Metabolite Profiling during Fermentation of Makgeolli by the Wild Yeast Strain Saccharomyces cerevisiae Y98-5

Hye Ryun Kim*, Jae-Ho Kim', Byung Hak Ahn' and Dong-Hoon Bai’

1Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam 463-746, Korea
2Department of Food Engineering, Dankook University, Cheonan 330-714, Korea

Abstract Makgeolli is a traditional Korean alcoholic beverage. The flavor of makgeolli is primarily determined by metabolic products such as free sugars, amino acids, organic acids, and aromatic compounds, which are produced during the fermentation of raw materials by molds and yeasts present in nuruk, a Korean fermentation starter. In this study, makgeolli was brewed using the wild yeast strain Saccharomyces cerevisiae Y98-5, and temporal changes in the metabolites during fermentation were analyzed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. The resultant data were analyzed by partial least squares-discriminant analysis (PLS-DA). Various metabolites, including amino acids, organic acids, sugar alcohols, small peptides, and nucleosides, were obviously altered by increasing the fermentation period. Changes in these metabolites allowed us to distinguish among makgeolli samples with different fermentation periods (1, 2, 3, 6, 7, and 8 days) on a PLS-DA score plot. In the makgeolli brewed in this study, the amounts of tyrosine (463.13 μg/mL) and leucine (362.77 μg/mL) were high. Therefore, our results indicate that monitoring the changes in metabolites during makgeolli fermentation might be important for brewing makgeolli with good nutritional quality.

Keywords Fermentation, Makgeolli, Metabolite, Saccharomyces cerevisiae

Makgeolli is a traditional Korean alcoholic beverage. It is brewed from rice and nuruk (a Korean fermentation starter) and roughly filtered before serving. Makgeolli is mainly consumed by the general public [1]. In the case of makgeolli, the entire fermented material is homogenized and consumed as it stands, unlike alcoholic beverages that are more finely filtered (e.g., cheongju or yakju). Thus, makgeolli includes the vitamin B group, essential amino acids, glutathione, as well as proteins, oligosaccharides, and live yeast. Accordingly, it has nutritional characteristics that are different from those of other alcoholic beverages [2]. With the recent increase in the consumption of makgeolli, studies on the functional effects and flavor components of makgeolli have also increased. For example, it has been reported that makgeolli has anticancer effects [3, 4], effects on blood circulation and lipids [5], antihypertensive activity [6, 7], fibrinolytic and superoxide dismutase-like activity [8], and antibacterial/antioxidant activity [9]. Studies on the volatile flavor components of takju (a type of makgeolli) have shown that they depend on the type of yeast [10] and the raw material [11]. In addition, many studies have focused on the strains used for makgeolli fermentation. These studies include those conducted for the selection of koji (Aspergillus spp.) and yeast for the improvement of fermentation characteristics and cheongju quality [12]; isolation and identification of a yeast strain that produces abundant glutathione (a biologically active substance) and determination of the optimal production conditions [13]; screening of brewing yeasts and saccharifying molds for foxtail millet wine-making and examination of the brewing characteristics of the selected strains [14, 15]; determination of changes in microflora during fermentation of takju and yakju [16]; isolation and identification of yeast strains with high viability that produce a high concentration of ethanol [17]; isolation and characterization of ethanol-tolerant yeast [18]; and finally, research on the production of biologically active substances such as an antihypertensive angiotensin-
converting-enzyme inhibitor [19] and an antidepressant β-
secreasase inhibitor [20] from Saccharomyces cerevisiae. However, there has been no analysis of the metabolite profile during the fermentation of makgeolli.

Therefore, the aim of this study was to analyze changes in the metabolite profile during fermentation of makgeolli brewed with koji and yeast isolated from traditional Korean nuruk.

MATERIALS AND METHODS

Strains and chemicals. Yeasts isolated from nuruk were used in this study. Saccharomyces cerevisiae Y98-5 was collected from the Goeji area of Chungnam province [21]. Koji (saccharogenic power [sp] 85) was purchased from Seoul Jangsoo, Inc. (Jincheon, Korea). The amino acids standard and organic acids were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). All reagents used for ultrahigh-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF MS) analyses were of high-performance liquid chromatography grade.

Makgeolli brewing. The first brewing (yeast, 0.02% and koji [sp 85]: distilled water = 38:62) was performed to reach 36% of the total makgeolli volume and was followed by fermentation at 25°C for 2 days. The second brewing (steamed non-glutinous rice: water = 32:68; 64% of the total makgeolli volume) was then performed, followed by fermentation at 25°C for 8 days. After compression, makgeolli was prepared by filtration through a 120-mesh filter. Makgeolli brewing was performed in triplicate.

Chemical analysis. The concentration of soluble solids was measured with a handheld refractometer (ATAGO Pocket PAL-1; ATAGO Co. Ltd., Tokyo, Japan) and recorded in Brix units (% sucrose). The pH was measured with a model D-51 pH meter (HORIBA, Kyoto, Japan).

Metabolite extraction. To extract metabolites for UHPLC-Q-TOF MS analysis, 0.9 mL of 50% MeOH (internal standard reserpine, 10 ppm) was added to 0.1 mL of makgeolli; after vortexing for 5 min, the mixture was kept at 4°C for 16 hr. Next, centrifugation was performed at 14,000 rpm at 4°C for 20 min; the supernatant was then collected and the metabolites were extracted.

Metabolomic analysis. For analysis of the metabolome, we used an Agilent (Santa Clara, CA, USA) UHPLC-Q-TOF MS system (UHPLC, Agilent 1290 Infinity; MS, Agilent 6520 with Jet Stream Technology) controlled by MassHunter Workstation Data Acquisition software v. B. 05.00 (Agilent). Using the ESI + Jet Stream method, in the positive ionization mode, the gas temperature was set at 325°C, the drying gas (N₂) flow at 8 L/mL, the nebulizer pressure at 30 psi, the capillary voltage at 4,000 V, the skimmer voltage at 65 V, and the fragmentor voltage at 70 V. In the negative ionization mode, the gas temperature was set at 325°C, the drying gas flow at 8 L/mL, the nebulizer pressure at 30 psi, the capillary voltage at 3,500 V, the skimmer voltage at 65 V, and the fragmentor voltage at 50 V. For the mobile phase of UHPLC, a gradient of 5 mM ammonium acetate in water (A) and 0.1% formic acid in acetonitrile (B) was used. Using a ZORBAX HILIC Plus (2.1 × 100 mm, 3.5 µm; Agilent) column, the analysis was performed at a flow rate of 0.3 mL/min and a column temperature of 30°C. The data were aligned and normalized using Mass Profiler Professional (Agilent), and multivariate statistical analysis was performed using SIMCA-P+ 12.0.1 (Umetrics, Umea, Sweden).

RESULTS AND DISCUSSION

Changes in chemical properties during fermentation. Makgeolli was brewed using S. cerevisiae Y98-5 (isolated from nuruk) and koji as fermenting agents. Koji consists of non-glutinous rice inoculated with Aspergillus species. Fig. 1 shows the changes in the soluble solids content and pH during fermentation of the makgeolli. The pH was 3.08 on the first day of fermentation and then gradually increased, reaching 3.7 upon the completion of fermentation. The pH was similar to that of makgeolli brewed using koji made from different rice varieties, as reported in Kwon et al. [22]. Furthermore, it was similar to the pH of nuruk mash prepared using Aspergillus oryzae and Aspergillus kawachii, as reported in Han et al. [23].

The soluble solids content was 4.3% during the early stage of fermentation. It then increased, reaching a maximum value (10.6%) on the seventh day of fermentation, before decreasing to 10.0% upon the completion of fermentation. The soluble solids content reflects the amount of sugar remaining after two processes: amylolysis of rice starch by the koji mold at the early stage of fermentation, and use of the resulting sugar as a carbon source by S. cerevisiae Y98-5 for propagation and alcohol fermentation (final ethanol content was 15%). In the case of the makgeolli brewed with

Fig. 1. Changes of soluble solids content (●) and pH (◆) during fermentation of makgeolli brewed with Saccharomyces cerevisiae Y98-5. Each data point represents the mean ± SD (n = 3).
S. cerevisiae Y98-5 and koji as fermenting agents, abnormal fermentation did not occur. The pH was 3.7 and the soluble solids content was 10% upon the completion of fermentation. During the making of makgeolli by dilution with water after the completion of fermentation, a pH and soluble solids content suitable for drinking were maintained.

Fig. 2. Total ion chromatograms of makgeolli brewed with *Saccharomyces cerevisiae* Y98-5, an amino acids standard, and koji. IS, internal standard; A, adenine; G, guanine.

Fig. 3. Electron ionization mass spectra of [M + H]\(^+\) ions of adenine, guanine, hypoxanthine, xanthine, arabitol, and erythritol at a collision energy of 70 eV.
Metabolomic profiling of makgeolli during fermentation.

The metabolome of the *S. cerevisiae* Y98-5 makgeolli during fermentation was analyzed using UHPLC-Q-TOF MS, and 296 metabolites were detected. Most metabolites had a mass value less than 800. Fig. 2 shows the total ion chromatogram (TIC) for the metabolome on the eighth day of fermentation as well as TICs for the koji and amino acids standard. The TIC for the makgeolli on the eighth day of fermentation was broadly divided into peaks between 1 and 2.5 min, a peak at 2.9 min (internal standard), peaks between 3.5 and 6.5 min, a peak at 7.2 min, and a peak at 9.87 min. The peaks between 1 and 2.5 min were identified as adenine, guanine, hypoxanthine, and xanthine, which originated from the yeast cells inoculated during the brewing of makgeolli and the fungus in the koji, and as arabitol and erythritol, which are sugar alcohols (Fig. 3). These peaks increased in the makgeolli TIC compared with the koji TIC. The peaks between 3.5 and 6.5 min were identified as dipeptides, such as Ser-Val and Glu-Val, and tripeptides, such as Phe-Arg-Asn and Val-Arg-Val (Fig. 4). The pattern of peaks between 4.2 and 8.2 min was similar to the peak pattern of the amino acids standard. The results indicated the presence of 16 amino acids and the nonprotein amino acid γ-amino-n-butyric acid (GABA). The peak observed for the makgeolli at 9.87 min was due to fermentation and was attributed to an [M + H]$^+$ ion at *m/z* 257.1027.

A partial least squares-discriminant analysis (PLS-DA) of the metabolome of Y98-5 makgeolli during the fermentation period was performed using SIMCA-P+. As shown in Fig. 5, the makgeolli samples taken at different fermentation times were clearly distinguishable in the score plot generated by combining PC1 (30.15% of the total variance) with PC2 (18.40% of the total variance). Based on PC1, the first-, second-, and third-day fermentation samples were positioned on the right side of the plot and the sixth-, seventh-, and eighth-day fermentation samples were positioned on the left side, indicating that the early and late stages of fermentation were distinct. Based on PC2, the first-day fermentation sample was positioned on the lower side of the pot and the second- and third-day fermentation samples were positioned on the upper side, indicating that there were differences between days even within the early stage of fermentation.

The products of mixed-acid fermentation include mostly ethanol, acetic acid, lactic acid, succinic acid, and formic acid. If neutral fermentation occurs, 2,3-butanediol is produced from pyruvate through acetoin. 2,3-Butanediol is mostly produced by bacteria such as *Bacillus* and *Enterobacter* [24]. In this experiment, 2,3-butanediol was not detected.

Quantitative analyses of makgeolli metabolites during fermentation.

Table 1 summarizes the major metabolites that were identified during fermentation of makgeolli by using UHPLC-Q-TOF MS in the positive and negative ion modes. Sixteen amino acids (including phenylalanine), the nonprotein amino acid GABA, and four organic acids (including citric acid) were identified. The quantitative analysis of the identified materials indicated that the contents tended to increase as the fermentation period increased (Table 2). It has been reported that amino acids are produced by the enzymatic action of microorganisms during fermentation of the protein contained in rice, the major raw material in makgeolli production, and that these

Fig. 4. Electron ionization mass spectra of [M + H]$^+$, [M + Na]$^+$, and [M + K]$^+$ ions of Ser-Val, Glu-Val, Phe-Arg-Asn, and Val-Arg-Val.
Fig. 5. Partial least squares-discriminant analysis score plot derived from ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry profiles of *makgeolli* brewed with *Saccharomyces cerevisiae* Y98-5 during the fermentation period (■, 1; ●, 2; ◆, 3; □, 6; ○, 7; and ▲, 8 days). PC1 and PC2 account for 30.15% and 18.40% of the variance, respectively.

Table 1. Identification of major metabolites of Y98-5 *makgeolli* by UHPLC-Q-TOF MS in the positive and negative ion modes

No.	RT	Identity	Formular [M + H]	Exact mass	Actual mass	Mass error (ppm)	MS fragment (ESI)
1	4.323	Phenylalanine	C9H12NO2	166.0863	166.0867	2.408	120.08, 131.05
2	4.418	Tyrosine	C9H12NO3	182.0812	182.0825	7.139	136.07, 165.05
3	4.549	Leucine	C6H14NO2	132.1019	132.102	0.757	86.09
4	4.648	Isoleucine	C6H14NO2	132.1019	132.1017	–1.514	86.09
5	4.692	Methionine	C5H12NO2S	150.0583	150.0583	0.00	104.05, 132.10
6	5.039	γ-Amino-n-butyric acid	C4H10NO2	104.0706	104.0710	3.844	86.06, 87.04
7	5.109	Valine	C5H12NO2	118.0863	118.0859	–3.387	72.08
8	5.303	Glutamic acid	C5H10N5O4	148.0604	148.0601	4.052	84.04, 102.05, 130.05
9	5.415	Threonine	C6H15N2O2	120.0655	120.0655	0.00	74.06, 102.05
10	5.55	Aspartic acid	C4H3NO4	134.0448	134.0448	0.00	88.03, 116.03
11	5.572	Serine	C3H8NO3	106.0499	106.0496	–2.829	60.04, 88.04
12	5.714	Alanine	C3H8NO2	90.055	90.0544	–0.663	44.049
13	5.955	Glycine	C2H6N2O2	76.0393	76.0379	–18.412	48.05, 59.06
14	6.047	Proline	C5H10N2O2	116.0706	116.0703	–2.585	70.06
15	8.457	Arginine	C6H14N2O2S	175.119	175.1199	5.139	156.07
16	8.872	Histidine	C6H13N2O2	156.0768	156.0775	4.485	110.07
17	9.099	Lysine	C6H15N2O2	147.1128	147.1127	2.039	121.05, 130.08
18	7.324	Malic acid	C4H5O4	133.0142	133.0139	–2.255	75.0, 87.0, 114.9
19	7.638	Lactic acid	C3H5O3	89.0244	89.0248	4.493	44.99, 87.00
20	9.730	Citric acid	C6H7O7	191.0197	191.0188	–4.712	68.99, 112.98
21	11.359	Succinic acid	C4H5O4	117.0193	117.0192	–0.855	68.99, 112.98

UHPLC-Q-TOF MS, ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry; ESI, electrospray ionization.
constituents affect the taste of makgeolli [25]. It is known that makgeolli must contain free amino acids that produce a balance of sour, savory, sweet, and bitter tastes, and that higher amino acid contents are better [26]. At the early stage of Y98-5 makgeolli fermentation, the major amino acids were leucine, glutamic acid, tyrosine, and phenylalanine. Upon the completion of fermentation, the contents of alanine, proline, and glycine had increased, and these amino acids were identified as major amino acids of the makgeolli, along with the major amino acids identified at the early stage of fermentation. Although the major amino acids identified upon the completion of Y98-5 makgeolli fermentation included tyrosine and leucine, these amino acids were not among the major amino acids identified in yakju by Lee [27] (arginine, alanine, glutamic acid, serine, and glycine) or by Cheong et al. [28] (alanine, proline, phenylalanine, and glutamic acid). Tyrosine is the starting material for the production of neurotransmitters, including dopamine, and promotes fat metabolism, was 90.85 μg/mL. A low amount of GABA, a primary inhibitory neurotransmitter in the brain [31], was observed during makgeolli fermentation. The highest amount, 15.45 μg/mL, was observed on the seventh day of fermentation.

Organic acids are major constituents that contribute to the taste of fermented alcoholic beverages such as sake and wine [32, 33]. The major organic acid of Y98-5 makgeolli was citric acid. The maximum amount of citric acid, which has a fresh sour taste, was 5.088 mg/mL on the seventh day of fermentation. Lactic, succinic, and malic acids

Metabolite (μg/mL)	1 day	2 days	3 days	6 days	7 days	8 days
Phenylalanine	112.04 ± 0.36	167.64 ± 2.75	203.95 ± 1.56	289.63 ± 7.07	310.44 ± 7.75	323.83 ± 4.86
Tyrosine	120.93 ± 1.52	195.01 ± 4.08	243.14 ± 1.69	327.75 ± 11.00	344.31 ± 6.75	362.77 ± 7.48
Leucine	182.98 ± 3.00	184.03 ± 4.76	229.01 ± 3.35	392.45 ± 12.85	431.21 ± 4.21	463.13 ± 9.46
Isoleucine	49.73 ± 2.74	49.63 ± 1.81	55.10 ± 3.38	76.96 ± 1.95	81.89 ± 1.73	86.47 ± 1.48
Methionine	38.45 ± 0.34	40.63 ± 0.45	43.13 ± 0.42	57.55 ± 2.06	83.82 ± 1.70	90.85 ± 1.89
γ-Amino-n-butyric acid	12.36 ± 0.37	13.59 ± 0.88	11.41 ± 0.79	14.77 ± 0.73	15.45 ± 1.38	14.9 ± 0.27
Valine	45.43 ± 0.18	53.85 ± 0.20	60.72 ± 0.53	92.74 ± 1.28	103.69 ± 2.45	106.67 ± 1.77
Glutamic acid	152.33 ± 3.46	184.80 ± 6.57	229.50 ± 3.89	282.43 ± 9.25	298.79 ± 5.94	309.3 ± 7.48
Glutamic acid	40.02 ± 0.26	43.00 ± 0.78	44.48 ± 0.30	62.71 ± 1.50	66.70 ± 1.09	69.66 ± 1.99
Aspartic acid	58.62 ± 3.03	55.54 ± 1.23	67.56 ± 1.13	96.76 ± 4.22	105.43 ± 1.32	113.45 ± 3.93
Serine	45.01 ± 0.98	51.27 ± 6.97	54.69 ± 2.78	92.00 ± 3.28	92.03 ± 13.30	104.19 ± 4.08
Alanine	94.59 ± 1.04	107.16 ± 3.07	134.81 ± 2.15	189.08 ± 3.64	196.72 ± 2.03	193.49 ± 3.01
Glycine	72.22 ± 0.08	115.76 ± 0.68	122.01 ± 2.44	150.04 ± 5.38	152.08 ± 2.48	157.4 ± 1.37
Proline	67.82 ± 1.33	140.63 ± 3.89	179.22 ± 1.63	227.40 ± 7.40	242.98 ± 7.26	257.62 ± 4.53
Arginine	4.59 ± 0.16	6.10 ± 0.05	5.83 ± 0.77	9.76 ± 1.63	129.80 ± 11.41	129.80 ± 11.41
Histidine	90.58 ± 9.63	106.37 ± 10.44	97.67 ± 3.18	119.78 ± 3.72	126.96 ± 1.71	126.96 ± 1.71
Lysine	30.13 ± 7.77	51.89 ± 3.53	60.47 ± 5.01	99.86 ± 7.09	127.04 ± 2.84	128.79 ± 5.46
Malic acid	49.4 ± 1.2	93.3 ± 8.6	232.3 ± 6.0	494.8 ± 27.1	514.1 ± 24.1	529.06 ± 21.1
Lactic acid	74.4 ± 4.5	268.5 ± 6.3	535.9 ± 11.7	717.5 ± 45.4	722.7 ± 59.6	730.8 ± 41.1
Citric acid	429.8 ± 12.2	504.6 ± 120.5	520.3 ± 40.3	5159 ± 76.1	5088 ± 54.8	5070 ± 66.3
Succinic acid	116.1 ± 4.3	360.4 ± 13.7	515.4 ± 6.6	628.9 ± 40.3	648.4 ± 32.1	679.3 ± 17.8

UHPLC-Q-TOF MS, ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry.
(529–730 μg/mL) were the next most abundant organic acids, in that order; the concentrations of all three tended to increase until the eighth day of fermentation.

In conclusion, makgeolli brewed with S. cerevisiae Y98-5 (isolated from traditional Korean nuruk) and koji, the amino acid, GABA, and organic acid contents increased during the fermentation period, and the citric acid content reached a maximum on the seventh day of fermentation. The amounts of tyrosine, which is involved in stimulating and invigorating the brain, and leucine, which functions in blood sugar regulation, were high. For the metabolomic study of traditional alcoholic beverages, more metabolite libraries are needed. Although wine yeasts and baker’s yeasts are currently imported from foreign countries and used for the brewing of makgeolli, the above results demonstrate the nutritional superiority of a domestic yeast isolated from traditional Korean nuruk. The results of this study could form the basis for the invigoration of domestic yeast.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Korean Traditional Food Globalization Research and Development Projects (E01444500-01) of the Korea Food Research Institute.

REFERENCES

1. Lee YS, Shin JS, Song YH, Moon SH, Rhee SY. The trend analysis of traditional makgeolli-brewing technique. Korean J Agric Hist 2010;9:99-111.
2. Lee JW, Shin JY. Quality characteristics of makgeolli during freezing storage. Food Eng Prog 2010;14:328-34.
3. Shin MO, Kang DY, Kim MH, Bae SJ. Effect of growth inhibition and quinine reductase activity stimulation of makgeolly fractions in various cancer cells. J Korean Soc Food Sci Nutr 2008;37:288-93.
4. Lee SJ, Shin WC. Physiological functionalities of makgeolli (Korean Paradox). Food Sci Ind 2011;4:2-11.
5. Shin MO, Kim MH, Bae SJ. The effect of makgeolli on blood flow, serum lipid improvement and inhibition of ACE in vitro. J Life Sci 2010;20:710-6.
6. Kim JH, Jeong SC, Kim NM, Lee JS. Effect of Indian millet koji and legumes on the quality and angiotensin I-converting enzyme inhibitory activity of Korean traditional rice wine. Korean J Food Sci Technol 2003;35:733-7.
7. Kang MG, Kim JH, Ahn BH, Lee JS. Characterization of new antihypertensive angiotensin I-converting enzyme inhibitory peptides from Korean traditional rice wine. J Microbiol Biotechnol 2012;22:339-42.
8. Kim JH, Lee DH, Choi SY, Lee JS. Characterization of physiological functionalities in Korean traditional liquors. Korean J Food Sci Technol 2002;34:118-22.
9. Ryu HY, Kum EJ, Bae KH, Kim YK, Kwon JS, Sohn HY. Evaluation for the antimicrobial, antioxidant and anti-thrombosis activity of Korean traditional liquors. Korean J Microbiol Biotechnol 2007;35:238-44.
10. Lee H, Lee TS, Noh BS. Volatile flavor components in the mashes of takju prepared using different yeasts. Korean J Food Sci Technol 2007;39:593-9.
11. Lee TS, Choi JY. Volatile flavor components in takju fermented with mashed glutinous rice and barley rice. Korean J Food Sci Technol 1998;30:638-43.
12. Shin CS, Lee SK, Park YI. Characteristics of the yeast strains which isolated for improvement of choungju quality. Agric Chem Biotechnol 1996;39:16-9.
13. Park JC, Ok M, Cha JY, Cho YS. Isolation and identification of the high-glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. J Korean Soc Agric Chem Biotechnol 2003;46:348-52.
14. Kim JY, Koh JS. Screening of brewing yeasts and saccharifying molds for foxtail millet-wine making. J Korean Soc Appl Biol Chem 2004;47:78-84.
15. Kim JY, Koh JS. Fermentation characteristics of Jeju foxtail millet-wine by isolated alcoholic yeast and saccharifying mold. J Korean Soc Appl Biol Chem 2004;47:85-91.
16. Seo MY, Lee JK, Ahn BH, Cha SK. The changes of microflora during the fermentation of takju and yakju. Korean J Food Sci Technol 2005;37:61-6.
17. Kang TY, Oh GH, Kim K. Isolation and identification of yeast strains producing high concentration of ethanol with high viability. Korean J Microbiol Biotechnol 2000;28:309-15.
18. Seo MJ, Ryu SR. Screening and characteristics of ethanol tolerant strain Saccharomyces cerevisiae SE211. Korean J Microbiol Biotechnol 2002;30:216-22.
19. Kim JH, Lee DH, Jeong SC, Chung KS, Lee JS. Characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Saccharomyces cerevisiae. J Microbiol Biotechnol 2004;14:1318-23.
20. Lee DH, Lee DH, Lee JS. Characterization of new antidementia β-secretase inhibitory peptide from Saccharomyces cerevisiae. Enzyme Microb Technol 2007;42:83-8.
21. Kim HR, Kim JH, Bai DH, Ahn BH. Feasibility of brewing makgeolli using Pichia anomala Y197-13, a non-Saccharomyces cerevisiae. J Microbiol Biotechnol 2012;22:1749-57.
22. Kwon YH, Lee AR, Kim HR, Kim JH, Ahn BH. Quality properties of makgeolli brewed with various rice and koji. Korean J Food Sci Technol 2013;45:70-6.
23. Han EH, Lee TS, Noh BS, Lee DS. Quality characteristics in mash of takju prepared by using different nuruk during fermentation. Korean J Food Sci Technol 1997;29:555-62.
24. Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 2014;32:492-503.
25. Park JH, Yeo SH, Jeong ST, Choi HS, Jeon JA, Choi JH. Characteristics of byeok-hyang-ju made by various processing methods originated from ancient documents. Korean J Food Preserv 2010;17:826-34.
26. Shon SK, Rho YH, Kim HJ, Bae SM. Takju brewing of uncooked rice starch using Rhizopus koji. Korean J Appl Microbiol Biotechnol 1990;18:506-10.
27. Lee J. Quality characteristics flavor components of takju prepared by different raw materials [dissertation]. Seoul: Seoul Women’s University; 1982.
28. Cheong C, Rhee IS, Lee SK, Kang SA. A study on the qualitative properties of traditional sake using allbanggae. J Korean Soc Food Sci Nutr 2008;37:784-91.
29. Ardö Y. Flavour formation by amino acid catabolism. Biotechnol Adv 2006;24:238-42.
30. Park CW, Jang SY, Park EJ, Yeo SH, Jeong YJ. Quality characteristics of rice makgeolli prepared by mashing types. Korean J Food Sci Technol 2012;44:207-15.
31. Harris-Warrick R. Synaptic chemistry in single neurons: GABA is identified as an inhibitory neurotransmitter. J Neurophysiol 2005;93:3029-31.
32. Kodama S, Yamamoto A, Matsunaga A, Matsui K, Nakagomi K, Hayakawa K. Behaviors of D- and L-lactic acids during the brewing process of sake (Japanese rice wine). J Agric Food Chem 2002;50:767-70.
33. Ding MY, Suzuki Y, Koizumi H. Simultaneous determination of organic acids, inorganic anions and cations in beverages by ion chromatography with a mixed-bed stationary phase of anion and cation exchangers. Analyst 1995;120:1773-7.