Making Cardiovascular Discoveries Work for Everyone

John M. Westfall, George A. Mensah

That’s one small step for (a) man, one giant leap for mankind

—Neil Armstrong; July 20, 1969

How could walking on the moon help mankind? The purpose of the 1960s NASA moonshot was to put a man on the moon. To what end? What might a stroll on the moon actually mean for America and humanity? If the Moonshot was about leaving a few footprints on the moon, it would have only fulfilled half the mission. But it was about more. The 1960s arguably saw one of the most dramatic accelerations in the pace of scientific discovery in the past 100 years. The outcome was so much more than footprints on the moon. The scientific discoveries necessary to put that human on the moon were translated out into the nation in hundreds of ways. Yes, the primary aim was space exploration, a human lunar landing and safe return to earth. However, the translation of those discoveries improved nearly every American life in ways we could not imagine in 1960.

We are on the cusp of another giant leap for humanity as we face the unparalleled discoveries in cardiovascular disease prevention, treatment, and management. The pace of discovery has accelerated, providing another opportunity for broad translation that can impact every American. From new drugs and newer devices to genetic risk and precision treatments to social determinants of health and local prevention strategies, the pipeline of discoveries has reached gravitational escape velocity. The scientific momentum energizing discovery science in heart disease and health could carry us to the moon, perhaps even Mars. But it would not carry us above the clouds without translation into the clinic, community, and culture. And that translation now requires engaging the practices (T3 translation) and the community (T4 translation) to make the discoveries meaningful and feasible in every household.

Translational research is a long and winding road. Many discoveries are just discoveries, interesting tidbits of science, appropriate for a journal article, but hardly impactful on the practice of medicine or living one’s daily life. However, some discoveries may be of great consequence, perhaps a crucial link between genetic makeup and disease expression, or a cellular process susceptible to new types of medications and treatments, a novel chemical compound that targets a diseased cell and leaves a healthy cell untouched, a program to mitigate the negative consequences of poor social drivers of health. These discoveries need to be translated into clinical practice and then into clinical practice, and then into the broader cultural understanding of a disease, its origins, and its management.12 This final step of translation, now known as T4 translation is crucial to making discoveries part of routine everyday life.

Slow Pace of Translation

The discovery of germs as a disease vector in the 1860s was initially unacceptable to the scientific medical community.3,4 Slowly, germ theory was translated into human clinical research; antiseptics and then antibiotics were discovered; and gradually, infections, antibiotics, and sophisticated treatment regimens entered clinical practice. And little by little, germ theory translated into everyday patient and community understanding. It was 100 years after that initial discovery that widespread T4 translation of hand hygiene occurred and made hand washing and use of hand disinfectants the routine standard of care in healthcare facilities and households.5 Now, some would say that we may have translated too far and that germs are not all bad and antibiotics may be over used. The point we are making is that the translation of scientific discovery into clinical practice and common community understanding can take much too long.

Balas and Boren6 estimated that it takes an average of 17 years for just a small portion of new evidence-based findings to reach clinical practice. It takes even longer to reach beyond the confines of the clinical practice setting to impact population health.7 In contrast, the 1960s NASA moonshot got serious about discovery and translation. New discoveries had to be translated into practical use immediately to get a man on the moon; and by committing to this end goal, NASA scientists and the broader scientific and education community were

From the Department of Family Medicine, High Plains Research Network, Farley Health Policy Center, University of Colorado Anschutz Medical Campus, Aurora (J.M.W.); and Center for Translation Research and Implementation Science (CTRIS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland (G.A.M.).

The views expressed in this article are those of the authors and do not necessarily represent the views of the National Institutes of Health or the United States Department of Health and Human Services.

Correspondence to John M. Westfall, MD, MPH, Department of Family Medicine, High Plains Research Network, Farley Health Policy Center, University of Colorado Anschutz Medical Campus, 12631 East 17th Ave, Aurora, CO 80045. E-mail Jack.Westfall@ucdenver.edu

(Circ Res. 2018;122:210-212. DOI: 10.1161/CIRCRESAHA.117.312273.)

© 2018 The Authors. Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited and is not used for commercial purposes.

Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.117.312273
able to translate many of these discoveries into everyday life in America. T4 translation of NASA discoveries occurred rapidly during that very decade and continued throughout the end of the 20th century.

However, we are at risk of another hundred years of dirty hands and cardiovascular deaths. The National Institutes of Health has lofty goals to discover the genetic cause for heart disease, the cure for hypertension, the protein that heals, and the public health message that changes behavior. And these discoveries will be most successful if attention and resource is given to the full spectrum of translational science: from bench to bedside to practice to population (Figure). It is very likely that discoveries will get to people with serious heart disease. But that next step in translation, T4, moving discoveries into the population, will take our diligent attention. And it is beyond our ability to predict what these discoveries and their translation into the population may lead to. Who would have thought that we could eliminate chlorine from our water purification processes? From heart surgery and nitinol implants to longer golf shots, better sunglasses, and home blood pressure cuffs, the 1960s Moonshot discoveries underwent rapid T4 translation resulting in better living. T4 translation can do that again if we persistently translate the upcoming research from discovery science into life-changing and life-saving treatments and population knowledge and programs in the coming decade. But what is T4 translation and how should we do it?

T4 Translation: What It Is, and How to Do It

T4 translation is the last mile on the long journey from fundamental discovery to population health impact. It is the final translational step that makes discoveries part of routine everyday life. The T4 translation step goes beyond the publication of clinical practice guidelines and recommendations to address how guidelines might be applied in everyday clinical settings and communities far beyond the academic medical center. T4 translation explores solutions to questions of relevance, acceptability, affordability, adaptability, sustainability, and feasibility of delivering with high fidelity what has been demonstrated to be efficacious and effective in earlier translational steps. Just like germ theory finally translated into a broad community-based understanding of infection, disease, treatment, and hygiene, T4 translation can change our cultural constructs and ideas about science and cardiovascular health. The focus of T4 translation is maximizing the return on investments made in fundamental discovery science and early translational steps by ensuring that proven interventions can have the widest reach and can be adopted or adapted, implemented, and sustained long term. The recent discovery and partial translation of monoclonal antibody treatments for resistant hypercholesterolemia provides an example of the disconnect between discovery and usefulness at the practice and patient level because of high cost and marginal value. Likewise, the lack of local relevance in the national Million Hearts campaign has led to generally disappointing outcomes. Successful T4 translation can lead to locally relevant messages and materials, increased use of proven therapies, and better health outcomes. The mission of turning fundamental discovery science into health impact is likely to be most successful by embracing the full spectrum of translational steps inclusive of T4.

T4 translation begins and ends with active community engagement; community members, patients, and practice-based research networks engaged in participatory research that seek answers to how proven-effective evidence-based interventions can be adopted or adapted with high fidelity in a sustainable environment.
way to maximize population health impact. Several conceptual and theoretical frameworks and models are available to guide T4 translation. T4 translation can inform the full spectrum of scientific discovery by impacting research and funding priorities, providing crucial feedback to feasibility and acceptability of early discoveries, and developing messages and materials that change knowledge and behavior. By engaging patients, providers, and community members throughout the full research roadmap, new discoveries are more likely to be relevant and meaningful and will be more readily translated to bedside and beyond. The complete manual on T4 translation is beyond the scope of this commentary. But there are thousands of patients, community members, practices, public health agencies, and community organizations ready to collaborate to get new discoveries into their neighborhoods. And get the health problems they face every day into the hands of academic researchers.

In the 1960s, we all felt part of the NASA Moonshot. We drank Tang and ate freeze-dried ice cream. And we all watched as Neil Armstrong took those first steps on the moon. And each day we enjoyed more and more translated benefits from the NASA Moonshot. We can do that again if we attend to T4 translation. Imagine a goal to eliminate systolic blood pressure over 140 mmHg. Such a cardiovascular moonshot would require basic scientists, clinical researchers, primary care and cardiology practices, patients and communities to come together; discoveries in genetics, proteomics, chemistry and physiology, health services research, and public health translated into relevant, innovative medications, clinical care, public health programs, and health policy. We have seen this T4 Moonshot successfully deployed to walk on the moon and improve the lives of every American. Now, more than ever, we need those same strategic partnerships and active engagement of patients and practices to achieve the health for which we strive.

Disclosures

None.

References

1. Westfall JM, Mold J, Fagan L. Practice-based research—“Blue Highways” on the NIH roadmap. JAMA. 2007;297:403–406. doi: 10.1001/jama.297.4.403.
2. Fort DG, Herr TM, Shaw PL, Gutzman KE, Starren JB. Mapping the evolving definitions of translational research. J Clin Transl Sci. 2017;1:60–66. doi: 10.1017/cts.2016.10.
3. Best M, Neuhauser D, Ignaz Semmelweis and the birth of infection control. Qual Saf Health Care. 2004;13:233–234. doi: 10.1136/qhc.13.3.233.
4. Davis R. The doctor who championed hand-washing and briefly saved lives. http://www.npr.org/sections/health-shots/2015/01/12/375663920/the-doctor-who-championed-hand-washing-and-saved-women-s-lives. Accessed April 2, 2017.
5. World Health Organization. WHO Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge Clean Care Is Safer Care. Geneva, Switzerland: World Health Organization; 2009.
6. Balas EA, Boren SA. Managing clinical knowledge for health care improvement. In: Bemmel J, McCray AT, eds. Yearbook of Medical Informatics 2000: Patient-Centered Systems. Stuttgart, Germany: Schattauer Verlagsgesellschaft mbH; 2000:65–70.
7. Ioannidis JP. Materializing research promises: opportunities, priorities and conflicts in translational medicine. J Transl Med. 2004;2:5. doi: 10.1186/1479-5876-2-5.
8. Majors D. From Cell Phones to Computers, Technology From NASA’s Space Program Continues to Touch Everyday Life. http://www.post-gazette.com/life/lifestyle/2009/07/20/From-cell-phones-to-computers-technology-from-NASA-s-space-program-continues-to-touch-everyday-life/stories/200907200146. Accessed February 22, 2017.
9. Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, Bradley L. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet Med. 2007;9:665–674. doi: 10.1097/GIM.0b013e31815699d0.
10. Surkis A, Hogle JA, DíazGranados D, Hunt JD, Mazmanian PE, Connors E, Westaby K, Whipple EC, Adams T, Mueller M, Aphylinanphongs Y. Classifying publications from the clinical and translational science award program along the translational research spectrum: a machine learning approach. J Transl Med. 2016;14:235.
11. Bonow RO, Harrington RA, Yancy CW. Cost-effectiveness of PCSK9 inhibitors: proof in the modeling. JAMA Cardiol. 2017;2:1298–1299. doi: 10.1001/jamacardio.2017.3656.
12. Sidney S, Quesenberry CP Jr, Jaffe MG, Sorel M, Nguyen-Huynh MN, Kushi LH, Go AS, Rans J. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016;1:594–599. doi: 10.1001/jamacardio.2016.1326.
13. Norman N, Bennett C, Cowart S, Felzien M, Flores M, Flores R, Haynes C, Hernandez M, Rodriguez MP, Sanchez N, Sanchez S, Winkelman K, Winkelman S, Zittleman L, Westfall JM. Boot camp translation: a method for building a community of solution. J Am Board Fam Med. 2013;26:254–263. doi: 10.3122/jabfm.2013.03.120253.
14. English A, Dickinson LM, Zittleman L, Nease DE, Herrick A, Westfall JM, Simpson MJ, Fernald DH, Flyne RL, Dickinson P. A community engagement method to design patient engagement materials for cardiovascular health. Ann Fam Med. In press.
15. Westfall JM, Zittleman L. Just Check It! Home Blood Pressure Management. http://justcheckit.org/. Accessed November 27, 2017.
16. Bender BG, Dickinson P, Rankin A, Wamboldt FS, Zittleman L, Westfall JM. The Colorado Asthma Toolkit Program: a practice coaching intervention from the High Plains Research Network. J Am Board Fam Med. 2011;24:240–248. doi: 10.3122/jabfm.2011.03.100171.
17. Westfall JM, Zittleman L, Felzien M, Norman N, Tamez M, Backlund-Jarquin P, Nease D. Reinventing the wheel of medical evidence: how the boot camp translation process is making gains. Health Aff (Millwood). 2016;35:613–618. doi: 10.1377/hlthaff.2015.1648.
18. DeAllegue L, Parnes B, Zittleman L, Sutter C, Chavez R, Bernstein J, LeBlanc W, Dickinson M, Westfall JM. Success in the Achieving CARDiovascular Excellence in Colorado (A CARE) Home Blood Pressure Monitoring Program: a report from the Shared Networks of Colorado Ambulatory Practices and Partners (SNOCAP). J Am Board Fam Med. 2015;28:548–555. doi: 10.3122/jabfm.2015.05.150024.
19. Selker HP, Calliff RM. The need for academic leadership in full-spectrum translational research. Clin Transl Sci. 2011;4:78–79. doi: 10.1111/j.1752-8062.2011.00275.x.
20. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50. doi: 10.1186/1748-5908-4-50.
T4 Translational Moonshot: Making Cardiovascular Discoveries Work for Everyone
John M. Westfall and George A. Mensah

Circ Res. 2018;122:210-212
doi: 10.1161/CIRCRESAHA.117.312273
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2018 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/122/2/210

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/