Supplementary Information

Impact of indirect transitions on valley polarization in WS$_2$ and WSe$_2$

Rasmus H. Godiksen1, Shaojun Wang1,2, T.V. Raziman1, Jaime Gómez Rivas1, Alberto G. Curto1,3,4,*

1Dep. Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven, The Netherlands
2MOE Key Lab. of Modern Optical Technologies and Jiangsu Key Lab. of Advanced Optical Manufacturing Technologies, School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
3Photonics Research Group, Ghent University-imec, Ghent, Belgium
4Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium

* Corresponding author: A.G.Curto@TUe.nl

Table of contents

Supplementary Section S1: Room temperature photoluminescence 2
 Resonant excitation of bilayer WSe$_2$... 2
 Thickness-dependent polarization... 2

Supplementary Section S2: Temperature-dependent photoluminescence 6
 Bilayer photoluminescence spectra... 6
 Evidence of a dark ground state in bilayer WSe$_2$.. 8
 Temperature-dependent polarization in multilayer WSe$_2$... 10
Supplementary Section S1: Room temperature photoluminescence

1. Resonant excitation of bilayer WSe$_2$
Throughout our study, we report polarization values measured with excitation at a constant photon energy of 2.040 eV, which is close to resonance for bilayer WSe$_2$. Here, we check that bilayer WSe$_2$ does not show spin-valley polarization either under resonant excitation conditions (Supplementary Figure S1). We used an excitation energy of 1.681 eV, which is close to the WSe$_2$ bilayer K-K exciton emission around 1.62 eV.

![Supplementary Figure S1](image.png)

Supplementary Figure S1. a, Polarization-resolved PL spectrum for bilayer WSe$_2$ under near-resonant excitation (1.681 eV) at room temperature. b, Degree of circular polarization as a function of photon energy. No DOCP is measurable.

2. Thickness-dependent polarization
We determine the thickness of our WS$_2$ and WSe$_2$ samples by using a combination of reflection contrast microscopy, atomic force microscopy, and photoluminescence measurements. Similarly, for both WS$_2$ and WSe$_2$, the monolayers show bright emission due to their direct band gap. At room temperature, their emission spectrum shows a single peak. When increasing the thickness, a second peak emerges, which shifts to lower energy with an increasing layer thickness.
(Supplementary Figure S2). Only WS\textsubscript{2} shows an increase in the DOCP with thickness, whereas in WSe\textsubscript{2} the emission remains unpolarized for all thicknesses when excited with 2.04 eV (Supplementary Figure S3) and 1.796 eV (Supplementary Figure S4).

Supplementary Figure S2. Polarization-resolved PL spectra at room temperature for different thicknesses. a, WS\textsubscript{2}. b, WSe\textsubscript{2}. Spectra are vertically shifted by a constant for clarity.
Supplementary Figure S3. Degree of circular polarization at room temperature as a function of emission wavelength for a set of different thicknesses for a, WS$_2$, and b, WSe$_2$.
Supplementary Figure S4. Polarization-resolved PL spectra at room temperature for different thicknesses of WSe$_2$ excited with 1.796 eV. **a**, Thickness dependent spectra. **b**, Thickness vs the DOCP and the direct-indirect energy difference for the spectra in **a**.
Supplementary Section S2: Temperature-dependent photoluminescence

1. Bilayer photoluminescence spectra

When the temperature decreases, the two photoluminescence peaks shift with temperature (Supplementary Figure S4). In bilayer WS$_2$, the polarization also increases. However, in bilayer WSe$_2$, polarization only appears below $T = 160$ K (Supplementary Figure S5).

Supplementary Figure S5. Polarization-resolved PL spectra at different temperatures for bilayer samples. **a,** WS$_2$. **b,** WSe$_2$. Spectra are vertically shifted by a constant for clarity.
Supplementary Table S1. Fitting parameters obtained using Equation 2 in the main text in Figure 3. We contained the factor of 2 in the denominator of Equation 2 in the fitting parameter, c.

Material	c	ΔE (meV)
WS\(_2\)	0.12	74.6
WSe\(_2\)	0.076	72.5

2. Fitting using the O'Donnell equation

We fit the peak position as a function of temperature using two equations. Fitting using the Varshni equation\(^1\) was presented in the main text. Here, we fit the peak position using the O’Donnell equation\(^1\)

$$E_g(T) = E_g(0) - S\langle \hbar \omega \rangle \left[\coth \left(\frac{\langle \hbar \omega \rangle}{2k_B T} \right) - 1 \right]$$ \hspace{1cm} (S1)

where T is the temperature, $E_g(0)$ is the excitonic band gap, S is the Huang-Rhys factor, $\langle \hbar \omega \rangle$, is an average phonon energy, and k_B is the Boltzmann constant. The obtained fitting parameters are listed in Supplementary Table S2. Fitting using the O’Donnell equation yields as good a fit as with the Varshni equation, i.e., $R^2 = 0.9999$ when comparing the two fits. The main variation one might encounter between these two fitting methods will be expressed mainly in the range $T=0-20$ K, where we do not have several data points, as the band gap energy varies less in this range. The O’Donnell equation has a more profound theoretical background, and its fitting parameters are more well defined\(^1\). The Huang-Rhys factor, S, describes the exciton-phonon coupling strength of a certain transition. Comparing the values for each transition in Supplementary Table S2, we note that the exciton-phonon coupling strength is much larger for transitions that involve electrons in the K-valley compared to the Λ-valley. Similarly, the average phonon energy is also smaller for Λ-Γ excitons, suggesting that Λ-Γ excitons are more resistant to scattering by phonons.
Supplementary Table S2. Fitting parameters obtained using Equation S1 with the experimental data in Figure 3a-b.

Material / Transition	$E_g(0)$ (eV)	S (°)	$\langle h\omega \rangle$ (meV)
WS$_2$			
K-K	2.045	2.979	14.6
Λ-Γ	1.737	0.997	2.0
WSe$_2$			
K-K	1.713	2.957	16.5
Κ-Γ	1.600	1.791	12.4
Λ-Γ	1.546	0.991	6.3

3. Evidence of a dark ground state in bilayer WSe$_2$

In W-based monolayers, the dark excitons lie lower in energy than the bright excitons and transitions between the lowest conduction band and the top valence band at K is spin-forbidden (dark K-K exciton) due to spin splitting2. As evidence for bright-dark excitons in bilayer WSe$_2$, we observe a decrease of the K-K intensity with decreasing temperature consistent with reduced thermalization from dark to bright excitons$^{2-4}$ (Supplementary Figure S6). We fit the measured integrated PL intensity as a function of temperature to the expression $I_{PL}(T)/I_{PL}(0) - 1 = C \exp(-E_D/k_BT)$, where $I_{PL}(T)$ is the measured intensity as a function of temperature, $I_{PL}(0)$ is the intensity at $T=0$ K, C is a constant, k_B is the Boltzmann constant, and E_D is the characteristic energy barrier that defines the slope of the emission. From the fit, we obtain $E_D = 37.9$ meV, which is in good agreement with the bright-dark exciton splitting in monolayer WSe$_2$5. We expect a similar value for bilayer WSe$_2$ due to the limited effect of layer-layer interactions on the band structure near the K-point of the Brillouin zone.
Supplementary Figure S6. Spectrally integrated PL of the A exciton emission as a function of temperature for both circular polarizations when excited with a 2.04 eV laser. The drop in emission intensity with temperature is consistent with a dark exciton ground state. The fitting is described in the text.
4. **Temperature-dependent polarization with varying thickness in WSe₂**

For a fixed temperature, if we increase the WSe₂ thickness to three or four layers, the K-Λ conduction band difference should become smaller. Similarly, the onset of an increase in DOCP should occur at a higher temperature compared to a bilayer. We confirm this trend by measuring the emission DOCP for three and four layers of WSe₂ and by comparing it as a function of temperature to that of a bilayer (Supplementary Figure S7).

![Graph showing temperature-dependent DOCP measurements for 1, 2, 3, and 4 layers of WSe₂ showing an increase in the onset temperature of DOCP with increasing layer thickness.](image)

Supplementary Figure S7. Temperature-dependent DOCP measurements for 1, 2, 3, and 4 layers of WSe₂ showing an increase in the onset temperature of DOCP with increasing layer thickness. The 2, 3, and 4 layer data was acquired using 2.04 eV excitation. The monolayer data was acquired using 1.796 eV excitation. The fits are made by assuming a Boltzmann distribution for the K-K’ intervalley scattering, see details in the main text.

References

1. O’Donnell, K. P. & Chen, X. Temperature dependence of semiconductor band gaps. *Appl. Phys. Lett.* **58**, 2924 (1991).

2. Zhang, X.-X., You, Y., Yang, S., Zhao, F. & Heinz, T. F. Experimental Evidence for Dark Excitons in Monolayer WSe₂. *Phys. Rev. Lett.* **115**, 257403 (2015).
3. Malic, E. et al. Dark excitons in transition metal dichalcogenides. *Phys. Rev. Mater.* **2**, 014002 (2018).

4. Zhang, M., Fu, J., Dias, A. C. & Qu, F. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe$_2$. *J. Phys. Condens. Matter* **30**, 265502 (2018).

5. Wang, G. et al. In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. *Phys. Rev. Lett.* **119**, 047401 (2017).