Physical properties and astrometry of radio-emitting brown dwarf TVLM 513-46546 revisited

Marcin P. Gawroński, Krzysztof Goździewski & Krzysztof Katarzyński
Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland

Accepted Received; in original form

ABSTRACT
We present multi-epoch astrometric observations of the M9 ultra-cool dwarf TVLM 513-46546 that is placed at the brown dwarf boundary. The new observations have been performed with the European VLBI Network (EVN) at 6 cm band. The target has been detected at 7 epochs spanning three years, with measured quiescent emission flux in the range 180 – 300µJy. We identified four short-duration flaring events (0.5 – 2 mJy) with very high circular polarization (~75% – 100%). Properties of the observed radio flares support the physical model of the source that is characterized by the electron cyclotron maser instability responsible for outbursts of radio emission. Combined with Very Long Baseline Array (VLBA) earlier data, our detections make it possible to refine the absolute parallax π = 93.27+0.18−0.17 mas. Our measurements rule out TVLM 513-46546 companions more massive than Jupiter in orbits with periods longer than ~ 1 yr.

Key words: radio interferometry—astrometry—star: TVLM 513-46546

1 INTRODUCTION
Investigating properties of astrophysical objects in the Solar neighbourhood is one of the main targets of modern astrophysics regarding stellar and planetary systems statistics. Since low-mass stellar and sub-stellar population is dominant in the local volume, much effort is recently devoted to studies of M-dwarfs and brown dwarfs. These objects are favourable targets to detect their low-mass companions. However, young M-dwarfs are magnetically active, making it very difficult to measure their radial velocities (RV) with the precision required by contemporary planetary surveys (~5 – 50 ms⁻¹), due to variable emission lines and broad molecular spectral features. Therefore ongoing RV surveys focus on M-dwarf samples that are biased towards chromospherically quiet and old objects (e.g., Affer et al. 2016, Astudillo-Defru et al. 2015, Bailey et al. 2009, Rivera et al. 2005). Fortunately, in general M-dwarfs spectral activity has much less impact on astrometric measurements.

Astrometric techniques make it possible to reach targets which also could not be observed by transits. Indeed, the optical/infrared astrometry and direct imaging has recently revealed two sub-stellar companions orbiting a very low-mass star and a brown dwarf (e.g., Sahlmann et al. 2016), see also Sahlmann et al. (2013, 2015). Bowler et al. (2015).

The Very Large Baseline Interferometer (VLBI) technique was already successful for observations of active M-dwarfs at the radio domain (e.g., Pestalozzi et al. 2000). The current performance of the global VLBI systems make it possible to measure the relative positions with sub-mas precision even of very weak radio sources (~100µJy) and brightness temperatures in the range of 10⁶ – 10⁷ K. It provides a unique opportunity to perform astrometric studies of magnetically active low-mass stars placed in the Solar neighbour hood. The Radio Interferometric Planet Search (RIPL) conducted with the Very Long Baseline Array (VLBA) demonstrates excellent new VLBI capabilities (Bower et al. 2009, 2011).

In this work, we present new results derived in the framework of Radio-Interferometric Survey of Active Red Dwarfs (RISARD) project Gawronski et al. (2013). Similar to RIPL, RISARD is an astrometric survey conducted with the EVN, which is dedicated for observations of very young, low-mass magnetically active M-dwarfs. Our targets are placed within 10–15 pc from the Sun. Here, we focus on a nearby brown dwarf TVLM 513-46546 (Tinney et al. 1995, hereafter TVLM 513) placed at the distance of 0.76 ± 0.03 pc (Forbrich et al. 2013).

The paper is structured as follows. After this introduction, we present a characterisation of the target and its radio-emission in Section 2. Section 3 is devoted to our follow-up EVN astrometric observations of this object. They extend the time-window by three times to ~7 years between March, 2008 and March, 2015 and span 14 epochs, hence they double the number of high-precision astrometric positions in Forbrich et al. (2015). A formulation of our improved astrometric model and the results for all available astrometric measurements are presented in Sect. 4. We constrain the mass range and orbital period of a putative sub-stellar or planetary companion of TVLM 513. The new observations are useful for the astrophysical characterization of the target discussed in Sect. 5. The paper ends with conclusions.
Ultra-cool dwarfs (spectral class M7 and cooler) attract a great interest as boundary objects between stars and brown dwarfs. Since the discovery of intense, non–thermal radio emission from stars at the low-mass end of the main sequence (Berger et al. 2001; Berger 2002), the ongoing radio surveys of ultra-cool dwarfs was the detection of periodic 100% circularly polarized pulses (Hallinan et al. 2007; 2008). Observations by Hallinan et al. (2007) of TVLM 513 showed that electron cyclotron maser emission is responsible for 100% circularly polarized periodic pulses what implies ~kG magnetic field strengths in a large-scale stable magnetic configuration. This agrees with the measured ~kG magnetic field strengths for ultra-cool dwarfs via Zeeman broadening observations (Reiners & Basri 2007). Very recently, Hallinan et al. (2013) detected radio and optical auroral emissions powered by magnetospheric currents from ultra-cool dwarf LSRJ1835+3259 what supports the hypothesis of large-scale magnetic fields present in ultra-cool dwarfs. Yet it is still unclear which physical mechanism (incoherent or coherent) is responsible for the quiescent component of the radio emission. The incoherent gyrosynchrotron emission was proposed as the explanation of this emission by a few authors (e.g. Berger 2006; Östen et al. 2006). Recent detections of high frequency radio emission from ultra-cool dwarf DE-NIS 1048-3956 at 18 GHz (Ravi et al. 2011) and TVLM 513 at 95 GHz (Williams et al. 2013) strongly support this explanation at least in these two cases.

The observed radio luminosity of detected ultra-cool dwarfs shows an excess when compared with the well-known empirical Güdel–Benz relation between radio and X-ray luminosity, L_{radio} and L_X, respectively, which reads as $L_{\text{radio}}/L_X \sim 5$ for magnetically active stars (Güdel & Benz 1993). The theoretical model explaining the Güdel–Benz relation assumes chromospheric evaporation (Allred et al. 2006). In this scenario, the X-ray emission results from the heating and evaporation of chromospheric plasma caused by non-thermal beamed electrons, which produce gyrosynchrotron radio emission (Neupert 1968). All ultra-cool dwarfs detected in the radio bands contravene the Güdel–Benz relation by orders of magnitude. This suggests that the chromospheric evaporation model is not valid for these objects.

TVLM 513-46546 is an M9 ultra-cool dwarf placed just at the brown dwarf boundary (Hallinan et al. 2006). Due to its wide activity spanning from the radio-domain to the X-rays, TVLM 513 is one of the most intensively studied ultra-cool dwarfs. The Baraffe models (Baraffe et al. 2003) estimate the mass of TVLM 513 in the range 0.06–0.08 M_\odot, and its radius $\sim 1.0 R_\odot$ for ages older than 0.5 Gyr. Wolczan & Route (2014) estimated the rotation period ~ 1.96 hr using techniques similar to pulsar timing. TVLM 513 exhibits a variable Hz emission and a lack of Li at 670.8 nm (Reid et al. 2002). The Hz emission changes moderately with time, indicating some chromospheric activity. The observed radio emission suggests a multipolar magnetic field, with the strength as high as 3 kG (Hallinan et al. 2006). TVLM 513 is also the first ultra-cool dwarf detected with the use of VLBI technique (Forbrich & Berger 2009) observed this object with the VLBA at 8.5 GHz using the inner seven stations. They recorded unresolved emission from TVLM 513. With the higher spatial resolution allowed by the whole VLBA network, the source appears marginally resolved with a low signal-to-noise ratio.
Astrometry and astrophysics of TVLM 513 revisited

Figure 1. Examples of detections in our observational campaign. Top left: TVLM 513, top right: J1455+2131, bottom left: J1504+2218. All presented radio maps are based on the data derived during epoch EG082A. The first contour corresponds to the detection limit of $\simeq 3\sigma$. Subsequent contour levels are multiplied by a factor of 2. The in-sets show the size of the restoring beam. Bottom right: a typical TVLM 513 observation uv-plane coverage (also for EG082A).

TVLM 513 and J1504+2218 were then measured by fitting Gaussian models, using AIPS task JMFIT and are presented in Tab. 2. In order to study the radio-emission variability of TVLM 513, we reconstructed its light curves using AIPS task DFTPL. Before the application of DFTPL, we searched for background objects within 3″×3″ around TVLM 513 position and none were found. If a background object would be detected then the resulting source model should be subtracted from the visibility data. Its side-lobes and shape changes of the synthesized beam could result in flux variations over the radio map and they might “contaminate” the real variability or even may generate a false signal.

Understanding sources of uncertainties of astrometric VLBI observations is crucial for their correct estimation. There are a few origins of systematic errors, like the residual phase in phase-referencing, sub-mas changes of the phase calibrator structures, or differences between optical path lengths for the target and the phase...
Table 1. The observational log of our astrometric survey of TVLM 513.

Project code	Date	Epoch (JD-2450000)	Conv beam [mas]	[deg]
EG053a	2011 Mar 11 04:07–05:29	5631.7001	9.4×7.4	-70
EG053b	2011 Mar 12 03:53–05:14	5632.6899	10.2×9.2	26
EG065D	2012 Oct 9 13:11–14:20	6210.0705	8.7×5.7	-59
EG065E	2012 Nov 14 07:51–09:25	6245.8597	9.6×5.3	-41
EG082A	2013 Dec 4 05:29–07:37	6630.7729	9.2×5.2	-46
EG082D	2014 Jun 24 21:28–23:42	6823.4410	11.7×5.2	50
EG082E	2015 Mar 25 06:05–08:28	7106.8031	15.8×4.6	64

Table 2. Astrometric position measurements and radio fluxes of TVLM 513 and J1504+2218 collected during the survey. Astrometric uncertainties are formal errors of the AIPS best-fitting target’s positions and do not include any systematic effects.

Project code	TVLM 513 position	TVLM 513	J1504+2218			
EG053a	α (J2000)	Δα [mas]	δ (J2000)	Δδ [mas]	S$_{5\text{GHz}}$ [μJy]	S$_{5\text{GHz}}$ [mJy]
EG053b	0.63	22 50 01.42752	0.45	665±51	66.5±1.3	
EG065D	0.23	22 50 01.26789	0.18	331±41	331±1.4	
EG065E	0.32	22 50 01.24179	0.32	360±45	360±1.3	
EG082A	0.30	22 50 01.17079	0.27	269±41	269±0.8	
EG082D	0.47	22 50 01.25355	0.40	227±42	227±0.7	
EG082E	0.57	22 50 01.17645	0.35	226±37	226±0.8	

Figure 3. Radio maps of TVLM 513 based on the observational data collected during RISARD project. The first contour corresponds to the detection limit of $\approx 3\sigma$. Successive contour levels are multiplied by a factor of 2. The + symbol marks the measured position and the × symbol represents the model position at the epoch of observations, respectively.

4 ASTROMETRIC MODEL AND ITS OPTIMIZATION

To determine the parallax and components of the proper motion, we apply a general, 7-element astrometric model with the secular uncertainties in order to obtain the reduced $\chi^2 = 1$ (e.g., Chibueze et al. 2014, Forbrich et al. 2013). Additional interferometric observations of compact extragalactic sources spread over the sky are used to measure broad-band delays (Reid et al. 2009). It should be also mentioned that properties of M-dwarf radio emission could result in further scatter of astrometric measurements. Benz et al. (1998) showed that the radio corona of an active M-dwarf UV Cet B varies in size and position during a large radio flare. However, the impact of flaring events on the radio astrometry could be reduced if it is possible to remove such events from the analysis and the quiescent emission is strong enough to obtain radio images with reasonable SNR $\gtrsim 5$. We detected strong ~ 1 mJy, circularly polarized flares which occurred during our observations (see Sect. 5 for details). These events spanned short time intervals ($t \lesssim 3$ min) in comparison with the duration of observations (~ 2 hrs of integration time per epoch). Therefore we decided to not remove the identified flares from the mapping process.

Here we present a different, systematic statistical approach to the proper optimization of astrometric model, Eqs. (1)–(2) in the presence of unspecified error factors. It is based on the maximal likelihood function and Markov Chain Monte Carlo (MCMC) exploration of the parameters space. The error floor estimated in this way accounts for different systematic effects, spanning atmospheric phase effects, a possible binarity of the target, and the motion of unseen, low-mass companions.
Astrometry and astrophysics of TVLM 513 revisited

Figure 2. Radio maps of TVLM 513 based on data collected during RISARD project. The first contour corresponds to the detection limit of ≈ 3σ. Successive contour levels are multiplied by a factor of 2. The + symbols mark the measured positions, and the × symbols represent the model astrometric position at the particular epoch of observations, respectively.

acceleration terms:

\[\alpha(t_i) = \alpha_0 + \mu_\alpha (t_i - t_0) + \pi_\alpha (t_i, \alpha, \delta) + \sigma_\alpha (t_i - t_0)^2, \]

\[\delta(t_i) = \delta_0 + \mu_\delta (t_i - t_0) + \pi_\delta (t_i, \alpha, \delta) + \sigma_\delta (t_i - t_0)^2, \]

where \((\alpha_0, \delta_0)\) are the target’s ICRF coordinates and \((\mu_\alpha, \mu_\delta)\) are components of the proper motion at the initial epoch \(t_0\), respectively; \((\pi_\alpha, \pi_\delta)\) are the parallax factors (i.e., the parallax \(\pi\) projected onto the coordinates axes), and \((\sigma_\alpha, \sigma_\delta)\) are components of the secular acceleration relative to the initial epoch \(t_0\). The secular acceleration terms are included to express a possible long-term perturbation to the inertial motion of the target and/or the perspective (geometric) acceleration. We considered also 5-elements model without the acceleration terms. (It will be explained below that in fact our 5- or 7-parameter models are optimized with an additional parameter scaling measurements errors).

To get rid of \((\alpha, \mu_\alpha)\) and \((\delta, \mu_\delta)\) correlations, we choose the initial epoch \(t_0\) as the mean of all observational epochs \(t_i\) weighted by uncertainties \(\sigma_i\) (i = 1, ..., N),

\[t_0 = \frac{\sum_i w_i t_i}{\sum_i w_i}, \quad w_i = \frac{1}{\sigma_i}. \]

Since our preliminary fits revealed \(\chi^2 \sim 2\) suggestive for underestimated uncertainties, we optimized the maximum likelihood function \(\mathcal{L}\):

\[\log \mathcal{L} = -\frac{1}{2} \sum_{j} \frac{(O-C)_{ij}^2}{\sigma_{ij}^2} - \frac{1}{2} \sum_{j} \log \sigma_{ij}^2 - \frac{1}{2} M \log 2\pi, \]

where \((O-C)_{ij}\) is the (O-C) deviation of the observed \(\alpha(t_i)\) or \(\delta(t_i)\) at epoch \(t_i\) from its astrometric ephemeris, and their uncertainties are \(\sigma_{ij}^2 \rightarrow \sigma_{ij}^2 + \sigma_f^2\) with a parameter \(\sigma_f\) scaling raw uncertainties (the error floor), and \(j = 1, \ldots, M\) where \(M = 2N\) is the total number of \((\alpha, \delta)\) measurements. We assume that uncertainties \(\sigma_{ij}\) are Gaussian and independent. By introducing the scaling of uncertainties, we aim to determine the error floor in a self-consistent manner, instead of fixing it a’posteriori, as in Forbrich et al. (2013).

Combined 7 VLBA measurements in Forbrich & Berger (2009) and Forbrich et al. (2013) with our 7 EVN detections result in 28 \((\alpha, \delta)\)-datums, spanning \(\Delta t = 2550.9222\) days. Given raw uncertainties in this data set, we computed the initial epoch \(t_0 = JD 2455424.19763\) in accord with Eq. 3.

We optimized the log \(\mathcal{L}\) function indirectly with the Markov Chain Monte Carlo (MCMC) technique. We determine the posterior probability distribution \(P(\xi | D)\) of astrometric model parameters \(\xi \equiv [\alpha_0, \delta_0, \pi, \mu_\alpha, \mu_\delta, \sigma_f, \sigma_{ij}]\) in Eqs. 1–2 given the data set
\[D \] of all astrometric observations (understood as \(\alpha_i \) and \(\delta_i \) components): \[P(\xi | D) \propto P(\xi) P(D | \xi), \] where \(P(\xi) \) is the prior, and the sampling data distribution \(P(D | \xi) \equiv \log L(\xi, D). \) For all parameters, besides the acceleration terms, we define priors as flat (or uniform improper) by placing limits on model parameters, i.e., \(\alpha_0 > 0, \delta_0 > 0, \mu_0 > 0, \mu_6 > 0, \pi > 0 \) and \(\sigma_f > 0. \) For the acceleration terms, which magnitude is unspecified, we applied the Jeffreys prior:

\[P(\xi) = \frac{1}{\xi_{\text{min}} + \xi}, \]

where \(\xi_{\text{min}} \) is a small value to avoid underflows.

To perform the MCMC sampling of the posterior, we used the affine-invariant ensemble MCMC sampler (Goodman & Weare 2010) encoded in a great EMCEE package and developed by Foreman-Mackey et al. (2013). To compute the parallax factors, we used the DE405 ephemeris and subroutines from the NOVAS package (Kaplan et al. 2012).

We performed a number of experiments by increasing the MCMC chain lengths up to 512,000 samples. The posterior probability distribution for the 5-elements model is illustrated Fig. 4. It shows one- and two-dimensional projections of the posterior for all free parameters of the model. A well defined solution is apparent. No significant parameter correlations are present. The best-fitting parameter values and their uncertainties estimated between the 16th and 86th percentile are displayed in Tab. 3 and the on-sky motion of the target is illustrated in Fig. 5. The residuals to the 5-parameter model are illustrated in Fig. 6. The best-fitting solution exhibits the error floor as large as 0.43 mas, which is roughly two times larger than estimated by Forbrich et al. (2013) for their VLBA observations alone.

Given the astrometric residuals to the 5-parameter model, we may estimate the mass range of a hypothetical companion, which could be present below the detection limit. Assuming that such a companion exists in a circular Keplerian orbit with semi-major axis \(a \), orbital period \(P_\text{orb} \), and mass \(m_p \), such a body would cause the reflex motion of the target around the barycenter with an angular semi-amplitude of:

\[\Theta = \frac{m_m}{m_\star} \left[\frac{P_\text{orb}^2}{4\pi^2} k^2 \left(m_p + m_\star \right) \right]^{-1/3}, \tag{5} \]

where \(m_\star \) and \(m_p \) are the masses of the star and its companion, respectively, \(k^2 \) is the Gauss gravitational constant and \(P_\text{orb} \) is the orbital period of the companion, see also Forbrich et al. (2013). For a known or assumed mass of the binary and given its orbital period and angular separation \(\Theta \) from the primary, this relation may be solved w.r.t. \(m_p \). Parametric plots \(m_p \equiv m_p(P_\text{orb}, \Theta) \) for a few border-line angular separations are shown in Fig. 7. Corresponding mass detection levels for a few characteristic objects are labelled.

Unfortunately, the sampling and relatively low astrometric accuracy of our EVN measurements does not make it possible to resolve any clear, systematic reflex motion of the primary (the right panel of Fig. 6).

Moreover, astrometric positions at two epochs of EG053b and EG082E (Fig. 5) deviate by \(\approx 1-2 \) mas from the 5-parameter model. These excessively large discrepancies could be most likely explained through pure observational and local effects. During EG053b (12-th of March, 2011) a strong geomagnetic storm was present in the Earth ionosphere and the aurora was visible all above Europe. At the EG082E epoch, TVLM 513 elevation for the Euro-

Table 3. Parameters of the best-fitting solution at the middle-arc epoch \(t_0=\text{JD 2455424.19763}. \)

parameter	5-element fit	7-element fit
\(\sigma_0 \)	\(15^h01^{m}08^{s}.15219^{0}00009 \pm 0.00010 \)	\(15^h01^{m}08^{s}.15219^{0}00009 \pm 0.00010 \)
\(\delta_0 \)	\(22^\circ50'1''.42470^{0}00075 \pm 0.00070 \)	\(22^\circ50'1''.42470^{0}00013 \pm 0.00014 \)
\(\mu_0 \) \([\text{mas}^{-1}] \)	\(-43.22^{+0.08}_{-0.07} \)	\(-43.13^{+0.08}_{-0.07} \)
\(\mu_6 \) \([\text{mas}^{-1}] \)	\(-65.60^{+0.08}_{-0.07} \)	\(-65.50^{+0.08}_{-0.07} \)
\(a_0 \) \([\text{mas} \text{yr}^{-2}] \)	—	\(-12.5^{+5}_{-4.8} \)
\(a_6 \) \([\text{mas} \text{yr}^{-2}] \)	—	\(-11.3^{+5}_{-4.5} \)
parallax \(\pi \) \([\text{mas}] \)	\(93.17^{+0.21}_{-0.20} \)	\(93.27^{+0.18}_{-0.17} \)
\(\sigma_f \) \([\text{mas}] \)	\(0.43^{+0.10}_{-0.12} \)	\(0.36^{+0.08}_{-0.10} \)

© 2014 RAS, MNRAS 000, 1-10
Figure 4. One- and two-dimensional projections of the posterior probability distribution for all free parameters of the astrometric 5-elements model. The MCMC chain length is 256,000 iterations in each of 640 different initial conditions in a small ball around a preliminary astrometric model derived with a common function minimization. Contours indicate 16th, 50th, and 84th percentiles of the samples in the posterior distributions. Crossed lines illustrate the best-fitting parameters displayed in Tab. 3.

Pean station was low (20°–30° above the horizon) and sparse \(uv\)-coverage resulted in a large, elongated convolution beam. These conditions of observations lead to extensive phase errors that result in shifted and non-Gaussian radio images of the star. That is especially important in the case of elongated convolution beams.

Yet we attempted to model a potential curvature effect with 7-parameter model, Eq. 1 & 2. The results are shown in the right-hand column of Tab. 3. At this time, the error floor is slightly smaller than for the 5-parameter model, and the curvature coefficients are roughly \(-12\) mas/yr\(^2\). Such large values might indicate a massive companion and/or a significant perspective acceleration. However, given the apparent curvature is caused by two strongly outlying measurements (Fig. 6), we found that the residuals actually vary within \(\sim 0.5\) mas, when centered at the \(t_0\) epoch position. Therefore we may rule-out companions more massive than Saturn in \(\geq 7\) yr orbit or Jupiter in \(\geq 1\) yr orbit. However, very short-period companions (roughly below \(\sim 1\) year time-scale) within mass limits illustrated in Fig. 7 cannot be excluded due to sparse sampling. Our estimates are consistent with the results of Forbrich et al. (2013). Unfortunately, we cannot confirm nor rule their hypothesis of short-period companion in \(\sim 16\) days orbit, as well as a putative close-in, short-period planet triggering periodic auroral activity due to the interaction with the magnetosphere of TVLM 513 (Leto et al. 2016). We note that such an explanation of the observed periodic radio pulses from low-mass stars has been originally proposed by Hallinan et al. (2015). Regrettably, the astrometric observations in Forbrich et al. (2013) and in this work are currently not enough sensitive to detect such short-period planets.

\(\copyright\) 2014 RAS, MNRAS 000, 1–10
5 PROPERTIES OF OBSERVED RADIO EMISSION

Since we observed TVLM 513 across a wide time-window of 4 years (between March 2011 to March 2015), the EVN data make it possible to track the radio variability for over short (a few minutes) to long (a few months) time scales. The radio emission traces particle acceleration by magnetic field in stellar coronae, and corresponds to incoherent (gyrosynchrotron emission) or coherent radiation (electron cyclotron maser or plasma emission).

Previous observations showed that the observed TVLM 513 radio emission consists of two components, the persistent emission and bursts of highly circularly polarized radiation (e.g., Hallinan et al. 2007). To trace the highly variable component, we calculated averaged values of Stokes parameters I and V for each individual scan over the TVLM 513 source during phase-referencing observations (3.5 min integrations have been used). Such averaging was chosen to achieve reasonable sensitivity for both parameters. All reconstructed light curves are presented in Figs. 8 and 9. We assumed that a flare is detected when the absolute value of Stokes parameter V is above 2σ limit. In addition to the quiescent emission, we detected four short-duration events (∆t ~ 3 min), three left-circular polarization flares at epochs EG065D, EG065E & EG082E, and one right-circular polarization flare at epoch EG082E. Also we observed one broader increase of the flux in the left-circular polarization spanning ~10 min (EG053b). Our observations make it possible to detect flares to within 3σ sensitivity of 0.6 mJy during an averaged 3.5 min integration. The peak flux density of circularly polarized burst range from 0.5 to 2 mJy, with overall fractions of circular polarization ~ 75%–100%.

It is accepted that the quiescent radio emission appears due to the gyrosynchrotron radiation (e.g., Osten et al. 2006). The short duration of radio flares and high circular polarization suggest coherent process and electron cyclotron maser was proposed as its likely source (e.g., Hallinan et al. 2008). The electron cyclotron maser radiation is emitted at the electron cyclotron frequency \(f_c \approx 2.8 \times 10^6 B \text{Hz} \), where \(B \) is the strength of magnetic field in the radio emission region. We conducted observations at 4.99 GHz and this frequency infers the small-scale magnetic field strength of \(B \approx 1.8 \text{ kG} \). The observed flares are mostly left-circularly polarized, in a good agreement with other published observations at 4.9 GHz (Hallinan et al. 2007). This supports the model proposed by these authors to explain periodic flares with period \(P = 1.96 \text{ hr} \) that reflects the rotation period of TVLM 513. In this model, TVLM 513 generates broadband, coherent radio emission in the presence of kG magnetic field in a stable, large-scale configuration.

6 CONCLUSIONS

In this work, we present new radio observations of the M9 ultracool dwarf TVLM 513, using the EVN at 4.99 GHz. These observations were conducted in the framework of our RISARD survey (Gawronski et al. 2013). TVLM 513 has been detected at all seven scheduled epochs between March 2011 and March 2015. It proves an excellent performance and sensitivity of the EVN.

Combining earlier astrometric data from Forbrich & Berger (2009) and Forbrich et al. (2013) with our measurements, we updated the astrometric model and the annular parallax \(\pi = \ldots \)
Figure 8. Observed TVLM 513 light curves based on observations from RISARD project. The total intensity (Stokes I, red colour) and circularly polarized (Stokes V, green colour) radio flux at 4.99 GHz is presented. Flares of right circularly polarized emission (positive V values) and left circularly polarized emission (negative V values) are detected. The error bars represent 1σ error for flux and the length of individual integrations during the phase-referencing observations for time (identical for I and V measurements). Right circular polarization is represented by positive V values, and left circular polarization is represented by negative V values. Lines connecting the measurement points are shown merely to guide the viewer’s eye.

93.27$^{+0.18}_{-0.17}$ mas. Unfortunately, the measurements sampling is sparse, and EVN data are systematically less accurate than VLBA data gathered by Forbrich et al. (2013). Therefore we could not detect any clear pattern of the residuals to the free-falling motion of the target. The irregular residuals pattern make it possible to rule out putative companions more massive than Saturn in $\gtrsim 7$ yr orbit or Jupiter in $\gtrsim 1$ yr orbit. The astrometric positions exhibit a significant error floor ~ 0.43 mas, which is comparable with the astrometric model residuals. This may suggest that the target is either a single object, either a putative, yet unresolved Jupiter-mass range companion is present in a short-period orbit (up to one year) contributing to the apparent, residual noise. Revealing the presence of such a companion would need however much dense sampling of the astrometric positions and better accuracy than at present can be reached with the EVN.

Yet the accuracy of derived astrometric positions of TVLM 513 is comparable with the expected GAIA mission outcome. Our results could be a good reference as an independent observational experiment and will make it possible to better determine the proper motion and a potential geometric curvature of the target motion.

The gathered observational data show a variability of the radio flux on long– and short–time scales, consistent with published data in earlier papers (e.g., Berger et al. 2008). We detected four highly circularly polarized radio flares. The short durations of the flares and degrees of circular polarization are indicative of a coherent emission, which most likely emerges due to the electron cyclotron maser mechanism. In this context, the inferred local magnetic field is about 1.8 kG, similar to values found for other low-mass and fully convective stars (e.g., Morin et al. 2010).

ACKNOWLEDGMENTS

We thank to the anonymous reviewer for his/her careful reading of the manuscript and for critical and informative comments.
which greatly improved and corrected this work. We are grateful to Polish National Science Centre for their support (grant no. 2011/01/D/ST9/00735). The EVN is a joint facility of European, Chinese, South African, and other radio astronomy institutes funded by their national research councils. K.G. gratefully acknowledges the Poznan Supercomputing and Networking Centre (PCSS, Poland) for computing grant No. 195. This research has made use of the SIMBAD database operated at CDS, Strasbourg, France.

REFERENCES

Affer et al. 2016, ArXiv e-prints, arXiv:1607.03632
Allred J. C., Hawley S. L., Abbott W. P., Carlsson M., 2006, ApJ, 646, 484
Antonova A., Doyle J. G., Hallinan G., Bourke S., Golden A., 2008, A&A, 487, 317
Antonova A., Hallinan G., Doyle J. G., Yu S., Kuznetsov A., Metodieva Y., Golden A., Cruz K. L., 2013, A&A, 549, A131
Astudillo-Defru et al. 2015, A&A, 575, A119
Bailey J., Butler R. P., Tinney C. G., Jones H. R. A., O’Toole S., Carter B. D., Marcy G. W., 2009, ApJ, 690, 743
Baraffe I., Chabrier G., Burman T. S., Allard F., Hauschildt P. H., 2003, A&A, 402, 701
Benz A. O., Conway J., Gudel M., 1998, A&A, 331, 596
Berger E., 2002, ApJ, 572, 503
Berger E., 2006, ApJ, 648, 629
Berger E., Ball S., Becker K. M., Clarke M., Frail D. A., Fukuda T. A., Hoffman I. M., Mellon R., Momjian E., Murphy N. W., Teng S. H., Woodruff T., Zauderer B. A., Zavala R. T., 2001, Nature, 410, 338
Berger E., Gizis J. E., Giampapa M. S., Rutledge R. E., Liebert J., Martin E., Basri G., Fleming T. A., Johns-Krull C. M., Phan-Bao N., Sherry W. H., 2008, ApJ, 673, 1080
Bower G. C., Bolatto A., Ford E. B., Fries A., Kalas P., Sanchez K., Sanderbeck P., Visconi V., 2011, ApJ, 740, 32
Bower G. C., Bolatto A., Ford E. B., Kalas P., 2009, ApJ, 701, 1922
Bowler et al. 2015, ApJ, 806, 62
Chibueze J. O., Sakanoue H., Nagayama T., Omodaka T., Handa T., Kamezaki T., Burns R. A., Kobayashi H., Nakanishi H., Homma M., Ueno Y., Kurayama T., Matsuo M., Sakai N., 2014, Publications of the Astronomical Society of Japan, 66, 104
Forbrich J., Berger E., 2009, ApJ, 706, L205
Forbrich J., Berger E., Reid M. J., 2013, ApJ, 777, 70
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, Astronomical Society of the Pacific, 125, 306
Gawroński M. P., Gozdiewski K., Katarzyński K., 2013, Proc. of the 11th EVN Symposium, Bordeaux 2012
Goodman J., Weare J., 2010, Comm. Apl. Math and Comp. Sci., 1, 65
Güdel M., Benz A. O., 1993, ApJ, 405, L63
Hallinan G., Antonova A., Doyle J. G., Bourke S., Brisken W. F., Golden A., 2006, ApJ, 653, 690
Hallinan G., Antonova A., Doyle J. G., Bourke S., Lane C., Golden A., 2008, ApJ, 684, 644
Hallinan G., Bourke S., Lane C., Antonova A., Zavala R. T., Brisken W. F., Boyle R. P., Vrba F. J., Doyle J. G., Golden A., 2007, ApJ, 663, L25
Hallinan G., Littlefair S. P., Cotter G., Bourke S., Harding L. K., Pineda J. S., Butler R. P., Golden A., Basri G., Doyle J. G., Kao M. M., Berdyugina S. V., Kuznetsov A., Rupen M. P., Antonova A., 2015, Nature, 523, 568
Kaplan G. H., Bangert J. A., Barron E. G., Bartlett J. L., Puatua W., Harris W., Barrett P., 2012, in IAU Joint Discussion Vol. 7 of IAU Joint Discussion, Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1:Fortran, C, and Python Editions. p. P24
Kirkpatrick J. D., Henry T. J., Irwin M. J., 1997, AJ, 113, 1421
Leto P., Trigilio C., Buemi C. S., Umana G., Ingalliner A., Cerrigone L., 2016, ArXiv e-prints, arXiv:1611.00511
Morin J., Donati J.-F., Petit P., Delfosse X., Forveille T., Jardine M. M., 2010, MNRAS, 407, 2269
Neupert W. M., 1968, ApJ, 153, L59
Osten R. A., Hawley S. L., Allred J., Johns-Krull C. M., Brown A., Harper G. M., 2006, ApJ, 647, 1349
Pestalozzi M. R., Benz A. O., Conway J. E., Güdel M., 2000, A&A, 353, 569
Ravi V., Hallinan G., Hobbs G., Champion D. J., 2011, ApJ, 735, L2
Reid I. N., Kirkpatrick J. D., Liebert J., Gizis J. E., Dahn C. C., Monet D. G., 2002, AJ, 124, 519
Reid M. J., Menten K. M., Brunthaler A., Zheng X. W., Moscadelli L., Xu Y., 2009, ApJ, 693, 397
Reiners A., Basri G., 2007, ApJ, 656, 1121
Rivera E. J., Lissauer J. J., Butler R. P., Marcy G. W., Vogt S. S., Fischer D. A., Brown T. M., Laughlin G., Henry G. W., 2005, ApJ, 634, 625
Sahlmann J., Lazorenko P. F., Ségransan D., Astudillo-Defru N., Bonfils X., Delfosse X., Forveille T., Hagelberg J., Lo Curto G., Pepe F., Queloz D., Udry S., Zimmerman N. T., 2016, ArXiv e-prints, arXiv:1608.00918
Sahlmann J., Lazorenko P. F., Ségransan D., Martin E. L., Mayor M., Queloz D., Udry S., 2015, A&A, 577, A15
Sahlmann J., Lazorenko P. F., Ségransan D., Martin E. L., Queloz D., Mayor M., Udry S., 2013, A&A, 556, A133
Tinney C. G., Reid I. N., Gizis J., Mould J. R., 1995, AJ, 110, 3014
Williams P. K. G., Casewell S. L., Stark C. R., Littlefair S. P., Helling C., Berger E., 2015, ApJ, 815, 64
Wolszczan A., Route M., 2014, MNRAS, 438, 23

This paper has been typeset from a \TeX/ \LaTeX file prepared by the author.