Importance of miR-125a-5p and miR-122-5p expression in patients with HBV infection

Ramin Lak1,2, Ramin Yaghobi3*, Masoud Garshashi4

1 Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
2 Department of Microbiology, Shiraz branch, Islamic Azad University, Shiraz, Iran
3 Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
4 Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

*Correspondence to: rayaviro@yahoo.com

Received October 22, 2019; Accepted June 22, 2020; Published July 31, 2020

Doi: http://dx.doi.org/10.14715/cmb/2020.66.5.1

Copyright: © 2020 by the C.M.B. Association. All rights reserved.

Abstract: MicroRNAs (miRNAs) as a small RNA and post-transcriptional modulator are shown to have regulatory effects for different cellular activities and pathways, such as metabolism, virus replication and also cell growth. In addition, miRNAs can regulate the replication of the hepatitis B virus (HBV). Therefore, the expression profile of miRNAs was evaluated in HBV infected patient groups and healthy controls. The expression levels of following microRNAs (as noninvasive biomarkers) were compared in two experimental (those with various stages of HBV infection) and control groups to evaluate their diagnosis ability: miR-122-5p, miR-125a-5p, miR-199a-3p, miR-210-5p, miR-205-5p, miR-155-5p, miR-372-5p, and miR-1-5p. RNA extraction was performed for 45 serum samples. The miRCURY LNA™ Universal RT-miRNA-PCR system and miRNA PCR panels were used for measuring microRNA expression profiles. To normalize quantitative values, the endogenous reference by UniSp6 expression was used. Serum miR-125a-5p and miR-122-5p were significantly higher in patients in different stages of HBV infection (p<0.001) than in controls (p<0.001). Receiver operating characteristic (ROC) curve analyses suggested that serum miR-125a-5p and miR-122-5p have significant diagnostic value for HBV infection. A significant difference was not found in terms of serum levels of other miRs (miR-199a-3p, miR-210-5p, miR-205-5p, miR-155-5p, miR-372-5p and miR-1-5p). Results suggest that miR-125a-5p and miR-122-5p can be used as possible noninvasive biomarkers for monitoring of HBV infection need to confirm in future completed studies.

Key words: MicroRNAs; Hepatitis B Virus; Biomarker.

Introduction

Studies have shown that one-third of the world’s population is influenced by Hepatitis B virus (HBV) infection, which is considered a certain health concern all over the world, of whom over 350 million people have diagnosed with chronic HBV (CHB) infection (1). HBV infection can be associated with several complications, such as asymptomatic carriers, liver cirrhosis and hepatocellular cancer (2,3). Therefore, understanding the mechanism underlying chronic HBV infection at the molecular level is of great importance for the optimal management of chronic HBV infection. MicroRNAs (miRNAs) have shown to possibly be associated with HBV infection regulation and relevant disorders (3, 4).

It has indicated that miRNAs as small endogenous noncoding RNAs containing 21–25 nucleotides are capable of post-transcriptional gene expression regulation via target mRNAs degradation induction or inhibition of their translation into protein (5). Recent several studies indicated that miRNAs might affect virus-host interactions and play a crucial role in the viral life cycle and pathogenesis (6–8). Indeed, HBV replication can be regulated by miRNAs directly through linking to the HBV genome or indirectly via modulating transcriptional factors linked to HBV for the regulation of HBV enhanc-
Serum miRNA profiles from HBV carriers for recognizing appropriate biomarkers have widely investigated (3,13–17). Therefore, in this study, the expression profile of a panel of miRNAs was analyzed in sera of HBV infected patient groups and healthy controls.

Materials and Methods

Study population
The present research was performed at Pars Hospital Laboratory, in Tehran, Iran from January 2015 to January 2017. All admitted untreated patients with CHB (n=45) based on immunological results divided into three groups: HBeAg positive, HBeAg negative, OHB and healthy controls (n=15) were recruited. HBsAg and HBeAg positive patient groups were EPCH (93.3%), and 93.3% were OHB. In index value 0.5-0.99; 1.5% were control group, 6.6% in index value <0.5; just 13.3% of control groups. In EPCH group, 13.3% were ENCH group and 6.6% were EPCH group, 93.3% were EPCH and 93.3% were OHB. The crowding index was 80% and 3 females (%20). The mean age of patients group was 38.04±8.9 SD (range 22-56 years) and the distribution of gender in the patient group was 9 male (%60) and 6 females (%40).

DNA isolation and RT-q-PCR for HBV
Magcore Viral Nucleic Acid Extraction Kit was used for HBV DNA extraction from 400 μl of each serum sample. Fluron HBV QNP 2.0 PCR kit(Iontek,turkey) was also employed for real-time PCR on Bio-Rad CFX96. The following steps were considered for amplification: Initial hot-start denaturation (95°C/15 min), followed by 50 cycles (95°C/30 s), annealing and extension (54°C/90 s). Genotypes of HBV were determined using AmpliSens® HBV genotype-FRT PCR kit variant FRT by real-time PCR. The following steps were considered for amplification: Initial hot-start denaturation (95°C/2 min), followed by 40 cycles of denaturation (95°C/25 s), annealing (58°C/25 s), extension (72°C/1 min), and final extension (72°C/5 min).

miRNA analysis
RNA extraction and cDNA synthesis
200 μL of the serum was used to extract miRNA using a miRCURY™ RNA Isolation Kit-Biofluid (Exiqon, USA) based on the manufacturer’s protocol. The optical density in 260/280nm was measured for assessing the purity and concentration of RNA. Agarose gel electrophoresis (1%) was applied in order to measure RNA integrity. cDNA synthesis was performed by miRCURY LNA™ Universal RT-cDNA-Synthesis (Exiqon, USA), based on the provided protocol by the manufacturer.

SYBR-Green Real-Time PCR
The level of gene expression was determined via CFX96 Real-Time thermal cycler (Biorad, USA). Real-time PCR for the 8 miRNAs (miR-122-5p, miR-125a-5p, miR-199a-3p, miR-210-5p, miR-205-5p, miR-155-5p, miR-372-5p, and miR-1-5p) were performed using miRNA PCR panels, miRCURY LNA™ Universal RT-miRNA-PCR system. The specific microRNA LNA™ PCR primers (Exiqon, Denmark) were used. To normalize the results, we used were UniSp6 as an internal standard control and all samples were run in duplicate. The reaction mixture was prepared by SYBR Green Premix (5μl), water (1μl) and 4μl of the control cDNA. The amplification of the reaction mixture was performed as follows: one cycle (95°C/10 min) followed by 40 cycles (95°C/10 s, 60°C/60 s, and 95°C/60 s, respectively). Melting Curve Analysis was used to prove the specificity of the amplified product.

Statistics
Results are represented as the mean ± standard deviation (SD). One-way ANOVA and the Kruskal-Wallis test were used for comparisons between groups. Data were analyzed by SPSS 23 (IBM Corporation, USA). The p values of less than 0.05 were considered significant. For estimation of diagnostic ability of miRNA receiver operating characteristic (ROC) curve analysis was used via medcalc statistical software (Belgium).

Results
Clinical details of patients
The study included 45 patients with Hepatitis B infection and 15 healthy control. Patients with HBV infection were divided into 3 groups based on immunological markers. 15 patients were HBeAg positive chronic hepatitis, 15 patients were HBeAg negative chronic hepatitis and 15 patients were occult hepatitis B. Mean age of patients group was 38.04±8.9 SD (range 22-56 years) and the distribution of gender in the patient group was 36 males (73.3%) and 9 female (%26.6). The mean age of the control group was 33.74±5.7 SD (range 26-44 years) and the distribution of gender in the control group was 9 male (%60) and 6 females (%40).

Separately in different patient groups, the mean age of ENCH Patient was 36.42±7.9 SD (range 27-49 years) and the distribution of gender in ENCH group was 12 males (80%) and 3 females (%20). The mean age of EPCH Patient was 36.63±8.3 SD (range 22-47 years) and the distribution of gender in the EPCH group was 11 males (73.3%) and 4 females (%26.6). The mean age of OHB Patient was 41.5±7.8 SD (range 29-56 years) and the distribution of gender in the OHB group was 12 male (80%) and 3 females (%20). The crowding index was successfully determined in patients and healthy groups. In index value <0.5; just 13.3% of control groups. In index value 0.5-0.99: 1.5% were control group, 6.6% were EPCH group, 13.3% were ENCH group and 6.6% were OHB. In index value >1; 73.3% were control group, 93.3% were EPCH and 93.3% were OHB.
Biochemical and molecular markers and HBV groups

All patients were negative for anti-HCV, anti-HIV+Ag and anti-Hbc-IgM. Mean ALT, AST and AFP of patients was 29.24±18.3 SD, 26.18±15.3SD and 7.17±15.0SD respectively. Whereas mean ALT, AST and AFP OF Controls was 25.80±7.94SD, 23.70±5.78SD and 2.12±0.56SD respectively. There was no statistically significant difference between the patients and the control group in this value. But mean ALT, AST and AFP of ENCH group was: 27.2±14.46 SD, 24.60±11.4SD and 5.97±10.4SD, EPCH group: 45.6±25.5SD, 37.53±21.71SD and 6.35±11.3SD, OHB group: 20.93±3.12 SD, 19.40±2.4 SD and 2.4±0.69. The means of ALT and AST were significantly higher (p<0.001) in the EPCH group than in ENCH and OHB and healthy controls. The positive cases of HBsAb in control, EPCH, ENCH and OHB were 66.7%, 0%, 0% and 53.3% respectively. The positive cases of HBsAb in control, EPCH, ENCH and OHB were 5%, 100%, 100% and healthy controls. The positive cases of HBsAb in control, EPCH, ENCH and OHB were 5%, 100%, 100% and 0% respectively. The positive cases of HBeAb were 0%, 100%, 0% and 100%, in HBeAg were 0%, 0%, 100% and 100% and the positive cases of HBsAg were 0%, 100%, 100% and 100% respectively. All patients were positive for HBV Nested PCR and Taqman real-time PCR Methods simultaneously. HBV genotypes were successfully determined in all of the patients and 100% were genotype D. The EPCH cases had high HBV viral load (3.5±0.7) than in ENCH patients (Mean 7.1E+05) and OHB cases (mean 8.3.E+02). The results of many clinical tests are quantitative and are provided on a continuous scale.

To help decide the presence or absence of disease, a cut-off point is chosen and results that are below the cut-off are regarded as normal. The receiver operating characteristic (ROC) curve is widely accepted as a method for selecting an optimal cut-off point and for comparing the accuracy of diagnostic testing. The ROC curve is also important because the area under the curve (AUC) is a reflecting of how good the test is at distinguishing between the patient with the disease and without disease. A perfect test will have an AUC of 1.0, while a completely useless test has AUC of 0.5. The AUC of many clinical tests falls between these two values one way of interpreting the AUC is that a test with an area greater the 0.9 has high accuracy, while 0.7-0.9 indicates moderate accuracy, 0.5-0.7 low accuracy and 0.5 a chance result. In order to check the accuracy of the tests done in the thesis and their ability to detect hepatitis B infection, we used the ROC curve analysis. The result of different performed diagnostic tests is shown in Fig. 1 & 2.

MiRNA profile and HBV groups

The serum levels of miRNA including: miR-122-5p, miR-125a-5p, miR-199a-3p, miR-205-5p, miR-210-5p, miR-155-5p, miR-372-5p, and miR-1-5p) were analyzed in different samples from ENCH, EPCH, OHB and healthy control groups.

The serum miRNA levels in different Patient group including: ENCH, EPCH and OHB was not correlated significantly with each other. The serum level of miR-122-5p, miR-125-5p, and residual miRNAs were significantly different between all patient groups and healthy control (p<0.001) (Fig. 3 & 4).

The heat map analysis is presented in Fig 5. Data

Figure 1. ROC curve analysis of immunological and molecular testing of HBV (Medcalc software).
with increase/decrease of expression are highlighted red/blue, respectively and unchanged data are displayed white. As shown on the side of the heat map, color intensity was calibrated to the expression level. 2 miRNAs from 8 assessed miRNAs showed differential expression in HBV infected patients compared to the control groups. The up-regulated miRNAs included miR-122-5p and miR-125-5p, which implies the important role of their binding sites in aberrant miRNA expression caused by HBV in the host target genes.

Discussion

The role of miRNAs in HBV infection has attracted great interest in recent years, since accumulating evidence has suggested that miRNAs play crucial roles in the HBV pathogenesis (3, 4, 9). Cirrhosis and hepatocellular carcinoma (HCC) known for their high mortality rate are among the complications of HBV infection (18, 19). The present study aimed at assessing the serum levels of eight miRs, including miR-122-5p, miR-125a-5p, miR-199a-3p, miR-210, miR-205, miR-155, miR-372 and miR-1 in patients infected with HBV in clini-
different stages compared with the healthy control group.

The present study, which supported the results reported by previous studies, showed up-regulated expression of miR-125a-5p in HBV patients compared with the healthy control groups. The prediction of target sites for human microRNAs within the HBV genome was first made by Potenza et al. and they indicated that miR-125a-5p can bind to the target sequences in the viral genome. Indeed, miR-125-5p can affect HBsAg expression, as miR-125a mimics or inhibitors transfection leading to secretion of HBsAg by PLC/PRF/5 cells induced a noticeable reduction or increase in HBsAg expression, respectively (20). In the HBV-producing cell line HepG2.2.15, hsa-miR-125a-5p expression was indicated at least three times more than parental HepG2 cells (21). Moreover, authors show that treatment with iron can lead to a reduced level of hsa-miR-125a-5p expression via an enhancement in HBV replication, whereas by TGF-b treatment, an elevation can be seen in the expression level of hsa-miR-125a-5p due to the decreased HBV replication (22). Accordingly, HBV replication can be prevented by miR-125a-5p via direct binding to viral transcripts and the HBV sequence targeted by hsa-miR125a-5p encodes amino acids falling within an important segment (for cell binding) of the extracellular pre-S1 domain of HBsAg (23).

Recently, miR-122, miR-130, miR-183, miR-196, miR-209 and miR-96 were presented as potential biomarkers to distinguish different stages of hepatitis and liver injuries (24). However, there are conflicting results regarding the relationship between miRNA-122-5p expression levels and HBV replication. In this study, we found no significant difference between the six miRs (miR-199a-3p, miR-210, miR-205, miR-155, miR-372, and miR-1) in the serum of patients infected with HBV compared to the control group. Conflicting results might be due to the difference in the participants’ age, samples (peripheral blood mononuclear cells (PBMCs), liver biopsy or serum) and the environmental factors (e.g., alcoholic liver disease, etc.). Our data indicated that mean ALT and AST were significantly higher (p<0.001) in the EPCH group than in ENCH and OHB and healthy controls, suggesting a positive correlation with hepatic necroinflammation.

ROC curve analysis was employed to assess whether serum miRs can be used as a diagnostic marker for CHB and OHB. Its findings indicated that miRNA-122-5p and miR-125a-5p serum levels were useful markers for discriminating patients infected HBV. An AUC of ROC curve for miR-125a-5p is 0.778 (Fig. 5d), with the sensitivity and specificity 77.8 and 100.0 %, respectively.
miR-122-5p, an AUC of ROC curve is 0.822 (Fig. 5b), with a sensitivity/specificity ratio of 82.2/100.0 %. This suggests that miRNAs can clearly improve the diagnostic accuracy of efficacy evaluation in HBV infection. In addition to, The AUC for HBcAb (1.00, P<0.001) was equal to HBV viral load (1.00, P=0.001) and markedly higher than that of HBsAg (0.86, P=0.001), HBeAb (0.83, P<0.001), ALT (0.74, P<0.001), HBeAg (0.66, P=0.001), and HBsAb (0.6, P=0.001).

Cellular miRNAs can influence HBV replication via following ways; 1) they can bind to HBV transcripts, 2) via affecting cellular factors related to the life cycle of HBV, 3) through regulating genes and signaling pathways essential for pathogenesis of HBV, 4) via adjusting epigenetic reformatations, including histone modification and methylation (15,31). MiRNAs can directly interact with viral components, which has empirically been approved, including miR199a-3p (affecting HBsAg coding region) (11), miR210 (affecting HBV pre-S1 region) (11) and miR205 (affecting X gene) (32). Replication of HBV is effectively suppressed by MiR-141 and miR-155 directly by affecting pexisome prolifera-
tor-activated receptor alpha (PPARα) as well as CAAT Enhancer binding protein β (C/EBP-β), respectively (33). However, it has indicated that the replication of HBV is promoted by miR-1, miR-372, and miR-501 by influencing host gene expression. MiR-1 as an example is able to alter the expression level of several genes via affecting histone deacetylase 4 (HDAC4), including up-regulation of farnesoid X receptor (FXR) leading to an increase in transcription and replication of HBV via binding to the HBV core promoter (12). MiR-372 is capable of increasing the expression level of HBV via NFIB transcription factor. NFIB levels were lower in a stable HBV-producing cell line (HepG2.2.15 cells) with elevated endogenous expression of miRs-372 in comparison with the control cell line (HepG2 cells) (34).

There are limitations to research on gene expression that researchers need to consider (35-47). In these regards immunogenicity of the multi-epitopic recombinant glycoproteins virus: implications may be concerned (48). There are also several biotechnological research on the virus (49-61), each of which can be helpful in applying the results.

There are several limitations to this study. First, a larger sample size should be considered to prove the diagnostic characteristic of microRNAs. Second, nothing patients accepted liver biopsies; we did not measure the miRs expression in liver.

In conclusion, the increase in miR-122-5p and miR-NA-125b-5p levels in serum of HBV infected patients compared with healthy normal controls were found. However; other miRs have not shown a significant difference among patients and controls. These results highlighted that further studies are needed on the effect of miRs as noninvasive serum biomarkers to diagnose HBV outcomes.

Acknowledgments

This study was supported by Islamic Azad University. We appreciate all patients who participated in this study and thanks also from Dr. Afsoon Afshari for her scientific and statistic advice. Thanks to Bistoon Shafa Co., Iran (website: www.camelina.info, Instagram: @came-
lina.ir) for all supports.

Interest conflict

The authors have no conflict of interest to declare.

Author contributions

Study concept and design: Lak R, Yaghobi R, Garshasbi M, Performed the experiments: Lak R, Drafting of the manuscript: Lak R, Yaghobi R, Garshasbi M. Statistical analysis: Lak R, Yaghobi R, Garshasbi M.

References

MacLachlan JH, Cowie BC. Hepatitis B virus epidemiology. Cold Spring Harb Perspect Med 2015;5.
2. Liang TJ. Hepatitis B: The virus and disease. Hepatology 2009;49: S13–21.
3. Farokhizadeh Z, Dehbid S, Geramizadeh B, Yaghobi R, Malekhosseini SA, Behmanesh M, et al. Association of MicroRNA Polymorphisms With Hepatocellular Carcinoma in an Iranian Popula-
tion. Ann Lab Med 2019;39:58.
4. Wang G, Dong F, Xu Z, Sharma S, Hu X, Chen D, et al. MicroR-
NA profile in HBV-induced infection and hepatocellular carcinoma. BMC Cancer 2017;17:805.
5. Khoshtinat Nikkhoi S, Dorostkar R, Ranjarb S, Heydarzadeh H, Tat M, Ghaliavand M, Farasat A, Hashemzadeh MS. Synergistic Ef-
fect of Expressed mir-128 and Puma Protein on Targeted Induction of Tumor Cell Apoptosis. Iran J Biotechnol. 2016; 14(3): 185-191.
6. Skalsky RL, Cullen BR. Viruses, microRNAs, and Host Interac-
tions. Annu Rev Microbiol. 2010;64:123–41.
7. Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Viral miRNAs alter host cell miRNA profiles and modulate innate immune re-
ponses. Front Immunol 2018;9:433.
8. Bernier A, Sagan SM. The diverse roles of microRNAs at the host-virus interface. Viruses. 2018; 10:440.
9. Onorato L, Russo A, Sagnelli C, Sagnelli E, Potenza N, Coppola N. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol 2018;10:558–70.
10. Wang Z, Wu Z, Huang P. The function of miRNAs in hepato-
carcinogenesis induced by hepatitis B virus X protein. Oncol Rep 2017;38:652–64.
11. Zhang G ling, Li Y Xuan, Zheng S qi, Liu M, Li X, Tang H. Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral Res 2010;88:169–75.
12. Zhang X, Zhang E, Ma Z, Pei R, Jiang M, Schlaak JF, et al. Modulation of hepatitis B virus replication and hepatocyte differen-
tiation by MicroRNA-1. Hepatology 2011;53:1476–1485.
13. Jiang X, Kanda T, Wu S, Nakamura M, Miyamura T, Nakamoto S, et al. Regulation of microRNA by hepatitis B virus infection and their possible association with control of innate immunity. World J Gastroenterol 2014;20:7197–06.
14. Zhu H, Geng Y, He Q, Li M. microRNAs regulate immune re-
response and signaling during hepatitis C virus infection. Eur J Med Res 2018;23:19.
15. Kitab B, Alj Hs, Ezzikouri S, Benjellou S. MicroRNAs As Im-
portant Players in Host-hepatitis B Virus Interactions. J Clin Transl Hepatol 2015;3:141-61.
16. Fu Y, Wei X, Tang C, Li J, Liu R, Shen A, et al. Circulating microRNA-101 as a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Oncol Lett 2013;6:1811–15.
17. Su C, Hou Z, Zhang C, Tian Z, Zhang J. Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol J 2011;8:354.
18. Zamor P, Delemos A, Gastrointestinal MR-J of, 2017 U. Viral
hepatitis and hepatocellular carcinoma: Etiology and Management. J Gastrointest Oncol 2017;8:229-42.
19. Belzad-Behtabani A, Mojiri A, Tabei SZ, Farahdi-Andarabi A, Pouransari R, Yaghobi R, et al. Outcome of hepatitis B and C virus infection on graft function after renal transplantation. Transplant Proc 2005;37:3045-47.
20. Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res 2011;39:5157–63.
21. Liu Y, Wang C-M, Han P, Wang L, Cheng Y-Q, Xu D-P, et al. Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chin Med J (Engl) 2009;122:10-4.
22. Park SO, Kumar M, Gupta S. TGF-β and Iron Differently Alter HBV Replication in Human Hepatocytes through TGF-β/BMP Signaling and Cellular MicroRNA Expression. Bouchard M, editor. PLoS One 2012;7:e39276.
23. Le Duff Y, Blanchet M, Sureau C. The Pre-S1 and Antigenic Loop Infectivity Determinants of the Hepatitis B Virus Envelope Proteins Are Functionally Independent. J Virol 2009;83:12443–51.
24. Musadaq G, Shahzad N, Ashraf MA, Arshad MI. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human. Biomarkers 2019;24:103–9.
25. Ebrahimifard M, Zandi M, Moradi A. Evaluation of miR-122 level in chronic HBV infection and liver cirrhosis patients. Arch Med Lab Sci 2016;2:108-10.
26. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol 2011;29:4781–8.
27. Bandopadhayay M, Sarkar N, Datta S, Das D, Pal A, Panigrahi R, et al. Hepatitis B virus X protein mediated suppression of miRNA-122 expression enhances hepatoblastoma cell proliferation through cyclin G1-p53 axis. Infect Agent Cancer 2016;11:40.
28. Oda S, Takeuchi M, Akai S, Shirai Y, Tsuneyama K, Yokoi T. miRNA in Rat Liver Sinusoidal Endothelial Cells and Hepatocytes and Application to Circulating Biomarkers that Discern Pathogenesis of Liver Injuries. Am J Pathol 2018;188:916–28.
29. Thirion M, Ochiya T. Roles of microRNAs in the hepatitis B virus infection and related diseases. Viruses 2013;5:2690–703.
30. Mizuguchi Y, Takizawa T, Uchida E. Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication. World J Hepatol 2015;7:696–602.
31. Ghanbari R, Ravaneshad M, Hosseini SY, Yaghobi R, Shahzami K. Genotyping and infection rate of GBV-C among Iranian hepatitis and hepatocellular carcinoma. J Gastrointest Oncol 2017;8:93-100.
32. Ghanbari R, Ravaneshad M, Hosseini SY, Yaghobi R, Shahzami K. Genotyping and infection rate of GBV-C among Iranian hepatitis and hepatocellular carcinoma. J Gastrointest Oncol 2017;8:93-100.
33. Park SO, Kumar M, Gupta S. TGF-β and Iron Differently Alter HBV Replication in Human Hepatocytes through TGF-β/BMP Signaling and Cellular MicroRNA Expression. Bouchard M, editor. PLoS One 2012;7:e39276.
34. Le Duff Y, Blanchet M, Sureau C. The Pre-S1 and Antigenic Loop Infectivity Determinants of the Hepatitis B Virus Envelope Proteins Are Functionally Independent. J Virol 2009;83:12443–51.
35. Musadaq G, Shahzad N, Ashraf MA, Arshad MI. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human. Biomarkers 2019;24:103–9.
36. Ebrahimifard M, Zandi M, Moradi A. Evaluation of miR-122 level in chronic HBV infection and liver cirrhosis patients. Arch Med Lab Sci 2016;2:108-10.
37. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol 2011;29:4781–8.
38. Bandopadhayay M, Sarkar N, Datta S, Das D, Pal A, Panigrahi R, et al. Hepatitis B virus X protein mediated suppression of miRNA-122 expression enhances hepatoblastoma cell proliferation through cyclin G1-p53 axis. Infect Agent Cancer 2016;11:40.
39. Oda S, Takeuchi M, Akai S, Shirai Y, Tsuneyama K, Yokoi T. miRNA in Rat Liver Sinusoidal Endothelial Cells and Hepatocytes and Application to Circulating Biomarkers that Discern Pathogenesis of Liver Injuries. Am J Pathol 2018;188:916–28.
40. Thirion M, Ochiya T. Roles of microRNAs in the hepatitis B virus infection and related diseases. Viruses 2013;5:2690–703.
41. Mizuguchi Y, Takizawa T, Uchida E. Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication. World J Hepatol 2015;7:696–602.
42. Ghanbari R, Ravaneshad M, Hosseini SY, Yaghobi R, Shahzami K. Genotyping and infection rate of GBV-C among Iranian hepatitis and hepatocellular carcinoma. J Gastrointest Oncol 2017;8:93-100.
43. Park SO, Kumar M, Gupta S. TGF-β and Iron Differently Alter HBV Replication in Human Hepatocytes through TGF-β/BMP Signaling and Cellular MicroRNA Expression. Bouchard M, editor. PLoS One 2012;7:e39276.
53. Shafaghi M, Maktoobian S, Rasouli R, Howaizi N, Ofoghi H, Ehsani P. Transient Expression of Biologically Active Anti-rabies Virus Monoclonal Antibody in Tobacco Leaves. Iran J Biotechnol. Apr 2018; 16(1): e1774.
54. Shibaei N, Majidi J, Bashir NS, Karkhaneh A, Razavi K. Production and Partial Purification of the Grapevine Fanleaf Virus Coat Protein 42 Polyclonal Antibody Against Inclusion Body Expressed in Escherichia coli. Iran J Biotechnol. Dec 2018; 16(4): e1525.
55. Singh A, Permar V, Basavaraj, Tomar BS, Praveen S. Effect of Temperature on Symptoms Expression and Viral RNA Accumulation in Groundnut Bud Necrosis Virus Infected Vigna unguiculata. Iran J Biotechnol. Aug 2018; 16(3): e1846.
56. Sokhandan Bashir N, Poorsmaile M, Hajizadeh M. Heterologous Expression of Potato Virus Y Coat Protein, Isolate Pot187. Iran J Biotechnol. Dec 2015; 13(4): 48-52.
57. Vafaee SH, Mahmoodi M. Presence of Recombinant Strain of Cucurbit Aphid Borne Yellows Virus in Iran. Iran J Biotechnol. 2017; 15(4): 289-295.
58. Venkataravanappa V, Reddy CNL, Shankarappa KS, Reddy MK. Association of Tomato Leaf Curl New Delhi Virus, Betasatellite, and Alphasatellite with Mosaic Disease of Spine Gourd (Momordica dioica Roxb. Willd) in India. Iran J Biotechnol. Jan 2019; 17(1): e2134.
59. Yan Y, Jiang W, Liu J, Xu W, Qian H. Expression of Recombinant Phosphodiesterases 3A and 3B Using Baculovirus Expression System. Iran J Biotechnol. Dec 2016; 14(4): 236-242.
60. Zhang J, Jin Z, Sun T, Jiang Y, Han Q, Song Y, Chen Q, Xia X. Prokaryotic Expression, Purification, and Polyclonal Antibody Production of a Truncated Recombinant Rabies Virus L Protein. Iran J Biotechnol. Jun 2015; 13(2): 18-24.
61. Zou X, Xu Z, Wang Y, Ou X, Li Y, Liu D, Gan W, Lu M, Chen Q, Peng H, Hong G, Lin J, Li M, Cai M. Expression, Purification, and Antiserum Production of the Truncated UL31 Protein of Herpes Simplex Virus 1. Iran J Biotechnol. Jan 2019; 17(1): e1609.