Quasi-theories and their equivariant orthogonal spectra

Zhen Huan

Abstract. In this paper we construct orthogonal G–spectra up to a weak equivalence for the quasi-theory $QE^*_nG(_)$ corresponding to certain cohomology theories E. The construction of the orthogonal G–spectrum for quasi-elliptic cohomology can be applied to the constructions for quasi-theories.

1. Introduction

In [6] we construct a functor Q from the category of orthogonal ring spectra to the category of I_G–FSP. If E is a global cohomology theory, $Q(E)$ weakly represents the cohomology theory

\[
QE^*_nG(X) := \prod_{\sigma \in G^{tor}} E^*_\Lambda(\sigma)(X^\sigma) = \left(\prod_{\sigma \in G^{tor}} E^*_\Lambda(\sigma)(X^\sigma) \right)^G.
\]

The image of global K–spectrum is a I_G–FSP representing quasi-elliptic cohomology up to a weak equivalence.

Quasi-elliptic cohomology is a variant of elliptic cohomology theories, which is the generalized elliptic cohomology theory associated to the Tate curve $\text{Tate}(q)$ over $\text{Spec}\mathbb{Z}(\!(q)\!)$ [Section 2.6, [1]]. Quasi-elliptic cohomology is defined over $\text{Spec}\mathbb{Z}[q^\pm]$. Inverting q allows us to define a sufficiently non-naive equivariant cohomology theory and to interpret some constructions more easily. Its relation with Tate K-theory is

\[
QE^*\text{Ell}_G(X) \otimes_{\mathbb{Z}(\!(q)\!)} \mathbb{Z}(\!(q)\!) = (K^*_{\text{Tate}})_G(X)
\]

Motivated by quasi-elliptic cohomology, we construct quasi-theories $QE^*_nG(_)$ in [9]. Quasi-elliptic cohomology, the theories $QE^*_nG(_)$ defined in [11] and the generalized quasi-elliptic cohomology in Example [2.4] are all special cases of quasi-theories.

In this paper we show that the idea of constructing the functor Q can be applied to construct a family of functors Q_n from the category of orthogonal ring spectra to the category of I_G–FSP. Especially, the functor Q_1 is Q. In other words, we construct a I_G–FSP representing $QE^*_nG(_)$ up to weak equivalence for each positive integer n and each compact Lie group G.

In this paper we show the construction of functors Q_n. The idea is analogous to the construction of Q in [6]. For the readers’ convenience, we still include all
the details in this paper. In Section 2 we recall the definition and examples of quasi-theories. In Section 3 we recall a category of orthogonal G–spectra introduced in [9]. In Section 4 we construct a space $QE_{G,n,m}$ representing the m–th G–equivariant quasi-theory $QE_{n,G}^m(\ast)$ up to a weak equivalence. In Section 5 we construct a I_G–FSP representing $QE_{n,G}^r(\ast)$ up to weak equivalence for certain cohomology theories E and construct the functors Q_n. In the appendix, we construct some faithful group representations needed in the construction of the I_G–FSP.

1.1. Acknowledgement. I would like to thank my PhD advisor Charles Rezk. Under his direction I constructed equivariant orthogonal spectra for quasi-elliptic cohomology, which is a special case of quasi-theories. In addition, he suggested the project on quasi-theories to me. I would like to thank Matthew Ando for encouraging me to finish the projects.

2. The Quasi-theory $QE_{n,G}(\ast)$

In this section we recall the quasi-theories. The main reference for that is [9]. Let G be a compact Lie group and n denote a positive integer. Let $G^\text{tors}_{\text{conj}}$ denote a set of representatives of G–conjugacy classes in the set G^tors of torsion elements in G. Let G^n denote set

\[
\{\sigma = (\sigma_1, \sigma_2, \cdots, \sigma_n) | \sigma_i \in G^\text{tors}_{\text{conj}}, [\sigma_i, \sigma_j] \text{ is the identity element in } G\}.
\]

Let $\sigma = (\sigma_1, \sigma_2, \cdots, \sigma_n) \in G^n$. Define

\[
(2.1) \quad C_G(\sigma) := \bigcap_{i=1}^n C_G(\sigma_i);
\]

\[
(2.2) \quad \Lambda_G(\sigma) := C_G(\sigma) \times \mathbb{R}^n / \langle (\sigma_1, -e_1), (\sigma_2, -e_2), \cdots, (\sigma_n, -e_n) \rangle.
\]

where $C_G(\sigma_i)$ is the centralizer of each σ_i in G and $\{e_1, e_2, \cdots, e_n\}$ is a basis of \mathbb{R}^n. Let $q : T \to U(1)$ denote the representation $t \mapsto e^{2\pi it}$. Let $q_i = 1 \otimes \cdots \otimes q \otimes \cdots \otimes 1 : T^n \to U(1)$ denote the tensor product with q at the i–th position and trivial representations at other position. The representation ring

\[R(T^n) \cong R(T)^\otimes n = \mathbb{Z}[q_1^\pm, \cdots, q_n^\pm].\]

We have the exact sequence

\[
(2.3) \quad 1 \to C_G(\sigma) \to \Lambda_G(\sigma) \xrightarrow{\pi} T^n \to 0
\]

where the first map is $g \mapsto [g, 0]$ and the second map is $\pi([g, t_1, \cdots, t_n]) = (e^{2\pi it_1}, \cdots, e^{2\pi it_n})$. Then the map $\pi^* : R(T^n) \to R\Lambda_G(\sigma)$ equips the representation ring $R\Lambda_G(\sigma)$ the structure as an $R(T^n)$–module.

This is Lemma 3.1 [9] presenting the relation between $R\Lambda_G(\sigma)$ and $R\Lambda_G(\sigma)$.

Lemma 2.1. $\pi^* : R(T^n) \to R\Lambda_G(\sigma)$ exhibits $R\Lambda_G(\sigma)$ as a free $R(T^n)$–module.

There is an $R(T^n)$–basis of $R\Lambda_G(\sigma)$ given by irreducible representations $\{V_\lambda\}$, such that restriction $V_\lambda \to V_\lambda|_{C_G(\sigma)}$ to $C_G(\sigma)$ defines a bijection between $\{V_\lambda\}$ and the set $\{\lambda\}$ of irreducible representations of $C_G(\sigma)$.

Definition 2.2. For equivariant cohomology theories $\{E_H^r\}_H$ and any G–space X, the corresponding quasi-theory $QE_{n,G}^r(X)$ is defined to be

\[
\prod_{\sigma \in G^n} E_{\Lambda_G(\sigma)}(X^\sigma).
\]
Example 2.3 (Motivating example: Tate K-theory and quasi-elliptic cohomology). Tate K-theory is the generalized elliptic cohomology associated to the Tate curve. The elliptic cohomology theories form a sheaf of cohomology theories over the moduli stack of elliptic curves \mathcal{M}_{ell}. Tate K-theory over $\text{Spec} \mathbb{Z}((q))$ is obtained when we restrict it to a punctured completed neighborhood of the cusp at ∞, i.e. the Tate curve $\text{Tate}(q)$ over $\text{Spec} \mathbb{Z}((q))$ [Section 2.6, [1]]. The divisible group associated to Tate K-theory is $\mathbb{G}_m \oplus \mathbb{Q}/\mathbb{Z}$. The relation between Tate K-theory and string theory is better understood than most known elliptic cohomology theories.

In addition, Tate K-theory has the closest ties to Witten’s original insight that the elliptic cohomology of a space X is related to the \mathbb{T}-equivariant K-theory of the free loop space $LX = C^\infty(S^1, X)$ with the circle \mathbb{T} acting on LX by rotating loops. Ganter gave a careful interpretation in Section 2, [5] of this statement that the definition of G-equivariant Tate K-theory for finite groups G is modelled on the loop space of a global quotient orbifold.

Other than the theory over $\text{Spec} \mathbb{Z}((q))$, we can define variants of Tate K-theory over $\text{Spec} \mathbb{Z}[q]$ and $\text{Spec} \mathbb{Z}[q^\pm]$ respectively. The theory over $\text{Spec} \mathbb{Z}[q^\pm]$ is of especial interest. Inverting q allows us to define a sufficiently non-naive equivariant cohomology theory and to interpret some constructions more easily in terms of extensions of groups over the circle. The resulting cohomology theory is called quasi-elliptic cohomology [12][7][8]. Its relation with Tate K-theory is

$$(2.4) \quad Q\text{Ell}_{G}^*(X) \otimes_{\mathbb{Z}[q^\pm]} \mathbb{Z}((q)) = (K_{\text{tate}}^*)_G(X)$$

which also reflects the geometric nature of the Tate curve. $Q\text{Ell}_{G}^*(\text{pt})$ has a direct interpretation in terms of the Katz-Mazur group scheme T [Section 8.7, [10]]. The idea of quasi-elliptic cohomology is motivated by Ganter’s construction of Tate K-theory [3]. It is not an elliptic cohomology but a more robust and algebraically simpler treatment of Tate K-theory. This new theory can be interpreted in a neat form by equivariant K-theories. Some formulations in it can be generalized to equivariant cohomology theories other than Tate K-theory.

Quasi-elliptic cohomology $Q\text{Ell}_{G}^*(-)$ is exactly the quasi-theory $QK_{1,G}^*(-)$ in Definition 2.2.

Example 2.4 (Generalized Tate K-theory and generalized quasi-elliptic cohomology). In Section 2 [5] Ganter gave an interpretation of G-equivariant Tate K-theory for finite groups G by the loop space of a global quotient orbifold. Apply the loop construction n times, we can get the n–th generalized Tate K-theory. The divisible group associated to it is $\mathbb{G}_m \oplus (\mathbb{Q}/\mathbb{Z})^n$.

With quasi-theories, we can get a neat expression of it. Consider the quasi-theory

$$QK_{n,G}^*(X) = \prod_{\sigma \in G_n^2} K_{\Lambda_{G}(\sigma)}^*(X^\sigma).$$

$QK_{n,G}^*(X) \otimes_{\mathbb{Z}[q^\pm]} \mathbb{Z}((q))^\otimes n$ is isomorphic to the n–th generalized Tate K-theory.

3. A new category of orthogonal G–spectra

It is difficult to construct a concrete representing spectrum for elliptic cohomology. In Section 4 [6] we formulate a new category of spectra with larger class of weak equivalence than that in [11]. In Section 6 [6] we construct an orthogonal G–spectrum for any compact Lie group G representing $Q\text{Ell}_{G}^*(\text{-})$ in this new category of orthogonal G–spectra.
First we recall the category of orthogonal G–spectra in \mathcal{G} and the category GwS that we will work in. The weak equivalence of interest is the $\pi_{*}\mathcal{G}$–isomorphism.

Definition 3.1. For subgroups H of G and integers q, define the homotopy groups $\pi_{q}^{H}(X)$ of a G–pre spectrum X by
\begin{equation}
\pi_{q}^{H}(X) = \operatorname{colim}_{V} \pi_{V}^{H}(\Omega^{V}X(V)) \text{ if } q \geq 0,
\end{equation}
where V runs over the indexing G–spaces in the chosen universe, and
\begin{equation}
\pi_{-q}^{H}(X) = \operatorname{colim}_{V \supset R} \pi_{V}^{H}(\Omega^{V-R}X(V)) \text{ if } q > 0.
\end{equation}
A map $f : X \rightarrow Y$ of G–prespectra is a $\pi_{*}\mathcal{G}$–isomorphism if it induces isomorphisms on all homotopy groups.

A map of orthogonal G–spectra is a $\pi_{*}\mathcal{G}$–isomorphism if its underlying map of G–prespectra is a $\pi_{*}\mathcal{G}$–isomorphism.

Definition 3.2. The category GwS is the homotopy category of the category of orthogonal G–spectra with the weak equivalence defined by
\begin{equation}
X \sim Y \text{ if } \pi_{0}^{H}(X(V)) = \pi_{0}^{H}(Y(V)),
\end{equation}
for each faithful G–representation V and any closed subgroup H of G.

An orthogonal G–spectrum X in GwS is said to represent a theory H_{G} if we have a natural map
\begin{equation}
\pi_{0}^{H}(X(V)) = H_{V}(G/H),
\end{equation}
for each faithful G–representation V and any closed subgroup H of G.

Lemma 3.3. If a map $f : X \rightarrow Y$ of orthogonal G–spectra induces isomorphisms on the homotopy groups, i.e.
\begin{equation}
f : \pi_{q}^{H}(X(V)) \cong \pi_{q}^{H}(Y(V))
\end{equation}
for each faithful G–representation V, and any closed subgroup H of G, then f is a $\pi_{*}\mathcal{G}$–isomorphism.

We will work in the homotopy category of the category of orthogonal G–spectra with the weak equivalence defined in (3.3). This homotopy category $Gw\mathcal{T}$ is smaller than the homotopy category of orthogonal G–spectra that we usually talked about, where the weak equivalence involved is the $\pi_{*}\mathcal{G}$–isomorphism. However, it seems the information that each object contains is enough to define an equivariant cohomology theory.

The homotopical adjunction below is a way to describe the relation between G–equivariant homotopy theory and those equivariant homotopy theory for its closed subgroups. It is introduced in Definition 4.4 [6].

Definition 3.4 (homotopical adjunction). Let H and G be two compact Lie groups. Let
\begin{equation}
L : GT \rightarrow HT \text{ and } R : HT \rightarrow GT
\end{equation}
be two functors between the category of G–spaces and that of H–spaces. A left-to-right homotopical adjunction is a natural map
\begin{equation}
\operatorname{Map}_{H}(LX, Y) \rightarrow \operatorname{Map}_{G}(X, RY),
\end{equation}
which is a weak equivalence of spaces when X is a G–CW complex.
Analogously, a right-to-left homotopical adjunction is a natural map

\[(3.8) \quad \text{Map}_G(X, RY) \to \text{Map}_H(LX, Y)\]

which is a weak equivalence of spaces when \(X\) is a \(G\)-CW complex.

\(L\) is called a homotopical left adjoint and \(R\) a homotopical right adjoint.

4. Equivariant spectra

In this section, we construct a space \(QE_{G,n,m}\) representing the \(m\)-th \(G\)-equivariant quasi-theory \(QE_{m,G}\)(\(\cdot\)) up to a weak equivalence.

Let \(G\) be a compact Lie group and \(σ \in G^n\). Let \(Γ\) denote the subgroup \(\langle σ_1, \ldots, σ_n \rangle\) of \(G\). Let

\[S_{G,σ} := \text{Map}_Γ(G, *_{K}E(Γ/K))\]

where * denotes the join, \(K\) goes over all the maximal subgroups of \(Γ\) and \(E(Γ/K)\) is the universal space of the abelian group \(Γ/K\).

Lemma 4.1. For any closed subgroup \(H \leq G\), \(S_{G,σ}\) satisfies

\[(4.1) \quad S^H_{G,σ} \simeq \begin{cases} \text{pt}, & \text{if for any } b \in G, \ b^{-1}Γb \not\leq H; \\ \emptyset, & \text{if there exists } b \in G \text{ such that } b^{-1}Γb \leq H. \end{cases}\]

Proof.

\[(4.2) \quad S^H_{G,σ} = \text{Map}_Γ(G/H, *_{K}E(Γ/K)).\]

If there exists an \(b \in G\) such that \(b^{-1}Γb \leq H\), it is equivalent to that there exists points in \(G/H\) that can be fixed by \(Γ\). But there are no points in \(*_{K}E(Γ/K) \) that can be fixed by the whole group \(Γ\). So there is no \(Γ\)-equivariant map from \(G/H\) to \(*_{K}E(Γ/K) \). In this case \(S^H_{G,σ}\) is empty.

If for any \(b \in G\), \(b^{-1}Γb \not\leq H\), it is equivalent to say that there are no points in \(G/H\) that can be fixed by \(Γ\). Any proper subgroup \(L\) of \(Γ\) is contained in some maximal subgroup of \(Γ\). \((*_{K}E(Γ/K))_L \) is the join of several contractible spaces \(E(Γ/K)^L \). Thus, it is contractible. So all the homotopy groups \(π_n((*_{K}E(Γ/K))_L) \) are trivial. For any \(n \geq 1\) and any \(L\)-equivariant map

\[f : (G/H)^n \to *_{K}E(Γ/K)\]

from the \(n\)-skeleton of \(G/H\), the obstruction cocycle is zero.

Then by equivariant obstruction theory, \(f\) can be extended to the \((n+1)\)-cells of \(G/H\), and any two extensions \(f\) and \(f'\) are \(Γ\)-homotopic.

So in this case \(S^H_{G,σ}\) is contractible. \(\square\)

Theorem 4.2. A homotopical right adjoint of the functor \(L_σ : GT \to C_G(σ)T, \ X \mapsto X^σ\) from the category of \(G\)-spaces to that of \(C_G(σ)\)-spaces is

\[(4.3) \quad R_σ : C_G(σ)T \to GT, \ Y \mapsto \text{Map}_{C_G(σ)}(G, Y * S_{C_G(σ),σ}).\]

Proof. Let \(H\) be any closed subgroup of \(G\).

First we show given a \(C_G(σ)\)-equivariant map \(f : (G/H)^n \to Y\), it extends uniquely up to \(C_G(σ)\)-homotopy to a \(C_G(σ)\)-equivariant map

\[\tilde{f} : G/H \to Y * S_{C_G(σ),σ}.\]
f can be viewed as a map $(G/H)^\sigma \to Y \ast S_{C_G(\sigma), \sigma}$ by composing with the inclusion of one end of the join

$$Y \to Y \ast S_{C_G(\sigma), \sigma}, \ y \mapsto (1y, 0).$$

If $bH \in (G/H)^\sigma$, define $\tilde{f}(bH) := f(bH)$.

If bH is not in $(G/H)^\sigma$, its stabilizer group does not contain Γ. By Lemma 4.1 for any subgroup L of its stabilizer group, $S_{C_G(\sigma), \sigma}$ is contractible. So $(Y \ast S_{C_G(\sigma), \sigma})_{G/H} = (Y^L \ast S_{C_G(\sigma), \sigma})_{G/H}$ is contractible. In other words, if L occurs as the isotropy subgroup of a point outside $(G/H)^\sigma$, $\pi_n((Y \ast S_{C_G(\sigma), \sigma})_{G/H})$ is trivial. By equivariant obstruction theory, f can extend to a $C_G(\sigma)$-equivariant map $\tilde{f} : G/H \to Y \ast S_{C_G(\sigma), \sigma}$, and any two extensions are $C_G(\sigma)$-homotopy equivalent.

In addition, $S_{C_G(\sigma), \sigma}$ is contained in the end Y of the join. Thus, $\text{Map}_{C_G(\sigma)}((G/H)^\sigma, Y)$ is weak equivalent to $\text{Map}_{C_G(\sigma)}(G/H, Y \ast S_{C_G(\sigma), \sigma})$.

Moreover, we have the equivalence by adjunction

$$\text{Map}_{C_G(\sigma)}(G/H, \text{Map}_{C_G(\sigma)}(Y \ast S_{C_G(\sigma), \sigma})) \cong \text{Map}_{C_G(\sigma)}(G/H, Y \ast S_{C_G(\sigma), \sigma}).$$

So we get

$$R_\sigma Y^\sigma = \text{Map}_{C_G(\sigma)}(G/H, R_\sigma Y) \cong \text{Map}_{C_G(\sigma)}((G/H)^\sigma, Y).$$

Let X be of the homotopy type of a G-CW complex. Let X^k denote the k-skeleton of X. Consider the functors $\text{Map}_{C_G(\sigma)}(\sigma, R_\sigma Y)$ and $\text{Map}_{C_G(\sigma)}((-)^\sigma), Y)$

from $G\mathcal{T}$ to \mathcal{T}. Both of them sends homotopy colimit to homotopy limit. In addition, we have a natural map from $\text{Map}_{C_G(\sigma)}(\sigma, R_\sigma Y)$ to $\text{Map}_{C_G(\sigma)}((-)^\sigma), Y)$ by sending a G-map $F : X \to R_\sigma Y$ to the composition

$$X^\sigma \xrightarrow{F^\sigma} (R_\sigma Y)^\sigma \to Y^\sigma \subseteq Y$$

with the second map $f \to f(e)$. Note that for any $f \in (R_\sigma Y)^\sigma$, $i = 1, \cdots, n,

\begin{align*}
(\sigma_i \cdot f)(e) &= f(\sigma_i e) = f(\sigma_i) = \sigma_i \cdot f(e) \equiv (Y \ast S_{C_G(\sigma), \sigma})^\sigma = Y^\sigma
\end{align*}

and the second map is well-defined. It gives weak equivalence on orbits, as shown in (4.3). Thus, R_σ is a homotopical right adjoint of L_σ.

The subgroup $\{(1, t) \in \Delta_G(\sigma) | t \in \mathbb{R}^n\}$ of $\Delta_G(\sigma)$ is isomorphic to \mathbb{R}^n. We use the same symbol \mathbb{R}^n to denote it.

THEOREM 4.3. Let Y be a $\Delta_G(\sigma)$-space. Consider the functor $L_\sigma : G\mathcal{T} \to \Delta_G(\sigma)\mathcal{T}, X \mapsto X^\sigma$ where $\Delta_G(\sigma)$ acts on X^σ by $[g, t] \cdot x = gx$. The functor $R_\sigma : \Delta_G(\sigma)\mathcal{T} \to G\mathcal{T}$ with

$$R_\sigma Y = \text{Map}_{C_G(\sigma)}(G, Y^{\mathbb{R}^n} \ast S_{C_G(\sigma), \sigma})$$

is a homotopical right adjoint of L_σ.

PROOF. Let X be a G-space. Let H be any closed subgroup of G. For any G-space X, \mathbb{R}^n acts trivially on X^σ, thus, the image of any $\Delta_G(\sigma)$-equivariant map $X^\sigma \to Y$ is in $Y^{\mathbb{R}^n}$. So we have $\text{Map}_{\Delta_G(\sigma)}(X^\sigma, Y) = \text{Map}_{C_G(\sigma)}(X^\sigma, Y^{\mathbb{R}^n})$.

First we show $f : (G/H)^\sigma \to Y^{\mathbb{R}^n}$ extends uniquely up to $C_G(\sigma)$-homotopy to a $C_G(\sigma)$-equivariant map $\tilde{f} : G/H \to Y^{\mathbb{R}^n} \ast S_{C_G(\sigma), \sigma}$. f can be viewed as a
map $(G/H)^\sigma \to Y^{R^n} S_{C_G(\sigma),\sigma}$ by composing with the inclusion as the end of the join
\[Y^{R^n} \to Y^{R^n} S_{C_G(\sigma),\sigma}, \quad y \mapsto (1y, 0). \]

The rest of the proof is analogous to that of Theorem 4.3. \qed

Theorem 4.3 implies Theorem 4.4 directly.

Theorem 4.4. For any compact Lie group G and any integer n and m, let $E_{G,n,m}$ denote the space representing the m–th G–equivariant E_n–theory. Then the theory $Q E_{n,G}$ is weakly represented by the space
\[Q E_{G,n,m} := \prod_{\sigma \in G^2} \mathcal{R}_\sigma(E_{\Lambda G(\sigma),n,m}) \]
in the sense of (4.3)
\[\pi_0(Q E_{G,n,m}) = Q E_{n,G}(S^0). \]
where $\mathcal{R}_\sigma(E_{\Lambda G(\sigma),n,m})$ is the space
\[\text{Map}_{C_G(\sigma)}(G, E_{\Lambda G(\sigma),n,m} \wr S_{C_G(\sigma),\sigma}). \]

5. **Orthogonal G–spectrum of $Q E_{n,G}$**

In this section, we consider equivariant cohomology theories E^n_G that have the same key features as equivariant complex K-theories. More explicitly,
- The theories $\{E^n_G\}_G$ have the change-of-group isomorphism, i.e., for any closed subgroup H of G and H–space X, the change-of-group map $\rho^G_H : E^n_G(G \times H X) \to E^n_H(X)$ defined by $E^n_G(G \times H X) \xrightarrow{\phi^*} E^n_H(G \times H X) \xrightarrow{i^*} E^n_H(X)$ is an isomorphism where ϕ^* is the restriction map and $i : X \to G \times H X$ is the H–equivariant map defined by $i(x) = [e, x]$.
- There exists an orthogonal spectrum E such that for any compact Lie group G and "large" real G–representation V and a compact G–space B we have a bijection $E^n_G(B) \to [B_+, E(V)]^G$. And (E_G, η^E, μ^E) is the underlying orthogonal G–spectrum of E.
- Let G be a compact Lie group and V an orthogonal G–representation. For every ample G–representation W, the adjoint structure map $\tilde{\sigma}^E_{V,W} : E(V) \to \text{Map}(S^W, E(V \oplus W))$ is a G–weak equivalence.

In this section we construct a \mathcal{L}_G–FSP $(Q E_n(G, \cdot), \eta E^n, \mu E^n)$ representing the theory $Q E^n_{n,G}(\cdot)$ in the category $G w S$ defined in Definition 3.2.

5.1. **The construction of $Q E_n(G, \cdot)$**

5.1.1. **The construction of $S(G,V)_\sigma$.** In this section, for each $\sigma \in G_n$, we construct an orthogonal version $S(G,V)_\sigma := \text{Sym}(V) \setminus \text{Sym}(V)^\sigma$ of the space $S_{G,\sigma}$. It is the space classified by the condition 3.1 which is also the condition classifying $S_{G,\sigma}$.

Let V be a real G–representation. Let $\text{Sym}^n(V)$ denote the n–th symmetric power $V^{\otimes n}$, which has an evident $G \wr \Sigma_n$–action on it. Let
\[\text{Sym}(V) := \bigoplus_{n \geq 0} \text{Sym}^n(V). \]

If V is an ample G–representation, $\text{Sym}(V)$ is a faithful H–representation, thus, a complete H–universe.
The complex conjugation on H subgroup G of C is isomorphic to η. Then $(\sigma \vee \tau)$ represents the theory $E_{\Lambda G(\sigma)}^V(\cdot)$. So we have

$$E_{\Lambda G(\sigma)}^V(\cdot)$$

is isomorphic to

$$[X^\sigma, \text{Map}(S(V)^{\otimes}, E((V)^{\otimes} \oplus V^\sigma))]_{\Lambda G(\sigma)}.$$
making the unit, associativity and centrality of unit diagram commute. And $\eta_\sigma(G,V)$ is $C_G(\sigma)-$equiariant and $\mu^\sigma_{(\sigma,\tau)}(\langle G, V \rangle, (H, W))$ is $C_{G \times H}(\sigma, \tau)-$equiariant.

(ii) Let ΔG denote the diagonal map $G \to G \times G$, $g \mapsto (g, g)$. Let $\tilde{\sigma}_\sigma(G, V, W) : F_\sigma(G, V) \to \text{Map}(SW^G, F_\sigma(G, V \oplus W))$ denote the map

$$x \mapsto \langle w \mapsto (\Delta G \circ \mu^\sigma_{(\sigma,\tau)}(\langle G, V \rangle, (G, W))) \rangle \langle x, \eta_\sigma(G, W)(w) \rangle \rangle.$$

Then $\tilde{\sigma}_\sigma(G, V, W)$ is a $\Lambda G(\sigma)-$weak equivalence when V is an ample $G-$representation.

(iii) If (E, η^E, μ^E) is commutative, we have

$$\mu^\sigma_{(\sigma,\tau)}((G, V), (H, W))(x \wedge y) = \mu^\sigma_{(\sigma,\tau)}((H, W), (G, V))(y \wedge x)$$

for any $x \in F_\sigma(G, V)$ and $y \in F_\sigma(H, W)$.

The proof is straightforward and left to the readers.

5.1.3. The construction of $Q\mathbb{E}_n(G, V)$. Recall in Theorem 4.4 we construct a $G-$space $Q\mathbb{E}_{G,n,m}$ representing $Q\mathbb{E}^m_{n,G}(-)$. In this section we go a step further.

Apply Theorem 4.3 we get the conclusion below.

Proposition 5.3. Let V be a faithful orthogonal $G-$representation. Let $B'_n(G, V)$ denote the space

$$\prod_{\sigma \in G^+_n} \text{Map}_{C_G(\sigma)}(G, F_\sigma(G, V) \ast S(G, V)_\sigma).$$

$Q\mathbb{E}^V_{n,G}(-)$ is weakly represented by $B'_n(G, V)$ in the sense $\pi_0(B'_n(G, V)) = Q\mathbb{E}^V_{n,G}(S^0)$.

The proof of Proposition 5.3 is analogous to that of Theorem 4.4 step by step. Below is the main theorem in Section 5.1. We will use formal linear combination

$$t_1a + t_2b \text{ with } 0 \leq t_1, t_2 \leq 1, t_1 + t_2 = 1$$

to denote points in join.

Proposition 5.4. Let $Q\mathbb{E}_{n,\sigma}(G, V)$ denote

$$\{t_1a + t_2b \in F_\sigma(G, V) \ast S(G, V)_\sigma \mid \|b\| \leq t_2 \}/\{t_1c_0 + t_2b\}.$$

It is the quotient space of a closed subspace of the joint $F_\sigma(G, V) \ast S(G, V)_\sigma$ with all the points of the form $t_1c_0 + t_2b$ collapsed to one point, which we pick as the basepoint of $Q\mathbb{E}_{n,\sigma}(G, V)$, where c_0 is the basepoint of $F_\sigma(G, V)$. $Q\mathbb{E}_{n,\sigma}(G, V)$ has the evident $C_G(\sigma)-$action. And it is $C_G(\sigma)-$weak equivalent to $F_\sigma(G, V) \ast S(G, V)_\sigma$. As a result, $\prod_{\sigma \in G^+_n} \text{Map}_{C_G(\sigma)}(G, Q\mathbb{E}_{n,\sigma}(G, V))$ is $G-$weak equivalent to

$$\prod_{\sigma \in G^+_n} \text{Map}_{C_G(\sigma)}(G, F_\sigma(G, V) \ast S(G, V)_\sigma).$$

So when V is a faithful $G-$representation,

$$Q\mathbb{E}_n(G, V) := \prod_{\sigma \in G^+_n} \text{Map}_{C_G(\sigma)}(G, Q\mathbb{E}_{n,\sigma}(G, V))$$

weakly represents $Q\mathbb{E}^V_{n,G}(-)$ in the sense $\pi_0(Q\mathbb{E}_n(G, V)) \equiv Q\mathbb{E}^V_{n,G}(S^0)$.

Proof. First we show $F_\sigma(G, V) \ast S(G, V)_\sigma$ is $C_G(\sigma)-$homotopy equivalent to

$$Q\mathbb{E}^\prime_{n,\sigma}(G, V) := \{t_1a + t_2b \in F_\sigma(G, V) \ast S(G, V)_\sigma \mid \|b\| \leq t_2\}.$$ Note that $b \in S(G, V)_\sigma$ is never zero. Let $j : Q\mathbb{E}^\prime_{n,\sigma}(G, V) \longrightarrow F_\sigma(G, V) \ast S(G, V)_\sigma$ be the inclusion. Let $p : F_\sigma(G, V) \ast S(G, V)_\sigma \longrightarrow Q\mathbb{E}^\prime_{n,\sigma}(G, V)$ be the $C_G(\sigma)-$map sending $t_1a + t_2b$ to $t_1a + t_2\min(\|b\|, t_2)\min(\|b\|, t_2)\min(\|b\|, t_2)$. Both j and p are both
continuous and $C_G(\sigma)$–equivariant. $p \circ j$ is the identity map of $QE_{n,\sigma}^*(G, V)$. We can define a $C_G(\sigma)$–homotopy

$$H : (F_\sigma(G, V) \ast S(G, V)_\sigma) \times I \longrightarrow F_\sigma(G, V) \ast S(G, V)_\sigma$$

from the identity map on $F_\sigma(G, V) \ast S(G, V)_\sigma$ to $j \circ p$ by shrinking. For any $t_1a + t_2b \in F_\sigma(G, V) \ast S(G, V)_\sigma$, Define

\begin{equation}
H(t_1a + t_2b, t) := t_1a + t_2((1 - t)b + t \frac{\min\{||b||, t_2\}}{||b||}b).
\end{equation}

Then we show $QE_{n,\sigma}^*(G, V)$ is G–weak equivalent to $QE_{n,\sigma}(G, V)$. Let $q : QE_{n,\sigma}^*(G, V) \longrightarrow QE_{n,\sigma}(G, V)$ be the quotient map. Let H be a closed subgroup of $C_G(\sigma)$.

If the group Γ is in H, since $S(G, V)_\sigma^H$ is empty, so $QE_{n,\sigma}(G, V)^H$ is the end $F_\sigma(G, V)$ and can be identified with $F_\sigma(G, V)^H$. In this case q^H is the identity map.

If Γ is not in H, $QE_{n,\sigma}^*(G, V)^H$ is contractible. The cone $\{c_0\} \ast S(G, V)_\sigma^H$ is contractible, so $q(\{c_0\} \ast S(G, V)_\sigma^H) = q(\{c_0\} \ast S(G, V)_\sigma^H)$ is contractible. Note that the subspace of all the points of the form $t_1c_0 + t_2b$ for any t_1 and b is $q(\{c_0\} \ast S(G, V)_\sigma^H)$. Therefore, $QE_{n,\sigma}(G, V)^H = QE_{n,\sigma}^*(G, V)^H / q(\{c_0\} \ast S(G, V)_\sigma^H)$ is contractible.

Therefore, $QE_{n,\sigma}^*(G, V)$ is G–weak equivalent to $F_\sigma(G, V) \ast S(G, V)_\sigma$. \hfill \Box

Proposition 5.5. Let $\sigma \in G^\circ_n$. Let Y be a based $\Lambda_G(\sigma)$–space. Let $\bar{Y_\sigma}$ denote the $C_G(\sigma)$–space

$$\{t_1a + t_2b \in Y^{R^n} \ast S(G, V)_\sigma ||b|| \leq t_2\}/\{t_1y_0 + t_2b\}.$$

It is the quotien space of a closed subspace of $Y^{R^n} \ast S(G, V)_\sigma$ with all the points of the form $t_1y_0 + t_2b$ collapsed to one point, i.e. the basepoint of $\bar{Y_\sigma}$, where y_0 is the basepoint of Y. $\bar{Y_\sigma}$ is $C_G(\sigma)$–weak equivalent to $Y^{R^n} \ast S(G, V)_\sigma$. As a result, the functor $R_\sigma : C_G(\sigma)T \longrightarrow GT$ with $R_\sigma Y = \operatorname{Map}_{C_G(\sigma)}(G, \bar{Y_\sigma})$ is a homotopical right adjoint of $L : GT \longrightarrow C_G(\sigma)T$, $X \mapsto X^\circ$.

The proof is analogous to that of Theorem 4.3 and Proposition 5.4.

Remark 5.6. We can consider $QE_{n,\sigma}(G, V)$ as a quotient space of a subspace of $F_\sigma(G, V) \times \operatorname{Sym}(V) \times I$

\begin{equation}
\{(a, b, t) \in F_\sigma(G, V) \times \operatorname{Sym}(V) \times I ||b|| \leq t; \text{ and } b \in S(G, V)_\sigma \text{ if } t \neq 0\}
\end{equation}

by identifying points $(a, b, 1)$ with $(a', b, 1)$, and collapsing all the points (c_0, b, t) for any b and t. In other words, the end $F_\sigma(G, V)$ in the join $F_\sigma(G, V) \ast S(G, V)_\sigma$ is identified with the points of the form $(a, 0, 0)$ in (5.6).

Proposition 5.7. For each $\sigma \in G^n_n$,

$$QE_{n,\sigma} : \mathcal{I}_G \longrightarrow C_G(\sigma)T, \ (G, V) \mapsto QE_{n,\sigma}(G, V)$$

is a well-defined functor. As a result,

$$QE_n : \mathcal{I}_G \longrightarrow GT, \ (G, V) \mapsto \prod_{\sigma \in G^n_n} \operatorname{Map}_{C_G(\sigma)}(G, QE_{n,\sigma}(G, V))$$

is a well-defined functor.
PROOF. Let V and W be G–representations and $f : V \to W$ a linear isometric isomorphism. Then f induces a $C_G(\sigma)$–homeomorphism $F_\sigma(f)$ from $F_\sigma(G, V)$ to $F_\sigma(G, W)$ and a $C_G(\sigma)$–homeomorphism $S_\sigma(f)$ from $S(G, V)_\sigma$ to $S(G, W)_\sigma$. We have the well-defined map

$$QE_{n,\sigma}(f) : QE_{n,\sigma}(G, V) \to QE_{n,\sigma}(G, W)$$

sending a point represented by $t_1a + t_2b$ in the join to that represented by $t_1 F_\sigma(f)(a) + t_2 S_\sigma(f)(b)$. And $QE_n(f) : QE_n(G, V) \to QE_n(G, W)$ is defined by

$$\prod_{\sigma \in G^+_\sigma} \alpha_\sigma \mapsto \prod_{\sigma \in G^+_\sigma} QE_{n,\sigma}(f) \circ \alpha_\sigma.$$

It is straightforward to check that all the axioms hold. □

5.2. Construction of η^{QE_n} and μ^{QE_n}. In this section we construct a unit map η^{QE_n} and a multiplication μ^{QE_n} so that we get a commutative \mathcal{I}_G–FSP representing the QE_n–theory in GwS.

Let G and H be compact Lie groups, V an orthogonal G–representation and W an orthogonal H–representation. Let $\sigma \in G^+_\sigma$. We use x_σ to denote the basepoint of $QE_{n,G}(G, V)$, which is defined in Proposition 5.4. For each $v \in S^V$, there are $v_1 \in S^{V_{\sigma}}$ and $v_2 \in S^{V_{\sigma^+}}$ such that $v = v_1 \wedge v_2$. Let $\eta^{QE_n}_{\sigma}(G, V) : S^V \to QE_{n,G}(G, V)$ be the map

$$\eta^{QE_n}_{\sigma}(G, V)(v) := \begin{cases} (1 - \|v_2\|) \eta_{\sigma}(G, V)(v_1) + \|v_2\| v_2, & \text{if } \|v_2\| \leq 1; \\ x_\sigma, & \text{if } \|v_2\| \geq 1. \end{cases}$$

LEMMA 5.8. The map $\eta^{QE_n}_{\sigma}(G, V)$ defined in (5.10) is well-defined, continuous and $C_G(\sigma)$–equivariant.

REMARK 5.9. For any $\sigma \in G^+_\sigma$, it’s straightforward to check the diagram below commutes.

$$\begin{array}{ccc}
S^V & \xrightarrow{\eta^{QE_n}_{\sigma}(G, V)} & F_\sigma(G, V) \\
\downarrow & & \downarrow \\
S^V & \xrightarrow{\eta^{QE_n}(G, V)} & QE_{n,\sigma}(G, V)
\end{array}$$

where both vertical maps are inclusions. By Lemma 5.8 the map

$$\eta^{QE_n}(G, V) : S^V \to \prod_{\sigma \in G^+_\sigma} \text{Map}_{C_G(\sigma)}(G, QE_{n,\sigma}(G, V)), v \mapsto \prod_{\sigma \in G^+_\sigma} (\alpha \mapsto \eta_{\sigma}^{QE_n}(G, V)(\alpha \cdot v)),$$

is well-defined and continuous. Moreover, $\eta^{QE_n} : S \to QE_n$ with $QE_n(G, V)$ defined in (5.4) is well-defined.

Next, we construct the multiplication map μ^{QE_n}. First we define a map

$$\mu^{QE_n}_{(\sigma, \tau)} : (G, V) \wedge QE_{n,\tau}(H, W) \to QE_{n,(\sigma, \tau)}(G \times H, V \oplus W)$$

\begin{itemize}
 \item $\mu^{QE_n}_{(\sigma, \tau)}((g, v)) : QE_{n,\sigma}(G, V) \wedge QE_{n,\tau}(H, W) \to QE_{n,(\sigma, \tau)}(G \times H, V \oplus W)$
\end{itemize}
by sending a point \([t_1a_1 + t_2b_1] \wedge [u_1a_2 + u_2b_2]\) to (5.9)
\[
\begin{align*}
&\left((1 - \sqrt{t_1^2 + u_1^2})\mu^{G,E}_{(\sigma,\tau)}((G, V), (H, W))(a_1 \wedge a_2) \text{ if } t_1^2 + u_1^2 \leq 1 \text{ and } t_2u_2 \neq 0; \\
&+ \sqrt{t_1^2 + u_1^2}(b_1 + b_2)), \\
&(1 - t_2)\mu^{G,E}_{(\sigma,\tau)}((G, V), (H, W))(a_1 \wedge a_2) + t_2b_1, \\
&(1 - u_2)\mu^{G,E}_{(\sigma,\tau)}((G, V), (H, W))(a_1 \wedge a_2) + u_2b_2, \\
&[1\mu^{G,E}_{(\sigma,\tau)}((G, V), (H, W))(a_1 \wedge a_2) + 0], \\
&x_{\sigma,\tau},
\end{align*}
\]
where \(x_{\sigma,\tau}\) is the basepoint of \(QE_{n,(\sigma,\tau)}(G \times H, V \oplus W)\).

Lemma 5.10. The map \(\mu^{QE}_{(\sigma,\tau)}((G, V), (H, W))\) defined in (5.13) is well-defined and continuous.

The basepoint of \(QE_{n}(G, V)\) is the product of the basepoint of each \(\text{Map}_{CG}(G, QE_{n,\sigma}(G, V))\), i.e. the product of the constant map to the basepoint of each \(QE_{n,\sigma}(G, V)\). We can define the multiplication \(\mu^{QE}_{(G, V), (H, W)} : QE_{n}(G, V) \wedge QE_{n}(H, W) \rightarrow QE_{n}(G \times H, V \oplus W)\) by
\[
(\prod_{\sigma \in G^n} \alpha_{\sigma}) \wedge (\prod_{\tau \in H^n} \beta_{\tau}) \mapsto \prod_{\sigma \in G^n} (\alpha_{\sigma}(\sigma')) \mu^{QE}_{(\sigma,\tau)}((G, V), (H, W))(\alpha_{\sigma}(\sigma') \wedge \beta_{\tau}(\tau')).
\]

Theorem 5.11. \(QE_{n} : I_{G} \rightarrow GT\) together with the unit map \(\eta^{QE}_{n}\) defined in (5.17) and the multiplication \(\mu^{QE}_{(G, V), (H, W)}\) gives a commutative \(I_{G} - FSP\) that weakly represents \(QE_{n,G}(-)\).

Remark 5.12. We apply a conclusion from Chapter 3, Section 1, in [13]. A \(G\)-spectrum \(Y\) is isomorphic to an orthogonal \(G\)-spectrum of the form \(X(G)\) for some orthogonal spectrum \(X\) if and only if for every trivial \(G\)-representation \(V\) the \(G\)-action on \(Y(V)\) is trivial. \(QE_{n}(G, V)\) is not trivial when \(V\) is trivial. So it cannot arise from an orthogonal spectrum.

Proposition 5.13. Let \(G\) be any compact Lie group. Let \(V\) be an ample orthogonal \(G\)-representation and \(W\) an orthogonal \(G\)-representation. Let \(\sigma^{QE}_{G,V,W} : S^{W} \wedge QE_{n}(G, V) \rightarrow QE_{n}(G, V \oplus W)\) denote the structure map of \(QE_{n}\) defined by the unit map \(\eta^{QE}_{n}(G, V)\). Let \(\sigma^{QE}_{G,V,W}\) denote the right adjoint of \(\sigma^{QE}_{G,V,W}\). Then \(\sigma^{QE}_{G,V,W} : QE_{n}(G, V) \rightarrow \text{Map}(S^{W}, QE_{n}(G, V \oplus W))\) is a \(G\)-weak equivalence.

Let \(G\) and \(H\) be compact Lie groups, \(V\) an orthogonal \(G\)-representation and \(W\) an orthogonal \(H\)-representation. We use \(x_{\sigma}\) to denote the basepoint of \(QE_{n}(G, V)\), which is defined in Proposition 5.4. Let \(\sigma \in G_{n}^{\ast}\). For each \(v \in S^{V}\), there are \(v_{1} \in S^{V_{\sigma}^{+}}\) and \(v_{2} \in S^{(V_{\sigma})^{+}}\) such that \(v = v_{1} \wedge v_{2}\). Let \(\eta^{QE}_{n}(G, V) : S^{V} \rightarrow QE_{n,\sigma}(G, V)\) be the map
\[
(5.10) \quad \eta^{QE}_{n}(G, V)(v) := \begin{cases}
(1 - \|v_{2}\|)\eta_{\sigma}(G, V)(v_{1}) + \|v_{2}\|v_{2}, & \text{if } \|v_{2}\| \leq 1; \\
x_{\sigma}, & \text{if } \|v_{2}\| \geq 1.
\end{cases}
\]
The map \(\eta^{QE}_{n}(G, V)\) defined in (5.10) is well-defined, continuous and \(C_{G}(\sigma)-\)equivariant.
Remark 5.14. For any \(\sigma \in G_n \), it’s straightforward to check the diagram below commutes.

\[
\begin{array}{ccc}
S^\sigma & \xrightarrow{\eta_\sigma(G,V)} & F_\sigma(G,V) \\
\downarrow & & \downarrow \\
S^V & \xrightarrow{\eta_{QE_n(G,V)}} & QE_n,\sigma(G,V)
\end{array}
\]

where both vertical maps are inclusions. By Lemma 5.8 the map (5.11)

\[\eta_{QE_n}(G,V) : S^V \rightarrow \prod_{\sigma \in G_n^o} \text{Map}_{C_{G,o}}(G, QE_n,\sigma(G,V)), \quad v \mapsto \prod_{\sigma \in G_n^o} (\alpha \mapsto \eta_\sigma^{QE_n}(G,V)(\alpha \cdot v)), \]

is well-defined and continuous. Moreover, \(\eta_{QE_n} : S \rightarrow QE_n \) with \(QE_n(G,V) \) defined in [5.3] is well-defined.

Next, we construct the multiplication map \(\mu_{QE_n} \). First we define a map

\[\mu_{\sigma,\tau}^{QE_n}((G,V),(H,W)) : QE_n,\sigma(G,V) \wedge QE_n,\tau(H,W) \rightarrow QE_n,(\sigma,\tau)(G \times H, V \oplus W) \]

by sending a point \([t_1a_1 + t_2b_1, u_1a_2 + u_2b_2] \) to

(5.12)

\[
\begin{cases}
(1 - \sqrt{t_1^2 + u_1^2}) \mu_{\sigma,\tau}^F((G,V),(H,W))(a_1 \wedge a_2), & \text{if } t_1^2 + u_1^2 \leq 1 \text{ and } t_2u_2 \neq 0; \\
\frac{1}{2}(1 - t_2) \mu_{\sigma,\tau}^F((G,V),(H,W))(a_1 \wedge a_2) + t_2b_1, & \text{if } u_2 = 0 \text{ and } 0 < t_2 < 1; \\
\frac{1}{2}(1 - u_2) \mu_{\sigma,\tau}^F((G,V),(H,W))(a_1 \wedge a_2) + u_2b_2, & \text{if } t_2 = 0 \text{ and } 0 < u_2 < 1; \\
1 \mu_{\sigma,\tau}^F((G,V),(H,W))(a_1 \wedge a_2) + 0, & \text{if } u_2 = 0 \text{ and } t_2 = 0; \\
\end{cases}
\]

where \(x_{\sigma,\tau} \) is the basepoint of \(QE_n,(\sigma,\tau)(G \times H, V \oplus W) \). The map \(\mu_{\sigma,\tau}^{QE_n}((G,V),(H,W)) \) defined in (5.12) is well-defined and continuous.

The basepoint of \(QE_n(G,V) \) is the product of the basepoint of each factor \(\text{Map}_{C_{G,o}}(G, QE_n,\sigma(G,V)), \) i.e. the product of the constant map to the basepoint of each \(QE_n,\sigma(G,V). \)

We can define the multiplication \(\mu_{QE_n}((G,V),(H,W)) : QE_n(G,V) \wedge QE_n(H,W) \rightarrow QE_n(G \times H, V \oplus W) \) by

\[
\left(\prod_{\sigma \in G_n^o} \alpha_\sigma \right) \wedge \left(\prod_{\tau \in H_n^o} \beta_\tau \right) \mapsto \prod_{\sigma \in G_n^o} \left(\sigma', \tau' \mapsto \mu_{(\sigma,\tau)}^{QE_n}((G,V),(H,W))(\alpha_\sigma(\sigma') \wedge \beta_\tau(\tau')) \right).
\]

Theorem 5.15. \(QE_n(G, -) : I_G \rightarrow GT \) together with the unit map \(\eta_{QE_n} \) defined in (5.11) and the multiplication \(\mu_{QE_n}((G, -),(G, -)) \) gives a commutative \(I_G-FSP \) that weakly represents \(QE^{G*}_n,(-) \).

The proof of Theorem 5.15 is analogous to that of Theorem 6.12 [6].

Remark 5.16. We apply a conclusion from Chapter 3, Section 1, in [13]. A \(G \)-spectrum \(Y \) is isomorphic to an orthogonal \(G \)-spectrum of the form \(X(G) \) for some orthogonal spectrum \(X \) if and only if for every trivial \(G \)-representation \(V \) the \(G \)-action on \(Y(V) \) is trivial. \(QE_n(V) \) is not trivial when \(V \) is trivial. So it cannot arise from an orthogonal spectrum.
In addition, we have the conclusion below.

Proposition 5.17. Let G be any compact Lie group. Let V be an ample orthogonal G–representation and W an orthogonal G–representation. Let $σ_{G,V,W}^{QE_E} : S^W \smash \rightarrow QE_n(G, V) \rightarrow QE_n(G, V \oplus W)$ denote the structure map of QE_n defined by the unit map $η^{QE_n}(G, V)$. Let $σ_{G,V,W}^{QE_n}$ denote the right adjoint of $σ_{G,V,W}^{QE_E}$. Then $σ_{G,V,W}^{QE_E} : QE_n(G, V) \rightarrow Map(S^W, QE_n(G, V \oplus W))$ is a G–weak equivalence.

The proof is analogous to that of Proposition 6.14 [6].

At last, we get the main conclusion of Section B.11.1

Theorem 5.18. For each positive integer n and each compact Lie group G, there is a well-defined functor QG_n from the category of orthogonal ring spectra to the category of \mathcal{I}_G–FSP sending E to $(QE_n(G, -), η^{QE_n}, μ^{QE_n})$ that weakly represents the quasi-theory $QE_n^*(G)$.

Appendix A. Faithful representation of $Λ_G(σ)$

We discuss complex and real $Λ_G(σ)$–representations in Section A.1 and A.2 respectively.

A.1. Preliminaries: faithful representations of $Λ_G(σ)$. In this section, we construct a faithful $Λ_G(σ)$–representation from a faithful G–representation.

Let G be a compact Lie group and $σ \in G^n$. Let l_i denote the order of $σ_i$. Let $ρ$ denote a complex G–representation with underlying space V. Let $i : C_G(σ) \hookrightarrow G$ denote the inclusion. Let $\{λ\}$ denote all the irreducible complex representations of $C_G(σ)$. As said in [4], we have the decomposition of a representation into its isotypic components $i^*V \cong \bigoplus_λ V_λ$ where $V_λ$ denotes the sum of all subspaces of V isomorphic to $λ$. Each $V_λ = Hom_{C_G(σ)}(λ, V) \otimes_C λ$ is unique as a subspace. Note that each $σ_i$ acts on each $V_λ$ as a diagonal matrix.

Each $V_λ$ can be equipped with a $Λ_G(σ)$–action. Each $λ(σ_i)$ is of the form $e^{2πιm_λl_i}I$ with $0 < m_λ ≤ l_i$ and I the identity matrix. As shown in Lemma 4.1, we have the well-defined complex $Λ_G(σ)$–representations

\[(V_λ)_σ := V_λ \otimes_C (q^{m_λ l_i} \otimes \cdots \otimes q^{m_λ l_i})\]
and
\[(A.1) (V)_σ := \bigoplus_λ (V_λ)_σ.\]

Proposition A.1. Let V be a faithful G–representation. Let $σ \in G^n$.

(i) $(V)_σ \oplus (V)_σ \otimes_C q^{-1}$ is a faithful $Λ_G(σ)$–representation.

(ii) $(V)_σ \oplus V^σ$ is a faithful $Λ_G(σ)$–representation.

Proof. (i) Let $[a, t] ∈ Λ_G(σ)$ be an element acting trivially on $V_σ$. Consider the subrepresentations $(V_λ)_σ$ and $(V_λ)_σ \otimes_C q^{-1}$ of $(V)_σ \oplus (V)_σ \otimes_C q^{-1}$ respectively. Let v be an element in the underlying vector space $V_λ$. On $(V_λ)_σ$, $[a, t] \cdot v = e^{2πιt(\frac{m_λ}{l_i} + \frac{m_λ}{l_i})}a \cdot v = v$; and on $(V_λ)_σ \otimes_C q^{-1}$, $[a, t] \cdot v = e^{2πιt(\frac{m_λ}{l_i} + \frac{m_λ}{l_i})}a \cdot v = v$. So we get $e^{2πιt} \cdot v = v$. Thus, $t = 0$. $C_G(σ)$ acts faithfully on V, so it acts faithfully on $(V)_σ \oplus (V)_σ \otimes_C q^{-1}$. Since $[a, 0] \cdot w = w$, for any $w \in (V)_σ \oplus (V)_σ \otimes_C q^{-1}$, so $a = e$.

Thus, $(V)_σ \oplus (V)_σ \otimes_C q^{-1}$ is a faithful $Λ_G(σ)$–representation.
(ii) Note that V^σ with the trivial \mathbb{R}-action is the representation $(V^\sigma)_\sigma \otimes_C q^{-1}$.

The representation $(V)_\sigma \oplus V^\sigma$ contains a subrepresentation $(V^\sigma)_\sigma \oplus (V^\sigma)_\sigma \otimes_C q^{-1}$, which is a faithful $\Lambda_G(\sigma)$-representation by Proposition A.1 (i). So $(V)_\sigma \oplus V^\sigma$ is faithful.

Lemma A.2. For any $\sigma \in G^\circ_0$, $(-)_\sigma$ defined in (A.1) is a functor from the category of G-spaces to the category of $\Lambda_G(\sigma)$-spaces. Moreover, $(-)_\sigma \oplus (-)_\sigma \otimes_C q^{-1}$ and $(-)_\sigma \oplus (-)^\sigma$ in Proposition A.1 are also well-defined functors from the category of G-spaces to the category of $\Lambda_G(\sigma)$-spaces.

Proof. Let $f : V \to W$ be a G-equivariant map. Then f is $\Lambda_G(\sigma)$-equivariant for each $\sigma \in G^\circ_0$. For each irreducible complex $C_G(\sigma)$-representation λ, $f : V_\lambda \to W_\lambda$ is $C_G(\sigma)$-equivariant. And $f_\sigma : (V_\lambda)_\sigma \to (W_\lambda)_\sigma$, $v \mapsto f(v)$ with the same underlying spaces is well-defined and is $\Lambda_G(\sigma)$-equivariant. It is straightforward to check if we have two G-equivariant maps $f : V \to W$ and $g : U \to V$, then $(f \circ g)_\sigma = f_\sigma \circ g_\sigma$. So $(-)_\sigma$ gives a well-defined functor from the category of G-representations to the category of $\Lambda_G(\sigma)$-representation.

The other conclusions can be proved in a similar way.

Proposition A.3. Let H and G be two compact Lie groups. Let $\sigma \in G^\circ_0$ and $\tau \in H^\circ_0$. Let V be a G-representation and W a H-representation.

(i) We have the isomorphisms of representations $(V \oplus W)_{(\sigma, \tau)} = (V_\sigma \oplus W_\tau)$ as $\Lambda_{G \times H}(\sigma, \tau) \cong \Lambda_G(\sigma) \times_{T^\sigma} \Lambda_H(\tau)$-representations;

$(V \oplus W)_{(\sigma, \tau)} \oplus (V \oplus W)_{(\sigma, \tau)} \otimes_C q^{-1} = ((V)_\sigma \oplus (V)_\sigma \otimes_C q^{-1}) \oplus ((W)_\tau \oplus (W)_\tau \otimes_C q^{-1})$

as $\Lambda_{G \times H}(\sigma, \tau) \cong \Lambda_G(\sigma) \times_{T^\sigma} \Lambda_H(\tau)$-representations;

and $(V \oplus W)_{(\sigma, \tau)} \oplus (V \oplus W)_{(\sigma, \tau)} = ((V)_\sigma \oplus V^\sigma) \oplus ((W)_\tau \oplus W^\tau)$ as $\Lambda_{G \times H}(\sigma, \tau) \cong \Lambda_G(\sigma) \times_{T^\sigma} \Lambda_H(\tau)$-representations.

(ii) Let $\phi : H \to G$ be a group homomorphism. Let $\phi_\tau : \Lambda_H(\tau) \to \Lambda_G(\phi(\tau))$ denote the group homomorphism obtained from ϕ. Then we have

$\phi_\tau^* (V)_{\phi(\tau)} = (V)_\tau$,

$\phi_\tau^* ((V)_{\phi(\tau)} \oplus (V)_{\phi(\tau)} \otimes_C q^{-1}) = (V)_\tau \oplus (V)_\tau \otimes_C q^{-1}$,

$\phi_\tau^* ((V)_{\phi(\tau)} \oplus V^{\phi(\tau)}) = (V)_\tau \oplus V^\tau$

as $\Lambda_H(\tau)$-representations.

Proof. (i) Let $\{\lambda_G\}$ and $\{\lambda_H\}$ denote the sets of all the irreducible $C_G(\sigma)$-representations and all the irreducible $C_H(\tau)$-representations. Then λ_G and λ_H are irreducible representations of $C_{G \times H}(\sigma, \tau)$ via the inclusion $C_G(\sigma) \hookrightarrow C_{G \times H}(\sigma, \tau)$ and $C_H(\tau) \hookrightarrow C_{G \times H}(\sigma, \tau)$.

The \mathbb{R}-representation assigned to each $C_{G \times H}(\sigma, \tau)$-irreducible representation in $V \oplus W$ is the same as that assigned to the irreducible representations of V and W. So we have

$(V \oplus W)_{(\sigma, \tau)} = (V_\sigma \oplus W_\tau)$

as $\Lambda_{G \times H}(\sigma, \tau) \cong \Lambda_G(\sigma) \times_{T^\sigma} \Lambda_H(\tau)$-representations.

Similarly we can prove the other two conclusions in (i).

(ii) Let $\sigma = \phi(\tau)$. If $(\phi_\tau^* V)_{\lambda_H}$ is a $C_H(\tau)$-subrepresentation of $\phi_\tau^* V_{\lambda_G}$, the \mathbb{R}-representation assigned to it is the same as that to V_{λ_G}. So we have $\phi_\tau^* (V)_{\phi(\tau)} = (V)_\tau$ as $\Lambda_H(\tau)$-representations.

Similarly we can prove the other two conclusions in (ii).
A.2. real \(\Lambda_G(\sigma) \)-representation. In this section we discuss real \(\Lambda_G(\sigma) \)-representation and its relation with the complex \(\Lambda_G(\sigma) \)-representations introduced in Lemma 2.1. The main reference is [2] and [4].

Let \(G \) be a compact Lie group and \(\sigma \in G^a_z \).

DEFINITION A.4. A complex representation \(\rho : G \to Aut_C(V) \) is said to be self dual if it is isomorphic to its complex dual \(\rho^* : G \to Aut_C(V^*) \) where \(V^* := Hom_C(V, \mathbb{C}) \) and \(\rho^*(g) = \rho(g^{-1})^* \).

For any compact Lie group, we use \(RO(G) \) to denote the real representation ring of \(G \). We have the real version of Lemma 2.1 below. The proof of Lemma A.5 is left to the readers.

LEMMA A.5. Let \(\sigma \in G^a_z \). Then the map \(\pi^* : RO(\mathbb{T}^n) \to RO(\Lambda_G(\sigma)) \) exhibits \(RO(\Lambda_G(\sigma)) \) as a free \(RO(\mathbb{T}^n) \)-module.

In particular there is an \(RO(\mathbb{T}) \)-basis of \(RO(\Lambda_G(\sigma)) \) given by irreducible real representations \(\{V_\lambda\} \). There is a bijection between \(\{V_\lambda\} \) and the set \(\{\lambda\} \) of irreducible real representations of \(C_G(\sigma) \). When \(\sigma \) is trivial, \(V_\lambda \) has the same underlying space \(V \) as \(\lambda \). When \(\sigma \) is nontrivial, \(V_\lambda = ((\lambda \otimes \mathbb{R} \mathbb{C}) \circ \mathbb{C} (\eta_1 \otimes \cdots \otimes \eta_n)) \oplus ((\lambda \otimes \mathbb{R} \mathbb{C}) \circ \mathbb{C} (\eta_1 \otimes \cdots \otimes \eta_n))^* \) where each \(\eta_i \) is a complex \(\mathbb{R} \)-representation such that \((\lambda \otimes \mathbb{R} \mathbb{C})(\sigma_i) \) acts on \(V \otimes \mathbb{R} \mathbb{C} \) via the scalar multiplication by \(\eta_i(1) \). The dimension of \(V_\lambda \) is twice that of \(\lambda \).

As in (A.1), we can construct a functor \((-)^R_\sigma\) from the category of real \(G \)-representations to the category of real \(\Lambda_G(\sigma) \)-representations with
\[
(A.2) \quad (V)^R_\sigma = (V \otimes \mathbb{R} \mathbb{C})_\sigma \oplus (V \otimes \mathbb{R} \mathbb{C})^*_\sigma.
\]

PROPOSITION A.6. Let \(V \) be a faithful real \(G \)-representation. For each \(\sigma \in G^a_z \), \((V)^R_\sigma \) is a faithful real \(\Lambda_G(\sigma) \)-representation.

PROOF. Let \([a, t] \in \Lambda_G(\sigma)\) be an element acting trivially on \((V)^R_\sigma\). Assume \(t \in [0, 1) \). Let \(v \in (V \otimes \mathbb{R} \mathbb{C})_\sigma \) and let \(v^* \) denote its correspondence in \((V \otimes \mathbb{R} \mathbb{C})^*_\sigma\). Then \([a, t](v + v^*) = (ae^{2\pi int} + ae^{-2\pi int})(v + v^*) = v + v^*\) where \(m \) is a nonzero number determined by \(\sigma \). Thus \(a \) is equal to both \(e^{2\pi int}I \) and \(e^{-2\pi int}I \). Thus \(t = 0 \) and \(a \) is trivial.

So \((V)^R_\sigma\) is a faithful real \(\Lambda_G(\sigma) \)-representation. \(\square \)

PROPOSITION A.7. Let \(H \) and \(G \) be two compact Lie groups. Let \(\sigma \in G^a_z \) and \(\tau \in H^a_z \). Let \(V \) be a real \(G \)-representation and \(W \) a real \(H \)-representation.
(i) We have the isomorphisms of representations \((V \oplus W)^R_\sigma = (V^R_\sigma \oplus W^R_\tau)\) as \(\Lambda_{G \times H}(\sigma, \tau) \cong \Lambda_G(\sigma) \times \Lambda_H(\tau) \)-representations.
(ii) Let \(\phi : H \to G \) be a group homomorphism. Let \(\phi_\tau : \Lambda_H(\tau) \to \Lambda_G(\phi(\tau)) \) denote the group homomorphism obtained from \(\phi \). Then \(\phi_\tau^*(V)^R_\phi(\tau) = (V)^R_\tau \), as \(\Lambda_H(\tau) \)-representations.

The proof is left to the readers.

References

[1] Matthew Ando, Michael J. Hopkins, and Neil P. Strickland: Elliptic spectra, the Witten genus and the theorem of the cube. Invent. Math. , 146(3):595–687, 2001.
[2] Theodor Bröcker, Tammo tom Dieck: Representation of Compact Lie Groups, Springer GTM 98 1985.
QUASI-THEORIES AND THEIR EQUIVARIANT ORTHOGONAL SPECTRA

[3] Jorge A. Devoto: Equivariant elliptic homology and finite groups, Michigan Math. J., 43(1):3–32, 1996.
[4] William Fulton, Joe Harris: Representation Theory, a first course, Springer GTM 129 1991.
[5] Nora Ganter: Stringy power operations in Tate K-theory, 2007, available at arXiv: math/0701565
[6] Zhen Huan: Quasi-elliptic cohomology and its Spectrum, available at arXiv:1703.06562
[7] Zhen Huan: Quasi-elliptic cohomology, Thesis (Ph.D.)University of Illinois at Urbana-Champaign. 2017. 290 pp. http://hdl.handle.net/2142/97268
[8] Zhen Huan: Quasi-elliptic cohomology I. Advances in Mathematics. Volume 337, 15 October 2018, Pages 107-138.
[9] Zhen Huan: Quasi-theories, available at arXiv:1809.06661
[10] Nicholas M. Katz and Barry Mazur: Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985.
[11] M.A.Mandell, J.P.May: Equivariant orthogonal spectra and S-modules, Mem.,Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.
[12] Charles Rezk: Quasi-elliptic cohomology, unpublished manuscript, 2011.
[13] Stefan Schwede: Global Homotopy Theory, v0.23/April 30, 2015, Preliminary and incomplete version, http://www.math.uni-bonn.de/people/schwede/global.pdf

ZHEN HUAN, DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275 CHINA
E-mail address: huanzhen84@yahoo.com