Relativistic Brownian Motion

Yue Wang

University of Rochester
Outline

- Assumptions
- Theoretical Derivation
- Numerical Verification
- Simulation
Assumptions

Classical Brownian Motion	Relativistic Brownian Motion
Infinite Speed.	Speed bounded by the speed of light: the *rapidity* is in the unit of speed of light.
The step is an independent identically distributed variable (i.i.d.).	The step is an independent identically distributed variable (i.i.d.).
The distribution of the step follows normal distribution.	The distribution of the step follows lognormal distribution.

Note: $v = c \tanh(\theta)$ where θ is the rapidity and v is velocity.
Theoretical Derivation

\(\mu_n(dx) \): probability measure -- log-normal probability density function.

\[
\mu_n(dx) = \frac{1}{\sqrt{2\pi \sigma e^{\frac{\alpha^2 \sigma^2}{2}}}} \exp\left(-\frac{\log^2 x}{2\sigma^2}\right) x^{\alpha + 1} \, dx
\]

\(x \): step.

\(X_n \): displacement after \(n \) steps.

\(s \): time window.

\(\sigma^2 \): the variance of the rapidity.

\(-\alpha \sigma^2 \): the mean of the rapidity.
Theoretical Derivation

- Expected value for the exponential of displacement:

\[\mathbb{E}(e^{-sX_n}) = \left[\int_0^\infty e^{-sx} \mu_n(dx) \right]^n \]

Expected value for the exponential of step.

The sum becomes multiplication when taking the exponential.

\[\mathbb{E}(e^{-sX_n}) = [1 + \frac{1}{n} \int_0^\infty (e^{-sx} - 1)n\mu_n(dx)]^n \]

\[= \exp[n \log(1 + \frac{1}{n} \int_0^\infty (e^{-sx} - 1)n\mu_n(dx))] \]
Theoretical Derivation

First Approximation: Large number of steps. \(\frac{1}{n} \) is small, so \(\log \left(1 + \frac{k}{n}\right) \approx \frac{k}{n} \) where \(k \) is a constant.

\[
\mathbb{E}(e^{-sx_n}) = \exp\left[\int_0^\infty (e^{-sx} - 1)n\mu_n(dx)\right]
\]
Theoretical Derivation

- The log-normal probability density function.

\[
n\mu_n(dx) = \frac{n}{Z_{\sigma,\alpha}} \frac{\exp\left(-\frac{\log^2 x}{2\sigma^2}\right)}{x^{\alpha+1}} dx
\]

\[
Z_{\sigma,\alpha} = \sqrt{2\pi}\sigma e^{\frac{\alpha^2\sigma^2}{2}}
\]

- Normalization: Introduce \(\sigma_n\) such that

\[
Z_{\sigma,\alpha} = n \quad \Rightarrow \quad \sigma_n^2 = \frac{W\left(\frac{\alpha^2n^2}{2\pi}\right)}{\alpha^2} \quad (1)
\]

Lambert function: the principal branch solution of \(z = W(z)e^{W(z)}\).
Theoretical Derivation

- Second Approximation: Very large number of steps. \(\frac{1}{\log n} \) is small, so \(W \left(\frac{\alpha^2 n^2}{2\pi} \right) \approx \log \left(\frac{\alpha^2 n^2}{2\pi} \right) \).

\[
\mathbb{E}(e^{-sX_n}) = \exp\left[\int_0^\infty (e^{-sx} - 1) \frac{\exp(-\frac{\log^2 x}{2\sigma^2})}{x^{\alpha+1}} \, dx \right]
\]

(2)

Approximated \(n\mu_n \, dx \).
Theoretical Derivation

- Third Approximation: \(\frac{\log^2 x}{2\sigma^2} \) is small, so \(\exp \left(-\frac{\log^2 x}{2\sigma^2} \right) \approx 1. \)

\[
\mathbb{E}(e^{-sX_n}) = \exp \left[\int_0^\infty (e^{-sx} - 1) \frac{1}{x^{\alpha+1}} \, dx \right]
\]

Approximated \(n\mu_n \, dx \).
Theoretical Derivation

- **Fourth Approximation**: Large number of steps. \(n \to \infty \), so

\[
\int_0^\infty (e^{-sx} - 1) \frac{\exp\left(-\frac{\log^2 x}{2\sigma^2}\right)}{x^{\alpha+1}} dx \to \Gamma(-\alpha)s^\alpha - \frac{1}{2\sigma^2_n} \int_0^\infty \frac{\log^2 x}{x^{\alpha+1}} [e^{-sx} - 1] dx
\]

\[
\mathbb{E}(e^{-sX_n}) = \exp[\Gamma(-\alpha)s^\alpha]
\] \hspace{1cm} (4)

The characteristic function of Levy distribution.
Theoretical Derivation

- Specifically, when $\alpha = \frac{1}{2}$

$$\mathbb{E}(e^{-sX_n}) = \exp(-2\pi^{\frac{1}{2}}s^{\frac{1}{2}})$$ \hspace{1cm} (5)
Numerical Verification

Equation 5
Equation 2 and 1
Equation 2
Equation 3

https://medlind.wordpress.com/cropped-images-snoopy-computer-jpg/
Simulation

- Example path

Large step: step larger than $\frac{10^{-2}}{n}$.
Simulation

- N_j the number of large steps per trial follows Poisson Distribution.
Simulation

- Step distribution of large steps

![Diagram showing step distribution of large steps in a log-log scale.]
Acknowledgements

- Thank you to my research advisor Prof. Rajeev and to my academic advisor Prof. Iosevich.