THE O II LUMINOSITY DENSITY OF THE UNIVERSE

DAVID W. HOGG, JUDITH G. COHEN, ROGER BLANDFORD, AND MICHAEL A. PAHRE

ABSTRACT

Equivalent widths of [O II] 3727 Å lines are measured in 375 faint galaxy spectra taken as part of the Caltech Faint Galaxy Redshift Survey centered on the Hubble Deep Field. The sensitivity of the survey spectra to the [O II] line is computed as a function of magnitude, color, and redshift. The luminosity function of galaxies in the [O II] line, and the integrated luminosity density of the universe in the [O II] line, are computed as a function of redshift. It is found that the luminosity density in the [O II] line was a factor of ~10 higher at redshifts z ~ 1 than it is at the present day. The simplest interpretation is that the star formation rate density of the universe has declined dramatically since z ~ 1.

Subject headings: cosmology: observations — galaxies: distances and redshifts — galaxies: evolution — galaxies: luminosity function, mass function — galaxies: statistics

1. INTRODUCTION

The [O II] line at 3727 Å is actually a pair of atomic transitions for singly ionized oxygen, the \(^2D_{3/2} \) to \(^2S_{1/2} \) transition at 3726 Å, and the \(^2D_{5/2} \) to \(^2S_{1/2} \) transition at 3729 Å. The transitions are forbidden, meaning that there is no electric dipole connection between the initial and final states, so the spontaneous emission rates are small, \(1.8 \times 10^{-4} \) and \(3.6 \times 10^{-5} \) s\(^{-1} \) for the 3726 and 3729 Å transitions, respectively (Osterbrock 1989). For this reason, the [O II] line is usually collisionally excited by free electrons in hot nebulae; temperatures of \(T \sim 10^4 \) K are needed to excite the 3.3 eV transitions. If the electron density is very low, collisional excitation is rare, whereas if it is very high, excited atoms are more likely to be de-excited by a subsequent collision than by spontaneous emission; therefore, there are critical electron densities, \(n_e \), at which the transitions saturate observationally, defined to be the electron densities at which the collisional excitation rates equal the spontaneous emission rates. The critical densities depend on temperature because the collisional excitation cross sections also do, but at typical temperatures they are roughly \(1.6 \times 10^4 \) and \(3 \times 10^3 \) cm\(^{-3} \) for the 3726 and 3729 Å transitions, respectively (Osterbrock 1989). (The fact that the two critical densities are different means that the 3726/3729 line ratio can be used to measure electron density.)

The conditions of temperature and density required to excite the [O II] 3727 Å line are met in H II regions, clouds of ionized hydrogen heated by massive young, luminous stars. For this reason, the [O II] emission of a galaxy is sensitive to its young stellar population, or recent star formation history. In the local universe, the relationship between [O II] luminosity and star formation has been calibrated:

\[
\frac{L_{[\text{O II}]}^1}{2 \times 10^{33} \text{ W}} = \frac{R}{1 M_\odot \text{ yr}^{-1}},
\]

where \(R \) is the star formation rate (Kennicutt 1992). This relationship shows a significant galaxy-to-galaxy scatter. It depends on galaxy dust content because dust absorbs strongly in the ultraviolet; the stellar initial mass function because the [O II] luminosity is tied only to the massive star population; and metallicity because the luminosity in the optically thin line ought to be proportional to oxygen abundance, which in turn depends on a galaxy’s age and star formation history.

In this study, the [O II] luminosity function and [O II] luminosity density of the universe are measured as a function of redshift. These functions constrain the star formation history of the universe. Previous studies on the star formation history of the universe have used the metal abundances in quasar absorption systems (Pei & Fall 1995) and broadband luminosity density (Lilly et al. 1996); both of these studies show a much higher star formation rate at \(z > 1 \) than at the present epoch. The star formation rate of the local universe has been estimated through the luminosity density in the H\(\alpha \) line (Gallageto et al. 1995), which is a good measure of star formation rate (Kennicutt 1992); however, at redshifts \(z > 0.3 \), the H\(\alpha \) line is no longer accessible by visual spectroscopy and therefore is difficult to measure. The [O II] line is a less reliable measure of star formation rate (Kennicutt 1992), but it has the great advantage that it can be measured by visual spectroscopy over the interesting redshift range \(0.3 < z < 1.3 \), where the star formation rate density is thought to be changing rapidly. These considerations motivate the present work. Several recent studies have shown that the incidence of strong [O II] emission among bright galaxies increases with redshift (Cowie et al. 1996; Ellis et al. 1996; Heyl et al. 1997; Sargent, & Hamilton 1997; Hammer et al. 1997). This trend implies a higher [O II] luminosity density in the past, which has also been previously measured directly (Hammer et al. 1997).

In what follows, physical quantities are quoted in SI units, with Hubble constant \(H_0 = 100 \) km s\(^{-1} \) Mpc\(^{-1} \), in world model \((\Omega_M, \Omega_\Lambda) = (0.3, 0) \). The only exceptions are...
number densities, which are given in h^3 Mpc$^{-3}$. Fluxes and luminosities are given as flux and luminosity densities per logarithmic frequency interval, i.e., νS_ν or λS_λ, and νL_ν or λL_λ, in W m$^{-2}$ and W. Luminosities are all-sphere (not per steradian).

2. SAMPLE, OBSERVATIONS, AND LINE MEASUREMENT

The galaxy sample utilized for this study is an incompletely observed magnitude-limited sample, selected in the R band, in the Hubble Deep Field (HDF; Williams et al. 1996), and an 8' diameter circular field surrounding it. The general sample selection, photometry, and main spectroscopic results are described elsewhere (Hogg et al. 1998; Cohen et al. 1998). Briefly, the sample is selected to be all sources, independent of morphology, brighter than $R = 23.3$ mag in the 8' diameter circular field, and brighter than $R = 24.5$ mag in the small HDF proper (most of the central 2×2 arcmin2). The spectroscopy of this sample is only about 75% complete for the purposes of this study, which is based on 375 spectra. (The redshift survey is more than 90% complete, but some of the redshifts come from spectra taken by other groups.) Fluxes in the R band and $R - K_s$ colors are measured with data from the Coherent Optical System of Modular Imaging Collectors (COSMIC) and Prime Focus IR cameras on the Hale 200 inch (5.08 m) Telescope (Kells et al. 1998). Spectroscopy is performed with the LRIS instrument on the Keck Telescope (Oke et al. 1995) with a 300 line mm$^{-1}$ grating, at a resolution of about

Fig. 1.—Example [O II] 3727 Å line detections for four sources from the sample. The data (in data numbers [DN]) are shown with a dark line, the fit continuum with a thin straight line, and the aperture in which the 3727 line strength is measured with two thin vertical lines. The redshift of each source is given in the top left corner of each plot. Spikes or features not at zero wavelength are residuals of sky lines imperfectly subtracted.
10 Å (2.5 Å per pixel, 1'' slits), for exposure times of 6000–9000 s (Cohen et al. 1998). Figure 1 shows some example spectra from the sample, cut out around the [O II] 3727 Å line.

The continua are fitted with a straight line over the wavelength range from 200 to 50 Å shortward of the observed 3727 Å location, and the range from 50 to 200 Å longward. Each fit is performed with six iterations of sigma clipping at ±2.5 σ, where σ is the rms residual noise per pixel. The uncertainty in the continuum value at the line center is taken to be the per pixel rms divided by the square root of the number of pixels contributing to the continuum fit after sigma clipping.

The line strength is measured by summing the differences between the observed spectrum and the continuum fit in the 30 Å (full-width) aperture centered on the line location. The uncertainty in this strength is taken to be the per pixel rms times the square root of the number of pixels contributing to the line flux.

3. EQUIVALENT WIDTH DISTRIBUTIONS

The rest-frame equivalent width W of a line in the spectrum of an object at redshift z is the wavelength interval of continuum that would provide the same total flux, corrected for redshift:

$$W = \frac{1}{1 + z} \frac{\int [S_{\lambda} - S_{\lambda}^{C}] d\lambda}{S_{\lambda}^{C}}$$

where z is redshift, the integral is over only that spectral region which contains the line, S_{λ} is the flux density (per unit observed wavelength λ), and S_{λ}^{C} is the flux density in the continuum at the location of the line; i.e., the flux density that would be observed in the absence of the line. The equivalent width is a robust measure of the strength of a spectral feature relative to the source’s continuum measure; it does not depend on absolute calibration of the spectrum, or even the relative calibration of different parts of the spectrum, as long as spectral response varies sufficiently slowly. It is a local, geometric measure of the line strength.

For the purposes of this study, the fractional uncertainty in an equivalent width measurement is taken to be the sum in quadrature of the fractional uncertainties in the continuum measurement and line strength, both described in the previous section. At low continuum signal-to-noise ratios, this is not strictly correct because the equivalent width error distribution is not Gaussian or even symmetric around the measured value.

The rest frame [O II] 3727 Å equivalent widths for the sample are shown in Figures 2 and 3, plotted against R-band magnitude and redshift z. Only spectra with good (signal-to-noise ratio better than 2 in a pixel) continuum detections are plotted because badly estimated or zero continuum leads to large, unreliable equivalent-width estimates. Figures 2 and 3 are encouraging for those undertaking faint galaxy redshift surveys because they show that at higher redshifts and fainter fluxes, the equivalent widths of [O II] 3727 Å lines become greater. (The observed equivalent widths become even greater because of the additional factor of $1 + z$.) Figures 2 and 3 are subject to an important selection effect: faint or high-redshift sources with small equivalent widths may simply not be successfully assigned a redshift at all. This selection effect can clear out the faint–small-width and high-redshift–small-width parts of these diagrams; however, the incompleteness in redshift identification is less than 10% for this sample (Cohen et al. 1998). Furthermore, this selection effect does not explain any lack of observed objects at bright levels or low redshifts with large equivalent widths. One recent study shows a strong inverse correlation between galaxy luminosity and [O II] equivalent width (Cowie et al. 1996). Such inverse correlations are also evident in figures 2 and 3.
correlation is not seen as strongly either in the sample analyzed here or in that of Small et al. (1997), especially when sources with low signal-to-noise continuum measurements are excluded (T. A. Small, 1998, private communication), as they have been in Figures 2 and 3. Because the equivalent width is a ratio of observed quantities, there is a tendency to overestimate the equivalent widths of lines in sources with low signal-to-noise continuum measurements.

Figure 2 may show evidence for clumps in redshift-equivalent-width space. The survey field is only 8″ in diameter, just a few Mpc at high redshift in typical models, so sources with similar redshifts are likely to be physically associated. This suggests that the galaxies which reside in the same high-redshift group may also be related in terms of stellar content; it also suggests that at least some of the galaxies in each group formed at the same time and with similar stellar populations. This is nicely consistent with the observation that groups are long-lived, primordial structures that exist at high redshift in relatively high abundance (Cohen et al. 1996a, 1996b; Steidel et al. 1998).

4. SENSITIVITY TO LINE EMISSION

The identification of the line at redshift \(z \) depends on (1) the fraction of spectra in the sample that include wavelength (3727 Å) \((1+z)\) in their spectral range; (2) the total sensitivity of the atmosphere plus telescope plus instrument to line flux at (3727 Å) \((1+z)\); and (3) the accuracy to which night sky and other background emission can be subtracted at (3727 Å) \((1+z)\). Because the spectrograph is a multislit design, different sources in the survey are observed over different wavelength ranges, depending on the position of the source within the field of the instrument. The wavelength coverage function can be constructed by taking the minimum and maximum possible source locations and assuming that on any given slit mask sources are evenly distributed between these extremes. The sensitivity to flux (in the sense of \(v_{50} \)) can be estimated with observations of spectrophotometric standard stars. The sensitivity varies from night to night, so in principle this function should be replaced with a distribution function that takes into account the variation in observing conditions. Furthermore, in the multislit design, if there are any positional errors in the catalog or mask misalignment while observing, different sources will be centered on their slits with different precisions. This leads to a random scatter in throughputs, even for sources observed simultaneously. The sky brightness, color, and emission-line spectrum also vary from night to night. In principle, the expected sensitivity to 3727 Å emission can be estimated from the coverage, sensitivity, and sky brightness functions; however, because the sensitivity depends on data reduction techniques, includes the complications of assessing slitmask alignment, and may be compromised by unknown instrumental effects, a purely empirical approach is taken here using the reduced spectra themselves to assess the sensitivity.

The signal-to-noise ratio \(r \) (defined to be continuum level divided by pixel-to-pixel rms) is measured in every spectrum in the sample at a set of wavelengths corresponding to the 3727 Å line at various redshifts in the range \(0 < z < 1.8 \), by exactly the procedure used to estimate the continuum in the equivalent width measurements described above. The rms is computed from only those pixels not rejected by the sigma-clipping algorithm, which is perhaps optimistic. These continuum signal-to-noise ratios are “scaled” to the value they would have if the source had \(R = 23 \) mag and a spectral exponent \(n = 0 \) (the spectral exponent \(n \) used in this work is defined by \(v_{50} \propto v^n \), and is measured from the \(R - K \) color). This scaling is done by multiplying the measured signal-to-noise ratio by

\[
10^{0.4(1+z)} \left(\frac{1+z}{1.85} \right)^n \quad \text{if } R > 21.5 \text{ mag ,}
\]

\[
10^{0.4(-1.5)} \left(\frac{1+z}{1.85} \right)^n \quad \text{if } R < 21.5 \text{ mag ,}
\]

where the switchover at \(R = 21.5 \) mag takes place because at fainter magnitudes most of the source is in the slit and intensity through the slit is proportional to total source flux, while at brighter magnitudes the source is typically larger than the slit; intensity through the slit depends only weakly on total source flux, since the bright galaxies in the sample have similar surface brightnesses. The \(1 + z \) term is divided by 1.85 because \(z = 0.85 \) puts \(\lambda 3727 \) into the center of the \(R \) band. The switchover magnitude was determined by trial and error, with the test being that the distribution of scaled signal-to-noise ratios should not depend strongly on magnitude. The signal-to-noise ratio can be converted into a sensitivity to rest-frame equivalent width, expressed in terms of the smallest detectable rest-frame equivalent width:

\[
W_{\text{lim}} = \frac{\eta \lambda_1}{r} \left(\frac{\Delta \lambda}{\lambda_1} \right)^{1/2} (1+z)^{-1/2} ,
\]

where \(\eta \) is the minimum necessary signal-to-noise ratio for \(\lambda 3727 \) to be detected (taken to be 3), \(r \) is the scaled signal-to-noise ratio in the continuum, \(\lambda_1 \) is the wavelength per pixel (usually 2.5 Å for these spectra), \(\Delta \lambda \) is the rest-frame full width of the 3727 Å line (taken to be 10 Å), and \(z \) is the redshift. Because the formula for \(W_{\text{lim}} \) includes \(r \) in the denominator, the scaled value can be converted back into the true sensitivity to rest-frame equivalent width by multiplying by the factors given in equation (3).

Since the continuum of every spectrum is measured at every redshift, there are a large number of scaled \(W_{\text{lim}} \) estimates from which a model of the spectrograph sensitivity can be constructed. At each redshift the scaled sensitivities are ranked and a cumulative distribution is constructed. This distribution is shown in Figure 4. The distribution is plotted cumulatively so it can be treated as a probability that the line is detected, given a source with a given redshift and \([\text{O II}]\) equivalent width.

Note that this sensitivity function is empirical, derived from the sample of spectra themselves, and is valid only for this survey, because it depends on the instrument, site, observational technique, reduction method, and selection function. The sensitivity becomes worse at redshifts \(1 < z < 1.25 \) because the CCD efficiency at the relevant wavelength is dropping while the sky brightness and number of bright night-sky emission lines are both increasing, and becomes very bad at redshifts \(1.25 < z < 1.5 \) because, in addition, the fraction of spectra with coverage at long enough wavelength is also decreasing. Similarly, the bad sensitivity to \([\text{O II}]\) emission at low redshifts \(z < 0.3 \) is also caused by a decreasing fraction of spectra with coverage at short enough wavelengths (although at these low
redshift other spectral features can be used to determine redshifts.

5. THE [O II] LUMINOSITY FUNCTION

For any galaxy, the line luminosity $L_{[O\ II]}$ can be crudely computed with the rest-frame equivalent width W, the flux S (defined so $vS_v \propto v^2$) and the spectral exponent n (defined so $vS_v \propto v^n$) by

$$\log L_{[O\ II]} = \log \left[\frac{W}{3727 \, \text{Å}} \right] + \log S + \log (4\pi) + 2 \times \log D_L(z) - n \log \left[(1 + z) \frac{3727 \, \text{Å}}{\lambda_R} \right],$$

where $D_L(z)$ is the luminosity distance in an $(\Omega_m, \Omega_\Lambda) = (0.3, 0.7)$ universe, and λ_R is the effective wavelength of the R band, or 6900 Å. Note that this is an all-sphere (not per-stereadian) luminosity definition. Fluxes are derived from R-band magnitudes using a standard absolute calibration (Steidel & Hamilton 1993). This prescription for line luminosity is crude because the spectral energy distributions of galaxies are not pure power laws, and, furthermore, unless the redshift is $z > 0.85$. A refinement would be to compute n from, say, $G - R$ at redshifts $z < 0.85$. In principle, the need to use the flux S and exponent n can be obviated entirely because line fluxes can be measured directly from spectrophotometric data; however, such procedures depend on perfect slit alignment on the galaxies and aperture corrections to account for line flux outside the slit. The procedure used here is more robust.

The luminosity function is estimated with a modified version of the $\langle V/V_{\text{max}} \rangle$ method, in which each galaxy in the survey is assigned a volume V_{max} that is the volume of the universe in which that source could lie and still meet the survey criteria. The inverse volumes of all the galaxies in a particular luminosity bin are summed to estimate the luminosity function in that bin. In this application, there are two important complications in computing V_{max}. The first is that the survey is incomplete, in the sense that only about 75% of the sources in the field are observed as part of the sub-sample used here. Figure 5 shows the a priori completeness function, which is defined to be the fraction of the total sources in the field that were observed spectroscopically as a function of R-band flux. The second complication is that whether or not a source is in the sample depends not only on the a priori completeness function but also on the detection of the [O II] line itself, because if it is not detected there is no luminosity (for the luminosity function), and because redshift identification often depends on [O II] detection anyway. Fortunately, however, the sensitivity to the [O II] line is computed in § 4 and shown in Figure 4. Recall that the plotted sensitivity function is scaled to an equivalent $R = 23$ mag, $n = 0$ source by the scaling given in equation (3); the scaling and the function in Figure 4 can be combined to make a total probability $p_{\text{detect}}(S, n, z, W)$ of detecting an [O II] line of equivalent width W in a source with flux S, spectral exponent n, and redshift z.

Given the completeness function and detection probability function, the appropriate formula for each galaxy’s volume V_{max} is

$$V_{\text{max}} = \int_{0}^{\infty} \eta_{\text{try}}(S) p_{\text{detect}}(S', n, z', W) \frac{d^2V_r}{d\Omega dz} \Delta\Omega dz',$$

where $\eta_{\text{try}}(S)$ is the probability that a spectrum was taken of a source with flux S in an attempt to get its redshift, and S' is the flux the source would have if it were at redshift z' rather than its true redshift. The function η_{try} is plotted for this

Fig. 4.—Cumulative distribution of scaled sensitivities to [O II] 3727 Å emission, in terms of rest-frame equivalent width. The dark lines are the 10%, 50%, and 90% contours, and the thin lines are spaced by 10%. The sensitivities are scaled to $R = 23$ mag and $n = 0$ (flat spectrum in νf_ν), as described in the text.

Fig. 5.—Probability, as a function of R-band flux, that a source in the 8' diameter HDF sample was observed spectroscopically as part of this sample. That is, this function is the fraction of sources in the field that were observed spectroscopically. The completeness drops rapidly at $R = 23.3$ mag because fainter observations were only performed in the central, HST-imaged, 5 arcmin² of the field.
spectroscopic sample in Figure 5. The luminosity function $\phi(\log L_i)$ (number density per logarithmic interval in luminosity) in a bin of [O II] luminosity width $\Delta \log L$ centered on [O II] luminosity $L_{\text{[O II]}} = L_i$ is estimated with

$$\phi(\log L_i) = \frac{1}{\Delta \log L} \sum_{\log L_{\text{[O II]}} < \log L_i - \Delta \log L/2} \frac{1}{V_{\text{max},j}},$$

(7)

where the sum is over all galaxies with luminosities in the bin, so index i labels luminosity bins and index j labels galaxies. Variances are computed by summing the squares of the inverse volumes; the error bars on the figures are the root variances.

The [O II] luminosity function is shown in Figure 6 for the entire sample, in the redshift range $0 < z < 1.5$. It is compared to the local Hα luminosity function from the Universidad Complutense de Madrid (UCM) survey (Gallego et al. 1995) where the Hα points have been multiplied by a factor of 0.46, the mean observed [O II]/Hα flux ratio in the local universe (Kennicutt 1992). Figure 7 shows the luminosity for two subsamples split in redshift at $z = 0.35$. This figure shows a strong evolution in the [O II] luminosity function at the bright end. Although the total number density of [O II]-emitting galaxies is not significantly different between the two subsamples, the typical line luminosity is higher by an order of magnitude in the higher redshift subsample. Both subsamples show a higher line luminosity than would be predicted from the very local UCM results, given the local [O II]/Hα flux ratio. Although there may be some bias against luminous, low-redshift sources due to undersampling, it is not strong enough to produce the apparent evolution shown in Figure 7, especially since (1) the undersampling is accounted for with the a priori completeness function and (2) even the “low-redshift” sample goes to redshift $z = 0.35$, where there are many galaxies in the sample with luminosities around L^*.

6. THE [O II] LUMINOSITY AND STAR FORMATION RATE DENSITIES

As discussed in § 1, the [O II] line luminosity is a star formation indicator, so the [O II] luminosity function is a measure of the star formation rate density of the universe. For these purposes the entire luminosity function is not necessary; only the integrated luminosity density is needed. Because this is a single number rather than a function, it is possible to subdivide the sample more finely in redshift than was possible in § 5.

The luminosity density $\mathcal{L}_{\text{[O II]}}$ in the [O II] line is estimated similarly to the luminosity function, using the same volumes V_{max} computed for those purposes. The integrated luminosity density is computed with

$$\mathcal{L}_{\text{[O II]}} = \sum_{j} \frac{L_{\text{[O II]},j}}{V_{\text{max},j}},$$

(8)

where galaxies are labeled by index j. The variance on this quantity is taken to be the Poisson value—the sum of the squared contributions. The [O II] line luminosity density as a function of redshift, computed in two overlapping “binnings,” is shown in Figure 8, along with the local measurement of the Hα luminosity density from the UCM survey, again scaled by the local [O II]/Hα flux ratio. The random errors on the individual points in Figure 8 are in fact expected to be larger than the plotted Poissonian uncertainties on account of the strong redshift clustering found in this and other small redshift survey fields (Cohen et al. 1996b), in which more than 50% of sources are found to be concentrated into a few narrow redshift spikes out to $z \approx 1$. This is seen dramatically in the point at $z = 0.5$, which is high even relative to its overlapping neighbors.
there are several large redshift overdensities in this $0.4 < z < 0.6$ bin. Unfortunately, this is a single-field study, and only when several independent fields have been similarly analyzed will it be possible to average out such field-to-field variations.

After accounting for differences in Hubble constant and world model, the luminosity density measurements shown in Figure 8 are in good agreement with those of Hammer et al. (1997).

Figure 8 also shows the star formation rate density, computed from the luminosity density with the Kennicutt (1992) local calibration given by equation (1). Overall, Figure 8 implies that the star formation rate density was nearly 10 times higher at $z \sim 1$ than at the present day. A full analysis must take account of the changing metal, gas, and dust contents of high-redshift galaxies, factors that are difficult to assess with confidence at the present time. Our results are consistent with star formation rate density estimates based on broadband luminosity density (Lilly et al. 1996), and quasar absorption-line metallicities (Pei & Fall 1995), both of which suggest factor of 10 reductions from $z \sim 1$ to the present day.

The authors are pleased to thank Kurt Adelberger and Chuck Steidel, who provided some of the imaging data used in this study, and Todd Small, Ed Groth, and the referee, David Spergel, for helpful comments on the manuscript. This research is based on observations made at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology and the University of California; at the Palomar Observatory, which is owned and operated by the California Institute of Technology; and with the NASA/ESA Hubble Space Telescope, which is operated by AURA under NASA contract NAS 5-29170, Hubble Space Telescope archival research grant AR-06337.12-94A, and Hubble Fellowship grants HF-01093.01-97A and HF-01099.01-97A. The Hubble grants are provided by STScI, which is operated by AURA under NASA contract NAS 5-26555. This research made use of the NASA ADS Abstract Service and the SM software package.

REFERENCES

Cohen, J. G., Hogg, D. W., Pahre, M. A., & Blandford, R. 1996a, ApJ, 462, L9
Cohen J. G., Cowie, L. L., Hogg, D. W., Songaila, A., Blandford, R., Hu, E. M., & Shopbell, P. 1996b, ApJ, 471, L5
Cohen, J. G., et al. 1998, in preparation
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Ellis, R. S., Colless, M., Broadhurst, T., Heyl, J., & Glazebrook, K. 1996, MNRAS, 280, 235
Gallego, J., Zamorano, J., Aragón-Salamanca, A., & Rego, M. 1995, ApJ, 435, L1
Hammer, F., et al. 1997, ApJ, 481, 49
Heyl, J. S., Colless, M., Ellis, R. S., & Broadhurst, T. 1997, MNRAS, 285, 613
Hogg, D. W., et al. 1998, in preparation

Kels, W., Dressler, A., Sivaramakrishnan, A., Carr, D., Koch, E., Epps, H., Paradillan, G., & Hilyard, D. 1998, in preparation
Kennicutt, R. C., Jr. 1992, ApJ, 388, 310
Lilly, S. J., Le Fèvre, O., Hammer, F., & Crampton, D. 1996, ApJ, 460, L1
Oke, J. B., et al. 1995, PASP, 107, 375
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: Univ. Science Books)
Pei, Y. C., & Fall, S. M., 1995, ApJ, 454, 69
Small, T. A., Sargent, W. L. W., & Hamilton, D., 1997, ApJ, 487, 512
Steidel, C. C., Adelberger, K. L., Dickinson, M., Giavalisco, M., Pettini, M., & Kellogg, M. 1998, ApJ, 492, 428
Steidel, C. C., & Hamilton, D. 1993, AJ, 105 2017
Williams R. E., et al. 1996, AJ, 112, 1335