Abstract

One of the emerging applications that belongs to ambient systems is to transparently and directly interconnect vehicles on roads, making an ad-hoc network that enables a variety of applications through distributed software's without the need of any fixed and dedicated infrastructure. The network as well as the embedded computers and sensors in the vehicle will be invisible to the driver, who will get the required services during his journey. New type of ad-hoc network is the Vehicular Ad-hoc Network (VANET), in which vehicles constitute the mobile nodes in the network. Due to the prohibitive cost of deploying and implementing such a system in a real world, most research work in VANET relies on simulations for evaluation purpose. The key concept for VANET simulations is a real world vehicular mobility model which will ensures conclusions drawn from simulation experiments will carry through to real world deployments. In this paper we present a tool SUMO, MOVE that allows users to easily generate
real world mobility models for VANET simulations. MOVE tool is built on top of SUMO which is open source micro-traffic simulator. Output of MOVE is a real world mobility model and can used by NS-2 and qualnet simulator. In this paper we evaluate and compare ad-hoc routing performance for vehicular nodes using MOVE, which is using random waypoint model. The simulation results are obtained when nodes are moving according to a real world mobility model which is significantly different from that of the generally used random waypoint model.

Reference

- The Network Simulator NS-2 version 2.34. http://www.isi.edu/nsnam/ns/index.html.
- OPNET Simulator. http://www.opnet.com/.
- QualNet Network Simulator. http://www.scalable-networks.com/.
- Pamramics: Microscopic traffic Simulation. http://www.paramics-online.com/.
- CORSIM. http://www.fhwa-ts.is.com/.
- PTV simulation VISSIM. http://www.english.ptv.de/.
- VanetMobiSim. http://en.pudn.com/downloads160/sourcecode/app/detail720214_en.html
- MOVE http://www.cs.unsw.edu.au/klan/move/.
- SUMO http://sumo.sourceforge.net/
- Amit Kumar Saha and David B. Johnson. Modeling mobility for vehicular ad hoc networks. In Proc. Of the 2nd ACM International Workshop on Vehicular Ad hoc Networks (VANET), October 2004.
- John Heidemann, Nirupama Bulusu, Jeremy Elson, Chalermek Intanagonwiwat, Kun chan Lan, Ya Xu, Wei Ye, Deborah Estrin, and Ramesh Govindan. Effects of detail in wireless network simulation. In Proc. Of Communication Networks and Distributed Systems Modeling and Simulation Conference, January 2001.
- KML tutorial. http://www.keyhole.com/kml/kml_tut.html.
- Karnadi, F.K.; Zhi Hai Mo; Kun-chan Lan; Sch. of Comput. Sci. & Eng., New South Wales Univ., Sydney, NSW , “ Rapid Generation of Realistic Mobility Models for VANET”. IEEE Xplore
- A. K. Saha, D. Johnson, .Modeling Mobility for Vehicular Ad Hoc Networks., Poster Session, 1st ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004), Philadelphia, PA, October 2004.
- T. Camp, J. Boleng, V. Davies, .A Survey of Mobility Models for Ad Noc Network Research., Wireless Communications and Mobile Computing, Vol. 2, Issue 5, September 2002.
- F. Bai, A. Helmy, .A Survey of Mobility Modeling and Analysis in Wireless Ad Hoc Networks., Book chapter in Wireless Ad Hoc and Sensor Networks, Kluwer academic Publishers, June 2004.
- BonnMotion, a mobility scenario generation and analysis tool, http://web.informatik.uni-bonn.de/IV/BonnMotion.
- U.S. Census Bureau - Topologically Integrated Geographic Encoding and Referencing (TIGER) system, http://www.census.gov/geo/www/tiger.
- F. Karnadi, Z. Mo, K.-C. Lan, .Rapid Generation of Realistic Mobility Models for VANET., Poster Session, 11th Annual International Conference on Mobile Computing and Networking (MobiCom 2005), Cologne, Germany, August 2005.
- A. Uchiyama, Mobile Ad-hoc Network Simulator based on Realistic Behavior Model., 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005), Urbana-Champaign, IL, USA, May 2005.
- Deutsches Zentrum für Luft-und Raumfahrt e.V. (DLR). Sumo – simulation of urban mobility. http://sumo.sourceforge.net/.
- F. K. Karnadi, Z. H. Mo, and K. c. Lan, “Rapid generation of realistic mobility models for vanet,” in IEEE WCNC, 2007, pp. 2506–2511.

Index Terms

Computer Science

Wireless

Key words

Real World

Mobility Model

Simulations

NS-2