Decision Support System for Suppliers of Household Appliance with Analytical Hierarchy Process Method Using Super Decisions Software

Aulia Ishak¹, Khawarita Siregar² and Lyly Sri Intan Siagian³

¹,²,³Industrial Engineering Department, Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia

E-mail: lylisiagian28@gmail.com aulia.ishak@usu.ac.id khawarita@usu.ac.id

Abstract. Decision Support Systems can be used as problem solving in semi-structured and unstructured conditions. Multi-criteria decision making tools can be solved by the Analytical Hierarchy Process method. The problem that will be examined in this study is about the services of household appliances in the city of XYZ. The household appliances that will be compared in this study are Ace Hardware, Ya Furni, and IJC. There are 5 criteria, 22 sub criteria, and 3 alternatives. This problem was resolved through the application of the AHP method which calculations were carried out manually and using the Super Decisions Software, which was carried out through the distribution of questionnaires to 10 respondents. Processing data begins with making a hierarchy. Hierarchy is used to make the AHP questionnaire consistent with the meaning of one element with other elements equivalent. Then making AHP questionnaires, distributing AHP questionnaires, find priority vector, calculate the consistency ratio, to get the best alternative with manual calculations. Processing data using the Super Decisions Software are create interconnected hierarchies, make a pairwise comparison, and then find results of alternative priority calculations that have been calculated with Super Decisions Software.

1. Introduction

Competition in the business economy in this globalization era is increasingly competitive. This problem supported by the development of science and technology which is also progressing. Therefore, companies are required to continue to innovate and be able to provide satisfaction towards consumers by maintaining product quality and competitive prices in order for businesses can still walk [1]. Household Appliance Supplier is a business entity that sells a variety of household appliances needed by the community to meet their daily needs with advantages and disadvantages both physically and in terms of service. The household appliance services that will be compared in this study are Ace Hardware, Ya Furni, and IJC.

Decision Support Systems are interactive information systems that provide information, modeling, and data manipulation. The system is used for decision making in semi-structured and unstructured situations, where no one knows exactly how decisions should be made. (Decision Support Systems) is support for decision making for both individuals and groups which provides options for better and more consistent decision making in a time-constrained manner. Decision support systems are not intended to automate decision making, but provide interactive tools that enable decision making to
perform various analyzes using models which are available [2]. AHP is an organized multicriteria procedure for sorting out and examining complex choices dependent on numerous models [12]. Analytic Hierarchy Process is a multiple criteria decision-making tool. This is an Eigen value approach to the pair-wise comparisons. It also provides a methodology to calibrate the numeric scale for the measurement of quantitative as well as qualitative performances [3]. Analytical Hierarchy Process (AHP) is one of the right and effective methods in handling complicated decision making so that it can be used to help decision makers in determining priorities and the best decisions, but criteria that have more subjective nature, uncertainty factors numbers are represented in order of scale, making it difficult to determine the exact scale value of importance [4]. AHP can deal with subjective and quantitative elements from dynamic cycle for all intents and purposes, methodically and quickly [13]. A qualified service is a service that economically profitable and procedurally easy and fun so it will create satisfaction. Satisfaction means a content feeling that arise after comparing the perception of results or performance of a service to the expectation [5]. The problem that will be examined in this study is about the services of household appliances in the city of XYZ. Where the three household supply compared here are Ace Hardware, Yafurni, and IJC. There are 5 dimensions that become the assessment of quality, namely tangible, reliability, responsiveness, assurance, and empathy. Al-Allaq & Al-Tali unanimously agreed that tangibility, reliability and responsiveness are constant dimensions, whereas; the criterion of ‘assurance’ includes courtesy, reliability and security [6].

The purpose of this research is to be able to apply the AHP concept in every best decision making of many criteria can increase productivity. This problem was resolved through the application of the AHP method which calculations were carried out manually and using the Super Decisions Software, which was carried out through the distribution of questionnaires to 10 respondents.

2. Method
The study was conducted around the XYZ Housing Complex. The distribution of AHP questionnaires was 10 respondents. The data to be processed is obtained from a summary questionnaire of 10 respondents who are willing to answer the questionnaire. The sampling technique used was Purposive Sampling where respondents were chosen for a specific purpose. Selection of samples with the right method can describe the actual population conditions accurately, and can save research costs effectively. Ideally, the sample really describes or represents the characteristics of the actual population. Because the data obtained from the sample must be able to be used to estimate the population. A sample that can represent the population is called a representative sample. Representative samples have the same or relatively the same characteristics as the population characteristics. Representative level of the sample taken from a particular population depends on the type of sample used, the size of the sample taken, and the method of collection [7]. Sample is a set or part of the number and characteristics possessed by the population. Sampling technique is a sampling technique, where the researcher uses purposive sampling, a technique of determining the sample based on chance, that is, anyone who happens to meet the researcher can be used as a sample, if it is considered that the person met is suitable as a data source [8]. The purposive sampling technique is also a nonrandom technique in which the selection of respondents is based on certain criteria. The selected respondents’ answers are expected to be based on the respondent’s knowledge or experience not based on theory.

The steps taken in the AHP method are defining the problem and determining the desired solution, creating a hierarchical structure starting with the main objective, creating a pairwise comparison matrix that describes the relative contribution or influence of each element to the goal or the criterion level above it, defines the pairwise comparisons so that the total number of raters is obtained as many as \(n \times \left(\frac{(n-1)}{2} \right) \) pieces, where \(n \) is the number of elements being compared, calculating the eigen values and testing their consistency, if it is not consistent then data retrieval is repeated. Repeats steps 3, 4, and 5 for all hierarchical levels. Calculate the eigen vector for each pairwise comparison matrix which is the weight of each element to prioritize the inner elements lowest hierarchical level until it reaches the goal[9]. The results of the super decision processing software are three types of super
matrix tables, namely (1) cluster matrix (criteria), which shows the relationship between clusters/criteria; (2) Super matrix Weights, where each column eigenvector block in a cluster is weighted with priority from the influence of the cluster, which makes the Weights Super Matrix column stochastic; (3) limiting super matrix is obtained by raising weighted super matrix so that the number in each column is one[10]. A nominal value search for liquid waste technology is obtained, where parsecond searches use AHP (Analytical Hierarchy Process) questionnaires to help determine palm oil processing technology based on objective value, criteria, subcriteria and alternative value [11].

3. Result and Discussion

3.1. Manual Calculation

The following is a hierarchy table of Household Appliance Supplier.

Table 1. Hierarchy table of household appliance supplier.

No.	Criteria	Sub Criteria	Alternative
1.	Tangible	Type of Entrance	1. ACE HARDWARE
		Storage Area	2. IJC
		Type of Cashier	3. YAFURNI
		Product Regulatory Pattern	
		Employee Appearance	
		Room Cleanliness	
2.	Reliability	Product completeness	1. ACE HARDWARE
		Reliability explained	2. IJC
		Timely Delivery	3. YAFURNI
		Exact Return	
3.	Responsiveness	Employee Friendliness	1. ACE HARDWARE
		Employee Attitude	2. IJC
		Quick Response	3. YAFURNI
		Fast Services	
4.	Assurance	Item Warranty	1. ACE HARDWARE
		Security	2. IJC
		Product Testing	3. YAFURNI
		Guaranteed Return	
5.	Empathy	Understand the needs	1. ACE HARDWARE
		Product Shipping	2. IJC
		Promo Notification	3. YAFURNI
		Employee Care	

The steps in processing calculation data manually are as follows:

- From the recapitulation of 10 respondents, the average number of 5 criteria is obtained at level 2 which can be seen in Table 2.
- Add up each column of the comparison matrix. Get the latest matrix by dividing the score by the number of columns. Then find the average of each row for the priority vector result. Normalized Matrix and Row Average for Level 2 Elements can be seen in table 3.
- Calculate the consistency ratio by dividing the CI (Calculation Index) results by the (RCI) Random Consistency Index.
- It can be concluded that if the final result consistency ratio (CR) is less than 0.1, then the respondent's answer is consistent and the response data can be used.
The author takes one example calculation from each level. Level 2, level 3 Assurance Criteria, and level 4 about Sub-alternatives for Product Completeness.

Table 2. The calculation of the weighted average for level 2 elements

Element	Tangible	Reliability	Responsiveness	Assurance	Emphaty
Tangible	1,0000	1,0000	1,8745	1,6808	4,0461
Reliability	1,0000	1,0000	2,4052	3,7174	4,9633
Responsiveness	0,5335	0,4158	1,0000	3,0837	1,5563
Assurance	0,5949	0,2690	0,3243	1,0000	1,8541
Emphaty	0,2471	0,2015	0,6426	0,5394	1,0000
Total	3,3755	2,8863	6,2466	10,0213	13,4198

Table 3. Normalized matrix and row average for level 2 elements

Element	Tangible	Reliability	Responsiveness	Assurance	Emphaty	Priority Vector
Tangible	0,2963	0,3465	0,3001	0,1677	0,3015	0,2824
Reliability	0,2963	0,3465	0,3850	0,3709	0,3698	0,3537
Responsiveness	0,1581	0,1441	0,1601	0,3077	0,1160	0,1772
Assurance	0,1762	0,0932	0,0519	0,0998	0,1382	0,1119
Emphaty	0,0732	0,0698	0,1029	0,0538	0,0745	0,0748
Total	1,0000	1,0000	1,0000	1,0000	1,0000	

CR = \frac{\text{Random Consistency Index}}{\text{Consistency Index}} = 0.0500/0.0446 = 0.0446 \text{ (consistent)}

Table 4. The calculation of the weighted average for level 3 assurance elements

Element	Item Warranty	Security	Product Testing	Guaranteed Return
Item Warranty	1,0000	1,7118	4,2221	5,9495
Security	0,5842	1,0000	3,1405	4,3556
Product Testing	0,2368	0,3184	1,0000	1,7118
Guaranteed Return	0,1681	0,2296	0,5842	1,0000
Total	1,9891	3,2598	8,9468	13,0169

Table 5. Normalized matrix and row average for level 3 assurance elements

Element	Item Warranty	Security	Product Testing	Guaranteed Return	Priority Vector
Item Warranty	0,5027	0,5251	0,4719	0,4571	0,4892
Security	0,2937	0,3068	0,3510	0,3346	0,3216
Product Testing	0,1190	0,0977	0,1118	0,1315	0,1150
Guaranteed Return	0,0845	0,0704	0,0653	0,0768	0,0743
Total	1,0000	1,0000	1,0000	1,0000	1,0000
\[
CR = \frac{0.0040}{0.90} = 0.0044 \text{ (consistent)}
\]

Table 6. The calculation of the weighted average for level 4 product completeness elements

Service	Yafurni	Ace Hardware	IJC
Yafurni	1,0000	0,5676	2,7339
Ace Hardware	1,7617	1,0000	5,2596
IJC	0,3658	0,1901	1,0000
Total	**3,1275**	**1,7577**	**8,9935**

Table 7. Normalized matrix and row average for level 4 product completeness elements

Service	Yafurni	Ace Hardware	IJC	Priority Vector
Yafurni	0,3197	0,3229	0,3040	0,3156
Ace Hardware	0,5633	0,5689	0,5848	0,5723
IJC	0,1170	0,1082	0,1112	0,1121
Total	**1,0000**	**1,0000**	**1,0000**	**1,0000**

\[
CR = \frac{0.0004}{0.58} = 0.0007 \text{ (consistent)}
\]

From Table 8 Calculation of priority vectors, it can be seen that the supplier for the most popular household appliances in XYZ city is Ace Hardware. Then followed by Yafurni and IJC.

Table 8. Priority matrix for constructor prequalification

No	Service	Priority Vector	Percent	Rank
1.	Yafurni	0.2664	26.64%	2
2.	Ace Hardware	0.6130	61.30%	1
3.	IJC	0.1206	12.06%	3
Total	1	1	**100%**	

3.2. **Software Super Decisions**

The steps in processing data using the Super Decisions Software are as follows:

- The first step we have to create interconnected hierarchies in the dialog box. Display relationships between nodes can be seen in Figure 1.
- Then make a pairwise comparison display by filling in the matrix for each node. In Figure 2 can be seen the priority vector value and the value of the consistency ratio (CR).
- The author takes one example calculation from each level. Level 2, level 3 regarding Guarantee Criteria, and level 4 about Sub-alternatives for Product Completeness.
Figure 1. Relationships between nodes

Figure 2. Node comparison household appliances supplier

Figure 3. Node comparison assurance
After the data is moved to the dialog box, in the calculation toolbar select Priority. The following are the results of alternative priority calculations that have been calculated with Super Decisions Software. The results of the calculation of the best alternatives chosen using the Super Decisions Software can be seen at Figure 5.

![Figure 4. Node comparison item warranty](image)

![Figure 5. The results of the calculation of the best alternatives chosen using the super decisions software](image)

In accordance with the research objectives and research methodology that can be obtained, the hierarchy is used to make the AHP questionnaire aligned with the meaning of one element with another equivalent element. AHP can provide the best alternative for household appliance suppliers. The best supplier of household appliances among Ace Hardware was 61.30%, then Yafumi 26.64%, and IJC 12.06%.

4. Conclusion
The conclusions based in accordance with the research objective are as follows: Hierarchy is used to make the AHP questionnaire consistent with the meaning of one element with other elements equivalent. The best household appliances supplier among Ace Hardware, Yafumi and IJC was Ace Hardware at 61.30%, then Yafumi 26.64%, and IJC 12.06%. The elements that have the highest priority to the lowest are the Reliability element 35.37%, Tangible 28.24%, Responsiveness 17.22%, Assurance 11.19%, and Emphaty 7.48%. In the consistency ratio (CR) matrix, all respondents answers are stated consistent with CR Qualification 0.1. Processing done by manual calculation and calculation using software has the same results.

Acknowledgements
The authors appreciate all participants who have provided data and my colleague who has follow up the authors in completing this work.
References

[1] Winarso, Doni and Fuad Yasir 2019 Sistem Pendukung Keputusan Pemilihan Supplier Produk Receiver Parabola dan Kipas Angin Pada Toko Ir$-$san Jaya Rangkuti menggunakan Metode Analytical Hierarchy Process (AHP) 9 (2)

[2] Vaidya, Omkarprasad S and Sushil Kumar 2006 Analytic hierarchy process: An overview of applications 1 (29)

[3] Turban, Efraim et al 2005 Decision Support Systems and Intelligent Systems (Yogyakarta: Andi) pp 103

[4] Simarmata et al 2019 Decision Support System for Determining Land Priority for Housing Development Using Fuzzy Analytical Process (Fuzzy-AHP) Method 3 (2)

[5] Jamaluddin and Endang Ruswanti 2017 Impact of Service Quality and Customer Satisfaction on Customer Loyalty: A Case Study in a Private Hospital in Indonesia 19 (5)

[6] Osho, Victoria Mojisola 2016 Impact Of Service Quality On Customer Satisfaction In The Telecommunication Industry 9 (1)

[7] Taherdooost, Hamta 2017 Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research 5 (2)

[8] Etikan, Ilker et al 2016 Comparison of Convenience Sampling and Purposive Sampling 5 (1)

[9] Munthafa, Agnia Eva and Husni Mubarok 2017 Penerapan Metode Analytical Hierarchy Process Dalam Sistem Pendukung Keputusan Penentuan Mahasiswa Berprestasi 3 (2)

[10] Murti, Andreas 2019 he Performance Improvement Of OCBC NISP Bank's Trade Operations Division Employees : Application Of Analytic Network Process Methods 3 (1)

[11] Aulia Ishak and Amir Yazid bin Ali 2017 Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste IOP Conf Series: Materials Science and Engineering 277 012012

[12] Kustiyahningsih Y and Suprajitno H 2018 MCGDM with AHP based on Adaptive interval Value Fuzzy Telkomnika, 16 (1) pp 314-322

[13] Retrialisca F, Effendi Y A and Nuzulita N 2019 Decision Support System and Recommendation on SBMPTN Try-Out with Analytic Hierarchy Process (AHP) International Conference on Computer Science, Information Technology, and Electrical Engineering pp 169-174