The influence of bedrock river morphology and alluvial cover on gravel entrainment. Part 2: Modelling critical shear stress

Rebecca A. Hodge

Marcus E. H. Buechel

Department of Geography, Durham University, Durham, UK
School of Geography and the Environment, University of Oxford, Oxford, UK

Correspondence
Rebecca A. Hodge, Department of Geography, Durham University, South Road, Durham, DH1 3LE, UK.
Email: rebecca.hodge@durham.ac.uk

Abstract
The critical shear stress (τ_c) at which grains are entrained on a bedrock surface is important for determining how bedrock rivers evolve through changes in sediment cover and bedrock erosion. The difference in τ_c for grains on bedrock and alluvial surfaces also determines whether a channel may be susceptible to runaway alluviation. Bedrock channel beds can have a wide variety of morphologies, but we do not fully understand how this variation affects τ_c. Here we address how bedrock morphology alters the grain entrainment parameters of pivoting angle, grain exposure and roughness height z_0, and thus τ_c. In our companion article we used scaled, 3D printed replicas of seven bedrock surfaces to measure grain pivoting angles for four grain sizes. For three surfaces, pivoting angles were also measured with 25–100% sediment cover. In this second article, we combine these pivot angle data with measurements of grain exposure and surface roughness (standard deviation of elevations, σ_z) to predict τ_c using a force–balance model. The bedrock topography produces substantial variation in τ_c; for a given grain diameter (D), a $3.6 \times$ range of σ_z across the surfaces without sediment cover produces up to a $5.1 \times$ variation in τ_c. For comparison, for any single surface, τ_c varies by up to $2.5 \times$ for a fourfold range in grain size. Comparison to previous models with less representation of grain-scale geometry shows that in our results grains move at lower values of dimensionless critical shear stress (τ^*_{c}), and that τ^*_{c} decreases more quickly with increasing D/σ_z. However, direct comparison is difficult because previous relationships are based on a hydraulic roughness length that cannot be easily predicted without hydraulic data. Our results propose a new relationship between D/σ_z and τ^*_{c}, but further development and testing require datasets that combine measurements of flow, τ_c, and grain-scale geometry.

KEYWORDS
bedrock river, critical shear stress, grain entrainment, pivot angle, surface roughness

1 | INTRODUCTION

Much literature has focused on the factors determining sediment entrainment and transportation in alluvial rivers, but there is far less understanding of their bedrock counterparts (Wohl, 2015). Understanding grain entrainment in bedrock rivers is critical for predicting both sediment transport rates and the development of sediment cover. Studies in alluvial rivers have demonstrated how the way in which sediment grains are arranged affects critical shear stress (τ_c); for example, the impact of grain protrusion (Fenton & Abbott, 1977), grain geometry (Carling et al., 1992) and alluvial cover structure (Kirchner et al., 1990). The presence of exposed bedrock and thin alluvial cover in bedrock channels has been shown to cause sediment transport processes to be different from those in alluvial channels (Chatanantavet & Parker, 2008; Goode & Wohl, 2010; Hodge et al., 2011), but a complete understanding of these interactions is lacking.

Field and flume evidence from bedload tracers suggests that sediment entrainment from bedrock surfaces requires a lower τ_c than for...
the same-size grains on alluvial surfaces (Ferguson et al., 2017; Hodge et al., 2011; Inoue et al., 2014). However, it has been suggested that for grains on rough bedrock surfaces, \(\tau_c \) could be higher than for alluvial surfaces (Johnson, 2014). There is also evidence that variations in \(\tau_c \) with grain size may be smaller over bedrock surfaces than in alluvial channels, causing sediment transport to be less size selective than in adjacent alluvial reaches (Ferguson et al., 2017; Hodge et al., 2011). As well as affecting sediment transport rates, differences in \(\tau_c \) on bedrock and alluvial surfaces also affects the development of sediment cover. If \(\tau_c \) is higher for alluvial patches compared to the surrounding bedrock, then the initiation of sediment cover can cause runaway alluviation, whereby sediment grains encountering the sediment patch become less mobile and the area of sediment cover spreads rapidly (Chatanantavet & Parker, 2008; Demeter et al., 2005; Johnson, 2014).

We expect that at least some of the observed differences in \(\tau_c \) between bedrock and alluvial reaches are because of the impact of the underlying bedrock surface on the grain-scale geometry (e.g., grain pivot angle and exposure), but these effects have not yet been quantified. More generally, the impact of bedrock topography on \(\tau_c \) is often not considered when predicting bedload transport in bedrock channels. Previous attempts have often used a constant dimensionless critical shear stress (\(\tau^{**} \)) and only incorporated the impact of varying bedrock and alluvial roughness on the flow (Bartels et al., 2021; Nelson & Seminara, 2012). Even when the impact of bedrock surfaces on \(\tau^{**} \) is considered (e.g., Inoue et al., 2014; Johnson, 2014; Mishra & Inoue, 2020), the focus has still primarily been on the effect of bedrock surface roughness on flow via a hydraulic roughness length.

The aim of this pair of articles was to determine how the properties of bedrock surfaces with and without sediment cover affect the grain-scale geometry of sediment grains (i.e., pivot angle and exposure) and consequently \(\tau_c \). We address our aim using a novel set of 3D-printed replica bedrock surfaces. In the first article (Buechel et al., 2022), we reported how surface properties and grain pivot angles vary between surfaces, and with different percentages (0–100%) of alluvial cover; and we assessed relationships between these pivot angles and different methods of quantifying surface roughness.

In this article, we evaluate how variation in bedrock topography affects the entrainment parameters of pivot angle, roughness length and grain exposure. We then use Kirchner et al.’s (1990) grain entrainment model to assess how variation in the parameter values propagates through to variation in \(\tau_c \). From this, we assess how bedrock topography affects \(\tau_c \) and identify which parameters are most important to constrain for improved \(\tau_c \) predictions. We then compare our results to entrainment models for bedrock rivers developed by Inoue et al. (2014) and Johnson (2014). By focusing on grain-scale geometry, we isolate the influence of the riverbed morphology on grain entrainment and remove the influence of other factors such as turbulent sweeps and instantaneous pressure gradients in the water column (Schmeeckle et al., 2007; Vollmer & Kleinhans, 2007) and channel slope (Lamb et al., 2008).

1.1 Modelling grain entrainment from alluvial surfaces

To predict \(\tau_c \) at the point of grain entrainment, we use the simple force-based model of Kirchner et al. (1990). At the point when the grain is about to mobilise, the following force balance occurs:

\[
\frac{F_0}{\tan \phi} + F_I = F_W = \frac{1}{6} \left(\rho_s - \rho \right) g \pi D^3
\]

where \(F_I \) is the lift force, \(\phi \) is the grain pivot angle, \(F_W \) is the grain weight, \(\rho_s \) is the density of sediment (taken as 2650 kg m\(^{-3}\)), \(\rho \) is the density of water, \(g \) is acceleration due to gravity and \(D \) is the grain diameter. The model of Kirchner et al. (1990) calculates the shear stress that solves Equation 1.

\(F_0 \) and \(F_I \) are calculated assuming a logarithmic relationship between flow velocity and height above the bed:

\[
u(z) = \sqrt{\frac{z}{\kappa} \ln \left(\frac{z + z_0}{z_0} \right)}
\]

where \(u(z) \) is the flow velocity at height above the bed \(z \), \(\tau \) is the boundary shear stress, \(x \) is von Kármán’s constant (taken as 0.407) and \(z_0 \) is the roughness height. In Kirchner et al.’s (1990) original alluvial application, \(z_0 = 0.1D_{50} \) (Whiting & Dietrich, 1990). The reference height \(z = 0 \) is assumed to be the local mean bed elevation. Equation 2 is only applicable when \(z > 0 \); otherwise \(u(z) = 0 \). \(F_0 \) is calculated as

\[
F_D = \frac{C_D}{2} \rho w(z) u(z)^2 \, dz
\]

where \(w(z) \) is the width of the grain cross-section at height \(z \), \(C_D \) is an empirical drag coefficient assumed to be 0.4 (Wiberg & Smith, 1985); \(p \) and \(e \) are, respectively, grain protrusion and exposure, where protrusion is the height of the grain above the local mean bed elevation and exposure is the height of the grain above the local maximum upstream bed elevation; and \(F_I \) is calculated as

\[
F_I = \frac{C_I}{2} \rho A \left(u(p)^2 - u(p - D)^2 \right)
\]

where \(A \) is the plan view cross-sectional area of the grain and \(C_I \) is an empirical lift coefficient assumed to be 0.2 (Wiberg & Smith, 1985). The boundary shear stress at the threshold of motion, \(\tau_c \), is calculated by rearranging the preceding equations and assuming that grains have a circular cross-section (for the full derivation, see Kirchner et al., 1990):

\[
\tau_c = 0.1m \left(\rho_s - \rho \right) g \left(\frac{\pi D^2}{6} \right) \left(\frac{C_D}{\tan \phi} \pi D^2 \right) \sqrt{D^2 - 2z - (2p - D)^2} f(z) \, dz
\]

\[
\frac{\rho_s - \rho}{\rho} \frac{C_I A}{2} \left(f(p)^2 - f(p - D)^2 \right)
\]

where

\[
\begin{align*}
f(z) &= \ln \left(\frac{z + z_0}{z_0} \right) \quad z > 0 \\
f(z) &= 0 \quad z \leq 0
\end{align*}
\]

The original equation of Kirchner et al. (1990) is multiplied by 0.1 so that inputs in SI units produce a value of \(\tau_c \) in Pa. We convert these values to \(\tau^{**} \) using \(\tau^{**} = \tau_c / (\rho_s - \rho) g D \). Although more recent entrainment models such as those of Vollmer and Kleinhans (2007) and Lamb...
et al. (2008) have a more complete treatment of the hydraulics around the grain, our focus is on the impact of grain geometry on entrainment, and so, following the approach of Yager et al. (2018), the simpler Kirchner model is sufficient for this study.

1.2 | Modelling grain entrainment from bedrock surfaces

We compare our findings with Inoue et al.’s (2014) and Johnson’s (2014) models for entrainment on bedrock surfaces. Both models incorporate differences between alluvial and bedrock surfaces through the effect of bedrock surface roughness. The main effect that is included in both is the effect of surface roughness on the near-bed hydraulics. Inoue et al. (2014) assumed that the grain would entrain through sliding on a smooth surface and did not incorporate the effects of bedrock roughness on pivot angle or grain exposure. At the point of motion:

\[F_D + F_W \sin \theta = (F_W \cos \theta - F_z) \mu_f \]

(7)

where \(\theta \) is the bed slope angle and \(\mu_f \) is the static friction coefficient. This is developed and rearranged to give the following equation for \(r^*_c \) (see Inoue et al., 2014, for full derivation and justification of parameter values. Note also that the square is missing in eq. 16a in the original paper):

\[r^*_c = a_1 \left[\frac{1}{k} \ln \frac{30.1aD^2}{k_{sb}} \right]^2 \]

(8)

where

\[a_1 = \frac{2A_3 (\mu_f - \tan \theta) \cos \theta}{C_0 A_2 (\mu_f k_2 + 1)} \]

(9)

in which \(a_1 \) is a dimensionless coefficient relating the local flow velocity to the height above the bed, taken to be 0.65; \(k_{sb} \) is the hydraulic roughness height (note that this is different from \(k_0 \)); \(A_3 \) is \(\pi/6 \) and \(A_2 \) is \(\pi/4 \); \(k_1 \) is the ratio of lift force to drag forces, taken to be 0.85; and \(\mu_f \) is taken to be 0.75. Inoue et al. (2014) found that their model was able to reproduce values of \(r^*_c \) measured in a flume experiment, using values of \(k_{sb} \) back-calculated from the hydraulic flume data.

Johnson (2014) indirectly incorporated grain geometry effects by developing the hiding function of Wilcock and Crowe (2003) for mixed-size alluvial beds. This function was originally designed to represent the increase or decrease in \(r_z \) that is experienced by grains that are respectively smaller or larger than the median grain size \(D_{50} \). Johnson (2014) applied this model to bedrock rivers by scaling \(r_z \) as a function of the grain size relative to a measure of the bedrock roughness:

\[r_z = r_{z0}(D - \rho)B_{fr} \left(\frac{D}{r_{w0}a} \right)^{b} \]

(10)

\[b = \frac{0.67}{1 + \exp \left(1.5 - \frac{D}{r_{w0}a} \right)} \]

(11)

where \(r_{z0} \) is a reference dimensionless critical shear stress for grains on alluvium, assumed to be 0.055; and \(r_{w0} \) is a fitting parameter relating the standard deviation of surface elevations \(\sigma_z \) to a length scale equivalent to \(D_{50} \) in the alluvial scenario. We also use \(r_{w0} \) to calculate \(z_0 \) when applying the Kirchner et al. (1990) model. Johnson (2014) used a range of flume data to determine possible parameter values for \(r_{w0} \) but did not directly compare the predicted shear stresses to measured values.

2 | METHODS

2.1 | Summary of methods from companion paper

To produce the 3D printed surfaces used in these experiments, we used high-resolution topographic data of exposed bedrock channel beds, collected using terrestrial laser scanning of the River Garry (Scotland) and structure from motion (SfM) photogrammetry from North Wash (Utah, USA). Selected areas of these data were down-scaled and processed to produce a 3D printed tile, with maximum horizontal dimensions of 0.27 \(\times \) 0.27 m. We started with four surfaces (S1, M1, M2 and R1, where S/M/R refer to smooth/medium/rough). R1 has a strong directionality to the topography, and so was analysed in two perpendicular orientations (R1rot being the rotated version). To extend the range of roughness across the surfaces, we also increased the dimensions of R1 and M2 by 100% and printed a section of those to produce R1x2 and M2x2, giving seven surfaces in total. To assess the impact of sediment cover on surface topography and grain entrainment, we added 25%, 50%, 75% and 100% sediment cover of two different grain sizes (11 and 32 mm) to surfaces S1, R1 and R1x2, producing a further 24 surfaces with partial or full alluvial cover. The topography of the covered surfaces was measured using SfM photogrammetry (Figure 1; see Buechel et al., 2022 for details).

To measure pivot angles, each tile was attached to a tilt table. A grid of 81 \(30 \times 30 \) mm cells was overlain on the surface, and the pivot angle of each cell was measured three times by dropping a grain into the cell and tilting the table until the grain moved by at least one grain diameter. The pivot angle is the angle of the table at which the grain moved. For the surfaces without sediment cover, the measurements were repeated using four grain sizes (8, 11, 16 and 32 mm). For surfaces with sediment cover, the pivoting grain was the same size as the sediment cover. Further details of these methods are provided in the companion article (Buechel et al., 2022).

We quantify the roughness of the different surfaces using the standard deviation of elevations, \(\sigma_z \), which is used to calculated \(z_0 \). In the companion article we assessed how pivot angles correlated with surface roughness at different scales. We found that mean pivot angles correlated most with roughness calculated at spatial scales equivalent to the grain size or smaller, and when the roughness was also measured in the pivot direction. However, we do not apply those alternative roughness metrics here for two reasons. First, we need to quantify roughness to predict the impact of channel topography on the flow, which is likely to be different to the impact of the topography on pivot angles. Second, using \(\sigma_z \) enables comparison with the work of Johnson (2014).

2.2 | Application of Kirchner, Inoue and Johnson models

We use the model of Kirchner et al. (1990) to calculate \(r_z \) for grains within each 30 mm measurement cell across all surfaces. To do this
we require four parameters from our experiments: grain pivot angles, protrusion and exposure, and z_0. We use the pivot angles from the experiments reported in Buechel et al. (2022). Grain protrusion is the maximum height of the grain above the mean bed elevation, indicating the vertical position of the grain within the velocity profile. We assume that the base of each grain is at the mean bed elevation within each measurement cell, and so grain protrusion is therefore equal to the grain diameter. It is possible that grains sit within pockets that are lower than the mean bed elevation, and so our values of z_c may be an underestimate. Setting the base of the grain at an elevation of one σ_z
below the mean elevation does, on average, double median \(\tau_c \) for each surface. But it is unlikely that every measurement cell contains such a deep pocket. Identifying the minimum elevation at which different sized grains could sit in each cell requires detailed topographic analysis that is not consistent with the relatively simple approach taken elsewhere in this work. Furthermore, the sheltering effect of pockets in the bed is at least partially accounted for through our exposure measurements.

Grain exposure represents the sheltering effect of upstream obstacles and is the height difference between the top of the grain and the maximum upstream bed elevation. A zero or negative exposure means that the top of the grain is below the obstacle height, and therefore (in the Kirchner model) the grain will only be entrained by lift forces. For each measurement cell on the printed surfaces, we estimate exposure as the difference between the mean elevation of the measurement cell plus the grain diameter (i.e., the height of the top of the grain), and the 95th percentile of the elevations in the upstream (up-tilt) measurement cell. Pebble clusters have been found to influence flow over a downstream distance of up to 3.5 times the obstacle height (Lawless & Robert, 2001), and so an obstacle 8.6 mm high would affect the flow over the length of a measurement cell. For the roughest beds, over half the measurement cells have an upstream obstacle at least 8.6 mm high, suggesting exposure is being calculated over an appropriate downstream distance. For beds S1 and M2, no measurement cells have an upstream obstacle of that height. However, small obstacles only block the lowest velocity flows near the bed, and so overestimating the downstream influence of small obstacles is not problematic as such velocities do not greatly affect the calculated \(\tau_c \).

We use the 95th percentile of upstream elevations to calculate exposure rather than the maximum because a grain will be sheltered by a section of the topography rather than a single point, but our results are not sensitive to the exact percentile that is used. For example, using the 90th percentile decreases median \(\tau_c \) for each surface by an average of 2% and a maximum of 7%, and using the 99th percentile increases median \(\tau_c \) by an average of 4% and a maximum of 11%. In both cases, the pattern of median \(\tau_c \) between different surfaces is not much altered. We calculate exposure when the bed is horizontal, and so our values are likely a minimum estimate as up-tilt sheltering could be higher when the bed is tilted.

To model the logarithmic flow profile, we need roughness length \(z_0 \) but there is no established method for calculating \(z_0 \) in bedrock channels. In alluvial channels, \(\sigma_z \) has been shown to be a better predictor of total flow resistance than \(D_{50} \) but there is not necessarily a consistent scaling between the two (Aberle & Smart, 2003; Chen et al., 2020; Mishra & Inoue, 2020). Johnson (2014) estimated a bedrock hydraulic roughness length comparable to \(D_{50} \) as the product of \(\sigma_z \) and two scaling factors: \(r_{sw} \), which scales bedrock roughness to the \(D_{50} \) that would produce an equally rough alluvial surface; and \(r_{sw} \) which scales \(D_{50} \) to \(D_{50} \). By comparing the measured hydraulic roughness and \(\sigma_z \) from flume experiments in bedrock channels and using \(r_{sw} \) as a fitting parameter, Johnson (2014) determined that \(r_{sw} \) varies from 1 to 5. Johnson set \(r_u = 2 \), representing \(D_{50} \) typically being about twice the size of \(D_{50} \) in an alluvial bed. We combine this approach with Kirchner et al.’s (1990) use of \(z_0 = 0.1 \) \(D_{50} \), and so

\[
z_0 = 0.1r_u r_{sw} \sigma_z
\]

For most model runs, we use \(r_u = 1 \) and \(r_u = 2 \). We find that the resulting values of critical shear stress are sensitive to the value of \(r_{sw} \). Although we are primarily interested in the overall patterns, which are not dependent on this value, we also demonstrate this sensitivity by presenting a run using \(r_u = 5 \).

We ran the Kirchner model for each of the seven printed beds using three different parameterisations, as outlined in Table 1. Where \(z_0 \) is held constant, we use the same average value for all beds. For the beds without sediment cover, we calculate \(\tau_c \) for the four grain sizes used in the pivot experiments. For beds with sediment cover, we calculate \(\tau_c \) for the grains the same size as the cover grains.

We compare our results to the Inoue et al. (2014) and Johnson (2014) models by using both to predict the relationship between \(r'_c \) and \(D/\sigma_z \). To make predictions using Inoue et al.’s (2014) model, we need to identify values for \(k_{sw} \), but do not have any hydraulic data. There is no established way to equate topographic properties to hydraulic roughness lengths, and the limited datasets suggest that there is not a one-to-one correlation between the two (e.g., Chatanantavet & Parker, 2008). Johnson (2014) specifies that the hydraulic roughness length for an alluvial bed is approximately equal to \(D_{50} \), and therefore \(k_{sw} \) for a bedrock bed is approximately equal to \(2\sigma_z r_{sw} \). Inoue et al. (2014) predict \(r'_c \) as a function of \(D/k_{sw} \)—that is, \(\frac{1}{D/r_u r_{sw}} \)—and so to plot Inoue’s predictions of \(r'_c \) as a function of \(D/\sigma_z \) we assume that \(r_{sw} \) equals one, and rescale the \(x \)-axis accordingly. For the other parameters, we use the same values as specified in their original work. This includes the bed slope of 0.033, as a non-zero bed slope is needed for the model to run, and our printed surfaces do not have a net bed slope. However, we find that the model predictions are not sensitive to this value. To make predictions using Johnson’s (2014) model, we use \(r_u \), values of one and five to define an envelope of \(r'_c \) values.

TABLE 1

Parameterisation	Pivot angle	\(z_0 \)	Exposure
1	Experimental values	Constant (average \(\sigma_z \) from all beds)	Constant (no sheltering)
2	Experimental values	From \(\sigma_z \) for each bed	Constant (no sheltering)
3	Experimental values	From \(\sigma_z \) for each bed	Sheltering from upstream cell

3 | RESULTS

3.1 | Entrainment parameter values

Before applying the model of Kirchner et al. (1990), we first consider the model parameters: pivot angle, \(z_0 \), and grain exposure (Figure 2). For the beds without sediment cover, pivot angles (Figure 2b) are
generally lower on the smoother surfaces (S1) and higher on the rougher surfaces (R1). The direction of surface structure is important, with pivot angles on $R_{1_{rot}}$ being far lower than on R1. There is little consistent pattern in how pivot angles vary with grain size; only for R1 and $R_{1_{x2}}$ does pivot angle decrease with increasing grain size. Adding sediment cover to surfaces S1 and $R_{1_{x2}}$ increases the magnitude and range of pivot angles. However, for R1 sediment cover does not alter pivot angles. On all surfaces with sediment cover, 11 mm cover produces higher pivot angles than 32 mm cover, despite the cover and pivoting grains being the same size.

For the surfaces without sediment cover, z_0 is highest for surface $R_{1_{x2}}$, and lowest for M2 (Figure 2a). For the surfaces with cover, z_0 is

FIGURE 2 (a) Roughness height (z_0), (b) median pivot angles and (c) median grain exposure relative to grain size for all surfaces and amounts of sediment cover. Error bars in (b) and (c) show 5th and 95th percentiles [Color figure can be viewed at wileyonlinelibrary.com]
similar to \(z_0 \) with 0% cover, with the exception of S1 and R1_x2 with 32 mm cover, where the alluvial cover increases the value of \(z_0 \). To compare grain exposure between different grain sizes, exposure is shown relative to grain size, so \(e/D = 1 \) is a fully exposed grain.) \(e/D \) increases with increasing grain size, and is roughly inverse to \(z_0 \) (Figure 2c). One exception to these patterns is that \(e/D \) is similarly high on S1, M1, M2 and M2_x2, despite M1 and M2_x2 having higher \(z_0 \) values. Another exception is that, for most surfaces with alluvial cover, \(e/D \) decreases with increasing cover, whereas \(z_0 \) remains approximately constant.

3.2 | Application of the Kirchner et al. (1990) entrainment model

The first model parameterisation incorporated only our measured variation in pivot angles (Figure 3a), \(z_0 \) was held constant between surfaces (at the overall mean value of 1.3 mm) and we assumed zero upstream sheltering (i.e., protrusion and exposure are both equal to grain diameter). Despite a 2.3 times variation in median pivot angles across surfaces, the median value of \(\tau_c \) across all surfaces only varies by 1.8 times, from 1.3 to 2.4 Pa. There is little systematic variation in median \(\tau_c \) by grain size. In alluvial channels, \(\tau_c \) is typically expected to be around 0.045 (Buffington & Montgomery, 1997; Miller et al., 1977). In comparison, for our data all 95th percentiles of \(\tau_c \) are less than \(\tau_c \) for an 8 mm grain when \(\tau_c \) equals 0.045. Low percentiles of \(\tau_c \) represent when grains of that size start to be entrained, and so these percentiles could show that bedrock topography has differing impacts on the start and bulk of sediment transport. However, the 5th percentiles and medians of \(\tau_c \) show a similar pattern.

The second and third model parameterisations also include the influence of the surface topography on the flow, and thus on \(\tau_c \) (Figure 3b,c). The second parameterisation incorporates variation in \(z_0 \) between surfaces, and the third adds variation in upstream sheltering through grain exposure. In the second parameterisation, including the 4.5 times variation in \(z_0 \) between surfaces into the model increases the variation in \(\tau_c \) with median \(\tau_c \) varying by 5.9 times (Figure 3b). Median \(\tau_c \) and the range of \(\tau_c \) decrease for surfaces where \(z_0 \) is smaller than the average value used in the first parameterisation (M1, M2_x2, S1 with and without sediment cover). Surfaces with higher than average \(z_0 \) (R1_x2 with and without sediment cover) see an increase in the median and range of \(\tau_c \).

There is a twofold variation in median grain exposure across the different surfaces (Figure 2c). Incorporating this in the third parameterisation further increases the variability in \(\tau_c \) between the surfaces to seven times, because median \(\tau_c \) increases for surfaces with smaller exposure values (primarily R1 and R1_x2 with and without sediment cover; Figure 3c). Under this model parameterisation and across the surfaces without sediment cover, grains of the same size have a variation of up to five times in median \(\tau_c \) (Figure 3c), showing that surface topography can have an appreciable effect on sediment mobility. Development of sediment cover on these surfaces can cause median

Figure 3 Distributions of critical shear stress \((\tau_c) \) for different surfaces and different alluvial cover extents, using the three different Kirchner model parameterisations: (a) Includes variation in pivot angles; (b) adds variation in \(z_0 \); and (c) adds variation in grain exposure. In (b) and (c) the median values from the previous parameterisation are shown for comparison. For context, the critical shear stress for an 8 mm grain at a dimensionless critical shear stress of 0.045 is 8.7 Pa [Color figure can be viewed at wileyonlinelibrary.com]
\(\tau \) to double (Figure 3c). Patterns of the 5th percentile of \(\tau \) are again similar to those for the median. For some surfaces where incorporating grain exposure does not change the median, the 95th percentile of \(\tau \) still increases (e.g., M1, M2x2).

Variations in surface topography have a larger impact on \(\tau \) than variations in grain size. For uncovered surfaces, median \(\tau \) is approximately constant across the different grain sizes, except for R1 and R1x2, where it decreases (Figure 3c). On these two surfaces, the difference in \(\tau \) between grain sizes increases between the first and third model parameterisations. For surfaces with sediment cover, increasing cover increases \(\tau \) for both grain sizes on S1 and R1x2, though not for R1. Even at 100% sediment cover, the underlying topography still affects \(\tau \); different surfaces covered with the same grain size produce different \(\tau \), and R1x2 continues to have the highest \(\tau \).

Figure 4 shows that all three parameters (pivot angles, \(z_0 \) and exposure) contribute to \(\tau^* \) in the final model. For surfaces with lower values of \(z_0 \), \(z_0 \) explains most of the variation in median \(\tau^* \); however, for surfaces with higher \(z_0 \), the impact of exposure and pivot angles becomes more important (with overall \(R^2 = 0.67 \)). Pivoting angle correlates less well with median \(\tau^* \) \((R^2 = 0.63)\), and grain exposure shows the strongest correlation \((R^2 = 0.79)\). Generally, surfaces with higher roughness \((z_0)\) values also have increased range of \(\tau^* \) (Figure 4c), which reflects the increased variability in pivot angles and grain exposure values across these surfaces (Figure 2bc).

3.3 Comparison to the Inoue et al. (2014) and Johnson (2014) entrainment models

Plotting \(\tau^* \), from the third model against \(D/\sigma_z \) does collapse the data from all surfaces (with and without sediment cover) into a single trend (Figure 5), more so than plotting against any single parameter (Figure 4). This suggests that some parameters compensate for each other. For example, grains on M1 and R1rot have similar \(\tau^* \) values. On surface R1rot, grains are less exposed and \(z_0 \) is higher, reducing the flow velocity at a given height, but this is counteracted by lower pivot angles compared to M1.

Comparing our modelled values of \(\tau^* \) to the values predicted by Inoue et al.’s (2014) and Johnson’s (2014) models, we find Inoue et al.’s (2014) model produces a relationship between \(D/\sigma_z \) and \(\tau^* \) that has a similar shape to our model results, but with values that are about 0.015 higher (Figure 5a). The two different parameterisations of Johnson’s model (using \(r_w \) values of one and five) both produce predictions of \(\tau^* \) that are much higher than our modelled values, despite our model and one of the predictions both using \(r_w = 1 \) to calculate \(z_0 \). The Johnson (2014) model predicts that when \(D/\sigma_z \) is equal to one (and \(r_w = 1 \)), then \(\tau^* \) is equal to \(\tau^*_{e,ref} \), which Johnson (2014) sets at 0.055. In contrast, our bed/grain size combination with the smallest value of \(D/\sigma_z \) (1.4) has a median \(\tau^* \) of 0.02. Finally, the Johnson (2014) model predicts that \(\tau^* \)
decreases more slowly with increasing D/σ_z than is shown by our modelled values.

We then explore the impact of the scaling factor, r_w, used to convert σ_z to Z_0. Z_0 affects τ^*, because it controls the rate at which flow velocity increases with elevation above the mean bed elevation. Following Johnson (2014), we used a value of 1 to calculate Z_0 for our Kirchner et al. (1990) model calculations. Figure 5b shows a new run of the third parameterisation of the Kirchner et al. (1990) model using $r_w = 5$ instead. This increases our modelled values of τ^* into the range of values predicted by the Johnson (2014) model and shows that predictions of τ^* are sensitive to the value of Z_0. However, the shape of our τ^* values still does not match the shape of either of the Johnson curves.

To produce a predictive relationship, we fit two curves to our data. The first follows the form of Inoue’s model (Equation 8), with the relationship

$$\tau^*_c = a \left[\frac{1}{\ln \left(\frac{r_b}{r_w} \right)} \right]^2$$

(13)

where a and b are fitting parameters. For our data when $r_w = 1$ (Figure 5a), then $a = 0.148$ and $b = 2.137$. For the data when $r_w = 5$ (Figure 5b), then $a = 0.462$ and $b = 1.577$. a and b are respectively equivalent to α_1 and 30.1a in Equation 8. Using Equation 9 and the coefficient values identified by Inoue et al. (2014) gives α_1 equal to 1.5, and 30.1a equal to 19.6, which are higher than the values of a and b fitted to our data. α_1 decreases to 0.48 (close to our fitted b values) if the static friction coefficient (μ_s) is reduced from 0.75 to 0.2, which is below the lowest static friction coefficient of 0.3 reported by Byerlee (1978). Reducing 30.1a to our fitted b value of about 2 necessitates reducing the dimensionless height a^* from 0.65 to 0.066, which is not consistent with the flow assumptions made by Inoue et al. (2014). Consequently, fitting Equation 8 to our data may require coefficient values that are outside the range of likely values. The second curves we fit are power laws, which have exponents of -1.24 when $r_w = 1$, and -1.66 when $r_w = 5$ (Figure 5).

4 | DISCUSSION

4.1 | The impact of bedrock topography on critical shear stress

The underlying bedrock topography can have a substantial impact on τ_c, even under 100% alluvial cover (Figure 3). Our results show that, across a range of D/σ_z from 1.4 to 8.2, the variation in τ_c for the same grain size between surfaces is greater than the difference in τ_c for different grain sizes on the same surface (Figure 3c). Of the three parameters, Z_0 and grain exposure produce the most difference in τ_c between the different surfaces. The importance of Z_0 provides support for previous approaches that only considered the impact of roughness on flow rather than grain geometry (e.g., Inoue et al., 2014). The combined impact of the surface topography on the entrainment parameters creates a power relationship between τ^*_c and D/σ_z with an exponent of -1.24 (when $r_w = 1$), such that increasing the size of the sediment grain relative to the surface roughness produces a disproportionate decrease in τ^*_c. For comparison, in the context of alluvial channels, a power relationship between τ^*_c and D/D_{50} with an exponent of -1 would indicate equal mobility. That is to say, any increase in grain size is balanced by an increase in grain exposure and decrease in pivot angle, such that all grain sizes move at the same τ_c (Andrews, 1983; Parker et al., 1982).

Decreases in τ^*_c with increasing D/σ_z may be disproportionately larger in the bedrock setting because of how the bedrock surface affects the entrainment parameters. Grains on a bedrock surface have a greater protrusion (height above mean bed elevation) compared to grains in an alluvial bed which are often at least 50% buried (Hodge et al., 2020; Yager et al., 2018). Consequently, bedrock grains will be more affected by changes in the flow profile and upstream sheltering.
As D/σ_z increases, there is a strong increase in z_0 and a strong decrease in median ε/D, with a less clear trend for pivot angles (Figure 6). Decreasing z_0 and increasing relative exposure both increase grain mobility. The former changes the velocity profile, bringing higher velocity flows closer to the bed. The latter means that more of the grain’s surface area is affected by the flow and so the grain is more sensitive to changes in σ_z and hence z_0. The combined effect of these terms outweighs increases in grain resistance caused by increased grain weight. Such changes may be more rapid compared to the alluvial relationship between τ^*_c and D/D_{50} because in an alluvial bed there is no systematic trend between exposed area and D/D_{50}, and protrusion potentially decreases with increasing grain size (Hodge et al., 2020). Consequently, changes in exposure with D/D_{50} do not necessarily compensate for changes in grain weight.

Our modelled τ^*_c values are lower than those predicted by the models of Inoue et al. (2014) and Johnson (2014). However, comparison between our results and Inoue’s model is complicated by the model’s use of a hydraulic roughness length (k_{sw}) that we cannot measure directly. Inoue’s (2014) model assumes that grains are entrained by sliding rather than pivoting, but our data do agree with the shape of the relationship produced by that model. However, fitting that relationship to our data requires some unlikely parameter values. Johnson’s (2014) model plots above our data, partly because of his assumption that τ^*_c is 0.055 when D/σ_z is one. However, on setting the reference τ^*_c to 0.02 in line with our modelled data, most of the curve still does not correspond to our data, as the model’s rate of decrease in τ^*_c with increasing D/σ_z is not as rapid as in our data (Figure 5). This slower decrease may be because Johnson’s (2014) model is based on Wilcock and Crowe’s (2003) equations for hiding behaviour in alluvial beds, in which τ^*_c may not decrease as rapidly for the reasons outlined above.

4.2 Comparison to bedload tracer measurements

For each exposed surface, our predictions of τ_c (Figure 3c) show equal mobility of the four grain sizes, with all sizes moving at low τ_c. The only exception is R1 and R1x2, where τ_c is weakly inverse to grain size. This equal mobility and low τ_c are consistent with bedload tracer data from channels with high bedrock exposure (Ferguson et al., 2017; Hodge et al., 2011), where tracers on bedrock are mobilised at lower shear stresses than are tracers in alluvial patches, and where comparable travel distances for all grain sizes indicate that all sizes are mobilised at a similar shear stress. The bedrock bed in channels studied by Hodge et al. (2011) and Ferguson et al. (2017) did not have a strong directional structure, similar to our smooth and medium

![Figure 6](https://example.com/figure6.png)

FIGURE 6 Relationships between grain size relative to the standard deviation of surface elevations (D/σ_z) and key model variables: (a) mean pivot angle; (b) roughness height z_0; and (c) exposure height relative to grain size [Color figure can be viewed at wileyonlinelibrary.com]
surfaces. A better comparison to \(R_1 \) is provided by Goode and Wohl's (2010) bedload tracer data from the Ocoee River, which has bedrock ribs. They found that tracer travel distance was further and grain size dependent when the ribs were parallel to flow, and shorter and size independent when ribs were oblique to flow. The difference in travel distances is consistent with our finding that \(\tau_c \) is lower when ribs are parallel (\(R_{1,\text{perp}} \), rather than perpendicular (\(R_1 \)), to the flow direction. But our data show the opposite pattern in grain size dependence, with less variation in \(\tau_c \) between grain sizes with flow parallel (\(R_{1,\text{perp}} \)) compared to flow perpendicular (\(R_1 \)). The difference could be because in the Ocoee River there was a greater spacing between the ribs relative to the grain size, which was filled with substantial sediment cover. Consequently, when the ribs were flow parallel, sediment entrainment may have been more similar to size-selective entrainment in alluvial channels (Church & Hassan, 1992; Ferguson et al., 1996; Haschenburger, 2013). Goode and Wohl (2010) also found that transport distances were best explained by local-scale bedrock topography and sediment architecture, consistent with our findings in the companion paper that pivot angles are best explained by small-scale roughness.

4.3 Implications for sediment cover development

How \(\tau_c \) changes with increasing cover has implications for predicting the relationship between sediment flux and sediment cover, which is important for modelling channel incision and landscape evolution (Lague, 2010; Sklar & Dietrich, 2004; Turowski, 2021). If sediment cover increases \(\tau_c \), in turn making sediment grains less mobile, then this positive feedback can produce rapid deposition of sediment cover, known as runway alluviation (Chatanantavet & Parker, 2008; Demeter et al., 2005; Finnegan et al., 2007). Surfaces \(S_1 \) and \(R_{1,\text{perp}} \) show potential for runway alluviation, as \(\tau_c \) increases with increasing cover (Figure 3c). In contrast, the surface with intermediate roughness (\(R_1 \)) does not, as \(\tau_c \) does not change with increasing cover. These patterns of changes in \(\tau_c \) with increasing cover are the same as those for pivot angles, showing the importance of small-scale bed roughness for predicting sediment dynamics.

Inoue et al.’s (2014) and Johnson’s (2014) models of \(\tau_c \) are a useful starting point for developing a state function, although the model results are sensitive to parameters such as \(\theta_{\text{br}} \) that need to be better constrained (Figure 5). Encouragingly, Mishra and Inoue’s (2020) attempt to fit \(\theta_{\text{br}} \) using a new flume dataset produced similar values to those identified by Johnson (2014). New methods such as the transform-roughness correlation to predict roughness lengths directly from channel topography (Adams & Zampiron, 2020) would also facilitate the application of these models. Predicting \(\tau_c \) as a function of erosion/deposition and bedrock exposure would be useful for applications including landscape evolution modelling. However, the finding that \(\tau_c \) is most dependent on \(z_{\text{br}} \) and grain exposure, and consequently bed topography at the grain scale is potentially problematic as landscape evolution models cannot reproduce channel properties at this level of detail. To implement such a model, further understanding is needed of whether small-scale channel topography can be predicted from larger-scale factors such as lithology, sediment supply, discharge, channel slope and width.

5 CONCLUSIONS

Bedrock surfaces affect \(\tau_c \) of overlying grains by altering pivot angles, grain exposure and local flow conditions in ways that are still difficult to predict. Here we have reported how these parameters vary for grains on a range of bedrock topographies with and without different extents of sediment cover, and we have used the Kirchner et al. (1990) model to predict \(\tau_c \) for these grains. Across a range of \(D/\sigma_z \) from 1.4 to 8.2, we find that variations in topography between the...
surfaces have a larger impact on r_* than variations in grain size, and that values of r_* are primarily controlled by the impact of topography on z_0 and grain exposure. Our values of r_* are similar to the model of Inoue et al. (2014), though direct comparison is difficult because their model is based on a hydraulic roughness length that cannot robustly be calculated from topographic data. Comparison to Johnson’s (2014) model suggests that, as D/σ_z increases, r_* decreases faster than in the comparable scenario of hiding effects in a mixed alluvial bed. Our results provide a relationship to predict r_* as a function of D/σ_z, though this relationship still must be comprehensively tested. Overall, our results show grain-scale geometry can produce substantial variations in r_*. However, new datasets that combine measurements of flow, r_*, and grain geometry would enable our approaches to be more robustly compared to alternative methods, and hence develop better predictive equations.

ACKNOWLEDGEMENTS

We thank Mervyn Brown for helping set up the experiment and Dr Kamal Badreshany (Durham Archaeomaterials Research Centre) for printing the 3D bedrock surfaces. We also acknowledge Dr Richard Williams and Eleanor Reid for collecting the River Garry terrestrial laser scanner data, and Dr Joel Johnson, Prof. Elowyn Yager and Dr Andy Tranmer for their assistance in collecting the North Wash data.

CONFLICT OF INTEREST

We declare no financial interests.

AUTHOR CONTRIBUTIONS

RAH and MEHB jointly designed the study. RAH undertook the analysis and modelling, and wrote the paper. MEHB edited the paper.

DATA AVAILABILITY STATEMENT

The model output datasets are available on zenodo: https://doi.org/10.5281/zenodo.6798180.

ORCID

Rebecca A. Hodge https://orcid.org/0000-0002-8792-8949
Marcus E. H. Buechel https://orcid.org/0000-0002-5047-1631

REFERENCES

Aberle, J. & Smart, G.M. (2003) The influence of roughness structure on flow resistance on steep slopes. Journal of Hydraulic Research, 41(3), 259–269. Available from: https://doi.org/10.1080/0022168039499971

Adams, D.L. & Zampiron, A. (2020) Short communication: Multiscalar roughness length decomposition in fluvial systems using a transform–roughness correlation (TRC) approach. Earth Surface Dynamics, 8(4), 1039–1051. Available from: https://doi.org/10.5194/esurf-8-1039-2020

Andrews, E.D. (1983) Entrainment of gravel from naturally sorted riverbed material. Geological Society of America Bulletin, 94(10), 1225–1231. Available from: https://doi.org/10.1130/0016-7606(1983)94<1225:EOGFS>2.0.CO;2

Bartels, G.K., dos Castro, N.M.R., Collares, G.L. & Fan, F.M. (2021) Performance of bedload transport equations in a mixed bedrock–alluvial channel environment. Catena, 199, 105108. Available from: https://doi.org/10.1016/j.catena.2020.105108

Buechel, M.E.H., Hodge, R.A. & Kenmare, S. (2022) The influence of bedrock river morphology and alluvial cover on gravel entrainment: Part 1. Pivot angles and surface roughness. Earth Surface Processes and Landforms.

Buffington, J.M. & Montgomery, D.R. (1997) A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993–2029. Available from: https://doi.org/10.1029/96WR02319

Byerlee, J. (1978) Friction of rocks. Pure and Applied Geophysics PAGEOPH, 116(4–5), 615–626. Available from: https://doi.org/10.1007/BF00875528

Carling, P., Kelsey, A. & Glaiester, M. (1992) Effect of bed roughness, particle shape and orientation on initial motion criteria. In: Thorne, C.R., Bathurst, J.C. & Hey, R. (Eds.) Sediment transport in gravel-bed rivers. Chichester, UK: Wiley, pp. 23–37.

Chatanantavet, P. & Parker, G. (2008) Experimental study of bedrock channel alluviation under varied sediment supply and hydraulic conditions. Water Resources Research, 44(12), 1–19. Available from: https://doi.org/10.1029/2007WR006581

Chen, X., Hassan, M.A., An, C. & Fu, X. (2020) Rough correlations: Meta-analysis of roughness measures in gravel bed Rivers. Water Resources Research, 56(8), e2020WR027079. Available from: https://doi.org/10.1029/2020WR027079

Church, M. & Hassan, M.A. (1992) Size and distance of travel of unconstrained clasts on a streambed. Water Resources Research, 28(1), 299–303. Available from: https://doi.org/10.1029/91WR02523

Demeter, G.J., Sklar, L.S. & Davis, J.R. (2005) The influence of variable sediment supply and bed roughness on the spatial distribution of incision in a laboratory bedrock channel. Eos Transactions AGU Fall Meeting Abstracts, vol. 2005, pp. H53D-0519.

Fenton, J.D. & Abbott, J.E. (1977) Initial movement of grains on a stream bed – effect of relative protrusion. Proceedings of the Royal Society of London Series A-Mathematical, 352(1671), 523–537. Available from: https://doi.org/10.1098/rspa.1977.0014

Ferguson, R., Hoey, T., Watthen, S. & Werrity, A. (1996) Field evidence for rapid downstream fining of river gravels through selective transport. Geology, 24(2), 179–182. Available from: https://doi.org/10.1130/0091-7613(1996)024<0179:FEFRDF>2.3.CO;2

Ferguson, R.I., Sharma, B.P., Hodge, R.A., Hardy, R.J. & Warburton, J. (2017) Bed load tracer mobility in a mixed bedrock/alluvial channel. Journal of Geophysical Research: Earth Surface, 122(4), 807–822. Available from: https://doi.org/10.1002/2016JF003946

Finnegan, N.J., Sklar, L.S. & Fuller, T.K. (2007) Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. Journal of Geophysical Research, 112(F3), F03S11. Available from: https://doi.org/10.1029/2006JF000569

Goode, J.R. & Wohl, E. (2010) Substrate controls on the longitudinal profile of bedrock channels: Implications for reach-scale roughness. Journal of Geophysical Research: Earth Surface, 115(F3), F03018. Available from: https://doi.org/10.1029/2009JF001188

Haschenburger, J.K. (2013) Tracing river gravels: Insights into dispersion from a long-term field experiment. Geomorphology, 200, 121–131. Available from: https://doi.org/10.1016/j.geomorph.2013.03.033

Hassan, M.A., Saletti, M., Johnson, J.P.L., Ferrer-Boix, C., Venditti, J.G. & Church, M. (2020) Experimental insights into the threshold of motion in alluvial channels: Sediment supply and streamed state. Journal of Geophysical Research: Earth Surface, 125(12), e2020JF005736. Available from: https://doi.org/10.1029/2020JF005736

Hodge, R.A. & Hoey, T.B. (2016) A Froude-scaled model of a bedrock-alluvial channel reach: 2. Sediment cover. Journal of Geophysical Research: Earth Surface, 121(9), 2015JF003709–1618. Available from: https://doi.org/10.1002/2015JF003709

Hodge, R.A., Hoey, T.B. & Sklar, L.S. (2011) Bed load transport in bedrock rivers: The role of sediment cover in grain entrainment, translation, and deposition. Journal of Geophysical Research: Earth Surface, 116(F4), 1–19. Available from: https://doi.org/10.1029/2011JF002032

Hodge, R.A., Voepel, H., Leyland, J., Sear, D.A. & Ahmed, S. (2020) X-ray computed tomography reveals that grain protrusion controls critical
shear stress for entrainment of fluvial gravels. Geology, 48(2), 149–153. Available from: https://doi.org/10.1130/G46883.1

Inoue, T., Iizumi, N., Shimizu, Y. & Parker, G. (2014) Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and alluvial-bedrock channel. Journal of Geophysical Research: Earth Surface, 119(10), 2147–2173. Available from: https://doi.org/10.1002/2014JF003133

Johnson, J.P.L. (2014) A surface roughness model for predicting alluvial cover and bed load transport rate in bedrock channels. Journal of Geophysical Research: Earth Surface, 119(10), 2147–2173. Available from: https://doi.org/10.1002/2013JF003000

Johnson, J.P.L. (2016) Gravel threshold of motion: A state function of sediment transport disequilibrium? Earth Surface Dynamics, 4(3), 685–703. Available from: https://doi.org/10.5194/esurf-4-685-2016

Kirchner, J.W., Dietrich, W.E., Isey, F. & Ikeda, H. (1990) The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology, 37(4), 647–672. Available from: https://doi.org/10.1111/j.1365-3091.1990.tb00627.x

Lague, D. (2010) Reduction of long-term bedrock incision efficiency by short-term alluvial cover intermittency. Journal of Geophysical Research-Earth Surface, 115(F2), F02011. Available from: https://doi.org/10.1029/2008JF001210

Lamarre, H. & Roy, A.G. (2008) A field experiment on the development of sedimentary structures in a gravel-bed river. Earth Surface Processes and Landforms, 33(7), 1064–1081. Available from: https://doi.org/10.1002/esp.1602

Lamb, M.P., Dietrich, W.E. & Venditti, J.G. (2008) Is the critical shields stress for incipient sediment motion dependent on channel-bed slope? Journal of Geophysical Research: Earth Surface, 113(F2), 1–20. Available from: https://doi.org/10.1029/2007JF000831

Lawless, M. & Robert, A. (2001) Three-dimensional flow structure around worked sediments. Geophysical Research Letters, 28(3), 507–522. Available from: https://doi.org/10.1029/99GL03769

Mao, L. (2012) The effect of hydrographs on bed load transport and bed sediment spatial arrangement. Journal of Geophysical Research, 117(F3), F03024. Available from: https://doi.org/10.1029/2012JF002428

Masteller, C.C. & Finnegan, N.J. (2017) Interplay between grain protrusion and sediment entrainment in an experimental flume. Journal of Geophysical Research: Earth Surface, 122(1), 2016JF003943–2016JF003289. Available from: https://doi.org/10.1002/2016JF003943

Miller, M.C., McCave, I.N. & Komar, P.D. (1977) Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507–527. Available from: https://doi.org/10.1111/j.1365-3091.1977.tb00136.x

Mishra, J. & Inoue, T. (2020) Alluvial cover on bedrock channels: Applicability of existing models. Earth Surface Dynamics, 8(3), 695–716. Available from: https://doi.org/10.5194/esurf-8-695-2020

Nelson, P.A. & Seminara, G. (2012) A theoretical framework for the morphodynamics of bedrock channels. Geophysical Research Letters, 39(6), L06408. Available from: https://doi.org/10.1029/2011GL050806

Ockelford, A.-M. & Haynes, H. (2012) The impact of stress history on bed structure. Earth Surface Processes and Landforms, 38(7), 717–727. Available from: https://doi.org/10.1002/esp.3348

Parker, G., Klingeman, P.C. & McLean, D.G. (1982) Bedload and size distribution in paved gravel-bed streams. Journal of the Hydraulics Division-ASCE, 108(4), 544–571. Available from: https://doi.org/10.1061/JUCCEAJ.0005854

Sanguneto, S. & Johnson, J. (2012) Quantifying gravel overlap and lodgement forces on natural river bars: Implications for particle entrainment. Earth Surface Processes and Landforms, 37(1), 134–141. Available from: https://doi.org/10.1002/esp.2237

Schmeекle, M.W., Nelson, J.M. & Shreve, R.L. (2007) Forces on stationary particles in near-bed turbulent flows. Journal of Geophysical Research: Earth Surface, 112(F2), 1–21. Available from: https://doi.org/10.1029/2006JF000536

Sklar, L.S. & Dietrich, W.E. (2004) A mechanistic model for river incision into bedrock by saltating bed load. Water Resources Research, 40(6), W06301. Available from: https://doi.org/10.1029/2003WR002496

Turowski, J.M. (2021) Upscaling sediment-flux-dependent fluvial bedrock incision to long timescales. Journal of Geophysical Research: Earth Surface, 126(5), e2020JF005880. Available from: https://doi.org/10.1029/2020JF005880

Vollmer, S., & Kleinmans, M.G. (2007) Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed. Water Resources Research, 43(5), 1–16. Available from: https://doi.org/10.1029/2006WR004919

Whiting, P.J. & Dietrich, W.E. (1990) Boundary shear stress and roughness over mobile alluvial beds. Journal of Hydraulic Engineering, 116(12), 1495–1511. Available from: https://doi.org/10.1061/(asce)0733-9429(1990)116:12(1495)

Wilberg, P.L. & Smith, J.D. (1985) A theoretical model for saltating grains in water. Journal of Geophysical Research, 90(C4), 7341–7354. Available from: https://doi.org/10.1029/JC090iC04p07341

Wilcock, P.R. & Crowe, J.C. (2003) Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2), 120–128. Available from: https://doi.org/10.1061/(asce)0733-9429(2003)129:2(120)

Wohl, E. (2015) Particle dynamics: The continuum of bedrock to alluvial river segments. Geomorphology, 241, 192–208. Available from: https://doi.org/10.1016/j.geomorph.2015.04.014

Yager, E.M., Schmeeckle, M.W. & Badoux, A. (2018) Resistance is not futile: Grain resistance controls on observed critical shields stress variations. Journal of Geophysical Research: Earth Surface, 123(12), 3308–3322. Available from: https://doi.org/10.1029/2018JF004817

How to cite this article: Hodge, R.A. & Buechel, M.E.H. (2022) The influence of bedrock river morphology and alluvial cover on gravel entrainment. Part 2: Modelling critical shear stress. Earth Surface Processes and Landforms, 47(14), 3348–3360. Available from: https://doi.org/10.1002/esp.5462