Body weight dynamics of broiler chickens by feeding probiotic preparation

I A Koshchaev, K V Mezinova, N N Sorokina, A A Ryadinskaya, N B Ordina and S A Chuev
Belgorod State Agricultural University, Vavilova str., 1., Maisky, Belgorod region, Belgorod oblast, Russia
E-mail: koshchaev@yandex.ru

Abstract. Under industrial conditions, broiler chickens are constantly exposed to stressful factors that can increase their susceptibility to intestinal diseases, leading to reduced productivity, immune suppression, and increased mortality. Antibiotics are widely used to maintain and improve productivity in such conditions. However, in recent years, there has been a tightening of the rules on the use of antibiotics in animal husbandry in order to stop them from entering food for people, as well as in connection with the emergence of strains of pathogenic bacteria that have developed resistance to a wide range of antibiotics, which pose a danger to human health and life. In this regard, manufacturers are searching for alternatives to antibiotics. One of the most promising groups is probiotics. In the course of the study, it was found that low-protein diets (with a low protein content, but balanced by the amino acid profile) can unlock the potential of probiotic cultures of the Bacillus amyloliquefaciens strain and, as a result, increase the safety of broiler chickens by 4.6 %, body weight by 10.1 %.

1. Introduction
Currently, poultry farming is an effectively developing industry in our country. The constantly increasing production of poultry meat plays an important role in import substitution [1-3]. At the same time, properly organized feeding of poultry serves as one of the factors of providing the population with safe and high-quality products [4].

Recently, the question of the need to abandon the use of antibiotics as growth promoters and replace them with other drugs has become more and more frequent [5-7]. In this connection, the majority of poultry meat production enterprises resort to the use of various feed products that have a positive impact on the productive indicators in the cultivation of poultry and the quality of the resulting meat. These supplements include probiotics [8-10].

The inclusion of probiotics in the technology of growing broiler chickens is one of the most effective ways to prevent stomach diseases, based on environmentally safe mechanisms for maintaining a high level of colonization resistance of the intestine, stimulating the fattening of poultry. Probiotics are often used as additives to compound feeds with an increased level of fiber, which the bird, especially young, is not able to digest well. Introduced into the gastrointestinal tract of animals with food, they destroy the shell of plant cells and make available for assimilation the nutrients contained in them [11-13].

The main factor determining the effectiveness of the probiotic is the strain. The microorganisms that are part of probiotics affect the body at the systemic level, activating nonspecific resistance and
increasing the resistance of young animals to infectious diseases [14-16]. Probiotics, in most cases, are considered as therapeutic and preventive drugs, and there are almost no studies on the effect of probiotics on the growth and development of modern broiler chicken crosses and improving the quality of the resulting products [17-19]. However, there is evidence that their use improves the absorption of nutrients in the intestine, reduces the amount of ammonium and toxic biogenic amines formed during the decay of proteins [20-24].

Thus, for researchers in the field of poultry production technology, there is a large front for scientific research and the implementation of their results in the real sector of the agro-industrial complex in view of the search for probiotics that can have a complex effect on the poultry body, and the development of effective schemes for their use [25-27].

Currently, cases of viral diseases of poultry have become more frequent, and accordingly, there is a need for the use of drugs that increase the resistance of the body, such drugs include Bacillus amyloliquefaciens.

2. Materials and methods
Scientific and economic experience on the effect of probiotic cultures of strain Bacillus amyloliquefaciens on the safety of broiler chickens was carried out on chickens cross Cobb-500 in terms of training and research of poultry ESIC "Agrotechnopark" Belgorodskiy GAU.

To conduct the study, 4 groups were formed - a control group and 3 experimental groups. For this purpose, 36 sections of 65 heads each were formed from a batch of 2340 day-old broiler chickens, 9 sections (replication) for each experimental group. The broilers were randomly distributed into 36 cells. The planting density was 17.3 heads/ m². In total, 4 different diets were studied. The experience lasted 40 days.

The parameters of the microclimate, planting density, feeding and watering front, were similar for all groups of poultry and corresponded to the standard indicators.

The bird received rations of the Starter, Grower, Finisher, Starter Feed the bird received from the moment of setting up for the experiment, the 0th (1st) day. The transition from the Starter to the Grower brand feed was made at the age of 10 days by gradually replacing one feed with another (in % of the standard - 70/30, 50/50, 30/70). Next, the bird received food Grower up to 22 days of age. From the age of 23 days, the bird was smoothly transferred to the Finisher feed (in a similar proportion as when switching from the Starter to the Grower) and fed this type of feed until the end of the experiment.

The features of feeding broiler chickens were as follows:

1. Control group (Standard diet);
2. Experimental group (Low-protein diet);
3. Experimental group (Standard diet + probiotic Bacillus amyloliquefaciens);
4. Experimental group (Low-protein diet + probiotic Bacillus amyloliquefaciens).

In experimental groups 2 and 4 (Low-protein diet), the rations GROWER and FINISHER additionally provide for the introduction of such synthetic amino acids as L-Valine, L-Isoleucine and L-arginine. The reduction in the crude feed protein index in groups 2 and 4 will be about 1.5-2% for each phase. The decrease in the crude protein index in these groups is limited by balancing the so-called "glycine equivalent" (the sum of glycine + serine x 0.7143), where the calculated value of this indicator is at least 118% of the total lysine.

During the experiment, the following indicators were determined:

- Microclimate data in the poultry house (daily) (temperature, humidity, ventilation parameters in m³ / h per head, illumination);
- Accounting for the distribution of feed (daily);
- Accounting for diseases/waste/death (daily);
Body weight by weighing at age-0 (1) day, 10th day, 23rd day, 40th day; per phase.

Table 1. Scheme of experience with the distribution of groups in the experimental building.

Rations/groups
T1
11
12
13
14
15
16
17
18
19

The conditions of keeping chickens in all groups were the same and met the recommended standards for this cross.

Numerous studies have found that the conditions of keeping poultry often serve as stress factors for it, which reduce the efficiency of agricultural production.

3. Results and Discussion

The body reacts to the influence of environmental factors depending on its adaptive capabilities. At the same time, the specificity of adaptive reactions depends on the initial functional state, the period of adaptation, etc.

During the experimental period (from the daily age to the 40-day age), the physiological state of the bird was monitored daily. In order to determine the effect of the use of probiotic cultures of the Bacillus amyloliquefaciens strain on the resistance of the poultry body, we evaluated its safety for individual growing periods and in general for the entire period of the experiment.

The probiotic Bacillus amyloliquefaciens contributed to the normalization of the microflora of the gastrointestinal tract and increased the immunological reactivity of poultry (table 2).

Table 2. Safety of broiler chickens, %

Diet	Safety by group	Average
T1	Group 11	
 | Safety 95.4 | 90.3 |
| | Group 12
 | Safety 100 | |
| | Group 13
 | Safety 89.2 | |
| | Group 14
 | Safety 89.2 | |
| | Group 15
 | Safety 84.6 | |
| | Group 16
 | Safety 86.2 | |
| | Group 17
 | Safety 89.2 | |
| | Group 18
 | Safety 87.7 | |
| | Group 19
 | Safety 90.8 | |
| T2 | Group 21
 | Safety 90.8 | 89.9 |
| | Group 22
 | Safety 89.2 | |
| | Group 23
 | Safety 87.7 | |
| | Group 24
 | Safety 92.3 | |
| | Group 25
 | Safety 93.8 | |
| | Group 26
 | Safety 87.7 | |
| | Group 27
 | Safety 95.4 | |
| | Group 28
 | Safety 89.2 | |
| | Group 29
 | Safety 83.1 | |
| T3 | Group 31
 | Safety 92.3 | 94.0 |
| | Group 32
 | Safety 93.8 | |
| | Group 33
 | Safety 90.8 | |
| | Group 34
 | Safety 93.8 | |
| | Group 35
 | Safety 96.9 | |
| | Group 36
 | Safety 96.9 | |
| | Group 37
 | Safety 95.4 | |
| | Group 38
 | Safety 95.4 | |
| | Group 39
 | Safety 90.8 | |
| T4 | Group 41
 | Safety 92.3 | 94.5 |
| | Group 42
 | Safety 90.8 | |
| | Group 43
 | Safety 96.9 | |
| | Group 44
 | Safety 96.9 | |
| | Group 45
 | Safety 98.5 | |
| | Group 46
 | Safety 92.3 | |
| | Group 47
 | Safety 95.4 | |
| | Group 48
 | Safety 95.4 | |
| | Group 49
 | Safety 92.3 | |

The analysis of the safety indicators of chickens showed that the lowest indicators were recorded in groups 1 and 2, where the chickens did not consume probiotics with the diet, here the safety was recorded at the level of 89.9-90.3%.

In the course of the study, it was found that the safety of livestock increases based on the use of probiotics. The maximum safety index of 94.5% was observed in the 4th group, who received a low-protein diet with the use of probiotic cultures of the Bacillus amyloliquefaciens strain, which is 4.6% higher than the indicators of the control group 1.
Broiler chickens of the "Cobb-500" cross have a potential (genetically inherent in the body) ability to accelerate the intensity of body weight gain from 60 to 130 g per day and, as a result, are characterized by high live weight indicators.

It is necessary to create favorable conditions for the manifestation of the genetic potential to the full extent and to achieve high productivity indicators, in particular live weight, by building muscle mass.

At the age of 0 (1) day, 10th days, 23rd days, 40th days; during the phase, we conducted control weighing to determine the dynamics of body weight (Table 3).

Analysis of the dynamics of chicken growth revealed changes in the growth of chickens in different age periods. With almost equal body weight on the first day and on the 10th day, on the 23rd day, the chickens of the second and fourth experimental groups had higher body weight indicators.

Table 3. Live weight of broiler chickens of the "Cobb-500" cross when using a probiotic strain of Bacillus amyloliquefaciens, g

Diet	Days age	Body weight by group	Average
	Days age	11 12 13 14 15 16 17 18 19	
1	1	49.9 50.3 50.2 50.5 50.4 49.8 50.6 50.4 50.2 50.2	
10	262.4	268.1 270.5 254.8 260.1 257.8 270.7 263.0 265.3 263.6	
T1	23	997.4 1008.8 1052.1 1027.5 963.4 979.6 949.5 1020.3 950.5 994.3	
40 (%)	2465.0	2464.0 2467.0 2498.0 2388.0 2469.0 2445.0 2476.0 2450.0 2458.0	
40 (%)	2292.0	2257.0 2359.0 2305.0 2316.0 2290.0 2300.0 2333.0 2355.0 2319.1	
40 (aver.)	2380	2364 2408 2393 2356 2378 2366 2415 2396 2383.9	
1	50.1	50.7 50.4 50.0 50.5 50.1 50.6 50.0 50.3 50.3	
10	284.1	275.6 262.5 258.2 260.3 267.6 267.1 264.1 272.8 268.0	
T2	23	978.1 989.0 997.3 972.6 1042.4 1053.5 984.7 946.2 1007.0 996.8	
40 (%)	2510.0	2608.0 2613.0 2543.0 2623.0 2651.0 2607.0 2594.0 2667.0 2601.8	
40 (%)	2451.0	2451.0 2491.0 2526.0 2439.0 2536.0 2482.0 2403.0 2512.0 2476.8	
40 (aver.)	2483	2539 2554 2534 2528 2589 2548 2486 2500 2540.2	
1	50.4	50.4 50.2 50.1 50.0 49.6 50.2 50.6 49.6 50.1	
10	267.4	272.0 272.1 258.4 258.9 267.3 267.2 270.3 258.6 265.8	
T3	23	1033.1 1053.7 1011.9 1029.5 1007.0 1046.8 945.2 987.3 1020.1 1015.0	
40 (%)	2572.0	2481.0 2461.0 2520.0 2453.0 2539.0 2513.0 2449.0 2553.0 2500.3	
40 (%)	2352.0	2364.0 2351.0 2341.0 2343.0 2410.0 2373.0 2308.0 2355.0 2355.2	
40 (aver.)	2456	2422 2402 2433 2395 2475 2437 2375 2442 2426.3	
1	49.8	50.3 50.5 50.4 50.3 50.2 50.6 50.4 50.2 50.3	
10	282.2	261.3 251.8 269.7 273.8 276.3 265.8 262.3 270.5 268.2	
T4	23	1006.3 1030.2 1073.2 1039.7 1048.9 1075.3 1034.1 1060.2 1077.2 1049.5	
40 (%)	2647.0	2623.0 2723.0 2684.0 2710.0 2728.0 2717.0 2699.0 2713.0 2693.8	
40 (%)	2536.0	2547.0 2586.0 2529.0 2531.0 2586.0 2605.0 2559.0 2579.0 2562.0	
40 (aver.)	2590	2589 2647 2609 2616 2661 2658 2613 2640 2624.7	

At the age of 40 days, the best results were recorded in the 4th experimental group, whose diet was low in protein, and also included a probiotic.

4. Conclusion
The use of probiotics for balancing diets allows not only to optimize the diet to reduce its cost without compromising production results, but also to improve intestinal health, and therefore reduce the use of antibiotics for the treatment/prevention of intestinal diseases.

As a result of the conducted studies, it can be argued that low-protein diets (with a low protein content, but balanced by the amino acid profile) can unlock the potential of probiotic cultures of the Bacillus amyloliquefaciens strain and, as a result, increase the safety of broiler chickens by 4.6%, body weight by 10, 1 %.

References
[1] Zdanovich S N, Dobudko A N, Syrovitsky V A, Yastrebova O N, Smirnova V V, Sidelnikova N
A and Kreneva T V 2020 Adaptive capacities of replacement hybrid doe rabbits to industrial housing conditions of Agrotechnopark. *International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies* **11**(14) 00065

[2] Miroshnichenko I, Oskina A and Eremenko E 2020 Biogas Potential of Swine Manure of Different Animal Classes. *Energy Sources Recovery, Utilization, and Environmental Effects Part A*

[3] Fedosova A N, Kaledina M V, Shevchenko N P, Voloshchenko L V, Baydina I A, and Trubchaninova N. S. 2019 Investigation of the pectolytic capacity of yeast Saccharomyces Cerevisiae. *Storage and processing of agricultural raw materials* **3** 78-89

[4] Ryadinskaya A, Ordina N, Koshchaev I, Mezinova K and Zakharova D 2020 New production technology for healthy nutrition using local raw materials. *BIO Web of Conferences* **27** 00059

[5] Yastrebova O, Boyko I, Kontsevaya S, Dobudko A, Syrovitskiy V and Gorodov P 2019 Expediency of "FITOS" BAA Nutritional Intervention in the Diet of Laying Hens Advances in Biological Sciences Research. *1st International Symposium Innovations in Life Sciences (ISILS 2019)* **7** 361-364.

[6] Fedosova A N and Kaledina M V 2017 New approaches to creating functional products for a closed milk-polysaccharide system. *Foods and Raw Materials* **5** 44-53.

[7] Kovrigin A, Pokhodnya G, Shvetsov N and Kotarev V 2019 Productivity of Sharp-Tooth Catfish Depending on Feeding Methods Advances in Biological Sciences Research. *1st International Symposium Innovations in Life Sciences (ISILS 2019)* **7** 175-178.

[8] Koshchaev I, Mezinova K, Ryadinskaya A, Tatyanicheva O and Ordina N 2020 Various sources of methionine in broiler chicken rations. *E3S Web Conf. Innovative Technologies in Science and Education (ITSE-2020)* **210** 000245

[9] Shvetsov N, Kotarev V, Kovrigin A and Shvetsova M 2019 Effect of Sprouted and Extruded Grain in Composition of Fodder Mixtures on Digestibility of Dairy Cows Diet Nutrients Advances in Biological Sciences Research. *1st International Symposium Inno-vations in Life Sciences (ISILS 2019)* **7** 280-283.

[10] Dobudko A N, Tatyanicheva O E, Boyko I A, Popova O A, Kornienko P P, Burlakov V S and Litvinov Y N 2018 Calcium And Phosphorus Feed Supplement FAX-2 In The Feeding Of Laying Hens Of Industrial HERD. *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **9**(6) 1551-1559.

[11] Koshchaev I, Mezinova K, Ryadinskaya A, Sorokina N and Chuev S 2020 Identification of cases of pododermatitis in broiler chickens when feeding a probiotic feed additive. *E3S Web Conf. Innovative Technologies in Science and Education* **210** 000420

[12] Fedosova A N, Kaledina M V, Shevchenko N P, Voloshchenko and Baydina I A 2018 The phenomenon of pectin and its use in the dairy industry. *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **9**(5) 950-959

[13] Koshchayev I, Boiko I, Kornienko S, Tatyanicheva O, Sein O, Zdanovich S and Popova O 2019 Feeding Efficiency of Dry Beet Pulp to Broiler Chickens Advances in Biological Sciences Research. *1st International Symposium Innovations in Life Sciences (ISILS 2019)* **7** 167-170

[14] Pokhodnya G S, Fedorchuk E G, Malakhova T A, Trubchaninova N S and Breslavets Y P 2018 The use of feed additives "Elevit" in swine diets. *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **9**(5) 2281-2291

[15] Chuev S A and Bezbodorov N V 2015 Immune-hormonal changes in the activation of reproductive function with gamavit and pituitary gland. *Proceedings of the Orenburg State Agrarian University* **1**(51) 161-165

[16] Ordina N, Kontsevaya S, Sorokina N and Mezinova K Use of biologically active substanc-es in feeding young animals Advances in Biological Sciences Research. *1st International Symposium Innovations in Life Sciences (ISILS 2019)* **7** 235-239

[17] Kornienko S A and Ordina N B 2013 Development of the poultry industry in the Belgorod
region Problems and prospects of innovative development of animal husbandry. *Materials of the XVII International Scientific and Production Conference. Belgorod State Agricultural Academy named after V. Ya. Gorin* 17-91

[18] Ordina N B 2017 Control of the quality and safety of poultry meat. *Innovations in the agro-industrial complex: problems and prospects* 2 105-109

[19] Semenchenko S V, Nefedova V N and Savinova A A 2014 The effect of probiotics on the meat productivity of cross broiler chickens. *ISA-15 Innovations in Science* 29 108-117

[20] Koshchaev A G, Kalyuzhny S A, Migina E I, Gavrilenko D V and Koshchaeva O V 2013 Features of poultry metabolism when using probiotic feed additives in the diet. *ISA-15 Innovations in Science* 4 17–20

[21] Buyarov V S 2013 *Scientific bases of resource-saving technologies of broiler meat production* (Orel: Orel GAU) 284

[22] Chuev S A and Bezborodov N V 2015 Efficiency of stimulation of reproductive function and prevention of mastitis in cows In the collection: Theory and practice - sustainable development of the agro-industrial complex. *Materials of the All-Russian Scientific and Practical Conference* 53-57

[23] Buyarov V S and Aldobaeva N A 2017 The effectiveness of the use of the probiotic "Monosporin" in the industrial cultivation of broiler chickens. *Bulletin of the Kursk State Agricultural Academy* 3 28–34

[24] Uchasov D S 2014 *Probiotics and prebiotics in industrial pig and poultry farming* (Orel: Orel GAU) 164

[25] Chmara I N, Koshchaev A G, Luneva A V and Koshchaeva O V 2013 Analysis of contamination of grain raw materials with mycotoxins 2013. *Collection of scientific papers of the Stavropol Research Institute of Animal Husbandry* 6 290 -293

[26] Sadovnikova N 2016 Environmental products are increasingly in demand. *Animal Husbandry of Russia* Special Issue 24–25

[27] Feoktistova N V 2017 Probiotics based on bacteria of the genus Bacillus in poultry farming. *Scientific Notes of the Kazan University* 1 85-107