Study of top-quark production and decays involving a tau lepton at CDF and limits on a charged-higgs boson contribution

CDF Collaboration; Canelli, F; Kilminster, B; et al

Abstract: We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark using data from $9fb^{-1}$ of integrated luminosity at the Collider Detector at Fermilab. Dilepton events, where one lepton is an energetic electron or muon and the other a hadronically-decaying tau lepton, originating from proton-antiproton collisions at $\sqrt{s} = 1.96$TeV are used. A top-antitop quark production cross section of $8.1 \pm 2.1pb$ is measured, assuming standard-model top-quark decays. By separately identifying for the first time the single-tau and the ditau components, we measure the branching fraction of the top quark into tau lepton, tau neutrino, and bottom quark to be $(9.6 \pm 2.8)\%$. The branching fraction of top-quark decays into a charged Higgs boson and a bottom quark, which would imply violation of lepton universality, is limited to be less than 5.9% at 95% confidence level.

DOI: https://doi.org/10.1103/PhysRevD.89.091101
Study of Top-Quark Production and Decays involving a Tau Lepton at CDF and Limits on a Charged-Higgs Boson Contribution
We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark, using data from 9.3 fb$^{-1}$ of integrated luminosity at the Collider Detector at Fermilab. Dilepton events, where one lepton is an energetic electron or muon and the other a hadronically-decaying tau lepton, originating from proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV are used. A top-antitop quark production cross section of 8.7 ± 0.8 pb is measured, assuming standard-model top-quark decays. By separately identifying for the first time the single-tau and the ditau components, we measure the branching fraction of the top quark into tau lepton, tau neutrino, and bottom quark to be $(9.6 \pm 2.8)\%$. The branching fraction of top-quark decays into a charged Higgs boson and a bottom quark, which would imply violation of lepton universality, is limited to be less than 5.9% at 95% confidence level (for $B(H^+ \to \tau \nu) = 1$).

PACS numbers: 14.65.Ha, 14.80.Da, 14.80.Fd

The large integrated luminosity provided by the 2001-

*Deceased

1With visitors from *University of British Columbia, Vancouver, BC V6T 1Z1, Canada, bIstituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, cUniversity of California Irvine, Irvine, CA 92697, USA, dInstitute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic, eCERN, CH-1211 Geneva, Switzerland, fCornell University, Ithaca, NY 14853, USA, gUniversity of Cyprus, Nicosia CY-1678, Cyprus, hOffice of Science, U.S. Department of Energy, Washington, DC 20585, USA, iUniversity College Dublin, Dublin 4, Ireland, jETH, 8092 Zürich, Switzerland, kUniversity of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, lUniversidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal, mUniversity of Iowa, Iowa City, IA 52242, USA, nKinki University, Higashi-Osaka City, Japan 577-8502, oKansas State University, Manhattan, KS 66506, USA, pBrookhaven National Laboratory, Upton, NY 11973, USA, qQueen Mary, University of London, London, E1 4NS, United Kingdom, rUniversity of Melbourne, Victoria 3010, Australia, sMuons, Inc., Batavia, IL 60510, USA, tNagasaki Institute of Applied Science, Nagasaki 851-0193, Japan, uNational Research Nuclear University, Moscow 115409, Russia, vNorthwestern University, Evanston, IL 60208, USA, wUniversity of Notre Dame, Notre Dame, IN 46556, USA, xUniversidad de Oviedo, E-33007 Oviedo, Spain, yCNRS-IN2P3, Université de Paris, F-75205 France, zUniversidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile, aaThe University of Jordan, Amman 11042, Jordan, abUniversité catholique de Louvain, 1348 Louvain-la-Neuve, Belgium, acUniversity of Zürich, 8006 Zürich, Switzerland, adMassachusetts General Hospital, Boston, MA 02114 USA, aeHarvard Medical School, Boston, MA 02114 USA, afHampton University, Hampton, VA 23668, USA, agLos Alamos National Laboratory, Los Alamos, NM 87544, USA, ahUniversità degli Studi di Napoli Federico I, I-80138 Napoli, Italy

2011 operations of the Tevatron proton-antiproton collider enables the Fermilab collider detector experiments to perform precision measurements of top-quark properties. Within the standard model the top quark decays into a W boson and bottom quark, which is the dominant decay mode. However, new particles beyond the standard model, like charged bosons, could open additional decay modes. Higgs bosons with unit electric charge are predicted by extensions of the standard model that contain an extended Higgs sector, such as two Higgs doublet models. For charged Higgs bosons lighter than the top quark, one of the most interesting decay modes is into a tau lepton and neutrino, with a branching fraction close to 1 in a large region of parameter space.

This paper presents an analysis of dilepton events predominantly originated from top-antitop-quark, $t \bar{t}$, production, where one of the leptons is an electron or muon and the other a hadronically-decaying tau. For hadronically-decaying tau leptons, both online event selection, trigger, and identification are demanding due to the relatively short lifetime of tau leptons and the presence of one or more neutrinos in the final state. We measure top production and decay properties: the $t \bar{t}$ production cross section and top branching fraction into tau lepton, neutrino, and bottom quark. Separating top-quark decays where the electron or muon originates from a top decay from those where it originates directly from a W boson decay allows us to measure the branching fraction without relying on a theoretical cross-section calculation.

The Collider Detector at Fermilab, CDF, experiment
is located at the Fermilab Tevatron. The data used in the analysis presented here were collected between 2001 and 2011 at a center-of-mass energy of 1.96 TeV and correspond to an integrated luminosity of 9 fb\(^{-1}\). Of particular importance for the analysis is the charged-particle trajectory measurement (tracking) system. It is comprised of a silicon-microstrip-detector system \(^{[3]}\) close to the collision region and an open-cell drift chamber \(^{[3]}\), both immersed in a 1.4 Tesla solenoidal field. They enable measuring the transverse momentum \(^{[7]}\) of charged particles with a resolution of about 150 MeV/c at 10 GeV/c. Outside the tracking system are electromagnetic and hadronic sampling-calorimeters \(^{[8]}\) segmented in a projective-tower geometry of about 0.1 unit in pseudorapidity and 15 degrees in azimuthal angle \(^{[7]}\). Drift chambers and scintillators are located outside the calorimeters to identify muons \(^{[9]}\). Events for this analysis are selected by triggers designed to collect samples enriched in decays of low-momentum tau leptons for non-standard-model physics searches. The triggers require an electron or muon candidate with at least 8 GeV\(^{[10]}\) and 15 degrees in azimuthal angle \(^{[7]}\). For the identification of bottom-quark jets, we use the SECVTX tagger \(^{[14]}\) to identify secondary vertices within a jet that are displaced from the primary interaction vertex of the event. We require two jets \(^{[15]}\), one with \(E_T > 20\) GeV and a second with \(E_T > 15\) GeV, both within \(|\eta| \leq 2\) \(^{[7]}\). At least one jet should be tagged as a candidate for containing a long-lived bottom-quark hadron, i.e., have a secondary vertex with a decay length in the transverse plane that exceeds three times its uncertainty. The efficiency of the SECVTX tagger is about 44% for bottom-quark jets in the central region with about a 1% mistag rate for light-quark and gluon jets.

Events from \(t\bar{t}\) production with leptonic W decays and one hadronic tau decay have three or five neutrinos in the final state (not counting possible semileptonic heavy-quark decays). The sum of the transverse momenta of the neutrinos is measured by the missing transverse energy \(E_T^{\text{miss}}\) \(^{[10]}\) of the event. Events are required to have \(E_T^{\text{miss}} \geq 30\) GeV. Charged particles with \(p_T \geq 1\) GeV/c within the cone are associated with the tau candidate and define its track multiplicity or number of prongs. For one-prong tau candidates, the calorimeter cluster is required to have \(E_T \geq 10\) GeV and for three-prong candidates \(E_T \geq 15\) GeV. To suppress contamination from minimum ionizing particles in the calorimeter, the \(E_T\) of the calorimeter cluster should be at least 40% of the scalar sum of the transverse momenta of charged particles in the signal cone. An isolation annulus between the signal cone and \(\pi/6\) is used to further suppress quark and gluon jets. No charged particle with \(p_T \geq 1.5\) GeV/c or neutral pion candidate \(^{[12]}\) is allowed in this region and the scalar transverse momentum sum of the charged particles inside the region must not exceed 2 GeV/c. To suppress electron contamination, tau candidates associated with very small energy in the hadronic calorimeter compared to the transverse momentum sum of the charged particles are rejected \(^{[13]}\). The four-momentum vector of the tau candidate is calculated from the charged particles and neutral pions inside the signal cone. Since the tau decay produces a neutrino, the reconstructed mass should be smaller than the mass of the tau lepton and it is thus required to be less than 1.8 GeV/c\(^2\). Tau candidates whose three final-state charged particles have the same electric charge are rejected as are events where the charge of the tau candidate and of the electron or muon candidate have the same sign.

Identified Z\(^0\) decays and low-mass muon pairs from the Drell-Yan process are removed with dilepton mass requirements. If the two-body mass of the electron plus any calorimeter cluster with over 90% of energy in the electromagnetic compartment falls within the range of 86 to 96 GeV/c\(^2\), the event is rejected. Similarly, if the two-body mass of the muon and any minimum ionizing particle falls within the range of 76 to 106 GeV/c\(^2\) or is below 15 GeV/c\(^2\) the event is rejected.
To purify the selection of $t\bar{t}$ events we exploit the large top-quark mass and require events to have a large amount of transverse energy in the final state: $H_T = E_T + E_T^{\text{tau}} + \sum E_T^{\text{jet}} \geq 150$ GeV (≥ 155 GeV in case of three-prong tau candidates). Contrary to other top quark analyses \cite{1}, the E_T of the electron or muon is not included in H_T. The electron or muon can come from either top or tau decay and including its E_T in the H_T would favor single-tau (with a more energetic electron or muon) over ditau events in the selection. This selection defines the initial analysis sample.

To study background sources and the signal we generate events using the ALPGEN and PYTHIA Monte Carlo programs \cite{12}, using a top quark mass of 173 GeV/c2. To mimic geometrical and kinematical acceptances, the generated events are passed through a GEANT-based detector simulation \cite{13}. Event yields are normalized using theoretical next-to-leading-order cross-section calculations \cite{18} and scaled for trigger efficiencies and any differences in lepton identification efficiencies between data and simulated events.

To estimate the background contribution from quark and gluon jets misidentified as hadronic tau decays, events triggered on single jets or on single electrons or muons are used. First, the probability of a hadronic jet to be misidentified as a tau lepton is measured. In the second step, this probability is used to weight the jets in events with an electron or muon candidate to estimate and study the misidentified-tau-lepton contribution in our electron-or-muon-plus-tau sample. Signal events are naturally excluded in this method due to the exclusive one-tau-candidate selection in the initial analysis sample.

For the misidentification-probability measurement, we use jet-triggered data with calorimeter-jet-E_T thresholds of 5 to 100 GeV. The trigger bias is removed by requiring at least two jets in each event to pass the trigger requirements. For the probability calculation we use tau-like jets, i.e., calorimeter jets that pass the tau identification requirements above except for the isolation and mass requirements. There is a small contribution from genuine tau-lepton decays in the jet sample due to vector boson (and top-quark) decays involving a tau. This contribution is suppressed by requiring the jet events to have insignificant missing transverse energy \cite{20} and no identified electron or muon with $E_T > 10$ GeV. Leading and subleading jets have different proportions of gluons and quarks resulting in different probabilities for tau misidentification. We treat these jets separately, average their misidentification rates to determine the nominal tau-misidentification probability, and use the difference to each as a measure of the systematic uncertainty. The probability is parametrized as a function of jet E_T, η, and number of prongs. Probabilities range from 1% to 10% per tau-like jet or 0.1% to 1% per generic jet. The measurement of the tau-misidentification probability is checked in two control regions, a multi-jet and a W plus jet enriched sample.

To estimate the contribution of jets misidentified as tau candidates in this analysis, single-lepton-triggered data are used. CDF recorded events requiring only a $p_T > 8$ GeV/c electron or muon candidate. For each tau-like jet in those events, we mimic a tau candidate with the above measured probability, correct for the difference in sample size with respect to the signal sample, and analyze it analogously to the signal sample. With this approach we simulate event characteristics, study the contribution of events with a misidentified tau lepton, and properly apply kinematic selections to reduce this background.

In the initial analysis sample we observe 58 events with an expectation of about 34 $t\bar{t}$ dilepton events \cite{19} and about 4 events from Drell-Yan and diboson production. Astoundingly, the calculation of misidentified tau leptons shows a contribution of approximately 16 events. We find over half of them to be $t\bar{t}$ events, but with one of the top quarks decaying leptonically and the other hadronically. Four jets provide the occasion to be misidentified as a tau lepton, while the rest of the event satisfies the selection with effectively the same efficiency as the signal. To reject this background, a likelihood function L_1 is based on two tau identification variables and three kinematic variables to distinguish single-lepton from dilepton-$t\bar{t}$ events: (i) The ratio of tau-calorimeter cluster E_T to signal-cone-charged-particle-p_T sum is used in the tau identification to reject muon background. Compared to genuine tau leptons the distribution of this ratio for jets misidentified as taus is broader with a long tail. (ii) The charged-particle p_T sum in the isolation annulus is required to be less than 2 GeV/c in the tau candidate selection. It provides further discrimination as tau leptons in top quark decays are isolated, while jets misidentified as taus have a nearly uniform distribution within the remaining phase space. (iii) The one neutrino in the single-lepton $t\bar{t}$ events yields a E_T of around half the W boson mass and (iv) a transverse mass of electron or muon plus missing E_T up to the W mass. (v) Events with a hadronic top-quark decay have an extra jet. One of the two extra jets in the event must be misidentified as a tau lepton. The jet may not be reconstructed, and dilepton $t\bar{t}$ events may have additional jets from initial- or final-state radiation. The E_T of any third jet becomes the final variable for the likelihood. Figure\cite{11} shows the distribution of the likelihood function for data compared to the expectation from top dilepton, Drell-Yan, diboson, and misidentified tau lepton events. A log $L_1 > 0$ requirement leaves 36 events in the data with 26.7 ± 3.4 $t\bar{t}$ dilepton events, 3.1 ± 0.5 Drell-Yan and diboson events, and 4.0 ± 1.1 events expected from jets misidentified as tau leptons.
Assuming a standard-model top-quark decay, i.e., a branching fraction $B(t \to W^+b) = 1$, an acceptance corrected $t\bar{t}$ production cross section of $8.1 \pm 1.7\,(\text{stat})^{+1.1}_{-1.1}\,(\text{syst}) \pm 0.5\,(\text{lumi})\,\text{pb}$ is measured. Acceptance corrections are based on leading order parton shower Monte Carlo simulations and the CDF detector simulation described above. Branching fractions for both W boson and tau lepton decays are taken from [2]. Lepton, jet, and bottom-quark-tagging efficiencies are estimated previously [1, 10, 11, 14]. The systematic uncertainties include experimental contributions from lepton acceptance and identification, trigger efficiency, tau- and jet-energy-scale corrections, tagging efficiency ($\pm 5\%$), mistag rate ($\pm 20\%$), tau-misidentification probability ($\pm 20\%$) [20], modeling of additional collisions contained in an event, pile-up, and measurement of the integrated luminosity ($\pm 5.9\%$) and theoretical contributions from the cross section of Drell-Yan and diboson production, choice of parton distribution functions, color reconnection, initial- and final-state radiation ($\pm 9\%$), fragmentation and parton showering. The uncertainty of the dominant systematic effects are provided in parenthesis (which is not their contribution to the cross section uncertainty). This cross section measurement in the ditau channel complements the more precise measurements in the electron, muon and hadronic channels [1].

Using the theoretical $t\bar{t}$ production cross section instead of the standard-model decay branching fractions, we can extract a branching fraction of the top-quark decay into tau lepton, tau neutrino, and bottom quark. However, the data sample contains two $t\bar{t}$ components: a single-tau component that is proportional to the top quark into tau lepton, tau neutrino, and bottom-quark branching fraction (times the top quark into electron or muon, neutrino, and bottom-quark branching fraction) and a ditau component that is proportional to the branching fraction squared. Separating the two components allows measurement of the top quark into tau, neutrino, and bottom-quark branching fraction (and the $t\bar{t}$ production cross section) directly without theoretical assumption on either. For this, a second likelihood, L_2, is constructed using the following three variables. The leptonic tau decay yields two neutrinos close to the electron or muon direction, in addition to the neutrino from the W decay. (i) This impacts the distribution of transverse mass m_T of the electron or muon plus missing E_T (Fig. 2) and (ii) the distribution of the azimuthal angle between electron or muon and missing E_T (Fig. 3). (iii) It also leads to, on average, lower p_T of electrons or muons in ditau events, as shown in Fig. 4. The ditau component contributes more at large L_2 while the single-tau component is shifted toward smaller values of L_2, as shown in Fig. 5.

We use the MClimit [21] package to fit the likelihood distribution with a single-tau component that has a linear dependence on the branching fraction of top quark into tau, neutrino, and bottom-quark, and a ditau component that has a quadratic branching-fraction dependence. The expected background contributions from Drell-Yan, diboson production, and jets misidentified as tau leptons are included in the fit and allowed to vary within their uncertainties. The systematic uncertainties on the event yield are included via nuisance parameters. We check the effect of the largest systematic uncertainty (from the probability distribution of jets being misidentified as tau leptons) on the shape of the likelihood distribution and found it to be small. For the most precise result we make use of a third branching fraction dependency by including the $t\bar{t}$ production cross-section measured by CDF in
FIG. 3: Distribution of the azimuthal angle between electron or muon and missing E_T for data, single-tau $t\tau$, ditau $t\tau$, and non-$t\tau$ events. For the purpose of comparing the single-tau and ditau shapes, used in the likelihood, a line shows the ditau contribution scaled to the number of single-tau events and plotted on top of the background.

![CDF Run II, 9 fb$^{-1}$](image1)

FIG. 4: Transverse momentum distribution of the electron or muon for data, single-tau $t\tau$, ditau $t\tau$, and non-$t\tau$ events. For the purpose of comparing the single-tau and ditau shapes, used in the likelihood, a line shows the ditau contribution scaled to the number of single-tau events and plotted on top of the background.

![CDF Run II, 9 fb$^{-1}$](image2)

the single-lepton channel with its uncertainty as a constraint in the χ^2 fit and obtain

$$B(t \to \tau \nu b) = 0.096 \pm 0.028,$$

with a single-tau component of 22.7 events and ditau component of 3.1 events (Fig. 5). The ratio of leptonic top branching ratios can be derived from this, and we find $B(t \to \tau \nu b)/(B(t \to e\nu b) + B(t \to \mu\nu b))/2 = 0.88 \pm 0.26$, confirming lepton universality in top quark decays.

At 95% confidence level the fit excludes a branching fraction of 15.8% or more of top quarks decaying into tau lepton, tau neutrino, and bottom quark (using the likelihood-ratio method). A previous CDF analysis found the acceptance for $t\tau$ tau events with decay via charged Higgs boson to be equal to the acceptance of events with decay via W boson for charged-Higgs masses between 80 and 140 GeV/c^2. Assuming that the top quark decays only into W and charged Higgs bosons and $B(H^+ \to \tau\nu) = 1$, we exclude branching fractions for top quark decays into a charged Higgs boson and a bottom quark of 5.9% or more at 95% confidence level using the likelihood-ratio ordering.

With the discovery of a neutral Higgs boson at 125 GeV/c^2 by the ATLAS and CMS experiments, the question of an extended Higgs sector gains interest. Previous searches for a charged Higgs boson at LEP constrained its mass to be $m_{H^\pm} > 78.6$ GeV/c^2 and at the Tevatron constrained the branching fractions to be $B(t \to H^\pm b) < 0.15 - 0.19$ (for $B(H^\pm \to \tau\nu) = 1$) and $B(t \to H^+ b) < 0.10 - 0.30$ (for $B(H^+ \to e\nu) = 1$). Recent LHC searches improved the limits to $B(t \to H^+ b) < 0.01 - 0.05$ and $< 0.02 - 0.03$ for $B(H^+ \to \tau\nu) = 1$.

In summary, we present an analysis of dilepton $t\bar{t}$ events using 9 fb$^{-1}$ of integrated luminosity at CDF. The analysis separates the single and ditau components for the first time, measuring the branching fraction of the top-quark decay into tau lepton, tau neutrino, and bottom quark at $(9.6 \pm 2.8)\%$, and testing lepton universality of the decay. The limit on the branching fraction of top quark into charged Higgs boson and bottom quark is comparable with recent measurements in proton-proton collisions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of
education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship contract 302103.

[1] T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012); Phys. Rev. D 85, 071106 (2012); T. Aaltonen et al. (CDF Collaboration), Phys. Lett. B 722, 48 (2013); Phys. Rev. Lett. 106, 161801 (2011); Phys. Rev. D 83, 112003 (2011); Phys. Rev. Lett. 105, 232003 (2010); Phys. Rev. D 79, 031101 (2009); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 95, 102002 (2005); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 87, 011103 (2013); Phys. Lett. B 713, 165 (2012); Phys. Rev. D 85, 091104 (2012); Phys. Rev. Lett. 108, 032004 (2012); Phys. Rev. D 84, 112005 (2011); Phys. Rev. Lett. 107, 121802 (2011).

[2] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012). The top quark review is at page 668. The statistics review is at page 390.

[3] T. D. Lee, Phys. Rev. D 8, 1226 (1973); J. F. Donoghue and L. F. Li, Phys. Rev. D 19, 945 (1979); V. D. Barger, J. L. Hewett and R. J. N. Phillips, Phys. Rev. D 41, 3421 (1990).

[4] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).

[5] A. Sill, Nucl. Instrum. Meth. A 447, 1 (2000); T. Affolder et al., Nucl. Instrum. Meth. A 453, 84 (2000); C. S. Hill, Nucl. Instrum. Meth. A 511, 118 (2004).

[6] T. Affolder et al., Nucl. Instrum. Meth. A 526, 249 (2004).

[7] CDF uses a right-handed coordinate system with origin at the nominal interaction point. \(0 \) and \(\phi \) are the polar and azimuthal angles, defined with respect to the \(z \)-axis, the proton beam direction. The transverse momentum of a particle is \(p_T = p \sin(\theta) \) and the pseudorapidity \(\eta = -\ln(\tan(\theta/2)) \). Similarly for the transverse energy, \(E_T \). The transverse mass of two particles is calculated as \(\sqrt{2 E_T E_{T}' (1 - \cos(\phi - \phi'))} \).

[8] L. Balka et al., Nucl. Instrum. Meth. A 267, 272 (1988); S. Bertolucci et al., Nucl. Instrum. Meth. A 267, 301 (1988); M. Albrow et al., Nucl. Instrum. Meth. A 480, 524 (2002); G. Apollinari et al., Nucl. Instrum. Meth. A 412, 515 (1998).

[9] G. Ascoli et al., Nucl. Instrum. Meth. A 268, 33 (1988).

[10] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005); A. Abulencia et al. (CDF Collaboration), J. Phys. G: Nucl. Part. Phys. 34, 2457 (2007).

[11] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 75, 092004 (2007); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 95, 131801 (2005).

[12] Neutral pion candidates are energy deposits in the electromagnetic calorimeter and are not reconstructed two photons at the \(\pi^0 \) mass.

[13] For best electron and muon rejection, the fraction of energy in the electromagnetic compartment of the calorimeter is actually compared to the ratio of calorimeter energy and momentum sum of the charged particles in signal cone, \((E/\sum |p|)(0.95 - E_{\text{EM}}/E) > 0.1 \).

[14] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).

[15] G. C. Blazey et al. arXiv:hep-ex/0005012. A cone radius of 0.4 is used in the analysis presented here.

[16] While proton and antiproton have equal but opposite momenta, the interacting partons likely have different momenta. Therefore the interaction has an unknown longitudinal boost. The missing transverse energy is defined as the opposite of the transverse component of the vector sum of the energy in the calorimeters towers. We use \(E_T \) to denote the scalar magnitude of the missing \(E_T \). The energy of identified minimum-ionizing particles (muons) is included in the missing \(E_T \) calculation and the energy of jets is corrected for the calorimeter response and absolute scaling.

[17] M. L. Mangano et al., J. High Energy Phys. 07 (2003) 001; T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[18] J. Ohnemus, Phys. Rev. D 44, 3477 (1991); S. Frixione, P. Nason, and G. Ridolfi, Nucl. Phys. B 383, 3 (1992); J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).

For \(Z^0 \)/Drell-Yan plus jet production the next-to-leading-order cross sections are computed using the MCFM program. J. Campbell and R. K. Ellis, Phys. Rev. D 65 113007 (2002).

[19] For the expected number of \(t \bar{t} \) events, a top-quark mass of \(m_t = 173 \text{ GeV}/c^2 \) and cross section of \(\sigma_{t\bar{t}} = 7.5 \text{ pb} \) is used.

[20] CDF Collaboration, Measurement of the top pair cross section in dileptonic channels with a hadronic tau and branching fraction \(t \rightarrow \tau \nu_b \), with 9.0 fb^{-1}, http://www-cdf.fnal.gov/physics/new/top/2012/
ttbar_tautaulep_xsec_minvfb/cdf10915_TopPairDilepTau.pdf

[21] T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 82, 112005 (2010); T. Junk, Nucl. Instrum. Meth. A 434, 435 (1999).

[22] T. Aaltonen et al. (CDF Collaborations), Phys. Rev. Lett. 105, 012001 (2010).

[23] The cross-section measurement in the single-lepton channel has a branching-fraction dependence of \(B^{\text{SM}}(t \rightarrow e \nu_b) \times (1 + (B^{\text{SM}}(t \rightarrow \tau \nu_b) - B^{\text{SM}}(t \rightarrow 0 \nu_b))) / (1 - B^{\text{SM}}(t \rightarrow 0 \nu_b))) \), which is used in the fit.

[24] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 042003 (2006).

[25] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873
[26] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012); S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012).

[27] ALEPH, DELPHI, L3 and OPAL Collaborations, The LEP Working Group for Higgs Boson Searches, arXiv:hep-ex/0107031.

[28] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 278 (2009); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 101803 (2009).

[29] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 06 (2012) 039.

[30] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 07 (2012) 143.