Evaluation of different culture media to support *in vitro* growth and biofilm formation of bacterial vaginosis-associated anaerobes

Aliona S Rosca¹, Joana Castro¹, Nuno Cerca Corresp. ¹

¹ Laboratory of Research in Biofilms Rosário Oliveira - Centre of Biological Engineering, University of Minho, Braga, Portugal

Corresponding Author: Nuno Cerca
Email address: nunocerca@ceb.uminho.pt

Background. Bacterial vaginosis (BV) is one of the most common vaginal infections worldwide. It is associated with the presence of a dense polymicrobial biofilm on the vaginal epithelium, formed mainly by *Gardnerella* species. The biofilm also contains other anaerobic species, but little is known about their role in BV development. **Aim.** To evaluate the influence of different culture media on the planktonic and biofilm growth of six cultivable anaerobes frequently associated with BV, namely *Gardnerella* sp., *Atopobium vaginae*, *Lactobacillus iners*, *Mobiluncus curtisii*, *Peptostreptococcus anaerobius*, and *Prevotella bivia*. **Methods.** A total of nine different culture media compositions, including commercially available and chemically defined media simulating genital tract secretions, were tested in this study. Planktonic cultures and biofilms were grown under anaerobic conditions (10% carbon dioxide, 10% helium, and 80% nitrogen). Planktonic growth was assessed by optical density measurements, and biofilm formation was quantified by crystal violet staining. **Results.** Significant planktonic growth was observed for *Gardnerella* sp., *A. vaginae*, and *L. iners* in New York City III broth, with or without ascorbic acid supplementation. Biofilm quantification showed high *in vitro* biofilm growth for *Gardnerella* sp., *P. anaerobius*, and *P. bivia* in almost all culture media excluding Brucella broth. Contrary, only New York City III broth was able to promote biofilm formation for *A. vaginae*, *L. iners*, and *M. curtissi*. **Conclusions.** Our data demonstrate that New York City III broth relative to the other tested media is the most conducive for future studies addressing polymicrobial biofilms development as this culture medium allowed the formation of significant levels of single-species biofilms.
Evaluation of different culture media to support *in vitro* growth and biofilm formation of bacterial vaginosis-associated anaerobes

Aliona S Rosca, Joana Castro, Nuno Cerca

Laboratory of Research in Biofilms Rosário Oliveira - Centre of Biological Engineering, University of Minho, Braga, Portugal

Corresponding Author:
Nuno Cerca
Campus de Gualtar, Braga, 4710-057, Portugal
Email address: nunocerca@ceb.uminho.pt

Abstract (257/ 500 words)

Manuscript (3083 words)
Abstract

Background. Bacterial vaginosis (BV) is one of the most common vaginal infections worldwide. It is associated with the presence of a dense polymicrobial biofilm on the vaginal epithelium, formed mainly by Gardnerella species. The biofilm also contains other anaerobic species, but little is known about their role in BV development.

Aim. To evaluate the influence of different culture media on the planktonic and biofilm growth of six cultivable anaerobes frequently associated with BV, namely Gardnerella sp., Atopobium vaginae, Lactobacillus iners, Mobiluncus curtisi, Peptostreptococcus anaerobius, and Prevotella bivia.

Methods. A total of nine different culture media compositions, including commercially available and chemically defined media simulating genital tract secretions, were tested in this study. Planktonic cultures and biofilms were grown under anaerobic conditions (10% carbon dioxide, 10% helium, and 80% nitrogen). Planktonic growth was assessed by optical density measurements, and biofilm formation was quantified by crystal violet staining.

Results. Significant planktonic growth was observed for Gardnerella sp., A. vaginae, and L. iners in New York City III broth, with or without ascorbic acid supplementation. Biofilm quantification showed high in vitro biofilm growth for Gardnerella sp., P. anaerobius, and P. bivia in almost all culture media excluding Brucella broth. Contrary, only New York City III broth was able to promote biofilm formation for A. vaginae, L. iners, and M. curtisi.

Conclusions. Our data demonstrate that New York City III broth relative to the other tested media is the most conducive for future studies addressing polymicrobial biofilms development as this culture medium allowed the formation of significant levels of single-species biofilms.
Introduction

Bacterial vaginosis (BV) is the worldwide leading bacterial vaginal infection commonly recognized in women of all ethnicities between menarche and menopause (Beamer et al., 2017; Javed et al., 2019). BV is often characterized by a decrease of beneficial vaginal bacteria, mainly hydrogen peroxide and lactic acid-producing Lactobacillus species, and by an increase of anaerobic pathogens (Marrazzo, 2011; Schwebke, 2000). The most prominent of these is Gardnerella vaginalis, a facultative anaerobe usually found embedded in a polymicrobial biofilm (Swidsinski et al., 2014). It is important to mention that an emended description of G. vaginalis was recently proposed with the delineation of 13 genomic species within the genus Gardnerella (Vaneechoutte et al., 2019). Of these 13 species, three were officially described (G. leopoldii, G. piotii, and G. swidsinskii) and G. vaginalis was amended. Following this renewed taxonomy of the genus Gardnerella, in this article, the term Gardnerella spp. will be used to address previous publications, since we cannot rule out the fact that other Gardnerella species were involved.

According to the current hypothesis for BV pathogenesis, Gardnerella spp. initiate the formation of the biofilm on vaginal epithelial cells and become a scaffolding to which other BV-associated species thereafter can attach (Muzny et al., 2019). One of the species that is often found associated with Gardnerella spp. biofilms is Atopobium vaginae (Swidsinski et al., 2005). Under specific in vitro conditions, G. vaginalis enhances culturability of A. vaginae (Castro et al., 2020) and it has been suggested that the in vivo detection of both bacteria is a strong indicator of BV development (Bradshaw et al., 2006; Hardy et al., 2016, 2015; Muzny et al., 2019). However, the BV biofilm is often populated by many other facultative or strict anaerobes, but very little is known about their role in BV development. As such, more studies are needed to address the interactions between these species. One issue facing researchers that work with BV-associated species is that most species are uncultivable or fastidious (Diop et al., 2019; Fredricks et al., 2007, 2005; Srinivasan et al., 2016). Furthermore, in vitro biofilm formation requirements are often different from planktonic growth (Alves et al., 2014). Considering the increased focus on biofilm-associated infections and the demand for finding novel treatment approaches (Falconi-McCahill, 2019), the current study was undertaken aiming to evaluate the effects of nine different culture media on the planktonic growth and biofilm formation of cultivable anaerobes frequently found in BV, namely Gardnerella sp., A. vaginae, Mobiluncus curtisii,
Peptostreptococcus anaerobius, and Prevotella bivia (Diop et al., 2019; Onderdonk et al., 2016).

Importantly, Lactobacillus iners was also included in this study as this species plays a controversial role in the vaginal microenvironment, being detected in the vaginal microbiota of both healthy (Anukam et al., 2006; Ravel et al., 2011) and women with BV (Rampersaud et al., 2011). Furthermore, L. iners has been often identified in the intermediate vaginal microbiota (i.e. between normal and BV microbiota) (Jakobsson and Forsum, 2007; Petrova et al., 2015) and also dominates the microbiota after treatment of BV (Ferris et al., 2007). Also, this microorganism has complex nutritional requirements, being thus, not easy to work with in vitro (Vaneechoutte, 2017).

As such, the main goal of this study was to explore growth conditions optimal for using in future in vitro multi-species biofilm model, with the aim to better analyse BV multi-species interactions and their impact on BV development.

Materials & Methods

Bacterial species and growth conditions

Six cultivable bacterial species associated with BV were used in the current study, namely Gardnerella sp., A. vaginae, L. iners, M. curtisii, P. anaerobius, and P. bivia (Table 1). These species were preserved frozen in Brain Heart Infusion broth (BHI) (Liofilchem, Italy) with 23% (v/v) glycerol (Panreac, Spain) at -80 ºC. Each species was inoculated from the -80 ºC bacterial stock on plates containing Columbia Blood Agar medium (CBA) (Oxoid, UK) supplemented with 5% (v/v) defibrinated horse blood (Oxoid, UK) and incubated at 37 ºC under anaerobic conditions [controlled atmosphere composed of 10% carbon dioxide (CO₂), 10% helium, and 80% nitrogen generated by a cylinder (Air Liquid, Algés, Portugal) coupled to an anaerobic incubator (Plas-Labs, Lansing, MI, USA)] for 2-4 days. For planktonic and biofilm assays, Brain heart infusion broth supplemented with yeast extract, starch, and gelatine (sBHI), Brucella broth supplemented with hemin and vitamin K₁ solutions (BHV), New York City III broth supplemented with 10% inactivated horse serum (NYC), Schaedler broth (SB), and a medium simulating genital tract secretions (mGTS) were used as culture media with the mentioned composition, but also supplemented with 0.1% (w/v) L-ascorbic acid (Sigma-Aldrich, UK), excepting mGTS which already contains L-ascorbic acid. The addition of L-ascorbic acid to the
culture media was designated with the abbreviation “Aa”, added at the end of each medium’s name mentioned above (e.g. sBHI supplemented with L-ascorbic acid became sBHI.Aa). The detailed information about each tested medium is presented in Table 2. In order to prepare hemin solution, 0.5 g of hemin was dissolved in 10 mL of 1 N NaOH and afterwards distilled water was added to reach the volume of 100 mL. Further, vitamin K₁ solution was prepared by adding 0.025 mL of vitamin K₁ stock solution to 4.975 mL of 95% ethanol. The prepared solutions of hemin and vitamin K₁ were used with a concentration of 0.0005% (w/v) and 0.0001% (w/v), respectively. In mGTS, Part III of this medium is a vitamin mixture, Sigma K3129, from Sigma-Aldrich (UK) with the stock solution of 100X that was used at a concentration of 0.5% (v/v).

Planktonic growth assessment

For the evaluation of planktonic growth, the inoculums were prepared by transferring fresh bacterial colonies from CBA plates to 8 mL of each culture medium described above. The obtained bacterial suspensions were adjusted by optical density (OD) at 620 nm to 0.10 ± 0.05 (Biochrom EZ Read 800 Plus, UK) and equally distributed in 2 sterile 15 mL falcon tubes (Orange Scientific, Belgium) which were further incubated at 37 °C under anaerobic conditions for 48 h, as described above. Afterwards, planktonic growth was assessed by OD_{620nm}. Growth was normalized as a fold difference between the final OD_{620nm} and the starting OD (at time 0 h). The assays were repeated at least three times on separate days, with four technical replicates considered each time.

Biofilm formation and biomass quantification

Single-species biofilms of each tested species were initiated by inoculating bacterial suspensions of 48 h cultures adjusted to an OD_{620nm} of 0.10 ± 0.05 in sterile 96-well tissue culture plates (Orange Scientific, Belgium) and incubated for 72 h, at 37 °C under anaerobic conditions. To quantify the biofilm biomass, we used the crystal violet (CV) method, which is the most frequently employed approach for this purpose (Azeredo et al., 2017; Peeters et al., 2008). In brief, following 72 h of incubation, the biofilms were washed once with 0.9% (w/v) sodium chloride and allowed to air dry. After, the biofilms were fixed with 100% (v/v) methanol (Thermo Fisher Scientific) for 20 min, and then stained with CV solution 1% (v/v) (Merck, Darmstadt, Germany) for 20 min. Subsequently, each well was washed twice with 1% (v/v)
phosphate-buffered saline, and the bound CV was released with 33% (v/v) acetic acid (Thermo Fisher Scientific, Lenexa, KS). To assess the biomass, the OD of the resulting solution was measured at 595 nm. Biofilm experiments were repeated at least three times with eight technical replicates.

Statistical analysis

The data were analysed using the statistical package GraphPad Prism version 6 (La Jolla, CA, USA) by one-way ANOVA (Dunnett’s and Tukey’s multiple comparison tests) and two-way ANOVA (Sidak’s multiple comparisons test). Values with a $p < 0.05$ and $p < 0.01$ were considered statistically significant.

Results

Planktonic growth assays

As shown in Fig. 1, BV-associated anaerobes had variable ability to grow planktonically in the tested culture media. Accordingly, *P. anaerobius* and *P. bivia* had higher metabolic flexibility and were able to grow in most of the tested media, while *M. curtisii* had more restrictive growth requirements and presented low levels of growth in all of them. Interestingly, NYC broth showed high levels of planktonic growth for the tested species, being overpassed only by NYC.Aa for *L. iners*, SB and SB.Aa for *P. anaerobius*, and by sBHI.Aa for *P. bivia*. The mGTS supported very low levels of bacterial growth, with only *Gardnerella* sp., *P. anaerobius*, and *P. bivia* showing moderate levels of growth.

Since it was previously shown that L-ascorbic acid could enhance the growth of several anaerobic bacteria, including *A. vaginae*, *Finegoldia magna*, *Fusobacterium necrophorum*, *Prevotella nigrescens*, *Ruminococcus gnavus*, and *Solobacterium moorei* (La Scola et al., 2014), we repeated the experiments with media supplemented with 0.1% (w/v) L-ascorbic acid. However, contrary to what was described before, the addition of 0.1% (w/v) L-ascorbic acid had a very variable effect on bacterial growth, with only 33.3% (n=8; cut-off ≥ 1.25 – fold change) of the total combinations tested yielding a significant increase in bacterial growth, while in 4.17% (n=1; cut-off < 0.75-fold change) an inhibition of the growth was observed. In most of the tested
combinations (n=15; 0.75 ≤ fold change < 1.25), no effect was observed (Table S1). The most notable case was observed for P. bivia growth in SB, in which L-ascorbic acid increased almost seven-fold the growth rate.

Biofilm assays

Not surprisingly, we observed that similar to planktonic growth, biofilm formation was also strongly affected by the culture media composition, as depicted in Fig. 2. Importantly, there was not a direct relationship between higher planktonic growth and higher biofilm formation, which further confirms that the requirements for biofilm formation are distinct than the requirements for planktonic growth, as showed before for many other bacterial species (Alves et al., 2014; Heffernan et al., 2009; Ripolles-Avila et al., 2018; Wijesinghe et al., 2019). Further differences between biofilm formation and planktonic growth were observed when adding L-ascorbic acid to the growth media, with 20.8% (n=5) of the tested combinations species/growth medium resulting in a statistically significant decrease in the biofilm-forming capacity (p < 0.05) and 37.5% (n=9) of the situations also presenting a visible biofilm reduction, however not statistically significant as can be seen in Table S2. Moreover, the addition of L-ascorbic acid to the culture media did not promote significantly increased biofilm formation in any of the combinations tested (Fig. 2).

Discussion

Despite the fact that BV is an increasingly important health problem, there is a lack of studies addressing multi-species interactions that might occur during BV and their role in the development of this infection. Most attempts to understand the microbiology behind BV have been focused mainly on Gardnerella spp., perhaps because this species has long been associated with BV development (Gardner and Dukes, 1955; Swidsinski et al., 2005) and it has been now hypothesized that this microorganism is the initial colonizer of the vaginal epithelium, being able to establish an early biofilm structure to which other BV-associated species can attach (Muzny et al., 2019). However, the role of these species in the development and progress of BV is still poorly understood and therefore, more studies are needed to unravel this matter.
We showed before that BV-associated species had different abilities to grow as biofilms, and this was strongly dependent on the growth media (Alves et al., 2014). As such, the first step in facilitating BV multi-species biofilm studies is to determine optimal culture medium conditions suitable for multiple BV-associates species, considering to further investigate the interactions that might exist between them in BV multi-species biofilms and their implications in BV process.

Although sBHI has been widely used as a medium that supports *Gardnerella* spp. growth (Algburi et al., 2015; Gottschick et al., 2016; Harwich et al., 2010; Machado et al., 2015; Patterson et al., 2010; Turovskiy et al., 2012; Weeks et al., 2019), it did not facilitate the planktonic growth or biofilm formation for some of the tested species, including *A. vaginae*, *L. iners*, and *M. curtisi*. The same was observed for these three species in SB medium, even though the manufacturer describes it as a medium suitable for the cultivation of anaerobic microorganisms, providing them an important amount of amino acids, nitrogen, vitamins as well as the energy necessary for growth. In an early study, after evaluating nine broth media in varied CO₂ atmospheres for their ability to support the growth of anaerobic bacteria including *Bacteroides fragilis* subspecies *fragilis*, *Peptostreptococcus* CDC group 2, *Eubacterium alactolyticum*, and *Clostridium perfringens*, Stalons and colleagues found that SB in an atmosphere of 5% CO₂, 10% hydrogen, and 85% nitrogen exhibited the fastest and highest growth response (Stalons et al., 1974). However, in our *in vitro* conditions, we obtained high levels of planktonic growth only for *P. anaerobius*, probably because this medium is not appropriate for the growth of all species of anaerobic microorganisms. Still, SB was a good medium to support *in vitro* biofilm formation with high levels of the biomass for *Gardnerella* sp., *P. anaerobius*, and *P. bivia*. Interestingly, *Gardnerella* sp. and *P. bivia* showed in SB the lowest levels of planktonic growth, but the highest biofilm formation ability. As mentioned, SB is a complex medium and perhaps the presence of certain growth factors determined these two anaerobes to turn on the expression of biofilm-related genes. Another of the tested media, BHV, also described by the manufacturer as suitable for the cultivation of anaerobes, was not appropriate for the growth and biofilm formation of the tested species, with the exception of planktonic growth by *P. anaerobius* (Fig. 1).
Interestingly, NYC facilitated the planktonic growth of all tested species, despite *M. curtisii* presented a very slow growth rate. Nevertheless, even *M. curtisii* was able to form high biofilm biomass in this medium. In fact, together with *A. vaginae* and *L. iners*, significant biofilm formation was only detected in NYC (Fig. 2). A particularity of NYC medium, compared to the other tested media, is the presence of proteose peptone no. 3, which has been described by the manufacturer as offering high nutritional benefits to fastidious anaerobic species by providing the necessary amount of nitrogen, carbon, amino acids, and essential growth factors. To assess if, in fact, the enhancement of biofilm formation in NYC was mainly due to the presence of proteose peptone no. 3, we carried out an experiment by evaluating the biofilm-formation ability of the six tested bacterial species in the original receipt of NYC versus an altered version of NYC [with regular peptone from meat (Acros Organics, UK) replacing the proteose peptone no. 3]. Interestingly, while we did find that proteose peptone no. 3 was essential to the biofilm formation by *M. curtisii*, no significant differences were found for the other species (Fig. S1), which suggests that NYC’s ability to enhance biofilm formation is not only related to the presence of proteose peptone no. 3.

Besides the commercially available media, we also tested a chemically defined medium that simulates the genital tract fluid, mGTS (Stingley et al., 2014). Since mGTS is a minimal medium without rich nutrient sources, it was not surprising that the growth of the tested BV-associated species was negligent or very slow in this medium. Nevertheless, biofilm formation by *Gardnerella* sp. and *P. anaerobius* was significant under mGTS, further being confirmed that biofilm formation requires specific conditions, different from planktonic growth.

We also tested another variable in our growth conditions optimization. The addition of L-ascorbic acid had the advantage of reducing the oxidation potential of the growth media by removing the oxygen (La Scola et al., 2014). However, the effect of adding L-ascorbic acid was very variable, depending not only on the bacterial species but also on the respective growth media. Nevertheless, there was a tendency to slightly or highly suppress biofilm formation. Interestingly, the inhibition of biofilm formation by ascorbic acid has been described before in biofilms of *Bacillus subtilis*, *Escherichia coli*, *Pseudomonas aeruginosa* (Pandit et al., 2017) as well as of methicillin-resistant *Staphylococcus aureus* (Mirani et al., 2018). It should be noted that at higher concentrations, L-ascorbic acid has been reported as a possible adjuvant for
antibiotic treatment of BV, playing a role in maintaining a low vaginal pH, which favours the recolonization of the vaginal environment with lactic acid-producing bacteria, decreasing, thereby, the risk of BV recurrence (Krasnopolsky et al., 2013; Polatti et al., 2006). Our data further expand these previous findings by demonstrating that, while sometimes favouring planktonic growth, L-ascorbic acid often impairs biofilm formation.

A limitation of this study was the fact that we only tested a yet unidentified *Gardnerella* sp. isolate, but at least 3 new species have been recently reported. Previously, we assessed biofilm formation by 7 clinical isolates from BV-women and 7 from healthy microbiota and found no significant differences between the ability to form biofilms by the 2 groups, using different growth media (Castro et al., 2015). We now know that from those 14 isolates, some belong to *G. vaginalis*, *G. leopoldii*, *G. piotii*, and *G. swidsinskii* (Castro et al., 2020). As such, we hypothesized that the 4 *Gardnerella* species would have similar biofilm formation abilities in our growth medium of choice: NYC. To test this hypothesis, we selected one isolate of each species, previously found to form similar biofilms in sBHI (Castro et al., 2020; Vaneechoutte et al., 2019), and compared its biofilms with NYC medium. As shown in Fig. S2, all the tested species had a similar biofilm-formation ability as compared to *Gardnerella* sp. UM241, with *G. leopoldii* showing a slight decrease in biomass, but well within the expected variation found in different *Gardnerella* strains (Castro et al., 2015).

Conclusions

Overall, our work has shed new light on the optimal conditions required for *in vitro* growth and biofilm formation of bacteria associated with BV. Although we tested nine different growth conditions, including a medium simulating genital tract secretions (mGTS), none of them is able to account for all growth factors present in the vaginal environment, including components of the host immune system, that are known to interfere in bacterial growth (Castro et al., 2018). Nevertheless, this work highlighted that under the appropriate *in vitro* conditions, some of the most common species found in BV can form single-species biofilms, contrary to what was shown before (Castro et al., 2020; Patterson et al., 2010). NYC medium revealed to be an ideal candidate for future studies addressing multi-species biofilm formation since this growth medium allowed significant levels of single-species biofilm formation. Understanding microbial...
interactions that occur during BV development is crucial for the development of novel antimicrobial strategies, and future work will help to clarify some of these crucial interactions in multi-species biofilms.

References

Algburi, A., Volski, A., Chikindas, M.L., 2015. Natural antimicrobials subtilosin and lauramide arginine ethyl ester (LAE) synergize with conventional antibiotics clindamycin and metronidazole against biofilms of Gardnerella vaginalis but not against biofilms of healthy vaginal lactobacilli. Pathog. Dis. 73, ftv018. https://doi.org/10.1093/femspd/ftv018

Alves, P., Castro, J., Sousa, C., Cereija, T.B., Cerca, N., 2014. Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J. Infect. Dis. 210, 593–596. https://doi.org/10.1093/infdis/jiu131

Anukam, K.C., Osazuwa, E.O., Ahonkhai, I., Reid, G., 2006. Lactobacillus vaginal microbiota of women attending a reproductive health care service in Benin City, Nigeria. Sex. Transm. Dis. 33, 59–62. https://doi.org/10.1097/01.olq.0000175367.15559.c4

Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., Di Bonaventura, G., Hébraud, M., Jaglic, Z., Kačániová, M., Knöchel, S., Lourenço, A., Mergulhão, F., Meyer, R.L., Nychas, G., Simões, M., Tresse, O., Sternberg, C., 2017. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313–351. https://doi.org/10.1080/1040841X.2016.1208146

Beamer, M.A., Austin, M.N., Avolia, H.A., Meyn, L.A., Bunge, K.E., Hillier, S.L., 2017. Bacterial species colonizing the vagina of healthy women are not associated with race. Anaerobe 45, 40–43. https://doi.org/10.1016/j.anaerobe.2017.02.020

Bradshaw, C.S., Tabrizi, S.N., Fairley, C.K., Morton, a N., Rudland, E., Garland, S.M., 2006. The association of Atopobium vaginae and Gardnerella vaginalis with bacterial vaginosis and recurrence after oral metronidazole therapy. J. Infect. Dis. 194, 828–836. https://doi.org/10.1086/506621

Castro, J., Alves, P., Sousa, C., Cereija, T., França, Â., Jefferson, K.K., Cerca, N., 2015. Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginosis or non-
bacterial vaginosis *Gardnerella vaginalis* isolates. *Sci. Rep.* 5, 11640. https://doi.org/10.1038/srep11640

Castro, J., Jefferson, K., Cerca, N., 2018. Innate immune components affect growth and virulence traits of bacterial vaginosis-associated and non-BV associated *Gardnerella vaginalis* strains similarly. *Pathog. Dis.* 76, fty089. https://doi.org/10.1093/femspd/fty089

Castro, J., Rosca, A.S., Cools, P., Vaneechoutte, M., Cerca, N., 2020. *Gardnerella vaginalis* enhances *Atopobium vaginae* viability in an *in vitro* model. *Front. Cell. Infect. Microbiol.* 10, 1–9. https://doi.org/10.3389/fcimb.2020.00083

Diop, K., Dufour, J.-C., Levasseur, A., Fenollar, F., 2019. Exhaustive repertoire of human vaginal microbiota. *Hum. Microbiome J.* 11, 100051. https://doi.org/10.1016/j.humic.2018.11.002

Falconi-McCahill, A., 2019. Bacterial vaginosis: a clinical update with a focus on complementary and alternative therapies. *J. Midwifery Womens. Health* 64, 578–591. https://doi.org/10.1111/jmwh.13013

Falsen, E., Pascual, C., Sjoden, B., Ohlén, M., Collins, M.D., 1999. Phenotypic and phylogenetic characterization of a novel *Lactobacillus* species from human sources: description of *Lactobacillus iners* sp. nov. *Int. J. Syst. Bacteriol.* 49, 217–221. https://doi.org/10.1099/00207713-49-1-217

Ferris, M.J., Norori, J., Zozaya-hinchliffe, M., Martin, D.H., 2007. Cultivation-independent analysis of changes in bacterial vaginosis flora following metronidazole treatment. *J. Clin. Microbiol.* 45, 1016–1018. https://doi.org/10.1128/JCM.02085-06

Fredricks, D.N., Fiedler, T.L., Marrazzo, J.M., 2005. Molecular identification of bacteria associated with bacterial vaginosis. *N. Engl. J. Med.* 353, 1899–1911. https://doi.org/10.1056/NEJMoa043802

Fredricks, D.N., Fiedler, T.L., Thomas, K.K., Oakley, B.B., Marrazzo, J.M., 2007. Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. *J. Clin. Microbiol.* 45, 3270–3276. https://doi.org/10.1128/JCM.01272-07

Gardner, H.L., Dukes, C.D., 1955. *Haemophilus vaginalis* vaginitis. *Am. J. Obstet. Gynecol.* 69, 962–976. https://doi.org/10.1016/0002-9378(55)90095-8

Gottschick, C., Szafranski, S.P., Kunze, B., Sztajer, H., Masur, C., Abels, C., Wagner-Döbler, I., 2016. Screening of compounds against *Gardnerella vaginalis* biofilms. *PLoS One* 11,
Hardy, L., Jespers, V., Abdellati, S., De Baetselier, I., Mwambarangwe, L., Musengamana, V., van de Wijgert, J., Vaneechoutte, M., Crucitti, T., 2016. A fruitful alliance: the synergy between *Atopobium vaginae* and *Gardnerella vaginalis* in bacterial vaginosis-associated biofilm. *Sex. Transm. Infect.* 92, 487–491. https://doi.org/10.1136/sexttrans-2015-052475

Hardy, L., Jespers, V., Dahchour, N., Mwambarangwe, L., Musengamana, V., Vaneechoutte, M., Crucitti, T., 2015. Unravelling the bacterial vaginosis-associated biofilm: a multiplex *Gardnerella vaginalis* and *Atopobium vaginae* fluorescence *in situ* hybridization assay using peptide nucleic acid probes. *PLoS One* 10, e0136658. https://doi.org/10.1371/journal.pone.0136658

Harwich, M.D., Alves, J.M., Buck, G.A., Strauss, J.F., Patterson, J.L., Oki, A.T., Girerd, P.H., Jefferson, K.K., 2010. Drawing the line between commensal and pathogenic *Gardnerella vaginalis* through genome analysis and virulence studies. *BMC Genomics* 11, 375. https://doi.org/10.1186/1471-2164-11-375

Heffernan, B., Murphy, C.D., Casey, E., 2009. Comparison of planktonic and biofilm cultures of *Pseudomonas fluorescens* dsm 8341 cells grown on fluoroacetate. *Appl. Environ. Microbiol.* 75, 2899–2907. https://doi.org/10.1128/AEM.01530-08

Holdeman, L. V, Johnson, J.L., 1977. *Bacteroides disiens* sp. nov. and *Bacteroides bivius* sp. nov. from Human Clinical Infections. *Int. J. Syst. Bacteriol.* 27, 337–345. https://doi.org/10.1099/00207713-27-4-337

Jakobsson, T., Forsum, U., 2007. *Lactobacillus iners*: a marker of changes in the vaginal flora? *J. Clin. Microbiol.* 45, 3145. https://doi.org/10.1128/JCM.00558-07

Javed, A., Parvaiz, F., Manzoor, S., 2019. Bacterial vaginosis: an insight into the prevalence, alternative regimen treatments and it’s associated resistance patterns. *Microb. Pathog.* 127, 21–30. https://doi.org/10.1016/j.micpath.2018.11.046

Krasnopolsky, V.N., Prilepskaya, V.N., Polatti, F., Zarochnetseva, N. V, Bayramova, G.R., Caserini, M., Palmieri, R., 2013. Efficacy of Vitamin C vaginal tablets as prophylaxis for recurrent bacterial vaginosis: a randomised, double-blind, placebo-controlled clinical trial. *J Clin Med Res* 5, 309–315. https://doi.org/10.4021/jocmr1489w

La Scola, B., Khelaifia, S., Lagier, J.C., Raoul, D., 2014. Aerobic culture of anaerobic bacteria using antioxidants: a preliminary report. *Eur. J. Clin. Microbiol. Infect. Dis.* 33, 1781–1783.
Machado, D., Palmeira-de-Oliveira, A., Cerca, N., 2015. Optimization of culture conditions for *Gardnerella vaginalis* biofilm formation. *J. Microbiol. Methods* 118, 143–146. https://doi.org/10.1016/j.mimet.2015.09.007

Marrazzo, J.M., 2011. Interpreting the epidemiology and natural history of bacterial vaginosis: are we still confused? *Anaerobe* 17, 186–190. https://doi.org/10.1038/jid.2014.371

Mirani, Z.A., Khan, M.N., Siddiqui, A., Khan, F., Aziz, M., Naz, S., Ahmed, A., Khan, S.I., 2018. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant *Staphylococcus aureus*. *Iran. J. Basic Med. Sci.* 21, 175–180. https://doi.org/10.22038/IJBMS.2018.20714.5398

Muzny, C.A., Taylor, C.M., Swords, W.E., Tamhane, A., Chattopadhyay, D., Cerca, N., Schwebke, J.R., 2019. An updated conceptual model on the pathogenesis of bacterial vaginosis. *J. Infect. Dis.* 220, 1399–1405. https://doi.org/10.1093/infdis/jiz342

Ng, J., Ng, L.-K., Chow, A.W., Dillon, J.-A.R., 1994. Identification of five *Peptostreptococcus* species isolated predominantly from the female genital tract by using the R rapid ID32A system. *J. Clin. Microbiol.* 32, 1302–1307.

Onderdonk, A.B., Delaney, M.L., Fichorova, N., 2016. The human microbiome during bacterial vaginosis. *Clin. Microbiol. Rev.* 29, 223–238. https://doi.org/10.1128/CMR.00075-15

Pandit, S., Ravikumar, V., Abdel-Haleem, A.M., Derouiche, A., Mokkpati, V.R.S.S., Sihlbom, C., Mineta, K., Gojobori, T., Gao, X., Westerlund, F., Mijakovic, I., 2017. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. *Front. Microbiol.* 8, 2599. https://doi.org/10.3389/fmicb.2017.02599

Patterson, J.L., Stull-Lane, A., Girerd, P.H., Jefferson, K.K., 2010. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of *Gardnerella vaginalis* relative to other bacterial-vaginosis-associated anaerobes. *Microbiology* 156, 392–399. https://doi.org/10.1099/mic.0.034280-0

Peeters, E., Nelis, H.J., Coenye, T., 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. *J. Microbiol. Methods* 72, 157–165. https://doi.org/10.1016/j.mimet.2007.11.010

Petrova, M.I., Lievens, E., Malik, S., Imholz, N., Lebeer, S., 2015. *Lactobacillus* species as biomarkers and agents that can promote various aspects of vaginal health. *Front. Physiol.* 6,
Polatti, F., Rampino, M., Magnani, P., Mascarucci, P., 2006. Vaginal pH-lowering effect of locally applied vitamin C in subjects with high vaginal pH. *Gynecol. Endocrinol.* 22, 230–234. https://doi.org/10.1080/09513590600647441

Rampersaud, R., Planet, P.J., Randis, T.M., Kulkarni, R., Aguilar, J.L., Lehrer, R.I., Ratner, A.J., 2011. Inerolysin, a cholesterol-dependent cytolysin produced by *Lactobacillus iners*. *J. Bacteriol.* 193, 1034–1041. https://doi.org/10.1128/JB.00694-10

Ravel, J., Gajer, P., Abdo, Z., Schneider, G.M., Koenig, S.S.K., McCulle, S.L., Karlebach, S., Gorle, R., Russell, J., Tacket, C.O., Brotman, R.M., Davis, C.C., Ault, K., Peralta, L., Forney, L.J., 2011. Vaginal microbiome of reproductive-age women. *Proc. Natl. Acad. Sci.* 108, 4680–4687. https://doi.org/10.1073/pnas.1002611107

Ripolles-Avila, C., Hascoët, A.S., Guerrero-Navarro, A.E., Rodríguez-Jerez, J.J., 2018. Establishment of incubation conditions to optimize the *in vitro* formation of mature *Listeria monocytogenes* biofilms on food-contact surfaces. *Food Control* 92, 240–248. https://doi.org/10.1016/j.foodcont.2018.04.054

Rodriguez Jovita, M., Collins, M.D., Sjödén, B., Falsen, E., 1999. Characterization of a novel *Atopobium* isolate from the human vagina: description of *Atopobium vaginae* sp. nov. *Int. J. Syst. Bacteriol.* 49, 1573–1576. https://doi.org/10.1099/00207713-49-4-1573

Schwebke, J.R., 2000. Bacterial vaginosis. *Curr. Infect. Dis. Rep.* 2, 14–17. https://doi.org/10.1007/s11908-000-0082-0

Spiegel, C.A., Roberts, M., 1984. *Mobiluncus* gen. nov., *Mobiluncus curtisi* subsp. *curtisi* sp. nov., *Mobiluncus curtisi* subsp. *holmesii* subsp. nov., and *Mobiluncus mulieris* sp. nov., curved rods from the human vagina. *Int. J. Syst. Bacteriol.* 34, 177–184. https://doi.org/10.1099/00207713-34-2-177

Srinivasan, S., Munch, M.M., Sizova, M. V., Fiedler, T.L., Kohler, C.M., Hoffman, N.G., Liu, C., Agnew, K.J., Marrazzo, J.M., Epstein, S.S., Fredricks, D.N., 2016. More easily cultivated than identified: classical isolation with molecular identification of vaginal bacteria. *J. Infect. Dis.* 214, S21–S28. https://doi.org/10.1093/infdis/jiw192

Stalons, D.R., Thornsberry, C., Dowell, V.R.J., 1974. Effect of culture medium and carbon dioxide concentration on growth of anaerobic bacteria commonly encountered in clinical specimens. *Appl. Microbiol.* 27, 1098–1104. https://doi.org/10.1128/aem.27.6.1098-
Stingley, R.L., Liu, H., Mullis, L.B., Elkins, C.A., Hart, M.E., 2014. *Staphylococcus aureus* toxic shock syndrome toxin-1 (TSST-1) production and *Lactobacillus* species growth in a defined medium simulating vaginal secretions. *J. Microbiol. Methods* 106, 57–66. https://doi.org/10.1016/j.mimet.2014.08.002

Swidsinski, A., Loening-Baucke, V., Mendling, W., Dörffel, Y., Schilling, J., Halwani, Z., Jiang, X.F., Verstraelen, H., Swidsinski, S., 2014. Infection through structured polymicrobial *Gardnerella* biofilms (StPM-GB). *Histol. Histopathol.* 29, 567–587. https://doi.org/10.14670/HH-29.10.567

Swidsinski, A., Mendling, W., Loening-Baucke, V., Ladhoff, A., Swidsinski, S., Hale, L.P., Lochs, H., 2005. Adherent biofilms in bacterial vaginosis. *Obstet. Gynecol.* 106, 1013–1023. https://doi.org/10.1097/01.AOG.0000183594.45524.d2

Turovskiy, Y., Cheryian, T., Algburi, A., Wirawan, R.E., Takhirstov, P., Sinko, P.J., Chikindas, M.L., 2012. Susceptibility of *Gardnerella vaginalis* biofilms to natural antimicrobials subtilisin, ε-poly-L-lysine, and lauramide arginine ethyl ester. *Infect. Dis. Obstet. Gynecol.* 2012, 1–9. https://doi.org/10.1155/2012/284762

Vaneechoutte, M., 2017. *Lactobacillus iners*, the unusual suspect. *Res. Microbiol.* 168, 826-836. https://doi.org/10.1016/j.resmic.2017.09.003

Vaneechoutte, M., Guschin, A., Van Simaey, L., Gansemans, Y., Van Nieuwerburgh, F., Cools, P., 2019. Emended description of *Gardnerella vaginalis* and description of *Gardnerella leopoldii* sp. nov., *Gardnerella piotii* sp. nov. and *Gardnerella swidsinskii* sp. nov., with delineation of 13 genomic species within the genus *Gardnerella*. *Int. J. Syst. Evol. Microbiol.* 69, 679–687. https://doi.org/10.1099/ijsem.0.003200

Weeks, R.M., Moretti, A., Song, S., Uhrich, K., Karlyshev, A. V., Chikindas, M.L., 2019. Cationic amphiphiles against *Gardnerella vaginalis* resistant strains and bacterial vaginosis-associated pathogens. *Pathog. Dis.* 77, pii: ftz059. https://doi.org/10.1093/femspd/ftz059

Wijesinghe, G., Dilhari, A., Gayani, B., Kottegoda, N., Samaranyake, L., Weerasekera, M., 2019. Influence of laboratory culture media on *in vitro* growth, adhesion, and biofilm formation of *Pseudomonas aeruginosa* and *Staphylococcus aureus*. *Med. Princ. Pract.* 28, 28–35. https://doi.org/10.1159/000494757
To determine how often the selected cultivable species have been reported with BV, a query in PubMed was performed by using a specific combination of keywords as “bacterial vaginosis” and “name of each species” (e.g. “Gardnerella” and “bacterial vaginosis”). We designated as “often described” those species referred in more than 50 articles in the last 25 years, while “commonly described” had at least 10 articles in the same period. Of note, the selected bacterial species used herein have been pointed out in several studies (Diop et al., 2019; Onderdonk et al., 2016; Ravel et al., 2011) as potential microbial pathogens involved in BV development. The partial 16S ribosomal RNA gene sequences of Gardnerella sp. is downloadable from NCBI. UM: University of Minho, Portugal. In addition, the strain was phenotypically and genotypically characterized by Castro and colleagues (Castro et al., 2020, 2018, 2015). Of note that Gardnerella sp. UM241 did not match with any of the Gardnerella species described by Vaneechoutte and colleagues (Vaneechoutte et al., 2019) (i.e. G. vaginalis, G. piotii, G. leopoldii and G. swidsinskii), belonging to a yet unidentified Gardnerella species (Castro et al., 2020).
Table 1.

Cultivable bacterial species used for planktonic and biofilm growth assays.

Species	Strain	Origin	Association with BV
Gardnerella sp.	UM241²	Isolated from women diagnosed with BV	Often described
Atopobium vaginae	ATCC BAA-55^T	Isolated from vaginal microbiota of a healthy woman (Rodriguez Jovita et al., 1999)	Often described
Lactobacillus iners	CCUG 28746^T	Isolated from human urine (Falsen et al., 1999)	Commonly described
Mobiluncus curtisii	ATCC 35241^T	Isolated from women with BV (Spiegel and Roberts, 1984)	Commonly described
Peptostreptococcus anaerobius	ATCC 27337^T	Isolated from female genital tract (Ng et al., 1994)	Commonly described
Prevotella bivia	ATCC 29303^T	Isolated from endometrium (Holdeman and Johnson, 1977)	Commonly described

¹To determine how often the selected cultivable species have been reported with BV, a query in PubMed was performed by using a specific combination of keywords as “bacterial vaginosis” and “name of each species” (e.g. “*Gardnerella*” and “bacterial vaginosis”). We designated as “often described” those species referred in more than 50 articles in the last 25 years, while “commonly described” had at least 10 articles in the same period. Of note, the selected bacterial species used herein have been pointed out in several studies (Diop et al., 2019; Onderdonk et al., 2016; Ravel et al., 2011) as potential microbial pathogens involved in BV development.

²The partial 16S ribosomal RNA gene sequences of *Gardnerella* sp. is downloadable from NCBI. UM: University of Minho, Portugal. In addition, the strain was phenotypically and genotypically characterized by Castro and colleagues (Castro et al., 2020, 2018, 2015). Of note that *Gardnerella* sp. UM241 did not match with any of the *Gardnerella* species described by Vaneechoutte and colleagues (Vaneechoutte et al., 2019) (i.e. *G. vaginalis*, *G. pioii*, *G. leopoldii* and *G. swidsinskii*), belonging to a yet unidentified *Gardnerella* species (Castro et al., 2020).
Table 2 (on next page)

Culture media used for the growth of BV-associated anaerobes.

1 The supplementation of the culture media with 0.1% (w/v) L-ascorbic acid was designated with the abbreviation “Aa”, added at the end of each medium’s name as follows, e.g. sBHI supplemented with L-ascorbic acid became sBHI.Aa. The other three culture media were abbreviated by following the same rule.

2 The mGTS medium has already 0.1% (w/v) L-ascorbic acid in its composition.
Table 2.

Culture media used for the growth of BV-associated anaerobes.

Culture medium	Composition	Supplementation	Abbreviation
Brain heart infusion broth	As described by the manufacturer	2% (w/w) Gelatine (Liofilchem, Italy); 0.1% (w/w) Starch (Panreac, Spain); 0.5% (w/w) Yeast extract (Liofilchem, Italy)	sBHI/ sBHI.Aa¹
(Liofilchem, Italy)			
Brucella broth	As described by the manufacturer	0.0005% (w/v) Hemin (Sigma, China); 0.0001% (w/v) Vitamin K₁ (Sigma, China)	BHV/ BHV.Aa¹
(Liofilchem, Italy)			
New York City III broth	1.5% (w/v) Bacto proteose peptone no. 3 (BD, France); 0.5% (w/v) Glucose (Fisher Scientific, UK); 0.24% (w/v) HEPES (VWR, USA); 0.5% (w/v) NaCl (VWR, USA); 0.38% (w/v) Yeast extract (Liofilchem, Italy)	10% (v/v) Inactivated horse serum (Biowest, France)	NYC/ NYC.Aa¹
broth			
Schaedler broth	As described by the manufacturer		SB/ SB.Aa¹
(Liofilchem, Italy)			
Chemically defined medium simulating	Part I: 0.35% NaCl; 0.15% KCl; 0.174% K₂HPO₄; 0.136% KH₂PO₄; 1.08% glucose; 0.05% cysteine HCl.		mGTS²
genital tract secretions	Part II: 0.1% glycogen; 0.03% mucin; 0.02% tween 20; 0.05% urea; 0.0005% hemin; 0.0001% vitamin K₁; 0.2% bovine serum albumin; 0.03% MgSO₄; 0.004% NaHCO₃; 0.1% sodium acetate; 0.005% MnCl₂.		
(Stingley et al., 2014)	Part III: 0.0005% biotin; 5.0% myo-inositol; 0.05% niacinamide; 0.05% pyridoxine HCl; 0.05% thiamine HCl; 0.05% D-calcium pantothenate; 0.05% folic acid; 0.001% p-aminobenzoic acid; 0.05% choline chloride; 0.01% riboflavin; 0.1% L-ascorbic acid; 0.0005% vitamin A (retinol); 0.0005% vitamin D (cholecalciferol); 0.001% vitamin B₁₂.		
	Part IV: [amino acids]: 0.032% alanine; 0.008% arginine; 0.076% aspartic acid; 0.036% glutamic acid; 0.04% glutamine; 0.02% glycine; 0.016% histidine; 0.012% isoleucine; 0.02% leucine; 0.02% lysine; 0.004% methionine; 0.004% phenylalanine; 0.028% proline; 0.012% serine; 0.012% threonine; 0.004% tryptophan; 0.02% tyrosine; 0.068% valine.		
	Part V (UPI): 0.05% uracil; 0.01% sodium pyruvate; 0.02% inosine.		
The supplementation of the culture media with 0.1% (w/v) L-ascorbic acid was designated with the abbreviation “Aa”, added at the end of each medium’s name as follows, e.g. sBHI supplemented with L-ascorbic acid became sBHI.Aa. The other three culture media were abbreviated by following the same rule.

The mGTS medium has already 0.1% (w/v) L-ascorbic acid in its composition.
Figure 1

Fold change in planktonic growth of BV-associated bacteria in the nine different culture media relative to OD_{620nm} values measured at T0h.

Results represent the average ± the standard deviation of at least three independent experiments. Statistical analysis was performed using one-way ANOVA and Dunnett’s multiple comparisons test. Significant differences between NYC medium (our culture medium of choice) and other culture media are depicted with *p < 0.05 and **p < 0.01. Other statistical analysis is shown in Table S1.
Figure 2

Biofilm formation of BV-associated bacteria in the nine different culture media over a 72 h period.

Biofilm biomass was quantified using the crystal violet staining assay. Results represent the average ± the standard deviation of at least three independent experiments performed with eight technical replicates. Statistical analysis was performed using one-way ANOVA and Dunnett’s multiple comparisons test. Significant differences between biofilm biomass formed in NYC medium (our culture medium of choice) and other culture media are represented with *p < 0.05 and **p < 0.01. Other statistical analysis is shown in Table S2.
