Abstract

In this article, the effect of latex polymer modification on improving the impact resistance of cement pastes has been investigated. The control cement mixture was proposed with water-cement ratio of 0.5. Based on that, the cement pastes were modified by partially substituting water content with Styrene-Butadiene Rubber (SBR) latex. The mixture ratios were prepared by adjusting the various SBR latex dosages from 5 wt % to 20 wt % of water content. The specimens of modified pastes in the hardened state were tested by Charpy impact experiment and compared to the pure ones after 7, 14, 28, 45, and 60 days of curing. The observation results showed that there is a remarkable improvement in the impact resistance of modified cement pastes. Further, the optimal SBR latex dosage of 10% was proposed.

Key words: Impact Resistance, Charpy Experiment, Styrene-Butadiene Rubber Latex, Polymer Modified Cement

요 지

본 연구의 목적은 시멘트 페이지스트의 내충격성에 라텍스 폴리머의 첨가량이 미치는 영향을 조사했다. 시멘트 혼합물은 물 시멘트 비 0.5로 제작되었다. 시멘트 페이지스트는 스티렌-부타디엔 고무 (SBR) 라텍스로 부분적으로 물을 대체하여 제작되었다. 혼합비는 SBR 라텍스 투여량 5%에서 20%의 중량비로 물을 조절하여 제조 하였다. 강화 상태의 SBR 개질 페이지스트의 시편은 사르피 충격 실험에 의해 시험되었고 양생 7일, 14일, 28일, 45일 및 60일 후에 일반 시멘트 시편과 내충격성이 비교되었다. 실험결과는 SBR 개질 시멘트 페이지스트의 내충격성이 현저하게 개선되었음을 보여 주었다. 또한, 내충격성 향상을 위해 SBR 라텍스 용량 10 %가 최적임을 보였다.

핵심용어: 내충격성, 사르피 실험, 스티렌-부타디엔 고무, 폴리머 개질 시멘트
properties of concrete such as compressive strength, flexural and tensile strength as well as good performance in enhancing durability, anti-corrosive, and low permeability. Generally, there are three types of concrete that made by adding polymer: polymer impregnated concrete (PIC), polymer concrete (PC), and polymer modified concrete (PMC) (ACI 548.1R, 2009). Among them, polymer modified concrete have been considered interesting materials because the process to use them is very similar to the ordinary ones. The polymer plays a role as the admixture in the concrete mixture, a part of cement binder (less than 20% by weight) was replaced by an adequate amount of polymer for remaining the cost (Fowler, 1999). According to the report of ACI Committee (548.3R, 2009), only five major commercial polymers were widely used for modification of cementitious mixtures and the prices were arranged from highest to lowest as the following: Acrylic Polymer (AP), Styrene Acrylic (SA), Styrene-Butadiene Rubber (SBR), Ethylene Vinyl Acetate (EVA), and Polyvinyl Acetate (PVAc). Each polymer maybe exists in either dispersible (liquid) form or re-dispersible (powdery) form. They have strengths as well as weaknesses under certain conditions and imparts different properties when used as an additive to or modifier of cement mixtures. Also, for each type of latex, particularly copolymer latexes, many variations give different properties to hardened mortar and concrete. If the appropriate polymer is selected and the dosages are reasonably proposed, it helps to improve the concrete properties significantly. Latex is the form of a colloidal suspension polymer in water, for instance, Styrene-Butadiene Rubber (SBR), which is the copolymerized product of two monomers: Styrene and Butadiene, have commonly used in the construction field (Ohama, 1995).

There are many studies mentioned in the influence of SBR latex, which is used as an admixture for the modified mortar and concrete. Shaker et al. (1997) researched the durability of Styrene-Butadiene rubber latex modified concrete (SBR-LMC). The results showed the improvement of water penetration, absorption, and sorptivity properties; in addition, the abrasion resistance, as well as the corrosion resistance in chloride environment were higher than conventional concrete. Using scanning electron microscope (SEM) method, they concluded latex modified concrete have a dense microstructure and excellent bonding among the internal elements. Rossignolo et al. (2002, 2004) proposed using SBR latex for lightweight aggregate concrete (LWAC). The modified LWAC provide with significant improvement in the tensile and flexural strengths; the better corrosion resistance, effective protection against the attack of acid, and the water absorption decrease when compared to unmodified LWAC. Huang et al. (2010) investigated the effect of the SBR latex on polymer-modified pervious concrete (PMPC) by adding fiber and natural sand with the various dimension. The results showed that if latex and sand were both added, the porosity and permeability would decrease, while the compressive strength would improve; and if the latex was only added, the split tensile strength would increase. Besides, the flexural strength and anti-freezing ability of PMPC were improved when the SBR latex dosages were between 10% and 15% through the research of Xiao et al. (2018). Li et al. (2010) indicated that the optimal SBR latex content was 5% by weight to improve the flexural strength and the pore distribution of the steel fiber-reinforced concretes, with the binder of the mixture was used include of cement, silica fume and fly ash. Blikshma et al. (2010) observed mechanical properties and permeability characteristics of five various grades of concrete from M20 to M60 with polymer dosages from 5% to 10% by the weight of cement for each grade. In general, the overall efficiency of the concrete is improved with the addition of SBR latex, on all the grades were tested. However, the affecting of polymer on the performance of Normal Strength Concrete (NSC) is more significant than High Strength Concrete (HSC). Only considering on HSC was designed for C50/C60, Dogan and Bideci (2016) determined that the replacement of SBR latex for cement by 1% weight will lead to the positive efficiency for the strength characteristics.

On the other hand, Bureau et al. (2001) carried out three-point bending and compression tests on Styrene-Butadiene Rubber latex modified mortars (SBR-LMM) under strain controlling to get the softening branch of the stress-strain curve. The results show that initial stiffness and the maximum stress decrease when using high polymer dosage, the optimal ratio of the solid polymer concentration to cement about 7.5-10%. Barluenga and Hernandez-Olivares (2004) researched on the correlations among dosage parameters, the variation of the physical as well as the mechanical characteristic of SBR-LMM in the fresh and hardened states, therefore, the approval of linear approximations will depend on the ratio of water-to-cement and percentage of latex. On the other aspect, dynamic modulus and the dielectric loss were evaluated based on dynamic compression tests. The properties of the cement mortar can be estimated by using nondestructive test methods was a suggestion. Wang et al. (2005) investigated the flexural and compressive strength
and apparent bulk density of SBR-LMM under different curing conditions. They can be approximated by a linear relationship and slightly increase when SBR/cement ratio is less than 10%. The bending structure between the polymer and hydrate cement membrane fully develops until P/C grade is 10%. The properties of SBR-LMM were influenced by the polymer membrane, the cement hydrates, and the bonding structure between the organic and inorganic phases. Yang et al. (2009) evaluated the chloride permeability and microstructure of SBR-LMM by using physical testing methods. The measurements demonstrate that the combination of SBR latex improved the chloride permeability, to alter the morphology and microstructure of the mortar. In addition, the combination of SBR latex in cement mortar slightly reduce Portlandite and carbonation content. And, the polyester fiber was blended inside SBR-LMM to overcome the high brittleness of ordinary mortar. Deng et al. (2016) observed polymer membrane can activate polyester fiber and the cement paste for tight connecting and reducing the micro and macro defects in cement mortar. The compound reinforcement enhanced the results of modification in workability, mechanical performance, and durability. Hwang and Ko (2008) used or recycled waste concrete or artificial marble waste for the role of the fine aggregate. As a result, the presence of SBR gave the increase of the air content as well as the decreasing of the compressive strength.

Meanwhile, the cement performs as the binder and is also the weakest phase in the structure of the concrete when be subjected to loads and external environment agents, it decides the strength of concrete distinctly. There have been some previous studies on the properties of SBR latex-modified paste (SBR-LMP). Wang et al. (2006) used a series of microstructural analyses, including differential scanning calorimetry (DSC) analysis, X-ray diffraction (XRD), and 27Al and 29Si solid-state nuclear magnetic resonance (NMR) spectrum method to research the effect of SBR on cement hydrates Ca(OH)$_2$, ettringite, C$_4$AH$_{13}$, calcium-silicate-hydrate (C–S–H gel) and the degree of cement hydration by means of several measure methods. Yao and Ge (2012) evaluated the influence of different contents of SBR (0%, 5%, 10%, 15%, and 20% of cement) on the compressive strength, flexural strength, elastic modulus, and anti-permeability of the paste, mortar, and concrete with the same water-to-cement ratio. Experimental results showed that their properties changed in the same way with the combination of the SBR latex. Wang et al. (2011) established the correlation between the dynamic elastic modulus of mortars with the indentation modulus of cement pastes, the mortar strengths with the hardness of the cement pastes based on nanoindentation technique and standard methods with the change of SBR latex content. Accordingly, SBR latex/cement ratio of 8–10% were found as the optimal polymer content in practical applications.

For enhancing the safety of the structure, the mechanical properties of material should be interested. In particular, for brittle materials like concrete, the impact strength (toughness) is indispensable parameter because of its sensibility and vulnerability. The brittle material is not much deformed during the breaking process and only low energy absorption. The impact test is the measurement of the material’s response to sudden collisions or strong impulses. Therein, the Charpy testing has been seen as the most popular inspection methods, which is a fast, easy and economical to determine the result (Dowling, 2013). The substance of this experiment is a dynamic three-point bending test. The broken specimen takes place under fast loading conditions to determine energy absorbed from the material failure. Currently, this method is used in many industries to evaluate the toughness of materials; It has been conducted and standardized by ASTM and ISO for metals testing (ISO 148, 2016; ASTM E23, 2018) and plastics testing (ISO 179, 2010; ASTM D6110, 2018). Additionally, this experiment was applied on polymers (Francois and Pineau, 2002) or there were many studies using the Charpy impact test for composite materials testing (Hufenbach et al., 2008; Ghasemnejad et al., 2010; Hong et al., 2013). Meanwhile, the hardened cement pastes is a common material in construction, its impact resistance was only evaluated in the study by Nguyen and Kim (2018). Therefore, the major concern of the current study is to investigate the influence of SBR latex on the impact resistance of cement pastes by Charpy impact experimental. The optimal dosages of SBR latex are proposed with the purpose of keeping the compressive strength at 28 days stay unchanged.

2. Specimen Preparation and Testing Methods

2.1 Materials

In this research, the ordinary Portland cement is used. Styrene-Butadiene Rubber (SBR) latex in emulsion form (a commercial polymer product) has basic properties as presented in Table 1. Tap water is employed for all of mixtures and during the process of curing.
Properties Description

Appearance white
Total solid content [TSC, (%)] 47
pH value 9-11
Density (kg/m\(^3\)) 1090
Viscosity (cps) Below 500
Average Particle Size (Angstroms) 1600
Glass Transition Temperatures \([T_g, \, (^\circC)]\) 5
Minimum Film-formation Temperature \([MFFT, \, (^\circC)]\) 5

Properties	Description
Appearance	white
Total solid content [TSC, (%)]	47
pH value	9-11
Density (kg/m\(^3\))	1090
Viscosity (cps)	Below 500
Average Particle Size	1600
Glass Transition Temperatures \([T_g, \, (^\circC)]\)	5
Minimum Film-formation Temperature \([MFFT, \, (^\circC)]\)	5

2.2 Mix Proportions

The intention of mixture proportion used in this study is to have the same compressive strength at 28 days for the hardened cement pastes with different SBR Latex dosage. Therefore, the water contents in mixture proportion decrease by the increase of SBR Latex contents. Based on trial mixtures, the amount of reduction water contents was determined by Eq. (1) and Eq. (2) for the hardened cement paste to have the same compressive strength at 28 days.

\[
P = a W_p
\]
\[
W_d = W_p - 2P
\]

Where, \(a\) (%) is the ratio of SBR latex weight, \(P\) to the weight of water, \(W_p\) in the control cement pastes mixture, so called as “latex ratio” in this study. Using Eq. (2), the weight of water, \(W_A\) for the latex modified cement paste is calculated. In this study, \(W_p/C\) ratio of 0.5 is used. The cement pastes with SBR were prepared with various latex ratios from 0% to 20%. The mixture proportion detailing of eight pastes are summarized in Table 2.

Table 1. Physical Parameters of Styrene-Butadiene Rubber Latex

Properties	Description
Appearance	white
Total solid content [TSC, (%)]	47
pH value	9-11
Density (kg/m\(^3\))	1090
Viscosity (cps)	Below 500
Average Particle Size	1600
Glass Transition Temperatures \([T_g, \, (^\circC)]\)	5
Minimum Film-formation Temperature	5

2.3 Experiment Process and Method

The specimens for Charpy experiment were proposed as bar shape, with the width and height of 10(+-)5mm and the length of 50(+-)1mm as shown in Fig. 1 (a). The cube specimens (50x50x50mm) for the compressive strength tests were prepared.

The cement pastes were blended by the apparatus at the control mode based on ASTM C305 (2014). The fresh pastes were cast in molds. After 24hours, the hardened specimens were de-molded and immersed into the water tank until the required time for experiments. Casting and storage processes were carried out in accordance with the technical requirement of ASTM C192/C192M (2016) and ASTM C511 (2013), respectively.

The compressive strength of hardened cement pastes with SBR was measured following as ASTM C109/C109M (2016) at the curing time of 28 days. The average value of the compressive strengths for six specimens was reported.

Table 2. Details of Mix Proportions of Modified Cement Pastes

Description	Cement pastes mixtures [kg/m\(^3\)]
Latex ratio \([a, \, (%)]\)	0 5 8 10 12 15 18 20
Cement \((C)\)	1221 1263 1290 1308 1327 1356 1387 1408
SBR Latex \((P)\)	0 32 51 65 80 102 125 141
Water content \((W_p)\)	611 568 541 523 504 475 444 422
Solid content in latex \((P_s)\)	0 15 24 31 38 48 59 66
Water content in latex \((P_w)\)	0 17 27 34 42 54 66 75
\(P_s/C\) [%]	0 1.18 1.88 2.35 2.82 3.53 4.23 4.7
\((W_d + P_w)/C\)	0.5 0.46 0.44 0.43 0.41 0.39 0.37 0.35
Compressive strength at 28 days [MPa]	49.4 45.78 46.4 47.6 46.53 45.33 44.51 46.84

![Fig. 1. The Dimension of a Specimen for Charpy Impact Test](image-url)
Meanwhile, the impact resistance was measured at the curing time of 7 days, 14 days, 28 days, 45 days and 60 days. The Charpy experiments were conducted according to ASTM D6110 (2018). A machine having the hammer weight of 0.7 kg and the impact speed of 2.92 m/s at the hitting point was used for the Charpy experiments as shown in Fig. 2. The V-notch with the depth of 2+0.3 mm was created to induce the failure surface at the middle of specimens as shown in Fig. 1 (a).

The two types of setting for anvil distance, L of 20 mm and 40 mm were used to introduce shear failure and flexural failure of the specimens, respectively. The impact resistance is determined by dividing the used energy for breaking specimen by the area of failure surface at the notch of specimen. The average value of Charpy results of 20 specimens was reported for each cement paste mixture and curing time.

![Image](image-url)

Fig. 2. The Charpy Impact Instrument

3. Results and Discussion

The results from the compressive strength test of cement pastes with SBR for the different latex ratios were presented in Table 2. It indicates that the compressive strengths at 28 days for all SBR modified specimens show similar values as expected. The impact resistances of cement pastes with SBR with respect to the latex ratio were shown in Fig. 3 and Fig. 4 for the different anvil distance of 40 mm and 20 mm respectively.

In Fig. 3 for the observation for Charpy experiments with the anvil distance of 40 mm, the impact resistances of cement pastes with SBR having the latex ratio from 5% to 18% were not shown large differences. Compared to the control specimen, these impact resistance increased by 5% to 10% depending on the curing time and latex ratio.

![Image](image-url)

Fig. 3. Effect of SBR Latex Ratio to the Impact Resistance of Cement Pastes, L=40 mm

In Fig. 4, it was shown that the impact resistance of cement pastes with SBR increased in accordance with the increase of the latex ratio up to 10%. After the latex ratio over 10%, the impact resistance decreased with the increase of latex ratio. The most improvement of the impact resistance was approximately 70% for the cement paste with latex ratio of 10% at the curing time of 7 days. The impact resistance of cement pastes with SBR was improved efficiently. It was also consistent with the research of Ohama et al. (1964).

As the impact force to make shear failure is higher than that to make flexural failure, the difference of impact resistance for cement pastes with respect to latex ratio is more distinguished for the Charpy experiment observations with the anvil distance of 20 mm in Fig. 4 than those with the anvil distance of 40 mm in Fig. 3.

![Image](image-url)

Fig. 4. Effect of SBR Latex Ratio to the Impact Resistance of Cement Pastes, L=20 mm

Fig. 5 presents the development of impact resistance of cement pastes with SBR according to the curing time. The impact resistance of cement pastes without SBR increased 50% for 60 days. The amount of impact resistance increase
is 9% for the cement pastes with latex ratio of 5% and 8%.

After 28 days, the increase rate of impact resistance for all specimens decreased. The amounts of impact resistance increase for all specimens are 2% and 3% respectively at 45 days and 60 days compared to that at 28 days.

As shown in Fig. 5, the cement pastes with latex ratio of 10% attain the highest impact resistance from 7 day to 60 day of curing time.

Fig. 5. Impact Resistance of Cement Pastes with Different Curing Time, L=20 mm

Consequently, the latex modified cement pastes are tougher than the unmodified cement pastes because SBR latex makes the connection between the cement particles become stronger (Ohama, 1995). As the impact resistance is related to toughness of materials, the impact resistance of cement pastes can be improved by adding SBR latex. The optimal dosage of 10% latex ratio is proposed from the experiments.

4. Conclusion

This research concentrated on the effective utilization of Styrene-Butadiene Rubber (SBR) latex to improve the impact resistance of the hardened cement pastes. Conclusions based on the observations are as follows:

(1) The SBR latex additive help to enhance the impact resistance of cement pastes.
(2) The use of SBR latex caused the decrease of the compressive strength.
(3) The observation of this study indicates that latex ratio of 10% is the optimum latex ratio to give the highest impact resistance of the latex modified cement pastes.

Moreover, this research supports the effectivity of Charpy experiment for quasi-brittle material to measure the impact resistance. It might be possible to estimate the toughness of hardened cement pastes.

Acknowledgments

본 연구결과물은 2018년도 광득건설의 연구비 지원에 의한 것임.

References

ACI 548.1R-09. (2009). Guide for the use polymers in concrete. Reported by ACI Committee 548, Farmington Hills, MI.

ACI 548.3R-09. (2009). Polymer-modified concrete. Reported by ACI Committee 548, Farmington Hills, MI.

ASTM C109/C109M-16a. (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken, PA. Retrieved from http://www.astm.org/Standards/C109

ASTM C192/C192M-16a. (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org/Standards/C192

ASTM C305-14. (2014). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org/Standards/C305

ASTM C511-13. (2013). Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org/Standards/C511

ASTM D6110-18. (2018). Standard test method for determining the charpy impact resistance of notched specimens of plastics. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org/Standards/D6110

ASTM E23-18. (2018). Standard test methods for notched bar impact testing of metallic materials. ASTM International, West Conshohocken, PA. Retrieved from https://www.astm.org/Standards/E23

Barluenga, G., and Hernández-Olivares, F. (2004). SBR latex modified mortar rheology and mechanical behaviour.
Cement and Concrete Research, Vol. 34, No. 3, pp. 527-535.

Bhikshma, V., Jagannadha Rao, K., and Balaji, B. (2010). An experimental study on behavior of polymer cement concrete. *Asian Journal of Civil Engineering (Building and Housing)*, Vol. 11, No. 5, pp. 563-573.

Brandt, A.M. (2009). *Cement-based composites: Materials, Mechanical properties and performance* (2nd ed.). Taylor and Francis.

Bureau, L., Alliche, A., Pilvin, Ph., and Pascal, S. (2001). Mechanical characterization of a styrene-butadiene modified mortar. *Materials Science and Engineering: A*, Vol. 308, No. 1-2, pp. 233-240.

Deng, X., Zhu, X., Chen, H., Wang, D., and Yin, W. (2016). Mechanical properties of polyester fiber and SBR latex compound-modified mortar for tunnel grouting. *Electronic Journal of Geotechnical Engineering*, Vol. 21, pp. 1365-1374.

Doğan, M., and Bideci, A. (2016). Effect of styrene butadiene copolymer (SBR) admixture on high strength concrete. *Construction and Building Materials*, Vol. 112, pp. 378-385.

Dowling, N.E. (2013). *Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue* (4th ed.). Pearson Education Limited.

Fowler, D.W. (1999). Polymers in concrete: A vision for the 21st century. *Cement and Concrete Composites*, Vol. 21, No. 5-6, pp. 449-452.

Francois, D., and Pineau, A. (2002). *From Charpy to present impact testing*. Elsevier Science Ltd. And ESIS.

Ghasemnejad, H., Furquan, A.S.M., Mason, P.J. (2010). Charpy impact damage behaviour of single and multi-delaminated hybrid composite beam structure. *Materials & Design*, Vol. 31, No. 8, pp. 3653-3660.

Hong, S.W., Ahn, S.S., Li, H., Kim, J.K., Ko, S.J., Koo, J.M., et al. (2013). Charpy impact fracture characteristics of CFRP composite materials according to variations of fiber array direction and temperature. *International Journal of Precision Engineering and Manufacturing*, Vol. 14, No. 2, pp. 253-258.

Huang, B., Wu, H., Shu, H., and Burdette, E.G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. *Construction and Building Materials*, Vol. 24, No. 5, pp. 818-823.

Hufenbach, W., Marques Ibraim, F., Langkamp, A., Böhm, R., and Hornig, A. (2008). Charpy impact test on composite structures: An experimental and numerical investigation. *Composites Science and Technology*, Vol. 68, No. 12, pp. 2391-2400.

Hwang, E.H., and Ko, Y.S. (2008). Comparison of mechanical and physical properties of SBR-polymer modified mortars using recycled waste materials. *Journal of Industrial and Engineering Chemistry*, Vol. 14, No. 5, pp. 644-650.

ISO 148. (2016). *Metallic materials - Charpy pendulum impact test*.

ISO 179. (2010). *Plastics-Determination of Charpy impact properties*.

Li, G., Zhao, X., Rong, C., and Wang, Z. (2010). Properties of polymer modified steel fiber-reinforced cement concretes. *Construction and Building Materials*, Vol. 24, No. 7, pp. 1201-1206.

Nguyen, T., and Kim, J.J. (2018). Impact resistance evaluation of cement pastes including admixtures by Charpy impact tests. *J. Korean Soc. Hazard Mitig.*, Vol. 18, No. 6, pp. 229-233.

Ohama, Y. (1995). Handbook of polymer-modified concrete and mortars: Properties and process technology. Park Ride, New Jersey, USA: Noyes Publications.

Ohama, Y., Ibe, H., Mine, H., and Kato, K. (1964). Cement mortars modified by SB latexes with variable bound styrene. *Rubber Chemistry and Technology*, Vol. 37, No. 3, pp. 758-769.

Rossignolo, J.A., and Agnesini, M.V.C. (2002). Mechanical properties of polymer-modified lightweight aggregate concrete. *Cement and Concrete Research*, Vol. 32, No. 3, pp. 329-334.

Rossignolo, J.A. and Agnesini, M.V.C. (2004). Durability of polymer-modified lightweight aggregate concrete. *Cement and Concrete Composites*, Vol. 26, No. 4, pp. 375-380.

Shaker, F.A., El-Dieb, A.S., and Reda, M.M. (1997). Durability of styrene-butadiene latex modified concrete. *Cement and Concrete Research*, Vol. 27, No. 5, pp. 711-720.

Wang, R., Li, X.G. and Wang, P.M. (2006). Influence of polymer on cement hydration in SBR-modified cement pastes. *Cement and Concrete Research*, Vol. 36, No. 9, pp. 1744-1751.

Wang, R., Lackner, R., and Wang, P.M. (2011). Effect of styrene-butadiene rubber latex on mechanical properties of cementitious materials highlighted by means of nanoindentation. *Strain*, Vol. 47, No. 2, pp. 117-126.

Wang, R., Wang, P.M., and Li, X.G. (2005). Physical and mechanical properties of styrene-butadiene rubber
emulsion modified cement mortars. *Cement and Concrete Research*, Vol. 35, No. 5, pp. 900-906.
Xiao, J., Jiang, W., Yuan, D., Sha, A., and Huang, Y. (2018). Effect of styrene-butadiene rubber latex on the properties of modified porous cement-stabilised aggregate. *Road Materials and Pavement Design*, Vol. 19, No. 7, pp. 1702-1715.
Yang, Z., Shi, X., Creighton, A.T., and Peterson, M.M. (2009). Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. *Construction and Building Materials*, Vol. 23, No. 6, pp. 2283-2290.
Yao, S., and Ge, Y. (2012). Effect of styrene butadiene rubber latex on mortar and concrete properties. *Advanced Engineering Forum*, Vol. 5, pp. 283-288.