Role of the oocyte nucleus in determination of the dorsoventral polarity of Drosophila as revealed by molecular analysis of the K10 gene

Edouard Prost, François Deryckere, Christophe Roos, Marc Haenlin, Véronique Pantesco, and Eliane Mohier

Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Faculté de Médecine, 67085 Strasbourg Cedex, France

In Drosophila, the establishment of dorsoventral polarity of the developing embryo depends on the expression of at least 11 maternally acting genes. Mutant females that lack any of these gene activities produce normally shaped eggs that develop into dorsalized embryos. The female sterile K10 mutation differs from these mutants, because in addition to the dorsalized development of the embryo, it causes a dorsalization of the egg shape. During oogenesis, the K10 gene is specifically expressed in the oocyte. Antibodies raised against a β-galactosidase–K10 fusion protein were used to visualize the K10 product in ovaries by indirect immunofluorescence. The protein, which contains a putative DNA recognition helix, accumulates in the nucleus of the oocyte, where it is assumed to have a regulatory function. Our results thus indicate that the controlled expression of some of the genes of the oocyte nucleus is essential for the determination of the dorsoventral polarity of the oocyte and possibly of the developing embryo.

[Key Words: Drosophila; dorsoventral; oocyte; K10 gene]

Received March 14, 1988; revised version accepted May 12, 1988.

One of the goals of developmental biology is to understand the mechanisms underlying embryonic pattern formation. In Drosophila, the identification and genetic analysis of mutations affecting embryonic development have shown that the first step in the formation of the spatial pattern of the embryo is the definition of the two primary axes: the anterior–posterior axis and the dorsoventral axis [Nüsslein-Volhard 1979]. Dorsoventral polarity is already apparent in the shape of the wild-type egg at the time it is laid. The egg has a curved ventral side and a flattened dorsal side, with two chorionic appendages implanted dorsally [Fig. 1]. The second visible manifestation of dorsoventral polarity arises at gastrulation, when the ventrally located cells of the cellular blastoderm invaginate to form the ventral furrow.

So far, 11 maternally expressed loci have been identified, the products of which are required for the establishment of the dorsoventral pattern [Anderson and Nüsslein-Volhard 1984a,b, 1986]. The loss of any of these gene products by mutation leads to a common recessive phenotype initially described for the prototype of these mutations: dorsal (dl). Females homozygous for a dorsal-like mutation lay normally shaped eggs that develop in such a way that dorsal pattern elements are formed at the expense of lateral–ventral pattern elements. It has been proposed that each of these dorsal-group gene products is necessary for generating a gradient of positional information along the dorsoventral axis of the cellular blastoderm [Anderson et al. 1985a,b]. However attractive and credible this model may be, it does not predict what the initial localized cue required for triggering the later processes may be, nor does it explain how this gradient is generated relative to the polarity of the egg.

To trace the origin of this egg polarity and to investigate how it might further influence the polarity of the developing embryo, it was of interest to analyze mutations affecting the polarity of both the egg and the embryo. The female sterility mutation K10 [fs(1)K10] satisfies both of these criteria [Wieschaus et al. 1978; Wieschaus 1979, 1980]. Females homozygous for K10 lay eggs that are almost cylindrical. The dorsal appendages are fused by material encircling the egg, as if its entire circumference had become dorsalized. The dorsalization of K10 oocytes can already be detected during oogenesis, at a time when normal ovaries show a clear dorsoventral polarity (stage 11 of King 1970). The wild-type oocyte...
Prost and Derycke et al.

nucleus is acentric and lies near the surface at the anterior side of the oocyte [Fig. 1]. Due to an asymmetric migration, the overlaying follicle cells become much thicker in this region than those on the opposite side of the oocyte. This region, where the dorsal appendages will be formed, corresponds to the prospective dorsal side of the embryo. Although the oocyte nucleus is still acentric in K10 egg chambers, all of the follicle cells surrounding the anterior side of the oocyte show the thickened appearance normally found at the dorsal side.

In spite of this effect on the follicle cells and on the chorion they secrete, Wieschaus et al. [1978] showed that the K10 mutation is strictly germ-line dependent, suggesting that the follicle cells are most likely instructed by positional cues provided by the developing oocyte or by the nurse cells. When fertilized (1 or 2%), K10 eggs show the dorsalized development that is common to the dorsal-like mutations.

The fact that the K10 mutation, as well as two others recently described by Schupbach [1987], affects both the polarity of the egg shape and the polarity of the developing embryo demonstrates that there is a time during development when both polarities are coupled.

The K10 gene has been cloned and its function assigned to a 5-kb DNA fragment by P-element transformation. This fragment encodes a major transcript of 3.1 kb, which is specifically transcribed in the oocyte [Haenlin et al. 1985, 1987].

To understand the role of the K10 product in the establishment of dorsoventral polarity, we have raised polyclonal antibodies specific for β-galactosidase–K10 fusion protein, which permitted the visualization of the K10 product on ovary sections by indirect immunofluorescence. We show that the product accumulates in the oocyte nucleus. We also report the nucleotide sequence and the putative protein sequence of K10. Although it does not contain a homeo box, the sequence encodes a putative DNA recognition helix. Together, the nuclear localization of the protein and the putative DNA-binding motif suggest that K10 might possess a regulatory function.

Results

Molecular structure of K10 mRNAs

The K10 gene was cloned by the microdissection technique and positively identified by germ-line transformation [Haenlin et al. 1985]. It was localized to a 5-kb DNA fragment, the transcriptional organization of which is summarized in Figure 2. A major transcript of 3.1 kb is abundant in ovaries and early developing embryos and is likely responsible for the K10 function. Using the 5’ HindIII–EcoRI and the 3’ EcoRI–SalI genomic fragments, we screened cDNA libraries. From pools of 0- to 3- and 3- to 6-hr embryos, we isolated >30 clones, three of which are represented in Figure 2C [Haenlin et al. 1987].

A more detailed description of the K10 gene was obtained by sequencing [Sanger et al. 1977; Lin et al. 1985] the 5’ region of cDNA EG15 and the entire 1.5 kb of cDNA E51, as well as portions of the 6-kb genomic DNA segment that include the entire transcribed region [Fig.
Comparison of the genomic and cDNA sequences confirms that a single intron, 854 bp long, is spliced out of the mature transcript. The 5' end of the major transcript, not present on either of the cDNA clones, is inferred from S1 mapping and primer extension experiments [data not shown] and is found ~40 bp upstream from the 5' end of cDNA EG15. This promoter region is likely to be shared by all transcripts, as suggested by hybridization of poly(A)* RNA Northern blots, with small probes originating from the 5' end of the transcribed region [Haenlin et al. 1987]. This low abundance of the minor transcripts did not permit confirmation of their common 5' end, either by S1 mapping or by primer extension experiments. The region immediately preceding the transcriptional start site contains no canonical TATA box sequence. A consensus polyadenylation signal [AATAAA] occurs about 20 bp upstream of the mapped 3' end of the poly(A) tail of cDNA EF43.

The predicted K10 protein

The sequence analysis reveals a long open reading frame encoding a putative protein of 463 amino acids, 51.5 kD, with a pHf of 11.2 and an unusually high proline content [15%]. It can be divided into roughly three domains: a hydrophilic amino-terminal region (up to residue 225) containing 21% Gln [encoded by CAG], a second region of ~112 amino acids that consists essentially of apolar residues, among which proline represents ~37%, and a carboxy-terminal region with a more 'typical' amino acid composition containing a 'helix-turn-helix' motif.

The genomic DNA sequence corresponding to the amino-terminal region of the protein, with its high percentage of Gln, is reminiscent of the M repeat in the Ubx and Antp genes [McGinnis et al. 1984b; Schnewly et al. 1986], of the opa sequence in the Notch gene [Wharton et al. 1985], and of similar stretches in the engrailed gene [Poole et al. 1985]. A corresponding cDNA fragment from K10 has been used to isolate the murine opa sequence counterpart [Duboule et al. 1987]. However, in contrast to the apparently randomly arranged CAG triplets interspersed with other codons that normally constitute the M or opa repeats so far described, the structure of the opa-like area [opa] in the K10 gene is more organized. The opa region extends from 1373 to 1539 nucleotides and is composed of seven tandemly repeated units of 24 nucleotides each. These repeated units encode the motif Gln, Gln, Gln, His, Pro, Ser, Pro, Asn, with some internal variation [Fig. 4].

Secondary structure analysis [Garnier et al. 1978] of the K10 protein has shown the presence of a helix-turn-helix motif located between amino acids 390 and 418 [data not shown]. Crystallographic analyses have shown the presence of such conserved helical structures in prokaryotic regulatory proteins, such as the cro and cl repressor proteins of bacteriophage λ. Computer modeling studies and crystallographic data show that the conserved helical structures are the DNA-binding sites for these proteins [Pabo and Sauer 1984; Ptashne 1986; Anderson et al. 1987]. Most of the amino acid residues important for the conformation of the potential DNA-binding domain structure are conserved in K10, as shown by a comparison of K10's putative helix-turn-helix region with other potential DNA-binding domains in prokaryotes and yeast [Fig. 5]. In particular, Ala, Gly, and Val at the respective consensus positions 5, 9, and 15, which are known to be important for conferring the helix-turn-helix configuration necessary for interaction with the major groove of DNA, are found in K10.

It should be noted that this motif is highly divergent from the recognition helix that is found in the homeo domain [Gehring and Hiromi 1986] [Fig. 5]. This result could be anticipated from the absence of a homeo box in the K10 gene, as determined by cross-hybridization, even under reduced stringency conditions [McGinnis et al. 1984a,b].

Construction and expression of the K10 fusion protein and production of antibodies

To generate antibodies directed against the K10 protein, cDNA EF43 was inserted into the 3' end of the lacZ gene in the expression vector pUR288 [Rührer and Müller-Hill 1983] to produce the protein in Escherichia coli.
Figure 3. [See facing page for legend.]
This cDNA clone, truncated at its internal EcoRI site during cloning, is devoid of the [CAG] rich repetitive sequences found in the 5' half of the sequence. The crude protein extracts of the induced bacteria harboring the recombinant plasmids were separated on an SDS–polyacrylamide gel. As shown in Figure 6A, a fusion protein of ~130 kD was produced. This apparent molecular weight corresponds approximately to the expected molecular weight of the cDNA EF43 sequence coupled with β-galactosidase. Crude extracts containing the K10 fusion protein were prepared and affinity-purified as described in Experimental procedures and were used to immunize rabbits or mice. The specificity of the antisera obtained for the K10 protein is shown by immunoblotting (Fig. 6B).

The K10 protein is localized in the oocyte nucleus

A short description of Drosophila melanogaster oogenesis will assist in the presentation of our results below. Detailed descriptions of oogenesis have been presented in King [1970] and in Mahowald and Kambysellis [1980]. The ovary of Drosophila consists of ~17–20 ovarioles. At the apical end of each ovariole is the gerarium where free stem cells generate the cytoplasm which, by mitotic division, give rise to 16 sister cells. One of these will form the oocyte, and the other 15 will form the nurse cells. The 16 cells of germ-line origin are surrounded by a monolayer of somatically derived follicle cells, and together, the germ-line cells and the follicle cells form the egg chamber. The development of the egg chamber has been subdivided arbitrarily into 14 stages (King 1970). Each ovariole of a mature female contains six or seven egg chambers arranged in a chronological order, the youngest and smallest being in the more apical position.

From stage 7 onward, the follicle cells engage in vitellogenesis, and from stage 11 on, in the secretion of the outer protective covering of the egg, the chorion. By stage 10B, the nurse cells, which are the site for most synthesis during oogenesis, pass their nutrient-rich cytoplasm into the oocyte. In contrast, the oocyte nucleus is generally believed to be transcriptionally inactive during oogenesis (Mahowald and Kambysellis 1980).

In situ hybridization of K10 Sp6 single-stranded probes to ovary sections had shown transcription of the gene early during oogenesis and detected transcripts around the oocyte nucleus (Haenlin et al. 1987). To see whether this cellular specificity could be extended to the protein, we visualized the temporal and spatial pattern of the K10 protein distribution during oogenesis by indirect immunofluorescence. The results are shown in Figure 7. The K10 protein is first detected at approximately stages 8–9 as a faint signal around the oocyte nucleus (data not shown). This signal then intensifies, and its localization becomes nuclear, as determined by comparison with DNA-specific Hoechst staining (Fig. 7B).

The coincidence between the oocyte nucleus, as revealed by Hoechst and the K10 immunofluorescence, is even more evident in some sections where the chromatin, due to a preparation artifact, appears more condensed within the nuclear membrane [Fig. 7G,H]. Our observations suggest that the K10 protein assumes an intranuclear localization. From stage 12 onward, i.e., when the chromosomes recondense into a karyosome [Mahowald and Kambysellis 1980], the signal disappears. The same results were observed with antisera induced in either rabbits or mice. No signal is detected when preimmune serum is used as a control, nor is a signal detected in the ovaries of females homozygous for K10. We were also unable to detect a signal on section or whole-mount embryos (0–24 hr) or by immunoblotting extracts of early embryos. Although surprising if one considers that the K10 transcripts are present at approximately the same level in early embryos and in ovaries [Haenlin et al. 1987], this result can be explained if the protein no longer assumes a specific localization.

Discussion

In an earlier report, we have shown that the K10 gene is expressed in the oocyte during oogenesis [Haenlin et al. 1987]. Here, we show that the K10 protein is also re-

Figure 3. DNA sequence of the K10 gene and corresponding amino acid sequence of the putative K10 protein. The DNA sequence between the first PvuII site at the 5' end [Fig. 2] and the 3' end of the K10 major transcript is numbered from 1 to 5520. The amino acid sequence corresponding to the largest open reading frame is shown below the nucleotide sequence and is numbered from 1 to 463 amino acids. The boundaries of an 854-bp intron [2098–2952] are indicated by vertical arrowheads. The boundaries of the different cDNAs are also indicated. The cleavage sites of some restriction endonucleases are positioned above the nucleotide sequence. The polyadenylation signal is underlined. The sequences of the seven randomly repeated CAG-rich boxes [1180–1347] [Fig. 4], as well as the putative DNA-binding region [1990–2049] [Fig. 6], are boxed.
stricted to the oocyte, where it assumes a nuclear localization. This finding is corroborated by the presence of a helix-turn-helix motif in the sequence, which suggests a DNA-binding property for the putative K10 protein. In view of this, the K10 protein may have a regulatory function. The fact that this regulatory function exerts its activity on the oocyte nucleus implies that the control of expression of at least a few genes in the oocyte nucleus is essential for the establishment of dorsoventral polarity of the oocyte, and possibly of the developing embryo. This result is unexpected because the oocyte nucleus, except for a short period of RNA synthesis during stage 9, is conventionally considered to be transcriptionally inactive during oogenesis (Mahowald and Tiefert 1970).

How could our data help in understanding the mechanisms involved in the establishment of the dorsoventral polarity of the oocyte? The first manifestation of a possible dorsoventral polarity appears at approximately stage 8, when the oocyte nucleus becomes invariably located close to the nurse cells at the future anterior-dorsal region. Subsequent processes are the asymmetrical migration of the follicle cells between the oocyte and the nurse cells and, at the end of the oogenesis, the formation of the dorsally implanted appendages (Fig. 1).

The observation of dicephalic (dic) ovaries has shown that there is a strict correlation between the position of the oocyte nucleus and the location of the chorion ap-sequence showing the helix-turn-helix motif was aligned with prokaryote and yeast potential DNA-binding domains (Pabo and Sauer 1984). The positions of the two helices of the DNA-binding domain are shown at the bottom. Conserved residues that appear to have an important role in maintaining the structure of the bihelical unit are boxed (Ala, Gly, Val/Ile, at positions 5, 9, and 15, respectively). Amino acids that are similar or structurally analogous to K10 residues are underlined. The amino acid sequences of the corresponding region of several Drosophila homeo boxes have been added for comparison. The bacterial and mata1 sequences are from Pabo and Sauer (1984); Antp, Ubx, and ftz are from McGinnis et al. (1984a); en is from Poole et al. (1985) and Fjose et al. (1985).

Figure 5. Amino acid sequence of K10 interpreted in the helix-turn-helix model. K10 sequence showing the helix-turn-helix motif was aligned with prokaryote and yeast potential DNA-binding domains [Pabo and Sauer 1984]. The positions of the two helices of the DNA-binding domain are shown at the bottom. Conserved residues that appear to have an important role in maintaining the structure of the bihelical unit are boxed (Ala, Gly, Val/Ile, at positions 5, 9, and 15, respectively). Amino acids that are similar or structurally analogous to K10 residues are underlined. The amino acid sequences of the corresponding region of several Drosophila homeo boxes have been added for comparison. The bacterial and mata1 sequences are from Pabo and Sauer (1984); Antp, Ubx, and ftz are from McGinnis et al. (1984a); en is from Poole et al. (1985) and Fjose et al. (1985).
Dorsoventral polarity in Drosophila

pendages (Bohrmann and Sander 1987). This correlation has been confirmed at the molecular level by an analysis of the expression of individual chorion genes by in situ hybridization. Parks and Spradling (1987) have shown that the initial spatial pattern of expression of certain chorion genes is limited to those follicle cells that are...

Figure 7. Localization of the K10 protein on ovary sections of OreR females stained with DNA-specific Hoechst dye {A, C, E, G}. Egg chambers at various stages of development are visualized by the overall pattern of nuclei. The smallest nuclei belong to the follicle cells and delineate the egg chamber. The largest nuclei belong to the nurse cells (nc). An arrow indicates the oocyte nucleus (on). Also shown are border cell nuclei (bc), a group of anterior follicle cells, which attain contact with the anterior end of the oocyte after migration between the nurse cells, and are responsible for the formation of the micropyle. {B,D,F,H} Corresponding staining after immunoreaction with K10 antibodies, visualized by Texas red conjugated sheep anti-rabbit IgG. {A}, {B} Transversal sections of egg chambers of stages 8 or 9. Two oocyte nuclei are visible with Hoechst dye, whereas the third is hardly detectable. Immunofluorescent signal clearly appears for each nucleus, indicating that at this early stage the K10 product is detected both surrounding the nucleus and within the nucleus. {C, D} Stage 12 egg chamber; {E, F} stage 10B or 11 egg chamber; {G, H} stage 11 egg chamber. The high background of the immunoreaction observed in H shows the organization of the wild-type egg chamber. Dorsoventral polarity can be deduced from the unequal distribution of the follicle cells, which appear thicker on the side adjacent to the oocyte nucleus and correspond to the future dorsal side of the egg. It is also visible by comparison with Hoechst staining that the chromatin occupies only a part of the nucleus, which is visualized by its perinuclear membrane visible in H. Superposition of both stainings clearly shows concordance of the fluorescent signal and the chromatin staining. Magnification, 175 x.
close to the oocyte nucleus and will be subjected to rapid centripetal migration later on.

These observations emphasize the importance of the location of the oocyte nucleus in the morphogenetic processes that accompany the maturation of the oocyte. Together with the data obtained for K10, they lead us to propose the following model to explain the establishment of the dorsoventral polarity of the oocyte and the role that K10 plays in the process.

The acenric position of the oocyte nucleus appears as a prerequisite for generating the subsequent asymmetry. Microtubules, or elements of the cytoskeleton, may be required to establish and retain the nucleus in this position (Gutzeit 1986). We exclude a role for the K10 gene in the process, because the oocyte nucleus still has an acenric position in K10 ovaries (Wieschaus 1980; our own observations).

To exert its influence, the oocyte nucleus, transcriptionally inactive thus far, starts expressing genes, the products of some of which may be diffusible and capable of conveying information to the follicle cells. We assume that transcripts originating from the oocyte nucleus remain in its close vicinity and that, consequently, the product appears initially centered on the oocyte nucleus before starting to diffuse. If its diffusion is random, the follicle cells will react in accordance with their position relative to the acenric position of the oocyte nucleus, and the follicle cells closest to the oocyte nucleus will receive proportionally more of the diffusible product. This would explain the thickening of the follicular epithelium in the region close to the oocyte nucleus, where the choric appendages would form later on and due to a similar process. This product could function at the oocyte surface to guide follicle cell migration.

The results that we present here indicate that K10 is unlikely to be such a product. Instead, its putative DNA-binding properties make it a good candidate for being one of the regulatory factors that control the expression of such a product. In accordance with our hypothesis, the alteration of the K10 regulatory function by mutation would therefore result in the symmetrical migration of the anteriorly located follicle cells. This is indeed the first defect observed in the K10 egg chamber (Wieschaus 1980; our own observations and legend to Fig. 1). As a consequence, all the anterior follicle cells would have the same 'dorsalized' information and would synthesize enlarged appendages encircling the anterior end of the oocyte.

What is the influence of the oocyte polarity on the subsequent development of the embryo? It can be speculated that under normal conditions, the polarity of the oocyte provides the initial trigger required for the position-dependent activation of an evenly distributed morphogen. A possible source for such a morphogen has been proposed by Anderson et al. (1985a,b) to be the Toll gene product. The activation of the Toll product, from its precursor form, is regulated in a position-dependent manner relative to the dorsoventral axis. It is possible that this activation is initiated by the inherent polarity of the oocyte.

Experimental procedures

Indirect immunofluorescent staining of ovary sections

Ovary sections were treated as described by Mitchison and Sedat (1983) and by White and Wilcox (1984). Ovaries of 2- to 3-day-old Oregon R or K10 homozygous females were dissected in Ringer's buffer and included in O.C.T. (Miles Laboratories). Frozen sections were dried and stored at −80°C. Sections were fixed in 3% paraformaldehyde in phosphate-buffered saline (PBS) for 10 min at room temperature, followed by extensive rinsing in PBS. After transfer in TBS [50 mm Tris (pH 7.4), 150 mm NaCl], the slides were incubated in TBS' [150 mm NaCl, 50 mm Tris (pH 7.4), 0.2% Nonidet P-40, 5% sheep serum]. All successive antibody incubations and rinses were done in this buffer. Prefixed sections were then incubated with a crude anti-K10 serum diluted 1/50, for 3 hr at room temperature. After several washes, the sections were further incubated in a 1/50 dilution of sheep anti-rabbit IgG [Amersham]. After washes in TBS and staining with DNA-specific Hoechst dye 33258 (1 µg/ml), the sections were mounted in 78% glycerol, 20 mm Tris (pH 7.4), and 2% propylgallate (Sigma); sealed with rubber cement to prevent dehydration, and viewed under a Zeiss microscope using epifluorescence. Control reactions with preimmune sera did not show any specific signal (data not shown).

Gene fusion

The 2.4-kb K10 cDNA EF43 had been subcloned initially into the EcoRI site of each of the three open reading frames of the pTG vectors (Courtney et al. 1984) to select the functional open reading frame on the basis of its length. The choice of the clone giving rise to the longest protein was then confirmed by in vitro expression analysis. A 1.0-kb BamHI fragment corresponding to the open reading frame of cDNA EF43 in the correct phase was subsequently isolated from pTG-K10 and inserted into the BamHI site of the pUR288 vector (Rüther and Müller-Hill 1983) to produce a β-galactosidase-K10 fusion protein in E. coli (JM103).

Expression and purification of the fusion protein

Bacterial cultures [700 ml] were grown in the presence of 3 mm IPTG for 8 hr. Cells were pelleted and resuspended in 50 ml of buffer A [20 mm Tris (pH 7.5), 10 mm MgCl₂, 0.1 m NaCl]. The cells were lysed by sonication and spun at 12,000g for 20 min. The supernatant was adjusted to 1.6 m NaCl, and 20–30 ml was applied to a 1-ml p-amino phenyl-β-D-thiogalactosidase affinity column. Purification of the fusion protein was performed according to the technique described by Ullman (1984).

Immunization of rabbits

Rabbits were immunized by intravascular injection of a 4-ml solution containing NaCl 0.9%, 400 ng of double-stranded poly[A]−poly[U] and 15 µg of purified β-galactosidase−K10 fusion protein. They were boosted four times every 8–10 days and were bled 10 days after the last injection. Blood was obtained from the ear. Similar results were obtained with antiserum induced in mice.

Nucleotide sequencing

The sequences of genomic DNA and cDNAs E51 and EF43 were determined on both strands by the dideoxynucleotide sequencing procedure (Sanger et al. 1977). Restriction fragments
of cDNAs were inserted in M13 vectors (Messing 1983). Genomic subclones were obtained either by using known restriction sites or by generating overlapping deletions with DNase I in the presence of Mn^2+ [Lin et al. 1985]. The length of the open reading frames, as deduced from the sequencing data, was checked by expression in E. coli of cDNA EG15 subcloned in pUR278, pUR288, and pUR289 at the appropriate restriction sites [Rüther and Müller-Hill 1983].

Acknowledgments

We are indebted to P. Chambon, in whose laboratory this work was done, for his interest and helpful discussions. We are grateful to G. Richards, P. Simpson, and A. Nicholson for critically reading the manuscript and helping with the English. We thank the computer team, A. Eichwald, R. Fritz, D. Guinier, and J.L. Prato, for their patience during computer searches. We are grateful to M.T. Bocquel for her assistance with the immunizations. We especially thank C. Werlé for her fine graphic work, B. Boulay for the pictures, and H. Martina for patiently typing the manuscript. C.R. was the recipient of a predoctoral scholarship from the French government and a scholarship (29/269) from the Finnish Academy of Sciences. F.D. and M.H. were both funded by the Ministère de la Recherche et de l’Enseignement Supérieur. This work was supported by grants from the INSERM and CNRS.

References

Anderson, K. and C. Nüsslein-Volhard. 1984a. Genetic analysis of dorsal–ventral embryonic pattern in *Drosophila*. In *Primer in developmental biology* (ed. G. Malacinski and S. Bryant), pp. 269–289. Macmillan, New York.

—— 1984b. Information for the dorsal-ventral pattern of the *Drosophila* embryo is stored as maternal mRNA. *Nature* **311**: 223–227.

—— 1986. *Dorsal-group genes of Drosophila in gametogenesis and the early embryo*, pp. 177–194. Alan R. Liss, New York.

Anderson, K.V., G. Jürgens, and C. Nüsslein-Volhard. 1985a. Establishment of dorsal-ventral polarity in the *Drosophila* embryo: Genetic studies on the role of the *Toll* gene product. *Cell* **42**: 779–789.

Anderson, K.V., L. Bokla, and C. Nüsslein-Volhard. 1985b. Establishment of dorsal-ventral polarity in the *Drosophila* embryo: The induction of polarity by the *Toll* gene product. *Cell* **42**: 791–798.

Anderson, J.E., M. Ptashne, and J.C. Harrison. 1987. Structure of the repressor-operator complex of bacteriophage 434. *Nature* **326**: 846–852.

Bohrmann, J. and K. Sander. 1987. Aberrant oogenesis in the patterning mutant *diceraphic* of *Drosophila melanogaster*: Time-lapse recordings and volumetry in vitro. *Wilhelm Roux’s Arch. Dev. Biol.* **196**: 279–285.

Courtney, M., A. Buchwalder, L. Tessier, M. Jaye, A. Benavente, A. Ballard, V. Kohl, R. Lathe, P. Totoloshev, and J.P. Lecocq. 1984. High level production of biologically active human α1-antitrypsin in *E. coli*. *Proc. Natl. Acad. Sci.* **81**: 669–673.

Duboule, D., M. Haenlin, B. Galliot, and E. Mohier. 1987. DNA sequences homologous to the *Drosophila* opa repeat are present in murine mRNAs that are differentially expressed in fetuses and adult tissues. *Mol. Cell. Biol.* **7**: 2003–2006.

Fjose, A., W.J. McGinnis, and W.J. Gehring. 1985. Isolation of a homeobox-containing gene from the *engrailed* region of *Drosophila* and the spatial distribution of its transcripts. *Nature* **313**: 284–289.

Garnier, J., D.J. Osguthorpe, and B. Robson. 1978. Description of the method implemented in program Garnier. *J. Mol. Biol.* **120**: 97–120.

Gehring, W.J. and Y. Hiromi. 1986. Homeotic genes and the homeobox. *Annu. Rev. Genet.* **20**: 147–173.

Gutzeit, H. 1986. The role of microtubules in the differentiation of ovarian follicles during vitellogenesis in *Drosophila*. *Wilhelm Roux’s Arch. Dev. Biol.* **195**: 173–181.

Haenlin, M., C. Roos, A. Cassab, and E. Mohier. 1987. Oocyte-specific transcription of *fs(1)K10*: A *Drosophila* gene affecting dorsal-ventral developmental polarity. *EMBO J.* **6**: 801–807.

Haenlin, M., H. Steller, V. Pirrotta, and E. Mohier. 1985. A 43 kilobase cosmid *P* transposon rescues the *fs(1)K10* morphogenetic locus and three adjacent *Drosophila* developmental mutants. *Cell* **40**: 827–837.

King, R.C. 1970. *Ovarian development in Drosophila melanogaster*. Academic Press, New York.

Lin, H., S. Lei, and G. Wilcox. 1985. An improved DNA sequencing strategy. *Anal. Biochem.* **147**: 114–119.

Mahowald, A.P. and M.P. Kambysellis. 1980. *Oogenesis*. In *The genetics and biology of Drosophila*. [ed. M. Ashburner and T.R.F. Wright] vol. 2D, pp. 141–224. Academic Press, London.

Mahowald, A.P. and M. Tiefert. 1970. Fine structural changes in the *Drosophila* oocyte nucleus during a short period of RNA synthesis. *Wilhelm Roux’s Arch. Dev. Biol.* **165**: 8–25.

McGinnis, W., R.L. Garber, J. Wirz, A. Kuroiwa, and W.J. Gehring. 1984a. A homologous protein-coding sequence in *Drosophila* homeotic genes and its conservation in other metazoans. *Cell* **37**: 403–408.

McGinnis, W., M.S. Levine, E. Hafen, A. Kuroiwa, and W.J. Gehring. 1984b. A conserved DNA sequence in homeotic genes of the *Drosophila* Antennapedia and Bithorax complexes. *Nature* **308**: 428–433.

Messing, J. 1983. New M13 vectors for cloning. *Methods Enzymol.* **101**: 20–78.

Mitchison, T.J. and J. Sedat. 1983. Localization of antigenic determinants in whole *Drosophila* embryos. *Dev. Biol.* **99**: 261–264.

Nüsslein-Volhard, C. 1979. Maternal effect mutations that alter the spatial coordinates of the embryo of *Drosophila melanogaster*. In *Determinants of spatial organisation* [ed. T.S. Subtelny and I.R. Koingsberg, pp.185–211. Academic Press, New York.

Pabo, C.O. and R.T. Sauer. 1984. Protein-DNA recognition. *Annu. Rev. Biochem.* **53**: 293–321.

Parks, S. and A. Spradling. 1987. Spatially regulated expression of chorion genes during *Drosophila* oogenesis. *Genes Dev.* **1**: 497–509.

Poole, S.J., L.M. Kauvar, B. Drees, and T. Kornberg. 1985. The *engrailed* locus of *Drosophila*: Structural analysis of an embryonic transcript. *Cell* **40**: 37–43.

Ptashne, M. 1986. Protein-DNA interactions and gene control. In *A genetic switch*, pp. 33–47. Cell Press and Blackwell, Cambridge, Massachusetts.

Rüther, V. and B. Müller-Hill. 1983. Easy identification of cDNA clones. *EMBO J*. **2**: 1791–1794.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequence with chain-terminating inhibitors. *Proc. Natl. Acad. Sci.* **74**: 5463–5467.

Schnewly, S., A. Kuroiwa, P. Baumgartner, and W.J. Gehring. 1986. Structural organization and sequence of the homeotic gene *Antennapedia* of *Drosophila melanogaster*. *EMBO J.* **5**: 733–739.

Schupbach, T. 1987. Germ line and soma cooperate during oo-
genesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49: 699–707.

Towbin, H., T. Stachelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76: 4350–4354.

Ullman, A. 1984. One step purification of hybrid proteins which have β-galactosidase activity. Gene 29: 27–31.

Wharton, K.A., B. Yedvobnick, V.G. Finnerty, and S. Artavanis-Tsakonas. 1985. opa: A novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell 40: 55–62.

White, R.A. and M. Wilcox. 1984. Protein products of the Bithorax complex in Drosophila. Cell 39: 163–171.

Wieschaus, E. 1979. fs(1)K10, a female sterile mutation altering the pattern of both the egg coverings and the resultant embryos in Drosophila. In Cell lineage, stem cell and cell differentiation [ed. N. le Douarin], pp. 291–302. Elsevier/North-Holland Biomedical Press, New York.

———. 1980. A combined genetic and mosaic approach to the study of oogenesis in Drosophila. In Development and neurobiology of Drosophila [ed. O. Siddiqi, P. Babu, L.M. Hall, and J.C. Hall], pp. 85–94. Plenum Press, New York.

Wieschaus, E., J.L. Marsh, and W. Gehring. 1978. fs(1)K10, a germline-dependent female sterile mutation causing abnormal chorion morphology in Drosophila melanogaster. Wilhelm Roux’s Arch. Dev. Biol. 184: 75–82.
Role of the oocyte nucleus in determination of the dorsoventral polarity of *Drosophila* as revealed by molecular analysis of the K10 gene

Edouard Prost, François Deryckere, Christophe Roos, et al.

Genes Dev. 1988, 2:
Access the most recent version at doi:10.1101/gad.2.7.891