A remark on the generalized Franchetta conjecture for K3 surfaces

Arnaud Beauville

Received: 10 December 2020 / Accepted: 31 March 2021 / Published online: 25 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
A family of K3 surfaces \(X \rightarrow B \) has the Franchetta property if the Chow group of 0-cycles on the generic fiber is cyclic. The generalized Franchetta conjecture proposed by O’Grady asserts that the universal family \(X_g \rightarrow \mathcal{F}_g \) of polarized K3 of degree \(2g - 2 \) has the Franchetta property. While this is known only for small \(g \) thanks to [7], we prove that for all \(g \) there is a hypersurface in \(\mathcal{F}_g \) such that the corresponding family has the Franchetta property.

1 Introduction

In 1954, Franchetta stated that the only line bundles defined on the generic curve of genus \(g \geq 2 \) are the powers of the canonical bundle [3]. Since the proof was insufficient, the result became known as the Franchetta conjecture; it was proved by Harer in [5], see also [1].

In [6], O’Grady proposed an analogue of this result for 0-cycles on K3 surfaces. Recall that the Chow group \(\text{CH}^2(X) \) of 0-cycles on a K3 surface \(X \) contains a canonical class \(o_X \), the class of any point lying on some rational curve in \(X \); for any divisors \(D \) and \(D' \) on \(X \), the product \(D \cdot D' \) in \(\text{CH}^2(X) \) is a multiple of \(o_X \) [2]. Let \(\rho : \mathcal{X} \rightarrow B \) be a map of smooth varieties whose general fiber is a K3 surface. We say that the family \(\mathcal{X} \rightarrow B \) has the Franchetta property if for every smooth fiber \(X \) of \(\rho \) the image of the restriction map \(\text{CH}^2(\mathcal{X}) \rightarrow \text{CH}^2(X) \) is contained in \(\mathbb{Z} \cdot o_X \). Equivalently, the Chow group \(\text{CH}^2(\mathcal{X}_\eta) \) of the generic fiber is cyclic.

For \(g \geq 2 \), let \(\mathcal{X}_g \rightarrow \mathcal{F}_g \) be the universal family of polarized K3 surfaces of degree \(2g - 2 \). The generalized Franchetta conjecture of O’Grady is the assertion that this family has the Franchetta property. \(^1\) It is proved for \(g \leq 10 \) and some higher values of \(g \) in [7]; the general case seems far out of reach. We prove in this note a much weaker (and much easier) statement:

\(^1\) Here one can view \(\mathcal{F}_g \) as a stack, or restrict to the open subset parametrizing K3 with trivial automorphism group.

Pour Olivier – 40 ans déjà...

Arnaud Beauville
arnaud.beauville@unice.fr

\(^1\) CNRS-Laboratoire J.-A. Dieudonné, Université Côte d’Azur, Parc Valrose, 06108 Nice Cedex 2, France
Theorem There exists for every g a hypersurface in \mathcal{F}_g such that the corresponding family satisfies the Franchetta property.

The key point of the proof is the construction, for each g, of a 18-dimensional family of polarized K3 surfaces of degree $2g - 2$, which can be realized as complete intersections in $\mathbb{P}^1 \times \mathbb{P}^n$ for $n = 2, 3$ or 4 (Sect. 3). Then a simple argument, already used in [7], shows that these families have the Franchetta property (Sect. 2). Here the crucial property of our families is that they are parameterized by a linear space (in particular, they give unirational hypersurfaces in \mathcal{F}_g for every g); thus there is no chance of extending the method to the whole moduli space \mathcal{F}_g, which is of general type for g large enough [4].

2 The method

We use the method of [7], based on the following result. Let P be a smooth complex projective variety, E a vector bundle on P, globally generated by a subspace V of $H^0(E)$. Consider the subvariety $\mathcal{X} \subset \mathbb{P}(V) \times P$ of pairs $(\mathbb{C}s, x)$ with $s(x) = 0^2$; let p, q be the projections onto $\mathbb{P}(V)$ and P. For $s \in V \setminus \{0\}$, the fiber $p^{-1}(\mathbb{C}s)$ is the zero locus of s in P; for $x \in P$, the fiber $q^{-1}(x)$ is the space of lines $\mathbb{C}s \subset V$ such that $s(x) = 0$. Since V generates E, the projection $q : \mathcal{X} \to P$ is a projective bundle (in particular, \mathcal{X} is smooth).

Proposition For any smooth fiber X of p, the image of the restriction map $\text{CH}(\mathcal{X}) \to \text{CH}(X)$ is equal to the image of $\text{CH}(P)$.

Proof Let $h \in \text{CH}^1(\mathbb{P}(V))$ be the class of a hyperplane section. The class $p^*h \in \text{CH}^1(\mathcal{X})$ induces the hyperplane class on a general fiber of q; since q is a projective bundle, it follows that $\text{CH}(\mathcal{X})$ is generated by $q^*\text{CH}(P)$ and the powers of p^*h. But p^*h vanishes on the fibers of p, hence the result.

Corollary Assume that the smooth fibers of p are K3 surfaces, and that the multiplication map $m_P : \text{Sym}^2 \text{CH}^1(P) \to \text{CH}^2(P)$ is surjective. Then the family $\mathcal{X} \to \mathbb{P}(V)$ has the Franchetta property.

Proof Let X be a smooth fiber of p. The commutative diagram

$$
\begin{array}{ccc}
\text{Sym}^2 \text{CH}^1(P) & \longrightarrow & \text{Sym}^2 \text{CH}^1(X) \\
m_P \downarrow & & \downarrow m_X \\
\text{CH}^2(P) & \longrightarrow & \text{CH}^2(X)
\end{array}
$$

shows that the image of $\text{CH}^2(P) \to \text{CH}^2(X)$ is contained in the image of m_X, hence in $\mathbb{Z} \cdot o_X$. \qed

3 Proof of the theorem

Since $\text{dim } \mathcal{F}_g = 19$, we must construct for every g a family of polarized K3 surfaces (S, L) with $(L)^2 = 2g - 2$ satisfying the Franchetta property, and depending on 18 moduli (this

2 Here $\mathbb{P}(V)$ is the space of lines in V.

Springer
implies our Theorem, see [7, §2, Remark (i)]). We will need three different constructions in order to cover every $g \geq 8$ (the small genus cases follow from [7]). We will apply the Corollary with $P = \mathbb{P}^1 \times \mathbb{P}^n$ for $n = 2, 3$ or 4 — note that the surjectivity of $m_\mathcal{P}$ is trivially satisfied. For $i, j \in \mathbb{N}$, we put $\mathcal{O}(i, j) := \mathcal{O}(\mathbb{P}_1(i)) \boxtimes \mathcal{O}(\mathbb{P}_n(j))$; the vector bundle E will be a direct sum of $n - 1$ line bundles of this type, so S is a complete intersection of $n - 1$ hypersurfaces in P. In order for S to be a K3 surface we must have $\det(E) = K_P^{-1} = \mathcal{O}(2, n + 1)$. We will always take $V = H^0(E)$.

The polarization L on our K3 surface S will be the restriction of the very ample line bundle $\mathcal{O}(a, 1)$ on P, for $a \geq 1$. Let $p, h \in \operatorname{CH}^1(P)$ be the pull back of the class of a point in \mathbb{P}^1 and of the hyperplane class in \mathbb{P}^n. Then

$$2g - 2 = (L)^2 = (ap + h)^2 \cdot [S] = (2a(p \cdot h) + h^2) \cdot [S].$$

Case I: $n = 2$, $E = \mathcal{O}(2, 3)$, hence

$$2g - 2 = (2a(p \cdot h) + h^2) \cdot (2p + 3h) = 2(3a + 1).$$

Case II: $n = 3$, $E = \mathcal{O}(1, 1) \oplus \mathcal{O}(1, 3)$, hence

$$2g - 2 = (2a(p \cdot h) + h^2) \cdot (p + h)(p + 3h) = 2(3a + 2).$$

Case III: $n = 4$, $E = \mathcal{O}(0, 3) \oplus \mathcal{O}(1, 1) \oplus \mathcal{O}(1, 1)$, hence

$$2g - 2 = (2a(p \cdot h) + h^2) \cdot 3h(p + h)^2 = 2(3a + 3).$$

Thus we get all values of $g \geq 8$.

It remains to prove that the three families just constructed depend on 18 moduli. The exact sequence

$$0 \to T_S \to T_{P|S} \to N_{S/P} \to 0$$

gives rise to an exact sequence

$$0 \to H^0(T_{P|S}) \to H^0(N_{S/P}) \to \mathcal{O}(S, T_S) \to 0$$

the image of ∂ describes, inside the space of first order deformations of S, those which come from our family. Thus we want to prove $\dim \partial = 18$, or equivalently $h^0(N_{S/P}) - h^0(T_{P|S}) = 18$.

We have $T_P = \operatorname{pr}_1^* T_{\mathbb{P}^1} \oplus \operatorname{pr}_2^* T_{\mathbb{P}^n}$; from the Euler exact sequence we get $h^0((\operatorname{pr}_1^* T_{\mathbb{P}^1})|_{S}) = h^0(\operatorname{pr}_1^* T_{\mathbb{P}^1})$, and similarly for $\operatorname{pr}_2^* T_{\mathbb{P}^n}$. Thus $h^0(T_{P|S}) = h^0(T_{P|S}) + h^0(T_{\mathbb{P}^n}) = 3 + n(n + 2)$.

Let us denote by d_S the restriction to S of a class $d \in \operatorname{Pic}(P)$. Using $d_S \cdot d'_S = d \cdot d' \cdot [S]$, we find

$$p_S^2 = 0, \quad p_S h_S = 3, \quad h_S^2 = 2n - 2.$$

By Riemann–Roch, we have $h^0(\mathcal{O}(i, j)) = 2 + \frac{1}{2}(ip_S + jh_S)^2 = 2 + 3ij + j^2(n - 1)$.

Case I: $h^0(N_{S/P}) = h^0(\mathcal{O}(2, 3)) = 29, h^0(T_{P|S}) = 11$.

Case II: $h^0(N_{S/P}) = h^0(\mathcal{O}(1, 1)) + h^0(\mathcal{O}(1, 3)) = 9 + 29 = 36, h^0(T_{P|S}) = 18$.

Case III: $h^0(N_{S/P}) = 2h^0(\mathcal{O}(1, 1)) + h^0(\mathcal{O}(0, 3)) = 2 \cdot 8 + 29 = 45, h^0(T_{P|S}) = 27$.

In each case we find $h^0(N_{S/P}) - h^0(T_{P|S}) = 18$ as required. □

Remarks. 1) In fact, for S very general in each family, Pic(S) is generated by p_S and h_S; this follows from the Noether–Lefschetz theory, see [8, Thm. 3.33]. Therefore Pic(S) is the rank 2 lattice with intersection matrix

$$\begin{pmatrix} 0 & 3 \\ 3 & 2n - 2 \end{pmatrix}.$$
2) Our 3 families admit actually a simple geometric description. In what follows we consider a general surface S in each family. We fix homogeneous coordinates U, V on \mathbb{P}^1.

Case I: S is given by an equation $U^2A + 2UVB + V^2C = 0$ in $P = \mathbb{P}^1 \times \mathbb{P}^2$, with A, B, C cubic forms on \mathbb{P}^2. Projecting onto \mathbb{P}^2 gives a double covering $S \rightarrow \mathbb{P}^2$ branched along the sextic plane curve $\Gamma : B^2 - AC = 0$. Let α and γ be the divisors on Γ defined by $A = B = 0$ and $C = B = 0$; then $2\alpha, 2\gamma$ and $\alpha + \gamma$ are induced by the cubic curves $A = 0, C = 0$ and $B = 0$ respectively, hence belong to the canonical system $|K_\Gamma|$. It follows that α and γ are linearly equivalent theta-characteristics, hence belong to a half-canonical $\frac{g_1}{2}$, that is, a vanishing thetanull on Γ. Conversely, it is easy to see that a smooth plane sextic with a vanishing thetanull has an equation of the above form. We conclude that the surfaces in Case I are the double covers of \mathbb{P}^2 branched along a sextic curve with a vanishing thetanull.

Case II: The equations of S in $P = \mathbb{P}^1 \times \mathbb{P}^3$ have the form $UL + VM = UA + VB = 0$, where $L, M; A, B$ are forms of degree 1 and 3 on \mathbb{P}^3. The projection $S \rightarrow \mathbb{P}^3$ is an isomorphism onto the quartic surface $LB - MA = 0$; this is the equation of a general quartic containing a line. Thus the surfaces in Case II are the quartic surfaces containing a line.

Case III: The equations of S in $P = \mathbb{P}^1 \times \mathbb{P}^4$ are of the form $UA + VB = UC + VD = F = 0$, where $A, B, C, D; F$ are forms of degree 1 and 3 on \mathbb{P}^3. The projection $S \rightarrow \mathbb{P}^4$ is an isomorphism onto the surface $AD - BC = F = 0$, that is, the intersection of a quadric cone (with one singular point) and a cubic in \mathbb{P}^4. Thus the surfaces in Case III are the complete intersections of a quadric cone and a cubic in \mathbb{P}^4.

Note that one sees easily from this description that each family depends indeed on 18 moduli.

References

1. Arbarello, E., Cornalba, M.: The Picard group of the moduli spaces of curves. Topology 26(2), 153–171 (1987)
2. Beauville, A., Voisin, C.: On the Chow ring of a K3 surface. J. Algebraic Geom. 13(3), 417–426 (2004)
3. Franchetta, A.: Sulle serie lineari razionalmente determinate sulla curva a moduli generali di dato genere. Matematiche (Catania) 9, 126–147 (1954)
4. Gritsenko, V., Hulek, K., Sankaran, G.: The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169(3), 519–567 (2007)
5. Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math. 72(2), 221–239 (1983)
6. O’Grady, K.: Moduli of sheaves and the Chow group of K3 surfaces. J. Math. Pures Appl. (9) 100(5), 701–718 (2013)
7. Pavic, N., Shen, J., Yin, Q.: On O’Grady’s generalized Franchetta conjecture. Int. Math. Res. Not. IMRN 16, 4971–4983 (2017)
8. Voisin, C.: Hodge Theory and Complex Algebraic Geometry II. Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.