	1	Colchicine	2	Dehydroabietic acid	3	Pomiferin	4	Chartreusin	5	Noscapine	6	Veratridine	7	Aleuritic acid
		757		2952		5113		5159		5366		7524		7668
	8	Khellin	9	Fumagillin, alcohol I	10	Argemone								origin
		8519		9665		11440								origin
	11	Aristolochic	12	Resorufin	13	Aureomycin	14	Glaucarubine	15	Amygdalin	16	Pyrethrosin	17	Coumestrol
		acid		12097		13252		14975		15780		22070		22842
	18	Himbaefcine	19	Cube	20	Lapachone,								beta
														26326
	21	Isorescinna-	22	Mangostin	23	Neohesperidin	24	Norlobaric	25	Bicuculline	26	Isocorydine	27	Curcumín
		mine, dihydro-		30552		31048		acid, decarboxy-		32192		32979		35611
	28	Solanine	29	Canadine (dl-)	30	Guercetin, dihydro-								
								31867						36398
	31	Santonine,	32	Streptonigrin	33	Methoxsalen	34	Carbomycin	35	Aconitine	36	Fumagillin dicyclohexylamine salt		
	ozime			45383		45923		51001		56464		58368		
	45	Fungtalin	46	Brefeldin A		89671		94600		96911		96911		
	47	Brefeldin	48	Camptothecin		96911		96911		96911		96911		
	49	Riboflavin lumichrome	50	Lagosin									153858	
	50	Lagosin		105388										
	51	Tirandamycin	52	Ascochitine	53	Radicin	54	Sporidesmolide I	55	Teniposide	56	Picrotin	57	Rifamycin SV
		107067		114344		118343		122224		122819		129536		133100
	58	Lankacidin C	59	Nystatin	60	Maytansine								153858
	Name		Name		Name		Name		Name		Name			
---	-----------------------	-----	---------------------------	-----	---------------------------	-----	---------------------------	-----	---------------------------	-----	---------------------------	-----		
61	Parthenolide	157035	Streptoval C	169627	Fastigillin B	176503	Antibiotic X-536A	177406	Staphylococcus S	177858	Vermiculine	8140514		
62														
63														
64														
65														
66														
67														
68														
69														
70														
71	NSC250430	250430												
72														
73														
74														
75														
76														
77														
78														
79														
80														
81														
82														
83														
84														
85														
86														
87														
88														
89														
90														
91														
92														
93														
94														
95														
96														
97														
98														
99														
100														
101														
102														
103														
104														
105														
106														
107														
108														
109														
110														
111														
112														
113														
114														
115														
116														
117														
118														
119														
120														

The upper numbers represent those ones used in the present study. The lower numbers (underlined) can be used to get detailed information about a drug from available databases.
Figure S1

A. The influence of natural compounds (5 µM) on viable cell numbers in melanoma (DMBC11 and DMBC12) and leukemia (K562) cell cultures assessed by APA assay. Data are the mean ± SD of two independent experiments performed in triplicates.
B. The influence of natural compounds (5 µM) on viable cell numbers in melanoma (DMBC11 and DMBC12) and leukemia (K562) cell cultures assessed by flow cytometry using an automated cell viability analyzer (volumetric assay). Data are the mean ± SD of two independent experiments performed in triplicates.
Figure S2

Effects of natural compounds (5 µM) on viability of melanoma cells (DMBC11 and DMBC12) and leukemia cells (K562). Changes in cell viability were assessed by PI staining and flow cytometry and they are expressed as % of vehicle control. Data are the mean ± SD of two independent experiments performed in triplicates.
Figure S3A
The influence of natural compounds on cell distribution in cell cycle and cell death shown as accumulation in subG1. (A) Representative histograms of DMBC12 cells treated with natural compounds at a single concentration of 5 µM for 30 h are shown.
Figure S3B
Effects of lower concentrations for the most cytotoxic compounds or of longer exposure for compounds that were ineffective at 30 h.
The influence of natural compounds used at a single concentration of 5 μM on the clonogenic growth of melanoma cells. Cells were incubated in drug-containing medium for 4 h and then they were grown on agar for 14 days in drug-free medium. Cell colonies were stained and counted. Anti-clonogenic activity was expressed as percentage of control treated with vehicle (0.05% DMSO). At least two independent experiments were performed in duplicates.
Table S2. Viability assessed in six different melanoma cell lines after 45 h of treatment with selected drugs at indicated concentration
viability at 1 µM

DMBC
2
3
4
5
6
7
8
9
10
11
12
viability at 0.1 µM

DMBC
2
3
4
5
6
7
8
9
10
11
12
Viability was measured by flow cytometry after PI staining in six different melanoma cell lines DMBC2, DMBC8, DMBC9, DMBC10, DMBC11 and DMBC12. Data expressed as % of control are means ± SD of two independent experiments conducted in triplicates.
Figure S5.
Dose-response curves prepared for compounds exerting anti-clonogenic and/or cytotoxic potentials. Blue curves, anti-clonogenic activity; black curves, cytotoxic activity; DMBC11 (filled square) and DMBC12 (open square) cell lines.
Table S3. Activity profiles of natural compounds selected in this study prepared based on a literature search. Only the main biological activities of compounds are included.

Compound and its source	Main biological activities
Nanaomycin A	
Streptomyces rosa	selective inhibitor of DNMT3B (DNA methyltransferase 3B) that reactivates the expression of silenced tumor suppressor gene RASSF1A in human cancer cells [1];
Illudin M	
Omphalotus illudens	alkylation agent of DNA, RNA and proteins [2];
Geldanamycin	
Streptomyces hygroscopicus	inhibitor of Hsp90 (heat shock protein 90) [3];
Bryostatin 1	
Bugula neritina	highly potent activator of PKC (protein kinase C) [4]; ligand for TLR4 (Toll-like receptor 4) triggering NF-κB (nuclear factor-kappa B) activity and the expression of interleukins (IL-5, IL-6, IL-10) and chemokines: RANTES (regulated on activation normal T cell expressed and secreted) and MIP1-α (macrophage inflammatory protein 1α) [5]; activator of STAT1 (signal transducer and activator of transcription 1) activity through an IFNγ (interferon gamma) autocrine loop [6]; enhancer of CD4+ T cell-mediated recognition of melanoma cells, inducer of the expression of costimulatory molecules (CD80 and CD86) in melanoma cells prolonging immune response, inducer of melanoma cell differentiation [7];
Siomycin A	
Streptomyces sioyaensis	inhibitor of the oncogenic transcription factor FoxM1 (forkhead box M1) and selective inducer of apoptosis in transformed cells [8,9]; proteasome inhibitor stabilizing the expression of p21, Mcl-1, p53 and Hdm-2 [10]; inhibitor of MELK (maternal embryonic leucine zipper kinase) [11];
Fumitremorgin C	
Aspergillus elongatus, Aspergillus fumigatus	inhibitor of ABCG2/BCRP (breast cancer resistance protein) [12]; inhibitor of the AKT pathway [13];
Fumagillin	
Aspergillus fumigatus	inhibitor of MetAP-2 (methionine aminopeptidase-2) [14]; anti-angiogenic agent reducing the expression of cyclin E2, ALCAM (activated leukocyte cell adhesion molecule) and ICAM-1 (intercellular adhesion molecule-1) [15]; inhibitor of FGFR1 (fibroblast growth factor receptor 1) [16];
Michellamine B	
Ancistrocladus korupensis	inhibitor of HIV (human immunodeficiency virus) reverse transcriptase and human DNA polymerases α and β [17]; inhibitor of PKC [18]; mitochondria-protective agent against adenosine diphosphate- and Fe2+-induced lipid peroxidation [19];
Compound	Description
---	---
Pentoxifylline	competitive non-specific phosphodiesterase inhibitor [20]; activator of PKA (protein kinase A), inhibitor of TNF-α (tumor necrosis factor alpha) production [21,22]; inducer of lipid peroxidation increasing the activity of glutathione-S-transferase and leading to glutathione depletion [23]; inhibitor of MMP-2 and MMP-9 (metalloproteinase-2 and -9) secretion [24]; inducer of apoptosis related to up-regulation of DR4 and DR5 (death receptor-4 and -5) expression on cell surface, and down-regulation of the expression of anti-apoptotic proteins [25];
Croton Factor F1	unidentified
Helenin	unidentified
Nordracorubin	unidentified
Confertifoline	antimicrobial agent [26];
Wortmannin	inhibitor of MAPK (mitogen-activated protein kinase) [27]; inhibitor of PI3K (phosphoinositide-3-kinase) [28];
4-Ipomeanol	unidentified
Crassin	inhibitor of allogeneic leukocyte reaction as well as antigen-specific activation of CD4+ T cells by bone marrow-derived dendritic cells [29];
Castanospermine	inhibitor of selected glucosidase enzymes [30];
Lonchocarpic Acid	unidentified
Pleurotin	inhibitor of HIF-1α (hypoxia-induced factor-1alpha) and VEGF (vascular endothelial growth factor) expression [31];
Maytansine	inhibitor of the microtubule assembly by binding to tubulin at or near the rhizoxin-binding site [32];
Streptonigrin	inhibitor of DNA/RNA synthesis and topoisomerase II [33]; inhibitor of β-catenin/TCF signaling [34];
Toyocamycin	inhibitor of RNA synthesis and splicing, ribosome maturation and function [35,36,37];
Colchicine	inhibitor of microtubule polymerization by binding to tubulin [38]; inducer of apoptosis accompanied by loss of mitochondrial membrane potential, activator of caspase-3 and -9, and inhibitor of Bcl-2 (B-cell leukemia/lymphoma 2) expression [39];
Echinomycin A	DNA intercalator targeting HIF-1α [40]; suppressor of NOTCH1, MYC, AKT, mTOR signaling [41];
Name	Species
-----------------------	--
Cucurbitacin E	*Cucurbitaceae*
Didemnin B	*Trididemnum solidum*
Tubulosine	*Pogonopus tubulosus*
Tetrocarcin A	*Micromonospora*
Vincristine	*Catharanthus roseus*
Bactobolin	*Pseudoisononas*
Helenalin	*Arnica montana,*
Cytochalasin H	*Arnica chamissonis foliosa*
Daunorubicin (43)	*Streptomyces peucetius*
Hispanolone	unidentified
Geldanamycin analog	*Streptomyces hygroscopicus*
Rhizoxin	*Rhizopus microsporus*
Baccatin III	*Taxus brevifolia*
Imidazoquinoline	*Fusarium solani*
Rotenone	*Lonchocarpus nicou*
Chaetochromin	*Chaetomium spp.*
Fastigilin B	*Baileya multiradiata*
Physalin B	*Physalis alkekengi,*
Parthenin	*Parthenium hysterophorus*
Teniposide	*Taxus brevifolia*
Valinomycin
Streptomyces tsusimaensis
Streptomyces fulvissimus

natural ionophore with potassium-specific transporter activity [67].

References to Table S3

1. Kuck D, Caulfield T, Lyko F, Medina-Franco JL (2010) Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther 9: 3015-3023.

2. McMorris TC, Kelner MJ, Wang W, Moon S, Taele R (1990) On the mechanism of toxicity of illudins: the role of glutathione. Chem Res Toxicol 3: 574-579.

3. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, et al. (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3: 100-108.

4. Yi P, Schrott L, Castor TP, Alexander JS (2012) Bryostatin-1 vs. TPPB: dose-dependent APP processing and PKC-α, -δ, and -ε isoform activation in SH-SY5Y neuronal cells. J Mol Neurosci 48: 234-244.

5. Ariza ME, Ramakrishnan R, Singh NP, Chauhan A, Nagarkatti PS, et al. (2011) Bryostatin-1, a naturally occurring antineoplastic agent, acts as a Toll-like receptor 4 (TLR-4) ligand and induces unique cytokines and chemokines in dendritic cells. J Biol Chem 286: 24-34.

6. Battle TE, Frank DA (2003) STAT1 mediates differentiation of chronic lymphocytic leukemia cells in response to Bryostatin 1. Blood 102: 3016-3024.

7. Zhao D, Amria S, Hossain A, Sundaram K, Komlosi P, et al. (2011) Enhancement of HLA class II-restricted CD4+ T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell Immunol 271: 392-400.

8. Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, et al. (2006) Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res 66: 9731-9735.

9. Bhat UG, Halasi M, Gartel AL (2009) Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells. PLoS One 4: e5592.

10. Bhat UG, Halasi M, Gartel AL (2009) FoxM1 is a general target for proteasome inhibitors. PLoS One 4: e6593.

11. Kuner R, Fälth M, Pressinotti NC, Brase JC, Puig SB, et al. (2013) The maternal embryonic leucine zipper kinase (MElk) is upregulated in high-grade prostate cancer. J Mol Med (Berl) 91: 237-248.

12. Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60: 47-50.

13. Wang L, Sasai K, Akagi T, Tanaka S (2008) Establishment of a luciferase assay-based screening system: fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT. Biochem Biophys Res Commun 373: 392-396.
14. Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, et al. (1997) The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci U S A 94: 6099-6103.

15. Hou L, Mori D, Takase Y, Meihua P, Kai K, et al. (2009) Fumagillin inhibits colorectal cancer growth and metastasis in mice: in vivo and in vitro study of anti-angiogenesis. Pathol Int 59: 448-461.

16. Chen GJ, Weylie B, Hu C, Zhu J, Forough R (2007) FGFR1/PI3K/AKT signaling pathway is a novel target for antiangiogenic effects of the cancer drug fumagillin (TNP-470). J Cell Biochem 101: 1492-1504.

17. McMahon JB, Currens MJ, Gulakowski RJ, Buckheit RW Jr, Lackman-Smith C, et al. (1995) Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob Agents Chemother 39: 484-488.

18. White EL, Chao WR, Ross LJ, Borhani DW, Hobbs PD, et al. (1999) Michellamine alkaloids inhibit protein kinase C. Arch Biochem Biophys 365: 25-30.

19. White EL, Ross LJ, Hobbs PD, Upender V, Dawson MI (1999) Antioxidant activity of michellamine alkaloids. Anticancer Res 19: 1033-1035.

20. Essayan DM (2001) Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 108: 671–680.

21. Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U (1999) Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159: 508–511.

22. Deree J, Martins JO, Melbostad H, Loomis WH, Coimbra R (2008) Insights into the regulation of TNF-α production in human mononuclear cells: the effects of non-specific phosphodiesterase inhibition. Clinics (Sao Paulo) 63: 321–328.

23. Shukla V, Gude RP (2003) Potentiation of antimetastatic activity of pentoxifylline in B16F10 and B16F1 melanoma cells through inhibition of glutathione content. Cancer Biother Radiopharm 18: 559-564.

24. Dua P, Gude RP (2006) Antiproliferative and antiproteolytic activity of pentoxifylline in cultures of B16F10 melanoma cells. Cancer Chemother Pharmacol 58: 195-202.

25. Gahlot S, Khan MA, Rishi L, Majumdar S (2010) Pentoxifylline augments TRAIL/Apo2L mediated apoptosis in cutaneous T cell lymphoma (HuT-78 and MyLa) by modulating the expression of antiapoptotic proteins and death receptors. Biochem Pharmacol 80: 1650-1661.

26. Duraiapandiyan V, Indwar F, Ignacimuthu S (2010) Antimicrobial activity of confertifolin from Polygonum hydropiper. Pharm Biol 48: 187-190.

27. Ferby IM, Waga I, Hoshino M, Kume K, Shimizu T (1996) Wortmannin inhibits mitogen-activated protein kinase activation by platelet-activating factor through a mechanism independent of p85/p110-type phosphatidylinositol 3-kinase. J Biol Chem 271: 11684-11688.

28. Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, et al. (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of
Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16: 1722-1733.

29. Matsushima H, Tanaka H, Mizumoto N, Takashima A (2009) Identification of crassin acetate as a new immunosuppressant triggering heme oxygenase-1 expression in dendritic cells. Blood 114: 64-73.

30. Saul R, Ghidoni JJ, Molyneux RJ, Elbein AD (1985) Castanospermine inhibits alpha-glucosidase activities and alters glycogen distribution in animals. Proc Natl Acad Sci U S A 82: 93–97.

31. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, et al. (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2: 235-243.

32. Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull (Tokyo) 52: 1–26.

33. Bolzan AD, Bianchi MS (2001) Genotoxicity of streptonigrin: a review. Mutat Res 488: 25-37.

34. Park S, Chun S (2011) Streptonigrin inhibits β-Catenin/Tcf signaling and shows cytotoxicity in β-catenin-activated cells. Biochim Biophys Acta 1810: 1340-1345.

35. Suhadolnik RJ, Uematsu T, Uematsu H (1967) Toyocamycin: phosphorylation and incorporation into RNA and DNA and the biochemical properties of the triphosphate. Biochim Biophys Acta 149: 41-49.

36. Tavitian A, Uretsky SC, Acs G (1969) The effect of toyocamycin on cellular RNA synthesis. Biochim Biophys Acta. 179: 50-57.

37. Kiburu IN, LaRonde-LeBlanc N (2012) Interaction of Rio1 kinase with toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity. PLoS One 7: e37371.

38. Skoufias DA, Wilson L (1992) Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 31: 738-746.

39. Chen XM, Liu J, Wang T, Shang J (2012) Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways. Toxicol In Vitro 26: 649-655.

40. Wang R, Zhou S, Li S (2011) Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem 18: 3168-3189.

41. Yonekura S, Itoh M, Okuhashi Y, Takahashi Y, Ono A, et al. (2013) Effects of the HIF1 inhibitor, echinomycin, on growth and NOTCH signalling in leukaemia cells. Anticancer Res 33: 3099-3103.

42. Qiao J, Xu LH, He J, Ouyang DY, He XJ (2013) Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation. Inflamm Res 62: 461-469.
43. Lan T, Wang L, Xu Q, Liu W, Jin H, et al. (2013) Growth inhibitory effect of Cucurbitacin E on breast cancer cells. Int J Clin Exp Pathol 6: 1799-1805.

44. Chen X, Bao J, Guo J, Ding Q, Lu J, et al. (2012) Biological activities and potential molecular targets of cucurbitacins. Anti-Cancer Drugs 23: 777–787.

45. Li LH, Timmins LG, Wallace TL, Krueger WC, Prairie MD, et al. (1984) Mechanism of action of didemnin B, a depsipeptide from the sea. Cancer Lett 23: 279-288.

46. Carrasco L, Jimenez A, Vazquez D (1976) Specific inhibition of translocation by tubulosine in eukaryotic polysomes. Eur J Biochem 64: 1-5.

47. Nakashima T, Miura M, Hara M (2000) Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60: 1229-1235.

48. Tinhofer I, Anether G, Senfter M, Pfaller K, Bernhard D, et al. (2002) Stressful death of T-ALL tumor cells after treatment with the anti-tumor agent Tetrocarcin-A. FASEB J 16: 1295-1297.

49. Lobert S, Vulevic B, Correia JJ (1996) Interaction of vinca alkaloids with tubulin: a comparison of vinblastine, vincristine, and vinorelbine. Biochemistry 35: 6806-6814.

50. Lyss G, Knorre A, Schmidt TJ, Pahl HL, Merfort I (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 273: 33508–33516.

51. Huang PR, Yeh YM, Wang TC (2005) Potent inhibition of human telomerase by helenalin. Cancer Lett 227: 169–174.

52. Natarajan P, May JA, Sanderson HM, Zabe M, Spangenberg P, et al. (2000) Effects of cytochalasin H, a potent inhibitor of cytoskeletal reorganisation, on platelet function. Platelets 11: 467-476.

53. Laurent G, Jaffrezou JP (2001) Signaling pathways activated by daunorubicin. Blood. 98: 913-924.

54. Toyomura K, Saito T, Emori S, Matsumoto I, Kato E, et al. (2012) Effects of Hsp90 inhibitors, geldanamycin and its analog, on ceramide metabolism and cytotoxicity in PC12 cells. J Toxicol Sci 37: 1049-1057.

55. van der Kraan AG, Chai RC, Singh PP, Lang BJ, Xu J, et al. (2013) HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochem J 451: 235-244.

56. Gan J, Liu-Kreyche P, Humphreys WG (2012) In vitro assessment of cytochrome P450 inhibition and induction potential of tanespimycin and its major metabolite, 17-amino-17-demethoxygeldanamycin. Cancer Chemother Pharmacol 69: 51-56.

57. Takahashi M, Iwasaki S, Kobayashi H, Okuda S, Murai T, et al. (1987) Studies on macrocyclic lactone antibiotics. XI. Anti-mitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its homologues. J Antibiot 40: 66–72.

58. Chakravarthi BV, Sujay R, Kuriakose GC, Karande AA, Jayabaskaran C (2013) Inhibition of cancer cell proliferation and apoptosis-inducing activity of fungal taxol and its precursors baccatin III purified from endophytic Fusarium solani. Cancer Cell Int 13: 105.
59. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, et al. (2002) Small-antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200.

60. Hayes WJ (1991) Handbook on pesticides, Volume 1. Academic Press.

61. Koyama K, Ominato K, Natori S, Tashiro T, Tsuruo T (1988) Cytotoxicity and antitumor activities of fungal bis(naphtho-gamma-pyrone) derivatives. J Pharmacobiodyn 11: 630-635.

62. Vandenberghe I, Creancier L, Vispe S, Annereau JP, Barret JM, et al. (2008) Physalin B, a novel inhibitor of the ubiquitin-proteasome pathway, triggers NOXA-associated apoptosis. Biochem Pharmacol 76: 453-462.

63. Han H, Qiu L, Wang X, Qiu F, Wong Y, et al. (2011) Physalins A and B inhibit androgen-independent prostate cancer cell growth through activation of cell apoptosis and downregulation of androgen receptor expression. Biol Pharm Bull 34: 1584-1588.

64. Hsu CC, Wu YC, Farh L, Du YC, Tseng WK, et al. (2012) Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells. Food Chem Toxicol 50: 619-624.

65. Narasimhan TR, Harindranath N, Kurup CK, Rao PV (1985) Effect of parthenin on mitochondrial oxidative phosphorylation. Biochem Int 11: 239-244.

66. Long BH (1992) Mechanisms of action of teniposide (VM-26) and comparison with etoposide (VP-16). Semin Oncol 19: 3-19.

67. Cammann K (1985) Ion-selective bulk membranes as models. Top Curr Chem 128: 219–258.