The action of purified bovine milk lipoprotein lipase on tri[14C]oleoylglycerol and the effect of albumin on movement of lipolytic products at an argon-water interface were studied in a specially designed tricomparted trough. The amount of trioleoylglycerol applied was 14 times that needed to cover the surface of the aqueous subphase (0.1 mM Tris-HCl, pH 7.4) with a monolayer.

It is concluded that trioleoylglycerol was present in lenses on the surface of the aqueous subphase, that hydrolysis by lipoprotein lipase occurred in or near the lipid/argon-water interface, and that lipolytic products immediately located and spread throughout the interface, displacing substances with lower spreading pressures from the interface. Addition of albumin to the aqueous subphase accelerated markedly the desorption of oleic acid and monooleoylglycerol from the interface and thereby enhanced lipolysis. When albumin was not contiguous with the site of hydrolysis, oleic acid and monooleoylglycerol readily moved in the interface to the area of contact with albumin where they were desorbed from the interface. These findings support the hypothesis of transport of lipolytic products by lateral movement in cell membranes.

Chylomicrons consist of a core of triacylglycerol and traces of cholesteryl ester surrounded by a surface film of polar lipid and protein (1, 2). Triacylglycerol in chylomicrons is hydrolyzed to fatty acid and glycerol by lipoprotein lipase in medium containing sufficient serum albumin to bind all the fatty acids formed (3). When a 9-fold excess of albumin is present, triacylglycerol is hydrolyzed mostly to monooacylglycerol and fatty acid (3). This effect has been attributed to binding of monooacylglycerol to albumin (4), thereby removing it from chylomicrons, the site of enzyme action (3). When albumin is limiting, lipolysis slows down as soon as fatty acid binding sites on albumin are filled, and fatty acid, monooacylglycerol, and diacylglycerol accumulate in the chylomicrons (3, 5). Morphological studies showed that under these conditions lipolytic products locate at the interface between triacylglycerol and the aqueous medium and extend the chylomicron surface as a monolayer lining and spiralling within aqueous spaces that develop in the triacylglycerol core (5).

These findings suggested that lipolytic products can transfer from the site of enzyme action by lateral movement in the interface.

Uptake of triacylglycerol from chylomicrons by extrahepatic tissue in vivo involves hydrolysis of the triacylglycerol to di-or monoacylglycerol and fatty acid by lipoprotein lipase bound to the luminal surface of capillary endothelium (2, 6, 7). Some of the fatty acid formed bind immediately to albumin in the blood stream, while the rest transfer with di- or monoacylglycerol to the tissue (6-9). Scow et al. (2, 9) recently proposed that transfer of lipolytic products from chylomicrons occurs by lateral movement in a continuous lipid-water interface composed of the chylomicron surface film and the external leaflet of plasma and intracellular membranes of endothelial, interstitial, and parenchymal cells. They also proposed that transfer is enhanced by removal of lipolytic products from the interface at points distal to the enzyme where lipolytic products are re-esterified to triacylglycerol and separate from the interface.

This paper describes experiments designed to test the hypothesis that lipolytic products are transported by lateral movement in membranes. Trioleoylglycerol applied to the surface of aqueous medium in a tricomparted trough was hydrolyzed to oleic acid and monooacylglycerol when lipoprotein lipase was added to the aqueous subphase. Desorption of oleic acid and monooacylglycerol from the interface was accelerated by addition of albumin as a trapping agent to the underlying aqueous phase. Lateral movement of lipolytic product in the interface was observed when albumin and enzyme were added to separate compartments.

EXPERIMENTAL PROCEDURES

Lipids—Oleic acid (96% pure, Catalog No. 75092, Fluka, CH-9470 Buchs, Switzerland), l(3)-monooleoylglycerol (90% l(3)-isomer and 10% 2-isomer, Catalog No. M-1378, Sigma Chemical Co., St. Louis, Mo.), and 1,2-dioleoyl-glycerol (Applied Science Laboratories, Inc., State College, Pa.) were used without further purification. Trioleoylglycerol was purified from commercial olive oil (La Fleur d’Olivier, extra vierge) by chromatography on Florisil (10). Tril[14C]-H]oleoylglycerol (713 mCi/mmol, Catalog No. TRA 191, Batch 32, Radiochemical Centre, Amersham, Buckinghamshire, England) was diluted 1:2.3 with unlabeled trioleoylglycerol. Thin layer chromatography (11) showed that 98.4% of 14C was in trioleoylglycerol, 0.3% in dioleoylglycerol, 0.5% in monooacylglycerol, and 0.8% in oleic acid.

Lipoprotein Lipase and Albumin—Lipoprotein lipase used in these studies was purified from bovine skim milk (12, 13). The preparation, kindly supplied by Dr. Thomas Olivecrona of the University of Umeå, Sweden, contained 976 units of lipolytic activity/mg of protein (1 unit = 1 pmol of fatty acid released/min at 24°C) and was dissolved in 1.5 M NaCl/0.01 mM sodium veronal, pH 7.4, at a protein concentration of 0.17 mg/ml. The enzyme preparation was stored at −70°C and small aliquots were thawed immediately prior to use. A preparation containing apolipoproteins C-I, C-II, and C-III, isolated as one fraction by column chromatography from human high density lipoproteins,
was kindly supplied by Dr. Bryan Brewer of the National Heart, Lung and Blood Institute, Bethesda, Md. This preparation, designated below as C-peptide, was used to activate lipoprotein lipase (14).

A stock solution of 2.4 mM albumin was prepared by dissolving 16 g of bovine serum albumin powder (Fraction V, Lot G-3606, Armour Pharmaceutical Co., Chicago, Ill.) in 100 ml of 100 mM Tris-HCl/1 mM CaCl2/0.1 mM EDTA solution (pH 7.4), filtering the solution through a 0.45-μm Millipore filter, and adjusting the pH to 7.4.

Properties of Pure Lipid Monolayers—The relation between surface pressure and surface area, and the effect of albumin on desorption of lipid from monolayers at various surface pressures were measured in the previously described Teflon trough (15,16) composed of a reservoir and three compartments. The reservoir had a volume of 282 ml and surface area of 470 cm^2, and each compartment had a volume of 100 ml and surface area of 121 cm^2. The reservoir and compartments were connected in series by narrow shallow surface channels. The reservoir and third compartment (III) were used for measuring the relation between surface area and pressure and the effect of surface pressure on desorption, whereas the second compartment (II) was also used in the studies with albumin. In all assays, the film area above compartment III was reduced to 50 cm^2 by placing two Teflon bars, 4 cm apart, lengthwise across the compartment. Albumin was added to only compartment II; when desorption was expected to be fast, the area of contact between the film and albumin solution was decreased beforehand by placing a Teflon bar widthwise across compartment II.

The aqueous subphase in compartment II was agitated by two magnetic stirrers turning at 250 rpm (15). Surface pressure was measured in compartment III, between the parallel bars, with a Wilhemy method with a thin platinum plate (perimeter, 3.94 cm) attached to a Beckman model LM-600 electromicrobalance (16). The trough, microbalance, and mobile barrier driving mechanism were housed within a cabinet maintained at 28-30°C (16). Oxidation of surface lipid was prevented by placing the trough and driving mechanism inside an open-top box that was flushed continuously with argon. The top of the box was 15 cm above the surface of the trough.

Immediately before each experiment the trough was cleaned with detergent solution, rinsed with tap water until the Teflon surface was no longer wettable, and then rinsed with deionized water. The reservoir and compartments were filled above the level of the top of the trough with 100 mM Tris-HCl, 1 mM CaCl2, 0.1 mM EDTA solution, pH 7.4. The water used for making up the solution was first deionized and then distilled from alkaline permanganate in an all-glass distillation apparatus. The surface of the aqueous phase was swept with a Teflon bar and aspirated several times to remove any remaining tensioactive impurities. The small Teflon bars then were placed across the compartments, and lipid dissolved in redistilled chloroform (2 to 4 mg/ml) was applied with a fine tipped needle and microsyringe. Then 2.4 nmol of albumin, 10 μg of C-peptide, and 90 or 270 pmol of lipoprotein lipase were added sequentially to the aqueous subphase of compartment A, and finally 960 nmol of albumin was added as indicated to either compartment A or B. One-milliliter aliquots of the aqueous subphase in compartments A and B were taken for analyses 1 to 2 min before and at various intervals after the addition of lipase. The subphase removed was replaced immediately with 1 ml of solution of similar composition. The surface films above compartments A and B were collected at the end of the experiment as follows: small Teflon bars were placed across each of the three channels, and 4 ml of buffer were added to compartment A, 2 ml to compartment B, and 1 ml to compartment C in order to raise the level of the aqueous subphase above the top of the trough. Each surface film then was aspirated with 2 ml of underlying aqueous subphase into a volumetric centrifuge tube, and an aliquot was taken for analysis.

Chemical Analyses—Lipids in the aqueous subphase and surface film were extracted into hexane (17) and separated into various classes of lipid by thin layer chromatography (11). The lipids were dissolved in either toluene containing 4.2% Liquifluor (Catalog No. NER-903, New England Nuclear, Pilot Chemicals, Inc., Boston, Mass.) or Instagel (Catalog No. 6002173, Packard Instrument Co., Inc., Downers Grove, Ill. 60515) for measurement of 3H content with a liquid scintillation spectrometer.

RESULTS

Compression Isotherms for Oleoyl Lipids—Compression isotherms for trioleoylglycerol and its hydrolytic derivatives,

![Fig. 1. Schematic diagram of tricompartment trough used to study lipolysis and movement of lipolytic products at the argon-water interface.](http://www.jbc.org/)

Lipolysis and Lipid Movement in a Membrane Model
dioleoylglycerol, monoleoylglycerol, and oleic acid, are presented in Fig. 2. The surface pressure of trioleoylglycerol increased linearly from 1 to 12 dynes/cm when concentration of lipid in the surface film was increased from 0.31 to 0.40 nmol of oleoyl moiety/cm² by compressing the film. Further compression to an apparent surface concentration of 2.5 nmol of oleoyl moiety/cm² had little effect on surface pressure, indicating collapse of the film. The isotherm for dioleoylglycerol was also biphasic: surface pressure increased from 14 to 25 dynes/cm as surface concentration was increased from 0.40 to 0.53 nmol of oleoyl moiety/cm² and then increased slowly to 31 dynes/cm as surface concentration was increased to 2.5 nmol/cm². The latter, the small increase in pressure with a large increase in apparent surface concentration, indicates collapse of the surface film. Surface pressure of monooleo- glycerol, in contrast, increased linearly from 15 to 35 dynes/cm when surface concentration was increased from 0.4 to 0.51 nmol/cm². Similar results were obtained with oleic acid.

It is evident from these studies that lipid products resulting from hydrolysis of trioleoylglycerol can withstand, because of their strong amphipathic character, much higher surface pressures before collapsing than can trioleoylglycerol. The consequence of this important property is discussed below (see Fig. 4).

Effect of Albumin on Desorption of Oleoyl Lipids from Monolayers at Various Surface Pressures—Monolayers of monooleo- glycerol and oleic acid both decreased in surface area when maintained at constant surface pressure between 20 and 36 dynes/cm (Fig. 3). The rate of decrease, however, was much lower for monooleo- glycerol than for oleic acid. Monooleo- glycerol decreased in surface area 0.3%/min at 36 dynes/cm, whereas oleic acid, at pH 7.4, decreased 1%/min at 20 dynes/cm, 2.5%/min at 30 dynes/cm, and 22%/min at 36 dynes/cm. The rates of decrease in film area for both lipids were markedly accelerated by adding albumin to the aqueous subphase, and these effects were proportional to the amount of albumin added. The effect was less on monooleo- glycerol, however, than on oleic acid. The data summarized in Table I indicate that desorption of oleic acid in the presence of 4.4 µM albumin is 2 to 3 times faster than that of monooleo- glycerol in the presence of a 3-fold higher concentration of albumin. Although albumin preferentially binds oleic acid, at high concentrations it can also serve as a trapping agent for mono- leo- glycerol.

Sustained compression of dioleoylglycerol at 31 dynes/cm and trioleoylglycerol at 13 dynes/cm had no significant effect on the surface area occupied by these lipids. The presence of

TABLE I

Surface pressure (dynes/cm)	Oleic acid	Monoleo- glycerol
Without albumin		
22	6	221
With albumin	221	0.5
With albumin	221	56
24	7	246
With albumin	246	0.6
With albumin	246	73
26	8	277
With albumin	277	0.7
With albumin	277	96
28	11	321
With albumin	321	0.8
With albumin	321	112
30	13	346
With albumin	346	1.0
With albumin	346	132
32	16	378
With albumin	378	1.1
With albumin	378	153

*Albumin, 4.4 µM, in aqueous subphase.

*Albumin, 17.0 µM, in aqueous subphase.

Fig. 3. Effect of albumin at different surface pressures on the rate of desorption of oleic acid (OA) and monooleo- glycerol (MOG) from surface film to aqueous subphase. Pure films composed of either oleic acid or monooleo- glycerol were spread at the interface between argon and Tris-HCl buffer solution, pH 7.4. Desorption rates were calculated from the reduction in film area at given pressures. Surface pressure was maintained constant with use of a surface barostat (15). Values are averages of two to four experiments. ΔA, change in film area; A₀, initial film area.
Hydrolysis of Trioleoylglycerol by Lipoprotein Lipase and Effect of Albumin on Movement of Lipolytic Products at an Argon-Water Interface—The movement of lipolytic products formed by the action of lipoprotein lipase on trioleoylglycerol at an argon-water interface was studied using the tricomparted trough described above (Fig. 1). The enzyme, 90 or 270 pmol, was added to compartment A where it was stabilized by a trace amount, 2.4 nmol, of albumin. This amount of albumin, producing a concentration of 0.06 μM, could not be expected to affect appreciably desorption of lipid from the interface. Results similar to those shown in Fig. 4 were obtained in complete absence of albumin, but the enzyme was quickly inactivated. C-peptide, used for activation of lipoprotein lipase, was added in all experiments shortly before the enzyme.

The amount of trioleoylglycerol applied, 113 nmol, was 14 times that needed to cover the surface of the aqueous medium (Tris·HCl/CaCl₂/EDTA, pH 7.4) with a monolayer at a pressure of 13 dynes/cm. The excess, probably present as lenses on the surface (20), constituted a substrate reservoir for re-association at a constant surface area.

The small amount of albumin used for enzyme stabilization induced an increase in surface pressure from 13 to 21 dynes/cm (Fig. 4), suggesting that the protein first penetrated the trioleoylglycerol film and then displaced trioleoylglycerol from the interface, probably into preformed lenses. Concentration of trioleoylglycerol in the aqueous subphase was negligible, <8 × 10⁻¹¹ M, 8 min after adding albumin to compartment A.

Addition of 270 pmol (13.2 μg) of lipoprotein lipase to the aqueous subphase of compartment A increased surface pressure from 21 to 28 dynes/cm in 5 min and to 32 dynes/cm in 22 min and maintained pressure at that level for the rest of the experiment (Fig. 4). Analyses at the end of the experiment showed that oleic acid, monooleoylglycerol and dioleoylglycerol were present in the surface film above compartments A and B (Tables II and III). Although recovery of total lipid from the surface film was incomplete, the amount of oleic acid and monooleoylglycerol recovered was sufficient to cover 44 to 71% of the surface of aqueous phase with a monolayer at a surface pressure of 32 dynes/cm. These findings demonstrate that lipolytic products are immediately located and spread throughout the interface. It is likely they also displaced albumin from the interface since their spreading pressures (Fig. 2) were considerably higher than that of albumin (18, 19).

Addition of 960 nmol of albumin to the aqueous subphase of compartment A, 1 min after adding enzyme, decreased at once the effect of lipolytic product on surface pressure, lowering pressure from 23.6 to 22 dynes/cm in 1 min, maintaining it at that level for 9 min, and then lowering it again to 21 dynes/cm at 22 min (Fig. 5). Addition of the same amount of albumin to compartment B, at 1.6 min, had a smaller effect on the rise in surface pressure. It stopped at once further increase in pressure at 25 dynes/cm, maintained pressure at that level for 9 min, and then lowered slowly pressure to 21 dynes/cm at 63 min. These observations suggested that lipolytic products generated by lipoprotein lipase were rapidly desorbed from the interface by albumin and that desorption was delayed when albumin was added to compartment B because time was required for transfer of lipolytic product from compartment A.

The amount of 3H-labeled lipid desorbed from the interface under various conditions is shown in Fig. 5 and Table II. The data in Table IV indicate that oleic acid and monooleoylglycerol accounted for more than 90% of the lipid desorbed from the interface, as would be expected from the findings with pure lipid films (Fig. 3). Desorption of lipolytic products from the interface and hydrolysis of trioleoylglycerol were both increased by addition of albumin (Table II), and desorption/unit surface area was greater in the compartment containing albumin (Fig. 5). Addition of albumin also decreased the amount of lipolytic product remaining in the surface film (Table II). Tripling the amount of lipoprotein lipase added to compartment A, from 90 to 270 pmol, increased hydrolysis of trioleoylglycerol by only 12% (Table II), indicating that the amount of enzyme used in this study was not limiting.

The effect of albumin on desorption of oleic acid and monooleoylglycerol formed by lipoprotein lipase from trioleoylglycerol is shown in Figs. 6 and 7. As observed with pure lipid films (Table I), desorption of oleic acid in the absence of albumin was many times faster than that of monooleoylglycerol, and desorption of both substances was increased by adding albumin to the aqueous subphase. Also, the enhancing effect of albumin was proportionally greater on monooleoylglycerol than on oleic acid. Addition of albumin to compartment A increased desorption of monooleoylglycerol to compartment A and B by 7-fold, whereas it increased desorption of oleic acid by only 2-fold. Addition of albumin to compartment B, in contrast, increased desorption of monooleoylglycerol 40- to 60-fold to compartment B and 2-fold to compartment A, while it increased desorption of oleic acid 6-fold to

1 The surface film and aqueous subphase of compartment C, which constituted 12% of the total surface area and volume of the trough, were not analyzed. They probably were similar in composition to those of compartment B in all experimental groups except IV and V (Tables III and IV).
Lipolysis and Lipid Movement in a Membrane Model

TABLE II
Effect of different amounts of lipoprotein lipase and albumin on the amount of \(^3\)H-labeled lipid recovered in the surface film and aqueous subphase at 63 min

The amount of tri[\(^3\)H]oleoylglycerol spread over the three compartments of the trough was \(8,460 \times 10^3\) cpm. See Figs. 4 and 5 for experimental details. The values given are means of two to four experiments/group.

Group	Lipoprotein lipase added to aqueous subphase of compartment A	Albumin in aqueous subphase	Total labeled lipid recovered	Labeled lipolytic product\(^*\) recovered in							
	Amount added to compartment	Concentration in compartment	In film above compartment A	In aqueous subphase of compartment A	Film above compartment A and B	Aqueous subphase of compartment A and B	% of labeled lipid applied				
	pmol	nmol	\(\mu\)M	cpm \(\times 10^3\)							
I	90	2.4	0	0.06	0	1,499	1,006	1,071	187	7.1	14.2
II	270	2.4	0	0.06	0	1,716	1,222	1,211	204	11.5	16.5
III	270	962	0	24.70	0	854	519	2,814	623	1.8	40.0
IV	90	2.4	960	0.06	71	940	386	1,901	1,328	2.2	30.4
V	270	2.4	960	0.06	71	667	670	1,924	1,569	3.2	40.0

\(*)\ Lipolytic product, dioleoylglycerol, monoo leoylglycerol, and oleic acid; based on analyses given in Tables III and IV.

TABLE III
Composition of \(^3\)H-lipid in surface film recovered from compartments A and B at 63 min

See Table II for experimental details. Values given are means of two to four experiments/group. OA, oleic acid; MOG, monoo leoylglycerol; DOG, dioleoylglycerol; and TOG, trioleoylglycerol.

Group	Compartment A	Compartment B						
	OA	MOG	DOG	TOG	OA	MOG	DOG	TOG
I	9.9	7.2	10.5	72.5	5.2	5.1	7.8	82.0
II	15.7	9.5	16.8	58.0	8.2	4.0	7.0	80.8
III	6.0	1.4	2.8	89.8	6.2	2.9	5.6	87.5
IV	10.9	5.7	5.4	78.0	5.7	3.1	2.3	88.8
V	11.9	10.2	7.2	70.7	5.5	3.9	2.2	88.4

TABLE IV
Composition of \(^3\)H-lipid in aqueous subphase of compartments A and B at 63 min

See Table II for experimental details. Values given are means of two to four experiments/group. OA, oleic acid; MOG, monoo leoylglycerol; DOG, dioleoylglycerol; and TOG, trioleoylglycerol.

Group	Compartment A	Compartment B						
	OA	MOG	DOG	TOG	OA	MOG	DOG	TOG
I	88.6	4.7	4.1	4.9	90.0	2.7	2.6	3.7
II	94.9	2.9	1.5	0.8	90.4	3.1	2.7	3.8
III	81.1	15.3	1.2	3.4	88.6	7.9	1.4	2.0
IV	87.6	8.6	2.0	1.6	65.7	21.8	1.7	10.7
V	90.1	7.8	1.3	0.7	68.2	25.6	1.2	4.8

Fig. 5. Effect of albumin on surface pressure and desorption of \(^3\)H-lipid from surface to aqueous subphase during hydrolysis of tri[\(^3\)H]oleoylglycerol by lipoprotein lipase (LPL). Trioleoylglycerol was spread 13 min, and traces of albumin and C-peptide were added to compartment A 10 and 6 min before addition of 90 or 270 pmol of lipoprotein lipase, respectively (see Fig. 4). Albumin (900 nmol) for trapping lipolytic product was added as indicated by arrows at either 1.0 or 1.6 min after addition of enzyme. Temperature was 28-30°C. Other data from these experiments are given in Tables II to IV and Figs. 5 and 6.
Lipolysis and Lipid Movement in a Membrane Model

Fig. 6. Transfer and desorption of oleic acid formed at the surface by action of lipoprotein lipase (LPL) on trioleoylglycerol. Albumin (960 nmol) for trapping oleic acid was added to the aqueous subphase of compartment A at 1.0 min and to compartment B at 1.6 min after addition of enzyme. Concentration of oleic acid in the aqueous subphase can be calculated from the amount desorbed/unit surface area, in nanomoles/cm², and the average depth of the aqueous subphase, 0.95 cm. See Fig. 5 for other details of experiment.

Fig. 7. Transfer and desorption of monooleoylglycerol formed at the surface by action of lipoprotein lipase (LPL) on trioleoylglycerol. Albumin (960 nmol) for trapping monooleoylglycerol was added to the aqueous subphase of compartment A at 1.0 min and to compartment B at 1.6 min after addition of enzyme. Concentration of monooleoylglycerol in the aqueous subphase can be calculated from the amount desorbed/unit surface area, in nanomoles/cm², and the average depth of the aqueous subphase, 0.95 cm. See Fig. 5 for other details of experiment.

TABLE V

Effect of different amounts of lipoprotein lipase and albumin on the amount of oleic acid and monooleoylglycerol recovered in aqueous subphase of compartments A and B at 63 min

See Table II for experimental details. The values given are means of two to four experiments/group.

Group	Lipoprotein lipase added to aqueous subphase of compartment	Albumin added to aqueous subphase of compartment	Oleic acid in aqueous subphase of compartment	Monooleoylglycerol in aqueous subphase of compartment	Lipid recovered	Ratio of monooleoylglycerol/oleic acid in aqueous subphase of compartment	
		A	B	A & B	A	B	A & B
		pmol	nmol	nmol	nmol	nmol	nmol
I		90	0	38.1	6.8	44.9	2.0
II		270	0	60.8	7.4	53.4	2.0
III		270	962	93.8	21.7	115.5	17.4
IV		90	960	66.7	35.0	101.7	6.5
V		270	960	69.4	42.8	112.2	9.0

compartment B and 1-fold to compartment A. In addition, concentration of monooleoylglycerol in the aqueous subphase was 5 to 11 times higher in compartment B than in compartment A, and concentration of oleic acid was 100% higher in compartment B than in compartment A when albumin was added to compartment B.

The amounts of oleic acid and monooleoylglycerol recovered in the aqueous subphase of compartments A and B are given in Table V. In the absence of albumin (Groups I and II), 85 to 90% of both oleic acid and monooleoylglycerol were recovered in compartment A and 10 to 15% in compartment B, and the molar ratio of monooleoylglycerol to oleic acid in the aqueous subphase was about 0.04 in all compartments. When albumin was added to compartment A (Group III), the proportion of each lipid recovered in compartment A was the same, 85%, but the molar ratio of monooleoylglycerol to oleic acid was increased to 0.19 in compartment A, to 0.11 in compartment B, and to 0.17 in compartments A and B combined. When albumin was added to compartment B (Groups IV and V), most of the oleic acid was still recovered in compartment A, whereas 67% of the monooleoylglycerol was recovered in compartment B. Accordingly, the molar ratio of monooleoylglycerol to oleic acid was higher in compartment B than in compartment A, 0.33 versus 0.10, even though the ratio for compartments A and B combined was not changed. These findings indicate that hydrolysis of trioleoylglycerol occurred primarily in compartment A and that proportionally more monooleoylglycerol than oleic acid was transferred to compartment B in Groups IV and V.

DISCUSSION

The purpose of the present work was to test with a simple membrane model the hypothesis that lipolytic products are transported by lateral movement in cell membranes. Lipolytic
products were generated by the action of lipoprotein lipase on trioleoylglycerol spread on the surface of aqueous medium, pH 7.4, in a special tricomparted trough (Fig. 1). The amount of trioleoylglycerol applied (in chloroform) was 14 times that which would be needed to cover the aqueous subphase with a monolayer of albumin at 21 dynes/cm (18). The increase in surface pressure when albumin was added (Fig. 4) indicates that albumin displaced trioleoylglycerol from the interface, probably into existing lenses. The small amount of C-peptide added for activation of the enzyme caused a small immediate increase in surface pressure (Fig. 4) indicating that C-peptide had entered the interface (21). It is likely that the albumin monolayer, containing C-peptide, extended under the trioleoylglycerol lenses to form an interfacial plane between the lipid and the aqueous subphase.

In our membrane model, trioleoylglycerol was converted by lipoprotein lipase to amphiphilic dioleoylglycerol, monooleoylglycerol, and oleic acid. These products immediately accumulated in the interface (Table VI), increased surface pressure to 25 dynes/cm in 2 min and to 32 dynes/cm in 22 min. Substrate was not limiting because the amount hydrolyzed at 22 min was only 29% of that applied, or 44% of that in compartment A, assuming uniform distribution of lipoprotein glycerol at the surface (29% \(\times 58.2 \text{ cm}^2/35.5 \text{ cm}^2 \)). Lipoprotein lipase was probably in excess since tripling the amount added increased hydrolysis only 12% (Tables II and VI). Also, albumin was in excess as indicated by the low ratio of fatty acid to albumin in compartment A, <0.1 (Fig. 6).

It is unlikely that cofactor apolipoprotein C-II was limiting because nearly 300 pmol, contained in 10 \(\mu \text{g} \) of C-peptide, was used to activate up to 270 pmol of enzyme (14, 21, 22). Entry of albumin into the interface when surface pressure fell to 21 dynes/cm may have disrupted or interfered with formation of enzyme-cofactor-substrate complex at the trioleoylglycerol-water interface. Unlike the case with chylomicrons and artificial emulsions, only a small percentage of the interfacial plane at the surface of the aqueous phase was in direct contact with triacylglycerol lenses; the rest was in contact with argon. The same phenomena probably occurred when albumin was added to compartment B (Groups IV and V, Table VI).

The immediate rise in surface pressure when lipoprotein lipase was added to compartment A (Fig. 4) and the appearance of lipolytic product in the surface film of compartment B (Table II) indicate that lipolytic product spread rapidly throughout the interface. Transfer of product to the aqueous subphase of compartment B was increased severalfold by adding albumin to compartment B (Table V). Also, rates of desorption of oleic acid and monooleoylglycerol from interface to aqueous subphase of compartment B were increased 6- and <=40-fold, respectively (Figs. 6 and 7). It is possible that a small amount, 1 to 2%, of the albumin added to either com-

Table VI

Group	Lipoprotein lipase added to aqueous subphase of compartment A	Amount of lipolytic product in interface and aqueous subphase of compartments A and B combined^a						
	A	B	2 min	11 min	22 min	42 min	63 min	
I	90	2.4	0	26 1	27 10	27 24	27 39	27 48
II	270	2.4	0	26 1	27 15	27 27	27 44	27 56
III	270	962.4^b	0	17^c 9	6^e 56	6^e 93	6^e 118	6^e 134
IV	90	2.4	960^a	26 2	26 24	25 67	7^e 110	7^e 127
V	270	2.4	960^a	26 2	26 31	26 13	11^e 116	11^e 136

^a Lipolytic product, dioleoylglycerol, monooleoylglycerol, and oleic acid.

^b Int, interface. Estimated from surface pressure (Fig. 5) and compression isotherms of pure lipids (Fig. 9).

^c Sub, aqueous subphase. Estimated from surface pressure (Fig. 5) and rates of desorption of pure lipids (Table I).

^d Sub, aqueous subphase. Calculated from data in Fig. 5 and Table IV.

^e Albumin, 960 nmol, was added to compartment A at 1 min after addition of enzyme to compartment A.

^f Difference between estimated amount in interface in absence of albumin (26 nmol) and estimated amount desorbed during the first minute after addition of albumin (9 nmol).

^g Based on amount of lipolytic product recovered in surface film at 63 min (Table II).

^h Albumin, 960 nmol, was added to compartment B at 1.6 min after addition of enzyme to compartment A.
partment A or B might have diffused via the aqueous phase to the other compartment (15, 16) and, thereby, enhanced desorption of oleic acid and monooleoylglycerol in the second compartment (Figs. 6 and 7). Similarly, a small amount of lipase might have diffused from compartment A to compartment B. However, when albumin was added to compartment B, about two-thirds of the oleic acid formed was recovered in compartment A, whereas two-thirds of the monooleoylglycerol formed was recovered in compartment B (13.5 ml) than in compartment A (39 ml) (Figs. 6 and 7). These findings are consistent with the view that oleic acid and monooleoylglycerol formed in compartment A are transferred to compartment B by lateral movement in the interface. Such movement would be enhanced by gradients of concentration of lipolytic product in the interface resulting from the generative action of lipoprotein lipase in compartment A and the trapping action of albumin in compartment B.

We conclude that amphiphilic acyl lipids formed by the action of lipoprotein lipase on triacylglycerol immediately locate and spread at the interface between triacylglycerol/gas and water. As lipolytic products crowd the interface, surface pressure increases, hydrolysis slows down, and substances with lower spreading pressures are displaced from the interface. Although lipolytic products composed of long chain acyl groups have a strong tendency to remain in the interface, a small fraction of fatty acid and a much smaller fraction of monoacylglycerol desorb to the aqueous subphase. Albumin generally in the interface to the area of contact with albumin and in the aqueous subphase accelerates desorption of both fatty acid and monoacylglycerol from the interface and, thereby, enhances lipolysis. When albumin is not contiguous with the interface, forming lipid droplets (lenses) between bilayers of reticular membrane. Although lateral movement of lipolytic products in the continuum could be affected quantitatively by cell membrane constituents such as phospholipid and cholesterol, the physicochemical principles demonstrated in the membrane model would still apply.

Acknowledgments—We are grateful to Dr. Norman L. Gershfeld and Dr. G. Pieroni for valuable discussions of the study.

REFERENCES
1. Zilversmit, D. B. (1969) in Structural and Functional Aspects of Lipoproteins in Living Systems. (Tria, E., and Scanu, A. M., eds.) pp. 329-368, Academic Press, London.
2. Scow, R. O., Blanchette-Mackie, E. J., and Smith, L. C. (1976) Circ. Res. 39, 149-162
3. Scow, R. O., and Olivecrona, T. (1977) Biochim. Biophys. Acta 487, 472-486
4. Arvidsson, E. O., and Belfrage, P. (1969) Acta Chem. Scand. 23, 223-226
5. Blanchette-Mackie, E. J., and Scow, R. O. (1976) J. Lipid Res. 17, 57-67
6. Scow, R. O., Hamosh, M., Blanchette-Mackie, E. J., and Evans, A. J. (1972) Lipids 7, 497-505
7. Mendelson, C. R., and Scow, R. O. (1972) Am. J. Physiol. 223, 1418-1423
8. Zinder, O., Mendelson, C. R., Blanchette-Mackie, E. J., and Scow, R. O. (1976) Biochim. Biophys. Acta 431, 526-537
9. Scow, R. O., Blanchette-Mackie, E. J., and Smith, L. C. (1977) in Cholesterol Metabolism and Lipolytic Enzymes (Polonovski, J., ed) pp. 143-164, Masson Publishing U.S.A., New York
10. Benzonana, G. (1969) Biochim. Biophys. Acta 151, 137-146
11. Stein, O., Scow, R. O., and Stein, Y. (1970) Am. J. Physiol. 219, 510-518
12. Egelrud, T., and Olivecrona, T. (1972) J. Biol. Chem. 247, 6212-6217
13. Egelrud, T., and Olivecrona, T. (1973) Biochim. Biophys. Acta 306, 115-127
14. Havel, R. J., Fielding, C. J., Olivecrona, T., Shore, V. G., Fielding, P. E., and Egelrud, T. (1973) Biochemistry 13, 4318-4324
15. Rietsch, J., Pattus, F., Desmuelle, P., and Verger, R. (1977) J. Biol. Chem. 252, 4313-4318
16. Verger, R., and de Haas, G. H. (1973) Chem. Phys. Lipids 10, 197-136
17. Biebendorf, F. A., Chernick, S. S., and Scow, R. O. (1970) J. Clin. Invest. 49, 1685-1693
18. Stahlberg, S., and Teorell, I. (1939) Forn intimate Sur Trans 35, 1413-1416
19. Colacicco, G., Basu, M. K., Littman, J., and Scarpelli, E. M. (1975) in Monolayers (Goddard, E. D., ed) pp. 239-258, American Chemical Society, Washington
20. Davies, J. T., and Rideal, E. K. (1963) Interfacial Phenomena pp. 20-04, Academic Press, New York
21. Miller, A. L., and Smith, L. C. (1973) J. Biol. Chem. 248, 3359-3362
22. Fielding, C. J., and Fielding, P. E. (1977) in Cholesterol Metabolism and Lipolytic Enzymes (Polonovski, J., ed) pp. 185-172, Masson Publishing U.S.A., New York
Lipolysis and lipid movement in a membrane model. Action of lipoprotein
lipase.
R O Scow, P Desnuelle and R Verger

J. Biol. Chem. 1979, 254:6456-6463.

Access the most updated version of this article at http://www.jbc.org/content/254/14/6456

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/254/14/6456.full.html#ref-list-1