.7)	321 (55.4)	93 (58.5)	12 (92.3)	
CoreValve	3 (1.0)	11 (1.9)	3 (1.9)	0	
Evolut R/PRO	66 (22.8)	122 (21.1)	34 (21.4)	0	
Prosthesis size					
20 mm	4 (1.4)	7 (1.2)	3 (1.9)	1 (7.7)	0.031
23 mm	129 (44.6)	250 (43.2)	54 (34.2)	4 (30.8)	
26 mm	127 (43.9)	240 (41.5)	62 (39.2)	8 (61.5)	
29 mm	29 (10.0)	82 (14.2)	39 (24.7)	0	
Length of hospital stay after TAVI, days	11 (8-16)	13 (9-19)	23 (13-37)	43 (17-52)	<0.001
All-cause mortality	3 (1.0)	6 (1.0)	5 (3.1)	1 (7.7)	0.151
Acute kidney injury	10 (3.5)	26 (4.5)	19 (12.0)	2 (15.4)	0.002
Disabling stroke	4 (1.4)	7 (1.2)	3 (1.9)	0	0.861
Event	Control Group	DirectAoV Treatment	Placebo Group	DirectAoV Treatment	p-value
--	---------------	---------------------	---------------	---------------------	---------
PVL ≥ moderate	1 (0.4)	0	1 (0.6)	0	0.314
Life-threatening/disabling bleeding	8 (2.8)	24 (4.2)	9 (5.7)	0	0.341
Coronary obstruction	1 (0.4)	4 (0.7)	2 (1.3)	0	0.708
Major vascular complication	9 (3.1)	28 (4.8)	7 (4.4)	0	0.455
Conversion to open surgery	0	8 (1.4)	3 (1.9)	0	0.050
New pacemaker implantation	16 (5.6)	49 (8.5)	15 (9.4)	0	0.156

Values are n (%) or median (interquartile range).

CONUT = Controlling Nutritional Status; PVL = paravalvular leakage; TAVI = transcatheter aortic valve implantation.
GNRI	Normal (N = 257)	Mild (N = 154)	Moderate (N = 530)	Severe (N = 99)	P value
<100					
≥100					
Normal	108 (42.0)	50 (32.5)	207 (39.1)	40 (40.4)	0.274
Mild	2 (0.9)	2 (1.3)	24 (4.5)	17 (17.2)	<0.001
Access site					
Transfemoral	223 (86.8)	139 (90.3)	452 (85.3)	87 (87.9)	0.414
Alternative	33 (13.2)	15 (9.7)	78 (14.7)	12 (12.1)	
Prosthesis type					
SAPIEN XT	64 (24.9)	31 (20.1)	108 (20.4)	11 (11.1)	0.088
SAPIEN 3	138 (53.7)	96 (62.3)	288 (54.3)	65 (65.7)	
CoreValve	5 (2.0)	1 (0.7)	9 (1.7)	2 (2.0)	
Evolut R/PRO	50 (19.5)	26 (16.9)	125 (23.6)	21 (21.2)	
Prosthesis size					
20 mm	5 (2.0)	0	6 (1.1)	4 (4.1)	0.059
23 mm	101 (39.3)	79 (51.3)	217 (40.9)	40 (40.8)	
26 mm	110 (42.8)	58 (37.7)	255 (42.5)	44 (44.9)	
29 mm	41 (16.0)	17 (11.0)	82 (15.5)	10 (10.2)	
Length of hospital stay after TAVI, days	10 (8-14)	11 (8-17)	14 (10-22)	31 (18-50)	<0.001
All-cause mortality	1 (0.4)	3 (2.0)	6 (1.1)	5 (5.1)	0.030
Acute kidney injury	11 (4.3)	9 (5.8)	29 (5.5)	8 (8.1)	0.584
Disabling stroke	2 (0.8)	1 (0.7)	0	3 (3.0)	0.377
Event	Group 1	Group 2	Group 3	Group 4	p-value
--	---------	---------	---------	---------	---------
PVL ≥ moderate	1 (0.4)	1 (0.7)	0	0	0.278
Life-threatening/disabling bleeding	5 (2.0)	5 (3.3)	27 (5.1)	4 (4.0)	0.155
Coronary obstruction	3 (1.2)	0	3 (1.2)	1 (1.0)	0.378
Major vascular complication	10 (3.9)	7 (4.6)	21 (4.0)	6 (6.1)	0.817
Conversion to open surgery	1 (0.4)	1 (0.7)	5 (0.9)	4 (4.0)	0.082
New pacemaker implantation	16 (6.2)	10 (6.5)	51 (9.6)	3 (3.0)	0.054

Values are n (%) or median (interquartile range).

GNRI = Geriatric Nutrition Risk Index; PVL = paravalvular leakage; TAVI = transcatheter aortic valve implantation.
	PNI	>38 Normal (N = 896)	35-38 Moderate (N = 77)	<35 Severe (N = 67)	P value
Local anesthesia		542 (60.4)	52 (67.5)	42 (62.7)	0.441
Emergent and urgent procedure		20 (2.2)	10 (13.0)	15 (22.4)	<0.001
Access site					
Transfemoral		768 (85.7)	72 (93.5)	61 (91.0)	0.059
Alternative		128 (14.3)	5 (6.5)	6 (9.0)	
Prosthesis type					
SAPIEN XT		197 (22.0)	9 (11.7)	8 (11.9)	0.097
SAPIEN 3		491 (54.8)	50 (64.9)	46 (68.7)	
CoreValve		15 (1.7)	1 (1.3)	1 (1.5)	
Evolut R/PRO		193 (21.5)	17 (22.1)	12 (17.9)	
Prosthesis size					
20 mm		11 (1.2)	1 (1.3)	3 (4.6)	0.103
23 mm		387 (43.2)	26 (33.8)	24 (36.4)	
26 mm		377 (42.1)	31 (40.3)	29 (43.9)	
29 mm		121 (13.5)	19 (24.7)	10 (15.2)	
Length of hospital stay after TAVI, days		12 (9-18)	25 (13-39)	28 (16-51)	<0.001
All-cause mortality		9 (1.0)	3 (3.9)	3 (4.5)	0.042
Acute kidney injury		40 (4.5)	11 (14.3)	6 (9.0)	0.003
Disabling stroke		10 (1.1)	3 (3.9)	1 (1.5)	0.236
Event	n (%)	n (%)	n (%)	p-value	
--------------------------------------	----------------	----------------	----------------	---------	
PVL ≥ moderate	2 (0.2)	0	0	0.742	
Life-threatening/disabling bleeding	30 (3.4)	9 (11.7)	2 (3.0)	0.010	
Coronary obstruction	6 (0.7)	1 (1.3)	0	0.533	
Major vascular complication	36 (4.0)	4 (5.2)	4 (6.0)	0.700	
Conversion to open surgery	7 (0.8)	3 (3.9)	1 (1.5)	0.114	
New pacemaker implantation	72 (8.0)	5 (6.5)	3 (4.5)	0.484	

Values are n (%) or median (interquartile range).

PNI = Prognostic Nutritional Index; PVL = paravalvular leakage; TAVI = transcatheter aortic valve implantation.
CONUT score	0-1	2-4	5-8	9-12	P value
Normal (N = 289)	1.63 (1.45-1.95)	1.65 (1.40-1.94)	1.66 (1.43-2.01)	1.60 (1.53-1.79)	0.902
Mild (N = 579)	1.15 (1.00-1.32)	1.17 (0.99-1.37)	1.19 (1.01-1.39)	1.18 (1.05-1.26)	0.508
Moderate (N = 159)	10.9 (8.4-13.9)	10.7 (8.0-13.6)	9.7 (7.8-12.3)	9.3 (5.3-13.7)	0.009
Severe (N = 13)	63.1 (59.1-66.3)	61.6 (55.3-65.5)	60.8 (48.8-64.5)	53.8 (40.1-61.6)	<0.001
Effective orifice area, cm²	1.63 (1.45-1.95)	1.65 (1.40-1.94)	1.66 (1.43-2.01)	1.60 (1.53-1.79)	0.902
Indexed effective orifice area, cm²/m²	1.15 (1.00-1.32)	1.17 (0.99-1.37)	1.19 (1.01-1.39)	1.18 (1.05-1.26)	0.508
Mean pressure gradient, mmHg	10.9 (8.4-13.9)	10.7 (8.0-13.6)	9.7 (7.8-12.3)	9.3 (5.3-13.7)	0.009
Left ventricular ejection fraction, %	63.1 (59.1-66.3)	61.6 (55.3-65.5)	60.8 (48.8-64.5)	53.8 (40.1-61.6)	<0.001
PPM	24 (8.3)	51 (8.8)	8 (5.0)	1 (7.7)	0.440
Moderate PPM	24 (8.3)	45 (7.8)	7 (4.4)	0	0.183
Severe PPM	0	6 (1.0)	1 (0.6)	1 (7.7)	0.049
PVL ≥ moderate	1 (0.4)	0	1 (0.6)	0	0.314

Values are n (%) or median (interquartile range).

CONUT = Controlling Nutritional Status; PPM = prosthesis-patient mismatch; PVL = paravalvular leakage.
GNRI	≥100 (N = 257)	97.50-99.99 (N = 154)	83.50-97.49 (N = 530)	<83.50 (N = 99)	\(P \) value
Effective orifice area, cm²	1.68 (1.49-1.98)	1.64 (1.38-1.93)	1.63 (1.42-1.95)	1.63 (1.35-1.87)	0.194
Indexed effective orifice area, cm²/m²	1.13 (0.99-1.30)	1.12 (0.98-1.32)	1.19 (1.01-1.38)	1.24 (1.02-1.48)	0.003
Mean pressure gradient, mmHg	10.9 (8.4-14.2)	11.5 (9.1-14.7)	10.1 (7.8-13.0)	9.2 (7.7-11.9)	<0.001
Left ventricular ejection fraction, %	63.0 (58.5-66.3)	63.0 (58.0-66.0)	61.7 (55.1-65.1)	58.2 (45.6-63.7)	<0.001
PPM					
Moderate PPM	25 (9.7)	11 (7.1)	40 (7.6)	8 (8.1)	0.733
Severe PPM	0	1 (0.7)	5 (0.9)	2 (2.0)	0.133
PVL ≥ moderate	1 (0.4)	1 (0.7)	0	0	0.278

Values are n (%) or median (interquartile range).

GNRI = Geriatric Nutrition Risk Index; PPM = prosthesis-patient mismatch; PVL = paravalvular leakage.
Table S3C. Post-Procedural Echocardiographic Data According to PNI

	PNI					
	>38		35-38		<35	
	Normal (N = 896)		Moderate (N = 77)		Severe (N = 67)	
Effective orifice area, cm²	1.65 (1.42-1.95)	1.72 (1.49-2.03)	1.63 (1.43-1.85)		0.383	
Indexed effective orifice area, cm²/m²	1.16 (1.00-1.35)	1.24 (1.04-1.46)	1.20 (1.04-1.37)		0.051	
Mean pressure gradient, mmHg	10.7 (8.2-13.7)	9.8 (7.4-12.2)	9.4 (7.7-12.4)		0.005	
Left ventricular ejection fraction, %	62.1 (56.9-65.8)	60 (46.3-64.2)	59.6 (44.9-64.5)		<0.001	
PPM	77 (8.6)	2 (2.6)	5 (7.5)		0.106	
Moderate PPM	70 (7.8)	2 (2.6)	4 (6.0)		0.148	
Severe PPM	7 (0.8)	0	1 (1.5)		0.461	
PVL ≥ moderate	2 (0.2)	0	0		0.742	

Values are n (%) or median (interquartile range).

PNI = Prognostic Nutritional Index; PPM = prosthesis-patient mismatch; PVL = paravalvular leakage.
Table S4. Univariate Cox Regression Analyses for Predictors of All-Cause Mortality

Pre-procedural Variables	Univariate Analysis		
	HR	95% CI	P value
Age (per 1 year increase)	1.03	1.01-1.05	0.011
Men	1.63	1.28-2.07	<0.001
Height (per 1 cm decrease)	0.99	0.98-1.01	0.28
Weight (per 1 kg decrease)	1.02	1.01-1.03	0.001
Body mass index (per 1 kg/m² decrease)	1.10	1.07-1.15	<0.001
Clinical Frailty Scale (per 1 group increment)	1.33	1.24-1.42	<0.001
NYHA class III/IV	1.49	1.17-1.90	0.001
STS-PROM score (per 1.0% increase)	1.05	1.03-1.06	<0.001
Hypertension	0.79	0.57-1.10	0.17
Dyslipidemia	0.70	0.55-0.89	0.004
Diabetes mellitus	0.97	0.72-1.30	0.83
Atrial fibrillation	1.75	1.34-2.28	<0.001
Coronary artery disease	1.12	0.88-1.43	0.36
Previous coronary bypass	0.82	0.49-1.37	0.45
Previous valve surgery	1.90	0.90-4.06	0.09
Peripheral artery disease	1.56	1.08-2.24	0.018
Chronic obstructive pulmonary disease	1.21	0.85-1.21	0.29
Cerebrovascular disease	1.02	0.71-1.45	0.92
Active cancer	1.95	1.27-2.99	0.002
Hemoglobin (per 1.0 g/dl decrease)	1.19	1.10-1.28	<0.001
eGFR (per 15 ml/min/1.73 m² decrease)	1.22	1.11-1.35	<0.001
Albumin (per 0.5 g/dl decrease)	1.83	1.62-2.07	<0.001
Total cholesterol (per 40 mg/dl decrease)	1.37	1.19-1.58	<0.001
Lymphocyte count (per 400 /μl decrease)	1.44	1.29-1.63	<0.001
Brain natriuretic peptide (per 100 pg/ml increase)	1.04	1.02-1.06	<0.001
Aortic valve area (per 0.1 cm² decrease)	1.05	0.98-1.13	0.24
Mean aortic gradient (per 10 mmHg decrease)	1.08	1.01-1.15	0.036
Left ventricular ejection fraction (per 10% decrease)	1.27	1.13-1.41	<0.001
Aortic regurgitation ≥ moderate	1.48	0.96-2.26	0.074
Mitral regurgitation ≥ moderate	2.17	1.34-3.51	0.002
Tricuspid regurgitation \(\geq \) moderate 1.30 0.69-2.45 0.41
Systolic pulmonary arterial pressure (per 10 mmHg increase) 1.07 0.99-1.19 0.078
Transfemoral approach 0.71 0.53-0.95 0.021
LVOT calcification \(\geq \) moderate 1.06 0.65-1.73 0.814
Malnutrition degree according to nutrition scores

CONUT score	Normal nutrition	Mild malnutrition	Moderate malnutrition	Severe malnutrition	Reference
Normal nutrition	-	-	-	-	Reference
Mild malnutrition	1.57	1.13-2.18	0.008		
Moderate malnutrition	4.13	2.86-5.97	<0.001		
Severe malnutrition	10.3	5.34-19.95	<0.001		

GNRI	Normal nutrition	Mild malnutrition	Moderate malnutrition	Severe malnutrition	Reference
Normal nutrition	-	-	-	-	Reference
Mild malnutrition	1.11	0.67-1.86	0.68		
Moderate malnutrition	2.74	1.92-3.90	<0.001		
Severe malnutrition	6.24	4.04-9.63	<0.001		

PNI	Normal nutrition	Moderate malnutrition	Severe malnutrition	Reference	
Normal nutrition	-	-	-	-	Reference
Moderate malnutrition	2.48	1.71-3.59	<0.001		
Severe malnutrition	3.88	2.69-5.61	<0.001		

Post-procedural Variables	Conversion to open surgery	New pacemaker implantation	PPM	PVL \(\geq \) moderate	Reference
Conversion to open surgery	3.28	1.54-6.96	0.002		
New pacemaker implantation	1.16	0.75-1.79	0.509		
PPM	0.68	0.43-1.09	0.112		
PVL \(\geq \) moderate	1.04	0.15-7.42	0.968		

CI = confidence interval; CONUT = Controlling Nutritional Status; eGFR = estimated glomerular filtration rate; GNRI = Geriatric Nutrition Risk Index; HR = hazard ratio; LVOT = left ventricular outflow tract; NYHA = New York Heart Association; PNI = Prognostic Nutritional Index; PPM = prosthesis-patient mismatch; PVL = paravalvular leakage; STS-PROM = Society of Thoracic Surgeons predicted risk of mortality.
Figure S1A. Forest Plot for the Adjusted Hazard Ratios of All-Cause Mortality According to the CONUT Score.

Multinutrition degree according to CONUT score	All-cause mortality	Adjusted HR (95% CI)	P value
Overall (N = 1,040)			
Normal (N = 289)		1.00 (reference)	
Mild (N = 579)		1.22 (0.87-1.72)	0.25
Moderate (N = 159)		2.18 (1.45-3.31)	<0.001
Severe (N = 13)		6.13 (2.75-13.7)	<0.001
Age	P for interaction	0.01	
≤ 85 years (N = 526)			
Normal (N = 168)		1.00 (reference)	
Mild (N = 299)		1.15 (0.70-1.91)	0.56
Moderate (N = 63)		1.54 (0.99-2.36)	0.052
Severe (N = 7)		5.16 (1.49-17.88)	0.010
> 85 years (N = 512)			
Normal (N = 121)		1.00 (reference)	
Mild (N = 269)		1.28 (0.80-2.07)	0.31
Moderate (N = 96)		2.34 (1.35-4.07)	0.002
Severe (N = 6)		8.50 (2.73-25.38)	<0.001
Sex	P for interaction	0.37	
Male (N = 342)			
Normal (N = 72)		1.00 (reference)	
Mild (N = 187)		0.92 (0.53-1.60)	0.75
Moderate (N = 88)		1.51 (0.79-3.02)	0.22
Severe (N = 5)		6.52 (1.83-23.21)	0.004
Female (N = 698)			
Normal (N = 217)		1.00 (reference)	
Mild (N = 380)		1.33 (0.85-2.07)	0.21
Moderate (N = 91)		2.64 (1.54-4.58)	0.001
Severe (N = 8)		8.42 (2.80-25.38)	<0.001
Body mass index	P for interaction	0.77	
BMI > 22 kg/m² (N = 516)			
Normal (N = 178)		1.00 (reference)	
Mild (N = 276)		1.13 (0.73-1.75)	0.49
Moderate (N = 58)		1.93 (1.03-3.63)	0.041
Severe (N = 4)		6.45 (1.47-28.30)	0.014
BMI ≤ 22 kg/m² (N = 524)			
Normal (N = 111)		1.00 (reference)	
Mild (N = 303)		1.32 (0.81-2.16)	0.26
Moderate (N = 101)		2.56 (1.44-4.54)	0.001
Severe (N = 9)		7.54 (2.04-28.37)	<0.001
Clinical Frailty Scale	P for interaction	0.52	
CFS ≤ 3 (N = 523)			
Normal (N = 178)		1.00 (reference)	
Mild (N = 264)		1.10 (0.64-1.87)	0.74
Moderate (N = 58)		1.98 (1.02-3.85)	0.045
Severe (N = 3)		6.60 (1.35-30.14)	0.019
CFS ≥ 4 (N = 517)			
Normal (N = 111)		1.00 (reference)	
Mild (N = 295)		1.30 (0.82-2.04)	0.26
Moderate (N = 101)		2.33 (1.37-3.97)	0.002
Severe (N = 16)		8.38 (3.01-25.33)	<0.001
Chronic renal failure	P for interaction	0.44	
No CRF (N = 533)			
Normal (N = 100)		1.00 (reference)	
Mild (N = 191)		1.34 (0.65-2.69)	0.51
Moderate (N = 30)		2.40 (1.02-5.68)	0.046
Severe (N = 5)		6.84 (1.59-29.43)	0.010
CRF (N = 707)			
Normal (N = 164)		1.00 (reference)	
Mild (N = 288)		1.30 (0.79-2.18)	0.40
Moderate (N = 127)		2.33 (1.49-3.78)	0.001
Severe (N = 8)		7.98 (2.71-23.49)	<0.001
Left ventricular ejection fraction	P for interaction	0.06	
LVEF ≥ 50% (N = 865)			
Normal (N = 260)		1.00 (reference)	
Mild (N = 400)		1.20 (0.83-1.75)	0.34
Moderate (N = 100)		2.13 (1.34-3.38)	0.001
Severe (N = 7)		3.67 (1.30-10.43)	0.015
LVEF < 50% (N = 174)			
Normal (N = 29)		1.00 (reference)	
Mild (N = 86)		0.99 (0.38-2.57)	0.98
Moderate (N = 53)		1.95 (0.69-5.73)	0.22
Severe (N = 6)		7.51 (1.63-34.68)	0.010

BMI = body mass index; CFS = Clinical Frailty Scale; CI = confidence interval; CONUT = Controlling Nutritional Status; CRF = chronic Renal Failure; HR = hazard ratio; LVEF = left ventricular ejection fraction
Figure S1B. Forest Plot for the Adjusted Hazard Ratios of All-Cause Mortality According to the GNRI.

Malnutrition degree according to GNRI	All-cause mortality	Adjusted HR (95% CI)	P value
Overall (N = 1040)			
Normal (N = 267)	■	1.00 (reference)	
Mild (N = 154)	■	1.08 (0.84–1.32)	0.77
Moderate (N = 530)	■	2.02 (1.36–3.02)	0.001
Severe (N = 99)	■	3.24 (1.86–5.65)	<0.001
Age			
≤ 85 years (N = 539)			
Normal (N = 170)	■	1.00 (reference)	
Mild (N = 87)	■	0.89 (0.64–1.23)	0.76
Moderate (N = 294)	■	1.61 (1.09–2.39)	0.030
Severe (N = 37)	■	3.76 (1.71–8.27)	<0.001
> 85 years (N = 512)			
Normal (N = 87)	■	1.00 (reference)	
Mild (N = 67)	■	1.45 (0.66–3.25)	0.35
Moderate (N = 296)	■	2.14 (1.18–3.97)	0.016
Severe (N = 62)	■	3.08 (1.45–6.43)	0.005
Sex			
Male (N = 542)			
Normal (N = 95)	■	1.00 (reference)	
Mild (N = 42)	■	1.66 (0.79–3.54)	0.18
Moderate (N = 175)	■	2.19 (1.19–4.06)	0.010
Severe (N = 30)	■	3.33 (1.35–8.21)	0.009
Female (N = 698)			
Normal (N = 162)	■	1.00 (reference)	
Mild (N = 112)	■	0.78 (0.36–1.66)	0.52
Moderate (N = 355)	■	1.79 (1.05–3.08)	0.034
Severe (N = 69)	■	3.07 (1.51–6.24)	0.002
Body mass index			
BMI > 22 kg/m² (N = 518)			
Normal (N = 209)	■	1.00 (reference)	
Mild (N = 102)	■	1.55 (0.80–3.00)	0.20
Moderate (N = 203)	■	2.65 (1.54–4.54)	<0.001
Severe (N = 11)	■	4.92 (2.72–8.87)	<0.001
BMI ≤ 22 kg/m² (N = 524)			
Normal (N = 257)	■	1.00 (reference)	
Mild (N = 53)	■	0.48 (0.19–1.23)	0.13
Moderate (N = 527)	■	1.33 (0.73–2.43)	0.35
Severe (N = 88)	■	2.27 (1.12–4.65)	0.023
Clinical Frailty Scale			
≤ 3 (N = 523)			
Normal (N = 175)	■	1.00 (reference)	
Mild (N = 84)	■	1.53 (0.74–3.18)	0.25
Moderate (N = 236)	■	2.22 (1.21–4.08)	0.01
Severe (N = 28)	■	3.33 (1.51–7.20)	0.004
> 3 (N = 517)			
Normal (N = 82)	■	1.00 (reference)	
Mild (N = 70)	■	0.80 (0.37–1.72)	0.56
Moderate (N = 254)	■	1.76 (1.03–3.00)	0.040
Severe (N = 71)	■	3.11 (1.53–6.35)	0.002
Chronic renal failure			
No CRF (N = 333)			
Normal (N = 94)	■	1.00 (reference)	
Mild (N = 43)	■	1.40 (0.51–3.84)	0.51
Moderate (N = 173)	■	1.65 (0.71–3.81)	0.24
Severe (N = 23)	■	1.96 (0.57–7.11)	0.29
CRF (N = 707)			
Normal (N = 163)	■	1.00 (reference)	
Mild (N = 111)	■	0.91 (0.49–1.70)	0.77
Moderate (N = 357)	■	1.94 (1.20–3.19)	0.005
Severe (N = 70)	■	3.55 (1.87–6.79)	<0.001
Left ventricular ejection fraction			
≥ 50% (N = 865)			
Normal (N = 230)	■	1.00 (reference)	
Mild (N = 138)	■	0.88 (0.49–1.58)	0.66
Moderate (N = 431)	■	1.68 (1.22–2.29)	0.004
Severe (N = 83)	■	2.74 (1.45–5.18)	0.002
≤ 50% (N = 174)			
Normal (N = 24)	■	1.00 (reference)	
Mild (N = 16)	■	2.44 (0.65–9.21)	0.19
Moderate (N = 98)	■	1.74 (0.59–5.16)	0.31
Severe (N = 36)	■	4.27 (1.15–15.81)	0.030

BMI = body mass index; CFS = Clinical Frailty Scale; CI = confidence interval; CRF = chronic Renal Failure; GNRI = Geriatric Nutrition Risk Index; HR = hazard ratio; LVEF = left ventricular ejection fraction.
Figure S1C. Forest Plot for the Adjusted Hazard Ratios of All-Cause Mortality According to the PNI.

Mainnutrition degree according to PNI	All-cause mortality	Adjusted HR (95%CI)	P value
Overall			
(N = 1040)	Overall	1.00 (reference)	
	Moderate (N = 77)	1.60 (1.06-2.39)	0.024
	Severe (N = 67)	2.32 (1.50-3.60)	<0.001
Age			
≤ 85 years (N = 525)			
Normal (N = 471)	1.00 (reference)		
Moderate (N = 29)	2.16 (1.14-4.1)	0.024	
Severe (N = 28)	3.76 (1.71-8.27)	0.001	
> 85 years (N = 512)			
Normal (N = 425)	1.00 (reference)		
Moderate (N = 46)	1.30 (0.76-2.23)	0.33	
Severe (N = 33)	2.07 (1.14-3.70)	0.018	
Sex			
Male (N = 342)			
Normal (N = 292)	1.00 (reference)		
Moderate (N = 27)	1.90 (0.94-3.82)	0.073	
Severe (N = 23)	4.12 (1.89-8.99)	<0.001	
Female (N = 668)			
Normal (N = 604)	1.00 (reference)		
Moderate (N = 50)	1.38 (0.62-2.93)	0.22	
Severe (N = 44)	1.87 (1.06-3.29)	0.032	
Body mass index			
BMI > 22 kg/m² (N = 516)			
Normal (N = 469)	1.00 (reference)		
Moderate (N = 26)	2.23 (1.09-4.68)	0.028	
Severe (N = 19)	3.09 (1.42-6.72)	0.005	
BMI ≤ 22 kg/m² (N = 524)			
Normal (N = 427)	1.00 (reference)		
Moderate (N = 49)	1.50 (0.90-2.51)	0.12	
Severe (N = 48)	2.17 (1.26-3.72)	0.005	
Clinical Frailty Scale			
CFS ≤ 3 (N = 523)			
Normal (N = 461)	1.00 (reference)		
Moderate (N = 25)	0.94 (0.36-2.42)	0.90	
Severe (N = 17)	3.70 (1.75-7.83)	0.001	
CFS ≥ 4 (N = 517)			
Normal (N = 413)	1.00 (reference)		
Moderate (N = 52)	1.82 (1.14-2.90)	0.012	
Severe (N = 50)	2.39 (1.43-4.00)	0.001	
Chronic renal failure			
No CRF (N = 333)			
Normal (N = 307)	1.00 (reference)		
Moderate (N = 14)	3.34 (1.16-9.48)	0.023	
Severe (N = 17)	4.69 (1.81-10.41)	0.003	
CRF (N = 707)			
Normal (N = 594)	1.00 (reference)		
Moderate (N = 63)	1.45 (0.92-2.29)	0.11	
Severe (N = 50)	2.50 (1.26-5.00)	0.002	
Left ventricular ejection fraction			
LVEF ≥ 50% (N = 965)			
Normal (N = 773)	1.00 (reference)		
Moderate (N = 55)	1.43 (0.87-2.36)	0.16	
Severe (N = 42)	2.34 (1.39-3.93)	0.001	
LVEF < 50% (N = 174)			
Normal (N = 123)	1.00 (reference)		
Moderate (N = 26)	2.44 (1.18-5.12)	0.019	
Severe (N = 25)	3.02 (1.34-6.65)	0.008	

BMI = body mass index; CFS = Clinical Frailty Scale; CI = confidence interval; CRF = chronic Renal Failure; HR = hazard ratio; LVEF = left ventricular ejection fraction; PNI = Prognostic Nutritional Index.
Figure S2A. Temporal Changes of Nutritional Status According to the CONUT Score

CONUT = Controlling Nutritional Status.
Figure S2B. Temporal Changes of Nutritional Status According to the GNRI

GNRI = Geriatric Nutrition Risk Index.

[Diagram showing changes in nutritional status with numbers and colors indicating different stages of GNRI.]
Figure S2C. Temporal Changes of Nutritional Status According to the PNI

PNI = Prognostic Nutritional Index.