Pediatric plexiform fibromyxoma
A PRISMA-compliant systematic literature review

Mitsuharu Fukazawa, MDa, Hiroshi Koga, MD, PhDba,∗, Shoji Hiroshige, MD, PhDb, Toshifumi Matsumoto, MD, PhDb, Yuichi Nakazono, MDc, Yasuji Yoshikawa, MD, PhDb

Abstract
Background: Plexiform fibromyxoma (PF) is a rare gastric mesenchymal tumor, with approximately 80 cases reported to date. Gastrointestinal stromal tumor, the most common primary mesenchymal tumor of the stomach, shows different biological and clinical characteristics between adult and pediatric patients.

Objectives: This systematic literature review was conducted to elucidate the pathological and clinical features of pediatric PF compared to adult PF.

Methods: MEDLINE (1948 to March 2018) and EMBASE (1947 to March 2018) were searched, and all English articles that reported clinical data on PF patients were identified. Two authors independently reviewed the articles and extracted data to assess immunohistochemistry, sex, chief complaint, tumor size, tumor-related mortality, and tumor recurrence and metastasis.

Results: A total of 41 reports with 80 PF patients (of whom 70 were adult PF and 10 were pediatric PF patients) confirmed by histological and immunohistochemical findings were included. Of a total of 80 tumors, 62 (78%) were located in the gastric antrum, 42 (65%) presented with ulceration, and 48 (74%) were resected by partial gastrectomy. Median tumor size of the resected specimen was larger in pediatric PF than in adult PF cases (5.3 cm vs 4.0 cm, \(P = .036 \)). However, there was no difference between pediatric and adult PFs in immunohistochemical expression, sex predominance, chief complaint, tumor-related mortality, and tumor recurrence and metastasis during the follow-up periods.

Conclusion: Other than increased tumor growth in pediatric PFs, PF is a single disease entity with similar pathological features and benign clinical behavior regardless of onset age.

Abbreviations: GIST = gastrointestinal stromal tumor, PF = plexiform fibromyxoma.

Keywords: adolescent, child, gastrointestinal neoplasms, plexiform angiomyxoid myofibroblastic tumor

What is known

• Plexiform fibromyxoma is a rare mesenchymal tumor presumed to be a benign tumor that most commonly arises in the gastric antrum.

• The most important differential diagnosis with plexiform fibromyxoma is gastrointestinal stromal tumor, in which the clinical and genetic features differ between pediatric and adult patients.

What is new

• All plexiform fibromyxomas demonstrate benign clinical behaviors, and the tumors grow more in pediatric patients than in adult patients.

• Other than tumor size, there are no pathological or clinical differences between pediatric and adult plexiform fibromyxomas, which indicates a single disease entity irrespective of onset age.

1. Introduction

Plexiform fibromyxoma (PF) is a rare gastric tumor, officially recognized as a distinct entity among mesenchymal tumors in the 2010 WHO Classification of Tumours of the Digestive System.[1] After immunohistochemical analyses became available, PF was first described as a plexiform angiomyxoid myofibroblastic tumor of the stomach in 2007.[2] To date, there have been approximately 80 cases of PF reported.

Gastrointestinal stromal tumor (GIST), which is the most common primary mesenchymal tumor of the stomach, occurs rarely in pediatric patients, and the generally accepted definition of pediatric GIST is based on the diagnosed age of 18 years or
younger. Pediatric GIST differs from adult GIST with respect to the clinical features of female predominance, gastric location, epithelioid histologic morphology, lower frequency of KIT or PDGFRα mutations, and an indolent clinical course. However, the characteristics of pediatric PF remain to be elucidated. This systematic literature review was conducted to clarify the pathological and clinical features of pediatric PF compared to adult PF.

2. Methods

2.1. Criteria for considering articles for review

2.1.1. Types of studies. All types of articles that reported clinical data on PF patients were reviewed, and 1 additional case treated in our center was included in this review. This study protocol was approved by the Beppu Medical Center Ethics Committee.

2.1.2. Types of participants. Adult patients (19 years or older) and pediatric patients (18 years or younger) were diagnosed with PF based on histological examination showing that the tumor tissues exhibited a plexiform intraluminal growth pattern composed of spindle-shaped bland tumor cells with oval nuclei and abundant myxoid or fibromyxoid stroma with increased vascularity.

Cases reported as PF with potentially different diagnoses, such as GIST, schwannoma, inflammatory myofibroblastic tumor, desmoid-type fibromatosis, and myxoid soft tissue perineuroma, were excluded if the tumor cells were immunohistochemically positive for any of CD34, CD117, discovered on GIST-1 (DOG1), S100, β-catenin, anaplastic lymphoma kinase (ALK), and epithelial membrane antigen (EMA).

2.1.3. Types of outcome measures. In adult and pediatric PF patients separately, the outcomes included: primary outcomes (pathological features), with immunohistochemistry including vimentin, smooth muscle actin (SMA), desmin, caldesmon, muscle specific actin (HHF35), and cytokeratin; and secondary outcomes (clinical features) including sex predominance, chief complaint, tumor size (maximum diameter) of the resected specimen, tumor-related mortality, and tumor recurrence and metastasis during the follow-up period.

2.2. Electronic search methods for identification of articles

MEDLINE (1948 to March 2018) and EMBASE (1947 to March 2018) were both accessed on 13 March 2018, using the following search strategy:

1. Plexiform fibromyxoma [tiab]
2. Plexiform angiomyxoid [tiab]
3. Plexiform angiomyxoid myofibroblastic tumor [tiab]
4. 1 OR 2 OR 3

All English language articles identified were reviewed. Reference lists of the retrieved articles were also searched to find any other relevant published data. There were no date or publication restrictions.

2.3. Data collection and analysis

2.3.1. Article selection and data extraction. Two reviewers (MF, HK) independently reviewed the full text of identified English articles and excluded articles failing to meet the criteria. Data from identified articles that met the criteria was also independently extracted.

2.3.2. Dealing with missing data. Corresponding authors were contacted for missing data where possible, and primary or secondary outcomes were assessed after excluding missing values.

2.3.3. Data analysis. The results from articles that met the criteria were included in the analysis, and the outcomes were assessed separately for adult and pediatric PF cases. Immunohistochemically, diffusely positive or focally positive staining was considered positive expression. Data is expressed as numbers (percentage) for categorical variables and as medians (interquartile range [IQR]) for continuous variables. For statistical analyses, the Chi-squared test, Fisher exact test, and the Mann-Whitney U test were used, as applicable. All analyses were performed using SPSS Statistics Version 20 (IBM, Armonk, NY).

3. Results

The electronic search identified 80 records (MEDLINE=43, EMBASE=37). After 23 reports were removed because of duplication, 57 reports were identified for potential inclusion. Full article assessment of 57 reports with the reference search identified 45 reports including 84 cases that met the inclusion criteria. Five cases in 4 reports were excluded because of incompatible immunohistochemistry results, such as positive for CD34 or S100. Including 79 PF cases in 41 reports and 1 PF case treated in our center, a total of 80 PF cases (of which 70 were adult PF and 10 were pediatric PF cases) were included in this review; they are listed in Table 1. There was complete agreement between the review authors assessing the reports.

Baseline demographic and clinical characteristics of the 80 patients are shown in Table 2. Ulcerative lesions of the tumor were observed in 65% of all patients and in 95% of those with a chief complaint indicating gastrointestinal bleeding, including hematemesis, tarry stool, and anemia. The location of the tumor was in the stomach in 94% of cases, but 6% were in other organs, such as the esophagus, duodenum, jejunum, and cecum.

Immunohistochemically, tumor cells were positive or focally positive for vimentin in 100% of patients examined, smooth muscle actin (SMA) in 93%, desmin in 41%, caldesmon in 57%, muscle-specific actin (HHF35) in 100%, and cytokeratin in 6% (Table 1). In contrast, staining for CD34, CD117, DOG1, S100, neurofilament, β-catenin, ALK, and EMA was negative in all patients examined. Ki-67 proliferation indices were assessed in 14 cases, and those of 13 (93%) were 2% or lower. All 23 cases that were analyzed for KIT and PDGFRα mutations demonstrated wild-type sequences.

Primary and secondary outcomes were compared between adult and pediatric PF cases (Table 3). Immunohistochemical expressions of pediatric PF were not different from those of adult PF. Median tumor size of the resected specimen was larger in adult and pediatric PF cases (Table 3).

4. Discussion

In summary, both adult and pediatric PF cases showed similar biological and clinical features, except for enlarged tumor size at surgical resection in pediatric PF cases. Regardless of age at onset, PF showed benign clinical behaviors, and no recurrence, metastasis, or tumor-related deaths were observed. This is the
Table 1
Details of 80 cases with immunohistochemical features compatible with PF.

| No | Sex | Age | Complain | Tumor location | Tumor size (cm) | Vimentin (Pos) | SMA (Pos) | Desmin (Pos) | Caldesmon (Pos) | HHF35 (Pos) | Cytokeratin (Pos) | CD10 (Pos) | CD34 (Pos) | CD117 (Pos) | DOG1 (Pos) | S100 (Pos) | Neurokalamentin (Pos) | KIT (Pos) | PDGFRA (Pos) | catenin (Pos) | ALK (Pos) | EMA (Pos) | Ki-67 (Pos) | Treatment | Follow-up period | References |
|----|-----|-----|----------|---------------|----------------|----------------|-----------|-------------|---------------|-------------|-----------------|------------|-------------|-------------|-----------|----------|------------------------|-----------|-------------|---------------|----------|---------|-------------|----------|-----------------|------------|----------------|
| 1 | M | 50 | Abdominal pain | Gastric antrum | Yes | 4.0 | Pos | Pos | Neg | Focal | Pos | Neg | Neg | Neg | Neg | ND | Partial gastrectomy | ND | 1 month | [1] |
| 2 | M | 68 | Abdominal pain | Gastric antrum | No | 4.0 | Pos | Pos | Neg | Focal | Pos | Neg | Neg | Neg | Neg | ND | Partial gastrectomy | 1.2 months | [1] |
| 3 | M | 61 | Hematemesis | Gastric antrum | Yes | 3.7 | Pos | Pos | Neg | ND | Neg | Neg | ND | Neg | ND | Partial gastrectomy | 6 months | [1] |
| 4 | F | 19 | ND | Gastric antrum | Yes | 4.5 | Pos | Focal | Pos | Pos | Neg | Neg | Neg | ND | Partial gastrectomy | 6 months | [1] |
| 5 | M | 46 | Gastrinoma | Gastric antrum | Yes | 3.5 | Pos | Focal | Pos | Pos | Neg | Neg | Neg | ND | Partial gastrectomy | 4 months | [1] |
| 6 | F | 50 | ND | Gastric antrum | Yes | 1.9 | ND | Pos | Focal | ND | Pos | ND | Neg | Neg | ND | ND | ND | Neg | Neg | ND | 2% | Neg | Neg | Tumor resection | 3 months | [1] |

(...Continued)
No	Sex	Age	Chief complaint	Tumor location	Ulcer	Vimentin	SMA	Desmin	Caldesmon	Cytokeratin	CD10	CD34	CD117	DOG1	S100	Neurofilament	β-catenin	ALK	EMA	KIT	PDGFRA	Treatment	Follow-up period	References
50	M	46	ND	Gastric antrum	ND	Pos	Neg	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
51	F	47	ND	Gastric antrum	ND	Pos	Neg	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
52	F	51	ND	Gastric antrum	ND	Pos	Focal	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
53	F	58	ND	Gastric antrum	ND	Pos	Neg	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
54	F	62	ND	Stomach	ND	ND	Focal	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
55	F	63	ND	Jejunum	ND	ND	Focal	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
56	F	65	ND	Gastric antrum	ND	Pos	Neg	ND	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
57	F	76	ND	Stomach	ND	ND	Focal	Pos	ND	ND	ND	ND	ND	ND	ND	ND	Neg	ND	ND	ND	ND	Partial gastrectomy	6 months	[4]
58	F	9	Abdominal pain, vomiting	Gastric antrum	Yes	5.0	Pos	Focal	ND	Neg	Focal	Neg	Partial gastrectomy	6 months	[40]									
59	M	55	Incidental	Gastric pylorus	No	1.7	Pos	Neg	ND	Partial gastrectomy	12 months	[40]												
60	M	51	Abdominal pain	Anemia, tarry stool	Yes	11.7	Focal	Neg	Focal	ND	Partial gastrectomy	12 months	[40]											
61	M	63	Abdominal pain	Duodenum	Yes	3.0	Pos	Neg	ND	ND	Neg	Partial gastrectomy	12 months	[40]										
62	M	51	Abdominal	Abdominal pain	No	4.0	ND	Pos	Neg	ND	Partial gastrectomy	12 months	[40]											
63	M	66	ND	Abdominal pain	No	7.0	ND	Focal	Pos	Neg	Focal	ND	Partial gastrectomy	12 months	[40]									
64	M	34	Abdominal pain	Abdominal pain	No	4.0	ND	Pos	Neg	ND	Partial gastrectomy	12 months	[40]											
65	M	36	Abdominal pain	Abdominal pain	No	1.6	ND	Pos	Neg	ND	Partial gastrectomy	12 months	[40]											
66	M	51	Abdominal pain	Abdominal pain	No	1.9	ND	Pos	Neg	ND	Partial gastrectomy	12 months	[40]											
67	M	51	Abdominal pain	Abdominal pain	Yes	6.5	ND	Pos	Focal	Focal	ND	Partial gastrectomy	12 months	[40]										
68	M	56	Abdominal pain	Abdominal pain	Yes	1.8	ND	Pos	Neg	ND	Partial gastrectomy	12 months	[40]											
69	M	41	Abdominal	Abdominal pain	No	2.5	ND	Pos	Neg	ND	Partial gastrectomy	12 months	[40]											
70	F	70	Abdominal pain	Abdominal pain	Yes	3.8	ND	Pos	Focal	Focal	ND	Partial gastrectomy	12 months	[40]										
71	M	41	Abdominal pain	Abdominal pain	Yes	4.0	ND	Pos	Focal	Focal	ND	Partial gastrectomy	12 months	[40]										
72	M	48	Abdominal pain	Abdominal pain	No	3.8	Pos	Focal	ND	Partial gastrectomy	12 months	[40]												
73	M	52	Abdominal pain	Abdominal pain	Yes	1.2	ND	Pos	Focal	Focal	ND	Partial gastrectomy	12 months	[40]										
74	M	58	Abdominal pain	Abdominal pain	Yes	3.5	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			
75	F	59	Abdominal pain	Abdominal pain	Yes	2.5	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			
76	F	59	Abdominal pain	Abdominal pain	Yes	3.0	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			
77	F	72	Abdominal pain	Abdominal pain	Yes	1.4	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			
78	M	41	Abdominal pain	Abdominal pain	Yes	5.5	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			
79	M	37	Abdominal pain	Abdominal pain	Yes	5.5	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			
80	F	37	Hematemesis	Abdominal pain	Yes	5.5	ND	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Neg	Partial gastrectomy	12 months	[40]			

ALK = anaplastic lymphoma kinase, DOG-1 = discovered on GI 7.1, SMA = smooth muscle actin. Other abbreviations are as follows: **Focal** = focally positive, **HHF35** = muscle-specific actin, **ND** = not described, **Neg** = negative, **Pos** = positive, **SMA** = smooth muscle actin. **unpublished**.
first systematic literature review to assess the age-related characteristics of PF.

The annual incidence rate of GIST was reported to be 0.68 per 100,000 in the United States.\(^{47}\) Although the epidemiology of PF remains unclear, the incidence of PF is estimated to be less than 1/150 of that of GIST,\(^ {31}\) and the reported frequency of adult PF was seven times higher than pediatric PF in the current study.

Based on these data, the estimated annual incidence rate of PF is approximately 0.45 (0.40 in adult and 0.05 in pediatric PF) per 100,000,000. Thus, PF is a rare submucosal tumor, but it should be considered as a potential cause of mesenchymal tumors of the stomach, especially in the antrum.

The clinical features of pediatric GIST are similar to those of pediatric PF, characterized by commonly arising from the gastric antrum, exhibiting myxoid morphology, and the absence of KIT or PDGFRA mutations.\(^ {31}\) In contrast, pediatric GIST can be immunohistologically discriminated from pediatric PF by sensitive and specific immunohistochemical markers, such as CD34, CD117, and DOG1.\(^ {48}\) Similarly, several gastrointestinal tumors with histology similar to pediatric PF can be discriminated by immunohistochemical markers, such as CD34 for inflammatory fibroid polyp, $100 for gastrointestinal schwannoma, $catenin for desmoid-type fibromatosis, ALK for inflammatory myofibroblastic tumor, and EMA for myoid soft tissue perineurioma.\(^ {48}\) Based on these pathological findings, the current study excluded atypical PFs with incompatible immunohistochemistry and included immunohistologically compatible PFs, and the pathological and clinical features of pediatric PF were elucidated. The immunohistochemistry of pediatric PF was similar to that of adult PF with respect to positive expressions of specific markers, such as of mesenchymal cells (vimentin, muscular cells (SMA, desmin, caldesmon, and HHF35), and epithelial cells (cytokeratin). In addition, there were common clinical characteristics, such as hemorrhagic ulcer formation and a benign clinical course, shared by pediatric and adult PF cases. Therefore, the results from the present study are biologically plausible with respect to pathological and clinical compatibility. The enlarged tumor size of pediatric PF could be explained by age-related higher tumor cell proliferation and might be associated with a lower frequency of incidental diagnosis in pediatric PF than in adult PF cases. The present study showed similar pathological and clinical characteristics between pediatric and adult PF cases, unlike pediatric and adult GIST cases, and this finding suggests that PF is a single disease entity unrelated to the age at onset. PF can be treated and followed-up as a benign tumor when confirmed histologically and immunohistochemically.

Table 2
Baseline demographic and clinical characteristics.

	Plexiform fibromyxoma (n = 80)
Female, n (%)	46 (58)
Age (y)	42 (27–55)
Chief complaint, n (%)	
Abdominal pain	15 (25)
Incidental	10 (16)
Anemia	9 (15)
Tarry stool	8 (13)
Abdominal distention	7 (11)
Abdominal discomfort	5 (8.2)
Hematemesis	4 (6.6)
Vomiting	4 (6.6)
Gastrointestinal bleeding	3 (4.9)
Weight loss	2 (3.3)
Others	4 (6.6)
Tumor location, n (%)	
Gastric antrum	62 (78)
Other gastric sites	13 (16)
Duodenum	2 (2.5)
Esophagus	1 (1.3)
Jejunum	1 (1.3)
Cecum	1 (1.3)
Ulceration of tumor, n (%)	42 (65)
Tumor size (cm)	4.0 (3.1–5.7)
Treatment, n (%)	
Partial gastrectomy	48 (74)
Tumor resection	15 (23)
Duodenectomy	2 (3.1)
Follow-up period (months)	16 (6.6–53)

Data is frequencies (%) or medians (interquartile range).

Table 3
Primary and secondary outcome measures.

	Adult PF	Pediatric PF		
	≥19 years (N = 70)	≤18 years (N = 10)	Risk ratio (95%CI)	P value
Positive immunohistochemistry, n (%)				
Vimentin	21 (100)	2 (100)	–	–
SMA	55 (95)	8 (100)	1.1 (1.0 – 1.1)	.67
Desmin	21 (42)	5 (63)	1.5 (0.8 – 2.8)	.24
Caldesmon	12 (63)	2 (100)	1.6 (1.1 – 2.2)	.43
HHF35	0 (0)	0 (0)	0.9 (0.8 – 1.1)	.86
Cytokeratin	1 (8.3)	0 (0)	1.5 (1.0 – 2.1)	.11
Female, n (%)	38 (54)	8 (80)	0.6 (0.1 – 4.5)	.54
Chief complaint, n (%)				
GI bleeding-associated symptom	17 (33)	5 (56)	1.7 (0.8 – 3.4)	.17
Incidental	9 (17)	1 (11)	0.6 (0.1 – 4.5)	.036
Tumor size (cm)	4.2 (3.0 – 5.5)	5.3 (4.3 – 11)	–	–
Died of PF, n (%)	0 (0)	0 (0)	–	–
Recurrence, n (%)	0 (0)	0 (0)	–	–
Metastasis, n (%)	0 (0)	0 (0)	–	–
Follow-up period (months)	18 (6.8 – 67)	15 (7.3 – 31)	–	.63

Data is frequencies (%) or medians (interquartile range).

GI bleeding-associated symptom means anemia, gastrointestinal bleeding, hematemesis, or tarry stool.
GI = gastrointestinal, HHF35 = muscle-specific actin, PF = plexiform fibromyxoma, SMA = smooth muscle actin.
This study had some limitations because of the literature review and small sample size. In view of potential unreported PF cases without severe symptoms, there might be a risk of selection bias toward overestimation of severity. However, under such conditions, there were no tumor-related deaths, recurrences, or metastases of PF, which provides the basis for considering PF a benign tumor. A population-based registry for PF is required to further investigate the epidemiology of PF.

In conclusion, both pediatric and adult PF cases showed similar pathological characteristics and benign clinical behavior, which indicates that PF is the same disease entity, regardless of onset age.

Author contributions
MF and HK wrote the manuscript. MF and HK reviewed the literature. SH, TS, YN, and YY assessed the clinical data. All authors commented on the drafts.

Conceptualization: Mitsuharu Fukazawa, Hiroshi Koga.

Data curation: Mitsuharu Fukazawa, Hiroshi Koga, Shoji Hiroshige, Toshihumi Matsumoto, Yuichi Nakazono, Yasuji Yoshikawa.

Formal analysis: Mitsuharu Fukazawa.

Methodology: Mitsuharu Fukazawa, Hiroshi Koga.

Supervision: Shoji Hiroshige, Toshifumi Matsumoto, Yuichi Nakazono, Yasuji Yoshikawa.

Writing – original draft: Mitsuharu Fukazawa, Hiroshi Koga.

Writing – review & editing: Mitsuharu Fukazawa, Hiroshi Koga, Shoji Hiroshige, Toshihumi Matsumoto, Yuichi Nakazono, Yasuji Yoshikawa.

Hiroshi Koga orcid: 0000-0001-9583-9842.

References
[1] Miertinen M, Fletcher CDM, Kindblom LG, et al. Mesenchymal tumours of the stomach. In: WHO Classification of Tumours of the Digestive System, 4th Ed. 2010:ARC, Lyon:74–79.
[2] Takahashi Y, Shimizu S, Ishida T, et al. Plexiform angiomyxoid myofibroblastic tumour of the stomach: a case report. J Surg Pathol 2007;31:724–9.
[3] Pappo AS, Janeway KA. Pediatric gastrointestinal stromal tumours, 4th Ed. 2010;IARC, Lyon:74.
[4] Fassan M, Salmaso R, Saraggi D, et al. Plexiform angiomyxoid tumour of the stomach: a case report. J Surg Pathol 2007;31:724–9.
[5] Li X, Li S, Xiong S, et al. A rare case of plexiform angiomyxoid tumour of the stomach. Am J Surg Pathol 2008;32:1910–2.
[6] Spans L, Fletcher CD, Antonescu CR, et al. Recurrent malat1-gli1 oncogenic fusion and gli1 up-regulation define a subset of plexiform fibromyxoma. J Pathol 2016;239:335–43.
[7] Yang MX, Zhao ZH, Yang JF, et al. Imaging findings of gastric plexiform fibromyxoma with a cystic change: a case report and review of literature. Medicine 2017;96:e9867.
[8] Galant C, Rousseau E, Ho Minh Duc DK, et al. Plexiform angiomyxoid myofiuroblastic tumour of the stomach. Am J Surg Pathol 2008;32:1910.
[9] Yoshida A, Klimstra DS, Antonescu CR. Plexiform angiomyxoid tumour of the stomach. Am J Surg Pathol 2008;32:1910–2.
[10] Rau JT, Hartmann A, Dietmaier W, et al. Plexiform angiomyxoid myofiuroblastic tumour: differential diagnosis of gastrointestinal stromal tumour in the stomach. J Clin Pathol 2008;61:1136–7.
[11] Miettinen M, Makhhouf HR, Sobin LH, et al. Plexiform fibromyxoma: a distinctive benign gastric antral neoplasm not to be confused with a myoid gist. Am J Surg Pathol 2009;33:1624–32.
[12] Pailoor J, Mun KS, Chen CT, et al. Plexiform angiomyxoid myofiuroblastic tumour of the stomach. Pathology 2009;41:698–9.
[13] Wang WY, Li JN, Li GD. Plexiform angiomyxoid myofiuroblastic tumour of the gastric fundus: Successful diagnosis and treatment by endoscopy. J Clin Pathol 2010;63:569–70.
[14] Sing Y, Subravyan S, Mqadi B, et al. Gastric plexiform angiomyxoid myofiuroblastic tumour. Pathol Int 2010;60:621–5.
[15] Tan CY, Santos LD, Bänkin A. Plexiform angiomyxoid myofiuroblastic tumour of the stomach: a case report. Pathology 2010;42:581–3.
[16] Takahashi Y, Suzuki M, Fukusuto T. Plexiform angiomyxoid myofiuroblastic tumour of the stomach. World J Gastroenterol 2010;16:2835–40.
[17] Daum O, Jirasek T, Grossmann P, et al. Plexiform fibroma of the colon. Appl Immunohistochem Mol Morphol 2010;18:483–4.
[18] Kim A, Bae YK, Shin HC, et al. Plexiform angiomyxoid myofiuroblastic tumour of the stomach: a case report. J Korean Med Sci 2011;26:1308–11.
[19] Kang Y, Jung W, Do IG, et al. Plexiform angiomyxoid myofiuroblastic tumour of the stomach: Report of two cases and review of the literature. Korean J Pathol 2012;46:292–6.
[20] Lee PW, Yao DT, Lau PP, et al. Plexiform fibromyxoma (plexiform angiomyxoid myofiuroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol 2014;22:286–90.
[21] Ikemura M, Maeda E, Hatao F, et al. Plexiform angiomyxoid myofiuroblastic tumour (patm) of the stomach. A case report focusing on its characteristic growth pattern. Int J Clin Exp Pathol 2014;7:685–9.
[22] Li P, Yang S, Wang C, et al. Presence of smooth muscle cell differentiation in plexiform angiomyxoid myofiuroblastic tumour of the stomach: a case report. Int J Clin Exp Pathol 2014;7:823–7.
[23] Sakamoto K, Hirakawa M, Ashumi K, et al. A case of gastric plexiform fibromyxoma: radiological and pathological findings. Jpn J Radiol 2014;32:431–6.
[24] Duckworth LV, Gonzalez RS, Martelli M, et al. Plexiform fibromyxoma: report of two pediatric cases and review of the literature. Pediatr Dev Pathol 2014;17:21–7.
[25] Raek SH, Yoon JH, Kim YJ. Plexiform angiomyxoid myofiuroblastic tumour of the stomach: a case report and review of the literature. J Korean Soc Radiol 2014;70:47–52.
[26] Banerjee N, Gupta S, Dash S, et al. Plexiform angiomyxoid myofiuroblastic tumour of the duodenum: a rare entity. BMJ Case Rep 2015:2015.
[27] Lu B, Ye W, Liu H. A rare gastric tumor in a young woman. Gastric plexiform angiomyxoid myofiuroblastic tumour. Gastroenterology 2015;149:294–5.
[28] Dekate J, Ali-Ridha N, Vaipery R. Gastric plexiform angiomyxoid myofiuroblastic tumour. Diagn Histopathol 2015;21:257–60.
[29] Inoue Y, Gunji S, Obama K, et al. Laparoscopic endoscopy cooperative surgery for gastric plexiform fibromyxoma: a case report. Surg Case Rep 2016;2:119.
[30] Nagahisa Y, Ito T, Okita C, et al. Laparoscopic and endoscopic cooperative surgery for plexiform angiomyxoid myofiuroblastic tumour. Case Rep Gastroenterol 2016;10:302–7.
[31] Kane JR, Lewis N, Lin R, et al. Plexiform fibromyxoma with cotedele-like serosal growth: a case report of a rare gastric tumor and review of the literature. Oncol Lett 2016;11:2189–94.
[32] Duckworth LV, Gonzalez RS, Martelli M, et al. Plexiform fibromyxoma: report of two pediatric cases and review of the literature. Pediatr Dev Pathol 2014;17:21–7.
[33] Quero G, Masarra T, Carrato A, et al. Unusual focal keratin expression in plexiform angiomyxoid myofiuroblastic tumour: a case report and review of the literature. Medicine 2016;95:e4207.
[34] Jonaitis L, Kudelnis M, Slepavics P, et al. Plexiform angiomyxoid myofiuroblastic tumour of stomach: a rare case. World J Gastroenterol 2016;22:8674–8.
[35] Naidis MJ, Uddin A, et al. Plexiform fibromyxoma: a cause of obscure upper gastrointestinal bleeding: a case report. Medicine 2017;96:e6470.
[36] Norris MW, Sullivan L, Sawaya DE, et al. Gastric plexiform fibromyxoma in a child - case report and review of the literature. J Ped Surg Case Reports 2016;14:38–41.
[37] Akai H, Kiryu S, Shinozaki M, et al. Computed tomography and magnetic resonance imaging of a plexiform angiomyxoid myofiuroblastic tumor of the stomach: a case report. Int J Clin Exp Pathol 2014;7:82
[38] Kawara F, Tanaka S, Yamasaki T, et al. Gastric plexiform fibromyxoma resected by endoscopic submucosal dissection after observation of
chronological changes: a case report. World J Gastrointest Oncol 2017;9:263–7.

[41] Szurian K, Till H, Amerstorfer E, et al. Rarity among benign gastric tumors: Plexiform fibromyxoma - report of two cases. World J Gastroenterol 2017;23:3817–22.

[42] Kim SM, An JY, Choi MG, et al. Plexiform angiomyxoid myofibroblastic tumor of the stomach: a rare case. J Gastroenterol 2017;42:277–81.

[43] Wambura C, Surani S. Plexiform fibromyxoma: a rare gastric tumor. Case Rep Gastrointest Med 2017;2017:4014565.

[44] Hu G, Chen H, Liu Q, et al. Plexiform fibromyxoma of the stomach: a clinicopathological study of 10 cases. Int J Clin Exp Pathol 2017;10:10926–33.

[45] Djuric Z, Stojsic Z, Radulovic S, et al. Plexiform fibromyxoma: a rare benign gastric tumor. J Pediatr Gastroenterol Nutr 2018;10.1097/MPG.0000000000001938.

[46] Gonzalez-Cordero PL, Vara-Brenes D, Pecero-Hormigo MDC, et al. Plexiform fibromyxoma, a rare mesenchymal gastric tumor. Gastroenterology 2018;43:166–7.

[47] Ma GL, Murphy JD, Martinez ME, et al. Epidemiology of gastrointestinal stromal tumors in the era of histology codes: results of a population-based study. Cancer Epidemiol Biomarkers Prev 2015;24:296–302.

[48] Doyle LA, Hornick JL. Mesenchymal tumors of the gastrointestinal tract other than GIST. Surg Pathol Clin 2013;6:425–73.