Information Analytical Calculation and Construction of Dispersion Maps of Pollutants in the Surface Layer of the Atmosphere at a Specialized Facility

V V Kulneva¹, A V Zvyagintseva², S A Sazonova³

¹PhD student, Voronezh State Technical University, Voronezh, Russia
²Candidate of Technical Sciences, Associate Professor, Department of Chemistry and Chemical Technology, Voronezh State Technical University, Voronezh, Russia
³Candidate of Technical Sciences, Associate Professor, Department of Technosphere and Fire Safety, Voronezh State Technical University, Voronezh, Russia

E-mail: vedma_via@mail.ru, zvygincevaav@mail.ru, ss-vrn@mail.ru

Abstract. We carried out an environmental audit on the territory of a specialized facility of all sources of environmental pollution and, accordingly, we measured the concentration of polluting components embodied in the atmospheric background. As a result of the inventory of emission sources, we recorded the following picture for the total emissions of pollutants into the air zone of the facility: 1.647832 t/year, including 1.597435 t/year in the liquid and gaseous state, and 0.050397 t/year in the solid state. We present the calculation of pollution from generators of emissions of the air zone of the facility, which is recorded on the basis of the Unified Atmospheric Pollution Calculation Program (UAPCP) “Ecolog” (version 3.0). According to the feasibility study, the dispersion calculation was recognized as socially effective for site 2 (hangar) - for NO₂, NO, kerosene, CO, SO₂, and abrasive dust. We calculated the surface concentrations of harmful substances in the atmosphere and constructed dispersion maps for the object for the winter period. The implemented research showed that the accumulation of contaminants does not reach the standard values of concentrations at key points suitable for determination at the boundary of the sanitary protection zone and the residential area. The dispersion calculation indicators showed that the predominant fraction of all diffusing contaminants for the hangar in the sanitary protection zone is NO₂ 0.82 parts of the maximum permissible concentration with and without background 0.697, and in the residential area, 0.11 parts of MPC without background.

1. Introduction

The use of various types of military equipment in peacetime in everyday activities and wartime in the performance of combat missions has always been the cause of the disruption of the dynamic balance in the ecological system, and in the global sense, the cause of natural disasters, destruction and victims. A change in the geopolitical situation throughout the world and in Russia, in particular, especially since 2014, has led to a large-scale increase in the growth of weapons throughout the world, their use and global environmental consequences. The flight test complex No. 3 of A.V. Fedotov Flight Test Center, which has three work sites (1 - garage; 2 - hangar; 3 - ship mooring) and is located in the city of Akhtubinsk, Astrakhan region, requires:
- to carry out an environmental audit and cataloging of all stationary and mobile sources of environmental pollution, primarily the air, on the territory of the specialized facility;
- to calculate the surface concentrations of pollutants in the atmosphere and draw dispersion maps of the object of study.

The purpose of the work is to study the object, draw dispersion maps of harmful impurities in the surface layer of the air zone of the specialized facility, and assess compliance with environmental standards to guarantee the quality of airspace for residential areas.

2. Brief description of the specialized facility as a source of air pollution

We carried out an environmental audit on the territory of the specialized facility of all sources of environmental pollution and, accordingly, measured the concentration of polluting components in the atmospheric background on conditionally divided 3 zones of the technological infrastructure of the special facility in accordance with the regulatory and basic environmental documentation [1-7]. The results of the environmental audit on the total emissions into the air of the facility from all sources (from three technological sites) are recorded in table 1. Designations in table 1: ASLE—an approximate safe level of exposure to pollutants in the atmosphere; MPC av. daily - the maximum permissible average daily concentration of harmful substances in the air; MPC o.-t. - the maximum one-time concentration of impurities in the air [2, 3, 6-8]. Note: the names of the components are given in accordance with the codes [4].

The analysis of the data in Table 1 shows the following picture of the total emissions of pollutants into the air zone of the facility: 1.647832 t/year, including 1.597435 t/year in the liquid and gaseous state, and 0.050397 t/year in the solid state.

Table 1. Inventory of contaminants recorded in the air of the object.

Substance code	List of components	MPC o.-t.	MPC av. daily	ASLE	Hazard class	Component emission (calculation by [1, 2])
0123 Fe₂O₃	Ferric oxide	-	0.040	-	3	0.004940
0143 Mn an dits compounds	0.01	0.001	-	2		0.000009
0301 NO₂ Nitrogen dioxide	0.085	0.040	-	2		1.806604
0304 NO Nitrogen (II) oxide	0.400	0.060	-	3		0.293562
0322 H₂SO₄ (molecular)	0.300	0.100	-	2		7.75 x 10⁻⁶
0328 C Carbon black	0.150	0.050	-	3		0.012400
0330 SO₂ Sulfur dioxide	0.500	0.050	-	3		0.468739
0337 CO Carbon oxide	5	3	-	4		4.183362
0703 C₂₀H₁₂ (3,4-benzpyrene)	0.000001	-	1	0		0.0000002
1325 Formaldehyde	0.030	0.003	-	2		0.002000
2704 Benzene	5	1.500	-	4		0.034100
2732 Kerosene	-	-	1.2	no		0.764790
2908 Inorganic dust 20 % SiO₂	0.300	0.100	-	3		0.000002
2930 Abrasive dust	-	-	0.04	no		0.003150
Total	-	-	-	1.2	no	7.553165
Including solid	-	-	-	-		7.553165
Liquid and gaseous	-	-	-	-		7.553165
3. Assessment of expediency and detailed calculations of air pollution from the sources of emission of contaminants of the special facility

The survey was implemented in accordance with regulatory documents [2] and sections 2 and 3 of OND-86 (Union Regulatory Document) [3]. The calculation of pollution of the air layers of the territory of the special facility by emissions from generators was implemented with the UAPCP “Ecolog” (version 3.0) by “INTEGRAL” company, agreed with Voeikov Main Geophysical Observatory and recommended for the diagnosis of surface cumulation of impurities.

When standardizing technological emissions from partial generators and from the facility as a whole, we based on OND-86 [3]. Diagnosis of air pollution of the territory is initiated from the indicator of expediency of calculations in accordance with clause 8.5.14 of OND-86 [3], subject to the following:

$$\sum \frac{C_{Mi}}{MPC} \leq \varepsilon,$$

where $\sum C_{Mi}$ - summation of the maximum concentrations of impurities from the set of generators of the object, mg/m3; MPC - maximum one-time permissible concentration, mg/m3; ε - coefficient of expediency of calculation, taken equal to 0.1 in accordance with environmental standards for the section 3.2.1. [2].

The sequence of attestation of expediencies considered in the article is materialized in the UAPCP of all versions specializing in the diagnosis of surface cumulations according to [3].

To certify the expediencies of performing detailed calculations on the dispersion of impurities in the atmosphere, without registering a background indicator, the total cumulation of a particular impurity is regulated in [2] — Cm in aggregate from emission generators, which is divided into the MPC of this impurity:

- $\text{Sum } Cm/MPC \geq 0.1(\varepsilon^3)$ – dispersion calculation is expedient;
- $\text{Sum } Cm/MPC < 0.1(\varepsilon^3)$ – dispersion calculation is not expedient.

Substance: Fe$_2$O$_3$	Emission (g/s)	Summer Cm/MPC	Summer Expediency	Winter Cm/MPC	Winter Expediency
0.0043500	0.0465	No		0.0465	No
1.7730100	37.3271	Yes	37.3271	Yes	
0.2880900	3.0326	Yes		3.0326	Yes
0.0000030	0.0002	No		0.0002	No
0.0006000	0.2414	Yes		0.2414	Yes
3.9704200	3.3436	Yes		3.3436	Yes
0.7478000	2.6239	Yes		2.6239	Yes
0.0028500	0.3044	Yes		0.3044	Yes

Table 2. Emissions of sources by substances (site 2 - hangar).

Though in [3], the registration of background indicators is mandatory for the attestation of
expediency. Therefore, the final program modules of the UAPCP “Ecolog” compare the sum of Cm/MPC with the E3 indicator, taking into account the background values with the output of reports in the form of tables and the construction of dispersion maps of impurities.

The calculation results are in table 2. It is necessary to clarify: when calculating the surface concentrations of pollutants in the air zone of production sites, it is imperative to take into account the influence of the seasonality of the year (especially winter, summer) on the distribution and dispersion pattern. We will discuss this aspect in more detail in other publications. The calculation results are given only for one working site - 2 (hangar).

The distribution of surface concentrations of pollutants from emission sources is recorded in tables 3-6 and dispersion maps (Fig. 1-6).

4. Methodology of calculation results
We carried out detailed calculations on the 2nd platform (hangar) with a width of 2000 m with a step of 500 m along the X-axis and the Y-axis. For “0” in the local (factory) coordinate system, we took the southwestern corner of the covered metal hangar. The sanitary protection zone (SPZ) is 500 m; the nearest housing is at a distance of 1.1 km. The type of coordinate systems right-handed, the OY axes are oriented to the north, and the OX axes are oriented to the east. In the calculation of dispersion, points on the housing (2 units No. 11-12) are indicated by type “4”, points in the SPZ (10 units No. 13-22) are indicated by type “3”. The dispersion calculation was carried out for 6 substances; one summation group is formed according to the supplement to the list and codes of substances 6009. The calculation results for substances are shown on the dispersion maps (Fig. 1-6).

Additional information for the calculations of site 2. The calculation was performed for winter (we will discuss in detail the effect of meteorological parameters on the value of surface concentrations of pollutants and their dispersion in the following publications). Table 3 shows the posts of measuring background concentrations of gas emissions into the atmosphere. The information for measuring and monitoring the background concentrations of a number of substances is predetermined by the expediency of calculating the dispersion. It is recorded in table 2. Table 4 presents a set of calculation sites for points inside which we calculated the dispersions of harmful substances in the surface layer of the atmosphere.

Post number	Meteopost coordinates	List of components	
	X	Y	New meteopost
0	0	0	

Table 4.

No	Category	Height, (m)	Width, (m)	Step, (m)	Site characteristic
1	Automatic machine	2	2000	500	500

Table 3. Meteoposts of fixing the background cumulation.
Table 5 shows the set of project points at which we fixed the amount of cumulation of contaminants using the program modules of the UAPCP “Ecolog”.

Table 5. Projectpoints (site 2).

№	Note	Point coordinates (m)	Pointcategory	Height (m)
22	Point 10 from SPZ N1	1124.21 -312.93	border СЗЗ	2
21	Point 9 from SPZ N1	875.69 -1063.57	border СЗЗ	2
20	Point 8 from SPZ N1	59.60 -1135.98	border СЗЗ	2
19	Point 7 from SPZ N1	-771.41 -1126.16	border СЗЗ	2
18	Point 6 from SPZ N1	-1246.13 -559.98	border СЗЗ	2
17	Point 5 from SPZ N1	-1176.49 268.18	border СЗЗ	2
16	Point 4 from SPZ N1	-983.67 1054.71	border СЗЗ	2
15	Point 3 from SPZ N1	-191.64 1140.71	border СЗЗ	2
14	Point 2 from SPZ N1	632.96 1037.08	border СЗЗ	2
13	Point 1 from SPZ N1	1165.31 517.12	border СЗЗ	2
12	housing	-505.00 -2856.00	on the boundary of the housing area	2
11	residential area	-150.00 -2866.00	on the boundary of the residential area	2

We carried out the dispersion calculation at 12 points, two (No. 11-12) of which are on the housing, and ten (No. 13-22) - in the sanitary protection zone. At this stage of the algorithm for solving the problem of calculating dispersion indicators, we fixed the points corresponding to the highest accumulation of impurities and selected devices capable of generating emissions of a particular component with a maximum concentration. We summarized the final calculation result in table 6, which we used to draw the dispersion maps of the impurities having the highest surface concentration.

Table 6 shows that the following sources provide the highest level of air pollution at site 2: test - 84.9 % NO\(_2\), 42.1 % NO, 91.6 % SO\(_2\), 14.6 % CO, 100 % kerosene; repair - 100 % abrasive dust.

The results of dispersion calculations for the 2nd site showed that the predominant part of all diffusing impurities for the second site - the hangar in the sanitary protection zone is completed by NO\(_2\) 0.82 d. MPC with and without background 0.697 d. MPC, and in the residential area 0.11d. MPC without background.

Table 6. The list of sources that make the largest contribution to the level of air pollution (site 2).

Code	Day MPC backgro und	Point number	Source affiliation (sector, workshop)	List of components	Sources making the largest contribution to the max. concentration	Estimated maximum surface concentration (d. MPC) without background	
				Source number	Ctribution %	On the housing	At the boundary of SPZ
0337	0.374	15	Test CO	6014	14.59	0.010	0.060
2732	0	15	Test Kerosene	6014	100.00	0.010	0.050
0301	0.123	15	Test NO\(_2\)	6014	84.91	0.110	0.690
0330	0.007	15	Test SO\(_2\)	6014	91.60	0.010	0.070
0304	0.077	15	Test NO	6014	42.06	0.010	0.060
2930	0	20	Repair Abrasive dust	0011	100.00	0.001	0.001
Figure 1. Dispersion map for substance: 2930 Abrasive dust.

Figure 2. Dispersion map for substance: 2732 Kerosene.

Figure 3. Dispersion map for 0330 SO₂.

Figure 4. Dispersion map for 0304 NO.

Figure 5. Dispersion map for 0301 NO₂.

Figure 6. Dispersion map for substance: 6009 Sum group. (2) 301 330.
As a result of the calculations of the surface concentration of pollutants at site 2 - hangar at the facility, we found that the standards for maximum permissible emissions are observed in order to protect atmospheric air, as well as the norms for maximum permissible concentrations of harmful substances [9-22].

Further calculation indicators based on the UAPCP “Ecolog” are illustrated by the dispersion maps for each pollutant in the area of the air territory of the site, which includes site 2, the sanitary protection zone, water area, and housing (Fig. 1-6).

We drew the dispersion maps for 2 sites with a width of 2000 m with a step of 500 m along the X-axis and the Y-axis. The coordinate systems are right-handed; the OY axes are oriented to the north, the OX axes – to the east. We drew the isolines on the basis of the method of interpolating the values recorded by the UAPCP “Ecolog” in the nodal segments of the computational grid, which directly depends on the step size. The isolines show the values of the concentration level. We carried out the construction of the maps in the full-featured graphical editor “Ecograph”, which is an integral part of the “Ecolog”.

5. Conclusion
1. As a result of the inventory of emission sources, were corded the following picture for the total emissions of pollutants into the air zone of the facility: 1.647832 t/year, including 1.597435 t/year in the liquid and gaseous state, and 0.050397 t/year in the solid state.

2. The calculation of pollution by emission generators of the air zone of the specialized facility was recorded on the basis of the UAPCP “Ecolog” (version 3.0). According to the expediency study, we recognized the dispersion calculation as socially effective for site 2 (hangar) - for NO₂, NO, kerosene, CO, SO₂, and abrasive dust.

3. We calculated the surface concentrations of harmful substances in the atmosphere and drew the dispersion maps for the object for the winter period. The implemented research showed that the cumulation of contaminants does not reach the standard values of concentrations at key points suitable for determination at the boundary between the sanitary protection zone and the residential area.

4. The scattering calculation indices illustrate that the predominant part of all diffusing impurities for the second site - hangar in the sanitary protection zone is completed by NO₂ 0.82 of d. MPC with and without background 0.697 of d. MPC, and in residential areas - 0.11 of d. MPC without background.

5. Environmental audit and assessment of compliance with standards of environmental protection in the territory of Flight Test Complex No. 3 (Akhtubinsk, Astrakhan Region) of A.V. Fedotov Flight Test Center of Federal State Unitary Enterprise Russian Aircraft Corporation “MiG” and guaranteeing the quality of airspace for residential areas are consistent with the requirements of regulatory documents [1, 5, 6], which emphasizes the importance of environmental procedures, the proposed aspects are considered in other publications.

6. References
[1] On approval of calculation methods of emission dispersion of harmful (polluting) substances in atmospheric air 2017 The order of the Ministry of Natural Resources and Ecology of the Russian Federation on 6 June 2017 273 109 p
[2] Methodological guide on the calculation, regulation and monitoring of emissions of polluting substances in atmospheric air 2005 (St. Petersburg: NII Atmosphere)
[3] OND-86 The method of calculation of concentrations in atmospheric air of harmful substances contained in emissions of enterprises 1987 App. by Goskomgidromet USSR 04.08.1986 N 192 (Moscow: Gidrometeoizdat) 93 p
[4] The list of substances (atmosphere) ed. on 02.07.2018 (GN2.1.6.3492 -17, GN 2.1.6.2309-07, GN 2.1.6.3537-18)
[5] GN 2.1.6.1338-03 "Maximum permissible concentration of polluting substances in atmospheric air of populated areas"
[6] SanPiN 2.1.6.1032-01 "Sanitary requirements to quality assurance of atmospheric air of populated areas"
[7] GN 2.1.6.1339-03 "Approximate safe levels of emission (ASLE) of harmful substances in the atmospheric air of populated areas"
[8] Chemist’s reference book 21. Chemistry and chemical technology
[9] Zvyagintseva A V, Bogdanovich E V and Dorokhina M V 2015 Evaluation of the content of pollutant emissions into the atmosphere on objects of a special purpose Complex problems of Technosphere Safety: proceedings of the international. Scientific Conf. (Voronezh: Voronezh State Technical University) part I pp 111-121
[10] Artemyev A S and Zvyagintseva A V 2011 Possibilities of geoinformation modeling in predicting the distribution of pollutants of industrial emissions of the technosphere objects in the environment Bulletin of Voronezh State Technical University vol 7 11 pp 106-110
[11] Yakovlev D V and Zvyagintseva A V 2012 Construction of an interbranch integrated geographic information system of the Voronezh region Izvestia of the Samara Scientific Center of the Russian Academy of Sciences 1-3 pp 923-930
[12] Zvyagintseva A V, Sazonova S A and Kulneva V V 2019 Modeling of fugitive emissions of dust and gases into the atmosphere in open pits mining and processing plants, and improving measures to improve working conditions Proceedings of the Seventh International Environmental Congress (Ninth International Scientific-Technical Conference) "Ecology and Life Protection of Industrial-Transport Complexes" ELPIT 2019 pp 212-226
[13] Zvyagintseva A V, Sazonova S A and Kulneva V V 2020 Measures to Improve Working Conditions and Reduce Dust and Gas Emissions in the Quarries of the Mining and Processing Plant IOP Conference Series: Earth and Environmental Science. International science and technology conference "FarEastCon-2019" 459 p 052047
[14] Zvyagintseva AV 2017 Hydrogen permeability of nanostructured materials based on nickel, synthesized by electrochemical method Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications & Properties (NAP-2017) IEEE Catalog Number: CFP17F65-ART - Part 2–02NTF41-1-02NTF41-5
[15] Zvyagintseva A V and Shalimov Yu N 2014 On the stability of defects in the structure of electrochemical coatings Surface Engineering and Applied Electrochemistry vol 50 6 pp 466-477
[16] Zvyagintseva A V 2008 Interaction peculiarities of hydrogen and Ni-B galvanic alloys NATO Science for Peace and Security Series C: Environmental Securityvol Part F2 pp 437-442
[17] Zvyagintseva A V, Shalimov Yu N and Lutovats M V 2015 To the feature of behavior of hydrogen in the metals and alloys, got electrolysis, and possibility of their application in alternative energy sources International Scientific Journal "Alternative Energy and Ecology" (ISJAE) 21(185) pp 107-111
[18] Avdyushina A E and Zvyagintseva A V 2010 Localization of objects in a distributed video surveillance system Information and security vol 13 4 pp 583-586
[19] Avdyushina A E and Zvyagintseva A V 2010 Video surveillance system and localization of natural objects Bulletin of the Voronezh State Technical University vol 6 12 pp 107-109
[20] Neyzhuimak A N, Zvyagintseva A V and Rastorguev I P 2008 Recognition of dangerous meteorological events of convective origin for aviation management Bulletin of the Voronezh State Technical University vol 4 10 pp 135-139
[21] Arzhanykh Yu P, Dolzhenkoa V V and Zvyagintseva A V 2014 Prediction of hydrological situation during floorage at water bodies of the Voronezh region using geographical information systems Heliogeophysical studies 9 pp 89-98
[22] Avdyushina A E and Zvyagintseva A V 2014 Analysis of statistics of aircraft collisions with birds for 2002-2012 and modern means of providing ornithological safety of flights Heliogeophysical studies 9 pp 65-77