INFRARED LUMINOSITY FUNCTION OF THE COMA CLUSTER

LEI BAI, GEORGE H. RIEKE, MARCIA J. RIEKE, JOANNAH L. HINZ, DOUGLAS M. KELLY, AND MYRA BLAYLOCK

Steward Observatory, University of Arizona, Tucson, AZ 85721; bail@as.arizona.edu

Received 2005 August 8; accepted 2005 November 14

ABSTRACT

Using mid-IR and optical data, we deduce the total infrared (IR) luminosities of galaxies in the Coma Cluster and present their IR luminosity function (LF). The shape of the overall Coma IR LF does not show significant differences from the IR LFs of the general field, which indicates the general independence of global galaxy star formation from environment up to densities ~40 times greater than in the field (we cannot test such independence above $L_{\text{IR}} \approx 10^{44}$ erg s$^{-1}$). However, a shallower faint-end slope and a smaller L_{IR} are found in the core region (where the densities are still higher) compared to the outskirts of the cluster, and most of the brightest IR galaxies are found outside the core region. The IR LF in the NGC 4839 group region does not show any unique characteristics. By integrating the IR LF, we find a total star formation rate in the cluster of about $97.0 \ M_\odot$ yr$^{-1}$. We also studied the contributions of early- and late-type galaxies to the IR LF. The late-type galaxies dominate the bright end of the LF, and the early-type galaxies, although only making up a small portion ($\approx 15\%$) of the total IR emission of the cluster, contribute greatly to the number counts of the LF at $L_{\text{IR}} < 10^{43}$ ergs s$^{-1}$.

Subject headings: galaxies: clusters: individual (Coma) — galaxies: luminosity function, mass function — infrared: galaxies

1. INTRODUCTION

Galaxy evolution is largely the story of how the masses, morphologies, and patterns of star formation in these objects vary with environment and cosmological epoch. Luminosity functions (LFs) are very important statistical tools for studying evolutionary changes in galaxy populations and provide key observational constraints on galaxy evolution. The infrared (IR) LF, in particular, by tracing the IR emission of dust heated by star-forming activities, remains one of the best probes to study the global evolution of the star formation rate (SFR) with environment and redshift. All the indicators show that the SFR is a strong function of epoch. The average SFR has declined by an order of magnitude with environment and cosmological epoch. The average SFR has declined by an order of magnitude with environment and cosmological epoch. The recent launch of Spitzer Space Telescope with the Multi-band Imaging Photometer (MIPS; Rieke et al. 2004), capable of high-resolution, large sky surveys with high sensitivity, provides us the capabilities necessary for thorough studies of the star-forming properties of dense galaxy clusters at different redshifts. In this paper, the first one of a series studying the IR LF of clusters up to $z \approx 0.8$ using MIPS 24 and 70 μm observations, we present the IR LF of the Coma Cluster. The Coma Cluster, as the nearest rich cluster, provides us an excellent chance to study the properties of the IR LF down to a very faint limit. It also enables us to study the change of IR LF in different regions of the cluster, as well as the contributions to the total IR LF from different types of galaxies. This paper shows how the cluster environment shapes the current star formation in this prototypical dense cluster, and it provides a foundation for the future studies of the SFR patterns in other clusters, both nearby and at high redshift. In the paper, we use the cosmological parameter set $(h, \Omega_0, \Lambda_0) = (0.7, 0.3, 0.7)$. We assume a distance modulus of $m - M = 35.0$ mag for the Coma Cluster at $z = 0.023$ (Struble & Rood 1999).

2. OBSERVATIONS AND DATA REDUCTION

We used MIPS to observe the Coma Cluster in medium scan map mode on 2004 June 6. Our map covered a 4 deg2 area centered at $\alpha = 12^h 59^m 27^s$, $\delta = +27^\circ 51' 53''$ (J2000.0), which included both the cluster core region and the NGC 4839 region. Figure 1 shows the region of the map. The 24 and 70 μm reductions were carried out with the MIPS Data Analysis Tool (Gordon et al. 2005). The total exposure time was about 88 s pixel$^{-1}$ for the 24 μm observations and about 40 s pixel$^{-1}$ for the 70 μm ones.

3. SOURCE DETECTION

SExtractor was applied to the images to detect sources automatically and to obtain photometry parameters. First, the images were analyzed and sky background models were built. Then the images were background-subtracted and filtered with Gaussian functions with the full width at half-maximum (FWHM) matching the FWHM of the MIPS 24 and 70 μm point-spread functions.
(PSFs). All the objects with values exceeding a certain threshold of local background were extracted. We set this detection threshold, relative to the rms background noise, at 0.65 for the 24 \(\mu \)m image and 2 for the 70 \(\mu \)m image. After deblending the adjacent objects and “cleaning” the artifacts due to bright objects, SExtractor gave a final catalog of sources. SExtractor provides several types of magnitude measurements. We adopted the MAG_BEST magnitude. In most of the cases, the MAG_BEST magnitude is measured in an adaptive aperture of 2.5 times the Kron aperture, but in crowded fields, it is measured in an isophotal aperture and corrected for aperture losses. In our data, few regions are crowded.

4. COMPLETENESS

The completeness of source detection affects the LF directly, so it is important to know the detection limit of the observations. Papovich et al. (2004) studied the source detection completeness of MIPS 24 \(\mu \)m images in several different fields. Among these fields, the Boötes image has almost the same exposure time as the Coma image and the background levels are also similar, with a mean value of 22.7 MJy sr\(^{-1}\) for the Boötes field and 33.4 MJy sr\(^{-1}\) for the Coma field. By inserting artificial sources in the images and performing source extraction on them, Papovich et al. (2004) found an 80% completeness flux density limit of 0.27 mJy in the Boötes field. As a rough approximation, a simple linear scaling with the square root of the background level gives us a detection limit of 80% completeness at 0.33 mJy for the Coma field.

At 70 \(\mu \)m, the Coma data were obtained at a lower detector bias than those in Boötes, resulting in an improvement in overall performance. Therefore, we ignore the background difference and adopt the completeness limit of about 80 mJy obtained in the Boötes field with the same exposure time (Dole et al. 2004).

5. MATCHING SPECTROSCOPIC SURVEYS OF THE COMA CLUSTER WITH 24 \(\mu \)m SOURCES

To study the infrared LF of the Coma Cluster galaxies, we used a spectroscopic sample so that cluster membership could be confirmed. Fortunately many spectroscopic surveys have been carried out in this region. Among them, the catalogs from Beijersbergen & van der Hulst (2003)\(^1\) and Mobasher et al. (2001) have the largest overlapping area with the MIPS 24 \(\mu \)m observations and also go to fairly deep detection limits. Beijersbergen & van der Hulst (2003) generated a catalog (hereafter the BvdHC) using all known Coma Cluster redshifts in a 5.2 deg\(^2\) region. This catalog covers almost the whole region of the MIPS 24 \(\mu \)m image except a few small patches at the edge and has a 93% completeness down to Sloan \(r' = 16.27 \) mag. Mobasher et al. (2001) performed spectroscopic observations on two rectangular regions, one at the cluster core and the other near the NGC 4839 group, each 32.5 \(\times \) 50.8 arcmin\(^2\). The core region is totally covered by MIPS observations, and the region near the NGC 4839 group is partly covered. Its completeness is about 65% for the bright galaxies (\(R < 17 \)) and decreases toward the faint end. The difference between the Sloan \(r' \) filter BvdHC used and the Cousins \(R \) filter Mobasher et al. (2001) used is small. Comparing the common objects in these two catalogs gives a difference of \(R - r' \sim 0.03 \) mag, so we do not differentiate them and just use \(R \) to refer to both of them in this paper. Furthermore, we complemented Mobasher’s catalog with the BvdHC down to \(R = 16.27 \) mag and generated a merged catalog in these regions (hereafter the MBC).

We selected all the galaxies from these two catalogs (the BvdHC and MBC) with 4000 km s\(^{-1}\) \(\leq \) cz \(\leq \) 10,000 km s\(^{-1}\) as cluster members (Colless & Dunn 1996) and cross-matched them with our 24 and 70 \(\mu \)m sources. Any 24 or 70 \(\mu \)m source within 10\(^\prime\) of the optical galaxy was identified as the IR emission from this galaxy. This search radius is about twice as large as the FWHM of the MIPS PSF at 24 \(\mu \)m and half of the FWHM at 70 \(\mu \)m. It allows a displacement in projected distance up to 5 kpc between the optical centers of galaxies and the peaks of their IR emission. About 90% of the cluster members with 24 \(\mu \)m emission above the completeness limit have a displacement between optical center and IR emission peak smaller than 5\(^\prime\), i.e., 2.5 kpc. When multiple identifications occurred, the one with the smallest distance from the optical galaxy was selected. Less than 2% of the sources had multiple identifications. Therefore, our final sample is not sensitive to the details of matching infrared and optical sources; few cases yield ambiguous associations, and moderate changes in the acceptance radius have little effect on the results.

Among the 498 Coma galaxies in the BvdHC within the MIPS 24 \(\mu \)m field, 217 have 24 \(\mu \)m counterparts. In the part of the field covered at 70 \(\mu \)m, 58 were detected out of 477 members. In the MBC, there were 123 galaxies detected at 24 \(\mu \)m out of 333 galaxies and 33 at 70 \(\mu \)m out of 302 galaxies. The number of galaxies detected in both bands was 56 for the BvdHC and 33 for the MBC. Although the total number of galaxies detected in the MBC is less than in the BvdHC, the overlapping area with MIPS observations is also smaller: it is about 0.8 deg\(^2\) for the MBC and about 3 deg\(^2\) for the BvdHC. Therefore, the number density of galaxies detected in the MBC is still larger than in the BvdHC, consistent with their different detection limits.

6. INFRARED LUMINOSITY FUNCTION

6.1. Determination of Total IR Luminosity

Since we detected relatively fewer galaxies at 70 \(\mu \)m than at 24 \(\mu \)m, we based our LF calculations mainly on 24 \(\mu \)m sources.

To obtain the total IR luminosities of galaxies, which relate to the total flux from 8 to 1000 \(\mu \)m, a single measurement of flux

\(^1\) Available at http://irs.ub.rug.nl/ppn/24217891X.
density at 24 μm is not enough. We need more constraints. Using a self-consistent modeling of the spectral energy distributions (SEDs) of galaxies over a broad range of wavelength, Devriendt et al. (1999) published a sequence of galaxy SEDs with different IR luminosities based on a sample of nearby galaxies. Their sample includes normal spirals, luminous IR galaxies (LIRGs), and ultraluminous IR galaxies (ULIRGs). If we assume that these SEDs are a complete assembly of representatives of nearby galaxies, the color correlation of these SEDs should be the same as the color correlation of the Coma galaxies. More specifically, if we know the color correlation between the ratio of IR luminosity (LIR) to 24 μm luminosity (L24) and the ratio of flux density at 24 μm (S24) to that at R band (SR) from the template SEDs, we will know the color correlation of the Coma galaxies as well. Therefore, we can use observational data regarding L24, SR, and S24 to get the total infrared luminosity LIR.

However, the assumption that the template SEDs include all the galaxy types in Coma is not correct. For a cluster as rich as Coma, the early-type (E/S0) galaxies dominate the optical emission of the cluster. In the infrared, the spiral galaxies are generally more luminous than the early-type galaxies and hence are the majority of the IR sources. However, given the sensitivity of MIPS and the closeness of the Coma Cluster, we still detected the 24 μm emission from many elliptical galaxies and S0 galaxies. In the BvdHC, which gives information on the galaxy type, about half of the galaxies detected at 24 μm are early-type galaxies and the rest are mostly spiral galaxies or galaxies without type identification. The infrared emissions of the early-type galaxies may come from different physical mechanisms or different dust geometry than that of the spirals, and their SEDs may have different shapes and colors than those of the template SEDs.

To check for possible differences between the early-type galaxies and the spiral galaxies in the colors that are crucial for determining the total infrared luminosity, we plot in Figure 2 the color correlation of the different types of galaxies in the BvdHC. Figure 2a is the color-color plot of S70/S24 versus S24/SR for the galaxies detected at both 24 and 70 μm with a morphology identification. The plot shows that early-type galaxies (open circles) have smaller S24/SR ratios on average than the spiral galaxies (open triangles), but their S70/S24 ratios are similar to the spiral galaxies. Although it has a large dispersion, the template SEDs’ (crosses) color correlation represents the average value for the whole galaxy sample fairly well. If the IR emission of the galaxy mainly comes from dust at a single temperature, then small differences in the S70/S24 color indicate a small difference in the LIR/L24 ratio for these galaxies. In Figure 2b we show the 24 μm flux density versus S24/SR color of all the galaxies. The early-type galaxies mostly reside in the lower corner of the plot, but they are well mixed with the spiral galaxies and show no difference in this correlation from the faint spiral galaxies. The plot also shows that most of the galaxies with 24 μm flux density larger than 6 mJy are also detected at 70 μm (indicated by the filled symbols). This result is consistent with the detection completeness at 70 μm assuming the average S70/S24 color. There also appears to be a trend between the 24 μm flux and the S24/SR color of the galaxies, which indicates larger IR emission from the redder galaxies. Using this trend, we can also obtain a detection limit set by the completeness of the 70 μm observation for Figure 2a shown as the dotted line; the region at the left and below the line is affected by the incompleteness and large uncertainties of the 70 μm measurements. From both plots, we find that the early-type galaxies are generally less luminous at 24 μm than the spiral galaxies and therefore have lower S70/S24 ratios, but their color correlation does not differ from that of the spiral galaxies with similar 24 μm flux density. This justifies the use of the template SEDs as a complete assembly of all types of galaxies to deduce the total IR luminosity from the LIR/L24 versus S24/SR correlation.

To obtain the flux densities of the SEDs at different bands, we convolved the SEDs with the response functions of the filters. For the 24 and 70 μm bands, we also account for the color corrections as described in the MIPS Data Handbook. In Figure 3 we plot the correlation of LIR/L24 versus S24/SR obtained from template SEDs, as well as the value interpolated from the Coma galaxies. The log (S24/SR) ratios of the template spirals range from about −0.5 to 1, and those of the LIRGs and ULIRGs range from about

Fig. 2.—Color-color/flux plot of the early- and late-type galaxies. The open circles and open triangles represent early- and late-type galaxies, respectively. (a) The 70 μm – 24 μm color vs. the 24 μm – R color. The crosses show the color of the template SEDs. The dotted line is the detection limit set by the completeness of the 70 μm observations. (b) The 24 μm flux density vs. the 24 μm – R color. The galaxies also detected at 70 μm are plotted as filled symbols.

Fig. 3.—The LIR/L24 ratio as a function of 24 μm – R color. The diamonds denote the normal spirals, the square denotes a LIRG, and the triangles designate ULIRGs. The dots show the results of the interpolation of the Coma galaxies from their 24 μm – R colors. The LIR/L24 ratio given by Lagache et al. (2003) for a normal spiral is shown as the dashed line.
2 to 3.5. Most of the Coma galaxies have $\log (S_{24}/S_R)$ ratios smaller than 1.5, and only one source has a color similar to the LIRGs/ULIRGs. The log (L_{IR}/L_{24}) ratios of the LIRGs/ULIRGs are almost a constant of ~1.5. These ratios for the normal spirals increase slowly with the decrease of S_{24}/S_R ratios, with a little (and insignificant) dip at about log (S_{24}/S_R) ≈ 0. Although a simple interpolation onto the correlation works for many of the Coma galaxies, our template SEDs do not cover the range with log (S_{24}/S_R) < -0.5 as the data do, so the color correlation at this end is an extrapolation from the last few points of the template SEDs. This unbounded extrapolation may cause systematic errors when deducing the L_{IR} from the L_{IR}/L_{24} ratio. However, we can find some support for the higher value of the L_{IR}/L_{24} ratio at this end from Figure 2a. Despite the incompleteness and large uncertainties, the panel shows a slightly higher value of the S_{70}/S_R ratio than the ratio given by template SEDs toward the lower end of the S_{24}/S_R ratio. It is worth noting that this extrapolation is also consistent with the general expectations for thermal emission: galaxies with smaller values of S_{24}/S_R have relatively less emission by warm dust and therefore a higher value of L_{IR}/L_{24}. In the future, a template SED with lower S_{24}/S_R ratios will be needed to further constrain the L_{IR}/L_{24} color at this end, but for now we rely on the simple extrapolation. With the L_{IR}/L_{24} ratio of each galaxy in hand, we can directly deduce the L_{IR} of each galaxy from its L_{24}.

An important result from Figure 3 is that S_{24}/S_R is nearly independent of L_{IR}/L_{24} over the luminosity range of interest to us. Therefore, our initial galaxy selection on the basis of a visible spectroscopic study will not introduce biases in the infrared properties of the sample.

To test the method we used here to determine L_{IR}, we compare our result with the IR luminosities obtained with the method used by Le Floc’h et al. (2005). They adopt a different set of SED templates that are luminosity dependent, e.g., the templates given by Lagache et al. (2003). Lagache et al.’s galaxy templates include separate SEDs for normal galaxies and starburst galaxies. Their normal galaxies, again, only include spiral galaxies. As we can see from Figure 3, most of the galaxies in the Coma Cluster are normal galaxies and only one galaxy has an S_R/S_{24} color similar to LIRGs/ULIRGs, so we plot Lagache et al.’s correlation between L_{IR}/L_{24} for normal galaxies in Figure 3 as the dashed line. This correlation agrees well with the L_{IR}/L_{24} ratios given by the template spirals and thus demonstrates the consistency between our method and that of Le Floc’h.

To test the self-consistency of our method, we use the data for the members of the BvdHC detected in both the 24 and 70 μm bands. Using the same SED mapping method as before but using different combinations of bands, we estimated new values of L_{IR} for these objects. We plot them against the previous L_{IR} obtained from the correlation between L_{IR}/L_{24} and S_{24}/S_R in Figure 4. The top panel of Figure 4 shows the L_{IR} obtained from the correlation between L_{IR}/L_{70} and S_{70}/S_R compared with the previous one. The bottom panel shows the L_{IR} obtained using the correlation between L_{IR}/L_{70} and S_{70}/S_{24}. The L_{IR} values obtained from different color correlations are generally consistent with a standard deviation of about 0.10 dex for the top panel and 0.16 dex for the bottom panel. The galaxies with S_{70} under the 80 mJy completeness limit, shown as the open circles in the figure, have large uncertainties in their S_{70} measurement (with errors up to 40%) and therefore show a more scattered correlation. The dispersions of the correlations are generally consistent with the dispersion caused by the uncertainties in the photometric measurements. It is also possible that there are significant contributions to the dispersions by intrinsic color dispersions of the galaxies, as opposed to the tight correlation we assumed in Figure 3. Since the dispersions are modest and have zero averages, they will in any case have little effect on the LF we deduce.

6.2. Contamination from Active Galactic Nuclei

When we measure the IR emission from galaxies and study their star-forming activities, contamination from active galactic nuclei (AGNs) is always an issue. The IR emission of AGNs comes from dust heated by the soft X-ray and ultraviolet emission of the active nuclei rather than from star-forming activities; therefore, their SEDs could be very different from the template SEDs we used.

To search for the AGNs in the Coma Cluster, we cross-matched the Catalogue of Quasars and Active Galactic Nuclei (Véron-Cetty & Véron 2003) with the BvdHC and MBC. The Véron-Cetty & Véron (2003) catalog is not complete but it includes almost all the AGNs in the literature. There are three AGNs detected at 24 μm: D16 (Seyfert 1), NGC 4853 (Seyfert), and KUG 1259+280 (Seyfert). Among them, only NGC 4853 has an L_{IR} greater than 10^{43} ergs s$^{-1}$. These AGNs, so few in number, do not have a noticeable effect on the IR LFs we obtain.

6.3. Total IR Luminosity Function

After testing for the method we used to deduce the total IR luminosity as described above, we calculated the projected IR luminosity function of the Coma Cluster.

For the BvdHC, we obtained the number density of galaxies per projected area by directly counting the number of galaxies in each luminosity bin and dividing the number by the projection area. For the MBC, we assume that the completeness function is unity for $R < 16.27$ mag and behaves as described in Mobasher et al. (2001) for galaxies fainter than $R = 16.27$ mag. In calculating the number counts of galaxies, we used the inverse of this completeness function as a weighting factor to correct for the incompleteness.

Both LFs are affected by the completeness of the spectroscopic surveys as well as the IR observations. The BvdHC spectroscopic...
The error bars denote the statistical error. The three vertical lines are completeness limits: the dotted vertical line shows the completeness of the 24 μm detections and the solid vertical line shows the completeness of the MBC after correcting as far as possible for incompleteness, and the dashed vertical line shows the completeness of the BvdHC. The solid curves are the results of fitting the LF with the Schechter function and the dashed curves are the results of fitting with a double–power-law function with a fixed slope at the bright end. (b–e) Error contours for the fitting parameters L_{24} and α. The contour levels are 1, 2, and 3 σ. The best-fitting parameters are indicated by the crosses.

In the above calculations of the completeness, we utilize the S_{24}/S_B color distribution of our Coma galaxy samples. However, an issue with these samples is that they are optically selected and therefore that they are likely to miss galaxies faint in the optical while bright in the IR. The IR/optical color distribution of our samples might be tilted toward lower values and we might underestimate the number of galaxies we missed in the calculation of the completeness limit. To check the color bias of our optically selected samples, we use the catalog of Karachentsev et al. (2004), which provides a nearly complete listing of local galaxies within 10 Mpc. The catalog gives the B-band magnitude of each galaxy. We obtained the IRAS data for these galaxies and therefore have a complete sample that is not constrained at the levels of interest by the optical and/or IR detection limits. We calculated the IR/optical colors S_{24}/S_B of the normal galaxies (not dominated by AGNs and below the LIRG luminosity range) in the sample and compared them with those of the BvdHC. In the B band, the BvdHC is complete down to $B = 17.5$ mag, and the IR completeness limit of $2.6 \times 10^8 L_\odot$ corresponds to an S_{24}/S_B color of ~ 14.6. About $95\% \pm 9\%$ of galaxies in BvdHC have an S_{24}/S_B color smaller than this value, while in the Karachentsev’s catalog, this ratio is only slightly lower, $89\% \pm 14\%$, among the galaxies with same B-band magnitude cutoff. That is, the small effect of the dispersion in infrared properties on the overall completeness is confirmed by the behavior of the complete sample of local galaxies.

In Figure 5 we plot the LFs obtained from the two spectroscopic catalogs along with the completeness limits. The filled circles show results from the BvdHC, and the open squares those from the MBC. The dotted vertical line is the detection limit at 24 μm, the solid line is the limit of the MBC, and the dashed one is the limit of the BvdHC. The shapes of these two LFs are similar, but the LF from the MBC has an overall higher number density than that from the BvdHC. The reason for this difference is that Mobasher’s spectroscopic survey covered the whole cluster core, where the galaxy number density is the highest, but only a small portion of the outer region, while the BvdHC is based on a much larger area including both the core and the outer region. Also, the LF from the MBC has a larger variance compared to the LF from the BvdHC because it is based on a smaller sample. Below the 24 μm detection limit, the loss of faint galaxies due to the limit of the IR observations causes quick drops...
in both LFs. Above this limit, the faint-end slope of the MBC LF is steeper than the BvdHC LF, which is consistent with the different completeness limits of these two LFs.

To have a more quantitative comparison, we fitted these two LFs with some analytical functions. We discarded all the data points below 10^{42} ergs s$^{-1}$ and use a χ^2 minimization method to find the best-fitting parameters. Since we do not have many data points at the bright ends, which are critical for determining L_{IR}, it is important to constrain the fitting beyond the last bin for the non-detection of brighter galaxies. In order to incorporate this factor into the fitting, we calculate the integrated expected galaxy number brighter than the brightest galaxy actually observed for each trial function and use this number to estimate the probability of the non-detection. This integration is carried out from the brightest luminosity observed to a luminosity 2 orders of magnitude brighter. The results change little when we extend the integration to a higher upper limit. We include the χ^2 of this non-detection in the total χ^2 value for the minimization process.

We first fitted the LFs with the Schechter function (Schechter 1976), and the best-fitting parameters that we found are

\[
\alpha = 1.49^{+0.11}_{-0.11}, \quad \log (L_{\text{IR}}/L_\odot) = 10.48^{+0.48}_{-0.31} \quad \text{for the MBC;} \\
\alpha = 1.41^{+0.08}_{-0.08}, \quad \log (L_{\text{IR}}/L_\odot) = 10.49^{+0.27}_{-0.24} \quad \text{for the BvdHC.}
\]

The fitting results are shown as the solid curves in Figure 5. The L_{IR} values of these two LFs are very similar. The parameters of the MBC LF have larger uncertainties due to the few data points at the bright end to constrain the fitting. It also has a steeper faint-end slope than the LF for the BvdHC, which is in agreement with the fact that the MBC has been corrected for incompleteness at the faint end while the BvdHC has not. Considering this factor, we expect that the IR LF for the MBC gives a better estimate of the faint-end slope than the IR LF for the BvdHC.

A recent work of Pérez-González et al. (2005) studies the 12 μm LF from the 24 μm emission of galaxies using the Spitzer data in two deep-field surveys, the Chandra Deep Field--South and the Hubble Deep Field--North. Their results, coming from galaxies in the general field, provide a good comparison to our LF in a dense cluster. Their LF for galaxies with $0.0 < z < 0.2$ gives a Schechter parameter of $\alpha = 1.23 \pm 0.07$ and $\log (L_{12}/L_\odot) = 9.61 \pm 0.14$. With the relation between L_{IR} and L_{12} given by Takeuchi et al. (2005), $\log L_{\text{IR}} = 1.02 + 0.972 \log L_{12}$, the L_{12} obtained by Pérez-González et al. (2005) corresponds to a total IR luminosity of $\log (L_{\text{IR}}/L_\odot) = 10.36 \pm 0.14$, which is only slightly smaller than the value we got; the difference is well within the 1 σ error. However, we found a somewhat steeper slope at the low-luminosity end (at about 2 σ significance). Pérez-González et al. (2005) suggest that incompleteness may have reduced the value of α in their LF.

Rush et al. (1993) obtained an LF using an all-sky 12 μm survey from the IRAS Faint Source Catalog, Version 2, and fitted it with a double–power–law function,

\[
\Phi(L) = CL^{1-\alpha}(1 + L/L^*)^{-\beta}.
\]

For the non-Seyfert subsample (the majority are normal galaxies, and about 5% are starburst galaxies), they found that the best-fitting parameters are $\alpha = 1.7, \beta = 3.6$, and $\log (L^*/L_\odot) = 9.8$. The average redshift of their non-Seyfert subsample is 0.013, comparable to our sample’s average redshift. Their result has a much steeper slope at the faint end compared to the Pérez-González et al. (2005) result and a little larger L^*, which corresponds to $\log (L_{\text{IR}}/L_\odot) = 10.55$. To make a fair comparison to their result, we tried to fit our LFs with the same double–power–law function. However, since the double–power–law function has too many free parameters and our small sample size gives poor constraints at the high-luminosity end, a free fitting failed to give a reasonable result. We fixed the slope index at the high-luminosity end to the best-fitting value given by Rush et al. (1993) and kept L^*, α, and the normalization free. The fitting gives results very similar to the Schechter fitting: the best-fitting parameters are

\[
\alpha = 1.48^{+0.12}_{-0.13}, \quad \log (L_{\text{IR}}/L_\odot) = 10.24^{+0.58}_{-0.39}; \\
\beta = 3.6 \quad \text{(fixed) for MBC;}
\]

\[
\alpha = 1.38^{+0.10}_{-0.12}, \quad \log (L_{\text{IR}}/L_\odot) = 10.15^{+0.33}_{-0.31}; \\
\beta = 3.6 \quad \text{(fixed) for BvdHC.}
\]

Again, we note that the MBC LF gives a larger value for the faint-end slope and the BvdHC LF gives a more reliable estimate for the L_{IR} value. The MBC LF has a faint-end slope a little flatter than Rush’s LF, and both LFs give L^* values smaller than Rush’s L^*, with a significance of about 1 σ.

Takeuchi et al. (2003) estimated the 60 μm LF of the local galaxies in the IRAS Point Source Redshift Survey. Based on this LF, Le Floc’h et al. (2005) calculate the total IR LF using the IRAS 60 μm–total IR correlation (e.g., Chary & Elbaz 2001) and fit the IR LF with a double–exponential function. The fitting gives a faint-end slope index of 1.23, $\log (L_{\text{IR}}/L_\odot) = 9.25$, and $\sigma = 0.72$, where σ is the parameter used to adjust the shape of the bright end of the LF (e.g., Le Floc’h et al. 2005). To compare to their result, we fitted our LFs with the same double-exponential function. Since neither of our LFs has enough data points at the bright end, we have to fix $\sigma = 0.72$, the value they gave. By doing this, we find a faint-end slope index of 1.52 ± 0.13 for the MBC LF and $\log (L_{\text{IR}}/L_\odot) = 9.39 \pm 0.37$ for the BvdHC LF. Again, the Coma IR LF has an L_{IR} very similar to the field LF. The faint-end slope of Takeuchi’s LF is similar to that of Pérez-González et al. (2005), and they are both flatter than the Coma LF.

The comparisons between the Coma IR LFs and the IR LFs from the general field do not show significant variation of the L_{IR} value in different environments. However, a difference in the IR luminosity as small as the 0.3 mag (0.12 dex in luminosity) difference in M^*_{IR} between the cluster LF and field LF shown by De Propris et al. (2003) is beyond the capability of our study. The faint-end slope of the Coma IR LF is steeper than that of Pérez-González et al. (2005) and Takeuchi et al. (2003), but a little shallower than that of Rush et al. (1993). This comparison, although complicated by completeness issues, does not support a strong dependence of the shape of the IR LF on environment.

Despite the similarity in the shape of the Coma IR LF and the field IR LF, there might be a large portion of IR-inactive galaxies in the cluster compared with the field. Assuming a line-of-sight dimension of the Coma Cluster of 13 Mpc, the BvdHC IR LF has a $\phi^*(\text{space density at } L_{\text{IR}})$ about 45 times larger than the ϕ^* value given by Pérez-González et al. (2005). Because L_{IR} is far above our detection limits and those of the spectroscopic surveys (using the proportionality we found for local galaxies between optical and IR luminosities), our study should be complete there. With the same assumptions, we find that the average density at $L_{\text{IR}} = 62.9 \pm 15.2$ times that in the field (Geller et al. 1997; Beijersbergen et al. 2002a). That is, the infrared-emitting galaxy density is only slightly less enhanced in the cluster than
the optical galaxy density; there are few extra IR-inactive galaxies in the cluster. A second approach to this issue is to examine a sample of field galaxies and see how many would be detected in the infrared using the same selection method that we have used in the Coma Cluster. To implement this approach, we have again used the catalog of galaxies within 10 Mpc from Karachentsev et al. (2004). We have compiled the IRAS data for galaxies down to $M_B = -17.5$ mag, the completeness limit of the BvdHC. If these galaxies were at the distance of the Coma Cluster, we find that 0.89 ± 0.12 would be detected above our 24 μm limit, whereas the portion of infrared-detected galaxies in the BvdHC down to $M_B = -17.5$ mag is 0.56 ± 0.05. In agreement with our first estimate, there is only a small deficit of IR-active galaxies compared with the behavior in the field.

It is possible that this difference is partly due to the morphology-environment correlation of galaxies, because our Coma sample has about 53% early-type galaxies while Karachentsev’s field galaxy sample only has about 17% early-type galaxies. So we divided our sample into early- and late-type subsamples and calculated the portion respectively. It turns out this portion just slightly increases in the late-type subsample compared with early-type subsample (57% vs. 55%). Therefore, the morphology-environment correlation cannot account for the different portions of IR-active galaxies in Coma and the field.

6.4. Luminosity Function in Different Regions of the Cluster

Given the large coverage of the BvdHC, we can study the LFs in different regions of the cluster. Although the BvdHC is only complete down to $R = 16.27$, our previous results show the incompleteness probably will only make the faint-end slope a little shallower. Since the completeness does not change very much across the cluster, incompleteness will not bias the comparison of LFs in the different regions. Following Beijersbergen et al. (2002a), we define the core region of Coma as the area with $r < 12'$ (~ 0.3 Mpc) centered at $\alpha = 12^h59^m43^s$, $\delta = +27^\circ58'14''$ (J2000.0). We also define an annulus region outside of the core for $12' < r < 24'$ (~ 0.6 Mpc). Another interesting area is the group of galaxies around NGC 4839. It is the second densest region in the cluster and its X-ray emission suggests that the group is falling into the cluster (Neumann et al. 2001). The interaction between the group and the cluster may trigger star-forming activities and therefore affect the IR LF. Therefore, we also select the circular region centered at NGC 4839 with the same radius as the Coma core region. We constructed LFs in these three regions. Apart from these regions, we took the rest of the area with MIPS coverage as a whole to be the outskirt region of the cluster. A sky map of these regions and all the galaxy members detected at 24 μm is shown in Figure 1. There are 40, 56, and 28 galaxies detected in the IR in the Coma core, the surrounding annulus, and the NGC 4839 region, respectively. In the outskirt region, 101 galaxies are detected. The two circular regions have an area of 0.13 deg2, the annulus region has an area of 0.38 deg2, and the outskirt region has an area of about 2.41 deg2. Therefore, the ratios of the projected number density of infrared-emitting galaxies in the Coma core, NGC 4839 region, annulus, and outskirt region are about 6:4:3:1. Even the lowest density region has a space density of infrared galaxies roughly 40 times that in the field.

All the LFs were fitted with the Schechter function. The results are shown in Figure 6 and the best-fitting parameters are listed in Table 1. Because the small-number statistics in small regions cause large uncertainties in the Schechter function fitting, simple comparisons of the best-fitting parameters between these LFs are ambiguous and need to be taken with care. The large uncertainties at the bright end of the LFs may cause very different fitting results for the exponential cutoff of the Schechter function and, therefore, unreliable L_* values. However, interesting variations are apparent in other aspects of the LFs. The Coma core region has a flatter faint end and fewer luminous galaxies compared to the LFs in the other regions. In particular, when we compare it with the LF in the annulus region, which has total number counts similar to those in the core, it is apparent that galaxies in the core region are lacking at the high-luminosity end. A flatter faint end in the core indicates a lack of faint galaxies as well. The NGC 4839 and the annulus regions have similar number densities and their LFs are not very different from each other at the faint end. They both have a steeper faint-end LF than the Coma core. At the bright end, it seems that the annulus region has more luminous galaxies than the NGC 4839 region does, but the difference is not significant given the uncertainties. The LF in the outskirt region is better constrained at both faint and bright ends due to its larger number of galaxies. Its faint-end slope is steeper than the Coma core region but shallower than the annulus and NGC 4839 region. However, this faint-end slope is largely constrained by the lowest

![Figure 6](image-url)
point in our fitting process (the point at $L_{\text{IR}} = 10^{42.05}$ ergs s$^{-1}$), and we suspect that incompleteness may have a more severe effect on this point in the outskirt region than in the other regions (e.g., because of the lower density of cluster members on the sky). If we discard this point in our fitting, we have a much steeper faint-end slope with $\alpha = 1.52^{+0.10}_{-0.17}$. With this correction, there appears to be a trend of steeper faint-end slope toward the outer regions of the cluster, similar to the behavior in the optical bands (Beijersbergen et al. 2002a; Beijersbergen & van der Hulst 2003). Although the faint-end slope may be questionable, the bright end of the LF in the outskirt region is well constrained and has an L_* value very similar to that of the total LF. In summary, we found that the Coma core region lacks both very faint and very bright galaxies compared with the outer regions. The NGC 4839 region does not show significant difference in the LF from that of the annulus region with similar number density. It is also worth noting that all the galaxies with $L_{\text{IR}} > 10^{44}$ ergs s$^{-1}$ reside outside the core region.

All the LFs in the Coma Cluster calculated above are actually the two-dimensional projection of the real LF and therefore will be affected by projection effects (Valotto et al. 2001; Beijersbergen et al. 2002b). The projection effect is most serious in the core region and it will probably make the faint-end slope steeper. That is, the flat faint-end slope of the core region may become even flatter after deprojection. On the other hand, the projection effect will make the lack of bright galaxies in the core region more severe. Figure 1 also shows the galaxies with $L_{\text{IR}} > 10^{43.3}$ ergs s$^{-1}$ as star signs. They are more or less uniformly distributed in the whole region, without any concentration in the core region or the NGC 4839 region. The deprojection from this two-dimensional distribution will make the bright galaxies move farther outward.

The interpretation of the galaxy population variations across the cluster only from the change of the shape of the LFs may be misleading without knowledge of the fraction of galaxy members detected in the IR. We already know that the overall fraction of optical galaxy members detected at 24 μm is about 44% for the BvdHC. This fraction is smallest in the core region, at about 37% \pm 7%, and it is about 46% \pm 4% in the outer region. The difference is not very significant considering the large statistical errors. If we only consider the fraction for the galaxies brighter than the completeness of the BvdHC, the difference is even smaller, with a fraction of about 54% \pm 9% in the core and 57% \pm 5% in the outer region. Also, a correction for the projection effect, if possible, would make the difference even smaller. Thus, the fraction of the galaxy members detected in the IR does not change very much across the cluster, providing a uniform foundation for the comparison of the shape of the IR LFs.

6.5. Contribution of the Different Types of Galaxies to the Total LF

Since the BvdHC also has morphology information for each galaxy, we can study the contribution of early-type (E/S0) and late-type galaxies to the total LF. In Figure 7 we plot the LFs of the late-type galaxies and early-type galaxies, along with the total LF for comparison. The late-type galaxies here include all spirals and irregulars.

From Figure 7, we find that the early-type galaxies make a larger contribution to the number counts of the LF than the late-type galaxies at $L_{\text{IR}} < 10^{43}$ ergs s$^{-1}$, while the late-type galaxies dominate the bright end of the total LF. This behavior indicates that although the late-type galaxies dominate the bright population, there are more faint early-type galaxies than faint late-type galaxies. However, we note that at the faint end it is possible to misidentify a spiral as an S0 galaxy and that therefore the number of early-type galaxies may be overestimated. We fit the LF of late-type galaxies with the Schechter function, and the best-fitting parameters are

$$\alpha = 1.15^{+0.24}_{-0.28}, \quad \log(L_{\text{IR}}/L_\odot) = 10.44^{+0.50}_{-0.42}. \quad (5)$$

This LF has a flat faint end and an L_{IR} similar to the total LF. Although the α that we derive would have a higher value if the incompleteness were taken into account, it is still smaller than the index of the total LF that is affected by the incompleteness in the same way. The steeply rising faint end of the total LF is boosted by the increasing number of early-type galaxies with low IR luminosity.

Using ISO data, Pozzi et al. (2004) deduced the 15 μm LF of the European Large Area ISO Survey (ELAIS). The index of the faint-end slope that they found for the spiral galaxies with $z < 0.2$ is very close to our value, with $\alpha = 1.10 \pm 0.25$.

Using the LFs of early-type and late-type galaxies, we can calculate the surface density of the total IR luminosity of these two groups down to the detection limit of the 24 μm observations. It turns out that the surface density of IR luminosity contributed by early-type galaxies is only about 15% of the total surface density. Therefore, the early-type galaxies make a rather small contribution to the total IR luminosity of the cluster, but they make a significant contribution to the number counts of faint galaxies and therefore affect the shape of the LF.

6.6. Measuring the SFR from the IR LF

Since IR luminosity is a good tracer for star-forming activity, the IR LF allows us to estimate the total SFR of the cluster. Although this paper is the first work reaching such a depth in the IR luminosity of the Coma galaxies, which means detecting a lower level of star-forming activities, there are other works measuring the SFR at a higher level by measuring the ionization lines. Iglesias-Paramo et al. (2002) used a deep wide-field Hα
survey of the Coma Cluster to deduce the H\(\alpha\) LF. They detected 22 sources in the H\(\alpha\) band. Five of them are not in either the BvdHC or the MBC. We detected all the rest of them at 24 \(\mu\)m and hence obtained the \(L_{\text{IR}}\) for them. Using the conversion formula given by Kennicutt (1998b),

\[
\text{SFR} \left(M_\odot \text{ yr}^{-1} \right) = 4.5 \times 10^{-44} L_{\text{IR}} \text{ (ergs s}^{-1})
\]

we deduce the SFR for these objects and compare them with the SFR given by Iglesias-Paramo et al. (2002). The result is shown in Figure 8. The two results are basically consistent, but the SFRs measured from \(L_{\text{IR}}\) are larger on average, and this discrepancy is more pronounced in the galaxies with higher SFR. This discrepancy was also found by Kennicutt (1998a) when he compared the SFR deduced from the measurement of \(L_{\text{IR}}\) and the Br\(\gamma\) emission line. He justified the discrepancy by citing effects of extinction and the heating of dust by stars longer lived than those exciting the emission lines. These arguments are also applicable to our case.

The H\(\alpha\) survey has a smaller area coverage than the MIPS observations and is much less complete than the IR survey. For the 18 objects detected with both H\(\alpha\) and 24 \(\mu\)m emission, 16 have \(L_{\text{IR}} > 10^{43} \) ergs s\(^{-1}\), but in our sample we have 40 sources with \(L_{\text{IR}} > 10^{42} \) ergs s\(^{-1}\). Using the H\(\alpha\) LF, Iglesias-Paramo et al. (2002) showed the SFR density of the Coma Cluster to be 1.36 \(M_\odot\text{ yr}^{-1}\) Mpc\(^{-3}\) by integrating the best-fitting function over the whole range of luminosities and assuming the radius of the Coma Cluster to be 6.5 Mpc. In our case, we calculate the total IR luminosities from the best-fitting Schechter functions in the range of \(10^{42}\) ergs s\(^{-1}\) < \(L_{\text{IR}}\) < \(10^{45}\) ergs s\(^{-1}\). The upper limit corresponds to the brightest galaxies actually observed, and the lower limit excludes the part of the LF with serious incompleteness. The formula we used to convert the IR luminosity to SFR will also become problematic below this lower limit. Fortunately, from the shape of the LF, the galaxies in the \(10^{42}\) ergs s\(^{-1}\) < \(L_{\text{IR}}\) < \(10^{45}\) ergs s\(^{-1}\) luminosity range dominate the total luminosity and there is only a small difference between our integration and an integration over the whole luminosity range. The total SFRs of the cluster, deduced from the best-fitted Schechter functions of the MBC and the BvdHC IR LFs, are 24.48 and 11.41 \(M_\odot\text{ yr}^{-1}\) Mpc\(^{-2}\), respectively. The lower value given by the BvdHC LF is because the BvdHC covers more outskirt regions where the IR galaxy densities are relatively smaller. The BvdHC is also less complete than the MBC and thus underestimates the contribution from the faint IR galaxies. The total SFR in the 8.5 Mpc\(^2\) area of the BvdHC survey and MIPS observation is about 97.0 \(M_\odot\text{ yr}^{-1}\).

If we assume that the region we observed in the IR has the same line-of-sight dimension as assumed by Iglesias-Paramo et al. (2002), e.g., \(\sim\)13 Mpc, these two IR LFs give SFR densities of about 1.88 and 0.88 \(M_\odot\text{ yr}^{-1}\) Mpc\(^{-3}\). The SFR density derived from the H\(\alpha\) LF is smaller than the value given by MBC but larger than that given by BvdHC. However, considering that the Iglesias-Paramo et al. (2002) survey also covers mostly the central region, we calculate the SFR from the BvdHC in the region of the H\(\alpha\) survey coverage and obtain a larger SFR of 1.7 \(M_\odot\text{ yr}^{-1}\) Mpc\(^{-3}\). Therefore, the IR LF gives a more complete estimate of the total SFR of the cluster than the available H\(\alpha\) LF. If we adopt 0.88 \(M_\odot\text{ yr}^{-1}\) Mpc\(^{-3}\) as the general SFR density of the Coma Cluster, we find it to be about 60 times larger than the SFR density of the general field (Pérez-González et al. 2005). This difference is comparable to the difference in \(\phi(L)\) between these two LFs. Thus, the higher SFR density in the Coma Cluster is mainly due to the overall higher IR galaxy density in the cluster than in the field, not to any differences in the shape of the IR LF.

7. DISCUSSION

Despite the evidence that the SFRs of galaxies are different in cluster and field regions (Gómez et al. 2003; Balogh et al. 1998), the comparison of our IR LFs of the Coma Cluster with the IR LFs of field galaxies does not support a strong dependence of the shape of the IR LF on environment. However, the measurements of the SFR in Gómez et al. (2003) and Balogh et al. (1998) are based on the bright galaxies (\(R < 17\) mag) with ionizing emission lines, which approximately correspond to the galaxies with \(L_{\text{IR}} > 10^{43}\) ergs s\(^{-1}\). In fact, Gómez et al. (2003) found that the correlation of the SFR and the environment is most noticeable for the strongly star-forming galaxies. So, it is very possible that our IR LF, because it is not well constrained at the bright end, does not show a difference from the field LF simply because of the lack of enough very luminous IR galaxies in the small sample to draw any meaningful conclusions. In any case, the similarity of the \(L_{\text{IR}}\) of the Coma Cluster to that of the general field LF, as well as the fairly good fit with similar functions up to \(L_{\text{IR}} \approx 10^{44}\) ergs s\(^{-1}\), is evidence against a strong correlation between the global SFR for infrared-bright galaxies and their environment.

Explanations for this behavior may come from some recent works by Balogh et al. (2004a, 2004b). Balogh et al. (2004b) studied SFRs of galaxies in group and low-density environments and found that although the fraction of the star-forming galaxies is very sensitive to the galaxy density, the distribution of \(W(H\alpha)\), the equivalent width of H\(\alpha\), in the star-forming galaxies is independent of environment. Balogh et al. (2004a) studied the color distributions of galaxies in different environments, including the typical environment of a cluster core. After dividing their sample into red and blue components in several luminosity bins, they found that the ratio of these two components is a strong function of the local density but that the mean value and the shape of the color distribution of each component are nearly independent of environment. They proposed that most star-forming galaxies today evolve independently from their environment. Both these works suggest that interactions of the galaxies, probably happening on a very short timescale (\(\tau < 0.5\) Gyr), may be responsible for triggering star formation and leave the galaxies to evolve afterward independently from their environments. Our
results appear to agree well with these works and push the independence of the global SFR of IR galaxies from environment to an even lower level of SFR.

It is also possible that the lack of difference between the shape of the Coma LF and LFs from the general field results in part from the effects of averaging. First, the general field also includes galaxies in clusters. Second, and more importantly, the galaxies in the outskirt region have evolved largely in the field and are only beginning to fall into the cluster. However, their LF dominates the total LF of the cluster at luminosities above L_{IR}^*. Since the outskirt LF has a similar L_{IR}^* and a little smaller α compared with the total LF, it is possible that the contribution from the dense region mostly goes to the faint end of the LF, where we do detect an environmental effect. The early-type galaxies also contribute greatly to the number counts in this range. However, exact comparisons are complicated by the incompleteness. It has been reported that there is a group of dwarf galaxies contributing to the steeply rising faint-end slope of the optical and near-IR LF in the Coma Cluster (Bernstein et al. 1995; Secker & Harris 1996; Trentham 1998; Mobasher & Trentham 1998; De Propris et al. 1998). These dwarf galaxies are beyond our completeness limit ($R < 19$ mag) and are not the contributors of the steeply rising faint end of the IR LF.

Although we did not obtain any direct evidence of a correlation of SFR with environment in the comparison of the shape of the Coma IR LF and the general field IR LF, there is some evidence of a change in SFR with the environment inside the cluster. We found that although the fractions of the galaxy members detected at 24 μm do not change very much across the cluster, the LF in the core region has a flatter faint end and is lacking the bright IR galaxies compared to the LF in the outer region. In addition, all the galaxies with $L_{\text{IR}}^* > 10^{44}$ ergs s$^{-1}$ lie outside of the core region. This behavior shows that the strongest star-forming activity happens in the lower density region of the cluster. This is consistent with the speculation that galaxies in a crowded environment lack gas and dust due to the interactions between the galaxies or between the galaxies and the cluster potential well and therefore cannot support a large SFR. The flatter faint end in the core region, on the other hand, suggests a deficiency of faint IR galaxies as well.

Mori & Burkert (2000) studied the gas stripping of dwarf galaxies by ram pressure in the cluster and found that dwarf galaxies will lose virtually all of their gas instantaneously if their core mass is smaller than a critical mass (M_{crit}). For the Coma Cluster, $\log (M_{\text{crit}}/M_\odot)$ is about 10.9 at the median distance of the cluster galaxies. This value increases to about 11.7 and 12.9 at $r = 24'$ (~0.6 Mpc) and $r = 12'$ (~0.3 Mpc). Mori & Burkert (2000) would argue that galaxies with core masses smaller than these values will lose all of their gas very quickly ($\tau \approx 10^8$ yr). Thus, even if the triggering of the star-forming activities in these galaxies happens in the galaxy group before they fall into the cluster core, gas stripping will prohibit them from keeping up such activities by depriving them of fuel.

However, such an effective stripping contradicts our result. The faint IR galaxies in our LFs (41.9 < $\log L_{\text{IR}} < 42.6$, about the range of the lowest two points in the LFs above the incompleteness) have $R \approx 15$ mag on average. The early-type galaxies in the Coma Cluster usually have a stellar mass-to-light ratio smaller than 8 (Jorgensen 1999). The stellar mass is comparable to the core mass of a galaxy, so we can use this ratio to estimate the core mass of a galaxy from its luminosity. Considering that faint galaxies usually have relatively large M/L ratios, we take $M/L \approx 20$ as a conservative upper limit for these galaxies. We also assume all cluster galaxies have similar M/L ratios. With this ratio and the average R magnitude of the faint IR galaxies, we obtained the upper limit of the mass for these galaxies as log (M/M_\odot) ≈ 11.0. This mass is smaller than the critical mass for gas stripping at $r < 24'$ (~0.6 Mpc), which means that most of the faint galaxies in this region should already have lost all of their gas, so we would expect a drop in the number counts of the IR LF. However, the IR LF in the annulus region does not show such a drop, although we do see a flattening of the slope in the core region. If this flattening of the faint-end slope is the result of the total gas stripping, there seems to be a factor of 10 discrepancy between the critical mass Mori & Burkert deduced and the one suggested by the IR LFs. A smaller critical mass for these IR galaxies is also consistent with the small difference we found in the Coma IR LF and the IR LF of general field. Mori & Burkert (2000) also pointed out that there were some issues they did not consider in their simulation that may affect the critical mass, e.g., the heating of the gas from star-forming activities. For the IR galaxies, this effect may be very important because it would lower the critical mass and provide a possible explanation of why these faint galaxies still have star-forming activities. An underestimated M/L ratio can also contribute to this difference. However, to resolve the discrepancy in this way, the M/L would need to be as high as 100, which seems unlikely.

We also observed a high ratio of early-type galaxies in the core region of the Coma Cluster, ~80%; this ratio drops to about 50% for the other regions. The change of the shape of IR LF in the core region is also possibly caused by a morphology-environment correlation rather than an SFR-environment correlation.

8. CONCLUSIONS

Using MIPS 24 μm observations and two spectroscopic surveys of the Coma Cluster, we present the IR LF of the cluster. The shape of the Coma Cluster LF does not differ from that of the general field significantly. The L_{IR}^* value of our LF is very similar to those given by Rush et al. (1993) and Pérez-González et al. (2005), which are both based on surveys of general fields. The faint-end slope of the Coma Cluster is shallower than the slope of Rush et al. (1993) but steeper than that of Pérez-González et al. (2005) and Takeuchi et al. (2003), again indicating little variation between field and cluster. In addition, the overall proportion of IR-active galaxies in the cluster is only slightly less than in the field. Thus, the overall pattern of star formation in cluster members is surprisingly similar to that in the field, despite an increased galaxy space density by an average factor of ~40.

However, in the cluster core where the galaxy density is 6 times higher still, we found a shallower faint-end slope and a smaller L_{IR}^* compared to the outer region of the cluster, which indicates a decrease in the number of faint IR galaxies as well as in the very bright ones. The IR-bright galaxies are distributed around the outer region of the cluster. All the galaxies with $L_{\text{IR}} > 10^{44}$ ergs s$^{-1}$ lie outside of the core region, e.g., $r > 340$ kpc. No special feature of the IR LF was found in the NGC 4839 region.

In determining the LF of different morphological types, we found that early-type galaxies only make about a 15% contribution to the total IR luminosity density, but they dominate the number density at the low luminosity end. The global SFR density in the cluster is about 0.88 M_\odot yr$^{-1}$ Mpc$^{-3}$, and the total SFR in the 8.5 Mpc2 area of the central cluster is about 97.0 M_\odot yr$^{-1}$.

This work was supported by funding for Spitzer GTO programs by NASA, through Jet Propulsion Laboratory subcontracts 960785 and 1256318. We thank Emeric LeFloc’h, Casey Papovich, Pablo Pérez-González, and Kim-Vy H. Tran for helpful discussions.
REFERENCES

Balogh, M. L., Baldry, I. K., Nichol, R., Miller, C., Bower, R., & Glazebrook, K. 2004a, ApJ, 615, L101
Balogh, M. L., Schade, D., Morris, S. L., Yee, H. K. C., Carlberg, R. G., & Ellingson, E. 1998, ApJ, 504, L75
Balogh, M. L., et al. 2004b, MNRAS, 348, 1355
Beijersbergen, M., Hoekstar, H., van Dokkum, P., & van der Hulst, T. 2002a, MNRAS, 329, 817
Beijersbergen, M., Schaap, W. E., & van der Hulst, J. M. 2002b, A&A, 390, 817
Beijersbergen, M., & van der Hulst, J. M. 2003, in The Galaxy Population in the Coma Cluster, ed. M. Beijersbergen (Groningen: Univ. Groningen), 50
Bernstein, G. M., Nichol, R. C., Tyson, J. A., Ulmer, M. P., & Wittman, D. 1995, AJ, 110, 1507
Chary, R., & Elbaz, D. 2001, ApJ, 556, 562
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168
Colless, M., & Dunn, A. M. 1996, ApJ, 458, 435
De Propris, R., Eisenhardt, P. R., Stanford, S. A., & Dickinson, M. 1998, ApJ, 503, L45
De Propris, R., et al. 2003, MNRAS, 342, 725
Devriendt, J. E. G., Guiderdoni, B., & Sadat, R. 1999, A&A, 350, 381
Dole, H., et al. 2004, ApJS, 154, 87
Geller, M. J., et al. 1997, AJ, 114, 2205
Gómez, P. L., et al. 2003, ApJ, 584, 210
Gordon, K., et al. 2005, PASP, 117, 503
Iglesias-Paramo, J., Boselli, A., Cortese, L., Vilchez, J. M., & Gavazzi, G. 2002, A&A, 384, 383
Jørgensen, I. 1999, MNRAS, 306, 607
Karachentsev, I. D., Karachentseva, V. E., Huchtmeier, W. K., & Makarov, D. I. 2004, AJ, 127, 2031
Kennicutt, R. C. 1998a, ApJ, 498, 541
———. 1998b, ARA&A, 36, 189
Komiyama, K., et al. 2002, ApJS, 138, 265
Lagache, G., Dole, H., & Puget, J. L. 2002, MNRAS, 338, 555
Le Floch, E., et al. 2005, ApJ, 632, 169
Lilly, S. J., Le Fevre, O., Hammer, F., & Crampton, D. 1996, ApJ, 460, L1
Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., & Fruchter, A. 1996, MNRAS, 283, 1388
Mobasher, B., & Trentham, N. 1998, MNRAS, 293, 315
Mobasher, B., et al. 2001, ApJS, 137, 279
Mori, M., & Burkert, A. 2000, ApJ, 538, 559
Neumann, D. M., et al. 2001, A&A, 365, L74
Papovich, C., et al. 2004, ApJS, 154, 70
Pérez-González, P. G., et al. 2005, ApJ, 630, 82
Pozzi, F., et al. 2004, ApJ, 609, 122
Rieke, G. H., et al. 2004, ApJS, 154, 25
Rush, B., Malkan, M. A., & Spinoglio, L. 1993, ApJS, 89, 1
Schechter, P 1976, ApJ, 203, 297
Secker, J., & Harris, W. E. 1996, ApJ, 469, 623
Sarajedini, A., et al. 2001, MNRAS, 322, 262
Somerville, R. S., & Primack, J. R. 1999, MNRAS, 310, 1087
Struble, M. F., & Rood, H. J. 1999, ApJS, 125, 35
Takeuchi, T. T., Baut, V., Iglesias-Pramo, J., Boselli, A., & Burgarella, D. 2005, A&A, 432, 423
Takeuchi, T. T., Yoshikawa, K., & Ishii, T. T. 2003, ApJ, 587, L89
Trentham, N. 1998, MNRAS, 293, 71
Valotto, C. A., Moore, B., & Lambas, D. G. 2001, ApJ, 546, 157
Véron-Cetty, M. P., & Véron, P. 2003, A&A, 412, 399