The disaster trap
Eli D Lazarus

Environmental Dynamics Lab, School of Geography & Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

correspondence: E.D.Lazarus@soton.ac.uk; Twitter: @envidynxlab

A prefacing note –
This manuscript is a preprint, and has not yet been peer-reviewed.
Of the many excellent works cited herein, there are a handful to which I am indebted:

• For its galvanising articulation of entanglements between tourism interests and disaster capitalism in the wake of disaster events:
 – Klein N (2007) The shock doctrine: The rise of disaster capitalism, Macmillan

• For its forensic analysis of privatisation and the nascent expression of the disaster-capitalism complex in New Orleans following Hurricane Katrina, in 2005:
 – Gotham K (2012) Disaster, Inc.: Privatization and Post-Katrina rebuilding in New Orleans, Perspectives on Politics, 10(3), 633–646, https://doi.org/10.1017/S153759271200165X

• And for their critical historical insight into current events in Antigua & Barbuda, following Hurricane Irma, and in Puerto Rico, following Hurricanes Irma and Maria, in 2017:
 – Look C, Friedman E, Godbout G (2019) The resilience of land tenure regimes during Hurricane Irma: How colonial legacies impact disaster response and recovery in Antigua and Barbuda, Journal of Extreme Events, 6(01), 1940004, https://doi.org/10.1142/S2345737619400049
 – Lightfoot N (2020) Disrepair, distress, and dispossession: Barbuda after Hurricane Irma, Small Axe: A Caribbean Journal of Criticism, 24(2), 133–146, https://doi.org/10.1215/07990537-8604550
 – Rivera DZ (2020) Disaster colonialism: a commentary on disasters beyond singular events to structural violence, International Journal of Urban and Regional Research, https://doi.org/10.1111/1468-2427.12950

Disaster research is a vast literature, and this is a brief manuscript. Given the complexity of the subject matter, I welcome constructive comments, and I will endeavour to improve this draft through revision.
Thank you for reading –

Eli Lazarus

May 2021
The disaster trap

Eli D Lazarus

Environmental Dynamics Lab, School of Geography & Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

correspondence: E.D.Lazarus@soton.ac.uk; Twitter: @envidynxlab
ORCiD: 0000-0003-2404-9661

Abstract

The long, open-ended period of recovery from a disaster event is the phase of a disaster that the interdisciplinary field of disaster studies struggles to understand. In the process of rebuilding, places do not simply reset – they transform, often in ways that confound any reduction of disaster risk, instead making people and settings more vulnerable to future hazard events. Reducing disaster risk is regarded as a global priority, but policies intended to reduce disaster risk have been largely ineffective. This obduracy represents a grand challenge in disaster studies. Here, I propose that the correlated trends of runaway economic costs of disaster events, growing social inequity, environmental degradation, and resistance to policy intervention in disaster settings are hallmark indicators of a system trap – a dynamic in which self-reinforcing feedbacks drive a system toward an undesirable and seemingly inescapable state, with negative consequences that tend to amplify each other over time. I offer that these trends in disaster settings are the collective expression of an especially powerful and distinct kind of system trap, which here I term the "disaster trap" – a new theoretical concept to help explain and address runaway disaster risk. I suggest that disaster traps are likely strongest in tourism-dominated coastal settings with high exposure to tropical cyclones and colonial histories of racial capitalism. Formalising a linkage between gilded and safe-development traps matters because their effects likely compound each other nonlinearly, such that disaster risk only increases and disaster-risk reduction becomes increasingly difficult to achieve. Addressing traps requires understanding them as dynamic systems, described as fundamentally and completely as possible – their components, mechanisms, drivers, and structure – in order to reveal when and where interventions into disaster systems might be most effective at reducing disaster risk.
1 Introduction

The long, open-ended period of recovery from a disaster event is the phase of a disaster that the vast field of disaster studies struggles to understand (Olshansky et al., 2012). In the process of rebuilding, places do not simply reset – they transform, often in ways that confound any reduction of disaster risk, instead making people and settings more vulnerable to future hazard events (Mileti, 1999; Burby, 2006; Cutter and Emrich, 2006; Kates et al., 2006; Sovacool, 2017; Tselios and Tompkins, 2019; Finucane et al., 2020). Follow the trajectory of a coastal tourist destination after a tropical cyclone: despite stacks of guidance to the contrary, buildings get rebuilt not better (UNDRR, 2015) but bigger (Lazarus et al., 2018), protected by bulkier coastal defences (Sovacool, 2011; Gittman et al., 2015; Logan et al., 2018; Nunn et al., 2021); people who cannot afford to rebuild get displaced by others who can (Cutter and Emrich, 2006; Gladstone and Préau, 2008; Gould and Lewis, 2018); public assets and services are sold and contracted to for-profit multinational corporations (Klein, 2007; Gunewardena and Schuller, 2008; Gotham, 2012; Loewenstein, 2015); to attract visitors and investments, tourism consumes the local economy (Mair et al., 2016; Wright et al., 2020); the built environment expands at direct expense of the natural environment (Mileti, 1999; Lewsey et al., 2004; Nordstrom, 2004; Carr and Heyman, 2009). This increased exposure makes the next disaster more severe, and more costly: economic costs (adjusted for inflation) of disaster damages worldwide in the last decade exceeded $USD 1.8 trillion – four times higher than in the 1980s (CRED, 2021).

Although reducing disaster risk is considered a global priority (UNDRR, 2015) policies intended to reduce disaster risk have been largely ineffective (Nohrstedt et al., 2021). This obscurity is a grand challenge in disaster studies (UNDRR, 2019). For decades, thematic reviews of disaster risk have called for holistic perspectives and approaches that address disaster settings as dynamic systems of interconnected social and environmental elements related by feedbacks (Mileti, 1999; UNDRR, 2019). But even as critical research perspectives gain insight into social, economic, and environmental aspects of disasters, reducing disaster risk has been hindered in part by fragmentation of discipline-specific, case-based, research snapshots that never capture the full structure of a global pattern that evolves over time – and so also by an incomplete understanding of disaster settings as dynamic systems (Mileti, 1999; Cutter et al., 2015; UNDRR, 2019; Finucane et al., 2020).

Here, I suggest that the correlated trends of runaway economic costs of disaster events, growing social inequity, environmental degradation, and resistance to policy intervention in disaster settings are hallmark indicators of a system trap – a dynamic in which self-reinforcing feedbacks drive a system toward an undesirable and seemingly inescapable state, with negative consequences that tend to amplify each other over time (Meadows, 2008; Boonstra and de Boer, 2014; Haider et al., 2018; Dornelles et al., 2020). Further, I offer that these trends in disaster settings are the collective expression of an especially powerful and distinct kind of system trap, which here I term the "disaster trap", as a new theoretical concept to explain and address runaway disaster risk.

I propose that a disaster trap is a powerful and distinct dynamic that emerges when two known types of system traps become coupled: a gilded trap, in which a local economy becomes dependent upon a single, lucrative sector at the expense of a more diverse economic ecology (Steneck et al., 2011; Lazarus, 2017); and the safe-development trap, in which the proliferation of
economically valuable infrastructure in hazard zones is encouraged by hazard defences (Burby, 2006; Stevens et al., 2010; Di Baldassarre et al., 2015; Armstrong et al., 2016; Lazarus et al., 2016; Pérez-Morales et al., 2018; Armstrong and Lazarus, 2019). The crux of the disaster trap is likely in the attenuated process of rebuilding and recovery, when both the gilded and safe-development components can be intensified – and future risk exacerbated – by regressive planning decisions and speculative economic revival (Lewsey et al., 2004; Burby, 2006; Berke and Campenella, 2006; Lazarus et al., 2018; Pérez-Morales et al., 2018; Smith et al., 2018).

2 Settings and geographies

Disaster traps may be strongest in tourism-dominated coastal settings with high exposure to tropical cyclones and colonial histories of racial capitalism (Scott et al., 2012; Cruz-Martínez et al., 2018; Gould and Lewis, 2018; Schmude et al., 2018; Davis et al., 2019; Look et al., 2019; Moulton and Machado, 2019; Popke and Rhiney, 2019; Lightfoot, 2020; Bonilla, 2020; Rivera, 2020; Rhiney, 2020; Wright et al., 2020). Along the tropical cyclone corridor (20–30ºN) of the Northern Tropic, for example, cyclone intensities tend to be highest (Bloemendaal et al., 2020) and can compound multiple hazards at the coast (e.g., flooding, landslides) (AghaKouchak et al., 2020). The cyclone corridor of the Northern Tropic also crosses tectonically active zones, introducing the possibility of earthquakes, tsunamis, and volcanic activity that could exacerbate the impacts of a cyclone event, or vice versa (Matthews et al., 2002). These same regions are tourist destinations. In 2019, the top three regions in which tourism contributed the greatest proportion of whole-economy GDP were the Caribbean (14%), Southeast Asia (12%), and Oceania (12%) (WTTC, 2020). Of the top ten locales where economic impacts of recent disasters (calculated as %GDP) have been highest, nine are in the Caribbean (CRED and UNDRR, 2020). Moreover, European colonial occupation and systematised racial capitalism was pervasive across the Caribbean, Southeast Asia, and Oceania, with cultural, societal, and administrative legacies that persist in the present (Cohen, 2011; Davis et al., 2019; Look et al., 2019; Lightfoot, 2020; Rivera, 2020).

Despite the overlapping geographies of disaster settings and tourist destinations, some tourism scholars have noted a dearth of work on "the interface of tourism and disaster" (Cohen, 2011). Research has tended to examine the effects of disasters on the tourism industry (Scott et al., 2012; Becken et al., 2014; Mair et al., 2016; Schmude et al., 2018), while little attention has gone to a more critical perspective of what tourism entails – socially, culturally, environmentally – for the places it affects (Bianchi, 2009). In many settings, the tourism industry functions as a power broker in post-disaster recovery (Klein, 2007; Cohen, 2011; Wright et al., 2020). Tourism-driven interests have been linked to "disaster capitalism": the deliberate profiteering from societal disruption (Klein, 2007; Loewenstein, 2015), including opportunistic profiteering in the wake of disaster events, such as government-sanctioned "land grabbing" of public lands and/or smallholdings by private, for-profit entities (Cohen, 2011). Beyond a handful of case studies, new analyses of the relationship between tourism and disaster capitalism have been slow to emerge – and beyond its conceptual premise (Wright et al., 2020), there has been no systematic examination of the tourism industry as a facet of disaster capitalism.

Research suggests that disasters themselves now represent a new market for corporate investment, termed the "disaster-capitalism complex" (Klein, 2007). A predicate of the disaster-
capitalism complex is privatisation, or the replacement of formerly state or public-sector roles and provisions by for-profit contractors, particularly multinational corporations (Klein, 2007; Gunewardena and Schuller, 2008; Gotham, 2012; Loewenstein, 2015). Although processes of recovery and reconstruction are fundamental to disaster-risk reduction, privatisation of those processes typically lacks transparency (Klein, 2007; Gotham, 2012; Loewenstein, 2015; Gould and Lewis, 2018; Lightfoot, 2020). Privatisation appears to be a key process intrinsic to both the gilded and safe-development components of disaster traps, and while private-sector involvement in post-disaster response is not new, the scale of its involvement is (Gotham, 2012; Gotham and Greenberg, 2014). Cost inflation by for-profit entities remains a largely unexplored driver behind the rising economic costs of disasters (Klein, 2007; Gotham, 2012), and the extent and magnitude of the disaster-capitalism complex following hazard-triggered disasters has not been systematically surveyed.

A growing body of critical scholarship that joins disasters studies with tourism examines the omnipresence of colonial legacies in a sprawling geography of post-disaster settings (Cruz-Martínez et al., 2018; Davis et al., 2019; Moulton and Machado, 2019; Popke and Rhiney, 2019; Bonilla, 2020; Rivera, 2020; Popke, 2020). Although critiques differ, scholarship agrees that many disaster settings are shaped by legacies of colonial occupation and systematised racial capitalism. Channels of aid and intergovernmental discourse regarding disaster response, responsibility, and recovery are freighted by, and inextricable from, historical colonial relationships (Moulton and Machado, 2019). Rivera (2020) coined the term “disaster colonialism" to explicitly tie cyclical disaster events to the perpetuation of colonisation through the contrivance of structural, systemic dependencies and the ingrained effects of coloniality. In cyclone corridors, disaster colonialism overlaps with cultural, social, political, and economic legacies of systematised racial capitalism (Davis et al., 2019). The manifestation and intensification of present-day disaster traps cannot be explained without accounting for coloniality (Rivera, 2020) – and resistance to racial capitalism may hold clues for how to break disaster traps (Davis et al., 2019).

Figure 1. Conceptual model of the disaster trap.
4 A conceptual illustration of the disaster trap

A conceptual model of the disaster trap (Fig. 1) illustrates how the components of this system – from tourism and privatisation to geophysical shocks and disaster capitalism – are related by feedbacks among social structures and environmental change. The example below steps through a generic coastal locale to explicate the theoretical premise.

Here, I start with the gilded trap. A common strategy for economic growth is to attract foreign investment in local assets that promote tourism (Endo, 2006; Barrowclough, 2007; Fauzel et al., 2017). Transforming space into tourist amenities (e.g., hotels, resorts, holiday homes) can displace existing, if less lucrative, local economic sectors, and likewise displace people from existing, if less lucrative, forms of land tenure (e.g., common ownership, subsistence agriculture) (Gould and Lewis, 2018; Look et al., 2019; Lightfoot, 2020). Consequently, local employment shifts into service roles for the burgeoning "tourism complex" (Cutter and Emrich, 2006). Many coastal resorts are controlled by multinational corporations (Scott et al. 2012), meaning tourist money spent locally does not stay local, and wages and benefits may be depressed for lack of competitive alternatives (Cutter and Emrich, 2006; Lightfoot, 2020). This can open a wealth gap (Cutter and Emrich, 2006; Tselios and Tompkins, 2019), or exacerbate inequities from a colonial legacy (Cruz-Martínez et al., 2018; Davis et al., 2019; Look et al., 2019; Moulton and Machado, 2019; Popke and Rhiney, 2019; Bonilla, 2020; Lightfoot, 2020; Popke, 2020; Rivera, 2020). As the local economy depends increasingly on tourism, the gilded trap gains strength. The stronger the gilded trap, the more vulnerable it is to economic shocks like the global collapse of tourism during the COVID-19 pandemic (ILO, 2020; Mohammed and Rei, 2020).

This gilded trap of tourism can in turn drive a safe-development trap of hazard protection. Coastal resort infrastructure tends to degrade the physical environment on which it depends for natural capital (wide beaches draw more people) and natural hazard protection (dune fields buffer waves; tidal wetlands absorb storm surge) (Lewsey et al., 2004; Nordstrom, 2004; Carr et al., 2009; Masselink and Lazarus, 2019). Because coastal resorts are such economically valuable assets, they can demand engineered protection (seawalls, beach nourishment) from natural hazard impacts (cyclones) – despite being deliberately situated in zones of high exposure (Lewsey et al., 2004; Nordstrom, 2004; Scott et al., 2012; Lazarus et al., 2016). The presence of hazard protection can have the unintended consequence of stimulating additional infrastructural development behind that protection (Burby, 2006; Di Baldassarre et al., 2015). Hazard protection prevents minor damage, but when the defences do fail, the economic consequences are then extreme (Mileti, 1999, Werner and McNamara, 2007; Lazarus, 2014; Lazarus et al., 2016).

Damage by a hazard event necessitates post-disaster reconstruction, a phase in which for-profit multinational corporations may exert powerful influence, and formerly public services and/or resources get outsourced to private contractors (Klein, 2007; Gunewardena and Schuller, 2008; Gotham, 2012; Loewenstein, 2015). The safe-development trap twists the rhetoric of "building back better" (UNDRR, 2015) into "building back bigger" (Lazarus et al., 2018) – increasing the exposure of at-risk assets, reinforcing the predicates of the gilded trap, decreasing collective resilience, and ensuring that the total economic cost of the next disaster events will be even greater. Monetisation of risk into re/insurance markets can enable further infrastructure and investment in hazard zones (Auffret, 2003; Joyette et al., 2015; Taylor and Weinkle, 2020). Privatisation in the gilded trap, via foreign direct investment in tourism assets, and in the safe-
development trap, via the disaster-capitalism complex of post-disaster reconstruction, functions as a kind of dynamical accelerant, fuelling both components of the disaster trap.

5 An empirical illustration of the disaster trap: Antigua & Barbuda

To demonstrate how the generalised disaster trap (Fig. 1) can be constructed for a given setting from a portfolio of social and physical evidence, here I provide a preliminary sketch of disaster-trap dynamics in Antigua & Barbuda (Fig. 2). But to be clear: a trap describes a dynamic, not a place nor its peoples.

Antigua & Barbuda, an independent Commonwealth nation of islands in the eastern Caribbean, presents one example of disaster-trap dynamics. In pursuit of economic growth, the parliamentary government of Antigua & Barbuda works to attract foreign direct-investment and development aid (World Bank Group 2013, 2017; World Bank DataBank, 2021) – typically in forms that serve the interests of international tourism (Gould and Lewis, 2018; Look et al., 2019; Lightfoot, 2020). Dependence on tourism is nearly total: tourism accounts for >40% of Antigua & Barbuda's GDP, and engages >90% of its labour (direct and indirect) (ILO, 2020; Mohammed and Rei, 2020; Antigua & Barbuda Statistics Division, 2021). Wealth inequality is significantly higher than the global average (Thomas, 1994; Davies et al., 2007; Credit Suisse, 2018, 2019). Those numbers reflect one of the strongest gilded traps in the Caribbean.

However, what makes this example illuminating for this project is that while a gilded trap has long gripped Antigua, Barbuda has resisted – due in part to their starkly contrasting land-use histories and post-colonial governance (Look et al., 2019; Lightfoot, 2020). Where the land of Antigua is carved up into private and foreign ownership and the economy is dominated by the tourist industry, the land of Barbuda is held in common among Barbudans and the economy is largely one of civil service and subsistence (Lightfoot, 2020) – plus a subsidy from Antigua (Gould and Lewis, 2018). Under British colonial rule, Antigua was converted to sugarcane plantations farmed by enslaved people; Barbuda could not sustain plantation agriculture, and so was used as a provisioning island controlled by a single colonial family (Look et al., 2019; Lightfoot, 2020). With emancipation, Antigua became entangled in the continuance of private holdings by foreign owners, while Barbuda essentially defaulted to the formerly enslaved people living there. Although not codified until the Barbuda Land Act of 2007, Barbudan land is held in common by Barbudans; land can be leased but not owned, thus discouraging the kinds of major hotel and resort developments now characteristic of Antigua (Look et al., 2019; Lightfoot, 2020).

Relative to Antigua, buildings on Barbuda tend to be smaller, and there are far fewer of them (OpenStreetMap, 2021). With its sparse built environment, Barbuda has kept its beach systems more intact than other islands with intensive resort development (Gould and Lewis, 2018). The spatial extent of mangrove systems around both islands has declined steeply, and the ecological health of their reef and fish ecosystems remain vulnerable (Lewsey et al., 2004; Carr et al., 2009; Johnson et al., 2020; Hubbart et al., 2020; UN, 2021) – especially given climate change projections that suggest the future may bring less precipitation, hotter temperatures, and sea-level rise (Simpson et al., 2009; Wong et al., 2014; Birchenough, 2017; WHO and UNFCCC, 2020). National guidance advises shoreline set-backs, dune and vegetation conservation, and coastal stewardship, but seawalls are prevalent on Antigua (James, 2003; Simpson et al., 2012); the more rural Barbuda still appears largely free from seawalls. However, for both islands, even if
cyclone frequency and intensity remains unchanged, sea-level rise guarantees that the severity of cyclone impacts can only increase (Wong et al., 2014).

Antigua & Barbuda have been struck by dozens of hurricanes during the past century (CRED, 2021; NOAA, 2021), but Hurricane Irma, in 2017, triggered unprecedented changes in the socio-political relationship between the two islands that struck many observers as a case of disaster capitalism (Ferrando, 2018; Gould and Lewis, 2018; Look et al., 2019; Sou, 2019; Lightfoot, 2020; Wright et al., 2020). Hurricane Irma destroyed ~90% of buildings on Barbuda and precipitated the evacuation of its population to Antigua (Lightfoot, 2020). Over Barbudan opposition, the national government used the disruption of the hurricane to override Barbudan land law and force open opportunities for private investment and ownership – specifically for two resort complexes and a new international airport to service them (Gould and Lewis, 2018; Gruenbaum, 2018, 2021; Look et al., 2019; Brown, 2020; Lightfoot, 2020). These new developments directly impact a Ramsar-designated dune and wetland system (GLAN, 2021), and >100 ha of forest and ecologically sensitive habitat have already been cleared (EJA, 2021). At one of the new resort sites, a new 250 m seawall is visible from space – and behind it, the spatial footprint of a resort already five times larger than its predecessor.

The prime minister, Gaston Browne, promised that Barbuda would be rebuilt "bigger and better" (Beauchamp, 2018) – but his plans prompted accusations of disaster capitalism (Gould and Lewis, 2018; Lightfoot, 2020). Browne invited extensive journalistic coverage of Barbuda's post-hurricane condition, in part to attract investment in a reconstruction agenda that included, in addition to the new airport, works on two schools, and $USD 20 million for new homes (along with land for purchase as freehold property, contravening Barbudan law) (Lightfoot, 2020).

Privatisation of Barbudan assets would also expand the reach of insurance and reinsurance instruments into Antigua & Barbuda. With land on Barbuda held in common, homes on the island are not underwritten by private insurance (Lightfoot, 2020): in 2011, only 4% of households on Barbuda and 31% on Antigua carried "dwellings" insurance (Antigua & Barbuda Census, 2011); meanwhile, in 2010, 80% of tourism enterprises were insured by commercial underwriters (World Bank and GFDRR, 2010). After Irma, in 2017, Antigua & Barbuda received $USD 6.8 million from the Caribbean Catastrophe Risk Insurance Facility – a private company that provides insurance coverage granting national governments short-term liquidity in the event of a disaster (CCRIF, 2021). Insured properties get reported in damage assessments, and fast-tracked for compensation; uninsured properties do not, and their ownership may be contested (Esnard and Sapat, 2018; Sou and Webber, 2019). Scholarship from other disaster settings suggests that the growing presence of reinsurance will begin – or has already begun – to transform the characteristics of the country's built environment (Taylor and Weinkle, 2020).

If these programmes of land privatisation and resort development on Barbuda advance (as some have, despite court injunctions) (Lightfoot, 2020; GLAN, 2021), then so will the ratchet of the disaster trap – making the country as a whole more dependent on a single economic sector, with greater infrastructural and socio-economic exposure to future natural hazard impacts. A higher risk profile will drive greater uptake of insurance and reinsurance, in part to attract and retain additional private investments that want some guarantee of protection in the event of a disaster. Making even more of the national labour force reliant on tourism will reduce the country's resilience: in this case, the relative severity of a disturbance, and how quickly the country can
recover from it. Interviews with journalists and researchers suggest that Barbudans are not opposed to economic opportunity, but to the inevitabilities of the services corps of the tourism industry, specifically (Gould and Lewis, 2018; Lightfoot, 2020). With the shutdown of international tourism under the coronavirus pandemic, Antigua & Barbuda face an estimated loss of ~17% GDP (ILO, 2020). Responses to this shock have focused on rearrangements within the tourism sector, but not potential alternatives to tourism – noting, for example, the quick rebound of "yacht tourism" in Antigua & Barbuda and neighbouring countries (Mohammed and Rei, 2020). Through court injunctions on the development projects and other political actions, Barbudans are resisting the imposition of post-hurricane changes that would dramatically alter the character of their island (Gould and Lewis, 2018; Long et al., 2019; Lightfoot, 2020).

Figure 2. Empirical illustration of disaster trap dynamics from Antigua & Barbuda. Constructed from various sources: economic growth, foreign direct investment, and development assistance (World Bank DataBank, 2021); tourism complex (ILO, 2020; Mohammed and Rei, 2020; Antigua & Barbuda Statistics Division, 2021); economic shock (ILO, 2020); pre-existing economy (Lightfoot, 2020); land tenure (Look et al., 2019; Lightfoot, 2020); land-use change (EJA, 2021; GLAN, 2021; own data – Google Earth Pro); wealth inequality (Thomas, 1994; Davies et al., 2007; Credit Suisse, 2018, 2019); climate change (Simpson et al., 2009; Wong et al., 2014; Birchenough, 2017; WHO and UNFCCC, 2020); geophysical shocks (CRED, 2021; NOAA, 2021); hazard defences; built environment (own data – OpenStreetMap, 2021); natural environment (Lewsey et al., 2004; Carr et al., 2009; Johnson et al., 2020; Hubbart et al., 2020; UN, 2021); damage (Look et al., 2019; Lightfoot, 2020); disaster capitalism complex and privatisation (Ferrando, 2018; Gould and Lewis, 2018; Gruenbaum, 2018, 2021; Look et al., 2019; Sou, 2019; Brown, 2020; Lightfoot, 2020; Wright et al., 2020); monetisation of risk (World Bank and GFDRR, 2010; Antigua & Barbuda Census, 2011; CCRIF, 2021); build-back recovery (Lightfoot, 2020); total cost of damages (CRED, 2021).
6 Future directions

Disaster traps, as a theoretical framework, could help guide expansive, comprehensive, interdisciplinary, empirical investigation of disaster settings around the world, delivering formalised descriptions of disaster-trap system states and behaviours systems that reveal when and where policy interventions into disaster systems might be most effective at reducing disaster risk. Demonstrating quantitative, empirical evidence of systemic feedbacks is the crux challenge of current disaster research (UNDRR, 2019), and the nature of disaster traps as coupled human–environmental systems, with tangled social and cultural histories, necessitates an interdisciplinary approach (Mileti, 1999; Cutter et al., 2015; Haider et al., 2018; UNDRR, 2019; Dornelles et al., 2020). A growing body of disaster scholarship is emphasising the importance of contextual data in assessments of disaster impacts (Dwyer and Horney, 2014; Sou and Webber, 2019; UNDRR, 2019). Moreover, testing theory with empiricism requires synthesis: expansion beyond isolated case studies (Mileti, 1999; Cutter et al., 2015; UNDRR, 2019) to systematic, comparative assessments that capture commonalities and key differences across disaster settings.

Formalising a linkage between gilded and safe-development traps matters because their effects likely compound each other non-linearly, such that disaster risk only increases and disaster-risk reduction becomes increasingly difficult to achieve. "Safe development" maladaptation in hazard-prone coastal zones is especially topical because of the kinds of projects typically supported by climate-finance programmes for climate-change adaptation, per the UN Sustainable Development Goals (Sovacool, 2011; Donner et al., 2011; Seddon et al., 2020). Even programmes under the banner of sustainable development can drive up disaster risk: as long as climate finance, via major development banks, underwrites hard-infrastructure projects like seawalls (Sovacool, 2011), then a proliferation of the built environment behind those coastal defences appears inevitable, reinforcing the trap.

Although longitudinal analyses in disaster studies remain comparatively rare (Mileti, 1999; Zhang and Peacock, 2009; Olshansky et al., 2012; Peacock et al., 2014; Elliot and Howell, 2017; Lazarus et al., 2018; Howell and Elliott, 2019; Sou and Webber, 2019; Tselios and Tompkins, 2019; UNDRR, 2019; Fanchiotti et al., 2020; Finucane et al., 2020; Rivera, 2020), longitudinal dynamics are intrinsic to systems perspectives (Werner and McNamara, 2007), and future studies of disaster traps should make them central. Post-disaster recovery is diffuse and attenuated, as different aspects of local recovery play out at different rates (Olshansky et al., 2012; Finucane et al., 2020). Some patterns of post-disaster change may take years to decades to become apparent (Zhang and Peacock, 2009; Elliot and Howell, 2017; Lazarus et al., 2018; Howell and Elliott, 2019). Consideration of time scales longer than those typically addressed by disaster-impact studies is essential to reframing scientific understanding of post-disaster recovery (Olshansky et al., 2012).

There is no consensus regarding how to break and escape social traps (Meadows, 2008; Dornelles et al., 2020). However, if addressing traps requires understanding them as dynamic systems (Meadows, 2008; Boonstra and de Boer, 2014; Haider et al., 2018; Dornelles et al., 2020), then any solution starts with interrupting the reinforcing feedbacks that lend the trap its strength (Meadows, 2008). Breaking and escaping the disaster trap will likely require multiple, coordinated interventions, and likely begin with organised local resistance to counter the rapid mechanisms of opportunistic, technocratic responses to disasters. Escaping the disaster trap might therefore depend on organised local resistance to machinations of the disaster-capitalism complex through
two kinds of intervention: local economic diversification (Xiao and Drucker, 2013; Martin and Sunley, 2015; Brown and Greenbaum, 2017) and greater wealth equality (Tselios and Tompkins, 2019) to weaken the gilded trap, and a combination of non-engineered hazard protection (e.g., shoreline setbacks, tidal-wetland protection) (Temmerman et al., 2013; Seddon et al., 2020) and strict enforcement of progressive building codes that account for climate-driven environmental change (Godschalk et al., 1989; Mileti, 1999; Berke and Campanella, 2006).

Acknowledgements
I am grateful for helpful discussions with Alida Payson, Evan Goldstein, Dylan McNamara, Danielle Zoë Rivera, Gemma Sou, Tomaso Ferrando, Adom Philogene Heron, Suzanne Reimer, Emma Tompkins, Stephen Darby, Felix Eigenbrod, and those I had the pleasure of interviewing for the Geographies of Risk podcast (https://envidynxlab.org/portfolio/geographies-of-risk-podcast/). This work was supported in part by funding from the Leverhulme Trust (RPG-2018-282).

CRediT Author Statement
Eli D Lazarus: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Writing.
REFERENCES

AghaKouchak A, et al. (2020) Climate extremes and compound hazards in a warming world, *Annual Review of Earth and Planetary Sciences*, 48, 519–548

Antigua and Barbuda Statistics Division, 2011 Population and housing census. Available: https://statistics.gov.ag/census-2/ [accessed April 2021]

Armstrong SB, Lazarus ED (2019) Masked shoreline erosion at large spatial scales as a collective effect of beach nourishment, *Earth's Future*, 7(2), 74–84

Armstrong SB, Lazarus ED, Limber PW, Goldstein EB, Thorpe C, Ballinger RC (2016) Indications of a positive feedback between coastal development and beach nourishment, *Earth's Future*, 4(12), 626–635

Auffret P (2003) Catastrophe insurance market in the Caribbean Region: Market failures and recommendations for public sector interventions, World Bank Policy Research Working Paper 2963. Available: https://elibrary.worldbank.org/doi/abs/10.1596/1813-9450-2963 [accessed April 2021]

Barrowclough D (2007) Foreign investment in tourism and small island developing states, *Tourism Economics*, 13(4), 615–638

Beauchamp Z, "What It's Like to Run a Country That Could Be Destroyed by Climate Change," Vox, 13 February 2018. Available: www.vox.com/world/2018/2/13/17003008/climate-change-antigua-barbuda-gaston-browne [accessed April 2021]

Becken S, Mahon R, Rennie HG, Shakeela A (2014) The tourism disaster vulnerability framework: An application to tourism in small island destinations, *Natural Hazards*, 71(1), 955–972

Berke PR, Campanella TJ (2006) Planning for postdisaster resiliency, *Annals of the American Academy of Political and Social Science*, 604(1), 192–207

Birchenough SNR (2017) Impacts of climate change on biodiversity in the coastal and marine environments of Caribbean small-island developing states (SIDS), Caribbean Marine Climate Change Report Card: Science Review, Commonwealth Marine Economies Programme, 40–51. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/605072/5_Biodiversity.pdf [accessed April 2021]

Bonilla Y (2020) The coloniality of disaster: Race, empire, and the temporal logics of emergency in Puerto Rico, USA. *Political Geography*, 78, 102181

Boonstra WJ, de Boer FW (2014) The historical dynamics of social–ecological traps, *Ambio*, 43(3), 260–274

Brown A (2020) Caribbean islanders: "Environmentalist" billionaire building resort on protected wetlands, The Intercept. Available: https://theintercept.com/2020/12/09/barbuda-resorts-dejoria-de-niro/ [accessed April 2021]

Brown L, Greenbaum RT (2017) The role of industrial diversity in economic resilience: An empirical examination across 35 years, *Urban Studies*, 54(6), 1347–1366
Burby RJ (2006) Hurricane Katrina and the paradoxes of government disaster policy: Bringing about wise governmental decisions for hazardous areas, *Annals of the American Academy of Political and Social Science*, 604(1), 171–191

Caribbean Catastrophe Risk Insurance Facility, CCRIF SPC payouts. Available: https://www.ccrif.org/aboutus/cccsp-payouts [accessed April 2021]

Carr LM, Heyman WD (2009) Jamaica bound? Marine resources and management at a crossroads in Antigua and Barbuda. *Geographical Journal*, 175(1), 17–38

Centre for Research on the Epidemiology of Disasters (CRED) (2021) The International Disaster Database (The Emergency Events Database: EM-DAT): https://www.emdat.be/ [accessed April 2021]

Cohen E (2011) Tourism and land grab in the aftermath of the Indian Ocean tsunami, *Scandinavian Journal of Hospitality and Tourism*, 11(3), 224–236

CRED & UNDRR, *Human cost of disasters: an overview of the last 20 years, 2000–2019*. Available: https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019 [accessed April 2021]

Credit Suisse Global Wealth Databooks (2018, 2019). Available: https://www.credit-suisse.com/about-us/en/reports-research/studies-publications.html [accessed April 2021]

Cruz-Martínez G, et al. (eds) (2018), The making of Caribbean not-so-natural disasters (special issue), *Alternautas*, 5(2). Available: http://www.alternautas.net/blog/2018/9/7/introduction-to-the-special-issue-the-making-of-caribbean-not-so-natural-disasters [accessed April 2021]

Cutter SL, Emrich CT (2006) Moral hazard, social catastrophe: The changing face of vulnerability along the hurricane coasts, *Annals of the American Academy of Political and Social Science*, 604(1), 102–112

Cutter SL, et al. (2015) Global risks: Pool knowledge to stem losses from disasters, *Nature*, 522, 277–279

Davies JB, Sandström S, Shorrocks A, Wolff EN (2007) Estimating the level and distribution of global household wealth, WIDER Research Paper, No. 2007/77, United Nations University World Institute for Development Economics Research (UNU-WIDER), Helsinki

Davis J, Moulton AA, Van Sant L, Williams B (2019) Anthropocene, capitalocene,… plantationocene? A manifesto for ecological justice in an age of global crises. *Geography Compass*, 13(5), e12438

Di Baldassarre G, et al. (2015) Debates – Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes, *Water Resources Research*, 51(6), 4770–4781

Donner SD, Kandlikar M, Zerrifi H (2011) Preparing to manage climate change financing, *Science*, 334(6058), 908–909

Dornelles AZ, et al. (2020) Towards a bridging concept for undesirable resilience in social–ecological systems, *Global Sustainability*, 3, e20, 1–12

Dwyer C, Horney J (2014) Validating indicators of disaster recovery with qualitative research, *PLoS Currents*, 6

Elliott JR, Howell J (2017) Beyond disasters: a longitudinal analysis of natural hazards' unequal impacts on residential instability, *Social Forces*, 95(3), 1181–1207

Endo K (2006) Foreign direct investment in tourism – flows and volumes, *Tourism Management*, 27(4), 600–614
Environmental Justice Atlas (EJA), "New airport on the island of Barbuda; Antigua & Barbuda". Available: https://ejatlas.org/conflict/barbuda-new-airport [accessed April 2021]

Esnard AM, Sapat A (2018) Population/community displacement, in: Rodriguez H, et al. (eds), Handbook of Disaster Research, Springer: 431–446

Fanchiotti M, Dash J, Tompkins EL, Hutton C (2020) The 1999 super cyclone in Odisha, India: A systematic review of documented losses. International Journal of Disaster Risk Reduction, 101790

Fauzel S, Seetanah B, Sannassee RV (2017) Analysing the impact of tourism foreign direct investment on economic growth: Evidence from a small island developing state, Tourism Economics, 23(5), 1042–1055

Ferrando T (2018) ‘Land grab’ on hurricane-hit Barbuda could leave the island almost entirely owned by banks, The Conversation. Available: https://theconversation.com/land-grab-on-hurricane-hit-barbuda-could-leave-the-island-almost-entirely-owned-by-banks-95538 [accessed April 2021]

Finucane ML, Acosta J, Wicker A, Whipkey K (2020) Short-term solutions to a long-term challenge: rethinking disaster recovery planning to reduce vulnerabilities and inequities, International Journal of Environmental Research and Public Health, 17(2)

Gladstone D, Préau J (2008) Gentrification in tourist cities: Evidence from New Orleans before and after Hurricane Katrina, Housing Policy Debate, 19(1), 137–175

Global Legal Action Network (GLAN), Call for international mission over US developers luxury residences & golf course on Barbuda wetland. Available: https://www.glanlaw.org/single-post/call-for-international-mission-over-us-developers-luxury-residences-golf-course-on-barbuda-wetland [accessed April 2021]

Godschalk DR, Brower DJ, Beatley T (1989) Catastrophic coastal storms: Hazard mitigation and development management, Duke University Press

Google Earth Pro, v7.3. Available: https://www.google.com/intl/en_uk/earth/
versions/#earth-pro [accessed April 2021]

Gotham K (2012) Disaster, Inc.: Privatization and Post-Katrina rebuilding in New Orleans, Perspectives on Politics, 10(3), 633–646

Gotham KF, Greenberg M (2014) Crisis cities: Disaster and redevelopment in New York and New Orleans, Oxford University Press

Gould KA, Lewis TL. (2018) Green gentrification and disaster capitalism in Barbuda, NACLA Report on the Americas, 50(2), 148–153

Gruenbaum O (2018) Antigua & Barbuda: Paradise regained? The Round Table: The Commonwealth Journal of International Affairs. Available: https://www.commonwealthroundtable.co.uk/commonwealth/americas/antigua-and-barbuda/antigua-barbuda/paradise-regained/ [accessed April 2021]

Gruenbaum O (2021) Antigua and Barbuda: Legal challenge to 'land grab' for Barbuda resort, The Round Table: The Commonwealth Journal of International Affairs. Available: https://www.commonwealthroundtable.co.uk/commonwealth/americas/antigua-and-barbuda/antigua-and-barbuda-legal-challenge-to-land-grab-for-barbuda-resort/ [accessed April 2021]

Gunewardena N, Schuller M (eds) (2008) Capitalizing on catastrophe: Neoliberal strategies in disaster reconstruction, AltaMira Press
Gittman RK, *et al.* (2015) Engineering away our natural defenses: an analysis of shoreline hardening in the US, *Frontiers in Ecology and the Environment*, 13(6), 301–307

Haider LJ, Boonstra WJ, Peterson GD, Schlüter M (2018) Traps and sustainable development in rural areas: a review, *World Development*, 101, 311–321

Howell J, Elliott JR (2019) Damages done: The longitudinal impacts of natural hazards on wealth inequality in the United States, *Social Problems*, 66(3), 448–467

Hubbart JA, *et al.* (2020) Challenges for the island of Barbuda: A distinct cultural and ecological island ecosystem at the precipice of change, *Challenges*, 11(1), 12

International Labour Organization (ILO) (2020) COVID-19 and the English- and Dutch-speaking Caribbean labour market: A rapid assessment of impact and policy responses at the end of Q3, 2020, International Labour Organization, Office for the Caribbean. Available: https://www.ilo.org/wcmsp5/groups/public/---americas/---ro-lima/---sro-port_of_spain/documents/publication/wcms_760354.pdf [accessed April 2021]

James P (2003) Analysis of beach changes in Antigua & Barbuda 1996–2001, report for the Fisheries Division, Ministry of Agriculture, Lands, and Fisheries, Antigua & Barbuda. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.507.6234&rep=rep1&type=pdf [accessed April 2021]

Johnson AE, *et al.* (2020). Marine spatial planning in Barbuda: A social, ecological, geographic, and legal case study, *Marine Policy*, 113, 103793

Joyette AR, Nurse LA, Pulwarty RS (2015) Disaster risk insurance and catastrophe models in risk-prone small Caribbean islands, *Disasters*, 39(3), 467–492

Kates RW, Colten CE, Laska S, Leatherman SP (2006) Reconstruction of New Orleans after Hurricane Katrina: a research perspective, *Proceedings of the National Academy of Sciences*, 103(40), 14653–14660

Klein N (2007) *The shock doctrine: The rise of disaster capitalism*, Macmillan

Lazarus ED (2014) Threshold effects of hazard mitigation in coastal human–environmental systems, *Earth Surface Dynamics*, 2(1), 35–45

Lazarus ED (2017) Toward a global classification of coastal anthromes, *Land*, 6(1), 13

Lazarus ED, Ellis MA, Murray AB, Hall DM (2016) An evolving research agenda for human–coastal systems, *Geomorphology*, 256, 81–90

Lazarus ED, Limber PW, Goldstein EB, Dodd R, Armstrong SB (2018) Building back bigger in hurricane strike zones, *Nature Sustainability*, 1(12), 759–762

Lewsey C, Cid G, Kruse E (2004) Assessing climate change impacts on coastal infrastructure in the Eastern Caribbean, *Marine Policy*, 28(5), 393–409

Lightfoot N (2020) Disrepair, distress, and dispossession: Barbuda after Hurricane Irma, *Small Axe: A Caribbean Journal of Criticism*, 24(2), 133–146

Loewenstein A (2015) *Disaster capitalism: Making a killing out of catastrophe*, Verso Books

Logan TM, Guikema SD, Bricker JD (2018) Hard-adaptive measures can increase vulnerability to storm surge and tsunami hazards over time, *Nature Sustainability*, 1(9), 526–530

Look C, Friedman E, Godbout G (2019) The resilience of land tenure regimes during Hurricane Irma: How colonial legacies impact disaster response and recovery in Antigua and Barbuda, *Journal of Extreme Events*, 6(01), 1940004
Mair J, Ritchie BW, Walters G (2016) Towards a research agenda for post-disaster and post-crisis recovery strategies for tourist destinations: a narrative review, *Current Issues in Tourism*, 19(1), 1–26

Martin R, Sunley P (2015) On the notion of regional economic resilience: conceptualization and explanation, *Journal of Economic Geography*, 15(1), 1–42

Masselink G, Lazarus ED (2019) Defining coastal resilience, *Water*, 11(12), 2587

Matthews AJ, Barclay J, Carn S, Thompson G, Alexander J, Herd R, Williams C (2002) Rainfall-induced volcanic activity on Montserrat, *Geophysical Research Letters*, 29(13), 22-1

Meadows DH (2008) *Thinking in systems: A primer*, Chelsea Green Publishing

Mileti D (1999) *Disasters by design: A reassessment of natural hazards in the United States*, Joseph Henry Press

Mohammed N, Rei D (2020) Tourism sector in the English- and Dutch-speaking Caribbean: An overview and the impact of COVID-19 on growth and employment, International Labour Organization, Office for the Caribbean. Available: https://www.ilo.org/wcmsp5/groups/public/---americas/---ro-lima/---sro-port_of_spain/documents/publication/wcms_753077.pdf [accessed April 2021]

Moulton AA, Machado MR (2019) Bouncing forward after Irma and Maria: Acknowledging colonialism, problematizing resilience and thinking climate justice, *Journal of Extreme Events*, 6(1), 1940003

NOAA historical hurricane tracks. Available: https://coast.noaa.gov/hurricanes/#map=4/32/-80 [accessed April 2021]

Nohrstedt D, Mazzoleni M, Parker CF, Di Baldassarre G (2021) Exposure to natural hazard events unassociated with policy change for improved disaster risk reduction, *Nature Communications*, 12(1), 1–11

Nordstrom KF (2004) *Beaches and dunes of developed coasts*, Cambridge University Press

Nunn PD, Klöck C, Duvat V (2021) Seawalls as maladaptations along island coasts, *Ocean & Coastal Management*, 205, 105554

Olshansky RB, Hopkins LD, Johnson LA (2012) Disaster and recovery: Processes compressed in time, *Natural Hazards Review*, 13(3), 173–178

OpenStreetMap (via Github). Available: https://github.com/openstreetmap [accessed April 2021]

Peacock WG, Van Zandt S, Zhang Y, Highfield WE (2014) Inequities in long-term housing recovery after disasters, *Journal of the American Planning Association*, 80(4), 356–371

Pérez-Morales A, Gil-Guirado S, Olcina-Cantos J (2018) Housing bubbles and the increase of flood exposure: Failures in flood risk management on the Spanish south-eastern coast (1975–2013), *Journal of Flood Risk Management*, 11, S302-S313

Popke J, Rhiney K (eds) (2019) The Caribbean after Irma and Maria: climate, development & the post-hurricane context [special issue], *Journal of Extreme Events*, 5(4) & 6(1)

Rhiney K (2020) Dispossession, disaster capitalism and the post-hurricane context in the Caribbean. *Political Geography*, 78, 102171

Rivera DZ (2020) Disaster colonialism: a commentary on disasters beyond singular events to structural violence, *International Journal of Urban and Regional Research*, https://doi.org/10.1111/1468-2427.12950
Schmude J, Zavareh S, Magdalena Schwaiger K, Karl M (2018) Micro-level assessment of regional and local disaster impacts in tourist destinations, *Tourism Geographies*, 20(2), 290–308

Scott D, Simpson MC, Sim R (2012) The vulnerability of Caribbean coastal tourism to scenarios of climate change related sea level rise. *Journal of Sustainable Tourism*, 20(6), 883–898

Seddon N, Chausson A, Berry, P, Girardin CA, Smith A, Turner B (2020) Understanding the value and limits of nature-based solutions to climate change and other global challenges, *Philosophical Transactions of the Royal Society B*, 375(1794), 20190120

Simpson MC, *et al.* (2009) An overview of modeling climate change impacts in the Caribbean Region with contribution from the Pacific Islands, United Nations Development Programme (UNDP), Barbados, West Indies. Available: https://coralreefwatch.noaa.gov/satellite/publications/UNDP_Final_Report.pdf [accessed April 2021]

Simpson MC, *et al.* (2012) Coastal setbacks in Latin America and the Caribbean: final report, a study of emerging issues and trends that inform guidelines for coastal planning and development, Inter-American Development Bank, Technical Note 476. Available: https://publications.iadb.org/publications/english/document/Coastal-Setbacks-in-Latin-America-and-the-Caribbean-A-Study-of-Emerging-Issues-and-Trends-that-Inform-Guidelines-for-Coastal-Planning-and-Development.pdf [accessed April 2021]

Smith G, Martin A, Wenger DE (2018) Disaster recovery in an era of climate change: The unrealized promise of institutional resilience, in: Rodríguez H, *et al.* (eds), *Handbook of Disaster Research*, Springer: 595–619

Sou G (2019) Barbudans are resisting ‘disaster capitalism’, two years after Hurricane Irma, *The Conversation*. Available: https://theconversation.com/barbudans-are-resisting-disaster-capitalism-two-years-after-hurricane-irma-119368 [accessed April 2021]

Sou G, Webber R (2019) Disruption and recovery of intangible resources during environmental crises: Longitudinal research on ‘home’ in post-disaster Puerto Rico, *Geoforum*, 106, 182–192

Sovacool BK (2011) Hard and soft paths for climate change adaptation, *Climate Policy*, 11(4), 1177–1183

Sovacool BK (2017) Don't let disaster recovery perpetuate injustice, *Nature*, 549(7673), 433

Steneck RS, *et al.* (2011) Creation of a gilded trap by the high economic value of the Maine lobster fishery, *Conservation Biology*, 25(5), 904–912

Stevens MR, Song Y, Berke PR (2010) New Urbanist developments in flood-prone areas: safe development, or safe development paradox? *Natural Hazards*, 53(3), 605–629

Taylor ZJ, Weinkle JL (2020) The riskscapes of re/insurance, *Cambridge Journal of Regions, Economy and Society*, 13(2), 405–422

Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ (2013) Ecosystem-based coastal defence in the face of global change, *Nature*, 504, 79–83

Thomas DR (1994) Estimation of Gini coefficients in selected (OECS) countries, *Social and Economic Studies*, 43, 71–93

Tselios V, Tompkins EL (2019) What causes nations to recover from disasters? An inquiry into the role of wealth, income inequality, and social welfare provisioning, *International Journal of Disaster Risk Reduction*, 33, 162–180
United Nations (2015) Sendai Framework for Disaster Risk Reduction 2015 – 2030, Geneva, Switzerland. Available: https://www.unredd.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 [accessed April 2021]

United Nations Data, Country Profiles: Antigua & Barbuda. Available: http://data.un.org/en/iso/ag.html [accessed April 2021]

United Nations Office for Disaster Risk Reduction (UNDRR) (2019) Global Assessment Report on Disaster Risk Reduction, Geneva, Switzerland. Available: https://gar.unredd.org/report-2019 [accessed April 2021]

Werner BT, McNamara DE (2007) Dynamics of coupled human-landscape systems, Geomorphology, 91(3-4), 393–407

WHO & UNFCCC Health & Climate Change Country Profile 2020 – Antigua & Barbuda. Available: https://www.who.int/docs/default-source/climate-change/who-unfccc-ch-country-profile-antigua-barbuda.pdf?sfvrsn=b73692e7_2&download=true [accessed April 2021]

Wong PP, et al. (2014) Coastal systems and low-lying areas, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field CB, et al. (eds), Cambridge University Press: 361–409

World Travel & Tourism Council (WTTC), Travel & Tourism: Economic Impact 2020. Available: https://wttc.org/Research/Economic-Impact [accessed April 2021]

Wright KA, Kelman I, Dodds R (2020) Tourism development from disaster capitalism. Annals of Tourism Research, 103070.

Xiao Y, Drucker J (2013) Does economic diversity enhance regional disaster resilience? Journal of the American Planning Association, 79(2), 148–160

Zhang Y, Peacock WG (2009) Planning for housing recovery? Lessons learned from Hurricane Andrew, Journal of the American Planning Association, 76(1), 5–24

World Bank DataBank, national indicators – Antigua & Barbuda (GDP, foreign direct investment, development aid). Available: https://databank.worldbank.org/home.aspx [accessed April 2021]

World Bank Group (2013) OECS Countries: The World Bank Group Country Opinion Survey FY 2014, Country Opinion Survey Program. Available: https://openknowledge.worldbank.org/handle/10986/21960 [accessed April 2021]

World Bank Group (2017) FY17 Country Opinion Survey Report for Member Countries of the Organisation of Eastern Caribbean States, Country opinion survey program. Available: https://openknowledge.worldbank.org/handle/10986/30079 [accessed April 2021]

World Bank & GFDRR (2010) Disaster Risk Management in Latin America and the Caribbean Region, Country Notes. Available: https://www.gfdrr.org/sites/default/files/publication/drm-country-note-2010-all-notes.pdf [accessed April 2021]