COVID-19 характеризуется широким спектром клинических проявлений — от бессимптомного до крайне тяжелого. В начале пандемии стало ясно, что пожилой возраст и хронические заболевания являются основными факторами риска, однако они не в полной мере объясняют разнообразие симптоматики и осложнений инфекции коронавируса SARS-COV-2. Генетические факторы риска COVID-19 находятся в начальной стадии изучения. Идентифицирован ряд мутаций и полиморфизмов, влияющих на структуру и стабильность белков — факторов восприимчивости к инфекции SARS-COV-2, а также предрасположенности к развитию дыхательной недостаточности и потребности в интенсивной терапии. Большинство идентифицированных генетических факторов имеет отношение к функциям иммунной системы. С другой стороны, на распространение и тяжесть течения COVID-19 влияет генетический полиморфизм самого вируса. Геном вируса накапливает мутации и эволюционирует в сторону повышения контагиозности, репликативной способности и уклонения от иммунной системы хозяина. Генетические детерминанты инфекции представляют собой потенциальные терапевтические мишени, а их изучение предоставит информацию для разработки лекарств и вакцин с целью борьбы с пандемией.

Ключевые слова: COVID-19; коронавирус; SARS-COV-2; генетические факторы предрасположенности; мутация; полиморфизм.

Для цитирования: Вологжанин Д.А., Голота А.С., Камилова Т.А., Шнейдер О.В., Щербак С.Г. Генетика COVID-19. Клиническая практика. 2021;12(1):41–52. doi: 10.17816/clinpract64972

GENETICS OF COVID-19

COVID-19 is characterized by a wide range of clinical manifestations, from asymptomatic to extremely severe. At the onset of the pandemic, it became clear that old age and chronic illness were the major risk factors. However, they do not fully explain the variety of symptoms and complications of the SARS-COV-2 coronavirus infection. The research on genetic risk factors for COVID-19 is still at its early stages. A number of mutations and polymorphisms have been identified that affect the structure and stability of proteins — factors of susceptibility to SARS-COV-2 infection, as well as a predisposition to the development of respiratory failure and the need for intensive care. Most of the identified genetic factors are related to the function of the immune system. On the other hand, the genetic polymorphism of the virus itself affects the COVID-19 spread and severity of its course. The genome of the virus accumulates mutations and evolves towards increasing contagiousness, replicative ability and evasion from the host’s immune system. Genetic determinants of the COVID-19 infection are potential therapeutic targets. Studying them will provide information for the development of drugs and vaccines to combat the pandemic.

Keywords: COVID-19; coronavirus; SARS-COV-2; genetic predisposition factors; mutation; polymorphism.

For citation: Golota AS, Vologzhanin DA, Kamilova TA, Shneider OV, Sherbak SG. Genetics of COVID-19. Journal of Clinical Practice. 2021;12(1):41–52. doi: 10.17816/clinpract64972
ОБЗОРЫ

11 марта 2020 г. Всемирная организация здравоохранения объявила COVID-19 пандемией. За время пандемии COVID-19 коронавирусом SARS-CoV-2 были заражены 132 046 206 человек во всем мире (по состоянию на 07.04.2021) с зарегистрированной смертностью 2 867 242 человека [1]. В большинстве случаев пациенты, инфицированные коронавирусом SARS-CoV-2, переносят заболевание в легкой или бессимптомной форме, тогда как у 5% больных COVID-19 развиваются пневмония, острый респираторный дистресс-синдром, септический шок и полиорганная недостаточность, которая часто приводит к летальному исходу [2, 3].

ГЕНЕТИКА ЧЕЛОВЕКА

Тяжелая форма COVID-19 — это спектр гипервоспалительных, часто смертельных состояний. Восприимчивость к опасным для жизни инфекциям и иммуноопосредованным заболеваниям имеет генетический компонент. В частности, восприимчивость к респираторным вирусам, таким как грипп, передается по наследству и связана со специфическими генетическими вариантами [4]. Выявление молекулярно-генетических механизмов этой важной сферы биологического и медицинского значения [5]. Детерминанты тяжести COVID-19 почти полностью зависят от факторов хозяина, а не от вируса [6].

D. Ellinghaus и другие участники международной исследовательской группы Severe COVID-19 GWAS Group из Германии, Швеции, Норвегии, Италии, Испании, Австралии и Литвы выполнили метаанализ полногеномных ассоциативных исследований (genome-wide association study, GWAS) в когортах пациентов с тяжелой формой COVID-19 (определяемой как дыхательная недостаточность), госпитализированных по 7 больницам итальянских и испанских эпицентров локальной эпидемии, которые получали кислородную терапию или искусственную вентиляцию легких (ИВЛ), и сравнили данные этих пациентов с данными здоровых доноров крови из тех же регионов [7]. Метаанализ показал, что он связан с восприимчивостью к COVID-19, но не с тяжестью заболевания [8].

Среди шести генов-кандидатов в локусе 3p21.31 наиболее убедителен ген LZTFL1 с вариантом rs11385942, который экспрессируется на высоком уровне в клетках легких человека и кодирует белок, участвующий в транспорте белков к первичным ресничкам, которые представляют собой субклеточные органеллы из микротрубочек, действующие как антенны-механосенсоры для внеклеточных сигналов. Частота G-аллеля риска в сайте rs11385942 выше у пациентов, получавших ИВЛ, чем у тех, кто получал только кислородную добавку, в основном метаанализе и метаанализе с поправкой на пол и возраст. Кроме того, пациенты, гомозиготные по А-аллелю риска, были моложе гетерозиготных или гомозиготных по А-аллелю (средний возраст 59 и 66 лет соответственно; р=0,005) [7]. В Т-лимфоцитах белок LZTFL1 участвует в иммунологическом синапсе с антигенпрезентирующими клетками. Локус 3p21.31 содержит ген SLC6A20, который кодирует белок-транспортер с высокой кишечной экспрессией, регулируемый рецептором ACE2, и гены, кодирующие комплексные рецепторы, в том числе CXCR6, который регулирует миграцию T-клеток и локализацию резидентных Т-клеток памяти CDS и в легких. Весьма перспективен вариант rs657152 (SNP ABO) в локусе 9q34.2 [8].

Вариант rs657152 связан с восприимчивостью к COVID-19, но не с тяжестью заболевания [8].
19-ассоциированной пневмонией и 534 пациентов с бессимптомной или легкой формой инфекции и обнаружили значимое увеличение числа мутаций с потерей функции в 13 кандидатных локусах у пациентов с угрожающей жизнью пневмонией по сравнению с пациентами с бессимптомным или легким течением инфекции. У 3,5% пациентов в возрасте от 17 до 77 лет идентифицированы 24 патогенных варианта, которые предопределяют аутосомно-рецессивные дефекты генов генов IFNAR1 и IFNAR2, участвующих в TLR3 и IFN7-зависимой индукции и амплификации генов IFN типа I. Гены IFNAR1 и IFNAR2 являются частью кластера иммунологически важных генов и кодируют субъединицы 1 и 2 иентов фенотипа ТLR3 –/–, TLR3 +/–, IRF7–/– и IFNAR1 –/– инфицировании SARS-CoV-2. Фибробласты пациентов с патофизиологию тяжелой COVID-19. Плазмацитом фактора IRF7 не продуцируют IFN типа I при тихой потере функции в 13 кандидатных локусах у пациентов с угрожающей жизни пневмонией по сравнению с пациентами с бессимптомной или легкой формой инфекции.

Понимание роли циркулирующих белков при инфекционных заболеваниях является сложной задачей, поскольку сама инфекция часто значительно изменяет экспрессию циркулирующего белка и может показаться, что повышение уровней циркулирующих белков, например цитокинов, связано с ухудшением исхода, тогда как на самом деле оно может быть ответом хозяина на инфекцию и помогает смягчить этот исход. Именно поэтому важно знание генетических детерминант уровней белка, которые отражают степень защиты человека от тяжелой формы COVID-19. Крупномасштабное рандомизированное исследование [9], проведенное в США, Канаде, Японии, Швеции, Германии и Англии с целью поиска циркулирующих белков, влияющих на восприимчивость и тяжесть COVID-19, идентифицировало ген OAS1, ассоциированный с уменьшением восприимчивости к COVID-19 (14 134 больных и 1 284 876 контрольных лиц; р=8×10^-9) и смертности от COVID-19 (4336 больных и 623 902 контрольных лиц, р=7×10^-8). Измерение экспрессии циркулирующих белков, авторы продемонстрировали, что этот защитный эффект на исход COVID-19 обеспечивается повышенные уровни изоформы p46 OAS1 и общего белка OAS1, что согласуется с данными Н. Zeberg и соавт. [10].

Белки OAS являются частью врожденного иммунного ответа против PHK-вирусов. Они активируют патентную PHKазу L, которая расцепляет двухцепочечную PHK — промежуточное звено реакции коронавируса, что приводит к прямому разрушению вирусной PHK. SARS-CoV-2 и другие вирусы коронавируса продуцируют вирусные белки, которые разрушают ферменты OAS и противодействуют PHKазе L, деградирующей вирусную PHK. Эта вирусная активность позволяет SARS-CoV-2 уклоняться от иммунного ответа хозяина. Ингибиторы вирусной фосфодиэстеразы-12, которая разрушает ферменты OAS, также усиливают противовирусную активность OAS. Протективные изоформы белков OAS1, OAS2 и OAS3 увеличивают экспрессию генов IRF3 и IRF7, входящих в интерферон-индуцибельную генную сигнатуру. Полиморфизмы OAS1 связаны с иммунным ответом хозяина на вирусные инфекции, включая вирусы гриппа, простого герпеса, гепатита С, денге, SARS-CoV и SARS-CoV-2. Учитывая, что OAS1 является внутриклеточным ферментом деградации вирусной РНК, вероятно, циркулирующие уровни этого фермента отражают его внутриклеточные уровни. Для противовирусного иммунного ответа важны как внутриклеточные, так и циркулирующий у OAS1. GWAS 2244 больных тяжелой формой COVID-19 с глубокой гипоксемической дыхательной недостаточностью из 208 британских больниц подтвердило значимые ассоциации тяжести заболевания с рядом полиморфизмов, относящихся к ключевым механизмам противовирусной защиты хозяина и медиаторам воспалительного поражения органов при COVID-19: rs10735079 (p=1,65×10^-8), rs2109069 (p=3,98×10^-12), rs74956615 (p=2,3×10^-8). Вариант rs10735079 находится в генном кластере OAS (oligoadenylate synthetase, локус 12q24.13), кодирующим интерферон-индуцибельные активаторы рестрикционных ферментов противовирусной защиты OAS1, OAS2, OAS3. Транскриптомный анализ легочной ткани обнаружил значимую связь COVID-19 с экспрессией OAS3. Высокий уровень OAS3 в легких и цельной крови

www.clinpractice.ru

43
связан с худшими исходами у тяжелобольных па-
циентов с COVID-19, что является противоположно направленным эффектом по сравнению с OAS1 [8].

Для изучения протективного по отношению к тяжелой форме COVID-19 гаплотипа в уже упо-
мянутом генном кластере OAS на хромосоме 12 H. Zeberg и соавт. [11] использовали базы данных Genetics of Mortality in Critical Care и COVID-19 Host Genetics Initiative. Этот гаплотип содержит варианты rs2660, rs1859330, rs1859329, rs2285932, rs1293767 [11]. Кроме того, в гене OAS1 обнаруже-
ны защитные аллели rs4767027-T и rs10774671-G. Альтернативный сплайсинг OAS1, регулируемый аллелем rs10774671-G, увеличивает экспрессию изоформы p46, обладающей более высокой анти-
вирусной активностью, чем изоформа p42. Генети-
ческие варианты хозяина, связанные с крайне тя-
желой формой заболевания, помогают определять
терапевтические мишени. В настоящее время уже
известны молекулы, которые могут увеличивать ак-
тивность OAS1. Интерферон β-1b (IFN-β1b), который
активирует каскад цитокинов, приводящий к росту
экспрессии гена OAS1, повышает уровень OAS1
в крови. Терапия ингаляцией IFN-
β-1b может иметь разные эффекты в популяциях разного происхо-
ждения из-за наличия разных генетических вари-
антов, в частности, она эффективнее в популяциях с более высокой экспрессией изоформы p46 [9].

Вариант rs2109069 в гене DPP9 (dipeptidyl
peptidase 9, локус 19p13.3) ассоциирован с идио-
стадии заболевания (гены
OAS, IL1RN
и
ILB
— один из генов-мишеней ингиби-
торов сигнального пути JAK/STAT, таких как бари-
цитиниб [8].

Некоторые из генетических ассоциаций с тя-
желой формой COVID-19 относятся к иммунопо-
средованной фазе заболевания, связанной с дыха-
тельной недостаточностью, требующей инвазивной
механической вентиляции. Крайне тяжелое течение
COVID-19 связано как минимум с двумя биологиче-
скими механизмами: врожденной противовирус-
ной защитой, которая особенно важна на ранней
стадии заболевания (гены IFNAR2 и OAS), и воспа-
лительным поражением легких — ключевым меха-
nизмом поздней фазы COVID-19 (гены DPP9, TYK2
и
CCR2)
. Интерфероны являются медиаторами
передачи противовирусных сигналов и стимулиру-
ют высвобождение компонентов раннего ответа на
вирусную инфекцию. Согласуясь с защитной ро-
лью интерферонов типа I, повышенная экспрессия
субъединицы рецептора интерферона IFNAR2 сни-
жает вероятность тяжелого течения COVID-19. Му-
тации с потерей функциональности в гене IFNAR2
ассоциированы с тяжелой COVID-19 [5] и другими
вирусными инфекциями. Введение интерфона
может снизить вероятность критического состоя-
ния при COVID-19, но в какой момент болезни лече-
ние будет эффективным, не определено. Лечение
экзогенным интерфероном не привело к сниже-
нию смертности госпитализированных пациентов
в крупномасштабных клинических испытаниях [12],
возможно, этот генетический эффект действует
на ранней стадии заболевания, когда вирусная на-
гружа высока [8].

Внелегочные эффекты COVID-19 могут быть
опосредованы IFN-контролируемым увеличением
экспрессии ACE2 как на эндотелиальных, так и на
переночным клетках, что приводит к эндотелио-
ту [13] и поражению печени у 60% тяжелых паци-
ентов [14]. Дефицит иммунитета, опосредуемого
IFN типа I, связан с опасной для жизни пневмони-
ей COVID-19 [5], индукция интерферонами типа I их
генных сигнатуры обнаруживается у некоторых па-
циентов в критическом состоянии. Метатранскрип-
tомное секвенирование для профилирования
иммунных сигнатура в жидкости бронхоальвеоля-
рных лаважей 8 случаев COVID-19 показало, что
экспрессия 83 провоспалительных генов, особен-
но кодирующих цитокины (IL1RN и ILB) и хемокины
(CXCL17, CXCL8 и CCL2), а также рецептор CXCR2
для хемокинов CXCL8, CXCL1 и CCL2, заметно по-
вышена в случаях COVID-19 по сравнению с паци-
ентами с внебольничной пневмонией и здоровыми
людьми из контрольной группы, что указывает на
гиперцитокинемию у больных COVID-19, вызыва-
емую экспрессией многочисленных IFN-стимули-
рованных генов (interferon-stimulated genes, ISG).
Среди ISG преобладают гены с иммунопатогенным
потенциалом, участвующие в воспалении. Данные
транскриптома также использовались для оценки
популяций иммунных клеток, выявляя увеличение
активированных дендритных клеток и нейтрофи-
лов. Активизация генов IL1RN и SOCS3, которые ко-
динируют антагонисты цитокинового сигналинга, поз-
волят предположить, что инфекция SARS-CoV-2 задействует петлю отрицательной обратной связи. Экспрессия генов, участвующих в морфогенезе и миграции иммунных клеток (NCKAP1L, DOCK2, SPN и DOCK10), оказалась ниже, чем у здоровых людей контрольной группы. Функциональный анализ выявил состояние высокой чувствительности к вредным раздражителям в случаях COVID-19, характеризующее мощным защитным реакциями и гиперактивным биогенезом рибосом. Изучение динамики экспрессии цитокинов показало, что уровни экспрессии генов, связанных с цитокинами, со временем снижаются. Пациент, в ко- нечном итоге скончался, оказался исключением. Эти наблюдения показали, что сильное воспаление при COVID-19 постепенно разрешается, а неразрешенное воспаление может привести к фатальным последствиям [15]. Результаты исследований предполагают, что IFN типа I играют в патобиологии COVID-19 бивалентную роль, которая требует жесткого регулирования, и приводят к гипотезе о том, что ингибиторы JAK/STAT полезны на ранней стадии заболевания, уменьшая IFN-I-индукционную экспрессию ACE2. Примечательны важные качественные различия между ответом сфероидов печени, где IFN индуцировали ACE2 и повышенную инфекционность, и органоидами легких, где IFN-сигналинг не влиjaл на ACE2 и вирусную нагрузку. Эндотелиальные клетки сосудов экспрессируют высокие уровни ACE2 [16] и очень чувствительны к IFN-сигналингу [17]. В совокупности эти данные предполагают, что эффекты баритиниба могут различаться в разных системах органов и что противовоспалительные эффекты барицинбиа могут различаться в разных генерических системах, включая регуляцию метаболизма глюкозы. Ингибиторы DPP4 используются для лечения диабета, и предполагается, что они влияют на исходы COVID-19 [22]. Однако неандертальский гаплотип в гене DPP4 (гомолог DPP9) ассоциирован с ~80% повышенным риском госпитализации после заражения SARS-CoV-2. S-белок SARS-CoV-2 связывается с мембраносвязанным рецептором DPP4 (известным как CD26) [21]. DPP4 участвует в некоторых физиологических системах, включая регуляцию метаболизма глюкозы. Ингибиторы DPP4 используются для лечения диабета, и предполагается, что они влияют на исходы COVID-19 [22]. Однако неандертальский вариант гена DPP4 удваивает риск тяжелого заболевания COVID-19 [23]. Наиболее сильная ассоциация с тяжелой формой COVID-19 у SNP rs117888248 (OR 1,84). Неандертальские гаплотипы в гене DPP4 (гомолог DPP9) ассоциированы с ~80% повышенным риском госпитализации после заражения SARS-CoV-2. S-белок SARS-CoV-2 связывается с мембраносвязанным рецептором DPP4 (известным как CD26) [21]. DPP4 участвует в нескольких физиологических системах, включая регуляцию метаболизма глюкозы. Ингибиторы DPP4 используются для лечения диабета, и предполагается, что они влияют на исходы COVID-19 [22]. Однако неандертальский вариант гена DPP4 удваивает риск тяжелого заболевания COVID-19 [23]. Наиболее сильная ассоциация с тяжелой формой COVID-19 у SNP rs117888248 (OR 1,84). Неандертальские гаплотипы в гене DPP4 и на хромосоме 3 увеличивают риск заболевания тяжелой формой COVID-19 с дыхательной недостаточностью и потребностью в ИВЛ на 100% каждый. Оба гаплотипа риска в генах ACE2 и DPP4 имеют более сильные эффекты, чем защитный неандертальский гаплотип на хромосоме 12, который снижает риск тяжелого заболевания на ~23% [11]. Неандертальский вариант гена DPP4 присутствует у 1% европейцев, у 2,5% жителей Южной Азии, у 4% жителей Восточной Азии и у 0,7% американцев. Три доступных на сегодня генома неандертальцев из Европы и юга Сибири, возраст которых варьирует от 50 до 120 тыс. лет, гомозиготны по варианту риска. Это означает, что если бы неандерталец был жив сегодня, у него был бы в 4–16 раз более высокий риск тяжелого заболевания при инфицировании вирусом SARS-CoV-2 [23].
Достижения протеомики в сочетании с данными генетики человека способствуют идентификации терапевтических мишений и разработке лекарств против COVID-19. Выявление причинной связи между циркулирующими белками и восприимчивостью к инфекции SARS-CoV-2 или тяжестью течения COVID-19 является перспективным направлением развития фармакотерапии этого заболевания, при котором воздействие SARS-CoV-2 вызывает глубокие изменения в уровнях циркулирующих белков. Некоторые генетические ассоциации ведут к потенциальным терапевтическим подходам усиления интерферонового сигнализа, противодействия активации и инфильтрации лейкоцитов в легкие или специфического воздействия на воспалительные пути [8].

ГЕНЕТИКА КОРОНАВИРУСА SARS-CoV-2

Секвенированы геномы 5085 штаммов SARS-CoV-2 (1026 штаммов, относящихся к самым ранним подтвержденным случаям COVID-19, и 4059 штаммов, извлеченных в ходе второй волны пандемии) в крупном мегаполисе (Хьюстон, США), этнически разнообразном регионе с 7 миллионами жителей. Анализ штаммов, вызывавших заболевание в первой волне (05.03–11.05.2020), выявил множество разнообразных вирусных геномов, которые в совокупности представляют собой основные монофилогенетические группы, идентифицированные на сегодня в мире, хотя не все «веточки» эволюционного древа SARS-CoV-2 представлены в этих данных. Филогенетическое распределение штаммов с множественными заменами в одном и том же сайте показало их независимое происхождение. Почти все штаммы (4054) второй волны имеют вариант аминокислоты аспарагин-614 в рецепторсвязывающем домене (RBD) белка, связанный с повышенной трансмиссией и инфекционностью. Некоторые области S-белка — основной мишени глобальных усилий по созданию вакцины — изобилуют аминокислотными заменами, что, возможно, указывает на действие отбора. В RBD S-белка аминокислотные замены встречаются относительно редко по сравнению с другими участками белка, но некоторые из них снижают узнаваемость нейтрализующим моноанклональным антителом CR3022. Это согласуется с функциональной ролью RBD во взаимодействии с ACE2 и предположением о том, что новые варианты вируса возникают из-за давления со стороны иммунной системы хозяина [24]. Штаммы вируса с вариантом 614Gly демонстрируют значительно повышенную репликацию в эпителиальных клетках легких человека in vitro и повышенные титры в смыслах из носа и трахеи пациентов. Таким образом, вариант 614Gly увеличивает приспособленность вируса к персистенции в верхних дыхательных путях [25].

Геном SARS-CoV-2 кодирует РНК-зависимую РНК-полимеразу (RdRp; также называемую Nsp12), участвующую в репликации вируса. Каждая из двух аминокислотных замен (Phe479Leu и Val556Leu) в гене, кодирующим RdRp, приводит к значительной стабильности g.241C>T обнаружен с частотой 70,2%. Кроме того, 6 вариантов идентифицированы в 3'-UTR (g.29700A>G, g.29711G>T, g.29734G>C, g.29742G>A, g.29870C>A) и 3 в 5'-UTR (g.36C>T, g.187A>G, g.241C>T), которые обнаруживались с частотой 0,62–1,05% [28]. A. Mishra и соавт. [29] идентифицировали две позиции, соответствующие двум найденным в этом анализе заменам — g.241C>T в 5'-UTR и g.29742G>A в 3'-UTR. Если SNP возникает случайным образом, вероятность того, что это приводит к миссенс-, нонсэнс-мутации составляет 73; 22
и 5% соответственно во всех 26 вирусных генах, кодирующих белки. Анализ наблюдаемых аминокислотных замен в 769 SNP с частотой вариантов 0,05% или выше обнаружил меньше, чем ожидалось, миссенс- и нонсенс-мутаций во всех генах, за исключением ORF8. Отклонения наблюдаемых пропорций от ожидаемых значений широко варировали в зависимости от генов. В ORF8, например, частота миссенс-, синонимичной и нонсенс-мутаций составляла 77; 15 и 8% соответственно, что ближе к ожидаемым. Напротив, для процессированного пептида nsp9 (non-structural protein 9), предполагаемая функция которого заключается в димеризации и связывании РНК, соответствующие пропорции составляли 18,2; 81,8 и 0% соответственно. В ORF8 и nsp9, отклонения наблюдаваемых пропорций от ожидаемых значений варьировали в зависимости от генов. В ORF8, например, частота миссенс-, синонимичной и нонсенс-мутаций составляла 77; 15 и 8% соответственно, что близко к ожидаемым. Напротив, для процессированного пептида nsp9 (non-structural protein 9), предполагаемая функция которого заключается в димеризации и связывании РНК, соответствующие пропорции составляли 18,2; 81,8 и 0% соответственно. Вероятно, отбор и эволюционное давление различаются в отдельных генах SARS-CoV-2.

Таким образом, характеристика вариантов SARS-CoV-2 предполагает неслучайное давление отбора, которое указывает на скрытые движущие силы эволюции вирусного генома, связанные с функциональной или регуляторной ролью [28].

Анализ неравновесного сцепления (linkage disequilibrium, LD) SNP в 18 599 геномах идентифицировал в общей сложности 34 группы коэволюционирующих вариантов (coevolving variant, CEV) с частотой ≥0,1%. Две группы CEV включали в себя UTR и другие особенности генов, которые могут свидетельствовать о функциональных зависимостях или взаимодействиях геномных элементов, несущих варианты. Первая группа CEV (CEVg1), обнаруженная в 69,5% геномов SARS-CoV-2, состояла из четырех вариантов, расположенных в 5'-UTR (g.241C>T), nsp3 (g.3037C>T, синоним), гене РНК-зависимой РНК-полимеразы (g.14408C>T, p.P323L) и гене S-белка (g.23403A>G, p.D614G). Встречаемость CEVg1 резко увеличилась (с 12,2 до 93,4%) за трехмесячный период с февраля по май 2020 г. как в глобальном масштабе, так и для каждого региона по континентам. Мутация D614G, входящая в CEVg1, повышает контагиозность вируса. Другая группа CEV (CEVg5), ассоциированная с 3'-UTR и обнаруженная в 5% геномов, включала в себя 6 вариантов в генах лидерного белка nsp1 (g.490T>A, p.D75E), nsp3 (g.3177C>T, p.P153L), экзонуклеазы (g.18736T>C, p.F233L), S-белка (g.24034C>T, синоним), мембранных белка (g.26729C>T, синоним) и собственно 3'-UTR (g.29700A>G). Группа CEVg5 оставалась второстепенной в марте-апреле 2020 г., составляя 1,2 и 0,53% соответственно [28]. Белок nsp3 коронавирусов способен блокировать врожденный иммунный ответ хозяина, а другие неструктурные белки (non-structural protein, nsp) играют роль в уклонении от распознавания иммунной системой [30]. В целом обзор вариантов в 18 599 геномах SARS-CoV-2, собранных в мае 2020 г., указывает на то, что коэволюционирующие и единичные варианты с вероятным функциональным влиянием на репликативную способность или патогенность вируса идентифицированы как в UTR, так и в функциональных элементах по всему геному [28].

В октябре 2020 г. стали доступными более 86 450 геномов SARS-CoV-2, в связи с чем групповой анализ коэволюционирующих вариантов более чем в 4 раза превысил размер первого набора данных из 18 599 геномов. Сравнение частоты групп CEV между наборами данных за май и октябрь 2020 г. дало новое представление об эволюции SARS-CoV-2. Во-первых, оно подтвердило глобальное доминирование CEVg1 с мутацией D614G в S-белке, которое увеличилось с 69,53 до 84,77% в период с мая по октябрь 2020 г. Во-вторых, постепенно исчезли группы CEVg3 и CEVg4. В-третьих, идентифицированы две новые группы возникающих коэволюционирующих мутаций (CEVg6 и CEVg8), которые показали быстрое увеличение частоты в течение короткого периода времени только на одном континенте и не появились на других континентах: так, CEVg6 появилась в Океании (ее частота выросла с 0% в апреле до 96% в июле 2020 г.), тогда как CEVg8 появилась в Европе (с частотой 0% в июне и 36% в сентябре 2020 г.). Группы CEVg6 и CEVg8 несут новые мутации в S-белке, S477N и A222V соответственно [28].

МикроРНК (miRNA) человека представляют собой эволюционно консервативные некодирующие РНК, которые могут посттранскрипционно угнетать экспрессию генов за счет гибридизации частично гомологичных последовательностей, в первую очередь с 3'-UTR РНК. Человеческие miRNA могут таргетировать вирусные РНК и положительно или отрицательно модулировать различные стадии вирусной репликации и жизненного цикла вируса [31]. Чтобы получить представление о возможном взаимодействии UTR SARS-CoV с микроRNK хозяина в модулировании патогенеза инфекции, проведен поиск гомологии последовательностей человеческих miRNA с последовательностями UTR SARS-CoV-2 с микроRNK хозяина и в модулировании патогенеза инфекции, проведен поиск гомологии последовательностей человеческих miRNA с последовательностями UTR SARS-CoV-2. Идентифицированы в общей сложности 8 микроRNK из базы данных miRBase, включая смисловые и антисмысловые последовательности, соответствующие 3'- и 5'-UTR. Три miRNA (hsa-miR-
1307-3p, hsa-miR-1304-3p и hsa-miR-15b-5p) экспрессируются во всех 23 тканях, включая легкие, сердце, печень и тонкий кишечник, которые серьезно пострадали во время инфекции SARS-CoV-2. Последовательности, гомологичные человеческим hsa-miR-1307-3p и hsa-miR-1304-3p, локализованы в S2m — консервативном генетическом элементе вируса с неизвестной функцией. На основе компьютерного моделирования in silico взаимодействия между вирусным 3'-UTR и человеческой hsa-miR-1307-3p представлен возможный механизм выживания вируса, согласно которому мутация в 3'-UTR SARS-CoV-2 ослабляет иммунный ответ хозяина. M. Khan и соавт. [32] идентифицировали мишень miR-1307-3p в 3'-UTR, которая опосредует противовирусные реакции и ингибирует репликацию вируса [33]. Ранее hsa-miR-1307-3p связывали с функцией легких [34], а также с прогрессированием некоторых видов рака у больных COVID-19 [35]. Исследование L. Bavagnoli и соавт. продемонстрировало функциональную роль miR-1307 в регуляции репликации вируса гриппа A H1N1 [33] и предсказало комплементарность miR-1307 белку NS1 вируса H1N1, который ограничивает интерфероновые и провоспалительные реакции, позволяя вирусу уклоняться от врожденного и адаптивного иммунитета хозяина и эффективно реплицироваться в инфицированных клетках. Мутация C112A, позволяющая вирусу ускользать от miR-1307, ассоциирована с острым респираторным дистресс-синдромом. Примечательно, что в геноме SARS-CoV-2 сайт прерывания гибридизации с miR-1307 совпадает с локализацией мутации C112A в геноме H1N1. По-видимому, у SARS-CoV-2 общий с H1N1 механизм защиты от иммунитета хозяина, если SARS-CoV-2 несет аллель, который ослабляет функцию miR-1307. В поддержку этой гипотезы анализ вариаций SARS-CoV-2 выявил две близлежащие мутации в позициях 29742 и 29734, которые соответствуют 7-й и 15-й позициям miR-1307 соответственно. Мутации в этих двух сайтах могут нарушить гибридизацию PHK SARS-CoV-2 с miR-1307, чтобы избежать ингибирования инфекции. По состоянию на октябрь 2020 г. эти мутации обнаруживались с частотой <1,2%. Их связь с тяжестью клинических симптомов в настоящее время неизвестна и требует дальнейшего изучения [28].

Таким образом, комплексный подход к анализу вариаций геномов циркулирующих штаммов SARS-CoV-2 во время текущей пандемии идентифицировал возможные взаимодействия микроPHK miR-1307-3p человека с 3'-UTR генома SARS-CoV-2 [28], что подтверждается исследованиями [36]. N. Balmeh и соавт. [36] определили hsa-miR-1307-3p как лучшую miRNA из 1872 микроPHK с самым высоким сродством к геному SARS-CoV-2 и связанным с ним клеточными сигнальными путями. Результаты их исследования показали, что эта miRNA играет регуляторную роль в сигнальном пути PI3K/Akt, а также участвует в эндотоциозе и предотвращении продукции корепротера вируса SARS-CoV-2, индуцируемой гипергликемией белка GRP78 (glucose regulating protein 78), экспрессия которого повышается в ответ на гипергликемию при диабете. Также hsa-miR-1307-3p участвует в предотвращении проникновения и пролиферации вируса, что создает потенциальные мишени для противовирусных вмешательств [36].

В настоящее время известны несколько вариантов белка Spike вируса SARS-CoV-2, появившихся в результате мутаций. Неясно, могут ли эти варианты оказывать специфический эффект на сродство к рецептору ACE2, который, в свою очередь, характеризуется множеством аллелей в человеческой популяции. Среди 295 000 секвенированных геномов SARS-CoV-2, изолированных у разных пациентов, идентифицированы несколько мутаций белка Spike, влияющих на взаимодействие с ACE2: S477N, N439K, N501Y, Y453F, E484K, K417N, S477I и G476S. В частности, мутация N501Y является одним из событий, характеризующих штамм SARS-CoV-2 B.1.1.7 с повышенной инфективностью, частота которого в последнее время возросла в Европе [37].

Описан случай хронической инфекции SARS-CoV-2 с пониженной чувствительностью к нейтрализующим антителам у индивида с подавленным иммунитетом, получавшего лечение реконвалесцентной плазмой, которое генерирует изменения последовательности вирусного генома. Анализ охватил 23 временные точки в течение 101 дня. Необходимые изменения наблюдались в общей структуре вирусной популяции, включая вспышки в каждом из 23 временных точек. Необходимые изменения наблюдались в общей структуре вирусной популяции, включая вспышки в каждом из 23 временных точек. Анализ показал, что вирусная популяция, которая ранее была моноклональна, стала поликлональна. Необходимые изменения наблюдались в общей структуре вирусной популяции, включая вспышки в каждом из 23 временных точек.
ΔV70 — увеличила инфекционность вдвое по сравнению с диким типом и компенсировала снижение инфекционности, возникшее в результате первой мутации D796H. Двойной мутант Spike escape, несущий делецию ΔH69/ΔV70 и замену D796H, обладал умеренно сниженной чувствительностью к антителам рекомбинационной палазмы in vitro, сохраняя при этом инфекционность, аналогичную дикому типу. Эти данные свидетельствуют о сильном отборе SARS-CoV-2 во время терапии рекомбинационной палазмой, связанном с появлением вирусных вариантов с пониженной чувствительностью к нейтрализующим антителам [38].

Штамм SARS-CoV-2 с 382-нуклеотидной делецией (Δ382) в гене ORF8 появился в Ухане в начале пандемии. Делеция Δ382 усекает открытую рамку считывания и прерывает транскрипцию. Вариант Δ382 вызывает клинически значимое заболевание, включая пневмонию, но с более легким течением, по сравнению с инфекциями, вызванными вирусом дикого типа. Ни у одного (0%) из 29 пациентов, инфицированных этим вариантом, не было гипоксии, требующей дополнительного кислорода (индикатор тяжелой формы COVID-19, основная конечная точка исследования), в отличие от пациентов, инфицированных вирусом SARS-CoV-2 дикого типа (28%). Клинический эффект делеций в области ORF8 проявляется меньшим системным высвобождением провоспалительных цитокинов, меньшим системным воспалением и более эффективным иммунным ответом на SARS-CoV-2. Более сильная продукция IFN-γ на ранней стадии инфекции, которая наблюдалась у пациентов, инфицированных вариантом Δ382, подтверждает эффекторные функции T-клеток и быстрый и эффективный гуморальный ответ на SARS-CoV-2 [39].

Высокая трансмиссионность коронавируса SARS-CoV-2 воздушно-капельным и контактным путями привела к пандемии COVID-19, которая продолжается распространяться по всему миру, несмотря на строгие меры контроля. Более того, после ослабления политики социального дистанцирования во многих регионах наблюдается возобновление заболеваемости COVID-19. Одним из ключевых вопросов COVID-19 — происходит ли реальное второе заражение? Хотя нейтрализующие антитела быстро развиваются после инфицирования, титры антител начинают снижаться уже через 1–2 мес после острой инфекции. Пациенты, получившие отрицательный результат теста на PHK SARS-CoV-2 и выписанные из больниц, иногда имеют положительные результаты повторного тестирования. Эти зарегистрированные случаи вызывали разногласия между специалистами по поводу гипотезы о стойком выделении вируса и повторном заражении.

Изучение вирусного генома, в частности секвенирование его последовательности, полезно не только для отслеживания его изменчивости и распространения, но и выяснения вопроса о возможности повторного заражения. Первое сообщение о случае реинфекции опубликовано в августе 2020 г. в Гонконге: 33-летний мужчина, который выздоровел от COVID-19 в апреле и был выписан из больницы после двух отрицательных ПЦР-тестов на присутствие SARS-CoV-2 в мазках, взятых из носоглотки и горла с интервалом 24 ч, через 4 мес дал положительный результат теста на PHK SARS-CoV-2 в слюне. Во время второго (бессимптомного) эпизода COVID-19 пациент оставался в хорошей физической форме, результаты анализа крови были нормальными или почти нормальными. На серийных рентгенограммах грудной клетки отклонений не выявлено. Пациенту не проводилось противовирусное лечение. Вирусные генымы из первого и второго эпизодов принадлежат различным штаммам SARS-CoV-2. Первый вирусный геном имеет стоп-кодон в гене ORF8, приводящий к усечению 58 аминокислот, и филогенетически связан со штаммами, собранными в марте/апреле 2020 г., в то время как геном второго вируса — со штаммами, собранными в июле/августе 2020 г. Еще 23 нуклеотидных и 13 аминокислотных различий, распределенных в 9 различных белках, обнаружены между вирусами из первого и второго эпизодов. Эпидемиологический, клинический, серологический и геномный анализ подтвердили, что у пациента была повторная инфекция, а не персистенция вируса после первой инфекции. Эти данные показывают, что SARS-CoV-2 может продолжать циркулировать среди людей, несмотря на коллективный иммунитет, возникший в результате естественной инфекции или вакцинации [40]. Позднее возможность реинфекции подтвердили другие сообщения.

Так, 25-летний мужчина, проживавший в США, был инфицирован SARS-CoV-2 дважды — в апреле и июне 2020 г. Вторая инфекция была симптоматически тяжелее первой. Генетическое несоответствие образцов SARS-CoV-2 в двух эпизодах инфекции было больше, чем можно объяснить краткосрочной эволюцией in vivo в организме пациента. Эти данные свидетельствуют о том, что пациент был инфицирован SARS-CoV-2 в двух разных
случаях генетически различными штами ви-руса. Таким образом, предыдущее воздействие SARS-CoV-2 не гарантирует появление иммунитета против его новых штаммов [41].

В сообщении из Бразилии описана целая се-рия (33 случая) реинфекций, из них 30 заболевших были медработниками. Секвенирование вирусного генома выявило повторное инфицирование фило-генетически другим изолятом у каждого из этих па-циентов. Реинфекция была связана со сниженным гуморальным ответом во время первого эпизода заболевания и доказывает необходимость посто-янной бдительности без предположения о разви-тии иммунитета у реконвалесцентов [42].

Все авторы сообщений о случаях реинфекции настаивают на том, что выздоровевшие от COVID-19 пациенты должны соблюдать меры эпидемиологического контроля.

Коронавирусы приобретают генетические изме-нения медленнее, чем другие РНК-вирусы, благо-даря корректирующей РНК-зависимой РНК-по-лимеразе (RdRp). Повторяющиеся делеции в гене S-белка, изменяющие участки аминокислот, могут стимулировать и, по-видимому, ускорять адапта-ционную эволюцию SARS-CoV-2. Варианты делеции возникают на различном генетическом и геогра-фическом фоне, эффективно передаются и при-сутствуют в новых штаммах, включая те, которые вызывают текущую глобальную проблему. Участки генома с повторяющимися делециями (recurrent deletion regions, RDR) картируются с определен-ными эпитопами антител. Делеции в RDR прида-ют устойчивость к нейтрализующим антителам. Например, повторяющиеся делеции, которые изме-няют аминокислоты в позициях 144/145 и 243-244 S-белка, нарушают связывание антитела 4A8, кото-роне определяет иммунодоминантный эпитоп в ами-нотерминальном домене (N-terminal domain, NTD) S-белка. Антигенное обновление вируса позволяет повторно инфицировать ранее иммунизированных индивидов. Во время длительных инфекций у паци-ентов с ослабленным иммунитетом вирус приобре-тает делеции в NTD S-белка. Этот процесс получил название «эволюционный паттерн», определяемый делениями, которые изменяют определенные эпи-топы. Делеции и замены в основных эпитопах NTD и RBD, вероятно, будут продолжать вносить вклад в этот процесс. В отличие от нуклеотидных замен, делении не могут быть исправлены путем коррек-туры RdRp-полимеразой, и это ускоряет адаптаци-онную эволюцию SARS-CoV-2. Таким образом, де-леции представляют собой механизм, посредством которого происходит быстрое генетическое и ан-тигенное обновление S-белка вируса SARS-CoV-2. Поскольку деления являются продуктом реплика-ции, они будут происходить с определенной скоро-стью, и, вероятно, эти варианты появятся в здоро-вых популяциях [43].

Антигены HLA класса I играют решающую роль в развитии специфического иммунного ответа на вирусные инфекции. М. Shkurnikov и соавт. [44] раз-работали шкалу риска, связанную со способно-стью молекул HLA класса I представлять пептиды коронавируса SARS-CoV-2. Показатели этой шкалы значительно выше в группе взрослых пациентов, умерших от COVID-19, по сравнению с пожилыми пациентами (p=0,003). В частности, наличие аллеля HLA-A*01:01 связано с высоким риском летально- го исхода, тогда как HLA-A*02:01 и HLA-A*03:01 — с низким. Анализ гомозиготных пациентов показал, что гомозиготность по аллелю HLA-A*01:01 ассо-циирована с ранней смертью больных COVID-19. Оценка по шкале риска в независимой когорте испанских пациентов также была связана с тяже-стью заболевания. Полученные результаты свиде-тельствуют о важной роли презентации вирусных пептидов молекулами HLA класса I в развитии специфического иммунного ответа на COVID-19. Этот вывод согласуется с данными итальянских исследователей о том, что встречаемость аллелей HLA-A*01:01 и HLA-A*02:01 ассоциирована с уров-нем смертности в разных регионах Италии [45]. Для выявления возможных ассоциаций с клинической информацией необходимо провести анализ всего генотипа HLA класса I.

ЗАКЛЮЧЕНИЕ
В этом обзоре мы стремились осветить имею-щуюся информацию о генетических детерминантах восприимчивости к инфекции SARS-CoV-2 и тяже-сти течения COVID-19. Разработка новых лекарств для лечения этого заболевания требует знания молекулярных путей его развития и критически важных молекул-мишеней. Блокирование путей проникновения вируса, включая рецепторы и фер-менты, и контроль иммунных ответов — перспек-тивные стратегии для уменьшения полиорганной дисфункции.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ
Участие авторов. Авторы подтверждают соот-ветствие своего авторства международным кри-
ОБЗОРЫ

терией ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией).

Author contribution. The authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Funding source. Th is study was not supported by any external sources of funding.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Competing interests. The authors declare that they have no competing interests.

ЛИТЕРАТУРА / REFERENCES

1. WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Available from: https://covid19.who.int/

2. Ahmadian E, Khatibi SM, Soofiyan SR, et al. COVID-19 and kidney injury: pathophysiology and molecular mechanisms. *Rev Med Virol*. 2020;20(2):e2176. doi: 10.1002/rmv.2176

3. Saurai A, Sasaki T, Kato S, et al. Natural history of asymptomatic SARS-CoV-2 infection. *N Engl J Med*. 2020;383(3):885–886. doi: 10.1056/NEJMct2013020

4. Clohisey S, Baillie JK. Host susceptibility to severe influenza A virus infection. *Crit Care*. 2019;23(1):303. doi: 10.1186/s13054-019-2566-7

5. Zhou Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. *Science*. 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570

6. Kaser A. Genetic risk of severe Covid-19. *N Engl J Med*. 2020;383(16):1590–1591. doi: 10.1056/NEJMme2025501

7. Ellingham D, Degenhardt F, Bujanda L, et al; Severe COVID-19 GWAS Group. Genomewide association study of severe COVID-19 with respiratory failure. *N Engl J Med*. 2020;383(16):1522–1534. doi: 10.1056/NEJMoa2020832

8. Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in Covid-19. *Nature*. 2021;591(7849):92–98. doi: 10.1038/s41586-020-03065-y

9. Zhou S, Butler-Laporte G, Nakanishi T, et al. A Neanderthal OAS1 isoform protects against COVID-19 susceptibility and severity: results from mendelian randomization and case-control studies. *medRxiv*. 2020. doi: 10.1101/2020.10.13.20212092

10. Zeberg H, Paabo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. *Nature*. 2020b;587(7835):610–612. doi: 10.1038/s41586-020-2818-3

11. Zeberg H, Paabo S. A genomic region associated with protection against severe COVID-19 is inherited from Neanderthals. *Proc Natl Acad Sci USA*. 2021;118(9):e2026309118. doi: 10.1073/pnas.2026309118

12. WHO Solidarity Trial Consortium; Pan H, Petro R, Henaoo-Restrepo AM, et al. Repurposed antiviral drugs for Covid-19 – Interim WHO Solidarity Trial Results. *N Engl J Med*. 2021;384(6):497–511. doi: 10.1056/NEJMoa2023184

13. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endothelitis in COVID-19. *Lancet*. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5

14. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. *Lancet Gastroenterol Hepatol*. 2020a;5(5):428–430. doi: 10.1016/S2468-1253(20)30057-1

15. Zhou Z, Ren L, Zhang L, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. *Cell Host Microbe*. 2020;27(6):883–890.e2. doi: 10.1016/j.chom.2020.04.017

16. Hamming I, Timens WM, Bultuihs LC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. *J Pathol*. 2004;203(2):631–637. doi: 10.1002/path.1570

17. Jia H, Thelwel C, Dilger P, et al. Endothelial cell functions impaired by interferon in vitro: Insights into the molecular mechanism of thrombotic microangiopathy associated with interferon therapy. *Thromb Res*. 2018;163:105–116. doi: 10.1016/j.thromres.2018.01.039

18. Stebbing J, Sánchez Nieves G, Falcone M, et al. Jak inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. *Sci Adv*. 2021;7(4):eabe4724. doi: 10.1126/sciadv.abe4724

19. Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 Genotype Predicts Severe COVID-19 in the UK Biobank Community Cohort. *J Gerontol A Biol Sci Med Sci*. 2020;75(11):2231–2232. doi: 10.1093/gerona/glaa131

20. Gemmati D, Bramanti B, Serino ML, et al. COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? *Int J Mol Sci*. 2020;21(10):3474. doi: 10.3390/ijms21103474

21. Li Y, Zhang Z, Yang L, et al. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. *Science*. 2020b;23(8):101400. doi: 10.1126/sciadv.2021400

22. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. *Nat Rev Endocrinol*. 2021;17(1):1–30. doi: 10.1038/s41574-020-00435-4

23. Zeberg H, Paabo S. The MERS–CoV receptor gene is among COVID-19 risk factors inherited from Neandertals. *bioRxiv*. 2020c. doi: 10.1101/2020.12.11.422139

24. Long SW, Olsen RJ, Christensen PA, et al. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. *mBio*. 2020;11(6):e02707-20. doi: 10.1128/mBio.02707-20

25. Plante JA, Liu Y, Liu J, et al. Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility. *bioRxiv*. 2020;2020.09.01.278689. doi: 10.1101/2020.09.01.278689

26. Shannon A, Le NT, Selisko B, et al. Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRp and nsp14 exo nuclease active-sites. *Antiviral Res*. 2020;178:104793. doi: 10.1016/j.antiviral.2020.104793

27. Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. *J Biol Chem*. 2020;295(20):6785–6797. doi: 10.1074/jbc.RA120.013679

28. Chan AP, Choi Y, Schork NJ. Conserved genomic termini of SARS-CoV-2 as coevolving functional elements and potential therapeutic targets. *mSphere*. 2020;5(6):e00754-20. doi: 10.1128/mSphere.00754-20

29. Mishra A, Pandey AK, Gupta P, et al. The SARS-CoV-2 Challenge: Evaluation of Emerging Antibody-Based Therapeutics. *Front Immunol*. 2021;12:51. doi: 10.3389/fimmu.2020.02014

www.clinpractice.ru
31. Girardi E, López P, Pfeffer S. On the importance of host microRNAs during viral infection. Front Genet. 2018;9:439. doi: 10.3389/fgene.2018.00439

32. Khan MA, Sany MR, Islam MS, Islam A. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front. Genet. 2020;11:765. doi: 10.3389/fgene.2020.00765

33. Bavagnoli L, Campanini G, Forte M, et al. Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Res. 2019;171:104593. doi: 10.1016/j.antiviral.2019.104593

34. Herrera-Rivero M, Zhang R, Heilmann-Heimbach S, et al. Circulating microRNAs are associated with pulmonary hypertension and development of chronic lung disease in congenital diaphragmatic hernia. Sci Rep. 2018;8(1):10735. doi: 10.1038/s41598-018-29153-8

35. Qiu X, Dou Y. miR-1307 promotes the proliferation of prostate cancer by targeting FOXO3A. Biomed Pharmacother. 2021;88:430–435. doi: 10.1016/j.biopha.2016.11.120

36. Balmeh N, Mahmoudi S, Mohammadi N, Karabedianhajia-badi A. Predicted therapeutic targets for COVID-19 disease by targeting the human ACE2 complex. J Biomol Struct Dyn. 2020;20:100407. doi: 10.1016/j.jbiomolstructdyn.2020.100407

37. Ortuso F, Mercatelli D, Guzzi PH, Giorgi F. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/ACE2 complex. J Biomol Struct Dyn. 2021;1–11. doi: 10.1080/07391102.2021.1886175

38. Kemp SA, Collier DA, Datir RP, et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature. 2021. doi: 10.1038/s41586-021-03291-y

39. Young BE, Fong SW, Chan YH, et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet. 2020;396(10251):603–611. doi: 10.1016/S0140-6736(20)31757-8

40. To KK, Hung IF, Ip JD, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis. 2020;ciaa1275. doi: 10.1093/cid/ciaa1275

41. Tillet RL, Sevinsky JR, Hartley PD, et al. Genomic evidence for re-infection with SARS-CoV-2: a case study. Lancet Infect Dis. 2021;21(1):52–58. doi: 10.1016/S1473-3099(20)30764-7

42. Dos Santos LA, de Góis Filho PG, Fantini Silva AM, et al. Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers. J Infect. 2021;82(3):399–406. doi: 10.1016/j.jinf.2021.01.020

43. McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science. 2021;371(6534):1139–1142. doi: 10.1126/science.abf6950

44. Shkurnikov M, Nersisyan S, Jankevic T, et al. Association of HLA class I genotypes with severity of Coronavirus Disease-19. Front Immunol. 2021;12:641900. doi: 10.3389/fimmu.2021.641900

45. Pisanti S, Deelen J, Gallina AM, et al. Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of Covid-19. J Transl Med. 2020;18(1):352. doi: 10.1186/s12967-020-02515-5