Evaluating the effectiveness of antiviral treatment in models for influenza pandemic

ANTONELLA LUNELLI† AND ANDREA PUGLIESE

Department of Mathematics, University of Trento, via Sommarive 14, 38100 Povo (TN), Italy

[Received on 9 November 2007; revised on 10 July 2008; accepted on 11 July 2008]

We study the effectiveness of antiviral treatment in simple susceptible–exposed–infectious–removed models that are at the base of models used for influenza pandemic. The strategy is assessed in terms of the value of the reproductive ratio R_0. We consider a general framework and analyse six different specific cases. The same antiviral strategy is simulated in all models, but they slightly differ in the compartmental structure. These differences correspond to different underlying assumptions concerning the timing of the intervention and the selection of individuals who receive treatment. It is shown that these details can have a strong influence on the predicted effectiveness of the strategy: for instance, with $R_0 = 1.8$ in absence of treatment, different models predict that with treatment R_0 can become as low as 0.4 or as high as 1.3; still, in all models 70% of infected individuals are treated and the infectiousness of treated individuals is reduced by 80%. A particular assumption that can be included when modelling influenza is time-varying infectivity. We consider a specific model to verify if the predicted effectiveness of antiviral treatment is influenced by the inclusion of this assumption. We compare the results obtained with constant and variable infectivity, in relation also to the time of intervention. It is likely that existing differences in the predictions of the effect of control measures depend on such modelling details. This finding stresses the need for carefully defining the structure of models in order to obtain results useful for policymakers in pandemic planning.

Keywords: antiviral treatment; influenza pandemic; infectious disease modelling; infection reproductive ratio.

1. Introduction

The recent emergence of a highly pathogenic avian influenza virus and its subsequent transmission from infected poultry to humans have raised concern about a future pandemic risk. An intensive preparedness planning is occurring in many countries and possible control measures are evaluated, often with the help of mathematical models. Since a pandemic vaccine is unlikely to be promptly available, other control measures have been considered to contain the pandemic in its earliest phases, while waiting for vaccine production and distribution. In this context, antiviral drugs are expected to play a major role both in prevention and in treatment (Balicer et al., 2004; Monto, 2003). They can be 70–90% effective as prophylaxis and shorten the duration of the infectious period by 1–1.5 days when used in treatment (Cooper et al., 2003; Monto, 2003; Longini et al., 2004; Hayden, 2001; Regoes & Bonhoeffer, 2006; World Health Organization, 2004).

Antiviral use has been widely investigated in mathematical modelling (Arino et al., 2006; Colizza et al., 2007; Cooper et al., 2006; Ferguson et al., 2005, 2006; Flahault et al., 2006; Gani et al., 2005; Germann et al., 2006; Longini et al., 2004, 2005; Wu et al., 2006). Some attention has been given also

†Email: alunelli@science.unitn.it
to the possible emergence of an antiviral-resistant influenza strain (Ferguson et al., 2003, Lipsitch et al. 2007, Regoes & Bonhoeffer, 2006), a real threat to the effectiveness of antiviral-based policies. But results of different studies are often in disagreement: if some authors draw positive conclusions about the possibility of slowing the spread of the infection and reducing the attack rate (Barnes et al., 2007; Colizza et al., 2007; Gani et al., 2005; Germann et al., 2006; Longini et al., 2004, 2005; Roberts et al., 2007), even in circumstances in which a resistant strain spreads widely (Lipsitch et al., 2007), others are more reluctant and suggest that a containment policy based on antivirals alone is unlikely to be successful (Ferguson et al., 2005, 2006; Flahault et al., 2006). These differences depend basically on the model considered and the assumptions used in the model regarding the intervention.

Since many countries plan to rely on antivirals to face the pandemic during the early months and antivirals will probably be the only pharmaceutical intervention available in the initial phase, there is an evident need to clarify if and how the evaluation of antiviral efficacy is influenced by the model assumptions.

Instead of evaluating different strategies, we focus on one strategy and investigate its effectiveness in relation to the structure of the model and its underlying assumptions. We consider the simplest scheme that can be considered to model influenza spread, i.e. a deterministic homogeneous susceptible–exposed–infectious–removed (SEIR) model. Alexander et al. (2008) have recently studied the optimal scheduling of antiviral treatment through the analysis of a homogeneous SEIR model with continuous age of infection. We extend the model in the direction of considering several different options about which infected individuals are treated and when; on the other hand, we subdivide the infectious period in discrete stages. We then analyse quantitatively specific subcases of the general model; some of the cases correspond to models used in previous studies. Each case derives from the general model making precise assumptions on the time and way of intervention (in particular on the duration of infectivity before being testable and before the diagnosis), but always assuming the same fraction of infected being treated and the same efficacy of antivirals. All the models considered are easy to analyse mathematically, so that it is possible to quantify the effect of different modelling choices.

These models have all constant infectivity. Through the comparison to a model that includes time-varying infectivity, we then investigate the effect of variable infectivity and how it influences the evaluation of antiviral efficacy.

Many authors have investigated the effect of different antiviral-based interventions using rather complex models, including social and spatial structures, stochastic fluctuations and other factors. Even if a homogeneous model may be inappropriate to simulate a realistic influenza pandemic, it constitutes the basis of most models considered in the literature. Its transparency allows to evaluate how the structure of the model influences the conclusions about the effectiveness of antiviral treatment. Complex models are definitely more realistic and suitable to simulate a pandemic, but they may obscure the role of underlying assumptions.

Our results may be useful when structuring more complex models, such as microsimulation models, and highlight the attention that should be paid to details of the model. Since the SEIR framework is always the skeleton of more complex models, the comparison between the results found with these models may help to understand the role of model assumptions in the evaluation of the efficacy of antiviral-based policies in pandemic containment.

2. Methods

In compartmental models with an SEIR structure, the population is divided in four classes according to the disease state: susceptibles (S), contains all the individuals who can be infected; exposed (E),
contains the individuals who have been infected but are not infectious yet and do not show symptoms; infectious \((I) \), contains infected people who can transmit the infection, and immune or removed \((R) \), contains all the individuals who have recovered or, in the worst cases, died. For influenza, the mean latent and infectious period have been estimated to approximately 1 (Ferguson et al., 2005) and 4 (Cauchemez et al., 2004; Hyman & LaForce, 2003; Longini et al., 2004; Mills et al., 2004) days, respectively.

When modelling influenza, many authors (Alexander et al., 2008; Arino et al., 2006; Chowell et al., 2007; Colizza et al., 2007; Ferguson et al., 2003; Nuno et al., 2007; Wu et al., 2006) divide the infectious period in phases to allow for asymptomatic stages, differences in infectivity or in symptoms severity. This allows also to structure treatment as administered at certain phases of infection. An alternative, which introduces an element of complexity into the model, would be to explicitly use the time-since-infection as a variable (Alexander et al., 2008; Grais et al., 2003; Roberts et al., 2007).

We propose a model with a general structure in which the infectious period is divided in three phases. If no treatment is modelled, individuals progress through three infectious subclasses \((I_1, I_2 \text{ and } I_3) \) and finally recover. We assume that infected individuals, during the second infectious phase, may be classified (with probability \(p \)) as individuals who can receive treatment and therefore enter class \(Y \) (individuals potentially selected for treatment) at the end of the period; individuals not classified for treatment enter the third infectious stage \((I_3) \). From class \(I_3 \) individuals recover spontaneously. Individuals in class \(Y \) (suitable for treatment) have the possibility to be treated, or may recover spontaneously, before actually receiving treatment. The compartmental representation of the model is shown in Fig. 1. Our model includes, we believe, a great variety of cases considered in the literature. Simpler models with fewer infectious stages can be obtained by formally setting equal to \(\infty \) the exit rate from the missing stages.

When simulating antiviral treatment of infected individuals, we ignore preventive antiviral prophylaxis of their contacts, which is generally part of the recommended intervention strategies. Indeed in compartmental models, as the ones we are considering (Colizza et al., 2007; Gani et al., 2005; Germann et al., 2006; Longini et al., 2004, 2005), individual contacts are not defined so that such an intervention cannot be modelled exactly, although it can be approximated by an appropriate reduction of within-household transmission rates (Rizzo et al., 2008).

The classification between individuals who can receive treatment and those who cannot could depend on the severity of symptoms or behavioural or social features (geographical isolation, limited access to medical resources, tolerance of disease symptoms). We suppose in what follows that there is no difference in infectiousness between the two groups. Several authors (Colizza et al., 2007; Alexander et al., 2008) have assumed that individuals not selected for treatment are asymptomatic infectives and that they have a lower infectiousness; on the other hand, we stress the relevance of the potential presence of infectives who are as infectious as the others, but cannot be reached by treatment. Asymptomatic

![Fig. 1. Compartmental representation of the general model considered. Individuals are divided in classes according to the disease state: S (susceptibles), E (exposed), I_1 (infectious during the first stage), I_2 (infectious during the second stage), I_3 (infectious during the third stage), Y (infectious who can receive treatment), T (treated) and R (removed).](attachment:image.png)
infectives with low infectivity add little to the reproduction ratio of the infection, so that ignoring them does not affect strongly the results.

The reproductive ratio of the model can be easily computed using the method of Diekmann & Heesterbeek (2000) and van den Driessche & Watmough (2002) and it is given by

$$R_0 = S_0 \beta \left[\frac{1}{\gamma_1} + \frac{1}{\gamma_2} + (1 - p) \frac{1}{\gamma_3} + p \left(\frac{1}{\alpha + \gamma_Y} + \frac{\alpha}{\alpha + \gamma_Y} \frac{r}{\lambda} \right) \right],$$

where S_0 is the fraction of individuals initially susceptible, r represents the reduction in the transmission due to treatment (corresponding to ave_1 in Longini et al. (2004), 80% in the numerical example), β is the transmission rate, γ_1, γ_2, γ_3 and γ_Y are the exit rates from class I_1, I_2, I_3 and Y, respectively, α is the treatment rate of selected individuals and λ is the recovery rate of treated individuals. We also assume that antivirals shorten the infectious period of treated individuals (by 1 day in the numerical example).

The model can be viewed as an age of infection epidemic model of the type proposed by Kermack & McKendrick (1927) and analysed using the approach suggested by Brauer (2005). The analysis shows that R_0 is a threshold value: if $R_0 \leq 1$, starting from any initial state S_0, only a few new infections will occur, without a major epidemic; if $R_0 > 1$, starting from a large enough susceptible fraction S_0, a major epidemic will occur; during the outbreak the number of susceptibles can only decrease and, when the epidemic dies off, will finally settle to an equilibrium value that depends on the value of R_0. The larger the R_0 the smaller is the number of individuals who escape the infection (Diekmann & Heesterbeek, 2000).

It seems therefore adequate to judge the efficacy of antiviral treatment through the resulting reduction of R_0, as computed from (1). An antiviral treatment is generally measured by the reduction in infectivity (r), the reduction of the period of infectivity (that will be parameterized later), and by the fraction P of the infected who are treated. A standard computation shows that this is given by

$$P = p \frac{\alpha}{\alpha + \gamma_Y}.$$

It is, however, clear from (1) that P, r and the length of the period of infectivity of treated individuals are not sufficient to obtain R_0. In order to understand better which are the factors leading to larger or smaller reductions of R_0, we have considered several submodels, most of which have been chosen by other authors to investigate the effect of antivirals. The compartmental representation of each model is shown in Fig. 2.

Although the formulae given above apply to the general model, all the cases we will consider in detail belong to one of two model structures: either p is equal to 1, so that all infected individuals enter the class Y and can be selected for treatment; or γ_Y is equal to 0, so that all individuals entering class Y (those potentially selected for treatment) are actually treated. It will be seen later that choosing one structure or the other changes substantially the estimate of the efficacy of antiviral treatment.

In the first model, all individuals are potentially treatable: when they leave the latent class they go directly to class Y, the only infectious class. From then on, they either enter the class of treated individuals (at rate α) or recover (at rate γ_Y). This is a special case of the general model and may be obtained by letting γ_1 and γ_2 go to infinity and setting $p = 1$. According to (2), the overall probability of being treated is given by $\alpha/(\alpha + \gamma_Y)$. A model with this structure has been previously used by Flahault et al. (2006) to simulate antiviral treatment of cases.

In the second model, we assume that as the individuals leave the latent class, they are immediately classified either (with probability p) as individuals who will be treated (subgroup Y) or (with probability $1 - p$) not (subgroup I_3). Individuals in subgroup Y will enter the group of treated individuals at rate α, and
while those in subgroup I_3 will recover at rate γ_3. This model may be obtained by letting γ_1 and γ_2 go to infinity and setting $\gamma_Y = 0$ in the general model. It has the same structure as the models proposed by Alexander et al. (2008) and Chowell et al. (2006), even if in their models only a fraction of individuals selected for treatment are actually treated (i.e. $\gamma_Y \neq 0$) and individuals in class I_3 are considered as asymptomatic with reduced infectivity.
Influenza is characterized by a short incubation period, a high attack rate and a lack of disease-specific symptoms (Balicer et al., 2004). All these epidemiological characteristics can impose difficulties in identifying cases promptly when they enter the infectious class and may cause a delay in treatment. This aspect has been considered in several studies (Ferguson et al., 2005, 2006; Germann et al., 2006; Longini et al., 2005), in which intervention has been postponed to the second or third day after symptoms onset. Therefore, all the following models include a delay in treatment, assuming that some time is needed to identify cases and organize treatment. This period might be considered also as an infectious but asymptomatic stage.

In the third model, we assume that at the end of this phase, infectious individuals are either identified and treated or enter the class I_3 and will not be treated. A similar model has been proposed by Gani et al. (2005), and Ferguson et al. (2003) have introduced an analogous mild asymptomatic infection stage in their model. The model is obtained by letting γ_1 and α go to infinity.

Models 4 and 5 integrate the presence of the first phase of unrecognized infection with the treatment scheme used in Models 1 and 2, respectively. In Model 4, after a first infectious phase, all individuals are potentially treatable (class Y). Then they either enter the treated class (at rate α) or recover (at rate γ_Y). To obtain this model, we have set $p = 1$ and let γ_2 go to infinity in the general model. In Model 5, after a first infectious phase, individuals are assigned either to subgroup I_3 or to subgroup Y. Individuals in subgroup Y will enter the group of treated individuals at rate α, while those in subgroup I_3 will recover at rate γ_3. This is obtained by letting γ_2 go to infinity and setting $\gamma_Y = 0$. A model with this structure has been considered by Wu et al. (2006) (with hospitalized instead of treated individuals) to include an initial asymptomatic phase of the infectious period, while similar infectious stages, but in a more complex model, have been proposed by Nuno et al. (2007).

As Models 4 and 5 correspond, respectively, to Models 1 and 2, Model 6 is comparable to Model 3. After the phase I_1, individuals enter class I_2 during which they are either identified and treated or enter the third stage of the infectious period and then recover. This model is obtained from the general model by letting α go to infinity.

For each model, we have computed the average infectious period T_I in absence of intervention, the average infectious period T_{AV} for a treated individual and the average infectious period T_{noAV} for a non-treated individual. We will use their mathematical expressions, given in Table 1, for parameter calibration. The reproductive ratio R_0 is computed directly from (1), using the assumptions on the parameters made for each model.

3. Numerical results

3.1 Parameter calibration

In order to compare the values for R_0 found in different models that include different parameters, it is necessary to properly calibrate the parameters. We have estimated the values of the parameters to investigate the effect of intervention on the value of R_0 and how this effect vary when we consider different models.

First of all, we require that, in absence of antiviral treatment, the mean infectious period has to be the same (4 days) in all models. This implies the condition $T_I = 4$, where T_I is the mean infectious period in absence of treatment and is given, for each model, in Table 1.

Secondly, the probability of receiving treatment, computed using (2), is the same ($P = 0.7$) in all models. In Models 1 and 4, this probability is given by $\alpha/(\alpha + \gamma_Y)$, and thus determines the value of α, while in Models 2, 3 and 5 it is represented by p and so we are free to set α. In Models 1 and 2,
individuals receive treatment, on average, 1/α days after leaving class E; therefore, in Model 2 we have kept α as in Model 1. Analogously, in Model 5 we have taken it as in Model 4 (individuals receive treatment, on average, 1/α days after leaving class I1).

In Model 3, we assume that individuals have the possibility to be treated 1 day after becoming infectious. This could be due, e.g. to a first asymptomatic phase. Therefore, we set 1/γ2 = 1. Then from the relation 1/γ2 + 1/γ3 = 4, we can estimate γ3.

In Models 4–6, we have introduced a 1-day delay in treatment administration, which gives 1/γ1 = 1. Using the assumption of a 4-day natural infectious period, we can estimate γY and γ3.

As for the effect of antivirals, we assume that the infectiousness is reduced by 80% by antivirals, hence r = 0.2.

Finally, we need to establish the value of λ, reflecting the shortening of the infectious period of treated individuals. A commonly used assumption (see, e.g. Colizza et al., 2007) is that the infectious period of treated individuals TAV is 1 day shorter than TnoAV, the infectious period of untreated individuals. However, Table 1 shows that, for Models 1 and 4, TAV > TnoAV; hence, it is not possible to require TAV = TnoAV − 1. In other words, the time spent in the infectious class by a treated individual is on average longer than the infectious time of an individual who does not receive treatment. Nevertheless, if 1/λ = 1/γY, i.e. if treatment has no effect on the duration of the infectious period, on average the individuals will stay in the infectious class 1/γY days, as one would expect; however, those being treated stay there longer than the average, while those not being treated less than the average. This apparently bizarre fact comes from the assumption that being treated and recovering are two competing risks; hence, individuals who receive treatment are those who naturally would have a longer infectious period.

To overcome this problem, we choose to assume, following Colizza et al. (2007), TAV = T1 − 1, which allows us to find λ. For Models 2, 3, 5 and 6, since TnoAV = T1, this makes no difference, and we can see from Table 1 that this relation can be used to obtain λ as long as 1/γ3 − 1/α > 1 (for Models 2 and 5) or 1/γ3 > 1 (for Models 3 and 6). Similarly, for Models 1 and 4, provided that 1/γY − 1/(α + γY) > 1, the relation TAV = T1 − 1 allows us to find λ.

In Models 1 and 4, we actually treat individuals with an infectious period longer than the average T1, so the assumption TAV = T1 − 1 may be too optimistic. Another possibility would be to consider TAV*.

Model no.	T1	TAV	TnoAV	R0/βS0
1	1/γ3	1/a+γY + 1/λ	1/a+γY	1/a+γY + a/(a+γY) r x
2	1/λ	1/a + 1/λ	1/λ	(1−p)1/λ + p(1/a + r x)
3	1/λ + 1/γY	1/γY+α + 1/λ	1/γY+α	1/γY+α + (1−p)1/γY + p r x
4	1/λ + 1/γY	1/γY+α + 1/λ	1/γY+α	1/γY+α + (1−p)1/γY + p r x
5	1/λ + 1/γY	1/λ + 1/γY + 1/λ	1/λ + 1/γY + 1/λ	(1−p)1/λ + p(1/a + r x)
6	1/λ + 1/γY	1/λ + 1/γY + 1/λ	1/λ + 1/γY + 1/λ	1/λ + 1/γY + (1−p)1/λ + p r x
The parameter values used are given in Table 2.

3.2 Reduction of R_0

The general model without intervention is characterized by an average infectious period $1/\gamma = 1/\gamma_1 + 1/\gamma_2 + 1/\gamma_3$, the sum of the average duration of each infectious phase. Its reproductive ratio is given by $R_0 = \beta S_0/\gamma$ (i.e. (1) with $p = 0$), where β is the transmission rate and S_0 the initial fraction of susceptible individuals.

Using the parameter values given in Table 2, we have evaluated the effectiveness of the same intervention strategy when implemented in different ways, as described by the models considered. As discussed above, this evaluation has been made in terms of R_0: we have computed the ratio between the R_0 of the model without intervention and the reproductive ratio of the model with intervention for each of the models investigated. This ratio tells how much the reproductive ratio is reduced under antiviral treatment. Results are given in Table 2 and show how the reduction is very sensitive to the assumptions made when modelling the intervention. In Models 1 and 2, individuals have the same probability of receiving treatment and, on average, they are treated after 1.7 days in both models. But in Model 1 the intervention seems to be much more effective. With an hypothetical R_0 of 1.8, a value commonly used to simulate a future pandemic (Ferguson et al., 2005), using Model 1 we would conclude that antivirals are able to contain the pandemic, reducing the value of R_0 below 1. The same conclusion is not reached using Model 2.

As expected, the introduction of a delay in antivirals administration reduces significantly the effectiveness of the control measure. This can be observed by comparing Models 1, 2 and 3 with Models 4, 5 and 6, which are their respective refinements. Assuming hypothetically $R_0 = 1.8$, antiviral treatment
would reduce it to 0.65, 1.17 and 0.99 if simulated with Model 1, 2 or 3 and to 0.9, 1.3 and 1.24 with Model 4, 5 or 6, where a 1-day delay has been included.

We have assumed a treatment delay of 1 day, but some authors (Ferguson et al., 2005) have considered a delay of 2 days. To investigate the effect of a longer delay, we can compare, for example, Model 3 and Model 6. With a 1-day delay (Model 3), we have $R_0 = 2.2\beta S_0$. A 2-day delay (Model 6) gives $R_0 = 2.76\beta S_0$. As expected, a longer delay in antivirals administration reduces significantly the effectiveness of the intervention.

4. A comparison between constant and varying infectivity

Isselbacher et al. (1994) have observed the natural course of influenza and have reported its clinical characteristics in an otherwise healthy 28-year-old male. According to them, the virus shed is maximal 2 days after the onset of illness and then decreases and reaches a minimum on day 5. Taking these results into consideration, it is reasonable to assume that the infectivity of an individual varies in time, determining a variability in the transmission rate. To assess the importance of considering different levels of infectivity, we have designed a specific model that allows us to compare the results obtained by assuming constant or varying infectivity. The model follows basically the structure of Model 6, but we assume that treated individuals follow an infection path similar to the untreated ones, with two phases characterized by different infectivity. Although other model structures are certainly possible, this allows us to understand the interaction of treatment timing with variable infectivity.

Precisely, we make the following assumptions: without treatment, after the latent period individuals go through three infectious stages, each characterized by a specific infectivity, and then recover. According to the results of Isselbacher et al. (1994), we assume a first low-infectivity stage lasting $1/\gamma_1 = 1$ day, followed by a second stage with high infectivity lasting $1/\gamma_2 = 2$ days and by a third stage again with low infectivity lasting $1/\gamma_3 = 1$ day. Varying infectivity is translated in non-constant transmission rates. Mimicking the results of Isselbacher et al. (1994), we have assumed $\beta_1 = \beta_3 = 3/5\beta_2$, thus representing lower infectivity during the first and third stage. β_1, β_2 and β_3 are the transmission rates during the three infectious stages, respectively. Infected individuals can receive treatment at the end of the first stage (with probability p_1), thus entering class T_2, or after the second stage (with probability p_2), entering class T_3. The transmission rate of treated individuals is reduced by a factor r, as in previous models, and therefore it will be equal to $r\beta_2$ in class T_2 and $r\beta_3$ in class T_3. We further assume that individuals stay in class T_2 1.5 days before advancing to class T_3, while individuals treated after the end of the second infectious stage recover after 0.5 days. The compartmental representation of the model is given in Fig. 3.

![Compartmental representation of the model considered to include varying infectivity. Individuals are divided in classes according to the disease state: S (susceptibles), E (exposed), I_1, I_2 and I_3 (infectious in different stages), T_2 (treated at the end of the first infectious stage), T_3 (treated at the end of the second infectious stage) and R (removed).](image-url)
The reproductive ratio of the model is given by

$$R_0 = S_0 \left[\beta_1 \frac{1}{\gamma_1} + \beta_2 \left((1 - p_1) \frac{1}{\gamma_2} + p_1 \frac{r}{\lambda_1} \right) \
ight.$$
$$+ \beta_3 \left((1 - p_1)(1 - p_2) \frac{1}{\gamma_3} + p_1 \frac{r}{\lambda_2} + (1 - p_1)p_2 \frac{r}{\lambda_2} \right) \right], \quad (3)$$

where λ_1 and λ_2 are the recovery rates of treated individuals.

The probability of receiving treatment in the model considered is given by $P = p_1 + (1 - p_1) p_2$ and we have set it equal to 0.7, coherently with the previous numerical examples. Defining $Q = \frac{P_1}{P}$ as the proportion of individuals treated after the first infectious phase, we have investigated the dependence of the effect of antiviral treatment on the timing of intervention. Namely, varying Q between 0 and 1 we change from a scenario where all the treated individuals receive prophylaxis after the second infectious stage (very late) to a scenario where treatment is administered to all selected individuals after the first infectious stage (i.e. 2 days in advance). Further, for a given Q, we can compare results obtained with varying and constant infectivity, obtained by setting $\beta_1 = \beta_2 = \beta_3$. Figure 4 shows that introducing variable infectivity can influence the results, although to a limited extent quantitatively, and makes the time of intervention even more crucial in the evaluation of the effectiveness of antiviral treatment. As expected, the higher the proportion of individuals treated after the first phase, the more effective the intervention is, both with variable and with constant infectivity.

For example, with varying infectivity, assuming $R_0 = 1.8$ in absence of treatment, we obtain $R_0 = 0.92$ if we treat all the selected individuals after the first phase ($Q = 1$) and $R_0 = 1.6$ if we treat all the selected individuals 2 days later ($Q = 0$). From $Q = 0$ to $Q = 1$, R_0 decreases linearly. In the case of constant infectivity, the results are analogous, but R_0 varies only from 0.97 to 1.51.

Fig. 4. Relative effectiveness of antiviral treatment, computed as the ratio between the reproductive rate with intervention (model in Fig. 3) and the reproductive rate of the plain SEIR model. In the model, individuals may be treated at the end of the first or second infectious phase. Q represents the proportion of treated individuals who receive prophylaxis after the first phase. The graph shows results for varying and constant (i.e. $\beta_1 = \beta_2 = \beta_3 = \beta_T = \beta$) infectivity.
5. Conclusions

We have considered different models for an epidemic with antiviral treatment. All models have an SEIR structure and derive from the same general model. We have shown that details in the model assumptions can strongly influence the evaluation of antiviral treatment as a containment measure for pandemic influenza. It must be remarked that although the compartmental structure of some models considered may appear unusual, they are all quite natural and suitable to simulate the intervention; some have indeed been used in previous studies.

As discussed in Section 2, there is an implicit difference between Models 1 and 4, on one side, and Models 2, 3, 5 and 6, on the other: in Model 1 (and 4), the individuals who do not get treatment are those who recover faster than they can be targeted for treatment; this has the consequence, already discussed, that the average infection period of untreated individuals is shorter than the average infectious period in the absence of intervention. In Model 2 (and 3, 5 and 6), it is assumed that infectives can be in principle distinguished between those who will be treated and those who will be not; the average infection period of untreated individuals (as well as their infectivity) is exactly the same as the average infectious period in absence of interventions.

From the results shown in Table 2, it can be seen that there is indeed a corresponding difference in the reduction of R_0 because of antiviral treatment between the two groups of models. This can also be seen in the formula for R_0: in Models 1 and 4, the probability of receiving treatment is given by $P = \frac{\alpha}{\alpha + \frac{\gamma}{Y}}$ and the mathematical expression of R_0 can be rewritten as $R_0 = \beta S_0 \left(1 - P\right) \frac{1}{\gamma Y} + P \frac{\gamma}{\gamma Y}$ ($\gamma Y = \gamma_3^4$ in Model 4). In Models 2 and 5, $P = p$ and $R_0 = \beta S_0 \left(1 - p\right) \frac{1}{\gamma_3} + p \frac{1}{\alpha + \gamma Y} \left(1 + \beta S_0 \frac{1}{\gamma_1^4}
ight)$ ($\gamma Y = \gamma_3^4$ in Model 5). Considering that $\gamma Y = \gamma_3$ in Models 1 and 4, we can see that the difference between them is in the term $\frac{\alpha}{\alpha + \frac{\gamma}{Y}}$, the force of infection of treated individuals during the period before treatment starts. In other words, the value of R_0 in Models 1 and 4 looks as if we were ignoring the fact that treated individuals are infectious before receiving treatment.

These results show that the question of who is treated is decisive: it is very different if treated individuals are those, for one reason or another, outside the reach of the health system, if they are asymptomatic with low infectivity, or those who recover faster. These assumptions are often implicitly included into the structure of the model that should therefore be chosen carefully.

A second factor strongly affecting the effectiveness of intervention is the timing of treatment. This can be seen by comparing Models 1, 2 and 3, on one side, with Models 4, 5 and 6, that are analogous, except that a first infectious period is added, where no treatment is possible. Clearly, the inclusion of a time delay in drug administration reduces significantly its impact on the dynamics of the epidemic.

Time-varying infectivity makes timing of intervention even more crucial. In fact, if infectivity is lower in the first and last stage of the infectious period and higher in the middle stage, a late intervention is even less effective than in the case of constant infectivity: at the end of the middle stage, an individual will have already infected almost all the individuals he would eventually infect. On the other hand, missing treatment in the first infectious stage is less crucial, since few individuals would be infected anyway during that stage. This can be seen from Fig. 4 that shows the effectiveness of intervention as a function of the proportion Q of individuals treated after the first stage: there exists a threshold value Q_t (in the numerical example $Q_t \approx 0.53$) such that if $Q < Q_t$, the intervention is more effective if infectivity is constant than if it is variable (most individuals treated after the second stage), while it is less effective if $Q > Q_t$ (most individuals treated after the first stage).

Our study shows that when studying the effectiveness of antiviral treatment, much attention should be paid to the assumptions (often implicit) about the timing of intervention and the individuals who get treatment: even if the same intervention is apparently being modelled, different models can lead
to different conclusions. The detailed structure of the model is very relevant and should be carefully evaluated and specified when assessing the importance of the results.

Although the models considered are all SEIR-type models for a homogeneous population, the results immediately translate to more complex SEIR models used to simulate an influenza pandemic. In fact, R_0 for an epidemic in a metapopulation is strongly influenced by the value of R_0 in each population in isolation (Diekmann & Heesterbeek, 2000) and may even be the same under some special choices of the contact matrix (Colizza et al., 2007). Individual-based models (Ferguson et al., 2005) are more flexible and can incorporate detailed assumptions about the timing of infectiousness and antiviral use, as well as allowing for antiviral prophylaxis of case contacts. Still, the results of this paper stress the need of making consistent and realistic choices when building any kind of model, and especially of making them transparent. Different results on the evaluation of containment strategies may depend on hidden assumptions in the model structure. Hence, the structure of models has to be carefully defined in order to obtain results that can be useful for policymakers in pandemic planning.

Acknowledgements

We thank two anonymous referees for several useful suggestions that helped us extend and clarify the results.

Funding

This work has been partially supported by Provincia Autonoma di Trento, Italy, under the project EPIdemics description and COntrol (EPICO).

REFERENCES

Alexander, M., Moghasan, S. M., Rost, G., & Wu, J. (2008) A delay different model for pandemic influenza with antiviral treatment. Bull. Math. Biol., 70, 382–397.

Arino, J., Brauer, F., Van den Driessche, P., Watmough, J., & Wu, J. (2006) Simple models for containment of a pandemic. J. R. Soc. Interface, 3, 453–457.

Balicer, R., Huerta, M., & Grotto, I. (2004) Tackling the next influenza pandemic. Br. Med. J., 328, 1391–1392.

Barnes, B., Glass, K., & Becker, N. (2007) The role of health care workers and antiviral drugs in the control of pandemic influenza. Math. Biosci., 209, 403–416.

Brauer, F. (2005) The Kermack-McKendrick epidemic model revisited. Math. Biosci., 198, 119–131.

Cauchemez, S., Carrat, F., Viboud, C., Valleron, A., & Boelle, P. (2004) A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Stat. Med., 23, 3469–3487.

Chowell, G., Ammon, C., Hengartner, N., & Hyman, J. (2006) Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J. Theor. Biol., 241, 193–204.

Chowell, G., Nishiura, H., & Bettencourt, L. (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J. R. Soc. Interface, 4, 155–166.

Colizza, V., Barrat, A., Barthelemy, M., Valleron, A., & Vespignani, A. (2007) Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med., 4, 95–110.

Cooper, B., Pitman, R., Edmunds, W., & Gay, N. (2006) Delaying the international spread of pandemic influenza. PLoS Med., 3, 845–855.
COOPER, N., SUTTON, A., ABRAMS, K., WAILOO, A., TUNER, D. & NICHOLSON, K. (2003) Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza A and B: systematic review and meta-analyses of randomised controlled trials. Br. Med. J., 326, 1235–1241.

DIEKMANN, O. & HEESTERBEEK, J. (2000) Mathematical Epidemiology of Infectious Diseases. Chichester: Wiley.

FERGUSON, N., CUMMINGS, D., CAUCHEMEZ, S., FRASER, C., RILEY, S., MEYAI, A., IAMSRITHAWORN, S. & BURKE, D. (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437, 209–214.

FERGUSON, N., CUMMINGS, D., FRASER, C., CAIKA, J., COOLEY, P. & BURKE, D. (2006) Strategies for mitigating an influenza pandemic. Proc. Natl. Acad. Sci. USA, 103, 5935–5940.

FERGUSON, N., MALLET, S., JACKSON, H., ROBERTS, N. & WARD, P. (2003) A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J. Antimicrob. Chemother., 51, 977–990.

FLAHULT, A., VERGU, E., COUDEVILLE, L. & GRAIS, R. (2006) Strategies for containing a global influenza pandemic. Vaccine, 24, 6751–6755.

GANI, R., HUGHES, H., FLEMING, D., GRIFFIN, T., MEDLOCK, J. & LEACH, S. (2005) Potential impact of antiviral drug use during influenza pandemic. Emerg. Infect. Dis., 11, 1355–1362.

GERMANN, T., KADAU, K., LONGINI JR, I. M. & MACKEN, C. (2006) Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. USA, 103, 5935–5940.

GRAIS, R., ELLIS, J. & GLASS, G. (2003) Assessing the impact of airline travel on the geographic spread of pandemic influenza. Eur. J. Epidemiol., 18, 1065–1072.

HAYDEN, F. (2001) Perspectives on antiviral use during pandemic influenza. Philos. Trans. R. Soc. Lond. B, 356, 1877–1884.

HYMAN, J. & LAFORCE, T. (2003) Bioterrorism: mathematical modeling applications in homeland security. Frontiers in Applied Mathematics (H.T. Banks & C. Castillo Chovez eds), chapter 10. Philadelphia, PA: SIAM, pp. 215–240.

ISSELBACHER, K., BRAUNWALD, E., WILSON, J., MARTIN, J., FAUCI, A. & KASPER, D. (1994) Harrison’s Principles of Internal Medicine, vol. 1. New York: McGraw-Hill.

KERMACK, W. O. & MCKENDRICK, A. G. (1927) A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115, 700–721.

LIPSITCH, M., COHEN, T., MURRAY, M. & LEVIN, B. (2007) Antiviral resistance and the control of pandemic influenza. PLoS Med., 4, 111–121.

LONGINI, I. M., HALLORAN, M., NIZAM, A. & YANG, Y. (2004) Containing pandemic influenza with antiviral agents. Am. J. Epidemiol., 159, 623–633.

LONGINI, I. M., NIZAM, A., XU, S., UNGHUSAK, K., HANSHAOWORKUL, W., CUMMINGS, D. & HALLORAN, M. (2005) Containing pandemic influenza at the source. Science, 309, 1083–1087.

MILLS, C., ROBINS, J. & LIPSITCH, M. (2004) Transmissibility of 1918 pandemic influenza. Nature, 432, 904–906.

Monto, A. (2003) The role of antivirals in the control of influenza. Vaccine, 21, 1796–1800.

NUNO, M., CHOWELL, G. & GUMEL, A. B. (2007) Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands. J. R. Soc. Interface, 4, 505–521.

REGOES, R. & BONHOEFFER, S. (2006) Emergence of drug-resistant influenza virus: population dynamical considerations. Science, 312, 389–391.

RIZZO, C., LUNELLI, A., PUGLIESE, A., BELLA, A., MANFREDI, P., TOMBA, G. S., IANNELLI, M. & CIOFI DEGLI ATTI, M. (2008) Scenarios of diffusion and control of an influenza pandemic in Italy. Epidemiol. Infect., Cambridge University Press. doi: 10.1017/s055026880800037. Accessed on 14 February 2008.
ROBERTS, M., BAKER, M., JENNINGS, L., SERTSOU, G. & WILSON, N. (2007) A model for the spread and control of pandemic influenza in an isolated geographical region. *J. R. Soc. Interface*, 4, 325–330.

VAN DEN DRIESSCHE, P. & WATMOUGH, J. (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. *Math. Biosci.*, 180, 29–48.

WORLD HEALTH ORGANIZATION (2004) *WHO Guidelines on the Use of Vaccines and Antivirals during Influenza Pandemics*. Available at http://www.who.int/csr/resources/publications/influenza/WHO_CDS_CSR_RMD_2004_8/en.

WU, J., RILEY, S., FRASER, C. & LEUNG, G. (2006) Reducing the impact of the next influenza pandemic using household-based public health interventions. *PLoS Med.*, 3, 1532–1540.