Treatment of Interstitial Lung Disease in Anti-MDA5-Positive Dermatomyositis: A Retrospective Study of 87 Patients

Xianhua Gui (✉ xianxian.xian@163.com)
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital
https://orcid.org/0000-0002-2768-3126

Shenyun Shi
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Tingting Zhao
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Yuying Qiu
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Min Yu
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Miao Ma
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Jingjing Ding
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Lulu Chen
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Xiaohua Qiu
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Xiaoyan Xin
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Yingwei Zhang
Research Article

Keywords: anti-melanoma, interstitial lung disease, dermatomyositis, Corticosteroid

DOI: https://doi.org/10.21203/rs.3.rs-744940/v1

License: ☺️ ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives: The prognosis of anti-melanoma differentiation-associated gene (MDA5) antibody-positive dermatomyositis (DM)-interstitial lung disease (ILD) (anti-MDA5-positive DM-ILD) is often poor, especially in rapidly progressive interstitial lung disease (RPILD). So far there is no established therapy. This study evaluated the efficacy and safety of pharmacological treatments for anti-MDA5-positive DM-ILD.

Methods: This retrospective study comprised 87 anti-MDA5-positive DM-ILD patients. We reviewed the clinical characteristics, laboratory findings, lung function treatments, and outcomes of the 87 patients. Cox regression analysis was used to identify predictors of 6-month survival. The association between different combined immunosuppressive regimen and 6-month survival were evaluated.

Results: High level of CYFRA21-1 and low PaO2/FiO2 ratio were associated with poor prognosis. Corticosteroid (CS) alone treatment group with higher CYFRA21-1 and lower PaO2/FiO2 ratio showed worse 6-month survival than the combination of CS with immunosuppressants group (p<0.01). In addition, tacrolimus/cyclosporine-treated anti-MDA5-positive DM Non-RPILD exhibited a better survival, comparing with tacrolimus/cyclosporine combined intravenous cyclophosphamide (IVCY)-treated patients (p<0.05).

Conclusion: Addition of immunosuppressants to CS, were associated with better 6-month survival in anti-MDA5-positive DM-ILD. The triple regimen (CS, tacrolimus/cyclosporine and IVCY) was not superior to duple one (CS, tacrolimus/cyclosporine) in anti-MDA5 positive DM Non-RPILD.

Key Messages

1. A combined immunosuppressive regimen is more effective for anti-MDA5-positive DM-ILD than corticosteroid alone.

2. No difference was observed in anti-MDA5-positive DM-RPILD patients with triple intensive immunosuppressive regimen or duple regimen.

3. The duple regimen (CS and tacrolimus/cyclosporine) is more effective and safe than the triple regimen in anti-MDA5 positive DM Non-RPILD.

Introduction

Dermatomyositis is a kind of autoimmune inflammatory disease, that characterized by muscle weakness, skin lesions, arthralgia and internal organs damaged, including heart, lungs [1]. Interstitial lung disease (ILD) is a severe complication of DM patients that is associated with poor prognosis of DM patients, especially rapidly progressive interstitial lung disease (RPILD). Myositis specific antibodies (MSAs) are observed in 30–40% myositis/DM patients which are reported to be associated with different phenotypes of PM patients in terms of distinct clinical manifestations [2]. Among the MSAs, anti-melanoma
differentiation-associated gene (MDA5) auto-antibodies, are recently reported to be closely associated with the development of RPILD, especially in patients with typical skin lesions, which is one of the most prognostic factors in DM-ILD patients [3–7]. RPILD has been characterized by accelerated progressive deterioration of respiratory symptom and pulmonary function in three months, that is an important cause of substantial mortality [8, 9]. In previous study, we have observed that the serum CYFRA21-1 level was higher in anti-MDA5-positive DM-ILD, especially in RPILD patients, that was a prognostic factor and also associated with disease prognosis [10]. Evidence for the effectiveness of pharmacological treatment for anti-MDA5-positive DM-ILD is limited. Recently, the effective treatments mainly include corticosteroid (CS), calcineurin inhibitors, intravenous cyclophosphamide (IVCY) and plasmapheresis, etc. The conventional treatment including CS alone or a combination of CS and immunosuppressants, is applied to 28–66% of Asia patients with anti-MDA5-positive DM-ILD [11–13]. In clinical practice, CS is given at the beginning of diagnosis of anti-MDA5-positive DM-ILD, often in high doses, to most patients who demonstrate RPILD. Calcineurin inhibitors (tacrolimus or cyclosporine) are usually administered in combined with CS. In addition, a combined immunosuppressive therapy including high-dose CS, calcineurin inhibitors, and IVCY might be efficacious [14, 15].

Calcineurin inhibitors are the drug with strong immunosuppressive effect, that can down-regulate the production of cytokines in T lymphocytes by inhibition of calcineurin activation, and then suppress the function of T lymphocytes [16]. As a potent immunosuppressive agent, calcineurin inhibitors had been widely used for autoimmune diseases including DM, rheumatoid arthritis (RA) etc. Cyclophosphamide (CTX) as a kind of common immunosuppressive drugs, mainly inhibits immune responses mediated by T and B lymphocytes, and then reduces the inflammatory response induced by a variety of adhesion molecules, chemokines and cytokines. IVCY is given for treatment of progressive interstitial pneumonia in patients with DM, that had a good therapeutic effect [17]. Although CS, calcineurin inhibitors, IVCY, etc are very important for the treatment of anti-MDA5-positive DM-ILD, overtreatment would increase the risk of opportunistic infections to accelerate the death of patients. Few studies investigate the associations of various pharmacological treatments with survival in anti-MDA5-positive DM-ILD patients in China. Therefore, we conducted this retrospective study in an interstitial lung disease center, to investigate the relationship of immunosuppressive treatment with 6-months survival in anti-MDA5-positive DM patients.

Patients And Methods

2.1. Study subjects

This study investigated data from 87 anti-MDA5-positive DM-ILD patients admitted to Nanjing Drum Tower Hospital between December 2016 and February 2020. DM was diagnosed according to the criteria of Bohan and Peter [18]. Patients with overlap syndromes, including systemic sclerosis (SSC) and Sjogren's syndrome (SS), and following conditions were excluded: cancer, hepatitis B virus infection, active tuberculosis.

2.2. Diagnosis of ILD
ILD was diagnosed according to respiratory symptoms, physical examinations, lung function tests and chest high-resolution CT (HRCT) findings. HRCT was defined as organizing pneumonia (OP) pattern, nonspecific interstitial pneumonia (NSIP) pattern and others [19], that were reviewed by the chest radiologist. The patients had a follow-up period for 6 months.

2.3. Data collection

Clinical data were obtained from the electronic medical records to determine the characteristics of anti-MDA5-positive DM-ILD patients. We also collected information of lung function and laboratory tests at initial diagnosis. Written informed consents were obtained from all patients prior to the study, and all participants gave the permission for the use of their serum for research purposes. This study was conducted in accordance with the principles of the Declaration of Helsinki (1989) and approved by the Ethics Committee at Nanjing Drum Tower Hospital.

2.4. Therapeutic regimen of anti-MDA-positive DM-ILD

All patients were treated with CS therapy (prednisolone initially administered 500 mg/day for 3 days or 1 mg/kg/day). CS dose was tapered during treatment courses (20% decreased every 4 weeks when the dose was higher than 30mg daily, and 8 weeks when it was lower than 30mg daily). Tacrolimus (1-4mg/day) or cyclosporine (100-300mg/day) was combined with CS. Tacrolimus or cyclosporine was adjusted to maintain blood concentration within the range of 10–12 ng/mL or 100–150 ng/mL. CTX was started intravenously at a dose of 400 mg biweekly. IVCY was extended to 400 mg every 4 weeks after the six times.

Statistical analysis

Descriptive statistics for the clinical characteristics are expressed as counts (percentage) and median range. Continuous variables were compared between different groups using the Mann-Whitney U test. Univariate and multivariate Cox regression were performed to establish predictors of survival in anti-MDA5 positive DM-ILD. The cumulative survival rates were calculated by the Kaplan-Meier test. The log-rank test was also used to compare the survival rates in each group. The statistical analyses were performed using SPSS for Windows version 19 (IBM Corp. GraphPad Prism Version 6(GraphPad Software, San Diego, CA, USA). A p value < 0.05 was considered statistically significant.

Results

3.1. Clinical characteristics of 87 patients with anti-MDA-positive DM-ILD

There were 49 males (56.3%) and their median age was 53.0 [IQR: 47.0–63.0] years. Most of patients (71.3%) had skin rash (Gottron sign), and some patients (40.2%) were simultaneously accompanied by
fever, and only a few patients (23.0%) had muscle weakness. Laboratory findings showed that lactate dehydrogenase (LDH), c-reactive protein (CRP), and Cytokeratin 19 fragment (CYFRA21-1) levels were elevated and median PaO2/FiO2 ratio was low. The HRCT imaging showed OP/OP-NSIP pattern (78.2%) and NSIP pattern (21.8%). Median forced vital capacity (FVC% predicted) and diffusing capacity of the lung for carbon monoxide (DLCO% predicted) were 61.2% and 55.5% (Table 1).

Table 1
Characteristics of patients with Anti-MDA5-positive DM-ILD

Clinical Characteristics of Anti-MDA5-positive DM-ILD patients	n = 87
Age, yr	53.0(47.0–63.0)
Male	49(56.3%)
Clinical findings	
fever	35(40.2%)
Heliotrope rash	35(40.2%)
Gottron’s sign	62(71.3%)
Muscle weakness	20(23.0%)
Laboratory findings	
CPK(U/L)	47.5(27.7–102.0)
LDH (U/L)	363.5(270.0-502.8)
CRP (mg/L)	15.2(4.7–35.8)
ESR(mm/h)	33.0(18.3–59.0)
CYFRA21-1(ng/ml)	6.7(4.2–12.8)
PaO2/FiO2 ratio	208.0(142.8-300.3)
HRCT patterns	
OP/OP-NSIP	68(78.2%)
NSIP	19(21.8%)
Lung function	
FVC% predicted	61.2(48.3–73.0)
DLCO%predicted	55.5(45.3–67.9)

CRP, C-reactive protein; LDH, lactate dehydrogenase; DLco, diffusing capacity of the lung for carbon monoxide; FVC, forced vital capacity; OP, organized pneumonia; NSIP, Non Specific Interstitial Pneumonia;
Figure 1 showed the details of therapeutic regimen for anti-MDA5-positive DM-ILD patients. Twenty-eight patients (32.1%) had received CS pulse therapy (500mg), initial CS dose (1mg/kg) was performed in 59 patients (67.8%). Forty-four patients (50.6%) had received tacrolimus, and 27 (31.0%) had received cyclosporine. Twenty-six (29.8%) underwent IVCY. (Fig. 1)

3.2. Predictors of 6-month survival

During the treatment period, 48 of 87 patients (55.2%) died. Univariate and Multivariate cox regression analyses showed that use of CS alone (HR, 1.971, 95% CI 1.012–3.838, p < 0.05) was associated with worse 6-month survival. High level of CYFRA21-1 (HR, 1.056; 95% CI, 1.029–1.084, p < 0.001) and low PaO2/FiO2 ratio (HR, 0.990, 95% CI 0.986–0.994, p < 0.001) were associated with poor outcome. In clinical practice, all the patients received CS treatment. In fact, the group treated with CS combined with immunosuppressors, which was associated with an obviously higher PaO2/FiO2, lower CYFRA21-1 level, had better outcomes. (Table 2)
Table 2
Results of univariate and multivariate COX analysis for 6-month survival in Anti-MDA5 positive DM-ILD patients

Anti-MDA5-positive DM-ILD	Hazard ratio	95%CI	p value
Univariate analysis			
Age(years)	1.048	1.019–1.079	< 0.01**
HRCT pattern (OP/OP-NSIP)	1.311	0.682–2.521	0.417
Laboratory findings			
PaO2/FiO2 ratio	0.990	0.986–0.993	< 0.001***
WBC	1.084	1.114–1.170	< 0.05*
CPK	1.001	0.998–1.004	0.513
LDH	1.000	1.000–1.001	0.144
CRP	1.018	1.007–1.029	< 0.01**
ESR	1.011	0.999–1.022	0.073
CYFRA21-1	1.067	1.042–1.091	< 0.001***
FVC(%)	1.021	0.968–1.076	0.448
DLCO(%)	1.005	0.944–1.070	0.866
Treatment			
CS alone	2.416	1.272–4.592	< 0.01**
Multivariate analysis			
PaO2/FiO2 ratio	0.990	0.986–0.994	< 0.001***
CYFRA21-1	1.056	1.029–1.084	< 0.001**
CS alone	1.971	1.012–3.838	< 0.05*

CRP, C-reactive protein; LDH, lactate dehydrogenase; DLco, diffusing capacity of the lung for carbon monoxide; FVC, forced vital capacity; OP, organized pneumonia; NSIP, Non Specific Interstitial Pneumonia; CS: corticosteroid

3.3. Survival analyses according to different treatment

Kaplan-Meier survival method were used to assess the prognosis of patients underwent different treatment. 6-month survival of CS alone-treated was significantly lower than those treated with CS combined immunosuppressors (p < 0.01; Fig. 2A). Compared with patients treated with CS combined tacrolimus/cyclosporine and IVCY, survival at 6 months was significantly better in the patients treated with CS combined tacrolimus/cyclosporine (p < 0.01; Fig. 2B).
Table 3 showed the clinical features of anti-MDA5-positive DM-ILD patients in CS alone-treated and CS combined immunosuppressors groups. A similar age, gender distribution, PaO2/FiO2 ratio, and other serological indicators (CPK, LDH, CRP, ESR) were found between these two groups. Patients with CS alone-treated had higher CYFRA21-1 level than patients with CS combined immunosuppressors (13.1 [6.6, 22.6] vs. 5.9 [3.9, 12.1], p = 0.008). Table 4 showed the clinical characteristics of anti-MDA-positive DM-ILD patients in CS combined tacrolimus/cyclosporine-treated and triple regimen group. Patients treated with CS combined tacrolimus/cyclosporine and IVCY, had worse PaO2/FiO2 ratio (158.0 [96.0, 259.0] vs 231.0 [177.0, 371.5], p = 0.018), and higher CYFRA21-1 level (9.1 [6.2, 13.7] vs 4.4 [3.1, 9.2], p = 0.002) than duple regimen group. (Table 3, 4)

Table 3
Patients characteristics of MDA5-DM-ILD in the CS alone and CS combined Immunosuppressors groups

Clinical Characteristics	CS alone n = 16	CS combined Immunosuppressors n = 71	p value
Age(years)	58.0(45.3–66.8)	53.0(48.0–62.0)	0.569
Male	8(50.0%)	30(42.3%)	0.575
HRCT pattern(OP/OP-NSIP)	13(81.3%)	55(77.5%)	0.742
CPK(U/L)	84.0(34.3-137.5)	42.0(27.0-91.3)	0.079
LDH(U/L)	420.0(322.5–499.0)	344.5(266.3-502.8)	0.310
CRP (mg/L)	20.3(6.1–35.9)	13.9(4.7–35.5)	0.369
ESR (mm/h)	40.5(18.8–60.8)	31.0(18.3–58.8)	0.520
CYFRA21-1(ng/ml)	13.1(6.6–22.6)	5.9(3.9–12.1)	0.008**
PaO2/FiO2 ratio	164.5(86.5-271.3)	213.5(146.8-341.5)	0.124

*p< 0.05, **p< 0.01

CRP, C-reactive protein; LDH, lactate dehydrogenase; OP, organized pneumonia; NSIP, Non Specific Interstitial Pneumonia;
Table 4
Patients characteristics of MDA5-DM-ILD receiving CS combined different Immunosuppressors groups

Clinical Characteristics	Tacrolimus/Cyclosporine n = 45	Tacrolimus/Cyclosporine combined IVCY n = 26	p value
Age(years)	53.0(48.0–62.0)	52.5(48.0-62.5)	0.943
Male	21(46.7%)	9(34.6%)	0.325
HRCT pattern(OP/OP-NSIP)	34(75.6%)	21(80.8%)	0.615
CPK(U/L)	42.0(27.5–93.0)	42.0(23.5–84.0)	0.677
LDH (U/L)	319.0(255.0-500.0)	429.0(309.0-583.0)	0.190
CRP (mg/L)	12.7(4.5–35.1)	15.4(4.9–37.2)	0.611
ESR(mm/h)	28.5(14.5–49.5)	38.0(23.0-59.8)	0.135
CYFRA21-1(ng/ml)	4.4(3.1–9.2)	9.1(6.2–13.7)	0.002**
PaO2/FiO2 ratio	231.0(177.0-371.5)	158.0(96.0-259.0)	0.018*

*<p < 0.05, **<p < 0.01

CRP, C-reactive protein; LDH, lactate dehydrogenase; OP, organized pneumonia; NSIP, Non Specific Interstitial Pneumonia;

Most of the patients died during the first 6 months from respiratory failure caused by RPILD. Figure 3 showed Kaplan-Meier survival curves for the tacrolimus/cyclosporine-treated and tacrolimus/cyclosporine combined IVCY-treated in RPILD and Non-RPILD patients. Survival at 6 months in Non-RPILD patients was significantly better in the tacrolimus/cyclosporine-treated group than in the tacrolimus/cyclosporine combined IVCY-treated group (p < 0.05; Fig. 3A). No difference was observed in 6 months survival of RPILD patients between two groups (p = 0.138; Fig. 3B).

Table 5 showed the detailed features of anti-MDA5-positive DM-Non-RPILD patients. ESR and CYFRA21-1 levels were obviously higher in those receiving triple intensive immunosuppressive therapy. Table 6 showed the characteristics of anti-MDA5-positive DM-RPILD patients in the tacrolimus/cyclosporine-treated and tacrolimus/cyclosporine combined IVCY-treated group. There was no significant difference between two groups. (Table 5,6)
Table 5
Characteristics of Non-RPILD patients receiving CS combined different Immunosuppressors therapy

Non-RPILD Clinical Characteristics	Tacrolimus/Cyclosporine n = 24	Tacrolimus/Cyclosporine combined IVCY n = 9	p value
Age (years)	52.5 (43.3–60.0)	50.0 (46.5–53.0)	0.512
Male	13 (54.2%)	2 (22.2%)	0.166
HRCT pattern (OP/OP-NSIP)	19 (79.2%)	7 (77.8%)	0.953
CPK (U/L)	47.5 (28.5–160.8)	32.0 (20.5–56.0)	0.121
LDH (U/L)	278.0 (234.8–350.5)	343.0 (260.0–964.5)	0.370
CRP (mg/L)	8.2 (4.8–33.4)	4.7 (2.7–8.5)	0.054
ESR (mm/h)	26.0 (16.0–43.0)	59.0 (29.7–71.0)	0.030*
CYFRA21-1 (ng/ml)	3.9 (2.9–4.6)	7.4 (3.8–15.0)	0.026*
PaO2/FiO2 ratio	356.0 (224.3–386.8)	270.0 (200.0–355.8)	0.480

*p < 0.05

CRP, C-reactive protein; LDH, lactate dehydrogenase; OP, organized pneumonia; NSIP, Non Specific Interstitial Pneumonia;
Table 6
Patients characteristics of MDA5-DM-RIILD patients receiving CS combined different Immunosuppressors therapy

Clinical Characteristics	Tacrolimus/Cyclosporine	Tacrolimus/Cyclosporine combined IVCY	p value
	n = 21	n = 17	
Age(years)	54.0(50.5–63.0)	56.0(49.5–66.0)	0.663
Male	8(38.1%)	7(41.2%)	0.885
HRCT pattern(OP/OP-NSIP)	15(71.4%)	14(82.4%)	0.581
WBC(counts/mm3)	6.4(3.9–8.3)	6.6(4.4–10.6)	0.352
CPK(U/L)	39.0(27.0-62.5)	52.0(26.0-158.0)	0.323
LDH (U/L)	448.0(227.5–833.0)	433.5(340.8-496.5)	0.916
CRP (mg/L)	15.0(4.2–37.0)	27.8(12.7–45.8)	0.123
ESR(mm/h)	33.0(13.5–55.0)	31.0(23.0-56.5)	0.940
CYFRA21-1(ng/ml)	9.2(4.2–13.8)	9.4(6.7–13.8)	0.350

CRP, C-reactive protein; LDH, lactate dehydrogenase; OP, organized pneumonia; NSIP, Non Specific Interstitial Pneumonia;

Safety

Some adverse events happened in patients treated with CS combined immunosuppressive regimen during the observation period. Hyperglycemia, opportunistic infections and liver and renal dysfunction were frequently observed. Hyperglycemia developed in 52 patients, which improved within a few days after therapy of antidiabetics. There were several kinds of opportunistic infections, including CMV and or EB virus reactivation (21 patients), Pneumocystis carinii pneumonia (PCP) (10 patients). Three patients developed pulmonary embolism, 5 patients developed pneumonia.

Discussion

Although a number of the combined immunosuppressive regimen have been used for anti-MDA5-positive DM-ILD, the efficacy of such pharmacological treatments have not been confirmed in large prospective studies. This study evaluated the associations of 6-month survival with CS alone or use of immunomodulatory therapy (tacrolimus/cyclosporine, IVCY), which are administered in combination with CS in Chinese anti-MDA5-positive DM-ILD patients. The present study clearly indicated that early combined immunosuppressive regimen was better than CS alone for improving 6-month survival of anti-MDA5-positive DM-ILD patients. This finding was consistent with the prior report that in DM-ILD patients, the early combination of CS with immunosuppressants obtained better outcome, compared the other
patients who were administered with CS alone [20, 21]. In this study, the patients treated with CS alone - which was correlated with a higher CYFRA21-1 level - leaded to worse prognosis.

It is well known that DM associated ILD can be divided into RPILD and Non-RPILD based on its pathological progression [22, 23]. The prognosis of a subset of patients with RPILD complicating anti-MDA5-positive DM, is extremely poor, compared with Non-RPILD [24–27]. In clinical practice, intensified immunomodulators including CS pulsed doses in combination with tacrolimus/cyclosporine and/or IVCY, are sometimes used in DM-ILD patients, especially in RPILD [28, 29].

Tacrolimus/cyclosporine as calcineurin inhibitor suppresses expression of interleukin (IL)-2 to reduce the activation of T cells [30]. T cells and alveolar macrophages play an important role in anti-MDA5-positive DM-ILD pathogenesis [10, 31]. CTX mainly suppresses the function of B cells for treatment of DM-ILD [32]. Thus, a combined therapy of various immunomodulators can significantly increase the risk of infection. Although intensified immunosuppressive therapy is considered as necessary for RPILD complicating DM, the evidence of benefit is not conclusive. A previous study showed that early commencement of a regimen therapy including CS, cyclosporine and IVCY may be more efficacious for those patients with RPILD [33]. Early treatment of cyclosporine should be effective to control disease progression of HRCT and improve the survival in DM-ILD [21]. A previous study demonstrated that intensified immunosuppressive treatment with CS, tacrolimus, and IVCY improve survival of anti-MDA5-positive DM/CADM-ILD patients with well-tolerated adverse events [27]. However, our results indicated that anti-MDA5-positive DM-RPILD patients couldn’t obtain better efficacious with a combined regimen (CS, tacrolimus/cyclosporine and IVCY). There was no difference at 6-month survival between treatment with tacrolimus/cyclosporine and combination therapy with tacrolimus/cyclosporine and IVCY in anti-MDA5-positive DM-RPILD patients. In contrast, combination therapy with tacrolimus/cyclosporine and CS was shown to be superior to the combination of tacrolimus/cyclosporine, IVCY and CS in Non-RPILD patients. Non-RPILD patients administered with tacrolimus/cyclosporine, which was associated with a significantly lower ESR and CYFRA21-1 levels, -had better prognosis. Furthermore, such patients using single agent such as tacrolimus or cyclosporine, in addition CS, could reduce long-term adverse reactions and obtained better outcome. Thus triple intensive immunosuppressive therapy was not necessary in anti-MDA5-positive DM Non-RPILD in our study.

Overall, we assessed the relationship between intensive immunosuppressive regimen and 6-months survival in anti-MDA5 positive DM-ILD patients. However, there were several limitations in our study. First, other therapies such as plasmapheresis could not be applied generally in subjects due to rarity of plasma. Second, our ability to perform serial analysis of immunosuppressive regimen was limited due to the small study cohort, which was understandable in view of the rarity of anti-MDA5 positive DM-ILD. Third, this was a retrospective single-center study, so it was uncertain whether or not our results could be generalised to the entire population of patients with anti-MDA5 positive DM-ILD. A large-scale prospective trial would be helpful to confirm our results.
Summary, we showed the early administration of immunosuppressants was important in anti-MDA5 positive DM-ILD. The triple regimen (CS, tacrolimus/ cyclosporine and CTX) were not necessary in Chinese anti-MDA5-positive DM Non-RPILD patients. Further investigations were needed to find an additional effective and safe therapy.

Abbreviations

Anti-MDA5: anti-melanoma differentiation-associated gene; RP-ILD: rapidly progressive interstitial lung disease; CS: Corticosteroid; IVCY: intravenous cyclophosphamide HRCT: High-Resolution CT; OP: organizing pneumonia

Declarations

Ethics approval and consent to participate:

Not applicable.

Consent for publication:

All author give consent to publish.

Availability of data and material:

The data used to support the findings of this study are available from the corresponding author upon request

Competing interests:

The authors have declared no conflicts of interest.

Funding

Not applicable.

Authors’ contributions:

Yonglong Xiao conceived and designed the study. Xianhua Gui, ShenyunShi and Tingting Zhao collected and analyzed the data. Yuying Qiu and Min Yu contributed to analysis tools. Xianhua Gui wrote the paper. Xiaoyan Xin was a radiologist. The diagnosis of ILD patterns of interstitial pneumonia was based on radiological assessment of the chest HRCT results in the manuscript.

Miao Ma, Jingjing Ding, Lulu Chen, Xiaohua Qiu, Yingwei zhang, Min Cao and Mei Huang were responsible for the data collection in the manuscript.
Mengshu Cao, Jinghong Dai and Hourong Cai assisted with revising our poor language in the manuscript carefully.

All authors reviewed the manuscript critically and agreed upon publication.

Xianhua Gui, Shenyun Shi and Tingting Zhao contributed equally to this work.

Authors’ details

1 Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China. 2 Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.

References

1. Ernste FC, Reed AM: Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations. Mayo Clinic proceedings 2013, 88(1):83–105.

2. Koenig M, Fritzler MJ, Targoff IN, Troyanov Y, Senécal JL. Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: insights into clinical features and outcomes. Arthritis research therapy. 2007;9(4):R78.

3. Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y, Fujita T, Kuwana M. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: Association with rapidly progressive interstitial lung disease. Arthritis rheumatism. 2009;60(7):2193–200.

4. Hamaguchi Y, Kuwana M, Hoshino K, Hasegawa M, Kaji K, Matsushita T, Komura K, Nakamura M, Kodera M, Suga N, et al. Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis: a multicenter cross-sectional study. Archives of dermatology. 2011;147(4):391–8.

5. Motegi SI, Sekiguchi A, Toki S, Kishi C, Endo Y, Yasuda M, Ikeuchi H, Sakairi T, Hara K, Yamaguchi K, et al. Clinical features and poor prognostic factors of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis with rapid progressive interstitial lung disease. European journal of dermatology: EJD. 2019;29(5):511–7.

6. Chen Z, Cao M, Plana MN, Liang J, Cai H, Kuwana M, Sun L. Utility of anti-melanoma differentiation-associated gene 5 antibody measurement in identifying patients with dermatomyositis and a high risk for developing rapidly progressive interstitial lung disease: a review of the literature and a meta-analysis. Arthritis Care Res. 2013;65(8):1316–24.

7. Moghadam-Kia S, Oddis CV, Sato S, Kuwana M, Aggarwal R. Anti-Melanoma Differentiation-Associated Gene 5 Is Associated With Rapidly Progressive Lung Disease and Poor Survival in US Patients With Amyopathic and Myopathic Dermatomyositis. Arthritis Care Res. 2016;68(5):689–94.
8. Mukae H, Ishimoto H, Sakamoto N, Hara S, Kakugawa T, Nakayama S, Ishimatsu Y, Kawakami A, Eguchi K, Kohno S. Clinical differences between interstitial lung disease associated with clinically amyopathic dermatomyositis and classic dermatomyositis. Chest. 2009;136(5):1341–7.

9. Ye S, Chen XX, Lu XY, Wu MF, Deng Y, Huang WQ, Guo Q, Yang CD, Gu YY, Bao CD, et al. Adult clinically amyopathic dermatomyositis with rapid progressive interstitial lung disease: a retrospective cohort study. Clin Rheumatol. 2007;26(10):1647–54.

10. Gui X, Ma M, Ding J, Shi S, Xin X, Qiu X, Zhang Y, Qiu Y, Cao M, Huang M, et al: Cytokeratin 19 fragment is associated with severity and poor prognosis of interstitial lung disease in anti-MDA5 antibody-positive dermatomyositis. Rheumatology (Oxford, England) 2021.

11. Nakashima R, Hosono Y, Mimori T. Clinical significance and new detection system of autoantibodies in myositis with interstitial lung disease. Lupus. 2016;25(8):925–33.

12. Nakashima R, Imura Y, Kobayashi S, Yukawa N, Yoshifuji H, Nojima T, Kawabata D, Ohmura K, Usui T, Fujii T, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology. 2010;49(3):433–40.

13. Koga T, Fujikawa K, Horai Y, Okada A, Kawashiri SY, Iwamoto N, Suzuki T, Nakashima Y, Tamai M, Arima K, et al. The diagnostic utility of anti-melanoma differentiation-associated gene 5 antibody testing for predicting the prognosis of Japanese patients with DM. Rheumatology. 2012;51(7):1278–84.

14. Matsushita T, Mizumaki K, Kano M, Yagi N, Tennichi M, Takeuchi A, Okamoto Y, Hamaguchi Y, Murakami A, Hasegawa M, et al. Antimelanoma differentiation-associated protein 5 antibody level is a novel tool for monitoring disease activity in rapidly progressive interstitial lung disease with dermatomyositis. Br J Dermatol. 2017;176(2):395–402.

15. Sato S, Hirakata M, Kuwana M, Suwa A, Inada S, Mimori T, Nishikawa T, Oddis CV, Ikeda Y. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis rheumatism. 2005;52(5):1571–6.

16. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013;23(10):563–85.

17. Yamasaki Y, Yamada H, Yamasaki M, Ohkubo M, Azuma K, Matsuoka S, Kurihara Y, Osada H, Satoh M, Ozaki S. Intravenous cyclophosphamide therapy for progressive interstitial pneumonia in patients with polymyositis/dermatomyositis. Rheumatology. 2007;46(1):124–30.

18. Gerami P, Schope JM, McDonald L, Walling HW, Sontheimer RD. A systematic review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis siné myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J Am Acad Dermatol. 2006;54(4):597–613.

19. Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–48.
20. Kotani T, Makino S, Takeuchi T, Kagitani M, Shoda T, Hata A, Tabushi Y, Hanafusa T. Early intervention with corticosteroids and cyclosporin A and 2-hour postdose blood concentration monitoring improves the prognosis of acute/subacute interstitial pneumonia in dermatomyositis. J Rheumatol. 2008;35(2):254–9.

21. Go DJ, Park JK, Kang EH, Kwon HM, Lee YJ, Song YW, Lee EB. Survival benefit associated with early cyclosporine treatment for dermatomyositis-associated interstitial lung disease. Rheumatol Int. 2016;36(1):125–31.

22. Suda T, Fujisawa T, Enomoto N, Nakamura Y, Inui N, Naito T, Hashimoto D, Sato J, Toyoshima M, Hashizume H, et al. Interstitial lung diseases associated with amyopathic dermatomyositis. Eur Respir J. 2006;28(5):1005–12.

23. Peng QL, Zhang YM, Liang L, Liu X, Ye LF, Yang HB, Zhang L, Shu XM, Lu X, Wang GC. A high level of serum neopterin is associated with rapidly progressive interstitial lung disease and reduced survival in dermatomyositis. Clin Exp Immunol. 2020;199(3):314–25.

24. Fujisawa T, Hozumi H, Kono M, Enomoto N, Nakamura Y, Inui N, Nakashima R, Imura Y, Mimori T, Suda T. Predictive factors for long-term outcome in polymyositis/dermatomyositis-associated interstitial lung diseases. Respiratory investigation. 2017;55(2):130–7.

25. Nakashima R, Hosono Y, Mimori T. Clinical significance and new detection system of autoantibodies in myositis with interstitial lung disease. Lupus. 2016;25(8):925–33.

26. Gono T, Kawaguchi Y, Satoh T, Kuwana M, Katsumata Y, Takagi K, Masuda I, Tochimoto A, Baba S, Okamoto Y, et al. Clinical manifestation and prognostic factor in anti-melanoma differentiation-associated gene 5 antibody-associated interstitial lung disease as a complication of dermatomyositis. Rheumatology. 2010;49(9):1713–9.

27. Jiang L, Wang Y, Peng Q, Shu X, Wang G, Wu X. Serum YKL-40 level is associated with severity of interstitial lung disease and poor prognosis in dermatomyositis with anti-MDA5 antibody. Clin Rheumatol. 2019;38(6):1655–63.

28. Kuroda H, Morinaga H, Satoh C, Miyata A, Sunami K. Clinical study of 10 cases of acute or subacute interstitial pneumonia associated with dermatomyositis. Modern rheumatology. 2003;13(4):313–8.

29. Tsuji H, Nakashima R, Hosono Y, Imura Y, Yagita M, Yoshifuji H, Hirata S, Nojima T, Sugiyama E, Hatta K, et al: Multicenter Prospective Study of the Efficacy and Safety of Combined Immunosuppressive Therapy With High-Dose Glucocorticoid, Tacrolimus, and Cyclophosphamide in Interstitial Lung Diseases Accompanied by Anti-Melanoma Differentiation-Associated Gene 5-Positive Dermatomyositis. Arthritis & rheumatology (Hoboken, NJ) 2020, 72(3):488–498.

30. Takizawa H, Ito K. Cyclophosphamide pulse therapy for rapidly progressive interstitial pneumonia in dermatomyositis. A new possibility for rescue? Internal medicine (Tokyo, Japan) 1997, 36(7):448–449.

31. Horiike Y, Suzuki Y, Fujisawa T, Yasui H, Karayama M, Hozumi H, Furukashi K, Enomoto N, Nakamura Y, Inui N, et al. Successful classification of macrophage-mannose receptor CD206 in severity of anti-MDA5 antibody positive dermatomyositis associated ILD. Rheumatology. 2019;58(12):2143–52.
32. Takizawa H, Ito K. Cyclophosphamide pulse therapy for rapidly progressive interstitial pneumonia in dermatomyositis. A new possibility for rescue? Internal medicine (Tokyo, Japan) 1997, 36(7):448–449.

33. Kameda H, Nagasawa H, Ogawa H, Sekiguchi N, Takei H, Tokuhira M, Amano K, Takeuchi T. Combination therapy with corticosteroids, cyclosporin A, and intravenous pulse cyclophosphamide for acute/subacute interstitial pneumonia in patients with dermatomyositis. J Rhuematol. 2005;32(9):1719–26.

Figures

![Proportions of patients receiving various treatments](image)

Figure 1

Proportions of patients receiving various treatments (%) CS: corticosteroid; IVCY: intravenous cyclophosphamide
Figure 2

Kaplan-Meier survival method were used to assess the prognosis of patients underwent different treatment. 6-month survival of CS alone-treated was significantly lower than those treated with CS combined immunosuppressors (p<0.01; Fig. A). Compared with patients treated with CS combined tacrolimus/cyclosporine and IVCY, survival at 6 months was significantly better in the patients treated with CS combined tacrolimus/cyclosporine (p<0.01; Fig. B).

Figure 3

Kaplan-Meier survival curves for the tacrolimus/cyclosporine-treated and tacrolimus/cyclosporine combined IVCY-treated in RPILD and Non-RPILD patients. Survival at 6 months in Non-RPILD patients was significantly better in the tacrolimus/cyclosporine-treated group than in the tacrolimus/cyclosporine
combined IVCY-treated group ($p<0.05$; Fig. A). No difference was observed in 6 months survival of RPILD patients between two groups ($p=0.138$; Fig. B).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [graphicalabstract.doc](#)