Amino Acid Profile and Volatile Flavour Compounds of Raw and Steamed Patin Catfish (Pangasius hypophthalmus) and Narrow-barred Spanish Mackerel (Scomberomorus commerson)

Rusky I Pratama¹, I Rostini¹ and E Rochima¹

¹ Fisheries and Marine Science Faculty, Padjadjaran University, West Java, Indonesia

E-mail: rusky@unpad.ac.id

Abstract. Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derive from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.

1. Introduction

With its continuously growing population, Indonesia in the near future will face an increasing foodstuff demand, especially in fishery commodities, considering Indonesia has a vast coastal and ocean area. West Java province has the densest population in Indonesia, thereby developing freshwater and marine water fishery sectors as a source of food will become more important for this province. From 2003 to 2010 fish aquaculture in West Java were increasing from production volume of 230,523 to 622,961 ton [1]. Patin catfish (Pangasius hypophthalmus) is one of the strategic targets for aquaculture freshwater fisheries development in Indonesia, aside from dumbo catfish (Clarias gariepinus), nile tilapia (Oreochromis niloticus), common carp (Cyprinus carpio) and gourami (Osphronemus goramy) due to its high value as an export commodities and it is a commonly raised fish species in freshwater aquaculture. Patin catfish production has shown a significant growth in number. Its national production was 403,133 tons in 2014 with average increase as much as 39.90% [2]. On the other side, sea catch production in West Java has reached 180,402.14 tons in 2010. Sea catch commodities that were landed in West Java, generally consists of several groups of fish such as
pelagic and demersal fish and non-fish (crustacean and molluscs). Economically important fish in pelagic group are dominated by several fish species such as mackerel tuna, chub mackerel, narrow-barred Spanish mackerel, anchovy and big tunas. Spanish mackerel specifically had increased production as much as 17% in 2010, with a production value in West Java alone was 5,071 tons [1].

Fisheries commodities have long been recognized as a valuable nutritional source such as protein and lipids. Each fishery commodity would have differences in their chemical composition and flavour compounds, specifically volatile components, whether if it is still in its fresh or in already processed condition before it is consumed. Information about the chemical composition of a commodity is important to identify the nutritive values, chemical changes and its relation to certain handling, processing or storage method. Such information can also beneficial in order to study and evaluate the potential of a commodity.

Volatile components are groups of compounds that contribute to product flavours specifically aroma. As we all know flavour is an important factor which could affect product acceptance and preference by consumers. Flavour is formed as a result from a combination of experiences and sensation which we perceived on product characteristics [3]. Flavour is generally divided into two categories, one is volatile flavour which contributes to aromas and non-volatile flavour which contributes to taste characteristics.

Many researches have confirmed about the volatile components differences among fisheries products, several of them were [4], [5], [6], [7], [8], [9], [10], [11]. In Indonesia, similar research data concerning flavour composition of fisheries commodities were not easily available and rarely found. Different matters occurred in other countries such as Japan, China, and Scandinavian countries where flavour research, including its identification has been done for more than a decade ago. Many researches object in identifying volatile compounds that were found in Indonesia came from agricultural commodities, but for fishery commodities it is still scarce.

In addition to identifying volatile components on fresh samples, this research also identified volatile components in samples that had already been steamed. Steaming is one of the thermal processing methods which used saturated steam as its heating medium. Steaming could induce physical changes and chemical reactions which in turn could affect product characteristics such as flavour and texture [12]. Steaming process was chosen as processing technique applied due to its minimum impact in sample’s nutritional value and it is one of the commonly used household cooking method and traditional processing method in West Java cuisines for making “pepes” or traditional steamed fish with spices. According to [13], steaming process has an advantage compared to other heating methods, because it has smaller risks of losing heat sensitive vitamins and other food compounds. The flavour of processed fish and fishery products differ with the processing technology employed. Such differences exist, although the products prepared from the same species of fish. Therefore the study of flavour components of processed fish and fresh fishery commodities is required as an attempt to specify and identify flavour components of such processed fish [14].

The amino acid profile analysis could provide general information regarding essential and non-essential amino acid composition and also beneficial to indicate which one of the overall amino acids that could affect samples taste characteristics. Heating could cause chemical changes in the amino acid residues, which then later could modify the structural, digestible and functional properties of proteins depending on the applied thermal treatment and processing conditions. According to [15] amino acids and peptides contribute directly to seafood flavour. Non-volatile flavour compounds are usually originated from free amino acids, various peptides, nucleotides such as IMP (disodium 5′-inosine monophosphate), GMP (disodium 5′-guanosine monophosphate), and AMP (disodium 5′-adenosine monophosphate) [10], [16].

The volatile components and amino acids composition results from this research could provide important basic information for more advance flavour research and applications. Thus, the results are also expected to contribute in filling the literature gaps of flavour profile originate from Indonesian fisheries commodities. Therefore an attempt on identification analysis of volatile flavour composition and amino acids of two popular fishery samples is important to carry out. The objective of this
research is to identify flavour composition, particularly volatile compounds and amino acid profile of fresh and steamed Patin catfish and Spanish mackerels samples. To our best knowledge, there was still no comprehensive study found in Indonesia that has been conducted in investigating the volatile components of fresh and steamed local Patin catfish and Spanish mackerel.

2. Research Method
Research locations for sampling and analyses were consisting of several areas in West Java. Patin catfish samples were taken from floating net cage complex in Cirata Reservoir, Purwakarta, West Java and Spanish mackerel samples were taken from the fish landing site, Karangsong, Indramayu West Java. Sample preparation was carried out in the Fisheries Product Processing Laboratory, Fisheries and Marine Sciences Faculty, Padjadjaran University. Proximate analyses were carried out in the Inter-University Centre Laboratory, Bogor Agriculture Institute. Amino acid profile analyses were carried out in the Integrated Laboratory, Bogor Agriculture Institute and volatile compound analysis were carried out in Flavour Laboratory, Indonesian Centre for Rice Research, Sukamandi, Subang.

2.1. Samples preparation
After sampling had finished on each location, all samples were then promptly transported in a cool box which contained layers of bulk ice and depart to preparation laboratory. On arrival, samples were then cleaned (washing, descaling, beheading), and weighed before divided into two groups (fresh and steamed). The fish that are intended for fresh groups were filleted before packaging, and the fish that are intended for steamed groups were eviscerated first before steaming and packaging. The steaming process was carried out at (minimum) 100°C for 30 minutes [10], [17]. After all preparation and treatment were completed, a portion of fish meat (white meat portion) samples were selected and weighed adequately for analyses purpose.

All weighed portions of the samples were then packaged into three different packaging layers. The first primary packaging was aluminium foil, the secondary packaging was cling wrap plastics and the last layer tertiary packaging is a zip-lock plastic bags with labels. The purpose of three layered packaging is to minimize the changes and degradation to the samples that could be caused by various environmental factors such as air, light and temperatures [18]. Samples that have been finished through packaging steps were then placed in cool box which contain sufficient amount of ice (packed inside plastics) to keep the samples in cool temperature and then promptly transported to each analysis laboratory.

2.2. Proximate analysis
Each sample was then analyzed for their moisture, ash, protein and lipid content. The proximate analysis for all fresh and steamed Patin catfish and Spanish mackerel samples were determined according to [19] standard. Moisture was calculated gravimetrically after complete drying of samples in an oven at 110°C, and total inorganic content (ash %) through combustion of organic matter in a muffle furnace for 24 hours at 450°C. Total protein content was determined by the Kjeldahl method and calculated as % nitrogen x 6.25. Total lipid content was determined by the Soxhlet system by drying samples in an oven (105°C) and refluxed for 8 hours using 150 ml chloroform inside Soxhlet tube and the results expressed in %.

2.3. Amino acids profile
Amino acids profiles of fresh and steamed Patin catfish and Spanish mackerel were carried out based on modification from [20], [21] using High Performance Liquid Chromatography (HPLC) (Shimadzu CBM-20A, Shimadzu Corporation, Japan). HPLC parameters setting used, i.e.: Ultra Techsphere column, 1mL/minute mobile phase flow rate with a fluorescence detector.

2.4. Volatiles compound analysis
Volatiles component from fresh and steamed of both fish were analyzed by procedures according to modification from [22] procedure. The analyses were carried out using waterbath for samples extraction and Gas Chromatography (GC) (Agilent Technologies 7890A GC System) and Mass Spectrometry (MS) apparatus (Agilent Technologies 5975C Inert XL EI CI/MSD) for detecting and identifying the volatile components. Samples extraction method was done by Headspace Solid Phase Micro Extraction (HS/SPME) using DVB/Carboxen/Poly Dimethyl Siloxane fiber. Sample’s extraction time used on waterbath was 35°C for fresh samples and 70°C for steamed samples for 45 minutes. Raising temperature increased sensitivity while allowing extraction of more compounds, notably the least volatile of which were not extracted at all at lower temperatures [23]. GC column used was HP-5MS (30 m x 250 μm x 0,25 μm), helium carrier gas, initial temperature was 45°C (hold 2 minutes), temperature’s escalation as much as 6°C/minutes, the final device temperature was 250°C (hold 5 minutes) with an overall running time 41,17 minutes.

2.5. Data analysis

The obtained results from proximate analysis samples were calculated and showed as mean value and its deviation standards and then were discussed descriptively. The amino acid profile results were identified using 15 standards of amino acids and quantified in μmol concentration unit based on their peak areas and amino acids standards peak areas.

Samples volatile components mass spectrums that were detected from GC/MS were then compared with the mass spectrum pattern which were available in computer database or NIST (National Institute of Standard and Technology) library 0.5a version. The data then were further analyzed with Automatic Mass Spectral Deconvolution and Identification System (AMDIS) software [24]. The resulting data from volatile compound analysis were discussed descriptively based on identification and the semi quantification intensity of the compounds detected from the analyzed samples.

3. Results and Discussion

3.1. Proximate analysis

Proximate analysis provides information regarding sample’s chemical, nutritional compositions and studies their changes. Moisture content, ash, protein and lipid content of fresh and steamed Patin catfish and Spanish mackerel samples were analyzed and the results are shown in Table 1. The proximate composition of both fish were relatively differ. The determination of moisture content is the most frequent general analysis performed on fishery commodities. The amount of water or moisture in food often determines its nutritive value and taste, and its shelf life stability throughout storage [25]. Moisture content analysis showed that fresh samples of both fish were found to contain relatively higher moisture content than the steamed one. Fresh and steamed Patin catfish have 79.65% and 72.26% moisture content, respectively, and fresh and steamed Spanish mackerel have 74.63% and 68.72% moisture content respectively. Moisture content of fish would give an effect on its textural characteristics and if it is too high, then the fish would have a soft and mushy texture [26]. These differences on moisture contents could be influenced by the type of commodities that were analyzed and processing method that the samples had been through [17], [18]. According to [13], processing technique such as steaming could lead to moisture loss from samples inter-cellular spaces and this could become the reason for the lower measurement of steamed samples moisture content.

The analysis result also showed slight differences in steamed samples ash content of both fish species if compared to fresh one. Fresh and steamed Patin catfish have 1.30% and 1.87% ash content, respectively, and fresh and steamed Spanish mackerel have 2.23% and 2.11% ash content, respectively. Ash content measurement was mostly dependent on the mineral contents of each sample, feed, growth phase, seasons and habitat environment. Ash content represents the amount of total mineral of samples measured and inorganic substances that present in samples which were the residue from high temperatures burning of organic samples [17], [18]. According to [27], minerals that had been added to snake skin gourami and short-bodied mackerel when it was processed by salting and
sun-drying could result in a much higher ash content ranged from 4.4 to 8.7 g/100 g. This could happen depending of the type of products, amount of minerals added and the salting method used.

Table 1. Proximate analysis of Patin catfish and Spanish mackerel (%)

Parameters	Patin catfish	Spanish Mackerel		
	Fresh	Steamed	Fresh	Steamed
Moisture	79.65±0.26	72.26±0.08	74.63±0.15	68.72±0.14
Ash	1.30±0.02	1.87±0.07	2.23±0.04	2.11±0.01
Lipids	1.01±0.02	1.75±0.04	0.17±0.04	0.24±0.06
Protein	14.47±0.16	20.22±0.05	20.79±0.19	27.98±0.15

data expressed in mean and its standard deviation, n=3

From analysis result, we could see that steamed samples of both fish species have a slightly higher amount of total lipids compared to the fresh one. Fresh and steamed Patin catfish had 1.01% and 1.75% total lipid content, respectively, and fresh and steamed Spanish mackerel had 0.17% and 0.24% lipid content respectively. Similar findings on Patin catfish lipid content from [26] research which showed the lipid content range of 0.89-1.23%. These results were categorized as quite low and could be caused by filleting, which did not include the Patin catfish belly parts. The belly parts of Patin are known to contain high lipid content. These results were also consistent with [27] studies on the chemical composition of several Thai freshwater and marine water fish which showed that most of the marine fish measured had a lower lipid content compared to freshwater fish. The lipid content is found to be influenced by season and geographic location, with lower lipid content in fish from tropical waters. The low lipid content in marine fish is also attributed to environmental factors such as food supply and dietary sources. Water and fat losses during heat treatment could also contribute to the differences of lipid content measurement between fresh and steamed samples. Lipid content in fish flesh directly affect odor and flavour intensity [27], [28], [29].

Protein content analysis showed that steamed samples of both fish species had a higher amount of total protein compared to the fresh samples. Both samples were found to be rich sources of protein. Fresh and steamed Patin catfish had 14.47% and 20.22% protein content, respectively, while fresh and steamed Spanish mackerel had 20.79% and 27.98% protein content, respectively. Protein content in each sample would be affected by fish habitat, seasons, storage time and condition and also processing methods. Moisture content in the samples would also have a major effect on protein content measured in samples. Lower moisture content in the samples will result in higher protein content measured compared to fresh samples [28], [30]. Similar results were experienced on [27], protein content of raw short-bodied mackerel contains 21.1 g/100 g protein, while the steamed and fried one contained higher protein levels of 27.5 g/100 g.

3.2. Amino acids profile

The importance of amino acids in fish has been well established from the perspective of nutrition and fish flavours [31]. Amino acid composition will determine the quality of a protein which is among the most important macronutrients in human diet. The amino acid profile analysis could provide us valuable information regarding essential and non-essential amino acid composition which contained in analyzed samples. In addition to that, we could also obtain information regarding amino acids contribution in general to sample’s taste attributes. This research used 15 amino acids standards to quantify individual amino acids present in samples. These standards were aspartic acid, glutamic acid, serine, histidine, glycine, threonine, arginine, alanine, tyrosine, methionine, valine, phenylalanine, leucine, lysine and isoleucine. The fresh and steamed Patin catfish and Spanish mackerel were found to be relatively rich in amino acids. Their amino acid compositions are shown in Table 2 and overall the amino acid composition between fresh and steamed samples display slight variation in their values.
Table 2. Amino acids profile of Patin catfish and Spanish mackerel (%)

Amino acids	Patin catfish	Spanish Mackerel		
	Fresh	Steamed	Fresh	Steamed
Aspartic acid	1.98	3.41	2.23	2.88
Glutamic acid	3.28	5.50	3.61	4.63
Serine	0.79	1.31	0.88	1.15
Histidine*	0.45	0.86	1.12	1.26
Glycine	0.81	1.48	1.09	1.48
Threonine*	0.82	1.42	1.05	1.35
Arginine	1.32	2.27	1.46	1.95
Alanine	1.15	1.85	1.37	1.81
Tyrosine	0.69	1.14	0.87	1.04
Methionine*	0.61	0.84	0.74	0.82
Valine*	1.06	1.93	1.30	1.69
Phenylalanine*	0.86	1.46	1.02	1.33
Isoleucine*	1.06	1.84	1.21	1.58
Leucine*	1.66	2.77	1.86	2.42
Lysine*	1.72	3.20	2.37	3.01

*) essential amino acids

Essential amino acids that Patin catfish had from highest to lowest value were lysine, leucine, isoleucine, valine, phenylalanine, threonine, methionine and histidine. There are other types of essentials amino acid, which did not include in the analysis due to its standard was not available such as tryptophan. As the highest amount of essential amino acids contained in the samples, lysine plays an important role in the human body because it is needed as basic composition of blood antibody, strengthen the circulation and maintaining normal cell growth. Together with proline and vitamin C, lysine will decrease excessive blood triglycerides. Methionine is important for lipid metabolism, maintaining liver health, prevent lipid accumulation in the liver and the main artery, preventing allergy and osteoporosis [26]. Leucine is an important molecule that could stimulate the synthesis of muscle proteins and also has a therapeutic role in stress like trauma, burns, etc. Histidine is capable to perform multiple roles in human beings such as protein-protein interaction, precursor of histamine, an important neurotransmitter and also needed for the growth and repair tissues [32]. Deficiency in certain amino acids may hinder healing recovery process [33].

It can be seen from Table 2 that the steamed samples of both species were observed to possess a relatively higher level of amino acids than the fresh samples of both fish. Similar results on amino acid content were reported by [15] with drying treatment of fresh and dried squid samples. The time length of heat treatment and heating method also contributed to the change in amino acid contents of fish samples [33]. Proteolytic reaction that occurred during the heating process could cause free amino acids forming to increase [10], [34].

The highest amount of amino acids detected in fresh and steamed Patin catfish was glutamic acid (3.28%; 5.50%, respectively), whereas for fresh and steamed Spanish mackerels was also glutamic acid (3.61%; 4.63% respectively). The less glutamic acid contained in fish meat it would result in less savory taste of the fish meat [26]. Others amino acids that had a considerable amount in fresh and steamed Patin catfish samples respectively were aspartic acids (1.98%; 3.41%), lysine (1.72%; 3.20%), leucine (1.66%; 2.77%), arginine (1.32%; 2.27%), valine (1.06%; 1.93%), alanine (1.15%; 1.85%) and isoleucine (1.06%; 1.84%), whereas for fresh and steamed Spanish mackerel samples respectively were lysine (2.37%; 3.01%), aspartic acid (2.23%; 2.88%), leucine (1.86%; 2.42%) and arginine (1.46%; 1.95%) Leucine, valine, isoleucine and lysine are categorized as
essential amino acids on the account of that human body could not produce essential amino acids by itself and have to be obtained from various external food sources.

Each of the amino acids is well known to contribute to the basic taste of a product. Proline mainly contributes to the bitter taste of peptides and the presence of glycine, alanine, valine, leucine, tyrosine and phenylalanine in peptides also impart bitterness. Glutamate imparts umami taste if the concentration in the food product is above the taste threshold and it is likely that umami taste is a signal for protein nutrition [35], [36], [37], [38]. Arginine at sub threshold concentrations significantly enhanced salty taste [37] and give an effect to umami taste in sea urchin [36] at a large amounts in crab and scallops it enrich the sweet taste with complexity and fullness and provide a seafood flavour [35]. Glycine and alanine are taste active components and well known to impart sweetness characteristic in various seafood. Acidic L-amino acids such as glutamate and aspartate impart to umami taste and most of the D-amino acids are dominantly sweet [35], [36]. Aromatic amino acids, basic amino acids and branched amino acids are bitter amino acids. Valine, leucine and histidine are known to impart bitter taste but are not as bitter as phenylalanine [38]. Histidine was known to impart sourness and umami in katsuobushi [40]. According to [36], the amino acids that are present in a product played an important role in the taste of most seafood.

3.3. Volatile flavour components

Volatile compound analysis showed that steamed Patin catfish and Spanish mackerel samples has higher quantities of volatile compounds compared to the compounds that were identified from fresh samples and wide variety of compounds were also observed from both fresh and steamed Patin catfish samples. Volatile compound analysis results from fresh and steamed Patin catfish samples successfully detected and identified as much as 29 and 59 volatile compounds, respectively, which then were categorized into several major groups such as hydrocarbon, aldehydes, alcohols, ketones and others.

Aliphatic, cyclic and aromatic hydrocarbons in fresh and steamed Patin catfish samples (10 and 24 compounds, respectively) were the highest in quantity with heptadecane as the most abundant compounds present in fresh and steamed samples (29.923%; 35.661% respectively). In addition to hydrocarbons, respectively in the fresh and steamed Patin catfish samples, GC/MS were also detecting aldehydes group (7 and 18 compounds) with hexanal (10.130%; 4.963%) which had the highest proportions on both samples, alcohols (7 and 12 compounds) with 1-octanol (11.848%) and 1-octen-3-ol (4.604%) had the highest proportions, ketones (3 and 2 compounds) with 6-methyl-3-heptanone (6.086%) and 2,3-octanedione (1.114%) had the highest proportions in fresh and steamed samples respectively.

In the steamed samples, one ester compound was also detected, Sulfurous acid, dodecyl pentyl ester. Presumably, ester group compound that was found in fish samples, is derived from acids and alcohols esterification which previously formed from lipid metabolism. Esters could derive from lipids thermal degradation products [4], [22]. The volatile component analysis was also detected several nitrogenous group compounds which usually not detected in fresh and steamed fishery samples and need more rigorous identification and 2-pentylfuran which is also previously detected in steamed silver carp and smoked black bream [10], [22]. Furan compounds are heterocyclic and usually derive from glucose dehydration (cellulose thermal degradation), but several of them could also derive from Maillard reaction [4], [41]. The volatile compounds analysis results are shown in Table 3 and Table 4 with their proportions (based on area percentage) sorted from highest to lowest abundance.

Table 3. Volatile compounds in fresh Patin catfish samples.

RT	Groups	Area	Proportion (%)
21.871	Heptadecane (aliphatic, cyclic, aromatics)	5251755	29.923
18.0407	Pentadecane	2433484	13.865
5.07	Nonane, 3-methyl-	1618664	9.223
Table 4. Volatile compounds in steamed Patin catfish samples.

RT	Groups	Area	Proportion (%)
11.056	Naphthalene	371604	2.117
5.595	3-Octene, 2,6-dimethyl-	355593	2.026
20.001	Hexadecane	346667	1.975
6.930	Cyclohexene, 1-methyl-4-(1-methyletheny)-, (S)-	186190	1.061
15.974	Undecane	162764	0.927
5.283	Naphthalene, decahydro-	54789	0.312
7.815	1,3,6-Heptatriene, 5-methyl-	47749	0.272
	Aldehydes		
2.536	Hexanal	1777914	10.130
6.314	2,6-Nonadienal, (E,Z)-	360119	2.052
9.213	Nonanal	331775	1.890
5.423	2-Nonenal, (E)-	144560	0.824
5.346	2,4-Hexadienal, (E,E)-	118308	0.674
6.368	Dodecanal	114574	0.653
4.378	Heptanal	5951	0.034
	Alcohols		
5.866	1-Octanol	2079349	11.848
4.751	1-Nonanol	34623	0.197
7.506	1-Hexanol, 2-ethyl-	16602	0.095
5.382	Heptanol	14889	0.085
4.724	Hexanol	9910	0.056
11.663	2-Hexen-1-ol, (E)-	5996	0.034
19.291	1-Penten-3-ol	1810	0.010
	Ketones		
6.336	3-Heptanone, 6-methyl-	1068060	6.086
6.331	2,3-Octanedione	588120	3.351
13.705	2-Heptanone	15129	0.086
	Others		
23.665	3-Methyl-5-hydroxy-isoxazole	32310	0.184
13.688	Methylamine, N,N-dimethyl-	1399	0.008
(S)-trans-Calamenene	474284	0.197	
Mesitylene	330758	0.137	
Cyclohexene, 1-methyl-4-(1-methylethenyl)-	489752	0.203	
5.89 Nonadecene	23625	0.134	
1-Nonadecene	323625	0.102	
3-Carene	245853	0.072	
12.177 Bicyclo[5.1.0]octane, 8-(1-methylethylidene)-	172844	0.064	
2.1304 Toluene	154794	0.004	
Undecane	10486	0.004	

Aldehydes

Hexanal	11966421	4.963
Nonanal	9702159	4.024
Heptanal	2573292	1.067
Undecenal	1534136	0.636
Octanal	1491872	0.619
Decanal	383382	0.159
Dodecanal	340726	0.141
Pentanal	299246	0.124
Dodecanal	279610	0.116
Heptanal	235256	0.098
Dodecanal	178670	0.074
Heptadienal, (E,E)-	139235	0.058
Heptanal	82835	0.034
Nonenal, (E)-	68753	0.029
Butanal	63014	0.026
Nonadien, (E,Z)-	32278	0.013
Pentenal, (E)-	24368	0.010
Heptenal, (E)-	6441	0.003

Alcohols

1-Octen-3-ol	11100825	4.604
Heptanol	809845	0.336
Octen-1-ol	649970	0.270
Hexanol	273597	0.113
Pentanol	130539	0.054
Nonadien-1-ol	128579	0.053
Penten-1-ol, (E)-	66845	0.028
Penten-3-ol	58411	0.024
Penten-1-ol, (Z)-	29513	0.012
Hexen-1-ol, (E)-	19178	0.008
Nonanol	12390	0.005
Octanol	10931	0.005

Ketones

| 2,3-Octanedione | 2686472 | 1.114 |
| Heptanone | 10661 | 0.004 |

Esters

| Sulfurous acid, dodecyl pentyl ester | 255235 | 0.106 |

Others

| Indole | 1505303 | 0.624 |
| Furan, 2-pentyl- | 6295 | 0.003 |
Volatile compound analysis results from fresh and steamed Spanish mackerel samples successfully detected as much as 37 and 102 volatile compounds, respectively, which then were categorized into several major groups such as hydrocarbon, aldehydes, alcohols, ketones and others. Aliphatic, cyclic and aromatic hydrocarbons in fresh and steamed Spanish mackerel samples (12 and 42 compounds) were the highest in quantity with pentadecane as the most abundant compounds present in fresh and steamed samples (38.388%; 18.035% respectively). In addition to hydrocarbons, respectively in the fresh and steamed Spanish mackerel samples, GC/MS were also detecting aldehydes group (10 and 28 compounds) with hexanal (13.215%) and octanal (8.851%) which had the highest proportions, alcohols (9 and 16 compounds) with (Z)-2-Penten-1-ol (5.134%) and 1-octen-3-ol (4.315%) had the highest proportions, ketones (5 and 8 compounds) with 2,3-octanedione (6.103%) and 2-decanone (3.684%) had the highest proportions in fresh and steamed samples respectively. In the steamed Spanish mackerel samples, two ester compounds was also detected with (Z)-3-Hexenoic acid, methyl ester (0.149%) had the highest proportion. The volatile component analysis was also detected 6 compounds from various nitrogenous and furan groups compounds. The volatile compounds of fresh and steamed samples analyses results are shown in Table 5 and Table 6 with their proportions sorted from highest to lowest abundance.

RT	Groups	Area	Proportion (%)
18.0164	Pentadecane	12194171	38.388
21.936	Hexadecane, 2,6,11,15-tetramethyl-	2601379	8.189
21.823	Heptadecane	1337526	4.211
11.038	Naphthalene	1099043	3.460
15.9526	Tetradecane	430556	1.355
19.9739	Hexadecane	351285	1.106
7.2736	Limonene	299447	0.943
13.7684	Tridecane	257358	0.810
11.4749	Undecane	110789	0.349
17.2373	Heptane, 2,6-dimethyl-	83989	0.264
2.1406	Toluene	24093	0.076
7.3125	Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (S)-	11770	0.037
2.5391	Hexanal	4197730	13.215
4.3573	Heptanal	654198	2.059
9.1975	Nonanal	344298	1.084
6.0988	2-Octenal, (E)-	317901	1.001
13.5813	2-Nonenal, (E)-	135385	0.426
13.5818	Butanal	41607	0.131
11.6385	Decanal	19337	0.061
13.9591	Dodecanal	10359	0.033
14.7554	Octanal	2963	0.009
7.1832	Benzaldehyde, 4-ethyl-	1834	0.006
6.2511	2-Penten-1-ol, (Z)-	1630891	5.134
6.2848	2-Octen-1-ol	1012469	3.187
6.2529	1-Octen-3-ol	844424	2.658
6.0846	1-Heptanol	672161	2.116
1.3862	1-Penten-3-ol	186560	0.587
2.1843	1-Pentanol	96996	0.305
2.4966	2-Hexen-1-ol, (E)-	77693	0.245
3.8367	1-Hexanol	49894	0.157
RT	Groups	Area	Proportion (%)
----------	--	-------	----------------
7.4772	1-Hexanol, 2-ethyl-	22449	0.071
	Ketones		
6.3249	2,3-Octanedione	193881	6.103
13.6716	2-Decanone	421001	1.325
1.4393	2,3-Pentanedione	212674	0.670
9.0534	3-Heptanone, 6-methyl-	30247	0.095
8.9235	2-Heptanone	10263	0.032
	Others		
6.4394	Furan, 2-pentyl-	32385	0.102

Table 6. Volatile compounds in steamed Spanish mackerel samples.

RT	Groups	Area	Proportion (%)
18.082	Pentadecane	156052623	18.035
21.971	Pentadecane, 2,6,10,14-tetramethyl-	66552586	7.691
21.853	Heptadecane	34976984	4.042
12.006	Cyclohexene, 3-ethenyl-	12372341	1.430
13.7761	Tridecane	10019968	1.158
11.056	Azulene	8313380	0.961
19.9758	Hexadecane	8129937	0.940
15.9515	Tetradecane	7443583	0.860
11.4768	Dodecane	7109119	0.822
8.5505	1,3,6-Heptatriene, 5-methyl-	6705974	0.775
13.163	1,4-Octadiene	5434787	0.628
5.418	Cyclobutane, 1,2-diethenyl-	4767538	0.551
13.393	1,3-Cyclooctadiene, (Z,Z)-	4205079	0.486
9.0718	Undecane	3731451	0.431
8.653	3-Octyne	2869724	0.332
17.237	Heptadecane, 2,6,10,14-tetramethyl-	2453175	0.284
17.609	2-Tridecene, (E)-	2418128	0.279
12.791	1,2-Heptadiene	2287224	0.264
9.615	Bicyclo[4.1.1]oct-2-ene	2207940	0.255
12.662	Oxiirane, 3-butenyln-	2113021	0.244
9.863	Cyclopentane, 1-ethyl-3-methyl-, cis-	1885844	0.218
17.868	1-Pentadecene	1879303	0.217
15.755	Z-1,9-Hexadecadiene	1765776	0.204
7.231	β-Cymene	1708841	0.197
9.45	1,3-Cyclooctadiene	1690275	0.195
12.154	Cyclopentane, 2-ethyl-1,1-dimethyl-	1608641	0.186
7.555	2,6-Octadiene, (E,E)-	1373570	0.159
10.837	Dispiro[2.1.2.1]octane	1301766	0.150
7.312	Limonene	1188173	0.137
15.235	Bicyclo[10.1.0]tridec-1-ene	958734	0.111
8.754	Cyclooctene, 3-ethenyl-	890796	0.103
21.443	3-Heptadecene, (Z)-	675850	0.078
25.2988	Nonadecane	487865	0.056
19.834	Z-8-Hexadecene	474294	0.055
7.372	4-Decyne	348494	0.040
23.491	Nonadecene	282882	0.033
13.558	Tridecane, (Z)-	275222	0.032
14.551	Benzene, 1-methoxy-4-pentyl-	152838	0.018
19.5383	Naphthalene, decahydro-	99718	0.012
17.75	Cyclopentadecane	90797	0.010
Compound	Retention Time	Relative Intensity	
----------------------------------	----------------	--------------------	
Toluene	2.1726	0.003	
Octahydro-1-oxo-cyclopropa[c]indene	17.461	0.001	

Aldehydes

Compound	Retention Time	Relative Intensity
Hexanal	6.7872	8.851
Nonanal	9.2394	8.670
Hexanal	2.6301	5.648
Heptanal	4.433	3.728
Decanal	11.6468	1.309
Undecanal	13.966	0.958
Benaldehyde, 4-ethyl-	10.6137	0.788
Tetradecanal	20.245	0.780
Dodecanal	16.1723	0.746
2-Undecenal	16.7473	0.703
cis-4-Decenal	11.369	0.643
Hexadecanal	23.9233	0.626
Tridecanal	18.2703	0.583
1,4-Hexadienal, (E,E)-	1.5929	0.489
13-Methyltetradecanal	22.142	0.476
Benzaldehyde	6.749	0.304
7-Octenal, 3,7-dimethyl-	14.745	0.236
2-Octenal, (E)-	8.0924	0.187
E-14-Hexadecenal	21.717	0.162
2-Nonenal, (E)-	10.5641	0.120
Pentanal	1.2641	0.103
2,6-Nonadienal, (E,Z)-	10.3965	0.076
Benaldehyde, 2,4-dimethyl-	10.147	0.039
Methional	4.5646	0.029
1-Pentanol, 5-(methylenecyclopropyl)-	14.1905	0.027
2-Pentenal, (Z)-	1.932	0.004
Butanal	1.0876	0.004
2-Heptenal, (E)-	24.6937	0.0003

Alcohols

Compound	Retention Time	Relative Intensity
1-Octen-3-ol	6.3622	4.315
1-Octen-1-ol	8.4543	1.672
Heptanol	6.1343	1.065
Octanol	8.5287	0.929
Z-10-Pentadecen-1-ol	12.549	0.528
2-Nonyn-1-ol	13.104	0.353
Nonanol	10.9319	0.312
2,4-Decadien-1-ol	7.809	0.119
5-Octen-2-yn-4-ol	15.389	0.109
Pentanol, 5-(methylene cyclopropyl)-	13.459	0.093
E-2-Octadecadecen-1-ol	25.649	0.071
1-Pentanol	2.283	0.042
Hexanol	3.8887	0.033
Undecyn-1-ol	12.927	0.027
Pent-1-ol, (Z)-	2.3192	0.010
Pent-3-ol	20.8861	0.001

Ketones

Compound	Retention Time	Relative Intensity
Decanone	13.6935	3.684
Heptanone, 6-methyl-	6.3757	2.334
Heptanone	8.9342	0.584
Heptanone, 6-methyl-	16.0912	0.350
In general, fresh fish are characterized by sweet, mild, green, plant-like, metallic and fishy aromas and volatile compounds contributing to these aromas are generated mainly by oxidative enzymatic reactions and auto oxidation of lipids [6]. According to [26], aroma description range of fresh Patin catfish are fresh, neutral and has species specific aroma and for the steamed one, its aroma description range are a bit fishy, fresh, neutral and species specific aroma. Taste descriptions of steamed Patin catfish are bit umami, slightly sweet and juicy.

Various volatile compounds that have been detected on both fish species were derived from sample's components, mainly from proteins and lipid content, so that the wide variety of quantities and volatile compounds are related to variation of chemical compounds contained in the samples. Most of those volatile compounds which contribute to commodities aroma were derived from the results of enzymatic reactions, microorganism activities, lipid auto oxidation, resulting substance from various thermal involved reactions and environmental impacts [7]. More varieties of volatile compounds than fresh samples have been detected and identified in processed fishery samples and their types and composition would depend on the sample type, chemical composition and processing methods. Several papers have described these in their research, among them were [14], [15], [17], [18], [22], [27].

In general, it can be assumed that processed fish possessed a higher number of flavour components compared to those of raw fish. One of the reasons is that the further increasing of such components was a result of biochemical pathways of protein and lipid of fish. The other reason may be the concentration of such flavour components was found to be much higher in volatile component analysis due to the reduced moisture content during processing which resulted in a higher concentration of flavour components in the final product. According to [14], flavour components detected in dried horse mackerel were formed probably as a result of oxidation of lipid as well as enzymic hydrolysis of the original components of fish such as lipid and protein. Thermal condition may accelerate retro-aldol degradation of unsaturated aldehydes which lead to altered flavour in these products. Other elements that could affect the numbers and types of compounds discovered in this volatile compound analysis were extraction method, type of samples and GC/MS column and its running parameters [17].

As mentioned above, most of the detected compound group originates from and could be categorized into several groups which were hydrocarbons, aldehydes, alcohols, ketones and their derivatives. Volatile compounds that came from hydrocarbon groups could derive from decarboxylation reaction and the splitting process of fatty acid’s carbon chains, a secondary reaction from carotenoid (if present) and unsaturated fatty acids thermal oxidations [4], [5], [10]. Aldehydes group compounds detected could derive from fatty acid carbon’s double bonds oxidation whether they were saturated or unsaturated [5], [8], [10], [22], [42], [43]. Alcohols, aldehydes and ketones groups volatiles compounds detected, were also could formed as a result of lipid and fatty acid oxidations and
amino acid degradation that occurred during processing [44], [45], [46]. Almost all reaction that could generate or produce volatile compounds would involve saturating and unsaturated fatty acids, which in general were abundantly contained in most of fishery commodities. The sensory differences could be expected among species depending on the lipid content since most of the volatile compounds in fish are derived from the oxidative breakdown of unsaturated fatty acids [29].

Some of the hydrocarbons, aldehydes, alcohols and ketone groups which detected in samples such as limonene, naphthalene, hexadecane, nonadecane, tridecane, dodecane, 1-nonadecene, toluene, nonanal, hexadecanal, pentanal, heptanal, 1-octen-3-ol, 1-nonanol, 1-hexanol, 2-ethyl-1-hexanol, 2-heptanone, 2-decanone were also known being detected in raw, cooked and recooked silver carp [10], wild and cultured sea bream [7] and raw black bream [22]. Ketone compound 2,3-pentanedione were known detected in fresh sardine and has a caramel like flavour characteristic. Aldehydes such as hexanal was detected in all the samples and known to have green-like flavour characteristic, methional that was detected in fresh patin and fresh and steamed Spanish mackerel has its almond/fruity/creamy/nutty aroma. Ketones group detected in samples are known to contribute to the sweet aroma of many crustaceans [6].

4. Conclusion

The moisture, ash, protein and lipid content analyses results from fresh and steamed samples of Patin catfish and Spanish mackerel were relatively differ. These measurement results are basically depending on the commodity type, initial chemical composition of the samples, feed, environmental factors and processing technique. Moisture loss during heating process will affect other contents measured. Lower moisture content in samples would result in higher numbers of other contents measurement. Amino acid analysis showed that both species steamed fish samples possess a relatively higher level of amino acids if compared to the fresh one. This increasement could be affected by proteolytic reaction that occurred during steaming and time length of the heat treatment. The highest amount of amino acids detected in fresh and steamed samples of both species is glutamic acid which imparts product’s umami taste. Volatile compound analysis showed that steamed Patin catfish and Spanish mackerel samples has higher quantities of volatile compounds compared to the compounds that were identified from fresh samples and most of the detected compound group could be categorized into hydrocarbons, aldehydes, alcohols, ketones and others (esters, nitrogenous compounds, furan). As much as 29 and 59 volatile compounds were detected from fresh and steamed Patin catfish samples, respectively, and 37 and 102 volatile compounds were detected from fresh and steamed Spanish mackerel respectively. It can be assumed from these results that volatile compounds found in marine water fish are higher in quantity compared to freshwater fish. The most abundant compound groups in both samples are aliphatic, cyclic and aromatic hydrocarbons which derive from decarboxylation reaction and the splitting process of fatty acid’s carbon chains, a secondary reaction from thermal oxidations of unsaturated fatty acids.
References
[1] Statistical Data and Information Centre 2013 *West Java Province Marine and Fisheries Profile to Support Marine and Fishery Industrialization* (Jakarta: Ministry of Marine and Fisheries) pp 145-221
[2] Statistical Data and Information Centre 2014 *Marine and Fisheries in Figures 2014* (Jakarta: Ministry of Marine and Fisheries) pp 31-44
[3] Burdock A G 2002 *Fenaroli’s Handbook of Flavour Ingredients, 4th Edition* (Boca Raton: CRC Press)
[4] Chung H Y, Yung I K S, Ma W C J and Kim J 2002. Analysis of volatile components in frozen and dried scallops (*P. yesseonensis*) by gas chromatography/mass spectrometry. *Food Research International* **35** 43-53.
[5] Linder M and Ackman R G 2002 Volatile compounds recovered by solid-phase micro extraction from fresh adductor muscle and total lipids of sea scallop (*Placopecten magellanicus*) from Georges Bank (Nova Scotia) *J Food Sci* **67** 2032-37
[6] Morita K, Kubota K and Aishima T 2003 Comparison of aroma characteristics of 16 fish species by sensory evaluation and gas chromatographic analysis. *Journal of the Science of Food and Agriculture* **83** 289-297.
[7] Alasalvar C, Taylor K D A and Shahidi F 2002 Comparison of volatile components in frozen and dried scallops (*P. yesseonensis*) by gas chromatography/mass spectrometry. *Food Research International* **35** 43-53.
[8] Guilleen M D, Errecalde M C, Salmeron J and Casas C 2006 Headspace volatile components of smoked swordfish (*Xiphius gladius*) and cod (*Gadus morhua*) detected by means of solid phase micro extraction and gas chromatography–mass spectrometry *Food Chem* **94** 151-6.
[9] Mansur M A, Hossain M I, Takamura H and Matoba T 2002 Flavour components of some processed fish and fishery products of Japan. *Bangladesh J. Fish. Res.* **6** 89-97
[10] Deng Y, Luo Y, Wang Y, and Zhao Y 2014 Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. *Food Chemistry* **171** 168-176
[11] Chen D W and Zhang M 2006 Non-volatile taste active compounds in the meat of Chinese mitten crab (*Eriocheir sinensis*) *Food Chemistry* **104** 1200-05
[12] Pratama R I, Rostini I and Awaluadin M Y 2013 Flavour composition of fresh and steamed common carp (*Cyprinus carpio*) *Jurnal Akuatika* **4** 55-67
[13] Pratama R I 2011 *Flavour Characteristics of Several Indonesian Smoked Fish* Thesis (Bogor: School of Postgraduate Bogor Agricultural Institute)
[14] Association of Official Analytical Chemist (AOAC) 2005 *Official Methods of Analysis of AOAC International 18th Edition* (Gaithersburg: AOAC International)
[15] Ishida Y, Fujiwara M, Kinoshita T, and Nimura N 1987. *Method of amino acid analysis*. United States Patent 4670403 (http://www.freepatentsonline.com/4670403, accessed: March 8, 2011, 22:15).
[16] Toppe J, Albrectsen S, Hoppe B and Aksnes A 2007 Chemical composition, mineral content
and amino acid and lipid profiles in bones from various fish species Comparative Biochemistry and Physiology B 146 395-401

[22] Guillen M and Errecalde M 2002 Volatile components of raw and smoked black bream (Brama raii) and rainbow trout (Oncorhynchus mykiss) studied by means of solid phase micro extraction and gas chromatography/mass spectrometry J Sci Food Agric 82 945-52

[23] Duflos G, Moine F, Coin V M and Malle P 2005 Determination of volatile compounds in whiting (Merlangius merlagus) using headspace-solid-phase microextraction-gas chromatography-mass spectrometry Journal of Chromatographic Science 43 304-12

[24] Mallard G W and Reed J 1997 Automatic Mass Spectral Deconvolution and Identification System (AMDIS) User Guide (Gaithersburg: U.S. Department of Commerce)

[25] Anggo A D, Ma’ruf W F, Swastawati F and Rianingsih, L Changes of amino and fatty acids in anchovy (Stolephorus sp) fermented fish paste with different fermentation periods Procedia Environmental Sciences 23 58-63

[26] Suryaningrum D T, Muljanah I, and Tahapari E 2010 Sensory profile and nutrition value of several types of patin catfish and nasutus hybrid Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan 5 153-64

[27] Puwastien P, Judprasong K, Kettwan E, Vasanachitt K, Nakngamanong Y and Bhattacharjee L 1999 Proximate composition of raw and cooked Thai freshwater and marine fish Journal of Food Composition and Analysis 12 9-16

[28] Lazo O, Guerrero L, Alexi N, Grigorakis K, Claret A, Perez Z A, and Bou R 2017 Sensory characterization, physico-chemical properties and somatic yields of five emerging fish species. http://dx.doi.org/10.1016/j.foodres.2017.07.023

[29] Sebranek J 2009 Basic curing ingredients (Ingredients in Meat Product Properties, Functionality and Applications) ed R Tarte (New York: Springer Science) pp 1-24

[30] Antoine F R, Wei C I, Littell R C, Quinn B P, Hogle A D, and Marshall M R 2001 Free amino acids in dark and white muscle fish as determined by O-phthaldialdehyde Precolumn derivatization Journal of Food Science 66 72-7

[31] Vijayan D K, Jayarani R, Singh D K, Chatterjee N S, Mathew S, Mohanty B P, Sankar T V, and Anandan R 2016 Comparative studies on nutrient profiling of two deep sea fish (Noepinnula orientalis) and (Chlorophthalmus corniger) and brackish water fish (Scatophagus argus). The Journal of Basic & Applied Zoology 77 41-8

[32] Oluwaniyi O O, Dosumu O O, and Awolola G V 2010 Effect of local processing methods (boiling, frying and roasting) on the amino acid composition of four marine fishes commonly consumed in Nigeria Food Chemistry 123 1000-06

[33] Kato H, Mo’R , Rhue and Nishimura T 1989 Role of free amino acids and peptides in food taste ed R Teranishi Flavour chemistry: trends and developments Wongso S, Yamanaka H 1998 Extractive components of the adductor muscle of Japanese baking scallop and changes during refrigerated storage J Food Sci 63 772-6

[34] Suzuki H, Kajimoto Y, and Kumagai H. 2002. Improvement of the bitter taste of amino acids through the transpeptidation reaction of bacterial γ-Glutamyltranspeptidase J. Agric. Food.
[40] Kubota S, Itoh K, Niizeki N, Song X A, Okimoto K, Ando M, Murata M and Sakaguchi M 2002 Organic taste-active components in the hot water extract of yellowtail muscle Food Sci. Technol. Res. 8 45-9

[41] Maga J A 1987 The flavour chemistry of wood smoke Food Review International 3 139-83

[42] Sakakibara H, Yanai T, Yajima I and Hayashi K 1988 Changes in volatile flavour compounds of powdered dried bonito (katsuobushi) during storage Agric Biol Chem 52 2731-39

[43] Cha Y J, Baek H H, Hsieh C Y 1992 Volatile components in flavour concentrates from crayfish processing waste J Sci Food Agric 58 239-48.

[44] Yajima I, Nakamura M and Sakakibara H 1983 Volatile flavour components of dried bonito (katsuobushi) II. from neutral fraction Agric Biol Chem 47 1755-60.

[45] Sakakibara H, Ide J, Yanai T, Yajima I and Hayashi K 1990 Volatile flavour compounds of some kinds of dried and smoked fish Agric Biol Chem 54 9-16.

[46] Ho C T and Chen Q 1994 Lipids in food flavours: an overview (Lipids in Food Flavours) eds C T Ho and T. G. Hartman (Washington DC: American Chemical Society)