Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass (Lolium perenne L.)

Rachel F. Begheyn, Steven A. Yates, Timothy Sykes, and Bruno Studer

Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
ORCID ID: 0000-0001-5435-0194 (R.F.B.)

ABSTRACT
Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L.) germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391) segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene-dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL) were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.

KEYWORDS
Anther culture (AC)
Doubled haploid (DH)
Perennial ryegrass (Lolium perenne L.)
Genome-wide association study (GWAS)
Microspore embryogenesis (ME)
Multiparental populations

In contrast to animals, plant cellular differentiation (cell fate) is both flexible and reversible (Walbot and Evans 2003). In immature male gametophytic cells, a totipotent state can be induced through the application of a stress treatment. Subsequent de-differentiation of such cells into the embryogenic pathway may then be stimulated via their cultivation under suitable in vitro conditions. This process, known as microspore embryogenesis (ME) or androgenesis, ultimately results in the recovery of haploid or, via spontaneous or induced chromosome doubling, diploid completely homozygous individuals (Seguí-Simarro and Nuez 2008). Segregating populations of male gametophytes can thus be transformed into doubled haploids (DHs) in a single generation. These are of great value to fundamental research as well as plant breeding (Forster et al. 2007). The practical utility of androgenesis, however, ultimately depends on the efficient production of large numbers of microspore-derived embryos capable of regeneration into green, fertile plants.

The optimum stress and in vitro culture conditions for successful androgenesis are highly species and genotype-dependent (Seguí-Simarro 2010; Dwivedi et al. 2015). Through decades of empirical research, highly effective isolated microspore culture (IMC) protocols have been developed for barley (Hordeum vulgare L.), rapeseed (Brassica napus L.) and tobacco (Nicotiana spp.). Unfortunately, many economically (Solanaceae, fruit trees) and academically (Arabidopsis) important species remain recalcitrant (Seguí-Simarro 2015). In monocots, and grasses in particular, high rates of albinism further limit androgenic efficiency (Kumari et al. 2009). Apart from efforts aimed at establishing which external factors are critical for efficient androgenesis, attempts to uncover the genetic factors controlling ME and plant regeneration have been made.
In many cereal crops, linkage mapping studies have identified chromosomal regions associated with traits related to androgenesis. Quantitative trait loci (QTL) related to embryo production, for example, have been reported in wheat (Triticum aestivum L.) (Agache et al. 1989), barley (Manninen 2000) and triticale (× Triticosecale Wittm.) (González et al. 2005; Krzewska et al. 2012). The combined effect of two QTL on barley chromosomes 5H and 6H explained 51% of variation in green plant recovery (Chen et al. 2007), although only one QTL on chromosome 3H was implicated in a different study (Muñoz-Amatriain et al. 2008). Two regions on wheat chromosomes 1B and 7B explained 53% of the observed variation in albinism (Nielsen et al. 2015), QTL for which have also been reported in barley and triticale (Bregitzer and Campbell 2001; Krzewska et al. 2015). However, due to a lack of protocol uniformity, the diversity of material under study and the high variability inherent to tissue culture, consensus among these types of investigations is low (Bolbok and Rakoczy-Trojanowska 2006; Seldimirova and Kruglova 2015). In addition, genes underlying any of the reported QTL have not been identified.

Nevertheless, a number of candidate genes have been associated with high levels of ME and plant regeneration by means of gene expression experiments (reviewed in Hand et al. 2016). For example, expression of somatic embryogenesis receptor kinase (SERK) gene SERK1, and in some cases SERK2, was correlated with embryo production and plant regeneration in species such as Arabidopsis, rapeseed, maize (Zea mays L.) and wheat (Hu et al. 2005; Singla et al. 2008; Podio et al. 2014; Ahmadi et al. 2016; Seifert et al. 2015). Overexpression of the APETALA2 (AP2) transcription factor BABYBOOM (BBM), WUSCHEL (WUS) and AGAMOUS-like (AGL) genes, led to the production of ectopic somatic embryos in Arabidopsis, rapeseed and a number of monocot species and improved in vitro regeneration frequencies (Boutilier 2002; Muñoz-Amatriain et al. 2009b; Lowe et al. 2016). Other examples of genes that may be associated with ME are the arabino-galactan-related EARLY CULTURE ABUNDANT 1 (ECA1) (Vrinten et al. 1999), Polycomb Group (PcG) proteins including FERTILIZATION INDEPENDENT ENDOSPERM (FIE) (Hand et al. 2016), BURP-domain proteins like BrnBNM2 (Boutilier 2002; Tswamoto et al. 2007; Joosen et al. 2007; Malik et al. 2007) and the LEAFY COTYLEDON (LEC) family of transcription factors (Gruszczynska and Rakoczy-Trojanowska 2011; Soriano et al. 2013; Elahi et al. 2016). Similar to linkage mapping studies, the use of different species, treatments and gene expression platforms as well as the complexity of the system under study, prohibit conclusive identification of the genes of greatest importance to successful androgenesis (Soriano et al. 2013).

Chromosomal regions or genes associated with androgenic capacity in the most widely grown forage species in temperate agriculture, perennial ryegrass (Lolium perenne L.), have not yet been identified. Previous studies concluded that perennial ryegrass’ androgenic capacity is under polygenic control, with distinct genetic factors influencing embryo production, plant regeneration and green or albino plant production (Olesen et al. 1988; Boppenmeier et al. 1989; Opsahl-Ferstad et al. 1994; Madsen et al. 1995; Begheyn et al. 2017). Additive and dominance effects may play a role in embryo and plant production, while green plant production involved dominance effects or the complementation of recessive beneficial alleles. Environmental rather than genetic factors may be the main cause of the high incidence of albinism exhibited by many genotypes (Begheyn et al. 2017).

In concert with recent efforts to move toward hybrid perennial ryegrass breeding, the potential of in vitro androgenesis for the efficient production of homozygous lines has been recognized (Arias Aguirre et al. 2011; Begheyn et al. 2016; Manzanares et al. 2016; Sykes et al. 2016). To overcome the problematic recalcitrance of most breeding germplasm, molecular marker-based introgression of beneficial alleles has been proposed (Halberg et al. 1990; Andersen et al. 1997). Therefore, the main objective of our study was to identify genetic loci associated with androgenic capacity in a multiparental perennial ryegrass population via a genome-wide association study (GWAS). In addition, we aimed at identifying potential causal genes that may provide clues to the molecular mechanisms behind ME and plant regeneration in this important member of the grass family.

MATERIALS AND METHODS

Plant material and anther culture procedure

A detailed description of most of the plant material and the in vitro anther culture (AC) procedure used here can be found in Begheyn et al. (2017). Briefly, nine perennial ryegrass genotypes with distinct androgenic capacities were pair-crossed as part of a DH induction program at the DLF A/S research station in Store Heddinge, Denmark (Table S1). Eleven populations of pair-cross offspring were grown in 1 L soil filled pots in an unheated greenhouse in Lindau, Switzerland, vernalized and used as anther donors in 2015 and 2016. Spikes containing microspores in the late-uninucleate stage were harvested and subjected to a 4°C cold stress treatment of 24-72 h in the dark. After surface sterilization, anthers were aseptically excised and cultured on an adapted 190-2 induction medium (Wang and Hu 1984) in a 90 mm Petri dish, incubated at 26°C with a 16 h photoperiod. After six to eight weeks, macroscopic embryo-like structures (ELS) were transferred to the regeneration medium for shoot and root induction.

Phenotypic data collection

To quantify androgenic responses of the anther donor genotypes to in vitro AC, eight phenotypic traits were recorded: (1) anther response as a percentage of anthers producing macroscopic ELS (hereafter ‘responding anthers’ or RA); (2) embryo production as the number of ELS per 100 anthers cultured (AC); (3) plant, (4) green plant and (5) albino plant production, recorded per 100 AC; and (6) plant, (7) green plant and (8) albino plant regeneration, recorded per 100 ELS cultured. In 2015, a total of 313 genotypes were investigated, while incomplete vernalization prior to 2016 resulted in 116 studied genotypes. A total of 78 genotypes were phenotyped in both years (Table S1; Begheyn et al. 2017).

DNA extraction

Fresh leaf tissue of the anther donor plants was harvested for DNA extraction on a 96-well plate KingFisher Flex Purification System with KingFisher Pure DNA Plant Kits (Thermo Fisher Scientific, Waltham, MA, USA). Genomic DNA was visualized on a 1% agarose gel and quantified with a NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

Genotyping-by-sequencing library preparation

Genotyping-by-sequencing (GBS) libraries were prepared by multiplexing single restriction enzyme digested genomic DNA using 192 unique 5-10 bp barcodes (Table S2), designed with the Deena Bioinformatics online GBS Barcode Generator (http://www.deenabio.com/nl/services/gbs-adapters) and synthesized by Microsynth (Bal-gach, Switzerland).

Per sample, a 20 µL PstI digestion mixture was prepared, containing 10 µL DNA sample (10 ng µL⁻¹), 1 µL PstI (3.5 U µL⁻¹), 2.5 µL barcoded adaptors (0.1 ng µL⁻¹), 2.5 µL common adaptors (0.1 ng µL⁻¹), 2 µL O buffer and 2 µL H₂O. Samples were digested for 2 h at 37°C. Ligation with T4 ligase, pooling of 96 samples and purification

1898 | R. F. Begheyn et al.
(Qiagen MinElute PCR Purification Kit, Qiagen, Hilden, Germany) were performed according to Elshire et al. (2011). Fragments were amplified in volumes of 50 μL, containing 5 μL DNA library, 0.25 μL DreamTaq DNA Polymerase (5 U μL⁻¹), 5 μL 10× DreamTaq Buffer, 5 μL dNTPs (2 mM), 1 μL primers (10 μM; Table S2) and 33.75 μL H₂O. Thermocycler steps were as follows: 72°C for 5 min, 95°C for 30 s, 21 cycles of 95°C for 10 s, 65°C for 30 s and 72°C for 30 s, with a 5 min final extension at 72°C (GeneAMP PCR System 9700; Thermo Fisher Scientific, Waltham, MA, USA). All enzymes and their associated buffers were purchased from Thermo Fisher Scientific. Purified (as above) fragments were visualized on a 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA) to check for presence of adapter dimers and confirm a majority fragment length of 200–400 bp. If adapter dimers were present, an Agencourt AMPure XP bead purification (Beckman Coulter Inc., Brea, CA, USA) was performed.

GBS library sequencing

Two 192-plex and one 39-plex anther donor GBS libraries (423 genotypes in total) were sequenced using 126 bp single-end reads on three lanes of an Illumina HiSeq2500 platform at the Functional Genomics Center Zurich, Switzerland.

GBS data processing, reading mapping and variant calling

Reads were de-multiplexed using sabre (https://github.com/najoshi/sabre) allowing one mismatch. Using Bash commands and custom Perl scripts, reads were trimmed to 100 bp and the frequency (counts) of unique sequences (tags) was summarized per pair-cross population. Unique tags were back-transformed to FASTQ format. Bowtie v0.12.7 (Langmead et al. 2009) with “-best-strata” and a maximum of two alignments “-m 2” was used to map the FASTQ files to the perennial ryegrass genome v1.0 (Byrne et al. 2015). Unmapped tags were filtered out using a custom Perl script, resulting in 141,775,689 (20.2% of de-multiplexed) mapped tags. The SAM files as well as the count files were further processed in R v3.3.3 (R Core Team 2017).

Numerical factors were set to constrain genotyping to reflect the ploidy level of the genotypes (2n) and the maximum allele number (four) for pair-cross populations. Cut off values of 100 for the minor allele frequency (MAF) and eight for the minimum allele count (minAC) were used. Unique position identifiers (Upos) were extracted from the SAM files by concatenating the direction (Flag), location (Ref) and position (Pos) data. Low coverage sites were eliminated by retaining only Upos with at least one tag greater than the MAF. From the resulting tags, only those occurring at a frequency greater than 5% were retained.

For genotype calling, all informative, polymorphic nucleotide sites (Isites) across the tags were identified and only informative tags (Itags) with Isites were retained. Two unique alleles at one Isite position were called as heterozygous, while the occurrence of a single allele at one Isite was called as homozygous if its count was greater than the minAC. Informative tags were excluded if the number of unique Isites was greater than the ploidy level, or if the allele number within an Isites was greater than the maximum allele number. Haplotypes were obtained by concatenating alleles at the Isites within each tag, if applicable.

Genome-wide association mapping (GWAS)

Population structure was investigated using STRUCTURE v2.3.4 (Hubisz et al. 2009), GAPIT v2 (Lipka et al. 2012) as well as the hierarchical clustering hclust() (method = “ward.D”) and principal component analysis (PCA) prcomp() functions in R.

Itags were filtered using a MAF threshold of 10% and a minimum of 100 and 50 genotypes in 2015 and 2016, respectively (Figure S1). Since the phenotypic data did not, and could not be made to, fit the criteria for parametric testing (Begheyn et al. 2017), the non-parametric, rank-based Kruskal-Wallis (K-W) test was used to detect associations between each segregating haplotype (Itag) and the phenotypic traits (Krivisharju et al. 2004; Krzewska et al. 2012). For each of these K-W tests, 10,000 random permutations of the phenotypes were run. Associations were considered significant at a K-W LOD of 3.0 or higher and a permutation test threshold of 1%-Bonferroni corrected Dunn’s tests (P ≤ 0.05) were carried out post hoc to compare haplotypes’ trait values. All statistical analyses were performed using custom scripts in Rstudio v1.0.143 (RStudio Team 2015), running R v3.3.3 (R Core Team 2017). The R packages ggplot2 (Wickham 2009) and UpSetR (Lex et al. 2014) were used to generate the figures.

Scaffolds of the perennial ryegrass genome v1.0 (Byrne et al. 2015) containing significant Itags will hereafter be referred to as “significant scaffolds”.

Positioning the significant scaffolds on the GenomeZipper

Significant scaffolds were compared against the genome sequences of *Brachypodium distachyon*, rice (*Oryza sativa* Japonica Group) and sorghum (*Sorghum bicolor* L.) using a BLASTN search (E ≤ 1e⁻5, sequence identity ≥ 85%, match length of ≥ 150 bp). Matches were compared to the perennial ryegrass GenomeZipper (Pfeifer et al. 2013) in order to obtain the (approximate) locations of the scaffolds of interest on the linkage groups (LGs).

Genome and gene annotation

To identify transcribed regions of the perennial ryegrass genome and corresponding functional coding DNA sequences (CDS), a variety of RNA-seq datasets were used to predict CDS based on homologous BLAST search and to assign functional descriptions using BLAST homology to reference proteomes and pattern matching algorithms.

RNA-seq data: To identify genomic regions and their corresponding introns, exons and splice variants, the Tuxedo suite of tools was used (Trapnell et al. 2012). Results from the following RNA sequencing projects were used: six different tissues from *L. perenne* (Bioproject: PRJNA222646; Farrell et al. 2014); five *L. multiflorum* datasets from meristem samples (SRR3100250-4; Stoes et al. 2016); pollen and stigma samples from *L. perenne* (Manzanares et al. 2016); additionally an in-house data set comprising of 48 *L. perenne* meristem samples, taken at 8:00, 16:00 and 00:00 were also included (S. A. Yates, unpublished data). The reads were aligned to the transcriptome using Tophat v2.0.11 and Bowtie2 v2.1.0 (Langmead 2010; Trapnell et al. 2012) for all samples. Isoforms of genes were identified using Cufflinks v 2.2.0 (Trapnell et al. 2012) producing a genomic feature format file (GFF). The individual GFF files were then merged using the cuffmerge command, default settings.

Coding sequence identification: For CDS identification the spliced exons for each GFF transcript were retrieved using gffread (part of the Tuxedo tool suite). To identify the correct open reading frames (ORF) for protein sequences the program ORFpredictor v3.0 (Min et al. 2005) was used. For frame selection, the transcripts were first BLASTX (Altschul et al. 1990) searched against a protein database consisting of the proteomes from *Arabidopsis thaliana* TAIR v10 (Swarbreck et al. 2008), *O. sativa* (downloaded from Ensembl;
Gene annotation: For functional annotation of genes, three synergistic methods were employed, based on protein sequences. First, the protein sequences were searched against the A. thaliana TAIR10 proteome using BLASTP. Second, the proteins were searched against the Swiss-Prot non-redundant protein database (http://www.uniprot.org/downloads; downloaded 03/14/2016; UniProt Consortium 2014), again using BLASTP. In both cases the functional annotation of the best BLAST hit (E ≤ 1e−15) protein was used to assign annotations for functional description and gene ontology (GO). From Swiss-Prot an InterPro domain was also assigned where possible. In the third step, the protein sequences were scanned against InterPro’s signatures using InterProScan v5.16-55 (Jones et al. 2014). From this, a number of assignments could be made including High-quality Automated and Manual Annotation of Proteins (HAMAP; Pedrauzzi et al. 2015), Pfam (Finn et al. 2016) and Protein Information Resource Super family (PIRSF; Nikolskaya et al. 2007). For the aforementioned, the corresponding GO annotation was also retrieved from http://geneontology.org/external2go/ (downloaded 27/06/2016). The three sources of annotation were then combined, using in-house Perl scripts, into a single table and the GO terms from each were concatenated into a non-redundant list. Predicted CDS on the significant scaffolds were annotated using this list.

Data availability
Figure S1 contains graphs on the number of informative sequence tags per genotype. In Figure S2 the two principal components explaining the greatest variation from a PCA of the genotypic information are plotted. Table S1 provides an overview of the paircross parents and their progeny populations used in this work. Table S2 contains the barcode sequences or relatedness corrections in subsequent analyses.

Genotyping-by-sequencing (GBS)
Sequencing of the GBS libraries yielded a total of 884,174,849 raw, or 701,662,007 de-multiplexed reads. Of these, 141,775,689 (20.2%) were mapped to the perennial ryegrass genome assembly v1.0 (Byrne et al. 2015). After removing non-polymorphic tags (75.6%) and stringent filtering (see Materials and Methods), 1,120 and 1,079 informative tags of 100 bp, containing a polymorphic SNP or haplotype, could be used for the analysis of the 2015 and 2016 datasets, respectively (Figure S1). While the majority contained a single SNP, 25.8% (2015) and 24.2% (2016) of informative tags harbored two or more SNPs. Such sets of SNPs on single tags were treated as haplotypes in subsequent analyses.

Given the multiparental pedigree of the genotypes used in this study, the necessity for applying a correction for population stratification or structure (kinship) was investigated. No evidence for either was found upon analysis of the genotypic data using STRUCTURE (Porras-Hurtado et al. 2013), a kinship matrix (VanRaden 2008) or hierarchical clustering. In addition, the two principal components of the PCA explained 76.3% and 10.4% of variation, respectively (Figure S2). It was therefore not deemed necessary to include population structure or relatedness corrections in subsequent analyses.

Genome-wide association study (GWAS)
Analysis of the 2015 dataset resulted in the identification of significant associations (LOD ≥ 3.0) between six of the studied traits and nine SNPs as well as five haplotypes. Because two of the tags harboring these polymorphisms mapped back to the same scaffold (2554) of the perennial ryegrass genome assembly (Byrne et al. 2015), a total of thirteen significant scaffolds were identified (Table 2). No significant associations were found for plant or albino plant regeneration. Analysis of the smaller 2016 dataset yielded seven significant scaffolds (LOD ≥ 3.0) for six traits (Table 2). No significant associations were found for plant production and regeneration and none of the scaffold was significantly associated with a trait in both years given the 3.0 LOD threshold.

Since non-parametric testing does not allow for an estimation of QTL or allelic effects, allele or haplotype medians per significant scaffold and trait, combined with Dunn’s tests post hoc to ascertain significant differences (P ≤ 0.05), are presented instead (Table 2). In the 2015 dataset, for example, differences between the medians of the most and least beneficial SNP or haplotype ranged from 9.7 to 18.1 for percentage responsive anthers, 31.5 to 54.2 ELS per 100 AC and 4.9 to 27 plants per 100 AC. The 2016 dataset included a haplotype (TTTC/TTTC) associated with a median albino plant regeneration of 37.5 compared to 0 for the other haplotypes (CCCC/TTTC and CCCC/CCCC) of the same significant scaffold (3194). The smallest significant differences in median, of less than 1 and 1.2 in the 2015 and 2016 datasets, respectively, were observed for green plant production. Nevertheless, for green plant regeneration, the beneficial allele on scaffold 3723 was associated with a median increase of 62.2 green plants per 100 EC compared to the least beneficial allele (Table 2).

Most significant associations were found for the percentage of responsive anthers (10 associations), embryo production (nine) and albino plant production (seven; Figure 1). Using the 2015 dataset, four scaffolds (815, 233, 1669 and 4385) were significant for both the percentage of responsive anthers as well as ELS production, while two
scaffolds (16597 and 2554) were significantly associated with percentage responsive anthers and the production of ELS, plants and albino plants. Scaffold 10616 was significantly associated with ELS and plant production. Three scaffolds, 8920, 127 and 7045 were found to be significant for two traits using the 2016 dataset.

Positioning significant scaffolds on the GenomeZipper

By comparing B. distachyon, rice and sorghum gene homologs identified on the significant scaffolds with those anchored on the perennial ryegrass GenomeZipper (Pfeifer et al. 2013), all but one scaffold could be assigned approximate positions on the LGs (Figure 2).

Even so, confidence in the positioning varied from case to case. For example, the approximate positions of scaffolds 123, 127, 233, 813, 2075, 3194, 3723, 6186, 15142 and 16597 were resolved via one or several exact gene matches to the same location on the GenomeZipper. Scaffolds 60, 815, 1574, 2554, 4385, 6436, 7045 and 8920 were positioned (approximately) using three to 10 genes that were not anchored on the GenomeZipper, but could be placed between several genes anchored at the same location. Scaffold 10616 could not be assigned a location because no significant BLASTN hits of sufficient length were obtained.

Even though no scaffold was found to be significant in both years, scaffolds identified in different years were positioned in similar locations on the GenomeZipper LGs (Figure 2). Scaffolds 815 (2015) and 3194 (2016) are approximately 2 cM apart on LG 1 for example, while scaffolds 60, 813 and 15142 (2016) and 2554 (2015) are all positioned within a 0.3 cM region on LG 5.

No scaffolds were positioned on LGs 3 and 6. Scaffolds associated with the percentage of responsive anthers, ELS production and at least one of the albino plant-related traits were positioned on LGs 1, 4, 5 and 7, mostly relatively close together. Also amid these, on LGs 4 and 5, were the two plant production-related scaffolds (2554 and 16597) that could be placed on the GenomeZipper. The three scaffolds (127, 3723 and 6463) significantly associated to the green plant-related traits were some distance away from the scaffolds associated to the other traits. In fact, scaffold 6436 was the only scaffold positioned on LG 2.

Gene annotations

Between one and four predicted genes were annotated for each significant scaffold, with the exception of scaffold 10616 (Table S3). On scaffold 1607 for example, sequence homology to the Arabidopsis SERRATE (SRR) gene was found, while homologs of two domains of Polycomb Repressive Complex 2 (PRC2), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and CURLY LEAF (CLF) were identified on scaffolds 4383 and 7045, respectively.

DISCUSSION

Here, we present the first report of genetic loci associated with in vitro androgenesis in perennial ryegrass. Between two and 10 QTL (LOD ≥ 3.0) for anther response percentage, embryo production, total plant production as well as green and albino plant production and regeneration were identified on five of the seven perennial ryegrass LGs. Additionally, several intriguing candidate genes that may be responsible for the observed phenotypic differences were predicted on the QTL-harboring scaffolds of the perennial ryegrass genome assembly (Byrne et al. 2015). These results enable the development of the first molecular markers for androgenic capacity in perennial ryegrass, from the identified, polymorphic GBS tags. Their availability will help to realize the long-standing aim of efficient, marker-assisted introgression of good responses to in vitro DH induction into recalcitrant germplasm (Halberg et al. 1990; Andersen et al. 1997).

Multiparental population GWAS in perennial ryegrass

Contrary to previous QTL studies on androgenic capacity, which were based on linkage mapping in bi-parental populations of up to 100 individuals (Muñoz-Amatriain et al. 2008; Krzewska et al. 2012; Nielsen et al. 2015), an association mapping approach in a multiparental population, composed of 391 heterozygous individuals, was applied here. This design increased the presence of distinct alleles, confirmed by the observed phenotypic variation (Begheyn et al. 2017), and, due to the recombination between the nine heterozygous parents, ensured high levels of allelic diversity as well as good mapping resolution (Klasen et al. 2012; Giraud et al. 2014; Wang et al. 2017). Around 1,100 polymorphic SNPs and haplotypes, identified using a methylation-sensitive GBS protocol (Elshire et al. 2011), allowed for the genome-wide

Table 1 Summary of the androgenic capacity-related phenotypic traits under study (Begheyn et al. 2017). AC – anthers cultured; AP – albino plants; ELS – embryo-like structures; EC – ELS cultured; GP – green plants; RA – responsive anthers

TRAIT	MIN	MAX	MEDIAN	INTERQUARTILE RANGE	NUMBER OF GENOTYPES
RA (%)	0	86	7.9	27.5	313
ELS per 100 AC	0	665	21	94.9	307
Plants per 100 AC	0	1810	2.4	54	305
Plants per 100 EC	0	800	38.5	95.2	229
GP per 100 AC	0	1530	0	6	297
GP per 100 EC	0	335	0	25	229
AP per 100 AC	0	705	2	28	297
AP per 100 EC	0	800	21.1	52.6	229

2016

TRAIT	MIN	MAX	MEDIAN	INTERQUARTILE RANGE	NUMBER OF GENOTYPES
RA (%)	0	87	13	18	116
ELS per 100 AC	0	933	73	117	116
Plants per 100 AC	0	1609	0	9	116
Plants per 100 EC	0	425	0	18.3	105
GP per 100 AC	0	1203	0	0	115
GP per 100 EC	0	318	0	0	104
AP per 100 AC	0	942	0	6.6	115
AP per 100 EC	0	270	0	14.4	104
Table 2 Overview of the significant scaffolds of the perennial ryegrass genome assembly (Byrne et al. 2015) detected for each studied trait (LOD ≥ 3.0). Significant differences (P ≤ 0.05) between phenotypic medians are indicated with letters. AP – albino plants; AC – anthers cultured; ELS – embryo-like structures; EC – ELS cultured; GP – green plants; LG – linkage groups; RA – responsive anthers

TRAIT SCAFFOLD	LG	POSITION (cM)	LOD	ALLELE OR HAPLOTYPE	MEDIAN	ALLELE OR HAPLOTYPE	MEDIAN	ALLELE OR HAPLOTYPE	MEDIAN	
2015 RA (%)										
815	1	33.0-33.3	3.0	C/C	21.0 a	C/T	6.9 b	T/T	6.1 b	
233	4	40.4-40.5	3.9	AC/AC	17.1 a	AC/GT	10.8 a	GT/GT	1.3 b	
16597	4	52.3-52.4	3.4	GAG/GAG	19.6 a	CGA/CGA	5.2 b	CGA/GAG	1.5 b	
1669	5	0	3.2	G/G	14.7 a	G/T	1.3 b			
2554_2	5	28.5	3.8	C/C	11.7 a	C/T	2.0 b			
2075	7	43.6-43.7	3.3	GT/GT	19.4 a	TC/TC	13.8 a	GT/TC	1.3 b	
4385	7	46.5	3.1	TG/TG	19.0 a	GA/TG	14.2 a	GA/GA	2.4 b	
ELS/100AC										
815	1	33.0-33.3	3.4	C/C	73.6 a	C/T	13.1 b	T/T	216 b	
233	4	40.4-40.5	3.1	AC/AC	55.9 a	AC/GT	36.9 ab	GT/GT	1.7 b	
16597	4	52.3-52.4	3.9	GAG/GAG	62 a	CGA/CGA	8.3 b	CGA/GAG	2.4 b	
1669	5	0	3.4	G/G	41.9 a	G/T	0.7 b			
2554_2	5	28.5	4.5	C/C	34.9 a	C/T	0.7 b			
4385	7	46.5	3.9	TG/TG	54.6 a	GA/TG	32.8 a	GA/GA	0.8 b	
Plants/100AC										
16597	4	52.3-52.4	3.0	GAG/GAG	27.0 a	CGA/CGA	0.0 b	CGA/GAG	0.0 b	
2554_2	5	28.5	4.8	C/C	4.9 a	C/T	0.0 b			
10161		—			3.5 a	C/T	3.8 a	C/C	0.0 b	
GP/100AC										
6436	2	79.6-79.8	3.1	C/T	1.0 a	C/T	0.0 b	C/C	0.0 a	
GP/100EC	3723	5	4.5-25.4	3.1	C/C	64.2 a	C/T	2.0 a	T/T	0.0 b
AP/100AC	16597	4	52.3-52.4	3.2	GAG/GAG	16.3 a	CGA/CGA	0.0 b	CGA/GAG	0.0 b
2554_1	5	28.5	4.0	G/G	5.8 a	A/G	0.0 b			
2554_2	5	28.5	5.3	C/C	4.0 a	C/T	0.0 b			
6186	7	43.6-43.7	3.2	CA/CA	12.7 a	GT/GT	9.7 a	CA/GT	0.0 b	
1607	7	51.6-51.7	3.0	A/A	13.1 a	A/C	6.1 a	C/C	0.0 b	
123	7	62.4-62.8	3.3	G/G	13.8 a	A/G	0.0 b	A/A	0.0 b	
2016 RA (%)										
8920	4	22.2-22.3	3.4	CC/TT	21.0 a	TT/TT	13.0 a	CC/CC	9.0 b	
15142	5	28.2	3.2	A/G	22.0 a	A/A	11.0 ab	G/G	8.0 b	
60	5	28.5	3.3	C/T	34.0 a	A/C	11.0 b	C/C	8.5 b	
ELS/100AC										
8920	4	22.2-22.3	3.3	CC/TT	102.0 a	TT/TT	89.0 a	CC/CC	28.5 b	
813	5	28.5-28.5	3.2	A/G	173.0 a	G/G	36.0 b			
GP/100AC	127	1	56.1-57.5	3.9	G/G	1.2 a	A/G	0.0 b	A/A	0.0 b
GP/100EC	127	1	56.1-57.5	4.1	G/G	1.6 a	A/G	0.0 b	A/A	0.0 b
AP/100AC	7045	7	37.5-38.6	3.3	C/C	21.1 a	C/T	0.0 b	T/T	0.0 b
AP/100EC	3194	1	30.9-31.1	3.0	TTTC/TTTC	37.5 a	CCCG/TTTC	0.0 b	CCCG/CCCG	0.0 b
7045	7	37.5-38.6	3.0	C/C	19.8 a	C/T	0.0 b	T/T	0.0 b	
interrogation of gene-dense regions within the multiparental mapping population (Byrne et al. 2015). Significant population structure was absent, due to the common breeding history of the parental plants used to design the mapping population. This powerful experimental design, combined with robust, non-parametric (K-W) single SNP/haplotype genome-wide analysis and permutation-based validation, was successfully used to detect significant QTL (LOD ≥ 3.0) associated with the component traits of the androgenic response of perennial ryegrass.

A putative major QTL for green plant regeneration on perennial ryegrass LG 5

Authors have often commented on the difficulty of comparing tissue culture experiments, due to highly genotype-specific responses as well as crucial differences in execution and data collection (Bolbik and Rakoczy-Trojanowska 2006; Seldimirova and Kruglova 2015). Fortunately, comparative genomics studies within the grass family allow for an interspecific comparison of cereal AC and IMC QTL studies, albeit at the chromosomal level (Devois 2005). Most homologous grass chromosomes have been associated with all of the androgenicity-related traits at least once, however, and a common pattern is not obvious. One possible exception is a putative locus controlling green plant regeneration on Triticeae chromosome group 5 and reported to affect 12–37% of the phenotypic variation in barley, rice (chromosome 9), triticale and wheat (He et al. 1998; Torp et al. 2001; Chen et al. 2007; Muñoz-Amatriain et al. 2008; Krzewska et al. 2012). Intriguingly, we identified a putative major QTL, associated with a median increase of 62 green plants per 100 AC, on perennial ryegrass LG 5 as well (Pfeifer et al. 2013). This locus is therefore of great interest and its further investigation, for example using fine-mapping approaches, may lead to the identification of the gene with a considerable effect on green plant regeneration in the grass family.

Genetic control of androgenic capacity

A relatively large number of QTL with modest effects were associated with androgenic traits, such as anther response percentage (10 QTL), embryo production (nine QTL) and albino plant production (seven QTL). In addition, many QTL were shown to affect several traits, confirming the high correlations between, for example, embryo production and anther response as well as plant production observed earlier (Begheyn et al. 2017). Similar results have been reported by other groups (Murigneux et al. 1994; Beaumont et al. 1995; Manninen 2000; Krzewska et al. 2012). Finally, QTL detected in 2015 were not detected in 2016 and vice versa, although the QTL identified on scaffold 2075 using the 2015 dataset had a LOD of 2.0 using the 2016 dataset for percentage responsive anthers (results not shown). The discrepancy is probably caused by the fact that only 78 genotypes from four bi-parental crosses were subjected to AC in both years and just 45 of those had the same pair-cross parents (population 1). Allele frequencies of QTL detected using the 2015 dataset were likely too low, or entirely absent, from the 2016 dataset, which in turn harbored distinct beneficial alleles at a high enough frequency for QTL detection. Although a smaller dataset was used in 2016, several QTL of particular interest were detected. For example, a QTL on scaffold 813 was associated with a major median increase in embryo production of 137 ELS per 100 anthers cultured. In addition, the only QTL (on scaffolds 3194 and 7045) associated with albino plant regeneration, connected with a median increase of 19.8 and 37.5 albino plants per 100 ELS cultured, were detected using this dataset.

All of the above findings may be explained by the fact that both ME and albinism during in vitro culture are under complex, polygenic and heterogeneous control (Seguí-Simarro and Nuez 2008; Makowska and Oleszczuk 2014). A single genetic master switch for ME has never been identified and albino phenotypes can be caused by mutations in as many as 300 nuclear genes (Kumari et al. 2009; Hand et al. 2016). A significant increase in embryo production may, therefore, be accomplished via the stacking of several genetic loci with modest effect within single genotypes (Madsen et al. 1995; Andersen et al. 1997; Marhic et al. 1998). In addition to nuclear genes, plastid-encoded genetic factors and their transcription levels have been implicated in the incidence of albinism in Poaceae species during in vitro culture (Caredda et al. 2004; Torp and Andersen 2009). This not only complicates the elucidation of the genetic control of this phenomenon, but also affects the effectiveness of stacking beneficial nuclear genetic factors to achieve lower albinism rates.

A relatively small number of QTL were associated with plant production, green plant production and green and albino plant regeneration. The three QTL detected for total plant production also affected
either embryo production, albino production or both. Conversely, the QTL that influenced green plant production (2 QTL) and regeneration (2 QTL) were not associated with any other traits and positioned at distinct locations on the perennial ryegrass LGs. In addition, only one of the two QTL related to albino plant regeneration affected a second trait, albino plant production. These results do not only confirm the separate genetic control of green and albino plant production capacity reported previously (He et al. 1998; González et al. 2005; Krzewska et al. 2015; Begheyn et al. 2017). They also suggest that total plant production and total plant regeneration, for which no QTL were identified at all, may not be of great use to describe androgenic ability. The three phases of in vitro androgenesis that are commonly distinguished, 1) embryo production, 2) plant regeneration and 3) green plant recovery, can, at least in the grass family, be redefined as 1) embryo production, 2a) green plant recovery and 2b) albino plant recovery. Green plant recovery seems to be controlled by fewer loci than albino plant recovery, although environmental influence on albinism may have masked both green plant production and regeneration capacity as well as the QTL associated with them (Begheyn et al. 2017).

Candidate genes involved in androgenic response

While the putative function of most candidate genes underlying the QTL identified here has yet to be resolved, several have previously been associated with the regulation of stress response, cell fate change, embryogenesis or organogenesis. The ISOPRENYLCYSTEINE METHYLESTERASE-LIKE 2 (ICME-LIKE2) gene annotated on scaffold 123, for instance, is involved in abscisic acid (ABA) mediated stress signaling and specifically expressed in reproductive organs of *Arabidopsis* (Lan et al. 2010). Similarly, the VIP HOMOLOG 1 (VIH1) gene, identified on scaffold 233, is crucial to certain aspects of jasmonate mediated stress signaling and is mainly expressed in *Arabidopsis* pollen (Laha et al. 2015). Phytohormones like ABA and jasmonic acid (JA) have, in fact, been shown to play important roles during androgenesis by ensuring microspore viability through the regulation of stress responses as well as inducing ME via signaling cascades that activate specific gene expression programs (Maraschin et al. 2005; Ahmadi et al. 2014; Żur et al. 2015). The *Arabidopsis SERRATE* (SE) gene, which is involved in chromatin modification and microRNA-mediated gene expression regulation during organogenesis, was annotated on scaffold 1607 (Grigg et al. 2005; Yang et al. 2006). Embryonic lethality and defective post-embryonic organ formation have been reported in *Arabidopsis se* mutants, indicating a possible role for SE during plant regeneration after successful ME (Prigge and Wagner 2001; Grigg et al. 2005; Lobbes et al. 2006).

Most intriguing, however, was the annotation of orthologs to two genes encoding distinct domains of the Polycomb Repressive Complex 2 (PRC2), a highly conserved and important regulator of developmental processes, on scaffolds 4385 and 7045 (Förderer et al. 2016). The first, CURLY LEAF (CLF), encodes one of three SET domain proteins, the others being MEDEA (MEA) and SWINGER (SWN), which mediate large-scale chromatin remodelling during embryonic development (Liu et al. 2016). In fact, the mannitol stress treatment used prior to barley IMC was found to induce the upregulation of *CLF* in anther

Figure 2 Positions of the significant scaffolds detected in 2015 and 2016 (*) on the perennial ryegrass genome as inferred by the perennial ryegrass GenomeZipper (Pfeifer et al. 2013). AP – albino plants; AC – anthers cultured; ELS – embryo-like structures; EC – ELS cultured; GP – green plants; RA – responsive anthers.
tissue (Muñoz-Amatriain et al. 2009a). The second homolog is a FIE domain which is associated with MEA in the gametophytic- and endosperm-specific configuration of the PRC2. In Arabidopsis, fie as well as clf swn double mutants are unable to terminate the embryogenic phase of germination and proliferate into so-called PcG callus (Chanvivattana et al. 2004; Bouyer et al. 2011). Furthermore, the PRC2 complex is involved in the negative regulation of the LEC family as well as WUS genes, both of which play key roles in somatic and microspore embryogenesis (Berger et al. 2011; Lowe et al. 2016). In fact, LEC1, LEC2 and FUS3 are overexpressed in clf swn double mutants of Arabidopsis (Makarevich et al. 2006). Indeed, LEC1 (over-)expression was shown to negatively affect ME in both rapseseed and rye (Gruszczynska and Rakoczy-Trojanowska 2011; Elahi et al. 2016). Interestingly, a homolog of the MADS box gene AGL26, was annotated along with FIE on scaffold 4385. Several MADS box transcription factors, which are key regulators of developmental processes, are negatively regulated by PRC2 as well (Masiero et al. 2011). Ultimately, the distinct phases of in vitro androgenesis are likely to require different levels of PRC2 mediated repression of specific genes (Förderer et al. 2016). Quantification or manipulation of the expression of CLF, FIE, AGL26 or any of the other candidate genes during different stages of perennial ryegrass in vitro AC could confirm their contribution to successful androgenesis and should determine if and when their expression is beneficial.

Concluding remarks

Here, we have demonstrated the effectivity of a multiparental genome-wide association mapping approach in perennial ryegrass and report the first genetic loci associated with the response to in vitro AC. Elucidation of the exact locations of the QTL detected here will, however, require the availability of a more complete perennial ryegrass genome assembly. It can then be ascertained whether the co-localization of several QTL detected here will, however, require the availability of a more complete perennial ryegrass genome assembly. Of the exact locations of the QTL detected here will, however, require the availability of a more complete perennial ryegrass genome assembly. The sequencing data produced and analyzed in this paper were generated in collaboration with the Genetic Diversity Centre and the Functional Genomics Center Zurich, Switzerland. We are indebted to Prof. Dr. Achim Walter and the Crop Science group for having hosted the Molecular Plant Breeding group at the ETH Zurich during most of this project. Keygene N.V. owns patents and patent applications protecting its Sequence Based Genotyping technologies (Truong et al. 2012).

LITERATURE CITED

Agache, S., B. Bachelier, J. de Buyser, Y. Henry, and J. Snape, 1989 Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theor. Appl. Genet. 77(1): 7–11. https://doi.org/10.1007/BF00292308

Ahmadi, B., M. E. Shariatpanahi, and J. A. da Silva, 2014 Efficient induction of microspore embryogenesis using ascorbic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tiss. Org. 116: 343–351.

Ahmadi, B., F. Masoomi-Adalizgeh, M. E. Shariatpanahi, P. Azadi, and M. Keshavarz-Alizadeh, 2016 Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: implication for microspore embryogenesis and plant regeneration. Plant Cell Rep. 35(1): 185–193. https://doi.org/10.1007/s00299-015-1878-6

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990 Basic local alignment search tool. J. Mol. Biol. 215(3): 403–410. https://doi.org/10.1006/jmbi.1992.1340

Andersen, S. B., S. Madsen, N. Roulund, N. Halberg, and A. Olesen, 1997 Haploidy in ryegrass, pp. 133–147 in In vitro haploid production in higher plants, edited by Jain, S. M., S. K. Sopory, and R. E. Veilleux. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1862-2_6

Arias Aguirre, A., B. Studer, U. Frei, and T. Lübberstedt, 2011 Prospects for hybrid breeding in bioenergy grasses. BioEnerg. Res. 5: 10–19.

Beaumont, V. H., T. R. Rocheford, and J. M. Widholm, 1995 Mapping the anther culture response genes in maize (Zea mays L.). Genome 38(5): 968–975. https://doi.org/10.1139/g95-027

Begheyn, R. F., T. Lübberstedt, and B. Studer, 2016 Haploid and doubled haploid techniques in perennial ryegrass (Lolium perenne L.) to advance research and breeding. Agronomy (Basel) 6(4): 60. https://doi.org/10.3390/agronomy6040060

Begheyn, R. F., N. Roulund, K. Vangsgaard, D. Kopecky, and B. Studer, 2017 Inheritance patterns of the response to in vitro doubled haploid induction in perennial ryegrass (Lolium perenne L.). Plant Cell Tiss. Org. 130: 667–679.

Berger, N., B. Dubreucq, F. Roudier, C. Dubos, and L. Lepinec, 2011 Transcriptional regulation of Arabidopsis LEAFY COTYLEDON 2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23(11): 4065–4078. https://doi.org/10.1105/tpc.111.018766

Bolbok, H., and M. Rakocy-Trojanowska, 2006 Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149(1-2): 73–83. https://doi.org/10.1007/s10681-005-9055-6

Boppenmeier, J., S. Zucchner, and B. Foroughi-Wehr, 1989 Haploid production from barley yellow dwarf virus resistant clones of Lolium. Plant Breed. 103(3): 216–220. https://doi.org/10.1111/j.1439-0523.1989.tb0374x

Boutilier, K., 2002 Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8): 1737–1749. https://doi.org/10.1105/tpc.001941

Bouyer, D., F. Roudier, M. Heese, E. D. Andersen, D. Gey et al., 2011 Polycytoplasm repressive complex 2 controls the embryo-to-seeding phase transition. PLoS Genet. 7(3): e1002014. https://doi.org/10.1371/journal.pgen.1002014

Bregitzer, P., and R. D. Campbell, 2001 Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci. 41(1): 173–179. https://doi.org/10.2135/cropsci2001.411173x

Byrne, S. L., I. Nagy, M. Pfeifer, I. Armstead, S. Swain et al., 2015 A syntenically-based draft genome sequence of the forage grass Lolium perenne. Plant J. 84(4): 816–826. https://doi.org/10.1111/pj.13037

Caredda, S., P. Devaux, R. S. Sangwan, I. Prout, and C. Clément, 2004 Plastid ultrastructure and DNA related to albinism in Arabidopsis thaliana. Plant J. 39(2): 205–217. https://doi.org/10.1111/j.1365-313X.2004.02261.x
androgenetic embryos of various barley (*Hordeum vulgare* L.) cultivars. Plant Cell Tiss. Org. 76: 35–43. https://doi.org/10.1007/s00123-004-0879-7

Chanvivattana, Y., A. Bishopp, D. Schubert, C. Stock, Y.-H. Moon et al., 2004 Interaction of Polycym-group proteins controlling flowering in *Arabidopsis*. Development 131(21): 5263–5276. https://doi.org/10.1242/dev.01400

Chen, X.-W., L. Cistué, M. Muñoz-Amatriain, M. Sanz, I. Romagosa et al., 2007 Genetic markers for doubled haploid response in barley. Euphytica 158(3): 287–294. https://doi.org/10.1007/s10681-006-9310-5

Devis, K. M., 2005 Updating the “Crop Circle.”. Curr. Opin. Plant Biol. 8(2): 155–162. https://doi.org/10.1016/j.pbi.2005.01.005

Dwiwedi, S. L., A. B. Britt, L. Tripathi, S. Sharma, H. D. Upadhyaya et al., 2015 Haploids: constraints and opportunities in plant breeding. Biotechnol. Adv. 33(6): 812–829. https://doi.org/10.1016/j.biotechadv.2015.07.001

Elahi, N., R. W. Duncan, and C. Stasolla, 2016 Effects of altered expression of LEAFY COTYLEDON1 and FUSCA3 on microspore-derived embryo-genesis of *Brassica napus* L. J. Genet. Eng. Biotechnol. 14(1): 19–30. https://doi.org/10.1016/j.jgeb.2016.05.002

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto et al., 2011 A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5): e19379. https://doi.org/10.1371/journal.pone.0019379

Farrell, J. D., S. Byrne, C. Paina, and T. Asp, 2014 De novo assembly of the perennial ryegrass transcriptome using an RNA-seq strategy. PLoS One 9(8): e103567. https://doi.org/10.1371/journal.pone.0103567

Finn, R. D., P. Coggill, R. Y. Eberhardt, S. R. Eddy, J. Mistry et al., 2016 The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1): D279–D285. https://doi.org/10.1093/nar/gkv1344

Foerderer, A., Y. Zhou, and F. Turck, 2016 The age of multiplexity: recruitment and interactions of Polycym complexes in plants. Curr. Opin. Plant Biol. 29: 169–178. https://doi.org/10.1016/j.pbi.2015.11.010

Forster, B. P., E. Heberle-Bors, K. J. Kasha, and A. Tourea, 2007 The resurgence of haploids in higher plants. Trends Plant Sci. 12(8): 368–375. https://doi.org/10.1016/j.tplants.2007.06.007

Giraud, H., C. Lehermeier, E. Bauer, M. Falque, V. Segura et al., 2014 Linkage disequilibrium with linkage analysis of multilin crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 198(4): 1717–1734. https://doi.org/10.1534/genetics.114.169367

González, J. M., L. M. Muñiz, and N. Jouve, 2005 Mapping of QTLs for hand. M. L. Hand, M. de Vries, and A. M. G. Koltunow, 2016 A comparison of *Arabidopsis* and *A. thaliana* for the identification of QTLs. Mol. Ecol. Resour. 9(5): 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x

Jones, P., D. Binns, H. Y. Chang, M. Fraser, W. Li et al., 2014 InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9): 1236–1240. https://doi.org/10.1093/bioinformatics/btu301

Jooosten, R., J. Cordewener, D. E. J. Supena, O. Vorst, M. Lammers et al., 2007 Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapped microspore-derivate embryo development. Plant Physiol. 144(1): 155–172. https://doi.org/10.1104/pp.107.098723

Kersey, P. J., J. E. Allen, I. Armean, S. Boddu, B. J. Bolt et al., 2016 Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44(D1): D574–D580. https://doi.org/10.1093/nar/gkv1209

Kiviharju, E., J. Laurila, M. Lehtonen, P. Tanhuanpää, and O. Manninen, 2004 Anther culture properties of oat wild red oat progeny and a search for RAPD markers associated with another culture ability. Agric. Food Sci. 13(1–2): 152–162. https://doi.org/10.1016/j.apsfs.2015.11.010

Klaes, J. R., H.-P. Piepho, and B. Stich, 2012 QTL detection power of multi-parental RIL populations in *Arabidopsis thaliana*. Heredity 108(6): 626–632. https://doi.org/10.1038/hdy.2011.133

Krzewska, M., I. Czyzczyno-Mysza, E. Dubas, G. Goliebiowska-Pikana, E. Golemiec et al., 2012 Quantitative trait loci associated with androgenic responsiveness in triticate (*Triticosecale Wittm.* anther culture. Plant Cell Rep. 31(11): 2099–2108. https://doi.org/10.1007/s00299-012-1320-2

Krzewska, M., I. Czyzczyno-Mysza, E. Dubas, G. Goliebiowska-Pikana, and I. Żur, 2015 Identification of QTLS associated with albino plant formation and some new facts concerning green vs. albino ratio determinants in triticate (*Triticosecale Wittm.*) anther culture. Euphytica 206(1): 263–278. https://doi.org/10.1007/s10681-015-1509-x

Kumari, M., H. J. Clarke, I. Small, and K. H. M. Siddique, 2009 Albinism in plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Crit. Rev. Plant Sci. 28(6): 393–409. https://doi.org/10.1080/0735268090313252

Laha, D., P. Johnen, C. Azevedo, M. Dynowski, M. Weiße et al., 2015 VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in *Arabidopsis*. Plant Cell 27(4): 1082–1097. https://doi.org/10.1105/tpc.114.135160

Lan, P., W. Li, H. Wang, and W. Ma, 2010 Characterization, sub-cellular localization and expression profiling of the isoprenylecysteine methylesterase gene family in *Arabidopsis thaliana*. BMC Plant Biol. 10(1): 212. https://doi.org/10.1186/1471-2229-10-212

Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg, 2009 Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3): R25. https://doi.org/10.1186/gb-2009-10-3-r25

Langmead, B., 2010 Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics chapter 11: Unit-11.17. https://doi.org/10.1002/0471295093.b1107s32

Lex, A., N. Ghelegnbor, H. Strobert, R. Vuillenot, and H. Pfister, 2014 UpSet: visualization of intersecting sets. IEEE T. Vis. Comput. Gr. 20(12): 1983–1992. https://doi.org/10.1109/TVCG.2014.2346248

Lipka, E. A., F. Tian, Q. Wang, J. Peiffer, M. Li et al., 2012 GAPT: Genome association and prediction integrated tool. Bioinformatics 28(18): 2397–2399. https://doi.org/10.1093/bioinformatics/bts444

Liu, J., S. Deng, H. Wang, J. Ye, H.-W. Wu et al., 2016 CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol. 171(1): 424–436. https://doi.org/10.1095/tp.15.01335

Lobbes, D., G. Rallapalli, D. D. Schmidt, C. Martin, and J. Clarke, 2006 SERRATE: a new player on the plant microRNA scene. EMBO Rep. 7(10): 1052–1058. https://doi.org/10.1038/sjembr.7400086
Lowe, K., E. Wu, N. Wang, G. Hoerster, C. Hastings et al., 2016 Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28(9): 1998–2015. https://doi.org/10.1105/tpc.16.00124

Madsen, S., A. Olesen, B. Dennis, and S. B. Andersen, 1995 Inheritance of anther-culture response in perennial ryegrass (Lolium perenne L.). Plant Breed. 114(2): 165–168. https://doi.org/10.1111/j.1439-0523.1995.tb00783.x

Makarevich, G., O. Leroy, U. Akinci, D. Schubert, O. Clarez et al., 2006 Different Polyclom box complexes regulate common target genes in Arabidopsis. EMBO Rep. 7(9): 947–952. https://doi.org/10.1038/sj.embor.7400760

Makowska, K., and S. Oleszczuk, 2014 Albinism in barley androgenesis. Plant Cell Rep. 33(3): 385–392. https://doi.org/10.1007/s00299-013-1543-x

Malik, M. R., F. Wang, J. M. Dirpaul, N. Zhou, P. L. Polowick et al., 2014 Baby boom establishes of embryo identity and pattern in culture. Plant Reprod. 27(4): 199–203. https://doi.org/10.1007/s00299-014-0916-y

Malin, A., A. J. Russell, I. K. Due, and M. M. Kater, 2003 Expression patterns of genes in sexual and apomictic D1070. https://doi.org/10.1007/BF00226995

Marhic, A., S. Antoine-Michard, J. Bordes, M. Pollacsek, A. Murigneux et al., 2013 The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. Plant Physiol. 162(2): 571–582. https://doi.org/10.1104/pp.111103-0146-9

Pedruzzi, L., C. Rivoire, A. H. Auchinloss, E. Coudert, G. Keller et al., 2015 HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res. 43(D1): D1064–D1070. https://doi.org/10.1093/nar/gku1002

Podio, M., S. A. Felitti, L. A. Siena, L. Delgado, M. Mancini et al., 2014 Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum. Plant Mol. Biol. 84(5-6): 479–495. https://doi.org/10.1007/s11103-014-0146-9

Porras-Hurtado, L., Y. Ruiz, C. Santos, C. Phillips, A. Carracedo et al., 2013 An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 4: 98. https://doi.org/10.3389/fgen.2013.00098

Prigge, M. J., and D. R. Wagner, 2001 The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13(6): 1263–1279. https://doi.org/10.1105/tpc.13.6.1263

Prochonik, S., P. R. Marri, B. Desany, P. D. Rabinowitch, C. Kodira et al., 2012 The cassava genome: current progress, future directions. Trop. Plant Biol. 5(1): 88–94. https://doi.org/10.1007/s12042-011-9088-z

Prigge, M. J., and D. R. Wagner, 2001 The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13(6): 1263–1279. https://doi.org/10.1105/tpc.13.6.1263

Segui-Simarro, J. M., and F. Nuez, 2008 How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol. Plant. 134(1): 1–12. https://doi.org/10.1111/j.1399-3054.2008.01113.x

Segui-Simarro, J. M., 2010 Androgenesis revisited. Bot. Rev. 76(3): 377–404. https://doi.org/10.1111/j.1399-3054.2010.00058.x

Segui-Simarro, J. M., 2015 Editorial: doubled haploidy in model and recalcitrant species. Front. Plant Sci. 6: 1175. https://doi.org/10.3389/fpls.2015.01175

Segui-Simarro, J. M., 2015 Editorial: doubled haploidy in model and recalcitrant species. Front. Plant Sci. 6: 1175. https://doi.org/10.3389/fpls.2015.01175

Seldimirova, O. A., and N. N. Kruglova, 2015 Androclinic embryoidogenesis in vitro in cereals. Biol. Bull. Rev. 5(2): 156–165. https://doi.org/10.1134/S2079086415020073

Singla, B., J. P. Khurana, and P. Khurana, 2008 Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep. 27(5): 833–843. https://doi.org/10.1007/s00299-008-0505-1

Soriano, M., H. Li, and K. Boustiller, 2013 Microscope embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod. 26(3): 181–196. https://doi.org/10.1007/s00497-013-0226-7

Stoitcheva, S., T. Ruttink, J. Bartoš, B. Studer, S. Yates et al., 2016 Orthology guided transcriptome assembly of Italian ryegrass and meadow fescue for...
single-nucleotide polymorphism discovery. Plant Genome 9. https://doi.org/10.3835/plantgenome2016.02.0017
Swarbreck, D., C. Wilks, P. Lamesch, T. Z. Berardini, M. Garcia-Hernandez et al., 2008 The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 36(Database): D1009–D1014. https://doi.org/10.1093/nar/gkm965
Sykes, T., S. Yates, I. Nagy, T. Asp, I. Small et al., 2016 In-silico identification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenne L.). Genome Biol. Evol. 9: 351–362. https://doi.org/10.1093/gbe/evv047
Torp, A. M., A. L. A. Hansen, and S. B. Andersen, 2001 Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119(3): 377–387. https://doi.org/10.1023/A:1017554129904
Torp, A. M., and S. B. Andersen, 2009 Albinism in microspore culture, pp. 155–160 in Advances in Haploid Production in Higher Plants, edited by Touraev, A., B. Forster, and S. M. Jain. Springer, New York. https://doi.org/10.1007/978-1-4020-8854-4_12
Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim et al., 2012 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7(3): 562–578. https://doi.org/10.1038/nprot.2012.016
Truong, H. T., A. M. Ramos, F. Yalcin, M. de Ruiter, H. J. A. van der Poel et al., 2012 Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7(5): e37565. https://doi.org/10.1371/journal.pone.0037565
Tsuwamoto, R., H. Fukuoka, and Y. Takahata, 2007 Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225(3): 641–652. https://doi.org/10.1007/s00425-006-0388-8
UniProt Consortium, 2014 Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42(Database): D191–198. https://doi.org/10.1093/nar/gkt1140
VanRaden, P. M., 2008 Efficient methods to compute genomic predictions. J. Dairy Sci. 91(11): 4414–4423. https://doi.org/10.3168/jds.2007-0980
Vrinten, P. L., T. Nakamura, and K. J. Kash, 1999 Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare L.). Plant Mol. Biol. 41(4): 455–463. https://doi.org/10.1023/A:1006383724443
Walbot, V., and M. M. S. Evans, 2003 Unique features of the plant life cycle and their consequences. Nat. Rev. Genet. 4(5): 369–379. https://doi.org/10.1038/nrg1064
Wang, X., and H. Hu, 1984 The effect of potato II medium for triticale anther culture. Plant Sci. Lett. 36(3): 237–239. https://doi.org/10.1016/0304-4211(84)90175-5
Wang, H., C. Xu, X. Liu, Z. Guo, X. Xu et al., 2017 Development of a multiple-hybrid population for genome-wide association studies: theoretical consideration and genetic mapping of flowering traits in maize. Sci. Rep. 7: 40239. https://doi.org/10.1038/srep40239
Wickham, H., 2009 ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
Yang, L., Z. Liu, F. Lu, A. Dong, and H. Huang, 2006 SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 47(6): 841–850. https://doi.org/10.1111/j.1365-313X.2006.02835.x
Żur, I., E. Dubas, M. Krzewska, and F. Janowiak, 2015 Current insights into hormonal regulation of microspore embryogenesis. Front. Plant Sci. 6: 424. https://doi.org/10.3389/fpls.2015.00424
Communicating editor: E. Akhunov