EAACI POSITION PAPER

Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: An EAACI statement

Alessandra Vultaggio1 | Ioana Agache2 | Cezmi A. Akdis3 | Mubeccel Akdis3 | Sevim Bavbek4 | Apostolos Bossios5,6,7 | Jean Bousquet8,9,10,11 | Onur Boyman12,13 | Adam M. Chaker14 | Susan Chan15 | Alexia Chatzipetrou16 | Wojciech Feleszko17 | Davide Firinu18 | Marek Jute19,20 | Paula Kauppi21 | Ludger Klimek22 | Antonios Kolios10,11,12,23 | Akash Kothari24 | Marek L. Kowalski25 | Andrea Matucci1 | Oscar Palomares26 | Oliver Pfaar27 | Barbara Rogala28 | Eva Untersmayr29 | Thomas Eiwegger30,31

1Immunoallergology Unit, Careggi University Hospital, Florence, Italy
2Transylvania University, Brasov, Romania
3Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
4Department of Chest Disease, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Turkey
5Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
6Department of Medicine, Karolinska Institutet, Stockholm, Sweden
7Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
8Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
9Department of Dermatology and Allergy, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
10MACVIA-France, Montpellier, France
11CHU Montpellier, Montpellier, France
12Department of Immunology, University Hospital Zurich, Zurich, Switzerland
13Faculty of Medicine, University of Zurich, Zurich, Switzerland
14Department of Otolaryngology, TUM School of Medicine, Klinikumrechts der Isar, Center for Allergy and Environment, Technical University of Munich, Munich, Germany
15School of Immunology & Microbial Sciences, United Kingdom King’s College London School of Life Course Sciences, King’s Health Partners, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
16Allergy Unit 2nd Department of Dermatology and Venereology, Medical School, National University of Athens, University General Hospital “ATTIKON”, Athens, Greece
17Department of Pediatric Allergy and Pneumology, Medical University of Warsaw, Warsaw, Poland
18Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
19Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland
20ALL-MED Medical Research Institute, Wrocław, Poland
21Department of Allergy, Inflammation Center, Helsinki University Hospital and Helsinki University, Helsinki, Finland
22Centre for Rhinology and Allergy, Wiesbaden, Germany
23Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
24Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
25Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
26Department of Biochemistry and Molecular Biology, Chemistry School, Complutense University of Madrid, Madrid, Spain
27Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philippus-Universität Marburg, Marburg, Germany
28Department of Internal Diseases, Allergology & Clinical Immunology Medical, University of Silesia, Katowice, Poland

© 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Abstract
The outbreak of the SARS-CoV-2-induced coronavirus disease 2019 (COVID-19) pandemic re-shaped doctor-patient interaction and challenged capacities of healthcare systems. It created many issues around the optimal and safest way to treat complex patients with severe allergic disease. A significant number of the patients are on treatment with biologicals, and clinicians face the challenge to provide optimal care during the pandemic. Uncertainty of the potential risks for these patients is related to the fact that the exact sequence of immunological events during SARS-CoV-2 is not known. Severe COVID-19 patients may experience a “cytokine storm” and associated organ damage characterized by an exaggerated release of pro-inflammatory type 1 and type 3 cytokines. These inflammatory responses are potentially counteracted by anti-inflammatory cytokines and type 2 responses. This expert-based EAACI statement aims to provide guidance on the application of biologicals targeting type 2 inflammation in patients with allergic disease. Currently, there is very little evidence for an enhanced risk of patients with allergic diseases to develop severe COVID-19. Studies focusing on severe allergic phenotypes are lacking. At present, noninfected patients on biologicals for the treatment of asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, or chronic spontaneous urticaria should continue their biologicals targeting type 2 inflammation via self-application. In case of an active SARS-CoV-2 infection, biological treatment needs to be stopped until clinical recovery and SARS-CoV-2 negativity is established and treatment with biologicals should be re-initiated. Maintenance of add-on therapy and a constant assessment of disease control, apart from acute management, are demanded.

1 | INTRODUCTION
The outbreak leading to the pandemic of SARS-CoV-2-induced coronavirus disease 2019 (COVID-19) has pushed healthcare systems to the limits of their capacity across the globe. This infection can cause severe respiratory illness and multi-organ failure with clinical presentations greatly resembling SARS-CoV-1 and MERS-CoV, resulting in intensive care unit (ICU) admission and high mortality. We discuss immunological and clinical considerations for patients on biologic agents (biologicals) targeting the type 2 inflammatory response due to difficult-to-treat allergic diseases in the context of COVID-19.

2 | IMMUNOLOGICAL FEATURES OF SARS-COV-2 INFECTION IN THE CONTEXT OF TYPE 2 INFLAMMATION
Both innate and adaptive immune responses participate in antiviral immunity. The interactions between SARS-CoV-2 and both arms of the immune system have been poorly clarified until now, particularly in the view of asymptomatic individuals, patients with mild disease, and those who fully recover. Natural killer cells are involved in control of the acute phase of the viral infection, whereas CD8 T cells are the key player in the following steps. Antibody-secreting cells and T follicular helper cells are instrumental in the production of specific antiviral IgA, IgM, and IgG antibodies early on. Antibody-dependent macrophage activation as well as lymphocyte and macrophage pyroptosis (an excessive form of inflammatory cell apoptosis) might occur and contribute to more severe tissue damage, as described in SARS-CoV infection. Among mediators, type I interferons (type I IFN) play a central role. In other coronavirus infections such as severe acute respiratory syndrome (SARS), type I IFN is critical for the initiation of immune response and virus clearance. Delayed production of type I IFN and an insufficient cytotoxic response is associated with a more severe clinical disease. Observations from SARS or Middle East respiratory syndrome (MERS) and, more recently, COVID-19 patients suggest an overshooting immune response in severe cases with widespread
Those severe COVID-19 patients may also experience a picture of a so-called cytokine storm and associated organ damage, particularly acute respiratory distress syndrome, acute kidney and liver failure, myocarditis, and disseminated vascular coagulation. These manifestations are characterized by an exaggerated release of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, and TNF-α (Figure 1). Consequently, these highly increased pro-inflammatory cytokines are believed to be potential targets for biological therapy. These type 1- and type 3-driven inflammatory responses are counteracted by anti-inflammatory cytokines, such as IL-10 and TGF-β, as well as potentially type 2 responses. Moreover, eosinophils have been reported to play a role in the virus response. Lower eosinophil counts were reported in association with severe cases, while an elevated eosinophil count was associated with a better prognosis although no functional relationship has been established so far and this finding may be an epiphenomenon. Thus, probably all shades of cytokine responses (type 1 and type 3, type 2, and regulatory cytokines) are required in the healing of SARS-CoV-2 infection. An appropriate induction and downregulation of individual response batteries is necessary to achieve an efficient viral clearance, an avoidance of excessive inflammatory reaction, and irreversible tissue damage (Figure 2).

3 | SARS-COV-2 INFECTION AND ALLERGIC DISEASE

In line with a paucity of mechanistic data on COVID-19 in the context of type 2 inflammation, knowledge on the disease course in patients treated with biologicals targeting type 2 inflammation due to severe asthma or other atopic diseases, such as CSU, AD, and CRSwNP, is scarce to absent. To our knowledge by April 12, 2020, only 6 studies presented disease characteristics of SARS-CoV-2 infection on patients with allergy or atopic diseases as a comorbidity (Table 1; Supplementary Material). While in a study including

![Cellular networks during SARS-CoV-2 infection.](image)

FIGURE 1 Cellular networks during SARS-CoV-2 infection. Initially, infection with the SARS-CoV-2 induces both humoral and cellular (innate and adaptive) immune responses. Recruitment of antibody-secreting cells (ASC) and interaction with T follicular helper cells (Tfh) occurs early before the resolution of symptoms and leads to the production of IgA, IgM, and IgG against viral nucleoprotein (NP) and surface spike protein receptor-binding domain (RBD). SARS-CoV-2 binding antibodies may participate in tissue damage by macrophage activation via FcγRI. SARS-CoV-2 infects several types of cells (alveolar lung cells, macrophages, endothelial cells, lymphocytes) stimulating type I IFN production, which is crucial for the protection of uninfected cells and the enhancement of natural killer (NK) cell cytotoxic activity. Virus-cell interactions lead to the release of mediators. The secretion of large amounts of cytokines and chemokines is promoted in infected cells and effector cell populations in response to virus. These mediators, in turn, alert tissue-resident lymphocytes (including also innate lymphoid cells, ILCs) and recruit other leukocytes, predominantly in the lungs. Dendritic cells function as sensor cells and present virus antigens to T cells. This process leads to T-cell activation and differentiation, including the production of cytokines associated with Th1 and Th17 profile, and subsequently activates CD8+ cytotoxic T cells. Both, inflammation and cell damage, induce and result in the release of danger signals and alarmins (IL-33, IL-25, TSLP) that may promote both Th2 cells and ILC2 cells. The immune network during the course of infection includes the involvement of regulatory T (Treg) cells, able to secrete IL-10 and TGF-β.
1591 patients infected with SARS-CoV-2 and admitted to ICUs of Lombardy, Italy, asthma was not referred to as a specific comorbidity and grouped under “others.” Allergic disease seemed to have no influence on presented symptoms and the course of the disease. None of these patients were on biologicals to treat their pre-existing allergic disease. In a recent report from the COVID-19-Associated Hospitalization Surveillance Network based on data from 14 US states from March 1, 2020, to March 30, 2020, 17% of hospitalized COVID-19 patients had asthma as a comorbidity. The highest percentage was in the 18- to 49-year-old patient group with 27.3% asthmatics. No information on severity of the disease and therapy has been provided. This supports the importance of a prospective assessment of atopic diseases in the context of COVID-19.

4 | BIOLOGICAL THERAPIES TARGETING TYPE 2 INFLAMMATION: KEY ISSUES

In the past years, new biological therapies for severe asthma, atopic dermatitis (AD), chronic rhinosinusitis with nasal polyps (CRSwNP),
and chronic spontaneous urticaria (CSU) have been developed targeting different aspects of the type 2 immune response.16–24 Anti-IL-5 monoclonal antibodies (mepolizumab and reslizumab) are approved for severe asthma with peripheral eosinophilia, uncontrolled under high-intensity treatment. Benralizumab, a monoclonal antibody that binds to the α subunit of IL-5 receptor (IL-5R\textsubscript{α}),25 was also recently approved for uncontrolled eosinophilic severe asthma. Dupilumab, a monoclonal antibody directed against the α subunit of the IL-4 receptor (IL-4R\textsubscript{α}) acting as a dual antagonist of both IL-4 and IL-13, was approved for uncontrolled severe type 2 asthma, moderate-to-severe AD, and CRSwNP. Omalizumab, a humanized monoclonal anti-IgE antibody, has also been approved for IgE-mediated persistent allergic asthma and CSU.

The spread of the disease prompted allergists and immunologists to reduce their service to the acceptable minimum and important guidance of patients receiving biological therapies is limited, so insecurity on how to manage their disease in case of an infection may occur. To date, the role of type 2 cytokines in the pathogenesis and severity of COVID-19 is not well established, and therefore, guidance of patients on biologicals targeting pathways of the allergic response during this pandemic is scarce. Main questions in this context area are as follows: (a) To what extent is there an increased

TABLE 2	Viral infections as an adverse event during biological treatment in phase 3, meta-analysis, and long-term follow-up studies				
Biological	Target structure	Application interval	Infection rate (%) Biological/placebo (Total n/group)	References	Indication
Benralizumab	IL-5R alpha	Q4W	n = 1926 n = 25 Viral URTIa 24.1/0 (14/11)	1	Severe uncontrolled eosinophilic asthma
		Q8W	n = 61 Viral upper respiratory tract infections 12.5/13.8 (32/29)	1	Severe uncontrolled eosinophilic asthma
Dupilumab	IL-4R alpha	Various (QW, Q2W, Q4W, Q8W), placebo	n = 422, URTI (5.7-8.3/7.3), Influenza (0-5.7/1.2), HSV1 (1.8-6.0/3.7), Viral infections (0-1.2/3.7)	2	Atopic dermatitis
		Combined (200 mg/ 300 mg Q2W), placebo	n = 1897, viral upper respiratory tract infections (18.2/19.6), upper respiratory tract infections (11.6/13.6), influenza (5.9/8.0)	3	Moderate-to-severe uncontrolled asthma
		300 mg Q2W, placebo	n = 210, Viral URTI (9/18), Influenza (3/6)	4	Severe steroid-dependent asthma
		Adolescence. 200/300 mg Q2W, 300 mg Q4W, placebo	n = 250, URTI (7.2-12.2/17.6), HSV infections (1.2-4.8/3.5)	5	Atopic dermatitis
		300 mg Q2W, placebo	n = 276 URTI (5.4-6.7/12.7)	6	Chronic rhinosinusitis with nasal polyps
		300 mg QW/Q2W, placebo	n = 1379 URTI (3-5/2), HSV (0-3/1), HSV1 (2-4/2), HSV2 (1/1) VZV (herpes zoster) (0-1/1),	7	Atopic dermatitis
		300 mg QW/Q2W, placebo	n = 740 URTI (10-14/10) Influenza (3-4/5) HSV (2-3/1), VZV (herpes zoster) (<1-1/2), HSV1 (4-5/3)	8	Atopic dermatitis
		300 mg Q2W, real-life, open label	n = 241 URTI (1.2) HSV (<1%)	9	Atopic dermatitis
		300 mg Q2W	n = 1491 viral URTI (2.5) Influenza (2.1) HSV1 (4.3)	10	Atopic dermatitis

(Continues)
The low number of reports of patients on biologicals targeting type 2 disease is encouraging since type 2 diseases may predispose patients to viral infections due to compromised barriers. Consequently, epidemiologic evidence closely links virus infections to both development and exacerbation of allergic diseases. The infection and persistence of respiratory viruses is attributed to impaired innate immune responses and a predisposition to mount strong type 2 immune responses. In line with this argumentation, some of these drugs provided evidence for a reduction of viral infections in asthmatics such as anti-IgE treatment with omalizumab. It may cause anti-inflammatory and immunomodulatory effects by restoring the capacity of human plasmacytoid dendritic cells (pDCs) to produce IFN-α, increasing antiviral activity, and reducing viral-induced asthma exacerbations. In severe asthma, clinical trials showed that rates of respiratory infections (upper respiratory tract infection, viral upper respiratory tract infection, influenza) were lower or similar in the anti-IL-5 monoclonal antibody (mAb)- and dupilumab-treated groups compared to placebo (Table 2). No data are available on the impact of anti-IL-5 mAb and dupilumab on virus-induced exacerbations and antiviral responses. For dupilumab, an increased risk of herpes virus reactivation has been reported in real-life uncontrolled studies and case reports. The pathogenesis of cytokine storm-related tissue injury has been repeatedly reported in COVID-19, dominated by pro-inflammatory type 1- and type 3-associated cytokines and linked...
In this context, the inhibition of type 2 response and Treg response can antagonize these effects and increase the risk for viral infections and might thus be preferred compared to conventional systemic immunosuppressive treatments, such as cyclosporine, in a situation such as the COVID-19 pandemic. However, this theoretical advantage is not supported by robust clinical data.

For patients with severe asthma currently on a biologic therapy, there is no information at this time that these treatments should be stopped. These severe asthma patients are at an increased risk to COVID-19 infection, and optimal control of their chronic condition is of upmost importance.

Patient should not stop biologics without consulting their physician!

1. Noninfected and no symptoms → physicians should continue to weigh the risk vs. benefits of the use of biologic medication on a case-by-case basis based on
 a. the original indication
 b. the severity of the original indication,
 c. the patient’s age (>60 y)
 d. comorbidities related to higher risk of mortality in case of COVID-19

2. Patients on biologic therapy positive for COVID-19: recommend to discontinue or postpone the biologic therapy until the patient recovers from COVID-19. Patients being considered for biologic therapy initiation: risk vs. benefits
 a. Low-risk patients → case-by-case basis.
 b. High-risk population → recommendation that physicians consider deferring initiation of biologic therapy.

Unavailability of biologics may lead to many patients requiring treatment with systemic steroids and potentially negative impact on immune responses directed against SARS-CoV-2

Stopping treatment with biologics may lead to worsening of the underlying disease, which may therefore provide negative influence on the course of acquired COVID-19 disease. According to WHO, patients with chronic lung disease (eg, such as asthma) may be prone to more severe disease.

a. viral asthma exacerbations occur less frequently and with lower severity under treatment with biologics
 b. those immune processes targeted by biologics most probably do not affect virus defense

Based on current knowledge, we therefore recommend to maintain treatment based on a joint agreement between treating physician and patient.

For patients:

There is currently no evidence that inhaled corticosteroids (nasal or bronchial), antihistamines or biologic medications have any effect on the risk of contracting COVID-19. If you stop or modify your treatment, you run the risk that your allergic disease, particularly your asthma control, could become worse, causing you to need rescue medical treatment or be admitted to the hospital.

www.worldallergy.org/UserFiles/file/Allergic_patients_during_COVID-19.pdf

It is recommended to continue biologic therapy with anti-IgE or anti-IL-5 in patients with severe asthma.

It is acceptable to start and then continue biologic therapy with anti-IgE or anti-IL-5 antibodies in patients with severe bronchial asthma in accordance with the current Biological Treatment Programme of the National Health Fund.

Continuation and, in specific cases, initiation of biologic therapy with anti-IgE antibodies (omalizumab) in patients with severe chronic urticaria are acceptable.

It is not recommended to stop biologics in patients with severe chronic urticaria.

There is no evidence, which suggests immune response to COVID-19 will be impaired in asthma patients treated with anti-IL5, anti-IL5Ra, anti-IL4/IL13, or anti-IgE medications. In the absence of any data indicating a potential for harm, it would be reasonable to continue administration of biologic agents during the COVID-19 pandemic in patients for whom such agents are clearly indicated and have been effective.

There is no evidence, which suggests immune response to COVID-19 will be impaired in asthma patients treated with anti-IL5, anti-IL5Ra, anti-IL4/IL13, or anti-IgE medications. In the absence of any data indicating a potential for harm, it would be reasonable to continue administration of biologic agents during the COVID-19 pandemic in patients for whom such agents are clearly indicated and have been effective.

In this context, the inhibition of type 2 response and Treg response can antagonize these effects and increase the risk for viral infections and might thus be preferred compared to conventional systemic immunosuppressive treatments, such as cyclosporine, in a situation such as the COVID-19 pandemic. However, this theoretical advantage is not supported by robust clinical data.
(AE) in severe eosinophilic asthma.36 For anti-IgE (omalizumab) and anti-IL-4Rα (dupilumab) treatments, rate ratios were rather small.36 Benralizumab and omalizumab showed an increase in AEs with low-to-moderate certainty in severe allergic asthma.37 There was an increased rate of dupilumab-related AEs (low certainty) in severe asthma.38 Data from clinical trials demonstrated good safety profiles of biologicals with regard to viral infections of the upper respiratory tract (Table 2).36–38

6 | PRACTICAL AND CLINICAL RECOMMENDATIONS

6.1 | Recommendations from national societies

Time restrictions did not allow for official guidelines to be published so far. However, several societies issued statements on the use of biologicals during the COVID-19 pandemic (Table 3). A consensus-based ad hoc expert panel of allergy/immunology specialists from the United States and Canada recommends continuing administration of biologicals in patients with proven efficacy and converting the patient to a prefilled syringe for potential home administration if this is available or otherwise in-office application can occur with a plan to transition to home administration.39 Initiation of biologic therapy for AD should be weighed very carefully, but it remains a viable option as this is administered at home. In a recent communication, the European Task Force on Atopic Dermatitis (ETFAD) suggested that targeted treatment selectively interfering with type 2 inflammation, such as dupilumab, is not considered to increase the risk for viral infections and might thus be preferred compared to immunosuppressive treatments such as cyclosporine in a situation such as the COVID-19 pandemic, although stressing that this theoretical advantage is not supported by robust clinical data.40 The British Society of Allergy and Clinical Immunology suggests to defer commencement of omalizumab in new patients with chronic urticaria until COVID-19 restrictions are lifted and transitioning to home therapy after the second dose if not contraindicated (https://www.bsaci.org/announcements/modifications-for-adult-allergy-services-during-covid-19-pandemic). None of these statements recommended discontinuation so far.

6.2 | EAACI statement on the management of allergic disease with type 2 targeting biologicals during COVID-19 pandemic

The key recommendation for an accurate management of noninfected patients on biologicals targeting type 2 inflammation because of an underlying severe allergic disease is the continuation of their drug regimen with close follow-up. During the COVID-19 pandemic, social distancing is encouraged for everybody and home application of the biologicals should be practiced if doable since an exacerbation of their disease requiring hospitalization would expose them to an increased risk of acquiring a SARS-CoV-2 infection. If that is not possible, it should be ensured that the application takes place in a safe environment (Figure 3).

All patients with a SARS-CoV-2 infection, irrespective of the severity of the infection, should withhold the application of biologicals until recovered.

If patients display mild clinical manifestations that allow home isolation, telemedical follow-up by the physician in charge should take place to ensure proper management, and background controller treatment (topical steroids or other controller medications as recommended by current guidelines) should be continued, as described for asthma, AD, CRSwNP, and CSU.22,23,40–44 Surgical interventions for CRSwNP should be delayed in any case possible.
In case of hospital admission for moderate, severe, or critical SARS-CoV-2 infection, management of the allergic disease should be in accordance with current guidelines by involving the respective subspecialties. In particular, for asthma inhalation therapy use preferably metered dose inhalations with chambers that are not to be shared and pulmonary function tests should be performed only if highly necessary (Figure 3).

Once resolution/recovery of the disease is established (eg, via a negative SARS-CoV-2 test) but no shorter than 2 weeks postonset of the disease/positive testing, the re-administration of the biological should be re-initiated (Figure 3).

7 | CONCLUSIONS

In conclusion, current evidence does not suggest a higher risk for severe COVID-19 in allergic individuals but data that allow estimating the risk of severe allergic phenotypes in case of SARS-CoV-2 infection are missing. Treatment of patients on biologicals targeting type 2 inflammation in allergic disease should be maintained in noninfected individuals. In case of an infection, withholding the treatment is recommended until recovery. Additional data on those patients with more severe phenotypes will provide more insight to define more precisely the risk profile of individuals with allergic disease who are of elevated risk. The collection of such data is imperative for future data-informed adaptations of these guidelines.

CONFLICT OF INTEREST

Dr Chaker reports grants for clinical studies and research and other from Allergopharma, ALK-Abello, AstraZeneca, Bencard/Allergen Therapeutics, ASIT Biotech, Lofarma, GSK, Novartis, LETI, Roche, Sanofi Genzyme, Zeller, and the European Institute of Technology (EIT); has received travel support from the European Academy of Allergy and Clinical Immunology (EAACI) and DGAKI, all outside the submitted work. Dr Firinu reports personal fees from Valeas S.p.A., Italy, and GSK, Italy, outside the submitted work. Dr Bossios reports personal fees from Novartis (advisory and/or lecture honorarium), AstraZeneca (advisory and/or lecture honorarium), GSK (advisory and/or lecture honorarium), and Teva (advisory and/or lecture honorarium), outside the submitted work. Dr Akdis reports grants from Allergopharma, Idorsia, Swiss National Science Foundation, Christine Kühne-Center for Allergy Research and Education, European Commission’s Horizon’s 2020 Framework Programme, Cure, Novartis Research Institutes, Astra Zeneca, Scibase, and advisory board membership in Sanofi/Regeneron. Dr Jutel reports personal fees from ALK-Abello, Allergopharma, Stallergenes, Anergis, Allergy Therapeutics, Circassia, Leti, Biomay, and HAL, during the conduct of the study; personal fees from AstraZeneca, GSK, Novartis, Teva, Vectura, UCB, Takeda, from Roche, Janssen, Medimmune, and Chiesi, outside the submitted work. Dr Agache is an Associate Editor Allergy. Dr Bousquet reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, and Uriach, and other from KYomed INNOV, outside the submitted work. Dr Pfärr reports grants and personal fees from ALK-Abello, Allergopharma, Stallergenes Greer, HAL Allergy Holding BV/HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, ASIT Biotech Tools SA, Laboratorios LETI/LETI Pharma, and Anergis SA; grants from Biomay, Circassia, and GlaxoSmithKline; and personal fees from MEDA Pharma/MYLAN, Mobile Chamber Experts (a GA2LEN Partner), Indoor Biotechnologies, Astellas Pharma Global, EUFOREA, ROXALL, Novartis, and Sanofi-Aventis, outside the submitted work. Dr Palomares received research grants from Innunotek SL and Novartis. Oscar Palomares has received fees for giving scientific lectures from Allergy Therapeutics, Amgen, AstraZeneca, Diater, GlaxoSmithKline, S.A, Innunotek SL, Novartis, Sanofi Genzyme, and Stallergenes. Oscar Palomares has participated in advisory boards from Novartis and Sanofi Genzyme. Dr Akdis received research grants from Swiss National Science Foundation. Dr Eiwegger reports other from DBV and Regeneron, and grants from Innovation fund Denmark and CIHR. He is the Co-I or scientific lead in three investigator-initiated oral immunotherapy trials including the usage of biologicals supported by the Allergy and Anaphylaxis Program SickKids and CIHR. He serves as an associate editor for Allergy. He is on advisory boards for ALK. Dr Chan reports nonfinancial support from Novartis, outside the submitted work.

ORCID

Ioana Agache https://orcid.org/0000-0001-7994-364X
Cezmi A. Akdis https://orcid.org/0000-0001-8020-019X
Mubeccel Akdis https://orcid.org/0000-0003-0554-9943
Apostolos Bossios https://orcid.org/0000-0002-0494-2690
Onur Bayman https://orcid.org/0000-0001-8279-5545
Davide Firinu https://orcid.org/0000-0002-5768-391X
Akash Kothari https://orcid.org/0000-0003-1980-161X
Oscar Palomares https://orcid.org/0000-0003-4516-0369
Oliver Pfärr https://orcid.org/0000-0003-4374-9639
Barbara Rogala https://orcid.org/0000-0002-3077-0271
Eva Untersmayr https://orcid.org/0000-0002-1963-499X
Thomas Eiwegger https://orcid.org/0000-0002-2914-7829

REFERENCES

1. Aoshi T, Koyama S, Kobiyama K, Akira S, Ishii KJ. Innate and adaptive immune responses to viral infection and vaccination. Curr Opin Virol. 2011;1(4):226-232.
2. Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19(2):181-193.
3. Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26(4):453-455.
4. Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa310
5. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539.

6. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe Acute Respiratory Syndrome Coronavirus Viroproin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50.

7. Liu L, Wei Q, Lin Q, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4(4).

8. Xu X, Gao X. Immunoresponseological responses against SARS-coronavirus infection in humans. Cell Mol Immunol. 2004;1(2):119-122.

9. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

10. Sabogal Pineros YS, Bal SM, Dijkhuis A, et al. Eosinophils capture viruses, a capacity that is defective in asthma. Allergy. 2019;74(10):1898-1909.

11. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574.

12. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020;382(21):2012-2022.

13. Dong X, Cao YY, Lu XX, et al. Eleven Faces of Coronavirus Disease 2019. JAMA. 2020;323(19):1766-1767. https://doi.org/10.1001/jama.2020.4014.

14. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa272.

15. Zangh JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75:1730-1741. https://doi.org/10.1111/all.14238.

16. Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotype, and thethritis of allergic diseases. J Clin Invest. 2019;130:1493-1503.

17. Boyman O, Kaege C, Akdis M, et al. EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders. Allergy. 2015;70(7):727-754.

18. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293-2311.

19. Palomares O, Untersmayr E, Guterymph J, et al. Biologics in allergic diseases and asthma: Toward personalized medicine and precision health: Highlights of the 3rd EAACI Master Class on Biologicals, San Lorenzo de El Escorial, Madrid, 2019. Allergy. 2019;75(4):936-940. https://doi.org/10.1111/all.14024.

20. Pfaffer B, Yepes-Nunez JJ, Agache I, et al. Biologicals in atopic disease in pregnancy: an EAACI position paper. Allergy. 2020. https://doi.org/10.1111/all.14282.

21. Eyerich S, Metz M, Borsios A, Eyerich K. New biological treatments for asthma and skin allergies. Allergy. 2020;75(5):546-560.

22. Zuberbier T, Aberer W, Asero R, et al. The EAACI/GA(2)LEN/EDF/ WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73(7):1393-1414.

23. Fokkens WJ, Lund V, Bachert C, et al. EULAR/ACEA-ARmA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019;74(12):2312-2319.

24. Jonstam K, Swanson BN, Mannent LP, et al. Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. Allergy. 2019;74(4):743-752.

25. Hassani M, Koenderman L. Immunological and hematological effects of IL-5(Ralphi)-targeted therapy: An overview. Allergy. 2018;73(10):1979-1988.

26. Rowe RK, Gill MA. Targeting Antiviral Pathways for Treatment of Allergic Diseases. J Pediatric Infect Dis Soc. 2018;7(suppl_2):S54-S56.

27. Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130(5):1087-1096.

28. Mitamura Y, Nunomura S, Nanri Y, et al. The IL-13/periodin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy. 2018;73(9):1881-1891.

29. Kortekaas Krohn I, Seys SF, Lund G, et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy. 2020;75(5):1155-1164.

30. Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy. 2019;74(2):294-307.

31. Busse WW, Morgan WJ, Gergen PJ, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364(11):1005-1015.

32. Edwards MR, Strong K, Cameron A, Walton RP, Jackson DJ, Johnston SL. Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness. J Allergy Clin Immunol. 2017;140(4):909-920.

33. Jartti T, Smits HH, Bonnellyke K, et al. Bronchitis or asthma: A reappraisal: Distinguishing between virus entities and their treatments. Allergy. 2019;74(1):40-52.

34. Teach SJ, Gill MA, Togias A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015;136(6):1474-1485.

35. Wong JM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immunopathogenesis of acute respiratory distress syndrome. Ann Trans Med. 2019;7(19):504.

36. Agache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. Allergy. 2020;75(5):1023-1042. https://doi.org/10.1111/all.14221.

37. Agache I, Rocha C, Beltran J, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma. Allergy. 2020;75(5):1043-1057. https://doi.org/10.1111/all.14235.

38. Agache I, Song Y, Rocha C, et al. Efficacy and safety of treatment with dupilumab for severe asthma: A systematic review of the EAACI guidelines—Recommendations on the use of biologics in severe asthma. Allergy. 2020;75(5):1058-1068. https://doi.org/10.1111/all.14268.

39. Shaker MS, Oppenheimer J, Grayson M, et al. COVID-19: Pandemic contingency planning for the allergy and immunology clinic. J Allergy Clin Immunol. 2020;8(5):1477-1488.

40. Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: House dust mite-driven allergic asthma. Allergy. 2019;74(5):855-873. https://doi.org/10.1111/jdv.16411 Online ahead of print.

41. Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy. 2018;73(4):799-815.

42. Roberts G, Pfaar O, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinitis conjunctivitis. Allergy. 2018;73(4):765-798.

43. Sturm GJ, Varga EM, Roberts G, et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy. 2018;73(4):744-764.

44. Fokkens WJ, Reitsma S. Medical algorithms: Management of allergic diseases. Allergy. 2018;73(10):1979-1988.

45. Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed
Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-464.

46. Dreher MKA, Bickenbach J, Balfanz P, et al. The characteristics of 50 hospitalized COVID-19 patients with and without ARDS. Dtsch Arztebl Int. 2020;117:271-278.

47. Busse W, Bleecker E, FitzGerald JM, et al. Three-Year Safety and Efficacy of Benralizumab for Adolescent Patients with Severe, Uncontrolled Asthma: Results of the BORA Extension Study. J Allergy Clin Immunol. 2020;145(2):AB174.

48. GlaxoSmithKline. MENSA (MEA115588) - Clinical Study Report, 643-645, table 7.03. Available from: https://www.gsk-studyregister.com/en/trial-details/?id=115588. Accessed April 7, 2020

49. GlaxoSmithKline. SIRIUS (MEA115575) Clinical Study Report, 2018 35(6):552-562. https://doi.org/10.5114/ada.2017.71273. Accessed April 7, 2020.

50. GlaxoSmithKline. MUSCA (MEA 200862) Clinical Study Report; 663-664; table 3.02. Available from: https://www.gsk-studyregister.com/en/trial-details/?id=200862. Accessed April 7, 2020

51. Wollenberg A, Flohr C, Simon D, et al. European Task Force on Atopic Dermatitis (ETFAD) statement on severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-infection and atopic dermatitis. J Eur Acad Dermatol Venereol. 2020.

52. Kowalski ML, Bartuzi Z, Bęborowicz A, et al. Position statement of expert panel of the Polish Allergology Society on the management of patients with bronchial asthma and allergic diseases during SARS-Cov-2 pandemics. Alergia Astma Immunologia. 25(1):2-7.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Vultaggio A, Agache I, Akdis CA, et al. Considerations on biologicals for patients with allergic disease in times of the COVID-19 pandemic: An EAACI statement. Allergy. 2020;75:2764-2774. https://doi.org/10.1111/all.14407