Statistical Regression Analysis of Breakages in Cold Rolling

S M Belskiy and I I Shopin
Lipetsk State Technical University, 30, Moskovskaya street, Lipetsk, 398055, Russia

E-mail: Belsky-55@yandex.ru

Abstract: The maximum probability of strip’s breakage during the cold rolling is observed when the values of edge wedge are greater than 150 microns and the saddle coefficient is less than −0.075 and greater than 0.050. It is also shown that there is a pronounced synergistic effect of influence of combination of the saddle coefficient and the edge wedge on the breakage of the strip. When the edge wedge is reduced below 50 microns, the saddle coefficient ceases to affect the breakage of the strip during the cold rolling. At the same time, when the edge wedge is higher than 160 microns, the breakage is minimal with the saddle coefficient in the range from 0 to 0.025.

1. Introduction
The strip breakage during processing on the continuous cold rolling mill leads to significant losses: unplanned downtime, associated with the elimination of the consequences of breaks, the increased consumption of metal of the working and support rolls due to the injuries.

One of the main reasons for the strips’ breaks during the rolling is the presence of the defects on the hot-rolled blank. These can be either the edge’s defects or defects in the shape of the cross-section profile of the hot-rolled strip. If the edge’s defects can be detected either visually or by the specialized automated surface quality control systems for the rolled strips, then the defects in the cross-section profile cause the strip to lose its flat shape during the subsequent cold rolling. In turn, the flatness of the cold-rolled strip leads to the need for the additional technological leveling operations [1–33], which increase the production cost.

2. Criteria for evaluation of defects of strip’s profile
To detect defects in the cross-section profile of a hot-rolled strip, a criterion for evaluating their criticality for the subsequent cold rolling is required.
In order to formalize the estimation of the parameters of the cross-section profile of the hot-rolled strips, their parabolic approximation is usually used [12] and such parameters as, for example, the convexity \(P \) and the wedge shape \(W \) are calculated (figure 1).

The parameters, that characterize the cross-section profile, include the determination coefficient:

\[
R^2 = 1 - \frac{\sum_j \left[H_{wc}^j - f(x_j) \right]^2}{\sum_j \left[H_{wc} - H_m \right]^2},
\]

(1)

where \(R^2 \) is the coefficient of determination, \(H_{wc} \) is averaged across the width of the thickness of the strip, \(H_{wc} \) is the measured value of strip thickness at \(j \)-th point in width, \(x_j \) is the coordinate of the
measured point (the distance between the measured point of the profile and middle of the band),
\[f(x) = ax^2 + bx + c \] is the approximating parabola of the measured cross-sectional profile, whose
coefficients are determined by least squares.

![Figure 1. Real cross-section profile of hot-rolled strip and parameters of its estimation.](image)

The determination coefficient of the cross-section profile is a value that characterizes the share
of dispersion of the actual profile, that is due to its parabolic approximation; in other words, it
shows how close the actual cross-section profile is to the parabolic approximation. Quite often,
there are the cases when the cross-section profiles of the hot-rolled strips with different deviations
from the approximating parabola have similar, and sometimes identical, values of the
determination coefficient.

One of the alternative criteria, for evaluating the quality of the strip’s cross-section profile, to
the determination coefficient is the saddle coefficient \(K_s \) [13]. This value is intended to
characterize the cross-section profile with the edge thickenings.

The saddle coefficient, as well as the determination coefficient, characterizes the deviation of
the real cross-section profile from the approximating parabola, describing an increase in the
contribution to its value of deviations with an increase in the distance from the strip’s center to its
edges:

\[
K_s = \frac{\sum_i \left[H_{m_i} - f(x_i) \right] \cdot |x_i|}{\sum_i \left[H_{m_i} - H_m \right] \cdot |x_i|}.
\] (2)

The integral character of the saddle coefficient allows us to characterize the stability of other
parameters of the cross-section profile. For example, the deviation of the saddle coefficient from
zero is associated with an increase in the mean square deviation of the convexity of the cross-
section profile. This important feature of the saddle coefficient allows you to reduce the number
of factors and thus to simplify the regression mathematical model.

Another parameter for the quality of the cross-section profile of the strip is the value of the
edge-boundary wedge \(W_m \), which characterizes the difference in thickness within 40 mm from the
edge of the strip.

3. Model for predicting the probability of strip’s break

We apply the above parameters of the strip’s cross-section profile in probability forecast model of
breakage at the cold rolling.

Based on the results of experiments, we obtain the following binary logistic regression [23] of
the forecast probability of breakage as a function of the saddle coefficient and the edge-boundary
wedge:

\[P_{\text{break}} = \frac{e^Y}{1 + e^Y}, \quad (3) \]

\[Y = -3.402 - 6.91 K_s + 0.0282 W_r - 411 K_s^2 - 0.000429 W_r^2 - 0.0483 K_s W_r + \]
\[+ 4093 K_s^3 + 0.000002 W_r^3 + 4.13 K_s^2 W_r + 56866 K_s^4, \quad (4) \]

where \(P_{\text{break}} \) is the probability of strip’s break.

The presented model has the adequacy property, since: first, the model explains half of all breaks in the cold rolling mill (the determination coefficient of the obtained regression model is \(R_m^2 = 48.9 \% \)); secondly, the acceptable accuracy of the regression model is provided by a small number of the significant factors, since the value of the adjusted determination coefficient (\(R_{m, \text{adj}}^2 = 43.1 \% \)) is comparable to the value of the determination coefficient (48.9\%) [24].

The determination coefficient of model is calculated using the formula:

\[R_m^2 = 1 - \frac{\sum (P_{\text{fact}}^j - P_{\text{break}}^j)^2}{\sum (P_{\text{fact}}^j - P_{\text{fact}})^2}. \quad (5) \]

The adjusted determination coefficient is calculated as follows:

\[R_{m, \text{adj}}^2 = 1 - (1 - R_m^2) \frac{n-1}{n-k}, \quad (6) \]

where \(P_{\text{break}}^j \) is the probability of breakage of the \(j \)-strip in model, \(P_{\text{fact}}^j \) is the indication of breakage of the \(j \)-th strip (0 – no break, 1 – break), \(P_{\text{fact}} \) is the share strips with the breaks from the total number of analyzed strips, \(n \) is the total number of analyzed strips, \(k \) is number of factors in the regression model.

These properties allow us to use the developed regression model in the technological process to predict the probability of strip’s breakage during the cold rolling.

![Figure 2](image)

Figure 2. Dependence of probability of strip breakage on saddle coefficient of the maximum and minimum values of edge wedge.
4. Statistical testing of hypotheses
To analyze the significance of factors in the regression model, we use the method of statistical hypothesis testing [25]. Null hypothesis: the factor does not have a significant impact. An alternative hypothesis: the analyzed factor in the regression model has a significant impact on the probability of breakage during the cold rolling of the hot-rolled strip. The P-criterion is the probability that the null hypothesis is correct. We accept that the null hypothesis is rejected, when the P-criterion is less than 0.05. The sense of the P-criterion is the probability that the regression model is the result of coincidence of the random fluctuations of factors and has no the real physical regularities:

$$P_{value} = p_1 + p_2,$$

(7)

where P_{value} is the P-criterion, p_1 is the probability that the average of the first sample is part of the second sample, p_2 is the probability that the average of the second sample is part of the first sample.

5. Conclusions
The parameters of the cross-section profile of the hot-rolled strip (the saddle coefficient and the edge wedge) can be used to predict the probability of the strip’s breakage during the cold rolling. At the values of the edge wedge below 50 microns, the probability of breaking the hot-rolled strip during the cold rolling is significantly reduced (see figure 2). At the values of the saddle coefficient in the range from 0 to 0.025, the probability of breakage of the hot-rolled strip during the cold rolling is significantly reduced.

The breakage of the hot-rolled strip during the cold rolling is influenced by the saddle coefficient and the edge wedge in an interrelation to each other. The maximum probability of breakage is observed when the edge wedge values are greater than 150 microns and the saddle coefficient is less than -0.075 and greater than 0.050.

References
[1] Korolev A A 1987 Mechanical Equipment of Rolling and Pipe Shops (Metallurgy)
[2] Belskiy S M and Shopin I I 2019 Application of the saddle coefficient for estimating the quality of a hot-rolled steel strips Ferrous metals 9 9–13
[3] Bel’skii S M, Mukhin Yu A, Mazur S I and Goncharov A I 2013 Influence of the cross section of hot-rolled steel on the flatness of cold-rolled strip Steel in Translation 43(5) 313–316
[4] Bel’skii S M and Mukhin Yu A 2009 Classification of regulation principles for strip flatness Steel in Translation 39(11) 1012–1015
[5] Predeleanu M and Gilormini P 1997 Advanced Methods in Materials Processing Defects (Elsevier Science)
[6] Shinkin V N 2016 The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Message 1. Curvature of sheet CIS Iron and Steel Review 12 37–40
[7] Shinkin V N 2016 The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Message 2. Forces and moments CIS Iron and Steel Review 12 40–44
[8] Shinkin V N 2017 Mathematical model of technological parameters’ calculation of flanging press and the formation criterion of corrugation defect of steel sheet’s edge CIS Iron and Steel Review 13 44–47
[9] Shinkin V N 2017 Arithmetical method of calculation of power parameters of 2N-roller straightening machine under flattening of steel sheet CIS Iron and Steel Review 14 22–27
[10] Lim Y, Venugopal R and Ulsoy A G 2014 Process Control for Sheet-Metal Stamping Process Modeling, Controller Design and Stop-Floor Implementation (Springer)
[11] Sheinin V I, Levin B V, Blokhin D I and Favorov A V 2003 Identification of nonstationary changes in stress state of geomaterials by infrared radiometry data Journal of Mining Science 39(5) 431–437
[12] Belskiy S M 2017 Parameters of evaluation of shape cross section of hot-rolled steel strips. Message 1. The determination coefficient Ferrous metals 10 65–70
[13] Belskiy S M 2017 Parameters of evaluation of shape cross section of hot-rolled steel strips. Message 2. The saddle coefficient Ferrous metals 11 42–47
[14] Banabic D 2016 Multiscale Modeling in Sheet Metal Forming (Springer)
[15] Frank V 2013 Lecture notes in production engineering (Springer)
[16] Shinkin V N 2016 Geometry of steel sheet in a seven-roller straightening machine Steel in Translation 46(11) 776–780
[17] Shinkin V N 2016 Preliminary straightening of thick steel sheet in a seven-roller machine Steel in Translation 46(12) 836–840
[18] Shinkin V N 2017 Failure of large-diameter steel pipe with rolling scabs Steel in Translation 47(6) 363–368
[19] Shinkin V N 2017 Simplified calculation of the bending torques of steel sheet and the roller reaction in a straightening machine Steel in Translation 47(10) 639–644
[20] Chakrabarty J 2010 Applied Plasticity (Springer)
[21] Sheinin V I, Blokhin D I, Gaisin R M, Maksimovich I B, Maksimovich II B and Khodarev V V 2014 Complex diagnostics of the technical condition of a monolithic “diaphragm-wall” after long-term conservation Soil Mechanics and Foundation Engineering 51(4) 196–203
[22] Hingole R S 2015 Advances in Metal Forming: Expert System for Metal Forming (Springer)
[23] Hastie T, Tibshirani R and Friedman J 2017 The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer)
[24] Draper N R and Smith H 1986 Applied Regression Analysis I (Finance and Statistics)
[25] Lvovskij E N 1982 Statistical Methods for Construction of Empirical Formulas (High school)
[26] Shinkin V N and Kolikov A P 2011 Simulation of the shaping of blanks for large-diameter pipe Steel in Translation 41(1) 61–66
[27] Shinkin V N and Kolikov A P 2011 Elastoplastic shaping of metal in an edge-bending press in the manufacture of large-diameter pipe Steel in Translation 41(6) 528–531
[28] Shinkin V N 2017 Calculation of bending moments of steel sheet and support reactions under flattening on the eight-roller straightening machine Ferrous metals 4 49–53
[29] Belsky S M, Kotsar S L and Polyakov B A 1990 Calculation of the distribution of rolling force across the width of the strip and residual stresses in the strip by the variational method Proceedings of higher educational institutions. Ferrous metallurgy 10 32–34
[30] Shopin I I and Belskiy S M 2016 Simplified model of deflected mode of coil on coilwinder Rolling 5 13–17
[31] Shopin I I and Belskiy S M 2016 Lamellar model of deflected mode of coil on winder Rolling 8 3–7
[32] Balueva M A, Blokhin D I, Savatorrova V L, Talonov A V and Sheinin V I 2009 Simulation of microcrack influence on temperature variations within geomaterials under deformation Journal of Mining Science 45(6) 576–580
[33] Maindonald J and Braun W J 2010 Data Analysis and Graphics Using R: An Example-Based Approach (Cambridge University Press)

Acknowledgments
The reported study was funded by RFBR, project number 19-38-90257.