Smoking influences outcome in patients who had thrombolysed ischaemic stroke: the ENCHANTED study

Lingli Sun, Lili Song, Jie Yang, Richard I Lindley, Thompson Robinson, Pablo M Lavados, Candice Delcourt, Hisatomi Arima, Bruce Ovbiagele, John Chalmers, Craig S Anderson, Xia Wang

ABSTRACT

Background and purpose As studies vary in defining the prognostic significance of smoking in acute ischaemic stroke (AIS), we aimed to determine the relation of smoking and key outcomes in patient participants who had thrombolysed AIS of the international quasi-factorial randomised Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED).

Methods Post-hoc analyses of ENCHANTED, an international quasi-factorial randomised evaluation of intravenous alteplase-dose comparison and levels of blood pressure control in patients who had thrombolysed AIS. Multivariable logistic regression models with inverse probability of treatment weighting (IPTW) propensity scores were used to determine associations of self-reported smoking status and clinical outcomes, according to 90-day modified Rankin Scale (mRS) scores and symptomatic intracerebral haemorrhage (sICH).

Results Of 4540 patients who had an AIS, there were 1008 (22.2%) current smokers who were younger and predominantly male, with more comorbidities of hypertension, coronary artery disease, atrial fibrillation and diabetes mellitus, and greater baseline neurological impairment, compared with non-smokers. In univariate analysis, current smokers had a higher likelihood of a favourable shift in mRS scores (OR 0.88, 95% CI 0.77 to 0.99; p=0.038) but this association reversed in a fully adjusted model with IPTW adjusted OR 1.15, 95% CI 1.04 to 1.28; p=0.009). A similar trend was also apparent for dichotomised poor outcome (mRS scores 2–6; OR 1.18, 95% CI 1.05 to 1.33; p=0.007), but not with the risk of sICH across standard criteria.

Conclusion Smoking predicts poor functional recovery in patients who had thrombolysed AIS.

INTRODUCTION

In addition to a two-fold increased risk of acute ischaemic stroke (AIS) in the general population, cigarette smoking influences the prognosis from this illness and risk of recurrent vascular events. Intravenous alteplase has an established net benefit in patients who have AIS across a wide range of characteristics, but the interaction with smoking on recovery is controversial. Several studies suggest better outcomes in patients who had thrombolysed AIS who smoke, possibly by modifying platelet function, altering clot dynamics and enhancing reperfusion. However, selection bias and residual confounding limit the conclusions that can be drawn from such data. Recent post-hoc analyses of the efficacy and safety of MRI-based thrombolysis in wake-up stroke trial have shown that smoking does not modify the effect of intravenous thrombolysis in 486 patients who had an AIS with an unknown time of symptom onset and diffusion-weighted imaging-fluid attenuation inversion recovery mismatch on brain MRI. Herein, we present analyses of the international Enhanced Control of Hypertension and Thrombolysis Stroke Study (ENCHANTED) to help resolve conflicting results across studies concerning the prognostic significance of smoking in patients who had thrombolysed AIS.

METHODS

Study design
ENCHANTED was an international, 2×2 partial-factorial, multicentre, prospective, randomised, open-label, blinded-endpoint trial, which evaluated the effects of low-dose (0.6 mg/kg) versus standard-dose (0.9 mg/kg) intravenous alteplase (n=3310), and intensive versus guideline-recommended blood pressure (BP) lowering (n=2227) in 4587 patients who had thrombolysis-eligible AIS.

Clinical assessment and outcomes
Key demographic and clinical characteristics were recorded at the time of patient enrolment, with current smoking status obtained by self-report. Clinical outcomes were assessed at 90 days by trained investigators blind to study treatment. The primary outcome was functional status, defined by an ordinal shift in the distribution of the full range of scores on the modified Rankin Scale (mRS). Other outcomes were according to dichotomous
Statistical analysis

As patient characteristics were expected to differ between smokers and non-smokers, we calculated a propensity score to estimate individual probability of being a smoker based on the following baseline variables: sex, age, ethnicity (Asian vs non-Asian), systolic BP, NIHSS score, estimated pre-morbid mRS score (0 vs 1), presence of vascular risk factors (hypertension, coronary artery disease, other heart diseases, atrial fibrillation, diabetes mellitus or hypercholesterolaemia) and medications (anticoagulation, antiplatelet therapy, glucose lowering and lipid lowering agents). The inverse probability of treatment weighting (IPTW) adjustment for baseline imbalances was examined using absolute standardised differences in covariate means. Stabilised weights, used to reduce variance in the estimates of the effect of smoking, were incorporated into logistic regression models to determine associations of smoking and outcomes. Data were presented with OR and 95% CI, with a standard level of significance set at p<0.05. All analyses were undertaken using SAS software (V.9.3).

RESULTS

Overall, 4540 patients who had thrombolysed AIS were included in these analyses, of whom 1008 (22.2%) were current smokers. Table 1 shows that compared with non-smokers, current smokers were younger, predominantly male, had more cardiovascular risk factors of hypertension, coronary artery or other heart disease, atrial fibrillation, diabetes mellitus or hypercholesterolaemia, presented with greater neurological impairment, and were more likely to have AIS with a final diagnosis of either large-vessel occlusion or cardioembolism. Time from symptom onset to alteplase administration was comparable between the two groups, but smokers were less likely to receive in-hospital nasogastric feeding, early mobilisation, compression stockings and subcutaneous heparin treatment.

Distributions of baseline covariates were well balanced following application of propensity scores; all post-IPTW absolute standardised differences were within an acceptable margin of 0.1 (online supplemental figure S1). Although the proportional odds assumption was violated (p<0.0001), we still proceeded with an ordinal analysis for assessing the distribution of mRS scores and to compare these with analyses of dichotomised mRS scores. In univariate analysis on shift mRS scores, current smokers had a higher likelihood of a favourable outcome, compared with non-smokers (OR 0.88, 95% CI 0.77 to 0.99; p=0.038) (table 2, online supplemental figure S2). However, the direction of association was reversed in a fully adjusted model with IPTW (adjusted OR 1.15, 95% CI 1.04 to 1.28; p=0.009), indicating current smokers had an unfavourable outcome. This association with poor outcome was consistent across all dichotomised mRS scores, except for severe grades of disability (mRS scores 4–6 and 5–6).

There was no significant association between smoking and different definitions of sICH, except for NINDS criteria (OR 1.29, 95% CI 1.03 to 1.60; p=0.003) (table 2, figure 1). Sensitivity analysis undertaken to explore potential confounders indicated age, sex and baseline NIHSS were the key factors influencing the direction of association (table 3); their exclusion from models produced comparable direction and magnitude of association between smoking and functional outcomes seen in univariate analysis (OR 0.96, 95% CI 0.85 to 1.09; p=0.557).

DISCUSSION

In these secondary analyses of the large ENCHANTED database, we have shown that smokers had a poor functional outcome after treatment with intravenous thrombolysis for AIS. The adverse outcome was also reflected in greater odds of early neurological deterioration, but there was no clear association of smoking and sICH. The discordant results across the other studies on this topic may relate to incomplete adjustment for confounding variables, in particular neurological severity.

The finding that smokers were younger and had more cardiovascular risk factors than non-smokers with AIS, and in having a greater likelihood of large-vessel occlusion or cardioembolism, is consistent with other studies, suggesting an acceleration of atherosclerosis and thrombus formation from smoking. However, the so-called ‘smoking-thrombolysis paradox’, promoted in relation to a potential increase in the efficacy of thrombolysis in smokers, may have been influenced by systematic errors and/or residual confounding, particularly in relation to neurological severity, as we have shown. A large (n=10825) multicentre prospective study of AIS has also shown that current and recent smoking was associated with unfavourable functional outcome, while a Taiwanese registry study found that smokers had twofold greater mortality and prolonged disability after stroke. These findings support our findings where we
Table 1 Baseline patient characteristics and management by smoking status

Variables	Non-smoking (N=3532)	Smoking (N=1008)	P value
Time from symptom onset to randomisation, min	2.9 (2.2–3.7)	2.9 (2.2–3.8)	0.680
Time from symptom onset to intravenous alteplase, min	170 (129–217)	175 (131–224)	0.068
Age, years	68.2 (12.7)	61.5 (11.2)	<0.001
Female	1583 (44.8)	132 (13.1)	<0.001
Asian	2245 (63.6)	282 (8.0)	<0.001
Systolic blood pressure	154 (19)	152 (19)	<0.001
Diastolic blood pressure	86 (13)	88 (13)	<0.001
Heart rate	79 (16)	79 (14)	0.549
NIHSS score	8 (5–13)	7 (4–12)	<0.001
GCS	15 (13–15)	15 (14–15)	<0.001
Medical history			
Hypertension	2360/3532 (66.8)	573/1008 (56.8)	<0.001
Stroke	653/3532 (18.5)	168/1008 (16.7)	0.185
Coronary artery disease	534/3532 (15.1)	109/1008 (10.8)	0.001
Other heart diseases	232/3532 (6.6)	49/1008 (4.9)	0.047
Atrial fibrillation	698/3528 (19.8)	107/1008 (10.6)	<0.001
Diabetes mellitus	755/3532 (21.4)	170/1008 (16.9)	0.002
Hypercholesterolaemia	572/3532 (16.2)	132/1008 (13.1)	0.017
Premorbid symptom-free (mRS 0)	2905/3530 (82.3)	869/1007 (86.3)	0.003
Antihypertensive agent(s)	1698/3532 (48.1)	373/1008 (37.0)	<0.001
Statin/other lipid-lowering	708/3529 (20.1)	135/1007 (13.4)	<0.001
Aspirin/other antiplatelet agent(s)	831/3530 (23.5)	153/1007 (15.2)	<0.001
Warfarin anticoagulation	90/3530 (2.5)	10/1007 (1.0)	0.003
Glucose lowering agent(s)	484/3530 (13.7)	98/1007 (9.7)	0.001
Pathological subtype			
Large-artery occlusion	1377/3394 (40.6)	427/963 (44.3)	<0.001
Cardioembolism	781/3394 (23.0)	276/963 (28.7)	
Small-vessel or perforator disease	684/3394 (20.2)	112/963 (11.6)	
Other/uncertain aetiology	552/3394 (16.3)	148/963 (15.4)	
Management			
Intubation and ventilation	181/3480 (5.2)	46/988 (4.7)	0.491
Nasogastric feeding	636/3479 (18.3)	153/988 (15.5)	0.042
Physiotherapy mobilisation	1579/3479 (45.4)	391/988 (39.6)	0.001
Compression stockings	320/3478 (9.2)	62/988 (6.3)	0.004
Subcutaneous heparin	710/3532 (20.1)	151/1008 (15.0)	<0.001
Antithrombotic agent in first 24 hours	593/3522 (16.8)	152/1007 (15.1)	0.188
Haemorhacnectomy	34/3480 (1.0)	13/988 (1.3)	0.357
Intensive care unit admission	785/3479 (22.6)	216/988 (21.9)	0.641
Rehabilitation	1725/3480 (49.6)	495/988 (50.1)	0.768
Decision to withdraw active care	97/3481 (2.8)	14/988 (1.4)	0.015

Data are n/N (%), mean (SD) or median (IQR).
GCS, Glasgow Coma Scale; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale.
Outcome	Non-smoking	Smoking	Univariate	Multivariable
	N=3532	N=1008	OR (95% CI)	P value
Primary outcome — ordinal mRS			0.88 (0.77 to 0.99)	0.038
Secondary outcome — dichotomised mRS			1.15 (1.04 to 1.28)	0.009*
1–6 versus 0	2571/3467 (74.2)	728/981 (74.2)	1.00 (0.85 to 1.18)	0.973
2–6 versus 0–1	1756/3467 (50.7)	469/981 (47.8)	0.89 (0.78 to 1.03)	0.117
3–6 versus 0–2	1265/3467 (36.5)	319/981 (32.5)	0.84 (0.72 to 0.98)	0.022
4–6 versus 0–3	875/3467 (25.2)	187/981 (19.1)	0.70 (0.59 to 0.83)	<0.001
5–6 versus 0–4	532/3467 (15.3)	111/981 (11.3)	0.70 (0.57 to 0.88)	0.002
Death	338/3532 (9.6)	71/1008 (7.0)	0.72 (0.55 to 0.94)	0.015
Death or neurological deterioration in 24 hours†	305/3532 (8.6)	87/1008 (8.6)	1.00 (0.78 to 1.28)	0.997
Death or neurological deterioration in 7 days†	444/3532 (12.6)	123/1008 (12.2)	0.97 (0.78 to 1.20)	0.757
Symptomatic ICH‡				
SITS-MOST criteria	56/3532 (1.6)	15/1008 (1.5)	0.94 (0.53 to 1.67)	0.826
NINDS criteria	246/3532 (7.0)	67/1008 (6.6)	0.95 (0.72 to 1.26)	0.725
ECASS2 criteria	160/3532 (4.5)	39/1008 (3.9)	0.85 (0.59 to 1.21)	0.367
ECASS3 criteria	73/3532 (2.1)	19/1008 (1.9)	0.91 (0.55 to 1.52)	0.718
IST3 criteria	96/3532 (2.7)	26/1008 (2.6)	0.95 (0.61 to 1.47)	0.810
Any ICH	670/3532 (19.0)	173/1008 (17.2)	0.89 (0.74 to 1.06)	0.193
Any clinical-reported ICH	298/3532 (8.4)	77/1008 (7.6)	0.90 (0.69 to 1.17)	0.417
Any adjudicated ICH	593/3532 (16.8)	155/1008 (15.4)	0.90 (0.74 to 1.09)	0.287
Fatal ICH	36/3532 (1.0)	8/1008 (0.8)	0.78 (0.36 to 1.68)	0.520

*The common OR was estimated from an ordinal logistic-regression model and indicates the odds of a decrease of 1 in the modified Rankin Scale (mRS) score.
†Neurological deterioration (≥4 points increase in National Institutes of Health Stroke Scale (NIHSS) score) or death within 24–36 hours.
‡The main definition of symptomatic intracerebral haemorrhage (ICH) used was from Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST), as a large local or remote parenchymal intracerebral haemorrhage (>30% of the infarcted area affected by haemorrhage with mass effect or extension outside the infarct) in combination with neurological deterioration from baseline (increase of ≥4 in the NIHSS score) or death within 36 hours. Symptomatic ICH was also assessed according to other trial criteria (see appendix).
CI, confidence interval; ECASS2 and ECASS 3, second and third European Cooperative Acute Stroke Studies; IST3, third International Stroke Study; NINDS, National Institute of Neurological Disorders and Stroke; OR, odds ratio.
Blood flow and oxygen supply. Further imaging studies in haematocrit may potentially increase resistance to derived from an international, multicentre, study defining the relation of smoking and post-thrombolysis in stroke. Smoking may compromise recovery due to adverse effects on the vascular endothelium that could inhibit restorative processes in the brain. An increase in haematocrit may potentially increase resistance to blood flow and oxygen supply. Further imaging studies defining the relation of smoking and post-thrombolysis recanalisation status may clarify such mechanistic processes.

Key strengths of this study include the use of data derived from an international, multicentre, study, which had a rigorous protocol, standardised data collection procedures, and objective outcome measures. The large sample size and use of multivariable models with propensity score matching adjustment of known confounders offer an advantage of reducing the influence of confounding. We recognise, however, that the inclusion of clinical trial participants with predominantly mild-to-moderate AIS from Asia may raise concerns over the generalisability of these results. While other studies have shown a dose-dependent pattern of smoking, we were limited in only being able to use a simple binary measure of this exposure without any data on the frequency, duration and time from cessation of smoking. Finally, as these analyses were not prespecified, they are prone to random error and residual confounding.

In summary, our study has shown that smokers adversely influence functional recovery in patients who had thrombolysed AIS, compared with non-smokers.

Table 3 Logistic regression models for primary outcome, with variable exclusions

Outcome	Models	OR (95% CI)	P value
Ordinal mRS	Model 1	1.23 (1.07 to 1.40)	0.003
	Model 2	1.26 (1.10 to 1.43)	0.001
	Model 3	1.12 (0.98 to 1.27)	0.088
	Model 4	0.96 (0.85 to 1.09)	0.557

Model 1: fully adjusted for sex, age, ethnic group, baseline National Institutes of Health Stroke Scale (NIHSS), baseline systolic blood pressure, history of hypertension, acute coronary syndrome, other heart disease, diabetes mellitus, hypercholesterolaemia, prior use of antiplatelet use, anticoagulant use, glucose lowering agent, lipid lowering agent, modified Rankin Scale (mRS) before stroke. Model 2: variables in model 1 with exclusion of sex. Model 3: variables in model 1 with exclusion of age and sex. Model 4: variables in model 1 with exclusion of age, sex and baseline NIHSS score.
REFERENCES

1 Markidan J, Cole JW, Cronin CA, et al. Smoking and risk of ischemic stroke in young men. Stroke 2018;49:1276–8.
2 Ueshima H, Choudhury SR, Okayama A, et al. Cigarette smoking as a risk factor for stroke death in Japan: nippon DATA80. Stroke 2004;35:1836–41.
3 Wolf PA, D’Agostino RB, Kannel WB. Cigarette smoking as a risk factor for stroke. JAMA 1988;259:1025–9.
4 Ding N, Sang Y, Chen J, et al. Cigarette Smoking, Smoking Cessation, and Long-Term Risk of 3 Major Atherosclerotic Diseases. J Am Coll Cardiol 2019;74:498–507.
5 Tang JL, Morris JK, Wald NJ, et al. Mortality in relation to TAR yield of cigarettes: a prospective study of four cohorts. BMJ 1995;311:1530–3.
6 Ovbiagele B, Weir CJ, Saver JL, et al. Effect of smoking status on outcome after acute ischemic stroke. Cerebrovasc Dis 2006;21:260–5.
7 Matsuo R, Ago T, Kiyuwa F, et al. Smoking status and functional outcomes after acute ischemic stroke. Stroke 2020;51:846–52.
8 Lees KR, Emberson J, Blackwell L, et al. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. Stroke 2016;47:2373–9.
9 Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American heart Association/american stroke association. Stroke 2019;50:e344–418.
10 Kwiatkowski TG, Libman RB, Frankel M, et al. Effects of tissue plasminogen activator for acute ischemic stroke at one year. National Institute of neurological disorders and stroke recombinant tissue plasminogen activator stroke Study Group. N Engl J Med 1999;340:1781–7.
11 IST-3 collaborative group. Effect of thrombolysis with alteplase within 6 h of acute ischaemic stroke on long-term outcomes (the third International Stroke Trial [IST-3]): 18-month follow-up of a randomised controlled trial. Lancet Neurol 2013;12:768–76.
12 Ovbiagele B, Saver JL. The smoking-thrombolyis paradox and acute ischemic stroke. Neurology 2005;65:293–5.
13 Ovbiagele B, Wang J, Johnston SC, et al. Effect of clopidogrel by smoking status on secondary stroke prevention. Circulation 2017;135:315–6.
14 Zhang Q, Wang Y, Song H, et al. Clopidogrel and ischemic stroke outcomes by smoking status: smoker’s paradox? J Neurosci 2017;373:41–4.
15 Ali SF, Smith EE, Bhatt DL, et al. Paradoxic association of smoking with in-hospital mortality among patients admitted with acute ischemic stroke. J Am Heart Assoc 2013;2:e000171.
16 Kufner A, Nolte CH, Galinovic I, et al. Smoking-thrombolyis paradox: recanalization and reperfusion rates after intravenous tissue plasminogen activator in smokers with ischemic stroke. Stroke 2013;44:407–13.
17 Aune E, Roissien J, Mathiesen M, et al. The "smoker’s paradox" in patients with acute coronary syndrome: a systematic review. BMC Med 2011;9:97.
18 Schlemm L, Kufner A, Boutitie F, et al. Current Smoking Does Not Modify the Treatment Effect of Intravenous Thrombolyis in Acute Ischemic Stroke Patients-A Post-hoc Analysis of the WAKE-UP Trial. Front Neurol 2019;10:1239.
19 Anderson CS, Woodward M, Arima H, et al. Statistical analysis plan for evaluating low- vs. standard-dose alteplase in the enhanced control of hypertension AND Thrombolysis strokeE study (enchanted). Int J Stroke 2015;10:1313–5.
20 Huang Y, Sharma VK, Robinson T, et al. Rationale, design, and progress of the Enhanced Control of Hypertension AND Thrombolysis stokeE study (ENCHANTED) trial: An international multicenter 2 × 2 factorial randomized controlled trial of low- vs. standard-dose r-tPA and early intensive vs. guideline-recommended blood pressure lowering in patients with acute ischaemic stroke eligible for thrombolysis treatment. Int J Stroke 2015;10:775–88.
21 Anderson CS, Robinson T, Lindley RI, et al. Low-Dose versus standard-dose intravenous alteplase in acute ischemic stroke. N Engl J Med 2016;374:2313–23.
22 Anderson CS, Huang Y, Lindley RI, et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet 2019;393:877–88.
23 Anderson CS, Woodward M, Arima H, et al. Statistical analysis plan for evaluating different intensities of blood pressure control in the enhanced control of hypertension and thrombolysis shake study. Int J Stroke 2019;14:555–8.
24 Wahlgren N, Ahmed N, Dávalos A, et al. Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in Stroke-Monitoring study (SITS-MOST): an observational study. Lancet 2007;369:275–82.
25 National Institute of Neurological Disorders and Stroke r-tPA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–8.
26 Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II), second European-Australasian acute stroke study Investigators. Lancet 1998;352:1245–51.
27 IST-3 collaborative group, Sandercock P, Wardlaw JM, et al. The benefits and harms of intravenous thrombolyis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet 2012;379:2352–63.
28 Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischaemic stroke. N Engl J Med 2008;359:1317–29.
29 Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000;11:550–60.
30 Haviland A, Nagan DS, Rosenbaum PR. Combining propensity score matching and group-based trajectory modeling in an observational study. Psychol Methods 2007;12:247–67.
31 Rheta E, Lanehart PRDG ESK, Bellara AP, et al. Propensity score analysis and assessment of propensity score approaches using SAS procedures [online]. Available: http://support.sas.com/resources/papers/proceedings13/134-2012.pd
32 Ntafos G, Milionis H, Vlachos E, et al. Small-Vessel occlusion versus large-artery atherosclerotic strokes in diabetics: patient characteristics, outcomes, and predictors of stroke mechanism. Eur Stroke J 2016;1:108–13.
33 Qian Y, Ye D, Wu DJ, et al. Role of cigarette smoking in the development of ischemic stroke and its subtypes: a Mendelian randomization study. Clin Epidemiol 2019;11:725–31.
34 Ji R, Pan Y, Yan H, et al. Current smoking is associated with extracranial carotid atherosclerotic stenosis but not with intracranial large artery disease. BMC Neuro 2017;17:120.
35 Larsson SC, Burgess S, Michaëlsson K, and early intensive vs. guideline-based antihypertensive therapy in stroke. Ann Epidemiol 2019;86:468–71.
36 Barua RS, Sy F, Srikant S, et al. Effects of cigarette smoke exposure on clot dynamics and fibrin structure: an ex vivo investigation. Arterioscler Thromb Vasc Biol 2010;30:75–9.
37 Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherosclerosis. Arterioscler Thromb Vasc Biol 2014;34:509–15.
38 Wang H-K, Huang C-Y, Sun Y-T. Smoking paradox in stroke survivors?: uncovering the truth by interpreting 2 sets of data. Stroke 2020;51:STROKEAHA11027012.
39 Rogers RL, Meyer JS, Shaw TG, et al. Cigarette smoking decreases cerebral blood flow suggesting increased risk for stroke. JAMA 1983;250:2796–800.
40 Li B, Li D, Liu J-F. “Smoking paradox” is not true in patients with ischemic stroke: a systematic review and meta-analysis. J Neurol.
41 Chen Z, Peto R, Zhou M, et al. Contrasting male and female trends in tobacco-attributed mortality in China: evidence from successive nationwide prospective cohort studies. Lancet 2015;386:1447–56.
42 Epstein KA, Viscoli CM, Spence JD, et al. Smoking cessation and outcome after ischemic stroke or TIA. Neurology 2017;89:1723–9.
