1. INTRODUCTION

Language and communication skills are associated with skills in other areas of development for all individuals (1). Language, speech, voice and communication change during the life of adults (18-65 years) and elderly (over 65 years). Literature published in the last three decades documents the ‘normal’ selective improvements related to age, as well as a subtle decline in language, speech, voice, and communications (2). Basic cognitive functions are: alertness, working memory, long term memory and perception. Higher levels of cognitive functions are: speech and language, decision-making and executive functions (that include planning, organization, implementation and evaluation of many activities that are not seen as routine). Basic cognitive functions most affected by aging are attention and memory. Higher levels of cognitive functions such as language-processing and decision-making, are also affected by aging, but the fact is that those functions naturally lean on basic cognitive functions, and generally show a deficit to the extent to which the basic functions are impaired. Although these features are looked at separately, it is clear that they overlap in interesting and complex ways (3). Aging is a process that lasts a lifetime and it is not easy to determine when a person becomes old (4). The main cause for the changes is supposed internal, i.e. genetic factors, or external, adverse factors (4). The weakening of language...
processing, (e.g. increasing difficulty in understanding spoken language or in the production of words) leads to reduced desire of older people to communicate, and can damage assessment of their language competence both to themselves and to others (6). Stroke is a rapid loss of brain function due to lack of blood supply to the brain, which can be due to ischemia (lack of blood flow caused by blockage or thrombosis) or bleeding (blood leakage) (7). People may show aphasia, dysarthria, and/or apraxia. When multiple disorders are presented, they are usually not equally manifested (e.g. severe aphasia and mild dysarthria). Many factors influence that; including the type of neurological condition, location of stroke, the extent and seriousness of the situation (8). However, communication problems do not occur isolated from other disorders. Stroke is a major cause of vascular changes and cognitive disorders worldwide (9). Cognitive disorders (CD) usually occur in acute phase of stroke, but may persist in more than half of survivors (9). The overall prevalence of CD after stroke is 81%, and there is an urgent need for their early recognition and prevention (11). CD include: attention, processing speed, memory, and orientation. Researches suggest that 44% of people with vascular impairment developed dementia after five years (12). Dementia is an acquired progressive degenerative syndrome that affects higher cognitive systems and processes (13). The most common types of dementia are: dementia of Alzheimer type (50-80%), vascular dementia (20-30%), frontotemporal dementia (5-10%), dementia with Levy bodies (<5%) (14). The majority of people with dementia, if not all, have a problem with communication. Weak understanding skills are usually at the centre of this disorder and associated partly with poor working memory (15). Patients show difficulties in finding words (anomia), deficits in understanding sentences and lack of cohesion in the discourse. Language deficits in dementia occur because of multiple cognitive impairments (16). The essential features of dementia are more cognitive deficits that include memory impairment and the presence of at least one of these signs: aphasia, apraxia, agnosia, as well as disturbance in executive functions.

2. AIM

The main aim of this study was to assess receptive vocabulary and cognitive functioning of elderly people with the following (primary) diseases: stroke; dementia; stroke and dementia; as well as those without manifested brain diseases. It is expected that there is a difference in the development of receptive vocabulary and cognitive functioning in relation to the primary disease.

3. MATERIAL AND METHODS

The sample of subjects consisted of elderly people, placed in institutional care in four cities of Bosnia and Herzegovina: Tuzla (Retirement Home), Mostar (Home for the Elderly), Sarajevo (Gerontology Centre) and Brčko (Nursing homes: Vesna Mićanović, Sun, Kusturica, and Onion). Subjects were divided into four groups with respect to the primary disease. In each group there were 30 subjects thereby forming a total sample of 120 people. Four subgroups were formed of elderly with verified: stroke; dementia; stroke and dementia; and without a manifested brain disease. The youngest subject was 65 years and the oldest was 90 years old. The sample consisted of 15 persons who were unskilled workers (12.5%), 64 people were skilled workers (53.3%), 19 people with secondary education (15.8%), 16 persons with associate degree education (13.3%) and 6 people with bachelor degree education (5.0%).
was a significant difference in the proportion of subjects of individual categories based on formal education (χ² = 87.250, df = 4, p = 0.0001), significantly more than those who were categorized as skilled laborers. The sample particles consisted of three groups: anamnestic (chronological age, gender, primary disease), estimate of their receptive dictionaries (raw score of the receptive vocabulary test, standardized value receptive test, percentile receptive test, equivalent to the result of the receptive vocabulary, Delayed Recall, Abstraction, Orientation and Vigilance, which are, however, somewhat lower than those in subjects with dementia (centroid = -1754). Furthermore, the most pronounced differences were between subjects with stroke (centroid = 1.451) and subjects with dementia (centroid = -1754), or subjects with a combination of stroke and dementia (centroid = -1579).

Table 2 shows that measures of skewness and kurtosis for all particles of cognitive assessments were extremely high in Table 1 indicate the average raw score was 161.58 ± 21.58 points. Measures of skewness and kurtosis, expressed on z-scale, indicate expressed negative asymmetric distribution of the results. Kolmogorov-Smirnov test showed significant asymmetric distribution.

Descriptive indicators for cognitive assessment variables in Table 2 show that measures of skewness and kurtosis for all particles of cognitive assessments were extremely high where with the Kolmogorov-Smirnov test; the asymmetry of distribution was confirmed.

The best results were achieved on sub-scales of orientation, naming, serial subtraction and delayed recall.

With a point of establishing the existence of significance difference in the development of receptive vocabulary and cognitive functioning in relation to the primary disease discriminative analysis was used. Preliminary estimates showed that there was a distortion of normal distribution in the case of all of these variables which were accepted part of the population. It should be noted that the discriminative analysis method is quite robust in terms of normal distribution.

The projections of centroid on discriminate function from the displayed centroid and coefficient of discrimination it is possible to gain insight on individual characteristics of subjects, the largest multivariate differences. Based on the centroid results show that the most pronounced difference between subjects without manifested disease (centroid = 1.900) and subjects with dementia (centroid = -1754). Furthermore, the most pronounced differences were between subjects with stroke (centroid = 1.451) and subjects with dementia (centroid = -1754), or subjects with a combination of stroke and dementia (centroid = -1579).

Combined with the coefficients of discrimination, it is possible to say that the subjects without disease are characterized by high scores on the sub-scales of Serial Subtraction, the Standardized test result of receptive vocabulary, Delayed Recall, Abstraction, Orientation and Vigilance.

Stroke subjects are characterized by high results on sub-scales of Serial Subtraction, Standardized test result of receptive vocabulary, Delayed Recall, Abstraction, Orientation and Vigilance, which are, however, somewhat lower than those without disease. Based on the coefficients of discrimination it is possible to say that the subjects with dementia are characterized by exceptionally low results on the sub-scales of Serial Subtraction, Standardized test result of receptive vocabulary, Delayed Recall, Abstraction, Orientation and Vigilance. Subjects with stroke and dementia are characterized by low scores on sub-scales of Serial Subtraction, Standardized test result of receptive vocabulary, Delayed Recall, Abstraction, Orientation and Vigilance, which are, however, somewhat higher than those in subjects with dementia.

5. DISCUSSION

Descriptive indicators of cognitive assessment show that best results were achieved on subscales of orientation, naming, serial subtraction and delayed recall. This is partly
in line with the results of other study where subjects have shown success in subscales: naming, orientation, and abstraction. Authors points out that the ability of attention and delayed recall is more influenced by education while visual constructional ability is more influenced by age (29). This partly coincides with the other research results where authors specified as factors that are associated with age and level of education; semantic fluency, naming, visual-constructional and executive functions (31). Viewed from the perspective of this study, it emphasized the need to monitor the results and comparison of achievements in the domains of receptive vocabulary and cognitive functioning in relation to the level of education of the elderly. Results show that the level of education is a valid predictor of success in test domains. This study also highlights the need for putting greater emphasis on working with the elderly population, which seems to be neglected and insufficient. From the displayed centroid and coefficient of discrimination can be seen that among subjects with dementia and subjects with a combination of stroke and dementia, there is no big difference. The situation was similar among subjects with stroke and subjects without the disease, where the differences were still greater than in the previous case. Results of other study show a significantly weaker performance of the so-called mini-mental status, memory, alertness/executive functions and processing speed of subjects with stroke in relation to cognitively intact subjects and those without stroke (32). The healthy subjects scored better on tests of cognitive assessment in relation to the subjects with cognitive impairments. The differences were evident on tests of vocabulary. All this leads us to the connection between the development of receptive vocabulary and cognitive functioning, and the manifestation of differences between populations based on the primary disease (23). The results of the MoCA and PPVT-III-HR are significantly related to subjects who had stroke, even when the influence of the education is controlled (24). Taking into account the presence of healthy cognition for successful linguistic communication, it is not surprising that there are lower results in the domain of receptive vocabulary in older subjects with stroke and dementia. Other study suggests that the risks of mild cognitive impairment are: older age, female gender and lower education (25). The female gender, older age, diabetes, illiteracy and low education are significantly more common in people with vascular cognitive impairment and vascular dementia, compared to cognitively intact individuals after stroke (9).

Due to the complexity of problems which a team of neurologists, speech therapists and other experts face regarding stroke and aging, and the special sensitivity, as well as very frequent neglect of the elderly, we decided to create this study. It was performed in order to contribute to and to put into focus the difficulties aging and stroke brings with them, but also to bring specific findings that could help in the diagnosis, treatment, secondary prevention, and prioritize the need for speech and language, medical diagnosis and treatment. The belief remains that the results will encourage others to research topics related to the population of the elderly.

6. CONCLUSION
There is a significant difference between elderly with stroke; dementia; stroke and dementia, and elderly people without manifested disease of the brain in the domain of receptive vocabulary and cognitive functioning. Variables of serial subtraction, standardized test results of receptive vocabulary, delayed recall, abstraction, orientation and vigilance successfully discriminate studied groups.

• Statement: All authors were included in preparing of this article, including final proof reading.
• Conflict of interest: none declared.
17. Nasreddine ZS, Phillips NA. Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. Journal of the American Geriatrics Society. 2005; 53(4): 695-99. doi:10.1111/j.1532-5415.2005.53221.

18. Kovačević M, Padovan N, Hržica G, et al. Peabody slikovni test rječnika (PPVT – III – HR). Naklada Slap. Jastrebarsko, 2009.

19. Tabachnick BG, Fidel LS. Using Multivariate Statistics (6th ed.). Pearson. Boston, 2013.

20. Peskar M. Ugotavljanje kognitivnih sposobnosti in potencialne blage kognitivne motnje pri starejših osebah s testom MoCA (MD thesis). Fakulteta za matematiko, naravoslovje in informacijske tehnologije Univerza na Primorskem, 2013.

21. Tkalčić M, Pokrajac-Bulian A, Smojver-Ažić S, Ivanković M. Kognitivno funkcioniranje oboljelih od demencije i zdravih starijih osoba različite dobi i obrazovanja. In: Petravić D (Ed.) 6. hrvatski kongres o Alzheimerovoj bolesti s međunarodnim sudjelovanjem, Primošten. 2012: 66.

22. Mehrabian S, Raycheva M, Petrova N, Janyan A, Traykov L, Petrova M. Neuropsychological and neuroimaging markers in prediction of cognitive impairment after ischemic stroke: A prospective follow-up study. Neuropsychiatric Disease and Treatment. 2015; 11: 2711-9. doi:10.2147/ndt.s86366.

23. Oliveira MO, Nitini R, Yassuda MS, Brucki SM. Vocabulary Is an Appropriate Measure of Premorbid Intelligence in a Sample with Heterogeneous Educational Level in Brazil. Behavioral Neurology. 2014; 875960. doi:10.1155/2014/875960

24. Whitney KA, Maoz O, Hook JN, Steiner AR, Bieliauskas LA. IQ and Scores on the Mini-Mental State Examination (MMSE): Controlling for Effort and Education Among Geriatric Inpatients. Aging, Neuropsychology, and Cognition. 2007; 14(3): 545-52. doi:10.1080/13825580600850934

25. Rahman TT, Gaafary MM. Montreal Cognitive Assessment Arabic version: Reliability and validity prevalence of mild cognitive impairment among elderly attending geriatric clubs in Cairo. Geriatrics & Gerontology International. 2009; 9(1): 54-61. doi:10.1111/j.1447-0594.2008.00509.