ON RANDOM SURFACE AREA

ILDAR IBRAHIMOV, DMITRY ZAPOROZHETS

Abstract. Consider a random smooth Gaussian field $G(x) : F \to \mathbb{R}$, where F is a compact in \mathbb{R}^d. We derive a formula for average area of a surface generated by the equation $G(x) = 0$ and give some applications. As an auxiliary result we obtain an integral expression for area of a surface induced by zeros of a non-random smooth field.

Keywords: random Gaussian field, surface area, Favard measure, coarea formula, Rice formula.

1. Results

Consider a compact set $F \subset \mathbb{R}^d$. By ∂F denote the boundary of F. We assume that the area of ∂F is finite (the notion of area is defined below). Let $G(x) : F \to \mathbb{R}$ be a random Gaussian field. Put $m(x) = \mathbb{E}G(x)$ and $\sigma^2(x) = \text{Var}G(x)$. Here and below we assume that $\sigma(x) > 0$ for all $x \in F$ and $G \in C^1(F)$ a.s. It is known that the supremum of a continues Gaussian field defined on a compact is summable (see [10]). Therefore, by Kolmogorov’s Theorem on differentiation of mathematical expectations with respect to a parameter (see [4]), we have $m, \sigma \in C^1(F)$. Let G'_i, σ'_i denote partial derivatives of G, σ with respect to ith variable. By ∇ denote a gradient of a function (a vector field whose components are partial derivatives).

Consider a zero set of the field G

$G^{-1}(0) = \{ x \in F | G(x) = 0 \}$.

With probability one $G^{-1}(0)$ is a compact smooth $(d - 1)$-dimensional submanifold in \mathbb{R}^d, i.e., a compact smooth surface.

The problem we are interested in is a calculation of average area of the surface $G^{-1}(0)$. Substituting G/σ for G does not change $G^{-1}(0)$. Therefore we may assume that $\sigma \equiv 1$. We prove that

$$\mathbb{E} \lambda_{d-1}[G^{-1}(0)] = \frac{1}{\sqrt{2\pi}} \int_F e^{-m^2(x)/2} \mathbb{E} \left\| \nabla G(x) \right\| \, dx. \quad (1)$$

For this purpose we derive an auxiliary formula for area of a surface generated by zeros of a non-random smooth field $g(x) : F \to \mathbb{R}$:

$$\lambda_{d-1}[g^{-1}(0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} du \int_F \cos[ug(x)] \left\| \nabla g(x) \right\| \, dx. \quad (2)$$

Before we proceed with the exact results formulation, we need to define the notion of area. There exist several well-known definitions of area of a $(d - 1)$-dimensional submanifold in \mathbb{R}^d: a surface Lebesgue measure, a Hausdorff measure, a Favard measure. In general they are not equivalent. However in case of compact C^1-smooth manifolds all three definitions coincide. Therefore we may choose any one. To prove (2) the best choice for λ_{d-1} is a Favard measure (for exact definition see Sect. 3). If $d = 1$, then by $\lambda_0(A)$ we denote the cardinality of a set A (may be infinite).

Partially supported by RFBR (08-01-00692, 10-01-00242), RFBR-DFG (09-0191331), NSh-4472.2010.1, CRC 701 “Spectral Structures and Topological Methods in Mathematics”.

arXiv:1102.3509v1 [math.PR] 17 Feb 2011
Recall that F is supposed to be compact and $\lambda_{d-1}[\partial F] < \infty$.

Theorem 1. Suppose $g \in C^1(F)$ and

(a) $\lambda_{d-1}[(\nabla g)^{-1}(0)] < \infty$;
(b) $\lambda_{d-1}[g^{-1}(0) \cap \partial F] = 0$.

Then (2) holds.

Remark. The proof of Theorem 1 shows that it is possible to get rid of condition (b). Then (2) becomes

$$\lambda_{d-1}[g^{-1}(0)] - \frac{1}{2} \lambda_{d-1}[g^{-1}(0) \cap \partial F] = \frac{1}{2\pi} \int_{-\infty}^{\infty} du \int_F \cos[ug(x)] \|\nabla g(x)\| \, dx .$$

We shall not exploit this generalization at a later stage.

Theorem 2. Suppose a random field $G \in C^1(F)$ a.s. and

(a') $E \lambda_{d-1}[(\nabla G)^{-1}(0)] < \infty$;
(b') $\sigma(x) > 0$ for all $x \in F$.

Then

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{1}{\sqrt{2\pi}} \int_F \exp \left\{ - \frac{\sigma^2(x)}{2\sigma^2(x)} \right\} E \left\| \nabla G(x) / \sigma(x) \right\| \, dx .$$

The proofs of the theorems are in Sect. 4. The auxiliary lemmas are in Sect. 3. The applications of Theorem 2 are in Sect. 2.

2. Applications of Theorem 2

2.1. Coarea formula.

Example 1. Suppose a function g satisfies the conditions of Theorem 2. Then

$$\int_{-\infty}^{\infty} \lambda_{d-1}[g^{-1}(u)] \, du = \int_F \|\nabla g(x)\| \, dx .$$

Proof. Consider $G(x) = g(x) - \xi$, where ξ is a Gaussian r.v. with $E\xi = 0$ and $D\xi = \sigma^2$. Then (3) becomes

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \lambda_{d-1}[g^{-1}(u)] e^{-\frac{u^2}{2\sigma^2}} \, du = \frac{1}{\sqrt{2\pi}} \int_F e^{-g(x)/(2\sigma^2)} \frac{\|\nabla g(x)\|}{\sigma} \, dx .$$

To obtain (4) it remains to multiply both sides by $\sqrt{2\pi\sigma^2}$ and apply the Monotone convergence theorem (as $\sigma \to \infty$). □

Relation (4) is called “the coarea formula”. It was obtained by H. Federer in 7.

2.2. Centered Gaussian field. By S^{d-1} denote a $(d - 1)$-dimensional unit sphere with a Lebesgue measure $\mu_{d-1}(ds)$.

Example 2. If $G(x)$ satisfies the conditions of Theorem 2 and $m(x) \equiv 0$, then

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma(d+1)}{2\pi^{(d+1)/2}} \int_F \int_{S^{d-1}} \sqrt{s^T \Sigma(x)s} \mu_{d-1}(ds) ,$$

where $\Sigma(x)$ is a covariation matrix of $\nabla G(x) / \sigma(x)$.

Proof. The proof is by Lemma 7 (see Sect. 3) which we apply to (5). □

Remark. Relation (5) is easily extended to the case of $m(x) \equiv u$, $\sigma(x) \equiv 1$:

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma(d+1)}{2\pi^{(d+1)/2}} \int_F e^{-u^2/2} \, dx \int_{S^{d-1}} \sqrt{s^T \Sigma(x)s} \mu_{d-1}(ds) .$$
Remark. We have $\Sigma = \left(\frac{E G' G' - \sigma_i \sigma_j}{\sigma^2}\right)_{i,j=1}^d$.

2.3. Linear Gaussian field.

Example 3. Suppose $G(x) = \langle h(x), \xi \rangle$, where $h = (h^1, \ldots, h^n)^T : F \to \mathbb{R}^n$ is a vector function from the class $C^1(F)$ and ξ is a n-dimensional centered Gaussian vector with the identity covariance matrix. Then

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{d+1/2}} \int_F dx \int_{S^{d-1}} \|J_h(x)s\| \mu_{d-1}(ds),$$

where J_h is the Jacobian n-by-d matrix of $h/\|h\|$.

Proof. We have $\Sigma = J_h^T J_h$ in (6). □

Remark. If we consider a centered Gaussian vector with an arbitrary covariance matrix Λ, then $\Sigma = J_h^T \Lambda J_h$ and (6) becomes

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{d+1/2}} \int_F dx \int_{S^{d-1}} \sqrt{\langle J_h(x)s \rangle \Lambda J_h(x)s} \mu_{d-1}(ds).$$

For $d = 1$ this formula was obtained by A. Edelman and E. Kostlan in [6, Theorem 3.1].

Corollary. Suppose under the conditions of Example 3 the rank of J_h equals k. By $\sigma_1, \ldots, \sigma_k$ denote the nonzero singular values of the matrix J_h, i.e., the nonnegative square roots of the eigenvalues of $J_h J_h^T$. Then

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{d+1/2}} \int_F dx \int_{S^{d-1}} \left(\sum_{j=1}^k \sigma_j(x)s_j^2\right)^{1/2} \mu_{d-1}(ds).$$

Proof. It is known from linear algebra (see, e.g., [5]) that the matrix J_h may be written in the singular form $J_h = V Q W$, where V, W are n-by-n and d-by-d unitary matrices. The n-by-d matrix Q is diagonal. The diagonal elements are the singular values of the matrix J_h. We have $\|J_h s\| = \|V Q W s\| = \|Q W s\|$.

To conclude the proof, it remains to apply this to (5) and make a change of variables $s' = W s$. □

Now we derive another form of $E \lambda_{d-1}[G^{-1}(0)]$ which will be useful for us later.

Example 4. Under the conditions of Example 3

$$E \lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{d+1/2}} \int_F dx \int_{S^{d-1}} \left(\sum_{i,j=1}^d \frac{|h|^2 \langle h_i^*, h_j^* \rangle - \langle h, h_i^* \rangle \langle h, h_j^* \rangle}{\|h\|^4} s_i s_j\right)^{1/2} \mu_{d-1}(ds),$$

where h_i^* and h_j^* are the i-th and j-th components of h. □
where
\[h'_i = \left(\frac{\partial h_1}{\partial x_i}, \ldots, \frac{\partial h_n}{\partial x_i} \right)^\top. \]

Proof. We have
\[\sigma = \|h\|, \quad \mathbb{E} G'_i G'_j = \langle h'_i, h'_j \rangle, \quad \sigma'_i = \|h\|^{-1}\langle h, h'_i \rangle. \]
It remains to apply (7). \(\square\)

2.4. Zeros of random polynomial.

Example 5. Consider \(G(t) = \xi_n t^n + \cdots + \xi_1 t + \xi_0, t \in F \subset \mathbb{R}\), where \(\{\xi_i\}\) are independent standard Gaussian random variables. Then
\[\mathbb{E} \lambda_0[G^{-1}(0)] = \frac{1}{\pi} \int_F \frac{[A_n(t)C_n(t) - B_n^2(t)]^{1/2}}{A_n(t)} \, dt, \]
where
\[A_n(t) = \sum_{j=0}^n t^{2j}, \quad B_n(t) = \sum_{j=0}^n j t^{2j-1}, \quad C_n(t) = \sum_{j=0}^n j^2 t^{2j-2}. \]

Proof. The proof follows from (9). \(\square\)

This formula was obtained by M. Kac in [8]. He also derived the asymptotic relation
\[\mathbb{E} \lambda_0[G^{-1}(0)] \approx \frac{2}{\pi} \log n \cdot (1 + o(1)), \quad n \to \infty, \]
for \(F = [-\infty, \infty]\).

2.5. Random algebraic surface.

Example 6. Consider \(G(x) = \sum \xi_\alpha x^\alpha\), where \(\alpha = (\alpha_1, \ldots, \alpha_d)\) is a multi-index, the summation is taken over all such \(\alpha\) as such that \(0 \leq \alpha_j \leq n\), and \(\xi_\alpha\) are independent standard Gaussian random variables. Then
\[\mathbb{E} \lambda_{d-1}[G^{-1}(0)] \]
\[= \Gamma(\frac{d+1}{2}) \frac{2^{d-1}}{2\pi^{(d+1)/2}} \int_F \int_{S^{d-1}} \left(\sum_{i=1}^d \frac{A_n(x_i)C_n(x_i) - B_n^2(x_i)}{A_n^2(x_i)} \right)^{1/2} \mu_{d-1}(ds). \]

Proof. Using the notations of Subsection 2.3, we get
\[\|h(x)\|^2 = \sum_{\alpha} x_\alpha^2 = \prod_{k=1}^d A_n(x_k), \]
\[\langle h(x), h'_i(x) \rangle = \frac{1}{2} \frac{\partial}{\partial x_i} \|h(x)\|^2 = B_n(x_i) \prod_{k \neq i} A_n(x_k) \]
and
\[\langle h'_i(x), h'_j(x) \rangle = \sum_{\alpha} \alpha_i x_\alpha^{n-\epsilon_i} x_\alpha^{n-\epsilon_j} = \begin{cases} B_n(x_i)B_n(x_j) \prod_{k \neq i,j} A_n(x_k) & \text{for } i \neq j, \\ C_n(x_i) \prod_{k \neq i} A_n(x_k) & \text{for } i = j, \end{cases} \]
where \(\epsilon_i\) denotes the multi-index in which the \(i\)-th position is occupied by one and all the other positions are occupied by zeros. These relations imply that for \(i \neq j\)
\[\|h\|^2 \langle h'_i, h'_j \rangle - \langle h, h'_i \rangle \langle h, h'_j \rangle = 0 \]
and for \(i = j\)
\[\|h\|^2 \langle h'_i, h'_i \rangle - \langle h, h'_i \rangle \langle h, h'_i \rangle = \|h\|^4 \frac{A_n(x_i)C_n(x_i) - B_n^2(x_i)}{A_n^2(x_i)}. \]
It remains to apply (9). \(\square\)
Formula (10) was obtained by I.A. Ibragimov and S.S. Podkorytov in [2]. They also derived the asymptotic relation

\[\mathbb{E} \lambda_{d-1}[G^{-1}(0)] = \frac{\log d}{\pi} \lambda_{d-1}[F \cap \Gamma] \cdot (1 + o(1)), \quad n \to \infty, \]

where

\[\Gamma = \bigcup_{j=1}^{d} \{ x \mid |x_j| = 1 \}, \]

provided that \(\lambda_{d-1}[\partial F \cap \Gamma] = 0. \)

2.6. Random surface of Kostlan-Shub-Smale.

Example 7. Consider \(G(x) = \sum_{\alpha} \xi_{\alpha} x^{\alpha} \), where the summation is taken over all nonnegative \(\alpha \) such that \(\alpha_1 + \cdots + \alpha_d \leq n \) and \(\xi_{\alpha} \) are independent Gaussian random variables with \(\mathbb{E} \xi_{\alpha} = 0 \) and \(\mathbb{D} \xi_{\alpha} = C_n^\alpha \), where

\[C_n^\alpha = \frac{n!}{\alpha_1! \cdots \alpha_d! (n - \alpha_1 - \cdots - \alpha)!}. \]

Then

\[\mathbb{E} \lambda_{d-1}[G^{-1}(0)] = \sqrt{n} \frac{\Gamma(\frac{d+1}{2})}{2\pi^{(d+1)/2}} \int_F \frac{dx}{1 + \|x\|^2} \int_{S_{d-1}} \sqrt{1 + \|x\|^2 - \langle x, s \rangle^2} \mu_{d-1}(ds). \]

Proof. Using the notations of Subsection 2.3, we get

\[\|h(x)\|^2 = \sum_{\alpha} C_n^\alpha x^{2\alpha} = \left(1 + \sum_{k=1}^{d} x_k^2 \right)^n, \]

\[\langle h(x), h'(x) \rangle = \frac{1}{2} \frac{\partial}{\partial x_i} \|h(x)\|^2 = nx_i \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{n-1}. \]

For \(i \neq j \)

\[\langle h'_i(x), h'_j(x) \rangle = \sum_{\alpha} C_n^\alpha \alpha_i x^{\alpha - \epsilon_i} \alpha_j x^{\alpha - \epsilon_j} = n(n-1)x_i x_j \sum_{\alpha} C_{n-2}^{\alpha - \epsilon_i - \epsilon_j} x^{2\alpha - 2\epsilon_i - 2\epsilon_j} = n(n-1)x_i x_j \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{n-2} \]

and for \(i = j \)

\[\langle h'_i(x), h'_j(x) \rangle = \sum_{\alpha} C_n^\alpha \alpha_i x^{\alpha - \epsilon_i} \alpha_i x^{\alpha - \epsilon_i} = \sum_{\alpha} C_n^\alpha \alpha_i x^{2\alpha - 2\epsilon_i} + \sum_{\alpha} C_n^\alpha (\alpha_i - 1)x^{2\alpha - 2\epsilon_i} = n \sum_{\alpha} C_{n-1}^{\alpha - \epsilon_i} x^{2\alpha - 2\epsilon_i} + n(n-1)x_i^2 \sum_{\alpha} C_{n-2}^{\alpha - 2\epsilon_i} x^{2\alpha - 4\epsilon_i} = n \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{n-1} + n(n-1)x_i^2 \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{n-2}. \]

These relations imply that for \(i \neq j \)

\[\|h\|^2 \langle h'_i, h'_j \rangle - \langle h, h'_i \rangle \langle h, h'_j \rangle = -n \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{2n-2} x_i x_j. \]
and for \(i = j \)

\[
\|h\|^2 \langle h'_i, h'_j \rangle - \langle h, h'_i \rangle \langle h, h'_j \rangle = n \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{2n-2} \left(1 + \sum_{k \neq i}^{d} x_k^2 \right).
\]

Therefore, using (9) we get

\[
\mathbb{E}\lambda_{d-1}[G^{-1}(0)] = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{(d+1)/2}} \sqrt{n} \int_{F} \left(1 + \sum_{k=1}^{d} x_k^2 \right)^{-1} dx
\]

\[
\times \int_{\mathbb{R}^{d-1}} \left(- \sum_{i \neq j}^{d} x_i x_j s_i s_j + \sum_{i=1}^{d} \left(1 + \sum_{k \neq i}^{d} x_k^2 \right) s_i^2 \right)^{1/2} \mu_{d-1}(ds)
\]

\[
= \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{(d+1)/2}} \sqrt{n} \int_{F} (1 + \|x\|^2)^{-1/2} dx \int_{\mathbb{R}^{d-1}} \sqrt{1 + \|x\|^2} dx \mu_{d-1}(ds).
\]

\[\square\]

Remark. Thus,

\[
\mathbb{E}\lambda_{d-1}[G^{-1}(0)] = C_F \sqrt{n},
\]

where \(C_F \) depends only on \(F \) and \(d \). M. Shub and S. Smale obtained a similar result for the number of zeros of a system of \(d \) polynomials in \([15]\).

Corollary. For \(d = 1 \) we get

\[
\mathbb{E}\lambda_{0}[G^{-1}(0)] = \sqrt{n} \int_{F} \frac{dx}{\pi(1 + x^2)}.
\]

This relation was obtained by E. Kostlan in \([9]\).

2.7. Random trigonometric surface. By \(|F|\) denote a volume of \(F \) (i.e., a Lebesgue measure in \(\mathbb{R}^d \)).

Example 8. Consider

\[
G(x) = \sum_{\alpha} [\xi_\alpha \cos(\alpha, x) + \eta_\alpha \sin(\alpha, x)],
\]

where the summation is taken over all \(\alpha \) such that \(0 \leq \alpha_j \leq n \) and \(\xi_\alpha, \eta_\alpha \) are independent standard Gaussian random variables. Then

\[
\mathbb{E}\lambda_{d-1}[G^{-1}(0)] = n \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} |F| \int_{\mathbb{R}^{d-1}} \left(s_1 + \cdots + s_d \right)^{1/2} \mu_{d-1}(ds).
\]

Proof. Using the notations of Subsection 2.2 we get

\[
\|h(x)\|^2 = (n + 1)^d, \quad \langle h(x), h'_i(x) \rangle = \frac{1}{2} \frac{\partial}{\partial x_i} \|h(x)\|^2 = 0
\]

and

\[
\langle h'_i(x), h'_j(x) \rangle = \sum_{\alpha} \alpha_i \alpha_j = \begin{cases} (n + 1)^{d-2} \left(\frac{n(n+1)}{2} \right)^2 & \text{for } i \neq j, \\ (n + 1)^{d-1} \frac{n(n+1)(2n+1)}{6} & \text{for } i = j. \end{cases}
\]

It remains to apply (9). \[\square\]

Corollary (1).

\[
\mathbb{E}\lambda_{d-1}[G^{-1}(0)] = c_d |F| n \cdot (1 + o(1)), \quad n \to \infty,
\]

where \(c_d \) depends only on the dimension \(d \).
Corollary (2). For $d = 1$ we get
\[E \lambda_0[G^{-1}(0)] = \frac{1}{\pi} |F| \sqrt{\frac{n(2n+1)}{6}}. \]

This formula was obtained by C. Qualls in [11].

2.8. Level sets of homogeneous Gaussian field.

Example 9. Let $G(x)$ be a homogeneous Gaussian field with a spectral measure ν. Suppose ν satisfies the conditions of Theorem 7. For the sake of simplicity, we assume that $m(x) \equiv 0$ and $\sigma(x) \equiv 1$. Then
\[E \lambda_{d-1}[G^{-1}(u)] = \frac{\Gamma(d+1)}{2\pi^{(d+1)/2}} |F| e^{-u^2/2} \int_{S_{d-1}} \left(\int_{R^d} \langle s, z \rangle^2 \nu(dz) \right)^{1/2} \mu_{d-1}(ds). \]

Proof. By the spectral representation theorem,
\[E G(x)G(y) = \int_{R^d} e^{i(x-y,z)} \nu(dz). \]
Differentiating this twice and putting $x = y = 0$, we get
\[E G_i'(0)G_j'(0) = \int_{R^d} z_i z_j \nu(dz). \]
Applying (6) to $G(x) - u$, we obtain
\[E \lambda_{d-1}[G^{-1}(u)] = \frac{\Gamma(d+1)}{2\pi^{(d+1)/2}} |F| e^{-u^2/2} \int_{S_{d-1}} \left(\int_{R^d} \langle s, z \rangle^2 \nu(dz) \right)^{1/2} \mu_{d-1}(ds). \]

\[\Box \]

Corollary (1). We have
\[\frac{1}{\pi} \gamma_1 e^{-u^2/2} |F| \leq E \lambda_{d-1}[G^{-1}(0)] \leq \frac{\Gamma(d+1)}{\sqrt{\pi} \Gamma(\frac{d}{2})} \gamma_2 e^{-u^2/2} |F|, \]
where
\[\gamma_k = \left(\int_{R^d} \| z \|^k \nu(dz) \right)^{1/k}. \]

Proof. By Jensen’s inequality, Fubini’s theorem and Lemma 2 (see Sect. 3), we get
\[\int_{S_{d-1}} \left(\int_{R^d} \langle s, z \rangle^2 \nu(dz) \right)^{1/2} \mu_{d-1}(ds) \leq \int_{S_{d-1}} \mu_{d-1}(ds) \int_{R^d} \| \langle s, z \rangle \| \nu(dz) = \int_{R^d} \nu(dz) \int_{R^d} \| \langle s, z \rangle \| \mu_{d-1}(ds) = \frac{2\pi^{(d-1)/2}}{\Gamma(d/2)} \| z \| \nu(dz) = \frac{2\pi^{(d-1)/2}}{\Gamma(d/2)} \gamma_1. \]
On the other hand, it follows from the Cauchy—Schwarz inequality that $\| \langle s, z \rangle \| \leq \| s \| \| z \| = \| z \|$. Therefore,
\[\int_{S_{d-1}} \left(\int_{R^d} \langle s, z \rangle^2 \nu(dz) \right)^{1/2} \mu_{d-1}(ds) \leq \omega_{d-1} \left(\int_{R^d} \| z \|^2 \nu(dz) \right)^{1/2} \leq \frac{2\pi^{d/2}}{\Gamma(d/2)} \gamma_2. \]

\[\Box \]
Corollary (2). For \(d = 1 \) we get
\[
E \lambda_0[G^{-1}(u)] = \frac{72 \pi^2}{\pi} u^2/2 |F|.
\]

This formula was obtained by S. O. Rice in [12].

3. Auxiliary lemmas

Let us recall that to define a \((d - 1)\)-dimensional Favard measure of a set \(A \), project it onto a \((d - 1)\)-dimensional linear hyperplane, take the Lebesgue measure (counting multiplicities), average over all such projections, and normalize properly:

\[
\lambda_{d-1}[A] = \frac{ \Gamma\left(\frac{d+1}{2}\right) }{2^{d-1} \pi^{\frac{d-1}{2}}} \int_{S^{d-1}} \mu_{d-1}(ds) \int_{s^\perp} \lambda_0\left(s^\perp \cap A\right) dy,
\]

where \(s^\perp \) is the linear hyperplane orthogonal to the unit vector \(s \in S^{d-1} \) and \(\{s^\perp\}^\perp \) is the line through \(y \in s^\perp \) orthogonal to \(s^\perp \).

Let us introduce the notations which we shall use in this section. Put
\[
M = \sup_{R > 0} \left| \int_{-R}^{R} \sin t \int_{-R}^{R} \frac{1}{u} du \right|.
\]

It follows from Lemma 1 (see below) that \(M < \infty \). By \(\omega_k \) denote area of a \(k \)-dimensional sphere:
\[
\omega_k = \frac{2 \pi^{(k+1)/2}}{\Gamma\left(\frac{k+1}{2}\right)}.
\]

Throughout this section we assume that a function \(g \) satisfies the conditions of Theorem 1. By \(g'_s \) denote a partial derivative of \(g \) with respect to the direction \(s \in S^{d-1} \).

Lemma 1. For all \(t \in \mathbb{R} \)
\[
\frac{1}{\pi} \int_{-\infty}^{\infty} \sin tu \frac{1}{u} du = \text{sign } t.
\]

Proof. See, i.e., [1]. \(\square \)

Lemma 2. For all \(x \in \mathbb{R}^d \)
\[
\int_{S^{d-1}} |(x, s)| \mu_{d-1}(ds) = \frac{2 \pi^{(d-1)/2}}{\Gamma\left(\frac{d+1}{2}\right)} |x|.
\]

Proof. Omit the trivial case when \(x = 0 \). Consider a Borel set \(A \) such that \(A \subset x^\perp \) and \(\lambda_{d-1}[A] = |x| \). Let us apply (11). It is clear that the integrand \(\int_{s^\perp} \lambda_0\left\{s^\perp \cap A\right\} dy \) is equal to area of the projection of \(A \) onto the linear hyperplane \(s^\perp \). On the other hand, if we project a set from one hyperplane to another, then area of the set multiplies by the cosine of the angle between the hyperplanes. Therefore,
\[
\int_{s^\perp} \lambda_0\left\{s^\perp \cap A\right\} dy = \lambda_{d-1}[A] \cdot \left| \frac{x}{\|x\|}, s \right| = |(x, s)|.
\]

Applying this to (11) and replacing \(\lambda_{d-1}[A] \) by \(|x| \), we obtain (13). \(\square \)

The next lemma is due to M. Kac (see, e.g., [3]).

Lemma 3. If \(f(t) \) continuous for \(a \leq t \leq b \) and continuously differentiable for \(a < t < b \) has a finite number of turning points (i.e., only a finite number of points at which \(f'(t) \) vanishes in \((a, b)\)) then the number of zeros of \(f(t) \) in \((a, b)\) is given by the formula
\[
\lambda_0[f^{-1}(0)] = \frac{1}{2 \pi} \int_{-\infty}^{\infty} du \int_{a}^{b} \cos[u f(t)] |f'(t)| dt.
\]

Multiple zeros are counted once and if either a or b is a zero it counted as 1/2.

Remark. This statement can be easily extended to the case of the union of a finite number of intervals. We shall use this form in the sequel.

Proof. For the reader’s convenience we present the proof from [3]. Let $\alpha_1, \ldots, \alpha_k$ be the abscissas of the turning points:

$$a = \alpha_0 < \alpha_1 < \cdots < \alpha_k \leq \alpha_{k+1} = b.$$

We have

$$\int_a^b \cos[u f(t)] \, |f'(t)| \, dt = \sum_{j=0}^k \int_{\alpha_j}^{\alpha_{j+1}} \cos[u f(t)] \, |f'(t)| \, dt$$

$$= \sum_{j=0}^k \left\{ \pm \int_{\alpha_j}^{\alpha_{j+1}} \cos[u f(t)] \, f'(t) \, dt \right\} = \sum_{j=0}^k \left\{ \pm \sin[u f(\alpha_{j+1})] - \sin[u f(\alpha_j)] \right\},$$

where the sign $+$ is attached if $f(t)$ is increasing between α_j and α_{j+1} and the sign $-$ if it is decreasing. Thus using (12) we have

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} du \int_a^b \cos[u f(t)] \, |f'(t)| \, dt$$

$$= \sum_{j=0}^k \left\{ \pm \frac{1}{2\pi} \int_{-\infty}^{\infty} \sin[u f(\alpha_{j+1})] - \sin[u f(\alpha_j)] \, du \right\}$$

$$= \sum_{j=0}^k \left\{ \pm \frac{\text{sign}[f(\alpha_{j+1})] - \text{sign}[f(\alpha_j)]}{2} \right\} = \lambda_0[f^{-1}(0)].$$

□

Lemma 4. If $f(t)$ continuous for $a \leq t \leq b$ and continuously differentiable for $a < t < b$ has k turning points, then uniformly for $R > 0$

$$\left| \int_{-R}^{+R} du \int_a^b \cos[u f(t)] \, |f'(t)| \, dt \right| \leq 2M(k + 1).$$

Proof. In the same way as in Lemma 3 we have

$$\left| \int_{-R}^{+R} du \int_a^b \cos[u f(t)] \, |f'(t)| \, dt \right|$$

$$= \left| \sum_{j=0}^k \left\{ \pm \int_{-R}^{+R} \frac{\sin[u f(\alpha_{j+1})] - \sin[u f(\alpha_j)]}{u} \, du \right\} \right|$$

$$= \left| \sum_{j=0}^k \pm \left\{ \int_{-R f(\alpha_{j+1})}^{+R f(\alpha_j)} \frac{\sin u}{u} \, du - \int_{-R f(\alpha_j)}^{-R f(\alpha_{j+1})} \frac{\sin u}{u} \, du \right\} \right|$$

$$\leq 2(k + 1) \sup_{t \in \mathbb{R}} \left| \int_{-t}^{+t} \frac{\sin u}{u} \, du \right| = 2M(k + 1).$$

□

Corollary. If we replace $[a, b]$ by a set H consisting of the union of l intervals, then uniformly for $R > 0$

$$\left| \int_{-R}^{+R} du \int_H \cos[u f(t)] \, |f'(t)| \, dt \right| \leq 2M(k + l).$$

(15)
Lemma 6. The following inequality holds:

$$
\int_{S^{d-1}} \lambda_{d-1}[g'_s^{-1}(0)] \mu_{d-1}(ds) \leq \omega_{d-1}\lambda_{d-1}[(\nabla g)^{-1}(0)] + \omega_{d-2}|F|.
$$

Proof. We have

$$
\int_{S^{d-1}} \lambda_{d-1}[g'_s^{-1}(0)] \mu_{d-1}(ds) = \int_{S^{d-1}} \mu_{d-1}(ds) \int_F 1\{g'_s(y) = 0\} \lambda_{d-1}(dy)
$$

$$
\leq \omega_{d-1}\lambda_{d-1}[(\nabla g)^{-1}(0)] + \int_{S^{d-1}} \mu_{d-1}(ds) \int_{F \setminus (\nabla g)^{-1}(0)} 1\{g'_s(y) = 0\} \lambda_{d-1}(dy).
$$

It remains to estimate the second summands. If $\nabla g(y) \neq 0$, then the set $S(y) = \{s \in S^{d-1} | g'_s(y) = 0\}$ is contained in a unit hypersphere of the sphere S^{d-1} orthogonal to $\nabla g(y)$. Consequently $\lambda_{d-2}[S(y)] \leq \omega_{d-2}$ and by Fubini's theorem,

$$
\int_{S^{d-1}} \mu_{d-1}(ds) \int_{F \setminus (\nabla g)^{-1}(0)} 1\{g'_s(y) = 0\} \lambda_{d-1}(dy)
$$

$$
= \int_{F \setminus (\nabla g)^{-1}(0)} dx \int_{S^{d-1}} 1\{f'_s(x) = 0\} \mu_{d-2}(ds)
$$

$$
= \int_{F \setminus (\nabla g)^{-1}(0)} \lambda_{d-2}[S(y)] dx \leq \int_{F \setminus (\nabla g)^{-1}(0)} \omega_{d-2} dx = \omega_{d-2}|F|.
$$

□

Lemma 6. For all $R > 0$

$$
\int_{S^{d-1}} \mu_{d-1}(ds) \int_{\{y, s = 0\}} dy \int_{\{y + ts \in F\}} du \cos[u g(y + ts)] |g'_s(y + ts)| dt
$$

$$
\leq 2M \left(\omega_{d-1}\lambda_{d-1}[(\nabla g)^{-1}(0)] + \omega_{d-2}|F| + \frac{\pi^{(d-1)/2}}{\Gamma(\frac{d+1}{2})} \lambda_{d-1}[\partial F] \right)
$$

and

$$
\left| \int_{\{y + ts \in F\}} \frac{du}{\int_{F} \cos[u g(x)] \|\nabla g(x)\| dx} \right|
$$

$$
\leq \frac{\Gamma(\frac{d+1}{2})}{\pi^{(d+1)/2}} M \left(\omega_{d-1}\lambda_{d-1}[(\nabla f)^{-1}(0)] + \omega_{d-2}|F| + \frac{\pi^{(d-1)/2}}{\Gamma(\frac{d+1}{2})} \lambda_{d-1}[\partial F] \right).
$$

Proof. By $k(s, y)$ denote the number of zeros of $g'_s(y + ts)$ (may be infinite) in the set $\{t | y + ts \in F\}$ and by $l(s, y)$ denote the number of intervals of this set (if the set is not the union of a finite number of intervals, then we put $l(s, y) = \infty$). It follows from (15) that

$$
\left| \int_{\{y + ts \in F\}} \frac{du}{\int_{F} \cos[u g(x)] \|\nabla g(x)\| dx} \right|
$$

$$
\leq \frac{\Gamma(\frac{d+1}{2})}{\pi^{(d+1)/2}} M \left(\omega_{d-1}\lambda_{d-1}[(\nabla f)^{-1}(0)] + \omega_{d-2}|F| + \frac{\pi^{(d-1)/2}}{\Gamma(\frac{d+1}{2})} \lambda_{d-1}[\partial F] \right).
$$

If we project the set $g'_s^{-1}(0)$ onto the hyperplane $\{y | y, s = 0\}$, then $k(s, y)$ is equal to the multiplicity of the projection at the point y. A measure does not increase under the action of projection, therefore

$$
\int_{\{y, s = 0\}} k(s, y) dy \leq \lambda_{d-1}[g'_s^{-1}(0)],
$$

which together with Lemma 5 implies

$$
\int_{S^{d-1}} \mu_{d-1}(ds) \int_{\{y, s = 0\}} k(s, y) dy \leq \omega_{d-1}\lambda_{d-1}[(\nabla g)^{-1}(0)] + \omega_{d-2}|F|.
$$
Further, applying the definition of a Favard measure to the boundary of F, we get

\begin{equation}
\int_{S^{d-1}} \mu_{d-1}(ds) \int_{\{y,s\}=0} 2I(s,y) \, dy = \frac{2\pi^{(d-1)/2}}{\Gamma\left(\frac{d+1}{2}\right)} \lambda_{d-1} \partial F.
\end{equation}

Combining (13), (19) and (20) we obtain (16).

Let us prove (17). It follows from (13) that

$$\|\nabla g(x)\| = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{(d-1)/2}} \int_{S^{d-1}} \|\nabla g(x), s\| \mu_{d-1}(ds).$$

Consequently, using Fubini’s Theorem we get

$$\left| \int_{-R}^{R} du \int_{F} \cos[ug(x)] \|\nabla g(x)\| \, dx \right| = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{(d-1)/2}} \times \int_{-R}^{R} du \int_{S^{d-1}} \cos[ug(x)] \|\nabla g(x), s\| \mu_{d-1}(ds) \right| = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{(d-1)/2}} \times \int_{S^{d-1}} \mu_{d-1}(ds) \int_{\{y,s\}=0} dy \int_{-R}^{R} du \int_{\{y+ts\in F\}} \cos[ug(y+ts)] |g_t'(y+ts)| \, dt \right|.
$$

To complete the proof it remains to apply (16).

\begin{lemma}
Consider an n-dimensional centered Gaussian vector ξ with a covariance matrix Σ. Then

$$E \|\xi\| = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\sqrt{2\pi}^{d+1}} \int_{S^{d-1}} \sqrt{s_\Sigma} \mu_{d-1}(ds).$$

\end{lemma}

\begin{proof}
It follows from (13) and Fubini’s theorem that

$$E \|\xi\| = \frac{\Gamma\left(\frac{d+1}{2}\right)}{2\pi^{(d-1)/2}} \int_{S^{d-1}} E \|\xi, s\| \mu_{d-1}(ds).$$

Moreover,

$$E \|\xi, s\| = E \|N(0,1)\| \sqrt{D\|\xi, s\|} = \left(\frac{2}{\pi}\right)^{1/2} \sqrt{s_\Sigma} \tau,$$

which completes the proof.
\end{proof}

\section{4. Proofs of theorems}

\begin{proof}[Proof of Theorem 7]
Using (11) and Lemma 3 we get

$$\lambda_{d-1}[g^{-1}(0)] = \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} \int_{S^{d-1}} \mu_{d-1}(ds) \int_{\{y,s\}=0} dy \times \int_{-\infty}^{\infty} du \int_{\{y+ts\in F\}} \cos[ug(y+ts)] |g_t'(y+ts)| \, dt \right| = \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} \int_{S^{d-1}} \mu_{d-1}(ds) \int_{\{y,s\}=0} dy \times \lim_{R\to\infty} \int_{-R}^{R} du \int_{\{y+ts\in F\}} \cos[ug(y+ts)] |g_t'(y+ts)| \, dt \right|.$$

\end{proof}
It follows from the choice of F, condition (b), and (15) that we may apply Lebesgue’s theorem:

$$\lambda_{d-1}(g^{-1}(0)) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} \lim_{R \to \infty} \int_{\partial F} \mu_{d-1}(ds) \int_{\{x,s\}=0} dy$$

$$\times \int_{-R}^{R} du \int_{\{x+ts \in F\}} \cos[ug(x+ts)] |g'(x+ts)| dt.$$

All the domains of integration are of finite measure and the integrands are bounded. Therefore we may apply Fubini’s Theorem:

$$\lambda_{d-1}(g^{-1}(0)) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} \lim_{R \to \infty} \int_{-R}^{R} du \int_{\partial F} \mu_{d-1}(ds) \int_{\{x,s\}=0} dy$$

$$\times \int_{\{x+ts \in F\}} \cos[ug(x+ts)] |g'(x+ts)| dt$$

$$= \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} \lim_{R \to \infty} \int_{-R}^{R} du \int_{\partial F} \mu_{d-1}(ds) \int_{F} \cos[ug(x)] |\nabla g(x), s| dx$$

$$= \frac{\Gamma\left(\frac{d+1}{2}\right)}{4\pi^{(d+1)/2}} \int_{-\infty}^{\infty} du \int_{\partial F} \mu_{d-1}(ds) \int_{F} \cos[ug(x)] |\nabla g(x), s| dx.$$

To complete the proof it remains to apply Lemma [2].

Let us proceed to the proof of the second theorem.

Proof of Theorem 3. To apply Theorem [1] we have to show that G satisfies conditions (a), (b) almost surely. It easily follows from (a’) that (a) holds almost surely. Further, using (b’), Fubini’s theorem, and $\lambda_{d-1}[^{\partial F}] < \infty$, we obtain

$$E \lambda_{d-1}[G^{-1}(0) \cap \partial F] = E \int_{\partial F} 1 \{G(y) = 0\} d\lambda_{d-1}(y) = \int_{\partial F} P \{G(y) = 0\} d\lambda_{d-1}(y) = 0,$$

which implies that (b) holds a.s.

First let us prove the theorem for the case when $\sigma \equiv 1$. From [2] we get

$$E \lambda_{d-1}(G^{-1}(0)) = E \frac{1}{2\pi} \int_{-\infty}^{\infty} du \int_{F} \cos[uG(x)] \|\nabla G(x)\| dx$$

$$= \frac{1}{2\pi} E \lim_{R \to \infty} \int_{-R}^{R} du \int_{F} \cos[uG(x)] \|\nabla G(x)\| dx.$$

It follows from the choice of F, condition (a’), and (17) that we may apply Lebesgue’s theorem:

$$E \lambda_{d-1}(G^{-1}(0)) = \frac{1}{2\pi} \lim_{R \to \infty} E \int_{-R}^{R} du \int_{F} \cos[uG(x)] \|\nabla G(x)\| dx$$

$$= \frac{1}{2\pi} \lim_{R \to \infty} \int_{F} dx \int_{-R}^{R} E \left\{ \cos[uG(x)] \|\nabla G(x)\| \right\} du.$$

We may use Fubini’s Theorem in the last equality on account of

$$|\cos[uG(x)]| \|\nabla G(x)\| \leq \|\nabla G(x)\| \leq \sum_{j=1}^{d} \lambda_{j}'(x)$$

and

$$E \int_{-R}^{R} du \int_{F} \sum_{j=1}^{d} \lambda_{j}'(x) dx \leq 2R|F| \sum_{j=1}^{d} E \sup_{x \in F} \lambda_{j}'(x) < \infty.$$
The right-hand side is finite because the supremum of a continues Gaussian field defined on a compact is summable (see [10]).

Differentiating $\sigma^2 \equiv 1$, we get

$$\frac{\partial (E G^2)}{\partial x_i} - 2E G \frac{\partial (E G)}{\partial x_i} = 0.$$

Therefore, by Kolmogorov’s Theorem on differentiation of mathematical expectations with respect to a parameter (see [4]), we have

$$E G G_i = \frac{1}{2} E G \frac{\partial (E G^2)}{\partial x_i} - E \frac{\partial (E G)}{\partial x_i} = E \frac{\partial (E G)}{\partial x_i}.$$

In other words, G does not correlate with the components of the vector ∇G which is equivalent to the independence in the Gaussian case. Thus,

$$E \left\{ \cos[uG(x)] \| \nabla G(x) \| \right\} = E \cos[uG(x)] E \| \nabla G(x) \| = \text{Re} \left\{ e^{iuG(x)} E \| \nabla G(x) \| \right\},$$

which implies

$$E \lambda_{d-1}(G^{-1}(0)) = \frac{1}{2\pi} \lim_{R \to \infty} \int_F E \| \nabla G(x) \| dx \int_{-R}^R \cos[um(x)] e^{-u^2/2} du.$$

Using Lebesgue’s Theorem and the formula

$$\int_{-\infty}^{\infty} \cos[um(x)] e^{-u^2/2} du = \sqrt{2\pi} \text{Re} \left\{ e^{im(x)\mathcal{N}(0,1)} \right\} = \sqrt{2\pi} e^{-m^2(x)/2},$$

we obtain

$$(21) \quad E \lambda_{d-1}(G^{-1}(0)) = \frac{1}{2\pi} \int_F E \| \nabla G(x) \| dx \lim_{R \to \infty} \int_{-R}^R \cos[um(x)] e^{-u^2/2} du$$

$$= \frac{1}{\sqrt{2\pi}} \int_F e^{-m^2(x)/2} E \| \nabla G(x) \| dx.$$

We have proved the theorem for the case when $\sigma \equiv 1$. To treat the general one consider the field G/σ. It has unit variance and its zero set coincides with the zero set of G. Thus to complete the proof it remains to apply (21) to G/σ. \qed

5. Acknowledgements

The authors are grateful to S.V. Ivanov, A.I. Nazarov, E.M. Rudo, and D.S. Chelkak for useful discussions.

A part of the work has been done in the University of Bielefeld. The authors thank F. Götzte for the possibility to participate at the work of CRC 701 “Spectral Structures and Topological Methods in Mathematics”. They are also grateful to A. Cole for her valuable help.

References

[1] A.V. Efimov. Mathematical Analysis (Advanced Topics), Vol. 1. Mir Publishers, 1980.
[2] I. A. Ibragimov, S. S. Podkorytov. On random real algebraic surfaces. Dokl. Akad. Nauk, 343(6):734–736, 1995.
[3] M. Kac. Probability and Related Topics in Physical Sciences. AMS Bookstore, 1957.
[4] A.N. Kolmogorov. Foundations of the Theory of Probability. Chelsea Pub. Co., 1956.
[5] R.A. Horn, Ch.R. Johnson. Matrix Analysis. Cambridge University Press, 1990.
[6] A. Edelman and E. Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc., 32(1):1–37, 1995.
[7] H. Federer. Curvature measures. Trans. Amer. Math. Soc., 93:418–491, 1959.
[8] M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314–320, 1943.
[9] E. Kostlan. On the distribution of roots of random polynomials. In From Topology to Computation: Proceedings of the Smalefest, 419–431, 1993.
[10] H.J. Landau and L.A. Shepp. On the supremum of a Gaussian process. Sankhya Ser. A, 32:369–378, 1970.
[11] C. Qualls. On the number of zeros of a stationary Gaussian random trigonometric polynomial. J. London Math. Soc., 2(2):216–220, 1970.
[12] S. O. Rice. Mathematical analysis of random noise. Bell System Technical Journal, 24:46–156, 1945.
[13] M. Shub and S. Smale. Complexity of Bézout’s theorem II: volumes and probabilities. Computational Algebraic Geometry, 109:267–285, 1993.