Article Type:
Research Paper

Original Title of Article:
An investigation of mathematical problem posing skills of gifted students

Turkish Title of Article:
Özel yetenekli öğrencilerin matematiksel problem kurma becerilerinin incelenmesi

Author(s):
Fatma ERDOĞAN, Neslihan GÜL

For Cite in:
Erdoğan, F., & GÜL, N. (2020). An investigation of mathematical problem posing skills of gifted students. Pegem Eğitim ve Öğretim Dergisi, 10(3), 655-696. http://dx.doi.org/10.14527/pegegog.2020.022

Makale Türü:
Özgün Makale

Orijinal Makale Başlığı:
An investigation of mathematical problem posing skills of gifted students

Makalenin Türkçe Başlığı:
Özel yetenekli öğrencilerin matematiksel problem kurma becerilerinin incelenmesi

Yazar(lar):
Fatma ERDOĞAN, Neslihan GÜL

Kaynak Gösterimi İçin:
Erdoğan, F., & GÜL, N. (2020). An investigation of mathematical problem posing skills of gifted students. Pegem Eğitim ve Öğretim Dergisi, 10(3), 655-696. http://dx.doi.org/10.14527/pegegog.2020.022
An investigation of mathematical problem posing skills of gifted students

Fatma ERDOĞAN \(^{a}\), Neslihan GÜL \(^{b}\)

\(^{a}\) Firat University, Faculty of Education, Elazığ/Turkey
\(^{b}\) Ministry of National Education, Elazığ/Turkey

Abstract

This study aimed to investigate the mathematical problem posing skills of gifted students. The participants of the study, designed as a case study, were 55 middle school students (20 sixth grade, 17 seventh grade, 18 eighth grade) who were studying at Science and Art Center in a city in the Eastern Anatolia region. Data were collected through a problem posing form which includes a semi-structured problem posing task in which the students were asked to make up three problems (easy, moderately difficult, and difficult) about three different figures given. The students’ responses to the problem posing task were analyzed with descriptive analysis method. Results showed that almost all of the problems posed by students were mathematical problems. Seventh and eighth-grade students posed more non-mathematical problems than sixth-grade students. Results also revealed that the students mostly posed extensive problems (related to further steps beyond the three given figures) in easy, moderately difficult and difficult tasks. Problem posing rates of the students with the level of difficulty that progresses hierarchically as desired were found to be quite low in the progression analysis of problems' difficulty level.

Keywords: Mathematical problem posing, Giftedness, Mathematical giftedness, Mathematics education.
Introduction

In recent years, the term ‘giftedness’ itself and meeting the academic needs of gifted students have drawn attention all around the world (Smedsrud, 2018). Giftedness can be defined as an extraordinary competence systematically developed in at least one field (Nolte, 2018). Some models have been developed to explain the term; and several researchers have tried to identify the phenomenon from various perspectives. Though there is not a consensus on the definition of the term, all of the models developed to explain giftedness share the same key concept as ‘creativity’ (Gagné, 2003; Renzulli, 2012). In this context, one of the main goals of special education for gifted students is to enable these students to contribute the society as creative and productive individuals (Davis & Rimm, 2004; Singer, Sheffield, & Leikin, 2017a).

Along with giftedness in a general sense, mathematical giftedness as a special term in the field, is the other one of issues the researchers have excessively focused on during the last two decades. As the dependence on developing technologies increases in the world, it becomes important to educate students who are creative and gifted in maths, science and technology (Sheffield, 2018). However, there is not a common and clear definition of mathematical giftedness in the relevant literature. According to Krutetskii (1976), whose studies on mathematical talent have been appreciated, mathematical giftedness is the combination of mathematical abilities which appears as an extraordinary creativity or a successful performance in a specific mathematical task. Goldberg (2008) defines mathematically gifted students as those who are aware of the aesthetical value and use of maths. These students expect the school provide them more challenging problems and tasks rather than restricted experiences. Besides, mathematically gifted students exhibit higher level of inductive thinking, logical reasoning and intrinsic motivation (Leikin, Leikin, Paz-Baruch, Waisman, & Lev, 2017b; Miller, 1990; Smedsrud, 2018).

The common focus of studies on mathematical giftedness has evolved to the exploration of gifted individual’s mental structure from basically defining the term itself (Yazgan-Sag, 2019). In this context, some characteristics of mathematically gifted individuals were be determined to be prominent in the literature (Freiman, 2018; Gutierrez, Benedicto, Jaime, & Arbona, 2018; Johnson, 2000; Krutetskii, 1976, Leikin, et al., 2017b; Miller, 1990; Poulos & Mamona-Downs, 2018; Sheffield, 2018; Sriraman, 2005, Wagner & Zimmerman, 1986; Young & Worrell, 2018). These are as follow:

- Outstanding curiosity for mathematical knowledge and dealing with maths,
- Being able to abstract, generalize or realize mathematical structures, relationships or patterns,
- Being practical in comprehending and solving mathematical ideas or structure of problems,
- Solving a problem with a specific strategy which is different from prototypes,
- Mathematical creativity,
- Flexibility in in mathematical reasoning and problem solving,
- Processing and organizing data,
- Being able to evaluate the correctness and wrongness of a structure,
- Logical reasoning and deduction,
- Being able to transfer an existing mathematical knowledge into a newly topic and being able to pose a problem.

The ability of problem posing that researchers (e.g., Freiman, 2018; Gutierrez et al., 2018; Johnson, 2000; Krutetskii, 1976; Miller, 1990; Poulos & Mamona-Downs, 2018; Sheffield, 2018; Sriraman, 2005, Wagner & Zimmerman, 1986) focus on is one of the characteristics of mathematically gifted students and constitutes the context of this study. Thus, the current study will deal with relevant literature on problem posing.
Mathematical Problem Posing and Its Importance for Students

In the past two decades, problem posing is considered as a crucially important intellectual activity in the research on mathematics education (Cai et al., 2019). Problem posing can be defined as generating a new problem about a situation, mathematical statement or diagram (Cai et al., 2019; Stoyanova & Ellerton, 1996). Problem posing is accepted as an efficient strategy which allows students to have new opportunities for a more enhanced learning and a better development on mathematics. Moreover, problem posing is seen as an assessment tool providing more data on students’ comprehension of mathematical concepts and structures (Cai & Hwang, 2019; Cai et al., 2019; English, 2019; Xu, Cai, Liu, & Hwang, 2019).

While the importance of problem solving has been taken into consideration in mathematics curriculum for a long time, problem posing has just recently become popular in educational systems (Altun, 2015; Cai & Hwang, 2019; Xu et al., 2019). National Council of Teachers of Mathematics [NCTM] (2000), while highlighting thinking, reasoning and problem solving processes, requires from students to pose problems which are based on various conditions inside and outside of maths. In the context of Turkey, it is remarkable that problem posing has gained importance in mathematics curriculum since 2005 when the education system is renewed with constructivist approach. Though the updated mathematics curriculum does not include problem posing in detail, problem posing exists as a sub-component in some learning outcomes (Ministry of National Education [MoNE], 2018).

When the literature on mathematics education is examined, it can be seen that there are several benefits of problem posing for students. In this context, most of the studies focused on the effects of problem posing on cognitive skills. These studies showed that problem posing develops students’ mathematical understanding (e.g., Cai et al., 2013; 2019; Canturk-Gunhan, Gecici, & Gunkaya, 2019; English, 2019; Kilic, 2019; Leikin, 2015; Leikin et al., 2017a; Silver & Cai, 1996). Problem posing process reveals errors and mistakes about mathematical concepts and situations the students may possibly have; thus teachers can take necessary precautions (Cai & Hwang, 2019; English, 2019; Korkmaz & Gur, 2006). On the other hand, some studies stressed positive effects of problem posing on some affective variables such as attitude and motivation (Guzel & Biber, 2019; Turhan & Guven, 2014).

In the relevant literature, some studies stated that problem posing tasks have positive effects on thinking skills. These studies assert that problem posing tasks develop students’ abilities on critical, flexible and creative thinking (Chen & Cai, 2019; Singer, Ellerton, & Cai, 2015; Singer, Sheffield, Freiman, & Brandl, 2016; Singer, Voica, & Pelczer, 2017b). All these studies show that problem posing has a crucial position in mathematics education.

Mathematical Problem Posing and Giftedness

In a number of studies, problem posing is mentioned as one of the characteristics of mathematically gifted students (Espinoza, Lupiáñez, & Segovia, 2016; Freiman, 2018; Gutierrez et al., 2018; Johnson, 2000; Sheffield, 2018; Singer et al., 2016; Sriraman, 2005). Freiman (2018) points out that gifted students can generate original, valuable and comprehensive ideas. It is emphasized that these skills are also interrelated with problem posing skill. Mathematically gifted students should be taught not only how to solve a problem but also how to restate and pose a problem. These problems should be authentic, challenging and should necessitate a certain level of effort to be solved (Singer et al., 2016).

Problem posing is correlated with creativity, an important concept of literature on giftedness, and it is treated as an important indicator of creativity (Johnson, 2000; Sheffield, 2018). Creativity is closely related to problem posing because lots of ideas are generated in creativity process (Silver, 1997; Yuan & Sriraman, 2011). Besides, in the literature, it is asserted that problem posing is one of the creative skills (Davis & Rimm, 2004). Liljedahl and Sriraman (2006) identify mathematical creativity as forming new questions with an innovative view at a common problem.
Another essential concept to be mentioned in giftedness literature is \textit{mathematical promise}. NCTM stated in 1980's that the most ignored students are those who are mathematically gifted ones (Sheffield, 2018). It is significant that NCTM suggested the term mathematical promise in 1990's. The mathematical promise concept points out that mathematical ability can be developed based on experience (NCTM, 2016; Sheffield, 2018). Leikin (2009) stated that mathematical promise was a concept developed to meet the term mathematical giftedness based on NCTM's principle of equality. In this sense, studies show that problem posing presents opportunities to mathematically promising students to develop their abilities (Sheffield, 2003; Singer, Ellerton, & Cai, 2013).

When the current giftedness models are investigated, it is apparent that problem posing is an element of these models. For example, a model, which aims at featuring mathematical giftedness and creativity, was presented by Leikin, Koichu, and Berman (2009). In this model, mathematical giftedness is correlated with problem posing. Besides, Assmus and Fritzlar (2018) state that problem posing and solving exist in the circular process of their model where they interrelated mathematical giftedness and creativity.

Studies on problem posing in giftedness and mathematics education literature can be divided into three groups. In the first group, there are studies which investigate students' problem posing skills and mathematical thinking styles (Arikan & Unal, 2015; Erdogan & Erben, 2018; Espinoza et al., 2013, 2016; Kesan, Kaya, & Guvencin, 2010; Levenberg & Shaham, 2014). Espinoza et al. (2013) analysed mathematically gifted students' responses in problem posing tasks for arithmetic. The study determined that students pose problems which include various computing procedures and various semantic structures. Erdogan and Erben (2018), who gained similar results with Espinoza et al. (2013), determined that gifted students can pose problems on four operations with various semantic structures. Kesan et al. (2010) stated that gifted students' abilities as analysis and synthesis developed as a result of studying with problem posing approach. Levenberg and Shaham (2014) determined that gifted students' abilities of problem posing on geometry terms are at low level. Some studies compared problem posing skills of students who are gifted and non-gifted (Arikan & Unal, 2015; Espinoza et al., 2016). These studies revealed that problem posing success of gifted students is higher, more solvable and semantically richer than that of non-gifted students.

The studies in the second group are linked to creativity and problem posing. The results of the studies show that problem posing activities develop creativity of mathematically gifted students (Singer & Voica, 2015; Singer et al., 2016; Voica & Singer, 2013). Voica and Singer (2013) determined that problem posing is more efficient than problem solving in encouraging creativity.

The last group of the related studies points out that problem posing can be used as an instrument to identify gifted students (Kesan et al., 2010; Singer & Voica, 2015; Voica & Singer, 2014). Voica and Singer (2014) mention three characteristics as the indicators of mathematical giftedness in terms of problem posing: comprehending the concepts in detail, the skill of generalizing reasoning, a capacity to frame and reframe content in order to devise new problems. In context with abovementioned literature, it is possible to state that problem posing is an essential skill for gifted students.

\textbf{Purpose and Significance of the Study}

When international literature is analysed, it is seen that there are many studies analyzing gifted students' problem posing skills at various dimensions (e.g., Espinoza et al., 2013; 2016; Kesan et al., 2010; Levenberg & Shaham, 2014; Singer & Voica 2015; Singer et al., 2016; Voica & Singer, 2013; 2014). However, there are an inadequate number of studies focusing on gifted students' problem posing process in Turkey (Arikan & Unal, 2015; Erdogan & Erben, 2018). Considering this gap in the literature and the emphasis on the problem posing among characteristics of mathematically gifted students, the current study focused on mathematical problem posing skills of gifted students. Thus, the study is anticipated to fill the gap in the literature on giftedness and mathematics education.
Previous studies on gifted students’ problem posing skills (Arikan & Unal, 2015; Erdogan & Erben, 2018; Espinoza et al., 2013; 2016; Kesan et al., 2010; Levenberg & Shaham, 2014) focused on only one grade level. Neither national nor international literature provides any study that investigated the across-grades differences in gifted students’ problem posing skills. In this study, the differences in the problem posing skills of gifted students according to grade levels are revealed. The study differs from previous ones with this feature.

Leikin (2011) points out that the literatures on giftedness and mathematics education are represented in one another in a limited level. Besides, the researcher states that studies on mathematical giftedness do not deal with students’ level of mathematics learning and their mathematical thinking processes sufficiently. Studies on gifted students’ problem posing processes are very limited and there is an insufficient amount of knowledge. The current study is devoted to investigate the qualities of problems posed by gifted students from various perspectives as well as determining their deficiencies. In this sense, the findings of the study are expected to shed light on further research on gifted students. Besides, the current research is essential in contributing existing literature on problem posing.

Teachers’ analysis on the responses of open ended tasks enables them to have a feedback on what their students know. Thus, they can design better problem solving and posing tasks (Cai, 2003; Cai & Hwang, 2019; English, 2019; Xu et al., 2019; Sheffield, 2018). Accordingly, the results of the current research are expected to provide teachers with necessary knowledge about gifted students and direct teachers in planning problem posing tasks.

Differentiated mathematics programs, which are well aware of the needs and interests of gifted students, are developed for gifted students in countries such as United States of America, Germany, Netherlands, England, New Zealand, and Russia (NCTM, 2016; Smedsrud, 2018; Van Tassel-Baska & Stambaugh, 2006). It is suggested that differentiated mathematics programs should include problem posing activities (NCTM, 2016). However, it can be said that studies on the quality of education for gifted students and the efforts to develop a program suitable to gifted students’ needs are insufficient in Turkey (Özçelik, 2017). The findings of this study may provide program development experts with an understanding into the process of designing tasks for problem posing. Motivated by the aforementioned concerns, this study aimed to investigate the mathematical problem posing skills of gifted students. To this end, the study seeks to answer the following questions:

1. How are gifted students’ easy, moderately difficult and difficult mathematical problem-posing skills according to their grade levels?
2. How does the difficulty level progression vary in problems posed by gifted students?

Method

Research Design

Case study, which is one of the qualitative research designs, was used in this study in order to investigate gifted students’ mathematical problem posing skills. Case study requires an in-depth description and investigation of a restricted system (Merriam, 1998). Situations, persons, curriculums, groups (communities), behaviors and events are investigated in a case study (Yin, 2017). This study has investigated gifted students as analysis unit. Besides, the mathematical problem posing skills of gifted students constituted the situation of the study.

Participants

Participants of the study were 55 middle school students (20 sixth grade, 17 seventh grade, 18 eighth grade) who were defined as gifted students and were studying at Science and Art Center in a city in the Eastern Anatolia region. Participants were identified by the appropriate sampling method. In the appropriate sampling method, participants are selected because they are suitable in terms of cost and accessibility (Muijs, 2004). As the study was easier to carry out, the participants were identified by
appropriate sampling. The reason of selecting participants from various grade levels was to investigate across-grades differences in gifted students’ problem posing skills. 23 of the participants were female (41.82%), and 32 of them were male (58.18%). The participants’ ages were between 10 and 14 years. Twenty six participants (47.27%) were studying in public schools, 29 of them were studying in private schools (52.73%). All of the participants were studying at Science and Art Center of their province within the scope of a program which aims at creating awareness for individual abilities. Besides, in the study, volunteering of participants was essential. In the findings section, the researchers preferred to use ‘students’ to refer gifted students for a shorter and clearer expression.

Data Collection Tools

The data collection instrument of the study was a problem posing form which includes a semi-structured problem posing task (Appendix 1). Students were given an open-ended situation in semi-structured problem posing task. Based on this, they were expected to pose a problem by applying their existing knowledge and experience on mathematics (Stoyanova & Ellerton, 1996). The task included in the form was previously used in Cai’s (2003) study. On the use of the task in this study, necessary permission was obtained from Dr. Cai. In the problem posing task, the students were asked to make up three problems about three figures given. These problems were expected to be at three difficulty levels: easy, moderately difficult, and difficult. Expert opinions from three faculty members (They specialized in the field of mathematics education) and four maths teachers (two teachers work at middle school and two teachers work at Science and Art Center) were gathered for problem posing task used in the study. Experts found the task appropriate in terms of language and student level. Consequently, experts did not suggest any changes regarding the task. It was decided that the problem posing task was appropriate for students’ level after the mathematics curriculum (MoNE, 2018) was examined and expert opinions were obtained. Lastly, a pilot study was conducted with the participation of students from sixth, seventh, and eighth grades (four students from each grade level) who were not included in the main study. Pilot study aimed at investigating feasibility of problem posing task. As a result of the pilot study, no deficiencies were detected in the task. Pilot study revealed that the task was comprehended properly.

Data Collection and Analysis

The problem posing form was applied to all grade levels by their math teachers. There was not any time limit during problem posing session. It was observed that the students completed in averagely 30 minutes. The students’ responses to the problem posing task were analyzed with descriptive analysis method within the framework suggested by Cai (2003) in his study. This framework is given in Table 1. The problems were classified according to their content and difficulty levels.

Firstly, the problems posed by the students were divided into two categories according to their contents as those being mathematical and non-mathematical problems. Those which are labelled as non-mathematical problems refer to the problems which cannot be solved by mathematical operations (Leung, 2013). The problems of the first group, those which were labelled as mathematical, were classified as extension problem or non-extension problem.

An extension problem refers to a problem which was related to further steps beyond the three given figures. A non-extension problem refers to a problem which was related to the given three figures. Both extension and non-extension problems are coded as “including dots in one figure, including dots in more than one figure, comparing the number of dots in the figures”. While coding extension problems, three other codes were added to the existing code list. These codes are “requiring drawing a figure, rule-based general (vague and cannot be answered in a specific way) and rule-based specific (which has details to help solving the problem)”. Table 1 shows the categories, codes, and samples from student responses for problem posing task.
Table 1. Categories, Codes, and Sample Responses for the Analysis of Problem Posing Task.

Category	Code	Sample response
Extension mathematical problem	Including dots in one figure	How many black circles are there in the fourth figure? #S6-8
	Including dots in more than one figure	What is the sum of all the white dots of the above pattern from step one to tenth? #S6-12
	Comparing the number of dots in the figures	How many times do the circles increase at a time in the above pattern? #S8-4
	Requiring drawing a figure	How does the twelfth step of the pattern given above? Draw it. #S7-12
	Rule-based general	What is the rule of the above pattern? #S7-4
	Rule-based specific	What is the rule that shows the increase of black dots in the pattern shown above? #S8-16
Non-extension mathematical problem	Including dots in one figure	What exponent of which number is painted in the third figure? #S6-14
	Including dots in more than one figure	What is the multiplication of the black dots in the first figure and the second figure and the addition of white dots in the third figure? #S6-5
	Comparing the number of dots in the figures	How many times at a time have the white rounds in the first figure increased in the second and third figures? #S7-13
Non-mathematical problem	In which figure black dots in the pattern will be greater than the white dots? #S7-9	

For the analysis of progression of difficulty level, the problems posed by the students in the study were coded as easy (P1), moderately difficult (P2) and difficult (P3) based on their difficulty levels. The students who posed at least two mathematical problems were included in the analysis of difficulty level progression. As a result, one student from seventh grade and two students from eighth grade were not included in this analysis (n=52). Following criteria were used for the comparisons of difficulty levels (Cai, 2003):

- An extension problem is more difficult than a non-extension problem.
- Among extension problems, a rule-based specific problem is more difficult than the others.
- A problem which consists of comparing the number of dots in the figures is more difficult than the one which includes dots in one figure.
- A problem which consists of combining the number of dots in figures is more difficult than the one which includes dots in one figure.
- A problem which requires drawing a figure is more difficult than the one which asks to find the number of dots in a figure.
- A problem which involves later figures in the pattern is more difficult than the one which involves an earlier figure.

The analysis of difficulty level progression concerning problem posing task and samples of student responses are shown in Table 2. Inter-rater agreement was used to determine the reliability of the study. To this end, problems posed by the students were independently coded by two raters based on the theoretical framework (165 problems in all). Inter-rater agreement was found as 87.88% (145/165). Accordingly, problems posed by the students were coded by two independent raters in terms of the difficulty level (52 forms in all). Inter-rater agreement was found as 90.38% (47/52).
Table 2.
Analysis of Difficulty Level Progression of Problems Posed by Students and Sample Responses.

Category of difficulty level	Sample response
P1 < P2 < P3	The easy problem: According to the rule of the above pattern, how many black circles and how many white circles are there in the fifth figure?
The moderately difficult problem: According to the above pattern, what is the difference between the total of black and white circles and the difference between black and white circles in the 21st figure?	
The difficult problem: According to the rule of the above pattern, what is the sum of total black and white circles, and difference between black and white circles in the 34th figure? #S6-4	
P1 < P3 and P2 < P3 or P1 < P2 and P1 < P3	The easy problem: How many white dots are there in the sixth figure of this pattern?
The moderately problem: What is the ratio of black circles to white circles up to the tenth figure of this pattern?	
The difficult problem: How many black dots are there in the 100th figure? #S7-17	
Having at least one of the following: P1 > P2, P2 > P3, P1 > P3	The easy problem: How many white and how many black dots are there in step 97 of this pattern?
The moderately problem: If the color of the colored circles in the pattern was changed to the opposite, what would be the number of black circles in step 14 of the new figure?
The difficult problem: If each black circle in the pattern makes any white circle next to it black, how many white circles will there be in step 11? #S8-8 |

According to Miles, Huberman and Saldana (2014), inter-rater agreement should be at least 80.00% for an acceptable reliability. Though inter-rater agreement level of the current study is seemed to be sufficient, the researchers discussed on codes until they reached a consensus.

For example, “How are the 4th and 5th figures depending on the relationship of the black and white beads? Draw. #S7-13” problem is one of the problems discussed. There is consensus that this problem is in the "extension mathematical problem" category. However, it was discussed whether the problem is of "including dots in more than one figure" type or "requiring drawing a figure" type. In the problem, it was decided that there was no questioning about the relation of the points in more than one figure. Besides, drawing figures is emphasized in the problem. As a result, this problem was coded as "requiring drawing a figure". In addition, in the findings section, examples of the problems that students posed are presented. However, the students are coded as S7-15 (seventh grade, fifteenth student) for confidentiality.

Findings

Findings in terms of Posing Easy, Moderately Difficult and Difficult Problems according to Students’ Grade Levels

In this part, findings regarding the analysis of the problems which were posed by students are presented. First of all, the distribution of frequency percentages of mathematical and non-mathematical problems is displayed in Table 3.
Table 3.
Distribution of Frequency Percentages of Mathematical and Non-Mathematical Problems.

Problem	Sixth grade (60 problems)	Seventh grade (51 problems)	Eighth grade (54 problems)	Total (165 problems)
Mathematical problem	98.33	82.35	85.19	89.09
Non-mathematical problem	1.67	17.65	14.81	10.91

According to Table 3, it is seen that all the students from each three grade levels provided an answer for the easy, moderately difficult and difficult problem posing tasks. Accordingly, 165 answers were collected in total. It was identified that most of the posed problems were mathematical problems with a rate of 89.09%. The rate of the non-mathematical problems was quite low with a rate at 10.91%. Sixth grade is the one at which we encountered the mathematical problems most (98.33%). Based on this finding, it can be said that almost all the sixth graders posed problems. Nearly 82.35% of the seventh graders and 85.19% of the eighth graders posed problems. It is seen that the rate for both grades are really close to each other. Non-mathematical problems were detected most at the seventh grade level (17.65%). After a general analysis of the problems, detailed analysis of the easy, moderately difficult and difficult problems will be presented. In this sense, the distribution of frequency percentages of easy problems is given in Table 4.

Table 4.
Distribution of Frequency Percentages of Easy Problems.

Posing easy problems	6th grade (n=20)	7th grade (n=17)	8th grade (n=18)	Total (n=55)
Extension problem				
Including dots in one figure	45.00	23.53	55.56	41.82
Including dots in more than one figure	5.00	.00	.00	1.81
Comparing the number of dots in the figures	5.00	.00	5.56	3.64
Requiring drawing a figure	15.00	23.53	5.56	14.55
Rule-based general	10.00	11.76	5.56	9.09
Rule-based specific	.00	.00	11.11	3.64
Total	80.00	58.82	83.33	74.55
Non-extension problem				
Including dots in one figure	5.00	5.88	.00	3.64
Including dots in more than one figure	10.00	5.88	16.67	10.91
Comparing the number of dots in the figures	5.00	11.76	.00	5.45
Total	20.00	23.53	16.67	20.00
Non-mathematical problem	.00	17.65	.00	5.45

According to Table 4, it is seen that almost all the students, that is 94.55% of them, posed mathematical problems during easy task. Only 5.45% of the students created non-mathematical problems. All students from sixth and eighth grades posed mathematical problems. Upon analysing mathematical problems, it was determined that extension problems (74.55%) are three times more than non-extension problems (20.00%). Although extension problems are close to each other in terms of their rates, they are mostly seen at eighth (83.33%) and sixth (80.00%) grade levels.

It was determined after the analysis of the extension problems that 41.82% of the students mostly posed problems “including dots in one figure”. Nearly half of the sixth grade students with a rate at 45.0% and more than half of the eighth grade students with a rate at 55.56% posed problems type “including dots in one figure”, whereas this rate was 23.53% for seventh grade students. Examples of problems “including dots in one figure” are given below:
How many rounds are not painted in the fourth figure? #S6-17

According to the figures given, how many black circles will the sixth figure have? #S7-15

What is the division of painted circles in figure five into circles without paint in a pattern that progresses as in the figure? #S8-1

In extension problems, the second common problem type posed by students was problems “requiring drawing a figure” with a rate of 14.55%. Sample problems within the scope of “requiring drawing a figure” are as follows:

How is the fourth figure? Draw. #S6-7

What happens in step six according to the pattern? Draw. #S7-6

A student wants to draw the first figure on paper and bring it on. According to this, what happens in the fourth figure? #S8-13

Among extension problems, “rule-based general” problems were rarely seen at all three levels (10.00% of sixth graders, 11.76% of seventh graders, and 5.56% of eighth graders). From this point, it can be stated that 9.09% of the students posed problems which are suitable to the general rule of the pattern, but which cannot be solved. Examples of “rule-based general” problems are presented below:

What is the rule of the above pattern? #S6-10

What could be the rule of the above pattern? #S7-7

How does the pattern function here? #S8-9

It was determined that “rule-based specific” problems which are intended for the general rule of the pattern and which can be solvable were posed by only 11.11% of the eighth graders. An example of the “rule-based specific” problem type is “How to show the increase of the black circles given in the figures? #S8-17”. The least common problem type which was posed by 1.81% of the students was problems “including dots in more than one figure”. This type of problem was not posed by seventh and eighth graders, and they were posed by only 5.00% of the sixth grade students. An example of this problem type is "What is the sum of the circles in step 6 and step 4 of the above pattern? #S6-16”.

When non-extension problems were examined, it was determined that 10.91% of the students posed problems “including dots in more than one figure” which is also the highest rate. Examples of the problem type “including dots in more than one figure” are given below:

What is the sum of the black circles in the first and second figures on the pattern? #S6-5

In all three figures, what is the sum of the painted parts of the figures created with a single row on the edge? #S7-8

What is the difference between painted and unpainted figures in the first and second figures? #S8-11

Problems “including dots in one figure” (3.64%) and “comparing the number of dots in the figures” (5.45%), whose rates are close to each other, were posed by sixth and seventh graders. The problem of “How many of the second figures are painted? #S6-14” is of the type “including dots in one figure”. The problem of “How many more circles are there in all three figures than the previous one? #S6-3” is an example of the problem type of “comparing the number of dots in the figures”.

Non-mathematical problems were only seen at the 17.65% of the seventh graders. An example of the non-mathematical problem type is as follows: “Aynur went to the market and bought a candy. She decided to buy candy every day. She increased three more in the beginning and three more in the following days. How many candies did Aynur take on the fifth day? #S7-16”.

The distribution of the frequency percentages of moderately difficult problems posed by students are given in Table 5. When Table 5 is considered, it is determined that students mostly posed mathematical problems with a rate of 90.91% at moderately problem posing task. With a very little rate, it is seen that 9.09% of the students posed non-mathematical problems. 76.36% of the mathematical problems were extension problems, whereas only 14.55% of them were non-extension problems.
Extension problems were mostly encountered at sixth grade level (90.00%). The rate of the extension problems posed at seventh (70.59%) and eighth grade levels (66.67%) were really close to each other.

Table 5.
Distribution of Frequency Percentages of Moderately Difficult Problems.

Posing moderately difficult problems	Frequency percentages (%)			
	6th grade (n=20)	7th grade (n=17)	8th grade (n=18)	Total (n=55)
Extension problem				
Including dots in one figure	60.00	23.53	38.89	41.82
Including dots in more than one figure	15.00	23.53	11.11	16.36
Comparing the number of dots in the figures	0.00	0.00	5.56	1.82
Requiring drawing a figure	15.00	11.76	5.56	10.91
Rule-based general	0.00	11.76	5.56	5.45
Rule-based specific	0.00	0.00	0.00	0.00
Total	90.00	70.59	66.67	76.36
Mathematical problem				
Non-extension problem				
Including dots in one figure	5.00	5.88	0.00	3.64
Including dots in more than one figure	5.00	11.76	16.67	10.91
Comparing the number of dots in the figures	0.00	0.00	0.00	0.00
Total	10.00	17.64	16.67	14.55
Non-mathematical problem	0.00	11.76	16.67	9.09

Upon analysing extension problems, it was seen that nearly half of the students posed problems “including dots in one figure” with a rate of 41.82% (60.00% of sixth graders, 23.53% of seventh graders, and 38.89% of eighth graders). Examples of problems of "including dots in one figure" are given below:

According to this pattern, what is the difference between the painted and unpainted circles in the sixth figure? #S6-6

Multiply the number of black and white balls in the fourth step. What is the result? #S7-3

How many solid hoops do you have in the 159th figure? #S8-10

In the second place, 16.36% of the students posed problems “including dots in more than one figure”. Examples of problems involving “including dots in more than one figure” are as follows:

If we subtract the number of filled round numbers in figure 4 from the number of filled rounds in figure 12, what is the result? #S6-15

What is the ratio of black balls to white balls in circles up to the tenth figure of this pattern? #S7-17

What is the sum of the black point numbers in figure 8 and 17? #S8-2

The third place belonged to “requiring drawing a figure” problems posed by the 10.91% of the students. The problem of “What is the 6th step of the pattern? Draw. #S6-1” can be given as an example for the problems of “requiring drawing a figure”. “Rule-based general” problems were slightly posed by only seventh (11.76%) and eighth grade students (5.56%). The problem of “What is the rule of the given pattern? Write. #S7-1” is an example for “rule-based general” problems.

The least seen problem type was “comparing the number of dots in the figures” with a rate of 1.82%. This problem type was not encountered at sixth and seventh grade levels while it was determined in 5.56% of the eighth grade students. Besides, “rule-based specific” problems were not posed by any of the grade levels. The problem "How would the number of black circles in step 14 of the new figure be changed if the colors of the colored circles on the pattern were changed the other way around? #S8-8” is an example of the problem type of “comparing the number of dots in the figure".
When we look at non-extension problems, it is seen that 10.91% of the students posed very little problems about “including dots in more than one figure”. An example of a problem that covers “including dots in more than one figure” is as follows: *What is the difference between the pointed dots of the first and second figures and the unpainted dots of the third figure? #S8-11.* Problems “comparing the number of dots in the figures” were not posed by any of the grade levels. Non-mathematical problems were not seen at sixth grade level, whereas they were identified among seventh and eighth grade levels with rates of 11.76% and 16.67% respectively. Examples of non-mathematical problems are as follows:

Every time Mehmet wins a table tennis game, he gets some ping-pong balls. He had a ball in his first match. He holds four balls in the second and nine in the third. How many balls will there be at the end of the seventh match? #S7-11

According to the figures above, how many black dots will be twice the number of white dots? #S8-18

The distribution of the frequency percentages of difficult problems posed by students are given in Table 6.

Table 6.

Distribution of Frequency Percentages of Difficult Problems.

Posing difficult problems	6th grade (n=20)	7th grade (n=17)	8th grade (n=18)	Total (n=55)
Extension problem				
Including dots in one figure	15.00	41.18	33.33	29.09
Including dots in more than one figure	55.00	23.53	22.22	34.55
Comparing the number of dots in the figures	.00	.00	.00	.00
Requiring drawing a figure	10.00	5.88	5.56	7.27
Rule-based general	.00	.00	5.56	1.82
Rule-based specific	.00	.00	.00	.00
Total	80.00	70.59	66.67	72.73
Mathematical problem				
Non-extension problem				
Including dots in one figure	10.00	.00	.00	3.64
Including dots in more than one figure	5.00	5.88	5.56	5.45
Comparing the number of dots in the figures	.00	.00	.00	.00
Total	15.00	5.88	5.56	9.09
Non-mathematical problem				
	5.00	23.53	27.78	18.18

When Table 6 is analysed, it is seen that 81.82% of the students posed mathematical problems and 18.18% of them posed non-mathematical problems at difficult problem posing. Among easy, moderately difficult, and difficult problems, non-mathematical problems were most seen at difficult problem cases. 72.73% of the mathematical problems were extension problems, whereas it was determined that non-extension problems were also posed though with a little rate of 9.09%. The occurrence of extension problems decreases from sixth grade through eighth grade levels (80.00% of sixth graders, 70.59% of seventh graders, and 66.67% of eighth graders).

After the analysis of extension problems, it is seen that students posed four different types of problems. The most popular problem type was type “including dots in more than one figure” which was posed by 34.55% of the students. This problem type was mostly posed by nearly more than half of the sixth grade students with a rate of 55.00%. Examples of problems about “including dots in more than one figure” are given below:

What is the half of the sum of the circles in the seventh and ninth figure? #S6-17

According to the pattern given above, what is the sum of the black dots in steps 6 and 8 divided by the number of black dots in step 5? #S7-12
What is the sum of the square root of the difference of black and white points in step 8 and the square root of the difference of black and white points in step 4? #S8-3

The second most common problem type was “including dots in one figure” with a rate of 29.09%. This problem type was posed by 41.18% of the seventh grade students, which means nearly half of them. Examples of problems of “including dots in one figure” are as follows:

* If a spotted T-shirt would be printed in the number of dots in figure 5, how many spots would it have on the back and front of the shirt? #S6-9
* How many unpainted circles are there in the 100th step of the above pattern? #S7-14
* In the 11th figure, filled circles are how many more than hollow circles? #S8-5

The rate for the problem type of “requiring drawing a figure” is very low (7.27%). The problem “How are the fourth and fifth figures according to the relationship of the black and white beads? Draw. #S7-13” can be given as an example of type “requiring drawing a figure”. “Rule-based general” problems were only written by 5.56% of the eighth grade students and they were the least encountered problems. The problem “What is the rule of the above pattern #S8-12” is an example for the “rule-based general” problem type. “Comparing the number of dots in the figures” and “rule-based specific” problems types were not seen at any grade levels.

When it comes to non-extension problems, it is seen that students posed two types of problems: “including dots in more than one figure” (5.45%) and “including dots in one figure” (3.64%), and the number of posed problems was very few. Problems “including dots in one figure” were not seen at seventh and eighth grade levels, whereas they were detected at 10.00% of the sixth grade students. The problem of “If we add the painted figures of the three figures and multiply them with the unpainted figures, what is the result? #S8-11” is an example for “including dots in more than one figure”. The number of non-mathematical problems increases from sixth grade to eighth grade levels (5.00% of sixth graders, 23.53% of seventh graders, and 27.78% of eighth graders). An example of non-mathematical problems is as follows: When the pattern continues, how many units will the area of figure 6 become? #S7-7.

Findings Regarding Difficulty Level Progression of the Problems Posed by Students

After the detailed analysis of the easy, moderately difficult and difficult problems, the analyses of the problems on their difficulty levels are presented. In this regard, the frequency percentages of the categories of analyses on difficulty level progression of the problems are given in Table 7.

As only students who were able to pose at least two mathematical problems were included to the analyses of the progression of the difficulty levels, 52 forms were sorted out. In addition to this, problems were shown as easy (P1), moderately difficult (P2), and difficult (P3). According to this, when we look at Table 7, it is seen that half of the sixth grade students posed problems whose difficulty level with full progressive problems as P1<P2<P3. When these problems were analysed, it was determined that they were mostly suitable to “a problem which involves later figures in the pattern is more difficult than the one which involves an earlier figure” criteria. The problems suitable for this criterion are as follows:

(P1) How many black dots are there in the fourth step of the figure above?
(P2) What is the sum of all the white dots from 1 to 10 of the above pattern?
(P3) What is the multiplication of all the white and black dots from 1 to 20 of the above pattern? #S6-12

As seen in the sample problems, although students posed problems with a similar structure, they managed to progress difficulty levels as they advanced the number of steps in the pattern. Besides, the problems whose difficulty level advances as being P1<P2<P3 were rarely seen among seventh graders (6.25%).
Table 7.
Analyses on the Difficulty Level Progression of the Problems Posed by Students.

Category of difficulty level	Frequency percentages (%)			
	6th grade	7th grade	8th grade	Total
	(n=20)	(n=17)	(n=18)	(n=55)
P1 < P2 < P3	50.00	6.25	25.00	28.85
P1 < P3 and P2 < P3 or	15.00	18.75	6.25	13.46
P1 < P2 and P1 < P3	20.00	50.00	43.75	36.54
Having at least one of the following:				
P1 > P2, P2 > P3, P1 > P3	15.00	25.00	25.00	21.15

Seventh grade students posed the most problems whose difficulty levels partially advance (P1 < P3 and P2 < P3 or P1 < P2 and P1 < P3) while they were followed by sixth grade students with 15.00% and eighth grade students with 6.25%. Examples of problems whose difficulty levels partially progress are given below:

(P1) According to the figures given, how many black circles will the sixth figure have?

(P2) What is the total number of black and white circles up to figure 8 according to the figures given?

(P3) According to the figures given, what is the difference between the number of white circles in figure 8 and the black circles in figure 4? #S7-15

The difficulty level of the sample problems progresses partially as “P1 < P2 and P1 < P3” in accordance with the criterion of “a problem which consists of combining the number of dots in figures is more difficult than the one which including dots in one figure”.

Half of the seventh grade students (50.00%) and nearly half of the eighth grade students (43.75%) posed problems whose difficulty levels advanced only in two problems (Having at least one of the following: P1 > P2, P2 > P3, P1 > P3). This rate is lower at sixth grade level, 20.00%. Examples of difficulty levels that advance only in two problems are presented below:

(P1) How many black dots would there be in the 110th figure?

(P2) How many solid hoops will there be in the 159th figure?

(P3) How many black dots are there in the square with 30 empty circles per edge? #S8-10

All three of the aforementioned problems are of “extension-including dots in one figure”. Therefore, the difficulty level progression of the problems was evaluated in accordance with the criterion of “a problem which involves of later figures in the pattern is more difficult than the one which involves an earlier figure”. In addition, the difficulty level of the problems advanced only in two problems (P1 > P3 and P2 > P3).

Although the rate of the problems whose difficulty levels could not be compared was the same in seventh and eighth grade students (25.00%), this rate declined to 15.00% at sixth grade level. Examples of problems whose difficulty levels could not be compared are as follows:

(P1) What could be the rule of the above pattern?

(P2) When the pattern is continued two more figures, what is the sum of all the black dots in the pattern?

(P3) When the pattern continues, how many units will the area of figure 6 become? #S7-7

The above given P1 is a problem type of “extension-rule-based general”, P2 “extension-including dots in more than one figure” and P3 “non-mathematical”. Problems do not meet the difficulty level comparison criteria. Therefore, the difficulty level of the problems could not be compared.
Discussion and Conclusion

This study aimed to investigate the mathematical problem posing skills of gifted students. As an answer to the first sub-problem of the study, almost all of the problems posed by the gifted students were found to be mathematical problems. Mathematical problems were mostly observed at the sixth grade level. Mathematical problem posing rates of seventh and eighth grade gifted students were similar but lower than sixth grade students. Accordingly, at the seventh and eighth grade levels, the number of students posing non-mathematical problems was found to be higher than the sixth grade. The reason for this finding is thought to be that the seventh and eighth grade students tried to establish more complex problems in order to increase the difficulty level. In fact, it was found that the ratio of non-mathematical problems increased in the task of posing moderately difficult and difficult problems. Leikin et al.’s (2017b) statements support this conclusion. Hence, an essential element that differentiates mathematically gifted students from non-gifted students is that they spend much mental effort on complex tasks. In addition, gifted students answered all of the tasks. These findings suggest that the gifted students have a high level of ability to pose problems. This result is similar to the results of those studies claiming that one of the characteristic features of the gifted students is the ability to pose problems (Espinoza et al., 2016; Freiman, 2018; Gutierrez et al., 2018; Johnson, 2000; Sheffield, 2018; Singer et al., 2016; Sriraman, 2005; Wagner & Zimmerman, 1986). Wagner and Zimmerman (1986) emphasized that posing problems is one of the basic skills of gifted individuals. In addition, Espinoza et al. (2016) and Freiman (2018) stated that mathematically gifted students have high levels of problem posing skills.

In the literature, it is emphasized that studies dealing with mathematics and giftedness education together are insufficient (Leikin, 2011; Sheffield, 2018; Singer et al., 2016). There are also few studies examining gifted students’ problem posing skills (e.g., Arikan & Unal, 2015; Erdogan & Erben, 2018; Espinoza et al., 2013; 2016; Kesian et al., 2010; Levenberg & Shaham, 2014). Besides, no study examining the problem posing skills of gifted students at different grade levels was found. Therefore, it can be said that there is an insufficient amount of knowledge to provide a more detailed discussion of the results of this study. However, the results of this study can be compared with those of other studies focused on non-gifted students. For example, Bozkurt and Karsiligil-Ergin (2018) used, in some part of their study, the problem posing task employed in the current study. However, the success of posing mathematical problems in Bozkurt and Karsiligil-Ergin’s (2018) study is significantly lower than the achievement of gifted students in the present study. This conclusion is consistent with the results indicating that the mathematical problem posing skills of gifted students are higher than their peers (Arikan & Unal, 2015; Espinoza et al., 2016; Johnson, 2000; Singer et al., 2016). Studies comparing the problem posing skills of gifted and non-gifted students reveal that gifted students have higher levels of mathematical problem posing achievement (Arikan & Unal, 2015; Espinoza et al., 2016). In this respect, Johnson (2000) stated that gifted students are able to pose more solvable mathematical problems than their peers. Singer et al. (2016) also stated that, compared to their peers, gifted students have higher ability to solve non-routine problems and higher problem posing skills.

The findings of this study show that gifted students mostly posed extensive problems in easy, moderately difficult and difficult tasks. Extensive problems are problems that are related to further steps beyond the presented three figures. In this context, it can be said that gifted students thought about wider sets beyond special cases. This result is consistent with those stating that gifted students think beyond the usual and present high-level thinking skills in problem solving and posing situations (Gutierrez et al., 2018; Johnson, 2000; Sheffield, 2018; Yuan & Sriraman, 2011). Gutierrez et al. (2018) stated that gifted students make cognitive efforts on the complexity and width of mathematical structures in problem solving and posing situations. Yuan and Sriraman (2011), on the other hand, revealed that mathematical problem posing skills are related to mathematics knowledge and success. In this context, gifted students are more successful in mathematics than their peers, besides they can establish problems reflecting a wider mathematical perfective (Johnson, 2000; Yuan & Sriraman, 2011).
The detailed analysis of extension problems revealed some noteworthy results. In this respect, almost half of the gifted students posed problems “including dots in one figure” in easy and moderately difficult tasks. On the other hand, problems “including dots in more than one figure” were the most common type in the difficult task. Based on this finding, it can be argued that gifted students consider that problems will become more difficult when considering multiple forms.

Regarding the extension problems, problems “including dots in more than one figure” were found to be the least common type in the easy task. In the moderately difficult and difficult tasks, problems “comparing the number of dots in the figures” were found to be rare. This finding can be considered as that gifted students do not take multiple forms into consideration adequately when they pose extensive problems beyond three forms. In terms of non-extensive problems, mostly problems “including dots in more than one figure” were posed in easy, moderately difficult and difficult tasks. This indicates that gifted students take multiple forms into account in constructing non-extension problems.

One of the notable results of this study is related to generalization skills. One of the characteristics of gifted students is that they have a high level of generalization skills (Freiman, 2018; Gutierrez et al., 2018; Krutetskii, 1976). However, the findings of this study show that a small number of gifted students established “rule-based general” (It’s vague and cannot be answered in a specific way) problems in all of the easy, moderately difficult and difficult tasks. A small number of eighth grade students posed “rule-based specific” problems (related to the general rule of the pattern and solvable) only in the easy task. This finding points out that gifted students posed very few problems regarding the general rule of the pattern. The past experiences of the gifted students are thought to be the reason for this situation, that is, the gifted students may have not had enough experience of problem posing and generalization. The existing literature supports this view. In this context, gifted students were found to have difficulty in determining the general rule of patterns (Amit & Neria, 2008; Benedicto, Jaime, & Gutiérrez, 2015; Fritzlar & Karpinski-Siebold, 2012). In addition, the results of studies indicate that there is insufficient number of activities for problem posing activities for both gifted and non-gifted students in classroom environment (Levenberg & Shaham, 2014; Sheffield, 2018; Xu et al., 2019).

Regarding the second sub-problem of the study, an analysis of difficulty level progression of problems posed by gifted students was performed. According to the findings, problem solving rates of the students with the level of difficulty that progresses hierarchically as desired were found to be quite low in the progression analysis of problems’ difficulty level. Hierarchical progressive problems of the desired level of difficulty were detected mostly at the sixth level. However, most of these problems were related to the progression of the term order. In other words, although they posed similar problems, the gifted students achieved the progress in the level of difficulty as they increase the number of steps in the pattern. In addition, the rate of problems whose difficulty levels could not be compared was low. Based on these results, it can be said that gifted students make targeted efforts to improve the difficulty levels of problems. Results of the studies by Sowell, Zeigler, Bergwall, and Cartwright (1990) and by Dai, Moon, and Feldhusen (1998) support this view. According to Sowell et al. (1990) gifted students think more about complex problem structures. In addition, the performance of gifted students in solving and posing compelling mathematical problems is better than their peers. Dai et al. (1998), on the other hand, stated that gifted students are more goal-oriented compared to their peers, and that they strive for challenging situations.

Limitations and Recommendations

Gifted students have different learning needs compared to their peers. However, research on this issue showed that gifted students get bored while waiting for other students in mathematics classes or forced to help other students in mathematics (Sheffield, 2018; Smedsrud, 2018). Such situations may lead to a decline in their mathematical passions and mathematical skills (Hu, 2019). Therefore, different approaches are required to sustain the interest of these students in mathematics (Gutierrez et al., 2018; Leikin, Koichu, Berman, & Dinur, 2017a). For that reason, problem posing based approaches are recommended to be applied in classroom environment. As discussed in the present study, requesting
problem posing tasks in different levels of difficulty may contribute to the creation of challenging environments and development of mathematical creativity skills that gifted students need.

Developing differentiated mathematics curriculum taking the mathematical needs of gifted students into account is one of the remarkable issues in recent years (Hu, 2019; Sheffield, 2018; Smedsrud, 2018). However, efforts to develop a curriculum suitable to gifted students’ needs and expectations in Turkey are insufficient (Ozcelik, 2017). The findings of this study show that program development experts should include problem posing activities in gifted students’ programs.

Designing high-quality mathematics courses for gifted students is related to both teacher and content (Gutierrez et al., 2018; Leikin et al., 2017a). Since problem posing is both an assessment tool and a useful pedagogical strategy for students, teachers need to know how to integrate problem posing activities into their lessons (Cai & Hwang, 2019; Xu et al., 2019). In addition, in the present study, past experiences of the gifted students are thought to be the main reasons for their failure in posing problems that require generalization or have difficulty level progression at an expected rate. Based on these findings and conclusions, the problem posing skills of mathematics teachers who teach gifted students may be investigated. Measures should be taken to eliminate shortcomings by determining the problem posing competencies of teachers.

Researchers emphasize that there is a need for teachers having profound knowledge and skills to work with gifted students, and thus teachers need to regularly improve themselves (Gutierrez et al., 2018; Subotnik, Robinson, Callahan, & Gubbins, 2012). Based on this view, in-service trainings on topics such as problem posing approaches, the role of problem posing in identifying gifted students, and the relationship of problem posing with creativity should be offered for mathematics teacher working with gifted students. In-service trainings should not be only theoretical but also practical since teachers will be able to provide their students with an environment suitable to develop such skills if they gain different kinds of problem posing experience (Cai & Hwang, 2019).

Gifted students were asked to pose only one type of problems (semi-structured problem posing task) in this study. This can be considered as the limitation of the study. Therefore, different kinds of problem posing tasks may be designed in future studies. The achievement of gifted students in different kinds of problem posing tasks may also be compared. In order to gain a deeper information, the methods and ways of thinking of gifted students in the problem posing process may be examined by using methods such as clinical interview.

An overall analysis of the results of this study shows that gifted students posed problems in limited structures. Therefore, the effects of problem posing activities on cognitive enhancement of gifted students can be investigated in future studies. Singer and Voica’s (2015) study may serve as the basis for this suggestion. Singer and Voica stated in their studies that problem posing improves the cognitive frameworks of mathematically gifted students.

Students’ attitudes towards problem posing can also be effective on their problem posing performance (Kılıç, 2019). Studies showing that affective factors such as motivation, attitude are effective in the mathematics performance of gifted students exist in the literature (Erdogan & Yemenli, 2019; Hu, 2019; Smedsrud, 2018). Thus, affective factors may also play a role in gifted students’ problem posing performance. For this reason, studies related to motivation, attitudes and self-concepts of gifted students may be carried out. Besides, considering that being mathematically gifted, problem posing and mathematical creativity are interrelated concepts (Sheffield, 2018), problems posed by students can be examined on the basis of mathematical creativity.

Research in the field of mathematical giftedness is increasingly growing (Sheffield, 2018). However, studies addressing both mathematics education and gifted education are quite limited in Turkey (e.g., Arikan & Unal, 2015; Erdogan & Erben, 2018). While the concept of “mathematically promising student” has been developed for being gifted and technology has been as a tool for developing problem posing skills of gifted students in the world (Sheffield, 2018), Turkey should not fail to keep up with this
development. The potential of gifted students should be determined and applications should be developed in order to improve their potential. Therefore, carrying out studies on mathematics education and being giftedness, including problem posing, are strongly recommended.

Acknowledge

An earlier version of this paper was presented at International Congress on Gifted and Talented Education at Inonu University, Malatya-Turkey (November 1-3, 2019).
Türkçe Versiyon

Giriş

Dünyada son yıllarda, özel yeteneklilik kavramı ve özel yetenekli öğrencilerin akademik ihtiyaçlarının karşılanması dikkat çekici konulardan biridir (Smedsrud, 2018). Özel yeteneklilik, en az bir alanda sistematik olarak gelişmiş sıra dışı yetkinlik olarak ifade edilmektedir (Nolte, 2018). Özel yetenekliliği açıklamak amacıyla bazı modeller geliştirilmiş ve özel yeteneklilik farklı araştırmaciların perspektifinden açıklanmaya çalışılmıştır. Ortaya konulan modellerde kabul edilmiş ortak bir tanım olmamakla birlikte, modellerin özel yetenekliliği açıklamada birleştiği nokta yaratıcılık kavramıdır (Gagné, 2003; Renzulli, 2012). Bu bağlamda, özel yeteneklilik eğitiminin temel amaçlarından biri, bu öğrencilerin topluma yaratıcı ve üretken bireyler olarak katkıda bulunmalarını sağlamaktır (Davis & Rimm, 2004; Singer, Sheffield, & Leikin, 2017a).

Genel özel yetenekliliğin yanı sıra alana özgü bir kavram olan matematiksel özel yeteneklilik, son yıllarda araştırmacılar üzerinde önemle durduğu konulardan bir diğeri. Çünkü, dünya çapında gelişen teknolojiye bağlı olan yaratıcılığın giderek artması, matematik, fen ve teknoloji alanında yaratıcı ve yetenekli öğrencilerin yetiştirilmesini önemlidir (Sheffield, 2018). Ancak, matematiksel özel yeteneklilikte ilgili alan yazda ortak ve net bir tanım bulunmamaktadır. Matematiksel özel yetenekle ilgili çalışan kabul görmüş bir araştırmacı olan Krutetskii (1976) göre matematiksel özel yeteneklilik; matematiksel bir görevde başarılı bir performans ya da bir konudaki üstünlük olarak kendini gösteren, matematiksel kabiliyetlerin birleşimidir. Goldberg (2008) matematiksel özel yetenekli öğrencileri matematiğin estetik değerinin ve kullanışlılığının farkındalığı olan, öğrenciler olarak ifade etmektedir. Bu öğrenciler okulda matematik deneyimlerinde ziyade matematik derslerinin daha zorlayıcı problemler ve görevler içermesini beklerler. Ayrıca, matematiksel özel yetenekli öğrenciler üst düzeyde tümverimsel düşünme, mantıksal mühakeme ve içsel motivasyon sergiler (Leikin, Leikin, Paz-Baruch, Waisman, & Lev, 2017b; Miller, 1990; Smedsrud, 2018).

Matematiksel özel yeteneklilik alanında yapılan çalışmaların odak noktası, matematiksel özel yetenekliliği tanımlamadan başlayarak, özel yetenekli bireyin düşünceye yapısının keşfine doğru değişmiştir (Yazgan-Sağ, 2019). Bu bağlamda ilgili alan yazıların incelendiğinde, matematiksel özel yetenekli bireylerde bazı karakteristik özelliklerin ön plana çıkması belirlenmiştir (Freiman, 2018; Gutierrez, Benedicto, Jaime, & Arbona, 2018; Johnson, 2000; Krutetskii, 1976; Leikin et al., 2017b; Miller, 1990; Poulos & Mamona-Downs, 2018; Sheffield, 2018; Sriraman, 2005, Wagner & Zimmerman, 1986; Young & Worrell, 2018). Bu özellikler şöyle sıralanabilir:

• Matematiksel bilgiye normların dışında merak ve matematikle uğraşma isteği
• Matematiksel çalışmaları, iliskileri ve örüntüleri; genelleme, soyutlama ve fark etme
• Matematiksel fikirleri veya problemın yapısını kavrama ve çözmede pratik olma
• Problemleri alışlagelşimi prototiplerden farklı stratejilerle çözme
• Matematiksel yaratıcılık
• Matematiksel düşünmede ve problem çözmede esnek olma
• Verileri işleme ve organize etme
• Bir问题in doğruluğunu veya yanlışlığını test edebilme
• Mantıksal düşünme ve çıkarım yapma
• Matematiksel bilgiyi yeni bir duruma transfer edebilme ve problem kurma.
Araştırmacıların (Freiman, 2018; Gutierrez et al., 2018; Johnson, 2000; Krutetskii, 1976; Miller, 1990; Pololu & Mamona-Downs, 2018; Sheffield, 2005; Sriraman, 2005; Wagner & Zimmerman, 1986) üzerinde durduğu problem kurma becerisi matematiksel özel yetenekli öğrencileri betimleyen karakteristik özellikleri birbirir ve bu çalışmanın bağlamını oluştururaktadır. Dolayısıyla mevcut çalışmada problem kurma alanı önemini yer verilecektir.

Matematiksel Problem Kurma Ve Öğrenciler Açısından Önemi

Geçtiğimiz yirmi yılda problem kurma, matematik eğitimi araştırmalarında son derece önemli bir düşünül aktivite olarak ele alınmaktadır (Cai et al., 2019). Problem kurma verilen bir durum, matematiksel ifade veya diyagramlarla ilgili yeni problem oluşturma olarak tanımlanabilir (Cai et al., 2019; Stoyanova & Ellerton, 1996). Problem kurma öğrencilerin matematiksel gelişimi ve öğrencileri daha çok öğrenme fırsatları yaratmak için etkili bir strateji olarak görülmektedir. Bununla birlikte, problem kurma, öğrencilerin matematiksel yapısı ve kavramları anlamaları hakkında bilgi sağlayan bir değerlendirme aracı olarak ele alınmaktadır (Cai & Hwang, 2019; Cai et al., 2019; English, 2019; Xu, Cai, Liu, & Hwang, 2019).

Problem çözmenin önemi uzun yıllardır matematik programlarında göz önüne alınırken, problem kurma eğitim sistemlerinde son yıllarda yer edinmeye başlanmıştır (Altun, 2015; Cai & Hwang, 2019; Xu et al., 2019). Bu konuda, Amerikan Matematik Öğretmenleri Ulusal Konseyi (National Council of Teachers of Mathematics [NCTM], 2000) öğrencilerin düşünme, muhakeme ve problem çözme süreçlerine vurgu yaparken, öğrencilere matematiğin içinde ve dışında, çeşitli durumlarda dayanan ilgi çekici problemler kurmalarını istemiştir. Türkiye başlamında ise, eğitim sisteminin 2005 yılında uygulandırılan anlayışa revize edilmişyle birlikte matematik programlarında problem kurma becerisine yer verildiği dikkat çekmektedir. En son güncellenen ortaokul öğretim programında ise problem kurmaya açıklayıcı biçimde yer verilmese de, problem kurma bazı kazanımlarında alt bileşen olarak yer almaktadır (Milli Eğitim Bakanlığı [MEB], 2018).

Matematik eğitimi alan yazılıda matematik programlarında göz önüne alınırken, problem kurma eğitim sistemlerinde son yıllarda yer edinmeye başlanmıştır (Altun, 2015; Cai & Hwang, 2019; Xu et al., 2019). Bu konuda, Amerikan Matematik Öğretmenleri Ulusal Konseyi (National Council of Teachers of Mathematics [NCTM], 2000) öğrencilerin düşünme, muhakeme ve problem çözme süreçlerine vurgu yaparken, öğrencilere matematiğin içinde ve dışında, çeşitli durumlarda dayanan ilgi çekici problemler kurmalarını istemiştir. Türkiye başlamında ise, eğitim sisteminin 2005 yılında uygulandırılan anlayışa revize edilmişyle birlikte matematik programlarında problem kurma becerisine yer verildiği dikkat çekmektedir. En son güncellenen ortaokul öğretim programında ise problem kurmaya açıklayıcı biçimde yer verilmese de, problem kurma bazı kazanımlarında alt bileşen olarak yer almaktadır (Milli Eğitim Bakanlığı [MEB], 2018).

Matematik eğitimi alan yazılıda matematik programlarında göz önüne alınırken, problem kurma eğitim sistemlerinde son yıllarda yer edinmeye başlanmıştır (Altun, 2015; Cai & Hwang, 2019; Xu et al., 2019). Bu konuda, Amerikan Matematik Öğretmenleri Ulusal Konseyi (National Council of Teachers of Mathematics [NCTM], 2000) öğrencilerin düşünme, muhakeme ve problem çözme süreçlerine vurgu yaparken, öğrencilere matematiğin içinde ve dışında, çeşitli durumlarda dayanan ilgi çekici problemler kurmalarını istemiştir. Türkiye başlamında ise, eğitim sisteminin 2005 yılında uygulandırılan anlayışa revize edilmişyle birlikte matematik programlarında problem kurma becerisine yer verildiği dikkat çekmektedir. En son güncellenen ortaokul öğretim programında ise problem kurmaya açıklayıcı biçimde yer verilmese de, problem kurma bazı kazanımlarında alt bileşen olarak yer almaktadır (Milli Eğitim Bakanlığı [MEB], 2018).

Diğer bir grup çalışmada ise, problem kurma problenin düşünme becerileri üzerindeki pozitif etkileri açıklanmıştır. Buna göre, problem kurma öğrencilerinin matematiksel analamalarını geliştirir (Cai et al., 2013; Cantürk-Günhan, Geçici, & Günkaya, 2019; English, 2019; Kılıç, 2019; Leikin, 2015; Leikin et al., 2017a; Silver & Cai, 1996). Problem kurma sürecinde öğrencilerin matematiksel kavramlar ve durumlara ilgili varsala hata ve yanılışları ortaya çıkark, böylece öğretmenler gerekli önlemleri alabilir (Cai & Hwang, 2019; English, 2019; Korkmaz & Gür, 2006). Bir takım çalışmalarında ise, problem kurmanın tutum, motivasyon gibi duygusal çıktılar üzerindeki olumlu etkileri olduğu belirtilmektedir (Güzel & Biber, 2019; Turhan & Güven, 2014).

Diğer bir grup çalışmada ise, problem kurma görevlerinin düşünme becerileri üzerindeki pozitif etkileri açıklanmıştır. Buna göre, problem kurma görevlerinin öğrencilere eleştirel, esnek ve yaratıcı düşünme yeteneklerine geliştirildiği saptanmıştır (Chen & Cai, 2019; Singer, Ellerton, & Cai, 2015; Singer, Sheffield, Freiman, & Brandl, 2016; Singer, Voica, & Pelczer, 2017b). Tüm bu çalışmalar matematik eğitimi alanını problem kurmanın önemi bir yeri olduğunu göstermektedir.

Matematiksel Problem Kurma Ve Özel Yeteneklilik

Problem kurma becerisine, birçok çalışmada matematiksel özel yetenekli öğrencilerin karakteristikleri arasında yer verilmştir (Espinoza, Lupiñez, & Segovia, 2016; Freiman, 2018; Gutierrez et al., 2018; Johnson, 2000; Sheffield, 2018; Singer et al., 2016; Sriraman, 2005). Bu konuda, Freiman (2018) matematiksel özel yetenekli öğrencilerin orijinal, değerli ve kapsamlı fikirler üretiklerini belirlemiştir. Bu tür becerilerin aynı zamanda problem kurma becerisine ilişkin olduğu vurgulanmıştır. Matematiksel özel yetenekli öğrenciler sadece problem çözme özgünlüğü değil aynı zamanda bir durumu farklı şekilde ifade etmeyi ve problem kurmayı öğrenmelidir. Bu problemler, otantik, uğraştırıcı ve çözümü bulmak için çaba gerektiren türde olmalıdır (Singer et al., 2016).
Problem kurma, matematiksel özel yeteneklilik alan yazınının önemli bir kavram olarak yaratıcılıkla ilişkilendirilmekte ve yaratıcılığun bir göstergesi olarak ele alınmaktadır (Johnson, 2000; Sheffield, 2018). Yaratıcılık problem kurmayla yakından ilişkilidir çünkü yaratıcılık sürecinde çoklu fikirler üretilir (Silver, 1997; Yuan & Sriraman, 2011). Ayrıca, alan yazında problem kurmanın yaratıcı yeteneklerden biri olduğu belirtilmektedir (Davis & Rimm, 2004). Liljedahl ve Sriraman (2006) ise matematiksel yaratıcılığı, daha önce bilinen bir probleme farklı bakış açısıyla yaklaştıran yeni soruları oluşturma olarak tanımlamaktadır.

Matematiksel özel yeteneklilik alan yazınının_değinmesi_gereken bir diğer önemli kavram ise _matematiksel gelecek vaat etme_. 1980'lerde _NCTM_ en çok ihmal edilen öğrencilere matematiksel düzeyle özel yetenekli öğrencileri belirtmiştir (Sheffield, 2018). 1990'lı yıllarda ise _NCTM_ tarafından _matematiksel gelecek vaat etme_ kavramının ortaya atılması dikkat çekicidir. Leikin (2009), matematiksel gelecek vaat etme kavramının _NCTM_'nin esas premisini dikkate alarak matematiksel özel yetenekli kavramına katkılar olarak geliştirdiğini ifade etmiştir. Matematiksel gelecek vaat etme matematiksel yetenekin _deneyimlere_ bağlı olarak geliştirildiğini ifade etmiştir (NCTM, 2016; Sheffield, 2018). Bu bağlamda, yapılan çalışmalar problem kurmanın, matematiksel gelecek vaat eden öğrencilerin yeteneklerini geliştirmeleri için _euscatları_ sunduğu göstermektedir (Sheffield, 2003; Singer, Ellerton, & Cai, 2013).

Güncel _matematiksel özel yeteneklilik modelleri_ incelendiğinde, problem kurmanın modellerinin bir ögesi olarak ele alındığı görülmektedir. Örneğin, Leikin, Koichu ve Berman (2009) tarafından matematiksel özel yeteneklilik ve yaratıcılığın karakterize edilmesi amaçlayan bir proje kapsamında bir model sunulmuştur. Modelde, matematiksel özel yetenek kavramı, problem kurma davranışıyla ilişkilendirilmiştir. Ayrıca, Assmus ve Fritzlar (2018) matematiksel özel yeteneklilik ve yaratıcılığı ilişkilendirdiği modelinin döngüsel süreçlerinde problem çözme ve kurmanın yer aldığı belirtmektedir.

Özel yeteneklilik ve matematik eğiti_ali alan yazınının_ incelendiğinde problem _kurma bağlamında_ yapılan çalışmalar üç grupta ele alınabilir. İlk grupta yer alan _studyalarda_, öğrencilerin _matematiksel biçimi_ incelenmiştir (Anräk & Ünal, 2015; Erdoğan & Erben, 2018; Espinoza et al., 2013; 2016; Keşan, Kaya, & Güvercin, 2010; Levenberg & Shaham, 2014). Espinoza vd. (2013) çalışmalarında matematiksel özel yetenekli öğrencilerin aritmetik problemi kurma _görevlerinde_ cevapları analiz etmiştir. Çalışmada, öğrencilerin farklı anlamsal yapıda ve farklı hesaplama _sürətleri_ içeren problemler kuruşudığı _belirlenmiştir_. Espinoza vd.'nin (2013) çalışmalardakı _benzer sonuçlar_ elde eden Erdoğan ve Erben (2018) özel yetenekli öğrencilerin _dört işleme_ yönünü, farklı anlamsal yapıda sahip _problemler_ kuruşuduklarını _esıt etmiştir_. Keşan vd. (2010) çalışmalarda özel yetenekli öğrencilerin problem kurma _yaklaşımında_ öğrenim gömernleri _sonuçunda_ analiz, _sentez_ gibi matematiksel yeteneklerinin _gelistiğini_ ifade etmiştir. Levenberg ve Shaham (2014) özel yetenekli öğrencilerin _geometri terimlerine_ yönelik problem _kurma becerilerinin_ düşük seviyede olduğunu _ortaya koymuşlardır_. Bazı _studyalarda ise özel yetenekli ve özel yetenekli olarak tanımlanmış_ öğrencilerin problem _kurma becerileri_ _kısırlaştirılmıştır_ (Anräk & Ünal, 2015; Espinoza et al., 2016). Bu _studyalarda_ özel yetenekli öğrencilerin problem _kurma başantlarını daha yüksek olduğu, daha çözülebilir ve anlamsal açıdan zengin _problemler_ _kuruşudukları_ _görülmüşdür_.

İkinci grupta yer alan _studyalarda_, problem _kurma bir�력du_ ilişkilendirilmektedir. Çalışma _sonuçları_ problem _kurma aktivitelerinin_, matematiksel özel yetenekli öğrencilerin yaratıcılık becerilerini geliştirdiği _ortaya koymaktadır_ (Singer & Voica, 2015; Singer et al., 2016; Voica & Singer, 2013). Voica ve Singer (2013) problem _kurmanın_, yaratıcılığı _teşvik etme_ _probleme_ _çoymeye_ _göre_ _daha etkili_ _ortaya koymuşturmaktır_.

Son _gruptaki_ _studyalarda ise_ problem _kurma özel yetenekli öğrencilerin tanımlanması sürecinde araç olarak kullanılmıştır (Keşan et al., 2010; Singer & Voica, 2015; Voica & Singer, 2014). Voica ve Singer (2014) _sonuçlarında_ problem _kurma bağlamında matematiksel özel yetenekliliğin_* göstergesi olarak _uç karakteristik_ _özellikleri_ _bahsetmektedir_: _kavramları_ denilemesine anlama, mühakeme ve _genelleştirme becerisi_, _yeni problemler tasarlamak için içerik_ _şekillendirmede_ ve _farklı bir açıdan bakma_
kapasitesi. Tüm bu çalışmalara dayalı olarak, problem kurmanın matematiksel özel yetenekli öğrenciler açısından önemli bir beceri olduğu söylenebilir.

Çalışmanın Önemi ve Amacı

Ulusal olarak alan yazının inceleme sürecinde özel yetenekli öğrencilerin problem kurma becerilerini farklı boylarla analiz eden bir çok çalışma yapıldığı görülmüştür (Espinoza et al., 2013; 2016; Keşan et al., 2010; Levenberg & Shaham, 2014; Singer & Voica 2015; Singer et al., 2016; Voica & Singer, 2013, 2014). Ancak, Türkiye'de özel yetenekli öğrencilerin problem kurma süreçlerine odaklanan çalışma sayısı oldukça az olduğu görülmüştür (Arıkan & Ünal, 2015; Erdoğan & Erben, 2018). Alan yazındaki eksiklikleri ve matematiksel özel yeteneklilik unsurları içinde problem kurma becerisini inceleyen yapılan çalışmalarda vurgu gürültüne alınırlar, bu çalışmada özel yetenekli öğrencilerin problem kurma becerisine odaklanılmıştır. Dolayısıyla, bu çalışmanın özel yeteneklilik ve matematik eğitimini alanında önemli bir boşluğu dolduracağı anlaşılıyor.

Özel yetenekli öğrencilerin problem kurma becerilerini inceleyen daha önceki çalışmalarda (Arıkan & Ünal, 2015; Erdoğan & Erben, 2018; Espinoza et al., 2013; 2016; Keşan et al., 2010; Levenberg & Shaham, 2014) sadece bir sınıf seviyesine odaklanmıştır. Hem ulusal hem uluslararası alan yazında farklı sınıf seviyesindeki özel yetenekli öğrencilerin problem kurma becerilerini inceleyen bir çalışmanın rastlanamamaktadır. Bu çalışmada ise, sınıf seviyelerine göre özel yetenekli öğrencilerin problem kurma becerilerindeki farklılıklar ortaya konulmaktadır. Mevcut çalışma, daha önce yapılan çalışmalardan bu yönüyle farklılaşmaktadır.

Leikin (2011) özel yetenekli ve matematik eğitimi alan yazının birbirleri içinde çok az temsil edildiğini ifade etmektedir. Araştırmacı ayrıca, matematiksel özel yeteneklilik alanında yapılan çalışmalarda öğrencilerin matematiği öğrenme ve matematiksel düşünme süreçlerinin yer almadığını belirtmektedir. Özel yetenekli öğrencilerin problem kurma süreçleri hakkında yapılan çalışma sayısı sınırlıdır ve yeterli bilgi mevcut değildir. Bu çalışmada, özel yetenekli öğrencilerin kurdukları problemlerin niteliği çeşitli açılardan incelenmektedir ve eksiklikler belirlenmektedir. Dolayısıyla, çalışma bulgularının özel yetenekli öğrencilerle çalışma yapacak araştırmacılar yol gösterici bilgiler sunması beklenmektedir. Ayrıca, mevcut çalışma özel yetenekli öğrencilerin problem kurma becerileriyle ilgili bilgi birikimine katkı sağlaması yönünden önemlidir.

Öğretmenlerin birden çok çözümü olan açık uçlu görevlerin yanıtlarını analiz etmesi, onlara öğrencilerin ne bildiği hakkında dönüştürülebilir. Böylece, öğretmenler daha iyi problem çözme ve kurma görevleri tasarlayabilir (Cai, 2003; English, 2019; Xu et al., 2019; Sheffield, 2018). Dolayısıyla, bu çalışmada elde edilen verilerin öğretmenlerle özel yetenekli öğrenciler hakkında bilgi sağlayacağı ve problem kurma görevleri planlama konusunda yol gösterici olacağını düşünülmektedir.

Özel yetenekli öğrencilerin matematiksel problem kurma becerilerinin incelenmesi amaçlanmıştır. Bu amaç doğrultusunda aşağıdaki sorulara yanıt aranmıştır:

1. Özel yetenekli öğrencilerin sınıf seviyesine göre kolay, orta ve zor problem kurma becerileri nasıldır?
2. Özel yetenekli öğrencilerin kurdukları problemlerde zorluk düzeyi ilerlemesi nasıldır?
Yöntem

Araştırma Modeli

Bu çalışmada özel yetenekli öğrencilerin matematiksel problem kurma becerilerini incelemek amacıyla nitel araştırma desenlerinden durum çalışması kullanılmıştır. Durum çalışması, sınırlı bir sistemden derinlemesine betimlenmesini ve incelenmesini gerektirir (Merriam, 1998). Durum çalışmasına yer alan alan durumlar, kişiler, öğretim programları, gruplar (topluluklar), davranışlar, olaylar incelenir (Yin, 2017). Bu çalışmanın katılımcılarını oluşturan özel yetenekli öğrenciler analiz birimi olarak ele almıştır. Ayrıca, özel yetenekli öğrencilerin matematiksel problem kurma becerileri incelenen durumu oluşturmaktaadır.

Katılımcılar

Çalışmanın katılımcıları Türkiye’nin Doğu Anadolu Bölgesi’ndeki bir ilde bulunan Bilim ve Sanat Merkez’inde öğrenim gören ve özel yetenekli olarak tanıılan 55 ortaokul (20 altıncı sınıf, 17 yedinci sınıf, 18 sekizinci sınıf) öğrencisi oluşturmuştur. Katılımcılar, uygun örnekleme yöntemiyle belirlenmiştir. Uygun örnekleme yönteminde, katılımcılar maliyet ve ulaşılabilirlik açısından uygun olduklarından dolayı, katılımcılar uygun önemeleme yoluyla belirlenmiştir. Farklı sınıf seviyelerinden öğrencilerin sebebi matematiksel problem kurma becerilerinin sınıflar seviyelerine göre değişimi incelemektedir.

Çalışmada yer alan öğrencinin 23’ü kız (%41.82), 32’si erkek olarak tanımlanmıştır (%58.18). Çalışmaya katılan öğrencilerin yaş aralığı 10-14’tür. Öğrencilerin 26’sı (%47.27) devlet okuluna, 29’u (%52.73) ise özel okula devam etmektedir. Öğrencilerin tamamı bulundukları ilin Bilim ve Sanat Merkez’inde bireysel yetenekleri fark ettirme programı kapsamında eğitim almaktadır. Öğrencilerin çalışma gönlü katılmaları esas alınmıştır. Çalışmanın bulgular kısmında daha kısa ve akıcı olması sebebiyle özel yetenekli öğrenciler yerine “öğrenciler” ifadesi kullanılmıştır.

Veri Toplama Araçları

Çalışmanın veri toplama aracı, yarı-yaşlı-yaşlı bir problem kurma görevinden oluşan problem kurma formudur (Ek 1). Yarı-yaşlı-yaşlı-yaşlı problem kurma görevinde öğrenciler ağırlıklı bir durum sunular. Öğrenciler bu durumdan yola çıkarak, önceki matematiksel bilgi ve deneyimlerini uygulayarak yeni bir probleme kurar (Stoyanova & Ellerton, 1996). Problem kurma formunda yer alan görev daha önce Cai’nin (2003) çalışmasında kullanılmıştır. Görevin bu çalışmada kullanılmasına dair Dr. Cai’den gerekli izin almıştır. Problem kurma görevinde öğrencilerden, verilen üç farklı şekil ile ilgili basit, orta ve zor düzeyde üç farklı problem kurmaları istenmiştir. Problem kurma görevi matematik eğitimi alanında uzman üç öğretim üyelerinin ve dört matematik öğretmeninin (2 öğretmen ortak手続き, 2 öğretmen Bilim ve Sanat Merkez’inde görev yapmaktadır) görüşüne alınmıştır. Uzmanlar, görevi dil ve öğrenci seviyesi açısından uygun bulmuşlardır. Dolayısıyla, uzmanlardan görevi yönelik herhangi bir düzenleme önerisi gelmemiştir. Ortaokul matematik dersi öğretim programını (MEB, 2018) incelenmesi, uzmanların ve öğretmenlerin görüşlerinin alınması sürecinde veri toplama aracıyla öğrencilerin seviyesine uygun olduğu belirlenmiştir. Son olarak, çalışma katıldışı olmayan altını, yedinci ve sekizinci (her sınıf seviyesinden 4 öğrenci) sınıf seviyesindeki özel yetenekli öğrencilerle pilot çalışma yapılmıştır. Problem kurma görevinin uygulanabilirliği incelenmiştir. Pilot çalışma sonucunda görevede herhangi bir eksiklik tespit edilmemiştir. Pilot çalışma sonunda görevin doğru anlaşıldığı görülmüştür.

Verilerin Toplanması Ve Analizi

Problem kurma görevini içeren form her sınıf seviyesindeki öğrencilerin matematik öğretmenleri tarafından uygulanmıştır. Problem kurma görevi sürecinde öğrencilerin sürekli olarak analiz edilmiş ve öğrencinin problem kurma becerinin tamamlandıkları görülmüştür. Özel yetenekli öğrencilerin problem kurma görevine verdiği yanıtlar betimsel analiz yöntemiyle incelenmiştir. Buna göre, problemler Cai’nin (2003) çalışmasında ortaya konulan çerçeve esas alınarak
analiz edilmiştir. Cai’den (2003) uyarlanan çerçeve Tablo 1’de verilmiştir. Problemler içerik ve güçlük düzeylerine göre sınıflandırılmıştır.

Öncelikle, kurulan problemler içeriklerine göre matematikal problemler ve matematiksel olmayan problemler olarak iki kategoride ele alınmıştır. Matematiksel işlemlerle çözüme ulaşlanmayan cevaplar matematiksel olmayan problemlerdir (Leung, 2013). Her matematiksel problem ise dar kapsamlı ve geniş kapsamlı olarak iki şekilde sınıflandırılmıştır.

Geniş kapsamlı problem verilen üç şeklin ötesinde daha ileri basamaklara ilgili kurulu problem ifade etmektedir. Dar kapsamlı problem ise verilen üç seckle yönelik kurulan probleme işaret etmektedir. Hem geniş hem dar kapsamlı problemler “bir şekildeki noktaları kapsayan, birden çok şekildeki noktaları kapsayan, şekillerdeki nokta sayılarını kıyaslayan” şeklinde kodlanmıştır.

Geniş kapsamlı problemlerin analizinde bu kodlara ek olarak “şekil çizmeyi gerektiren”, “kural tabanlı genel problem (belirsiz ve özel bir yolla cevaplanamayan)” ve “kural tabanlı özel problem (soruyu çözmeye yarayan ayrıntıları içeren)” olarak üç kod daha eklenmiştir. Problem kurma görevine yönelik kategoriler, kodlar ve öğrenci cevaplarından örnekler Tablo 1’de verilmiştir.

Tablo 1. Problem Kurma Görevinin Analizine Yönelik Kategoriler, Kodlar ve Örnek Cevaplar.

Kategori	Kod	Örnek
Geniş kapsamlı	Bir şekildeki noktaları kapsayan	4. şekilde kaç tane siyah daire vardır? #Ö6-8
	Birden çok şekildeki noktaları kapsayan	Yukardaki örüntünün 1’den 10. adıma kadarki bütün beyaz noktalarının toplami kaçırt? #Ö6-12
	Şekillerdeki nokta sayılarnı kıyaslayan	Yukardaki örüntüde daireler kaçar kaçar artmaktadır? #Ö8-4
	Şekil çizmeyi gerektiren	Yukarda verilen örüntüye göre 12. adim nasıl olur? Çiziniz. #Ö7-12
	Kural tabanlı genel	Yukardaki örüntünün kuralı nedir? #Ö7-4
	Kural tabanlı özel	Yukarda gösterilen örüntü içi dolu yuvarlakların artışı gösteren kural nedir? #Ö8-16
Dar kapsamlı	Bir şekildeki noktaları kapsayan	Üçüncü şekilde kaçın kaçın kaçıncı kuvveti boyanmıştır? #Ö6-14
	Birden çok şekildeki noktaları kapsayan	Birinci şekil ile ikinci şekildeki siyah yerlerin çarpımı ile üçüncü şekildeki beyaz yerlerin toplami kaçırt? #Ö6-5
	Şekillerdeki nokta sayılarnı kıyaslayan	Birinci şekildeki beyaz yuvarlaklar ikinci şekilde ve üçüncü şekilde kaçırt kaçar artıp gitmiştir? #Ö7-13
Matematiksel olmayan		Örüntüdeki siyah noktalar kaçın kaçın kaçıncı kuvveti yokta faza olur? #Ö7-9

Zorluk düzeyi analizi için, öğrencilerin kurduğu problemler zorluk düzeylerine göre kolay (P1), orta (P2) ve zor (P3) problem olarak kodlanmıştır. Problemlerin zorluk düzeyindeki ilerleme analizine en az iki “exponent of the number” matematikal problem kuran öğrenciler dahil edilmişdir. Buna göre, yedinci sınıflardan bir, sekizinci sınıflardan iki öğrencinin formu değerlendirilmişdir (n=52). Problemlerin zorluk düzeylerinin analizlerini aşağıdaki ölçütlere göre belirlenmiştir (Cai, 2003):

- Geniş kapsamlı bir problem dar kapsamlı bir problemden daha zordur.
- Geniş kapsamlı problemler içinde, kural tabanlı özel bir problem diğer problemlerden daha zordur.
- Şekillerdeki nokta sayısını kıyaslamayı içeren bir problem, şekillerin birindeki nokta saylarını içeren bir problemden daha zordur.
• Şekil cizmeyi gerektiren bir problem, şekildeki nokta sayısını bulmayı içeren bir problemden daha zordur.
• Örntüdeki sonraki şekilleri içeren bir problem önceki şekilleri içeren bir problemden daha zordur.

Problem kurma görevine yönelik zorluk düzeyi analizleri ve öğrenci cevaplarından örnekler Tablo 2'de gösterilmiştir.

Tablo 2.
Problem Kurma Görevinin Zorluk Düzeyi Analizleri ve Örnek Cevaplar.

Zorluk düzeyi kategorisi	Örnek
P1 < P2 < P3	#Ö6-4
P1 < P3 ve P2 < P3 veya P1 < P2 ve P1 < P3	#Ö7-17
Aşağıdakilerden en az biri bulunan: P1 > P2, P2 > P3, P1 > P3	#Ö8-8

Çalışmanın güvenirliğini belirleme amacıyla kodlayıcılar arası uyumdan yararlanılmıştır. Buna göre, öğrencilere kurduğu problemler (toplam 165 cevap) iki araştırmacı tarafından kuramsal çerçeve doğrultusunda bağımsız olarak kodlanmıştır. Kodlayıcılar arası uyum %87.88 (145/165) olarak hesaplanmıştır. Benzer şekilde, öğrencilere kurduğu problemler zorluk düzeylerine göre (52 form) iki araştırmacı tarafından bağımsız olarak kodlanmıştır. Kodlayıcılar arası uyum %90.38'dir (47/52). Miles, Huberman ve Saldana'ya (2014) göre güvenirlik için kodlayıcılar arası uyumun en az %80.00 düzeyinde olması beklenmektedir. Mevcut çalışmada kodlayıcılar arası uyum yüzde güvenirlik açısından yeterli.
görülse de araştırmacılar uyuşmayan kodlar üzerinde ortak bir görüşe ulaşana dek tartışmışlardır. Örneğin, "Siyah ve beyaz boncukların ilişkisine göre 4. ve 5. şekil nasıl? Çiziniz. #Ö7-13" problemi tartışlan problemlerden biridir. Bu problemin “geniş kapsamlı” problem kategorisinde yer aldığıyla ilgili görüş birliği vardır. Ancak, problemin “birden çok şekildeki noktaları kapsayan” türünde mi yoksa “sekil çizmeye gerektiren” türünde mi olduğuyla ilgili tartışmıştır. Problemlerde, birden çok şekildeki noktaların ilişkisine yönelik bir sorgulama olmadığına karar verilmiştir. Ayrıca, problemde şekil çizme vurgulanmıştır. Sonuç olarak, bu problem “sekil çizmeye gerektiren” şeklinde kodlanmıştır. Bulgular kısmında, öğrencilerin kurdukları problemlerden örnekler sunulmuştur. Ancak, öğrencilerin gerçek isimler yerine Ö7-15 (yedinci sınıf seviyesinde 15. öğrenci) gibi kodlar kullanılmıştır.

Bulgular

Öğrencilerin Sınıf Seviyesine Göre Kolay, Orta Ve Zor Problem Kurma Analizine İlişkin Bulgular

Bu kısımda, öğrencilerin kurdukları problemlerin analizine ilişkin bulgular sunulmaktadır. Öncelikle, öğrencilerin kurdukları matematiksel ve matematiksel olmayan problemlerin frekans yüzde dağılımları Tablo 3’te gösterilmiştir.

Table 3.
Matematiksel ve Matematiksel Olmayan Problemlerin Frekans Yüzde Dağılımları.

Problemlerin Frekans Yüzde Dağılımı	6. Sınıf (60 Problemler)	7. Sınıf (51 Problemler)	8. Sınıf (54 Problemler)	Toplam (165 Problemler)
Matematiksel problem	98.33	82.35	85.19	89.09
Matematiksel olmayan problem	1.67	17.65	14.81	10.91

Tablo 3’e göre, her üç sınıf seviyesindeki tüm öğrencilerin kolay, orta ve zor problem kurma görevlerinin tamamını cevap elde edilmiştir. Kurulan problemlerin %89.09 ile büyük oranda matematiksel problem olduğu saptanmıştır. Matematiksel olmayan problemlerin oranı ise %10.91 ile oldukça düşüktür. Matematiksel problemlerin en çok görüldüğü sınıf seviyesi %98.33 ile altıncı sınıf sırasıdır. Bu bulguya dayanarak, altıncı sınıf öğrencilerin neredeyse tamamının matematiksel problemler kurduklarını söylenebilir. Yedinci sınıf öğrencilerin %82.35’i ve sezikinci sınıf öğrencilerin %85.19’u matematiksel problemler kurmuştur. Her iki sınıf seviyesindeki oranın oldukça eşik olduğu görülmektedir. Matematiksel olmayan problemlerin ise %17.65 ile en çok yedinci sınıf seviyesinde saptanmıştır. Problemlerin genel analizinin ardından kolay, orta ve zor problemlerin ayrıntılı analizleri sunulmaktadır. Bu bağlamda, kolay problemlere yönelik analizlerin frekans yüzde dağılımları Tablo 4’te verilmiştir.

Table 4’e göre, kolay görevde öğrencilerin %94.55’inin, yani tamamına yakını matematiksel problemler kurduğu görülmektedir. Öğrencilerin sadece %6.45’i ise matematiksel olmayan problemler kurmuşlardır. Altıncı ve sezikinci sınıf öğrencilerin tamamını matematiksel problemler kurmuşlardır. Matematiksel problemler incelendiğinde, geniş kapsamlı problemlerin (%74.55), dar kapsamlı problemlerin (%20.00) üç katından fazla oranda olduğu tespit edilmiştir. Geniş kapsamlı problemler, birbirine yakın oranlar olmakla birlikte, en çok sezikinci (%83.33) ve altıncı sıralarda (%80.00) seviyelerinde görülmektedir.

Geniş kapsamlı problemler analiz edildiğinde, en yüksek oranda öğrencilerin %41.82’sinin “bir şekildeki noktaları kapsayan” türünde problemler kurдумa belirlenmiştir. %45.00 ile altıncı sınıf öğrencilerinin yaklaşık yarısı ve %55.56% sezikinci sınıf öğrencilerinin %23.53’tür. “Bir şekildeki noktaları kapsayan” problemlerle yönelik örnekler aşağıda verilmiştir:
Kolay problem	Frekans yüzdeleri (%)	6. sınıf (n=20)	7. sınıf (n=17)	8. sınıf (n=18)	Toplam (n=55)
Geniş kapsamlı	Bir şekildeki noktaları kapsayan	45.00	23.53	55.56	41.82
	Birden çok şekildeki noktaları kapsayan	5.00	.00	.00	1.81
	Şekillerdeki nokta sayısını kıyaslayan	5.00	.00	5.56	3.64
	Şekil çizmeyi gerektiren	15.00	23.53	5.56	14.55
	Kural tabanlı genel	10.00	11.76	5.56	9.09
	Kural tabanlı özel	.00	.00	11.11	3.64
	Toplam	80.00	58.82	83.33	74.55
Dar kapsamlı	Bir şekildeki noktaları kapsayan	5.00	5.88	.00	3.64
	Birden çok şekildeki noktaları kapsayan	10.00	5.88	16.67	10.91
	Şekillerdeki nokta sayısını kıyaslayan	5.00	11.76	.00	5.45
	Toplam	20.00	23.53	16.67	20.00
Matematiksel olmayan problem	.00	17.65	.00	5.45	

4. şekilde kaç tane yuvarlak boyanmamıştır? #Ö6-17
Verilen şekillere göre, 6. şekil kaç siyah daireli olur? #Ö7-15

Geniş kapsamlı problemlerde, öğrencilerin ikinci sıradaki en çok yaşadığı problem türü %14.55 ile “şekil çizmeyi gerektiren” problemlerdir. “Şekil çizmeyi gerektiren” problemler kapsamında yer alan örnek problemler şunlardır:

4. şekil nasıl olur? Çiziniz. #Ö6-7

Birden çok şekildeki noktaları kapsayan problemlerde, öğrencilerin ikinci sıradaki en çok yaşadığı problem türü %10.91 ile “birden çok şekildeki noktaları kapsayan” problemlerdir. “Birden çok şekildeki noktaları kapsayan” problemler olarak her alan örnek problemler şunlardır:

Bu problem türüne örnek gösterilebilir.

Dar kapsamlı problemler ele alındığında, en yüksek oranla öğrencilerin %10.91’indeki “birden çok şekildeki noktaları kapsayan” türde problemler kurdukları saptanmıştır. “Birden çok şekildeki noktaları kapsayan” türde problemlere örnekler aşağıdaki sunulmuştur:

Özgüçleri birinci ve ikinci şekildeki siyah dairelerin toplami kaçtır? #Ö6-17
Üç şekilde kenarda tek bir sıra bulunacak şekilde oluşturulunan şekillerin boyanmış kısımlarının toplamı kaçtır? #Ö7-8

Birinci ve ikinci şekildeki boyanmış ve boyanmamış şekillerin farkı kaçtır? #Ö8-11

Oranları birbirine oldukça yakın olan “Bir şekildeki noktaları kapsayan”(%3.64) ve “şekillerdeki nokta sayılarını kıyaslayan” (%5.45) türündeği problemleri sadece altıncı ve yedinci sınıf öğrencilere sunulmuştur. “İkinci şeklin kaçta kaç tanca boyanmışdır? #Ö7-11” probleminde ise “birden çok şekildeki nokta sayılarını kıyaslayan” problem türüne örnek verilebilir. Matematiksel olmayan problemleri ise sadece yedinci sınıf öğrencilere sunulmuştur. Matematiksel olmayan problem türüne örnek ise şu şekildedir:

Aynur markete gidiıp bir tane şeker almıştır. Aynur her gün şeker almaya karar vermiştir. İlk başta üç fazla, sonraki günlerde ise üç fazlayı ikişer ikişer arttırmıştır. Aynur beşinci gün kaç şeker almıştır? #Ö7-16

Öğrencilerin kuruluğu orta zorlukta problemlere yönelik analizlerin frekans yüzde dağılımaları Tablo 5’te sunulmuştur.

Tablo 5.
Orta Zorlukta Problemlere Yönelik Analizlerin Frekans Yüzde Dağılımları.

Orta zorlukta problem kurma	6. sınıf (n=20)	7. sınıf (n=17)	8. sınıf (n=18)	Toplam (n=55)
Geniş kapsamlı problem				
Bir şekildeki noktaları kapsayan	60.00	23.53	38.89	41.82
Birden çok şekildeki noktaları kapsayan	15.00	23.53	11.11	16.36
Şekillerdeki nokta sayılarını kıyaslayan	0.00	11.76	5.56	10.91
Kural tabanlı genel	11.76	11.76	5.56	5.45
Kural tabanlı özel	0.00	0.00	0.00	0.00
Toplam	90.00	70.59	66.67	76.36
Matematiksel olmayan problem				
Bir şekildeki noktaları kapsayan	5.00	5.88	0.00	3.64
Birden çok şekildeki noktaları kapsayan	5.00	11.76	16.67	10.91
Şekillerdeki nokta sayılarını kıyaslayan	0.00	0.00	0.00	0.00
Toplam	10.00	17.64	16.67	14.55
Toplam	10.00	17.64	16.67	14.55

Tablo 5 göz önüne alındığında, orta zorlukta problem kurma görevinde öğrencilerin %90.91 ile büyük oranda matematiksel problemler kurduğu tespit edilmiştir. Öğrencilerin %9.09’unun matematiksel olmayan problemler kurduğu görülmüştür. Matematiksel problemlerin %76.36’sı geniş kapsamlı problemler iken, sadece %14.55’i dar kapsamlıdır. Geniş kapsamlı problemlerin en çok görüldüğü sınıf 6’ya, yedinci (%70.59) ve sekizinci (%66.67) sınıflarda yapılan geniş kapsamlı problemlerin oranı birbirine oldukça yakındır.

Geniş kapsamlı problemlerin en çok görüldüğü, %41.82’lik bir oranla öğrencilerin yaklaşık yarısının “bir şekildeki noktaları kapsayan” türde problem kurduğunu görülmüştür (%60.00, yedinci sınıf %23.53, sekizinci sınıf %38.89). “Bir şekildeki noktaları kapsayan” türde problemlere örnekler aşağıdaki verilmiştir:

Bu örüntüye göre, altıncı şekildeki boyalı ve boyasız dairelerin aralarındaki fark kaçtır? #Ö6-6
4. adımdaki siyah ve beyaz topların sayısıını çarpınız. #Ö7-3
159. şekilde kaç tane içi dolu çember olur? #Ö8-10

İkinci sıradada, öğrencilerin %16.36’sı “birden çok şekildeki noktaları kapsayan” türde problemlere kurmuştur. “Bir şekildeki noktaları kapsayan” problemlere örnek ise şu şekildedir:

682
12. şekildeki dolu yuvarlak sayısından, 4. şekildeki dolu yuvarlak sayısını çıkarırsak kaç eder? #Ö6-15
Bu örüntünün onuncu şeklin kadar alan dairelerdeki siyah topların beyaz toplara oranı kaçtır? #Ö7-17
8. ve 17. şekildeki siyah nokta saylarının toplamı kaçtır? #Ö8-2
Öğrencilerin üçüncü sırada sıralan en çok kurduğu problem türü %10.91 ile "şekil çizmeyi gerektiren" problemlerdir. "Örüntünün 6. adımı nedir? Çiz. #Ö6-1" problemi "şekil çizmeyi gerektiren" problemlere örnek verilebilir.

"Kural tabanlı genel" problemler ise az bir oranda sadece üçüncü (%11.76) ve sekizinci (%5.56) sınıflarda saptanmıştır. "Kural tabanlı genel" problemlere "Verilen örüntünün kuralını nedir? Yazınız. #Ö7-1" ve "Yukardaki örüntünün kuralını nedir? #Ö8-4" problemleri örnek verilebilir.

En az görülen problem türü ise %1.82 ile "sekillerdeki nokta saylarını kıyaslayan" problemlerdir. Bu problem türü altıncı ve ödevinini sınıflarda görülmemiş, sekizinci sınıf öğrencilerinin sadece %5.56’sında belirlenmiştir. Ayrıca, hiçbir sınıf seviyesinde “kural tabanlı özel” türde problem saptanmamıştır. “Örntüdeki renkli dairelerin renkleri tam tersi değişmiştir olsaydı, oluşan yeni şeklin 14. adımındaki siyah daire sayısı nasıl değişirdi? #Ö8-8" problemi “sekillerdeki nokta saylarını kıyaslayan“ problem türune örnek verilmiştir.

Dar kapsamlı problemlere bakıldığında, öğrencilerin %10.91’inin “birden çok şekildeki noktaları kapsayan” türde ve oldukça az sayıda problem kurduğu görünür. “Birden çok şekildeki noktaları kapsayan" problemlere örnekler aşağıdaki verilmştir:

Örntüdeki üç şekildeki boyalı daire sayısı toplam kaçtır? #Ö7-10
Birinci ve 2. şeklin boyanmış şekilleriyle üçüncü şeklin boyanmamış şekillerin farklıdır? #Ö8-11
“Şekillerdeki nokta sayılarını kıyaslayan“ türünde problemlere hiçbir sınıf seviyesinde rastlanamamıştır. Matematiksel olmayan problemler ise altıncı sınıf öğrencilerinin %16.71 ile ödevinini ve %16.67 ile sekizinci sınıf öğrencileriyle seçilmiştir. Matematiksel olmayan problemlere örnekler şu şekildedir:

Mehmet her masa tenisi maçını kazandığında bir miktar pinpon topu alıyor. İlk maçında bir topu olmuştur. İkinci maçta dört, üçüncüda ise dokuz top sahibidir. Yedinci maç sonunda kaç topu olur? #Ö7-11
Yukardaki şekillerde göre kaçınca şekilde siyah nokta sayısı, beyaz nokta sayısının iki katı olacaktır? #Ö8-18
Öğrencilerin kurduğu zor problemlere yönelik analizlerin frekans yüzde dağılımları Tablo 6’da gösterilmiştir. Tablo 6 incelendiğinde, zor problem kurma görevinde öğrencilerin %81.82’sinin matematiksel problemler, %18.18’inin ise matematiksel olmayan problemler olduğu görülmuştur. Kolay, orta zorlukta ve zor problemler içinde matematiksel olmayan problem oranının en yüksek olduğu durum zor problemlerde. Matematiksel problemlerin %72.73’ü geniş kapsamlı problemler iken, %9.09 gibi oldukça az bir oranda dar kapsamlı problem saptanmıştır. Geniş kapsamlı problemlerin görülme oranı altıncı sınıf öğrencileri sekizinci sınıfara doğru azalmaktadır (altıncı sınıfın %80.00, ödevinini sınıf %70.59, sekizinci sınıf %66.67).

Geniş kapsamlı problemler analiz edildiğinde öğrencilerin sadece dört farklı türde problem kurdukları görülmektedir. En çok görülen problem türü, öğrencilerin %34.55’inin kurduğu “birden çok şekildeki noktaları kapsayan” problemlerdir. Bu problem türüne %55.00 oranla altıncı sınıf öğrencilerinin yansıtıda fazla kıyaslar kurmuştur. “Birden çok şekildeki noktaları kapsayan“ problemlere örnekler aşağıdaki verilmştir:

7. ve 9. şekildeki dairelerin toplamının yarısının 7 katı kaçtır? #Ö6-17
Yukardaki verilen örntüye göre, 6. ve 8. adımındaki siyah noktaların toplamının, 5. adımındaki siyah nokta sayısına bölümü kaçtır? #Ö7-12
8. adımındaki siyah nokta ve beyaz noktaların farkının karekökü ile 4. Adımıdaki siyah ve beyaz noktaların farkının karekökünün toplami kaçtır? #Ö8-3

Tablo 6.
Zor Problemlere Yönelik Analizlerin Frekans Yüzde Dağılımları.

Zor problem kurma	6. sınıf (n=20)	7. sınıf (n=17)	8. sınıf (n=18)	Toplam (n=55)
Geniş kapsamlı				
Bir şekildeki noktaları kapsayan	15.00	41.18	33.33	29.09
Kısa kapsamlı				
Bir den çok şekildeki noktaları kapsayan	55.00	23.53	22.22	34.55
Şekillerdeki nokta sayılarını kıyaslayan	.00	.00	.00	.00
Şekil çizmeyi gerektiren	10.00	5.88	5.56	7.27
Kural tabanlı genel	.00	.00	5.56	1.82
Kural tabanlı özel	.00	.00	.00	.00
Toplam	80.00	70.59	66.67	72.73
Matematiksel problem				
Dar kapsamlı				
Bir şekildeki noktaları kapsayan	10.00	.00	.00	3.64
Matematiksel olmayan problem				
5.00	23.53	27.78	18.18	

İlkinci sırada en çok görülen problem türü %29.09 oranla “bir şekildeki noktaları kapsayan” problemlerdir. Bu problem türü ise yedinci sınıf öğrencilerinin %41.18'i, yanı yaklaşık yarısı tarafından kurulmuştur. “Bir şekildeki noktaları kapsayan” problemlere örnekler ise şu şekildedir:

5. şekildeki nokta sayısına benekli bir tişört bastırılacak olsa, tişörtün arkası ve önünde toplam kaç benek olur? #Ö6-9

Yukarıdaki örüntünün 100. basamağında boyalı olmayan kaç tane şerit vardır? #Ö7-14

11. şekilde içi dolu yuvarlaklar, içi boş yuvarlaklardan kaç fazladır? #Ö8-5

“Şekil çizmeyi gerektiren” problem türine ait oran %7.27 ile oldukça düştüktür. “Siyah ve beyaz boncukların ilişkisine göre 4. ve 5. şekil nasıldır? Çiziniz. #Ö7-13” problemi “şekil çizmeyi gerektiren” türündedir. Sadece sekizinci sınıf öğrencilerinin %5.56'si tarafından yazılan “kural tabanlı genel” problemleri ise en az rastlanan problem türüdür. “Yukarıdaki örüntünün kuralı nedir? #Ö8-12” problemi, “kural tabanlı genel” problem türüne örnek verilebilir. “Şekillerdeki nokta sayılarının kıyasayan” ve “kural tabanlı özel” türünde problemlere ise hiçbir sınıf seviyesinde rastlanamamıştır.

Dar kapsamlı problemlere gelince, öğrencilerin “bir den çok şekildeki noktaları kapsayan” (%5.45) ve “bir şekildeki noktaları kapsayan” (%3.64) olmak üzere sadexe iki tür yönelik, oldukça az oranda problem kurdukları tespit edilmiştir. “Bir şekildeki noktaları kapsayan” problemler yedinci ve sekizinci sınıf seviyelerinde görülmektedir, altıncı sınıf öğrencilerinin %10.00’unda sahip olması durumu olarak verilmektedir. “Bir den çok şekildeki noktaları kapsayan üç şekildeki şekillerini toplayıp, boyanmış şekillerle çarparsak sonuç kaç olur? #Ö8-11” problemi “bir şekildeki noktaları kapsayan” problemlere örnek verilmektedir.

Matematiksel olmayan problemlerin oranı ise altıncı sınıfta %5.00, yedinci sınıf %23.53, sekizinci sınıf %27.78 olarak görülmektedir. Matematiksel olmayan problemlere örnekler aşağıdaki sunulmuştur:

Örüntü devam ettiğinde 6. Şekil alanı kaç birim olur? #Ö7-7

Bir çiftçi şekildeki gibi arası arası her geçen ay artırmaktadır. Taralı çemberler ise ektiği biberleri göstermektedir. Üç ay sonra biber ekmediği alan toplami kaç şerit olur? #Ö8-14
Öğrencilerin Kurdukları Problemlerde Zorluk Düzeyi İlerlemesi Analizine İlişkin Bulgular

Kolay, orta ve zor problemlerin ayrıntılı analizlerinin ardından, problemlerin zorluk düzeylerine yönelik analizler sunulmaktadır. Bu doğrultuda, problemlerin zorluk düzeyindeki ilerleme analizi kategorilerinin frekans yüzdeleri Tablo 7’de verilmiştir.

Tablo 7.
Problemlerin Zorluk Düzeyindeki İlerleme Analizi Kategorilerinin Frekans Yüzdeleri.

Zorluk düzeyi kategorisi	6. sınıf (n=20)	7. sınıf (n=16)	8. sınıf (n=16)	Toplam (n=52)
P1<P2<P3	50.00	6.25	25.00	28.85
P1<P3 ve P2<P3 veya P1<P2 ve P1<P3	15.00	18.75	6.25	13.46
Aşağıdakilerden en az biri bulunan: P1>P2, P2>P3, P1>P3	20.00	50.00	43.75	36.54
Zorluk düzeyi kıyaslamanamayan	15.00	25.00	25.00	21.15

Zorluk düzeyi ilerleme analizine en az iki matematiksel problem kuran öğrenciler dahil edildiğinden dolayı 52 form çözümlenmiştir. Ayrıca, problemler kolay (P1), orta (P2) ve zor (P3) olarak gösterilmiştir. Buna göre, Tablo 7’ye bakıldığında, altıncı sınıf öğrencilerinin varışının (%50.00) zorluk düzeyi istenilen türde ilerleyen (P1<P2<P3) problemler kurduğu görülmektedir. Altıncı sınıf öğrencilerinin zorluk düzeyi ilerlemeye kuralנדרinde, problemlerin büyük bir kısmının “örünütüne, sonraki şekilleri içeren bir problem önceki şekilleri içeren bir problemden daha zordur” ölçütüne uygun olduğu belirlenmiştir. Bu ölçüt, uygulan problemler şu şekildedir:

(P1) Yukarıdaki şekil dördüncü adımda kaç tane siyah nokta vardır?
(P2) Yukarıdaki öründünün 1’den 10. adım kadarki bütün beyaz noktaların toplamı kaçtır?
(P3) Yukarıdaki öründünün 1’den 20. adım kadarki bütün beyaz ve siyah noktalardan çarpımı kaçtır?

Örnek problemlerde görüldüğü gibi, öğrenciler benzer yapida problemler kurmalara rağmen örüntüdeki adım sayılara ilerletiklerinden dolayı zorluk düzeyindeki ilerleme analizin yapılmıştır. Ayrıca, zorluk düzeyi P1<P2<P3 olacak şekilde ilerleyen problemlerinin en az görüldüğü sınıf %6.25 oranını içermektedir.

Zorluk düzeyi kısmi ilerleme (P1>P2, P2>P3, P1>P3) durumlarından en az biri bulunan problemlerin en çok yedinci sınıf (%50.00) ve sekizinci sınıf (%43.75) kurduğu görülmüştür. Bu oranın altınıncı sınıflar %15.00 ile altınıncı, %6.25 ile sekizinci sınıflar izlemektedir. Zorluk düzeyi kısmi ilerleme problemlerine örnekler aşağıdaki verilmiştir:

(P1) Verilen şekillere göre, 6. şekil kaç tane siyah dairesel olur?
(P2) Verilen şekillere göre, 8. şekil kaç tane siyah dairesenin içine girebilir?
(P3) Verilen şekillere göre, 8. şekildeki siyah dairelerin sayısı ile 4. şekildeki siyah dairelerin sayıısı farkı kaçtır?

Örnek problemlerin zorluk düzeyi “Şekillerdeki nokta sayılarnı birleştirme olarak ilerlemeye içeren bir problem, şekillerin birindeki nokta sayılardan soran bir problemden daha zordur” ölçütüne uygun olarak “P1<P3 ve P2<P3” şeklinde kısmi ilerlemedir.

Zorluk düzeyi sadece iki problemdede ilerleyen (P1>P2, P2>P3, P1<P3) durumlarından en az biri bulunan) problemlerini yedinci sınıf öğrencilerinin varışını (%50.00) ve sekizinci sınıf öğrencilerinin yaklaştığı varışını (%43.75) kuryaştır. Bu oranın altınıncı sınıfarda %20.00 şeklinde daha düşüktür. Zorluk düzeyi sadece iki problemdede ilerleyen örnekler aşağıdaki sunulmuştur:

(P1) 110. şekilde kaç tane siyah nokta olur?
(P2) 159. şekilde kaç tane içi dolu çember olur?
(P3) Dışında kenar başına 30 boş daire olan karede kaç siyah naktada vardır? #Ö8-10

Yukarıda verilen problemlerin üçü de “giriş kapsamlı-bir şekildeki noktaları kapsayan” türündedir. Bu nedenle, problemlerin zorluk düzeyi ile ilgili “örunütü, sonraki şekilleri içeren bir problem önceki şekilleri içeren bir problemden daha zordur” ölçütine uygun olarak değerlendirilmiştir. Ayrıca, problemlerin zorluk düzeyi sadece iki problemede ilerlemiştir (P1>P3 ve P2>P3).

Zorluk düzeyi kıyaslamanın amacını orantısi ile seçkinlerin sınıflarında %25.00 ile aynı iken, altıncı sınıflarda bu oran %15.00’e düşmüştür. Zorluk düzeyi kıyaslamanın problem örnekleri ise şu şekildeki:

(P1) Yükardaki örunütün kuralı ne olabilir?
(P2) Örunüt iki şekil daha devam ettirildiğinde örunütüdeki tüm siyah noktaların toplamı kaç olur?
(P3) Örunüt devam ettiğinde 6. Şeklin alanı kaç birim olur? #Ö7-7

Yukarıda verilen P1 “giriş kapsamlı-kural tabanlı genel”, P2 “giriş kapsamlı-birden çok şekildeki noktaları kapsayan”, P3 “matematiksel olmayan” problem türüdür. Problemler zorluk düzeyini kıyaslamada ölçütlerine uygun olarak değerlendirilmiştir. Ayrıca, problemlerin zorluk düzeyi kıyaslanamamıştır.

Tartışma ve Sonuç

Yapılan bu çalışmada özel yetenekli öğrencilerin matematiksel problem kurma becerilerinin incelemesi amaçlanmıştır. Birinci alt problem kapsamında, özel yetenekli öğrencilerin kurduğu problemlerin tamamına yakınının matematiksel problemler olduğu tespit edilmiştir. Matematiksel problemleri en çok consequati sınıf seviyesindeki öğrenciler kurmuştur. Yedinci ve sekizinci sınıf öğrencilerin matematiksel problem kurma oranı için birbirine yakın olmakla birlikte altıncı sınıf en yüksek puanı almıştır. Dolayısıyla, yedinci ve sekizinci sınıf öğrencilerine göre matematiksel problem kurma zorluk düzeyindeki artış nedeniyle karmaşık problemlerde daha fazla çaba harcamaları durumuna gelmiştir. Ancak, bu durumun, yedinci ve sekizinci sınıf öğrencilerinin zorluk düzeyini artırmak için daha karmaşık problemler kurmaya çalıştığı için bu durumun, matematiksel özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karakteristik özelliklerinden birinin problem kurma becerisi olduğunu belirtir ve bu durumun, özel yetenekli öğrencilerin matematiksel özel yetenekliliklere göre daha zor olduğunu belirtmektedir. Leikin vd. (2017b) ifadeleri bu yorumu desteklemektedir. Buna göre, matematiksel özel yetenekli öğrencilerin normal öğrencilerden farklılaştırılabilir önemli bir unsur bu durumun, özel yetenekli öğrencilerin matematiksel özel yetenekliliklere göre daha zor olduğunu belirtmektedir. Leikin vd. (2017b) ifadeleri bu yorumu desteklemektedir. Buna göre, matematiksel özel yetenekli öğrencilerin normal öğrencilerden farklılaştırılabilir önemli bir unsur bu durumun, özel yetenekli öğrencilerin karmaşık problemler kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karakteristik özelliklerinden birinin problem kurma becerisi olduğunu belirtir ve bu durumun, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin karmaşık problemleri kurma becerisini daha yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin ürün tasarımında ortaya konan matematiksel problem kurma başarı, mevcut çalışma katkısı özel yetenekli öğrencilerin başarısından oldukça düşüktür. Bu çıkarma, özel yetenekli öğrencilerin matematiksel problem kurma becerilerinin akranlarına göre yüksek olduğunu belirtmektedir. Çalışmanın bu sonuçunu, özel yetenekli öğrencilerin ürün tasarımında ortaya konan matematiksel problem kurma başarı, mevcut çalışma katkısı özel yetenekli öğrencilerin başarısından oldukça düşüktür. Bu çıkarma, özel yetenekli öğrencilerin matematiksel problem kurma becerilerinin akranlarına göre yüksek olduğunu belirtmektedir.
Fatma ERDOĞAN, Neslihan GÜL – Pegem Eğitim ve Öğretim Dergisi, 10(3), 2020, 655-696

2016). Özel yetenekli ve özel yetenekliler olarak tanımlanmamış öğrencilere problem kurma becerileri karşılaştırmadan çalışmalarda, özel yetenekli öğrencilerin matematiksel problem kurma bağımlılarının daha yüksek olduğu saptanmıştır (Arkan & Ünal, 2015; Espinoza et al., 2016). Bu konuda, Johnson (2000) özel yetenekli öğrencilerin akranlarına kıyasla daha çözülebilir matematiksel problem kurabildiklerini belirtmiştir. Singer vd. (2016) ise özel yetenekli öğrencilerin rutin olmayan problemleri çözmeye ve problem kurma becerilerinin akranlarından oldukça üstün olduğunu ifade etmiştir.

Çalışma bulgularına göre, özel yetenekli öğrencilerin kolay, orta ve zor problem kurma görevlerde ağırlıklı olarak geniş kapsamlı problemler kurduğunu göstermiştir. Geniş kapsamlı problemler verilen üç şėkin ötesinde daha ieri basamaklarla ilgili problemlerdir. Bu bağlamda, özel yetenekli öğrencilerin özel durumlarının ötesinde daha geniş kümeler hakkında düşündükleri söyleyebilir. Çalışmanın bu sonucu, özel yetenekli öğrencilerin problem çözme ve kurma durumlarında alıştırmanın ötesinde düşündüklerini ve üst düzey düzenme becerileri gösterdiklerini belirtir (Gutierrez et al., 2018; Sheffield, 2018; Johnson, 2000; Yuan & Sriraman, 2011). Gutierrez vd. (2018) özel yetenekli öğrencilerin problem çözme ve kurma durumlarında, matematiksel yapının karmaşıklığı ve genişliği üzerine bilgişi çaba harcadıklarını ifade etmiştir. Yuan ve Sriraman (2011) ise problem kurma becerisinin matematik bilgisi ve başarısına oldukça iliskili olduğunu koymuştur. Bu bağlamda, özel yetenekli öğrenciler matematik alanındaki akranlarına kıyasla daha başarılı olmakla birlikte, daha geniş matematiksel perspektif yanıtlan problemler kurabilirler (Johnson, 2000; Yuan ve Sriraman, 2011).

Geniş kapsamlı problemlerin ayrıntılı analizinde ise dikkat çekici bazı sonuçlara ulaşılmıştır. Buna göre, kolay ve orta zorlukta görevlerde, özel yetenekli öğrencilerin yaklaşık yarısı “bir şekildeki noktaları kapsayan” türünde problemler kurmuştur. Zor görevde ise en çok “birden çok şekildeki noktaları kapsayan” türünde problemler tespit edilmiştir. Bu sonuçları hareketle, özel yetenekli öğrencilerin birenden çok şekli ele alınca problemlerinin daha zorlaşacağını söyleyebiliriz. Dar kapsamlı problemlerde en az görülen problem türleri ise kolay görevde “birden çok şekildeki noktaları kapsayan” durumlarıdır. Orta ve zor görevde ise “şekillerdeki nokta sayılarını kıyaslayan” türünde problemlere oldukça az yer verilmiştir. Bu sonuç, özel yetenekli öğrencilerin üç şekilin ötesinde geniş kapsamlı problem kurarken birden çok şekli yeterince göz önünde alınan problemlerin daha zorlaşacağını söyleyebiliriz.

Çalışmanın dikkate değer sonuçlarından birisi ise genelleme becerisine ilişkili özkirazdır. Özel yetenekli öğrencilerin karakteristik özelliklerinden biri de genelleme becerilerinin yüksek olması (Freiman, 2018; Gutierrez et al., 2018; Krutetskii, 1976). Ancak, çalışma bulgularına göre kolay, orta ve zor görevlerin her üçünde de olduğu az sayıda özel yetenekli öğrenci “kural tabanlı genel” (örününün genel kuralına yönelik ancak çözülemez) türünde problemler kurmuştur. “Kural tabanlı özel” (örününün genel kuralına yönelik çözülebilir nitelikte) problemler ise sadece kolay ve orta zorlukta görevde az sayıda sekizinci sınıf öğrencisi açıklayıcı başarı göstermiştir. Bu sonuçlu hareketle, özel yetenekli öğrencilerin örensinin genel kuralına yönelik olduğu az sayıda problem kurduğunu söyleyebiliriz. Bu durumun öğrencilerin geçmiş yaşantılarından kaynaklandığı görüşüne reddedilmiş, özel yetenekli öğrencilerin problem kurma ve genelleme ile ilgili önerince deneyim yaşamamış olanları da bu sonuçun nedeni olabilir. Yapılan çalışmalar bu görüşü desteklemektedir. Bu bağlamda, çalışmalarda özel yetenekli öğrencilerin örensinin genel kuralını belirlediğinde güvün yakışıkları ortaya konulmuştur (Amit & Neria, 2008; Benedicto, Jaime, & Gutierrez, 2015; Fritzlar & Karpinski-Siebold, 2012). Ayrıca, çalışma sonuçları, sınıf ortamında hem özel yetenekli tansı koyulmuş hem de özel yetenekli öğrencilerin örensinin problem kurma etkinliklerinin yetersiz olduğunu belirtmektedir (Levenberg & Shaham, 2014; Sheffield, 2018; Xu et al., 2019).

Çalışmanın ikinci alt problemiyle ilişkili olarak, özel yetenekli öğrencilerin kurdukları problemlerin zorluk düzeyi ve problemlerin zorluk düzeyi ile problem kurma becerilerinin üstünlüğünü ifade etmektedir. Bu bağlamda, özel yetenekli öğrencilerin genellikle hıyararsız iki damar zorluk düzeyine sahip problem kurma becerilerinin yetersiz olduğunu belirtmektedir (Levenberg & Shaham, 2014; Sheffield, 2018; Xu et al., 2019).
görülmüştür. Ancak, bu problemlerin büyük kısmı terim sırasının ilerlemesine yöneliktir. Yani, öğrenciler benzer yapıda problemler kurmalarına rağmen ortamda adımlarını ilerletmelerine de dair olmayan problem oranı düşüktür. Bu sonuçlardan hareketle, özel yetenekli öğrencilerin problemlerin zorluk düzeylerini gerçekleştirmeleri için hedefe yönelik çaba harcadıkları söylenebilir. Sowell, Zeigler, Bergwall ve Cartwright (1990) ve Dai, Moon ve Feldhusen’in (1998) çalışma sonuçları bu görüşü desteklemektedir. Sowell vd.‘ye (1990) göre matematiksel özel yetenekli öğrenciler karmaşık problem yapıları üzerinde daha fazla düşünürler. Ayrıca, matematiksel özel yetenekli öğrencilerin zorlayıcı matematik problemlerini çözme ve kurmakdayı performanslari azalmaları kısacası daha iyidir. Dai vd. (1998) ise özel yetenekli öğrencilerin zorlayıcı ortamda yaşamları daha hedef odaklı olduklarını, zorlayıcı durumlara yönelik çaba harcadıklarını belirtmiştir.

Sınırlarlar ve Öneriler
Özel yetenekli öğrencilerin akranlarına göre farklı öğrenme ihtiyaçları vardır. Ancak, araştırma sonuçları özel yetenekli öğrencilerin matematik derslerinde daha az zagıya çalıştığı belirtilmiştir. Shefield, 2018; Smedrusd, 2018). Bu tür durumlar özel yetenekli öğrencilerin matematiksel becerilerinde ve matematiğe karşı ilgilerinde gerilemeye sebep olabilir (Hu, 2019). Dolayısıyla, bu öğrencilerin matematiğe ilgilerini sürdürmek için özel yaklaşımlar gerçekleştirmelidir (Gutierrez et al., 2018; Leikin et al., 2017a). Bu surette, problem kurma temelli yaklaşımların sınıf ortamında uygulanması önerilmektedir. Mevcut çalışmada ele alındığı gibi öğrenci zorluklarda problem kurma görevlerinin üstesinden gelmesi özel yetenekli öğrencilerin hedeflenmesi için zorlayıcı olan zorlayıcı ortamların oluşmasına ve yaratıcılık becerilerinin gelişimine katkı sağlayabilir.

Son yıllarda, özel yetenekli öğrencilerin matematiksel ihtiyaçlarını göz önüne alarak farklılaştırılmış matematik programlarının geliştirilmesi dikkat çeken konulardan biridir (Hu, 2019; Shefield, 2018; Smedrusd, 2018). Ancak, Türkiye’de özel yetenekli öğrencilerin beklentilerine yönelik uyum sağlaması önerilmektedir (Özçelik, 2017). Mevcut çalışma bulgularından yararlanarak, program geliştirme uzmanlarının özellikle özel yetenekli öğrencilerin ihtiyaçlarını belirlemesinin önemini vurgulamaktadır (Gutierrez et al., 2018; Subotnik, Robinson, Callahan, & Gubbins, 2012). Bu araştırma, özel yetenekli öğrencilerin matematiksel ihtiyaçlarını belirlemeleri açısından önemlidir (Cai & Hwang, 2019). Çözümlerin yaratıcılıkları, özel yetenekli öğrencilerin matematiksel becerilerinin zorlayıcı ortamlarda problem kurma etkinliklerine ver vermesi önemlidir.

Çalışmada özel yetenekli öğrencilerden sadece bir türde (yapılandırılmış) problem kurma görevi istenmiştir. Bu durum çalışmanın sınırlılığı olarak görülebilir. Bu bilgiden hareketle, ilerleyen çalışmalarda farklı türde problem kurma görevlerinin tasarlanmasına önerilebilir. Özel yetenekli öğrencilerin farklı türde problem kurma görevlerindeki başarılıları karşılaştırabilir. Yapılan çalışmalarda, daha derinlemesine
biliş edinmek amacıyla, klinik görüşme gibi yöntemler kullanılarak, özel yetenekli öğrencilerin problem kurma sürecinde izledikleri yol ve dönüşümü biçimleri araştırılabilir.

Çalışma sonuçlarına genel olarak değerlendirildiğinde, özel yetenekli öğrencilerin sınırlı yapılarda problem kurduğu söylenebilir. Dolayısıyla, ileriye dönük planlanan çalışmalarında problem kurma etkinliklerinin özel yetenekli öğrencilerin bilişsel gelişimlerine etkileri deneysel olarak incelenebilir. Singer ve Voica’nın (2015) çalışma sonuçları bu öneriye dayanak oluşturmakta. Singer ve Voica (2015) çalışmalarında problem kurmanın matematiksel özel yetenekli öğrencilerin bilişsel çerçevelerini geliştirdiğini belirtmiştir.

Öğrencilerin problem kurma performansları üzerinde problem kurma yönelik tutumları da etkili olabilir (Kılıç, 2019). Ayrıca, özel yetenekli öğrencilerin matematik performanslarında motivasyon, tutum gibi duyuşsal faktörlerin etkili olduğunu ortaya koyan çalışma sonuçları mevcuttur (Erdogan & Yemenli, 2019; Hu, 2019; Smedsrud, 2018). Dolayısıyla, özel yetenekli öğrencilerin gösterdikleri performansta duyuşsal faktörler de etken olabilir. Bu sebeple, özel yetenekli öğrencilerin problem kurma yönelik motivasyonları, tutumları ve öz-kavramlarını analiz eden çalışmalar yapılabilir. Ayrıca, matematiksel özel yeteneklilik, problem kurma ve matematiksel yaratıcılığın birbiriley ilişkili kavramları olduğu göz önune alınarak (Sheffield, 2018) öğrencilerin kurduğu problemler matematiksel yaratıcılık bağlamında incelenebilir.

Matematiksel özel yeteneklilik alanında araştırmalar yoğun olarak bulunmaktadır (Sheffield, 2018). Ancak, Türkiye’de matematik ve özel yeteneklilik eğitimini birlikte ele alan çalışmalar oldukça sınırlıdır (Arıkan & Ünal, 2015; Erdoğan & Erben, 2018). Dünyada özel yeteneklilik kavramına karşılık olarak matematiksel gelecek vaat eden öğrenci kavramı geliştirilip, teknoloji özel yetenekli öğrencilerin problem kurma becerilerini geliştirmek için bir araç olarak kullanılmıştır (Sheffield, 2018) Türkiye’ nin bu gelişmeleri geç kalmaması gerekir. Özel yetenekli öğrencilerin potansiyelleri belirlenip, bu potansiyelleri geliştirmeye konusunda uygulamalar yapılmıştır. Dolayısıyla, problem kurma da dahil olmak üzere matematik eğitimi ve özel yeteneklilik alanında çalışmalar yapılması önemle önerilmektedir.

Bilgilendirme

Bu çalışmanın bir kısmı, 1-3 Kasım 2019 tarihleri arasında Malatya’da düzenlenen Uluslararası Özel Yetenekliler Eğitimi Kongresi’nde sözlü bildiri olarak sunulmuştur.
References

Altun, M. (2015). Teaching mathematics for education faculties and primary teachers (19th ed.). Bursa: Alfa Aktuel.

Amit, M. & Neria, D. (2008). “Rising to the challenge”: Using generalization in pattern problems to unearth the algebraic skills of talented pre-algebra students. ZDM Mathematics Education, 40, 111–129.

Arikan, E. E. & Unal, H. (2015). Investigation of problem-solving and problem-posing abilities of seventh-grade students. Educational Sciences, Theory & Practice, 15(5), 1403-1416.

Assmus D. & Fritzlar T. (2018). Mathematical giftedness and creativity in primary grades. In F. M. Singer (Ed.), Mathematical creativity and mathematical giftedness: Enhancing creative capacities in mathematically promising students (pp. 373–404). Cham, Switzerland: Springer International Publishing.

Benedicto, C., Jaime, A., & Gutiérrez, A. (2015). Análisis de la demanda cognitiva de problemas de patrones geométricos. In C. Fernández, M. Molina, & N. Planas (Eds.), Investigación en educación matemática XIX (pp. 153–162). Alicante, Spain: SEIEM.

Bozkurt, A. & Karsiligil-Ergin, G. (2018). Students’ achievement and mathematical thinking in process of problem solving and problem posing. E-International Journal of Educational Research, 9(3), 1-33.

Cai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: An exploratory study. International Journal of Mathematical Education in Science and Technology, 34(5), 719-737.

Cai, J., Chen, T., Li, X., Xu, R., Zhang, S., Hu, Y., et al. (2019). Exploring the impact of a problem-posing workshop on elementary school mathematics teachers’ problem posing and lesson design. International Journal of Educational Research. https://doi.org/10.1016/j.ijer.2019.02.004 Online First.

Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83, 57–69.

Cai, J. & Hwang, S. (2019). Learning to teach mathematics through problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research. https://doi.org/10.1016/j.ijer.2019.01.001 Online First.

Canturk-Gunhan, B., Gečici, M. E., & Gunkaya, B. (2019). The effect of problem posing based mathematics teaching on students' success: A meta-analysis study. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(2), 1042-1062.

Chen, T. & Cai, J. (2019). An elementary mathematics teacher learning to teach using problem posing: A case of the distributive property of multiplication over addition. International Journal of Educational Research. https://doi.org/10.1016/j.ijer.2019.03.004 Online First.

Dai, D. Y., Moon S. M., & Feldhusen, J. F. (1998). Achievement motivation and gifted students: A social cognitive perspective. Educational Psychologist, 33(2-3), 45-63.

Davis, G. A. & Rimm, S. B. (2004). Education of the gifted and talented. Boston, MA: Pearson Education Press.

English, L. D. (2019). Teaching and learning through mathematical problem posing: Commentary. International Journal of Educational Research. https://doi.org/10.1016/j.ijer.2019.06.014 Online First.

Erdogan, A. & Yemenli, E. (2019). Gifted students’ attitudes towards mathematics: a qualitative multidimensional analysis. Asia Pacific Education Review, 20, 37–52.
Erdogan, F. & Erben, T. (2018). Investigation of gifted students’ problem posing abilities requiring arithmetical operations with natural numbers. *İnönü University Journal of the Faculty of Education, 19*(3), 534-546.

Espinoza, J., Lupiáñez J. L., & Segovia, I. (2013). Características del talento matemático asociadas a la invención de problemas. *Revista Científica, número especial octubre 2013*, 190-195.

Espinoza, J., Lupiáñez, J. L., & Segovia, I. (2016). The posing of arithmetic problems by mathematically talented students. *Electronic Journal of Research in Educational Psychology, 14*(2), 368-392.

Freiman, V. (2018). Complex and open-ended tasks to enrich mathematical experiences of kindergarten students. In F. M. Singer (Ed.), *Mathematical creativity and mathematical giftedness: Enhancing creative capacities in mathematically promising students* (pp. 373-404). Cham, Switzerland: Springer International Publishing.

Fritzlar, T. & Karpinski-Siebold, N. (2012). Continuing patterns as a component of algebraic thinking—An interview study with primary school students. In *Pre-proceedings of the 12th International Congress on Mathematical Education* (pp. 2022–2031). Seoul, South Korea: ICMI. Retrieved January 12, 2018, from http://www.icme12.org/data/ICME12_Pre-proceedings.zip.

Gagné, F. (2003). Transforming gifts into talents: The DMGT as a developmental theory. In N. Colangelo & G. A. Davis (Eds), *Handbook of gifted education* (pp. 60-74). Boston MA: Allyn and Bacon, Inc.

Goldberg, S. R. (2008). *An exploration of intellectually gifted students’ conceptual views of mathematics*. Unpublished doctorate dissertation, Columbia University, USA.

Gutierrez, A., Benedicto, C., Jaime, A., & Arbona, E. (2018). The cognitive demand of a gifted student’s answers to geometric pattern problems. In F. M. Singer (Ed), *Mathematical creativity and mathematical giftedness* (pp. 196-198). Cham, Switzerland: Springer International Publishing.

Guzel, R. & Biber, A.Ç. (2019). The effect of the problem posing approach for academic success in the teaching of inequalities. *Kastamonu Education Journal, 27*(1), 199-208.

Hu, H. (2019) Implementing resilience recommendations for policies and practices in gifted curriculum. *Roeper Review, 41*(1), 42-50.

Johnson, D. T. (2000). *Teaching mathematics to gifted students in a mixed-ability classroom*. Reston, VA: ERIC Clearinghouse on Disabilities and Gifted Education.

Kesan, C., Kaya, D., & Guvercin, S. (2010). The effect of problem posing approach to the gifted student’s mathematical abilities. *International Online Journal of Educational Sciences, 2*(3), 677-687.

Kılıc, Ç. (2019). Investigation of the performance of the middle school students in the posing of problems that can be solved by the looking for a pattern strategy. *Kastamonu Education Journal, 27*(2), 647-656.

Korkmaz, E. & Gur, H. (2006). Determining of prospective teachers’ problem posing skills. *Journal of Balıkesir University Institute of Science and Technology, 8*(1), 64-74.

Krutetskii, V. A. (1976). *The psychology of mathematical abilities in school children*. Chicago, IL: University of Chicago Press.

Leikin, R. (2009). Bridging research and theory in mathematics education with research and theory in creativity and giftedness. In R. Leikin, A. Berman & B. Koichu (Eds), *Creativity in mathematics and education of gifted students* (pp. 385-411). Rotterdam: Sense Publishers.

Leikin, R. (2011). The education of mathematically gifted students: Some complexities and questions. *The Mathematics Enthusiast, 8*(1-2), 167–188.

Leikin, R. (2015). Problem posing for and through investigations in a dynamic geometry environment. In F. M. Singer, N. Ellerton & J. Cai (Eds), *Problem posing: From research to effective practice* (pp. 373–391). Dordrecht: Springer.
Leikin, R., Koichu, B., & Berman, A. (2009). Mathematical giftedness as a quality of problem-solving acts. R. Leikin, A. Berman & B. Koichu (Eds), *Creativity in mathematics and the education of gifted students* (pp. 115–128). Rotterdam: Sense Publishers.

Leikin, R., Koichu, B., Berman, A., & Dinur, S. (2017a). How are questions that students ask in high level mathematics classes linked to general giftedness? *ZDM Mathematics Education, 49*(1), 65-80.

Leikin, R., Leikin, M., Paz-Baruch, N., Waisman, I., & Lev, M. (2017b). On the four types of characteristics of super mathematically gifted students. *High Ability Studies, 28*(1), 107-125.

Levenberg, I. & Shaham, C. (2014). Formulation of word problems in geometry by gifted pupils. *Journal for the Education of the Young Scientist and Giftedness, 2*(2), 28-40.

Leung, S. S. (2013). Teachers implementing mathematical problem posing in the classroom: Challenges and strategies. *Educational Studies in Mathematics, 83*(1), 103-116.

Liljedahl, P. & Sriraman, B. (2006). Musings on mathematical creativity. *For the Learning of Mathematics, 26*(1), 20–23.

Merriam, S. B. (1998). *Qualitative research and case study applications in education*. San Francisco, CA: Jossey-Bass.

Miles, M. B., Huberman, A. M., & Saldana, J. (2014). *Qualitative data analysis*. CA:SAGE.

Miller, R. C. (1990). *Discovering mathematical talent*. Reston, VA: Eric Clearinghouse on Handicapped and Gifted Children.

Ministry of National Education. (2018). *Mathematics curriculum (Primary and secondary 1, 2, 3, 4, 5, 6, 7 and 8 grades)*. Ankara: MoNE Publ.

Muijs, D. (2004). *Doing quantitative research in education with SPSS*. London: Sage

National Council of Teachers of Mathematics. (2000). *Principles and standards for school mathematics*. Reston, Va: National Council of Teachers of Mathematics.

National Council of Teachers of Mathematics (2016). *Providing opportunities for students with exceptional mathematical promise: A position of the national council of teachers of mathematics*. Reston: NCTM.

Nolte, M. (2018). Twice-exceptional students: Students with special needs and a high mathematical potential. In F. M. Singer (Ed.), *Mathematical creativity and mathematical giftedness* (pp. 199-225). Cham, Switzerland: Springer International Publishing.

Ozcelik, T. (2017). *Efficiency of differentiated mathematics curriculum designed for gifted and talented students*. Unpublished doctorate dissertation, Hacettepe University, Ankara.

Poulos, A. & Mamona-Downs, J. (2018). Gifted students approaches when solving challenging mathematical problems. In F. M. Singer (Ed), *Mathematical creativity and mathematical giftedness* (pp. 309-341). Cham, Switzerland: Springer International Publishing.

Renzulli, J. S. (2012). Reexamining the role of gifted education and talent development for the 21st century: A four-part theoretical approach. *Gifted Child Quarterly, 56*(3), 150–159.

Sheffield, L. J. (2003). Development of mathematical promise. In S. Pfeiffer & L. Limburg-Weber (Eds), *Early gifts: Recognizing and nurturing children’s talents* (pp. 59-81). Waco, TX: Prufrock Press.

Sheffield, L. J. (2018). Commentary paper: A reflection on mathematical creativity and giftedness. In F. M. Singer (Ed), *Mathematical creativity and mathematical giftedness* (pp. 405-428). Cham, Switzerland: Springer International Publishing.

Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. *ZDM, 3*, 75–80.

Silver, E. A. & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. *Journal for Research in Mathematics Education, 27*, 521–539.
Singer, F. M., Ellerton, N., & Cai, J. (2013). Problem-posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83(1), 1–7.

Singer, F. M., Ellerton, N., & Cai, J. (2015). Mathematical problem posing: From research to effective practice. New York: Springer.

Singer, F. M., Sheffield, L., Freiman, V., & Brandl, M. (2016). Research on and activities for mathematically gifted students. New York: Springer Nature.

Singer, F. M., Sheffield, L. J., & Leikin, R. (2017a). Advancements in research on creativity and giftedness in mathematics education: Introduction to the special issue. ZDM Mathematics Education, 49(1), 4-12.

Singer, F. M., & Voica, C. (2015). Is problem posing a tool for identifying and developing mathematical creativity? In F. M. Singer, N. Ellerton & J. Cai (Eds), Mathematical problem posing: From research to effective practice (pp. 141–174). New York: Springer.

Singer, F. M., Voica, C., & Pelczer, I. (2017b). Cognitive styles in posing geometry problems: implications for assessment of mathematical creativity. ZDM Mathematics Education, 49(1), 37-52.

Smersrud, J. (2018) Mathematically gifted accelerated students participating in an ability group: A qualitative interview study. Front. Psychol., 9, 1-12.

Sowell, E. J., Zeigler, A. J., Bergwall, L., & Cartwright, R. M. (1990). Identification and description of mathematically gifted students: A review of empirical research. Gifted Child Quarterly, 34, 147–154.

Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics. The Journal of Secondary Education, 17(1), 20–36.

Stoyanova, E. & Ellerton, N. F. (1996). A framework for research into students’ problem posing in school mathematics. In P. Clarkson (Ed), Technology in mathematics education (pp. 518–525). Melbourne: Mathematics Education Research Group of Australasia.

Subotnik, R. F., Robinson, A., Callahan, C. M., & Gubbins, E. J. (2012). Malleable minds: Translating insights from psychology and neuroscience to gifted education. Storrs: University of Connecticut, NRCGT.

Turhan, B. & Guven, M. (2014). The effect of mathematics instruction with problem posing approach on problem solving success, problem posing ability and views towards mathematics. Cukurova University Faculty of Education Journal, 43(2), 217-234.

Van Tassel-Baska, J. & Stambaugh, T. (2006). Comprehensive curriculum for gifted learners (3rd ed.). Boston: Pearson Education Inc.

Voica, C. & Singer, F. M. (2013). Problem modification as a tool for detecting cognitive flexibility in school children. ZDM, 45(2), 267–279.

Voica, C. & Singer, F. M. (2014). Problem posing: A pathway to identifying gifted students. In MCG8 Proceedings (pp. 119–124). Univ. of Denver, Colorado, USA.

Wagner, H. & Zimmermann, B. (1986). Identification and fostering of mathematically gifted students. In A. Cropley, K. Urban, H. Wagner & W. Wicczekowski (Eds), Giftedness: A continuing world-wide challenge (pp.273-287). New York: Trillium Pres.

Xu, B., Cai, J., Liu, Q., & Hwang, S. (2019). Teachers’ predictions of students’ mathematical thinking related to problem posing. International Journal of Educational Research. https://doi.org/10.1016/j.ijer.2019.04.005. Online First.

Yazgan-Sag, G. (2019). A theoretical view to mathematical giftedness. National Education, 48(221), 159-174.

Yin, R. K. (2017). Case study research and applications: Design and methods. Sage Publications.

Young, A. E. & Worrell, F. C. (2018). Comparing metacognition assessments of mathematics in academically talented students. The Gifted Child Quarterly, 63(2), 259-275.
Yuan, X. & Sriraman, B. (2011). An exploratory study of relationships between students’ creativity and mathematical problem posing abilities. In B. Sriraman & K. Lee (Eds). *The elements of creativity and giftedness in mathematics* (pp. 5–28). Rotterdam, the Netherlands: Sense.
Appendix 1.

Problem Posing Task

Ayşe Teacher draws the figures shown below.

![Figure 1](image1.png) ![Figure 2](image2.png) ![Figure 3](image3.png)

For his student’s homework, he wanted to make up three problems based on the above situation: an easy problem, a moderate problem, and a difficult problem. These problems can be solved using the information in the situation.

Help Ayşe Teacher make up three problems and write these problems in the space below.

Easy problem:
Moderate problem:
Difficult problem:
