MILNOR’S TRIPLE LINKING NUMBER AND GAUSS DIAGRAM FORMULAS OF 3-BOUQUET GRAPHS

NOBORU ITO AND NATSUMI OYAMAGUCHI

Abstract. In this paper, we introduce two functions such that the subtraction corresponds to the Milnor’s triple linking number; the addition obtains a new integer-valued link homotopy invariant of 3-component links. We also have found a series of integer-valued invariants derived from four terms whose sum equals the Milnor’s triple linking number. We apply this structure to give invariants of 3-bouquet graphs.

1. Introduction

Bouquet graphs are elementary topological objects which have been well studied. However, explicit Gauss diagram formulas [2] of 3-bouquet graphs have not been very few or may be unknown.

Let us consider flat vertex isotopy classes of 3-bouquet graphs. Since any flat vertex isotopy preserves the cyclic order of edges connecting to the flat vertex, we choose a cyclic order and fix it. It is graphically explained by the next paragraph.

We firstly take a small disk which center is the flat vertex and assign the fixed cyclic order to intersections between edges and the boundary of the disk. It means that we select a base point on the boundary of the disk d (Fig. 1). From the base point, we read the endpoints on the boundary by the cyclic order and have the Gauss word: $p_1p_2p_3p_4p_5p_6$. Then for each pair p_i, p_j ($i < j$) belonging to the same component, we orient the component by setting that p_i is the starting point and p_j is the end point. Since the boundary $\partial d = S^1$, the isomorphism $S^1 \setminus \{a \text{ base point}\} \rightarrow \mathbb{R}$ induces a mapping from a flat vertex isotopy classes of a 3-bouquet graph with a base point on ∂d to a $(6, 0)$-tangle.

Throughout this paper, we call the flat vertex isotopy classes of 3-bouquet graphs equipped with a base point as above based flat vertex isotopy classes. In the following, every notation obeys Östlund [2] including Gauss diagram formulas and arrow diagrams.

Theorem 1. Let G_k be a Gauss diagram of an ordered three-component link k, where k_1, k_2, k_3 are the components of k. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ i & j & k \end{pmatrix}$; indices $i, j,$ and k are assigned with three circles. Let

$$P_{\text{even}}(k) = \frac{1}{6} \sum_{\sigma: \text{even}} \langle 2\begin{tikzpicture} [baseline=(X.base)]

 \node[draw, circle, minimum size=5mm] (X) at (0,0) {};
 \node[draw, circle, minimum size=5mm] (Y) at (1,0) {};
 \node[draw, circle, minimum size=5mm] (Z) at (2,0) {};
 \node[draw, circle, minimum size=5mm] (A) at (3,0) {};
 \node[draw, circle, minimum size=5mm] (B) at (4,0) {};
 \node[draw, circle, minimum size=5mm] (C) at (5,0) {};
 \draw (X) -- (Y); \draw (Y) -- (Z); \draw (Z) -- (A); \draw (A) -- (B); \draw (B) -- (C);
\end{tikzpicture}, G_k \rangle$$

Date: May 28, 2022.

Key words and phrases. Milnor invariant; Gauss diagram formula; Vassiliev invariant; 3-bouquet graph; tangle.
and
\[P_{\text{odd}}(k) = \frac{1}{6} \sum_{\sigma \text{ odd}} (2 \circlearrowright + 2 \circlearrowright + \circlearrowright, G_k). \]

Then \(P_{\text{even}} + P_{\text{odd}} \) is an integer-valued base-point-free link homotopy invariant. In comparison, \(P_{\text{even}} - P_{\text{odd}} \mod \gcd(lk(k_2, k_3), lk(k_1, k_3), lk(k_1, k_2)) \) is the Milnor’s triple linking number that is torsion-valued base-point-free.

Remark 1. Note that \(P_{\text{even}} \pm P_{\text{odd}} \in \mathbb{Z} \). This is because the value of links with no crossings is obviously zero; the difference of values by applying a single crossing change is a multiple 6\(^1\).

Corollary 1. Let \(t \in \mathbb{Q} \) and \(\hat{\mu} = P_{\text{even}} + P_{\text{odd}} \). Then
\[(1 - t)\mu + t\hat{\mu} \]
is link homotopy invariant for links with the fixed base points. If \(t = 1 \), it is the base-point-free invariant.

Theorem 2. Let
\[P_1(k) = \sum_{\sigma \in S_3} \text{sign}(\sigma)(\circlearrowright + \circlearrowright + \circlearrowright, G_k), \]
and
\[P_2(k) = \sum_{\sigma \in S_3} \text{sign}(\sigma)(\circlearrowright + \circlearrowright + \circlearrowright, G_k). \]
Figure 2. A third Reidemeister move with respect to 3-components and the corresponding Gauss diagrams. We use the move \(\Omega_{III}^{+3} \) included in [2, Table 1].

Then \(P_1, P_2, P_{even} + P_{odd}, \) and \(\mu_{123} = P_{even} - P_{odd} \) are invariants of based flat vertex isotopy classes of 3-bouquet graphs and satisfy \(\mu_{123}(k) = \frac{1}{6}(P_1(k) + P_2(k)) \). We also have that

\[
P_\ast \equiv \text{gcd}(2lk(k_2,k_3), 2lk(k_1,k_3), 2lk(k_1,k_2)) \quad (\ast = 1,2)
\]

is a base-point-free link homotopy invariant.

Theorem 3. Let \(G_k \) be a Gauss diagram of an ordered three-component link \(k \). Let

\[
\sigma = \begin{pmatrix} 1 & 2 & 3 \\ i & j & k \end{pmatrix}.
\]

The 18 functions

\[
Q_1^\sigma(k) = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \draw (4,0) .. controls (4.5,1) and (5,0) .. (5.5,1); \end{tikzpicture}, G_k \rangle,
\]

\[
Q_2^\sigma(k) = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \draw (4,0) .. controls (4.5,1) and (5,0) .. (5.5,1); \end{tikzpicture}, G_k \rangle,
\]

and

\[
Q_3^\sigma(k) = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \draw (4,0) .. controls (4.5,1) and (5,0) .. (5.5,1); \end{tikzpicture}, G_k \rangle
\]

are base-point-free link homotopy invariants, each of which is independent of the Milnor invariant \(\mu_{123} \) for \(k \). The 18 functions are also invariants of based flat vertex isotopy classes of 3-bouquet graphs.

If \(n \neq n' \),

\[
\left(Q_n^{id}, Q_n^{(123)}, Q_n^{(132)}, Q_n^{(123)}, Q_n^{(12)}, Q_n^{(13)} \right) \neq \left(Q_{n'}^{id}, Q_{n'}^{(123)}, Q_{n'}^{(132)}, Q_{n'}^{(123)}, Q_{n'}^{(12)}, Q_{n'}^{(13)} \right).
\]

2. Proofs of Theorems 1–3

In this section, every notation of Gauss diagram formulas \(\langle \cdot, \cdot \rangle \) obeys the paper [2] (Tables 1–3). We use the notion of diagram fragments in the paper [2, Section 4.4] of Östlund.

2.1. Invariance under changes of base points. Note that the four equalities hold:

\[
\langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle,
\]

\[
\langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle,
\]

\[
\langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle,
\]

and

\[
\langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle = \langle \begin{tikzpicture} \draw (0,0) .. controls (0.5,1) and (1,0) .. (1.5,1); \draw (2,0) .. controls (2.5,1) and (3,0) .. (3.5,1); \end{tikzpicture}, \cdot \rangle.
\]

Then it is sufficient to focus on two kinds of the base point moves

\[
\varepsilon (\rightarrow) \quad \varepsilon (\rightarrow) \quad \varepsilon (\rightarrow) \quad \varepsilon (\rightarrow)
\]
since $-$ sign case is the same up to an overall sign. The differences before and after applying base point moves are as in Tables 1 and 2.

- For P_\ast ($\ast = \text{even, odd}$) or Q_\ast, after each of these base point moves is applied, the value $\langle \cdot, G_k \rangle$ differs from the original one by 0.
- For P_i ($i = 1, 2$), after each of these base point moves is applied, the value $\langle \cdot, G_k \rangle$ differs from the original one by $\pm 2l(k_1, k_2)$ or $\pm 2l(k_2, k_3)$.

Thus, Tables 1 and 2 imply the invariances of under the base point moves.

Table 1. Case I for permutations id and (13) (the other cases of permutations are easily recovered seeing them). Table indicates a base point move with + sign ($-$ sign case is the same up to an overall sign).

Move	Difference (Right − Left)	P_\ast-type (upper)	$\hat{\mu}_\ast, Q_\ast$-type (lower)
Counted fragment $1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$-2l(k_2, k_3)$	0	
Counted fragment $1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$-2l(k_2, k_3)$	0	
Counted fragment $3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$2l(k_1, k_2)$	0	
Counted fragment $3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$2l(k_1, k_2)$	0	

Table 2. Case II for permutations id and (13) (the other cases of permutations are easily recovered seeing them). Table indicates a base point move with + sign ($-$ sign case is the same up to an overall sign).

Move	Difference (Right − Left)	P_\ast-type (upper)	$\hat{\mu}_\ast, Q_\ast$-type (lower)
Counted fragment $1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$-2l(k_2, k_3)$	0	
Counted fragment $1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$-2l(k_2, k_3)$	0	
Counted fragment $3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$2l(k_1, k_2)$	0	
Counted fragment $3 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \rightarrow 1 \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$2l(k_2, k_3)$	0	
2.2. Invariance under Reidemeister moves.

2.2.1. Invariance under Reidemeister moves with respect to one/two component(s).

We will use the list of Reidemeister moves [2, Table 1] except for replacing \(\Omega^{3+}\) with \(\Omega^{3+} \) as in [1]. Noting that our formula consisting of four ordered Gauss diagrams \(\Gamma_1 \), \(\Gamma_2 \), \(\Gamma_3 \), and \(\Gamma_4 \), we have the invariance of Reidemeister moves with respect to one component \((\Omega_{1+}, \Omega_{1-}, \Omega_{2+}, \Omega_{2-}, \Omega_{3+-}, \Omega_{3-+}) \) and with respect to two components: \(\Omega_{II+}, \Omega_{II-}, \Omega_{III+}, \Omega_{III-}, \Omega_{III+-}, \Omega_{III-+} \) [2, Table 1].

2.2.2. Invariance under \(\Omega_{III+} \). Recall that \(\Omega_{III+} \) is as in Fig. 2.

The complete table of the differences of counted fragments by a single Reidemeister move of type \(\Omega_{III+} \) as in Table 3. The contributions to \(P_{\text{even}} \pm P_{\text{odd}} \) or \(Q_i \) \((i = 1, 2, 3)\) do not change before and after applying \(\Omega_{III+} \) as in Table 3. We also have that for a given permutation \(\sigma \), the contributions to \(P_i(k) \) \((i = 1, 2)\) as in the left column of Table 3 are canceled out and the right also, respectively. Thus the invariance of each function holds.

Table 3. Invariance under move \(\Omega_{III+} \).

Move	Counted fragment	Counted fragment	Counted fragment
![Diagram](https://example.com/diagram.png)	\(1^+1^-2^+2^-1\)	\(6^-1^-1^+1^+\)	\(6^-1^-1^+1^+\)
![Diagram](https://example.com/diagram.png)	\(6^-1^-1^+1^+\)	\(5^-2^-3^+3^-\)	\(5^-2^-3^+3^-\)
![Diagram](https://example.com/diagram.png)	\(5^-2^-3^+3^-\)	\(5^-2^-3^+3^-\)	\(5^-2^-3^+3^-\)

2.3. Identifying our invariants with Milnor’s triple linking number. Recalling [4, 2] gave Fact 1, which implies \(\mu_{123} = P_{\text{even}} - P_{\text{odd}} \).

Fact 1. Let \(\sigma = \begin{pmatrix} 1 & 2 & 3 \\ i & j & k \end{pmatrix} \). \(\mu_{123}(k) \) equals

\[
\frac{1}{6} \sum_{\sigma \in S_3} \text{sign}(\sigma) \left(2 \Gamma_1 + 2 \Gamma_2 + \Gamma_3 + \Gamma_4, G_k \right).
\]

Then \(\mu_{123}(k) \) mod gcd\((lk(k_2,k_3),lk(k_1,k_3),lk(k_1,k_2))\) is Milnor’s triple linking number.

2.4. \(\mu_{123} = P_{\text{even}} - P_{\text{odd}} \) and \(P_{\text{even}} + P_{\text{odd}} \) (or \(P_1, P_2 \)) are independent. Let \(k_1 \) be as in Fig. 3 and its Gauss diagram is as in Fig. 4. By definition, \(\mu_{123} = 0 \), whereas \(P_{\text{even}} + P_{\text{odd}} = m_1 \) for a given integer \(m_1 \). By defining similar links \(k_i \) \((i = 2, 3, 4, 5, \text{and } 6)\), let \(G_{k_i} \) be as in Fig. 4. If \(m_1 \) is odd, Table 4 implies the claim.

\[\text{If you chose the third Reidemeister move } \Omega_{3a} \text{ of [3, } \Omega_{3a}, \text{ the corresponding Gauss diagram here is not } \Omega_{3+} \text{ but } \Omega_{3+} \text{.}\]
2.5. Showing integer-valued bouquet graph invariants P_1 and P_2 are different and they are nontrivial. Note that a $(6, 0)$-tangle which fixes Gauss diagrams with three base points. Note also that integer-valued function P_i ($i = 1, 2$) is invariant of Reidemeister moves preserving the base points. Therefore, we do not need the argument of Section 2.1 (i.e. invariance under base point moves are not requested). Table 5 implies the claim.

2.6. Independencies of Q^n. Let G_{k_i} ($i = 1, 2, 3$) be as in Fig. 4.
Table 6. Values of Q^r_n $(n = 1, 2, 3)$ of k_r $(r = 1, 2, 3, 4, 5, \text{and } 6)$.

Milnor’s μ_{123} modulo linking numbers	k_1	k_2	k_3	k_4	k_5	k_6
$Q^1_n(k)$	m_1	0	0	0	0	0
$Q^{12}_{n}(k)$	0	m_2	0	m_4	0	0
$Q^{13}_{n}(k)$	0	0	m_3	0	m_5	0
$Q^{23}_{n}(k)$	0	m_2	0	m_4	0	0
$Q^{12}_{n}(k)$	0	0	m_3	0	m_5	0
$Q^{13}_{n}(k)$	m_3	0	0	0	0	m_6

Table 7. Values of Q^1_{id}, Q^2_{id}, and Q^3_{id} of the based flat vertex isotopy of a bouquet graph b of Fig. 1 and its mirror image b_{mir}.

	b	b_{mir}
Q^1_{id}	−1	−1
Q^2_{id}	−1	0
Q^3_{id}	0	−1

For these links, $\mu_{123} \equiv 0$ (Table 6), which implies the independence of μ_{123}. Table 7 implies the difference Q^id_n and $Q^id_{n'}$ ($n \neq n'$).

Acknowledgements

The authors would like to thank Dr. Keita Nakagane and Dr. Atsuhiko Mizusawa for their comments. The work of NI is partially supported by MEXT KAKENHI Grant Number 20K03604.
References

[1] Noboru Ito. A triple coproduct of curves and knots, 2022.
[2] O.-P. Östlund. A diagrammatic approach to link invariants of finite degree. *Math. Scand.*, 94(2):295–319, 2004.
[3] M. Polyak. Minimal generating sets of Reidemeister moves. *Quantum Topol.*, 1(4):399–411, 2010.
[4] M. Polyak and O. Viro. Gauss diagram formulas for Vassiliev invariants. *Internat. Math. Res. Notices*, (11):445ff., approx. 8 pp. 1994.

National Institute of Technology, Ibaraki College, 866 Nakane Hitachinaka, Ibaraki 312-8508, JAPAN

Email address: nito@gm.ibaraki-ct.ac.jp

Department of teacher education, 1-1 Daigaku-cho, Yachiyo City, Shumei University, Chiba 276-0003, JAPAN

Email address: p-oyamaguchi@mailg.shumei-u.ac.jp