Marital Status and Survival of Patients with Hormone Receptor-Positive Male Breast Cancer: A Surveillance, Epidemiology, and End Results (SEER) Population-Based Study

Lei Liu
Ya-Yun Chi
An-An Wang
Yonghui Luo

Background: Although marital status has been reported as a prognostic factor in different cancer types, its prognostic effect on hormone receptor (HR) positive male breast cancer (MBC) is unclear. The objective of the present analysis was to assess the effects of marital status on survival in patients with HR positive MBC.

Material/Methods: Patients diagnosed with HR positive MBC from 1990 to 2014 in the Surveillance, Epidemiology, and End Results (SEER) database were included. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to identify the effects of marital status on cancer-specific survival (CSS) and overall survival (OS).

Results: A total of 3612 cases were identified in this study. Married patients had better 5-year CSS and 5-year OS than unmarried men. In multivariate Cox regression models, unmarried patients also showed higher mortality risk for both CSS and OS, independent of age, race, grade, stage, PR status, HER2 status, and surgery. Subgroup survival analysis according to different ER/PR status showed that married patients had beneficial CSS results only in ER+ /PR+ subtype, and CSS in the married and unmarried groups did not significantly differ by TNM stage. The results were further confirmed in the 1:1 matched group.

Conclusions: Marital status was an important prognostic factor for survival in patients with HR positive MBC. Unmarried patients are at greater risk of death compared with married groups. The survival benefit for married patients remained even after adjustment, which indicates the importance of spousal support in MBC.

MeSH Keywords: Breast Neoplasms, Male • Marital Status • Receptors, Estrogen • Survival Analysis

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/910811
Background

Male breast cancer (MBC) is a rare disease, accounting for around 1% of all breast cancers [1]. Although rare, its incidence has steadily increased [2]. In 1991, an estimated 900 men in the United States were diagnosed with breast cancer; the number increased to 2550 men by 2018 [3,4]. Although the mortality and survival rates of both male and female breast cancer patients have significantly improved, progress in men has been slower [5]. Due to lack of prospective data and limited retrospective series, MBC usually has been treated according to recommendations for female breast cancer (FBC) [6]. Although MBC shares some features with FBC, it significantly differs in prognostic factors, epidemiological factors, and biological behavior [7,8]. For example, MBC tends to have higher rates of hormone receptor (HR) positivity compared to FBC [5,7]. MBC is frequently positive for ERx (91–95%) and/or PR (80–81%) [5,9,10]. Therefore, identifying prognostic factors in HR positive MBC can help to manage the majority of MBC cases.

Most cancer research focuses on biological aspects; the effect of social or psychological factors, such as marital status, on survival in cancer patients is much less studied. However, marriage has been shown to function as a positive social support with a survival benefit for cancer patients [11]. The relationship between marital status and survival has been studied for some cancers, including hepatocellular cancer [12], gastric cancer [13], biliary tract cancer [14], colorectal cancer [15], prostate cancer [16], pancreatic cancer [17] and breast cancer [18]. Marital status is an independent prognostic factor for survival, and married patients gain a significant survival benefit versus the unmarried, who are single, widowed, or separated/divorced patients [19,20]. As for MBC, only 1 previous study reported that unmarred men were more likely to present with advanced disease at diagnosis and were at greater risk for poorer outcomes compared with married men [21]. However, in that study, researchers did not control for confounding variables and the outcomes may have been subject to a selection bias. Additionally, they only took stage into consideration and could not discuss the effect of marriage on survival from other aspects, such as different ER/PR subtypes.

To our knowledge, no study has analyzed the influence of marital status on prognosis in HR positive MBC. Therefore, data from Surveillance, Epidemiology, and End Results (SEER) database was used to investigate the influence of marital status on survival and on potential subtypes in HR positive MBC.

Material and Methods

Patient population and study design

We obtained permission to access SEER research-data files using the reference number 15983-Nov2016. Because no information from the SEER database requires informed patient consent, it is considered exempt from the ethical approval requirements of the institutional review board. The case listing in this retrospective cohort study was generated by SEER *Stat version 8.3.5, which contained data from 18 population-based cancer registries (1973–2014) and covered approximately 28% of the United States population (http://seer.cancer.gov/). Male patients with first primary stages I–III and HR positive breast cancer diagnosed between 1990 and 2014 were selected from the SEER database. We selected the period starting from 1990 because HR status was introduced to SEER in 1990. We choose 3612 patients according to the following criteria: (a) at least 18 years old at diagnosis; (b) male; (c) diagnosed between 1990 and 2014; (d) known marital status; (e) known race; (f) known residence type; (g) pathologically confirmed breast cancer; (h) breast cancer as the first and only malignant cancer diagnosis; (i) known histology; (j) known grade; (k) American Joint Committee on Cancer stages I–III at diagnosis; (l) known tumor size; (m) known lymph node status; (n) HR positive (ER+ or PR+); (o) known HER2 status; (p) known surgical condition; (q) known radiotherapy condition; (r) active follow-up; (s) known survival months after diagnosis; and (t) known cause of death. We excluded patients for whom the aforementioned data was missing. Eligible patients were categorized by marital status, age at diagnosis, race, residence type, histology, tumor grade, pathologic T stage, pathologic N stage, ER status, PR status, HER2 status, surgery and radiotherapy. Marital status at diagnosis was the primary variable of interest, and classified as married or unmarried, the latter of which included patients who were single, divorced, separated, and widowed. The methods were performed in accordance with the approved guidelines.

Statistical analyses

Clinicopathological features were compared between different marital groups using the t-test and the χ^2 test as appropriate. Cancer-specific survival (CSS) and overall survival (OS) were estimated with the Kaplan-Meier method; differences were calculated by the log rank test. Multivariate Cox proportional hazards regression models were built for analyzing hazard ratios of different prognostic variables. OS was defined as the interval from breast cancer diagnosis until death due to all causes (including breast cancer) or last follow-up. CSS was measured from the date of diagnosis to either the date of breast cancer death or the date of last contact. All variables for which $P<0.05$ in univariate analyses were initially included in
Impact of marital status on cancer-specific survival of HR positive MBC patients

We used Kaplan-Meier analysis and log-rank test to evaluate the impact of marital status on CSS of HR positive MBC patients (Figure 2A). The married group had a better 5-year CSS rate than the unmarried group (90.8% vs. 83.8%, χ²=28.501, P<0.0001). In univariate analyses, race (P<0.0001), histology (P<0.0001), pathologic T stage (P<0.0001), pathologic N stage (P<0.0001), PR status (P<0.0001), HER2 status (P=0.039), surgery (P<0.0001), and radiotherapy (P<0.0001) were also significantly associated with CSS in HR positive MBC patients (Table 2). In multivariate Cox regression analysis of these factors, the unmarried group were found to have a significantly greater risk for cancer-specific mortality (hazards ratio: 1.394, 95% CI: 1.153–1.687, P=0.001). Race, histology, grade, pathologic T stage, pathologic N stage, PR status, and surgery were validated as independent prognostic factors as well.

Interestingly, we observed a better 5-year CSS in the no-radiotherapy group (90.1%) than among those who received radiotherapy (85.3%). Complicated influence of unadjusted confounders was a possible reason, but the 2 groups showed no significant difference in the multivariate analysis (Table 2).

Impact of marital status on overall survival (OS) of HR positive MBC patients

Univariate analysis (Kaplan-Meier analysis) and multivariate analysis (multivariate Cox regression analysis) were also used to evaluate the effect of marital status on the overall survival (OS) of HR positive MBC patients (Table 3). Unmarried men had worse 5-year OS than did married men (64.2% vs. 78.6%; χ²=79.335, P<0.0001; Figure 2B and Table 3). In univariate analysis, age (P<0.0001), race (P<0.0001), histology (P=0.002), grade (P<0.0001), pathologic T stage (P<0.0001), pathologic N stage (P<0.0001), PR status (P=0.017), HER2 status (P=0.008), and surgery (P<0.0001) were also associated with OS and they were further included in multivariate Cox regression analyses (Table 3). Marital status was also an independent prognostic factor in the multivariate analysis after adding the other prognostic factors. Unmarried status significantly increased overall mortality risk (hazard ratio: 1.548, 95% CI: 1.373–1.746, P<0.0001). We also included radiotherapy in the multivariate analysis because it is an important confounder of MBC, although the P value of radiotherapy in univariate analysis was >0.05; radiotherapy still demonstrated a protective effect on OS (hazard ratio: 0.824, 95% CI: 0.717–0.947, P=0.006) after multivariate Cox regression. Age, race, grade, pathologic T stage, pathologic N stage, HER2 status, and surgery were also associated with OS in multivariate analysis (Table 3).
Table 1. Baseline characteristic of male patients with HR positive breast cancer in SEER database, by marital status.

Characteristic (%)	Total (%)	Married (%)	Unmarried (%)	P value
Age				
<50	445 (12.3)	283 (11.1)	162 (15.2)	
50–64	1259 (34.3)	895 (34.1)	364 (34.2)	
≥65	1908 (52.8)	1370 (53.8)	538 (50.6)	
Race				<0.0001
White	2932 (81.2)	2113 (82.9)	819 (77.0)	
Black	462 (12.8)	252 (9.9)	210 (19.7)	
Other	202 (5.6)	171 (6.7)	31 (2.9)	
Unknown	16 (0.4)	12 (0.5)	4 (0.4)	
Residence type				0.935
Metropolitan	3238 (89.6)	2287 (89.8)	951 (89.4)	
Non-metropolitan	360 (10.0)	251 (9.9)	109 (10.2)	
Unknown	14 (0.4)	10 (0.4)	4 (0.4)	
Histology				0.103
Ductal	3153 (87.3)	2230 (87.5)	923 (86.7)	
Lobular	33 (0.9)	28 (1.1)	5 (0.5)	
Others	426 (11.8)	320 (11.4)	106 (10.8)	
Unknown	16 (0.4)	12 (0.5)	4 (0.4)	
Grade				0.369
Well/moderately differentiated	2208 (61.1)	1574 (61.8)	634 (59.6)	
Poorly/undifferentiated	1183 (32.3)	925 (35.4)	358 (33.9)	
Unknown	221 (6.1)	149 (5.8)	72 (6.8)	
Pathologic T stage				<0.0001
T0–T1	1174 (32.5)	891 (35.0)	283 (26.6)	
T2	1166 (32.3)	778 (30.5)	388 (36.5)	
T3	139 (3.8)	86 (3.4)	53 (5.0)	
Unknown	1133 (31.4)	793 (31.1)	340 (32.0)	
Pathologic N stage				<0.0001
N0	146 (48.3)	1282 (50.3)	184 (43.6)	
N1	1008 (27.9)	729 (28.6)	279 (26.2)	
N2	335 (9.3)	227 (8.9)	108 (10.2)	
N3	172 (4.8)	109 (4.3)	63 (5.9)	
Unknown	351 (9.7)	201 (7.9)	150 (14.1)	
ER status				0.192
Negative	31 (0.9)	12 (0.7)	12 (1.1)	
Positive	3578 (99.1)	2528 (99.2)	1050 (98.7)	
Unknown	3 (0.1)	1 (0.0)	2 (0.2)	
PR status				0.549
Negative	374 (10.4)	265 (10.4)	109 (10.2)	
Positive	3161 (87.5)	2233 (87.6)	928 (87.2)	
Unknown	77 (2.1)	50 (2.0)	27 (2.5)	
Survival analysis in matched groups

To control for confounding variables, we used case matching to determine if these factors were responsible for the benefit seen with marital status. A total of 1049 cases in the married group were successfully matched with 1049 cases from the unmarried group (Table 4). We also analyzed CSS and OS by marital status with the case-matched cohorts. As with the total group, the married group showed significant CSS and OS benefits in stratified log-rank tests with matched pairs (Figure 3), which was confirmed through multivariate analysis with the Cox proportional hazards model performed on the propensity-matched cohort. Univariate analysis of CSS and OS in matched groups also showed results similar to Tables 2 and 3. However, when compared with an unmatched cohort, race and histology were not significantly associated with OS in the matched cohort. In addition to marital status, multivariate Cox analyses further confirmed the independent prognostic significance of tumor grade, pathologic T stage, and pathologic N stage in CSS and OS. We also found that PR status and surgery were significantly associated with CSS (hazard ratio: 0.473, 95% CI: 0.555–0.995, P = 0.046), but not OS. Although race did not reach significance in univariate analysis, white race was associated with improved OS in multivariate analysis when compared to black race (hazard ratio: 1.285, 95% CI: 1.063–1.553, P = 0.009). The results are summarized in Tables 5 and 6.

Figure 2. Kaplan-Meier survival curves for cancer-specific survival (CSS) and overall survival (OS) in married vs. unmarried male patients with hormone receptor (HR) positive breast cancer. (A) CSS: χ²=28.501, P<0.0001; (B) OS: χ²=79.335, P<0.0001.
Table 2. Univariate and multivariate analyses for of CSS predictors in men with hormone receptor-positive breast cancer.

Variables	5-year CSS (%)	Univariate analysis	Multivariate analysis			
		Log Rank χ^2 test	P value	HR	95% CI	P value
Marital status						
Married	90.8	28.501	<0.0001			
Unmarried	83.8					
Age		1.214	0.545			
<50	89.8					
50–64	91.0	0.950	0.728–1.238	0.702		
≥65	87.0	1.203	0.925–1.566	0.169		
Race		37.467	<0.0001			
White	89.9					
Black	79.9	1.731	1.369–2.189	<0.0001		
Other	91.5	0.935	0.617–1.417	0.753		
Residence type		0.734	0.693			
Metropolitan	89.1					
Non-metropolitan	86.4					
Histology		16.697	<0.0001			
Ductal	88.1					
Lobular	92.4	0.761	0.240–2.412	0.642		
Others	93.9	0.600	0.416–0.867	0.007		
Grade		55.794	<0.0001			
Well/moderately differentiated	92.1					
Poorly/undifferentiated	82.8	1.611	1.336–1.942	<0.0001		
Pathologic T stage		69.301	<0.0001			
T0–T1	96.5					
T2	84.9	2.199	1.577–3.067	<0.0001		
T3	77.2	2.838	1.649–4.883	<0.0001		
Pathologic N stage		313.683	<0.0001			
N0	95.2					
N1	88.7	2.366	<0.0001			
N2	79.4	4.235	<0.0001			
N3	67.7	6.261	<0.0001			
ER status		0.156	0.925			
Negative	89.2					
Positive	88.9					
Table 2. Univariate and multivariate analyses for CSS predictors in men with hormone receptor-positive breast cancer.

Variables	5-year CSS (%)	Univariate analysis	Multivariate analysis			
		Log Rank χ^2 test	P value	HR	95% CI	P value
PR status						
Negative	84.2	26.386	<0.0001			
Positive	89.3					
HER2 status						
Negative	93.1	6.467	0.039			
Positive	83.8					
Surgery						
No	74.2	57.175	<0.0001			
Yes	90.3					
Radiation						
No	74.2	17.788	<0.0001			
Yes	85.3					

Cl = confidence interval; CSS = cause-specific survival; ER = estrogen receptor; HER2 = human epidermal growth factor receptor 2; R = hazard ratio; PR = progesterone receptor.

Table 3. Univariate and multivariate analyses of OS predictors in men with hormone receptor-positive breast cancer.

Variables	5-year OS (%)	Univariate analysis	Multivariate analysis			
		Log Rank χ^2 test	P value	HR	95% CI	P value
Marital status						
Married	78.6	79.335	<0.0001			
Unmarried	64.2					
Age						
<50	86.9	280.203	<0.0001			
50–64	85.4					
≥65	64.0	3.126	2.534–3.857	<0.0001		
Race						
White	74.9					
Black	67.4	1.378	1.166–1.629	<0.0001		
Other	82.5	0.791	0.601–1.043	0.097		
Residence type						
Metropolitan	74.6					
Non-metropolitan		1.771	0.412			
Histology						
Ductal	73.5	12.566	0.002			
Lobular	92.4					
Others	80.2	0.825	0.679–1.001	0.052		
Table 3 continued. Univariate and multivariate analyses of OS predictors in men with hormone receptor-positive breast cancer.

Variables	5-year OS (%)	Univariate analysis	Multivariate analysis			
		Log Rank χ^2 test	P value	HR	95% CI	P value
Grade						
Well/moderately differentiated	78.8			1.327	1.175-1.498	<0.0001
Poorly/undifferentiated	66.5			1.175	1.011-1.362	<0.0001
Pathologic T stage						
T0–T1	87.4			1.858	1.531-2.255	<0.0001
T2	68.0			2.363	1.680-3.324	<0.0001
T3	58.9			2.805	2.226-3.534	<0.0001
Pathologic N stage						
N0	85.2			1.669	1.444-1.930	<0.0001
N1	74.4			2.479	2.035-3.019	<0.0001
N2	66.0			2.791	2.311-3.414	<0.0001
N3	58.6			2.805	2.226-3.534	<0.0001
ER status						
Negative	76.1			0.738	0.639-0.856	<0.0001
Positive	74.5			0.738	0.639-0.856	<0.0001
PR status						
Negative	71.6			1.019	0.819-1.266	0.098
Positive	74.5			1.019	0.819-1.266	0.098
HER2 status						
Negative	76.7			1.019	0.819-1.266	0.098
Positive	66.1			1.019	0.819-1.266	0.098
Surgery						
No	39.7			0.694	0.494-0.976	0.036
Yes	77.1			0.694	0.494-0.976	0.036
Radiation						
No	74.0			0.717	0.540-0.947	0.006
Yes	75.8			0.717	0.540-0.947	0.006

CI – confidence interval; ER – estrogen receptor; HER2 – human epidermal growth factor receptor 2; HR – hazard ratio; OS – overall survival; PR – progesterone receptor.
Table 4. Characteristics of male patients with breast cancer by marital status, in 1:1 matched groups.

Characteristic (%)	Total (%)	Married (%)	Unmarried (%)	P value
	2098 (100.0)	1049 (100.0)	1049 (100.0)	
	Age			
<50	349 (16.6)	189 (18.0)	160 (15.3)	0.088
50–64	686 (32.7)	323 (30.8)	363 (34.6)	
≥65	1063 (50.7)	537 (51.2)	526 (50.1)	
	Race			0.633
White	1649 (78.6)	830 (79.1)	819 (78.1)	
Black	372 (17.7)	177 (16.9)	195 (18.6)	
Other	67 (3.2)	36 (3.4)	31 (3.0)	
Unknown	10 (0.5)	6 (0.6)	4 (0.4)	
	Residence type			0.599
Metropolitan	1861 (88.7)	924 (88.1)	937 (89.3)	
Non-metropolitan	227 (10.6)	119 (11.3)	108 (10.3)	
Unknown	10 (0.5)	6 (0.6)	4 (0.4)	
	Histology			0.929
Ductal	1818 (86.7)	908 (86.6)	910 (86.7)	
Lobular	9 (0.4)	4 (0.4)	5 (0.5)	
Others	271 (12.9)	137 (13.1)	134 (12.8)	
Unknown	10 (0.5)	6 (0.6)	4 (0.4)	
	Grade			0.649
Well/moderately differentiated	1246 (59.4)	619 (59.0)	627 (59.8)	
Poorly undifferentiated	721 (33.4)	346 (33.6)	375 (34.6)	
Unknown	151 (7.2)	81 (7.7)	70 (6.7)	
	Pathologic T stage			0.706
T0–T1	563 (26.8)	280 (26.7)	283 (27.0)	
T2	747 (35.6)	365 (34.8)	382 (36.4)	
T3	100 (4.8)	48 (4.6)	52 (5.0)	
Unknown	688 (32.6)	356 (33.9)	332 (31.6)	
	Pathologic N stage			0.756
N0	958 (45.7)	494 (47.1)	464 (44.2)	
N1	539 (25.7)	260 (24.8)	279 (26.6)	
N2	207 (9.9)	100 (9.5)	107 (10.2)	
N3	125 (6.0)	62 (5.9)	63 (6.0)	
Unknown	269 (12.8)	133 (12.7)	136 (13.0)	
	ER status			0.732
Negative	26 (1.2)	15 (1.4)	11 (1.0)	
Positive	2070 (98.7)	1033 (98.5)	1037 (98.9)	
Unknown	2 (0.1)	1 (0.1)	1 (0.1)	
	PR status			0.397
Negative	237 (11.3)	128 (12.2)	109 (10.4)	
Positive	1812 (86.4)	898 (85.6)	914 (87.1)	
Unknown	49 (2.3)	23 (2.2)	26 (2.5)	
Stratification analysis according to ER/PR status and tumor stage

Based on ER and PR expression, HR positive MBC can be further classified as ER+/PR-, ER+/PR+ and ER-/PR+ subtypes. To further investigate the prognostic effect of marital status on CSS and OS in different subtypes, we stratified all the cases by ER and PR expression and performed univariate analyses. Of the 3532 cases, 31 were ER-/PR+, 374 were ER+/PR- and 3127 were ER+/PR+. Distribution of these subgroups did not significantly differ among the married and unmarried groups (P=0.513; Supplementary Table 1). Kaplan-Meier curves for the 3 subgroups showed that only married patients with ER+/PR+ subtypes had better 5-year CSS and OS, but not the other 2 subtypes (Figure 4). Consequently, marriage clearly benefited HR positive MBC prognosis among patients with ER+/PR+ subtype. Relevance between marital status and stage at diagnosis was also shown by univariate logistic regression models (see Supplementary Table 2), which found no significant difference in CSS between the married and unmarried groups with respect to TNM stage, which was further confirmed in matched groups.

Table 4 continued. Characteristics of male patients with breast cancer by marital status, in 1: 1 matched groups.

Characteristic (%)	Total (%)	Married (%)	Unmarried (%)	P value
HER2 status				
Negative	688 (32.8)	356 (33.9)	332 (31.6)	0.418
Positive	93 (4.4)	49 (4.7)	44 (4.2)	
Unknown	1317 (62.8)	664 (61.4)	673 (64.2)	
Surgery				
No	68 (3.2)	32 (3.1)	36 (3.4)	0.792
Yes	1813 (86.4)	905 (86.3)	908 (86.6)	
Unknown	217 (10.3)	112 (10.7)	105 (10.0)	1.000
Radiation				
No	1550 (73.9)	775 (73.9)	775 (73.9)	
Yes	548 (26.1)	274 (26.1)	274 (26.1)	

ER – estrogen receptor; HER2 – human epidermal growth factor receptor 2; PR – progesterone receptor.

Figure 3. Kaplan-Meier survival curves of 1: 1 matched group for cancer-specific survival (CSS) and overall survival (OS) in married vs. unmarried male patients with hormone receptor (HR) positive breast cancer: (A) CSS: χ²=4.730, P=0.030. (B) OS: χ²=30.037, P<0.0001.
Table 5. Univariate and multivariate analyses of CSS predictors in 1:1 matched groups of men with breast cancer.

Variables	5-year CSS (%)	Univariate analysis	Multivariate analysis			
		Log Rank \(\chi^2 \) test	\(P \) value	HR	95% CI	\(P \) value
Marital status						
Married	87.4		4.730	0.030	Reference	
Unmarried	84.3		1.737	0.420		
Age						
<50	88.8		1.737	0.420	Reference	
50–64	86.7		1.028	0.754–1.401	0.863	
≥65	84.2		1.203	0.882–1.641	0.242	
Race						
White	87.0		12.183	0.007	Reference	
Black	80.6		1.475	1.130–1.926	0.004	
Other	84.9		0.889	0.454–1.744	0.733	
Residence type						
Metropolitan	86.4		1.899	0.387		
Non-metropolitan	81.5					
Histology						
Ductal	85.0		7.669	0.022	Reference	
Lobular	85.7		1.358	0.187–9.867	0.762	
Others	90.9		0.749	0.505–1.109	0.149	
Grade						
Well/moderately differentiated	89.0		28.095	<0.0001	Reference	
Poorly/undifferentiated	79.4		1.438	1.142–1.811	0.002	
Pathologic T stage			27.715	<0.0001	Reference	
T0–T1	94.0					
T2	81.2		1.879	1.248–2.828	0.003	
T3	76.6		2.370	1.287–4.365	0.006	
Pathologic N stage			169.063	<0.0001	Reference	
N0	92.9					
N1	85.3		2.354	1.728–3.207	<0.0001	
N2	77.6		3.979	2.764–5.727	<0.0001	
N3	67.1		5.452	3.745–7.939	<0.0001	
ER status						
Negative	90.8		0.519	0.772		
Positive	85.8					

Indexing: Current Contents/Clinical Medicine, SCI Expanded, ISI Alerting System, ISI Journals Master List, Index Medicus/MEDLINE, EMBASE/Excerpta Medica, Chemical Abstracts/CAS

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Table 5 continued. Univariate and multivariate analyses of CSS predictors in 1: 1 matched groups of men with breast cancer.

Variables	5-year CSS (%)	Univariate analysis	Multivariate analysis		
	Log Rank χ^2 test	P value	HR	95% CI	P value
PR status					
Negative	8.441	0.015	Reference		
Positive	85.6	0.743	0.555–0.995	**0.046**	
HER2 status					
Negative	90.9		Reference		
Positive	77.3	1.448	0.581–3.608	0.427	
Surgery					
No	30.247	<0.0001	Reference		
Yes			0.438	0.227–0.848	**0.014**
Radiation					
No	11.689	**0.001**	Reference		
Yes			1.054	0.821–1.352	0.681

CI – confidence interval; CSS – cause-specific survival; ER – estrogen receptor; HER2 – human epidermal growth factor receptor 2; HR – hazard ratio; PR – progesterone receptor.

Table 6. Univariate and multivariate analysis of OS predictors in 1: 1 matched groups of men with breast cancer.

Variables	5-year OS (%)	Univariate analysis	Multivariate analysis		
	Log Rank χ^2 test	P value	HR	95% CI	P value
Marital status					
Married	30.037	<0.0001	Reference		
Unmarried	64.8	1.519	1.315–1.754	**<0.0001**	
Age					
<50	85.8		Reference		
50–64	79.9	1.207	0.929–1.569	0.159	
≥65	58.0	2.965	2.332–3.769	**<0.0001**	
Race					
White	69.6		Reference		
Black	68.6	1.285	1.063–1.553	**0.009**	
Other	69.5	0.835	0.547–1.275	0.403	
Residence type					
Metropolitan	3.073	0.215	Reference		
Non-metropolitan	65.0		70.1		
Table 6 continued. Univariate and multivariate analysis of OS predictors in 1:1 matched groups of men with breast cancer.

Variables	5-year OS (%)	Univariate analysis	Multivariate analysis			
		Log Rank χ^2 test	P value	HR	95% CI	P value
Histology						
Ductal	68.5	6.614	0.037			
Lobular	85.7	9.74	0.002			
Others	76.4	0.815	0.646–1.028	0.084		
Grade						
Well/moderately	28.177	≤ 0.0001				
Poorly/undifferentiated	59.6	1.379	1.184–1.607	<0.0001		
Pathologic T stage						
T0–T1	84.4	63.425	<0.0001			
T2	53.2	1.971	1.516–2.561	<0.0001		
T3	57.1	2.420	1.621–3.613	<0.0001		
Pathologic N stage						
N0	81.6	279.309	<0.0001			
N1	69.9	1.588	1.310–1.926	<0.0001		
N2	64.0	2.332	1.815–2.996	<0.0001		
N3	59.6	2.517	1.908–3.319	<0.0001		
ER status						
Negative	75.1	0.656	0.720			
Positive	69.5					
HER2 status						
Negative	72.8	9.335	0.009			
Positive	61.3					
Surgery						
No	36.9	64.162	<0.0001			
Yes	72.2	0.694	0.464–1.040	0.077		
Radiation						
No	68.1	0.324	0.569			
Yes	73.7					

CI – confidence interval; ER – estrogen receptor; HER2 – human epidermal growth factor receptor 2; HR – hazard ratio; OS – overall survival; PR – progesterone receptor.
Figure 4. Kaplan-Meier survival analysis of the effect of marital status on cancer-specific survival (CSS) and overall survival (OS) in 3612 male patients with breast cancer by estrogen receptor (ER) and progesterone receptor (PR) status. (A) CSS ER-/PR+: $\chi^2=0.016, P=0.899$; (B) OS ER-/PR+: $\chi^2=0.968, P=0.325$; (C) CSS ER+/PR-: $\chi^2=0.030, P=0.862$; (D) OS ER+/PR-: $\chi^2=1.578, P=0.209$; (E) CSS ER+/PR+: $\chi^2=9.557, P=0.002$; (F) OS ER+/PR+: $\chi^2=16.475, P<0.001$.

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]
Discussion

Because MBC is a relatively rare disease, prognostic evaluation in MBC is often modeled after FBC. However, it is known that FBC and MBC differ biologically. Incidence of hormone receptor expression is strikingly different, and it is reportedly higher in MBC than in FBC [22]. Among MBC cases, receptor phenotypes were: ER+/PR+ (86%), ER+/PR− (6%), ER−/PR+ (3%) and ER−/PR− (5%) [23]. Moreover, the presence of HR positive tumors in men does not increase with age, which is common observed in FBC [24]. As most MBC are HR positive, we carried out this population-based study to better characterize prognostic factors.

It has been confirmed that marital status is considered as a protective survival factor in different cancer types [25–27]. However, effects of marital status on HR positive MBC survival have not been fully examined. In this study, we first explored the influence of marital status on CSS and OS in patients with HR positive MBC; we found that both CSS and OS were better in married patients than in their single, divorced, separated, or widowed counterparts. In multivariable analyses, the beneficial effect for married patients remained, even after adjusting for age, race, residence, histology, grade, pathologic T stage, pathologic N stage, ER status, PR status, HER2 status, surgery, and radiotherapy. As HR status is an important biologic prognostic indicator in breast cancer, subgroup analysis later evaluated the impact of marital status on survival by different HR phenotypes.

To our knowledge, this is the first study to find that marriage is only associated with improved CSS among patients with the ER+/PR+ subtype. An earlier hypothesis for worse survival among unmarried patients was that they tended to present with delayed diagnoses at advanced tumor stages [18,20]. However, we found no significant difference in CSS between the married and unmarried groups by TNM stage, which was confirmed in matched groups. Obviously, delayed diagnosis alone cannot explain the poorer survival outcomes in unmarried patients.

Our result show that marital status is associated with survival in patients with HR positive MBC and have emphasized the relationship between marital status and survival rather than causal relationships. Why marital status of married patients serves as a protective factor warrants further study. However, accumulating evidence suggested that physiological changes that accompany stress and depression may affect cancer outcomes through different mechanisms. Decreased psychosocial support and psychological stress has been reportedly associated with immune dysfunction, which may contribute to tumor progression and mortality [28,29]; and lack of social support can depress natural killer cell activity [30], which could result in disorders of various endocrine hormones [31,32]. Sex hormone disorder is closely related to occurrence and development of breast cancer. A cohort study has associated depression and anxiety with breast cancer recurrence [33]. Breast cancer patients, and male patients in particular, suffer from significant psychological and socioeconomic stress [34]. With no spouses to share their emotional burdens, unmarried cancer patients may experience more distress, depression, and anxiety than married patients [35,36]. Although unmarried patients may have support from friends and family, this support did not lead to lower psychological distress, whereas any beneficial social support received by male cancer patients from friends and family may be mediated by spousal support [36]. Psychosocial support from a spouse may ultimately translate to less distress and greater fighting spirit to improve adherence to cancer treatment [37,38]. Married patients are also more likely than unmarried patients to have better family financial circumstances, to seek treatment at more prestigious medical centers, to accept curative therapies, and to comply with treatment, all of which may contribute to better outcomes [39–41].

This study had some limitations. First, as important information regarding chemotherapy or systemic therapy was not provided in SEER database, and could not be adjusted by our analyses, whether they contributed to survival differences by marital status is unclear. Second, the SEER database only provides the marital status at diagnosis, but details about the duration or quality of the marriage, or any changes in marital status, were not tracked, which might influence the prognosis of MBC patients. Third, some important demographic factors were not recorded in the SEER databases, such as education, insurance, income status, and family status, all of which may influence the effect of marital status on cancer survival [42,43]. Fourth, data on ER, PR, and HER2 status were collected from different local pathology laboratories and could not be further verified, which might increase the possibilities of bias.

Conclusions

Despite these potential limitations, this study demonstrated that marital status is an independent prognostic factor for survival in HR positive MBC patients. Unmarried patients are at greater risk for overall and tumor cause-specific mortality independent of age, race, grade, stage, surgery, and radiotherapy. Particularly, subgroup analysis showed that the beneficial survival results of married patients in HR positive MBC is associated with ER+/PR+ subtype. The main reasons for poor survival in unmarried patients can be explained hypothetically by social support and psychological factors. Therefore, more social and psychological supports should be provided for unmarried patients. Further understanding of the potential associations among the marital status, psychosocial factors and survival outcomes may help to identify sound strategies of treatment in HR positive MBC patients.
Acknowledgment

The authors would like to thank the SEER program for providing open access to the database.

Disclosure

The authors declare that they have no competing interests.

Supplementary Tables

Supplementary Table 1. Men with breast cancer by ER/PR status.

Subtype	Total (%)	Married (%)	Unmarried (%)	P value
ER/PR*	3532 (100.0)	2497 (100.0)	1035 (100.0)	
ER/PR+	374 (10.6)	265 (10.6)	109 (10.5)	0.513
ER/PR+	3127 (88.5)	2213 (88.6)	914 (88.3)	

ER – estrogen receptor; PR – progesterone receptor.

Supplementary Table 2. Characteristics and subgroup analysis of the effect of marital status on CSS by tumor stage in men with hormone receptor-positive breast cancer.

Stage	Married (%)	Unmarried (%)	Log rank \(\chi^2\) test (c)	P value	Log rank \(\chi^2\) test (c)	P value
I	13.8%	11.3%	0.117	0.732	2.462	0.117
II	16.4%	18.5%	3.677	0.055	0.678	0.410
III	6.0%	7.7%	1.120	0.290	1.181	0.277

CSS – cause-specific survival; Log Rank \(\chi^2\) test (a), adjusted Log Rank \(\chi^2\) test (adjusted for age, race, residence, histology, grade, pathologic T stage, pathologic N stage, ER status, PR status, HER2 status, surgery and radiotherapy); Log Rank \(\chi^2\) test (c), crude Log Rank \(\chi^2\) test.

References:

1. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2016. Cancer J Clin, 2016; 66: 7–30.
2. Speirs V, Shaaban AM: The rising incidence of male breast cancer. Breast Cancer Res Treat, 2009; 115: 429–30.
3. Boring CC, Squires TS, Tong T: Cancer statistics, 1991. Cancer J Clin, 1991; 41: 19–36.
4. American Cancer Society: Cancer Facts and Figures 2018. Atlanta, Ga: American Cancer Society, 2018.
5. Anderson WF, Jatoi I, Tse J, Rosenberg PS: Male breast cancer: A population-based comparison with female breast cancer. J Clin Oncol, 2010; 28: 232–39.
6. Severson TM, Zwart W: A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer, 2017; 24: R27–34.
7. Ruddy KL, Winer EP: Male breast cancer: risk factors, biology, diagnosis, treatment, and survivorship. Ann Oncol, 2013; 24: 1434–43.
8. Rizzolo P, Silvestri V, Tommasi S et al: Male breast cancer: Genetics, epigenetics, and ethical aspects. Ann Oncol, 2013; 24(Suppl. 8): vii75–82.
9. Giordano SH, Cohen DS, Buzdar AU et al: Breast carcinoma in men: A population-based study. Cancer, 2004; 101: 51–57.
10. Nilsson C, Koliadi A, Johansson I et al: High proliferation is associated with inferior outcome in male breast cancer patients. Mod Pathol, 2013; 26: 87–94.

11. Nipp RD, El-Jawahri A, Fishbein JN et al: The relationship between coping strategies, quality of life, and mood in patients with incurable cancer. Cancer, 2016; 122: 2110–16.
12. Zhang W, Wang X, Huang R et al: Prognostic value of marital status on stage at diagnosis in hepatocellular carcinoma. Sci Rep, 2017; 7: 41695.
13. Zhang J, Gan L, Wu Z et al: The influence of marital status on the stage at diagnosis, treatment, and survival of adult patients with gastric cancer: A population-based study. Oncotarget, 2017; 8: 22385–405.
14. Song W, Miao DL, Chen L: Survival rates are higher in married patients with biliary tract cancer: A population-based study. Oncotarget, 2018; 9: 9531–39.
15. Feng Y, Dai W, Li Y et al: The effect of marital status by age on patients with colorectal cancer over the past decades: A SEER-based analysis. Int J Colorectal Dis, 2018 [Epub ahead of print].
16. Huang TB, Zhou GC, Dong CP et al: Marital status independently predicts prostate cancer survival in men who underwent radical prostatectomy: An analysis of 95,846 individuals. Oncol Lett, 2018; 15: 4737–44.
17. Wang XD, Qian JJ, Bai DS et al: Marital status independently predicts pancreatic cancer survival in patients treated with surgical resection: An analysis of the SEER database. Oncotarget, 2016; 7: 24880–87.
18. Osborne C, Ostir GV, Du X et al: The influence of marital status on the stage at diagnosis, treatment, and survival of older women with breast cancer. Breast Cancer Res Treat, 2005; 93: 41–47.
19. Wu C, Chen P, Qian JJ et al: Effect of marital status on the survival of patients with hepatocellular carcinoma treated with surgical resection: An analysis of 13,408 patients in the surveillance, epidemiology, and end results (SEER) database. Oncotarget, 2016; 7: 79442–52
20. Aizer AA, Chen MH, McCarthy EP et al: Marital status and survival in patients with cancer. J Clin Oncol, 2013; 31: 3869–76
21. Adekolujo OS, Tadisina S, Koduru U et al: Impact of marital status on tumor stage at diagnosis and on survival in male breast cancer. Am J Mens Health, 2017; 11: 1190–99
22. Shandiz F, Tavassoli A, Sharifi N et al: Hormone receptor expression and clinicopathologic features in male and female breast cancer. Asian Pac J Cancer Prev, 2017; 16: 471–74
23. Fentiman IS: The biology of male breast cancer. Breast, 2018; 38: 132–35
24. Hotko YS: Male breast cancer: Clinical presentation, diagnosis, treatment. Exp Oncol, 2013; 35: 303–10
25. Song W, Tian C: The effect of marital status on survival of patients with gastrointestinal stromal tumors: A SEER database analysis. Gastroenterol Res Pract, 2018; 2018: 5740823
26. Costa LJ, Brill IK, Brown EE: Impact of marital status, insurance status, income, and race/ethnicity on the survival of younger patients diagnosed with multiple myeloma in the United States. Cancer, 2016; 122: 3183–90
27. Shi RL, Qu N, Lu ZW et al: The impact of marital status at diagnosis on cancer survival in patients with differentiated thyroid cancer. Cancer Med, 2016; 5: 2145–54
28. Garssen B, Goodkin K: On the role of immunological factors as mediators between psychosocial factors and cancer progression. Psychiatry Res, 1999; 85: 51–61
29. Sklar LS, Anisman H: Stress and coping factors influence tumor growth. Science, 1979; 205: 513–15
30. Levy SM, Herberman RB, Whiteside T et al: Perceived social support and tumor estrogen/progesterone receptor status as predictors of natural killer cell activity in breast cancer patients. Psychosom Med, 1990; 52: 73–85
31. Moreno-Smith M, Lutgendorf SK, Sood AK: Impact of stress on cancer metastasis. Future Oncol, 2010; 6: 1863–81
32. McEwen BS, Biron CA, Brunson KW et al: The role of adrenocorticoids as modulators of immune function in health and disease: Neural, endocrine and immune interactions. Brain Res Brain Res Rev, 1997; 23: 79–133
33. Burgess C, Cornelius V, Love S et al: Depression and anxiety in women with early breast cancer: five year observational cohort study. BMJ, 2005; 330: 702
34. Kaiser NC, Hartoonian N, Owen JE: Toward a cancer-specific model of psychological distress: Population data from the 2003–2005 National Health Interview Surveys. J Cancer Surviv, 2010; 4: 291–302
35. Baine M, Sahak F, Lin C et al: Marital status and survival in pancreatic cancer patients: a SEER based analysis. PloS One, 2011; 6: e21052
36. Goldzweig G, Andritsch E, Hubert A et al: Psychological distress among male patients and male spouses: What do oncologists need to know? Ann Oncol, 2010; 21: 877–83
37. Taniguchi K, Akechi T, Suzuki S et al: Lack of marital support and poor psychological responses in male cancer patients. Support Care Cancer, 2003; 11: 604–10
38. Saito-Nakaya K, Nakaya N, Fujimori M et al: Marital status, social support and survival after curative resection in non-small-cell lung cancer. Cancer Sci, 2006; 97: 206–13
39. Kwak HS, Kim Y et al: Marital status and depression in patients with breast cancer: A hospital-based study. J Cancer Res Clin Oncol, 2008; 134: 1567–73
40. Lejeune C, Sassil F, Ellis L et al: Socio-economic disparities in access to treatment and their impact on colorectal cancer survival. Int J Epidemiol, 2010; 39: 710–17
41. Kravdal H, Syse A: Changes over time in the effect of marital status on cancer survival. BMC Public Health, 2011; 11: 804
42. Tyson MD, Andrews PE, Etzioni DA et al: Marital status and prostate cancer outcomes. Can J Urol, 2013; 20: 6702–6