Preparation and nutrient release kinetics of enriched biochar-based NPK fertilizers and agronomic effectiveness in direct seeded rice

Arkaprava Roy
Govind Ballabh Pant University of Agriculture & Technology

Sumit Chaturvedi (mailto:sumitagronomy78@gmail.com)
Govind Ballabh Pant University of Agriculture & Technology

Suhita Pyne
Govind Ballabh Pant University of Agriculture & Technology

Shiv Vendra Singh
Govind Ballabh Pant University of Agriculture & Technology

Govindaraju Kasivelu
Sathyabama Institute of Science and Technology

Research Article

Keywords: Slow release, biochar, conventional fertilizers, release pattern, nutrient use efficiency

Posted Date: September 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-904406/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

In present study, two enriched biochar-based fertilizers were prepared having fertilizer grade of 6-6-4 N-P₂O₅-K₂O by intercalation of NPK fertilizers mixture solution as EB-1 and additional humic acid and seaweed extract as EB-2. In laboratory, batch experiment were done to compare nutrients (NH₄⁺, NO₃⁻, P and K⁺) release patterns of developed fertilizers along with conventional fertilizers. Enriched biochar fertilizers (EB) demonstrated much slower release pattern of NH₄⁺, P and K⁺, however NO₃⁻ release was similar over conventional fertilizers. The cumulative release of N in EB fertilizers was similar to conventional fertilizer, however significantly less of P and K were released during the period of 72 hrs. The field response study of enriched fertilizers EB-2 revealed 29.5, 11.5 and 22.9% higher apparent use efficiency than conventional fertilizer. The slow nutrients release behaviour of EB fertilizers implies reduced losses and enhanced NUE as reflected by higher apparent recovery of N, P and K.

Introduction

Nutrient use efficiency (NUE) is a vital concept for assessing farming system which is greatly dependent on fertilizer management as well as soil-plant-water relationships. The nutrient use is mainly used to increase the crop performance by providing optimum nourishment while minimizing nutrient losses from the field and supporting sustainability by contributing to soil quality components. Use efficiency of nitrogenous fertilizers is around 30-40 %, phosphate fertilizers are 15-20 %, potassic fertilizers is 50-60 % and micronutrient is 1-2 % (Singh et al. 2014). Among the different approaches initiated to increase the nutrient use efficiency; control release fertilizer may be a novel environment-friendly approach. Control-release fertilizers delays the availability of nutrients after application for plant uptake and use, or which extends the nutrient availability to the plant for significantly longer period compared to the conventional fertilizers and thereby enhance nutrient use efficiency. Biochar prepared from agricultural wastes viz., rice straw and husk may be utilized as a suitable matrix to prepare control release fertilizers (Singh et al. 2020; Chaturvedi et al. 2021). It will not only enhance NUE but also improve soil health and crop yield with most economic management of agro-wastes.

Biochar is a product of the pyrolysis of organic materials such as wood, rice husk, rice straw, leaves, grasses, crop residues and manure as a stable, recalcitrant organic carbon-rich amendment to improve soil bio-physiological and chemical properties (Lehmann et al., 2006). Biochar has a porous structure, huge surface area, a large number of functional groups, and plentiful mineral elements, that benefit loading of fertilizer nutrients and availability of heavy metals in the soil (Dong et al. 2019; Liu et al. 2019). Presence of surface functional groups on biochar strongly adsorbs various nutrient ions, including NH₄⁺, NO₃⁻, P and K⁺ ions (Kimetu 2010; Mizuta et al. 2004). This promotes to load nutrients on biochar and reduce their losses (Singh et al. 2020; O’Connor et al. 2018). Sorption by the biochar is the primary reason for reduced mean cumulative leaching of nitrate and nitrite in biochar-amended soil (Mukherjee et al. 2014). Therefore, application of biochar as a soil amendment or slow-release fertilizer could make farming more productive by compensating for acidity, improving organic carbon, water retention and nutrient availability and bring more area under agriculture (Fryda and Visser 2015).

Despite the positive impacts of biochar in agricultural systems, it is usually very expensive to apply mainly due to the high cost of collecting feedstock as well as the high costs of pyrolysis plants. Biochar itself does not contain enough nutrients for crop growth (Yaung et al. 2016). To utilize biochar in agriculture comfortably, it can be enriched with chemical fertilizers. This can curtail cost and make it relative to that of conventional chemical fertilizers. Compared to conventional chemical fertilizers, biochar enriched fertilizers have been shown to increase crop yields, nutrient use efficiency, plenty of beneficial microorganisms, and lower soil greenhouse gas emissions (Joseph et al. 2013; Qian et al. 2014; Zheng et al. 2017; Yao et al. 2015; Blackwell et al. 2015). Sole application of biochar reduced grain yield (Asai...
et al. 2009) due to the insufficient supply of nitrogen thus, augmenting biochar with fertilizer nutrients makes biochar composite suitable for plant growth and yield (Si et al. 2018) and heavy metal adsorption (Zhao et al. 2016). Due to the farming and ecological applications, enriched biochar fertilizers have received growing attention. Recent studies suggest that biochar-based fertilizers delay the release of nutrients in the soil displaying a slow-release effect (Chaturvedi et al. 2021). Enrichment of soil with biochar-based fertilizer adjust the soil pH, reduce the bulk density, improve soil aeration and water permeability and retention to increase the crops yield (Gao et al. 2012; O’Connor et al. 2018). Addition of enriched biochar in soil as a carrier of nutrients is enormous. Moreover, it could guide nutrient release in sustained manner and extended period due to its micro porous structure and extensive surface area (Ghezzehei et al. 2014; Singh et al. 2020). Collectively, these characteristics makes biochar-based fertilizer a novel approach that could reduce losses, increase nutrient bioavailability, mitigate GHG emission, improve soil health and consequently crop growth and biomass yield.

Materials And Methods

Synthesis and chemical characterization of biochar and enriched biochar-based fertilizers

Synthesis of the biochar-based NPK fertilizer entailed three consecutive steps: (1) pyrolysis of rice husk for the production of the biochar for fertilizer carrier; (2) impregnation of the biochar with nutrient solution; and (3) granulation or prilling. The rice husk, a readily available low cost biowaste was obtained from Norman E. Borlaug Crop Research Centre, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (28.97°N, 79.41°E). Pyrolysis of prepared feedstock was carried out in rotary type reactor under oxygen-limited conditions at temperature of 450°C (Mandal et al., 2018), aiming to produce small pores and preserve oxygen-functional groups (Al-Wabel et al., 2013; Keiluweit et al., 2010; Lawninenko and Laird, 2015; Yuan et al., 2014). An NPK nutrient solution was prepared by dissolving 12-32-16 NPK (IFFCO) + Urea + MOP mixture in distilled water. Prepared biochar was ground in disc mill using 60 mesh sieves after grinding and added to prepared NPK solution (NPK (12-32-16) fertilizer (200 kg) + Urea (80 kg) + MOP (20 kg) in ratio 7:3 to produce enriched biochar; EB-1 and additionally humic acid and seaweed extract was added for enriched biochar; EB-2. Both EB-1 and EB-2 had 6-6-4 N-P₂O₅-K₂O fertilizer grade. The developed fertilizers were characterized for their properties and nutrient release kinetics.

Determination of nutrient release patterns

Batch experiment was conducted IFS laboratory with soil sample, Conventional fertilizer mix (N-P-K 12-32-16 + Urea + MOP), EB-1 and EB-2. Leachates of nutrient enriched biochar were collected through batch experiment for 36 h at 0 min, 15 min, 30 min, 1 h, 3 h, 6 h, 9 h, 15 h, 24 h and 36 h and NPK content in those leachates were determined as ammonium (NH₄⁺), nitrate (NO₃⁻), phosphorus (P) and potassium (K).

Ammonium (NH₄⁺)

For determination of release pattern of NH₄⁺ from conventional fertilizers mix, EB-1 and EB-2 batch experiment was followed. These three fertilizers were taken in 10 conical flasks for each sample on 1g N content basis. After that 10 g of soil sample from experimental field was added to each flask and 30 mL of water also added to each flask. At predetermined time intervals selected flasks samples were filtrated in 100 mL volumetric flask and after collecting filtrate filled the volumetric flask up to 100 mL. After collecting all the filtrates at all predetermined time intervals. Modified kjeldhal method was followed to determine NH₄⁺ content in samples. Calculated NH₄⁺ content (ppm) in samples from recorded readings were plotted in graph against time intervals to get NH₄⁺ released pattern of these three fertilizers. Both the cumulative and instantaneous concentration graph at predetermined time intervals were drawn.
Nitrate (NO$_3^-$)

After determination of NH$_4^+$ content of the samples, 0.2 g of Devarda's alloy was added to the samples and again Modified kjeldhal method was followed to determine NO$_3^-$ content in samples. Calculated NO$_3^-$ content (ppm) in samples from recorded readings were plotted in graph against time intervals to get NO$_3^-$ released pattern of these three fertilizers. Both the cumulative and instantaneous concentration graph at predetermined time intervals were drawn.

Phosphorus (P)

For determination of release pattern of P from conventional fertilizers mix, EB-1 and EB-2 batch experiment was followed. These three fertilizers were taken in 10 conical flasks for each sample on 0.1 g P$_2$O$_5$ content basis. After that 10 g of soil sample from experimental field was added to each flask and 30 ml of water also added to each flask. At predetermined time intervals selected flasks samples were filtrated in 100 mL volumetric flask and after collecting filtrate filled the volumetric flask up to 100 mL. After collecting all the filtrates at all predetermined time intervals, ammonium molybdate and potassium antimony react method was followed to determine P content in samples. Calculated P content (ppm) in samples from recorded readings were plotted in graph against time intervals to get P released pattern of these three fertilizers. Both the cumulative and instantaneous concentration graph at predetermined time intervals were drawn.

Potassium (K)

For determination of release pattern of K from conventional fertilizers mix, EB-1 and EB-2 batch experiment was followed. These three fertilizers were taken in 10 conical flasks for each sample on 0.1 g K$_2$O content basis. After that 10 g of soil sample from experimental field was added to each flask and 30 mL of water also added to each flask. At predetermined time intervals selected flasks samples were filtrated in 100 mL volumetric flask and after collecting filtrate filled the volumetric flask up to 100 mL. After collecting all the filtrates at all predetermined time intervals, Flame emission spectrophotometry method was followed to determine K$^+$ content in samples. Calculated K content (ppm) in samples from recorded readings were plotted in graph against time intervals to get K released pattern of these three fertilizers. Both the cumulative and instantaneous concentration graph at predetermined time intervals were drawn.

Evaluation of the Nutrient-use efficiency

A field experiment was initiated during rainy season of 2018 at N.E. Borlaug Crop Research Centre, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand to evaluate the effect of enriched biochar-based fertilizers on nutrient-use efficiency in direct seeded rice (DSR). Rice variety "HKR-47" was used for present study. The soil of experimental site was sandy loam in texture with bulk density of 1.44 Mg/m3. The soil was neutral (pH 7.2) in reaction, medium in soil organic carbon (0.65 %), low in available nitrogen (149.6 kg/ha), high in available phosphorus (26.9 kg/ha) and potassium (281.1 kg/ha). The moisture content of the site at field capacity and permanent wilting point was 20 and 8 %, respectively.

The experiment had eight treatments applied at 3 rates with 3 fertilizer source i.e. 100 % RDF (120 kg N, 60 kg P$_2$O$_5$, 40 kg K$_2$O / ha) through conventional fertilizers (T1); 75% (T2), 100% (T3) and 125% (T4) RDF through enriched biochar based fertilizer EB-1 for basal application + urea enriched biochar (UEB-1) containing biochar + urea (1:1) for top dressing of N; 75% (T5), 100% (T6) and 125% (T7) RDF through enriched biochar based fertilizer EB-2 for basal application + urea enriched biochar (UEB-2) containing biochar + urea (1:1) + seaweed + humic acid for top dressing and no fertilizer application (T8) replicated thrice laid out in randomized block design. The recommended fertilizer dose (RDF) was 120 kg N + 60 kg P$_2$O$_5$ + 40 kg K$_2$O per ha. half dose of N and full dose of P and K were applied through
conventional fertilizers mix as basal and rest half of N was applied in two equal splits at 30 and 60 DAS as top dressing through urea for treatment T1. Whereas for treatments T2, T3 and T4, half dose of N and full dose of P and K were applied through EB-1 as basal and rest half of N was applied in two equal splits at 30 and 60 DAS as top dressing through UEB-1. For treatments T5, T6 and T7, half dose of N and full dose of P and K were applied through EB-2 as basal and rest half of N was applied in two equal splits at 30 and 60 DAS through UEB-2 as top dressing. For evaluating nutrient-use efficiency of enriched biochar-based fertilizers apparent nutrient recovery (%) was determined using following formulae:

\[
\text{Apparent Nitrogen recovery (\%) = } \frac{\text{Total N uptake in nutrient applied plot - Total N uptake in no nutrient applied plot}}{\text{Amount of Nitrogen applied}} \times 100
\]

\[
\text{Apparent Phosphorus recovery (\%) = } \frac{\text{Total P uptake in nutrient applied plot - Total P uptake in no nutrient applied plot}}{\text{Amount of Phosphorus applied}} \times 100
\]

\[
\text{Apparent Potassium recovery (\%) = } \frac{\text{Total K uptake in nutrient applied plot - Total K uptake in no nutrient applied plot}}{\text{Amount of Potassium applied}} \times 100
\]

Results And Discussion

Characteristics of biochar and enriched biochar (EB-1 and EB-2)

The surface morphology of biochar derived from rice husk is primarily performed by SEM and showed a highly porous structure with smooth and tight. The porous tubular morphology of rice husk biochar (RHB) favour it to store/reserve the nutrients and slow release to soil system (Fig. 1a&b). The properties of rice husk biochar (RHB) and EB-1 & 2 prepared are shown in Table 1. The RHB had pH value of 9.1, cation exchange capacity of 27 cmol/kg, EC of 1.55 ds/m and bulk density of 0.22 g/cc whereas, EB-1 and EB-2 had pH of 8.07 and 7.6 and EC of 0.15 and 0.17 ds/m and CEC of 17 and 21 cmol/kg, respectively. Proximate and elemental analysis representing the recalcitrance and stability of biochar relates the qualitative traits of resultant biochar (Table 1). These results are common for biochar from different feedstock’s produced at low temperature (Chaturvedi et al., 2021; Shaheen et al., 2019).

Kinetics of NPK release

Ammonium (\(\text{NH}_4^+\)) release pattern

Ammonium (\(\text{NH}_4^+\)) release from conventional fertilizers mix (NPK 12-32-16 + Urea + MOP) reached its peak around 30 min after starting the batch experiment, whereas the peak \(\text{NH}_4^+\) releases from both the enriched biochar fertilizers (EB-1 and EB-2) were noticed around 6 h after starting the batch experiment (Fig.2a&b). Ammonium (\(\text{NH}_4^+\)) released from conventional fertilizers mix at significantly faster rate compared to both of the enriched biochar based fertilizers. From the conventional fertilizers mix around 78.90 % of \(\text{NH}_4^+\) released within 1 h but that same amounts of \(\text{NH}_4^+\) (81.11 % and 81.78 %) were released from both of EB-1 and EB-2 respectively at 24 h after starting the experiment. This slow release of \(\text{NH}_4^+\) might be due to the fact that hydrogen bonding and electrostatic interactions between the oxygen containing functional group (carboxyl and keto group) of biochar and \(\text{NH}_4^+\), slowed the release rate of \(\text{NH}_4^+\) from enriched biochar based fertilizers (Wen et al., 2017). Under pyrolysis temperature of 200 to 400 °C, the feedstock was carbonized incompletely, so numerous oxygen functional groups were remaining in biochar, which could provide abundant negative potential charges for the adsorption of \(\text{NH}_4^+\), owing to hydrogen bonding and electrostatic
interactions (Cai et al., 2016). In the present study, NH$_4^+$ released from the conventional fertilizers mix at the logarithmic rate i.e. released at faster rate with shorter time interval up to 1 h, after that release rate with increase in time interval were less and at the end of the experiment (36 h) around 96 % of NH$_4^+$ was released. In case of NH$_4^+$ releases from the EB-1 and EB-2, initial release rates were at par with conventional fertilizers mix but after that NH$_4^+$ released at slow and steady rate with time. Between the times interval 1 h to 15 h both the enriched biochar based fertilizers released around 54-55 % of total NH$_4^+$. At the end of the experiment (36 h) total NH$_4^+$ released from both of the enriched biochar fertilizers were at par with conventional fertilizers mix. There was no significant difference in NH$_4^+$ release pattern for both of EB-1 and EB-2. Similarly, rapid release of urea was recorded with RHB-450 and most of the urea released for 2900 min and thereafter get plateau whereas in case RSB-450, increasing release trend was recorded upto 3600 min (Singh et al., 2020). Liu et al (2019) reported release from the urea loaded biochar and bentonite composites to follow similar trend. Swelling and spelling of biochar with the absorption of moisture lead to the release nutrient particles intercalated nutrient particles into the cavities of biochar.

Nitrate (NO$_3^-$) release pattern

Nitrate (NO$_3^-$) nitrogen released from both EB-1 and EB-2 was more as compared to the conventional fertilizers mix (Fig. 3a&b). It was due to less nitrate content in conventional fertilizers mix because of this conventional fertilizers mix contented most of the nitrogen in ammoniacal (NH$_4^+$) form. Though enriched biochar based fertilizers were enriched with that same fertilizers composition, there might be chance to convert NH$_4^+$ to NO$_3^-$ due to reaction with biochar matrix. There was no significant difference in NO$_3^-$ release pattern for EB-1 and EB-2. Similar release pattern was reported by Gwenzi et al (2017) for biochar based slow-release fertilizer (BSRF).

Phosphorus (P) release pattern

In general, enriched biochar based fertilizers (EB-1 and EB-2) had consistently lower phosphorus release than the conventional fertilizers mix throughout the 36 hours monitoring period (Fig. 4a&b). Total phosphorus release was significantly lower for EB-1 and EB-2 than conventional fertilizers mix up to 9 h of starting of batch experiment and after that total releases were statistically at par. P release pattern for conventional fertilizers mix was characterized by general decline with time with its peak at 3 h after starting the experiment. The peak of P release pattern for both of the enriched biochar fertilizers were different. P release from EB-1 reached its peak around 6 h and from EB-2 reached its peak around 9 h after starting the experiment. Gwenzi et al. (2017) also found that in P release pattern the cumulative concentration of PO$_4^{3-}$ released from biochar based slow release fertilizer (BSRF) was approximately half of that of commercial fertilizer Compound D during a 72 days’ period of sequential leaching. In the present study, there was no significant difference in P release pattern for both of EB-1 and EB-2. The P in the matrix of biochar is slowly released due to physical protection of the biochar pores network (Dias et al., 2018). The water action removes aliphatic groups (hydrophobicity) on biochar surface, increasing its affinity for water (Das and Sarmah, 2015) interacting with hydrophilic groups resulting a swelling of the biochar coating making a new arrangement which finally controls the water movement inside and outside of the fertilizer (Dias et al., 2018). Till date, limited studies have evaluated nutrient release patterns of slow release NPK fertilizer using biochar as a nutrient carrier. Yao et al. (2013) used biochar to remove P from aqueous solution and concluded that P-laden biochar could possibly act as a slow-release fertilizer. It did not include other nutrients such as cations and highly soluble and mobile nutrients in its study. Moreover, a conventional chemical fertilizer was also not taken for comparison. Therefore, the present study focused to develop a biochar-based slow-release NPK fertilizer and evaluate its nutrient release pattern.

Potassium (K$^+$) release pattern
Peak K\(^+\) releases from the conventional fertilizers mix as well as from the enriched biochar based fertilizers (EB-1 and EB-2) occurred at 1 h after starting the experiment but that for EB-1 was about 60.50 % and for EB-2 was about 44.22 % lower than that of conventional fertilizers mix (Fig. 5a&b). Overall cumulative concentration of K\(^+\) released by both EB-1 and EB-2 were lower than that for conventional fertilizers mix up to 36 h of experiment. Similar result was reported by Gwenzi et al. (2017) that overall cumulative concentration of K\(^+\) released by biochar based slow release fertilizer (BSRF) was 1.5 times lower than that of for commercial fertilizer Compound D and peak K\(^+\) release was significantly lower for BSRF than that of Compound D. In the present study, there was no significant difference in K\(^+\) release pattern for both of EB-1 and EB-2.

Evaluation of NH\(_4^+\), NO\(_3^-\), PO\(_4^{3-}\), and K release patterns confirmed the slow-release behavior of the biochar enriched fertilizers (Figs. 2-5). Nutrient release patterns of biochar enriched slow-release fertilizers were characterized by an initial high release in the first few observations mainly attributed to rapid diffusion and washout as also reported by Gwenzi et al. (2017). The release of PO\(_4^{3-}\) and K by enriched fertilizers was characterized by distinct multiple peaks suggesting a number of release mechanisms which was not the case with N. Moreover, the cumulative PO\(_4^{3-}\) and K releases of the enriched fertilizers (EB-1 &EB-2) were approximately half that of commercial fertilizer mix in period of study. The manifold mechanisms of nutrient release from biochar enriched fertilizers include pore diffusion, ion exchange on charged biochar surfaces of biochars, co-precipitation, complexation/ligand exchange, van der Waals/electrostatic forces, and p-cation interactions between solute ions and aromatic rings of biochar (Wang and Chen 2006; Berber-Mendoza et al., 2013). Moreover, the use of an adjuvants may enhance the slow-release behavior of the biochar-based fertilizers.

Apparent nutrient recovery (%) of N, P and K

Apparent nitrogen recovery was higher under application of 100 % fertility dose through EB-2 + UEB-2 which was 29.5 % more than application of conventional fertilizers at that same fertility dose (Table-2). Even application of EB-1 + UEB-1 at 75, 100 and 125 % fertility levels had lower apparent N recovery as compared to EB-2 + UEB-2 at similar fertility levels, respectively. However, application of both the enriched biochar fertilizers at all the fertility levels had more apparent N recovery as compared to application of 100 % fertility level through conventional fertilizers. More N uptake from enriched biochar sources might be the principle reason for their higher apparent recovery. Apparent P and K recovery was higher under application of 100 % fertility dose through EB-2 + UEB-2 of 29.39 % and 83.06 % of P and K respectively. Further, it was 11.5 % and 22.9 % more than application of conventional fertilizers at that same fertility dose (Table-2). Huang et al. (2013) reported that due to addition of biochar, agronomic nitrogen use efficiency was increased by 43 % over no biochar addition at 100 % fertility level. Slow release of nitrogen, phosphorus and potassium from NPK enriched biochar-based fertilizers is mainly attributed to their slower release kinetics, reduced losses and indirectly by enhanced availability of soil nutrients thereby higher apparent use efficiency of N, P and K under enriched biochar fertilizers application. Several studies have shown that biochar application enhanced the microbial activity including soil enzyme activity and soil respiration (Steiner et al., 2008), promote root colonization by arbuscular mycorrhiza (Elmer and Pignatello, 2011). These root exudates and enhanced microbial activities could further promote release of nutrients from insoluble soil nutrient pools. Therefore, biochar based slow-release fertilizers have several potential niche applications in crop production, horticulture, olericulture including environmental remediation.

Conclusions

Two novel enriched biochar-based fertilizers (EB-1 and EB-2) were developed with much slower nutrient release patterns as compared to that of conventional chemical fertilizers. The slow nutrients (NH\(_4^+\), P and K\(^+\)) release behavior
of EB fertilizers implies reduced loss of nutrients through leaching and hence increase crop nutrient use efficiency. Chemical characterization of EB fertilizers showed their potential niche applications in agriculture including environmental remediation demonstrating their potential superiority over conventional fertilizers mix.

Declarations

Acknowledgement

The author (SC) thank to ICAR-NICRA, CRIDA, Hyderabad, Government of India for financial support.

Declaration of Competing Interest

All the authors declare that they have no known competing financial interests.

Compliance with ethical standards: Not applicable

Funding: This study was supported by ICAR- National Innovations on Climate Resilient Agriculture (NICRA), Hyderabad, Government of India.

Conflict of interest: All authors declare that they have no conflict of interest.

Ethics approval/declarations: Not applicable

Consent to participate: Not applicable

Consent for publication: Not applicable

Data Availability Statements: All the data generated or analysed during this study are included in this article

Author contribution: Arkaprava Roy: data collection, analysis, Sumit Chaturvedi: writing, reviewing, and editing, Suhita Pyne: designing the experiments, analysis, Shiv Vendra Singh: analysis, writing, Govindaraju Kasivelu: reviewing, and editing

References

Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131: 374–379.

Asai H, Samson BK, Stephan HM, Songyikhangsauthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111: 81–84.

Berber-Mendoza MS, Leyva-Ramos R, Cerino-Cordoba FJ, Mendoza-Barron J, Garcia HJA, Flores-Cano JV (2013) Role of carboxylic sites in the adsorption of nickel (II) and zinc (II) onto plain and oxidized activated carbon fibers. Water Air Soil Pollut 224: 1–12.

Blackwell GA, Nigro SJ, Hall RM (2015) Evolution of AbGRI2-0, the progenitor of the AbGRI2 resistance island in global clone 2 of Acinetobacter baumannii. Antimicrob Agents Chemother 60: 1421-1429.
Cai Y, Qi H, Liu Y, He X (2016) Sorption/desorption behavior and mechanism of NH$_4^+$ by biochar as a nitrogen fertilizer sustained-release material. J Agric Food Chem 64: 4958-4964.

Chaturvedi Sumit, Singh Shiv Vendra, Dhyani, VC, Govindaraju K, Vinu R, Mandal S (2021) Characterization, bioenergy value, and thermal stability of biochars derived from diverse agriculture and forestry lignocellulosic wastes. Biomass Conv Bioref https://doi.org/10.1007/s13399-020-01239-2

Das Q, Sarmah AK (2015) The love–hate relationship of pyrolysis biochar and water: A perspective. Sci Total Environ 512–513: 682–685.

Dias DS, Crespi MS, Torquato LDM, Kobelnik M, Ribeiro CA (2018) Torrefied banana tree fiber pellets having embedded urea for agricultural use. J Therm Anal Calorim 131: 705–712.

Dong D, Wang C, Zwieten LV, Wang H, Jiang P, Zhou M, Wu W (2019) An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. J Soils Sediments 20: 3027-3040.

Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of sparagus in replant soils. Plant Dis 95: 960–966.

Fryda L, Visser R (2015) Biochar for soil improvement: evaluation of biochar from gasification and slow pyrolysis. Agriculture 5: 1076–1115.

Gao HY, He XS, Chen XX (2012) Effect of biochar and biochar-based ammonium nitrate fertilizers on soil chemical properties and crop yield. J Agro-Environ Sci 31: 1948–1955.

Ghezzehei TA, Sarkhot DV, Berhe AA (2014) Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth 5: 953–962.

Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N (2017) Synthesis and nutrient release patterns of a biochar-based N-P-K slow-release fertilizer. Int J Environ Sci Technol 15: 405-414.

Huang M, Yang L, Qin H, Jiang L, Zou Y (2013) Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res 154: 172–177.

Joseph S, Graber ER, Chia C, Munroe P, Donne SS, Thomas T, Nielse S, Marjo C, Rutledge H, Pan GX, Li L, Taylor P, Rawal A, Hook J (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag 4: 323-343.

Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ Sci Technol 44: 1247–1253.

Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Australian J Soil Res 48: 577–585.

Lawrinenko M, Laird DA (2015) Anion exchange capacity of biochar. Green Chem 17: 4628-4636.

Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems: A review. Mitig Adapt Strat Glob Change 11: 403–427.
Liu X, Liao J, Song H, Yang Y, Guan G, Zhang Z (2019) A biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci Rep 9: 9548–9558.

Mandal S, Bhattacharya TK, Verma AK, Haydary J (2018) Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem Pap 72: 603–616.

Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95: 255–257.

Mukherjee A, Lal R, Zimmerman AR (2014) Impacts of biochar and other amendments on soil-carbon and nitrogen stability: a laboratory column study. Soil Sci Soc American J 78: 1258–1266.

O'Connor D, Peng TY, Zhang JL, Tsang DCW, Alessi DS, Shen ZT, Bolan NS, Hou DY (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619: 815–826.

Qian L, Chen L, Joseph S, Pan GX, Li LQ, Zheng JW, Zhang XH, Zheng JF, Yu XY, Wang JF (2014) Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manag 5: 145-154.

Shaheen SM, Niazi NK, Hassan NEE, Bibi I, Wang H, Tsang DCW, Ok YS, Bolan N, Rinklebe J (2019) Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64: 216–47.

Si L, Xie Y, Ma Q, Wu L (2018) The short-term effects of rice straw biochar, nitrogen and phosphorus fertilizer on rice yield and soil properties in a cold waterlogged paddy field. Sustainability10: 537.

Singh S, Chaturvedi S, Dhyani VC, Govindaraju K (2020) Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite. Bioresour Technol 314: 123674.

Singh VK, Dwivedi BS, Tewari KN, Majumder K, Rani M, Singh SK, Timsina J (2014). Optimizing nutrient management strategies for rice-wheat system in the Indo-Gangetic Plains of India and adjacent region for higher productivity, nutrient use efficiency and profits. Fields Crops Res 164: 405-412.

Steiner C, Glaser B, Teixeira W, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171: 893–899.

Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24: 427–451.

Wen P, Wu Z, Han G, Cravotto G, Wang J, Ye B (2017) Microwave-assisted synthesis of a novel biochar based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustainable Chem Eng 5:8: 7374-7382.

Yang D, Y Liu, S Liu, Z Li, X Tan, X Huang, G Zeng, L Zhou, B Zheng (2016) Biochar to improve soil fertility A review. Agron Sustain Dev 36: 36.

Yao CX, Joseph S, Li LQ, Pan GX, Lin Y, Munroe P, Pace B, Taherymoosavi S, Van Zwieten L, Thomas T, Nielsen S, Ye J, Donne S (2015) Developing more effective enhanced biochar fertilizers for improvement of pepper yield and quality. Pedosphere 25: 703-712.
Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47: 8700–8708.

Yuan H, Lu T, Wang Y, Huang H, Chen Y (2014) Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (Radix isatidis) residue and its effect on soil CO\textsubscript{2} emission. J Anal Appl Pyrolysis 110: 277–284.

Zhao L, Cao X, Zheng W, Scott JW, Sharma BK, Chen X (2016) Co-pyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chem Eng 4: 1630–1636.

Zheng JF, Han JM, Liu ZW, Xia WB, Zhang XH, Li LQ, Liu XY, Bian RJ, Cheng K, Zheng JW, Pan GX (2017) Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agricult Ecosys Environ 241: 70-78.

Tables

Table 1 Characterization of biochar and enriched biochar-based fertilizers

Biochar	Physicochemical properties	Proximate analysis										
	pH	EC (dSm-1)	CEC (cmol/kg)	BD (g/cc)	MC (%)	VC (%)	Ash (%)	FC (%)	N (%)	P (%)	K (%)	S (%)
RHB	9.0	1.56	26.2	0.22	3.9	17.3	23.5	55.4	0.71	0.87	2.03	0.04
EB-1	8.07	0.15	17.0	-	-	-	-	43.4	6.0	6.0	4.0	-
EB-2	7.6	0.17	21.0	-	-	-	-	43.7	6.0	6.0	4.0	-

Table 2. Apparent nutrients recovery (%) of N, P and K under direct seeded rice.
Source	Fertility level	Apparent Nitrogen Recovery (%)	Apparent Phosphorus Recovery (%)	Apparent Potassium Recovery (%)
Conventional fertilizers	100 % RDF	38.52	17.86	60.17
EB-1 + UEB-1	75 % RDF	41.18	15.01	48.00
	100 % RDF	43.05	23.74	78.96
	125 % RDF	44.49	26.76	80.05
EB-2 + UEB-2	75 % RDF	46.52	19.79	64.28
	100 % RDF	49.91	29.39	83.06
	125 % RDF	47.39	28.36	81.54

EB-enriched biochar; UEB-Urea enriched biochar; RDF-recommended dose of fertilizer

Figures

Figure 1

1a&b shows the SEM images of biochar derived from of rice husk
Figure 2

Cumulative (a) and Instantaneous (b) concentrations of NH4+ released
Figure 3

Cumulative (a) and Instantaneous (b) concentrations of NO3- released
Figure 4

Cumulative (a) and Instantaneous (b) concentrations of P released
Figure 5
Cumulative (a) and Instantaneous (b) concentrations of K+ released