Title
The Brain-Gut-Microbiome Axis.

Permalink
https://escholarship.org/uc/item/471377df

Journal
Cellular and molecular gastroenterology and hepatology, 6(2)

ISSN
2352-345X

Authors
Martin, Clair R
Osadchiy, Vadim
Kalani, Amir
et al.

Publication Date
2018

DOI
10.1016/j.jcmgh.2018.04.003

Peer reviewed
The Brain-Gut-Microbiome Axis
Clair R. Martin, Vadim Osadchiy, Amir Kalani, and Emeran A. Mayer

G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Microbiome Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California

Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases. (Cell Mol Gastroenterol Hepatol 2018;6:133–148; https://doi.org/10.1016/j.jcmgh.2018.04.003)

Keywords: Serotonin; Stress; Irritable Bowel Syndrome; Intestinal Permeability.

RESULTS

Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases. (Cell Mol Gastroenterol Hepatol 2018;6:133–148; https://doi.org/10.1016/j.jcmgh.2018.04.003)

Keywords: Serotonin; Stress; Irritable Bowel Syndrome; Intestinal Permeability.
monoamine turnover,19 and reduced synaptic plasticity gene expression,19 showing the microbiome’s diverse and potent influence over central nervous system (CNS) phenotypes. Accordingly, in addition to stress responsiveness,16,20 the gut microbiota are implicated in relation to anxiety-like,16,18–28 and depression-like behavior,16,24,25,27,29–32 nociceptive response,8,33–37 feeding behavior, taste preference, metabolic consequences,38–40 and their respective underlying physiologies. These preclinical studies have been reviewed extensively in the literature.3,5,41–43 Despite acknowledged limitations to the GF model,20,41,44 phenotype reversal by recolonization with specific-pathogen-free (SPF), human-derived, and synthetic microbiota validates some of the conclusions. Still, the well-characterized role of microbiota in neurogenesis and neurodevelopment45 moderates the translational relevance of these findings for adult conditions.

An alternative to the GF model approach is the use of broad-spectrum antibiotics to induce transient changes on the composition and diversity of fecal microbiota,9 although the effects on mucosa-associated microbial communities are incompletely understood. Antimicrobials also may interact directly with host physiology in mechanisms independent of the microbiome, such as their well-documented neurotoxic effects (reviewed by Grill and Magantì46). Nonetheless, broad-spectrum antibiotic treatment remains a powerful tool to identify gut microbial influence on the CNS. In mice with SPF microbiota, oral antibiotic administration increased exploratory behavior and hippocampal expression of brain-derived neurotrophic factor, which was associated with changes in the microbial profile.9 The failure to replicate these antibiotic-induced effects in GF mice suggests the CNS changes are not the result of off-target antibiotic interactions, however, developmental alterations in the GF model make this finding inconclusive. Long-term antibiotic treatment in adult mice reduced hippocampal neurogenesis and lead to deficits in novel object recognition tasks through a mechanism dependent on circulating monocytes.47 Adaptive transfer of Ly-6ch monocytes or voluntary exercise and probiotic treatment rescued these phenotypes.47

In contrast to the complete or partial depletion of gut microbiota as an experimental approach to identify and characterize microbial influence on the host CNS, the introduction of known microorganisms (usually as probiotics) to conventional models allows for normal development and risks fewer off-target effects. However, it is critical to acknowledge the possibility that transient exposure induces host responses inaccessible to resident communities. Orally administered probiotics have been shown to reduce basal or induced anxiety-like behavior,16,20,22,24,30,48 attenuate induced obsessive-compulsive-like behavior,49 improve inflammation-associated sickness behavior,50 and even normalize developmental trajectories of emotion-related behavior after early life stress.51 Although infrequently used as an intervention directed specifically at the gut microbiota, diet can have profound, rapid, and reproducible effects on the structure of the gut microbiota in human beings and mice.52–54 Alterations in the gut microbial community through dietary change also have been shown to influence memory and learning,55,56 while probiotic administration rescued diet-induced memory deficits in rats.57 In summary, preclinical studies have identified unequivocally the potent influence of gut microbiota on the CNS, but issues of reproducibility and off-target intervention effects demand continued improvement of experimental approaches.

Clinical Evidence

Experimental approaches to study the role of gut microbes to brain signaling have been restricted mostly to small clinical studies showing the association of gut microbiota as an experimental approach to identify and characterize microbial influence on the host CNS, the introduction of known microorganisms (usually as probiotics) to conventional models allows for normal development and risks fewer off-target effects. However, it is critical to acknowledge the possibility that transient exposure induces host responses inaccessible to resident communities. Orally administered probiotics have been shown to reduce basal or induced anxiety-like behavior,16,20,22,24,30,48 attenuate induced obsessive-compulsive-like behavior,49 improve inflammation-associated sickness behavior,50 and even normalize developmental trajectories of emotion-related behavior after early life stress.51 Although infrequently used as an intervention directed specifically at the gut microbiota, diet can have profound, rapid, and reproducible effects on the structure of the gut microbiota in human beings and mice.52–54 Alterations in the gut microbial community through dietary change also have been shown to influence memory and learning,55,56 while probiotic administration rescued diet-induced memory deficits in rats.57 In summary, preclinical studies have identified unequivocally the potent influence of gut microbiota on the CNS, but issues of reproducibility and off-target intervention effects demand continued improvement of experimental approaches.

Clinical Evidence

Experimental approaches to study the role of gut microbes to brain signaling have been restricted mostly to small clinical studies showing the association of gut microbiota community structure with brain parameters and subjective outcomes of interventions with probiotics and prebiotics. Although no high-quality, controlled studies in human beings have reported the effects of interventions such as antibiotics or fecal microbial transplants on the brain or behavior, studies of probiotic interventions are increasing rapidly in number and gradually in scale and quality. A double-blind, placebo-controlled, pilot study of the probiotic *Bifidobacterium longum* NCC3001 in 44 adults with IBS and diarrhea was shown to reduce responses in the amygdala and frontolimbic regions to negative emotional stimuli as measured by functional magnetic resonance imaging.58 Although depression scores were lower with the intervention, anxiety and IBS symptoms were not affected. In healthy female control subjects, consumption of a fermented milk product with probiotics over 4 weeks was associated with significant changes in the functional connectivity between brain regions during an emotion recognition task, notably without concomitant detectable changes in gut microbial composition.59 Probiotic consumption also has been reported to reduce self-reported feelings of sadness and aggressive thoughts.60 A probiotic cocktail used to achieve reduction of anxiety- and depression-related behaviors in mice61 also was administered to healthy human beings to a similar effect.61

The translation of promising findings obtained in rodent studies has been limited. In a clinical trial with *Lactobacillus rhamnosus* (JB-1), the effects of which were seminally shown on mice by Bravo et al,16 performed no better than placebo on stress-related measures, hypothalamic pituitary adrenal axis response, inflammation, or cognitive performance in an 8-week trial with healthy males.62 Moreover, the pilot trial of *Bifidobacterium longum* NCC3001 described earlier did not recapitulate the effects observed in mice by the same research group22 and has been criticized for its fragility.63 This translational disconnect, or inconsistency, highlights the likelihood of host-specific microbiota interactions and underscores the importance of cautious extrapolation of preclinical findings. Furthermore, as shown by several studies, probiotic supplementation in human beings does not appear to change the gut’s microbiota composition but induces its effect on behavior via transient modification of the collective microbiome transcriptional state, as shown in GF mice and confirmed in monozygotic twins.64 This finding demands measurement of probiotic intervention on gut microbial profiles with technologies integrating metatranscriptomics and metabolomics and
fundamental reconsideration of the functional equivalence of transient vs resident microorganisms. Better characterization of microbial community dynamics and metabolism coupled with improved models of their community ecology will help refine the mechanisms responsible for these effects and identify putative targets for therapeutic intervention.

Signaling Mechanisms From the Gut Microbiota to the Brain

Current evidence indicates that bottom-up modulation of the CNS by the microbiome occurs primarily through neuroimmune and neuroendocrine mechanisms, often involving the vagus nerve. This communication is mediated by several microbially derived molecules that include short-chain fatty acids (SCFAs), secondary bile acids (2BAs), and tryptophan metabolites. These molecules propagate signals primarily through interaction with enteroendocrine cells (EECs), enterochromaffin cells (ECCs), and the mucosal immune system, but some cross the intestinal barrier, enter systemic circulation, and may cross the blood-brain barrier. It remains poorly understood if these molecules reach brain sites directly or only induce central responses via long-distance neural signaling by vagal and/or spinal afferents. In addition to generating these metabolites that activate endogenous CNS signaling mechanisms, the microbiota can independently produce or contribute to the production of a number of neuroactive molecules including but not limited to γ-aminobutyric acid, 5-HT, norepinephrine, and dopamine, although it is unknown if they reach relevant receptors or achieve sufficient levels to elicit a host response.

Neuroendocrine and Enteroendocrine Signaling Pathways

An important pathway by which gut microbes and their metabolites communicate with the CNS involves the release of neurotransmitters, hormones, and other signaling molecules at the gut–brain interface. This communication is mediated by several microbially derived molecules that include short-chain fatty acids (SCFAs), secondary bile acids (2BAs), and tryptophan metabolites. These molecules propagate signals primarily through interaction with enteroendocrine cells (EECs), enterochromaffin cells (ECCs), and the mucosal immune system, but some cross the intestinal barrier, enter systemic circulation, and may cross the blood-brain barrier. It remains poorly understood if these molecules reach brain sites directly or only induce central responses via long-distance neural signaling by vagal and/or spinal afferents. In addition to generating these metabolites that activate endogenous CNS signaling mechanisms, the microbiota can independently produce or contribute to the production of a number of neuroactive molecules including but not limited to γ-aminobutyric acid, 5-HT, norepinephrine, and dopamine, although it is unknown if they reach relevant receptors or achieve sufficient levels to elicit a host response.

Enterochromaffin Cell Signaling

One of the best characterized examples of these microbial host interactions is the bidirectional interaction between microbes, EECs, and the central nervous system (Figure 1). 5-HT is produced by the EECs of the gastrointestinal (GI) tract, with 95% of the body’s 5-HT stored in EECs and enteric neurons, and only 5% stored in the CNS. Considering 5-HT’s central role in regulating GI motility and secretion, there is likely immense selective pressure on the gut microbiota to act on the serotonergic system to modulate their environment effectively (eg, by influencing regional transit times and fluid secretions). An analysis of the plasma metabolite profile of germ-free mice shows a
more than 2-fold decrease in 5-HT levels relative to conventionally colonized mice. SCFAs and 2BAs derived from spore-forming bacteria of the gut regulate a significant percentage of ECC 5-HT synthesis and release. The essential amino acid tryptophan (Trp) is a key molecule in the BGM axis because it is the precursor to the neurotransmitter 5-HT and a number of other metabolites that contribute to the neuroendocrine signaling within the BGM. Because the host is unable to produce tryptophan, dietary intake of proteins that contain it serve as the primary regulator of its availability. Gut microbiota contribute to the peripheral availability of Trp, which is imperative to the CNS synthesis of 5-HT. GF mice show increased levels of plasma Trp and hippocampal 5-HT, and, interestingly, colonization with bacteria normalizes plasma Trp but not hippocampal 5-HT. Although the exact mechanisms of peripheral Trp regulation are unknown, the same study suggests that the microbiota modulate the degradation of Trp down the kynurenine pathway. In a separate study, this pathway interaction was observed and linked to behavioral phenotypes. Administration of Lactobacillus reuteri normalized stress-induced behavioral changes and was associated with decreased circulating kynurenine levels resulting from microbially derived H$_2$O$_2$ inhibition of ido1 messenger RNA expression.

Neuroimmune Signaling

The wide-ranging interaction of commensal bacteria with the gut-associated immune system and consequently the CNS is beyond the scope of this review and has been reviewed extensively elsewhere. Mouse models of multiple sclerosis and stroke have identified substantial roles for gut microbial regulation of autoimmunity, inflammation, and immune cell trafficking. It is important to highlight that the gut microbiota influence the development and function of the CNS resident immune cells, especially microglia. Relative to SPF mice, GF mice have compromised microglia maturation and morphology, leading to weakened early responses to pathogen exposure. This phenotype can be normalized by postnatal SCFA supplementation or colonization with a complex microbial community. Remarkably, antibiotic treatment to eradicate bacteria in SPF adult mice leads microglia to
regain immature status, which then can be normalized by recolonization with complex microbiota, suggesting that active microbial signaling is required throughout adulthood to preserve microglial maturation.104

Direct Neural Signaling

Most evidence to date relies on vagal receptors that sense regulatory gut peptides, inflammatory molecules, dietary components, and bacterial metabolites to relay signals to the CNS.105 but there is also some evidence for direct activation of neurons by gut microbiota. Toll-like receptors 3 and 7, which recognize viral RNA, and Toll-like receptors 2 and 4, which recognize peptidoglycan and lipopolysaccharide, are recognized in the murine and human enteric nervous systems.106,107 *L. rhamnosus* (JB-1), *B. fragilis*, and isolated polysaccharide A of *B. fragilis* all have been shown to activate intestinal afferent neurons ex vivo.106 However, it remains unclear to what degree luminal microbial antigens make direct physical contact with neurons in vivo.109

Microbial metabolites also are likely candidates mediating direct activation of neurons. The receptors FXR and TGR5 are expressed in brain neurons, but bile acid concentrations are low or undetectable in these tissues of healthy subjects.110,111 Several studies have localized GPR41/FFAR3 receptors to the superior cervical ganglion,112 prevertebral ganglia,113 submucosal and myenteric ganglia neurons,114 sympathetic ganglia of the thoracic and lumbar sympathetic trunks, and vagal ganglion,95 suggesting neuronal activation by microbially derived SCFAs. Upon GPR41 activation, primary-cultured superior cervical neurons release norepinephrine, establishing this as a direct functional interface for microbial derivatives and the sympathetic nervous system.112

Barriers to Bottom-Up Signaling

There are 2 natural barriers to signaling within the BGM axis: the intestinal barrier and the blood brain barrier. Because gut microbes, stress, and inflammation are able to modulate the permeability of both structures, the amount of information reaching the brain from the gut is highly variable, depending on the state of the host.

Intestinal Barrier

The intestinal barrier is characterized by 2 layers: a basal monolayer of epithelial cells interconnected by tight junctions, and a mucus layer whose thickness and composition changes over time and that contains secretory IgA and antimicrobial peptides.115 Upon detection of specific microbial products, pattern recognition receptors located throughout GI mucosa can mediate the induction of enhanced antimicrobial defense, intestinal inflammation, and even immunologic tolerance.116,117 Under healthy homeostatic conditions, many microorganisms and macromolecules gain entry through microfold cells (M cells), found in gut- and mucosa-associated lymphoid tissue, which enables constant sampling by immune cells.118 Paneth cells autonomously sense bacteria through MyD88-dependent Toll-like receptor activation, which triggers antimicrobial factors and ultimately limits bacterial penetration of host tissue.119

Microbes and microbe-derived ligands help maintain the cell-cell junctions critical to integrity.120,121 Probiotic treatment can help normalize stress-induced barrier defects (discussed later) via unknown mechanisms.122

The intestinal mucus layer is the second component of intestinal barrier function. Colonic mucus is organized into 2 layers: a thicker loose outer layer, and an inner layer attached firmly to the epithelium.123 Commensal microbes inhabit the outer layer, a critical habitat for biofilm formation,124 and a reliable energy source rich in glycoproteins that the microbiota degrade when deprived of dietary fiber, subsequently increasing pathogen susceptibility.11 The inner layer usually is bacteria-free and serves to protect epithelial cells from microbial contact through physical separation, innate immune mechanisms including antimicrobial peptides, and adaptive immune mechanisms including secretory IgA.125

Blood-Brain Barrier

The blood-brain barrier (BBB) regulates molecular traffic between the circulatory system and the cerebrospinal fluid of the CNS. Gut microbiota can up-regulate the expression of tight junction proteins, including occludin and claudin-5, therefore decreasing BBB permeability.126 From intrauterine life through adulthood, GF mice have a more permeable barrier compared with controls, but introduction of normal gut microbiota to GF adults partially restores function. Permeability is decreased by monoclonization with SCFA-producing bacteria and oral gavage with sodium butyrate. SCFAs may serve as the primary signaling metabolite in BBB development and maintenance likely via entering cells and working as histone deacetylase inhibitors to epigenetically modulate the phenotype or via binding to GPR41 and/or GPR43.127,128

Systemic immune activation may cause disruptive BBB changes and often is modeled using LPS. But in a systematic review, studies evaluating in vivo LPS effects on BBB function only showed disruption 60% of the time, a figure potentially subject to publication bias.129 Interestingly, the host species is the only significant predictor explaining variance: mice are 4 times more likely than rats to show BBB change. Dose-dependent effects were not observed across all studies, although the levels used were mostly equivalent to septic doses. The variability of the BBB response in this model of systemic immune activation limits the generalizability of most preclinical findings to human microbiome interactions, especially in nonpathologic conditions.

Signaling From the Brain to the Gut Microbiota

There is more than 40 years worth of literature showing the effect of stress on the community structure of the gut microbiome.130,131 Exposure to social stressors for as little as 2 hours can change community profiles and reduce the relative proportions of the primary phyla,132 and maternal prenatal stress is associated with an altered infant microbiome potentiating increased inflammation.133
Indirect Modulation via Autonomic Nervous System–Mediated Change in Microbial Environment

Both branches of the autonomic nervous system (ANS) regulate gut functions including regional motility, secretion of gastric acid, mucus, bicarbonate, gut peptides, antimicrobial peptides, epithelial fluid maintenance, intestinal permeability, and mucosal immune response (reviewed by Mayer\(^1\)). These ANS-induced changes in gut physiology affect the microbial habitat, thereby modulating microbiota composition and activity.

GI Motility

Regional intestinal transit times affect water content, nutrient availability, and bacterial clearance rates. Relatively rapid flow in the small intestine inhibits permanent colonization of the upper gut, in particular in the proximal small intestine.\(^{124}\) The frequency of migrating motor complexes, which play a crucial role in intestinal transit during the fasting state, is influenced by food intake patterns, sleep quality, and stress. Impaired migrating motor complex regularity can reduce the flow rate, leading to small intestine bacterial overgrowth.\(^{134}\) Intestinal transit time assessed by the Bristol Stool Scale\(^{135,136}\) strongly correlates with microbial richness and composition.\(^{137}\) In fact, a microbiome population level analysis identified such transit ratings as the top nonredundant covariate.\(^{138}\) A study using radiopaque markers for transit corroborated its association to microbial composition and additionally showed association with diversity and metabolism.\(^{139}\) In vitro simulation with Environmental Controls Systems for Intestinal Microbiota showed that increased transit time causally reduced bacterial biomass and diversity in distal gut regions.\(^{140}\)

Intestinal Barrier

Stress can cause epithelial barrier defects (leaky gut) by at least 2 mechanisms: direct modulation of epithelial permeability and alterations in the properties of the intestinal mucosal layer, ultimately leading to increased translocation of gut microbes or microbe-associated molecules.\(^{141}\) Rodent models have shown that jejunal and colonic permeability increases in response to both acute and chronic stress.\(^{142,143}\) This increased leakiness facilitates the translocation of bacteria, such as *Escherichia coli*, and their products, such as lipopolysaccharide (LPS), leading to a proinflammatory environment in the gut, although there are conflicting reports describing stress-induced changes in expression of messenger RNA encoding tight junction proteins in the colon and jejunum.\(^{144,145}\) Increased intestinal permeability and susceptibility to experimental inflammation observed in mouse models of depressive behavior induced by maternal separation is reversed by antidepressant therapy, highlighting brain-driven systemic and epithelial immune activity regulating the gut.\(^{146}\)

The ANS modulates the secretion of mucus by intestinal goblet cells, affecting the thickness and quality of the intestinal mucus layer. In addition to hypersensitivity, psychological stress leads to a less-protective mucus layer via catecholamine signaling, which alters the composition and size of secreted mucus.\(^{122,147,148}\) Changes in microbiota composition observed in a mouse model of brain injury are thought to result from altered mucoprotein production and goblet cell population size mediated by increased sympathetic nervous system signaling.\(^ {149,150}\)

Direct Modulation of Gut Microbiota by Luminal Release of Neurotransmitters

In addition to CNS-induced changes in the intestinal microbial environment (eg, by influencing regional transit and secretions), the host neuroendocrine system can communicate with the microbiota more directly via intraluminal release of host signaling molecules, including but not limited to catecholamines, 5-HT, dynorphin, and cytokines, from neurons, immune cells, and ECCs.\(^{151,152}\) The CNS likely modulates this process.\(^{153–155}\) Epinephrine and norepinephrine are shown to increase the virulence properties of several enteric pathogens as well as nonpathogenic microbes via stimulation of native quorum-sensing mechanisms.\(^{156–160}\) Other gut microbes contain sequences that share 24% to 42% identity to human genome sequences for melanotin,\(^{161}\) whose gut luminal concentrations have been reported at more than 10-fold serum concentrations in rats and pigs.\(^{162,163}\) In vitro assays of one such microbe, *Enterobacter aerogenes*, show that melatonin not only induces swarming and motility behavior, but helps synchronize the circadian period and phase across culture plates. The gut microbiota show circadian rhythmicity in both abundance and expression in a manner dependent on the host and its behavior, especially feeding timing, and simulated jet-lag shifts composition, enhancing dysbiosis.\(^{164}\)

The BGM Axis in GI and Metabolic Disorders

Functional Intestinal Disorders

A number of studies (n = 22 in a total of 827 subjects) have reported significant microbial shifts in fecal microbial community composition between healthy controls and IBS patients, based on disease subtypes (diarrhea-predominant IBS, constipation-predominant IBS, and IBS mixed type), age (pediatric vs adult), and compartment (mucosa vs stool).\(^ {165}\) Recent studies have suggested that there are at least 2 subgroups of patients who meet Rome criteria for IBS, based on gut microbial community structure, 1 subgroup not differing from healthy control subjects, despite similar GI symptoms.\(^ {166,167}\) In one of these studies, the dysbiotic IBS subgroup also differed in regional brain volumes from the eubiotic group,\(^ {166}\) suggesting a relationship between microbial community structure and brain structure. Another recent study did not find a group difference in microbial composition between HCs and IBS, even though IBS symptom severity was correlated with dysbiosis.\(^ {168}\) Despite a lack of consensus on the wide range of gut microbial differences between IBS subjects and healthy controls and the specific microbial changes that may be correlated to disease outcome, recent molecular-based
methods of mucosal brushes or luminal aspirates have suggested decreased diversity in small-bowel microbiota with increased abundance of gram-negative organisms in IBS.169,170 Based on analysis of fecal samples, regardless of the analytical methodology used, a number of studies reported a decreased relative abundance of the genera \textit{Bifidobacterium} and \textit{Lactobacillus}, and an increased Firmicutes:Bacteroidetes ratios at the phylum level. Because stress has been associated with a reduction in Lactobacilli in preclinical and clinical studies,152,171,172 one may speculate that the reported IBS-related changes in community structure and resulting metabolism are in part owing to altered ANS modulation of the gut as described earlier.

\textbf{Obesity/Food Addiction}

A dysregulation of hedonic feeding behavior (food addiction) plays an important role in the current obesity epidemic.17 The gut microbiota and its metabolites play a crucial role in the modulation of satiety signals (see earlier) and eating behaviors.65,174,175 In preclinical studies, fecal transplantation from hyperphagic obese mice to germ-free mice was able to induce hyperphagic behavior and weight gain in the recipients.39,176 In addition, the gut microbiome has been associated with changes in brain microstructure in obesity, and distinct microbial brain signatures were able to differentiate obese from lean subjects.177 The gut microbiome produces several neuroactive compounds; these bioactive products include several indole-containing metabolites and 5-HT. The administration of probiotics modifies brain function and even brain metabolites including \(\gamma\)-aminobutyric acid and glutamate.59,178 A handful of studies point to a dramatic change in gut microbial composition after bariatric surgery.179-183 Remarkably, fecal transplantation from subjects after bariatric surgery was able to transmit the weight loss effects of bariatric surgery to a germ-free nonoperated recipient, inducing weight loss and reduced food intake.184,185

\textbf{The BGM Axis in Psychiatric and Neurologic Disorders With GI Comorbidities}

Patients with several psychiatric (depression, anxiety) and neurologic disorders (Parkinson's disease, autism spectrum disorders) have significant gastrointestinal comorbidities, and several recent studies point to an important role of the gut microbiota not only in the pathophysiology of the GI symptoms, but a potential role in the primary disorder as well.

\textbf{Depression and Anxiety}

Anxiety and depression often are comorbid conditions in patients with IBS. Preclinical studies have shown the microbiota's capacity to modulate emotional behaviors, and influence parameters significant to depression pathogenesis and severity.17-19,21,186 Although studies characterizing the gut microbiome of major depressive disorder vs health have yielded marginally distinct assemblage correlations, 3 different types of studies suggest causality: depressed human-to-rodent fecal microbial transplants have induced depressive behaviors in the animal models27,32; prebiotic and probiotic administration to healthy controls has improved anxiety and mood; and, finally, incidences of \textit{E coli} subtype outbreaks in Canada and Germany led to increases in depression and anxiety-related symptoms among the affected population (reviewed by Kelly et al186).

\textbf{Parkinson's Disease}

Although the clinical hallmarks of Parkinson's disease remain motor deficits, gastrointestinal symptoms (in addition to other nonmotor symptoms) are present that contribute more detrimentally to patient quality of life. These nonmotor symptoms include problems related to dysfunctional autonomic and enteric nervous systems, such as slow-transit constipation, and sensory alterations. The risk of Parkinson's disease development increases with infrequency of bowel movement and constipation severity, and there is a significant comorbidity of Parkinson's disease and IBS-like symptoms.187 Moreover, constipation is among the earliest features, appearing as early as 15.3 years before motor dysfunction (reviewed by Fasano et al188). To date, clinical studies of Parkinson’s and the gut microbiota remain limited to characterizing the assemblage differences against healthy controls, and some of the reported differences may be a consequence of impaired colonic transit. However, recent evidence showing that a Parkinson’s rodent model's physical impairments are enhanced by microbiota from Parkinson’s patients but not healthy controls suggests causality.1 Early gastrointestinal symptoms, thus, may be prodromal, making the gut microbiota a promising source of information for diagnosis, prognosis, and, potentially, pathogenesis.

\textbf{Autism Spectrum Disorder}

In addition to the core symptoms of ASD (difficulty with social and communicative behavior, repetitive behaviors), gastrointestinal symptoms are common and contribute significantly to the morbidity of affected patients.5,189 GI symptom severity is correlated strongly to ASD symptom severity, as well as anxiety and sensory over-responsivity conditions modulated by gut microbiota in preclinical models (reviewed by Vuong and Hsiao15). Gut dysbiosis is an increasingly documented symptom of ASD but, similar to other clinical conditions, causality remains limited to intriguing, albeit untested, hypotheses and results from uncontrolled clinical studies.190

In summary, there is considerable and growing evidence implicating the gut microbiome not only in the normal development and function of the nervous system but also in a range of acute and chronic diseases affecting the gut, as well as the nervous system throughout life. It remains to be determined if the gut microbiota play a causal role, but its facilitation of pathogenesis and potentiation of severity in disease models suggests that it is not merely a secondary effect of the underlying etiology. In view of the extensive preclinical evidence for both top-down and bottom-up
signaling within the BGM axis and the emerging findings from clinical studies, we propose a systems biological model of bidirectional BGM interactions \(^{191}\) (Figure 2).

Future

Despite considerable progress characterizing the interaction between the gut microbiome and the CNS over the past 10 years, questions remain regarding their relevance to the pathogenesis, pathophysiology, and treatment of human brain gut disorders and we urge caution in prematurely extrapolating findings in rodent models to human beings. For example, based on clinical experience, long-term treatment with broad-spectrum antibiotics for infectious diseases and total colectomy in ulcerative colitis do not appear to have noticeable effects on mood, affect, or cognition in the vast number of patients. Advances in the field are the consequence of ever-more-powerful biological techniques, such as shotgun metagenomics and metatranscriptomics, coupled to novel bioinformatic and computational approaches that enable multi-omic integration of both microbial and host data using machine learning approaches. Efforts are underway not only to characterize further microbial community structure, function, and the contributions of individual taxa, but also the large communities of viruses (virome) and fungi (mycobiome) that, until recently, have been ignored owing to technological limitations. The decreasing costs of novel multi-omic analysis have facilitated data-driven approaches to identify patient subgroups with distinct patterns of dysbiosis and test the hypothesis that such subgroups will respond to personalized therapy using dietary, prebiotic, or probiotic interventions. However, there is an urgent need for large-scale, highly controlled, longitudinal human studies showing the causes and sequelae of dysbiotic gut states and explaining interindividual variability in susceptibility to BGM-related diseases. The past decade has shown a potent hidden organ. This next decade will see widespread inclusion of this newly discovered organ into diagnostic

Figure 2. Systems biological model of brain-gut-microbiome interactions. The gut microbiota communicate with the gut connectome, the network of interacting cell types in the gut that include neuronal, glial, endocrine, and immune cells, \(^{192}\) via microbial metabolites, while changes in gut function can modulate gut microbial behavior. The brain connectome, the multiple interconnected structural networks of the central nervous system, \(^{193}\) generates and regulates autonomic nervous system influences that alter gut microbial composition and function indirectly by modulating the microbial environment in the gut. The gut microbiota can communicate to the brain indirectly via gut-derived molecules acting on afferent vagal and/or spinal nerve endings, or directly via microbe-generated signals. Alterations in the gain of these bidirectional interactions in response to perturbations such as psychosocial or gut-directed (eg, diet, medication, infection) stress can alter the stability and behavior of this system, manifesting as brain-gut disorders. Modified from Fung et al.\(^{99}\)
consideration and in targeted manipulation for therapeutic intervention of many diseases.

References

1. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 2011; 12:453–466.
2. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; 6:306–314.
3. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701–712.
4. Park AJ, Collins J, Blennerhassett PA, Ghia JE, Verdu EF, Bercik P, Collins SM. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013;25, 733-e575.
5. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 2017; 81:411–423.
6. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesseau MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016;167:1469–1480 e12.
7. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011;479:538–541.
8. Amara AL, Sachs D, Costa VV, Fagundes CT, Cisalpino D, Cunha TM, Ferreira SH, Cunha FQ, Silva TA, Nicoli JR, Vieira LQ, Souza DG, Teixeira MM. Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci U S A 2008; 105:2193–2197.
9. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141:599–610, e1-3.
10. Collins SM, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol 2013;16:240–245.
11. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Podlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrisatt B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167:1339–1353 e21.
12. Bowey E, Adlercreutz H, Rowland I. Metabolism of isoflavones and lignans by the gut microbiota: a study in germ-free and human flora associated rats. Food Chem Toxicol 2003;41:631–636.
13. Mallett AK, Bearea CA, Rowland IR, Farthing MJ, Cole CB, Fuller R. The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J Appl Bacteriol 1987; 63:39–45.
14. Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, Julius D. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017;170:185–198 e16.
15. Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF, Ehrlicher A, Weitz DA, Kasper DL, Chiu IM, Mathis D, Benoist C. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune cross-talk. Cell 2017;168:1135–1148 e12.
16. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011;108:16050–16055.
17. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004;558:263–275.
18. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23:255–264, e119.
19. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011; 108:3047–3052.
20. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010;170:1179–1188.
21. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013;18:666–673.
22. Bercik P, Park AJ, Sinclair D, Khoshadel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011;23:1132–1139.
23. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassol S, Cardona A, Dauge V, Naudon L, Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014;42:207–217.
24. Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 2014;26:1615–1627.
25. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y, Surette MG, Verdu EF, Collins SM, Bercik P. Microbiota and host determinants of behavioural...
phenotype in maternally separated mice. Nat Commun 2015;6:7735.
26. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chov J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155:1451–1463.
27. Kelly JR, Borre Y, C OB, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016;82:109–118.
28. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 2015;48:165–173.
29. Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007;62:55–64.
30. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacterium infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 2008;43:164–174.
31. Arsenault-Breard J, Rondeau I, Gilbert K, Girard SA, Tompkins TA, Godbout R, Rousseau G. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 2012;107:1793–1799.
32. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016;21:786–796.
33. Ait-Belgnaoui A, Han W, Lamine F, Eutamene H, Fioramonti J, Bueno L, Theodorou V. Lactobacillus farcinimis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut 2006;55:1090–1094.
34. Eutamene H, Lamine F, Chabo C, Theodorou V, Rochat F, Bergonzelli GE, Corteshe-Thelaz I, Fioramonti J, Bueno L. Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J Nutr 2007;137:1901–1907.
35. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merou E, Geboes K, Chamalillard M, Ouwehand A, Leyer G, Carcado D, Colombel JF, Ardid D, Desreumaux P. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 2007;13:35–37.
36. Ma X, Mao YK, Wang B, Huizinga JD, Bienenstock J, Kunze W. Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. Am J Physiol Gastrointest Liver Physiol 2009;296:G868–G875.
37. Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X, Forsythe P, Bienenstock J. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 2009;13:2261–2270.
38. Duca FA, Swartz TD, Sakar Y, Covasa M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One 2012;7:e39748.
39. Vijay-Kumar M, Atikten JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010;328:228–231.
40. Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y, Nagai K. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 2005;389:109–114.
41. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015;125:926–938.
42. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 2014;34:15490–15496.
43. Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. Neurogastroenterol Motil 2012;24:405–413.
44. Martin CR, Mayer EA. Gut-brain axis and behavior. Nestle Nutr Inst Workshop Ser 2017;88:45–53.
45. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016;167:915–932.
46. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol 2011;72:381–393.
47. Mohle L, Mattei D, Heimesaat MM, Bereswill S, Matzinger P, Dunay IR, Wolf SA. Ly6C(hi) monocytes recreate a proinflammatory state in the gut. Nat Med 2007;13:1901–1907.
48. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Messaoudi E, Herbage S, Caron M, Faivre J, Desor D, Masson L, Caron M. Lactobacillus casei Nissle 1917 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 2012;107:1793–1799.
49. Kantak PA, Bobrow DN, Nyby JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav Pharmacol 2014;25:71–79.
50. D’Mello C, Ronaghan N, Zaheer R, Dicay M, Le T, MacNaughton WK, Surrette MG, Swain MG. Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J Neurosci 2015;35:10821–10830.
51. Cowan CS, Callaghan BL, Richardson R. The effects of a probiotic formulation (Lactobacillus rhamnosus and...
L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl Psychiatry 2016; 6:e823.

52. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559–563.

53. Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, Turnbaugh PJ. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015;17:72–84.

54. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JL. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009;1:6ra14.

55. Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 2009;96:557–567.

56. Jorgensen BP, Hansen JT, Krych L, Larsen C, Klein AB, Nielsen DS, Josefson K, Hansen AK, Sorensen DB. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS One 2014;9:e103398.

57. Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. Catecholamine diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Mol Psychiatry 2018;23:351–361.

58. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, Martin FP, Cominetti O, Welsh C, Rieder A, Traynor J, Gregory C, De Palma G, Pigrau M, Ford AC, Macri J, Berger B, Bergonzelli G, Surette MG, Collins SM, Moayyedi P, Bercik P. Probiotic Bifidobacterium longum NCC3001 use for depression in subjects. Brain Behav Immun 2017;61:50–59.

59. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA. Consumption of fermented milk product with probiotic modulates brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology 2017; 153:448–459 e8.

60. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 2015;48:258–264.

61. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2013;4:1394–1401, 401 e1–4.

62. Kelly JR, Allen AP, Temko A, Hutch W, Kennedy PJ, Farid N, Murphy E, Boylan G, Bienenstock J, Cryan JF, Clarke G, Dinan TG. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav Immun 2017;61:50–59.

63. Meyer C, Vassar M. The fragility of probiotic Bifidobacterium longum NCC3001 use for depression in patients with irritable bowel syndrome. Gastroenterology 2018;154:764.

64. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, Henrisat B, Oozeer R, Cools-Portier S, Gobert G, Chervaux C, Knights D, Lozupone CA, Knight R, Duncan AE, Bain JR, Muehlbauer MJ, Newgard CB, Heath AC, Gordon JL. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011;3:106ra106.

65. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogianni E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012;61:364–371.

66. Wang Y, Telesford KM, Ochoa-Reparaz J, Haque-Begum S, Christy M, Kasper EJ, Wang L, Wu Y, Robson SC, Kasper DL, Kasper LH. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun 2014;5:4432.

67. Singh V, Roth S, Lloversa G, Sadler R, Garzetti D, Stecher B, Diggans M, Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 2016;36:7428–7440.

68. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264–276.

69. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microbiota on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009; 106:3698–3703.

70. Samuel BS, Shaito A, Motopei T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yangisawa M, Gordon JL. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 2008;105:16767–16772.

71. Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thone J, Demir S, Muller DN, Gold R, Linker RA. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 2015;43:817–829.

72. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 2005; 19:334–344.

73. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. gamma-Aminobutyric acid production by 8 common bacterial pathogens. Scand J Infect Dis 1986;18:465–467.
75. Ozogul F. Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogen. Int J Food Sci Tech 2011;46:478–484.

76. Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Micro 2009;45:494–497.

77. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 2012;303:G1288–G1295.

78. Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 2013;10:729–740.

79. Morton GJ, Kaiyala KJ, Foster-Schubert KE, Cummings DE, Schwartz MW. Carbohydrate feeding dissociates the postprandial FGF19 response from circulating bile acid levels in humans. J Clin Endocrinol Metab 2014;99:E241–E245.

80. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab 2013;17:657–669.

81. Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016;24:41–50.

82. Hsuchou H, Pan W, Kastin AJ. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS 2013;10:32.

83. Marcelin G, Jo YH, Li X, Schwartz GJ, Zhang Y, Yun NJ, Lyu RM, Blouet C, Chang JK, Chua S Jr. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab 2014;3:19–28.

84. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002;143:1741–1747.

85. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Tsai SP, Stewart TA. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004;145:2594–2603.

86. Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor 19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 2013;154:9–15.

87. Perry RJ, Lee S, Ma L, Zhang D, Schlesinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun 2015;6:6980.

88. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002;298:714–719.

89. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006;47:241–259.

90. Thomas C, Gioiello A, Noriega L, Strehe A, Oury J, Rizzo G, Macchiariulo A, Yamamoto H, Matak C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009;10:167–177.

91. Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI, Perino A, Brighten CA, Sebti Y, Kluzia J, Briand O, Dehondt H, Vallez E, Dorches E, Baud G, Spinelli V, Hennuyer N, Caron S, Bantubungi K, Caiazzo R, Reimann F, Marchetti P, Lefebvre P, Backhed F, Griibe FM, Schoonjans K, Pattou F, Tailleux A, Staels B, Lestavel S. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun 2015;6:7629.

92. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001;81:1031–1064.

93. Russell WR, Gratz SW, Duncan SH, Holtop G, Ince J, Scobbie L, Duncan G, Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011;93:1062–1072.

94. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM. Gut microbiota fermentation of prebiotics increases satiogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009;90:1236–1243.

95. Nohr MK, Egerdol KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, Moller M. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 2015;290:126–137.

96. Kim DY, Camilleri M. Serotonin: a mediator of the brain–gut connection. Am J Gastroenterol 2000;95:2698–2709.

97. Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Exp Rev Mol Med 2006;8:1–27.

98. Marin IA, Goertz JE, Ren T, Rich SS, Onengut-Gumuscu S, Farber E, Wu M, Overall CC, Kipnis J, Gaultier A. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep 2017;7:43859.

99. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017;20:145–155.

100. Ochoa-Repaz R, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis
depends on polysaccharide A expression. J Immunol 2010;185:4101–4108.

101.Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, Kasper LH. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009;183:6041–6050.

102.Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Ladecola C, Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadealta T cells. Nat Med 2016;22:516–523.

103.Winek K, Engel O, Koduah P, Heimesaat MM, Fischer A, Bereswill S, Dames C, Kershaw O, Gruber AD, Curato C, Oyarna N, Meisel C, Meisel A, Dimagi U. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 2016;47:1354–1363.

104.Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Winek K, Engel O, Koduah P, Heimesaat MM, Fischer A, Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Ladecola C, Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadealta T cells. Nat Med 2016;22:516–523.

105.de Lartigue G, de La Serre CB, Raybould HE. Vagal afferent neurons in high fat diet-induced obesity: intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 2011;105:100–105.

106.Baranj I, Serra G, Amaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 2009;57:1013–1023.

107.Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485–498.

108.Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011;332:974–977.

109.Brook I, Nohr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013;154:3552–3564.

110.Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015;9:392.

111.Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Taneou T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485–498.
125. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011; 108(Suppl 1):4659–4665.

126. Branie TE, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakoczyev N, Ng LG, Kundu P, Gulyas B, Haldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6:263ra158.

127. Brown AJ, Goldsworthy SM, Barnes AA, Ellert MM, Michel L, Prat A. One more role for the gut: microbiota influences intestinal barrier permeability in mice. Sci Transl Med 2014;6:263ra158.

128. Varatharaj A, Galea I. The blood-brain barrier in systemic infections. Proc Natl Acad Sci U S A 2011; 108(Suppl 1):4659–4665.

129. Aguilera M, Vergara P, Martinez V. Stress and antibiotics influence blood-brain barrier permeability in mice. Sci Transl Med 2014;6:263ra158.

130. Martin JF, Sebedio JL, Sion B, Jarie GE, Ali J, Brugere JF. Colonic transit time is a driven force of the mucosa-associated microbiota. BMC Microbiol 2014; 14:189.

131. Tannock GW, Savage DC. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 1974; 9:591–598.

132. Galley JD, Nelson MC, Yu ZT, Dowd SE, Walter J, Kumar PS, Lyte M, Bailey MT. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol 2014; 14:189.

133. Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015;53:233–245.

134. Van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, Visser MR, Gooszen HG. Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil 2003;15:267–276.

135. Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 1997; 32:920–924.

136. Saad RJ, Rao SS, Koch KL, Kuo B, Parkman HP, McCallum RW, Sitrin MD, Wilding GE, Semler JR, Chey WD. Do stool form and frequency correlate with whole-gut and colonic transit? Results from a multicenter study in constipated individuals and healthy controls. Am J Gastroenterol 2010;105:403–411.

137. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016; 65:57–62.

138. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaﬀron S, Rymenans L, Verspecht C, De Sutter L, Lima-Mendez G, D’Hoe K, Jonckheere K, Homola D, Garcia T, Tichelaar EF, Eeckhaut L, Fu J, Henckaerts L, Zernakova A, Wijmenga C, Raes J. Population-level analysis of gut microbiome variation. Science 2016;352:560–564.

139. Roager HM, Hansen LB, Bahl M, Frandsen HL, Carvalho V, Gobel RJ, Dalgaard MD, Plichta DR, Sparholt MH, Vestergaard H, Hansen T, Sicheritz-Ponten T, Nielsen HB, Pedersen O, Lauritzen L, Kristensen M, Gupta R, Licht TR. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol 2016;1:16093.

140. Tottey W, Feria-Gervasio D, Gaci N, Laitel B, Pujos E, Martin JF, Sebedio JL, Sion B, Jarie GE, Ali J, Brugere JF. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. J Neurogastroenterol Motil 2017;23:124–134.

141. Santos J, Yang PC, Soderholm JD, Benjamin M, Perdue MH. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001; 48:630–636.

142. Saunders PR, Santos J, Hannels NP, Yates D, Groot JA, Perdue MH. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci 2002;47:208–215.

143. Meddings JB, Swain MG. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology 2000; 119:1019–1028.

144. Demmaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 2006; 55:655–661.

145. Lauffer A, Vanuytsel T, Vanomrkeling C, Vanheel H, Salim Rasoel S, Toth J, Tack J, Fornari F, Farre R. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats. Stress 2016; 19:225–234.

146. Varghese AK, Verdu EF, Bercik P, Khan W, Bienenhassett PA, Szechtmian H, Collins SM. Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 2006; 130:1743–1753.

147. Rubio CA, Huang CB. Quantification of the sulphomucin-producing cell population of the colonic mucosa during protracted stress in rats. In Vivo 1992;6:81–84.

148. Soderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, Perdue MH. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 2002; 123:1099–1108.

149. Houlden A, Goldrick M, Brough D, Vizi ES, Lenart N, Martinez B, Roberts IS, Denes A. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 2016;57:10–20.
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2010;12:319–330.

Lyte M. The role of microbial endocrinology in infectious disease. J Endocrinol 1993;137:343–345.

Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014;146:1500–1512.

Santos J, Saperas E, Nogueiras C, Mourelle M, Antolin M, Cadahia A, Malagelada JR. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 1998;114:640–648.

Stephens RL, Tache Y. Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats. Am J Physiol 1989;256:G377–G383.

Yang H, Stephens RL, Tache Y. TRH analogue micro-injected into specific medullary nuclei stimulates gastric serotonin secretion in rats. Am J Physiol 1992;262:G216–G222.

Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The Qsc sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 2006;103:10420–10425.

Lyte M. The role of catecholamines in gram-negative sepsis. Med Hypotheses 1992;37:255–258.

Alverdy J, Holbrook C, Rocha F, Seiden L, Wu RL, Musch M, Chang E, Ohman D, Suh S. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 2000;232:480–489.

Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 2008;6:111–120.

Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Kettle J, Humphrey TJ. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 2007;56:1060–1065.

Paulose JK, Wright JM, Patel AG, Cassone VM. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One 2016;11:e0146643.

Bubnenik GA, Brown GM. Pinealectomy reduces melatonin levels in the serum but not in the gastrointestinal tract of rats. Biol Signals 1997;6:40–44.

Bubnenik GA, Pang SF, Hacker RR, Smith PS. Melatonin concentrations in serum and tissues of porcine gastrointestinal tract and their relationship to the intake and passage of food. J Pineal Res 1996;21:251–256.

Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014;159:514–529.

Simren M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG. Rome Foundation Committee. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013;62:159–176.

Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N, Gupta A, Acosta J, Luna RA, Aagaard K, Versalovic J, Savidge T, Hsiao E, Tillisch K, Mayer EA. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 2017;5:49.

Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, Simren M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 2012;61:997–1006.

Tap J, Derrien M, Tomblom H, Brazelles R, Cools-Portier S, Dore J, Storsrud S, Le Neve B, Ohman L, Simren M. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 2017;152:111–123 e8.

Kerckhoffs AP, Ben-Amor K, Samsom M, van der Rest ME, de Vogel J, Knol J, Akkermans LM. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J Med Microbiol 2011;60:236–245.

Pimentel MF, Giamarellos-Bourboulis EJ, Pyleris E, Pistikti K, Tang J, Lee C, Harkins T, Kim G, Weitsman S, Barlow GM, Chang C. The first large scale deep sequencing of the duodenal microbiome in irritable bowel syndrome reveals striking differences compared to healthy controls. Gastroenterology 2013;144:S59.

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 2011;25:397–407.

Knowles SR, Nelson EA, Palombo EA. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol Psychol 2008;77:132–137.

Pedram P, Wadden D, Amini P, Gulliver W, Randell E, Cahill F, Vasdev S, Goodridge A, Carter JC, Zhai G, Ji Y, Sun G. Food addiction: its prevalence and significant association with obesity in the general population. PLoS One 2013;8:e74832.

Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012;7:e35240.

Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, Francois P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011;60:2775–2786.

Ternbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JJ. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027–1031.

Fernandez-Real JM, Serino M, Blasco G, Puig J, Daenis-Estadella J, Ricart W, Burcelin R, Fernandez-Aranda F,
Portero-Otin M. Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab 2015;100:4505–4513.

Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 2016;125:988–995.

Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009;106:2365–2370.

Li JV, Ashra Damms-Machado A, Mitra S, Schollenberger AE, Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, Fandriks L, le Roux CW, Nielsen J, Bach KD, Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 2015;22:228–238.

Kelly JR, Clarke G, Cryan JF, Dinan TG. Brain-gut microbiota axis: challenges for translation in psychiatry. Ann Epidemiol 2016;26:366–372.

Mertsalmi TH, Aho VTE, Pereira PAB, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. More than constipation - bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 2017;24:1375–1383.

Fasano A, Visani NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2015;14:625–639.

Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioessays 2014;36:933–939.

Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S, Sadowsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017;5:10.

Mayer EA, Labus JS, Tillisch K, Cole SW, Baldi P. Towards a systems view of IBS. Nat Rev Gastroenterol Hepatol 2015;12:592–605.

Bohórquez DV, Liddle RA. The gut connectome: making sense of what you eat. J Clin Invest 2015;125:888–890.

Sporns O. The human connectome: origins and challenges. Neuroimage 2013;80:53–61.

Received November 19, 2017. Accepted April 4, 2018.

Correspondence
Address correspondence to: Emeran A. Mayer, MD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California at Los Angeles, MC737818-10833 Le Conte Avenue, Los Angeles, California 90095-7378. e-mail: emayer@ucla.edu; fax: (310) 825-1919.

Author contributions
Clair R. Martin played a key role in the concept development, literature review, and writing of the manuscript; Emeran A. Mayer worked on the concept development and drafted the manuscript; and Vadim Osadchiy and Amir Kalani performed the literature review.

Conflicts of interest
This author discloses the following: Emeran A. Mayer serves on the scientific advisory boards of Danone, Viome, Axial Biotherapeutic, Whole Biome Prolacta, Amare, Bloom Science and Pharmavite. The remaining authors disclose no conflicts.

Funding
Supported by grants DK048351 (EAM) and DK064539 (EAM) and DK041301 (ER) from the National Institute of Diabetes and Digestive and Kidney Diseases.