Investigation of Proton and Neutron Alignment in the Ba and Ce Isotopes within Interaction Interacting Boson Model and Triaxial Rotor Model

Ali N. Sabbar¹ and Saad N. Abood¹∗

¹Physics Department, College of Science AL-Nahrain University – Baghdad, Iraq.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJR2P/2021/v4i330142

Received 23 March 2021
Accepted 29 May 2021
Published 05 June 2021

Original Research Article

ABSTRACT

In the form of two quasi-particles coupled to a core described by the IBM-1 and Triaxial Rotor models, the high-spin states of the Ba and Ce isotopes are studied. Bands based on both \((\nu_{11/2})^2\) and \((\nu_{11/2})^2\) configurations are considered, which is found to be appropriate for this region to better explain band-crossing systems. Between the recent experimental data and the calculated energy spectra and electric transition probability, fair agreement is achieved.

Keywords: IBM-1; triaxial rotor model; nuclear structure; electric transition probability.

1. INTRODUCTION

In recent years, both experimentally and theoretically, the Xe, Ba and Ce which nuclei are transitional, have been subject to intensive research. In addition to their transitional existence, which makes them suitable for evaluating different collective models, a number of interesting phenomena such as Back-bending and the anomaly of prealignment B(E2) are also seen. Very recently, the Kolin group’s experimental efforts resulted in the discovery in

*Corresponding author: E-mail: saadnaji_95@yahoo.com
2. THEORETICAL CONSIDERATIONS

Since it is empirically understood that the band-crossing systematics and the transition between the configurations of the proton and neutron are significant, a detailed study of these phenomena is required. For the Hamiltonian of IBM [13] H_B we use the simplified version:

$$H_B = \omega a_d + \kappa' L \cdot L + \kappa Q \cdot Q$$ \hspace{0.5cm} (2)

where the boson quadrupole operator contains a further parameter χ:

$$Q = (s^+d^- + d^+s^-) + \chi(d^+d^-)$$ \hspace{0.5cm} (3)

The Hamiltonian of effective fermion H_F restricted to a single j-shell takes the form:

$$H_F = \sum_{m} \epsilon_{jm} a_j^+ a_j + \frac{1}{2} \sum_{JM} \nu_{JM} [a_{JM}^+ a_{JM}] [a_{JM}]$$

Here, for the residual interaction V'. The last two terms characterize the interaction of the boson-fermion H_{BF} conserves, respectively, fermion and boson numbers,

$$H_{BF} = \Gamma_0 (a^+_j - \tilde{a}_j) \frac{1}{2} \left[s^+d^- + d^+s^- + 2 \chi (d^+d^-) \right]$$

$$- \frac{1}{2} \frac{1}{j+1} \left(s^+d^- + d^+s^- + 2 \chi (d^+d^-) \right)$$

Whereas H_{mix} preserves only the complete number of nucleons, combining zero and two bands of quasi-particles,

$$H_{mix} = \Gamma_0 (a^+_j - \tilde{a}_j) \frac{1}{2} \left[s^+d^- + d^+s^- + 2 \chi (d^+d^-) \right]$$

The coupling strengths in Eqns. (5) and (6) are Γ_0, χ, u_j, and v_j. u_j and v_j are the BCS. Occupation amplitudes, q_{β} denotes the matrix element of the decreased quadrupole and N is the number of the boson. We emphasize that, by invoking a number-conserving quasi-particle transformation, Eqns. (5) and (6) are derived from the regular boson-fermion quadrupole strength.

2.1 IBM-1 plus Two-Quasi-Particle Model

Since in the literature [10,12] the model (to be called IBM+2q.p.) is discussed, here we simply state the Hamiltonian used in the calculations:

$$H = H_B + H_F + H_{BF} + H_{mix}$$ \hspace{0.5cm} (1)

Since it is empirically understood that the quadrupole force acts between nucleons with different charges, quasi-particles of the neutron can only interact with the protons in the core and
vice versa. The proton and neutron bosons are not distinct in the formalism of the IBM-1, used here for simplicity. Since it is empirically understood that the quadrupole force acts between nucleons with different charges, only the protons in the core and vice versa can interact with quasi-particles of the neutron. In the formalism of the IBM-1, used here for simplicity, the proton and neutron bosons are not distinct.

\[\Gamma_0 = \frac{N_x(v)}{N} \kappa_0 \]

(7)

Where \(\kappa_0 \) is a quadruple strength overall. The Hamiltonian, Eq.(1), is diagonalized in the basis

\[|m\beta_l, n\gamma J_2; J \rangle \]

(8)

Here, the boson (fermion) system’s complete spin is denoted by \(J_1, (J_2) \) and the number of valence nucleons is set by \(2m + n \). In \(^{130}\)Ba, for example, \(N = N_x + N_v = 3 + 4 = 7 \) and the basis consists of three parts: (i) \(m = N \), the \(^{130}\)Ba core is represented by \(n = 0 \); (ii) \(m = n - 1 \), \(n = 2 \) (protons) - two-proton \(q,p \). The \(^{128}\)Xe core excitations; and (iii) \(m = N - 1 \), \(n = 2 \) (neutrons) - two-neutron \(q,p \). The \(^{132}\)Ba core was based on excitations.

The IBM-1 Hamiltonian parameters, along with a comparison of the experimental data, are shown in Table (1). Note that there are 6 to 9 bosons in each isotope chain. The quadrupole strength \(\kappa \) is increased linearly with the number of protons, driven by a microscopic picture [14]. A gradual increase in \(\chi \) is simulated by the onset of deformation (\((O(6) \rightarrow SU(3) \) transformation in the IBM-1 picture). Finally, the single-boson energy \(E \) is adapted to the first state of \(2^+ \), which has a value of approximately 0.500 MeV. The above-mentioned choice of parameters does not include the effect of two-quasi-particle states in which low-lying levels are pressed down. \(\epsilon \) is raised by about 10% in the actual calculations to cancel this effect.

2.2 Triaxial Rotor Model

The model (referred to as Rot+ \(2q,p \)) has been discussed and analyzed in the literature previously [8,9]. As a result, we only provide an overview of the model here in order to keep the topic manageable, and we direct the reader to the above references for more details. The Hamiltonian is written as:

\[
H = \sum_{i=4}^{3 \cdot 2\Omega} + \sum_{\alpha} g_{\alpha} c_{\alpha}^+ c_{\alpha} + \frac{1}{2} \sum_{abcd} (a b c d) N c_{a}^+ c_{b} c_{c} c_{d} \\
- k \sum_{ab} |a| \cos \gamma (Y_{20} + \frac{1}{\sqrt{2}} \sin \gamma (Y_{21} + Y_{22})) |b|^2 c_{a}^+ c_{b} \]

(9)

The first term defines a triaxial rotor, while the second term explains two quasi-particles that are connected by the third term. We use the surface-delta interaction (SDI) [4] for the residual interaction. This Hamiltonian is diagonalized in the quasi-weak basis, which is more suitable for core state truncation than the strict coupling basis:

\[
IM; \alpha R = 1 | \rightarrow | \alpha R \rangle \text{ BCS} \\
|IM; (j_1,j_2); j, \alpha R \rangle = \left[(\beta_{j_1}, \beta_{j_2}) j | \alpha R \rangle \right]_{\text{BCS}} \]

(10)

The spherical quasi-particle operator is denoted by \(\beta \). Since particles in high-j orbits are easiest to coordinate, the single-particle basis for positive-parity states is limited to the proton and neutron \(h_{1/2} \). In the case of negative-parity states, the basis includes all neutron levels in the 50-82 closed shell, as well as protons levels \(h_{1/2}, g_{7/2}, \) and \(d_{5/2} \). The core states are truncated as follows in order to keep the problem’s dimension manageable:

\[
R \leq 10 - 2\alpha \quad \text{for} \quad 12 \leq I \leq 18 \\
R \leq 8 - 2\alpha \quad \text{for} \quad I = 0, 10, 18 \\
R \leq 6 - 2\alpha \quad \text{for} \quad 2 \leq I \leq 9
\]

(12)

The ground and gamma bands are represented by \(\alpha = 0.1 \) respectively.

The energies and B(E2) values of the first and second \(2^+ \) levels are equipped with the \(\beta \) - and \(\gamma \) -deformation parameters, which agree with Meyer-ter-Vehn’s values used in his measurement of neighboring odd nuclei [15]. The BCS equations with a pairing strength \(G = 37/A \) yield the values for the gap \(\Delta \) and the Fermi level \(\lambda \). The Fermi levels are rotated up and down in order to find a better match for the quasi-particle bands. However, minor variations in
Fermi levels are found to have little effect on the effects. As a result, the BCS values in Table 1 have been adjusted, with the exception of λ_{π}, in 130Ba, which has been moved up 0.200 MeV, to achieve better agreement for the positive-parity high-spin states.

From a fit to the 130Ba states, the residual intensity interaction is set at $K = 0.33$ MeV. To reduce the strength of the higher multipole terms and simulate the increased collectivity of the lower spin states, angular momentum dependence is introduced in K for the negative-parity states, as in the previous work [9]:

$$K_j = K[1 + 0.02 j(j + 1)]^{-1} + \Delta K_j$$ \hspace{1cm} (13)

3. RESULTS AND DISCUSSION

In the IBM-1, detailed positive-parity spectrum calculations for $^{126-130}$Ba and 134Ce are compared to the experimental level schemes in the Figures (2-4). Overall, in the Ba isotopes, there is a clear agreement between the experimental and calculated spectra. Only g-factor measurements will overcome minor inconsistencies between the two versions, such as the existence of the first crossing band. In 134Ce, owing to a sudden change in the properties of this nucleus, the situation is more complicated. As shown in Table (1) compared with its neighbors, 134Ce is much less deformed. In addition, the negative g-factors

$$[4] \quad g(10_j^+) = -0.19 \quad (1) \quad , \quad g(10_j^-) = -0.30 \quad (25)$$

suggesting their neutron nature were calculated for both crossing 10^+_j states. Nevertheless, reviewing Fig.(4) shows that the q,p-proton . The band matches the second crossing band experimental levels much better than the second neutron q,p in the model. We also expanded the calculations to the $^{126-130}$Ba and $^{130-134}$Ce isotopes in the IBM+2q.p model in order to add more light to this matter and to better understand the band-crossing mechanism.

The results for the proton and neutron q,p-bands are shown in Fig. 4, alongside the experimental assignments. It follows from the semi-microscopic picture (Eqns. (5)-(6)) that with increasing boson number, the interaction strength for protons increases (decreasing mass number because neutrons are holes) and decreases for neutrons. In addition to the deformation effect (i.e. Table (2)), the model predicts that with the decreasing mass number, the proton q,p-band decreases and its inertial moment increases slightly, while the neutron q,p -band increases with a strong increase in its inertial moment. These trends are clearly observed in our estimates and the existing ones. If we define the states of the experiment as in Fig.(4), experimental data. Therefore, the energy systematics clearly suggests the existence of a proton q,p. The band in the band-crossing region at 134Ce also predicts a neutron q,p-band above the proton band at 126Ba and $^{130-132}$Ce if not already observed.

In order to illustrate the band structures in the two models, we give in Table 3 the main components of the high-spin states. The main observations are: (i) the IBM+2q.p. wave functions are relatively purer compared to the Rot+ 2q.p. wave functions (which is true also for the low-lying levels); (ii) the aligned bands are dominated by the configuration $[R \times (h_{1/2})^2]_{J=R+10}$ where R is the core angular momentum; and, (iii) the proton q,p -band is less aligned than the neutron q,p -band. A direct test of these predictions requires a detailed knowledge of the electromagnetic properties which is lacking at present. However, for (i) one can indirectly infer from the energy spectra (Figs. 2-4) that the truth is somewhere in between, since the experimental 10_j^+ and 12_j^- levels lie in between the predictions of the two models. (The more mixing there is, the more the ground-band states are pressed down.).

In the single-particle Hamiltonian, the usual Nilsson parameters are used:

$$h \omega = 41 / A^{1/3} \quad \text{MeV}, \quad \kappa_{\pi,\nu} = 0.0640 \quad ,$$

$$\mu_\pi = 0.62 \quad , \quad \mu_\nu = 0.44 .$$

The empirical relation [16] is used to evaluate the coupling constant:

$$k = \left(\frac{16}{5 \pi} \right)^{1/2} 206 A^{1/3} \quad \text{MeV} \quad (14)$$

Table (1) lists some of the remaining parameters.

The occupation probabilities ν_j^π are obtained by spherically averaging the Nilsson+BCS shell
Table 1. IBM-1 Hamiltonian parameters for Xe, Ba, Ce isotopes (in MeV) except χ is dimensionless

parameter	122Xe	124Xe	126Xe	128Xe	128Ba	130Ba	132Ba	132Ce	133Ce	134Ce	135Ce	
ε	0.545	0.515	0.500	0.510	0.480	0.465	0.480	0.550	0.465	0.490	0.550	0.660
κ	-0.22	-0.22	-0.22	-0.25	-0.25	-0.25	-0.25	-0.28	-0.28	-0.28	-0.28	-0.28
κ'	-0.06	-0.06	-0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
χ	-0.45	-0.35	-0.25	-0.15	-0.50	-0.50	-0.35	-0.20	-0.45	-0.30	-0.15	0.0

Table 2. Deformation and BCS parameters used in the Rot +2q.p. model

Isotope	β	γ	Δ_{s} (MeV)	λ_{s} (MeV)	Δ_{v} (MeV)	λ_{v} (MeV)
128Ba	0.23	24^v	1.048	45.223	1.298	48.5
130Ba	0.23	26^v	1.005	45.001	1.133	49.33
134Ce	0.20	24^v	1.246	44.421	1.100	49.4

Table 3. Occupation probabilities and quasi-particle energies for the $h_{11/2}$ protons and neutron holes in Ba and Ce isotopes

Isotopes	ν_{v}	ν_{v}	ε_{v} (MeV)	ε_{v} (MeV)
128Ba	0.521	0.11	1.681	2.151
130Ba	0.441	-	-	-
132Ba	0.370	-	-	-
134Ce	0.431	0.151	-	1.852
136Ce	0.349	-	-	-
138Ce	0.258	-	-	1.977
occupancies used in the Rot+2q.p. for the \(h_{11/2} \) single-particle levels considered here. The calculations are given in Table 2. The average BCS results are too crude for the quasi-particle energies and therefore have to be resealed. Since the \(\nu h_{11/2} \) shell is filled by neutrons in this region, \(\varepsilon_\nu \) changes very little and is considered to be constant. The decrease in \(\varepsilon_\pi \), from \(\text{Ba} \) to \(\text{Ce} \) isotopes, reflects the fact that the level of Fermi is closer to the shell of \(\nu h_{11/2} \). The case of \(^{134}\text{Ce} \) is an exception and discussed.

The SD1 is set to 0.3 MeV, which corresponds to the BCS pairing strength \(G = 37/A \). \(\kappa_\nu = 0.200 \) MeV, \(\kappa_\pi = 0.125 \), \(\chi_{\pi,\nu} = -0.200 \) are the boson-fermion coupling strengths fitted in \(^{130}\text{Ba} \) and kept constant for the other nuclei. The results are found to be unaffected by changes in \(\chi_t \). In the E2 transformation operator, a positive value of \(\chi_{\pi,\nu} \), \(\chi_{\pi,\nu} = -0.200 \) is used, which appears to be needed to reproduce the branching ratios. Since the mass and charge distributions in the nucleus will vary, the quadrupole operators used in the Hamiltonian and transition operators are different. Furthermore, \(\chi_t \) is only a perturbative component of the quadrupole operator in this case? The other parameters required for calculating electromagnetic properties are the same as those mentioned in the previous section.

Only the three largest components with minimum squared amplitude of 0.10 are shown. In parentheses, the basis states are mentioned. Members of the group \(g \) and \(\gamma \) are denoted by the subscripts \(g \) and \(\gamma \). \(\pi \) and \(\nu \) refer to the proton and neutron nature of the two quasi-particles, respectively. The first entry for each state comes from Rot+2q.p. The first is from the IBM+2q.p model, and the second is from the Rot+2q.p model.

3.1 Electric Transition Probability

The effective charges \(e_\pi = 11.38 \) \(W\mu \) and \(e_\nu = 1.33 \) \(W\mu \) were used to evaluate the electromagnetic properties which has been normalized to experimental \(B(E2; 2^+ \rightarrow 0^+) \). In Table (4), we show the \(B(E2) \) transition rates for \(^{130}\text{Ba} \) and \(^{134}\text{Ce} \). Although the results of the IBM+2q.p. model traces the experimental data better due to the boson cut-off, both models are far from explaining the drop in the \(B(E2) \) values which is a general feature of all nuclei in this region and has been called the “pre-alignment B(E2) anomaly” [7]. Noting that even a more fundamental theory like MONSTER has been unable to explain this drop [17], and in the face of experimental uncertainties, we postpone further

Fig. 1. Energy spectra in \(^{128}\text{Ba} \), calculated and experimental data [18]; The proton and neutron, 2-quasi-particle bands are shown by \(2\pi \) and \(2\nu \)
Fig. 2. Calculated and Experimental data [19] for 130Ba isotope

Fig. 3. Calculated and Experimental data [20] for 134Ce isotope, where $2\nu_2$ indicates the two-neutron q.p. band
Fig. 4. The IBA+2q.p. model was used to calculate high-spin systematics in $^{126-130}$Ba and 130Ce. The experimental data (dashed lines) are from the references [18,19,20,21,22,23].

Fig. 5. The Rot+2q.p. mode was used to calculate the negative-parity energy spectra in 128Ba and 134Ce. The experimental (dashed lines) data are taken from refs. [18,19,20].
130Ba	g-band	2ν band	2π band	
10				
0.57(10_0)				
0.90(10_0)				
0.43(12_0)				
0.90(12_0)				
12				
0.56(0_g×10_π)	0.30(2_g×10_π)			
0.92(0_g×10_π)				
0.52(2_g×10_π)	0.10(4_g×10_π)			
0.96(2_g×10_π)				
14				
0.64(4_g×10_π)	0.17(6_g×10_π)			
0.98(4_g×10_π)				
16		0.14(8_g×8_π)		
0.77(6_g×10_π)				
0.83(8_g×10_π)	0.12(10_g×8_π)			
18				
0.98(8_g×10_π)				
2π band				
10				
0.31(0_g×10_π)	0.31(2_g×10_π)			
0.42(0_g×10_π)	0.37(2_g×10_π)			
0.36(2_g×10_π)	0.18(4_g×10_π)			
12				
0.58(2_g×10_π)	0.16(4_g×10_π)			
0.34(4_g×10_π)	0.16(6_g×10_π)			
			0.12(4_g×10_π)	
	$10 \times \gamma$	$10 \times \pi$	$10 \times \sigma$	
---	---	---	---	
14	0.69 (4g × 10γ)	0.10 (6g × 10π)	0.13 (4γ × 10σ)	
16	0.51 (6g × 10γ)	0.16 (8g × 10π)	0.17 (8γ × 8π)	
18	0.83 (6g × 10γ)	0.16 (8g × 8π)	0.16 (68g × 8π)	
134 Ce				
10	0.52 (10g)	0.14 (8g × 2ν)		
12	0.88 (10g)		0.13 (4g × 8ν)	
2ν-band				
10	0.46 (0g × 20ν)	0.40 (2g × 10ν)		
12	0.83 (0g × 10ν)	0.14 (2g × 10ν)		
14	0.23 (2g × 10ν)	0.30 (2g × 10π)	0.12 (2γ × 10ν)	
16	0.87 (2g × 10ν)			
18	0.65 (4g × 10ν)	0.12 (6g × 8ν)		
10	0.90 (4g × 10ν)			
2π-band				
10	0.49 (6g × 10ν)	0.10 (10g × 8ν)		
16	0.90 (4g × 10ν)			
18	0.78 (8g × 10ν)	0.10 (10g × 8ν)		
10	\(0.39(0_g \times 10_g)\)	\(0.33(2_g \times 10_g)\)		
------	--------------------------	--------------------------		
	\(0.56(0_g \times 10_g)\)	\(0.31(2_g \times 10_g)\)		
12	\(0.24(2_g \times 10_g)\)	\(0.17(2_g \times 10_g)\)	\(0.15(2_g \times 10_g)\)	
	\(0.72(2_g \times 10_g)\)	\(0.10(4_g \times 10_g)\)		
14	\(0.52(4_g \times 10_g)\)	\(0.13(6_g \times 10_g)\)	\(0.11(6_g \times 8_g)\)	
16	\(0.83(4_g \times 10_g)\)	\(0.10(8_g \times 10_g)\)	\(0.14(8_g \times 8_g)\)	
18	\(0.64(6_g \times 10_g)\)	\(0.10(8_g \times 10_g)\)	\(0.11(10_g \times 80_g)\)	\(0.90(8_g \times 10_g)\)

2\(\nu_2\) band

10	\(0.45(2_g \times 8_g)\)	\(0.22(4_g \times 6_g)\)	
	\(0.81(2_g \times 8_g)\)	\(0.10(4_g \times 6_g)\)	
	\(0.18(12_g)\)	\(0.19(3_g \times 10_g)\)	\(0.14(2_g \times 10_g)\)
12	\(0.62(4_g \times 8_g)\)	\(0.16(2_g \times 10_g)\)	
14	\(0.22(6_g \times 10_g)\)	\(0.31(6_g \times 8_g)\)	\(0.17(5_g \times 10_g)\)
16	\(0.85(6_g \times 8_g)\)	\(0.10(4_g \times 10_g)\)	
18	\(0.28(8_g \times 10_g)\)	\(0.40(8_g \times 8_g)\)	\(0.12(7_g \times 10_g)\)
	\(0.70(8_g \times 8_g)\)	\(0.23(6_g \times 10_g)\)	
	\(0.32(10_g \times 10_g)\)	\(0.59(10_g \times 8_g)\)	\(0.12(7_g \times 10_g)\)
	\(0.70(8_g \times 8_g)\)	\(0.23(6_g \times 10_g)\)	
discussion of the B(E2) values until new experiments, planned for the near future, clarify the situation. The most direct way of determining the nature of a q,p-band is by measuring g-factors of the crossing states which have relatively longer lifetimes. In Table 4, we present the g-factor results for the 10^+ and 12^+ members of various bands. As mentioned above, g-factor measurements are available only in 134Ce [ref.[4]] and it is difficult to reconcile those results with the calculated energy spectrum (Fig. 4). A radical solution of the problem, suggested in ref. [24], is that the first 10^+ state may be an yrast trap as suggested by its much longer lifetime and therefore be outside of the model space. In this case the second band may be the neutron q,p-band and the proton q,p-band remains to be observed. In 134Ce, the higher spin states have a similar structure as the Ba isotopes. At lower spins, however, neutron pairs are more involved and in some cases even they are the dominant components.

4. CONCLUDING REMARKS

The recent experimental data on $^{128-130}$Ba and 134Ce have been analyzed with the IBM+2qp models. Both models are successful in reproducing the main features of the energy spectra, though some discrepancies remain, especially in 134Ce where it is hard to reconcile the g-factor measurements with the calculated spectra. Study of energy systematics in the Ce isotopes suggests the existence of a neutron aligned band in $^{130-132}$Ce, and a proton aligned band in 134Ce near the band-crossing region. More experimental work is needed to clarify the band structures in these nuclei. The model is unable to explain the prealignment B(E2) anomaly and they should be extended if the phenomenon is proven to be a genuine effect. Both models are unable to describe the prealignment B(E2) anomaly, and if the phenomenon is shown to be a true effect, they should be expanded.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Schiffer K, Dewald A, Gelberg A, Reinhardt R, Zell KO, von Brentano P, Sun Xiangfu, Z. Phys. 1983;A313:245.
2. Sun Xiangfu W, Gast A, Gelberg U, Kaup A, Dewald KO, Zell, P. von Brentano, Phys. Rev. 1983;C28:1167.
3. Zemel A, Broude C, Dafni E, Gelberg A, Goldberg MB, Gerber J, Kumbartti GJ, Speidel KH. Nucl. Phys. 1982;A383:165.
4. Nolan PJ, Todd DM, Smith PJ, Love DJG, Twin PJ, Andersen0, Garrett JD, Hagemann GB, B. Herskind, Phys. Lett. 1982;108B:269.
5. Gelberg A, Zemel A. Phys. Rev. 1980;C22:937.
6. Yoshida N, Arima A, Otsuka T. Phys. Lett. 1982;114B:86.
7. Draayer JP, Han CS, Weeks KJ, Hecht KT. Nucl. Phys. 1981;A365:127.
8. Yadav HL, Toki H, Faessler A. Phys. Rev. Lett. 1977;39:1128; Phys. Lett. 1978;76B:144; Z. Phys. 1978;AZS7:121.
9. Petrovici A, Faessler A. Nucl. Phys. 1983;A395:44.
10. Morrison I, Faessler A, Lima C. Nucl. Phys. 1981;A372:13.
11. Kuyucak S, Faessler A, Wakai M. Nucl. Phys. 1984;A420:83.
12. Faeqsler A. Rep. Prog. Phys. 1982;45:653.

Table 5. Electric Transition Probability $B(E2; J_i^+ \rightarrow J_f^+)$ in W.u units

Transitions	130Ba Exp. [18]	130Ba IBM+2qp	130Ba Rot+2qp	130Ba Exp. [20]	130Ba IBM+2qp	130Ba Rot+2qp
$2_i^+ \rightarrow 0_i^+$	57.9 (17)	55.65	60.33	52 (5)	52	55.98
$4_i^+ \rightarrow 2_i^+$	78.9 (13)	79.02	81.4	39(8)	46.69	48.21
$6_i^+ \rightarrow 4_i^+$	94 (6)	87.2	90.27	-	92.11	90.11
$2_i^+ \rightarrow 2_i^+$	-	55.23	57.21	-	45.5	49.08
$3_i^+ \rightarrow 2_i^+$	-	100.3	99.24	-	98.33	89.2
Reference	Author(s)	Source				
-----------	-----------	--------				
13.	Arima A, Iachello F.	Ann. Rev. Nucl. Part. Sci. 1981;31:75.				
14.	Talmi I.	Int. School of Physics “Enrico Fermi”. 1983;87:3.				
15.	Meyer-ter-Vehn J.	Nucl. Phys. 1975;A249:11, 1, 141.				
16.	Meyer-ter-Vehn J, Stephens FS, Diamond RM.	Phys. Rev. Lett. 1974;32:1383.				
17.	Hammaren E, Schmid KW, Grimmer F, Faessler A.	to be published;2021.				
18.	Kanbe M, Kito K.	Nuclear Data Sheets. 200193(33):143.				
19.	Balraj Singh.	Nuclear Data Sheets. 2001;94(227):335.				
20.	A. Sonzogni.	Nuclear Data Sheets. 2004;103:112.				
21.	Balraj Singh.	Nuclear Data Sheets. 2001;94(227):184.				
22.	Khazov Yu, Rodionov AA, Sakharov S, Balraj Singh.	Nuclear Data Sheets. 2005;104:687.				
23.	Katakura J, Kitao K.	Nuclear Data Sheets. 2002;97(765):876.				
24.	Miiller-Veggian M, Beuscher H, Haenni DR, Lieder RM, Neskakis A.	Nucl. Phys. 1984;A417:189.				