Supplementary Information for
Layered evolution of gene expression in “superfast” muscles for courtship

James B. Pease, Robert J. Driver, David A. de la Cerda, Lainy B. Day, Willow R. Lindsay, Barney A. Schlinger, Eric R. Schuppe, Christopher N. Balakrishnan, Matthew J. Fuxjager

Corresponding Authors: James B. Pease, Matthew J. Fuxjager
Email: peasejb@wfu.edu; matthew_fuxjager@brown.edu

The PDF file includes:
- Supplementary text
- Figures S1 to S10
- Tables S1 to S17
- SI References
Contents

Supplementary Information Text 3

Supplementary Figures 8
Fig. S1: Distribution map of the six manakin study species. 8
Fig. S2: Phylogenomic diversity by QS and sCF scores 9
Fig. S3: Correlation coefficients of gene expression counts-per-million. 10
Fig. S4: Diagrams of PhyDGET Branch Models and Trait Hypotheses 11
Fig. S5: Comparison of PhyDGET and pairwise DGE. 12
Fig. S6: Comparison of SH PhyDGET results among models. 13
Fig. S7: Expression Profiles for PhyDGET-detected genes in Figure 3 14
Fig. S8: Phylogeny and protein alignment of parvalbumin family genes 19
Fig. S9: PhyDGET Results from Simulated Values 21
Fig. S10: Expression profiles for other genes of interest. 22

Supplementary Tables 24
Table S1: Original sampling locations of the specimens 24
Table S2: Wing beat frequencies of birds with similar size to manakins. 25
Table S3: Sequencing Quality Metrics 26
Table S4: Sequence Mapping Metrics 27
Table S5: Sequencing Quality Metrics 28
Table S6: Pairwise Nucleotide Sequence Distances 29
Table S7: Gene trees with 200+ bp of fully occupied alignment 30
Table S8: Gene trees with 1000+ bp of fully occupied alignment 31
Table S9: SH-PEC Pairwise Differentially Expressed Genes 32
Table S10: SH-PEC Pairwise DGE Gene Ontology 35
Table S11: PhyDGET Detected Genes 38
Table S12: PhyDGET Detected Genes Gene Ontology 48
Table S13: Pairwise Differential Expression of RWM vs non-RWM 56
Table S14: Notes on Gene Functions for PhyDGET Top Candidates 57
Table S15: Tests of Positive Selection on Gene Sequences. 63
Table S16: Notes on Gene Functions for Genes Sequences under Selection. 67
Table S17: MC-specific amino acid genes 69

SI References 70
Mitochondrial Assembly and Read Filtering. We detected a high proportion of mitochondrial or mitochondrial-like transcripts in our sequenced read set, so each individual's reads sets were de novo assembled using Trinity under default settings (version 2.9.1; 1). Fragments were aligned using BLASTn to the *Mionectes oleagineus* reference mitochondrial genome (NC_024682), a partial *L. coronata* genome, and a library of other species-specific available for the target species. High-scoring hits were then aligned to the *Mi*. oleagineus reference using MUSCLE (2) and draft consensus sequences for each individual were generated by consensus overlap using SeaView (3). Finally, trimmed reads from each individual were mapped to their individual-specific mitochondrial draft consensus genome using BWA-mem (v. 0.7.17-r1188; 4). Read alignments were analyzed using SAMtools mpileup, and a final consensus sequence was determined from the pileup by majority allele using a custom Python script. Read pairs from each of the 42 individual samples were mapped using BWA mem using default settings. Of trimmed read pairs in each sample 16.3–44.9% (mean 35.5%) mapped to their individual mitochondrial genomes. These mitochondrial-mapped reads were filtered out of the main reads set used in the later quantification and sequence analyses.

Transcriptome Mapping and Quantification. Non-mitochondrial reads for each sample were mapped using STAR (version 2.7.3a; 5) to the *Pipra filicauda* reference genome (version 1; GenBank: GCA_003945595.1) using single-pass mode with the reference GTF and all other parameters default. *M. vitellinus* and *L. coronata* genomes were also available, but we determined they were less complete than the *P. filicauda* genome and we obtained higher mapping rates using *P. filicauda* as a single standard reference genome space for all samples. The unmapped read pairs from STAR were then aligned using BWA-mem (v. 0.7.17-r1188; 4) using a slightly relaxed mismatch parameter (–B 2), split hits as secondary (–M), and all other command flags default. The reference *P. pipra* GTF file was filtered to remove snoRNA, miRNA, snRNA, guide RNAs, and pseudogenes. Read pairs were counted per gene using full gene coordinate boundaries using featureCounts (version 2.0.1; 6). An average of 95% of uniquely mapped read pairs were assigned uniquely to a gene. Quantification was repeated allowing fractional counting of multi-mapped reads and reads mapping to multiple features. However, the similarity of counts for all samples was high ($r^2 \approx 0.98$) and so we used the uniquely mapped reads table only. On average, 13.9 million read pairs were mapped per sample (range 11.8–19.1 million) with final read counts proportionate to starting library size and showing no apparent sign of increase in quantification rates with genetic distance.

In addition to the final workflow above, we tried two other methods for completeness that did not improve data quality and so were not used for final analyses. A small number of remaining reads were de novo assembled using Trinity (1) and quantified but represented largely micro-contaminants or low-expression lineage-specific paralogs and were not included in final read count tables. We also annotated each sample's read alignment de novo by Cufflinks (version 2.2.1; 7) requiring paired sequences and with all other parameters default. Comparison of the individual annotations to the reference indicated no consistent new features among species and so only *P. filicauda* reference genes were used for the final quantification step. Quantification for featureCounts was also repeated allowing fractional counting of multi-mapped reads and reads mapping to multiple features. However, the similarity of counts for all samples was high ($r^2 \geq 0.98$) and so we used the uniquely mapped reads table only.

Phylogenetic Differential Gene Expression Tool (PhyDGET). Whole-transcriptome expression profiling more directly examines gene-by-gene activity within a specific tissue, but models for studying the evolution of transcriptome-wide expression profiles are still nascent and phase and face substantial challenges (8, 9). Previous approaches to modeling transcriptome evolution have focused on shifts in gene or gene family expression levels (10, 11, 12), changes in expression variance under selection (13, 14, 15, 16), and tissue-specificity or profile divergence (17, 18, 19). Despite the technical challenges inherent in RNA-Seq, Differential Gene Expression (DGE) analysis, and Phylogenetic Comparative Methods (PCM), an approach combining these techniques is the most direct approach to studying a tissue-specific molecular shifts in situ for complex traits.
The Phylogenetic Differential Gene Expression Tool (PhyDGET) is based primarily on Phylogenetic Comparative Methods, specifically modeling shifts in the levels of a quantitative trait that have been established previously for physiological traits. PhyDGET treats each gene’s mRNA expression level as a quantitative trait and applies a model likelihood comparison strategy to determine the fit of the data to various models of accelerated change in expression level compared to the stochastic changes under a Brownian Motion null model. PhyDGET is a Python3-based script engine that performs data transformation and parallelizes calls to a Bayesian PCM engine (in this case BayesTrait3; 20). PhyDGET is available open-source and free at http://www.github.com/peaselab/phydget.

The first step in PhyDGET is to normalize and adapt RNA-seq expression data to be usable under the conditions of Comparative Methods analyses. First, the raw count tables are normalized to counts-per-million reads (cpm) in each sample. Next, these values are log\(_2\)-transformed into the log\(_2\)(cpm) values used in the actual comparative analyses. The values are calculated as follows (to accommodate zeros):

\[
\log_2(\text{cpm}) = \log_2\left(\frac{\text{raw count} + 0.5}{\text{total sample library size}/10^6}\right)
\]

(1)

The normalization in a log\(_2\)(cpm) values (1) normalizes different library sizes in the case of different sequencing yields, (2) makes each integer unit of log\(_2\)(cpm) values correspond to a doubling of expression, and (3) brings the raw values of RNA-seq counts that can regularly span a range from 0 to > 500,000 into a more unified quantitative space where log\(_2\)(cpm) values are in the range from \(-5\) to \(\approx 16\), and (4) accommodates log-of-zero problem. This normalization scheme makes genes at various scales of expression levels more comparable when placed in the next phase of the comparative analyses.

The second step in PhyDGET is to feed the log\(_2\)(cpm) normalized data one gene at a time into BayesTrait3 (20) for evaluating the likelihood of the gene’s values evolving under a variety of user-specified models (Fig. S1) compared to each other and a null model. The script automatically translates single- or multi-branch models into the correct syntax for the BayesTrait3 control file and then uses a Python3 framework to parallelize the running of the \((n \times m)\) runs for \(n\) genes and \(m\) models. The marginal likelihood scores and transformation values are extracted from the outputs and then can be compared among models for each gene.

Example BayesTrait3 Alternative Model Specification:

```
7
2
Burnin 1000000
Iterations 10000000
PriorAll uniform -10 30
DistData $TEMPDATAFILE
Stones 200 20000
AddTag Target0 MAVI
LocalTransform TransBranch0 Target0
```

Simulations to determine significance cutoffs for PhyDGET. While the likelihood ratio test associated with BayesTrait models has rough significance cutoffs that have become convention, we hypothesized that the log\(_2\)-transformation and normalization of the data would make the Bayes Factor (BF) differences smaller and thus the standard cutoff of BF > 2 might be overly conservative for this application. Therefore, we wanted to assess the false discovery rate (FDR) directly for this phylogeny under a range of expression values to empirically determine an appropriate cutoff values for this method.

We used the *phangorn* package (21) to generate an ultrametric tree from the consensus nuclear phylogeny. To simulate values, we wrote a custom R-script with the *ape* (21), *evd*, and *phytools* (22) packages. The *fastBM* function from *phytools* was used to simulate five sets of 10000 genes using starting \(\alpha\) values of 10, 100, 1000, 10000, 100000. In all six treatments, \(\sigma^2\) values was calculated as 0.22\(\alpha^2\) as determined by calculating the median of the variance of across all genes in the empirical dataset. This follows the biological pattern of a positive mean-variance relationship for gene expression values observed in nearly all datasets.
These six Brownian Motion simulated datasets of 2000 genes were transformed into log_{2}(cpm) values using approximated library sizes to achieve a similar log_{2}(cpm) values to genes at those raw count values in the empirical file. These data were tested in PhyDGET under three models: (1) the M4 ancestor branch model with a single target branch, (2) the Parallel single-rate model (MC1) where the Manacus vitellinus and Ceratopipra ancestor branches were both targets under a single alternative rate parameter, (3) the Reversion two-rate model (R42) with the M4 ancestor branch and the Pseudopipra pipra branch both target but under two separate rate parameters.

The distributions of the BF values from these 15 sets of 10000 tests showed generally low rates of false positives (Fig. S9). A slight increase in the rate of false positives was observed as the raw value increases from 10 to 100000. Given the scaling of the variance in expression in the BM simulations, this is expected and the increase in false positive rate is modest. For genes in the range of raw expression values from 10 to 1,000 (most genes detected in the empirical set), the FDR rate for BF \geq 1.5 was 0.65 to 4.5%. Based on these results we adopted a BF cutoff of 1.5 as an appropriate standard cutoff for all tests, though these results show that especially for genes at the lower levels of expression (and thus lower levels of potential variance) that this cutoff may be conservative.

Considerations of functional phylotranscriptomic expression modeling. In considering the application of this analysis framework to other traits, systems, and questions, many other factors should be considered. We benefited here from past empirical results that identified tissues of interest, a muscle contraction trait with established molecular systems and phenotypic diversity among close relatives, and high similarity of expression profiles within species, individuals, and tissues. The high molecular concordance of the species phylogeny and low genetic distances among species also largely precluded confounding effects from hemiplasy (23). All of these factors would have to be weighed carefully in applying our framework in other systems as the expression landscape, trait complexity, and time scale and phylogenetic discordance increase. We also recognize that these expression measurements are a time slice in the moment of adult tissue activity, and therefore more work may be necessary to further enrich the functional developmental context of these physiological adaptations. With these considerations in mind, we conclude that this approach could be applied readily to many complex traits appearing among closely related species where comparison of tissue-specific expression levels might offer more direct evidence of evolutionary changes than sequence variations. As we further explore the diverse evolutionary histories of genomes and their circuitous connections to traits, an evolutionary view of the intermediate transcriptional layer is a vital window for disentangling the layered molecular bases of traits.

Pairwise Group Approximations of Phylogenetic Expression Tests. We conducted the following pairwise tests using species groupings where individuals were encoded two states in a linear model and analyzed using limma+voom using the same general parameters at the pairwise SH-PEC tests. (1) RWM species (C. cornuta, C. mentalis, M. vitellinus) versus all others, (2) Mi. oleagineus and X. atronitens versus all other species to approximate the M5 ancestor model, (3) Mi. oleagineus, X. atronitens, and L. coronata versus all other species to approximate the M4 ancestor model, and (4) both Ceratopipra species versus all other species to approximate the Ceratopipra ancestor model (CE).

Gene Ontology Annotation and Analysis. We first created a Pipra filicauda reference by BLAST search for a strong match to the NCBI database of amniote sequences. We used a consensus of these BLAST hits to assign each gene to a human ortholog. The GO terms were assigned to each P. filicauda reference gene symbol based on the human GO terms for that gene. If a specific ortholog could not be identified confidently but the gene was clearly in a specific gene family, we assigned the gene the intersection of common GO terms from that genes in that gene family. We assigned GO terms to 14,752 out of 18,065 P. filicauda reference gene symbols.

Focal study gene sets (target group) were determined for intraspecific pairwise SH-versus-PEC tests, we set the focal study set as genes with Adjusted P-value \leq 0.05 from limma analysis. Focal study sets were determined for each PhyDGET model test using a cutoff of BF \geq 1.5 (for the CE, LC, MV, PP, XA, and M6 terminal branch/outgroup branch models) or BF \geq 1.0 (for the M5, M4, R41, and MC1 ancestral and double-branch models). The background list of 14,777 genes were those with at least 10 counts-per-million in at least three samples.
We conducted Gene Ontology analyses using Ontologizer (v2.1; 24) using the Parent-Child Union method (25) and the Benjamini-Hochberg multiple testing correction (26). The top SH-vs.-PEC differentially expressed genes for each species are shown in Table S9, and the top GO terms are shown in Table S10 (no GO results were available for X. atronitens). The lists of PhyDGET-identified genes for each model are shown in Table S14 and the top GO terms associated are shown in Table S12.

Phylogenetic Tests of Selection. Starting from the transcriptome sequence alignment used for the phylogenetic inference, we used MVTools to merge alleles ("FilterMVF") from the two tissues sampled from each individual (27). We then used MVTools (MVF2FastaGene) to extract coding sequences using the P. filicauda reference annotation GTF file (V1) selecting the option to choose a random allele at each heterozygous site. We then used a custom Python3 script to filter out 1,015 genes with missing species data premature stop codons in the alignment. These were mostly due to lower coverage and, in a few cases, likely paralog collapse. None of these genes were implicated as important in any of the differential gene expression tests (phylogenetic or pairwise).

Once the alignment of each gene's coding sequence was extracted, we tested for evidence of positive selection in each gene in the sequenced transcriptomes using the branch-test in PAML (28). Using a custom Python3 script, we prepared sequence alignment files containing a random individual's sequence from each species for each gene. We ran four PAML tests on these focal branches: (1) M5 ancestor branch, (2) the M4 ancestor branch, (3) the Ceratopipra ancestor branch, and (4) the terminal branch for M. vitellinus (see Fig. 4). To identify genes experiencing positive selection in each foreground branch, estimated branch-specific rates of non-synonymous substitution per non-synonymous site (\(d_N\)) and the ratio of \(d_N\) to synonymous substitutions per synonymous site (\(d_N/d_S\)) values in the focal test branches.

We ran `codeml` from PAML (28) using a control files with the following parameters for both the null and alternative models:

```
runmode = 0
method = 0
seqtype = 1
CodonFreq = 2
clock = 0
NSSites = 0
fix_kappa = 0
kappa = 2
fix_omega = 0
omega = 1
fix_alpha = 1
alpha = 0
Malph = 0
ncatG = 4
cleandata = 1
```

The `cleandata = 1` ensures all gap and ambiguous positions in the alignment are ignored, so that the only positions analyzed were those shared between all taxa. For the null model control file, we set `model = 0`, specifying `codeml` to calculate a single \(\omega_0\) (\(d_N/d_S\)) value for the whole alignment. This alignment-wide \(\omega_0\) serves as the null hypothesis to test against branch-specific omega values to detect a significant difference. To run a test model and estimate different omega values among lineages, we specified `model = 2` in the test model control file to estimate the focal branch \(\omega_1\) rate parameter separately from the background \(\omega_0\). Top gene candidates from the M5, M4, MV, and CE branch tests are shown in Table S15. We performed multiple runs to check for effects of the species and allele randomization procedures did not and found any substantive changes to the results.

Parvalbumin phylogeny. The parvalbumin family includes four primary vetebrate genes known as: *parvalbumin* (*PVALB*), *oncomodulin* (*OCM*), *oncomodulin 2* (*OCM2*), and *oncomodulin 3* (*OCM3*; only found in non-placental tetrapods). We used NCBI BLAST to find sequences related to the manakin,
chicken, and human sequences of these genes among diverse vertebrate lineages. A set of 158 parvalbumin family sequences was trimmed to their coding sequences and aligned using MUSCLE (2)). We inferred a phylogeny from these genes using RAxML-ng (29) using the GTR+Γ4.
Fig. S1. **Distribution map of the six manakin study species.** Ranged estimated using data from www.birdlife.org and www.gbif.org. Abbreviations: Cc = *Ceratopipra cornuta*, Cm = *Ceratopipra mentalis*, Lc = *Lepidothrix coronata*, Mv = *Manacus vitellinus*, Pp = *Pseudopipra pipra*, Xa = *Xenopipo atronitens*.
Fig. S2. Phylogenomic diversity by QS and sCF scores. For the 7-taxon tree (A) and 8-taxon tree (B; including the *P. filicauda* reference), the proportion of concordant gene trees (fC), quartet concordance score (QC), and site concordance factors (sCF) show generally strong support for the consensus tree. The high quartest differential (QD) scores indicate no evidence of biased discordance that might indicate introgression. The Quartet Informativeness (QI) scores are relatively low indicating that most individual gene alignments do not contain sufficient phylogenetic signal to be measurably concordant or discordant. Collectively, this indicates low phylogenetic signal (rather than a biological ILS or introgression mechanism) is the primary contributor to lowering our concordance scores.
Fig. S3. Correlation coefficients of gene expression counts-per-million. Samples are labeled as: first two letters of genus, first two letters of species, individual number, P(EC) or (S)H muscle. Values above the diagonal are rounded linear regression $r^2 \times 100$, and values below the diagonal are rounded Pearson's $\rho \times 100$.

Sample	Value										
CEN	**19**	**31**	**53**	**75**	**97**	**119**	**41**	**63**	**85**	**107**	**129**
CEN	**01**	**23**	**45**	**67**	**89**	**111**	**33**	**55**	**77**	**99**	**121**
CEN	**12**	**34**	**56**	**78**	**100**	**122**	**42**	**64**	**86**	**108**	**130**
CEN	**24**	**46**	**68**	**90**	**112**	**132**	**53**	**75**	**97**	**119**	**141**
CEN	**36**	**58**	**80**	**102**	**124**	**143**	**65**	**87**	**109**	**131**	**153**
CEN	**48**	**70**	**92**	**114**	**136**	**155**	**89**	**111**	**133**	**156**	**177**
CEN	**60**	**82**	**104**	**126**	**148**	**169**	**91**	**113**	**135**	**157**	**179**
CEN	**72**	**94**	**106**	**128**	**140**	**162**	**105**	**127**	**149**	**171**	**193**
CEN	**84**	**96**	**108**	**130**	**152**	**174**	**117**	**139**	**161**	**183**	**205**
CEN	**96**	**100**	**112**	**132**	**154**	**176**	**129**	**151**	**173**	**195**	**217**

10
Fig. S4. Diagrams of PhyDGET Branch Models and Trait Hypotheses

Several alternative models with alternative rates parameters of expression value change were tested, including models with a single alternative rate on a single branch (M6, M5, M4, XA, LC, MV, PP, CE) and models with two branches tested either under a single alternative rate parameter (R51, R41, and MC1) or two alternative rate parameters on the two branches (R52, R42, MC2). Sunbursts at the bottom indicate presence (filled) or absence (empty) of the rapid wing movement (RWM). Colors on the branch marker dots correspond to the colors in Figure 3, or are highlighted in black otherwise. **b,c,d**, Three models of the evolution of the rapid wing movement trait.
Fig. S5. Comparison of PhyDGET to pairwise differential gene expression. Comparison of PhyDGET results from each model (Bayes Factor on x-axis) compared to grouped pairwise differential gene expression approximation of the same comparisons using \textit{limma}+\textit{voom} (\log_{10} P on the y-axis). Grey points are genes non-significant under both tests, green points showing genes significant (BF geq 1.5) under PhyDGET only, blue points significant (P < 10^{-4}) in \textit{limma} only, and magenta points significant under both. The number grid above each graph shows the number of genes highlighted in each quadrant of the graph, with the upper right value being the number significant under both analyses.
Fig. S6. Comparison of pairs of model results from PhyDGET for the SH tissue. Bayes Factor (BF) values for pairs of models are shown, highlighting the cases where models with overlapping branches (e.g., MC1/MC2, MC1/MV, MC1/CE, R41/PP, R41/M4) show strong or moderate correlation. Genes significant in one of the models are highlighted in blue or green. Models without overlapping target branches do not show correlation and have few (if any) genes significant in both tests (magenta points).
Fig. S7. (continued on next page)
Fig. S7. (continued on next page)
Fig. S7. (continued on next page)
Fig. S7. (continued on next page)
Fig. S7. Expression profiles for PhyDGET-detected genes Genes highlighted in Figure 3 showing the mean counts-per-million per species (horizontal line) with standard error (shaded bars) and three individual values (open circles) for both tissues. Color-coding for the models matches Fig. 3 and Fig. S4. The color-highlighted species are expected to have different expression compared to grey-shaded species in each model’s representation (when the test has higher BF values).
Fig. S8. Phylogeny and protein alignment of parvalbumin family genes. (caption on next page)
Fig. S8. Phylogeny and protein alignment of parvalbumin family genes. (A) A phylogeny of the parvalbumin-oncomodulin gene family showing our PVALB-like-1 genes that show strong increase in expression in Ceratopipra are from the “oncomodulin 3” subfamily defined by the G. gallus reference OCM3 gene. This subfamily is a related but distinct paralog from the PVALB-like-2 gene. These two paralogs are ancient duplicates of parvalbumin beta (PVALB), oncomodulin (OCM), oncomodulin 2 (OCM2) in the human genome and CPV3 in the chicken genome. Sequences from our RNA-Seq data are highlighted in yellow and with labels preceded by an asterisk. Reference human and chicken genes are highlighted in red. (B) An amino acid alignment of parvalbumin/oncomodulin proteins showing the focal OCM3/PVALB-L1 genes at the top with amino acids differing from our Ceratopipra mentalis sequence highlighted (identical residues are shown as dots). High conservation is observed among Passerine birds and the chicken reference sequence (directly above the horizontal divider) is only two residues different from the manakin conserved sequence. The PVALB-L2 from C. mentalis, and PVALB, OCM, and OCM2 from chicken and human are all highly divergent in sequence from OCM3/PVALB-L1, as shown below the divider.
Fig. S9. PhyDGET Results from Simulated Values. Histograms show the distribution of Bayes Factor (BF) scores between the null and alternative model of a shift on the M4 ancestor branch (left), two-branch Parallel model (center), and two-branch two-rate Reversion model (R42; right) using a variety of starting \(\alpha \) values. Dashed lines and inset text show the 95th, 99th percentiles (green) and the False Discovery Rate (FDR) of values with BF \(\geq 1.0, 1.5, 2.0, \) and 5.0 (black). The rate of false positives increases slightly with the raw value, as expected given the increased variance scaling with the starting value in the simulations and reflecting the biological pattern of mean-variance relationships. Slightly higher FDR rates were observed in the 2-branch models than the 1-branch model.
Fig. S10. (continued on next page)
Fig. S10. Expression profiles for other genes of interest. Genes with high expression, from gene families of interest, or known candidate functional loci. The mean counts-per-million per species (horizontal line) with standard error (shaded bars) and three individual values (open circles) are shown for both tissues: (P)EC and (S)H.
Supplementary Tables

Location	Species Sampled	Approximate Latitude	Approximate Longitude
Gamboa, Panama	*Ceratopipra mentalis*	9°07'N	9°41'W
	(Red-capped manakin)		
	Lepidothrix coronata		
	(Blue-crowned manakin)		
	Manacus vitellinus		
	(Golden-collared manakin)		
	Mionectes oleagineus		
	(Ochre-bellied flycatcher)		
Pakaraima Mountains, Guyana	*Ceratopipra cornuta*	4°56'N	59°53'W
	(Scarlet-horned manakin)		
Boro Boro River, Guyana	*Pseudopipra pipra*	4°8'N	59°4'W
	(White-collared manakin)		
coastal savannah, Guyana	*Xenopipo atronitens*	6°22'N	58°7'W
	(Black manakin)		

Table S1. Wing beat frequencies of birds with similar size to manakins.
species	muscle action	wingbeat frequency (Hz)	body weight (g)
Ceratopipra mentalis	SH “claps” display	≈50 (30)	13.0–15.5 (31)
(red-capped manakin)			
Ceratopipra cornuta			21.9–23.75 (31)
(scarlet-horned manakin)			
Manacus vitellinus	SH “roll-snap” display	60–70 (32)	16.95–18.7 (31)
(golden-collared manakin)	PEC wing flap	17.6 (33)	
Taeniopygia guttata	PEC wing flap	26.7–29.3 (34)	10–16 (35)
(zebra finch)			
Fringilla coelebs	PEC wing flap	18.2 ± 1.74 S.E. (36)	17–30 (37)
(common chaffinch)			
Catharus ustulatus	PEC wing flap	11.9–19.6 (38)	23–45 (37)
(Swainson's thrush)			
Hylocichla mustelinae	PEC wing flap	10.1–18.6 (38)	40–50 (37)
(wood thrush)			
Delichon urbica	PEC wing flap	2.5–8.4 (39)	15–21 (37)
(house martin)			
Hirundo rustica	PEC wing flap	3.0–8.1 (39)	16–25 (37)
(barn swallow)			

Table S2. Wing beat frequencies and body weight ranges of birds with similar size to manakins. Data compiled from the cited sources.
#	Sample	Species	Date extracted	Amount of RNA on qubit (ng/ul)	Bioanalyzer concentration (pg/ul)
1	LECO1-SH	*L. coronata*	05/02/16	149	745
2	LECO2-SH	*L. coronata*	05/02/16	362	1810
3	LECO3-SH	*L. coronata*	05/02/16	436	2180
4	LECO1-PEC	*L. coronata*	5/7/2016	266	1330
5	LECO2-PEC	*L. coronata*	5/7/2016	210	1050
6	LECO3-PEC	*L. coronata*	5/7/2016	236	1180
7	MAVI1-SH	*M. vitellinus*	5/6/2016	572	2860
8	MAVI2-SH	*M. vitellinus*	5/6/2016	308	1540
9	MAVI3-SH	*M. vitellinus*	5/6/2016	240	1200
10	MAVI1-PEC	*M. vitellinus*	5/6/2016	1200	3000
11	MAVI2-PEC	*M. vitellinus*	5/6/2016	1140	2850
12	MAVI3-PEC	*M. vitellinus*	5/6/2016	1200	3000
13	CECO1-SH	*C. cornuta*	5/7/2016	400	2000
14	CECO2-SH	*C. cornuta*	5/7/2016	242	1210
15	CECO3-SH	*C. cornuta*	5/7/2016	106	530
16	CECO1-PEC	*C. cornuta*	5/3/2016	442	2210
17	CECO2-PEC	*C. cornuta*	5/3/2016	400	2000
18	CECO3-PEC	*C. cornuta*	5/3/2016	388	1945
19	XEAT1-SH	*X. atronitrens*	5/7/2016	398	1990
20	XEAT2-SH	*X. atronitrens*	5/7/2016	226	1130
21	XEAT3-SH	*X. atronitrens*	5/7/2016	155	775
22	XEAT1-PEC	*X. atronitrens*	5/6/2016	137.2	860
23	XEAT2-PEC	*X. atronitrens*	5/6/2016	86	3220
24	XEAT3-PEC	*X. atronitrens*	5/6/2016	322	1600
25	PSPI1-SH	*P. pipra*	5/6/2016	160	670
26	PSPI2-SH	*P. pipra*	5/6/2016	67.2	1480
27	PSPI3-SH	*P. pipra*	5/6/2016	148	1480
28	PSPI1-PEC	*P. pipra*	5/3/2016	622	3110
29	PSPI2-PEC	*P. pipra*	5/3/2016	590	2950
30	PSPI3-PEC	*P. pipra*	5/3/2016	136	1360
31	CEME1-SH	*C. mentalis*	5/7/2016	330	1580
32	CEME2-SH	*C. mentalis*	5/7/2016	316	2490
33	CEME3-SH	*C. mentalis*	5/7/2016	498	3335
34	CEME1-PEC	*C. mentalis*	5/7/2016	667	1550
35	CEME2-PEC	*C. mentalis*	5/7/2016	310	2150
36	CEME3-PEC	*C. mentalis*	5/7/2016	430	0
37	MIOL1-SH	*Mi. oleagineus*	5/6/2016	396	1980
38	MIOL2-SH	*Mi. oleagineus*	5/6/2016	428	2140
39	MIOL3-SH	*Mi. oleagineus*	5/6/2016	308	1540
40	MIOL1-PEC	*Mi. oleagineus*	5/3/2016	696	3480
41	MIOL2-PEC	*Mi. oleagineus*	5/3/2016	750	3750
42	MIOL3-PEC	*Mi. oleagineus*	5/3/2016	1100	3667

Table S3. **Sequencing quality metrics.** Id number (for sequencing), sample and species names, date of extraction of the RNA, and concentrations on Qubit and Bioanalyzer.
Sample	Raw reads	% After Quality Filtering	% Raw Map to Mitochondria	% Nuclear Reads Mapped to Genome	Total Counted of Nuclear Mapped Reads	% Counted of Nuclear Mapped Reads
LECO1-SH	24,240,465	99.87%	16.32%	91.79%	17,440,240	86.24%
LECO2-SH	28,245,653	99.86%	20.11%	90.18%	19,066,123	84.76%
LECO3-SH	27,791,546	99.89%	22.30%	89.96%	18,248,487	84.77%
LECO1-PEC	25,866,131	99.89%	31.73%	86.62%	14,620,430	83.19%
LECO2-PEC	25,399,293	99.89%	32.97%	88.30%	14,288,649	84.34%
LECO3-PEC	26,386,738	99.90%	36.12%	88.68%	14,192,607	84.55%
MAVI1-SH	23,867,517	99.92%	33.03%	85.36%	12,958,295	81.41%
MAVI2-SH	24,439,612	99.92%	31.86%	86.04%	13,585,673	81.79%
MAVI3-SH	25,318,789	99.90%	30.20%	85.36%	13,323,028	83.11%
MAVI1-PEC	30,105,559	99.92%	44.77%	87.21%	13,817,608	83.45%
MAVI2-PEC	26,055,131	99.91%	38.07%	86.26%	13,323,028	83.11%
MAVI3-PEC	26,303,029	99.91%	39.23%	85.88%	13,114,388	82.73%
CECO1-SH	25,521,654	99.91%	30.81%	87.18%	14,517,277	82.60%
CECO2-SH	25,885,362	99.89%	30.98%	86.77%	14,633,982	82.32%
CECO3-SH	26,035,482	99.88%	32.94%	85.36%	13,253,687	82.84%
XEAT1-SH	27,144,487	99.91%	40.83%	86.52%	13,293,623	83.95%
XEAT2-SH	24,964,724	99.89%	37.39%	87.29%	12,798,538	83.28%
XEAT3-SH	26,650,402	99.89%	33.77%	86.88%	14,406,384	83.01%
XEAT1-PEC	24,341,291	99.91%	42.39%	87.35%	13,263,626	83.82%
XEAT2-PEC	26,055,131	99.91%	38.07%	86.26%	13,323,028	83.11%
XEAT3-PEC	28,933,085	99.91%	39.23%	85.88%	13,114,388	82.73%
PSPI1-SH	24,095,715	99.90%	38.81%	85.92%	11,873,860	81.97%
PSPI2-SH	26,498,928	99.91%	43.19%	87.14%	12,245,928	82.86%
PSPI3-SH	25,333,635	99.90%	42.42%	87.62%	11,941,114	83.42%
PSPI1-PEC	26,469,426	99.90%	41.46%	86.22%	12,575,976	82.49%
PSPI2-PEC	26,434,185	99.90%	40.58%	86.73%	12,282,222	82.51%
PSPI3-PEC	25,441,092	99.88%	39.80%	87.69%	12,387,728	83.95%
CEME1-SH	25,095,251	99.86%	29.70%	88.95%	14,721,145	84.02%
CEME2-SH	24,995,771	99.87%	28.64%	86.93%	14,526,463	81.77%
CEME3-SH	26,029,065	99.90%	25.19%	89.78%	16,428,178	84.87%
CEME1-PEC	26,258,958	99.90%	44.21%	87.59%	12,108,735	83.18%
CEME2-PEC	28,288,172	99.90%	39.35%	86.31%	13,936,682	81.70%
CEME3-PEC	26,832,237	99.89%	44.86%	87.03%	12,106,808	82.68%
MIOL1-SH	27,595,869	99.88%	29.70%	86.95%	16,364,458	84.94%
MIOL2-SH	25,912,309	99.88%	38.94%	87.51%	13,439,728	85.49%
MIOL3-SH	22,627,541	99.85%	35.07%	86.47%	12,361,971	84.68%
MIOL1-PEC	24,249,406	99.88%	35.57%	86.47%	13,154,542	85.02%
MIOL2-PEC	25,968,132	99.87%	33.11%	86.33%	14,694,711	85.00%
MIOL3-PEC	28,943,901	99.88%	39.99%	85.68%	14,583,879	84.70%

Table S4. Sequence Mapping Metrics. Raw number of reads sequenced, percent of raw retained after quality control trimming and filtering (see Supplementary Methods), percent mapped to the mitochondrial genomes, percent of the remainder mapped to the nuclear genome, total number of mapped reads, and total percent of nuclear genome-mapped that were quantified uniquely to a gene feature.
Individual	Total Bases Covered at Depth ≥ 3	% Percent Coverage
P. filicauda Reference	187,053,847	
LECO1	94,139,392	50.33%
LECO2	85,198,563	45.55%
LECO3	80,225,667	42.89%
MAVI1	55,198,388	29.51%
MAVI2	58,390,019	31.22%
MAVI3	60,060,711	32.11%
CECO1	55,838,882	29.85%
CECO2	56,078,814	29.98%
CECO3	53,009,227	28.34%
XEAT1	56,074,253	29.98%
XEAT2	56,182,688	30.04%
XEAT3	57,496,392	30.74%
PSPI1	52,119,833	27.86%
PSPI2	52,334,977	27.98%
PSPI3	50,689,389	27.10%
CEME1	62,573,398	33.45%
CEME2	60,058,501	32.11%
CEME3	70,416,863	37.65%
MIOL1	50,470,135	26.98%
MIOL2	50,173,041	26.82%
MIOL3	49,068,149	26.23%

Table S5. Sequencing Quality Metrics. Short-read pairs mapped at depth of 3 or greater to the *P. filicauda* reference genome and their coverage as approximated by the total size of the annotated *P. filicauda* reference transcriptome.
Table S6. Pairwise Nucleotide Sequence Distances. Pairwise nucleotide distances for the complete alignment of all nucleotides at depth of coverage ≥ 3.
Rank	Tree Topology	Count	Type	Rank	Tree Topology	Count	Type
1	((Cc,Cm,L,M,P,X),O);	517	c	34	((L,(X,(Cc,Cm,M,P)),O);	38	d
2	((X,(Cc,Cm,L,M,P)),O);	497	c	35	((L,(X,(Cc,Cm,M,P)),O);	38	d
3	((X,(L,(M,(P,(Cc,Cm)))),O);	476	CON	36	((X,(L,(M,(Cc,Cm,M,P)),O);	37	DIS
4	((X,(L,M,P,(Cc,Cm)),O);	257	c	37	((L,(X,(Cc,Cm,M,P)),O);	37	d
5	((X,(L,M,P,(Cc,Cm)),O);	245	c	38	((L,(X,(Cc,Cm,M,P)),O);	36	DIS*
6	((X,(L,M,(Cc,Cm,P)),O);	223	c	39	((L,(X,(Cc,Cm,M,P)),O);	36	d
7	((X,(L,(Cc,Cm,M,P)),O);	210	c	40	((L,(X,(Cc,Cm,M,P)),O);	36	d
8	((X,(L,(Cc,Cm,M,P)),O);	208	c	41	((L,(X,(Cc,Cm,M,P)),O);	36	d
9	((X,(L,(M,P,(Cc,Cm)),O);	153	d	42	((L,(M,(Cc,Cm,M,P)),O);	35	DIS
10	((X,((L,M),(P,(Cc,Cm)),O);	137	d	43	((L,(X,(Cc,Cm,M,P)),O);	35	d
11	((X,(L,M,(P,(Cc,Cm)),O);	130	DIS	44	((L,(X,(Cc,Cm,M,P)),O);	32	c
12	((L,M,X,(Cc,Cm,P)),O);	130	c	45	((L,(X,(M,P,(Cc,Cm)),O);	32	d
13	((L,M,P,X,(Cc,Cm)),O);	130	c	46	((L,(X,(Cc,Cm,M,P)),O);	31	d
14	((L,X,(Cc,Cm,M,P)),O);	123	c	47	((L,(X,(Cc,Cm,M,P)),O);	30	d
15	((M,(Cc,Cm,L,P,X)),O);	102	d	48	((L,(Cc,Cm,M,P,X)),O);	30	d
16	((L,Cc,Cm,M,P,X),O);	95	d	49	((L,(Cc,Cm,L,P,X)),O);	30	d
17	((L,(Cc,Cm,L,P,X)),O);	87	d	50	((L,(Cc,Cm,L,P,X)),O);	29	d
18	((L,(X,(Cc,Cm,M,P,X)),O);	79	DIS	51	((L,(X,(Cc,Cm,M,P,X)),O);	29	d
19	((L,(X,(Cc,Cm,M,P,X)),O);	62	d	52	((L,(X,(Cc,Cm,M,P,X)),O);	29	d
20	((L,(Cc,Cm,L,P,X)),O);	60	d	53	((L,(X,(Cc,Cm,M,P,X)),O);	29	d
21	((L,X,(Cc,Cm,M,P)),O);	59	d	54	((L,X,(Cc,Cm,M,P,X)),O);	28	d
22	((L,M,X,(Cc,Cm)),O);	59	c	55	((L,M,X,(Cc,Cm,L,P)),O);	27	d
23	((Cc,Cm,P,(L,M,X)),O);	57	d	56	((L,(X,(Cc,Cm,M,P,X)),O);	26	d
24	((L,(Cc,Cm,L,P,X)),O);	55	d	57	((L,(Cc,Cm,L,P,X)),O);	26	d
25	((L,(X,(Cc,Cm,M,P)),O);	55	c	58	((L,(X,(Cc,Cm,M,P)),O);	25	d
26	((L,(M,X,(Cc,Cm,P)),O);	50	d	59	((L,(M,X,(Cc,Cm,P)),O);	25	d
27	((L,(X,(M,P,(Cc,Cm)),O);	49	DIS	60	((L,(X,(Cc,Cm,L,M,X),O);	23	d
28	((L,(X,(M,(Cc,Cm)),O);	48	d	61	((L,(X,(Cc,Cm,L,M,X),O);	23	d
29	((X,(L,(Cc,Cm,M,P)),O);	46	DIS	62	((L,(X,(Cc,Cm,M,P,X)),O);	21	d
30	((X,(P,(Cc,Cm),(L,M)),O);	44	DIS	63	((L,(X,(Cc,Cm,L,M,X)),O);	21	d
31	((L,(X,(Cc,Cm,M,P)),O);	42	d	64	((L,(X,(Cc,Cm,M,P,X)),O);	20	d*
32	((X,(L,(Cc,Cm,M,P)),O);	41	d	65	((L,(X,(Cc,Cm,M,P,X)),O);	20	d*
33	((L,(X,(Cc,Cm,L,M,X)),O);	39	d	66	((L,(X,(Cc,Cm,M,P,X)),O);	18	d*

Table S7. Gene trees with 200+ bp of fully occupied alignment. The tree concordant with the concatenated species tree is bolded. "c"=concordant with the concatenated species tree, but contains polytomies. "DIS"=discordant bifurcating trees. "d"=discordant trees with polytomies. "*"=discordance tree with Manacus and Ceratopipra monophyletic.
Table S8. Gene trees with 1000+ bp of fully occupied alignment. The tree concordant with the concatenated species tree is bolded. “c”=concordant with the concatenated species tree, but contains polytomies. “DIS”=discordant bifurcating trees. “d”=discordant trees with polytomies. “*”=discordance tree with *Manacus* and *Ceratopipra* monophyletic.
gene	log₂ fold change	log₂ average expression	t-statistic	P-value	Adjusted P-value
Mionectes oleagineus					
TNNC1	−4.94	9.87	−26.56	1.5 × 10⁻⁸	0.0002
MYLK2	8.46	4.81	13.88	1.6 × 10⁻⁶	0.0097
ABHD2	−1.67	9.83	−13.21	2.3 × 10⁻⁶	0.0097
FANCI	−2.87	3.91	−9.94	1.7 × 10⁻⁵	0.0526
PITX1	1.95	2.96	8.87	3.6 × 10⁻⁵	0.0824
MYBPC1	6.92	5.36	8.31	5.6 × 10⁻⁵	0.0824
PITX3	2.89	4.45	8.23	6.0 × 10⁻⁵	0.0824
MFGE8	−1.66	5.91	−8.1	6.6 × 10⁻⁵	0.0824
FHL1	5.46	5.23	8.05	6.9 × 10⁻⁵	0.0824
EML4	−1.39	4.7	−7.97	7.4 × 10⁻⁵	0.0824
LOC113996532	5.19	0.91	7.66	9.6 × 10⁻⁵	0.0824
MYBPH	−1.64	8.51	−7.62	9.9 × 10⁻⁵	0.0824
ENAH	2.98	7.17	7.54	1.0 × 10⁻⁴	0.0824
HSPB1	1.6	9.22	7.49	1.1 × 10⁻⁴	0.0824
UCGG	1.33	5.63	7.39	1.2 × 10⁻⁴	0.0824
LOC113998929	−1.81	4.36	−7.39	1.2 × 10⁻⁴	0.0824
CUNH1orf21	1.22	5.97	7.34	1.3 × 10⁻⁴	0.0824
RAPGEF2	1.2	4.65	7.28	1.3 × 10⁻⁴	0.0824
LOC113990814	3.4	6.87	7.28	1.3 × 10⁻⁴	0.0824
SLC02B1	1.28	7.31	7.27	1.3 × 10⁻⁴	0.0824
HOMER2	−1.48	6.06	−7.26	1.4 × 10⁻⁴	0.0824
Xenopipo atronitens					
LOC113994916	5.35	−1.8	10.63	1.7 × 10⁻⁵	0.21
LOC114000920	1.73	3.38	9.39	3.8 × 10⁻⁵	0.24
GJD2	−2.42	2.16	−8.11	9.7 × 10⁻⁵	0.4
ERICH3	2.72	0.09	6.97	0.0002	0.66
LOC114002263	−1.48	3.3	−6.89	0.0003	0.66
LOC113990672	2.18	3.21	6.43	0.0004	0.74
ST8SIA2	−2.21	1.35	−6.39	0.0004	0.74
UNC45B	−0.61	8.62	−6.18	0.0005	0.74
PRKCA	1.23	6.63	6.06	0.0006	0.74
TIGD4	−2.39	2.58	−5.94	0.0006	0.74
LOC114004148	2.71	0.32	5.69	0.0008	0.74
LOC113993176	−1.54	3.68	−5.65	0.0009	0.74

Table S9. (continued on next page)
gene	log₂ fold change	log₂ average expression	t-statistic	P-value	Adjusted P-value
Lepidothrix coronata					
TPM2	4.88	11.13	21.31	2.1 x 10⁻⁷	1.5 x 10⁻³
MYL2	4.79	5.44	21.04	2.3 x 10⁻⁷	1.5 x 10⁻³
LOC113983529	5.96	5.37	20.15	3.1 x 10⁻⁷	1.5 x 10⁻³
LOC113989700	-3.32	5.87	-18.19	6.0 x 10⁻⁷	2.2 x 10⁻³
LOC113999653	5.44	3.87	15.47	1.7 x 10⁻⁶	3.9 x 10⁻³
LOC113998630	-4.71	3.24	-15.21	1.9 x 10⁻⁶	3.9 x 10⁻³
LOC114002580	-2.06	12.29	-14.62	2.5 x 10⁻⁶	3.9 x 10⁻³
LOC113989355	3.12	4.36	14.5	2.7 x 10⁻⁶	3.9 x 10⁻³
LOC113983388	3.16	4.43	14.44	2.7 x 10⁻⁶	3.9 x 10⁻³
LOC113999652	7.28	7.67	14.31	2.9 x 10⁻⁶	3.9 x 10⁻³
KIAA2026	-2.01	6.75	-14.27	2.9 x 10⁻⁶	3.9 x 10⁻³
TNNT1	4.19	5.15	13.06	5.2 x 10⁻⁶	5.7 x 10⁻³
Manacus vitellinus					
TPM2	4.88	11.13	21.31	2.1 x 10⁻⁷	1.5 x 10⁻³
MYL2	4.79	5.44	21.04	2.3 x 10⁻⁷	1.5 x 10⁻³
LOC113983529	5.96	5.37	20.15	3.1 x 10⁻⁷	1.5 x 10⁻³
LOC113989700	-3.32	5.87	-18.19	6.0 x 10⁻⁷	2.2 x 10⁻³
LOC113999653	5.44	3.87	15.47	1.7 x 10⁻⁶	3.9 x 10⁻³
LOC113998630	-4.71	3.24	-15.21	1.9 x 10⁻⁶	3.9 x 10⁻³
LOC114002580	-2.06	12.29	-14.62	2.5 x 10⁻⁶	3.9 x 10⁻³
LOC113989355	3.12	4.36	14.5	2.7 x 10⁻⁶	3.9 x 10⁻³
LOC113983388	3.16	4.43	14.44	2.7 x 10⁻⁶	3.9 x 10⁻³
LOC113999652	7.28	7.67	14.31	2.9 x 10⁻⁶	3.9 x 10⁻³
KIAA2026	-2.01	6.75	-14.27	2.9 x 10⁻⁶	3.9 x 10⁻³
TNNT1	4.19	5.15	13.06	5.2 x 10⁻⁶	5.7 x 10⁻³
Pseudopipra pipra					
MYLK2	8.5	4.87	35.75	2.5 x 10⁻⁹	3.07 x 10⁻⁵
LOC114002581	4.23	10.75	31.17	6.6 x 10⁻⁹	4.07 x 10⁻⁵
MYBPC1	7.36	5.66	28.01	1.4 x 10⁻⁸	5.79 x 10⁻⁵
TPM2	6.8	8.65	26.23	2.2 x 10⁻⁸	6.93 x 10⁻⁵
TNNC1	-5.5	9.78	-24.73	3.4 x 10⁻⁸	8.41 x 10⁻⁵
FHL1	4.75	6.11	18.87	2.3 x 10⁻⁷	0.00047
NOS1	2.8	4.37	17.46	4.0 x 10⁻⁷	0.0007
TMOD1	5.47	5.67	15.72	8.3 x 10⁻⁷	0.00128
TSTD2	3.08	6.34	14.22	1.7 x 10⁻⁶	0.00227
AGBL1	5.97	1.38	13.66	2.2 x 10⁻⁶	0.00271
SMPX	4.33	4.01	13.16	2.8 x 10⁻⁶	0.00317
CNTNAP2	3.09	3.14	11.86	5.8 x 10⁻⁶	0.00597

Table S9. (continued on next page)
gene	log2 fold change	log2 average expression	t-statistic	P-value	Adjusted P-value
Ceratopipra cornuta					
TNNC1	−8.16	8.36	−49.29	4.1 × 10⁻¹¹	3.91 × 10⁻⁷
LOC114002581	5.4	11.14	46.64	6.3 × 10⁻¹¹	3.91 × 10⁻⁷
TPM2	7.54	8.62	37.81	3.3 × 10⁻¹⁰	1.36 × 10⁻⁶
TMOD1	6.21	6.01	35.94	4.9 × 10⁻¹⁰	1.52 × 10⁻⁶
TSTD2	3.36	6.37	29.79	2.1 × 10⁻⁹	5.29 × 10⁻⁶
MYBPC1	7.92	5.68	26.8	4.9 × 10⁻⁹	1.01 × 10⁻⁵
LOC113998858	−2.38	6.87	−22.9	1.7 × 10⁻⁹	2.81 × 10⁻⁵
LOC113990140	3.08	5.43	22.32	2.0 × 10⁻⁸	2.81 × 10⁻⁵
CDC177	2.63	5.31	22.31	2.0 × 10⁻⁸	2.81 × 10⁻⁵
FHL1	4.38	5.9	21.02	3.3 × 10⁻⁸	4.01 × 10⁻⁵
MB	−1.66	12.55	−18.57	8.5 × 10⁻⁸	9.53 × 10⁻⁵
SMPX	5.18	3.39	18.23	9.8 × 10⁻⁸	1.01 × 10⁻⁴
Ceratopipra mentalis					
MYLK2	6.28	6.03	29.49	9.4 × 10⁻⁹	1.3 × 10⁻⁴
MYBPC1	7.53	7.37	21.27	9.6 × 10⁻⁸	0.00064
TPM2	7.73	9.54	16.48	5.8 × 10⁻⁷	0.00256
LOC113990140	2.62	6.27	13.94	1.9 × 10⁻⁶	0.00469
CLDN1	3.31	4.09	13.85	1.9 × 10⁻⁶	0.00469
CRIK1	2.45	4.63	13.49	2.3 × 10⁻⁶	0.00469
ZIC1	6.57	−0.71	13.26	2.6 × 10⁻⁶	0.00469
TMOD1	4.57	7.17	13.13	2.8 × 10⁻⁶	0.00469
LOC114000838	−3.57	2.73	−12.68	3.6 × 10⁻⁶	0.00514
PPP3CA	2.33	5.02	12.54	3.9 × 10⁻⁶	0.00514
SV2B	3.15	4.98	12.05	5.1 × 10⁻⁶	0.00617
SIM2	−3.72	3.42	−11.73	6.1 × 10⁻⁶	0.00678

Table S9. Top differentially expressed genes in an SH-PEC contrast for each species. List of top genes (by P-value) identified by limma as differentially expressed for a comparison of the SH and PEC tissues (three replicates of each).
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
Mionectes oleagineus						
GO:0032971	regulation of muscle filament sliding	3.00×10^{-5}	0.01	2 / 4	2 / 451	3 / 14776
GO:0032972	regulation of muscle filament sliding speed	6.30×10^{-4}	0.08	1 / 4	2 / 3190	1 / 14776
GO:1903115	regulation of actin filament-based movement	0.003	0.23	2 / 4	3 / 1100	36 / 14776
GO:0051270	regulation of cellular component movement	0.004	0.23	3 / 4	4 / 7906	836 / 14776
GO:0048644	muscle organ morphogenesis	0.004	0.23	2 / 4	2 / 1004	67 / 14776
GO:0048240	sperm capacitation	0.008	0.26	1 / 4	1 / 727	6 / 14776
GO:0007517	muscle organ development	0.011	0.26	2 / 4	2 / 2684	276 / 14776
GO:0060415	muscle tissue morphogenesis	0.011	0.26	2 / 4	2 / 597	63 / 14776
GO:0030048	actin filament-based movement	0.011	0.26	2 / 4	3 / 2182	137 / 14776
GO:0032970	regulation of actin filament-based process	0.011	0.26	2 / 4	4 / 7724	347 / 14776
GO:0030049	muscle filament sliding	0.011	0.26	2 / 4	2 / 304	33 / 14776
GO:0032386	regulation of intracellular transport	0.012	0.26	2 / 4	2 / 2799	309 / 14776
Xenopipo atronitensis						
	N/A					
Lepidothrix coronata						
GO:0032971	regulation of muscle filament sliding	3.00×10^{-5}	0.01	2 / 4	2 / 451	3 / 14776
GO:0032972	regulation of muscle filament sliding speed	6.30×10^{-4}	0.08	1 / 4	2 / 3190	1 / 14776
GO:1903115	regulation of actin filament-based movement	0.003	0.23	2 / 4	3 / 1100	36 / 14776
GO:0051270	regulation of cellular component movement	0.004	0.23	3 / 4	4 / 7906	836 / 14776
GO:0048644	muscle organ morphogenesis	0.004	0.23	2 / 4	2 / 1004	67 / 14776
GO:0048240	sperm capacitation	0.008	0.26	1 / 4	1 / 727	6 / 14776
GO:0007517	muscle organ development	0.011	0.26	2 / 4	2 / 2684	276 / 14776
GO:0060415	muscle tissue morphogenesis	0.011	0.26	2 / 4	2 / 597	63 / 14776
GO:0030048	actin filament-based movement	0.011	0.26	2 / 4	3 / 2182	137 / 14776
GO:0032970	regulation of actin filament-based process	0.011	0.26	2 / 4	4 / 7724	347 / 14776
GO:0030049	muscle filament sliding	0.011	0.26	2 / 4	2 / 304	33 / 14776
GO:0032386	regulation of intracellular transport	0.012	0.26	2 / 4	2 / 2799	309 / 14776

Table S10. (continued on next page)
GO Term	Definition	P-value	Adj. P	Study	Family	Population
Manacus vitellinus						
GO:0030239	myofibril assembly	7.5 × 10⁻⁷	5.5 × 10⁻⁴	6 / 66	10 / 1340	56 / 14776
GO:0030048	actin filament-based movement	8.8 × 10⁻⁷	5.5 × 10⁻⁴	8 / 66	15 / 2182	137 / 14776
GO:0010927	cellular component assembly involved in morphogenesis	8.9 × 10⁻⁵	5.5 × 10⁻⁴	6 / 66	15 / 3419	86 / 14776
GO:0055001	muscle cell development	2.5 × 10⁻⁶	0.0011	7 / 66	10 / 1778	149 / 14776
GO:0003012	muscle system process	1.0 × 10⁻⁵	0.0038	14 / 66	18 / 1407	384 / 14776
GO:0003004	muscle structure development	2.8 × 10⁻⁵	0.0085	11 / 66	24 / 4364	506 / 14776
GO:0003004	muscle filament sliding	1.9 × 10⁻⁴	0.0461	7 / 66	14 / 304	33 / 14776
GO:0003002	actin filament-based process	2.0 × 10⁻⁴	0.0461	11 / 66	51 / 11575	705 / 14776
GO:0003002	muscle cell differentiation	3.4 × 10⁻⁴	0.0698	8 / 66	21 / 3154	292 / 14776
GO:1903115	system process	5.5 × 10⁻⁴	0.092	18 / 66	33 / 5318	1407 / 14776
GO:0030048	regulation of membrane depolarization	5.7 × 10⁻⁴	0.092	3 / 66	32 / 7750	40 / 14776
GO:0090131	mesenchyme migration	6.0 × 10⁻⁴	0.092	2 / 66	3 / 316	5 / 14776
Pseudopipra pipra						
GO:0030048	actin filament-based movement	4.3 × 10⁻⁷	6.8 × 10⁻⁴	8 / 43	14 / 2182	137 / 14777
GO:0032501	multicellular organismal process	1.5 × 10⁻⁶	0.0012	32 / 43	39 / 11976	5318 / 14777
GO:0003008	system process	8.4 × 10⁻⁵	0.044	19 / 43	32 / 5318	1407 / 14776
GO:0030029	actin filament-based process	1.8 × 10⁻⁴	0.062	9 / 43	35 / 11575	705 / 14776
GO:0003012	muscle system process	2.0 × 10⁻⁴	0.063	13 / 43	19 / 1407	384 / 14776
GO:1903115	regulation of actin filament-based movement	4.0 × 10⁻⁴	0.103	4 / 43	12 / 1100	36 / 14777
GO:0044057	regulation of system process	4.6 × 10⁻⁴	0.103	11 / 43	22 / 2764	483 / 14777
GO:0006928	movement of cell or subcellular component	7.3 × 10⁻⁴	0.143	14 / 43	35 / 11575	1897 / 14777
GO:0030049	muscle filament sliding	0.001	0.17	6 / 43	13 / 304	33 / 14777
GO:0032971	regulation of muscle filament sliding	0.0013	0.17	2 / 43	10 / 451	3 / 14777
GO:0032879	regulation of localization	0.0013	0.17	15 / 43	30 / 9414	2201 / 14777
GO:0035637	multicellular organismal signalling	0.0013	0.17	5 / 43	35 / 6943	166 / 14777

Table S10. (continued on next page)
GO Term	Definition	P-value	Adj. P	Study	Family	Population
Ceratopipra cornuta						
GO:0030048 actin filament-based movement		4.3×10^{-7}	6.8×10^{-4}	8 / 43	14 / 2182	137 / 14777
GO:0032501 multicellular organismal process		1.5×10^{-6}	0.0012	32 / 43	39 / 11976	5318 / 14777
GO:0003008 system process		8.4×10^{-5}	0.044	19 / 43	32 / 5318	1407 / 14777
GO:0030029 actin filament-based process		1.8×10^{-4}	0.062	9 / 43	35 / 11575	705 / 14777
GO:0003012 muscle system process		2.0×10^{-4}	0.063	13 / 43	19 / 1407	384 / 14777
GO:1903115 regulation of actin filament-based movement		4.0×10^{-4}	0.103	4 / 43	12 / 1100	36 / 14777
GO:0044057 regulation of system process		4.6×10^{-4}	0.103	11 / 43	22 / 2764	483 / 14777
GO:0006928 movement of cell or subcellular component		7.3×10^{-4}	0.143	14 / 43	35 / 11575	1897 / 14777
GO:0030049 muscle filament sliding		0.001	0.17	6 / 43	13 / 304	33 / 14777
GO:0032971 regulation of muscle filament sliding		0.0013	0.17	2 / 43	10 / 451	3 / 14777
GO:0032879 regulation of localization		0.0013	0.17	15 / 43	30 / 9414	2201 / 14777
GO:0035637 multicellular organismal signaling		0.0013	0.17	5 / 43	35 / 6943	166 / 14777
Ceratopipra mentalis						
GO:0006928 movement of cell or subcellular component		4.5×10^{-5}	0.052	16 / 40	35 / 11575	1897 / 14776
GO:0030049 muscle filament sliding		6.3×10^{-5}	0.052	5 / 40	6 / 304	33 / 14776
GO:0030048 actin filament-based movement		3.8×10^{-4}	0.213	6 / 40	17 / 2182	137 / 14776
GO:0030029 actin filament-based process		9.8×10^{-4}	0.305	8 / 40	35 / 11575	705 / 14776
GO:0052363 catabolism by organism of protein in other organism involved in symbiotic interaction		0.0013	0.305	1 / 40	1 / 797	1 / 14776
GO:0052361 catabolism by organism of macromolecule in other organism involved in symbiotic interaction		0.0016	0.305	1 / 40	2 / 1219	1 / 14776
GO:0009611 response to wounding		0.0017	0.305	6 / 40	9 / 2907	523 / 14776
GO:0033275 actin-myosin filament sliding		0.002	0.305	5 / 40	5 / 109	33 / 14776
GO:0052214 metabolism of substance in other organism involved in symbiotic interaction		0.0021	0.305	1 / 40	3 / 1441	1 / 14776
GO:0044035 multi-organism catabolic process		0.0022	0.305	1 / 40	5 / 2242	1 / 14776
GO:0052418 metabolism by organism of protein in other organism involved in symbiotic interaction		0.0022	0.305	1 / 40	10 / 4484	1 / 14776
GO:0003012 muscle system process		0.0023	0.305	7 / 40	9 / 1407	384 / 14776

Table S10. SH-PEC Pairwise DGE Gene Ontology. Top Gene Ontology terms from the differential expressed genes between SH and PEC for each species, showing the P-value of overrepresentation, the BH-adjusted P-value, the proportion of genes represented by the term in the target study set, the number of terms in the total GO term family, and the total proportion of the GO term in the total population.
Gene	Max cpm	Best Model	M6 model BF (SH)	Best Model	M6 model BF (PEC)	Annotation
M6 Ancestor Branch Model – SH and PEC						
LRSAM1	109.3	M6	1.79 (+)	M6	1.92 (+)	leucine rich repeat and sterile alpha motif containing 1
LOC114000536	183.2	M6	1.72 (+)	M6	2.13 (+)	uncharacterized LOC114000536
PKP	249.1	M6	1.6 (+)	M6	1.63 (+)	phosphofructokinase, platelet
M6 Ancestor Branch Model – SH						
LOC113995244	17.2	M6	1.82 (+)	M6	1.48 (+)	uncharacterized LOC113995244
CIAPIN1	1255	M6	1.71 (+)	M6	0.91 (+)	cytokine induced apoptosis inhibitor 1
HARBII	174.8	M6	1.70 (+)	M6	1.22 (+)	harbinger transposase derived 1
YARS2	108.1	M6	1.67 (+)	M6	0.59 (+)	tyrosyl-tRNA synthetase 2
PDK2	1865	M6	1.63 (+)	M6	1.11 (+)	pyruvate dehydrogenase kinase 2
TMED5	241.7	M6	1.63 (+)	M6	0.92 (+)	transmembrane p24 trafficking protein 5
M6 Ancestor Branch Model – PEC						
LOC113986517	116.3	M6	1.53 (+)	M6	0.37 (+)	alpha-soluble NSF attachment protein-like
LOC113988691	6.8	M6	1.6 (+)	M6	1.38 (+)	transmem. 9 superfamily member 2-like
SLC25A19	172.5	M6	1.59 (+)	M6	0.96 (+)	solute carrier family 25 member 19
LOC113993369	1387	M6	1.57 (+)	M6	1.41 (+)	lysine-specific demethylase 5C-like
IGBP2	115.6	M6	1.54 (+)	M6	1.19 (+)	insulin like growth factor binding prtn. 2
CIB2	326.7	M6	1.53 (+)	M6	1.19 (+)	calcium and integrin binding family member 2
LOC113991411	430.6	M6	1.46 (+)	M6	2.06 (+)	malignant fibrous histiocytoma-amplified sequence 1 homolog
LOC113990764	131.6	M6	1.01 (+)	M6	1.93 (+)	Schwann cell myelin protein-like
LOC113988445	21.2	M6	0.72 (+)	M6	1.83 (+)	C-type lectin dmn. fam. 2 member B-like
LOC113989785	5.5	LC	−0.15 (–)	M6	1.80 (–)	von Willebrand factor A domain-containing protein 5A-like
LOC113990255	620.8	M6	0.58 (+)	M6	1.76 (+)	6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase
ZNF532	70.2	M6	1.42 (+)	M6	1.72 (+)	zinc finger protein 532
LOC113992038	439.2	M6	0.91 (+)	M6	1.71 (–)	uncharacterized LOC113992038
MRPL34	77	null	−0.05 (–)	M6	1.7 (+)	mitochondrial ribosomal protein L34
LOC113994638	13.4	M6	1.02 (+)	M6	1.67 (+)	uncharacterized LOC113994638
LOC113989700	278	M6	0.05 (+)	M6	1.67 (+)	excitatory amino acid transporter 4-like
NEFL	815.9	LC	−0.29 (–)	M6	1.66 (+)	neurofilament light
TRMT10B	24	M6	0.79 (+)	M6	1.66 (+)	tRNA methyltransferase 10B
LOC113994118	347.6	M6	1.32 (+)	M6	1.65 (+)	laminin subunit beta-2-like
SLC27A3	16.4	M6	1.13 (+)	M6	1.64 (+)	solute carrier family 27 member 3
LOC113995895	51	M6	0.9 (+)	M6	1.63 (+)	F-box only protein 6-like
PPIC	95.1	M6	1.46 (+)	M6	1.61 (+)	peptidylprolyl isomerase C
MBLAC2	127.9	M6	0.71 (–)	M6	1.60 (+)	metallo-beta-lactamase dmn. containing 2
CLPX	534.2	M6	0.94 (+)	M6	1.54 (+)	caseinolytic mitochondrial matrix peptidase chaperone subunit
OPRL1	86.6	M6	0.61 (–)	M6	1.54 (–)	opioid related nociceptin receptor 1
PLA2G12A	369.7	M6	1.17 (–)	M6	1.54 (–)	phospholipase A2 group XIIA
LOC113999006	18.3	M6	0.52 (+)	M6	1.54 (+)	uncharacterized LOC113999006
AMBRA1	140.9	M6	0.84 (–)	M6	1.53 (–)	autophagy and beclin 1 regulator 1

Table S11. (continued on next page)
Gene	Max cpm	Best Model SH	M5 model BF (SH)	Best Model PEC	M5 model BF (PEC)	Annotation
LOC113986884	5	M5	2.17 (+)	M5	1.62 (+)	uncharacterized LOC113986884
SLC44A3	694.7	M5	1.87 (+)	M5	1.74 (+)	solute carrier family 44 member 3
LOC113991394	10.2	M5	1.84 (+)	M5	1.64 (+)	multidrug resistance protein 1-like

M5 Ancestor Branch Model – SH

Gene	Max cpm	Best Model SH	M5 model BF (SH)	Best Model PEC	M5 model BF (PEC)	Annotation
CCDC15	32.3	M5	2.02 (+)	M4	0.37 (+)	coiled-coil domain containing 15
LOC113993297	16.3	M5	1.98 (+)	M5	1.03 (+)	syncytin-2-like
CACFD1	29	M5	1.91 (+)	M4	0.74 (+)	calcium channel flower domain containing 1
LAPTMB4	100.1	M5	1.79 (+)	M5	1.16 (+)	lysosomal protein transmembrane 4 beta
EAF2	16.2	M5	1.77 (+)	M5	1.09 (+)	ELL associated factor 2
LOC113990152	49.1	M5	1.73 (+)	M5	1.11 (+)	uncharacterized LOC113990152
LOC113983157	5.2	M5	1.71 (+)	M5	0.86 (+)	collagen alpha-1(VII) chain-like
RETREG1	1638.6	M5	1.65 (+)	M6	0.14 (+)	reticulophagy regulator 1

M5 Ancestor Branch Model – PEC

Gene	Max cpm	Best Model SH	M5 model BF (SH)	Best Model PEC	M5 model BF (PEC)	Annotation
FOXO3	1324.3	M5	1.59 (-)	M5	0.89 (-)	forkhead box O3
LOC113991453	13.2	M5	1.56 (+)	M5	0.26 (+)	semaphorin-3D-like
DHPS	13.5	M5	1.55 (-)	M5	1.37 (-)	deoxyhypusine synthase
PTPRCAP	371.2	M5	1.54 (-)	M6	0.35 (-)	protein tyrosine phosphatase, receptor type C associated protein
FOXF1	26	M5	1.53 (+)	M4	0.45 (+)	forkhead box F1
ADAMTS9	78.2	M5	1.53 (+)	M5	1.21 (+)	ADAM metallopeptidase with thrombospondin type 1 motif 9
UBE3B	121.9	M5	1.46 (-)	M5	1.44 (-)	ubiquitin protein ligase E3B
LOC113994576	183.4	M5	1.22 (-)	M5	1.93 (-)	ATP-dependent RNA helicase DDX19B
LOC113984085	94.5	M4	0.56 (+)	M5	1.79 (+)	uncharacterized LOC113984085
COMMD2	130.8	M5	1.39 (+)	M5	1.63 (+)	COMM domain containing 2
TOMM5	45.8	M5	0.76 (+)	M5	1.59 (+)	translocase of outer mitochondrial membrane 5

Table S11. (continued on next page)
Gene	Max cpm	Best Model SH	M4 model BF (SH)	Best Model PEC	M4 model BF (PEC)	Annotation
LOC113998187	449.7	M4	3.57 (+)	M4	4.61 (+)	uncharacterized LOC113998187
LOC113989298	20.8	M4	2.65 (+)	M4	2.97 (+)	uncharacterized LOC113989298
DPYSL5	426.5	M4	2.18 (+)	M4	3.44 (+)	dihydropyrimidinase like 5
LOC113983437	5	M4	1.83 (+)	M4	1.42 (+)	uncharacterized LOC113983437
PSMA7	186.6	M4	1.79 (+)	M4	1.34 (+)	proteasome subunit alpha 7
ZNF395	20.6	M4	1.78 (–)	M4	0.85 (–)	zinc finger protein 395
STUM	131.4	M4	1.78 (+)	M5	0.17 (+)	stom, mechanosensory transduction mediator homolog
FBXO4	20	M4	1.71 (–)	M4	0.52 (–)	F-box protein 4
FAM169B	34.9	M4	1.71 (+)	M4	0.5 (+)	family with sequence similarity 169 member B
LOC114003417	12409	M4	1.66 (+)	M4	0.3 (+)	sarcoplasmic/endoplasmic reticulum calcium ATPase 1
GRM5	60.5	M4	1.58 (–)	M5	0.06 (–)	glutamate metabotropic receptor 5
KDM4B	38.2	M4	1.57 (+)	M5	0.11 (+)	lysine demethylase 4B
LOC113996660	20.7	M4	1.57 (–)	M4	0.34 (–)	mothers against decapentaplegic homolog 4-like
CPS1	41.9	M4	1.55 (+)	M4	0.04 (+)	carbamoyl-phosphate synthase 1
LOC113998417	19.1	M4	1.55 (–)	M5	0.11 (–)	biogenesis of lysosome-related organelles complex 1 subunit 1-like
ATP2A3	10344	M4	1.5 (+)	M4	0.93 (+)	ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3
LOC113992280	12.2	M4	1.5 (–)	PP	–0.3 (+)	alpha-1-antiproteinase 2-like
PSMA2	158.6	M4	1.43 (+)	MV	0.39 (+)	proteasome subunit alpha 2
DDRGK1	218.2	M4	1.42 (+)	M6	0.03 (+)	DDRGK domain containing 1
RPAP2	52.3	M4	1.42 (–)	M4	0.88 (–)	RNA polymerase II associated protein 2
LOC113986682	30.5	LC	–0.42 (–)	M4	2 (–)	double-headed protease inhibitor, submandibular gland-like
SGCE	105.3	null	–0.49 (–)	M4	1.9 (–)	sarcoglycan epsilon
PIGR	40.9	LC	0 (–)	M4	1.8 (–)	polymeric immunoglobulin receptor
ZCCHC9	23.6	M4	0.28 (–)	M4	1.73 (–)	zinc finger CCHC-type containing 9
CIAO2B	133.8	LC	0.07 (+)	M4	1.69 (+)	cytosolic iron-sulfur assembly component 2B
LOC113982339	7	LC	0.34 (–)	M4	1.66 (–)	1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial
SNX4	71.3	M4	0.77 (–)	M4	1.66 (–)	sorting nexin 4
HPSE2	35.7	M4	0.97 (+)	M4	1.64 (+)	heparanase 2 (inactive)
KCNH7	22.5	PP	–0.26 (–)	M4	1.62 (–)	potassium voltage-gated channel subfamily H member 7
LOC113989406	7.9	null	–0.1 (–)	M4	1.54 (–)	alpha-2-macroglobulin-like protein 1

Table S11. (continued on next page)
Gene	Max cpm	Best Model SH	R41 model BF (SH)	Best Model PEC	R41 model BF (PEC)	Annotation
LOC113998963	38.8	R41	1.62 (+/−)	PP	0.71 (+/−)	uncharacterized LOC113998963
LOC113989513	15.5	R41	1.6 (+/−)	null	−0.89 (+/+	mucin-5B
UBA2	77	R41	1.59 (+/−)	PP	0.89 (+/−)	UBA domain containing 2
LOC113999394	31.2	R41	1.58 (+/−)	M4	0.53 (+/−)	alpha-globin transcription factor CP2-like
LOC113994824	564.7	R41	1.4 (+/−)	null	−0.29 (+/−)	ryanodine receptor 1-like
SPPL2A	174.3	R41	1.23 (+/−)	null	−0.98 (+/−)	signal peptide peptidase like 2A
CA2	367	R41	1.15 (+/−)	PP	0.56 (+/+)	carbonic anhydrase 2
CUL1	110.6	R41	1.15 (+/−)	MV	−0.56 (+/−)	cullin 1
LOC114001935	794.4	R41	1.12 (+/−)	null	−0.62 (+/−)	ryanodine receptor 1-like
MPHOSPH8	92.9	R41	1.08 (+/−)	M4	−0.3 (+/−)	M-phase phosphoprotein 8
SNAPIN	42.1	R41	1 (+/−)	R41	0.59 (+/−)	SNAP associated protein
NRDE2	54.2	R41	0.89 (+/−)	CE	−0.01 (+/−)	NRDE-2, necessary for RNA interference, domain containing
PSMC3	336.3	R41	0.87 (+/−)	R41	0.05 (+/−)	proteasome 26S subunit, ATPase 3
LOC113983589	397.3	MC1	0.86 (+/−)	R41	0.8 (+/−)	eukaryotic translation initiation factor 4 gamma 1-like
LOC114003174	74.5	R41	0.84 (+/−)	null	−0.5 (+/−)	sodium/calcium exchanger 3
TRDN	896.8	R41	0.84 (+/−)	null	−0.73 (+/−)	triadin
LOC113997739	8.1	R41	0.77 (+/−)	PP	0.4 (+/−)	zinc finger CCCH domain-containing protein 3-like
EIF4EBP2	140.9	R41	0.76 (+/−)	MV	−0.23 (+/−)	eukaryotic translation initiation factor 4E binding protein 2
TTN	19375	R41	0.76 (+/−)	null	−0.98 (+/−)	titin
SLC49A4	215.4	R41	0.73 (+/−)	A6	−0.51 (+/−)	solute carrier family 49 member 4
LOC113996621	129.5	R41	0.72 (+/−)	null	−0.57 (+/−)	zinc finger protein 883-like
LOC113985889	775.5	R41	0.61 (+/−)	null	−0.82 (+/−)	ryanodine receptor 1-like
FOXRED1	47.8	R41	0.55 (+/−)	null	−0.29 (+/−)	FAD dependent oxidoreductase domain containing 1
PEX3	72.9	R41	0.54 (+/−)	null	−0.95 (+/−)	peroxisomal biogenesis factor 3
NEK9	149.6	R41	0.86 (+/−)	PP	2.17 (+/−)	NIMA related kinase 9
PDGFC	19.6	LC	−1.38 (+/−)	R41	1.66 (+/−)	platelet derived growth factor C
TARS2L	118.7	CE	0.19 (+/−)	R41	1.65 (+/−)	threonyl-tRNA synthetase like 2
GDF1	95	R51	0.17 (+/−)	R41	1.65 (+/−)	growth differentiation factor 1
GHITM	2413.6	LC	−0.75 (+/−)	R41	1.59 (+/−)	growth hormone inducible transmembrane protein
PREPL	93.2	R41	0.44 (+/−)	R41	1.41 (+/−)	prolyl endopeptidase like
ZDHHC14	75.1	MV	−0.11 (+/−)	R41	1.38 (+/−)	zinc finger DHHC-type containing 14
FXR1	641.7	R41	0.97 (+/−)	R41	1.28 (+/−)	FMR1 autosomal homolog
CARMIL1	101.9	M4	−0.2 (+/−)	R41	1.22 (+/−)	capping protein regulator and myosin 1 linker 1

Table S11. (continued on next page)
Gene	M1 Max cpm	Best Model	M1 model BF (SH)	Best Model	M1 model BF (PEC)	Annotation
MC1 Parallel Branches Model — PEC and SH						
BCO2	64.5	MV	1.56 (-/-)	MV	1.79 (-/+	beta-carotene oxygenase 2
MC1 Parallel Branches Model — SH						
ZDHHC12	35.8	MV	2.03 (+/-)	MV	0.57 (+/-	zinc finger DHHC-type containing 12
CCDC47	156.3	MC1	1.84 (+/+	MV	-0.15 (+/+	coiled-coil domain containing 47
LOC113983902	24.8	MV	1.75 (-/-)	MV	1.34 (-/-	uncharacterized LOC113983902
LOC113994595	7.6	MV	1.73 (-/-	MV	1.48 (-/-	uncharacterized LOC113994595
PSMC6	284.4	MC1	1.64 (+/+	MV	0.35 (+/+	proteasome 26S subunit, ATPase 6
RAC3	38.9	MV	1.54 (+/-)	PP	-0.77 (+/+	Rac family small GTPase 3
ASZ1	6.2	MV	1.45 (+/-	MV	0.79 (+/+	ankyrin repeat, SAM and basic leucine zipper domain containing 1
LOC114003700	76.2	MV	1.42 (-/+	null	-0.43 (-/-	helicase SRCAP-like
LOC113983589	397.3	MC1	1.36 (+/+	R41	0.12 (+/+	eukaryotic translation initiation factor 4 gamma 1-like
UFL1	76.2	MC1	1.3 (+/+	M6	-0.51 (+/-	UFM1 specific ligase 1
LOC113999226	35.8	CE	1.23 (-/-	PP	-0.12 (-/-	ATP-dependent DNA helicase Q4-like
LOC113994824	564.7	R41	1.23 (+/+	null	-0.32 (+/+	ryanodine receptor 1-like
MTDH	334.3	MV	1.22 (+/+	M5	-0.44 (+/+	metadherin
LOC113989613	342.2	MC1	0.98 (+/+	PP	-0.28 (+/+	uncharacterized LOC113989613
SRL	1171.8	MC1	0.92 (+/+	null	-0.4 (+/+	socalumenin
LOC114002148	60.6	MVP	0.72 (+/+	M5	-1.16 (+/+	inactive tyrosine-protein kinase transmembrane receptor ROR1
AR	83.9	MC1	0.34 (+/+	M5	-0.36 (+/+	androgen receptor
MC1 Parallel Branches Model — PEC						
VRK1	16.8	MV	-0.37 (+/+	MV	2.14 (+/-	VRK serine/threonine kinase 1
LOC113987315	5.2	MV	0.48 (+/+	MV	2.05 (+/-	uncharacterized LOC113987315
LOC113987316	8.7	MV	1.3 (+/+	MC1	1.7 (+/+	uncharacterized LOC113987316
LOC113994137	11.2	null	-1.03 (+/+	M5	1.69 (+/+	borealin-2-like
LOC113990618	215.7	MV	1.53 (+/-	MV	1.63 (+/+	lysosomal alpha-glucosidase-like
PIWIL1	16.4	LC	-1.31 (-/-	MV	1.51 (+/-	piwi like RNA-mediated gene silencing 1
LPAR3	83	MV	-0.42 (+/-	MV	1.45 (+/+	lysophosphatidic acid receptor 3
SEL1L	327.7	MC1	0.71 (+/+	MV	1.33 (+/-	SEL1L, ERAD E3 ligase adaptor subunit
EIF1B	113	M4	-0.23 (-/-	CE	1.32 (-/-	eukaryotic translation initiation factor 1B
HDLBP	2028.2	R41	0.08 (+/-	MC1	1.32 (+/-	high density lipoprotein binding protein
GHITM	2413.6	LC	-0.69 (+/+	R41	1.28 (+/+	growth hormone inducible transmembrane protein
SRRM4	28	LC	-1.17 (-/-	MV	1.25 (-/-	serine/arginine repetitive matrix 4
EPPRD1	285.1	MC1	0.11 (+/+	MC1	1.25 (+/+	ependym related 1
DCXR	36	MV	0.53 (+/-	MV	1.24 (-/-	dicarbonyl and L-xylulose reductase
CCDC13	13	M5	-1.34 (+/+	MV	1.22 (+/-	coiled-coil domain containing 13

Table S11. (continued on next page)
Gene	Max cpm	Best Model	BF for SH	Best Model	BF for PEC	Annotation
MV Manacus vitellinus Branch Model — SH and PEC						
UBXN1	51.1	MV	5.78 (-)	MV	5.6 (-)	UBX domain protein 1
LOC113987757	6.8	MV	3.94 (+)	MV	6.45 (+)	uncharacterized LOC113987757
LOC113994630	18	MV	3.64 (+)	MV	5.91 (+)	uncharacterized LOC113994630
LOC113983963	98	MV	3.23 (-)	MV	3.53 (-)	polypeptide N-acetylgalactosaminyltransferase-like 6
LOC113989357	5.2	MV	3.15 (+)	MV	6.02 (+)	uncharacterized LOC113989357
LOC113997237	428.9	MV	3.08 (+)	MV	2.23 (+)	cytochrome P450 11B, mitochondrial-like
LOC113994595	7.6	MV	2.82 (-)	MV	2.49 (-)	uncharacterized LOC113994595
GRM8	19.5	MV	2.78 (-)	MV	3.65 (-)	glutamate metabotropic receptor 8
LOC114001824	173.6	MV	2.77 (+)	MV	3.57 (+)	transcription factor ReIB homolog
ALKBH1	60	MV	2.69 (-)	MV	3.09 (-)	alkB homolog 1, histone H2A dioxygenase
HEMK1	30.6	MV	2.67 (-)	MV	2.14 (-)	HemK methyltransferase family member 1
OPN3	153	MC1	2.57 (+)	MV	5.7 (+)	opsin 3
LOC113992750	16.1	MC1	2.48 (+)	MV	4.59 (+)	uncharacterized LOC113992750
STAU2	332.5	MV	2.38 (+)	MV	2.26 (+)	staufen double-stranded RNA binding protein 2
LOC113983902	24.8	MV	2.27 (-)	MV	1.62 (-)	uncharacterized LOC113983902
LOC114003641	17	MV	2.14 (+)	MV	3.24 (+)	uncharacterized LOC114003641
LOC113985529	50.8	MV	2.08 (-)	MV	3.48 (-)	chondroitin sulfate proteoglycan 4-like
LOC113990474	171.6	MV	2.02 (+)	MV	2.37 (+)	C-C motif chemokine 3-like
LOC114003428	88.8	MV	1.96 (+)	MV	2.16 (+)	actin cytoskeleton-regulatory complex protein PAN1-like
ANK2	764	MV	1.95 (-)	MV	1.63 (-)	ankyrin 2
LOC113987527	28	MV	1.94 (+)	MV	1.86 (+)	uncharacterized LOC113987527
DBI	133.8	MV	1.93 (-)	MV	1.72 (-)	diazepam binding inhibitor, acyl-CoA binding protein
LOC113994629	11.5	MV	1.83 (+)	MV	2.01 (+)	uncharacterized LOC113994629
LOC113987316	8.7	MV	1.82 (+)	MC1	1.6 (+)	uncharacterized LOC113987316
TOP1MT	5.7	MV	1.81 (-)	MV	2.01 (-)	DNA topoisomerase I mitochondrial
LOC113994659	46.2	MV	1.73 (-)	MV	1.54 (-)	uncharacterized LOC113994659
BCO2	64.5	MV	1.72 (-)	MV	3 (-)	beta-carotene oxygenase 2
POU4F2	18.7	MC1	1.57 (+)	MV	2.7 (+)	POU class 4 homeobox 2
LOC113984041	46.2	MV	1.51 (+)	MV	1.73 (+)	staphylococcal nuclease domain-containing protein 1
THAP1	67.6	MV	1.5 (-)	MV	1.69 (-)	THAP domain containing 1

Table S11. (continued on next page)
Gene	Max cpm	Best Model	MV model SH	Best Model PEC	MV model PEC	Annotation
MV Manacus vitellinus						Branch Model — SH
TPRKB	105	MV	3.71 (+)	MV	0.82 (+)	TP53RK binding protein
ZDHHC12	35.8	MV	3.13 (+)	MV	1.31 (+)	zinc finger DHHC-type containing 12
HACD1	279.2	MV	2.9 (+)	MV	0.07 (+)	3-hydroxyacyl-CoA dehydratase 1
TTL4	195.5	MV	2.7 (+)	MV	1.38 (+)	tubulin tyrosine ligase like 4
LOC113996114	6.9	MV	2.65 (-)	MV	0.06 (-)	uncharacterized LOC113996114
CLRN1	44.4	MV	2.49 (+)	MV	1.17 (+)	clarin 1
LOC113994076	20.9	MV	2.42 (+)	null	-0.09 (+)	uncharacterized LOC113994076
LTA4H	52.2	MV	2.4 (+)	MV	0.21 (+)	leukotriene A4 hydrolase
AGFG1	195.7	MV	2.29 (-)	MV	0.93 (-)	ArfGAP with FG repeats 1
UTP4	17.6	MV	2.28 (-)	MV	1.38 (-)	UTP4, small subunit processome component
ARFGAP3	185.3	MV	2.25 (+)	MC1	1.5 (+)	ADP ribosylation factor GTPase activating protein 3
LOC11402120	7.1	MV	2.12 (-)	M5	-0.18 (-)	uncharacterized LOC11402120
KIF17	13.1	MV	2.06 (-)	null	-0.42 (-)	kinesin family member 12
ASZ1	6.2	MV	2.03 (+)	MV	1.46 (+)	ankyrin repeat, SAM and basic leucine zipper domain containing 1
ORC4	31.3	MV	2.02 (-)	MV	0.03 (-)	origin recognition complex subunit 4
RAC3	38.9	MV	1.97 (+)	PP	-0.9 (+)	Rac family small GTPase 3
POLC2	49	MV	1.97 (-)	MV	0.8 (-)	PQ loop repeat containing 2
RARS2	36.6	MV	1.96 (+)	null	-0.22 (+)	arginyl-tRNA synthetase 2, mitochondrial
ZNF346	16.4	MV	1.95 (-)	MV	0.26 (-)	zinc finger protein 346
ZBTB40	95.3	MV	1.9 (+)	MV	1.32 (+)	zinc finger and BTB domain cntng. 40
LOC114003700	76.2	MV	1.86 (-)	null	-0.3 (-)	helicase SRCAI-like
PHF5A	123.4	MV	1.86 (-)	MV	0.85 (-)	PHD finger protein 5A
AMACR	28.8	MV	1.85 (+)	MV	0.88 (+)	alpha-methylacyl-CoA racemase
LOC11399215	5	MV	1.82 (+)	MV	1.23 (+)	uncharacterized LOC11399215
TMEM240	27.1	MV	1.78 (-)	MV	0.85 (-)	transmembrane protein 240
LOC114000575	19	MV	1.68 (+)	M6	-0.46 (+)	uncharacterized LOC114000575
PON2	83.8	MV	1.66 (+)	PP	-0.88 (+)	paraoxonase 2
LOC11399489	6.4	MV	1.66 (+)	null	-0.07 (-)	apoptosis-inducing factor 3-like
DENND1B	96.7	MV	1.65 (+)	MV	1.44 (+)	DENN domain containing 1B
CCDC47	156.3	MC1	1.64 (+)	MV	0.5 (+)	coiled-coil domain containing 47
RAB4A	98.8	MV	1.62 (-)	MV	1.33 (-)	RAB4A, member RAS oncogene family
IQC	39.7	MV	1.61 (+)	MV	0.77 (+)	IQ motif containing C
PSMC8	284.4	MC1	1.61 (+)	MV	0.81 (+)	proteasome 26S subunit, ATPase 6
TSR1	58.1	MV	1.6 (+)	MV	0.23 (+)	TSR1, ribosome maturation factor
FRMD7	5.6	MV	1.59 (-)	MC2	1.16 (-)	FERM domain containing 7
CUNH15orf48	37.9	MV	1.56 (-)	MV	0.75 (-)	chromosome unknown C15orf48 homolog
DUSP28	276.8	MC1	1.55 (+)	MV	0.88 (+)	dual specificity phosphatase 28
LOC113996059	11.7	MV	1.55 (-)	MV	0.22 (-)	GDNF family receptor alpha-4-like
LONRF1	112.6	MV	1.52 (-)	null	-0.3 (-)	LON peptidase N-terminal domain and ring finger 1
UTP20	43.2	MV	1.52 (-)	M5	0.2 (-)	UTP20, small subunit processome component
LOC113987868	26.3	MV	1.5 (+)	MC1	-0.15 (+)	uncharacterized LOC113987868

Table S11. (continued on next page)
Gene	Max cpm	Best Model SH	MV model BF (SH)	Best Model PEC	MV model BF (PEC)	Annotation
LOC113987146	35.6	CE	–0.24 (+)	MV	5.62 (+)	uncharacterized LOC113987146
LOC114003534	36.3	MV	0.23 (+)	MV	3.94 (+)	uncharacterized LOC114003534
LOC113987756	158.9	MC1	1.49 (+)	MV	3.53 (+)	uncharacterized LOC113987756
VRK1	16.8	MV	0.46 (+)	MV	3.35 (+)	VRK serine/threonine kinase 1
LOC113987315	5.2	MV	1.28 (+)	MV	3.25 (+)	uncharacterized LOC113987315
RUBCNL	179.6	MV	0.53 (+)	MV	3.19 (+)	rubicon like autophagy enhancer
PPP1R11	31.6	MV	0.24 (–)	MV	3.15 (–)	protein phosphatase 1 regulatory inhibitor subunit 11
LOC113995174	5.7	LC	–0.44 (+)	MV	3.13 (+)	uncharacterized LOC113995174
PRLR	369.3	MV	0.87 (+)	MV	3.12 (+)	prolactin receptor
EXO1	62.9	null	–0.28 (+)	MV	2.97 (+)	exonuclease 1
SGTB	141.5	MV	1.39 (–)	MV	2.95 (–)	small glutamine rich tetra-tricopeptide repeat containing beta
UROC1	18.8	LC	–0.71 (+)	MV	2.92 (+)	urocanate hydratase 1
LOC113994137	11.2	null	–0.77 (+)	MV	2.71 (+)	borealin-2-like
UCP3	1232.9	MV	0.55 (–)	MV	2.69 (–)	uncoupling protein 3
LOC113989356	8.5	MV	0.98 (+)	MV	2.67 (+)	ran-binding protein 17-like
LOC113997196	8.5	MV	0.32 (–)	MV	2.65 (–)	butyrophilin subfamily 1 member A1-like
AKNA	29.8	MV	0.43 (+)	MV	2.58 (+)	AT-hook transcription factor
WDR64	76	MV	0.16 (+)	MV	2.56 (+)	WD repeat domain 64
SNRPB	38.1	MV	0.77 (–)	MV	2.53 (–)	small nuclear ribonucleoprotein polypeptides B and B1
RTKN2	31	MV	0.66 (+)	MV	2.46 (+)	rhotekin 2
LOC113996018	215.7	MV	0.35 (+)	MV	2.39 (+)	lysosomal alpha-glucosidase-like
KIF20B	17.3	null	–0.84 (–)	MV	2.38 (–)	kinesin family member 20B
GATB	266.6	M5	–0.28 (–)	MV	2.38 (–)	glutamyl-tRNA amidotransferase subunit B
FAM118A	62.3	MV	0.8 (+)	MV	2.34 (+)	family with sequence similarity 118 member A
SLC20A1	196	LC	–0.86 (+)	MV	2.31 (+)	solute carrier family 20 member 1
LOC114002601	17.5	MV	0.6 (+)	MV	2.28 (+)	cytochrome P450 2J2-like
LPAR3	83	MV	0.48 (+)	MV	2.21 (+)	lysophosphatidic acid receptor 3
MICU3	396.4	MV	1.04 (+)	MV	2.2 (–)	mitochondrial calcium uptake family member 3
RSL1D1	63.6	MC2	0.79 (–)	MV	2.19 (–)	ribosomal L1 domain containing 1
COL5A1	82.9	MV	0.19 (–)	MV	2.18 (–)	collagen type V alpha 1 chain
FARS2	147.4	LC	–0.19 (–)	MV	2.17 (–)	phenylalanyl-tRNA synthetase subunit beta
TMEM154	9.1	null	–0.52 (–)	MV	2.13 (–)	transmembrane protein 154
HDAC2	133.7	MV	0.25 (+)	MV	2.1 (–)	histone deacetylase 2
MPP7	61.4	MV	0.18 (–)	MV	2.1 (–)	membrane palmitoylated protein 7
ACTA1	33933	PP	–0.94 (–)	MV	2.01 (–)	actin, alpha 1, skeletal muscle

Table S11. (continued on next page)
CE Ceratopipra Ancestor Branch Model — SH and PEC

Gene	Max	Best Model	CE model BF (SH)	Best Model	CE model BF (PEC)	Annotation
LOC113990672	5315.2	CE	7.69 (+)	CE	2.67 (+)	parvalbumin, thymic
LOC113990673	64.2	CE	5.09 (+)	CE	1.82 (+)	parvalbumin beta-like
LOC113989134	5.3	CE	2.6 (+)	CE	3.2 (+)	uncharacterized LOC113989134
IL18	55.4	CE	2.2 (+)	CE	3.12 (+)	interleukin 18
NAALADL2	50.1	CE	2.01 (+)	CE	2.18 (+)	N-acetylated alpha-linked acidic dipeptidase like 2
LOC113983196	22.8	MC1	1.97 (+)	CE	2.56 (+)	uncharacterized LOC113983196
MAD1L1	53.4	CE	1.74 (+)	CE	2.41 (+)	mitotic arrest deficient 1 like 1
LOC113998906	41.9	CE	1.64 (-)	CE	3.28 (-)	interferon-induced very large GTPase 1-like
LOC113990771	6.8	CE	1.63 (-)	CE	1.6 (-)	WD repeat and SOCS box-containing protein 2-like
BRINP2	42.3	PP	1.59 (+)	CE	2.09 (+)	BMP/retinoic acid inducible neural specific 2

CE Ceratopipra Ancestor Branch Model — SH

Gene	Max	Best Model	CE model BF (SH)	Best Model	CE model BF (PEC)	Annotation
LOC113983894	5.2	CE	3.62 (+)	CE	0.31 (+)	uncharacterized LOC113983894
LOC113991466	23.4	CE	2.66 (-)	CE	1.08 (-)	sodium channel protein type 5 subunit alpha-like
PSKH1	78.3	CE	2.46 (+)	CE	1.18 (+)	protein serine kinase H1
STYK1	34.6	CE	2.32 (-)	CE	1.06 (-)	serine/threonine/tyrosine kinase 1
TSEN15	51.5	CE	2.27 (+)	CE	0.03 (+)	tRNA splicing endonuclease subunit 15
LOC113999226	35.8	CE	2.08 (-)	PP	–0.42 (-)	ATP-dependent DNA helicase Q4-like
RNF141	108.5	CE	1.95 (+)	CE	0.34 (+)	ring finger protein 141
GINS1	7.1	CE	1.93 (+)	LC	0.13 (+)	GINS complex subunit 1
LOC113995569	11.7	CE	1.93 (+)	CE	0.96 (+)	scavenger receptor cysteine-rich type 1 protein M130-like
Ninjurin	30.5	CE	1.75 (+)	CE	0.67 (+)	ninjurin 2
VPS18	60.7	CE	1.7 (+)	CE	0.74 (+)	VPS18, CORVET/HOPS core subunit
UPF1	327.7	PP	1.64 (+)	CE	1.05 (+)	UPF1, RNA helicase and ATPase
LARP7	71.7	CE	1.64 (+)	CE	1.04 (+)	La ribonucleoprotein domain family member 7
LOC113997729	10.7	CE	1.63 (-)	null	–0.41 (-)	uncharacterized LOC113997729
CRIP1	42.7	CE	1.6 (+)	CE	0.78 (+)	CXXC repeat containing interactor of PDZ3 domain
MAPKAP1	75.4	CE	1.6 (+)	CE	1.4 (+)	mitogen-activated protein kinase associated protein 1
LOC114002587	13.5	CE	1.55 (+)	null	–0.45 (+)	uncharacterized LOC114002587
PAX7	30.6	CE	1.54 (+)	CE	1.36 (+)	paired box 7
HIPK3	309.1	CE	1.53 (+)	CE	0.51 (+)	homeodomain interacting protein kinase 3
LOC113996835	18.9	CE	1.52 (+)	CE	1.47 (+)	uncharacterized LOC113996835
STX2	122.4	CE	1.51 (+)	M6	–0.26 (+)	syntaxin 2

Table S11. (continued on next page)
Gene	Max cpm	Best Model SH	Best Model BF (SH)	Best Model PEC	CE model BF (PEC)	Annotation
HFM1	21.2	PP	0.72 (+)	CE	3.62 (+)	HFM1, ATP dependent DNA helicase homolog
EIF2D	209.4	CE	0.63 (−)	CE	2.32 (−)	eukaryotic translation initiation factor 2D
MORC2	76.5	CE	1.25 (+)	CE	2.26 (+)	MORC family CW-type zinc finger 2
WDR11	66.1	PP	0.34 (+)	CE	2.23 (+)	WD repeat domain 11
LOC113998234	75.1	LC	−0.52 (+)	CE	2.16 (+)	uncharacterized LOC113998234
KLHL15	63.4	null	−0.36 (−)	CE	2.11 (−)	kelch like family member 15
TNNT1	289.9	R51	0.44 (+)	CE	2.06 (+)	troponin T1, slow skeletal type
STAR10	43.4	CE	0.5 (−)	CE	2.04 (−)	STAR related lipid transfer domain containing 10
SYTL1	11.9	null	−0.3 (−)	CE	2.03 (−)	synaptotagmin like 1
PIEZO1	137.1	CE	1.03 (−)	CE	2.01 (−)	piezo type mechanosensitive ion channel component 1
TPD52L1	43	CE	0.6 (+)	CE	1.91 (+)	TPD52 like 1
UFSP2	110.6	CE	1.36 (+)	CE	1.88 (+)	UFM1 specific peptidase 2
LOC113998901	20.8	CE	0.5 (−)	CE	1.86 (−)	interferon-induced very large GTPase 1-like
LOC11399965	19.7	null	−0.33 (−)	CE	1.85 (−)	poly [ADP-ribose] polymerase 12-like
HGD	29	CE	0.7 (+)	CE	1.81 (+)	homogentisate 1,2-dioxygenase
TNFRSF11A	25	R51	0 (+)	CE	1.81 (+)	TNF receptor superfamily member 11a
TPD52L2	117.3	LC	−0.71 (−)	CE	1.73 (−)	TPD52 like 2
SEMA6A	73.4	null	−0.59 (−)	CE	1.7 (−)	semaphorin 6A
LOC113998631	75	LC	−0.73 (−)	CE	1.68 (−)	dnaJ homolog subfamily B member 1-like
SYBU	56.9	PP	0.43 (+)	CE	1.64 (+)	syntabulin
ZNF687	12	LC	−0.66 (−)	CE	1.62 (−)	zinc finger protein 687
LOC114001289	11.3	CE	1.14 (+)	CE	1.6 (+)	uncharacterized LOC114001289
MMP16	22.9	PP	−0.01 (−)	CE	1.58 (+)	matrix metallopeptidase 16
LOC113984982	6.6	M4	0.24 (+)	CE	1.58 (+)	uncharacterized LOC113984982
LOC113984741	36.6	PP	−0.52 (+)	CE	1.57 (+)	retinol dehydrogenase 8-like
CP	22.1	CE	0.68 (+)	CE	1.55 (+)	ceruloplasmin
TRIM9	66.7	CE	0.37 (+)	CE	1.55 (+)	tripartite motif containing 9
TEX12	7.4	M4	−0.1 (−)	CE	1.54 (−)	testis expressed 12
EIF1B	113	M4	−0.41 (−)	CE	1.53 (−)	eukaryotic translation initiation factor 1B
MMEL1	93.8	M5	−0.2 (−)	CE	1.52 (−)	membrane metalloendopeptidase 1

Table S11. Top PhyDGET genes for each model for SH and PEC. Each gene indicated as BF ≥ 1.5 by PhyDGET for each model, gene maximum counts-per-million (cpm), the best likelihood model for SH and PEC, Bayes Factor for SH and PEC, and the gene reference annotation from the *P. filicauda* reference genome annotation.
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
M6 Ancestor Branch Model — SH						
GO:0065002	intracellular protein transmembrane transport	0.0016	0.88	4 / 160	15 / 1285	47 / 14795
GO:006457	protein folding	0.0017	0.88	7 / 160	109 / 11581	183 / 14795
GO:0045494	photoreceptor cell maintenance	0.0022	0.88	3 / 160	38 / 5318	37 / 14795
GO:0071806	protein transmembrane transport	0.003	0.88	4 / 160	25 / 2198	55 / 14795
GO:0051131	chaperone-mediated protein complex assembly	0.0043	0.88	2 / 160	6 / 900	16 / 14795
GO:0044090	positive regulation of vacuole organization	0.0044	0.88	2 / 160	6 / 658	12 / 14795
GO:0006626	protein targeting to mitochondrion	0.0045	0.88	5 / 160	11 / 791	90 / 14795
GO:1901223	negative regulation of NIK/NF-kappaB signaling	0.0046	0.88	2 / 160	3 / 565	23 / 14795
GO:0006002	fructose 6-phosphate metabolic process	0.0049	0.88	2 / 160	26 / 2889	12 / 14795
GO:0007529	establishment of synaptic specificity at neuromuscular junction	0.0054	0.88	1 / 160	1 / 369	2 / 14795
GO:0033210	leptin-mediated signaling pathway	0.0055	0.88	2 / 160	6 / 484	10 / 14795
GO:0046890	regulation of lipid biosynthetic process	0.0058	0.88	5 / 160	26 / 3433	158 / 14795
M6 Ancestor Branch Model — PEC						
GO:0031099	regeneration	2.8 × 10⁻⁵	0.03	4 / 56	6 / 4366	165 / 14806
GO:0031102	neuron projection regeneration	6.8 × 10⁻⁴	0.39	3 / 56	8 / 2499	60 / 14806
GO:0031103	axon regeneration	0.0013	0.39	3 / 56	3 / 499	55 / 14806
GO:0051402	neuron apoptotic process	0.0019	0.39	3 / 56	3 / 1534	190 / 14806
GO:1903937	response to acrylamide	0.0021	0.39	1 / 56	3 / 1409	1 / 14806
GO:0046835	carbohydrate phosphorylation	0.0022	0.39	2 / 56	3 / 1820	50 / 14806
GO:0043523	regulation of neuron apoptotic process	0.0024	0.39	3 / 56	3 / 1185	160 / 14806
GO:0043524	negative regulation of neuron apoptotic process	0.0028	0.4	3 / 56	3 / 758	108 / 14806
GO:0045105	intermediate filament polymerization or depolymerization	0.0036	0.43	1 / 56	3 / 1686	2 / 14806
GO:0016829	lyase activity	0.0039	0.43	4 / 56	7 / 2574	285 / 14806
GO:0042699	follicle-stimulating hormone signaling pathway	0.005	0.43	1 / 56	2 / 800	2 / 14806
GO:0070997	neuron death	0.005	0.43	3 / 56	3 / 1662	285 / 14806

Table S12. (continued on next page)
GO Term	Definition					
GO:0060749	mammary gland alveolus development	1.5×10^{-4}	0.2	3 / 100	32 / 4367	15 / 14783
GO:0061377	mammary gland lobe development	1.5×10^{-4}	0.2	3 / 100	32 / 4367	15 / 14783
GO:2000026	regulation of multicellular organismal development	4.2×10^{-4}	0.37	15 / 100	29 / 4736	1044 / 14783
GO:0002541	activation of plasma proteins involved in acute inflammatory response	7.2×10^{-4}	0.41	2 / 100	3 / 223	4 / 14783
GO:0010641	positive regulation of platelet-derived growth factor receptor signaling pathway	0.0016	0.41	2 / 100	10 / 1224	8 / 14783
GO:0050921	positive regulation of chemotaxis	0.0018	0.41	4 / 100	6 / 943	104 / 14783
GO:2000232	regulation of rRNA processing	0.0019	0.41	2 / 100	20 / 3547	12 / 14783
GO:0035306	positive regulation of dephosphorylation	0.002	0.41	3 / 100	7 / 1142	47 / 14783
GO:2000145	regulation of cell motility	0.0021	0.41	11 / 100	11 / 1351	772 / 14783
GO:0198738	cell-cell signaling by wnt	0.0024	0.41	7 / 100	8 / 1379	455 / 14783
GO:0046777	protein autophosphorylation	0.0025	0.41	7 / 100	14 / 1331	206 / 14783
GO:0046467	membrane lipid biosynthetic process	0.0026	0.41	5 / 100	35 / 4586	128 / 14783
GO:1903184	L-dopa metabolic process	0.0036	0.5	1 / 88	1 / 278	1 / 14784
GO:1902883	negative regulation of response to oxidative stress	0.0041	0.5	2 / 88	8 / 1567	20 / 14784
GO:1900453	negative regulation of long-term synaptic depression	0.0042	0.5	1 / 88	18 / 4244	1 / 14784
GO:1904708	MAP kinase kinase activity	0.0044	0.5	3 / 88	5 / 724	58 / 14784
GO:2000284	positive regulation of cellular amino acid biosynthetic process	0.0045	0.5	1 / 88	7 / 1552	1 / 14784
GO:1903181	positive regulation of dopamine biosynthetic process	0.0047	0.5	1 / 88	7 / 1503	1 / 14784
GO:2000282	regulation of cellular amino acid biosynthetic process	0.0048	0.5	1 / 88	14 / 2942	1 / 14784
GO:1903179	regulation of dopamine biosynthetic process	0.0048	0.5	1 / 88	14 / 2896	1 / 14784
GO:0035330	regulation of hippo signaling	0.0048	0.5	2 / 88	9 / 1555	19 / 14784
GO:0035814	negative regulation of renal sodium excretion	0.0049	0.5	1 / 88	4 / 818	1 / 14784
GO:1903363	negative regulation of cellular protein catabolic process	0.0049	0.5	3 / 88	8 / 1421	68 / 14784
GO:1903204	negative regulation of oxidative stress-induced neuron death	0.005	0.5	2 / 88	2 / 191	14 / 14784

Table S12. (continued on next page)
GO Term	Definition	\(P \)-value	Adj. \(P \)-value	Study	Family	Population
GO:0007060	male meiosis chromosome segregation	\(1.8 \times 10^{-4} \)	0.32	2 / 102	2 / 259	4 / 14803
GO:0046967	cytosol to endoplasmic reticulum transport	\(2.5 \times 10^{-4} \)	0.32	2 / 102	15 / 2859	5 / 14803
GO:1903515	calcium ion transport from cytosol to endoplasmic reticulum	\(5.3 \times 10^{-4} \)	0.42	2 / 102	4 / 260	3 / 14803
GO:0032278	positive regulation of gonadotropin secretion	\(6.7 \times 10^{-4} \)	0.42	2 / 102	8 / 1108	6 / 14803
GO:0014075	response to amine	0.0026	0.65	3 / 102	7 / 848	38 / 14803
GO:0003360	brainstem development	0.0034	0.65	2 / 102	30 / 4368	13 / 14803
GO:0032276	regulation of gonadotropin secretion	0.0039	0.65	2 / 102	3 / 206	8 / 14803
GO:0048731	system development	0.0041	0.65	30 / 102	30 / 4368	3639 / 14803
GO:0000378	RNA exon ligation	0.0042	0.65	1 / 102	14 / 3306	1 / 14803
GO:1905304	regulation of cardiac myofibril assembly	0.0047	0.65	1 / 102	2 / 854	2 / 14803
GO:0099170	postsynaptic modulation of chemical synaptic transmission	0.0048	0.65	2 / 102	3 / 410	17 / 14803
GO:0070858	negative regulation of bile acid biosynthetic process	0.005	0.65	1 / 102	3 / 1184	2 / 14803

Table S12. (continued on next page)
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
GO:0032849	positive regulation of cellular pH reduction	0.0014	0.35	1 / 24	2 / 4330	3 / 14781
GO:0035037	sperm entry	0.0021	0.35	1 / 24	3 / 1412	1 / 14781
GO:1903801	L-leucine import across plasma membrane	0.0025	0.35	1 / 24	1 / 788	2 / 14781
GO:0032847	regulation of cellular pH reduction	0.0033	0.35	1 / 24	5 / 7639	5 / 14781
GO:0060357	regulation of leucine import	0.0035	0.35	1 / 24	1 / 283	1 / 14781
GO:0044265	cellular macromolecule catabolic process	0.0036	0.35	3 / 24	3 / 6690	1027 / 14781
GO:0044257	cellular protein catabolic process	0.0038	0.35	3 / 24	3 / 4281	668 / 14781
GO:0016192	vesicle-mediated transport	0.0048	0.4	5 / 24	8 / 11621	1960 / 14781
GO:0006508	proteolysis	0.0093	0.62	4 / 24	4 / 4484	1393 / 14781
GO:0060736	prostate gland growth	0.014	0.62	1 / 24	1 / 715	10 / 14781
GO:0060358	negative regulation of leucine import	0.0147	0.62	1 / 24	1 / 68	1 / 14781

GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
GO:0055017	cardiac muscle tissue growth	0.0016	0.71	3 / 53	3 / 611	72 / 14787
GO:0040020	regulation of meiotic nuclear division	0.0017	0.71	2 / 53	3 / 766	19 / 14787
GO:0060419	heart growth	0.0029	0.71	3 / 53	3 / 526	76 / 14787
GO:0008202	steroid metabolic process	0.004	0.71	4 / 53	15 / 5228	241 / 14787
GO:0060025	regulation of synaptic activity	0.004	0.71	1 / 53	2 / 497	1 / 14787
GO:0051445	regulation of meiotic cell cycle	0.0044	0.71	2 / 53	4 / 1148	32 / 14787
GO:2000813	negative regulation of barbed-end actin filament capping	0.0045	0.71	1 / 53	3 / 674	1 / 14787
GO:0045321	leukocyte activation	0.0055	0.71	8 / 53	9 / 2038	859 / 14787
GO:1905643	positive regulation of DNA methylation	0.0085	0.71	1 / 53	1 / 234	2 / 14787
GO:0090367	negative regulation of mRNA modification	0.0097	0.71	1 / 53	1 / 103	1 / 14787
GO:0035281	pre-miRNA export from nucleus	0.0099	0.71	1 / 53	1 / 202	2 / 14787
GO:1905962	glutamatergic neuron differentiation	0.01	0.71	1 / 53	4 / 1200	3 / 14787

Table S12. (continued on next page)
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
GO:0036309	protein localization to M-band	0.0033	0.75	1 / 28	2 / 1200	2 / 14779
GO:0099172	presynapse organization	0.0039	0.75	2 / 28	12 / 5917	47 / 14779
GO:0034976	response to endoplasmic reticulum stress	0.0043	0.75	4 / 28	6 / 1741	241 / 14779
GO:1903337	positive regulation of vacuolar transport	0.0045	0.75	1 / 28	10 / 4413	2 / 14779
GO:1903335	regulation of vacuolar transport	0.0083	0.75	1 / 28	16 / 7690	4 / 14779
GO:0061919	process utilizing autophagic mechanism	0.0101	0.75	4 / 28	21 / 11576	482 / 14779
GO:0120253	hydrocarbon catabolic process	0.0106	0.75	1 / 28	5 / 1865	4 / 14779
GO:0007029	endoplasmic reticulum organization	0.0107	0.75	2 / 28	9 / 4427	80 / 14779
GO:1905535	regulation of eukaryotic translation initiation factor 4F complex assembly	0.0111	0.75	1 / 28	2 / 360	2 / 14779
GO:0097010	eukaryotic translation initiation factor 4F complex assembly	0.0133	0.75	1 / 28	3 / 900	4 / 14779
GO:0043435	response to corticotropin-releasing hormone	0.0139	0.75	1 / 28	1 / 359	5 / 14779
GO:0051098	regulation of binding	0.014	0.75	3 / 28	21 / 11977	294 / 14779
GO:1904158	axonemal central apparatus assembly	0.0116	0.73	1 / 20	5 / 4703	11 / 14778
GO:1902659	regulation of glucose mediated signaling pathway	0.012	0.73	1 / 20	5 / 2482	6 / 14778
GO:1902661	positive regulation of glucose mediated signaling pathway	0.0124	0.73	1 / 20	3 / 1202	5 / 14778
GO:009756	carbohydrate mediated signaling	0.0127	0.73	1 / 20	6 / 4224	9 / 14778
GO:1901159	xylulose 5-phosphate biosynthetic process	0.0129	0.73	1 / 20	2 / 926	6 / 14778

Table S12. (continued on next page)
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
GO:0030054	cell junction	1.1×10^{-12}	3.3×10^{-9}	36 / 223	69 / 4515	701 / 14884
GO:0098793	presynapse	7.6×10^{-11}	1.2×10^{-7}	20 / 223	69 / 4515	230 / 14884
GO:0001505	regulation of neurotransmitter levels	1.6×10^{-9}	1.7×10^{-6}	18 / 223	57 / 3209	191 / 14884
GO:0006836	neurotransmitter transport	1.3×10^{-8}	9.9×10^{-6}	17 / 223	73 / 4256	192 / 14884
GO:0007610	presynapse	1.6×10^{-7}	7.4×10^{-5}	21 / 223	102 / 7876	448 / 14884
GO:0001505	regulation of neurotransmitter levels	1.6×10^{-7}	7.4×10^{-5}	21 / 223	102 / 7876	448 / 14884
GO:0030182	neuron differentiation	6.1×10^{-7}	2.4×10^{-4}	39 / 223	54 / 3108	1212 / 14884
GO:0045103	intermediate filament-based process	8.4×10^{-7}	2.9×10^{-4}	7 / 223	140 / 11622	44 / 14884
GO:0032989	membrane assembly	1.6×10^{-6}	5.0×10^{-4}	25 / 223	91 / 7082	705 / 14884
GO:0045104	intermediate filament cytoskeleton organization	1.9×10^{-6}	5.3×10^{-4}	7 / 223	22 / 1403	43 / 14884
GO:0140352	export from cell	2.0×10^{-6}	5.3×10^{-4}	32 / 223	140 / 11668	1110 / 14884
GO:0031424	keratinization	2.7×10^{-19}	8.4×10^{-16}	16 / 201	80 / 5326	43 / 14825
GO:0016755	transferase activity, transferring amino-acyl groups	5.3×10^{-17}	7.0×10^{-14}	15 / 201	28 / 1374	43 / 14825
GO:0070268	cornification	6.7×10^{-17}	7.02×10^{-14}	15 / 201	34 / 1553	39 / 14825
GO:0043588	skin development	6.9×10^{-16}	5.46×10^{-13}	27 / 201	57 / 2602	207 / 14825
GO:0016746	transferase activity, transferring acyl groups	2.6×10^{-15}	1.7×10^{-12}	15 / 201	26 / 1163	51 / 14825
GO:0071709	membrane assembly	9.8×10^{-15}	5.1×10^{-12}	15 / 201	52 / 3698	71 / 14825
GO:0044091	membrane biogenesis	6.2×10^{-14}	2.8×10^{-12}	15 / 201	43 / 2806	76 / 14825
GO:0008544	epidermis development	1.8×10^{-12}	7.1×10^{-10}	29 / 201	49 / 1509	238 / 14825
GO:0007009	plasma membrane organization	2.1×10^{-10}	7.3×10^{-8}	16 / 201	33 / 1881	143 / 14825
GO:0098888	tissue development	1.2×10^{-19}	3.6×10^{-7}	49 / 201	70 / 4371	1509 / 14825
GO:1903575	cornified envelope assembly	1.4×10^{-9}	4.1×10^{-7}	15 / 201	16 / 163	41 / 14825
GO:0030855	epithelial cell differentiation	4.1×10^{-9}	1.1×10^{-6}	29 / 201	64 / 3219	480 / 14825

Table S12. (continued on next page)
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
GO:0034660	ncRNA metabolic process	8.1×10^{-5}	0.12	8 / 90	14 / 3305	411 / 14801
GO:1902743	regulation of lamellipodium organization	3.7×10^{-4}	0.27	3 / 90	3 / 614	45 / 14801
GO:1902745	positive regulation of lamellipodium organization	9.1×10^{-4}	0.32	3 / 90	3 / 362	411 / 14801
GO:0021576	hindbrain formation	0.0011	0.32	1 / 90	1 / 908	1 / 14801
GO:0021588	cerebellum formation	0.0011	0.32	1 / 90	1 / 908	1 / 14801
GO:0060061	Spemann organizer formation	0.0022	0.38	1 / 90	1 / 901	2 / 14801
GO:0030031	cell projection assembly	0.0026	0.38	6 / 90	9 / 3147	611 / 14801
GO:1905920	positive regulation of CoA transferase activity	0.0033	0.38	1 / 90	1 / 615	2 / 14801
GO:0022004	midbrain-hindbrain boundary maturation during brain development	0.0034	0.38	1 / 90	18 / 5320	1 / 14801
GO:0010591	regulation of lamellipodium assembly	0.0036	0.38	3 / 90	3 / 216	34 / 14801
GO:0045184	establishment of protein localization	0.0038	0.38	10 / 90	12 / 4727	1961 / 14801
GO:0021551	central nervous system morphogenesis	0.0039	0.38	1 / 90	5 / 2530	2 / 14801
GO:0016782	transferase activity, transferring sulfur-containing groups	6.1×10^{-4}	0.79	2 / 178	6 / 1162	8 / 14815
GO:1904158	axonemal central apparatus assembly	0.0007	0.79	2 / 178	19 / 2595	6 / 14815
GO:1903363	negative regulation of cellular protein catabolic process	0.0019	0.79	4 / 178	12 / 1422	69 / 14815
GO:0045599	negative regulation of fat cell differentiation	0.0022	0.79	3 / 178	5 / 608	39 / 14815
GO:0038161	prolactin signaling pathway	0.0033	0.79	1 / 178	2 / 604	1 / 14815
GO:1990542	mitochondrial transmembrane transport	0.0049	0.79	4 / 178	12 / 1435	90 / 14815
GO:0060998	regulation of dendritic spine development	0.0053	0.79	3 / 178	12 / 1947	61 / 14815
GO:0011979	response to organonitrogen compound	0.0054	0.79	11 / 178	16 / 2452	848 / 14815
GO:0060897	negative regulation of ubiquitin-specific protease activity	0.0055	0.79	1 / 178	1 / 364	2 / 14815
GO:0021576	hindbrain formation	0.0066	0.79	1 / 178	6 / 908	1 / 14815
GO:0021588	cerebellum formation	0.0066	0.79	1 / 178	6 / 908	1 / 14815
GO:0042177	negative regulation of protein catabolic process	0.0069	0.79	4 / 178	12 / 1549	107 / 14815

Table S12. (continued on next page)
GO Term	Definition	P-value	Adj. P-value	Study	Family	Population
SH — CE Ceratopipra Ancestor Branch Model						
GO:0048278	vesicle docking	0.0011	0.66	2 / 45	2 / 1966	67 / 14793
GO:1902296	DNA strand elongation involved in cell cycle DNA replication	0.0016	0.66	1 / 45	2 / 1285	1 / 14793
GO:0034103	regulation of tissue remodeling	0.0019	0.66	2 / 45	3 / 2096	53 / 14793
GO:1902983	DNA strand elongation involved in mitotic DNA replication	0.0022	0.66	1 / 45	2 / 895	1 / 14793
GO:0010157	response to chlorate	0.0041	0.66	1 / 45	3 / 1461	2 / 14793
GO:0034287	detection of monosaccharide stimulus	0.0062	0.66	1 / 45	1 / 162	1 / 14793
GO:0009732	detection of hexose stimulus	0.0064	0.66	1 / 45	1 / 156	1 / 14793
GO:0051594	detection of glucose	0.0066	0.66	1 / 45	1 / 152	1 / 14793
GO:0071351	cellular response to interleukin-18	0.0069	0.66	1 / 45	1 / 724	5 / 14793
GO:1905380	regulation of snRNA transcription by RNA polymerase II	0.0072	0.66	1 / 45	4 / 1655	3 / 14793
GO:0032148	activation of protein kinase B activity	0.0082	0.66	2 / 45	2 / 305	28 / 14793
GO:0009730	detection of carbohydrate stimulus	0.0093	0.66	1 / 45	1 / 214	2 / 14793
PEC — CE Ceratopipra Ancestor Branch Model						
GO:0044848	biological phase	0.0023	0.73	3 / 53	35 / 11980	91 / 14785
GO:0046449	creatinine metabolic process	0.0028	0.73	1 / 53	21 / 7554	1 / 14785
GO:0120077	angiogenic sprout fusion	0.0033	0.73	1 / 53	3 / 900	1 / 14785
GO:0120078	cell adhesion involved in sprouting angiogenesis	0.0036	0.73	1 / 53	4 / 1111	1 / 14785
GO:0043254	regulation of protein-containing complex assembly	0.0047	0.73	5 / 53	10 / 2831	360 / 14785
GO:0010157	response to chlorate	0.0055	0.73	1 / 53	4 / 1461	2 / 14785
GO:0034103	regulation of tissue remodeling	0.0058	0.73	2 / 53	5 / 2095	52 / 14785
GO:0044087	regulation of cellular component biogenesis	0.0061	0.73	7 / 53	23 / 8378	847 / 14785
GO:0034287	detection of monosaccharide stimulus	0.0062	0.73	1 / 53	1 / 162	1 / 14785
GO:0009732	detection of hexose stimulus	0.0064	0.73	1 / 53	1 / 156	1 / 14785
GO:0051594	detection of glucose	0.0066	0.73	1 / 53	1 / 152	1 / 14785
GO:0106088	regulation of cell adhesion involved in sprouting angiogenesis	0.007	0.73	1 / 53	4 / 573	1 / 14785

Table S12. GO Terms overrepresented in top gene sets from each PhyDGET models Gene Ontology terms using showing the P-value of overrepresentation, the BH-adjusted P-value, the proportion of genes represented by the term in the target study set, the number of terms in the total GO term family, and the total proportion of the GO term in the total population.
Gene	log$_2$ FC	log$_2$ avg. exp.	P-value	Adjusted P-value	Mod.	BF	Annotation
LOC113999394	3.67	3.11	5.1 x 10$^{-11}$	6.1 x 10$^{-7}$	R41	1.48	alpha-globin transcription factor
LOC113989613	5.06	5.73	7.8 x 10$^{-11}$	6.1 x 10$^{-7}$	MC1	0.98	uncharacterized LOC113989613
LOC113990940	3.44	3.62	3.2 x 10$^{-10}$	1.1 x 10$^{-6}$	M4	0.88	uncharacterized LOC113990940
SEC14L5	4.64	6.37	4.0 x 10$^{-10}$	1.1 x 10$^{-6}$	null	N/A	SEC14 like lipid binding 5
PREPL	4.62	4.81	4.1 x 10$^{-10}$	1.1 x 10$^{-6}$	R41	0.44	prolyl endopeptidase like
LOC113998190	3.56	4.72	4.3 x 10$^{-10}$	1.1 x 10$^{-6}$	null	N/A	dynein heavy chain 5, axonemal-like
MAP3K15	4.26	5.64	6.7 x 10$^{-10}$	1.2 x 10$^{-6}$	null	N/A	mitogen-activated protein kinase kinase 15
STRIP2	3.24	4.12	6.9 x 10$^{-10}$	1.2 x 10$^{-6}$	null	N/A	striatin interacting protein 1
PLGRKT	3.87	5.59	7.1 x 10$^{-10}$	1.2 x 10$^{-6}$	null	N/A	plasminogen receptor with a C-terminal lysine
CEP131	3.12	3.7	1.1 x 10$^{-9}$	1.2 x 10$^{-6}$	MC1	0.37	centrosomal protein 131
LOC113998077	3.23	2.83	1.2 x 10$^{-9}$	1.2 x 10$^{-6}$	M5	0.15	fer-1-like protein 4
PHH1D1	3.64	4.36	1.2 x 10$^{-9}$	1.2 x 10$^{-6}$	MV	0.81	PIH1 domain containing 1
GDF1	4.32	1.69	2.3 x 10$^{-12}$	3.5 x 10$^{-6}$	R41	1.64	growth differentiation factor 10
PUDP	3.33	4.11	1.4 x 10$^{-10}$	1.0 x 10$^{-6}$	M4	0.03	pseudouridine 5'-phosphatase
IL18	4.25	2.22	2.2 x 10$^{-10}$	1.1 x 10$^{-6}$	CE	3.2	interleukin 18 binding protein
PIH1D1	3.89	4.32	3.0 x 10$^{-10}$	1.1 x 10$^{-6}$	null	N/A	PIH1 domain containing 1
ACOT7	3.26	4.26	5.3 x 10$^{-10}$	1.1 x 10$^{-6}$	null	N/A	acyl-CoA thioesterase 7
GAA	3.85	3.9	5.6 x 10$^{-10}$	1.1 x 10$^{-6}$	CE	0.96	glucosidase alpha, acid
SFRP4	4.1	3.87	6.1 x 10$^{-10}$	1.1 x 10$^{-6}$	null	N/A	secreted frizzled related protein 4
PREPL	4.07	4.32	6.2 x 10$^{-10}$	1.1 x 10$^{-6}$	R41	1.41	prolyl endopeptidase like
TTC31	3.38	4.33	8.0 x 10$^{-10}$	1.1 x 10$^{-6}$	LC	1.08	tetratricopeptide repeat domain 31
LOC113998860	2.9	3.27	8.2 x 10$^{-10}$	1.1 x 10$^{-6}$	M4	0.25	uncharacterized LOC113998860
MSANTD4	3.09	4.04	8.3 x 10$^{-10}$	1.1 x 10$^{-6}$	M4	0.63	Myb/SANT DNA binding domain containing 4 with coiled-coils
IQCB1	3.25	3.9	9.1 x 10$^{-10}$	1.1 x 10$^{-6}$	M4	0.23	IQ motif containing B1

Table S13. Top 12 differentially expressed genes in contrasts for each tissue for RWM species versus non-RWM species. List of top genes (by P-value) identified by limma as differentially expressed using a flat comparison of all RWM versus all non-RWM individuals. The log2(fold change), log2 average expression, P-value, Benajmini-Hochberg adjusted P-value, best fitting PhyDGET model and Bayes Factor, and reference annotation are shown.
Calcium Transport and Signaling

Gene	Model Name	Notes on Function
CIB2 (−)	M6	**Calcium And Integrin Binding Family Member 2**: “responsible for maintaining Ca^{2+} homeostasis in cells and interacting with integrins-transmembrane receptors essential for cell adhesion, migration, and activation of signaling pathways. . . Within the muscle, Cib2 is expressed in sarcolemma, enriched in the myotendinous junctions and neuromuscular junctions” (40).
CALM2 [+]	M5	**Calmodulin 2**: “mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding” (UniProtKB). Calmodulin activates ryanodine receptor (41).
ATP2A3 (+) and "ATP2A1-like" LOC114003417 (+)	M4	**ATPase Sarcoplasmic/Endoplasmic Reticulum Ca^{2+} Transporting 3 and ATPase Sarcoplasmic/Endoplasmic Reticulum Ca^{2+} Transporting 1** (a.k.a. SERCA): “encodes one of the SERCA Ca(2+)-ATPases, which are intracellular pumps located in the sarcoplasmic or endoplasmic reticula of muscle cells. This enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen, and is involved in muscular excitation and contraction. Mutations in this gene cause some autosomal recessive forms of Brody disease, characterized by increasing impairment of muscular relaxation during exercise” (NCBI RefSeq). Domes-ticated chicken and turkeys studies indicate association with RYR and strong impact on muscle properties (42, 43).
RYR1-like-1 [+/−] LOC113994824 and **RYR1-like-2** [+/−] LOC114001935	R41	**Ryanodine Receptor 1**: Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm” (UniProtKB). Studies in domesticated chicken have shown this gene is associated with ATP2A1 and the expression has strong impact on muscle properties (44, 43).
TRDN [+/−]	R41	**Triadin**: “Contributes to the regulation of lumenal Ca^{2+} release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact. Required for normal skeletal muscle strength” (UniProtKB). Known to interact with RYR1 and Parvalbumin as part of the muscle contractile system.
CCDC47 (+)	MC1	**Coiled-Coil Domain Containing 47**: Involved in calcium ion maintenance in the endoplasmic reticulum (45).
SRL [+]	MC1	**Sarcalumenin**: “SAR significantly contributes to Ca^{2+} buffering and the maintenance of the SERCA protein in the skeletal muscle SR” (46). Also interacts with RYR1 and ATP2A1.
OBSCN [+]	MC1	**Obscurin**: “Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle.” (UniProtKB)
CLRN1 (+)	MV	**Clarin 1**: “encodes a protein that contains a cytosolic N-terminus, multiple helical transmembrane domains, and an endoplasmic reticulum membrane retention signal, TKGH, in the C-terminus” (NCBI RefSeq). Reorganized actin filaments and created extracellular lamellipodia (47).
PVALB-like-1 (+) LOC113990673	CE	**Parvalbumin, Avian Thymic Hormone**: An parvalbumin first identified in chicken (48). Parvalbumins in manakins and zebrafinch “enhance cellular Ca(2+) cycling and hypertrophy of skeletal muscle fibers” (49).
PVALB-like-2 (+) LOC113990672	CE	**Parvalbumin**: “In muscle, parvalbumin is thought to be involved in relaxation after contraction. It binds two calcium ions.” (UniProtKB). Parvalbumins in manakins and zebrafinch “enhance cellular Ca(2+) cycling and hypertrophy of skeletal muscle fibers” (49).

Table S14. (continued on next page)
Gene	Model Name	Notes on Function
Metabolism and Oxidative Stress		
PDK2 (+)	M6	**Pyruvate Dehydrogenase Kinase 2:** "Key role in the regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2. Mediates cellular responses to insulin. Plays an important role in maintaining normal blood glucose levels and in metabolic adaptation to nutrient availability" (UniProtKB).
PFKP (+)	M6	**Phosphofructokinase, Platelet:** "Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis" (UniProtKB; 50).
YARS2 (–)	M6	**Tyrosyl-TRNA Synthetase 2:** "... a mitochondrial protein that catalyzes the attachment of tyrosine to tRNA(Tyr). Mutations in this gene are associated with myopathy with lactic acidosis and sideroblastic anemia type 2." (NCBI RefSeq)
PP1R3C [+]	M5	**Protein Phosphatase 1 Regulatory Subunit 3C:** "... a carbohydrate binding protein that is a subunit of the protein phosphatase 1 (PP1) complex. PP1 catalyzes reversible protein phosphorylation, which is important in a wide range of cellular activities. The encoded protein affects glycogen biosynthesis by activating glycogen synthase and limiting glycogen breakdown by reducing glycogen phosphorylase activity" (NCBI RefSeq; 51).
PPARGC1B [+]	M5	**Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Beta:** "... fatty acids differentially regulated expression of the genes encoding the PGC-1 isoforms. ... accompanied by significant changes in mitochondrial activity, ... fatty acid-induced regulation of expression of these genes plays an important role in muscle oxidative metabolism" (52).
MLH1 (+)	M4	**MutL Homolog 1:** "Heterodimerizes with PMS2 to form MutL alpha, a component of the post-replicative DNA mismatch repair system (MMR). ... Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages" (UniProtKB).
BCO2 (–)	MC1	**Beta-Carotene Oxygenase 2:** "BCO2 is a carotene-cleaving enzyme that localizes to mitochondria and catalyzes the 9priime,109priimeoxidative cleavage of carotenoids, an es-sential step in carotenoid degradation" (quote from Gazda 2020; Amengual 2011, dela Seña 2016). Also responsible for plumage coloration in some Passerine birds (53).
ARFGAP3 (+)	MV	**ADP Ribosylation Factor GTPase Activating Protein 3:** "GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatamer from Golgi-derived membranes to allow fusion with target membranes" (UniProtKB). Found to be induced by oxidative stress response in mouse smooth muscles (54).
HEMK1 (–)	MV	**HemK Methyltransferase Family Member 1:** "N5-glutamine methyltransferase responsible for the methylation of the glutamine residue in the universally conserved GGQ motif of the mitochondrial translation release factor MTRF1L" (UniProtKB).
LTA4H (–)	MV	**Leukotriene A4 Hydrolase:** "The protein encoded by this gene is an enzyme that contains both hydrolase and aminopeptidase activities. The hydrolase activity is used in the final step of the biosynthesis of leukotriene B4, a proinflammatory mediator." (NCBI RefSeq).
PON2 (+)	MV	**Paraoxonase 2:** "This gene encodes a member of the paraoxonase gene family, which includes three known members located adjacent to each other on the long arm of chromosome 7. The encoded protein is ubiquitously expressed in human tissues, membrane-bound, and may act as a cellular antioxidant, protecting cells from oxidative stress." (NCBI RefSeq) Highly concentrated in the endoplasmic reticulum and can have an interplay with calcium levels (55)

Table S14. (continued on next page)
Gene	Model Name	Notes on Function
Muscle Tone and Repair		
CIAPIN1 (+)	M6	**Cytokine Induced Apoptosis Inhibitor 1**: "Component of the cytosolic iron-sulfur (Fe-S) protein assembly machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis" (UniProtKB).
FOXF1 (+)	M5	**Forkhead Box F1**: Transcription factor active in the lungs and blood vessels. Regulates contractile proteins in smooth muscle (56).
NAA35 (–)	M5	**N-Alpha-Acetyltransferase 35, NatC Auxiliary Subunit**: "Auxiliary component of the N-terminal acetyltransferase C (NatC) complex which catalyzes acetylation of N-terminal methionine residues. Involved in regulation of apoptosis and proliferation of smooth muscle cells" (UniProtKB).
SLC44A3 (+)	M5	**Solute Carrier Family 44 Member 3**: Choline-like transporter family protein of uncertain function. Identified as a gene associated with high muscle stress response in rats (57) and humans (58).
RPAP2 [–]	M4	**RNA Polymerase-associated Protein 2**: "Protein phosphatase that displays CTD phosphatase activity and regulates transcription of snRNA genes" (UniProtKB). Abnormal expression has been associated with myopathy (59).
TFCP2 (+/–)	R41	**Alpha-Globin Transcription Factor CP2**: "transcription factor that binds the alpha-globin promoter and activates transcription of the alpha-globin gene. The encoded protein regulates erythroid gene expression, plays a role in the transcriptional switch of globin gene promoters." (NCBI RefSeq).
CUL1 [+/-]	R41	**Cullin 1**: "Core component of multiple cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes, which mediate the ubiquitination of proteins involved in cell cycle progression, signal transduction and transcription" (UniProtKB). Related to ubiquitination of SMAD4, Fbox proteins.
TTN [+/-]	R41	**Titin**: "Key component in assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere" (UniProtKB).
"*PREPL* [+/-]	R41	**Prolyl Endopeptidase Like**: "Serine peptidase whose precise substrate specificity remains unclear. Does not cleave peptides after a arginine or lysine residue. Regulates trans-Golgi network morphology and sorting by regulating the membrane binding of the AP-1 complex. May play a role in the regulation of synaptic vesicle exocytosis" (UniProtKB; see also 60, 61)
"MYH3-like" LOC113989613 [+]	MC1	**Myosin Heavy Chain 3**: "Major contractile protein which converts chemical energy into mechanical energy through the hydrolysis of ATP." (NCBI RefSeq)
"ROR1-like" LOC114002148 [+]	MC1	**Receptor Tyrosine Kinase Like Orphan Receptor 1**: "receptor tyrosine kinase-like orphan receptor that modulates neurite growth in the central nervous system." Shown to play a key role muscle regeneration after injury (62).
Gene	Model Name	Notes on Function
Muscle Tone and Repair (continued)		
ANK2 (-)	MV	Ankyrin Repeat 2: “In skeletal muscle, required for localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions” (UniProtKB).
STAU2 (+)	MV	Staufen Double-Stranded RNA Binding Protein 2: “Stau1 and Stau2 are key components of the postsynaptic apparatus in muscle, and that they contribute to the maturation and plasticity of the neuromuscular junction” (63).
MYBPH (+)	MV	Myosin Binding Protein H: “Binds to myosin; probably involved in interaction with thick myofilaments in the A-band” (UniProtKB).
NINJ2 (+)	CE	Ninjurin 2: “Ninjurin (for nerve injury induced) family. Cell surface adhesion protein upregulated in Schwann cells surrounding the distal segment of injured nerve, and promotes neurite outgrowth, thus may have a role in nerve regeneration after nerve injury.” (NCBI RefSeq) Found to be a regulator of cells after endothelial inflammation and blood vessel after injuries (64)
STX2 (+)	CE	Syntaxin 2: “The syntaxins are a large protein family implicated in the targeting and fusion of intracellular transport vesicles. The product of this gene regulates epithelial-mesenchymal interactions and epithelial cell morphogenesis and activation” (NCBI RefSeq)
Endoplasmic Reticulum Stress		
FOXO3 (-)	M5	Forkhead Box O3: “Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins” (UniProtKB).
RETREG1 (+)	M5	Reticulophagy Regulator 1 (a.k.a. FAM134B): “Endoplasmic reticulum-anchored autophagy receptor that mediates ER delivery into lysosomes through sequestration into autophagosomes” (UniProtKB). Involved also in ER turnover during stress (65).
DDRGK1 (+)	M4	DDRGK Domain Containing 1: “UFMylation, a ubiquitin-like post-translational modification, is required for ER-phagy. The protein DDRGK1 recruits UFMylation machinery to the ER surface in a striking parallel to the mitophagic recruitment of Parkin by PINK1. DDRGK1 is specifically required for the ER-phagy of ER sheets, including ER-phagy mediated by LIR/GIM receptors located on these subdomains. Unbiased proteomics identified Ribophorin 1 (RPN1), an ER-localized quality control factor, as an ER sheet-localized target of DDRGK1-dependent UFMylation” (66).
SPPL2A (+)	R41	Signal Peptide Peptidase Like 2A: “Intramembrane-cleaving aspartic protease (L-CLIP) that cleaves type II membrane signal peptides in the hydrophobic plane of the membrane. Functions in FASLG, ITM2B and TNF processing” (UniProtKB). The SPP family alters ER shape by degradation of morphogenic proteins (67).
TPRKB (+)	MV	TP53 Regulating Kinase Binding Protein: “Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine” (UniProtKB). Associated with chronic ER stress and defects in actin (68).
UFL1 (+)	MC1	Ubiquitin fold modifier 1 Specific Ligase: “E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in reticulophagy (also called ER-phagy) induced in response to endoplasmic reticulum stress” (UniProtKB).

Table S14. (continued on next page)
Gene	Model Name	Notes on Function
26S Proteasome Complex		
UBE3B [-]	M5	Ubiquitin Conjugating Enzyme E2 B: “Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In association with the E3 enzyme BRE1 (RNF20 and/or RNF40), it plays a role in transcription regulation by catalyzing the monoubiquitination of histone H2B.” (Uniprot) Loss of this protein is associated with myofibrillar protein loss (69).
FBXO4 (-)	M4	F-Box Protein 4: “Encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of the ubiquitin protein ligase complex called SCFs.” (NCBI RefSeq). SCF complex catalyzes ubiquitination for the 26S Proteasome complex.
PSMA7 (+)	M4	Proteasome 20S Subunit Alpha 7: 20S subunit of the 26S Proteasome.
PSMA2 (+)	M4	Proteasome 20S Subunit Alpha 2: 20S subunit of the 26S Proteasome.
PSMC3 (-/+	R41	Proteasome 26S Subunit, ATPase 3: ATPase subunit of the 26S Proteasome.
PSMC6 (+)	MC1	Proteasome 20S Subunit Alpha 6: 20S subunit of the 26S Proteasome.
UBXN1 (-)	MV	UBX Domain Protein 1: “Ubiquitin-binding protein that plays a role in the modulation of innate immune response. Blocks both the RIG-I-like receptors (RLR) and NF-kappa-B pathways. ... Component of a complex required to couple deglycosylation and proteasome-mediated degradation of misfolded proteins in the endoplasmic reticulum that are retrotranslocated in the cytosol” (UniProtKB). Reported in association follistatin induced muscle hypertrophy (70).
Cell-cell Junctions and Extracellular Matrix		
"ERVFRD-1-like" (+)	LOC113993297	Endogenous Retrovirus Group FRD Member 1, Envelope (a.k.a. syncitin 2): “This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis” (UniProtKB). Associated with the placenta usually, but has also been observed forming syncitia in muscle cells, and with high levels causing unusual muscle phenotypes (71, 72).
ADAMTS9 (+)	M5	ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9: This gene has been shown to alter the sensitivity of skeletal muscles to insulin signaling by changes to the extracellular matrix surrounding myocytes (73).
DPYSL5 (+)	M4	Dihydropyrimidinase Like 5 (a.k.a. ULIP6): glycine transporter interacting protein that is implicated as involved in neurological response in ‘startle’ syndromes (74).
STUM (+)	M4	Stum, Mechanosensory Transduction Mediator Homolog (a.k.a. stumble): “required for transduction of mechanical stimuli in a specific subpopulation of Drosophila proprioceptive neurons that sense joint angles.” and “dendritic stretching also elicited elevation of cellular Caty2+ levels — not seen in stum mutants” (75). The same study also noted that mouse homologs rescued deletion, indicating conservation of sequence.
UBAC2 (+/-)	R41	UBA Domain Containing 2 (a.k.a. TM4): “ Restricts trafficking of FAF2 from the endoplasmic reticulum to lipid droplets” (UniProtKB). Insulin-sensitive and associated with inflammatory disease Behçet’s syndrome.
HACD1 (+)	MV	3-Hydroxyacyl-CoA Dehydratase 1: “involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size disproportion associated with a generalized muscle weakness.” “promotes myoblast fusion during muscle development and regeneration” “catalyzes lipid modifications correlate with a reduction in plasma membrane rigidity” (76, 77)

Table S14. (continued on next page)
Gene	Model Name	Notes on Function
Androgen Signaling		
"KDM5C-like" (–)	M6	**Lysine Demethylase 5C**: "Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Among its related pathways are Chromatin organization and Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3" (UniProtKB).
LOC113993369		
EAF2 (+)	M5	**ELL Associated Factor 2**: “EAF2-deficiency on either background was associated with an increase in epithelial cell proliferation, the development of mPIN lesions as well as an associated increased incidence in reactive stroma and increased vascularity” (78). Gene expression stimulated by androgen (79).
KDM4B (+)	M4	**Lysine Demethylase 4B**: "Histone demethylase that specifically demethylates 'Lys-9' of histone H3" (UniProtKB). Known to be a key molecule in androgen receptor signaling and promotes turnover of AR (80).
AR [+]	MC1	**Androgen Receptor**: Direct evidence in manakins associates androgen receptor signaling with rapid wing movement both in neural cells and muscular fibers. (81, 82, 83).
HIPK3 (+)	CE	**Homeodomain Interacting Protein Kinase 3**: “Serine/threonine-protein kinase involved in transcription regulation, apoptosis and steroidogenic gene expression. Phosphorylates JUN and RUNX2. Seems to negatively regulate apoptosis by promoting FADD phosphorylation. Enhances androgen receptor-mediated transcription. May act as a transcriptional corepressor for NK homeodomain transcription factors. The phosphorylation of NR5A1 activates SF1 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation” (UniProtKB).

Table S14. Functional information for the genes highlighted in Figure 3. Basic database descriptions from UniProtKB and NCBI human RefSeq are included for most genes. Additional references are cited specific to birds or muscles, where available and appropriate. Model codes are shown in Fig. S4.
Gene	Len	d_N	d_S	d_N/d_S	P	BF SH	BF PEC	Annotation
THAP9	111	0.06	0.117	0.51	1	1.31	0.48	THAP domain containing 9
RESF1	1723	0.056	0.094	0.6	0.89	-0.39	-0.2	retroelement silencing factor 1
LOC11399513	386	0.053	0.078	0.68	0.98	-0.49	-0.5	uncharacterized LOC113995132
NDUFC1	143	0.053	0.1	0.53	1	-0.57	-0.39	NADH:ubiquinone oxidoreductase subunit C1
LOC113998632	138	0.051	0.464	0.11	0.25	-0.47	-0.03	very-long-chain enoyl-CoA reductase-like
SERPINF2	207	0.037	0.036	1.05	0.79	-0.43	-0.38	serpin family F member 2
CUNH19orf44	151	0.037	0.025	1.52	0.02	-0.5	-0.39	chromosome unknown C19orf44 homolog
LOC11398634	110	0.035	0.033	1.04	1	-0.35	-0.28	ras-related and estrogen-regulated growth inhibitor-like
CD164	165	0.034	0.018	1.87	0.06	-0.38	0.6	CD164 molecule
LOC113983299	120	0.033	0.029	1.13	0.17	-0.15	-0.49	skin secretory protein xP2-like
CCDC15	270	0.033	0.098	0.33	0.39	2.02	0.37	coiled-coil domain containing 15
KNOB1	610	0.03	0.026	1.19	0.24	0.59	1.44	lysine rich nucleolar protein 1
SLC16A4	159	0.03	0.029	1.05	0.56	-0.26	-0.14	solute carrier family 16 member 4
ETAA1	121	0.024	0.018	1.29	0.24	0.05	-0.03	ETAA1, ATR kinase activator
LOC114000836	150	0.023	0.021	1.08	0.17	-0.47	-0.55	uncharacterized LOC114000836
LOC114004335	193	0.022	0.012	1.79	0.38	-0.21	-0.36	zinc finger protein RFP-like
FABP7	103	0.021	0.017	1.23	1	-0.57	-0.51	fatty acid binding protein 7
SYNJ2BP	146	0.016	0.016	1.02	0.12	-0.51	-0.11	synaptojanin 2 binding protein
CCDC173	109	0.014	0.014	1.03	1	-0.4	-0.58	coiled-coil domain containing 173
LOC113991506	137	0.013	0.011	1.16	0.42	-0.42	-0.52	uncharacterized LOC113991506
EFCA1	111	0.011	0.006	2.01	0.33	-0.5	-0.49	EF-hand calcium binding domain 1
FAM174A	117	0.01	0.01	1.05	0.21	-0.41	-0.6	family with sequence similarity 174 member A
LOC113983346	111	0.01	0.009	1.15	0.12	0.37	0.4	sodium channel modifier 1-like
LOC114000280	207	0.007	0.005	1.3	1	0.15	0.56	UPF0488 protein C8orf33 homolog
EAF2	207	0	0.01	0.03	0.6	1.77	1.09	ELL associated factor 2
RETREG1	372	0.004	0.021	0.2	0.03	1.65	0.14	reticulophagy regulator 1
FOXO3	601	0	0.015	0.02	0.67	1.59	0.89	forkhead box O3
LOC113991453	151	0.001	0.054	0.02	0.36	1.56	0.26	semaphorin-3D-like
DHPS	379	0.001	0.04	0.02	0.99	1.55	1.37	deoxyhypusine synthase
ADAMTS9	923	0	0.001	0.05	0.29	1.53	1.21	ADAM metalloproteinase with thrombospondin type 1 motif 9
COMM2D	199	0.001	0.004	0.19	0.99	1.39	1.63	COMM domain containing 2
LOC113994576	479	0.001	0.04	0.01	0.82	1.22	1.93	ATP-dependent RNA helicase DDX19B

Table S15. (continued on next page)
Gene	Len	d_N	d_S	d_N/d_S	P	BF SH	BF PEC	Annotation
LOC114001961	102	0.022	0.046	0.48	0.59	−0.71	−0.7	aldo-keto reductase family 1 member B10-like
MRPL4	225	0.016	0.103	0.15	0.89	−0.46	−0.61	mitochondrial ribosomal protein L4
IRAK1BP1	125	0.014	0	∞	0.07	−0.15	−0.24	interleukin 1 receptor associated kinase 1 binding protein 1
ALDH16A1	311	0.013	0.028	0.47	0.19	−0.42	−0.57	aldehyde dehydrogenase 16 family member A1
LOC113998672	110	0.012	0	∞	0.06	0.38	0.04	NADH dehydrogenase 1 subunit C2-like
CISD3	106	0.011	0	∞	0.18	−0.71	−0.71	CDGSH iron sulfur domain 3
NDUFS5	106	0.01	0	∞	0.1	−0.49	−0.26	NADH:ubiquinone oxidoreductase subunit S5
TIGAR	276	0.01	0	∞	0	−0.69	−0.55	TP53 induced glycolysis regulatory phosphatase
FBXL15	198	0.01	0.006	1.66	0.25	−0.62	−0.02	F-box and leucine rich repeat protein 15
LOC114003559	132	0.01	0	∞	0.04	−0.63	−0.27	fatty acid-binding protein, adipocyte
FAM204A	242	0.01	0	∞	0.02	−0.67	−0.6	family with sequence similarity 204 member A
DNAJC9	258	0.01	0	∞	0	0.16	0.39	DnaJ heat shock protein family (Hsp40) member C9
CD164	165	0.01	0	∞	0.18	0.62	−0.15	CD164 molecule
PPCS	173	0.009	0	∞	0	−0.58	−0.51	phosphopantetheinecysteine synthetase
SLC35G1	308	0.009	0.004	2.24	0.03	−0.64	−0.32	solute carrier family 35 member G1
DGCR2	519	0.009	0.003	3.42	0.01	−0.47	−0.63	DiGeorge syndrome critical region gene 2
LOC113984987	218	0.009	0.007	1.35	0.15	−0.25	−0.35	glutathione S-transferase-like
ELP6	256	0.008	0.007	1.19	0.05	−0.08	−0.24	elongator acetyltransferase complex subunit 6
NAF1	328	0.008	0	∞	0.03	−0.64	−0.27	nuclear assembly factor 1 ribonucleoprotein
MRPS6	121	0.008	0	∞	0.07	−0.22	−0.34	mitochondrial ribosomal protein S6
VGILL3	139	0.008	0	∞	0.02	−0.66	−0.6	vestigial like family member 3
MPC2	129	0.008	0	∞	0.01	−0.18	−0.22	mitochondrial pyruvate carrier 2
CMBL	245	0.007	0.008	0.96	0.21	−0.52	−0.33	carboxymethylenebutenolidase homolog
CTSO	395	0.007	0.003	2.37	0.05	0.09	−0.02	cathepsin D
FUNDC2	152	0.006	0	∞	0.02	0.57	0.81	FUN14 domain containing 2
NIPSAP3A	250	0.006	0	∞	0.05	−0.34	−0.68	nipsnap homolog 3A
GNL3	580	0.006	0.005	1.29	0.19	−0.16	−0.51	G protein nucleolar 3
LOC113988940	140	0.006	0	∞	0.42	−0.63	−0.71	class I histocompatibility antigen, F10 alpha chain-like
LOC113990807	221	0.006	0	∞	0.36	−0.03	−0.38	glutathione S-transferase-like

Table S15. (continued on next page)
Gene	Len	d_N	d_S	d_N/d_S	P	BF SH	BF PEC	Annotation
MV *Manacus vitellinus* Branch Model								
LOC11398940	140	0.054	0.057	0.95	0.77	−1.04	−1.06	class I histocompatibility antigen, F10 alpha chain-like
LOC114003393	208	0.043	0.068	0.63	0.17	−1.1	−1.04	class I histocompatibility antigen, F10 alpha chain-like
LOC113988548	184	0.043	0.129	0.33	0.9	−0.43	−0.18	uncharacterized LOC113988548
LOC113991726	122	0.039	0.034	1.15	0.04	−1	−0.74	major centromere autoantigen B-like
LOC114003600	206	0.038	0.076	0.5	0.1	−1	−1.02	collagen alpha-1(I) chain-like
LOC113992639	161	0.037	0.02	1.82	0.26	−0.9	−0.76	zinc finger protein 777-like
HAUST	280	0.026	0.026	1.03	0.82	−0.98	−1.04	HAUS augmin like complex subunit 1
LRRC30	133	0.022	0.009	2.42	0.02	−0.29	−0.85	leucine rich repeat containing 30
TGOLN2	427	0.021	0.018	1.15	0.38	−0.98	−1.09	trans-golgi network protein 2
LOC113983346	111	0.021	0.008	2.67	0.51	−0.98	−0.94	sodium channel modifier 1-like
ALKBH2	244	0.016	0.007	2.12	0.01	−0.37	1.27	alkB homolog 2, alpha-ketoglutarate dependent dioxygenase
HEMK1	314	0.011	0.01	1.06	0.29	2.67	2.14	HemK methyltransferase family member 1
GHR	610	0.008	0.008	0.99	0.02	−0.26	0.57	growth hormone receptor
LOC113984727	245	0.005	0.∞	0.15	0.65	1.19		serum amyloid P-component-like
TPRKB	174	0.005	0.∞	0.07	3.71	0.82		TP53RK binding protein
RPA2	266	0.005	0.∞	0.05	0.33	1.24		replication protein A2
LARP4B	1316	0.004	0.004	1.02	0.32	0.84	0.44	La ribonucleoprotein domain family member 4B
SLC25A26	267	0.004	0.004	0.96	0.21	−0.7	0.78	solute carrier family 25 member 26
PON2	354	0.003	0.∞	0.07	1.66	−0.88		paraoxonase 2

Table S15. (continued on next page)
Gene	Len	d_N	d_S	d_N/d_S	P	BF SH	BF PEC	Annotation
CE Ceratopipra Ancestral Branch Model								
FABP7	103	0.014	0	∞	0.17	-0.8	-0.67	fatty acid binding protein 7
LOC114001961	102	0.012	0.025	0.49	0.72	0.32	0.36	aldo-keto reductase family 1 member B10-like
ATP12A	140	0.011	0.093	0.12	0.04	0.16	-0.11	ATPase H+K+ transporting non-gastric alpha2 subunit
LOC114001388	100	0.01	0.031	0.31	0.98	-0.85	-0.58	class I histocompatibility antigen, F10 alpha chain-like
CD164	165	0.009	0.006	1.5	0.94	-0.79	-0.82	CD164 molecule
CUNH20orf85	110	0.008	0	∞	0.01	-0.68	-0.78	chromosome unknown C20orf85 homolog
TMEM233	111	0.008	0	∞	0.12	-0.22	0.48	transmembrane protein 233
MRPL51	156	0.008	0	∞	0.07	-0.33	-0.46	mitochondrial ribosomal protein L51
DSN1	344	0.008	0.006	1.26	0.12	-0.73	-0.55	DSN1 homolog, MIS12 kinetochore complex component
LOC114003744	219	0.007	0.004	1.68	0.22	-0.42	-0.14	mucin-5AC-like
GGCT	182	0.007	0	∞	0.05	-0.52	-0.69	gamma-glutamylcyclotransferase
CUNH19orf12	141	0.007	0	∞	0	-0.7	-0.68	chromosome unknown C19orf12 homolog
CUNH12orf43	199	0.005	0	∞	0.23	0.59	-0.69	chromosome unknown C12orf43 homolog
LOC113990771	185	0.004	0	∞	0.06	1.63	1.6	WD repeat and SOCS box-containing protein 2-like
NUDT13	305	0.004	0	∞	0.04	1.13	-0.3	nudix hydrolase 13
ACS53	257	0.004	0	∞	0.02	-0.15	0.62	acyl-CoA synthetase short chain family member 3
DCAF4	468	0.003	0	∞	0.03	-0.39	0.6	DDB1 and CUL4 associated factor 4
COQ9	314	0.003	0	∞	0.04	0.45	1.13	coenzyme Q9
SECISBP2	833	0.003	0	∞	0.01	0.82	-0.21	SECIS binding protein 2
WDHR60	346	0.003	0	∞	0.1	-0.8	0.56	WD repeat domain 60
SRBD1	962	0.002	0.001	1.86	0.02	0.68	-0.29	S1 RNA binding domain 1
PRRC1	446	0.002	0	∞	0.11	0.69	0.14	proline rich coiled-coil 1
PREPL	737	0.001	0	∞	0.11	0.19	0.52	prolyl endopeptidase like
FAN1	1024	0.001	0	2.77	0.33	1.16	0.56	FANCD2 and FANCI associated nuclease 1

Table S15. Results of Tests of Positive Selection on Gene Sequences. Genes with highest d_N values indicating possible positive selection. Results of PAML branch-test for M5, M4, MV, and CE models (see Fig. S4). PhyDGET scores for PEC and SH are shown for comparison.
Gene	Model Name	Notes on Function
THAP9	M5	THAP Domain Containing 9: “The studies reported here indicate that the human THAP9 gene encodes an active DNA transposase that can mobilize Drosophila P-element transposons in Drosophila and human cells” (84).
RESF1	M5	Retroelement Silencing Factor 1: “Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells” (UniProtKB).
KNOPT1	M5	Lysine Rich Nucleolar Protein 1: “The protein encoded by this gene is a nucleolar protein that interacts with zinc finger 106 protein. The encoded protein has several of the same characteristics as nucleostemin and may be involved in testis development” (NCBI RefSeq).
TRIM27-like	M5	Tripartite Motif Containing 27: “E3 ubiquitin-protein ligase that mediates ubiquitination of PIK3C2B and inhibits its activity; mediates the formation of ‘Lys-48’-linked polyubiquitin chains; the function inhibits CD4 T-cell activation. . . . May function in male germ cell development” (UniProtKB).
CD164	M5/M4	CD164 Molecule: “This gene encodes a transmembrane sialomucin and cell adhesion molecule that regulates the proliferation, adhesion and migration of hematopoietic progenitor cells. The encoded protein also interacts with the C-X-C chemokine receptor type 4 and may regulate muscle development” (NCBI RefSeq).
CTTNBP2	M4	Cortactin Binding Protein 2: “This gene encodes a protein with six ankyrin repeats and several proline-rich regions. A similar gene in rat interacts with a central regulator of the actin cytoskeleton” (NCBI RefSeq).
FUNDC2	M4	FUN14 Domain Containing 2:
IRAK1BP1	M4	Interleukin 1 Receptor Associated Kinase 1 Binding Protein 1:
AKR1B10	M4/MV	Aldo-Keto Reductase Family 1 Member B10: “Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols” (UniProtKB).

Table S16. (continued on next page)
Gene	Model Name	Notes on Function
"HA1F-like" LOC113988940 and LOC113988940	MV	Class I Histocompatibility Antigen F10 alpha chain: Involved in the presentation of foreign antigens to the immune system.
COL1A1-like	MV	Collagen Type I Alpha 1 Chain: “This gene encodes the pro-alpha1 chains of type I collagen whose triple helix comprises two alpha1 chains and one alpha2 chain. Type I is a fibril-forming collagen found in most connective tissues and is abundant in bone, cornea, dermis and tendon” (NCBI RefSeq).
"CENPB-like" LOC113988940	MV	Centromere Protein B: This gene product is a highly conserved protein that facilitates centromere formation. It is a DNA-binding protein that is derived from transposases of the pogo DNA transposon family” (NCBI RefSeq).
"WSB2-like" LOC113990771	CE	WD Repeat And SOCS Box Containing 2: “The encoded protein contains five WD-repeats spanning most of the protein and an SOCS box in the C-terminus. The SOCS box may act as a bridge between specific substrate-binding domains and E3 ubiquitin protein ligases” (NCBI RefSeq).
FAN1	CE	FANCD2 And FANCI Associated Nuclease 1: “Nuclease required for the repair of DNA interstrand cross-links (ICL) recruited at sites of DNA damage by monoubiquitinated FANCD2. Specifically involved in repair of ICL-induced DNA breaks by being required for efficient homologous recombination, probably in the resolution of homologous recombination intermediates” (UniProtKB).
FABP7	CE	Fatty Acid Binding Protein 7: “F-BABP could be involved in the transport of a so far unknown hydrophobic ligand with potential morphogenic activity during CNS development. It is required for the establishment of the radial glial fiber system in developing brain, a system that is necessary for the migration of immature neurons to establish cortical layers” (UniProtKB).
ATP12A	CE	ATPase H+/K+ Transporting Non-Gastric Alpha2 Subunit: “Catalyzes the hydrolysis of ATP coupled with the exchange of H(+) and K(+) ions across the plasma membrane. Responsible for potassium absorption in various tissues” (UniProtKB).
SECISBP2	CE	Selenocysteine Insertion Sequence-Binding Protein 2: “Binds to the SE CIS element in the 3’-UTR of some mRNAs encoding selenoproteins” (UniProtKB).

Table S16. Functional information for the genes highlighted in Figure 4. Basic database descriptions from UniProtKB and NCBI human RefSeq are included for most genes. Additionally, muscle, avian, and avian-muscle references are cited, where available and appropriate. Model codes are shown in Fig. S4. Genes are not repeated if they also appear in Table S14.
Gene	#NON	#SYN	Total codons	Gene	#NON	#SYN	Total codons
F8	2		1246	TFAM	1		207
CUNH10orf71	2		1532	ANGEL1	1		644
CMYA5	2		3980	NAE1	1		528
LOC113983397	2		293	LOC114002103	1		87
RAD50	2		787	NOP10	1		64
GBE1	1		702	LOC113986238	1		444
CLIP1	1		2184	LRP12	1		855
ZC3H14	1		684	JSRP1	1		281
LOC113997062	2		335	LOC113985373	1		374
PYGM	1		834	LARP1B	1		1009
AB13	1		313	SCAF4	1		1059
CALCOCO2	1		436	PRRC2C	1		1785
MTCL1	1		1673	TMEM184B	1		418
SERINC2	1		437	LMO7	1		1186
QRER1	1		1429	TRPT1	1		95
ANKRD49	1		235	DDX10	1		765
RAD54L2	1		1319	MEPCE	1		412
LDB3	1	1	195	REXO1	1		1182
TANC1	1		1562	SMCHD1	1		155
EMC1	1		986	LOC113982770	1		394
SFSWAP	1		962	ZNF518A	1		416
TRMT2A	1		563	LOC113982172	1		562
N4BP1	1		830	PNPLA8	1		794
PEPD	1	1	494	MFN1	1		740
PRR5L	1		365	ZNF639	1		473
LOC113992976	1	1	571	PCNT	1		1636
LOC113992904	1		192	RINT1	1		764
CLGN	1		618	EC1	1		301
CD59	1		117	TARP1	1		907
PUSL1	1		281	MYPN	1		1336
UHRF1BP1	1		1198	PEX16	1		283
CHKA	1		301	GPAM	1		828
CPA	1		1224	PDK4	1		417
STAT6	1		672	ATG4C	1		458
EIF2AK1	1		594	LOC114002020	1		426
MPP1	1		464	KIDINS220	1		1735
DKC1	1		509	NOSIP	1		110
AOX1	1		1160	ACLY	1		1091
ATG14	1		358	LRIG2	1		395
LOC113989432	1		69	NAF1	1		262
WIPF3	1		303	NUP153	1		1430
LOC113989152	1		39	L2HGHD	1		410
LAMC1	1		1358	RSL1D1	1		425
MIS18BP1	1		442	MRPS9	1		368
ARM68	1		480	HHATL	1		501
CAST	1		548	RSF1	1		898
PTCD3	1		671	FAN1	1		948
ACSS2	1		695	LOC113998311	1		437
ABCB10	1		644	SAMHD1	1		527
HLX	1		193	SEC31B	1	2	1213

Table S17. Genes with snap species-specific amino acids. Genes where *Manacus* and *Ceratopipra* (the snap species) have a separate amino acid from the other four species. The number of non-synonymous and synonymous substitutions are shown (","=zeros).
SI References

1. M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev, Full-length transcriptome assembly from RNA-Seq data without a reference genome, *Nat. Biotechnol.* **29**, 644–652 (2011).

2. R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, *Nucleic Acids Res.* **32**, 1792–1797 (2004).

3. M. Gouy, S. Guindon, O. Gascuel, SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, *Mol. Biol. Evol.* **27**, 221–224 (2009).

4. H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, *Bioinformatics* **27**, 2987–2993 (2011).

5. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner, *Bioinformatics* **29**, 15–21 (2012).

6. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, *Bioinformatics* **30**, 923–930 (2014).

7. C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. Wold, L. Pachter, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, *Nat. Biotechnol.* **28**, 511–515 (2010).

8. I. G. Romero, I. Ruvinsky, Y. Gilad, Comparative studies of gene expression and the evolution of gene regulation, *Nat. Rev. Genet.* **13**, 505–516 (2012).

9. C. W. Dunn, X. Luo, Z. Wu, Phylogenetic analysis of gene expression, *Integr. Comp. Biol.* **53**, 847–856 (2013).

10. X. Gu, Statistical framework for phylogenomic analysis of gene family expression profiles, *Genetics* **167**, 531–542 (2004).

11. T. H. Oakley, Z. Gu, E. Abouheif, N. H. Patel, W.-H. Li, Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data, *Mol. Biol. Evol.* **22**, 40–50 (2004).

12. P. Khaitovich, S. Pääbo, G. Weiss, Toward a neutral evolutionary model of gene expression, *Genetics* **170**, 929–939 (2005).

13. Y. Gilad, A. Oshlack, S. A. Rifkin, Natural selection on gene expression, *Trends Genet.* **22**, 456–461 (2006).

14. R. V. Rohlf, P. Harrigan, R. Nielsen, Modeling gene expression evolution with an extended Ornstein-Uhlenbeck process accounting for within-species variation, *Mol. Biol. Evol.* **31**, 201–211 (2013).

15. R. V. Rohlf, R. Nielsen, Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution, *Syst. Biol.* **64**, 695–708 (2015).

16. X. Gu, Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates, *Brief. Bioinform.* **17**, 243–248 (2015).

17. D. Brawand, M. Soumillon, A. Necsulea, P. Julien, G. Csárdi, P. Harrigan, M. Weier, A. Liechti, A. Aximu-Petri, M. Kircher, F. W. Albert, U. Zeller, P. Khaitovich, F. Grützner, S. Bergmann, R. Nielsen, S. Pääbo, H. Kaessmann, The evolution of gene expression levels in mammalian organs, *Nature* **478**, 343–348 (2011).
18. R. Dean, P. W. Harrison, A. E. Wright, F. Zimmer, J. E. Mank, Positive selection underlies Faster-Z evolution of gene expression in birds, *Mol. Biol. Evol.* **32**, 2646–2656 (2015).

19. C. Liang, J. M. Musser, A. Cloutier, R. O. Prum, G. P. Wagner, Pervasive correlated evolution in gene expression shapes cell and tissue type transcriptomes, *Genome Biol Evol* **10**, 538–552 (2018).

20. M. Pagel, A. Meade, D. Barker, Bayesian estimation of ancestral character states on phylogenies, *Syst. Biol.* **53**, 673–684 (2004).

21. K. P. Schliep, phangorn: phylogenetic analysis in R, *Bioinformatics* **27**, 592–593 (2010).

22. L. J. Revell, phytools: an R package for phylogenetic comparative biology (and other things), *Methods Ecol. Evol.* **3**, 217–223 (2011).

23. F. K. Mendes, J. A. Fuentes-González, J. G. Schraiber, M. W. Hahn, A multispecies coalescent model for quantitative traits, *eLife* **7**, 36482 (2018).

24. S. Bauer, S. Grossmann, M. Vingron, P. N. Robinson, Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration, *Bioinformatics* **24**, 1650–1651 (2008).

25. S. Grossmann, S. Bauer, P. N. Robinson, M. Vingron, Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis, *Bioinformatics* **23**, 3024–3031 (2007).

26. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, *J. R. Statistical Soc B.* **57**, 289–300 (1995).

27. J. B. Pease, B. K. Rosenzweig, Encoding data using biological principles: the Multisample Variant Format for phylogenomics and population genomics, *IEEE/ACM Trans. Comput. Biol. Bioinform.* **15**, 1231–1238 (2018).

28. Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood, *Mol. Biol. Evol.* **24**, 1586–1591 (2007).

29. A. M. Kozlov, D. Darriba, T. Flouri, B. Morel, A. Stamatakis, RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference, *Bioinformatics* **35**, 4453–4455 (2019).

30. K. S. Bostwick, R. O. Prum, High-speed video analysis of wing-snapping in two manakin clades (Pipridae: Aves), *J. Exp. Biol.* **206**, 3693–3706 (2003).

31. W. R. Lindsay, J. T. Houck, C. E. Giuliano, L. B. Day, Acrobatic courtship display coevolves with brain size in manakins (Pipridae), *Brain. Behav. Evol.* **85**, 29–36 (2015).

32. J. Barske, B. A. Schlinger, L. Fusani, The presence of a female influences courtship performance of male manakins, *The Auk* **132**, 594–603 (2015).

33. M. J. Fuxjager, F. Goller, A. Dirkse, G. D. Sanin, S. Garcia, Select forelimb muscles have evolved superfast contractile speed to support acrobatic social displays, *eLife* **5**, e13544 (2016).

34. E. R. Donovan, B. K. Keeney, E. Kung, S. Makan, J. M. Wild, D. L. Altshuler, Muscle activation patterns and motor anatomy of Anna’s Hummingbirds *Calypte anna* and Zebra Finches *Taeniopygia guttata*, *Physiol. Biochem. Zool.* **86**, 27–46 (2013).

35. http://www.beautyofbirds.com, Retrieved July 25 2021.

36. C. J. Pennycuick, Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks, *J. Exp. Biol.* **204**, 3283–3294 (2001).

37. http://www.oiseaux.net, Retrieved July 25 2021.

38. W. W. Cochran, M. S. Bowlin, M. Wikelski, Wingbeat frequency and flap-pause ratio during natural migratory flight in thrushes, *Integr. Comp. Biol.* **48**, 134–151 (2008).
39. F. Liechti, L. Bruderer, Wingbeat frequency of barn swallows and house martins: a comparison between free flight and wind tunnel experiments, *J. Exp. Biol.* 205, 2461–2467 (2002).

40. A. Jacoszek, A. Pollak, R. Płoski, M. Oldak, Advances in genetic hearing loss: CIB2 gene, *Eur. Arch. Otorhinolaryngol.* 274, 1791–1795 (2016).

41. A. Tripathy, L. Xu, G. Mann, G. Meissner, Calmodulin activation and inhibition of skeletal muscle Ca\(^{2+}\) release channel (ryanodine receptor), *Biophys. J.* 69, 106–119 (1995).

42. K. M. Reed, K. M. Mendoza, B. Juneja, S. C. Fahrenkrug, S. Velleman, W. Chiang, G. M. Strasburg, Characterization of expressed sequence tags from turkey skeletal muscle, *Anim. Genet.* 39, 635–644 (2008).

43. T. Xing, X. Zhao, P. Wang, H. Chen, X. Xu, G. Zhou, Different oxidative status and expression of calcium channel components in stress-induced dysfunctional chicken muscle, *J. Anim. Sci.* 95, 1565–1573 (2017).

44. J. T. Lanner, D. K. Georgiou, A. D. Joshi, S. L. Hamilton, Ryanodine receptors: structure, expression, molecular details, and function in calcium release, *Csh Perspect Biol* 2, a003996–a003996 (2010).

45. M. Morimoto, H. Waller-Evans, Z. Ammous, X. Song, K. A. Strauss, D. Pehlivan, C. Gonzaga-Jauregui, E. G. Puffenberger, C. R. Holst, E. Karaca, K. W. Brigatti, E. Maguire, Z. H. Coban-Akdemir, A. Amagata, C. C. Lau, X. Chepa-Lotrea, E. Macnamara, T. Tos, S. Isikay, M. Nehrebecky, J. D. Overton, M. Klein, T. C. Markello, J. E. Posey, D. R. Adams, E. Lloyd-Evans, J. R. Lupski, W. A. Gahl, M. C. V. Malicdan, Bi-allelic CCDC47 variants cause a disorder characterized by woolly hair, liver dysfunction, dysmorphic features, and global developmental delay, *Am. J. Hum. Genet.* 103, 794–807 (2018).

46. M. Yoshida, S. Minamisawa, M. Shimura, S. Komazaki, H. Kume, M. Zhang, K. Matsumura, M. Nishi, M. Saito, Y. Saeki, Y. Ishikawa, T. Yanagisawa, H. Takeshima, Impaired Ca\(^{2+}\) store functions in skeletal and cardiac muscle cells from sarcalumenin-deficient mice, *J. Biol. Chem.* 280, 3500–3506 (2005).

47. G. Tian, Y. Zhou, D. Hajkova, M. Miyagi, A. Dinculescu, W. W. Hauswirth, K. Palczewski, R. Geng, K. N. Alagramam, J. Isosomppi, E.-M. Sankila, J. G. Flannery, Y. Imanishi, Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain, *J. Biol. Chem.* 284, 18980–18993 (2009).

48. J. M. Brewer, J. K. Wunderlich, D.-H. Kim, M. Y. Carr, G. G. Beach, W. L. Ragland, Avian thymic hormone (ATH) is a parvalbumin, *Biochem. Biophys. Res. Commun.* 160, 1155–1161 (1989).

49. M. J. Fuxjager, J. Barske, S. Du, L. B. Day, B. A. Schlinger, Androgens regulate gene expression in avian skeletal muscles, *PLoS ONE* 7, e51482 (2012).

50. M. C. Meienhofer, J. L. Lagrange, D. Cottreau, G. Lenoir, J. C. Dreyfus, A. Kahn, Phosphofructokinase in human blood cells, *Blood* 54, 389–400 (1979).

51. C. G. Armstrong, G. J. Browne, P. Cohen, P. T. W. Cohen, PPP1R6, a novel member of the family of glycogen-targeting subunits of protein phosphatase 1, *FEBS Letters* 418, 210–214 (1997).

52. H. Staiger, K. Staiger, C. Haas, M. Weissier, F. Machicao, H.-U. Häring, Fatty acid-induced differential regulation of the genes encoding peroxisome proliferator-activated receptor-\(\beta\) coactivator-1\(\alpha\) and -1\(\beta\) in human skeletal muscle cells that have been differentiated in vitro, *Diabetologia* 48, 2115–2118 (2005).

53. M. A. Gazda, P. M. Araújo, R. J. Lopes, M. B. Toomey, P. Andrade, S. Afonso, C. Marques, L. Nunes, P. Pereira, S. Trigo, G. E. Hill, J. C. Corbo, M. Carneiro, A genetic mechanism for sexual dichromatism in birds, *Science* 368, 1270–1274 (2020).
54. Y. Yi, L. Wang, S. Li, B. Li, C. Liu, L. Hong, Effects of mechanical trauma on the differentiation and ArfGAP3 expression of C2C12 myoblast and mouse levator ani muscle, *Int. Urogynecol. J.* 31, 1913–1924 (2020).

55. S. Horke, I. Witte, P. Wilgenbus, S. Altenhöfer, M. Krüger, H. Li, U. Förstermann, Protective effect of paroxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homeostasis, *Biochem. J.* 416, 395–405 (2008).

56. A. M. Hoggatt, J.-R. Kim, V. Ustiyan, X. Ren, T. V. Kalin, V. V. Kalinichenko, B. P. Herring, The transcription factor FoxF1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells, *J. Biol. Chem.* 288, 28477–28487 (2013).

57. M. H. Laughlin, J. Padilla, N. T. Jenkins, P. K. Thorne, R. S. Rector, S. Akter, J. W. Davis, Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats, *J. Appl. Physiol.* 119, 583–603 (2015).

58. J. A. Hartiary, Y. Han, Q. Jia, J. R. Hilsers, P. Huang, J. Gukasyan, W. S. Schwartzman, Z. Cai, S. Biswas, D.-A. Trégouët, N. L. Smith, M. Seldin, C. Pan, M. Mehrabian, A. J. Luis, P. Bazeley, Y. V. Sun, C. Liu, A. A. Quyyumi, M. Scholz, J. Thiery, G. E. Delgado, M. E. Kleber, W. März, L. J. Howe, F. W. Asselbergs, M. van Vught, G. J. Vlauchojannis, R. S. Patel, L.-P. Lyttikäinen, M. Kähönen, T. Lehtimäki, T. V. M. Nieminen, P. Kuukasjärvi, J. A. Laurikka, X. Chang, C.-K. Heng, R. Jiang, W. E. Kraus, E. R. Hauser, J. F. Ferguson, M. P. Reilly, K. Ito, S. Koyama, Y. Kamatani, L. K. Komuro, C. E. Romanoski, M. D. Khan, A. W. Turner, C. L. Miller, R. Aherrahrou, M. Civelek, L. Ma, J. L. M. Björkegren, S. R. Kumar, W. H. W. Tang, S. L. Hazen, H. Allayee, Genome-wide analysis identifies novel susceptibility loci for myocardial infarction, *Eur. Heart J.* 42, 919–933 (2021).

59. V. Guglielmi, M. Marini, É. F. Masson, M. Malatesta, D. Forget, G. Tomelleri, B. Coulombe, G. Vattemi, Abnormal expression of RNA polymerase II-associated proteins in muscle of patients with myofibrillar myopathies, *Histopathology* 67, 859–865 (2015).

60. A. M. Lone, M. Leidl, A. K. McFedries, J. W. Horner, J. Creemers, A. Saghatelian, Deletion of Prepl causes growth impairment and hypotonia in mice, *PLoS ONE* 9, e89160 (2014).

61. L. Régal, X.-M. Shen, D. Selcen, C. Verhille, S. Meulemans, J. W. M. Creemers, A. G. Engel, PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome, *Neurology* 82, 1254–1260 (2014).

62. K. Kamizaki, R. Doi, M. Hayashi, T. Saji, M. Kanagawa, T. Toda, S.-i. Fukada, H.-Y. H. Ho, M. E. Greenberg, M. Endo, Y. Minami, The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle, *J. Biol. Chem.* 292, 15939–15951 (2017).

63. G. Bélanger, M. A. Stocksley, M. Vandromme, L. Schaeffer, L. Furic, L. DesGroseillers, B. J. Jasmin, Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction, *J. Neurochem.* 86, 669–677 (2003).

64. J. Wang, J. Fa, P. Wang, X. Jia, H. Peng, J. Chen, Y. Wang, C. Wang, Q. Chen, X. Tu, Q. K. Wang, C. Xu, NINJ2 - a novel regulator of endothelial inflammation and activation, *Cell. Signal.* 35, 231–241 (2017).

65. F. Islam, V. Gopalan, A. K.-y. Lam, RETREG1 (FAM134B): A new player in human diseases: 15 years after the discovery in cancer, *J. Cell. Physiol.* 233, 4479–4489 (2018).

66. J. R. Liang, E. Lingeman, T. Luong, S. Ahmed, M. Muhar, T. Nguyen, J. A. Olzmann, J. E. Corn, A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation, *Cell* 180, 1160–1177 (2020).
67. D. Avci, N. S. Malchus, R. Heidasch, H. Lorenz, K. Richter, M. Neßling, M. K. Lemberg, The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins, *J. Biol. Chem.*, 294, 2786–5585 (2019).

68. D. A. Braun, J. Rao, G. Mollet, D. Schapiro, M.-C. Daugeron, W. Tan, O. Gribouval, O. Boyer, P. Revy, T. Jobst-Schwan, J. M. Schmidt, J. A. Lawson, D. Schanzke, S. Ashraf, J. F. P. Ullmann, C. A. Hoogstraten, N. Boddart, B. Collinet, G. Martin, D. Liger, S. Lovric, M. Furlano, I. C. Guerrera, O. Sanchez-Ferras, J. F. Hu, A.-C. Boschat, S. Sanquer, B. Menten, S. Vergult, N. D. Rocker, M. Airik, T. Hermle, S. Shril, E. Widmeier, H. Y. Gee, W.-I. Choi, C. E. Sadowski, W. L. Pabst, J. K. Warejko, A. Daga, T. Basta, V. Matejas, K. Scharmann, S. D. Kienast, B. Behnam, B. Beeson, A. Begtrup, M. Bruce, G.-S. Ch’ng, S.-P. Lin, J.-H. Chang, C.-H. Chen, M. T. Cho, P. M. Gaffney, P. E. Gipson, C.-H. Hsu, J. A. Kari, Y.-Y. Ke, C. Kiraly-Borri, W.-m. Lai, E. Lemyre, R. O. Littlejohn, A. Masri, M. Moghtaderi, K. Nakamura, F. Ozaltin, M. Praet, C. Prasad, A. Prytula, E. R. Roeder, P. Rump, R. E. Schnur, T. Shihara, M. D. Sinha, N. A. Soliman, K. Soulam, D. A. Sweetser, W.-H. Tsai, J.-D. Tsai, R. Topaloglu, U. Vester, D. H. Viskochil, N. Vatanavicharn, J. L. Wexler, K. J. Wierenga, M. T. Wolf, S.-N. Wong, S. A. Leidel, G. Truglio, P. C. Dedon, A. Poduri, S. Mane, R. P. Lifton, M. Bouchard, B. Behnam, B. Beeson, A. Begtrup, M. Bruce, G.-S. Ch’ng, S.-P. Lin, J.-H. Chang, C.-H. Chen, M. T. Cho, P. M. Gaffney, P. E. Gipson, C.-H. Hsu, J. A. Kari, Y.-Y. Ke, C. Kiraly-Borri, W.-m. Lai, E. Lemyre, R. O. Littlejohn, A. Masri, M. Moghtaderi, K. Nakamura, F. Ozaltin, M. Praet, C. Prasad, A. Prytula, E. R. Roeder, P. Rump, R. E. Schnur, T. Shihara, M. D. Sinha, N. A. Soliman, K. Soulam, D. A. Sweetser, W.-H. Tsai, J.-D. Tsai, R. Topaloglu, U. Vester, D. H. Viskochil, N. Vatanavicharn, J. L. Wexler, K. J. Wierenga, M. T. Wolf, S.-N. Wong, S. A. Leidel, G. Truglio, P. C. Dedon, A. Poduri, S. Mane, R. P. Lifton, M. Bouchard, B. Behnam, B. Beeson, A. Begtrup, M. Bruce, G.-S. Ch’ng, S.-P. Lin, J.-H. Chang, C.-H. Chen, M. T. Cho, P. M. Gaffney, P. E. Gipson, C.-H. Hsu, J. A. Kari, Y.-Y. Ke, C. Kiraly-Borri, W.-m. Lai, E. Lemyre, R. O. Littlejohn, A. Masri, M. Moghtaderi, K. Nakamura, F. Ozaltin, M. Praet, C. Prasad, A. Prytula, E. R. Roeder, P. Rump, R. E. Schnur, T. Shihara, M. D. Sinha, N. A. Soliman, K. Soulam, D. A. Sweetser, W.-H. Tsai, J.-D. Tsai, R. Topaloglu, U. Vester, D. H. Viskochil, N. Vatanavicharn, J. L. Wexler, K. J. Wierenga, M. T. Wolf, S.-N. Wong, S. A. Leidel, G. Truglio, P. C. Dedon, A. Poduri, S. Mane, R. P. Lifton, M. Bouchard, P. Kannu, D. Chitayat, D. Magen, B. Callewaert, H. van Tilburgh, M. Zenker, C. Antignac, F. Hildebrandt, Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly, *Nat. Genet.*, 49, 1529–1538 (2017).

69. C. Polge, R. Leulmi, M. Jarzaguet, A. Claustre, L. Combaret, D. Béchet, A.-E. Heng, D. Attai, D. Taillandier, UBE2B is implicated in myofibrillar protein loss in catabolic C2C12 myotubes, *J. Cachexia, Sarcopenia and Muscle*, 7, 377–387 (2015).

70. C. Barbe, F. Bray, M. Gueugneau, S. Devassine, P. Lause, C. Tokarski, C. Rolando, J.-P. Thissen, Comparative proteomic and transcriptomic analysis of follistatin-induced skeletal muscle hypertrophy, *J. Proteome Res.*, 16, 3477–3490 (2017).

71. S. O. A. Oluwole, Y. Yao, S. Conradi, K. Kristensson, H. Karlsson, Elevated levels of transcripts encoding a human retroviral envelope protein (syncytin) in muscles from patients with motor neuron disease, *Amyotroph. Lateral Scler.*, 8, 67–72 (2007).

72. B. Bjerregard, I. Ziolkiewicz, A. Schulz, L.-I. Larsson, Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin, *Cell Tissue Res.*, 357, 355–362 (2014).

73. A.-S. Graae, N. Grarup, R. Ribel-Madsen, S. H. Lystbæk, T. Boesgaard, H. Staiger, A. Fritsche, N. Wellner, K. Sulek, M. B. Backe, S. Chubanava, C. Prats, A. K. Serup, J. B. Birk, J. Dubail, L. Gilberg, S. G. Vienberg, A. Nykjær, B. Kiens, J. F. P. Wojtaszewski, S. Larsen, S. S. Apte, H.-U. Häring, A. Vaag, B. Zethelius, O. Pedersen, J. T. Treebak, T. Hansen, B. Holst, ADAMTS9 regulates skeletal muscle insulin sensitivity through extracellular matrix alterations, *Diabetes*, 68, 502–514 (2019).

74. A. G. Saini, S. Pandey, Cryptex and other startle syndromes, *J. Neurol. Sci.*, 416, 117051 (2020).

75. B. S. Desai, A. Chadha, B. Cook, The *stum* gene is essential for mechanical sensing in proprioceptive neurons, *Science*, 343, 1256–1259 (2014).

76. E. Muhammad, O. Reish, Y. Ohno, T. Scheetz, A. DeLuca, C. Searby, M. Regev, L. Benyamini, Y. Fellig, A. Kihara, V. C. Sheffield, R. Parvari, Congenital myopathy is caused by mutation of HACD1, *Hum. Mol. Genet.*, 22, 5229–5236 (2013).

77. J. Blondelle, Y. Ohno, V. Gache, S. Guyot, S. Storck, N. Blanchard-Gutton, I. Barthélémy, G. Walmsley, A. Rahier, S. Gadin, M. Maurer, L. Guillaud, A. Prola, A. Ferry, G. Aubin-Houzelstein, J. Demarquoy, F. Relaix, R. J. Piercy, S. Blot, A. Kihara, L. Tiret, F. Pilot-Storck, HACD1, a regulator of membrane composition and fluidity, promotes myofibrous fusion and skeletal muscle growth, *J. Mol. Cell Biol.*, 7, 429–440 (2015).
78. L. E. Pascal, J. Ai, K. Z. Masoodi, Y. Wang, D. Wang, K. Eisermann, L. H. Rigatti, K. J. O’Malley, H. M. Ma, X. Wang, J. A. Dar, A. V. Parwani, B. W. Simons, M. M. Ittman, L. Li, B. J. Davies, Z. Wang, Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice, *PLoS ONE* **8**, e79542 (2013).

79. Z. Wang, R. Tufts, R. Haleem, X. Cai, Genes regulated by androgen in the rat ventral prostate, *Proc. Natl. Acad. Sci. U. S. A.* **94**, 12999–13004 (1997).

80. K. Coffey, L. Rogerson, C. Ryan-Munden, D. Alkharafi, J. Stockley, R. Heer, K. Sahadevan, D. O’Neill, D. Jones, S. Darby, P. Staller, A. Mantilla, L. Gaughan, C. N. Robson, The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover, *Nucleic Acids Res.* **41**, 4433–4446 (2013).

81. N. Y. Feng, A. Katz, L. B. Day, J. Barske, B. A. Schlinger, Limb muscles are androgen targets in an acrobatic tropical bird, *Endocrinology* **151**, 1042–1049 (2010).

82. M. J. Fuxjager, B. A. Schlinger, Perspectives on the evolution of animal dancing: a case study of manakins, *Curr. Op. Behav. Sci.* **6**, 7–12 (2015).

83. M. J. Fuxjager, J. Eaton, W. R. Lindsay, L. H. Salwiczek, M. A. Rensel, J. Barske, L. Sorenson, L. B. Day, B. A. Schlinger, Evolutionary patterns of adaptive acrobatics and physical performance predict expression profiles of androgen receptor—but not oestrogen receptor—in the forelimb musculature, *Funct Ecol* **29**, 1197–1208 (2015).

84. S. Majumdar, A. Singh, D. C. Rio, The human *THAP9* gene encodes an active P-element DNA transposase, *Science* **339**, 446–448 (2013).