Supporting Information

Alkali metal impact on structural and phonon properties of Er\(^{3+}\) and Tm\(^{3+}\) co-doped MY(WO\(_4\))\(_2\) (M = Li, Na, K) nanocrystals

Paulina Ropuszyńska-Robak, Paweł E. Tomaszewski, Leszek Kępiński, Lucyna Macalik
Figure S1. The selected diffraction patterns of (a) LiY(WO$_4$)$_2$:Er,Tm, (b) NaY(WO$_4$)$_2$:Er,Tm and (c) KY(WO$_4$)$_2$:Er,Tm nanopowders obtained by the Pechini method calcined at various temperatures (solid line) and by the hydrothermal method (broken line). Diffraction pattern of the standard monoclinic [E. Gallucci, C. Goutaudier, M.T. Cohen-Addad, B.F. Mentzen, T. Hansen, J. Alloys Compd. 306 (2000) 227] and tetragonal [Y. He, G. Wang, Z. Luo, Chin. Phys. Lett. 10 (1993) 667] phases are added for comparison.

Figure S2. Final Rietveld plot for the sample of LiY(WO$_4$)$_2$:Er,Tm calcined at 600°C. The circles are the experimental values; the continuous lines stand for the calculated pattern. Vertical bars correspond to the position of Bragg peaks of tetragonal structure (upper line), monoclinic
phase (middle line) of LiY(WO₄)₂ and of Li₂WO₄ (bottom line). The bottom curve represents the difference between experimental and calculated diffraction patterns.
Figure S3 Lattice parameters vs. calcination temperature for (a) monoclinic and (b) tetragonal phase.

![Graph showing lattice parameters vs. calcination temperature](image)

Figure S4. Lattice parameter c of Li$_2$WO$_4$ nanocrystals vs calcination temperature.

![Graph showing lattice parameter c](image)
Figure S5. Histograms of particle size distribution of (a) LiY(WO$_4$)$_2$:Er,Tm, (b) NaY(WO$_4$)$_2$:Er,Tm and (c) KY(WO$_4$)$_2$:Er,Tm nanopowders. The fitting curves represent double-peak LogNormal approximation.

Figure S6. Lattice parameters of the main phase of KY(WO$_4$)$_2$:Er,Tm nanocrystals (from Pechini synthesis) vs. calcination temperature.
Li	Na	K	Assignment							
600 C	650 C	700 C	750 C	850 C	600ºC	700ºC	750ºC	850ºC	unidentified	
942sh	948sh	946sh	947sh	927w	949m	927w	927m	926m	ν(W-O)	
921m	921m	919m	918m	925sh	932w	933w	931w	931w	932w	ν(W-O)
901m	892sh	892m	891s	888vs	851sh	858sh	845s	847s	849vs	ν(W-O)
833vs,b	830vs,b	836vs,b	827s	829vs,b	790vs	789vs	799s	797s	801vs	ν(W-O)
761m,b	770m,b	760sh	797sh	716s	720m	719m	722m	721m	721m	ν(W-O)
709m	711m	709s	708vs	716s	720m	719m	722m	721m	721m	ν(W-O)
616vs,b	599s,b	602s,b	599vs,b	610m	485m	484m	484m	484m	484m	ν(W-O)
532w	531w	525m	515m	483sh	445m	444m	443m	443m	443m	δ(W-O)
480m	484m	489m	497sh	487sh	413w	452w	452w	451w	451w	δ(WOOW)
391w	394sh	391sh	326s,b	328s,b	330m,b	332m,b	329m,b	328m,b	328m,b	δ(WOOW)
348m,b	346s,b	345s,b	350s,b	332w	332w	317m	317m	317m	317m	δ(WOOW)
303m	305s	307s	301m	291s,b	289m,b	290m,b	290m,b	290m,b	285m,b	δ(WOOW)
266sh	267sh	266sh	208s,b	197w	197w	197w	197w	194w	202w	δ(WOOW)
250w	252m	252m	249m	208m,b	197w	197w	197w	194w	202w	δ(WOOW)
231sh	200m	200w	197w	197w	197w	197w	194w	202w	169m	T'(M^+/Ln3+)
197w	155w	158w	154w	151w	156m	156m	155m	155m	155m	lattice modes
122w	128w	128w	116s	116w	118w	118w	119w	119w	119w	lattice modes

(abbreviations: vs – very strong, s – strong, m – medium, w – weak, vw – very weak, sh – shoulder, b – broad)