In vitro activity of 20 antibiotics against Cupriavidus clinical strains

Clémence Massip, Mathieu Coulaud-Gamel, Cécile Gaudru, Lucie Amoureux, Anne Doléans-Jordheim, Geneviève Héry-Arnaud, Hélène Marchandin, Eric Oswald, Christine Segonds, Hélène Guet-Revillet

To cite this version:

Clémence Massip, Mathieu Coulaud-Gamel, Cécile Gaudru, Lucie Amoureux, Anne Doléans-Jordheim, et al.. In vitro activity of 20 antibiotics against Cupriavidus clinical strains. Journal of Antimicrobial Chemotherapy, Oxford University Press (OUP), 2020, 75 (6), pp.1654-1658. 10.1093/jac/dkaa066 . hal-02904610

HAL Id: hal-02904610
https://hal.inrae.fr/hal-02904610
Submitted on 22 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License
In vitro activity of 20 antibiotics against Cupriavidus clinical strains

Clémence Massip1,2, Mathieu Coullaude-Gamel1,3, Cécile Gaudru1,2, Lucie Amoureux4,5, Anne Doleans-Jordheim6,7, Geneviève Hery-Arnaud8,9, Hélène Marchandin10, Eric Oswald1,2, Christine Segonds11 and Hélène Guet-Revillet1,2,11*

1Service de Bactériologie-Hygiène, CHU de Toulouse, Toulouse, France; 2IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; 3Lycée Stéphane Hessel, Toulouse, France; 4Laboratoire de Bactériologie, CHU Dijon, Dijon, France; 5UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France; 6Laboratoire de Bactériologie, Instituts des Agents Infectieux, Centre de Biologie et Pathologie Nord, Hospices Civils de Lyon, Lyon, France; 7Equipe de Recherche Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1 et VetAgro Sup, Villeurbanne, France; 8Département de Bactériologie-Virologie, Hygiène et Parasitologie-Mycologie, Centre Hospitalier Regional Universitaire (CHRU) de Brest, Brest, France; 9INSERM, EFS, UMR 1078 ‘Génétique, Génomique Fonctionnelle et Biotechnologies’, Univ Brest, F-29200 Brest, France; 10HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Département de Microbiologie, CHU Nîmes, Nîmes, France; 11Observatoire Burkholderia cepacia, CHU de Toulouse, Toulouse/Vaincre la Mucoviscidose, Paris, France

*Corresponding author. E-mail: guet-revillet.h@chu-toulouse.fr

Sir,

Cupriavidus are Gram-negative non-lactose-fermenting motile bacilli with peritrichous flagella, a number of which were previously and successively classified in the Ralstonia and Wautersia genera. Until the recent expansion of MALDI-TOF MS, Cupriavidus could be mistaken for Burkholderia or Pseudomonas species. They are resistant to heavy metals and have been described from environmental (soil and water) samples, as well as from human samples.1 Cupriavidus gilardii, Cupriavidus pauculus and Cupriavidus metallidurans are involved in invasive human infections, such as bacteremia and pneumonia, most of which (though not exclusively) occur in immunocompromised patients.2–4 Additionally, Cupriavidus species, Cupriavidus respiraculi in particular, are increasingly identified in patients

2 Sun J, Chen C, Cui CY et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol 2019; 4: 1457–64.
3 Chen C, Cui CY, Zhang Y et al. Emergence of mobile tigecycline resistance mechanism in Escherichia coli strains from migratory birds in China. Emerg Microbes Infect 2019; 8: 1219–22.
4 Wang Y, Wang Y, Wu C et al. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J Antimicrob Chemother 2011; 66: 2521–6.
5 Bie L, Wu H, Wang XH et al. Identification and characterization of new members of the SXT/R391 family of integrative and conjugative elements (ICEs) in Proteus mirabilis. Int J Antimicrob Agents 2017; 50: 242–6.
6 Chen Y, Lei C, Zuo L et al. A novel cfr-carrying Tn7 transposon derivative characterized in Morganella morganii of swine origin in China. J Antimicrob Chemother 2019; 74: 603–6.
7 Li R, Xie M, Dong N et al. Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data. Gigascience 2018; 7: 1–9.
8 Bie L, Wu H, Wang XH et al. Identification and characterization of new members of the SXT/R391 family of integrative and conjugative elements (ICEs) in Proteus mirabilis. Int J Antimicrob Agents 2017; 50: 242–6.
9 Burrus V, Marrero J, Waldor MK. The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 2006; 55: 173–83.
10 Burrus V, Waldor MK. Control of SXT integration and excision. J Bacteriol 2003; 185: 5045–54.
with cystic fibrosis (CF). However, their clinical relevance in CF is not established. Due to the rare occurrence of Cupriavidus infections, antibiotic susceptibility data are only available from sparse case reports. Therefore, we determined the MICs of 20 antibiotics for a panel of Cupriavidus clinical strains, mainly from respiratory samples of CF patients (82%).

Thirty-seven epidemiologically unrelated clinical isolates of Cupriavidus obtained from the collection of the French Observatoire Burkholderia cepacia and from 11 French hospitals, as well as two type strains from clinical sources, i.e. C. pauculus LMG 3244 and C. respiraculi LMG 21510 (Laboratory of Microbiology, Ghent University, Ghent, Belgium), were included. Isolates were identified by amplified ribosomal DNA restriction analysis (ARDRA) and MALDI-TOF MS (Maldi Biotyper Microflex, Bruker Daltonics, Bremen, Germany; IVD 7712). The experimental panel thus comprised 18 C. respiraculi, 6 C. gilardii, 5 C. pauculus, 4 C. metallidurans, 2 Cupriavidus neocator, 2 Cupriavidus taiwanensis, 1 Cupriavidus basilensis and 1 unidentified Cupriavidus sp.

The MICs of 20 antibiotics, listed in Table 1, were determined using the broth microdilution method, as recommended by EUCAST (www.eucast.org). Briefly, each strain was inoculated on a blood agar plate (bioMérieux, Marcy-l’Étoile, France) for 16 h at 35°C. Bacterial suspensions in Mueller–Hinton broth (Bio-Rad, Marnes-la-Coquette, France) at concentrations of 5 × 10⁵ cfu/mL were dispensed in 96-well microtitre plates (Dutscher, Brumath, France, 160 µL per well). Antimicrobial agents were added at increasing 2-fold concentrations (40 µL per well). The MICs were determined as the lowest antibiotic concentrations that inhibited visible bacterial growth after an 18 ± 2 h incubation at 35°C in an aerobic atmosphere.

C. gilardii and C. basilensis by non-Enterobacteriaceae CLSI breakpoints (2019; https://clsi.org) for minocycline and co-trimoxazole. Such discrepancies between meropenem and imipenem activities are possibly due to the overexpression of efflux pumps from the resistance-nodulation-division division. Indeed, a homologue of the MexAB OprM efflux pump that extrudes meropenem in P. aeruginosa has been identified in C. gilardii.9

Aminoglycosides were poorly active, in agreement with case reports, probably due to efflux pumps and aminoglycoside-modifying enzymes. Minocycline was the most active antibiotic, with very low MICs and a 100% susceptibility rate. Fluoroquinolones were frequently active, with over 80% of strains being susceptible, except for C. pauculus and C. metallidurans. Interspecies discrepancies were also noticed for co-trimoxazole. It was active against approximatively 80% of C. gilardii and C. respiraculi strains, whereas more than 50% of the strains belonging to other species were resistant.

Over 90% of C. respiraculi and 67% of C. gilardii strains were susceptible to colistin, while strains from the other species were mostly colistin-resistant. Colistin susceptibility was one of the characteristics of the Cupriavidus genus initially described by Vaneechoutte et al. However, Petrou et al. showed that the expression of ArnT was particularly strong in a strain of C. metallidurans. This enzyme catalyses the attachment of the cationic sugar 4-amino-4-deoxy L-arabinose (L-Ara4N) to lipid A phosphate groups. The subsequent reduction of negative membrane charge is responsible for colistin resistance. We detected homologues of ArnT (CP000353.2: 1481129–1482725) using BLASTn in C. basilensis, C. neocator, C. pauculus and C. taiwanensis sequences strains (a query cover >80%, an identity >70% and an E value <1 × 10⁻40 were chosen as cut-off values for significance), which is in accordance with the high rate of colistin resistance in these species observed in our study. Additionally, C. gilardii appears to be the origin of the gene mcr-5, which is an emerging plasmid-mediated mechanism of colistin resistance in other environmental species such as Salmonella and Pseudomonas.

In conclusion, our study showed that minocycline and cephefime exhibited the best in vitro activities against Cupriavidus strains. Meropenem, aminoglycosides and polymyxins, often considered antibiotics of last resort against infections caused by Gram-negative bacilli, do not have reliable activity against Cupriavidus. Perhaps resistance to these agents confers a selective advantage to Cupriavidus and therefore it may emerge in clinical scenarios where these agents are used, such as in patients with CF. Imipenem was more active than meropenem and ceftazidime/ceftriaxone was more active than ceftazidime. Ceftolozane/tazobactam had reasonable activity against Cupriavidus, whereas the novel inhibitor avibactam does not seem to add to the activity of
Table 1. MICs of 20 antibiotics for 39 Cupriavidus clinical strains, including two type strains, determined by the broth microdilution method

Bacteria (n)	Antibiotic	MIC (mg/L)	Percentage susceptible (breakpoint, mg/L)	Percentage resistant (breakpoint, mg/L)	
		MIC₅₀	MIC₉₀		
C. respiraculi (18)	amikacin	64	512	23 (<8)	72 (>16)
	amoxicillin	512	>512	5 (<2)	90 (>8)
	amoxicillin/clavulanate	256	>512	8 (<2)	87 (>8)
	aztreonam	32	256	0 (<4)	97 (>8)
	cefepime	1	4	95 (<4)	0 (>8)
	cefotaxime	1	2	82 (<1)	8 (>2)
	ceftazidime	16	32	23 (<4)	54 (>8)
	cefotaxime/avibactam	8	32	69 (<8)	31 (>8)
	ceftolozane/tazobactam	2	8	90 (<4)	10 (>4)
	ceftriaxone	1	4	74 (<1)	10 (>2)
	ciprofloxacin	0.125	1	74 (<0.25)	18 (>0.5)
	colistin	2	16	56 (<2)	44 (>2)
	co-trimoxazole	1	128	62 (<2)	38 (>2)
	imipenem	2	8	69 (<2)	21 (>4)
	levofloxacin	0.25	2	79 (<0.5)	18 (>1)
	meropenem	32	64	8 (<2)	74 (>8)
	minocycline	≤0.06	0.5	100 (<4)	0 (>8)
	piperacillin/tazobactam	8	128	46 (<4)	26 (>16)
	temocillin	32	512	31 (<16)	69 (>16)
	tobramycin	256	>256	21 (<4)	79 (>4)
	amikacin	128	512	6 (<8)	89 (>16)
	amoxicillin	512	>512	0 (<2)	100 (>8)
	amoxicillin/clavulanate	512	>512	0 (<2)	100 (>8)
	aztreonam	32	32	0 (<4)	100 (>8)
	cefepime	2	4	89 (<4)	0 (>8)
	cefotaxime	1	2	78 (<1)	11 (>2)
	ceftazidime	16	16	6 (<4)	61 (>8)
	ceftazidime/avibactam	8	16	72 (<8)	28 (>8)
	ceftolozane/tazobactam	2	4	94 (<4)	6 (>4)
	ceftriaxone	1	4	67 (<1)	17 (>2)
	ciprofloxacin	0.06	>16	83 (<0.25)	17 (>0.5)
	colistin	1	2	94 (<2)	6 (>2)
	co-trimoxazole	0.5	128	78 (<2)	22 (>2)
	imipenem	2	8	61 (<2)	22 (>4)
	levofloxacin	0.125	16	83 (<0.5)	17 (>1)
	meropenem	64	64	0 (<2)	83 (>8)
	minocycline	≤0.06	0.125	100 (<4)	0 (>8)
C. pauculus (5) and C. metallidurans (4)					
	piperacillin/tazobactam	8	16	39 (<4)	11 (>16)
	temocillin	32	32	50 (<16)	50 (>16)
	tobramycin	>256	>256	6 (<4)	94 (>4)
	amikacin	8	128	56 (<8)	33 (>16)
	amoxicillin	256	512	0 (<2)	78 (>8)
	amoxicillin/clavulanate	128	256	11 (<2)	78 (>8)
	aztreonam	256	512	0 (<4)	100 (>8)
	cefepime	0.5	1	100 (<4)	0 (>8)
	cefotaxime	1	2	67 (<1)	11 (>2)
	ceftazidime	8	16	33 (<4)	44 (>8)
	ceftazidime/avibactam	8	16	78 (<8)	22 (>8)
	ceftolozane/tazobactam	2	4	100 (<4)	0 (>4)
	ceftriaxone	1	2	78 (<1)	0 (>2)
	ciprofloxacin	0.5	1	44 (<0.25)	44 (>0.5)

Continued
Table 1. Continued

Bacteria (n)	Antibiotic	MIC (mg/L)	Percentage susceptible (breakpoint, mg/L)	Percentage resistant (breakpoint, mg/L)	
		MIC$_{50}$			
colistin		16	32	0 (≤2)	100 (>2)
co-trimoxazole		16	256	22 (≤2)	78 (>2)
imipenem		0.25	2	100 (≤2)	0 (>4)
levofloxacin		1	2	44 (≤0.5)	44 (>1)
meropenem		16	64	11 (≤2)	67 (>8)
minocycline		0.25	0.5	100 (≤4)	0 (>8)
piperacillin/tazobactam		2	32	67 (≤4)	22 (>16)
temocillin		256	512	0 (≤16)	100 (>16)
tobramycin		64	128	44 (≤4)	56 (>4)
amikacin		64	128	0 (≤8)	100 (>16)
amoxicillin		>512	>512	0 (≤2)	100 (>8)
amoxicillin/clavulanate		>512	>512	0 (≤2)	100 (>8)
aztreonam		128	128	0 (≤4)	100 (>8)
cefepime		4	4	100 (≤4)	0 (>8)
cefotaxime		1	1	100 (≤1)	0 (>2)
ceftazidime		32	32	17 (≤4)	83 (>8)
ceftazidine/avibactam		32	32	33 (≤8)	67 (>8)
ceftolozane/tazobactam		8	16	50 (≤4)	50 (>4)
ceftriaxone		0.25	0.25	83 (≤0.25)	0 (>0.5)
colistin		1	4	67 (≤2)	33 (>2)
co-trimoxazole		1	1	83 (≤2)	17 (>2)
imipenem		8	8	17 (≤2)	67 (>4)
levofloxacin		0.25	0.25	100 (≤0.5)	0 (>1)
meropenem		64	64	0 (≤2)	100 (>8)
minocycline		0.125	0.125	100 (≤4)	0 (>8)
piperacillin/tazobactam		128	128	0 (≤4)	83 (>16)
temocillin		512	>512	0 (≤16)	100 (>16)
tobramycin		256	>256	0 (≤4)	100 (>4)
amikacin		32	64	50 (≤8)	50 (>16)
amoxicillin		32	256	33 (≤2)	67 (>8)
amoxicillin/clavulanate		16	64	33 (≤2)	50 (>8)
aztreonam		64	128	0 (≤4)	83 (>8)
cefepime		≤0.25	≤0.25	100 (≤4)	0 (>8)
cefotaxime		0.5	1	100 (≤1)	0 (>2)
ceftazidime		4	8	67 (≤4)	17 (>8)
ceftazidine/avibactam		4	8	83 (≤8)	17 (>8)
ceftolozane/tazobactam		1	1	100 (≤4)	0 (>4)
ceftriaxone		0.25	1	100 (≤1)	0 (>2)
ciprofloxacin		0.125	0.25	83 (≤0.25)	0 (>0.5)
colistin		16	16	17 (≤2)	83 (>2)
co-trimoxazole		16	64	50 (≤2)	50 (>2)
imipenem		0.25	2	100 (≤2)	0 (>4)
levofloxacin		0.125	0.25	100 (≤0.5)	0 (>1)
meropenem		8	16	33 (≤2)	33 (>8)
minocycline		≤0.06	0.5	100 (≤4)	0 (>8)
piperacillin/tazobactam		1	4	83 (≤4)	17 (>16)
temocillin		128	512	50 (≤16)	50 (>16)
tobramycin		64	64	50 (≤4)	50 (>4)

C. gilardii (6)

C. basilensis (1), C. necator (2), C. taiwanensis (2) and Cupriavidus sp. (1)
ceftazidime. Interspecies variations were observed, especially concerning colistin, co-trimoxazole, fluoroquinolones and piperacillin/tazobactam. Clinical data is now required to establish the optimal treatment of Cupriavidus infections.

Acknowledgements

We would like to thank Dr Aberrane from Créteil Hospital, Dr Belmonte from St Denis de La Réunion Hospital, Dr Dib from Troyes University Hospital, Dr Ferroni from Paris University Hospital, Dr De Gialluly from Tours University Hospital and Dr Sansot from Toulon Hospital for providing the French Observatoire Burkholderia cepacia with Cupriavidus strains.

Funding

This study was supported by internal funding.

Transparency declarations

None to declare.

Supplementary data

Tables S1 and S2 and Figure S1 are available as Supplementary data at JAC Online.

References

1 Vaneechoutte M, Kämpfer P, De Baere T et al. Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutrophica and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 2004; 54: 317–27.
2 Bianco G, Boattini M, Audisio E et al. Septic shock due to meropenem- and colistin-resistant Cupriavidus pauculus. J Hosp Infect 2018; 99: 364–5.
3 Kobayashi T, Nakamura I, Fujita H et al. First case report of infection due to Cupriavidus gilardii in a patient without immunodeficiency: a case report. BMC Infect Dis 2016; 16: 493.
4 D’Inzeo T, Santangelo R, Fiori B et al. Catheter-related bacteremia by Cupriavidus metallidurans. Diagn Microbiol Infect Dis 2015; 81: 9–12.
5 Coenye T, Spilker T, Reik R et al. Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 2005; 43: 3463–6.
6 Segonds C, Paute S, Chabanon G. Use of amplified ribosomal DNA restriction analysis for identification of Ralstonia and Pseudomonas species: interest in determination of the respiratory bacterial flora in patients with cystic fibrosis. J Clin Microbiol 2003; 41: 3415–8.
7 Fuchs PC, Barry AL, Thornsberry C et al. Interpretive criteria for temocillin disk diffusion susceptibility testing. Eur J Clin Microbiol 1985; 4: 30–3.
8 Pragasam AK, Raghanivedha M, Anandan S et al. Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile. Ann Clin Microbiol Antimicrob 2016; 15: 12.
9 Ruiz C, McCarley A, Espejo ML et al. Comparative genomics reveals a well-conserved intrinsic resistance in the emerging multidrug-resistant pathogen Cupriavidus gilardii. mSphere 2019; 4: e00631-19.
10 Petrou VI, Herrera CM, Schultz KM et al. Structures of aminoarabinosyltransferase ArnT suggest a molecular basis for lipid A glycosylation. Science 2016; 351: 608–12.
11 Zhang H, Zong Z, Lei S et al. A genomic, evolutionary, and mechanistic study of MCR-5 action suggests functional unification across the MCR family of colistin resistance. Adv Sci (Weinh) 2019; 6: 1900034.

J Antimicrob Chemother 2020; 75: 1658–1660 doi:10.1093/jac/dkaa038
Advance Access publication 21 February 2020

Pharmacokinetics of once-daily doravirine over 72 h following drug cessation

Xin Zhu Wang1*, Ana Milinkovic2, Branca Pereira2, Graeme Moyle2, Serge Fedele2, Lervina Thomas2, Dilek Yener2, Simon Connolly2, Myra McClure1 and Marta Boffito1,2

1 Imperial College London, London, UK; 2 Chelsea and Westminster Hospital, London, UK

*Corresponding author. E-mail: xin zhu . wang@imperial . ac . uk

Sir,

Successful combination ART (cART) relies on daily adherence to cART.1,2 The ‘optimal’ adherence pattern may be difficult to adopt as cART is for life and doses can be forgotten or delayed, making antiretrovirals with long half-lives (t1/2) desirable. Such drugs may allow for missed or delayed doses when drug concentrations are maintained at therapeutic levels until the next dose is administered.

Data on drug persistence and terminal t1/2 are available for different cARTs and have been useful to advise clinicians and patients on delayed or missed doses.3 Herein, we investigated the pharmacokinetic (PK) ‘forgiveness’ of the new NNRTI doravirine. Doravirine was recently approved to treat HIV infection as a single entity (Pifeltro®) and as a fixed-dose combination with tenofovir disoproxil fumarate and lamivudine (Delstrigo®).4 Since the PK forgiveness of tenofovir disoproxil fumarate and lamivudine has been extensively studied,5,6 in the present study we characterized the persistence of doravirine in the absence of other agents.

Regulatory and ethical approvals (London Westminster Research Ethics Committee 19/L0/0666) were obtained before initiating the study. Written informed consent was obtained from participants prior to study enrolment. In this Phase I, open-label, PK study, the participants received 100 mg of doravirine once daily for 7 days to

© The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.