ON ESTIMATES OF DEVIATION OF CONJUGATE FUNCTIONS FROM MATRIX OPERATORS OF THEIR FOURIER SERIES BY SOME EXPRESSIONS WITH R-DIFFERENCES OF THE ENTRIES

Włodzimierz Łenski and Bogdan Szal

Abstract. We extend the results of the authors from [Abstract and Applied Analysis, Volume 2016, Article ID 9712878] to the case conjugate Fourier series.

1. Introduction

Let \(X = L^p \) or \(X = C \), where \(L^p \) (\(1 \leq p \leq \infty \)) or \(C \) be the class of all \(2\pi \)-periodic real-valued functions, integrable in the Lebesgue sense with the \(p \)-th power when \(p \geq 1 \) and essentially bounded when \(p = \infty \) or continuous over \(Q = [-\pi, \pi] \) with the norms

\[
\|f\|_{L^p} := \|f(\bullet)\|_{L^p} = \begin{cases} \left(\int_Q |f(t)|^p dt \right)^{1/p} & \text{when } 1 \leq p < \infty, \\ \text{ess sup}_{t \in Q} |f(t)| & \text{when } p = \infty, \end{cases}
\]

\[
\|f\|_C := \|f(\bullet)\|_C = \sup_{t \in Q} |f(t)|
\]

and consider the trigonometric Fourier series

\[
Sf(x) := \frac{a_0(f)}{2} + \sum_{\nu=1}^{\infty} (a_\nu(f) \cos \nu x + b_\nu(f) \sin \nu x)
\]

with the partial sums \(S_k f \) and the conjugate one

\[
\tilde{S}f(x) := \sum_{\nu=1}^{\infty} (a_\nu(f) \sin \nu x - b_\nu(f) \cos \nu x)
\]

with the partial sums \(\tilde{S}_k f \). We know that if \(f \in L^1 \), then

\[
\tilde{f}(x) := -\frac{1}{\pi} \int_0^\pi \psi_x(t) \frac{1}{2} \cot \frac{t}{2} dt = \lim_{\epsilon \to 0^+} \tilde{f}(x, \epsilon),
\]

2010 Mathematics Subject Classification: 42A24.

Key words and phrases: rate of approximation, summability of Fourier series.

Communicated by Stevan Pilipović.
We will also use the modulus of continuity of f defined by

\[
\bar{\omega} := \sup \{ \omega(t) : t \in [0,\pi] \}
\]

with $\psi_x(t) := f(x + t) - f(x - t)$, exists for almost all x \text{[6]} Th.(3.1)IV.

Let $A := (a_{n,k})$ be an infinite matrix of real numbers such that $a_{n,k} \geq 0$ when $k, n = 0, 1, 2, \ldots$, $\lim_{n \to \infty} a_{n,k} = 0$ and $\sum_{k=0}^{\infty} a_{n,k} = 1$. We will use the notation $A_{n,r} = \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}|$, for $r \in \mathbb{N}$.

The A-transformation of $S_k f$ and of $\tilde{S}_k f$ be defined, by a matrix convention, as follows

\[
\left(\frac{T_n A f (x)}{T_n A f (x)} \right) := \sum_{k=0}^{\infty} a_{n,k} \left(\frac{S_k f (x)}{S_k f (x)} \right) \quad (n = 0, 1, 2, \ldots)
\]

provided the series are convergent. In this paper, we study the upper bounds of $\|T_n A f - f\|_X$ and $\|T_n A f (\bullet) - f(\bullet, \epsilon)\|_X$ by the modulus of continuity of f in the space X defined by the formula

\[
\tilde{\omega}(f, \delta)_X = \sup_{0 < t \leq \delta} \|\psi_x(t)\|_X.
\]

We will also use the modulus of continuity of f in the space X defined by $\omega(f, \delta)_X := \sup_{0 < t \leq \delta} \|\varphi_x(t)\|_X$, where $\varphi_x(t) := f(x + t) + f(x - t) - 2f(x)$.

We will consider a function ω of modulus of continuity type on the interval $[0, 2\pi]$, i.e., a nondecreasing continuous function having the properties: $\omega(0) = 0$, $\omega(\delta_1 + \delta_2) \leq \omega(\delta_1) + \omega(\delta_2)$ for any $0 \leq \delta_1 \leq \delta_2 \leq \delta_1 + \delta_2 \leq 2\pi$.

The deviation $T_n A f - f$ was estimated in \text{[2]} (see also \text{[1]} Theorems 3.4, p. 290) and \text{[5]} as follows:

Theorem A. Let $f \in \{ f \in X : \omega(f, \delta)_X = O(\omega(\delta))$ when $\delta \in [0, 2\pi] \}$ and $r \in \mathbb{N}$. Then

\[
\|T_n A f - f\|_X = O_r \left(H \left(\frac{\pi}{n+1} \right) \left(\frac{\pi}{n+1} + A_{n,r} \right) \right),
\]

where a function of modulus of continuity type ω satisfies the condition

\[
\int_{0}^{\pi} t^{-2} \omega(t) \, dt = O(H(u)) \quad \text{when } u \in [0, \pi],
\]

with $H(u) \geq 0$, such that

\[
\int_{0}^{u} H(t) \, dt = O(uH(u)) \quad \text{when } u \in [0, \pi].
\]

Additionally, if

\[
\sum_{l=0}^{n} \sum_{k=0}^{r+l-1} a_{n,k}^{-1} = O_r(1),
\]

then

\[
\|T_n A f - f\|_X = O_r \left(H \left(\frac{\pi}{n+1} \right) A_{n,r} \right).
\]
but if
\begin{equation}
(1.4)
\sum_{k=0}^{\infty} (k + 1) a_{n,k} = O(n + 1),
\end{equation}
then
\[\|T_{n,A} f - f\|_X = O_r \left(\omega \left(\frac{\pi}{n + 1} \right) + H \left(\frac{\pi}{n + 1} \right) A_{n,r} \right). \]

Theorem B. If \(f \in X \) and a matrix \(A \) is such that \(1.4 \) holds, then for \(r \in \mathbb{N} \)
\[\| T_{n,A} f - f \|_X = O_r \left(\omega \left(f, \frac{\pi}{n + 1} \right) + \sum_{k=0}^{\infty} \omega \left(f, \frac{\pi}{\mu} \right) X \sum_{k=0}^{\infty} a_{n,k} \right) + \sum_{\mu=1}^{n} \omega \left(f, \frac{\pi}{\mu} \right) X \sum_{k=\mu}^{\infty} |a_{n,k} - a_{n,k + r}|. \]

From our theorems we also derived a corollary for a matrix \(A \) satisfying the condition \(\sum_{k=m}^{\infty} |a_{n,k} - a_{n,k + r}| = O_r(1) \sum_{k=m/c}^{\infty} a_{n,k} + 1 \) with some \(c > 1 \) and \(r \in \mathbb{N} \).

2. Statement of the results

Let \(X_\omega = \{ f \in X : \hat{\omega}(f, \delta)_X = O(\omega(\delta)) \} \) when \(\delta \in [0,2\pi] \). We present the estimates of the quantities \(\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \|_X \) and \(\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet, \epsilon) \|_X \) simultaneously. Finally, we give a corollary and a remark.

Theorem 2.1. If \(f \in X_\omega \), where \(\omega \) satisfies condition \(1.1 \) such that \(1.2 \) holds and \(r \in \mathbb{N} \), then
\[\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \|_X = O_r \left(H \left(\frac{\pi}{n + 1} \right) \left(\frac{\pi}{n + 1} + A_{n,r} \right) \right). \]
Additionally, if a matrix \(A \) is such that \(1.3 \) is true, then
\[\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \|_X = O_r \left(H \left(\frac{\pi}{n + 1} \right) A_{n,r} \right). \]

Theorem 2.2. If \(f \in X_\omega \), where \(\omega \) satisfies condition \(1.1 \) such that \(1.2 \) holds, \(r \in \mathbb{N} \) and a matrix \(A \) is such that \(1.3 \) is true, then
\[\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \|_X = O_r \left(H(A_{n,r}) A_{n,r} \right). \]

Theorem 2.3. If \(f \in X_\omega \), where \(\omega \) satisfies condition \(1.1 \) such that \(1.2 \) holds and \(r \in \mathbb{N} \), then
\[\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \|_X = O_r \left(\omega \left(\frac{\pi}{n + 1} \right) + H \left(\frac{\pi}{n + 1} \right) A_{n,r} \right), \]
where in the case of the first estimate \(\omega \) satisfies the extra condition
\begin{equation}
(2.1)
\int_0^u t^{-1} \omega(t) dt = O(\omega(u)) \text{ when } u \in [0,2\pi],
\end{equation}
but in the case of the second estimate a matrix A is such that (1.4) is true.

Theorem 2.4. If $f \in X$ and $r \in \mathbb{N}$, then

$$
\left\| \tilde{T}_{n,A}f(\bullet) - \tilde{f}(\bullet, \frac{\pi}{r(n+1)}) \right\|_X = O_r \left(\tilde{\omega} \left(f, \frac{\pi}{n+1} \right) + \sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) \sum_{k=0}^{\mu+1} a_{n,k} \\
+ \sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \sum_{k=\mu}^{\infty} |a_{n,k} - a_{n,k+r}| \right),
$$

were in the case of the first estimate $\tilde{\omega}$ instead of ω satisfies the extra condition (2.1), but in the case of the second estimate a matrix A is such that (1.4) is true.

Corollary 2.1. If $f \in X_\omega$, where ω satisfies the condition (1.1) such that (1.2) is true and

$$
\sum_{k=m}^{\infty} |a_{n,k} - a_{n,k+r}| = O_r(1) \sum_{k=m/c}^{\infty} a_{n,k} \frac{k}{k+1},
$$

with some $c > 1$ and $r \in \mathbb{N}$ holds, then

$$
\left\| \tilde{T}_{n,A}f(\bullet) - \tilde{f}(\bullet, \frac{\pi}{r(n+1)}) \right\|_X = O_r \left(\frac{H(\frac{\pi}{n+1})}{n+1} + \sum_{k=0}^{n} a_{n,k} \frac{H(\frac{\pi}{k+1})}{k+1} \right),
$$

were in the case of the first estimate $\tilde{\omega}$ instead of ω satisfies extra condition (2.4), but in the case of the second estimate a matrix A is such that (1.4) is true.

Remark 2.1. We note that our extra conditions (1.3) and (1.4) for a lower triangular infinite matrix A always hold.

3. Auxiliary results

We begin this section by some notations from [4] and [6] Section 5 of Chapter II. Let for $r = \pm 1, \pm 2, \ldots$

$$
D_{\sigma,r}(t) = \frac{\sin(2k+r)t}{2 \sin \frac{\pi}{2}}, \quad \tilde{D}_{r,k}(t) = \frac{\cos(2k+r)t}{2 \sin \frac{\pi}{2}}, \quad \tilde{D}_{k,r}(t) = \frac{\cos \frac{\pi}{2} - \cos (2k+r)t}{2 \sin \frac{\pi}{2}}.
$$

It is clear by [6] that $\tilde{S}_k f(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) \tilde{D}_{k,1}(t) dt$, whence

$$
\tilde{T}_{n,A}f(x) - \tilde{f}(x) = \frac{1}{\pi} \int_{0}^{\pi} \tilde{\psi}_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}(t) dt
$$

and

$$
\tilde{T}_{n,A}f(x) - \tilde{f}(x, \frac{\pi}{r(n+1)}) = \frac{1}{\pi} \int_{0}^{\pi} \tilde{\psi}_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_{k,1}(t) dt
$$

Next, we present the known estimates and relations.
Lemma 3.1. [6] If $0 < |t| \leq \pi$, then $|\tilde{D}^\delta_{k,1}(t)| \leq \frac{\pi}{2|t|}$, $|\tilde{D}_{k,1}(t)| \leq \frac{\pi}{|t|}$ and, for any real t, we have $|\tilde{D}_{k,1}(t)| \leq \frac{1}{2}k(k + 1)|t|$ and $|\tilde{D}^\delta_{k,1}(t)| \leq k < k + 1$.

Lemma 3.2. [4] Let $r \in N$, $l \in Z$ and $a := (a_n) \subset C$. If $x \neq \frac{2l\pi}{r}$, then for every $m \geq n$

$$\sum_{k=n}^{m} a_k \sin kx = - \sum_{k=n}^{m} (a_k - a_{k+r}) \tilde{D}^\delta_{k,1}(t) + \sum_{k=m+1}^{m+r} a_k \tilde{D}^\delta_{k,1}(t) - \sum_{k=n}^{n+r-1} a_k \tilde{D}^\delta_{k,1}(t),$$

and

$$\sum_{k=n}^{m} a_k \cos kx = \sum_{k=n}^{m} (a_k - a_{k+r}) D^\delta_{k,1}(t) - \sum_{k=m+1}^{m+r} a_k D^\delta_{k,1}(t) + \sum_{k=n}^{n+r-1} a_k D^\delta_{k,1}(t).$$

We additionally need two estimates with a function of modulus of continuity type ω.

Lemma 3.3. [2] If (1.1) and (1.2) hold, then for $c \geq 1$ and $\beta > \alpha > 0$

$$\int_{\alpha}^{\beta} t^{-\gamma} \omega(t)dt = O((\beta - \alpha)H(c(\beta - \alpha)))$$

when $(\beta - \alpha) \in [0, 2\pi]$.

Lemma 3.4. [2] If (1.1) and (1.2) hold, then for $b \geq 1$,

$$\int_{u}^{\pi} t^{-\gamma} \omega(t)dt = O(H(b\pi))$$

when $u \in [0, \pi]$.

Finally, we present a very useful trivial property of a function of modulus of continuity type ω.

Lemma 3.5. A function ω of modulus of continuity type on the interval $[0, 2\pi]$ satisfies the following conditions $\delta_0^{-1} \omega(\delta_2) \leq 2\delta_1^{-1} \omega(\delta_1)$ for $\delta_2 \geq \delta_1 > 0$ and $\omega(\pi) \leq \pi (\pi)$ for $\delta > 0, n \in N$.

4. Proofs of the results

Proof of Theorem 2.1. It is clear that for an odd r

$$\left(\tilde{T}_{n,A}(x) - \tilde{f}(x) \right)$$

$$\left(\tilde{T}_{n,A}(x) - \tilde{f}(x, \frac{\pi}{2}) \right)$$

$$= \left(+ \right) \frac{1}{\pi} \int_{0}^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \left(\tilde{D}^\delta_{k,1}(t) \right) dt + \frac{1}{\pi} \int_{\pi}^{2\pi} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^\delta_{k,1}(t) dt$$

$$+ \frac{1}{\pi} \sum_{m=1}^{\lfloor r/2 \rfloor} \int_{\frac{2m\pi}{r}}^{\frac{2m\pi}{r} + \frac{\pi}{r}} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^\delta_{k,1}(t) dt + \frac{1}{\pi} \sum_{m=0}^{\lfloor r/2 - 1 \rfloor} \int_{\frac{2m\pi}{r} + \frac{\pi}{r}}^{\frac{2m\pi}{r} + \frac{\pi}{r} + \frac{\pi}{r}} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^\delta_{k,1}(t) dt$$

$$= \left(J_1(x) \right) + J_2(x) + J_3(x) + J_4(x)$$

and for an even r
\[
\begin{align*}
&\left(\tilde{T}_nAf(x) - \tilde{f}(x) \right)
- \left(\tilde{T}_nAf(x) - \tilde{f}(x, \pi n) \right)
= \left(+ \frac{1}{\pi} \int_0^{\pi n} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \left(\tilde{D}^{k,1}_{k,1}(t) \right) dt + \frac{1}{\pi} \int_{1/\pi}^{\pi n} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) dt \\
&\quad + \frac{1}{\pi} \sum_{m=1}^{[r/2]-1} \int_{2m\pi}^{2m\pi + \frac{\pi}{r}} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) dt + \frac{1}{\pi} \sum_{m=0}^{2(m+1)\pi} \int_{2m\pi}^{2m\pi + \frac{\pi}{r}} \psi_x(t) \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) dt
\right)
\end{align*}
\]

Then
\[
\left(\frac{\|\tilde{T}_nAf(\bullet) - \tilde{f}(\bullet, \pi n)\|_X}{\|\tilde{T}_nAf(\bullet) - \tilde{f}(\bullet, \pi n)\|_X} \right)
\leqslant \left(\|J_1 + J_2 + I_1''\|_X + \|J_1 + J_2 + I_1''\|_X \right) + \|\tilde{f}\|_X.
\]

By Lemma 3.1
\[
\|J_1''\|_X \leqslant \frac{1}{\pi} \int_0^{\pi n} \|\psi_x(t)\|_X \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) dt
\leqslant \frac{1}{2\pi} \int_0^{\pi n} \|\psi_x(t)\|_X \sum_{k=0}^{\infty} a_{n,k} \frac{\pi}{t} dt \leqslant \frac{1}{2} \int_0^{\pi n} O(\omega(t)) \frac{dt}{t}.
\]

Since, by Lemma 3.2,
\[
\sum_{k=0}^{\infty} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) = \sum_{k=0}^{\infty} a_{n,k} \cos \frac{(2k+1)t}{2} \sin \frac{t}{2}
\]
\[
= \frac{1}{2} \sin \frac{t}{2} \left(\sum_{k=0}^{\infty} a_{n,k} \cos kt \cos \frac{t}{2} - \sum_{k=0}^{\infty} a_{n,k} \sin kt \sin \frac{t}{2} \right)
\]
\[
= \frac{\cos \frac{t}{2}}{2} \sin \frac{t}{2} \left(\sum_{k=0}^{\infty} \left(a_{n,k} - a_{n,k+r} \right) D_{k,r}^{k,1}(t) + \sum_{k=0}^{r-1} a_{n,k} D_{k,r}^{k,1}(t) \right)
\]
\[
- \frac{1}{2} \left(- \sum_{k=0}^{\infty} \left(a_{n,k} - a_{n,k+r} \right) \tilde{D}^{k,1}_{k,1}(t) - \sum_{k=0}^{r-1} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) \right),
\]
whence
\[
\left| \sum_{k=0}^{\infty} a_{n,k} \tilde{D}^{k,1}_{k,1}(t) \right| \leqslant \frac{1}{2} \sin \frac{t}{2} \sum_{k=0}^{r-1} a_{n,k} \leqslant \frac{1}{\sin \frac{t}{2} \sin \frac{\pi}{2}} A_{n,r}.
\]

Hence and by Lemma 3.1,
\[
\left(\frac{\|J_1 + J_2 + I_1''\|_X + \|J_1 + J_2 + I_1''\|_X}{\|J_2 + I_1''\|_X + \|J_2 + I_1''\|_X} \right)
\]
and therefore

\[\| J_1 | x + \| J_1 + J_2 + I''_r | x \bigg\| \leq \sum_{m=0}^{[r/2]-\kappa} \int \frac{2 \pi}{\sin \left(\frac{\pi}{2} - \frac{\pi}{4 (m+1)} \right)} O(\omega(t)) \cdot \frac{\pi}{t} + \frac{[r/2]-\kappa}{\pi} \int \frac{2 \pi}{\sin \left(\frac{\pi}{2} - \frac{\pi}{4 (m+1)} \right)} O(\omega(t)) \cdot \frac{\pi}{t} dt \]

\[\| J'_1 | x + \| J_1 + J_2 + I''_r | x \bigg\| \leq O(1)(r/2) + \frac{\pi}{n+1} H \left(\frac{\pi}{n+1} \right) + 2 A_{n,r} \sum_{m=0}^{[r/2]-\kappa} \int \frac{2 \pi}{\sin \left(\frac{\pi}{2} - \frac{\pi}{4 (m+1)} \right)} O(\omega(t)) \cdot \frac{\pi}{t} dt \]

\[\| J'_1 | x + \| J_1 + J_2 + I''_r | x \bigg\| \leq O(1) \left[\frac{\pi}{n+1} H \left(\frac{\pi}{n+1} \right) + \| J_1 + J_2 + I''_r | x \bigg\| \right] \]

Similarly, by Lemma 3.1, Lemmas 3.3, 3.4, with \(c = b = r \) and the estimates \(| \sin \frac{t}{2} | \geq \frac{| t |}{\pi} \), \(| \sin \frac{rt}{2} | \geq 2(m+1) - \frac{rt}{\pi} \) for \(t \in \left[\frac{2(m+1)\pi}{r}, \frac{2(m+1)\pi}{r} - \frac{\pi}{r(n+1)} \right] \subset [0, \pi] \), where \(m \in \{0, \ldots, [r/2] - 1\} \), we get

\[\| I_2 \bigg\| \leq \frac{[r/2]-1}{\pi} \sum_{m=0}^{[r/2]-1} \int \frac{2 \pi}{\sin \left(\frac{\pi}{2} - \frac{\pi}{4 (m+1)} \right)} \| \psi(t) \bigg\| \cdot \frac{\pi}{t} + \frac{[r/2]-1}{\pi} \sum_{m=0}^{[r/2]-1} \int \frac{2 \pi}{\sin \left(\frac{\pi}{2} - \frac{\pi}{4 (m+1)} \right)} \| \psi(t) \bigg\| \cdot \frac{\pi}{t} dt \]
Consider an odd and the second result also follows.

Analogously, as in the proof of Theorem 2.1, we prove Theorem 2.2.

Applying condition (1.3) we have

\[T_{r/n,A} \sum_{m=0}^{[r/2]-1} \int_{r/(n+1)}^{r/(n+1)} O(\omega(t)) t dt + \int_{r/(n+1)}^{r/(n+1)} O(\omega(t)) t dt \]

\[= \int_{r/(n+1)}^{r/(n+1)} O(\omega(t)) t dt + A_{n,r} \sum_{m=0}^{[r/2]-1} \int_{r/(n+1)}^{r/(n+1)} O(\omega(t)) t dt \]

Thus

\[\|I_2\|_X = O(1) \left[\frac{\pi}{n+1} H \left(\frac{\pi}{n+1} \right) + A_{n,r} H \left(\frac{\pi}{n+1} \right) \right]. \]

Collecting these estimates we obtain the first result.

Applying condition (1.3) we have

\[\left(n + 1 \right) \sum_{k=0}^{\infty} \left\| a_{n,k} - a_{n,k+r} \right\|^{-1} = \left[\sum_{l=0}^{n} \sum_{k=0}^{\infty} \left\| a_{n,k} - a_{n,k+r} \right\| \right]^{-1} \]

and the second result also follows. \(\square \)

Proof of Theorem 2.2. Analogously, as in the proof of Theorem 2.1, we consider an odd \(r \) and an even \(r \). Then,

\[\left(\hat{T}_{r,n,A} f(x) - \hat{f}(x) \right) \left(\hat{T}_{r,n,A} f(x) - \hat{f}(x) \right) \]

\[= \left(\hat{A}_{n,r} \right) \int_{0}^{\infty} \psi_2(t) \sum_{k=0}^{\infty} a_{n,k} \left(\hat{D}_{k,1}(t) \right) dt + \int_{0}^{\infty} \psi_2(t) \sum_{k=0}^{\infty} a_{n,k} \hat{D}_{k,1}(t) dt \]
\[+ \frac{1}{\pi} \sum_{m=1}^{[r/2]} \frac{2m+1}{2m} \int_0^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_n,k \tilde{D}^2_{k,1}(t) dt + \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \frac{2m+1}{2m} \int_0^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_n,k \tilde{D}^2_{k,1}(t) dt \]

or

\[\left(\frac{\tilde{T}_{n,A} f(x) - \tilde{f}(x)}{\tilde{T}_{n,A} f(x) - \tilde{f}(x, \frac{1}{2} A_{n,r})} \right) \]

\[= \left(\frac{1}{\pi} \sum_{m=1}^{[r/2]} \frac{2m+1}{2m} \int_0^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_n,k D^2_{k,1}(t) dt + \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \frac{2m+1}{2m} \int_0^{\pi} \psi_x(t) \sum_{k=0}^{\infty} a_n,k \tilde{D}^2_{k,1}(t) dt \]

respectively. Since \(A_{n,r} \leq 2 \), we can estimate our terms analogously as in the proof of Theorem 2.1 with \(A_{n,r} \) instead of \(\frac{2}{\pi+1} \) and thus we obtain the desired estimate.

Proof of Theorem 2.3. Similarly, as in the proof of Theorem 2.1

\[\left(\left\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \right\|_X \right) \leq \left(\left\| J_1 \right\|_X \right) + \left\| J_2 + J_1'' \right\|_X + \left\| J_2 + J_1'' \right\|_X + \left\| J_2 \right\|_X. \]

By Lemma 3.1 and \eqref{eq:2.12}

\[\left\| J_1'' \right\|_X \leq \frac{1}{\pi} \int_0^{\pi/n+1} \max\left\{ \frac{2m+1}{2m} \right\} \left(\sum_{k=0}^{\infty} a_n,k D^2_{k,1}(t) \right) dt \leq \frac{1}{\pi} \sum_{k=0}^{\infty} (k+1) a_n,k \int_0^{\pi/n+1} \omega(t) dt \]

\[= O(n+1) \int_0^{\pi/n+1} \omega(t) dt = O(1) \omega\left(\frac{\pi}{n+1} \right) = O\left(\frac{\pi}{n+1} \right) \]

and by Lemma 3.1 and \eqref{eq:2.11}

\[\left\| J_1 \right\|_X \leq \frac{1}{\pi} \int_0^{\pi/n+1} \max\left\{ \frac{2m+1}{2m} \right\} \left(\sum_{k=0}^{\infty} a_n,k D^2_{k,1}(t) \right) dt \leq \frac{1}{2\pi} \int_0^{\pi/n+1} \max\left\{ \frac{2m+1}{2m} \right\} \left(\sum_{k=0}^{\infty} a_n,k \frac{\pi}{t} \right) dt \]

\[\leq \frac{1}{2} \int_0^{\pi/n+1} \frac{\omega(t)}{t} dt = O\left(\omega\left(\frac{\pi}{n+1} \right) \right) = O\left(\omega\left(\frac{\pi}{n+1} \right) \right). \]

Further, by the same lemmas and conditions as in the above proofs and Lemma 3.5, we obtain with \(\kappa = 1 \) when \(r \) is even, and \(\kappa = 0 \) when \(r \) is odd, that

\[\left\| J_2 + J_1'' \right\|_X + \left\| J_2 + J_1'' \right\|_X. \]
\[
\begin{align*}
\|a\|_{2} & \leq \frac{2}{\pi} \left(\sum_{m=1}^{[r/2]-\kappa} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \|\psi_{*}(t)\| \sum_{k=0}^{\infty} \left| a_{n,k} \overline{D}_{c,k,1}^{-1} \right| dt \right) \\
\|a\|_{2} & \leq \frac{2}{\pi} \left(\sum_{m=1}^{[r/2]-\kappa} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \|\psi_{*}(t)\| \sum_{k=0}^{\infty} \left| a_{n,k} \overline{D}_{c,k,1}^{-1} \right| dt \right) \\
\|a\|_{2} & \leq \frac{2}{\pi} \sum_{m=1}^{[r/2]-\kappa} \left(\int_{0}^{2m\pi} \frac{O(\omega(t))}{t} dt + \frac{2}{\pi} \sum_{m=0}^{\infty} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \frac{O(\omega(t))}{\sin \frac{t}{2} \sin \frac{\pi}{2t}} \right) A_{n,r} dt \\
\|a\|_{2} & \leq \frac{2}{\pi} \sum_{m=1}^{[r/2]-\kappa} \left(\int_{0}^{2m\pi} \frac{O(\omega(t))}{t} dt + 2A_{n,r} \sum_{m=0}^{\infty} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \frac{O(\omega(t))}{t \left(\frac{t^{2}}{\pi} - 2m \right)} \right) dt \\
\|a\|_{2} & \leq 4 \sum_{m=1}^{[r/2]-\kappa} \frac{O \left(\left(\frac{2m\pi}{\pi} \right) \right)}{r(n+1)} \frac{\pi}{\left([r/2] + 1 \right) A_{n,r}} \int_{\frac{t^{2}}{\pi}}^{\frac{\pi}{t}} \left(\frac{\pi}{n+1} \right) dt \\
\|a\|_{2} & \leq 4 \sum_{m=1}^{[r/2]-\kappa} \frac{O \left(\left(\frac{2m\pi}{\pi} \right) \right)}{r(n+1)} \frac{\pi}{\left([r/2] + 1 \right) A_{n,r}} + O(1) A_{n,r} H \left(\frac{\pi}{n+1} \right) \\
\|a\|_{2} & \leq 4 \sum_{m=1}^{[r/2]-\kappa} \frac{O \left(\left(\frac{2m\pi}{\pi} \right) \right)}{r(n+1)} \frac{\pi}{\left([r/2] + 1 \right) A_{n,r}} + O(1) A_{n,r} H \left(\frac{\pi}{n+1} \right) \\
\|a\|_{2} & = O(1) \left(\frac{\pi}{n+1} + A_{n,r} H \left(\frac{\pi}{n+1} \right) \right)
\end{align*}
\]

and

\[
\begin{align*}
\|b\|_{2} & \leq \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \|\psi_{*}(t)\| \sum_{k=0}^{\infty} \left| a_{n,k} \overline{D}_{c,k,1}^{-1} \right| dt \\
\|b\|_{2} & \leq \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \frac{O(\omega(t))}{\sin \frac{t}{2} \sin \frac{\pi}{2t}} A_{n,r} dt + \frac{1}{2} \sum_{m=0}^{[r/2]-1} \left(\int_{0}^{2m\pi} + \frac{\pi}{2} \right) \frac{O(\omega(t))}{\sin \frac{t}{2} \sin \frac{\pi}{2t}} \right) dt
\end{align*}
\]
Thus our proof is complete.

Proof of Theorem 2.4. Let us above

\[\left\| \mathcal{T}_{n,a}f(\bullet) - \mathcal{F}(\bullet) \right\|_X \leq \left(\|J_1\|_X + \|J_2 + I''_2\|_X + \|J_2 + I''_1\|_X \right), \]

\[\|J_1\|_X \leq \frac{1}{\pi} \int_0^{\pi/2} \|\psi(t)\|_X \left| \sum_{k=0}^{\infty} a_{n,k} \hat{D}_k(t) \right| dt \leq \frac{1}{2} \sum_{k=0}^{\infty} a_{n,k} \int_0^{\pi/2} \frac{\bar{\omega}(f,t) x}{t} dt \]

\[= O(1) \bar{\omega}\left(f, \frac{r}{n+1}\right) x = O\left(\bar{\omega}\left(f, \frac{r}{n+1}\right) x\right), \] by (2.4),

and

\[\|J'_1\|_X \leq \frac{1}{\pi} \int_0^{\pi/2} \|\psi(t)\|_X \left| \sum_{k=0}^{\infty} a_{n,k} \hat{D}_k(t) \right| dt \leq \frac{1}{2} \sum_{k=0}^{\infty} a_{n,k} (k+1) dt \]

\[\leq O(n+1) \int_0^{\pi/2} \bar{\omega}(f,t) x dt = O\left(\bar{\omega}\left(f, \frac{r}{n+1}\right) x\right), \] by (2.1).

Further, taking \(t_m = \left\lfloor \frac{\pi}{r-2\pi n^2} \right\rfloor \) and \(t = \left\lfloor \frac{\pi}{r} \right\rfloor \), using Lemma 3.5, and with \(r = 1 \) when \(r \) is even, and \(r = 0 \) when \(r \) is odd, we obtain

\[\|J_2 + I''_2\|_X + \|J_2 + I''_1\|_X \]

\[\leq \frac{2}{\pi} \left(\sum_{m=1}^{\mid r/2 \mid} \int_0^{\pi/2} \left| \frac{a_{n,m}}{2m-\pi/2} \right| + \int_{\pi/2}^{\pi/2} \left| \frac{a_{n,m}}{2m-\pi/2} \right| \|\psi(t)\|_X \left| \sum_{k=0}^{\infty} a_{n,k} \hat{D}_k(t) \right| dt \right) \]

\[= \frac{2}{\pi} \left(\sum_{m=1}^{\mid r/2 \mid} \int_0^{\pi/2} + \sum_{m=1}^{\mid r/2 \mid} \int_{\pi/2}^{\pi/2} \left| \frac{a_{n,m}}{2m-\pi/2} \right| \|\psi(t)\|_X \left| \sum_{k=0}^{\infty} a_{n,k} \hat{D}_k(t) \right| dt \right) \]
Next, taking \(\tau_m = \left[\frac{\pi}{\pi + 2(r/2) + 1} \right] \), we obtain

\[
\|I_2\| \leq \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \int_{2m\pi + \pi}^{(2m+2)\pi} \left\| \psi_t(t) \right\| X \sum_{k=0}^{\infty} \left| a_n, k \right| \left| D^{\circ}_{k, 1}(t) \right| \, dt
\]

\[
\leq \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \left(\int_{2m\pi + \pi}^{(2m+2)\pi} + \int_{(2m+2)\pi}^{(2m+4)\pi} - \int_{2m\pi + \pi}^{(2m+4)\pi} \right) \left\| \psi_t(t) \right\| X \sum_{k=0}^{\infty} \left| a_n, k \right| \left| D^{\circ}_{k, 1}(t) \right| \, dt
\]

\[
\leq \frac{1}{\pi} \sum_{m=0}^{[r/2]-1} \int_{2m\pi + \pi}^{(2m+2)\pi} \left(\frac{\tilde{\omega}(f, t) X}{2\sin \frac{\pi}{2}} \sum_{k=0}^{\tau_m^2} + \frac{\tilde{\omega}(f, t) X}{\sin \frac{\pi}{2} \sin \frac{\omega}{2}} \sum_{k=\tau_m^{r_2}}^{\infty} \left| a_n, k - a_n, k+r \right| \right) \, dt
\]
\[
\sum_{k=0}^{\infty} a_{n,k} dt
\]
\[
\sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}| dt
\]
\[
\sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}| dt
\]
\[
O_r(1) \sum_{\mu=1}^{n} \sum_{k=0}^{\infty} a_{n,k} + O_r(1) \sum_{\mu=1}^{n} \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}|
\]
\[
O_r(1) \omega \left(f, \frac{\pi}{n+1} \right)_X.
\]
Thus the result follows. \(\square\)

Proof of Corollary 2.1. Theorem 2.3 implies that
\[
\|\tilde{T}_{n,A}f(x) - \tilde{f}(x)\|_X = O_r \left(\omega \left(f, \frac{\pi}{n+1} \right)_X + \sum_{\mu=1}^{n} \sum_{k=0}^{\infty} a_{n,k} \right)
\]
\[
+ O_r(1) \omega \left(f, \frac{\pi}{n+1} \right)_X \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}|.
\]
Since (2.2)
\[
\sum_{\mu=1}^{n} \omega \left(f, \frac{\pi}{\mu} \right)_X \sum_{k=0}^{\infty} |a_{n,k} - a_{n,k+r}| = O_r(1) \sum_{\mu=1}^{n} \omega \left(f, \frac{\pi}{\mu} \right)_X \left(\sum_{k=0}^{\mu} + \sum_{k=\mu}^{\infty} a_{n,k} \right)
\]
If (1.1) and (1.2) hold, then one has

\[
\begin{align*}
\lesssim \tilde{O}_r(1) \left(\sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \left(\sum_{k=\mu}^{\infty} \frac{a_{n,k}}{k+1} \right) + \tilde{O}_r(1) \left(\sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \left(\sum_{k=\mu+1}^{\infty} \frac{a_{n,k}}{k+1} \right) \right) \right) \\
\lesssim \tilde{O}_r(1) \left(\sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \sum_{k=0}^{\mu} a_{n,k} + \tilde{O}_r(1) \left(\sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \left(\sum_{k=\mu}^{\infty} \frac{a_{n,k}}{k+1} \right) \right) \right)
\end{align*}
\]

one has

\[
\left\| \tilde{T}_{n,A}f(\bullet) - \tilde{f}(\bullet) \right\|_X \leqslant \tilde{O}_r(1) \left(\sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \sum_{k=\mu}^{\infty} \frac{a_{n,k}}{k+1} \right) + \tilde{O}_r(1) \left(\sum_{\mu=1}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu} \right) X \left(\sum_{k=\mu}^{\infty} \frac{a_{n,k}}{k+1} \right) \right)
\]

If (1.11) and (1.12) hold, then

\[
\tilde{\omega} \left(f, \frac{\pi}{n+1} \right) X \leqslant \frac{1}{n+1} \sum_{\mu=0}^{n} \tilde{\omega} \left(f, \frac{\pi}{\mu+1} \right) X = O(1) \frac{H(\frac{\pi}{n+1})}{n+1}.
\]
\[\sum_{\mu=k}^{n} \frac{\hat{\omega}(f, \frac{\pi}{n+1})}{\mu + 1} X = \frac{1}{\pi^2} \int_{\pi}^{\pi+1} \frac{\hat{\omega}(f, t) X}{t} dt = O(1) \]

and therefore
\[\left\| \tilde{T}_{n,A} f(\bullet) - \tilde{f}(\bullet) \right\|_{X} = O_{r} \left(\frac{H\left(\frac{\pi}{n+1} \right)}{n+1} \right) + O_{r} \left(\sum_{k=0}^{n} a_{n,k} \frac{H\left(\frac{k+1}{n+1} \right)}{k+1} \right) + O_{r} \left(\frac{\pi}{n+1} \sum_{k=n+1}^{\infty} a_{n,k} \right). \]

Since
\[\sum_{k=n+1}^{\infty} \frac{a_{n,k}}{k+1} \leq \frac{1}{n+1} \sum_{k=n+1}^{\infty} a_{n,k} \leq \frac{1}{n+1} \]
the result follows. □

Acknowledgement. We are very grateful for essential and constructive comments and suggestions of the anonymous referee that improved the paper.

References

[1] Xh. Z. Krasniqi, Some further results on the degree of approximation of continuous functions, Annales Univ. Sci. Budapest., Sect. Comp., 38 (2012), 279–294.
[2] W. Łenski, B. Szal, On estimates of deviation of functions from matrix operators of their Fourier series by some expressions with \(r \)-differences of the entries, Abstr. Appl. Anal. 2016, Article ID 9712878. 10 pages, doi:10.1155/2016/9712878.
[3] , A new class of numerical sequences and its applications to uniform convergence of sine series, Math. Nachr. 284 (14–15) (2011), 1985–2002.
[4] B. Szal, On \(L \)-convergence of trigonometric series, J. Math. Anal. Appl. 373 (2011), 449–463.
[5] B. Wei, D. Yu, On the degree of approximation of continuous functions by means of Fourier series, Math. Commun. 17 (2012), 211–219.
[6] A. Zygmund, Trigonometric series, Cambridge, 2002.

University of Zielona Góra (Received 08 04 2017)
Faculty of Mathematics, Computer Science and Econometrics (Revised 15 06 2020)
Zielona Góra, Poland
W.Lenski@wie.uz.zgora.pl
B.Szal@wie.uz.zgora.pl