Formal normal form of A_k slow fast systems

H. Jardón-Kojakhmetov

April 2, 2015

Abstract

An A_k slow fast system is a particular type of singularly perturbed ODE. The corresponding slow manifold is defined by the critical points of a universal unfolding of an A_k singularity. In this note we propose a formal normal form of A_k slow fast systems.

1 Introduction

In this note we propose a formal normal form of a particular class of slow fast systems. A slow fast system (SFS) is a singularly perturbed ODE usually written as

$$
\begin{align*}
\dot{z} &= g(x, z, \epsilon) \\
\dot{z} &= g(x, z, \epsilon)
\end{align*}
$$

(1)

where $x \in \mathbb{R}^m$, $z \in \mathbb{R}^n$ and $0 < \epsilon \ll 1$ is a small parameter, and where the over-dot denotes the derivative with respect to a time parameter t. Slow fast systems are often used as mathematical models of phenomena which occur in two time scales. Observe that as ϵ decreases, the time scale difference between x and z increases. A couple of classical examples of real life phenomena that were modeled by a SFS are the Zeeman’s heartbeat and nerve-impulse models [15]. For $\epsilon \neq 0$, we can define a new time parameter τ by $t = \epsilon \tau$. With this new time τ we can write (1) as

$$
\begin{align*}
\dot{x} &= \epsilon f(x, z, \epsilon) \\
\dot{z} &= g(x, z, \epsilon)
\end{align*}
$$

(2)

where the prime denotes derivative with respect to τ. An important geometric object in the study of SFSs is the slow manifold which is defined by

$$
S = \{(x, z) \in \mathbb{R}^m \times \mathbb{R}^n \mid g(x, z, 0) = 0\}.
$$

(3)

When $\epsilon = 0$, the manifold S serves as the phase space of (1) and as the set of equilibrium points of (2). In the rest of the document, we prefer to work with a SFS written as (2). Furthermore, to avoid working with an ϵ-parameter family of vector fields as in (2), we plug-in into (2) the trivial equation $\dot{\epsilon} = 0$. To be more precise, we treat a C^∞-smooth vector field defined as follows.

Definition 1.1 (A_k slow fast system). Let $k \in \mathbb{N}$ with $k \geq 2$. An A_k slow fast system (for short A_k-SFS) is a vector field X of the form

$$
X = \epsilon(1 + \epsilon f_1) \frac{\partial}{\partial x_1} + \sum_{i=1}^{k-1} \epsilon^2 f_i \frac{\partial}{\partial x_i} - (G_k - \epsilon f_k) \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \epsilon}.
$$

(4)
where \(G_k = z^k + \sum_{i=1}^{k-1} x_i z^{i-1} \) and where each \(f_i = f_i(x_1, \ldots, x_{k-1}, z, \varepsilon) \) is a \(C^\infty \)-smooth function vanishing at the origin.

Remark 1.1. The slow manifold associated to an \(A_k \)-SFS is defined by

\[
S = \left\{ (x, z) \in \mathbb{R}^k \mid z^k + \sum_{i=1}^{k-1} x_i z^{i-1} = 0 \right\}.
\]

(5)

The manifold \(S \) can be regarded as the critical set of the universal unfolding of a smooth function with an \(A_k \) singularity at the origin [1, 3]. Hence the name \(A_k \)-SFS.

Observe that the origin is a non-hyperbolic equilibrium point of \(X \) and thus, it is not possible to study its local dynamics with the classical Geometric Singular Perturbation Theory [6]. In this case, a technique called blow-up [4, 5, 9] is usually applied to desingularize the SFS. This methodology has been successfully used in many cases, e.g. [2, 8, 10, 11, 13, 14], where many of these deal with an \(A_k \)-SFS with fixed \(k = 2 \) or \(k = 3 \). Briefly speaking, the blow-up technique consists in an appropriate change of coordinates under which the induced vector field is regular or has simpler singularities (hyperbolic or partially-hyperbolic). However, in this work we propose a normal form of \(A_k \)-SFS to be performed prior to the blow-up, see theorem 2.2. This normalization greatly simplifies the local analysis of \(A_k \)-SFSs as shown in [7, 8].

2 Formal normal form of an \(A_k \)-slow fast system

We regard the vector field \(X \) of definition 1.1 as \(X = F + P \), where \(F \) and \(P \) are smooth vector fields called “the principal part” and “the perturbation” respectively. That is

\[
F = \varepsilon \frac{\partial}{\partial x_1} + \sum_{i=2}^{k-1} 0 \frac{\partial}{\partial x_i} - G_k \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \quad P = \sum_{i=1}^{k-1} \varepsilon^2 f_i \frac{\partial}{\partial x_i} + \varepsilon f_k \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}.
\]

(6)

The idea of the rest of the document is motivated by [12]. In short, we want to formally simplify the expression of \(X \) by eliminating the perturbation \(P \). The terminology used below is that of [12].

The vector field \(F \) is quasihomogeneous of type \(r = (k, k - 1, \ldots, 1, 2k - 1) \) and quasidegree \(k - 1 \) [1, 12]. From now on, we fix the type of quasihomogeneity \(r \). A quasihomogeneous object of type \(r \) will be called \(r \)-quasihomogeneous.

Definition 2.1 (Good perturbation). Let \(F \) be an \(r \)-quasihomogeneous vector field of quasidegree \(k - 1 \). A good perturbation \(X \) of \(F \) is a smooth vector field \(X = F + P \), where \(P = P(x_1, \ldots, x_{k-1}, z, \varepsilon) \) satisfies the following conditions

- \(P \) is a smooth vector field of quasiorder greater than \(k - 1 \),
- \(P = \sum_{i=1}^{k-1} P_i \frac{\partial}{\partial x_i} + P_k \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \) with \(P|_{\varepsilon=0} = 0 \).

Notation By \(P_\delta \) we denote the space of \(r \)-quasihomogeneous polynomials (in \(k+1 \) variables) of quasidegree \(\delta \). By \(H_\gamma \) we denote the space of \(r \)-quasihomogeneous vector fields (in \(\mathbb{R}^{k+1} \)) of quasidegree \(\gamma \) and such that for all \(U \in H_\delta \) we have \(U = \sum_{i=1}^{k} U_i \frac{\partial}{\partial x_i} + 0 \frac{\partial}{\partial x_{k+1}} \). The formal series expansion of a function \(f \) is be denoted by \(\hat{f} \).
Definition 2.2 (The inner product $\langle \cdot , \cdot \rangle_{r, \delta}$ [12]). Let $x = (x_1, \ldots, x_n)$, and $s, q \in \mathbb{N}^n$. Let $f, g \in \mathcal{P}_\delta$, that is

$$f = \sum_{(r,s) = \delta} f_s x^s,$$

where $f_s \in \mathbb{R}$, $x^s = x_1^{s_1} \ldots x_n^{s_n}$; and similarly for g. Then the inner product $\langle \cdot , \cdot \rangle_{r, \delta}$ is defined as

$$\langle f, g \rangle_{r, \delta} = \sum_{(r,s) = \delta} f_s g_s (s!)^r,$$

where $(s!)^r = (s_1!)^{r_1} \ldots (s_n!)^{r_n}$, and where (r, s) denotes the dot product $r \cdot s$. So for monomials one has

$$\langle x^s, x^q \rangle_{r, \delta} = \begin{cases} \frac{(s_1!)^{r_1} \ldots (s_n!)^{r_n}}{r!} & \text{if } s = q \text{ with } (s, r) = \delta, \\ 0 & \text{otherwise.} \end{cases}$$

Accordingly, for vector fields: let $X = \sum_{i=1}^n X_i \frac{\partial}{\partial x_i} \in \mathcal{H}_\delta$, and $Y = \sum_{i=1}^n Y_i \frac{\partial}{\partial x_i} \in \mathcal{H}_\delta$. Then

$$\langle X, Y \rangle_{r, \delta} = \sum_{i=1}^n \langle X_i, Y_i \rangle_{r, \delta + r_i}.$$

Definition 2.3 (The operators d, d^* and \Box [12]). The operator $d : \mathcal{H}_\gamma \to \mathcal{H}_{\gamma + k - 1}$ (associated to F) is defined by $d(U) = [F, U]$ for any $U \in \mathcal{H}_\gamma$, where $[\cdot, \cdot]$ denotes the Lie bracket. The operator d^* is the adjoint operator of d with respect to the inner product of definition 2.2. This is, given $U \in \mathcal{H}_\gamma$, $V \in \mathcal{H}_{\gamma + k - 1}$ we have

$$\langle d(U), V \rangle_{r, \gamma + k - 1} = \langle U, d^*(V) \rangle_{r, \gamma}$$

For any quasidegree $\beta > k - 1$, the self adjoint operator $\Box_\beta : \mathcal{H}_\beta \to \mathcal{H}_\beta$ is defined by $\Box_\beta(U) = d d^*(U)$ for all $U \in \mathcal{H}_\beta$.

Definition 2.4 (Resonant vector field [12]).

- We say that a vector field $U \in \mathcal{H}_\beta$ is resonant if $U \in \ker \Box_\beta$.
- A formal vector field is called resonant if all its quasihomogeneous components are resonant.

Definition 2.5 (Normal Form [12]). A good perturbation $X = F + R$ of F is a normal form with respect to F if R is resonant.

It is important to note the following.

Lemma 2.1. $\ker \Box_\beta = \ker d^*|_{\mathcal{H}_\beta}$.

Proof. Let $\alpha = k - 1$, then $d : \mathcal{H}_\gamma \to \mathcal{H}_{\gamma + \alpha}$ and $d^* : \mathcal{H}_{\gamma + \alpha} \to \mathcal{H}_\gamma$. Due to the fact that d^* is the adjoint of d, we have the decomposition $\mathcal{H}_\gamma = \text{Im} d^*|_{\mathcal{H}_{\gamma + \alpha}} \oplus \ker d|_{\mathcal{H}_\gamma}$. Now let $U \in \mathcal{H}_{\gamma + \alpha} = \mathcal{H}_\beta$, then $\Box_\beta(U) = d d^*(U) = 0$ if and only if $d^* U \in \ker d$. Furthermore, $d^* U \in \text{Im} d^*$. That is $d^* U \in \text{Im} d^* \cap \ker d$. However $\text{Im} d^*$ and $\ker d$ are orthogonal. Then $\Box_\beta(U) = 0$ if and only if $d^* U = 0$.

We now recall a result of [12] (Proposition 4.4), we only adapt it for the present context.
Theorem 2.1 (Formal normal form [12]). Let \(X = F + P \) be a good perturbation of \(F \) as in definition 2.1. Then there exists a formal diffeomorphism \(\Phi \) such that \(\Phi \) conjugates \(X \) to a vector field \(F + R \), where \(R \) is a resonant formal vector field in the sense of definition 2.4.

Finally, we present our result. In short, we prove that the resonant vector field \(R \) in theorem 2.1 associated to \(F \) be a good perturbation of the vector field \(F \).

Theorem 2.2. Let \(X = F + P \) be a good perturbation of the vector field

\[
F = \varepsilon \frac{\partial}{\partial z} + \sum_{i=1}^{k-1} 0 \frac{\partial}{\partial x_i} - \left(z^k + \sum_{j=1}^{k-1} x_j z^{j-1} \right) \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \quad (12)
\]

Then, there exists a formal diffeomorphism \(\Phi \) that conjugates \(X \) with \(F \), this is \(\Phi \ast X = F \).

Proof. From theorem 2.1 and lemma 2.1 we will show that if \(P \in \ker d^r \mid_{k \geq k} \), then \(P = 0 \). Let us start by rewriting \(d^r(P) \) in a more workable format.

To simplify the notation, let \(\alpha \geq k, \beta \in \mathcal{H}_\alpha, \beta = \alpha - k + 1 \), and let \(x = (x_1, \ldots, x_{k-1}, \varepsilon) = (x_1, \ldots, x_{k-1}, x_k, x_{k+1}) \). If \(D \) is an operator, its adjoint with respect to the inner product definition 2.2 is always denoted as \(D^* \).

We start with the inner product (definition 2.2)

\[
\langle d(Q), P \rangle_{r,\alpha} = \langle Q, d^r(P) \rangle_{r,\beta}. \quad (13)
\]

We can write \(d(Q) = \sum_{i=1}^{k+1} F_i Q_i - Q(F_i) \), where \(F_i = \sum_{j=1}^{k+1} F_{ij} \frac{\partial Q}{\partial x_j} \) and similarly for \(Q(F_i) \), then

\[
\langle d(Q), P \rangle_{r,\alpha} = \sum_{i=1}^{k+1} \langle F_i, P_i \rangle_{r,\alpha} = \sum_{i=1}^{k+1} \langle F_i, P_i \rangle_{r,\alpha + r_i} - \langle Q(F_i), P_i \rangle_{r,\alpha + r_i}
\]

\[
= \sum_{i=1}^{k+1} \langle Q, F^*(P_i) \rangle_{r,\beta + r_i} - \langle Q(F_i), P_i \rangle_{r,\alpha + r_i} = \sum_{i=1}^{k+1} \langle Q, F^*(P_i) \rangle_{r,\beta + r_i} - \sum_{j=1}^{k+1} \langle Q, (\frac{\partial F_i}{\partial x_j})^* (P_j) \rangle_{r,\alpha + r_i}
\]

\[
= \sum_{i=1}^{k+1} \langle Q, F^*(P_i) \rangle - \sum_{j=1}^{k+1} \langle \frac{\partial F_i}{\partial x_j}^* (P_j) \rangle_{r,\alpha + r_i}
\]

Comparing (14) to \(\langle Q, d^r(P) \rangle_{r,\beta} \) we can write

\[
d^r(P) = \begin{pmatrix}
\frac{\partial F_i}{\partial x_1}^* & \frac{\partial F_i}{\partial x_2}^* & \cdots & \frac{\partial F_i}{\partial x_k}^* \\
\frac{\partial F_i}{\partial x_1} & \frac{\partial F_i}{\partial x_2} & \cdots & \frac{\partial F_i}{\partial x_k} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{\partial F_i}{\partial x_{k+1}} & -\frac{\partial F_i}{\partial x_{k+1}} & \cdots & \frac{\partial F_i}{\partial x_{k+1}}^*
\end{pmatrix} \begin{pmatrix}
P_1 \\
P_2 \\
\vdots \\
P_{k+1}
\end{pmatrix}
\]

Plugging the expressions of \(F \) and \(P \) into (15) we get

\[
d^r(P) = \begin{pmatrix}
F^* & 0 & \cdots & 0 & 1 & 0 \\
0 & F^* & \cdots & 0 & 0 & \varepsilon \\
0 & 0 & \cdots & F^* & (z^{k-1})^* & 0 \\
0 & 0 & \cdots & 0 & F^* + Z^* & 0 \\
-1 & 0 & \cdots & 0 & 0 & F^*
\end{pmatrix} \begin{pmatrix}
P_1 \\
P_2 \\
\vdots \\
P_{k+1}
\end{pmatrix} = 0. \quad (16)
\]
where \(Z^* = \left(k z^{k-1} + \sum_{i=2}^{k-1} (i-1)x_i z^{i-2} \right)^* \). Now note that (16) implies \(F^*(P_j) = 0 \) for all \(j = 2, \ldots, k-1 \) and \(P_1 = P_k = 0 \).

Remark 2.1. For \(k = 2 \), the result is trivial: we have \(F = \varepsilon \frac{\partial}{\partial x_1} - (z^2 + x_1) \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial z} \), and therefore \(d^*(P) = 0 \) is written as

\[
d^*(P) = \begin{bmatrix} F^* & 1 & 0 \\ 0 & F^* + 2z^* & 0 \\ -1 & 0 & F^* \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ 0 \end{bmatrix} = 0, \tag{17}
\]

which immediately implies \(P_1 = P_2 = 0 \).

Now, we study \(F^*(P_j) = 0 \). Recall that \(P = P(x_1, \ldots, x_{k-1}, z, \varepsilon) \) is not any vector field, but it has the property that \(P(x_1, \ldots, x_{k-1}, z, 0) = 0 \). That is, we can write

\[
P = \sum_{i=1}^{k-1} \varepsilon P_i \frac{\partial}{\partial x_i} + \varepsilon \tilde{P}_k \frac{\partial}{\partial z} + 0 \frac{\partial}{\partial \varepsilon}, \tag{18}
\]

where \(\tilde{P}_j \in \mathcal{P}_{\alpha+ r_j - 2k+1} \). This is because the (quasihomogeneous) weight of \(\varepsilon \) is \(2k - 1 \). Now, since it is complicated to work with the adjoint, we first rewrite the problem \(F^*(\varepsilon \tilde{P}_j) = 0 \). We then prove that \(F^*(\varepsilon \tilde{P}_j) = 0 \) implies \(\tilde{P}_j = 0 \).

Note that \(F^*(\varepsilon \tilde{P}_j) = 0 \) is equivalent to \(\langle Q, F^*(\varepsilon \tilde{P}_j) \rangle_{\alpha+ r_j - k+1} = 0 \) for all \(Q \in \mathcal{P}_{\beta+ r_j} \). Next, we use the definition of \(F^* \) that is

\[
\langle Q, F^*(\varepsilon \tilde{P}_j) \rangle_{r, \beta+ r_j} = (F(Q), \varepsilon \tilde{P}_j)_{r, \alpha+ r_j} = 0. \tag{19}
\]

We will now show that if \(\langle F(Q), \varepsilon \tilde{P}_j \rangle_{r, \alpha+ r_j} = 0 \) for all \(Q \in \mathcal{P}_{\beta+ r_j} \), then \(\tilde{P}_j = 0 \). Note that by (19), this is the same as proving that \(F^*(\varepsilon \tilde{P}_j) = 0 \) implies \(\tilde{P}_j = 0 \).

Start by choosing an element \(x^q \) of the basis of \(\mathcal{P}_{\beta+ r_j} \), this is

\[
x^q = x_1^{q_1} \cdots x_{k-1}^{q_{k-1}} z^{q_k} \varepsilon^{q_{k+1}}, \quad (r, q) = \beta + r_j. \tag{20}
\]

Then we have

\[
F(x^q) = q_1 x_1^{q_1-1} \cdots x_{k-1}^{q_{k-1}-1} z^{q_k} \varepsilon^{q_{k+1}+1} - \left(\frac{k}{2} + \sum_{i=1}^{k-1} x_i z^{i-2} \right) q_k x_1^{q_1} \cdots x_{k-1}^{q_{k-1}} z^{q_k-1} \varepsilon^{q_{k+1}}. \tag{21}
\]

Let us write \(\varepsilon \tilde{P}_j \in \mathcal{P}_{\alpha+ r_j} \) as

\[
\varepsilon \tilde{P}_j = \varepsilon \sum_{(r, p) = \alpha+ r_j - 2k+1} a_p x_1^{p_1} \cdots x_{k-1}^{p_{k-1}} z^{p_k} \varepsilon^{p_{k+1}}, \tag{22}
\]

where \(a_p \in \mathbb{R} \). We now proceed by recursion on the exponent of \(\varepsilon \). Let \(q_{k+1} = 0 \), then the inner product \(\langle F(Q), \varepsilon \tilde{P}_j \rangle_{\alpha+ r_j} \) has only one term since \(F(Q) \) has only one monomial containing \(\varepsilon \). That is

\[
\langle F(Q), \varepsilon \tilde{P}_j \rangle_{\alpha+ r_j} \varepsilon^{q_{k+1}} = \langle q_1 x_1^{q_1-1} \cdots x_{k-1}^{q_{k-1}-1} z^{q_k} \varepsilon a_p x_1^{p_1} \cdots x_{k-1}^{p_{k-1}} z^{p_k} \rangle_{r, \alpha+ r_j} = 0. \tag{23}
\]

We naturally consider \(q_1 > 0 \). If \(q_1 = 0 \), then the equality is automatically satisfied. Recalling the definition 2.2 of the inner product, the equality (23) means that

\[
\langle q_1 x_1^{q_1-1} \cdots x_{k-1}^{q_{k-1}-1} z^{q_k} \varepsilon a_p x_1^{p_1} \cdots x_{k-1}^{p_{k-1}} z^{p_k} \rangle_{r, \alpha+ r_j} = q_1 a_p \frac{(q_1)!}{(\alpha + r_j)!} = 0, \tag{24}
\]
and therefore from (23) we have
\[a_p = a_{q_1-1,p_2,\ldots,p_k,1} = 0, \]
for all \(q_1 > 0, p_2, \ldots, p_k \geq 0 \) (naturally, also satisfying the degree condition \((r,p) = \alpha + r_j\)).
Next, let \(q_{k+1} = 1 \). Then
\[F(x^q) = q_1x_1^{q_1-1}\cdots x_k^{q_k-1}z^{q_k}e^2 - \left(z^k + \sum_{i=1}^{k-1} x_1^i z^{i-1} \right) q_kx_1^{q_1}x_2^{q_2}z^{q_k-1}e. \]
Once again, the inner product \(\langle F(Q), \varepsilon \hat{P}_j \rangle \) has only one term, now this is due to the fact that all coefficients \(a_p \) of monomials containing \(e \) are zero due to (25). Then
\[\langle F(Q), \varepsilon \hat{P}_j \rangle \eta_{q_k+1} = 1 = \langle q_1x_1^{q_1-1}\cdots x_k^{q_k-1}z^{q_k}e^2, \varepsilon a_{p_1}x_1^{p_1}x_2^{p_2}z^{p_k}e \rangle r, \alpha + r_j = 0. \]
Therefore, similarly as above, we have the condition
\[a_p = a_{q_1-1,p_2,\ldots,p_k,2} = 0, \]
for all \(q_1 > 0, p_2, \ldots, p_k \geq 0 \) (naturally, also satisfying the degree condition \((r,p) = \alpha + r_j\)). By recursion arguments, assume \(q_{k+1} = n \) and that all the coefficients
\[a_p = a_{p_1,p_2,\ldots,p_k,m} = 0, \quad \forall m \leq n. \]
Then again the inner product \(\langle F(Q), \varepsilon \hat{P}_j \rangle \) has only one term, namely
\[\langle F(Q), \varepsilon \hat{P}_j \rangle \eta_{q_k+1} = \langle q_1x_1^{q_1-1}\cdots x_k^{q_k-1}z^{q_k}e^{n+1}, \varepsilon a_{p_1}x_1^{p_1}x_2^{p_2}z^{p_k}e^n \rangle r, \alpha + r_j = 0. \]
The latter then implies
\[a_p = a_{q_1-1,p_2,\ldots,p_k,n+1} = 0. \]
This finishes the proof of \(\langle F(Q), \varepsilon \hat{P}_j \rangle = 0 \) implies \(\hat{P}_j = 0 \). \(\square \)

Remark 2.2. Theorem 2.2 together with Borel’s lemma [3], imply that an \(A_k\)-SFS \(X = F + P \) is smoothly conjugate to a smooth vector field \(Y = F + H \) where \(H \) is flat at the origin. The benefits of this normal form are exploited in [7, 8].

Acknowledgments

The author gratefully acknowledges Henk Broer, Robert Roussarie, and Laurent Stolovitch for fruitful discussions and valuable comments and suggestions. This work is partially supported by a CONACyT postgraduate grant.

References

[1] V.I. Arnold, S.M. Gusein-Zade, and A.N. Varchenko. *Singularities of Differentiable Maps, Volume I*, volume 17. Birkhäuser, 1985.

[2] H.W. Broer, T.J. Kaper, and M. Krupa. Geometric Desingularization of a Cusp Singularity in Slow–Fast Systems with Applications to Zeeman’s Examples. *J. Dyn. Diff. Equat.*, 2013.
[3] Th. Bröcker. *Differentiable Germs and Catastrophes*, volume 17 of Lecture Note Series. Cambridge University Press, 1975.

[4] F. Dumortier and R. Roussarie. Geometric singular perturbation theory beyond normal hyperbolicity. In C.K.R.T. Jones and A. Khibnik, editors, *Multiple-Time-Scale Dynamical Systems*, volume 122, pages 29–63. Springer, 2001.

[5] Freddy Dumortier and Robert Roussarie. *Canard Cycles and Center Manifolds*, volume 121. American Mathematical Society, 1996.

[6] N. Fenichel. Geometric singular perturbation theory. *JDE*, pages 53–98, 1979.

[7] H. Jardón-Kojakhmetov. *Geometric desingularization of constrained differential equations in terms of slow fast systems*. PhD Thesis, University of Groningen, 2015.

[8] H. Jardón-Kojakhmetov, Henk W. Broer, and R. Roussarie. Analysis of a slow fast system near a cusp singularity. *in preparation*.

[9] M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to non-hyperbolic points: fold and canard points in two dimensions. *SIAM J. Math. Anal.*, 33:286–314, 2001.

[10] M. Krupa and P. Szmolyan. Relaxation oscillation and canard explosion. *J. Diff. Eqns.*, 174:312–368, 2001.

[11] Martin Krupa and Martin Wechselberger. Local analysis near a folded saddle-node singularity. *Journal of Differential Equations*, 248(12):2841 – 2888, 2010.

[12] Eric Lombardi and Laurent Stolovitch. Normal forms of analytic perturbations of quasi-homogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation. *Ann. Sci. Éc. Norm. Supér.*, 43(4), 2010.

[13] Peter Szmolyan and Martin Wechselberger. Canards in r3. *Journal of Differential Equations*, 177(2):419 – 453, 2001.

[14] S. van Gils, M. Krupa, and P. Szmolyan. Asymptotic expansions using blow-up. *Z. angew. Math. Phys.*, 56(8):369–397, 2005.

[15] E.C. Zeeman. Differential equations for the heart beat and nerve impulse. In *Towards a theoretical biology*, volume 4, pages 8–67. Edinburgh University Press.