Essential Oils and Future Antibiotics: New Weapons against Emerging ‘Superbugs’?

Nicholas A Boire¹, Stefan Riedel² and Nicole M Parrish∗

¹The Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
²Department of Pathology, Division of Microbiology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA

Abstract

Antibiotic resistance is emerging at an alarming rate, outpacing current research and development efforts to combat this trend. As a result, many infectious diseases have become difficult to treat; in some cases, no treatment options exist. The search for new antibiotics must accelerate to avoid returning to the ‘pre-antibiotic’ era. Ancient remedies, including essential oils and their components, have been explored on a limited basis as a source of new antimicrobials. Many are known to possess significant antimicrobial activity against a wide range of microorganisms. Elucidation of the mechanism of action of these compounds may lead to identification new antibiotic targets. Such targets, once identified, may represent biosynthetic or regulatory pathways not currently inhibited by available drugs. Novel drugs and targets are vital for continued control of infectious diseases worldwide.

Keywords: Essential oils; Antibiotic resistance; New antibiotics

Introduction

Not long ago, we thought we had conquered infectious disease. The scourge of mankind had been vanquished by the discovery of antibiotics.

"...we can look forward with confidence to a considerable degree of freedom from infectious diseases at a time not too far in the future. Indeed…it seems reasonable to anticipate that within some measurable time…all the major infections will have disappeared…" [1].

The discovery of antibiotics revolutionized medicine; the increasing emergence of antibiotic resistance threatens to return medicine to the pre-antibiotic era. Recently, the US Centers for Disease Control sounded an alarm regarding emerging antibiotic resistance and the threat to public health.

"CRE are nightmare bacteria. They pose a triple threat. First, they’re resistant to all or nearly all antibiotics, even some of our last-resort drugs. Second, they have high mortality rates. They kill up to half of people who get serious infections with them. And third, they can spread their resistance to other bacteria." [2].

To combat emerging antibiotic resistance and the rise of ‘superbugs’, new drugs are needed. However, research and development for new antimicrobial agents is lagging far behind the rate at which bacteria are developing resistance. As a result, many infectious diseases once easily cured have now become increasingly difficult to treat. So where are new antimicrobials to be found? Perhaps by looking to the past, we may discover significant science behind the ‘myths’ of ancient remedies; science which could lead to the development of new antibiotics and other drugs.

Ancient Remedies: A History

For thousands of years, aromatic oils have been used to relieve a wide variety of human maladies including bronchitis, pneumonia, pharyngitis, diarrhea, periodontal disease, wounds, and numerous other illnesses. Many traditions surrounding the use of these oils are buried in antiquity, passed down orally from master to student until the origin of specific treatments were lost to the ages. In antiquity, medicinal oils were derived from aromatic plants and resins by extraction into other fatty oils such as olive oil and used as a mixture. The earliest recorded use of aromatic oils dates back to 4,500 B.C. in Egypt [3]. The ancient Egyptians recognized that oils could be useful in treating illness, including infection and inflammation. So valuable were these oils, that King Tutankhamun was entombed with roughly 350 liters of aromatic oil including cedarwood, frankincense, and myrrh [3]. Myrrh is one of the earliest and well known of the aromatic oils. References to myrrh abound in antiquity. The ancient Hebrews referred to myrrh as ‘holly oil’ which was more valuable than gold. The ancient Egyptians referred to myrrh as ‘the tears of Horus’. Myrrh is derived from the resin of a woody shrub of the genus, Commiphora, which grows in hot, arid climates. In ancient Sumer, myrrh was used for treating parasitic infections and periodontal disease. The Greek physician, Dioscorides, used myrrh for bronchial and other infections including the skin [4]. Myrrh was often combined with frankincense, aromatic oil used in antiquity to treat infectious diseases and inflammation. Like myrrh, frankincense is member of a resinous family of plants (Bursarcceae) commonly found in arid regions of the Middle East and north-east Africa [5,6]. The use of frankincense and myrrh is mentioned numerous times in biblical and other ancient texts [7]. These oils, alone or in combination, were used extensively for the treatment of wounds, inflammation, cystitis, rheumatic joints, skin sores, bleeding, fungal infections, burns, pharyngitis, syphilis, and leprosy [8,9].

Other cultures across the globe have long-standing, medical practices which incorporate the use of aromatic oils and other plant-based therapies, including those found in the Americas, Australia, and the Far East such as the Ayurvedic, Unani, and Chinese traditions. Among the more well-recognized remedies still in use today from North and South America and Australia are purple coneflower (Echinacea purpurea), cat’s claw (Uncaria tomentosa), and eucalyptus (Eucalyptus globulus)
Ayurvedic traditions include the use of camphor (Cinnamomum camphora) and cardamom (Elettaria cardamomum) [4]. China’s use of herbal medicine dates as far back as 3000 B.C., when the mythological and legendary ruler Shen Nong Shi (or Shennong) taught humans the use of medicinal plants. His cumulative work, ‘Shennong Bencao Jing’, is considered one of the earliest medical collections in China [10]. By 500 A.D. the use of aromatic oils had spread throughout most of Asia Minor, and the Mediterranean, spreading along with the Roman and later the Persian Empires [11]. Commonly used aromatic oils included those derived from thyme, clove, rosemary, lavender, and cinnamon.

Today, the term ‘essential oils’ is used to describe the mixtures derived from aromatic medicinal plants using conventional techniques such as distillation and chromatographic separation. These oils continue to be used for the treatment of infectious disease and inflammation in traditional medicine across the globe. They are administered orally, topically, or via aromatherapy, depending on historical use and chemical composition which for many essential oils has been determined. As a result, a significant amount of toxicity data is available for not only the oils but also the individual components such that many are generally regarded as safe (GRAS) by the FDA. GRAS status has permitted the use of essential oils as flavoring agents in food and as additives to cosmetics, perfumes, and cleaning products.

Ancient Remedies: The Science

Essential oils are derived from a variety of natural sources including plants or components of plants such as flowers, leaves, bark, roots, berries, seeds and/or fruit. These oils are complex mixtures of chemicals, and include various alcohols, aldehydes, terpenes, ethers, ketones, phenols, and oxides. Many essential oils have limited solubility in aqueous solutions and form emulsions with non-ionic surfactants. Previous investigators have reviewed the effect of essential oils, their components and antimicrobial activity [12-17]. However, few studies have determined the antimicrobial-specific mechanism(s) of action of various essential oils or their components [18,19].

Since essential oils are complex mixtures of compounds, it is likely the observed antimicrobial activity is due to inhibition or interaction with multiple targets in the cell [20,21]. However, many essential oils exert non-specific antimicrobial effects due to the hydrophobic properties of the mixtures and components. For instance, the hydrophobic character of many essential oils facilitates entry into cell membranes leading to alteration in architecture, leakage of cell contents, and eventually death [22-26]. In 2009, Fisher and Phillips demonstrated uptake of Citrus sinensis and Citrus bergamia oils into Enterococcus faecium and E. faecalis resulting in multiple membrane-related changes: a 2- or 40-fold increase in membrane permeability, a decrease in intracellular pH, the loss of membrane potential, and a reduction in ATP concentration [25]. This is not surprising given that many essential oils contain high concentrations of phenolic compounds including carvacrol, thymol, and eugenol. Phenols are known to disrupt cell membranes resulting in the dissolution of the proton motive force and a subsequent decrease in ATP synthesis [27-29]. Inhibition of ATP synthesis may also result from essential oil-mediated alteration of protein–protein interactions in the cell membrane or direct binding of oil components, especially cyclic hydrocarbons, to lipophilic regions of membrane-bound proteins [28,30]. Diminished ATP levels would necessarily lead to reduction in other energy-dependent cellular processes including synthesis of enzymes and toxins. For example, previous studies have demonstrated a significant decrease in the amount of diarrheal toxin detected in Bacillus cereus when exposed to carvacrol. The authors hypothesized that the decrease in toxin detection may be connected to the decrease in ATP production which is required not only for toxin synthesis but also export [31].

Although the spectrum of activity for most essential oils is relatively broad, as would be expected with a mechanism of action related to membrane disruption, evidence is emerging which suggests more specific targets may exist. Such specific targets may vary between organisms, thus explaining the more narrow range of activity of some essential oils and/or components. In such cases, specificity may be related to individual essential oil components. Recently, investigators attempted to determine the mechanism of action of cold-pressed Valencia orange oil against methicillin-resistant Staphylococcus aureus (MRSA) [32]. Microarray data showed a 24-fold increase in expression of cwrA following exposure to the oil. Interestingly, upregulation of cwrA was also demonstrated following exposure to known cell wall-active antibiotics such as penicillin G, oxacillin, phosphomycin, imipenem, and vancomycin suggesting a similar mechanism of action [33-35]. Other specific effects of citrus oil on MRSA include increased expression of penicillin-binding-protein-4 (PBP 4), involved in peptidoglycan synthesis, and genes in the dltABCD operon. This operon controls alanylation of teichoic acids of the cell wall which may play a role in autolysin activity of S. aureus [32]. Autolysin activity was also suggested by Carson and coworkers who noted that tea tree oil resulted in release of membrane-bound, cell wall autolytic enzymes leading to cell lysis and death [21].

Specific targets have also been implicated by the differential activity of essential oils observed against various microorganisms [12]. For instance, multiple studies have shown that essential oils work well against a number of Gram-positive bacteria, with only moderate to little effect on Gram-negative organisms [12]. Some investigators postulated that Gram-negative organisms were intrinsically more resistant to the effects of essential oils due to the presence of the outer membrane which provides an additional permeability barrier [36]. However, susceptibility of Gram-negative bacteria can vary by genus and species. Aeromonas hydrophila, a Gram-negative bacteria commonly found in water, was highly susceptible to the effects of essential oils via an unknown mechanism; Enterobacter aerogenes was inhibited by cinnamon oil via interaction with various amino acid decarboxylases [37-40]. In these examples, the difference in susceptibility may be due to the presence or absence of the essential oil-specific target versus other Gram-positive or -negative bacteria; alternatively, the specific target may be present but exist in a different isoform resulting in altered susceptibility.

Other specific mechanisms of action have been identified which involve quorum sensing, cellular division, sporulation, stress responses and efflux pumps. Many Gram-positive and –negative bacterial organisms communicate in a complex interplay known as ‘quorum sensing’ which is used to regulate various cellular functions ranging from biofilm formation and swarming to expression of virulence factors and toxins [12]. It has been suggested that interruption of these bacterial communication networks may inhibit attachment and invasion by some pathogens exploiting an alternative pathway for antimicrobial development as compared with current antibiotics [41, 42]. Interference of quorum sensing has been demonstrated by a number of plant extracts, including garlic, which resulted in significant inhibition of biofilm formation in P. aeruginosa [43,44]. This inhibition not only appeared to be concentration dependent, but also illustrated properties of competitive binding as suggested by structure-activity relationship studies [43,44]. Biofilm formation was also inhibited in S. aureus and Salmonella enterica serovar typhimurium following
exposure to carvacrol, a monoterpene found in many essential oils [45]. These findings suggest inhibition of quorum sensing and biofilm formation may provide unique and as yet, unexplored targets for development of new antibiotics. However, other new drug targets may exist, which disrupt cellular division and sporulation as observed with filamentous fungi exposed to various essential oils [46]. In 2006, Pawan and Thaker [45] demonstrated that cinnamon bark oil was highly active against Aspergillus niger resulting in reduced production of hyphae and spores and in some cases complete inhibition of growth. The underlying mechanism(s) for these observations were not determined. However, previous investigators identified a correlation between inhibition of sporulation and cellular respiration versus growth [47]. Specifically, essential oils such as citron and lavender significantly inhibited sporulation and cellular respiration, with little effect on growth, whereas oils from cinnamon bark and lemongrass decreased growth, with little to no effect on sporulation or cellular respiration [47]. The effect on cellular respiration has implications for additional drug targets, especially those involving energy-dependent processes such as efflux of various macromolecules as seen with bacterial efflux pumps. Bacterial efflux pumps are responsible for multidrug resistance in a number of bacteria including the AcrAB-TolC efflux system in the Enterobacteriaceae and the MexAB-OprM system in Pseudomonas aeruginosa [12]. Recent evidence suggests that these efflux mechanisms may in part responsible for the decreased susceptibility of many Gram-negative organisms to plant-derived phytochemicals and essential oils. However, some oils such as farnesol, derived from Myristica officinalis, and the geraniol containing Helichrysum italicum have demonstrated anti-efflux activity especially in combination with ciprofloxacin and chloramphenicol, respectively, against Gram-negative bacteria [48,49].

Other common components of essential oils with specific antimicrobial activity are alcohols and aldehydes. Alcohols, especially the terpene alcohols, have significant bactericidal activity against a wide range of microorganisms. This bactericidal activity is thought to occur via a number of mechanisms including denaturation of proteins, dehydration of bacterial cells, or solvation of bacterial cell membranes [50,51]. In comparison, aldehydes are thought to interfere with reactions involving electron transfer, especially when conjugated to a carbon-carbon double bond. Such an electronegative molecular arrangement would result in interference with a large number of biological reactions of central metabolism (e.g. respiration and carbon cycling) resulting in rapid cell death [51].

Ancient Remedies: Combining the Old and the New?

Research and development of new antibiotics decreased significantly in the 1970s when the need for new drugs was thought to be negligible since infectious diseases were becoming a concern of the past. As a result, when new antibiotics were needed (e.g. when resistance emerged), pharmaceutical companies merely modified existing antibiotics via slight structural alterations. This approach was more economical than developing a completely new drug, which was overcome with a concomitant reduction in MIC [59]. The authors postulated that corilagin may interfere with binding of β-lactams to the PBP2a enzyme resulting in reversion of resistance [60]. Other plant derived compounds from green tea demonstrated a similar effect in a dose-dependent manner suggesting the presence of a specific target [61]. Synergy has also been documented with linalool and α-terpineol from Melaleuca leucodendron when combined with ampicillin and kanamycin [62]. In addition, synergy was seen with tofarol, ferulol, and plumagin in combination with 2-isoniazid (INH) and rifampin (RIF) against Mycobacterium tuberculosis (MTB). These combinations increased the potency of INH 4-fold against MTB [62]. Another compound isolated from the roots of Euclea natalensis decreased the MIC 4- to 6-fold for INH and RIF, respectively [63]. Taken together, these are important findings due to the rapid emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). MDR-TB is defined as resistance to INH and RIF; XDR-TB is defined as resistance to INH, RIF, and any of the fluoroquinolones and one of the injectable second-line drugs (e.g. capreomycin, amikacin, or kanamycin) [64,65]. Unfortunately, these drug-resistant patterns in MTB may become “obsolete” in the near future, as MTB strains with alarming and more extensive resistance patterns have been isolated from multiple locations on the globe. These strains exhibited resistance to nearly all drugs ever used for treatment of tuberculosis and other mycobacterial infections including: INH, RIF, ethambutol, pyrazinamide, ofloxacin, moxifloxacin, capreomycin, kanamycin, amikacin, para-aminosalicylic acid, ethionamide, cycloserine, rifabutin, clomazaine, dapson, clarithromycin, and thiacetazone [64]. Although consensus is lacking for a specific acronym for describing these strains (extremely- versus totally-drug-resistant TB; XXDR and TDR, respectively), the fact that they have been isolated is cause for great concern. In the absence of new antibiotics becoming quickly available for treatment, an alternative approach may be to combine existing drugs with essential oils. Yet, viable combinations will require a significant investment to better understand the mechanism of action of essential oils and components, determine individual and combined toxicity, characterize metabolism in vivo, as well as define their selectivity and bioavailability.

Summary

Since antiquity, essential oils and their constituents have been
used to treat a large number of human illnesses. Today, essential oils are used in alternative and holistic medicine for similar purposes and administered orally, topically or via aromatherapy. A growing number of scientific investigators have begun the process of elucidating the specific mechanism(s) of action of essential oils and components. Emerging evidence has shown that many essential oils have both non-specific and specific mechanisms of action which varies based on the relative abundance and chemical composition of the components. Elucidation of the mechanism of action of these compounds may enable identification of new antibiotic targets and exploitation of novel biochemical pathways; pathways not currently targeted by existing antibiotics. Additionally, combination of existing drugs with essential oils and/or components may provide an alternative approach to combat emerging drug resistance. Since antibiotic resistance is currently outpacing research and development to find new drugs, humanity is emerging drug resistance. Tomorrow. Mol Aspects Med 27: 1-93.

References
1. Cuckoob TA (1964) The evolution and eradication of infectious diseases. Perspect Biol Med 7: 498-499.
2. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6209a3.htm?sid:mm6209a3_w
3. http://tngmail.files.wordpress.com/2012/09/handbookoffissionaloil.pdf
4. Gurb-Makam A (2006) Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. Mol Aspects Med 27: 1-93.
5. Vollesen K, Hedberg I, Edwards S (1989) Flora of Ethiopia. Addis Ababa, Ethiopia. National Herbarium 3: 442-476.
6. http://www.timonline.org/artists/myrrh.htm
7. Tucker AO (1986) Frankincense and Myrrh. Econ Bot 40: 425-433.
8. Yen KY (1992) The Illustrated Chinese Materia Medica Crude and Prepared. SMC Publishing Inc. Taipei.
9. Nomicoes EY (2007) Myrrh: medical marvel or myth of the Magi? Holist Nurs Pract 21: 308-323.
10. http://tcm.chinese.cn/en/article/2009-08/24/content_10979.htm
11. Wonwood VA (1991) The Complete Book of Essential Oils and Aromatherapy: Over 600 Natural, Non-Toxic and Fragrant Recipes to Create Health - Beauty - a Safe Home Environment (1st edn) New World Library.
12. Burt S (2004) Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. Mol Aspects Med 27: 1-93.
13. Bakkali F, Averbeck S, Averbeck D, Idakmar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46: 446-475.
14. Baser KHC, Demirci F (2011) Essential Oils. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Wiley, 1-37.
15. Baser KHC, Demirci F (2007) Chemistry of essential oils. In: Flavours and fragrances: chemistry, bioprocessing and sustainability. Berger RG (ed) Chemical Technology, 4th Edition, Wiley, 1-37.
16. Vlijmoen A, van Vuuren S, Ernst E, Klepser M, Demirci B, et al. (2003) Omitopis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. J Ethnopharmacol 88: 137-143.
17. Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14: 3106-3119.
18. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, et al. (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88: 170-175.
19. Fisher K, Phillips CA (2006) The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol 101: 1232-1240.
42. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, et al. (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium microfungi. Microbiology 151: 1325-1340.

43. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, et al. (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187: 1799-1814.

44. Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71: 797-803.

45. Pawar VC, Thaker VS (2006) In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses 49: 316-323.

46. Inouye S, Watanabe M, Nishiyama Y, Takeo K, Akao M, et al. (1998) Antisporulating and respiration-inhibitory effects of essential oils on filamentous fungi. Mycoses 41: 403-410.

47. Lorenzi V, Muselli A, Bernardini AF, Berti L, Pagès JM, et al. (2009) Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob Agents Chemother 53: 2209-2211.

48. Garvey MI, Rahman MM, Gibbons S, Piddock L (2011) Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int J Antimicrob Agents 37: 145-151.

49. Pelczar MJ, Chan ECS, Krieg NR (1988) Control of microorganisms, the control of microorganisms by physical agents, and antibiotics: a review. Crit Rev Microbiol.

50. Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88: 308-316.

51. Langeveld WT, Veldhuizen E, Burt SA (2013) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol.

52. Udewadia ZF, Amale RA, Abjani KK, Rodrigues C (2012) Totally drug-resistant tuberculosis in India. Clin Infect Dis 54: 579-581.

53. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, et al. (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48: 1-12.

54. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, et al. (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9: 894-896.

55. Hemaiswarya S, Kruithof AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15: 639-652.

56. Ghuyens JM (1994) Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 2: 372-380.

57. Lu WP, Sun Y, Bauer MD, Paule S, Koengis PM, et al. (1999) Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry. Biochemistry 38: 6537-6546.

58. Shimizu M, Shiota S, Mizushima T, Ita H, Hatano T, et al. (2001) Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother 45: 3196-3201.

59. Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, et al. (2004) Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48: 67-73.

60. Zhao W, Hu Z, Hara Y, Shimamura T (2002) Inhibition of penicillinase by epigallocatechin-gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother 46: 2266-2268.

61. Avenirova EL, Ashmarin IP, Movchan NA, Lapina IK (1975) Combination of novoimamine with antibiotics with a different mechanism of action. Antibiotiki 20: 636-639.

62. Mossa JS, El-Feraly FS, Muhammad I (2004) Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother Res 18: 934-937.

63. Bapela NB, Lall N, Fourie PB, Franzblau SG, Van Rensburg CE (2006) Activity of 7-methyljuglone in combination with antituberculous drugs against Mycobacterium tuberculosis. Phytomedicine 13: 630-635.

64. Migliori GB, De Iaco G, Besozzi G, Gentil C, Cirillo DM (2007) First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill 12: E070517.

65. (2006) Extensively drug-resistant tuberculosis (XDR-TB); recommendations for prevention and control. Wkly Epidemiol Rec 81: 430-432.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 250 Open Access Journals
- 20,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review, and publication processing
- Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, reviewers and editors rewarded with online scientific credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.editorialmanager.com/acrgroup/