DEVELOPMENT OF Ly-1+ B CELLS IN IMMUNODEFICIENT CBA/N MICE

By ANTONIO DE LA HERA, MIGUEL A. R. MARCOS, MARIA LUISA TORIBIO, CARLOS MARQUEZ, MARIA LUISA GASPAR,* AND CARLOS MARTINEZ-A

From the Centro de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Cantoblanco, Madrid 28049; and the *Instituto Carlos III, Majadahonda, Madrid 28220, Spain

Developmental analyses of B cell differentiation are consistent with the existence of at least two distinct lineages. Thus, adult bone marrow solely regenerates the commonest (Ly-1-) lineage, while Ly-1+ B cells reconstitute the Ly-1+ B cell lineage (1). CBA/N mice carrying the X-linked immunodeficiency gene (xid) show a defective differentiation of B lymphocytes (2). They lack all Ly-1+ B cells as well as the normally predominant subpopulation within the Ly-1- lineage (3). Functional studies (4) indicated that Ly-1+ B cells are responsible for the production of most of the autoantibodies, while those B cells in the Ly-1- lineage participate in the conventional responses to "foreign" antigens. These observations may account for both the protection conferred against autoimmune disease, when the xid genetic defect is bred into lupus-prone strains, and the CBA/N mice unresponsiveness to many bacterial antigens (5, 6).

Administration of the immunosuppressant cyclosporine A (CsA) at the time of autologous bone marrow reconstitution results in systemic autoimmunity in CBA/N mice. Besides, these mice show a severe diminution, if not absence, of bone marrow pre-B cells, but increased amounts of activated B cells and autoantibodies (7). We have now studied the possibility that Ly-1+ B cell precursors may exist in CBA/N mice and report here experiments indicating that this is indeed the case.

Materials and Methods

Animals. CBA/N mice were kindly provided by Dr. Tjio from the National Institutes of Health, Bethesda, MD. They were maintained in conventional animal care facilities or in sterile hoods, and when submitted to experimental conditions at 6 to 12 wk of age, were given oral antibiotics.

Autoimmune Disease Induction and Cell Transfers. Adult CBA/N mice received irradiation (800 cGy) after shielding of a leg (7). They were injected intraperitoneally with CsA (kindly provided by Dr. J. F. Borel, Sandoz, Basel, Switzerland) daily at 15 mg/kg/mouse,

This work was supported by grants from Comision Asesora de Investigacion Cientifica y Tecnica (CAICYT) and Fondo de Investigaciones Sanitarias (FISS). A. de la Hera and M. L. Toribio are CSIC postdoctoral fellows. M. A. R. Marcos and C. Marquez are recipients of Formacion del Personal Investigador and FISS fellowships, respectively. Address correspondence to C. Martinez-A, Centro Biologia Molecular, Universidad Autonoma de Madrid, Canto Blanco, Madrid-34, Spain. A. de la Hera's present address is Basel Institute for Immunology, Grezacherstrasse 487, CH-4058 Basel, Switzerland.

804 J. Exp. Med. © The Rockefeller University Press · 0022-1007/87/09/0804/06 $2.00
Volume 166 September 1987 804-809
FIGURE 1. Phenotypic analysis of spleen cells from transferred CBA/N. Spleen cells from CBA/N mice were obtained 2 wk after the transfer of 5 × 10⁶ spleen cells from either CsX-CBA/N (top) or CBA/N (bottom) mice. Cells were stained with irrelevant antibody, anti-Thy-1, FITC-anti-Ly-1, FITC-anti-IgM, anti-B220, and anti-Mac-1. Uncoupled antibodies were revealed by FITC-labeled MARK-1 antibody. Fluorescence distribution curves for the indicated antigens were superimposed on background staining profiles. Results represent the percentage of cells labeled above the threshold for positive staining indicated by the vertical bars.

Results

Previous studies (8) used CBA/N mice as a unique “test tube” in which selective reconstitution of the defective B-cell populations by congenic, non-xid bearing, CBA/Ca haematopoietic precursors was demonstrated. If precursors for lymphoid lineage(s) absent in CBA/N mice were distinctively developed in the spleen of the irradiated and CsA treated CBA/N (CsX-CBA/N) mice suffering systemic autoimmunity (7), they would expand in the permissive microenvironment of unmanipulated syngeneic xid recipients after adoptive transfer. Such transferred mice were sequentially analyzed for the expression of markers present on the lymphocyte and myelomonocytic differentiation lineages. These studies showed that 2–3 wk after the spleen cell transfers, the numbers of Ly-1⁺ cells in the spleen of these recipient mice, but not in control groups, greatly exceeded the numbers of Thy-1⁺ cells (Fig. 1). In agreement, two-color stainings demonstrated a population defined as IgM⁺ Ly-1ᵈᵃⁿ, accounting for most (>95%) B cells present in spleen of the transferred mice (Fig. 2).
Bone marrow precursors for the lymphocytes and myelomonocytes can be discriminated by means of their light scatter properties, and thus can be conveniently gated in forward light scatter (FLS) X 90° light scatter (90° LS), two-parameter, displays for an independent analysis (7). As shown in Fig. 3A, the studies revealed a marked depletion of cells of the lymphoid lineage in the bone marrow of transferred mice, as opposed to control groups of sham-transferred mice, revealing a striking similarity to the findings in donor mice. In agreement, pre-B cells defined as sIg−B220+ precursors were again virtually absent (reference 7, data not shown). In fact, the multiparameter analyses of the residual population demonstrate that the few B cells present mostly belong to the Ly-1+ lineage. Furthermore, B cells, rare (<3%) in lymph nodes from these mice, are again Ly-1+ B cells (Fig. 3B).

The numbers of Mac-1+ cells in the spleen of the recipient mice were markedly augmented when compared with the control groups (Fig. 1). Interestingly, spleen B cells from the recipient, besides being Ly-1+ sIg+, also coexpress the Mac-1 antigen (Fig. 3C). Although Mac-1 (CD11b) is currently defined as a differentiation antigen specifically expressed in myelomonocytic lineage (9), its presence in some Ly-1+ pre-B and B cell lines has been reported (1).

Discussion

The most straightforward interpretation of our results would be that Ly-1+ B cells, abnormally present in CsX-CBA/N mice, selectively expand in the recipient
CBA/N microenvironment. This would imply that the lack of Ly-1+ B cells in immunodeficient CBA/N mice is not the consequence of a primary defect in their precursors. Rather, our findings suggest a failure, in xid strains, of the regulatory mechanisms allowing the initial expansion of Ly-1+ B cells in neonates, and their maintenance in adult peritoneum and spleen (1). Alternatively, the existence of a suppressive mechanism, released by Cs treatment, specifically blocking Ly-1+ B cell development in xid mice may be proposed. However, the mechanism would be expected to operate in the unmanipulated recipient CBA/N. Here, only 5 x 10^6 spleen cells were inoculated in a syngeneic system, making this explanation unlikely. Furthermore, recent experiments (Marcos, M. A. R., C. Martinez-A, M. L. Gaspar, et al., unpublished observations) show that transfer of thymocytes from CsX-CBA/N mice are also able to promote selective development of Ly-1+ B cells in the syngeneic recipients.

Interestingly, the existence of hypercycling, T cell-mediated mechanisms in the expansion of idiotypically defined B cell subpopulations has been proposed (10). We have shown that the influence of B cells on T cell repertoires is exerted mostly in the neonatal period (11), when Ly-1+ B cells are a major subpopulation (1). We therefore suggest that distinctive T cells expanded in CsX-CBA/N mice (7) would select Ly-1+ B cell precursors from the differentiating pool, which in turn would then be engaged in mutual selection. In agreement with this, we have recently observed a bias of primordial T cell repertoires for interactions with B cells in the Ly-1+ lineage (Marcos, M. A. R., A. de la Hera, P. Pereira, M. L. Toribio, A. Coutinho, and C. Martinez-A, manuscript submitted for publication) which may contribute to the preferential expansion of this subset.

Primary immunodeficiency defects in CBA/N mice have formerly been placed at the B cell level. Novel formulations of B cell development pathways should take into consideration present evidence for interplay among T and B lymphocyte subpopulations within the two lineages of differentiation (10-12). Besides, the differentiation of common B cell precursors in CBA/N mice shows a strong T cell dependence (13-15). Thus, in addition to the defects of the major subpopulation I spontaneously caused by xid genes (3), the alterations in intrathymic development present in CsX-CBA/N and transferred mice (7) may contribute to the paucity of B cells observed in the major (Ly-1-) lineage. The expansion of formerly absent Ly-1+ B cells with depletion of common B cells are not the unique phenomena occurring in CBA/N recipients. They display a systemic autoimmune disease indistinguishable from that previously reported in the donors (reference 7, Marcos, M. A. R., M. L. Gaspar, C. Marquez, et al., manuscript in preparation). Similarly, inadequate expansion of Leu-1+ (CD5) B cells has recently been implicated in the pathogenesis of certain human diseases (1). It suggests that direct interactions among lymphocytes in distinct lineages might play an essential role in the physiology and pathology of the immune system.

Summary

Spleen cells from CBA/N mice developing a systemic autoimmune disease after daily injection of CsA during an autologous bone marrow reconstitution were transferred into unmanipulated syngeneic recipients. Adoptive transfer allowed the development of Ly-1+ B cells, which shared Mac-1 differentiation
antigen expression with the myelomonocytic lineage. Interestingly, expansion of formerly absent Ly-1\(^+\) B cells was paralleled by a severe reduction in common, Ly-1\(^-\), B cell development in the recipient. We conclude that precursors for Ly-1\(^+\) B lineage do exist in CBA/N mice.

We thank Dr. C. Gutierrez for advice and comments; Drs. A. Coutinho, L. A. Herzenberg, and K. Rajewsky for their reading of the manuscript; the staff of the Radiotherapy Unit in Clinica Puerta de Hierro (Madrid) for assistance in the irradiation protocols; Coulter Cientifica (Mostoles, Madrid) for EPICS-C facilities; and Martha Messman for editorial assistance.

Received for publication 12 May 1987 and in revised form 11 June 1987.

References

1. Möller, G., editor. 1986. B cell lineages. *Immunol. Rev.* 93:5–169.
2. Scher, I., A. Ahmed, D. M. Steinberg, A. D. Steinberg, and W. E. Paul. 1975. X-linked B lymphocyte immune defect in CBA/N mice. *J. Exp. Med.* 141:788.
3. Hayakawa, K., R. R. Hardy, D. R. Parks, and L. A. Herzenberg. 1983. The Ly-1 B cell subpopulation in normal, immunodeficient and autoimmune mice. *J. Exp. Med.* 157:202.
4. Hayakawa, K., R. R. Hardy, M. Honda, L. A. Herzenberg, A. D. Steinberg, and L. A. Herzenberg. 1984. Functionally distinct lymphocytes that secrete IgM autoantibodies. *Proc. Natl. Acad. Sci. USA.* 81:2494.
5. Steinberg, A. D., B. J. Steinberg, E. J. Raveche, T. A. Santoro, and H. R. Smith. 1983. Effect of the xid gene upon the production of anti-DNA antibodies in spontaneously autoimmune mice: clues to the evolution of B cell subsets. In *Inter cellular Communication in Leukocyte Function*. J. W. Parker and R. L. O’Brine, editors. John Wiley & Sons Ltd., Chichester, 233.
6. Bottomly, K., and D. E. Mosier. 1979. Mice whose B cells cannot produce the T15 idiotype lack an antigen specific helper T cell required for T15 expression. *J. Exp. Med.* 150:1399.
7. Marcos, M. A. R., A. de la Hera, M. L. Gaspar, C. Marquez, C. Bellas, F. Mampaso, M. L. Toribio, and C. Martinez-A. 1986. Modification of emerging repertoires by immunosuppression in immunodeficient mice results in autoimmunity. *Immunol. Rev.* 94:51.
8. Paige, C. J., P. W. Kincade, M. A. S. Moore, and G. Lee. 1979. The fate of fetal and adult B cell progenitors grafted into immunodeficient CBA/N mice. *J. Exp. Med.* 150:548.
9. Springer, T. A., G. Galfré, D. Scher, and C. Milstein. 1979. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. *Eur. J. Immunol.* 9:301.
10. Fornt, L., A. Coutinho, G. Köhler, and N. K. Jerne. 1980. IgM antibodies induce the production of antibodies of the same specificity. *Proc. Natl. Acad. Sci. USA.* 77:1125.
11. Martinez-A., C., R. R. Bernabe, A. de la Hera, P. Pereira, P-A. Cazenave, and A. Coutinho. 1985. Establishment of idiotypic helper T-cell repertoires early in life. *Nature (Lond.)*. 317:721.
12. Okumura, K., K. Hayakawa, and T. Tada. 1982. Cell-to-cell interaction controlled by immunoglobulin genes. Role of Thy-1\(^+\) Ly1\(^+\) Ig\(^-\) (B') cell in allotypic-restricted antibody production. *J. Exp. Med.* 156:443.
13. Mond, J. J., I. Scher, J. Cossman, S. Kessler, P. K. A. Mongini, and W. E. Paul. 1982.
Role of thymus in directing the development of a subset of B lymphocytes. *J. Exp. Med.* 155:924.

14. Wortis, H. H., L. Burkly, D. Hughes, S. Roschelle, and C. Waneck. 1982. Lack of mature B cells in nude mice with X-linked immunodeficiency. *J. Exp. Med.* 155:903.

15. Sprent, J., and J. Bruce. 1984. Physiology of B cells in X-linked immunodeficiency. II. Influence of the thymus and mature T cells on B cell differentiation. *J. Exp. Med.* 160:335.