Network-based community detection of comorbidities and their association with SARS-CoV-2 virus during COVID-19 pathogenesis

S. Chatterjee ∗ B.S. Sanjeev †
May 31, 2022

Department of Applied Sciences
Indian Institute of Information Technology
Allahabad 211012, India

Contents

1 Introduction 2
2 Materials and Methods 2
 2.1 Disease-gene Network Construction .. 2
 2.2 Network Analysis ... 3
 2.3 Network Modularity ... 3
 2.4 Community Detection .. 4
 2.5 Functional Pathway Enrichment Analysis 5
3 Results and Discussion 5
 3.1 Analysis of Disease-Gene Network ... 9
 3.2 Network Topology Community Detection 9
 3.3 Functional Enrichment Analysis .. 9
 3.4 Validation ... 9
4 Conclusion 10

Abstract

Recent studies emphasized the necessity to identify key (human) biological processes and pathways targeted by the Coronavirusidae family of viruses, especially SARS-CoV-2. COVID-19 caused up to 33-55% death rates in COVID-19 patients with malignant neoplasms and Alzheimer’s disease. Given this scenario, we identified biological processes and pathways which are most likely affected by COVID-19. The associations between various diseases and human genes known to interact with viruses from Coronavirusidae family were obtained from the IntAct COVID-19 data set annotated with DisGeNET data. We constructed the disease-gene network to identify genes that are involved in various comorbid diseases states. Communities from the disease-gene network through Louvain method were identified and functional enrichment through over-representation analysis methodology was used to discover significant biological processes and pathways shared between COVID-19 and other diseases. The IntAct COVID-19 data set comprised of 828 human genes and 10,473 diseases that together constituted nodes in the disease-gene network. Each of the 70,210 edges connects a human gene with an associated disease.

∗rs171@iiita.ac.in
†sanjeev@iiita.ac.in
top 10 genes linked to most number of diseases were VEGFA, BCL2, CTNNB1, ALB, COX2, AGT, HLA-A, HMOX1, FGT2 and COMT. The most vulnerable group of patients thus discovered had comorbid conditions such as carcinomas, malignant neoplasms and Alzheimer’s disease. Finally, we identified 37 potentially useful biological processes and pathways for improved therapies.

1 Introduction

Genes and proteins perform a variety of functions within an organism. Interactions between them are indispensable to fundamental cellular processes. Graph-theoretic tools enable processing network topological information to identify and analyze functional dependencies between disease-gene dynamics [1]. Many network-based strategies have been widely adopted to investigate such relationships [2]. The current pandemic, COVID-19, is caused by SARS-CoV-2 virus. This virus is a member of Coronaviridae family that is also responsible for other life threatening diseases such as SARS-CoV and MERS [3]. Insights from disease-gene networks have been useful to decipher the underlying molecular interactions with context-specific studies, including COVID-19 [4]. Evidence from multiple studies has shown that the severity of COVID-19 is enhanced by comorbid and life-threatening diseases, and patients with comorbidities have been affected disproportionately [5] [6]. Such patients are more susceptible to organ failure and mortality [6]. Patients with comorbidities such as carcinomas and malignant neoplasms have a higher risk of developing multiple organ failure leading to death [7]. According to a recent study on COVID-19 patients, the mortality rate was as high as 33% if afflicted with malignant neoplasms [8]. At 54.5%, the mortality rate associated with Alzheimer’s disease was even higher [9]. The molecular interplay involving overlapping relationships between COVID-19 and other diseases such as carcinomas, neoplasms and Alzheimer’s disease is not yet fully understood [10]. Given the global spread of COVID-19, it is vital to investigate biological processes and pathways that are common between COVID-19 and other diseases and comorbid conditions. Such advances would ultimately contribute towards better therapeutic outcomes.

Protein-protein interactions (PPIs) are generally modeled using network centrality approaches. Such approaches have been used to understand various disease mechanisms and comorbidities of SARS-CoV-2 in HIV and other immuno-compromised diseases [11]. In the current study, we constructed a disease-gene network which maps (human) genes associated with diseases as well as viral proteins of the Coronaviridae family.

The aim of the current study is to perform an integrated network analysis between diseases and genes to discover biological processes and pathways shared between COVID-19 and various diseases.

2 Materials and Methods

The methodology followed in this study uses network analysis tools for community detection. We constructed a disease-gene network for analysis to identify crucial genes followed by Louvain method based community detection to identify biological process and pathways affected by SARS-CoV-2 infection.

2.1 Disease-gene Network Construction

DisGeNET is a comprehensive database comprising of genes and variants associated with human diseases [12]. It integrates data from expert-curated repositories, GWAS databases, animal models and the scientific literature. The IntAct Coronavirus data set includes interaction data from the high-throughput multi-level proteomics studies on SARS-CoV-2, SARS and other members of the Coronaviridae family. It contains molecular interactions involving human and viral proteins from the Coronaviridae family, along with a certain proportion of other model organisms.

The disease-gene network upon which the analysis was performed was constructed using IntAct Coronavirus data set that is annotated through DisGeNET [12]. The IntAct Coronavirus data set was derived from the IntAct Molecular Interaction database which is a curated database for molecular interaction data [13]. For annotation through DisGeNET, only human proteins which interact with members of the Coronaviridae family were taken into account. The disease-gene network was constructed [14] as an undirected biparted graph $G (V_G, E_G)$, where the 11,301 nodes (V_G) represented 828 genes and 10,473 diseases, and the 70,210
edges \((E_G)\) represented disease-gene interactions. The network is a biparted graph as all edges connect the set of diseases with the set of human genes, with each edge representing an association from the IntAct Coronavirus data set.

2.2 Network Analysis

The degree of a node is defined as the number of edges connected to it. It is one of the measures of network connectivity and network centrality measures used in protein-protein interactions [15]. Nodes with high degree represent hubs. Figure 1 shows the number of nodes and their respective degrees. Functional gene enrichment analysis was performed to reveal critical pathways that could be targeted for clinical purposes.

![Figure 1](image1.png)

Figure 1: Very high degrees for only a fraction of nodes shows that only a smaller set of genes and diseases have high interactions with other nodes. For instance, VEGFA is known to be involved in 1899 diseases, while malignant neoplasms are associated with 459 genes. All the genes, taken from IntAct Coronavirus data set [12], are known to be associated with SARS-CoV-2 too.

2.3 Network Modularity

Modularity is defined as the fraction of edges that fall within the given groups minus the expected fraction if edges were distributed at random [16]. The modularity for undirected graphs lies in the range of \((-1/2, 1)\). A positive modularity indicates that the number of edges within a community exceeds the expected value by random chance. Modularity (Louvain method) of the disease-gene network was 0.28 among all the 22 classes signifying a positive modular structured network (see Figure 2).

![Figure 2](image2.png)

Figure 2: The network modularity of the disease-gene network constructed was 0.28 signifying a positive modular structured network. Shown here are sizes (number of nodes) of the 22 modularity classes obtained.
2.4 Community Detection

Community detection algorithms aim to identify the modules and, possibly, their hierarchical organization, based only on the information encoded in the graph topology \[17\]. The algorithms assign nodes to communities based on the hierarchical organization of the structure of the network \[18\]. Community detection was successfully applied in protein function annotation, identification of disease modules, disease gene prediction and studies on drug-targeted therapies \[19\] [20].

Community Detection Application and Service framework (CDAPS) is a framework that integrates identification, annotation, visualization and analysis of large-scale multi-scale network communities \[19\]. Genes underlying the same phenotype tend to interact with each other and form network communities \[21\]. Hierarchical community Decoding Framework (HiDeF) is one of the frameworks that proved its utility in identifying robust structures in omics data \[22\]. It is capable of analyzing the multiscale organization of diverse biological systems. Hence, we used HiDeF (through CDAPS) to gain insights into the hierarchical communities present in the disease-gene network.

Community detection was performed using the Louvain algorithm (in HiDeF framework) with a maximum resolution parameter of less than 50 and p-values representing the significance \[23\]. p-value is defined as the probability of discovering at least \(n \) genes with the annotation (GO:BP), in a community module with \(n \) genes.

The community persistence threshold was kept at 5 to remove the unstable clusters. This resulted in a hierarchical network with communities as nodes and their hierarchical relationships as edges. We identified significant communities to study network connectedness and the number of hierarchical modules of the overall network. For functional enrichment, the communities were based on the significance of overlap with gene sets from curated gene ontology databases. The Louvain method based on network modularity (\(Q \)) is defined as \[24\]:

\[
Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)
\]

where \(A_{ij} \) represents the edge weight between nodes \(i \) and \(j \); \(k_i \) and \(k_j \) are the sum of the weights of the edges attached to nodes \(i \) and \(j \) respectively; \(m \) is the sum of all of the edge weights in the graph; \(c_i \) and \(c_j \) are the communities of the nodes; and \(\delta \) is Kronecker delta function (\(\delta(x, y) = 1 \) if \(x = y \), 0 otherwise).

Algorithm 1: Louvain Algorithm for Community Detection

\begin{algorithm}
\begin{algorithmic}
\State G the initial network
\Repeat
\State Put each node of G in its own community;
\While {some nodes are moved}
\For {all node \(n \) of G}
\State place \(n \) in its neighboring community including its own which maximizes the gain in modularity
\EndFor
\EndWhile
\If {the new modularity is greater than the initial}
\State G = the network between communities of G;
\Else
\State Terminate
\EndIf
\Until
\end{algorithmic}
\end{algorithm}
2.5 Functional Pathway Enrichment Analysis

g:Profiler is a widely used tool to detect statistically significant gene ontology terms that highlight biological processes enriched in gene lists with known functional information [25]. Using g:Profiler, genes were mapped to known functional annotations to detect statistically significant enriched pathways for functional enrichment (see Table 2). This process allows over-representation analysis that highlights statistically significant pathways.

We selected all nodes with minimum Jaccard index value [26] for overlap greater than 0.05 and the range of p-value [27] upto a maximum of 0.00001. The information for functional enrichment is fetched from widely known databases such as KEGG database [28], WikiPathways [29], Reactome pathway database [30] and other widely known databases for gene ontology.

Table 1: List of high-degree nodes in the Disease-Gene network.

Rank	Gene	Degree
1	VEGFA	1899
2	BCL2	1456
3	CTNNB1	1368
4	ALB	1198
5	COX2	875
6	AGT	765
7	HLA-A	672
8	HMOX1	666
9	FGF2	635
10	COMT	622
11	MET	594
12	PLG	586
13	PCNA	581
14	PARP1	565
15	AIMP2	555
16	FBN1	552
17	HSPA4	550
18	GNAS	536
19	STAT1	531
20	AHSA1	526
21	TGFB1R2	502
22	HSPA1B	502
23	DNMT1	496
24	HSPA1A	458
25	DPP4	451

(a) High degree genes

Rank	Disease Name	Degree
1	Neoplasms (unclassified)	535
2	Malignant Neoplasms	459
3	Primary Malignant Neoplasms	444
4	Malignant Neoplasm of breast	372
5	Tumor cell Invasion	368
6	Breast Carcinoma	363
7	Liver Carcinoma	352
8	Carcinogenesis	347
9	Neoplasm metastasis	344
10	Colorectal carcinoma	309
11	Malignant neoplasm of prostrate	284
12	Prostrate carcinoma	276
13	Malignant neoplasm of lung	263
14	Carcinoma of lung	262
15	Primary malignant neoplasm of lung	257
16	Non-small cell Lung carcinoma	241
17	Tumor progression	235
18	Alzheimer’s Disease	226
19	Malignant neoplasm of stomach	221
20	Stomach carcinoma	209
21	Malignant neoplasm of colon	208
22	Glioblastoma	198
23	Glioblastoma Multiforme	195
24	Glioma	193
25	Melanoma	188

(b) High degree diseases

3 Results and Discussion

Treating patients with life threatening diseases during COVID-19 pandemic has been quite challenging. There is an urgent need for treatment strategies that utilize therapies involving immunosuppression. Therapeutic clinical applications used in various immunotherapies have led to the worsening of COVID-19 outcomes among patients suffering from cancer [31]. Acute respiratory distress syndrome (ARDS), pulmonary embolism, acute myocardial infarction and septic shock were the leading causes of death among cancer patients [32]. In developing adverse COVID-19 outcomes, cancer patients are at higher risk [33]. The clinical man-
Figure 3: Network representation of the most significant biological processes and pathways. Community detection (Louvain method) was executed using Hierarchical community Decoding Framework. The associations of functional enrichment are represented as a hierarchical network for community detection using over-represented analysis wherein the size of a node represents its significance in the Disease-Gene Network.
Table 2: List of significantly enriched biological processes and pathways along with their community size. The number of genes involved are less than 7 and the corresponding p-value threshold is less than 9.9E-06.

Rank	Gene Ontology / Biological process	P-value	-log(P-value)	Reference
1	Mitochondrial respiratory chain complex I assembly	8.71E-12	11.03998	GO:0032981
2	Ubiquitin E3 ligase	1.63E-10	9.787812	CORUM:622
3	Activin receptor complex	2.82E-10	9.549751	GO:0048179
4	Arylamine N-acetyltransferase activity	1.49E-09	8.826814	GO:0004060
5	Complex I biogenesis	1.49E-08	7.826814	REAC:R-HSA-6799198
6	FK506 binding	3.23E-08	7.490797	GO:005528
7	HDL assembly	5.21E-08	7.283162	REAC:R-HSA-8963896
8	Integrated Cancer Pathway	3.76E-07	6.424812	WP:WP1971
9	ACE Inhibitor Pathway	5.50E-07	6.258848	WP:WP554
10	Hypothesized Pathways in Pathogenesis of CVD	5.72E-07	6.242604	WP:WP5668
11	40S ribosomal subunit, cytoplasmic	7.42E-07	6.129596	CORUM:305
12	TIM complex, mitochondrial	8.17E-07	6.087778	CORUM:623
13	EIF3 complex	8.17E-07	6.087778	CORUM:4399
14	VCB complex	8.25E-07	6.083546	GO:0030891
15	Acetylation	1.09E-06	5.962574	REAC:R-HSA-156582
16	SARS-CoV-2 mitochondrial interactions	1.23E-06	5.910095	WP:WP5038
17	snRNA binding	1.30E-06	5.886057	GO:0017069
18	Complex I biogenesis	1.42E-06	5.847712	REAC:R-HSA-6799198
19	ribosomal small subunit assembly	1.50E-06	5.823909	GO:0000028
20	PLOD2-FKBP10 complex	1.65E-06	5.782516	CORUM:7000
21	negative regulation of extrinsic apoptotic signaling pathway	1.73E-06	5.761954	GO:1902042
22	CRD-mediated mRNA stability complex	2.06E-06	5.686133	GO:0070937
23	TIM complex, mitochondrial	2.06E-06	5.686133	CORUM:623
24	ncRNA catabolic process	2.47E-06	5.607303	GO:0034661
25	Acetylation	2.89E-06	5.539102	REAC:R-HSA-156582
26	angiotensin-mediated drinking behavior	3.28E-06	5.484126	GO:0003051
27	positive regulation of phospholipase C activity	4.44E-06	5.352617	GO:0010863
28	DCS complex	4.90E-06	5.309804	CORUM:1288
29	snRNA binding	6.58E-06	5.181774	GO:0017069
30	Ubiquinone and other terpenoid-quinone biosynthesis	6.71E-06	5.173277	KEGG:00130
31	metanephric glomerular capillary formation	7.31E-06	5.136083	GO:0072277
32	CCT complex	7.62E-06	5.118045	CORUM:126
33	heat acclimation	8.01E-06	5.096367	GO:0010286
34	Striated Muscle Contraction	8.70E-06	5.060481	REAC:R-HSA-390522
35	protein N-linked glycosylation via asparagine	9.63E-06	5.016574	GO:0018279
36	medium-chain-acyl-CoA dehydrogenase activity	9.84E-06	5.070005	GO:0070991
37	Interferon-stimulated gene factor 3 transcription complex	9.90E-06	5.043605	CORUM:60

Figure 4: List of significantly enriched biological pathways based on -log(p-value).
Rank	Gene Ontology / Biological process	\(G_c\)	FDR
1	Mitochondrial respiratory chain complex I assembly	7	9.60E-14
2	Ubiquitin E3 ligase	3	-
3	Activin receptor complex	4	5.84E-11
4	Arylamine N-acetyltransferase activity	3	-
5	Complex I biogenesis	4	1.62E-07
6	FK506 binding	3	0.0007
7	HDL assembly	3	0.0211
8	Integrated Cancer Pathway	4	2.16E-08
9	ACE Inhibitor Pathway	3	6.19E-07
10	Hypothesized Pathways in Pathogenesis of CVD	3	1.78E-06
11	40S ribosomal subunit, cytoplasmian	3	1.56E-05
12	TIM complex, mitochondrial	2	0.00034
13	EIF3 complex	2	0.0012
14	VCB complex	2	0.00019
15	Acetylation	2	6.81E-05
16	SARS-CoV-2 mitochondrial interactions	3	3.55E-06
17	snRNA binding	3	4.20E-05
18	Complex I biogenesis	3	5.37E-05
19	ribosomal small subunit assembly	3	1.37E-05
20	PLOD2-FKBP10 complex	2	-
21	Negative regulation of extrinsic apoptotic signaling	3	0.00012
22	CRD-mediated mRNA stability complex	2	0.00025
23	TIM complex, mitochondrial	2	0.00034
24	ncRNA catabolic process	3	6.73E-05
25	Acetylation	2	6.81E-05
26	angiotensin-mediated drinking behavior	2	0.00040
27	positive regulation of phospholipase C activity	3	0.00019
28	DCS complex	2	-
29	snRNA binding	3	4.20E-05
30	Ubiquinone and other terpenoid-quinone biosynthesis	2	0.00014
31	metanephric glomerular capillary formation	2	0.00067
32	CCT complex	2	0.00059
33	heat acclimation	2	-
34	Striated Muscle Contraction	3	1.47E-05
35	protein N-linked glycosylation via asparagine	3	5.61E-05
36	medium-chain-acyl-CoA dehydrogenase activity	2	0.00017
37	Interferon-stimulated gene factor 3 complex	2	-

Table 3: Functionally enriched biological processes validated using STRING along with the number of genes involved \((G_c)\) in the community and the False Discovery Rates (FDR) of each GO:BP node.
ifestations of neurological disorders, carcinomas and COVID-19 infected patients are to a certain extent interrelated with the modulation of immune system involving cytokine storm and immunosuppression [34]. It has been hypothesized that patients suffering from the above stated conditions being more vulnerable to viral infections due to compromised immune responses [35]. Therefore, it becomes critical to investigate as to why patients suffering from immunocompromised disorders are at higher risk, and to determine how SARS-CoV-2 infection affects the overall functionality of patients with comorbidities. We present the insights obtained from network analysis and functional enrichment studies on the disease-gene network.

3.1 Analysis of Disease-Gene Network

The disease-gene network was constructed as described in Section 2.1. This network is a biparted graph with edges connecting diseases to functionally connected (human) genes affected by COVID-19. The network comprised of 11,301 nodes (828 human genes and 10,473 diseases) and 70,210 edges.

As shown in Tables 1 (a-b), the top 25 diseases ranked by degree were either neoplasms or carcinomas. The lone exception to this list was Alzheimer's disease, a neurodegenerative disease that affects a large population.

The top 10 genes that were involved with most diseases were identified as VEGFA, BCL2, CTNNB1, ALB, COX2, AGT, HLA-A, HMOX1, FGT2 and COMT. The degrees were in the range 622 (COMT) to 1,899 (VEGFA). These results reflect the significance of hubs in the overall disease-gene network.

Escaping immune system mechanism is a prerequisite for tumor development in carcinomas. Angiogenic entities such as VEGFA play a significant role [36] in the development of immunosuppressive micro environment [37]. Consequently, strategies involving treatment with anti-VEGF drugs such as bevacizumab besides VEGFR-mediated signaling therapies may deliver favorable outcomes. Studies have already shown that such treatments improve anti-inflammatory responses and oxygen perfusion, culminating in the alleviation of clinical symptoms in severe COVID-19 patients [38].

3.2 Network Topology Community Detection

We performed community detection on the disease-gene network using Louvain algorithm [24] to obtain 1,052 significant communities. The p-value was kept as 0.00001.

3.3 Functional Enrichment Analysis

Our main focus was to highlight the critical processes affected by COVID-19 disease. Figure 3 shows the network representation of top-ranked biological processes and pathways obtained through the analysis. To identify significantly enriched biological processes and pathways, the corresponding p-value threshold was kept less than 9.9E-06. As listed in Table 2, we identified 37 such key biological processes and critical pathways affected by Coronaviridae family in the overall disease gene network with p-values ranging between 8.71E-12 to 9.90E-6.

As shown in Table 3, the maximum number of genes involved in all the identified communities was less than 7. The top 10 biological processes/critical pathways were associated with the mitochondrial respiratory chain I complex assembly, Ubiquitin E3 ligase, Activin receptor complex, Arylamine N-acetyltransferase activity, Complex I biogenesis, FK506 binding, HDL assembly, Integrated Cancer Pathway and ACE Inhibitor Pathway and Hypothesized Pathways in Pathogenesis of Cardiovascular Diseases (as shown in Figure. 4).

3.4 Validation

For validation, we correlated our findings with STRING database which is a comprehensively covers human proteins in the form of manually curated function protein interaction network [39]. As shown in Table 3, 31 out of all the 37 significant communities (84%) detected were validated (supplementary table attached) with least False Discovery Rate (FDR), demonstrating that the majority of highlighted GO:BP terms are clinically significant.
4 Conclusion

In the current study, we analyzed the disease-gene network linked to SARS-CoV-2 and other members of the Coronaviridae family. Our study strongly suggests that the patients with comorbid conditions, especially various carcinomas, neoplasms and Alzheimer’s disease, are the most vulnerable among all the disease classes infected by SARS-CoV-2.

Using network topology and community detection algorithm followed by functional enrichment, the top 10 potential genes that were involved with multiple diseases involving various carcinomas and neoplasms were identified as VEGFA, BCL2, CTNNB1, ALB, COX2, AGT, HLA-A, HMOX1, FGT2 and COMT. We report 37 key biological processes and disease pathways affected by Coronavirus infection in the disease gene network. As an outcome of our study, we make case for clinical investigations towards anti-VEGF therapies in patients suffering from various carcinomas and neoplasms infected with COVID-19.

References

[1] Xingyi Li, Wenkai Li, Min Zeng, Ruiqing Zheng, and Min Li. Network-based methods for predicting essential genes or proteins: a survey. *Briefings in bioinformatics*, 21(2):566–583, 2020.

[2] Xiujuan Wang, Natali Gulbahce, and Haiyuan Yu. Network-based methods for human disease gene prediction. *Briefings in functional genomics*, 10(5):280–293, 2011.

[3] Zeinab Abdelrahman, Mengyuan Li, and Xiaoqiang Wang. Comparative review of sars-cov-2, sars-cov, mers-cov, and influenza a respiratory viruses. *Frontiers in immunology*, page 2309, 2020.

[4] Xu Li, Jinchao Yu, Zhiming Zhang, Jing Ren, Alex E Peluffo, Wen Zhang, Yujie Zhao, Jiawei Wu, Kaijing Yan, Daniel Cohen, et al. Network bioinformatics analysis provides insight into drug repurposing for covid-19. *Medicine in Drug Discovery*, 10:100090, 2021.

[5] Zhi Zong, Yujun Wei, Jiang Ren, Long Zhang, and Fangfang Zhou. The intersection of covid-19 and cancer: signaling pathways and treatment implications. *Molecular Cancer*, 20(1):1–19, 2021.

[6] Adekunle Sanyaolu, Chuku Okorie, Aleksandra Marinkovic, Risha Patidar, Kokab Younis, Priyank Desai, Zaheeda Hosein, Inderbir Padda, Jasmine Mangat, and Mohsin Altaf. Comorbidity and its impact on patients with covid-19. *SN comprehensive clinical medicine*, 2(8):1069–1076, 2020.

[7] Puja Mehta, Daniel F McAuley, Michael Brown, Emilie Sanchez, Rachel S Tattersall, and Jessica J Manson. Covid-19: consider cytokine storm syndromes and immunosuppression. *The lancet*, 395(10229):1033–1034, 2020.

[8] Mariana Chavez-MacGregor, Xiudong Lei, Hui Zhao, Paul Scheet, and Sharon H Giordano. Evaluation of covid-19 mortality and adverse outcomes in us patients with or without cancer. *JAMA oncology*, 8(1):69–78, 2022.

[9] Jordi A Matias-Guiu, Vanesa Pytel, and Jorge Matías-Guiu. Death rate due to covid-19 in alzheimer’s disease and frontotemporal dementia. *Journal of Alzheimer’s Disease*, 78(2):537–541, 2020.

[10] Osama M Al-Quteimat and Amer Mustafa Amer. The impact of the covid-19 pandemic on cancer patients. *American journal of clinical oncology*, 2020.

[11] Juan Ambrosioni, José Luis Blanco, Juliana M Reyes-Urueña, Mary-Ann Davies, Omar Sued, Maria Angeles Marcos, Esteban Martínez, Silvia Bertagnolio, Jose Alcamí, Jose M Miro, et al. Overview of sars-cov-2 infection in adults living with hiv. *The lancet HIV*, 8(5):e294–e305, 2021.

[12] Janet Piñero, Juan Manuel Ramírez-Anguita, Josep Sañé-Pitarch, Francesco Ronzano, Emilio Centeno, Ferran Sanz, and Laura I Furlong. The disgenet knowledge platform for disease genomics: 2019 update. *Nucleic acids research*, 48(D1):D845–D855, 2021.
[13] Henning Hermjakob, Luisa Montecchi-Palazzi, Chris Lewington, Sugath Mudali, Samuel Kerrien, Sandra Orchard, Martin Vingron, Bernd Roechert, Peter Roepstorff, Alfonso Valencia, et al. Intact: an open source molecular interaction database. *Nucleic acids research*, 32(suppl_1):D452–D455, 2004.

[14] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome research*, 13(11):2498–2504, 2003.

[15] Hawoong Jeong, Sean P Mason, A-L Barabási, and Zoltan N Oltvai. Lethality and centrality in protein networks. *Nature*, 411(6833):41–42, 2001.

[16] Gaertler Marco Gorke Robert Hofer Martin Nikoloski Zoran Brandes Ulrik, Delling Daniel and Wagner Dorothea. On modularity clustering. *IEEE Transactions on Knowledge and Data Engineering*, 20(2):172–188, 2008.

[17] Santo Fortunato. Community detection in graphs. *Physics reports*, 486(3-5):75–174, 2010.

[18] Arian Ashourvan, Qawi K Telesford, Timothy Verstynen, Jean M Vettel, and Danielle S Bassett. Multi-scale detection of hierarchical community architecture in structural and functional brain networks. *PLoS One*, 14(5):e0215520, 2019.

[19] Akshat Singhal, Song Cao, Christopher Churas, Dexter Pratt, Santo Fortunato, Fan Zheng, and Trey Ideker. Multiscale community detection in cytoscape. *PLoS computational biology*, 16(10):e1008239, 2020.

[20] Natali Gulbahce and Sune Lehmann. The art of community detection. *BioEssays*, 30(10):934–938, 2008.

[21] Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network propagation: a universal amplifier of genetic associations. *Nature Reviews Genetics*, 18(9):551–562, 2017.

[22] Fan Zheng, She Zhang, Christopher Churas, Dexter Pratt, Ivet Bahar, and Trey Ideker. Hidef: identifying persistent structures in multiscale ‘omics data. *Genome biology*, 22(1):1–15, 2021.

[23] Pak C Sham and Shaun M Purcell. Statistical power and significance testing in large-scale genetic studies. *Nature Reviews Genetics*, 15(5):335–346, 2014.

[24] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008(10):P10008, 2008.

[25] Uku Raudvere, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, and Jaak Vilo. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic acids research*, 47(W1):W191–W198, 2019.

[26] Paul Jaccard. The distribution of the flora in the alpine zone. 1. *New phytologist*, 11(2):37–50, 1912.

[27] John D Storey and Robert Tibshirani. Statistical significance for genomewide studies. *Proceedings of the National Academy of Sciences*, 100(16):9440–9445, 2003.

[28] Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes and genomes. *Nucleic acids research*, 28(1):27–30, 2000.

[29] Alexander R Pico, Thomas Kelder, Martijn P Van Iersel, Kristina Hanspers, Bruce R Conklin, and Chris Evelo. Wikipathways: pathway editing for the people. *PLoS biology*, 6(7):e184, 2008.

[30] G Joshi-Tope, Marc Gillespie, Imre Vastrik, Peter D’Eustachio, Esther Schmidt, Bernard de Bono, Bijay Jassal, GR Gopinath, GR Wu, Lisa Matthews, et al. Reactome: a knowledgebase of biological pathways. *Nucleic acids research*, 33(suppl_1):D428–D432, 2005.
[31] Lisa Derosa, Cléa Melenotte, Franck Griscelli, Bertrand Gachot, Aurélien Marabelle, Guido Kroemer, and Laurence Zitvogel. The immuno-oncological challenge of covid-19. *Nature Cancer*, 1(10):946–964, 2020.

[32] A Addeo and A Friedlaender. Cancer and covid-19: Unmasking their ties. *Cancer treatment reviews*, 88:102041, 2020.

[33] Casmir Turnquist, Brid M Ryan, Izumi Horikawa, Brent T Harris, and Curtis C Harris. Cytokine storms in cancer and covid-19. *Cancer Cell*, 38(5):598–601, 2020.

[34] Ziad Bakouny, Jessica E Hawley, Toni K Choueiri, Solange Peters, Brian I Rini, Jeremy L Warner, and Corrie A Painter. Covid-19 and cancer: current challenges and perspectives. *Cancer Cell*, 2020.

[35] Luigi Ferini-Strambi and Maria Salsone. Covid-19 and neurological disorders: are neurodegenerative or neuroimmunological diseases more vulnerable? *Journal of neurology*, 268(2):409–419, 2021.

[36] Robert D Schreiber, Lloyd J Old, and Mark J Smyth. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. *Science*, 331(6024):1565–1570, 2011.

[37] Thibault Voron, Orianne Colussi, Elie Marcheateau, Simon Pernot, Mevyn Nizard, Anne-Laure Pointet, Sabrina Latreche, Sonia Bergaya, Nadine Benhamouda, Corinne Tanchot, et al. Vegf-a modulates expression of inhibitory checkpoints on cd8+ t cells in tumors. *Journal of Experimental Medicine*, 212(2):139–148, 2015.

[38] Jiaojiao Pang, Feng Xu, Gianmarco Aondio, Yu Li, Alberto Fumagalli, Ming Lu, Giuseppe Valmadre, Jie Wei, Yuan Bian, Margherita Canesi, et al. Efficacy and tolerability of bevacizumab in patients with severe covid-19. *Nature communications*, 12(1):1–10, 2021.

[39] Damian Szklarczyk, Annika L Gable, Katerina C Nastou, David Lyon, Rebecca Kirsch, Sampo Pyysalo, Nadezhda T Doncheva, Marc Legeay, Tao Fang, Peer Bork, et al. The string database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic acids research*, 49(D1):D605–D612, 2021.

[40] Christopher Paluch, Ana Mafalda Santos, Consuelo Anzilotti, Richard J Cornall, and Simon J Davis. Immune checkpoints as therapeutic targets in autoimmunity. *Frontiers in immunology*, page 2306, 2018.

[41] Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal, Joseph Loscalzo, and Albert-László Barabási. Uncovering disease-disease relationships through the incomplete interactome. *Science*, 347(6224):1257601, 2015.

[42] Thomas F Schulz. Cancer and viral infections in immunocompromised individuals. *International journal of cancer*, 125(8):1755–1763, 2009.

[43] Mini Kamboj and Kent A Sepkowitz. Nosocomial infections in patients with cancer. *The Lancet Oncology*, 10(6):589–597, 2009.

[44] Amir Hossein Mansourabadi, Mona Sadeghalvad, Hamid-Reza Mohammadi-Motlagh, and Nima Rezaei. The immune system as a target for therapy of sars-cov-2: a systematic review of the current immunotherapies for covid-19. *Life sciences*, page 118185, 2020.

[45] Livia Onofrio, Michele Caraglia, Gaetano Facchini, Vincenzo Margherita, Sabino De Placido, and Carlo Buonerba. Toll-like receptors and covid-19: a two-faced story with an exciting ending. *Future science OA*, 6(8):FSO605, 2020.

[46] Sara Rahiminejad, Mano R Maurya, and Shankar Subramaniam. Topological and functional comparison of community detection algorithms in biological networks. *BMC bioinformatics*, 20(1):1–25, 2019.