A NOTE ON NEW TYPE DEGENERATE BERNOULLI NUMBERS

TAEKYUN KIM AND DAE SAN KIM

ABSTRACT. Studying degenerate versions of various special polynomials have become an active area of research and yielded many interesting arithmetic and combinatorial results. Here we introduce a degenerate version of polylogarithm function, called the degenerate polylogarithm function. Then we construct new type degenerate Bernoulli polynomials and numbers, called degenerate poly-Bernoulli polynomials and numbers, by using the degenerate polylogarithm function and derive several properties on the degenerate poly-Bernoulli numbers.

1. INTRODUCTION

As is well known, for \(s \in \mathbb{C} \), the polylogarithm function is defined by a power series in \(z \), which is also a Dirichlet series in \(s \):

\[
\text{Li}_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s} = z + \frac{z^2}{2^s} + \frac{z^3}{3^s} + \cdots, \quad (\text{see } \{6, 9, 22\}).
\]

This definition is valid for arbitrary complex order \(s \) and for all complex arguments \(z \) with \(|z| < 1 \); it can be extended to \(|z| \geq 1 \) by analytic continuation.

From (1), we note that

\[
\text{Li}_1(z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = -\log(1-z).
\]

For any nonzero \(\lambda \in \mathbb{R} \) (or \(\mathbb{C} \)), the degenerate exponential function is defined by

\[
e_{\lambda}^x(t) = (1 + \lambda t)^\frac{x}{\lambda}, \quad e_{\lambda}^x(t) = (1 + \lambda t)^\frac{x}{\lambda} = e\lambda^z(t), \quad (\text{see } \{1, 14, 15, 17\}).
\]

By Taylor expansion, we get

\[
e\lambda^x(t) = \sum_{n=0}^{\infty} (x)_{\lambda,n} \frac{t^n}{n!}, \quad (\text{see } \{13, 14, 15, 16, 17, 18\}),
\]

where \((x)_{0,\lambda} = 1, \ (x)_{n,\lambda} = (x-\lambda)(x-2\lambda)\cdots(x-(n-1)\lambda), \ (n \geq 1) \).

Note that

\[
\lim_{\lambda \to 0} e\lambda^x(t) = \sum_{n=0}^{\infty} \frac{x^n t^n}{n!} = e^x.
\]

In [1,2], Carlitz considered the degenerate Bernoulli polynomials given by

\[
\frac{t}{e_{\lambda}^x(t) - 1} e_{\lambda}^x(t) = \frac{t}{(1 + \lambda t)^\frac{x}{\lambda} - 1} (1 + \lambda t)^\frac{x}{\lambda} = \sum_{n=0}^{\infty} \beta_{n,\lambda}(x) \frac{t^n}{n!}.
\]

When \(x = 0 \), \(\beta_{n,\lambda} = \beta_{n,\lambda}(0) \) are called the degenerate Bernoulli numbers. Note that

\[
\lim_{\lambda \to 0} \beta_{n,\lambda}(x) = B_n(x), \quad (n \geq 0),
\]

2010 Mathematics Subject Classification. 11B83; 05A19.

Key words and phrases. degenerate polylogarithm function; degenerate poly-Bernoulli polynomial; degenerate poly-Bernoulli number.
where \(B_n(x) \) are the ordinary Bernoulli polynomials given by

\[
\frac{t}{e^t-1}e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (\text{see } [1-26]).
\]

The Stirling numbers of the second kind are defined as

\[
x^n = \sum_{l=0}^{n} S_2(n, l) (x)_l, \quad (n \geq 0), \quad (\text{see } [10, 12, 14, 20, 22]),
\]

where \((x)_0 = 1, (x)_n = x(x-1)(x-2)\cdots(x-n+1), (n \geq 1)\). Thus, we easily get

\[
\frac{1}{k!} (e^t - 1)^k = \sum_{n=k}^{\infty} S_2(n, k) \frac{t^n}{n!}, \quad (k \geq 0).
\]

In [11], Kim considered the degenerate Stirling numbers of the second kind which are defined as

\[
(x)_{n, \lambda} = \sum_{k=0}^{n} S_{2, \lambda}(n, k) (x)_k, \quad (n \geq 0).
\]

Note that

\[
\lim_{\lambda \to 0} S_{2, \lambda}(n, k) = S_2(n, k).
\]

The generating function of the degenerate Stirling numbers of the second kind is given by

\[
\frac{1}{k!} (e^{\lambda t} - 1)^k = \sum_{n=k}^{\infty} S_{2, \lambda}(n, k) \frac{t^n}{n!}, \quad (k \geq 0), \quad (\text{see } [11]).
\]

In this paper, we will introduce the degenerate polylogarithm function as a degenerate version of the polylogarithm function for \(s = \frac{k}{\lambda} \in \mathbb{Z} \). Then we will construct new type degenerate Bernoulli polynomials and numbers, called degenerate poly-Bernoulli polynomials and numbers, by using the degenerate polylogarithm function and derive several properties on the degenerate poly-Bernoulli numbers.

2. NEW TYPE DEGENERATE BERNOULLI NUMBERS AND POLYNOMIALS

We define the degenerate logarithm function \(\log_{\lambda} (1 + t) \), which is the inverse of the degenerate exponential function \(e_\lambda(t) \) and the motivation for the definition of degenerate polylogarithm function, as:

\[
\log_{\lambda} (1 + t) = \sum_{n=1}^{\infty} \lambda^{n-1} (1)_{n, 1/\lambda} \frac{t^n}{n!}.
\]

From (4) and (11), we note that

\[
\log_{\lambda} (1 + t) = \sum_{n=1}^{\infty} \lambda^{n-1} \left(1 - \frac{1}{\lambda} \right) \left(1 - \frac{2}{\lambda} \right) \cdots \left(1 - \frac{1}{\lambda} (n-1) \right) \frac{t^n}{n!}
\]

\[
= \frac{1}{\lambda} \sum_{n=1}^{\infty} (\lambda)_n \frac{t^n}{n!}
\]

\[
= \frac{1}{\lambda} ((1+t)^{\lambda} - 1).
\]

Lemma 1. For \(\lambda \in \mathbb{R} \), we have

\[
\log_{\lambda} (1 + t) = \frac{1}{\lambda} ((1+t)^{\lambda} - 1).
\]

In addition, \(e_\lambda \left(\log_{\lambda} (1 + t) \right) = 1 + t \).
It is easy to show that
\[
\lim_{\lambda \to 0} \log_\lambda (1 + t) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n} = \log(1 + t).
\]

For \(k \in \mathbb{Z} \), we define the degenerate polylogarithm function as
\[
I_{k,\lambda}(x) = \sum_{n=1}^{\infty} \frac{(-\lambda)^{n-1}(1)_{n,1/\lambda}}{(n-1)!n^k} x^n, \quad (|x| < 1).
\]

Note that
\[
\lim_{\lambda \to 0} I_{k,\lambda}(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^k} = \operatorname{Li}_k(x), \quad \text{(see [3, 22])}.
\]

From (12), we note that
\[
\frac{d}{dx} I_{k,\lambda}(x) = \frac{d}{dx} \sum_{n=1}^{\infty} \frac{(-\lambda)^{n-1}(1)_{n,1/\lambda}}{(n-1)!n^k} x^n = \frac{1}{\lambda} I_{k-1,\lambda}(x).
\]

For \(k \geq 2 \), (13) can be written in the form of iterated integral which is given by
\[
I_{k,\lambda}(x) = \int_0^{\infty} \frac{1}{t} \frac{1}{t} \frac{1}{t} \cdots \frac{1}{t} I_{1,\lambda}(t) dt dt \cdots dt \quad \text{for } (k-2)\text{-times}
\]

By (11) and (12), we get
\[
I_{1,\lambda}(x) = \sum_{n=1}^{\infty} \frac{(-\lambda)^{n-1}(1)_{n,1/\lambda}}{n!} x^n = -\log_\lambda (1 - x).
\]

Thus, by (14) and (15), for \(k \geq 2 \) we get
\[
I_{k,\lambda}(x) = -\int_0^{\infty} \frac{1}{t} \frac{1}{t} \frac{1}{t} \cdots \frac{1}{t} \log_\lambda (1 - t) dt dt \cdots dt \quad \text{for } (k-2)\text{-times}
\]

For \(k \in \mathbb{Z} \), we define the new type degenerate Bernoulli numbers, which are called the degenerate poly-Bernoulli numbers, as
\[
\frac{1}{x} I_{k,\lambda}(x) \bigg|_{x=1 - e_\lambda(-t)} = \frac{1}{1 - e_\lambda(-t)} I_{k,\lambda}(1 - e_\lambda(-t)) = \sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} \frac{t^n}{n!}.
\]

Note that
\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(1)} \frac{t^n}{n!} = \frac{1}{1 - e_\lambda(-t)} I_{1,\lambda}(1 - e_\lambda(-t)) = \frac{-t}{e_\lambda(-t) - 1} = \sum_{n=0}^{\infty} \frac{(-1)^n \beta_{n,\lambda}^n}{n!}.
\]

Comparing the coefficients on both sides of (18), we have
\[
\beta_{n,\lambda}^{(1)} = (-1)^n \beta_{n,\lambda}, \quad (n \geq 0).
\]

Now, we consider the new type degenerate Bernoulli polynomials which are called the degenerate poly-Bernoulli polynomials and given by
\[
\frac{l_{k,\lambda}(1 - e_\lambda(-t))}{1 - e_\lambda(-t)} e_\lambda(t) = \sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} \frac{t^n}{n!}.
\]
Now, we observe that

\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} x^n/n! = \frac{k_{k,\lambda}(1-e_\lambda(-t))}{1-e_\lambda(-t)} e_\lambda^k(-t)
\]

(20)

\[
= \sum_{l=0}^{\infty} \beta_{l,\lambda}^{(k)} l! \sum_{m=0}^{\infty} \frac{(-1)^m(x)_{m,\lambda}}{m!} l^m
\]

\[
= \sum_{n=0}^{\infty} \sum_{l=0}^{n} \left(\frac{n}{l} \right) \beta_{l,\lambda}^{(k)} (-1)^{n-l} (x)_{n-l,\lambda} l^n/n!
\]

Comparing the coefficients on both sides of (20), we have

\[
\beta_{n,\lambda}^{(k)} = \sum_{l=0}^{n} \left(\frac{n}{l} \right) \beta_{l,\lambda}^{(k)} (-1)^{n-l} (x)_{n-l,\lambda}, \quad (n \geq 0).
\]

Now, we observe that

\[
\frac{d}{dx} e_\lambda(-x) = \frac{d}{dx} \sum_{l=0}^{\infty} \frac{(-1)^l(1)_{l,\lambda}}{l!} x^l = \sum_{l=1}^{\infty} \frac{(-1)^l(1)_{l,\lambda}}{(l-1)!} x^{l-1}
\]

(22)

\[
= -\sum_{l=0}^{\infty} \frac{(-1)^l(1)_{l+1,\lambda}}{l!} x^l = -\sum_{l=0}^{\infty} \frac{(-1)^l(1)_{l,\lambda}}{l!} x^l (1-l\lambda)
\]

\[
= -e_\lambda(-x) + \lambda \sum_{l=1}^{\infty} \frac{(-1)^l(1)_{l,\lambda}}{(l-1)!} x^l = -e_\lambda(-x) + \lambda x \frac{d}{dx} e_\lambda(-x).
\]

Thus, by (22), we get

\[
(1-\lambda x) \frac{d}{dx} e_\lambda(-x) = -e_\lambda(-x).
\]

Therefore, by (23), we obtain the following lemma.

Lemma 2. For \(\lambda \in \mathbb{R} \), we have

\[
\frac{d}{dx} e_\lambda(-x) = -\frac{1}{1-\lambda x} e_\lambda(-x) = -e_\lambda^{1-\lambda}(-x).
\]

By Lemma 2, we easily get

\[
\frac{d}{dx} (1-e_\lambda(-x)) = \frac{1}{1-\lambda x} e_\lambda(-x) = e_\lambda^{1-\lambda}(-x)
\]

(24)

From (13), (15), (17), and (24), for \(k \geq 2 \) we have

\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} x^n/n! = \frac{1}{1-e_\lambda(-x)} \int_{0}^{\infty} e_\lambda^{1-\lambda}(-t) \int_{0}^{t} e_\lambda^{1-\lambda}(-t) \cdots \int_{0}^{t} e_\lambda^{1-\lambda}(-t) t dt \cdots dt.
\]

(25)

Therefore, by (25), we obtain the following theorem.

Theorem 3. For \(k \geq 2 \), we have

\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} x^n/n! = \frac{1}{1-e_\lambda(-x)} \int_{0}^{\infty} e_\lambda^{1-\lambda}(-t) \int_{0}^{t} e_\lambda^{1-\lambda}(-t) \cdots \int_{0}^{t} e_\lambda^{1-\lambda}(-t) t dt \cdots dt.
\]

(25)
From (17), we can derive the following equation:

\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} \frac{t^n}{n!} = \sum_{n=1}^{\infty} \frac{(-\lambda)^{n-1}(1)_{n,1/\lambda}}{(n-1)!n^k} (1 - e_{\lambda}(-t))^{n-1}
\]

\[
= \sum_{m=0}^{\infty} \frac{(-\lambda)^m(1)_{m+1,1/\lambda}}{m!(m+1)^k} (1 - e_{\lambda}(-t))^m
\]

\[
= \sum_{m=0}^{\infty} \frac{(-\lambda)^m}{(m+1)^k} (1)_{m+1,1/\lambda} \sum_{n=m}^{\infty} (-1)^{m-n} S_{2,\lambda}(n,m) \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(-1 \right)^n \sum_{m=0}^{n} \frac{\lambda^m(1)_{m+1,1/\lambda}}{(m+1)^k} S_{2,\lambda}(n,m) \frac{t^n}{n!}
\]

Therefore, by comparing the coefficients on both sides of (26), we obtain the following theorem.

Theorem 4. For \(n \geq 0 \), we have

\[
\beta_{n,\lambda}^{(k)} = (-1)^n \sum_{m=0}^{n} \frac{\lambda^m(1)_{m+1,1/\lambda}}{(m+1)^k} S_{2,\lambda}(n,m).
\]

Note that

\[
(-1)^n B_n = \lim_{\lambda \to 0} \beta_{n,\lambda}^{(1)} = (-1)^n \sum_{m=0}^{n} \frac{m!}{n!} (-1)^{m} S_{2}(n,m)\quad (n \geq 0).
\]

For \(k = 2 \), by Theorem 3, we get

\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(2)} \frac{x^n}{n!} = \frac{1}{1 - e_{\lambda}(-x)} \int_{0}^{x} \frac{t}{1 - e_{\lambda}(-t)} e_{\lambda}^{1-\lambda}(-t) dt
\]

\[
= \frac{1}{1 - e_{\lambda}(-x)} \int_{0}^{\infty} \sum_{n=0}^{\infty} \beta_{n,\lambda} (1 - \lambda) (-1)^n \frac{n!}{n!} dt
\]

\[
= \frac{x}{1 - e_{\lambda}(-x)} \sum_{l=0}^{\infty} \frac{\beta_{l,\lambda} (1 - \lambda)}{l+1} \frac{x^l}{l!}
\]

\[
= \sum_{n=0}^{\infty} \left(-1 \right)^n \sum_{m=0}^{n} \frac{n!}{m!} \frac{\beta_{m,\lambda} (1 - \lambda)}{n-m+1} \frac{x^m}{m!}
\]

Therefore, by comparing the coefficients on both sides of (27), we obtain the following theorem.

Theorem 5. For \(n \geq 0 \), we have

\[
\beta_{n,\lambda}^{(2)} = (-1)^n \sum_{m=0}^{n} \binom{n}{m} \beta_{m,\lambda} (1 - \lambda) \frac{1}{n-m+1} = (-1)^n \sum_{m=0}^{n} \binom{n}{m} \beta_{m,\lambda} (1 - \lambda) \frac{1}{m+1}.
\]

In general, from (25), we note that

\[
\sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} \frac{x^n}{n!} = \frac{1}{1 - e_{\lambda}(-x)} \int_{0}^{x} \frac{e_{\lambda}^{1-\lambda}(-t)}{1 - e_{\lambda}(-t)} dt \int_{0}^{t} \frac{e_{\lambda}^{1-\lambda}(-t)}{1 - e_{\lambda}(-t)} dt \cdots \int_{0}^{t} \frac{e_{\lambda}^{1-\lambda}(-t)}{1 - e_{\lambda}(-t)} dt dt \cdots dt
\]

\[
= \sum_{n_1,n_2,\ldots,n_{k-1}=0}^{\infty} \frac{1}{n_1!n_2!\cdots n_{k-1}!} \frac{\beta_{n_1,\lambda} (1 - \lambda) \beta_{n_2,\lambda} (1 - \lambda) \cdots \beta_{n_{k-1},\lambda} (1 - \lambda)}{n_1 + n_2 + \cdots + n_{k-1} + 1} \frac{x}{1 - e_{\lambda}(-x)}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \sum_{n_1+n_2+\cdots+n_{k}=n} \binom{n}{n_1,n_2,\ldots,n_{k}} \frac{\beta_{n_1,\lambda} (1 - \lambda) \beta_{n_2,\lambda} (1 - \lambda) \cdots \beta_{n_{k},\lambda} (1 - \lambda)}{n_1 + n_2 + \cdots + n_{k} + 1} \frac{x^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \sum_{n_1,n_2,\ldots,n_{k}=n} \binom{n}{n_1,n_2,\ldots,n_{k}} \frac{\beta_{n_1,\lambda} (1 - \lambda) \beta_{n_2,\lambda} (1 - \lambda) \cdots \beta_{n_{k},\lambda} (1 - \lambda)}{n_1 + n_2 + \cdots + n_{k} + 1} \frac{x^n}{n!}
\]
Theorem 7. For \(n \in \mathbb{N} \) and \(n \geq 0 \), we have

\[
\beta_{n, \lambda}^{(k)} = (-1)^n \sum_{n_1 + \cdots + n_k = n} \binom{n}{n_1, n_2, \ldots, n_k} \beta_{n_1, \lambda} (1 - \lambda) \beta_{n_2, \lambda} (1 - \lambda) \cdots \beta_{n_k, \lambda} (1 - \lambda) \frac{n}{n_1 + n_2 + \cdots + n_k - 1 + \beta_{n, \lambda}}.
\]

From (17), we observe that

\[
l_{k, \lambda} (1 - e_{\lambda} (-t)) = (1 - e_{\lambda} (-t)) \sum_{l=0}^{\infty} \beta_{l, \lambda}^{(k)} \frac{t^l}{l!}
\]

\[
= \left(1 - \sum_{m=0}^{\infty} \frac{(-1)^m (1)_{m, \lambda}}{m!} t^m\right) \sum_{l=0}^{\infty} \beta_{l, \lambda}^{(k)} \frac{t^l}{l!}
\]

\[
= \sum_{n=0}^{\infty} \left(\beta_{n, \lambda} - \sum_{l=0}^{n} \binom{n}{l} \beta_{l, \lambda}^{(k)} (1)_{n-l, \lambda}\right) \frac{t^n}{n!}
\]

\[
= \sum_{n=1}^{\infty} \left(\beta_{n, \lambda} - \beta_{n}^{(k)} (1)\right) \frac{t^n}{n!}.
\]

On the other hand,

\[
l_{k, \lambda} (1 - e_{\lambda} (-t)) = \sum_{m=1}^{\infty} \binom{m}{m, \lambda} (-\lambda)^{m-1} \frac{1}{m!} (1 - e_{\lambda} (-t))^m
\]

\[
= \sum_{m=1}^{\infty} \binom{m}{m, \lambda} (-\lambda)^{m-1} \frac{1}{m!} (1 - e_{\lambda} (-t))^m
\]

\[
= \sum_{m=1}^{\infty} \binom{m}{m, \lambda} (-\lambda)^{m-1} \sum_{n=m}^{\infty} S_{2, \lambda} (n, m) (-1)^{n-m} \frac{t^n}{n!}
\]

\[
= \sum_{n=1}^{\infty} \left(\sum_{m=1}^{n} \binom{n}{m, \lambda} (-\lambda)^{m-1} \lambda^{n-m} S_{2, \lambda} (n, m)\right) \frac{t^n}{n!}.
\]

Therefore, by (29) and (30), we obtain the following theorem.

Theorem 7. For \(k \in \mathbb{Z} \), we have

\[
\beta_{n, \lambda}^{(k)} (1 - \beta_{n, \lambda}^{(k)}) = (-1)^n \sum_{m=1}^{\infty} \binom{m}{m, \lambda} (-\lambda)^{m-1} \lambda^{m-1} S_{2, \lambda} (n, m), \quad (n \geq 1).
\]

From (15), we note that

\[
t = l_{1, \lambda} (1 - e_{\lambda} (-t)) = \sum_{m=1}^{\infty} \binom{m}{m, \lambda} (-\lambda)^{m-1} \frac{1}{m!} (1 - e_{\lambda} (-t))^m
\]

\[
= \sum_{m=1}^{\infty} \binom{m}{m, \lambda} (-\lambda)^{m-1} \sum_{n=m}^{\infty} S_{2, \lambda} (n, m) (-1)^{n-m} \frac{t^n}{n!}
\]

\[
= \sum_{n=1}^{\infty} \left(\sum_{m=1}^{n} \binom{n}{m, \lambda} \lambda^{m-1} (-1)^{n-m} S_{2, \lambda} (n, m)\right) \frac{t^n}{n!}
\]

By comparing the coefficients on both sides of (31), we obtain the following theorem.

Theorem 8. For \(n \in \mathbb{N} \), we have

\[
(-1)^{n-1} \sum_{m=1}^{n} \binom{n}{m, 1} \lambda^{m-1} S_{2, \lambda} (n, m) = \delta_{n, 1},
\]

where \(\delta_{n, \lambda} \) is Kronecker’s symbol.
Remark. Note that
\[\lim_{\lambda \to 0} \beta^{(1)}_{n,\lambda} = (-1)^n B_n, \quad \lim_{\lambda \to 0} \beta^{(1)}_{n,\lambda}(x) = (-1)^n B_n(x). \]

From Theorem 8 and Theorem 9, we note that
\[B_0 = 1, \quad B_n(1) - B_n = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{otherwise}. \end{cases} \]

Corollary 9. For \(n \in \mathbb{N} \), we have
\[\sum_{m=1}^{n} (-1)^{n-m} (m-1)! S_2(n,m) = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{otherwise}. \end{cases} \]

It is well known that the Stirling numbers of the first kind are given by

\[\frac{1}{k!} \left(\log(1+t) \right)^k = \sum_{n=k}^{\infty} S_1(n,k) \frac{t^n}{n!}, \quad (k \geq 0). \]

From (33), we note that
\[\sum_{k=0}^{\infty} \frac{(x)_{k,\lambda}}{k!} \left(\log_{\lambda}(1+t) \right)^k = \sum_{k=0}^{\infty} (x)_{k,\lambda} \sum_{n=k}^{\infty} S_1(n,k) \frac{t^n}{n!} \]
\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} S_1(n,k) (x)_{k,\lambda} \right) \frac{t^n}{n!}. \]

On the other hand,
\[\sum_{k=0}^{\infty} \frac{(x)_{k,\lambda}}{k!} \left(\log_{\lambda}(1+t) \right)^k = e_{\lambda}^x \left(\log_{\lambda}(1+t) \right) = (1+t)^x \]
\[= \sum_{n=0}^{\infty} (x)_n \frac{t^n}{n!}. \]

By (34) and (35), we see that the degenerate Stirling numbers of the first kind are also given by

\[(x)_n = \sum_{k=0}^{n} S_1(n,k)(x)_{k,\lambda}, \quad (n \geq 0). \]

Note that
\[\lim_{\lambda \to 0} S_1(n,k) = S_1(n,k), \quad (n,k \geq 0). \]

Now, we observe that
\[(x)_{n+1} = (x)_n (x-n) = \sum_{k=0}^{n} S_1(n,k)(x)_{k,\lambda} (x-k\lambda + k\lambda) - n \sum_{k=0}^{n} S_1(n,k)(x)_{k,\lambda} \]
\[= \sum_{k=0}^{n} S_1(n,k)(x)_{k+1,\lambda} + \lambda \sum_{k=0}^{n} k S_1(n,k)(x)_{k,\lambda} - n \sum_{k=0}^{n} S_1(n,k)(x)_{k,\lambda} \]
\[= \sum_{k=1}^{n+1} S_1(n,k-1)(x)_{k,\lambda} + \sum_{k=0}^{n} (\lambda k - n) S_1(n,k)(x)_{k,\lambda}. \]
On the other hand,

\[(x)_{n+1} = \sum_{k=0}^{n+1} S_{1,\lambda} (n+1, k)(x)_{k, \lambda}.\]

Therefore, by (37) and (38) and with the usual convention that \(S_{1,\lambda} (n, k) = 0\), for \(k > n\) or \(k < 0\), we obtain the following theorem.

Theorem 10. For \(\lambda \in \mathbb{N}\) and \(0 \leq k \leq n+1\), we have

\[S_{1,\lambda} (n+1, k) = S_{1,\lambda} (n, k-1) + (\lambda k - n)S_{1,\lambda} (n, k).\]

From (17), we note that

\[\sum_{n=0}^{\infty} B_{n,\lambda}^{(k)} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \frac{(-\lambda)^n (1)_{n+1,1/\lambda}}{n!(n+1)^k} (1 - e_{\lambda}(-t))^n.\]

Thus, by replacing \(t\) by \(-\log_{\lambda} (1 - t)\), we get

\[\sum_{m=0}^{\infty} \frac{B_{m,\lambda}^{(k)} (-1)^m}{m!} (\log_{\lambda} (1 - t))^m = \sum_{n=0}^{\infty} \frac{(-\lambda)^n (1)_{n+1,1/\lambda}}{n!(n+1)^k} t^n.\]

On the other hand,

\[\sum_{m=0}^{\infty} \frac{B_{m,\lambda}^{(k)} (-1)^m}{m!} (\log_{\lambda} (1 - t))^m = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{B_{m,\lambda}^{(k)} (-1)^m S_{1,\lambda} (n, m)}{(n-m)!} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} (-1)^{n-m} \frac{B_{m,\lambda}^{(k)}}{m!} S_{1,\lambda} (n, m) \right) \frac{t^n}{n!}.\]

Therefore, by (40) and (41), we obtain the following theorem.

Theorem 11. For \(k \in \mathbb{Z}\) and \(n \geq 0\), we have

\[\frac{1}{(n+1)^k} = \frac{1}{\lambda^n (1)_{n+1,1/\lambda}} \sum_{m=0}^{n} (-1)^m \frac{B_{m,\lambda}^{(k)}}{m!} S_{1,\lambda} (n, m).\]

References

[1] L. Carlitz, *Degenerate Stirling, Bernoulli and Eulerian numbers*, Utilitas Math. 15 (1979), 51-88.

[2] L. Carlitz, *A degenerate Staudt-Clausen theorem*, Arch. Math. (Basel) 7 (1956), 28-33.

[3] D. V. Dolgy, T. Kim, *Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials*, Proc. Jangjeon Math. Soc. 21 (2018), no. 2, 309-317.

[4] D. V. Dolgy, T. Kim, H.-I. Kwon, J. J. Seo, *Some identities for degenerate Euler numbers and polynomials arising from degenerate Bell polynomials*, Proc. Jangjeon Math. Soc. 19 (2016), no.3, 457–464.

[5] Y. He, W. Zhang, *A three-term reciprocity formula for Bernoulli polynomials*, Util. Math. 100 (2016), 23-31.

[6] W. A. Khan, *A note on degenerate Hermite poly-Bernoulli numbers and polynomials*, J. Class. Anal. 8 (2016), 65–76.

[7] W. A. Khan, *A new class of degenerate Frobenius-Euler-Hermite polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 4, 567–576.

[8] J. Jeong, S.-H. Rim, *On finite times degenerate higher-order Cauchy numbers and polynomials*, Bull. Korean Math. Soc. 53 (2016), no.5, 1427–1437.

[9] D. S. Kim, T. Kim, *Some applications of degenerate poly-Bernoulli numbers and polynomials*, Georgian Math. J. 26 (2019), no. 3, 415-421.

[10] D. S. Kim, T. Kim, *A note on polyexponential and unipoly functions*, Russ. J. Math. Phys. 26 (2019), no. 1, 40-49.

[11] T. Kim, *A note on degenerate Stirling polynomials of the second kind*, Proc. Jangjeon Math. Soc. 20 (2017), no. 3, 319–331.

[12] T. Kim, *\(\lambda\)-analogue of stirling numbers of the first kind*, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 3, 423–429.

[13] T. Kim, D. S. Kim, L.-C. Jang, H.-Y. Kim, *On type 2 degenerate Bernoulli and Euler polynomials of complex variable*, Adv. Difference Equ. 2019, Paper No. 490, 15 pp.
A NOTE ON NEW TYPE DEGENERATE BERNOULLI NUMBERS

[14] T. Kim, D. S. Kim, Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind, Sci. China Math. 62 (2019), no. 5, 999–1028.
[15] T. Kim, D. S. Kim, H.-I. Kwon, Some identities of Carlitz degenerate Bernoulli numbers and polynomials, Iran. J. Sci. Technol. Trans. A Sci. 41 (2017), no. 3, 749–753.
[16] T. Kim, G.-W. Jang, Higher-order degenerate q-Bernoulli polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 1, 51–60.
[17] T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys. 24 (2017), no. 2, 241–248.
[18] T. Kim, Y. Yao, D. S. Kim, G.-W. Jang, Degenerate r-Stirling numbers and r-Bell polynomials, Russ. J. Math. Phys. 25 (2018), no. 1, 44–58.
[19] Y. Kim, J.-W. Park, On the degenerate (h,q)-Changhee numbers and polynomials, J. Inequal. Appl. 2019, Paper No. 5, 15 pp.
[20] D. V. Kruchinin, V. V. Kruchinin, Explicit formula for reciprocal generating function and its application, Adv. Stud. Contemp. Math. (Kyungshang) 29 (2019), no. 3, 365–372.
[21] D. Lim, Modified degenerate Dahee numbers and polynomials arising from differential equations, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2019), no. 3, 497–506.
[22] L. Lewin, Polylogarithms and associated functions. With a foreword by A. J. Van der Poorten, North-Holland Publishing Co., New York-Amsterdam, 1981. xvii+359 pp. ISBN: 0-444-00550-1
[23] J. Lee, J. Kwon, The modified degenerate q-Bernoulli polynomials arising from p-adic invariant integral on \(\mathbb{Z}_p \), Adv. Difference Equ. 2017, Paper No. 29, 9 pp.
[24] S. Roman, The umbral calculus, Pure and Applied Mathematics, 111.Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. x+193 pp. ISBN: 0-12-594380-6
[25] Y. Simsek, Identities on the Changhee numbers and Apostol-type Dahee polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 2, 199–212.
[26] M. Wu, S. S. Du, A symmetric identity for degenerate higher-order Bernoulli polynomials and generalized power sum polynomials, (Chinese) Math. Pract. Theory 44 (2014), no. 24, 256–261.

DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA
E-mail address: tikkim@kw.ac.kr

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA
E-mail address: dskim@sogang.ac.kr