CFD ANALYSIS OF MEMBRANE HELICAL COIL FOR OPTIMIZATION OF HIGH PRESSURE AND TEMPERATURE OF SYNGAS IN UNDERGROUND COAL MINES

Sagar.S.Gaddamwar
PhD Research Scholar Jawaharlal Darda Institute of Engineering and Technology, Yavatmal,Maharashtra State,India
Anand N.Pawar
Deputy Secretary Maharashtra Board of Technical Education, Regional office Aurangabad, Maharashtra State,India
Pramod A. Naik
Joint Director Directorate of Technical Education, Mumbai, Maharashtra State,India

ABSTRACT

This research work investigates the flow field and the heat transfer characteristics of a Membrane Helical Coil Heat Exchanger for the cooling of syngas. Finite volume method based on FLUENT software practised and the RNG k–ε turbulence model was adopted for modelling flow turbulent. The distribution of the resistance, the distribution of the heat source, and the porosity rate introduced to ANSYS R18.0 by coupling the user-defined function. The variation of local heat transfer, the pressure drop, and the temperature distribution studied under the effects of the syngas components and the operating pressure, and the impact of the arrangement of the membrane on the heat transfer investigated. The results show that higher operating temperature and pressure can improve the heat transfer, however, brings more significant pressure and temperature drop. The components of the syngas significantly affect the heat transfer and the pressure drop. The arrangement of the membrane influences the fluid flow.

Keywords: CFD, Syngas, Membrane Helical Coil Heat Exchanger, Heat transfer, Underground Coal Mines

Cite this Article: Sagar.S.Gaddamwar, Anand N.Pawar and Pramod A. Naik, CFD Analysis of Membrane Helical Coil for optimization of High Pressure and Temperature of Syngas in Underground Coal Mines, International Journal of Mechanical Engineering and Technology, 9(11), 2018, pp. 1080–1088. http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=11
1. INTRODUCTION

The global concerns are that the syngas will rise in the underground mines. The continually rising syngas in underground mines are increasing the accident and diminishing the life of a worker who works in the underground mines, discover methods to minimise the disaster and survival of a worker who works in the underground mines. Membrane Helical Coil Heat Exchanger is a vital Heat Exchanger to reduce the high temperature and high pressure of syngas in underground mines.

It recognised that in Underground Coal Mines, the coal gasification with the heat recovery membrane helical coil heat exchanger shows high efficiency, so it is essential to understand the heat transfer characteristics of the heat exchangers.

The scope of this research work is to investigate the flow field and the heat transfer characteristics of the membrane helical coil heat exchanger for the cooling of syngas in underground coal mines by CFD simulation.

The membrane helical coil heat exchanger for the cooling of syngas in underground coal mines has two characteristics:
(1) the syngas includes different gas composition, and
(2) the syngas works at high pressure and temperature.
(3) The calculated results were used to analyse the influence of syngas components, working pressure and the arrangement of the membrane on heat transfer.

2. DESIGN OF THE MEMBRANE HELICAL COIL HEAT EXCHANGER

2.1. Delineation of the geometry

Set of standard types of heat exchangers are used in heat transfer applications, the membrane helical coil heat exchangers are still the most common type in use. They have more extensive heat transfer surface area-to-volume ratios than most of the common types of heat exchangers, and they are manufactured efficiently for a large variety of sizes and flow configurations. They are the cost-effective heat exchangers that can operate at high pressures, and their construction facilitates disassembly for periodic maintenance and cleaning.

![Geometry of Membrane Helical Coil Heat Exchanger](image)

Figure 1 Geometry of Membrane Helical Coil Heat Exchanger
Fig. 1 shows the zero and Fig. 2 shows the geometries of the helical coil heat exchangers with three types of membrane arrangements called configuration1, configuration2 and configuration3, respectively. The syngas passes through the tube side and the water falling on the tube. The U-tubes designed inside the tube which acts like a porous zone through which the syngas passes that absorbs required heat to decrease the temperature of the syngas. The syngas passes through the tube and gets cooled. The geometry parameters for membrane helical coil heat exchanger is given in Table 01.

Sr.No.	Parameter	Dimension
1.	Length of heat exchanger tube	0.5m
2.	Diameter of tube (d)	10mm
3.	Radial pitch between helical coil (p)	20 mm
4.	Thickness of tube (t)	2mm
5.	Inner Diameter of tube	8 mm
6.	Diameter of inner helical coil (D)	150mm

To simplify numerical simulation while still keep the essential characteristics of the process, the following assumptions are made:

(1) Tube-side fluid is of constant thermal properties;
(2) Heat transfer processes and Fluid flow are turbulent and in steady-state;
(3) Natural convection induced by the fluid density variation is neglected;
(4) Membrane Helical Coil Heat Exchanger is well-insulated hence the heat loss to the environment is ignored.
2.2. Mesh Generation

The 3D mesh system was established using the commercial code GAMBIT based on the 3D geometry. The computational domain meshes with unstructured tetrahedral elements. The meshes of the computational model for configuration 1 are shown in Fig. 03 and Fig. 04. Grid independence tests are carried out to ensure that a near grid independent solution can be obtained. The commercial code ANSYS R18.0 is adopted to simulate the flow and heat transfer in the computational model.

![Figure 3](image1.png)

Figure 3 Meshing of Membrane Helical Coil Heat Exchanger

![Figure 4](image2.png)

Figure 4 Meshing of Membrane Helical Coil Heat Exchanger
2.3. CFD Result
The CFD result of Membrane Helical Coil Heat Exchanger for
1. The temperature of Gas Domain,
2. The temperature of the Water Domain and
3. The pressure of Gas Domain are obtained are as follows

2.3.1. The temperature of the Syngas Domain
In a heat of syngas domain, we consider the following assumptions for getting the results of a temperature of syngas domain-

INPUT DATA
1. Fluid: Syngas and Water
2. K-epsilon, realizable model, Scalable wall function
3. Turbulence intensity- 5% & ratio- 10
4. Syngas Inlet:
 a. Temperature- 325.3
5. Syngas Outlet:
 a. Mass flow rate-0.167kg/s
6. Tube:
 a. Convection-500w/m²k
 b. Material-Copper Tube
After completing the CFD simulations, we got the following results of Membrane Helical Coil Heat Exchanger in the temperature of syngas domain as follows-

Inlet Temperature: 325.3 K
Outlet Temperature: 311.152 K

2.3.2. Temperature of Water Domain
In the temperature of water domain we consider the following assumptions for getting the results of the temperature of water domain-

INPUT DATA
1. Fluid: Syngas and Water
2. K-epsilon, realizable model, Scalable wall function
3. Turbulence intensity- 5% & ratio- 10
4. Water inlet:
 a. Velocity- 1 m/s
 b. Temperature-311
5. Water Outlet:
 a. Mass flow rate-0.167 kg/s
6. Tube:
 a. Convection-500 w/m2k
7. Material-Copper

Figure 6 CFD result of Membrane Helical Coil Heat Exchanger (Temperature of Water)
After completing the CFD simulations, we got the following results of Membrane Helical Coil Heat Exchanger in the temperature of the water domain are as follows:

Inlet Temperature: 311 K
Outlet Temperature: 316.32 K

2.3.3. Pressure of Syngas Domain

In Pressure of syngas domain we consider the following assumptions for getting the results of the pressure of syngas domain -

INPUT DATA

1. Fluid: Syngas and Water
2. K-epsilon, realizable model, Scalable wall function
3. Turbulence intensity- 5% & ratio- 10
4. Gas Inlet:
 a. Pressure- 245166Pa
5. Gas Outlet:
 a. Mass flow rate-0.167kg/s
6. Tube:
 a. Convection-500w/m²k
 b. Material-Copper

![CFD result of Membrane Helical Coil Heat Exchanger (Pressure of Syngas)](image)

Figure 7 CFD result of Membrane Helical Coil Heat Exchanger (Pressure of Syngas)
After completing the CFD simulations, we got the following results of Membrane Helical Coil Heat Exchanger in the pressure of syngas domain are as follows-
Inlet pressure: 245053 Pa
Outlet Pressure: 94503 Pa

3. CONCLUSION
In this research paper, three-dimensional numerical simulations for Membrane Helical Coil Heat Exchanger with different membrane configuration and working condition are performed to reveal the effects of membrane configuration and working condition on the temperature drop and heat transfer characteristics.
The major findings are summarised as follows:
(1) Heat transfer analysis of a Membrane Helical Coil Heat Exchanger using CFD code ANSYS R18.0 has been present in this paper.
(2) Higher operation pressure and temperature of syngas from underground coal mines, however, brings more significant pressure drop because of the Membrane Helical Coil Heat Exchanger.
(3) The Membrane Helical Coil Heat Exchanger of the syngas significantly affect the pressure drop and the heat transfer.
(4) The heat transfer increases with higher H2O percentage and lower H2 percentage. The pressure drop increases with higher CO2 percentage and lower H2 percentage.

ACKNOWLEDGMENT
This work is financially supported by Gyro Drive Machinery Private Limited, Bangalore, Karnataka, India.

REFERENCES
[1] D. Butterworth, A model for heat transfer during three-dimensional flow in tube bundles, in: Paper HX-6, Sixth International Heat Transfer Conference, Toronto, 1978.
[2] J.H. Nie, W.Q. Tao, Q.W. Wang, Three dimensional simulation of turbulence flow for heat exchanger head with complex geometries, J. Xi’an Jiaotong Univ. 34 (5) (2000) 13–18.
[3] S. Al-sanea, N. Rhodes, D.G. Tatchell, T.S. Wilkinson, A computer model for detailed calculation of the flow in power station condenser, Inst. Chem. Eng. Symp. 75 (1983) 70–88.
[4] Y.W. Chiu, J.Y. Jang, 3D numerical and experimental analysis for thermal–hydraulic characteristics of air flow inside a circular tube with different tube inserts, Appl. Therm. Eng. 29 (2009) 250–258.
[5] Sagar S. Gaddamwar, Anand N. Pawar, Pramod A. Naik, Investigational Research of Heat Transmit Distinctiveness of High Pressure Syngas In Coal Mines Used by Membrane Helical Coil, International Journal of Mechanical Engineering and Technology (IJMET), Volume 9, Issue 1, January 2018, pp. 887–894
[6] X.H. Huang, Q.J. Wang, Z. Lu, Three dimensional numerical simulation of fluid flow and heat transfer in shell-and-tube heat exchanger, J. Chem. Ind. Eng. 51(3) (2000) 297–302.
[7] X. Gu, Numerical Simulation of Shell-and-tube Heat Exchanger and Research on Sideling-flow Heat Exchanger, Zhengzhou University, Zhengzhou, 2006.
[8] J.F. Zhang, Y.L. He, W.Q. Tao, 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles – Part I: numerical model and results of whole heat exchanger with middleoverlapped helical baffles, Int. J. Heat Mass Transfer 52 (2009) 5371–5380.
CFD Analysis of Membrane Helical Coil for optimization of High Pressure and Temperature of Syngas in Underground Coal Mines

[9] B.O. Neeraas, A.O. Fredheim, B. Aunan, Experimental shell-side heat transfer and pressure drop in gas flow for spiral-wound LNG heat exchanger, Int. J. Heat Mass Transfer 47 (2) (2004) 353–361.

[10] H.D. Li, V. Kottke, Effect of the leakage on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement, Int. J. Heat Mass Transfer 41 (2) (1998) 425–433.

[11] S.S. Gaddamwar, A. N. Pawar, Pramod A. Naik, Similitude of Membrane Helical Coil With Membrane Serpentine Tube For Characteristics of High-Pressure Syngas: A Review, AIP Conference Proceedings 1966, 020005 (2018).

[12] C.H. Huang, I.C. Yuan, H.C. Ay, An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers, Int. J. Heat Mass Transfer 52 (21–22) (2009) 4883–4893.

[13] M. Prithiviraj, M.J. Andrews, Three-dimensional numerical simulation of shell and tube heat exchangers, Numer. Heat Transfer A 33 (1998) 799–828.

[14] Sagar S. Gaddamwar, Aanad N. Pawar, Heat Transfer Characteristics of high pressure gas in an augmented heat exchanger used in coal mines: A Review, International Journal of Science, Engineering and Technology (IJSET), pp 691-696.