A lower bound on the probability of error in quantum state discrimination

Ashley Montanaro
Department of Computer Science, University of Bristol, Woodland Road, Bristol, BS8 1UB, U.K.

(Dated: May 19, 2008)

We give a lower bound on the probability of error in quantum state discrimination. The bound is a weighted sum of the pairwise fidelities of the states to be distinguished.

I. INTRODUCTION

The fact that non-orthogonal states are not perfectly distinguishable is a characteristic feature of quantum mechanics and the basis of the field of quantum cryptography. In this short note, we derive a quantitative lower bound on the indistinguishability of a set of quantum states.

The scenario we consider is that of quantum state discrimination: we are given a quantum system that was previously prepared in one of a known set of states, with known a priori probabilities, and must determine which state we were given with the minimum average probability of error [7], but since developed a vast literature (see [5] for a survey).

One can use efficient numerical techniques to determine this minimum average probability of error [7], but a general closed-form expression appears elusive. We are therefore led to putting bounds on this probability. Such bounds have been useful in the study of quantum query complexity [6] and in the security evaluation of quantum cryptographic schemes [9]. However, prior to this work no lower bound based on the most natural “local” measure of distinguishability of the quantum states in question – their pairwise fidelities – was known.

The most general strategy for quantum state discrimination is given by a positive operator valued measure (POVM) [10], namely a set of positive operators $M = \{\mu_i\}$ such that $\sum_i \mu_i = 1$. The probability of receiving result i from measurement M on input of state ρ is $\text{tr}(\mu_i \rho)$. We define an ensemble \mathcal{E} as a set of quantum states $\{\rho_i\}$, each with a priori probability p_i, and associate measurement outcome i with the inference that we received state ρ_i. The average probability of error is then given by

$$P_E(M, \mathcal{E}) = \sum_{i \neq j} p_j \text{tr}(\mu_i \rho_j).$$

We mention some matrix-theoretic notation that we will require; for more details, see [2]. For any matrix M and real $p > 0$, we define $\|M\|_p = (\sum_i \sigma_i(M)^p)^{1/p}$, where $\{\sigma_i(M)\}$ is the set of singular values of M. For $p \geq 1$ this is a matrix norm (known as the Schatten p-norm) and the case $p = 1$ is known as the trace norm. As it only depends on the singular values of M, $\|M\|_p$ is invariant under pre- and post-multiplication by unitaries.

The fidelity (Bures-Uhlmann transition probability) between two mixed quantum states ρ, σ can be defined in terms of the trace norm as $F(\rho, \sigma) = \|\sqrt{\rho}\sqrt{\sigma}\|_1$ [12, 13].

We can now state the main result of this paper as the following theorem.

Theorem 1. Let \mathcal{E} be an ensemble of quantum states $\{\rho_i\}$ with a priori probabilities $\{p_i\}$. Then, for any measurement M,

$$P_E(M, \mathcal{E}) \geq \sum_{i<j} p_i p_j F(\rho_i, \rho_j).$$

We stress that this bound does not depend on the number of states in \mathcal{E}, nor their dimension. Before proving this theorem, we compare the lower bound of this note with some related previous results.

II. PREVIOUS WORK

A classic result of Holevo and Helstrom [10, 11] gives the exact minimum probability of error that can be achieved when discriminating between two states ρ_0 and ρ_1 with a priori probabilities p and $1-p$:

$$\min_M P_E(M, \mathcal{E}) = \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1.$$ \hspace{1cm} (1)

However, in the case where we must discriminate between more than two states, no such exact expression for the minimum $P_E(M, \mathcal{E})$ is known. Indeed, it appears that until recently the only known lower bound on $P_E(M, \mathcal{E})$ was a result of Hayashi, Kawachi and Kobayashi that gives a bound in terms of the individual operator norms of the states in \mathcal{E} [9]. A lower bound in terms of pairwise trace distances has very recently been given by Qiu [14].

In the other direction, Barnum and Knill [1] developed a useful upper bound on the error probability, which is given by

$$\min_M P_E(M, \mathcal{E}) \leq 2 \sum_{i>j} \sqrt{p_i p_j} \sqrt{F(\rho_i, \rho_j)}.$$ \hspace{1cm} (2)

It was pointed out by Harrow and Winter [8] that this leads to a worst-case upper bound on the number of copies required to achieve a specified probability of suc-
cess of discriminating between a set of states whose pairwise fidelities are known to be bounded above by some constant. Similarly, Theorem [1] can be used to lower bound the number of copies required in an average-case setting. For example, assume that each pair of states (ρ_i, ρ_j) has $F(\rho_i, \rho_j) \geq F$ for some F, that there are $n \geq 2$ equiprobable states to discriminate, and that we have m copies of the test state to test. Then

$$P_E(M, \mathcal{E}) \geq \frac{1}{n^2} \sum_{i > j} F(\rho_i, \rho_j)^m \geq \frac{(n-1)F^m}{2n},$$

so in order to achieve a error probability of at most ϵ, we need to have access to at least

$$m \geq \frac{\log_2(1/\epsilon) - 2}{\log_2(1/F)}$$
copies of the test state.

Finally, we mention a related quantum state discrimination scenario that has been considered in the literature: unambiguous state discrimination [3]. In this scenario, our measurement process is not allowed to make a mistake. That is, it is required that the measurement result is i only if the input was state i. This can be achieved by allowing the possibility of failure, i.e. of outputting “don’t know”. Define $P_E^u(M, \mathcal{E})$ as the failure probability of an unambiguous measurement M on ensemble \mathcal{E}. Zhang et al. have given a lower bound on this probability of failure in terms of the pairwise fidelity and n, the number of states to be discriminated [10].

$$P_E^u(M, \mathcal{E}) \geq \frac{2}{n-1} \sum_{i > j} \sqrt{p_i p_j} |\langle \psi_i | \psi_j \rangle|.$$

Now let us turn to the proof of our main result.

III. PROOF OF THEOREM [1]

We start by noting the following characterisation of a measurement based on that of Barnum and Knill [3]. Decompose each state (weighted by its a priori probability) in terms of its eigenvectors as $p_i \rho_i = \sum_j |e_{ij}\rangle \langle e_{ij}|$, where we fix the norm of each eigenvector $|e_{ij}\rangle$ as the square root of its corresponding eigenvalue λ_{ij}. Then define the matrix $S_i = \sum_j |e_{ij}\rangle \langle j|$, and form the overall block matrix S by writing the S_i matrices in a row. That is, $S = \sum e_{ij}\langle i | j\rangle$. If the states are not of equal rank, pad each matrix S_i with zero columns so all the blocks are the same size.

Now perform the same task on an arbitrary measurement M. Perform the eigendecomposition of each measurement operator $\mu_i = \sum_j |f_{ij}\rangle \langle f_{ij}|$ (again, the norm of each eigenvector is given by the square root of its corresponding eigenvalue), and form the matrix N_i whose jth column is $|e_{ij}\rangle$ (again, padding with zero columns if necessary). Write these matrices in a row to give $N = \sum_{i,j} |f_{ij}\rangle \langle i|j\rangle$. As $\sum_i \mu_i = I$, it is immediate that $NN^\dagger = I$.

Set $A = N^\dagger S$. A is made up of blocks $A_{ij} = N_i^\dagger S_j$. It is easy to verify that the probability of error of the measurement is completely determined by A:

$$\|A_{ij}\|^2_2 = \text{tr}((N_i N_j^\dagger) (S_j S_i^\dagger)) = p_j \text{tr}(\mu_i \rho_j),$$

so the squared 2-norm $\|A_{ij}\|^2_2$ gives the probability of receiving state j and identifying it as state i, and we have $P_E(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|^2_2$.

Our proof rests on the fact that on the one hand $A^\dagger A = S^\dagger N N^\dagger S = S^\dagger S$, and on the other the pairwise fidelities of the states in \mathcal{E} can also be obtained from $S^\dagger S$. Indeed, consider the (i,j)th block of this matrix, $(S^\dagger S)_{ij} = S_i^\dagger S_j$. If the states in \mathcal{E} are all pure (say $\rho_i = |\psi_i\rangle \langle \psi_i|$, then each block is a 1×1 matrix $(S^\dagger S)_{ij} = \sqrt{p_i} \sqrt{p_j} \langle \psi_i | \psi_j\rangle$. That is, $S^\dagger S$ is the Gram matrix of the states in \mathcal{E} [2], scaled by their a priori probabilities.

More generally, we have $S_i S_j^\dagger = p_i \rho_i$. This implies that, by the polar decomposition of S_i, $S_i = \sqrt{p_i} \rho_i U$ for some unitary U. Thus, for some unitary U and V,

$$\|S_i S_j^\dagger\|^2_2 = \|U^\dagger \sqrt{p_i} \rho_i U \sqrt{p_j} \rho_j V\|^2_2 = p_i p_j \|\sqrt{p_i} \sqrt{p_j}\|^2_2$$

$$= p_i p_j F(p_i, \rho_j),$$

where the second equality follows from the unitary invariance of the trace norm.

Our approach, following [1], will be to use these facts to lower bound the sum $\sum_{i \neq j} \|A_{ij}\|^2_2$ for a fixed i in terms of the entries of $A^\dagger A$, and then to sum over i. We will require two matrix norm inequalities. The first appears to be new, and the second was proven by Bhatia and Kittaneh using a duality argument [3]; we give a simple direct proof for completeness.

Lemma 2. Let A, B, C, D be square matrices of the same dimension. Then

$$\|AB + CD\|^2_2 \leq (\|A\|^2_2 + \|D\|^2_2)(\|B\|^2_2 + \|C\|^2_2).$$

Proof. Perform the polar decomposition $CD = PU$ for some positive semidefinite P and unitary U. Then

$$\|AB + CD\|_1 = \|AB + PU\|_1 = \|AB + P^\dagger U\|_1 = \|ABU^\dagger + P^\dagger\|_1 = \|ABU^\dagger + UD^\dagger C^\dagger\|_1,$$

where the third equality follows from the unitary invariance of the trace norm. Writing this as the product of
two block matrices,
\[
\|AB + CD\|_2^2 \\
= \| (A \ UD^\dagger)(BU^\dagger \ C^\dagger)^T\|_1^2 \\
\leq \|AA^\dagger + UD^\dagger DU^\dagger\|_1\|UB^\dagger BU^\dagger + CC^\dagger\|_1 \\
\leq (\|AA^\dagger\|_1 + \|UD^\dagger DU^\dagger\|_1)(\|UB^\dagger BU^\dagger\|_1 + \|CC^\dagger\|_1) \\
= (\|A\|_2^2 + \|D\|_2^2)(\|B\|_2^2 + \|C\|_2^2),
\]
where the first inequality is the Cauchy-Schwarz inequality for unitarily invariant norms \cite{2} and the second is the triangle inequality.

\[\square\]

Lemma 3 (Bhatia and Kittaneh \cite{3}). Let \(M\) be a block matrix \(M = (M_1 \ldots M_n)\). Then \(\|M\|_1^2 \geq \sum_i \|M_i\|_2^2\).

Proof. Let \(N_i\) be the matrix given by replacing all blocks in \(M\) other than block \(i\) with zeroes. Then it is easy to see that
\[
M^\dagger M = \sum_i N_i^\dagger N_i
\]
and also that \(\|M\|_1 = \|\sqrt{M^\dagger M}\|_1\) and \(\|M\|_1 = \|\sqrt{N_i^\dagger N_i}\|_1\). Thus
\[
\|M\|_1^2 = \|\sqrt{\sum_i N_i^\dagger N_i}\|_1^2 = \|\sum_i N_i^\dagger N_i\|_{1/2} \geq \sum_i \|N_i^\dagger N_i\|_{1/2} = \sum_i \|N_i\|_1 \geq \sum_i \|M_i\|_2^2,
\]
where the inequality in the second line can be proven easily by a majorisation argument \cite{2}, and is given explicitly as Lemma 1 of \cite{3}.

We now return to the proof of Theorem 1. Group the blocks of \(A\) into four “super-blocks” as follows:
\[
A = \begin{pmatrix}
(A_{11}) & (A_{12} \ldots A_{1n}) \\
(A_{21}) & (A_{22} \ldots A_{2n}) \\
\vdots & \vdots \\
(A_{n1}) & (A_{n2} \ldots A_{nn})
\end{pmatrix}.
\]
Now define a new \(2 \times 2\) block matrix \(B\) by setting block \(B_{ij}\) to be the corresponding super-block in the above decomposition of \(A\), appending rows and/or columns of zeroes to each of these blocks such that each block in \(B\) is square. Super-block \(A_{12}\) is thus the first row of block \(B_{12}\). Consider the product \(B^\dagger B\) with the same block structure. One can verify that the first row of the block \((B^\dagger B)_{12}\) is equal to the submatrix of \(A^\dagger A\) defined as \(T = ((A^\dagger A)_{12} \ldots (A^\dagger A)_{1n})\), and the remaining rows in this block are zero. We therefore have \(\|(B^\dagger B)_{12}\|_1 = \|T\|_1\). Using Lemma \(\square\) followed by Lemma \(\\)

\[\square\]

\[\sum_{i>1} \|(A^\dagger A)_{1i}\|_2^2 \leq \|T\|_1^2 = \|B_{11}^\dagger B_{12} + B_{21}^\dagger B_{22}\|_1^2 \\
\leq (\|B_{11}\|_2^2 + \|B_{22}\|_2^2)(\|B_{12}\|_2^2 + \|B_{21}\|_2^2) \\
\leq \|B_{12}\|_2^2 + \|B_{21}\|_2^2 \\
= \sum_{i=1}^n \|B_{ii}\|_2^2 = 1^2,
\]
where we use the fact that \(\sum_{i,j} \|B_{ij}\|_2^2 = \sum_{i,j} \|A_{ij}\|_2^2 = 1\) in the final inequality. We may now proceed to obtain corresponding inequalities for the other rows of \(A\) by permuting its rows and columns. Summing these inequalities, and noting that each off-diagonal element of \(A\) appears twice in total, gives
\[
P_E(M, \mathcal{E}) = \sum_{i \neq j} \|A_{ij}\|_2^2 \geq \sum_{i,j} \|(A^\dagger A)_{ij}\|_2^2 \\
= \sum_{i>j} \|(S^\dagger S)_{ij}\|_1^2 = \sum_{i>j} \rho_i \rho_j F(\rho_i, \rho_j)
\]
and the proof is complete.

IV. CONCLUDING REMARKS

We have given a lower bound on the probability of error in quantum state discrimination that depends only on the pairwise fidelities of the states in question and is appealingly similar to a known upper bound of Barnum and Knill \cite{1}. We close by commenting on the tightness of this bound.

It can be seen by comparing Theorem 1 with the Helstrom bound \cite{1} that the lower bound of this paper is not always tight, even for two states, but is nevertheless close to optimal (in some sense). Consider a pair of identical states \(\rho_0 = \rho_1 = \rho\) for some arbitrary \(\rho\). Then, by (1),
\[
\min_M P_E(M, \mathcal{E}) = \frac{1}{2} - \frac{1}{2} (p - (1 - p)) \rho_1 = \frac{1}{2} - |p - \frac{1}{2}|,
\]
whereas Theorem 1 guarantees only a weaker lower bound of
\[
\min_M P_E(M, \mathcal{E}) \geq p(1 - p).
\]
On the other hand, this lower bound cannot be improved by any constant factor \(\alpha > 1\) without violating (1).

Note added. Following the completion of this work, I became aware of recent work by Qiu \cite{14}, which obtains a lower bound on \(P_E(M, \mathcal{E})\) in terms of pairwise trace distances. For an ensemble of 2 states, this bound reduces to the Holevo-Helstrom quantity (1)
Acknowledgements

This work was supported by the EC-FP6-STREP network QICS. I would like to thank Richard Jozsa for helpful discussions on the subject of this paper, and Daowen Qiu for bringing reference [14] to my attention.

[1] H. Barnum and E. Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. *J. Math. Phys.*, 43(5):2097–2106, 2002. quant-ph/0004088
[2] R. Bhatia. *Matrix Analysis*. Springer-Verlag, 1997.
[3] R. Bhatia and F. Kittaneh. Norm inequalities for partitioned operators and an application. *Mathematische Annalen*, 287(1):719–726, 1990.
[4] R. Bhatia and F. Kittaneh. Cartesian decompositions and Schatten norms. *Linear Algebra and its Applications*, 318:109–116, 2000.
[5] A. Chefles. Quantum state discrimination. *Contemporary Physics*, 41(6):401–424, 2001. quant-ph/0010114
[6] A. Childs, L. Schulman, and U. Vazirani. Quantum algorithms for hidden nonlinear structures. In *Proc. 47th Annual Symp. Foundations of Computer Science*, 2007. arXiv:0705.2784
[7] Y. C. Eldar, A. Megretski, and G. Verghese. Designing optimal quantum detectors via semidefinite programming. *IEEE Trans. Inform. Theory*, 49(4):1007–1012, 2003. quant-ph/0205178
[8] A. Harrow and A. Winter. How many copies are needed for state discrimination?, 2006. quant-ph/060131

[9] M. Hayashi, A. Kawachi, and H. Kobayashi. Quantum measurements for hidden subgroup problems with optimal sample complexity, 2006. quant-ph/0604174
[10] C. W. Helstrom. *Quantum detection and estimation theory*. Academic Press, New York, 1976.
[11] A. S. Holevo. Statistical decision theory for quantum systems. *Journal of Multivariate Analysis*, 3:337–394, 1973.
[12] R. Jozsa. Fidelity for mixed quantum states. *Journal of Modern Optics*, 41(12):2315–2323, 1994.
[13] A. Peres. *Quantum theory: concepts and methods*. Kluwer, 1995.
[14] D. Qiu. Minimum-error discrimination between mixed quantum states. *Phys. Rev. A.*, 77(1):012328, 2008. arXiv:0707.3970
[15] A. Uhlmann. The “transition probability” in the state space of a *-algebra. Rep. Math. Phys.*, 9(2):273–279, 1976.
[16] S. Zhang, Y. Feng, X. Sun, and M. Ying. Upper bound for the success probability of unambiguous discrimination among quantum states. *Phys. Rev. A.*, 64:062103, 2001.