Histone Deacetylase Inhibition Enhances the Antitumor Activity of a MEK Inhibitor in Lung Cancer Cells Harboring RAS Mutations

Tadaaki Yamada1,2,3, Joseph M. Amann1, Azusa Tanimoto2, Hirokazu Taniguchi2,4, Takehito Shukuya1, Cynthia Timmers1, Seiji Yano2, Konstantin Shilo1, and David P. Carbone1

Abstract

Non–small cell lung cancer (NSCLC) can be identified by precise molecular subsets based on genomic alterations that drive tumorigenesis and include mutations in EGFR, KRAS, and various ALK fusions. However, despite effective treatments for EGFR and ALK, promising therapeutics have not been developed for patients with KRAS mutations. It has been reported that one way the RAS–ERK pathway contributes to tumorigenesis is by affecting stability and localization of FOXO3a protein, an important regulator of cell death and the cell cycle. This is through regulation of apoptotic proteins BIM and FASL and cell-cycle regulators p21Cip1 and p27Kip1. We now show that an HDAC inhibitor affects the expression and localization of FOXOs and proteins and wanted to determine whether the combination of a MEK inhibitor with an HDAC inhibitor would increase the sensitivity of NSCLC with KRAS mutation. Combined treatment with a MEK inhibitor and an HDAC inhibitor showed synergistic effects on cell metabolic activity of RAS-mutated lung cancer cells through activation of FOXOs, with a subsequent increase in BIM and cell-cycle inhibitors. Moreover, in a mouse xenograft model, the combination of belinostat and trametinib significantly decreases tumor formation through FOXOs by increasing BIM and the cell-cycle inhibitors p21Cip1 and p27Kip1. These results demonstrate that control of FOXOs localization and expression is critical in RAS-driven lung cancer cells, suggesting that the dual molecular-targeted therapy for MEK and HDACs may be promising as novel therapeutic strategy in NSCLC with specific populations of RAS mutations.

Mol Cancer Ther; 17(1); 17–25. ©2017 AACR.

Introduction

Lung cancer is the leading cause of malignancy-related deaths worldwide (1). Non–small cell lung cancer (NSCLC) accounts for nearly 85% to 90% of lung cancers and overall survival is approximately 8 to 12 months even in good performance status patients in clinical trials with the best conventional chemotherapy (2). NSCLC can be classified by precise molecular subsets based on specific genomic alterations that drive tumorigenesis, such as the EGFR, Kirsten rat sarcoma viral oncogene homolog (KRAS), ALK, HER2, BRAF, RET, ROS1, and NRAS (3). About 15% of non-squamous NSCLC tumors in the United States have known driver alterations that are treated in clinical setting with drugs targeting a specific mutation, such as EGFR tyrosine kinase inhibitors gefitinib, erlotinib, afatinib and, osimertinib, and the ALK inhibitors crizotinib, ceritinib, and alectinib (2), which have improved the quality of life of these patients and increased overall survival when compared with conventional chemotherapy.

The most common of these oncogene mutations is activation of the RAS subfamily (most commonly in KRAS), and is detected in approximately 20% of human cancers (4). In lung adenocarcinoma KRAS is mutated in approximately 30% of cases, but is infrequent in squamous cell carcinoma (5, 6). In addition, KRAS mutations and other driver gene alterations such as EGFR and EML4-ALK are for the most part mutually exclusive (7, 8). KRAS mutations are predominantly found in current or former smokers, mainly in the Caucasian population, and rarely in Asians (9, 10). RAS mutations, including KRAS, NRAS, and HRA cause constitutive activation of the downstream molecules in the RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. This RAS effector-signaling pathway is dysregulated in approximately 20% to 35% of NSCLC (5). Effective drugs targeting KRAS-mutant proteins have not been developed, even though RAS mutations were reported more than 30 years ago. Attempts have been made to develop targeted therapies to treat RAS-mutated lung cancers, such as farnesyltransferase inhibitors; however, these drugs have not been effective in the clinic (4). Most recently, allele-specific inhibitors against a constitutively active form of mutant KRAS G12C have been developed and are effective against KRAS G12C–driven cancers in vitro;
however, high concentrations were needed (IC50; 2.5 μmol/L) to inhibit cell growth and the G12C mutation comprises just a portion of the KRAS mutation spectrum (1). Therefore, novel therapeutic strategies are still needed for improving the poor prognosis of patients with KRAS-driven lung cancers.

Trametinib (GSK1120212), a MEK1/2 inhibitor, has been approved by the FDA for use in BRAF-mutant melanoma. Several clinical trials using MEK inhibitors have been reported in lung cancer patients with KRAS mutations. A prospective randomized phase II study was performed to assess the efficacy of trametinib as a single agent compared with docetaxel in previously treated patients with advanced KRAS-mutant NSCLC. The results in each arm were similar with trametinib providing no better outcome than docetaxel (12). Another prospective randomized phase II study evaluating the efficacy of adding the MEK inhibitor selumetinib to docetaxel in previously treated patients with advanced KRAS-mutant NSCLC was conducted based on pre-clinical results. Despite no differences in median overall survival, there were significant improvements in both progression-free survival and objective response rate in patients administered selumetinib (13), albeit with significantly increased toxicity. However, in the recent phase III SELECT-1 trial the addition of selumetinib to docetaxel did not improve progression-free survival or overall survival in patients with KRAS mutation-positive, locally-advanced or metastatic NSCLC (14). As these results indicate, the impact of single targeted therapy in combination with a cytotoxic chemotherapy could be insufficient among patients with KRAS-mutant cancers. Therefore, combining targeted therapies that hit multiple signaling pathways may be a more promising approach. The goal of this study is to determine a potential therapeutic strategy against RAS mutated lung cancer with agents that affect the FOXO transcription factors, factors known to increase apoptosis through up regulation of apoptotic proteins such as BIM and increase cell-cycle inhibitors such as p21Cip1 and p27Kip1. It is known that the protein stability, localization, and transcriptional activity of the FOXOs are regulated by both phosphorylation and acetylation (15–17).

In this study, we demonstrate the synergistic efficacy of combined targeted therapy for MEK and histone deacetylases (HDAC) through FOXO-mediated transcription of target genes in RAS driven lung cancer cells. To the best of our knowledge, this is the first report to identify the FOXO pathways as critical targetable pathways in RAS driven lung cancer. This suggests that the dual molecular targeted therapy for HDAC and MEK may be promising as novel therapeutic strategy in specific populations of lung cancer patients with mutated RAS.

Materials and Methods
Cell cultures and reagents
We used 10 human lung cancer cell lines and 2 human lung fibroblast cell lines. The human lung cancer cell lines, Calu-1, Calu-6, H1299, H2009, H2347, and H358 were generously provided by John Minna and Luc Girard (University of Texas, Southwestern, Dallas, TX), H292, H196, and H1581 were purchased from the ATCC. The human lung embryonic fibroblast MRC-5 (P30-35) and IMR-90 (P20-25) cell lines were obtained from RIKEN Cell Bank (Ibaraki, Japan). Calu-1 (G12C), Calu-6 (G12C), H2009 (G12A), H358 (G12C), and H292 (G12S) have KRAS mutations, and H1299 (Q61K) and H2347 (Q61R) have NRAS mutations, and H1395 has a BRAF mutation. H196, H1581, MRC-5, and IMR-90 have wild-type KRAS/NRAS/BRAF genes. All these cells have wild-type LKB1 genes. Calu-1, Calu-6, H1299, H2009, H2347, H358, H292, H1395, H196, and H1581 were maintained in Roswell Park Memorial Institute 1640 (RPMI-1640) medium (GIBCO), and MRC-5 and IMR-90 cells were cultured in DMEM supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (50 g/mL), in a humidified CO2 incubator at 37°C. All cells were passaged for less than 3 months before renewal from frozen, early-passage stocks.

The identity of all cell lines was authenticated by DNA fingerprinting, and all were tested to ensure that they were mycoplasma negative. Belinostat (pan-HDAC inhibitor) and trametinib (MEK1/MEK2 inhibitor) were obtained from Selleckchem and ChemieTek, respectively.

Proliferation assay
The cells were seeded at 2 × 10^5 per well in 96-well plates, and incubated in antibiotic-containing RPMI-1640 with 10% FBS. After 24 hours of incubation, various concentrations of belinostat and/or trametinib were added to each well, and incubation was continued for a further 72 hours. These cells were then used for proliferation assay, which was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium) dye reduction method. An aliquot of MTT solution (2 mg/mL; Sigma) was added to each well followed by incubation for 2 hours at 37°C as previously described (18). The media were removed and the dark blue crystals in each well were dissolved in 100 μL of dimethyl sulfoxide (DMSO). Absorbance was measured with an MTP-120 microplate reader (Corona Electric) at test and reference wavelengths of 550 and 630 nm, respectively. The percentage of growth is shown relative to untreated controls. Each sample was assayed in triplicate, with each experiment repeated at least three times independently.

Drug combination studies
Characterization of synergistic interactions was quantified by the isobologram and combination-index methods by Chou and Talalay equation (19) using the CalcuSyn software (Biosoft). The combination-index (CI) is a quantitative representation of two-drug pharmacologic interactions. A CI of 1 indicates an additivity between two agents, whereas a CI < 1 or CI > 1 indicates synergism or antagonism, respectively.

Antibodies and western blotting
Protein aliquots of 25 μg each were resolved by SDS polyacrylamide gel (Bio-Rad) electrophoresis and transferred to polyvinylidene difluoride membranes (Bio-Rad). After washing three times, the membranes were incubated with Blotting-grade blocker (Bio-Rad) for 1 hour at room temperature and then incubated overnight at 4°C with primary antibodies to t-FOXO1, t-FOXO3a, p-ERK1/2 (T202/Y204), p-ERK1/2, Acetyl-Histone H3, p21^Cip1, p27^Kip1, BIM, cleaved PARP, PARP (1:1,000 dilution; Cell Signaling Technology), HDAC2, or GAPDH (1:1,000 dilution; Santa Cruz Biotechnology). After washing three times, the membranes were incubated for 1 hour at room temperature with secondary Ab (horseradish peroxidase-conjugated species-specific Ab). Immunoreactive bands were visualized with SuperSignal West Dura Extended Duration Substrate Enhanced Chemiluminescent Substrate (Pierce Biotechnology). Each experiment was performed at least three times independently.
Cell apoptosis assay

Cell apoptosis was detected with an Annexin V-FITC Apoptosis Detection Kit I (BD Biosciences Pharmingen) in accordance with the manufacturer's protocols as we described previously (18). The analysis was performed on a FACSCalibur flow cytometer with Cell Quest software (Becton Dickinson).

RNAi transfection

Silencer Select siRNAs for FOXO1 (s5258, s5259), FOXO3a (s5260, s5261), and BMI (s195011, s19474; Invitrogen) were transfected with Lipofectamine RNAiMAX (Invitrogen) in accordance with the manufacturer's instructions. Silencer Select siRNA for Negative Control no.1 (Invitrogen) was used as scramble control throughout the experiment. FOXO1, FOXO3a, and BMI knockdown were confirmed by western blotting analysis. Each experiment was performed at least in triplicate, and three times independently.

Isolation of nuclear and cytoplasmic fractions

For some experiments nuclear and cytoplasmic extracts were prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents from Pierce, and the quality of the preparations was always verified by analysis of proteins differentially enriched in the nucleus (HDAC2) or the cytoplasm (GAPDH).

Dual-luciferase reporter assay

Calu-1, Calu-6, H358, H1299, and H1395 cells were seeded onto 6-well plates at a density of 1.5 × 10^5 cells per well. After overnight incubation, luciferase reporter FHRE-Luc and pRL-CMV were co-transfected into cells using X-tremeGENE HP DNA transfection reagent (Roche Diagnostics) according to the manufacturer's protocol. Calu-1 cells were exposed to RPMI-1640 media with DMSO, 0.2 μmol/L trametinib, 2 μmol/L orapalib/LY2157299, or 0.2 μmol/L trametinib plus 2 μmol/L orapalib/LY2157299 following 24 hours transfection. Calu-1, Calu-6, H358, H1299, and H1395 cells were exposed to RPMI-1640 media with DMSO, 0.2 μmol/L trametinib, 2 μmol/L belinostat, or 0.2 μmol/L trametinib plus 2 μmol/L belinostat following 24 hours transfection. Firefly and Renilla luciferase activities were measured with the Dual-Glo luciferase assay system (Promega) according to the manufacturer's protocol on a GloMax 96 Microplate Luminometer (Promega) at 24 hours after initiation of exposure to each drug.

Subcutaneous xenograft models

Suspensions of H358 cells (5 × 10^5) were injected subcutaneously into the flanks of 5-week-old female nude mice (The Jackson Laboratory). After 6 days, the mice were randomized to (i) control group (vehicle treated controls), (ii) intraperitoneal belinostat (40 mg/kg/daily), (iii) oral trametinib (1 mg/kg/daily), and (iv) belinostat plus trametinib. Tumor size and mouse body weight were measured twice per week, and tumor volume was calculated, in mm^3, as width^2 × length/2. The animal protocol was approved by The Ohio State University Institutional Laboratory Animal Care and Use Committee (approval no. #2014A00000116).

IHC studies for t-FOXO3a

Paraffin-embedded tissue was cut at 4- to 5-μm sections and placed on positively charged slides. Slides were baked at 65°C for 1 hour and immunostaining was performed on the fully automated Bond RX autostaining system (Leica Biosystems). Briefly, heat-induced antigen retrieval was done using ER2 (EDTA buffer) for 20 minutes, slides were stained with a rabbit mAb to FOXO3a (clone D19A7 Cat. 12829, Cell Signaling Technology) at a 1:800 dilution for 30 minutes and the Bond Polymer Refine (DAB) detection system (Leica Biosystems) was used.

Quantification of immunohistochemistry for FOXO3a

Five fields containing the highest number of tumors cells were scored for the percent of tumor cells with nuclear staining by light microscopy with a 200-fold magnification. The total number of tumor cells scored in the five fields ranged from 221 to 381 per field. The tumor cells with positive staining nuclei were counted and the percentage of positive cells determined. All results were independently evaluated by two investigators (T. Yamada and H. Taniguchi).

Statistical analysis

Data from MTT assay and tumor progression of xenograft model are expressed as means ± SD. The statistical significance of differences was analyzed by one-way ANOVA and Spearman rank correlations performed with GraphPad Prism Version 6.0 (GraphPad Software, Inc.). For all analyses, a two-sided P value less than 0.05 was considered statistically significant.

Results

Synergistic effect between belinostat and trametinib in RAS-mutated lung cancer cells in vitro

To seek a potential novel treatment for RAS-mutated lung cancer patients, we evaluated the effect of trametinib in combination with belinostat on the proliferation of seven RAS-mutated and four wild-type RAS cell lines, two lung cancer lines and two fibroblast cell lines. In addition, we included the BRAF-mutant cell line H1395, which should also have some dependence on MEK activity. Trametinib in combination with belinostat showed a significant difference in the proliferation of all RAS-mutated lung cancer cells and the BRAF-mutated cell line when compared with either belinostat or trametinib alone (Fig. 1A). On the other hand, the effects of the combined therapy in the four wild-type RAS cell lines were only marginal. Our data suggest that it is KRAS-mutated cells that are more likely to be sensitive to the combined therapy with trametinib and belinostat, compared with RAS wild-type cells. To assess the synergistic effect, we tested cell metabolic activity with the combination and determined the CI using the method of Chou and Talalay (19). Our data showed that the treatment with belinostat and trametinib resulted in reduced cell metabolic activity and CI values of less than 1.0 indicating synergy for Calu-1, H358, and H2347 (Fig. 1B–G).

Inhibition of HDAC and MEK increases total FOXO1 and FOXO3a expression and regulates apoptosis and cell-cycle proteins

To explore the molecular mechanism of reduced cell numbers with HDAC and MEK inhibition in RAS- and BRAF-mutated cancer cells, we examined the protein expression of FOXO1 and FOXO3a, as well as apoptosis-promoting protein BMI and cell cycle proteins p21Cip1 and p27Kip1 by Western blotting (Fig. 2A and B). We also examined levels of these proteins in the fibroblast cell line, IMR-90, which was unaffected by single-agent trametinib and belinostat or the combination after 3 days of treatment (Fig. 1A; Supplementary Fig. S1).
All of the cancer cell lines and the fibroblast cell line expressed the FOXO1 and FOXO3a proteins. Belinostat alone and in combination with trametinib clearly increased total FOXO1 in all five of the cell lines and in the fibroblast line (Fig. 2A; Supplementary Fig. S1). Total FOXO3a protein was increased by the combination in all four cancer cell lines, and by trametinib alone in the Calu-1 and H358 cells or belinostat alone in H2347 cells. In the fibroblast cell line, the combination did not increase total FOXO3a protein compared with either single agent, but was still slightly increased above what was seen in untreated cells. Trametinib completely inhibited the phosphorylation of ERK1/2 proteins and belinostat increased the acetylation of histone H3 in all cancer cells. Thus, our findings showed the combination with belinostat and trametinib increases both total FOXO1 and total FOXO3a. We also investigated apoptosis and cell-cycle proteins in six cancer cell lines and the IMR-90 fibroblast cell line by Western blotting because FOXO proteins are known to regulate apoptosis and the cell cycle (Fig. 2B; Supplementary Fig. S1). The effect of drug treatments on the p21^{Kip1} protein were inconsistent, but were always higher in cells treated with either drug, alone or in combination, when compared with untreated cells in five of the six cell lines. The p21^{Kip1} protein showed more consistency and in four of the six cell lines examined was highest in the combination treatment. The most dramatic changes occurred with the apoptosis promoting protein BIM, where in five of the six cell lines BIM levels were highest when the combination therapy was used. The resulting increase in cleaved PARP, which is indicative of cell death through apoptosis, was almost always highest in cells treated with the combination. This was the case in five of the six cancer cell lines tested. In contrast with the cancer cell lines, the combination treatment did not increase the expression of p21^{Kip1} or p27^{Kip1}, BIM, and cleaved PARP in the fibroblast cell line when compared with either single agent alone (Supplementary Fig. S1). However, combination treatment did marginally increase BIM and PARP levels above those seen in untreated cells, and some toxicity with single agent and combination treatments was seen in cultured fibroblasts 5 and 7 days after the start of treatment (Supplementary Fig. S2).
Furthermore, we also performed the apoptosis assay using Annexin V. Trametinib in combination with belinostat showed a significant increase in apoptosis of Calu-1, H358, and H2347 cells when compared with either belinostat or trametinib alone (Fig. 2C). These results suggested that combined therapy with trametinib and belinostat regulates apoptosis through BIM, and, perhaps to a lesser extent, slows cell growth through the upregulation of the cell-cycle inhibitor p27Kip1.

FOXO1 and FOXO3 accumulate in the nucleus with combination treatment and are responsible for the increased cell death through regulation of BIM

To gain a better understanding of the mechanism of cell death with combined therapy, we examined localization of FOXO1 and FOXO3a, transcription factors that can shuttle between the nucleus and the cytoplasm. FOXO1 increased in the nuclear fraction of Calu-1 and H358 cells by treatment with either belinostat alone or in cells receiving combination treatment. This is well above the FOXO1 protein level in the nuclear fraction of untreated cells or cells treated with trametinib alone. FOXO3a, on the other hand, appeared to have the highest level of nuclear accumulation when cells were treated with belinostat in combination with trametinib (Fig. 3A). To assess the FOXO transcriptional activity, we transfected cells with a reporter construct containing a forkhead-responsive element (FHRE) that drives luciferase and treated them with trametinib, belinostat, or the combination. The enhancement of FOXO activity was induced by either belinostat alone or in combination with trametinib with a trend toward higher activity in the combination for three of the five cell lines examined (Supplementary Fig. S3).

To determine further the potential roles of FOXOs, we performed a knockdown of either FOXO1 or FOXO3a by siRNAs that were transfected into Calu-1, H358, and H2347 cells prior to drug treatment (Fig. 3B; Supplementary Fig. S4). In each of the cell lines examined, the knockdown of FOXO1 and FOXO3a increased drug resistance when compared with a non-targeting control (Fig. 3B). We next determined the roles of proapoptotic protein BIM, which is directly activated by FOXO transcription factors, in maintaining cell metabolic activity. To do this, we performed a knockdown of BIM by siRNAs that were transfected into Calu-1, H358, and H2347 cells. BIM siRNAs also increased resistance to the combination of belinostat and trametinib (Fig. 3C; Supplementary Fig. S4).

Figure 2.
Inhibition of MEK and HDACs increases total FOXO1 and FOXO3a expression and regulates cell apoptosis and cell-cycle proteins. A, Tumor cells were treated with belinostat (1,000 nmol/L) and/or trametinib (100 nmol/L) for 4 hours. The cells were lysed and the indicated proteins were detected by immunoblotting. The results shown are representative of three independent experiments. B, Tumor cells were treated with belinostat (1,000 nmol/L) and/or trametinib (100 nmol/L) for 48 hours. The cells were lysed and the indicated proteins were detected by immunoblotting. The results shown are representative of three independent experiments. C, After 48 hours incubation with belinostat (1,000 nmol/L) and/or trametinib (100 nmol/L), cell apoptosis was determined with an Annexin V-FITC Apoptosis Detection Kit I. * P < 0.05 for the combination when compared with the belinostat alone and trametinib alone.
Moreover, the knockdown of either FOXO1 or FOXO3a by siRNAs in Calu-1 cells suppressed the increase of BIM and cleaved PARP compared with control siRNAs when treated with the combination of belinostat and trametinib (Supplementary Fig. S5).

These findings suggest that the FOXO proteins translocate to the nucleus with HDAC and MEK inhibition where they control the expression of the proapoptotic protein BIM, promoting apoptotic death.

The combination of trametinib and belinostat decrease tumor formation in a xenograft model better than either drug alone

We next examined the antitumor potential of belinostat in combination with trametinib using a xenograft mouse model. The KRAS-mutated H358 cell line was implanted into the flanks of immunocompromised nude mice. When tumors reached approximately 100 mm³ mice were treated daily with vehicle, belinostat, trametinib, or the combination. Treatment with either single agent slightly suppressed the growth of H358 tumors. Notably, belinostat in combination with trametinib significantly suppressed the growth of H358 tumors compared to either single agent (P < 0.05 by one-way ANOVA; Fig. 4A; Supplementary Fig. S6A). During treatment with belinostat or trametinib, either alone or in combination, there was no evidence of severe loss in body weight indicating that the combination was well tolerated (Supplementary Fig. S6B). These results suggest that the combination of belinostat and trametinib may provide a potential therapeutic strategy against KRAS-mutated lung cancers.

We checked the protein levels of FOXO1, FOXO3a, p21CIP1, p27KIP1, BIM, and cleaved PARP in the tumors by Western blotting analysis (Fig. 4B). We also confirmed the inhibition of ERK1/2 phosphorylation and the increase in acetylation of Histone H3.

Figure 3.

FOXO1 and FOXO3a protein levels increase in the nuclear fraction with combination treatment and are responsible for the increased cell death through regulation of BIM. A, Tumor cells were treated with belinostat (1,000 nmol/L) and/or trametinib (100 nmol/L) for 4 hours. The cells were lysed to extract nuclear and cytoplasmic fractions using the NE-PER nuclear and cytoplasmic extraction reagents and the indicated proteins were detected by immunoblotting (Supplementary Fig. S4). The percentage of metabolic activity is shown relative to untreated controls. Each sample was assayed in triplicate, with each experiment repeated at least three times independently. B, Control or FOXO1- or FOXO3a-specific siRNAs were introduced into Calu-1, H358, and H2347 cells. After 24 hours, the cells were incubated with belinostat (100 nmol/L) and/or trametinib (10 nmol/L) for 72 hours and metabolic activity was determined by MTT assays. FOXO1 or FOXO3a knockdown was confirmed by immunoblotting (Supplementary Fig. S4). The percentage of metabolic activity is shown relative to untreated controls. Each sample was assayed in triplicate, with each experiment repeated at least three times independently. C, Control or BIM-specific siRNAs were introduced into Calu-1, H358, and H2347 cells. After 24 hours, the cells were incubated with belinostat (100 nmol/L) and/or trametinib (10 nmol/L) for 72 hours and lung cancer cell metabolic activity was determined by MTT assays. BIM knockdown was confirmed by immunoblotting (Supplementary Fig. S4). The percentage of metabolic activity is shown relative to untreated controls. Each sample was assayed in triplicate, with each experiment repeated at least three times independently.
to determine that the drugs were working properly. Similar to the *in vitro* results, we saw increases in total FOXO proteins, cell-cycle inhibitors, and the apoptotic protein BIM. These results clearly indicate the therapeutic benefit of combined therapy with belinostat and trametinib against RAS-mutated H358 cells. To assess the mechanism by which the combination therapy inhibits tumor growth, we performed FOXO3a IHC staining of the tumors. We found that the number of cells containing nuclear FOXO3a increased significantly in the tumors of mice treated with the combination of belinostat and trametinib (Fig. 4C and D). These results suggest that HDAC and MEK inhibition promoted the translocation of FOXO3a protein into the nucleus where it induced apoptosis in mouse xenograft tumors through the upregulation of BIM.

Discussion

Many promising drugs have been developed for NSCLC such as molecular targeted therapies for mutated *EGFR* and *ALK* translocations and immunotherapy. However, despite many years of research and the development of drugs that target various aspects of RAS biology, an effective treatment for RAS-mutant tumors still eludes us. A recent study has shown that KRAS G12C or G12V mutation subgroups tend to have some benefit when compared with other KRAS mutation groups in a phase II trial of the MEK inhibitor selumetinib plus docetaxel in KRAS-mutant NSCLC (20). The option of combining targeted therapies hitting different pathways is promising if we can balance toxicity with efficacy for use in the clinic.
Combined therapy using PI3K/AKT and MEK inhibitors has activity in pre-clinical studies, but this activity seems relatively limited in clinical trials. For instance, the MTD of both AKT inhibitor MK-2206 and selumetinib could not achieve 70% inhibition of their targets in colorectal tumors (21).

Recently, we have demonstrated that LKB1-mutant tumors are sensitive to MEK inhibition irrespective of the RAS status. The mechanism appears to be through activation of the FOXO transcription factors, which regulate many cellular processes, including upregulation of BIM and apoptosis (22). When LKB1 is added back to the cells they become resistant to MEK inhibition due to the translocation of the FOXO transcription factors from the nucleus to the cytoplasm where they are sequestered by 14-3-3 proteins (23, 24). It would be beneficial to keep the FOXO proteins in the nucleus where they are active, because they can induce apoptotic proteins BIM, FASL, and TRAIL. In addition, they promote the expression of cell-cycle inhibitors, p21Cip1, p27Kip1, and p15, and induce cell-cycle arrest (25). Recently, FOXO proteins were reported to have a critical role in drug resistance. The inhibition of FOXO3a induced resistance to anticancer therapeutics, not only to a MEK inhibitor but also to gefitinib and doxorubicin (26, 27).

FOXO3a activity is also frequently attenuated in drug-resistant cancer cells (25). Thus, the control of FOXO activity by increasing nuclear localization is a promising strategy for overcoming drug resistance.

Using the above arguments as a rationale, we focused on using FOXOs as a potential therapeutic target to overcome the resistance of MEK inhibitor trametinib. In our previous LKB1 study, we showed that MEK resistance was due to the presence of LKB1 and relocalization of FOXOs (22). In this study, we searched for drug candidates to enhance the activity of transcription factor FOXOs against RAS-mutated lung cancer cells with wild-type LKB1. Some well-known targeted agents were reported to promote the transcription factor activity of FOXO proteins. HDAC inhibitors were identified to activate E2F1/FOXO transcription and enhanced E2F1-induced apoptosis though the FOXO3-dependent pathway in human osteosarcoma cells (28). Another HDAC inhibitor was reported to increase BIM expression though FOXO1 activity, resulting in the increase of apoptosis (15). Besides HDAC inhibitors, the inhibitors of PARP1 or TGF-beta1 were also shown to enhance the translocation of FOXO3a to the nucleus (16, 17). Thus, some agents that target FOXOs for nuclear translocation have already been demonstrated and may be promising drugs to enhance antitumor activity via FOXOs. In this study, we assessed the efficacy of inhibitors of PARP1 and TGF-beta1 in combination with trametinib on cell metabolic activity of RAS-mutated lung cancer cells. However, in this setting, these drugs did not demonstrate synergistic effects when combined with trametinib (unpublished observations).

HDAC inhibitors have been developed for a broad range of human disorders, such as ischemic stroke (29–31), multiple sclerosis, and Huntington’s disease (32–34). Recently, the FDA has approved multiple HDAC inhibitors, such as vorinostat, romidepsin, belinostat, and panobinostat, for hematopoietic tumors. Belinostat, which inhibits pan-HDAC activities, has been approved for patients with relapsed or refractory peripheral T-cell lymphoma in 2014. However, in the solid tumors, previous clinical trials have failed to show the benefit when using an HDAC inhibitor as a single agent, including belinostat (35). Current clinical studies using HDAC inhibitors have moved toward combined therapy with the other agents (36).

It has been reported in several clinical trials that belinostat combined with cytotoxic therapy is active and well tolerated in solid tumors (37, 38). Cell line–based pre-clinical studies have shown synergistic inhibitory effects between MEK1/2 and HDAC inhibitor in human leukemia cells and colorectal cancer cells. We now show that in RAS mutated lung cancer cells, and in one BRAF-mutated cell line, the MEK inhibitor trametinib in combination with the HDAC inhibitor belinostat induce proteins that promote apoptosis and cell-cycle arrest (39, 40). The effect of belinostat in combination with trametinib appears to regulate the expression and activation of both FOXO1 and FOXO3a followed by BIM expression with increased apoptosis of RAS-mutated cells. There does appear to be some toxicity in cultured fibroblast cells when they are treated for longer periods of time. However, the combination seemed to be well tolerated in the mice. This caveat suggests that we should pay close attention to the therapeutic window with chronic dosing for clinical development.

Our findings suggest that HDAC and MEK inhibition promotes an increase in FOXO1 and FOXO3a protein levels and higher transcriptional activity through increased nuclear accumulation. The dual molecular targeted therapy for HDAC and MEK may be promising as novel therapeutic strategy in RAS-mutated lung cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: T. Yamada, J.M. Amann, D.P. Carbone
Development of methodology: T. Yamada, J.M. Amann, T. Shukuya, D.P. Carbone
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.M. Amann, A. Tanimoto, H. Taniguchi, T. Shukuya, C. Timmers, K. Shilo
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): T. Yamada, A. Tanimoto, H. Taniguchi, S. Yano, D.P. Carbone
Writing, review, and/or revision of the manuscript: T. Yamada, J.M. Amann, T. Shukuya, C. Timmers, D.P. Carbone
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Tanimoto, K. Shilo, D.P. Carbone
Study supervision: J.M. Amann, D.P. Carbone

Acknowledgments

We appreciate the gift of the Calu-1, Calu-6, H1299, H2009, H2347, H358, and H441 cells that were provided by John Minna and Luc Girard (University of Texas, Southwestern, Dallas, TX).

This study was supported by the DallePezze Thoracic Oncology Fund and NIBF funding [5U10CA180950; to D.P. Carbone], and a research grant for developing innovative cancer chemotherapy from the Kobayashi Foundation for Cancer Research and Foundation for Promotion of Cancer Research in Japan (to T. Yamada).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 14, 2017; revised August 24, 2017; accepted October 10, 2017; published OnlineFirst October 27, 2017.
Reference

1. Paeil KD, Krilov L, Adams S, Agbanjiana C, Basch E, Brose MS, et al. Clinical cancer advances 2013: annual report on progress against cancer from the American society of clinical oncology. J Clin Oncol 2014;32:129–60.

2. Thomas A, Liu SV, Subramaniam DS, Giaccone G. Refining the treatment of NSCLC: according to histological and molecular subtypes. Nat Rev Clin Oncol 2015;12:111–26.

3. Oxnard GR, Binder A, Janne PA. New targetable oncogenes in non–small-cell lung cancer. J Clin Oncol 2013;31:1097–104.

4. Konstantinopoulous PA, Karamouzis MV, Papavasiouli AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 2007;6:541–55 in KRAS-mutant advanced non-small-cell lung cancer. Cancer Res 2002;62:6977–7000.

5. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561–7.

6. Shirgennath H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in non–small-cell lung cancer. J Natl Cancer Inst 2005;97:339–46.

7. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291–310.

8. Miyashita T, Wallach D, Marks J, Li A, Chitale DA, et al. BRCA1 and RAS mutations in human lung cancer and melanoma. Cancer Res 2002;62:6977–7000.

9. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291–310.

10. Yang Y, Zhao Y, Liao W, Yang J, Wu L, Zheng Z, et al. Acetylation of FoxO1 oxidant stress in diabetic nephropathy. Exp Physiol 2013;98:934–43.

11. Yamada T, Takeuchi S, Fujita N, Nakamura A, Wang W, Li Q, et al. Akt and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 2008;14:5731–4.

12. Liu T, Solomon D, Li U, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 2016;351:604–8.

13. Blumenschein GR Jr, Smit EF, Planchar D, Kim DW, Cadranel J, De Pas T, et al. A randomized phase II study of the MEK1/II inhibitor trametinib (GSK1120212) compared with dacarbazine in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 2015;26:894–901.

14. Janne PA, Shaw AT, Pereira JR, Jeannin G, Vandenekste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 2014;15:38–47.

15. AstraZeneca provides update on phase III trial of selumetinib in non–small cell lung cancer. Available from: http://www.prnewswire.com/news-releases/astraZeneca-provides-update-on-phase-iii-trial-of-selumetinib-in-non-small-cell-lung-cancer-300310826.html.

16. Yang Y, Zhao Y, Liao W, Yang J, Wu L, Zheng Z, et al. Acetylation of FoxO1 activates BIM expression to induce apoptosis in response to histone deacetylase inhibition and heat shock protein 90 inhibition. J Neurochem 2004;89:1358–67.

17. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.

18. Farago A, Pancani T, Formentini L, Mascagni P, Fossati G, Leone F, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 2006;70:876–84.

19. Camelo S, Igleisas AH, Hwang D, Due B, Ryu H, Smith K, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2005;164:10–21.

20. Jia H, Morris CD, Williams RM, Loring JF, Thomas EA. HDAC inhibition imparts beneficial transgenic effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 2015;112:E56–64.

21. Karantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008;7:854–68.

22. Ramalingam SS, Belani CP, Ruel C, Frankel P, Gutfit B, Koczywas M, et al. Phase II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: a clinical and translational study. Clin Cancer Res 2015;21:627–35.

23. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984;22:27–55.

24. Janne PA, Smith ME, McWalter G, Mann H, Dougherty B, Walker J, et al. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non–small-cell lung cancer. Br J Cancer 2015;113:199–203.

25. Do K, Speranza G, Bishop R, Khin S, Rubinstein I, Kinders RJ, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs 2015;33:720–8.

26. Kaufman JM, Yamada T, Park K, Timmers C, Amann JM, Carbone DP. A transcriptional signature of LKB1 loss identifies LKB1 functional status as a novel determinant of MEK sensitivity. Cancer Res 2017;77:153–163.

27. Hennemini A, Markie D, Tomlison I, Arzeniye E, Rosh S, Lounoka A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998;391:184–7.

28. Jenne DE, Reimann H, Nezu J, Friedel W, Looff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine/threonine kinase. Nat Genet 1998;18:384–9.

29. Lamm EW, Brosem JL, Gomes AR, Koo CY. Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 2013;13:482–95.

30. McCovern UB, Francis RE, Peck B, Guest SK, Wang J, Nyatt SS, et al. Gefitinib (Iressa) resuppresses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 2009;8:542–9.

31. Zhou Y, Liang C, Xue F, Chen W, Zhi X, Feng X, et al. Salinomycin decreases doxorubicin resistance in hepatocellular carcinoma cells by inhibiting the β-catenin/TCF complex association via FOXO3A activation. Oncotarget 2015;6:10350–6.

32. Shats I, Gatza ML, Liu B, Angus SP, You L, Nevins JR. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res 2013;73:6056–67.

33. Rem N, Leng Y, Jeong M, Leeks PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischaemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004;89:1358–67.

34. Kim HK, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.

35. Caruso R, Pancani T, Formentini L, Mascagni P, Fossati G, Leone F, et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 2006;70:876–84.

36. Karantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008;7:854–68.

37. Ramalingam SS, Belani CP, Ruel C, Frankel P, Gutfit B, Koczywas M, et al. Phase II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: a clinical and translational study. Clin Cancer Res 2014;20:5392–402.

38. Lassen U, Molife LR, Sorensen M, Engelholm SA, Vidal L, Sinha R, et al. A phase I/II trial of belinostat administered in combination with carboplatin and/or paclitaxel in patients with solid tumours. Br J Cancer 2010;103:12–7.

39. Yu C, Dasmahapatra G, Dent P, Grant S. Synergistic interactions between MEK1/2 and histone deacetylase inhibitors in BCR/ABL + human leukemia cells. Leukemia 2005;19:1579–89.

40. Morelli MP, Tendent JJ, Kulikowski GN, Tan AC, Bradshaw-Pierce EI, Pitts TM, et al. Preclinical activity of the rational combination of selumetinib (AZD6244) in combination with vorinostat in KRAS-mutant colorectal cancer models. Clin Cancer Res 2012;18:1051–62.