A dihydrofolate reductase 2 (DHFR2) variant is associated with risk of neural tube defects in an Irish cohort but not in a United Kingdom cohort

Faith Pangilinan1 | Emma K. Finlay2 | Anne M. Molloy3 | Hattice O. Abaan1 | Barry Shane4 | James L. Mills5 | Lawrence C. Brody1 | Anne Parle-McDermott2

1Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland
2School of Biotechnology, Dublin City University, Dublin, Ireland
3Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
4Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
5Division of Intramural Population Health Research, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, Bethesda, Maryland

Correspondence
Anne Parle-McDermott, School of Biotechnology, Dublin City University, Dublin 9, Ireland.
Email: anne.parle-mcdermott@dcu.ie

Funding information
Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development; Health Research Board of Ireland, Grant/Award Number: HRA_PHS/2012/16; NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS; National Institutes of Health

To the Editor,
Folate-responsive neural tube defects (NTDs) are a group of congenital malformations that can be prevented by the periconceptional consumption of the B-vitamin, folic acid (Berry et al., 1999; Kirke, Daly, & Elwood, 1992; Laurence, James, Miller, Tennant, & Campbell, 1981). NTD occurrence rates vary among populations with a range of 6–60 per 10,000 pregnancies worldwide (Molloy, Pangilinan, & Brody, 2017). Because NTDs are relatively common, and can be severe or fatal defects, preventing folate-responsive defects is a major public health priority (Bailey, West Jr., & Black, 2015). Voluntary or mandatory folic acid fortification programs have been implemented across the globe, with variable success (Khoshnood et al., 2015). Given such wide public health implications, there is a need to further understand the mechanism by which folate-responsive NTDs occur. Although NTDs are known to have both nutritional and genetic risk factors (Bailey et al., 2015), much of the genetic component remains to be discovered. An unbiased genome-wide association study is an appealing approach but has not yet been performed due to the difficulty of obtaining a sufficient number of affected participants. In contrast, candidate genes studies are feasible and have some potential advantages compared with a GWAS. First, because variant selection can use linkage disequilibrium to inform the selection of variants, a tailored approach can provide more complete variant coverage of the gene(s) in question. Second, querying this targeted search space may identify small but real association signals that would be lost in the multiple-test correction of a full-scale GWAS.

Genetic investigations have focused on genes that either metabolize or transport folate due to the well-established protective effect of preconceptional use of folic acid supplements (Czeizel & Dudas, 1992; MRC Vitamin Study Research Group, 1991). Many genetic association studies have considered variants within folate pathway genes as candidate risk factors in the search of genetic variants that may increase the population and an individual’s risk of an NTD (Molloy et al., 2017). We previously reported an association study of 82 candidate genes in our Irish NTD cohort (Pangilinan et al., 2012), as well as a replication study (Pangilinan et al., 2014). While associations in MTHFD1 (Brody et al., 2002; Jiang, Zhang, Wei, Sun, & Liu, 2014; Meng, Han, & Zhuang, 2015) and MTRR (Ouyang, Li, Liu, Chang, & Wu, 2013; Yadav, Kumar, Yadav, Mishra, & Rai, 2015) were among the most significant findings from these and other studies, the MTHFR 677C>T (rs1801133) variant remains the most consistently associated genetic modifier of NTD risk (Botto & Yang, 2000; van der Put et al., 1995; Yadav et al., 2015; Yan et al., 2012; Yang, Chen, Wang, Ding, & Liu, 2015; Zhang et al., 2013). This variant is associated with biomarkers of folate status, including changes in levels of serum folate, red cell folate and homocysteine (Shane et al., 2018).

We report here our evaluation of the folate retrogene known as dihydrofolate folate reductase 2 (DHFR2, formerly DHFRL1) (McEntee...
et al., 2011) as a candidate gene for NTD risk. We previously reported that a 19 bp intronic allele of dihydrofolate reductase (DHFR) may decrease risk of NTDs (Parle-McDermott et al., 2007). DHFR mediates the entry of dietary folic acid into folate metabolism. Owing to this key role, DHFR has been extensively studied as a drug target (methotrexate) and a selection tool in cell culture (McEntee et al., 2011). In addition to DHFR, humans and other primates have acquired an a second gene family member, making DHFR2 a compelling candidate for harboring variation that might alter NTD risk. Moreover, as a relatively newly identified gene, DHFR2 has not been considered as a candidate in many human disease contexts.

Our initial cohort in the investigation of DHFR2 consisted of 595 trio families that included an affected case and one or both parents plus a control sample of 1,000 individuals. This cohort has been described previously (Brody et al., 2002; Pangilinan et al., 2014; Shields et al., 1999). In brief, NTD cases and their parents were recruited throughout Ireland (1993–2004), and controls were randomly selected from women attending their first prenatal visit in Dublin (1986–1990). We successfully genotyped seven single nucleotide polymorphisms (SNPs) across the DHFR2 gene region by detection of allele-specific primer extension using matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) mass spectrometry (Sequenom, San Diego, California). The DHFR2 gene harbors only two common (MAF > 0.05) SNPs in the European population (EUR in 1000G, [Genomes Project Consortium et al., 2015]); these and five SNPs from the 10 kb flanking regions were selected to ensure sufficient coverage of the gene and its proximate cis-regulatory elements. The SNPs spanned the genomic region which contained the open reading frame (ORF) and extended 4.8 kb and 4.2 kb upstream and downstream of the ORF respectively. The average SNP call rate across the sample groups ranged from 95.1 to 97%. The average duplicate concordance rate was 98.2%. Association analysis for each SNP included the transmission disequilibrium test (TDT) using PLINK in Haploview version 1.0 and testing for homozygous genotype effect mapped) for DHFR2 and genotypes for SNP rs17855824 were down-loaded from the Geuvadis RNA Sequencing project (Lappalainen et al., 2013). Of the 462 individuals with RPKM values for the DHFR2 gene, 381 had CC genotypes, 77 CT, and 4 TT. An ANOVA for relative mRNA expression between the rs17855824 genotypes was not significant ($F_{2,459} = 0.21, p = .05$). Samtools’ mpileup was used with the raw BAM files for the heterozygous individuals to find the number of

DHFR2 SNP #a	Allele OTb	T:U ratio c	χ^2	p-value	MAF
rs7645522	A	107:71	7.281	.007	G (0.13)
rs11927165	T	24:19	0.581	.4458	C (0.03)
rs10454213	A	105:66	8.895	.0029	G (0.13)
rs17855824	C	97:62	7.704	.0055	T (0.13)
rs61739170	C	130:125	0.098	.7542	C (0.24)
rs7644176	G	25:18	1.14	.2858	T (0.03)
rs7653521	C	177:158	1.078	.2992	C (0.43)

| TABLE 1 Transmission disequilibrium test analysis of DHFR2 SNPs in an Irish NTD cohort |

aSNPs in bold share high LD ($D' = 1; r^2 ≥ .995$).
bAllele that was over-transmitted.
cTransmitted:untransmitted ratio.
reads with T and C alleles, a Pearson’s chi-square test did not find a significant difference in allele abundance. We then asked whether \textit{DHFR2} \textit{rs17855824} might act as an eQTL in specific tissues. Although there are \textit{DHFR2} eQTLs in and around the gene, the Genome-Tissue Expression project (GTEx V8) shows that \textit{rs17855824} is an eQTL for \textit{PROS1} but not \textit{DHFR2} in cultured cells and tibial artery (https://www.gtexportal.org/home/, [GTEx Consortium, 2013]).

We next used a second UK cohort to assess whether a similar significant TDT association would be replicated. This cohort has been previously described (Pangilinan et al., 2010). Briefly, 497 NTD cases and their parents, when available, were recruited throughout the UK (2001–2003) with the assistance of the UK Association for Spina Bifida and Hydrocephalus. We genotyped two \textit{(rs10454213 and rs7645522)} of the three Irish cohort associated SNPs. Genotyping was performed by LGC KBiosciences (The United Kingdom) and included at least 67 duplicate samples per SNP. In addition, at least 231 samples per SNP were repeat genotyped in-house using the Sequenom platform as described above. The concordance rate for duplicate and repeat genotyped samples was 100 and 99.6%, respectively. Our TDT analysis of the UK cohort (354 complete trios) did not show a significant over-transmission of the “A” allele as observed in the Irish cohort (Table 2). In fact, a nonsignificant over-transmission of the minor allele, that is, the “G” was observed for both SNPs in the UK cohort. In the absence of a significant difference in allele transmission in the UK cohort, we conclude that this SNP does not contribute to NTD risk in this UK cohort, or the cohort was underpowered (354 complete UK trios tested compared with 440 complete Irish trios) to detect a significant difference in allele transmission.

In summary, our consideration of the human \textit{DHFR2} gene as a candidate genetic risk factor for NTD revealed mixed results. We observed an association signal in an Irish cohort but failed to replicate this in a separate, smaller UK cohort. We also assessed \textit{DHFR2} as a potential QTL for biomarkers of folate one carbon metabolism and as an eQTL. Upon correction for multiple tests, these analyses did not show any significant correlations with serum folate, red cell folate, plasma total homocysteine, plasma formate, or tissue mRNA expression levels. This is in contrast to the \textit{MTHFR} 677C>T variant which was previously found to be the major genetic modifier of these biomarkers in the same cohort (Brosnan et al., 2018; Shane et al., 2018).

We conclude that \textit{DHFR2} does not contribute to NTD risk by acting

![FIGURE 1](image_url)
FIGURE 1
Pairwise measures of linkage disequilibrium (LD) for the seven SNPs genotyped in the Irish cohort. Left: \(D^'\) measures of LD; right: \(r^2\) measures of LD. Solid blocks indicate a value of \(D^' = 1\) (red or blue) or \(r^2 = 1\) (black). Numbers in remaining blocks indicate the pairwise estimate of LD multiplied by 100 for improved legibility. Only the SNPs numbered 4 (rs17855824) and 5 (rs61739170) fall within the \textit{DHFR2} gene

TABLE 2
Replication TDT analysis of \textit{DHFR2} SNPs in a UK NTD cohort

\textit{DHFR2} SNP #	Allele OT\(^a\)	T:U ratio\(^b\)	\(\chi^2\)	\(p\)-value	MAF
rs7645522	G	46:31	2.922	0.0874	G (0.13)
rs10454213	G	46:32	2.513	0.1129	C (0.03)

\(^a\)Allele that was over-transmitted.
\(^b\)Transmitted:untransmitted ratio.
as a QTL that influences folate biomarkers. The lack of an association in the UK cohort; however, does not completely rule out this gene from playing a role in NTD etiology. The accepted NTD risk factor MTHFR 677C>T variant has not shown an association in all cohorts tested (Amorim, Lima, Castilla, & Orioli, 2007; Botto & Yang, 2000) including the same UK cohort reported here (Pangilinan et al., 2014). Research is currently ongoing to elucidate the functional role of DHFR2 and its confirmation as a genetic modifier of NTD risk requires replication in another cohort. While periconceptional folic acid supplementation remains the most effective action clinicians can recommend to reduce the risk of NTDs, further research is crucial for understanding the genetic contribution to this birth defect. Candidate gene studies based on prioritizing genetic variants that may influence the folate one carbon metabolic pathway will continue to be important. Ultimately a GWAS will be required to determine in an unbiased way which genetic variants not yet considered contribute to the development of NTDs.

ACKNOWLEDGMENTS

Funded by the Health Research Board of Ireland (to APMCD) HRA_PHS/2012/16. The Intramural Research Program, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, NIH. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NiMH, and NINDD. The data used for the analyses described in this manuscript were obtained from: the GTEx Portal on 07/08/2020.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Anne Parle-McDermott, Lawrence C. Brody, James L. Mills, Barry Shane, Anne M. Molloy: conceived and designed the study. Faith Pangilinan and Hattice O. Abaan: performed genotyping quality control. Faith Pangilinan, Emma K. Finlay, Anne Parle-McDermott, Lawrence C. Brody: analyzed and interpreted the data. Faith Pangilinan, Anne Parle-McDermott: wrote the first draft of the manuscript. All authors reviewed, edited and approved the final version of the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request. All genotype data is available in the Supporting Information Data File.

ORCID

Anne Parle-McDermott https://orcid.org/0000-0002-1533-3209

REFERENCES

Amorim, M. R., Lima, M. A., Castilla, E. E., & Orioli, I. M. (2007). Non-Latin European descent could be a requirement for association of NTDs and MTHFR variant 677C>T: A meta-analysis. American Journal of Medical Genetics. Part A, 143(15), 1726–1732. https://doi.org/10.1002/ajmg.a.31812

Bailey, R. L., West, K. P., Jr., & Black, R. E. (2015). The epidemiology of global micronutrient deficiencies. Annals of Nutrition & Metabolism, 66 (Suppl 2), 22–33. https://doi.org/10.1159/000371618

Berry, R. J., Li, Z., Erickson, J. D., Li, S., Moore, C. A., Wang, H., ... Correa, A. (1999). Prevention of neural-tube defects with folic acid in China. China-U.S. collaborative project for neural tube defect prevention. The New England Journal of Medicine, 341(20), 1485–1490. https://doi.org/10.1056/NEJM199911113412001

Botto, L. D., & Yang, Q. (2000). 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. American Journal of Epidemiology, 151(9), 862–877.

Brody, L. C., Conley, M., Cox, C., Kirke, P. N., McKeever, M. P., Mills, J. L., ... Swanson, D. A. (2002). A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: Report of the birth defects research group. American Journal of Medical Genetics, 71(5), 1207–1215.

Brosnan, J. T., Mills, J. L., Ueland, P. M., Shane, B., Fan, R., Chiu, C. Y., ... Molloy, A. M. (2018). Lifestyle, metabolite, and genetic determinants of formate concentrations in a cross-sectional study in young, healthy adults. The American Journal of Clinical Nutrition, 107(3), 345–354. https://doi.org/10.1093/ajcn/nqx065

Czeizel, A. E., & Dudas, I. (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. The New England Journal of Medicine, 327(26), 1832–1835. https://doi.org/10.1056/NEJM199212243272602

Desch, K. C., Ozel, A. B., Siemieniak, D., Kalish, Y., Shavit, J. A., Thornburg, C. D., ... Ginsburg, D. (2013). Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome-wide association. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 588–593. https://doi.org/10.1073/pnas.1219885110

Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., ... Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74. https://doi.org/10.1038/nature15393

GTEx Consortium. (2013). The genotype-tissue expression (GTEx) project. Nature Genetics, 45(6), 580–585. https://doi.org/10.1038/ng.2653

Jiang, J., Zhang, Y., Wei, L., Sun, Z., & Liu, Z. (2014). Association between MTHFD1 G1958A polymorphism and neural tube defects susceptibility: A meta-analysis. PLoS One, 9(6), e101169. https://doi.org/10.1371/journal.pone.0101169

Khoshnood, B., Loane, M., de Walle, H., Arriola, L., Addor, M. C., Barisic, I., ... Dolk, H. (2015). Long term trends in prevalence of neural tube defects in Europe: Population based study. BMJ, 351, h5949. https://doi.org/10.1136/bmj.h5949

Kirke, P. N., Daly, L. E., & Elwood, J. H. (1992). A randomised trial of low dose folic acid to prevent neural tube defects. The Irish Vitamin Study Group. Archives of Disease in Childhood, 67(12), 1442–1446. https://doi.org/10.1136/adc.67.12.1442

Lappalainen, T., Sammeth, M., Friedlander, M. R., t Hoen, P. A., Monlong, J., Rivas, M. A., ... Dermitzakis, E. T. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501(7468), 506–511. https://doi.org/10.1038/nature12531

Laurence, K. M., James, N., Miller, M. H., Tennant, G. B., & Campbell, H. (1981). Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. British Medical Journal (Clinical Research Ed.), 282(6275), 1509–1511. https://doi.org/10.1136/bmj.282.6275.1509

McEntee, G., Minguzzi, S., O’Brien, K., Ben Larbi, N., Loscher, C., O’Fagain, C., ... Parle-McDermott, A. (2011). The former annotated human pseudogene dihydrofolate reductase-like 1 (DHFRL1) is expressed and functional. Proceedings of the National Academy of Sciences, 108(22), 9120–9125.
Section 1

Meng, J., Han, L., & Zhuang, B. (2015). Association between MTHFD1 polymorphisms and neural tube defect susceptibility. Journal of the Neurological Sciences, 348(1–2), 188–194. https://doi.org/10.1016/j.jns.2014.12.001

Molloy, A. M., Pangilinan, F., & Brody, L. C. (2017). Genetic risk factors for folate-responsive neural tube defects. Annual Review of Nutrition, 37, 269–291. https://doi.org/10.1146/annurev-nutr-071714-034235

Pangilinan, F., Mitchell, A., VanderMeer, J., Molloy, A. M., Troendle, J., Conley, M., ... Brody, L. C. (2010). Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects. Journal of Medical Genetics, 47(10), 677–685. https://doi.org/10.1136/jmg.2009.073775

Pangilinan, F., Molloy, A. M., Mills, J. L., Troendle, J. F., Parle-McDermott, A., Kay, D. M., ... Brody, L. C. (2014). Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects. BMC Medical Genetics, 15, 102. https://doi.org/10.1186/s12881-014-0102-9

Parle-McDermott, A., Pangilinan, F., Mills, J. L., Kirke, P. N., Gibney, E. R., Troendle, J., ... Brody, L. C. (2007). The 19-bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR) may decrease rather than increase risk for spina bifida in the Irish population. American Journal of Medical Genetics. Part A, 143(11), 1174–1180. https://doi.org/10.1002/ajmg.a.31725

Shane, B., Pangilinan, F., Mills, J. L., Fan, R., Gong, T., Cropp, C. D., ... Molloy, A. M. (2018). The 677C>T variant of MTHFR is the major genetic modifier of biomarkers of folate status in a young, healthy Irish population. The American Journal of Clinical Nutrition, 108(6), 1334–1341. https://doi.org/10.1093/ajcn/nqy209

How to cite this article: Pangilinan F, Finlay EK, Molloy AM, et al. A dihydrofolate reductase 2 (DHFR2) variant is associated with risk of neural tube defects in an Irish cohort but not in a United Kingdom cohort. Am J Med Genet Part A. 2021;185A:1307–1311. https://doi.org/10.1002/ajmg.a.62090

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.