A review on phytochemical and pharmacological values of *Aegle marmelos*

Krushna A. Lomate, Krishna Murthy, Vishal S. Adak, Rajkumar V. Shete

INTRODUCTION:

Bael produces numerous phytochemicals that make it helpful in several illnesses, such as alkaloids, tannins, essential oils, gums, resins, coumarin, polysaccharide. The nutritional aspect, compared to other fruits, is much more essential. It is also of great significance to the environment. It serves as a climate purifier; in contrast to other plants, it releases a greater percentage of oxygen. It has various primary therapeutic applications such as antifungal, analgesic, anti-inflammatory, antipyretic, anti-lipidemic, and resistant, anti-pollutant, wound, anti-fertility and insecticidal healing. With the aid of various post-harvest technologies, the fruits are also used to make a variety of items such as candy, toffee, jelly, juice, and so on. These innovations aid in the reduction of post-harvest losses, extending the shelf life of Bael products. It is therefore a good source of income for a needy farmer. The purpose of this analysis is to understand the phytochemical parameters, conventional uses and creative Bael fruit applications.

Biological profile:

Synonyms: The various synonyms of Bael are Hindi (Bel, bael, sripal); Sanskrit (Bilva, sriphal, shivadruma, Shivapala); Telugu (Medu); Bengali (Bel); Gujrati (Bil); Kannada (Bilpatra, lumbala, malura); Tamil (Kuvalum); Thai (Matum and mapin); Cambodia (Phneou or pnoi); Vietnamese (Baunau); Malayan (Majapahit); French (Oranger du Malabar); Portuguese (Marmelos); Java (Modjo).

Ecology: Bael is an Indian ethnic group that can be found in Bangladesh, Egypt, Malaysia, Myanmar, Pakistan, Sri Lanka, and Thailand, among other places. The tree grows wild in mixed deciduous and dry forests on hills and plains in central and southern India, as well as Burma, Pakistan, and Bangladesh.

Biophysical limits: Bael's altitude is 0-1200 m; it includes an annual mean temperature of 6 to 48 degrees Celsius and an annual mean rainfall of 570-2000 mm. In addition, it requires well-drained soil and also grows well at pH 5 to 8 in swampy, alkaline or stony soils.

Taxonomy

Kingdom: Plantae
Order: Sapindales
Family: Rutaceae
Sub family: Aurantioideae
Genus: *Aegle*
Species: *A. marmelos*

Botanic Description

Aegle marmelos is a medium-sized, slow-growing tree with a short trunk, dense, fuzzy, flaking bark, up to 12-15 m tall, and spreading with spiny branches. A clear, gummy sap, similar to arabic gum, exudes from wounded branches and hangs in
long threads, eventually becoming solid. At first taste, it is sweet and then unpleasant to the mouth.

Leaves: The deciduous, alternating leaves, single or 2’s or 3’s, are composed of 3 to 5 oval, pointed, shallowly toothed leaflets, 4-10cm long, 2-5cm thick, long-petiole terminal one. When bruised, mature leaves emit a disagreeable odour.

Flowers: Flowering occurs shortly after the new vacation in April and May. Fragrant flowers have 4 curved, fleshy petals, green outside, yellowish within, and 50 or more greenish-yellow stamens in clusters of 4 to 7 along a young branch.

Fruits: The fruit, which is round, pyriform, oval, or oblong in shape and has a diameter of 5-20 cm, may have a thin, rough, woody shell or a gray-green rind that is more or less soft until fully ripe and becomes yellowish when fully ripe. It’s lined with aromatic, minute oil glands. There’s a hard central core inside, as well as 8 to 20 faintly shaped triangular segments with thin, dark-orange walls and aromatic, pale orange, pasty, sweet, resinous pulp that’s more or less astringent. The fruit takes 10 to 11 months to mature from bloom to ripening. Fruits contain 61.5 g of water, 1.8 g of protein, 0.39 g of fat, 1.7 g of minerals, 31.8 g of carbohydrates, 55 mg of carotene, 0.13 mg of thiamine, 1.19 mg of riboflavin, 1.1 mg of niacin and 8 mg of vitamin C per 100 g of food. The Bael fruit, with its richest source of riboflavin, is highly nutritious.

Seeds: 10 to 15 flattened-oblong seeds are contained in the pulp. The seeds are about 1 cm long, with woolly hair and each enclosed in a sack of clear, sticky mucilage that solidifies when dried.

Chemical composition:

Aegle marmelos have a number of compound groups, such as alkaloids, cardiac glycosides, saponin, hormones, coumarins (marmelosin, marmesin, marmin, imperatorin, scopoletin), terpenoids, phenylpropanoids, tannins, flavonoids, and polysaccharides. There are γ-sitosterol, aegalin, lupeol, rutin, marmesin, β-sitosterol, flavone, glycoside and phenylethyl cinnamides in the leaves of *Aegle marmelos*. Shahidine, an alkaloid with an oxazoline centre, was isolated from the fresh leaves of *Aegle marmelos* as a major component and demonstrated activity against a few Gram-positive bacteria.

![Figure 1: Phytoconstituents present in Aegle marmelos](image)
Halfordino, ethylcinnamamide, and marmelin are new alkaloids discovered in the leaves of Aegle marmelos. Aegle marmelos leaves have recently yielded a number of phenethyl cinnamides, including new compounds called anhydroxanthine, agelinosides A and B, which are -
glucosidase inhibitors. The common component of the
essential oil from leaves, twigs and fruits was found to be al-
Phellandrene, which is terpenoid. Leaf oil registered alpha-
phellandrene (56%) and p-cymene (17%). The main
constituent of bael leaves that are characteristic markers for
the identification of Aegle marmelos oil samples was
confirmed to be Limonene (82.4%). Approx there is. In
contrast to the cultivated form, 9% tannin in the pulp of wild
fruits. Like skimmianine, also known as 4, 7, 8-
trimethoxyfuro-quinoline, tannin is also found in leaves.
Hydroxycoumarins, phenylpropanes and lignans were
contained in the phenylpropanoids. It’s lined with aromatic,
minute oil glands. There’s a hard central core inside, as well
as 8 to 20 faintly shaped triangular segments with thin,
dark-orange walls and aromatic, pale orange, pasty, sweet,
resinous pulp that’s more or less astringent. The fruit takes
10 to 11 months to mature from bloom to ripening.9

Therapeutic Uses and Pharmacology

Anti-cancer Activity:

Breast cancer is among the world’s most common types
of cancer. It is also the leading cause of death in female cancer
patients around the world. Despite multiple clinical
approaches, it is nevertheless related to a high mortality
rate. Aegle marmelos (L.) Correa is widely used in the Indian
Ayurveda medicine system due to its unique medicinal
properties. However, there are few reports on its efficacy in
the fight against cancer. The aim of this study was to see if in
rats induced by 7,12-dimethylbenz(a)anthracene, Aegle
marmelos fruit extract could prevent breast cancer (DMBA).
The rats were female Charles Foster rats, aged 55-60 days
and weighing around (150 10 g), and they were given DMBA
(20 mg/mL dissolved in olive oil) orally. The rats were given
Aegle marmelos Ethanolic fruit pulp extract (200 mg/kg
b.w./day) orally for 5 weeks after developing breast tumors
(a bout 0.5 cm), and the tumor volume was assessed. The
volume of mammary tumors was significantly reduced
(P<0.05) after treatment with Aegle marmelos, as were
various serum biomarkers such as TNF, serum malondialdehyde (MDA), and glucose levels (P<0.0001).

After treatment with Aegle marmelos, ethanolic fruit pulp
extract, both kidney and liver serum biomarker parameters
improved significantly (P<0.0001). Taking all into account,
the ethanolic fruit pulp extract of Aegle marmelos has antiproliferative potency in the rat model, suppressing the
growth of breast tumors. Hepatoprotection is another
advantage of the plant extract. As a result, it may be used to
treat breast cancer as a new and successful anti-cancer
drug.11 Taking all into account, it can be concluded that Aegle marmelos, ethanolic fruit pulp extract has anti-proliferative
efficacy by suppressing the development of breast tumors in
the rat model.12

Antihyperglycemic activity:

The author gave diabetic rats Aegle marmelos leaves extract
@500 mg/kg to test hypoglycemic and antioxidant impact.
Male albino rats were divided into three groups at random:
Group I, Group II, and Group III, which included control,
diabetic, and diabetic extract rats, as well as A extract rats.
A. Marmelos they observed that there was a drop in blood
glucose in group III animals at the end of four weeks relative to
group II.13 A. Marmelos, like insulin, is effective in
restoring normal blood glucose and body weight. According
to new study, the leaf juice from A. Marmelos was effective in
diabetes mellitus, which may be attributed to the presence
of bioactive components such as agelin, scopoletin, and
stiossterol in the leaves.14,15

Anti-Diarrhoea and dysentery Activity:

Half-mature or unripe fruit serves as a cure in the case of
chronic diarrhoea and dysentery without fever. Half-ripe
fruit is considered best for the task, but successful results
have been shown by fully ripe fruits or even fruit powder.
It is sliced, dried and ground into powder while the fruit is still
unripe. By baking and then eating brown sugar or jaggery,
the unripe fruit can also be eaten. The amount of blood
passed into the faecal matter decreases after use of fruit, and
the faecal matter gets a more stable form.16,17

Anticonvulsant activity:

Extract from the aqueous leaves of A. marmelos has
anticonvulsant efficacy against seizures caused by
pentyltenetetrazole in mice. The anticonvulsant function of
the extract of a aqueous leaves A. marmelos was attributed to
the existence of mass spectrometry detected by liquid
chromatography of Lupeolinolate, Skimmianine, Eugenol.
Ethenolic leaf extract from A. marmelos reveals
anticonvulsant activity due to flavonoid presence and
interferes with the anticonvulsant activity of the GABAergic
mechanism.18,19

Antimicrobial activity:

It is confirmed that A. marmelos are traditionally used to
inhibit a wide variety of pathogenic microorganisms for the
treatment of different infectious diseases. Antibacterial
activity of leaves and fruit extract A was evaluated by the
reviewer. A. marmelos. Inhibition zones of 11 mm and 9 mm
were observed when leaf and fruit extracts were used against
Roulettia plantikola. The plant extract Penicillium
chrysogenum provided the maximum inhibition zone (18
mm) activity against fungal strains and the minimum
inhibition zone (10 mm) activity against Candida albicans
(7mm).20

Anxiolytic and antidepressant:

Extract from the methanolic leaves of A. marmelos has
anxiolytic and antidepressant activity, and imipramine and
fluoxetine improve anxiolytic and antidepressant activity.21

Antioxidant activity

Antioxidants have the potential to defend cells from
oxidative stress through scavenging free radicals. Flavones,
isoflavones, flavonoids, anthocyanins, coumarins, lignans,
catechins, and isocatechins are all antioxidants found in
these plants. Antioxidant activity against a variety of free
radicals is well established in A. marmelos. Another research
found antioxidant activity in A. leaf extract. A marmelos was
responsible for the high levels of total phenolic content
(TPC) and total flavonoid content (TFC) in the extract.22,23

Anti-inflammatory activity

The author has tested the anti-inflammatory, antipyretic and
analgesic efficacy of various extracts of Aegle marmelos
leaves. The extracts provided a substantial inhibition of paw
eoedema induced by carragenin and cotton pellet granuloma
in rats. The leaves, due to the presence of luteolin, skimmianine, displayed anti-inflammatory properties.24,25

Analgesic activity

At doses of 200 and 300 mg/kg, extract from the methanolic
leaves of A. marmelos showed substantial analgesic activity
in mice in acetic acid-induced writhing and tail flick studies.26

Antifungal activity

According to research by Rana et al. (1997), essential oil from *Aegle marmelos* leaves can interfere with the metabolism pathway of Ca2+ dipicolonic acid and may inhibit the development of spores at a concentration of 500 ppm. Extract of A. ethanolic, methanolic and water leaves of *A. marmelos* has antifungal action against fungal dermatophytes.27

Neuroprotective activity

In male rats, an extract of ethanol leaves from *A. marmelos* displayed neuroprotective effects against streptozozine-induced cognitive impairment. In addition, the extract inhibited acetylcholinesterase activity in the brain (AChE). AChE inhibition decreases the effects of cognitive deficits by increasing acetylcholine levels.28

Anti-ulcer activity

Methanolic extract of *Aegle marmelos* unripe fruit decreased gastric ulceration and prevented oxidative stress in rats caused by Helicobacter pylori-Lipopolysaccharide. The presence of luvangetin, which reduces oxidative stress in the gastroduodenal mucosa, contributed to the extract's gastroprotective impact. Some other research has indicated the ripe fruit of *A*. The antisecretory and cytoprotective property of *A. marmelos* protects gastric mucosa in NSAID induced ulceration in rats (Singh and Guha, 2012). Methanolic and aqueous extract of fruit seeds from *A. Marmelos* demonstrated antiulcer activity due to the presence of the compound quer cetin.29,30

Antiviral activity

Antiviral activity against the Ramilbet disease virus was demonstrated by the ethanolic Bael fruit extract. Bael fruit produces marmilide, the most powerful viricidal agent that interferes with the replicating period of early events.31

Immunomodulatory activity

Methanolic leaves have been found to extract A. In rats, *A. marmelos* activate cell-mediated and antibody-mediated immune responses, but the low dose of *Aegle marmelos* methanolic extract was found to be most effective in cell-mediated immune responses, whereas the high dose was the most effective in humoral immunity.32,33

Diuretic

Sharma GN et al observed that, at a higher dose (500mg/kg), ethanolic extract induces a substantial increase in sodium excretion. An effective solvent is also present in petroleum ether, chloroform and ethyl acetate fractions.30

Antifertility

Ethanolic leaf extracts from *A. marmelos*. The motility of the sperm had a major effect on *A. marmelos*. Increased concentration of extracts has also been suggested to reduce sperm motility.30

Toxicological studies

From the leaves of A, complete alcoholic, total aqueous, whole aqueous and methanolic extracts were obtained. However, no adverse effects up to a maximum dose of 250 mg/kg body weight have been recorded with marmelos.34

Constipation

As the best of all known laxatives, ripe fruit has been considered. The administration of ripe fruits cleans and tonifies the intestines in the event of constipation. Its daily usage for 2-3 months was successful in eliminating old and accumulated faecal matter from the intestines. The pulp of ripe fruit is crushed and created into a sherbet for the best results. To decrease the bitterness, seeds are omitted and sugar and/or milk can be added to make it more palatable.

Conclusion:

The therapeutic and medicinal value of the Bael fruit is high. Bael's revolutionary commercial goods need to be exploited by preventing post-harvested fruit losses in order to process them into suitable products. These food products would benefit customers because of their nutritional value and their therapeutic significance. In order to find out the viewpoint on the globalization of the Bael tree, the present analysis elaborates different therapeutic and creative approaches. For the betterment of the health care system, there is a need to create, preserve and encourage conventional medicines.

References:

1. Ravani A, Joshi DC. Processing for value addition of underutilized fruit crops. Trends in Post-Harvest Technology 2014; 2:15-21.

2. Kaur A, Kalia M. Physiochemical Analysis of Bael (*Aegle marmelos*) Fruit Pulp. Seed and Pericarp J. Chem Sci Review and Letters 2017; 6(22):1213-1218.

3. http://www.kannadagaworld.com.

4. Kaur A, Kalia M. Physiochemical Analysis of Bael (*Aegle marmelos*) Fruit Pulp, Seed and Pericarp J. Chem Sci Review and Letters 2017; 6(22):1213-1218.

5. Wirth EH. Soil and plant analysis. Inter science Publication, New York. 1946; 35(6):192-192.

6. Sharma N, Dubey W. History and Taxonomy of Aegle marmelos: A Review Int J. Pure Applied Bioscience 2013; 1(6):7-13.

7. Qadry JS. Pharmacognosy, B.S. Prakashan, 12th edition. 2004; 05:78-79.

8. Alisha J and Krishan K. Tremendous Pharmacological Values of *Aegle marmelos*. International Journal of Pharmaceutical Sciences Review and Research. 2016; 36(2):121-127.

9. Neeraj, V. B. and Johar, V. Bael (*Aegle marmelos*) Extraordinary Species of India: A Review. International Journal of Current Microbiology and Applied Sciences. 2017; 6(3): 1870-1887.

10. Vogta Chaudhary, Abhishek Saxena. Phytochemistry, Pharmacological and Traditional uses of *Aegle marmelos*. UK Journal of Pharmaceutical and Biosciences. 2017; 5(5):27-33.

11. Akhouri V, Kumari M. Therapeutic effect of *Aegle marmelos* fruit extract against DMBA induced breast cancer in rats. nature.com 2020; 6(3):12-17.

12. Ansari, P., Afroz, N., Jalil, S., Azad, S.B., Mustakim, M.G., Anwar, S., and Hannan, J. M. A. Anti-hyperglycemic activity of *Aegle marmelos* (L) corr. is partly mediated by increased insulin secretion, α-amylase inhibition, and retardation of glucose absorption. Journal of Pediatric Endocrinology and Metabolism. 2017; 30(1):97-47.

13. Upadhya, S., Shambhag, K.K., Sunetha, G., Balachandra Naidu, M. and Upadhya, S. A study of hypoglycemic and antioxidant activity of *Aegle marmelos* in alloxan induced diabetic rats. Indian journal of Physiology and Pharmacology. 2004; 48(4):476-480.

14. Maqbool M., Gani, I. and Dar, M.A., Anti-Diabetic Effects of Some Medicinal Plants In Experimental Animals: A Review. Asian Journal of Pharmaceutical Research and Development. 2019; 7(1):66-69.

15. Nigam, V. and Nambiar, V.S., *Aegle marmelos* leaf juice as a complementary therapy to control type 2 diabetes-Randomised controlled trial in Gujarat, India. Advances in Integrative Medicine. 2019; 6(11):22.

16. Ullikashi KY, Kammar MR, Lokapure SR. Development of Value Added Products from Bael Fruit (*Aegle marmelos*). Int J Current Micro and Appl Sci. 2017; 6: pp. 2652-2659.
17. Rakulini R, Kalaichelvi S. A review of Anti-Diarroheal activities of Aegle marmelos. J Complement. Alter. Med. Res. 2019; 7(2):1-10.

18. Puthallath R.E., Joseph L, Kademane K, Rao S.N. Anticonvulsant activity of Nigella sativa, Aegle marmelos and Benincasa hispida in Pentyleneetetrazole induced seizure in Swiss albino mice. Asian Journal of Medical Sciences. 2016; 7(3):97-102.

19. Patel A.R., Dipak, G., Manodeep, C. and Jagdish K., V. Punica granatum Lomate. International journal of pharma and bio sciences. 2012; 3(2):159-163.

20. Meena, R, Pareek A. and Meena R. R. Antimicrobial activity of Aegle marmelos (Rutaceae) plant Extracts. International Journal of MediPharm Research. 2016; 2(1):1-5.

21. Kothari, S., Minda, M., and Tonpay, S. D. Anxiolytic and Antidepressant Activity of methanol extract of Aegle marmelos leaves in mice. Indian journal of physiology and pharmacology. 2010; 54(4):318-328.

22. Sekar, D. K., Kumar, G., Karthik, L. and Rao, K. B. A review on pharmacological and phytochemical properties of Aegle marmelos (L.) Corr. Serr. (Rutaceae). Asian Journal of Plant Science and Research 2011; 1(2):8-17.

23. Kumar, S., Bodla, R. B. and Bansal, H. Antioxidant Activity of Leaf Extract of Aegle marmelos Correa ex Roxb. Pharmacognosy Journal. 2016; 8(5):52-56.

24. Arul V., Miyazaki S., Dhananjayan R. Studies on the anti-inflammatory, antipyretic and analgesic properties of the leaves of Aegle marmelos Corr. Journal of Ethnopharmacology. 2005; 96(1-2):159-163.

25. Sharma N and Dubey W. Bioactive Compounds Present In Aegle marmelos and Their Role In Medicinal Properties: A Review. International journal of pharma and bio sciences. 2016; 7(3):170 – 176.

26. Shankarananth V., Balakrishnan N., Suresh D., Sureshpandian G., Edwin E. and Sheeba E. Analogic activity of methanol extract of Aegle marmelos leaves. Fitoterapia. 2007; 78(3):258-259.

27. Balakumar S., Rajan S., Thirunalasundari T. and Jeeva S. Antifungal activity of Aegle marmelos (L) Correa (Rutaceae) leaf extract on dermatophytes. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(4):309-312.

28. Raheja S., Girdhar A., Kamboj A., Lather V. and Pandita D. Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebro ventricular streptozotocin in male rats. Life sciences. 2019; 221:196-203.

29. Ramakrishna Y.G., Savithri K., Kist M. and Devaraj S.N. Aegle marmelos fruit extract attenuates Helicobacter pylori Lipopolysaccharide induced oxidative stress in Sprague Dawley rats. BMC complementary and alternative medicine. 2015; 15(1):375.

30. Sharma G.N., Dubey S.K., Sat1 N. and Sanadya J. Ulcer healing potential of Aegle marmelos fruit seed. Asian J Pharm Life Sci. 2011; 1(2):172-178.

31. Miranda D., Pereira L., Srsat S. M., Antarkar D. S., and Vaidya A. B. In vitro action of Dadima (Punica granatum Linn.) against microorganisms involved in human gastrointestinal infections-isolation and identification of tannins. Journal of Research in Ayurveda and Siddha. 1993; 14(3-4):154-164.

32. Ghounay A., Ghounay A., Mishra A., Mishra S. and Patil U.K. Evaluation of the immunomodulatory activity of the methanolic and ethanolic extract of leaves of Aegle marmelos in Rats. International Journal of Drug Development and Research. 2010; 2(4):844-9.

33. Govinda H.V., and Asdaq S.M.B. Immunomodulatory potential of methanol extract of Aegle marmelos in animals. Indian Journal of pharmaceutical sciences. 2011; 73(2):235.

34. Veerappan A, Miyazaki S, Karkaraismay M, Ranganathan D. Acute and subacute toxicity studies of Aegle marmelos Corr., an Ind. Medicinal Plant. PhytoMedicine. 2007; 14(2-3):209-215.