Abstract:

eHealth (Health Informatics/Medical Informatics) field is growing worldwide due to acknowledge of reputable Organizations such as World Health Organization, Institute of Medicine in USA and several others. This field is facing number of challenges and there is need to classify these challenges mentioned by different researchers of this area. The purpose of this study is to classify different eHealth challenges in broader categories. We also analyzed recent eHealth Applications to identify current trends of such applications. In this paper, we identify stakeholders who are responsible to contribute in a particular eHealth challenge. Through eHealth application analysis, we categories these applications based on different factors. We identify different socio-economic benefits, which these applications can provide. We also present ecosystem of an eHealth application. We gave recommendations for eHealth challenges relevant to Information Technology domain. We conclude our discussion by specifying areas for future research and recommending researchers to work on identify which type of disease can control and manage by different eHealth applications.

Keywords: eHealth; Health Informatics; Medical Informatics; eHealth challenges categorization, eHealth applications, eHealth applications categories, eHealth applications ecosystem
1 Introduction

eHealth refers to use of information and communication technologies to improve or enable health and health care (Nykänen, 2006). eHealth is also referred as medical informatics and Health Informatics (Pagliari, 2007). Many eHealth systems are developed (Iliakovidis, 2004) in last decade. In last few years, field of eHealth has grown worldwide (WHO, National eHealth strategy toolkit, 2012). The Institute of Medicine (U.S.A) has acknowledged that Information technology can play important tool to improve healthcare cost, patient safety and quality in medical care (Kohn LT, 2000; America, 2001). In (Budych, 2014), authors suggest that eHealth can play important role to meet future challenges in field of Health Care. Application of information technology in health starts in mid 90s (Doupi, 2005). Main target areas of eHealth are 1) managing electronic Health Records; 2)Communication infrastructures and networks; 3) Standardization of patient’s data; 4)Security and Privacy; 5) Research, national and international collaboration. Applications, which are related to Citizen and Patients, are core elements of eHealth. Such applications are in strategies of some countries like Denmark, Germany, Iceland, Ireland and U.K (T, 2000). Denmark and Sweden are leading this field. In Denmark, 70% prescription transmitted electronically and in Sweden, transmitted prescription percentage is 45. There are several advantages of developing eHealth systems. Some key advantages of eHealth systems are:

- **Health Care Systems**- optimize resource use (quality – cost effectiveness)
- Facilitate better decision-making.
- **Information and data**: Increased accessibility, availability, Speed
- **Impact on Professionals**: optimize performance (accuracy, knowledge expertise)
- **Helpful in evaluating essential data of patient’s identity and medical history.**

There are number of eHealth systems developed but many promises of eHealth research and development not fulfill yet (Doupi, 2005). Effective and efficient development of eHealth system faces number of challenges. Most Important issues are lack of commitment by healthcare authorities and missing interoperability among different health information systems. From past more than a decade, researchers are raising different challenges facing by eHealth. There is need to review these challenges and classify in different categories.

The purpose of this paper is to classify eHealth challenges in broader categories by extensive review of articles published in this area. We classify articles based on different parameters. We also identify stakeholders who may responsible to contribute in a specific eHealth challenge. This reveals that, almost half of challenges are relevant to Information Technology (IT) experts. Based on this fact, we propose solutions to eHealth challenges related to IT domain. We also analyzed recent eHealth applications to identify current trends in this area. We categorized eHealth application based on different factors. Purpose of this categorization is to identify how much work done to control and manage a particular disease. And which type of disease is more suitable for developing an
eHealth application. Next, we will discuss current challenges in eHealth. Then, we presented recent eHealth applications. After that, we present methodology how we review different research articles and how we analyzed eHealth applications. Next, we discuss results. In section 5, we give recommendations for different eHealth challenges relevant to IT and recommendations related to eHealth Applications. In last section, we conclude our discussion and recommend future research areas.

2 Current Challenges in eHealth

2.1 Detection of disease at early stage

Detection of disease at early stage helps not only to reduce cost of medical treatment but it is also useful in saving valuable lives of people. For instance, detection of cancer at early stage may rescue man’s life instead of detection of disease at later stage. One significant challenge is that there is no infrastructure available for detection of disease at its early stage (TanJent, 2006; Paul H Keckley, 2010). Interactive Health Communication Applications (IHCAs) can be used for overcoming this challenge (Casey, 2014). In (Iluz, 2014), author discussed algorithm, which can be used in early detection of Parkinson’s disease.

2.2 Reducing Cost of Health Care by using eHealth System

Reducing Cost of Health care with help of eHealth is a big challenge (Atienza, 2007; Kostkova, 2015; Fosso Wamba, 2013; TanJent, 2006;). HIEs (Health Information Exchanges) is one module in developed Health Care Systems. Purpose of this module is to get access of complete view of treatment plans of their patients.

2.3 Efficient Managing Patient’s Data in eHealth System

Capturing, Storing and maintaining data and Accessing Information in efficient way is also a big challenge (TanJent, 2006). Efficiently maintaining EHR (Electronic Health record) is a big issue (Atienza, 2007). There is need of clear data standards to get optimal value in implementing eHealth Systems (WHO, National eHealth strategy toolkit, 2012).

2.4 Effective utilization of Skills of HSR and IT Expert

Health Service Researcher (HSR) is a person who is focal person in development of eHealth Solution. His time is precious and saving his time by minimal involvement in development of eHealth solution is a challenge. So, combining skills of both HSR and IT Expert in an effective manner to achieve maximum benefit is a great challenge (Pagliari, 2007; Association, 2012).
2.5 Establish trust between HSR and IT Expert

As discussed above, HSR is main person who is involved in development of eHealth solution along with IT experts. So, trust should be established between both HSR and IT Expert team is necessary but issues arise when both HSR and IT expert are interacting with each other. Therefore, establishing a trust and mutual respect between both HSR and IT expert team is a big challenge. (Pagliari, 2007; Association, 2012)

2.6 Patient Privacy

Privacy of patients is challenge in development of eHealth Systems (Kostkova, 2015). In (Dong, 2012), authors suggested two key privacy challenges: enforcing privacy and privacy in the presence of others. In (ALKRAIJI, 2014), authors also convinced that privacy is a key issue in GCC (Gulf Cooperation Council) Countries.

To overcome this issue, legal regulation is needed otherwise resistance will face to adopt eHealth system(Ajami S, 2013). We have to ensure that Patient have trust on system that their personal information is protected (AV, 2007;Chalmers D, 2004;Sass M, 2011).

2.7 Interoperability of data among different Health Care Places

Patient’s data inter operability among different Health care Places like Hospitals, private clinics is a key issue (Nagai, 2012; SJ. 2007; Viswanath K, 2007;ALKRAIJI, 2014). Due to lack of interoperability, data remain fragmented, isolated and data analysis cannot be done (Glaser, 2011). Due to this issue, exchanging data among different systems is not possible which is hindrance to accomplish fundamental goals of healthcare(Sass M, 2011).WHO also recommended its members to adopt standards for effective exchange of information between eHealth implementations and health care practitioners (WHO, 2014). Solution to this problem is making data in a standard form (Hammond WE, 2010).

2.8 Shortage of Professionals

Researchers and professionals are fewer in this interdisciplinary area in GCC Countries (ALKRAIJI, 2014). However, there is shortage of such professionals in all part of the world (DE., 2010;Hersh W, 2010;Qureshi, 2014).

In order to overcome this issue, e-Capicity meeting in Bellagio was held in 2008 (Foundation., 2010). It was decided to give training (both formally and un formally) to health workers which increase their skills, attitude and level of knowledge related to health informatics.

Also, there is need of specialized degree programs in this discipline. AMIA’s (American Medical Informatics Association’s) took initiative to train 10,000 professionals in Health Informatics (HI) by 2010 (Hersh W W. J., 2007). This association worked in developing countries like Singapore and Argentina to
create an international version adapted to local needs (Otero P, 2007; Margolis A, 2013).

Another approach to address this problem is use of mobile and telemedicine devices to connect trained resources with population. It is especially useful in rural areas. Such initiative is taken in India where mobile tools are used for screening of retinopathy (Murthy KR, 2012).

2.9 Complexity of Health Care Infrastructure

It is a big challenge to manage complexity of Healthcare infrastructure. (ALKRAIJI, 2014; Nagai, 2012) Healthcare infrastructure can be complex due to different reasons. Populated areas (China, India and other populated areas of developing countries) have to develop many hospitals, many Health care centers. Similarly geographically dispersed areas have also very complex Health Care infrastructure.

Such complex infrastructure should support eHealth but currently support to eHealth is insufficient and not distributed well (Luna, 2014). There are many factors for such difficulties. For example in sufficient support of electricity (Latourette MT, 2011), poor quality or not availability of Internet access (Shiferaw F, 2012). These problems are more common in rural areas (Simba DO, 2004; Fraser HS, 2004).

However, mobile phone infrastructure is developing at an increasing rate (Lewis T, 2012) provides opportunities to implement systems with less resources (E., 2009). Due to this factor mobile health (part of broader telemedicine field) can be useful in presence of these inadequate infrastructure (Asangansi I, 2010). However these solutions can lead to other problems such as fragmented information and difficulties for project scalability.

Hardware and Software are integral part of eHealth System infrastructure. It is our fortune that now Hardware cost is drastically reduced as compare to forty years before (GE., 2006). Due to low cost of Hardware developing and under developing countries are in position to make initiative of distributing low cost Computers (ceibal, 2014; Igualdad, 2014; Rwanda, 2014). Open Source movement is helping limited resource countries in terms of Software. PostgreSQL (a open Source DBMS) and OpenMRS (Helps to design customized EHRs) are two good examples of Open Source Software (PostgreSQL, 2014; Mamlin BW, 2006). OpenMRS is implemented in many developing countries of Africa, Asia and Central and Latin America (Mohammed-Rajput NA, 2011; Gerber T, 2010). In most cases, such programs are implemented in resource-limited countries with help of donor funding (Gordon AN, 2007) for initial stages. For running and scaling up such programs need on going finance which is difficult for such countries (Lewis T, 2012).
2.10 eHealth friendly Government Policies

eHealth friendly policies are not developed in most part of the world. In Japan, eHealth friendly policies are not being developed because policy makers have less exposure to eHealth discipline and potential benefits of this area (Nagai, 2012). Similarly in GCC countries, policies are not friendly for eHealth (ALKRAJJ, 2014). Also in Jordan, government policies are not suitable for development of eHealth (Matar, 2014).

There is need of development of eHealth System framework for better development as well as sustainability of eHealth Projects. It is advocated by my reputable international organizations such as United Nations (UN), World Health Organization (WHO) (Bank., 2006).

2.11 Other Issues

In (Matar, 2014) authors arguments that people are resistant towards advancement in technology, which involve in eHealth. Top issues of Ghana are Lack of ICT Infrastructure, Basic ICT Knowledge/Skills, Internet accessibility, Financial & sustainability issues (Bailey, 2015). Involving patients and their relatives while caring a patient when he is suffering from disease or in process of rehabilitation is also an issue (Bedeley, 2014; Gard, 2012).

3 Current Health Applications

We analyzed several Health related Applications and based on that analysis, we categorize Health Applications in three broader Categories

- Health Information Systems
- Serious Games
- eHealth Applications

Health Information Systems cannot call as eHealth Application. For details see section 3.1. Serious Games and eHealth Applications discussed in coming sections can called as eHealth application as these two type of applications are developed to solve any Health issue(s).

Case Management is a process in Health in which any patient comes to a Physician for his/her treatment. Physician does many activities during patient’s treatments. Major activities are monitoring, detection, treatment and rehabilitation. So, all these activities are part of Case Management. Any issue in Case Management can also called Health Issue. Lack of training of physicians or unawareness of General Health education (lack of knowledge to prevent from a disease) are also issues in Health, which can be address by eHealth Applications.

We can Categorize Health Issues based on several Health Management Processes. These Processes are listed as follows:

- Monitoring
- Detection/Diagnosis
We discussed each Health application category in detail in following sub sections.

3.1 Health Information Systems
Health information systems are systems that are developed for different Health related Activities. Hospital Management, Radio Information System, Patient Record Management Systems, Telemedicine or Tele Consultation Systems are some type of Health Information Systems. Such systems are developed not to fulfill any eHealth Challenge discussed in Section 2.

3.2 Serious Games

Different types of games are created. Each game has its own objectives. Some games objective is only to amuse its target clients. As a side effect, they can help to solve any health issue. Some games are two folded objectives. One objective is to give entertainment and other is to share knowledge. There are also some games which objective is to help to solve any medical problem. Mostly, such games are simulation games. So, we are dividing games in three categories basis on their objectives and we list these categories as follows:

- Recreational Games
- Hybrid Games (Recreational and Problem Solving)
- Pure Problem Solving Games

Now, we will introduce some important games in each sub section.

3.2.1 Recreational Games

As discussed above, this type of games main objective is to provide entertainment. But as a side effect, some health issues may address. (Game, 2015) Dance Dance Revolution (DDR) Game is an entertainment game but as a bonus, due to body exercise ; it will help to maintain good health and avoid problems due to not doing any physical exercise. An exercise game WII (Rego P, 2010) is also a popular game and can be use to maintain good health.

3.2.2 Hybrid Games

These games serve both purposes (entertainment an Health Solution). FatWorld (Sliney A, 2008), Re-Mission (Vidani AC, 2010), Air Medic Sky (Vtnen A, 2008) are most commonly used games.

3.2.3 Pure Problem Solving Games
These types of games are developed to solve specific health problem. Some simulation games are Virtual Dental Implant Training Simulation Program (BreakWayGames, 2015), EMSAVE (HCI Lab, 2011) and Olive: 3d Hospital Training (Scarle S, 2011).

Several applications are related to Case Management. Like, some Monitoring games are CHF Tele-management System (Finkelstein J, 2010), Health Care Monitoring (Fergus, 2009) and U-Health Monitoring System (Lee, 2009). Unobtrusive Health (McKanna, 2009) and EEG-Base Serious Games (Wang, 2010) are related to detection process. Some Treatment Process related games are Match-3 (Scarle, 2011), Diagnosis and Management of Parkinson (Atkinson, 2010) and Social Skills (Bartolomé, 2010). Some applications are related to Rehabilitation process. Some such applications are ULRFS (Burke, 2009) and After Parkinsons Disease (Studios, 2015). (Boulos, 2015) Monster Manor is a game app for children having type 1 diabetes. (Boulos, 2015) Empower is a game app for children having type 1 diabetes. (Boulos, 2015) Health Seeker is a game app for patients having type 2 diabetes. It is Facebook application.

Some professional training applications are HumanSim (Associates, 2015), Virtual Dental Implant Training Program (BreakWayGames, 2015), Nursing and Midwifery (Skills2Learn, 2015), Pulse (BreakWayGames, 2015), MUVE (J, 2010), Game Based Learning for virtual patient (IFoMaICL, 2008), Medical Simulation Training Program (Sliney, 2008), VI-MED (Mili, 2008) and Coronaryartery bypass surgery procedure Serious Game (Sabri H, 2010).

3.3 eHealth Applications

eHealth applications are application that are developed purely to solve any Health related issue or to facilitate any health process. We discussed different eHealth application in this section.

(Pan, 2015) Mobile application for Parkinson’s disease Monitoring (PD Mobile App) is developed to monitor and diagnose different behaviors of PD infected patient.

(Semple, 2015) Mobile App for monitoring of Post Operation is a mobile app for monitoring of post operation. (Ho, 2015) A tele-surveillance System (TSS for ECG) is developed to monitor electrocardiogram (ECG). (Arden-Close, 2015) A visualization tool is used to help users to lose their weights (VT for Weight Loss). (Huguet, 2015) myWHI is a mobile application, which is used to monitor headache in young Adults. (Lim, 2015) PotM is a mobile application helps to discover a disorder called Pre-eclampsia. (Ferrando, 2015) Sintromacweb is tool to manage OAT (Oral Anticoagulation Therapy). (Zan, 2015) iGetBetter System is used by Patients for self-managing disease of heart failure. In (Henriksson, 2015), author discussed TECH (Tool for energy balance in children) to monitor
energy intake. (Volker, 2015) eHealth module embedded in collaborative Occupational Health Care (ECO) is tool for rehabilitation of patient of common mental disorder. (Cristancho-Lacroix, 2015) Diapason is Web Based physicoeducational program for informal care givers of persons with Alzheimers disease. (Yoong, 2015) A web based program to implement healthy eating and physical training policies (WPHTP) is used to educate public. (Williams, 2015) Dynamic Consent is a tool use to increase trust of patients to share their electronic patient records publically. (Rodriguez, 2015) e-consult tool is developed for health care of Veteran Affairs. (English, 2015) FAIR is a tool which is use in assiting family based research in existing data warehouse. (Singh, 2015) A tool is developed to assist physicians to read radiology reports. (Huckvale, 2015) Different smart phone apps are discussed for calculating Insuline dose. (Hardinge, 2015) A mobile application used for monitoring and treatment for COPD (Chronic Obstructive Pulmonary Disease).

4 Methodology

For identifying different challenges in eHealth, we adopt approach similar to these authors. (Ngai, E. W., 2002; Ngai, E. W., 2009; Fosso Wamba, 2013; Luna, 2014). Some authors only choose Journals articles for their research (Ngai, E. W., 2002; Ngai, E. W., 2009; Fosso Wamba, 2013) and totally exclude international conferences, reports and web references. Some authors uses different research databases using key words related to their research area (ALKRAIJI, 2014; Luna, 2014). In our research, our first choice is Journal articles and most of articles which we studied are journal articles, however we also consider some articles of recognized research conferences and a few reports of reputed Organizations.

We classified eHealth challenges in 10 different categories 1) Detection of disease at early stage; 2) Reducing Cost of Health Care by using eHealth System; 3) Efficient Managing Patient’s Data in eHealth System; 4) Effective utilization of Skills of HSR and IT Expert; 5) Establish trust between HSR and IT Expert; 6) Patient Privacy; 7) Interoperability of data among different Health Care Places; 8) Shortage of Professionals; 9) Complexity of Health Care Infrastructure; 10) eHealth friendly Government Policies.

For eHealth application, we mostly analyze eHealth applications, which are developed in current year or in last year. We categorize these applications in two categories and analyzed based on Health Management Processes.

5 Results

This section is divided in two sub sections. In section 5.1, we discussed results by reviewing different research articles related to eHealth Challenges. Section 5.2 showed results of reviewing different eHealth Applications.
5.1 Results of reviewing different Research Articles related to eHealth Challenges

First, we identified different stakeholders who are responsible to address different eHealth challenges. Next we showed distribution of articles by year. Then, we categorized articles by different challenges. After that, we presented article classification based on article publication per Journal.

5.1.1 Stakeholders responsible for addressing different eHealth challenges

We classified eHealth challenges into different stakeholders who are responsible to do necessary actions to meet these challenges. Because it is an interdisciplinary area, so not one stakeholder can resolve these issues, however as presented in Table 1, IT Experts can do research and can provide solutions to at least 5 eHealth challenges. So purpose to classify these challenges is to show how different stakeholders can participate to their relevant area.

We can also infer that it is wide-open area of research related to IT researchers who can contribute a lot in this area.

eHealth Challenge	Stakeholder
Detection of disease at early stage	IT Experts
Reducing Cost of Health Care by using eHealth System	IT Experts
Efficient Managing Patient's Data in eHealth System	IT Experts
Effective utilization of Skills of HSR and IT Expert	IT Experts, Government, NGOs
Establish trust between HSR and IT Expert	Government, NGOs
Patient Privacy	Government, NGOs
Interoperability of data among different Health Care Places	IT Experts
Shortage of Professionals	Government, NGOs, Educational Institutes
Complexity of Health Care Infrastructure	Government, NGOs
eHealth friendly Government Policies	Government, NGOs

Table 1: eHealth Challenges Classification based on Stakeholders

5.1.2 Articles distribution by publication year

Based on our literature review, we founded there is no publication in 2003, 2005 and 2008. There was one publication in 2002 and 2009. In 2007 and 2010, maximum number of articles published which were 8. This trend is shown in Figure 1.
5.1.3 Articles distribution by eHealth Challenge
Table 2 shows distribution of articles for each eHealth challenge. This may be useful for researcher who wants to research on specific eHealth issue to realize the importance of that topic.

eHealth Challenge	Number of Articles
Detection of disease at early stage	3
Reducing Cost of Health Care by using eHealth System	3
Efficient Managing Patient’s Data in eHealth System	3
Effective utilization of Skills of HSR and IT Expert	2
Establish trust between HSR and IT Expert	3
Patient Privacy	7
Interoperability of data among different Health Care Places	7
Shortage of Professionals	10
Complexity of Health Care Infrastructure	20
eHealth friendly Government Policies	3

Table 2: Number of Articles per Challenge

5.1.4 Classification of articles published in a journal
Table 3, classified number of article published in one Journal. American Journal of Preventive Medicine and Health Affairs (Millwood) have maximum number of articles relevant to eHealth challenges.

Journal Name	Number of Articles
African Health Sciences	1
American Journal of Preventive Medicine	3
5.2 Results related to Current eHealth Applications

Firstly, we classified eHealth related serious games into Health Management Processes and showed that which game is developed for which specific Health Management Process(s). Next, we categorized eHealth Applications based on Health Management Processes. In Section 5.2.3, we presented eHealth Applications distribution based on Health Management Processes.

5.2.1 Classification of eHealth Serious Games by different Health Management Processes

In Table 4, we distributed different eHealth related serious games based on Health Management processes.

Monitoring	Diagnosis	Treatment	Rehabilitation	Training for Professional	Training / Health Awareness for Non Professional
DDR(Game, 2015)					√

Table 3: Classification of Articles per Journal
Game Based Learning for virtual patient (IfoMalICL, 2008)	√
Medical Simulation Training Program (Sliney, 2008)	√
Medical Simulation Training Program (Sliney, 2008)	√
VI-MED (Mili, 2008)	√
Coronary artery bypass surgery procedure (Sabri H, 2010)	√

Game Based Learning for virtual patient (IfoMalICL, 2008)	√
Medical Simulation Training Program (Sliney, 2008)	√
Medical Simulation Training Program (Sliney, 2008)	√
VI-MED (Mili, 2008)	√
Coronary artery bypass surgery procedure (Sabri H, 2010)	√
Table 4: Classification of eHealth Serious Games based on different Health Management processes

5.2.2 Classification of eHealth Applications by different Health Management Processes

We classified recent eHealth Applications based on Health Management processes in Table 5.

Health Management Process	Number of eHealth Applications
Monitoring	3
Diagnosis	
Treatment	
Rehabilitation	
Training for Professional	
Training / Health Awareness for Non Professional	

Table 5: Classification of eHealth Applications based on different Health Management processes

5.2.3 Distribution of eHealth Applications (Both Serious games and eHealth Application) by different Health Management Processes

In this section, we showed how many eHealth applications (both eHealth serious games and other eHealth Applications) are developed against each Health Management Process.
5.2.4 Classification of Health Applications based on Disease Control and Management

Doing exercise to prevent from disease can called as curing. Curing is a disease control technique. Any simulation program related to management of any disease or overall Health Management System also helpful in improving quality of Health Management. Such systems help in Disease Management. Any eHealth application used to help in managing any disease is also helpful in improving Health Management Quality. Based on these, we classified Health Applications based on Disease control and management in following two tables. In Table 7, we gathered all applications, which are related to training, simulations or body fitness.

Health Application(s)	Health Application Type	Training/Simulation
DDR (Game, 2015), WII (Rego P, 2010), Re-Mission (Vidani AC, 2010)	Serious Games	Games related to Body Fitness
Air Medic Sky (Vtnen A, 2008)	Serious Games	Related to Doctors training of new techniques
EMSAVE (HCI Lab, 2011)	Serious Games	It is virtual training environment for emergency medical care
Olive: 3d Hospital Training (Scarle S, 2011), Health Care Monitoring (Fergus, 2009), U-Health Monitoring System (Lee, 2009), HumanSim (Associates, 2015)	Serious Games	Training applications related to hospital management
Nursing and Midwifery (Skills2Learn, 2015), VI-MED (Mili, 2008)	Serious Games	Training applications for Nursing
Game Based Learning for virtual patient (IFoMaICL, 2008), MUVE (J, 2010)	Serious Games	Simulation applications using virtual patients
Medical Simulation Training Program (Sliney, 2008),	Serious Games	Application for medical education learning
Pulse (BreakWayGames, 2015)	Serious Games	Application for training Young health care professionals clinical skills
Virtual Dental Implant Training Program (BreakWayGames, 2015)	Serious Games	Dental related Diseases
Unobtrusive Health (McKanna, 2009)	Serious Games	Application for monitoring Unobtrusive Health
(Henriksson, 2015)	eHealth Application	Tool for energy balance in children
WPHTP (Yoong, 2015)	eHealth Application	Application to implement healthy eating and physical training policies
(Singh, 2015)	eHealth Application	Tool to assist physicians to read radiology reports

Table 7: Classification of Health Applications based on Disease Control

In following Table, applications related to disease management are gathered.

Health Application(s)	Health Application Type	Disease Type	Disease
DDR	Serious Games		
WII	Serious Games		
Re-Mission	Serious Games		
EMSAVE	Serious Games		
Olive	Serious Games		
Nursing and Midwifery	Serious Games		
Game Based Learning	Serious Games		
Medical Simulation	Serious Games		
Pulse	Serious Games		
Virtual Dental	Serious Games		
Unobtrusive Health	Serious Games		
Henriksson	eHealth Application		
WPHTP	eHealth Application		
Singh	eHealth Application		
Table 8: Classification of Health Applications based on Disease Management

Application	Type	Disease
CHF Tele-management System (Finkelstein J, 2010), EEG-Base Serious Games (Wang, 2010)	Serious Games	Heart related diseases
Match-3 (Scarle, 2011), FatWorld (Sliney A, 2008)	Serious Games	Obesity
Diagnosis and Management of Parkinson (Atkinson, 2010), After Parkinsons Disease (Studies, 2015)	Serious Games	Parkinson Disease
Monster Manor (Boulos, 2015), Empower (Boulos, 2015), Health Seeker (Boulos, 2015)	Serious Games	Diabetes Diseases
Social Skills (Bartolomé, 2010), Match-3 (Scarle, 2011)	Serious Games	Chronic
(Sabri H, 2010)	Serious Games	Chronic
(Huckvale, 2015)	eHealth Application	Chronic
(Pan, 2015)	eHealth Application	Chronic
(Ho, 2015), iGetBetter (Zan, 2015)	eHealth Application	Chronic
VT for Weight Loss (Arden-Close, 2015)	eHealth Application	Chronic
myWHI (Huguet, 2015)	eHealth Application	Chronic
PotM(Lim, 2015)	eHealth Application	Chronic
Sintromacweb (Ferrando, 2015)	eHealth Application	Chronic
(Volker, 2015)	eHealth Application	Chronic
(Cristancho-Lacroix, 2015)	eHealth Application	Chronic
(Rodriguez, 2015)	eHealth Application	Chronic
(Hardinge, 2015)	eHealth Application	Chronic
(Semple, 2015)	eHealth Application	Chronic
ULRFS (Burke, 2009)	Serious Games	Acute
Radar (Maguire, 2008)	Serious Games	Acute

Recommendations

In section 6.1, we discussed recommendations for eHealth challenges related to IT experts. Section 6.2 discussed lessons learned after analyzing different eHealth Applications.

6.1 Recommendations for eHealth challenges related to IT Experts

In Information Technology, Ontology is used to describe formal representation to describe concepts and relationship among concepts in a specific domain (Paul Warren, 2006). Ontology is used as a solution to different issues. Researchers used ontology mainly for integrating heterogeneous data, discovering hidden fact, improve the way information is presented, organize and find information for meaning.
Based on these advantages of ontologies, we gave recommendations of following eHealth challenges:

- Detection of disease at early stage.
- Reducing Cost of Health Care by using eHealth System.
- Interoperability of data among different Health Care Places.
- Efficient Managing Patient’s Data in eHealth System.
- Effective utilization of Skills of HSR and IT Expert.

Now, we will discuss solution for each eHealth challenge in detail.

Detection of disease at early stage

Potential solution of this issue is to store and organizes patient data in a format so that we can retrieve information in a way that hidden facts can reveal. Organization of data in form of ontology is possibly best way because as discussed above from ontology we can deduct hidden facts. With already managed knowledge base of evidence and facts of detection of early stage disease can match with electronic patient record data, we can detect disease at its early stage (Matar, 2014).

Reducing Cost of Health Care by using eHealth System

We can reduce cost of Health care by developing efficient eHealth solutions with help of ontology engineering methodologies. As discussed above, early detection of disease can reduce cost considerably. An effective and efficient eHealth solution which assist Health Practitioner in diagnosing disease correctly may also reduce cost in a way that wrong diagnose can not only increase cost in terms of finance but may also lost of life.

Interoperability of data among different Health Care Places

Interoperability of data among different Health care places like hospitals, clinics, and basic healthcare units is a big challenge. As discussed in section 2.7, WHO recommends that data can be interchanged among different Health Practice Places. There are many advantages of sharing data of Patient’s record. It may facilitate not only in correct diagnosis but it may also diagnose trend of a specific disease in a particular area/region. As discussed earlier, ontology is used for integrating interoperability of heterogeneous data. Since data of patient record is in heterogeneous form so making interoperability of this heterogeneous patient’s record, we can develop ontology using different ontology engineering approaches.

Efficient Managing Patient’s Data in eHealth System

By managing Patient’s data efficiently, we can retrieve meaningful information and discover facts. In (Lassere, 2015), authors discussed that how efficient electronic records can useful in improving quality of health care. Ontology is good candidate for data management as we can discover facts efficiently from ontology using different ontology approaches like SPARQL query. In (Moen, 2015;Alnazzawi, 2015), authors suggest semantic technologies can be used to efficiently use electronic patient records.
Effective utilization of Skills of HSR and IT Expert

Since time of Health Service Research is very costly, so effective utilization of HSR time with IT expert in helping eHealth solution is a big issue. Instead of creating all rules explicitly or manually by HSR, we can present semi-automatic created rules. In that way, his time will reduce by not involving creation of simple rules. Instead, he will utilize his time in creation of complex rules.

6.2 Recommendations related to eHealth Applications

From analysis of different Health applications, we identified some socio-economic factors which these applications are providing. We discussed these socio-economic factors in this section and based on these factors, we recommended which type of application should develop so that we improve quality of Health Care. Next we discussed ecoSystem of Health Application.

6.2.1 Socio-economic Benefits of Health Applications

Following socio-economic benefits are identified during health applications analysis:

- Prevent of loss of Human
- Economic Factor
- Decision Making
- Capacity Building
- Miscellaneous Benefits

Prevent of loss of Human: PotM (Lim, 2015) is an application in which Pre-eclampsia Disorder is detected. If this disorder exists in patient and not detected during pregnancy then patient life can be in danger.

Economic Benefit: There are some health applications which can reduce cost of Medical care in different ways. Using Parkinson Disease management applications (Pan, 2015; Atkinson, 2010; Studios, 2015), patients suffering from this disease needs less visits to patients. Hence, patients saves cost of travelling and Physician consultation fees. It also saves Physician time which is also an economic factor. Physician can utilise that time in other more productive matters.

Decision Making: There are some applications which can help in decision making in different medical processes. These Heart Management Applications (HO, 2015; Zan, 2015; Finkelstein J, 2010; Wang, 2010) are useful in decision making for physicians.

Capacity Building: We analyzed some training and simulation applications which helps physician to increase their technical skills. EMSAVE (HCI Lab, 2011) is a virtual training application for emergency medical care. Olive: 3d Hospital Training (Scarle S, 2011), Health Care Monitoring (Fergus, 2009), U-Health Monitoring System (Lee, 2009) and HumanSim (Associates, 2015) are training
application related to Hospital Management affairs. Nursing and Midwifery (Skills2Learn, 2015), VI-MED (Mili, 2008) are application for nursing training.

Miscellaneous Benefits: Some applications are developed which helps to understand medical education to medical students. Some of such applications are Air Medic Sky (Vten A, 2008), Medical Simulation Training Program (Sliney, 2008) and Pulse (BreakWayGames, 2015). WPHTP (Yoong, 2015) is an application to implement healthy eating and physical training policies. Some applications are related to body fitness. Some of applications are DDR (Game, 2015), WII (Rego P, 2010) and Re-Mission (Vidani AC, 2010). In (Riazi, 2015), author discussed that eHealth applications are useful for managing diabetes.

Based on above, we recommend that any health application may develop based on above benefits can improve quality of health care.

6.2.2 ecoSystem of eHelath Applications

Based on our analysis, we are purposing ecoSystem of an eHealth Application in this section. Efficient patient’s Electronic Medical Record (EMR) management is an integral part of this system. From different larger data management approaches such as ontology development can be use to manage patient’s EMR efficiently. From EMR, we can identify which disease is more common in certain area. We can also predict which epidemic disease may approach based on Public Health knowledge. We can prioritise which app should develop based on factors discussed in section 6.2.1. After selecting disease, we can search an appropriate eHealth app or develop new or update eHealth app. Since Patient and Physician are major stakeholder of this system, so their training can play important role. So, training eHealth applications are developed and also there is need of more training eHealth apps needed for improving quality of Health Care Management.

![Figure 6.1: ecosystem of eHealth Application](image-url)
7 Conclusion and future recommendations

This paper presents comprehensive review of articles related to challenges in eHealth. We categorize these issues in ten different categories. We classify articles based on different parameters in result section. One important result is classifying eHealth issue based on relevant Stakeholder. So, different stakeholders may benefit of this classification. Each stakeholder will concentrate his/her efforts on their relevant problem domain. For example, five issues are related to IT experts. So IT experts can concentrate their efforts on those five issues. Next, we recommend possible solutions to those five key issues briefly. We also presented analysis of recent eHealth applications. We categorize these apps based on different factors. We presented potential socio-economic benefits if we develop such apps. At the end, we presented ecosystem of eHealth Application. Purpose to show this system is to identify different stakeholders and to identify why and how eHealth application should develop. This research opens up new avenues for future research in eHealth problems area. We recommend that IT researcher can take future research in each problem area of these five issues discussed in section 5. Researcher in this field can take future research to identify which type of disease can be control or manage from eHealth app and to target which eHealth challenge. For example to target early detection challenge, chronic diseases like cancer, diabetes, and heart diseases are potential candidates. So, development of eHealth apps to control and manage such diseases helps to target early detection eHealth challenge. Similarly researchers can identify which type of disease can be manage and control through serious games.

References

Ajami S, A.-C. R. (2013). Barriers to implement Electronic Health Records (EHRs). Mater Sociomed, 25 (3), 213-5.

ALKRAIJI, A. E.-H. (2014). Health Informatics Opportunities and Challenges: Preliminary Study in the Cooperation Council for the Arab States of the Gulf. Journal of Health Informatics in Developing Countries, 8.1.

Alnazzawi, N. (2015). Using text mining techniques to extract phenotypic information from the PhenoCHF corpus. BMC medical informatics and decision making, 15 (2).

Alnasser, A. A. (2015). What Overweight Women Want From a Weight Loss App: A Qualitative Study on Arabic Women. JMIR mHealth and uHealth 3.2.

America, C. o. (2001). Crossing the quality chasm: a new health system for the 21st century. Institute of Medicine. Washington (DC) : National Academy Press.
Asangansi I, B. K. (2010). The emergence of mobile-supported national health information systems in developing countries. *Stud Health Technol Inform, 160* (Pt 1), 540-4.

Associates, A. R. (2015). *HumanSim: a high-fidelity virtual hospital.* Retrieved July 04, 2015, from http://www.humansim.com.

Association., E. H. (2012). *ETHICAL principles for eHealth: Conclusions from the consultation of the ethics experts around the globe. A briefing paper.* ETHICAL.

Arden-Close, E. J. (2015). A Visualization Tool to Analyse Usage of Web-Based Interventions: The Example of Positive Online Weight Reduction (POWeR). *JMIR Human Factors* 2.1.

Atienza, A. A. (2007). Critical issues in eHealth research. *American journal of preventive medicine Suppl, 32* (5), S71.

Atkinson, S. D. (2010). Design of an introductory medical gaming environment for diagnosis and management of Parkinson’s disease. *Trendz in Information Sciences & Computing (TISC), 2010.* IEEE.

AV, C. (2007). The ethical challenges of genetic data-bases: safeguarding altruism and trust. *Kings Law J, 18* (2), 227-45.

Budych, K. (2014). Perspectives on Europe’s health care systems: meeting future challenges through innovative health care strategies. *EPMA Journal, 5.*

Burke, J. W. (2009). Serious games for upper limb rehabilitation following stroke. *Games and Virtual Worlds for Serious Applications, 2009.* VS-GAMES’09. IEEE.

Bailey, J. e. (2015). Digital media interventions for sexual health promotion—opportunities and challenges. *BMJ.*

Bank., W. (2006). *World information and communications for development report: trends and policies for the information society.* Washington (DC): World Bank.

Bartolomé, N. A. (2010). A serious game to improve human relationships in patients with neuro-psychological disorders. *Games Innovations Conference (ICE-GIC), 2010 International IEEE Consumer Electronics Society’s.* IEEE.

Bedeley, R. a. (2014). A Study of the Issues of E-Health Care in Developing Countries: The Case of Ghana. *Twentytenth Americas Conference on Information Systems.* Savannah : Healthcare Information Systems and Technology (SIGHealth).

Boulos, M. N. (2015). Digital Games for Type 1 and Type 2 Diabetes: Underpinning Theory With Three Illustrative Examples. *JMIR serious games 3.1.*
BreakWayGames. (2015). *VDIT*. Retrieved July 01, 2015, from Break Way Games: http://www.breakawaygames.com/

Casey, L. M. (2014). Computer-based interactive health communications for people with chronic disease. *Smart Homecare Technology & TeleHealth*.

Ceibal. (2015, June). *institucional*. Retrieved June 27, 2015, from Ceibal: http://www.ceibal.edu.uy/#institucional

Chalmers D, N. D. (2004). Commercialisation of biotechnology: public trust and research. *Int J Biotechnol, 6*(2-3), 116-33.

Cristancho-Lacroix, V. e. (2015). A Web-Based Psychoeducational Program for Informal Caregivers of Patients With Alzheimer’s Disease: A Pilot Randomized Controlled Trial. *Journal of medical Internet research 17.5*.

E., B. (2009). Text messages could hasten tuberculosis drug compliance. *Lancet, 373* (9657), 15-6.

English, T. M. (2015). Identification of Relationships Between Patients Through Elements in a Data Warehouse Using the Familial, Associational, and Incidental Relationship (FAIR) Initiative: A Pilot Study. *JMIR medical informatics 3.1*.

DE., D. (2010). Capacity building in e-health and health informatics: a review of the global vision and informatics educational initiatives of the American Medical Informatics Association. *Yearb Med Inform, 101*-5.

Doupi, P. P. (2005). eHealth in Europe: Towards higher goals. *World Hospitals and Health Services, 41* (2), 35.

Dong, N. H. (2012). Challenges in ehealth: From enabling to enforcing privacy. *Foundations of Health Informatics Engineering and Systems*, 195-206.

Fergus, P. e. (2009). A framework for physical health improvement using wireless sensor networks and gaming. *Pervasive Computing Technologies for Healthcare, 2009. PervasiveHealth 2009. 3rd International Conference on*. *IEEE*.

Ferrando, F. a. (2015). Effective and Safe Management of Oral Anticoagulation Therapy in Patients Who Use the Internet-Accessed Telecontrol Tool SintromacWeb. *Interactive journal of medical research 4.2*.

Finkelstein J, W. J. (2010). Feasibility of congestive heart failure telemanagement using a wii-based telecare platform. *Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE*.

Foundation., T. R. (2010). *From silos to systems: an overview of eHealth’s transformative power*. New York (NY): The Rockefeller.
Fosso Wamba, S. A. (2013). A literature review of RFID-enabled healthcare applications and issues. *International Journal of Information Management, 33*(5), 875-891.

Fraser HS, J. D. (2004). An information system and medical record to support HIV treatment in rural Haiti. *BMJ, 329*(7475), 1142-6.

Game, D. (2015, July 1). *Dance Dance Revolution for Wii, PS2, PS3, Xbox 360 and PC.* Retrieved July 1, 2015, from DDR: http://www.ddrgame.com/

Gard, G. &. (2012). *E-hälsa: innovationer, metoder, interventioner och perspektiv.* Studentlitteratur AB.

GE, M. (2006). Progress in digital integrated electronics. *IEEE Solid-State Circuits NewsL, 20*(3), 36-7.

Gerber T, O. V.-M. (2010). An agenda for action on global e-health. *Health Aff (Mill-wood), 29*(2), 233-6.

Glaser, J. (2011). Interoperability: the key to breaking down information silos in health care. *Healthcare financial management: journal of the Healthcare Financial Management Association, 65*(11), 44-6.

Gordon AN, H. R. (2007). Towards a sustainable framework for computer based health information systems (CHIS) for least developed countries (LDCs). *Int J Health Care Qual Assur, 20*(6), 532-44.

IFoMaICL, S. (2008). *Game-based learning for Virtual Patients - Multi patients.* Retrieved July 05, 2015, from http://www.youtube.com/watch?v=VhQ8MjdRq_4\&feature=related"

Igualdad, C. (2015, June). (National Social Security Administration) Retrieved June 27, 2015, from http://www.conectarigual- dad.gob.ar

Iluz, T. e. (2014). Automated detection of missteps during community ambulation in patients with Parkinson's disease: a new approach for quantifying fall risk in the community setting. *Journal of NeuroEngineering and Rehabilitation* .

Iliakovidis, I. H. (2004.). eHealth. Current situation and examples of implemented and beneficial e-health applications. Amsterdam: IOS Press.

Huckvale, K. e. (2015). Smartphone apps for calculating insulin dose: a systematic assessment. *BMC medicine 13.1 (2015): 106* .

Huguet, A. e. (2015). Testing the Feasibility and Psychometric Properties of a Mobile Diary (myWHI) in Adolescents and Young Adults With Headaches. *JMIR mHealth and uHealth 3.2* .
Hammond WE, B. C.-e. (2010). Connecting information to improve health. *Health Aff (Millwood)*, 29 (2), 284-8.

Hardinge, M. e. (2015). Using a mobile health application to support self-management in chronic obstructive pulmonary disease: a six-month cohort study. *BMC medical informatics and decision making*, 15 (1).

HCI Lab, U. o. (2011). *The EMSAVE System*. Retrieved July 01, 2015, from HCI Lab: http://hcilab.uniud.it/soccorsodisabili/results.html

Henriksson, H. e. (2015). A New Mobile Phone-Based Tool for Assessing Energy and Certain Food Intakes in Young Children: A Validation Study. *JMIR mHealth and uHealth 3.2*.

Hersh W, W. J. (2007). Educating 10,000 informaticians by 2010: the AMIA 10x10 program. *Int J Med Inform*, 76 (5-6), 377-82.

Hersh W, M. A. (2010). Building a health informatics workforce in developing countries. *Health Aff (Millwood)*, 29 (2), 274-7.

Ho, T.-W. e. (2015). A Telesurveillance System With Automatic Electrocardiogram Interpretation Based on Support Vector Machine and Rule-Based Processing. *JMIR medical informatics 3.2*.

J, M. (2010). *MUVE Market Virtual Patient Care Simulation Lab*. Retrieved July 05, 2015, from DailyMotion: http://www.dailymotion.com/video/x2ndqd6

Knight, E. e. (2015). Public Health Guidelines for Physical Activity: Is There an App for That? A Review of Android and Apple App Stores. *MIR mHealth and uHealth 3.2*.

Kohn LT, C. J. (2000). *To err is hu- man: building a safer health system*. Washington (DC):: National Academy Press.

Kostkova, P. (2015). Kostkova in Digital Health. (Vol. 3). Frontiers in public health.

Luna, D. e. (2014). Health Informatics in Developing Countries: Going beyond Pilot Practices to Sustainable Implementations: A Review of the Current Challenges. *Healthcare informatics research*, 20.1, 3-10.

Lassere, M. N. (2015). Improving quality of care and long-term health outcomes through continuity of care with the use of an electronic or paper patient-held portable health file (COMMUNICATE): study protocol for a randomized controlled trial. *Trials*, 16 (1).

Latourette MT, S. J. (2011). Magnetic resonance imaging research in sub-Saharan Africa: challenges and satellite-based networking implementation. *J Digit Imaging*, 24 (4), 729-38.
Lewis T, S. C. (2012). E-health in low- and middle-income countries: findings from the Center for Health Market Innovations. *Bull World Health Organ 2012, 90*(5), 332-40.

Lee, S. e. (2009). A design of the u-health monitoring system using a Nintendo DS game machine. *Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE.*

Lim, J. e. (2015). Usability and Feasibility of PIERS on the Move: An mHealth App for Pre-Eclampsia Triage. *JMIR mHealth and uHealth 3.2.*

Nykänen, P. (2006). E-Health Systems: Their Use and Visions for the Future. In P. Nykänen, *E-health Systems Diffusion and Use.* Idea Group Inc (IGI).

Nagai, M. A. (2012). *Information Technology in Health Care e-health for japanese health services.* CSIS/HGPI.

Ngai, E. W. (2002). A literature review and classification of electronic commerce research. *Information & Management, 39*(5), 415–429.

Ngai, E. W. (2009). Application of data mining techniques in cus- tomer relationship management: A literature review and classification. *Expert Systems with Applications, 36*(2), 2592–2602.

Murthy KR, M. P. (2012). Mobile diabetes eye care: experience in developing countries. *Diabetes Res Clin Pract 2012, 97*(3), 343-9.

Mamlin BW, B. P.-y. (2006). Cooking up an open source EMR for developing countries: OpenMRS – a recipe for successful collaboration. *AMIA Annu Symp Proc 2006*, (pp. 529-33).

Margolis A, J. F. (2013). 10x10 comes full circle: Spanish ver- sion back to United States in Puerto Rico. *Stud Health Technol Inform.*

Matar, N. a. (2014). Evaluating E-Health Services and Patients Requirements in Jordanian Hospitals. *Int. Arab J. e-Technol, 3*(4).

McKanna, J. H. (2009). Divided attention in computer game play: analysis utilizing unobtrusive health monitoring. *Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE.* IEEE.

Mili, F. e. (2008). Nursing training: 3D game with learning objectives. *Advances in Computer-Human Interaction, 2008 First International Conference.* IEEE.

Moen, H. e. (2015). Care episode retrieval: distributional semantic models for information retrieval in the clinical domain. *BMC medical informatics and decision making.*
Mohammed-Rajput NA, S. D. (2011). Open MRS Collaborative Investigators. OpenMRS, a global medical records system collaborative: factors influencing successful implementation. *AMIA Annu Symp Proc 2011*, (pp. 960-8).

Otero P, H. W. (2007). Translation, implementation and evaluation of a medical informatics distance learning course for Latin America. *Proceedings of the 12th World Congress on Health (Medical) Informatics*, (pp. 421-2.). Brisbane.

Qureshi, Q. A. (2014). E-Readiness: A Crucial Factor for Successful Implementation of E-Health Projects in Developing Countries Like Pakistan. *Public Policy and Administration Research, 4* (8), 97-103.

Paul Warren, R. S. (2006). *Semantic Web Technologies Trends and Research in Ontology-based Systems*. John Wiley.

Paul H Keckley, P. (2010). *eHealthcare—Charting the Future Healthcare Prognosis*. TOUCH BRIEFINGS.

Pagliari, C. (2007). Design and evaluation in eHealth: challenges and implications for an interdisciplinarian field. *Journal of medical Internet research, 9* (2).

Pan, D. e. (2015). A Mobile Cloud-Based Parkinson's Disease Assessment System for Home-Based Monitoring. *JMIR mHealth and uHealth, 3* (1).

PostgreSQL. (2015, June). Retrieved June 27, 2015, from The PostgreSQL Global Development Group: http://www.postgresql.org/about/

Sabri H, C. B. (2010). Off-pump coronary artery bypass surgery procedure training meets serious games. *Haptic Audio-Visual Environments and Games (HAVE), 2010 IEEE International Symposium*. IEEE.

Sass M, F. A. (2011). The emergence of telemedicine and e-health in Hungary. *Telemed J E Health, 17* (5), 388-95.

Scarle S, D. I.-R. (2011). Complete motion control of a serious game against obesity in children. *3rd international conference on games and virtual worlds for serious applications (VS-GAMES2011)*, (pp. 178-179).

Scarle, S. e. (2011). Complete motion control of a serious game against obesity in children. *Games and Virtual Worlds for Serious Applications (VS-GAMES), 2011 Third International Conference*. IEEE.

Semple, J. L. (2015). Using a Mobile App for Monitoring Post-Operative Quality of Recovery of Patients at Home: A Feasibility Study. *JMIR mHealth and uHealth 3.1*.

Singh, M. A. (2015). Prioritization of Free-Text Clinical Documents: A Novel Use of a Bayesian Classifier. *JMIR medical informatics 3.2*.
Simba DO, M. M. (2004). Application of ICT in strengthening health information systems in developing countries in the wake of globalisation. *Afr Health Sci 2004, 3, 194-8.*

Shiferaw F, Z. M. (2012). The role of information communication technology (ICT) towards universal health coverage: the first steps of a telemedicine project in Ethiopia. *Glob Health Action, 5, 1-8.*

SJ., C. (2007). eHealth Research and Healthcare Delivery: Beyond Intervention Effectiveness. *Am J Prev Med.*

Skills2Learn. (2015). *Skills2Learn Virtual Reality and 3D Simulation Examples.* Retrieved July 05, 2015, from http://www.skills2learn.com/ virtual-reality-case-studies.html.

Sliney A, M. D. (2008). Jdoc: a serious game for medical learning. *1st international conference on advances in computer-human interaction,* (pp. 131-136).

Sliney, A. a. (2008). JDoc: A serious game for medical learning. *Advances in Computer-Human Interaction, 2008 First International Conference.* IEEE.

Studios, R. H. (2015, July 04). *Games for Gait and Balance.* Retrieved July 04, 2015, from Red Hill Studios: http://www.redhillstudios.com/portfolio/nih-grant-parkinsons-games/

Rwanda, O. (2015, June). Retrieved June 27, 2015, from http://wiki.laptop.org/go/Rwanda

Rego P, M. P. (2010). Serious games for rehabilitation: a survey and a classification towards a taxonomy. *5th iberian conference on information systems and technologies (CISTI),* (pp. 1-6).

Riazi, H. e. (2015). Managing diabetes mellitus using information technology: a systematic review. *Journal of Diabetes & Metabolic Disorders, 14* (1).

Rodriguez, K. L. (2015). Veteran, Primary Care Provider, and Specialist Satisfaction With Electronic Consultation. *JMIR medical informatics 3.12.*

T, F. (2000). From patients to end users. *BMJ, 324,* 555-6.

TanJent, e. (2006). *Study on Economic Impact of eHealth: Developing an evidence-based method of evaluation for eHealth.* eHealth IMPACT www.ehealth-impact.org.

Vtnen A, L. J. (2008). Human-centered design and exercise games. In M. a. Kankaanranta, *Design and use of serious games* (Vol. 37, pp. 33–47). Springer Science & Business Media.
Volker, D. e. (2015). Effectiveness of a Blended Web-Based Intervention on Return to Work for Sick-Listed Employees With Common Mental Disorders: Results of a Cluster Randomized Controlled Trial. *Journal of medical Internet research 17.5*.

Viswanath K, K. M. (2007). Health Disparities, Communication Inequalities and E-Health A Commentary. *Am J Prev Med*.

Vidani AC, C. L. (2010). Assessing nurses’ acceptance of a serious game for emergency medical services. *2nd international conference on games and virtual worlds for serious applications (VS-GAMES)*, (pp. 101-108).

WHO. (2012). *National eHealth strategy toolkit*. Geneva: World health Organization, International Telecom- munication Union.

WHO. (2015, June). *eHealth standardization and interoperability, Geneva, Switzerland: World Health Organization*. Retrieved June 27, 2015, from WHO: http://apps.who.int/gb/ebwha/pdf_files/ EB132/B132_R8-en.pdf

Williams, H. e. (2015). Dynamic consent: a possible solution to improve patient confidence and trust in how electronic patient records are used in medical research. *JMIR medical informatics 3.1*.

Wang, Q. O. (2010). Eeg-based " serious" games design for medical applications. *Cyberworlds (CW), 2010 International Conference on*. IEEE.

Wattanasoontorn, V. e. (2013). *Serious games for health*. (Vol. 4). Entertainment Computing.

Yoong, S. L. (2015). Childcare Service Centers’ Preferences and Intentions to Use a Web-Based Program to Implement Healthy Eating and Physical Activity Policies and Practices: A Cross-Sectional Study. *Journal of medical Internet research 17.5*.

Zan, S. e. (2015). Patient engagement with a mobile web-based telemonitoring system for heart failure self-management: a pilot study. *JMIR mHealth and uHealth 3.2*.