An optimal TEC model with input-Output analysis and its application for reducing CO2 emission in China

Yi Wan¹, Dongming Yang¹, Yifei Zhao² and Tatsuo Yanagita³

¹ PhD Candidate, School of Frontier Science, The University of Tokyo, Japan
² Associate Professor, Shanghai Jiao Tong University, Shanghai, China
³ Professor, School of Frontier Science, The University of Tokyo, Japan (as of 2018)
E-mail: manki9999@gmail.com

Abstract. In managing regional environmental-economic systems, it is significant to design a comprehensive total emission control (TEC) policy. In this paper, an optimal TEC model with an input-output analysis is established to maximize the total production profit of all the economic sectors. With an empirical application of the model on reducing total CO2 emission in China, a TEC policy scheme is approximately calculated by using the national input-output table to give optimal solutions respectively for total production, final use and the corresponding CO2 emission of each sector. Finally, the key sectors most responsible for total emission reduction are identified, and then the impacts of improving emission intensity coefficient of the sector with the highest emission share are analysed quantitatively on the allocations of total CO2 emissions set as the TEC target by policy maker.

1. Introduction
The global warming has recently been becoming a serious problem with great concerns in the world. It is actually a big challenge for human survival and development. Climate change is mainly resulted from combustion of fossil fuel and other human living activities, which make a great increase in emission of greenhouse gases (GHG), such as CO2, specifically. In the past decades China has experienced energy and environmental problems. In 2010 China became the world’s largest energy consumer and then has the largest CO2 emission in the world. According to the statistics released at the 2015 Paris Conference on Climate Change, China’s greenhouse gas emissions account for about 20% of world emissions [1]. With the background, early in 2009, Chinese government made the CO2 emission intensity reduction commitment that during the period of years 2005-2020, the emission intensity per GDP in China must be decreased by 40-45% of the value based on year 2005. Later on November 12, 2014, China and the United States jointly issued the "Joint Statement on Climate Change between China and the United States", in which the Chinese government proposed that the CO2 emissions should be at peak around 2030 and China would make every effort to reach the peak as soon as possible [2]. Also, this target of controlling CO2 emission is promised by China at the Paris Climate Conference in 2015. In order to achieve this target, China has stepped up to build a nationwide carbon trading market which is expected to start in 2017 [3]. Since the time of reaching the emission peak has been determined, the key topic is becoming on how to make it realized actually. For solving such a global environmental problem, adequate environmental-economic policies are required at the regional, national and international levels. As such a policy approach, the total emission control (TEC) has been becoming a remarkable option recently because it is generally an effective means in both making a full use of the natural absorption capability and protecting the environmental quality in the region as well. In fact, in order to reach the environmental target either for the emission intensity reduction or for the emission peak control on total CO2 emission in China, it is essentially important to control the total...
emission among all industries [4]. In other word, it’s actually a problem of how to design and then enforce an effective policy of total emission control [5].

Also as a significantly useful tool, input output analysis is widely used for policy maker to analyse policy schemes in a multi-regional systems [6,7,8] or multi-sectoral systems [9,10]. Applying input-output techniques allows us to trace the direct and indirect CO₂ emissions related with energy consumption in production processes [11,12,13]. The most applications are usually focused on investigating methodological instruments for identifying the economic factors responsible for the increase of environmental emissions [14,15,16,17,18].

The aim of this paper is to develop methodologically an optimal TEC model with an input-output analysis in a multi-sectoral system to maximize the whole production profit among all the sectors and then discuss quantitatively an empirical application for reducing total CO₂ emission in China. Specifically, by using the China’s national input-output table, we first apply the model to calculate an optimal TEC policy scheme, respectively for total production, final use and the corresponding CO₂ emission by each sector. Based on the results, we also identify the key sectors most responsible for total emission reduction and finally quantitatively analyse impacts of improving emission intensity coefficient of the sector with the highest emission share on the allocations of total CO₂ emission set as the TEC target by policy maker.

2. The optimal TEC model based on an input-output analysis

2.1 The basic representation of the input-output model

We assume that there are n sectors in a given regional environmental-economic system and each sector i produces product i (goods and services) as total output (production) Pᵢ (in monetary units) to meet the final use (demand) Fᵢ, and thus generates the environmental emission Xᵢ. Then we can get the basic input-output equation below.

\[P_i = \sum_{j=1}^{n} a_{ij} P_j + F_i \] \hspace{1cm} (2.1)

where \(a_{ij} \) represents the direct input coefficients (technical coefficients), i.e., requirement on sector i per unit output of sector j.

Actually by using in matrix notation, the above expression (2.1) can be described as follows.

\[(I - A) P = F \quad \text{or} \quad P = (I - A)^{-1} F = L F \] \hspace{1cm} (2.2)

where \(P = [P_1, P_2, \ldots, P_n]^T \) stands for the column vector of total output (total production), with element \(P_i \) representing the total output of sector i; \(F = [F_1, F_2, \ldots, F_n]^T \) stands for the column vector of final use (final demand), with element \(F_i \) representing the final use of sector i; \(A = \{a_{ij}\} \) stands for the \(n \times n \) matrix of input-output coefficients, in which an element \(a_{ij} \) denotes the direct input coefficients, i.e., requirement on sector i per unit output of sector j; \(I \) stands for the identity matrix; and \(L = (I - A)^{-1} \) is the \(n \times n \) matrix of input-output multipliers or Leontief inverse matrix [20], determined by the structure of intermediate input and its elements represent the total amount of sector i’s output required both directly and indirectly to produce one unit for final use of sector j [21].

Let’s define \(\beta_i \) as the environmental emission intensity coefficient of sector i (i.e., the amount of the environmental emission generated from the per unit output of sector i). Then \(X_i \) can be calculated by \(P_i \) as follows:

\[X_i = \beta_i P_i \quad \text{or} \quad P_i = \beta_i^{-1} X_i \] \hspace{1cm} (2.3)

Also we can describe the expression (2.3) in matrix notation as follows:

\[X = \beta P \quad \text{or} \quad P = \beta^{-1} X \] \hspace{1cm} (2.4)

where \(X = [X_1, X_2, \ldots, X_n]^T \) be the column vector of total environmental emissions, and its elements \(X_i \) denote the total amount of the environmental emission driven both directly and indirectly by the final use of product in sector i; and \(\beta \) is the \(n \times n \) diagonal matrix of environmental emission coefficients, with an element \(\beta_i \) on its main diagonal and zeros elsewhere.

Now, from the expressions (2.2) and (2.4) we can describe the basic input-output model in matrix notation as follows.
2.2. The model without total emission control.

In this case, each sector can make decision independently on the production scale taking no account on the environmental emission. Therefore sector i will try to get the maximum profit as possible. i.e.

\[
\text{Max. } P_i(X_i), \quad i=1, 2, ..., n
\]

\[
\text{s.t. } F_{\text{Min}} \leq (I - A)^{-1} X \leq F_{\text{Max}}
\]

where, \(P_i(X_i) = P_i \) is the total production of Sector i; and \(F_{\text{Min}} \) and \(F_{\text{Max}} \) denote the initial values set for the final use vector \(F \).

Let \(X_i^0 \) be the optimal solution for the above model (2.6), then sector i’s maximum profit is \(P_i(X_i^0) \) and the total emission of all sectors is \(x^0 = \sum X_i^0 \). Generally, it can be supposed that \(x^0 \) is higher than the maximum of total emission allowed by the policy maker. Therefore, \(x^0 \) should be reduced to some extent to meet the target of total emission control.

2.3. The model with total emission control.

For the case of total emission control, we can describe the optimal model in the following form.

\[
\text{Max. } SB(X) = \sum_{i=1}^{n} P_i(X_i)
\]

\[
\text{s.t. } F_{\text{Min}} \leq (I - A)^{-1} X \leq F_{\text{Max}}; \quad \sum_{i=1}^{n} X_i \equiv x^{Total}.
\]

where, \(SB(X) \) means the total profit of all the sectors which is dependent of the environmental emission \(X \); and \(x^{Total} \) denotes the allowed maximum value of total emission decided by the policy maker.

Let \(X_i^* \) be the optimal solution for the above model (2.7), then sector i’s profit is \(P_i(X_i^*) \) and the total emission of all the sectors is \(x^* = \sum X_i^* \equiv x^{Total} \). In the case with the optimal model the policy maker can make decision over all the sectors to reach the target of total emission control as well as obtain an optimal solution for allocating the allowed total emission among all the sectors to maximize the total production profit of all the sectors [19].

3. Empirical application for CO2 emission control in China

3.1. The data preparation

3.1.1. The data of input-output table. The application study is based on the data of China’s input-output table in 2012. From the public website of National Bureau of Statistics of China, we can get the data of intermediate use, final use, total output (total production), and the direct input coefficients for input output table in 2012 [22]. It is noted that since the statistics only keep stable structure within five years, direct input coefficients will be modified in every five years. Due to the lack of similar input-output tables for years of 2013-2017, as is often done in input-output analyses, we could assume that direct input coefficients and Leontief inverse coefficients for the years of 2013-2017 are identical to the baseline year of 2012. The input-output tables encompass 17 sectors shown in Table 1.

3.1.2 The CO2 emission coefficients. We found the corresponding data for the CO2 emission coefficients shown in [24]. Since the latest data is only for years before 2007, here we can reasonably assume that the emission intensity of each sector has been improved with 5% progressive rate per year due to technological innovation during the ten years of 2007-2017. With this assumption, based on data of year 2007 [24], we calculated the CO2 emission coefficients for years of 2013 to 2017 as the empirical data. In addition, because of a lack on data for the two sectors (Sector No.15 and Sector No.16), we set the two sectors’ emission coefficients as same as that of the sector of Other Services (Sector No.17). See Table 1.
3.1.3. The target of total CO$_2$ emission control. Setting a suitable emission control target is significant in implementing the TEC policy. Here according to the policy simulation results reported in [3] (The State Information Center of China 2018) and the total emission targets suggested by Chinese Academy for Environmental Planning [5], it might be reasonable to set the allowed maximum value for the total CO$_2$ emission per year at the level of $x^{total} = 10,000$ million tons as the TEC target in this empirical application study.

3.2. Results and policy analyses
In simulating computation, F_i^{Min} is set by the data of year 2012 and F_i^{Max} is calculated with a growth rate per year as same as that of GDP during years 2013-2017 based on the public data from the National Bureau of Statistics of China [23].

3.2.1. The case without TEC policy. Table 2 shows the data for the case without total emission control. Here, X_i^o is the amount of CO$_2$ emission that sector i should be responsible for. P_i^o and F_i^o are the total production and final use of sector i, respectively. It is observed that in this situation, each sector could try to reach its maximum F_i^0 so as to get the maximum production profit P_i^0 by itself, and as the result, each sector gets the maximum profit in total production independently, and the sum of all the sector’s production profits is 271,109 billion CNY (B.CNY). On the other hand, the total emission of CO$_2$ reaches 13,016 million tons (Mt), which is much more than 10,000 million tons, the maximum value of the allowed total emission of all the sectors. Thus, some kind of TEC policy strategy should be enforced for reducing CO$_2$ emission totally by about 3,016 million tons.

3.2.2. The case with TEC policy. Also in Table 2, the results can be seen for the case with a TEC policy. In the case, the CO$_2$ total emission is controlled exactly at the level of 10,000 million tons to meet the set TEC target and the total production profit of all the sectors arrives at the maximum value of 217,870 billion CNY as well. In the table, P_i^* and F_i^* are the total production and final use of each sector. Compared with the situation without TEC policy, the sum of the total production profit and the sum of the final use of all the sectors are decreased roughly by 53,239 billion CNY and 16,267 billion CNY, respectively. Meanwhile X_i^* indicates the optimal allocation of CO$_2$ emission to each sector from the maximum total emission among all the sectors and in the case with the TEC target, about 3,016 million tons of CO$_2$ emission is reduced totally. In the table ΔX_i is the amount for each sector to be responsible for reducing and η_i is the percentage for each sector’s share on the total CO$_2$ emission reduction.

Figure 1 demonstrates visually the optimal scheme of TEC policy for each sector. It is obvious that particularly there are three key sectors, i.e., No.6, No.7 and No.10 with the much higher emission intensity, which should firstly take the greatest responsibility to control the CO$_2$ emissions. Specifically the detailed data can be checked from Table 2. The sector No.6 (Production and Supply of Electric Power, Heat Power and Water) with the highest emission intensity is supposed to cut the CO$_2$ emission from 3,693 million tons to 2,845 million tons; The sector No.7 (Coking, Gas and Processing of Petroleum) is required to decrease its emission from 2,597 million tons to 2,010 million tons; And finally the sector No.10 (Manufacture and Processing of Metals and Metal Products) is also needed to

Sector	Xi	P/ F	Total Emission
Agriculture, Forestry, Animal Husbandry and Fishery	1	0.0142	13,016
Mining	2	0.0783	
Manufacture of Foods, Beverage and Tobacco	3	0.0083	
Manufacture of Textile, Wearing Apparel and Leather Products	4	0.0074	
Other Manufacture	5	0.0133	
Production and Supply of Electric Power, Heat Power and Water	6	0.4402	
Coking, Gas and Processing of Petroleum	7	0.3506	
Chemical Industry	8	0.0428	
Manufacture of Non-metallic Mineral Products	9	0.0895	
Manufacture and Processing of Metals and Metal Products	10	0.0896	
Manufacture of Machinery and Equipment	11	0.0030	
Construction	12	0.0028	
Transport, Storage, Post, Information Transmission, Computer Services and Software	13	0.0500	
Wholesale and Retail Trades, Hotels and Catering Services	14	0.0066	
Real Estate, Leasing and Business Services	15	0.0039	
Financial Intermediation	16	0.0039	
Other Services	17	0.0039	
reduce its emission from 2,375 million tons to 1,743 million tons. The amounts of emission reductions by the three sectors are respectively 28.13%, 19.46% and 20.98% of the total emission decreased by the TEC policy. The details about other sectors’ emission reduction shares are shown in Table 2.

Table 2. Results for the case without and with TEC policy \((X^{\text{Total}} = 10,000 \text{ Mt CO}_2) \)

Sector	The case without TEC policy	The case with TEC policy	CO2 Emission Reduction Share (%)							
	Total Production (B.CNY)	Final Use (B.CNY)	CO2 Emission (Mt) X_i	Total Production (B.CNY)	Final Use (B.CNY)	CO2 Emission Delta (Mt) \(\Delta X_i \)				
	P_i	F_i	X_i	\(P_i^* \)	\(F_i^* \)	\(X_i^* \)	\(\Delta P_i \)	\(\Delta F_i \)	\(\Delta X_i \)	\(\eta_i \)
1	14,385	4,043	204	12,169	2,933	173	2,216	1,110	31	1.04
2	14,166	176	1,109	10,712	125	839	3,454	51	270	8.97
3	13,228	5,956	109	12,485	5,956	103	474	6	0	0.20
4	10,220	3,861	75	9,625	3,861	71	959	0	4	0.15
5	9,452	2,202	125	7,286	1,561	97	2,166	641	29	0.95
6	8,391	518	3,693	6,464	367	2,845	1,927	151	848	28.13
7	7,407	758	2,597	5,733	537	2,010	1,674	220	587	19.46
8	22,642	2,267	968	17,901	1,608	765	4,741	660	203	6.72
9	6,653	439	595	4,801	311	429	1,852	128	166	5.49
10	26,511	1,742	2,375	19,452	1,235	1,743	7,059	507	633	20.98
11	48,539	21,312	143	35,644	15,111	105	12,895	6,201	38	1.26
12	19,428	18,291	53	13,870	12,969	38	5,557	5,322	15	0.51
13	14,252	4,383	713	11,025	3,108	551	3,227	1,275	161	5.35
14	14,652	5,941	96	13,142	5,941	86	1,510	0	10	0.33
15	12,314	5,139	47	11,206	5,139	43	1,108	0	4	0.14
16	9,665	1,543	37	8,108	1,543	31	1,557	0	6	0.20
17	19,203	14,060	74	18,246	14,060	70	957	0	4	0.12

Sum | 271,109 | 92,631 | 13,016 | 217,870 | 76,364 | 10,000 | 53,239 | 16,267 | 3,016 | 100.00 |

Figure 1 The results of the case with TEC target of 10,000 Mt CO2

3.2.3. Impacts of changes in emission intensity coefficients. From data of the CO2 emission reduction share in Table 2, it can be seen that the sector No.6 (Production and Supply of Electric Power, Heat Power and Water) has the highest share of CO2 emission on the total emission among the 17 sectors and is supposed to be most responsible for reducing the total CO2 emission under the TEC policy. Therefore here we choose the sector No.6 as an example in simulations to demonstrate the impacts of changes in emission intensity of the sector on the allocations of the total emission allowed by TEC target among all the sectors. It might be assumed that the CO2 emission intensity in the sector would have been declined or improved by 20%, 40%, 60% and 80% respectively. The results calculated by the
optimal model (2.5) with the same TEC target of 10,000 million tons are shown in Table 3. In the table $\Delta P_i = P_i^b - P_i^*, \Delta F_i = F_i^b - F_i^*, \Delta X_i = X_i^b - X_i^*$, where P_i^b, F_i^b and X_i^b are the results simulated with the improved emission intensity β_i of sector No.6, and P_i^*, F_i^* and X_i^* are the results with the initial emission intensity of the sector (see Table 2). Table 3 represents, respectively, the changes on total production, final use and CO$_2$ emission allocation of each sector which resulted from changes in emission intensity coefficients of the sector No.6.

Table 3. Impact of changes in emission intensity β_i of Sector No.6 (Electric, heat power and Water)

Sector	20% reduction in emission intensity	40% reduction in emission intensity	60% reduction in emission intensity	80% reduction in emission intensity								
	ΔP_i	ΔF_i	ΔX_i	ΔP_i	ΔF_i	ΔX_i	ΔP_i	ΔF_i	ΔX_i			
1	1,619	1,110	25	1,803	1,110	28	2,008	1,110	31			
2	634	53	14	1,409	114	23	2,346	187	3,350			
3	345	4	5	477	5	594	0	6	739			
4	213	2	3	401	0	507	0	4	594			
5	1,147	641	16	1,484	641	21	1,916	641	26	2,162	641	30
6	391	-499		825	-988		1,294	-1,547		1,911	151	-2,175
7	282	120		582	225		943	351		1,537	102	560
8	1,150	63		2,217	108		3,092	146		4,724	660	216
9	109	11		383	35		1,465	132		1,849	128	167
10	1,558	149		3,695	340		5,586	510		7,044	507	640
11	4,831	2,646		11,253	6,201	34	12,121	6,201	36	12,875	6,201	39
12	13	0		605	560	2	4,901	4,712	14	5,557	5,322	15
13	426	28		915	52		1,415	77		3,217	1,275	167
14	432	4		895	0	7	1,225	0	9	1,503	0	11
15	261	0		561	3	835	0	4	1,100	0	5	
16	349	2		753	0	3	1,166	0	5	1,548	0	6
17	214	7		474	8	781	0	9	953	0	9	
sum	13,975	4,397	0	28,733	8,512	0	42,195	12,664	0	52,874	16,148	0

ΔP_i and ΔF_i: billion CNY; ΔX_i: million ton

As shown in Table 3, for the sector No.6 (Production and Supply of Electric Power, Heat Power and Water), there is a huge CO$_2$ emission reduction potential, and it is basically necessary to improve the abatement technology in the sector so as to decline the CO$_2$ emission per unit of production. For instance, when the emission intensity is improved by 20% in the sector, the amount of its own emission will decrease by 499 million tons, which meanwhile will have a strong influence and result in changes on the amounts of emissions of all the other sectors. As a result, even if keeping the same TEC target at the level of 10,000 million tons, the production profit and the final use in total of all the sectors will increase by 13,975 billion CNY, and 4,397 billion CNY, respectively. For the other three situations with the emission intensity improvement by 40%, 60% or 80%, there are the similar effects on all the sectors’ emission allocations of the total emission. The more the improvement is made, the stronger the effect is.

4. Conclusions and policy implications

Generally speaking, the environmental problems are mainly caused by the process of production and consumption. Environmental management is an important part of economic operations in the present society. In some meaning, either for the environmental emission intensity reduction or for the emission peak control of CO$_2$ emissions in China, it is actually significant to design and then enforce an effective policy of total emission control, which should be considered to be a comprehensive solution for solving the conflict between environment and economy [25]. In this paper, we establish methodologically a model to maximize the total production profit among all sectors and satisfy the environmental emission control target as well for a multi-sectoral environmental-economic system. The optimal TEC model is based on an input-output analysis and allows us to allocate the total emissions (quotas) to each sector as optimal TEC policy schemes while the economy is growing up. Furtherly it can be used to analyse the impacts of changes in one sector’s emission intensity coefficient on all the sectors’ emissions and identify the key sectors most responsible for reducing total environmental emission. The model mainly proposes a methodology which could be an innovation on how to design quantitatively a suitable TEC policy for a multi-

(\(\Delta P_i\) and \(\Delta F_i\): billion CNY; \(\Delta X_i\): million ton)
sectoral environmental system by pursuing an optimal balance between environmental protection and economic development.

As an application of the model, we discussed quantitatively on policy design for reducing total CO₂ emission in China. Based on the national data of Input-Output Table of China in 2012, and with a total CO₂ emission control target being set at the level of 10,000 million tons per year, we simulated the CO₂ emissions in 17 sectors and also calculated approximately the respective optimal solutions for total production and final use (demand) of each sector. The result shows, firstly, that in the existing situation without total emission control, each sector could reach its maximum production scale and get its own maximum profit independently. On the other hand, each sector’s CO₂ emission could increase as the production is growing up. As a result, the total emission of all the sectors could rise up to 13,015 million tons, which is much more than the set target value of 10,000 million tons. Thus, some TEC policy scheme for cutting total CO₂ emission by about 3,015 million tons should be enforced as each sector’s economical scale has been increasing with a growth rate per year along with the GDP in China.

In order to achieve the reduction target, we calculated an optimal set of allocations of the total emission to each sector as a possible TEC scheme for policy suggestion. The result indicates that totally in the scheme, the total emission reduction target is reached exactly at the allowed maximum value of 10,000 million tons, and also, the sum of all sectors’ production profit is maximized up to the value of 217,870 billion CNY, which is 53,239 billion CNY less than that in the case without TEC policy. This implies that some sectors make a contribution, to a certain extent, to the decrement in CO₂ total emission at a cost of decreasing their own profits. In addition, particularly, there are three key sectors with the much higher emission intensity, which should take the greatest responsibility to control the CO₂ emission at first. The sector No.6 (Production and Supply of Electric Power, Heat Power and Water) with the highest emission intensity is supposed to cut its CO₂ emission from 3,690 million tons to 2,850 million tons; The sector No.7 (Coking, Gas and Processing of Petroleum) is required to decrease its emission from 2,850 million tons to 2,010 million tons; And finally the sector No.10 (Manufacture and Processing of Metals and Metal Products) is also needed to reduce its emission from 2,380 million tons to 1,740 million tons. The shares of emission reductions by the three sectors are respectively 28.13%, 19.46% and 20.98% of the total emission reduction resulted from the TEC policy.

Furtherly in the application, we also analysed the impacts of improving the emission intensity of some sector on all other sectors’ emissions. As an example, we selected the sector No.6 (Production and Supply of Electric Power, Heat Power and Water), which has the highest share in total CO₂ emission reduction among the 17 sectors, and calculated the corresponding TEC schemes when the emission intensity of the sector is declined or improved by 20%, 40%, 60% or 80%. The result data show obviously that when the emission intensity is improved by 20% in the sector, for instance, the amount of its emission will decrease by 499 million tons and then will have a strong influence and result in changes on the amounts of emissions of all the other sectors. As a result, even if keeping the same TEC target of 10,000 million tons, the production profit and the final use in total of all the sectors will increase by 13,975 billion CNY, and 4,397 billion CNY, respectively. The results suggest that the sector No.6 (Production and Supply of Electric Power, Heat Power and Water) is the most significant one with strong influences on reducing total CO₂ emission among all sectors. Finally we recommend that with technical effects, this sector should be considered as the leading industry in which technological innovation is absolutely needed to decrease the CO₂ emission per unit of production at first while implementing the TEC policy scheme.

5. References
[1] UNFCCC, 2016, Report of the Conference of the Parties on its Twenty-first Session, held in Paris (Nov.30-Dec.13, 2015) [R/OL] (2016-01-29)
[2] Tao X, Wang P, Zhu B, 2016, Provincial green economic efficiency of China: a non-separable input-output SBM approach [J], Appl. Energy 171 (1), 58-66.
[3] NDRC-SIC 2018, Path analysis of China’s achievement of the 2030 peak carbon emission target, Report of The Department of Economic Forecasting, The State Information Center, China (2018-2-13)
[4] Hu Q, Li X, et al., 2018, Total emission control policy in China [J], Environmental Development 25 (2018) 126-129.
[5] Wang J, Cai B, et al., 2010, Study on carbon dioxide total emission control in the context of emission intensity commitment [J], *China Environmental Science*, 2010, 30(11) 1568-1572

[6] Maria Llop, 2017, Changes in energy output in a regional economy: A structural decomposition analysis [J], *Energy* 128 (2017) 145-151.

[7] Zhang W, Peng S, et al., 2016, CO₂ emissions in global supply chains of services based on a multi-regional input-output model [J], *Energy Policy* 86 (2015) 93-103.

[8] Surugiu C, Surugiu M.R, Zelia B, Dinca A.I, 2012, An Input-Output Approach of CO₂ Emissions in Tourism Sector in Post-Communist Romania [J], *Procedia Economics and Finance*, 3 (2012) 987-992

[9] Ahmad N. and Du L., 2017, Effects of energy production and CO₂ emissions on economic growth in Iran: ARDL approach [J], *Energy*, 123 (2017) 521-537

[10] Ju L, Chen B, et al., 2010, An input-output model to analyse sector linkages and CO₂ emissions [J], *Procedia Environmental Sciences* 2 (2010) 1841-1845.

[11] Lin B, Xie X, et al., 2015, CO₂ emissions of China’s food industry: an input-output approach [J], *Journal of Cleaner Production* 112 (2016) 1410-1421.

[12] Yuan R, Zhao T, 2016, A combined input-output sensitivity analysis of CO₂ emissions in the high energy-consuming industries: A case study in China [J], *Atmospheric Pollution Research* 7 (2016) 315-325

[13] Tarancon M.A and Rio P.D, 2012, Assessing energy-related CO₂ emissions with sensitivity analysis and input-output techniques [J], *Energy* 37 (2012) 161-170

[14] Ali Y, Ciaschini M, et al., 2017, An analysis of CO₂ emissions in Italy through the Macro Multiplier (MM) approach [J], *Journal of Cleaner Production* 149 (2017) 238-250

[15] Liu L, Liang Q, et al., 2017, Changes to pollutants and carbon emission multipliers in China 2007-2012: An input-output structural decomposition analysis [J], *Journal of Environmental Management* 203 (2017) 76-86

[16] Kagawa S, Hasegawa R, Tsukui M, 2015, Carbon footprint analysis through constructing a multi-region input-output table: A case study of Japan, *Journal of Economic Structures*, 4:5 (2015) 1-20

[17] Jaume F.G, David F.V, 2017, The influence of energy efficiency on other natural resources use: An input-output perspective [J], *Journal of Cleaner Production*, 162 (2017) 336-345

[18] Chen Z, Chen G, et al., 2010, Embodied carbon dioxide emissions of the world economy: A system input-output simulation for 2004 [J], *Procedia Environmental Sciences* 2 (2010) 1827-1840

[19] Jensen J and Rasmussen T.N, 2000, Allocation of CO₂ emissions permits: A general equilibrium analysis of policy instruments [J], *Journal of Environmental Economics and Management* 40 (2000) 111-136

[20] Leontief W, 1970, Environmental repercussions and the economic structure: an input-output approach [J], *Rev. Econ. Stat.* 52 (1970) 262-271.

[21] Yoshioka K, Oohira S, et al., 2013, *Environmental Input-Output Analyses* [M], NIPPYO Press Japan (2013) pp18-22

[22] National Bureau of Statistics of China (NBSC), National Accounts, Input-Output Table Data for Year 2012 (http://data.stats.gov.cn/english/easyquery.htm?cn=C01)

[23] National Bureau of Statistics of China (NBSC), 2017, *China Statistical Yearbook* [M], China Statistics Press (2017). Beijing China.

[24] Guo J, Wang H, et al., 2013, The empirical analysis on the influence of international trade to industries’ embodied carbon emissions in China [J], *Journal of Beijing Institute of Technology*, Vol.15 No.6, 2013/12 (6) 1-9

[25] Nakano S. and Washizu A., 2017, A panoramic analysis of hydrogen utilization systems: using an input-output table for next generation energy systems [J], *Procedia CIRP*, 61 (2017) 779-784