This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/130351/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Edwards, Sarah C., Sutton, Caroline E., Ladell, Kristin ORCID: https://orcid.org/0000-0002-9856-2938, Grant, Emma J., McLaren, James E. ORCID: https://orcid.org/0000-0002-7021-5934, Roche, Fiona, Dash, Pradyot, Apiwattanakul, Nopporn, Awad, Walid, Miners, Kelly L., Lalar, Stephen J., Ribot, Julie C., Baik, Song, Moran, Barry, McGinley, Aoife, Pivorunas, Valerie, Dowding, Lori, Macorittio, Michael, Paez-Cortez, Jesus, Slavin, Anthony, Anderson, Graham, Silva-Santos, Bruno, Hokamp, Karsten, Price, David A. ORCID: https://orcid.org/0000-0001-9416-2737, Thomas, Paul G., McLoughlin, Rachel M. and Mills, Kingston H.G. 2020. A population of proinflammatory T cells coexpresses α and γ T cell receptors in mice and humans. Journal of Experimental Medicine 217 (5), e20190834. 10.1084/jem.20190834 file

Publishers page: http://dx.doi.org/10.1084/jem.20190834
<http://dx.doi.org/10.1084/jem.20190834>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
A population of proinflammatory T cells coexpresses αβ and γδ T cell receptors in mice and humans

Sarah C. Edwards1*, Caroline E. Sutton1*, Kristin Ladell2, Emma J. Grant1,3, James E. McLaren1, Fiona Roche1, Pradyot Dash4, Nopporn Apiwattanakul2,4, Walid Awdad5, Kelly L. Miners3,4, Stephen J. Lalor5, Julie C. Ribo6, Song Baik7, Barry Moran7, Aofe McGinley7, Valerie Pivorunas3, Lori Dowding3, Michael Macoritto3,7, Jesus Paez-Cortez10, Anthony Slavin10, Graham Anderson10, Bruno Silva-Santos10, Karsten Hokamp6, David A. Price1, Paul G. Thomas1, Rachel M. McLaughlin1, and Kingston H.G. Mills1

T cells are classically recognized as distinct subsets that express αβ or γδ TCRs. We identify a novel population of T cells that coexpress αβ and γδ TCRs in mice and humans. These hybrid αβ+γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αβ TCR-mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1β and IL-23. Hybrid αβ+γδ T cells were transcriptionally distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with *Staphylococcus aureus* and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system.

Introduction

MHC-restricted CD4+ and CD8+ T cells typically mediate pathogen-specific adaptive immunity and express αβ TCRs. In contrast, γδ T cells play an important role in innate immunity at mucosal surfaces but can also display features of immunological memory, analogous to conventional αβ T cells (Misiak et al., 2017; Sutton et al., 2009). The accepted dogma is that common lymphoid progenitors develop into cells that express either αβ or γδ TCRs and that each population subsequently occupies a specific and highly conserved niche within the immune system.

γδ T cells are required for optimal innate and adaptive immune responses to infection and tumors (Murphy et al., 2014; Rei et al., 2014; Silva-Santos et al., 2015). They are the first lymphocytes to emerge in the fetus, and before full maturation of the immune system, they mediate protective functions in young animals (Shibata et al., 2007; Sinkora et al., 2006). A unique feature of murine γδ T cells is the preferential expression of different TCRγδ variable region (Vγ) segments in different tissues. For example, Vγ5+ γδ T cells are present in skin, Vγ6+ γδ T cells localize to the reproductive mucosa, and Vγ1+ or Vγ4+ γδ T cells are found in secondary lymphoid organs (nomenclature of Heilig and Tonegawa, 1984). γδ T cells produce an array of cytokines, including IFN-γ, IL-4, IL-17A, IL-17F, IL-21, IL-22, GM-CSF, and TNF-α (Lockhart et al., 2006; Ribot et al., 2009; Sutton et al., 2012).

Although γδ T cells display characteristics of adaptive memory, they can also produce IL-17 upon stimulation with IL-1β and IL-23 in the absence of TCR engagement and provide an early source of innate proinflammatory cytokines that help amplify T helper type 17 (Th17) responses in certain autoimmune and infectious diseases (Conti et al., 2014; Crowley et al., 1997; Sutton et al., 2009). In humans with multiple sclerosis, increased frequencies of γδ T cells have been detected in acute brain lesions (Hvas et al., 1993; Wucherpfennig et al., 1992), and clonal expansions of γδ T cells have been observed in cerebrospinal fluid during the early stages of disease (Shimonkevitz et al., 1993). Similarly, IL-17-producing Vγ4+ T cells infiltrate...
the brain and spinal cord of mice with experimental autoim-
mune encephalomyelitis (EAE, Price et al., 2012; Sutton et al., 2009). Vγ4+ T cells also mediate inflammation via IL-17 pro-
duction in the dermis of mice with psoriasis (Cai et al., 2011)
and accumulate in the draining LNs and joints of mice with collagen-
induced arthritis (Roark et al., 2007).

In this study, we identified a discrete population of T cells
that coexpressed αβ and γδ TCRs. These hybrid αβ-γδ T cells
were transcriptionally distinct from conventional γδ T cells,
priosity to sites of inflammation, and responsive to
MHC class I (MHC-I)-restricted or MHCII-restricted peptide
antigens or stimulation with IL-1β and IL-23. In line with these
findings, hybrid αβ-γδ T cells protected against infection with
Staphylococcus aureus and, by licensing encephalitogenic Th1T
cells, triggered autoimmune pathology in the central nervous
system (CNS).

Results and discussion
Identification of hybrid αβ-γδ T cells
Initial flow cytometric analyses with antibodies specific for the
constant regions of TCRα and TCRβ unexpectedly revealed a rare
population of TCRγδ TCRβ+ cells in the LNs of WT C57BL/6 mice
(Fig. 1 A and Fig. S1 A). These findings were substantiated using
confocal microscopy, which demonstrated surface expression
of TCRβ on purified TCRγδ cells (Fig. S1 B), and RT-PCR, which
demonstrated the presence of transcripts encoding the joining
region of TCR (Trbj) in purified TCRγδ cells (Fig. S1 C). More-
over, TCRγδ cells coexpressed TCRβ and various TCRα variable
region (Vα) segments (Fig. 1 B), and some Vγ4+, Vγ1+, and
Vγ4-Vγ1- T cells coexpressed TCRγδ and TCRβ (Fig. 1 C and
Fig. S1, D and E). ImageStream experiments confirmed coexpression
of Vγ4 with TCRγδ and TCRβ at the single-cell level (Fig. 1 D). In
addition, flow cytometric analyses revealed that ~6% of
Vγ4+TCRβ+ cells expressed TCRγδ (Fig. S1 F). These hybrid αβ-γδ
T cells expressed higher levels of CD3ε than TCRαβ-TCRγδ+
cells (Fig. 1 E), together with either CD4 or CD8α (Fig. 1 F). Coex-
pression of αβ and γδ T cells was further validated using TCRαα-
and TCRββ+ mice, which lacked hybrid αβ-γδ T cell populations,
whereas ~7% of Vγ4+TCRβ+ cells in WT mice expressed TCRβ (Fig. 1 G). Importantly, Vγ4+TCRβ-TCRγδ+ cells were present in
MHC-I+ and MHCII+ mice (Fig. 1 G). CD4+Vγ4+TCRβ-TCRγδ+ cells
were absent in MHCII- mice, whereas CD8+Vγ4+TCRβ-TCRγδ+
cells were absent in MHC-I- mice (Fig. S1 G). Double-
negative cells were the most predominant population in each
strain (Fig. S1 G). An examination of the ontogeny of hybrid
αβ-γδ T cells revealed that Vγ4+ cells emerged in the thymus
between embryonic days (E) 14 and 16 (E14 and E16; Fig. 1 H).
Although the majority of these Vγ4+ cells were TCRβ-TCRγδ-
(conventional γδ cells), we detected a clear population of Vγ4+
cells that coexpressed TCRβ. These findings suggest that hybrid
αβ-γδ T cells develop in the embryonic thymus in synchrony
with the early waves of conventional γδ T cells, following the
same CD4 and CD8 expression patterns as γδ (double negative)
or αβ T cells (MHC restricted).

Flow cytometric analyses of human peripheral blood mono-
nuclear cells (PBMCs) revealed a rare population of cells (<1% of
CD3+ T cells) that coexpressed TCRαβ and Vδ2 (Fig. 1 I) and
further showed that ~10% of all circulating Vδ2+ cells expressed
TCRαβ (Fig. 1 J). These data provide preliminary evidence that
hybrid αβ-γδ T cells are also present in humans.

Molecular analysis of TCR expression in Vγ4+TCRβ+ cells
To examine the molecular basis of αβ and γδ TCR coexpression,
we used an unbiased approach (Quigley et al., 2011) to amplify all
three TRα, TRβ, TRγ, and TRδ gene rearrangements in flow-
purified Vγ4+TCRβ+ cells. Analysis of the TRα and TRβ gene
expression profiles revealed substantial heterogeneity (Fig. 2 A).
We also detected Trgα2 gene transcripts, presumably reflecting
antibody cross-recognition of Vγ2 and Vγ4. The associated TRδ
gene transcripts were heavily biased toward Trdβ2- and Trdβ5.
Of note, disruption of a single chromatin loop facilitates “de-
fault” rearrangements with Trdβ2- (Chen et al., 2015), which
also occur in ~42% of thymocytes in WT mice, and Trdβ5 is
located in a reversed transcriptional orientation 3′ to the Trdβ gene
(Glausius et al., 2001).

To confirm these findings, we flow-sorted single Vγ4+
TCRαβ-TCRγδ+ cells from the LN cells of mice with EAE (Fig. 2 B).
Functional Thαβ, Thγδ, and Thδ cells rearrangements, consis-
ten with the isotype index parameters, were detected in ~9% (7/79)
of these cells (Fig. 2 C). In line with the population-level data,
γδ T cells were present in EAE mouse CNS (Cai et al., 2011),
and, by licensing encephalitogenic Th1T cells, triggered autoimmune
pathology in the central nervous system (CNS).
T cells coexpressing \(\alpha \beta \) and \(\gamma \delta \) T cell receptors
Next, we examined the ability of hybrid αβ-γδ T cells to respond to MHCII-restricted antigens, initially using OT-II transgenic mice, which exclusively express αβ TCRs that recognize an OVA peptide restricted by I-A^d. Purified TCRβ^+ cells from OT-II mice, but not WT mice, produced IFN-γ in response to dendritic cells (DCs) pulsed with OVA, but not with KLH (Fig. S2 D). Moreover, purified TCRβ^+ cells, but not TCRβ^− cells, from OT-II mice produced IFN-γ, IL-17, and GM-CSF (Fig. 3 D) and significantly up-regulated Tbx21, Rorc, Stat3, and Mcam in response to OVA (Fig. S2 E). Co-stimulation of TCRβ^+ cells from OT-II mice with IL-1β and IL-23 in the presence of OVA-pulsed DCs enhanced the production of IFN-γ and GM-CSF, which was reversed by the addition of anti-MHCII (Fig. 3 E). OVA stimulation reduced the production of IL-17 induced by IL-1β and IL-23 (Fig. 3 F), potentially reflecting enhanced expression of Tbx21, which encodes T-bet, a transcription factor that blocks Runx1-mediated transactivation of the Rorc promoter and subsequent expression of IL-17. Stimulation of OT-II-derived γδ T cells with OVA under Th1 and Th2 polarizing conditions also enhanced the production of IFN-γ and IL-4 (Fig. S2 F). Further evidence of MHCII-restricted peptide recognition by hybrid αβ-γδ T cells was obtained using Vy4^−TCRβ^+ cells purified from WT mice immunized with myelin oligodendrocyte protein (MOG) and CFA. IL-1β and IL-23 induced the expression of TCRβ^+ and Rorc (Fig. 3 F), as well as the production of IFN-γ, IL-17, and GM-CSF, which was substantially enhanced in the presence of MOG and DCs (Fig. 3 F and G, and Fig. S2 G).

The antigen specificity of hybrid αβ-γδ T cells was confirmed using the corresponding MOG tetramer to stain LN cells 7 d after the induction of EAE. Approximately 33% of Vy4^−TCRβ^+ cells stained with the MOG tetramer, in contrast to ~12% of conventional αβ T cells (Fig. S2 H). Moreover, we found that purified γδ T cells from OT-1 mice, which harbor transgenic CD8 T cells specific for OVA12-26-28 presented by H-2K^d, produced IFN-γ in the presence of OVA-pulsed DCs and IL-12 (Fig. S2 I). These data suggest that hybrid αβ-γδ T cells respond in an innate-like manner to IL-1β and IL-23, akin to conventional γδ T cells, but also recognize peptide antigens presented by MHCII or MHC1, akin to conventional αβ T cells.

The lack of well-defined antigens recognized by γδ T cells precluded analysis of activation via γδ TCRs. Nonetheless, we examined the expression of the natural killer group 2D (NKG2D) receptor, which is crucial for innate-like lymphocyte recognition of stressed or infected cells (Correia et al., 2013). Hybrid Vy4^−αβ-γδ T cells expressed higher levels of NKG2D than conventional Vy4^−γδ T cells (Fig. S2 J). Expression of Ki67, a marker of proliferation, was also significantly enhanced in hybrid Vy4^−αβ-γδ T cells, but not in conventional Vy4^−γδ T cells, after co-culture with YAC-1 cells, which constitutively express NGK2D ligands (Fig. S2 K). Moreover, stimulation of TCRβ^− and TCRβ^+ cells with an activating anti-TCRβ antibody significantly increased the expression of Ifng, Il1r1, Csf2, Mcam, Tbx21, Rorc, and Il1r1 (Fig. S2 L), as well as the production of IL-17 driven by IL-1β and IL-23 (Fig. S2 M).

Further phenotypic analyses revealed that hybrid αβ-γδ T cells displayed unique properties and certain features associated with conventional γδ T cells. The majority of hybrid αβ-γδ T cells expressed CD27 and Rorc, akin to conventional Th17 cells during infection (Fig. 3 F). Expression of Tbx21, Mcam, and Il1r1 significantly increased the expression of Ifng, Il1r1, Csf2, Mcam, Tbx21, Rorc, and Il1r1 (Fig. S2 L), as well as the production of IFN-γ or IL-17, respectively (Ribot et al., 2009). Moreover, CCR6, a chemokine receptor expressed on IL-17-secreting γδ T cells (Haas et al., 2009; Papotto et al., 2017) and pathogenic Th17 cells during EAE (Reboldi et al., 2009), was expressed by hybrid αβ-γδ and conventional Vy4^−γδ T cells, but not by αβ T cells (Fig. S3 A). Similarly, CCR2, which allows Th17 cells to cross the blood–brain barrier and is associated with the development of EAE (Kara et al., 2015), was more commonly expressed by hybrid αβ-γδ T cells relative to conventional γδ or αβ T cells. The integrin CD49d, a subunit of the cell adhesion molecule α4β1, very late antigen-4 (VLA-4), which is involved in the migration of encephalitogenic T cells into the CNS (Yednock et al., 1992), was expressed by ~40% of hybrid αβ-γδ T cells but also by ~20% of conventional Vy4^−γδ T cells (Fig. S3 A). In addition, hybrid αβ-γδ T cells expressed IL-2R, CD25, and CD122 at higher frequencies than conventional Vy4^−γδ T cells or αβ T cells (Fig. S3 A). These observations indicate that hybrid αβ-γδ T cells share some phenotypic features with γδ T cells but also exhibit characteristics typically associated with cell activation and migration.

Hybrid αβ-γδ T cells protect against S. aureus infection

To probe the biological relevance of these findings, we examined the ability of hybrid αβ-γδ T cells to protect against infection with S. aureus in a murine model, where a key role has been defined for IL-17-producing γδ T cells (Murphy et al., 2014). Mice infected with S. aureus displayed significantly elevated concentrations of IL-17 and IL-1β in the peritoneal fluid 3 h after infection (Fig. 3 H). At the same time point, there was a non-significant increase in the absolute number of TCRβ^+ cells (Fig. 3 I) and a significant increase in the absolute number of Vy4^−TCRβ^+ cells in the peritoneal cavity (Fig. 3 J). In addition, there was a significant increase in IFN-γ-producing and a nonsignificant increase in IL-17-producing Vy4^−TCRβ^+ cells...
in infected versus naive mice (Fig. 3 K). Adoptive transfer of ~10,000 flow-purified Vyα4-TCRβ+ cells from WT mice to IL-7A−/− mice before infection with S. aureus significantly reduced bacterial load in the peritoneal cavity and systemic dissemination to the kidney (Fig. 3 L). These data demonstrate that hybrid αβ-γδ T cells play a protective role in immunity to S. aureus infection.

Hybrid αβ-γδ T cells play a critical role in the development of EAE

The role of γδ T cells in autoimmune diseases is well established (Sutton et al., 2009). We found that hybrid αβ-γδ T cells were significantly expanded and secreted IL-17 in the LNIs of WT mice 3–10 d after the induction of EAE (Fig. 4, A and B). Hybrid αβ-γδ T cells also dominated the Vyα4+ compartment in the CNS of naive mice, and the number of hybrid αβ-γδ T cells in the CNS was significantly increased 10 d after the induction of EAE (Fig. 4 C). Conventional γδ T cells also infiltrated the brain 7–10 d after challenge, but CD4+ αβ T cells were numerically dominant by day 10 (Fig. 4 C). Using a validated in vivo staining technique with an anti-CD45 antibody administered i.v. immediately before sacrifice, we demonstrated that hybrid αβ-γδ T cells were the dominant CNS tissue-resident T cells in naive mice (Fig. 4 D) and that TCRβ−TCRβ+ cells outnumbered TCRβ−TCRβ+ cells on day 10 of EAE (Fig. 4 E). These CNS-infiltrating hybrid αβ-γδ T cells displayed an activated, proliferative phenotype (Fig. 4 F) and secreted IL-17 (Fig. 4 G). Early in EAE (days 3–7), hybrid αβ-γδ T cells were the dominant IL-17-secreting subset in the CNS. However, conventional γδ T cells and CD4+ T cells were also important sources of IL-17 in the CNS, especially as the disease developed over time, and CD4+ αβ T cells formed the dominant IL-17-secreting population on day 10 of EAE (Fig. 4 G).

Depletion of Vyγ4+ cells in vivo, which removes conventional Vyγ4−γδ and hybrid Vyγ4+ αβ-γδ T cells, significantly impaired the development of EAE (Fig. 4 H) and limited the infiltration of cytokine-producing CD4+ T cells into the CNS (Fig. 4 I). To address the specific contribution of Vyγ4+ hybrid αβ-γδ T cells in this model, we depleted Vyγ4+ TCRβ+ cells from the spleens and LNIs of mice immunized with MOG and CFA. Adoptive transfer of unmanipulated T cells from MOG-immunized mice after expansion in vitro with MOG, IL-1β, and IL-23 induced EAE. Depletion of Vyγ4+ TCRβ+ cells significantly reduced the production of IFN-γ, IL-17, and GM-CSF in culture supernatants after incubation with MOG, IL-1β, and IL-23 (Fig. 4 J) and abrogated the induction of EAE (Fig. 4 K). This attenuated disease course was associated with significantly reduced frequencies and absolute numbers of various cytokine-producing T cells in the CNS (Fig. 4, L and M). To address the contribution of hybrid Vyγ4+ αβ-γδ T cells in the priming of encephalitogenic CD4+ T cells, we depleted hybrid Vyγ4+ αβ-γδ T cells from a culture of LN and spleen cells from MOG-immunized mice before or after culture with MOG, IL-1β, and IL-23. Depletion of hybrid αβ-γδ T cells before, but not after, culture significantly impaired the development of EAE following adoptive transfer to naive mice (Fig. 4 N). Cells depleted of hybrid αβ-γδ T cells before culture with MOG, IL-1β, and IL-23 also expressed significantly lower amounts of Ifng, which encodes the essential CD4+ T cell trafficking molecule VLA-4 (Fig. 4 O). Moreover, antigen-specific CD4+ T cells cultured with MOG, IL-1β, and IL-23 in the presence of hybrid αβ-γδ T cells expressed significantly more IFN-γ (Fig. 4 P) and Ifng (Fig. 4 Q) and proliferated to a greater extent (Fig. 4 R) than CD4+ T cells cultured in the absence of hybrid αβ-γδ T cells. These findings demonstrate that hybrid Vyγ4+ αβ-γδ T cells play a nonredundant role in the immunopathogenesis of EAE via their ability to migrate to inflammatory sites and prime encephalitogenic CD4+ T cells.

Hybrid αβ-γδ T cells display a hyperactivated phenotype

Although hybrid αβ-γδ T cells are outnumbered by conventional γδ T cells, they are rapidly mobilized and play a key pathogenic role in development of CNS inflammation in the EAE model. To understand these proinflammatory effects in more detail, we performed a transcriptomic analysis of hybrid αβ-γδ T cells and conventional γδ T cells isolated from the LNIs of WT mice under physiological conditions and during EAE.

The data revealed that 1,259 genes were differentially expressed in hybrid αβ-γδ T cells (Vyα4+ TCRβ+) relative to conventional γδ T cells (Vyγ4+ TCRβ−) under physiological conditions and that the majority (n = 1,184) of these differentially expressed genes (DEGs) were up-regulated in hybrid αβ-γδ T cells relative to conventional γδ T cells (Fig. 5, A and B). Functional enrichment analysis revealed that transcripts associated with T cell activation, cellular migration, cytokine stimulation, and immune responses to foreign stimuli were enriched in hybrid αβ-γδ T cells relative to conventional γδ T cells (Fig. 5 C and Fig. S3 B). Genes associated with the αβ T cell phenotype, including Cd4, Cd8, Cd6, and Cd28, were expressed at higher levels in hybrid αβ-γδ T cells relative to conventional γδ T cells. Hybrid αβ-γδ T cells also expressed higher levels of genes associated with cellular trafficking, including Ccr7, Cxcr3, Cd12, and Ccl7 (Fig. 5 C). In addition, hybrid αβ-γδ T cells expressed higher levels of Myd88, Ly96, Tlr2, and Tlr13, suggesting a capacity to respond to pathogen-associated molecular patterns, as well as genes associated with IL-1 signaling, including Casp1, Il1b, and Il18 (Fig. 5 C). A selection of identified DEGs were validated by flow cytometry (Fig. 5 D).

Separation of hybrid αβ-γδ T cells from conventional γδ T cells in the principal component analysis plot indicated differences in the corresponding gene expression profiles under physiological conditions and during EAE (Fig. 5 E). Differential
expression analysis was used to identify changes in gene expression levels for each cell type under each condition. DEGs were more common in hybrid Vγ4γδ T cells (total, n = 2,470; up-regulated, n = 157; down-regulated, n = 2,213) compared with conventional Vγ T cells (total, n = 652; up-regulated, n = 3; down-regulated, n = 649), and most of these genes were similarly down-regulated in both cell types during EAE (Fig. S3 C). Enrichment analysis further revealed that these down-regulated genes were associated with T cell activation (cluster 2), cell cycle processes (cluster 3), and mRNA processing and transport (cluster 4; Fig. S3 C). In contrast, genes associated with cell migration and chemotaxis, including Vcam1, Ccl2, Ccl8, and Cxcl13, were preferentially up-regulated in hybrid Vγ4γδ T cells from mice with EAE (Fig. S, F and G; and Fig. S3 C and D). These data suggest that hybrid αβ-γδ T cells are transcriptionally distinct from conventional Vγ T cells, with a gene expression profile indicative of a proinflammatory and migratory phenotype.

Concluding remarks

Conventional αβ and γδ T cells originate from common thymocyte precursors, but the mechanisms that govern subsequent divergence and lineage fate are incompletely defined. The general consensus posits that a strong γδ TCR-mediated signal directs thymocytes to the γδ lineage, whereas a nonproductive signal permits TCRs rearrangements and commitment to the αβ lineage (Hayes et al., 2005). However, aberrant expression of TCR chains has been demonstrated among αβ and γδ T cell populations (Bowen et al., 2014; Hochstenbach and Brenner, 1989; Ishida et al., 1990). For example, in-frame TCRβ rearrangements have been identified in αβ T cells (Livak et al., 1995), and functional TCRβ rearrangements have been detected in γδ T cells (Bosco et al., 2008). The latter may even confer a proliferative advantage and selectively amplify certain subsets of murine TCRβγ thymocytes (Wilson and MacDonald, 1998).

Similarly, up to 50% of all VSI+ cells in humans are natural killer T (NKT)-like cells that express TCRα and TCRδ segments with TCRβ (Pellicci et al., 2014). Of note, given the structure of the murine TCRαδ locus, coexpression of αβ and γδ TCRs implies productive rearrangement of TCRα and TCRδ on different alleles. In addition, the murine TCRδ locus has been repeatedly duplicated on chromosome 13, potentially facilitating multiple rearrangements (Glusman et al., 2001). It is also notable that dual-lineage lymphocytes expressing a B cell receptor and an αβ TCR have recently been identified in humans and linked to the development of type 1 diabetes (Ahmed et al., 2019).

The collective data presented here identify a novel subset of hyperinflammatory T cells defined by the coexpression αβ and γδ TCRs. These intrathymically generated hybrid αβ-γδ T cells recognized MHC-restricted peptide antigens, like conventional αβ T cells, and produced IFN-γ, IL-17, and GM-CSF in response to IL-1β and IL-23 production by γδ TCR-expressing T cells (Wilson and MacDonald, 1998). These findings suggest that hybrid αβ-γδ T cells are equipped to act as highly proinflammatory “first responders,” illustrated here in the context of a bacterial infection and an autoimmune process in the CNS.

Materials and methods

Mice

C57BL/6 mice, IL-17−/− (C57BL/6 background) mice, OT-I mice (C57BL/6-Tg(TcrαTcrβ)100Mjb/J), which exclusively express an αβ TCR specific for OVA257-264 restricted by H-2Kb, and OT-II mice (C57BL/6-Tg(TcraTcrb)425Cbn/J), which exclusively express an αβ TCR specific for OVA253-263 restricted by I-Aκ, were sourced from the Jackson Laboratory. All mice were bred under specific pathogen-free conditions and maintained according to European Union Directives. Experiments were performed with sex-matched animals (aged 6–8 wk) under license B100/2412 from the Irish Health Protection Regulatory Agency with approval from the Trinity College Dublin Comparative Medicine Ethics.
Committee. Embryonic thymus experiments were performed with C57BL/6 mice at the University of Birmingham, UK. For timed matings, the day of detection of a vaginal plug was designated as day 0. Experiments with TCRα−/−, TCRβ−/−, MHCII−/−, and MHCHC1−/− mice were performed at the Instituto de Medicina Molecular, Lisbon, Portugal.

Preparation of human PBMCs

PBMCs were isolated by Ficoll gradient centrifugation from leukocyte-enriched buffy coats obtained from anonymous healthy donors via the Irish Blood Transfusion Board, St. James Hospital, Dublin, Ireland. Ethical approval was granted by the School of Biochemistry and Immunology Research Ethics Committee, Trinity College Dublin, Ireland.

Antibodies

The following antibodies were used to characterize murine cells in flow cytometry experiments: anti-CCR2 (clone SA203G11, 0.1 µg/10^6 cells; BioLegend), anti-CCR6 (clone 140706, 0.1 µg/10^6 cells; BD Horizon), anti-CCR7 (clone 4B12, 0.1 µg/10^6 cells; eBioscience), anti-CD3 (clone 17A2, 0.05 µg/10^6 cells; BioLegend), anti-CD4 (clone RM4-5, 0.05 µg/10^6 cells; eBioscience), anti-CD5 (clone 53-7.3, 0.1 µg/10^6 cells; BD Biosciences), anti-CD6 (clone 13M36, 0.1 µg/10^6 cells; eBioscience), anti-CD8 (clone S3-6.7, 0.05 µg/10^6 cells; eBioscience), anti-CD25 (clone PC61, 0.1 µg/10^6 cells; BioLegend), anti-CD27 (clone LG.7D12, 0.1 µg/10^6 cells; eBioscience), anti-CD49d (clone RI-2, 0.1 µg/10^6 cells; eBioscience), anti-CD68 (clone GL.1, 0.1 µg/10^6 cells; BioLegend), anti-CD95 (clone IR417, 0.1 µg/10^6 cells; eBioscience), anti-CD107a (clone ID48, 0.1 µg/10^6 cells; BioLegend), anti-CD11b (clone AF580, 0.1 µg/10^6 cells; BioLegend), anti-CD222 (clone TM-b1, 0.1 µg/10^6 cells; eBioscience), anti-CD284 (clone MT5510, 0.1 µg/10^6 cells; BioLegend), anti-CX3CR1 (clone SA01F11, 0.1 µg/10^6 cells; BioLegend), anti-GM-CSF (clone D7A4, 0.1 µg/10^6 cells; eBioscience), anti-ICOS (clone 7E.17G9, 0.1 µg/10^6 cells; BioLegend), anti-IFN-γ (clone XMGL2, 0.1 µg/10^6 cells; eBioscience), anti-IL-1R1 (clone 12A6, 0.1 µg/10^6 cells; BD Biosciences), anti-IL-17 (clone TC11-18H10.1, 0.1 µg/10^6 cells; BioLegend), anti-IL-23R (clone 078-1208, 0.1 µg/10^6 cells; BD Biosciences), anti-TCRα (clone H57-597, 0.1 µg/10^6 cells; eBioscience), anti-TCRβ (clone GL3, 0.1 µg/10^6 cells; eBioscience), anti-TLR2 (clone 2T2.5, 0.1 µg/10^6 cells; BioLegend), anti-Vα2 (clone B20.1, 0.1 µg/10^6 cells; BioLegend), anti-Vα8.3 (clone B21.14, 0.1 µg/10^6 cells; BioLegend), anti-Vγ1 (clone 2.11, 0.1 µg/10^6 cells; BioLegend), and anti-Vγ4 (clone UC3-IOA6, 0.1 µg/10^6 cells; BioLegend). The following antibodies were used to characterize human cells in flow cytometry experiments: anti-TCRαβ (clone TIO99.1A-31, 5 µl/test; BD Horizon), anti-CD3 (clone SK7, 1 µl/test; BD Biosciences), and anti-Vδ2 (clone B6, 2.5 µl/test; BioLegend).

Immune cell purification

Purified cell populations were isolated from single-cell suspensions of leukocytes extracted from spleens and LNs. Briefly, WT cells were enriched by magnetic separation using a Pan T Cell Isolation Kit (Miltenyi Biotech), labeled with anti-Vγ4 (clone UC3-IOA6, 0.1 µg/10^6 cells; BioLegend) or anti-TCRβ (clone GL3, 0.1 µg/10^6 cells; eBioscience), sorted by flow cytometry, and incubated with anti-TCRβ (clone H57-597, 0.1 µg/10^6 cells; eBioscience). Alternatively, WT cells were enriched by magnetic separation using a γδ T Cell Isolation Kit (Miltenyi Biotech). In the EAE model, Vγ4+ TCRβ+ cells were enriched from spleens and draining LNs on day 10 after immunization with MOG and CFA. Distinct cell populations were sorted by flow cytometry using a FACSVerse Fusion (BD Biosciences) or a MoFlo Legacy (Beckman Coulter).

Cell culture

Cells were cultured in medium with or without various combinations of IL-β, IL-4, IL-12p70, IL-18, and IL-23 (all 10 ng/ml), together with IL-2 (1 or 10 ng/ml) or anti-IFN-γ and anti-IL-17.
T cells coexpressing αβ and γδ T cell receptors
(both 1 µg/ml), in the presence or absence of anti-CD3 (clone 145-2C11, 1 µg/ml; BD Biosciences), anti-CD28 (clone 37.51, 2 µg/ml; GenScript). Magnetically enriched TCRδ+ T cells were enriched from LNs by magnetic separation using a Pan T Cell Isolation Kit (Miltenyi Biotec), labeled as described in the manufacturer’s instructions (Clontech), omitting the carrier RNA and lysate filtration steps, and eluted in 10 µl of RNase-free water (Qiagen). RNA sequencing analysis of Vγ4+ TCRβ cells was conducted using the gene ontology enrichment analysis of up-regulated genes between naive Vγ4+ TCRβ and Vγ4+ TCRβ− cells. Expression values were z-transformed for visualization. D represents the absolute value of the difference in expression between Vγ4+ TCRβ+ and Vγ4+ TCRβ− cells. D values are displayed on a log2 scale. Increasing D values represent increasing differences in expression levels between Vγ4+ TCRβ+ and Vγ4+ TCRβ− cells. (C) Heatmaps of selected genes from enriched biological processes derived using gene ontology enrichment analysis of up-regulated genes between naive Vγ4+ TCRβ+ and Vγ4+ TCRβ− cells. Expression values were z-transformed for visualization. (D) Flow cytometric analysis of purified CD3+ cells, comparing naive Vγ4+ TCRβ+ and Vγ4+ TCRβ− cells, gated on live CD3+ TCRβ+ cells. Results are shown as a mean ± SEM. (E) Reduced dimensionality representation of four cell populations via a principal-component analysis plot, where the Vγ4+ TCRβ+ and Vγ4+ TCRβ− populations separate along the first principal component (PC1) and the equivalent populations in naive mice or mice with EAE separate along the second principal component (PC2). (F) Dot plot of the top 10 significantly enriched biological processes inferred from differentially up-regulated genes in Vγ4+ TCRβ+ or Vγ4+ TCRβ− cells from mice with EAE versus naive mice (cluster 1 in Fig. S3C; n = 158 genes). Dot color represents the P-adjusted enrichment value, and dot size represents the number of genes within each enriched gene ontology. (G) Heatmap of genes associated with chemotaxis/migration among all four populations derived using the gene ontology enrichment analysis in F. Expression values were z-transformed for visualization. Most of the data are shown for individual mice (n = 4 or 5 mice per group), except in D, where the data are representative of two experiments (n = 5 mice). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001, unpaired t test.
Illumina Sequencing (Clontech) and sequenced at a target depth of 30 x 10^6 single-end (1 x 50 bp) reads per sample using a HiSeq 3000 System (Illumina).

Bioinformatic analysis of RNA sequencing data
Reads were mapped against the mouse reference genome (mm10, Ensemble release 76) using Kallisto (version 0.44; Bray et al., 2016). Transcript abundances were summarized to gene-level estimates in R (version 3.4.4) using the tximport Bioconductor package (version 1.8; Soneson et al., 2015) and the makeTxDbFromGFF package with a GTF annotation file from Ensemble (release 93). Differential expression analysis was performed using the NOISeq R Bioconductor package (version 2.22.1; Tarazona et al., 2015). Lowly expressed genes were removed on the basis of normalized read counts. Genes were kept if they reached a threshold of ≥100 read counts under any experimental condition. Data were normalized using the trimmed mean of log expression values approach in NOISeq. DEGs were detected using a probability value of 0.99, equivalent to a false discovery rate of 0.01, and an absolute fold-change cutoff of 2. A higher threshold of threefold was used for samples from mice with EAE, which exhibited higher levels of background noise. Heatmaps and clustering analyses, based on Euclidean distance with scaling by row, were generated using the ComplexHeatmap package in R (version 2.11; Gu, 2016). Principal-component analysis was performed using the R functions autoplot (ggfortify v0.4.8) and prcomp (stats v3.5.2) for all genes where the sum of the normalized read counts from all samples was at least 1,000 (n = 10,010). Gene ontology enrichment analysis was performed using the clusterProfiler package and the enrichGO tool in R (version 3.6.0; Yu et al., 2012).

Gene expression analysis
Total RNA was extracted from purified cell populations using the chloroform/isopropanol method. mRNA expression was evaluated by real-time PCR after reverse transcription using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time PCR was performed for a variety of genes using predesigned TaqMan Gene Expression Assays (Applied Biosystems). 18s rRNA was used as an endogenous control. Samples were assayed using a 7500 Fast Real-Time PCR System (Applied Biosystems).

TCR sequencing
For population-level analyses, viable Vγ4+TCRβ+ cells from WT mice were flow purified directly into RNAlater (Applied Biosystems). Unbiased amplification of all expressed Trr, Trb, Trg, and Trd gene rearrangements was conducted using a template-switch anchored RT-PCR (Quigley et al., 2011). Amplicons were subcloned, sampled, sequenced, and analyzed as described previously (Price et al., 2005). For single-cell analyses, viable Vγ4+TCRβ+ cells from WT mice were index-sorted into a 96-well plate, and expressed Trr, Trb, Trg, and Trd gene rearrangements were amplified using a previously described protocol with minor modifications (Dash et al., 2011). Briefly, direct lysis and reverse transcription were performed using SuperScript Vilo (Invitrogen). The resultant cDNA was subjected to a first-round PCR incorporating a cocktail of validated Trr and Trd primers (Dash et al., 2011), together with newly designed Trg and Trd primers. The first-round products were subjected to a nested PCR using internal primer pools on separate 96-well plates for the a, b, γ, and δ chains, with each product assigned to an identical location for tracing back to the original cell. The final products were purified using Exonuclease I/Shrimp Alkaline Phosphatase. Sequencing was performed with the relevant constant region primers using an ABI Big Dye Sequencer (Applied Biosystems). Data were analyzed using a custom-built macro-enabled Microsoft Excel sheet to derive CDR3 nucleotide and amino acid sequences, and gene use was assigned by matching sequences against the IMGT database (Lefranc et al., 2009). If multiple species were observed, potentially reflecting biallelic rearrangements, the relevant transcripts were further resolved using additional PCRs. Briefly, the first-round products from the identified cell were subjected to another nested PCR using family-specific forward and reverse primers determined using a trace viewer. Resolution was further verified by adopting a “leave-one-out” amplification strategy, where the internal forward primer specific for the family determined in the previous experiment was withheld from the cocktail, and the resulting product was sequenced.

Immunofluorescence microscopy
γδ T cells or γδ§+ cells were flow purified using a FACSAria Fusion (BD Biosciences). Purified cells were transferred onto poly-L-lysine–coated chamber slides, incubated for 2 h at 37°C, fixed in 4% paraformaldehyde for 15 min, and blocked with 20% FCS for 20 min γδ T cells were immunostained with anti-TCRβ–Alexa Fluor 647 and phalloidin, and γδ§+ cells were immunostained in 5% bovine serum albumin with rabbit anti-TCRβ, washed, and labeled with a goat anti-mouse secondary antibody conjugated to Alexa Fluor 594. Slides were mounted using Mounting Medium with DAPI (DakoCytomation) and viewed on a point-scanning confocal microscope (FV1000; Olympus). Confocal images were selected to represent at least 20 captures (n = 3 independent experiments).

S. aureus infection model
Mice were inoculated i.p. with S. aureus (5 x 10^6 CFU in 100 µl) and sacrificed after 3 h or 3 d. Peritoneal exudate cells (PECs) were isolated from infected mice by lavage of the peritoneal cavity with 3 ml of sterile PBS. Lavage fluid was centrifuged and assayed for IL-1β, IL-17, and IFN-γ by ELISA. Kidneys were homogenized in 1 ml of sterile PBS. Total tissue bacterial load was established by plating serial dilutions of peritoneal lavage fluid or kidney homogenate on tryptic soy agar plates for 24 h at 37°C. Results were standardized to CFUs per milliliter.

EAE
Active EAE was induced by injecting mice s.c. with 100 µg of MOG35–55 peptide (GenScript) emulsified in CFA containing 4 mg/ml (0.4 mg/mouse) of heat-killed Mycobacterium tuberculosis (Chondrex). Mice were further injected i.p. with 250 ng of pertussis toxin (Kaketsuken) on days 0 and 2. In some experiments, mice were treated with anti-γδ or an isotype control (250 µg/mouse; BioXCell), administered i.p. on days –1, 2, 5, 7, 11, 14, 17, and 20 of EAE. Passive EAE was induced by adoptive
transfer of MOG-specific cells. C57BL/6 mice were immunized s.c. with 100 µg of MOG35-55 peptide (GenScript) emulsified in CFA containing 4 mg/ml (0.4 mg/mouse) of heat-killed M. tuberculosis (Chondrex). On day 10 after induction, the spleens and brachial, axillary, and inguinal LNs were removed from sacrificed mice and prepared as single-cell suspensions. For Vγ4β-depleted cultures, cells were labeled with anti-TCRβ (clone H57-597, 0.1 µg/10^6 cells; eBioscience) and anti-Vγ4 (clone UC3-10A6, 0.1 µg/10^6 cells; BioLegend), and Vγ4+TCRβ- cells were depleted by flow cytometry. Cells were stimulated with combinations of IL-1β (10 ng/ml), IL-23 (10 ng/ml), and/or MOG (100 µg/ml) in complete medium at 10 x 10^6 cells/ml. After 72 h, cells were washed, and cytokine production in the supernatants was measured by ELISA. A total dose of 5 x 10^6 viable cells was injected i.p. into each naive C57BL/6 recipient. Mice were monitored daily for signs of clinical disease. Clinical signs of EAE were assessed according to the following scores: no symptoms, 0; limp tail, 1; ataxic gait, 2; hindlimb weakness, 3; hindlimb paralysis, 4; tetraparalysis/moribund, 5.

MOG tetramer staining
Draining LNs were removed from mice 7 d after immunization with MOG and CFA at 20 x 10^6 cells/ml in the presence of IL-2 (5 ng/ml), 2.5% FCS, and MOG or control tetramer (National Institutes of Health Tetramer Facility) for 2.5 h at 37°C. Naïve mice were processed similarly as controls. Cells were then washed twice and analyzed by flow cytometry as described above. Gates were set on fluorescence minus one and brachial, axillary, and inguinal LNs were removed from tuberculosis (Chondrex). On day 10 after induction, the spleens and cytokine production in the supernatants was measured by ELISA. A total dose of 5 x 10^6 viable cells was injected i.p. into each naive C57BL/6 recipient. Mice were monitored daily for signs of clinical disease. Clinical signs of EAE were assessed according to the following scores: no symptoms, 0; limp tail, 1; ataxic gait, 2; hindlimb weakness, 3; hindlimb paralysis, 4; tetraparalysis/moribund, 5.

Data availability
RNA sequencing data for purified Vγ4+TCRβ-TCRα or Vγ4+TCRβ+ from LNs of naïve mice or mice with EAE have been deposited to the Gene Expression Omnibus under accession no. GSE143500.

Statistical analysis
Statistical analyses were performed using one-way, two-way, and three-way ANOVAs and unpaired t tests in Prism (GraphPad). Error bars represent SD or SEM. Levels of significance are denoted as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001.

Online supplemental material
Fig. S1 (related to Fig. 1) shows image and flow cytometry data from T cells that coexpress αβ and γδ TCRs. Fig. S2 (related to Fig. 4) shows activation data from hybrid αβ-γδ T cells. Fig. S3 (related to Fig. 5) shows RNA sequencing analysis of Vγ4+TCRβ- and Vγ4+TCRβ+ cells before or after activation.

Acknowledgments
The authors thank Owen Hughes and Barry Lewis (Merck) for assistance with ImageStream analysis, Andrea Petrasca and Jean Fletcher for isolation of human PBMCs, and Seth Coffelt for technical assistance and discussions.

This work was supported by grants from Science Foundation Ireland (15/IA/3041 to R.M. McLoughlin and 11/PI/1036, 12/RI/23407), 15/SPP/3212, and 16/IA/4468 to K.H.G. Mills), AbbVie (to K.H.G. Mills), Irish Higher Education Authority Program for Research in Third-Level Institutions (to S.C. Edwards and K.H.G. Mills), National Health and Medical Research Council (a Q Martin ECR Fellowship to E.J. Grant), European Research Council (CoG_646701 to B. Silva-Santos), Medical Research Council (G1000213 to G. Anderson), Wellcome Trust (100326Z/12/Z to D.A. Price), National Institutes of Health (ROIAI107625 to P.G. Thomas), and American Lebanese Syrian Associated Charities (to P.G. Thomas).

Author contributions: S.C. Edwards and C.E. Sutton designed and performed most of the experiments; P. Dash and N. Apiwattanakul developed the single-cell method for sequencing murine γδ TCRs; K. Ladell, E.J. Grant, J.E. McLaren, P. Dash, N. Apiwattanakul, and W. Awad sequenced TCRs; F. Roche and K. Hokamp analyzed the RNA sequencing data; K. Ladell, K.L. Miners, and B. Moran designed flow cytometry panels and sorted cells; J.C. Ribot performed the studies with TCRβ−/−, TCRβ+/−, MHCI−/−, and MHCI+−/− mice; S. Baik performed the ontogeny studies; A. McGinley assisted with experimental work; S.J. Lalor and R.M. McLoughlin designed experiments and provided feedback on the manuscript; J. Paez-Cortez guided cell isolation and sorting methodologies for the single-cell RNA sequencing experiments; V. Pivorunas and L. Dowding designed and performed RNA extractions and designed the RNA sequencing input normalization strategy; M. Macoritto designed the sequencing strategy for single-cell RNA sequencing experiments; A. Slavin supervised and directed the RNA sequencing experiments with help from V. Pivorunas, L. Dowding, M. Macoritto, and J. Paez-Cortez; G. Anderson designed the ontogeny studies and provided feedback on the manuscript; B. Silva-Santos designed the studies with TCRα−/−, TCRβ−/−, MHCI−/−, and MHCI+−/− mice and provided feedback on the manuscript; D.A. Price and P.G. Thomas designed the TCR sequencing studies and provided feedback on the manuscript; K.H.G. Mills directed the project, designed the studies, and wrote the manuscript with help from S.C. Edwards, C.E. Sutton, and D.A. Price. All authors edited and approved the final manuscript.

Disclosures: Dr. Edwards reported grants from Abbvie during the conduct of the study. Dr. Thomas reported a patent to PCT/ US2016/064735 pending. Dr. Mills reported grants from Abbvie during the conduct of the study and personal fees from Pieris outside the submitted work. In addition, Dr. Mills had a patent on IL-17 inhibitors pending. No other disclosures were reported.

Submitted: 9 May 2019
Revised: 29 November 2019
Accepted: 17 January 2020

References
Ahmed, K., Z. Omidian, A. Giwa, B. Cornwell, N. Majety, D.R. Bell, S. Lee, H. Zang, A. Michels, S. Desiderio, et al. 2019. A Public BCR Present in a Mouse Gammadelta T Cell Autoantigen. Cell. 177:1583–1599.e16. https://doi.org/10.1016/j.cell.2019.05.007
Bosco, N., C. Engglih, A. Béraud, J. Rolink, R. Ceredig, and A.G. Rolink. 2008. TCR-beta chains derived from peripheral gammadelta T cells can take
part in alpha beta T-cell development. Eur. J. Immunol. 38:3520–3529. https://doi.org/10.1002/eji.200838668

Bowen, S. P., S. Sun, F. Livak, S. Sharrow, and R.J. Hodes. 2014. A novel T cell subset emerges from unliganded Vγ9Vδ2 TCR expression in Mycobacterium tuberculosis infection. J. Immunol. 192:169–177. https://doi.org/10.4049/jimmunol.1302398

Bray, N.L., H. Fimzetal, F. Melsted, and L. Pachter. 2016. Near-optimal probabilistic RNA-seq alignment. Nat. Biotechnol. 34:525–527. https://doi.org/10.1038/nbt.3519

Cai, Y., X. Shen, C. Ding, C. Qi, K. Li, X. Li, V.R. Jala, H.G. Zhang, T. Wang, J. Zheng, and J. Yan. 2011. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 35:596–610. https://doi.org/10.1016/j.immuni.2011.08.001

Chen, L., Z. Carico, H.-Y. Shih, and M.S. Krangel. 2015. A discrete chromatin loop in the mouse Tcra-Tcrd locus shapes the TCRs and TCRs repertoire. Nat. Immunol. 16:1085–1093. https://doi.org/10.1038/natimm.2015.322

Conti, H.R., A.C. Peterson, L. Brane, A.R. Huppner, N. Hernández-Santos, N. Whitley, A.V. Garg, M.R. Simpson-Abeles, G.A. Gibson, A.J. Mamo, et al. 2014. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211:2075–2084. https://doi.org/10.1084/jem.20130897

Correia, D.V., A. Lopes, and B. Silva-Santos. 2013. Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Onc Immunol. 2:22892. https://doi.org/10.14613/oc-22892

Crowley, M.P., Z. Reich, N. Mavaddat, J.D. Altman, and Y. Chien. 1997. The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the gammadelta T cell, G8. J. Exp. Med. 185:1223–1230. https://doi.org/10.1084/jem.185.7.1223

Dash, P., J.L. McClaren, T.H. Oginn, W. Rothwell, B. Todd, M.Y. Morriss, J. Beckford, C. Reynolds, S.A. Brown, P.C. Doherty, and P.G. Thomas. 2011. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J. Clin. Invest. 121:288–295. https://doi.org/10.1172/JCI41752

Glusman, G., L. Rowen, I. Lee, C. Boysen, J.C. Roach, A.F.A. Smit, K. Wang, B.F. Hochstenbach, F., and M.B. Brenner. 1989. T-cell receptor delta-chain can provide protection from dermatitis. J. Neuroimmunol. 21:572–578. https://doi.org/10.1016/0165-5728(93)90253-U

Hayes, S.M., L. Li, and P.E. Love. 2005. TCR signal strength influences alpha beta/gamma delta lineage fate. J. Immunol. 177:436–442. https://doi.org/10.4049/jimmunol.177.7.4462

Koop, and L. Hood. 2001. Comparative genomics of the human and γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Proc. Natl. Acad. Sci. USA. 98:1230–1235. https://doi.org/10.1073/pnas.98.26.1230

Kopecky, A., J. Sinkorová, and W. Holtmeier. 2005. Development of gamma delta T cells in a transgenic mouse model. Cytokine Growth Factor Rev. 16:349–357. https://doi.org/10.1016/j.cytogfr.2004.12.006

LeFors, J.C., A.P. Uldrich, J. Le Nours, F. Ross, E. Chabrol, B.S.G. Eckle, and D.J. Cua. 2006. The orphan nuclear receptor RORγt promotes protection against dermatitis. J. Exp. Med. 203:691–700. https://doi.org/10.1084/jem.20051357

Lefranc, M.-P., V. Giudicelli, C. Ginestoux, J. Jabado-Michaloud, G. Folch, F. Balkwill, H. Kulbe, D.J. Pennington, and B. Silva-Santos. 2014. Murine γδ T cells that are protective against subsequent infection with Mycobacterium tuberculosis infection. J. Immunol. 192:565–572. https://doi.org/10.4049/jimmunol.1303420

Murphy, A.G., K.M. O’Keefe, S.J. Lake, R.M. Mahler, H.K. Mills, and R.M. McClaughlin. 2014. Staphylococcus aureus infection of mice expands a population of memory γδ T cells that are protective against subsequent infection. Immunity. 41:126–137. https://doi.org/10.1016/j.immuni.2014.07.013

National Institute of Allergy and Infectious Diseases. 2011. Paired analysis of TCRγδ trans-rearranged Vβ T-cell subset with trans-rearranged Vδ T-cells in multiple sclerosis. J. Immunol. 187:1230–1235. https://doi.org/10.4049/jimmunol.187.7.1230

Rhein-Valle, Y. Xu, S. Wu, Z. Wu, K.E. Karjalainen, and J.G.ovie. 2015. Protecting from dermatitis. J. Neuroimmunol. 277:126–132. https://doi.org/10.1016/j.jneuroim.2015.07.001

Roark, C.L., J.D. French, M.A. Taylor, A.M. Bendele, W.K. Born, and R.L. Atwood. 2001. Comparative genomics of the human and γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Proc. Natl. Acad. Sci. USA. 98:1230–1235. https://doi.org/10.1073/pnas.98.26.1230

Price, A.E., R.L. Reinhardt, H.E. Liang, and R.M. Lockeley. 2012. Marking and quantifying IL-17α-producing cells in vivo. PloS One. 7:e39750. https://doi.org/10.1371/journal.pone.0039750

Quigley, M.F., J.R. Almeida, D.A. Price, and D.C. Douek. 2011. Unbiased molecular analysis of T cell receptor expression using template-switch anchored RT-PCR. Curr. Protoc. Immunol. Chapter 10.Unit10.33

Reboli, A., C. Cisner, D. Baumann, F. Benvenuto, D. Bottinelli, S. Lira, A. Uccelli, A. Lanzavecchia, B. Engelhardt, and F. Sallusto. 2009. γc chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroidalplexus is required for the initiation of EAE. Nat. Immunol. 10:514–523. https://doi.org/10.1038/ni.1716

Ret, M., N. Goncalves-Sousa, T. Lanca, R.G. Thompson, S. Mensurado, F.R. Balkwill, H. Kulbe, D.J. Pennington, and B. Silva-Santos. 2014. Murine CD27(+) γδ T cells produce IL-17α and IL-17F and promote protective against ovarian cancer growth via mobilization of promonocyte small pregonadal tissues. Proc. Natl. Acad. Sci. USA. 111:13439–13444. https://doi.org/10.1073/pnas.1412431

Ribot, J.C., A. deBarros, D.J. Pang, J.F. Neves, P.E. Love, A.M. Bendele, W.K. Born, and R.L. Atwood. 2001. Comparative genomics of the human and γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Proc. Natl. Acad. Sci. USA. 98:1230–1235. https://doi.org/10.1073/pnas.98.26.1230

Sinkora, M., J. Sinkorová, and W. Holtmeier. 2005. Development of gamma delta T cells in a transgenic mouse model. Cytokine Growth Factor Rev. 16:349–357. https://doi.org/10.1016/j.cytogfr.2004.12.006

Sminkovska, B., R. Troskina, A.E. Sheridan, M. Spivak, and E. Tsurikov. 2007. Marking and quantifying IL-17α-producing cells in vivo. PloS One. 7:e39750. https://doi.org/10.1371/journal.pone.0039750

Sinkora, M., J. Sinkorová, and W. Holtmeier. 2005. Development of gamma delta thymocyte subsets during prenatal and postnatal ontogeny. Immunology. 115:544–555. https://doi.org/10.1111/j.1365-2567.2005.02194.x

Edwards et al. T cells coexpressing αβ and γδ T cell receptors
Soneson, C., M.I. Love, and M.D. Robinson. 2015. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000 Res. 4:1521. https://doi.org/10.12688/f1000research.7563.1
Sutton, C.E., S.J. Lalor, C.M. Sweeney, C.F. Brereton, E.C. Lavelle, and K.H. Mills. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 31:331–341. https://doi.org/10.1016/j.immuni.2009.08.001
Sutton, C.E., L.A. Mielke, and K.H. Mills. 2012. IL-17-producing γδ T cells and innate lymphoid cells. Eur. J. Immunol. 42:2221–2231. https://doi.org/10.1002/eji.201242569
Tarazona, S., P. Furió-Tarí, D. Turrà, A.D. Pietro, M.J. Nueda, A. Ferrer, and A. Conesa. 2015. Data quality aware analysis of differential expression in RNA-seq with NOSeq R/Bioc package. Nucleic Acids Res. 43:e140.
Wilson, A., and H.R. MacDonald. 1998. A limited role for beta-selection during gamma delta T cell development. J. Immunol. 161:5851–5854.
Wucherpfennig, K.W., J. Newcombe, H. Li, C. Keddy, M.L. Guzner, and D.A. Hafler. 1992. Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl. Acad. Sci. USA. 89:4588–4592. https://doi.org/10.1073/pnas.89.10.4588
Yednock, T.A., C. Cannon, L.C. Fritz, F. Sanchez-Madrid, L. Steinman, and N. Karin. 1992. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature. 356:63–66. https://doi.org/10.1038/356063a0
Yu, G., L.G. Wang, Y. Han, and Q.Y. He. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 16:284–287. https://doi.org/10.1089/omi.2011.0118
A novel population of T cells that coexpress αβ and γδ TCRs. (A) Gating strategy for the analysis of T cell subsets, including hybrid αβ-γδ T cells, conventional γδ T cells, and CD4+ T cells. (B) Confocal images of purified TCRδ+ cells costained for TCRβ. (C) TβR expression in purified CD3+ or TCRδ+ cells quantified by RT-PCR. Control: heart cells. * P < 0.05, ** P < 0.01. (D) Confocal images of purified CD3+Vγ4+ cells costained for TCRβ. (E) Flow cytometry plots showing expression of Vγ2 versus Vγ4 on TCRβ+ cells, gated on live TCRβ+ cells. (F) Flow cytometry plots showing expression of Vγδ versus TCRβ on LN cells, gated on live CD3+Vγ4+TCRδ+ cells. (G) Flow cytometry plots showing CD4 versus CD8α on LN cells from MHC I/− or MHC II/− mice, gated on live TCRδ+Vγ4+TCRβ+ cells. Data are representative of at least three independent experiments. Results are shown as mean ± SEM. P values were calculated using a one-way ANOVA with Tukey’s test for multiple comparisons. (C) FSC, forward scatter.
Figure S2. Hybrid αβγδ T cells can be activated innately or via αβ or γδ TCRs. (A) Coexpression of IL-1R1 and IL-23R on Vγ4 hybrid αβγδ, Vγ4 γδ T cells, or αβ T cells. (B) Production of IFN-γ and IL-17 by purified Vγ4 TCRβ or Vγ4 TCRδ cells (3,000 cells/well) stimulated for 3 d with IL-1β and IL-23 in the presence or absence of plate-bound anti-CD3. (C) Expression of Sox13 and Rorc mRNA in purified Vγ4 TCRβ cells stimulated for 2 d with IL-1β and IL-23. (D) Production of IFN-γ by TCRδ T cells isolated from OT-II or C57BL/6 mice and cultured for 2 d with DCs pulsed for 5 h with OVA peptide or KLH. (E) Gene expression in TCRδ TCRβ cells isolated from OT-II mice and cultured for 3 d with DCs in the presence or absence of OVA peptide. (F) Cytokine production by γδ T cells isolated from OT-II mice stimulated for 3 d with or without OVA peptide in the presence or absence of IL-12p70 and IL-18 (Th1) or IL-4 and anti–IFN-γ + anti–IL-17 (Th2). (G) Gene expression in Vγ4 TCRδ cells isolated from MOG-immunized mice on day 7 and cultured for 3 d with DCs in the presence or absence of MOG and/or IL-1β and IL-23. (H) LN cells isolated from 7 d MOG + CFA immunized or naive mice incubated with MOG-tetramer-Pe or control tetramer-Pe, gated on CD3+CD4+CD44+ cells, examining TCRβ TCRδ and TCRβ−TCRδ− populations. (I) γδ T cells from OT-I mice incubated for 3 d with DCs ± OVA peptide ± IL-12p70 and IFN-γ quantified in supernatants by ELISA. (J) Flow cytometry analysis of NKG2D expression on naive CD3+ T cells gating on TCRβ TCRδ and TCRδ−TCRβ− populations. (K) CD3+ T cells were incubated with and without YAC-1 cells (10:1) for 48 h. Proliferation was measured through expression of Ki67 by Vγ4 TCRδ TCRβ versus Vγ4 TCRδ TCRβ− cells, gated on live CD3+ TCRδ cells. (L) Gene expression in CD3+ TCRδ cells stimulated for 2 d with anti–TCRδ. (M) Gene expression in CD3+ cells cultured for 3 d with IL-1β and IL-23 in the presence or absence of anti–TCRβ. Data are representative of at least two independent experiments. Results are shown as mean ± SEM. P values were calculated using a one-way ANOVA with Tukey’s test for multiple comparisons (B, D, F, G, I–K, and M) or an unpaired t test (C, E, and L). *, P < 0.05; **, P < 0.01; ***, P < 0.001, and ****, P < 0.0001. ns, not significant.
Figure S3. Hybrid αβ-γδ T cells are transcriptomically distinct from conventional γδ T cells and express Th17-associated markers. (A) Enriched T cells isolated from the spleens and LNs of WT mice were stained ex vivo for CCR2, CCR6, CD25, CD27, CD49d, and CD122. Expression was determined on live CD3+ cells coexpressing various combinations of Vγ4, TCRδ, and TCRβ. Data are representative of at least two independent experiments. Results are shown as mean ± SEM. P values were calculated using a one-way ANOVA with Tukey’s test for multiple comparisons. (B) Dot plot of the top 15 significantly enriched biological processes inferred from differentially up-regulated genes in Vγ4+ TCRβ+ versus Vγ4+ TCRβ− cells. Dot color represents the P-adjusted enrichment value, and dot size represents the number of genes within each enriched ontology. (C) Heatmap of all protein-coding genes that are differentially expressed in Vγ4+ TCRβ+ or Vγ4+ TCRβ− cells from mice with EAE versus naive mice (n = 2,686). Genes are clustered using k-means clustering and a cluster size of 4. (D) Heatmap of all protein-coding genes that are up-regulated in either Vγ4+ TCRβ+ or Vγ4+ TCRβ− cells from naive mice or mice with EAE (cluster 1 from Fig. S3 C, n = 158 genes). **, P < 0.01, ***, P < 0.001, and ****, P < 0.0001.