Food as medicine? Exploring the impact of providing healthy foods on adherence and clinical and economic outcomes

Aleda M.H. Chen a,⁎, Juanita A. Draime a, Sarah Berman b, Julia Gardner c, Zach Krauss a, Joe Martinez d

a Cedville University School of Pharmacy, USA
b University Health San Antonio, USA
c Cincinnati Children’s Medical Hospital, USA
d The Marsam Group, USA

A R T I C L E I N F O

Keywords:
Dietary adherence
Diabetes
Hypertension
Systematic review
Hyperlipidemia

A B S T R A C T

Background: Chronic disease prevalence is increasing. Adherence to dietary guidelines is low (<50%) despite positive impacts in disease progression, clinical outcomes, and medical costs. It is important to summarize the impact of providing medically-tailored meals to patients on adherence rates, clinical outcomes, and potential economic outcomes.

Methods: A systematic review was conducted to identify, extract, and appraise food-provision studies from January 1, 2013-May 1, 2018 for heart disease, diabetes (DM), and chronic kidney disease (CKD). The key findings related to adherence and clinical outcomes were compiled. Published literature was utilized to determine the economic impact of key clinical outcomes.

Results: Across diseases, 100 articles (N = 43,175 patients) were included. Dietary adherence was considered “compliant” or ≥ 90% consistently. Significant (p < 0.05) clinical outcomes included 5–10% LDL reduction, 4–11 mmHg SBP reduction, 30% reduction in metabolic syndrome prevalence, 3–5% weight reduction, 56% lower CKD mortality rates, and increased dialysis-free time (2 years:50%, 5 years:25%, calculated cost savings of 80.6–94.3%). Literature review showed these outcomes would result in decreased: cardiovascular (CV) event risk (20–30% reduction: $5–11 billion annually), hospitalization costs ($1–8 billion), and dialysis rates (25–50% reduction: $14–29 billion annually). For heart failure patients, results include: 16% fewer readmissions (saving $234,096 per 100 patients) and a 38-day shorter length of stay (saving $79,425 per hospitalization).

Conclusion: Providing medically-tailored meals significantly increases dietary adherence above 90% and allows patients to realize significantly better chronic disease control. Through this, patients could experience fewer complications (CV events, hospital readmissions and dialysis), resulting in significant annual US healthcare cost reduction of $27–48 billion.

1. Introduction

It is crucial to address the risk factors and modifiers associated with chronic disease to improve outcomes for patients and employers while also lowering the heavy costs of healthcare. Healthcare costs continue to rise in the United States, with $3.3 trillion spent in 2016. Projections for future spending estimate an average growth rate of 5.5% annually. Most spending occurs in working-age adults (54%), while the healthcare spending is three times higher in older adults (≥ 65 years). According to the Center for Disease Control (CDC), 86% of healthcare spending is for patients with chronic disease and mental health conditions, such as heart disease, diabetes, and chronic kidney disease (CKD). Because a bulk of this healthcare spend is associated with chronic disease, finding affordable methods for addressing chronic disease management is essential.

Additionally, these chronic diseases are the leading causes and contributors of morbidity and mortality in adults. For example, heart disease and stroke are the leading causes of death (one-third of all deaths) with over 868,000 Americans dying each year. In addition, over 100 million US adults have prediabetes or diabetes, which places them at risk for heart disease, chronic kidney disease, and vision loss. These diseases not only have impact in terms of mortality, but they produce significant morbidity, leading to a loss in work productivity and significant healthcare costs. Heart disease and diabetes alone cost employers and the healthcare system over $550 billion annually, particularly due to high hospitalization and readmission rates, which can contribute up to 61% of costs.

Important risk factors to address include: obesity, lack of dietary adherence, lack of physical activity, and smoking. Two out of every three adults are overweight or obese (70.7%), and this contributes significantly to the
rizing healthcare costs and places patients at risk for heart disease and diabetes. Patients who are overweight or obese, with or without chronic disease, cost $3559 more annually in per-patient medical expenditures. This becomes even more concerning when patients already have existing chronic conditions, such as heart disease and diabetes, that are exacerbated by obesity. For example, the healthcare costs of diabetic patients are 2.3 times higher than patients without diabetes, and approximately $9600 annually per patient is attributed to treatment and management of diabetes. Because of the effect diet can have on chronic disease, patients are often asked to adhere to a disease-specific diet via lifestyle interventions. Clinical practice guideline recommendations for preventing and treating obesity, heart disease, diabetes, and chronic kidney disease serve to address obesity and prevent or modify the risks of chronic disease. Further, in geriatrics, the nutritional needs of older adults are especially critical where approximately 10% of older adults live alone and nearly 60% in long-term care are undernourished. In this patient population, comorbid obesity is prominent due to low nutrient-density, sugary, and processed meals. It is well-documented in the literature that patients adhere to their dietary regimens less than 50% of the time. There are multiple reasons for low adherence including diet complexity, challenges integrating into their daily lives, literacy issues of reading labels, and uncertainty about eliminating preferred foods. If patients become adherent and attain healthy weight losses, there is potential for substantial cost savings related to improved overall health outcomes and decreased hospitalizations. For example, in diabetes, an intervention that would assist patients in becoming adherent to dietary changes could result in a minimum of $75 billion annually in savings (30 million diabetics, assuming 70% of patients are overweight or obese, and $3559 greater annual spending). Actual cost savings are likely higher due to the prevention of complications.

Culinary medicine provides medically-tailored meals which integrates evidence-based medicine and nutrition to create diet recommendations in which to prevent and assist patients with medical conditions. Instead of finding the perfect one-size-fits all diet (which is problematic for many patients), culinary medicine instead adapts to the individual patient's food preferences and disease states in order to improve health outcomes and prevent progression of disease. Once the health care provider determines the patient needs, the patient can then work with the prescriber to prescribe the best diet to accomplish mutual goals. Investing in a prescribed/recommended diet is likely to be more beneficial for insurers, employers, and other payers, as preventing the complications and comorbidities associated with obesity and disease progression could result in significant cost savings. For example, a diabetes prevention program that costs $450 per participant could result in as much as $35,000 in annual individual savings. These cost savings can even be more substantial, as reducing sodium intake could save $26.2 billion annually.

Thus, the goal of this systematic review is to assess the impact of providing focused nutritional interventions on health, clinical and economic outcomes with the intent to form recommendations that combine evidence-based literature with best clinical practices. The objective of this project was to identify the potential economic impact of culinary medicine, where patients receive ready-to-eat meals medically-tailored to their specific disease state (according to nationally published guidelines), as well as related outcomes data on dietary adherence and health outcomes for patients with heart disease, diabetes (DM), and chronic kidney disease (CKD).

The authors hope to compare the improvements in health related to these nutritional interventions with the known costs of chronic disease and establish utility of these interventions as a result.

2. Methods

A systematic review was conducted according to the PRISMA statement and the study protocol was generated prior to implementation and registered (PROSPERO CRD42019116570). The literature was systematically searched for articles where food was provided in part or whole (in person or through free access) and reviewed. All reviewers (student research assistants, fellows, and faculty) were trained on the protocol prior to beginning.

2.1. Search strategy and study selection criteria

A thorough search of electronic databases was performed to ensure all relevant studies were collected for analysis. The databases searched were: Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Central Register of Controlled Trials, Health Source (Nursing and Academic Edition), Medical Literature Analysis and Retrieval System Online (MEDLINE), and PubMed from January 1, 2013 to May 1, 2018. In the initial pilot, a 10-year span was utilized. However, the volume of articles retrieved was too great; thus, the protocol was modified to include a 5-year span.

Study selection was not limited to any particular geographic location. Full text articles were required over abstracts due to the desire for a comprehensive integration of all accessible data. The researchers obtained any full text articles when accessible. Secondary screenings were performed on the references of studies to identify additional studies for inclusion. Only non-qualitative, primary literature was included.

Electronic search terms were generated through examination of the Medical Subject Headings (MeSH) in PubMed. Once a list of potential search terms was developed, the researchers ran trial searches in the electronic databases listed above. Table 1 includes the search terms with optimal results based upon number of articles and relevance. The nutrition terms in the first column of Table 1 were searched with each of the terms in the 5 topic areas in columns 2–6.

2.2. Eligibility criteria

After searching, potential articles were screened for eligibility. Inclusion criteria were: (1) topic of interest (diabetes, heart – heart failure (HF) or hypertension (HTN), geriatrics, kidney disease, and neurology – cognition), (2) participants 18 years of age or older, (3) dietary intervention that fit with clinical guideline recommendations, and (4) meals or meal items were provided to participants at some stage of the study. The fourth eligibility item was added to determine whether culinary medicine could be of value clinically and/or economically due to less variation in patient ability to adhere. Articles also had to be in English, be published in peer-reviewed journals within the last 5 years, contain non-qualitative research data, and be available in full text.

Table 1

Culinary Medicine Term	Geriatrics	Kidney Disease	Neurology	Diabetes	Heart Disease
Diet, Nutrition Therapy	Geriatrics, Aging, Frail Elderly	Chronic Kidney Disease, Dialysis, Kidney Function Tests, Kidney Disease	Parkinson’s Disease, Alzheimer’s Disease, Dementia, Neurology	Diabetes Mellitus, Diabetes Mellitus + Obesity, Ketoacidosis, Hyperglycemia	Heart Disease, Cardiovascular Function, Heart Failure (Diastolic), Heart Failure (Systolic), Hypertension
2.3. Data extraction

Two reviewers independently examined relevant articles to determine eligibility, and a final list of articles for each topic was compiled. If there were disagreements or questions about whether an article was eligible, one author (AC) resolved discrepancies. The final article underwent data extraction to identify: duration of intervention, dietary change implemented, assessment of intervention, and findings. The data extraction items were adapted from the process outlined in the Handbook of Clinical Nutrition and Aging on nutrition systematic reviews.24 Per the protocol adapted for this review, authors were not contacted for further information in articles with partial selection criteria; rather, they were excluded from the study.

2.4. Bias and study quality assessment

All studies meeting the inclusion criteria were appraised in order to assess quality and potential bias. Two reviewers independently appraised each article using a dietary outcome tool from Lichtenstein.24 The tool includes an appraisal of: methodological quality, applicability, and overall effect. Table 8 showcases the final result of each article graded in each of the aforementioned three categories using a scoring system described in Table 8’s key. Methodological quality focused on overall bias, applicability focused on target population and generalizability to a wide group, and overall effect was specifically targeted to assess clinical benefit vs. harmful effects. Any disagreements or discrepancies were resolved by a third reviewer (AC). For each topic of interest, one author (JD) randomly selected 5 studies and independently appraised them to ensure consistency and quality of the appraisal process.

2.5. Pilot test

The systematic review protocol was pilot-tested with the topic of heart disease to identify any issues with the protocol itself or protocol implementation. The research team had originally planned to pull all dietary interventions, not only ones with meals provided. They also had planned for a 10-year span of studies. However, due to the sheer volume of studies, a fourth (meals provided) and fifth (heart disease limited to the Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets) eligibility items were established and the span was limited to 5 years. At the completion of the pilot, the protocol was finalized.

2.6. Data management

All items pertaining to the systematic review were compiled and saved in a Google Team Drive folder. Google Forms that auto-populated Google

Fig. 1. PRISMA flow diagram.
Author (Year)	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings	
Camps (2017)	69 N = 11 Asian men	2 days	1 day on a high glycemic diet 1 day on a low glycemic diet	24-h glucose iAUC Fat oxidation	100%	Lower iAUC (860 ± 440 vs 1329 ± 614 mmol/L.min) Greater fat oxidation (0.043 ± 0.021 vs 0.034 ± 0.017)	
Farrer (2014)	64 N = 26 obese patients	12 weeks	Randomized to: • Very low-calorie diet (VLCD) with meals provided (participants covered the costs) • Calorie-deficit diet plan (control) Included traditional DM and weight loss education	Weight A1c Cholesterol	5/17 withdrew in control 2/9 withdrew in treatment	Similar rates	Greater A1c reduction (−1.5 ± 14.9 vs. -0.16 ± 7.4, p = 0.017) Greater weight loss (6.6 ± 5.1 vs. 1.8 ± 2.6 kg, p = 0.004) Greater BMI reduction (−2.3 ± 1.7 kg/m2 vs. 0 ± 0 kg/m2, p < 0.001) No significant changes in cholesterol
Goday (2016)	64 N = 89 men and women Type II DM, BMI 30–35 kg/m2	4 months	Randomized to: • Very low-calorie-ketogenic diet (VLCK, <50 g carbohydrates daily) – provided to participants • Low-calorie diet (control)	Weight A1c Cholesterol	Weight	Similar rates (Eating Self-Efficacy Scale) 92.5% rates the VLCK diet as satisfactory vs 68.5% control (p = 0.005) VLCK had significant reductions in: • A1c from baseline: −0.9% (<p < 0.0001) • BMI from baseline (33.3 ± 1.5 kg/m2 to 27.9 ± 1.8 kg/m2, p < 0.001) • Waist circumference (108.1 ± 8.6 cm to 96.1 ± 7.6 cm; p < 0.001) • TG from baseline (150.5 ± 54.4 mg/dL to 114.6 ± 57.2 mg/dL, p = 0.0040)VLCK: 97.6% lost >5% body weight and 85.4% >10% (<0.0001)	
Gower (2015)	30 N = 69 overweight/obese men and women (incl. AA)	16 weeks	Randomized to: • Low fat • Low carbohydrate 8 weeks hypocaloric Crossover randomized to: • Low fat • Low carbohydrate 8 weeks on diet 1 then washout then 8 weeks on diet 2	Body composition Glucose metabolism	Compliant	Low carbohydrate vs. low fat: • Lost more fat tissue (11 ± 3% vs. 1 ± 3%; <p < 0.05) • Lost 4.4% total fat mass • AA lost more fat mass (6.2 vs. 2.9 kg; <p < 0.01) Low carbohydrate: • Decreased fasting insulin (−2.8 μIU/mL; <p < 0.001) • Decreased fasting glucose (−4.7 mg/dL; <p < 0.01) • Increased insulin sensitivity (p < 0.05) • Lost intra-abdominal fat (−4.8 cm2, p < 0.01)	
Gu (2013)	30 N = 45 healthy, obese women N = 30 healthy, non-obese control	8 weeks	Very low carbohydrate diet (VLCD)	BMI Glucose metabolism	Compliant	VLCD in obese patients reduced (at weeks 4 and 8): • BMI from 32.58 kg/m2 to 29.88 kg/m2 (p < 0.01) • Fasting insulin (p < 0.05) • 2-h postprandial insulin (p < 0.05)	
Tay (2014)	52 N = 115 obese, Type II DM patients	12 weeks meals provided	12 weeks (Tay) to 44 weeks (Brinkworth) on own diet with key foods provided or voucher	A1c Glycemic variability Antiglycemic medication changes Lipids BP Weight Adherence Weight Mood (POMS, BDI, SAI) Diabetes emotional distress (PAID) QoL (D-39)	High compliance for both groups	LC vs HC: • Weight loss (−12.0 ± 6.3 kg vs −11.5 ± 5.5 kg, p ≥ 0.50) • Lower BP (−9.8 ± 11.6 mmHg vs −7.3 ± 6.8 mmHg, p ≥ 0.10)LC vs HC in patients with A1c > 7.8%: • Improved A1c (−2.6 ± 1.0% vs −1.9 ± 1.2%, p = 0.002) • Reduced TG (−0.5 ± 0.5 mmol/L vs −0.1 ± 0.5 mmol/L, p ≤ 0.03)Increased HDL (0.2 ± 0.3 mmol/L vs 0.05 mmol/L, p = 0.007) LC and HC: • 9.5 ± 0.5 kg weight loss (9%, p = 0.91) • Improved POMS, BDI, PAID, and D-39 (most dimensions)	
Brinkworth (2016)	extension of Tay (2014)	51 N = 30 healthy, non-obese control	Randomized to: • Hypocaloric low-carbohydrate, high-unsaturated/low-saturated fat diet (LC) • Energy-matched, high-unrefined carbohydrate, low-fat diet (HC) Included exercise program	Adherence Weight Mood (POMS, BDI, SAI) Diabetes emotional distress (PAID) QoL (D-39)	High compliance for both groups	• Weight loss (−12.0 ± 6.3 kg vs −11.5 ± 5.5 kg, p ≥ 0.50) • Lower BP (−9.8 ± 11.6 mmHg vs −7.3 ± 6.8 mmHg, p ≥ 0.10)LC vs HC in patients with A1c > 7.8%: • Improved A1c (−2.6 ± 1.0% vs −1.9 ± 1.2%, p = 0.002) • Reduced TG (−0.5 ± 0.5 mmol/L vs −0.1 ± 0.5 mmol/L, p ≤ 0.03)Increased HDL (0.2 ± 0.3 mmol/L vs 0.05 mmol/L, p = 0.007) LC and HC: • 9.5 ± 0.5 kg weight loss (9%, p = 0.91) • Improved POMS, BDI, PAID, and D-39 (most dimensions)	
Compliant VLCD in obese DM patients reduced: weight vs. control (p < 0.05) and from baseline (141.6 ± 3 weeks Very low carbohydrate diet (VLCD) Body composition BMI vs. control (p < 0.05) and from baseline (51.5 ± 2.0 kg/m² to 47.2 ± 1.9 kg/m², p < 0.001) Waist circumference (140 ± 4 cm to 135 ± 4 cm, p < 0.001) Total cholesterol (207 ± 20 mg/dL to 194 ± 18 mg/dL, p = 0.037) LDL (138 ± 21 mg/dL to 129 ± 16 mg/dL, p < 0.001) HDL (47 ± 7 mg/dL to 54 ± 8 mg/dL, p < 0.05) Fasting insulin (p < 0.0001) TG (1.81 ± 0.15 mmol/L to 1.55 ± 0.14 mmol/L, p < 0.0001) VLCD in obese DM patients increased HDL (1.02 ± 0.04 mmol/L to 1.09 ± 0.19 mmol/L)

BMI = Blood pressure, A1c = Hemoglobin A1c, TG = Triglycerides, QoL = Quality of life, BDI = Beck Depression Inventory, SMI = Spielberg State Anxiety Inventory, PARD = Problem Areas in Diabetes, DM = diabetes, TC = total cholesterol.

2.7. Economic impact

Since cost was not directly evaluated in these studies, and in order to contextualize the economic impact of the key clinical outcomes identified, each of the key findings from the systematic review were aggregated into ranges describing the amount of change noted across relevant studies. Then, the peer-reviewed literature and national websites with cost information were searched to identify costs associated with each positive or negative clinical outcome. These searches were performed using information available in 2019. For example, the costs of a hospitalization related to myocardial infarctions was determined and then applied when hospitalizations were reduced.

3. Results

A total of 1968 studies were identified through the literature search and hand searching process, and after applying inclusion and exclusion criteria, 57 studies (27,449 patients) remained (see Fig. 1).

3.1. Systematic review

In diabetes, articles were identified when they included low-carbohydrate or low-calorie diets, and a total of 8 articles (n = 459 patients) were included (see Table 2). Implementation of these diets resulted in weight, BMI, waist circumference, or fat reduction (8 studies); improved/reduced A1c or fasting insulin (6 studies); and improvement in cholesterol (3 studies).

In heart disease, articles were identified when they included the DASH diet or the Mediterranean diet, and a total of 10 DASH diet (n = 11,891) and 14 Mediterranean diet (n = 18,500) articles were included (see Tables 3 and 4, respectively). Implementation of a DASH diet resulted in improved blood pressure control, lowered blood pressure, or reduced mean arterial pressure (7 studies); weight, BMI, waist circumference, or fat reduction (3 studies); and metabolic syndrome criteria improvement (3 studies). Implementation of a Mediterranean diet resulted in improvement in cholesterol (9 studies); reduced cardiovascular risk or improved CV risk markers (6 studies); and improved blood pressure control, lowered blood pressure, or reduced mean arterial pressure (5 studies).

In geriatrics, articles were identified when they included dietary interventions for geriatric patients, and a total of 7 articles (n = 714) were included (see Table 5). Implementation of a broad range of diets that included more fresh fruits and vegetables, increased protein, and higher energy intake, often in collaboration with resistance training or other exercise, resulted in improved weight, fat-free mass, or muscle mass (3 studies). Other results related to geriatrics were varied among studies.

In chronic kidney disease, articles were identified when they included dietary interventions for chronic kidney disease patients, and a total of 7 articles (n = 637) were included (see Table 6). Commonly utilized diets within these studies were fixed protein, oral NaHCO3, and daily addition of flaxseed oil. Implementation of protein-controlled or nutrient-specific controlled diets resulted in: improved GFR or dialysis-free time (2 studies); and improved blood pressure control, lowered blood pressure, or reduced mean arterial pressure (5 studies).

In neurology/cognition, articles were identified when they included dietary interventions for neurologic issues, which included cognition and depression, and a total of 10 articles (n = 5182) were included (see Table 7). Implementation of nutrient-specific diets (often antioxidant or flavonoid-related) resulted in improved cognition (7 articles). Other results varied among studies with benchmarks such as constructional praxis, long-term
Author (Year)	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings
Haring (2014)	N = 155, Caucasian and African American patients	3-period crossover of 6 weeks each	DASH-type diet + increased carbohydrates, DASH-type diet + increased protein, DASH-type diet + increased unsaturated fat	Lipoprotein A [Lp(a)] - independent risk factor for CVD	100% - noncompliant excluded	DASH + unsaturated fat resulted in:
						• Increased mean Lp(a) levels less than the DASH + carbohydrate diet (21.1 mg/dL; 95% CI: 20.1 to 22.1, p = 0.026)
						• DASH + carbohydrate diet (1.4 mg/dL; 95% CI: 0.4 to 2.4, p = 0.005)
						• DASH + unsaturated fat (2.5 mg/dL; 95% CI, 1.5 to 3.5, p = 0.001)
Hikmat (2014)	N = 311 non-metabolic syndrome patients	8 weeks	Fruits and vegetables diet, DASH diet, Control	Change in BP, DASH = 93.2%, Fruit/Vegetable = 93.9%, Control = 94.6%		Metabolic syndrome patients - DASH diet resulted in:
	N = 99 metabolic syndrome patients					• Reduced SBP vs control (4.9 mmHg, p = 0.006)
						• Reduced DBP vs control (1.9 mmHg, p = 0.15)
						• Greater unadjusted BP control (67% vs 17%, p < 0.05)
						• Greater adjusted BP control (75%, OR = 9.5, p < 0.05)
Hill (2015)	N = 62 overweight adults with metabolic syndrome	6 months	Modified DASH diet rich in plant protein, Modified DASH diet rich in animal protein (BOLD), Moderate protein diet (BOLD +)	Change in metabolic syndrome criteria, M-DASH = 84% ± 1%, BOLD = 81% ± 3%, BOLD + = 74% ± 2%		Non-metabolic syndrome patients - DASH diet resulted in:
						• Reduced SBP vs control (5.2 mmHg, p < 0.001)
						• Reduced DBP vs control (2.9 mmHg, p < 0.001)
						• Greater BP control (57% vs 15%, OR = 7.7, p = 0.001)
						Adherence to any one of the three diets resulted in:
						• ≥ 5% weight loss
						• Decrease in metabolic syndrome criteria: waist circumference, HDL, TG, glucose, SBP, DBP (p < 0.05)
						Every 1% reduction in body weight was associated with α:
						• 39% increase in the odds of having a resolution of metabolic syndrome during the weight loss phase
						• 88% increase in the odds of having a resolution of metabolic syndrome during the normal life phase
Roussel (2014)	N = 36 normotensive patients	5 weeks	Healthy American diet (control), Weight BP, Endothelial function	“Excellent”		Adherence to the BOLD diet resulted in:
						• Decreased SBP vs control (p < 0.05). Average reduction = 4.2 mmHg
						No other significant findings.
Hummel (2013)	N = 13 heart failure with preserved ejection fraction (HFPEF) patients	21 days	DASH + sodium-restricted diet (SRD)	BP measurement, 24-h urinary collection, “Excellent”		Adherence to the DASH + SRD diet resulted in:
						• Reduced clinic and 24-h brachial systolic pressure (155 ± 35 to 138 ± 30 and 130 ± 16 to 123 ± 18 mmHg; both p = 0.02)
						• Improved diastolic function (p = 0.03)
Jenkins (2017)	N = 209 men, N = 710 women who were healthy & overweight	18 months	DASH diet advice, DASH weekly food provision (food basket), DASH diet advice + weekly food provision	Bloop panels, Anthropometric measurements, BP		Adherence to advice or diets resulted in significantly improved at 6 months:
						• Body weight (−0.8 to −1.2 kg loss)
						• Waist circumference (−1.1 to 1.9 cm loss)
						• Mean arterial pressure (0.0 to −1.1 mmHg reduction)
						Adherence to advice or diets resulted in significantly improved Framingham score (−0.19 to −0.42%) at 18 months.
Johansson-Persson (2014)	N = 24 overweight patients with high cholesterol	5 weeks	High fiber (48 g), Low fiber (30.2 g)	LDL Glucose, Lipid metabolism Inflammatory markers	High dietary fiber diet had significantly higher compliance (60.7% vs. 34.4%, p = 0.027)	Adherence to the high fiber diet resulted in:
						• Reduced C-reactive protein (p = 0.017)
						• Reduced fibrinogen (p = 0.044)

No other significant effects.
Juraschek (2017) N = 412 (57% women, 57% African American) 4 weeks (each sodium level for 30 days)
DASH groups of low (50 mmol/day), medium (100 mmol/day), and high (150 mmol/day) sodium intake
Control groups of: low (50 mmol/day), medium (100 mmol/day), and high (150 mmol/day) sodium intake

SBP High diet adherence Reducing sodium from high to low in control group was associated with lower SBP from baseline (p for trend = 0.004):
• Baseline SBP <130: −3.20 (−4.96, −1.44), p < 0.001 from baseline
• Baseline SBP 130–139: −8.56 (−10.70, −6.42), p < 0.001 from baseline and vs. SBP < 130 baseline
• Baseline SBP 140–149: −8.99 (−11.21, −6.77), p < 0.001 from baseline and vs. SBP < 130 baseline
• Baseline SBP ≥150: −7.04 (−12.92, −1.15), p = 0.02 from baseline and p = 0.20 vs. SBP < 130 baseline
Reducing sodium from high to low in the DASH group was associated with lower SBP from baseline (p for trend < 0.001):
• Baseline SBP <130: −0.88 (−2.07, 0.30), p = 0.14 from baseline
• Baseline SBP 130–139: −3.29 (−4.71, −1.88), p < 0.001 from baseline and p = 0.01 vs. SBP < 130 baseline
• Baseline SBP 140–149: −4.90 (−7.25, −2.55), p < 0.001 from baseline and p = 0.003 vs. SBP < 130 baseline
• Baseline SBP ≥150: −10.41 (−15.54, −5.28), p < 0.001 from baseline and vs. SBP < 130 baseline
The greatest impact of DASH + low sodium diet was seen in the high SBP group.

Kirwan (2016) N = 40 overweight/obese patients 8 weeks each (crossover)
Complete whole grain Refined grain (control)
BP Body composition Lipids Glucose Inflammatory markers Adherence in both groups was similar:
• Whole grain: 94.6% ± 6.4%
• Refined grain: 92.9% ± 5.7%
Adherence to the whole grain diet resulted in:
• Lower DBP overall and vs. control (-5.8 mmHg, 95% CI: -7.7, -4.0 mmHg vs -1.6 mmHg, 95% CI: -4.4, 1.3 mmHg, p = 0.01)
• Lower Mean Arterial Pressure (-5.0, 95% CI: -7.2, -2.9, p < 0.001)
• Reduced metabolic syndrome severity (p = 0.04)
• Lower HbA1c (-0.13, 95% CI: -0.01, -0.25, p = 0.04)
Both diets resulted in significantly reduced:
• Weight
• BMI
• Fat mass
• Body fat %
• Fat free mass
• Waist circumference
• TC
Adherence to either DASH diet resulted in:
• Reduced SBP and DBP by 7 mmHg and 4mmHg seated and 24-h by 7 mmHg and 4 mmHg (p < 0.05)
No significant difference between groups

Sayer (2015) N = 19 with elevated BP 6 weeks each (crossover)
DASH + pork DASH + chicken and fish
SBP DBP ≥ 95% for both interventions
BP = Blood pressure, SBP = Systolic blood pressure, DBP = Diastolic blood pressure, A1c = Hemoglobin A1c, TG = Triglycerides, DM = diabetes, TC = total cholesterol, MD = Mediterranean Diet, HDL = high density lipoprotein.
Table 4

Author (Year)	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings
Casas (2014)	36	1 year	MD w/EVOO	BP, Lipids, Markers of inflammation	Higher in the MD arms	Adherence to a MD resulted:
PREDIMED Study			MD w/nuts			• Lower SBP and DBP (6 mmHg, -3 mmHg, \(p = 0.02 \))
			Low-fat diet MD			• Reduced LDL by 10\% MD + EVOO and by 8\% MD + nuts (\(p = 0.04 \))
			Low-fat foods			• Reduced waist circumference (\(p < 0.05 \))
						• Reduced inflammatory markers (\(p < 0.05 \)) vs control
Casas (2016)	37	5 years				Adherence to a MD resulted in:
PREDIMED Study						• Reduced inflammatory markers (\(p = 0.04 \))
						• Lower SBP (\(p \leq 0.05 \))
						• MD + EVOO = −6.2 mmHg at 3 years, −9.7 mmHg at 5 years
						• MD + nuts = −7.2 mmHg at 3 years, −10.9 mmHg at 5 years
						• Lower DBP (\(p \leq 0.05 \))
						• MD + EVOO = −5.3 mmHg at 3 years, −7.2 mmHg at 5 years
						• MD + nuts = −5.5 mmHg at 3 years, −7.8 mmHg at 5 years
Medina-Remón (2017)	1139 high-risk	1 year				Adherence to a MD resulted in lower SBP and DBP and greater HDL (\(p < 0.05 \)):
PREDIMED Study						• −3.8 mmHg to −4.6 mmHg reduction in SBP
						• −1.8 mmHg to −1.9 mmHg reduction in DBP
						• 2.6 mmHg increase in HDL (\(p < 0.05 \))
Medrano-Remón (2017)	7447,1588 participants were eliminated that deviated from protocol	4.8 years		CV event rates (MI, stroke, death)	Adherence to a MD resulted in:	
PREDIMED Study						• Lower risk of CV events vs control:
Estruch (2013)	34 patients with CVD risk factors	3 months	Lipids (TC, HDL, TG)	Gene transcription	Adherence to a MD resulted in:	
PREDIMED Study						• Impact on gene transcription which could result in CV event prevention
						• No significant difference in lipids.
Table 4 (continued)

Study	Author (Year)	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings	
Fito (2014)	Davis and Hodgson (2017)	166 older adults	6 months	MD (habitual diet)	BP	MD significant improvement in adherence from med to high vs. control (p < 0.001)	Adherence to a MD resulted in:	
PREDIMED Study	MedLey study	25 patients with metabolic syndrome	N = 25	Control (Western, high fat diet)	Ox-LDL	100%	Adherence to a MD resulted in:	
Toledo (2013)	Davis and Bryan (2017)	N = 26	12 weeks	MD + soy protein	Lipid (TG)	“Good”	Adherence to a MD resulted in:	
	MedLey study				F2-isoprostanes			
	De Lorenzo (2017)	N = 26	4 months	MD + soy protein	FMD % higher at 6 months (p = 0.026)			
	Gomez-Delgado (2015)	N = 897 patients with the “CLOCK” gene and CHD	1 year	MD (control)	C-reactive protein levels (CRP)	Not listed	Adherence to a MD resulted in:	
	Ruscica (2016)	N = 26 with MetS	12 weeks	MD + animal protein	Fatty acid profile	>95% to both diets	Adherence to a MD + soy protein resulted in (p < 0.05):	
	Richard (2013)	N = 26 males with MetS (19 for last phase)	35 weeks	5 weeks normal American diet - isocaloric (control)	Body composition	Only adherent to the MD when food was provided	Adherence to a MD resulted in (p < 0.05 vs control period):	
	Richard (2014)			5 weeks MD - isocaloric	Apolipoprotein B100 (apoB100) metabolism			

BP = Blood pressure, SBP = Systolic blood pressure, DBP = Diastolic blood pressure, A1c = Hemoglobin A1c, TG = Triglycerides, DM = diabetes, TC = total cholesterol, MD = Mediterranean Diet, HDL = high density lipoprotein, EVOO = extra virgin olive oil, CV = cardiovascular, CVD = cardiovascular disease.

* Due to retraction, the 2013 article was eliminated and replaced with the republished version in June 2018.
memory, memory discrimination, and depression, but these were not consistent across all articles.

All included articles had Level A or B methodological quality, indicating that the bias did not invalidate the results. There was a broad range of applicability of the studies, and no studies had a harmful effect. Table 8 breaks down articles by their overall effect in column 4, where there were mostly studies that were clinically meaningful but not conclusive (58.9%, n = 33), and second most clinical meaningful benefit fully demonstrated (33.9%, n = 19).

3.2. Economic impact

After the systematic review was completed, a compilation of changes in clinical outcomes was compiled with ranges of impact (see Table 9). Key

Table 5
Geriatrics article summaries.

Author	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings
Anbar (2014)	50	≥ 14 days	Caloric restriction with oral nutritional supplements (based on energy goal)	Resting energy expenditures	Compliant	Caloric restriction resulted in:
			Control	Length of hospital stay		• Fewer complications, mainly due to lower infection rates (surgical, infectious, cardiovascular, gastrointestinal, delirium, deep vein thrombosis, development of new pressure sores) (27.3% vs. 64.3%, p = 0.012)
				Complication incidence		• Shorter length of hospitalization (10.1 ± 3.2 days vs 12.5 ± 5.5 days, p = 0.061)
						Calorie intake correlated to:
						• Lower complication rate (r = −0.417, p = 0.003)
						• Shorter length of stay (r = −0.282, p = 0.049)
						Patients with a higher GI were:
						• Less likely to be depressed (p < 0.01)
						No significant differences between groups in outcomes.
						Intervention group had:
						• More intake of energy (p = 0.003)
						• Greater protein intake (p = 0.035)
						Higher costs (4.15 pounds (£/patient/day)
						Allocation to the lean red meat group resulted in:
						• Greater increase in insulin like growth factor 1 (p < 0.05)
						• Decrease in inflammatory markers like IL-6 (p < 0.05)
						• Greater gains in today body and leg lean tissue mass as well as muscle strength (p < 0.05)No difference was seen in BP or lipid panel.
						Intervention group:
						• 70-90% were satisfied with taste and quality
						• 70% would want a similar service in the future
						• Increase in weight (p < 0.05)
						• Increase in BMI (p < 0.005)
						• Increase in upper leg circumference (p < 0.01)
						• Increase in fat free mass (p < 0.03)
						• No difference in QoL.
Aparicio (2013)	140	7 days	Glycemic Index (GI) and glycemic load (GL) via food provided by nursing home	Depression (GDS) – separated into non-depressed and depressed	Compliant	No significant differences between groups in outcomes.
			Control	Weight		Intervention group had:
				Hand grip strength		• More intake of energy (p = 0.003)
				Patient satisfaction		• Greater protein intake (p = 0.035)
				Cost		Higher costs (4.15 pounds (£/patient/day)
						Allocation to the lean red meat group resulted in:
						• Greater increase in insulin like growth factor 1 (p < 0.05)
						• Decrease in inflammatory markers like IL-6 (p < 0.05)
						• Greater gains in today body and leg lean tissue mass as well as muscle strength (p < 0.05)No difference was seen in BP or lipid panel.
						Intervention group:
						• More than 90% were satisfied with taste and quality
						• 70% would want a similar service in the future
						• Increase in weight (p < 0.05)
						• Increase in BMI (p < 0.005)
						• Increase in upper leg circumference (p < 0.01)
						• Increase in fat free mass (p < 0.03)
						• No difference in QoL.
Collins (2017)	122	14 days	High energy and protein diet	Depression (GDS) – separated into non-depressed and depressed	Compliant	No significant differences between groups in outcomes.
			Control	Weight		Intervention group had:
				Hand grip strength		• More intake of energy (p = 0.003)
				Patient satisfaction		• Greater protein intake (p = 0.035)
				Cost		Higher costs (4.15 pounds (£/patient/day)
						Allocation to the lean red meat group resulted in:
						• Greater increase in insulin like growth factor 1 (p < 0.05)
						• Decrease in inflammatory markers like IL-6 (p < 0.05)
						• Greater gains in today body and leg lean tissue mass as well as muscle strength (p < 0.05)No difference was seen in BP or lipid panel.
Daly (2014)	100	4 months	Progressive resistance training + lean red meat (160 g 6 days/week)	Muscle mass and composition	Compliant	No significant differences between groups in outcomes.
			Control: progressive resistance training + 1 serving pasta or rice/day	Inflammatory markers		Intervention group had:
				Blood pressure		• Greater increase in insulin like growth factor 1 (p < 0.05)
				Lipids		• Decrease in inflammatory markers like IL-6 (p < 0.05)
						• Greater gains in today body and leg lean tissue mass as well as muscle strength (p < 0.05)No difference was seen in BP or lipid panel.
						Intervention group:
						• More than 90% were satisfied with taste and quality
						• 70% would want a similar service in the future
						• Increase in weight (p < 0.05)
						• Increase in BMI (p < 0.005)
						• Increase in upper leg circumference (p < 0.01)
						• Increase in fat free mass (p < 0.03)
						• No difference in QoL.
Denissen (2017)	40	12 weeks	Home meal delivery service of a high quality dinner with fresh ingredients using the Netherlands Nutrition Centre Foundation guidelines (which includes low sodium)	Satisfaction with service	Compliant	No change in quality of life
			Control	Body composition		All intervention groups had significant improvements in exercise capacity (p < 0.001).
				QoL		No change in quality of life
Kitzman (2016)	100	20 weeks	Exercise alone	Exercise capacity	Compliant	Adherence to dietary guidelines resulted in:
	obese men and women		Diet alone (caloric restriction, −400 kcal/day deficit)	QoL (MLHF)		• Lower SBP (4.2 mmHg, p < 0.001)
			Diet (~350 kcal/day deficit)			• Lower body weight (1.9 kg, p < −0.001)
			Control			Improved TC/HDL ratio (0.13, p = 0.044)
						Diets were “well accepted and did not differ in cost.”

QoL = Quality of life, MLHF = Minnesota Living with Heart Failure Questionnaire, GDS = Geriatric Depression Scale, SBP = Systolic blood pressure, TC = Total cholesterol.
findings from the systematic review indicated that providing food to patients resulted in high rates of dietary adherence in heart disease (HTN, HF), diabetes, and CKD. With dietary guidelines adherence, it was observed that HTN was improved through SBP reduction, DBP reduction, and greater control achievement. CV events also were reduced, and patients had improvements in lipids, A1c, and weight loss. Many patients also had resolution of or reduction of the metabolic syndrome criteria.

These findings were then examined in context of the literature. Each of these findings had substantial implications for patient disease progression, morbidity, and mortality as well as healthcare system resource utilization and costs. Literature review showed these outcomes would result in: lower CV event risk (20–30% reduction: $5–11 billion annually), decreased hospitalization costs ($1–8 billion), and lower dialysis rates (25–50% reduction: $14–29 billion annually). For heart failure patients, results include: 16% fewer readmissions and a 38-day shorter length of stay, resulting in a savings of $234,096 per 100 patients (decreased readmissions) and $79,425 per hospitalization. For diabetes, patients were compliant and reduced their A1c (0.9–2.6%). Reducing A1c by 1.5% could result in $11.6–20 billion in savings to the US healthcare system. Further, these reductions often brought A1c levels under 9%, which would result in $1.8 billion in annual savings. In CKD, 25–50% of ESRD patients became dialysis-free, which could lead to $14.7–29.4 billion in annual savings.

4. Discussion

The studies presented within this review indicate that provision of medically-tailored meals may indeed provide a novel strategy to helping patients meet their nutrition goals and thereby improving numerous health outcomes. Patient adherence was high when food or meal items were provided, and patients often experienced reduction in key clinical outcomes, such as decreased weight and BMI, improved A1c, lowered blood pressure,
Table 7
Cognition article summaries.

Author (Year)	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings
Boeslphug (2018)^96	N = 21 adults ages 68 or older with age-related memory decline	16 weeks	Freeze-dried whole fruit blueberry powder (flavonoids)	Functional magnetic resonance imaging during a working memory task to examine blood oxygen level-dependent (BOLD) signaling	Assessed but actual rates not provided	Adherence to blueberries resulted in:
			Placebo powder	Blood selenium concentrations Antioxidant enzymes (erythrocyte glutathione peroxidase (GPx) activity, oxygen radical absorbance capacity, and malondialdehyde) Change in cognition: CERAD neuropsychological battery (animal naming, Boston naming, word list learning, constructional praxis, word list recall, recognition)		• Increased BOLD activation (p < 0.01) There was no impact on working memory enhancement.
Cardoso (2014)^91	N = 20 older adults with mild cognitive impairment	6 months	Brazil nuts (selenium) – one Brazil nut daily	All but 3 patients had ≥85% compliance.		Adherence to the brazil nut diet resulted in:
			Control			• Increased blood serum selenium concentrations (p < 0.001) vs control
						• Increased GPx activity vs control (p = 0.006)
						• Increased verbal fluency (p = 0.007)
						Increased constructional praxis (p = 0.031)
Kent (2017)^87	N = 49 adults ≥70 years with mild-to-moderate dementia	12 weeks	Cherry Juice 200 ml/day (flavonoid-rich food = anthocyanins)	Inflammatory markers (CRP and IL-6) Change in cognition:	Unknown	Adherence to the cherry juice resulted in:
			Control (apple juice)			• Improvement in verbal fluency (p = 0.014)
						• Improvement in long-term memory (p < 0.001)
						• Reduced SBP (138.2 ± 16.4 to 130.5 ± 12.2, p = 0.038)
						Inflammatory markers were not changed.
McNamara (2018)^90	N = 94 adults ages 62–80 years with mild cognitive decline	24 weeks	Daily fish oil (flavonoids)	Change in cognition:	Assessed but actual rates not provided	Combined had no cognitive improvement.
			Fish oil + blueberry			Adherence to fish oil resulted in:
						• Fewer cognitive symptoms (p = 0.03)
						Adherence to blueberries resulted in:
						• Fewer cognitive symptoms but not significantImproved memory discrimination (p = 0.04)
						Adherence to the ketogenic meal resulted in:
						• Improved global score overall (p = 0.017)
						Improved global score for patients with a low baseline score (p = 0.005)
Ota (2016)^98	N = 19 adults ≥60 years with no dementia	1 meal	Ketogenic meal (20 g of medium chain TGs)	Global cognitive score from 3 tests:	Compliant	Adherence to the avocado diet resulted in:
			Control (isocaloric meal)			• Increased serum lutein levels (p = 0.001)
						• Improved macular pigment density (p = 0.001)
						• Improved sustained attention (p = 0.033)
						• Improved cognition from baseline.
Scott (2017)^90	N = 48	6 months	Avocado (Lutein): 135 g/day (approximately 1.33 avocado per day)	Serum lutein Macular pigment density	98% compliance	Adherence to the vitamins resulted in:
			Control (Potato/chickpeas)	Change in cognition:		• Significant improvement in blood levels of B vitamins (p < 0.05), folic acid (p < 0.001), lutein (p < 0.01), a-carotene (p < 0.05)
				• CRT		• Improved MNA score for those at risk for malnutrition (p = 0.05)
von Arnim (2013)^91	N = 39 adults 61–87 years with mild/moderate cognitive impairment	2 months	Micronutrient Supplement (antioxidant, zinc, B vitamin)	Blood levels of vitamins Nutritional status (Mini Nutritional Assessment)	99% compliance	Adherence to the Mediterranean diet + EVOO resulted in:
						• Higher mean MMSE scores vs control (adjusted differences: +0.62, 95% CI +0.18 to +1.05, p = 0.005)
						• Higher mean CDT scores vs control (adjusted differences: +0.51 95% CI +0.20 to +0.82, p = 0.001)
						Adherence to the Mediterranean diet + nuts resulted in:
Martinez-Lapiscina (2013)^92	N = 522 adults at high vascular risk	6.5 years	Mediterranean diet with EVOO	Global cognitive performance:	Good Good, with Mediterranean diet groups having greater adherence	Adherence to the Mediterranean diet + EVOO resulted in:
			Mediterranean diet with nuts	MMSE		• Higher mean MMSE scores vs control (adjusted differences: +0.62, 95% CI +0.18 to +1.05, p = 0.005)
			Control (low-fat diet)	CDT		• Higher mean CDT scores vs control (adjusted differences: +0.51 95% CI +0.20 to +0.82, p = 0.001)
PREDIMED Study			Mediterranean diet with EVOO			Adherence to the Mediterranean diet + nuts resulted in:
Table 7 (continued)

Author (Year)	N	Study Length	Diet Assignments	Outcomes Assessed	Adherence/Compliance	Key Findings
Valls-Pedret (2015)	N = 447	Median = 4.1 years	Mediterranean diet with nuts	Change in cognition:	• Higher mean MMSE scores vs control (adjusted differences: +0.57, 95% CI +0.11 to +1.03, p = 0.015)	• Composite cognitive decline from baseline (−0.17; 95% CI: −0.32 to −0.01, p < 0.05)
PREDIMED Study			Control (low-fat diet)		Adherence to the Mediterranean diet + EVOO resulted in:	Improver score on the Color Trail Test Part 2 (p = 0.04)
Sánchez-Villegas (2013)	N = 3923 adults	Median = 5.4 years			• Higher scores on the RAVLT vs control (p = 0.049)	Adherence to the Mediterranean diet + nuts resulted in:
PREDIMED Study				• Less composite cognitive decline vs control (0.09; 95% CI: −0.05 to 0.23, p = 0.04)	224 new cases of depression	
					• Less composite cognitive decline vs control (0.09; 95% CI: −0.05 to 0.23, p = 0.04)	Adherence to a MD resulted in no significant association with the risk of developing depression.
						Adherence to a MD in patients with type 2 diabetes resulted in significant inverse association with the risk of developing depression (HR = 0.59, 95% CI: 0.36–0.96).

BP = Blood pressure, **TG** = triglyceride, **RAVLT** = Rey Auditory Verbal Learning Test, **SOPT** = self-ordered pointing task, **TMT** = trail making test, **CRT** = Choice Reaction Time, **RVIP** = Rapid Visual Information Processing, **DMS** = Delayed Match to Sample, **PAL** = Paired Associates Learning, **SSP** = Spatial Span, **SSP-R** = Spatial Span Reverse, **WMS** = Spatial Working Memory, **SOC** = Stocking of Cambridge, **CERAD** = Consortium to Establish a Registry for Alzheimer’s Disease, **EVOO** = Extra Virgin Olive Oil, **MMSE** = Mini Mental Status Exam, **CDT** = Clock Drawing Test, **DEX** = Dysexecutive Questionnaire.

and improved renal function. Dietary modification is a key component of medical therapy in the treatment of many chronic diseases, including diabetes, cardiovascular disease, and chronic kidney disease. Treatment guidelines for these chronic diseases prioritize dietary changes including reduced salt intake, increased fruit and vegetable consumption, and reduced consumption of processed carbohydrates and saturated fats. However, the required dietary changes are often complex and inconvenient, especially when multiple comorbidities are present. Patients are often not equipped with the required knowledge, time, and resources to adequately plan, cook and eat meals that adhere to the recommended diet. Patients in one study with end stage renal disease found that patients’ knowledge of their dietary recommendations was often limited, and most patients followed the dietary patterns of their surrounding family members, rather than following guideline-based dietary advice. Similar studies have indicated that many patients with diabetes or cardiovascular disease also have limited knowledge of the impact of diet on their conditions.

As patients experience many barriers to dietary adherence, including limitations in knowledge, health beliefs, and required resources, adherence to dietary recommendations remains low. In a study evaluating the dietary patterns of patients with diabetes, only 22% of sampled patients with type 1 and type 2 diabetes reported adhering to dietary recommendations. Other studies have indicated that adherence to dietary recommendations in kidney disease may be as low as 20%. However, this review indicated that provision of medically-tailored meals (MTM) greatly improves adherence, providing another important tool to influence the treatment of chronic disease, in addition to addressing clinical and economic outcomes.

Numerous studies have reported that provision of medically-tailored meals improved adherence to dietary recommendations in heart disease to greater than 90% of included patients. Similarly, 100% of patients with diabetes who received medically-tailored nutrition were found to be adherent. These interventions resulted in significant reductions in both systolic (3.3–7.8 mmHg reduction) and diastolic blood pressure (1.9–7.8 mmHg reduction). Some cases, the prevalence of hypertension was reduced by 30%, which is substantial considering 73 million Americans are diagnosed with hypertension.

These dietary interventions also resulted in impressive improvements in overall lipid panels, including reductions in LDL and total cholesterol as well as increases in HDL. The impact of adherence to provided diets reduced lab values and resulted in reduced cardiovascular events, including stroke. These results illustrate the profound impact of adherence to
Table 8
Quality assessment of included articles.

Article	Methodological Quality	Applicability	Overall Effect
Anbar 2014	A	II	++
Aparicio 2013	A	I	+
Boespflug 2018	B	II	+
Brinkworth 2016	B	I	+
Camps 2017	A	III	++
Cardoso 2014	A	II	++
Casas 2014	A	I	+
Casas 2016	A	I	+
Castañer 2013	A	II	+
Collins 2017	B	I	0
Italy 2014	B	II	+
Davis and Bryan 2017	B	II	+
Davis and Hodson 2017	B	II	+
De Lorenzo 2017	A	II	+
Denissen 2017	B	I	++
Estrach 2018	B	III	++
Farrer 2014	B	I	+
Fito 2014	A	III	0
Friedman 2014	A	III	++
Goday 2016	B	I	++
Gomes-Delgado 2015	B	I	+
Goraya 2013	B	III	++
Gower 2015	A	III	++
Gu 2013	B	III	+
Haring 2014	A	I	+
Hikmat 2014	A	I	++
Hill 2015	A	II	+
Hummel 2013	B	II	+
Jenkins 2017	A	II	0
Johansson-Persson 2014	A	II	+
Jurschek 2017	A	I	+
Kent 2017	B	II	+
Kirwan 2016	A	II	+
Kitzman 2016	B	II	+
Martínez-Lapiscina 2013	B	I	+
McNamara 2018	A	I	+
Medina-Remon 2017	B	I	++
Mirfathali 2016	B	II	+
Moorhi 2014	B	II	+
Ota 2016	A	II	+
Piccoli 2016	B	I	++
Reidinger 2015	A	I	+
Richard 2013	B	III	+
Richard 2014	A	II	+
Roussel 2014	A	II	+
Ruscica 2016	A	II	++
Sanchez-Villegas 2013	B	I	+
Sayer 2015	A	II	++
Scott 2017	B	II	+
Tahbhi 2017	B	II	+
Tay 2014	B	I	++
Toledo 2013	B	I	+
Urbanova 2017	A	III	+
Valds-Pedret 2015	B	I	+
vor Arnim 2013	B	II	+
Wada 2015	A	III	0

Key for Table:
Methodological Quality
A Least Bias; results are valid.
B Susceptible to some bias, but not sufficient to invalidate the results
C Significant bias that may invalidate the results

Applicability
I Sample is representative of the target population. It should be sufficiently large to cover both sexes, a wide age range, and other important features of the target populations (e.g., diet).
II Sample is representative of a relevant subgroup of the target population, but not the entire population.
III Sample is representative of a narrow subgroup of subjects only, and is of limited applicability to other subgroups.

Overall Effect
++ Clinically meaningful benefit demonstrated
+ A clinically meaningful beneficial trend exists but is not conclusive.
0 Clinically meaningful effect not demonstrated or is unlikely.
- Harmful effect demonstrated or is likely
A.M.H. Chen et al. Exploratory Research in Clinical and Social Pharmacy 5 (2022) 100129

The economic impact of food provision studies.

Table 9
The economic impact of food provision studies.

Systematic Review Clinical Outcome	Clinical Impact from the Literature	Cost from the Literature	Projected Cost Savings
Improvement in HTN through the DASH and MD diet adherence	• 73 million Americans have HTN2	Cost of High BP:	More patients are likely to achieve the HTN control. A 21% reduction in CV events107 could result in:
• SBP reduction: 3.3–12 mmHg,26,24,22 20–45,28–40 higher starting SBP had greater reductions66	• BP <130/80 vs <140/80: 21% reduced risk of major CV events (death, MI, HF, stroke)87	• Workers with high BP have 31.6% or $1378 higher medical costs per year106	• 154,350 fewer MI annually (saving $11.3 billion across 3 years or 3.8 billion annually)
• DBP reduction: 1.9–7.8 mmHg36,38,40,44	• Every 20 mmHg increase in SBP >115/70 mmHg: increased risk for CV events by 29.2%97	• Costs of MI and HF:	• 166,950 fewer strokes annually (saving $12 billion across 3 years or 4 billion annually)
• Higher rates of controlled HTN in patients:	• 400,000 cardiovascular events could be prevented over 10 years if patients were adherent to DASH diet18	• 3-year cost of MI = $73,300$^{67}	A 30.5% reduction in strokes could result in:
o Overall36,42	• Reducing average population sodium intake to 2300 mg/day (which would be included a DASH diet), would reduce prevalence of HTN by 13%36,94	• Average hospitalization cost = $20,246$^{101}	• 242,475 fewer strokes annually
o with MetS (OR = 9.5, DASH: 67%, control: 17%)36	• CV Outcomes Incidence:	• Lifetime costs:	• Cost savings of $4.9 billion annually
o without MetS (OR = 7.7, 57% vs. 15%)38	• 795,000 Americans have a stroke annually2	• Severe heart attack = $1 million$^{102}	• Cost savings of $17.4 billion over 3 years
• Reduce prevalence of HTN by 30%36	• 735,000 Americans have a heart attack annually2	• Less severe = $760,000$^{102}	Cost savings over 10 years with adherence to DASH107:
CV event reduction with MD adherence	• △HD: 0.9 kg weight loss37,44,45,63	• HF annual cost = $20,245 or $20,618$^{103} (severe cases = $40,000 annually) (calculated = $60,735–$120,000 across 3 years)	• Hospitalizations: $8.1 billion
• Difference of 3.1 CV events/1000 person-years (27.7% reduction)13	• △DBP: 1.1 kg/m² BMI reduction39,40	• Direct/indirect costs: $304–400 billion, depending on severity of the heart attack	• Direct/indirect costs: $304–400 billion, depending on severity of the heart attack
• Difference of 1.8 stroke events/1000 person-years (30.5% reduction)13	• △LDL: 2.6% reduction37,41	Cost savings by reducing prevalence of HTN:	Cost savings by reducing prevalence of HTN:
• Improved Framingham Risk Score (~0.19–0.42% reduction)45	• △HDL: 34% of the US population has MetS106 (over 111 million people)	• 13% = $18 billion & 312,000 QALYS (≈ $32 billion annually)99	• $13% = $18 billion & 312,000 QALYS (≈ $32 billion annually)99
Adherence to dietary recommendations in heart disease	• △LDL-C of 1 mmol/L (38.6 mg/dL) = 25% relative reduction in CV risk at 1 year105	• Cost of MetS:	• 30% = $24.9 billion in healthcare dollars savings
• DASH >90%36,40,44,46	• A reduction in LDL-C of 1 mmol/L (38.6 mg/dL) = 25% relative reduction in CV risk at 1 year105	• 20% higher ($40,873 vs. $33,010,$64)	Resolution of MetS saves $7863 per patient per year.
• DASH 74–84%58			With 111 million patients diagnosed, decreasing MetS by 39% could result in:
• MD ≥ 95% or higher in the MD arm36,37,41,43,47,49,61,62			• $340.4 billion annually
Lipid improvements with DASH and MD adherence			
• LDL reduction:			
o 5.2–10%36,61			
o 11.7–44.2 mg/dL37,58			
• TC reduction: 18.4–39.1 mg/dL27 or – 4.8%65			
• HDL increase: 2.6–7.5 mg/dL37,41			
• Weight loss or resolution of MetS with DASH or MD diet adherence	• △BMI: 34.2% of the US population has MetS106 (over 111 million people)		
• △Body composition changes:			
o 0.8–9 kg weight loss37,44,45,63			
o 1.1–7.2 cm waist reduction37,44,45,63			
o 0.3–0.9 kg/m² BMI reduction77,44			
o 1.1% body fat reduction14			
• ≥5% weight loss, and every 1% of weight loss58;			
o 39% increase in the odds of resolving MetS in weight loss phase			
o 88% increase in the odds of resolving MetS in normal life			
• Reduced severity of MetS34			
A1C reduction with low carbohydrate and low calorie diet adherence$^{50–52,64}$			
• 0.9–2.6% reduction			
• 30.3 million Americans with DM and 84.1 million have pre-diabetes8			
• 15.8% of patients have an A1C >9% at a given time106			
• Improving A1C control from 13.2% of patients with A1C >9% to 9.2%) reduced hospitalization days by 2% annually55			
• Annual medical cost = $9600/year110			
• Direct/indirect costs: $304–400 billion, depending on severity of the heart attack			
• Resolution of MetS saves $7863 per patient per year.			
• More patients are likely to lower A1c, particularly below 9%			
• Improving A1c control to <9%65 would result in:			

(continued on next page)
dietary recommendations. As patients were enabled to follow guideline-directed dietary interventions, patients experienced improvements in key risk factors for cardiovascular complications, including improvements in blood pressure and lipid control. While previous literature has documented the benefits of blood pressure and lipid reductions, the impact of dietary adherence is illustrated in the significant reduction of cardiovascular events.

Dietary adherence also is challenging in diabetes management. Recommended diabetes self-care practices nearly always include dietary recommendations with current guidelines recommending all diabetic patients mend diabetes self-care practices nearly always include dietary recommendations. As patients were enabled to follow guideline-directed dietary interventions, patients experienced improvements in key risk factors for cardiac complications, including improvements in blood pressure and lipid control. While previous literature has documented the benefits of blood pressure and lipid reductions, the impact of dietary adherence is illustrated in the significant reduction of cardiovascular events.

Dietary adherence also is challenging in diabetes management. Recommended diabetes self-care practices nearly always include dietary recommendations with current guidelines recommending all diabetic patients mend diabetes self-care practices nearly always include dietary recommendations. As patients were enabled to follow guideline-directed dietary interventions, patients experienced improvements in key risk factors for cardiac complications, including improvements in blood pressure and lipid control. While previous literature has documented the benefits of blood pressure and lipid reductions, the impact of dietary adherence is illustrated in the significant reduction of cardiovascular events.

Table 9 (continued)

Systematic Review Clinical Outcome	Clinical Impact from the Literature	Cost from the Literature	Projected Cost Savings
Adherence to diets in DM^50-52	• DASH diet leads to a 69% reduction in T2DM incidence (OR 0.31)^109	• $84,000 in men ages 55–64	
• $85,200 in women ages 55–64.			
• $124,700 in men ages 25–44			
• $130,800 in women ages 25–44	• $80,000 hospital days		
• $1.8 billion saved annually in the US			
Assuming a 1.5% reduction in A1c,^111 the cost savings would be:			
Adherence to the DASH diet in HF	• DASH diet adherence in HF led to:		
○ 16% reduction in 30-day readmissions^68			
○ 38 day shorter length of stay^66	• Assumed hospitalization costs $14,631^112		
• $3500 for stage 2			
• $1700 for stage 3			
• $12,700 for stage 4			
• ESRD/Hemodialysis: $89,000	• $3840–$6669 per person		
• $11.6–20 billion in savings to the healthcare system			
If 58 million Americans are prevented from progressing to DM2, lifetime cost savings would range from $480–723 billion			
Adherence to recommended dietary intake in CKD	• 660,000 patients in the United States with ESRD^113		
• Compliant^53-57
• Significantly lower mortality rates (0.44
(0.36–0.54)^71
• Patients with GFR ≤ 15 mL/min^32
○ 50% dialysis-free for 2 years
○ 25% dialysis free for 5 years
• 2 year calculated costs savings^53
○ 80.6–94.3% per 100 patients
• Stable GFR and less kidney injury^85 | • Mean per-patient cost of a HF-related hospitalization = $14,631^112
• Assumed hospitalization costs $14,631^112
• $3500 for stage 2
• $1700 for stage 3
• $12,700 for stage 4
• ESRD/Hemodialysis: $89,000 | • $79,425 per patient
25–50% of ESRD patients are likely to be free from dialysis.
Reducing the number of patients on dialysis would result in:
• 25% free from dialysis for 5 years: $73 billion ($14.7 billion annually)
• 50% free from dialysis for 2 years: $58.7 billion ($29.4 billion annually) |

BP = Blood pressure, SBP = Systolic blood pressure, HTN = Hypertension, HF = Heart failure, MetS = Metabolic syndrome, A1c = Hemoglobin A1c, DM = Diabetes, CKD = Chronic kidney disease, ESRD = End stage renal disease.
DASH = Dietary Approaches to Stop Hypertension diet, MD = Mediterranean diet.

To offer a new mode of treatment to prevent and/or minimize progression and complications of diabetes.

Patients with chronic kidney disease are often asked to follow complex dietary restrictions, including reduced salt and protein intake. In addition, these patients often suffer from other comorbidities including hypertension and diabetes, complicating their dietary needs even further. This review indicated that provision of medically-tailored meals can overcome this barrier and ultimately delay progression of disease. Piccoli et al. indicated that providing nutrition that followed dietary recommendations aided in delay of progression to dialysis even in patients with GFR less than 15. In this study, 50% of patients remained dialysis-free after 2 years, and further, 25% were still dialysis free after five years.53 This finding is significant, as dialysis imposes a heavy burden on both the patient and the healthcare system. The benefit of meal provision is further demonstrated in this study by significant decreases in mortality rates in patients receiving medically-tailored nutrition.

While the benefit of medically-tailored meals is clear in terms of health outcomes, the economic implications are harder to quantify. Improvements in key health markers, such as decreases in blood pressure and A1c, most often lead to improvements in health outcomes, including decreases in cardiovascular events or other complications. Costs of these complications are high with the average three-year cost of an MI or stroke ranging from...
$71,600–$73,300.67 The cost savings associated with reduction in cardiovascular events and strokes can range from $3.8–$4.9 billion annually. While it cannot be assumed that medically-tailored meals will directly result in these cost savings, these costs certainly illustrate the potential economic impact of simple lifestyle improvements.

Meal provision represents a novel approach to chronic disease therapy with the potential for impressive implications for health outcomes and economic savings. Just as evidence-based medications and therapies are selected and covered by both commercial and private insurance, medically-tailored meals could be considered as a reimbursable service for patients with chronic disease, as further evidence builds regarding the impact of nutrition on health outcomes. In addition, the coverage of these services may represent an avenue for cost savings for insurance companies as healthcare costs continue to increase due to the burden of chronic disease.

When patients adhere to lifestyle changes, there are substantial patient clinical benefits as well as economic benefits. With costs in the healthcare system still rising, how do we position patients for better adherence and observe better clinical and economic outcomes? An excellent example from the literature that was published after the closure of the systematic review time period illustrates this point. Hummel and colleagues (2018) randomly distributed HF patients at discharge to usual care HF-appropriate delivered meals. Even though the differences between groups were not significant, at 12 weeks, patients who received meals had improved cardiomyopathy clinical summary scores, fewer HF readmissions (11% vs 27% in the control group), and fewer days of rehospitalization (17 vs 55 days for the control group).68 While limited inferences can be drawn from this short-term study due to its non-significance, this could be an area for further exploration.

5. Limitations
This review does have several limitations. While all included studies did provide some element of the subjects’ diets, studies regarding complete meal delivery are rare. Many of these studies required patients to prepare their own meals and measured dietary intake based on dietary recall. This indicates that actual dietary intake may have varied from that which was reported. Secondly, many potentially relevant studies were excluded because meals were not directly provided by the researchers. Many other studies investigating the impact of diet and nutrition on economic and health outcomes were not included due to the observational nature of their design. Additionally, only studies written in the English language were included in the review, which could introduce bias, as key studies with positive or negative findings could be missed. Lastly, cost was not directly evaluated in the included studies. To date, there are few studies that quantify the costs associated with medically-tailored meals compared to the financial implications of nutrition on health outcomes. This review sought to investigate the economic impact of meal provision by comparing the improvements in health to the known costs of chronic disease. While this is not a direct representation of the true cost of meal delivery versus cost-savings in terms of health outcomes, it illustrates the potential benefit of medically-tailored meals and the need for further study in this area.

6. Conclusion
It is easier and less costly to prevent disease-based complications and progression than to manage acute issues. The healthcare system and healthcare professionals need to consider evolving strategies to empower patients to be part of the solution. Many Medicare Advantage and private insurance plans are beginning to cover medically-tailored meals, and with expanded access and a consistent structure, more data will be available to study the impact of dietary adherence on patient clinical and economic outcomes. What is clear is that providing medically-tailored meals to patients with chronic disease needs results in improved adherence, and when patients are adherence, clinical outcomes improve.

Disclosures
Aleda M. H. Chen and Juanita Draime received no funding for this project. Sarah Berman and Julia Gardner were funded as student research assistants through this project. At the time of writing, Joe Martinez was the President of Healthy Meals Supreme, LLC.

References
1. Center for Medicare and Medicaid Services. NHE Fact Sheet. https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/nhe-fact-sheet.html 2018.April 22, 2020.
2. Centers for Disease Control. Heart and Economic Costs of Chronic Diseases. https://www.cdc.gov/chronic_conditions/about/costs/index.htm 2018.April 22, 2020.
3. Taride J-E, Lim M, DesMeules M, et al. A review of the cost of cardiovascular disease. Can J Cardiol 2009;25(6):e195–202.
4. American Heart Association. Cardiovascular Disease: A Costly Burden for America. Projections Through 2035. http://www.americanheart.org/ged/groups/heart-public/@wcmd/@adv/documents/downloadable/ucm_491543.pdf 2017.April 22, 2020.
5. Garvey WT, Mechanick JI, Brest EM, et al. American Association of Clinical Endocrinologist and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract 2016;22(3):1–203.
6. Centers for Disease Control. Obesity and Overweight. https://www.cdc.gov/nchs/fastats/obesity-overweight.htm 2017.April 22, 2020.
7. American Diabetes Association. The Cost of Diabetes. http://www.diabetes.org/advocacy/news-events/cost-of-diabetes.html 2018.April 22, 2020.
8. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J Am Coll Cardiol 2017;70(6):776–803.
9. Whelton PK, Appel LJ, Sacco RL, et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 2012;126(24):2880–2889.
10. American Diabetes Association. 4. Lifestyle management: Standards of medical care in diabetes—2018. Diabetes Care 2018;41(Supplement 1):S38–S50.
11. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of endocrinology on the comprehensive type 2 diabetes management algorithm - 2018 executive summary. Endocr Pract 2018;24(4):91–120.
12. Academy of Nutrition and Dietetics. Chronic Kidney Disease (CKD) Guideline. https://www.andonld.org/topic.cfm?menu = 530&cat=3957 2010.April 22, 2020.
13. Best Practice Advocacy Centre New Zealand. Strategies to Improve Nutrition in Elderly People. https://bpc.org.nz/bpj/2011/may/elderly.aspx 2011.
14. Fakhouri TH, Ogen CL, Carroll MD, et al. Prevalence of Obesity Among Older Adults in the United States, 2007–2010. NCDS Data Brief, no. 106. Hyattsville, MD: National Center for Health Statistics. 2012.
15. Dansinger ML, Gleason J, Griffin JF, Saller HP, Schafer EJ. Comparison of the Atkins, Ornish, weight watchers, and zone diets for weight loss and heart disease risk reduction: a randomized trial. J Am Med Assoc 2005;293(1):43–53.
16. Middleton KR, Anton SD, Brown PD. Long-term adherence to health behavior change. Am J Lifestyle Med 2013;7(6):395–404.
17. Cha E, Kim KH, Lerner HM, et al. Health literacy, self-efficacy, food label use, and diet in young adults. J Am Heal Behav 2014;35(2):231–239.
18. La Puma J. What is culinary medicine and what does it do? Popular Health Magazines 2016;19(1):1–3.
19. Khan T, Tisapas S, Wozniak G. Medical care expenditures for individuals with prediabetes: the potential cost savings in reducing the risk of developing diabetes. Popular Health Magazines 2017;20(5):389–396.
20. American Medical Association. AMA DPP Cost Calculator. https://ama-ro.iul calculator.appspot.com/ 2015.April 22, 2020.
21. Weinsstub WS, Daniels SR, Burke LJ, et al. Value of primordial and primary prevention for cardiovascular disease. Circulation 2011;124(8):967–990.
22. Moher D, Liberati A, Tetzlaff J, Altman D, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6(7):e1000097.
23. Chen AMH, Draime JA, Gardner J, Berman S, Martinez J. A systematic review of the clinical and economic outcomes associated with guideline-recommended food provision studies in heart disease, diabetes, chronic kidney disease, Alzheimer’s disease, and older adults. PROSPERO 2019 CRD42019116570. 2019 http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42019116570.
24. Lichtenstein AH. Systematic reviews in the field of nutrition. In: Biles CW, Locher JL, Saltzman E, eds. Handbook of Clinical Nutrition and Aging. 3rd ed. New York: Humana Press; 2015. p. 21–35.
25. Yancy CW, Jessup M, Bokurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. J Card Fail 2017;23 (8):628–651.
26. American Diabetes Association. 5. Lifestyle management: Standards of medical care in diabetes—2019. Diabetes Care 2019;42(Supplement 1):S46–S60.
27. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/ABC/ACPM/AGS/AMERICAN HEART ASSOCIATION AND AMERICAN COLLEGE OF PHYSCICIANS. Prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of
of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Cardiol 2017;120(2):127–248.

41. Medina-Remon A, Casas R, Tressserra-Rimbau A, et al. Polyphenol intake from a Med-

42. Hikmat F, Appel LJ. Effects of the DASH diet on blood pressure in patients with and

43. Roussell MA, Hill AM, Gaugler TL, et al. Effects of a DASH-like diet containing lean beef

44. Casas R, Sacanella E, Urpi-Sarda M, et al. Long-term immunomodulatory effects of a

45. Broadbent E, Donkin L, Stroh JC. Illness and treatment perceptions are associated with

46. Haring B, Wyler von Ballmoos MC, Appel LJ, Sacks FM. Healthy dietary interventions

47. Castaner O, Corella D, Covas MI, et al. In vivo transcriptomic pro

48. Davis CR, Bryan J, Hodgson JM, Woodman R, Murphy KJ. A Mediterranean diet re-

49. Davis CR, Bryan J, Hodgson JM, Woodman R, Murphy KJ. A Mediterranean diet re-

50. Goday A, Bellido D, Sajoux I, et al. Long-term effects of

51. Brinkworth GD, Wycherley TP, Noakes M, Buckley JD, Clifton PM. Long-term effects of

52. Casas R, Sacanella E, Urpi-Sarda M, et al. Long-term immunomodulatory effects of a

53. Isaacson CR, Alzueta CP, Pfeiffer CM, et al. Inflammation and plaque vulnerability in subjects with high

54. Hummel SL, Seymour EM, Brook RD, et al. Low-sodium DASH diet improves diastolic

55. Kitzman DW, Brubaker P, Morgan T, et al. Effect of caloric restriction or aerobic exer-

56. Tabibi H, Mirfatahi M, Hedayati M, Nasrollahi A. Effects of

57. Wada T, Nakao T, Matsumoto H, et al. Relationship between dietary protein intake and the development of chronic kidney disease in male asthmatic patients with Iga nephropathy. Clin Exp Nephrol 2015;19(4):661–668.

58. Hill AM, Harris Jackson KA, Roussell MA, West SG, Kri-Etherton PM. Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial. J Am Coll Cardiol 2017;70(23):2841–2848.

59. Hummel SL, Seymour EM, Brook RD, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail 2013;6(6):1165–1171.

60. Jenner WR, Miller 3rd FD, Weaver CM, Appel LJ. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol 2017;70(23):2841–2848.

61. Racuica M, Povavencea C, Gandimi S, et al. Effect of soy on metabolic syndrome and carbo

62. Estruch R, Ross E, Salas-Salvador J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New Engl J Med 2018;378(25), e534.

63. Richard C, Couture P, Higham K, Lamarche B. Effect of the Mediterranean diet with and without low weight on markers of inflammation in men with metabolic syndrome. Obesity (Silver Spring, Md) 2013;21(1):51–57.

64. Farrer O, Golley R. Feasibility study for efficacy of group weight management programmes achieving therapeutic weight loss in people with type 2 diabetes. Nutrition & Dieters 2014;7(1):16–21.

65. Wilf-Miron R, Bolotin A, Gordon N, Porath A, Peled R. The association between im-

66. Nathan DM, Group DER. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 2014;37(1):9–16.

67. O’Sullivan AK, Rubin J, Nyamboze J, Kunick A, Cohen DJ, Thompson D. Cost estimation of cardiovascular disease events in the US. Pharmacoeconomics 2011;29(8):693–704.

68. Hummel SL, Karmally W, Gillespie BW, et al. Home-delivered meals postdischarge from

69. Gower BA, Goss AM. A lower-carbohydrate, higher-fat diet reduces abdominal and intramuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Am Coll Nutr 2014;33(5):445(1777):620–630.

70. Gower BA, Ross EA, Salas-Salvador J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368(14):1279–1287.

71. Davies JA, Boucher BA, Ashbury FD, et al. Effect of current dietary recommendations on weight loss and cardiovascular risk factors. J Am Coll Cardiol 2017;69(9):1103–

72. Urbanova M, Mraz M, Durovcova V, et al. The effect of very-low-calorie diet on mito-

73. Chou M, Chou J, Pan C, Pei X, et al. Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome. Arterioscler Thromb Vasc Biol 2014;34(2):433–438.

74. Anbar R, Bellosoy E, Cohen J, et al. Tight calorie control in geriatric patients follow-

75. Kitzman DW, Brubaker P, Morgan T, et al. Effect of caloric restriction or aerobic exer-

76. Collins J, Porter J, Truby H, Huggins CE. A foodservice approach to enhance energy in-

77. Aparicio A, Robles F, Lopez-Sobaler AM, Ortega RM. Dietary glycaemic load and odds

78. Daly RM, O

79. Kitzman DW, Brubaker P, Morgan T, et al. Effect of caloric restriction or aerobic exer-

80. Collins J, Porter J, Truby H, Huggins CE. A foodservice approach to enhance energy in-

81. Aparicio A, Robles F, Lopez-Sobaler AM, Ortega RM. Dietary glycaemic load and odds

82. Judd NL, Ranswatkul T, Adterawan T, et al. Meta-analysis of weight loss interventions for nutrigenomic approaches in cardiometabolic disease in Asian subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic disease in Asian subjects: a randomized controlled trial. Eur J Nutr 2018;57(2):499–511.

83. Estruch R, Ross E, Salas-Salvador J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New Engl J Med 2018;378(25), e534.

84. Richard C, Couture P, Higham K, Lamarche B. Effect of the Mediterranean diet with and without low weight on markers of inflammation in men with metabolic syndrome. Obesity (Silver Spring, Md) 2013;21(1):51–57.

85. Farrer O, Golley R. Feasibility study for efficacy of group weight management programmes achieving therapeutic weight loss in people with type 2 diabetes. Nutrition & Dietetics 2014;7(1):16–21.

86. Wilf-Miron R, Bolotin A, Gordon N, Porath A, Peled R. The association between im-

87. Nathan DM, Group DER. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 2014;37(1):9–16.

88. O’Sullivan AK, Rubin J, Nyamboze J, Kunick A, Cohen DJ, Thompson D. Cost estimation of cardiovascular disease events in the US. Pharmacoeconomics 2011;29(8):693–704.

89. Hummel SL, Karmally W, Gillespie BW, et al. Home-delivered meals postdischarge from

90. Gower BA, Goss AM. A lower-carbohydrate, higher-fat diet reduces abdominal and intramuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Am Coll Nutr 2014;33(5):445(1777):620–630.

91. Gu Y, Zhao A, Huang F, et al. Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J Proteome Res 2013;12(12):5801–5811.

92. Urbanova M, Mraz M, Ducurova V, et al. The effect of very-low-carb diet on mito-

93. Johansson-Persson A, Ulmim M, Cletesen L, Karhu T, Herzig KH, Omh G. A high in-

94. Estruch R, Ross E, Salas-Salvador J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368(14):1279–1290.

95. De Araujo A, Bernardini G, Leita-Moreira P, et al. Mediterranean versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic disease. Acta Diabetologica 2017;54(6):1313.

96. Gómez-Badía F, García-Ríos A, Alcalá Díaz JP, et al. Chronic consumption of a low-

97. Estruch R, Ross E, Salas-Salvador J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368(14):1279–1290.

98. De Araujo A, Bernardini G, Leita-Moreira P, et al. Mediterranean versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic disease. Acta Diabetologica 2017;54(6):1313.

99. Gómez-Badía F, García-Ríos A, Alcalá Díaz JP, et al. Chronic consumption of a low-

100. Estruch R, Ross E, Salas-Salvador J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368(14):1279–1290.

101. De Araujo A, Bernardini G, Leita-Moreira P, et al. Mediterranean versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic disease. Acta Diabetologica 2017;54(6):1313.
