The current state of birth outcome and birth defect surveillance in northern regions of the world

Laura Arbour, Vladimir Melnikov, Sarah McIntosh, Britta Olsen, Geraldine Osborne & Arild Vaktskjold

2009

© 2009 Laura Arbour, Vladimir Melnikov, Sarah McIntosh, Britta Olsen, Geraldine Osborne & Arild Vaktskjold. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. http://creativecommons.org/licenses/by/4.0/

This article was originally published at:
https://doi.org/10.3402/ijch.v68i5.17376

Citation for this paper:
Arbour, L., Melnikov, V., McIntosh, S., Olsen, B., Osborne, G. & Vaktskjold, A. (2009). The current state of birth outcome and birth defect surveillance in northern regions of the world. International Journal of Circumpolar Health, 68(5), 443-458. https://doi.org/10.3402/ijch.v68i5.17376
The current state of birth outcome and birth defect surveillance in northern regions of the world

Laura Arbour, Vladimir Melnikov, Sarah McIntosh, Britta Olsen, Geraldine Osborne & Arild Vaktskjold

To cite this article: Laura Arbour, Vladimir Melnikov, Sarah McIntosh, Britta Olsen, Geraldine Osborne & Arild Vaktskjold (2009) The current state of birth outcome and birth defect surveillance in northern regions of the world, International Journal of Circumpolar Health, 68:5, 443-458, DOI: 10.3402/ijch.v68i5.17376

To link to this article: https://doi.org/10.3402/ijch.v68i5.17376
ORIGINAL ARTICLE

THE CURRENT STATE OF BIRTH OUTCOME AND BIRTH DEFECT SURVEILLANCE IN NORTHERN REGIONS OF THE WORLD

Laura Arbour 1, 2*, Vladimir Melnikov 3*, Sarah McIntosh 1, Britta Olsen 4*, Geraldine Osborne 5*, Arild Vaktshjold 6*

1 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
2 Division of Medical Sciences, University of Victoria, British Columbia, Canada.
3 Institute of Physiology, SB RAMS, Novosibirsk, Russia
4 Department of Health and Social Services, Nuuk, Greenland
5 Department of Health and Social Services, Iqaluit, Nunavut, Canada
6 The Nordic School of Public Health, Sweden (a subsidiary of the Nordic Council of Ministers, Denmark)
*Designates members of the 2006–2009 International Union of Circumpolar Health Birth Defects Working Group

Received 15 April 2009; Accepted 13 August 2009

ABSTRACT

Objectives. Little is known about the rates of congenital anomalies in the northernmost regions of the world. As in other parts of the world, it is crucial to assess the relative rates and trends of adverse birth outcomes and birth defects, as indicators of population health and to develop public health strategies for prevention. The aim of this review is to catalogue existing and developing birth outcome and birth defect surveillance within and around the geographic jurisdiction of the International Union of Circumpolar Health (IUCH).

Study design. Descriptive study.

Methods. The representatives of the IUCH Birth Defects Working Group catalogued existing and developing birth and birth defect surveillance systems and the extent of information they contain to determine inter-regional comparability.

Results. Systematic population-based registration of birth outcomes including birth defects occurs to some degree in all circumpolar countries, but the quality of collection and the coverage in northernmost regions vary. There are limited circumpolar jurisdictions with surveillance systems collecting birth defect information beyond the perinatal period. Efforts are underway in Canada and Russia to improve the quality and comprehensiveness of the information collected in the northern regions.

Conclusions. Although there is variability in the comprehensiveness of information collected in northern jurisdictions limiting sophisticated comparative analyses between regions, there is untapped potential for baseline analyses of specific risks and outcomes that could
provide insight into geographic differences and gaps in surveillance that could be improved. (Int J Circumpolar Health 2009; 68(5): 443-458)

Keywords: Arctic, circumpolar, birth defects, medical birth registries, congenital anomalies surveillance

INTRODUCTION

Little is known about the rates of congenital anomalies in the northernmost regions of the world. Worldwide such anomalies constitute a substantial proportion of infant and child morbidity and mortality placing an excessive burden on the health care systems (1) and on the families with an affected child (2). As in other regions of the world, it is crucial to assess the relative rates and trends of all anomalies, especially those amenable to prevention. Many of the existing congenital anomaly and birth registers were spurred by the thalidomide crisis in Europe in the 1960s (3). The importance of monitoring birth defect rates has recently been revitalized due to the preventive success of folic acid fortification and supplementation (4), reducing rates of spina bifida and other birth defects significantly (5–7). The importance of monitoring birth defect rates in northern populations cannot be overestimated because of combined conditions that may predispose them to increased risk and measures that may be taken to prevent them.

The circumpolar Arctic region is vast and the communities are often small and remotely located (e.g., Canada’s 3 Arctic territories cover a region of more than 4 million square kilometres for a population of just over 100,000). Remoteness, harsh climate, a diet often low in nutrients from plant foods (8), high rates of diabetes (9) and obesity (8,10), a high prevalence of cigarette smoking and alcohol abuse and exposure to persistent organic pollutants and heavy metals (11) are conditions that concern many northern peoples, and also increase the risk and burden of birth defects and other adverse birth outcomes.

Indigenous peoples inhabit the circumpolar regions in varying frequencies, from less than 1% in Iceland to higher than 85% in Greenland and the Nunavut Territory of Canada. The importance of understanding the population demographic lies in health outcomes where in Indigenous populations the life span is often lower, chronic disease rates are higher (12,13), and maternal child health indicators of well-being such as low birth weight, preterm birth and infant mortality are a concern (14).

The Birth Defects Working Group (BDWG) of the International Union of Circumpolar Health (IUCH) has representatives from all 5 adhering bodies of the Union: the American Society for Circumpolar Health; the Canadian Society for Circumpolar Health (CSCH); the Danish-Greenlandic Society for Circumpolar health; the Nordic Society for Arctic Medicine; and the Siberian Branch of the Russian Academy of Medical Sciences (15). The group’s aims are to (1) establish a methodology of comparing birth defects rates in the circumpolar regions of the world, (2) focus
efforts on birth defects that might be amenable to public health preventative efforts, and (3) review and encourage culturally specific public health efforts in circumpolar regions that will prevent birth defects. The aim of this review is to catalogue existing and developing birth and malformation registries, within the geographic jurisdiction of the IUCH, determine what information is collected, how it is collected and consider whether inter-region evaluations might be possible.

MATERIAL AND METHODS

The representatives of BDWG reviewed existing and developing birth and congenital anomaly surveillance systems in the jurisdiction of the IUCH and surrounding areas. Specifically, for the United States, registries in Alaska alone are included. In Canada, the jurisdiction of the CSCH includes all Arctic and subarctic areas and all Indigenous peoples of Canada (16); for Finland, Sweden, Norway, Greenland, Iceland, the Faroe Islands, and Denmark all known registries are included. For Russia, the jurisdiction of the IUCH currently only includes Siberia, but for the purpose of this review, the Northwest region of Russia, the most populated area of the circumpolar north is also included. For each region covered, the national and regional databases have been included, with special focus on northern regions.

The information was derived from publicly available sources including published literature, public health documents, validated Internet sites and from researchers or health care providers with insight into the specific regions. The information collected included the purpose of the surveillance system (birth or malformation); the gestation from which information is collected; the inclusion of spontaneous and elective abortions; the age of the child until which birth defects are included; the sources of birth defect ascertainment (for example, discharge summary coding or birth attendant reporting); the coding system used (International Classification of Diseases [ICD] or other); and whether Indigenous identifiers were included. The type of surveillance system (institution or population based) was also noted. Research databases were excluded from this review.

RESULTS

Alaska

The Alaska Birth Defects Registry was established in 1996 to monitor the prevalence and trends of birth defect and other congenital anomalies. Health care providers, hospitals and other facilities are required to report when they have cared for a child (until age 6) with a birth defect or a specified anomaly, including fetal alcohol syndrome (see Table I). The reportable list uses ICD version 9. Cases reported are matched to Vital Statistics Alaska Birth Certificates (17), which contains a limited amount of pregnancy information, including maternal age, onset of prenatal care, alcohol and tobacco exposures, birth weight and ethnicity. Furthermore, terminations of pregnancy must also be reported, including those that are terminated for congenital anomalies (18). Regular reports are published, including a comprehensive birth defects summary of births from 1996 to 2002. which was published in 2006 (19).
Table I. International comparison of circumpolar birth/congenital anomalies registries and databases.

Surveillance system	Population-based	Pregnancy information	Indigenous identifier	Birth defects coding	Spontaneous or therapeutic abortions	Birth defects on stillbirths	Data sources	
CANADA								
Yukon	Prenatal/	No	Yes >20 weeks gestation, cigarette smoking, alcohol use, medical conditions of the mother	ICD 9/10 from discharge summaries until one month. To increase surveillance to 1 year by 2010	No	Yes (>20 weeks or >500 grams)	Prenatal records, delivery records, hospital discharge summaries	
National	Canadian	Yes^b	Yes, perinatal Information and prenatal documents of cigarette smoking and alcohol.	Select birth defects derived from CCASS	No	Yes (>20 weeks or >500 grams)	Hospital discharge summaries (coded)	
National	Canadian Congenital Anomalies Surveillance System	Yes^b	No	No	ICD9/10	No	Yes (>20 weeks or >500 grams)	Hospital discharge summaries (coded)

^aHospital based but captures 90% of pregnancies and births in the Yukon Territory.

^bIncludes information on all hospitalizations in the country. Information is available on a provincial and territorial basis.

Surveillance system	Population-based	Pregnancy information	Indigenous identifier	Birth defects coding	Spontaneous or therapeutic abortions	Birth defects on stillbirths	Data sources	
USA								
Alaska	Alaska Birth Defects Registry (ABDR) (54)	Yes	No	Yes, Alaska Native	List of 43 reportable ICD9 conditions (codes 740–759), from birth to age 6	No	No	Birth Defects Registry Report form completed by health care providers, vital stats, hospital documents
Alaska	Alaska Vital Statistics (55)	Yes	Yes by race, marital status, age, maternal education, adequacy of prenatal care, place of birth, type of birth, birth weight	Yes	ICD 9/10 for fetal and infant deaths	No: SA	Yes	Birth records, report of foetal death, report of death

Table I continued
Birth outcome and birth defect surveillance in the north

Surveillance system	Population-based	Pregnancy information	Indigenous identifier	Birth defects coding	Spontaneous or therapeutic abortions	Birth defects on stillbirths	Data sources
DENMARK							
Odense University of Southern Denmark	Yes	Maternal age, gestation, birth weight, maternal smoking and medication during first trimester, maternal illness before and during pregnancy	No	ICD-10 to 5 years of age	Stillbirths from 22 weeks, and foetal deaths/spontaneous abortions from 20 weeks are registered. After 12 weeks, malformations are recorded for termination of pregnancy	Discharge diagnosis and hospital records from obstetric and pediatric departments, birth notifications, death certificates, post-mortem examinations and data from the cytogenetic laboratory. For live births, late diagnosed cases are included up to the age of 5 years	
National							
Medical Birth Register (56)	Yes	Yes, all pregnancies included. Smoking, birth order, birth variables	No	ICD-10 Presence/absence of congenital anomalies with no other specifics, neonatal period only	Yes, SA Yes, TA, at any gestational age	Form completed by midwives, hospital discharge records	
National							
Danish Hospital Discharge Register	Yes	No	No	ICD-10 (Q codes only), at any age	Yes	NA	All hospital discharges in Denmark
Greenland							
Greenlandic Medical Birth Register	Yes	Yes, also a twin register	No	Collected in paper form only (not coded)	No	No	Form completed by midwives
Faroe Islands							
Faroe Islands Medical Birth Register	Yes	No	ICD-10 until hospital discharge	No	No	Form completed by midwives	

Table I continued
Surveillance system	Population-based	Pregnancy information	Indigenous identifier	Birth defects coding	Spontaneous or therapeutic abortions	Birth defects on stillbirths	Data sources
FINLAND							
National Birth Register (57)	Yes	Yes, all pregnancies	No	ICD system, neonatal period only	Yes	Yes	Doctor's notice of birth, discharge summaries, death certificate
National Register of Congenital Malformations (includes a Prenatal Registry) (58)	Yes	Yes, some info about exposures, complications & maternal health	No	ICD system to 1 year of age	Yes, TA. Prenatal Registry section collects info on selective TAs	Yes	Doctor's report, cytogenetics laboratories, MBR, other registers, death certificates
ICELAND							
National Register of Births (within National Register of Persons) (59)	Yes	Yes, all pregnancies (>22 weeks)	N/A	ICD codes for birth defects noted at birth. Birth defects after that are collected at central hospital	No, TAs with birth defects registered in the abortion register (>12 weeks)	Yes	Maternity providers fill out a birth report
NORWAY							
National Medical Birth Register (60)	Yes, (>16 weeks).	Yes, all pregnancies (>16 weeks).	No	ICD Neonatal period but may be registered up until one year	Yes, SA (>12 weeks)	Yes	Form completed by physician or midwife. Data added to MBRN notification form at birth
National Register of Congenital Malformations (62)	No, but links to Medical Birth Register	No	ICD-10 for neonatal period only	No	Yes	Care record, delivery record, pediatric exam	

Table I continued
Birth outcome and birth defect surveillance in the north

Surveillance system	Population-based	Pregnancy information	Indigenous identifier	Birth defects coding	Spontaneous or therapeutic abortions	Birth defects on stillbirths	Data sources
RUSSIA							
Kola Birth Register 1973-2005	Yes	Yes, including maternal health & exposures	Yes	ICD-10 until hospital discharge	Yes	Yes (≥28 weeks)	Birth and prenatal records
Murmanskaja Oblast Birth Registry	Yes	Yes	Yes	ICD-10 until hospital discharge	Yes	Yes (≥22 weeks)	Birth records
Arkhangelskaja Oblast Malformation Register	No	No	No	ICD-10 until hospital discharge	Yes	Yes (≥28 weeks)	Birth records
Komi Malformation Register	Yes	No	No	ICD-10 until hospital discharge	No	Yes (≥28 weeks)	Birth records
Sakha (Jakutia) Malformation Register	Yes	No	No	ICD-10 until hospital discharge	No	Yes (≥28 weeks)	Discharge summaries, report of chief medical officer
Krasnojarskij Kraj Malformation Register	No	No	No	ICD-10 until hospital discharge	No	No	Discharge summaries, report of chief medical officer

\(^{a}\)Monsjegorsk rajon in Murmanskaja Oblast

\(^{b}\)Includes Nenetskij Avtonomnui Okrug
Birth outcome and birth defect surveillance in the north

Canada
In Canada, the inhabitants of the 3 territories considered arctic and subarctic (Fig. 1) constitute less than 1% of the entire Canadian population, but the eligible population proportion reaches 4% when including Aboriginal people of all areas of Canada (about 1.4 million in total), which is the jurisdiction of the Canadian Society for Circumpolar Health. For the entire country, some perinatal information and specific birth defects are collected as part of a national public health initiative, the Canadian Perinatal Surveillance System (CPSS), which includes information coded at discharge from hospital (20). Furthermore, for the years 1973–2002, in a broad effort to understand rates

Figure 1. Medical Birth Registries or equivalents and Congenital Anomalies Surveillance systems in northern regions of the world. Map modified from Map 1 in Young TK and Bjerregaard P., eds., Health Transitions in Arctic Populations (Toronto, Ontario: University of Toronto Press; 2008), 171.
and regional variations in birth defects, the Canadian Congenital Anomalies Surveillance System (CCASS) (21) collected birth defect information until age 1 year from hospital discharge summaries on more than 300,000 births per year. Since 2002, birth defect information has been collected only until hospital discharge after birth or until 30 days of age if there is a readmission. In addition, the CCASS does not link or include other pregnancy information, termination of pregnancy information or birth defects on stillbirths and does not have ethnic identifiers, including those designating Aboriginal identity. More recently the CCASS provided data for specific birth defects for a CPSS published document in 2002 (22) that reviewed rates at birth of specific birth defects in Canada. For this publication, northern region data and Indigenous-specific data were not analyzed separately, and perinatal risk factors were not linked to outcomes.

Each Canadian province or territory has the ability to develop more comprehensive perinatal and birth defect surveillance systems if they so choose. British Columbia (BC) has had a comprehensive perinatal registry for 20 years (23) and the Yukon territory, one of the three northern territories, has been collecting perinatal information that includes early recognized birth defects under the same system for 10 years. Comprehensive birth defect surveillance systems are currently in existence in only 2 provinces, British Columbia (24) and Alberta (25), but the jurisdiction of these regions do not extend to the northern territories. Moreover, only in British Columbia has there been the ability to cross-reference Aboriginal identifiers historically to document Aboriginal-specific outcomes (26).

Currently, in British Columbia, data sharing agreements are under discussion with federal, provincial and Aboriginal governing bodies to determine when and how Aboriginal identifying data can be linked to registry data and utilized for future public health studies (27). The expansion of the Yukon perinatal database to include the collection of birth defects until 1 year of age is currently underway. Similar efforts are underway in Nunavut and the Northwest Territories. By 2010 all 3 northern jurisdictions should have established registries in place for the collection of perinatal and birth defect information until at least age one year. Although Indigenous identifiers are available for public health surveillance in NWT, discussions are underway in the Yukon to determine the use of Indigenous-specific information under data sharing agreements.

Greenland, Denmark and the Faroe Islands

Denmark and Greenland both have medical birth registries, established in 1968 and 1972, respectively; however, the registries do not contain information on stillbirths. Some prenatal and perinatal information such as smoking status, birth order, gestational age and birth weight are available in both registries. Congenital anomalies are collected for the length of the birth hospital stay, which may vary from less than 1 day to 5 days. The completeness of the collection of birth defects is suboptimal in Greenland and is not available electronically. However, at least 1 study has been completed using registry malformation information from 1982 to 2002 (28). In Denmark, birth defects are also collected as part of the Danish Hospital
Discharge Registry, which has accumulated data since 1977. The coding is carried out by physicians when the discharge summary is completed. A 10 digit personal identification number allows unambiguous linkage between registries (29,30). Furthermore, 1 regional congenital anomalies register held at the University of Southern Denmark is a full member of EUROCAT. EUROCAT is a European network of population based congenital anomaly registers covering 1.2 million births per year, at 40 European sites (31,32). All live births, stillbirths, terminations of pregnancy from 12 weeks gestation for a region in southern Denmark are reported to this registry (about 5,600/year) (33). The Faroe Islands follows the Danish system, with a population-based medical birth register that is reported through the chief physician; however, there is no reporting of this information to the Danish Registry and there is no specific birth defects registry.

Iceland, Norway, Sweden and Finland
Some of the best known and well-respected studies on birth outcomes have come out of the Nordic birth registries, which have been used as models for other countries around the world (34,35). Iceland, Norway, Sweden and Finland all have population-based comprehensive medical birth registers that include information on all newborns in their country. In all 4 countries, birth defects are collected on all infants until at least hospital discharge from birth. In Sweden and Finland, parallel congenital anomaly registries collect birth defect information using the ICD coding system up until the age of 6 months and 1 year, respectively. The medical birth registries can be linked to the congenital anomaly and other available disease registries and research data bases (36) to allow linked epidemiological studies on a number of topics, including pregnancy exposures, paternal occupation, environmental exposures and association with maternal chronic disease (37–39). Available information on spontaneous pregnancy losses vary, but all 3 national surveillance systems include medically induced abortions, therefore birth defect rates can be more accurately assessed. Indigenous identifiers are not included.

Longitudinal linkage with subsequent pregnancies provides an opportunity to explore recurrence risks for specific birth outcomes, such as prematurity, birth defects and stillbirths as demonstrated by studies carried out using the Medical Birth Registry of Norway (40). More recently these registries have been used to explore the prenatal and early infancy determinants of adult onset chronic disease (41,42). The Finnish Register of Congenital Anomalies, the Medical Birth Registry of Norway, the Swedish Registry of Congenital Malformations and the Swedish Medical Birth Registry are members of the International Clearinghouse for Birth Defects (ICBD), allowing the opportunity to participate in international studies as per its mandate. The ICBD is an organization “that brings together birth defect surveillance and research programmes from around the world with the aim of investigating and preventing birth defects and lessening the impact of their consequences” (43). The Medical Birth Registry of Norway is a full member of EUROCAT and the Finnish Register of Congenital Malformations is an associate member.
Russian Federation

In the north-western part of Russia there are 2 population-based birth registries. One is an extensive data collection of all births in Mončegorsk, in existence since 1973, and the other, which was established in 2005, covers all births in Murmanskaja Oblast (including Mončegorsk). These registries include data about birth defects diagnosed before the mother is discharged from the hospital (44,45).

In the late 1990s, with a goal to address a falling birth rate, the Russian Federal Health Ministry put legislation in place that required the reporting of birth outcomes such as perinatal and infant mortality and birth defects. Elective abortions for severe malformations were also reportable. Regions were required to report to the federal population-based genetic register, which was focused on inherited diseases and anomalies (46). In 2006, 34 regions of Russia participated in the program. The data for that year included more than 700,000 newborns (almost 30% of all newborns in Russia) (47).

Of the 34 participating regions with systematic registrations of birth defects, 4 are in the north. In the north-west, there are such registers at the central children hospitals in Arkhangelsk and Syktyvkar, which includes all recorded birth defects in Arkhangelskaja Oblast and Nenets Okrug (48) and the Komi Republic, respectively (47). The registration of birth information in Karelia is based in each delivery hospital. Similarly, Krasnojarskij Kraj in Siberia and Sakha Republic (Jakutia) (49) in the north-east have a central register of birth defects. In the remaining regions of Siberia and the north-east, the situation is the same as it is in Karelia. However, each administrative unit reports each newborn with malformations to the head medical officer at the central administration, who compiles statistics for the unit to be reported within their region and federally.

DISCUSSION

Although we believe that we have included all circumpolar population-based birth outcome and birth defects surveillance systems, it is possible that some surveillance systems covering small populations or based in individual institutions may have eluded our search or may be in development without our knowledge. For the purpose of the discussion of the information available, we will categorize our comments into 1) the comprehensiveness of coverage of surveillance systems in northern regions; 2) the presence of Arctic populations or Indigenous identifiers; 3) the ability to link prenatal determinants of outcomes; 4) the consistency of case ascertainment; 5) the adherence to international standards; and 6) the current and future ability to carry out comparative studies.

1) Comprehensiveness of coverage of surveillance systems in northern regions

With the information available, we found that the systematic population-based registration of birth outcomes that includes birth defects occurs to some degree in all circumpolar countries (see Fig. 1). Of particular concern for our review, the northernmost regions of the countries may not be well represented in surveillance systems, and specific information about those regions may not be readily available if they are collected as part of
larger programs. For example, in Russia, most of the northern regions do not have a system in place, and although there is a population-based reporting system for birth defects at birth in Greenland, these anomalies are not entered into an electronic database.

2) **Presence of Arctic population or Indigenous identifiers**

Only the surveillance systems in Alaska and Murmanska Oblast currently release Indigenous ethnicity-specific information. In northern Canada, Siberia and north-east Russia, where the majority of the Arctic Indigenous populations reside, this information currently does not exist in the birth outcome/birth defect surveillance systems or cannot be utilized. In Canada, however, efforts are underway to develop data sharing agreements with Aboriginal groups to allow the information to potentially be utilized. Indigenous identifiers are not present in the surveillance systems of the Nordic countries.

3) **Prenatal determinants of adverse outcomes**

To consider the causes and ultimately preventative strategies for adverse pregnancy outcomes (i.e., low birth weight, stillbirth and birth defects), information linking each adverse outcome to the pregnancy information, including exposures, is needed. Presently, the registration in Denmark, Iceland, Norway, Sweden, Finland and Murmanska Oblast and Alaska facilitates such studies, but this is lacking in the other regions. Furthermore, paternal information, such as age, exposure status and occupation is rarely available, but is becoming increasingly recognized as valuable information (50).

4) **Consistency of case ascertainment**

Our survey reveals differences in ascertainment of cases between surveillance systems that will potentially limit broad comparability of data. For example, gestational age from which collection of information commences on birth outcomes, pregnancy terminations for abnormality and birth defects on live and stillborn infants varies from 12 to 28 weeks (Table I). Furthermore, although most surveillance systems record birth defects at birth, with the exception of the Nordic countries, only Alaska currently records birth defects beyond the perinatal period, limiting circumpolar analysis of rates of anomalies that are not obvious at birth and not immediately life threatening, including many affecting internal organs.

The inclusion of termination of pregnancies (medical abortions) for foetal abnormality varies between the surveillance systems in our survey. For example, Norway collects information on birth defects associated with terminations of pregnancy from 12 weeks gestation, whereas some jurisdictions do not collect that information at all. Without full ascertainment of abnormalities detected prenatally with subsequent termination of pregnancy, actual rates of birth defects will be obscured underestimating the impact and potentially missing opportunities for prevention. Although the prevalence of anomalies at birth can readily be assessed in Alaska, Canada, Iceland, Finland, Norway, Sweden, Denmark, Finland and Murmanska Oblast, only in Norway, Sweden, Finland, Denmark and Murmanska and Arkhangelska Oblasts and in some places in southern Canada are pregnancy terminations for abnormality also included in the birth defect surveillance systems impairing precise comparisons of birth defect prevalence between countries and within Canada and Russia.
5) **Adherence to international standards**

For comparison of rates of birth defects between different systems and jurisdictions, adherence to standardized procedures and definitions in terms of diagnostics, diagnoses and registration, such as those required for the ICBD and EUROCAT, are crucial. Currently, the birth defect surveillance systems in Canada, Denmark, Norway, Sweden and Finland are members of the ICBD (43) and/or EUROCAT (31,32). Iceland, Greenland, the Faroe Islands and Russia are not affiliated with international efforts to standardize reporting of birth defects. All birth defects surveillance systems in the circumpolar Arctic should strive to achieve a common high standard for the reporting and collection of birth defects.

6) **Current and future ability to carry out comparative studies**

Although there are important differences between the surveillance systems, we have found there is still the potential to compare rates of specific perinatal outcomes in the current state of birth outcome and birth defect surveillance (sex ratios, rates of low birth weight, prematurity, high birth weight) and to compare some malformations in the circumpolar regions of the world. Major malformations readily detected at birth such as neural tube defects, limb abnormalities, facial clefts and microcephaly are all anomalies that could provide a baseline for comparison. Such a pilot study will also provide insights into the jurisdictional challenges of obtaining data for international comparisons.

Furthermore, there is recent positive development in both Russia and Canada where there is governmental support and jurisdictional will to improve comprehensive surveillance in the North. An important example is the recent development of the register in Murmanskaja Oblast (45), established in 2005 and which has clearly demonstrated that it is possible and feasible to set up a regional population-based birth registry in Russia when there is an administrative will in a region. There are territory specific initiatives in the three northern territories of Canada where pregnancy risk and outcome data will be collected along with a validated birth defect reporting system for each birth until at least 1 year of age. In Nunavut, a territory with a high rate of infant mortality (51) and adverse pregnancy outcomes (52,53), the collection will continue until age 5 and will include other early health indicators. Other countries, such as Greenland, may follow suit in the near future.

Conclusions

Our baseline survey of circumpolar birth outcome and birth defect surveillance systems yielded a number of regional and population surveillance systems that cover most but not all regions of the jurisdiction of the IUCH. Considerable variability in the extent of information collected will limit sophisticated comparative analyses between regions. Indigenous specific information is only rarely available. However, there is current untapped potential for comparative analyses of specific risk factors and types of birth defects that might provide insight into differences in rates in circumpolar countries, but more importantly, it will provide information on the specific gaps in birth outcome and birth defect surveillance in the northernmost regions of the world. Since adverse pregnancy outcomes, infant mortality and birth defects are all indicators of the health of a population, efforts to improve surveillance and establish robust methodologies for comparative anal-
yses are important steps in understanding and addressing health disparities that are common to many Northern regions.

Acknowledgements
This is an International Union of Circumpolar Health Working Group Report to the International Polar Year, Arctic Human Health Initiative.

This work was partially supported by the Canadian Institutes of Health Research (CIHR, grant number CTP-79853), as part of the Team Grant on Circumpolar Health, and the Nordisk ministerråd (grant number 80111). L. Arbour is supported by the Michael Smith Foundation for Health Research. We are grateful for the assistance of Dr. Sten Rasmussen, who provided information on the Danish Medical Register. We thank Beatrice Whittome Waygood for her assistance in the final formatting of this document.

Conflict of Interest Statement: The authors acknowledge that no conflict of interest, which may result from financial, personal, academic or intellectual issues, is associated with creation, review or publication of this work.

REFERENCES

1. Waitzman N, Scheffler R, Romano P. The cost of birth defects. Maryland: The University Press of America; 1996. 262 pp.
2. Carmona R. The global challenges of birth defects and disabilities. Lancet 2005;366:1142-1144.
3. McBride W. Thalidomide and congenital abnormalities. Lancet 1961;i:1358.
4. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the medical research council vitamin study. Lancet 1991;338(8760):131-137.
5. Botto LD, Olney RS, Erickson JD. Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am J Med Genet C Semin Med Genet 2004;15:125C(1):12-21.
6. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, et al. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 2007;357(2):135-142.
7. Canfield MA, Collins JS, Botto LD, Williams LJ, Mai CT, Kirby RS, et al. Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth Defects Res A Clin Mol Teratol 2005;73(10):679-689.
8. Kuhnlein HV, Receveur O, Soueida R, Egeland GM. Arctic indigenous peoples experience the nutrition transition with changing dietary patterns and obesity. J Nutr 2004;134(6):1447-1453.
9. Young TK, Reading J, Elias B, O’Neil JD. Type 2 diabetes mellitus in Canada’s first nations: status of an epidemic in progress. CMAJ 2000;163(5):561-566.
10. Jørgensen M, Young TK. Chapter 16 Cardiovascular Diseases, Diabetes, and Obesity. In: Young TK, Bjerregaard P, editors. Health Transitions in Arctic Populations. Toronto: University of Toronto Press; 2008. 291-307.
11. AMAP Human Health Group. AMAP assessment 2002: Human health in the Arctic. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP) 2003. 137 pp.
12. Waldram JB, Herring A, Young TK. Aboriginal Health in Canada: Historical, Cultural, and Epidemiological Perspectives. Toronto, ON: University of Toronto Press; 2006. 367 pp.
13. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006;367(9524):1747-1757.
14. Odland JO, Arbour L. Chapter 20 Maternal Child Health. In: Young TK, Bjerregaard P, editors. Health Transitions in Arctic Populations. Toronto: University of Toronto Press; 2008. 379-402.
15. International Union for Circumpolar Health (IUCH). The International Union for Circumpolar Health: Welcome Web Page. Winnipeg, Manitoba: International Network for Circumpolar Health Research; 2006 [cited 2008 Oct 7]. Available from: http://www.iuch.org/index.html
16. Canadian Society for Circumpolar Health. The By-Laws for the Canadian Society for Circumpolar Health. Ottawa, Ontario: National Aboriginal Health Organization; 1990 [cited 2008 Sept 14]. Available from: http://www.csch.ca/english/grfx/PDFs/1990%20Bylaws.pdf
17. Alaska Vital Statistics Agency, Data and Statistics. Anchorage, AK: Bureau of Vital Statistics, Department of Health and Social Services, State of Alaska; [cited 2009 Nov 23]. Available from: http://www.hss.state.ak.us/dph/bvs/PDFs/itop/ITOP_form.pdf
18. Department of Health and Social Services. Report of Induced Termination of Pregnancy. Anchorage, AK: Bureau of Vital Statistics, Department of Health and Social Services, State of Alaska; [cited 2009 Nov 23]. Available from: http://www.hss.state.ak.us/dph/bvs/PDFs/itop/ITOP_form.pdf

International Journal of Circumpolar Health 68:5 2009
Birth outcome and birth defect surveillance in the north

19. Schoelhorn KJ, Beery AL. Alaska Maternal and Child Health Data Book 2005. Surveillance edition ed. Anchorage, AK: Maternal and Child Health epidemiology Unit, Section of Women's, Children's, and Family Health, Division of Public Health, Alaska Department of Health and Social Services; 2006. 196 pp.

20. Public Health Agency of Canada. Maternal and infant Health: Canadian Perinatal Surveillance System. Ottawa, Ontario: Crown Copyright & Licensing, Government of Canada; [cited 2009 Nov 23]. Available from: http://www.public-health Agency.gc.ca/rhs-sgg/index-eng.php

21. Rouleau J, Arbuckle TE, Johnson KC, Sherman GJ. Description and limitations of the Canadian Congenital Anomalies Surveillance System (CCASS). Chronic Dis Can 1995;1(1):37-42.

22. Public Health Agency of Canada. Congenital anomalies in Canada: a perinatal health report, 2002. Ottawa, Ontario: Crown Copyright & Licensing, Government of Canada; [cited 2009 Nov 23]. Available from: http://www.phac-aspc.gc.ca/publicat/cac-acc02/pdf/ cac2002_e.pdf

23. BC Perinatal Health Program. Optimizing Neonatal, Maternal and Fetal Health. Vancouver, BC: Ministry of Health, Province of British Columbia; [cited 2009 Nov 23]. Available from: http://www.bcphp.ca/

24. BC Vital Statistics Agency. The British Columbia Health Status Registry. [Quarterly Digest December 2000] Victoria, BC: Ministry of Health, Province of British Columbia; Volume 10: issues 2-3. [cited 2009 Nov 23]. Available from: http://www.vs.gov.bc.ca/stats/quarter/q2_3_2000/index.html

25. Canadian Congenital Anomalies Surveillance Network - Public Health Agency of Canada. Alberta - Alberta Congenital Anomalies Surveillance System (ACASS): Directory of Surveillance Systems. Ottawa, Ontario: Crown Copyright & Licensing, Government of Canada; [cited 2007 Dec 11]. Available from: http://www.phac-aspc.gc.ca/ccasn-rscac/dss/alberta_e.html

26. Lowry RB, Thunem NY, Silver M. Congenital anomalies in American Indians of British Columbia. Genet Epidemiol 1986:3(6):455-467.

27. Public Health Agency of Canada. Canada's New Gov Health: Canadian Perinatal Surveillance System. Ottawa, Ontario: Crown Copyright & Licensing, Government of Canada; [cited 2009 Nov 23]. Available from: http://www.phac-aspc.gc.ca/rhs-sgg/index-eng.php

28. Rouleau J, Arbuckle TE, Johnson KC, Sherman GJ. Description and limitations of the Canadian Congenital Anomalies Surveillance System (CCASS). Chronic Dis Can 1995;1(1):37-42.

29. Canadian Congenital Anomalies Surveillance Network - Public Health Agency of Canada. Alberta - Alberta Congenital Anomalies Surveillance System (ACASS): Directory of Surveillance Systems. Ottawa, Ontario: Crown Copyright & Licensing, Government of Canada; [cited 2007 Dec 11]. Available from: http://www.phac-aspc.gc.ca/ccasn-rscac/dss/alberta_e.html

30. Knudsen LB, Olsen J. The Danish Medical Birth Registry. Dan Med Bull 1998;45(3):320-323.

31. Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies. Arch Dis Child Fetal Neonatal Ed 2005;90:F355-F8.

32. WHO Collaborating Center for the Epidemiological Surveillance of Congenital Anomalies. European Surveillance of Congenital Anomalies. Newtonabbey, Co Antrim European Commission Public Health Program; [cited 2008 Oct 1]. Available from: http://www.eurocat.ulster.ac.uk/

33. Garne E. Denmark, Odense. [Internet report pdf] Odense, Denmark: EUROCAT Registry of Congenital Malformations; [cited 2009 Jul DAY?]. Available from: http://www.eurocat.ulster.ac.uk/pdf/Reg-Des_Odense.pdf

34. Irgens LM. The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30 years. Acta Obstet Gynecol Scand 2000;79(6):435-439.

35. Irgens LM. The Medical Birth Registry of Norway; a source for epidemiological and clinical research. Scand J Rheumatol Suppl 1998;107:105-108.

36. Berle J, Myklesten A, Daltevri AK, Rasmussen S, Holsten F, Dahl AA. Neonatal outcomes in offspring of women with anxiety and depression during pregnancy. A linkage study from The Nord-Trøndelag Health Study (HUNT) and Medical Birth Registry of Norway. Arch Womens Ment Health 2005;8(3):181-189.

37. Källén B. The use of national health registers for studying environmental causes of congenital defects. Rev Environ Health 2005;20(1):57-64.

38. Lie RT. Environmental epidemiology at the Medical Birth Registry of Norway: strengths and limitations. Cent Eur J Public Health 1997;5(2):57-59.

39. Lie RT, Wilcox AJ, Skjaerven R. A population-based study of the risk of recurrence of birth defects. N Engl J Med 1994;331(1):1-4.

40. Wilcox AJ. The medical birth registry of Norway - An international perspective. Tidsskrift for Norsk forening for epidemiologi 2007;17(2):103-105.

41. Franco-Lie I, Iversen T, Robsham TE, Abdelnoor M. Birth weight and melanoma risk: a population-based case-control study. Br J Cancer 2008;98(1):179-182.

42. Stene LC, Thorsby PM, Berg JP, Ronningen KS, Undlien DE, Joner G. The relation between size at birth and risk of type I diabetes is not influenced by adjustment for the insulin gene (-23HphI) polymorphism or HLA-DQ genotype. Diabetologia 2006;49(9):2068-2073.

43. International Clearinghouse for Birth Defects Surveillance and Research. Descriptions of International programs: International Clearing House for Birth Defects Surveillance and Research; [cited 2009 Nov 23]. Available from: http://www.icbdsr.org/page.asp?p=12919& l=1

44. Yaktsojdel A, Talykova L, Chashchin V, Nieboer E, Odland JO. The Kola Birth Registry and perinatal mortality in Moncegorsk, Russia. Acta Obstet Gynecol Scand 2004;83(1):58-69.

45. Anda EE, Nieboer E, Voitov AV, Kovalenko AA, Lapina YM, Voitova EA, et al. Implementation, quality control and selected pregnancy outcomes of the Murmansk county birth registry in Russia. Int J Circumpolar Health 2008;67(4):318-334.
46. Kobrinsky B, Tester I, Demikova N, Sedov Y, Marjanichik B, Taperova L, et al. A multifunctional system of the national genetic register. Stud Health Technol Inform1998;52 Pt 1:121-125.

47. Kobrinsky BA, Demikova NS, Baleva LS. Medmonitor Statistical Bulletin (Russia). Moscow: Open Society Institute, Soros Foundation - Russia; [cited 2008 Sep 1]. Available from: http://www.pedklin.ru/medmonitor.ru/default-eng.html

48. Petrova JG, Vaktskjold A. The incidence and maternal age distribution of abdominal wall defects in Norway and Arkhangelskaja Oblast in Russia. Int J Circumpolar Health 2008; 2009;68(1):75-83.

49. Krikunova NI, Minaicheva LI, Nazarenko LP, Tadinova VN, Nesterova VV, Fadiushina SV, et al. Epidemiology of congenital malformations in Gorno-Altaisk, Altai Republic, Russia. Genetika 2004;40(8):1138-1144.

50. Magnusson LL, Bodin L, Wennborg H. Adverse pregnancy outcomes in offspring of fathers working in biomedical research laboratories. Am J Ind Med 2006; 49 (6):468-473.

51. Statistics Canada. Infant mortality rates, by province and territory (both sexes). Ottawa, Ontario: Crown Copyright & Licensing, Government of Canada; [cited 2009 Nov 23]. Available from: http://www.statcan.ca/l01/cst01/health21a.htm

52. Muggah E, Way D, Muirhead M, Baskerville B. Preterm delivery among Inuit women in the Baffin Region of the Canadian Arctic. Int J Circumpolar Health 2004;63 Suppl 2:242-247.

53. Arbour L, Gilpin C, Millor-Roy V, Platt R, Pekeles G, Egeland GM, et al. Heart defects and other malformations in the Inuit in Canada: a baseline study. Int J Circumpolar Health 2004;63(3):251-266.

54. Health and Social Services. Alaska Birth Defects Registry. Juneau, Alaska: State of Alaska; [cited 2009 Nov 23]. Available from: http://www.epi.hss.state.ak.us/mchepi/ABDR/default.htm

55. Health and Social Services. Bureau of Vital Statistics. Juneau, Alaska: State of Alaska; [cited 2009 Nov 23]. Available from: http://www.hss.state.ak.us/dph/hvs

56. National Board of Health. Sundhedsstyrelsen. Copenhagen: Ministry for Health and Prevention; [cited 2009 Nov 23]. Available from: http://www.sst.dk/English.aspx?sc_lang=en

57. National Institute for Health and Welfare. Medical birth register, description of file. Helsinki, Finland: National Institute for Health and Welfare; [cited 2009 Nov 23]. Available from: http://www.stakes.fi/EN/tilastot/fielddescriptions/medicalbirthregister.htm

58. National Institute for Health and Welfare. Register of congenital malformations. Helsinki, Finland: National Institute for Health and Welfare; [cited 2009 Nov 23]. Available from: http://www.stakes.fi/EN/tilastot/fielddescriptions/malformations.htm

59. Statistics Iceland. National register of persons. Reykjavik, Iceland: Statistics Iceland; [cited 2009 Nov 23]. Available from: http://www.statice.is/?PageID=1117&highlight=National

60. Norwegian Institute of Public Health. Medisinsk fødselsregister [Medical Birth Register]. Bergen, Norway: Norwegian Institute of Public Health; [cited 2009 Nov 23]. Available from: http://www.fhi.no/eway/default.aspx?pid=233&trg=MainArea_5661&MainArea_5661=5631:0:15,3278:1:0:0:::0:0

61. Socialstyrelsen. Statistics: Swedish Medical Birth Registry. Stockholm: National Board of Health and Welfare; [cited 2009 Jul 1]. Available from: http://www.socialstyrelsen.se/en/Statistics/statsbysubject/Swedish+Medical+Birt+h+Registry.htm

62. Socialstyrelsen. Statistics: The Swedish Birth Defect Registry. Stockholm: National Board of Health and Welfare; [cited 2009 Jul 1]. Available from: http://www.socialstyrelsen.se/en/Statistics/statsbysubject/Birth+Defect+Registry.htm

Dr. Laura Arbour, Associate Professor
UBC Department of Medical Genetics, Island Medical Program
3800 Finnerty Road
Victoria, BC, V8P 5C2
CANADA
Email: larbour@uvic.ca