One-instanton predictions of Seiberg-Witten curves for product groups

Isabel P. Ennes
Martin Fisher School of Physics
Brandeis University, Waltham, MA 02454

Stephen G. Naculich
Department of Physics
Bowdoin College, Brunswick, ME 04011

Henric Rhedin
Martin Fisher School of Physics
Brandeis University, Waltham, MA 02454
and
Department of Engineering Sciences, Physics and Mathematics
Karlstad University, S-651 88 Karlstad, Sweden

Howard J. Schnitzer
Martin Fisher School of Physics
Brandeis University, Waltham, MA 02454
and
Lyman Laboratory of Physics
Harvard University, Cambridge, MA 02138

Abstract

One-instanton predictions for the prepotential are obtained from the Seiberg-Witten curve for the Coulomb branch of $\mathcal{N} = 2$ supersymmetric gauge theory for the product group $\prod_{n=1}^{m} SU(N_n)$ with a massless matter hypermultiplet in the bifundamental representation (N_n, \bar{N}_{n+1}) of $SU(N_n) \times SU(N_{n+1})$ for $n = 1$ to $m - 1$, together with N_0 and N_{m+1} matter hypermultiplets in the fundamental representations of $SU(N_1)$ and $SU(N_m)$ respectively. The derivation uses a generalization of the systematic perturbation expansion about a hyperelliptic curve developed by us in earlier work.

1Research supported by the DOE under grant DE–FG02–92ER40706.
2Research supported in part by the National Science Foundation under grant no. PHY94-07194.
3Permanent address
4Research supported in part by the DOE under grant DE–FG02–92ER40706.

naculich@bowdoin.edu; henric.rhedin@kau.se; ennes,schnitzer@binah.cc.brandeis.edu
Spectacular advances have been made in our understanding of the non-perturbative behavior of supersymmetric gauge theories and string theories. In particular, the program of Seiberg and Witten [1] allows one to compute the exact behavior of low-energy four-dimensional $\mathcal{N} = 2$ supersymmetric gauge theories in various regions of moduli space from the following input: a Riemann surface or algebraic curve appropriate to the specific theory, and the Seiberg-Witten meromorphic one-form. When the curve in question is non-hyperelliptic, however, the explicit extraction of this information is a challenging technical problem. In this letter, we will use Seiberg-Witten theory to calculate the one-instanton predictions of an $\mathcal{N} = 2$ supersymmetric gauge theory based on the product group $\prod_{n=1}^{m} SU(N_n)$ by extending the methods of ref. [2]-[7].

The exact low-energy properties of $\mathcal{N} = 2$ theories are encapsulated in the form of the prepotential $\mathcal{F}(A)$, in terms of which the Wilson effective Lagrangian is

$$\mathcal{L} = \frac{1}{4\pi} \text{Im} \left[\int d^4\theta \frac{\partial \mathcal{F}(A)}{\partial A^i} \bar{A}^i + \frac{1}{2} \int d^2\theta \frac{\partial^2 \mathcal{F}(A)}{\partial A^i \partial A^j} W^i W^j \right],$$

(1)

to lowest order in the momentum expansion, where A^i are $\mathcal{N} = 1$ chiral superfields and W^i are $\mathcal{N} = 1$ vector superfields. Holomorphy implies that the prepotential in the Coulomb phase has the form of an instanton expansion

$$\mathcal{F}(A) = \mathcal{F}_{\text{cl}}(A) + \mathcal{F}_{1-\text{loop}}(A) + \sum_{d=1}^{\infty} \mathcal{F}_{d-\text{inst}}(A).$$

(2)

Consider an $\mathcal{N} = 2$ supersymmetric gauge theory based on the gauge group $\prod_{n=1}^{m} SU(N_n)$. In addition to the chiral gauge multiplet in the adjoint representation of each of the factor groups, the theory we are considering contains a massless matter hypermultiplet in the bifundamental representation (N_n, \bar{N}_{n+1}) of $SU(N_n) \times SU(N_{n+1})$ for $n = 1, \ldots, m-1$; N_0 matter hypermultiplets in the fundamental representation of $SU(N_1)$ (whose masses we denote $e_k^{(0)}, 1 \leq k \leq N_0$); and N_{m+1} matter hypermultiplets in the fundamental representation of $SU(N_m)$ (whose masses we denote $e_k^{(m+1)}, 1 \leq k \leq N_{m+1}$). The adjoint multiplets contain complex scalar fields $\phi^{(n)}$ for each of the factor groups. The Lagrangian has a potential with flat directions, along which the
symmetry is generically broken to $\prod_{n=1}^{m} U(1)^{N_n-1}$. The moduli space of the theory is therefore parametrized by the order parameters $e_k^{(n)}$ $(1 \leq k \leq N_n, 1 \leq n \leq m)$, which are the eigenvalues of the $\phi^{(n)}$ and satisfy the constraint $\sum_{k=1}^{N_n} e_k^{(n)} = 0$.

The curve for this product group theory was obtained using M-theory [8] and geometric engineering [9], and made more explicit in ref. [10]:

$$P_{N_0}(x) t_0^{n+1} - P_{N_1}(x) t_0^n + \sum_{j=0}^{m-1} (-)^{m-j+1} \left[\prod_{\ell=1}^{m-j} \frac{L_{\ell}}{L_{\ell-j+1}} \right] P_{N_{m-j+1}}(x) t_j = 0, \quad (3)$$

where

$$P_{N_n}(x) = \prod_{i=1}^{N_n} (x - e_i^{(n)}), \quad (n = 0 \text{ to } m),$$

$$L_n^2 = \Lambda_n^{2N_n-N_{n-1}-N_{n+1}}, \quad (4)$$

with Λ_n the quantum scale of the gauge group SU(N_n). The requirement of asymptotic freedom, and restriction to the Coulomb phase, implies that Λ_n appear with positive powers in (3).

The curve (3) describes a $(m+1)$-fold branched covering of the Riemann sphere, with sheets n and $n+1$ connected by N_n square-root branch-cuts centered about $x = e_k^{(n)}$ ($k = 1$ to N_n), and having endpoints $x_k^{(n)-}$ and $x_k^{(n)+}$. Following the approach of Seiberg-Witten, we will use this curve to compute the renormalized order parameters and their duals

$$2\pi i a_k^{(n)} = \oint_{A_k^{(n)}} \lambda \quad \text{and} \quad 2\pi i a_{D,k}^{(n)} = \oint_{B_k^{(n)}} \lambda, \quad (5)$$

where λ is the Seiberg-Witten differential, and $A_k^{(n)}$ and $B_k^{(n)}$ ($2 \leq k \leq N_n$) are a set of canonical homology cycles for the Riemann surface. The cycle $A_k^{(n)}$ is chosen to be a simple contour on sheet n enclosing the branch cut centered about $e_k^{(n)}$. The cycle $B_k^{(n)}$ goes from $x_1^{(n)-}$ to $x_k^{(n)-}$ on the nth sheet and from $x_k^{(n)-}$ to $x_1^{(n)-}$ on the $(n+1)$th [2]. Once we obtain $a_k^{(n)}$ and $a_{D,k}^{(n)}$, the prepotential can be computed by integrating

$$a_{D,k}^{(n)} = \frac{\partial F}{\partial a_k^{(n)}}, \quad (k = 2 \text{ to } N_n, \quad n = 1 \text{ to } m). \quad (6)$$
In our computation, we will perform a multiple perturbation expansion in the several quantum scales L_n, with the result for the prepotential given to one-instanton accuracy, i.e., $O(L_n^2)$ for all n. To calculate $a_k^{(n)}$ and $a_{D,k}^{(n)}$ for the group SU(N_n), we define $t = \tilde{t} \prod_{\ell=1}^{n-1} L_\ell^2$ to recast the curve (3) as

$$\sum_{j=0}^{n} (-)^j \left[\prod_{\ell=1}^{n-1} L_\ell^{2(j-\ell)} \right] P_{N_j}(x) \tilde{t}^{m+1-j} + \sum_{j=n+1}^{m+1} (-)^j \left[\prod_{\ell=n}^{j-1} L_\ell^{2(j-\ell)} \right] P_{N_j}(x) \tilde{t}^{m+1-j} = 0,$$

or more explicitly

$$\cdots + (-)^{n-3} L_{n-2}^4 L_{n-1}^2 P_{N_{n-3}}(x) \tilde{t}^{m-n+4} + (-)^{n-2} L_{n-1}^2 P_{N_{n-2}}(x) \tilde{t}^{m-n+3} + (-)^{n-1} P_{N_{n-1}}(x) \tilde{t}^{m-n+2} + (-)^nP_{N_{n}}(x) \tilde{t}^{m-n+1} + (-)^{n+1} L_n^2 P_{N_{n+1}}(x) \tilde{t}^{m-n} + (-)^{n+2} L_n^2 L_{n+1} P_{N_{n+2}}(x) \tilde{t}^{m-n-1} + (-)^{n+3} L_n^4 L_{n+1}^2 P_{N_{n+3}}(x) \tilde{t}^{m-n-2} + \cdots = 0. \quad (8)$$

To obtain the one-loop, zero-instanton contribution, i.e., $O(\log L_n)$, to $a_k^{(n)}$ and $a_{D,k}^{(n)}$, one may set $L_\ell = 0$ for $\ell \neq n$, in which case the curve (8) reduces, after the change of variable $\tilde{t} = y/P_{N_{n-1}}(x)$, to the hyperelliptic curve

$$y^2 + 2A(x)y + B(x) = 0,$$

with

$$A(x) = -\frac{1}{2} P_{N_{n}}(x),$$

$$B(x) = L_n^2 P_{N_{n+1}}(x) P_{N_{n-1}}(x). \quad (10)$$

On one of the sheets, eq. (9) has the solution

$$y = -A - r \quad \text{where} \quad r = \sqrt{A^2 - B}, \quad (11)$$

from which we may compute the Seiberg-Witten differential $\lambda = x dy/y$ in the hyperelliptic approximation to be

$$\lambda_I = \frac{x \left(\frac{A'}{A} - \frac{B'}{2B} \right)}{\sqrt{1 - \frac{B}{A^2}}} dx. \quad (12)$$
(On the other sheet, the solution to eq. (9) is \(y = -A + r \)).

To obtain the one-instanton correction (i.e., \(O(L_n^2) \) for all \(\ell \)) to the order parameters, one again makes the change of variables \(\tilde{t} = y/P_{n-1}^2(x) \) in eq. (8), and keeps two more terms beyond those in eq. (9), obtaining the quartic curve

\[
\epsilon_1(x)y^4 + y^3 + 2A(x)y^2 + B(x)y + \epsilon_2(x) = 0,
\]

where

\[
\epsilon_1(x) = -L_{n-1}^2 P_{n-2}(x) P_{n-1}^2(x),
\]

\[
\epsilon_2(x) = -L_n^4 L_{n+1}^2 P_{n+2}(x) P_{n-1}^2(x).
\]

Rewriting eq. (13) as

\[
y + A + r = \frac{1}{y + A - r} \left[-\epsilon_1 y^3 - \frac{\epsilon_2}{y} \right]
\]

and substituting \(y = -A - r \) into the right hand side, which is already first order in \(\epsilon \), we obtain

\[
y = -A - r - \frac{(A + r)^3}{2r} \epsilon_1 - \frac{1}{2r(A + r)} \epsilon_2 + \cdots,
\]

to first order in \(\epsilon_1 \) and \(\epsilon_2 \). The Seiberg-Witten differential is correspondingly modified to

\[
\lambda = \lambda_I + \lambda_{II} + \cdots,
\]

where \(\lambda_I \) is the hyperelliptic approximation (12) and

\[
\lambda_{II} = \left(-A \epsilon_1 - \frac{A}{B^2} \epsilon_2\right) dx = -L_{n-1}^2 P_{n-2}(x) P_{n-1}^2 dx - L_{n+1}^2 P_{n+2}(x) P_{n-1}^2 dx,
\]

obtained from a calculation similar to that in Appendix C of ref. [5].

One computes the order parameters (5) using the methods of refs. [2, 5, 6], obtaining

\[
a_k^{(n)} = e_k^{(n)} + \frac{1}{4} L_n^2 \frac{\partial S^{(n)}}{\partial e_k^{(n)}}(e_k^{(n)}) + \cdots, \quad (k = 1 \text{ to } N_n, \quad n = 1 \text{ to } m),
\]
where the residue functions \(S_k^{(n)}(x) \) are defined in terms of eq. (10) by

\[
\frac{S_k^{(n)}(x)}{(x - \epsilon_k^{(n)})^2} = \frac{B(x)}{A(x)^2}, \tag{20}
\]

Considerations analogous to those of Appendix D of ref. [5] give the identities

\[
\sum_{j=1}^{N_n} \frac{\partial S_j^{(n)}}{\partial x} \left(e_j^{(n)} \right) = 0, \tag{21}
\]

implying \(\sum_{i=1}^{N_n} a_i^{(n)} = \sum_{i=1}^{N_n} e_i^{(n)} \) to the order that we are working.

Next, the dual order parameters \(a_{D,k}^{(n)} \) are computed along the lines of sec. 5 of ref. [5], giving

\[
2\pi i a_{D,k}^{(n)} = \left[2N_n - N_{n+1} - N_{n-1} + 2 \log L_n + \text{const} \right] a_k^{(n)} - 2 \sum_{i \neq k}^{N_n} (a_k^{(n)} - a_i^{(n)}) \log (a_k^{(n)} - a_i^{(n)})
+ \sum_{i=1}^{N_n+1} (a_k^{(n)} - a_i^{(n+1)}) \log (a_k^{(n)} - a_i^{(n+1)})
+ \frac{1}{4} L_n^2 \frac{\partial S_k^{(n)}}{\partial x} (a_k^{(n)})
- \frac{1}{2} L_n^2 \sum_{i \neq k}^{N_n} \frac{S_i^{(n)}(a_k^{(n)})}{a_k^{(n)} - a_i^{(n)}}
+ \frac{1}{4} L_n^{n+1} \sum_{i=1}^{N_n} S_i^{(n+1)}(a_i^{(n+1)})
+ \sum_{i=1}^{N_n-1} \frac{S_i^{(n-1)}(a_i^{(n-1)})}{a_k^{(n)} - a_i^{(n-1)}}
+ \cdots, \tag{22}
\]

(\(k = 2 \) to \(N_n \), \(n = 1 \) to \(m \)). In eq. (22), we define \(a_k^{(0)} = \epsilon_k^{(0)} \) and \(a_k^{(m+1)} = \epsilon_k^{(m+1)} \) (the masses of the hypermultiplets in the fundamentals of \(SU(N_1) \) and \(SU(N_m) \) respectively), and \(L_0 = L_{m+1} = 0 \).

One then integrates eq. (6) using eq. (22) to obtain the prepotential (2) to one-instanton accuracy, finding

\[
\mathcal{F}_{1\text{-loop}} = \frac{i}{8\pi} \sum_{n=1}^{m} \sum_{i,j=1}^{N_n} (a_i^{(n)} - a_j^{(n)})^2 \log (a_i^{(n)} - a_j^{(n)})^2
- \frac{i}{8\pi} \sum_{n=0}^{m} \sum_{i=1}^{N_n} \sum_{j=1}^{N_n+1} (a_i^{(n)} - a_j^{(n+1)})^2 \log (a_i^{(n)} - a_j^{(n+1)})^2, \tag{23}
\]

and

\[
\mathcal{F}_{1\text{-inst}} = \frac{1}{8\pi i} \sum_{n=1}^{m} L_n^2 \sum_{k=1}^{N_n} S_k^{(n)}(a_k^{(n)}), \tag{24}
\]
where

\[S_k^{(n)}(x) = \frac{4 \prod_{i=1}^{N_n+1} (x - a_i^{(n+1)}) \prod_{i=1}^{N_n-1} (x - a_i^{(n-1)})}{\prod_{i \neq k}^{N_n} (x - a_i^{(n)})^2}, \quad (k = 1 \text{ to } N_n, \quad n = 1 \text{ to } m). \tag{25} \]

Note that as \(S_k^{(n)}(a_k^{(n)}) \) depends on \(a_i^{(n+1)} \) and \(a_i^{(n-1)} \) as well as \(a_i^{(n)} \), eq. (24) is not just the naive sum of instanton contributions from each subgroup.

The one-loop prepotential (23) agrees with the perturbation theory result for a chiral gauge multiplet in the adjoint representation of each of the factor groups, a massless matter hypermultiplet in the bifundamental representation \((N_n, \bar{N}_{n+1})\) of \(SU(N_n) \times SU(N_{n+1}) \) for \(n = 1 \) to \(m - 1 \), \(N_0 \) matter hypermultiplets with masses \(a_k^{(0)} \) in the fundamental representation of \(SU(N_1) \), and \(N_{m+1} \) matter hypermultiplets with masses \(a_k^{(m+1)} \) in the fundamental representation of \(SU(N_m) \).

One check of the one-instanton correction (24) is provided by ref. [4], where various decoupling limits for \(\mathcal{N} = 2 \) \(SU(N) \) gauge theory with a massive hypermultiplet in the adjoint representation are considered. D’Hoker and Phong [4] obtain \(F_{1-\text{inst}} \) for the product group theory, but with restriction to a single quantum scale. We find agreement with their result when we restrict eqs. (24) and (25) to the special case of a single quantum scale, which therefore provides a test of the curve (3) obtained from M-theory.

In this paper, we showed that to compute the order parameters of the \(\mathcal{N} = 2 \) gauge theory for the product group \(\prod_{n=1}^{m} SU(N_n) \) to one-instanton accuracy, one need only consider the sequence of quartic curves (13), even though the complete curve for the theory (3) is of higher order (viz., \(m+1 \)) for \(m > 3 \), \(i.e., \) for products of three or more groups. (The case \(m = 2 \) was analyzed in ref. [7].) In the language of type IIA string theory, this means one need only consider all possible chains of four parallel neighboring NS 5-branes, among the total set of \(m+1 \) parallel NS 5-branes, to achieve one-instanton accuracy. For higher instanton accuracy, additional parallel 5-branes are required. An analogue of this result plays a crucial role in our analysis of the prepotential and Seiberg-Witten curve for \(SU(N) \) gauge theory with two antisymmetric and \(N_f \) fundamental hypermultiplets [11].
Acknowledgement: HJS wishes to thank the Physics Department of Harvard University for their continued hospitality, and to the CERN theory group for hospitality during summer 1998.

References

[1] N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19, hep-th/9407087; B430 (1994) 485(E); Nucl. Phys. B431 (1994) 484, hep-th/9408099.

[2] E. D’Hoker, I.M. Krichever, and D.H. Phong, Nucl. Phys. B489 (1997) 179, hep-th/9609041.

[3] E. D’Hoker, I.M. Krichever, and D.H. Phong, Nucl. Phys. B489 (1997) 211, hep-th/9609145; Nucl. Phys. B494 (1997) 89, hep-th/9610156; E. D’Hoker and D.H. Phong, Phys. Lett. B397 (1997) 94, hep-th/9701055.

[4] E. D’Hoker and D.H. Phong, Nucl. Phys. B513 (1998) 405, hep-th/9709053.

[5] S.G. Naculich, H. Rhedin, and H.J. Schnitzer, Nucl. Phys. B533 (1998) 275, hep-th/9804105.

[6] I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, hep-th/9804151, Int. Jour. Mod. Phys. A, in press.

[7] I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, Nucl. Phys. B536 (1998) 245, hep-th/9806144.

[8] E. Witten, Nucl. Phys. B500 (1997) 3, hep-th/9703166.

[9] S. Katz, P. Mayr, and C. Vafa, Adv. Theor. Math. Phys. 1 (1998) 53, hep-th/9706110.

[10] J. Erlich, A. Naqvi, and L. Randall, Phys. Rev. D58 (1998) 046002, hep-th/9801108.

[11] I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, BRX-TH-447, BOW-PH-114, HUTP-98/A085, to appear.