THE CLASSIFICATION OF HYPERELLiptIC THREEFOLDS

FABRIZIO CATANese AND ANDREAS DEMLEITNER

Abstract. We complete the classification of hyperelliptic threefolds, describing in an elementary way the hyperelliptic threefolds with group D_4. These are algebraic and form an irreducible 2-dimensional family.

Introduction

A Generalized Hyperelliptic Manifold X is defined to be a quotient $X = T/G$ of a complex torus T by the free action of a finite group G which contains no translations. We say that X is a Generalized Hyperelliptic Variety if moreover the torus T is projective, i.e., it is an Abelian variety A.

The main purpose of the present paper is to complete the classification of the Generalized Hyperelliptic Manifolds of complex dimension three. The cases where the group G is Abelian were classified by H. Lange in [La01], using work of Fujiki [Fu88] and the classification of the possible groups G given by Uchida and Yoshihara in [UY76]: the latter authors showed that the only possible non Abelian group is the dihedral group D_4 of order 8. This case was first excluded but it was later found that it does indeed occur (see [CD18] for an account of the story and of the role of the paper [DHS08]). Our paper is fully self-contained and show that the family described in [CD18] gives all the possible hyperelliptic threefolds with group D_4.

Our main theorem is the following

Theorem 0.1. Let T be a complex torus of dimension 3 admitting a fixed point free action of the dihedral group

$$G := D_4 := \langle r, s \mid r^4 = 1, s^2 = 1, (rs)^2 = 1 \rangle,$$

such that $G = D_4$ contains no translations.

Then T is algebraic. More precisely, there are two elliptic curves E, E' such that:

1. T is a quotient $T := T'/H$, $H \cong \mathbb{Z}/2$, where

$$T' := E \times E \times E' =: E_1 \times E_2 \times E_3,$$

$$H := \langle \omega \rangle, \quad \omega := (h + k, h + k, 0) \in T'[2],$$

and h, k are 2-torsion element $h, k \in E[2]$, such that $h, k \neq 0, h + k \neq 0$;

\[\text{Date: December 27, 2018.}\]
\[\text{AMS Classification: 14K99, 14D99, 32Q15}\]
\[\text{The present work took place in the framework of the ERC Advanced grant n. 340258, \textquoteleft TADMICAMT\textquoteright.}\]
(II) there is an element \(h' \in E' \) of order precisely 4, such that, for \(z = (z_1, z_2, z_3) \in T' \):
\[
 r(z) = (z_2, -z_1, z_3 + h') = R(z_1, z_2, z_3) + (0, 0, h'),
 s(z) = (z_1 + h, -z_2 + k, -z_3) = S(z_1, z_2, z_3) + (h, k, 0).
\]
Conversely, the above formulae give a fixed point free action of the dihedral group \(G = D_4 \) which contains no translations.
In particular, we have the following normal form:
\[
 E = \mathbb{C}/(\mathbb{Z} + Z \tau), \quad E' = \mathbb{C}/(\mathbb{Z} + Z \tau'), \quad \tau, \tau' \in H := \{ z \in \mathbb{C} | \text{Im}(z) > 0 \},
 h = 1/2, k = \tau/2, h' = 1/4
 r(z_1, z_2, z_3) := (z_2, -z_1, z_3 + 1/4)
 s(z_1, z_2, z_3) := (z_1 + 1/2, -z_2 + \tau/2, -z_3).
\]
In particular, the Teichmüller space of hyperelliptic threefolds with group \(D_4 \) is isomorphic to the product \(\mathbb{H}^2 \) of two upper halfplanes.

1. Proof of the main theorem

We use the following notation: \(T = V/\Lambda \) is a complex torus of dimension 3, which admits a free action of the group
\[
 G = \langle r, s \rangle^4 = s^2 = (rs)^2 = 1 \cong D_4,
\]
such that the complex representation \(\rho: G \to \text{GL}(3, \mathbb{C}) \) is faithful.
A first observation is that the complex representation \(\rho \) of \(G \) must contain the 2-dimensional irreducible representation \(V_1 \) of \(G \) (else, \(\rho \) would be a direct sum of 1-dimensional representations: this, by the assumption on the faithfulness of \(\rho \), would imply that \(G \) is Abelian, a contradiction).
Hence we have a splitting \(V = V_1 \oplus V_2 \),
where \(V_2 \) is 1-dimensional, and we can choose an appropriate basis so that, setting \(\hat{R} := \rho(r), S := \rho(s) \), we are left with the two cases

Case 1: \[
 R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 \end{pmatrix},
\]

Case 2: \[
 R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\]

which are distinguished by the multiplicity of the eigenvalue 1 of \(S \).
Indeed \(R \) is necessarily of the form above, since the freeness of the \(G \)-action implies that \(\rho(g) \) must have eigenvalue 1 for every \(g \in G \).

Lemma 1.1. In both Cases 1 and 2, the complex torus \(T = V/\Lambda \) is isogenous to a product of three elliptic curves, \(T \sim \text{iso}. E_1 \times E_2 \times E_3 \), where \(E_i \subset T \), for \(i = 1, 2, 3 \) and \(E_1 \) and \(E_2 \) are isomorphic elliptic curves. In other words, writing \(E_j = W_j/\Lambda_j \), the complex torus \(T \) is isomorphic to
\[
 (E_1 \times E_1 \times E_3)/H, \quad H = \Lambda/(\Lambda_1 \oplus \Lambda_2 \oplus \Lambda_3).
\]
Proof. Let I be the identity of T.
In Case 1, we set $E := \ker(S - I)^0 = \text{im}(S + I)$, $E_3 := \ker(R - I)^0$ and
$E_2 := R(E_1)$ (here, the superscript zero denotes the connected component of
the identity). Then it is clear that $E_1 \cong E_2$, and that T is isogenous to
$E_1 \times E_2 \times E_3$.
In Case 2, we define similarly $E_2 := \ker(S + I)^0 = \text{im}(S - I)$, $E_3 := \ker(R -
I)_0$ and $E_1 := R(E_2)$. We obtain again $E_1 \cong E_2$, and that T is isogenous to
$E_1 \times E_2 \times E_3$.

\[\square \]

Lemma 1.2. Writing $E_j = W_j/\Lambda_j$, the following statements hold.

1. In Case 1, the lattice Λ_2 is equal to $W_2 \cap \Lambda$.
2. In Case 2, the lattice Λ_1 is equal to $W_1 \cap \Lambda$.

Proof. (1) Obviously, $E_2 = R(E_1) = W_2/R(\Lambda_1)$, i.e., $\Lambda_2 = R(\Lambda_1) \subset W_2 \cap \Lambda$.
On the other hand, $R(W_2 \cap \Lambda) \subset W_1 \cap \Lambda = \Lambda_1$, and applying the automorphism R of Λ gives $W_2 \cap \Lambda \subset R(\Lambda_1) = \Lambda_2$.

(2) Here, $E_1 = R(E_2) = W_1/R(\Lambda_2)$, i.e., $\Lambda_1 = R(\Lambda_2) \subset W_1 \cap \Lambda$. For the converse inclusion, observe $R(W_1 \cap \Lambda) \subset W_2 \cap \Lambda = \Lambda_2$, and applying R yields again the result.

We can now choose coordinates on V such that r is induced by a transformation of the form
\[r(z_1, z_2, z_3) = (z_2, -z_1, z_3 + c_3), \]
by choosing as the origin in V_1 a fixed point of the restriction of r to V_1.
We can now view r, s as affine self maps of T induced by affine self maps of
$E_1 \times E_2 \times E_3$ of the form
\[r(z_1, z_2, z_3) = (z_2, -z_1, z_3 + c_3), \]
\[s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, \pm z_3 + a_3), \]
and sending the subgroup H to itself.

Lemma 1.3. The freeness of the action of the powers of r is equivalent to: H contains no element with last coordinate equal to c_3, or $2c_3$.
Moreover, $(0, 0, 4c_3) \in H$.

Proof. $r(z) = z$ is equivalent to $(z_1 - z_2, z_1 + z_2, -c_3) \in H$. However, the endomorphism
\[(z_1, z_2) \mapsto (z_1 - z_2, z_1 + z_2) \]
of $E_1 \times E_2$ is surjective, hence H cannot contain any element with last coordinate equal to c_3.
Since $r^2(z) = (-z_1, -z_2, z_3 + 2c_3)$, $r^2(z) = z$ is equivalent to $(-2z_1, -2z_2, 2c_3) \in
H$, and we reach the similar conclusion that H cannot contain any element with last coordinate equal to $2c_3$.
Finally, the condition that r^4 is the identity is equivalent to $(0, 0, 4c_3) \in H$.

\[\square \]

Proposition 1.1. Case 2 does not occur.
Proof. Since we assume that
\[s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, z_3 + a_3), \]
and that \(s^2 \) is the identity, it must be
\[(2a_1, 0, 2a_3) \in H. \]
Consider now \(rs \):
\[rs(z) = (-z_2 + a_2, -z_1 - a_1, z_3 + a_3 + c_3). \]
The condition that \((rs)^2\) is the identity is equivalent to:
\[(a_1 + a_2, -(a_1 + a_2), 2(a_3 + c_3)) \in H. \]
This condition, plus the previous one, imply that
\[(a_2 - a_1, -(a_1 + a_2), 2c_3) \in H, \]
contradicting Lemma 1.3. □

Henceforth we shall assume that we are in Case 1, and we can choose the
origin in \(E_3 \) so that
\[s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, -z_3). \]

Lemma 1.4. If
\[s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, -z_3), \]
then
\[(2a_1, 0, 0) \in H \]
and \(H \) contains no element of the form
\[(a_1, w_2, w_3). \]

Proof. The first condition is equivalent to \(s^2 \) being the identity, while the
second is equivalent to the condition that \(s \) acts freely, since \(s(z) = z \) is
equivalent to \((a_1, -2z_2 + a_2, -2z_3) \in H. \)

\[\square \]

Proposition 1.2. For each \(\lambda \in \Lambda \) there exist \(\lambda' \in \Lambda, \lambda_1 \in \Lambda_1, \lambda_2 \in \Lambda_2, \lambda_3 \in \Lambda_3 \), such that
\[2\lambda = \lambda_1 + \lambda', \quad 2\lambda' = \lambda_2 + \lambda_3 \]
More precisely, we even have:
\[\Lambda \subset (1/2)\Lambda_1 + (1/2)\Lambda_2 + (1/4)\Lambda_3. \]

Proof. Let \(\lambda \in \Lambda \): we can write
\[2\lambda = (I + S)\lambda + (I - S)\lambda. \]
Furthermore, since \(\lambda' \in \text{im}(I - S) \), we obtain
\[2\lambda' = (I + R^2)\lambda' + (I - R^2)\lambda' \]
Hence, \(\lambda = \frac{\lambda_1}{4} + \frac{\lambda_2}{4} + \frac{\lambda_3}{4} \) for unique \(\lambda_j \in \Lambda_j. \)
Applying the automorphism R of Λ and the unicity of the λ_j yields the result, since R exchanges Λ_1 and Λ_2.

\[\square \]

Proposition 1.3. We have $\Lambda \subset \frac{1}{2}\Lambda_1 + \frac{1}{2}\Lambda_2 + \frac{1}{2}\Lambda_3$.

Proof. For $\lambda \in \Lambda$ we can write $\lambda = \frac{\lambda_1}{2} + \frac{\lambda_2}{2} + \frac{\lambda_3}{2}$ for unique $\lambda_j \in \Lambda_j$. We now use the property $E_i \hookrightarrow T \Rightarrow \forall (0,0,d) \in H, d = 0$. Indeed, $2\lambda = \lambda_1 + \lambda_2 + \frac{\lambda_3}{2}$, hence $(0,0,[\frac{\lambda_3}{2}]) \in H$ and $\frac{\lambda_3}{2} = 0$ in E_3. Equivalently, there is an element $\lambda'_3 \in \Lambda_3$ with $\lambda_3 = \frac{\lambda'_3}{2}$.

\[\square \]

Lemma 1.5. Consider the transformation rs:

$rs(z) = (-z_2 + a_2, -z_1 - a_1, -z_3 + c_3)$.

The condition that its square is the identity amounts to

$$(a_1 + a_2, -(a_1 + a_2), 0) \in H,$$

while the freeness of its action is equivalent to the fact that H contains no element of the form

$$(w_1 - a_2, w_1 + a_1, w_3) \iff \forall (d_1, d_2, d_3) \in H: \ d_1 + a_2 \neq d_2 - a_1.$$

Proof. The first condition is straighforward, while the freeness of the action is equivalent to the non existence of (z_1, z_2, z_3) such that

$$(z_1 + z_2 - a_2, z_2 + z_1 + a_1, 2z_3 - c_3) \in H.$$

As usual, we observe that for each w_1, w_3 there exist z_1, z_2, z_3 with $z_1 + z_2 = w_1, 2z_3 - c_3 = w_3$.

\[\square \]

We put together the conclusions of Lemmas 1.3, 1.4, 1.5

- (i) $(0, 0, 4c_3) \in H$
- (ii) $(2a_1, 0, 0) \in H$
- (iii) $(a_1 + a_2, -a_1 - a_2, 0) \in H$, hence also $(a_1 - a_2, a_1 + a_2, 0) \in H$.

(1) H contains no element of the form (w_1, w_2, c_3),
(2) nor of the form $(w_1, w_2, 2c_3)$
(3) nor of the form (a_1, w_2, w_3)
(4) nor of the form (w_1, w_2, w_3) with $w_1 + a_2 = w_2 - a_1$.

It follows from (iii) and (3) that $a_2 \neq 0$. While the condition that each element of H which has two coordinates equal to zero is indeed zero (since E_i embeds in T) imply

$2a_1 = 0, 4c_3 = 0$.

By conditions (1), (2), (3) the elements a_1, c_3 have respective orders exactly 2, 4. Moreover:
• (4) and (i) imply that $a_1 + a_2 \neq 0$
• (ii), (iii) and the fact that H has exponent 2 implies $2a_2 = 2a_1 = 0$, $2a_1 + 2a_2 = 0$. Hence $a_1 \neq a_2$ are nontrivial 2-torsion elements.

We have thus obtained the desired elements
\[h := a_1, k := a_2, h' := c_3. \]

It suffices to show that H is generated by $\omega := (h + k, h + k, 0) = (a_1 + a_2, a_1 + a_2, 0)$.

Observe first that $\omega \in H$, by condition (iii).

Condition (4) implies that the first coordinate of an element of H must be a multiple of $(a_1 + a_2)$: since it cannot equal a_1, by condition (3), and if it equals a_2, we can add ω and obtain an element of H with first coordinate a_1. Using R, we infer that both coordinates must be a multiple of $(a_1 + a_2)$.

Possibly adding ω, we may assume that $w_1 = 0$: then by (4) we conclude that also $w_2 = 0$. Finally, the condition that each element of H which has two coordinates equal to zero is indeed zero, show that H is then generated by ω, as we wanted to show.

The last assertions of the main theorem follow now in a straightforward way (see [CC17] concerning general properties of Teichmüller spaces of hyperelliptic manifolds).

REFERENCES

[CC17] F. Catanese, P. Corvaja: Teichmüller spaces of generalized hyperelliptic manifolds. Complex and symplectic geometry, 39-49, Springer INdAM Ser., 21, Springer, Cham (2017).
[CD18] F. Catanese, A. Demleitner: Hyperelliptic Threefolds with group D_4, the Dihedral group of order 8. Preprint (2018), arXiv:1805.01835.
[DHS08] K. Dekimpe, M. Halenda, A. Szczepański: Kähler flat manifolds. J. Math. Soc. Japan 61 (2009), no. 2, 363-377.
[Fu88] A. Fujiki: Finite automorphism groups of complex tori of dimension two. Publ. Res. Inst. Math. Sci., 24 (1988), 1-97.
[La01] H. Lange: Hyperelliptic varieties. Tohoku Math. J. (2) 53 (2001), no. 4, 491-510.
[UY76] K. Uchida, H. Yoshihara: Discontinuous groups of affine transformations of \mathbb{C}^3. Tohoku Math. J. (2) 28 (1976), no. 1, 89-94.