Sarmatian and Pannonian mollusks from Pécs-Danitzpuszta, southern Hungary: a unique local faunal succession

BOTKA, Dániel1,2, ROFRICS, Nóra3, KATONA, Lajos4, MAGYAR, Imre5,6
1MOL Hungarian Oil and Gas Plc., Laboratories MOL, 1039 Budapest, Szent István utca 14, Hungary
2ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Palaeontology, 1117 Budapest, Pázmány Péter sétány 1/c; botkadani@gmail.com, ORCID:0000-0002-6627-4640
37400 Kaposvár, Vasút köz 5, Hungary; nora.rofrics@gmail.com
4Hungarian Natural History Museum - BTM, 8420 Zirc, Rákóczi tér 3-5, Hungary; finci99@freemail.hu
51117 Budapest, Október huszonhatodik u. 18, Hungary; immagyar@mol.hu, ORCID: 0000-0002-9236-0040
6MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary

Szarmata és pannoniai puhatestű faunák különleges helyi sorrendje Pécs-Danitzpusztról

Összefoglalás

A pannoniai puhatestűek közel két évszázados kutatása során kiderült, hogy a különböző faunák földrajzi elterjedése szabályos mintázatot mutat. Mivel a Pannon-tó medre oldalirányban épülő üledékcsomagokkal töltődött fel, a medencének a behordástól távoli részén kondenzált üledékképződés folyt, a peremektől a medence közepe felé pedig egyre fia- talabb sekélyvízi üledékek rakódtak le. A medencéből kiemelkedő aljzati magaslatok környékén, amennyiben ezek üledékforrásként szolgáltak, megtörik ez a szabályos trend. A késő miocén korai szakaszában a Mecsek is ilyen kiemelkedés volt. A Pécs-Danitzpusztrán feltárt 200 méter vastag szarmata–pannóniai rétegsor képződését a helyi szerkezeti és üledék képződési viszonyok időben úgy alakították, hogy a különböző puhatestű faunák egyedi, másutt eddig nem tapasztalt sorrendben követik egymást.

A rétegsor alján található szarmata tengeri faunát egy édesvízi vagy oligohalin (alacsony sótartalmat elviselő) együttes követi, amely a mikrofauna alapján még szintén szarmata korú. Bár a kövületek megtartási állapota nem teszi tos következtetések levonását, úgy tűnik, hogy az együttes fajai – elsősorban a tüdőscsigák – a legidősebb pannóniai faunát képviselő fajok.

A következő ősmaradvány-tartalmú rétegekben egy “törpe” faunát találunk: a kis méretű, de változékony, “szarmata típusú” szívkagylók tömege sok helyről ismerős a Pannon-medencében a szarmata–pannóniai határ közeléből. Ezeknek a kagylóknak az alapos taxonómiai vizsgálata a jövő feladata; minden bizonnyal megtalálhatók köztük a jól ismert szarmata és pannóniai formákat összekötő, mindeddig ismeretlen formák.

A rétegsor következő, jelentős részét a Pannon-medence déli felében nagy elterjedést mutató “fehér márgák” teszik ki. Ezek a Pannon-tó szublitorális és profundális zónájában halmozódtak fel, faunájuk alapján pedig két egységre bontható ugyanúgy, mint Horvátországban vagy Szerbiában: a Lymnocardium praeponticum Zónára (vagy Radix croatica Zóna), amelynek becsületi kora 11,6–11,4 millió év, és a Congeria banatica Zónára, amely 11,4 és 9,7 millió év között képződött a Pannon-medenceben.

A fehér márga lerakódása azonban Pécs-Danitzpusztrán ennél hamarabb véget ért. Kőzetliszt ülepedése váltotta fel, amelynek gazdag szublitorális puhatestű faunája a Lymnocardium schedelianum Zónába tartozik; korát 10,5–10,2 millió évre tehetjük. Ez a fauna gyakori a Bécsi-medencében, a Dél-Bánságban és Szerbiában, de ezeken a helyeken soha nem a L. schedelianum Zóna közvetlen fedőjéből, mint Danitzpusztrán.

A pécs-danitzpusztai rétegsor vége egy vastag, limonitos homoktest. A homokból kagylók és csigák lenyomatai és kőbelei kerültek elő. A fauna tipikus sekélyvízi, litorális környezetre utal, rétegtani a Lymnocardium conjungens Zóna felső részébe tartozik, kora 10,2–10,0 millió évre becsülhető. A fauna típusa tipikus sekélyvízi, litorális környezetre utal, rétegtani a Lymnocardium conjungens Zóna felső részébe tartozik, kora 10,2–10,0 millió évre becsülhető. Hasonló faunák ismertek Burgenlandból, Szerbiából, a Partiumból, de ezeken a helyeken soha nem a L. schedelianum Zóna közvetlen fedőjéből, mint Danitzpusztrán.

Kulcsszavak: miocén, Pannon-tó, puhatestűek, biosztratigráfia, paleoökológia, Mecsek, szarmata–pannóniai határ

Abstract

As the almost 200-year palaeontological research revealed, the geographical distribution of various fossil mollusk faunas in deposits of the late Neogene Lake Pannon displays a regular pattern. The lake basin was filled by lateral accretion of sediments, resulting in condensed sedimentary successions in the distal parts of the basin and successively
younger shallow-water deposits from the margins towards the basin center. Exposed intra-basin basement highs, however, broke this strict pattern when they acted as sediment sources during the lake’s lifetime. The Mecsek Mts in southern Hungary was such an island in Lake Pannon during the early late Miocene. Deposition of the 200 m thick Sarmatian–Pannonian sedimentary succession in Pécs-Danitzpuszta at the foot of the Mecsek Mts was thus controlled by local tectonic and sedimentary processes, resulting in a unique succession of facies and mollusk faunas. A typical, restricted marine Sarmatian fauna is followed by a distinct freshwater or oligohaline interval, which, according to micropalaeontological evidence, still belongs to the Sarmatian. Although poor preservation of fossils does not allow firm conclusions, it seems that freshwater Sarmatian snails were the ancestors of the brackish-water-adapted early Pannonian pulmonate snail taxa. The successive “Sarmatian-type” dwarfed cockle fauna is similar to those widely reported from the Sarmatian–Pannonian boundary in various parts of the Pannonian Basin; however, a thorough taxonomic study of its species is still lacking. The bulk of the sedimentary succession corresponds to the sublittoral to profundal “white marls,” which are widespread in the southern Pannonian Basin. In Croatia and Serbia, they are divided into the Lymnocardium praeponticum or Radix croatica Zone (11.6–11.4 Ma) below, and the Congeria banatica Zone (11.4–9.7 Ma) above; this division can be applied to the Pécs-Danitzpuszta succession as well. Sedimentation of the calcareous marl, however, ceased at Pécs-Danitzpuszta at about 10.5–10.2 Ma ago (during the younger part of the Lymnocardium schedelianum Chron), when silt was deposited with a diverse sublittoral mollusk fauna. Similar faunas are known from the Vienna Basin, southern Banat, and other marginal parts of the Pannonian Basin System, but not from Croatia and Serbia, where deposition of the deep-water white marls continued during this time. Finally, the Pécs-Danitzpuszta succession was capped with a thick, coarse-grained sand series that contains mollusk molds and casts representing a typical littoral assemblage. This littoral fauna is well-known from easternmost Austria, northern Serbia, and northwestern Romania, but never directly from above the sublittoral L. schedelianum Zone. The fauna is characteristic for the upper part of the Lymnocardium conjungens Zone and has an inferred age of ca. 10.2–10.0 Ma. The Pécs-Danitzpuszta succession thus allows to establish the chronostratigraphic relationship between mollusk faunas that have not been observed in one succession nor in close proximity to each other in other parts of the Pannonian Basin.

Keywords: Miocene, Lake Pannon, mollusks, biostratigraphy, palaeoecology, Mecsek Mts, Sarmatian–Pannonian boundary

Introduction

The upper Miocene (Pannonian) lacustrine to deltaic basin fill of the Pannonian Basin in Central Europe is exposed along the basin margins and around the intrabasinal basement highs (today hills or mountains) as a consequence of a Pliocene to Recent basin inversion (RUSZKICZAY-RÜDIGER et al. 2020 and references therein). The lacustrine layers exposed in the Pécs-Danitzpuszta sand pit in South Hungary at the foot of the Mecsek Mts (Figure 1A) first gained fame as a textbook example of intra-Pannonian tectonic processes that tilted the lacustrine white marls and the lower part of the overlying limonite-stained sands into a vertical position (VADÁSZ 1953; BARTHA 1966; KLEB 1968, 1973). In these reports, the dislocated layers were interpreted as “lower Pannonian”, whereas the overlying, almost horizontal sand layers were identified as “upper Pannonian”. These assignments, however, were poorly supported with biostratigraphic evidence. Only faint, poor-quality pictures of “Congeria sp. and Lymnocardium sp. in a calcareous marl layer”, “Melanopsis-bearing calcarenite”, and “Congeria balatonicum” from the sand were published to support this interpretation (BARTHA 1966, KLEB 1973). Based on the lithological features, the white marl of the outcrop was correlated with the Congeria banatica-bearing white marls of Croatia and Serbia (“Slavonian” or “Beočin-type” beds and fauna), whereas the overlying limonitic sand was tentatively correlated with the Congeria balatonicum- and Lymnocardium schmidtii-bearing, 7–8 million-year-old sand apron that covers the southern foothills of the Mecsek Mts (BARTHA 1964, 1966; KLEB 1968, 1973; KAZÁR et al. 2007).

Later the outcrop also became famous as a palaeontological site. The marl is the type locality of some endemic Pannonian calcareous nanofossils (BÔNA & GÁL 1985, 1987), and the overlying sand layers were discovered to be a Mecca for vertebrate palaeontologists and amateur collectors by yielding an amazing amount and variety of reworked Miocene vertebrate fossils (SZABÓ et al. 2021, and references therein). The biostratigraphic position and age of the fossiliferous Pannonian lacustrine sediments, however, remained obscure. In the last two decades, however, large amounts of mollusk fossils were collected from the outcrop. In addition, a trench was excavated in 2018 on top of the tilted beds to expose the layers that underlie the marl (Figure 1B); this trench revealed a Badenian to Sarmatian to Pannonian (middle to upper Miocene) succession with several fossiliferous layers (Figure 2).

In this study, we present the mollusk record of the Sarmatian–Pannonian succession of the outcrop (its Badenian fossils are discussed in DULAT et al. 2021) and evaluate the mollusk fauna from biostratigraphic and palaeoecological points of view. We compare the assemblages with other well-known faunas. For a detailed geological context and description of the succession, the reader is referred to SÉBE et al. (2021).

Material and methods

The studied material includes fossils recently collected layer-by-layer from both the trench (Layers D50 to D1) and along a section on the northern wall of the pit (Layers D212 to D227; Figures 1B, 2), as well as specimens collected earlier by Krisztina SÉBE and her students from the University
of Pécs, László Kanizsai, a private collector, István Cziczér (University of Szeged), Imre Magyar, and others, from various parts of the Pannonian succession during the last two decades. The investigated fossils are repositioned in the Natural History Museum, Budapest; Local History and Natural History Museum Collection, Komló; and Mining and Geological Survey of Hungary, Budapest. The fossils collected by the authors were cleaned and prepared in the laboratory of the Department of Palaeontology at the Eötvös Loránd University, Budapest, and in the Natural History Museum, Budapest. Polyvinyl acetate was used for solidifying fragile fossils. For mollusk determination, a Zeiss SteREO Discovery.V12 modular binocular stereo microscope was used in the Laboratory of MOL Plc., Budapest. Thin sections were prepared in the Laboratory of MOL Plc., and they were investigated with a Zeiss Axio Imager.A1 polarizing microscope. Photos were taken by two cameras (macroscopic images: Canon EOS 40D digital camera with Canon EF 100 mm f/2.8L IS USM macro lens; microscopic images: Zeiss AxioCam MRc 5 camera mounted on the Zeiss microscopes with the help of the AxioVision 40x64 v.4.9.1.0 software). Some of the borrowed museum specimens were photographed in the Bakony Museum of the Hungarian Natural History Museum, Zirc.

Comparison of our specimens with the type materials repositioned in the Natural History Museum Vienna (NHMW), Geological Survey of Austria, Vienna (GBA), Croatian Natural History Museum, Zagreb (HPM) and Mining and Geological Survey of Hungary, Budapest (MBFSZ) led to some clarification of taxonomic identities and uncertainties that are important for correct age determination (see in Appendix). At the genus level we followed a conservative approach. All dreissenids possessing an apophys (an appendix that served as pedal retractor catchment) are attributed here to Congeria, because subdivision of this large group into monophyletic flocks, supported by compelling morphological and stratigraphical arguments, has not happened so far. We use the genus Lymnocardium collectively for all Lake Pannon cardiids that have not been separated into clearly established genera, but put it into a quotation mark where morphological dissimilarity to the type of Lymnocardium argues for a different – as yet undecided – generic placement.

Mollusk assemblages and depositional environments

The Sarmatian–Pannonian succession of the Pécs-Danitzpuszta section can be divided into several intervals based on the mollusk fauna. In this chapter, a brief description of each interval is given with its typical fossil mollusk content, its characteristic lithology, and the inferred depositional environment. The full list of the identified taxa for each layer is given in the digital annex of this paper.

Unit 1. Layers D55 to D47 yield moulds (“steinkerns”) of poorly preserved restricted marine species, such as Ervilia sp. (a fragment), Lymnocardiinae sp. (Plate I, figures 2–3), and Dreissenidae sp. (Plate I, figure 1).

Unit 2. The overlying layers (D43–D37), consisting of marl, tuffaceous sand and limestone, contain a poorly preserved gastropod fauna with freshwater forms, such as lymnaeids [Radix cf. croatica (Plate I, figures 2–3), ?Lymnaea sp. (Plate I, figures 4, 7, 10)], planorbids (Plate I, figure 8), and the neritid Theo-
doxus sp. (Plate I, figure 9). A land snail also occurred, whereas bivalves are completely missing from these layers.

Unit 3. The limestone layers D35 and D33 are densely packed with moulds of small cardiids and a few hydrobids (Plate II, figures 1–20). The cardiids show very high variability in terms of outline, convexity, and rib pattern. Many of them are similar to various Sarmatian and Pannonian taxa, such as *Inaequicostata pia* (Plate II, figures 1–2), *I. nigra* (Plate II, figures 11–12), *Obsoletiformes fischeriformis* (Plate II, figure 9), *O. kaudensis* (Plate II, figures 5, 10), *Plicatiformes plicatus*, *Planacardium* sp. (Plate II, figure 3), “*Lymnocardium*” *praeponticum* (Plate II, figure 4) and others (Plate II, figures 6–8). Due to their extreme variability and poor preservation, we are not confident about
these identifications (see Digital annex). Similar cardiid faunas have been described from various parts of the Pannonian Basin, but the identification of the species remains ambiguous even when the preservation of the shells is good (e.g., Jekelius 1944). These assemblages, which undoubtedly include so far unknown links between the Sarmatian restricted marine and Pannonian brackish lacustrine cardidiids, deserve a thorough study in the future.

Unit 4. The fauna embedded into the calcareous marl of Layer D12 consists of cardidiids (“Lymnocardiidae” cf. praeponticum (Plate III, figures 11–12), “L.” cf. picataeformis (Plate III, figure 15), Lymnocardiidae sp. (Plate III, figures 13–14)), dreissenids [Congeria cf. banatica (Plate III, figures 1–4), C. cf. martonii (Plate III, figure 5), C. cf. ramphophora (Plate III, figure 9), C. cf. neumayri (Plate III, figure 10), and Congeria div. sp. (Plate III, figures 6–8)], planorbids (Gyraulus tenuistratus and Orygoceras fuchsii), lymnaeids (Radix croatica; Plate III, figures 17–19) and hydrobiid (Prosothienia sundecicci and Micromelania striata) snails. This fauna is widespread in the southern Pannonian Basin and its embedding layers are distinguished as “Croatica formation” in Croatia. The environmental interpretation of the fauna is controversial; usually it is interpreted to represent shallow, strongly freshened water, but there are arguments for a sublittoral or even profundal habitat (for a detailed discussion see Sebe et al. 2020).

Unit 5. The marl, calcareous marl and limestone layers between D7 and D112 yielded small, thin-shelled cardidiids [Paradacna cf. syrmiensis, P. abichi (Plate IV, figures 1–5), “Lymnocardiidae” margaritaceum (Plate IV, figures 10–11), and Lymnocardiinae sp. (Plate IV, figures 6–9)], dreissenids (Congeria czjzeki and C. banatica) and snails [Hydrobiidae sp., Micromelania striata (Plate IV, figure 13), Velutinopsis sp. (Plate IV, figure 12), Gyraulus sp., Orygoceras fuchsii, and O. brusinai (Plate IV, figure 14)]. This fauna is also well-known in the southern Pannonian Basin under the names “Slavonian” or “Bočin-type” or “Banatica” fauna, and it is widespread in the white marls of Voivodina (Serbia), Slavonia and Medvednica Mts. (Croatia), and southern Burgenland and eastern Styria (Austria) (e.g., Gornovnic-Kramberger 1899, Sauzerpöpf 1952, Sremac 1981, Stevanovic & Papp 1985, Vrsaljko 1999, Vasiliev et al. 2007, Ganic et al. 2010, Rundic et al. 2011, Ter Borgh et al. 2013). It is characterized by small-sized and thin-shelled mollusks, commonly cardidiids, some dreissenids, and mostly pulmonate snails. These mollusks are interpreted to have lived in the sublittoral to profundal depth of Lake Pannon.

Unit 6. The soft clay of D212 and white marl of D213 contain scattered specimens of Congeria partschi firmocarinata. This species lived in the sublittoral zone of Lake Pannon (e.g., Harzhauser & Manic 2004).

Unit 7. The fossil fauna of Layer D215, a 60 cm thick quartz sandstone, is unique within the marl succession. It contains compressed molds of Melanopsis fossilis (Plate IV, figure 16), M. cf. vindobonensis, Unio cf. atavus (Plate IV, figure 15), Congeria sp., and Lymnocardiidae sp. The large Melanopsis species and Unio atavus were typical shallow-water, littoral dwellers in Lake Pannon (e.g., Harzhauser et al. 2007). As both the under- and overlying, fine-grained layers contain sublittoral fauna, the littoral shells and sand of D215 were probably transported into the sublittoral zone by gravity flows.

Unit 8. The uppermost ca. 6 m of the fine-grained succession, consisting of yellow silty marl and clayey siltstone (D219–D226), contains the most diverse mollusk assemblage of the entire section. Preservation is variable: fresh and dissolved shells, imprints as well as moulds were found. The fauna includes Congeria partschi firmocarinata (Plate V, figure 1), C. zsigmondyi (Plate V, figures 2–3), Dreissena primiformis (Plate V, figures 4–7), Lymnocardiinae schedelanium (Plate VI, figures 1–2), L. winkleri (Plate V, figures 12–15), L. aff. boechki (Plate V, figures 8–11), “L.” carnuntinum (Plate VI, figures 3–4), “L.” tegulatum (Plate VI, figures 5–7), “L.” asperocostatum (Plate VI, figure 12), “L.” aff. danicici (Plate VI, figure 8), “Lymnocardiidae” cf. proximum (Plate VI, figure 9), “Pontalmyra” otiophora (Plate VI, figure 13), Caladacna aff. steindachneri (Plate VI, figure 19), Paradacna sp. (Plate VI, figures 10–11), ?Parvidacna sp., ?Pseudocatillus sp. (Plate VI, figure 15), ?Phyllocardiidae sp. (Plate VI, figure 20), Lymnocardiinae sp. (Plate VI, figures 14, 16–18), Orygoceras fuchsii, O. brusinai, Gyraulus tenuistratus (Plate VI, figure 22), Melanopsis fossilis, M. austriae (Plate VI, figure 21), and ?Micromelania sp. This assemblage shares a number of species (C. partschi firmocarinata, C. zsigmondyi, D. primitiformis, L. schedelanium, and “L.” carnuntinum) with the fauna of Hennersdorf (near Vienna; Papp 1953, 1985; Harzhauser & Manic 2004) and also with the fauna of Câmpia (Langenfeld) and Nicoliniţ (Nicolincz) in southern Banat, at the foothills of the Southern Carpathians, Romania (C. zsigmondyi, L. winkleri, “L.” carnuntinum (=L. pseudosuessii), and “L.” tegulatum) (Halavats 1882, 1886). Most of these mollusks are known to have lived in sublittoral environment (e.g., Harzhauser & Manic 2004, Cziczér et al. 2009). Parvidacna, Pseudocatillus, and Phyllocardiidae are littoral dwellers (e.g., Müller & Šzonóky 1990), but they are represented by few specimens only, with incomplete preservation and/or in early ontogenetic stage, which makes their identification uncertain. The few specimens of the shallow-water Melanopsis could have been re-deposited from a littoral environment.

Unit 9. In the limonite-stained sand (D227) that overlies the marl succession, the aragonitic shells were completely dissolved, leaving behind cavities between the imprints of the inner and outer shell surfaces. In most cases, only the cemented internal mold (“steinkern”) was preserved and collected. As the mollusks are scattered in the sand, most specimens were collected from the heaps left behind by the industrial sieving of the sand. Thus, the exact stratigraphic position of the fossils within the sand body was impossible to reconstruct. In spite of this, three stratigraphic units could be distinguished: the lowermost part, the bulk of the sand, and the uppermost part separated from the bulk of the sand by a well-established unconformity surface.
From the lowermost part of the sand, Congeria partschi (Plate VII, figure 6) and Lymnocardium schedelianum were identified. The former species occurred in abundance in some samples (Plate VIII, figure 5). Species from the bulk of the sand include Congeria ungulacaprae (Plate VII, figure 4–5), C. hemiprycha (Plate VII, figures 1–3), C. partschi (Plate VIII, figure 2–3), C. balatonica (Plate VIII, figure 1), Lymnocardium schedelianum (Plate VIII, figure 10), L. cf. conjungens (Plate VIII, figure 9), L. cf. tucani (Plate VIII, figures 6–8), L. cf. proximum, “L.” carnutinum, “L.” aff. danici (Plate VIII, figure 5), Phyllocardium complanatum (Plate VIII, figure 11), and Melanopsis cf. fossilis. The following species were collected from the top of the sand: Congeria ungulacaprae, Dreissenomya dactylus (Plate VIII, figure 4), Lymnocardium cf. conjungens, L. cf. hantkeni, Lymnocardium sp., and Melanopsis vindobonensis.

The composition of the entire fauna recovered from the sand is very similar to that of the classical Vrčin, Karagača creek site in Serbia (Pavlović 1927, 1928) and to the littoral Pannonian faunas of Burgenland, Austria (Sauerzopf 1952, Lueger 1980, Magyar et al. 1999), Medvednica Mts., Croatia (Brusina 1892), and Şimleu Basin, Romania (Chivu et al. 1966, Nicorici & Karácsonyi 1983, Barth et al. 2021). All the identified species are known from, and restricted to, littoral sandy deposits. The most of them are restricted to, littoral sandy deposits. The common occurrence of articulated valves excludes long post-mortem transport of the shells in the shoreline. Gravitational re-deposition of the shells together with the embedding sand from the littoral zone to a deeper depositional environment, however, is conceivable (e.g., Brett & Baird 1986).

### Biostratigraphy and age

**Unit 1.** The marginal marine mollusk fauna of layers D55 to D47 indicates Sarmatian age (Figure 3).

**Unit 2.** The age of the freshwater fauna from D43–D37 is difficult to assess. Radix croatica is a marker fossil of the lowermost Pannonian in the white marls of Croatia and Serbia (e.g., Vrsaljko 1999, Vasiliev et al. 2007, Sebe et al. 2020), but Radix cf. croatica occurs here with other freshwater forms but without brackish cardidi. The preservation of the mollusks from these layers does not allow a detailed morphological comparison with their well-established Pannonian counterparts. As the microfauna indicates Sarmatian age (Szuromi-Korecz et al. 2021), we assume that these mollusks represent a freshwater Sarmatian fauna, with the probable ancestors of the early Pannonian forms.

**Unit 3.** The mass occurrence of small, mostly “Sarmatian-type” cardidi (D35–D33) at the Sarmatian–Pannonian boundary is a commonly reported phenomenon in the Pannonian Basin, and it is alternately assigned into the uppermost Sarmatian or lowermost Pannonian in the literature (Figure 3).

**Unit 4.** The fauna from layer D12 is attributed to the basal Pannonian “Lymnocardium praeponticum Zone, which was interpreted to have an age of 11.6–11.4 Ma (Magyar & Geary 2012; Figure 3).

**Unit 5.** Interval D7–D112 can be correlated with the C. banatica Zone, although Congeria banatica itself occurs only sporadically. Some of the identified taxa were first described from similar C. banatica-bearing white marls in Slavonia (Gorjanović-Kramberger 1899). The age of the

| Age (Ma) | Epoch/Age | C.P. Age | Polarity/Chron | Pannonian mollusk biozones / chrons | Pécs-Danitzpuszta faunal units |
|---------|-----------|-----------|----------------|-------------------------------------|--------------------------------|
| 9       | late Miocene | Tortonian | Pannonian | Profundal | Dreissenomya dactylus | H |
| 10      | late Miocene | Tortonian | Pannonian | Sublittoral | Lymnocardium praehomboides | G |
| 11      | late Miocene | Tortonian | Pannonian | Littoral | Lymnocardium soproniensis | F |
| 12      | late Miocene | Tortonian | Pannonian | Vienna Basin | Lymnocardium schedelianum | E |
| 13      | late Miocene | Tortonian | Pannonian | Vienna Basin | Congeria partschi | D |

**Figure 3.** Stratigraphic chart for the late middle Miocene to early late Miocene with the mollusk zones of the Pannonian (according to Magyar & Geary 2012 and Harzhauser et al. 2004) and with the biochronostatigraphic interpretation of the Pécs-Danitzpuszta faunal units.

C. P.: Central Paratethys; Bad: Badenian; L. prae – R. cro: "Lymnocardium" praeponticum – Radix croatica; C. Congeria
C. banatica Zone is estimated between 11.4–9.7 Ma (Magyary & Geary 2012; Figure 3).

Units 6 and 7. The interval D212–D215 contains species (Congeria parti schi firmocarinata and Unio atavus) that were interpreted as markers of “Zone E” by Papp (1951, 1953), similarly to some species of the overlying Unit 8 (Figure 3).

Unit 8. The mollusk assemblage from D219 to D226 belongs to the Lymnocardium schedelianum Zone, the age of which was constrained between 11.0 and 10.2 Ma by Magyary & Geary (2012). The diverse fauna of this interval resembles the fauna of Hennersdorf in the Vienna Basin (Papp 1953) and that of Câmpia and Nicoli nţ in southern Banat (Halaváts 1882, 1886). Based on astronomically tuned logs, the age of the carefully studied Hennersdorf outcrop was given as 10.4–10.3 or 10.5–10.4 Ma (“Zone E,” Harzhauser et al. 2004 and Harzhauser et al. 2013, respect ively). As to the age of the Câmpia and Nicoli nţ faunas, they are placed stratigraphically above the Valenciennius-bearing Ciu chi (“Csukics”) outcrop (Halaváts 1886, Marinescu et al. 1977); therefore, they must be younger than the first appearance datum of Valenciennius (9.6–9.7 Ma or slightly older; see Czicz er et al. 2009). There are two lines of evidence, however, which suggest that the Péc s-Danitzpuszta fauna should be older than the Câmpia and Nicoli nţ mollusks. First, L. aff. boeckhi from Péc s-Danitzpuszta strongly resembles L. boeckhi from Câmpia, but the pentagonal rib cross-section and the straight anterior edge of the valve are less pronounced and less stable patterns in the former. Considering the mode of evolution in several cardidal lineages in Lake Pannon (Müller & Magyary 1992, Geary et al. 2010), it seems reasonable to suppose that the Péc s-Danitzpuszta form might represent the ancestral, less developed state of L. boeckhi. Second, the ostracod assemblages from Câmpia contain a lot of newly appearing, “Pontian-type” species (Olteanu 1989, 2011), whereas the Péc s-Danitzpuszta fauna seems to belong to the older Amplocypris abscessa Zone (Csoma et al. 2021), similarly to the Hennersdorfer locality (Danielopol et al. 2011). Considering the above arguments, the age of Unit 8 most probably falls between 10.5 and 10.2 Ma (Figure 3).

Unit 9. The littoral fauna of the overlying sand is very similar to the fauna that Pavlović (1927, 1928) described from Serbia and the Pannonian faunas of Burgenland, Austria, both belonging to the upper part of the Lymnocardium conjungens Zone (ca. 10.2–9.6 Ma; Magyary & Geary 2012). Considering that the sand directly overlies the at least 10.2 Ma old marl succession, the best estimate for the age of the sand body is 10.2–10.0 Ma (Figure 3). The only species in the sand whose known stratigraphic range is not conform with this interpretation is Dreissenomya dactylus; it was described from the “Congeria balatonica Beds” (L. decorum Zone; Figure 3) of Lake Balaton, with a first known occurrence in the L. ponticum Zone. The specimens from Péc s-Danitzpuszta reveal, however, that this form is identical with D. lithodomiformis Pavlović (1927) from Vrčin; thus, the known life span of D. dactylus has to be extended to ca. 10.2–8.1 Ma (see Appendix).

Discussion

There are two peculiarities in the facies order and timing in the Péc s-Danitzpuszta outcrop that make this succession unique: the occurrence of a freshwater fauna close to the top of the Sarmatian, and the timing and development of silicilastic sedimentation and faunal change in the upper part of the succession.

In the upper part of the Sarmatian stage, a freshwater unit (Unit 2) overlies restricted marine (Unit 1) deposits. This 3-m-thick freshwater interval contains pulmonate snails (lymnaeids and planorbid s), hydrobiids, and neritids. No marine or brackish-water forms occur in these layers. The next fossiliferous unit (Unit 3), however, is almost completely devoid of snails (apart from a few hydrobiids), and contains an abundance of various small cardids. Cardids have marine origin and they occur in freshwater only extremely rarely. Thus, Unit 3 can be interpreted as having deposited in brackish water. The fauna of Unit 4 contains both pulmonate snails, similar to (and partly identical with?) the species of Unit 2, and some small cardids, again similar to the species in Unit 3. The common occurrence of originally freshwater pulmonates (lymnaeids and planorbids) and brackish-water cardids in these lowermost Pannonian layers is a source of controversy in environmental interpretation (Sebe et al. 2020). A possible scenario is that the salinity of the Sarmatian seawater decreased to such an extent that it exerted stress on marine cardids and, at the same time, allowed freshwater pulmonates to enter the brackish lake. The cardids responded by adopting r-strategy (e.g., Montes et al. 2020), whereas the pulmonates took advantage of their ability to survive in waters of up to 10–11 psu salinity (Stagnicola palustris, Radix ovata, and Lymnaea stagnalis are recent examples from the bays of the Åland Islands in the Baltic Sea; Carlsson 2006). All these faunal changes from Unit 1 to 4 took place under relatively stable conditions in the depositional environment, where clay and limestone layers formed alternately.

The bulk of the Péc s-Danitzpuszta section consists of white or light grey calcareous marls with mollusks that are widespread in the southern part of the Pannonian Basin and can be studied in surface outcrops in the Croatian and Serbian parts of the basin. These marls were deposited in the profound zone of Lake Pannon, away from the entry points of intense clastic input, under slow sedimentation rates. Deposition of these marls lasted as long as favorable conditions prevailed. The top of the marl was subsequently eroded in the outcrops of Beočin, Serbia (Ter Borgh et al. 2013) and Našice, Croatia (Vasilić et al. 2007); the age of the uppermost layers preserved below the unconformity is 9.9 Ma in Beočin based on magnetostratigraphy (Ter Borgh et al. 2013) and less than 8 Ma in Našice based on dinoflagellate stratigraphy (Baranyi, pers. comm.). In contrast, in Péc s-Danitzpuszta, the marl is capped with the 10.5–10.2 Ma old sublittoral Lymnocardi-
um schedelianum Zone (Unit 8); the deposition of the distal marls thus ended here much earlier than in the Croatian and Serbian localities. Finally, the overlying littoral fauna that represents the upper part of the Lymnocardium conjungens Zone has been known elsewhere from above the sublittoral Lymnocardium soproniense Zone (10.2–8.9 Ma; in Burgenland, MAGYAR et al. (1999) and in the Šimleu Basin, BARTHA et al. 2021), or directly from above pre-Neogene basement (PAVLOVIĆ 1927, 1928), but never from above the L. schedelianum Zone. The Pécs-Danitzpuszta faunal succession thus testifies a temporal overlap between the Congeria banatica Zone deposited in the profundal depth of Lake Pannon, the Lymnocardium schedelianum Zone representing sublittoral sedimentation, and the upper part of the Lymnocardium conjungens Zone that formed in shallow, littoral waters of the lake.

Conclusions

Deposition of the Sarmatian–Pannonian succession at the foot of an intrabasinal basement high, the Mecsek Mts, was controlled by local tectonic and sedimentary processes that overprinted the regional trends. As a consequence, this succession offers a unique opportunity to correlate various mollusk assemblages that do not usually occur in a single vertical succession or in close proximity to each other in other parts of the Pannonian Basin.

Acknowledgements

We are grateful to Quartz Ltd., owner of the Pécs-Danitzpuszta sand pit, for not only permitting but kindly supporting our fieldwork. We would like to express our gratitude to our colleagues Kriszta Szébe (University of Pécs), István Cziczer (University of Szeged), Ádám Kovács and Orsolya Sztanó (Eötvös Loránd University, Budapest) and László Kanizsai, a private collector, for helping in the field work and fossil collecting. Assistance in the institutional collections and loaning of fossils provided by Klára Palotás (MBFSZ, Budapest) and Tamás Henn (Local History and Natural History Museum Collection, Komló) is greatly appreciated. Péter Marsi (Laboratories MOL) is acknowledged for his help in making thin sections and photographs. Barna Pál–Gergely (Plant Protection Institute of the Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest) provided valuable help in handling taxonomic problems. Frank Wesselingh (Naturalis Biodiversity Center, Leiden) and Thomas Neubauer (Justus Liebig University, Giessen) are acknowledged for their extremely useful and constructive reviews. The research was funded by the Hungarian National Research, Development and Innovation Office (NKFIH – 116618) and by the Croatian-Hungarian Bilateral TET_16-1-2016-0004 projects. This is MTA-MTM-ELTE Paleo contribution No 355.

References – Irodalom

ANDRUSOV, N. I. 1903: Studien über die Brackwassercarididen. Lieferung 1. – Mémoires de l’Académie Impériale des Sciences de St.-Pétersbourg, VIIe Série, Classe physico-mathématique 13, 1–82.

BARTHA F. 1959: Finomrétegtani vizsgálatok a Balaton környéki felső-pannon képződményeken. (Feinstratigraphische Untersuchungen am Oberpannon der Balatongegend.) – Annals of the Hungarian Geological Institute 48, 1–191.

BARTHA F. 1964: A Mecsekhegység és tágabb környéke pannon üledékeinek biosztratigráfiai vizsgálata. (Biostratigraphische Untersuchung der pannonischen Ablagerungen des Mecsek-Gebirges und seiner weiteren Umgebung.) – Annual Report of the Hungarian Geological Institute of 1961, 175–183. (in Hungarian with German and Russian abstracts)

BARTHA, F. 1966: Examen biostratigraphique des couches pannoniennes de la montagne Mecsek. – Acta Geologica 10, 159–194.

BARTHA, I. R., BOTKA, D., CSOMA, V., KATONA, L. T., TÓTH, E., MAGYAR, I., SILYE, L. & Sztanó, O. 2021: From marginal outcrops to basin interior: a new perspective on the sedimentary evolution of the eastern Pannonian basin. – International Journal of Earth Sciences, in press.

BASCH, O. 1990: Die Molluskenfauna der pontischen Stufe in Kroatien. – In: Stevanović, P. M., Neveskaaja, L. A., Marinescu, F., Sokač, A. & Jambor, Á. (eds): Chromostratigraphie und Neostatotypen. Neogen der Westlichen (”Zentrale”) Paratethys VIII, Ph1, Pontien. JAZU and SANU, Zagreb–Beograd, 538–557.

BASCH, O. & Žagar-Sakač, A. 1992: Dreissenidae (Mollusca, Lamellibranchiata) pontskoga kota u Hrvatskoj. Dreissenidae (Mollusca, Lamellibranchiata) der Pontischen Stufe in Kroatien. – Hrvatska Akademija Znanosti i Umjetnosti, Acta Geologica 22, 1–96.

BONA, J. & Gál, M. 1985: Kalkiges Nannoplankton im Pannonien Ungarns. – In: Papp, A., Jambor, Á. & Steininger, F. F. (eds): Chromostratigraphie und Neostatotypen, M6 Pannonien (Slavonien und Serbien). Akadémiai Kiadó, Budapest, 482–515.

BONA J. & Gál M. 1987: A kunsági (pannoniás s. tr.) emeletbe tartozó képződmények nannoplanktonja Magyarországon. – In: Jambor Á. (szerk.): A magyarországi kunsági emeletbeli képződmények földtani jellemzése. Annals of the Hungarian Geological Institute 69, 229–258.

BOTKA, D., MAGYAR, I., CSOMA, V., TÓTH, E., SÜJAN, M., RUSZKICZAY-RUDIGER, Zs., CHYBA, A., BRAUCHER, R., SANT, K., ĆORIĆ, S., BARANYI, V., BAKRAČ, K., KRIZMANIĆ, K., BARTHA, I. R., SZABÓ, M. & SILYE, L. 2019: Integrated stratigraphy of the Gușterița clay pit: a key section for the early Pannonian (late Miocene) of the Transylvanian Basin (Romania). – Austrian Journal of Earth Sciences 112, 221–247. https://doi.org/10.17738/ajes.2019.0013
Brett, C. E. & Baird, G. C. 1986: Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. – Palaios 1, 207–227.

Brusina, S. 1892: Fauna fossilis terzieria Markušević in Croazia. – Glasnik hrvatskoga naravoslovnoga društva 7, 113–210.

Brusina, S. 1894: Note préliminaire sur le groupe des Aphanotylus, nouveau genre de Gastropode de l’horizon à Lyrcaea, et sur quelques autres espèces nouvelles de Hongrie. – Glasnik hrvatskoga naravoslovnoga društva 6, 241–248.

Brusina, S. 1902: Iconographia molluscorum fossilium in tellure Tertiaria (Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosnie, Herzegovinae, Serbiae et Bulgariæ inventorum.), Atlas II, Plates 1–30, Zagreb.

Carlsson, R. 2006: Freshwater snail assemblages of semi-isolated brackish water bays on the Åland Islands, SW Finland. – Boreal Environment Research, 11, 371–382.

Chéru, M., Valentina, V., Enache, G., Isac, D. & Margărét, E. 1966: Contribuții la stratigrafia Neogenului din bazinul Silvaniei. – Geologic research in the Sylvania Basin. – Dări de seamă ale şedinţelor, Comitetul Geologic 52, 239–254. (in Romanian with English abstract and French summary)

Cziczér, I., Magyar, I., Pipik, R., Bohme, M., Čoric, S., Bakrač, K., Sútó-Szentai, M., Lantos, M., Barbinski, E. & Muller, P. 2009: Life in the sublittoral zone of long-lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation, Hungary. – International Journal of Earth Sciences 98, 1741–1766. https://doi.org/10.1007/s00531-008-0322-3

Csoma, V., Magyar, I., Szuromi-Korecz, A., Sebei, K., Szántó, O., Buczkó, K. & Tóth, E. 2021: Pannonian (late Miocene) ostracod fauna from Pécs-Danitzpuszta in Southern Hungary. – Földtani Közlöny 151/3, 305–326.

Danielpol, D. L., Gross, M., Harzhauser, M., Minati, K. & Piller, W. E. 2011: How and why to achieve greater objectivity in taxonomy, exemplified by a fossil ostracod (Amphocypris abscissa) from the Miocene Lake Pannon. – Joannea Geologie & Paläontologie 11, 273–326.

Dulal, A., Henn, T. & Sebe, K. 2021: Middle Miocene (Badenian) macroinvertebrates from Pécs-Danitzpuszta (Mecsek Mts., SW Hungary). – Földtani Közlöny 151/4, 329–343.

Eberzin, A. G. 1947: Rod Limnocardium Stoliczka v pliotsene ponto-kaspiskogo basseina. – Akademia Nauk SSSR, Trudy Paleontologicheskogo Instituta 13, 1–156. (in Russian)

Fuchs, Th. 1870: Beiträge zur Kenntnis fossiler Binnenfaunen 4 und 5: Die Fauna der Congerienschichten von Tihany am Plattensee und Küp bei Pápa in Ungarn. – Jahrbuch der kaiserlich-königlichen Geologischen Reichsanstalt 20, 531–548.

Ganic, M., Rundic, L. J., Knezevic, S. & Cvetak, V. 2010: The Upper Miocene Lake Pannon marl from the Filijala Open Pit (Beočin, northern Serbia): new geological and paleomagnetic data. – Annales Géologiques de la Péninsule Balkanique 71, 95–108.

Geary, D. H., Hunt, G., Magyar, I. & Schreiber, H. 2010: The paradox of gradualism: phyletic evolution in two lineages of limnocardiid bivalves (Lake Pannon, central Europe). – Paleobiology 36, 592–614. https://doi.org/10.1666/08065.1

Gorjanovic-Kramberger, K. 1890: Die praepontischen Bildungen des Agramer Gebirges. – Glasnik hrvatskoga naravoslovnoga društva 5, 151–163.

Gorjanovic-Kramberger, K. 1899: Die Fauna der unterpontischen Bildungen um Londjica in Slavonien. – A Magyar Királyi Földtani Intézet Évkönyve 151–163.

Halaváts Gy. 1882: Őslénytani adatok Délmagyarország neogén korú üledékei faunájának ismeretéhez. I. A langenfeldi pontusi korú faunát. – A Magyar Királyi Földtani Intézet Évkönyve 3, 147–156.

Halaváts Gy. 1886: Őslénytani adatok Délmagyarország neogén korú üledékei faunájának ismeretéhez. II–V. – A Magyar Királyi Földtani Intézet Évkönyve 8, 119–135.

Halaváts Gy. 1902: A balatonelléki pontusi korú rétegek faunája. – In: A Balaton tudományos tanulmányozásának eredményei 1/1, Őslénytani függelék 4/2, Budapest, 74 p.

Harzhauser, M. & Mándic, O. 2004: The muddy bottom of Lake Pannon – a challenge for dreissenid sediment (Late Miocene; Bivalvia). – Palaeogeography, Palaeoclimatology, Palaeoecology 204, 331–352. https://doi.org/10.1016/S0031-0182(03)00735-1

Harzhauser, M., Daxner-Hock, G., Piller, W. E. 2004: An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. – Austrian Journal of Earth Sciences 95–96, 6–19.

Harzhauser, M., Latal, C. & Piller, W. E. 2007: The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change. – Palaeogeography, Palaeoclimatology, Palaeoecology 249, 335–350. https://doi.org/10.1016/j.palaeo.2007.02.006

Harzhauser, M., Mándic, O., Kern, A. K., Piller, W. E., Neubauer, T. A., Albrecht, C. & Wilke, T. 2013: Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing. – Biogeosciences Discussions 10, 12009–12027. https://doi.org/10.5194/bgd-10-12009-2013

Hörnes, M. 1862: Die fossilen Mollusken des tertiera-Beckens von Wien. Conchifera (Acephala) 2, 479 p.

Jámbor, Á., Korpás-Hodi, M., Széles, M. & Sútó-Szentai, M. 1985: Zentrales Mittleres Donaubeben: Bohrung Lajoskomárom Lk-1, S-Balaton. – In: Papp, A., Jámbor, Á. & Steininger, F. F. (eds): Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys VII, M6, Pannonien. Akadémia Kiadó, Budapest, 204–241.

Jámbor Á., Korpás-Hodi M., Széles M. & Sútó-Szentai M. 1987: A kunsági (pannóniai s. str.) emelet magyarországi fáciessztrato típusának jellemzése. – In: Jámbor Á. (szerk.): A magyarországi kunsági emeletbeli képződmények földtani jellemzése. – Annals of the Hungarian Geological Institute 69, 37–93.

Jekeliu, E. 1944: Sarmat und Pont von Soceni (Banat). – Memoriele Institutului Geologic al Rumaniei 5, 1–167.

Katona L., Magyar I., Berta T., Varga A. & Szánto O. 2015: Pannonniai puhatestű fauna a Fűzfői-öböl környékének két feltárásából. – Pannonian mollusc fauna from two outcrops near Balatonfüzfő. – Földtani Közlöny 145, 127–150. (in Hungarian with English abstract)

Kazár, E., Kordos L. & Szonoky M. 2007: Danítz-puszta, homokbánya, pannonniai emelet. – In: Pálfy J. & Pazonyi P. (szerk.): Őslénytani kirándulások Magyarországon és Erdélyben. Hantken Kiadó, Budapest, 131–132.
Pavlović, P. S. 1928: Les mollusques du ponton inférieur des environs de Beograd. – Annales géologiques de la Péninsule Balkanique 9, 1–74. (French translation of Pavlović 1927)

Rundić, L. J., Ganić, M., Knežević, S. L. & Soliman, A. 2011: Upper Miocene Pannonian sediments from Belgrade (Serbia): new evidence and paleoenvironmental considerations. – Geologica Carpathica 62, 267–278. https://doi.org/10.2478/v10096-011-0021-z

Ruszkiczay-Rudiger, Zs., Balázs, A., Csillag, G., Driekoningen, G. & Fodor, L. 2020: Uplift of the Transdanubian Range, Pannonian Basin: How fast and why? – Global and Planetary Change 192, 103263. https://doi.org/10.1016/j.gloplacha.2020.103263

Sauerzopf, F. 1952: Beitrag zur Entwicklungs geschichte des südburgenlandischen Pannons. – Burgenlandische Heimatblatter 14, 1–16.

Schultz, O. 2003: Catalogus Fossilium Austriae, Band 1/Teil 2: Bivalvia neogena (Lucinoidea-Mactroidea). – Austrian Academy of Sciences Press, X + 310 p., 39 Plates, ISBN 3-7001-3180-X

Schultz, O. 2005: Catalogus Fossilium Austriae, Band 1/Teil 3: Bivalvia neo genica (Solenioidea-Clavagelloidea). – Austrian Academy of Sciences Press, V + 522 p., 57 Plates, 51 text-figures, ISBN 3-7001-3499-1

Sebe, K., Kovačić, M., Magyar, I., Krizmanić, K., Špelč, M., Bigunac, D., Sutő-Szentai, M., Kovács, Á., Szuromi-Korecz, A., Bakrač, K., Hajek-Tadesse, V., Troskot-Corbi, T. & Sztanó, O. 2020: Correlation of upper Miocene–Pliocene Lake Pannon deposits across the Drava Basin, Croatia and Hungary. – Geologia Croatica 73, 177–195. https://doi.org/10.4154/gc.2020.12

Sebe, K., Konrád, Gy. & Sztanó, O. 2021: An exceptional surface occurrence: the middle to upper Miocene succession of Pécs-Danitzpuszta (SW Hungary). – Földtani Közlöny 151/3, 235–252.

Sremac, J. 1981: Some new and less known species of molluscs of the Croatica-Beds and the Banatica-Beds in northern Croatia. – Földtani Közlöny 151/4 (2021)

Ztánó, M., I., Szabó, M., Kocsis, L., Bosnakoff, M. & Sebe, K. 2021: A diverse Miocene fish assemblage (Chondrichthyes and Osteichthyes) from the Pécs-Danitzpuszta sand pit (Mecsek Mts., Hungary). – Földtani Közlöny 151/4, 363–410.

Sztánó, O., Magyar, I., Szónoky, M., Lantos M., Müller P., Lenkey L., Katona L. & Csillag G. 2013: A Tihanyi Formáció a Balaton környékén: típusszelvény, képződési körülmények, rétegtani jellemzés. (Tihany Formation in the surroundings of Lake Balaton: type locality, depositional setting and stratigraphy.) – Földtani Közlöny 143, 73–98. (in Hungarian with English abstract)

Szuromi-Korecz, A., Magyar, I., Sztánó, O., Csoma, V., Botka, D., Sebe, K. & Toth, E. 2021: Various marginal marine environments in the Central Paratethys: Late Badenian and Sarmatian (middle Miocene) marine and non-marine microfossils from Pécs-Danitzpuszta, southern Hungary. – Földtani Közlöny 151/3, 275–304.

Ter Borgh, M., Vasiliev, I., Stoica, M., Knežević, S., Matejko, L., Krigsmann, W., Rundić, L. J. & Ciolethning, S. 2013: The isolation of the Pannonian basin (Central Paratethys): new constraints from magnetostratigraphy and biostratigraphy. – Global and Planetary Change 103, 99–118. https://doi.org/10.1016/j.gloplacha.2012.10.001

Vadasz E. 1953: Magyarország földtana. – Akadémiai Kiadó, Budapest, 395 p.

Vasiliev, I., Bakrač, K., Kovačić, M., Abdul Aziz, H. & Krigsmann, W. 2007: Palaeomagnetic results from the Sarmatian/Pannonian boundary in North-Eastern Croatia (Vranović section, Nasice quarry). – Geologia Croatica 60, 151–163

Vitáliš I. 1908: A Tihanyi Fehérszor díciókó körét és faunája. (Die pliozäne Schichtenreihe des Fehérpart bei Tihany und deren Fauna.) – Földtani Közlöny 38, 665–678; 701–716.

Vitáliš I. 1915: A „Congeria dactylus Brus.” rendszertani helyzete. – Mathematikai és Természettudományi Értesítő 33, 331–338.

Vrsaljko, D. 1999: The Pannonian palaeoecology and biostratigraphy of molluscs from Kostanjek – Medvednica Mt., Croatia. – Geologia Croatica 52, 9–27.

Wanek F. 2016: IV, nap: Tanulmányi kirándulás az Erdélyi-medence harmadidőszaki üledéksorának megismeréséhez. [Day 4: Field trip for an insight into the Tertiary succession of the Transylvanian Basin]. – In: Lengyel H. (ed.): VI. Kárpát-medencei Összegyetemi Terepgyakorlat, Erdélyi-szigethegység, 2016. augusztus 15–21., Torockó. [6th Annual Field Trip of the Youth Committee of the Hungarian Geological Society, Apuseni Mountains, 15–21 August 2016, Rimetea]. – Guidebook, August 2016, Cluj-Napoca, 22–35. (in Hungarian)

Manuscript received: 30/07/2021
Plate I – I. tábla

Sarmatian mollusks from the Pécs-Danitzpuszta exploratory trench (D55 to D37 interval, Units 1 and 2). 1: Dreissenidae sp., D55; 2: Lymnocardiinae sp., D55; 3: Lymnocardiinae sp., D47; 4: *Lymnaea* sp., D43; 5: *Radix* cf. *croatica*, D43; 6: *Radix* cf. *croatica*, D40; 7: *Lymnaea* sp., D39; 8: Planorbidae sp., D37; 9: *Theodoxus* sp., D37; 10: *Lymnaea* sp., thin section, IN, D39; 11: Limestone densely packed with gastropods, mostly hydrobiids, D43; 12: Gastropod and ostracod segments, thin section, IN, D39

Sarmata puhatetések a pécs-danitzpuszta kutatásihez (D35–D37, 1. és 2. szakasz). 1: Dreissenidae sp., D55; 2: Lymnocardiinae sp., D55; 3: Lymnocardiinae sp., D47; 4: *Lymnaea* sp., D43; 5: *Radix* cf. *croatica*, D43; 6: *Radix* cf. *croatica*, D40; 7: *Lymnaea* sp., D39; 8: Planorbidae sp., D37; 9: *Theodoxus* sp., D37; 10: *Lymnaea* sp., vekonyírásos, IN, D39; 11: Csigás mészkő, főként *Hydrobia*-félékkel, D43; 12: Csigás és kagylósrák-metszetek, vekonyírásos, IN, D40; 13: *Hydrobia*-féle csiga és kagylósrák-metszetek, vekonyírásos, IN, D39

Plate II – II. tábla

Sarmatian-type mollusks of layer D35 (Unit 3). Pécs-Danitzpuszta, exploratory trench. 1–2: *Inaequicoecosta* cf. *pia*; 3: *Planocardium* sp.; 4: *Lymnocardium* cf. *praeponticum*; 5 and 10: Oboletiformes cf. *kaudensis*; 6–8: Lymnocardiinae sp.; 9: Oboletiformes cf. *fischeriformis*; 11–12: *Inaequicoecosta* cf. *nigra*; 13–15: Cardiid bivalves in thin sections, IN; 16–20: Hydrobiidae in thin sections, IN

Szarmata típusú puhatestűek a D35-ös rétegből (3. szakasz), Pécs-Danitzpuszta, kutatóárok. 1–2: *Inaequicoecosta* cf. *pia*; 3: *Planocardium* sp.; 4: *Lymnocardium* cf. *praeponticum*; 5 and 10: Oboletiformes cf. *kaudensis*; 6–8: Lymnocardiinae sp.; 9: Oboletiformes cf. *fischeriformis*; 11–12: *Inaequicoecosta* cf. *nigra*; 13–15: Cardiid bivalves in thin sections, IN; 16–20: Hydrobiidae in thin sections, IN

Plate III – III. tábla

Pannonian mollusks of layer D12 (Unit 4). Pécs-Danitzpuszta, exploratory trench. 1–4: *Congeria* cf. *banatica*; 5: *Congeria* cf. *martonfii*; 6–8: *Congeria* div. sp.; 9: *Congeria* cf. *ramphophora*; 10: *Congeria* cf. *neumayri*; 11–12: *Lymnocardium* cf. *praeponticum*; 13–14: *Lymnocardium* cf. *plicataeformis*; 16: Ostracod valve and quartz grains in thin section, IN; 17–19: *Radix* *croatica*; 20: Hydrobiidae sp.

Pannoniai puhatestűek a D12-es rétegből (4. szakasz), Pécs-Danitzpuszta, kutatásiárok. 1–4: *Congeria* cf. *banatica*; 5: *Congeria* cf. *martonfii*; 6–8: *Congeria* div. sp.; 9: *Congeria* cf. *ramphophora*; 10: *Congeria* cf. *neumayri*; 11–12: *Lymnocardium* cf. *praeponticum*; 13–14: *Lymnocardium* cf. *plicataeformis*; 16: Kagylósrák teknő és kvarcszemcsék vekonyírásosban, IN; 17–19: *Radix* *croatica*; 20: Hydrobiidae sp.

Plate IV – IV. tábla

Pannonian mollusks of the white marls (D7 to D215 interval, Units 5–7). Pécs-Danitzpuszta sand pit. 1–5: *Paradacna abichi*; 6–9: Lymnocardiinae sp.; 10–11: *Lymnocardium* margaritaceum; 12: Velutinopsis sp.; 13: Micromelanida striata; 14: *Orygoceras* brusi; D15: Unio cf. *atis*; 16: Melanopsis fossilis

Pannoniai puhatestűek a fehér márgából (D7–D215, 5–7. szakasz), Pécs-Danitzpuszta homokbánya. 1–5: *Paradacna abichi*; 6–9: Lymnocardiinae sp.; 10–11: *Lymnocardium* margaritaceum; 12: Velutinopsis sp.; 13: Micromelanida striata; 14: *Orygoceras* brusi; D15: Unio cf. *atis*; 16: Melanopsis fossilis

Plate V – V. tábla

Pannonian mollusks of the silts (D219 to D226 interval, Unit 8). Pécs-Danitzpuszta sand pit. 1: *Congeria partshi firmocarinata*; 2–3: *Congeria zsigmondyi*; 4–7: Dreissenomya primiformis; 8–11: *Lymnocardium* aff. boechii; 12–15: *Lymnocardium* winkleri

Pannoniai puhatestűek az aleurólióból (D219–D226, 8. szakasz), péc-danitzpuszta homokbánya. 1: *Congeria partshi firmocarinata*; 2–3: *Congeria zsigmondyi*; 4–7: Dreissenomya primiformis; 8–11: *Lymnocardium* aff. boechii; 12–15: *Lymnocardium* winkleri

Plate VI – VI. tábla

Pannonian mollusks of the silts (D219 to D226 interval, Unit 8). Pécs-Danitzpuszta sand pit. 1–2: *Lymnocardium* schedelium; 3–4: *Lymnocardium* carnunatem; 5–7: *Lymnocardium* tegulatatum; 8: *Lymnocardium* aff. danici; 9: *Lymnocardium* cf. *proximum*; 10–11: *Paradacna* sp.; 12: *Lymnocardium* cf. *asperocostatum*; 13: *Pontalmyra* otiophora; 14 and 16–18: Lymnocardiinae sp.; 15: *Pseudocatillus* sp.; 19: *Caladacna* aff. steindachneri; 20: *Phyllocardium* sp.; 21: Melanopsis austriaca; 22: Gyraulus tenuiistriatus

Pannoniai puhatestűek az aleurólióból (D219–D226, 8. szakasz), péc-danitzpuszta homokbánya. 1–2: *Lymnocardium* schedelium; 3–4: *Lymnocardium* carnunatem; 5–7: *Lymnocardium* tegulatatum; 8: *Lymnocardium* aff. danici; 9: *Lymnocardium* cf. *proximum*; 10–11: *Paradacna* sp.; 12: *Lymnocardium* cf. *asperocostatum*; 13: *Pontalmyra* otiophora; 14 and 16–18: Lymnocardiinae sp.; 15: *Pseudocatillus* sp.; 19: *Caladacna* aff. steindachneri; 20: *Phyllocardium* sp.; 21: Melanopsis austriaca; 22: Gyraulus tenuiistriatus

Plate VII – VII. tábla

Pannonian mollusks of the limonitic sand (Layer D227, Unit 9). Pécs-Danitzpuszta sand pit. 1–3: *Congeria hemiptyucha*; 4–5: *Congeria ungulacaprae*; 6: *Congeria partshi*
Plate VIII – VIII. tábla

Pannonian mollusks of the limonitic sand (Layer D227, Unit 9), Pécs-Danitzpuszta sand pit. 1: Congeria balatonica; 2–3: Congeria partschi; 4: Dreissenomya dactylus; 5: "Lymnocardium" aff. danicii; 6–8: Lymnocardium cf. tucani; 9: Lymnocardium cf. conjungens; 10: Lymnocardium schedelianum; 11: Phyllocardium complanatum

Pannóniai puhatestűek a limonitos homokból (D227-es réteg, 9. szakasz), pécs-danitzpuszta homokbánya. 1: Congeria balatonica; 2–3: Congeria partschi; 4: Dreissenomya dactylus; 5: "Lymnocardium" aff. danicii; 6–8: Lymnocardium cf. tucani; 9: Lymnocardium cf. conjungens; 10: Lymnocardium schedelianum; 11: Phyllocardium complanatum
Plate II – II. tábla

|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 |

Each image is labeled with a number from 1 to 20 and has a scale of 5 mm for the first four rows and 500 μm for the last four rows.
Plate III – III. tábla
Plate IV – IV. tábla
Plate V – V. tábla
Plate VI – VI. tábla
Plate VII – VII. tábla
Plate VIII – VIII. tábla
Appendix

Systematic Palaeontology

Our approach to taxonomic identifications is outlined in chapter Material and methods.

Bivalvia LINNAEUS, 1758
Cardiidae LAMARCK, 1809
Lymnocardiinae STOLICZKA, 1870
Genus Lymnocardium STOLICZKA, 1870
Type species: Cardium haueri M. HÖRNES, 1862; original designation

“Lymnocardium” carnuntinum (M. HÖRNES, 1862)
(Plate VI, figs 3–4)

*1862 Cardium Carnuntinum M. HÖRNES, p. 204, pl. 30, fig. 2.
1882 Cardium (Adacna) Suessi BARB. – HALAVÁTS, p. 150, pl. 14, figs 6–8.
1886a Cardium (Adacna) pseudo-Suessi HALAVÁTS, p. 127, pl. 6, figs 1–5, [new synonym]
1886b Cardium (Adacna) pseudo-Suessi HAL. – HALAVÁTS, p. 128, pl. 25, figs 3–4.
non 1899 Lymnocardium pseudo-Suessi HÁL. – GORIANOVIĆ-KRAMBERGER, p. 236.
1953 Lymnocardium carnuntinum (PARTSCH, HÖRNES) – PAPP, p. 199, pl. 23, figs 17–19; pl. 24, Fig. 5.
1959 Lymnocardium pseudosuessi HALAVÁTS – MILETIĆ-SPAJIĆ, pl. 8, figs 9–10.
1966 Lymnocardium carnuntinum PARTSCH – CHIVU et al., p. 246, pl. 2, fig. 5.
?1968 Lymnocardium pseudosuessi HALAVÁTS – SAGATOVICI, pl. 14, fig. 4.
1983 Lymnocardium pseudosuessi (HALAV.) – KORPÁS-HÖDI, p. 145, pl. 1, fig. 3.
1985 Lymnocardium pseudosuessi (HALAVÁTS) – KORPÁS-HÖDI in JÁMBOR et al., p. 227, pl. 19, fig. 2.
1985 Lymnocardium carnuntinum (PARTSCH) – PAPP, p. 307, pl. 42, figs 8–10.
2003 Lymnocardium (Lymnocardium) carnuntinum (HÖRNES) – SCHULTZ, p. 616, pl. 87, figs 9–10; pl. 88, fig. 7.
2008 Lymnocardium pseudosuessi HALAVÁTS – CZICZER et al., pl. 30 figs 5a–b.

Type locality: Vienna, 10th district (Inzersdorf, Wienerberg)
Type material: Syntypes: NHMW, 1851/II/158
Remarks: Neither the description nor the illustrations by HÖRNES (1862) refer to the distinct primary and secondary radial ribs of this species. HALAVÁTS (1886) recognized L. pseudosuessi as a new species based on this characteristic rib pattern. A comparison of the syntypes of L. pseudosuessi with those of L. carnuntinum, however, unanimously shows that they represent the same species.

L. carnuntinum is widely known from the marginal parts of the Pannonian Basin System, such as the Vienna Basin in Austria, the Iulian Mts. and Morava Valley in Serbia, the southern Banat, Oaș, and Șimleu Basins in western Romania, and in the margins of the Transdanubian Range in Hungary.

Stratigraphic range and age: The oldest known dated occurrence of the species was reported from borehole La- joskomárom (Lk)–1, 585.3–572 m (KÖRÖS-HÖDI in JÁMBOR et al. 1985), from the Spiniferites oblongus Zone (SÜTŐ-SZENTAI in JÁMBOR et al. 1985), which is thought to be ca. 11.2–10.8 Ma (MAGYAR & GEARY 2012). The latest occurrences are known from the northwestern foreland of the Transdanubian Range, dated as 9.4–8.9 Ma (SZÁK Fm.; KÖRÖS-HÖDI 1983; CZICZER et al. 2009).

Lymnocardium schedelianum (FUCHS, 1870)
(Plate VI, figs 1–2; Plate VIII, fig. 10)

1862 Cardium aperture MÜNSTER – M. HÖRNES, p. 201, pl. 29, figs 5–6.
*1870 Lymnocardium schedelianum FUCHS, p. 354.
non 1884 Adacna Schedeliana PARTSCH – BRUSINA, p. 151, pl. 28, fig. 43.
1903 Lymnocardium Schedelianum PARTSCH – ANDRUSOV, p. 39, pl. 3, figs 18–21.
non 1943 Lymnocardium schedelianum PARTSCH – GILLET, p. 58, pl. 5, fig. 11.
?1943 Lymnocardium schedelianum PARTSCH – SARBIENSE GILLET, p. 59, pl. 5, fig. 12.
1953 Lymnocardium schedelianum (PARTSCH) – PAPP, p. 198, pl. 24, fig. 3.
?1966 Lymnocardium schedelianum PARTSCH – CHIVU et al., p. 246, pl. 2, fig. 7.
1967 Lymnocardium schedelianum (PARTSCH) – SPAJIĆ, p. 115, pl. 2, figs 1–5.
1980 Lymnocardium schedelianum PARTSCH – TEVANOVIĆ, pl. 4, fig. 13.
1980 Lymnocardium schedelianum (PARTSCH) – LUEGER, pl. 3, fig. 1.
1983 Lymnocardium schedelianum (PARTSCH) – NICORICI & KARAČSONYI, pl. 3, fig. 2.
1985 Lymnocardium schedelianum (PARTSCH) – PAPP, p. 307, pl. 42, fig. 11.
1988 Lymnocardium carnuntinum var. soproniense VITÁLIS – MAGYAR, p. 212, pl. 1, fig. 4.
1995 Lymnocardium schedelianum (BRUSINA) – FORDINÁL, p. 32, pl. 5, fig. 2.
1999 Lymnocardium schedelianum (PARTSCH) – MAGYAR et al., p. 672, pl. 1, fig. E.
2003 Lymnocardium (Lymnocardium) schedelianum (FUCHS) – SCHULTZ, p. 626, pl. 89, figs 10, 12.

Type locality: Brunn am Gebirge (FUCHS 1870)
Type material: Syntypes: NHMW, 1846/37/668
Remarks: In the 19th century, this species was confused with Lymnocardium apertum (MÜNSTER) (see HORNES 1862; FUCHS 1870). A possible source of this confusion was that a typical L. schedelianum specimen was labelled in the old collection of the Natural History Museum Vienna as coming from Tihany, where L. apertum is a common species. As the recent revision of L. schedelianum (see SCHULTZ 2003) maintained the notion of HORNES (1862), FUCHS (1870), and ANDRUSOV (1903) that this species occurs in Tihany, we find it important to emphasize that repeated exhaustive collections in Tihany (HALAVÁTS 1902, LÖRÉNTHÉY 1905, VITÁLIS 1908, BARTHA 1959, MÜLLER & SZÖNOKY 1990, SZTANÓ et al. 2013) failed to yield L. schedelianum specimens from any outcrop of the region. To our best understanding, this species evolved into other forms and thus went extinct by the time when the Tihany beds were deposited (MAGYAR et al. 2016). Therefore, we argue that the Tihany specimen of L. schedelianum in the Vienna museum collection was mislabeled.

In fact, L. schedelianum can be easily distinguished from L. apertum by its more elongated outline, higher number of ribs, and significantly larger size. It shows, however, very close resemblance to L. soproniensis VITÁLIS and L. variocostatum VITÁLIS, which can be considered as its descendants (MAGYAR et al. 2016).

Lymnocardium schedelianum is a widely distributed species in the Pannonian Basin: it occurs in the Vienna Basin in Austria and the Czech Republic, in the Danube Basin in Austria, Slovakia, and Hungary, in the northern and eastern margins of the Great Hungarian Plain in Hungary and Romania, south of the Danube and the Sava in Serbia and Bosnia, along the Sava in Slovenia, and in Burgenland in Austria. Lymnocardium schedelianum is recovered from both sublittoral clay layers and littoral sand deposits.

Stratigraphic range: Lymnocardium schedelianum and L. conjungens Zones (?11.0–9.6 Ma). According to PAPP (1953), the oldest occurrences of the species belong to “Zone D” in the Vienna Basin (10.6–10.4 Ma according to HARZHAUSER et al. 2004). The youngest specimens in the sublittoral deposits are ca. 10.2 Ma and ca. 9.6 Ma old in the littoral deposits (MAGYAR et al. 2016).

Lymnocardium winkleri (HALAVÁTS, 1882) (Plate V, figs 12–15)

*1882 Cardium (Adacna) Winkleri nov. form. HALAVÁTS, p. 153, pl. 15, figs 3–4.
1883 Cardium (Adacna) Winkleri nov. form. HALAVÁTS, p. 169, pl. 15, figs 3–4.
1959 Lymnocardium winkleri HALAVÁTS – MILETIĆ-SPAČIĆ, pl. 8, fig. 14.
?1962 Lymnocardium winkleri HALAVÁTS – SZELES, p. 56, pl. 3, fig. 4.
?1971 Lymnocardium winkleri HALAVÁTS – SZELES, p. 327, pl. 1, fig. 8.

1977 Pseudocatillus sp. – V. LUBENESCU & D. LUBENESCU, pl. 3, figs 17–18.
1977 (?) Pseudocatillus sp. – V. LUBENESCU & D. LUBENESCU, pl. 4, fig. 8.
1978 Lymnocardium lukaet STEV. – STEVANOVIC, p. 341.
1980 Lymnocardium Winkleri lukaet n. subsp. STEVANOVIC, p. 128, pl. 13, figs 19–22. [new synonym]
1980 Lymnocardium winkleri HAL. – STEVANOVIC, pl. 4, fig. 11.
1993 Lymnocardium winkleri (HALAV.) – KORPÁS-HÓDI, p. 145, pl. 1, fig. 4.
1995 Lymnocardium aff. winkleri (HALAVÁTS) – MAGYAR, fig. 4F.

Type locality: Câmpia (Langenfeld, Néramező) (HALAVÁTS 1882)
Type material: Syntypes: MBFSZ, Pl. 6379
Remarks: Lymnocardium winkleri represents the early stage of the probably anagenetic evolutionary lineage that leads to L. majeri (HORNES) then to L. peregrinum (in the Eastern Paratethys). For this lineage EBÉRZIN (1947) erected the subgenus Arpocardium. Distinction of the subspecies L. winkleri lukaet (STEVANOVIC, 1980) is probably not justified, because neither the description nor the illustration of this subspecies contains any obvious diagnostic feature by which it could be distinguished from L. winkleri. Therefore, here we treat L. winkleri lukaet as a junior synonym of L. winkleri.

Stratigraphic range: The stratigraphic range of the species is weakly constrained. The oldest dated occurrence is known from the Lajoskomárom (Lk)–1 borehole, 577.6 m, belonging to the Spiniferites obloungus Zone (ca. 10.8–11.2 Ma) (JÁMBOR et al. 1985). Stratigraphically upward, the transition to L. majeri is gradual, and no criterion has been suggested so far for the distinction between the two chronospecies.

Dreissenidae Gray, 1840
Genus Congeria PARTSCH, 1835
Type species: Congeria subglobosa PARTSCH, 1835; subsequent designation, STOLICZKA, 1870

Congeria hemiptycha BRUSINA, 1902
(Plate VII, figs 1–3)

1892 Congeria subglobosa PARTSCH – BRUSINA, p. 180.
v *1902 Congeria subglobosa hemiptycha BRUS. – BRUSINA, pl. 20, figs 1–3.
1927 Congeria Puncˇiči nov. spec. Pavlović, p. 16, pl. 2, figs 5–7; pl. 3, figs 1–3. [new synonym]
1928 Congeria Puncˇiči nov. spec. Pavlović, p. 11, pl. 2, figs 5–7; pl. 3, figs 1–3.
1939 Congeria subglobosa hemiptycha BRUS. – KOLLWANN, p. 55.
1944 Congeria hemiptycha BRUSINA – JEKELIUS, p. 146, pl. 62, fig. 4.
1952 Congeria puncˇiči Pavlović – SAUERZOPF, p. 4.
1952 Congeria puncˇiči hemiptycha BRUSINA – SAUERZOPF, p. 4.
1952 Congeria puncˇiči longiconcha n. ssp. SAUERZOPF, p. 11, pl. 1, figs 3–4. [new synonym]
1953 Congeria pancici pancici Pavlović – PAPP, p. 176, pl. 17, figs 1–2.
1959 Congeria subglobosa molaciva n. ssp. Miletić-Barić, p. 108, 121, pl. 5, fig. 1. [new synonym]
1959 Congeria cf. pancici Pavlović – Miletić-Barić, pl. 5, fig. 2.
1968 Congeria subglobosa longitesta Papp – Sagatovici, pl. 12, fig. 27; pl. 13, figs 1–2.
1974 Congeria hemiptycha Busina – Milan et al., p. 32.
1980 Congeria Pancici – Lueger, p. 2, fig. 1.
1980 Congeria sp. – Lueger, p. 111, pl. 2, fig. 4.
1981 Congeria pancici pancici Pavlović – V. Lubenescu, p. 167, pl. 10, fig. 1.
1981 Congeria subglobosa hemiptycha Busina – V. Lubenescu, p. 170–171, pl. 10, fig. 3.
1983 Congeria pancici pancici Pavlović – Nicorici & Káračsonyi, p. 231, pl. 1. figs 1–2.
1985 Congeria pancici Pavlović – Papp, p. 301, pl. 39, figs 1–2.
1989 Congeria sp. – Magyar, p. 212, pl. 1, fig. 1.
2003 Congeria pancici pancici Pavlović – Schultz, p. 811, pl. 110, figs 1–3.
2003 Congeria pancici longiconcha Sauerzoph – Schultz, p. 812, fig. 20.

**Type locality:** Zagreb–Markušević (Brusina 1902)

**Type material:** Syntypes: HPM, 2787-433, 392.1-4, 393.I-II

**Remarks:** The “holotype” designation by Milan et al. (1974) cannot be accepted as valid lectotype designation according to ICZN Article 74.5. The “stratum typicum” is also erroneously given by Milan et al. (1974) as “marls;” the species occurred in sand (see Brusina 1892).

The only difference between the type specimens of *C. hemiptycha* Brusina and *C. pancici* Pavlović is that the former has a corrugated posterior field. The presence and degree of corrugation, however, is highly variable among the specimens, and can hardly be considered a diagnostic feature.

*Congeria hemiptycha* occurs in littoral sands in the Vienna Basin (Austria), Kál Basin (Hungary), Oas and Šimleu Basins, Banat region and Transylvanian Basin (Romania), Avala Mts. (Serbia), Medvednica Mts. (Croatia), and several locations in Burgenland (Austria).

**Stratigraphic range and age:** According to Papp (1985), this species occurs in “Zone D” (very rarely) and “Zone E” (common and typical). Schultz (2003), however, listed a lot of localities belonging to “Zone D” and some even to “Zone C.” Following the age model of Harzhauser et al. (2004), *C. hemiptycha* was already present at ca. 10.6 Ma (beginning of “Chron D”), but its first appearance and ancestry remains vague. The youngest occurrences belong to the upper part of the *Lymnocardium conjungens* Zone and thus can be as young as ca. 9.6 Ma. After that, *C. hemiptycha* disappeared from the fossil record so the lineage probably went extinct.

*Congeria partschi firmocarinata* PAPP, 1953
(Plate V, fig. 1)

*1953 Congeria partschi firmocarinata* n. ssp. PAPP, p. 174, pl. 16, fig. 7.

1977 Congeria partschi firmocarinata PAPP – V. Lubenescu & D. Lubenescu, pl. 2, figs 6–7.
*1980 Congeria partschi firmocarinata* PAPP – Lueger, p. 118, 121, pl. 2, figs 2–3.
1985 Congeria partschi firmocarinata – PAPP, p. 296, pl. 38, fig. 3.
2005 Congeria partschi firmocarinata PAPP – Schultz, p. 815, pl. 110, figs 4–5; pl. 111, fig. 4.

**Type locality:** Hennersdorf (PAPP 1953)

**Type material:** Holotype: NHMW, 787/1969, Coll. PAPP 632

**Remarks:** Although our specimens were heavily deformed by lithostatic pressure, it can be established that the Pécs-Danitzpuszta and Hennersdorf specimens are morphologically indistinguishable.

**Stratigraphic range and age:** According to PAPP (1953, 1985), this species is restricted to “Zone E”, dated as 10.4–10.1 Ma by Harzhauser et al. (2004).

**Congeria zsigmondyi** Halaváts, 1882
(Plate V, figs 2–3)

*1882 Congeria Zsigmondyi n. form. HALAVAT, p. 154, pl. 15, figs 7–10.
1883 Congeria Zsigmondyi n. form. HALAVAT, p. 171, pl. 15, figs 7–10.
1897 Congeria zsigmondyi – ANDROSOV, p. 214, pl. 11, figs 21–26.
1944 Congeria zsigmondyi HALAVAT – Jekelius, p. 144, pl. 60, figs 4–7, excl. f. 8.
1953 Congeria zsigmondyi HALAVAT – Papp, p. 175, pl. 16, figs 5–6.
1966 Congeria zsigmondyi HALAVAT – Bartia, pl. 3, figs 1–3.
1997 Congeria zsigmondyi [sic!] HALAVAT – Graf et al., text-fig. 3: 3, pl. 1, figs 2–6, 10–11.
1971 Congeria zsigmondyi HALAVAT – Bartia in Gőczán & Benkő, pl. 25, figs 1–3.
1991 Congeria zsigmondyi HALAVAT – V. Lubenescu, pp. 164–165, pl. 9, fig. 5.
1985 Congeria zsigmondyi HALAVAT – Papp, p. 297, pl. 38, figs 7–10.
1999 Congeria zsigmondyi – Magyar, p. 11, fig. 2.
2001 Congeria zsigmondyi HALAVAT – Gulyás, fig. 7.
2004 Congeria zsigmondyi – Harzhauser & Mandic, p. 342, fig. 9/2.
2005 Congeria zsigmondyi HALAVAT 1882 – Schultz, p. 828, pl. 113, figs 2–3.

**Type locality:** Câmpia (Langenfeld, Néramező) (HALAVÁTS 1882)

**Type material:** Syntypes: MBFSZ, Pl. 1

**Remarks:** This species is commonly reported from various parts of the Pannonian region: Vienna Basin in Austria, NW Romania, Transylvanian Basin, southern Banat, and Mecseki Mts in Hungary.

**Stratigraphic range and age:** According to PAPP (1985), this species is restricted to clays of “Zone E.” Schultz (2005), however, lists a few localities conditionally assigned to “Zone D.” The Soceni locality is also considered older than Zone “E,” but the occurrence of *C. zsigmondyi* in Soceni is questionable, because three of the four depicted specimens in Jekelius (1944) are from Câmpia, and the only specimen depicted from Soceni probably represents another species. On the other hand, the type locality of the species is most probably somewhat
younger than “Zone E” in the Vienna Basin. Thus, the age interval of C. zsigmondyi can be estimated as 10.6–9.6 Ma.

Genus *Dreissenomya* Fuchs, 1870
Type species: *Congeria Schroedingeri* Fuchs, 1870; original designation

*Dreissenomya (Sinucongeria) dactylus* (Brusina, 1894)  
(Plate VIII, fig. 4)

1894 *Congeria dactylus* n. sp. Brusina, p. 243.
1900 *Congeria dactylus* Brusina – Andrusov, p. 80, 125.
1902 *Congeria dactylus* Brusina – Brusina, pl. 20, figs 9–13 (14–17?).
1915 Dresissiomya [sic!] dactylus Brus – Vitális, p. 334, pl. 2, figs 2–3.
1927 Dreissenomya lithodomiformis nov. spec. Pavlović, p. 24, pl. 4, figs 1–2. [new synonym]
1928 Dreissenomya lithodomiformis nov. spec. Pavlović, p. 17, pl. 4, figs 1–2.
1974 *Congeria dactylus* – Brusina – Milan et al., p. 26.
1990 *Congeria dactylus* Brusina – Basch, p. 555, pl. 3, fig. 3.
1992 Dreissenomya (Sinucongeria) dactyla (Brusina) – Basch & Žagar-Sakač, p. 27, pl. 17, figs 3–6.
2005 Mytilopsis cf. scrobiculata scrobiculata (Andrusov) – Schultz, p. 798, pl. 105, figs 9–10.
2015 Dreissenomya dactylus (Brusina) – Katona et al., p. 149, pl. 11, fig. 8.

*Type locality:* “between Balatonkenes and Siófok” (Brusina 1894), i.e., south of Balatonkenese

*Type material:* Lectotype: HPm, 2789-435 (subsequent designation, D. dactylus, 1912 ; original

*Remarks:* Brusina (1894) characterized his new species as “presenting the appearance of a Lithodorus,” but he did not give further description. In our view, his remark can be considered a valid diagnosis because *D. dactylus* is the only dreissenid that resembles the marine mytilid boring bivalve “Lithodorus” (*Lithophaga*), also known as date mussel. Pavlović (1927, 1928) also noted this similarity, hence the name *lithodomiformis*. The species was illustrated from Balatonkenese (Brusina 1902), Tihany (Vitális 1915), Vrčin-Karagača creek (Pavlović 1927, 1928), Jagndedovec (Basch 1990, Basch & Žagar-Sakač 1992), Vösendorf (Schultz 2005), and Balatonalmádi (Katona et al. 2015).

*Stratigraphic range and age:* The oldest known occurrence, Vösendorf, is assigned to “Zone E” of Papa (1951, 1953), dated as 10.4–10.1 Ma (Harzhausen et al. 2004). The occurrences in Tihany, Balatonalmádi and Balatonkenese belong to the *Lymnocardium decorum* Zone, 8.7–8.0 Ma (Magyar & Geary 2012), whereas the biostratigraphic position and age of the Jagndedovec material (Basch 1990) is unknown to us.

*Type species:* *Micromelania cerithiopsis* Brusina, 1874; subsequent designation, Dollfus, 1912

*Micromelania striata* Gorjanovč-Kramberger, 1890  
(Plate IV, fig. 13)

*Type locality:* Zagreb–Vrapče (Gorjanovč-Kramberger 1890)

*Type material:* Syntypes: HPm, 5165-330/1-2 (Milan et al. 1974); GBA

*Remarks:* In addition to the syntypes reposited in HPm, a specimen collected by the author of the species is also available in the type collection of GBA.

The shell has 9–11 whors with fine parallel growth lines and longitudinal striae, resulting in a square grid ornamentation. This can only be observed on well-preserved shells or sometimes on imprints. *Micromelania lapadensis* described by Lörenthey (1983) is probably a junior synonym of *M. striata*, but the figure of Lörenthey does not allow precise comparison.

*Stratigraphic range and age:* This species was described and mentioned from old Pannonian offshore (sublittoral and profundal) marls all over the Pannonian Basin proper (Vrapče, Medvednica Mts., Croatia – Gorjanovč-Kramberger 1890; Lopadea Veche, Transylvanian Basin, Romania – Lörenthey 1893; Lajoskomárom-I borehole, Hungary – Jambor et al. 1985, 1987; Beočin, Fruska Gora Mts., Serbia – Ter Borgh et al. 2013). It is a common species in the *Lymnocardium praeponticum, Congeria czjzei and Congeria banatica* Zones (from 11.6 to 9.5 Ma).

*Lymnaeidae Rafinesque, 1815
Genus *Radix* Montfort, 1810
Type species: *Radix auriculatus* Montfort, 1810; original designation

*Radix croatica* (Gorjanovč-Kramberger, 1890)  
(Plate III, figs 17–19)

*Type locality:* Zagreb–Vrapče (Gorjanovč-Kramberger 1890)
Planorbidae RAFINESQUE, 1815
Genus Gyraulus CHARPENTIER, 1837
Type species: Planorbis albus O. F. MÜLLER, 1774; subsequent designation, DALL, 1870

Gyraulus teniiitriatus (GORJANOVIC-KRAMBERGER, 1899)
(Plate VI, fig. 22)

v. *1899 Planorbis teniiitriatus KRAMB.-GORJ. – GORJANOVIC-KRAMBERGER, p. 129, pl. V fig. 7.
1956 Planorbis (Gyraulus) cf. teniiitriatus GORJ.-KRAMBG. – PAPP, p. 70.
1977 Planorbis teniiitriatus [sic!] GORJ.-KRAMB. – V. LUBENESCU & D. LUBENESCU, pl. 2 fig. 5.
1984 Gyraulus sp. – V. LUBENESCU & POPESCU, pl. 1 fig. 8.
1985 Gyraulus teniiitriatus (GORJ.-KRAMB.) – JÁMBOR et al., pl. 23 fig. 3.
1987 Gyraulus teniiitriatus (GORJ.-KRAMB.) – JÁMBOR et al., pl. 8 fig. 3.
2009 „Gyraulus” teniiitriatus (GORJANOVIC-KRAMBERGER) – CZICZER et al., fig. 60.
2010 „Gyraulus” teniiitriatus (GORJANOVIC-KRAMBERGER) – MAGYAR, fig. 11.
2013 Gyraulus praeponticus (GORJ.-KRAMB.) – TER BORGH et al., fig. 9: 17–18.
2016 Gyraulus sp. – MANDIC et al., fig. 17.
2016 Planorbis [sic!] sp. – WANEK, p. 29, fig. 5.
2019 Gyraulus teniiitriatus (GORJANOVIC-KRAMBERGER) – BOTKA et al., fig. 3: f.

Type material: Syntypes: HPM 5178-343–5180-345 (MILAN et al. 1974), GBA

Remarks: In addition to the syntypes repositied in HPM, a specimen collected by the author of the species is also available in the type collection of GBA, subsequently labelled as “syntype.”

Fine growth lines, four whorls (in most cases, just three whorls can be seen, the last whorl covers the third one), and a strongly widening last whorl with an oval and rimmed aperture characterize this species. Protoconch can be observed only in well-preserved specimens. Limnaea extensa species of GORJANOVIC-KRAMBERGER is probably a steinkern of a R. croatica specimen and shows the internal structure and ornamentation and all the four whorls of R. croatica. Radix kobelti is not a synonym of R. croatica, but it is frequently confused with R. croatica. Radix kobelti is a shallow-water species of young Pannonian (“Pontian”) sands, whereas R. croatica is a typical member of old Pannonian marls and limestones.

Stratigraphic range and age: This species was described and mentioned from old Pannonian offshore (sub littoral and profundo) marls all over the Pannonian Basin (Vrapče, Medvednica Mts., Croatia – GORJANOVIC-KRAMBERGER 1890; Kostanjek/Podsused, Medvednica Mts., Croatia – PAPP 1956; VRSALJKO 1999; Gojlo-4 and Bujavica-9 boreholes, Sava Basin, Croatia – MOOS 1944; Lajoskómárom–1 borehole, Hungary – JÁMBOR et al. 1985, 1987; localities of the northern foreground of the Transdanubian Range, Hungary – CZICZER et al. 2009; Beočin, Fruška Gora Mts., Serbia – TER BORGH et al. 2013; various localities from the Transylvanian Basin, Romania – V. LUBENESCU & D. LUBENESCU 1977, 1981; LUBENESCU & POPESCU 1984, MAGYAR 2010, WANEK 2016, BOTKA et al. 2019). It is a common species in the Lymnocardium praeponticum, Congeria czjzeki and Congeria banatica Zones (from 11.6 to 9.5 Ma).

Genus Orygoceras BRUSINA, 1882
Type species: Orygoceras cornucopiae BRUSINA, 1882; subsequent designation, COSSMANN, 1921

Orygoceras fuchsi (KITTL, 1886)

*1886 Creseis Fuchs n. f. KITTL, p. 50, pl. 2, figs 1–3.
\textit{v. 1890 Orygoceras levis KRAMB.-GORJ. – GORJANOVIC-KRAMBERGER, p. 158, pl. 6, fig. 11 [new synonym]}
\textit{v. 1892 Orygoceras corniculum BRUSINA n. sp. – BRUSINA, pp. 169–171.}
1893 Orygoceras levis KRAMB.-GORJ. (? – LÖRENTH, pp. 310–311.
1902 Orygoceras corniculum BRUSINA – BRUSINA, pl. 2, figs 34–37.
1902 Orygoceras corniculum BRUS. – LÖRENTH, pp. 194–196, pl. 11, figs 20–22; pl. 12, fig. 11.
1944 Orygoceras fuchsi KITTL – JEKELIUS, p. 118, pl. 43, figs 22–23.
1956 Orygoceras fuchsi fuchsi (KITTL) – PAPP, p. 70.
1985 Orygoceras laevis [sic!] GORJ.-KRAMB. – JÁMBOR et al., pl. 23, figs 7–8.
1985 Orygoceras fuchsi fuchsi (KITTL) – PAPP, p. 288, text-figs 38–40: 1–2c.
1987 Orygoceras laevis [sic!] GORJ.-KRAMB. – JÁMBOR et al., pl. 8, figs 7–8.
1999 Orygoceras fuchsi KITTL – LENNERT et al., pl. 5, figs 10–11.
2010 Orygoceras levis GORJANOVIC-KRAMBERGER – MAGYAR, fig. 29b:E.
2019 Orygoceras levis GORJANOVIC-KRAMBERGER – BOTKA et al., fig. 3: g.

Type locality: Forchtenstein (KITTL 1886). According to LÖRENTH (1903), the type locality is not correct, the specimens described and figured by KITTL. (1886) must have originated from the Sopron area, where old Pannonian layers are exposed.
**Type material:** unknown

**Remarks:** The species has a thin, smooth, dentaliform shell. Growth lines can sometimes be seen. Protoconch is a half smooth whorl. According to Lőrenthey (1903), *O. corniculum* is a junior synonym of *O. fuchsi*. We share this opinion and add that the same applies to *O. levis*.

**Stratigraphic range and age:** This species was described and mentioned from old Pannonian offshore (sublittoral and profundal) marls all over the Pannonian Basin (?Forchtenstein, Eisenstadt–Sopron Basin, Austria – Kitti 1886; Vrapče, Medvednica Mts., Croatia – Gorjanovic-Kramberger 1890; Lopadea Veche, Transylvanian Basin, Romania – Lőrenthey 1893; Markušević, Medvednica Mts., Croatia – Brusina 1892, 1902; Ripanj, Šumadija Hills, Serbia – Brusina 1902; Budapest-Kőbánya, Pannonian Basin and Tinnye, Zsámébk Basin, Hungary – Lőrenthey 1902; Soceni, Pannonian Basin, Romania – Jekelius 1944; Lajoskomárom–1 borehole, Hungary – Jámbor et al. 1985, 1987; Costanjek/Podsused, Medvednica Mts., Croatia – Papp 1956; Leobersdorf, Vienna Basin, Austria – Papp 1985; Oarba de Munț, Transylvania, Romania – Magyar 2010, Botka et al. 2019). It is a common species in the Lymnocardium praeponticum, Congeria czjzeki, and Congeria banatica Zones (from 11.6 to 9.5 Ma). Sporadic occurrences were reported from the much younger Congeria rhomboidea Zone (from 8 to 7.5 Ma) as well.

*Orygoceras brusinai* Gorjanovic-Kramberger, 1890

(Plate IV, fig. 14)

\[1890 Orygoceras Brusinai Kramb.-Gorj. – Gorjanovic-Kramberger, p. 158, pl. 6, figs 10–10a.
\]

\[1892 Orygoceras filocinctum Brusina n. sp. – Brusina, p. 171.\] [new synonym]

\[1892 Orygoceras cultratum Brusina n. sp. – Brusina, p. 171.\] [new synonym]

\[1902 Orygoceras filocinctum Brusina – Brusina, pl. 2, figs 23–28.\]

\[1902 Orygoceras cultratum Brusina – Brusina, pl. 2, figs 29–33.\]

\[1902 Orygoceras cultratum Brus. – Lőrenthey, p. 196, pl. 12, fig. 13; pl. 13, figs 2–5.\]

\[1902 Orygoceras filocinctum Brus. – Lőrenthey, p. 196, pl. 11, fig. 23; pl. 12, fig. 12; pl. 13, fig. 1.\]

\[1944 Orygoceras fuchsi filocinctum Brusina – Jekelius, p. 118, pl. 43, figs 24–25.\]

\[1944 Orygoceras fuchsi cultratum Brusina – Jekelius, p. 118, pl. 43, figs 26–28.\]

\[1956 Orygoceras fuchsi brusinai Gorj.-Krambg. – Papp, p. 70.\]

\[1985 Orygoceras fuchsi filocinctum Brusina – Papp, p. 288, text-fig. 40:3a–b.\]

\[2010 Orygoceras brusinai Gorjanovic-Kramberger – Magyar, fig. 29b-D.\]

**Type locality:** Zagreb–Vrapče (Gorjanovic-Kramberger 1890)

**Type material:** Syntype: HPM 5162–327

**Remarks:** This species has thin dentaliform shell, ornamented with rings on the upper part. Growth lines can sometimes be seen on well-preserved specimens. Protoconch is a half smooth whorl. *Orygoceras brusinai*, *O. filocinctum*, and *O. cultratum* are probably junior synonyms. *Orygoceras cultratum* bears less rings, which are far from each other, while *O. filocinctum* has more, closer spaced rings. However, this observation might be a matter of the preservation state or intraspecific variability.

**Stratigraphic range and age:** This species was described and mentioned from old Pannonian offshore (sublittoral and profundal) marls all over the Pannonian Basin (Vrapče, Medvednica Mts., Croatia – Gorjanovic-Kramberger 1890; Markušević, Medvednica Mts., Croatia – Brusina 1892, 1902; Budapest-Kőbánya, Pannonian Basin and Tinnye, Zsámébk Basin, Hungary – Lőrenthey 1902; Soceni, Pannonian Basin, Romania – Jekelius 1944; Kostanjek/Podsused, Medvednica Mts., Croatia – Papp 1956; Leobersdorf, Vienna Basin, Austria – Papp 1985; Oarba de Munț, Transylvania, Romania – Magyar 2010). *Orygoceras brusinai* is less common than *O. fuchsi* in the Lymnocardium praeponticum, Congeria czjzeki and Congeria banatica Zones (from 11.6 to 9.5 Ma).