Getting more out of V/V_m than just the mean

Dilip G. Banhatti,1,*
1Zeleni Trg 3A, 10000 Zagreb, Croatia

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Banhatti earlier set down the procedure to derive cosmological number density $n(z)$ from the differential distribution $p(x)$ of the fractional luminosity volume relative to the maximum volume, $x \equiv V/V_m(0 \leq x \leq 1)$, using a small sample of 76 quasars for illustrative purposes. This procedure is here applied to a bigger sample of 286 quasars selected from Parkes half-Jansky flat-spectrum survey at 2.7 GHz. The values of $n(z)$ are obtained for 8 values of redshift z from 0 to 3.5. The function $n(z)$ can be interpreted in terms of redshift distribution obtained by integrating the radio luminosity function $\rho(P, z)$ over luminosities P for the survey limiting flux density $S_0 = 0.5$ Jy.

Key words: cosmology: miscellaneous

1 INTRODUCTION
The luminosity-volume or V/V_m test has traditionally been used only through the mean and standard error of $x \equiv V/V_m$ as a test to examine the space distribution of gamma-ray bursts for homogeneity. The test was extensively used for a few years for this purpose (e.g., Dezalay et al 1994 and references therein), but the question of the location of gamma-ray bursts within our Milky Way Galaxy or in other possibly distant galaxies was not resolved from these studies. Only on discovering afterglows of gamma-ray bursts at lower (X-ray, optical, infrared and radio) photon energies in distant galaxies and thereafter measuring redshifts of the parent galaxies did it become clear that they form a cosmological population.

Use of V/V_m distribution as outlined in this paper will be rewarding for a sufficiently large well-defined unbiased sample of gamma-ray bursts. It should be possible to construct such a sample from the results of space and ground-based gamma-ray telescopes by carefully taking into account detection methods and thresholds.

2 SAMPLE OF QUASARS USED AND THE WORLD MODEL
Drinkwater et al (1997) define the survey and list the properties of 323 quasars from which 286 can be used for calculating $x \equiv V/V_m$. The sample used is thus 89% complete relative to the survey, which covers 3.90 sr in the sky. Using the limiting flux density $S_0 = 0.5$ Jy at 2.7 GHz, the limiting redshift z_m is calculated for each quasar from its redshift z by

$$
\nu = 2.7 \text{ GHz flux density } S_0, \ \text{and spectral index } \alpha \ \text{(defined by } \alpha \equiv -d(log S_0)/d(log \nu), \ \text{or equivalently, } S_0 \propto \nu^{-\alpha}).
$$

The world model with the parameters $(q_0, \sigma_0, k, \lambda_0) = (1, 1, 1, 0)$ as defined by von Hoerner (1974) is used for the functions of z needed, viz, the luminosity distance $l_\nu(z)$ and volume $v(z)$. These functions are:

$$
(H_0/c)^2 l_\nu^2(z) = z^2/(1 + z)^{1-\alpha},
$$

$$
(H_0/c)^3 v(z) = (3/2)(\sin^{-1} f(z) - f(z)\sqrt{1 - f(z)^2}),
$$

where $f(z) = z/(1 + z)$.

Here, $c/H_0 = \text{speed of light} / \text{Hubble constant}$, defines the linear scale.
3 DERIVING $n(z)$ FROM $p(V/V_m) \equiv p(x)$

3.1 Binning the z_m-values

The quasars are first sorted out in increasing order of z_m. The limiting redshift is numerically calculated for each quasar using Newton-Raphson iteration (Rajarevathi 2007).

The z_m-bins are then selected, so as to have roughly equal numbers of sources (about 30) each, which is good enough to derive the differential distribution of $x \equiv V/V_m(0 \leq x \leq 1)$ for each of the bins. Details of this binning are given in Table 1. Also listed are numbers proportional to the cosmological number densities $n(z_j)$ corresponding to the bin mid-points z_j.

The procedure for calculating $n(z_j)$ is outlined later. Table 2 presents, for comparison, the same results for the smaller sample of 76 from Wills & Lynds (1978) used by Banhatti (2009), although the world model used for these calculations is (von Hoerner (1974)) $(q_0, \sigma_0, k, l_0) = (1/2, 1/2, 0, 0)$, for which the functions $f_z(z)$ and $v(z)$ are different (see Banhatti 2009).

3.2 Differential distributions $p_i(x)$ of $x \equiv V/V_m$ for the nine z_m-bins

For each of the 9 bins, indexed by $j = 1$ to 9, $p_i(x)$ histograms are plotted with $\Delta x = 0.2$ from $x = 0$ to 1, making five x-bins over the range $[0, 1]$ of x. For $p_i(x)$, a curve is drawn by eye. For all other $p_i(x)$, $i = 2$ to 9, the extrapolated frequency polygon, with slightly higher slope than the last segment (to $x = 1$), is used. Cosmological number density $n(z_j)$ is then calculated from the formula (Banhatti 2009):

$$n(z_j) = \frac{(\Omega/3)(c/H_0)^3}{V_j} \sum_{i=1}^{9} N_i \frac{v(z_j)}{v(z_i)} p_j(x_{ij}),$$

where $x_{ij} = v(z_j)/v(z_i)$, and Ω is the survey solid angle. In this formula, N_i are the bin populations of the 9 bins. Details of $n(z_j)$ calculation are shown in Table 3. Examples are given below:

$n(z_j) \propto \frac{(N_0/\nu(z_j))p_1(x_{1j})}{N_8/\nu(z_8)} + (N_9/\nu(z_9))p_9(x_{9j})$.

The $p_1(x)$ values are interpolated from the $p(x)$ frequency polygon. Thus, for $n(z_j)$ calculation, there are 9 terms to sum (many of which happen to be 0 due to $p_1(x_{1j})$ being 0). For $n(z_2)$ there are 8 terms, and so on. Finally, for $n(z_9)$ there is only one term: $n(z_9) \propto (N_9/\nu(z_9))p_9(x_{99}) = (31/2.112)2.65 = 38.9 \approx 39$.

Using $ln(z_m)$ in place of z_m in the whole analysis leads to essentially the same results.

The cosmological number density $n(z)$ is interpreted as the redshift distribution $n(z; S_0)$, which is the integral of the radio luminosity function $\rho(P, z)$ over all luminosities present in the sample as determined by the flux density limit. Thus,

$$n(z; S_0) = \int_{S_0}^{\infty} \rho(P, z) dP.$$ \hspace{1cm} (4)

This interpretation of $n(z)$ (derived from the differential distribution $p(x) \equiv p(V/V_m)$) as the redshift distribution $n(z; S_0)$ needs to be explored further and utilized in deriving the cosmological evolution of the source population (here quasars).

ACKNOWLEDGEMENTS

The work reported was done at School of Physics, Madurai Kamaraj University, Madurai, India. I thank Vasant Kulkarni for introducing me to V/V_m test and luminosity functions.

REFERENCES

Banhatti, D., G., 2009, arXiv 0902.1139, 0903.1903, 0903.2442, 0903.2549. The last and briefest version was presented at 27th Meeting of Astronomical Society of India at Indian Institute of Astrophysics, Bangalore.

Dezalay, J. -P. et al, 1994, AA 286 103

Drinkwater, M. J. et al, 1997, MNRaS 284 85

Kulkarni, V. K. & Banhatti, D. G., 1983, ApJ 274 469

Rajarevathi, M., 2007, MPhil Thesis Madurai Kamaraj University

Schmidt, M. et al, 1988, ApJ 329 L85-7

von Hoerner, S., 1974 Cosmology : Chap 13 in Kellermann, K I & Verschuur, G L (eds) 1974 Springer, Galactic & Extragalactic Radio Astronomy pp535-92

Wills, D. & Lynds, R., 1978 ApJSuppl 36 317-58

This paper has been typeset from a TeX/\LaTeX file prepared by the author.
Table 1. Limiting redshifts, their bins, mid-points & populations plus derived cosmological number densities using 286 quasars over 3.90 sr in the sky

z_m-bin	0 to 0.3	0.3 to 0.7	0.7 to 1.2	1.2 to 1.5	1.5 to 1.8	1.8 to 2.2	2.2 to 2.8	2.8 to 4.0	> 4.0
z_j (bin mid-pt)	0.15	0.5	0.95	1.35	1.65	2.0	2.5	3.4	300*
Bin pop.	29	34	34	32	33	32	30	31	31
j (bin no.)	1	2	3	4	5	6	7	8	9
$n(z_j)$	48770.	4717.	1560.	1167.	865.	642.	464.	194.	39.
$\log[n(z_j)]$	4.69	3.67	3.19	3.07	2.94	2.81	2.67	2.29	1.59

Table 2. Results of earlier similar calculation for a sample of 76 quasars

z_m-bin	0 to 0.8	0.8 to 1.6	1.6 to 2.4	2.4 to 3.2
z_j (bin mid-pt)	0.4	1.2	2.0	2.8
Bin pop.	19	31	16	10
j (bin no.)	1	2	3	4
$n(z_j)$	1307.	255.	67.	22.
$\log[n(z_j)]$	3.12	2.41	1.83	1.34

Table 3. Calculation of $n(z(j))$. Values in rows labelled $i = 1, i = 2$ & so on are $p(x(ij))$.

j	1	2	3	4	5	6	7	8	9
N_i	29	34	34	32	33	32	30	31	31
z_j	0.15	0.50	0.95	1.35	1.65	2.00	2.50	3.40	300*
$v(z_j)$	0.002231	0.03835	0.1251	0.2126	0.2773	0.3492	0.4436	0.5890	2.112
$i = 1$	1								
$i = 2$	0.058	1							
$i = 3$	0.018	0.307	1						
$i = 4$	0.010	0.180	0.588	1					
$i = 5$	0.008	0.138	0.451	0.767	1				
$i = 6$	0.006	0.110	0.358	0.609	0.794	1			
$i = 7$	0.005	0.086	0.282	0.479	0.625	0.787	1		
$i = 8$	0.004	0.065	0.212	0.361	0.471	0.593	0.753	1	
$i = 9$	0.001	0.018	0.059	0.101	0.131	0.165	0.210	0.279	1
$n(z_j)$	48770.	4717.	1560.	1167.	865.	642.	464.	194.	39.