The effect of points fattening on del Pezzo surfaces

Magdalena Lampa-Baczyńska

February 6, 2020

Abstract

In this paper, we study the fattening effect of points over the complex numbers for del Pezzo surfaces S_r arising by blowing-up of \mathbb{P}^2 at r general points, with $r \in \{1, \ldots , 8\}$. Basic questions when studying the problem of points fattening on an arbitrary variety are what is the minimal growth of the initial sequence and how are the sets on which this minimal growth happens characterized geometrically. We provide complete answer for del Pezzo surfaces.

Keywords initial degree, initial sequence, blow-up, alpha problem, Chudnovsky-type results

Mathematics Subject Classification (2000) 52C30, 14N20, 05B30

1 Introduction

In this paper, we follow the approach to fat point schemes initiated by Bocci and Chiantini in [3]. The initial degree $\alpha(I)$ of a homogeneous ideal $I \subset \mathbb{C}[\mathbb{P}^n]$ is the least degree t such that the homogeneous component I_t in degree t is non-zero. Although this notion was known since 1981 (see [4]), Bocci and Chiantini used this invariant for the first time in order to study fat points subschemes in the projective plane.

This definition can be extended to symbolic powers $I^{(m)}$ of I, namely $\alpha(I^{(m)})$ is the least degree t such that the homogeneous component $(I^{(m)})_t$ in degree t is non-zero. The sequence

$\alpha(I), \alpha(I^{(2)}), \alpha(I^{(3)}), \ldots$

is called the initial sequence of I.

Let $Z \subset \mathbb{P}^2(\mathbb{C})$ be the set of points and I be its radical ideal. By Nagata-Zariski theorem ([7], Theorem 3.14) the ideal of scheme mZ is the $m-$th symbolic power of I. Bocci and Chiantini proved, among others, that sets of points Z in $\mathbb{P}^2(\mathbb{C})$ such that

$\alpha(I^{(2)}) - \alpha(I) = 1$,

are either contained in a single line or form the so-called star-configuration.

Results of Bocci and Chiantini have been generalized in [6] by Dumnicki, Szemberg and Tutaj-Gasińska. They were studying configurations of points in $\mathbb{P}^2(\mathbb{C})$ with

$\alpha(I^{(m+1)}) - \alpha(I^{(m)}) = 1$

for some $m \geq 2$ and obtained their full characterization (see [6], Theorem 3.4).

These considerations were extended for another types of spaces. Except for spaces \mathbb{P}^n the problem of points fattening was considered among others by me in [1]
for the space $\mathbb{P}^1 \times \mathbb{P}^1$ and by Di Rocco, Lundman and Szemberg in [5] for Hirzebruch surfaces (with appropriately modified definition of the initial degree).

The aim of this paper is to make similar classification with respect to points fattening on del Pezzo surfaces. In this paper a del Pezzo surface (over an arbitrary field) is a smooth surface X with the ample anticanonical bundle $-K_X$.

In fact considerations on points fattening effect was initiated on del Pezzo surface $\mathbb{P}^2(\mathbb{C})$ and this path of research was continued to another one, namely $\mathbb{P}^1 \times \mathbb{P}^1$. Over \mathbb{C} there are exactly 10 del Pezzo surfaces: \mathbb{P}^2, $\mathbb{P}^1 \times \mathbb{P}^1$ and 8 surfaces S_r arising by blowing-up of \mathbb{P}^2 in r general points, where $1 \leq r \leq 8$. In this paper, we complete a picture for the last 8 del Pezzo surfaces. More precisely, for each of the surfaces S_r we establish maximal integer m, such that

$$\alpha(I) = \alpha(I^{(2)}) = \cdots = \alpha(I^{(m)}) = 1$$

holds and we describe subschemes realizing this sequence of equalities. We focus mainly on the smallest possible value of $\alpha(I)$, namely 1. In the case of the surfaces S_1 and S_2 we additionally give characterization of subschemes satisfying a more general condition, namely

$$\alpha(I^{(m)}) = \alpha(I^{(m+1)}) \cdots = \alpha(I^{(m+a)})$$

for some integers m and a. We conclude our paper presenting a Chudnovsky-type inequality.

2 Basic notions and auxiliary facts

The original definition of the initial degree given in [3] was extended in [5] for arbitrary smooth projective variety with an ample class.

Definition 2.1. (Initial degree) Let X be a smooth projective variety with an ample line bundle L on X and let Z be a reduced subscheme of X defined by the ideal sheaf $I_Z \subset O_Z$. For a positive integer m the initial degree (with respect to L) of the subscheme mZ is the integer

$$\alpha(mZ) = \alpha(I^{(m)}_Z) := \min \left\{ d : H^0(X, dL \otimes I^{(m)}_Z) \neq 0 \right\}.$$

Analogously, the initial sequence (with respect to L) of a subscheme Z is the sequence

$$\alpha(Z), \alpha(2Z), \alpha(3Z), \ldots$$

The initial sequence is sequence of positive integers with the following properties:

Fact 2.2.

1) The initial sequence is weakly growing, i.e., $\alpha(mZ) \leq \alpha(nZ)$ for $n \geq m$.

2) The initial sequence is subadditive, i.e., $\alpha((m + n)Z) \leq \alpha(mZ) + \alpha(nZ)$.

3) The initial sequence is monotonic with respect to the subcheme, i.e. if $Z \subset W$ then $\alpha(mZ) \leq \alpha(mW)$.
Properties in Fact 2.2 are generally known facts, thus we take them for granted.

The choice of a line bundle \(L \) strictly depends on the variety \(X \). In the projective plane the \(\alpha \)-invariant was taken with respect to the line bundle \(\mathcal{O}_{\mathbb{P}^2}(1) \). This line bundle is \(\frac{1}{3} \) of the anticanonical bundle \(-K_{\mathbb{P}^2} = \mathcal{O}_{\mathbb{P}^2}(3)\). Similarly on \(\mathbb{P}^1 \times \mathbb{P}^1 \) it is natural to work with the \(\alpha \)-invariant taken with respect to the line bundle \(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1,1) \). In this case the line bundle is half of the anti-canonical divisor as on \(\mathbb{P}^1 \times \mathbb{P}^1 \) we have \(-K_{\mathbb{P}^1 \times \mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(2,2)\).

The most natural choice of the line bundle on del Pezzo surfaces \(S_r \) seems to be the anticanonical bundle

\[
\mathbb{L}_r = -K_{S_r} = 3H - E_1 - \cdots - E_r,
\]

which is not divisible in the Picard group \(\text{Pic}(S_r) \).

The fattening effect can be also considered more generally for graded linear series. Let \(V_\bullet = \bigoplus_{d \geq 0} V_d \subseteq \bigoplus_{d \geq 0} H^0(X, dL) \) be a graded linear system. We define

\[
\alpha_{V_\bullet}(mZ) = \min \{ d : \exists s \in V_d : \text{mult}_Z(s) \geq m \}.
\]

Then we have the following property.

Lemma 2.3. Let \(V_\bullet \subseteq W_\bullet \) be graded linear systems. Then

\[
\alpha_{V_\bullet}(mZ) \geq \alpha_{W_\bullet}(mZ).
\]

Proof. It follows immediately from the fact, that \(W_\bullet \) has more sections than \(V_\bullet \). \(\square \)

Corollary 2.4. Let \(t \geq s \) and let \(V_\bullet = \bigoplus V_d \) and \(W_\bullet = \bigoplus W_d \), where

\[
V_d = H^0(S_t, 3dH - d \cdot \sum_{i=1}^{s} E_i) \subseteq H^0(S_t, 3dH),
\]

\[
W_d = H^0(S_t, 3dH - d \cdot \sum_{i=1}^{t} E_i) \subseteq H^0(S_t, 3dH).
\]

Then \(W_d \subseteq V_d \) for all \(d \geq 0 \). Lemma 2.3 implies that

\[
\alpha_{W_\bullet}(mZ) \geq \alpha_{V_\bullet}(mZ).
\]

Remark 2.5. Note that if \(Z \subseteq S_t \setminus \{ E_{s+1}, \ldots, E_t \} \), then \(\alpha_{W_\bullet}(mZ) \) is \(\alpha(mZ) \) counted on the surface \(S_t \), whereas \(\alpha_{V_\bullet}(mZ) \) can be regarded either as \(\alpha(mZ) \) on \(S_r \) or \(\alpha(mZ) \) on \(S_s \). This allows us to compare \(\alpha \)'s computed on various del Pezzo surfaces, provided that it makes sense to consider the underlying set \(Z \) on both surfaces.

The study of sequences of minimal growth can be paralleled by the investigation of ratios of the type

\[
\frac{\alpha(mZ)}{m}.
\]

There are some estimates for such quotients. The first result of this kind,

\[
\frac{\alpha(mZ)}{m} \geq \frac{\alpha(Z) + 1}{2}
\]

appears in a work of Chudnovsky and it concerns finite sets of points \(Z \) in the projective plane (see [9], Proposition 3.1 and [8]). It was generalized to other spaces, i.e. \(\mathbb{P}^3 \), \(\mathbb{P}^1 \times \mathbb{P}^1 \) and Hirzebruch surfaces (see [5], [9], [10] and [11]). All these inequalities are called by the common name \textit{Chudnovsky-type results}. In Section 4 we present our result of this kind for del Pezzo surfaces \(S_r \) with \(r \leq 6 \).

Our paper is concluded by a comparison of points fattening effect for surface \(S_1 \) considered as a del Pezzo surface and on the other hand as a Hirzebruch surface.
3 The points fattening effect on S_r

In this section we present some results concerning the fattening effect on S_r. Let us recall that S_r arises as the blowing-up of the complex projective plane in fixed r general points P_1, \ldots, P_r. We denote by $f_r : S_r \to \mathbb{P}^2$ the blow up, where E_1, \ldots, E_r are the exceptional divisors. If r is fixed, then we write simply f instead of f_r.

In further considerations we will use the following observations about blow-ups.

Remark 3.1. If F is a plane curve of degree $3k$ in \mathbb{P}^2 passing through the points P_1, \ldots, P_r, so that $\text{mult}_{P_i}(F) = m_i \geq k$ for $i \in \{1, \ldots, r\}$, then E_i is a $(m_i - k)$-tuple component of the divisor $f_r^*(F) - kE_1 - \cdots - kE_r$ in the system

$$|3kH - kE_1 - \cdots - kE_r| = |-3kK_{S_r}|.$$

Definition 3.2. (Adapted transform) We keep the notation as in Remark 3.1. The adapted transform of F is the divisor

$$A(F) := f_r^*(F) - kE_1 - \cdots - kE_r = \tilde{F} + \sum_{i=1}^r (m_i - k)E_i,$$

where \tilde{F} denotes the proper transform of F.

Lemma 3.3. Let $D \in |k(3H - E_1 - \cdots - E_r)|$ for fixed $1 \leq r \leq 8$ and let $Q \in S_r$. Then

$$\text{mult}_Q(D) \leq 2 \cdot \text{mult}_{f_r(Q)}(f_r(D)) - k,$$ \hspace{1cm} (1)

if $Q \in E_1 \cup \ldots \cup E_r$ and

$$\text{mult}_Q(D) = \text{mult}_{f_r(Q)}(f_r(D)) \leq 3k,$$ \hspace{1cm} (2)

if $Q \notin E_1 \cup \ldots \cup E_r$. Furthermore, if equality holds in (2), then $f_r(D)$ is a union of lines through $f_r(Q)$.

Proof. Let $D \in |k(3H - E_1 - \cdots - E_r)|$ and $Q \in S_r$. Then $\deg(f_r(D)) = 3k$. Let us denote by $m = \text{mult}_Q(D)$.

First we consider the situation, when $Q \notin E_1 \cup \ldots \cup E_r$. Since f_r is an isomorphism except the points $\{P_1, \ldots, P_r\}$, then $\text{mult}_{f_r(Q)}(f_r(D)) = m$. The multiplicity of the singular point of the plane curve can be at most the degree of this curve, thus $f_r(D)$ may have at most $3k$-tuple points, what finishes the proof of statement (2).

We assume now, that $Q \in E_i$ for some $i \in \{1, \ldots, r\}$. Let us denote by $F = f_r(D)$. Then

$$\text{mult}_Q(D) = \text{mult}_{P_i}(F) - k + \text{mult}_Q(\tilde{F}).$$

But $\text{mult}_Q(\tilde{F}) \leq \text{mult}_{P_i}(F)$, thus we finally obtain the statement (1). \hfill \Box

A natural consequence of Lemma 3.3 is the following property for surfaces S_r.

Corollary 3.4. If $Z \subset S_r$ for $1 \leq r \leq 8$ satisfies the condition

$$\alpha(mZ) = \cdots = \alpha((m+t)Z)$$

for some positive integers m and $t \geq 3$, then $Z \subset E_1 \cup \cdots \cup E_r$.

Now we turn to the main subject of this paper, namely a characterization of subschemes Z with

$$\alpha(Z) = \alpha(2Z) = \cdots = \alpha(mZ) = 1.$$

We begin with surfaces S_1 and S_2.

3.1 Surfaces \(S_1 \) and \(S_2 \)

Theorem 3.5. Let \(Z \subset S_1 \) be a finite set of points. Then the following conditions are equivalent

i) \(Z = \{Q\} \subset E_1 \),

ii) \(\alpha(Z) = \alpha(2Z) = \alpha(3Z) = \alpha(4Z) = \alpha(5Z) = 1 \).

Proof. The implication from i) to ii) is obvious. It is enough to consider the nonreduced curve \(F = 3L \subset \mathbb{P}^2 \) for some line passing through the point \(P_1 \). Indeed, it gives rise to

\[
A(F) = f^*F - E_1 = 3\tilde{L} + 2E_1
\]
in \(S_1 \), which vanishes to order 5 along \(Q \in \tilde{L} \cap E_1 \).

In order to prove the reverse implication, let \(Z = \{Q_1, \ldots, Q_t\} \) and we assume that \(D \in |3H - E_1| \) is a divisor satisfying \(\text{mult}_{Q_i}(D) \geq 5 \) for all points \(Q_i \in Z \). By Corollary 3.4 we have that \(Z \subset E_1 \).

Let us consider possible types of cubic curves in the projective plane and their adapted transforms. The curve \(F \) has to pass through the point \(P_1 \) and in order to get the highest possible multiplicities along the exceptional divisor \(E_1 \) it should have the highest possible multiplicity at \(P_1 \). We have the following types of cubic curves in \(\mathbb{P}^2 \):

a) an irreducible cubic (possibly singular);

b) a union of an irreducible conic and a line;

c) a union of three lines (possibly not distinct).

In the case a) the divisor \(A(F) \) on \(S_1 \) has points of multiplicity at most two. In the case b) the highest possible multiplicity of a point on \(E_1 \) is three, this happens in the case when the line is tangent to the conic at point \(P_1 \).

Let us pass to the case c). We know that the adapted transform of a curve \(F \) consisting of some triple line \(L \) has a quintuple point. Except this arrangement of three lines we never get the quintuple points, which completes the proof. \(\square \)

Remark 3.6. In fact one can weaken condition ii) in Theorem 3.5. Assuming

\[
\alpha(mZ) = \alpha((m+1)Z) = \alpha((m+2)Z) = \alpha((m+3)Z) = \alpha((m+4)Z)
\]
for some \(m \geq 1 \), implies that \(Z = \{Q\} \subset S_1 \).

Proof. Let \(Z = \{Q_1, \ldots, Q_t\} \) be such that \(\alpha(mZ) = \cdots = \alpha((m+4)Z) = k \) for some integers \(k \) and \(t \), and let \(D \in |3kH - kE_1| \) be a divisor such that \(\text{mult}_{Q_i}(D) \geq m+4 \) for any point \(Q_i \in Z \). Firstly, by Lemma 3.3 we conclude that \(Z \subset E_1 \).

Let us denote by \(F = f(D) \) having \(\text{deg}(F) = 3k \). Since \(F \) is of degree 3k its multiplicity at \(P_1 \) is at most 3k. Hence the multiplicity of \(E_1 \) in \(D \) is at most 2k. This contributes to the multiplicity of \(D \) at every point \(Q_1, \ldots, Q_t \). The remaining multiplicity at these points must come from components of \(F \) passing through \(P_1 \) at directions corresponding to \(Q_1, \ldots, Q_t \). We have

\[
t(m+4) \leq \sum_{i=1}^{t} \text{mult}_{Q_i}D \leq 3k + 2kt.
\]
On the other hand, since \(\alpha(mZ) = k \), it must be
\[
3(k - 1) + 2(k - 1)t < t \cdot m, \quad (4)
\]
since otherwise one could find \(3(k - 1) \) lines through \(P_1 \). Their images in \(\mathbb{P}^2 \) would show \(\alpha(mZ) \leq k - 1 \) contradicting the assumption. Combining (3) and (4) we get that
\[
3k - 3 + 2kt - 2t + 4t < 3k + 2kt
\]
and thus \(t < \frac{3}{2} \), what finally means that \(Z \) is a single point. \(\square \)

On \(S_1 \), there also exist infinitely many sets satisfying a weaker condition, namely
\[
\alpha(mZ) = \cdots = \alpha((m + 3)Z),
\]
and these sets are not necessarily the same as in Theorem 3.5.

Theorem 3.7. Let \(Z \subset S_1 \) be a finite set of points and let \(m \) be a positive integer. Then the following conditions are equivalent:

i) \(\alpha(mZ) = \cdots = \alpha((m + 3)Z) \);

ii) \(Z = \{Q\} \subset E_1 \) or \(Z = \{Q_1, Q_2\} \subset E_1 \), where \(Q_1 \neq Q_2 \).

Proof. The sets in ii) satisfy the condition
\[
\alpha(mZ) = \cdots = \alpha((m + 3)Z),
\]
for example with \(m = 1 \) and \(m = 4 \) respectively. We will prove the opposite implication. Suppose now that \(Z = \{Q_1, \ldots, Q_t\} \) is a set such that \(\alpha(mZ) = \cdots = \alpha((m + 3)Z) = k \) for some integers \(k \) and \(t \) and let \(D \in |3kH - kE_1| \) be a divisor such that \(\operatorname{mult}_{Q_i}(D) \geq m + 3 \) for any point \(Q_i \in Z \). Let us denote by \(F = f(D) \), with \(\deg(F) = 3k \).

In fact we can repeat reasoning used in the proof of Remark 3.6, but this time with the following estimates
\[
t(m + 3) \leq \sum_{i=1}^{t} \operatorname{mult}_{Q_i}D \leq 3k + 2kt, \quad (5)
\]
\[
3(k - 1) + 2(k - 1)t < t \cdot m, \quad (6)
\]
By (5) combined with (6) we get
\[
3k - 3 + 2kt - 2t + 3t < 3k + 2kt,
\]
what gives \(t < 3 \). \(\square \)

Corollary 3.8. For a finite set of points \(Z \subset S_1 \) and a positive integer \(m \) we have
\[
\alpha(mZ) < \alpha((m + 5)Z).
\]
Proof. Suppose to the contrary that \(Z = \{Q_1, \ldots, Q_t\} \) is such that \(\alpha(mZ) = \cdots = \alpha((m + 5)Z) = k \) for some integers \(k \) and \(t \), and let \(D \in [3kH - kE_1] \) be a divisor such that \(\text{mult}_{Q_i}(D) \geq m + 3 \) for \(Q_i \in Z \). Let \(F = f(D) \), with \(\deg(F) = 3k \). In the spirit of the proof of Remark 3.6 we get estimates

\[
3(k-1) + 2(k-1)t < t \cdot m.
\]

(8)

Combining (7) and (8) we obtain \(t < 1 \), but \(t \) is a positive integer, a contradiction. \(\square \)

One may also consider sets with three initial values equal to 1. The list of possible types gets much longer but the arguments used to obtain their classification are similar to those used above. We refer the interested reader to [11] (Subchapter 6.1).

In further considerations lines joining points \(P_1, \ldots, P_r \) play an important role. From now on we denote by \(L_{ij} \) the line passing through the points \(P_i \) and \(P_j \) for fixed distinct \(i, j \in \{1, \ldots, r\} \). We are ready to formulate analogous results concerning the fattening effect on \(S_2 \).

Theorem 3.9. The following conditions are equivalent:

i) \(Z \subset \overline{L_{12}} \cap (E_1 \cup E_2) \);

ii) \(\alpha(Z) = \cdots = \alpha(5Z) = 1 \).

Theorem 3.10. The following conditions are equivalent:

i) \(Z = \{Q\} \subset (E_1 \cup E_2) \setminus \overline{L_{12}} \);

ii) \(\alpha(Z) = \cdots = \alpha(4Z) = 1 \) and \(\alpha(5Z) > 1 \).

Theorem 3.11. For any finite set of points \(Z \subset S_2 \) and any positive integer \(m \) we have \(\alpha(mZ) < \alpha((m + 5)Z) \).

Theorem 3.12. For any finite set of points \(Z \subset S_2 \) the following conditions are equivalent:

i) there exists a positive integer \(m \) such that \(\alpha(mZ) = \cdots = \alpha((m + 4)Z) \);

ii) \(Z \subset (E_1 \cup E_2) \cap \overline{L_{12}} \).

Theorem 3.13. Let \(Z \subset S_2 \) be a finite set of points such that \(Z \subset E_i \) for \(i \in \{1, 2\} \). Then \(Z \) satisfies the condition

\[
\alpha(mZ) = \cdots = \alpha((m + 3)Z) < \alpha((m + 4)Z),
\]

(9)

for some positive integer \(m \) if and only if \(Z \) has the following form: either

a) \(Z = \{Q\} \subset E_i \setminus \overline{L_{12}} \) for \(i \in \{1, 2\} \), or

b) \(Z = \{Q, Q'\} \subset E_i \) for \(i \in \{1, 2\} \), where \(Q' \in \overline{L_{12}} \).
All theorems from 3.9 to 3.13 can be proved analogously as in the case of surface S_1, or the reader can find alternative proofs in [11]. In the subchapter 2.4 of [11] reader can also find a description of sets satisfying the condition

$$\alpha(Z) = \alpha(2Z) = \alpha(3Z) = 1.$$

Question about the maximal integer a satisfying condition

$$\alpha(mZ) = \alpha((m+1)Z) \cdots = \alpha((m+a)Z)$$

is not trivial and it is still an open problem for some of studied before surfaces. For example, fattening effect for the Hirzebruch surfaces is described in [5] only with respect to the condition

$$\alpha(Z) = \cdots = \alpha(mZ) = 1.$$

The available tools are not useful in the case of greater r. In particular, when considered sets have some points on the exceptional divisors. From that reason for remaining surfaces S_r we only establish maximal m, for which $\alpha(Z) = \cdots = \alpha(mZ) = 1$ hold and we describe sets Z with that property.

3.2 Surfaces S_r for $r \geq 3$

The natural sequence of inclusions between linear systems

$$|L_1| \supset |L_2| \supset |L_3| \supset |L_4| \supset |L_5| \supset |L_6| \supset |L_7| \supset |L_8|$$

suggests, that the sequence of equalities

$$\alpha(Z) = \alpha(2Z) = \cdots = 1$$

should become shorter with r growing. In the case of $r = 1$ and $r = 2$ we had $\alpha(5Z) = 1$ and we proved moreover, that there it is not possible to obtain more than five consecutive initial values equal.

We present now such a characterization for remaining surfaces S_r.

Theorem 3.14. Let $Z \subset S_3$ be a finite set of points. The following conditions are equivalent:

i) $\alpha(Z) = \cdots = \alpha(4Z) = 1$;

ii) $Z = \{Q\} = E_i \cap \tilde{L}_{ij}$ for distinct $i, j \in \{1, 2, 3\}$.

Theorem 3.15. Let $Z \subset S_4$ be a finite set of points. Then Z satisfies equality $\alpha(Z) = \alpha(2Z) = \alpha(3Z) = 1$, if and only if it is one of the following sets:

a) $Z \subset \{Q\} \subset \tilde{L}_{ij}$ for distinct $i, j \in \{1, 2, 3, 4\}$,

b) $Z \subset \{Q, Q_1, Q_2\} \subset \tilde{L}_{ij}$, where $Q_1 \in E_i$, $Q_2 \in E_j$ and $Q = \tilde{L}_{ij} \cap \tilde{L}_{kl}$ for pairwise distinct $i, j, k, l \in \{1, 2, 3, 4\}$,

c) $Z \subset E_i \cap (\tilde{L}_{ij} \cup \tilde{L}_{ik} \cup \tilde{L}_{il})$ for pairwise distinct $i, j, k, l \in \{1, 2, 3, 4\}$,

d) $Z = \{Q\} \subset E_i$ and $Q \in \tilde{C} \cap \tilde{L}$, where C is an irreducible conic curve passing through the points P_1, P_2, P_3, P_4 and L is the line tangent to C at the point P_i for $i \in \{1, 2, 3, 4\}$.
Theorem 3.16. Let $Z \subset S_5$ be a finite set of points. Then the condition $\alpha(Z) = \alpha(2Z) = \alpha(3Z) = 1$ is fulfilled if and only if $Z = \{Q\}$ and the point Q satisfies one of the following two conditions:

a) $Q \in E_i \cap \tilde{L}_i \cap \tilde{C}$ for $i \in \{1,2,3,4,5\}$, where C is a conic passing through the points P_1, \ldots, P_5 and L_i is a line tangent to C at the point P_i,

b) $Q \in \tilde{L}_{ij} \cap \tilde{L}_{kl}$ for pairwise distinct $i, j, k, l \in \{1,2,3,4,5\}$.

Theorem 3.17. Let $Z \subset S_6$ be a finite set of points. Then Z satisfies equality $\alpha(Z) = \alpha(2Z) = \alpha(3Z) = 1$, if and only if $Z = \{Q\}$ and the point Q fulfills one of the following two conditions:

a) $Q \in \tilde{L}_{ij} \cap \tilde{L}_{kl} \cap \tilde{L}_{mn}$ for pairwise distinct $i, j, k, l, m, n \in \{1,2,3,4,5,6\}$,

b) $Q \in E_i \cap \tilde{L}_{ij} \cap \tilde{C}_j$ for distinct $i, j \in \{1,2,3,4,5,6\}$, where C_j is a conic curve determined by five points of P_1, \ldots, P_6 excluding P_j and L_{ij} is of course the line passing through the points P_i and P_j, but simultaneously L_{ij} is the tangent line to the curve C_j at the point P_i.

Let us note that S_6 is the first example of surfaces S_r, where the existence of a set Z satisfying the condition

$\alpha(Z) = \alpha(2Z) = \alpha(3Z) = 1$

depends on the geometry of points P_1, \ldots, P_6. For given six points in general position in the projective plane, there always exists a cubic curve consisting of three lines, passing through these points. But these lines do not have to intersect at one point (see Figure 1). It is a rather strong requirement.

Similarly when the cubic splits into a conic and a line. Each five points determine a conic curve in a unique way. But the line joining the sixth point with one of the
previous five does not necessary need to be tangent to this conic (see Figure 2). It is also a situation, which may happen or not, and it depends of the arrangement of the starting six points (although they are always in general position). It is a quite interesting phenomenon. Especially that for remaining two surfaces S_r the condition

$$\alpha(Z) = \alpha(2Z) = \alpha(3Z) = 1$$

in never satisfied.

Theorem 3.18. Let $Z \subset S_7$ be a finite set of points. The equality $\alpha(Z) = \alpha(2Z) = 1$ holds if and only if Z is one of the following sets:

a) $Z \subset \{Q_1, Q_2\} \subset E_i \cap \bar{F}$, where F is an irreducible singular cubic curve with the singularity at the point P_i for some $i \in \{1, \ldots, 7\}$,

b) $Z = \{Q\}$, where $f(Q)$ is the double point of a singular cubic passing through the points P_1, \ldots, P_7 and $Q \notin E_1 \cup \cdots \cup E_7$,

c) $Z \subset \bar{L}_{ij} \cap \bar{C}_{ij}$ for distinct $i, j \in \{1, \ldots, 7\}$, where C_{ij} is the irreducible conic passing through the five points of P_1, \ldots, P_7, distinct from P_i and P_j.

Proofs of Theorems 3.14 to 3.18 are based on a review of plane cubics passing through the points P_1, \ldots, P_r (analogously as in the proof of Theorem 3.5). Thus we skip details here. We refer the curious reader to [11].

The line bundle

$$L_8 = 3H - E_1 - \cdots - E_8$$

has the least number of sections of all line bundles L_r considered so far, namely $h^0(L_8) = 1$. For that reason we expected, that

$$\alpha(2Z) \geq 2$$

here. Thus the fact, that there exists a set Z, where $\alpha(Z) = \alpha(2Z) = 1$ was surprising.

Theorem 3.19. If $Z \subset S_8$, then the equality $\alpha(Z) = \alpha(2Z) = 1$ holds iff $Z = \{Q\}$, where $f(Q)$ is the singular point of an irreducible cubic curve F passing through points P_1, \ldots, P_8 and $f(Q)$ is distinct of any point P_i for $i \in \{1, \ldots, 8\}$.

Proof. If $Z = \{Q\}$ and $f(Q)$ is double point on a cubic, distinct of any P_i, then it is obvious, that Q has multiplicity 2 on S_8 and of course $\alpha(Z) = \alpha(2Z) = 1$.

Let us focus on the opposite implication. Let $D \in |L_8|$ be such that $\text{mult}_Q(D) \geq 2$ for any point $Q \in Z$. The curve $F = f(D)$ has degree 3 and passes through eight distinct points P_1, \ldots, P_8 in general position. Then F is irreducible. Irreducible cubic has at most one singular point and it can not be any of P_i’s (general points). Thus it must be $f(Q)$.

To finish the proof we need to show, that there always exists a singular cubic curve passing through 8 given general points.

Let us notice that cubics passing through 8 fixed points form a pencil, if no four points lie on a line and no seven lie on a conic. Since P_1, \ldots, P_8 are in general position, the family of cubics passing through these points is a pencil. We denote it by S. Every two cubics in S meet in nine points, thus the set $\{P_1, \ldots, P_8\}$ determines a new point. This point is determined uniquely (Cayley-Bacharach theorem, see [12], Theorem 1). Let us denote it by P_9.

Let \tilde{S} be a blow-up of \mathbb{P}^2 in all nine points P_1, \ldots, P_9. Then \tilde{S} is the total space of the pencil S and we have the morphism

$$\varphi : \tilde{S} \to \mathbb{P}^1,$$

whose fibers are the elements of S. Let $e(\cdot)$ be the topological Euler characteristic. Thus we have

$$e(S) = e(\mathbb{P}^2) + 9 = 12.$$

Suppose now, to the contrary, that φ has only smooth fibers. Then from the topological point of view we have

$$\tilde{S} = \mathbb{P}^1 \times \mathcal{E},$$

where \mathcal{E} is an elliptic curve. We have then

$$e(S) = e(\mathbb{P}^1) \cdot e(\mathcal{E}) = 2 \cdot 0 = 0.$$

Thus S must contain singular fibers. Since the points P_1, \ldots, P_9 are in general position, these singular fibers are irreducible cubics, which ends the proof.

4 The Chudovsky-type result for surfaces S_r

We conclude our considerations by a lower bound on the growth rate of the initial sequence for surfaces S_r. We present a general estimate for sets Z satisfying the condition $\alpha(Z) \geq 2$. The assumption of very-ampleness of line bundle \mathbb{L}_r is significant, thus our result concerns surfaces S_r with $r \leq 6$.

Theorem 4.1. Let $1 \leq r \leq 6$ and $Z \subset S_r$ be a finite set of points such that $\alpha(Z) \geq 2$. Then we have

$$\frac{\alpha(mZ)}{m} \geq \frac{\alpha(Z) - 1}{2}.$$

Proof. We recall first the notation $\mathbb{L}_r = 3H - E_1 - \cdots - E_r$. We assume that $\alpha(Z) \geq 2$. Let us denote $\alpha(Z)$ by α. We have

$$h^0(3mH - mE_1 - \cdots - mE_r) = \binom{3m + 2}{2} - r \cdot \binom{m + 1}{2} = \frac{(9 - r)m^2 + (9 - r)m + 2}{2}.$$

We choose a minimal subset $W \subseteq Z$, such that $\alpha(W) = \alpha$, i.e., there is no element in $(\alpha - 1) \cdot \mathbb{L}_r$. The minimality of W is taken with respect to the inclusion (thus there can be several sets satisfying this condition). It follows that the points in W impose independent conditions on the space of sections in $|(\alpha - 1) \cdot \mathbb{L}_r|$. Then

$$\#W = t = \binom{3\alpha - 1}{2} - r \cdot \binom{\alpha}{2} = \frac{(9 - r)\alpha^2 - (9 - r)\alpha + 2}{2}.$$

We claim that $|\alpha \cdot \mathbb{L}_r \otimes \mathbb{I}_W|$ has no additional base points on S_r, i.e. is not contained in W. Let $W = \{Q_1, \ldots, Q_t\}$. For any Q_i, there exists a curve $C_i \in (\alpha - 1) \cdot \mathbb{L}_r$, such that C_i does not vanish at Q_i and it does vanish at all points in $W \setminus \{Q_i\}$. Let s_i denote the section in $H^0(S_r, (\alpha - 1) \cdot \mathbb{L}_r)$ corresponding to C_i. Then the sections s_1, \ldots, s_t form a basis of $H^0(S_r, (\alpha - 1) \cdot \mathbb{L}_r)$.

Suppose that $R_i \in S_r \setminus W$ is a base point of $|\alpha \cdot \mathbb{L}_r \otimes \mathbb{I}_W|$. There exists a section $s_i \in \{s_1, \ldots, s_t\}$ not vanishing at R. Indeed, otherwise R would be a common zero
of $|(\alpha - 1) \cdot \mathbb{L}_r|$, which is not possible by the choice of W. Since \mathbb{L}_r is very ample, the system $|\mathbb{L}_r \otimes I_{Q_s}|$ is then base point free away from Q_s. Hence there exists a section $s \in H^0(S_r, \mathbb{L}_r \otimes I_{Q_s})$ not vanishing at R. Then, in particular, $|\alpha \cdot \mathbb{L}_r \otimes I_W|$ has no base component. Thus

$$s_i \cdot s \in H^0(S_r, (\alpha - 1) \cdot \mathbb{L}_r \otimes I_{W \setminus \{Q_s\}} \otimes \mathbb{L}_r \otimes I_{Q_s}) = H^0(S_r, \alpha \cdot \mathbb{L}_r \otimes I_W)$$

is a section not vanishing at R. Let $A \in |\alpha(Z)\mathbb{L}_r|$ and $B \in |\alpha(mZ)\mathbb{L}_r|$. Using Bezout theorem we obtain

$$\alpha \cdot \alpha(mZ) \cdot L_r^2 = A \cdot B \geq \frac{(9 - r)\alpha^2 - (9 - r)\alpha + 2}{2} \cdot m$$

what finally implies

$$\frac{\alpha(mZ)}{m} \geq \frac{(9 - r)\alpha^2 - (9 - r)\alpha + 2}{2\alpha(9 - r)} \geq \frac{(9 - r)\alpha^2 - (9 - r)\alpha}{2\alpha(9 - r)} > \frac{\alpha - 1}{2}.$$

This ends the proof. \hfill \square

Remark 4.2. Let us notice that if $\alpha(Z) = 1$, then $\frac{\alpha(mZ)}{m} \geq \frac{1}{5}$. Firstly let us observe that if Z is set from Theorem 3.5 then its initial sequence is of the form

$$1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, \ldots$$

The divisor $F = 3kL$ for the line L passing through the P_1 and corresponding to the point $Q \in E_1$, gives rise to $D = 3kL + 2kE_1 \in |3kH - kE_1|$ on the blow up \mathbb{S}_1 and $\text{mult}_Q(D) = 5k$ for any $Q \in Z$. Hence $\alpha(5kZ) \leq k$ for any positive integer k.

For $k = 1$ we then obtain $\alpha(5Z) \leq 1$, what means that $\alpha(Z) = \cdots = \alpha(5Z) = 1$. Moreover by Remark 3.6 we conclude

$$\alpha(6Z) \geq 2.$$

(10)

On the other hand, for $k = 2$ we have

$$\alpha(10Z) \leq 2.$$

(11)

From (10) and (11) we then obtain $\alpha(6Z) = \cdots = \alpha(10Z) = 2$.

Using the same argumentation for the next k we finally conclude, that the initial sequence in this case is $\alpha(mZ) = \lceil \frac{m}{5} \rceil$ and indeed $\frac{\alpha(mZ)}{m} \geq \frac{1}{5}$.

Let $\{\alpha'(mZ)\}$ be an another subadditive and weakly growing sequence of positive integers with $\alpha'(Z) = 1$. By Remark 3.6

$$\alpha'(mZ) \geq \alpha(mZ)$$

for any m, thus

$$\frac{\alpha'(mZ)}{m} \geq \frac{\alpha(mZ)}{m} \geq \frac{1}{5}.$$

By Lemma 2.3 we conclude, that estimate $\frac{\alpha(mZ)}{m} \geq \frac{1}{5}$ concerns any initial sequence $\{\alpha(mZ)\}$ with $\alpha(Z) = 1$ for all surfaces \mathbb{S}_r. In the case of surfaces \mathbb{S}_1 and \mathbb{S}_2 we were able to show that this estimate is optimal (in the sense that $\frac{1}{5}$ is borderline value). Probably this estimate is not sharp for $r \geq 3$.

5 Surface S_1 as a del Pezzo surface and as a Hirzebruch surface

The surface S_1 was considered with respect to the fattening effect in [5] as a Hirzebruch surface. An interesting phenomenon is that from the point of view of Hirzebruch surfaces the most natural choice of the reference line bundle for S_1 is

$$2H - E_1,$$

while if we consider it as a del Pezzo surface, we work with the anticanonical line bundle, i.e.,

$$L_1 = 3H - E_1.$$

Di Rocco, Lundman, and Szemberg proved in [5] that on the Hirzebruch surface S_1 (denoted there by F_1) with $2H - E_1$ there does not exist any finite set Z, such that

$$\alpha(Z) = \alpha(2Z) = \alpha(3Z) = \alpha(4Z)$$

(see [5], Proposition 4.1). From point of view of del Pezzo surfaces with the bundle L_1 we can even get

$$\alpha(Z) = \alpha(2Z) = \alpha(3Z) = \alpha(4Z) = \alpha(5Z),$$

and moreover there exist infinitely many sets satisfying it (all singletons $Z = \{Q\}$ with $Q \in E_1$). Thus the choice of line bundle is a fundamental factor affecting the shape of the initial sequence.

Acknowledgements. I would like to thank professor Tomasz Szemberg for his great support throughout my PhD studies. I am also grateful to Piotr Pokora for helpful remarks on this text.

The research of the author was partially supported by National Science Centre, Poland, grant 2016/23/N/ST1/01363.

References

[1] Baczyński, M., Dumnicki, M., Habura, A., Malara, G., Pokora, P., Szemberg T., Szpond, J., Tutaj-Gasińska, H.: Points fattening on $\mathbb{P}^1 \times \mathbb{P}^1$ and symbolic powers of bi-homogeneous ideals, J. Pure Appl. Algebra 218 (2014), 1555–1562

[2] Bauer, T., Szemberg T.: The effect of points fattening in dimension three, In Recent Advances in Algebraic Geometry, London Mathematical Society Lecture Note Series 417 (2015), 1–11

[3] Bocci, Ch., Chiantini, L.: The effect of points fattening on postulation, J. Pure and Applied Algebra 215 (2011) 89–98

[4] Chudnovsky, G. V.: Singular points on complex hypersurfaces and multidimensional Schwarz Lemma, Séminaire de Théorie des Nombres, Paris 1979/80, Séminaire Delange-Pisot-Poitou, Progress in Math vol. 12, M-J Bertin, editor, Birkhäuser, Boston-Basel-Stuttgart (1981).

[5] Di Rocco, S., Lundman, A., Szemberg T.: The effect of points fattening on Hirzebruch surfaces, Math. Nachr. 288 (2015), 577–583
[6] Dumnicki M., Szemberg T., Tutaj-Gasiska H.: Symbolic powers of planar point configurations, J. Pure Appl. Alg. 217 (2013), 1026–1036

[7] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, Grad.TextsMath., vol.150, Springer-Verlag, NewYork, 1995.

[8] Esnault, H., Viehweg, E.: Sur une minoration du degré d’hypersurfaces s’annulant an certain points, Math. Ann. 263 (1983) 75–86

[9] Harbourne, B., Huneke, C.: Are symbolic powers highly evolved?, J. Ramanujan Math. Soc. 28 (2013) 311–330

[10] Janssen, M.: On the fattening of lines in \mathbb{P}^3, J. Pure Appl. Algebra 219 (2015), 1055–1061

[11] Lampa-Baczyńska, M.: The effect of points fattening on del Pezzo surfaces (Doctoral dissertation), Retrieved from Pedagogical University of Cracow Database (2017), http://rep.up.krakow.pl/xmlui/handle/11716/1966

[12] Ren Q., Richter-Gebert J., Sturmfels B.: Cayley-Bacharach Formulas, The American Mathematical Monthly 122 (2015), 845–854

Magdalena Lampa-Baczyńska, Instytut Matematyki UP, Podchorążych 2, PL-30-084 Kraków, Poland

E-mail address: lampa.baczynska@wp.pl