Foetal ductus arteriosus constriction unrelated to non-steroidal anti-Inflammatory drugs: a case report and literature review

Giovanna Battistoni, Ramona Montironi, Jacopo Di Giuseppe, Luca Giannella, Giovanni Delli Carpi, Alessandra Baldinelli, Marco Pozzi, and Andrea Ciavattini

ABSTRACT
Foetal ductus arteriosus (DA) constriction can be found in complex foetal heart malformations, but rarely as an isolated defect. Although many cases of DA constriction are usually related to Non-steroidal Anti-Inflammatory Drugs (NSAIDs) maternal intake, other causes remain without an established aetiology and are referred to as idiopathic. Recently, a wide range of risks factors or substances (polyphenol-rich foods intake, naphazoline, fluoxetine, caffeine and pesticides) showed a definitive effect upon the pathway of inflammation, causing DA constriction. We report a case of a premature DA constriction in a woman whose possible risk factor was identified in her maternal occupational exposure to solvents and a comprehensive literature review of 176 cases of NSAID-unrelated DA constriction. A 30-year-old Asian woman was referred to our institution at 33 gestational weeks and 0 days because of suspicion of premature DA constriction. The woman had no history of medication intake, including NSAIDs, alcohol, tobacco or polyphenol-rich-food consumption during pregnancy. A detailed foetal echocardiography revealed a normal cardiac anatomy with hypertrophic, hypokinetic and a dilated right ventricle due to right pressure overload, holosystolic tricuspid regurgitation, and, at the level of the DA, high systolic and diastolic velocities, indicating premature ductal restriction. The right outflow showed dilatation of the pulmonary artery with narrow DA. An urgent caesarean section was performed at 33 gestational weeks and 4 days due to worsening of DA PI and signs of right pressure overload, despite the interruption of exposure to solvents. We assume a relationship exists between premature DA constriction and a maternal occupational exposure to solvents. This hypothesis is reinforced by the presence of associated foetal malformations in two of the patient’s children. Further research is needed to confirm the role of exposure to solvents and toxic chemicals in the pathogenesis of DA constriction, also with experimental animal models.

KEY MESSAGES
1. Many cases of DA constriction are usually related to Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) maternal intake.
2. A wide range of risks factors or substances (polyphenol-rich foods intake, naphazoline, fluoxetine, caffeine and pesticides) can cause foetal DA constriction.
3. Further investigation are needed to confirm the role of maternal exposure to solvents in the pathogenesis of DA constriction.

Introduction
The ductus arteriosus (DA) is an essential component of foetal circulation. Connecting the pulmonary artery to the descending aorta, it allows 80–85% of the right ventricle output to reach the systemic circulation, bypassing the high resistance fluid-filled lungs [1–4]. This communication between the pulmonary and systemic circulations establishes the parallel circulation in the foetus and equalizes pressure in the right and left ventricle. The patency of DA is maintained during gestation by locally produced and circulating prostaglandins, especially Prostaglandin E2 (PGE2), nitric oxide and low foetal oxygen saturation [5].

With advancing gestation, the DA becomes more sensitive to constricting factors, because it is subject to a progressive vascular remodelling to prepare itself
to postnatal closure [6]. This histological maturation process starts at the second trimester and consists of the thickening of muscular layer [7].

Premature intra-uterine DA constriction could be diagnosed in complex congenital heart malformations, including Tetralogy of Fallot and truncus arteriosus. As an isolated defect, it is usually secondary to the use of medication like NSAIDs, isoxsuprine, fluoxetine and some foods rich in polyphenol like herbal teas, dark chocolate, orange juice, red/purple grapes, berries and coffee [8–12].

The mechanism of NSAID action is inhibition of prostaglandin production by direct constriction of the enzyme cyclooxygenase (COX). Production of prostaglandins is dependent on two enzymes which act in different states, cyclo-oxygenase-1 (COX-1), expressed endogenously, and cyclo-oxygenase-2 (COX-2), locally induced during the inflammatory processes [13]. Both animal and human studies have demonstrated constriction of the ductus after administration of prostaglandin synthetase inhibitors. This effect was not shown to depend on foetal serum concentration of the drug [14,15]. In recent years, also the antiinflammatory and antioxidant effects of foods rich in polyphenol have been demonstrated [16]; these effects are secondary to inhibition of the metabolic route of prostaglandins, especially of COX-2, preventing the transformation of arachidonic acid into prostaglandin [9].

Figure 1. (A) Four chamber view at 33 gestational weeks: hypertrophic and dilated right ventricle, with mild pericardial effusion. (B) Tricuspid valve regurgitation peak velocity (130 cm/s).
Other possible risk factors could be the exposure to solvents or chemicals, but more case confirmations are required [17–18]. Idiopathic premature ductal constriction is considered a rare event.

We describe the case of a premature DA constriction in a woman whose possible risk factor was identified in her maternal occupational exposure to solvents. Moreover, we report, for the first time, a literature review on all cases of DA constriction unrelated to NSAID or congenital heart defects, to investigate the role of others risk factors.

Case presentation

A 30-year-old Asian woman was referred to our institution at 33 gestational weeks and 0 days because of a suspicion of premature DA constriction on a routine third trimester ultrasound. The patient signed a standard written informed consent form for the use of data, pictures, and videos used for teaching and research purposes. This was the third pregnancy. The first newborn was affected by a lip and palate cleft, while the second one was healthy. The current pregnancy had no complications. The woman had no history of medication intake, including NSAIDs, alcohol, tobacco or polyphenol-rich-food consumption during pregnancy. In particular, in order to quantify the polyphenol ingestion, a food frequency questionnaire for consumption of polyphenol-rich foods in pregnant women was performed [19–20]. The total dietary amount of flavonoids was calculated from the USDA Database for the Flavonoid Content of Selected Foods [21], considering the 27 items with higher concentrations of polyphenols higher than 30 mg/100 g of food (green and black tea, mate tea, grape derivatives, dark chocolate, orange juice, fruit teas, olive oil, soy beans, berries, tomato, apples, spinach, and others) as reported by Zielinsky et al. [22]. On the other hand, her occupational exposure to solvents and toxic chemicals, as a hairdresser, (especially cosmetic products) resulted from the maternal and paternal history. A detailed foetal echocardiography revealed a normal cardiac anatomy with hypertrophic, hypokinetic and dilated right ventricle due to right pressure overload. The effects of premature DA constriction (mild pericardial effusion and a dilated and poorly functioning right ventricle) can be seen in Figure 1. The colour and pulsed Doppler interrogation showed holosystolic tricuspid regurgitation (130 cm/s) (Figure 1(B)) with jet that reached the roof of the atrium and at the level of the DA showed high systolic (200 cm/s) and diastolic (80 cm/s) velocities with a reduction in the pulsatility index (PI) (0.8), indicating premature ductal restriction. The right outflow showed dilatation of the pulmonary artery with narrow DA (Figure 2(B)). After the administration of corticosteroids, an urgent caesarean section was performed at 33 gestational weeks and 4 days due to worsening of DA PI and signs of right pressure overload, despite the interruption of exposure to solvents. A 2250 g-male neonate born with Apgar score of 5 and 9 at 1 and 5 min respectively. Post-natal echocardiography revealed an anatomically normal heart with progressive improvement of hypertrophy and right ventricular dilatation.

The newborn was treated immediately after birth with PGE infusion with the aim of reducing the pressure overload of the right ventricle and pulmonary hypertension. This use of prostaglandins is off-label, but free from major side effects. Due to poor response to PGE treatment, it was stopped after 18 h, and therapy with inotropic agents (dopamine) and nitric oxide was initiated to reduce the pulmonary pressure.

Figure 2. Two-dimensional echocardiography, showing ductus arteriosus constriction (arrow). (A) Right outflow tract. (B) Ductal arch view. (C) three-vessel view.
Closure of DA took place 30 h after birth. Collaterally, congenital cataract was found. Normal human karyotype was found in the newborn.

Methods: comprehensive review of the literature

The electronic medical database Medline/PubMed was used for research, combining the following terms: foetal ductus arteriosus constriction (472 articles). Titles and abstracts of these articles were screened for relevance by authors to determine which articles were to undergo full-text review (human cases of prenatal DA constriction/closure no NSAIDs or CHD induced). Animal cases of prenatal ductus arteriosus constriction, cases of NSAID related DA constriction, or related to heart defects were excluded (Figure 3). Articles identified at this stage as potentially relevant moved into full text review (Figure 3). The bibliographies of included studies were reviewed to identify additional publications not found through the database search.

Results

To date, 176 cases of NSAID-unrelated (and congenital heart defects- unrelated, CHD) premature DA constriction have been reported in the English language literature (from 1946 to 2020).

Including the present report, there are 177 cases of NSAID-unrelated (and not related to heart disease) [4,8,23–54] (Table 1).

Figure 4 report the distribution of etiopathogenesis of human cases in literature no NSAIDs or CHD induced; of the 177 cases found 96 were idiopathic (54.2%), 58 were related to polyphenol rich-food, 5 to paracetamol, 4 were related to genetic arteriopathy (Alagille and Williams Syndrome), 4 cases were related to sympatomimetics drugs, 4 to corticosteroids, 4 to miscellaneous causes, 1 to SSRI consumption and 1 case to lithium consumption. In the literature, many cases are considered as idiopathic, but no one reported about maternal employment. However, it would be important to investigate whether there is a common pathogenetic mechanism form in many cases, such as occupational exposure to solvents or intake of paracetamol (acetaminophen), a drug considered safe in pregnancy. In particular, a repeated dose intake, especially in the third trimester of pregnancy, can have a vasoconstrictive effect [55].

Discussion

Patient history was accurately reviewed to identify a possible causative agent. The woman had no chronic illness and was not a smoker. The foetus’s heart had no congenital defects. We asked about medications (especially NSAIDs) and polyphenol-rich foods intake. The mother denied the consumption of any kind of medicine, herbal tea, grapes or other polyphenol-rich food during pregnancy. A dietary intervention for maternal restriction of polyphenol-rich foods or suspension of NSAIDs consumption in the third trimester of pregnancy is accompanied by increase in plasma levels of PGE2 and reversal of foetal ductal constriction [10,27,39,56,57].

In the absence of the most common aetiologies, the occupational exposure to solvents or an idiopathic premature constriction of DA was suggested. The
Authors (Y)	Sample size	N	Study design	MA (y)	Causative agent (Substance exposure/idopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course					
Battistoni et al. (the present report)	1	1	Case report	30	Solvents and toxic chemicals	RV dilatation, PA dilatation, narrowed DA, PI on DA, TR, pericardial effusion	33	CS after corticosteroids	Immediate CS after corticosteroids	34	Progressive improvement of hypertrophy and right ventricular dilatation	Normalized heart	Uneventful. Congenital cataract was found				
Enzesberger et al. 2012 [23]	3	2	Case series	29	Idiopathic	TR, RA dilatation, constricted DA, PSV,PDV and PI on DA, negative a wave DA, Cardiomegaly, RH hypertrophy, TR, PSV,PDV and PI on DA, negative a wave DA	33	Daily FU	CS (maternal request)	38	A, Hypertrophic RV	Discharged d 4					
	3	29	Idiopathic	RV dilatation, PSV,PDV and PI on DA, negative a wave DV	34	Daily FU	CS (breed- RH function)	35	A, RV hypertrophy, TR	Discharged d 5							
	4	26	Idiopathic	RV hypertrophy, PSV,PDV and PI on DA, tortuous S-shaped DA	34	CS	CS (non-reassuring stress test)	36	A	Oxygen by nasal cannula	Discharged d 15						
Genovese et al.2015 [4]	1	5	Case report	38	Paracetamol	RV hypertrophy, PSV,PDV and PI on DA, negative a wave DV	34	CS after corticosteroids	Elective CS	35	RDS, Marked RV hypertrophy with impaired function, little and tortuous DA	Normal heart 3m					
Lopes et al 2015 [8]	16	6	Retrospective analysis	16–43	Idiopathic	RV dilatation, severe TR, PSV,PDV and PI on DA	29	FU	ND	ND	A	Uneventful					
	7	16–43	Idiopathic	RV dilatation, mild TR	34	FU	ND	ND	A	Uneventful							
	8	16–43	Idiopathic	RV dilatation, mild TR	32	FU	ND	ND	A	Uneventful							
	9	16–43	Idiopathic	RV dilatation and akiine, severe TR, pericardial effusion, PSV,PDV and PI on DA	37	Immediate delivery	ND	ND	Severe PH, severe RV dysfunction	Normal heart 3m							
	10	16–43	Idiopathic	RV dilatation, mild TR	34	FU	ND	ND	A	Uneventful							
	11	16–43	Idiopathic	RV dilatation, severe TR	36	FU	ND	ND	A	Uneventful							
	12	16–43	Idiopathic	RV dilatation, mild TR	35	FU	ND	ND	A	Uneventful							
	13	16–43	Idiopathic	RV dilatation, mild TR	28	FU	ND	ND	A	Uneventful							
	14	16–43	Naphazoline (abusive use of nasal drops)	Mild TR, PSV,PDV and PI on DA	38	FU	ND	ND	A	Uneventful							
	15	16–43	Asthma attack after pest control (unknown pesticide with bronchodilators)	RV dilatation, severe TR, PSV,PDV and PI on DA	33	FU	CS for persistent DA constriction	37	PH	Normal heart 15 d							
	16	16–43	Naphazoline (abusive use of nasal drops)	RV dilatation, moderate TR, PSV,PDV and PI on DA	34	FU	ND	ND	A	Uneventful							
	17	16–43	Caffeine (abusive ingestion of cola soft drink, 3–4 l/d)	RV dilatation, moderate TR, PSV,PDV and PI on DA	31	FU	ND	ND	A	Uneventful							
	18	16–43	Fluoxetine 60mg/d (since beginning of pregnancy)	RV dilatation, moderate TR, PSV,PDV and PI on DA	28	FU	ND	ND	A	Uneventful							
	19	16–43	Caffeine (abusive ingestion of cola soft drink)	RV dilatation, PI on DA	33	FU	ND	ND	A	Uneventful							
	20	16–43	Oxymetazoline + Naphazoline (abusive use of nasal drops)	RV dilatation, PI on DA	34	FU	ND	ND	A	Uneventful							
	21	16–43	Caffeine (abusive ingestion of cola soft drink)	RV dilatation, PI on DA	30	FU	ND	ND	A	Uneventful							
Authors (Y)	Sample size	N	Study design	MA (y)	Causative agent (Substance exposure/idiopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course					
------------	-------------	---	--------------	--------	---	------------------------	---------------------	-----------	----------	---------------	------------------------	-------------------------------					
Trevett et al. 2004 [24]	1	22	Case report	34	Idiopathic	Moderate RV hypertrophy, mild TR, $	$ PSV and $	$ Pi on DA, tortuous S-shaped DA	33	Weekly FU	Induction for GDM, VD	38	A, Normal heart	Discharged d 3			
Rakha S. 2017 [10]	1	23	Case report	23	Orange intake (up to 2 kg/d)	RH dilatation, PSV,PDV and $	$ Pi on DA, narrowed DA	31	Stop orange intake + FU	Spontaneous VD	39	A, Normal heart	Uneventful				
Okada et al 2018 [25]	1	24	Case report	27	Idiopathic	LV and RA dilatation, severe TR, hypertrophic RV, narrowed DA, no blood flow on DA	37	CS	Emergency CS (sinusoidal pattern on CTG)	37	Severe dyspnea, dilated cardiomyopathy	Respiratory support (intubation), inotropes and diuretic administration. Discharged d 47, Resolution of cardiomyopathy 6 m					
Shima et al. 2010 [26]	1	25	Case report	27	Idiopathic	RA dilatation, severe TR, hypertrophic RV, narrowed DA, pericardial effusion	38	CS	Emergency CS	38	Tachypnea, RA dilatation, massive TR, hypertrophic RV, mild pericardial effusion, Oxygen	Uneventful					
Vian et al. 2018 [27]	35	26–60	Case-control	ND	Idiopathic	$	$ PSV,PDV and $	$ Pi on DA, narrowed DA,TR RV hypertrophy, PA retrograde flow, $	$ PSV,PDV and $	$ Pi on DA	≥28	Polyphenol-rich food restriction	ND	ND	ND	A, Normal-sized heart	Uneventful
Yaman et al. 1999 [28]	1	61	Case report	ND	Idiopathic	RV hypertrophy, $	$ PSV,PDV and $	$ Pi on DA, TR, mild pericardial effusion, narrowed DA	39	Stop steroids	CS for placenta Previa	38	A, Normal-sized heart	Uneventful			
Azancot-Benisty et al. 1995 [29]	1	62	Case report	38	Betamethasone (four courses)	No flow through DA, no narrowing of DA, RH dilatation, RV hypertrophy, severe TR, negative a wave on DV	38	CS	Emergency CS	38	A, mild TR, moderate PH, cardiomegaly, RV hypertrophy, closed DA, dyspnea, PH, severe TR with rupture of the anterior papillary muscle, RV hypertrophy	Uneventful Discharged d 3 Normal heart d 14					
Wei S. et al. 2011 [30]	1	63	Case report	28	Idiopathic	Cardiomegaly, dilatation of pulmonary trunk, $	$ PSV,PDV and $	$ Pi on DA, moderate TR, narrowed DA	38	CS	Emergency CS	38	A, DA closed, dilated RV, mild TR, PR	Oxygen, CPAP, inotropes and diuretics, NO (until d 7)			
Inatomi et al. 2017 [31]	1	64	Case report	38	Idiopathic	Cardiomegaly, dilatation of pulmonary trunk, $	$ PSV,PDV and $	$ Pi on DA, moderate TR, narrowed DA	36	CS	Emergency CS (progression to hydrops)	36	Oxygen, CPAP, inotropes and diuretics, NO (until d 7)	Uneventful			
Sridharan et al. 2009 [32]	2	65	Case report	34	Camomile tea	$	$ PSV,PDV and $	$ Pi on DA, narrowed DA	20	Stop tea	ND	ND	ND	A, DA closed, dilated RV, mild TR, PR	Uneventful		
	66	32	Case report	34	Camomile tea	RV dilatation and poorly contractile, moderate TR and PR, $	$ PSV,PDV and $	$ Pi on DA, narrowed DA	35	CS	Immediate CS	35	A, DA closed, dilated RV, mild TR, PR	Uneventful			
Hayes 2016 [33]	1	67	Case report	33	Bio-Oil® (x2/d from II trim)	RA dilatation, hypertrophic and poorly contractile RV, moderate TR, pericardial effusion, $	$ PSV,PDV and $	$ Pi on DA, narrowed DA, negative a wave on DV	37	CS	Immediate CS	37	Dyspnea, cardiomegaly, PH, RV systolic dysfunction, TR	Oxygen Discharged d 6. Normal heart 6 m			

(continued)
Authors (Y)	Sample size	N	Study design	MA (y)	Causative agent (Substance exposure/idiopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course	
Srinivasan et al. 2018 [34]	4	68-71	Case series	20-34	ALGS/WS	RV hypertrophy and dilatation, ↑ PSV, PDA and ↓ PI on DA, TR, narrowed DA	21–36	Follow up	Induction/CS (non-reassuring CTG)	32–36	Oxygen up to 6 m. Normal heart 6 m, bur PPS persisted. Oxygen up to 6 d. Cardiomyopathy regression at 2 m.	Dyspnoea, PH, RV hypertrophy, ↑ flow velocities on peripheral PA	
Schierz et al. 2018 [35]	1	72	Case report	ND	Paracetamol (3g/d four 4 d in the III trimester), polyphenol-rich foods	ND	38	CS	Emergency CS	38	Oxygen for 48h. Discharged d 9. Normal heart at 7 w. Oxygen for 36h Antibiotics (sepsis). Discharged d 9.	Dyspnoea, PH, closed DA, RV hypertrophy and dilatation. Dyspnoea, closed DA, RV hypertrophy and dilatation. Hyperechoic RV endocardium and papillary muscle.	
Hofstadler et al. 1995 [36]	4	73	Case report	ND	Idiopathic	RV hypertrophy and dysfunction, TR, PR	37	Induction	CS	37		Dyspnoea, PH, closed DA, RV hypertrophy and dilatation, TR Hyperechoic RV endocardium and papillary muscle. Oxygen for 14h. Discharged d 6. At 3 m uncomplete regression of RV hypertrophy, but baby is clinically well. Discharged d 8. At 5w uncomplete regression of RV hypertrophy, but baby asymptomatic. Normal RV function, with mild residual RV hypertrophy at 3 w Oxygen with mechanical ventilator. Discharged d 12 Normal heart at 7 m.	
75	ND	6-days course antibiotics and phenyldimethylpyrazolam, glucocorticoids and ß-blocker	Closed DA, RV hypertrophy and dysfunction, ascites, TR, abnormal umbilical vein pulsations, PA regurgitation	38	CS	Emergency CS	38	Dyspnoea, PH, closed DA, RV hypertrophy and dilatation, TR Hyperechoic RV endocardium and papillary muscle. Oxygen for 14h. Discharged d 6. At 3 m uncomplete regression of RV hypertrophy, but baby is clinically well. Discharged d 8. At 5w uncomplete regression of RV hypertrophy, but baby asymptomatic. Normal RV function, with mild residual RV hypertrophy at 3 w Oxygen with mechanical ventilator. Discharged d 12 Normal heart at 7 m.					
76	ND	Bethametasone single course	RV hypertrophy and dysfunction, TR, PA regurgitation	34	Induction	VD	35	Closed DA, RV hypertrophy and dilatation, mild TR					
Soslow et al. 2008 [37]	1	77	Case report	ND	Bethametasone single course	Restrictted DA, RV hypertrophy and dysfunction, TR, Abdominal meconium pseudocyst. RV hypertrophy, RA dilatation, tortuous S-shaped DA, no flow on DA, mild TR	31	Weekly FU	Emergency CS (worsening of RV function)	32	Closed DA, RV hypertrophy and dilatation, mild TR	Dyspnoea, closed DA, RV hypertrophy, mild TR Oxygen with mechanical ventilator. Discharged d 12 Normal heart at 7 m.	
Choi et al. 2013 [38]	1	78	Case report	22	Idiopathic	RV hypertrophy, RA dilatation, tortuous S-shaped DA, no flow on DA, mild TR	33	Induction	VD	34	Dyspnoea, closed DA, RV hypertrophy, mild TR Oxygen with mechanical ventilator. Discharged d 12 Normal heart at 7 m.		
Zielinsky et al. 2012 [39]	51	79-129	Case-control	28 ± 6.5	Polyphenol rich foods	↑ PSV, PDA and ↓ PI on DA, turbulent flow on DA, TR, RV hypertrophy, ↑ PDA, ↓ PI on DA, S-shaped DA, severe TR, RA and RV dilatation, transient PR	32 ± 3	Polyphenol-rich food restriction and FU after 3w FU	Spontaneous delivery	ND	A, normal sized heart	Uneventful	
Mielke et al. 1995 [40]	1	130	Case report	28	Idiopathic	↑ PSV, PDA and ↓ PI on DA, S-shaped DA, severe TR, RA and RV dilatation, transient PR	32	CS (↑ tricuspid valve insufficiency)	36	Closed DA, RV hypertrophy and dilatation, mild TR	Progressive normal heart in the following d.		

(continued)
Authors (Y)	Sample size	N	Study design	MA (y)	Causative agent (Substance exposure/idioopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course
Ishida et al. 2011 [41]	1	131	Case report	29	Idiopathic	PSV, PDV and PI on DA, mild TR, RH dilatation, PR, hydrops	32	CS	Emergency CS	32	closed DA, dyspnea, RV hypertrophy and dilatation, mild TR	Oxygen intubation, Catecholamine, Discharged d 31, Normal heart 2 m
Mielke et al. 1996 [42]	1	132	Case report	34	Idiopathic	PSV and PI on DA, narrowed DA, RA dilatation, foetal atrial flutter	31	Weekly FU, digoxin + verapamil to obtain cardioversion	Spontaneous	39	RV hypertrophy, RA dilatation	Normal heart 3 m
Gewillig et al. 2017 [43]	19	133	Case series	ND	Idiopathic	PSV and PDV, PI on DA, narrowed DA, severe RV dilatation and hypertrophy	27	FU	Spontaneous	40	A, severe RV hypertrophy	Resolved
		134		ND	Idiopathic	PSV and PDV, PI on DA, narrowed DA, severe RV dilatation and hypertrophy	26	FU, Induction (RH dysfunction)	VD	36	Cyanosis, severe RV hypertrophy and dilatation, A, severe RV hypertrophy, critical Pulmonary stenosis	CPAP
		135		ND	Idiopathic	PSV, and PDV, PI on DA, narrowed DA, severe RV hypertrophy	28	FU, Induction (progression RH dysfunction)	VD	38	Cyanosis, PH, severe TR, moderate RV hypertrophy, RA dilatation, Cyanosis, SVT, mild TR, severe RV hypertrophy, RA dilatation	Oxygen, Ablation 2 m
		136		ND	Paracetamol	PSV, and PDV, PI on DA, Pulmonary atresia dilatation	24	FU	Spontaneous	40	A, Pulmonary stenosis, Cyanosis, PH, severe TR, moderate RV hypertrophy, RA dilatation	Pulmonary atresia angioplasty
		137		ND	Paracetamol	PSV, and PDV, PI on DA, narrowed DA, severe TR, pericardial effusion	25	FU, Induction (progression RH dysfunction)	VD	37	Cyanosis, PH, severe TR, moderate RV hypertrophy, RA dilatation, Cyanosis, SVT, mild TR, severe RV hypertrophy, RA dilatation	IPPV, NO, Inotropes, Tincup valve repair at 3 w
		138		ND	Idiopathic	PSV, and PDV, PI on DA, narrowed DA, severe TR, severe RH dilatation	37	FU	CS	39	Cyanosis, SVT, mild TR, severe RV hypertrophy, RA dilatation	Oxygen, Ablation 2 m
		139		ND	Idiopathic	PSV, and PDV, PI on DA, severe RV hypertrophy	32	FU	Spontaneous	40	A, moderate RV hypertrophy	Resolved
		140		ND	Idiopathic	PSV, and PDV, PI on DA, no flow DA, severe RV hypertrophy	34	FU	VD	40	Cyanosis, PH, severe TR, severe RV hypertrophy, RVOTO	IPPV, NO, Inotropes, death 3 m after attempted palliative surgery of RVOTO
		141		ND	Idiopathic	PSV, and PDV, PI on DA, no flow DA, severe TR, moderate RV dilatation	27	FU, Induction (RH dysfunction with hydrops)	VD	29	Cyanosis, PH, severe RV hypertrophy, cyanodystrophy	IPPV, NO, Inotropes, mitral valve ring a 4 y
		142		ND	Idiopathic	PSV, and PDV, PI on DA, no flow DA, severe TR, moderate RH dilatation, severe RV hypertrophy	34	FU, Induction for progression RH dysfunction	VD	35	Cyanosis, PH, severe TR, moderate RH dilatation, severe RV hypertrophy, functional PuV atresia	IPPV, NO, Inotropes, death on day 1 due to high pulmonary vascular resistance
Authors (Y)	Sample size	N	Study design	MA (y)	Causative agent (Substance exposure/idopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course
------------	-------------	---	--------------	--------	---	------------------------	---------------------	-----------	----------	----------------	-------------------------	--------------------------------
Babaoğlu et al. 2013 [44]	1	152	Case report	29	Idiopathic							
Becker et al. 1977 [45]	2	153	Case report	ND	Idiopathic							
Becker et al. 1977 [45]	2	154	Case report	ND	Idiopathic							
Authors (Y)	Sample size	N	Study design	MA (y)	Causative agent (Substance exposure/idiopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course
--------------------------	-------------	----	--------------	--------	--	------------------------	---------------------	-----------	----------	----------------	------------------------	--------------------------------
Leal et al. 1997 [46]	3	155	Case series	28–38	Idiopathic	No flow on DA, RV dilatation, mild TR, mild PuV insufficiency	32	ND	CS	ND	A, absent DA flow, RV dilatation	Uneventful, Normal-sized heart on follow up
	156	28–38	Idiopathic		No flow on DA, RV dilatation, mild TR, mild PuV insufficiency	41	ND	CS	ND	A, absent DA flow, RV dilatation	Uneventful, Normal-sized heart on follow up	
	157	28–38	Idiopathic		No flow on DA, RV dilatation, mild TR, mild PuV insufficiency	40	ND	CS	ND	A, absent DA flow, RV dilatation	Uneventful, Normal-sized heart on follow up	
Talemal et al. 2016 [47]	1	158	Case report	31	Dexamethasone (1w) for suspected myocardial inflammation in anti-SSA-exposed foetus	PSV, PDV, PI on DA, narrowed DA, mild RH dilatation, mild TR, hyperechogenic Mitral valve	28	Follow up	Spontaneous VD	38	RDS, RH dilatation, RV dysfunction, no myocardial inflammation	Uneventful, Endotracheal intubation for 24h, normal heart at 2w.
Eidem et al. 2000 [48]	1	159	Case report	35	Idiopathic	Narrowed DA	23	FU	Induced VD	38	A, constricted DA	Uneventful
Corti et al. 2020 [49]	1	160	Case report	35	Sertraline (2.5mg/d) Lorazepam (10drops/d) Paracetamol (2-4g/d first trimester and 1-2 g occasionally in the third trimester) Idiopathic	No flow on DA, severe RH dilatation, TR, PuV insufficiency, decreased function of RV, Negative a-wave on DV, PSV, and PDV on DA, narrowed DA, mild RH dilatation, mild TR, RV hyperechogenicity, mild pericardial effusion	33	CS after single course of corticosteroids	CS	33	Dyspnoea, PH, No DA, RV hypertrophy and dilatation, mild PuV insufficiency	Oxygen by nasal cannula, Normal heart 1m.
Kim et al. 2003 [50]	1	161	Case report	35	Lithium (throughout pregnancy) Rh dilatation	18	FU	Preterm delivery	ND	A, mild TR, mild RV hypertrophy and hypococontractility, totally closed DA	Dyspnoea, severe RV dilatation and hypertrophy, severe TR, Closed DA, PH	Uneventful, Progressive normal heart, Discharged 5w.
Ellis et al. 2013 [51]	1	162	Case report	ND	Paracetamol (for 7 d after 34 w)	37	Induction	VD	37	A, absent DA, RV dilatation, mild TR, mild TR	Mechanic ventilation for 2d, Discharged d 10, Normal heart at 1m.	
Becquet et al. 2018 [52]	1	163	Case series	31	Idiopathic	PSV, PDV and PI on DA, narrowed DA, mild RH dilatation, mild TR	32	FU	CS (worsening RV dysfunction)	38	Mechanic ventilation for 2d	Uneventful
Chugh et al. 2020 [53]	1	164	Case series	31	Idiopathic	PSV, PDV and PI on DA, narrowed DA, S-shaped DA, mild TR	33	FU	ND	ND	CS	Uneventful
Luchese et al. 2003 [54]	13	165	Retrospective analysis	19	Idiopathic	PSV, PDV and PI on DA, RH dilatation, hypertrophic RV, mild PR	33	FU	ND	ND	PH	ND
	166	32	Idiopathic		PSV, PDV and PI on DA, dilated/hypococontractile RV, mild TR	27	FU	ND	ND	PH	ND	
	167	17	Idiopathic		PSV, PDV and PI on DA, dilated RH and PA, mild TR	37	FU	ND	ND	A	Uneventful	
	168	35	Idiopathic		No flow on DA, dilated RH and PA, severe TR and PR, hypertrophic RV	36	FU	ND	ND	Uneventful		
	169	21	Idiopathic		PSV and PI on DA, mild RV dilatation, mild TR	34	FU	ND	ND	Uneventful		

(continued)
Occupation of both parents as hairdressers, which involved the daily use of organic solvents, could be suspected. Widely discussed in the literature is the association between maternal occupational exposure to solvents (as in hairdressing and cosmetology) and an increased risk of adverse obstetric outcomes, such as spontaneous abortion, preterm birth, small for gestational age (SGA), low birth weight (LBW) and congenital malformations (especially cleft lip and palate, urinary malformations, hypospadias and eye diseases) [17,18,58–62]. Our case could underline this association. The mother did not stop working before and during pregnancy and the foetus had not only the premature DA constriction but also congenital cataract, without any other risk factors. In addition, the first child was affected by lip and palate cleft.

Table 1. Continued.

Authors (Y)	Sample size N	Study design	MA (y)	Causative agent (Substance exposure/idopathic)	Dominant echo findings	GA at diagnosis (W)	Treatment	Delivery	GA at birth (w)	Postnatal presentation	Postnatal treatment and course
170	32	Idiopathic			PSV, PDV and PI on DA, mild PR	31	FU	ND	ND	A	Uneventful
171	36	Idiopathic			PSV, PDV and PI on DA, dilated RH, mild PR	34	FU	ND	ND	A	Uneventful
172	25	Idiopathic			PSV, PDV and PI on DA, dilated/contractile RH	32	FU	ND	ND	A	Uneventful
173	41	Idiopathic			PSV, PDV and PI on DA, mild TR, dilated RV, severe hydrops	28	FU	ND	ND	Neonate death	Neonate death
174	17	Idiopathic			PSV, PDV and PI on DA	38	FU	ND	ND	A	Uneventful
175	20	Idiopathic			PSV, PDV and PI on DA, mild TR	32	FU	ND	ND	A	Uneventful
176	28	Idiopathic			PSV, PDV and PI on DA, dilated RH, hypertrophic RV, mild PR	33	FU	ND	ND	A	Uneventful
177	39	Idiopathic			PSV, PDV and PI on DA	33	FU	ND	ND	A	Uneventful

GA: gestational age; W: weeks; Y: years; D: days; M: months; H: hours; FU: follow up; N: case number; MA: maternal age; RV: right ventricle; RA: right atrium; RH: right heart; PA: pulmonary artery; PuV: pulmonary valve; LF: left ventricle; PI: pulsatility index; DV: ductus venosus; PSV: peak systolic velocity; PDV: peak diastolic velocity; TR: tricuspid regurgitation; PR: pulmonary regurgitation; PS: pulmonary stenosis; RVOTO: right ventricle outflow tract obstruction; ND: no data available; CS: caesarean section; VD: vaginal delivery; PH: pulmonary hypertension; A: asymptomatic; CPAP: continuous positive airway pressure; IPPV: intermittent positive pressure ventilation; NO: nitrous oxide; NICU: neonatal intensive care unit; RDS: respiratory distress syndrome; SVT: supraventricular tachycardia; GDM: gestational diabetes; CTG: cardiotocography; ALGS: Alagille syndrome; WS: Williams syndrome; PPS: peripheral pulmonary stenosis.

Figure 4. Distribution of etiopathogenesis of human cases in literature no NSAIDs or CHD induced.
cardiovascular defects [63]. Also aromatic amines and aldehydes could have a role in COX2 inhibition that determine congenital heart defects [64]. In humans, malformations and cytogenetic effects have been observed among the offspring of women exposed to glycol ethers during pregnancy [65]. Some studies [66–69], but not others [70], report an excess risk of spontaneous abortion among women occupationally exposed to solvents. A small prospective cohort [71], and a meta-analysis [72], performed by the same research group both report associations between maternal occupational exposure to solvents and major malformations. Two occupational cohort studies of women working in laboratories suggest similar results [73–74]. Various case-control studies have shown relations between maternal occupational exposure to solvents and some subtypes of malformations, mostly oral clefts [75–77]. Some significant associations have also been reported between maternal exposure to solvents and cardiac malformations [75,78], visual impairment [17] and neural tube defects [75,79].

Conclusion

Premature constriction of DA is a rare event and in most cases is secondary to maternal intake of NSAIDs or foods rich in polyphenols. For the first time, the present review reported all cases of DA constriction not related to NSAIDs intake or to CHD.

The gynaecologist must take into account that there are not only forms of DA constriction secondary to the intake of NSAIDs. We assume a relationship between premature DA constriction and a maternal occupational exposure to solvents. This association between a maternal occupational exposure to solvents and an increased risk of adverse obstetrics outcomes has been widely discussed in the literature. In our case report and in the previous newborns this hypothesis is reinforced by the presence of other associated foetal malformations. It is therefore important to carry out through an occupational history and inform the patient about the potential risks associated with the exposure to solvents and toxic chemicals. Further investigation is needed to confirm their role in the pathogenesis of DA constriction, as in experimental animal models, such as those already performed in pregnant rats and sheep with polyphenols. A randomized clinical trial is needed to analyse the role of solvents in inducing this condition would be desirable, respecting the ethical aspects of the research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Andrea Ciavattini http://orcid.org/0000-0003-0074-5996

References

[1] Mott JC. Patent ductus arteriosus: experimental aspects. Arch Dis Child. 1980; 55(2):99–105.
[2] Brezinka C. Fetal ductus arteriosus-how far may it bend? Ultrasound Obstet Gynecol. 1995;6(1):6–7.
[3] Gewillig M, Brown SC, De Catte L, et al. Premature foetal closure of the arterial duct: clinical presentations and outcome. Eur Heart J. 2009;30(12):1530–1536.
[4] Genovese F, Marilli I, Benintende G, et al. Diagnosis and management of fetal ductus arteriosus constriction-closure. J Neonatal Perinatal Med. 2015;8(1):57–62.
[5] Hermes-DeSantis ER, Clyman RL. Patent ductus arteriosus: pathophysiology and management. J Perinatol. 2006;26(5):514–518.
[6] Bergwerff M, DeRuiter MC, Gittenberger-de Groot AC. Comparative anatomy and ontogeny of the ductus arteriosus, a vascular outsider. Anat Embryol. 1999;200(6):559–571.
[7] Tada T, Wakabayashi T, Nakao Y, et al. Human ductus arteriosus: a histological study on the relation between ductal maturation and gestational age. Acta Pathol Jpn. 1985;35:23–34.
[8] Lopes LM, Carvalho Carrilho M, Pulcineli Vieira Francisco R, et al. Fetal ductus arteriosus constriction and closure: analysis of the causes and perinatal outcome related to 45 consecutive cases. J Matern Fetal Neonatal Med. 2015;29(4):638–645.
[9] Zielinsky P, Busato S. Prenatal effects of maternal consumption of polyphenol-rich foods in late pregnancy upon fetal ductus arteriosus. Birth Defects Res C Embryo Today. 2013;99(4):256–274.
[10] Rakha S. Excessive maternal orange intake – a reversible etiology of fetal premature ductus arteriosus constriction: a case report. Fetal Diagn Ther. 2017;42(2):158–160.
[11] Zielinsky P, Martignoni FV, Vian I. Deleterious effects of maternal ingestion of cocoa upon fetal ductus arteriosus in late pregnancy. Front Pharmacol. 2014;5:281.
[12] Zielinsky P, Manica JLL, Piccoli AL, Jr, et al. Fetal ductal constriction caused by maternal ingestion of green tea in late pregnancy: an experimental study. Prenat Diagn. 2012;32(10):921–926.
[13] Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev. 2012;64(3):540–582.
[14] Koren G, Florescu A, Costei AM, et al. Nonsteroidal antiinflammatory drugs during third trimester and the
risk of premature closure of the ductus arteriosus: a meta-analysis. Ann Pharmacother. 2006;40(5):824–829.
[15] Koehne PS, Bein G, Alexi V, et al. Patent ductus arteriosus in very low birthweight infants. J Perinatol Med. 2001;29:324–334.
[16] Chun OK, Kim DO, Lee CY. Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem. 2003;51(27):8067–8072.
[17] Kim D, Kang MY, Choi S, et al. Reproductive disorders among cosmetologists and hairdressers: a meta-analysis. Int Arch Occup Environ Health. 2016;89(5):739–753.
[18] GarlantéZec R, Monfort C, Rouget F, et al. Maternal occupational exposure to solvents and congenital malformations: a prospective study in the general population. Occup Environ Med. 2009;66(7):456–463.
[19] Block G, Hartman AM, Dresser CM, Carroll MD, et al. A data-based approach to diet questionnaire design and testing. Am J Epidemiol. 1986;124(3):453–469.
[20] Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.
[21] USDA Database for the Flavonoid Content of Selected Foods Release 3.2 Web site; [cited 2021 Mar 14]. Available from: https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-32-november-2015/resource/b6a8ebff.
[22] Zielinsky P, Piccoli AL, Jr, Manica JL, et al. Maternal consumption of polyphenol-rich foods in late pregnancy and fetal ductus arteriosus flow dynamics. J Perinatol. 2010;30(1):17–21.
[23] Enzensberger C, Wienhard J, Weichert J, et al. Idiopathic constriction of the fetal ductus arteriosus: three cases and review of the literature. J Ultrasound Med. 2012;31(8):1285–1291.
[24] Trevett TN, Cotton J. Idiopathic constriction of the fetal ductus arteriosus. Ultrasound Obstet Gynecol. 2004;23(5):517–519.
[25] Okada S, Muneechi J, Iwaya Y. Dilated cardiomyopathy due to premature ductus arteriosus constriction. Cardiol Young. 2018;28(9):1168–1174.
[26] Shima Y, Ishikawa H, Matsumura Y, et al. Prenatal diagnosis of idiopathic severe ductal constriction during dexamethasone treatment in an extremely premature infant. J Perinatol. 1995;5(5):338–341.
[27] Vian I, Zielinsky P, Zilio AM, et al. Increase of prostaglandin E2 in the reversal of fetal ductal constriction after polyphenol restriction. Ultrasound Obstet Gynecol. 2018;52(5):617–622.
[28] Yaman C, Arzt W, Tulzer G, et al. Spontaneous constriction of the fetal ductus arteriosus. Z Geburtshilfe Neonatol. 1999;200(3):44–46.
[29] Azancot-Benisty A, Benifla JL, Matias A, et al. Constriction of the fetal ductus arteriosus during prenatal betamethasone therapy. Obstet Gynecol. 1995;85(5 Pt 2):874–876.
[30] Wei S, Aliu C, Ying Z, et al. Idiopathic occlusion of the fetal ductus arteriosus without lumen narrowing. Echocardiography. 2011; 28(4):E85–E88.
[31] Inatomi A, Sasahara J, Ishii K, et al. Prenatal diagnosis of premature constriction of the ductus arteriosus with tricuspid papillary muscle rupture: a case report. J Med Ultrasonics. 2018;45(2):337–340.
[32] Sritharan S, Archer N, Manning N. Premature constriction of the fetal ductus arteriosus following the maternal consumption of camomile herbal tea. Ultrasound Obstet Gynecol. 2009;34(3):358–360.
[33] Hayes DA. Constriction of the ductus arteriosus, severe right ventricular hypertension, and a right ventricular aneurysm in a fetus after maternal use of a topical treatment for striae gravidarum. Cardiol Young. 2016;26(4):796–798.
[34] Srinivasan S, Howley LW, Bettina FC, et al. In-uteri idiopathic ductal constriction: a prenatal manifestation of Alagille and Williams syndrome arteriopathy. J Perinatol. 2018;38(11):1453–1456.
[35] Zielinsky P, Piccoli AL, Jr, Manica JLL, et al. Reversal of spontaneous constriction of the human fetal ductus arteriosus – a cause of fetal congestive heart failure. Am J Obstet Gynecol. 1996;74(3):879–883.
[36] Hofstadler G, Tulzer G, Altmann R, et al. Spontaneous closure of the human fetal ductus arteriosus – a cause of fetal congestive heart failure. Ultrasound Obstet Gynecol. 2018;52(8):574–579.
[37] Choi EY, Li M, Choi CW, et al. A case of cardiomyopathy due to premature ductus arteriosus closure: the flip side of paracetamol. Pediatrics. 2018;141(2):e20163850.
[38] Mielke G, Peukert U, Krapp M, et al. Fetal and transi-ent neonatal right heart dilatation with severe tricuspid valve insufficiency in association with abnormally S-shaped kinking of the ductus arteriosus. Ultrasound Obstet Gynecol. 1995;5(5):338–341.
[39] Ishida H, Inamura N, Kawazu Y, et al. Clinical features of the complete closure of the ductus arteriosus prenatally. Congenit Heart Dis. 2011;6(1):51–56.
[40] Mielke G, Steil E, Gonser M. Prenatal diagnosis of idiopathic stenosis of the ductus arteriosus associated with fetal atrial flutter. Fetal Diagn Ther. 1997;12(1):46–49.
[41] Gewillig M, Brown SC, Roggen M, et al. Dysfunction of the foetal arterial duct results in a wide spectrum of cardiovascular pathology. Acta Cardiol. 2017;72(6):625–635.
[42] Babaöğlu K, Çakroğlu Y, Altun G, et al. Intraterine idiopathic severe ductal constriction diagnosed by fetal echocardiography: a cause of hydrops fetalis. Anadolu Kardiyol Derg. 2013;13(5):496–497.
[43] Becker AE, Becker MJ, Wagenvoort CA. Premature contraction of the ductus arteriosus: a cause of foetal death. J Pathol. 1977;129(3):191–194.
[44] Leal SD, Cavallé-Garrido T, Ryan G, et al. Isolated ductal closure in utero diagnosed by fetal echocardiography. Amer J Perinatol. 1997;14(04):205–210.
anti-SSA-antibody-exposed fetus with signs of myocardial inflammation. Cardiol Young. 2016;26(5):1021–1024.

[48] Eidem BW, MacMillan WE, Cetta F. Intermittent constriction of the ductus arteriosus in the fetus: a cause for concern? Tex Heart Inst J. 2000;27(4):416–417.

[49] Corti CG, Faiola S, Lanna MM, et al. Monochorionic diamniotic twin pregnancy complicated by discordant premature closure of ductus arteriosus. Clin Case Rep. 2020;8(4):685–689.

[50] Kim HS, Sohn S, Park MY, et al. Coexistence of ductal constriction and closure of the foramen ovale in utero. Pediatr Cardiol. 2003;24(6):588–590.

[51] Ellis DL, Guerra V, Prijdian G, et al. Possible association between maternal lithium therapy and premature closure of the arterial duct: a case report. J Reprod Med. 2013;58(3–4):181–184.

[52] Becquet O, Bonnet D, Ville Y, et al. Paracetamol/acetaminophen during pregnancy induces prenatal ductus arteriosus closure. Pediatrics. 2018;142(1):e20174021.

[53] Chugh BD, Makam A. Diagnosis and management of fetal ductus arteriosus constriction. J Fetal Med. 2020;7(3):235–242.

[54] Luchese S, Mánica JL, Zielinsky P. Intrauterine ductus arteriosus constriction: analysis of a historic cohort of 20 cases. Arq Bras Cardiol. 2003;81(4):405–410.

[55] Botting RM. Mechanism of action of acetaminophen: is there a cyclooxygenase 3? Clin Infect Dis. 2000;31(Supplement_5):S202–S210.

[56] Zielinsky P, Magalhães GA, Zurita-Peralta J, et al. Improvement of fetal pulmonary hypertension and maturity after reversal of ductal constriction: a prospective cohort study. Ultrasound Obstet Gynecol. 2021. DOI:10.1002/uog.23599

[57] Zielinsky P, Piccoli AL, Jr, Vian I, et al. Maternal restriction of polyphenols and fetal ductal dynamics in normal pregnancy: an open clinical trial. Arq Bras Cardiol. 2013;101(3):217–225.

[58] Peters C, Harling M, Dulong M, et al. Fertility disorders and pregnancy complications in hairdressers – a systematic review. J Occup Med Toxicol. 2010;5:24.

[59] Halliday-Bell JA, Gissler M, Jaakkola JK, et al. Work as a hairdresser and cosmetologist and adverse pregnancy outcomes. Occup Med. 2009;59(3):180–184.

[60] Till C, Westall CA, Rovet JF, et al. Effects of maternal occupational exposure to organic solvents on offspring visual functioning: a prospective controlled study. Teratology. 2001;64(3):134–141.

[61] Schardein J. Industrial solvents. In: Schardein J, editor. Chemically induced birth defects 2nd edition, revisited and expanded. New York (NY): Marcel Dekker, 1993. p. 751–775.

[62] Expertise Collective INSERM. In: Insersm editors. Thèses de glycol: Quels risques pour la santé? (French). Paris, France: Les éditions INSERM, 1999. p. 131–162.

[63] Manjunatha B, Han L, Kundapur RR, et al. Herbal black henna (hair dye) causes cardiovascular defects in zebrafish (Danio rerio) embryo model. Environ Sci Pollut Res Int. 2020;27(12):14150–14159.

[64] Nicoll R. Environmental contaminants and congenital heart defects: a re-evaluation of the evidence. Int J Environ Res Public Health. 2018;15(10):2096.

[65] El-Zein RA, Abdel-Rahman SZ, Morris DL, et al. Exposure to ethylene glycol monomethyl ether: clinical and cytogenetic findings. Arch Environ Health. 2002;57(4):371–376.

[66] Swan SH, Beaumont JJ, Hammond SK, et al. Historical cohort study of spontaneous abortion among fabrication workers in the Semiconductor Health Study: agent-level analysis. Am J Ind Med. 1995;28(6):751–769.

[67] Correa A, Gray RH, Cohen R, et al. Ethylene glycol ethers and risks of spontaneous abortion and subfertility. Am J Epidemiol. 1996;143(7):707–717.

[68] Windham GC, Shusterman D, Swan SH, et al. Exposure to organic solvents and adverse pregnancy outcome. Am J Ind Med. 1991;20(2):241–259.

[69] Lindbohm ML, Taskinen H, Sallmen M, et al. Spontaneous abortions among women exposed to organic solvents. Am J Ind Med. 1990;17(4):449–463.

[70] Elliott RC, Jones JR, McElnenny DM, et al. Spontaneous abortion in the British semiconductor industry: an HSE investigation. Health and Safety Executive. Am J Ind Med. 1999;36(5):557–572.

[71] Khattak S, K-Moghtader G, McMartin K, et al. Pregnancy outcome following gestational exposure to organic solvents: a prospective controlled study. Jama. 1999;281(12):1106–1109.

[72] McMartin KI, Chu M, Kopecky E, et al. Pregnancy outcome following maternal organic solvent exposure: a meta-analysis of epidemiologic studies. Am J Ind Med. 1998;34(3):288–292.

[73] Wennborg H, Magnusson LL, Bonde JP, et al. Congenital malformations related to maternal exposure to specific agents in biomedical research laboratories. J Occup Environ Med. 2005;47(1):11–19.

[74] Zhu J, Knudsen LE, Andersen AM, et al. Laboratory work and pregnancy outcomes: a study within the National Birth Cohort in Denmark. Occup Environ Med. 2006;63(1):53–58.

[75] Cordier S, Bergeret A, Goujard J, et al. Congenital malformations and maternal occupational exposure to glycol ethers. Occupational Exposure and Congenital Malformations Working Group. Epidemiology. 1997: 355–363.

[76] Lorente C, Cordier S, Bergeret A, et al. Maternal occupational risk factors for oral clefts. Occupational exposure and congenital malformation working group. Scand J Work Environ Health. 2000;26(2):137–145.

[77] Chevrier C, Dananche B, Bahuau M, et al. Occupational exposure to organic solvent mixtures during pregnancy and the risk of non-syndromic oral clefts. Occup Environ Med. 2006;63(9):617–623.

[78] Tikkanen J, Heinonen OP. Cardiovascular malformations and organic solvent exposure during pregnancy in Finland. Am J Ind Med. 1988;14(1):1–8.

[79] Holmberg PC. Central-nervous-system defects in children born to mothers exposed to organic solvents during pregnancy. Lancet. 1979;2(8135):177–179.