Effects of Light Attenuation through Dental Tissues on Cure Depth of Composite Resins

Utjecaj gubitka svjetla pri prolasku kroz zubno tkivo na dubinu stvrđivanja kompozitnog materijala

Abstract

Objective. Polymerization of light-cured resin-based materials is well documented; however, the intensity of the activating light can be reduced by passage through air, dental structure, or restoration compromising the physical and technical properties of the restoration. The aim of this study was to evaluate the depth of cure of different light cured composite resins polymerized directly or transdental, through enamel and enamel/dentin tissues. Material and methods. Five composite resins were selected for this experiment: SureFil SDR, Dentsply (SDR), Filtek Supreme Plus, 3M ESPE (FSP), Aelite LS, Bisco (ALS), Filtek LS, 3M ESPE (FLS), and TPH, Dentsply (TPH). Thirty specimens of each material were prepared with 2- or 4-mm thickness. The specimens were light-cured (Elipar 2500, 3M ESPE) for 40 sec using three different protocols: direct or transdental, through a disc of enamel with 1 mm of thickness, and a disc of enamel and dentin with 2 mm of thickness. Eight Vickers microhardness (VH) measurements were taken from each specimen, four on top and four on bottom surface (Micromet, Buehler, 100 g per 15 sec). Data was analyzed with ANOVA three-way, Tukey HSD post-hoc (α = .05). Results. Bottom surfaces of specimens exhibited statistically significant lower Vickers microhardness than the top surfaces for all composite resin evaluated, regardless of the curing conditions, except for the SDR when direct light-cured. Transdental light curing through enamel/dentin layer, significantly decreased VH (P<0.05) on the bottom surface of all composite groups. Conclusion. The results of this study showed that light curing attenuation of dental structures negatively affect the micro-hardness of composite resins.

Key words

Composite resins; Light curing; Vickers hardness; Trans-dental polymerization; Low-shrinkage composite; Flowable composite

Introduction

Light-cured composite resin materials are widely used in everyday clinical practice. Composite materials present several advantages, such as ease of handling, satisfactory physical and mechanical properties, and most importantly, excellent esthetic appearance. However, light-cured resin-based materials must be exposed to a sufficient amount of blue light energy to achieve satisfactory conversion of resin monomers into polymers (1).

Degree of polymerization of composite materials depends not only on their chemical composition but also on the properties of the light-curing unit. Improper curing of the composite materials would decrease their physical properties, leading to marginal leakage, secondary caries, higher wear, and poor esthetic appearance of the composite restorations (2, 3).

In order to enhance clinical success of composite resin restorations, dental manufacturers have focused on the de-

Uvod

Svjetlosno stvrđnjavajući kompozitni materijali već se dugo vremena svakodnevno upotrebljavaju u kliničkoj praksi. Naime, imaju nekoliko prednosti kao što su lakoća rukovanja, zadovoljavajuće fizičke i mehaničke značajke te izravna estetska svojstva. No svjetlosno stvrđnjavajući smolasti materijali moraju biti izloženi odgovarajućoj količini energije plavog svjetla kako bi se postigla zadovoljavajuća koverzija monomerum a polimer (1).

Stupanj konverzije kompozitnih materijala ne ovisi samo o njihovu kemijskom sastavu nego i o svojstvima uređaja za polimerizaciju. Nedostatno stvrđnjavanje kompozitnih materijala utječe na čvrstočinu fizičkih svojstava kompozitnog ispuna, uzrokujući, između ostalog, rubno propuštanje, sekundarni karijes, veće trošenje te loš estetski izgled kompozitne restauracije (2, 3).

Kako bi se postigao klinički uspjeh kompozitne restauracije, proizvođači dentalnih materijala usredotočili su se na ra-
development of new light curing units, as well as the improve-
ment of composite material composition. The introduction
of nanotechnology enabled the development of composite
resins with higher filler content, decreased filler size, and
enhanced composition in methacrylate-based organic matrix (4,
5). Changing the monomer structure of composite resins al-
so led low-shrinkage and tooth-colored silorane-based resins,
composed of siloxane and oxirane molecules (5-9). Due to
the siloxane components, silorane materials have lower wa-
ter sorption and solubility than conventional methacrylate-
based composite materials (8, 9). The oxirane components
provide lower polymerization shrinkage and higher strength
through a cationic ring-opening mechanism and cationic po-
lymerization of the composite resin (8, 10).

Another variable, which is important for durability of the
light-curing composite resins is their limited depth of cure.
In general, only increments up to 2 mm thick should be
placed to ensure adequate light transmittance and composite
resin polymerization. Recently, some bulk-fill based compos-
itive materials with low polymerization shrinkage and higher
dissipation of induced energy, which increases the depth of
cure, have been introduced to the market (11). Studies have
shown that some bulk-fill materials can be cured adequately
at depths up to 5 mm due to their increased light transmit-
tance (12, 13). Controversially, other studies have shown sig-
ificantly less depth of cure for the bulk-fill composite resins
than claimed by manufacturers (14, 15).

However, regardless of the composite resin used, inade-
quate light-curing, especially in the deepest area of the com-
posite restoration, remains an issue. In cavity preparation
with deep undercut areas, it is impossible to place the tip of
the light guide directly on the top of the light-cured com-
posite resin (16-18). In such cases, enamel and dentin would
attenuate intensity of the light delivered to the resin based
composite material, depending on their optical properties
like light transmittance and light diffusion (16-19).

Light transmittance through enamel and dentin is not
well described in the literature so far. When the light irra-
diation is applied parallel to the dentine tubules the light is
in that case scattered mainly from the dentine tubules while
at the same time scattering pattern of obliterated dentine tu-
bules will not be different from the scattering pattern of the
regular structured dentine (20, 21). Some published stud-
ies described the effects of light irradiation through enamel
on light-activated restorative materials and reported that the
light-attenuation effect of enamel significantly diminished
the depth of cure and hardness of the cured resin restoration
(17, 19, 22, 23). However, it is still not clear if light-attenua-
tion by enamel and enamel/dentin tissues affect the mecha-
nical properties and degree of conversion of composite resin.

The degree of conversion of the resin monomer formu-
lations is one of the most significant variables evaluated for
assessing mechanical properties of polymerized composite
resin materials. The degree of conversion of composite res-
in can be determined by direct and indirect methods. Di-
rect methods for assessment the quality of polymerization of
composite material are usually determined using Fouri-
er transform infrared spectroscopy (FTIR) or Raman Spec-
zoj novih uređaja za polimerizaciju te na poboljšanje sastava
kompozitnih materijala. Uvođenje nanotehnologije omogu-
čilo je proizvodnju kompozitnih materijala s većim udjelom
punila i manjim česticama, a poboljšan je i sastav organske
komponente (4, 5). Mijenjanje strukture monomera kompo-
zitnog materijala rezultiralo je uvođenjem niskoskupljajućih
monomera i silorana proizvedenih na temelju siloranskih
i oksiranskih molekula (5 – 9). Zbog siloranskih komponen-
ti, silorani imaju nižu apsorpciju vode i nižu topljivost ne-
go konvencionalni kompozitni materijali izrađeni na temelju
metakrilata (8, 9). Oksiranske komponente osiguravaju ma-
nje polimerizacijsko skupljanje i veću snagu zahvaljujući ka-
tionskom postupku polimerizacije (8, 10).

Važan čimbenik za dugotrajnost kompozitnog ispuna jest
ograničavajuća dubina stvrdnjavanja kompozitnog materi-
ala tijekom polimerizacije. Općenito, trebali bi se postavljati
samo slojevi do 2 mm debljine kako bi se osigurao odgovo-
rajući prolazak svjetla i samim time zadovoljavajuća poli-
merizacija kompozitnog materijala. Nedavno su se na trži-
štu pojavili bulk-fill kompozitni materijali s niskim stupnje-
polimerizacijskog skupljanja i većim rasipanjem energije, što
povećava dubinu stvrdnjavanja (11). Neka ispitivanja poka-
zala su da se neki takvi materijali mogu uspješno polimerizir-
ati i pri debljini sloja od 5 mm, zahvaljujući povećanoj tran-
smisiji svjetla kroz takvu vrstu materijala (12, 13). Suproto
tonu, neka istraživanja pokazala su značajno manju dubinu
stvrdnjavanja bulk-fill kompozitnih materijala nego što to na-
vodi proizvođač (14, 15).

No bez obzira na to koja je vrsta kompozitnog materi-
jala korištena, nedostatno osvjetljavanje, posebno u dubo-
kim dijelovima kompozitne restauracije, još uvijek predstav-
laza znatan problem. U nekim kliničkim situacijama gotovo
je nemoguće postaviti izvor svjetla izravno na površinu kom-
pozitnog materijala, osobito u dubokim i podminiranim ka-
vitetima (16 – 18). U tom slučaju caklina i dentin umanju-
uju intenzitet, odnosno energiju svjetla emitiranu iz uređaja
za polimerizaciju, ovisno o transmisijama i difuzijskim svoj-
stvima cakline i dentina i kompozitnog materijala (16 – 19).

Transmisija svjetla za polimerizaciju kroz caklinu i den-
tin nije dovoljno opisana u stručnoj literaturi. Kada je svjetlo
aplicirano paralelno s dentinskim tubuluzima, rasprostje
se uglavnom s dentinskih tubulusa. Istodobno, način raspršiva-
nja svjetla na obliteriranim dentinskih tubuluzima ne razli-
kuje se od onoga na regularno strukturiranom dentinu (20,
21). U nekim istraživanjima opisan je ciklus osvjetljivanja
kroz caklinu na svjetlosno stvrdnjavajuće restorativne mate-
rijale pa autorii zaključuju da rasprošivanje svjetla kod cakline
značajno smanjuje dubinu stvrdnjavanja i čvrstoću polimeri-
zanog kompozitnog materijala (17, 19, 22, 23). No još nije
potpuno jasno utjecaj disperzija svjetla kroz caklinu te cak-
lina i dentin na mehanička svojstva i dubinu stvrdnjavanja
kompozitnog materijala.

Stupanj konverzije smolastih materijala jedan je od zna-
čajnih parametara za procjenu mehaničkih svojstava poli-
meriziranog kompozitnog materijala. Može se odrediti di-
rektnim ili indirektnim postupkom. Direktnim postupkom
stupanj konverzije kompozitnog materijala obično se odre-
duje uporabom Fourier transform infrared spektroskopije
troscopy. Indirect methods for assessment of quality of polymerization of composite materials are Knoop and Vickers hardness (24, 25).

Therefore, the aim of this study was to evaluate the depth of cure of different composite resins cured directly and transdently through enamel and enamel/dentin tissues. The null hypothesis assessed was that light-attenuation by dental tissues does not decrease the depth of cure or mechanical properties of light-cured composite resins used in this study.

Material and methods

In this in vitro study, five different composite resins were evaluated: two flowable [SureFil SDR (SDR), Filtek Supreme Plus Flowable (FSP),], two low-shrinkage [Aelite LS (ALS), Filtek LS (FLS)], and one microhybrid [TPH 3 Micro Matrix Restorative (TPH)]. The composition of composite resins used in this study is presented in Table 1, according to the manufacturer’s information.

Table 1

Material (Manufacturer) • Materijal (proizvodjač)	Chemical Composition • Kemijski sastav	Batch # • Serijski broj
SureFil SDR (Dentsply, York, PA, USA) Bulk Fill Flowable • Bulk Fill tekući	Polymeric dimethacrylate resins, polymerizable urethane dimethacrylates, barium boron fluoro-alumosilicate glass, silicon dioxide, amorphous, strontium alumosilicate glass, and titanium dioxide • Polimerizirajuće dimetakrilatne smole, polimerizirajući uretan dimetakrilati, barijevo boro fluoro-nanosilikatno staklo, silicijev dioksid, amorfno stronicnjevo aluminosilikatno staklo, titanijev dioksid	091028
Filtek Supreme Plus (3M ESPE, Sr Paul, MN, USA) Flowable • Tekaći	Silane treated ceramic, silane treated silica, bisphenol A polyethylene glycol diether dimethacrylate, diurethane dimethacrylate, bisphenol A diglycidyl ether methacrylate, triethylene glycol dimethacrylates, benzotriazol, ethyl 4-dimethyl aminobenzoate, diphenylodonium hexafluorophosphate • Keramika tretirana silanom, silikna tretirana silika, bisfenol A polyethylene glycol diether dimetakrilati, benzotriazol, etil 4-dimetil aminobenzoat, difenilojod heksafluorofosfat	9JL
Aelite LS Posterior (Bisco, Schaumburg, IL, USA) Low shrinkage hybrid • Niskoskupljujući hibrid	Ethoxylated bisphenol A glycol dimethacrylate, bisphenol A glycidyl methacrylate, triethylene glycol dimethacrylates dimethacrylate, dimethacrylate, bisphenol A kloriksid, amorfna silika • Etoksilirani bisfenol A glykol dimetakrilati, bisfenol A glykol dimetakrilati, etil 4-dimetilaminobenzoat, difenilojod heksafluorofosfat	1000005228
Filtek LS (3M ESPE, Sr Paul, MN, USA) Low shrinkage silorane based • Niskoskupljujući temeljen na siloranima	Silane treated quartz, 3,4-epoxycyclohexycyclopolymeramid silane, BIS-3,4-epoxycyclohexylethyl-phenyl-methylsilane, yttrium trifluoride, mixture of epoxy-monomethylsilanole, mixture of epoxy-functional di- and oligo-siloxane, mixture of alpha-substituted, tetraakis(pentafluorophenyl)-[4-(methylene)phenyl][4-(methylphenyl)]iodonium • Kvarc tretirana silanom, 3,4-epoksiklorheksiklopolimetalilsiloksan, BIS-3,4-epoksiklorheksikloetilenilifen-metilsilan, etrijev trifluorid, mješavina epoki-mono-silanola, mješavina epoki-funkcionalnih di- i olgo-siloksana, mješavina alfa-sušsituta, tetra (pentafluorilen)-4-metililen fenil	N169991
TPH 3 Micro Matrix Restorative (Dentsply, York, PA, USA) Microhybrid • Mikrohibrid	Titanijevo, hydrophobic amorbus fused silica, silica (amorphous), barium boron fluoro-alumino silicate glass, urethane modified Bis-GMA dimethacrylates, polymerizable dimethacrylate resin, inorganic iron oxides • Titanijev dioksid, hidrofnobna amorbus silika, amorbus silika, barijevo boro-fluoro-alumosilikatno staklo, uretanom modificirani Bis-GMA dimetakrilati, polimerizirajuće dimetakrilatne smole, anorganski željezni oksidi	100310
Enamel and enamel/dentin discs preparation

An intact freshly extract, non-carious, non-restored human third molar was selected after the donors' informed consent was obtained under a protocol approved by the institutional review board of the University of Southern California. The tooth was scaled, cleaned, stored in 0.5% chloramine solution at 4°C to prevent bacteria growth and used within three months after extraction.

The tooth was sectioned in mesio-distal direction, parallel to its long axis using a diamond saw (Isomet 1000, Buehler Ltd., Lake Bluff, IL, USA) under distilled water-cooling to obtain a buccal and a lingual tooth slab. Both slabs were then further trimmed with a fine diamond bur in a high-speed hand piece under water cooling to obtain discs with a final diameter of 4 mm each. The discs were then polished using a waterproof 600-grit silicon carbide paper under running water to create a disc of enamel with a final thickness of 1 mm and another disc of enamel and dentin with a final thickness of 2 mm. Both discs were immersed in 0.5 M ethylenediaminetetraacetic acid (EDTA) solution for 2 min for cleaning and removal of the smear layer. The discs were then thoroughly rinsed with distilled water for 60 s and then stored in the same solution to avoid dehydration.

Depth of Cure by Vickers Microhardness

Opaque standardized polytetrafluoroethylene molds, with 2- and 4-mm thickness and an internal diameter of 2 mm, were used to fabricate the composite specimens. The molds were then placed on the top of a glass slide; the internal portion of the mold was filled in bulk with each composite resin and covered with another glass slide with a pressure of 1 kg for 30 sec. The composite resin specimen was then light-cured directly, through a disc of enamel with 1 mm of thickness, or through a disc of enamel/dentin with 2 mm of thickness. All specimens were light-cured for 40 sec with irradiance of 800mW/cm² (Elipar 2500, 3M ESPE, St Paul, MN, USA), keeping the tip of the light-curing unit in contact with the glass slide or the dental tissue disc (Figure 1).

After polymerization, each specimen was removed from the mold and stored in distilled water for 24 h at 37°C in a dark container. Subsequently, microhardness measurements were taken from the top and bottom surfaces of each specimen using a Vickers microhardness tester (Buehler MicroMet, Buehler Ltd., Lake Bluff, IL, USA). The micro indenter

Preparacija caklinskih i caklinsko/dentinskih diskova

Intaktni svježe ekstrahirani nekarijesni i nerestaurirani ljudski treći molar (kutnjak) izabran je nakon potpisivanja prištanka donora prema protokolu koji je odobrilo Etičko povjerenstvo Sveučilišta Južne Kalifornije (University of Southern California). Ostatak paradontnog tkiva poslije ekstrakcije uklonjen je skelerom nakon čega je zub temeljito očišćen te pohranjen u 0,5-postotnu otopinu kloramina na temperaturi od 4°C kako bi se spriječio rast bakterija. Tako spremljeni zub koristen je unutar tri mjeseca poslije ekstrakcije.

Zub je prerazen dijamantnom pilom (Isomet 1000, Buehler Ltd., Lake Bluff, IL, USA) u mesio-distalnom smjeru, paralelno s uzdužnom osi, uz hlađenje destiliranom vodom kako bi se dobili bukalni i lingvalni uzorci zuba. Nakon toga uzorci su dalje rezani finim dijamantnim srdvlom postavljenim na električnu turbinu uz hlađenje vodom kako bi se dobili diskovi konačnog promjera od 4 mm. Diskovi su zatim polirani vodoopornim silikonskim karbidnim papirom (od 600 grita) pod mlazom vode kako bi se dobili diskovi caklinsko konačne debljine od 1 mm te disk od cakline s dentinom završne debljine od 2 mm. Oba diska uronjena su dvije minute u 0,5 M etilendiamintetraoctenu kiselinu (EDTA) zbog čišćenja i uklanjanja zaostalog sloja. Nakon toga temeljito su ispirani destiliranom vodom 60 sekunda te pohranjeni u istu otopinu kako bi se izbjegla dehidracija.

Dubina stvrdnjavanja mjerenja Vickersovim mjeračem mikročvrstoće

Opakni standardizirani polietetrafluoroetilni kalup debljine 2 i 4 mm te unutarnjeg promjera od 2 mm, korišteni su za pripremu kompozitnih uzoraka. Kalupi su stavljeni na površinu pokrovnog staklaca – u unutarnji dio kalupa stavljen je u jednom komadu svaki ispitivani kompozitni materijal, a zatim je prekriven drugim pokrovnim staklalcem uz 30-sekundni pritisak od 1 kg. Kompozitni uzorci osvjetljeni su nakon toga direktnim postupkom, kroz disk od cakline debljine 1 mm te kroz disk od cakline/dentina debljine 2 mm. Svi uzorci osvjetljani su 40 sekunda intenzitetom od 800 mW/cm² (Elipar 2500, 3M ESPE), pačiit pirom pa je radni dio uređaja za polimerizaciju u kontaktu s pokrovnim staklalcem ili diskom od zubnog tkiva (slika 1.).

Nakon polimerizacije svaki je uzorak izvaden iz kalupa i spremljen u destiliranu vodu 24 sata na temperaturi od 37°C u tamnom kontejneru. Nakon toga je mikročvrstoća izmjerena na površinu i na dnu svakog uzorka uporabom Vickersova mjerača mikročvrstoće (Buehler MicroMet, Buehler Ltd.,
Results

Results of the VH measurements for all composite resin, light-curing protocol and surfaces were presented in Table 2. The VH of the top surface of the composite resins revealed that the highest values of microhardness were observed with the low shrinkage hybrid resin (ALS), regardless of the curing procedure (directly, through enamel or enamel/dentin discs). Both flowable composite resins, SDR and FSP, show the lowest values of VH on the top surface, regardless of the light-curing modes. No statistically significant difference was observed between two flowable composites, regardless of the light-curing modes. The VH of the top surface of the composite resins served with the low shrinkage hybrid resin (ALS), regardless of the light-curing modes. No statistically significant difference was observed between two flowable composites, regardless of the light-curing modes. To isolate statistical significance among the groups, the data was submitted to Tukey HSD post-hoc test at a confidence level of 95%.

Table 2

Curing protocol • Postupak osvjetljavanja	SDR	FSP	ALS	FLS	TPH
Direct • Direktni	25.72aA	29.50aA	75.97c	48.64d	47.80d
Enamel • Caklina	25.68aA	25.08aA	58.83c	42.87b	48.98b
Enamel/Dentin • Caklina/Dentin	21.74aA	26.04aA	49.87c	40.66b	47.22c
Direct • Direktni	25.46aA	28.78aA	43.33d	40.70b	46.70b
Enamel • Caklina	23.26aA	19.18A	36.00b	32.90a	42.22c
Enamel/Dentin • Caklina/Dentin	18.02aA	18.62aA	34.42c	27.60b	35.07c
Direct • Direktni	25.00aA	22.14d	36.35b	24.92c	39.64b
Enamel • Caklina	20.54aA	14.72A	34.17d	16.28b	31.20c
Enamel/Dentin • Caklina/Dentin	15.06aA	12.32b	29.86r	9.82e	27.20c

Means with the same superscript lower-case letters, within the same column for each surface (comparing the curing protocols) are not statistically different (P>0.05).• Srednje vrijednosti s istim u superskriptu malim slovom, u istoj koloni za svaku površinu (uspoređujući postupak osvjetljavanja) nisu statistički značajne (P > 0.05).

Means with the same superscript upper-case letter, within the same row (comparing the composite resins), are not statistically different (P>0.05).• Srednje vrijednosti s istim u superskriptu velikim slovom, u istom retku (uspoređujući kompozitne materijale), nisu statistički značajne (P > 0.05).

Means of the bottom surface with asterisk differ from top value when light-cured using the same protocol (P<0.05). For the bottom surfaces, means with the same superscript Greek letter, within the same column, are not statistically different (P>0.05).• Srednje vrijednosti dna uzoraka sa zvjezdicama različitom od vrijednosti izmjerene na površini uzorka pri istom protokolu osvjetljavanja (P < 0.05); za dno uzoraka, srednje vrijednosti s istim grčkim slovom u superskriptu, u istoj koloni, nisu statistički značajne (P > 0.05).
4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.

For the composite SDR, the VH on the top surfaces was not affected by the curing procedure (Figure 2). There was no statistically significant difference between the VH values of the surfaces evaluated (top and 4-mm bottom) when the light was applied directly on the composite resin (P>0.05). However, the interposition of a disc of 2-mm enamel and dentin significantly reduced VH on the bottom surface of the 4-mm thick sample, the lowest VH values were observed for the groups SDR, FSP and FLS for all curing procedures. The highest values at bottom surface of the 4 mm thick sample were observed for the composites ALS and THP.
specimens with 2-mm thickness. There were statistically significant difference between the VH of bottom surfaces of 2- and 4-mm SDR specimens when transdental polymerization was used (P>0.05).

For the composite FSP, the curing procedure did not affect the VH top surface (Figure 3). There was, however, a significant reduction in the VH at the bottom surface of specimens with 4-mm, even when the light was applied directly on the composite resin (P<0.05). The presence of dental tissue discs significantly reduced the VH on the bottom surfaces, regardless of the specimen thickness.

For the composite ALS, the curing procedures significantly reduced the VH on top and both bottom surfaces of the composite resin (Figure 4). There is a significant reduction on the microhardness at the bottom surfaces (2- and 4-mm) regardless of the light-curing procedure.

For the composite FLS, the presence of a disc of 1 mm of enamel or 2 mm of enamel and dentin affect the top and bottom (2- and 4-mm) surfaces VH (P>0.05) (Figure 5). The lowest values of VH were observed at the bottom surface with 4 mm of thickness for when polymerized through the enamel and dentin disc (9.82 VH).

For the composite TPH, the curing mode did not affect the top surface polymerization (Figure 6). There was a significant reduction on the microhardness at the bottom surface (4-mm) even when the light was applied directly on the resin specimen. The presence of a dental tissue disc significantly reduced the VH on the bottom surfaces of specimens with 2- and 4-mm thickness (P<0.05).

Discussion

There are many published studies analyzing transmission of the blue light through different composite materials, however, there is a lack of data about transmission of the blue light through hard tooth structure, dentin and enamel, and how that will impact curing of composite materials (26, 27). Manufacturers try to optimize and improve light transmittance through composite resin by changing and modifying organic matrix chemistry and morphological properties of fillers (26). As the dental composites are heterogeneous substances, the passing light is scattered at the resin-filler interface due to the differences in the refractive indices of the individual compounds (28, 29).

Uusitalo et al. (20) conducted a study where authors tested light transmittance through differently treated dentin and enamel surface. They concluded that light transmission through dentin was less than light transmission through enamel. Further, they found that the light is transmitted better through wet dentin and enamel than through dry substrate. Also, the exposed dentin tubules enhanced light transmission through the dentin surface (20). In our study, light irradiation through dental tissue significantly reduced the depth of cure of all composite resins evaluated, including the low-shrinkage and bulk-fill composites. Therefore, the null hypothesis stating that light-attenuation by dental tissues does not decrease the mechanical properties or the depth of cure of composite resin was rejected.

da je svjetlo aplicirano direktno na kompozitni materijal (P > 0,05). Međutim, osvjetljavanje preko diska cakline/dentin na debljine 2 mm značajno je utjecalo na smanjenje VH vrijednosti na dnu površine uzoraka debljine 2 mm. Uočena je također statistički značajna razlika između VH-a na dnu uzoraka debljine 2 i 4 mm SDR uzoraka u slučaju postupka transdentalne polimerizacije (P < 0,05).

Pri korištenju kompozitnog materijala FSP, postupak osvjetljavanja nije utjecao na VH na površini uzorka (slika 3.). No zabilježeno je značajno smanjenje VH-a na dnu uzorka debljine 4 mm čak i u slučaju directnog osvjetljavanja (P < 0,05). Diskovi zubnog tkiva značajno smanjuju VH na dnu uzorka, bez obzira na debljinu uzorka.

Pri upotrebi kompozitnog materijala ALS, postupak osvjetljavanja značajno smanjuje VH na površini i na dnu uzoraka debljine 2 i 4 mm (slika 4.). Uočeno je značajno smanjenje mikročvrstoće na dnu uzoraka (2 i 4 mm), bez obzira na postupak polimerizacije.

Pri korištenju kompozitnog materijala FLS, diskovi cakline debljine 1 mm te cakline/dentina debljine 2 mm utjecali su na VH i na površini i na dnu uzorka (P > 0,05) (slika 5.). Najniža vrijednost VH-a zapažena je na dnu uzorka debljine 4 mm pri polimerizaciji kroz diskove cakline i dentina (9,82 VH). Kada je riječ o kompozitnom materijalu TPH, postupak polimerizacije nije utjecao na površinu uzorka (slika 6.). No uočeno je značajno smanjenje mikročvrstoće na dnu uzorka (4 mm) čak i kada je uzorak bio izložen direktnoj polimerizaciji. Diskovi zubnog tkiva značajno su utjecali na smanjenje VH-a na dnu uzoraka debljine 2 i 4 mm (P < 0,05).

Discussion

There are many published studies analyzing transmission of the blue light through different composite materials, however, there is a lack of data about transmission of the blue light through hard tooth structure, dentin and enamel, and how that will impact curing of composite materials (26, 27). Manufacturers try to optimize and improve light transmittance through composite resin by changing and modifying organic matrix chemistry and morphological properties of fillers (26). As the dental composites are heterogeneous substances, the passing light is scattered at the resin-filler interface due to the differences in the refractive indices of the individual compounds (28, 29).

Uusitalo et al. (20) conducted a study where authors tested light transmittance through differently treated dentin and enamel surface. They concluded that light transmission through dentin was less than light transmission through enamel. Further, they found that the light is transmitted better through wet dentin and enamel than through dry substrate. Also, the exposed dentin tubules enhanced light transmission through the dentin surface (20). In our study, light irradiation through dental tissue significantly reduced the depth of cure of all composite resins evaluated, including the low-shrinkage and bulk-fill composites. Therefore, the null hypothesis stating that light-attenuation by dental tissues does not decrease the mechanical properties or the depth of cure of composite resin was rejected.

Rasprava

U stručnoj literaturi objavljeno je više studija koje se bave proučavanjem prolaska plavog svjetla kroz različite kompozitne materijale, ali nema dovoljno podataka o njegovu prolasku kroz tvrdo zubno tkivo, dentin i caklinu, te kako to utječe na polimerizaciju kompozitnih materijala (26, 27). Proizvođači nastoje optimizirati i poboljšati prolazak svjetla kroz kompozitni materijal mijenjanjem ili modificiranjem kemijskog sastava organske matrice te morfoloških svojstava. Uočeno je značajno smanjenje VH-a na dnu uzorka debljine 2 i 4 mm (slika 4.). Uočeno je značajno smanjenje mikročvrstoće na dnu uzorka (4 mm) čak i kada je uzorak bio izložen direktnoj polimerizaciji. Diskovi zubnog tkiva značajno su utjecali na smanjenje VH-a na dnu uzoraka debljine 2 i 4 mm (P < 0,05).
A standardized test for depth of cure, ISO 4049 test, is mandatory for manufacturers to certify their resin-based composites and to set its curing time and increment thickness (3, 30). This test advocates scraping off the unset materials immediately after irradiation and measuring the length of the remaining specimen, which is then divided by two (12, 31).

Surface hardness tests (Knoop or Vickers) have been used most often to characterize the depth of cure and mechanical properties of visible light-cured resin based composite materials (31, 32). Uhl et al (33) showed that the degree of polymerization of composite materials could be better evaluated with Knoop or Vickers hardness than with depth of cure tests using a penetrometer. However, data obtained from different studies is difficult to compare mainly due to the different molding methods used. Black molds produce shorter depths of cure than a stainless-steel molds (34). White molds, generally made of Teflon or other translucent material, may allow more of the curing light to pass through the mold than through the composite resin (5, 35). Consequently, this may result in exaggerated depths of cure. Human tooth molds have also been used but they have varied size and have not been compared with a 4 mm diameter stainless steel mold, as specified in the ISO test to determine the depths of cure (12, 17, 36, 37).

Variations in the depth of cure between different composite materials may be ascribed initially to light scattering at particle interfaces and light absorbance by photoinitiators and pigments present in light-cured resin-based material. Both, light scattering, and light absorbance reduces the light penetration through the composite resin sample and therefore a reduced degree of conversion or degree of cure (12, 38, 39). Ilie et al (40) tested the correlation between the Vicker Hardness and filler loading in composite materials and concluded that increased filler loading reduces the volume of resin matrix for polymerization and intrinsically increases hardness (12, 38). Furthermore, the study stated that satisfactory degree of conversion might be due to the refractive index matching between the resin and filler, which enhances light transmission through the composite resin sample (40).

Reduction in refractive index differences between resin and filler improved the degree of conversion and increased depth of cure as well as color shade matching (12, 28, 41). Uhl et al (37, 42) explained in their study that the influence of co-initiators in a composite on the Knoop hardness was less important in the depth of a composite. This was explained by the fact that the light transmittance in dental composites is higher for longer wavelengths than for shorter wavelengths. Therefore, it can be concluded that a high percentage of the shorter wavelengths is absorbed near the surface of the composite and cannot excite co-initiators in a deeper portion of the composite filling. Another study compared light penetration in bulk filled flowable and packable composites in comparison to regular flowable and conventional composites. The authors confirmed that amount of light transmitted through composite was dependent on the amount of scattered and absorbed light (13).

Light transmittance in the dental composite materials was shown to decrease with increased filler content and for Standardizirani test za dubinu stvrdnjavanja – ISO 4049 test, obvezan je za proizvođače kompozitnih materijala kako bi im se pravilno odredilo vrijeme stvrdnjavanja i debljina slojeva pri postavljanju u kavitet (3, 30). Taj test sastoji se u struganju nestvrdnutog materijala s površine uzorka neposredno nakon osvjetljanja te mjerenja debljine zaostatnog uzorka čija se dobivena vrijednost zatim dijeli s dva (12, 31).

Test površinske čvrstoće (Knoopov ili Vickersov) najčešće su korišteni za određivanje dubine stvrdnjavanja i mehaničkih svojstava svjetlosno polimerizirajućih kompozitnih materijala (31, 32). Uhl i suradnici (33) pokazali su da se stupanj konverzije ili polimerizacije kompozitnih materijala može bolje odrediti Knoopovom ili Vickersovom čvrstoćom nego testom dubine stvrdnjavanja uporabom penetrometra. No podatke dobivene u različitim istraživanjima teško je uspoređivati, uglavnom zbog različitih metoda u obavljanju eksperimenta i različitih kalupa. Crni kalup uzrokuju manju dubinu stvrdnjavanja negoli oni od plemenitog čelika (34). Bijeli kalup, uglavnom od teflona ili nekog drugog translucentnog materijala, mogu propuštati veću količinu svjetla kroz kalup negoli kroz kompozitni materijal (5, 35). Posljednje to može rezultirati pogrešnim (višim) rezultatima dubine stvrdnjavanja. Kalupi izrađeni od zubnog tkiva također se spominju u literaturi, no različiti su veličina te nisu uspoređivani s kalupom od plemenitog čelika promjera 4 mm koji se navodi u ISO testu kao obvezan za određivanje dubine stvrdnjavanja (12, 17, 36, 37).

Varijacije u dubini stvrdnjavanja između različitih kompozitnih materijala mogu biti povezane s raspršivanjem svjetla na površini čestica punila te apsorpcijom svjetla u fotoinicijatoru i pigmentima u kompozitnom materijalu. I raspršivanje i apsorpcija svjetla smanjuju prodiranje svjetla kroz uzorak kompozitnog materijala i tako smanjuju stupanj konverzije ili dubinu stvrdnjavanja (12, 38, 39). Ilie i suradnici (40) ispitivali su povezanost između Vickerove čvrstoće i udjele punila u kompozitnim materijalima te zaključili da porast udjela punila smanjuje volumen organske komponente za polimerizaciju te povećava unutarnju čvrstoću (12, 38). Uz to, u istoj se studiji ističe da zadovoljavajući stupanj konverzije može biti zbog podudaranja refraktivnog indeksa smole i punila, što poboljšava transmisiju svjetla kroz uzorak kompozitnog materijala (40). Smanjenje razlike u refraktivnom indeksu između smole i punila poboljšava stupanj konverzije i povećava dubinu stvrdnjavanja te bolje podudaranje boje kompozitnog materijala (12, 28, 41). Uhl i suradnici (37, 42) objasnili su u svojem istraživanju da je utjecaj koinicijatora u kompozitnim materijalima na Knoopovu čvrstoću manje važan u dublim dijelovima kompozitnog uzorka. To je objašnjeno činjenicom da je transmisijska svjetla u kompozitnim materijalima veća za duže valne duljine negoli za kratica. Zato se može zaključiti da se visok postotak kratkih valnih duljina apsorbiira bliže površini kompozitnog uzorka te ne može ekscitirati koinicijatore u dublim dijelovima kompozitnog uzorka. Druga skupina autora uspoređivala je prodor svjetla pri uporabi bulk tekućih kompozitnih materijala i kondenzirajućih kompozita u usporedbi s regularnim tekućim i konvencionalnim kompozitnim materijalima, te su zaključili da količina svjetla koja...
irregular filler shape, which is due to the increase of specific surface between fillers and resin (13, 39, 43-45). A further important fact in light transmission through composite is the treatment of fillers. Silane-coated fillers were shown to enhance, while uncoated fillers were shown to decrease light transmission (36). In our study FSP composite was used which has silane treated ceramic (52-60%) and silane treated silica (<11%) as stated in the manufacturer instructions. Also, FLS, low-shrinkage composite, has silane treated quartz, 60-70% wt. according to the manufacturer. However, in this study neither FLS nor FSP has shown superior Vicker’s micro-hardness in comparison to other tested flowable or low-shrinkage composite.

The curing light in this study was halogen-curing unit with broad spectral emission. Arikawa et al (19) discussed in their study that amount of light transmitted through 1 mm thick enamel was only about 35% of the original light in the overall wavelength from 400-600 nm. Furthermore, the light transmission of dental enamel and dentin increased with increasing wavelength (17-20). In their study Arikawa et al (19) used an enamel filter made of a mixture of composite materials, while in our study natural enamel and enamel/dentin were used. In this recent study, the enamel and enamel/dentin samples were collected from the same tooth to avoid any difference in enamel and dentin composition with taking samples from different tooth. The enamel and dentin samples were also maintained in distilled water and used immediately to avoid any dehydration, which can have influence on the final results of light transmission. Regardless of composite materials used, higher Vickers microhardness values were observed when they were cured through enamel/disc than enamel/dentin disc. Arikawa et al (17) showed in their study that dentin had strong light diffusion characteristics which would encourage the light-attenuating effect of the hard tissue. It is well established that light intensity drops with distance regardless of curing unit or composite materials used (46, 47). It was confirmed that the light intensity used to irradiate the composite material through 0.5 mm of enamel is almost half of the direct irradiation, while the light intensity attenuation through 1.5 mm enamel was almost 80% of the original light intensity (48).

From the table 2 it is visible that only for SDR bulk fill flowable composite material there is no difference between VH on the top (25.72) and on the bottom – 2 mm (25.46) and bottom – 4 mm (25.00) when using direct curing protocol. For all other materials there is a drop in the VH value when compared the top and bottom 2 and 4 mm in case of direct curing protocol. The highest drop was noticed in case of ALS low shrinkage hybrid composite: 75.97 on the top, 44.33 on 2 mm bottom and 36.35 on 4 mm bottom when direct curing protocol was used.

In clinical setting, when composite material needs to be cured through tooth structure, special care should be employed to minimize the reduction of restoration’s mechanical properties. Prolonging irradiation time could compensate the light-attenuating effect of enamel and dentin. However, prolonging irradiation time also can raise the temperature in the composite resin itself, hard dental tissues and the pulp prolazi kroz kompozitni materijal ovisi o količini raspršenog i asporiranog svjetla (13).

Pokazano se da transmisija svjetla u dentalnim kompozitnim materijalima pada s porastom udjela punila za irregularni oblik čestica punila, što se povezuje s porastom specifične površine između punila i smole (13, 39, 43 – 45). Nadalje, vrsta tretmana čestica punila također je jedan od važnih čimbenika koji utječe na transmisiju svjetla kroz kompozitni uzorak. Kod kompozitnih materijala kojima su čestice presucone silanom uočeno je pokretanje svjetla, a one koje nisu presućene pokazuju smanjenje transmisije svjetla (36). U našoj studiji korišten je kompozitni materijal FSP koji, prema podatcima proizvođača, sadržava čestice keramike (52 – 60%) i slike (<11%) tretirane silanom. Niskoskupljačući kompozitni materijal FLS, prema podatcima proizvođača, sadržava i kvarc tretiran silanom (60 – 70% težinskog udjela). No u ovoj studiji ni FLS ni FSP nisu pokazali bolju Vickersovu mikrovrstoću u odnosu prema ostalim ispitivanim tekućim ili niskoskupljačućim kompozitima.

U ovom radu korišten je halogenski uređaj za polimerizaciju koji emitira svjetlo širokog spektra. Arikawa i suradnici (19) pokazali su u svojoj radu da transmisija svjetla kroz uzorak cakline debljine 1 mm iznosi oko 35% ukupno emitiranog svjetla iz uređaja za polimerizaciju pri valnim duljinama od 400 do 600 nm. Istaknuto se da transmisija svjetla kroz caklinu i dentin raste i s porastom valnih duljina (17 – 20). Arikawa i suradnici (19) koristili su se caklimskim filtrom napravljenim od mjehavine kompozitnih materijala, a u našoj studiji korišteni su prirodna caklina i dentin. U ovoj studiji caklina i dentin uzeti su s istog zuba kako bi se izbjegle bilo kakve razlike u sastavu cakline i dentina ako bi se uzorci uzimali s različitih zuba. Uzorci cakline i dentina čuvani su u destiliranoj vodi i korišteni su neposredno da bi se izbjegla bilo kakva dehidracija koja bi mogla utjecati na rezultate transmisije svjetla. Bez obzira na vrstu korištenog kompozitnog materijala u eksperimentu, ako se izuzu i rezultati s površine, veća Vickersova mikrovrstoća zabilježena je kad su uzorci bili osvjetljeni preko diska od cakline nego preko diska caklina/dentin. Arikawa i suradnici (17) pokazali su u svojoj istraživanju da dentin ima izrazito svojstvo difuzije, što bi trebalo potaknuti produžet svjetla u slučaju tvrdoga zubnog tkiva. Dobro je poznato da intenzitet svjetla opada s udaljenosću od izvora svjetla, bez obzira na to koja se vrsta uređaja za polimerizaciju ili kompozitnog materijala rabi (46, 47). Potvrđeno je da je intenzitet svjetla pri osvjetljavanju kompozitnog materijala preko cakline debljine 0,5 mm gotovo pola količine direktnog osvjetljavanja, a intenzitet svjetla koje prođe kroz caklinu debljine 1,5 mm gotovo je 80% direktnog izvora svjetla (48).

U tablici 2. vidi se da samo za bulk fill kompozit SDR nije bila zabilježena razlika između VH-a na površini (25.72), na dnu uzorka od 2 mm debljine (25.46) i na dnu uzorka od 4 mm (25.00) pri direktnom postupku osvjetljavanja. Kod svih ostalih materijala uočen je pad mikrovrstoće pri usporedbi površine i dva uzorka caklina debljine 2 i 4 mm u slučaju direktnog osvjetljavanja. Najveći pad vrijednosti VH-a zabilježen je kod niskoskupljačućeg hibridnog kompozita ALS – 75.97 na površini, 43.33 na dnu uzorka debljine 2 mm te 36.35 na dnu uzorka debljine 4 mm.
Further studies are needed to explore alternatives for adequate polymerization of composite resins under hard dental tissues and restorative materials, as well as, to evaluate the response of pulp cellular to prolonged light irradiation.

Conclusion
The results of this study showed that light-curing attenuation of dental structures negatively affect the micro-hardness of all composite resins at the bottom surface. Bulk fill flowable composite SDR and flowable FSP composite have lower VH on the top surface. Flowable (SDR and FSP) and microhybrid (TPH) composite resins can be properly polymerized by direct light irradiation on increments with a thickness up to 2 mm. To achieve better clinical results for Bulk fill composite polymerization it can be suggested to decrease incremental thickness and/or to extend the curing time.

Conflict of interest
The authors report no conflict of interest.

References
1. Fujita K, Ikemi T, Nishiyama N. Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent Mater. 2011 Nov;27(11):1079-85.
2. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011 Apr;90(4):402-16.
3. Erickson RL, Barkmeier WW. Curing characteristics of a composite. part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater. 2014 Jun;30(6):e134-45.
4. Ferracane JL. Resin composite - state of the art. Dent Mater. 2011 Jan;27(1):29-38.
5. Lee SK, Kim TW, Son SA, Park JK, Kim JH, Kim HL, et al. Influence of light-curing units on the polymerization of low-shrinkage composite resins. Dent Mater. 2013;32(5):688-94.
6. Aleixo AR, Guiraldos RD, Fugolin AP, Berger SB, Consani RL, Correr AB, et al. Evaluation of contraction stress, conversion degree, and cross-link density in low-shrinkage composites. Photomed Laser Surg. 2014 May;32(3):267-73.

Zaključak
Rezultati ovog ispitivanja pokazali su da prigušenje svjetla pri prolasku kroz zbunu strukturu negativno utječe na mikročvrstoću na dnu uzorka. Tekući (SDR i FSP) te mikrohibridni (TPH) kompozitni materijali mogu se dostatno polimerizirati direktnim postupkom osvjetljavanja pri postavljanju slojeva do 2 mm dobljine. Kako bi se ostvarila bolja polimerizacija bulk-fill kompozitnih materijala, preporučuje se postavljati ih u tačnim slojevima u kaviteti ili produžiti vrijeme osvjetljavanja.

Sukob interesa
 Autori nisu bili u sukobu interesa.

Svaka referencija
1. Fujita K, Ikemi T, Nishiyama N. Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent Mater. 2011 Nov;27(11):1079-85.
2. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011 Apr;90(4):402-16.
3. Erickson RL, Barkmeier WW. Curing characteristics of a composite. part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater. 2014 Jun;30(6):e134-45.
4. Ferracane JL. Resin composite - state of the art. Dent Mater. 2011 Jan;27(1):29-38.
5. Lee SK, Kim TW, Son SA, Park JK, Kim JH, Kim HL, et al. Influence of light-curing units on the polymerization of low-shrinkage composite resins. Dent Mater. 2013;32(5):688-94.
6. Aleixo AR, Guiraldos RD, Fugolin AP, Berger SB, Consani RL, Correr AB, et al. Evaluation of contraction stress, conversion degree, and cross-link density in low-shrinkage composites. Photomed Laser Surg. 2014 May;32(3):267-73.
17.	Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of dentin on the polymerization of light-activated restorative resins. Dent Mater J. 2000 Nov;19(4):338-45.

18.	Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of dentin on the polymerization of light-activated restorative resins. Dent Mater J. 2000 Nov;19(4):338-45.

19.	Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of dentin on the polymerization of light-activated restorative resins. Dent Mater J. 2000 Nov;19(4):338-45.

20.	Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of dentin on the polymerization of light-activated restorative resins. Dent Mater J. 2000 Nov;19(4):338-45.

21.	Turrión AP, de Oliveira CF, Basso FG, Moriyama LT, Kurachi C, Hebling J, et al. Correlation between light transmission and permeability of human dentin. Lasers Med Sci. 2012 Jan;27(1):191-6.

22.	Brodbelt RH, O'Brien WJ, Fan PL, Frazer-Dib JG, Yu R. Translucency of human dental enamel. J Dent Res. 1981 Oct;60(10):1749-53.

23.	Fried D, Glenda RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt. 1995 Mar 1;34(7):1278-85.

24.	Alqahtani MQ, Michaud PL, Sullivan B, Labrie D, AlShaafi MM, Price RB. Effect of High Irradiance on Depth of Cure of a Conventional and a Bulk Fill Resin-based Composite. Oper Dent. 2015 Nov-Dec;40(6):662-72.

25.	Par M, Gamulin O, Marovic D, Klaric E, Tarle Z. Raman spectroscopic assessment of degree of conversion of bulk-fill resin composites—changes at 24 hours post cure. Oper Dent. 2015 May-Jun;40(3):E92-101.

26.	Palin WM, Leprince JG, Hadis MA. Shining a light on high volume photocurable materials. Dent Mater. 2018 May;34(5):695-710.

27.	Shimokawka C, Honke Y, Komatsu M, Zilber M, Price RB. Effect of light-curing units on the polymerization of bulk fill resin-based composites. Dent Mater. 2018 Sep;34(8):1211-21.

28.	Shortall AC, Palin WM, Burtcher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res. 2008 Jan;87(1):84-8.

29.	Rocha Maia R, Oliveira D, D'Antonio T, Qian F, Skiff F. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness. Restor Dent Endod. 2018 Apr 16;43(2):e22.

30.	H audi BK, Platt JA, Borges G, Chu TM, Katsalieris I. Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent. 2008 Jul-Aug;33(4):408-12.

31.	Tsai PC, Meyers IA, Walsh LJ. Depth of cure and surface microhardness of composite resin cured with blue LED curing lights. Dent Mater. 2004;20(4):369-74.

32.	Haaenel T, Hausnerova B, Steinhaus J, Price RB, Sullivan B, Moeginger B. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins. Dent Mater. 2015 Feb;31(2):93-104.

33.	Uhl A, Mills RW, Jandt KD. Photoinitiator dependent composite depth of cure and Knoop hardness with halogen and LED light curing units. Biomaterials. 2003 May;24(10):1787-95.

34.	Sooh MS, Yap AU, Siow KS. Comparative depths of cure among various curing light types and methods. Oper Dent. 2004 Jan-Feb;29(1):9-15.

35.	Harrington E, Wilsson HJ. Depth of cure of radiation-activated materials—effect of mould material and cavity size. J Dent. 1993 Oct;21(5):305-11.

36.	Price RB, Felix CA, Andreou P. Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights. Biomaterials. 2005 May;26(15):2631-41.

37.	Uhl A, Michaelis C, Mills RW, Jandt KD. The influence of storage and indentor load on the Knoop hardness of dental composites polymerized with LED and halogen technologies. Dent Mater. 2004 Jan;20(1):21-8.

38.	Lenehan GP. "Benign" treatments: be critical, and first, do no harm. J Emerg Nurs. 1999 Sep-Oct;16(5):309.

39.	Musanj L, Darvell BW. Curing-light attenuation in filled-resin restorative materials. Dent Mater. 2006 Sep;22(9):804-17.

40.	Ille N, Renicz A, Hickel R. Investigations towards nano-hybrid resin-based composites. Clin Oral Investig. 2013 Jan;17(1):185-93.

41.	Fujita K, Nishiyama N, Nemoto K, Okada T, Ikemi T. Effect of base monomer's refractive index on curing depth and polymerization conversion of photo-cured resin composites. Dent Mater J. 2005 Sep;24(3):403-8.

42.	Uhl A, Mills RW, Vowles RW, Jandt KD. Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. J Biomed Mater Res. 2002;63(6):729-38.

43.	Arikawa H, Kanie T, Fuji K, Takahashi H, Ban S. Effect of filler properties in composite resins on light transmittance characteristics and color. Dent Mater J. 2010 Jan;29(1):191-6.

44.	Rocha Maia R, Oliveira D, D'Antonio T, Qian F, Skiff F. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness. Restor Dent Endod. 2018 Apr 16;43(2):e22.

45.	Malterud MI. Transdental curing of bulk-filled restorations: a closer look. Gen Dent. 2017 May-Jun;65(3):6-9.

46.	Federlin M, Price R. Improving light-curing instruction in dental school. J Dent Educ. 2013 Jun;77(6):764-72.

47.	Price RB, Shortall AC, Palin WM. Contemporary issues in light curing. Oper Dent. 2014 Jan-Feb;39(1):4-14.

48.	Arikawa H, Kanie T, Fuji K, Shinohara N. Bending strength and depth of cure of light-cured composite resins irradiated using filters that simulate enamel. J Oral Rehabil. 2004 Jan;31(1):74-80.

49.	Balestino A, Verissimo C, Tamborinno D, Garcia-Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: Effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016 Aug;29(4):234-240.