Applications of Deep Eutectic Solvents Related to Health, Synthesis, and Extraction of Natural Based Chemicals

Laura Lomba *, Cristina B. García, Mª Pilar Ribate, Beatriz Giner and Estefanía Zuriaga

Citation: Lomba, L.; García, C.B.; Ribate, M.P.; Giner, B.; Zuriaga, E. Applications of Deep Eutectic Solvents Related to Health, Synthesis, and Extraction of Natural Based Chemicals. Appl. Sci. 2021, 11, 10156. https://doi.org/10.3390/app112110156

Abstract: Deep eutectic solvents are liquid mixtures of solid components at room temperature, which present exceptional properties: high solvent capacity, high biodegradation, low volatile organic compound character, and relatively low toxicity. Furthermore, there are an important number of DES described, formed by different components and ratios, and thus, the studied applications are also numerous. In this review, we focused on the applications related to health. One of the most promising applications of DES is the development of oral liquid formulations of poorly soluble active pharmaceutical ingredients, although it currently remains at an early stage. We have analyzed the potential and limitations of DES with this regard. Furthermore, DES have been used as synthesis media. In this work, we revised the use of DES to obtain bioactive natural products via synthesis or extraction process. Finally, the usefulness of DES in other interesting applications for promoting health has been also examined: this is the case of genomics studies, nano-carriers for the encapsulation of anticancer drugs or stabilization of samples for medical purposes.

Keywords: DES; NADES; deep eutectic solvent; applications; natural compounds

1. Introduction

The scientific and technological progress carried out over time has resulted in many improvements in the quality of life, but also in visible damage and overexploitation of natural sources. The concept of green chemistry, established by Anastas and Warner, appeared as a sustainable development tool [1]. According to the authors, green chemistry is defined as the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances [1] and is based on 12 principles that give guidelines about the chemical processes, synthesis, use of raw materials and chemicals, energy efficiency, security, and health issues with the aim of moving toward sustainability. In the last decades, the development and use of new solvents, which follow the assumption of the green chemistry principles, have increased considerably with the objective of substituting polluting traditional solvents. Moreover, it is necessary that these new solvents show similar physicochemical properties to traditional solvents and are efficient for the applications desired. In addition, a low toxicity to the environment and health and a high biodegradability is necessary to promote their use. These kinds of solvents can be named as green solvents [2–4].

In the last few years, a new class of substances have emerged as promising green solvents, the so-called deep eutectic solvents (DESs). These new DESs have emerged as a realistic and tighter alternative than previous attempts [5,6], providing a new type of substance with better environmental and health properties, low production costs [7], and better biodegradability profiles [8].

DESs can be defined as a mixture of two or more chemicals (hydrogen bond donors and acceptors) that are solid at room temperature but when combined at a particular molar ratio, present a melting point depression and become liquid [9]. Generally, the components of the mixtures are safe and cheap [10]; more typical are quaternary salts such as choline
DESs can be defined as a mixture of two or more chemicals (hydrogen bond donors and acceptors) that are solid at room temperature but when combined at a particular molar ratio, present a melting point depression and become liquid [9]. Generally, the components of DESs can interact through intermolecular forces, not only via covalent or ionic bonds and thus are considered as good candidates to replace ionic liquids or traditional solvents [16].

A few years ago, a new type of DES arose when Choi et al. [17] noticed that mixtures of natural products such as choline, sugars, and amino acids had a similar behavior to that of a DES when combined properly. These authors named these products as natural deep eutectic solvents (NADESs) [12]. At least 174 DESs have been described in the literature [16].

Due to the nature and versatility of DESs, these mixtures are attracting attention from the academic and industry sectors. It has been demonstrated that DESs can be used for many applications such as synthesis [18–20], separation processes [21,22], extraction [23–28], biocatalysis [29], nanomaterials, biotechnology [12,13], electrochemistry [30,31], food [32], cosmetics, pharmaceuticals [33–38], or as a biofuel [12,14,16,25,39]. DESs are also useful in the pharmaceutical industry as excipients for the delivery of hydrophobic drugs or as a vehicle [40]. In fact, the pharmaceutical industry requires the use of organic solvents as media for poor soluble drugs and DESs seem to be promising alternatives in this area [33]. Considering some of these properties, in this work, a revision focused on the health field applications was carried out. Figure 1 shows the most important DESs, properties, and main applications of this type of mixture.

2. Applications Related to Peculiar Solubility Properties of DESs

Considering the growing interest in the use of solvents which allow solubility to be improved in health application, DESs seem to be a good alternative [41]. Therefore, a solution for drugs with poor water solubility is necessary. Currently, to solve this problem, some mechanisms have been used such as new dosage forms, use of other chemical...
structures (salts, esters), prodrugs, active metabolites, different routes of administration, etc. [42].

In fact, the use of adequate media for dealing with active pharmaceutical ingredients (APIs) with a poor water solubility is one of the most important challenges for the pharmaceutical industry. It is well known that solubility has a direct relationship on a therapeutic effect of a drug [43]. In addition, in the last few years, several studies have focused on the use of eutectic mixtures in the pharmaceutical area with the aim of improving the solubility and bioavailability of drugs [40,44]. In Figure 2, a scheme of the evolution of these new solvents is shown.

Figure 2. Evolution of DESs over time and their relationship with pharmaceutical applications.
Choline-based DESs are one of the most common eutectic mixtures found. The choline cation can be combined with different chemicals (alcohols, fatty acids, carboxylic acids, . . .) due to their ability as hydrogen bond acceptors. These kinds of mixtures allow one to increase the solubility of diverse drugs [33]. As a matter of fact, a mixture of a choline chloride-based DES with urea (ChCl:U (1:2)) increased the solubility of benzoic acid and AMG517 by 80 and 100 times, respectively, and the mixture of the same cation with malonic acid (ChCl:MaLA (1:1)) reached a solubilization of 320 and 20,000 times higher than that for the solubilization of danazol and AMG517 with respect to pure water [40]. Similarly, several reports have indicated that binary and ternary eutectic mixtures have been used to dissolve itraconazole, piroxicam, lidocaine, and posaconazole and the solubilization ability was augmented in all situations in comparison to water [45,46].

Other substances such as menthol, borneol, and camphor have been used as hydrogen bond acceptors to prepare eutectic mixtures and as vehicles for transdermal drug delivery, analgesic, antimicrobial, anti-inflammatory, and antitussive compounds [47] of testosterone, ibuprofen, lidocaine, ubiquinone, captopril, or fluconazole have been used. For instance, Yong et al. studied the in vitro dissolution of poorly water-soluble ibuprofen using polaxamer and menthol in an aqueous solution. It was observed that a relation 4 ibuprofen:6 menthol increased its solubility by 2.5, however, when the polaxamer was included, a 6-fold increase in the aqueous solubility of the drug was found [48]. Kamal and Hagherlou observed that the solubility of cefixime was increased when a mixture of cefixime and DES was prepared. In this case, DES was formed by choline chloride and glycolic acid in a 1:2 molar ratio [49]. The solubility of other active pharmaceutical ingredients with DES has also been analyzed. Another report has studied the solubility of nonsteroidal anti-inflammatory drugs (aspirin, acetaminophen, ibuprofen, ketoprofen, and naproxen) in the presence of deep eutectic solvents, observing that their solubilities increased by 100- to 5400-fold over water solution [50,51].

In Table 1, a summary of the drug solubility comparison between water and DES is presented.

Table 1. List of drug solubility in DESs.

Eutectic Mixture	Drug	Increased Solubility with Respect to Water Solution (T = 298.15 K)	Reference
Choline chloride and urea (1:2)	Benzoic acid	80 times	[40]
	AMG517	100 times	[40]
Choline chloride and malonic acid (1:1)	Danazol	320 times	[40]
	AMG517	20,000 times	[40]
Choline chloride and glycolic acid (1:2)	Itraconazole	6700 times	[45]
	Piroxicam	430 times	[46]
	Lidocaine	2. times	[46]
	Posaconazole	6400 times	[46]
Choline chloride, glycolic acid, and oxalic acid (1:1.7:0.3)	Itraconazol	50,000 times	[45]
	Piroxicam	135 times	[46]
	Lidocain	81 times	[46]
	Posaconazole	7400 times	[46]
Menthol:Poloxamer	Menthol	2.5 times	[48]
	Menthol:Poloxamer	6 times	[48]
Choline chloride and glycolic acid (1:2)	Cefixime trihydrate	2418 times	[49]
In addition, other studies have focused on the application of DESs in terms of improving solubility, and more specifically for pharmaceutical applications. Thus, Araya-Sibaja et al. improved the solubility of the drug lovastatin in three binary eutectic mixtures with three different carboxylic acids (benzoic, salicylic, and cinnamic carboxylic acids), being higher for the system formed with salicylic acid. Moreover, the systems showed stability since there was no dissociation and the results achieved indicated that binary eutectic mixtures can be excellent for the preparation of pharmaceutical formulations [44]. Accordingly, another report observed that the use of a DES, composed of betaine and urea, stabilized two therapeutic B-lactam molecules, clavulanic acid and imipenem, with respect to the use of water and with no effect on their antimicrobial activity [52]. On the other hand, NADES can play an important role in small-molecule formulations such as hydrogels or as a vehicle of lipophilic bioactive ingredients [16]. Moreover, NADES also have an analogous structure to cyclodextrin, and thus can be used as an excipient in hydrophobic drug delivery systems [53].

Thereby, DESs could be interesting alternatives in pharmaceutical formulations, however, more knowledge is necessary at preclinical and clinical phases of implementation as well as their toxic effects in organisms.

Pharmaceutical Applications: Therapeutical Deep Eutectic Solvent-THEDES

The development of bioactive eutectic systems containing active principles increases the potential of these systems and opens a wide spectrum for future developments in pharmaceutical and biomedical applications.

One of these techniques, which can be used to increase the solubility of drugs, is related to the use of THEDES. A THEDES (DES + active pharmaceutical ingredient (API)) and their transdermal drug delivery was first described in 1998 by Stott et al. [54] who showed some mixtures of an API with different enhancers of skin permeation (terpenes). Additionally, two manuscripts reported an increase in the solubility of benzoic acid, danazol, and griseofulvin, an itraconazole using urea–choline chloride and malonic acid–choline chloride DES [9,40].

At the topical level, it was in the 1980s when the first eutectic mixture formulation (EMLA) was marketed, containing an 80% eutectic mixture of lidocaine and prilocaine [33,55]. In another study carried out by Gohel and Nagori, the release of fluconazole in a system made up of this type of substance and prepared as a transdermal spray was carried out to evaluate the antifungal activity in vivo in patients with ringworm was also evaluated. The results were also positive, demonstrating that this type of system improves drug release [56]. Finally, it has also been proven that some NADES combined with collagen allowed for the chemotactic properties and structure of collagen in topical formulations to be retained [57].

In a study carried out by Wang et al., the lidocaine:ibuprofen THEDES was developed and the permeability of API through a porous membrane was reported. Additionally, it was demonstrated that some differences between the dissolution and permeation of the API because of the formulation [9,58].

Some other THEDES based on choline chloride and menthol with acetylsalicylic acid, benzoic acid, and phenylacetic acid has been also described. The dissolution rate was studied, and it was found that the antibacterial activity of the API was retained for all THEDES [9].

Recently, a paper has been published using a choline and geranic acid deep eutectic solvent. In this case, this compound has been used for the treatment of rosacea; the study describes how to apply this THEDES from the synthesis to the medical application and shows the scale-up, characterization, stability analysis, mechanism of action, dose analysis, GLP toxicity, and human clinical study [59].

One of the key points that limit the use of THEDES is the lack of evidence related with safety, toxicity, and some other pharmaceutical issues such as pharmacokinetic behavior. However, there have been some studies that point out the safe use of most DESs.
Regarding the toxicity of DES, it has been tested both in vitro and in vivo. Focusing on in vitro tests, several analyses in bacteria (Alivibrio fischeri, Escherichia coli, Staphylococcus aureus, Salmonella enteriditis, Aspergillus niger, Listeria monocytogenes, Mycobacterium tuberculosis, and propionibacterium) [60–62], virus (Herpes simplex), fish cells (CCO) [63], human cells (MCF-7, PC3, A375. OKF6, HepG2, HT29, and H413) [64], fungi (Aspergillus niger, Candida albicans, Candida cylindracea, Lentinus tigrinus, Panerochaete chrysosporium) [47] and plants (Triticum aestivum or Allium sativum) have been measured [65] while in vivo, some studies in animals (mice) [66] and marine organisms (Hydra sinersis and Cyprinus carpio) have been carried out [67,68].

Silva et al. studied the therapeutic role of DESs based on menthol and saturated fatty acids. They prepared and characterized some DESs using menthol and lauric acid, stearic acid, and myristic acid. After the preparation, they studied their cytotoxicity in the HaCaT cell line. They also carried out an antibacterial assay using Staphylococcus aureus, Staphylococcus epidermis, Pseudomonas aeruginosa, and Escherichia coli. No significant halo has been observed for pure compounds, however, all THEDES presented antimicrobial activity being more effective at higher concentrations. These results can be explained because of the molar ratio (1 menthol:8 saturated fatty acid). Menthol amount was lower in THEDES than the pure compound, nevertheless, a synergistic interaction between menthol and saturated fatty acid has been observed [14]. Additionally, Silva et al., in another paper, prepared a THEDES, formed by perillyl alcohol and ibuprofen, and studied their antimicrobial activity and the cytotoxic profile in colorectal cancer (CRC). They observed that this system presented a possible alternative to conventional therapies because of its properties against microorganisms and toward CRC cells [69].

Roda et al. developed a THEDES delivery system for the treatment of tuberculosis. The system was prepared by encapsulating L-arginine based THEDES with a lipidic matrix and using supercritical technology. They analyzed the cell viability and fibroblast with THEDES encapsulated and concluded that the system was non-cytotoxic [70].

Pereira et al. evaluated the THEDES system based on limonene and saturated fatty acids, menthol, or ibuprofen for cancer treatment. The THEDES system presented antiproliferative properties, however, they observed that THEDES formed by ibuprofen and limonene (1:4) was able to inhibit HT29 proliferation without compromising cell viability. In addition, they observed that this THEDES (ibuprofen and limonene) increased the anti-inflammatory activity, an important key to cancer treatment [71].

THEDES seems to be another promising solvent in order to improve the solubilities of the drugs and is important in parameters such as absorption and permeability. Their characteristics allow them to have good applications in the biomedical and pharmaceutical sectors. In this sense, several terpenic compounds, mainly menthol and camphor, have been demonstrated to improve solubility and dermal adsorption of different drugs, allowing for different formulations such as in the field of permeation enhancers [33].

Table 2 summarizes the successful development of several THEDES systems (API-DES) and the different kinds of studies carried out.
Table 2. Examples of API-DES reported by the literature, year, experimental study, achievement, and administration route.

THEDES System	Year	Experimental Study	Achievement	Administration Route	Reference
Ibuprofen:L-menthol	1998	Human epidermal membranes	Solubility enhancement	Transdermal	[54]
Ibuprofen:thymol					
Ibuprofen:D-limonene					
Ibuprofen:cymene					
Ibuprofen:L-menthone					
Methyl nicotinate:ibuprofen	2000	physicochemical studies	Enhance transdermal delivery	Transdermal	[72]
Menthol:coenzyme Q10	2002	Physicochemical studies	Formulation of self-nanoemulsified drug delivery system (SNEDDS) to improve the solution of coenzyme Q10	Oral *	[73]
Cannabidiol:phosphotidylcholine	2003	Mice	Enhance transdermal delivery and better accumulation (muscle and skin)	Transdermal	[74]
Fluconazole:camphor:menthol	2009	Rat skin (antifungicide activity, effective in vivo activity)	Improved drug transport	Transdermal	[56]
Ritonavir:gelucire	2010	Albino Wistar rats	Increase of rate of absorption	Oral	[75]
Itraconazole:phenol	2012	Franz diffusion cells fitted with excised hairless mouse skins	Permeability enhancement	Topical	[76]
Ibuprofen:lauric acid	2013	Physicochemical studies	Information drug-excipient and its compatibility	Topical *	[77]
Ibuprofen:palmitic acid					
Nimesulide:PEG	2014	rats	Increase of the analgesic effect	Oral	[78]
Nimesulide:urea					
Coenzyme Q10:lauric acid	2015	Physicochemical studies	Solubility enhancement	Topical	[79]
Lidocaine:tertracaine:camphor	2015	physicochemical studies	Liquid formulation	Topical *	[80]
acetylsalicylic acid:ChCl	2016	Microbiology studies in E. coli, S. aureus, B. subtilis.	Enhanced transporters and delivery vehicles for bioactive molecules	Oral *	[9]
acetylsalicylic acid:ChCl					
Paracetamol:ChCl					
Ranitidine:glycerol:acetylsalicylic acid:ChCl					
Salicylic acid:ChCl					
Tetracycline:glycerol:acetylsalicylic acid:ChCl					
Phenformin:glycerol:acetylsalicylic acid:ChCl					
Adiphenine:urea					
Tetracycline:acetylsalicylic acid:ChCl					
Resorcinol:ChCl					
Adiphenine:acetylsalicylic acid:ChCl	2017	Physicochemical studies	Solubility enhancement	Oral *	[82]
THEDES System	Year	Experimental Study	Achievement	Administration Route	Reference
----------------------------	------	--	---	----------------------	-----------
Paenol:menthol	2017	In vitro permeation and deposition study on mouse skin	Transdermal delivery	Transdermal	[83]
Ibuprofen:menthol	2017	Physicochemical studies	Solubility and permeability increases	Oral	[84]
Felodipine:nicotinamide	2017	Animal model	Improvement of AUC compared to free drug solution	Oral	[85]
Hydrochlorothiazide:atenolol	2017	Female Winstar rats	Decrease in systolic blood pressure was more pronounced when it was compared to physical mixtures	Oral	[86]
alpha-euprostaran:p-hydroxybenzoic acid	2017	Female Sprague-Dawley rats	Oral bioavailability and AUC increases	Oral	[87]
Carisartan:nicotinic acid	2018	Pharmacokinetic/pharmacodynamic studies and oxidative stress analysis in rats	Improvement of AUC	Oral	[88]
Caffeine:meloxicam	2019	Male Winstar rats	Increase in solubility and effect	Oral	[89]
Ibuprofen:Limonene	2019	HT29 cell line	Enhancement of anti-inflammatory activity of ibuprofen	Oral	[90]
Ibuprofen:1-tetradecanol	2020	Physicochemical studies	In vitro release	Topical	[91]
Ibuprofen:1-octadecanol	2020	Pharmacokinetic study in Sprague-Dawley rats	Improvement of Cmax and AUC	Oral	[92]
Citric acid:L-arginine:H2O	2020	L929 fibroblasts and system characterization	Design and development of drug formulation	Inhalatory	[93]
Lidocaine:ketoprofen	2021	Albino male rabbit ear model	Use of lidocaine as eutectic co-former for enhanced skin delivery of NSAIDs.	Transdermal	[94]
Ezetimibe:simvastatin:fenofibrate	2021	Physicochemical studies	New way of selecting therapeutic concentrations	Oral	[95]

* This information is not described in the original manuscript, however, it was considered according to the original API application.
3. DES as Synthesis Media of Natural Based Chemicals

DESs have been widely used as green synthesis media since early 2000, timidly at first (with just a dozen articles a year), and with much greater intensity a few years later (Figure 3, Web of Science).

![Articles using DES as synthesis media](image)

Figure 3. Manuscripts in which DESs have been used as synthesis media from 2006 to 20 October 2021. Source: Web of Science.

During 2000, DES have been used both as the solvent of the reaction and the source of the template (structure-directing agents); the so called-ionothermal synthesis. This strategy provided opportunities to develop new synthetic routes for the preparation of several organometallic chemicals [96–101].

At the early stage of the research, the green character of these compounds is already visible (biodegradability, reuse, low volatility) while unexpected catalytic properties have been found [102,103]. Quickly, DESs began to be studied as a mean of synthesis in the preparation of many types of chemical substances of a very different nature; inorganic materials such as silicas, metal charlcogenides, metal structures, organosilicas, metal oxides or metal salts [104], polymers [105], micro/nano structures such as microtubes [106], microporous materials [107], nanowires [108], or carbon absorbent [109] among many others [110].

Focusing on preparation of chemicals with natural bases, DES has been used in the synthesis of biodiesel. Habitually, biodiesel is prepared from animal fats or vegetable oils or biomass such as yeasts, molds, algae, soybean, or pine trees [111]. The traditional processes for preparing biodiesel present several limitations such as emulsification problems, corrosion and energy, waste production, and the saponification of fatty acids, among others. Investigations on the preparation of biodiesel using ionic liquids or DESs by means of enzymatic routes have revealed that less waste is produced and not such severe conditions are needed [111]. Nevertheless, these new processes are still challenging, and some difficulties must still be overcome (the compatibility with non-aqueous solvents, for instance).

On the other hand, DESs have been widely used for biotransformations such as (trans)esterifications, polymerization of lactone, aminolysis, or epoxidation involving lipase-catalyzed processes such as in [112] or epoxide hydrolase reactions [113].

Regarding the synthesis of natural products with biological and pharmaceutical applications, DESs have been useful in the preparation of quinazolinones (marketed as drugs due to their anticonvulsant, hypotensive, sedative, antidepressant, anti-inflammatory,
and anti-allergy properties) mediated cyclization strategy. Results indicated that the new process was cheaper, since the starting material, anthranilamide, is low-priced with respect to the initial raw material and greener, in good to excellent yields [114]. The same strategy was used to synthesize another type of alkaloid, a penipanoid type, with successful results [115].

Another important feature in the use of DESs for the synthesis of natural products is the facility of reuse and the decrease in the waste produced. For example, Annas et al. synthesized 2H-chromene (structural motif in natural products with important biological activity) via DESs in moderate and good yields, with the advantage of being able to recycle the used DES at least five times [116].

Finally, another popular strategy is the use of DES as biocompatible building blocks as a reactant, medium, and/or catalyst in the design of green novel synthetic protocols. The reaction of 4-chlorobenzaldehyde, malononitrile, and hydrazine hydrate was studied under two different reaction protocols (one-pot stepwise pattern and adding reactants simultaneously) in the presence of various deep eutectic solvents, without using any extra catalyst. Once again, the DES was reused and recycled four times with little loss of reactivity [117].

4. DES in Extraction Processes of Bioactive Products

DES, but more specifically, NADES based on natural compounds, have been selected as optimal solvents for extraction processes because of their properties [10,16,118]. NADES have superior solubilizing ability for natural products and are usually nonvolatile [16]. For example, Dai et al. (2014) found that NADESs have been able to enhance the stability of the extracted phenolic compounds [119]. The biocompatibility of NADES with biomaterials has even generated interest in biotechnological industries since they are also suitable solvents for the extraction of natural bioactive compounds from different organisms with higher efficacy compared to the conventional ones, as shown in different previous reviews [12,67]. Moreover, DES have been successfully used for the extraction of proteins very efficiently [120,121]. For example, NADES are more useful as dissolving media in biological assays in substitution of DMSO [16].

In relation to health, we are going to focus our attention on some studies on the extraction of bioactive compounds from medicinal plants, although DESs have been widely used for the extraction of other kind of compounds, with different ranges of hydrophilicity. This is because DES and NADES can include different combinations of compounds, and molar ratios of each component can be modified, allowing for a wide range of tailored designs, apart from the development of innovative extraction techniques [16,122,123]. The most common solvents include choline chloride as a hydrogen bond acceptor [123]. It has been demonstrated that a higher efficiency can be obtained using them instead of conventional solvents. Most bioactive compounds extracted with them include flavonoids, phenolic acids, and anthocyanins [123]. These kinds of extractions involve plants such as Chamaecyparis obtusa [124], Larrea cuneifolia [125], Cinnamomum camphora [126], or Scutellaria baicalensis [127], among others.

Nahkle et al. published a review of the microextraction techniques such as liquid-phase microextraction; hollow-fiber liquid-phase microextraction; dispersive liquid–liquid microextraction methods; deep eutectic solvent based on an aqueous two-phase system; ultrasound; microwave extraction; vortex extraction; heating and stirring or solid-phase extraction. They presented the advantages and disadvantages of each extraction method and showed how several properties (melting point, density, viscosity, surface tension, pH, solubility, or polarity) could directly affect the extraction efficiency [24].

Socas-Rodriguez et al. presented an important summary where they showed some studies that have used DESs as the extraction solvent. They collected information regarding the used sample, extracted bioactive compounds from plants, fruits or vegetables, DES (molar ratio and water content), extraction method, and, finally, analytical technique [128].
The food and pharmaceutical industry have also explored the application opportunities of DES due to the potential use of extracts as food additives, mainly, or even as candidate pharmaceutical agents because of their antimicrobial and antioxidant activity [129,130]. Therefore, extractions include the use of DESs with by-products of fruits such as grape skin or grape pomace or from onion seed and olive oil, tomato, or pear industries, among others [129,131,132]. This can be a way to revalorize agro-food industry waste or by-products. There is an additional application of NADES to increase food safety as reviewed by Misan et al. (2019) or Chen (2019) in an attempt to remove harmful toxins from food ingredients [130,133].

A recent review carried out by Redha showed a very good summary of several studies where some phenolic compounds were extracted from natural sources such as Morus alba, Olea europaea, Junglas regia, Lycium barbarum, Citrus aurantium, Citrus paradise, Lonicera japonica Thunb, Camellia sinensis, or Citrus sinensis, among others. In this manuscript, they showed the DES or NADES used (providing information about HBA and HBD and their molar ratios), the extraction method (detailing the temperature, times, frequencies, etc.), and the obtained yield in each method [134].

Moreover, bioextracts could even be used for dermal formulations as an antifungal agent in a pharmaceutical application [135].

Very recently, DESs have also been tested as a capillary coating for in-tube solid-phase microextraction for the bioanalysis of different kinds of biological samples [136].

The biological activity of DES/extract systems on cells have also been demonstrated. The individual components of NADES such as malic acid, citric acid, proline, and betaine possess antioxidative activity [137–139].

Grillo et al. studied the residues of blueberry processing used as a source of anthocyanins, which are valuable metabolites that possess a wide range of antiproliferative activity. In this study, choline chloride:lactic acid (ChCl:LA) was selected as the most suitable NADES based on extraction efficiency, cost, viscosity, and toxicity. This biological activity was tested in the HeLa cell line and compared to human skin cells (HaCaT). This antiproliferative effect observed with these extraction technologies using green solvents could be interesting for the food industry [140].

Moreover, Guo et al. showed that the essential oil obtained by deep eutectic solvent-homogenate based microwave-assisted hydrodistillation (DES-HMAHD) presented higher antioxidant activity, but lower antifungal activity, and these properties were related to its chemical composition [141].

5. Other Interesting Applications

It is also remarkable that DES can be used in many other applications of a very different nature, which shows the great versatility of this type of mixture. For instance, some molecular analytical methods are based on the use of biological samples that have been previously preserved. DESs have been used successfully for the stabilization of different kinds of samples prior to their analysis without interfering with the methods [142]. NADES can also improve the analytical method for the analysis of different drugs (aspirin, atorvastatin, metformin, metoprolol), as shown recently by Ramezani et al. (2020) [143].

Additionally, some authors have demonstrated the usefulness of DESs as antibacterial activity for the improvement of different candidate materials for medical purposes [144]. Gronlien et al. (2020) described the potential use of NADES with collagen in a practical application combining wound healing by collagen peptides and the antibacterial properties of the NADES [57].

More recently, even NADESs have been prepared to be used as nano-carriers for the encapsulation of anticancer drugs to prevent and treat breast cancer [145]. In addition, DESs can act as therapeutic agents by themselves. Hayyan et al. (2015) showed that different DESs have been toxic to some cancer cell lines such as human prostate cancer cell line (PC3), human malignant melanoma cell line (A375), human liver hepatocellular cell line (HepG2) and human colon adenocarcinoma cell line (HT29), human breast cancer
cell line (MCF-7), human oral keratinocyte cell line (OKF6) cells, and carcinoma-derived human oral keratinocyte cells (H413). Besides, toxicity in normal cells was lower than the cancerous ones [146]. Although certain types of DESs have been used as effective drug deliverers or even have medical or pharmaceutical activities, it is recognized that further investigation is needed prior to clinical use [41].

Metals and metal salts present high solubilities and electrical conductivities in DESs, so they are good candidates for the extraction/recycling of metals in solution. In addition, DESs can be used in industrial separation processes [147]. The study carried out by Oliveira et al. showed that the ChCl:levulinic acid DES had the highest distribution coefficient for separating ethanol from heptane [148]. The application of DES as media for the extractive desulfurization of fuels (e.g., SO\textsubscript{2} sequestration) is also growing in importance. In this area, DESs have also demonstrated some interesting properties in improvements in carbon dioxide (CO\textsubscript{2}) capture [138].

On the other hand, DESs have been used in genomics, incorporating them in the study of genome and the nucleic acids (DNA/RNA) of organisms. DNA in DES dissolution showed novel behaviors of this nucleic acid [149].

6. Conclusions

DESs are tremendously versatile, being used for an important number of applications of very different natures. The main reason that explains this usefulness is the great solvation capacity that these mixtures show against different types of substances. This may be due to the supramolecular structure formed, where solutes can be dissolved inside the holes of this matrix (hole or liquid crystal theory) [17] and that the hydrophilic–hydrophilic interactions between solutes and DES components that make the solute form part of the DES matrix (binding theory) [150].

This solubility boosting makes DESs a potential answer for the well-known challenge of developing a formulation of poorly soluble API, which pharmaceutical science has been addressing for a long time. Furthermore, the possibility of including the API into the DES structure (THEDES) is another direction of research. With this regard, multidisciplinary studies (chemical and pharmaceutical) are needed since a lack of rigorous studies during the formulation processes (in vivo toxicity, pharmacokinetics studies, etc.) has been detected.

When DESs are used in the extraction and synthesis processes of natural compounds, the solubility and biocompatibility of building blocks are not unique reasons that make these mixtures so special: their reuse, recyclability, and benign environmental properties are also points in favor of eutectic mixtures. Therefore, it is expected that research into this field related to the obtention of high added value biological substances via DESs will continue to increase.

Author Contributions: Conceptualization, B.G. and L.L.; Formal Analysis, M.P.R., C.B.G., E.Z., B.G. and L.L.; Methodology: C.B.G.; Writing—Original Draft Preparation, M.P.R., C.B.G., E.Z., B.G. and L.L.; Writing—Review & Editing, B.G. and L.L.; Investigation, M.P.R., C.B.G. and E.Z.; Visualization, E.Z. and M.P.R.; Supervision, L.L.; Funding Acquisition, L.L. and B.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Gobierno de Aragón E31_17R, EEE53 SL, Pinares de Venecia División Energética, Brial (ENATICA).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The PLATON research group acknowledges financial support from Gobierno de Aragón and Fondo Social Europeo “Construyendo Europa desde Aragón” E31_17R. Furthermore, we thank EEE53 SL and the business groups Pinares de Venecia División Energética and Brial (ENATICA) for their support. Both business groups are committed to sustainable development through environmental respect.
Conflicts of Interest: These authors declare no conflict of interest in the results of this work.

References
1. Anastas, P.T.; Warner, J.C. "Green Chemistry." Oxford University Press: Oxford, UK, 2000; Volume 4, pp. 437–438.
2. Nelson, W.M. Are ionic liquids green solvents? In "Ionic Liquids: Industrial Applications for Green Chemistry," Rogers, R.D., Seddon, K.R., Eds.; American Chemical Society: Washington, DC, USA, 2002; Volume 818, pp. 30–41.
3. Capello, C.; Fischer, U.; Hungerbuhler, K. What is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 9, 927–934. [CrossRef]
4. Ahluwalia, V.K.; Varma, R.S. "Green Solvents for Organic Synthesis." Alpha Science: Oxford, UK, 2009.
5. Romera, A.; Santos, A.; Tojo, J.; Rodriguez, A. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 2008, 151, 268–273. [CrossRef]
6. Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [CrossRef]
7. Deetlefs, M.; Seddon, K.R. Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem. 2010, 12, 17–30. [CrossRef]
8. Castro, V.I.B.; Craveiro, R.; Silva, J.M.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology 2018, 83, 15–26. [CrossRef]
9. Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.; Dionísio, M.; Sá-Nogueira, I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur. J. Pharm. Biopharm. 2016, 98, 57–66. [CrossRef]
10. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [CrossRef]
11. Florindo, C.; Branco, L.C.; Marrucho, I.M. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem. 2019, 12, 1549–1559. [CrossRef]
12. Yang, Z. Natural Deep Eutectic Solvents and Their Applications in Biotechnology. Adv. Biochem. Eng. Biotechnol. 2019, 168, 31–59.
13. Arriaga, S.; Aizpuru, A. Advances and Applications of Partitioning Bioreactors. In "Advances in Chemical Engineering (54);" Elsevier: Amsterdam, The Netherlands, 2019.
14. Silva, J.M.; Pereira, C.V.; Mano, F.; Silva, E.; Castro, V.I.B.; Sá-Nogueira, I.; Reis, R.L.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [CrossRef]
15. Warrag, S.E.E.; Peters, C.J.; Kroon, M.C. Deep eutectic solvents: A review. Curr. Opin. Green Sustain. Chem. 2017, 5, 55–60. [CrossRef]
16. Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [CrossRef] [PubMed]
17. Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [CrossRef] [PubMed]
18. Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angew. Chem. Int. Ed. Engl. 2021, 60, 22148–22165. [CrossRef]
19. Devi, T.J.; Singh, T.; Singh, R.R.; Sharma, K.; Singh, O. Synthesis of Tri-indolylmethane Derivatives Using a Deep Eutectic Solvent. Russ. J. Org. Chem. 2021, 57, 255–264. [CrossRef]
20. Devi, T.J.; Singh, T.P.; Singh, O.M. The one-pot four-component eco-friendly synthesis of spirooxindoles in deep eutectic solvent. J. Chem. Sci. 2020, 132, 28. [CrossRef]
21. Zhao, R.T.; Pei, D.; Yu, P.L.; Wei, J.T.; Wang, N.L.; Di, D.L.; Liu, Y.W. Aqueous two-phase systems based on deep eutectic solvents and their application in green separation processes. J. Sep. Sci. 2020, 43, 348–359. [CrossRef]
22. Li, L.; Liu, Y.; Wang, Z.; Yang, L.; Liu, H. Development and applications of deep eutectic solvent derived functional materials in chromatographic separation. J. Sep. Sci. 2021, 44, 1098–1121. [CrossRef]
23. Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [CrossRef] [PubMed]
24. Nakhle, L.; Kfoury, M.; Mallard, I.; Landy, D.; Greige-Gerges, H. Microextraction of bioactive compounds using deep eutectic solvents: A review. Environ. Chem. Lett. 2019, 17, 3747–3759. [CrossRef]
25. Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [CrossRef]
26. Lin, Z.; Zhang, Y.; Zhao, Q.; Chen, A.; Jiao, B. Ultrasound-assisted dispersive liquid-phase microextraction by solidifying L-menthol-decanoic acid hydrophobic deep eutectic solvents for detection of five fungicides in fruit juices and tea drinks. J. Sep. Sci. 2021, 44, 3870–3882. [CrossRef] [PubMed]
27. Habila, M.A.; Alabdullkarem, E.A.; ALothman, Z.A.; Yilmaz, E.; Soyak, M. Thiomalic acid/ferric chloride-based deep eutectic solvent for microextraction of chromium in natural water samples prior to FAAS analysis. Int. J. Environ. Anal. Chem. 2020, 1–9. [CrossRef]
56. Gohel, M.C.; Nagori, S.A. Fabrication and design of transdermal fluniconazole spray. Pharm. Dev. Technol. 2009, 14, 208–215. [CrossRef]

57. Grotnlien, K.G.; Pedersen, M.E.; Tønnesen, H.H. A natural deep eutectic solvent (NADES) as potential excipient in collagen-based products. Int. J. Biol. Macromol. 2020, 156, 394–402. [CrossRef] [PubMed]

58. Wang, H.; Gurai, G.; Shamshina, J.; Cojocaru, O.A.; Janikowski, J.; MacFarlane, D.R.; Davis, J.H., Jr.; Rogers, R.D. Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chem. Sci. 2014, 5, 3459–3465. [CrossRef]

59. Ko, J.; Mandal, A.; Dhawan, S.; Shevachman, M.; Mitragotri, S.; Joshi, N. Clinical translation of choline and ceramide acid deep eutectic solvent. Biocatal. Transfor. Med. 2021, 6, e10191. [CrossRef]

60. Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [CrossRef]

61. Hayyan, M.; Hashim, M.A.; Al-Saadi, M.A.; Hayyan, A.; AlNashef, I.M.; Mirghani, M.E.S. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 2013, 93, 455–459. [CrossRef]

62. Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere 2013, 90, 2193–2195. [CrossRef] [PubMed]

63. Radošević, K.; Zeleznjak, J.; Bubalo, M.C.; Redovniković, I.R.; Slivac, I.; Srček, V.G. Comparative in vitro study of cholinium-based ionic liquids and deep eutectic solvents toward fish cell line. Ecotoxicol. Environ. Saf. 2016, 131, 30–36. [CrossRef]

64. Macário, I.P.E.; Oliveira, H.; Menezes, A.C.; Ventura, S.P.M.; Pereira, J.L.; Gonçalves, A.M.M.; Coutinho, J.A.P.; Gonçalves, F.J.M. Cytotoxicity profiling of deep eutectic solvents to human skin cells. Sci. Rep. 2019, 9, 3932. [CrossRef]

65. Wen, Q.; Chen, J.X.; Tang, Y.L.; Wang, J.; Yang, Z. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 2015, 132, 63–69. [CrossRef]

66. Chen, J.; Wang, Q.; Liu, M.; Zhang, L. The effect of deep eutectic solvent on the pharmacokinetics of salvianolic acid B in rats and its acute toxicity test. J. Chromatogr. B Analit. Technol. Biomed. Life Sci. 2017, 1063, 60–66. [CrossRef]

67. Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnol. Adv. 2017, 35, 105–134. [CrossRef]

68. Juneidi, I.; Hayyan, M.; Mohd Ali, O. Toxicity profile of choline chloride-based Deep Eutectic Solvent for fungi and Cyprinus carpio fish. Environ. Sci. Pollut. Res. 2016, 23, 7648–7659. [CrossRef]

69. Silva, E.; Oliveira, F.; Silva, J.M.; Matias, A.; Reis, R.L.; Duarte, A.R.C. Optimal Design of THEDES Based on Perillyl Alcohol and Ibuprofen. Pharmaceutics 2020, 12, 1121. [CrossRef] [PubMed]

70. Roa, A.; Santos, F.; Matias, A.; Paiva, A.; Duarte, A.R.C. Design and Processing of Drug Delivery Formulations of Therapeutic Deep Eutectic Systems for Tuberculosis. J. Supercrit. Fluids 2020, 161, 104826. [CrossRef]

71. Pereira, C.V.; Silva, J.M.; Rodrigues, L.; Reis, R.L.; Paiva, A.; Duarte, A.R.C.; Matias, A. Unveil the Anticancer Potential of Limonene Based Therapeutic Deep Eutectic Solvents. Sci. Rep. 2019, 9, 14926. [CrossRef] [PubMed]

72. Woolfson, A; Malcolm, R.; Campbell, K.; Jones, D.; Russell, J. Rheological, mechanical and membrane penetration properties of novel dual drug systems for percutaneous delivery properties. J. Control. Release 2000, 67, 395–408. [CrossRef]

73. Nazzal, S.; Smalyukh, I.I.; Lavrentovich, O.D.; Khan, M.A. Preparation and in vitro characterization of a eutectic based semisolid drug delivery system (Snedds) of ubiquinone: Mechanism and progress of emulsion formation. Int. J. Pharm. 2022, 528, 536. [CrossRef]

74. Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release 2003, 93, 377–387. [CrossRef] [PubMed]

75. Sinha, S.; Ali, M.; Baboota, S.; Ahuja, A.; Kumar, A.; Ali, J. 2010. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 2010, 11, 518–527. [CrossRef]

76. Park, C.W.; Mansour, H.M.; Oh, T.O.; Kim, J.Y.; Lee, B.J.; Chi, S.C.; Rhee, Y.S.; Park, E.S. Phase behavior of itraconazole-nimesulide with water-soluble carriers: Phase equilibria, solid-state characterisation and in-vivo/pharmacodynamic evaluation. Int. J. Pharm. 2012, 436, 652–658. [CrossRef]

77. Benessam, S; Khimeche, K.; Djellouli, F.; Benziane, M.; Dahmani, A. Phase diagram of ibuprofen with fatty acids. J. Therm. Anal. Calorim. 2013, 112, 317–320. [CrossRef]

78. Abdelkader, H.; Abdallah, O.Y.; Salem, H.; Alani, A.W.G.; Alany, R.G. Eutectic, monotectic and immiscibility systems of nimesulide with water-soluble carriers: Phase equilibria, solid-state characterisation and in-vivo/pharmacodynamic evaluation. J. Pharm. Pharmacol. 2014, 66, 1439–1450. [CrossRef] [PubMed]

79. Tarate, B.; Bansal, A.K. Characterization of CoQ10-lauric acid eutectic system. Thermochim. Acta 2015, 605, 100–106. [CrossRef]

80. Bank, J.; Choug, M.C.; Varanasi, R.; Chauhan, H. Characterization and Comparison of Lidocaine-Tetracaine and Lidocaine-Camphor Eutectic Mixtures Based on Their Crystallization and Hydrogen-Bonding Abilities. AAPS PharmSciTech 2015, 16, 528–536. [CrossRef]

81. Berton, P.; Di Bona, K.R.; Yancey, D.; Rizvi, S.A.A.; Gray, M.; Gurai, G.; Shamshina, J.L.; Rasco, J.F.; Rogers, R.D. Transdermal Bioavailability in Rats of Lidocaine in the Forms of Ionic Liquids, Salts, and Deep Eutectic. ACS Med. Chem. Lett. 2017, 8, 498–503. [CrossRef] [PubMed]

82. Abbott, A.P.; Ahmed, E.I.; Prasad, K.; Qader, I.B.; Ryder, K.S. Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 2017, 448, 2–8. [CrossRef]
83. Wang, W.; Cai, Y.; Liu, Y.; Zhao, Y.; Feng, J.; Liu, C. Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery: Formulation development and in vitro evaluation. *Artif. Cells Nanomed. Biotechnol.* 2017, 45, 1–6. [CrossRef] [PubMed]

84. Duarte, A.R.C.; Ferreira, A.S.D.; Barreiros, S.; Cabrita, E.; Reis, R.L.; Paiva, A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. *Eur. J. Pharm. Biopharm.* 2017, 114, 296–304. [CrossRef]

85. Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Deep eutectic assisted synthesis of polymers and related materials. *Dalton Trans.* 2008, 47, 7839–7843. [CrossRef] [PubMed]

86. Patel, R.D.; Raval, M.K.; Sheth, N.R. Influence of eutectic mixture as a multi-component system in the improvement of physicomechanical and pharmacokinetic properties of diacerein. *Adv. Powder Technol.* 2020, 31, 1441–1456. [CrossRef]

87. Marei, H.F.; Arafa, M.F.; Essa, E.A.; El Maghraby, G.M. Lidocaine as eutectic forming drug for enhanced transdermal delivery of nonsteroidal anti-inflammatory drugs. *J. Drug Deliv. Sci. Technol.* 2020, 58, 101562. [CrossRef]

88. Alshakht, R.A.; Essa, E.A.; El Maghraby, G.M. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: Caffeine as a melting point modulator. *Int. J. Pharm.* 2019, 563, 395–405. [CrossRef] [PubMed]

89. Jin, S.; Jang, J.; Lee, S.; Kim, I.I.W. Binary Mixtures of Some Active Pharmaceutical Ingredients with Fatty Alcohols—The Criteria of Successful Eutectic Formation and Dissolution Improvement. *Pharmaceutics* 2020, 12, 1098. [CrossRef] [PubMed]

90. Liu, L.; Kong, Y.; Xu, H.; Li, J.P.; Dong, J.-X.; Lin, Z. Ionothermal synthesis of a three-dimensional zinc phosphate with DFT fixation of carbon dioxide to cyclic carbonates. *Green Chem.* 2007, 9, 1203–1209. [CrossRef]

91. Liu, L.; Wei, H.; Zhang, L.; Li, J.; Dong, J. Ionothermal synthesis of the MetalOrganic Framework compound Cu3(BTC)2. *Stud. Surf. Sci. Catal.* 2017, 174, 459–462.

92. Ma, Z.; Yu, J.; Dai, S. Preparation of inorganic materials using ionic liquids. *Energy Environ. Sci.* 2012, 5, 395–405. [CrossRef] [PubMed]

93. Wei, L.; Yang, Y.; Li-Xin, C.; Ge, S.; Lan, Z.; Yong-Gang, W. Spindle Like BiVO4 Microtubes: Synthesis in Deep Eutectic Solvent and Photocatalytic Properties. *Chin. J. Inorg. Chem.* 2010, 26, 379–384.

94. Liu, L.; Li, X.; Xu, H.; Li, J.; Lin, Z.; Dong, J. Template control in ionothermal synthesis of aluminophosphate microporous materials. *Dalton Trans.* 2009, 48, 12990–12998. [CrossRef] [PubMed]

95. Morris, R. Ionothermal synthesis—Ionic liquid as functional solvents in the preparation of crystalline materials. *Chem. Commun. (Camb. Engl.)* 2009, 21, 2990–2998. [CrossRef] [PubMed]

96. Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Hydroxyl-functionalized ionic liquid: A novel efficient catalyst for chemical fixation of carbon dioxide to cyclic carbonate. *Tetrahedron Lett.* 2008, 49, 3588–3591. [CrossRef]

97. Ma, Z.; Yu, J.; Dai, S. Preparation of inorganic materials using ionic liquids. *Adv. Mater.* 2010, 22, 261–285. [CrossRef]

98. Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Deep eutectic solvents playing multiple roles in the synthesis of polymers and related materials. *Chem. Soc. Rev.* 2012, 41, 4996–5014. [CrossRef] [PubMed]

99. Wei, L.; Ya-Qin, Y.; Li-Xin, C.; Ge, S.; Lan, Z.; Yong-Gang, W. Spindle Like BiVO4 Microtubes: Synthesis in Deep Eutectic Solvent and Photocatalytic Properties. *Chin. J. Inorg. Chem.* 2010, 26, 379–384.

100. Liu, L.; Li, X.; Xu, H.; Li, J.; Lin, Z.; Dong, J. Template control in ionothermal synthesis of aluminophosphate microporous materials. *Dalton Trans.* 2009, 48, 1048–1052. [CrossRef]

101. Shirea, M.; Freitas, A.; Vasile, B.S.; Ghitulica, C.; Pereira, C.M.; Silva, F. Gold nanowire networks: Synthesis, characterization, and catalytic activity. *Langmuir*. 2011, 27, 3906–3913. [CrossRef] [PubMed]

102. Paniño, J.; Gutiérrez, M.C.; Carriazo, D.; Ania, C.O.; Parra, J.B.; Ferrer, M.L.; del Monte, F. Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2–CH4 gas mixtures. *Energy Environ. Sci.* 2012, 5, 8699–8707. [CrossRef]

103. Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. *Eur. J. Org. Chem.* 2016, 4, 612–632. [CrossRef]
139. Alirezaei, M.; Khoshdel, Z.; Dezfoulian, O.; Rashidipour, M.; Taghadosi, V. Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats. *J. Physiol. Sci.* 2015, 65, 243–252. [CrossRef] [PubMed]

140. Grillo, G.; Gunjević, V.; Radošević, K.; Radojičić Redovniković, I.; Cravotto, G. Deep eutectic solvents and nonconventional technologies for blueberry-peel extraction: Kinetics, anthocyanin stability, and antiproliferative activity. *Antioxidants* 2020, 9, 1069. [CrossRef] [PubMed]

141. Guo, Y.; Li, Y.; Li, Z.; Jiang, L.; Cao, X.; Gao, W.; Wang, J.; Luo, D.; Chen, F. Deep eutectic solvent-homogenate based microwave-assisted hydrodistillation of essential oil from *Litsea cubeba* (Lour.) Pers. fruits and its chemical composition and biological activity. *J. Chromatogr. A* 2021, 1646, 462089. [CrossRef]

142. Goldsborough, A.S.; Bates, M.R. Sample Fixation and Stabilisation. U.S. Patent US9696247B2, 4 September 2014.

143. Ramezani, A.M.; Absalan, G. Employment of a natural deep eutectic solvent as a sustainable mobile phase additive for improving the isolation of four crucial cardiovascular drugs by micellar liquid chromatography. *J. Pharm. Biomed. Anal.* 2020, 186, 113259. [CrossRef]

144. García-Argüelles, S.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; Yuste, L.; Rojo, F.; del Monte, F. Deep eutectic solvent-assisted synthesis of biodegradable polystyres with antibacterial properties. *Langmuir* 2013, 29, 9525–9534. [CrossRef] [PubMed]

145. Sun, X.; Pradeepkumar, P.; Rajendran, N.K.; Shakila, H.; Houreld, N.N.; Farraj, D.A.; Elnahas, Y.M.; Elumalai, N.; Rajan, M. Natural deep eutectic solvent supported targeted solid–liquid polymer carrier for breast cancer therapy. *RSC Adv.* 2020, 10, 36989–37004. [CrossRef]

146. Hayyan, M.; Looi, C.Y.; Hayyan, A.; Wong, W.F.; Hashim, M.A. In Vitro and In Vivo toxicity profiling of ammonium-based deep eutectic solvents. *PLoS ONE* 2015, 10, e0117934. [CrossRef] [PubMed]

147. Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. *Chem. Rev.* 2021, 121, 1232–1285. [CrossRef]

148. Oliveira, F.S.; Pereiro, A.B.; Rebelo, L.P.N.; Marrucho, I.M. Deep eutectic solvents as extraction media for azeotropic mixtures. *Green Chem.* 2013, 15, 1326–1330. [CrossRef]

149. Zhang, Y.; de La Harpe, K.; Hariharan, M.; Kohler, B. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent. *Faraday Discuss.* 2018, 207, 267–282. [CrossRef] [PubMed]

150. Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. *Anal. Chim. Acta* 2013, 766, 61–68. [CrossRef] [PubMed]