PROGRESS REPORT

Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years

Ho Jin Janga, Jun Yeob Leea, Geun Woo Baekb, Jeonghun Kwakb and Jae-Hyeung Parkc

aSchool of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea; bDepartment of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea; cDepartment of Information and Communication Engineering, Inha University, Incheon, Republic of Korea

ABSTRACT

The remarkable progress of virtual reality, augmented reality, quantum dot light-emitting diode, and organic light-emitting diode as next-generation displays has overcome the leadership of the liquid crystal display during the last two years. This paper discusses the key technological advancements and performance of these new-generation display devices.

ARTICLE HISTORY

Received 29 November 2021
Accepted 12 January 2022

KEYWORDS

AR; VR; QLED; OLED

1. Introduction

During the last two years, four next-generation displays—namely the augmented reality (AR) display, the virtual reality (VR) display, the quantum dot light-emitting diode (QLED), and the organic light-emitting diode (OLED)—have been making remarkable progress and drawing great attention in the industry, even overcoming the performance and market leadership of liquid crystal display (LCD). The AR and VR displays, which are the major platforms of near-eye display (NED) devices, have been expanding the application field. The OLEDs are at present the dominant display technology in the market owing to several features that give them built-in advantages over the other displays. In particular, OLEDs have a highly flexible display platform that gives them wide compatibility to play a much stronger role in next-generation display. Indeed, OLEDs are quickly penetrating the market for all sizes of display applications, from small-size, mid-size, and large-size devices. Among the four next-generation displays, QLEDs with their remarkably high color purity give them the strongest potential to compete with the OLEDs. Recognizing their importance to the industry, this study has tracked the progress of all four of these next-generation displays for insights on their business and market prospects.

2. Recent progress of augmented reality and virtual reality

NEDs are eyeglass-type wearable displays that present to a user images from a far distance through optics that form the virtual image of a micro display panel. As shown in Figure 1(a), VR NEDs show the virtual images while blocking the real-world scene around it. In contrast, as shown in Figure 1(b), AR NEDs make use of image-combiner optics to present virtual images on top of the see-through real-world scene.

As the main display platform of VR and AR applications, NEDs are worn like eyeglasses to enable users to navigate and interact with the virtual or augmented world. The micro display panel in NEDs is located close to the user’s eye (typically within a few centimeters), unlike usual displays that are physically located at a comfortable viewing distance from the user and are seen directly without any optics. Indispensable to the functioning of NEDs is the optics device that forms the virtual images of the micro display panel at a far distance from the user. It is this device that largely enables how well NED devices work.

Figure 2 illustrates the key performance elements of AR and VR NEDs, namely the field of view (FOV), or the angular extent of the displayed virtual image, which is
shown in Figure 2(a); the eyebox, or spatial range where the eye can be positioned to watch the entire FOV of the NED, Figure 2(b); the angular resolution, or angular size of a single pixel in the virtual image, Figure 2(c); the focus cue, which is the monocular eye accommodation distance or virtual image plane distance, Figure 2(d); and the occlusion, or the masking of the real-world scene by the displayed virtual image, Figure 2(e). These factors are crucial to the performance of the AR and VR NEDs in giving the viewer an immersive feeling (FOV), comfortable eye positioning (eyebox), high-resolution images with no screen-door effect (angular resolution), fatigue-less natural viewing experience (focus cue), and high outdoor visibility (occlusion).

AR and VR NEDs are continually evolving with a wider FOV, larger eyebox, and smaller form factor [1, 2]. The metaverse, as the more recent emerging concept that uses NEDs as visual display platform, has been further accelerating the development of NEDs. To provide the natural and immersive user experience that enables vivid interaction between the real world and virtual space, the NEDs has to fulfill not only the traditional FOV, eyebox, and form factor requirements but also the monocular focus cues and mutual occlusion between the virtual images and the real objects. Some examples of the recently reported or commercialized NEDs are shown in Table 1, which lists in addition to the FOV and resolution their other notable key features like the focus cue mechanism and the image combiner optics configuration.

2.1. FOV and angular resolution

The FOV, eyebox, and angular resolution are the most important performance features of a NED. Ideal NEDs should have an FOV larger than 160° to cover the FOV of the human visual system [22], an eyebox wider than 10mm to accommodate eye rolling and the inter-pupillary distance discrepancy [1], and an angular resolution higher than 60 pixels per degree (PPD) to match the human visual acuity [1]. There should be a close trade-off relation between the FOV and the eyebox dictated by the étendue, or the property of light that characterizes how spread out the light is in area and angle. The FOV and the angular resolution likewise need to be balanced with the given resolution of the micro display panel. The precision of these trade-off relations are crucial to simultaneously achieving the required FOV, eyebox, and angular resolution.

Fully achieving these ideal specifications has yet to be attained, but active research has led to their continuing enhancement, notable among which is the introduction of holographic optical elements (HOEs)—these are volume holographic gratings usually recorded in a photopolymer [23]—and liquid crystal (LC)-based holographic gratings. More versatile NED designs have been developed with these features—high diffraction efficiency, wavelength, and angle selectivity, multiplexing capability, and a more transparent thin-film form factor. More recent emerging innovations are LC-based holographic gratings that add polarization-dependent optical functions and further increases in the degree of freedom in design [2, 24, 25]. The development of holographic printers now likewise enables the creation of freeform HOEs that significantly enhance the image quality [26, 27]. Applications of the HOEs and LC-based holographic gratings to the NEDs have also been actively studied in the years 2020 and 2021 to further increase the FOV [28–30], the eyebox [31–35], and the angular resolution [36]. Table 2 summarizes some of these innovations.

2.2. Focal cue

The focal cue is required to mitigate the so-called vergence accommodation conflict (VAC), or the discrepancy between the stereoscopic image distance and the physical virtual image distance of a NED. This VAC is negligible when the stereoscopic image distance is far from the user,
but becomes significant at a closer distance within the arm’s length of the user. As the arm distance is of particular importance for user interaction in many AR and VR applications, the proper and better presentation of the focal cue continues to be a standing issue in NED research and development.

Various research efforts on this aspect of NED have been reported, among them the Maxwellian display [29, 32–34], the multi-plane display [36,37], the vari-focal display[38], the light-field display[39,40], and the holographic display [42–50]. This last advancement—holographic display—was the most notable in 2020 and 2021. Moreover, the application of deep-learning techniques to the computer-generated hologram (CGH), the image quality, and the CGH synthesis speed have been significantly enhanced [46–49], making one step forward in the

Figure 2. Performance parameters and features of AR and VR NEDs (a) FOV, (b) eyebox, (c) angular resolution, (d) focus cue, and (e) occlusion.
Table 1. Features of recently reported or newly commercialized AR and VR NEDs.

Name	FOV	Resolution (in pixels)	Focus Cue	Image Combiner	Year	Ref.
Hu et al	33°x25°	1024 × 768	varifocal	Freeform half mirror	2014	[3]
Google Glass	13°x7.3°	640 × 360	X	Birdbath	2014	[4]
Yeom et al	30°x17.5°	1366 × 768	holography	DOE	2016	[6]
Hololens	55°x40°	960 × 540	varifocal	DOE	2017	[7]
Magic Leap	40°x30°	1280 × 960	two layers	DOE	2018	[10]
Lee et al	90°(diag.)	1080p	X	BS + Metasurface lens	2018	[11]
Nreal	52°(diag)	1080p	X	Birdbath	2019	[12]
Pimax 8K	170°x130°	3840 × 2160	X	VR	2019	[13]
Lee et al	30°		X	VR	2019	[14]
Kim et al	75°x78°	60 cdpi	varifocal	DOE	2019	[15]
Hololens 2	52°(diag)	2048 × 1080	X	DOE	2019	[16]
Oculus Quest 2	89°(H)	1832 × 1920	X	VR	2020	[17]
Lee et al	80°(diag)	30 cdpi in fovea, 5 cdpi in peripheral	holography	Polarization selective optics + HOE	2020	[18]
Tilt Five	110°	1280 × 720	X	Polarized projection + retro-reflector screen	2021	[19]
Bang et al	102°x102°		X	VR (lenslet array + Fresnel lens + polarized folding optics)	2021	[20]
Cakmakci et al	29°x12°	1920 × 1080	X	Lightguide + HOE + polarized folding optics	2021	[21]

Table 2. AR NEDs with FOV and eyebox enhancement using HOE and LC-based holographic gratings (reported in 2020 and 2021).

Feature	Key element	Ref.
FOV enhancement of a Maxwellian NED	GP lenses + Chromatic aberration compensating HOE	[29]
FOV doubling of a NED with far image plane	Two PVLs	[30]
Eyebbox replication of a Maxwellian NED	PBD	[32]
Eyebbox replication and switching of a Maxwellian NED	PBD + GP lenses + Multiplexed HOE	[33]
Eyebbox expansion of a Maxwellian NED with multiple independent viewpoints	Spatially tiled HOEs	[34]
Eyebbox expansion of a NED with far image plane	Diffuser HOE + Lens HOE	[35]

presentation of real-time photo-realistic holographic 3D images. Table 3 lists some of these notable achievements in 2020 and 2021.

Table 3. Focus Cues supporting AR and VR NEDs as reported in 2020 and 2021.

Type	Feature	Ref.
Multiple plane	LC PVLs with different focal length	[37]
Multiple plane	Polarization grating and angle multiplexed HOEs	[38]
Varifocal	64 depths using 6 PBLs with time-multiplexing	[39]
Light field	Integral imaging + waveguide + elemental image compensation	[40]
Light field	Integral imaging + freeform prism + digitally controllable dual-focus lens array	[41]
Holographic	Continuous eyebbox expansion using 2D replication and angular spectrum wrapping	[43]
Holographic	FOV expansion using random phase mask	[44]
Holographic	Foveated display by locating the SLM image to eyeball rotation center	[45]
Holographic	Foveated display using MEMS mirror and a PBD	[18]
Holographic	Deep learning based CGH using SLM and camera-in-the-loop calibration	[46,47]
Holographic	Deep learning based CGH + camera-in-the-loop calibration	[48,49]
Holographic	Vision correction by pre-compensated hologram	[50]

*Foveated display is a rendering technique which uses an eye tracker integrated with a virtual reality headset to reduce the rendering workload by greatly reducing the image quality in the peripheral vision.

2.3. The form factor

A prerequisite to the widespread adoption of NEDs is their compactness, lightness in weight, and socially plausible form. Although the form factor remains a standing issue in both AR and VR applications [21, 51], its most notable advancement in 2020 and 2021 was in the VR NED sector. In VR NEDs, the thickness of the device is mainly determined by the focal length of the optics forming the virtual image. The VR optics need to be large enough to offer an adequately wide FOV to enhance the
immersive experience. However, such large optics usually require a long focal length that substantially increases the thickness of the device.

Two novel approaches to this design situation recently attracted great attention. One is the use of a lenslet array [20, 52] in place of the single large optics to form the virtual image. The smaller size of the individual lens in the lenslet array results in a shorter focal length, thus reducing the overall device thickness while maintaining the wide FOV. The lenslet array, moreover, can also be curved to give an even wider FOV [52]. The second emerging approach is the use of polarization folding optics, which is also called pancake optics [21, 53]. These polarization devices fold the optical path, thus reducing the system thickness by as much as half; in recent years, in fact, VR NEDs of a sub-centimeter thickness have been developed [20, 53]. Still another potential candidate for the slim VR NED in the metasurface lens owing to its large numerical aperture (NA) [54]. Table 4 summarizes the recent developments in the research for slim VR NEDs.

2.4. Occlusion

Occlusion-capable AR NEDs are in their infancy and research to develop them are still on-going. The usual AR NEDs have optical combiners that simply add the displayed virtual images to the see-through real view, thus making the virtual images translucent. As mutual occlusion between the displayed virtual images and the real objects is not provided, users typically find the the depth order between them ambiguous. For good visibility, the virtual images should also be bright enough to stand out in the real environment, which then requires a display panel of very high luminance. Occlusion-capable AR NEDs solve these problems by masking the real-world view at the point where the virtual images appear. It is not a simple thing to realize this degree of occlusion capability. It usually needs multiple spatial light modulators (SLMs) to mask the real scene and a separate imaging optics for the virtual image display, thus significantly increasing the system's volume. Moreover, the additional image optics reduces the system's FOV.

Indeed, for ideal occlusion, a 3D mask should be imposed on the real-world scene, a situation that would require a system complexity equivalent to the NEDs with natural focus cues as previously taken up in Section 1.2. Even with these constraints, however, the recent research in 2020 and 2021 have made significant progress, coming up with a single SLM occlusion optics [55, 56], a masking scheme free of the screen-door effect [57], enhanced FOV [58], and 3D occlusion [59]. Table 5 lists the recent occlusion-capable AR NEDs.

3. Progress of QLEDs

Colloidal quantum dots (QDs) have received great attention owing to their superb properties: size-dependent bandgap tunability, high photoluminescence (PL) quantum yield (QY), and saturated colors from band-edge emission. These excellent characteristics make QDs practically adoptable in light-emitting diodes (LEDs), solar cells, photo detectors, biomarkers, and other optoelectronic applications [60–69]. Among these applications, their potential use of QLEDs in full-color displays have been widely investigated. The device structure and the operating principle of QLEDs are almost identical to that of OLED, except that the former's emission layer is comprised by QDs.

After the first demonstration of QD-based electroluminescence devices [70], multilateral efforts were likewise conducted to develop high-performance QLEDs. The synthesis methods developed for QDs were to improve their PL QY and colloidal stability by tailoring their core/shell structures and engineering surface ligands. In particular, the synthesis strategies included reducing the Auger process and surface defects that arise from exciton quenching, like adopting a gradient core/shell structure as well as QD surface passivation methods.

The device structures for QDs have also been significantly improved in the next decade. For example, an inverted structure with a ZnO electron transport layer was first introduced in 2012 [71], leading to highly

Table 4. Slim VR NEDs as reported in 2020 and 2021.

Features	Thickness	FOV	Ref.
Lenslet array + Fresnel lens + polarization based folding optics	8.8mm	102°(H)	[20]
Curved lenslet array + curved screen	9mm	102°(H)	[52]
HOE + polarization based folding optics	9mm	90°(H)	[53]
Achromatic Metalens			[54]

Table 5. Occlusion-capable AR NEDs as reported in 2020 and 2021.

Features	Number of SLMs	Ref.
DMD + further optimization using occlusion factorization	1 (single DMD for both masking and display)	[55]
DMD + polarization based double pass optics	1 (single DMD for both masking and display)	[56]
Occlusion without screen door effect using a photochromic mask	2 (a DMD for mask pattern UV projection + a panel for virtual image display)	[57]
Wide FOV using paired conical reflectors	2 (a LCoS for masking + a panel for virtual image display)	[58]
3D occlusion mask	3 (a LCoS for masking + a PSLM for mask depth modulation + a panel for virtual image display)	[59]
improved efficiency and operational stability of QD devices. Because inorganic nanocrystal QDs intrinsically possess deeper valence band (VB) energy levels than those of typical organic molecules, it was also thoroughly considered for injecting holes from the hole transport layer (HTL). For efficient hole injection into QDs as a hole transport layer, typically used were organic hole transporting materials that possess a deep or highest occupied molecular orbital (HOMO) energy level; e.g. 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) and tris(4-carbazoyl-9-ylphenyl)amine (TCTA)) as well as polymers; e.g. polyvinylcarbazole (PVK), Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine (poly-TPD), and poly(9,9-di-octylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB). The most widely used as electron transport layer are ZnO and ZnMgO nanoparticles owing to their decent ability of supplying electrons into QDs and their solution processibility. Typical organic electron transport materials like 2,2',2”-(1,3,5-benzinetriyl)tris(1-phenyl-1-H-benzimidazole) or TPBi are also adopted frequently. As a result of these research development efforts, the external quantum efficiencies (EQEs) of QD devices, have been improved close to the theoretical maximum values as plotted in Figure 3.

The next section discusses the research and development progress on QLEDs with Cadmium-containing QDs and Cd-free QDs.
In coordination chemistry, a ligand is an ion or molecule that binds to a central atom to form a coordination complex.

An exciton is a bound state of an electron and an electron hole that are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasi-particle that exists in insulators, semiconductors, and some liquids.

The external quantum efficiency of a semiconductor device is defined as the ratio of the total number of photons extracted outward to the number of injected electrons to the device.

3.1. Cadmium-based QLEDs

Great efforts on material engineering led to the development of Cadmium (Cd)-containing QDs that show high PL QY close to unity, narrow emission spectra (FWHM < 30 nm), and high stability. Device structures and fabrication processes have been also improved continuously: The highest EQEs of red, green, and blue QLEDs reached 30.9%, 25.04%, and 19.8%, respectively [76, 80, 83], which are comparable to that of OLEDs. They were achieved by adopting a composition gradient core/shell structure and by controlling the size of ZnO nanoparticles. Also, the maximum luminance of red and green QLEDs were raised to as high as 3,300,000 cd/m² and 1,680,000 cd/m², respectively [81, 91], by minimizing exciton quenching processes and by optimizing thermal dissipation and light outcoupling that are hardly achievable in OLEDs. Furthermore, an unprecedented high operational lifetime of 125,000,000 h at 100 cd/m² was recently reported in red-emitting QLEDs [91]. Table 6 summarizes the device performance of recent Cd-based QLEDs.

Although Cd-based QLEDs generally outperform Cd-free QLEDs, the fact that Cd-containing QDs are environmentally harmful raise the possibility of their exclusion from the industry in the near future. In contrast, researches in support of Cd-free QDs and QLEDs have been increasing gradually.

3.2. Cadmium-free QLEDs

For practical uses of QDs in industry, heavy metal ions need to be substituted for the Cadmium in QDs to avoid environmental issues. Although Cd-free QDs that contain InP and ZnSe have not been studied as much as those that contain Cd, their use and market demand in the industry are increasing rapidly. For instance, in 2019, InP-based red-emitting QLEDs showed a maximum EQE of only 21.4% by precisely controlling the defects of their core, reducing their shell thickness and their surface ligands [96]. In 2021, this group also reported highly bright, red-emitting InP QLEDs capable of showing a maximum luminance of > 120,000 cd/m² by using a QD–organic blended emissive layer [104]. For green emission with InP QDs, much smaller QD cores need to be synthesized than the red QDs; however, since it is not that easy to synthesize smaller QD cores uniformly and to grow shell layers precisely, this makes the green InP QLEDs perform lower than red QLEDs. Nevertheless, a red QLED with high EQE of 16.3% has recently been reported; this performance was achieved by modifying surface ligands and optimizing the electron transport layer [102].

QD structure	Peak wavelength (nm)	FWHM (nm)	Max. Luminance (cd/m²)	Max. EQE (%)	Max. CE (cd/A)	Ref.
Red InP/ZnSe/ZnS	607	48	1,600	6.6	13.6	[93]
InP/ZnSeS	623	38	27,800	4.4	8.5	[94]
InP/ZnSe/ZnS	618	42	10,000	12.2	14.7	[95]
InP/ZnSe/ZnS	630	35	100,000	21.4	–	[96]
InP/ZnSe/ZnS	630	34	128,577	18.6	–	[104]
InP	632	40	–	–	19.6	–
InP/ZnSe/ZnS	632	–	23,300	21.8	23.46	[106]
Yellow InP/ZnSeS/ZnS	545	56a	10,490	1.5a	4.44	[97]
InP/ZnSeS/ZnS	565	65	1,900	5.1	18	[98]
Green InP/ZnSeS	539	37	17,400	3.4	21.6	[94]
InP/ZnSeS	518	64	3,900	3.46	10.9	[99]
InP/GaP/ZnSe/ZnS	527	58	2,938	6.3	13.7	[100]
InP/ZnSeS/ZnS	531	34	13,900	13.6	–	[101]
InP/ZnSeS/ZnS	545	39	12,646	16.3	57.5	[102]
InP/ZnSeS/ZnS	533a	31	3,000a	4.2	30.1	[103]
InP	532	39	–	17.6	–	[105]
Blue ZnSeTe	453	29	–	11.5	–	[105]
ZnSeTe	441	32	1,195	4.2	2.4	[107]
ZnSeTe	445	27	2,904	9.5	5.3	[108]
ZnSeTe	457	35	88,900	20.2	–	[109]

aEstimated from the graph
it is hard to obtain efficient blue emission in InP-based QDs, blue QD emitters use different chemical compositions in the core, such as ZnSe and ZnSeTe. In 2020, ZnSeTe-based blue QLEDs showed a high EQE of as much as 20.2% via Cl\(^-\) passivation of QDs and Te doping optimization [108]. Table 7 summarizes the comparative performance of Cd-free QLEDs.

3.3. Inkjet-printed QLEDs

To implement full-color displays using QLEDs, they should be patterned with red, green, and blue subpixels. Among the various patterning techniques, the inkjet printing of QDs is considered the most promising technology owing to their cost-effectiveness, high throughput, and large-area compatibility. Nevertheless, their relatively low performance that is caused mainly by their non-uniform surface morphology has been delaying the commercialization of QLED displays.

Table 8. Device Performance of Inkjet-printed QLEDs.

QD structure	Peak wavelength (nm)	FWHM (nm)	Max. Luminance (cd/m\(^2\))	Turn-on Voltage (V)	Max. EQE (%)	Max. CE (cd/A)	Ref.
Red	630	35	12,100	2	1.34	4.44	[110]
	628	36	4,680	2.2	2.24	2.54	[111]
	640\(^a\)	–	10,000	1.4	16.6	–	[112]
	632	32	8,533	3	–	0.55	[113]
	628	27	30,000	2.7	7.52	10.03	[114]
	630	30	73,360	2.3	2.8	3.3	[115]
	624	27	10,000\(^a\)	2.2	18.3	26.6	[116]
	630	–	104,826	2.2\(^a\)	19.3	–	[117]
Green	530	30	89,500	3.4	3.31	13.9	[118]
	530\(^a\)	29	12,000	5.1	–	4.5	[119]
	548	33	3,000\(^a\)	6	2.4	2.8	[120]
	525	–	13,445	4	1.29	4.21	[121]
	530	–	283,996	3\(^a\)	18	–	[122]
Blue	462	24	1,990	3.6	0.6	0.3	[123]
	465	–	2,367	3.5\(^a\)	4.4	–	[124]

\(^a\)Estimated from the graph

Figure 4. EQEs of fluorescent, phosphorescent, and TADF OLEDs.

To improve their performance, several methods have been proposed for QLED displays, such as using co-solvents, additives, and post-annealing [109, 111, 114]. Still, because of recent several efforts to improve ink formulation and morphology, improvements, the EQE performance of red-, green-, and blue-emitting inkjet-printed QLEDs has already reached 19.3%, 18.0%, and 4.4%, respectively [119]. Table 8 summarizes their performance.

4. Progress of OLEDs

In the field of OLEDs, device and material technologies that utilize triplet excitons for high EQE have been mainly developed. To improve efficiency, triplet exciton utilizing such mechanisms as phosphorescence, thermally activated delayed fluorescence (TADF), and hyperfluorescence (HF) have been mostly investigated. Improvements...
Table 9. Device Performance of Fluorescent OLEDs and TADF OLEDs in 2021.

EQE (%)	CE (cd/A)	Color coordinates	Lifetime (h)	Ref.							
[1000 cd/m²]	(Max)	[1000 cd/m²]	(Max)	x	y						
Fluorescent											
Blue	–	17.4	–	26.2	0.14	0.22	–	[121]			
Red	8.3	10.7	–	–	0.15	0.09	–	[122]			
Green	6.4	31.7	14.2	71.0	0.55	0.45	–	[123]			
–	19.5	30.3	–	13.4	0.69	0.31	–	[124]			
–	16.4	33.7	–	–	0.54	0.46	–	[125]			
–	29.1	39.1	–	–	0.38	0.55	–	[126]			
–	21.2	29.8	–	71.9	0.13	0.53	–	[127]			
–	22.3	24.5	75.3	79.6	0.34	0.57	93.4	99.4	[129]		
TADF											
Red	6.4	31.7	14.2	71.0	0.55	0.45	–	[123]			
Green	19.5	30.3	–	13.4	0.69	0.31	–	[124]			
–	16.4	33.7	–	–	0.54	0.46	–	[125]			
–	29.1	39.1	–	–	0.38	0.55	–	[126]			
–	21.2	29.8	–	71.9	0.13	0.53	–	[127]			
–	22.3	24.5	75.3	79.6	0.34	0.57	93.4	99.4	[129]		
Green											
Blue	29.1	39.1	–	–	0.15	0.09	–	[121]			
–	19.5	30.3	–	13.4	0.69	0.31	–	[124]			
–	16.4	33.7	–	–	0.54	0.46	–	[125]			
–	29.1	39.1	–	–	0.38	0.55	–	[126]			
–	21.2	29.8	–	71.9	0.13	0.53	–	[127]			
–	22.3	24.5	75.3	79.6	0.34	0.57	93.4	99.4	[129]		
Blue											
–	26.0	34.4	23.2	31.0	0.12	0.11	–	[136]			
–	26.0	34.4	23.2	31.0	0.12	0.11	–	[136]			
–	17.2	19.4	24.0	26.0	0.64	0.36	37.000	37.000	(1,000 cd/m², LT95)	(1,000 cd/m², LT95)	[137]
–	–	32.0	–	–	0.56	0.35	37.000	37.000	(1,000 cd/m², LT95)	(1,000 cd/m², LT95)	[137]
–	20.6	19.0	–	–	0.26	0.18	41.9	41.9	(1,000 cd/m², LT90)	(1,000 cd/m², LT90)	[138]
–	18.9	19.0	–	–	0.26	0.18	41.9	41.9	(1,000 cd/m², LT90)	(1,000 cd/m², LT90)	[138]
–	34.5	39.3	–	–	0.12	0.15	–	[132]			
–	34.5	39.3	–	–	0.12	0.15	–	[132]			
–	26.6	27.0	–	–	0.15	0.29	275	275	(1,000 cd/m², LT90)	(1,000 cd/m², LT90)	[132]
–	–	43.0	–	–	–	–	–	–			
–	29.1	38.8	22.5	30.0	0.12	0.15	–	[134]			
–	32.0	41.0	59.0	72.0	0.13	0.16	–	[134]			
–	25.2	33.0	–	–	0.14	0.23	–	[134]			
–	21.4	29.3	–	32.8	0.12	0.09	–	[134]			
–	21.9	34.4	–	38.9	0.12	0.09	–	[134]			
–	23.3	27.3	27.9	31.2	0.13	0.16	–	[134]			
–	14.3	16.9	24.6	28.9	0.13	0.27	–	[134]			
–	25.4	32.2	25.1	32.0	0.11	0.14	–	[144]			
–	25.4	32.2	25.1	32.0	0.11	0.14	–	[144]			

in their external quantum efficiencies (EQEs) are plotted in Figure 4.

4.1. Fluorescent OLEDs

Development of fluorescent OLEDs has been focused on the use of thermally activated delayed fluorescence (TADF) compounds as the emitters or assistant dopants of hyperfluorescence (HF) devices. For fluorescence devices, only singlet excitons can generally be utilized for light emission with a maximum exciton utilization efficiency of 25%. To improve this, assistant dopant that can harvest generated triplet excitons as radiative excitons is being co-doped in the emission layer to harness all the singlet excitons of the final fluorescent dopant. This emission process is called hyperfluorescence.
Table 10. Device Performance of PhOLEDs in 2021.

	EQE (%)	CE (cd/A)	Color coordinates	Lifetime (h)	Ref.			
	[1000 cd/m²]	[Max]	[1000 cd/m²]	[Max]	x	y	(1,000 cd/m², LT95)	
Red								
	29.1	31.4	–	60.0	0.61	0.39	–	[145]
	25.9	30.4	–	50.0	0.62	0.38	–	[145]
	25.9	28.0	46.1	50.0	0.61	0.39	–	[146]
	26.2	28.0	46.7	49.5	0.61	0.39	–	[146]
	–	25.0	–	–	0.70	0.30	55,000	[147]
Green								
	19.0	22.5	69.1	81.7	–	–	22755	[148]
	–	25.0	–	–	0.42	0.56	(1,000 cd/m², LT50)	[147]
Blue								
	19.9	21.0	–	23.5	0.14	0.12	1.8	[149]
	–	–	47.0	–	0.18	0.42	(100 cd/m², LT50)	[150]
	24.7	31.9	40.9	52.9	0.14	0.18	10,700	[152]
	25.6	27.6	–	–	0.12	0.13	(1,000 cd/m², LT50)	[151]
	–	–	23.4 (500 cd/m²)	25.1	–	–	232	[153]

Table 11. Performance of soluble OLED device in 2021.

	EQE (%)	CE (cd/A)	Color coordinates	Lifetime (h)	Ref.			
	[1000 cd/m²]	[Max]	[1000 cd/m²]	[Max]	x	y	(1,000 cd/m², LT95)	
Red								
	31.1	–	40.0	–	0.68	0.32	8,300	[154]
Green								
	26.7	–	108.7	–	0.25	0.71	7,000	[154]
Blue								
	7.5	–	4.9	–	0.13	0.07	510	[154]
	19	21.8	–	46.5	0.17	0.35	–	[155]
	7.1	25.8	18.3	64.8	0.21	0.42	–	[156]

By employing narrow-emitting TADF or fluorescent materials as the final emitters instead of conventional fluorescence emitters, the progress of the device performance of hyperfluorescence devices has been remarkable during the last two years. For them, TADF or phosphors have been mostly employed as the assistant dopants. The external quantum efficiency (EQE) of the HF devices goes over 30% and their lifetime improvement was also significant. In the case of conventional blue fluorescence emitters using hot exciton channels, a record-breaking EQE of over 17% has been reported. Table 9 summarizes the performance of fluorescent OLEDs achieved in 2021.

4.2. Phosphorescent OLEDs (PhOLEDs)

Progress in the performance of PhOLEDs has been mostly achieved in the blue devices. The device lifetime of the blue PhOLEDs has been upgraded through better host and dopant engineering, but it is clear that further extension of the device lifetime is still needed. In case of hosts for long-lifetime blue PhOLEDs, mixed hosts such as exciplex host, electroplex host, and TADF host with high triplet energy have been investigated. Table 10 summarizes the EQE and lifetime data of PhOLED devices.

4.3. Soluble OLEDs

The industry has demonstrated gradual improvement in the performance of soluble OLEDs. Both spin-coating and ink-jet printing processes were used, but dramatic performance improvement of the devices was seen when they used ink-jet printing technology. The EQEs of the red, green, and blue ink-jet printed devices at 1,000 cd/m² reached 31.1%, 26.7% and 7.5%, respectively.
5. The outlook for AR and VR displays

In the last couple of years, AR and VR displays have achieved significant advancements. When they applied the HOEs and the LC-based holographic gratings in various configurations, the the FOV as well as the eyebox and angular resolution of the AR NEDs were significantly enhanced. The VR NEDs realized the polarization dependent optics and the sub-cm thickness of lenslet array they needed while maintaining their wide FOV. The image quality and the computation speed of holographic displays were enhanced significantly by their application of deep-learning techniques. The continuing development of the AR and VR displays is expected with the use of the non-conventional and multi-functional optical elements coupled with even better computational display techniques.

Owing to the recent advances in QDs and QLEDs, the performance of QLEDs—even those that use Cadmium-free QDs—are now almost comparable to the competing technologies. Furthermore, the continuing heightened research on inkjet-printed QLEDs is expected to further brighten the market prospects of full-color QLED displays. Significant progress was attained in phosphor or TADF sensitized fluorescent OLEDs with the development of new materials and device structures for them. The performance of the blue OLED has been dramatically improved, and it is anticipated that its further development will lead to a much wider commercialization of a high-efficiency blue OLED technology.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Prof. Jun Yeob Lee received his Ph.D from Seoul National University in Korea in 1998. After postdoctoral studies at the Rensselaer Polytechnic Institute (1998 – 1999), he joined Samsung SDI and in six years developed the active matrix organic light emitting diode. He worked thereafter as professor at the Department of Polymer Science and Engineering of Dankook University, and in 2015 onwards he joined the faculty of Sungkyunkwan University’s School of Chemical Engineering where he teaches as a professor. His main research areas are the synthesis of organic electronic materials and the development of novel device structures for organic electronic devices.

Ho Jin Jang received his B.S. degree in 2013 from the Department of Chemical Engineering at Sungkyunkwan University in South Korea. He is now a candidate for Ph.D degree at Sungkyunkwan University’s School of Chemical Engineering. His main research areas are the fabrication of organic light-emitting diodes by solution process and thermal vacuum evaporation.

Geun Woo Baek received his Ph.D in Electrical and Computer Engineering in 2021 from Seoul National University (SNU) in South Korea. He is currently a post-doctoral researcher at SNU with current research interests in quantum dot light-emitting diodes, 1D/2D thin-film transistors, and neuromorphic devices.

Jeonghun Kwak received his B.S. in Electrical Engineering in 2005 and his Ph.D in 2020 from Seoul National University. After one year of post-doctoral studies at SNU, he worked as assistant professor at the Dong-A University’s Department of Electronic Engineering from 2011 to 2015 and at the University of Seoul’s School of Electrical and Computer Engineering from 2015 to 2019. Since March 2019 he has been with Seoul National University’s Department of Electrical and Computer Engineering. His current research interests are in opto- and nano-electronic devices such as organic and colloidal quantum dot light-emitting diodes, organic thermoelectric devices, and neuromorphic devices based on organic molecules, polymers, and low-dimensional materials.

Jae-Hyeung Park received his Bachelor of Science, Masters in Science and Ph.D from Seoul National University in 2000, 2002, and 2005, respectively. He joined Samsung Electronics in 2005 and worked on the development of motion-blur reduction techniques for liquid crystal displays. He joined the faculty of Chungbuk National University in 2007, and in 2013 he joined the faculty of Inha University where he is now a professor. He has been working on the acquisition, processing, and display of three-dimensional information using holography and light field techniques, and his more recent research focuses on AR and VR near-eye-displays.

References

[1] B.C. Kress, Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (SPIE Press, Bellingham, 2020).
[2] J. Xiong, E.-L. Hsiang, Z. He, T. Zhang, and S.-T. Wu, Augmented reality and virtual reality displays: emerging technologies and future perspectives, Light: Sci. Appl. 10, article 216 (2021).
[3] X. Hu, and H. Hua, High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics, Opt. Express 22, 13896–13903 (2014).
[4] A.D. Hwang, and E. Peli, An augmented-reality edge enhancement application for Google glass, Optom. Vis. Sci 91, 1021–1030 (2014).
[5] H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation, Opt. Express 23, 32025–32034 (2015).
[6] B.C. Kress, and W.J. Cummings, 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation, Digital Optical Technol. 2017, 103350K (2017).
[7] A. Mainmone, A. Georgiou, and J.S. Kollin, Optical architecture of hololens mixed reality headset, ACM Trans. Graph 36, article 85 (2017).
[8] C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina, ACM Trans. Graph 36, article 190 (2017).
[9] K. Aksit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, Near-eye varifocal augmented reality display using see-through screens, ACM Trans. Graph. 36, article 1 (2017).
[10] https://magic-leap.reality.news/news/magic-leap-one-field-view-specs-finally-uncovered-0186278/.
[11] G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, Metasurface eye-piece for augmented reality, Nat. Commun 9, article 4562 (2018).
[12] https://www.nreal.ai/old-press/nreal-light-announcement/.
[13] https://www.pimax.com/pages/pimax-8k-series
[14] S. Lee, Y. Jo, D. Yoo, J. Cho, D. Lee, and B. Lee, Tomographic near-eye displays, Nat. Commun. 10, article 2497 (2019).
[15] J. Kim, Y. Jeong, M. Stengel, K. Aksit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, Z. Majercik, P. Shirley, J. Spjut, M. McGuire, and D. Luebke, Foveated AR: dynamically-foveated augmented reality display, ACM Trans. Graph 38, article 99 (2019).
[16] https://www.microsoft.com/en-us/hololens
[17] https://www.oculus.com/quest-2/
[18] S. Lee, M. Wang, G. Li, L. Lu, Y. Sulai, C. Jang, and B. Silverstein, Foveated near-eye display for mixed reality using liquid crystal photons, Sci. Rep 10, article 16127 (2020).
[19] https://www.tiltfive.com/the-system#tech-specs
[20] K. Bang, Y. Jo, M. Chae, and B. Lee, Lenslet VR: thin, flat and wide-FOV virtual reality display using fresnel lens and lenslet array, IEEE Trans. Vis. Computer Graph 27, 2545–2554 (2021).
[21] O. Cakmakci, Y. Qin, P. Bosel, and G. Wetzstein, Holographic pancake optics for thin and lightweight optical see-through augmented reality, Opt. Express 29, 35206–35215 (2021).
[22] M. Hillenbrand, W. Singer, H. Munz, and N. Kerwien, See-through near to eye displays: challenges and solution paths, 59th Ilmenau Scientific Colloquium, (11-15 Sep. 2017).
[23] B. Lee, C. Yoo, and J. Jeong, Holographic optical elements for augmented reality systems, Proc. SPIE 11551, 1155103 (2020).
[24] Y. Li, T. Zhang, Z. Yang, C. Xu, P.L. LiKamWa, K. Li, and S.-T. Wu, Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics, Opt. Express 29, 6011–6020 (2021).
[25] J. Zou, T. Zhan, J. Xiong, and S.-T. Wu, Broadband wide-view Pancharatnam-Berry phase deflector, Opt. Express 28, 4921–4927 (2020).
[26] J. Jeong, C.-K. Lee, B. Lee, S. Lee, S. Moon, G. Sung, H.-S. Lee, and B. Lee, Holographically printed freeform mirror array for augmented reality near-eye display, IEEE Photonics Technol. Lett 32, 991–994 (2020).
[27] C. Jang, O. Mercier, K. Bang, G. Li, Y. Zhao, and D. Lanman, Design and fabrication of freeform holographic optical elements, ACM Trans. Graphics 39, article 184 (2020).
[28] C. Yoo, K. Bang, M. Chae, and B. Lee, Extended-view-angle waveguide near-eye display with a polarization-dependent steering combiner, Opt. Lett 45, 2870–2873 (2020).
[29] S. Moon, S.-W. Nam, Y. Jeong, C.-K. Lee, H.-S. Lee, and B. Lee, Compact augmented reality combiner using Pancharatnam-Berry phase lens, IEEE Photonics Technol. Lett. 32, 235–238 (2020).
[30] K. Yin, Z. He, K. Le, and S.-T. Wu, Doubling the FOV of AR displays with a liquid crystal polarization-dependent combiner, Opt. Express 29, 11512–11519 (2021).
[31] J. Xiong, Y. Li, K. Li, and S.-T. Wu, Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses, Opt. Lett 46, 1760–1763 (2021).
[32] T. Lin, T. Zhan, J. Zou, F. Fan, and S.-T. Wu, Maxwellian near-eye display with an expanded eyebbox, Opt. Express 28, 38616–38625 (2020).
[33] C. Yoo, M. Chae, S. Moon, and B. Lee, Retinal projection type lightguide-based near-eye display with switchable viewpoints, Opt. Express 28, 3116–3135 (2020).
[34] Y. Jo, C. Yoo, K. Bang, B. Lee, and B. Lee, Eye-box extended retinal projection type near-eye display with multiple independent viewpoints, Appl. Opt 60, A268–A276 (2021).
[35] J. Yeom, J. Hong, and J. Jeong, Projection-type see-through near-to-eye display with a passively enlarged eye-box by combining a holographic lens and diffuser, Opt. Express 29, 36005–36020 (2021).
[36] C. Yoo, J. Xiong, S. Moon, D. Yoo, C.-K. Lee, S.-T. Wu, and B. Lee, Foveated display system based on double geometric phase lens, Opt. Express 28, 23690–23702 (2020).
[37] Y. Li, Q. Yang, J. Xiong, K. Li, and S. Wu, Dual-depth augmented reality display with reflective polarization dependent lenses, Opt. Express 29, 31478–31487 (2021).
[38] K.-S. Shin, M.-H. Choi, J. Jang, and J.-H. Park, Waveguide-type see-through dual focus near-eye display with a polarization grating, Opt. Express 29, 40294–40309 (2021).
[39] D. Lanman, Display systems research at facebook reality labs (conference presentation). In Proc. SPIE 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) (SPIE, San Francisco, California, United States, 2020).
[40] J. Yeom, Y. Son, and K. Choi, Crosstalk reduction in voxels for a see-through holographic waveguide by using integral imaging with compensated elemental images, Photonics 8, 217 (2021).
[41] X. Wang, and H. Hua, Depth-enhanced head-mounted light field displays based on integral imaging, Opt. Lett 46, 985–988 (2021).

[42] H. Hua, and M.-H. Choi, M.-H. Choi, Y.-G. Ju, and J.-H. Park, A holographic near-eye display with continuously expanded eyebbox using two-dimensional replication and angular spectrum wrapping, Opt. Express 28, 533–547 (2020).

[43] G. Kuo, L. Waller, R. Ng, and A. Maimone, High resolution etendue expansion for holographic displays, ACM Trans. on Graph 39, article 66 (2020).

[44] A. Cem, M.K. Hedili, E. Ulusoy, and G. Wetzstein, Foveated near-eye display using computational holography, Sci. Rep 10, 14905 (2020).

[45] J. Lee, J. Jeong, J. Cho, D. Yoo, B. Lee, and B. Lee, Deep neural network for multi-depth hologram generation and its training strategy, Opt. Express 28, 27137–27154 (2020).

[46] L. Shi, B. Li, C. Kim, P. Kellnhofer, and W. Matusik, Neural holography with camera-in-the-loop training, ACM Trans. on Graph 39, article 185 (2020).

[47] S. Choi, M. Gopakumar, Y. Peng, J. Kim, and G. Wetzstein, Neural 3D holography: Learning accurate wave propagation models for 3D holographic virtual and augmented reality displays, ACM Trans. on Graph 40, 240 (2021).

[48] D. Kim, S.-W. Nam, K. Bang, B. Lee, S. Lee, Y. Jeong, J.-M. Seo, and B. Lee, Vision-correcting holographic display: evaluation of aberration correcting hologram, Biomedical Optics Express 12, 5179–5195 (2021).

[49] S.-g. Park, Augmented and mixed reality optical see-through combiners based on plastic optics, Inf. Disp 37, 6–11 (2021).

[50] J. Ratcliff, A. Supikov, S. Alfaro, and R. Azuma, ThinVR: heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays, IEEE Trans. Vis. Comput. Graph 26, 1981–1990 (2020).

[51] A. Maimone, and J. Wang, Holographic optics for thin and lightweight virtual reality, ACM Trans. Graph 39, article 67 (2020).

[52] Z. Li, P. Lin, Y.-W. Huang, J.-S. Park, W.T. Chen, Z. Shi, C.-W. Qu, J.-X. Cheng, and F. Capasso, Meta-optics achieves RGB-achromatic focusing for virtual reality, Science Advances 7, eabe4458 (2021).

[53] B. Krajancich, N. Padmanaban, and G. Wetzstein, Factored Occlusion: Single Spatial Light Modulator Occlusion-capable Optical See-through Augmented Reality Display, IEEE Trans. Vis. Comput. Graph 26, 1871 (2020).

[54] Y.-G. Ju, M.-H. Choi, P. Liu, B. Hellman, T.L. Lee, Y. Takashima, and J.-H. Park, Occlusion-capable optical-see-through near-eye display using a single digital micromirror device, Opt. Lett 45, 3361–3364 (2020).

[55] M. Chae, K. Bang, Y. Jo, G. Yoo, and B. Lee, Occlusion-capable see-through display without the screen-door effect using a photochromic mask, Opt. Lett 46, 4554–4557 (2021).

[56] Y. Zhang, X. Hu, K. Kiyokawa, N. Isoyama, N. Sakata, and H. Hua, Optical see-through augmented reality displays with wide field of view and hard-edge occlusion by using paired conical reflectors, Opt. Lett 46, 4208–4211 (2021).

[57] Y. Hiroi, T. Kaminokado, S. Ono, and Y. Itoh, Focal surface occlusion, Opt. Express 29, 36581–36597 (2021).

[58] Y. S. Park, V. I. Klimov, Nanocrystal quantum dots, 2nd ed. (CRC Press, Boca Raton, 2017).

[59] G. W. Bae, M.-G. Bawendi, and Y. Bulović, Emergence of colloidal quantum-dot light-emitting technologies, Nat. Photonics 7, 13–23 (2013).

[60] J. Lim, Y.S. Park, and V.I. Klimov, Optical gain in colloidal quantum dots achieved with direct-current electrical pumping, Nat. Mater 17, 42–49 (2018).

[61] O.V. Kozlov, Y.S. Park, J. Roh, I. Fedin, T. Nakotte, and V.I. Klimov, Single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity, Science 365, 672–675 (2019).

[62] V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, and A. Piryatinski, Single-exciton optical gain in semiconductor nanocrystals, Nature 447, 441–446 (2007).

[63] G.W. Baek, S.G. Seo, D. Hahn, W.K. Bae, J. Kwak, S.H. Jin, and H. Efficient, Surface Ligand Modified Quantum Dot Light-Emitting Diodes Driven by Type-Controllable MoTe2 Thin Film Transistors via Electron Charge Enhancer, Adv. Electron. Mater 7, 2100535 (2021).

[64] E.H. Sargent, Colloidal quantum dot solar cells, Nat. Photonics 6, 133–135 (2012).

[65] C.-H.M. Chuang, P.R. Brown, V. Bulović, and M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater 13, 796–801 (2014).

[66] J.K. Jaiswal, E.R. Goldman, H. Mattoussi, and S.M. Simon, Use of quantum dots for live cell imaging, Nat. methods 1, 73–78 (2004).

[67] S.H. Kim, G.W. Baek, J. Yoon, S. Seo, J. Park, D. Hahn, J.H. Chang, D. Seong, H. Seo, S. Oh, K. Kim, H. Jung, Y. Oh, H.W. Baac, B. Alimkhanuly, W.K. Bae, S. Lee, M. Lee, J. Kwak, J.-H. Park, and D. Son, A Biologically Stretchable Sensory-Neuromorphic System, Adv. Mater 33, 2104690 (2021).

[68] V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature 370, 354–357 (1994).

[69] J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee, and C. Lee, Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure, Nano Lett 12, 2362–2366 (2012).

[70] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature 515, 96–99 (2014).

[71] W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, Highly stable QLEDs with improved hole injection
via quantum dot structure tailoring, Nat. Commun. 9, 2608 (2018).

[74] Q. Su, Y. Sun, H. Zhang, and S. Chen, Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes, Adv. Sci 5, 1800549 (2018).

[75] H. Moon, and H. Chae, Efficiency Enhancement of All-Solution-Processed Inverted-Structure Green Quantum Dot Light-Emitting Diodes Via Partial Ligand Exchange with Thiophenol Derivatives Having Negative Dipole Moment, Adv. Opt. Material 8, 1901314 (2020).

[76] J. Song, O. Wang, H. Shen, Q. Lin, Z. Li, L. Wang, X. Zhang, and L.S. Li, Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer, Adv. Funct. Mater 29, 1808377 (2019).

[77] J.R. Manders, L. Qian, A. Titov, J. Hyvonen, J.T. Scott, K.P. Acharya, Y. Yang, W. Cao, Y. Zheng, J. Xue, and P.H. Holloway, High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays, J. Soc. Inf. Disp 23, 523–528 (2015).

[78] Z. Li, Y.H. Hu, H. Shen, Q. Lin, L. Wang, H. Wang, W. Zhao, and L.S. Li, Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots, Laser Photon. Rev 11, 1600277 (2017).

[79] X. Li, Y.B. Zhao, F. Fan, L. Levina, M. Liu, R.Q. Bermudez, X. Gong, L.N. Quan, J.Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.H. Lu, and E.H. Sargent, Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination, Nat. Photonics 12, 159–164 (2018).

[80] Z. Yang, Q. Wu, G. Lin, X. Zhou, W. Wu, X. Yang, J. Zhang, and W. Li, All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime, Mater. Horiz 6, 2009–2015 (2019).

[81] Y. Sun, Q. Su, H. Zhang, F. Wang, S. Zhang, and S. Chen, Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes, ACS Nano 13, 11433–11442 (2019).

[82] H. Shen, W. Cao, N.T. Shewmon, C. Yang, L.S. Li, and J. Xue, High-Efficiency, Low-Turn-on Voltage Blue-Violet Quantum Dot-Based Light-Emitting Diodes, Nano Lett 15, 1211–1216 (2015).

[83] L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu, Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency, ACS Appl. Mater. Interfaces 9, 38755–38760 (2017).

[84] Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L.S. Li, Nonlinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process, ACS Photonics 5, 939–946 (2018).

[85] D. Li, J. Bai, T. Zhang, C. Chang, X. Jin, Z. Huang, B. Xu, and Q. Li, Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance, Chem. Commun 55, 3501–3504 (2019).

[86] S. Rhee, J.H. Chang, D. Hahm, B.G. Guk, J. Kim, H. Lee, J. Lim, E. Hwang, J. Kwak, and W.K. Bae, Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation, Acs Nano 14, 17496–17504 (2020).

[87] H. Liu, J. Zou, X. Zhu, X. Li, H. Ni, Y. Liu, H. Tao, M. Xu, L. Wang, and J. Peng, Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots, Org. Electron 99, 106344 (2021).

[88] Y. Zhang, Z. Li, F. Wang, Q. Lin, and M. Zhao, To improve the performance of green light-emitting devices by enhancing hole injection efficiency, Chem. Eng. J. Adv 5, 100082 (2021).

[89] G. Ba, Q. Xu, X. Li, Q. Lin, H. Shen, and Z. Du, Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering, Opt. Express 29, 12169–12178 (2021).

[90] B. Zhao, L. Chen, W. Liu, L. Wu, Z. Lu, and W. Cao, High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification, RSC Adv 11, 14047–14052 (2021).

[91] T. Lee, B. J. Kim, H. Lee, D. Hahm, W. K. Bae, J. Lim, J. Kwak, Bright and Stable Quantum Dot Light-Emitting Diodes, Adv. Mater. (2021). doi:10.1002/adma.202106276

[92] J.H. Jo, J.H. Kim, K.H. Han, E.P. Jang, Y.R. Do, and H. Yang, High Efficiency Red Electroluminescent Device Based on Multiselled InP Quantum Dots, Opt. Lett 41, 3984–3987 (2016).

[93] F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core–Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes, Chem. Mater 30, 8002–8007 (2018).

[94] T. Lee, D. Hahm, K. Kim, W.K. Bae, C. Lee, and J. Kwak, Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer, Small 15, 1905162 (2019).

[95] Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence, J. Am. Chem. Soc 141, 6448–6452 (2019).

[96] Y.H. Won, O. Cho, T. Kim, D.Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, and E. Jang, Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes, Nature 575, 634–638 (2019).

[97] H.C. Wang, H. Zhang, H.Y. Chen, H.C. Yeh, M.R. Tseng, R.J. Chung, S. Chen, and R.S. Liu, Cadmium-Free InP/ZnSe/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10,000 cd m−2, Small 13, 1603962 (2017).

[98] Y. Kim, B. Heyne, A. Gfensner, Y. Park, M. Kang, S. Ahn, B. Lee, and A. Wedel, P-110: Efficient InP-based Quantum Dot Light Emitting Diodes utilizing a Crosslinkable Hole Transport Layer, SID Int. Symp. Dig. Tech. Pap 49, 1625–1628 (2018).

[99] J. Lim, M. Park, W.K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots, ACS nano 7, 9019–9026 (2013).

[100] H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L.S. Li, H. Shen, F. Teng, and Z. Du, High-Efficiency Green InP Quantum Dot-Based
Electroluminescent Device Comprising Thick-Shell Quantum Dots, Adv. Opt. Mater. 7, 1801602 (2019).

[101] H. Moon, W. Lee, J. Kim, D. Lee, S. Cha, S. Shin, and H. Chae, Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes, Chem. Commun. 55, 13299–13302 (2019).

[102] W.-C. Chao, T.-H. Chiang, Y.-C. Liu, Z.-X. Huang, C.-C. Liao, C.-H. Chu, C.-H. Wang, H.-W. Tseng, W.-Y. Hung, and P.-T. Chou, High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility, Commun. Mater. 2, 96 (2021).

[103] D. Li, J. Feng, Y. Zhu, Z. Lu, C. Pei, Z. Chen, Y. Li, X. Li, and X. Xu, Enhanced efficiency of top-emission InP-based green quantum dot light-emitting diodes with optimized angular distribution, Nano Research 14, 4243–4249 (2021).

[104] M.G. Han, Y. Lee, H.-i. Kwon, H. Lee, T. Kim, Y.-H. Won, and E. Jang, InP-Based Quantum Dot Light-Emitting Diode with a Blended Emissive Layer, ACS Energy Lett 6, 1577–1585 (2021).

[105] C. Ippen, B. Newmeyer, D. Zehnder, D. Kim, D. Barrera, C. Hotz, and R. Ma, 58-1: Invited Paper: Progress in High-Efficiency Heavy-Metal-Free QD-LED Development, SID Int. Symp. Dig. Tech. Pap. 51, 858–861 (2020).

[106] J.E. Yeom, D.H. Shin, R. Lamände, Y.H. Jung, N.N. Mude, J.H. Park, and J.H. Kwon, Good Charge Balanced Inverted Red InP/ZnSe/ZnS Quantum Dot Light-Emitting Diode with New High Mobility and Deep HOMO Level Hole Transport Layer, ACS Energy Lett 5, 3868–3875 (2020).

[107] E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters, ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

[108] C.-Y. Han, S.-H. Lee, S.-W. Song, S.-Y. Yoon, J.-H. Jo, D.-Y. Jo, H.-M. Kim, B.-J. Lee*, H.-S. Kim, and H. Yang, More Than 9% Efficient ZnSeTe Quantum Dot-Based Blue Electroluminescent Devices, ACS Energy Lett 5, 1568–1576 (2020).

[109] T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, and E. Jang, Efficient and stable blue quantum dot light-emitting diode, Nature 586, 385–389 (2020).

[110] Y. Liu, F. Li, Z. Xu, C. Zheng, T. Guo, X. Xie, L. Qian, D. Fu, and X. Yan, Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Inkjet Printing Technique, ACS Appl. Mater. Interfaces 9, 25506–25512 (2017).

[111] C. Jiang, L. Mu, J. Zou, Z. He, Z. Zhong, L. Wang, M. Xu, J. Peng, and Y. Cao, Full-color quantum dots active matrix display fabricated by ink-jet printing, Sci. China Chem 60, 1349–1355 (2017).

[112] C. Xiang, L. Wu, Z. Lu, M. Li, Y. Wen, Y. Yang, W. Liu, T. Zhang, W. Cao, S. Tsang, B. Shan, X. Yan, and L. Qian, High efficiency and stability of ink-jet printed quantum dot light emitting diodes, Nat. Commun 11, 1646 (2020).

[113] H. Li, Y. Duan, Z. Shao, G. Zhang, H. Li, Y. Huang, and Z. Yin, High-Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee-Ring-Free Quantum Dot Film, Adv. Mater. Technol 5, 2000401 (2020).

[114] H. Tang, S. Jia, S. Ding, P. Liu, J. Ma, X. Xiao, X. Qu, H. Liu, H. Yang, B. Xu, W. Chen, G. Li, Z. Pikramenou, C. Anthony, K. Wang, and X. Wei Sun, Improved Ink-Jet-Printed CdSe Quantum Dot Light-Emitting Diodes with Minimalized Hole Transport Layer Erosion, ACS Appl. Electron. Mater 3, 3005–3014 (2021).

[115] H. Roh, D. Ko, D.Y. Shin, J.H. Chang, D. Hahn, W.K. Bae, C. Lee, J.Y. Kim, and J. Kwak, Enhanced Performance of Pixelated Quantum Dot Light-Emitting Diodes by Inkjet Printing of Quantum Dot–Polymer Composites, Adv. Optical Mater 9, 2002129 (2021).

[116] M. Chen, L. Xie, C. Wei, Y.-Q. Qi, X. Chen, J. Yang, J. Zhuang, F. Li, W. Su, and Z. Cui, High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system, Nano Research 14, 4125–4131 (2021).

[117] C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices, ACS Appl. Mater. Interfaces 8, 26162–26168 (2016).

[118] P. Yang, L. Zhang, D.J. Kang, R. Strahl, and T. Kraus, High-Resolution Inkjet Printing of Quantum Dot Light-Emitting Microdiode Arrays, Adv. Optical Mater 8, 1901429 (2020).

[119] Y.J. Han, D.Y. Kim, K. An, K.-T. Kang, B.-K. Ju, and K.H. Cho, Sequential Improvement from Cosolvents Ink Formulation to Vacuum Annealing for Ink-Jet Printed Quantum-Dot Light-Emitting Diodes, Materials 13, 4754 (2020).

[120] S. Jia, H. Tang, J. Ma, S. Ding, X. Qu, B. Xu, Z. Wu, G. Li, P. Liu, K. Wang, and X.W. Sun, High Performance Inkjet-Printed Quantum-Dot Light-Emitting Diodes with High Operational Stability, Adv. Optical Mater 9, 2101069 (2021).

[121] C. Lin, P. Han, S. Xiao, F. Qu, J. Yao, X. Qiao, D. Yang, Y. Dai, Q. Sun, D. Hu, A. Qin, Y. Ma, B.Z. Tang, and D. Ma, Efficiency Breakthrough of Fluorescence OLEDs by the Strategic Management of Hot Excitons at Highly Lying Excitation Triplet Energy Levels, Adv. Funct. Mater (2021).XXXI

[122] H. Zhang, J. Xue, C. Li, S. Zhang, B. Yang, Y. Liu, and Y. Wang, Novel Deep-Blue Hybridized Local and Charge-Transfer Host Emitter for High-Quality Fluorescence/Phosphor Hybrid Quasi-White Organic Light-Emitting Diode, Adv. Funct. Mater. 31, 2100704 (2021).

[123] X. Zeng, Y.-H. Huang, S. Gong, P. Li, W.-K. Lee, X. Xiao, Y. Zhang, C. Zhong, C.-C. Wu, and C. Yang, An unsymmetrical thermally activated delayed fluorescence emitter enables orange-red electroluminescence with 31.7% external quantum efficiency, Mater. Horiz 8, 2286–2292 (2021).

[124] Z. Li, D. Yang, C. Han, B. Zhao, H. Wang, Y. Man, P. Ma, P. Chang, D. Ma, and H. Xu, Optimizing Charge Transfer and Out-Coupling of A Quasi-Planar Deep-Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30%, Angew. Chem. Int. Ed. Engl 60, 14846–14851 (2021).

[125] Y. Liu, X. Xiao, Y. Ran, Z. Bin, and J. You, Molecular design of thermally activated delayed fluorescent emitters for narrowband orange-red OLEDs boosted
by a cyano-functionalization strategy, Chem. Sci 12, 9408–9412 (2021).

[126] Y. Chen, D. Zhang, Y. Zhang, X. Zeng, T. Huang, Z. Liu, G. Li, and L. Duan, Approaching Nearly 40% External Quantum Efficiency in Organic Light Emitting Diodes Utilizing a Green Thermally Activated Delayed Fluorescence Emitter with an Extended Linear Donor-Acceptor-Donor Structure, Adv. Mater 33, 2103293 (2021).

[127] Y. Xu, Q. Wang, X. Cai, C. Li, and Y. Wang, Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers, Adv. Mater. 33, 2100652 (2021).

[128] S. Guo, W. Dai, X. Chen, Y. Lei, J. Shi, B. Tong, Z. Cai, and Y. Dong, Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems, ACS Mater. Lett. 3, 379–397 (2021).

[129] H.L. Lee, C.S. Oh, K.H. Lee, J.Y. Lee, and W.P. Hong, Lifetime-Extending 3-(4-Phenylbenzo[4,5][thieno[3,2-d]pyrimidin-2-y]l)benzonitrile Acceptor for Thermally Activated Delayed Fluorescence Emitters, ACS Appl. Mater. Interfaces 13, 2908–2918 (2021).

[130] T. Kamata, H. Sasabe, N. Ito, Y. Sukegawa, A. Arai, T. Chiba, D. Yokoyama, and J. Kido, Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters, J. Mater. Chem. C, 8, 7200–7210 (2020).

[131] D.H. Ahn, J.H. Maeng, H. Lee, H. Yoo, R. Lampande, J.Y. Lee, and J.H. Kwon, Rigid Oxygen-Bridged Boron-Based Blue Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode: Approach towards Satisfying High Efficiency and Long Lifetime Together, Adv. Opt. Mater 8, 2000102 (2020).

[132] H. Lee, and J. Hyuk Kwon, 26-1: Invited Paper: Boron Based Deep Blue TADF Materials and Hyperfluorescence Devices, SID Int. Symp. Dig. Tech. Pap 52, 321–323 (2021).

[133] J.S. Park, H. Min, J.U. Kim, and T. Yasuda, Deep-Blue OLEDs Based on Organoboron–Phenazasiline-Hybrid Delayed Fluorescence Emitters Concurrently Achieving 30% External Quantum Efficiency and Small Efficiency Roll-Off, Adv. Opt. Mater 9, 2101282 (2021).

[134] R. Braveenth, H. Lee, J.D. Park, K.J. Yang, S.J. Hwang, K.R. Naveen, R. Lampande, and J.H. Kwon, Achieving Narrow FWHM and High EQE Over 38% in Blue OLEDs Using Rigid Heteroatom-Based Deep Blue TADF Sensitized Host, Adv. Funct. Mater 31, 2105805 (2021).

[135] D.H. Ahn, S.W. Kim, H. Lee, I.J. Ko, D. Karthik, J.Y. Lee, J.H. Kwon, D.H. Ahn, S.W. Kim, H. Lee, I.J. Ko, D. Karthik, J.Y. Lee, and J.H. Kwon, Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors, Nat. Photonics 13, 540–546 (2019).

[136] Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, and T. Hatakeyama, Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter, Nat. Photonics 13, 678–682 (2019).

[137] J. Adachi, S. Otsu, H. Kakizoe, and T. Oyamada, 19-3: Lifetime Enhancement Toward Commercialization of Hyperfluorescence, SID Int. Symp. Dig. Tech. Pap 52, 232–235 (2021).

[138] Y.H. Jung, D. Karthik, H. Lee, J.H. Maeng, K.J. Yang, S. Hwang, and J.H. Kwon, A New BODIPY Material for Pure Color and Long Lifetime Red Hyperfluorescence Organic Light-Emitting Diode, ACS Appl. Mater. Interfaces 13, 17882–17891 (2021).

[139] X. Liu, X. Zhang, Y. Wu, H. Sun, S. Wang, and D. Wang, 26-4: High Performance Multiple-Sensitizing Process Red Hyperfluorescence Device with Assistant Emission Layer (AEL), SID Symposium Digest of Technical Papers 52, 332–335 (2021).

[140] X. Song, D. Zhang, Y. Zhang, Y. Lu, and L. Duan, Strategically Modulating Carriers and Excitons for Efficient and Stable Ultrapure-Green Fluorescent OLEDs with a Sterically Hindered BODIPY Dopant, Adv. Opt. Mater 8, 2000483 (2020).

[141] C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, and C. Adachi, Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission, Nat. Photonics 15, 203–207 (2021).

[142] S.O. Jeon, K.H. Lee, J.S. Kim, S.-G. Ihn, Y.S. Chung, J.W. Kim, H. Lee, S. Kim, H. Choi, and J.Y. Lee, High-efficiency, long-lifetime deep-blue organic light-emitting diodes, Nat. Photonics 15, 208–215 (2021).

[143] W.J. Chung, K.H. Lee, M. Jung, K.M. Lee, H.C. Park, M.S. Eum, and J.Y. Lee, Over 30,000 h Device Lifetime in Deep Blue Organic Light-Emitting Diodes with y Color Coordinate of 0.086 and Current Efficiency of 37.0 cd A−1, Adv. Opt. Mat 9, 2100203 (2021).

[144] S. Nam, J.W. Kim, H.J. Bae, Y.M. Maruyama, D. Jeong, J. Kim, J.S. Kim, W.J. Son, H. Jeong, J. Lee, S.G. Ihn, and H. Choi, Improved Efficiency and Lifetime of Deep-Blue Hyperfluorescent Organic Light-Emitting Diode using Pt(II) Complex as Phosphorescent Sensitizer, Adv Sci 8, 2100586 (2021).

[145] Z.A. Yan, X. Lin, S. Sun, X. Ma, and H. Tian, Activating Room-Temperature Phosphorescence of Organic Luminophores via External Heavy-Atom Effect and Rigidity of Ionic Polymer Matrix, Angew. Chem. Int. Ed. Engl 60, 19735–19739 (2021).

[146] S.-N. Liu, K.-N. Tong, Y. Zhao, J.-F. Cheng, M.-K. Fung, and J. Fan, Efficient red phosphorescent Ir(iii) complexes based on rigid ligands with high external quantum efficiency and low efficiency roll-off, J. Mater. Chem. C, 8, 6168–6175 (2020).

[147] Universal Display Corporation

[148] A. Arai, H. Sasabe, K. Nakao, Y. Masuda, and J. Kido, π-Extended Carbazole Derivatives as Host Materials for Highly Efficient and Long-Life Green Phosphorescent Organic Light-Emitting Diodes, Chemistry 27, 4971–4976 (2021).

[149] J.S. Huh, M.J. Sung, S.K. Kwon, Y.H. Kim, and J.J. Kim, Highly Efficient Deep Blue Phosphorescent OLEDs Based on Tetradentate Pt(II) Complexes Containing Adamantyl Spacer Groups, Adv. Funct. Mater 31, 2100967 (2021).

[150] J.H. Yun, K.H. Lee, W.J. Chung, J.Y. Lee, and J.J. Lyu, Thermally activated delayed fluorescence type
exciplex host for long lifetime in deep blue phosphorescent organic light-emitting diodes, Chem. Eng. J \textbf{417}, 128086 (2021).

[151] H. Shin, Y.H. Ha, H.G. Kim, R. Kim, S.K. Kwon, Y.H. Kim, and J.J. Kim, Controlling horizontal dipole orientation and emission spectrum of Ir complexes by chemical design of ancillary ligands for efficient deep-blue organic light-emitting diodes, Adv. Mater \textbf{31}, 1808102 (2019).

[152] Sumitomo, 2019 OLED KOREA CONFERENCE

[153] S.-G. Ihn, E.S. Kwon, Y. Jung, J.S. Kim, S. Nam, J. Kim, S. Kim, S.O. Jeon, Y.S. Chung, S. Park, D.H. Huh, H.J. Kim, H. Kang, N. Lee, H.J. Bae, and H. Choi, Cohosts with efficient host-to-emitter energy transfer for stable blue phosphorescent organic light-emitting diodes, J. Mater. Chem. C \textbf{9}, 17412–17418 (2021).

[154] S. Stolz, S. Meyer, A. Hayer, R. Linge, M. Engel, L.-I. Rodriguez, M. Hamburger, H.-R. Tseng, A. Jatsch, and R. Anémian, 22-1: Invited Paper: Latest Evolution of Small Molecule Based Emissive Layers for Ink Jet Printed OLED Displays, SID Int. Symp. Dig. Tech. Pap \textbf{52}, 264–266 (2021).

[155] X. Ban, F. Chen, J. Pan, Y. Liu, A. Zhu, W. Jiang, and Y. Sun, Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with All-Solution-Processed Organic Layers, Chemistry \textbf{26}, 3090–3102 (2020).

[156] F.-M. Xie, Z.-D. An, M. Xie, Y.-Q. Li, G.-H. Zhang, S.-J. Zou, L. Chen, J.-D. Chen, T. Cheng, and J.-X. Tang, tert-Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs, J. Mater. Chem. C \textbf{8}, 5769–5776 (2020).