Anomalomyces, Ustilaginaceae (Ustilaginomycetes)

There are 14 genera of smut fungi recognized in Ustilaginaceae (Ustilaginomycetes) on grasses: Anomolomyces, Anthracocystis, Franzpetrakia, Langdonia, Macalpinomyces, Moesizymyces, Sporisorium, Stollia, Tranzschelia, Triidiomyces, Tubisorus, Ustilago, Yenia, and Yunchangia. These genera are distinguished by morphology of the sori and spores, as well as host range and phylogenetic relationships supported by molecular data (Begerow et al. 2014). Species of Ustilago destroy leaves and inflorescences of hosts in Poaceae, mostly producing sori that rupture at maturity to expose blackish spore masses. Ustilago became a catch-all for many unrelated species of smut fungi, and is polyphyletic (McTaggart et al. 2012b, Begerow et al. 2014, Savchenko et al. 2014). Ustilago, in the strict sense, occurs mainly on hosts in the tribe Pooidae and lacks soral structures, specifically, a columella, spore balls and sterile cells (McTaggart et al. 2012a). Additionally, members of the asexual yeast genera Pseudozyma and Farysizyma are polyphyletic in different lineages of Ustilaginales (Begerow et al. 2000, 2014, Boekhout 1995, Inacio et al. 2008, Wang et al. 2015). Some of these asexual yeasts were described without awareness of their sexual morphs, which are known to be plant pathogenic or potentially plant pathogenic (Wang et al. 2015). A phylogenetic species concept that places species of yeast into resolved genera has commenced for yeasts in Anthracocystis and other taxra (Piątek et al. 2015, Wang et al. 2015).

The known genera of smut fungi reflect synapomorphies, whether found in cellular ultrastructure or gross morphological characters of the sori (Begerow et al. 2014). These synapomorphies are supported by DNA sequence data (Begerow et al. 2014). Recent taxonomic changes for smut fungi reflect phylogenetic classification, for example

Mycosarcoma (Ustilaginaceae), a resurrected generic name for corn smut (Ustilago maydis) and its close relatives with hypertrophied, tubular sori

Alistair R. McTaggart1,2, Roger G. Shivis3, Teun Boekhout4,5, Franz Oberwinkler4, Kálmán Vánky2, Shaun R. Pennycook6, and Dominik Begerow9

1Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20, University of Pretoria, Pretoria, 0028, South Africa
2Plant Pathology Research Cooperative Centre, LPO Box 5012, Bruce 2617, Australia
3Plant Pathology Herbarium, Biosecurity Queensland, Department of Agriculture and Fisheries, GPO Box 267, Brisbane 4001, Queensland, Australia
4CBS-KNAW Fungal Biodiversity (CBS-KNAW), Utrecht, The Netherlands
5Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam
6Eberhard-Karls Universität, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
7Herbarium Ustilaginales Vánky (HUV), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany
8Landcare Research Manaaki Whenua, Private Bag 92170, Auckland 1142, New Zealand
9Ruhr-Universität Bochum, Geobotanik, ND 03/174, Universitätsstr. 150, 44801 Bochum, Germany; corresponding author e-mail: dominik.begerow@rub.de

Abstract: Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis, Tolyposporrella pachycarpa, Ustilago bouriquetii and U. maydis, occupy a unique phylogenetic position within the Ustilaginales. A previously introduced monotypic generic name typified by U. maydis, Mycosarcoma, is available to accommodate these species, which resolves one component of polyphyly for Ustilago s. lat. in Ustilaginaceae. An emended description of Mycosarcoma is provided to reflect the morphological synapomorphies of this monophyletic group. A specimen of Ustilago maydis that has had its genome sequenced is designated as a neotype for this species. Taxonomic stability will further be provided by a forthcoming proposal to conserve the name Uredo maydis over Lycoperdon zeae, which has priority by date, in order to preserve the well-known epithet maydis.

Key words:

- model organism
- name change
- Pseudozyma
- synapomorphy
- taxonomy
- Ustilaginomycotina

INTRODUCTION

There are 14 genera of smut fungi recognized in Ustilaginales (Ustilaginomycetes) on grasses: Anomolomyces, Anthracocystis, Franzpetrakia, Langdonia, Macalpinomyces, Moesizymyces, Sporisorium, Stollia, Tranzschelia, Triidiomyces, Tubisorus, Ustilago, Yenia, and Yunchangia. These genera are distinguished by morphology of the sori and spores, as well as host range and phylogenetic relationships supported by molecular data (Begerow et al. 2014). Species of Ustilago destroy leaves and inflorescences of hosts in Poaceae, mostly producing sori that rupture at maturity to expose blackish spore masses. Ustilago became a catch-all for many unrelated species of smut fungi, and is polyphyletic (McTaggart et al. 2012b, Begerow et al. 2014, Savchenko et al. 2014). Ustilago, in the strict sense, occurs mainly on hosts in the tribe Pooidae and lacks soral structures, specifically, a columella, spore balls and sterile cells (McTaggart et al. 2012a). Additionally, members of the asexual yeast genera Pseudozyma and Farysizyma are polyphyletic in different lineages of Ustilaginales (Begerow et al. 2000, 2014, Boekhout 1995, Inacio et al. 2008, Wang et al. 2015). Some of these asexual yeasts were described without awareness of their sexual morphs, which are known to be plant pathogenic or potentially plant pathogenic (Wang et al. 2015). A phylogenetic species concept that places species of yeast into resolved genera has commenced for yeasts in Anthracocystis and other taxra (Piątek et al. 2015, Wang et al. 2015).

The known genera of smut fungi reflect synapomorphies, whether found in cellular ultrastructure or gross morphological characters of the sori (Begerow et al. 2014). These synapomorphies are supported by DNA sequence data (Begerow et al. 2014). Recent taxonomic changes for smut fungi reflect phylogenetic classification, for example

© 2016 International Mycological Association

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Non-commercial: You may not use this work for commercial purposes.

No derivative works: You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.
the separation of Microbotryales from Ustilaginomycotina (Begerow et al. 1997, 2014), and division of the Ustilago-Sporisorium-Macalpinomyces complex into smaller, well-defined genera (McTaggart et al. 2012c). In the latter example, smut fungi on grasses in the Ustilago-Sporisorium-Macalpinomyces complex were divided into the genera Anthracocystis, Langdonia, Stollia, Triodiomyces and Tubisorus (Vánky & Lutz 2011, McTaggart et al. 2012c).

Ustilago maydis, the cause of boil or blister smut of corn (Zea mays), forms localized, hypertrophied sori on the stems, leaves and inflorescences. It is an important model organism for the study of reproduction (Bakkeren et al. 2006), infection pathways (Müller et al. 2008), virulence and cellular signaling in fungi (Brefort et al. 2009). It was the first species of Ustilaginomycotina to have a publicly available genome (Kämper et al. 2006), which has since been used for comparative genomics between corn smut and other fungi (e.g. Xu et al. 2007). Molecular phylogenetic studies

Fig. 1. Phylogram obtained from a maximum likelihood search in RAxML v8 (Stamatakis 2014) with a partitioned dataset of the internal transcribed spacer and large subunit regions of ribosomal DNA. Bootstrap values (≥70%) from 1000 replicates in a maximum likelihood search above nodes. Posterior probabilities (≥0.95) summarized from 18 000 converged trees obtained from four runs each consisting of four chains in a Bayesian search with MrBayes (Ronquist & Huelsenbeck 2003) below nodes. GTRGAMMA was the model of evolution for both phylogenetic criteria. Taxon name, host and GenBank numbers listed in Table 1. Type species of the genera included in the Ustilaginaceae are in bold font.
have shown that the mitosporic *Pseudozyma prolifica* is conspecific with *U. maydis* (Begerow et al. 2000, Boekhout 2011).

Comparative studies on the genomes of smut fungi have indicated that *U. maydis* is more closely related to other taxa than to species of *Ustilago*. For example, differences in the mating systems and methods of RNA silencing between *U. maydis* and *U. hordei* (the type species of *Ustilago*, notwithstanding a proposal by Thines (2016) to conserve *Ustilago* with *U. maydis* as the conserved type) indicated a relatively distant phylogenetic relationship (Bakkeren et al. 2006, Bakkeren et al. 2008, Laurie et al. 2008). Kellner et al. (2011) showed the mating type loci of *Sporisorium reilianum*, *Ustanciosporium gigantosporum* and related species had some degree of synteny to the corresponding genes of *U. maydis*. Future studies may determine whether more closely related species have higher synteny and whether genes involved in mating and self-recognition are conserved within genera.

Systematic studies showed that *U. maydis* was not closely related to species of *Ustilago s. str.*, and was instead recovered as sister to species of *Sporisorium* and *Anthracocystis* (Piepenbring et al. 2002, Stoll et al. 2005, Vánky & Lutz 2011, McTaggart et al. 2012a). In these studies, *U. maydis* was closely related to *U. bouriquetii*, a smut fungus that forms hypertrophied sori in the inflorescences of *Stenotaphrum* (*Poaceae*). McTaggart et al. (2012a) recovered *U. maydis* in a clade with *Macalpinomyces mackinlayi*, *M. tubiformis*, *Tubisorus pachycarpus* and *U. bouriquetii*, which all form hypertrophied sori in inflorescences of their hosts. McTaggart et al. (2012a) considered that localised, host-derived, hypertrophied sori were an apomorphy for this group (Fig. 2). Vánky & Lutz (2011) introduced a new generic name, *Tubisorus*, typified by *T. pachycarpus*, which was recovered in a clade with *U. maydis*. *Tubisorus* was characterized by tubular sori filled with spores compacted in loose spore balls.

Mycosarcoma is the earliest available generic name for the clade containing *U. maydis*, which was described as the type species (Brefeld 1912). The characters that Brefeld (1912) believed distinguished *Mycosarcoma* from *Ustilago* and *Sporisorium* were the: (1) incubation time in the host; (2) development of the sorus at the site of penetration in the host plant; (3) the development of aerial conidia; and (4) the presence of a peridium.

The current systematic understanding of the genera in *Ustilaginaceae on Poaceae* is shown in (Fig. 1; Table 1). In the present study the circumscription of *Mycosarcoma* is emended and the name resurrected to reflect contemporary knowledge of the synapomorphies within *Ustilaginaceae*. A taxonomic system based strictly on morphological synapomorphies is not possible for dimorphic plant pathogenic fungi like *U. maydis*, which have both asexual non-pathogenic yeast stages and sexual pathogenic teliospore stages in their life cycle.

Vánky (1990) discussed the nomenclatural history of *U. maydis*. The fungus was first described as *Lycoperdon zeae* by Beckmann, but this epithet could not be combined in *Ustilago* as it was pre-occupied by the name *U. zeae* (Link) Unger 1836 based on a different type (Vánky 1990). The next validly published binomial was *U. maydis* (DC.) Corda 1842, possibly the most well-known and intensively studied smut fungus in the world. For this reason, we seek to conserve this widely used epithet.

TAXONOMY

The following taxonomic combinations are based on the recovered phylogenetic tree (Fig. 1) and the apomorphies discussed above. Emended parts of the description are in italic type.

Mycosarcoma Bref., *Unters. Gesammtgeb. Mykol.* 15: 53 (1912).

Description: Sori usually in some ovaries of an inflorescence, derived from hypertrophied host material, *often tubular*, *splitting longitudinally to expose the spore mass, partitioning*

Fig. 2. **A.** *Mycosarcoma bouriquetii* on *Stenotaphrum dimidatum* (BRIP 26403). **B.** *Mycosarcoma mackinlayi* on *Eulalia mackinlayi* (BRIP 52549). **C.** *Mycosarcoma maydis* on *Zea mays* (BRIP 52746). **D.** *Mycosarcoma tubiforme* on *Chrysopogon fallax* (BRIP 57599).
Hosts: On grass hosts in subfamily Poanoideae (Poaceae).

Type species: Mycosarcoma maydis (DC.) Bref. 1912 (on Zea mays).

Mycosarcoma bouriquetii (Maubl. & R.G. Shivas & Begerow, comb. nov. MycoBank MB811941

Basionym: Ustilago bouriquetii Maubl. & Roger, Bull. Soc. Mycol. France 50: 327 (1934).

Synonyms: Sphaelotheca mauritiana Zundel, Mycologia 36: 405 (1944); *fide* Vánky (1996:107).

Mycosarcoma mackinlayi (McTaggart & R.G. Shivas) McTaggart, R.G. Shivas & Begerow, comb. nov. MycoBank MB811942

Basionym: Macalpinomyces mackinlayi McTaggart & R.G. Shivas, Persoonia 23: 187 (2009).

Mycosarcoma maydis (DC.) Bref., Unters. Gesamt-gb. Mykol. 15: 53 (1912).

Basionym: Uredo maydis DC., Fl. franç., edn 3, 6: 77 (1815).

Synonyms: Ustilago maydis (DC.) Corda, Icon. Fung. 5: 3 (1842); *USA:* Minnesota: near St Paul, on Zea mays in a corn field, isolated from a germinating teliospore [collected by J.J. Christensen], P. Schreier, R. Kahrmann, S. Leong & R. Holiday (DSM 14603 — neotype designated here, MBT374099).

Lycoperdon zeae Beckm., Hannover. Mag. 6: 1330 (1768).

Uredo segetum [var.] mays-zeae DC., Fl. franç., edn 3, 2: 596 (1805).

Ustilago zeae G. Winter, Rabenh. Krypt.-Fl. 1(1): 97 (1881); as „U. Zeae Mays".

Ustilago maydis: Magnus, Verh. Bot. Ver. Prov. Brandenburg 37: 72 (1896), [1895].

Uredo zeae Schwein., Schr. Naturf. Ges. Leipzig 1: 71 (1822).

Caeoma zeae Link, Linné’s Sp. Plant., 4 edn, 6(2): 2 (1825).

Ustilago zeae (Link) Unger, Ueber Einfluß Bodens: 211 (1836).

Ustilago euthalenae Archang., Erb. Crittog. Ital., ser. 2, no. 1152 (1882).

Pseudozyma prolifica Bandoni, Bot. J. Linn. Soc. 91: 38 (1985).

Notes: We are proposing elsewhere to the Nomenclature Committee for Fungi (NCF) that the name *Uredo maydis* should be conserved over *Lycoperdon zeae* in order to preserve the well-known epithet “maydis”, which has been used for this species for over two centuries, but does not have priority over “zeae” if combined into *Mycosarcoma*.

Neither Beckmann (1768) nor de Candolle (1815) designated specimens or illustrations that might serve as the nomenclatural types when *Lycoperdon zeae* and *Uredo maydis* were described. Nor were we able to locate specimens in German and French herbaria that pre-dated the descriptions by Beckmann (1768) or de Candolle (1815) that might have been studied by them. As there are no specimens or illustrations associated with the name *U. maydis* that might serve as a lectotype, we consequently designate a sequenced neotype for *Ustilago maydis* here. The neotype was chosen on the basis that it represented a typical strain of corn smut with a published genome sequenced by the Broad Institute (Kämper et al. 2006). Further, populations of corn smut in Europe have been found to be monophyletic (Begerow, unpubl.).

Mycosarcoma pachycarpum (Syd.) McTaggart, R.G. Shivas & Begerow, comb. nov. MycoBank MB811943

Basionym: Sorosporium pachycarpum Syd., Ann. Mycol. 26: 431 (1928).

Mycosarcoma tubiforme (R.G. Shivas & Vánky) McTaggart, R.G. Shivas & Begerow, comb. nov. MycoBank MB811944

Basionym: Macalpinomyces tubiformis R.G. Shivas & Vánky, Fung. Divers. 16: 152 (2004).

Mycosarcoma is resurrected here and the circumscription emended to accommodate a monophyletic group in *Ustilaginaceae;* this addresses one further component of polyphyly in *Ustilago s. lat.* This taxonomy is supported by several separate systematic analyses that have determined a unique phylogenetic position of *M. maydis* within the family (Piepenbring et al. 2002, Stoll et al. 2005, Vánky & Lutz 2011, McTaggart et al. 2012a). We will submit a proposal to the Nomenclature Committee for Fungi for conservation of *Uredo maydis* over the name *Lycoperdon zeae,* which has priority at species rank, to avoid a disadvantageous nomenclatural change, as *‘maydis’* is an accepted and widely used epithet for corn smut in plant pathology and genetics. If this proposal is successful, the name *M. maydis* will become secure.

Future studies that include more taxa and additional phylogenetically informative molecular markers may reveal
that other species also belong to Mycosarcoma. In the present study, Macalpinomyces arundinellae-setosae and U. vetiveriae fit the morphological concept of Mycosarcoma, but were not recovered in Mycosarcoma with strong support in the phylogenetic analyses. Detailed studies on the ontogeny of sori and teliospores might help to further clarify the limits of Mycosarcoma. For example, Macalpinomyces trichopterygis, M. tristachyae, and M. simplex, which were included in the phylogenetic analyses, cause systemic infections on grasses in the subfamily Arundinoideae. These three species also have tubular, host-derived sori, and have a phylogenetic affinity with Mycosarcoma as shown in previous studies (Stoll et al. 2005, Vánky & Lutz 2011, McTaggart et al. 2012a).

Thines (2016) proposed that U. maydis should be conserved as the type species of Ustilago to cement the name of this well-studied smut fungus. This was on the grounds that U. hordei, the current type, does not supersede U. segetum, which was designated as lectotype of Ustilago.

Table 1. Taxon names and GenBank numbers of isolates used in the phylogenetic analyses.

Taxon	Host	ITS	GenBank details
Anomalomyces panici	Panicum trachyrhachis	DQ459348	DQ459347
Anthracostis destruens	Panicum miliaceum	AY344976	AY740777
Anthracostis heteropogonica	Heteropogon contortus	HQ013101	HQ013135
Langdonia aristae	Aristida hygrometrica	HQ013096	NA
Langdonia confusa	Aristida queenslandica	HQ013095	HQ013132
Langdonia fraseriana	Aristida nitidula	HQ013100	NA
Macalpinomyces arundinellae-setosae	Arundinella nepalensis	HQ013086	NA
Macalpinomyces eriachnes	Eriachne aristidea	AY740037	AY740090
Macalpinomyces trichopterygis	Trichopteryx dregeana	AY740039	AY740092
Macalpinomyces tristachyae	Loudetiosis chrysotrix	AY400164	NA
Melanopsischium pennsylvanicum	Polygonum glabrum	AY740040	AY740093
Moesziomyces bullatus	Paspalum distichum	AY740153	AY740153
Mycosarcoma bouriquetii	Selenatrophum dimidiatum	AY740167	NA
Mycosarcoma macquiniay	Eulalia macquiniay	GU014817	HQ013131
Mycosarcoma maydis	Zea mays	AY345004	AF453938
Mycosarcoma pachycarpum	Mnesithea rotboelioides	JN871718	JN871717
Mycosarcoma tubiforme	Chrysopogon fallax	HQ013088	NA
Sporisorium cruentum	Sorghum halepense	AY344974	AF453939
Sporisorium rheiiniun	Zea mays	FJ167357	DQ832228
Sporisorium sorghi	Sorghum bicolor	AF038828	AF009872
Stollia bursa	Themeda quadrivalvis	AY740154	NA
Stollia ewartii	Sarga imoresin	HQ013087	HQ013127
Triodiomyces altitiss	Triodia pungens	AY740166	HQ013136
Triodiomyces triodiae	Triodia microstachya	AY740074	AY740126
Ustilago avenae	Avena barbata	AY344997	AF453933
Ustilago bromivora	Bromus catharticus	AY740064	AY740118
Ustilago bullata	Bromus diandrus	AY344998	AF453935
Ustilago calamagrostidis	Calamagrostis epeigio	AY740065	AY740119
Ustilago cynodontis	Cynodon dactylon	AY345000	AF009881
Ustilago davisi	Glycera multiflora	AY740169	NA
Ustilago echinita	Phalaris arundinacea	AY345001	AY740144
Ustilago hordei	Hordeum vulgare	AY345003	AF453943
Ustilago nuda	Hordeum leporinum	AY740069	JN367336
Ustilago striiformis	Alopecurus pratensis	AY740172	DQ875375
Ustilago tritici	Triticum aestivum	AF135424	NA
Ustilago vetiveriae	Vetiveria zizanioides	AY345011	AY740149
Yenia esculenta	Zizania latifolia	AY345002	AF453937

1Vánky et al. (2006); 2Stoll et al. (2005); 3McTaggart et al. (2012a); 4McTaggart & Shivis (2009); 5Stoll et al. (2003); 6Piepenbring et al. (2002); 7Vánky & Lutz (2011); 8Zhang & Gao (unpubl.); 9Matheny et al. (2006); 10Roux et al. (1998); 11Begerow et al. (1997); 12Begerow et al. (2006); 13Kellner et al. (2011); and 14Bakkeren et al. (2000).
by Clinton (1904). However, *U. segetum* was not described as a distinct taxon, but initially as a set of three varieties (Persoon 1797), and subsequently sanctioned as a set of five varieties (Persoon 1801), with *U. hordei* the alpha variety, “*Uredo segetum a Uredo hordei*”. Most of these varieties were subsequently raised to species rank (Lagerheim 1889, Saccardo 1891), and Clinton (1906) revised the name of his typification to *U. hordei* (Clinton 1906). As the alpha or ‘typical’ variety, *U. hordei* represents the name of the type after the species names *Ustilago/Reticularia segetum* were declared *nomina utique rejicienda*. Furthermore, *Ustilago hordei* is a conserved name with a type specimen studied by Persoon.

If *Ustilago hordei* were not the type, *Ustilago maydis* would not be a suitable choice as a replacement, because it is not among the species described in the sanctioning work (Art 10.2), it is not congeneric with *Ustilago*, and Clinton (1906) revised the name of his typification to *U. hordei* (Clinton 1906). As the alpha or ‘typical’ variety, *U. hordei* represents the name of the type after the species names *Ustilago/Reticularia segetum* were declared *nomina utique rejicienda*. Furthermore, *Ustilago hordei* is a conserved name with a type specimen studied by Persoon.

If *Ustilago hordei* were not the type, *Ustilago maydis* would not be a suitable choice as a replacement, because it is not among the species described in the sanctioning work (Art 10.2), it is not congeneric with *Ustilago* as described by Persoon (1801), and it would require ~200 name changes for species of *Ustilago* that are not congeneric with *U. maydis*. The mycological community has previously accepted name changes for model fungi such as *Microbotryum violaceum* and *Zymoseptoria tritici*, and the adoption of *Mycosarcoma maydis* will provide stability for two genera of smut fungi.

Ustilago maydis was recombined in *Mycosarcoma* a century ago to distinguish it from other species of smut fungi, particularly species of *Ustilago*. We suggest the scientific community adopts the taxonomy proposed by Brefeld (1912) and summarized here, to ensure classification reflects evolution.

ACKNOWLEDGEMENTS

We acknowledge financial support from both the Australian Government’s Plant Biosecurity Cooperative Research Centre (grant S120010) and the Deutsche Forschungsgemeinschaft (DFG). TB was supported by a grant from Qatar National Research Fund (NPRP 5-298-3-086), a member of Qatar Foundation. The statements herein are solely the responsibility of the authors.

REFERENCES

Bakkeren G, Kronstad JW, Levesque CA (2000) Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in *Ustilaginomycetes*. *Mycológia* 92: 510–521.

Bakkeren G, Jiang G, Warren RL, Butterfield Y, Shin H, et al. (2006) Mating factor linkage and genome evolution in basidiomycetous pathogen of cereals. *Fungal Genetics and Biology* 43: 655–666.

Bakkeren G, Kämper J, Schirawski J (2008) Sex in smut fungi: structure, function and evolution of mating-type complexes. *Fungal Genetics and Biology* 45: S15–S21.

Bandoni RJ (1985) On an undescribed pleomorphic hyphomycete from litter. *Botanical Journal of the Linnean Society* 91: 37–43.

Beckmann J (1768) Des Herrn Tillet Beobachtung einer Krankheit des türkischen weizens oder der mais. *Hannoversches Magazin* 6: 1329–1339.

Begerow D, Bauer R, Oberwinkler F (1997) Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. *Canadian Journal of Botany* 75: 2045–2056.

Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycotous anamorphs as deduced from nuclear LSU rDNA sequences. *Mycological Research* 104: 53–60.

Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of *Ustilaginomycotina* based on multiple gene analyses and morphological data. *Mycologia* 98: 906–916.

Begerow D, Schafer AM, Kellner R, Yurkov A, Klemier M, et al. (2014) *Ustilaginomycotina*. In: *The Mycota Vol. 7A. Systematics and Evolution* (McLaughlin DJ, Spatafora JW.eds): 295–329. 2nd edn. Berlin: Springer.

Boekhout T (1995) *Pseudozyma* emend. Boekhout, a genus for yeast-like anamorphs of *Ustilaginales*. *Journal of General Applied Microbiology* 41: 359–366.

Boekhout T (2011) *Pseudozyma* Bandoni emend. Boekhout (1985) and a comparison with the yeast state of *Ustilago maydis* (De Candolle) Corda (1842). In: The Yeasts (Kurtzman C, Fell JW, Boekhout T, eds) 3: 1857–1868. Amsterdam: Elsevier.

Brefeld O (1812) Untersuchungen aus dem Gesammtgebiete der Mykologie. Vol. 15. Die Brandpilze und die Brandkrankheiten. 5: 1–151. Münster: Commissions-Verlag v. H. Schöningh.

Brefort T, Doeihmann G, Mendoza-Mendoza A, Reissmann S, Djamei A, et al. (2009) *Ustilago maydis* as a Pathogen. *Annual Review of Phytopathology* 47: 423–445.

Clinton GP (1904) North American *Ustilaginae*. *Proceedings of the Boston Society for Natural History* 31: 329–529.

Clinton GP (1906) Order *Ustilaginiales*. *North American Flora* 7: 1–82.

Inacio J, Landell MF, Valente P, Wang S-H, Manson JS, et al. (2008) *Farysizyma* gen. nov., an anamorphic genus in the *Ustilaginales* to accommodate three novel epiphytic basidiomycetous yeast species from America, Europe and Asia. *FEMS Yeast Research* 8: 499–508.

Kämpfer J, Kehmman R, Bolker M, Ma LJ, Brefort T, et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen *Ustilago maydis*. *Nature* 444: 97–101.

Kellner R, Vollmeister E, Feldbrügge M, Begerow D (2011) Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. *PLoS Genetics* 7: e1002436.

Lagerheim G (1889). Revision der im Exsiccat ‘Kryptogamen Badens von Jack, Leiner und Stizenberger’ enthaltenen Chytridiaceen, *Persoonia* 444. *Nature* 444: 97–101.

Matheny PB, Gossman JA, Zalar P, Kumar TKA, Hibbett DS (2006) Resolving the phylogenetic position of the *Walllemiomycetes*: an enigmatic major lineage of *Basidiomycota*. *Canadian Journal of Botany* 84: 1794–1805.

McTaggart AR, Shivas RG (2009) *Macalpinomyces* mackinlayi. *Persoonia* 23: 186–187.

McTaggart AR, Shivas RG, Geering ADW, Callaghan B, Vánky K, Scharaschkin T (2012a) Soral synapomorphies are significant for the systematics of the *Ustilago-Sporisorium-Macalpinomyces* complex (*Ustilaginaceae*). *Persoonia* 29: 63–77.

McTaggart AR, Shivas RG, Geering ADW, Vánky K, Scharaschkin T (2012b) A review of the *Ustilago-Sporisorium-Macalpinomyces* complex. *Persoonia* 29: 55–62.

McTaggart AR, Shivas RG, Geering ADW, Vánky K, Scharaschkin T (2012c) Taxonomic revision of *Ustilago*, *Sporisorium* and *Macalpinomyces*. *Persoonia* 29: 116–132.
Muller O, Schreier PH, Uhng JF (2008) Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Molecular Genetics and Genomics 279: 27–39.

Persoon CH (1797) Tentamen dispositionis methodicae Fungorum. Leipzig: P.P. Wolf.

Persoon CH (1801) Synopsis Methodica Fungorum. Vol. 1. Göttingen: H. Dieterich.

Piątek M, Lutz M, Yorou N (2015) A molecular phylogenetic framework for Anthracocystis (Ustilaginales), including five new combinations (inter alia for the asexual Pseudozyma flocculosa), and description of Anthracocystis grodzinskiae sp. nov. Mycological Progress 14: 1–15.

Piepenbring M, Stoll M, Oberwinkler F (2002) The generic position of Ustilago maydis, Ustilago scitaminea, and Ustilago esculenta (Ustilaginales). Mycological Progress 1: 71–80.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

Roux C, Almaraz T, Durrieu G (1998) Phylogénie de champignons responsables des charbons des végétaux à partir de l'analyse des séquences ITS. Comptes Rendus de l’Académie des Sciences, sér. 3. Sciences de la Vie 321: 603–609.

Saccardo PA (1891) Sylloge Fungorum. Vol. 9. Berlin: R. Friedländer & Sohn.

Savchenko KG, Carris LM, Castlebury LA, Heluta VP, Wasser SP, Nevo E (2014) Stripe smuts of grasses: one lineage or high levels of polyphly? Persoonia 33: 169–181.

Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

Stoll M, Begerow D, Oberwinkler F (2005) Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycological Research 109: 342–356.

Thines M (2016) Proposal to conserve the name Ustilago (Basidiomycota) with a conserved type. Taxon 65: 1170–1171.

Vánky K (1990) Taxonomical studies on Ustilaginales. VI. Mycotaxon 38: 267–278.

Vánky K (1996) Taxonomical studies on Ustilaginales. XIV. Mycotaxon 59: 89–113.

Vánky K, Lutz M, Shivas RG (2006) Anomalomyces panici, new genus and species of Ustilaginomycetes from Australia. Mycologia Balcanica 3: 119–126.

Vánky K, Lutz M (2011) Tubisorus, a new genus of smut fungi (Ustilaginomycetes) for Sporisorium pachycarpum. Mycologia Balcanica 8: 129–135.

Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Studies in Mycology 81: 55–83.

Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, et al. (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proceedings of the National Academy of Sciences, USA 104: 18730–5.