Bird Diversity and Its Association in Mangrove Habitats of Teluk Bintuni Regency, West Papua

K D Cita1* and M A K Budiman2

1 Faculty of Forestry, Nusa Bangsa University, Bogor, Indonesia
2 Center for Coastal and Marine Resources Studies, IPB University (Bogor Agricultural University), Bogor, Indonesia

*Corresponding author e-mail: kendaracl@gmail.com

Abstract. Birds are one of the most essential components to maintain the stabilization of the ecosystem. Mangroves are one of the most biologically diverse ecosystems providing shelter and feeding sites for many species, but mangrove habitats are under severe land-use pressure throughout the world including Indonesia. The aim of this study was to identify the diversity of birds and their association with vegetation in Mangrove Habitats of Teluk Bintuni Regency. In this study, we assessed bird species diversity within six mangrove habitats that are Weriagar, Tanah Merah, Irarutu, Amutu, Kalipotong, and Muara Retui. This research was conducted in March 2019 with the rapid assessment method. According to our estimate, there were 54 bird species with 28 families which were dominated by Laridae in all sites. Tanah Merah was the location that had the highest number of species diversity (H’2.95). It is caused by diverse vegetation in Tanah Merah. This information could be useful for sustainable development of mangrove habitats.

1. Introduction

Mangrove habitat has important functions to society and ecosystem services such as carbon storage, nutrient processing, socioeconomic goods, retaining soil and sediment trapping, protecting coastal areas and communities including for many bird species [1]. Mangroves are coastal ecosystems which are found in the critical area between marine and terrestrial environments, therefore, those are comprised of unique species [2]. About 20-35% mangrove areas have been destroyed and threatened by anthropic pressures. At mangrove habitats, about 40% of the wildlife species are restricted and elevated risk of extinction based on IUCN Categories and Criteria [3].

Birds are one of the most essential components to maintain the stabilization of ecosystem and as a bioindicator of habitat quality and environmental changing, showing general responses of wildlife to human disturbances, climate changes, and ecosystem changes. Birds have a role in the processing of a dynamic ecosystem in mangrove areas. Birds can release nutrients into the water column through their feces and food waste, therefore they play an important role in the food chain especially in mass and energy fluxes [4]. Mangroves in one of essential habitat for birds species such as breeding, roosting, and feeding, but the stabilization of habitat depends on the structure vegetation [5]. Coexisting and niche are provided by habitat heterogeneity [6]. Thus far, the few studies recorded mangroves bring complexity to the ecosystem, offering microhabitats and specialized niches to occupy bird diversity in mangrove areas, limiting the possible number of coexisting species.

Most studies on the topic have been carried out in the primary forest, but we know much less the ecology of mangroves, meanwhile diversity of birds may also differ in their habitat use,
depending on vegetation structure whether the mangrove meets their requirements for foraging, roosting, or nesting. Many of the species in mangrove forests have made specific adaptations [3]. Teluk Bintuni has the largest mangrove areas in Indonesia. The aim of this study was to identify the diversity of birds and their association with vegetation in Mangrove Habitats of Teluk Bintuni Regency.

2. Method
This study was carried out at six locations which were selected to represent mangrove habitats in the edge coast of Teluk Bintuni Regency. There are Weriagar, Tanah Merah, Irarutu, Amutu, Kalipotong, and Muara Retui.

Bird observations were recorded twice a day during morning (06.00-09.00) and afternoon (15.30-18.00) in March 2019 and thus nocturnal birds were excluded. The methods of this study are rapid assessment and exploration technique. Mangrove structure was characterized by vegetation analysis [7]. The plots were georeferenced the mangrove surface area was determined using Google Earth Pro images, adjusted by ground truth Global Positioning System (GPS) measurements. Additionally, stand structures were described by measuring tree diameter at breast height (DBH) in cm, canopy height (m), and species composition is illustrated by SExI-FS. In this study also used drones to clip the condition of the canopy cover from above the forest.

Bird counts analysis excluded of bird flight, song or call to avoid misrepresentation and double counting. The diversity of bird abundance and richness was compared between areas. Total species diversity was calculated by Shannon Wiener Index (H’). Evenness and dominance Index were also calculated for each habitat (E). Species dominance in each site based on Bray-Curtis analysis which was compared between the proportion of the number of a certain species and the total bird number of all species. Dominant species is categorized by the value number, if that is more than 5%. Bray-curits similarity index were used to examine similarity/dissimilarity of bird community among the six location [7, 8, 9].

3. Result and discussion
This study found 54 species of 28 families in the six habitats (Table 1). The highest number of species was found in Tanah Merah with 30 species of 28 families recorded, meanwhile in Kalipotong was the lowest number of species with 15 species of 10 families.

The highest species diversity was found in Tanah Merah and the lowest number was found in Irarutu. Shannon diversity index showed that the diversity in the study are generally moderate (Figure 1) but Tanah Merah area is closely related to high with the number is about 2.95. Evenness index in the study area showed that the number of species individuals are generally moderate based on the calculated number in each habitat closely related to 1 or stable (Figure 2). Stability of community can be defined by diversity index, the higher number of bird species, the more stable the area. In this study, vegetation structure and habitat heterogeneity caused the difference of bird species. Higher number of bird species diversity tend to have higher vegetation and niche heterogeneity, therefore in general we can conclude that increasing bird species and diversity accommodates more niches. These niches are often distributed vertically in forests [10].

No.	Family	Common name	Bird Species
1	Acanthizidae	Mangrove Gerygone	Gerygone levigaster
2	Accipitridae	Brahminy Kite	Haliastur indus
3	Accipitridae	White-bellied Sea Eagle	Haliaeetus leucogaste
4	Alcedinidae	Collared Kingfisher	Halycon chloris
5	Alcedinidae	Azure Kingfisher	Alcedo azurea
6	Anatidae	Raja Shelduck	Tadorna radjah

Table 1. Bird species found in all locations (continuation)
No.	Family	Common name	Bird Species
7	Apodidae	Glossy Swiftlet	Collocalia esculenta
8	Ardeidae	Black Bittern	Isbyrychus flavicollis
9	Ardeidae	Great-billed Heron	Ardea sumatrana
10	Ardeidae	Pacific Reef Egret	Egretta sacra
11	Ardeidae	Little Egret	Egretta garzetta
12	Bucerotidae	Blyth’s Hornbill	Rhytitcera plicat
13	Campephagidae	White-bellied Cuckoo	Coracina papuensis
14	Charadriidae	Oriental Plover	Charadrius veredus
15	Columbidae	Black-billed Cuckoo Dove	Macropygia nigrirostris
16	Coraciidae	Oriental Dollarbird	Eurystronius orientalis
17	Corvidae	Torresian Crow	Corvus orru
18	Cuculidae	Black-billed Couca	Centropus bernstein
19	Cuculidae	Asian Koel	Eudynmys scolopaceus
20	Cuculidae	Asian Drongo-Cuckoo	Surniculus lugubris
21	Cuculidae	Brush Cuckoo	Cacomantis variolosus
22	Dicaeidae	Olive-crowned Flowerpecker	Dicaeum pectoral
23	Dicruridae	Spangled Drongo	Dicurus bracteatus
24	Fregatidae	Great Frigatebird	Fregata minor
25	Hirundinidae	Pacific Swallow	Hirundo tahitica
26	Laridae	Roseate Tern	Sterna dougalli
27	Laridae	Swift Tern	Sterna bergii
28	Laridae	Little Tern	Sterna albisfons
29	Laridae	Whiskered Tern	Chlidonias hybridus
30	Laridae	Angel Tern	Gygis alba
31	Laridae	Black-naped Tern	Sterna sumatrana
32	Laridae	Gull-billed Tern	Gelochelidon nilotica
33	Meliphagidae	Red-headed Myzomela	Myzomela erythrocephala
34	Meliphagidae	Helmeted Friarbird	Philemon buceroides
35	Meliphagidae	Mimic Honeyeater	Meliphaga analoga
36	Nectariniidae	Black Sunbird	Leptocoma sericea
37	Nectariniidae	Olive-backed Sunbird	Cinnyris jugularis
38	Pachycephalidae	Rusty Pitohui	Pitohui ferrugineus
39	Psittacidae	Double-eyed Fig Parrot	Opopsitta diopthalma
40	Psittacidae	Sulphur-crested Cockatoo	Cacatua galantia
41	Psittacidae	Black-capped Lory	Loris lory
42	Psittacidae	Black Lory	Chalcopsitta atra
43	Psittacidae	Orange-fronted Hanging Parrot	Loriculus aurantifrons
44	Recurvirostridae	White-headed Stilt	Himantopus leucocephalus
45	Rhipiduridae	Willie Wagtai	Rhipidura leucophrys
46	Scolopacidae	Bar-tailed Godwit	Limosa lapponica
47	Scolopacidae	Whimbrel	Numenius phaeopus
48	Scolopacidae	Eastern Curlew	Numenius madagascariensis
49	Scolopacidae	Common Sandpiper	Actitis hypoleucus
50	Scolopacidae	Wood Sandpiper	Tringa glareola
51	Scolopacidae	Asian Dowitcher	Limnodromus semipalmatus
52	Sturnidae	Yellow-faced Myna	Mino dumontii
53	Sylviidae	Clamorous Reed Warbler	Acrocephalus stenoreus
54	Zosteropidae	Lemon-bellied White-eye	Zosterops chloris
The difference of diversity and evenness Index depends on the vegetation composition in each habitat and other factors might influence the bird community. Birds often prefer to use multiple habitats and depend on the quality and productivity of the habitats (i.e. food availability, cover quality, and nesting sites) to stable viable populations. The dominance criteria index in each habitat showed that the highest number of bird dominance index were *Actitis hypoleucos* in Weriagar habitat, *Hirundo tahitica* in Tanah Merah, *Numenius madagascariensis* in Irarutu, *Actitis hypoleucos* in Amutu, *Rhipidura leucophrys* in Kalipotong, and *Sterna albifrons* and *Hirundo tahitica* in Muara Retui (Table 2). Based on the previous research recorded that it has been a positive correlated between the number of bird species with vegetation complexity and food availability. Food availability, tree size, tree height, and cover percentage is the key aspect for the composition of bird species distribution, relative abundance, and richness are known to be strongly influenced by quality of habitat composition. Diversity of bird communities has been known to be positively correlated with habitat complexity [11].
There were 19 Birds protected by government regulation PP No 7 1999 cq Permen LHK No. P.106/2018 and also 8 bird species were listed in Appendix II CITES such as Haliastur indus, Haliaeetus leucogaster, Rhyticeris plicatus, Opopsis diophthalma, Cacatua galera, Lories lory, Chalcopsitta atra and Loriculus aurantiifrons. The heterogeneity habitat effect is a fundamental concept for absence and presence in community bird species-area [11] and bird diversity has a positive relationship with habitat heterogeneity. Structure of habitat in each habitat area is composed by 28 species of plant (Table 3) and index diversity of each habitat showed that Tanah Merah was the highest number (Table 4). Ecological function in mangrove area is depend on diversity of habitat composition which is influence to species diversity even on a few scale [12]. Habitat heterogeneity support to evolve the diversity of bird species because species can be east to survive in a particular habitat. Based on previous study, the effects of environmental filters were mirrored by the low evenness in each trait (i.e. dominance of few categories in each trait).

The result of the similarity index in bird communities in each habitat is shown in the three classes (Figure 3). Structure habitat profile describes the compositions of vegetation in their habitat. Based on this study, there were three clusters of mangroves. Cluster I was growing mangrove in Irarutu, Cluster II was stable mangrove without disturbance in Amutu and Cluster III was stable mangrove with disturbance in Tanah Merah (Figure 4,5,6). Plant productivity is among the most important factors

Table 2. Dominance among each habitat

Location	Total Individuals	Bird Species	Dominansi (%)
Weriagar	5	Sterna albifrons	9,68
		Gygis alba	9,68
		Gelochelidon nilotica	12,90
		Actitis hypoleucus	14,52
		Collocalia esculenta	12,90
Tanah merah	6	Sterna albifrons	7,93
		Tadorna radjah	6,17
		Collocalia esculenta	7,49
		Hirundo tahitica	20,70
		Actitis hypoleucus	5,73
		Egretta sacra	6,17
Irarutu	4	Actitis hypoleucus	16,04
		Numenius madagascariensis	38,68
		Limosa lapponica	10,38
		Collocalia esculenta	11,32
Amutu	4	Chalcopsitta atra	12,05
		Opopsis diophthalma	15,66
		Actitis hypoleucus	20,48
		Limosa lapponica	7,23
Kalipotong	6	Meliphaga analoga	7,14
		Actitis hypoleucus	14,29
		Numenius madagascariensis	10,71
		Collocalia esculenta	7,14
		Rhipidura leucophrys	21,43
		Centropus bernsteini	7,14
Muara retui	5	Sterna albifrons	12,70
		Chlidonis hybridus	7,94
		Gelochelidon nilotica	11,11
		Hirundo tahitica	12,70
		Sterna sumatrana	9,52
shaping species diversity and evenness [13]. This habitat structure was in line with the diversity of bird species.

Table 3. Vegetation in study area

No.	Plant species	Familia
1.	*Acanthus ebracteatus*	Acanthaceae
2.	*Acrostichum speciosum*	Pteridaceae
4.	*Aegiceras corniculatum*	Primulaceae
5.	*Avicennia alba*	Acanthaceae
6.	*Avicennia officinalis*	Acanthaceae
7.	*Barringtonia racemosa*	Lecythidaceae
8.	*Bruguiera cylindrica*	Rhizophoraceae
9.	*Bruguiera sexangula*	Rhizophoraceae
10.	*Bruguiera gymnorrhiza*	Rhizophoraceae
11.	*Calophyllum macrophyllum*	Clusiaceae
12.	*Cryptocarya infectoria*	Lauraceae
13.	*Cryptocarya sp.*	Lauraceae
14.	*Cryptocoryne ciliata*	Araceae
15.	*Derris trifoliata*	Leguminoseae
16.	*Dolichandra spathacea*	Leguminoseae
17.	*Heritiera littoralis*	Lauraceae
18.	*Intsia bijuga*	Leguminoseae
19.	*Metroxylon sagu*	Arecales
20.	*Nypa fruticans*	Arecales
21.	*Pandanus tectoria*	Pandanaceae
22.	*Rhizophora apiculata*	Rhizophoraceae
23.	*Rhizophora mucronata*	Rhizophoraceae
24.	*Rhizophora stylosa*	Rhizophoraceae
25.	*Sonneratia alba*	Lythraceae
26.	*Sonneratia caseolaris*	Lythraceae
27.	*Xylocarpus moluccensis*	Meliaceae
28.	*Xylocarpus granatum*	Meliaceae

Table 4. Diversity Index of Vegetation

No	Location	Diversity Index Value		
		Seedling	Sapling	Tree
1.	Weriagar	0.80	0.88	0.85
2.	Muara Retui	0.69	0.75	0.53
3.	Amutu	1.38	1.32	1.32
4.	Irarutu	0.73	0.69	0.84
5.	Kalipotong	1.08	1.49	1.32
6.	Tanah Merah	1.54	1.83	2.04

Bird species diversity and richness was strongly associated with habitat productivity. Habitat factors greatly affect the composition of the mangrove ecosystem. Changes in habitat quality may result the ecosystem composition [14] even may affect to the diversity of bird species. Variation zone vegetation may cause the differences of bird species distributions [15]. Abiotic factors (salinity, tidal regimes, strong winds, and wave action) influence habitat quality and availability by inhibiting plant development [16]. Generally, existing of species do not respond directly to the elevational gradient, but correlated with multiple spatial and temporal scales such as local climate, ecotones, competition, habitat structure and heterogeneity play a essential role in determining species diversity [11, 17, 18].
Figure 3. Dendrogram of similarity index

Figure 4. Growing mangrove in Irarutu
Figure 5. Stable Mangrove without disturbance in Amutu

Figure 6. Stable Mangrove with disturbance in Tanah Merah
4. Conclusion

In this study, the differences in diversity of bird species in Teluk Bintuni mangrove area were explained by habitat heterogeneity. There were 54 bird species and 28 families. Tanah Merah was the location that had the highest number of species diversity (H’2.95), so there was a positively strongly correlated with vegetation structure which divided into three clusters of mangrove habitats, growing mangrove, stable mangrove without disturbance and stable mangrove with disturbance. This study highlights the importance of mangrove areas for the life cycles of birds especially for protected birds in Indonesia. Thus, it is important to improve the quality and quantity of mangrove vegetation, and prevent their loss, as they provide positive correlated with bird conservation.

Acknowledgments

The authors would like to thank Dr Dadan Mulyana, M.Si, Dr Fery Kurniawan, M.Si, Budi Prabowo, S.I.K for their assistance in the field. Center for Coastal and Marine Resources Studies, IPB University Dr Ir Ario Damar, M. Si, Dr Ir Achmad Fahruadin, M. Si, Andy Afandy MM. We are grateful for support of BP Berau Ltd.

References

[1] Ochoa-Gómez JG, Jonathan G Ochoa-Gómeza, Salvador E. Lluch-Cotaa, Victor H Rivera Monroyb, Daniel B Lluch-Cotaa, Enrique Troyo-Diégeuzea, Walter Oeechele, Elisa Serviere-Zaragozza 2019 For Ecol Manage 442 135
[2] Bunting P, Ake Rosenqvist, Richard M. Lucas, Lisa-Maria Rebelo, Lammert Hilarides, Nathan Thomas, Andy Hardy, Takuya Itoh, Masanobu Shimada and C Max Finlayson 2018 Remote Sens 10 10
[3] Luther DA and Greenberg R 2006 Bioscience 56 675
[4] Navedo JG, Steffen Hahn, Manuel Parejo, José M. Abad-Gómez, Jorge S. Gutiérrez Auxiliadora Villegas, Juan M. Sánchez-Guzmán , José A. Masero 2015 Sci Total Environ, 511 288
[5] Mohd-Azlan J and Lawes MJ 2011 Biol. Conserv 144 2134
[6] Hildén M, Jordan A, and Huitema D 2017 J. Clean. Prod. 169 1
[7] Woiwod IP and Magurran AE 2006 Biometrics 46, 547
[8] Magurran AE 2004 Measuring Biological Diversity (Oxford: Blackwell)
[9] Chao A, Chazdon RL, Colwell RK, and Shen TJ 2006 Biometrics 62 361
[10] Dias RA, Mauricio GN, and Lugoni 2016 Marine Biology Research 1000
[11] Mancini PL, Reis-Neto AS, Fischer LG, Silveira LF, and Schaeffer-Novelli Y 2018 Ocean Coast. Manag 164 79
[12] Joshi KK 2012. Int. J. Biodivers. Conserv 4 364
[13] Suttidate N, Martina L Hobia, Anna M. Pidgeona, Philip D Roundd, Nicholas C Coopse, David P Helmersa, Nicholas S Keulera, Maxim Dubinina, Brooke L. Batemana, g, Volker C Radeloffa 2019 Remote Sens. Environ. 232 111
[14] Poedjirahajoe E, Marsono D, and Wardhani FK 2017 J. Ilmu Kehutanan. 11 29
[15] Zhao H,Wang Y, Xu B, Chen X, and Jiang Z 2018 Acta Ecol. Sin. 38 381
[16] Tavares DC, Guadagnin DL, de Moura J, Siciliano FS, and Mergo A 2015 Biol. Conserv., 12 21
[17] Leung J Y S 2015 Glob. Ecol. Conserv 4 423
[18] Liu J, Bai H, Ma H, and Feng G 2019 Urban For. Urban Green 43 1