A correlation-based distance

Jean-Luc Falcone and Paul Albuquerque

1 Computer Science Department, University of Geneva, 1211 Geneva 4, Switzerland
2 I³, Ecole d’Ingénieurs de Genève, HES-SO, 1202 Geneva, Switzerland
e-mail: jean-luc.falcone@cui.unige.ch, albuquer@eig.unige.ch

Abstract. In this short technical report, we define on the sample space \(\mathbb{R}^D \) a distance between data points which depends on their correlation. We also derive an expression for the center of mass of a set of points with respect to this distance.

1 Preliminaries

For a sample point \(\mathbf{x} = (x_1, \ldots, x_D) \in \mathbb{R}^D \), we define the average

\[
\bar{x} = \frac{1}{D} \sum_{i=1}^{D} x_i
\]

and the standard deviation

\[
\sigma_x = \sqrt{\frac{1}{D} \sum_{i=1}^{D} (x_i - \bar{x})^2} = \frac{1}{\sqrt{D}} \| \mathbf{x} - \bar{\mathbf{x}} \|
\]

of its components and we set \(\bar{\mathbf{x}} = (\bar{x}, \ldots, \bar{x}) \).

We now restrict our attention to \(\mathbb{R}^D \setminus \text{Diag} \) where

\[
\text{Diag} = \{(x_1, \ldots, x_D) \in \mathbb{R}^D \mid x_1 = \cdots = x_D \}.
\]

To \(\mathbf{x} \in \mathbb{R}^D \setminus \text{Diag} \), we associate the centered and reduced variable

\[
\mathbf{x}^* = \frac{\mathbf{x} - \bar{\mathbf{x}}}{\sigma_x} = \sqrt{D} \frac{\mathbf{x} - \bar{\mathbf{x}}}{\| \mathbf{x} - \bar{\mathbf{x}} \|}
\]

Consequently, \(\bar{x}^* = 0 \) and \(\sigma_{x^*} = 1 \), and we have

\[
\sigma_{x^*}^2 = \frac{1}{D} \sum_{i=1}^{D} (x_i^*)^2 = 1 \Leftrightarrow \sum_{i=1}^{D} (x_i^*)^2 = D
\]
The geometric interpretation of this transform is that \(x^\ast \) lies on the \(D \)-dimensional hypersphere \(S^D(\sqrt{D}) \subset \mathbb{R}^D \) of radius \(\sqrt{D} \) centered at the origin.

The correlation between two sample points, \(x = (x_1, \ldots, x_D) \) and \(y = (y_1, \ldots, y_D) \), in \(\mathbb{R}^D \setminus \text{Diag} \) is given by

\[
corr(x, y) = \frac{\sum_{i=1}^{D} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{D} (x_i - \bar{x})^2 \sum_{i=1}^{D} (y_i - \bar{y})^2}}.
\]

which can also be expressed as

\[
corr(x, y) = \frac{(x - \bar{x}) \cdot (y - \bar{y})}{\|x - \bar{x}\| \|y - \bar{y}\|} = \frac{1}{D} (x^\ast \cdot y^\ast)
\]

where \(x \cdot y \) stands for the scalar product of \(x \) and \(y \).

2 A distance based on correlation

We propose the following correlation-based distance

\[
d(x, y) = \sqrt{1 - (corr(x, y))^2} = \sqrt{1 - \frac{(x^\ast \cdot y^\ast)^2}{D^2}} \tag{1}
\]

for \(x, y \in \mathbb{R}^D \setminus \text{Diag} \). Note that \(0 \leq d(x, y) \leq 1 \).

The following properties of a metric distance

\[
d(x, x) = 0
\]

\[
d(x, y) = d(y, x)
\]

\[
d(x, z) \leq d(x, y) + d(y, z),
\]

must be verified.

We have

\[
d(x, x) = \sqrt{1 - \frac{(x^\ast \cdot x^\ast)^2}{D^2}} = \sqrt{1 - \frac{D^2}{D^2}} = 0
\]

and, obviously, \(d(x, y) = d(y, x) \).
The main feature of this distance is that strong correlation corresponds to small distance. Indeed,

\[
[\text{corr}(x, y)]^2 = 1 \iff \exists \mu \neq 0, \delta \in \mathbb{R} \text{ s.t. } x_i = \mu y_i + \delta, \forall i
\]

\[
\iff x^* = \pm y^*
\]

\[
\iff d(x, y) = 0.
\]

which also means that the distance \(d\) is degenerate, since \(d(x, y) = 0 \Rightarrow x \neq y\).

The triangle inequality \(d(x, z) \leq d(x, y) + d(y, z)\) requires some explanations. A preliminary remark is that

\[
d(x, y) = \sqrt{1 - \frac{(x^* \cdot y^*)^2}{D^2}} = \sqrt{1 - \frac{[D \cos(\alpha)]^2}{D^2}} = \sqrt{1 - \cos^2(\alpha)}
\]

where 0 \leq \alpha \leq \pi is the angle between \(x^*\) and \(y^*\).

Replacing \(y^*\) by \(-y^*\) and \(z^*\) by \(-z^*\) if necessary, we can assume that the angles \(\alpha\) between \(x^*\) and \(y^*\) and \(\beta\) between \(y^*\) and \(z^*\) belong to \([0, \pi/2]\). Consider the point \(\hat{z}\) obtained by rotating \(z^*\) around the axis defined by \(y^*\), into the plane determined by \(x^*\) and \(y^*\), but opposite to \(x^*\) with respect to \(y^*\). The angle between \(y^*\) and \(\hat{z}\) is still \(\beta\). However, the angle between \(x^*\) and \(\hat{z}\), which equals \(\alpha + \beta\), is greater than the one between \(x^*\) and \(z^*\). Therefore,

\[
d(x, z) \leq \sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \sin(\beta) \cos(\alpha)
\]

\[
\leq \sin(\alpha) + \sin(\beta) = d(x, y) + d(y, z)
\]

As previously mentioned, the distance \(d\) is degenerate on \(\mathbb{R}^D \setminus Diag\) or on \(\mathbb{S}^D(\sqrt{D})\). However, we obtain a non-degenerate distance on the projective space \(\mathbb{P}^D\) (i.e. the space of lines through the origin in \(\mathbb{R}^D\)).

3 The center of mass

Onwards, we will assume that all variables are centered and reduced. Hence, we restrict the sample space to the \(D\)-dimensional hypersphere \(\mathbb{S}^D(\sqrt{D}) \subset \mathbb{R}^D\) of radius \(\sqrt{D}\) centered at the origin. We will omit the \(^*\) notation.
We compute the center of mass \(g \in S^D(\sqrt{D}) \) of a set of \(N \) points \(\{x_j\}_{j=1}^N \) on \(S^D(\sqrt{D}) \). By definition, the center of mass minimizes the average square distance to a set of points. We therefore want to minimize the expression

\[
F(g) = \frac{1}{N} \sum_{j=1}^{N} [d(g, x_j)]^2 = 1 - \frac{1}{ND^2} \sum_{j=1}^{N} (g \cdot x_j)^2
\]

under the constraint

\[
H(g) = 1 - \frac{1}{D} g \cdot g = 0
\]

that \(g \) lies on \(S^D(\sqrt{D}) \).

We solve this problem using the method of Lagrange multipliers. The gradients of \(F \) and \(H \) must satisfy

\[
\nabla F(g) = \lambda \nabla H(g),
\]

or equivalently

\[
\frac{\partial}{\partial g_k} F(g) = \lambda \frac{\partial}{\partial g_k} H(g) \quad (k = 1, \ldots, D).
\]

Equation (4) can be rewritten as

\[
\frac{1}{ND} \sum_{j=1}^{N} x_{jk} (x_j \cdot g) = \frac{1}{ND} \sum_{j=1}^{N} \left(x_{jk} \sum_{i=1}^{D} x_{ji} g_i \right)
\]

\[
= \sum_{i=1}^{D} \left(\frac{1}{ND} \sum_{j=1}^{N} x_{jk} x_{ji} \right) g_i = \lambda g_k
\]

If we define the \(D \times D \) matrix \(M = (m_{ik}) \) by

\[
m_{ik} = \frac{1}{ND} \sum_{j=1}^{N} x_{jk} x_{ji} \quad (i, k = 1, \ldots, D),
\]

then equation (5) becomes

\[
\sum_{i=1}^{D} m_{ik} g_i = \lambda g_k \quad (k = 1, \ldots, D)
\]
or equivalently
\[Mg = \lambda g \]

Thus, minimizing \(F \) (eq. 2) under the constraint \(H \) (eq. 3) reduces to finding the eigenvectors of \(M \). The eigenvector, correctly normalized in order to satisfy \(H \), for which \(F \) is minimum, yields the center of mass of the set of \(N \) points \(\{ x_j \}_{j=1}^N \) on \(S^D(\sqrt{D}) \). The matrix \(M \) being symmetric, all its eigenvalues are real.