ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ЗЕМЛИ ПО НАБЛЮДЕНИЯМ В БУРЯТИИ

Г. И. Дружин 1, Ю. Б. Башкуев 2, И. Б. Нагуслаева 2,
Н. В. Чернева 1, Б. М. Шевцов 1

1 Институт космофизических исследований и распространения радиоволн ДВО РАН,
684034, г. Паратунка, Камчатский край
2 Институт физического материаловедения СО РАН, 670047, г. Улан-Удэ,
E-mail: drug@ikir.ru, buddich@mail.ru, idam@mail.ru, nina@ikir.ru, bshev@ikir.ru

Проведен сравнительный анализ данных, полученных с помощью мировой сети WWLLN
о грозовой активности на территории Забайкалья и с помощью аппаратуры, установленной
в Бурятии за наблюдением естественного импульсного электромагнитного поля
Земли. Получены суточные и сезонные зависимости количества наблюдаемых на терри-
тории Забайкалья грозовых разрядов. Показано, что при регистрации излучений аппара-
турой, имеющейся в Бурятии, в суточном ходе наблюдаются максимумы, совпадающие
с основными мировыми очагами гроз.

Ключевые слова: грозы, мировые очаги гроз, естественное электромагнитное
поле, электромагнитное излучение

© Дружин Г. И. и др., 2016

PACS 41.20.Jb

EARTH’S ELECTROMAGNETIC FIELD BY OBSERVATIONS IN BURYATIA

G. I. Druzhin 1, Y. B. Bashkuev 2, I. B. Naguslaeva 2,
N. V. Cherneva 1, B. M. Shevtsov 1

1 Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034,
Paratunka, Kamchatkiy kray
2 Institute of physical materials science SB RAS, 670047, Ulan-Ude, Sakhyanova str. 6
E-mail: drug@ikir.ru, buddich@mail.ru, idam@mail.ru, nina@ikir.ru, bshev@ikir.ru

The data obtained by the World Wide Lightning Location Network (WWLLN) in the
territory of Zabaykal’e are compared with the data received by the equipment for observations
of Earth’s natural pulse electromagnetic field installed in Buryatia. Diurnal and seasonal
dependence of lightning strokes observed in Zabaikal’e territory were obtained. It was shown
that the maxima in diurnal variation registered by the instrumentation in Buryatyiya coincide
with the main world lightning sources.

Key words: thunderstorms, the world’s centers of thunderstorms, a natural electromagnetic
field, electromagnetic radiation.

© Druzhin G. I. et al, 2016
Введение

Грозовая активность является опасным явлением. Информацию о грозах можно использовать в различных областях человеческой деятельности. Молниевые разряды могут наносить значительный ущерб за счет наведенных токов в линиях электропередач и кабельных линиях связи. Информация о грозах важна для обеспечения безопасности полетов самолетов, судов, находящихся в море, предупреждения лесных пожаров от грозовой активности. Например, в [http://www.altesmedia.ru/index.php/component/k2/item/797-grozy-stali-prichinoj-pozharov-v-zabajkalskom-natsionalnom-parke] пишется, что в июле 2015 г. «в Бурятии лесные пожары зарегистрированы на территории Забайкальского национального парка. По данным Республиканского агентства лесного хозяйства, причиной возгораний на охраняемых территориях стали сухие грозы, сообщает ТАСС».

Для исследования грозовой активности создана Всемирная сеть локализации гроз WWLLN [http://wwlln.com], которая включает в себя около 50 станций, расположенных по всему земному шару. Сеть WWLLN позволяет с хорошей точностью определять местоположения грозовых разрядов. Однако эта сеть регистрирует только мощные грозовые разряды. В отдельных регионах Земли она не может обнаружить некоторые грозы из-за больших расстояний до пунктов регистрации и малым их количеством.

В районах Восточной Сибири инструментальные наблюдения за грозовой активностью проводятся лишь в отдельных регионах [1, 2]. Исследование излучений, связанных с естественным импульсным электромагнитным полем Земли (ЕИЭМПЗ), проводится в Забайкалье, в Бурятии. Но в настоящее время имеющиеся там пункты регистрации не входят во вселенную сеть WWLLN, поэтому там нет возможности проводить мониторинг грозовой активности с определением местоположения грозовых источников.

Целью работы является по данным всемирной сети WWLLN и данным регистрации ЕИЭМПЗ на территории Бурятии определить основные характеристики излучений от грозовых источников и показать возможности использования сети WWLLN для мониторинга грозовой активности в Бурятии.

Аппаратура и методы исследований

Некоторые результаты исследований и описание сети WWLLN приведены в [3]. Регистрация ЕИЭМПЗ осуществлялась в г. Улан-Уде, в Институте физического материаловедения СО РАН (ИФМ СО РАН). Наблюдения за плотностью потока ЕИЭМПЗ проводилось в ОНЧ диапазоне с 31 марта 2008 г. по настоящее время, с помощью многоканального геофизического регистратора МГР-01 [4].

По данным регистрации магнитных составляющих ЕИЭМПЗ с направлений север-юг и восток-запад была построена временная зависимость количества импульсов за 2008 – 2015 годы (рис. 1).

Годовой ход импульсных разрядов имеет хорошую повторяемость. Наибольшее количество импульсных разрядов наблюдалось летом и достигало 100 000 и более, в зимний же период среднее значение импульсов не превышало нескольких сотен.
Годовой ход

Для более подробного рассмотрения годового хода был выбран 2013 год и для него построена зависимость количества импульсов, зарегистрированных сетью WWLLN и аппаратурой ЕИЭМПЗ с направлений север-юг и восток-запад (рис.2).
Подсчет количества импульсов от гроз по данным сети WWLLN осуществлялся из области (рис. 3), ограниченной координатами (45° – 55°)N, (100° – 115°)E, в центре которой находился пункт регистрации ЕИЭМПЗ г. Улан-Уде (ϕ=51.83°, λ=107.62°).

Рис. 3. Выбранная для подсчета количества гроз область на территории Забайкалья. Квадратиками обозначены грозовые разряды, произошедшие 22 июля 2013 г.

Из рис. 2 видно, что количество гроз по данным сети WWLLN составляло ~ (1 – 1000) 1/ч, а количество импульсов, принятых аппаратурой ЕИЭМПЗ ~ (1 – 100000) 1/ч. В основном количество зарегистрированных аппаратуры ЕИЭМПЗ импульсов было на два порядка больше принятых сетью WWLLN.

Разница в количестве регистрируемых излучений между WWLLN и ЕИЭМПЗ объясняется тем, что в зимой местные грозы происходят очень редко и сеть WWLLN их не регистрирует, а аппаратура ЕИЭМПЗ принимает, кроме местных гроз, еще и удаленные грозы, а также излучения от мировых очагов гроз, происходящих в приэкваториальных областях Земли [5]. Ранее грозы от мировых очагов регистрировались даже в более удаленных от экватора северо-восточных регионах России [?].
Суточный ход

Суточный ход усредненных за месячный период импульсов, принятых сетью WWLLN и станцией ЕИЭМПЗ, приведен на рис. 4, в нижней части которого показан суточный ход мировой грозовой активности [5].

Видно, что сеть WWLLN в январе (рис. 4, 1) зарегистрировала очень малое количество гроз. Практически местные грозы в зимнее время отсутствуют, поэтому явно суточный ход не наблюдается. В это же время аппаратура ЕИЭМПЗ зарегистрировала большое их количество, имеется суточный ход, максимум излучения наблюдается в ~ 20 ч UTC (рис. 4,2-3). Это примерно совпадает с максимумом грозовой активности Американского грозового очага (рис. 4,14-15). При этом с направления восток-запад принято значительно больше импульсов, чем с направления север-юг. Это свидетельствует также в пользу приема излучений с Американского грозового очага, который находится в восточной от Бурятии направлении. Имеется еще один меньший по величине максимум в 0 ч UTC, который также совпадает с меньшим по величине максимумом грозовой активности Американского грозового очага.
В мае количество гроз, зарегистрированных сетью WWLLN, заметно возросло и виден явно суточный ход, максимум которого приходится на ~ 6 ч UTC (рис. 4,4). Это послеполуденное время в Бурятии — 16 ч. LT. Данные ЕИЭМПЗ показывают, что максимальное значение приходится на 9 ч UTC (рис. 4,5-6), вечернее время, 19 ч LT. Это расхождение во времени наступления максимумов может быть обусловлено тем, что сеть WWLLN принимает излучения от гроз, находящихся в выделенной области (45° – 55°)N, (100° – 115°)E, а аппаратура ЕИЭМПЗ регистрирует излучения и вне этой области, в основном из юго-восточных направлений. Виден в мае также меньший по величине максимум ЕИЭМПЗ в ~ 19 ч UTC., который практически совпадает с максимумом, зарегистрированным в январе и совпадающим с Американским грозовым очагом.

В летний период, в июле, наблюдался годовой максимум грозовой активности. Сетью WWLLN зарегистрировано максимальное количество гроз в ~ 5 ч UTC (рис. 4, 7). Максимум в излучении ЕИЭМПЗ приходится на ~ 8 ч UTC (рис. 4, 8-9). Исходя из этого можно заключить, что аппаратура ЕИЭМПЗ принимала излучения b за выделенной областью, предположительно с южных направлений Отметим, что 8 ч UTC примерно совпадает со временем максимальной активности грозового очага Азии и Австралии (рис. 4,14-15). Этот грозовой очаг к пункту наблюдения находится ближе всех мировых очагов.

В октябре сетью WWLLN в выделенной области (рис. 3) было зарегистрировано очень малое количество гроз и суточный ход явно не наблюдается (рис. 4, 10), в то время как суточный ход ЕИЭМПЗ виден явно (рис. 4, 11-12). В это время года по данным ЕИЭМПЗ наблюдалось три максимума, каждый из которых по времени примерно совпадает с соответствующими мировыми грозовыми очагами (рис. 4, 14-15). Можно полагать, что в октябре аппаратура ЕИЭМПЗ регистрировала в основном удаленные грозы.

Заключение

1. Проведены измерения количества грозовых разрядов, зарегистрированных аппаратуру ЕИЭМПЗ за 2008 – 2015 гг. на территории Бурятии. Получены суточные и сезонные зависимости за 2013 г. количества наблюдаемых на территории Забайкалья грозовых разрядов с применением Всемирной сети локализации гроз WWLLN и такие же зависимости, зарегистрированные аппаратура ЕИЭМПЗ.

2. Проведен сравнительный анализ данных с применением сети WWLLN и аппаратуры ЕИЭМПЗ, регистрирующий излучения на территории Забайкалья грозовых разрядов с применением Всемирной сети локализации гроз WWLLN и такие же зависимости, зарегистрированные аппаратура ЕИЭМПЗ.

3. Проведено сравнение суточного хода излучений по данным сети WWLLN и по данным ЕИЭМПЗ с суточным ходом Африканского (Африка и Европа), Азиатского (Азия и Австралия) и Американского грозовых очагов. Получено, что в суточном ходе, регистрируемой аппаратура ЕИЭМПЗ на территории Забайкалья, наблюдаются максимумы, совпадающие с мировыми очагами гроз.
4. Установка на территории Бурятии аппаратуры, входящей в мировую сеть WWLLN, позволит более точно регистрировать грозовые источники на территории Забайкалья, а также поможет оперативно реагировать на негативные процессы, происходящие из-за воздействия грозовой активности.

Список литературы

[1] Козлов В.И., Муллаяров В.А, Грозовая активность в Якутии, изд. ЯФ СО РАН, Якутск, 2004, 104 с. [Kozlov V.I., Mullayarov V.A Grozovaya aktivnost' v Yakutii. Yakutsk. izd. YaF SO RAN. 2004. 104 (in Russian)].

[2] Дружин Г. И., Чернева Н. В., Мельников А. Н., “Грозовая активность по наблюдениям ОНЧ-излучения на Камчатке”, Геомагнетизм и аэрономия, 49:8 (2009), 1305–1307, [Druzhin G. I., Cherneva N. V., Mel'nikov A. N. Grozovaya aktivnost' po nablyudeniym ONCh-izlucheniya na Kamchatke. Geomagnetizm i aeronomiya. 2009. 49:8. 1305–1307 (in Russian)].

[3] Holzworth R.H., Rodger C.J., Thomas J.N., Pinto O., Jr., Dowden R.L., “WWLL global lightning detection system: Regional validation study in Brazil Lay, E.H.”, Geophysical Research Letters, 31:3 (2004), 5.

[4] Афраймович Э.Л. и др., Сейсмоионосферные и сейсмомагнитные процессы в Байкальской рифтовой зоне, Изд-во СО РАН, Новосибирск, 2012, 304 с. [Afraymovich E.L. i dr. Seysmoionosfernye i seysmoelektromagnitnye protsessy v Baykal'skoy riftovoy zone. Novosibirsk. Izd-vo SO RAN. 2012. 304 (in Russian)].

[5] Справочник по геофизике, Наука, М., 1965, 571 с [Spravochnik po geofizike. Moskva. Nauka. 1965. 571 (in Russian)]

[6] Дружин Г. И., Шапаев В. И., “Роль мировой грозовой активности в формировании амплитуды регулярного шумового фона”, Геомагнетизм и аэрономия, 28:1 (1988), 81–86, [Druzhin G. I., Shapaev V. I. Rol' mirovoy grozovoy aktivnosti v formirovanii amplitudy regulyarnogo shumovogo fona. Geomagnetizm i aeronomiya. 1988. 28:1. 81–86 (in Russian)].

Для цитирования: Дружин Г. И., Башкуев Ю. Б., Нагуслаева И. Б., Чернева Н. В., Шевцов Б. М. Электromагнитное поле земли по наблюдениям в Бурятии // Вестник КРА-УНЦ. Физ.-мат. науки. 2016. № 4(15). С. 99-105. DOI: 10.18454/2079-6641-2016-15-4-99-105

For citation: Druzhin G. I., Bashkuev Y. B., Naguslaeva I. B., Cherneva N. V., Shevtsov B. M. Earth’s electromagnetic field by observations in Buryatia, Vestnik KRAUNC. Fiz.-mat. nauki. 2016, 15: 4, 99-105. DOI: 10.18454/2079-6641-2016-15-4-99-105

Поступила в редакцию / Original article submitted: 07.09.2016