Thermal Performance of Composite Roof Structures with Insulating Layers in Non-Conditioned Buildings for Hot-Dry Climate

Mohan Rawat, R N Singh

Abstract: The roof configurations with an insulating layer and their impact on hourly floating temperature analyzed in a hot-dry climate context. A predefined computer program using a modified Fourier admittance method utilized as the primary research. The thermal performance of ten composite roof structures evaluated to obtain optimal roof structure for hot-dry climate, Jodhpur. Nine composite roof structures with an insulation layer and one without an insulation layer as the base case were analyzed for the summer months (April-September). The utilization of roof thermal insulation showed a significant influence on the overall thermal performance of roofs. It also revealed that minimum temperature variation found about 8.8 °C for the composite roof structure of Reinforced Concrete (RCC) with foam concrete insulation (i.e., RF-S) with thicknesses 150 mm and 140 mm respectively. The analysis assessed that composite roof structure with an insulating layer is a useful technique to reduced indoor temperature in non-conditioned buildings of hot-dry climate.

Keywords: Fourier admittance method, Heat Gain, Hot-dry climate, Thermal comfort, Simulation.

I. INTRODUCTION

The energy consumption in buildings accounts for about 40% of total world energy, and residential and commercial sectors of buildings consume 60% of the world’s electricity. Buildings have become the primary source of global greenhouse gases emissions due to the use of an air conditioning system [1]. The building generally uses most of the energy in an air-conditioning and ventilation system in hot climates. Heat transmission by conduction through roofs and walls characterizes the significant component of the entire thermal load. The amount of energy utilized in the air-conditioning process directly linked to the buildings thermal load [2]. In developing countries, worldwide buildings require the best thermal comfort for the occupants with the lowest energy consumption and greenhouse gas emissions. Therefore, the objective of achieving high energy efficiency is critical, and one of the cost-effective strategies is thermal insulation of building envelope [3]. Roof contributes tremendously to building heat gain compared to walls because it exposed to the sun throughout the day. Heat through the roof can be reduced by applying thermal insulation on the roof or installing insulation under the attic roof. Thermal insulation of roofs is an inexpensive method to save energy and to improve the comfort level [4].

II. ANALYSIS

A. Admittance Method

The matrix equation related to temperature and energy cycle expressed as [8].

\[
\begin{bmatrix} T_0 \\ Q_0 \end{bmatrix} = \begin{bmatrix} A & B \\ D & A \end{bmatrix} \begin{bmatrix} T_i \\ Q_i \end{bmatrix}
\]

(1)
where, T_0 and Q_0 represents the temperature and heat flux at the two surfaces of the slab. The matrix elements in equation (1) defined as

$$A = \cosh(1 + j)\varnothing$$ \hspace{1cm} (2)

$$B = \frac{L}{K(1+j)\varnothing} \sinh(1 + j) \varnothing$$ \hspace{1cm} (3)

$$D = \frac{E(1+j)\varnothing}{L} \sinh(1 + j) \varnothing$$ \hspace{1cm} (4)

where, $\varnothing = \sqrt[2]{\frac{\pi^2 L \rho C}{24k}}$

L, K, ρ and C, the thickness, thermal conductivity, density and specific heat of the roof slab respectively. Symbol j indicates the unit imaginary number $\sqrt{-1}$.

B. Fourier Method

For the analysis of all time dependent functions i.e. ambient temperature, room temperature and solar radiation etc. have been resented in terms of Fourier series as [9]

$$f(t) = \sum_{-\infty}^{\infty} f_n \exp(i\omega t)$$ \hspace{1cm} (5)

The heat flux transmitted through the roof expressed as

$$Q = A_R \sum_{-\infty}^{\infty} S_n \left(T_{\text{in}} + \frac{\alpha_i}{h_{\text{on}}} \right) - \left(T_{\text{in}} + \frac{\alpha_o}{h_{\text{on}}} \right)$$

$$\times \exp(i\omega t) + A_R \sum_{-\infty}^{\infty} (\alpha_i h_{\text{on}}) \exp(i\omega t)$$ \hspace{1cm} (6)

where S_n and Q_n dependent on thermo-physical properties of roof materials and A_R is the area of the roof slab.

$$M_c \frac{dT}{dt} = \sum_{-\infty}^{\infty} T_{y=a,r,w} \exp(i\omega t) = \sum Q_i$$ \hspace{1cm} (7)

where, M_c is the thermal mass of the room air and Q_i is a heat gain due to the infiltration from ambient into room.

The solution of equation (7) governs different harmonics of the room air temperature and same can be combined together to give hourly floating room temperature i.e.

$$T_r(t) = \sum_{-\infty}^{\infty} T_{y=a,r,w} \exp(i\omega t)$$ \hspace{1cm} (8)

III. RESULT AND DISCUSSION

The requirement of thermal comfort in buildings is a primary need in buildings specially located in hot-dry climatic zones. The presence of intense solar radiation and higher variation in surrounding temperature caused discomfort levels in non-conditioning buildings during the summer. The need for air-conditioning systems enhanced in building constructed with conventional roofs. Thus the simulation study carried out for different roof structures with one layer of insulating materials and its impact on hourly floating indoor temperature investigated.

A typical room of a non-conditioned building was selected for simulation with roof area 48.75 m2. The room has two windows (size 1.05 m2 each) facing east and west and door (size 2.0 m2) assumed to be located on the east side. The height of the ceiling was 2.70 m. The studied model indicated in Fig. 1.

![Fig.1 Schematic of the room model](Image)

The dimensions of building envelopes represented in Table I and for the investigation, ten different types of roof configurations with the insulation layer selected.

Table I: Dimensions of building envelopes

S. No.	Details	Dimensions	Area
1	Roof	7.5 x 6.5	48.75
2	East and West Wall	6.3 x 3.1	19.53
3	South and North Wall	5.5 x 4.1	22.55
4	East and West Window	1.5 x 1.0	1.50
5	Door	2.2 x 1.0	2.20

Thermal performance evaluated and impact in terms of indoor temperature in a hot-dry climate. In ten roof configurations, eight roof structures with insulation and two roof structures without insulation taken for simulation. The allocated notations and details of different roof configurations described in Table II. The thermo-physical properties of all components of the walls and roofs used in the simulation given in Table III. Simulation performed in the summer season (April to September) of Jodhpur, India. The climatic parameter i.e. mean monthly radiation and the ambient temperature of Jodhpur (26.2° N, 73.0° E) have been shown in Fig. 2.
Table II: Details of different configuration of roofs and walls

S. No.	Composite Structure	Material detail & layer dimension
1	Base Case	1. Lime Concrete (100-150 mm) 2. Plaster (15 mm) 3. Stone (110 mm)
2	RF-1	1. Elastospray insulation (50 mm) 2. RCC (120 mm)
3	RF-2	1. PUF insulation (50 mm) 2. RCC (150 mm)
4	RF-3	1. Expanded Polyurethane Insulation (70 mm) 2. RCC (150 mm)
5	RF-4	1. Fiber Glass Insulation (80 mm) 2. RCC (150 mm)
6	RF-5	1. Foam Concrete Insulation (140 mm) 2. RCC (150 mm)
7	RF-6	1. Concrete (100 mm) 2. Interior Plaster (20 mm)
8	RF-7	1. Concrete (100 mm) 2. Glass Wool (20 mm) 3. Plaster (20 mm)
9	RF-8	1. Polyurethane hard foam plastics (14 mm) 2. Cement Mortar (45 mm) 3. Lightweight aggregate concrete (20 mm) 4. RCC (120 mm)
10	RF-9	1. Coil waterproof layer (2 mm) 2. Extruded polystyrene board (14 mm) 3. Fine stone concrete (20 mm) 4. Cement mortal (20 mm) 5. Lime, Cement, Sand and Mortar (25 mm) 6. RCC (110 mm)

Table III: Thermo-physical properties of roofs and walls materials investigated [10, 11, 12, 13].

Details	Materials	Thermal conductivity (k) (W/m K)	Specific Heat (J/kg°C)	Density kg/m³
Base Case	Lime concrete	0.73	880	1646
	Plaster	0.72	840	1762
	Stone	1.80	800	2240
RF-1	Elastospray Insulation	0.023	1080	43.8
	RCC	1.28	1130	2300
RF-2	PUF Insulation	0.027	820	32.0
	RCC	1.28	1130	2300
RF-3	Expanded polystyrene Insulation	0.038	1130	16
	RCC	1.28	1130	2300
RF-4	Fiber Insulation	0.040	1000	16
	RCC	1.28	1130	2300
RF-5	Foam Concrete Insulation	0.070	920	320
	RCC	1.28	1130	2300
RF-6	Concrete	1.37	840	2076
	Interior Plaster	0.70	840	2078
RF-7	Concrete	1.37	840	2076
	Glass wool	0.038	700	24
	Interior Plaster	0.70	840	2078
RF-8	Polyurethane hard foam plastics	0.025	1380	40
	Cement Mortar	0.93	1051	1800
	Lightweight aggregate concrete	0.89	600	1600
	RCC	0.59	1220	2500
RF-9	Coil waterproof layer	0.175	1465	600
	Extruded polystyrene board	0.030	1386	30
	Fine Stone Concrete	1.74	920	2500
	Cement Mortar	0.93	1050	1800
A computer simulation carried out for different configurations for ten roof structures, i.e., Base Case, RF-1, RF-2, RF-3, RF-4, RF-5, RF-6, RF-, RC-8 and RF-9. The study evaluated hourly floating room temperature for six months (April-September) and its variation for twenty-four hours cycle period, as shown in Fig. 3 to Fig. 8. Fig. 3 and Fig. 4 represent hourly floating room temperature for all roof structures in the month of April and May. Variation in maximum and minimum temperature for roof structure 6 (RF-6) was noted as 12.3°C and 11.8°C respectively. Roof structure 5 (RF-5) gave best performance with maximum and minimum temperature variation of 4.3°C and 4.0°C for April and May respectively.

Likewise, in the month of June the hourly floating room temperature for structure RF-6 and RF-5 were 9.7°C and 3.1°C respectively. In this month all roofs structure, performed better compared to month of April and May except base roof, which, performed was noted much similar to RF-6 with the temperature variation about 8.2°C. The rate of heat transfer from environment is higher in both structures due to the lack of insulation layer (See Fig. 5).

Similarly, in July temperature variation in all roof structure was quite less as compared to May and June, except RF-6 and Base roof (See Fig. 6). It may be due to lower intensity of the solar isolation and outdoor temperature.

The maximum and minimum temperature fluctuation (7.6°C and 2.2°C) was achieved for RF-6 and RF-5 in the month of August (See .7). Close look of figure 2.16 reflect that other roofs performance was quite brilliantly in this month except

Walls	Lime, cement, sand and mortar	0.87	1050	1700
	RCC	0.59	1220	2500
	Stone	1.80	800	2240
	Plaster	0.72	840	1762
base case with the temperature variation about 6.5 °C. In September, RF-5 performed well with minimum hourly floating temperature of 2.7 °C (See Fig. 8). Not much improvement was observed for roof structures Base roof and RF-6.

![Figure 7: Hourly floating room temperature in August](image)

Table IV: Maximum and minimum room temperatures (°C) in all roofs structures (April-September) for hot-dry climate, Jodhpur

S. No.	Details	April	May	June	July	August	September												
		\(T_{\text{Max}}\)	\(T_{\text{Min}}\)	\(\Delta T\)															
1	Base Case	39.1	28.6	10.6	42.1	32.0	10.1	40.7	32.4	8.3	36.6	29.8	6.8	35.0	28.5	6.5	35.2	27.3	7.8
2	RF-1	35.0	30.5	4.5	38.0	33.8	4.2	37.1	33.8	3.3	33.6	31.1	2.5	32.2	29.8	2.4	31.8	28.9	2.9
3	RF-2	35.0	30.5	4.5	38.0	33.8	4.2	37.1	33.8	3.3	33.7	31.1	2.5	32.3	29.8	2.4	31.9	28.9	3.0
4	RF-3	35.1	30.5	4.6	38.0	33.8	4.2	37.2	33.8	3.3	33.7	31.1	2.6	32.3	29.8	2.5	31.9	28.9	3.0
5	RF-4	35.0	30.5	4.5	38.0	33.8	4.2	37.1	33.8	3.3	33.7	31.1	2.5	32.3	28.8	3.4	31.9	28.9	3.0
6	RF-5	34.9	30.6	4.3	37.9	33.9	3.9	37.1	33.9	3.1	33.6	31.2	2.4	32.2	29.9	2.3	31.8	28.9	2.9
7	RF-6	40.1	27.8	12.3	43.1	31.3	11.8	41.3	31.8	9.5	37.3	29.3	7.9	35.6	28.0	7.6	35.9	26.8	9.2
8	RF-7	37.1	29.2	7.9	40.1	32.6	7.4	38.9	32.8	6.1	35.1	30.2	4.9	33.6	29.0	4.7	33.5	27.9	5.6
9	RF-8	35.9	29.9	5.9	38.8	33.3	5.5	37.9	33.5	4.4	34.2	30.9	3.3	32.7	29.6	3.2	32.4	25.6	6.9
10	RF-9	36.8	29.4	7.4	39.8	32.8	6.9	38.7	33.0	5.7	34.8	30.4	4.4	33.4	29.1	4.2	33.2	28.1	5.1

IV. CONCLUSION

The following conclusions can be drawn from the study:

1. Roof structure -5 (Reinforced cement concrete (RCC) with foam concrete insulation), should be preferred for composite and hot-dry climates for non-conditioning buildings.
2. Roof structures, RF-5, RF-4, are the best roofs in achieving minimum hourly floating room temperature.

However, roof structures, RF-6, and Base case exhibited the worst performance.

3. Roof structures with insulation (50-150 mm) are a useful technique for reducing indoor room temperatures and maintain thermal comfort in non-conditioning buildings in composite and hot-dry climates.
4. The hot-dry climatic zones have solar isolation and high variations in diurnal temperature due to hot wind movement in summer. So roof structures with insulating layers are a significant technique for reducing indoor temperature and maintaining thermal comfort in non-conditioning buildings in hot-dry climate.

Although this analysis was carried out specifically for roofs situated in New Delhi, composite climatic zone and Jodhpur, hot-dry climates, however, results could be adapted and implemented successfully in other regions where the construction technique is similar.

REFERENCES
1. Lee, S. W., Lim, C. H., Chan, S. A., & Von, K. L. “Techno-economic evaluation of roof thermal insulation for a hypermarket in equatorial climate”: Malaysia. Sustainable cities and society, 2017, 35, 209-223.
2. Al-Homoud, M. S. “The effectiveness of thermal insulation in different types of buildings in hot climates”. Journal of Thermal Envelope and Building Science, 2004, 27(3), 235-247.
3. Schiavoni, S., Bianchi, F., & Asdrubali, F. “Insulation materials for the building sector: A review and comparative analysis”. Renewable and Sustainable Energy Reviews, 2016, 62, 988-1011.
4. Yew, M. C., Sulong, N. R., Chong, W. T., Poh, S. C., Ang, B. C., & Tan, K. H. “Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction”. Energy Conversion and Management, 2013, 75, 241-248.
5. Sansaniwal, S. K., Mathur, J., Garg, V., & Gupta, R. “Review of studies on thermal comfort in Indian residential buildings”. Science and Technology for the Built Environment, 2020, 1-22.
6. Arumugam, R. S., Garg, V., Ram, V. V., & Bhata, A. “Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India”. Journal of Building Engineering, 2015, 2, 52-58.
7. Kaynakli, O. “A review of the economical and optimum thermal insulation thickness for building applications”. Renewable and Sustainable Energy Reviews, 2012, 16(1), 415-425.
8. Sodha, M. S., Kaur, B., Kumar, A., & Bansal, N. K.“Comparison of the admittance and Fourier methods for predicting heating/cooling loads”. Solar energy, 36(2), 1986, 125-128.
9. Bansal, N. K., Garg, S. N., & Kothari, S. “Effect of exterior surface colour on the thermal performance of buildings”. Building and environment, 1992, 27(1), 31-37.
10. Sodha, M. S., Singh, S. P., & Sawhney, R. L. “Evaluation of discomfort in a room with desert cooler”. International Journal of Energy Research, 1990, 14(7), 745-756.
11. Kumar, A., & Suman, B. M. “Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate”. Building and Environment, 2013, 59, 635-643.
12. Yumruşas, R., Kaşka, Ö., & Yıldırım, E. “Estimation of total equivalent temperature difference values for multilayer walls and flat roofs by using periodic solution”. Building and Environment, 2007, 42(5), 1878-1885.
13. Shi, D., Zhuang, C., Lin, C., Zhao, X., Chen, D., Gao, Y., & Levinson, R. “Effects of natural soiling and weathering on cool roof energy savings for dormitory buildings in Chinese cities with hot summers”. Solar Energy Materials and Solar Cells,2019, 200, 110016

ABBREVIATION
PUF: Poly Urethane Foam
RCC: Reinforced Cement Concrete

NOMENCLATURE
\(A_r \) Room area, m²
\(C_e \) Specific heat of room air, J/kg °C
\(h \) Convective heat transfer coefficient, W/m² °C
\(I \) Intensity of solar radiation, W/m²
\(k \) Thermal conductivity, W/m °C
\(L \) Thickness of roof slab, m
\(M_r \) Thermal Mass of room air
\(Q_i \) Heat flux at the inner surface of roof slab, W/m²
\(Q_t \) Heat gain, W
\(T_i \) Temperature of inner surface of roof slab, °C
\(T_o \) Temperature of outer surface of roof slab, °C
\(T_{an} \) nᵗʰ harmonic factor of Fourier series for ambient temperature, °C
\(T_R \) Room air temperature, °C
\(T_{Ra} \) nᵗʰ harmonic factor in Fourier series for room air temperature, °C
\(x_i \) Thickness of the roof slab of iᵗʰ component, m
\(\alpha_i \) Absorptivity of inner surface of roof slab
\(\alpha_0 \) Absorptivity of outer surface of roof slab
\(\rho \) Density of air, kg/m³
\(\omega \) Frequency (2π/time period)

AUTHORS PROFILE
Mr. Mohan Rawat is a Ph.D. Research Scholar at School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh, India. He received his degree of Master of Science in Physics from Government Autonomous Holkar Science College, Indore. His area of interest are building engineering, green building, and solar energy. He has more than ten years of experience testing solar thermal systems in testing labs recognized by the National Accreditation Board of Testing and Calibration Laboratories (NABL) and Bureau of Indian Standards (BIS), New Delhi, India.

Dr. R. N. Singh, Head and Professor of School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh, India. He has completed his B Tech & M Tech in Agricultural Engineering and Ph.D. in Energy. He has more than 20 year Teaching & Research experience. His area of interest is Bio-fuel, Biomass, biodiesel, bio ethanol and Renewable Energy. He is chief Editor of Progress in Energy & Fuel and Editors of some journals. He is life member of 4 society engaged in Energy & Environment. Guided 6 Ph.D. and more than 60 PG students. 2 Ph.D. research scholars are continuing. He was also member of Executive Council of DAVV and Dean of Faculty of Engineering Science.