An inhomogeneous Lax representation for the Hirota equation

Davide Fioravanti and Rafael I Nepomechie

1 Sezione INFN di Bologna, Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio 46, 40126 Bologna, Italy
2 Physics Department, University of Miami, PO Box 248046, Coral Gables, FL 33124 USA
E-mail: davide.fioravanti@bo.infn.it and nepomechie@physics.miami.edu

Received 29 September 2016, revised 4 December 2016
Accepted for publication 9 December 2016
Published 4 January 2017

Abstract
Motivated by recent work on quantum integrable models without $U(1)$ symmetry, we show that the $\mathfrak{sl}(2)$ Hirota equation admits a Lax representation with inhomogeneous terms. The compatibility of the auxiliary linear problem leads to a new consistent family of Hirota-like equations.

Keywords: quantum integrability, fusion procedure, Bethe ansatz

1. Introduction and summary

The Hirota equation (T system) is ubiquitous in the theory of quantum integrable systems [1–11, 12]. For an $\mathfrak{sl}(2)$-invariant periodic quantum spin chain (see appendix A for details), the Hirota equation takes the form [10, 11]4

$$T_k^+ T_k^- - T_{k+1}^- T_{k-1}^+ = \phi^{(k)} \bar{\phi}^{[-k]}, \quad T_{-1} = 0, \quad k = 0, 1, 2, \ldots ,$$

(1.1)

where $f^{\pm} = f(u \pm \frac{i}{2})$ and $f^{[\pm]} = f(u \pm \frac{i}{2})$ for any function $f(u)$. Here $T_j(u)$ is the transfer matrix constructed with a spin-$k/2$ auxiliary space [2, 13]; in particular, $T_j(u)$ is the fundamental transfer matrix. These transfer matrices mutually commute ($[T_j(u), T_j(\nu)] = 0$), and obey the Hirota equation (1.1) with

$$\phi(u) = (u + \frac{i}{2})^N, \quad \bar{\phi}(u) = (u - \frac{i}{2})^N.$$

(1.2)

3 Author to whom any correspondence should be addressed.

4 In general, the transfer matrix $T_{a,s}$ can have two subscripts, corresponding to the representation of the auxiliary space given by a rectangular Young tableau with s rows and a columns. For simplicity, we focus here exclusively on the $\mathfrak{sl}(2)$ case, where T has a single subscript $T = T_{1,r}$.
The eigenvalues corresponding to simultaneous eigenvectors of these transfer matrices (which we also denote by \(T_k(u)\)) evidently also obey the Hirota equation, and we henceforth regard \(T_k(u)\) as a scalar function.

It is well known that the Hirota equation (1.1) admits a Lax representation through the auxiliary linear problem (see [9, 11] and references therein)

\[
\begin{align*}
T_{k+1} Q^{[k]} - T_k Q^{[k+2]} &= \phi^{[k]} \tilde{Q}^{[-k-2]}, \\
T_{k-1} \tilde{Q}^{[-k-2]} - T_k \tilde{Q}^{[-k]} &= -\phi^{[-k]} \tilde{Q}^{[k]},
\end{align*}
\]

where the function \(\tilde{Q}(u)\) is defined by \(\tilde{Q}(u) = (Q(u^*)^*)^*.\) However, in order to reproduce the celebrated Baxter \(T - Q\) relation, we henceforth restrict our attention to the case that \(Q\) is real analytic:

\[
Q(u) = \tilde{Q}(u)
\]

for any complex \(u\). Note that the Hirota equation (1.1) with \(k = 0\) can be satisfied by setting

\[
T_0 = \phi^-, \quad \tilde{\phi} = \phi^{[-2]}.
\]

It then follows from the first Lax equation (1.3) with \(k = 0\) (or alternatively from the second Lax equation (1.4) with \(k = 1\)) that

\[
T_1 Q = \tilde{\phi} Q^{[2]} + \phi Q^{[-2]},
\]

which is the important Baxter \(T - Q\) equation [14]. Assuming that \(Q(u)\) is a polynomial in \(u\) of order \(M\), i.e.

\[
Q(u) = \prod_{j=1}^M (u - u_j)
\]

the analyticity of \(T_1\) together with the \(T - Q\) equation imply the Bethe equations for the zeros of \(Q(u)\)

\[
\phi(u_k) Q(u_k) + i) + \phi(u_k) Q(u_k - i) = 0,
\]

which can be rewritten in the more familiar form

\[
\left(\frac{u_k + \frac{i}{2}}{u_k - \frac{i}{2}}\right)^N = \prod_{j=1,j\neq k}^M \frac{u_k - u_j + i}{u_k - u_j - i}.
\]

In principle, by solving the Bethe equations, one can obtain \(Q\), and therefore (through (1.7)) \(T_1\). Since (1.3) is linear, it can be solved for all the \(T_k\) in terms of \(Q\), and therefore it gives \(T - Q\)-like equations for the higher (fused) transfer matrices.

The conventional wisdom has been that (1.3)–(1.4) is the unique Lax representation for the Hirota equation. However, it has recently been shown that quantum integrable models without \(U(1)\) symmetry (such as the open XXX spin-1/2 chain with non-diagonal boundary terms, see appendix B for details) can be solved using a Baxter \(T - Q\) equation with an inhomogeneous term, i.e. with the structure [15–20]

\[
T_1 Q = \tilde{\phi} Q^{[2]} + \phi Q^{[-2]} + \Delta,
\]

where \(\Delta(u)\) is real analytic (in particular, real for real \(u\)) and independent of \(Q\). Indeed, such an inhomogeneous term is necessary in order for the function \(Q(u)\) to be a polynomial in \(u\), i.e.

\[
Q(u) = \prod_{j=1}^M (u - u_j)(u + u_j).
\]

The analyticity of \(T_1\) together with the \(T - Q\) equation (1.10) then imply the following Bethe equations for the zeros of \(Q(u)\)
Similarly to the case of the periodic chain, by solving the Bethe equations (1.11), one can obtain \(Q \), and therefore (through (1.10)) \(T_1 \). The transfer matrices for such models \([21]\), constructed using non-diagonal boundary S-matrices \([22, 23]\), still obey \([24–26]\) the Hirota equation, albeit in a slightly modified form,

\[
T_{k+1}^+ T_k^- - T_{k+1}^- T_k^+ = T_{2,k}, \quad T_{-1} = 0, \quad k = 0, 1, 2, \ldots ,
\]

(1.12)

where \(T_{2,k} \) is given by the quantum determinant (3.2). This naturally raises the question: does the Hirota equation (1.12) admit a Lax representation with inhomogeneous terms?

We answer this question here in the affirmative. Indeed, we show that such a Lax representation is given by (3.13)–(3.14)

\[
T_{k+1} Q^k - Q^{k+1} T_k = X_k Q^{[-k-2]} + \sum_{l=0}^{k} \psi_{l,k} \Delta^{[2l-k]} T_l^{[k-l-1]},
\]

(1.13)

\[
\varphi^{[-k]} T_{k-1} Q^{[-k-2]} - T_k Q^{[-k]} = -Y_k Q^k - \sum_{l=0}^{k-1} \psi_{l,k-1} \Delta^{[2l-k-2]} T_l^{[k-l-1]},
\]

(1.14)

where \(X_k, Y_k \) and \(\psi_{l,k} \) are given by (3.7) and (3.15). The key new point is the appearance of terms containing \(\Delta \), which do not contain \(Q \) and therefore are ‘inhomogeneous’ terms. In particular, (1.13) reduces to (1.10) for \(k = 0 \). As the equations (1.13) are still linear, they can be solved for all \(T_k \) in terms of \(Q \). We remark that equivalent expressions for \(T_k \) in terms of \(Q \) were obtained earlier by means of a generating function \([17]\). An AdS/CFT generalization of this generating function was proposed in \([27]\), and it was subsequently used in \([28]\) to compute wrapping corrections.

Interestingly, the compatibility of the system (1.13)–(1.14) leads to a family of Hirota-like equations (3.23)

\[
T_{k+1} T_{a}^{[a]} - T_{k} T_{a}^{a+1} + T_{a} T_{a-1} T_{a}^{a-k-1} = 0, \quad a = 0, 1, \ldots, k-1,
\]

(1.15)

whose particular case \(a = 0 \) coincides with the original Hirota equation (1.12). To our knowledge, the bilinear relations (1.15) with \(a > 0 \) are new. We show that these relations are consistent with the Hirota equation (1.12) by first solving the latter to obtain a determinant expression for \(T_{2,k} \) in terms of \(T_1 \), and by then judiciously applying Plücker relations.

The outline of this paper is as follows. In section 2 we briefly review for the periodic spin chain how the compatibility of the auxiliary linear problem implies the Hirota equation. In section 3 we turn to the open spin chain. We present both homogeneous and inhomogeneous Lax representations of the Hirota equation. We derive the compatibility conditions for the auxiliary problem (1.13)–(1.14), and show that they are satisfied if the Hirota-like equation (1.15) are obeyed. In section 3.3 we solve the Hirota equation (1.12) to obtain a determinant expression for \(T_k \) in terms of \(T_1 \), see (3.25) and (3.26). In section 3.4 we use Plücker relations to show that this solution is also a solution of the Hirota-like equations. In section 4 we briefly discuss our results and we point out some further related problems. We briefly review the construction of the family of commuting transfer matrices for integrable periodic and open quantum spin chains in appendix A and B, respectively.
2. Periodic spin chain

It is useful to begin by briefly reviewing how the compatibility of the auxiliary linear problem for a periodic spin chain (1.3)–(1.4) with (1.5)

\[T_{k+1} \mathcal{Q}^{[k]} - T_k \mathcal{Q}^{[k+2]} = \phi^{[k]} \mathcal{Q}^{[-k-2]}, \]

(2.1)

\[T_{k-1} \mathcal{Q}^{[-k-2]} - T_k \mathcal{Q}^{[-k]} = -\phi^{[-k]} \mathcal{Q}^{[k]}, \]

(2.2)

implies the Hirota equation (1.1). Multiplying (2.2) by \(T_k \) gives

\[T_{k+1} T_k \mathcal{Q}^{[-k-2]} - T_{k+1} T_k \mathcal{Q}^{[-k]} = -\phi^{[-k]} T_{k+1} \mathcal{Q}^{[k]}, \]

(2.3)

On the other hand, performing on (2.2) the shifts \(k \mapsto k+1 \) and \(u \mapsto u + \frac{i}{2} \), and then multiplying the result by \(T_k \) gives

\[T_k T_k^+ \mathcal{Q}^{[-k-2]} - T_k T_k^+ \mathcal{Q}^{[-k]} = -\phi^{[-k]} T_k \mathcal{Q}^{[k+2]} \]

(2.4)

Subtracting (2.3) from (2.4) yields

\[(T_k^+ T_k^+ - T_{k+1} T_{k-1}) \mathcal{Q}^{[-k-2]} = \phi^{[-k]} (T_{k+1} \mathcal{Q}^{[k]} - T_k \mathcal{Q}^{[k+2]}) = \phi^{[-k]} \phi^{[k]} \mathcal{Q}^{[-k-2]}, \]

(2.5)

where the second equality follows from (2.1). It is now clear that (2.5), which expresses the compatibility of (2.1) and (2.2) for the function \(\mathcal{Q} \), implies the Hirota equation (1.1). Note also that (2.2) can be obtained from (2.1): performing on (2.1) the shifts \(k \mapsto k-1 \) and \(u \mapsto u + \frac{i}{2} \), we obtain

\[T_k^+ \mathcal{Q}^{[k]} - T_{k-1} \mathcal{Q}^{[k+2]} = \phi^{[k]} \mathcal{Q}^{[-k]}, \]

(2.6)

which (up to an overall factor \(-1\)) is the complex conjugate of (2.2), assuming that \(T_k(u^*) = T_k(u) \) is real analytic and \(\phi(u^*) = \phi(u) \). In fact, provided that the last two conditions are met, the entire reasoning can be extended to the general case \(\mathcal{Q}(u^*) = \mathcal{Q}(u) \).

3. Open spin chain

For an open spin chain, the corresponding function \(\varphi(u) \) (B.9) does not satisfy the constraint \(\bar{\varphi} = \phi^{[-2]} \) (1.6) that follows from (1.1). Indeed, the Hirota equation takes a form slightly different from (1.1), namely,

\[T_k T_k^+ - T_{k+1} T_{k-1} = T_{2,k}, \quad T_{-1} = 0, \quad k = 0, 1, 2, \ldots, \]

(3.1)

where \(T_{2,k} \) is the quantum determinant

\[T_{2,k} = \prod_{j=0}^{k-1} \varphi^{[k-2j]} \varphi^{[2j-k]}, \]

(3.2)

which satisfies the discrete Laplace equation

\[T_{2,k}^+ T_{2,k} = T_{2,k+1} T_{2,k-1}. \]

(3.3)

Since \(T_{2,0} = 1 \), equation (3.1) with \(k = 0 \) implies that
which differs from the first relation of (1.6).

3.1. Homogeneous case

For an open spin chain with diagonal boundary terms $(\xi = 0)$, we propose the following homogeneous auxiliary linear problem

\[
T_{k+1} Q^{[k]} - \varphi^{[k]} T_k Q^{[k+2]} = X_k Q^{[-k-2]},
\]

\[
\varphi^{[-k]} T_{k-1} Q^{[-k-2]} - T_k Q^{[-k]} = -Y_k Q^{[k]},
\]

where

\[
X_k = \prod_{j=0}^{k} \varphi^{[k-2j]}, \quad Y_k = \prod_{j=0}^{k-1} \varphi^{[2j-k]},
\]

instead of (2.1)–(2.2). Indeed, following the same steps as in the periodic case (2.3)–(2.5), we find with the help of the simple identities

\[
Y_{k+1}^+ = \varphi^{[k]} Y_k, \quad X_k Y_k = \varphi^{[-k]} T_{2k},
\]

that the compatibility of the linear system (3.5)–(3.6) implies the Hirota equation (3.1). Moreover, (3.6) can be obtained from (3.5) in the same way that (2.2) can be obtained from (2.1), see (2.6).

Equation (3.5) can be solved for T_k in terms of Q. For $k = 0$, one readily obtains the usual $T - Q$ equation

\[
T_0 Q = \varphi Q^{[2]} + \varphi Q^{[-2]},
\]

as in the periodic case (1.7). The result for general values of k can alternatively be obtained from a generating function [17]

\[
W_{\text{diag}} \equiv (1 - D BD)^{-1} (1 - DAD)^{-1} = \sum_{k=0}^{\infty} D^k T_k D^k,
\]

where

\[
A = \varphi \frac{Q^{-2]}{Q}, \quad B = \varphi \frac{Q[2]}{Q},
\]

and $D = e^{-2D}$ implying that $D f = f^{-} D$. In this way, we obtain

\[
T_k = \sum_{l=0}^{k-1} \prod_{j=0}^{l-1} B^{[k-1-2j]} \prod_{i=0}^{l-1} A^{2j-k-1-2i}.
\]

3.2. Inhomogeneous case

For an open spin chain with non-diagonal boundary terms $(\xi \neq 0)$, we propose the following inhomogeneous auxiliary linear problem
\begin{equation}
T_{k+1}Q^{[k]} - \psi^{[k]} T_k Q^{[k+2]} = X_k Q^{[-k-2]} + \sum_{l=0}^{k} \psi_{l,k} \Delta^{[k-l]} T_l^{[l-k-1]}, \tag{3.13}
\end{equation}

\begin{equation}
\psi^{[-k]} T_{k-1} Q^{[-k-2]} - T_k Q^{[-k]} = -Y_k Q^{[k]} - \sum_{l=0}^{k-1} \psi_{l,k-1} \Delta^{[k-2l-2]} T_l^{[k-1-l]}, \tag{3.14}
\end{equation}

where \(X_k\) and \(Y_k\) are given by (3.7), and \(\psi_{l,k}\) is given by

\begin{equation}
\psi_{l,k} = \prod_{j=0}^{k-l-1} \psi^{[k-l]}, \quad \bar{\psi}_{l,k} = \prod_{j=0}^{k-l-1} \psi^{[2j-k]} \tag{3.15}
\end{equation}

For \(\Delta = 0\), this system evidently reduces to the homogeneous system (3.5)–(3.6).

Equation (3.13) can be used to solve for all \(T_k\) in terms of \(Q\). The inhomogeneous \(T - Q\) equation (1.10) is obtained for \(k = 0\). The result for general values of \(k\) can again be alternatively obtained from a generating function [17]

\begin{equation}
\mathcal{W} \equiv [1 - D(A + B + C)D + \mathcal{D} \mathcal{A} \mathcal{D}^2 \mathcal{B}]^{-1} = \sum_{k=0}^{\infty} \mathcal{D}^k T_k \mathcal{D}^k, \tag{3.16}
\end{equation}

where \(A\) and \(B\) are again given by (3.11), and \(C\) is given by

\begin{equation}
C = \frac{\Delta}{Q}. \tag{3.17}
\end{equation}

Note that this generating function reduces to \(\mathcal{W}_{\text{diag}}(3.10)\) for \(\Delta = 0\).

3.2.1. Compatibility conditions. We now proceed as in the homogeneous case to derive the compatibility conditions for the auxiliary linear problem (3.13)–(3.14) for the function \(Q\). Multiplying (3.14) by \(T_{k+1}\) gives

\begin{equation}
T_{k+1} T_{k-1} \psi^{[-k]} Q^{[-k-2]} - T_{k+1} T_k Q^{[-k]} = -Y_k T_{k+1} Q^{[k]} - \sum_{l=0}^{k-1} \bar{\psi}_{l,k-1} \Delta^{[k-2l-2]} T_{l+1} T_l^{[l-k-1]}. \tag{3.18}
\end{equation}

On the other hand, performing on (3.14) the shifts \(k \mapsto k + 1\) and \(u \mapsto u + \frac{i}{2}\) and then multiplying the result by \(T_k\) gives

\begin{equation}
T_k T_k^+ \psi^{[-k]} Q^{[-k-2]} - T_k T_k Q^{[-k]} = -Y_k \psi^{[k]} T_k Q^{[k+2]} - \sum_{l=0}^{k} \psi_{l,k} \Delta^{[k-2l]} T_k T_l^{[l-k+1]}. \tag{3.19}
\end{equation}

Subtracting (3.18) from (3.19) yields

\begin{equation}
(T_k T_k^+ T_{k+1} T_{k-1}) \psi^{[-k]} Q^{[-k-2]} = Y_k (T_{k+1} Q^{[k]} - \psi^{[k]} T_k Q^{[k+2]})
+ \sum_{l=0}^{k-1} \bar{\psi}_{l,k-1} \Delta^{[k-2l-2]} T_{l+1} T_l^{[l-k-1]} - \sum_{l=0}^{k} \psi_{l,k} \Delta^{[k-2l]} T_k T_l^{[l-k+1]}. \tag{3.20}
\end{equation}

Using (3.13), (3.8) and (3.15), we arrive at
\[
\begin{align*}
\left(\overline{T}_k^2 - \overline{T}_{k+1} \overline{T}_{k-1} - \overline{T}_{2k} \right) & \varphi^{[-k]} \varphi^{[-k-2]} \\
= & \sum_{l=0}^{k-1} \overline{\varphi}_{k-1}^l \Delta^{[-2l-2]} \overline{T}_{k+1} \overline{T}_{k}^{[-k-l-1]} - \sum_{l=0}^{k-1} \overline{\psi}_{k, l}^2 \Delta^{[-k-2]} \overline{T}_{k} \overline{T}_{k}^{[-k-l+1]} + \sum_{l=0}^{k-1} \overline{\psi}_{k, l}^2 \Delta^{[-k-2]} \overline{T}_{k}^{[-k-l]}
\end{align*}
\]

The compatibility conditions (3.21) are satisfied for nonzero \(Q \) and \(\Delta \) if

\[
H_{k,a} = 0, \quad a = 0, 1, \ldots, k - 1,
\]

which are precisely the Hirota-like bilinear relations (1.15). (Recall that equation (3.23) with \(a = 0 \) coincides with the original open-chain Hirota equation (1.12).)

3.3. Solving the Hirota equation

It is easy to explicitly solve the open-chain Hirota equation (3.1) for \(T_k \) in terms of \(T_1 \) for small values of \(k \), and to show that the resulting expressions can be conveniently recast in terms of determinants

\[
\begin{align*}
T_2 &= \begin{vmatrix} T_1^{[1]} & \varphi^{[1]} \end{vmatrix}^{[1]} \varphi^{[-1]} T_1^{[-1]}, \\
T_3 &= \begin{vmatrix} T_2^{[1]} & \varphi^{[2]} & 0 \\
\varphi^{[0]} & T_1^{[0]} & \varphi^{[0]} \\
0 & \varphi^{[-2]} & T_1^{[-2]} \end{vmatrix}, \\
T_4 &= \begin{vmatrix} T_3^{[1]} & \varphi^{[3]} & 0 & 0 \\
\varphi^{[1]} & T_1^{[1]} & \varphi^{[1]} & 0 \\
0 & \varphi^{[-1]} & T_1^{[-1]} & \varphi^{[-1]} \\
0 & 0 & \varphi^{[-3]} & T_1^{[-3]} \end{vmatrix}.
\end{align*}
\]

This suggests a general determinant expression for \(T_k \) in terms of \(T_1 \) (see also [9])

\[
T_k = \det(M^{(k)}),
\]

where \(M^{(k)} \) is a \(k \times k \) matrix whose elements are given by

\[
M^{(k)}_{ij} = T_i^{[k+1-2j]} \delta_{ij} + \varphi^{[k+1-2j]} \delta_{ij} + \varphi^{[k+1-2j]} \delta_{ij} - \delta_{ij}, \quad i, j = 1, \ldots, k.
\]

We can now verify that (3.25) is the solution of the Hirota equation using Jacobi’s determinant identity [9, 29]

\[
D[p_1, p_2 | q_1 q_2] D = D[p_1 | q_1] D[p_2 | q_2] - D[p_1 | q_2] D[p_2 | q_1],
\]

where

\[
\begin{align*}
\overline{T}_k^2 & = \sum_{l=0}^{k-1} \overline{\varphi}_{k-1}^l \Delta^{[-2l-2]} \overline{T}_{k+1} \overline{T}_{k}^{[-k-l-1]} - \sum_{l=0}^{k-1} \overline{\psi}_{k, l}^2 \Delta^{[-k-2]} \overline{T}_{k} \overline{T}_{k}^{[-k-l+1]} + \sum_{l=0}^{k-1} \overline{\psi}_{k, l}^2 \Delta^{[-k-2]} \overline{T}_{k}^{[-k-l]},
\end{align*}
\]

where

\[
H_{k,a} = \overline{T}_{k+1} \overline{T}_{k}^{[-a-1]} - \overline{T}_k \overline{T}_k^{[-a]} + \overline{T}_k \overline{T}_k^{[-a-1]}.
\]

(3.22)
where D is the determinant of a square matrix, and $D[p_1, p_2, \ldots, p_n] = \det \{ q_{ij} \}$ denotes the minor determinant obtained from the same matrix by removing rows p_1, p_2, \ldots, p_n and columns $q_{1j}, q_{2j}, \ldots, q_{nj}$. Indeed, let us observe that the matrix $M^{(k+1)}$, obtained from (3.26), contains $M^{(k-1)}$ as a submatrix.

$$M^{(k+1)} = \begin{pmatrix} T_1^{(k)} & 0 & \cdots & 0 & 0 \\ \vdots & M^{(k-1)} & \vdots \\ 0 & \cdots & 0 & \varphi^{(-k+2)} \\ 0 & 0 & \cdots & 0 & \varphi^{(-k+1)} \end{pmatrix}$$

(3.28)

Applying the Jacobi identity (3.27) to the above $(k + 1) \times (k + 1)$ matrix with $p_1 = q_1 = 1$ and $p_2 = q_2 = k + 1$, and then using (3.25), we recover the Hirota equation (1.1). (Note that the matrices corresponding to $D[1|k+1]$ and $D[k+1|1]$ are either upper or lower triangular, with φ’s along the diagonal.)

We remark that equation (3.25) provides an expression for T_k in terms of Q upon setting $T_1 = A + B + C$ (see (3.11) and (3.17)) in (3.26). In particular, for the diagonal case $\Delta = 0$, the result is equivalent to (3.12).

3.4. Solving the Hirota-like equations

We now demonstrate that the solution (3.25) of the Hirota equation is also a solution of the Hirota-like equations (1.15). The main idea is to use Plücker relations [9, 29], which are generalizations of Jacobi’s identity. In this way, we see that the Hirota equation stems from the Jacobi identity, while the generalizations of the Hirota equation stem from the extension of the Jacobi identity to the Plücker relations.

Let X be a rectangular matrix with $n + 1$ rows and $r + 1$ columns ($n \geq r$),

$$X = \begin{pmatrix} X_{0,0} & X_{0,1} & \cdots & X_{0,r} \\ X_{1,0} & X_{1,1} & \cdots & X_{1,r} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n,0} & X_{n,1} & \cdots & X_{n,r} \end{pmatrix}$$

(3.29)

Following [9], we define (i_0, i_1, \ldots, i_r) to be the determinant of the square matrix formed by the rows with labels i_0, i_1, \ldots, i_r,

$$X_{i_0,0} \ X_{i_1,1} \ \cdots \ \ X_{i_r,r} \equiv (i_0, i_1, \ldots, i_r).$$

(3.30)

It is understood that (i_0, i_1, \ldots, i_r) is antisymmetric in all the indices, and therefore vanishes if any two indices coincide. The Plücker relations are then given by [9]

$$(i_0, i_1, \ldots, i_r)(j_0, j_1, \ldots, j_r) = \sum_{p=0}^{r} (j_p, i_1, \ldots, i_r)(j_0, \ldots, j_{p-1}, i_0, j_{p+1}, \ldots, j_r)$$

(3.31)

for all $i_p, j_p \in \{0, n\}$ with $p = 0, 1, \ldots, r$.

It is convenient to introduce the notation $[i, p]$ as follows
\[
(X_{i,0}, X_{i,1}, \ldots, X_{i,r})|_{[i,p]} = (X_{0,0}, X_{1,1}, \ldots, X_{r,r})|_{X_{ij}=\delta_{ij}} = \left(\begin{array}{c} 0 \\ \vdots \\ p \\ \vdots \\ r \end{array}\right) = (0, \ldots, 0, 1, 0, \ldots, 0).
\] (3.32)

In other words, \([i,p]\) means that the row of matrix \(X\) labeled \(i\) is given by \((0, \ldots, 0, 1, 0, \ldots, 0)\), where the 1 appears in the column labeled \(p\). Similarly, for a set of \(m\) rows of the matrix \(X\), we define

\[
\left(\begin{array}{ccc}
X_{h,0} & X_{h,1} & \cdots & X_{h,r} \\
X_{i,0} & X_{i,1} & \cdots & X_{i,r} \\
\vdots & \vdots & \cdots & \vdots \\
X_{m,0} & X_{m,1} & \cdots & X_{m,r}
\end{array}\right) = \left(\begin{array}{ccc}
\delta_{h,0} & \delta_{h,1} & \cdots & \delta_{h,r} \\
\delta_{i,0} & \delta_{i,1} & \cdots & \delta_{i,r} \\
\vdots & \vdots & \cdots & \vdots \\
\delta_{m,0} & \delta_{m,1} & \cdots & \delta_{m,r}
\end{array}\right)
\] (3.33)

We are now ready to show that the solution of the Hirota equation (1.12) is also solution to the Hirota-like equations (1.15). We set

\[r = k, \quad n = r + a + 2.\] (3.34)

We then choose the matrix \(X (3.29)\) such that its first \(r + 1\) rows are given by the matrix \(M^{(r+1)}\) in (3.26)

\[
\left(\begin{array}{ccc}
X_{0,0} & X_{0,1} & \cdots & X_{0,r} \\
X_{i,0} & X_{i,1} & \cdots & X_{i,r} \\
\vdots & \vdots & \cdots & \vdots \\
X_{r,0} & X_{r,1} & \cdots & X_{r,r}
\end{array}\right) = M^{(r+1)},
\] (3.35)

and we choose the remaining rows of \(X\) as follows

\[
\begin{bmatrix}
r + 1, & 0 \\
r + 2, & r - a \\
r + 3, & r - a + 1 \\
\vdots & \vdots \\
r + a + 2, & r
\end{bmatrix},
\] (3.36)

where we have used the notation (3.33). The Plücker relations (3.31) for this matrix with the following choice of indices\(^5\)

\[
i_j = j_l = l, \quad l = 1, 2, \ldots, r - a - 1, \\
\bar{i}_0 = 0, \quad \bar{j}_l = l, \quad l = r - a, r - a + 1, \ldots, r, \\
i_0 = r + 1, \quad \bar{i}_l = l + a + 2, \quad l = r - a, r - a + 1, \ldots, r,\] (3.37)

can be shown to coincide (using the identification (3.25)) with the Hirota-like equations (1.15).

We conclude that the solution (3.25) and (3.26) of the original Hirota equation (1.12) also satisfies the Hirota-like equations (1.15), and therefore the latter system of equations is consistent with it. We remark that we have not succeeded to find a simple transformation that maps the Hirota equations (1.12) to the Hirota-like equations (1.15).

\(^5\) In [9] it is assumed that \(i_p = \bar{i}_p\) for \(p \neq 0, 1\) in order to reduce the number of terms to 3. We do not make this assumption here, but the number of terms nevertheless reduces to 3 by virtue of our choice (3.36).
4. Discussion

We have shown that the open-chain \(\mathfrak{sl}(2)\) Hirota equation (1.12) admits a Lax representation with inhomogeneous terms (1.13)–(1.14), thereby demonstrating that the off-diagonal Bethe ansatz approach [15, 16] can be accommodated within the conventional framework of quantum integrability. In so doing, we have found a family of Hirota-like equations (1.15) which are consistent with the original Hirota equation. It is an interesting question whether these Hirota-like equations can be obtained directly by fusion. We expect that (1.13)–(1.14) is the most general Lax representation of the Hirota equation with a single function \(Q(u)\), and therefore it should describe the most general rank-one integrable quantum system. It may be interesting to work out the generalization to higher-rank algebras and superalgebras. It may also be interesting to investigate the analogue of such inhomogeneous terms in conformal field theories and classical integrable systems with boundaries.

Acknowledgments

We dedicate this paper to the memory of Petr P. Kulish, who made seminal contributions to the field of quantum integrability, and who provided to one of us (RN) a key insight that made possible the completion of his first foray [24] into this field. DF thanks the partial support of the grants: GAST (INFN), UniTo-SanPaolo Nr TO-Calil3-2012-0088, the ESF Network HoloGrav (09-RNP-092 (PESC)), the MPNS–COST Action MP1210 and the EU Network GATIS (no 317089). RN thanks the Bologna INFN theory group for its warm hospitality, and Volodya Kazakov for a helpful discussion. The work of RN was supported in part by the National Science Foundation under Grant PHY-1212337, and by a Cooper fellowship.

Appendix A. Periodic chain transfer matrices

We briefly review here the construction of the family of commuting transfer matrices for a periodic XXX (\(\mathfrak{sl}(2)\)-invariant) quantum spin-1/2 chain with length \(N\), whose Hamiltonian is given by

\[
H = \frac{1}{4} \sum_{n=1}^{N} (\vec{\sigma}_n \cdot \vec{\sigma}_{n+1} - I_n), \quad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1. \tag{A.1}
\]

The fused \((j, \frac{1}{2})\) R-matrices are given by [13]

\[
R_{[a]}^{j, \frac{1}{2}}(u) = \chi_{1}^{(j)(u)} P_{[a]}^{+} \prod_{k=1}^{N-1} R_{[a,b]}^{j, \frac{1}{2}}(u + (k - j - \frac{1}{2})i) P_{[b]}^{+}, \quad j = \frac{1}{2}, 1, \frac{3}{2}, \ldots \tag{A.2}
\]

where \(R_{[a]}^{j, \frac{1}{2}}\) is the fundamental \(\mathfrak{sl}(2)\)-invariant R-matrix (solution of the Yang–Baxter equation)

\[
R_{[a]}^{j, \frac{1}{2}} \equiv u + iP, \tag{A.3}
\]

and \(P\) is the permutation operator. The R-matrices in the product (A.2) are ordered in the order of increasing \(k\). Moreover, \(P_{[a]}^{+}\) is the symmetric projector.

\(6\) For the special case of diagonal boundary terms \((\xi = 0, \Delta = 0)\), this Lax representation reduces to (3.5) and (3.6), which—to our knowledge—is also new.
\[P_{(u)}^+ = \frac{1}{(2j)^{2j}} \prod_{k=1}^{2j} \left(\sum_{l=1}^{2j} P_{a_l u_l} \right), \]
(A.4)

where \(P_{a_l u_l} \equiv 1 \). Finally, \(\chi_1^{(j)}(u) \) is the normalization factor

\[\chi_1^{(j)}(u) = \frac{1}{\prod_{k=0}^{2j-1} (u + i(j - \frac{1}{2} - k))}, \]
(A.5)

which removes all trivial zeros.

The corresponding transfer matrices are given by

\[t^{(j)}(u) = \text{tr}_{(u)} [R_{(u)}^{(j, \frac{1}{2})} \cdots R_{(u)}^{(j, -\frac{1}{2})}(u)]. \]
(A.6)

They enjoy the important commutativity property

\[[t^{(j)}(u), t^{(\nu)}(\nu)] = 0. \]
(A.7)

The Hamiltonian \((A.1)\) is related to the fundamental transfer matrix by

\[H = \frac{i}{2} \frac{d}{du} \ln t^{(\frac{1}{2})}(u) \bigg|_{u=0} - \frac{N_+}{2}. \]
(A.8)

These transfer matrices are related to the ones discussed in the text as follows

\[T_k(u) = t^{(\frac{1}{2})}(u - \frac{1}{2}), \quad k = 1, 2, 3, \ldots \]
(A.9)

Indeed, these \(T_k \) obey the Hirota equation \((1.1)\) with the functions \(\phi \) and \(\bar{\phi} \) given by \((1.2)\), which indeed satisfy the constraint in \((1.6)\).

Appendix B. Open chain transfer matrices

We now review the construction of the family of commuting transfer matrices for an open chain. In addition to R-matrices, we also need K-matrices (solutions of the boundary Yang-Baxter equation) \([21, 30]\). For the XXX case, the general fundamental solution is given by \([22, 23]\)

\[K^{(j)}_2(u; \alpha, \xi_+, \xi_-) = \begin{pmatrix} i\alpha + u & u \xi_+ \\ u \xi_- & i\alpha - u \end{pmatrix}, \]
(B.1)

where \(\alpha, \xi_+, \xi_- \) are arbitrary boundary parameters. The fused K-matrices are given by \([24–26]\)

\[K^{(j)}_2(u) = \chi_2^{(j)}(u) P_{(u)}^+ \prod_{k=1}^{2j} \left\{ \left(\prod_{l=1}^{2j} K^{(j, \frac{1}{2})}_{k l}(2u + (k + l - 2j - 1)i) \right) \times K^{(j, \frac{1}{2})}_{(u) (u - \frac{1}{2})} \right\} P_{(u)}^-, \quad j = \frac{1}{2}, 1, 3, \ldots \]
(B.2)

where the products of braces \(\{ \ldots \} \) are ordered in the order of increasing \(k \), and the dependence on the boundary parameters has been suppressed. Moreover, \(\chi_2^{(j)}(u) \) is the normalization factor

\[\chi_2^{(j)}(u) = \frac{1}{\prod_{k=1}^{2j-1} (u + i(j - \frac{1}{2}))}. \]
(B.3)
For simplicity, we consider here the following right and left K-matrices

\[K^{(\alpha \beta)}(u) = K^{(\alpha \beta)}(u; \alpha, \beta, 0, 0), \quad K^{(\xi \xi)}(u) = K^{(\xi \xi)}(-u - i; \beta, \xi, \xi), \] (B.4)

respectively, with \(\alpha, \beta, \xi\) real. In other words, we choose the right K-matrices to be diagonal, and the left K-matrices to be non-diagonal with \(\xi_+ = \xi_\xi = \xi\).

The corresponding open-chain transfer matrices \(t^{(\alpha \beta)}(u)\) are given by [21]

\[t^{(\alpha \beta)}(u) = \text{tr}(u)K^{(\alpha \beta)}(u) T^{(\alpha \beta)}(u) K^{(\xi \xi)}(u) \hat{T}^{(\xi \xi)}(u), \] (B.5)

where the monodromy matrices are given by products of \(N\) fused \(R\)-matrices,

\[T^{(\alpha \beta)}(u) = R^{(\frac{\alpha + \beta}{2})}_{|\alpha|} \cdots R^{(\frac{\alpha + \beta}{2})}_{|\alpha|}, \]

\[\hat{T}^{(\xi \xi)}(u) = R^{(\frac{\xi + \xi}{2})}_{|\alpha|} \cdots R^{(\frac{\xi + \xi}{2})}_{|\alpha|}. \] (B.6)

The corresponding open-chain Hamiltonian, which is obtained from the fundamental transfer matrix, is given by

\[H = \frac{i(-1)^{N+1}}{2\alpha\beta} \frac{d}{du} t^{(\alpha \beta)}(u) \bigg|_{u=0} -NI \]

\[= \sum_{n=1}^{N-1} \tilde{\sigma}_n \cdot \tilde{\sigma}_{n+1} + \frac{1}{\alpha} \tilde{\sigma}_1 - \frac{1}{\beta} (\xi \sigma_N + \sigma_N). \] (B.7)

The transfer matrices (B.5) also have the important commutativity property (A.7). We define corresponding \(T_k\) which are related to (B.5) in the same way as for the closed chain, namely

\[T_k(u) = t^{(\alpha \beta)}(u - \frac{i}{2}), \quad k = 1, 2, 3, \ldots \] (B.8)

When suitably normalized, these transfer matrices obey [24–26] the open-chain Hirota equation (3.1), (3.2) with

\[\varphi(u) = -\frac{1}{u} \left(u + i(\alpha - \frac{1}{2}) \right) \left(\sqrt{1 + \xi^2 (u - \frac{i}{2})} - i \beta \right) (u + \frac{i}{2})^{2N+1}, \] (B.9)

and \(\tilde{\varphi}(u) = (\varphi(u'))'.\) As noted in section 3, this function does not satisfy the constraint (1.6) for generic values of the boundary parameters. When \(\xi = 0\), both the left and right K-matrices are diagonal, and the transfer matrix has a \(U(1)\) symmetry. If \(\xi \neq 0\), then this symmetry is broken.

The \(T - Q\) equation for the fundamental transfer matrix is given by (1.10) with \(\varphi(u)\) given by (B.9), and with \(\Delta\) given by [15, 16]

\[\Delta = -2 \left(1 - \sqrt{1 + \xi^2} \right) (u + \frac{i}{2})^{2N+1} (u - \frac{i}{2})^{2N+1}, \] (B.10)

which can be derived from basic properties (functional relation, crossing symmetry, asymptotic behavior, analyticity) of the transfer matrix. Note that \(\Delta\) vanishes for \(\xi = 0\), i.e. when the model has a \(U(1)\) symmetry. For small values of \(N\), one can easily check explicitly [17] that for each eigenvalue of the transfer matrix, there exists a polynomial function \(Q(u) = \prod_{j=1}^{N} (u - u_j)(u + u_j)\) that satisfies this \(T - Q\) equation.
References

[1] Hirota R 1981 Discrete analogue of a generalized Toda equation J. Phys. Soc. Japan 50 3785–91
[2] Kulish P P and Sklyanin E K 1982 Quantum spectral transform method. Recent developments Lect. Notes Phys. 151 61–119
[3] Kirillov A N and Reshetikhin N Yu 1987 Exact solution of the integrable XXZ Heisenberg model with arbitrary spin I: The ground state and the excitation spectrum J. Phys. A: Math. Gen. 20 1565–85
[4] Bazhanov V V and Reshetikhin N Yu 1989 Critical RSOS models and conformal field theory Int. J. Mod. Phys. A 4 115–42
[5] Klumper A and Pearce P A 1992 Conformal weights of RSOS lattice models and their fusion hierarchies Physica A 183 304
[6] Kuniba A, Nakanishi T and Suzuki J 1994 Functional relations in solvable lattice models. I: functional relations and representation theory Int. J. Mod. Phys. A 9 5215–66
[7] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1996 Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz Commun. Math. Phys. 177 381–98
[8] Fioravanti D, Ravani F and Stuiskov M 1996 Generalized KdV and quantum inverse scattering description of conformal minimal models Phys. Lett. B 367 113–20
[9] Kirchever I, Lipan O, Wiegmann P and Zabrodin A 1997 Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations Commun. Math. Phys. 188 267–304
[10] Zabrodin A V 1998 Hirota equation and Bethe ansatz Theor. Math. Phys. 116 782–819
[11] Gromov N, Kazakov V and Vieira P 2009 Finite volume spectrum of 2D field theories from Hirota dynamics J. High Energy Phys. JHEP12(2009)080
[12] Gromov N, Kazakov V and Vieira P 2009 Exact spectrum of anomalous dimensions of planar $\mathcal{N} = 4$ supersymmetric Yang–Mills theory Phys. Rev. Lett. 103 131601
[13] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Yang-Baxter equation and representation theory 1 Lett. Math. Phys. 5 393–403
[14] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[15] Cao J, Yang W-L, Shi K and Wang Y 2013 Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions Nucl. Phys. B 875 152–65
[16] Wang Y, Yang W-L, Cao J and Shi K 2015 Off-Diagonal Bethe Ansatz for Exactly Solvable Models (Berlin: Springer)
[17] Nepomechie R I 2013 An inhomogeneous $T − Q$ equation for the open XXX chain with general boundary terms: completeness and arbitrary spin J. Phys. A: Math. Theor. 46 442002
[18] Belliard S and Crampe N 2013 Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe Ansatz SIGMA 9 072
[19] Kitanine N, Maillet J M and Niccoli G 2014 Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables J. Stat. Mech. P05015
[20] Belliard S and Pimenta R A 2016 Slavnov and Gaudin–Korepin formulas for models without U(1) symmetry: the XXX chain on the segment J. Phys. A: Math. Theor. 49 17LT01
[21] Sklyanin E 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Nucl. Gen. 21 2375–289
[22] Ghoshal S and Zamolodchikov A B 1994 Boundary S matrix and boundary state in two-dimensional integrable quantum field theory Int. J. Mod. Phys. A 9 3841–86
[23] de Vega H and Gonzalez-Ruiz A 1994 Boundary K matrices for the XYZ, XXZ and XXX spin chains J. Phys. A: Math. Gen. 27 6129–38
[24] Mezincescu L, Nepomechie R I and Rittenberg V 1990 Bethe ansatz solution of the Fateev-Zamolodchikov quantum spin chain with boundary terms Phys. Lett. A 147 70–8
[25] Mezincescu L and Nepomechie R I 1992 Fusion procedure for open chains J. Phys. A: Math. Gen. 25 2533–44
[26] Zhou Y K 1996 Row transfer matrix functional relations for Baxter’s eight vertex and six vertex models with open boundaries via more general reflection matrices Nucl. Phys. B 458 504–32
[27] Zhang X, Cao J, Cui S, Nepomechie R I, Yang W-L, Shi K and Wang Y 2015 Bethe ansatz for an AdS/CFT open spin chain with non-diagonal boundaries J. High Energy Phys. JHEP10(2015)133
[28] Bajnok Z and Nepomechie R I 2016 Wrapping corrections for non-diagonal boundaries in AdS/CFT J. High Energy Phys. JHEP02(2016)024

[29] Hirota R 2003 Determinants and Pfaffians: how to obtain N-soliton solutions from 2-soliton solutions RIMS 1302 220–42

[30] Cherednik I V 1984 Factorizing particles on a half line and root systems Theor. Math. Phys. 61 977–83

Cherednik I V 1984 Factorizing particles on a half line and root systems Teor. Mat. Fiz. 61 35