Symmetry-deforming interactions of chiral p-forms

X. Bekaert, M. Henneaux and A. Sevrin

aPhysique Théorique et Mathématique, Université Libre de Bruxelles, Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium

bTheoretische Natuurkunde, Vrije Universiteit Brussel Pleinlaan 2, B-1050 Brussel, Belgium

No-go theorems on gauge-symmetry-deforming interactions of chiral p-forms are reviewed. We consider the explicit case of $p = 4$, $D = 10$ and show that the only symmetry-deforming consistent vertex for a system of one chiral 4-form and two 2-forms is the one that occurs in the type II_B supergravity Lagrangian. Article based on a talk given by M. H. at the conference “Constrained Dynamics and Quantum Gravity 99” held in Villasimius (Sardinia), September 13-17 1999, to appear in the proceedings of the meeting (Nucl. Phys. B Proc. Suppl.).

1. INTRODUCTION

Chiral p-forms, which can be defined in $(2p+2)$-dimensional Minkowski spacetime for any even p, have the puzzling feature of not admitting a simple, manifestly covariant action principle even though their equations of motion are Lorentz-invariant, and even though one can define Poincaré generators that appropriately close according to the Poincaré algebra. The case $p = 0$ (chiral bosons) arises in one formulation of the heterotic string, while the cases $p = 2$ and $p = 4$ are relevant to the M-theory 5-brane and type II_B-supergravity, respectively.

Although there is no simple, manifestly covariant action principle, there exists a non-manifestly covariant Lagrangian, which is quadratic in the fields in the free case and which yields the correct dynamics [1]. There exists also a non-polynomial, manifestly covariant action [2]. The two formulations are equivalent since one goes from the second one to the first one by appropriately gauge-fixing the auxiliary pure gauge field introduced in [2].

In a recent paper [3], we have shown that the local interactions of chiral p-forms are severely constrained by the consistency requirement that they should not modify the number of physical degrees of freedom. More precisely, if one imposes that the deformed action (free action + interaction terms) be invariant under a deformed set of local gauge symmetries that continuously reduce to the gauge symmetries of the free theory as the coupling goes to zero, one finds in fact that no consistent interaction can deform the gauge symmetry at all. The gauge transformations must retain their original form under consistent deformations of the action. There is in particular no analog of the non-abelian Yang-Mills construction for chiral p-forms. The only available interactions must be invariant under the gauge symmetries of the abelian theory and leave the gauge structure untouched. This result generalizes to chiral p-forms the no-go theorems established for non-chiral p-forms in [4–8].

Motivated by the M-theory 5-brane, we considered in [3] the explicit case of $p = 2$. However, the argument is clearly quite general and applies to any p. Although we used as starting point the non-manifestly covariant Lagrangian of [1], the same obstructions would be present had we worked in the “PST formalism” of [2] because, as...
we have recalled, one recovers 1 from 2 by appropriately fixing the gauge. Furthermore, since the obstructions arise already at the level of the gauge symmetries (and not Lorentz invariance), they are easily detected in the non-manifestly covariant approach.

Every no-go theorem has of course the weaknesses of its hypotheses. In our case, these are:

1. The deformed action is local
2. The deformation is continuous
3. The system of local fields being dealt with is a system of N chiral p-forms described in the free limit by the non-covariant action of 1 (or the covariant action of 2, see above). Scalar fields or spinor fields are also allowed.

We stress, in particular, that no restriction on the number N of chiral p-forms was ever imposed. So, the p-forms can be labelled by any number of indices. Furthermore, no assumption on the order of the coupling vertices was made; these are not necessarily cubic, but can be quartic, quintic etc.

Accordingly, an interacting theory involving chiral p-forms with a deformed gauge symmetry must be either non-local (which is the most likely possibility in the M-theory 5-brane case, perhaps in the context of gerbes 1,2, or non-perturbative and non-continuously connected with the free case, or have a richer field content.

Even this last possibility appears to be rather restrictive, however, and subject to strong no-go theorems that forbid a non-abelian deformation of the chiral p-form gauge symmetries analogous to the Yang-Mills deformation. One finds that the interactions may deform the gauge transformations but, when they do so, they cannot deform their algebra (to first-order in the deformation parameter). Furthermore, those that do deform the gauge transformations are few in number (if there is any at all). All other consistent interactions are again off-shell gauge-invariant under the abelian gauge symmetry and so do not deform it. We have not checked the rigidity of the gauge algebra in full generality in the chiral case, but the study of various explicit examples and the similarity with the non-chiral case where it has been established make us confident that this rigidity holds in the same manner in the chiral case. This leaves only the first two possibilities for non-abelian deformations.

We illustrate in these proceedings the no-go theorems on the symmetry-deforming interactions of exterior form gauge fields (involving chiral ones) by considering the system consisting of a chiral 4-form in ten spacetime dimensions together with n 2-forms. This is relevant to type II_B-supergravity. We show that the only allowed symmetry-deforming interactions are in fact precisely those that appear in the supergravity Lagrangian. There are no others. These interactions deform the gauge transformations of the exterior forms but not their algebra, which remain abelian.

This case is a good example of the general cohomological techniques involved in the calculation of the deformations.

2. FIRST-ORDER DEFORMATIONS

2.1. Free action

We start with the free action

$$S[A_{ijkl}, B^a_{\lambda\mu}] = S_A + S_B$$

with

$$S_A = \int d^{10}x \left(\frac{1}{10} \varepsilon^{i_1...i_5j_1...j_4} F_{i_1...i_5} A_{j_1...j_4} - \frac{4!}{10} F_{i_1...i_5} F_{j_1...j_5} \right)$$

and

$$S_B = -\sum_a \frac{1}{2 \cdot 3!} \int d^{10}x H^a_{\lambda\mu\nu} H^{a\lambda\mu\nu}. \quad (3)$$

We have set

$$F_{ijklm} = 5 \partial_{[ijklm]} A, \quad H^a_{\lambda\mu\nu} = 3 \partial_{[\lambda} B^a_{\mu\nu]}.$$

The PST manifestly covariant version of the theory may be found in 1,2. We leave the number of 2-forms unspecified at this stage. We shall see that consistency to second-order forces the chiral 4-form to interact with only two 2-forms.

The action is invariant under the following gauge transformations

$$\delta_{\Lambda, \epsilon} A_{j_1...j_4} = 4 \partial_{j_1} A_{j_2j_3j_4}$$

(5)
are the standard ones for the 2-forms and kinetic term behaves thus like a Chern-Simons term. This is the self-duality condition for the chiral 4-form. From this equation, one derives

$$4! \partial_m F^{m j_1 \ldots j_k} - \varepsilon^{i_1 \ldots i_{k+1}} \partial_{[i_1} \hat{A}_{i_2 \ldots i_k]} = 0$$

for the chiral 4-form. From this equation, one derives

$$\hat{A}_{i_1 \ldots i_k} - \frac{1}{5!} \varepsilon_{i_1 \ldots i_{k+1}} F^{j_1 \ldots j_k} = 4 \partial_{[i_1} u_{i_2 i_3 i_4]}$$

(assuming the 4th Betti number of the spatial sections to vanish). This is the self-duality condition $F = \ast F$ if one identifies the arbitrary functions $u_{i_2 i_3 i_4}$ with the gauge components $A_{0 i_2 i_3 i_4}$.

A chiral 4-form and two 2-forms are present in the spectrum of type II$_B$ supergravity in 10 dimensions. The 4-form signals the presence of the D3-brane and the two 2-forms correspond to the fundamental string and the D1-brane, respectively.

2.2. BRST differential

We shall here just outline the general method and ideas without going into the details. These will be given in [16].

To determine the possible consistent interactions, we follow the method of [17]. The question boils down to computing the BRST cohomological group $H^0(s|d)$ at ghost number zero, i.e., one must find the general solution of the cocycle condition

$$sa + db = 0, \quad gh(a) = 0$$

modulo trivial ones (of the form $sm + dn$). Here s is the BRST differential and d the spacetime exterior derivative.

The solutions of (1) are expanded according to the antighost (or antifield) number,

$$a = a_0 + a_1 + \cdots + a_k$$

The fact that the expansion stops at a finite order k follows from the fact a_0 contains only a finite number of derivatives, which already excludes a weak form of non-locality.

Each term in the expansion (10) has total ghost number zero. The first term does not involve the ghosts or the antifields. The next terms depend both on the antifields and the ghosts, but in such a way that the antighost number exactly balances the pure ghost number (the higher i, the “more” a_i involves antifields and hence also ghosts). The antifield-independent term a_0 defines the first-order consistent vertex. The antifield-dependent terms define the deformation of the gauge-symmetry and its algebra. In particular, the term a_1, which is linear in the antifields conjugate to the classical fields, defines the deformation of the gauge transformations. Similarly, the term in a_2 which is linear in the antifields conjugate to the first ghosts and quadratic in those ghosts, corresponds to the deformation of the gauge algebra. If this term is absent, the gauge algebra remains abelian (to first order) even after the interaction is switched on. This occurs if the most general solution of (10) is at most linear in the ghosts, up to trivial terms that can absorbed through redefinitions. This what happens for the model at hand.

The BRST differential is explicitly given by $s = \delta + \gamma$ where one has, in the 4-form sector with ghosts C_{ijk}, ghosts of ghosts D_{ij}, E_i and η, and antifields A^{*ijkl}, C^{*ijk}, D^{*ij}, E^{*i}, η^*,

$$\gamma A_{ijkl} = 4 \partial_{[i} C_{jkl]}, \quad \delta A_{ijkl} = 0$$

$$\gamma C_{ijk} = 3 \partial_{[i} D_{jkl]}, \quad \delta C_{ijk} = 0$$

$$\gamma D_{ij} = 2 \partial_{[i} E_{j]}, \quad \delta D_{ij} = 0$$

$$\gamma E_i = \partial_i \eta, \quad \delta E_i = 0$$

$$\gamma \eta = 0, \quad \delta \eta = 0$$

and

$$\delta A^{*ijkl} = 4! \partial_m F^{mijkl} - \varepsilon^{ijklm_1 \ldots m_5} \partial_{[m_1} \hat{A}_{m_2 \ldots m_5]}$$

$$\gamma A^{*ijkl} = 0$$

$$\delta C^{*ijk} = \partial_m A^{*mijkl}, \quad \gamma C^{*ijk} = 0$$

$$\delta D^{*ij} = \partial_m C^{*mij}, \quad \gamma D^{*ij} = 0$$

$$\delta E^{*i} = \partial_m D^{*mi}, \quad \gamma E^{*i} = 0$$
\[\delta \eta^* = \partial_m E^m, \quad \gamma \eta^* = 0. \quad (21) \]

The ghosts \(C_{ijk} \) and ghosts of ghosts \(D_{ij}, D_i, \) and \(\eta \) have respectively pure ghost number 1, 2, 3 and 4. The antifields \(A^{ijkl}, C^{ijkl}, D^{ij}, \) and \(\eta^* \) have respectively antighost number 1, 2, 3, 4 and 5.

In the 2-form sector, the differentials \(\delta \) and \(\gamma \) are given by

\[\gamma B^a_{\lambda \mu} = \partial_\lambda \xi^a_\mu - \partial_\mu \xi^a_\lambda, \quad \delta B^a_{\lambda \mu} = 0, \]
\[\gamma \xi^a_\lambda = \partial_\lambda \sigma^a, \quad \delta \xi^a_\lambda = 0, \]
\[\gamma \sigma^a = 0, \quad \delta \sigma^a = 0, \]
\[\gamma B^a_{\lambda \mu} = 0, \quad \delta B^a_{\lambda \mu} = \partial_\rho H^a_{\rho \mu}, \]
\[\gamma \xi^a_{\lambda \mu} = 0, \quad \delta \xi^a_{\lambda \mu} = \partial_\rho B^a_{\rho \lambda \mu}, \]
\[\gamma \sigma^a_{\lambda} = 0, \quad \delta \sigma^a_{\lambda} = \partial_\rho \xi^a_{\rho \lambda}. \]

The ghosts \(\xi^a_\lambda \) have pure ghost number 1 and the ghosts of ghosts \(\sigma^a \) have pure ghost number 2. The antifields \(B^a_{\lambda \mu}, \xi^a_{\lambda \mu} \) and \(\sigma^a_{\lambda} \) have respectively antighost number 1, 2 and 3.

The (total) ghost number \(gh \) is the difference between the pure ghost number and the antighost number. The component \(\delta \) and \(\gamma \) of \(s \) have (pureghost,antighost) number equal to (0,-1) and (1,0) respectively. The equation \(s^2 = 0 \) is equivalent to \(\delta^2 + \gamma \delta = \gamma^2 = 0. \)

2.3. Deformations

We assume \(k > 0 \) in (11) since when \(a \) reduces to \(a_0 \), it does not modify the gauge transformations and there is nothing to be demonstrated. The idea of the proof is to show that the building blocks out of which \(a_k \) can be made for \(k > 0 \), have ghost numbers that cannot generically add up to zero. Thus, there is no or very few ways to write down an acceptable \(a_k \) for \(k > 0 \).

The building blocks of \(a_k \) are, on the one hand, the polynomials in the last ghosts of ghosts \(\sigma^a \) and \(\eta \) and their temporal derivatives \(\partial_0 \eta, \partial_0 \eta \), etc, and, on the other hand, the elements of the “invariant characteristic cohomology” \(H_k(\delta|\partial|d) \) or \(H(\delta|\partial) \), where \(d \) is the spatial exterior derivative. The former have pure ghost number, while the latter generically have odd antighost number. So, their products generically fail to have total ghost number zero, with only one exception for the system under study.

To see this, one follows the argument given in [3] and finds that the last term \(a_k \) in the general solution of the cocycle condition [4] can be assumed to be annihilated by \(\gamma \), \(\gamma a_k = 0 \). Thus, it reads

\[a_k = \sum_i P^I \omega^I \]

(28)

(up to trivial terms), where \(P^I \) is a polynomial in the curvatures \(F_{ijklm} \) and \(H^a_{\lambda \mu} \), in the antifields, and in their spacetime derivatives, while the \(\omega^I \) form a basis in the algebra of polynomials in the variables \(\sigma^a, \eta, \partial_0 \eta, \partial_0 \eta \), etc, which are the generators of the cohomology \(H(\gamma) \) in positive ghost number [the fact that the time derivative of eta is a generator while the time derivative of sigma isn’t is a consequence from the fact that the 4-form is treated non-covariantly while the 2 form is treated covariantly].

The coefficient \(P^I \) of \(\omega^I \) in the sum (28), which is a 10-form, is subject to different conditions depending on to whether the element \(\omega^I \) that it multiplies depends on \(\eta \) and its time derivatives or not.

1. If \(\omega^I \) involves at least one time derivatives of \(\eta \) (including \(\partial_0^2 \eta \equiv \eta \)), then the corresponding coefficient \(P^I \) must be of the form

\[P^I = Q^I dx^0 \]

where \(Q^I \) is a spatial 9-form solution of \(\delta Q^I + d N^I = 0 \). Here, \(\bar{d} \) is the spatial exterior derivative, \(\bar{d}a = dx^k \partial_k a \). However, there is no non-trivial solution to that equation that would match the ghost number of \(\omega^I \), which is an even number \(\geq 4 \) since \(\omega^I \) contains at least one \(\eta \) or one of its time derivatives. The only non-trivial solutions are indeed in antighost number 5, 2 and 1. Thus, in this case, one cannot construct an \(a_k \) \((k > 0)\) with total ghost number zero. This is exactly the situation described in [3] - and is the only case to be considered for a pure system of chiral \(p \)-forms. Note the similarity with the Hamiltonian analysis of consistent couplings done in [18].

2. If \(\omega^I \) depends only on \(\sigma^a \), the corresponding coefficient \(P^I \) must be a 10-form that solves
the equation $\delta P^I + dN^I = 0$. It must be of even antighost number to match the even ghost number of ω^I. There is one possibility, namely, $C^* \wedge F^a$, where C^* is the 7-form $\varepsilon_{01i\ldots i_6 j_2 j_3} C^* i_1 j_2 j_3 d^a \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_6}$. It has antighost number 2 and can be combined with σ^a to yield a non-trivial a_2. Specifically - and in density notations -,

$$a_2 = C^* i_1 i_2 i_3 H^a_{i_1 i_2 i_3} \sigma^b \mu_{ab}$$

(29)

where μ_{ab} is a matrix of coupling constants having dimension (length)2. The matrix μ_{ab} must be antisymmetric since otherwise $H^a_{i_1 i_2 i_3} \sigma^b \mu_{ab} = 0(\text{something}) + d(\text{something})$ and a_2 can be removed. This possibility specifically requires the presence of the 2-forms and is not available for a pure system of chiral forms. Besides $C^* \wedge F^a$, there is no other non trivial class in $H_k(\delta d)$ with even antighost number.

Since the above a_2 is the only possibility, we carry it with it. The equation $\delta a_2 + \gamma a_1 + db_1 = 0$ determines a_1 up to a trivial term.

$$a_1 = -A^{mi} i_1 i_2 i_3 \xi_{i_1 i_2 i_3} \mu_{ab}.$$

(30)

The corresponding interaction vertex a_0 is then found to be

$$a_0 = -12 F^{kmi} i_1 i_2 i_3 H^a_{i_1 i_2 i_3} \xi_{i_1 i_2 i_3} \mu_{ab}$$

$$- \frac{3}{10} \xi_{i_1 i_2 i_3} F_{i_1 \ldots i_5} H^a_{i_6 i_7 i_8} \mu_{ab}$$

$$+ \frac{1}{5} \xi_{i_1 i_2 i_3} F_{i_1 \ldots i_5} H^a_{i_6 i_7 i_8} \mu_{ab}$$

(31)

The term a_0 is determined up to vertices that are gauge-invariant under the abelian gauge-symmetry (possibly modulo a total derivative). Since these do not modify the gauge transformations, we do not include them in the sequel and stick to the choice $\xi_{i_1 i_2 i_3}$ for a_0. This choice has the smallest number of derivatives.

3. COMPLETE ACTION

3.1. New gauge symmetries

Once the first-order vertex is determined, one can analyse the conditions imposed by consistency to second-order. These conditions have also a cohomological interpretation [17]. We shall complete the action in the explicit case where the first-order vertex is solely given by the above deformation a_0, without extra gauge-invariant terms.

To discuss the consistency conditions at second-order, we first note that the gauge transformation of the field A_{ijkl} is modified by the interaction since a contains a piece linear in $A^{mi} i_1 i_2 i_3$, from which one reads the new gauge transformations

$$\delta_{\Lambda, \epsilon} A_{ijkl} = 4 \partial_i \Lambda_{jkl} + \epsilon^a \partial_a B^a_{ijkl} \mu_{ab}$$

(32)

The term a_2, linear in the antifield $C^* i_1 i_2$ signals the corresponding modification of the reducibility identity. The gauge transformations of $B^a_{\mu \nu}$ are unchanged since there is no term proportional to $B^a_{\mu \nu}$ in a_1.

3.2. Action

To derive the complete action, it is convenient to introduce the redefined field strength

$$F_{i_1 \ldots i_5} = F_{i_1 \ldots i_5} - \frac{5}{2} B_{i_1 i_2} H_{i_3 i_4 i_5}^{a} \mu_{cd}$$

(33)

which has the property of being invariant under the transformation (32). Similarly, one defines

$$D_0 A_{ijkl} = \partial_{i} A_{jkl} - \frac{3}{2} B_{i j l k} H_{i j k l}^{a} \mu_{ab}$$

$$- B_{i j l k} H_{i j k l}^{a} \mu_{ab}$$

(34)

which transforms into spatial total derivative, $\delta_{\Lambda, \epsilon} D_0 A_{ijkl} \sim \partial_{[i} A_{jkl]}$.

By following the recursive construction of [17], one finds that $O(\mu^2)$-terms must be added to the action. There is no modification to the gauge transformations at that order, which remain given by (32) and $\delta_{\Lambda, \epsilon} B^a = d \xi^a$. Rather than following in detail the recursive construction of [17], we shall give the final answer. The complete action takes the form

$$\tilde{S}[A_{ijkl}, B^a_{\mu \nu}] = \tilde{S}_A + \tilde{S}_B$$

(35)

with \tilde{S}_A given by

$$\tilde{S}_A = \int d^{10} x \left(\frac{1}{10} \xi_{i_1 i_2 i_3 i_4 j_5 j_6 j_7 j_8 j_9 j_{10}} F_{i_1 \ldots i_5} D_0 A_{j_1 \ldots j_4} \right)$$
The spatial sections is zero, one gets

\[F_{\alpha

vanishes. This condition will be fulfilled only if the antisymmetric matrix \(\mu_{ab} \) is of rank two. This is most easily seen by bringing \(\mu_{ab} \) to canonical form,

\[
\mu_{ab} = \begin{pmatrix}
0 & \alpha & 0 & 0 & \ldots & 0 & 0 \\
-\alpha & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \beta & \ldots & 0 & 0 \\
0 & 0 & -\beta & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 0 & \lambda \\
0 & 0 & 0 & 0 & \ldots & -\lambda & 0 \\
\end{pmatrix}
\]

where we have assumed an even number of 2-forms. [In the case of an odd number of 2 forms, there would be an extra row and an extra column of zeros, making it clear that the “last” 2-form decouples.] Only one eigenvalue can be non-zero in (38): if two are non-zero, say \(\alpha \) and \(\beta \), then the sum (37) contains the term \(\alpha \beta \varepsilon^1 \land H^2 \land H^3 \land H^4 \), which is non-zero. Thus we see that consistency to second order imposes that only two 2-forms couple in fact to the chiral 4-form. [The term (37), with \(\varepsilon^a \) replaced by the ghost \(\xi^a \), is a non-trivial solution of \(sa + db \) and so represents a true obstruction, unless it is zero.]

The action (35) with two 2-forms is the action for the bosonic sector of type \(II_B \)-supergravity (with scalar fields set equal to zero and the metric equal to \(\eta_{\mu \nu} \)).

3.3. Equations of motion

The equations of motion that follow from varying the complete action with respect to \(A_{ijkl} \) are

\[
4! \partial_m F^{mijkl} \varepsilon_{m1 \ldots msijkl} \partial_{[m1} A_{m2 \ldots ms]} = 0
\]

(39)

Assuming as before that the 4th Betti number of the spatial sections is zero, one gets

\[
\partial_0 A_{ijkl} - \frac{1}{5!} \varepsilon_{ijklm1 \ldots ms} F^{m1 \ldots ms} = 4 \partial_l u_{ijk}. \quad (40)
\]

Defining \(A_{0ijk} \) to be \(u_{ijk} \), one can rewrite (40) as

\[
\mathcal{F} = \ast \mathcal{F}
\]

(41)

where

\[
\mathcal{F} = dA - \frac{5}{2} \mu_{ab} B^a \land H^b.
\]

(42)

These are the modified chirality conditions in covariant form.

The equations of motion for the 2-forms are, on the other hand

\[
d^* H^a + 3! 5! \mu_{ab} H^b \mathcal{F} = 0.
\]

(43)

Note that one could have derived the action (35) by starting from the action describing a non-chiral 4-form interacting with two 2-forms through Chapline-Manton and Chern-Simons couplings with coefficients such that \(d\mathcal{F} = d^* \mathcal{F} \) and making the projection to the chiral sector through constraints.

3.4. Algebra of new gauge transformations

It is easy to verify that the algebra of the new gauge transformations is abelian. This is because the new terms involve only the curvatures and no bare \(A \) or \(B^a \). Thus, the gauge algebra is not deformed.

4. CONCLUSIONS

In this paper, we have studied the interactions for a mixed system containing a chiral 4-form and \(n \) 2-forms in 10 dimensions. We have shown the uniqueness of the supergravity vertices. Any interaction that deforms the gauge transformations necessarily involves them. The gauge algebra is, however, untouched. We stress that this result has been obtained without invoking supersymmetry. Our analysis illustrates the rigidity of \(p \)-form systems in the local field-theoretical context, already well appreciated in the non-chiral case.

ACKNOWLEDGEMENTS

M.H. is grateful to the organizers of the meeting “Constrained Dynamics and Quantum Gravity 99” for the very enjoyable conference in Sardinia. X.B. and M.H. are supported in part by the
“Actions de Recherche Concertées” of the “Direction de la Recherche Scientifique - Communauté Française de Belgique”, by IISN - Belgium (convention 4.4505.86) and by Proyectos FONDECYT 1970151 and 7960001 (Chile). A.S. is supported in part by the FWO and by the European Commission TMR programme ERBFMRX-CT96-0045 in which he is associated to K. U. Leuven.

REFERENCES

1. M. Henneaux and C. Teitelboim, “Dynamics Of Chiral (Selfdual) p-Forms,” Phys. Lett. B206 (1988) 650.
2. P. Pasti, D. Sorokin and M. Tonin, “On Lorentz invariant actions for chiral p-forms,” Phys. Rev. D55 (1997) 6292 hep-th/9611100.
3. X. Bekaert, M. Henneaux and A. Sevrin, “Deformations of chiral two-forms in six dimensions,” Phys. Lett. B468 (1999) 228, hep-th/9909094.
4. R.I. Nepomechie, “Approaches To A Non-abelian Antisymmetric Tensor Gauge Field Theory,” Nucl. Phys. B212 (1983) 301.
5. C. Teitelboim, “Gauge Invariance For Extended Objects,” Phys. Lett. B167 (1986) 63.
6. T. Damour, S. Deser and J. McCarthy, “Non-symmetric gravity theories: Inconsistencies and a cure,” Phys. Rev. D47 (1993) 1541, gr-qc/9207003.
7. M. Henneaux, “Uniqueness of the Freedman-Townsend Interaction Vertex For Two-Form Gauge Fields,” Phys. Lett. B368 (1996) 83, hep-th/9511145.
8. M. Henneaux and B. Knaepen, “All consistent interactions for exterior form gauge fields,” Phys. Rev. D56 (1997) 6076, hep-th/9706119.
9. J. Kalkkinen, “Gerbes and massive type II configurations,” JHEP 9907 (1999) 002, hep-th/9905018.
10. N. Hitchin, “Lectures on special Lagrangian submanifolds,” math.DG/9907034.
11. G. Dall’Agata, K. Lechner and D. Sorokin, “Covariant actions for the bosonic sector of D = 10 IIB supergravity,” Class. Quant. Grav. 14 (1997) L195, hep-th/9707044.
12. G. Dall’Agata, K. Lechner and M. Tonin, “D = 10, N = IIB supergravity: Lorentz-invariant actions and duality,” JHEP 07 (1998) 017, hep-th/9806140.
13. J.H. Schwarz, “Covariant Field Equations Of Chiral N=2 D = 10 Supergravity,” Nucl. Phys. B226 (1983) 269.
14. J.H. Schwarz and P.C. West, “Symmetries And Transformations Of Chiral N=2 D = 10 Supergravity,” Phys. Lett. B126 (1983) 301.
15. P.S. Howe and P.C. West, “The Complete N=2, D = 10 Supergravity,” Nucl. Phys. B238 (1984) 181.
16. X. Bekaert, M. Henneaux and A. Sevrin, in preparation.
17. G. Barnich and M. Henneaux, “Consistent couplings between fields with a gauge freedom and deformations of the master equation,” Phys. Lett. B311 (1993) 123, hep-th/9304057.
18. C. Bizdadea, L. Saliu and S. O. Saliu, “Chapline-Manton interaction vertices and Hamiltonian BRST cohomology”, Int. J. Mod. Phys. A, to appear.