Genomic Evolution and Personalized Therapy of an Infantile Fibrosarcoma Harboring an \textit{NTRK} Oncogenic Fusion

Anne Thorwarth, MD1; Kerstin Haase, PhD1,2,3,4,5; Claudia Röefzaad, MSc1,2,3; Kristian W. Pajtler, MD4,5,6,7; Kathrin Schramm, PhD4,5,6,7; Kathrin Hauptmann, MD4; Anke Behnke, PhD4; Christian Vokuhl, MD4; Thomas Elgeti, MD4; Alexander Gratopp, MD4,5; Johannes H. Schulte, MD1,4,5; Monika Scheer, MD1; Pablo Hernández-Driever, MD1, Karsten Nysom, MD12; Angelika Eggert, MD1,4,5,13; Anton G. Henssen, MD1,2,3,4,5; and Hedwig E. Deubzer, MD1,2,3,4,5,13

JCO Precis Oncol 6:e2100283. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

Introduction

Infantile fibrosarcomas are characterized by oncogenic fusions involving neurotrophic receptor tyrosine kinase genes (\textit{NTRK1}, \textit{NTRK2}, and \textit{NTRK3}),1 which cause expression of oncoproteins with increased tropomyosin receptor kinase (TRK) activity.2 New TRK inhibitors such as larotrectinib are effective in the majority of patients with tumors expressing \textit{NTRK} fusions including infantile fibrosarcoma.3,4 Secondary mutations within the ATP-binding pocket of the TRK kinase domain can lead to resistance to first-generation TRK inhibitors.2 Second-generation TRK inhibitors such as selitrectinib can overcome such resistance.1,5 Mechanisms of resistance to second-generation TRK inhibitors are not well understood, and possible therapeutic strategies are largely lacking in these cases.

Case Report

The 13-month-old patient presented to an outside hospital with progressing respiratory insufficiency requiring invasive mechanical ventilation after transfer to the Charité—Universitätsmedizin Berlin. Imaging displayed a large right-sided intrathoracic mass (Fig 1). Histopathological evaluation of the first two biopsies remained inconclusive. Two cycles of neoadjuvant polychemotherapy were administered (N4 according to the NB2016 Registry6 and vincristine, actinomycin D, cyclophosphamide [VAC] according to the Cooperative Soft Tissue Sarcoma Study Group [CWS]).7 Therapy response assessment according to the evaluation criteria for solid tumors, RECIST,8 demonstrated progressive disease (Fig 1). On the basis of a third biopsy (T1), molecular pathology analysis classified the tumor as an \textit{ETV6-NTRK3} fusion-positive infantile fibrosarcoma (Fig 2). The patient was enrolled in the phase I/II trial for the oral TRK inhibitor, larotrectinib,3,4,9,10 in pediatric patients with advanced solid or primary central nervous system tumors (LOXO-101, BAY2775556; 100 mg/m2 twice a day; ClinicalTrials.gov identifier: NCT02637687). Tumor volume decreased > 98% (from 45 × 34 × 26 mm diameter = 480 mL to 23 × 22 × 25 mm in diameter = 6 mL) after 2 months of larotrectinib treatment (Fig 1; Data Supplement). Progressive disease was detected after total larotrectinib treatment duration of 4 months that required chemotherapeutic intervention with three VAC cycles because of recurrent respiratory symptoms (Fig 1). The tumor continued to grow under chemotherapy (Fig 1). At the molecular level (T2, [time point 2]), single-nucleotide variant (SNV) analysis on the basis of whole-exome sequencing (WES) detected the \textit{NTRK3} p.G623R mutation in one of two analyzed tumor regions (Fig 3), which produces a protein incapable of binding larotrectinib.11,12 The patient was enrolled in the phase I/II trial designed to test safety, tolerability, and efficacy of the oral second-generation TRK inhibitor, selitrectinib5 (LOXO-195, BAY2731954; ClinicalTrials.gov identifier: NCT03215511). A partial response was achieved after 2.5 months, at a dose level of 43 mg/m2 selitrectinib twice daily, but disease progressed after 3 months (Fig 1; Data Supplement). Selitrectinib was increased to 58 mg/m2 twice daily, but the tumor continued to grow (Fig 1). A gross total tumor resection requiring bilobectomy was performed (T3, [time point 3]), Fig 2), and selitrectinib was resumed postoperatively. Disease progression 6 weeks postsurgery was treated with two cycles of the CWS [VAd] regimen, to which the tumor partially responded (Fig 1). WES of T3 tumor tissue identified the xDFG motif p.G696A mutation11,12 in the \textit{NTRK3} gene (Fig 3). Therapy resistance to monotherapy with first- and second-generation TRK inhibitors prompted us to increase selitrectinib to a dose level of 87 mg/m2 twice daily and combine it with the mitogen-activated protein kinase (MEK) 1/2 inhibitor, trametinib (0.032 mg/kg once daily) as oncogenic \textit{NTRK} fusions are known to mediate elevated RAS/MAPK/ERK signaling cascade activity.2,13 The patient has remained...
free of disease progression on this two-drug combination for > 1 year. The safety profile of the two-drug combination selitrectinib/trametinib was favorable with no detectable evidence of organ toxicity.

Written informed parental consent was received before inclusion in the respective clinical studies. The two-drug combination selitrectinib/trametinib was initiated as individual treatment attempt after written informed parental consent was obtained. Selitrectinib was purchased through the compassionate use program of Bayer (Leverkusen, Germany). Bayer had provided written permission to administer their investigational drug selitrectinib in combination with trametinib. Trametinib was administered as off-label use medication. Parental consent for the use of surplus biomaterial samples for research purposes is documented in the German Society of Pediatric Oncology and Hematology CWS registry. All clinical investigations were conducted in accordance with the Declaration of Helsinki. All clinical studies were approved by the appropriate institutional review boards. The investigators obtained written informed parental consent to publish this report. The details of molecular pathology analysis, tumor sequencing, and SNV and copy number variant analyses are supplied in the Data Supplement.14–25

A

Time (months)	Therapy	Surgery	WES	Imaging	Therapy response assessment according to RECIST criteria									
	N4	B	ETV6-NTRK3	MRI	NA	PD	PR	PD	PD	PR	PD	PR	SD	SD
3	VAC	B	ETV6-NTRK3	MRI	2.4	4.5	6.4	8.2	10.1	11.8	14.1	17.8	27	
6	Larotrectinib 100 mg/m² twice a day	B	ETV6-NTRK3	MRI	PD	PR	PD	PD	PR	PD	PR	SD	SD	
9	Selitrectinib 43 mg/m², > 58 mg/m² twice a day	B	ETV6-NTRK3	MRI	6.4	8.2	10.1	11.8	14.1	17.8	27			
12	Selitrectinib 58 mg/m², > 87 mg/m² twice a day	R	ETV6-NTRK3	MRI	8.2	10.1	11.8	14.1	17.8	27				
15	Selitrectinib 0.032 mg/kg once daily	T3	ETV6-NTRK3	MRI	10.1	11.8	14.1	17.8	27					
18	Trametinib 0.032 mg/kg once daily	T3	ETV6-NTRK3	MRI	11.8	14.1	17.8	27						
21	Larotrectinib 100 mg/m² twice a day	T3	ETV6-NTRK3	MRI	14.1	17.8	27							
24	Selitrectinib 58 mg/m², > 87 mg/m² twice a day	T3	ETV6-NTRK3	MRI	17.8	27								

B

FIG 1. Treatment timeline and assessments. (A) Shown is the timeline of diagnosis and therapeutic interventions including drug therapies and surgery. Time points of whole exome sequencing studies and response evaluation by magnetic resonance imaging (MRI) and computed tomography (CT) scans in line with the response evaluation criteria in solid tumors (RECIST) are summarized below. (B) Shown are exemplarily selected images for each response evaluation time point. N4, chemotherapy regimen according to the NB2016 registry: doxorubicin, vincristine, cyclophosphamide; VAC, chemotherapy regimen according to the Cooperative Soft Tissue Sarcoma Study Group CWS of the German Society of Pediatric Oncology and Hematology (GPOH): vincristine, actinomycin-D, cyclophosphamide; I²VAd, chemotherapy regimen according to the Cooperative Soft Tissue Sarcoma Study Group CWS of the GPOH: ifosfamide, vincristine, doxorubicin; B, biopsy; R, resection; T, time point; n.a., not applicable; PD, progressive disease; PR, partial response; SD, stable disease; WES, whole exome sequencing.
two regions harbored the solvent-front Q457del, ARID1A somatic mutations in cancer-related genes (jected to WES. SNV analysis of the T1 biopsy demonstrated two (Fig 3). At T3, the xDFG motif in either tumor region, suggesting an otherwise stable genome (NTRK3 residue 623) at time point T3 was caused by a G showed variant read evidence of a G nucleotide substitution, whereas the samples at time point T2 was detected (Fig 3). The G mutations under therapy pressure reported here dem-
that follow-up using liquid biopsies is feasible for patients with fusion-positive sarcomas. 27,28

The primary mutational spectrum in this infantile fibrosarcoma was very low, with only two mutations detected in cancer-related genes. The PIK3R1 gene affected by an in-frame deletion encodes for the p85 regulatory subunit of phosphoinositide 3-kinases, which regulate signaling pathways important for cell proliferation, survival, adhesion, and motility. 29 PI3K mutations have been linked to cancer, 30 primary immunodeficiencies, 31 and developmental disorders. 32 The ARID1A gene affected by a frameshift deletion is part of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex regulating eukaryotic gene expression. SWI/SNF complex mutations occur in 20% of human cancers, and ARID1A has the highest mutation rate across all SWI/SNF complex components. 33 ARID1A mutations were shown to be negatively associated with checkpoint immunotherapy responses and patient survival in different cancer entities. 34 The only mutation occurring under therapy affected the CLTCL1 gene, a member of the clathrin heavy chain family required for mitotic progression and cytokinesis. 35 CLTCL1 mutations have been reported in oral and lung squamous cell carcinoma, 36,37 meningioma, 38 and a rare case of thyroid follicular dendritic cell sarcoma. 39 The newly occurring copy number alterations detected at T3 may be attributable to the CLTCL1 mutation–induced impairment of mitotic spindle stabilization. Altogether, genomic profiling in temporal and spatial resolution of this infantile fibrosarcoma identified a very low number of cancer-related, but undruggable, mutations. The borderline priority of all three overexpressed genes (FGFR1, YES1, and CTLA4) and the exhausted chemotherapeutic options prompted us to turn to downstream signaling cascades of the oncogenic NTRK3 p.G623R p.G696R fusion protein, which include PI3K, RAS/MAPK/ERK, and PLCG1/PLCG2. 13 Combining selitrectinib with trametinib, to also inhibit MEK1/MEK2 activity, resulted in 1 year free of disease progression, thus providing insights into precision medicine strategies under conditions of acquired resistance to first- and second-generation TRK inhibition.

AFFILIATIONS

1Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
2Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
3Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
4German Cancer Research Center (DKFZ), Heidelberg, Germany
5German Cancer Consortium (DKTK), Partner Sites Berlin and Heidelberg, Germany
6Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
7Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany

FIG 3. Molecular profiling of multi-sample sequencing data. (A) Mutation data derived from WES. Shown are all samples with an average coverage of more than 40X. Mutations were filtered against the cosmic cancer gene census v9137. Only variants with a variant allele frequency above 10%, no variant reads in the matched normal and a predicted functional impact of moderate or high are shown. Darker colors indicate mutations that have been called by MuTect2. 25 Lighter shades represent variants that had supporting reads upon detailed inspection. The NTRK3 G>R mutation at time point T3 is caused by a G>C mutation on the nucleotide level, whereas the samples marked with an asterisk, show variant read evidence of a G>A mutation that also results in a G>R amino acid exchange. (B) Copy number profiles for samples T1 and T3. Genomic segments are colored based on their absolute copy number. Diploid regions are shown in white, losses in shades of blue, gains in red. Only events affecting segments of 5MB or larger are shown. (C) Time line representing the order of events leading from the ancestral cell to the last analyzed tumor sample. SNVs and fusion events are shown above the time line, copy number variants beneath it. The coloring of individual events is consistent with panels A) and B). B, biopsy; R, resection; T, time point.
REFERENCES

1. Shulman DS, DuBois SG: The evolving diagnostic and treatment landscape of NTRK-fusion-driven pediatric cancers. Paediatr Drugs 22:189-197, 2020
2. Cocco E, Scalltrè M, Drilon A: NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15:731-747, 2018
3. Drilon A, Laetsch TW, Kummer S, et al: Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731-739, 2018
4. Laetsch TW, DuBois SG, Mascarenhas L, et al: Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol 19:705-714, 2018
5. Drilon A, Nagasubramanian R, Blake JF, et al: A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov 7:963-972, 2017
6. Simon T, Hero B, Schulte JH, et al: 2017 GPOH guidelines for diagnosis and treatment of patients with neuroblastic tumors. Klin Padiatr 229:147-167, 2017
7. Sparber-Sauer M, Vokuhl C, Seitz G, et al: The impact of local control in the treatment of children with advanced infantile and adult-type fibrosarcoma: Experience of the cooperative weichteilsarkom studiengruppe (CWS). J Pediatr Surg 55:1740-1747, 2020
8. Eisenhauer EA, Therasse P, Bogaerts J, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45:228-247, 2009
9. DuBois SG, Laetsch TW, Federman N, et al: The use of neoadjuvant larotrectinib in the management of children with locally advanced TRK fusion sarcomas. Cancer 124:4241-4247, 2018
10. Hong DS, DuBois SG, Kummer S, et al: Larotrectinib in patients with TRK-fusion-positive solid tumors: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 21:e351-350, 2020
11. Drilon A, Li G, Dogan S, et al: What hides behind the MASC: Clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann Oncol 27:920-926, 2016
12. Kheder ES, Hong DS: Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res 24:5807-5814, 2018
13. Khotskaya YB, Holla VR, Farago AF, et al: Targeting TRK family proteins in cancer. Pharmacol Ther 173:58-66, 2017
14. Csanyi-Bastien M, Lanic MD, Beauassire L, et al: Pan-TRK immunohistochemistry is highly correlated with NTRK3 gene rearrangements in salivary gland tumors. Am J Surg Pathol 45:1487-1498, 2021

15. Worst BC, van Tilburg CM, Balasubramanian GP, et al: Next-generation personalised medicine for high-risk paediatric cancer patients—The INFORM pilot study. Eur J Cancer 65:91-101, 2016

16. Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10-12, 2011

17. Li H: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv, 2013 10.48550/arXiv.1303.3997

18. van der Auwera GA, O’Connor BD: Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. Sebastopol, CA, O’Reilly Media, Incorporated, 2020

19. Li H, Handsaker B, Wysoker A, et al: The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079, 2009

20. Van der Auwera GA, Carneiro MO, Hartf C, et al: From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1-11.10.33, 2013

21. Benjamin D, Sato T, Cibulskis K, et al: Calling somatic SNVs and indels with Mutect2. bioRxiv, 2019 10.1101/861054

22. McLaren W, Gil L, Hunt SE, et al: The ensemble variant effect predictor. Genome Biol 17:122, 2016

23. Tate JG, Bamford S, Jubb HC, et al: COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941-D947, 2019

24. Clarke L, Fairley S, Zheng-Bradley X, et al: The international genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 genomes project data. Nucleic Acids Res 45:D854-D859, 2017

25. Van Loo P, Nordgard SH, Lingjaerde OC, et al: Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA 107:16910-16915, 2010

26. Van Paemel R, Vlug R, De Preter K, et al: The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children: A review. Eur J Pediatr 179:191-202, 2020

27. Krumbholz M, Hellberg J, Steib B, et al: Genomic EWSR1 fusion sequence as highly sensitive and dynamic plasma tumor marker in ewing sarcoma. Clin Cancer Res 22:4356-4365, 2016

28. Hayashi M, Chu D, Meyer CF, et al: Highly personalized detection of minimal Ewing sarcoma disease burden from plasma tumor DNA. Cancer 122:3015-3023, 2016

29. Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489-501, 2002

30. Samuels Y, Wang Z, Bardelli A, et al: High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554, 2004

31. Lucas CL, Chandra A, Nejentsev S, et al: PI3Kdelta and primary immunodeficiencies. Nat Rev Immunol 16:702-714, 2016

32. Dyment DA, Smith AC, Alcantara D, et al: Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet 93:158-166, 2013

33. Kadoch C, Hargreaves DC, Hodges C, et al: Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592-601, 2013

34. Li J, Wang W, Zhang Y, et al: Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. J Clin Invest 130:2712-2726, 2020

35. Niswonger ML, O’Halloran TJ: A novel role for clathrin in cytokinesis. Proc Natl Acad Sci USA 94.8575-8578, 1997

36. Al-Hebshi NN, Li S, Nasher AT, et al: Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes. Int J Cancer 139:363-372, 2016

37. Li S, Wang L, Ma Z, et al: Sequencing study on familial lung squamous cancer. Oncol Lett 10:2634-2638, 2015

38. Lyu J, Quan Y, Wang JB, et al: Whole exome sequencing of multiple atypical meningiomas in a patient without history of neurofibromatosis type II: A case report. Am J Case Rep 21:e923928, 2020

39. Davila JI, Starr JS, Attia S, et al: Comprehensive genomic profiling of a rare thyroid follicular dendritic cell sarcoma. Rare Tumors 9:6834, 2017