Lesion detection and assessment of extrahepatic findings in abdominal MRI using hepatocyte specific contrast agents – comparison of Gd-EOB-DTPA and Gd-BOPTA

Kristina I Ringe1,2*, Daniel T Boll2, Daniela B Husarik2, Mustafa R Bashir2, Rajan T Gupta2 and Elmar M Merkle2,3

Abstract

Background: To evaluate the contrast agent performance of Gd-EOB-DTPA and Gd-BOPTA for detection and assessment of extrahepatic findings, semi-quantitatively and qualitatively.

Methods: 13 patients with 19 extrahepatic lesions underwent liver MRI with Gd-EOB-DTPA and Gd-BOPTA. Quantitative and relative SNR measurements were performed in each dataset in the arterial and portalvenous phase within the extrahepatic lesion, aorta, inferior vena cava, portal vein, spleen, pancreas and renal cortex. Further, relative CNR measurements were performed. Three readers assessed contrast quality using a five-point scale and choosing the preferred image dataset. Statistical analysis consisted of a Student’s t-test with \(p < 0.05 \) deemed significant, a weighted kappa statistic for assessment of interobserver variability and an ROC analysis.

Results: Mean SNR after injection of Gd-BOPTA was significantly higher compared with Gd-EOB-DTPA for all measurements (\(p < 0.05 \)). Mean relative SNR was also higher for Gd-BOPTA, but without being statistically significant. There was no significant difference in relative CNR. Interobserver agreement for selection of image preference was moderate (mean weighted kappa 0.485). The area under the curve for the ROC-analysis regarding contrast agent performance was 0.464.

Conclusion: Even though mean SNR is significantly higher after injection of Gd-BOPTA compared with Gd-EOB-DTPA, there is no significant difference in relative CNR with extrahepatic lesions being assessed equally well. Visual impression may differ after injection of Gd-EOB-DTPA, but does not influence image interpretation. Extrahepatic findings can be assessed similarly to MRI after injection of Gd-BOPTA.

Keywords: Gd-EOB-DTPA, Gadoxetate disodium, Gd-BOPTA, Extrahepatic
gadolinium chelates [4]. A dosage of 0.025 mmol/kg body weight is approved by the FDA. This dosage is equivalent to one quarter of the gadolinium dose recommended for all other MRI contrast agents approved by the FDA for liver imaging. However, the approved dosage of 0.025 mmol/kg body weight for Gd-EOB-DTPA is currently under debate with some radiologists preferring twice that dosage.

Recapitulating, it is known that the distinct pharmacokinetic and pharmacodynamic properties of Gd-EOB-DTPA may result in a different image appearance especially of primary and secondary liver lesions [5,6], as well as other parenchymal organs and vessels [7,8], compared with other established MRI contrast agents such as Gd-BOPTA [9]. As comprehensive MR imaging of the liver usually includes imaging of the upper abdomen, this leads to the question, whether image interpretation of incidental extrahepatic findings may be influenced unknowingly. It has been suggested that further clinical studies in patients with various tumors are needed to clarify this circumstance and to establish more routine [8]. Thus, the purpose of our study was to evaluate the contrast agent performance of Gd-EOB-DTPA and Gd-BOPTA for detection and assessment of extrahepatic findings both, semi-quantitatively and qualitatively.

Methods
This retrospective study was approved from the local institutional review board of Duke University Medical Center with a waiver of consent granted.

Patients
A total of 13 patients (8 male, 5 female; mean age 57.4 years, range 37–73 years) were included in this study, who met the inclusion criteria. The patients were chosen from a database consisting of a total of 552 patients in whom MRI was performed including the administration of Gd-EOB-DTPA at our institution between October 2008 and January 2010. All patients were referred for liver MR imaging, including administration of a hepatocyte specific contrast agent. Due to a change in clinical routine patients received different contrast agents over time and for clinical follow-up. Inclusion criteria were as follows: age of at least 18 years, availability of a comparison study within one year and administration of either Gd-EOB-DTPA or Gd-BOPTA, and presence of an extrahepatic finding seen on both imaging studies.

The extrahepatic lesions were as follows: 4 adrenal lesions (adenoma n = 3, metastasis n = 1), 5 kidney lesions (angiomyolipoma n = 1, metastasis n = 4), 5 splenic lesions (hemangioma n = 5), 2 pulmonary lesions (hamartoma n = 2), 1 pancreatic lesion (microcystic cystadenoma n = 1), 2 spinal lesions (metastasis n = 2). Parenchymal lesions showed no change in size (mean lesion size: 2.15 cm; range: 1–4.32 cm) and appearance between comparative studies. Patient characteristics are summarized in Table 1.

MR imaging technique
MR examinations were all performed on 1.5 T systems. Including the administration of Gd-EOB-DTPA examinations were performed on following scanners: Magnetom Avanto (Siemens, Erlangen, Germany), n = 5; Signa HDx (GE Healthcare, Milwaukee, USA), n = 8. Comparison studies including the administration of Gd-BOPTA were performed on the same scanners (Magnetom Avanto; Siemens (n = 5) or Signa HDx; GE Healthcare (n = 8)).

In all patients, dedicated multidetector surface coils that covered the abdomen were used. All patients underwent a clinical routine image protocol of the liver including the administration of either 0.025 mmol/ kg Gd-EOB-DTPA or 0.1 mL/ kg Gd-BOPTA at a rate of 2 mL/ sec followed by a saline flush using a dual power injector. The MR pulse sequence protocol for all examinations included a T2w HASTE (half-Fourier single shot turbo spin-echo) and a T1w gradient dual echo sequence before contrast injection, as well as a dynamic contrast series including the acquisition of a triple arterial phase (3D T1w gradient echo sequence) with a fixed scan delay (15 seconds in patients <60 years and 20 seconds in patients >60 years, respectively) and a portal venous phase (3D T1w gradient echo sequence) after contrast injection, which was acquired approximately 15–20 seconds after completion after the arterial phase data acquisition. These imaging sequences and parameters were the same between imaging platforms and comparative studies.

Image evaluation

Table 1 Patient characteristics and assessed extrahepatic findings
Gender (male / female)
Age (years)
Extrahepatic lesion
Adrenal adenoma
Adrenal metastasis
Angiomyolipoma kidney
Kidney metastasis
Splenic hemangioma
Pulmonary hamartoma
Pancreatic cystadenoma
Spinal metastasis
Results

All patients underwent MR imaging of the upper abdomen using Gd-BOPTA and Gd-EOB-DTPA. Mean time interval between both examinations was 165 days (range 23–265 days).

Discussion

Extracellular contrast agents, such as gadopentetate dimeglumine (Gd-DTPA, Magnevist, Bayer HealthCare), have been in clinical use for more than two decades and are well established. More recently, liver-specific contrast agents have become available for the detection and characterization of focal hepatic lesions. Whereas Gd-BOPTA has been approved for liver imaging by the European authorities several years ago and certain experience and routine is available, Gd-EOB-DTPA is fairly new and has gained FDA approval only in 2008.

Brismar et al. compared liver vessel and liver parenchymal enhancement after the injection of Gd-EOB-DTPA and Gd-BOPTA using a bolus technique in ten healthy volunteers. Results showed a higher maximum of enhancement of the hepatic artery, portal vein and middle hepatic vein during the arterial, portal venous phase and delayed phase for Gd-BOPTA, while there was no significant difference in liver parenchymal enhancement after the injection of Gd-EOB-DTPA and Gd-BOPTA.
contrast enhancement [7]. So far only few studies have compared the performance of Gd-EOB-DTPA with other more established contrast agents regarding the assessment of extrahepatic tissues and vessels. Kühn et al. compared the enhancement patterns of solid organs and the abdominal aorta after the injection of gadobutrol and gadoxetate disodium in 50 patients. Mean enhancement indexes were higher for gadobutrol except for the abdominal aorta, and it has been suggested that early dynamic MRI of the upper abdomen benefits from the higher gadolinium concentration of gadobutrol than in the organ-specific contrast agent gadoxetic acid [11]. However, patients in the two compared contrast agents groups were not the same. These results were similar to those gained by Zizka et al. earlier [12]. A more recent intraindividual comparison of liver, abdominal and pulmonary vessel enhancement in staging for rectal carcinoma showed comparable contrast enhancement after gadoxetic acid to gadobutrol [13]. Tamada et al. compared enhancement patterns of solid abdominal organs and vessels in 13 healthy volunteers after the injection of Gd-DTPA (Magnevist) and Gd-EOB-DTPA. It has been proposed that lower arterial vascular and parenchymal enhancement with Gd-EOB-DTPA as compared with
GD-DTPA may require reassessment of its dose, despite the higher late venous phase liver parenchymal enhancement [8].

To the best of our knowledge, no study has so far compared the enhancement effect of extrahepatic findings in MR imaging with Gd-EOB-DTPA and Gd-BOPTA. Our results show that even though mean SNR in extrahepatic lesions, vessels and organs is significantly higher after the injection of Gd-BOPTA compared with Gd-EOB-DTPA, there is no significant difference in relative CNR with extrahepatic lesions being assessed adequately. Thus, visual impression may differ after injection of Gd-EOB-DTPA, but does not influence image interpretation, and extrahepatic findings can be assessed similarly to MRI after injection of Gd-BOPTA. The circumstance that interobserver variability for Gd-BOPTA is slightly better than for Gd-EOB-DTPA may be justified to some extent by the fact, that gadoxetate disodium is a relatively new contrast agent resulting in a different image impression and that we are in the process of gaining more routine [5-8].

Our study has a number of limitations. The time interval between MRI examination with Gd-EOB-DTPA and Gd-BOPTA was fairly long in some patients (mean 165 days). On the other hand, evaluated parenchymal lesions showed no change in size and appearance between comparative studies, so that evaluation especially of metastatic lesions could not be influenced by these factors.
Also, comparative studies were performed on the same scanners using identical imaging parameters. Another limitation is the small sample size and heterogeneity of incidentally detected lesions (malignant as well as benign). As the same lesion was evaluated on two different studies, we think that this intralesional comparison is valid.

Conclusions
In conclusion, hepatocyte-specific contrast agents are increasingly used for comprehensive MR imaging of the liver. Incidental extrahepatic parenchymal findings are common and need to be appraised when imaged. It is known that the distinct pharmacokinetic and pharmacodynamic properties of Gd-EOB-DTPA may result in a different image appearance especially of primary and secondary liver lesions. Therefore assessment of extrahepatic findings may unknowingly be influenced as well, and a comparison of contrast agent performance is clinically important. The results of our study show, that visual impression of incidental extrahepatic findings may differ after injection of Gd-EOB-DTPA compared with Gd-BOPTA, but does not influence image interpretation. Reliable assessment of extrahepatic findings is feasible using the hepatocyte-specific contrast agent Gd-EOB-DTPA, although results need to be validated in future studies with larger patient cohorts.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KIR and EMM conceived and designed the experiments. KIR, DTB, DBH, MRB, RTG and EMM performed the experiments and acquisition of data. KIR and EMM analyzed the data. All authors participated in writing and revising the manuscript.

Author details
1Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany. 2Department of Radiology, Duke University Medical Center, Box 3808, Durham, North Carolina 27710, USA. 3University Hospital Basel, Radiology and Nuclear Medicine, Petersgraben 4, CH-4031 Basel, Switzerland.

Received: 6 December 2012 Accepted: 19 February 2013 Published: 18 March 2013

References
1. Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U: Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 1992, 183:59–64.
2. Hamn B, Staks T, Mühler A, Bollow M, Taupitz M, Frenzel T, Wolf KJ, Weinmann HJ, Lange L: Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 1995, 195:785–792.
3. Kirchin MA, Piovano GP, Spinazzi A: Gadoxobenate dimeglumine (Gd-BOPTA) – An overview. Invest Radiol 1996, 31:796–809.
4. Reimer P, Rummenny EJ, Shamsi K, Balzer T, Baldrup H, Tornvall B, Hesse T, Berns T, Peters PE: Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology 1996, 199:177–183.
5. Ringe KI, Husarik DB, Sirlin CB, Merkle EM: Gadoxetate-disodium enhanced MRI of the liver: Part 1, Protocol optimization and lesion appearance in the non-cirrhotic liver. AJR Am J Roentgenol 2010, 195:13–23.
6. Crute I, Schröder M, Merkle EM, Sirlin CB: Gadoxetate-disodium enhanced MRI of the liver: Part 2, Protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol 2010, 195:29–41.
7. Brismar TB, Dahllöf M, Edshög N, Persson A, Smidby O, Albinsson A: Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers. Acta Radiol 2009, 50:709–715.
8. Tamada T, Ito K, Sone T, Yoshida K, Kikuta K, Tanimoto D, Higashi H, Yamashita T: Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-BOPTA. J Magn Reson Imaging 2009, 29:536–540.
9. Goodwin MD, Dobson JE, Sirlin CB, Lim BG, Stella DL: Diagnostic pitfalls and challenges in MR imaging with hepatocyte-specific contrast agents. Radiographics 2011, 31:1547–1568.
10. Lim JS, Kim MJ, Myoung S, Park MS, Choi JY, Choi JS, Kim SI: MR cholangiography for evaluation of hilar branching anatomy in transplantation on the right hepatic lobe from a living donor. AJR Am J Roentgenol 2008, 191:537–545.
11. Kuhn JP, Hegenscheid K, Siegmund W, Froehlich CP, Hosten NJ, Puls R: Normal dynamic MRI enhancement patterns of the upper abdominal organs: gadoxetic acid compared with gadobutrol. AJR Am J Roentgenol 2009, 193:1318–1323.
12. Ziska J, Kizo L, Ferda J, Mirkovics M, Bukac J: Dynamic and delayed contrast enhancement in upper abdominal MRI studies: comparison of gadoxetic acid and gadobutrol. Eur J Radiol 2007, 62:186–191.
13. Huppertz A, Franiel T, Wagner M, Pützcher O, Wagner J, Reif M, Schwenke C, Hamm B, Strassburg J: Whole-body MRI with assessment of hepatic and extrahepatic enhancement after administration of gadoxetic acid for staging of rectal carcinoma. Acta Radiol 2010, 52:842–850.