Validation of variants and structural parameters for mining systems for thin ore bodies

SA Shchukin*, AI Konurin** and SA Neverov***
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
E-mail: *s.shukin@ngs.ru; **akonurin@yandex.ru; ***nsa_nsk@mail.ru

Abstract. The current mining of thin and steeply dipping ore bodies features depth down to 700–1100 m below ground surface, increased dimension of various-purpose pillars and, as consequence, higher mineral loss and overall degradation of mining efficiency. In connection with this, it is urgent to find new mining systems as well as scientific approaches to validation of safe parameters of geotechnologies such that, depending on geological and geomechanical conditions, as well as on mineral value, minimize geotechnical risks and maintain competitiveness of production. The aim of this study is to determine safe parameters of open stoping technology for thin ore bodies in terms of the Irtysh complex ore mine. The key research methods are production planning and mathematical (numerical) stress–strain analysis and stability of structural elements in underground mines. The calculated parameters of pillars and stopes for open stoping ensure operating stoping in areas of steeply dipping or inclined ore bodies. Application of 3D mathematical modeling to geological and geomechanical conditions of an operating mine greatly expands the range of approaches and knowledge in complicated problem solving, which proves reliability and correctness of the results obtained for specific nonrecurring geotechnical situations.

1. Introduction
Shallow mining of thin ore bodies, including the early phase, widely uses room-ad-pillar method with empty space left open for some time [1–7]. High mining intensity, minimal material inputs and labor cost, structural simplicity and applicability to ore bodies of different morphological and geological complexity are the major advantages of this geotechnology. In the meanwhile, the depth of mining steadily increases and geomechanical situation worsens, which calls for new engineering solutions towards reliable ground control (elimination of dynamic events in the form of rock bursts) and competitiveness of low-value minerals [1, 4, 6–7].

For instance, the Irtysh complex ore deposit contains both steeply dipping (75–85°) and gently dipping (30–45°) site traced down to a depth of 1100 m. The thickness of the ore bodies is less than 6 m and averages 2–5 m. The ore and enclosing rocks possess essentially different physical and mechanical processes. The footwall rocks have the hardness $f = 3–6$ on Protodyakonov’s scale while the hanging wall rocks have $f = 7–9$; in the zones of dislocations and weathering, f ranges from 2 to 3. The hardness of ore is much higher: $f = 10–16$.

The structural parameters of room-and-pillar systems should be justified for application at the depths of 700–800 depending on rock mass quality. This problem is relevant in our days.
2. Research method

Within this study towards validation of safe parameters for the room-and-pillar technologies to be applied in the conditions of the Irtysh deposit, the problem on stresses and strains of rock mass depending on its quality at the depth of Level 13 \((H = 730 \text{ m})\) was solved.

The 3D elasticity problem was solved using the finite element method [8–16]. The design features of the mining system variants are presented in Figs. 1–3.

Figure 1 depicts the shrinkage stoping system with classic parameters: the height of a level is 50 m; the length of a panel along the strike is 50 m; the width of a rib pillar (RP) is 10 m; the length×height of a stope is 40×37 m; the height of the crown×bottom is 5×8 m; the height of a level pillar is 13 m; the spacing of the orepasses is 7 m; the up/down distance between the vent cross cuts is 8 m.

A feature of this geotechnology consists in filling of mined-out void with broken ore (interim storage). A part of this ore (to 30%) is extracted as a result of shattering before breaking of a new layer, which creates a free space to 2 m high between the storage and intact ore mass. The upward mining is carried out by panels toward the decreasing crown pillar. After breaking in stopes has been finished, the overall discharge of shrinkage ore is accomplished [1].

![Figure 1](image1.png)

Figure 1. Shrinkage stoping (m = 4 m—thickness of the ore body): 1—haulage drift; 2—haulage cross heading; 3—ventilation drift; 4—ventilation cross heading; 5—scraper drift; 6—orepasses; 7—ventilation and service raise; 8—vent cross cuts.

The basic parameters of these technologies to be substantiated are the RP width \((B_{RP})\), heights of crown and bottom pillars \(CP\) and \(BP\) (\(h_{CP}\) and \(h_{BP}\)) as well as the stope span \((L_s)\).

Figure 2 shows the sublevel caving system [1, 17–21]. It structurally analogous to the above described system. A panel is divided into stopes and temporal ore pillars. Depending on thickness and variability of an ore body, every 10–16 m along the strike, sublevel drifts are made and connected to the vent raise. Mining is carried out by levels, and an upper level is always a few slices ahead of a lower sublevel. As stoping advances, breaking of reserves in \(CP\) and \(BP\) is performed.

Owing to similarity of the systems, the basic parameters are assumed as in the shrinkage stoping. The crown pillar was subjected to sublevel caving during stoping in the above-lying panel. As in case of the shrinkage stoping system, the sizes of \(CP\) and \(BP\), as well as the stope length are to be validated.
Figure 2. Sublevel stoping system (m = 6 m): 1, 2—haulage drift and cross heading; 3, 4—ventilation drift and cross heading; 5—scraper drift; 6—orepasses; 7—ventilation and service raise; 8—drilling drifts.

Figure 3. Room-and-pillar system at (a) preparation stage and in (b) actual mining (m = 3 m): 1, 2—haulage drift and cross heading; 3, 4—ventilation drift and cross heading; 5—panel raise; 6, 7—undercuts 1 and 2; 8, 9—scraper drifts 1 and 10; 10, 11—orepasses 1 and 2; 12—man way; 13—vent cross cuts; 14—panels; 15—temporary chain pillar (TCP); 16—crown pillar CP; 17—temporary columnar pillars.
Flat sites of the ore body are mined by the room-and-pillar method in single layer [1, 7] (Figure 3). In this method, a panel is split up-dip into two parts with two scraper undercuts. Nearby the panel raises, temporary chain pillars TCP 3–4 m wide are left. Two access subpanels are developed from the scraper undercuts and then connected by vent cross cuts. Between the access subpanels, rooms 7 m wide are cut. Mining is retreat, top-downward, with leaving of columnar pillars.

Considering structural characteristics of this technology, mining safety was evaluated depending on the width of TCP (B_{TCP}), diameter of columnar pillars (d_P) and stope span (L_S) (see Figure 3).

The geomechanical models developed for the numerical experimentation characterize mining with discussed systems under conditions of the Irtysh deposit.

The distribution of the induced stresses and strains in the structural elements of the geotechnologies was determined from the system of equations:

--- equilibrium
\[\sigma_{ij} + p_{ij} = 0, \]
--- Cauchy
\[\varepsilon_{ij} = 0.5(u_{i,j} + u_{j,i}), \]
--- Hooke’s law
\[\sigma_{ij} = 2G\varepsilon_{ij} + \lambda\theta\delta_{ij}, \]
and the boundary conditions which are the initial natural stresses:
\[y gH \sigma = 0.97, \]
\[q_x H \sigma = 0.8, \]
\[q_z yz \sigma = 0, \]
\[u_{x,y,z} = 0. \]

where σ_{ij} are the stress tensor components (σ_x, σ_y, σ_z and τ_{xy}, τ_{xz}, τ_{yz} are, respectively, vertical and horizontal normal and shear stresses); p_{ij} are the bulk forces; γ is the density of rocks; g is the gravitational deceleration; ε_{ij} are the strain tensor components (ε_x, ε_y, ε_z and ε_{xy}, ε_{xz}, ε_{yz} are, respectively, the vertical and horizontal principal linear and angular strains); u_i are the displacement vector components (u_x, u_y, u_z are the vertical and horizontal displacements); $\theta = \varepsilon_x + \varepsilon_y + \varepsilon_z$ is the relative volumetric strain; G and λ are the Lamé parameters
\[G = \frac{E}{2(1+\mu)}, \lambda = \frac{E\mu}{(1-2\mu)(1+\mu)}; \]
δ_{ij} is the Kronecker delta; q_x, q_z are the lateral earth pressure coefficient; μ is Poisson’s ratio.

Stability of pillars was estimated by the Mohr–Coulomb criterion [22–29]. The zones of critical state in rock mass were identified using the safety factor (K_S) determined from the equation of straight-line envelope of limit Mohr’s circles:
\[K_S = \frac{\sin \phi(\sigma_{max} + \sigma_{min} + 2C\times ctg\phi)}{\sigma_{max} - \sigma_{min}} > 1, \]

where σ_{max} and σ_{min} are the maximal and minimal principal stresses, respectively; C and φ are the cohesion and internal friction angle. The value of K_S less than one points at the possible damaged rock zones.

3. Calculation results and analysis
The calculation results are depicted as instability zones in structural elements of the geotechnologies depending on rock mass quality (K_S is the structural weakening factor). The computation accepted $K_S = 0.5, 0.3$ and 0.1 for good, fair and poor rock mass, respectively.

Figure 4 shows the zones of critical state in the elements of the shrinkage stoping technology for section I–I. It is fond that due to the increased compressive and shear stresses, the weakest and most instable zones are the roof of empty stopes, edges of rib pillar, upper part of the panel bottom at the level of ore passes (bottom pillar between orepasses) and sidewalls of the ventilation cross heading nearby stoping. The rock mass quality has an essential influence on the strength of rocks. The medium- and heavily jointed rock masses suffer from active expansion of damaged rock zones in footwall and hanging wall of the open stopes.

Thus, for mining safety at great depths (700–800 m), it is mandatory to increase the sizes of the rib and crown pillar to 12 and 8 m, respectively.
Figure 4. Possible damaged rock zones in structural elements of shrinkage stoping by the Mohr–Coulomb criterion in section I–I in Figure 1.

The similar results are demonstrated in Figure 5 for the sublevel stoping system. According to calculated data, at the depth of 700–800 m, RP 10 m wide and CP 5 m high fail to ensure required safety of stoping even in good rock mass. Owing to high concentrations of the compressive and shear stresses in poor rock mass, the crown pillar starts failing from the center toward its sides, over the entire cross section. The same situation is observed in RP. In this case, it is required to increase sizes of these pillars: \(B_{RP} = 12 \) m; \(h_{CP} = 8 \) m.

It has been found that the increase in RP width to 12 m and in the height of the crown (CP) to 8 m improves their stability. The major damaged rock zones appear at the pillar edges being in contact with open stopes. Nonetheless, the application range of this system directly depends on the rock mass quality. It is safe to use this technology in fair and good rock masses, with involvement of support and reinforcement.

Figure 5. Possible damaged rock zones in elements of sublevel stoping system by the Mohr–Coulomb criterion for section I–I in Figure 2 at \(K_S = 0.1 \).

Figure 6. Possible damaged rock zones in elements of room-and-pillar system by the Mohr–Coulomb criterion for section I–I in Figure 3b at \(K_S = 0.3 \) and \(d_P = 3–5 \) m.
In Figure 6, the stability of pillars in the single-layer room-and-pillar system is assessed. It has been found that the columnar pillars with a diameter of 3 m are incapable to ensure safety of the panel roof and fail even in good rock mass. The increase in the pillar diameter to 5 m improves the pillar stability, and the application range of the technology expands to fair rock masses. At the preparation stage, the worst conditions are observed in the ventilation cross heading and haulage drift in the influence zone of upper level stoping. The temporary chain pillars are also instable in medium and heavily jointed rocks.

4. Conclusions
1. The application range of geotechnologies under conditions of the Irtysh deposit is mostly limited by the factor of rock mass quality.
2. In the variants of shrinkage stoping and sublevel stoping, the width the the temporal level pillar at level 13 should be not less than 12 m; the height of the crown and bottom pillars should be not less than 8 and 10 m.
3. For safe deep-level (700–800 m) mining of inclined ore bodies in fair rock masses by room-and-pillar, the columnar pillar should have a diameter not less than 5 m, the width of the temporary chain pillar should be not less than 6 m, the span of the stope across and along the strike (distance between the edges of the pillars) should be not more than 4.5 and 5.0 m, with obligatory support systems in stopes in the influence zone of mined-out panels.
4. In the heavily jointed rock mass, the discussed systems of mining, event with effective parameters, will be incapable to ensure required safety and need further studies and substantiation in terms of the size of pillars and spans.

Acknowledgements
This work was supported by the Ministry of Education and Science of the Russian Federation, Grant of the Russian Federation President to support young Russian scientists–candidates of sciences, Grant No. MK-6827.2018.5.

References
[1] Freidin AM, Neverov AA and Neverov SA 2012 Underground Ore Mining. Teaching Aid VN Oparin (Ed) Novosibirsk: IGD SO RAN–NGU (in Russian)
[2] Bronnikov DN, Zamesov NF and Bogdanov Mining Informational and Analytical Bulletin Deep-Level Ore Mining Moscow: Nedra (in Russian)
[3] Makarov AB, Livinsky IS, Rasskazov IYu, Saksin BG and Potapchuk MI 2016 Geomechanical evaluation of roof-and-pillar parameters in transition to underground mining Journal of Mining Science 52(3) pp 438-447.
[4] Galperin VG, Yukhimov YaI and Borsuk IV 1986 Foreign Experience of Ore Mining at Great Depths Moscow: TSNIEITSM (in Russian)
[5] Slavikovsky OV 1983 Underground Mining of Base Metal Ores at Great Depths in Foreign Countries Moscow: TSNIEITSM (in Russian)
[6] Freidin AM, Neverov SA, Neverov AA and Konurin AI 2016 Geomechanical assessment of geotechnology at a project stage of underground ore mining Gornyi Zhurnal No 2 pp 39–45
[7] Kuznetsov SV et al 1987 Stress State of Rock Mass and Prediction of Its Behavior in Room-and-Pillar Mining Alma-Ata: Nauka (in Russian)
[8] Zienkiewicz O 1971 The Finite Element Method in Engineering Science McGraw Hill
[9] Fadeev AB 1987 The Finite Element Method in Geomechanics Moscow: Nedra
[10] Nazarov LA, Nazarova LA, Freidin AM and Alimseitova ZhK 2006 Estimating the long-term pillar safety for room-and-pillar ore mining Journal of Mining Science Vol 42 No 6 pp 530–539
[11] Neverov AA 2012 Geomechanical substantiation of modified room-work in flat thick deposits with ore drawing under overhang Journal of Mining Science Vol 48 No 6 pp 1016–1024
[12] Zhirnov AA, Abdrahmanov SU, Shaposhnik YuN and Konurin AI 2018 Rock mass stability estimation and selection of mine support design at Orlov complex ore deposit Gornyi Zhurnal No 3 pp 51–57
[13] Neverov SA and Neverov AA 2013 Geomechanical assessment of ore drawpoint stability in mining with caving Journal of Mining Science Vol 49 No 2 pp 265–272
[14] Neverov AA 2014 Geomechanical assessment of combination geotechnology for thick flat-dipping ore bodies Journal of Mining Science Vol 50 No 1 pp 115–125
[15] Rasskazov IYu, Chernyshov OI and Marach VM 2004 Influence of mining condition on the nature of the induced stress field in rockburst-hazardous rock mass Bezop. Truda Porm. No 8 pp 50–55
[16] Freidin AM, Neverov AA and Neverov SA 2016 Geomechanical assessment of compound mining technology with backfilling and caving for thick flat ore bodies Journal of Mining Science Vol 52 No 5 pp 933–942
[17] Eremenko VA, Barnov NG, Kondratenko AS and Timonin VV 2016 Method of mining steeply dipping thin lodes Gornyi Zhurnal No 12 pp 45–50
[18] Eremenko AA, Gakhova LN, Konurin AI, Koltyshev VN, Prib VV and Uzun EE 2018 Geomechanical assessment of rock mass in mining two closely spaced ore bodies at Sheregesh deposit GIAB No 1 pp 67–75
[19] Neverov AA, Konurin AI, Shaposhnik YuN, Neverov SA and Shaposhnik SN 2016 Geomechanical substantiation of sublevel-chamber system of developing with consolidating stowing The 16th International Multidisciplinary Scientific Geoconference–SGEM 2016: Science and Technologies in Geology, Exploration and Mining Albena, Bulgaria Vol II pp 443–450
[20] Özdemir M, Kahraman B, Doğruöz C and Yalçın E 2016 Using 3D modelling The 6th International Conference on Computer Applications in the Minerals Industries Istanbul, Turkey pp 1–4
[21] Wael R Abdellah, Mahrous AM Ali, Gamal Y Boghdady and Mohamed E Ibrahim 2016 Evaluation of the effect of rock joints on the stability of underground tunnels Journal of Civil Engineering and Architecture Research November 25, 2016
[22] Turchaninov IA, Iofic MA and Kaspariyan EV 1989 Foundations of Rock Mechanics Moscow: Nedra (in Russian)
[23] Kazikaev DM 2005 Geomechanics of Underground Ore Mining: University Textbook Moscow: MGGU (in Russian)
[24] Barnov NG, Eremenko VA, Kondratenko AS and Timonin VV 2015 Substantiation of parameters of geotechnology for mining primary corundum deposits in difficult working conditions in uplands areas Gornyi Zhurnal No 11 pp 42–47
[25] Litvinsky GG 2008 Analytical Theory of Strength of Rocks and Rock Masses: Monograph Donetsk: Nord-Press (in Russian)
[26] Drucker DC and Prager W 1952 Soil mechanics and plastic analysis or limit design Q. Appl. Math. 10(2) pp 157–165
[27] Hofmann H, Weides S, Babadagli T, Zimmermann G, Moeck I, Majorowicz J and Unsworth M 2014 Potential for enhanced geothermal systems in Alberta, Canada Energy 69 pp 578–591
[28] Balg C and Roduner A 2013 GeoBrugg AG: Ground support applications Int. Ground Support Conf. AGH University Lungern, Switzerland
[29] Baklashov 1988 Deformation and Failure of Rock Masses Moscow: Nedra (in Russian)