ON CERTAIN DUALITY OF NÉRON-SEVERI LATTICES OF SUPERSINGULAR K^3 SURFACES AND ITS APPLICATION TO GENERIC SUPERSINGULAR K^3 SURFACES

SHIGEYUKI KONDÔ AND ICHIRO SHIMADA

ABSTRACT. Let X and Y be supersingular K^3 surfaces defined over an algebraically closed field. Suppose that the sum of their Artin invariants is 11. Then there exists a certain duality between their Néron-Severi lattices. We investigate geometric consequences of this duality. As an application, we classify genus one fibrations on supersingular K^3 surfaces with Artin invariant 10 in characteristic 2 and 3, and give a set of generators of the automorphism group of the nef cone of these supersingular K^3 surfaces. The difference between the automorphism group of a supersingular K^3 surface X and the automorphism group of its nef cone is determined by the period of X. We define the notion of genericity for supersingular K^3 surfaces in terms of the period, and prove the existence of generic supersingular K^3 surfaces in odd characteristics for each Artin invariant larger than 1.

1. INTRODUCTION

A K^3 surface defined over an algebraically closed field k is said to be supersingular (in the sense of Shioda) if its Picard number is 22. Supersingular K^3 surfaces exist only when k is of positive characteristic. Let X be a supersingular K^3 surface in characteristic $p > 0$, and let S_X denote its Néron-Severi lattice. Artin [1] showed that the discriminant group of S_X is a p-elementary abelian group of rank 2σ, where σ is an integer such that $1 \leq \sigma \leq 10$. This integer σ is called the Artin invariant of X. The isomorphism class of the lattice S_X depends only on p and σ (Rudakov and Shafarevich [27]). Moreover supersingular K^3 surfaces with Artin invariant σ form a $(\sigma - 1)$-dimensional family, and a supersingular K^3 surface with Artin invariant 1 in characteristic p is unique up to isomorphisms (Ogus [24], [25], Rudakov and Shafarevich [27]).

Recently many studies of supersingular K^3 surfaces in small characteristics with Artin invariant 1 have appeared. For example, for $p = 2$, Dolgachev and Kondo [8], Katsura and Kondo [12], Elkies and Schütt [11]; for $p = 3$, Katsura and Kondo [13], Kondo and Shimada [18], Sengupta [28]; and for $p = 5$, Shimada [33]. On the other hand, geometric properties of supersingular K^3 surfaces with big Artin invariant are not so much known (e.g. Rudakov and Shafarevich [26], [27], Shioda [35], Shimada [31], [32]).

The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (S) No.22224001. The second author was partially supported by JSPS Grants-in-Aid for Scientific Research (B) No.20340002.
In this paper, we present some methods to investigate supersingular $K3$ surfaces with big Artin invariant by means of the following simple observation. Let $X_{p,\sigma}$ be a supersingular $K3$ surface in characteristic p with Artin invariant σ, and let $S_{p,\sigma}$ denote its Néron-Severi lattice.

Lemma 1.1. Suppose that $\sigma + \sigma' = 11$. Then $S_{p,\sigma'}$ is isomorphic to $S_{p,\sigma}^\vee(p)$, where $S_{p,\sigma}^\vee(p)$ is the lattice obtained from the dual lattice $S_{p,\sigma}^\vee$ of $S_{p,\sigma}$ by multiplying the symmetric bilinear form with p.

Lemma 1.1 is proved in Section 3. We use this duality between $S_{p,\sigma}$ and $S_{p,\sigma'}$ in the study of genus one fibrations and the automorphism groups of supersingular $K3$ surfaces.

First, we apply Lemma 1.1 to the classification of genus one fibrations. Note that the Néron-Severi lattice S_Y of a $K3$ surface Y is a hyperbolic lattice. The orthogonal group $O(S_Y)$ contains the stabilizer subgroup $O^+(S_Y)$ of a positive cone of $S_Y \otimes \mathbb{R}$ as a subgroup of index 2.

Definition 1.2. Let Y be a $K3$ surface, and let $\phi : Y \to \mathbb{P}^1$ be a genus one fibration. We denote by $f_\phi \in S_Y$ the class of a fiber of ϕ. Let $\psi : Y \to \mathbb{P}^1$ be another genus one fibration on Y. We say that ϕ and ψ are Aut-equivalent if there exist $g \in \text{Aut}(Y)$ and $\tilde{g} \in \text{Aut}(\mathbb{P}^1)$ such that $\phi \circ g = \tilde{g} \circ \psi$ holds, while we say that ϕ and ψ are lattice equivalent if there exists $g \in O^+(S_Y)$ such that $f_{\phi,\psi} = f_\psi$. We denote by $E(Y)$ the set of lattice equivalence classes of genus one fibrations on Y, and by $[\phi] \in E(Y)$ the lattice equivalence class containing ϕ.

Many combinatorial properties of a genus one fibration $\phi : Y \to \mathbb{P}^1$ depend only on the lattice equivalence class $[\phi]$. See Proposition 4.1. Moreover, when $\sigma = 10$, the classification of genus one fibrations by Aut-equivalence seems to be too fine, as is suggested by Proposition 9.2. Therefore, we concentrate upon the study of lattice equivalence classes.

Using Lemma 1.1, we prove the following:

Theorem 1.3. Suppose that $\sigma + \sigma' = 11$. Then there exists a canonical one-to-one correspondence $[\phi] \mapsto [\phi']$ between $E(X_{p,\sigma})$ and $E(X_{p,\sigma'})$.

We say that a genus one fibration is Jacobian if it admits a section.

Theorem 1.4. Suppose that a genus one fibration $\phi : X_{p,\sigma} \to \mathbb{P}^1$ is a Jacobian fibration, and let $\phi' : X_{p,\sigma'} \to \mathbb{P}^1$ be a genus one fibration on $X_{p,\sigma'}$ with $\sigma' = 11 - \sigma$ such that $[\phi'] \in E(X_{p,\sigma'})$ corresponds to $[\phi] \in E(X_{p,\sigma})$ by Theorem 1.3. Then ϕ' does not admit a section.

Elkies and Schütt [11] proved the following:

Theorem 1.5 ([11]). Any genus one fibration on $X_{p,1}$ admits a section.

Therefore we obtain the following:
Corollary 1.6. There exist no Jacobian fibrations on $X_{p,10}$.

By an ADE-type, we mean a finite formal sum of the symbols A_i ($i \geq 1$), D_i ($j \geq 4$) and E_k ($k = 6, 7, 8$) with non-negative integer coefficients. For a genus one fibration $\phi : Y \to \mathbb{P}^1$ on a $K3$ surface Y, we have the ADE-type of reducible fibers of ϕ. This ADE-type depends only on the lattice equivalence class $[\phi] \in \mathcal{E}(Y)$ (see Proposition 4.1). Therefore we can use $R_{[\phi]}$ to denote the ADE-type of the reducible fibers of ϕ.

From the classification of lattice equivalence classes of genus one fibrations of $X_{2,1}$ by Elkies and Schütt [11], and that of $X_{3,1}$ by Sengupta [28], we obtain the classification of lattice equivalence classes of genus one fibrations on $X_{2,10}$ and $X_{3,10}$. In particular, we obtain the list of ADE-types $R_{[\phi]}$ of the reducible fibers of genus one fibrations ϕ' on $X_{2,10}$ and $X_{3,10}$. See Theorems 4.8 and 4.9.

In Elkies and Schütt [11] and Sengupta [28] mentioned above, they also obtained explicit defining equations of the Jacobian fibrations. Besides [11] and [28], there have been many works on the classification of Aut-equivalence classes and lattice equivalence classes of Jacobian fibrations on a $K3$ surface (e.g. Oguiso [23], Nishiyama [22], Shimada and Zhang [34], Shimada [29], Kloosterman [16]). In particular, the lattice equivalence classes of all extremal (quasi-) elliptic fibrations (i.e., Jacobian fibrations with Mordell-Weil rank zero) on supersingular $K3$ surfaces are classified in Shimada [30].

As the second application of Lemma 1.1, we investigate the automorphism group of the nef cone of a supersingular $K3$ surface. For a $K3$ surface Y, let $\text{Nef}(Y) \subset S_Y \otimes \mathbb{R}$ denote the nef cone. We denote by $\text{Aut}(\text{Nef}(Y)) \subset O^+(S_Y)$ the group of isometries of S_Y that preserve $\text{Nef}(Y)$. Since $\text{Aut}(X_{p,\sigma})$ acts on $S_{p,\sigma}$ faithfully (Rudakov and Shafarevich [27, Section 8, Proposition 3]), we have

$$\text{Aut}(X_{p,\sigma}) \subset \text{Aut}(\text{Nef}(X_{p,\sigma})) \subset O^+(S_{p,\sigma}).$$

Using the description of $\text{Aut}(X_{2,1})$ by Dolgachev and Kondo [8], and that of $\text{Aut}(X_{3,1})$ by Kondo and Shimada [18], we give a set of generators of $\text{Aut}(\text{Nef}(X_{2,10}))$ and $\text{Aut}(\text{Nef}(X_{3,10}))$ in Theorems 6.4 and 6.9, respectively.

Suppose that p is odd. We fix a lattice N isomorphic to $S_{p,\sigma}$. Then a quadratic space (N_0, q_0) of dimension 2σ over \mathbb{F}_p is defined by

$$N_0 := pN^\vee/pN \quad \text{and} \quad q_0(px \mod pN) := px^2 \mod p \quad (x \in N^\vee).$$

We fix a marking $\eta : N \simeq S_{p,\sigma}$ for a supersingular $K3$ surface $X := X_{p,\sigma}$ defined over k. Then $\text{Aut}(\text{Nef}(X))$ acts on (N_0, q_0), and the period $K_{(X, \eta)} \subset N_0 \otimes k$ of the marked supersingular $K3$ surface (X, η) is defined as the Frobenius pull-back of the kernel of the natural homomorphism

$$N \otimes k \to S_X \otimes k \to H^2_{\text{DR}}(X/k).$$
In virtue of Torelli theorem for supersingular $K3$ surfaces by Ogus [24], [25], the subgroup $\text{Aut}(X)$ of $\text{Aut}(\text{Nef}(X))$ is equal to the stabilizer subgroup of the period $K_{(X,\eta)}$. In particular, the index of $\text{Aut}(X_{p,\sigma})$ in $\text{Aut}(\text{Nef}(X_{p,\sigma}))$ is finite. On the other hand, the classification of 2-reflective lattices due to Nikulin [21] implies that $\text{Aut}(\text{Nef}(X_{p,\sigma}))$ is infinite. Hence, at least when p is odd, $\text{Aut}(X_{p,\sigma})$ is an infinite group. See Sections 5 and 7 for details. Moreover, Lieblich and Maulik [19] proved that, if $p > 2$, then $\text{Aut}(X_{p,\sigma})$ is finitely generated and its action on $\text{Nef}(X_{p,\sigma})$ has a rational polyhedral fundamental domain.

We say that a supersingular $K3$ surface X is generic if there exists a marking $\eta : N \cong S_X$ such that the isometries of (N_0, q_0) that preserve the period $K_{(X,\eta)} \subset N_0 \otimes k$ are only scalar multiplications (see Definition 7.5). Using the surjectivity of the period mapping proved by Ogus [25], we prove the following:

Theorem 1.7. Suppose that p is odd and $\sigma > 1$. Then there exist an algebraically closed field k and a supersingular $K3$ surface X with Artin invariant σ defined over k that is generic.

Suppose that $X_{3,10}$ is generic. From the generators of $\text{Aut}(\text{Nef}(X_{3,10}))$ given in Theorem 6.9, we can obtain a finite set of generators of $\text{Aut}(X_{3,10})$. However, the computation would be very heavy. See Remarks 7.7 and 7.8.

As the third application, we show by an example that a lattice equivalence class of genus one fibrations on $X_{3,10}$ can contain a very large number of Aut-equivalence classes, provided that $X_{3,10}$ is generic. An analogous result for a generic complex Enriques surface was obtained by Barth and Peters [2].

This paper is organized as follows. In Section 2, we fix notation and terminologies about lattices and $K3$ surfaces. In Section 3, Lemma 1.1 is proved by means of the fundamental results of Rudakov and Shafarevich [27] on the Néron-Severi lattices of supersingular $K3$ surfaces. In Section 4, we study genus one fibrations on supersingular $K3$ surfaces, and prove Theorems 1.3 and 1.4. Moreover, the bijections $\mathbb{E}(X_{p,1}) \cong \mathbb{E}(X_{p,10})$ for $p = 2$ and 3 are given explicitly in Tables 4.1 and 4.2. In Section 5, we review the classical method to investigate the orthogonal group of a hyperbolic lattice by means of a chamber decomposition of the associated hyperbolic space, and fix some notation and terminologies. We then apply this method to the nef cone of a supersingular $K3$ surface. In Section 6, we give a set of generators of $\text{Aut}(\text{Nef}(X_{2,10}))$ and $\text{Aut}(\text{Nef}(X_{3,10}))$. In Section 7, we review the theory of the period mapping and Torelli theorem for supersingular $K3$ surfaces in odd characteristics due to Ogus [24], [25], and describe the relation between $\text{Aut}(X_{p,\sigma})$ and $\text{Aut}(\text{Nef}(X_{p,\sigma}))$. In Section 8, we prove Theorem 1.7. In the last section, we illustrate that the number of Aut-equivalence classes of genus one fibrations on $X_{3,10}$ is intractably large if $X_{3,10}$ is generic.

Convention. We use Aut to denote automorphism groups of lattice theoretic objects, and Aut to denote automorphism groups of geometric objects on $K3$ surfaces.
2. Preliminaries

2.1. Lattices. A \(\mathbb{Q} \)-lattice is a free \(\mathbb{Z} \)-module \(L \) of finite rank equipped with a non-degenerate symmetric bilinear form \(\langle \cdot, \cdot \rangle_L : L \times L \to \mathbb{Q} \). We omit the subscript \(L \) in \(\langle \cdot, \cdot \rangle \) if no confusions will occur. If \(\langle \cdot, \cdot \rangle_L \) takes values in \(\mathbb{Z} \), we say that \(L \) is a lattice. For \(x \in L \otimes \mathbb{R} \), we call \(x^2 := \langle x, x \rangle \) the norm of \(x \). A vector in \(L \otimes \mathbb{R} \) of norm \(n \) is sometimes called an \(n \)-vector. A lattice \(L \) is said to be even if \(x^2 \in 2\mathbb{Z} \) holds for any \(x \in L \).

Let \(L \) be a free \(\mathbb{Z} \)-module of finite rank. A submodule \(M \) of \(L \) is primitive if \(L/M \) is torsion free. A non-zero vector \(v \in L \) is primitive if the submodule of \(L \) generated by \(v \) is primitive.

Let \(L \) be a \(\mathbb{Q} \)-lattice of rank \(r \). For a non-zero rational number \(m \), we denote by \(L(m) \) the free \(\mathbb{Z} \)-module \(L \) with the symmetric bilinear form \(\langle x, y \rangle_{L(m)} := m \langle x, y \rangle_L \). The signature of \(L \) is the signature of the real quadratic space \(L \otimes \mathbb{R} \). We say that \(L \) is negative definite if the signature of \(L \) is \((0, r)\), and \(L \) is hyperbolic if the signature is \((1, r-1)\). A Gram matrix of \(L \) is an \(r \times r \) matrix with entries \(\langle e_i, e_j \rangle \), where \(\{e_1, \ldots, e_r\} \) is a basis of \(L \). The determinant of a Gram matrix of \(L \) is called the discriminant of \(L \).

For an even lattice \(L \), the set of \((-2)\)-vectors is denoted by \(\mathcal{R}(L) \). A negative definite even lattice \(L \) is called a root lattice if \(L \) is generated by \(\mathcal{R}(L) \). Let \(R \) be an ADE-type. The root lattice of type \(R \) is the root lattice whose Gram matrix is the Cartan matrix of type \(R \). Suppose that \(L \) is negative definite. By the \(ADE \)-type of \(\mathcal{R}(L) \), we mean the \(ADE \)-type of the root sublattice \(\langle \mathcal{R}(L) \rangle \) of \(L \) generated by \(\mathcal{R}(L) \). (See, for example, Ebeling [10] for the classification of root lattices.)

Let \(L \) be an even lattice and let \(L^\vee := \text{Hom}(L, \mathbb{Z}) \) be identified with a submodule of \(L \otimes \mathbb{Q} \) with the extended symmetric bilinear form. We call this \(\mathbb{Q} \)-lattice \(L^\vee \) the dual lattice of \(L \). The discriminant group of \(L \) is defined to be the quotient \(L^\vee/L \), and is denoted by \(A_L \). We define the discriminant quadratic form of \(L \)

\[q_L : A_L \to \mathbb{Q}/2\mathbb{Z} \]

by \(q_L(x \mod L) := x^2 \mod 2\mathbb{Z} \). The order of \(A_L \) is equal to the discriminant of \(L \) up to sign. We say that \(L \) is unimodular if \(A_L \) is trivial, while \(L \) is \(p \)-elementary if \(A_L \) is \(p \)-elementary. An even 2-elementary lattice \(L \) is said to be of type \(I \) if \(q_L(x \mod L) \in \mathbb{Z}/2\mathbb{Z} \) holds for any \(x \in L^\vee \). Note that \(L \) is \(p \)-elementary if and only if \(pG_L^{-1} \) is an integer matrix, where \(G_L \) is a Gram matrix of \(L \).

Let \(O(L) \) denote the orthogonal group of a lattice \(L \), that is, the group of isomorphisms of \(L \) preserving \(\langle \cdot, \cdot \rangle_L \). We assume that \(O(L) \) acts on \(L \) from right, and the action of \(g \in O(L) \) on \(v \in L \otimes \mathbb{R} \) is denoted by \(v \mapsto v^g \). Similarly \(O(q_L) \) denotes the group of isomorphisms of \(A_L \) preserving \(q_L \). There is a natural homomorphism \(O(L) \to O(q_L) \).

Let \(L \) be a hyperbolic lattice. A positive cone of \(L \) is one of the two connected components of

\[\{ x \in L \otimes \mathbb{R} \mid x^2 > 0 \} \].
Let \(P_L \) be a positive cone of \(L \). We denote by \(O^+(L) \) the group of isometries of \(L \) that preserve \(P_L \). We have \(O(L) = O^+(L) \times \{\pm 1\} \). For a vector \(v \in L \otimes \mathbb{R} \) with \(v^2 < 0 \), we put
\[
(v)^\perp := \{ x \in P_L \mid \langle x, v \rangle = 0 \},
\]
which is a real hyperplane of \(P_L \). An isometry \(g \in O^+(L) \) is called a reflection with respect to \(v \) or a reflection into \((v)^\perp \) if \(g \) is of order 2 and fixes each point of \((v)^\perp \). An element \(r \) of \(R(L) \) defines a reflection \(s_r : x \mapsto x + \langle x, r \rangle r \) with respect to \(r \). We denote by \(W(S_L) \) the subgroup of \(O^+(L) \) generated by the set of these reflections \(\{s_r \mid r \in R(L)\} \). It is obvious that \(W(S_L) \) is normal in \(O^+(L) \).

2.2. \(K3 \) surfaces. Let \(Y \) be a \(K3 \) surface, and let \(S_Y \) denote the Néron-Severi lattice of \(Y \). A smooth rational curve on \(Y \) is called a \((-2)\)-curve. We denote by \(\mathcal{P}(Y) \subset S_Y \otimes \mathbb{R} \) the positive cone containing an ample class of \(Y \). Recall that the nef cone \(\text{Nef}(Y) \) of \(Y \) is defined by
\[
\text{Nef}(Y) := \{ x \in S_Y \otimes \mathbb{R} \mid \langle x, [C] \rangle \geq 0 \text{ for any curve } C \text{ on } Y \},
\]
where \([C] \in S_Y \) is the class of a curve \(C \subset Y \). Then \(\text{Nef}(Y) \) is contained in the closure \(\overline{\mathcal{P}(Y)} \) of \(\mathcal{P}(Y) \) in \(S_Y \otimes \mathbb{R} \). We put
\[
\text{Nef}^\circ(Y) := \text{Nef}(Y) \cap \mathcal{P}(Y) = \{ x \in \text{Nef}(Y) \mid x^2 > 0 \}.
\]
The following is well-known. See, for example, Rudakov and Shafarevich [27, Section 3].

Proposition 2.1. (1) We have
\[
\text{Nef}(Y) = \{ x \in S_Y \otimes \mathbb{R} \mid \langle x, [C] \rangle \geq 0 \text{ for any } (-2)\text{-curve } C \text{ on } Y \}.
\]
(2) If \(v \in S_Y \) is contained in \(\overline{\mathcal{P}(Y)} \), then there exists \(g \in W(S_Y) \) such that \(v^g \in \text{Nef}(Y) \).

3. Néron-Severi lattices of supersingular \(K3 \) surfaces

Let \(X_{p,\sigma} \) be a supersingular \(K3 \) surface with Artin invariant \(\sigma \) in characteristic \(p > 0 \). Then the isomorphism class of the Néron-Severi lattice \(S_{p,\sigma} \) of \(X_{p,\sigma} \) depends only on \(p \) and \(\sigma \), and is characterized as follows (see Rudakov-Shafarevich [27, Sections 3,4 and 5] for the proof).

Theorem 3.1 ([27]). (1) The lattice \(S_{p,\sigma} \) is an even hyperbolic \(p \)-elementary lattice of rank 22 with discriminant \(-p^{2\sigma}\). Moreover, \(S_{2,\sigma} \) is of type \(I \).

(2) Suppose that \(N \) is an even hyperbolic \(p \)-elementary lattice of rank 22 with discriminant \(-p^{2\sigma}\). When \(p = 2 \), we further assume that \(N \) is of type \(I \). Then \(N \) is isomorphic to \(S_{p,\sigma} \).

Using this theorem, we can prove Lemma 1.1 easily.
Proof of Lemma 1.1. It is enough to show that \(S'_{p,\sigma}(p) \) is an even \(p \)-elementary lattice of discriminant \(-p^{2\sigma'}\), and that \(S'_{2,\sigma}(2) \) is of type I. Since \(S_{p,\sigma} \) is \(p \)-elementary, we have \(pS'_{p,\sigma} \subset S_{p,\sigma} \). Therefore \(S'_{p,\sigma}(p) \) is a lattice. Let \(G_{p,\sigma} \) be a Gram matrix of \(S_{p,\sigma} \). Then the determinant of the Gram matrix \(pG_{p,\sigma}^{-1} \) of \(S'_{p,\sigma}(p) \) is equal to \(p^{22} \cdot \det(G_{p,\sigma})^{-1} = -p^{2\sigma'} \). Therefore the discriminant of \(S'_{p,\sigma}(p) \) is \(-p^{2\sigma'}\). Since \(p(pG_{p,\sigma}^{-1})^{-1} = G_{p,\sigma} \) is an integer matrix, \(S'_{p,\sigma}(p) \) is \(p \)-elementary. Suppose that \(p \) is odd. Then, for any \(\xi \in S'_{p,\sigma} \), we have \(p\xi \in S_{p,\sigma} \) and hence \((p\xi, p\xi)_{S_{p,\sigma}} = p(\xi, \xi)_{S'_{p,\sigma}(p)} \) is even. Therefore \(S'_{p,\sigma}(p) \) is even. Suppose that \(p = 2 \). Then, for any \(\xi \in S'_{2,\sigma} \), we have \((\xi, \xi)_{S'_{2,\sigma}} \in \mathbb{Z} \), because \(S_{2,\sigma} \) is of type I. Therefore \(S'_{2,\sigma}(2) \) is even. Moreover, for any \(\eta \in (S'_{2,\sigma}(2))^\vee \), we have \((\eta, \eta)_{S_{2,\sigma}(1/2)} \in \mathbb{Z} \), because \(S_{2,\sigma} \) is even. Therefore \(S'_{2,\sigma}(2) \) is of type I. \(\square \)

Corollary 3.2. Suppose that \(\sigma + \sigma' = 11 \). Then there exists an embedding of \(\mathbb{Z} \)-modules

\[j : S_{p,\sigma} \hookrightarrow S_{p,\sigma'} \]

that induces an isomorphism of lattices \(S'_{p,\sigma}(p) \cong S_{p,\sigma'} \). This embedding induces an isomorphism

\[j_* : O(S_{p,\sigma}) \cong O(S_{p,\sigma'}) \]

Moreover such an embedding \(j \) is unique up to compositions with elements of \(O(S_{p,\sigma'}) \).

Remark 3.3. Suppose that \(v \in S_{p,\sigma} \) satisfies \(v^2 \geq 0 \). Then, by Proposition 2.1(2), we can choose \(j : S_{p,\sigma} \hookrightarrow S_{p,\sigma'} \) in Corollary 3.2 in such a way that \(j(v) \) is contained in \(\text{Nef}(X_{p,\sigma'}) \).

4. Genus One Fibrations

Let \(Y \) be a \(K3 \) surface defined over an algebraically closed field of arbitrary characteristic. Recall that \(f_\phi \in S_Y \) is the class of a fiber of a genus one fibration \(\phi : Y \rightarrow \mathbb{P}^1 \), \(E(Y) \) is the set of lattice equivalence classes of genus one fibrations on \(Y \), and \([\phi] \in E(Y)\) is the class containing \(\phi \). We summarize properties of a genus one fibration \(\phi : Y \rightarrow \mathbb{P}^1 \) that depends only on the class \([\phi]\). See Sections 3 and 4 of Rudakov and Shafarevich [27], and Shioda [36] for the proof.

1. The fibration \(\phi \) admits a section if and only if there exists a \((-2)\)-vector \(z \in S_Y \) such that \(\langle f_\phi, z \rangle = 1 \).

2. Note that \(f_\phi \in S_Y \) is primitive of norm 0, and that \(\langle f_\phi \rangle^\perp/\langle f_\phi \rangle \) is an even negative definite lattice, where \(\langle f_\phi \rangle^\perp \) is the orthogonal complement in \(S_Y \) of the lattice \(\langle f_\phi \rangle \) of rank 1 generated by \(f_\phi \). The ADE-type of the reducible fibers of \(\phi \) is equal to the ADE-type of the set \(\mathcal{R}(\langle f_\phi \rangle^\perp/\langle f_\phi \rangle) \) of \((-2)\)-vectors in \(\langle f_\phi \rangle^\perp/\langle f_\phi \rangle \).

3. Suppose that \(\phi \) admits a section \(Z \subset Y \). Then \(f_\phi \) and \([Z] \in S_Y \) generate an even unimodular hyperbolic lattice \(U_\phi \) of rank 2 in \(S_Y \). Let \(K_\phi \) denote the orthogonal complement of \(U_\phi \) in \(S_Y \). We have an orthogonal direct-sum decomposition

\[S_Y = U_\phi \oplus K_\phi, \]
and the lattice $\langle f_\phi \rangle^\perp/\langle f_\phi \rangle$ is isomorphic to K_ϕ. Then the Mordell-Weil group of ϕ is isomorphic to $K_\phi/\langle \mathcal{R}(K_\phi) \rangle$, where $\langle \mathcal{R}(K_\phi) \rangle$ is the root sublattice of K_ϕ generated by the (-2)-vectors in K_ϕ.

(4) In characteristic 2 or 3, ϕ is quasi-elliptic if and only if $\langle \mathcal{R}(K_\phi) \rangle$ is p-elementary of rank 20.

As a corollary, we obtain the following:

Proposition 4.1. Suppose that genus one fibrations $\phi : Y \to \mathbb{P}^1$ and $\psi : Y \to \mathbb{P}^1$ on Y are lattice-equivalent. Then the following hold:

1. The fibration ϕ admits a section if and only if so does ψ.
2. The ADE-type of the reducible fibers of ϕ is equal to that of ψ.
3. Suppose that ϕ and ψ admit a section. Then the Mordell-Weil groups for ϕ and for ψ are isomorphic.
4. In characteristic 2 or 3, the fibration ϕ is quasi-elliptic if and only if so is ψ.

Definition 4.2. For a hyperbolic lattice S, we put

$$\tilde{E}(S) := \{ v \in S \otimes \mathbb{Q} | v \neq 0, v^2 = 0 \}/\mathbb{Q}^\times$$
and $E(S) := \tilde{E}(S)/O(S)$.

Remark 4.3. Let a positive cone \mathcal{P}_S of S be fixed. Then each element of $\tilde{E}(S)$ is represented by a unique non-zero primitive vector $v \in S$ of norm 0 that is contained in the closure $\overline{\mathcal{P}_S}$ of \mathcal{P}_S in $S \otimes \mathbb{R}$.

In Sections 3 and 4 of Rudakov and Shafarevich [27], the following is proved:

Proposition 4.4. Let v be a non-zero vector of S_Y. Then there exists a genus one fibration $\phi : Y \to \mathbb{P}^1$ such that $v = f_\phi$ if and only if v is primitive, $v^2 = 0$, and $v \in \text{Nef}(Y)$.

Combining Propositions 2.1, 4.4 and Remark 4.3, we obtain the following:

Corollary 4.5. The map $\phi \mapsto f_\phi$ induces a bijection from $E(Y)$ to $E(S_Y)$.

From now on, we work over an algebraically closed field of characteristic $p > 0$.

Proof of Theorem 1.3. Consider the embedding $j : S_{p,\sigma} \hookrightarrow S_{p,\sigma'}$ in Corollary 3.2. Then j is unique up to $O(S_{p,\sigma'})$, induces a bijection from $\tilde{E}(S_{p,\sigma})$ to $\tilde{E}(S_{p,\sigma'})$, and induces an isomorphism $O(S_{p,\sigma}) \cong O(S_{p,\sigma'})$. Hence it induces a canonical bijection from $E(S_{p,\sigma})$ to $E(S_{p,\sigma'})$. \hfill \square

We denote this canonical one-to-one correspondence from $E(X_{p,\sigma})$ to $E(X_{p,\sigma'})$ by $[\phi] \mapsto [\phi']$.

Remark 4.6. Let a genus one fibration $\phi : X_{p,\sigma} \to \mathbb{P}^1$ be given, and let $\phi' : X_{p,\sigma'} \to \mathbb{P}^1$ be a representative of $[\phi']$. Then we can choose the embedding $j : S_{p,\sigma} \hookrightarrow S_{p,\sigma'}$ inducing $S_{p,\sigma}^{\vee}(p) \cong S_{p,\sigma'}$ in such a way that $j(f_\phi)$ is a scalar multiple of $f_{\phi'}$ by a positive integer.

Theorem 4.7. Suppose that a genus one fibration $\phi : X_{p,\sigma} \to \mathbb{P}^1$ admits a section. Then the corresponding genus one fibration $\phi' : X_{p,\sigma'} \to \mathbb{P}^1$ does not admit a section. Moreover the ADE-type of the reducible fibers of ϕ' is equal to the ADE-type of $\mathcal{R}(K_{\phi}(p))$.
Proof. Let $z \in S_{p,\sigma}$ be the class of a section of ϕ. We choose $j : S_{p,\sigma} \rightarrow S_{p,\sigma'}$ as in Remark 4.6. Since $U_{\phi}^{\vee} = U_{\phi}$, we see that $j(f_{\phi})$ is primitive in $S_{p,\sigma'}$ and hence $j(f_{\phi}) = f_{\phi'}$. We have an isomorphism $S_{p,\sigma'} \cong U_{\phi}(p) \oplus K_{\phi}^{\vee}(p)$ such that $f_{\phi'}$ and $j(z)$ form a basis of $U_{\phi}(p)$. Since there are no vectors $v \in U_{\phi}(p) \oplus K_{\phi}^{\vee}(p)$ with $\langle v, f_{\phi'} \rangle = 1$, the fibration ϕ' does not admit a section. Moreover the lattice $\langle f_{\phi'} \rangle^{\perp}/\langle f_{\phi'} \rangle$ is isomorphic to $K_{\phi}^{\vee}(p)$. \qed

The list of lattice equivalence classes of genus one fibrations on $X_{2,1}$ and $X_{3,1}$ were obtained by Elkies and Schütt [11] and by Sengupta [28], respectively. From their results, we obtain the following results on supersingular $K3$ surfaces with Artin invariant 10:

Theorem 4.8. There exist 18 lattice equivalence classes of genus one fibrations on $X_{2,10}$. The ADE-type $R_{[\phi]}$ of the reducible fibers of each $[\phi'] \in \mathcal{E}(X_{2,10})$ is given at the last column of Table 4.1.

Theorem 4.9. There exist 52 lattice equivalence classes of genus one fibrations on $X_{3,10}$. The ADE-type $R_{[\phi]}$ of the reducible fibers of each $[\phi'] \in \mathcal{E}(X_{3,10})$ is given at the last column of Table 4.2.

No.	R_N	$\sigma = 1$	$\sigma = 10$		
	$R_{[\phi]}$	MW_{tor}	rank(MW)	$R_{[\phi']}$	
1	$4A_5 + D_4$	$4A_5$	[3, 6]	0	0
2	$6D_4$	$5D_4$	[2, 2, 2, 2]	0	0
3	$2A_7 + 2D_5$	$2A_7 + D_5$	[8]	1	A_1
4	$2A_9 + D_6$	$2A_1 + 2A_9$	[10]	0	$2A_1$
5	$4D_6$	$2A_1 + 3D_6$	[2, 2, 2]	0	$2A_1$
6	$A_{11} + D_7 + E_6$	$A_{11} + D_7$	[4]	2	A_2
7	$A_{11} + D_7 + E_6$	$A_3 + A_{11} + E_6$	[6]	0	$3A_1$
8	$4E_6$	$3E_6$	[3]	2	A_2
9	$3D_8$	$D_4 + 2D_8$	[2, 2]	0	$4A_1$
10	$A_{15} + D_9$	$A_{15} + D_3$	[4]	0	$5A_1$
11	$A_{17} + E_7$	$3A_1 + A_{17}$	[6]	0	A_3
12	$D_{10} + 2E_7$	$3A_1 + D_{10} + E_7$	[2, 2]	0	A_3
13	$D_{10} + 2E_7$	$D_6 + 2E_7$	[2]	0	$6A_1$
14	$2D_{12}$	$D_8 + D_{12}$	[2]	0	$8A_1$
15	$D_{16} + E_8$	$D_4 + D_{16}$	[2]	0	D_4
16	$D_{16} + E_8$	$D_{12} + E_8$	[1]	0	$12A_1$
17	$3E_8$	$D_4 + 2E_8$	[1]	0	D_4
18	D_{24}	D_{20}	[1]	0	$20A_1$

Table 4.1. Genus one fibrations on $X_{2,1}$ and $X_{2,10}$.
No.	R_N	$R_{[\sigma]}$	$\sigma = 1$	$\sigma = 10$	
		$R_{[\sigma]}$	$\sigma = 1$	$\sigma = 10$	
1	$12A_2$	$10A_2$	[3, 3, 3]	0	0
2	$8A_3$	$6A_3$	[4, 4]	2	0
3	$6A_4$	$2A_1 + 4A_4$	[5]	2	0
4	$6D_4$	$4D_4$	[2, 2]	4	0
5	$4A_5 + D_4$	$A_2 + 3A_5$	[3]	3	0
6	$4A_5 + D_4$	$3A_5 + D_4$	[2, 6]	1	A_1
7	$4A_5 + D_4$	$2A_2 + 2A_5 + D_4$	[2]	2	0
8	$4A_6$	$3A_6$	[7]	2	A_1
9	$4A_6$	$2A_3 + 2A_6$	[1]	2	0
10	$2A_7 + 2D_5$	$4A_1 + 2A_7$	[2, 4]	2	0
11	$2A_7 + 2D_5$	$A_1 + A_7 + 2D_5$	[4]	2	A_1
12	$2A_7 + 2D_5$	$2A_1 + A_4 + A_7 + D_5$	[2]	2	0
13	$2A_7 + 2D_5$	$2A_1 + 2D_5$	[1]	2	0
14	$3A_8$	$A_2 + 2A_8$	[3]	2	A_1
15	$3A_8$	$2A_5 + A_8$	[1]	2	0
16	$4D_6$	$3D_6$	[2, 2]	2	$2A_1$
17	$4D_6$	$2A_3 + 2D_6$	[2, 2]	2	0
18	$2A_9$	$2A_9$	[5]	2	$2A_1$
19	$2A_9 + D_6$	$A_3 + A_9 + D_6$	[2]	2	A_1
20	$2A_9 + D_6$	$A_3 + A_6 + A_9$	[1]	2	0
21	$2A_9 + D_6$	$2A_6 + D_6$	[1]	2	0
22	$4E_6$	$A_2 + 3E_6$	[3]	0	A_2
23	$4E_6$	$4A_2 + 2E_6$	[3, 3]	0	0
24	$A_{11} + D_7 + E_6$	$A_2 + A_{11} + D_7$	[4]	0	A_2
25	$A_{11} + D_7 + E_6$	$A_{11} + E_6$	[3]	3	$2A_1$
26	$A_{11} + D_7 + E_6$	$2A_2 + A_{11} + D_4$	[6]	1	0
27	$A_{11} + D_7 + E_6$	$A_5 + D_7 + E_6$	[1]	2	A_1
28	$A_{11} + D_7 + E_6$	$2A_2 + A_8 + D_7$	[1]	1	0
29	$A_{11} + D_7 + E_6$	$A_8 + D_4 + E_6$	[1]	2	0
30	$2A_{12}$	$A_6 + A_{12}$	[1]	2	A_1
31	$2A_{12}$	$2A_9$	[1]	2	0
32	$3D_8$	$2A_1 + 2D_5$	[2, 2]	2	$2A_1$
33	$3D_8$	$2D_5 + D_8$	[2]	2	0
34	$A_{15} + D_9$	$A_3 + A_{15}$	[4]	2	$2A_1$
35	$A_{15} + D_9$	$A_9 + D_9$	[1]	2	A_1
36	$A_{15} + D_9$	$A_{12} + D_6$	[1]	2	0

(to be continued)
In Table 4.1 (resp. Table 4.2), the lists $E(X_{2,1})$ and $E(X_{2,10})$ (resp. $E(X_{3,1})$ and $E(X_{3,10})$) are presented. Two lattice equivalence classes in the same row are the pair of $[\phi] \in E(X_{p,1})$ and its corresponding partner $[\phi^\prime] \in E(X_{p,10})$. The ADE-type R_ϕ of the reducible fibers of ϕ, and the torsion MW_{tor} and the rank of the Mordell-Weil group of ϕ are also given. (Recall that ϕ is Jacobian for any $[\phi] \in E(X_{p,1})$ by Elkies and Schütz [11].) The meaning of the entry R_N is explained in the proof of Theorems 4.8 and 4.9.

Proof of Theorems 4.8 and 4.9. By Theorem 4.7, it is enough to calculate the ADE-type of $R(K_{\phi}^\vee(p))$ for $p = 2, 3$ and $[\phi] \in E(X_{p,1})$. The lattices K_ϕ are calculated in Elkies and Schütz [11] and Sengupta [28] by Nishiyama’s method [22]. We put

$$T := \text{the root lattice of type } \begin{cases} D_4 & \text{if } p = 2, \\ 2A_2 & \text{if } p = 3. \end{cases}$$

Then, for each $[\phi] \in E(X_{p,1})$, there exist a Niemeier lattice N_ϕ and a primitive embedding of T into N_ϕ such that K_ϕ is isomorphic to the orthogonal complement of T in N_ϕ. The entry R_N in Tables 4.1 and 4.2 indicates the ADE-type of $R(N_\phi)$. From a Gram matrix of K_ϕ, we can calculate the ADE-type of $R(K_{\phi}^\vee(p))$ by the algorithm described in [32, Section 4] or [33, Section 3].

Corollary 4.10. There exist no quasi-elliptic fibrations on $X_{3,10}$.
Remark 4.11. Rudakov and Shafarevich [27, Section 5] showed that there exists a quasi-elliptic fibration on $X_{2,\sigma}$ for any σ. The quasi-elliptic fibration on $X_{2,10}$ (No. 18 of Table 4.1) was discovered by Rudakov and Shafarevich [26, Section 4].

5. CHAMBER DECOMPOSITION OF A POSITIVE CONE

Let S be an even hyperbolic lattice, and let $\mathcal{P}_S \subset S \otimes \mathbb{R}$ be a positive cone. In this section, we review a general method to find a set of generators of a subgroup of $O^+(S)$ by means of a chamber decomposition of \mathcal{P}_S, which was developed by Vinberg [37], [38], Conway [7] and Borcherds [3], [4].

Any real hyperplane in \mathcal{P}_S is written in the form $(v)\perp$ by some vector $v \in S \otimes \mathbb{R}$ with negative norm. We denote by H_S the set of real hyperplanes in \mathcal{P}_S, which is canonically identified with $\{v \in S \otimes \mathbb{R} | v^2 < 0\}/\mathbb{R}^\times$.

For a subset V of $\{v \in S \otimes \mathbb{R} | v^2 < 0\}$, we denote by $V^* \subset H_S$ the image of V by $v \mapsto (v)\perp$. A closed subset D of \mathcal{P}_S is called a chamber if the interior D° of D is non-empty and there exists a set Δ_D of vectors $v \in S \otimes \mathbb{R}$ with $v^2 < 0$ such that $D = \{x \in \mathcal{P}_S | \langle x, v \rangle \geq 0 \text{ for all } v \in \Delta_D\}$.

A hyperplane $(v)\perp$ of \mathcal{P}_S is called a wall of D if $D^\circ \cap (v)\perp = \emptyset$ and $D \cap (v)\perp$ contains an open subset of $(v)\perp$. When D is a chamber, we always assume that the set Δ_D is minimal in the sense that, for any $v \in \Delta_D$, there exists a point $x \in \mathcal{P}_S$ such that $\langle x, v \rangle < 0$ and $\langle x, v' \rangle \geq 0$ for any $v' \in \Delta_D \setminus \{v\}$, that is, the projection $\Delta_D \to \Delta_D^*$ is bijective and every hyperplane $(v)\perp \in \Delta_D^*$ is a wall of D.

For a chamber D, we put $Aut(D) := \{g \in O^+(S) | D^g = D\}$.

A chamber D is said to be fundamental if the following hold:

(i) \mathcal{P}_S is the union of all D^g, where g runs through $O^+(S)$, and
(ii) if $D^g \cap D^h \neq \emptyset$, then $g \in Aut(D)$.

Let \mathcal{F} be a family of hyperplanes in \mathcal{P}_S with the following properties:

(a) \mathcal{F} is locally finite in \mathcal{P}_S, and
(b) \mathcal{F} is invariant under the action of $O^+(S)$ on H_S.

Then the closure of each connected component of $\mathcal{P}_S \setminus \bigcup_{\mathcal{F}} (v)\perp$ is a chamber, which we call an \mathcal{F}-chamber.
Proposition 5.1. \(F \) satisfies the property (i) if and only if every \((b) \) of \(F \) satisfies the property (ii) in the definition of fundamental chambers. Moreover, \(F \) satisfies the property (i) if and only if every \(F \)-chamber is equal to \(D^g \) for some \(g \in O^+(S) \).

For each wall \((v)^\perp \in \Delta_D^\times\) of an \(F \)-chamber \(D \), there exists a unique \(F \)-chamber \(D' \) distinct from \(D \) such that \(D \cap D' \cap (v)^\perp \) contains an open subset of \((v)^\perp\). We say that \(D' \) is adjacent to \(D \) along \((v)^\perp\), and that \((v)^\perp\) is the wall between the adjacent chambers \(D \) and \(D' \).

Proposition 5.1. An \(F \)-chamber \(D \) is fundamental if and only if, for each \(v \in \Delta_D \), there exists \(g_v \in O^+(S) \) such that \(D^{g_v} \) is adjacent to \(D \) along \((v)^\perp\).

Proof. The ‘only if’ part is obvious. We prove the ‘if’ part. It is enough to show that, for an arbitrary \(F \)-chamber \(D' \), there exists \(g \in O^+(S) \) such that \(D' = D^g \). Since the family \(F \) of hyperplanes is locally finite in \(P_S \), there exists a finite chain of \(F \)-chambers \(D_0 = D, D_1, \ldots, D_N = D' \) such that \(D_i \) and \(D_{i+1} \) are adjacent. We show, by induction on \(N \), that there exists a sequence of vectors \(v_1, \ldots, v_N \in \Delta_D \) such that \(D_{i} = D^{g_{v_i}} \) holds for \(i = 1, \ldots, N \). The case \(N = 0 \) is trivial. Suppose that \(N > 0 \). Let \((w)^\perp\) be the wall between \(D_{N-1} \) and \(D_N \), and let \(v_N \in \Delta_D \) be the vector such that the wall \((v_N)^\perp\) of \(D \) is mapped to the wall \((w)^\perp\) of \(D_{N-1} \) by \(g_{v_{N-1}} \cdots g_{v_1} \). Then we have \(D_N = D^{g_{v_N}} \).

Remark 5.2. If an \(F \)-chamber is fundamental, then any \(F \)-chamber is fundamental.

Let \(G \) be a subset of \(F \) that is invariant under the action of \(O^+(S) \). Then \(G \) is locally finite, and any \(G \)-chamber is a union of \(F \)-chambers. If an \(F \)-chamber is fundamental, then any \(G \)-chamber is also fundamental.

Proposition 5.3. Let \(D \) be an \(F \)-chamber and let \(C \) be a \(G \)-chamber such that \(D \subset C \). Suppose that \(D \) is fundamental. For \(v \in \Delta_D \), let \(g_v \in O^+(S) \) be an isometry such that \(D^{g_v} \) is adjacent to \(D \) along \((v)^\perp\). We put

\[
\Gamma := \{ g_v \mid v \in \Delta_D, (v)^\perp \notin G \}.
\]

Then \(\text{Aut}(C) \) is generated by \(\text{Aut}(D) \) and \(\Gamma \).

Proof. If \(g_v \in \Gamma \), then \(D^{g_v} \) is contained in \(C \) because the wall \((v)^\perp\) between \(D \) and \(D^{g_v} \) does not belong to \(G \), and hence \(g_v \in \text{Aut}(C) \). Therefore the subgroup \(\langle \text{Aut}(D), \Gamma \rangle \) of \(O^+(S) \) generated by \(\text{Aut}(D) \) and \(\Gamma \) is contained in \(\text{Aut}(C) \). To prove \(\text{Aut}(C) \subset \langle \text{Aut}(D), \Gamma \rangle \), it is enough to show that, for any \(g \in \text{Aut}(C) \), there exists a sequence \(\gamma_1, \ldots, \gamma_N \) of elements of \(\Gamma \) such that \(D^g = D^{\gamma_N \cdots \gamma_1} \). There exists a sequence of \(F \)-chambers \(D_0 = D, D_1, \ldots, D_N = D^g \) such that each \(D_i \) is contained in \(C \) and that \(D_{i+1} \) is adjacent to \(D_i \) for \(i = 0, \ldots, N - 1 \). Suppose that we have constructed \(\gamma_1, \ldots, \gamma_i \in \Gamma \) such that \(D_i = D^{\gamma_i \cdots \gamma_1} \) holds. The wall \((w)^\perp\) between \(D_i \) and \(D_{i+1} \) does not belong to \(G \). Let \(v_{i+1} \) be an element of \(\Delta_D \) such that \((v_{i+1})^\perp\) of \(D \) is mapped to the wall \((w)^\perp\) of \(D_i \) by \(\gamma_i \cdots \gamma_1 \). Since \(G \) is invariant under the action of \(O^+(S) \), we have \((v_{i+1})^\perp \notin G \) and hence \(\gamma_{i+1} := g_{v_{i+1}} \) is an element of \(\Gamma \). Then \(D_{i+1} = D^{\gamma_{i+1} \cdots \gamma_1} \) holds.
Remark 5.4. Let D and C be as in Proposition 5.3. Let v and v' be elements of Δ_D. Suppose that the wall $(v)\perp$ of D is mapped to the wall $(v')\perp$ of D by $h \in Aut(D)$. Then $D^{bg_r} = D^{h^{-1}}$ is adjacent to D along $(v)\perp$. Let Δ_D' be a subset of Δ_D such that the subset Δ_D'' of Δ_D' is a complete set of representatives of the orbit decomposition of Δ_D' by the action of $Aut(D)$. Then $Aut(C)$ is generated by $Aut(D)$ and $\{g_v \mid v \in \Delta_D \setminus (v)\perp \notin \mathcal{G}\}$.

Considering the case $\mathcal{G} = \emptyset$, we obtain the following:

Corollary 5.5. Let D be an \mathcal{F}-chamber. If D is fundamental, then $O^+(S)$ is generated by $Aut(D)$ and the isometries g_v that map D to its adjacent chambers.

Example 5.6. Recall that $W(S) \subset O^+(S)$ is the subgroup generated by $\{s_r \mid r \in R(S)\}$. Any $R(S)^*$-chamber is fundamental, because every $r \in R(S)$ defines a reflection s_r. It follows that $O^+(S)$ is equal to the semi-direct product of $W(S)$ and the automorphism group $Aut(D)$ of an $R(S)^*$-chamber D. In particular, we have

$$Aut(D) \cong O^+(S)/W(S).$$

Let L be an even unimodular hyperbolic lattice, and let $\iota : S \rightarrow L$ be a primitive embedding. Let \mathcal{P}_L be the positive cone of L that contains $\iota(\mathcal{P}_S)$. We denote by T_ι the orthogonal complement of S in L, and by

$$v \mapsto v_S$$

the orthogonal projection $L \otimes \mathbb{R} \rightarrow S \otimes \mathbb{R}$. Since L is a submodule of $S^\vee \oplus T_\iota^\vee$, the image of L by $v \mapsto v_S$ is contained in S^\vee. We assume the following:

$$\text{(5.1)} \quad \text{the natural homomorphism } O(T_\iota) \rightarrow O(qT_\iota) \text{ is surjective.}$$

Then we have the following:

Proposition 5.7. For any $g \in O^+(S)$, there exists $\tilde{g} \in O^+(L)$ such that $\iota(v^g) = \iota(v)^{\tilde{g}}$ holds for any $v \in S \otimes \mathbb{R}$.

Proof. See Nikulin [20, Proposition 1.6.1].

A hyperplane $(r)^\perp$ of \mathcal{P}_L defined by a (-2)-vector $r \in R(L)$ intersects $\iota(\mathcal{P}_S)$ if and only if $r_S^2 < 0$. We put

$$\mathcal{R}(L, \iota) := \{ r_S \mid r \in R(L) \text{ and } r_S^2 < 0 \} \subset S^\vee.$$

Since T_ι is negative definite, we have $-2 \leq r_S^2$ for any $r \in R(L)$. Since S^\vee is discrete in $S \otimes \mathbb{R}$, the family of hyperplanes $\mathcal{R}(L, \iota)^*$ is locally finite in \mathcal{P}_S. By Proposition 5.7, if $r \in R(L)$ satisfies $r_S \in \mathcal{R}(L, \iota)$, then, for any $g \in O^+(S)$, we have $r_S^g = (r_S)^g \in \mathcal{R}(L, \iota)$. Therefore $\mathcal{R}(L, \iota)$ is invariant under the action of $O^+(S)$. Note that $\mathcal{R}(L, \iota)$ contains $\mathcal{R}(S)$, and that $\mathcal{R}(S)$ is obviously invariant under the action of $O^+(S)$. Therefore, by Proposition 5.3, we can obtain a set of generators of the automorphism group $Aut(C)$ of an $\mathcal{R}(S)^*$-chamber C if we find an $\mathcal{R}(L, \iota)^*$-chamber D contained
in \(C \), show that \(D \) is fundamental, calculate the group \(Aut(D) \), and find isometries of \(S \) that map \(D \) to its adjacent chambers.

Let \(L_{26} \) denote an even hyperbolic unimodular lattice of rank 26, which is unique up to isomorphisms by Eichler’s theorem (see, for example, Cassels [6]). The walls of an \(\mathcal{R}(L_{26}) \)-chamber \(D \subset L_{26} \otimes \mathbb{R} \) and the group \(Aut(D) \subset O^+(L_{26}) \) were determined by Conway [7]. Then Borechers [3], [4] determined the structure of \(O^+(S) \) for some even hyperbolic lattices \(S \) of rank \(< 26 \) by embedding \(S \) into \(L_{26} \) in such a way that \(T_i \) is a root lattice.

Kondo [17] applied the Conway-Borcherds method to the study of the automorphism group of a generic Jacobian Kummer surface. Then Keum and Kondo [14] applied it to Kummer surfaces associated with the product of two elliptic curves, Dolgachev and Keum [9] applied it to quartic Hessian surfaces, Dolgachev and Kondo [8] applied it to \(X_{2,1} \), and Kondo and Shimada [18] applied it to \(X_{3,1} \).

We say that an even hyperbolic lattice \(S \) is 2-reflective if the index of \(W(S) \) in \(O^+(S) \) is finite, or equivalently, if the automorphism group of an \(\mathcal{R}(S) \)-chamber is finite (see Example 5.6). Nikulin [21] classified all 2-reflective lattices of rank \(\geq 5 \). It turns out that there are no 2-reflective lattices of rank \(> 19 \).

Let \(Y \) be a \(K3 \) surface with the Néron-Severi lattice \(S_Y \) and the positive cone \(P(Y) \) containing an ample class. Then the closed subset \(\text{Nef}(Y) = \text{Nef}(Y) \cap P(Y) \) of \(P(Y) \) is an \(\mathcal{R}(S_Y) \)-chamber by Proposition 2.1(1), and hence we have

\[
\text{Aut}(\text{Nef}(Y)) = \text{Aut}(\text{Nef}^0(Y)) \cong O^+(S_Y)/W(S_Y).
\]

Combining this fact with Nikulin’s classification of 2-reflective lattices, we obtain the following:

Corollary 5.8. For any supersingular \(K3 \) surface \(X_{p,\sigma} \), the group \(\text{Aut}(\text{Nef}(X_{p,\sigma})) \) is infinite.

6. THE GROUPS \(\text{Aut}(\text{Nef}(X_{2,10})) \) AND \(\text{Aut}(\text{Nef}(X_{3,10})) \)

6.1. The group \(\text{Aut}(\text{Nef}(X_{2,10})) \)

By Lemma 1.1, the result of Dolgachev and Kondo [8], and the method of the previous section, we obtain a set of generators of \(\text{Aut}(\text{Nef}(X_{2,10})) \).

First we recall the results of [8]. As a projective model of \(X_{2,1} \), we consider the minimal resolution \(X \) of the inseparable double cover \(Y \to \mathbb{P}^2 \) of \(\mathbb{P}^2 \) defined by

\[
w^2 = x_0x_1x_2(x_0^3 + x_1^3 + x_2^3).
\]

Note that the projective plane \(\mathbb{P}^2(\mathbb{F}_4) \) defined over \(\mathbb{F}_4 \) contains 21 points \(p_1, \ldots, p_{21} \) and 21 lines \(\ell_1, \ldots, \ell_{21} \). The inseparable double cover \(Y \) has 21 ordinary nodes over the 21 points in \(\mathbb{P}^2(\mathbb{F}_4) \) and hence \(X \) has 21 disjoint (-2)-curves. We denote by \(e_1, \ldots, e_{21} \in S_{2,1} \) the classes of these (-2)-curves, by \(h \in S_{2,1} \) the class of the pullback of a line on \(\mathbb{P}^2 \), and by \(f_1, \ldots, f_{21} \in S_{2,1} \) the
We define a chamber $w_M := \frac{1}{3} \sum_{i=1}^{21} (e_i + f_i)$
has the property $w_M \in S_X, \ w_M^2 = 14, \ \langle w_M, e_i \rangle = \langle w_M, f_i \rangle = 1.$

The complete linear system associated with the line bundle corresponding to w_M defines an embedding of X into $\mathbb{P}^2 \times \mathbb{P}^2$, and its image $X_M \subset \mathbb{P}^2 \times \mathbb{P}^2$ is defined by
\[
\begin{cases}
 x_0 y_0^2 + x_1 y_1^2 + x_2 y_2^2 = 0, \\
 x_0^2 y_0 + x_1^2 y_1 + x_2^2 y_2 = 0.
\end{cases}
\]

Six points on $\mathbb{P}^2(\mathbb{F}_4)$ are said to be general if no three points of them are collinear. There exist 168 sets of general six points in $\mathbb{P}^2(\mathbb{F}_4)$. If $I = \{p_{i_1}, \ldots, p_{i_6}\}$ is a set of general six points, then the $(−1)$-vector
\[c_I := h - \frac{1}{2}(e_{i_1} + \cdots + e_{i_6})\]
is contained in $S_{2,1}^\vee$. Note that each c_I defines a reflection
\[x \mapsto x + 2\langle x, c_I \rangle c_I\]
in $O^+(S_{2,1})$ because $c_I \in S_{2,1}^\vee$. Let $P(X_{2,1})$ be the positive cone of $S_{2,1}$ containing an ample class, and let $\Delta(X_{2,1})$ be the set consisting of $e_1, \ldots, e_21, f_1, \ldots, f_21$ and the $(−1)$-vectors c_I defined above. We define a chamber $D(X_{2,1})$ in $P(X_{2,1})$ by
\[D(X_{2,1}) := \{ x \in P(X_{2,1}) \mid \langle x, v \rangle \geq 0 \ \text{for all} \ v \in \Delta(X_{2,1}) \}.
\]

Then, for each $v \in \Delta(X_{2,1})$, the hyperplane $(v)^\perp$ is a wall of $D(X_{2,1})$. Moreover the ample class w_M is contained in the interior of $D(X_{2,1})$. Recall that L_{26} is the even unimodular hyperbolic lattice of rank 26. There exists a primitive embedding $\iota : S_{2,1} \hookrightarrow L_{26}$, which is unique up to $O(L_{26})$. The orthogonal complement T_i of $S_{2,1}$ in L_{26} is isomorphic to the root lattice of type D_4, and hence satisfies the hypothesis (5.1).

Proposition 6.1. The chamber $D(X_{2,1})$ is an $\mathcal{R}(L_{26}, \iota)^\ast$-chamber contained in the $\mathcal{R}(S_{2,1})^\ast$-chamber $\text{Nef}^\ast(X_{2,1})$. An isometry $g \in O^+(S_{2,1})$ belongs to $\text{Aut}(D(X_{2,1}))$ if and only if $w_M^g = w_M$.

Thus we can apply Proposition 5.3 to the pair of chambers $D(X_{2,1})$ and $\text{Nef}^\ast(X_{2,1})$ for the study of $\text{Aut} (\text{Nef}(X_{2,1}))$ and $\text{Aut}(X_{2,1})$.

We have the following elements in $\text{Aut}(X_{2,1})$ and $O^+(S_{2,1})$. Since $\text{Aut}(X_{2,1})$ is naturally embedded in $O^+(S_{2,1})$, we use the same letter to denote an element of $\text{Aut}(X_{2,1})$ and its image in $O^+(S_{2,1})$.
• The action of $\text{PGL}(3, \mathbb{F}_4)$ on \mathbb{P}^2 induces automorphisms of the inseparable double cover Y of \mathbb{P}^2, and hence automorphisms of $X_{2,1}$. Their action on $S_{2,1}$ preserves $D(X_{2,1})$.

• The interchange of the two factors of $\mathbb{P}^2 \times \mathbb{P}^2$ preserves $X_M \subset \mathbb{P}^2 \times \mathbb{P}^2$, and hence it induces an involution $sw \in \text{Aut}(X_{2,1})$, which we call the switch. Its action on $S_{2,1}$ preserves $D(X_{2,1})$.

• For each set I of general six points in $\mathbb{P}^2(\mathbb{F}_4)$, the linear system of plane curves of degree 5 that pass through the points of I and are singular at each point of I defines a birational involution of \mathbb{P}^2, and this involution lifts to an involution of Y. Hence we obtain an involution $Cr_I \in \text{Aut}(X_{2,1})$, which we call a Cremona automorphism of $X_{2,1}$. The action of Cr_I on $S_{2,1}$ is the reflection with respect to $c_I \in S_{2,1}^\vee$.

• The Frobenius action of $\text{Gal}(\mathbb{F}_4/\mathbb{F}_2)$ on X_M induces an isometry Fr of $S_{2,1}$, which preserves $D(X_{2,1})$.

• We have the reflections s_{e_i} and s_{f_i} with respect to the (-2)-vectors e_i and f_i.

By the reflections Cr_I, s_{e_i}, and s_{f_i}, we see that the chamber $D(X_{2,1})$ is fundamental.

Theorem 6.2 ([8]). (1) The projective automorphism group $\text{Aut}(X_{2,1}, w_M)$ of $X_M \subset \mathbb{P}^2 \times \mathbb{P}^2$ is generated by $\text{PGL}(3, \mathbb{F}_4)$ and the switch sw.

(2) The group $\text{Aut}(D(X_{2,1}))$ is generated by $\text{Aut}(X_{2,1}, w_M)$ and Fr.

(3) The automorphism group $\text{Aut}(X_{2,1})$ is generated by $\text{Aut}(X_{2,1}, w_M)$ and the 168 Cremona automorphisms Cr_I.

(4) The group $\text{Aut}(\text{Nef}(X_{2,1}))$ is generated by $\text{Aut}(X_{2,1})$ and Fr.

(5) The group $\text{O}^+(S_{2,1})$ is generated by $\text{Aut}(\text{Nef}(X_{2,1}))$ and the $21 + 21$ reflections s_{e_i} and s_{f_i}.

We then study $\text{Aut}(\text{Nef}(X_{2,10}))$. By Corollary 3.2, we have an embedding

$$j : S_{2,1} \hookrightarrow S_{2,10}$$

that induces $S_{2,1}^\vee(2) \cong S_{2,10}$. Composing j with some element of $W(S_{2,10}) \times \{ \pm 1 \}$, we can assume that $j(w_M)$ is contained in $\text{Nef}(X_{2,10})$ (Proposition 2.1(2)). The isomorphism $j_* : \text{O}^+(S_{2,1}) \cong \text{O}^+(S_{2,10})$ induced by j is denoted by

$$g \mapsto g'. $$

The $j(\mathcal{R}(L_{26, \iota}))^\ast$-chamber $j(D(X_{2,1}))$ is fundamental, and we have

$$\text{Aut}(j(D(X_{2,1}))) = \text{Aut}(D(X_{2,1})).$$

Lemma 6.3. The set $j(\mathcal{R}(L_{26, \iota}))$ contains $\mathcal{R}(S_{2,10})$. Hence the $j(\mathcal{R}(L_{26, \iota}))^\ast$-chamber $j(D(X_{2,1}))$ is contained in the $\mathcal{R}(S_{2,10})^\ast$-chamber $\text{Nef}^\ast(X_{2,10})$.

Proof. It is enough to show that, if $v \in S_{2,1}^\vee$ satisfies $v^2 = -1$, then $v \in \mathcal{R}(L_{26, \iota})$, that is, there exists $u \in T_{x}^\vee$ such that $u^2 = -1$ and that $u + v$ is contained in the submodule L_{26} of $S_{2,1}^\vee \oplus T_{x}^\vee$. By
Nikulin [20, Proposition 1.4.1], the submodule $L_{26}/(S_{2,1} \oplus T_i)$ of $(S_{2,1}' \oplus T_i')/(S_{2,1} \oplus T_i) = A_{S_{2,1}} \oplus A_{T_i}$ is the graph of an isomorphism

$$q_{S_{2,1}} \cong -q_{T_i}.$$

Hence it is enough to show that, for any $\bar{u} \in A_{T_i}$ with $q_{T_i}(\bar{u}) = 1$, there exists $u \in T_i'$ such that $u^2 = -1$ and $u \mod T_i = \bar{u}$. Since T_i is a root lattice of type D_4, we can confirm this fact by direct computation. The set of (-1)-vectors in T_i' consists of 24 vectors, and its image by the natural projection $T_i' \to A_{T_i}$ is the set of all non-zero elements of $A_{T_i} \cong \mathbb{P}_2^2$.

The set of walls of $j(D(X_{2,1}))$ is equal to

$$\{(j(e_i))^\perp | i = 1, \ldots, 21\} \cup \{(j(f_i))^\perp | i = 1, \ldots, 21\} \cup \{(j(c_i))^\perp | I \text{ is a set of general six points}\}.$$

Note that the $21 + 21$ vectors $j(e_i)$ and $j(f_i)$ are of norm -4 and the 168 vectors $j(c_i)$ are of norm -2. Note also that neither $(j(e_i))^\perp$ nor $(j(f_i))^\perp$ are contained in $\mathcal{R}(S_{2,10})^*$, because there are no rational numbers λ such that $(-4)\lambda^2 = -2$. By Proposition 5.3, Theorem 6.2 and Lemma 6.3, we obtain the following:

Theorem 6.4. The group $\text{Aut}(\text{Nef}(X_{2,10}))$ is generated by $\text{PGL}(3, \mathbb{F}_4)\,'$, sw', Fr', s_{e_i}' and s_{f_i}'.

6.2. **The group $\text{Aut}(\text{Nef}(X_{3,10}))$.** By the same argument as above, we obtain a set of generators of $\text{Aut}(\text{Nef}(X_{3,10}))$ from the result of Kondo and Shimada [18].

We consider the Fermat quartic surface

$$X_{\mathbb{F}_Q} : x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0$$

in characteristic 3. Then $X_{\mathbb{F}_Q}$ is isomorphic to $X_{3,1}$. The surface $X_{\mathbb{F}_Q}$ contains 112 lines, and their classes l_1, \ldots, l_{112} span $S_{3,1}$. We denote by $h_{\mathbb{F}_Q} \in S_{3,1}$ the class of a hyperplane section of $X_{\mathbb{F}_Q}$.

There exists a primitive embedding $i : S_{3,1} \hookrightarrow L_{26}$, which is unique up to $O(L_{26})$. The orthogonal complement T_i is isomorphic to the root lattice of type $2A_2$, and hence satisfies the hypothesis (5.1). We calculated an $\mathcal{R}(L_{26}, i)^*$-chamber $D(X_{3,1})$ that contains $h_{\mathbb{F}_Q}$ in its interior, and found

648 vectors $u_j \in S_{3,1}'$ of norm $-4/3$, and 5184 vectors $w_k \in S_{3,1}'$ of norm $-2/3$

such that the walls of $D(X_{3,1})$ consist of the 112 hyperplanes $(l_i)^\perp$, the 648 hyperplanes $(u_j)^\perp$ and the 5184 hyperplanes $(w_k)^\perp$. Note that the $\mathcal{R}(L_{26}, i)^*$-chamber $D(X_{3,1})$ is contained in the $\mathcal{R}(S_{3,1})^*$-chamber $\text{Nef}^0(X_{3,1})$, because $h_{\mathbb{F}_Q} \in D(X_{3,1})^0$. Moreover, since $28 h_{\mathbb{F}_Q} = \sum i_i$, the following holds:

Proposition 6.5. An isometry $g \in O^+(S_{3,1})$ belongs to $\text{Aut}(D(X_{3,1}))$ if and only if $h_{\mathbb{F}_Q}^g = h_{\mathbb{F}_Q}$.

We have the following elements in $\text{Aut}(X_{3,1})$ and $O^+(S_{3,1})$. Note that, for a polarization $h \in S_{3,1}$ of degree 2, we have the deck transformation $\tau(h) \in \text{Aut}(X_{3,1})$ of the generically finite morphism $X_{3,1} \to \mathbb{P}_2$ of degree 2 induced by the the complete linear system associated with h.

• The subgroup PGU(4, ℂ) of PGL(4, ℂ) = Aut(ℙ³) acts on \(X_{FQ} \). Its action on \(S_{3,1} \) preserves \(D(X_{3,1}) \). Moreover, the action of PGU(4, ℂ) on \(S_{3,1}^v \) is transitive on each of the set of 112 vectors \(l_i \), the set of 648 vectors \(u_j \) and the set of 5184 vectors \(w_k \).

• There exists a polarization \(h_{648} \in S_{3,1} \) of degree 2 such that the deck transformation \(\tau(h_{648}) \in Aut(X_{3,1}) \) maps \(D(X_{3,1}) \) to an \(R(L_{26}, \iota)^* \)-chamber adjacent to \(D(X_{3,1}) \) along one of the 648 walls \((u_j) \).

• There exists a polarization \(h_{5184} \in S_{3,1} \) of degree 2 such that the deck transformation \(\tau(h_{5184}) \in Aut(X_{3,1}) \) maps \(D(X_{3,1}) \) to an \(R(L_{26}, \iota)^* \)-chamber adjacent to \(D(X_{3,1}) \) along one of the 5184 walls \((w_k)^* \).

• The Frobenius action of Gal(ℂ/F_3) on \(X_{FQ} \) gives rise to an element \(Fr \in Aut(D(X_{3,1})) \) of order 2.

• We have the reflections \(s_{l_i} \) with respect to the classes \(l_i \) of the 112 lines on \(X_{FQ} \).

Remark 6.6. The actions of the involutions \(\tau(h_{648}) \) and \(\tau(h_{5184}) \) on \(S_{3,1} \) are not reflections.

Thus \(D(X_{3,1}) \) is fundamental, and hence we have the following:

Theorem 6.7 (18). (1) The projective automorphism group \(Aut(X, h_{FQ}) \) of the Fermat quartic surface \(X_{FQ} \subset \mathbb{P}^3 \) is equal to PGU(4, ℂ).

(2) The group \(Aut(D(X_{3,1})) \) is generated by \(Aut(X, h_{FQ}) \) and \(Fr \).

(3) The automorphism group \(Aut(X_{3,1}) \) is generated by \(Aut(X, h_{FQ}) \) and the two involutions \(\tau(h_{648}) \) and \(\tau(h_{5184}) \).

(4) The group \(Aut(Nef(X_{3,1})) \) is generated by \(Aut(X_{3,1}) \) and \(Fr \).

(5) The group \(O^+(S_{3,1}) \) is generated by \(Aut(Nef(X_{3,1})) \) and the 112 reflections \(s_{l_i} \).

By Corollary 3.2, we have an embedding
\[
j : S_{3,1} \hookrightarrow S_{3,10}
\]
that induces \(S_{3,1}^v(3) \cong S_{3,10} \). By Proposition 2.1(2), we can assume that \(j(h_{FQ}) \) is contained in \(Nef(X_{3,10}) \). The isomorphism \(j_* : O^+(S_{3,1}) \cong O^+(S_{3,10}) \) induced by \(j \) is denoted by \(g \mapsto g' \). The \(j(R(L_{26}, \iota))^* \)-chamber \(j(D(X_{3,1})) \) is fundamental, and \(Aut(j(D(X_{3,1}))) \) is equal to \(Aut(D(X_{3,1}))^* \).

Lemma 6.8. The set \(j(R(L_{26}, \iota)) \) contains \(R(S_{3,10}) \). Hence the \(j(R(L_{26}, \iota))^* \)-chamber \(j(D(X_{3,1})) \) is contained in the \(R(S_{3,10})^* \)-chamber Nef^0(X_{3,10}).

Proof. It is enough to show that, if \(v \in S_{3,1}^v \) satisfies \(v^2 = -2/3 \), then there exists \(u \in T_{16}^v \) such that \(u^2 = -4/3 \) and that \(u + v \) is contained in \(L_{26} \subset S_{3,1}^v \oplus T_{16}^v \). For this, it suffices to prove that, for any \(\bar{u} \in A_T \) with \(q_T(\bar{u}) = -4/3 \), there exists \(u \in T_{16}^v \) such that \(u^2 = -4/3 \) and \(u \mod T_{16} = \bar{u} \). Since \(T_{16} \) is a root lattice of type \(2A_2 \), we can confirm this fact by direct computation. \(\square \)
The set of walls of $j(D(X_{3,1}))$ is equal to
\[
\{(j(l_i))^{\perp} \mid i = 1, \ldots, 112\} \cup \{(j(u_j))^{\perp} \mid j = 1, \ldots, 648\} \cup \\
\{(j(w_k))^{\perp} \mid k = 1, \ldots, 5184\}.
\]

Note that the vectors $j(l_i)$ are of norm -6, the vectors $j(u_j)$ are of norm -4, and the vectors $j(w_k)$ are of norm -2. Note also that neither $(j(l_i))^{\perp}$ nor $(j(u_j))^{\perp}$ are contained in $\mathcal{R}(S_{3,10})^*$. By Proposition 5.3, Theorem 6.7 and Lemma 6.8, we obtain the following:

Theorem 6.9. The group $\text{Aut}(\text{Nef}(X_{3,10}))$ is generated by $\text{PGU}(4, \mathbb{F}_9)'$, F_3', s_1' and $\tau(h_{648})'$.

7. **Torelli theorem for supersingular $K3$ surfaces**

We review the theory of period mapping and Torelli theorem for supersingular $K3$ surfaces in odd characteristics by Ogus [24], [25]. Throughout this section, we assume that p is odd.

We summarize results on quadratic spaces over finite fields. See, for example, Kitaoka [15, Section 1.3]. Let \mathbb{F}_q be a finite extension of \mathbb{F}_p. There exist exactly two isomorphism classes of non-degenerate quadratic forms in 2σ variables $x_1, \ldots, x_{2\sigma}$ over \mathbb{F}_q. They are represented by
\[
(7.1) \quad f_+ := x_1x_2 + \cdots + x_{2\sigma-1}x_{2\sigma}, \quad \text{and}
\]
\[
(7.2) \quad f_- := x_1^2 + cx_1x_2 + x_2^2 + x_3x_4 + \cdots + x_{2\sigma-1}x_{2\sigma},
\]
where c is an element of \mathbb{F}_q such that $t^2 + ct + 1 \in \mathbb{F}_q[t]$ is irreducible. The quadratic form f_+ (resp. f_-) is called neutral (resp. non-neutral). The group $O(\mathbb{F}_q^{2\sigma}, f_\epsilon)$ of the self-isometries of the quadratic space $(\mathbb{F}_q^{2\sigma}, f_\epsilon)$, where $\epsilon = \pm 1$, is of order
\[
2q^{\sigma(\sigma-1)}(q^\sigma - \epsilon) \prod_{i=1}^{\sigma-1} (q^{2i} - 1).
\]

Let N be an even hyperbolic p-elementary lattice of rank 22 with discriminant $-p^{2\sigma}$. We define a quadratic space (N_0, q_0) over \mathbb{F}_p by (1.2). It is known that q_0 is non-degenerate and non-neutral. We denote by $O(N_0, q_0)$ the group of the self-isometries of (N_0, q_0). Note that the scalar multiplications in $O(N_0, q_0)$ are only ± 1. Let k be a field of characteristic p. We put
\[
\varphi := \text{id}_{N_0} \otimes F_k : N_0 \otimes k \to N_0 \otimes k,
\]
where F_k is the Frobenius map of k.

Definition 7.1. A subspace K of $N_0 \otimes k$ with $\dim K = \sigma$ is said to be a characteristic subspace of (N_0, q_0) if K is totally isotropic with respect to the quadratic form $q_0 \otimes k$ and $\dim(K \cap \varphi(K)) = \sigma - 1$ holds.
Suppose that k is algebraically closed. Let X be a supersingular $K3$ surface with Artin invariant σ defined over k. An isomorphism

$$\eta : N \cong S_X$$

of lattices is called a marking of X. We fix a marking η of X. The composite of the marking η and the Chern class map $S_X \rightarrow H^2_{\text{DR}}(X/k)$ defines a linear homomorphism

$$\bar{\eta} : N \otimes k \rightarrow H^2_{\text{DR}}(X/k).$$

It is known that $\text{Ker} \bar{\eta}$ is contained in $N_0 \otimes k$, and is totally isotropic with respect to $q_0 \otimes k$. We put

$$K(X, \eta) := \varphi^{-1}(\text{Ker} \bar{\eta}),$$

and call $K(X, \eta)$ the period of the marked supersingular $K3$ surface (X, η). Then it is proved by Ogus [24, 25] that $K(X, \eta)$ is a characteristic subspace of (N_0, q_0). We denote by $\eta^* : O(S_X) \cong O(N)$ the isomorphism induced by the marking η, and let

$$\bar{\eta}^* : O(S_X) \rightarrow O(N_0, q_0)$$

be the composite of η^* with the natural homomorphism $O(N) \rightarrow O(N_0, q_0)$. As a corollary of Torelli theorem by Ogus [25, Corollary of Theorem II"], we have the following:

Corollary 7.2. Let η be a marking of X. Then, as a subgroup of $O^+(S_X)$, the automorphism group $\text{Aut}(X)$ of X is equal to

$$\{ g \in \text{Aut}(\text{Nef}(X)) \mid K^\eta(g) = K(X, \eta) \}.$$

In particular, the index of $\text{Aut}(X)$ in $\text{Aut}(\text{Nef}(X))$ is at most $|O(N_0, q_0)/\{\pm 1\}|$.

Combining Corollaries 5.8 and 7.2, we obtain the following:

Corollary 7.3. The automorphism group $\text{Aut}(X)$ is infinite.

Remark 7.4. When $p = 3$ and $\sigma = 1$, the group $O(N_0, q_0)$ is of order 8, while the index of $\text{Aut}(X_{3,1})$ in $\text{Aut}(\text{Nef}(X_{3,1}))$ is 2 by Theorem 6.7.

Definition 7.5. We say that a supersingular $K3$ surface X with Artin invariant σ is generic if there exists a marking η for X such that the subgroup

$$\{ \gamma \in O(N_0, q_0) \mid K^{\gamma}(X, \eta) = K(X, \eta) \}$$

of $O(N_0, q_0)$ consists of only scalar multiplications ± 1.

If X is generic, then the subgroup (7.3) consists of only scalar multiplications for any marking η. The existence of generic supersingular $K3$ surfaces with Artin invariant > 1 (Theorem 1.7) is proved in the next section.
Recall that A_{S_X} is the discriminant group of S_X, and $q_{S_X} : A_{S_X} \to \mathbb{Q}/2\mathbb{Z}$ is the discriminant quadratic form. We will regard A_{S_X} as a 2σ-dimensional vector space over \mathbb{F}_p. Note that the image of q_{S_X} is contained in $(2/p)\mathbb{Z}/2\mathbb{Z}$. We define $\tilde{q}_{S_X} : A_{S_X} \to \mathbb{F}_p$ by

$$\tilde{q}_{S_X}(x \mod S_X) := p \cdot q_{S_X}(x) \mod p.$$

Then we obtain a quadratic space $(A_{S_X}, \tilde{q}_{S_X})$ over \mathbb{F}_p. Note that we can recover q_{S_X} from \tilde{q}_{S_X}. We have natural homomorphisms

$$(7.4) \quad O(S_X) \to O(q_{S_X}) \cong O(A_{S_X}, \tilde{q}_{S_X}) \to \text{PO}(A_{S_X}, \tilde{q}_{S_X}) := O(A_{S_X}, \tilde{q}_{S_X})/\{\pm 1\}.$$

Let $\eta : N^\vee \cong S^\vee_X$ be the isomorphism induced by a marking η. Then the map

$$px \mod pN \in N_0 \mapsto \eta(x) \mod S_X \in A_{S_X} \quad (x \in N^\vee)$$

induces an isomorphism of quadratic spaces from (N_0, q_0) to $(A_{S_X}, \tilde{q}_{S_X})$. By Corollary 7.2, we obtain the following:

Corollary 7.6. Suppose that X is generic. Then $\text{Aut}(X)$ is equal to the kernel of the homomorphism $\Phi : \text{Aut}(\text{Nef}(X)) \to \text{PO}(A_{S_X}, \tilde{q}_{S_X})$ obtained by restricting (7.4) to $\text{Aut}(\text{Nef}(X)) \subset O(S_X)$.

Remark 7.7. Suppose that X is generic, and that we are given a subset $\{g_1, \ldots, g_n\}$ of $\text{Aut}(\text{Nef}(X))$ that generate $\text{Aut}(\text{Nef}(X))$. Then a finite set of generators of $\text{Aut}(X)$ is obtained by the following procedure. We construct a finite directed graph (V, E) as follows. The set V of vertices is the image of Φ, that is, the subgroup of $\text{PO}(A_{S_X}, \tilde{q}_{S_X})$ generated by $\Phi(g_1), \ldots, \Phi(g_n)$. The set E of directed edges is the set of triples

$$\alpha = (s_\alpha, g_\alpha, t_\alpha),$$

where $s_\alpha, t_\alpha \in V$ and $s_\alpha \Phi(g_\alpha) = t_\alpha$. The edge α is directed from s_α to t_α and labelled with a generator g_α. We put $\alpha^{-1} := (t_\alpha, g_\alpha^{-1}, s_\alpha)$. We use the identity element $e \in V$ as a base point of the 1-dimensional CW-complex Γ associated with (V, E). Then the fundamental group $\pi_1(\Gamma, e)$ is a free group of finite rank, and its generators are calculated from the graph (V, E). Consider a loop

$$\gamma = \alpha_0^{\varepsilon_0} \cdots \alpha_m^{\varepsilon_m}$$

of Γ from e to e, where $\varepsilon_i = \pm 1$ and $\alpha_i^{\varepsilon_i} = (v_j, g_j^{\varepsilon_j}, v_{j+1})$. Then we have $v_0 = v_{m+1} = e$, and

$$\tilde{\gamma} := g_{i_0}^{\varepsilon_0} \cdots g_{i_m}^{\varepsilon_m} \in \text{Aut}(\text{Nef}(X))$$

is mapped to e by Φ. If $\pi_1(\Gamma, e)$ is generated by loops $\gamma_1, \ldots, \gamma_l$, then $\text{Aut}(X) = \text{Ker} \Phi$ is generated by $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_l$.

Remark 7.8. Suppose that $X_{3,10}$ is generic. Applying the procedure in Remark 7.7 to the generators of $\text{Aut}(\text{Nef}(X_{3,10}))$ given in Theorem 6.9, we can obtain a finite set of generators of $\text{Aut}(X_{3,10})$. However, a naive application of the procedure would be inexecutable, because, when $p = 3$ and $\sigma = 10$, the order of $O(N_0,q_0)$ is

$$2^{36} \cdot 3^{90} \cdot 5^6 \cdot 73 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 37 \cdot 41^2 \cdot 61 \cdot 73 \cdot 193 \cdot 547 \cdot 757 \cdot 1093 \cdot 1181,$$

which is about 7.886×10^{90}.

For a non-zero vector $v \in S_X \otimes \mathbb{Q}$, we denote by $(v)_{\mathbb{Q}}$ the linear subspace of $S_X \otimes \mathbb{Q}$ spanned by v, and put

$$\bar{v} := ((v)_{\mathbb{Q}} \cap S_X^\vee)/((v)_{\mathbb{Q}} \cap S_X),$$

which is a linear subspace of $A_{S_X} \cong \mathbb{P}_{\mathbb{F}_p}^{2\sigma}$. When $\bar{v} \neq 0$, we denote by

$$[\bar{v}] \in \mathbb{P}(A_{S_X})$$

the corresponding point of the projective space $\mathbb{P}(A_{S_X})$ over \mathbb{F}_p. We consider the action of $O(S_X)$ on $\mathbb{P}(A_{S_X})$.

Remark 7.9. By definition, the reflections s_r with respect to $r \in \mathcal{R}(S_X)$ act on A_{S_X} trivially. Hence the restriction Φ of the homomorphism (7.4) to the subgroup $\text{Aut}(\text{Nef}(X))$ of $O(S_X)$ is also obtained by passing to the quotient $O(S_X)/(W(S_X) \times \{\pm 1\}) \cong \text{Aut}(\text{Nef}(X))$. Thus the orbit of $[\bar{v}]$ under the action of $\text{Aut}(\text{Nef}(X))$ is equal to the orbit of $[\bar{v}]$ under the action of $O(S_X)$.

Corollary 7.10. Suppose that X is generic. Let $v \in S_X$ be a vector such that $\bar{v} \subset A_{S_X}$ is not zero. Let m be the cardinality of the orbit of $[\bar{v}] \in \mathbb{P}(A_{S_X})$ under the action of $O(S_X)$. Then the number of $\text{Aut}(X)$-orbits contained in the $O(S_X)$-orbit of v in S_X is at least m.

8. Existence of generic supersingular K3 surfaces

We prove Theorem 1.7. For the proof, we recall the construction by Ogus [24] of the scheme \mathcal{M} parameterizing characteristic subspaces of the 2σ-dimensional quadratic space (N_0,q_0) over \mathbb{F}_p. This scheme \mathcal{M} plays the role of the period domain for supersingular K3 surfaces. We continue to assume that p is odd.

Let $\text{Grass}(\nu,N_0)$ denote the Grassmannian variety of ν-dimensional subspaces of N_0, and let $\text{Isot}(\nu,q_0)$ be the subscheme of $\text{Grass}(\nu,N_0)$ parameterizing ν-dimensional totally isotropic subspaces of (N_0,q_0). We put

$$\text{Gen} := \text{Isot}(\sigma,q_0),$$

where Gen is for “generatrix”. Note that $\text{Isot}(\nu,q_0)$ is defined over \mathbb{F}_p for any ν. Let k be a field of characteristic p. For a subspace L of $N_0 \otimes k$ with dimension ν, we denote by $[L]$ the k-valued point of $\text{Grass}(\nu,N_0)$ corresponding to L. We then have the following:

1. If $\nu < \sigma$, then $\text{Isot}(\nu,q_0)$ is geometrically connected.
The scheme $\text{Gen} \otimes \mathbb{F}_{p^2}$ has two connected components Gen_+ and Gen_-, each of which is geometrically connected. Since q_0 is non-neutral, the action of $\text{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$ interchanges the two connected components.

Let K and K' be two σ-dimensional totally isotropic subspaces of $(N_0, q_0) \otimes k$. Suppose that $\dim(K \cap K') = \sigma - 1$. Then the k-valued points $[K]$ and $[K']$ belong to distinct connected components of Gen.

Suppose that k is algebraically closed. Then, for each k-valued point $[L]$ of the scheme $\text{Isot}(\sigma - 1, q_0)$, there exist exactly two σ-dimensional totally isotropic subspaces of $(N_0, q_0) \otimes k$ that contain L.

Let P be the subscheme of $\text{Gen} \times \text{Gen}$ parameterizing pairs (K, K') such that $\dim(K \cap K') = \sigma - 1$. Then the scheme $P \otimes \mathbb{F}_{p^2}$ has two connected components, each of which is isomorphic to $\text{Isot}(\sigma - 1, q_0)$ over \mathbb{F}_{p^2}. The action of $\text{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$ interchanges the two connected components.

Consider the graph

$$\text{id} \times \varphi : \text{Gen} \to \text{Gen} \times \text{Gen}$$

of the Frobenius morphism $\text{Gen} \to \text{Gen}$ given by $K \mapsto \varphi(K)$. The subscheme \mathcal{M} of Gen that parametrizes the characteristic subspaces of (N_0, q_0) is defined by the fiber product

$$\mathcal{M} \hookrightarrow \text{Gen} \quad \downarrow \quad \downarrow \text{id} \times \varphi$$

$$P \quad \hookrightarrow \text{Gen} \times \text{Gen}.$$

Ogus [24] proved the following:

Theorem 8.1. The scheme \mathcal{M} defined over \mathbb{F}_p is smooth and projective of dimension $\sigma - 1$. The scheme $\mathcal{M} \otimes \mathbb{F}_{p^2}$ has two connected components $\mathcal{M}_+ = \mathcal{M} \cap \text{Gen}_+$ and $\mathcal{M}_- = \mathcal{M} \cap \text{Gen}_-$, each of which is geometrically connected. The action of $\text{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$ interchanges \mathcal{M}_+ and \mathcal{M}_-.

Proof of Theorem 1.7. Let κ be an algebraic closure of the function field of the scheme \mathcal{M}_+ over \mathbb{F}_{p^2}, and let $[K_\kappa]$ be the geometric generic point of \mathcal{M}_+. By the surjectivity of the period mapping for supersingular $K3$ surfaces (Ogus [25, Theorem III′]), there exist a supersingular $K3$ surface X of Artin invariant σ defined over κ and a marking $\eta : N \cong S_X$ such that $K_{(X, \eta)} = K_\kappa$. We prove that this X is generic, that is,

$$G_\kappa := \{ \gamma \in O(N_0, q_0) \mid K^\gamma_\kappa = K_\kappa \}$$

is equal to $\{ \pm 1 \}$. Note that the closure of the point $[K_\kappa]$ coincides with \mathcal{M}_+. Therefore we have the following: If a field k contains \mathbb{F}_{p^2}, then the action of G_κ leaves K invariant for any k-valued point $[K]$ of \mathcal{M}_+.

Suppose that $\sigma \geq 3$. Let u be an arbitrary non-zero isotropic vector of N_0. We will prove that u is an eigenvector of G_{κ}. Let

$$b_0 : N_0 \times N_0 \to \mathbb{F}_p$$

denote the symmetric bilinear form obtained from q_0. There exists a vector $v \in N_0$ such that $q_0(v) = 0$ and $b_0(u, v) = 1$, and hence (N_0, q_0) has an orthogonal direct-sum decomposition

$$N_0 = U^\perp \oplus U,$$

where U is the subspace spanned by u and v. Repeating this procedure and noting that q_0 is non-neutral, we obtain a basis $a_1, \ldots, a_{2\sigma}$ of N_0 with $u = a_{2\sigma}$ such that $q_0(x_1 a_1 + \cdots + x_{2\sigma} a_{2\sigma})$ is equal to the quadratic polynomial f_- in (7.2). Let α and $\bar{\alpha} = \alpha^p$ be the roots in \mathbb{F}_{p^2} of the irreducible polynomial $t^2 + ct + 1 \in \mathbb{F}_p[t]$. We consider the basis

$$b_i^{(-1)} := \alpha a_1 + a_2, \quad b_i^{(1)} := \bar{\alpha} a_1 + a_2, \quad \text{and} \quad b_i^{(1)} := a_{2i-1}, \quad b_i^{(-1)} := a_{2i} \quad (i = 2, \ldots, \sigma)$$

of $N_0 \otimes \mathbb{F}_{p^2}$. Note that each $b_i^{(\pm 1)}$ is isotropic, and that

$$b_0(b_i^{(\alpha)}, b_j^{(\beta)}) = 0 \quad \text{if} \quad i \neq j, \quad b_0(b_i^{(1)}, b_i^{(-1)}) = \begin{cases} \begin{array}{ll} (1 - c^2)/2 & \text{if } i = 1, \\ 1/2 & \text{if } i \geq 2. \end{array} \end{cases}$$

We put

$$E := \{1, -1\}^\sigma.$$

For $e = (\varepsilon_1, \ldots, \varepsilon_\sigma) \in E$, we denote by K_e the linear subspace of $N_0 \otimes \mathbb{F}_{p^2}$ spanned by

$$b_1^{(\varepsilon_1)}, \ldots, b_\sigma^{(\varepsilon_\sigma)}.$$

It is obvious that K_e is isotropic. Moreover, since

$$\varphi(b_i^{(\varepsilon)}) = b_i^{(-\varepsilon)} \quad \text{and} \quad \varphi(b_i^{(\varepsilon)}) = b_i^{(\varepsilon)} \quad \text{if} \quad i \geq 2,$$

we have $\dim(K_e \cap \varphi(K_e)) = \sigma - 1$. Therefore K_e is a characteristic subspace of (N_0, q_0). Suppose that e and $e' \in E$ differ only at one component. Then we have $\dim(K_e \cap K_{e'}) = \sigma - 1$, and hence the \mathbb{F}_{p^2}-valued points $[K_e]$ and $[K_{e'}]$ of \mathcal{M} belong to distinct connected components. We put

$$E_+ := \{e \in E \mid \text{the number of } -1 \text{ in } e \text{ is even} \}, \quad 1 := (1, \ldots, 1) \in E_+.$$

Interchanging α and $\bar{\alpha}$ if necessary, we can assume that $[K_1]$ is an \mathbb{F}_{p^2}-valued point of \mathcal{M}_+, and hence $[K_e]$ is an \mathbb{F}_{p^2}-valued point of \mathcal{M}_+ for any $e \in E_+$. It follows that K_e is invariant under the action of G_{κ} for any $e \in E_+$. Let $b_i^{(\alpha)}$ be an arbitrary element among the basis (8.1). Recall that we have assumed $\sigma \geq 3$. Therefore, for each element $b_j^{(\beta)}$ among the basis (8.1) that is distinct from $b_i^{(\alpha)}$, there exists $e(j, \beta) = (\varepsilon_1, \ldots, \varepsilon_\sigma) \in E_+$ such that $\varepsilon_i = \alpha$ and $\varepsilon_j \neq \beta$. Since

$$\bigcap_{\langle j, \beta \rangle \neq \langle i, \alpha \rangle} K_{e(j, \beta)} = \langle b_i^{(\alpha)} \rangle.$$
is invariant under the action of G_κ, we see that $b_i^{(a)}$ is an eigenvector of G_κ. In particular, the isotropic vector $u = a_{2\sigma} = b_\sigma^{(1)}$ given at the beginning is an eigenvector of G_κ.

Let

$$\lambda_i^{(a)} : G_\kappa \to \mathbb{F}_p^\times$$

be the character defined by $b_i^{(a)}$. Suppose that $i, j \geq 2$ and $i \neq j$. Then $b_i^{(a)} + b_j^{(b)}$ is an isotropic vector of N_0 for any choice of $\alpha, \beta \in \{ \pm 1 \}$, and hence is an eigenvector of G_κ. Therefore we have

\begin{equation}
(8.2) \quad \lambda_i^{(a)} = \lambda_j^{(b)} \quad \text{if } i, j \geq 2 \text{ and } i \neq j.
\end{equation}

Since the cardinality of $\{ x^2 | x \in \mathbb{F}_p \}$ is $(p + 1)/2$, there exist $\xi, \eta \in \mathbb{F}_p$ such that

$$\begin{align*}
(4 - c^2) + \xi^2 + \eta^2 &= 0.
\end{align*}$$

Then

$$b_1^{(1)} + b_1^{(-1)} + \xi(b_2^{(1)} + b_2^{(-1)}) + \eta(b_3^{(1)} + b_3^{(-1)})$$

is also an isotropic vector of N_0, and hence is an eigenvector of G_κ. Therefore we have

\begin{equation}
(8.3) \quad \lambda_1^{(1)} = \lambda_1^{(-1)} = \lambda_2^{(-1)} \quad \text{or} \quad \lambda_1^{(1)} = \lambda_1^{(-1)} = \lambda_3^{(1)} = \lambda_3^{(-1)}.
\end{equation}

Combining (8.2) and (8.3), we see that all the characters $\lambda_i^{(a)}$ are equal to each other. Thus G_κ consists of only scalar multiplications.

Suppose that $\sigma = 2$. In this case, the scheme \mathcal{M} coincides with $\text{Isot}(2, q_0)$, which is the scheme parametrizing lines on the smooth quadratic surface $Q_0 = \{ q_0 = 0 \}$ in the projective space $\mathbb{P}_x N_0 = \text{Grass}(1, N_0)$. Hence \mathcal{M}_+ and \mathcal{M}_- correspond to the two rulings of Q_0. Let g be an element of G_κ. Then g leaves every line in the ruling of Q_0 corresponding to \mathcal{M}_+ invariant. Since g is defined over \mathbb{F}_p and $\text{Gal}(\mathbb{F}_p / \mathbb{F}_p)$ interchanges \mathcal{M}_+ and \mathcal{M}_-, we see that g also leaves every line in the other ruling of Q_0 invariant. Therefore g fixes every point of Q_0, and hence every point of $\mathbb{P}_x N_0$. \hfill \square

9. LATTICE EQUIVALENCE CLASSESVERSUS AUT-EQUIVALENCE CLASSES ON $X_{3,10}$

Suppose that $p > 2$ and $\sigma + \sigma' = 11$. We denote by $A_{p,\sigma'}$ the discriminant group $S_{p,\sigma'}/S_{p,\sigma'}$ of $S_{p,\sigma'}$, and use the notation in Section 7.

Let $\phi : X_{p,\sigma} \to \mathbb{P}^1$ be a genus one fibration, and let $\phi' : X_{p,\sigma'} \to \mathbb{P}^1$ be a genus one fibration whose lattice equivalence class $[\phi'] \in \mathbb{E}(X_{p,\sigma'})$ corresponds to $[\phi] \in \mathbb{E}(X_{p,\sigma})$ by Theorem 1.3. By Remark 4.6, we have an embedding $j : S_{p,\sigma} \hookrightarrow S_{p,\sigma'}$ inducing $S_{p,\sigma'}(p) \cong S_{p,\sigma'}$, such that $j(f_\phi)$ is a positive scalar multiple of $f_{\phi'}$. Suppose that

$$\overline{f_{\phi'}} = j(f_\phi) = ((f_{\phi'})_Q \cap S_{p,\sigma'}^\vee) / ((f_{\phi'})_Q \cap S_{p,\sigma'}) \subset A_{p,\sigma'}$$

is not zero. Let m be the cardinality of the orbit of $\overline{f_{\phi'}} \in \mathbb{P}(A_{p,\sigma'})$ by the action of $O(S_{p,\sigma'})$ (or equivalently, in virtue of Remark 7.9, by the action of $\text{Aut}(\text{Nef}(X_{p,\sigma'}))$). By Corollary 7.10, the
number of Aut-equivalence classes of genus one fibrations contained in the lattice equivalence class $[\phi']$ is at least m, provided that $X_{p,\sigma}$ is generic.

Remark 9.1. We can regard $S_{p,\sigma'}$ as a submodule of $S_{p,\sigma} \otimes \mathbb{Q}$ by j. Then $S_{p,\sigma'}^{\vee}$ is equal to $(1/p)S_{p,\sigma}$. Hence $(1/p)j(f_{\phi})$ is contained in $S_{p,\sigma'}^{\vee}$.

As a consequence of the fact that $\text{Aut}(\text{Nef}(X_{3,10}))$ contains the subgroup $\text{PGU}(4, \mathbb{F}_9)'$ of order 13063680, we obtain the following:

Proposition 9.2. Suppose that $X_{3,10}$ is generic. Then there exists a genus one fibration on $X_{3,10}$ whose lattice equivalence class contains at least 6531840 Aut-equivalence classes.

Proof. Let (w, x, y) be the affine coordinates of the Fermat quartic surface

$$X_{\mathbb{F}_9} = \{ w^4 + x^4 + y^4 + 1 = 0 \}$$

in characteristic 3, and let i denote $\sqrt{-1} \in \mathbb{F}_9$. Consider the following ten lines on $X_{\mathbb{F}_9} \cong X_{3,1}$:

- $\ell_1 := \{ w + (1 + i) = x + (1 + i)y = 0 \}$
- $\ell_2 := \{ w + (1 + i) = x + (1 - i)y = 0 \}$
- $\ell_3 := \{ w + iy - i = x + iy + i = 0 \}$
- $\ell_4 := \{ w + iy + 1 = x + iy - 1 = 0 \}$
- $\ell_5 := \{ w - y + 1 = x - y - 1 = 0 \}$
- $\ell_6 := \{ w - iy - 1 = x + iy - i = 0 \}$
- $\ell_7 := \{ w + (1 - i) = x + (1 + i)y = 0 \}$
- $\ell_8 := \{ w - (1 - i) = x + (1 + i) = 0 \}$
- $\ell_9 := \{ w + (1 + i) = x + (1 - i) = 0 \}$
- $\ell_{10} := \{ w + iy - 1 = x - iy - 1 = 0 \}$

They form a configuration of (-2)-curves whose dual graph is the affine Dynkin diagram of type \tilde{A}_9. Then the class $f_{\phi} := \sum_{k=1}^{10} \ell_k$ defines a genus one fibration $\phi : X_{3,1} \to \mathbb{P}^1$ in the lattice equivalence class No. 20 of Table 4.2. The line defined by $\{ w + y + 1 = x + iy - i = 0 \}$ provides us with a section of ϕ that intersects ℓ_{10}.

Let $\phi' : X_{3,10} \to \mathbb{P}^1$ be a genus one fibration corresponding to ϕ by Theorem 1.3. Since the Néron-Severi lattice of $X_{\mathbb{F}_9}$ is generated by the classes of lines, we can calculate the action of $\text{PGU}(4, \mathbb{F}_9)$ on $S_{3,1}$ from the permutaions of lines induced by $\text{PGU}(4, \mathbb{F}_9)$, and thus we can calculate the action of $\text{PGU}(4, \mathbb{F}_9)'$ on $S_{3,10}$. By computer, we calculate the action of $\text{PGU}(3, \mathbb{F}_4)'$ on the vector space $A_{3,10} \cong \mathbb{F}_3^{20}$. It turns out that the stabilizer subgroup of the non-zero vector

$$(1/3)j(f_{\phi}) \mod S_{3,10} \in A_{3,10}$$

is trivial. Hence the orbit of $[f_{\phi}] \in \mathbb{P}(A_{3,10}) \cong \mathbb{P}^{19}(\mathbb{F}_3)$ by the action of $\text{PGU}(4, \mathbb{F}_9)'$ contains at least $|\text{PGU}(4, \mathbb{F}_9)|/|\mathbb{F}_3^*|$ points. □

References

[1] M. Artin. Supersingular $K3$ surfaces. *Ann. Sci. École Norm. Sup. (4)*, 7:543–567 (1975), 1974.

[2] W. Barth and C. Peters. Automorphisms of Enriques surfaces. *Invent. Math.*, 73(3):383–411, 1983.

[3] R. E. Borcherds. Automorphism groups of Lorentzian lattices. *J. Algebra*, 111(1):133–153, 1987.
[4] R. E. Borcherds. Coxeter groups, Lorentzian lattices, and K^3 surfaces. *Internat. Math. Res. Notices*, (19):1011–1031, 1998.

[5] N. Bourbaki. *Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines*. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.

[6] J. W. S. Cassels. *Rational quadratic forms*, volume 13 of *London Mathematical Society Monographs*. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978.

[7] J. H. Conway. The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. *J. Algebra*, 80(1):159–163, 1983.

[8] I. Dolgachev and S. Kondo. A supersingular K^3 surface in characteristic 2 and the Leech lattice. *Int. Math. Res. Not.*, (1):1–23, 2003.

[9] I. Dolgachev and J. Keum. Birational automorphisms of quartic Hessian surfaces. *Trans. Amer. Math. Soc.*, 354(8):3031–3057 (electronic), 2002.

[10] W. Ebeling. *Lattices and codes*. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, revised edition, 2002. A course partially based on lectures by F. Hirzebruch.

[11] N. Elkies and M. Schütt. Genus 1 fibrations on the supersingular K^3 surface in characteristic 2 with Artin invariant 1, 2012. arXiv:1207.1239v1.

[12] T. Katsura and S. Kondo. A note on a supersingular K^3 surface in characteristic 2. In *Geometry and Arithmetic, Series of Congress Reports*, pages 243–255. European Math. Soc., 2012.

[13] T. Katsura and S. Kondo. Rational curves on the supersingular K^3 surface with Artin invariant 1 in characteristic 3. *J. Algebra*, 352:299–321, 2012.

[14] J. Keum and S. Kondo. The automorphism groups of Kummer surfaces associated with the product of two elliptic curves. *Trans. Amer. Math. Soc.*, 353(4):1469–1487 (electronic), 2001.

[15] Y. Kitaoka. *Arithmetic of quadratic forms*, volume 106 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1993.

[16] R. Kloosterman. Classification of all Jacobian elliptic fibrations on certain K^3 surfaces and their Mordell-Weil groups. *Japan. J. Math. (N.S.)*, 22(2):293–347, 1996.

[17] K. Nishiyama. The Jacobian fibrations on some K^3 surfaces and their Mordell-Weil groups. *Japan. J. Math. (N.S.)*, 22(2):293–347, 1996.

[18] K. Oguiso. On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves. *J. Math. Soc. Japan*, 41(4):651–680, 1989.
SUPERSINGULAR K3 SURFACES

[24] A. Ogus. Supersingular K3 crystals. In *Journées de Géométrie Algébrique de Rennes (Rennes, 1978)*, Vol. II, volume 64 of *Astérisque*, pages 3–86. Soc. Math. France, Paris, 1979.

[25] A. Ogus. A crystalline Torelli theorem for supersingular K3 surfaces. In *Arithmetic and geometry, Vol. II*, volume 36 of *Progress in Math.*, pages 361–394. Birkhäuser Boston, Boston, MA, 1983.

[26] A. N. Rudakov and I. R. Shafarevich. Supersingular K3 surfaces over fields of characteristic 2. *Izv. Akad. Nauk SSSR Ser. Mat.*, 42(4):848–869, 1978. Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 614–632.

[27] A. N. Rudakov and I. R. Shafarevich. Surfaces of type K3 over fields of finite characteristic. In *Current problems in mathematics, Vol. 18*, pages 115–207. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981. Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 657–714.

[28] T. Sengupta. Elliptic fibrations on supersingular K3 surface with Artin invariant 1 in characteristic 3. preprint, 2012, arXiv:1105.1715.

[29] I. Shimada. On elliptic K3 surfaces. *Michigan Math. J.*, 47(3):423–446, 2000.

[30] I. Shimada. Rational double points on supersingular K3 surfaces. *Math. Comp.*, 73(248):1989–2017 (electronic), 2004.

[31] I. Shimada. Supersingular K3 surfaces in characteristic 2 as double covers of a projective plane. *Asian J. Math.*, 8(3):531–586, 2004.

[32] I. Shimada. Supersingular K3 surfaces in odd characteristic and sextic double planes. *Math. Ann.*, 328(3):451–468, 2004.

[33] I. Shimada. Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5. Preprint, 2012, arXiv:1201.4533

[34] I. Shimada and De-Qi Zhang. Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces. *Nagoya Math. J.*, 161:23–54, 2001.

[35] T. Shioda. Supersingular K3 surfaces with big Artin invariant. *J. Reine Angew. Math.*, 381:205–210, 1987.

[36] T. Shioda. On the Mordell-Weil lattices. *Comment. Math. Univ. St. Paul.*, 39(2):211–240, 1990.

[37] È. B. Vinberg. Some arithmetical discrete groups in Lobačevskiĭ spaces. In *Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973)*, pages 323–348. Oxford Univ. Press, Bombay, 1975.

[38] È. B. Vinberg. Hyperbolic groups of reflections. *Uspekhi Mat. Nauk*, 40(1(241)):29–66, 255, 1985.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA, 464-8602, JAPAN

E-mail address: kondo@math.nagoya-u.ac.jp

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA, 739-8526, JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp