CHARACTERIZATION OF DISTRIBUTIONS WITH THE LENGTH-BIAS SCALING PROPERTY

MARCOS LÓPEZ-GARCÍA
Instituto de Matemáticas
Universidad Nacional Autónoma de México
México, D.F. C.P. 04510.
email: flopez@matem.unam.mx

Submitted November 26, 2008, accepted in final form April 15, 2009

AMS 2000 Subject classification: Primary: 60E05, Secondary: 44A60.
Keywords: Length-bias scaling property, Indeterminate moment problem, theta function.

Abstract
For $q \in (0,1)$ fixed, we characterize the density functions f of absolutely continuous random variables $X > 0$ with finite expectation whose respective distribution functions satisfy the so-called (LBS) length-bias scaling property $X \overset{d}{=} q \bar{X}$, where \bar{X} is a random variable having the distribution function $\bar{F}(x) = (E_X)^{-1} \int_0^x y f(y) dy$.

For an absolutely continuous random variable $X > 0$ with probability density function (pdf) f and finite expectation E_X, we denote by \bar{X} an absolutely continuous random variable having the probability density function $(E_X)^{-1} xf(x)$. In this case, \bar{X} is called the size- or length-biased version of X and $\cal L(\bar{X})$ is the corresponding length-biased distribution. It is well known that \bar{X} is the stationary total lifetime in a renewal process with generic lifetime X (see [2, Chapter 5]).

The length-biased distributions have been applied in various fields, such as biometry, ecology, environmental sciences, reliability and survival analysis. A review of these distributions and their applications are included in [5, Section 3], [6, 8, 12, 13].

In [9], Pakes and Khattree ask whether it is possible to randomly rescale the total lifetime to recover the lifetime law. More specifically, let $V \geq 0$ be a random variable independent of X with a fixed law satisfying $P(V > 0) > 0$. For which laws $\cal L(\bar{X})$ does the following “equality in law”

$$X \overset{d}{=} V \bar{X},$$

hold? For instance, when V has the uniform law on $[0,1]$ the last equality holds if and only if $\cal L(\bar{X})$ is an exponential law (see [9]).

In this note we consider the case where V is a constant function: The law of X has the so-called length-bias scaling property (abbreviated to LBS-property) if

$$X \overset{d}{=} q \bar{X},$$

(1)
with \(q \in (0, 1) \). Several authors, including Chihara \([3]\), Pakes and Khattree \([9]\), Pakes \([10, 11]\), Vardi et al. \([14]\), have studied the LBS-property. In \([1]\), Bertoin et al. analyze a random variable \(X \) that arises in the study of exponential functionals of Poisson processes; they show that
\[
q X = \frac{X}{1 - q},
\]
with
\[
E X = q^{-1}.
\]

An easy computation shows that (1) can be written as
\[
\int_0^x f(y) dy = \frac{1}{EX} \int_0^x y f \left(\frac{y}{q} \right) \frac{dy}{q}, \ x > 0,
\]
which is equivalent to
\[
(\text{EX}) q f (qx) = x f (x), \ a.e. \ x > 0.
\] (2)

By induction we have that
\[
(\text{EX})^n q^n f (q^n x) = q^{n^2/2 - n/2} x^n f (x), \ x > 0, \ n \in \mathbb{Z},
\]
and therefore
\[
\int_0^\infty x^n f (x) dx = (\text{EX})^n q^{n^2/2 - n/2}, \forall \ n \in \mathbb{Z}.
\] (3)

When \(X \) is an absolutely continuous random variable with probability density function \(f \), we sometimes write \(X \sim f \).

Proposition 1. If \(X \sim f \) and \(f \) satisfies (2), then the pdf \(g(x) = e^{ax} f(e^x) \) of the random variable \(Y = \log X \) satisfies the functional equation
\[
g(x - b) = Ce^{a(x-b)} g(x), \ x \in \mathbb{R},
\] (4)

with \(a = 1, b = -\ln q, C = (\text{EX})^{-1} \).

So, the main result of this note characterizes the probability density functions fulfilling the last functional equation. First, we recall that the theta function given by
\[
\theta(x, t) = (4\pi t)^{-1/2} \sum_{n \in \mathbb{Z}} e^{-(x+n)^2/(4t)} = \sum_{n \in \mathbb{Z}} e^{-4\pi^2 n^2 t + 2\pi ini} > 0,
\] (5)

for all \((x, t) \in \mathbb{R}_+^2 \), satisfies the heat equation on \(\mathbb{R}_+^2 \) and
\[
\int_0^1 \theta(x, t) dx = 1, \text{ for all } t > 0. \text{ (see [15 Chapter V])}
\] (6)

Theorem 1. Let \(a, b, C \) be real numbers with \(ab > 0, C > 0 \). Then the pdf \(g \) satisfies the functional equation (2) if and only if there exists a 1-periodic function \(\varphi, \varphi \geq -1 \), such that the restriction of \(\varphi \) to \((0, 1) \) belongs to \(L^1(0, 1) \),
\[
g(x) = \frac{1}{\sqrt{2\pi a^{-1}b}} \exp \left(-\frac{(ax - \mu)^2}{2ab} \right) \left\{ 1 + \varphi \left(\frac{ax - \mu}{ab} \right) \right\},
\] (7)

and
\[
\int_0^1 \theta \left(x, \frac{1}{2ab} \right) \varphi(x) dx = 0,
\] (8)

where \(-\mu = \ln C + ab/2 \).
Proof. For $b > 0$ the probability density function

$$
h(x) = \frac{1}{\sqrt{2\pi b}} e^{-(x-\mu)^2/(2b)},$$

where $-\mu = \ln C + b/2$, satisfies the functional equation \(\psi \) with $a = 1$. If the density function g so does, then $g(x)/h(x) = g(x)/h(x)$, $x \in \mathbb{R}$; therefore there exists a 1-periodic function ψ such that $g(x) = h(x) \psi(b^{-1}x)$. By making the change of variable $y = (x-\mu)/b$, we obtain

$$1 = \int_{\mathbb{R}} g(x)dx = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi b^{-1}}} e^{-by^2/2} \psi(y + b^{-1}\mu) dy = \sum_{n \in \mathbb{Z}} \int_{J_n} \frac{1}{\sqrt{2\pi b^{-1}}} e^{-by^2/2} \psi(y + b^{-1}\mu) dy = \int_{0}^{1} \theta(y, 2^{-1}b^{-1}) \psi(y + b^{-1}\mu) dy.$$

By using (6), the result follows with $\varphi(x) = -1 + \psi(x + b^{-1}\mu)$. The general case follows by setting $g(x) = a^{-1}g\left(a^{-1}x\right)$, $\tilde{b} = ab$, $-\tilde{\mu} = \ln C + \tilde{b}/2$.

From Proposition 1 we obtain the characterization of the probability density functions with the LBS-property.

Corollary 1. Let $q \in (0, 1)$ be fixed, and let $X > 0$ be a random variable with pdf f and $EX < \infty$. The law of X has the LBS property if and only if there exists a 1-periodic function φ, $\varphi \geq -1$, with the restriction of φ to $(0, 1)$ in $L^1((0, 1))$, such that φ satisfies (9) with $a = 1$, $b = -\ln q$, and

$$f(x) = \frac{1}{x\sqrt{-2\pi \ln q}} \exp\left(\frac{(\ln x - \mu)^2}{2\ln q}\right) \left\{1 + \varphi\left(\frac{\ln x - \mu}{-\ln q}\right)\right\},$$

where $\mu = \ln \left(q^{1/2}EX\right)$.

In [10] Theorem 3.1, Pakes uses a different approach to characterize the probability distribution functions $F = \mathcal{L}(X)$ satisfying (1) with $EX = 1$.

By (3), it follows that the probability density functions having the LBS-property are solutions of an indeterminate moment problem.

Let $N(\mu, -\ln q)$ be the normal density with mean μ and variance $-\ln q$. If $Y \sim N(\mu, -\ln q)$, we note that $\exp(Y)$ has the log-normal density, i.e.

$$\exp(Y) \sim \frac{1}{x\sqrt{-2\pi \ln q}} \exp\left(\frac{(\ln x - \mu)^2}{2\ln q}\right).$$

Remark 1. If X is a positive absolutely continuous random variable with pdf f, then

$$cX^{-1} \sim cx^{-2}f\left(cx^{-1}\right), \text{ for all } c > 0.$$
So, for \(\nu \in \mathbb{R} \) the distributional identity \(X \overset{\mathcal{L}}{=} e^{2\nu}X^{-1} \) is equivalent to the functional equation
\[
f(x^{-1}) = e^{2\nu}x^2 f(e^{2\nu}x), \quad x > 0. \tag{10}
\]

If \(\varphi \) is a measurable function on \(\mathbb{R} \) and \(f \) is a pdf function given as follows
\[
f(x) = \frac{1}{x \sqrt{-2\pi \ln q}} \exp \left(\frac{(\ln x - \nu)^2}{2 \ln q} \right) \left\{ 1 + \varphi \left(\frac{\ln x - \nu}{\ln q} \right) \right\},
\]
\(x > 0 \), then \(f \) satisfies the latter functional equation if and only if \(\varphi \) is an even function.

As a consequence of Corollary 1 and the last remark with \(\nu = \ln \left(q^{1/2}EX \right) \), we have that a positive random variable \(X \) with probability density function \(f \) satisfies
\[qX \overset{\mathcal{L}}{=} X \overset{\mathcal{L}}{=} q \left(EX \right)^2 X^{-1}\]
if and only if \(f \) can be written as in Corollary 1 with \(\varphi \) being an even function.

Finally, we provide some families of functions satisfying (8).

Examples

From bounded functions, the following observation allows to construct functions with values in the non-negative axis.

Remark 2. For \(\alpha, \beta \in \mathbb{R} \) with \(\alpha < \beta \), it is easy to see that there exists an interval \(I \subset \mathbb{R} \) such that \(e^{[\alpha, \beta]} + 1 \subset \mathbb{R}^+ \) for all \(\epsilon \in I \). In fact, when \(\alpha < 0 < \beta \) we have that \(I = \left[-\beta^{-1}, -\alpha^{-1} \right] \). For \(\alpha \geq 0, I = \left[-\beta^{-1}, \infty \right), \) and for \(\beta \leq 0, I = (-\infty, -\alpha^{-1}) \).

Example 1. Let \(t > 0 \) be fixed and let \((c_n)_{n \in \mathbb{Z}} \) be a sequence of complex numbers such that \(\varphi(x) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi i nx} \in L^2(0, 1) \). Then \(\varphi \) satisfies
\[
\int_0^1 \theta(x, t) \varphi(x) \, dx = 0, \tag{11}
\]
if and only if \(\varphi(x) \) is orthogonal to \(\theta(x, t) \) in \(L^2(0, 1) \). By (5) this is equivalent to the orthogonality between \((c_n)_{n \in \mathbb{Z}} \) and \(\left(e^{-4\pi^2 n^2 t} \right)_{n \in \mathbb{Z}}, \) i.e.
\[
\sum_{n \in \mathbb{Z}} c_n e^{-4\pi^2 n^2 t} = 0.
\]

In [11, page 1278] Pakes says that the continuous solutions of (2) probably are exceptions. But for any trigonometric polynomial \(p(x) = \sum_{|n| \leq N} c_n e^{2\pi i nx} \) whose coefficients \(c_n \in \mathbb{C} \) satisfy the last equality with \(t = b^{-1}/2 \), there is an interval \(I \) such that
\[\epsilon x \geq -1, \text{ for all } x \in \left[\min \text{Re } p, \max \text{Re } p \right], \epsilon \in I, \]
therefore \(\varphi = \epsilon \text{Re } p \geq -1 \) on \(\mathbb{R} \) and the corresponding density function given by Corollary 1 is an infinitely differentiable function on \(\mathbb{R}^+ \).
Example 2. Let $c_m = -c_{-m} = i/2$, and $c_n = 0$ for all $n \in \mathbb{Z} \setminus \{ -m , m \}$, $m \neq 0$. So, the corresponding trigonometric polynomial $\varphi(x) = -\sin(2\pi mx)$ is a function satisfying (11) for all $t > 0$.

Example 3. Let $c_{-1} = c_1 = -1/2$, $c_0 = e^{-4\pi \xi}$, and $c_n = 0$ for all $|n| \geq 2$. Thus, the corresponding trigonometric polynomial $\varphi(x) = e^{-4\pi \xi t} - \cos(2\pi x) \geq -1$ is an even function satisfying (11).

Example 4. By (6) we have that

$$\varphi_c(x) = -1 + \left(\int_0^1 \frac{\theta(x,t)}{\theta(x+c,t)} \frac{dx}{\theta(x+c,t)} \right)^{-1} \frac{1}{\theta(x+c,t)}$$

is a 1-periodic, continuous function satisfying (11) for all $c \in [0,1)$. Since $\theta(x,t)$ is an even function for all $t > 0$, the function φ_c is even if and only if $c = 0, 1/2$. In (4) equality (2.15) it is shown that

$$\theta(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)} \left(q_t; q_t \right)_\infty \left(-q_t^{1/2-x}; q_t \right)_\infty \left(-q_t^{1/2+x}; q_t \right)_\infty,$$

where $q_t = e^{-t^{-1/2}}$, $(p; q)_\infty = \prod_{k=0}^{\infty} (1 - pq^k)$. For $c \in (0,1)$ we have that (see (4) equality (2.17))

$$\int_0^1 \frac{\theta(x,t)}{\theta(x+c,t)} \frac{dx}{\theta(x+c,t)} = 2t \frac{\pi q_t^{t(c-1)/2}}{\sin(\pi c)} \frac{\left(q_t^{1+c_x}; q_t \right)_\infty}{\left(q_t; q_t \right)_\infty^2}.$$

To get more examples of functions fulfilling (8) see [4]. The results in [7] can be used to construct positive random variables having not the LBS-property but with moment sequence (3).

Acknowledgement I thank the anonymous referees for useful suggestions to the original manuscript.

References

[1] Bertoin J., Biane P., Yor M., Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions, Seminar on Stochastic Analysis, Random Fields and Applications IV, 45–56, Progr. Probab., 58, Birkhauser, Basel, 2004. [MR2096279]

[2] Cox D. R., Renewal theory, Methuen & Co. Ltd., London; John Wiley & Sons, Inc., New York 1962 ix+142 pp. [MR0153061]

[3] Chihara T. S., A characterization and a class of distributions functions for the Stieltjes-Wigert polynomials, Canadian Math. Bull. 13 (1970), 529–532. [MR0280761]

[4] Gómez R., López-García M., A family of heat functions as solutions of indeterminate moment problems, Int. J. Math. Math. Sci., vol. 2007, Article ID 41526, 11 pages, doi:10.1155/2007/41526.

[5] Gupta R. C., Kirmani S. N. U. A., The role of weighted distributions in stochastic modeling, Comm. Statist. Theory Methods 19 (1990), no. 9, 3147–3162. [MR1089242]

[6] Leyva V., Sanhueza A., Angulo J. M., A length-biased version of the Birnbaum-Saunders distribution with application in water quality, Stoch. Environ Res Risk Assess (2009) 23:299–307, doi:10.1007/s00477-008-0215-9.
[7] López-García M., Characterization of solutions to the log-normal moment problem, to appear in Theory of Probability and its Applications.

[8] Oncel S. Y., Ahsanullah M., Aliev F. A., Aygun F., Switching record and order statistics via random contractions, Statist. Probab. Lett. 73 (2005), no. 3, 207–217. MR2179280

[9] Pakes A. G., Khattree, R., Length-biasing, characterization of laws, and the moment problem, Austral. J. Statist. 34 (1992), 307–322. MR1193781

[10] Pakes A. G., Length biasing and laws equivalent to the log-normal, J. Math. Anal. Appl. 197 (1996), 825–854. MR1373083

[11] Pakes A. G., Structure of Stieltjes classes of moment-equivalent probability laws, J. Math. Anal. Appl. 326 (2007), 1268–1290. MR2280980

[12] Pakes A. G., Navarro J., Distributional characterizations through scaling relations, Aust. N. Z. J. Stat. 49 (2007), no. 2, 115–135. MR2392366

[13] Rao C. R., Shanbhag D. N., Choquet-Deny type functional equations with applications to stochastic models. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (1994). xii+290 pp. MR1329995

[14] Vardi Y., Shepp L. A., Logan B. F., Distribution functions invariant under residual-lifetime and length-biased sampling, Wahrscheinlichkeitstheorie verw. Gebiete 56 (1981), 415–426. MR0621657

[15] Widder D. V., The Heat Equation, Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London (1975). xiv+267 pp. MR0466967