Deletion of Mocos Induces Xanthinuria with Obstructive Nephropathy and Major Metabolic Disorders in Mice

Delphine Sedda,1 Claire Mackowiak,1 Elodie Culerier,1 Ana Dudas,1 Pauline Rontani,2 Nicolas Erard,2 Antoine Lefevre,3 Sylvie Mavel,3 Patrick Emond,3,4,5 Frederic Foucher,6 Marc Le Bert,1 Valerie F.J. Quesniaux,1 Michael J. Mihatsch,7 Bernhard Ryffel,1 and Madeleine Erard-Garcia1

Key Points

- A knockout mouse targeting the molybdenum cofactor sulfurase (Mocos) gene develops xanthinuria type II with lethal obstructive nephropathy.
- Xanthinuric Mocos knockout mice display moderate renal inflammation and fibrosis, normocytic anemia, and reduced detoxification defense systems.
- Purine, but also amino acid and phospholipid, metabolic pathways are altered in Mocos knockout kidneys.

Abstract

Background Xanthinuria type II is a rare autosomal purine disorder. This recessive defect of purine metabolism remains an under-recognized disorder.

Methods Mice with targeted disruption of the molybdenum cofactor sulfurase (Mocos) gene were generated to enable an integrated understanding of purine disorders and evaluate pathophysiologic functions of this gene which is found in a large number of pathways and is known to be associated with autism.

Results Mocos-deficient mice die with 4 weeks of age due to renal failure of distinct obstructive nephropathy with xanthinuria, xanthine deposits, cystic tubular dilation, Tamm–Horsfall (uromodulin) protein (THP) deposits, tubular cell necrosis with neutrophils, and occasionally hydropnephrosis with urolithiasis. Obstructive nephropathy is associated with moderate interstitial inflammatory and fibrotic responses, anemia, reduced detoxification systems, and important alterations of the metabolism of purines, amino acids, and phospholipids. Conversely, heterozygous mice expressing reduced MOCOS protein are healthy with no apparent pathology.

Conclusions Mocos-deficient mice develop a lethal obstructive nephropathy associated with profound metabolic changes. Studying MOCOS functions may provide important clues about the underlying pathogenesis of xanthinuria and other diseases requiring early diagnosis.

KIDNEY360 2: 1793–1806, 2021. doi: https://doi.org/10.34067/KID.0001732021

Introduction

Xanthinuria is a rare hereditary disorder of purine metabolism. Two forms can be distinguished: classic xanthinuria type I, caused by xanthine dehydrogenase (XDH) deficiency alone; and xanthinuria type II, caused by the dual deficiency of XDH and aldehyde oxidase 1 (AOX1), two enzymes whose activity depends on the presence of molybdenum cofactor sulfurase (MOCOS). Both forms are autosomal recessive disorders displaying identical clinical phenotypes. In about two thirds of affected individuals, xanthinuria remains an asymptomatic metabolic abnormality throughout life. In the remaining third, xanthine stones form and lead to varying degrees of nephrolithiasis, hydronephrosis, and— in some cases— renal failure (1). Clinically, both forms are characterized by marked depletion of uric acid and accumulation of xanthine in blood and urine. Other less common manifestations linked to xanthine deposits may develop, such as myositis, arthropathy, and duodenal ulcer (2).
The differential diagnosis between type I and type II classic xanthinuria relies on a detailed medical history and the response to allopurinol in patients who are hypouricemic, with patients who have xanthinuric type II failing to metabolize allopurinol into oxypurinol (3).

To date, the true incidence and prevalence of classic xanthinuria is unknown because it is rarely reported, often not recognized, and is underexplored. In this context, only a few cases of xanthinuria type II caused by point mutations in the coding sequence of MOCOS have been reported in humans (4–9). MOCOS encodes a ubiquitous enzyme that catalyzes the insertion of a terminal sulfur ligand onto the molybdenum cofactor (MOCO), converting the oxo form of MOCO into a sulfurated form (10). The structure of the mammalian MOCOS is similar to ABA3, its plant homolog: MOCO (11–13). After sulfuration by MOCOS, sulfated-MOCO is required to activate XDH and AOX1, two structurally complex oxidoreductases. XDH is a rate-limiting enzyme in the oxidative metabolism of purines: it allows the conversion of hypoxanthine and xanthine to uric acid (14). XDH is thought to play a key role in a variety of physiologic, but also pathophysiologic, conditions, such as ischemia-reperfusion injury, endothelial dysfunction, and diabetes mellitus, but also cardiovascular diseases, renal failure, and cancer (15). XDH is also a significant component of innate inflammatory signaling and a major source of reactive oxygen species (ROS) (16). Conversely, little is known about the physiologic relevance of AOX1, except that it catalyzes the oxidation of several aldehydes to their cognate acids (17). As XDH, AOX1 is a critical source of ROS and nitric oxide (NO), and it is increasingly recognized as a major contributing factor to drug metabolism and as a source of ROS possibly involved in human pathology (18,19).

No studies on the potential effect of MOCOS deletion on kidney function, and the mechanism by which such mutation could contribute to xanthinuria, have been performed. In addition, MOCOS alterations may cause genetic damage on their own and orchestrate a wide variety of clinical syndromes. MOCOS deficiency might be regarded as a risk factor in autism spectrum disorders (ASD), disrupting the oxidative stress response and synaptogenesis in neurons derived from human induced pluripotent stem cells (20–22). Although these findings indicate that MOCOS serves important functions in tissue homeostasis and during neuronal development, the reasons for the wide range of pathophysiologic phenotypes observed in MOCOS deficiencies are unclear. To gain insights into the role of MOCOS in purine metabolism and as-yet-unidentified pathways, we have analyzed a new mouse model knockout (KO) for Mocos.

We show here that Mocos KO mice die within 4 weeks with xanthinuria and renal failure. Whereas heterozygous Mocos mice grow normally into apparently healthy, fertile adults, Mocos KO mice develop obstructive nephropathy with xanthine deposits. In xanthinuric mice, reduced antioxidant defense systems, along with anemia, may also be involved in the progression of renal injury. Finally, consistent with a role of MOCOS in various signaling pathways, we also report major differences of metabolism between kidneys of Mocos KO and littermate wild-type mice, which are related to purine, but also amino acid and phospholipid, metabolic pathways. These observations suggest that, in addition to its role in purine metabolism leading to obstructive nephropathy, MOCOS deficiency has as-yet-unknown functions in other metabolic processes.

Materials and Methods

Generation of Mocos KO Mice and Animal Matings

The CRISPR/Cas9 system was used to generate mice with complete Mocos KO by zygotic injection of CAS9 and multiple adjacent single-guide RNAs that target exon 3. Genome editing was performed at the PHENOMIN Mouse Clinical Institute (ICS; Strasbourg, France). The conditions used at ICS to generate the Mocos KO via the CRISPR/Cas9 approach can be found at http://www.ics-mci.fr/.

The PHENOMIN project received approval from ethics committees and authorization from the French Ministry of Research. The project was evaluated taking the 3Rs (replace, reduce, and refine) and harm-benefit analysis concepts into account, with a focus on refinement (use of anesthesia, of painkillers when needed, respect of good practices).

The specific primer sequences used for genotyping were as follows:

Mocos forward, GGGGATTGTTGTATTGTGCCTGTCTG; Mocos reverse, CTTGCCCTCTGTCTCTGACCTGAGG.

Mocos KO mice were obtained by crossing mice heterozygous for the gene Mocos. Experiments were performed with 4- to 10-week-old female or male mice. All Mocos-deficient mice and wild-type littermate controls (C57BL/6 background) were bred and housed in our specific pathogen-free animal facility at TAAM (Transgenesis, Archiving, and Animal Models, TAAM-UPS 44, CNRS, Orléans, France) under agreement D-45–234-6, 2014. Mice were maintained in a temperature-controlled (23°C) facility, with strict 12-hour light/dark cycles, and were given free access to food and water. Animal experiments were performed in accordance with the French Institutional Committee under agreement CLE CCO 2017-1134.

Hematology and Urine Analysis

Blood was collected in EDTA tubes (20.1341.100; Sarstedt) and read with the SCIL Vet abc Plus analyzer. Before use, serum was collected in Microvette gel tubes (20.1344; Sarstedt) and centrifuged at 10000 X g for 5 minutes. Xanthine/hypoxanthine levels were determined using the Xanthine/Hypoxanthine Assay Kit (ab155900; Abcam) following the manufacturer’s protocol. Urine was freshly collected and pH was determined using pH indicator paper (2600 108; Whatman).

Histologic and Immunofluorescence Analysis

Dissected tissues were fixed in 4% buffered paraformaldehyde (PFA) and paraffin embedded under standard conditions. Tissue sections (3 μm) were stained with hematoxylin and eosin and special stains according to standard
laboratory procedures. Immunohistochemistry for uromodulin/THP was performed according to standard procedures (https://esp-nephropathology-working-group.org/technical-notes/) using a mouse mAb purchased from Cedarlane.

For immunofluorescence, tissues were fixed for 3 days in 4% PFA and submerged in 20% sucrose for 1 week. They were then embedded in optimal cutting temperature compound (Tissue-Tek) and 10 μm sections were prepared with a cryotome (Leica). Terminal deoxynucleotidyl transferase–mediated digoxigenin-deoxyuridine nick-end labeling staining was performed on sections using the ApopTag Fluorescein In Situ Apoptosis Detection Kit (S7110; Merck), following the manufacturer’s protocol. For Ki67 (PCNA) staining, slides were incubated for 30 minutes with 4% formaldehyde at room temperature. After washing, slides were incubated with 0.05% pontamine sky blue (Sigma) for 15 minutes and then incubated with secondary goat anti-rabbit antibody (2 μg/ml, ab150077; Abcam) for 45 minutes at room temperature. After washing, slides were incubated with 4,6-diamidino-2-phenylindole (Fisher Scientific) and mounted in Fluoromount-G (SouthernBiotech). Tissue sections were analyzed on a Leica fluorescence microscope (CTR6000) at ×200 magnification. The slides were analyzed and semiquantitatively scored (Supplemental Methods, Histological and immunofluorescence Analysis).

RNA Preparation, PCR, and Quantitative PCR
Total RNA was extracted using TRI-Reagent (Sigma) according to the manufacturer’s instructions. RNA integrity and quality were controlled using Agilent RNA 6000 Nano Kit. Reverse transcription was performed with the SuperScript III Kit (Invitrogen), and the resultant cDNA was quantitatively amplified with real-time PCR using the QuantiTect Primer Assay kit (Qiagen) and GoTaq qPCR Master Mix (Promega). RNA expression was normalized to TATA-binding protein expression, and data were analyzed using the comparative analysis of relative expression by ΔΔCt methods. Primers sequences are reported in Supplemental Table 1.

Western Blot
Protein concentrations were quantified using the Bio-Rad DC Protein Assay Kit following the manufacturer’s instructions. After blocking, membranes were probed with rabbit anti-MOCOS (1:100, NBP2-14243; Novus Biologicals), rabbit anti-AKR1C1 (1:1000, 105620, GeneTex), or mouse anti-β-actin (1:5000, A2228, Sigma-Aldrich) antibodies. After overnight incubation at 4°C, the appropriate horseradish peroxidase–conjugated secondary IgG antibodies were added for 2 hours at room temperature. Signals were quantified using ImageJ software.

Metabolic Analysis
Metabolic analyses were performed by liquid chromatography coupled with high-resolution mass spectrometry, using standard metabolomics approaches (23,24). Briefly, frozen kidney tissue samples were lyophilized for 48 hours and milled to a fine powder. Ground samples (2 mg) were extracted with 1.5 ml of methanol/MilliQ water (1:1). After centrifugation, the supernatants were collected and concentrated at 35°C for 2.5 hours. Analyses were done on a UPLC Ultimate 3000 System (Dionex) coupled to a Q-Exactive Mass Spectrometer (Thermo Fisher Scientific, Dreieich, Germany) and operated in positive and negative electrospray ionization modes. Chromatography was carried out using a Phenomenex Kinetex 1.7 mXB-C18 (150 mm×2.10 mm) and 100 Å ultra high performance liquid chromatography column. The solvent system comprised mobile phase A (0.5% vol/vol formic acid in water), and mobile phase B (0.5% vol/vol formic acid in methanol). Data were processed using Xcalibur software (Thermo Fisher Scientific, San Jose, CA). A library of standard compounds (Mass Spectroscopy Metabolite Library of Standards supplied by IROA Technologies) were analyzed with the same conditions and gradient of mobile phases as those used to analyze the extracted metabolites. For data processing, briefly, peaks with >30% variance in quality-control samples were removed. The normalization was applied to the total area of the peaks of interest. Multivariate analyses were performed using SIMCA-P+ 15 software (Umetrics, Umeå, Sweden), as previously described (25). Briefly, the data analyses were first conducted using principal component analysis to detect outliers. Discriminant metabolites were obtained after orthogonal partial-least-squares discriminant analysis, after elimination of metabolites with low effect in the separation of the different groups. The listing of discriminant metabolites (very important in projection) is given in Supplemental Table 2. Univariate analyses were performed as nonparametric tests (Wilcoxon rank-sum test) using the free server MetaboAnalyst32 (https://www.metaboanalyst.ca/) with a false discovery rate-adjusted P value of 0.05.

Statistical Analysis
All values were presented in the form of mean±SEM. Statistical evaluation of differences between the experimental groups was done using the Mann–Whitney nonparametric test or log rank test for survival. All tests were performed using GraphPad Prism (GraphPad Software Inc., San Diego, CA; www.graphpad.com). A P value <0.05 was considered significant.

Results
Mice Containing a Null Mutation of Mocos Induces a Partial Lethal Phenotype and Die Prematurely
To characterize the physiologic role of Mocos, mice with a targeted disruption in the Mocos locus were generated using CRISPR/Cas9 genome-editing technology (Figure 1A). After validation of the deletion by sequencing, a significant reduction of Mocos mRNA and MOCOS protein levels further confirmed targeting of the gene in engineered mice. Transcript level and protein concentration were reduced to roughly half in heterozygous Mocos+/− mice (Figure 1, B and C).

Mice homozygous for the disrupted Mocos gene were born phenotypically normal (Figure 1D), but only a few mice were recovered at weaning, pointing toward late embryonic or perinatal lethality. Further analysis showed
there was an increased frequency of dead pups after birth, although the exact frequency cannot be determined due to cannibalization by the mother. These findings indicate a high perinatal mortality of homozygous pups. Young Mocos\(^{2/2}\) mice were easily recognized from littermate controls after the first 2 weeks of life when they stopped gaining weight (Figure 1, E and F). Shortly thereafter, all Mocos\(^{2/2}\) mice died between 3–8 weeks of age, with an average life span of 28.4 days (Figure 1, G and H). In contrast, heterozygous mice were not different from wild-type mice derived from heterozygous breeding pairs; the mice survived and developed normally into apparently healthy, fertile adults (Supplemental Figure 1A). These observations indicated that the Mocos deficiency in the mouse leads to a lethal phenotype with incomplete penetrance and premature death. Because of the runted appearance of the Mocos KO mice, all subsequent analyses were conducted on Mocos KO mice before death between 3 and 4 weeks of age. In addition, we closely monitored heterozygous mice for possible signs of disease in adult animals for a prolonged period ranging from 2 to 20 months of age.

Inactivation of Mocos Causes Abnormal Morphologic Features

At 4 weeks of age, Mocos-deficient mice displayed major morphologic abnormalities with significant reductions in kidney/body weight and liver/body weight ratios (33% and 20% reduction, respectively) and a substantial increase in brain/body weight ratios (51% increase) when compared with organ/body weight sizes of littermate controls.

Figure 1. | Knockout of Mocos induces a partial phenotype in mice. (A) Schematic representation of the molybdenum cofactor sulfursase (Mocos) disruption strategy using CRISPR/Cas9 technology. The deletion of exon 3 induces the loss of reading frame when splicing between exon 2 and exon 4, resulting in a truncated, nonfunctional MOCOS protein. (B) Relative Mocos expression was quantified by quantitative PCR. Data were from mice at 4 weeks of age and are expressed as mean±SEM. (C) Renal expression and quantification of MOCOS protein by Western blot (data were from 4-week-old animals). (D) Frequency distribution of animals of the indicated genotype. The percentages of male and female mice of each genotype are indicated. (E) Phenotypic comparison of wild-type\(^{+/+}\), heterozygous Mocos\(^{+/−}\), and knockout (KO) Mocos\(^{−/−}\) mice. Mocos\(^{−/−}\) animals are easily distinguished from littermates at 4 weeks because of their reduced body size and weight. (F) Body weight of mice at 4 weeks of age; 12–17 animals per group were analyzed. Data are expressed as mean±SEM. (G) Percentage of survival of wild-type (circle, \(n=168\)), heterozygous (square, \(n=239\)), and Mocos\(^{−/−}\) (triangle, \(n=15\)) mice in days after birth. (H) Life span of Mocos\(^{−/−}\) mice \((n=15)\). M, male; F, female; WT, wild-type. **\(P<0.01\), ****\(P<0.0001\).
Mocos heterozygotes showed normal proportions of all organs, except the liver, which showed a 21% reduction in liver/body weight size when compared with young wild-type mice (Supplemental Figure 1, B–H).

Mocos KO Mice Develop Obstructive Nephropathy

Anatomic examination of Mocos KO mice revealed that all internal organs appeared grossly normal with the exception of the kidneys. Macroscopically, the mutation produces profound modifications of the renal structure: kidneys were pale, reduced in size, and with an irregular surface; whereas heterozygous Mocos+/− mice and wild-type littermates appeared normal (Supplemental Figure 1, B and C).

At low-power magnification, the histologic evaluation of Mocos KO kidneys displayed three major lesions: (1) cystic dilation of tubules, mainly in the cortex and less in the medulla (Figure 2A); (2) intratubular deposits of round lamellate deposits of THP with occasionally embedded crystals (empty crystal clefts, Figure 2, C and D); and (3) THP deposits in the renal pelvis with damage of the urothelium, accompanied by inflammation in the surrounding tissue. In the dilated and nondilated collecting ducts, round lamellate deposits of THP were present (Figure 2C). These deposits often displayed a basophilic rim—suggestive of calcification—but had negative von Kossa staining and no birefringent crystals were found after PFA fixation. However, few empty crystal clefts were present (Figure 2C). The adjacent epithelium was flattened or necrotic with intraluminal cell debris containing neutrophils and a few multinucleated giant cells surrounding the deposits (Figure 2C). The interstitial space...
was slightly edematous and, adjacent to dilated collecting ducts, cortical areas displayed tubular atrophy, interstitial fibrosis, and mononuclear cell infiltrates (predominately in the subcapsular area; Figure 2, B–D). Primary lesions in glomeruli and vessels were not found. In areas of tubular atrophy, the glomeruli lay close together, varied in size, had collapsed capillary loops, and were very rarely sclerotic. Moreover, some deposits of THP, similar to those present in the collecting ducts, were also found in the renal pelvis. These deposits were adhering to the urothelium, giving rise to urothelial damage and loss. Outside the renal pelvis, inflammatory infiltrates were seen (Figure 2D).

Occasionally, in about 5% of Mocos KO mice, stones were found in the pelvis, sometimes leading to ureteral

Figure 3. Constitutive MOCOS KO mice accumulate xanthine stones. (A) The picture shows representative images of the transparent urine of homozygous Mocos−/− mice compared with the yellow color of urine characterizing wild-type and heterozygous Mocos+/− mice. The arrow points to deposits in urine from a Mocos−/− mouse. (B) Measurement of urinary pH in mouse strains. Data were from mice at 4 weeks of age and are expressed as mean±SEM. (C) Concentrations of xanthine and hypoxanthine are significantly increased in urine and (D) serum of homozygous Mocos−/− mice compared with age-matched littermate controls. Data were from mice at 4 weeks of age and are expressed as mean±SEM. (E) The picture is an example of xanthine stones from a Mocos−/− mouse. Scale bar, 200 μm. (F) Crystals collected from a Mocos−/− kidney were analyzed by Raman spectroscopy. In these crystals, the strongest bands observed at 542, 653, 960, 1208, 1330 cm−1 are considered as marker bands of xanthine (lower green panel) by comparison with a commercial standard (upper blue panel). *P<0.05, **P<0.01.
obstruction. This obstruction was mostly unilateral and kidneys displayed a pale and swollen appearance. The histologic examination of these enlarged kidneys showed a uniformly thin, atrophic renal cortex and a marked dilation of the renal pelvis, characteristic of hydronephrosis (Supplemental Figure 2), whereas the contralateral kidney was small with obstructive nephropathy. Of note, heterozygous mice with partial loss of Mocos expression did not show a disturbed histology of other organs in young mice or in adult mice (Supplemental Figure 3).

Inactivation of Mocos Induces Xanthinuria

Because stones, sometimes clearly visible to the naked eye and large enough to interfere with normal urinary function, were frequently observed in urine and kidneys from affected Mocos mice (Figure 3A), we next analyzed the effects of urinary tract obstruction in biologic fluids. Consistent with a role of Mocos in purine metabolism, the colorless and acidic urine (Figure 3B), but also the serum collected from Mocos°/° mice, had high levels of xanthine and hypoxanthine as compared with age-matched controls (Figure 3, C and D). Kidney stones were composed of xanthine based on their unique Raman spectral fingerprints (Figure 3, E and F). The present morphologic and biochemical data thus strongly suggest that accumulation of xanthine crystals leads to intra- and extrarenal obstructive nephropathy in Mocos KO mice. Xanthine stones with hydronephrosis are found in mice and in hereditary xanthinuria type II in humans, which is typically crystallopathy, but the prevailing feature in the Mocos KO mouse model is an obstructive nephropathy.

Renal Failure in Mocos KO Mice

Kidney dysfunction in Mocos-deficient mice was further evaluated by monitoring biochemical markers for the diagnosis of the progression of kidney damage. Our data denote profound metabolic changes, including drastic increases of serum creatinine and urea in Mocos°/° mice when compared to controls (Figure 4, A and B). As expected from the essential role of Mocos in XDH activity, Mocos KO mice had an almost undetectable level of uric acid (Figure 4C). In addition, the serum levels of some hepatic enzymes were altered, with a reduced level of alanine aminotransferase and an increased level of alkaline phosphatase in Mocos-deficient mice (Figure 4, D–F), which were not observed in heterozygous Mocos animals when compared to wild-type mice at 4 weeks of age or later in adult mice (Supplemental Figure 4, A–F). Altogether, these data suggest the physiopathologic changes produced by the complete inactivation of Mocos caused acute renal failure.

Mocos KO Mice Display Anemia

Because hematologic parameters are tightly regulated traits with high clinical relevance, we also analyzed the

![Figure 4. Inactivation of Mocos leads to impaired renal and hepatic functions.](image-url)

- **A** Creatinine (µmol/l) vs. genotype.
- **B** Urea (mmol/l) vs. genotype.
- **C** Uric Acid (µmol/l) vs. genotype.
- **D** ALAT (U/I) vs. genotype.
- **E** Alkaline Phosphatase (IU/l) vs. genotype.
- **F** ASAT (U/I) vs. genotype.

Each bar represents the mean±SEM. ALAT, alanine aminotransferase; ASAT, aspartate aminotransferase. *P<0.05, **P<0.01.
hematogram of Mocos$^{-/-}$ and control mice. When compared with littermate controls, Mocos KO mice tend to have almost normal distribution of total white blood cell counts (Figure 5). The differential cell counts to identify leukocytes were within the normal range, as was the number of platelets. This result excluded systemic inflammation, but also underscored the presence of mild anemia, with reduced circulating red blood cells and red cell parameter values outside normal ranges. Of note, hemoglobin and hematocrit values in Mocos$^{-/-}$ mice were significantly decreased compared with those in wild-type mice (Figure 5). These disturbances, accompanied by normal values of mean corpuscular volume and mean corpuscular hemoglobin concentration, were suggestive of normocytic anemia, a feature frequently associated with poor outcomes in acute and chronic renal failure (26). On the contrary, heterozygous Mocos mice showed normal hematologic parameters at 4 weeks of age and even later (Supplemental Figure 5).

Mocos KO Mice Display Increased Expression of Adipogenesis-Related Genes and Markers of Inflammation and Fibrosis

We further investigated dysregulation of lipid metabolism and found enhanced expression of two important regulators of lipid homeostasis, namely CCAAT/enhancer-binding protein-β and peroxisome proliferator activated receptor-γ (PPARγ) in Mocos KO mice compared with age-matched counterparts (Figure 6A). This altered lipid signaling network could contribute to the pathophysiology of xanthinuria and interfere with immune regulation because we observed a marked increase in mRNA expression of the proinflammatory factors TNF-α and monocyte chemoattractant protein 1 (Figure 6B). Finally, the significant activation of TGF-β1, which may contribute to renal interstitial fibrosis (27,28), and serpine 1, the main suppressor of the fibrinolytic system, suggests a vicious cycle of immune-metabolic dysregulation that could promote renal fibrotic

Figure 5. Mocos$^{-/-}$ mice display anemia. White blood cell counts and differential counts performed to identify the type of leukocytes are given as a percentage. The hematogram of homozygous Mocos$^{-/-}$ mice was compared with that of littermate controls at 4 weeks of age. The reference range for each group of parameter is indicated. Data are expressed as mean±SEM. **P<0.01, ***P<0.001.
responses and kidney dysfunction in Mocos−/− kidneys (Figure 6C). Immunofluorescence imaging ultimately supported visual evidence for tubular damage and repair, with increased ApopTag staining (Figure 6D) accompanied by increased fluorescence signal of the proliferating cell marker Ki67 in Mocos−/− kidneys (Figure 6, E and F). No sign of inflammation or fibrosis was detected in kidneys of heterozygous Mocos and wild-type littermates at 4 weeks of age.

Impaired Ability of Xanthinuric Animals to Mount the Biologic Response to Overcome Oxidative Stress and Inflammation

Because PPARγ plays additional roles by participating in inflammation and oxidative stress in renal disease, we next examined redox homeostasis in Mocos−/− mice. Further confirming the potential antioxidative protective effect of PPARγ (Figure 6A) (29), we found that NOX4, a NADPH oxidase isoform expressed in proximal tubular cells and known to be an important source of ROS (30), was significantly underexpressed in Mocos−/− kidney when compared with littermate controls (Figure 7A). These possible renoprotective effects of NOX4 and PPARγ were accompanied by increased expression of glutamate-cysteine ligase (the key enzyme in glutathione synthesis), but impaired activation of genes encoding many antioxidant and detoxifying enzymes known to be targets of PPARγ and Nrf2 (Figure 7, B–F). Particularly noteworthy was the dysregulation of the thioredoxin (TXN)-based antioxidant system, with the significant increase of TXN-inhibitory protein and TXN-domain members of the aldo-keto reductase superfamily involved in detoxifying carbonyl species stress in affected Mocos−/− kidneys (Figure 7, G–I, and Wu et al. [31]). Finally, our data highlighted the importance of reactive carbonyl stress in affected Mocos−/− kidneys expressing aberrant levels of AKR1B8 and AKR1C1, two members of the aldo-keto reductase superfamily involved in detoxification of cytotoxic carbonyls and balance of electrolytes and potassium, respectively (Figure 7, J and K).

Major Dysfunctions of Purine, Amino Acid, and Phospholipid Pathways in Kidneys from Xanthinuric Mocos Mice

A metabolomics approach was next performed using liquid chromatography tandem high-resolution mass spectrometry to uncover altered metabolites and biologic

Figure 6. Mocos gene disruption induces expression of adipogenesis-related genes, inflammatory response, and interstitial fibrosis in Mocos−/− kidney. (A) Enhanced expression of C/EBP-β and PPARγ in Mocos KO mice compared with controls. Transcription was measured by real-time PCR (RT-PCR) in 4-week-old mice. Data are expressed as mean±SEM. (B) Genes involved in the inflammatory response were significantly upregulated in Mocos KO kidneys when compared with kidneys from littermate controls. Expression levels of TNF-α and MCP1/CCL2 were measured by RT-PCR. Data were from mice at 4 weeks of age and are expressed as mean±SEM. (C) Disruption of the Mocos gene–induced renal interstitial fibrosis. The expression levels of TGF-β1 and serpine/PAI1 were measured by RT-PCR in 4-week-old mice (n=5 for each genotype). Results are expressed as mean±SEM. (D) Terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling staining shows apoptosis of tubular epithelial cells in kidneys from Mocos−/− mice. Scale bar, 100 μm. (E) Immunofluorescence staining of Ki67 revealed markedly increased cell proliferation in kidneys of Mocos KO mice at 4 weeks of age when compared with controls. 4',6-Diamidino-2-phenylindole (DAPI) was used to label nuclei. (F) Quantitation of cell proliferation was determined by counting the number of Ki67-positive nuclei in each mouse strain of the specified genotypes. RT-PCR, real-time PCR; DAPI, 4',6-Diamidino-2-phenylindole. *P<0.05, **P<0.01.
Figure 7. Mocos deletion alters detoxification defenses in kidney. (A) Disruption of Mocos induces decreased expression levels of NADPH oxidase 4 (NOX4) and (B) increased transcription of glutamate-cysteine ligase catalytic subunit (GCLC) but no modification of genes encoding several antioxidant and detoxifying enzymes such as (C) NADP(H) quinone dehydrogenase 1 (NQO1), (D) glutathione peroxidase 1 (GPX1), (E) superoxide dismutase 1 (SOD1), and (F) glyoxalase 1 (GLO1) in Mocos^{−/−} kidneys when compared to littermate controls. (G–H) The transcription of thioredoxin (TXN) was not affected but the TXN complex was unbalanced, with significant upregulation of TXN-inhibitory protein (TXNIP) in xanthinuric mice. (I) Expression of TXN-domain containing 12 (TXNDC12) dithiol-disulfide oxidoreductase of the endoplasmic reticulum and (J) AKR1B8, an aldoketoreductase involved in carbonyl detoxification, was significantly upregulated in Mocos^{−/−} mice but not in wild-type and heterozygous mice. All results were obtained by real-time PCR in kidneys of 4-week-old mice (n=4–7 for each genotype). Results were expressed as mean±SEM. (K) Renal expression of AKR1C1 is significantly disturbed in Mocos KO mice when compared with controls (Western blot). NOX4, NADPH oxidase 4; GCLC, glutamate-cysteine ligase catalytic subunit; NQO1, NADP(H) quinone dehydrogenase 1; GPX1, glutathione peroxidase 1; SOD1, superoxide dismutase 1; GLO1, glyoxalase 1; TXN, thioredoxin; TXNIP, TXN-inhibitory protein; TXNDC12, TXN-domain containing 12. *P<0.05, **P<0.01.
pathways in Mocos\(^{-/-}\) kidneys. As illustrated in Figure 8 and Supplementary Table 1, no significant modification of metabolites was observed in kidney tissues from Mocos\(^{+/+}\) mice compared with wild-type mice. Conversely, Mocos\(^{-/-}\) kidneys revealed significant metabolic perturbations: of the 121 robust metabolites analyzed, 40 metabolites were altered when compared with wild-type mice, and 31 metabolites showed perturbation of renal expression when the three Mocos\(^{+/+}\), Mocos\(^{+/-}\), and Mocos\(^{-/-}\) kidney groups were compared (Figure 8 and Supplemental Figure 6). As expected, lack of MOCOS activity resulted in very low levels of uric acid and allantoin, the primary product of urate oxidation (Figure 8). In this pathway, xanthine and its distant precursors, such as inosine and adenine, were also affected. This result thus reinforced the finding that the main metabolic function of Mocos is restrained to the purine catabolism pathway. In parallel, in agreement with the role of Mocos in a physiologic alternative to the “classic” pathway of NO formation from l-arginine, the integrity of the arginine-NO/urea system was also disturbed in Mocos\(^{-/-}\) kidneys, with a strong perturbation of citrulline and guanidinoacetic acid (a precursor of creatine), two known metabolites of the urea cycle (Table 1). Interestingly, Table 1 also highlights significantly altered metabolites involved in energy metabolism and mitochondrial function, such as trimethylammonium butanoic acid, whereas the decreased cysteine metabolism might further denote oxidative damage in Mocos KO kidneys. Finally, other notably disturbed metabolic pathways include the phospholipid biosynthetic pathway, indicative of massive membrane remodeling of renal cells, and the serotonin pathway (5-hydroxyindole acetate), indicative of tryptophan metabolism (Figure 8, Table 1, and Supplemental Table 2).

In summary, the metabolic analysis of Mocos\(^{-/-}\) kidneys underscored the essential role of purines and highlighted the potential pathophysiologic implications of the deregulation of amino acids (three pathways) and phospholipids metabolisms (two pathways) in kidneys of Mocos-deficient mice (Supplemental Figure 7).

Table 1. List of the top six main disturbed pathways, and the related dysregulated metabolites, in kidneys from the three groups of mice (Mocos\(^{+/+}\), Mocos\(^{+/-}\), and Mocos\(^{-/-}\) mice)

Pathway Name	Matched Metabolites
Arginine and proline metabolism	Citrulline, guanidinoacetic acid, N-acetyl-l-alanine, 4-guanidinobutanoic acid
Purine metabolism	Xanthine, inosine, uric acid, adenine
Lysine degradation	4-Trimethylammonio butanoic acid, piperolic acid
Cysteine and methionine metabolism	5-Methylthioadenosine, l-cystine
Glycerocephospholipid metabolism	Phosphorylcholine, O-phosphoethanolamine
Glycine, serine, and threonine metabolism	Glyceroic acid, guanidinoacetic acid

Mocos, molybdenum cofactor sulfurase.
Discussion

Xanthinuria is an under-recognized disorder that, in less than half of affected individuals, is characterized by xanthine stones. This rare genetic disorder may be accompanied by hydronephrosis and, eventually, other complications of urolithiasis, such as pyelonephritis. In our Mocos-deficient mouse model of xanthinuria, the leading pathology is obstructive nephropathy. To our knowledge, such a pathology has not been reported in either type I or type II xanthinuria in humans. Nonetheless, the Mocos mouse may serve as a model to study the pathogenesis of obstructive nephropathy. Remarkably, the signs of obstructive nephropathy found in Mocos KO mice do not differ from those reported in humans affected by other forms of obstructive nephropathies of variable etiology, such as nephrocalcinosis after hyperphosphaturia or hypercalciumia, calcium oxalate nephropathy, urate nephropathy, myeloma kidney, or obstruction due to drug crystals (32). Recently, an attempt to classify crystal nephropathies was proposed according to the localization of crystal deposits in the renal vasculature (type 1), the nephron (type 2), or the draining urinary tract (type 3) (33). Regarding this classification, analysis of the morphologic data of Mocos-deficient mice suggests a prevalence of type 2 and a minor contribution of type 3 nephropathy.

The mechanisms of xanthine crystal precipitation are not resolved but may involve neutrophils, interstitial and tubular inflammation with inflammatory cytokines, together with precipitation of THPs. Different crystals cause injury in numerous disorders and induce inflammation via the NLRP3 inflammasome and cell death (34). Mulay et al. (34) found that crystals of calcium oxalate, monosodium urate, calcium pyrophosphate dihydrate, and cystine may trigger caspase-independent cell death via TNF-α/TNFRI, RIPK1, RIPK3, and MLKL, and initiate tissue injury and organ failure. However, tissue damage and inflammation induced by xanthine crystals have not been reported so far. In view of the tubular cell necrosis and interstitial inflammation in Mocos KO mice, activation of the inflammasome or other danger signal pathways are likely activated, causing inflammation. These pathways, including DNA sensing pathways, need further investigation to understand the molecular mechanisms behind the cellular processes that contribute to the onset and development of the disease. To explain how Mocos deletion may cause xanthinuria type II, we suggest a two-step process involving (1) an obstructive nephropathy due to production, poor solubility, and intratubular precipitation of xanthine; and (2) cell stress and death mediated by altered detoxification circuitry, impairment of nutrient delivery, and waste product removal from kidney cells. The cellular stress elicited by these events causes inflammation triggering crystal formation, which may then enhance renal pathology.

In the Mocos-deficient mouse model of obstructive nephropathy, renal stones and decreased renal function are associated with hypouricemia and altered detoxification circuitry. Whereas xanthine stones may be proinflammatory and worsen renal function, several studies have reported positive correlations between hyperuricemia, kidney inflammation, and renal failure induced by urate crystal formation (35,36). However, hypouricemia caused by increased excretion or diminished reabsorption of filtered uric acid is also observed in humans (37), and it is established that uric acid is the most abundant soluble antioxidant preserving endothelial function in situations of oxidative stress (38). Inflammation and oxidative stress are known to be involved in the pathogenesis of CKD in humans and in chronic renal failure in animal models. As far as kidney stone disease is concerned, particularly calcium oxalate, injury induced by high concentrations of oxalate in renal tubular epithelial cells is related to oxidative stress, tissue inflammation, and mitochondrial dysfunction (39). Our data show disruption of intrarenal redox homeostasis and are consistent with the essential role of MOCOS in aldehyde detoxification (19,20) and the relevance of reactive carbonyl species metabolism in ROS-related renal injury (40,41). These data point to the poor ability of xanthinuric animals to mount a protective response to overcome oxidative stress via inflammation.

Metabolomics studies allowed the differential diagnosis of type I and type II classic xanthinuria. These studies have highlighted the role of the purine degradation pathway but also pathways involved in amino acid metabolism (such as tryptophan), vitamin B6, nicotinamide, and possibly polyamine catabolism in patients with xanthinuria type II. Severe symptoms are rarely observed in patients with classic xanthinuria; usually they present with mild symptoms. Despite conservation of purine metabolism, the significant differences between mice and humans likely reflect divergent features of key stages of kidney development. Moreover, the level of uric acid in mice is lower than that in humans because uricase, an enzyme present in mouse but not in humans, degrades uric acid into allantoin. Thus, decreased XDH and uric acid levels in the immediate postnatal period in Mocos-deficient mice may significantly affect renal development and amplify xanthinuria. Although neonatal Mocos KO mice cannot overcome MOCOS deficiency, we assume that the 50% reduction of MOCOS expression in heterozygous mice might be sufficient for a normal renal and metabolic function in young and aged mice.

Beside its role in nephropathy, MOCOS is involved in complex disorders, such as ASD (20–22). Although metabolomic studies on complex disorders are far from definitive and unambiguous, analysis of the metabolome has shown great potential to uncover biomarkers for complex diseases such as ASD. Indeed, recent studies on urine from patients with ASD have reported that several metabolic profiles associated with amino acids, purine metabolism, creatine metabolism, energy metabolism, and oxidative stress could be involved in ASD (42,43).

In conclusion, the Mocos mouse model may enable an integrated understanding of xanthinuric obstructive nephropathy and of common mechanisms underlying complex diseases, such as metabolic disorders and ASD.

Disclosures

All authors have nothing to disclose.

Funding

This work was supported by Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Orléans, University
of Tours, and the European funding in Region Centre-Val de Loire (FEDER N°2016-00110366=BIO-TARGET 2015-2018 and FEDER N° EX008756=BIO-TARGETIII).

Acknowledgments
We would like to thank PHENOMIN and ICS for the generation of Mocos KO mice. Our special thanks go to Dr. François Erard for critical review of the manuscript, Melody Thilloux and Mathilde Favrat for technical assistance and animal handling. We are also grateful to TAAM and, more specifically, to Emilie Bovier and Severine Grieszmann for taking care of the animals. We also thank the department Analyse des Systemes Biologiques (PST ASB, Universite de Tours, France) for their help with sample analyses.

Author Contributions
M. Erard-Garcia, conceptualized the study; E. Culerier, A. Dudas, N. Erard, M. Erard-Garcia, F. Foucher, M. Le Bert, A. Lefevre, C. Mackowiak, S. Mavel, M.J. Mihatsch and D. Sedda were responsible for funding acquisition; P. Emond, M. Erard-Garcia, F. Foucher, C. Mackowiak, S. Mavel, and M.J. Mihatsch were responsible for data curation; P. Emond, M. Erard-Garcia, F. Foucher, C. Mackowiak, S. Mavel, and M.J. Mihatsch and B. Ryffel were responsible for formal analysis; M. Erard-Garcia provided supervision and was responsible for validation; M. Erard-Garcia, M.J. Mihatsch and B. Ryffel wrote the original draft and reviewed and edited the manuscript; M. Erard-Garcia and B. Ryffel were responsible for project administration; and V.F.J. Quesniaux was responsible for funding acquisition.

Supplemental Material
This article contains the following supplemental material online at http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0001732021/-/DCSupplemental.

Supplemental Appendix. Supplemental Methods.
Supplemental Figure 1. Heterozygous Mocos mice develop normally but Mocos KO mice display major morphologic abnormalities in kidney, liver and brain.
Supplemental Figure 2. Deletion of Mocos causes occasional hydronephrosis in homozygous mutants surviving until 2 months.
Supplemental Figure 3. Mocos disruption does not change the histology of organs except the kidney in young mice.
Supplemental Figure 4. Adult heterozygous Mocos mice display no disturbances of renal function.
Supplemental Figure 5. Adult heterozygous Mocos mice exhibit normal hematological parameters.
Supplemental Figure 6. Clustering result shown as heatmap for the discriminant metabolites in kidney from the 3 groups of Mocos+/−, Mocos−/− and Mocos−/− mice.
Supplemental Figure 7. The purine and arginine/nitric oxide pathways in xanthinuric mice.
Supplemental Table 1. List of primers.
Supplemental Table 2. Listing of discriminant metabolites obtained after univariate analysis.

References
1. Bradbury MG, Henderson M, Brocklebank JT, Simmonds HA: Acute renal failure due to xanthine stones. Pediatr Nephrol 9: 476–477, 1995 https://doi.org/10.1007/BF0086673257757413
2. Chalmers RA, Watts RW, Pallis C, Bitsensky L, Chayen J: Crystalline deposits in striped muscle in xanthinuria. Nature 221: 170–171, 1969 https://doi.org/10.1038/221170a05782709
3. Pacher P, Nivorozhkin A, Szabó C: Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58: 87–114, 2006 https://doi.org/10.1124/pr.581.1616507884
4. Ichida K, Matsumura T, Sakuma R, Hosoya T, Nishino T: Mutation of human molybdenum cofactor sulfurate gene is responsible for classical xanthinuria type II. Biochem Biophys Res Commun 282: 1194–1200, 2001 https://doi.org/10.1006/bbrc.2001.71911302742
5. Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Tuneyoshi K, Matsui K, Cheng J, Hada T: Identification of a new point mutation in the human molybdenum cofactor sulfurate gene that is responsible for xanthinuria type II. Metabolism 52: 1301–1304, 2003 https://doi.org/10.1016/S0026-0495(03)00272-514624414
6. Peretz H, Naamati MS, Levartovsky D, Lagziel A, Shani E, Horn I, Shalev H, Landau D: Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurate (HMCs) associated with type II classical xanthinuria. Mol Genet Metab 91: 23–29, 2007 https://doi.org/10.1016/j.ymgme.2007.02.00571368906
7. Watanabe T, Ibara N, Itoh T, Fujita T, Sugimoto Y: Deleterious mutation in Drosophila mal-homologous, putative molybdenum cofactor sulfurate gene is associated with bovine xanthinuria type II. J Biol Chem 275: 21789–21792, 2000 https://doi.org/10.1074/jbc.2000230200110801779
8. Zhou Y, Zhang X, Ding R, Li Z, Hong Q, Wang Y, Zheng W, Geng X, Fan M, Cai G, Chen X, Wu D: Using next-generation sequencing to identify a mutation in human MCSU that is responsible for type II xanthinuria. Cell Physiol Biochem 35: 2412–2421, 2015 https://doi.org/10.1007/s00272-514624414
9. Murgiano L, Jagannathan V, Piffer C, Díez-Prieto I, Bolcato M, Gentile A, Droegemüller C: A frameshift mutation in MOCOS is associated with familial renal syndrome (xanthinuria) in Tyrolean Grey cattle. BMC Vet Res 12: 276, 2016 https://doi.org/10.1186/s12917-016-0904-427919260
10. Mayr SJ, Mendel RR, Schwarz G: Molybdenum cofactor biology, evolution and deficiency. Biochim Biophys Acta Mol Cell Res 1686: 118883, 2021 https://doi.org/10.1016/j.bbamcr.2020.1188330137596
11. Anantharaman V, Aravind L: MOSC domains: ancient, predicted sulfur-carrier domains, present in diverse metal-sulfur proteins. FEMS Microbiol Lett 207: 55–61, 2002 https://doi.org/10.1016/S0378-1079(01)00515-811886751
12. Hille R, Hall J, Basu P: The mononuclear molybdenum enzymes. Chem Rev 114: 3963–4038, 2014 https://doi.org/10.1021/cr400443z24467397
13. Bittner F: Molybdenum metabolism in plants and crosstalk to iron. Front Plant Sci 5: 28, 2014 https://doi.org/10.3389/fpls.2014.0002824570679
14. Battelli MG, Bortolotti M, Polito L, Bolognesi A: The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 1864: 2557–2565, 2018 https://doi.org/10.1016/j.bbadis.2018.05.0032973945
15. Ichida K, Amaya Y, Okamoto K, Nishino T: Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci 13: 15475-15495, 2012 https://doi.org/10.3390/ijms1311154723201317
16. Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N, So A: Xanthine oxidoreductase regulates secretion upon NLRP3 inflammasome activation. Nat Commun 10: 6555, 2019 https://doi.org/10.1038/s41467-020-19034-7
17. Terao M, Romão MJ, Leimkühler S, Bolis M, Fratelli M, Coelho C, Santos-Silva T, Garattini E: Structure and function of mammalian aldehyde oxidases. Arch Toxicol 90: 753–780, 2016 https://doi.org/10.1007/s00204-016-1683-126920149
18. Kundu TK, Velayutham M, Zweier JL: Aldehyde oxidase functions as a superoxide generating NADH oxidase: An important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51: 2930–2939, 2012 https://doi.org/10.1021/ bi300087922404107
19. Terao M, Garattini E, Romao MJ, Leimkühler S: Evolution, expression, and substrate specificities of aldehyde oxidase
enzymes in eukaryotes. J Biol Chem 295: 5377–5389, 2020 https://doi.org/10.1074/jbc.REV119.00774132144208
20. Férón J, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blanchard MP, Boulanger N, Tardif C, Devèze A, Rousseau S, Suzuki K, Izpisua Belmonte JC, Khrestchatisky M, Nivet E, Erazd-Garcia M: Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol Psychiatry 21: 1215–1224, 2016 https://doi.org/10.1038/mp.2015.106226392929
21. Taheri M, Noroozi R, Aghaei K, Omrani MD, Ghafouri-Fard S: The kidney: An organ in the front line of oxidative stress. J Physiol 598: 593–598, 2019 https://doi.org/10.1113/JP277230
22. Rontani P, Perche O, Greetham L, Jullien N, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blan- chard A, Nadal-Desbarats L, Galineau L, Attucci S, Madji E: Work on the MOC/MOCOS gene unit in ASD patient stem cells. J Mol Med 1618, 2021 https://doi.org/10.1038/s41380-020-0278-1
23. Diérmé B, Lefèvre A, Nadal-Desbarats L, Galineau L, Madji Houmoun B, Montigny F, Blasco H, Andres CR, Emond P, Mavel S: Workflow methodology for rat brain metabolome exploration using NMR, LC-MS and GC-MS analytical platforms. J Pharm Biomed Anal 142: 270–278, 2017 https://doi.org/10.1016/j.jpba.2017.03.06828531830
24. Lefèvre A, Mavel S, Nadal-Desbarats L, Galineau L, Attucci S, Dufour D, Sokol H, Emond P: Validation of a global quantitative analysis methodology of tryptophan metabolites in mice using LC-MS. Talanta 195: 593–598, 2019 https://doi.org/10.1016/j.talanta.2018.11.0943065588
25. Xia J, Wishart DS: Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55: 14.10.1–14.10.91, 2016
26. Babitz J, Lin HY: Mechanisms of anemia in CKD. J Am Soc Nephrol 23: 1631–1634, 2012 https://doi.org/10.1681/ASN.20111107822935483
27. Meng XM, Nikolic-Paterson DJ, Lan HY: TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12: 325–338, 2016 https://doi.org/10.1038/nrneph.2016.4827018839
28. Humphreys BD: Mechanisms of renal fibrosis. Annu Rev Physiol 80: 309–326, 2018 https://doi.org/10.1146/annurev-physiol.022516-090735
29. Ma Y, Shi M, Wang Y, Liu J: PPARy and its agonists in chronic kidney disease. Int J Nephrol 2020: 2917474, 2020 https://doi.org/10.1155/2020/291747432158560
30. Gorin Y: The kidney: An organ in the front line of oxidative stress-associated pathologies. Antioxid Redox Signal 25: 639–641, 2016 https://doi.org/10.1089/ars.2016.680427357313
31. Wu M, Li R, Hou Y, Song S, Han W, Chen N, Du Y, Ren Y, Shi Y: Thioredoxin-interacting protein deficiency ameliorates kidney inflammation and fibrosis in mice with unilateral ureteral obstruction. Lab Invest 98: 1211–1224, 2018 https://doi.org/10.1038/s41374-018-0078-829884908
32. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxter O, Tiselius HG: Kidney stones. Nat Rev Dis Primers 2: 16008, 2016 https://doi.org/10.1038/nrdp.2016.827188687
33. Mulyar SR, Anders HJ: Crystal nephropathies: Mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 13: 226–240, 2017 https://doi.org/10.1038/nrneph.2017.1028218266
34. Mualy SC, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, Anders H-J: Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest 123: 236–246, 2013 https://doi.org/10.1172/JCI63679
35. Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R, Johnson RJ: A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13: 2888–2897, 2002 https://doi.org/10.1016/j.jasn.2000.02.285454.
FD14424027
36. Mihai S, Codrici E, Popescu ID, Enciu AM, Albucescu L, Neculae LG, Mambet C, Anton G, Tanase C: Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res 2018: 2180373, 2018 https://doi.org/10.1155/2018/2180373
37. Nishizaki N, Fujimaga S, Hirano D, Kanai H, Kaya H, Ohtomo Y, Shimizu T, Nozu K, Kaneko K: Hereditary renal hypouricemia: A cause of calcium oxalate urolithiasis in a young female. Clin Nephrol 77: 161–163, 2012 https://doi.org/10.5414/CN0169492257548
38. Waring WS, McKnight JA, Webb DJ, Maxwell SR: Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 55: 3127–3132, 2006 https://doi.org/10.2337/db06-028317065352
39. Tsuji H, Wang W, Sunil J, Shimizu N, Yoshimura K, Uemura H, Peck AB, Khan SR: Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J Urol 34: 89–95, 2016 https://doi.org/10.1007/s00345-015-1563-y25981400
40. Miyata T, Kurokawa K, van Ypersele de Strihou C: Relevance of oxidative and carbonyl stress to long-term uremic complications. Kidney Int Suppl 76: S120–S125, 2000 https://doi.org/10.1046/j.1523-1755.2000.07615.x10936808
41. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS: Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 25: 119–146, 2016 https://doi.org/10.1089/ars.2016.666526906267
42. Gevi F, Zolla L, Gabriele S, Persico AM: Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 7: 47, 2016 https://doi.org/10.1186/s13229-016-0109-527904735
43. Liu A, Zhou W, Qu L, He F, Wang H, Wang Y, Cai C, Li X, Zhou W, Wang M: Altered urinary amino acids in children with autism spectrum disorders. Front Cell Neurosci 13: 7, 2019 https://doi.org/10.3389/fncel.2019.000730733669

Received: March 11, 2021 Accepte: September 13, 2021