Abstract When females receive no direct benefits from multiple matings, concurrent multiple paternity is often explained by indirect genetic benefits to offspring. To examine such possibilities, we analyzed genetic paternity for 1,272 hatchlings, representing 227 clutches, from a nesting population of painted turtles (*Chrysemys picta*) on the Mississippi River. Goals were to quantify the incidence and distribution of concurrent multiple paternity across clutches, examine temporal patterns of sperm storage by females, and deduce the extent to which indirect benefits result from polyandrous female behaviors. Blood samples from adult males also allowed us to genetically identify the sires of surveyed clutches and to assess phenotypic variation associated with male fitness. From the genetic data, female and male reproductive success were deduced and then interpreted together with field data to evaluate possible effects of female mating behaviors and sire identity on offspring fitness. We document that more than 30% of the clutches were likely fathered by multiple males, and that presence of multiple paternity was positively correlated with clutch size. Furthermore, the data indicate that the second male to mate typically had high paternity precedence over the first.

Keywords Microsatellites · Paternal effects · Mate choice · Sperm competition · Mating systems

Introduction

Numerous genetic studies have shown that multiple paternity within a single reproductive bout (e.g., clutch, litter, nest) is common in species representing a diverse array of animal taxa (Gowaty 1985; Avise 2001). In turtles, multiple paternity has been reported in nearly every species studied to date (reviewed by Pearse and Avise 2001). However, the classical sexual selection framework of Bateman (1948), in which males (more so than females in most species) improve their reproductive success by obtaining multiple mates, does not easily explain these findings. Because a single copulation is usually sufficient to fertilize all eggs a female turtle can produce, females might not be expected to solicit additional mates. The high frequency of multiple paternity in turtles is especially puzzling because, unlike birds or social insects for example, turtles do not have strong social interactions that might encourage multiple mating, nor do females benefit directly from mating events via nuptial gifts (such as courtship feeding) or territorial access (Pearse and Avise 2001).

Among the various hypotheses advanced to explain the frequent occurrence of multiple paternity in nature (Andersson 1994), 'indirect' genetic benefits to offspring may best explain polyandrous behaviors in species without social constraints or direct female benefits (Thornhill and Alcock 1983). Several studies have suggested that genetic variation in multiply sired broods increases the reproductive success of polyandrous females (Madsen et al. 1992; Kempenaers et al. 1999; Jennions and Petrie 2000; but see Byrne and Roberts 2000). In addition, the genetic quality of mates may differ depending on specific compatibilities between male and female genotypes, leading to situations where females with multiple mates might often achieve higher reproductive success (Zeh and Zeh 1996; Tregenza and Wedell 2000).
Female turtles are able to store viable sperm for up to 4 years (Birkhead and Møller 1993; Pearse et al. 2001). All else being equal, long-term sperm storage enhances the opportunity for multiple paternity and increases the potential for significant interactions among the sperm of competing males (Olsson et al. 1994; Ross 2001). A female’s ability to store sperm might also increase her control over the paternity of a clutch. For example, by storing sperm, a female can ‘remate’ with a desirable partner to produce additional clutches, even if he is deceased or otherwise unavailable (Zamudio and Sinervo 2000; Pearse and Avise 2001). Furthermore, because forced copulation is unlikely in open-water aquatic turtles (Berry and Shine 1980), mating patterns are likely to be representative of female choice (Gowaty 1997). Thus, if a female can detect variation in male genetic quality or compatibility and adjust her sperm storage or mating behaviors accordingly, she can play an active role in enhancing her overall genetic fitness.

In studies of turtle mating systems, few data are available on the male side of the reproductive equation. However, observations of size-based male dominance hierarchies in some turtle species (Kauffmann 1992), and genetic evidence for a high variance in male reproductive success (McTaggart 2000) demonstrate the importance of including males in analyses of reproductive patterns. Thus, to extend our clutch-based analyses of genetic parentage in painted turtles (*Chrysemys picta*), we attempted to match the deduced paternal genotypes, as reconstructed from the progeny arrays of known females, with those of particular males trapped in the surrounding area. The identification of actual sires provides additional information on the residency times of reproductive males in the population and on physical factors that might affect variation in male fitness.

Methods

Samples of adult females and their clutches (mean clutch size 10.9 eggs, range 4–17) were taken from May to July 1995–1998, from a nesting population at South Potter’s Marsh on the Mississippi River near Thomson, Ill. The specimens used here are a subset of those originally collected for a long-term study on temperature-dependent sex determination in this species (Janzen 1994; Valenzuela and Janzen, in press). Upon first capture, each female was notched for unique marking scute pattern for subsequent identification, and a blood sample was drawn and stored in lysis buffer (Seutin and Janzen, in press). For each observed nest laid by a marked female, the

Fig. 1a, b Probabilities of detecting multiple paternity when present, based on a hypergeometric sampling distribution (with total clutch size=11) and an assumption of no alleles shared among males. **a** As a function of the number of offspring sampled per clutch. **Solid bars** assume equal paternal contributions; **open bars** are probabilities calculated using the observed mean paternity skew (0.76). **b** As a function of paternity skew (proportion of offspring sired by more successful male) with a sample of six hatchlings percentage of eggs that hatched was determined by excavating the nest at the end of the season, prior to the overwintering period (during which hatchlings normally remain in the nest). A random subset (usually six) of the surviving hatchlings was then preserved in 95% ethanol (Janzen 1994). DNA was extracted from blood following standard organic protocols, and from the preserved liver tissue of hatchlings using Chelex (Bio-Rad). Each individual was genotyped using two or three hypervariable microsatellite loci developed for *C. picta* (Pearse et al. 2001).

Genetic sire(s) for each clutch were deduced by subtracting the known maternal contribution from the multilocus genotype of each offspring, following the procedure of Pearse et al. (2001). For a few clutches (n=34), no blood sample was available from the mother (and thus no maternal genotype) so paternity was deduced using criteria derived from Valenzuela 2000) as follows. A clutch was considered to show evidence of multiple paternity if at least two loci displayed five or more alleles in heterozygous hatchlings, four alleles and one homozygous hatchling, or three alleles and both homozygous genotypes. However, individual sire genotypes could not be reconstructed from these clutches. For all clutches, single paternity was considered the null hypothesis, and multiple paternity was determined only when there was concordant support from multiple loci. Similarly, female remating between clutches was deemed the null hypothesis, and sperm storage was considered documented only when multiple loci indicated the identical sire in consecutive clutches (see Pearse et al. 2001).

Clutches with only one or two sampled hatchlings provide no information with respect to single versus multiple sires, so they were excluded from all analyses related to paternity. However, any finite sample of hatchlings provides reduced power to detect multiple paternity relative to exhaustive sampling, and such power is further reduced if sire contributions to a clutch are highly skewed (Fig. 1; Ross 1998). Therefore, we corrected estimates of the overall frequency of multiple paternity in two ways.
ternity, or are constrained (i.e., likelihood values calculated when one or more of the parameters maximum-likelihood value obtained can be compared to likelihood value for that set of parameters (Kichler et al. 1999). The skew); and µ, the marker mutation rate. It then calculates a likelihood of a clutch sired by the more successful male (paternity the probability that a female mates with two males; sampling problems are unavoidable in classifying two clutches in a year, her average hatching success in that year remate between years. For this latter analysis only, if a female laid second-year hatching success among females that did or did not was used to compare the mean difference between first- and (Manly 1997). A modified version of this randomization program was performed using Excel. Data on percent hatching success are categories). For comparisons among groups of clutches and for adult morphological measurements, standard parametric statistical tests were employed to correct the population estimate of the proportion of multiply sired clutches, but sampling problems are unavoidable in classifying individual clutches as singly or multiply sired (Akin et al. 1984). Thus, in our analyses of the relationship of multiple paternity to total clutch size and hatching success, we equalized our power to detect multiple paternity across clutches by comparing only those clutches from which we had sampled exactly six hatchlings (by far the most common category).

For comparisons among groups of clutches and for adult morphological measurements, standard parametric statistical tests were performed using Excel. Data on percent hatching success are not normally distributed, so in some analyses, the data were first arcsine square-root transformed. In another statistical approach, a Visual Basic randomization program (which makes no assumptions about the underlying distribution) was created to calculate the probability that subsets of the data, drawn randomly from the pool of clutches, differed by more than the observed samples (Manly 1997). A modified version of this randomization program was used to compare the mean difference between first- and second-year hatching success among females that did or did not remate between years. For this latter analysis only, if a female laid two clutches in a year, her average hatching success in that year was the value recorded.

Results

The three microsatellite loci displayed a mean of 24 alleles per locus. Based on allele frequencies in the adult population sample, expected mean heterozygosity was 0.85 and the combined paternity exclusion probability was 0.997. Data from a total of 227 clutches were analyzed for the present study (including 113 clutches originally described in an earlier microsatellite survey that provided the first genetic documentation of long-term sperm storage by female turtles in nature; Pearse et al. 2001). Females laid a mean of 10.9 eggs per nest but hatching success was occasionally as low as 9%. Thus, the mean number of offspring genotyped per nest was 5.6 (range 1–14). Altogether, 1,517 individuals were genotyped, including 98 mothers, 147 adult males, and 1,272 hatchlings.

In three instances, the genotypes of some or all of the offspring in a clutch did not match the putative mother’s genotype. These apparently reflected sample mix-ups, and were subsequently treated as clutches with unknown maternal genotypes. In each of these clutches, the genotypic data nonetheless indicated that all of the offspring shared the same sire.

When an ‘extra’ allele in a clutch was observed at a single locus only, it was provisionally considered to be the result of de novo mutation (rather than an additional sire). Six such putative mutations were observed among the 1,272 hatchlings (µ=0.0008 per gamete per locus). Based on known maternal genotypes, three of these apparently arose in the paternal germ line, two in the maternal germ line, and one was ambiguous with respect to the sex of origin.

Paternity analysis

The overall observed incidence of multiple paternity was 10.7% (23 of 215 clutches; Table 1), but this is clearly a minimum estimate because some sire contributions will have been missed in clutches sampled incompletely. Limiting the analysis to clutches sampled more extensively (more than six hatchlings per nest), the estimated frequency of multiple paternity increased to 33.3% (Table 1). Thus, this latter estimate is probably a closer approximation to the true fraction of multiply sired clutches in this population.

This contention is supported by the maximum-likelihood estimate of multiple paternity obtained from the computer program LAMP. In an analysis of the 190 clutches for which we had appropriate mother and offspring samples, LAMP found that the maximum-likelihood value was obtained with the parameter values of $m=0.301$ (30.1% multiple paternity), $r=0.854$ (mean proportion of a clutch sired by the more successful male), and $\mu=0$. The observed mean (±SE) paternity skew in multiply sired clutches was 0.76±0.26 (Fig. 2). Note that this value is about 10% lower than the LAMP-based estimate of skew, a result which may reflect our reduced ability to detect multiple paternity in highly skewed clutches (Fig. 1b).

Hatchlings sampled per clutch (mean)	Number of clutches	Number of detected multiply sired clutches	Observed frequency of multiply sired clutches	Likely number of undetected multiply sired clutches
≥3 (5.8)	215	23	10.7	42
≥6 (6.0)	148	17	11.5	28
≥6 (6.2)	160	21	13.1	27
>6 (9.3)	12	4	33.3	0

Based on the maximum-likelihood estimate of the true rate of multiple paternity
As described by Pearse et al. (2001), multiply sired clutches could be divided into two distinct groups based on the pattern of mating from which the multiple paternity resulted. Using paternity data from earlier clutches laid by the same mother, the mode of production could be determined for 13 of the 23 clutches genetically documented to have resulted from multiple paternity. Eight of these were apparent cases of multi-year sperm use, and 5 resulted from double mating by a female within a single season.

In cases of multiple paternity resulting in part from cross-year sperm storage, the apparent second mate invariably sired the majority of the offspring in the clutch: $P_2=0.784\pm0.27$. However, this estimate is not directly comparable to most laboratory-derived values of second male precedence (Harshman and Clark 1998) because we have no information on the number of cases in which a female remated and the second-year mate fathered all ($P_2=1$) or none ($P_2=0$) of the offspring. Similarly, we have few data on the actual frequency of multiple within-year mating by females, beyond the observation that this behavior leads to multiple paternity at least occasionally.

Correlates of clutch size

Clutches in which we detected multiple paternity contained significantly more eggs at the time of laying (12.3) than those sired by only one male (10.8; $t=-2.75$, $P<0.01$ in a two-tailed t-test assuming equal variances). As noted above, however, small clutch size combined with low hatching success meant that sometimes fewer than five offspring per nest were available for genetic assay. Thus, to equalize the probability of detecting multiple paternity across nests, we restricted the analysis to include only the 99 clutches with six sampled offspring each. Even with these truncated data, multiply sired clutches contained significantly more eggs (12.4) than those with only one sire (10.9; $t=-2.40$, $P<0.01$).

Considering the distribution of multiple paternity, the 22 largest clutches in our sample (those with 14 or more eggs) showed a threefold higher rate of multiple paternity than those with smaller egg numbers (Fig. 3). LAMP analyses support this trend. For these largest clutches, the maximum-likelihood value occurred when the frequency of multiple paternity was 0.482, a value significantly larger than the comparable estimate for smaller clutches ($m=0.286$) when skew is held constant (likelihood ratio test using a χ^2-distribution, $df=2$, $P<0.05$).

We also examined the relationship between multiple paternity and female body size (which is positively associated with clutch size in turtles). Female carapace length was not significantly related to single versus multiple paternity of clutches. However, females that laid at least one multiply sired clutch were on average larger (170.7 mm) than females that laid only single-paternity clutches (167.9 mm), and in turn were larger than females that stored sperm for at least 1 year (165.6 mm). The magnitude and rank order of these differences suggest a significant male preference for large females as mates (ANOVA, $F=1.19$, $P=0.309$, $F_{P_c}\approx0.05$; Rice and Gaines 1994).

If male preference for large females affects the distribution of multiply sired clutches among females, it may also affect the frequency of sperm storage. To address this question, we asked if females who produced at least one multiply sired clutch were also more likely than other females to remate between years (rather than utilize stored sperm). In our sample, females that mated with multiple males to produce a clutch in one year also always remated between clutches in successive years (15/15, 100%). In contrast, females that laid only single-paternity clutches had a significantly lower remating frequency between years (39/50, 78.0%; z-test of binomial proportions, $P=0.0228$). Thus, females that produce multiple-paternity clutches are also more likely than others to remate annually.

Correlates of clutch hatching success

The mean percentages of eggs that hatched in multiple- and single-paternity clutches were 90.3% and 86.2%, re-
Male mating success

Among the 227 clutches assayed, we were able to fully reconstruct 133 paternal genotypes from the progeny genotypes. We compared these to the multi-locus genotypes of the 147 captured males. Nine genotypes matched exactly, and their expected frequencies in the population (based on Hardy-Weinberg equilibrium) were sufficiently low to indicate that the actual sire in most or all cases had indeed been identified (Table 2). Mean carapace length did not differ between ‘match’ and ‘non-match’ males (145.1 versus 141.5; t = −1.28, P = 0.22), suggesting no obvious size differences between successful and apparently unsuccessful males.

In cases where a male’s genotype was detected in clutches laid by more than one female, variation in male reproductive success can be qualitatively assessed. Among our 133 reconstructed paternal genotypes, nine males were implicated as the sire of at least two clutches. Furthermore, three of these males sired the clutches of two different females in a single year, and two of them apparently sired clutches laid by three different females (Pearse et al., in press).

Discussion

A growing number of genetic parentage studies in birds (e.g., Lifjeld and Slagsvold 1988; Houltman 1992) and other animals (Loughry et al. 1998; Madsen et al. 1992; DeWoody et al. 2000; Jones et al. 2000) have gone beyond the mere estimation of mate numbers to examine the consequences of multiple maternity and paternity with respect to mating system parameters, variations in genetic fitness as a function of alternative behaviors, or quantitative genetic issues. For example, Olsson et al. (1996) assigned paternity in sand lizards using DNA fingerprinting and showed that paternal genotype influenced various offspring traits; Kvarnemo et al. (2000) showed that male-pregnant seahorses who retained the same mate over multiple reproductive cycles had shorter inter-brood intervals and traveled less than males who switched mates, suggesting substantial benefits to monogamy; and King et al. (2001) used microsatellite parentage analyses to discriminate between maternal and genetic effects on scoliation and behavior in multiply sired litters of garter snakes.

Such genetic studies of parentage in nature can reveal environmental and genetic factors that affect variation in male and female reproductive success, and they enable analyses that formerly were possible only for captive populations in artificial settings. Here, we have carried out the most complete genetic characterization of reproduction in a wild turtle population to date, in order to assess fitness effects of various reproductive tactics by the two sexes.

Multiple paternity and clutch size

In this population, at least 10% of the clutches had multiple sires, and statistical analyses suggest that the true in-

Genetic match	Year that the male sired a clutch	Year that the male was trapped	Expected genotype frequency
1	1998	1999	3.89×10⁻⁷
2	1995	2000	2.51×10⁻⁶
3	1998	1999	1.16×10⁻⁵
4	1997	2000	2.17×10⁻⁵
5	1996	2000	8.36×10⁻⁸
6	1996	1999	6.63×10⁻⁷
7	1998	2000	1.06×10⁻⁵
8	1997	2000	3.43×10⁻⁹
9	1997α	1999	2.46×10⁻⁶

* The sire’s genotype at one locus was ambiguous, but most likely matches trapped male 9.
idence of multiple paternity is probably closer to 30% (a value similar to the reported mean in 14 other studies of turtle species; reviewed in Pearse and Avise 2001). Furthermore, multiple paternity was not evenly distributed across clutches: clutches sired by multiple males contained significantly more eggs on average than those in which we did not detect multiple paternity. Although the exact cause-effect relationship remains uncertain, at least two scenarios are possible.

First, females might adjust their clutch sizes upward in response to multiple mating. In laboratory experiments with bruchid beetles, females mated to three different males laid more eggs than those mated three times to the same male (Eady et al. 2000). Although these insects gain nutritional benefits from mating, this effect was controlled for experimentally, leaving mating regime per se as the apparent sole difference between treatments. The authors suggested that subtly different chemical cues from multiple males may stimulate increased oviposition in polyandrous females. Similar phenomena have been described in newts (Osikowski and Rafinski 2001), and conceivably might also apply to turtles.

Alternatively, larger turtle females might be preferred as mates (as our data for painted turtles suggest, and as has been found in some lizards; Whiting and Bateman 1999). In turtles, larger females are more fecund (McTaggart 2000) and, thus, might be more attractive to males seeking to maximize genetic fitness per mating. Like many aquatic turtles, painted turtles engage in an elaborate, time-consuming courtship (Ernst et al. 1994) that may limit the number of females a male can court in a given season. Furthermore, as has been shown for adder snakes (Olsson et al. 1997), sperm production may entail a major energetic cost for a male, further reducing the number of times he can mate successfully. Another reproductive consequence might follow: if larger, more fecund females attract more mates, and especially if males are sperm limited, then small females may utilize stored sperm more simply because they have no other viable option.

In contrast to some previous studies (Sakaluk and Cade 1980; Madsen et al. 1992; Tregenza and Wedell 1998; Osikowski and Rafinski 2001), our genetic data provide no evidence that multiple paternity increases hatching success (although multiple mating by females would go undetected with our methods if the eggs were fertilized by only one male, and this could also affect hatching success). This conclusion is not entirely satisfactory, however, because the exclusion of clutches with small sample sizes inevitably lowers the power to detect any differences in hatching success that might exist. In the future, this sampling problem might be ameliorated by including genetic paternity data from both live and unhatched offspring.

In summary, we found evidence for increased egg production in multiply as opposed to singly sired clutches of the painted turtle, but no documented difference in mean hatching success. All else being equal, the net effect of the two factors is that multiply sired clutches produce more offspring on average than those that are fathered by only one male.

Specific mate pair effects

Previous studies of turtles have noted that successful males were either larger (wood turtles: Kauffmann 1992) or smaller (painted turtles: McTaggart 2000) than average in mean body size. In contrast, we found no evidence of a size difference between ‘successful’ and ‘unsuccessful’ males. However, the population at South Potter’s marsh is large and open (Pearse et al., in press), so many apparently ‘unsuccessful’ males may have sired unsampled clutches. Thus, our data on the relationship between male body size and mating success are inconclusive.

McTaggart (2000) also found evidence that clutches fathered by ‘preferred’ males (those who sired clutches with at least two females) had higher mean hatching success than those sired by males who produced only one assayed clutch. The current study provided no evidence for this pattern. We also detected no significant correlation in hatching success between pairs of clutches from different females who mated with the same male (data not shown), suggesting that these ‘preferred’ males are not universally better sires.

This latter conclusion is consistent with data from recent experiments on crickets and house mice. In a laboratory experiment in which male crickets were mated an equal number of times to either one or multiple males, no repeatable differences were detected between males in the hatching success of their mate’s eggs (Tregenza and Wedell 1998). In laboratory house mice, Drickamer et al. (2000) reported increased viability and performance among offspring of females mated to males of their choosing. Thus, data in the current turtle study, as well as those from previous experimental studies on some other species, are consistent with the hypothesis that mating pairs have different genetic compatibilities with respect to offspring viability (Zeh and Zeh 1996).

Conclusions

Whereas descriptive or experimental studies of animal mating systems can be informative with regard to the potential forces of sexual selection, studies that examine the fitness consequences of various reproductive tactics in nature are likely to produce additional key ecological or evolutionary insights. In the current case, genetic parentage analyses on a population of painted turtles have shown that multiple paternity (1) probably occurs in more than 30% of the clutches, (2) can be produced by at least two different patterns of female mating behavior, and that (3) the second male to mate often has high paternity precedence over the first. Furthermore, multiple paternity is not evenly distributed across clutches, with larger clutches showing a higher frequency of multiple paternity than small clutches. Future studies of genetic
mating systems in turtle populations from nature will profit from applying parentage data to specific ecological or life history questions.

Acknowledgements Funding was provided by a Pew foundation fellowship to J.C.A., an NIH training grant and University of Georgia funds to D.E.P., and NSF grant DEB 9629529 to F.J.J. We thank Ed Kentner for help with the randomization analysis and Grant Ashmore, Curtis Eckerman, Ricky-John Spencer, and the members of the Janzen laboratory for work in the field. The manuscript was greatly improved by comments from Leigh Simmons, the members of the Avise laboratory, and three anonymous reviewers. The work described in this paper was conducted in accordance with local and federal laws in the United States.

References

Akin E, Levene H, Levine L, Rockwell R (1984) A conservative procedure for the estimation of multiple insemination in Drosophila. Am Nat 124:723–737
Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJ
Avise JC (ed) (2001) DNA-based profiling of genetic mating systems and reproductive behaviors in poikilothermic vertebrates. J Hered 92:99–220
Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368
Berry JF, Shine R (1980) Sexual size dimorphism and sexual selection in turtles (order Testudines). Oecologia 44:185–191
Birkhead TR, Möller AP (1993) Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol J Linn Soc 50:295–311
Byrne PG, Roberts JD (2000) Does multiple paternity improve fitness of the frog Crinia georgiana? Evolution 54:968–973
Clark AG, Begun DJ, Prout T (1999) Female-male interactions in Drosophila sperm competition. Science 283:217–220
DeWoody JA, Fletcher DE, Mackiewicz M, Wilkins SD, Avise JC (2000) The genetic mating system of spotted sunfish (Lepomis punctatus): mate numbers and the influence of male reproductive parasites. Mol Ecol 9:2119–2128
Drickamer LC, Gowaty PA, Holmes CM (2000) Free female mate choice in house mice affects reproductive success and offspring viability and performance. Anim Behav 59:371–378
Eady PE, Wilson N, Jackson M (2000) Copulating with multiple males enhances female fecundity but not egg-to-adult survival in the bruchid beetle Callosobruchus maculatus. Evolution 54:2161–2165
Ernst CH, Lovich JE, Barbour RW (1994) Turtles of the United States and Canada. Smithsonian Institution Press, Washington, DC
Gowaty PA (1985) Multiple parentage and apparent monogamy in birds. Ornithol Monogr 37:11–21
Gowaty PA (1997) Sexual diatetics, sexual selection, and variation in reproductive behavior. In: Gowaty PA (ed) Feminism and evolutionary biology. Chapman & Hall, New York, pp 351–384
Harshman LG, Clark AG (1998) Inference of sperm competition from broods of field-caught Drosophila. Evolution 52:1334–1341
Houtman AM (1992) Female zebra finches choose extra-pair copulations with genetically attractive males. Proc R Soc Lond B 249:3–6
Janzen FJ (1994) Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci USA 91:7487–7490
Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Phil Soc 75:21–64
Jones AG, Rosenqvist G, Berglund A, Avise JC (2000) Mate quality influences multiple paternity in the sex-role-reversed pipefish Syngnathus typhle. Oikos 90:321–326
Kaufmann JH (1992) The social behavior of wood turtles, Clemmys insculpta, in central Pennsylvania. Herpetol Monogr 6:1–25
Kempenaers B, Congdon B, Boag P, Robertson RJ (1999) Extra-pair paternity and egg hatchability in tree swallows: evidence for the genetic compatibility hypothesis? Behav Ecol 10:304–311
Kichler K, Holder MT, Davis SK, Márquez R, Owens DW (1999) Detection of multiple paternity in the Kemp’s ridley sea turtle with limited sampling. Mol Ecol 8:819–830
King RB, Milstead WB, Gibbs HL, Prosser MR, Burghardt GM, McCracken GF (2001) Application of microsatellite DNA markers to discriminate between maternal and genetic effects on scoliation and behavior in multiply-sired garter snake litters. Can J Zool 79:121–128
Kvarnemo C, Moore GI, Jones AG, Nelson WS, Avise JC (2000) Monogamous pair bonds and mate switching in the western Australian seahorse, Hippocampus subelongatus. J Evol Biol 13:882–888
Lifjeld JT, Slagsvold T (1988) Mate fidelity of nesting pied flycatchers Ficedula hypoleuca in relation to characteristics of alternative female mates. Behav Ecol Sociobiol 22:17–123
Loughry WJ, Prodhöhl PA, McDonough CM, Nelson WS, Avise JC (1998) Correlates of reproductive success in a population of nine-banded armadillos. Can J Zool 76:1815–1821
Madsen T, Shine R, Loman J, Hakansson T (1992) Why do female adders copulate so frequently? Nature 355:440–441
Manly BFJ (1997) Randomization, bootstrap, and Monte Carlo methods in biology, 2nd edn. Chapman & Hall, New York
McTaggart SJ (2000) Good genes or sexy sons? Testing the benefits of female choice in the painted turtle, Chrysemys picta. MSc thesis, University of Guelph
Olsson M, Gullberg A, Tegelström H (1994) Sperm competition in the sand lizard, Lacerta agilis. Anim Behav 48:193–200
Olsson M, Gullberg A, Shine R, Madsen T, Tegelström H (1996) Paternal genotype influences incubation period, offspring size, and offspring shape in an oviparous reptile. Evolution 50:1328–1333
Olsson M, Madsen T, Shine R (1997) Is sperm really so cheap? Costs of reproduction in male adders, Vipera berus. Proc R Soc Lond B 264:455–459
Osikowski A, Rafinski J (2001) Multiple insemination increases reproductive success of female Montandon’s newt (Triturus montandoni, Caudata, Salamandridae). Behav Ecol Sociobiol 49:145–149
Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567
Pearse DE, Avise JC (2001) Turtle mating systems: behavior, sperm storage, and genetic paternity. J Hered 92:206–211
Pearse DE, Janzen FJ, Avise JC (2001) Genetic markers substantiate long-term storage and utilization of sperm by female painted turtles. Heredity 86:378–384
Pearse DE, EckermanC, Janzen FJ, Avise JC (in press) A genetic analogue of “mark-recapture” methods for estimating local population size: an approach based on molecular parentage assessments. Mol Ecol
Rice WR, Gaines SD (1994) Extending nondirectional heterogeneity tests to evaluate simple ordered alternative hypotheses. Proc Natl Acad Sci USA 91:225–226
Ross KG (2001) Molecular ecology of social behavior: analyses of breeding systems and genetic structure. Mol Ecol 10:265–284
Ross S (1998) A first course in probability, 5th edn. Prentice-Hall, New York
Sakaluk SK, Cade WH (1980) Female remating frequency and progeny production in singly and doubly mated house and field crickets. Can J Zool 58:404–411
Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90
Smith RL (ed) (1984) Sperm competition and the evolution of animal mating systems. Academic Press, Orlando, Fla
Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, Cambridge, Mass
Tregenza T, Wedell N (1998) Benefits of multiple mates in the cricket Gryllus bimaculata. Evolution 52:1726–1730
Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage. Mol Ecol 9:1013–1027
Valenzuela N (2000) Multiple paternity in side-neck turtles Podocnemis expansa: evidence from microsatellite DNA data. Mol Ecol 9:99–105
Valenzuela N, Janzen FJ (in press) Nest-site philopatry and the evolution of temperature-dependent sex determination. Evol Ecol Res
Whiting MJ, Bateman PW (1999) Male preference for large females in the lizard Platysaurus boradlevi. J Herpetol 33:309–312
Zamudio KR, Sinervo B (2000) Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies. Proc Natl Acad Sci USA 97:14427–14432
Zeh JA, Zeh DW (1996) The evolution of polyandry. I. Intragenomic conflict and genetic incompatibility. Proc R Soc Lond B 263:1711–1717