Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells [version 1; peer review: 3 approved]

Xiaojing Ma1,2, Wenjun Yan1, Hua Zheng1, Qinglin Du1, Lixing Zhang1, Yi Ban2, Na Li1, Fang Wei1

1State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
2Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA

Abstract
Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12.

Keywords
IL-12, IL-10, immune signaling
Corresponding author: Xiaojing Ma (xim2002@med.cornell.edu)

Competing interests: The authors declare that they have no competing interests.

Grant information: This work was supported in part by a grant from the Natural Science Foundation of China (31370903) to XM and by a grant from the National Institutes of Health of the US (1R21AI101841-01) to XM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2015 Ma X et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Ma X, Yan W, Zheng H et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells [version 1; peer review: 3 approved] F1000Research 2015, 4(F1000 Faculty Rev):1465 https://doi.org/10.12688/f1000research.7010.1

First published: 17 Dec 2015, 4(F1000 Faculty Rev):1465 https://doi.org/10.12688/f1000research.7010.1
Interleukin-12 signaling

Interleukin-12 (IL-12) is the first member of a family of heterodimeric cytokines identified\(^1\). It is a pro-inflammatory molecule produced primarily by professional antigen-presenting cells (APCs), including monocytes/macrophages and dendritic cells (DCs)\(^2\). IL-12 is composed of p35 (encoded by *Il12a*) and p40 (encoded by *Il12b*) chains, and it principally activates natural killer (NK) cells and induces the differentiation of naïve CD4\(^+\) T lymphocytes to become interferon-gamma (IFN-γ)-producing T helper 1 (Th1) effectors in cell-mediated immune responses to intracellular pathogens\(^3\). IFN-γ, in turn, acts on APCs to augment IL-12 secretion in a positive feedback loop\(^4,5\). The p40 chain can also form a dimer with p19 to give rise to IL-23\(^6\), which is required for Th17 differentiation, function, and maintenance\(^6,7\). Similarly, the p35 chain can combine with Epstein-Barr-induced 3 (EBI3) to form IL-35\(^8\), the latest addition to the IL-12 family, in induced regulatory T-cell population (referred to as iTregs\(^9\)) and in tolerogenic human DCs\(^9\). IL-12 and IL-23 have overlapping as well as distinct immunostimulatory activities\(^9,10\). IL-12 signals through the IL-12 receptor (IL-12R) comprised of the IL-12Rβ1 and IL-12Rβ2 subunits that are expressed on T cells, NK cells, and DCs\(^11,12\). IL-12 stimulates non-receptor Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) activities, leading to the phosphorylation of signal transducers and activators of transcription (STATs) (in particular, STAT4 homodimers)\(^12,13\). IL-35 is an immunosuppressive cytokine that signals through IL-12β2 and gp130, resulting in the heterodimeric formation and activation of STAT1 and STAT4, which in turn bind to the unique promoter regions of Ebi3 and *Il12a*\(^14\).

Regulation of interleukin-12 production

Both *Il12a* and *Il12b* genes need to be expressed coordinately in the same cells to produce biologically active IL-12\(^15\). Paradoxically, the mRNA of *Il12a* is widely expressed in many cell types, albeit at low levels in some cells, most of which do not even produce IL-12. The *Il12b* mRNA is restricted to cells that can produce biologically active heterodimer\(^16\). Synthesis of the p35 chain was proposed to be a rate-limiting step for IL-12 production for its low abundance and be a rate-limiting step for IL-12 production for its low abundance. However, the further downstream signaling is not clear. Goodridge *et al.* observed that whilst LPS-induced p38 mitogen-activated protein kinase (MAPK) activation is required for the induction of both p40 and p35 subunits, extracellular signal-regulated kinase (ERK) signaling mediates negative feedback regulation of p40, but not p35, production\(^17\). Such ERK activation is downstream of calcium influx and targets LPS-induced IL-12b transcription by suppressing the synthesis of the transcription factor IRF-1. In contrast, the negative regulation of the p35 subunit of IL-12 occurs via a calcium-dependent, but ERK-independent, mechanism, which was thought to involve NFκB signaling.

CpG oligodeoxynucleotides (ODN) activates the TLR9/MyD88/TRAF6 (TNF receptor-associated factor 6) cascade leading to the activation of I kappa B kinase (IKK) -NFκB and JNK, which are critical for the production of pro-inflammatory cytokines. Ma *et al.* reported that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is involved in this activation process\(^18\). DNA-PKcs-deficient DCs exhibited a defect in the IL-6 and IL-12p40 expression in response to CpG-ODN in a dose- and time-dependent manner. Loss of DNA-PKcs impaired phosphorylation of IKK, IkBα, NFκB, and JNK in response to CpG-ODN\(^19\). TLR2-mediated production of IL-12p40 in monocytes and macrophages triggered by the synthetic ligand Pam3csk4 has been shown to activate the phosphorylation of JNK-1/2. Blocking JNK with a chemical inhibitor resulted in inhibition of Pam3csk4-induced p40 production\(^20\). However, the further downstream signaling is not clear.

At the transcriptional level, the differential regulation of *Il12a* and *Il12b* genes is well illustrated in macrophages derived from C/EBPβ-deficient mice. In sharp contrast to the enhanced induction of *Il12b* mRNA, C/EBPβ\(^21\) primary macrophages derived from

\(^{\text{Page 3 of 13}}\)
both the bone marrow and the peritoneal cavity displayed a totally
defective production of Il12a mRNA. This may explain the defec-
tive production of bioactive IL-12 and the impaired Th1 responses of
c/EBPβ-deficient mice to Candida albicans, a pathogen that
requires Th1-mediated control\(^1\). The enhanced p40 production in
c/EBPβ-deficient macrophages is in direct contradiction to an
earlier molecular study\(^5\). It cautions against directly extrapolating
in vitro data for its in vivo relevance.

An important pathway in robust IL-12 induction is the requirement
for “priming” of LPS-activated macrophages and DCs by IFN-γ for
the expression of maximal amounts of Il12a and Il12b mRNAs and
for IL-12 production\(^1,20,38\). The IFN-γ priming is a positive feedback
mechanism for more robust IL-12 production in certain immune
responses, as the primer IFN-γ is derived principally from NK cells
and activated Th1 lymphocytes, cells that are initially activated by
APC-derived IL-12 upon infection. Overall, inadequate investiga-
tions have been performed to elucidate this important feedback amplification mechanism in a comprehensive manner.

Negishi et al. reported that MyD88-associated IRF-1 migrates into
the nucleus more efficiently than non-MyD88-associated IRF-1.
The critical role of MyD88-dependent "IRF-1 licensing" is under-
scored by the observation that a specific gene subset downstream of the TLR-MyD88 pathway, such as IFN-β, inducible nitric oxide (NO) synthase, and IL-12p35, is impaired in
Irf1-deficient cells\(^6\). The study places IRF-1 as an additional member
participating in MyD88 signaling and provides a mechanistic explanation for the enhancement of the TLR-dependent IL-12p35
induction program by IFN-γ.

The TLR-NFκB-dependent pathway inducing IL-12 and
the IFN-dependent pathway inducing type I IFN (α and β) and IFN-
regulated genes have also been shown to cooperate for the robust
production of IL-12 in DCs. Gautier et al. reported that R-848/
Resiquimod (TLR7 ligand in the mouse and TLR7/8 ligand in
human) synergized with poly (I:C) (TLR3 ligand) or LPS (TLR4
ligand) in inducing high levels of bioactive IL-12p70 secretion and
IFN-β mRNA accumulation by mouse bone marrow-derived DCs
(BMDCs). Strikingly, IL-12p70, but not IL-12p40, secretion was
strongly reduced in BMDCs from STAT1\(^−/−\) and IFNAR\(^−/−\) mice.
STAT1 tyrosine phosphorylation, IL-12p35, and IFN-γ mRNA
accumulations were strongly inhibited in IFNAR\(^−/−\) BMDCs activ-
ated with the TLR ligand combinations. Similar observations
were made by using neutralizing anti-IFNAR2 antibodies in human
TLR8-expressing peripheral blood monocyte-derived DCs\(^69\). This
study suggests that TLR engagement on DC induces endogenous
IFNs that cooperate with the NFκB-inducing machinery for optimal
IL-12p70 secretion.

Signaling events from distinct classes of pathogen recognition
receptors (PRRs) affect each other in modulating innate and adap-
tive immunity through modulating IL-12 production. Activation of
cytosolic RIG-I-like receptors (RLRs) results in the selective sup-
pression of TLR-induced transcription of the Il12b gene through
the binding of RLR-activated transcription factor IRF-3 to the Il12b
promoter, where it competitively edges out IRF-5, a transcriptional
activator of Il12b that binds to the same sequence motif, the ISRE.

IRF-5 binding in this region is usually accompanied with chroma-
tin remodeling of both regulatory regions and the formation of a
productive transcriptional complex containing other transcription
factors\(^41\). Consequently, the activation of RLRs in mice attenu-
ated TLR-induced Th1 and Th17 responses against viral infec-
tion of mice\(^62\). Similarly, Kim et al. identified a crosstalk between
TLR4- and nucleotide-binding oligomerization domain 2 (NOD2)-
mediated activities in the regulation of intestinal mucosal defense
and tissue homeostasis via NOD2 signaling selectively interfering
with TLR-induced Il12a gene expression and IL-12 production via
the transcriptional regulator C/EBPβ\(^33\).

Emerging evidence has demonstrated that mammalian target of
rapamycin (mTOR) is an important regulator of immunity by mod-
ulating the differentiation, activation, and function of lymphocytes
and APCs\(^44\). In exploring the long-held “puzzle” of low levels of
IL-12 induced through TLR4 signaling in macrophages and DCs,
which implied the existence of stringent regulatory mechanisms,
He et al. identified the critical regulatory roles of three protein
kineses, mTOR, phosphoinositide-3 kinase (PI3K), and ERK, in
TLR-induced Th1 responses by reciprocally controlling IL-12 and
IL-10 production in innate immune cells of murine origin\(^63\). Moreo-
ver, it was revealed that c-fos was a key molecule that mediated
the kinase-regulated IL-12 and IL-10 expression in TLR4 signaling
by regulating c-fos expression and NFκB binding to the promoters
of IL-12 and IL-10 in a differential manner\(^46\). These findings con-
firmed the role of c-fos in this capacity reported in an earlier study
by Mitsuhashi et al.\(^31\), and were corroborated by a similar study in
human DCs with an additional delineation of the opposing activi-
ties of the two components of the mTOR complex, mTORC1 and
mTORC2, in this signaling pathway\(^47\). Thus, by controlling the bal-
ance between IL-12 and IL-10, mTOR can specifically regulate the
TLR-induced T-cell response in vivo. Indeed, blockade of mTOR
by rapamycin efficiently boosted TLR-induced antigen-specific
T- and B-cell responses to hepatitis B virus and hepatitis C virus
viruses\(^68\). This study links a ubiquitously present and fundamen-
tally important pathway of cellular survival, proliferation, and func-
tion to the production of a highly restricted specialist molecule in
the immune system. Notably absent from the study is the answer to
an obvious question: is the induction of IL-10 via mTOR signaling
responsible for the inhibition of IL-12 production? Figure 1 sum-
marizes our current understanding of the transcriptional mecha-
nisms regulating the IL-12p40 promoter\(^47\).

Interleukin-10 signaling

IL-10 was first discovered by complementary DNA clone-based
screening for secreted factors by established Th2 cells that regu-
late cytokine production by activated Th1 cells\(^64,65\). IL-10 is a major
immunosuppressive cytokine. It is a critical component in the
maintenance of the fine balance between swift and potent immune
responses against invading pathogens and the control of detrimental
pathological injury. Almost all cells of the innate and adaptive arms
of the immune system can produce IL-10, including DCs, mac-
rophages, mast cells, NK cells, eosinophils, neutrophils, B cells,
CD8 T cells, CD4 T-1, Th2, and Th17 cells\(^66-68\), and regulatory
T (Treg) cells\(^33,69,70\). The major role of IL-10 is to limit the extent of
the activation of both the innate and the adaptive immune cells to
maintain a homeostatic state. This role of IL-10 is vitally important
in protecting the host from infection-associated immunopathology, autoimmunity, and allergy, such as sepsis, arthritis, insulitis, inflammatory bowel disease (IBD), and so on. In addition to these activities, IL-10 regulates growth or differentiation (or both) of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells

The IL-10 receptor is composed of at least two subunits that are members of the IFN receptor (IFNR) family, the ligand-binding subunit (IL-10Rα and IL-10R1)\(^60\)\(^61\) and the accessory subunit for signaling, IL-10R2 (IL-10Rβ)\(^62\)\(^63\). IL-10, produced from various cellular sources upon exposure to pathogens and inflammatory insults, binds to its receptor on target cells. Activation of the IL-10 receptor complex induces a tetramer consisting of two IL-10R1 and two IL-10R2 chains, which bind homodimeric IL-10 to the extra-cellular domains of IL-10R1\(^\ref{64}\). Upon the receptor-ligand engagement, phosphorylation of the receptor-associated protein tyrosine kinase JAK1 is recruited to the intracellular domain by the IL-10R1 chain, while non-receptor TYK2 is recruited to the receptor complex by IL-10R2\(^\ref{65}\). These kinases serve as a temporary docking site for inactive cytosolic STAT1 or STAT3 or both\(^65\), which are recruited by JAK1 and TYK2 to the site upon phosphorylation of the IL-10R1 chain at two tyrosine residues\(^65\). The STATs bind to the IL-10R1 chain via the Src homology 2 (SH2) domain and are tyrosine-phosphorylated by the receptor-associated JAKs. Activation of STAT3 leads to its homodimerization, similarly to STAT1\(^65\)\(^66\). Translocation of activated STATs to the nucleus renders high-affinity binding to the promoter regions of IL-10-responsive genes. Successful engagement of the IL-10 receptor complex subsequently activates distinct JAK-STAT pathways and downstream signaling events that converge through various mechanisms to influence nuclear transcriptional events such as those mediated by NFκB\(^67\), resulting in the initiation of extensive anti-inflammatory and homeostatic programs.

It is important to note that the cellular source of IL-10 production is critical to its immunological activities in a cell-specific manner. Mice with a specific deletion in T cells generated by Cre/loxP-mediated targeting showed heightened contact hypersensitivity reactions and succumbed to severe immunopathology upon infection.

Figure 1. Transcriptional regulation of IL-12p40 (IL12b) in antigen-presenting cells. The data are drawn primarily from macrophage studies. In dendritic cells, c-Rel is not required for IL12b transcription. F1 denotes a large molecular complex containing multiple transcription factors binding to the human IL12b promoter\(^47\). Green-arrowed lines indicate a stimulatory role for IL12b transcription, whereas red-arrowed lines denote the reverse. Continuous short arrows denote multiple steps involved that are not specified in details. Dashed lines indicate undetermined signaling pathway. The promoter coordinates are with respect to the transcription start site, designated +1, of the human IL12b gene. GAP-12 is a putative transcriptional repressor of unidentified nature that is induced by IL-4 or PGE2 treatment of human monocytes\(^28\). The asterisks denotes controversial transcriptional factors that are defined as repressors by mouse knockout studies but as activators in some *in vitro* studies (see text for details). Akt, Ak strain transforming; AP-1; activating protein 1; cAMP, cyclic adenosine monophosphate; C/EBP, CCAAT enhancer-binding protein; CpG, cytosine-phosphate-guanine; ds, double-stranded; Ets2, E26 2; GAP-12, GATA sequence in the IL-12 promoter; IRF, interferon regulatory factor; JNK, c-Jun N-terminal kinase; MyD88, myeloid differentiation primary response gene 88; mTOR, mammalian target of rapamycin; PGE2, prostaglandin E2; PK, protein kinase; Pol, polymerase; PU.1, purine.1; RLR, retinoic acid-inducible gene-I-like receptor; STAT, signal transduction and transcription; TLR, Toll-like receptor.
with *Toxoplasma gondii*. Splenocytes from these mice secreted increased amounts of pro-inflammatory cytokines after activation in vitro compared with wild-type (WT) control splenocytes. However, in contrast to complete IL-10 deficiency, sensitivity to endotoxic shock and skin irritant responses of the skin in the T-specific IL-10-deficient mice were not greater than those of the WT controls. A critical role of B cell-derived IL-10 has been demonstrated in the mouse model of experimental autoimmune encephalomyelitis (EAE). Mice with a disruption in the Iγ heavy chain (μMT), which results in a lack of B cells, develop a non-remitting form of EAE. Transfer of WT B cells restored remission, whereas B lymphocytes from IL-10-deficient mice were unable to suppress the disease progression. Together, these studies highlight the distinctiveness of IL-10 derived from different cellular origins that determines its unique range of activities.

Regulation of interleukin-10 production

IL-10 production by macrophages and DCs through pathogen-associated molecular patterns (PAMPs) has been most widely studied. Macrophages produce IL-10 as a consequence of the recognition of PAMPs by their PRRs. Several classes of PRRs are expressed by macrophages, including TLRs, C-type lectin receptors, RIG-I (retinoic acid-inducible gene 1) receptors, and NOD-like receptors. The PAMPs bind to the TLRs with its TLR-interacting (TIR) domain, initiating signaling into macrophages with the help of intracellular adaptors that lead to the activation of multiple members of the MAPKs and subsequently transcription factors Sp1, C/EBPβ and δ, c-Maf, NFκB, and phosphorylated cyclic AMP element-binding protein (CREB). TLRs can also act in synergy with other agonists such as IL-4 and PGE₂ to augment IL-10 production. TLR3 or TLR4 activation results in the production of IFNβ, which sets up a feedback loop to sustain IL-10 mRNA induction.

B cells express a number of TLRs. Agonists that act via TLR2, TLR4, or TLR9 have all been shown to promote IL-10 production. TLR9 activation in B cells stimulates activation of Bruton’s tyrosine kinase (Btk), and B cells from Btk knockout mice fail to secrete IL-10 following TLR9 stimulation. However, the molecular mechanism downstream of Btk is not clear. The role of Btk is not restricted to B cells, as Btk-deficient macrophages also secrete less IL-10 than WT cells.

CD4⁺ T cells have been identified as an important source of IL-10 in vitro. Various transcription factors have been reported to induce IL-10 in T cells, including Sp1, c-Jun, c-Maf, SMAD4, GATA3, and STAT5. However, the molecular signaling pathways that regulate IL-10 induction have not been fully delineated. The studies in this area have been complicated by the existence of multiple Th cell subsets, many of which can produce IL-10, including Th1, Th2, Th17, and Treg cells, albeit with different capacities. These observations have prompted the hypothesis that the IL-10 locus becomes differentially modified during Th cell polarization, which then invokes subtly different molecular mechanisms that drive IL-10 transcription in a quantitatively variable manner in the various T-cell subtypes.

In contrast to the host response to infectious agents, clearance of apoptotic cells of a self-nature by phagocytes results predominantly in anti-inflammatory reactions characterized by the production of immunoregulatory cytokines IL-10, PGE₂, and transforming growth factor beta (TGFβ), which are critical to ensuring cellular homeostasis and suppression of autoimmunity as an evolutionarily well-preserved mechanism. Chung *et al.* reported that the production of IL-10 in response to apoptotic cells is dependent on CD36, p38 MAPK, and the transcription factor TALE homeoprotein Pre-B-cell leukemia homeobox 1 (Pbx1). The study establishes a novel role of a developmentally critical factor in the regulation of homeostasis in the immune system and opens up a new area for future exploration at the intersection between cellular homeostasis and immune responses to exogenous pathogens as well as to endogenous danger signals.

Regulation of interleukin-12 production by interleukin-10

The potency of IL-12 in host defense makes it a target for stringent regulation. Indeed, the temporal, spatial, and quantitative expression of IL-12 during an immune response in a microenvironment contributes critically to the determination of the type, extent, and ultimate resolution of the reaction. Breaching of the delicate control and balance frequently leads to immunologic disorders and pathogenesis. One of the most important and well-studied negative regulators of TLR-induced IL-12 production is IL-10. IL-10 suppression of both IL12a and IL12b genes is seen primarily at the transcriptional level, and the inductions of the two genes have different requirements for de novo protein synthesis. How IL-10 suppresses IL12a transcription is unknown at present. IL-10 targets an enhancer 10 kb upstream of the *Il12b* transcriptional start site that is bound by nuclear factor, interleukin 3-regulated (NFIL3), a B-ZIP transcription factor. Myeloid cells lacking NFIL3 produce excessive IL-12p40 and increased IL-12p70. Thus, the STAT3-dependent expression of NFIL3 is a key component of a negative feedback pathway in myeloid cells that suppresses pro-inflammatory responses.

Kobayashi *et al.* observed that acetylated histone H4 transiently associated with the *Il12b* promoter in WT bone marrow-derived macrophages (BMDMs), whereas association of these factors was prolonged in Il10⁻/⁻ BMDMs. Experiments using histone deacetylase (HDAC) inhibitors and HDAC3 short hairpin RNA indicate that HDAC3 is involved in histone deacetylation of the *Il12b* promoter by IL-10. These results suggest that histone deacetylation on the *Il12b* promoter by HDAC3 mediates the homeostatic effect of IL-10 in macrophages. More details clearly need to be worked out to understand the important homeostatic regulation of IL-12 production by IL-10. In this context, the IL-4-inducing transcription factor c-Maf is an interesting molecule that can directly and conversely regulate IL-12 and IL-10 gene expression in activated macrophages. Conversely, IRF-5 is a driver of the “M1” polarization of macrophages promoting Th1 and Th17 activities with activated transcription of inflammatory genes, including *Il12a*, *Il12b*, and *Il23a*, and repressed *Il10* transcription.

Interleukin-12 in adoptive cell therapy for cancer

IL-12 is able to activate all major cytotoxic killer and helper cell types of the immune apparatus (NK, NKT, CD4⁺, and CD8⁺ T cells) that are crucially important for immunosurveillance of and resistance...
to cancer development and progression. The extraordinary anti-tumor efficacy of IL-12 has been demonstrated in animal models of cancer of diverse types and its use in various forms is now involved in a large number of human cancer clinical trials. Adoptive cell therapy of malignant diseases takes advantage of the cellular immune system to recognize specific tumor-associated antigens and destroy cancer cells. This is remarkably demonstrated by redirecting T cells with a chimeric antigen receptor (CAR) toward CD19, inducing complete remission of leukemia in more than two thirds of patients in early-phase trials. After initial tumor reduction by CAR T cells, antigen-negative cancer cells not recognized by CAR may give rise to tumor relapse. Fortunately, the “quagmire” may be overcome by CAR-mediated activation of T cells in the tumor, releasing inducible IL-12, which augments T-cell activation and attracts and activates innate immune cells to eliminate antigen-negative cancer cells in the targeted lesion. Chmielewski et al. demonstrated the feasibility of this strategy by redirecting T cells with a carcinoembryonic antigen (CEA)-targeting CAR and engineering with the inducible recombinant IL-12 expression cassette under the control of the NFAT/IL-2 minimal promoter. In this context, IL-12 release was triggered by CAR signaling upon tumor antigen recognition and no IL-12 was detected in vitro without CAR signaling. The production capacity of such modified CAR T cells was sufficient to reach therapeutic levels without the need of repetitive drug application. The therapeutic advantage is indicated by the fact that a dose of 10^7 IL-12 modified tumor-specific CAR T cells was more effective against established tumors than 10^7 T cells without IL-12 in a pre-clinical model.

To date, despite the enhanced anti-tumor efficacy of IL-12-secreting CAR T cells in this model, the mechanisms associated with this enhanced tumor eradication remain unclear. Previous work showed that IL-12 reversed Treg cell-mediated suppression of CD4+ Foxp3- T-cell proliferation. IL-12 was shown to induce IFN-γ production by Treg cells in vitro and in vivo. However, IFN-γ expression did not decrease the ability of Treg cells to suppress T-cell proliferation. Rather, IL-12 treatment decreased Treg cell frequency and Foxp3 levels in Treg cells. Furthermore, IL-12 increased IL-2R expression on effector CD4+ and CD8+ T cells, diminished its expression on Treg cells, and decreased IL-2 production by CD4+ and CD8+ T effectors. Together, these IL-12-mediated changes favored the outgrowth of non-Treg cells. Kerkar et al. demonstrated that engineering tumor-specific CD8+ T cells to secrete IL-12 improved their therapeutic efficacy in the B16 mouse model of established melanoma. Surprisingly, direct binding of IL-12 to receptors on lymphocytes or NK cells was not required. Instead, IL-12 sensitized bone marrow-derived tumor stromal cells, including CD11b+F4/80+ macrophages, CD11b-MHCII+CD11c+ DCs, and CD11b+Gr-1+ MDSCs, causing them to enhance the effects of adoptively transferred CD8+ T cells. This reprogramming of myeloid-derived cells occurred partly through IFN-γ. MHC I expression on host cells was essential for IL-12-mediated anti-tumor enhancements. These studies point to the potential immunological mechanisms of the T cell-secreted IL-12 in tumor models.

Based on prior pre-clinical studies demonstrating that IL-12-secreting CAR T cells are protected from inhibition by endogenous Treg cells (unpublished results), it is conceivable that IL-12-producing CAR T cells may be refractory to Treg cell-mediated inhibition and that previously requisite CAR-mediated T-cell “co-stimulation” (through CD28 or CD40L) may be overcome by CAR T cell-derived IL-12 secretion. In other words, CAR T cell-derived IL-12 may render the effectors independent of the “second signal” requirement “engraved” in classic T-cell activation paradigms. Furthermore, it is possible that IL-12 secretion within the tumor microenvironment can reverse the anergic state of endogenous tumor-infiltrating lymphocytes (TILs) and blunt the immune suppression by myeloid-derived suppressor cells (MDSCs) as well as modulation of the tumor-associated macrophages (TAMs) from a suppressive M2 phenotype to a pro-inflammatory M1 phenotype.

Future perspectives

IL-10 is a pleiotropic cytokine with a strong role in limiting the scope and extent of immune activation. Loss of IL-10 function has deleterious effects. Therefore, IL-10 could be a potential therapeutic agent for many inflammatory or autoimmune disorders. However, systemic IL-10 administration has proven to be of limited value and this indicates that IL-10 production would need to be carefully targeted to be efficacious therapeutically. This is evidenced by adoptive transfers of specific types of IL-10-producing immune cells in some autoimmune disease models that result in protection against the development of inflammatory pathologies. Thus, a far more comprehensive and precise understanding of which IL-10-producing cells are important in vivo, and what the critical target cells of this IL-10 are would be instrumental in the future development of the therapeutic potentials of IL-10. The increased use of conditional gene targeting in mice will help in these future studies.

In the intestinal mucosa, IL-10 is a well-established regulator of tissue inflammation and homeostasis. Mutations in the NOD2 gene are strongly associated with Crohn’s disease, a form of IBD believed to be driven by uncontrolled Th1 and Th17 responses. There has been long a debate on the nature of the IBD-associated NOD2 mutations: “loss of function” or “gain of function”? Noguchi et al. showed that a common disease-related NOD2 mutation, 3020insC, displayed a “gain of function” property in that it suppressed IL-10 transcription by blocking the phosphorylation of the nuclear ribonucleoprotein hnRNP-A1 (heterogeneous nuclear ribonucleoprotein A1) via the p38 MAPK. This effect of 3020insC appears to be unique on the human IL-10 gene but not on its murine counterpart. The study challenges the present paradigms about the influence of the 3020insC mutation on Crohn’s disease, cautioning against deriving conclusions about the human disease on the basis of data from NOD2 knockout mice. It may provide a novel way of thinking about efforts to identify therapeutic targets for the treatment of Crohn’s disease and other Th1/Th17-mediated autoimmune diseases associated with the 3020insC mutation.

Although a tremendous amount of knowledge has been gained about the signaling and function of IL-12 in immune cells since its discovery in 1989, many important questions remain. It is widely believed that the majority of the immunological activities of IL-12 are mediated through IFN-γ produced by activated NK and Th1 cells that have been exposed to APC-derived IL-12. However, considerable levels of IFN-γ-independent activities of IL-12 have
been reported in many infectious disease and cancer models130–136. The cellular and molecular basis of the non-canonical activities of IL-12 await further elucidation. In immunotherapy of cancers, it has been long noted that the repeated administration of recombinant IL-12 could contribute to increased immunosuppressive properties of the tumor by the induction of IL-1037–39. Although the underlying molecular mechanism for the negative feedback is lacking, the finding that IL-12 is capable of potently inducing its own inhibitor reiterates the concept that the immune system is inherently equipped with an intrinsic negative feedback device that limits ongoing T-cell activation. This also indicates that the kinetics of T-cell responses may be regulated by the ratio of IL-12 and IL-10 levels, which may gradually decline during the immune response.

Endotoxin tolerance, the transient, secondary downregulation of a subset of endotoxin-driven responses after exposure to bacterial products, is thought to be an adaptive response providing protection from pathological hyperactivation of the innate immune system during bacterial infection. IL-12 production is subjected to such a control mechanism. Wysocka et al. examined the development of IL-12 suppression during endotoxin tolerance in mice. The basis for decreased IL-12 production \textit{in vivo} is clearly multifactorial, involving both loss of CD14\textsubscript{hi} DCs as well as alterations in the responsiveness of macrophages and remaining splenic DCs. There is no demonstrable mechanistic role for B or T lymphocytes, the soluble siveness of macrophages and remaining splenic DCs. There is no decreased IL-12 production \textit{in vivo} during endotoxin tolerance in mice. The basis for IL-12 suppression during endotoxin tolerance in mice is in the form of IL-12p80. Approximately 20% to 40% of the p40 in the serum of normal and endotoxin-treated mice is in the form of IL-12p80147. In IL-12-dependent shock models, exogenous IL-12p80 inhibits IL-12-induced cell-mediated immune response and protects mice from sepsis-associated death146. However, IL-12p80 has also been reported to stimulate, rather than inhibit, the differentiation of CD8+ Tc1 (type 1 cytotoxic T) cells \textit{in vitro}, contrary to its suppressive activity on Th1 function49. The divergent functions of the various forms of p40 highlight our lack of full appreciation of its true range of biological activities.

Recent pre-clinical studies demonstrated that treatment with CD19-specific, CAR T cells that secrete IL-12 is able to safely eradicate established disease without the sophisticated and laborious prior conditioning of subjects140. Moreover, in severe combined immunodeficient (SCID)-Beige mice with human ovarian cancer xenografts, IL-12-secreting CAR T cells exhibited enhanced anti-tumor efficacy as determined by an increased survival rate, prolonged persistence of T cells, a higher level of systemic IFN-\gamma, and modulated tumor microenvironment152. How the locally released IL-12 contributes to the highly favorable clinical efficacy and immunological modifications to numerous cell types in the tumor environment is an urgent and challenging task for the benefit of further improving this revolutionary therapeutic strategy for cancers of diverse types and progression states.

In summary, the complexity of the heterodimeric nature of both the cytokines and their receptors in the IL-12 family (also including IL-27) associated with the activation of different combinations of tyrosine kinases and STATs underlies the overlapping as well as distinct immunological consequences of the regulation and signaling in this cytokine group. Greater efforts are called for to better decipher the intricacies. In the meantime, more caution is needed in interpreting data derived from studies of individual cytokine or receptor chains.

\textbf{Competing interests}

The authors declare that they have no competing interests.

\textbf{Grant information}

This work was supported in part by a grant from the Natural Science Foundation of China (31370903) to XM and by a grant from the National Institutes of Health of the US (1R21AI101841-01) to XM.

\textit{The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.}
References

1. Kobayashi M, Fitz L, Ryan M, et al.: Identification and purification of natural killer cell stimulatory factor (NKSf), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989; 170(3): 827–45.

2. Trinchieri G: Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994; 84(2): 4008–27.

3. Grohmann U, Belladonna ML, Vacca C, et al.: Positive regulatory role of IL-12 in macrophages and modulation by IFN-gamma. J Immunol. 2001; 167(1): 221–7.

4. Ma X, Chow JM, Gruen G, et al.: The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytes. J Exp Med. 1996; 183(1): 147–57.

5. Oppmann B, Lesley R, Blom B, et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12, Immunity. 2000; 13(5): 715–25.

6. Teng MW, Bowman EP, McElwee JJ, et al.: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2000; 2(10): 733–46.

7. Collins LW, Workman CJ, Kuo TT, et al.: Identification and purification of natural killer cell stimulatory factor, a cytokine with multiple biologic effects on human monocytes: selective priming by interferon-gamma of IL-12 production. J Immunol. 1996; 156(3): 873–8.

8. Sawant DV, Hamilton K, Vignali DA: Interleukin-12: a cytokine produced by antigen-presenting cells that responds to IL-4 and prostaglandin E2 and its anti-tumor activities by prostaglandin E2. Blood. 2006; 108(3): 827–45.

9. Desai BB, Quinn PM, Wolitzky AG, et al.: Regulation of receptor expression. J Immunol. 2001; 167(1): 147–7.

10. Dixon KO, van der Kooij SW, Vignali DA, et al.: IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015; 21(7): 719–28.

11. Goodridge HS, Harnett W, Liew FY, et al.: Interleukin-10 expression in macrophages and its anti-tumor activities by prostaglandin E2. J Exp Med. 2004; 199(3): 322–32.

12. Cai Z, Gargiuloe J, Gemberling JH, et al.: Evidence for licensing of IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12p40 expression in macrophages. J Immunol. 2000; 165(1): 2705–10.

13. Murphy TL, Cleveland MG, Kulesza P, et al.: Regulation of interleukin 12 p40 expression through an NF-kappaB half-site. J Immunol. 1997; 159(7): 3913–20.

14. Zhu C, Ruck K, Xiong H, et al.: Characterization of an activation protein-1 binding site in the murine interleukin-12 p40 promoter. J Immunol. 2003; 170(2): 997–1001.

15. Wang M, Contursi C, Masani A, et al.: An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12P40 expression in macrophages. J Immunol. 2000; 165(1): 271–9.

16. Beckner C, Wirtz S, Ma X, et al.: Regulation of IL-12 p40 promoter activity in primary human monocytes: roles of NF-kappaB, CCAAT/enhancer-binding protein beta, and PU.1 and identification of a novel repressor element (GA-12) that responds to IL-4 and prostaglandin E2. J Immunol. 2001; 167(5): 2608–18.

17. Maruyama S, Sumita K, Shao H, et al.: Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter. J Immunol. 2003; 170(2): 997–1001.

18. Wang M, Contursi C, Masani A, et al.: An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12p40 expression in macrophages. J Immunol. 2000; 165(1): 271–9.

19. Mitsuhashi M, Liu J, Cao S, et al.: Regulation of interleukin-12 gene expression in human monocytes/macrophages by interferon with JNK activation. J Immunol. 2013; 190(19): 5142–53.

20. Goodridge HS, Hartnett W, Liew FY, et al.: Interleukin-12 p40 and p35 induction via ERK mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology. 2003; 109(3): 415–25.

21. Zhang X, Wang Z, Zhong H, et al.: Identification of c-Rel regulates interleukin 12 p40 promoter-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology. 2003; 109(3): 415–25.

22. Wang X, Chen Z, Hu C, et al.: Hepatitis B virus surface antigen selectively inhibits IL12 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J Immunol. 2013; 190(19): 5142–53.

23. Gorgoni B, Mariano D, Marzano P, et al.: C/EBP beta gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J Immunol. 2003; 168(8): 4055–62.

24. Hayes MP, Wang J, Nordova M: Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-gamma of lipopolysaccharide-inducible p35 and p40 genes. Blood. 1995; 86(2): 646–50.

25. Negishi H, Fujita Y, Yanai H, et al.: Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A. 2006; 103(14): 15130–41.

26. Gautier G, Humbert M, Deauvieau F, et al.: A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 production. F1000Research 2015, 4(F1000 Faculty Rev):1465 Last updated: 28 MAR 2022
secretion by dendritic cells. J Exp Med. 2005; 201(9): 1435–46. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

41. Koshiba R, Yanai H, Matsuda A, et al.: Regulation of cooperative function of the IL12b enhancer and promoter by the interferon regulatory factors 3 and 5. Biochem Biophys Res Commun. 2013; 430(1): 95–100. Published Abstract | Publisher Full Text | F1000 Recommendation

42. Negishi H, Yanai H, Nakajima A, et al.: Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol. 2012; 13(7): 659–66. Published Abstract | Publisher Full Text | F1000 Recommendation

43. Kim H, Zhao Q, Zheng H, et al.: A novel crosstalk between TLR4 and NOD2-mediated signaling in the regulation of intestinal inflammation. Sci Rep. 2015; 5: 12018. Published Abstract | Publisher Full Text | Free Full Text

44. Powell JD, Pollizzi KN, Heckamp EB, et al.: Regulation of immune responses by mTOR. Annu Rev Immunol. 2012; 30: 39–68. Published Abstract | Publisher Full Text | Free Full Text

45. Wei L, Zeng A, Du M, et al.: mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Viral Sin. 2015; 36(3): 174–89. Published Abstract | Publisher Full Text | F1000 Recommendation

46. Moore KW, Vieira P, Fiorentino DF, et al.: Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRF1. Science. 1990; 248(4960): 1230–40. Published Abstract | Publisher Full Text | Free Full Text

47. Fiorentino DF, Bond MW, Mosmann TR: Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989; 170(6): 2081–95. Published Abstract | Publisher Full Text | Free Full Text

48. Mooy KW, Vieira P, Regulatory T cells in the control of immune pathology. Nat Immunol. 2001; 2(9): 816–22. Published Abstract | Publisher Full Text | Free Full Text

49. Mooy KW, de Waal Malefyt R, Coffman RL, et al.: Interleukin-10 production by effector T cells: Th1 cells show self inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRF1. J Exp Med. 1997; 272(6): 10389–95. Published Abstract | Publisher Full Text | Free Full Text

50. Roncadori MG, Gregori S, Battaglia M, et al.: Interleukin-10-secreting type 1 helper cells suppress lipopolysaccharide-induced transcription of the interleukin-10 promoter. J Biol Chem. 2000; 275(23): 18703–12. Published Abstract | Publisher Full Text | Free Full Text

51. Sabatos-Peyton CA, Verhagen J, Wraith DC: Antigen-specific immunotherapy of autoimmune and allergic diseases. Curr Opin Immunol. 2010; 22(5): 609–15. Published Abstract | Publisher Full Text | Free Full Text

52. Fujiwara S, Sugita N, Negishi M, et al.: TLR-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol. 2011; 186(2): 878–90. Published Abstract | Publisher Full Text | Free Full Text

53. O’Garra A, Vieira P: Regulatory T cells and mechanisms of immune system control. Nat Med. 2004; 10(1): 801–5. Published Abstract | Publisher Full Text | Free Full Text

54. Tan JC, Indelicato SR, Narula SK, et al.: Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem. 1993; 268(28): 25056–3. Published Abstract | Publisher Full Text | Free Full Text

55. Liu Y, Wei SH, Ho AS, et al.: Expression cloning and functional characterization of a human IL-10 receptor. J Immunol. 1994; 152(4): 1821–9. Published Abstract | Publisher Full Text | Free Full Text

56. Kotenko SV, Krause CD, Izotova LS, et al.: Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J. 1997; 16(15): 4894–903. Published Abstract | Publisher Full Text | Free Full Text

57. Spencer SD, Di Marco F, Hooley J, et al.: The orphan receptor CRFR2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med. 1998; 187(4): 571–8. Published Abstract | Publisher Full Text | Free Full Text

58. Donnelly RP, Dickensheets H, Finklomb DS: The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interferon Cytokine Res. 1999; 19(6): 563–73. Published Abstract | Publisher Full Text | Free Full Text

59. Wehinger J, Guilleux F, Groner B, et al.: IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of cytokine genes. FEBS Lett. 1996; 394(3): 365–70. Published Abstract | Publisher Full Text | Free Full Text

60. Weber-Nord RM, Riley JK, Greenlund AC, et al.: Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J Biol Chem. 1996; 271(44): 27954–61. Published Abstract | Publisher Full Text | Free Full Text

61. Riley JK, Takekusa K, Aiers S, et al.: Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J Biol Chem. 1999; 274(23): 16513–21. Published Abstract | Publisher Full Text | Free Full Text

62. Peters A, Siwek S, Stittmatter E, et al.: T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med. 2004; 200(10): 1289–97. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

63. Medzhitov R: TLR-mediated innate immune recognition. Semin Immunol. 2007; 19(1): 1–2. Published Abstract | Publisher Full Text | Free Full Text

64. Agrawal S, Gupta S, et al.: The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Virol. 2005; 79(6): 3484–92. Published Abstract | Publisher Full Text | Free Full Text

65. Liu YW, Chen CC, Tseng HP, et al.: Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappab-induced CCAAT/enhancer-binding protein delta in mouse macrophages. Cell Signal. 2006; 18(9): 1492–500. Published Abstract | Publisher Full Text | Free Full Text

66. Cao S, Liu J, Song L, et al.: The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Virol. 2005; 79(6): 3484–92. Published Abstract | Publisher Full Text | Free Full Text

67. Liu YW, Chen CC, Tseng HP, et al.: Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappab-induced CCAAT/enhancer-binding protein delta in mouse macrophages. Cell Signal. 2006; 18(9): 1492–500. Published Abstract | Publisher Full Text | Free Full Text

68. Ananieva O, Darragh J, Johansen C, et al.: The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat Immunol. 2008; 9(9): 1028–36. Published Abstract | Publisher Full Text | F1000 Recommendation

69. MacKenzie KE, Clark K, Nayaz S, et al.: PGE2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol. 2013; 190(2): 565–77. Published Abstract | Publisher Full Text | Free Full Text

70. Kim SK, Sherechenzhi CH, Okunsh K, et al.: Distinct protein kinase A anchoring proteins direct prostaglandin E2 modulation of Toll-like receptor signaling in alveolar macrophages. J Biol Chem. 2011; 286(11): 8785–83. Published Abstract | Publisher Full Text | Free Full Text

71. Patterson MJ, MacKenzie KE, Arthur JS: Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. J Immunol. 2012; 189(6): 2784–92. Published Abstract | Publisher Full Text | Free Full Text

72. Say J, Kehler E, Toller IM, et al.: TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol. 2011; 186(2): 878–90. Published Abstract | Publisher Full Text | Free Full Text

73. Sun CM, Deriau E, Leoderc C, et al.: Upon TLR9 signaling, CD8+ T cells control the IL-12-dependent Th1-polarized immunity of neonatal DCs. Immunity. 2006; 22(4): 467–77. Published Abstract | Publisher Full Text | Free Full Text

74. Wagner M, Prosek H, Jansender B, et al.: IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and Cpg DNA. J Immunol. 2004; 172(2): 954–63. Published Abstract | Publisher Full Text | Free Full Text

75. Schmidt NW, Thue VT, Marn BA, et al.: Bruton’s tyrosine kinase is required for TLR-induced IL-10 production. J Immunol. 2006; 177(10): 7203–10. Published Abstract | Publisher Full Text | Free Full Text

76. Scisoria M, O’Garra A: The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010; 10(3): 170–81. Published Abstract | Publisher Full Text | Free Full Text

Page 10 of 13
85. T MacKenzie KF, Pattison MJ, Arthur JS: Transcriptional regulation of IL-10 and its cell-specific role in vivo. Crit Rev Immunol. 2014; 34(4): 315–45. PubMed Abstract | Publisher Full Text | F1000 Recommendation

86. Voll RE, Hemann M, Roth EA, et al.: Immunosuppressive effects of apoptotic cells. Nature. 1997; 390(6658): 350–1. PubMed Abstract | Publisher Full Text | F1000 Recommendation

87. D’Andrea A, Aste-Amezaga M, Valiante NM, et al.: Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factorIL-12 synthesis in accessory cells. J Exp Med. 1993; 178(3): 1041–8. PubMed Abstract | Publisher Full Text | Free Full Text

88. Asse-Amezaga M, Ma X, Sartori A, et al.: Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J Immunol. 1998; 160(12): 5696–44. PubMed Abstract

89. Smith AM, Qualls JE, O’Brien K, et al.: A distal enhancer in IL2b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3. J Biol Chem. 2011; 286(26): 25382–90. PubMed Abstract | Publisher Full Text | Free Full Text

90. Kobayashi T, Matsuoka K, Sheik SZ, et al.: IL-10 regulates IL2b expression via histone deacetylation: implications for intestinal macrophage homeostasis. J Immunol. 2012; 188(4): 1792–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

91. Cao S, Liu J, Chesi M, et al.: Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-fos/bun/murine. J Immunol. 2002; 169(10): 5715–25. PubMed Abstract | Publisher Full Text | F1000 Recommendation

92. Krausgruber T, Blazek K, Smallie T, et al.: IRF5 promotes inflammatory macrophage polarization and T1-1,T1-2 responses. Nat Immunol. 2011; 12(3): 231–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

93. Colombi MP, Trinchieri G: Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002; 13(2): 155–66. PubMed Abstract | Publisher Full Text | F1000 Recommendation

94. Shi X, Cao S, Mitsuhashi M, et al.: Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. J Immunol. 2004; 172(5): 4111–22. PubMed Abstract | Publisher Full Text | Free Full Text

95. Simpson-Abelson MR, Purohit VS, Pang WM, et al.: CTLA-4 blockade elicits T cell-mediated glioma rejection. J Immunol. 2010; 184(9): 4755–9. PubMed Abstract | Publisher Full Text | Free Full Text

96. Helms MW, Prescher JA, Cao YA, et al.: IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated macrophages. J Immunol. 2006; 176(2): 614–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

97. Kerkar SP, Muranski P, Kaiser A, et al.: A novel synergistic combination of cyclophosphamide and gene transfer of interleukin-12 eradicates colorectal carcinoma in mice. Clin Cancer Res. 2009; 15(23): 7256–65. PubMed Abstract | Publisher Full Text | F1000 Recommendation

98. Zhuah X, Azkunaga A, Ilgen G, et al.: Gene transfer of interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Immunol. 2010; 78(175): 6725–34. PubMed Abstract | Publisher Full Text | Free Full Text

99. Malvicki M, Rizzo M, Alainz L, et al.: A novel synergistic combination of cyclophosphamide and gene transfer of interleukin-12 eradicates colorectal cancer in mice. Clin Cancer Res. 2009; 15(23): 7256–65. PubMed Abstract | Publisher Full Text | F1000 Recommendation

100. Rentsch CA, Savolol B, Dotti CD19-CAR trials. Cancer J. 2014; 20(2): 112–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

101. Chmielewski M, Kopecky C, Hombach AA, et al.: IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011; 71(17): 5697–706. PubMed Abstract | Publisher Full Text | F1000 Recommendation

102. Zhang L, Kerkar SP, Yu Z, et al.: Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther. 2011; 19(4): 751–9. PubMed Abstract | Publisher Full Text | Free Full Text

103. Zhang L, Feldman SA, Zheng Z, et al.: Evaluation of γretroviral vectors that mediate the inductive expression of IL-12 for clinical application. J Immunother. 2012; 35(5): 430–9. PubMed Abstract | Publisher Full Text | Free Full Text

104. King IL, Segal BM: Cutting edge: IL-12 induces CD4+CD25+ T cell number and acquisition of effector cell phenotype during lethal infection. Immunology. 2009; 129(4): 172–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

105. Oldenhove G, Bouladoux M, Wohlfert EA, et al.: Decrease of Fosx3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunology. 2009; 129(4): 172–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

106. Feng T, Cao AT, Weaver CT, et al.: Interleukin-12 converts Fasx3+ regulatory T cells to interferon-producing Fasx3- T cells that inhibit colitis. Gastroenterology. 2011; 140(5): 2017–23. PubMed Abstract | Publisher Full Text | Free Full Text

107. Zhao J, Zhao J, Perlman S: Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFNγ, IL-2 and IL-2R. PLoS One. 2012; 7(9): e46241. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

108. Kerkar SP, Goldszmid RS, Muranski P, et al.: IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest. 2011; 121(12): 4746–57. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

109. Donlin D, Brooks SP, Takita H, et al.: IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated macrophage cells. J Immunol. 2006; 176(2): 159–69. PubMed Abstract | Publisher Full Text | F1000 Recommendation

110. Kölc M, Aulask KS, Nair RE, et al.: Reversing tumor immunity suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and inhibition of CD8+ T effectors. J Immunol. 2008; 177(10): 6962–73. PubMed Abstract | Publisher Full Text | F1000 Recommendation

111. Watkins SK, Eglmez NK, Sutcliffe J, et al.: IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol. 2007; 178(3): 1367–82. PubMed Abstract | Publisher Full Text | F1000 Recommendation

112. O’Garra A, Barrat FJ, Castro AG, et al.: Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008; 223(1): 114–31. PubMed Abstract | Publisher Full Text

113. Baglanenko Y, Manion KP, Chang NH, et al.: Suppression of autoimmunity by CD5+ IL-10-producing B cells in lupus-prone mice. Genes Immun. 2015; 16(5): 311–20. PubMed Abstract | Publisher Full Text | F1000 Recommendation

114. Frenkel D, Huang Z, Moran R, et al.: Neuroprotection by IL-10-producing CD5+ CD4+ T cells following ischemic stroke. J Neurol Sci. 2006; 233(1–2): 125–32. PubMed Abstract | Publisher Full Text | F1000 Recommendation

115. Gangi E, Vasu C, Cheatham D, et al.: IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol. 2005; 174(11): 7006–13. PubMed Abstract | Publisher Full Text | F1000 Recommendation

116. Lavasan H, Dzhambozov B, Nouri M, et al.: A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One. 2010; 5(2): e9093. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

117. Matsushima T, Yawata K, Bouzos JD, et al.: Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. 2008; 118(10): 3420–30. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of _Faculty Opinions_. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. **Tadamitsu Kishimoto**
 Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
 Competing Interests: No competing interests were disclosed.

2. **Stanislas Goriely**
 WELBIO and Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
 Competing Interests: No competing interests were disclosed.

3. **Raymond P. Donnelly**
 Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com