Primary percutaneous coronary intervention (PCI) is a standard interventional treatment modality for ST-segment elevation myocardial infarction (STEMI). Diagnostic coronary angiogram during PCI reveals multivessel coronary artery disease in about half of patients with STEMI, and it is difficult to make decision on the extent of intervention in these patients. Although revascularization for the infarct-related artery only is still effective for STEMI patients, several studies have reported the efficacy of multivessel revascularization during primary PCI, as well as in a staged PCI procedure. Clinicians should consider clinical aspects such as initial cardiogenic shock and myocardial viability when performing primary multivessel intervention, including the risks and benefits of multivessel revascularization in patients undergoing primary PCI. This review describes the current status of performing multivessel PCI in patients with STEMI and proposes an optimal revascularization strategy based on the previous literature. (Korean Circ J 2014;44(3):131-138)

KEY WORDS: Myocardial infarction; Coronary artery disease; Percutaneous coronary intervention.
Interventional Strategies for ST-Segment Elevation Myocardial Infarction with Multivessel Coronary Artery Disease

The current American College of Cardiology/American Heart Association (ACC/AHA) and European revascularization guidelines for STEMI recommend CVR during primary PCI as the primary interventional strategy in patients with MVD. Although CVR is a universally accepted treatment modality in STEMI patients, several studies have shown the efficacy of simultaneous IRA and non-IRA intervention during primary ad hoc PCI and a staged PCI procedure.

Infarct-related artery intervention during primary percutaneous coronary intervention

Culprit vessel-only revascularization is an interventional strategy that revascularizes only the IRA during primary PCI, regardless of the significance of non-IRAs. Thus, it is a conservative management approach that allows for revascularization of the IRA only followed by medical therapy, and some studies have shown more favorable outcomes of CVR than MVR during primary PCI.

An early study by Roe et al. described increased 6-month mortality and major adverse cardiac events (MACEs) with MVR. Corpus et al. analyzed 506 patients with MVD; 152 were treated with MVR and 354 were treated with CVR during primary PCI. MVR was associated with higher rates or re-infarction (13.0% vs. 2.8%, p<0.001), revascularization (25.0% vs. 15.0%, p=0.007), and composite MACE (40.0% vs. 28.0%, p=0.006) compared to CVR after 1-year of clinical follow-up. A recent analysis of the APEX-AMI trial examined the incidence of CVR during primary PCI and 90-day outcomes compared to MVR. Among 2210 patients with MVD, only 217 (9.9%) underwent CVR. Death and death/congestive heart failure/shock after 90-days was significantly higher in the MVR group (12.5% vs. 5.6%, p<0.001 and 17.4% vs. 12.0%, p=0.020, respectively). Furthermore, MVR was associated with an increased risk of 90-day mortality (adjusted hazard ratio (HR) 2.44; 95% confidence interval (CI), 1.55–3.83; p<0.001) after adjusting for patient and procedural characteristics, as well as the propensity for MVR. Dziewierz et al. reported that non-IRA PCI during an index procedure in patients with STEMI and MVD is associated with increased 1-year mortality in a registry database (European Registry on Patients with ST-Elevation MI Transferred for Mechanical Reperfusion with a Special Focus on Upstream Use of Abciximab; EUROTRANSFER).

Recent studies also showed inferior clinical outcomes of MVR compared to patients who received CVR during primary PCI, and the meta-analysis of Vlaar et al. revealed higher mortality rates of patients who underwent MVR during long-term follow-up compared to CVR or a staged PCI group.

Simultaneous infarct-related and non infarct-related artery intervention during primary percutaneous coronary intervention

Limited data show the benefits of simultaneous IRA and non-IRA intervention during primary PCI. Although several early studies supported the superiority of MVR over CVR, they included only a small number of patients and were not randomized. Politi et al. performed a randomized trial assessing the outcomes of 214 patients with STEMI and MVD undergoing primary PCI. All patients were randomized before angioplasty into CVR, ad hoc MVR, and staged PCI groups. During a mean follow-up of 2.5 years, there were more MACEs in the CVR group (50% of patients) than those in the MVR (23%) and staged PCI (20%) groups.

Bangalore et al. performed a meta-analysis of 61764 subjects with STEMI and MVD in 19 studies with 23 arms, and associated MVR with a 44% decrease in repeat PCI and MACEs (odds ratio (OR), 0.68; 95% CI, 0.57–0.81) for early outcomes within 30 days, despite similar mortality, MI, stroke, and target vessel revascularization. No differences related to MI, target vessel revascularization, or stent thrombosis were observed for long-term outcomes, with a decreased risk of mortality, repeat PCI, coronary artery bypass surgery, and MACE (OR, 0.60; 95% CI, 0.50–0.72) with MVR. However, that study was limited because it was a non-randomized trial that included only two randomized controlled trials in the meta-analysis.

A recent trial by Wald et al. randomized 465 patients with STEMI who underwent primary PCI into two groups: preventive PCI (234 patients) or no preventive PCI (231 patients). Primary outcomes were composite cardiac deaths, non-fatal MI, and refractory angina. During a mean follow-up of 23 months, primary outcomes occurred more often in the no preventive PCI group (HR, 0.35; p<0.001) and the HRs were 0.34 for cardiac death, 0.32 for non-fatal MI, and 0.35 for refractory angina. They concluded that preventive PCI in non-IRA significantly reduced the risk of MACE compared to CVR in patients with STEMI who underwent primary PCI.

In a large-scale Korean registry (Korea Acute Myocardial Infarction Registry, KAMIR), two recent studies evaluated the efficacy of MVR in patients with STEMI and MVD. Jo et al. analyzed 1094 STEMI patients with MVD who underwent primary PCI with drug-eluting stents (827 in the CVR and 267 in the MVR groups). During a 1-year follow-up, MACE rates were similar in the CVR (15.2%) and MVR (14.2%) groups, despite higher in-hospital mortality in the CVR group (5.2% vs. 0.4%, p<0.001). In subgroup analyses between complete (n=182) and incomplete (n=912) revascularized patients, the former had a lower 1-year MACE rate (9.5% vs. 15.0%, p=0.039) primarily driven by the non-target vessel repeat PCI rate (1.8% vs. 8.6%, p=0.002). They concluded that MVR for STEMI showed similar 1-year
MACE compared to CVR. However, complete revascularization was associated with a lower rate of non-target vessel repeat revascularization during the follow-up period after multivessel PCI in subgroup analyses. Lee et al.\(^{28}\) also compared CVR (1106 patients) with MVR (538 patients) in 1644 STEMI and MVD patients who received primary PCI using stent implantation or balloon angioplasty. In-hospital outcomes such as mortality, complications, acute kidney injury, major bleeding, and new onset heart failure were similar between the two groups, except for the development of fatal ventricular arrhythmia (4.5% vs. 2.4%, p = 0.037). At 1 month, the occurrence of MACE was not different between the two groups. The MACE rate at 1 year was also similar between both groups; however, the target-lesion repeat PCI rate was higher in the MVR group (2.4% vs. 5.9%, p < 0.0001). Therefore, they concluded that there were no significant differences in clinical outcomes between the groups, except for a higher risk of target lesion revascularization in the MVR group. These two KAMIR studies showed similar results in that MVR was not superior to CVR in patients with STEMI and MVD. However, the 1-year repeat target-lesion PCI rate was higher in the MVR group in the latter study, which might be associated with a higher proportion of bare-metal stents implanted in the study population (8.7% in the CVR group and 11.0% in the MVR group), as well as other angiographic factors. However, limited information on staged PCI and a lack of detailed angiographic anatomies in these studies may have underestimated the outcomes.

Although some studies have shown superiority of MVR in patients with STEMI, the results have been limited by changes in standard interventional strategies of primary PCI. Thus, further investigation is needed.

Staged percutaneous coronary intervention: infarct-related artery intervention followed by non-infarct-related intervention as a staged procedure

Although there is no definitive evidence that MVR is superior to CVR, and the current guidelines support CVR during primary PCI, several recent studies have suggested that staged multivessel PCI can be an alternative interventional strategy to achieve optimal clinical outcomes. Hannan et al.\(^{29}\) showed that culprit vessel PCI during the index procedure for patients without hemodynamic compromise is associated with lower in-hospital mortality than multivessel PCI during the index procedure (0.9% vs. 2.4%, p = 0.04). Interestingly, patients who underwent staged multivessel PCI within 60 days after the index procedure had a significantly lower 12-month mortality rate than those who underwent culprit vessel PCI only (1.3% vs. 3.3%, p = 0.04).

Vaar et al.\(^{30}\) performed a meta-analysis including four prospective and 14 retrospective studies involving 40280 patients. Their analysis favored a staged PCI strategy with complete revascularization. Among different interventional strategy groups, staged PCI was associated with lower short- and long-term mortality compared to CVR and ad hoc MVR, and the MVR group showed the highest mortality rates at both short- and long-term follow-ups. Another study supported the use of staged PCI. A subgroup analysis in the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction trial (HORIZONS-AMI)\(^{31}\) compared CVR to staged PCI; the results indicated higher 1-year mortality (9.2% vs. 2.3%; HR, 4.10), cardiac death (6.2% vs. 2.0%; HR, 3.14), and stent thrombosis (5.7% vs. 2.3%; HR, 2.49) in the CVR group than those in the staged PCI group. Furthermore, there was a trend toward higher 1-year adverse cardiac events (18.1% vs. 13.4%; HR 1.42; p = 0.08) in the former group.

Jensen et al.\(^{24}\) also reported that staged multivessel PCI within 60 days after index hospitalization can reduce 1-year mortality compared to patients who undergo CVR during primary PCI (HR, 0.28; 95% CI, 0.14–0.54). Taken together, these results indicate that staged PCI is promising, and another large randomized trial such as the Complete Versus Culprit-Lesion Only Primary PCI Trial (CVLPRII) may provide more valuable information.\(^{26}\) These STEMI studies are summarized in Table 1.

Optimal Interventional Strategy in Patients with Multivessel Coronary Artery Disease Complicating Cardiogenic Shock

Although current guidelines recommend CVR during primary PCI in patients with STEMI, MVR can be selected when STEMI patients initially present in cardiogenic shock that is primarily associated with STEMI. Thus, studies regarding MVD and shock with AMI have reported this issue in STEMI patients.\(^{27}\)

Several studies of MVR in STEMI patients complicated by cardiogenic shock have demonstrated no additional benefit of MVR in this circumstance. Cavender et al.\(^{18}\) analyzed patients with STEMI and cardiogenic shock in the National Cardiovascular Data Registry (n = 3087) and showed that those who received MVR during primary PCI had greater in-hospital mortality than that of patients that received CVR (36.5% vs. 27.8%; OR, 1.54; 95% CI, 1.22–1.95). These data suggest that performing MVR during primary PCI for STEMI does not improve short-term survival, even for patients with cardiogenic shock and at-risk for increased mortality due to procedural-related complications, such as bleeding or renal failure, distal embolization associated with PCI, or the loss of collateral flow to other coronary territories.\(^{28}\) Bauer et al.\(^{30}\) evaluated the impact of MVR on in-hospital outcomes of 336 AMI patients with MVD presenting with cardiogenic shock in the Euro Heart Survey PCI registry. The
prevalence of three-vessel disease (60% vs. 57%), presentation with resuscitation (48% vs. 46%), and STEMI (83% vs. 87%) were similar between the two patient groups who received another interventional strategy when MVR and CVR were compared. After adjusting for confounding factors, an additional non-culprit PCI was not associated with an in-hospital survival benefit (OR, 1.28, 95% CI, 0.72–2.28, p=0.07) in these high-risk patients. In a recent Korean study, Yang et al.\(^{31}\) reported that MVR did not reduce the prevalence of mortality in patients with cardiogenic shock complicating STEMI and MVD during primary PCI.

A recent French study on the role of MVR in patients with STEMI presenting with cardiogenic shock and resuscitated cardiac arrest showed that MVR may improve 6-month survival rate.\(^{32}\) However, these results cannot be generalized until results are reported from a randomized controlled trial. Current 2010 ESC/EACTS myocardial revascularization guidelines state that MVR during primary PCI can be justified only in hemodynamically unstable patients with multiple truly critical lesions,\(^{33}\) and this interventional strategy is still an effective modality in these patients.

Real-World Application of Multivessel Intervention in Patients with ST-Segment Elevation Myocardial Infarction

The results described above are heterogeneous and thus inconclusive regarding applications in real-world practice. Multivessel PCI has advantages and disadvantages, as described by Widimsky and Holmes (Table 2).\(^{33}\) The following factors should be considered before determining the interventional strategy.

First, in patients with STEMI and MVD, CVR is still an effective interventional strategy during primary PCI in hemodynamically stable patients, as recommended by the current guidelines. A recent meta-analysis by Bagai et al.\(^ {34}\) analyzed outcomes of MVR compared to CVR during primary PCI in 14 studies composed of 11 cohort and three randomized controlled trials. The MVR group had more patients in cardiogenic shock and with an anterior infarction. Although

Table 1. Publications regarding multivessel percutaneous coronary intervention in ST-segment elevation myocardial infarction (except for meta-analyses)

Multivessel PCI group (n)	Culprit-only PCI Group (n)	Primary outcome	Main findings
Studies showed non-association of multivessel PCI with improved clinical outcomes			
Roe et al.\(^ {10}\)	79	79	Death, re-infarction and stroke
Corpus et al.\(^ {51}\)	152	354	MACE
Toma et al.\(^ {11}\)	217	1984	90-day mortality
Dzewierz et al.\(^ {16}\)	70	707	1-year mortality
Cavender et al.\(^ {20}\)	3134	25802	In-hospital mortality
Studies showed superiority of multivessel PCI			
Garawani et al.\(^ {10}\)	95	25	MACE
Rigattieri et al.\(^ {111}\)	64	46	MACE (out-of-hospital)
Varani et al.\(^ {114}\)	243	159	30-day mortality (exclude shock patients)
Politi et al.\(^ {118}\)	130	84	MACE
Wald et al.\(^ {211}\)	234	231	Cardiac death, nonfatal MI, and refractory angina
Jo et al.\(^ {211}\)	267	827	Death, MI, TVR and non-TVR
Lee et al.\(^ {28}\)	538	1106	MACE
Studies showed superiority of staged multivessel PCI			
Hannan et al.\(^ {13}\)	797 (staged PCI)	2724	1-year mortality
Kornowski et al.\(^ {24}\)	393 (staged PCI)	275	1-year mortality
Jensen et al.\(^ {20}\)	626 (staged PCI within 60 days after index hospitalization)	4770	1-year mortality

PCI: percutaneous coronary intervention, MACE: major adverse cardiac events, HR: hazard ratio, OR: odds ratio, MI: myocardial infarction, TVR: target-vessel revascularization
short- and long-term MACE occurred more often in the MVR group, the primary endpoint was similar after excluding patients with shock in analyses limited to randomized controlled trials. Another small study reported similar results and risk profiles of patients undergoing MVR during primary PCI. Because there may be selection bias in non-randomized trials that compare MVR and CVR, more randomized controlled trials are needed to confirm these conclusions.

Second, CVR is also an effective interventional strategy during primary PCI in patients with hemodynamically unstable STEMI. Several studies that compared MVR to CVR during primary PCI in patients in cardiogenic shock did not demonstrate any advantage to MVR. One prospective observational study described that MVR primary PCI in STEMI patients with MVD presenting with cardiogenic shock and resuscitated cardiac arrest improved short-term mortality. MVR during primary PCI in patients with STEMI and MVD should be selected in patients in a hemodynamically unstable state with multiple critical coronary stenoses.

Third, staged PCI is highly recommended in patients who receive CVR during primary PCI. Several reports and a recent randomized controlled trial have shown promising results with this strategy. However, it remains to be determined whether complete or incomplete revascularization, non-IRA intervention, and timing of interventional can be improved. Although recent studies have supported complete revascularization in patients, including those with angina, more studies are needed to establish staged PCI in these patients.

However, different clinical scenarios in a real-world setting cause hardship when applying these literature-based interventional strategies. Dangas et al. surveyed this issue based on the opinions of interventional cardiology experts. About 80% of interventional cardiologists are consistent in their recommendation to elect second staged PCI in case of STEMI patients with MVD with a concurrent significant proximal lesion in a nonculprit vessel who are hemodynamically stable after primary PCI. Many factors such as renal function, accumulated contrast use, lesion complexity, symptomatology, radiation dose, left ventricular function, insurance status, and patient age influenced their decisions. The decision making for PCI in patients with STEMI and MVD should be individualized according to the clinical situation.

There are several considerations that need to be made prior to non-IRA intervention to assist decision making for multivessel PCI. The adequacy of the intervention should be compared to coronary artery bypass graft (CABG) surgery based on clinical benefits in patients with MVD. The current ACC/AHA guidelines recommend CABG (class I indication, level of evidence: A) in patients with MVD according to the complexity of the coronary anatomy, such as three-vessel disease or left main coronary artery disease or two-vessel disease with significant proximal left anterior descending coronary artery disease and abnormal left ventricular dysfunction. However, it is difficult to recommend CABG based on the guidelines in all patients indicated for surgery because of advanced age, co-morbidities, and the high complication rate of CABG. The "synergy between PCI with Taxus and cardiac surgery" (SYNTAX) score was designed to predict outcomes related to anatomical characteristics such as the dominant artery, number of lesions, other lesion characteristics, and, to a lesser extent, the functional risk of occlusion of any coronary artery segment in patients with MVD. A high SYNTAX score indicates the most complex disease. In the SYNTAX trial, patients with a high SYNTAX score (>33 points) who underwent PCI showed poorer cardiovascular outcomes compared to those who underwent CABG. Although this scoring system cannot be applied to all patients with MVD, it may be helpful for determining whether PCI or surgery is better in individual patients. A functional assessment of myocardial viability is also crucial for reducing unnecessary revascularization of non-IRA. Dobutamine echocardiography and myocardial nuclear imaging, such as single photon emission tomography or positron emission tomography, are well-known modalities used to evaluate myocardial viability. Cardiac magnetic resonance imaging (CMRI) has increasingly been performed to accurately predict infarct size, regional wall motion abnormalities, ejection frac-

Table 2. The advantages and disadvantages of each interventional strategy in patients with acute myocardial infarction

Interventional Strategy	Advantages	Disadvantages
Multivessel revascularization during index procedure (‘ad hoc’ PCI)	Patients preference, Stabilize other unstable lesions	Increased risk of contrast-induced nephropathy, Increased dosage of radiation
Culprit-only revascularization	Low incidence of periprocedural complications	Risk of recurrent angina, Risk of remnant unstable lesions
Staged multivessel revascularization	Treat secondary lesions more safely, Functional assessment before secondary PCI	Economic problem, Uncertain timing for secondary PCI, Possibility for unnecessary treat

PCI: percutaneous coronary intervention
tion, and myocardial irreversibility. In addition, CMRI can predict functional recovery of the left ventricle after PCI. However, because there are no available data on the clinical benefits of CMRI-guided intervention for assessing the significance of non-IRA, the fractional flow reserve (FFR) procedure is practical for determining the level of ischemia using a pressure wire. The Fractional Flow Reserve Versus Angiograph for Multivessel Evaluation (FAME) study was a randomized, prospective, multicenter trial that investigated the benefits of FFR-guided PCI. This technique was associated with lesser stent implantation, less injection of contrast, and a reduction in adverse cardiac events, death, or myocardial infarction. This remarkable result supports the active use of FFR for assessing ischemia during intermediate coronary stenosis. Moreover, FFR costs less compared to angiography-guided PCI.

Conclusions

Based on the current literature, the optimal revascularization strategy for STEMI patients with MVD remains controversial. Assessment of myocardial viability and a functional evaluation of myocardial perfusion are essential before non-IRA intervention. Current guidelines supporting CVR during primary PCI as a default strategy may impact initial management, and ad hoc PCI should be carefully performed only in hemodynamically unstable patients. Promising results for staged PCI in STEMI patients with MVD suggest that this strategy should be considered before other methods. However, patients with MVD have more co-morbidities and are generally elderly. Thus, individualization of treatments and a consideration of the advantages or disadvantages of the intervention remain important. Further large-scale, randomized, controlled trials are necessary to establish the optimal revascularization strategy for these high-risk patients.

Acknowledgments

This study was supported by a grant from the National Research Foundation of Korea funded by the Korean Government (MEST), Republic of Korea (2010-0020261), and a grant (2013-E63005-00) for Research of the Korea Centers for Disease Control and Prevention, and The Korean Health Technology R&D Project (HI13C1527).

References

1. Brener SJ, Milford-Beland S, Roe MT, et al. Culprit-only or multivessel revascularization in patients with acute coronary syndromes: an American College of Cardiology National Cardiovascular Database Registry report. Am Heart J 2008;155:140-6.
2. Claessen BE, Dangas GD, Weisz G, et al. Prognostic impact of a chronic total occlusion in a non-infarct-related artery in patients with ST-segment elevation myocardial infarction: 3-year results from the HORIZONS-AMI trial. Eur Heart J 2012;33:768-75.
3. Sorajja P, Gersh BJ, Cox DA, et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Eur Heart J 2007;28:1709-16.
4. Biondi-Zoccai G, Lotriente M, Shetian I. Management of multivessel coronary disease after ST-elevation myocardial infarction treated by primary coronary angioplasty. Am Heart J 2010;160(6 Suppl):S28-35.
5. Corpus RA, House JA, Marso SP, et al. Multivessel percutaneous coronary intervention in patients with multivessel disease and acute myocardial infarction. Am Heart J 2004;148:493-500.
6. Parodi G, Memisha G, Valenti R, et al. Five year outcome after primary coronary intervention for acute ST elevation myocardial infarction: results from a single centre experience. Heart 2005;91:1541-4.
7. Widimsky P, Holmes DR Jr. How to treat patients with ST-elevation acute myocardial infarction and multi-vessel disease? Eur Heart J 2011;32:396-403.
8. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011;124:e574-651.
9. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS), European Association for Percutaneous Cardiovascular Interventions (EAPCI), Wijns W, et al. Guidelines on myocardial revascularization. Eur Heart J 2010;31:2501-55.
10. Roe MT, Cuna FA, Joski PS, et al. Initial experience with multivessel percutaneous coronary intervention during mechanical reperfusion for acute myocardial infarction. Am J Cardiol 2001;88:170-3, A6.
11. Toma M, Buller CE, Westerhout CM, et al. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J 2010;31:1701-7.
12. Dziewierz A, Siudak Z, Rakowski T, Zasada W, Dubiel JS, Dudek D. Impact of multivessel coronary artery disease and noninfarct-related artery revascularization on outcome of patients with ST-elevation myocardial infarction transferred for primary percutaneous coronary intervention (from the EUROTRANSFER Registry). Am J Cardiol 2010;106:342-7.
13. Hannan EL, Samadashvili Z, Walford W, et al. Culprit vessel percutaneous coronary intervention versus multivessel and staged percutaneous coronary intervention for ST-segment elevation myocardial infarction patients with multivessel disease. JACC Cardiovasc Interv 2010;3:22-31.
14. Cavender MA, Milford-Beland S, Roe MT, Peterson ED, Weintraub WS, Rao SV. Prevalence, predictors, and in-hospital outcomes of non-infarct artery intervention during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction (from the National Cardiovascular Data Registry). Am J Cardiol 2009;104:507-13.
15. Vlach PJ, Mahmoud KD, Holmes DR Jr, et al. Culprit vessel only versus multivessel and staged percutaneous coronary intervention for mul-
multivessel disease in patients presenting with ST-segment elevation myocardial infarction: a pairwise and network meta-analysis. J Am Coll Cardiol 2011;58:692-703.
16. Qamarani D, Nahir M, Abboud M, Hazanov Y, Hasin Y. Culprit only versus sus complete coronary revascularization during primary PCI. Int J Cardiol 2008;123:288-92.
17. Righetti S, Biondi-Zoccai G, Silvestri P, et al. Management of multivessel coronary disease after ST elevation myocardial infarction treated by primary angioplasty. J Interv Cardiol 2008;21:1-7.
18. Varani E, Balduccelli M, Aquilina M, et al. Single or multivessel percutaneous coronary intervention in severe multivessel disease. Catheter Cardiovasc Interv 2008;72:927-33.
19. Politi L, Sgura F, Rossi R, et al. A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: major adverse cardiac events during long-term follow-up. Heart 2010;96:662-7.
20. Bangalore S, Park JS, Sohn JW, et al. Culprit-lesion only versus multivessel revascularization using drug-eluting stents in patients with ST-segment elevation myocardial infarction: A Korean Acute Myocardial Infarction Registry-Based Analysis. Korean Circ J 2011;41:718-25.
21. Wald DS, Morris JK, Wald NL, et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 2013;369:1115-23.
22. Jo HS, Park JS, Sohn JW, et al. Culprit-lesion only versus multivessel revascularization using drug-eluting stents in patients with ST-segment elevation myocardial infarction: A Korean Acute Myocardial Infarction Registry-Based Analysis. Korean Circ J 2011;41:718-25.
23. Lee HW, Hong TJ, Yang MJ, et al. Comparison of infarct-related artery vs multivessel revascularization in ST-segment elevation myocardial infarction with multivessel disease: analysis from Korea Acute Myocardial Infarction Registry. Cardiol J 2012;19:256-66.
24. Kornowski R, Mehran R, Dangas G, et al. Prognostic impact of staged versus “one-time” multivessel percutaneous intervention in acute myocardial infarction: analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. J Am Coll Cardiol 2011;58:704-11.
25. Jensen LO, Thayssen P, Forkas DK, et al. Culprit only or multivessel percutaneous coronary interventions in patients with ST-segment elevation myocardial infarction and multivessel disease. EuroIntervention 2012;8:456-64.
26. Kelly DJ, McCann GP, Blackman D, et al. Complete Versus culprit-Lesion only Primary PCI Trial (CVLPRIT): a multicentre trial testing management strategies when multivessel disease is detected at the time of primary PCI: rationale and design. EuroIntervention 2013;8:1190-8.
27. Bengtson JR, Kaplan AJ, Pieper KS, et al. Prognosis in cardiogenic shock after acute myocardial infarction in the interventional era. J Am Coll Cardiol 1992;20:1482-9.
28. Fokkema ML, Viar P, Sivilaas T, et al. Incidence and clinical consequences of distal embolization on the coronary angiogram after percutaneous coronary intervention for ST-elevation myocardial infarction. Eur Heart J 2009;30:908-15.
29. Hochman JS, Lamas GA, Buller CE, et al. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med 2006;355:2395-407.
30. Bauer T, Zeymer U, Hochadel M, et al. Use and outcomes of multivessel percutaneous coronary intervention in patients with acute myocardial infarction complicated by cardiogenic shock (from the EHS-PCI Registry). Am J Cardiol 2012;109:941-6.
31. Yang JH, Hahn JF, Song PS, et al. Percutaneous coronary intervention for nonculprit vessels in cardiogenic shock complicating ST-segment elevation acute myocardial infarction. Crit Care Med 2014;42:17-25.
32. Mylotte D, Morice MC, Eltchaninoff H, et al. Primary percutaneous coronary intervention in patients with acute myocardial infarction, resuscitated cardiac arrest, and cardiogenic shock: the role of primary multivessel revascularization. JACC Cardiovasc Interv 2013;6:115-25.
33. Taggart DP, Boyle R, de Belder MA, Fox KA. The 2010 ESC/EACTS guidelines on myocardial revascularisation. Heart 2011;97:445-6.
34. Bagai A, Thavendiranathan P, Sharief W, Al Lawati HA, Cheema AN. Non-infarct-related artery revascularization during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a systematic review and meta-analysis. Am Heart J 2013;166:684-93.e1.
35. Abe D, Sato A, Hoshi T, et al. Initial culprit-only versus initial multivessel percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction: results from the Ibaraki Cardiovascular Assessment Study registry. Heart Vessels 2013. [Epub ahead of print]
36. Aggarwal V, Rajpathak S, Singh M, Romick B, Srinivas VS. Clinical outcomes based on completeness of revascularisation in patients undergoing percutaneous coronary intervention: a meta-analysis of multivessel coronary artery disease studies. EuroIntervention 2012;7:1095-102.
37. Chung JW, Park KH, Lee MH, et al. Benefit of complete revascularization in patients with multivessel coronary disease in the drug-eluting stent era. Circ J 2012;76:1624-30.
38. Vieira RD, Hueb W, Gersh BJ, et al. Effect of complete revascularization on 10-year survival of patients with stable multivessel coronary artery disease: MASS II trial. Circulation 2012;126(11 Suppl 1):S158-63.
39. Dangas GD, George JC, Weintraub W, Popma JJ. Timing of staged percutaneous coronary intervention in multivessel coronary artery disease. JACC Cardiovasc Interv 2010;3:1096-9.
40. Sianos G, Morel MA, Kappetein AP, et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 2005;1:219-27.
41. Serruya PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009;360:961-72.
42. Perrone-Filardi P, Pace L, Prastaro M, et al. Dobutamine echocardiography predicts improvement of hypoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation 1995;91:2556-65.
43. Gibbons RJ, Aroz PA. The year in cardiac imaging. J Am Coll Cardiol 2004;44:1937-44.
44. Petersen SE, Horstick G, Voigtländer T, et al. Diagnostic value of routine clinical parameters in acute myocardial infarction: a comparison to delayed contrast enhanced magnetic resonance imaging. Delayed enhancement and routine clinical parameters after myocardial infarction. Int J Cardiovasc Imaging 2003;19:409-16.
45. Esposito G, Dellegrottaglie S, Chiariello M. The extent of irreversible myocardial damage and the potential for left ventricular repair after primary percutaneous coronary intervention. *Am Heart J* 2010;160(6 Suppl):S4-10.

46. Kirschbaum SW, Springeling T, Boersma E, et al. Complete percutaneous revascularization for multivessel disease in patients with impaired left ventricular function: pre- and post-procedural evaluation by cardiac magnetic resonance imaging. *JACC Cardiovasc Interv* 2010;3:392-400.

47. Ntalianis A, Trana C, Muller O, et al. Effective radiation dose, time, and contrast medium to measure fractional flow reserve. *JACC Cardiovasc Interv* 2010;3:821-7.

48. Ntalianis A, Sels JW, Davidavicius G, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. *JACC Cardiovasc Interv* 2010;3:1274-81.

49. Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. *J Am Coll Cardiol* 2010;56:177-84.

50. Fearon WF, Bornschein B, Tonino PA, et al. Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. *Circulation* 2010;122:2545-50.