Optically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance

Nobukiyo Kobayashi1, Hiroshi Masumoto2, Saburo Takahashi3 & Sadamichi Maekawa4

Developing optically transparent magnets at room temperature is an important challenge. They would bring many innovations to various industries, not only for electronic and magnetic devices but also for optical applications. Here we introduce FeCo-(Al-fluoride) nanogranular films exhibiting ferromagnetic properties with high optical transparency in the visible light region. These films have a nanocomposite structure, in which nanometer-sized FeCo ferromagnetic granules are dispersed in an Al-fluoride crystallized matrix. The optical transmittance of these films is controlled by changing the magnetization. This is a new type of magneto-optical effect and is explained by spin-dependent charge oscillation between ferromagnetic granules due to quantum-mechanical tunneling.

Magnets with transparency to light are very promising for new applications. Various transparent magnetic materials have been proposed (e.g., magnetic semiconductors doped with ferromagnetic elements such as Co1–3 and nanocrystalline iron oxides such as magnetite (Fe3O4)4 and hematite (Fe2O3)5,6). However, materials with large magnetization and high optical transparency at room temperature have not yet been realized. In semiconductors, either the magnetization is too small at room temperature to be useful for applications or the magnetic transition temperatures are too low. If iron oxides have strong magnetization, the optical transparency is low (Fe3O4); and if they have high optical transparency, the magnetization is very weak (Fe2O3). On the other hand, magnetorefractive effect in nanogranular films and multilayers with giant magnetoresistance (GMR) has been reported7–11. Magnetorefractive effect is a magneto-optical effect due to GMR.

In this study, we present FeCo-(Al-fluoride) nanogranular films exhibiting ferromagnetic properties with high optical transparency in the visible light region. Optical transmittance is controlled by changing the magnetization. This is a new magneto-optical effect that is explained by the tunneling magneto-dielectric (TMD) effect12,13. Nanogranular films consisting of nanometer-sized magnetic metal granules and a ceramic insulating matrix exhibit various functional properties depending on the composition ratio of the two elements, granules to matrix14,15. Because dielectric and optical properties are intimately correlated16, there is significant interest in the optical properties of nanogranular films with the TMD effect. In addition, these films have significant practical advantages (e.g., they are easily fabricated and are thermally stable17,18, and have been applied in magnetic sensors19,20).

Results

Optical and magnetic properties of FeCo-(Al-fluoride) nanogranular films. Figure 1a is a photograph of a Fe9Co5Al19F67 film deposited on a glass substrate (Corning Eagle 2000) heated to 660 °C. The film is about 1 μm thick. Red, blue and yellow letters behind the thin film are seen clearly. Figure 1b shows the dependence of the transmittance on the light wavelength in the Fe9Co5Al19F67 film presented in Fig. 1a. This film has substantial optical transmittance even for short wavelengths less than 400 nm, which is the limit that can be measured in this experiment, and exhibits a high transmittance of 90% to light of wavelength 1500 nm, which is in the band for optical communications. The magnetization curve of the Fe9Co5Al19F67 film is presented in Fig. 1c. The film exhibits hysteresis, and the magnetization is 18 kA/m, confirming that the film has both good optical transmittance and ferromagnetic properties.
Figure 2a shows a high-resolution transmission electron microscope image obtained from the Fe9Co5Al19F67 film depicted in Fig. 1. This film consists of FeCo magnetic alloy of nanometer-sized granules dispersed in an Al-fluoride matrix. This micrograph has many dark circles with diameters ranging from 10 to 15 nm. In addition, a bright section covers the whole area. The dark circles are FeCo alloy granules, and the bright section with a lattice pattern indicates the Al-fluoride matrix with AlF3 crystal structure.

Fluoride crystals (e.g., MgF2 and BaF2) have good transmittance and are widely used as optical materials. AlF3 crystals also exhibit good transmittance from the short-wavelength region (200 nm) to near-infrared (2000 nm). On the other hand, FeCo is a ferromagnetic alloy with the largest known magnetization. FeCo alloy granules with diameters exceeding 10 nm exhibit ferromagnetism because the granules are larger than the superparamagnetic critical diameter at room temperature. However, since the diameter of the granules is very small compared to the light wavelength, light can pass through the film (to be discussed later). If the density of the FeCo granules in the film increases, transmittance decreases (Fig. 2b). This behavior can be explained simply since the FeCo granules are of the origin of the ferromagnetic properties while the Al-fluoride matrix allows optical transparency.

Figure 3a depicts the change in the transmittance ($\Delta T/T_0$) of light with wavelength of a 1500 nm, Fig. 3b presents the magnetization curve of the Fe9Co5Al19F67 film depicted in Fig. 1. This film consists of FeCo magnetic alloy of nanometer-sized granules dispersed in an Al-fluoride matrix. This micrograph has many dark circles with diameters ranging from 10 to 15 nm. In addition, a bright section covers the whole area. The dark circles are FeCo alloy granules, and the bright section with a lattice pattern indicates the Al-fluoride matrix with AlF3 crystal structure.

Fluoride crystals (e.g., MgF2 and BaF2) have good transmittance and are widely used as optical materials. AlF3 crystals also exhibit good transmittance from the short-wavelength region (200 nm) to near-infrared (2000 nm). On the other hand, FeCo is a ferromagnetic alloy with the largest known magnetization. FeCo alloy granules with diameters exceeding 10 nm exhibit ferromagnetism because the granules are larger than the superparamagnetic critical diameter at room temperature. However, since the diameter of the granules is very small compared to the light wavelength, light can pass through the film (to be discussed later). If the density of the FeCo granules in the film increases, transmittance decreases (Fig. 2b). This behavior can be explained simply since the FeCo granules are of the origin of the ferromagnetic properties while the Al-fluoride matrix allows optical transparency.

Figure 3a depicts the change in the transmittance ($\Delta T/T_0$) of light with wavelength of a 1500 nm, Fig. 3b presents the magnetization curve of the Fe9Co5Al19F67 film. Transmittance decreases with an increase of magnetic field. The hysteresis of the transmittance is caused by the magnetization, as seen in Fig. 3. Here, $\Delta T = T_{m} - T_{0}$, where T_{m} is the transmittance with the magnetization M, and T_{0} is that with zero magnetization. Table 1 lists $\Delta T/T_0$, the magnetization and the transmittance in Fe9Co5Al19F67 (Fe + Co = 14 at.%) and Fe13Co10Al22F55 (Fe + Co = 23 at.%) films. $\Delta T/T_0$ is observed in both films. It is noteworthy that optical transmittance changes with the magnetic field ($\Delta T/T_0 = 0.03\%$ and 0.05%). As indicated in Fig. 3a, the magnetic fields at which two of the maxima in the transmittance appear are consistent with the coercivity. This result clearly confirms that the change in the transmittance corresponds to magnetization. The DC resistivity of the films shown in Fig. 3 and Table 1 is larger than 10^{11} μΩ m and the magnetoresistance was not observed. The result in Fig. 3 and Table 1 demonstrate a new magneto-optical effect in transparent nanogranular films.

Mechanism of optical transmission responses in nanogranular films. Optical transmission responses to magnetization in nanogranular films may be explained by the TMD effect. Figure 4 illustrates a nanogranular structure with the image of optical transmittance and a model of a granular pair. The magneto-optical response is due to transition of electric charges between neighboring ferromagnetic granules through an insulating barrier via quantum-mechanical electron tunneling, which depends strongly on the relative orientation of magnetization of the granules. When optical light is incident on the film, electric charge carriers in granules are subject to the oscillating electric field of the light that causes tunneling of the charge carriers back and
Figure 2. Nanogranular structure and composition dependence of FeCo-(Al-fluoride) film. (a) High-resolution transmission electron microscope image obtained from Fe$_9$Co$_5$Al$_{19}$F$_{67}$ film. The lattice spacing of AlF$_3$(012) in 0.35 nm. (scale bar, 10 nm) (b) Relationship between the amount of Fe + Co in the films and the magnetization and transmittance of 1 μm thick film. These films were deposited on substrates at 660 °C. As Fe + Co increases, magnetization increases and transmittance decreases.

Figure 3. Magneto-optical effect of Fe$_{13}$Co$_{10}$Al$_{22}$F$_{55}$ film. (a) Change in the transmittance of the light wave length of 1500 nm of Fe$_{13}$Co$_{10}$Al$_{22}$F$_{55}$ film deposited at 600 °C. The dots denote the experiment results of ΔT/T. The solid lines denote the theoretical results as a function of magnetic field H, where the magnetization curve in Fig. 3b is used for m = M(H)/M$_{400}$ and M$_{400}$ is the magnetization at the maximum measured magnetic field of 400 kA/m. (b) Magnetization curve of Fe$_{13}$Co$_{10}$Al$_{22}$F$_{55}$ film. Transmittance decreases with increased magnetic field. This result indicates that transmittance is controlled by magnetization.
forth between neighboring granules through the thin insulator barrier (Fig. 4). The oscillation of charging states between granules is spin-dependent and contributes to additional magneto-dielectric and optical responses of nanogranular films.

Incorporating the TMD constant with a broad distribution of dielectric relaxation around the characteristic relaxation time \(\tau = P_m \left(1 + \left(\frac{M}{M_s} \right)^2 \right)^{\frac{1}{2}} \), where \(P_T \) is the tunneling spin polarization, \(m = \left(\frac{M}{M_s} \right) \) is the normalized magnetization and \(M_s \) is the saturation magnetization, we have the total magneto-dielectric constant of granular films

\[
\varepsilon_\omega = \varepsilon_r(\omega) + \Delta \varepsilon_m(\omega), \quad \Delta \varepsilon_m(\omega) = \frac{\Delta \varepsilon}{1 + (\omega \tau_m)^2},
\]

where \(\varepsilon_r(\omega) \) is the effective dielectric constant of the media in the absence of tunneling effect between granules, \(\Delta \varepsilon_m(\omega) \) is the tunneling contribution, \(\Delta \varepsilon \) is the dielectric strength, and \(\beta \) is the Cole-Cole's exponent (0 < \(\beta \) < 1) representing a measure of the distribution of relaxation time. In magnetic nanogranular films, \(\beta = 0.7 \) to 0.8 was found in a previous study.

Using the dielectric constant (1) in the formula of transmission for a normal-incident optical light through a film, we obtain the magneto-optical transmittance of a granular film as

\[
\Delta T/T_0 \approx \Delta \alpha d \left[1 - (1 + P_T^2) \right],
\]

where \(\Delta \alpha \) is the magneto-optical absorption coefficient and \(d \) is the film thickness (see Methods for details). In Fig. 3a, we fit the magnetic field dependence of \(\Delta T/T_0 \) using the experiment data of the magnetization curve in Fig. 3b for the optical light of wavelength \(\lambda = 1500 \text{ nm} \) and frequency \(\omega = 10^8 \text{ s}^{-1} \), refractive index \(n = 3 \), and film thickness \(d = 1000 \text{ nm} \). Using the values of \(P_T = 0.5, \beta = 0.7 \) (\(P_T \) and \(\beta \) values are a little different from the previous results). This is because of the increase of the granule size and the granule size distribution as seen in Fig. 2. \(\Delta T/T_0 \approx 300 \text{ and } \tau_T = 10^{-8} \text{ s} \) are appropriate for the Fe-Co of 25 at.% granular film and \(\Delta \alpha d = (2 \pi d n \omega) \sin(3\pi/2 \omega) = 2.3 \times 10^{-5} \frac{\text{m}^2}{\text{C} \cdot \text{N} \cdot \text{s}} \) we find a good agreement between the experiment and theoretical data (Fig. 3a), in particular for the hysteretic behavior of the transmittance reflecting the magnetization process in Fig. 3b. The magnetic fields, at which the transmittance is greatest, coincide with the coercive fields where there is a change of sign in the magnetization curves.

The values of \(\Delta T/T_0 \) can be enhanced if one uses a half-metal with full spin polarization (\(P_T = 1 \)) for ferromagnetic nanogranules; makes the granule density higher, which shortens relaxation time due to the reduced distance.

Sample (Substrate temp.)	\(\frac{\Delta T}{T_0} \)	Magnetization	Transmittance (1500 nm)
Fe-Co-Al-F (660 °C)	0.03%	18 kA/m	90%
Fe-Co-Al-F (600 °C)	0.05%	320 kA/m	20%

Table 1. List of optical and magnetic properties. \(\Delta T/T_0 \), magnetization and transmittance of Fe-Co-Al-F and Fe-Co-Al-F film. Transmittance and \(\Delta T/T_0 \) is the value of light wave length in 1500 nm.
between granules; and designs broader size distribution, which makes β smaller. Nanogranular structures can be controlled by changing the film composition, the deposition conditions, and the annealing. For instance, when the values of $P_1 = 1$ and $\tau_B = 10^{-9}$ s are used, large magneto-optical transmittances of $\Delta T/T_0$ (~5% for $\beta = 0.6$ and ~10% for $\beta = 0.5$) are expected in half-metallic nanogranular films.

Discussion

We have reported that nanogranular FeCo-(Al-fluoride) films are optically transparent ferromagnetic materials. These films have transmittance even for short wavelengths of light (less than 400 nm), exhibit 90% transmittance at a wavelength of 1500 nm, and are ferromagnetic with magnetization exceeding 18 kA/m at room temperature. Furthermore, these films have magneto-transmittance response $\Delta T/T_0$ of 0.05% at a wavelength of 1500 nm. This new magneto-optical phenomenon is explained by the TMD effect due to the spin-dependent quantum effect in the nanogranular structure. A large value of $\Delta T/T_0$ (more than 10%) is expected theoretically in nanogranular films by optimizing material and structural conditions.

Magnetic materials in electric devices are not optically transparent. With the realization of a transparent magnet, more complete display devices will be constructed. For example, speed and fuel meters and a map can be displayed directly on the front glass of a car or an airplane.

Methods

Preparation of thin film samples. Thin films were prepared by a tandem deposition method using a conventional RF-sputtering apparatus. Sputter deposition was performed on a 50 × 50 mm glass (Corning Eagle 2000) substrate at 600 to 700 °C in argon atmosphere with 1.3 Pa pressure during deposition, using a 76 mm-diameter Fe$_{60}$Co$_{40}$ alloy disk target and an AlF$_3$ powder target compacted in the form of a 76 mm-diameter disk.

Composition and structural analysis. The composition ratio of Fe-Co (granule) and Al-F (matrix) was controlled by changing the RF power applied to each target. The chemical composition of Fe, Co, Al, and F in the thin films was analyzed using wavelength dispersion spectroscopy (WDS). For structural analysis, transmission electron microscopy (TEM) was performed on several selected thin films.

Measurements of optical and magnetic properties. Optical transmittance was measured using Fourier transform infrared spectroscopy (FTIR) with a measurement waveband of 400 to 2000 nm. Change in the transmittance was measured using an optical spectrometer with a measurement waveband of 900 to 2000 nm and a magnetic field of 0 to 480 kA/m. The magnetization curves were measured using a vibrating sample magnetometer (VSM). In the magnetization and magneto-optical measurements, a magnetic field was applied parallel to the surface of the film with the effective dielectric constant ε and thickness d.

Derivation of the transmittance. The transmittance of the electromagnetic wave incident normal to the plane of a film with the effective dielectric constant ε and thickness d is obtained by calculating the Poynting vector \mathbf{S} from

$$ T_M = \frac{|E_i/E_f|^2}{1 + \sqrt{\varepsilon}^2} = \frac{1}{1 + \sqrt{\varepsilon}^2} \left(1 - \frac{1}{\sqrt{\varepsilon}^2} \right)^2 e^{2ikd} $$

where E_i is the incident electric field, E_f is the transmitted electric field, $k = (\omega/c)\sqrt{\varepsilon(\omega)}$ is the complex wave number, $\varepsilon(\omega) = n + i\kappa$ is the complex refractive index, $\alpha = 2\pi kd/\lambda$ is the absorption coefficient, $\theta = 2\pi nd/\lambda$, $\varphi = -\tan^{-1}[2\pi/(n^2 + \kappa^2 - 1)]$, λ is the wave length, and $R_0 = [(n-1)^2 + \kappa^2]/[(n+1)^2 + \kappa^2]$. The interference is weak (Fig. 1b), due to modulation of film thickness and/or refractive index, which allows us to average T_M over θ excluding φ from 0 to 2π, yielding

$$ T_M = \frac{1}{1 - R_0} e^{-2\pi d/\lambda}, $$

The effective dielectric constant of granular films may be separated into the two contributions

$$ \varepsilon(\omega) = \varepsilon_r(\omega) + \Delta\varepsilon_m(\omega), $$

where $\varepsilon_r(\omega)$ is the effective dielectric constant in the absence of the tunneling effect between granules and $\Delta\varepsilon_m(\omega)$ is the tunneling contribution of the form

$$ \Delta\varepsilon_m(\omega) = \frac{\Delta\varepsilon}{1 + (\kappa\tau_m)^\beta}, $$

where $\Delta\varepsilon$ is dielectric strength, τ_m is the characteristic relaxation time given by the spin-dependent tunneling rate $1/\tau_m = (1/\tau_B) [1 + P_1^2 (M/M_s)^2]$, where P_1 is the tunneling spin polarization, M is the magnetization and M_s is the saturation magnetization; and β is an exponent representing a measure of the distribution of relaxation time τ_m ($\beta = 0.7$ to 0.8 in the granular films). In the optical region, the light frequency ($\sim 10^{15}$ s$^{-1}$) is much higher than the tunneling rate ($\sim 10^{-9}$ s$^{-1}$ to 10^{-1} s$^{-1}$) depending on the ferromagnetic composition ($\omega\tau_m >> 1$) so that the tunneling contribution is approximated as $\Delta\varepsilon_m(\omega) \approx \Delta\varepsilon e^{-2\pi d/(\omega\tau_m)}$.

Note: The above text is an excerpt from a scientific paper and has been formatted to represent natural text. This includes correcting the formatting and ensuring the mathematical expressions are correctly represented. The content is a continuation of the discussion on the properties and applications of nanogranular FeCo-(Al-fluoride) films, highlighting their potential for use in transparent magnetic display devices.
In the optical region ($\omega \tau_m \gg 1$), the refractive index $\sqrt{\varepsilon(\omega)}$ can be expanded with respect to the tunneling contribution $\Delta \varepsilon_m(\omega)$ as

$$\sqrt{\varepsilon(\omega)} \approx \sqrt{\varepsilon_r(\omega)} + \frac{\Delta \varepsilon_m(\omega)}{2\sqrt{\varepsilon_r(\omega)}},$$

where

$$\sqrt{\varepsilon_r(\omega)} = n_r + i\kappa_r,$$

$$\Delta \varepsilon_m(\omega) \approx \frac{\Delta \varepsilon}{(\omega \tau_m)^\beta} \cos(\beta / 2 \pi) + i \frac{\Delta \varepsilon}{(\omega \tau_m)^\beta} \sin(\beta / 2 \pi),$$

The real and imaginary parts of the complex refractive index are written as

$$n = n_r + \Delta n_m, \quad k = k_r + \Delta k_m,$$

where

$$\Delta n_m = \frac{\Delta \varepsilon \cos(\beta \pi / 2)}{2n_r(\omega \tau_m)^\beta}, \quad \Delta \kappa_m = \frac{\Delta \varepsilon \sin(\beta \pi / 2)}{2n_r(\omega \tau_m)^\beta},$$

in the highly transparent region ($k_m/n_m)^2 \ll 1$.

It follows from Eqs (3), (9) and (10) that the dominant contribution to the magneto-optical effect arises from the magneto-optical part $\Delta \alpha_m$ of the absorption coefficient $\alpha = \alpha_r + \Delta \alpha_m$, where $\alpha_r = 4\pi \varepsilon_r / \lambda$ and $\Delta \alpha_m = 4\pi \Delta \kappa_m / \lambda$, yielding the transmittance

$$T_M \approx \frac{16n_r^2}{(n_r + 1)^2} e^{-\alpha_m d} e^{-\alpha_m d},$$

as a function of applied magnetic field H through the magnetization curve $M(H)$. Therefore, the magneto-transmittance effect of a granular film is obtained as

$$\frac{\Delta T}{T_0} = \frac{T_M - T_0}{T_0} \approx \Delta \alpha d [1 - (1 + P_0^2 m^2)]^\beta,$$

where $\Delta \alpha_0 = (2\pi n_r \lambda)(\omega \tau_m)^\beta \Delta \varepsilon \sin(\beta \pi / 2)$ and $m = M(H)/M$. Equation (12) is used to analyze the experimental results of the magneto-optical transmittance ratio $\Delta T/T_0$ versus applied magnetic field H in the Fe$_{13}$Co$_{10}$Al$_{22}$F$_{55}$ (Fe-Co: 23 at.%) film, as illustrated in Fig. 4.

References

1. Ogale, S. B. et al. High temperature ferromagnetism with a giant moment in transparent Co-doped SnO$_2$. Phys. Rev. Lett. 91(077205), 1–4 (2003).
2. Fukumura, T. et al. Role of change carriers for ferromagnetism in cobalt-doped rutile TiO$_2$. New Journal of Physics 10, 055018 (2008).
3. Janisch, R., Gopal, P. & Spaldin, N. A. Transition metal-doped TiO$_2$ and ZnO—present status and field. J. Phys. Condens. Matter. 17, 657–689 (2005).
4. Baghaie Yazdi, M., Bozec, D., Matthew, J. A. D. & Thompson, S. M. Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect. Thin Solid Films 519, 2531–2533 (2011).
5. Zuo, R. F. et al. Matrix-Mediated Synthesis of Nanocrystalline γ-Fe$_2$O$_3$: A new optically transparent magnetic material. Science 257, 219–222 (1992).
6. Ohkoshi, S. et al. Nanometer-size hard magnetic ferrite exhibiting high optical-transparency and nonlinear optical-magnetolectric effect. Nat. Commun. 5, 14414 (2015).
7. Granovsky, A. B. et al. Magnetorefractive effect in nanocomposites: dependence on the angle of incidence and on light polarization, Physics of the Solid State 46, 498–501 (2004).
8. Lobov, I. D. et al. Magnetorefractive Effect and Giant Magneto-resistance in Fe(tx)/Cr Superlattices. Physics of the Solid State. V51, 2480–2485 (2009).
9. Granovskyi, A. B. et al. Magnetorefractive effect in nanostructures, manganites, and magnetophotonic crystals based on these materials. Journal of Communications Technology and Electronics 52, 1065–1071 (2007).
10. Vopsarouiu, M., Bozec, D., Matthews, J. A. D. & Thompson, S. M. Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect. New Review B70, 214423 (2004).
11. Akbashev, A. R., Telgin, A. V., Kaul, A. R. & Sukhorukov, Y. P. Granular and layered ferroelectric-ferromagnetic nanocomposites as promising materials with high magnetoremission. J. Magn. Magn. Mater. 384, 75–78 (2015).
12. Kobayashi, N., Masumoto, H., Takahashi, S. & Maekawa, S. Giant dielectric and magnetoelectric responses in insulating nanogrernular films at room temperature. Nat. Commun. 5, 1517 (2014).
13. Kobayashi, N., Iwasa, T., Ishida, K. & Masumoto, H. Dielectric properties and magnetoelectric properties in FeCo-MgF insulating nanogrernular film. J. Appl. Phys. 117, 014101 (2015).
14. Fujimori, H., Ohnuma, S., Kobayashi, N. & Masumoto, T. Spintronics in metal-insulator nanogranular magnetic thin films. J. Magn. Magn. Mater. 304, 32–35 (2006).
15. Ohnuma, S., Kobayashi, N., Fujimori, H. & Masumoto, T. Metal-insulator type nano-granular magnetic thin films. J. Phys.: Cond. Mattel. 191, 012020 (2009).
16. Kuzmany, H. Solid State Spectroscopy. 2nd ed. (Springer, Berlin, 2009).
17. Kobayashi, N., Ohnuma, S., Masumoto, T. & Fujimori, H. Effects of substrate temperature and heat treatment on GMR properties of Co-Fe-O nano-granular films. Materials Transactions, JIM 39, 679–683 (1998).
18. Kobayashi, N., Ohnuma, S., Fujimori, H. & Masumoto, T. TMR and thermal stability improvement FeCo-ALF nano-granular thin films. J. Japan. Inst. Metals 76, 375–379 (2012).
19. Kobayashi, N. et al. Enhancement of low-field magnetoresistive response of tunnel-type magnetoresistance in metal-nonmetal granular thin films. *J. Magn. Magn. Mater.* **188**, 30–34 (1998).
20. Kobayashi, N., Ohnuma, S., Masumoto, T. & Fujimori, H. (Fe-Co)-(Mg-fluoride) insulating nanogranular system with enhanced tunnel-type magnetoresistance. *J. Appl. Phys.* **90**, 4159–4162 (2001).
21. Bozorth, R. M. *Ferromagnetism*. Van Nostrand Co. Inc. (1951).
22. Yakushiji, K. et al. Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films. *J. Magn. Magn. Mater.* **212**, 75–81 (2000).
23. Maekawa, S. & Gafvert, U. Electron tunneling between ferromagnetic films. *IEEE Trans. Magn.* **18**, 707–708 (1982).
24. Inoue, J. & Maekawa, S. Theory of tunneling magnetoresistance in granular magnetic films. *Phys. Rev. B* **53**, R11927–R11929 (1996).
25. Mitani, S., Fujimori, H. & Ohnuma, S. Spin-dependent tunneling phenomena in insulating granular systems. *J. Magn. Magn. Mater.* **165**, 141–148 (1997).
26. Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics. *J. Chem. Phys.* **9**, 341–351 (1941).
27. Kuzmany, H. *Solid State Spectroscopy*. 2nd ed. (Springer, Berlin, 2009).
28. Kobayashi, N., Ohnuma, S., Masumoto, T. & Fujimori, H. Tunnel-type magnetoresistance in metal-nonmetal granular films prepared by tandem deposition method. *J. Magn. Soc. Jpn.* **23**, 76–78 (1999).

Acknowledgements
The authors are grateful to T. Masumoto and K. I. Arai for valuable discussions. They are indebted to K. Ishida for the sample preparation and to T. Iwasa for the measurement of optical transmittance. This work was supported by Engineering and Grant-in-Aids for Scientific Research (Grant No. 26289253) from the JSPS and Nippon Sheet Glass Foundation for Materials Science.

Author Contributions
The experiments were carried out by N.K. The data was discussed by N.K. and H.M. The theoretical model was developed by S.T. and S.M. All authors contributed to the writing and editing of the paper.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kobayashi, N. *et al.* Optically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance. *Sci. Rep.* **6**, 34227; doi: 10.1038/srep34227 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016