Conformal Submersion and Statistical Manifolds

Mahesh T V · K S Subrahmanian
Moosath

Received: date / Accepted: date

Abstract In this paper, we prove a necessary and sufficient condition for tangent bundle TM to become a statistical manifold with respect to Sasaki lift metric and complete lift connection. Also, we study statistical structure on the manifold B induced by affine submersion with horizontal distribution. A necessary and sufficient condition for a submersed statistical manifold to be dually flat is given. We introduced the conformal submersion with horizontal distribution which is a generalization of affine submersion with horizontal distribution and generalized the results of Abe and Hasegawa.

Keywords Statistical Manifold · Conformal Submersion · Tangent bundle

Mathematics Subject Classification (2010) MSC 53A15 · MSC 53C05

1 Introduction

Information geometry has emerged from studies of invariant geometric structures involved in statistical inference. It defines a Riemannian metric together with dually coupled affine connections in a manifold of probability distributions [2]. Statistical manifold was originally introduced by S.L Lauritzen [4], later Kurose [3] reformulated this from the viewpoint of affine differential geometry. The notion of submersion between statistical manifolds was first introduced by Abe and Haswgawa [1]. They studied Riemannian submersion and affine submersion with horizontal distribution. They obtained a necessary and sufficient condition for (M, ∇, g_m) to become a statistical manifold with respect to affine submersion with horizontal distribution. Statistical structure on tangent bundle was studied by Mastuzoe and Inoguchi [6]. They obtained
necessary and sufficient condition for the tangent bundle TM to become a statistical manifold with respect to Sasaki lift metric and horizontal lift connection.

In this paper we prove a necessary and sufficient condition for tangent bundle TM to become a statistical manifold with respect to Sasaki lift metric and complete lift connection. In section 2, we obtained a statistical structure on ambient manifold B induced by affine submersion $\pi: M \to B$ with horizontal distribution $\mathcal{H}(M) = V^\perp(M)$. Also obtained a necessary and sufficient condition for submersed statistical manifold to be dually flat. In section 3, The necessary and sufficient condition for (TM, h^s, ∇^c) to become a statistical manifold, where h^s is the Sasaki lift metric and ∇^c is the complete lift of affine connection ∇ on M is given. In section 4, we introduced the conformal submersion with horizontal distribution which is a generalization of affine submersion with horizontal distribution and generalized the results of Abe and Hasegawa [1].

2 Statistical Manifold and Riemannian Submersion

A pseudo - Riemannian Manifold (M, g) with a torsion free affine connection ∇ is called a statistical manifold if ∇g is symmetric. For a statistical manifold (M, ∇, g) the dual connection ∇ is defined by

$$X g(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

for vector fields X, Y and Z in $\mathcal{X}(M)$. If (∇, g) is a statistical structure on M so is (∇, g). Then (M, ∇, g) become a statistical manifold called the dual statistical manifold of (M, ∇, g). Let R^∇ and R^{∇} be the curvature tensors of ∇ and ∇, respectively. It follows from (1) that

$$g(R^\nabla(X, Y) Z, W) = -g(Z, R^{\nabla}(X, Y)W)$$

for X, Y, Z and W in $\mathcal{X}(M)$. We say (M, ∇, ∇, g) has constant curvature k if

$$R^\nabla(X, Y) Z = k\{g(Y, Z)X - g(X, Z)Y\}.$$

A statistical manifold with curvature zero is called a flat statistical manifold and in that case (M, ∇, ∇, g) is called a dually flat statistical manifold.

2.1 Riemannian Submersion

Let M be an n dimensional manifold and B be an m dimensional manifold ($n > m$). An onto map $\pi: M \to B$ is called a submersion if $\pi_p: T_pM \to T_{\pi(p)}B$ is onto for all $p \in M$. For a submersion $\pi: M \to B$, $\pi^{-1}(b)$ is a submanifold of M of dimension $n - m$ for each $b \in B$. We call these submanifolds $\pi^{-1}(b)$ as fibers. Set $\mathcal{V}(M)_x = Ker(\pi_*x)$ for each $x \in M$.

Definition 1 A submersion $\pi : M \to B$ is called submersion with horizontal distribution if there is a smooth distribution $x \mapsto \mathcal{H}(M)_x$ such that

$$T_x M = \mathcal{V}(M)_x \bigoplus \mathcal{H}(M)_x. \quad (4)$$

We call $\mathcal{V}(M)_x$ ($\mathcal{H}(M)_x$) the vertical (horizontal) subspace of $T_x M$. \mathcal{H} and \mathcal{V} denote the projection of the tangent space of M onto the horizontal and vertical subspaces, respectively.

Note 1 Let $\pi : M \to B$ be a submersion with horizontal distribution $\mathcal{H}(M)$. Then $\pi_* |_{\mathcal{H}(M)_p} : \mathcal{H}(M)_p \to T_{\pi(p)} B$ is an isomorphism for each $p \in M$.

Definition 2 Let (M, g_m) be a Riemannian manifold of dimension n, (B, g_B) be a Riemannian manifold of dimension m ($n > m$). A submersion $\pi : M \to B$ is called a Riemannian submersion if all fibers are Riemannian submanifold of M and π_* preserves the length of horizontal vectors.

Note 2 A vector field E on M is said to be projectable if there exist a vector field E_π on B such that $\pi_*(E_p) = E_{\pi(p)}$ for each $p \in M$, that is E and E_π are π-related. A vector field X on M is said to be basic if it is projectable and horizontal. Every vector field X on B has a unique smooth horizontal lift, denoted by \tilde{X}, to M.

Definition 3 Let ∇ and ∇^* be affine connections on M and B respectively. $\pi : (M, \nabla) \to (B, \nabla^*)$ is said to be an affine submersion with horizontal distribution if $\pi : M \to B$ is a submersion with horizontal distribution and satisfies $\mathcal{H}(\nabla^* \tilde{Y}) = (\nabla^* Y)$ for all vector fields X and Y on B.

Proposition 1 Let $\pi : M \to B$ be a submersion with horizontal distribution and ∇ be an affine connection on M. If $\mathcal{H}(\nabla^* \tilde{Y})$ is projectable for all vector fields X and Y on B, then there exists a unique affine connection $\nabla^*_X Y = \pi_* (\nabla^*_X \tilde{Y})$ on B such that $\pi : (M, \nabla) \to (B, \nabla^*)$ is an affine submersion with horizontal distribution.

Proof Let X be a vector field on B and f be a smooth real valued function on B, then $(f X) = (f \circ \pi) \tilde{X}$. Then

$$\nabla^*_X f Y = \pi_* (\nabla^*_X (f \tilde{Y}))$$

$$= \pi_* (\nabla^*_X (f \circ \pi) Y)$$

$$= \pi_* (\tilde{X} (f \circ \pi) \tilde{Y}) + \pi_* ((f \circ \pi) \nabla^*_X \tilde{Y})$$

$$= X (f) Y + f \nabla^*_X Y$$

Similarly we can prove the other conditions of affine connection.

Note 3 A connection $\nabla^0 \nabla$ on the subbundle $\mathcal{V}(M)$ is defined by $(\nabla^0 \nabla)_E V = \nabla(\nabla_E V)$ for any vertical vector field V and any vector field E on M. For each $b \in B$, $\nabla^0 \nabla$ induces a unique connection ∇^b on the fiber $\pi^{-1}(b)$. ∇^b we simply denoted as ∇. The torsion of ∇ is denoted by $\text{Tor}(\nabla)$. In [1] Abe and Hasegawa proved that if ∇ is torsion free, then ∇ and ∇^* are also torsion free.
Definition 4 Let M be an n-dimensional manifold with affine connection ∇. Then the fundamental tensors T and A are defined as

$$T_E F = \mathcal{H}(\nabla_{VE} VF) + \mathcal{V}(\nabla_{VE} HF)$$

(5)

$$A_E F = \mathcal{V}(\nabla_{HE} HF) + \mathcal{H}(\nabla_{HE} VF)$$

(6)

for arbitrary vector fields E and F on M.

Note that T_E and A_E reverses the horizontal and vertical subspaces and $T_E = T_{VE}, A_E = A_{HE}$.

The inclusion map $(\pi^{-1}(b), \tilde{\nabla}^b) \rightarrow (M, \nabla)$ is an affine immersion in the sense of [7]. The following equations are corresponding to the Gauss and Weingarten formulae. Let X and Y be horizontal vector fields, and V and W be vertical vector fields. Then

$$\nabla_{V} W = T_{V} W + \tilde{\nabla}_{V} W$$

$$\nabla_{V} X = \mathcal{H}(\nabla_{V} X) + T_{V} X$$

$$\nabla_{X} V = \mathcal{V}(\nabla_{X} V) + A_{X} V$$

$$\nabla_{X} Y = \mathcal{H}(\nabla_{X} Y) + A_{X} Y$$

Let $\pi : M \rightarrow B$ be a Riemannian submersion with horizontal distribution if A is parallel then A vanishes, similarly for T.

2.2 Riemannian Curvature and Fundamental equations

Let (M, g_m) be a Riemannian manifold of dimension n. Let R denote the Riemannian curvature of (M, g_m) with respect to the affine connection ∇. For any $E, F, G, H \in \mathcal{X}(M)$ we put $R(E, F, G, H) = g_m(R(G, H, F), E)$, where $R(G, H, F) = (\nabla_G, \nabla_H) - \nabla_{[G, H]} F$.

Definition 5 Let $\pi : (M, g_m) \rightarrow (B, g_b)$ be a Riemannian submersion with horizontal distribution. R be the Riemannian curvature of (M, g_m) with respect to ∇ and R^* be the Riemannian curvature of (B, g_b) with respect to ∇^*. Define a $(1, 3)$- tensor field \hat{R} for the horizontal vector fields of M as, $\pi_* (\hat{R}(X, Y) Z) = R^*(\pi_* X, \pi_* Y, \pi_* Z)$

The fundamental equations are

1. $R(U, V, F, W) = \hat{R}(U, V, F, W) + g_m(T_{U} W, T_{V} F) - g_m(T_{V} W, T_{U} F)$ (Gauss)

2. $R(U, V, W, X) = g_m((\nabla_{U} T)(U, W), X) - g_m(\nabla_{V} T)(V, W), X)$ (Codazzi)

where \hat{R} denotes the Riemannian curvature of any fiber $(\pi^{-1}(x), \tilde{g}_x)$. U, V, W, F are vertical vector fields on M and X is a horizontal vector field on M. Also we have the following fundamental equations.

$$R(X, Y, Z, V) = g((\nabla_{Z} A)(X, Y), V) + g(A_{X} Y, T_{V} Z)$$

$$-g(A_{V} Z, T_{X} W) - g(A_{Z} X, T_{V} Y)$$

(7)
\[R(X, Y, Z, V) = R'(X, Y, Z, H) - 2g(A_XY, A_ZH) \]

\[+ g(A_YZ, A_XH) \]

\[R(X, Y, V, W) = g((\nabla_V A)(X, Y), W) - g((\nabla_W A)(X, Y), V) \]

\[+ g(A_XV, A_YW) - g(A_XW, A_YV) - g(T_{YX}, T_{YW}) \]

\[+ g(T_{WX}, T_{VY}) \]

\[R(X, Y, V, W) = g((\nabla_X T)(V, W), Y) - g((\nabla_V A)(X, Y), W) \]

\[+ g(A_XV, A_YW) - g(T_{YX}, T_{YW}) \]

for any horizontal vector fields \(X, Y, Z, H \) and vertical vector fields \(V, W \).

2.3 Statistical manifold and Submersion

Let \((M, g_m, \nabla)\) be an \(n\)-dimensional Riemannian manifold with affine connection \(\nabla\) and \((B, g_b, \nabla^*)\) be an \(m\)-dimensional Riemannian manifold with affine connection \(\nabla^*\). \(\nabla\) and \(\nabla^*\) be the dual connection of \(\nabla\) and \(\nabla^*\) respectively. In [1] Abe and Hasegawa proved

Proposition 2 Assume that \(\pi : (M, g_m) \rightarrow (B, g_b)\) is a Riemannian submersion. Then \(\pi : (M, \nabla) \rightarrow (B, \nabla^*)\) is an affine submersion with horizontal distribution \(\mathcal{H}(M) = V^\perp(M)\) if and only if \(\pi : (M, \nabla) \rightarrow (B, \nabla^*)\) is an affine submersion with horizontal distribution.

Set \(S_E F = \nabla_E F - \nabla_F E\) for any vector fields \(E\) and \(F\) on \(M\).

Theorem 1 Assume that \(\text{Tor}(\nabla) = 0\), \(\pi : (M, g_m) \rightarrow (B, g_b)\) is a Riemannian submersion and \(\pi : (M, \nabla) \rightarrow (B, \nabla^*)\) is an affine submersion with horizontal distribution \(\mathcal{H}(M) = V^\perp(M)\). Then \((M, \nabla, g_m)\) is a statistical manifold if and only if

1. \(\mathcal{H}(S_Y X) = A_X V - \overline{A_X V}\)
2. \(V(S_Y V) = T_Y X - \overline{T_Y X}\)
3. \((\pi^{-1}(b), \nabla^*_b, g^b_m)\) is a statistical manifold for each \(b \in B\).
4. \((B, \nabla^*, g_b)\) is a statistical manifold.

Assume that \(\text{Tor}(\nabla) = 0\), \(\pi : (M, g_m) \rightarrow (B, g_b)\) is a Riemannian submersion and \(\pi : (M, \nabla) \rightarrow (B, \nabla^*)\) is an affine submersion with horizontal distribution, from the fundamental equations we have

Theorem 2 If the fundamental tensors \(T\) and \(A\) are parallel, then \((M, \nabla, \nabla^*, g_m)\) is dually flat if and only if \((\pi^{-1}(b), \nabla^*_b, \overline{\nabla^*_b}, \overline{g^b_m})\) and \((B, \nabla^*, \nabla^*, g_b)\) are dually flat.

Definition 6 Let \(\pi : (M, \nabla) \rightarrow (B, \nabla')\) be an affine submersion with horizontal distribution \(V^\perp(M)\) and \(g\) be a Riemannian metric on \(M\), \(\mathcal{H}(\nabla X)\) is projectable. Define the induced metric \(\tilde{g}\) and the induced connection \(\nabla'\) on \(B\) as
\[\tilde{g}(X, Y) = g(\tilde{X}, \tilde{Y}) \]
\[\nabla^\pi_X Y = \pi_*(\nabla_X \tilde{Y}) \]

where \(X, Y \) are vector field on \(B \).

Now we give a condition for \((B, \nabla^*, \tilde{g})\) to be a statistical manifold.

Proposition 3 Let \((M, \nabla, g)\) be a statistical manifold and \(\pi : M \rightarrow B \) be an affine submersion with \(\mathcal{H}(M) = \mathcal{V}^\pi(M) \). If \(\mathcal{H}(\nabla_X \tilde{Y}) \) is projectable, then \((B, \nabla^*, \tilde{g})\) is also a statistical manifold.

Proof Let \(X, Y, Z \) be arbitrary vector fields on \(B \), we have

\[(\nabla^\pi_X \tilde{g})(Y, Z) = Xg(\tilde{Y}, \tilde{Z}) - \tilde{g}(\nabla^\pi_X Y, Z) - \tilde{g}(Y, \nabla^\pi_X Z) \]
\[= \tilde{X}g(\tilde{Y}, \tilde{Z}) - \tilde{g}(\nabla^\pi_X \tilde{Y}, \tilde{Z}) - \tilde{g}(\tilde{Y}, \nabla^\pi_X \tilde{Z}) \]
\[= (\nabla^\pi_X \tilde{g})(\tilde{Y}, \tilde{Z}) \]

Since \((M, \nabla, g)\) is a statistical manifold, \((B, \nabla^*, \tilde{g})\) is also a statistical manifold.

3 Statistical Structures on Tangent Bundles

Let \(M \) be an \(n \)-dimensional manifold. \(TM = \bigcup_{p \in M} T_p M \) denote the tangent bundle on \(M \). Let \(\pi : TM \rightarrow M \) be the natural projection defined by \(\tilde{X}_p \in T_p M \rightarrow p \in M \). Let \((U, x^1, ..., x^n)\) be a local coordinate system on \(M \). Denote the induced co-ordinate system on \(\pi^{-1}(U) \) by \((x^1, ..., x^n; u^1, ..., u^n)\). Let \((x; u)\) be a point on \(TM \), denote the kernel of \(\pi_{v(x; u)}\) by \(V_{(x; u)} \) called the vertical subspace of \(T_{(x; u)}(TM) \) at \((x; u)\).

Remark 1 The vertical subspace \(V_{(x; u)} \) is spanned by \(\{ \frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^2}, ..., \frac{\partial}{\partial u^n} \} \). The two linear spaces \(T_x M \) and \(V_{(x; u)} \) have same dimension, so there is a canonical linear isomorphism \(V : T_x M \rightarrow V_{(x; u)} \) called the vertical lift.

Definition 7 Let \(f : M \rightarrow R \) be a smooth function on \(M \) and \(\pi : TM \rightarrow M \) be the natural projection. The vertical lift of \(f \) is denoted by \(f^v \) and defined as \(f^v = f \circ \pi \). For a vector field \(X = X^i \frac{\partial}{\partial x^i} \) on \(M \) the vertical lift is denoted by \(X^v \) and defined as \(X^v = (X^i)^v \frac{\partial}{\partial u^i} \).

Note 4 By direct calculation we can see that for any vector fields \(X, Y \) on \(M \) \([X^v, Y^v] = 0\).

Definition 8 Let \(f : M \rightarrow R \) be a smooth map, the complete lift \(f^c \) of \(f \) on \(TM \) is defined as \(f^c = df = u^i \frac{\partial f}{\partial u^i} \). The complete lift of vector field \(X \) on \(M \) is defined as the one \(X^c \) on \(TM \) which characterized by the formula \(X^c(f^c) = (X^v)^c \) for all \(f \in C^\infty(M) \). In local co-ordinate, the complete lift \(X^c \) of \(X = X^i \frac{\partial}{\partial x^i} \) has the local expression

\[X^c = (X^i)^c \frac{\partial}{\partial x^i} + u^j \frac{\partial X^j}{\partial x^i} \frac{\partial}{\partial u^j} \]
The complete lift to \(1\)–from \(\omega\) is defined as

\[\omega^c(X) = (\omega(X))^c. \]

More generally the complete lift to full tensor algebra \(T(M)\) is given by the rule

\[(P \otimes Q)^c = P^c \otimes Q^v + P^v \otimes Q^c \]

for any tensor fields \(P\) and \(Q\) on \(M\). Let \(\nabla\) be a linear connection on \(M\), then the complete lift \(\nabla^c\) on \(TM\) is defined as \(\nabla^c_{\nabla X}Y^c = (\nabla_X Y)^c\) for every \(X, Y \in \mathfrak{X}(M)\).

Remark 2 In [6] Matsuzoe and Inoguchi has proved that if \((M, \nabla, h)\) is a statistical manifold, then \((TM, h^c, \nabla^c)\) is a statistical manifold. Moreover the conjugate connection of \(\nabla^c\) is \((\nabla^c)^c = (\nabla)^c\).

3.1 Horizontal lift on Tangent bundle

Let \(M\) be a smooth \(n\)–dimensional manifold, \(\nabla\) be a linear connection on \(M\), let \(V_{(x;u)} = \ker \pi_{(x;u)}\) be the vertical subspace of \(T_{(x;u)}(TM)\) at \((x; u)\). Vertical subspaces \(V_{(x;u)}\) defines a smooth distribution \(V\) on \(TM\) called the vertical distribution, also there exists a smooth distribution \(x \mapsto \mathcal{H}(TM)_x\) depending on linear connection \(\nabla\) such that

\[T_{(x;u)}(TM) = \mathcal{H}(TM)_x \oplus V_{(x;u)}. \]

This distribution is denoted by \(\mathcal{H}_\nabla\), it is the called horizontal distribution. Let \(X\) be a vector field on \(M\), then the horizontal lift of \(X\) on \(TM\) is the unique vector field \(X^H\) on \(TM\) such that \(\pi_*(X^H_{(x;u)}) = X_{\pi((x;u))}\) for all \((x; u) \in TM\).

In local co-ordinates if \(X = X^i \frac{\partial}{\partial x^i}\), then

\[X^H = X^i \frac{\partial}{\partial x^i} - X^i u^k \Gamma^i_{jk} \frac{\partial}{\partial u_j}. \]

Here \(\Gamma^i_{jk}\) is the connection coefficient of \(\nabla\).

Let \(h\) be a semi-Riemannian metric on \(M\), then the horizontal lift of \(h\) is defined as \(h^H(X^H, Y^H) = h^H(X^v, Y^v) = 0\) and \(h^H(X^H, Y^v) = h(X, Y)\), for \(X, Y \in \mathfrak{X}(M)\). The horizontal lift of linear connection \(\nabla\) on \(M\) is defined as \(\nabla^H_{X^H}Y^v = 0\), \(\nabla^H_{X^H}Y^v = 0\), \(\nabla^H_{X^H}Y^v = (\nabla_X Y)^v\), \(\nabla^H_{X^H}Y^v = (\nabla_X Y)^H\), for \(X, Y \in \mathfrak{X}(M)\).

Remark 3 Even if \(\nabla\) is torsion free, its horizontal lift \(\nabla^H\) has non-trivial torsion.

Definition 9 (Sasaki lift metric) Let \(h\) be a semi-Riemannian metric on \((M, \nabla)\). We define a semi-Riemannian metric \(h^s\) on \(TM\) as, \(h^s_{(x;u)}(X^H, Y^H) = h^s(X, Y)\), \(h^s_{(x;u)}(X^H, Y^v) = 0\), \(h^s_{(x;u)}(X^v, Y^v) = h^s(X, Y)\). The metric \(h^s\) is called the Sasaki lift metric.
Remark 4 In [6] Matsuzoe and Inoguchi proved that if \((M, h, \nabla)\) is a statistical manifold, then \((TM, h^s, \nabla^H)\) or \((TM, h^H, \nabla^H)\) is a statistical manifold if and only if \(\nabla h = 0\). Also they obtained for a statistical manifold \((M, \nabla, h)\), \((TM, h^s, C^H)\) and \((TM, h^H, C^H)\) are statistical manifolds, where \(C^H\) is the horizontal lift of the cubic form \(C = \nabla h\).

Remark 5 In [9] Yano and Ishihara introduced \(\gamma\) operator for defining horizontal lift from complete lift. Let \(X\) be a vector field on \(M\), with local expression \(X = X^i \frac{\partial}{\partial x^i}\), \(X = X^i \frac{\partial}{\partial u^i} + X^k \Gamma^i_{jk}\). Define \(\gamma(\nabla X) = u^j X^i \frac{\partial}{\partial u^i}\) with respect to the induced co-ordinate \((x^1, ..., x^n; u^1, ..., u^n)\). Then we can see that \(X^H = X^c - \gamma(\nabla X)\), note that \(\gamma(\nabla X)\) is the vertical part of \(X^c\).

Consider the submersion \(\pi : TM \rightarrow M\). Let \(\nabla\) be an affine connection on \(M\). Then there is a horizontal distribution \(\mathcal{H}_{\nabla}\) such that

\[T(x; u)(TM) = \mathcal{H}_{(x; u)}(TM) + \nu \]

for every \((x; u) \in TM\).

Now we show that the submersion \(\pi\) of \(TM\) into \(M\) with complete lift of affine connection is an affine submersion with horizontal distribution.

Proposition 4 The submersion \(\pi : (TM, \nabla^c) \rightarrow (M, \nabla)\) is an affine submersion with horizontal distribution.

Proof We need to show that

\[\mathcal{H}(\nabla^c_{X^H} Y^H) = (\nabla X Y)^H \]

Consider, \(X^H = X^c - \gamma(\nabla X)\), then

\[
\nabla^c_{X^H} Y^H = \nabla^c_{X^c - \gamma(\nabla X)} Y^c - \gamma(\nabla Y) \\
= \nabla^c_{X^c} Y^c - \nabla^c_{X^c - \gamma(\nabla X)} \gamma(\nabla Y) \\
= \nabla^c_{X^c} Y^c - \nabla^c_{\gamma(\nabla X)} Y^c - \nabla^c_{X^c} \gamma(\nabla Y) + \nabla^c_{\gamma(\nabla X)} \gamma(\nabla Y)
\]

Using \(\nabla^c_{X^c} Y^v = 0\) \([6]\) we have

\[\nabla^c_{X^H} Y^H = (\nabla X Y)^c - [\nabla^c_{\gamma(\nabla X)} Y^c + \nabla^c_{X^c} \gamma(\nabla Y)] \] (13)

By definition

\[(\nabla X Y)^c = (\nabla X Y)^H + \gamma(\nabla \nabla X Y) \] (14)

From (13) and (14)

\[\mathcal{H}(\nabla^c_{X^H} Y^H) = (\nabla X Y)^H. \]

Hence the submersion \(\pi : (TM, \nabla^c) \rightarrow (M, \nabla)\) is an affine submersion with horizontal distribution.
Proposition 5 The submersion \(\pi : (TM, h^s) \rightarrow (M, h) \) is a semi-Riemannian submersion.

Proof Clearly \(\pi^{-1}(p) = T_pM \) for all \(p \in M \) is a semi-Riemannian submanifold of \(TM \) also by definition of \(h^s \) we have
\[
h^s(X^H, Y^H) = h(X, Y)
\]
Hence \(\pi \) is a semi-Riemannian submersion.

Since \(\pi : (TM, h^s) \rightarrow (M, h) \) is a semi-Riemannian submersion and \(\pi : (TM, V^c) \rightarrow (M, V) \) is an affine submersion with horizontal distribution, we have the following result similar to theorem(1)

Theorem 3 \((TM, h^s, V^c)\) is a statistical manifold if and only if
1. \(H(SVX) = AXV - \overrightarrow{AXV} \)
2. \(V(SXV) = TVX - \overrightarrow{TVX} \)
3. \((T_pM, \nabla, h^s)\) is a statistical manifold for each \(p \in M \).
4. \((M, \nabla, h)\) is a statistical manifold.

Note that, since \(h^s(X^H, Y^V) = 0 \), we can take \(H(\nabla M) = V(M)^\perp \).

4 Conformal Submersion and Statistical Manifolds

Definition 10 Let \((M, g_m)\) and \((B, g_b)\) be semi-Riemannian manifolds. A submersion \(\pi : (M, g_m) \rightarrow (B, g_b) \) is called a conformal submersion if there exists a \(\phi \in C^\infty(M) \) such that
\[
g_m(X, Y) = e^{2\phi} g_b(\pi_*X, \pi_*Y). \tag{15}
\]

Proposition 6 Let \(\pi : (M, g_m) \rightarrow (B, g_b) \) be a conformal submersion, \(\nabla \) be the Levi-Civita connection on \(M \) and \(\nabla^* \) be the Levi-Civita connection on \(B \). Then
\[
g_b(\pi_*X Y, Z) = g_b(\nabla X Y, Z) - d\phi(\nabla X Y, Z) + d\phi(\nabla Y Z, X) + d\phi(\nabla Z X, Y)
\]
where \(X, Y, Z \in \mathfrak{X}(B) \) and \(\tilde{X}, \tilde{Y}, \tilde{Z} \) denote its unique horizontal lift on \(M \).

Proof Consider,
\[
2g_m(\nabla X Y, Z) = \tilde{X} g_m(\tilde{Y}, \tilde{Z}) + \tilde{Y} g_m(\tilde{Z}, \tilde{X}) - \tilde{Z} g_m(\tilde{X}, \tilde{Y}) - g_m(\tilde{X}, [\tilde{Y}, \tilde{Z}])
\]
\[
+ g_m(\tilde{Y}, [\tilde{Z}, \tilde{X}]) + g_m(\tilde{Z}, [\tilde{X}, \tilde{Y}]) \tag{16}
\]
Now consider
\[
\tilde{X} g_m(\tilde{Y}, \tilde{Z}) = \tilde{X} (e^{2\phi} g_b(Y, Z))
\]
\[
= \tilde{X} (e^{2\phi} g_b(Y, Z) + e^{2\phi} \tilde{X} g_b(Y, Z))
\]
\[
= 2e^{2\phi} d\phi(\tilde{X}) g_b(Y, Z) + e^{2\phi} X g_b(Y, Z)
\]
Similarly we have,
\[\tilde{Y}_m(\tilde{X}, \tilde{Z}) = 2e^{2\phi}d\phi(\tilde{Y})g_b(X, Z) + e^{2\phi}Yg_b(X, Z) \]
\[\tilde{Z}_m(\tilde{X}, \tilde{Y}) = 2e^{2\phi}d\phi(\tilde{Z})g_b(X, Y) + e^{2\phi}Zg_b(X, Y) \]
Also we have
\[g_m(\tilde{X}, \tilde{Y}, \tilde{Z}) = e^{2\phi}g_b(X, Y, Z) \]
Then from equation (13) and above equations we get
\[2g_m(\nabla^*_X Y, Z) = 2d\phi(\tilde{X})e^{2\phi}g_b(Y, Z) + 2d\phi(\tilde{Y})e^{2\phi}g_b(X, Z) \]
This implies
\[g_b(\pi_*(\nabla^*_X Y, Z) - d\phi(\tilde{Z})g_b(X, Y) \]
\[+ \{d\phi(\tilde{X})g_b(Y, Z) + d\phi(\tilde{Y})g_b(Z, X) \} \]
We generalize the concept of affine submersion with horizontal distribution as follows.

Definition 11 \(\pi : (M, \nabla) \longrightarrow (B, \nabla^*) \) is called conformal submersion with horizontal distribution if \(\pi : M \longrightarrow B \) be submersion with horizontal distribution and satisfies
\[g_b(\pi_*(\nabla_X Y, Z) - d\phi(\tilde{Z})g_b(X, Y) \]
\[+ \{d\phi(\tilde{X})g_b(Y, Z) + d\phi(\tilde{Y})g_b(Z, X) \} \]
for some \(\phi \in C^\infty(M) \) and for all \(X, Y, Z \in \mathcal{X}(B) \).

Note 5 If \(\phi \) is constant it turns out to be an affine submersion with horizontal distribution.

In the conformal submersion case we have

Proposition 7 Let \(\pi : (M, g_m) \longrightarrow (B, g_b) \) be a conformal submersion. Then \(\pi : (M, \nabla) \longrightarrow (B, \nabla^*) \) is a conformal submersion with horizontal distribution \(\mathcal{H}(M) \) if and only if \(\pi : (M, \nabla) \longrightarrow (B, \nabla^*) \) is a conformal submersion with same horizontal distribution.

Proof Consider,
\[\tilde{X}_m(\tilde{Y}, \tilde{Z}) = 2e^{2\phi}d\phi(\tilde{X})g_b(Y, Z) + e^{2\phi}Xg_b(Y, Z) \]
\[= 2e^{2\phi}d\phi(\tilde{X})g_b(Y, Z) + e^{2\phi}\{g_b(\nabla^*_X Y, Z) + g_b(Y, \nabla^*_X Z) \} \]
Now consider
\[
\tilde{X}g_m(\tilde{Y}, \tilde{Z}) = g_m(\nabla_{\tilde{X}}\tilde{Y}, \tilde{Z}) + g_m(\tilde{Y}, \nabla_{\tilde{X}}\tilde{Z})
= e^{2\phi}g_b(\pi_*(\nabla_{\tilde{X}}\tilde{Y}), Z) + e^{2\phi}g_b(Y, \pi_*(\nabla_{\tilde{X}}\tilde{Z}))
\] (17)
Since,
\[
g_b(\pi_*(\nabla_{\tilde{X}}\tilde{Y}), Z) = g_b(\nabla_{\tilde{X}}Y, Z) - d\phi(\tilde{Z})g_b(X, Y)
+ \{d\phi(\tilde{X})g_b(Y, Z) + d\phi(\tilde{Y})g_b(Z, X)\}
\] (18)
from (17) and (18) we get
\[
g_b(\pi_*(\nabla_{\tilde{X}}\tilde{Y}), Z) = g_b(\nabla_{\tilde{X}}Y, Z) - d\phi(\tilde{Z})g_b(X, Y)
+ \{d\phi(\tilde{X})g_b(Y, Z) + d\phi(\tilde{Y})g_b(Z, X)\}
\]
Hence, \(\pi : (M, \nabla) \rightarrow (B, \nabla^*)\) is a conformal submersion with horizontal distribution.
Converse is follows by Interchanging \(\nabla, \nabla^*\) with \(\nabla, \nabla^*\) in the above part.

Lemma 1 Let \(\pi : (M, g_m) \rightarrow (B, g_b)\) be a conformal submersion and \(\pi : (M, \nabla) \rightarrow (B, \nabla^*)\) be a conformal submersion with horizontal distribution \(V(M)\), then for horizontal vectors \(X, Y\) and vertical vectors \(U, V, W\)

\[
(\nabla_{\tilde{X}}g_m)(\tilde{X}_1, \tilde{X}_2) = e^{2\phi}(\nabla^*_{\tilde{X}}g_b)(X_1, X_2)
\] (19)
\[
(\nabla_{\tilde{V}}g_m)(\tilde{X}, Y) = g_m(S_\tilde{V}X, Y)
\] (20)
\[
(\nabla_{\tilde{X}}g_m)(\tilde{V}, Y) = g_m(AXV, Y) + g_m(\tilde{A}_VX, Y)
\] (21)
\[
(\nabla_{\tilde{X}}g_m)(\tilde{V}, W) = g_m(S_\tilde{X}V, W)
\] (22)
\[
(\nabla_{\tilde{V}}g_m)(\tilde{X}, W) = g_m(T_\tilde{V}X, W) + g_m(\tilde{T}_VX, W)
\] (23)
\[
(\nabla_{\tilde{U}}g_m)(\tilde{V}, W) = (\tilde{V}_U\tilde{g}_m)(\tilde{V}, W)
\] (24)
where \(\tilde{X}_i\) are the horizontal lift of vector fields \(X_i\) on \(B\), \(\tilde{g}\) is the induced metric on fibers and \(S_\tilde{V}X = \nabla_{\tilde{V}}X - \tilde{\nabla}_VX\).

Proof Consider

\[
(\nabla_{\tilde{X}}g_m)(\tilde{X}_1, \tilde{X}_2) = \tilde{X}g_m(\tilde{X}_1, \tilde{X}_2) - g_m(\nabla_{\tilde{X}}\tilde{X}_1, \tilde{X}_2) - g_m(\tilde{X}_1, \nabla_{\tilde{X}}\tilde{X}_2)
= \tilde{X}g_b(X_1, X_2) - e^{2\phi}g_b(\pi_*(\nabla_{\tilde{X}}\tilde{X}_1), X_2)
- e^{2\phi}g_b(X_1, \pi_*(\nabla_{\tilde{X}}\tilde{X}_2))
- 2e^{2\phi}d\phi(\tilde{X})g_b(X_1, X_2) + e^{2\phi}g_b(X_1, X_2)
- e^{2\phi}g_b(X_1, \pi_*(\nabla_{\tilde{X}}\tilde{X}_2))
\]
Since,
\[
g_b(\pi_*(\nabla_{\tilde{X}}\tilde{X}_1), X_j) = g_b(\nabla^*_{\tilde{X}}X_i, X_j) - d\phi(\tilde{X}_j)g_b(X, X_i)
+ \{d\phi(\tilde{X})g_b(X_i, X_j) + d\phi(\tilde{X}_i)g_b(X_j, X)\}
\]
where \(i, j = 1, 2\) and \(i \neq j\). We get
\[
(\nabla_{\tilde{X}}g_m)(\tilde{X}_1, \tilde{X}_2) = e^{2\phi}(\nabla^*_{\tilde{X}}g_b)(X_1, X_2)
\]
Similarly we can prove other equations.
In the conformal submersion case also we obtain a result similar to theorem(1)

Theorem 4 Assume that \(\text{Tor}(\nabla) = 0, \pi : (M, g_m) \to (B, g_b) \) is a conformal submersion and \(\pi : (M, \nabla) \to (B, \nabla^*) \) is a conformal submersion with horizontal distribution \(H(M) = \nabla^\perp(M) \). Then \((M, \nabla, g_m)\) is a statistical manifold if and only if

1. \(H(S_X V) = A_X V - \overline{A}_X V \)
2. \(V(S_X V) = T_Y X - \overline{T}_Y X \)
3. \((\pi^{-1}(b), \hat{\nabla}^b, \hat{g}^b_{m})\) is a statistical manifold for each \(b \in B \).
4. \((B, \nabla^*, g_b)\) is a statistical manifold.

Proof Suppose \((M, \nabla, g_m)\) is a statistical manifold, then \(\nabla g \) is symmetric. From (20) and (21) of above lemma we get

\[H(S_X V) = A_X V - \overline{A}_X V \]

From (22) and (23) of above lemma we get

\[V(S_X V) = T_Y X - \overline{T}_Y X \]

from (24) of above lemma \(\hat{\nabla}^b g^b \) is symmetric, so \((\pi^{-1}(b), \hat{\nabla}^b, \hat{g}^b_{m})\) is a statistical manifold. Also from (19) of above lemma \((B, \nabla^*, g_b)\) is a statistical manifold. Conversely, if all the four conditions hold then from the above lemma \(\nabla g_m \) is symmetric, so \((M, \nabla, g_m)\) is a statistical manifold.

Acknowledgements

The first named author was supported by Doctoral Research Fellowship from the Indian Institute of Space Science and Technology (IIST), Department of Space, Government of India.

References

1. Naoto Abe and Kazuyuki Hasegawa. An affine submersion with horizontal distribution and its applications. *Differential Geometry and its Applications*, 14(3):235–250, 2001.
2. Shun-ichi Amari and Hiroshi Nagaoka. *Methods of information geometry*, volume 191. American Mathematical Soc., 2007.
3. Takashi Kurose. Dual connections and affine geometry. *Mathematische Zeitschrift*, 203(1):115–121, 1990.
4. Stefan L Lauritzen. Statistical manifolds. *Differential geometry in statistical inference*, 10:163–216, 1987.
5. Pastore Anna Maria, Falcitelli Maria, and Ianus Stere. *Riemannian submersions and related topics*. World Scientific, 2004.
6. Hiroshi Matsuzoe and Jun-ichi Inoguchi. Statistical structures on tangent bundles. *Appl. Sci*, 5:55–75, 2003.
7. Katsumi Nomizu, Nomizu Katsumi, and Takeshi Sasaki. *Affine differential geometry: geometry of affine immersions*. Cambridge university press, 1994.
8. Barrett O’Neill et al. The fundamental equations of a submersion. *The Michigan Mathematical Journal*, 13(4):459–469, 1966.
9. Kentaro Yano and Shigeru Ishihara. *Tangent and cotangent bundles: Differential geometry*, volume 16. Dekker, 1973.