Genetic and epigenetic analyses of MBD3 in colon and lung cancer

Citation for published version:
Zhu, Y, Harrison, DJ & Bader, SA 2004, 'Genetic and epigenetic analyses of MBD3 in colon and lung cancer', British Journal of Cancer, vol. 90, no. 10, pp. 1972-1975. https://doi.org/10.1038/sj.bjc.6601776

Digital Object Identifier (DOI):
10.1038/sj.bjc.6601776

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
British Journal of Cancer

Publisher Rights Statement:
Available under Open Access.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Short Communication

Genetic and epigenetic analyses of MBD3 in colon and lung cancer

Y Zhu1, DJ Harrison1 and SA Bader*,1
1Sir Alastair Currie Cancer Research UK Laboratories, Division of Pathology, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK

MBD3 is a member of the methyl-CpG-binding domain family and is located on chromosome 19p13.3, a region of loss of heterozygosity in colon and lung cancers. We therefore screened samples for abnormalities in MBD3. Our results indicate that MBD3 is not a major target of genetic and epigenetic alteration in these cancers.

British Journal of Cancer (2004) 90, 1972–1975. doi:10.1038/sj.bjc.6601776 www.bjcancer.com
Published online 13 April 2004
© 2004 Cancer Research UK

Keywords: MBD3; colon cancer; lung cancer; mutation; methylation

In humans, the somatic genome is globally methylated, with the exception of CpG islands. CpG islands are Cg-rich regions of DNA, which are coincident with the promoters of 60% of human housekeeping genes (Antequera and Bird, 1994). DNA methylation is an important epigenetic modification in the human genome, playing an essential role in the control of gene expression. It is well established that DNA methylation is extensively involved in gene imprinting, X inactivation and development. Aberrant methylation of CpG islands in the promoter of many cancer-related genes results in silencing of their expression compared with normal cells of the same tissue (Tycko, 2000).

The signal encoded by a particular pattern of DNA methylation is transduced through proteins that bind to methylated CpGs. These proteins contain a specific domain, the methyl-CpG-binding domain (MBD) (Nan et al., 1993). So far, five human MBD proteins have been identified as members of this protein family: MBD1, MBD2, MBD3, MBD4 and MECP2. MBD3 shares about 70% of overall identity with MBD2 over most of their length (Hendrich et al., 1998, 1999; Zhang et al., 1999). Although MBD3 does not itself bind directly to methylated DNA, several lines of evidence suggest that MBD3 does play a role as part of the NuRD complex in the maintenance of transcriptionally repressed chromatin. MBD3 is crucial to normal mammalian development as knockout of Mbd3 in mice is embryonic lethal (Hendrich et al., 2001). Mutations or abnormal expression of MBD3 could therefore play a role in tumorigenesis via inappropriate regulation of other gene expression. Other members (MBD2 and MBD4) of the MBD family have already been associated with colorectal cancer, albeit in different mechanisms. Maintenance of MBD2 expression (normal function being the suppression of transcription from methylated DNA) is required for tumour formation in APCmin mice (Sansom et al., 2003). Mutation of MBD4 (normal function being the repair of methyl-CpG deamination events) occurs in microsatellite unstable tumours (Bader et al., 1999) and absence of the gene in MBD4 null mice leads to increased genomic mutations and tumour burden in APCmin mice (Millar et al., 2002).

MBD3 is located on chromosome 19p13.3, a region reported to suffer 20–50% loss of heterozygosity (LOH) in sporadic colorectal carcinomas (Dong et al., 1998; Resta et al., 1998; Trojan et al., 2000). According to the data compiled by the Human Genome Mapping Project (available on the website http://www.ncbi.nlm.nih.gov/), MBD3 is within about 500 kb of the gene LKB1/STK11, which is mutated or abnormally methylated in Peutz–Jeghers syndrome. Peutz–Jeghers patients have hamartomatous polyposis of the gastrointestinal tract and an increased risk of a range of cancers including colon. LKB1 is rarely mutated or methylated (maximum about 20%), however, in sporadic colorectal carcinomas (Avizienyte et al., 1998; Resta et al., 1998; Esteller et al., 2000; Launonen et al., 2000; Trojan et al., 2000), raising the possibility that another gene in the vicinity is involved in these cancers. The short arm of chromosome 19 is also implicated in up to 86% of lung cancers (Lukes et al., 1990; Virmani et al., 1998; Sanchez-Cespedes et al., 2001). In the light of the location of MBD3 in a region of chromosomal loss and its known functions in transcription suppression, it is considered as a candidate tumour-suppressor gene. We therefore performed a mutation screen, expression study and methylation status assay to investigate the possible role of MBD3 in the aetiology of colon and lung cancers.

MATERIAL AND METHODS

Samples, DNA and RNA extractions

Cancer cell lines were obtained from the European Collection of Cell Cultures (ECACC)/ATCC, comprising seven colon cancers, 20 lung cancers and one normal lung cell (BW1799) (see Table 1). In all, 51 primary colon tumour samples were part of an unselected, anonymised collection from patients at the Royal Infirmary Edinburgh. DNAs were extracted by standard methods from pellets of cell lines, or from frozen primary tumours. Total RNAs of cell lines were extracted by using Trizol Reagent (Invitrogen) according to the manufacturer’s protocol; normal colon tissue RNA was from Stratagene. PolyA+ RNA was isolated using a Qiagen direct mRNA kit according to the manufacturer’s protocol.

*Correspondence: Dr SA Bader; E-mail: s.bader@ed.ac.uk
Received 8 July 2003; accepted 19 February 2004; published online 13 April 2004
A measure of 10 μg of polyA + RNA was electrophoresed on a 7% formaldehyde gel and then transferred to Hybond-N (Amersham) nylon membrane by capillary transfer. The membrane was crosslinked by UV light before hybridisation. The northern blot was pre-hybridised for 30 min at 68 °C with ExpressHyb solution (Clontech) and hybridised for 1 h at 68 °C in the same solution with 50 μg 32P-labelled MBD3 cDNA probe. The cDNA probe was PCR amplified by primer pair MBD3/3, 5'-ACATGCGTCAGTCGCAAGCGA, and MBD3/30, 5'-GCTGCACTCTGATTGATG, which generated a 587 bp fragment. After appropriate washings, the membrane was exposed to Kodak XAR5 film at 55 °C for up to 3 days. Autoradiographic exposure of a low specific activity (so as not to obscure the nearby 2.4 kb band) β-actin probe was used as a loading control for the lanes.

Examination of MBD3 expression by RT–PCR and Northern blot hybridisation analyses

Total RNA (10 μg) was reverse transcribed with random hexamers using the M-MLV Reverse Transcriptase kit (Invitrogen) according to the manufacturer’s instructions. The cDNA (0.5 μl) was then amplified in a 20 μl reaction under standard conditions. The PCR cycle parameters were as follows: an initial denaturing step at 95 °C for 5 min, followed by 35 cycles of (30 s at 95 °C, 30 s at 52 °C, 30 s at 72 °C), then 3 min at 72 °C. The primers used were MBD3/1, 5'-GAAGAAGTTCGCCGACCC, and MBD3/30, 5'-GCTGCACTCTGATTGATG, which generated a fragment of 260 bp. The PCR products were run on 1% agarose gel in 1× TAE, and visualised by ethidium bromide staining.

CpG island methylation status analysis

To examine the methylation status of the MBD3 CpG island, methylation-sensitive/resistant enzymes (HpaII/MspI) were used to digest DNA at CCGG sites, followed by PCR amplification. The presence of the PCR product from HpaII digest indicates that the DNA is protected by methylation from being cut, while no PCR product results if the DNA is not methylated. No PCR product will be obtained from MspI digested DNA because it cuts irrespective of its methylation status. Genomic DNA (0.5 μg) from cancer cell lines was digested with 50 U of either HpaII or MspI (NEB) for 16 h at 37 °C. The same amounts of fully methylated DNA (Sigma) were also digested as positive controls. The digest reactions were amplified in a 20 μl reaction using the M-MLV Reverse Transcriptase kit (Invitrogen) according to the manufacturer’s instructions. The cDNA (0.5 μl) was then amplified in a 20 μl reaction under standard conditions. The PCR cycle parameters were as follows: an initial denaturing step at 95 °C for 3 min, then 35 cycles of (30 s at 95 °C, 30 s at 57 °C, 30 s at 72 °C), 3 min at 72 °C. The primers used were MBD3/1, 5'-GAAGAAGTTCGCCGACCC, and MBD3/30, 5'-GCTGCACTCTGATTGATG, which generated a fragment of 260 bp. The PCR products were run on 1% agarose gel in 1× TAE, and visualised by ethidium bromide staining.

Table 1 Cell lines and primers used

Cell lines tissue	Description	Name
Colon	Microsatellite stable	HT29, SW480, COLO320
Lung	Microsatellite unstable	HCT116, DLD1/HCT115, LOVO/L5180
Lung	Small cell (SCLC)	NCI-H69, -H524, -H740, -H1672, -H1092, -H1184, -H1838, COR-L24, -L47, -L51, -L88, -L279, -L311
	Non small cell (NSCLC)	NCI-H358, -H835, -H1648, -H2122, COR-L23, -L105

Primers exon	Primer name and sequence	PCR conditions per pair
1	17: ACTGGCAAGCTCGCAAGCCACA	95 °C, (95 °C, 55 °C, 30 °C, 68 °C) × 35
2	15: GCACCGACCGACCGCCA	68 °C, Pfx polymerase+5% Enhancer
3	5: TGGTGGGAGGGCTCTTGGGGT	94 °C, (94 °C, 55 °C, 30 °C) × 35, 72 °C
4	6: GTCACTCGGTGACGACCCA	Taq polymerase+10% DMSO
5	7: CAGCCCGGACTGCATAC	94 °C, (94 °C, 55 °C, 30 °C) × 35, 72 °C
6	8: TTGGGGTCGCTGTGCGTT	Taq polymerase
7	9: GGGCCACTCTGGAGGTACCA	94 °C, (94 °C, 30 °C, 58 °C) × 35, 72 °C
8	10: TGGTGTTAACGCAAGGTCCA	Taq polymerase+5% DMSO
9	11: CCCGCCCTCCCTGGGGA	94 °C, (94 °C, 30 °C, 58 °C) × 35, 72 °C
10	12: TGGACCGAGGCGGCA	Taq polymerase+5% DMSO
11	13: TGGTGTTAACGCAAGGTCCA	94 °C, (94 °C, 30 °C, 58 °C) × 35, 72 °C
12	14: CACTGGCAAGCAGCCGACT	Taq polymerase+5% DMSO

Mutational analysis by SSCP and sequencing

PCR of genomic DNA was carried out using six pairs of intron primers as listed in Table 1. These primer sets covered the entire DNAs were then amplified by PCR using primer pairs MBD3/17, 5'-ACTGGCAAGCTCGCAAGCCACA, and MBD3/18, 5'-GCTGCACTCTGATTGATG, which cover 531 bp within the CpG islands in exon 1 (see Figure 1). We used Platinum Pfx DNA polymerase (Invitrogen) to amplify the CG-rich region. Each 50 μl reaction contained 1 μl Pfx buffer, 0.3 μl dNTP, 1 μl MgSO4, 0.3 μM primers, 5 × Pfx enhancer solution and 2.5 U Pfx DNA polymerase. The PCR conditions were 5 min at 97 °C as a hot start, then 5 min at 95 °C followed by 35 cycles of (30 s at 95 °C, 30 s at 55 °C, 2 min at 68 °C) and finally 5 min at 68 °C. The PCR products were run on 1% agarose gels and visualised by ethidium bromide staining.

Figure 1 (A) MBD3 gene structure. (B) MBD3 CpG island HpaII/MspI restriction sites (CCGG), from Genbank AC005943.
coding region (exons 1–6) of MBD3 and included splice acceptor and donor sites (see Figure 1). PCR conditions are included in Table 1. In all, 1 μCi of 33P-dATP (ICN) was added in each 10 ml reaction. PCR products were denatured and run on 0.5 × SequaGel MD gels (National Diagnostics) containing 10% glycerol and 0.6 × MBD3 changes in colon and lung cancers

Y Zhu et al

MD gels (National Diagnostics) containing 10% glycerol and 0.6 × MBD3 changes in colon and lung cancers

REFERENCES

Antequera F, Bird A (1994) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90: 11995 –11999

Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE, Fossa SD, Salovaara R, Aaltonen LA (1998) Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumours. Cancer Res 58: 2087 –2090

RT–PCR showed that MBD3 expression is detectable in all the cell lines tested (data not shown), an observation confirmed for a selection of the colon cancer cell lines by Northern blot hybridisation of polyA + RNA (Figure 2C), although expression in SW480 relative to β-actin appears lower than for other cell lines. We went on to test for methylation of the CpG island, but did not find evidence for methylation in any of the colon (including SW480) or lung cell lines (see Figure 2D for colon cancer cell lines, lung cancer cell lines data not shown). The method used to screen for methylation concentrated on the nine HpaII/MspI sites, all of which must be methylated to allow PCR and give a positive result after HpaII digestion, and therefore gives a qualitative (total vs partial DNA methylation) rather than quantitative assessment of methylation.

DISCUSSION

Inactivating LKB1/STK11 germline mutations in combination with loss of the wild-type allele by chromosomal loss or methylation are responsible for the development of hamartomatous polyps and adenocarcinomas in Peutz–Jeghers syndrome patients. LKB1/ STK11, however, is rarely involved in sporadic colon cancer cases and at most 33% of NSCLC cases (Sanchez-Cespedes et al, 2002), leading us to consider the role of MBD3 as an alternative tumour-suppressor gene on this location. This gene is tightly linked to LKB1/STK11, being only 500 kb away on chromosome 19p13.3. To investigate the role of MBD3 in colon and lung tumorigenesis, we assayed for mutations, lack of expression and promoter methylation. We found two missense changes, one out of seven colon cancer cell lines and one out of 20 lung cancer cell lines, and none in colon primaries. Both changes were located outside the MBD, and one appears to be a naturally occurring rare polymorphism. The coincidence of the missense and silent mutations in DLD1/HCT15 may simply reflect the mismatch repair defect of these cell lines due to MSH6 mutation. RT–PCR amplification and Northern blot hybridisation of the cell lines showed clear expression of the gene, while methylation-sensitive restriction enzyme/PCR analyses showed that none were fully methylated across the region tested. Hypermethylation of other genes involved in tumorigenesis usually shows methylation across the bulk of the associated CpG island. We would therefore have expected the nine CpG sites we tested of the CpG island for MBD3 to have been methylated in a significant proportion of cells to give a detectable PCR result if this phenomenon had occurred. Our expression and methylation results are consistent with a lack of significant aberrant, tumour-associated silencing of the gene. In summary, we conclude that MBD3 is not a major target of genetic or epigenetic alteration in colon and lung cancer.

ACKNOWLEDGEMENTS

This study was supported by the Cancer Research UK and Chief Scientist Office of the Scottish Executive.
11/Peutz–Jeghers Syndrome gene in left-sided colon cancer. Cancer Res 58: 3787 – 3790
Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA, Herman JG (2000) Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz–Jeghers syndrome. Oncogene 19: 164 – 168
Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18: 6538 – 6547
Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15: 710 – 723
Launonen V, Avizienyte E, Loukola A, Laiho P, Salovaara R, Jarvinen H, Mecklin JP, Oku A, Shimane M, Kim HC, Kim JC, Nezu J, Aaltonen LA (2000) No evidence of Peutz–Jeghers syndrome gene LKB1 involvement in left-sided colorectal carcinomas. Cancer Res 60: 546 – 548
Lukeis R, Irving L, Garson M, Hasthorpe S (1990) Cytogenetics of non-small cell lung cancer: analysis of consistent non-random abnormalities. Genes Chromosomes Cancer 2: 116 – 124
Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297: 403 – 405
Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21: 4886 – 4892
Resta N, Simone C, Maren C, Montera M, Gentile M, Susca F, Grisina R, Pozzi S, Bertario L, Bufo P, Carlomagno N, Ingrosso M, Rossini FP, Tenconi R, Guanti G. (1998) STK11 mutations in Peutz–Jeghers syndrome and sporadic colon cancer. Cancer Res 58: 4799 – 4801
Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, Rosell R, Monzo M, Wu L, Westra WH, Yang SC, Jen J, Sidransky D (2001) Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 61: 1309 – 1313
Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, Westra WH, Herman JG, Sidransky D (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659 – 3662
Sansom O, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR (2003) Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet 34: 145 – 147
Trojan J, Brieger A, Esteller M, Zeuzem S (2000) 5′-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut 47: 272 – 276
Tycko B (2000) Epigenetic gene silencing in cancer. J Clin Invest 105: 401 – 407
Virmani AK, Fong KM, Kodagoda D, McIntire D, Hung J, Tonk V, Minna JD, Gazdar AF (1998) Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chromosomes Cancer 21: 308 – 319
Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolfe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23: 62 – 66
Wade PA, Jones PL, Vermaak D, Wolfe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8: 843 – 846
Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924 – 1935