1. Introduction

Let X, Y and Z be topological spaces. For a mapping $f : X \times Y \to Z$ and a point $(x, y) \in X \times Y$ we write $f^x(y) = f(x, y)$. A mapping $f : X \times Y \to Z$ is said to be separately continuous, if mappings $f^x : Y \to Z$ and $f_y : X \to Z$ are continuous for all $x \in X$ and $y \in Y$. If $f : X \to Y$ is a pointwise limit of a sequence of separately continuous mappings $f_n : X \to Y$, then f is a Baire-one mapping or f belongs to the first Baire class.

In 1898 H. Lebesgue \cite{1} proved that if $X = Y = \mathbb{R}$ then every separately continuous function $f : X \times Y \to Z$ belongs to the first Baire class. A collection of topological spaces (X, Y, Z) with this property we call a Lebesgue triple.

The result of Lebesgue was generalized by many mathematicians (see \cite{2, 3, 4, 5, 6} and the references given there). In particular, A. Kalancha and V. Maslyuchenko \cite{4} showed that $(\mathbb{R}, \mathbb{R}, Z)$ is a Lebesgue triple if Z is a topological vector space. T. Banakh \cite{5} proved that $(\mathbb{R}, \mathbb{R}, Z)$ is a Lebesgue triple in the case when Z is an equiconnected space. It follows from \cite{6} Theorem 3 that for every metrizable arcwise connected and locally arcwise connected space Z a collection $(\mathbb{R}, \mathbb{R}, Z)$ is a Lebesgue triple.

In the connection with the above-mentioned results V. Maslyuchenko put the following question.

Question 1.1. Does there exist a topological space Z such that $(\mathbb{R}, \mathbb{R}, Z)$ is not a Lebesgue triple?

Here we give the positive answer to this question. Moreover, we prove that (X, Y, Z) is not a Lebesgue triple for topological spaces X and Y of a wide class of spaces, which includes, in particular, all spaces \mathbb{R}^n, and for a space $Z = X \times Y$ endowed with the cross-topology (see definitions in Section 2). In Sections 2 and 3 we give some auxiliary properties of this topology. Section 4 contains a proof of the main result. In the last section we show that connectedness-like conditions on spaces X and Y in the main result are essential. We prove that (X, Y, Z) is a Lebesgue triple when X is a strongly zero-dimensional metrizable space, Y and Z are arbitrary topological spaces.

2. Compact sets in the cross-topology

Let X and Y be topological spaces. We denote by γ the collection of all subsets A of $X \times Y$ such that for every point (x, y) of A there exist such neighborhoods U and V of x and y in X and Y, respectively, that $(\{x\} \times V) \cup (U \times \{y\}) \subseteq A$. The system γ forms a topology on $X \times Y$, which is called the cross-topology. A product $X \times Y$ with the cross-topology we denote by $(X \times Y, \gamma)$.

For a point $p = (x, y) \in X \times Y$ by cross(p) we denote the set $(\{x\} \times Y) \cup (X \times \{y\})$. For an arbitrary $A \subseteq X \times Y$ let cross(A) = $\bigcup_{p \in A}$ cross(p).

Proposition 2.1. Let X and Y be T_1-spaces and $(p_n)_{n=1}^\infty$ a sequence of points $p_n = (x_n, y_n) \in X \times Y$ such that $x_n \neq x_m$ and $y_n \neq y_m$ if $n \neq m$. Then $P = \{p_n : n \in \mathbb{N}\}$ is a γ-discrete set.

Proof. Since every one-point subset of X or of Y is closed, P is γ-closed. Similarly, every subset $Q \subseteq P$ is also γ-closed. Hence, P is closed discrete subspace of $(X \times Y, \gamma)$. \qed
Proposition 2.2. Let X and Y be T_1-spaces and let $K \subseteq X \times Y$ be a γ-compact set. Then there exists a countable set $A \subseteq X \times Y$ such that $K \subseteq \text{cross}(A)$.

Proof. Assume that $K \not\subseteq \text{cross}(A)$ for any finite set $A \subseteq X \times Y$. We choose an arbitrary point $p_i \in K$ and by the induction on $n \in \mathbb{N}$ we construct a sequence of points $p_n \in K$ such that $p_{n+1} \in K \setminus \text{cross}(P_n)$, where $P_n = \{p_k : 1 \leq k \leq n\}$ for every $n \in \mathbb{N}$. According to Proposition 2.1 the set $P = \{p_n : n \in \mathbb{N}\}$ is infinite γ-discrete in K which contradicts the fact that K is γ-compact. □

Proposition 2.3. Let X and Y be T_1-spaces and let A and B be discrete sets in X and Y, respectively. Then the topology of product τ and the cross-topology γ coincide on the set $C = \text{cross}(A \times B)$.

Proof. Fix $p = (x, y) \in C$. Using the discreteness of A and B, we choose such neighborhoods U and V of x and y in X and Y, respectively, that $|U \cap A| \leq 1$ and $|V \cap B| \leq 1$. Then $C \cap (U \times V) = C \cap \text{cross}(c)$ for some point $c \in C$. Then $\tau = \gamma$ on the set $C \cap (U \times V)$. □

Propositions 2.2 and 2.3 immediately imply the following characterization of γ-compact sets.

Proposition 2.4. Let X and Y be T_1-spaces and $K \subseteq X \times Y$. Then K is γ-compact if and only if when

1. K is compact;
2. $K \subseteq \text{cross}(C)$ for a finite set $C \subseteq X \times Y$.

3. Connected sets and cross-mappings

Proposition 3.1. Let X and Y be connected spaces, A a dense subset of X, let $\emptyset \neq B \subseteq Y$ and $C \subseteq X \times Y$ be such sets that $\text{cross}(A \times B) \subseteq C$. Then C is connected.

Proof. Let U and V be open subsets of C such that $C = U \cup V$. Since X and Y are connected, for every $p \in A \times B$ either $\text{cross}(p) \subseteq U$, or $\text{cross}(p) \subseteq V$. Since $\text{cross}(p) \cap \text{cross}(q) \neq \emptyset$ for distinct points $p, q \in X \times Y$, $\text{cross}(A \times B) \subseteq U$ or $\text{cross}(A \times B) \subseteq V$. Taking into account that $\text{cross}(A \times B)$ is dense in $X \times Y$, and consequently, in C, we obtain that $C \subseteq U$ or $C \subseteq V$. Therefore, $U = \emptyset$ or $V = \emptyset$. Hence, C is connected. □

Corollary 3.2. Let X and Y be infinite connected T_1-spaces. Then the complement to any finite subset of $X \times Y$ is connected.

Proof. Let $C \subseteq X \times Y$ be a finite set. We choose finite sets $A \subseteq X$ and $B \subseteq Y$ such that $C \subseteq A \times B$. Remark that $A_1 = X \setminus A$ and $B_1 = Y \setminus B$ are dense in X and Y, respectively, and $\text{cross}(A_1 \times B_1) \subseteq (X \times Y) \setminus C$. It remains to apply Proposition 3.1. □

Definition 3.3. A topological space X is said to be a C_1-space (or a space with the property C_1), if the complement to any finite subset has finite many components.

Let us observe that the real line \mathbb{R} has the property C_1. Moreover, a finite product of C_1-spaces is a C_1-space.

Let X and Y be topological spaces and $P \subseteq X \times Y$. A mapping $f : P \to X \times Y$ is called a cross-mapping, if $f(p) \subseteq \text{cross}(p)$ for every $p \in P$.

Lemma 3.4. Let X and Y be Hausdorff spaces, $U \subseteq X$, $V \subseteq Y$, let $f : U \times V \to X \times Y$ be a continuous cross-mapping, let $A \subseteq X$ and $B \subseteq Y$ be finite sets and the following conditions hold:

1. U, V be connected C_1-spaces;
2. $f(U \times V) \subseteq \text{cross}(A \times B)$.
Then either \(f(U \times V) \subseteq \{a\} \times Y \) for some \(a \in A \), or \(f(U \times V) \subseteq X \times \{b\} \) for some \(b \in B \).

Proof. If both \(U \) and \(V \) are finite, then (1) imply that \(U \) and \(V \) are one-point sets and the lemma follows from (2). If \(U \) is finite (one-point) and \(V \) is infinite, then \(F = \{ z \in U \times V : f(z) \in \text{cross}(A \times B) \setminus (A \times Y) \} \) is finite clopen subset of \(U \times V \). The connectedness of \(U \times V \) implies \(F = \emptyset \). Hence, \(f(U \times V) \subseteq A \times Y \). Since \(f \) is continuous, \(f(U \times V) \subseteq \{a\} \times Y \) for some \(a \in A \).

Now let \(U \) and \(V \) be infinite. Then it follows from (1) that \(U \) and \(V \) have no isolated points. Since \(A_1 = A \cap U \) and \(B_1 = B \cap V \) are closed and nowhere dense in \(U \) and \(V \), respectively, the set

\[
C = (U \times V) \cap \text{cross}(A \times B) = (U \times V) \cap \text{cross}(A_1 \times B_1)
\]

is closed and nowhere dense in \(Z = U \times V \).

Let \(\alpha : U \times V \to X \) and \(\beta : U \times V \to Y \) be continuous functions such that \(f(x, y) = (\alpha(x, y), \beta(x, y)) \) for all \((x, y) \in Z \). Put

\[
Z_\alpha = \{(x, y) \in Z : \alpha(x, y) = x\}, \quad Z_\beta = \{(x, y) \in Z : \beta(x, y) = y\}.
\]

Notice that

\[
P_\alpha = \{z \in Z_\alpha : \alpha(z) \in A\} = Z_\alpha \cap (A \times Y) = Z_\alpha \cap (A_1 \times Y)
\]

is nowhere dense in \(Z \). Therefore, \(Q_\alpha = \{z \in Z_\alpha : \alpha(z) \notin A\} \) is dense in \(\text{int}_Z(Z_\alpha) \), where by \(\text{int}_Z(D) \) we denote the interior of \(D \subseteq Z \) in \(Z \), and by \(\overline{D} \) we denote the closure of \(D \) in \(Z \). Condition (2) implies that \(Q_\alpha \) is contained in the closed set \(\{z \in Z : \beta(z) \in B\} \). Hence,

\[
\text{int}_Z(Z_\alpha) \subseteq \overline{Q_\alpha} \subseteq \{z \in Z : \beta(z) \in B\},
\]

i.e. \(f(\text{int}_Z(Z_\alpha)) \subseteq X \times B \). Similarly, \(f(\text{int}_Z(Z_\beta)) \subseteq A \times Y \).

Since \(f \) is a cross-mapping, \(Z = Z_\alpha \cup Z_\beta \). Remark that \(Z_\alpha \) and \(Z_\beta \) are closed in \(Z \). Let

\[
G = Z \setminus C.
\]

Taking into account that \(C \) is closed and nowhere dense in \(Z \), we have that \(G \) is open and dense in \(Z \). According to (1) the sets \(U \setminus A \) and \(V \setminus B \) have finite many components, therefore, the set \(G = (U \setminus A) \times (V \setminus B) \) has finite many components \(G_1, \ldots, G_k \). Then \(G = \bigcup_{i=1}^k G_i \), where all \(G_i \) are closed in \(G \). Hence, all the sets \(G_i \) are clopen in \(G \), in particular, open in \(Z \). Notice that \(Z_\alpha \cap Z_\beta = \{z \in Z : f(z) = z\} \subseteq f(Z) \subseteq \text{cross}(A \times B) \). Thus, \(G \cap Z_\alpha \cap Z_\beta = \emptyset \). Then \(G_i \subseteq (Z_\alpha \cap G_i) \cup (Z_\beta \cap G_i) \), consequently \(G_i \subseteq Z_\alpha \) or \(G_i \subseteq Z_\beta \) for every \(1 \leq i \leq k \). Let

\[
I_\alpha = \{1 \leq i \leq k : G_i \subseteq Z_\alpha\}, \quad I_\beta = \{1 \leq i \leq k : G_i \subseteq Z_\beta\},
\]

\[
U_\alpha = \bigcup_{i \in I_\alpha} G_i, \quad U_\beta = \bigcup_{i \in I_\beta} G_i.
\]

Remark that

\[
f(U_\alpha) \subseteq f(\text{int}_Z(Z_\alpha)) \subseteq X \times B, \quad f(U_\beta) \subseteq f(\text{int}_Z(Z_\beta)) \subseteq A \times Y.
\]

Hence, for any \(z = (x, y) \in U_\alpha \) we have \(\alpha(x, y) = x \) and \(\beta(x, y) \in B \). Similarly, \(\alpha(x, y) \in A \) and \(\beta(x, y) = y \) for every \(z = (x, y) \in U_\beta \). Therefore, \(z = f(z) \in A \times B \) for any \(z \in U_\alpha \cup U_\beta \). Consequently, \(Z_0 = U_\alpha \cap U_\beta \) is finite.

Denote \(\bar{E} = \overline{U_\alpha \setminus Z_0} \) and \(\bar{D} = \overline{U_\beta \setminus Z_0} \). Since by Proposition 1.3 the set \(Z \setminus Z_0 \) is connected, nonempty and \(Z \setminus Z_0 = E \cup D \), taking into account that \(\overline{E \cap D} = \emptyset \) and \(E \cap \overline{D} = \emptyset \), we obtain \(E = \emptyset \) or \(D = \emptyset \). Assume that \(E = \emptyset \). Then \(U_\beta \) is dense in \(Z \) and

\[
f(Z) \subseteq f(U_\beta) \subseteq A \times Y.
\]
Since \(U \times V \) is connected, \(f(U \times V) \) is connected too, therefore, there is such \(a \in A \) that \(f(U \times V) \subseteq \{a\} \times Y \).

\[\square \]

4. The main result

Proposition 4.1. Let \(X \) and \(Y \) be \(T_1 \)-spaces, \(z_0 \in X \times Y \) and let \((z_n)_{n=1}^{\infty}\) be \(\gamma \)-convergent to \(z_0 \) sequence of points \(z_n = (x_n, y_n) \in X \times Y \). Then there exists \(m \in \mathbb{N} \) such that \(z_n \in \text{cross}(z_0) \) for all \(n \geq m \).

Proof. Assume the contrary. Then by the induction on \(k \in \mathbb{N} \) it is easy to construct a strictly increasing sequence of numbers \(n_k \in \mathbb{N} \) such that \(x_{n_k} \neq x_{n_j} \) and \(y_{n_k} \neq y_{n_j} \) for distinct \(i, j \in \mathbb{N} \), and \(z_{n_k} \notin \text{cross}(z_0) \) for all \(k \in \mathbb{N} \). Now the sequence \((p_k)_{k=1}^{\infty}\) of points \(p_k = z_{n_k} \) converges to \(z_0 \), and from the other side the set \(G = (X \times Y) \setminus \{p_k : k \in \mathbb{N}\} \) is a neighborhood of \(z_0 \), a contradiction. \(\square \)

A system \(\mathcal{A} \) of subsets of a topological space \(X \) is called a \(\pi \)-pseudobase \([8] \), if for every nonempty open set \(U \subseteq X \) there exists a set \(A \in \mathcal{A} \) such that \(\text{int}(A) \neq \emptyset \) and \(A \subseteq U \).

Theorem 4.2. Let \(X \) and \(Y \) be Hausdorff spaces without isolated points and let \(X \) and \(Y \) have \(\pi \)-pseudobases which consist of connected compact \(C_1 \)-sets, and let \(f : X \times Y \to X \times Y \) be the identical mapping. Then \(f \notin B_1(X \times Y, (X \times Y, \gamma)) \).

Proof. Assuming the contrary, we choose a sequence of continuous functions \(f_n : X \times Y \to (X \times Y, \gamma) \) such that \(f_n(x, y) \to (x, y) \) in \((X \times Y, \gamma)\) for all \((x, y) \in X \times Y \).

Remark that every \(f_n \) : \(X \times Y \to X \times Y \) is continuous. Then for every \(n \in \mathbb{N} \) the set \(P_n = \{p \in X \times Y : f_n(p) \in \text{cross}(p)\} \) is closed. Hence, for every \(n \in \mathbb{N} \) the set

\[F_n = \bigcap_{m \geq n} P_m = \{p \in X \times Y : \forall m \geq n \ f_m(p) \in \text{cross}(p)\} \]

is closed too. Moreover, by Proposition 4.1

\[X \times Y = \bigcup_{n=1}^{\infty} F_n. \]

The conditions of the theorem imply that \(Z = X \times Y \) has a \(\pi \)-pseudobase of compact sets. Then the product contains an open everywhere dense locally compact subspace, in particular, the product \(X \times Y \) is Baire. We choose a number \(n_0 \in \mathbb{N} \) and compact connected \(C_1 \)-sets \(U \subseteq X \) and \(V \subseteq Y \) such that \(U \times V \subseteq F_{n_0} \), \(U_0 = \text{int}(U) \neq \emptyset \) and \(V_0 = \text{int}(V) \neq \emptyset \).

Let \(W = U \times V \). According to Proposition 2.4 there exist such sequences of finite sets \(A_n \subseteq X \) and \(B_n \subseteq Y \) that \(f_n(W) \subseteq (A_n \times Y) \cup (X \times B_n) \) for every \(n \in \mathbb{N} \). Since \(X \) and \(Y \) have no isolated points, the sets \(U_0 \) and \(V_0 \) are infinite. Take such points \(p_1 = (x_1, y_1), p_2 = (x_2, y_2) \in U_0 \times V_0 \) that \(p_1 \notin \text{cross}(p_2) \). Since \(X \) and \(Y \) are Hausdorff, there exist neighborhoods \(U_1 \) and \(U_2 \) of \(x_1 \) and \(x_2 \) in \(U_0 \) and neighborhoods \(V_1 \) and \(V_2 \) of \(y_1 \) and \(y_2 \) in \(V_0 \), respectively, such that \(U_1 \cap U_2 = V_1 \cap V_2 = \emptyset \). Now we choose a number \(N \geq n_0 \) such that \(f_N(p_1) \in U_1 \times V_1 \) and \(f_N(p_2) \in U_2 \times V_2 \).

Since \(f_N|_W \) is a cross-mapping, Lemma 3.4 implies that \(f_N(W) \subseteq \{a\} \times Y \) for some \(a \in A \) or \(f_N(W) \subseteq X \times \{b\} \) for some \(b \in B \). Assume that \(f_N(W) \subseteq \{a\} \times Y \) for some \(a \in X \). Then \((U_1 \times V_1) \cap (\{a\} \times Y) \neq \emptyset \) and \((U_2 \times V_2) \cap (\{a\} \times Y) \neq \emptyset \). Therefore, \(a \in U_1 \cap U_2 \), which is impossible. \(\square \)

Corollary 4.3. Let \(n, m \geq 1 \) and let \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m \) be the identical mapping. Then \(f \notin B_1(\mathbb{R}^n \times \mathbb{R}^m, (\mathbb{R}^n \times \mathbb{R}^m, \gamma)) \).

Corollary 4.4. The collection \((\mathbb{R}^n, \mathbb{R}^m, (\mathbb{R}^n \times \mathbb{R}^m, \gamma))\) is not a Lebesgue triple for all \(n, m \geq 1 \).
5. Separately continuous mappings on zero-dimensional spaces

Recall that a nonempty topological space X is strongly zero-dimensional, if it is completely regular and every finite functionally open cover of X has a finite disjoint open refinement [9, p. 529].

Theorem 5.1. Let X be a strongly zero-dimensional metrizable space, let Y and Z be topological spaces. Then (X, Y, Z) is a Lebesgue triple.

Proof. Let d be a metric on X, which generates its topology. For every $n \in \mathbb{N}$ we consider an open cover B_n of X by balls of the diameter $\leq \frac{1}{n}$. It follow from [7] that every B_n has locally finite clopen refinement $\forall \alpha < \beta$ if $\alpha > 0$. Then $V_n = (V_{\alpha,n} : 0 \leq \alpha < \beta_n)$ is a locally finite disjoint cover of X by clopen sets $V_{\alpha,n}$ which refines B_n.

Let $f : X \times Y \to Z$ be a separately continuous function. For all $n \in \mathbb{N}$ and $0 \leq \alpha < \beta_n$ we choose a point $x_{\alpha,n} \in V_{\alpha,n}$. Let us consider functions $f_n : X \times Y \to Z$ defined as the following:

$$f_n(x, y) = f(x_{\alpha,n}, y),$$

if $x \in V_{\alpha,n}$ and $y \in Y$. Clearly, for every $n \in \mathbb{N}$ the function f_n is jointly continuous, provided f is continuous with respect to the second variable. We show that $f_n(x, y) \to f(x, y)$ on $X \times Y$. Fix $(x, y) \in X \times Y$ and choose a sequence $(\alpha_n)_{n=1}^\infty$ such that $x \in V_{\alpha_n,n}$. Since $\text{diam} V_{\alpha_n,n} \to 0$, $x_{\alpha_n,n} \to x$. Taking into account that f is continuous with respect to the first variable, we obtain that

$$f_n(x, y) = f(x_{\alpha_n,n}, y) \to f(x, y).$$

Hence, $f \in B_1(X \times Y, Z)$. \qed

References

[1] H. Lebesgue, Sur l’approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
[2] H. Hahn, Reelle Funktionen.1.Teil. Punktfunktionen., Leipzig: Academische Verlagsgesellschaft M.B.H. (1932).
[3] W. Rudin, Lebesgue first theorem, Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Suppl. Studies 78. Academic Press (1981), 741–747.
[4] A. Kalancha, V. Maslyuchenko, Čech-Lebesgue dimension and Baire classification of vector-valued separately continuous mappings, Ukr.Math.J. 55 (11) (2003), 1596–1599. (in Ukrainian)
[5] T. Banakh, (Metrically) quarter-stratifiable spaces and their applications, Math.Stud., 18(1) (2002), 10–28.
[6] O. Karlova, Separately continuous σ-discrete mappings, Bull. of Chernivtsi Nat. Univ., Mathematics, 314–315 (2006), 77–79 (in Ukrainian).
[7] R. Ellis, Extending continuous functions on zero-dimensional spaces, Math. Ann. 186 (1970), 114–122.
[8] F.D. Tall, Stalking the Souslin tree – a topological guide, Canad. Math. Bull., Vol. 19 (3), 1976.
[9] R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989).