Investigating Level of Inbreeding and Its Effects on Productive Traits of Napri X Broiler Chickens

Adejoh-Ubani Elizabeth Ojoma1*, Rufina Obioma Okeke2, Edward Christopher Dung3, Biola Lisa Bodamisi 4, Suleiman Ibrahim Onotu 5, Stanley David Oziegbe 6 and Danjuma Reuben Tom 7

1 National Animal Production Research Institute, Poultry Unit, Shika Zaria, Nigeria. 2 National Biotechnology Development Agency Lugbe Airport, Road Abuja, Nigeria. 3 Department of Veterinary Physiology, Pharmacology and Biochemistry, University of Jos, Nigeria. 4 Department of Animal Science, Ahmadu Bello University, Zaria, Nigeria. 5 Department of Animal Science, Bayero University Kano, Nigeria. 6 Department of Theriogenology and Production, Faculty of Veterinary Medicine, University of Jos, Nigeria. 7 Department of Veterinary Medicine, Surgery and Radiology, Faculty of Veterinary Medicine, University of Jos, Nigeria.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/ARJA/2022/v15i130150

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/83316

Received 12 November 2021
Accepted 18 January 2022
Published 20 January 2022

ABSTRACT

Inbreeding refers to the mating together of individuals that are more closely related than would be the case if mating was at random. In this study, we investigate inbreeding and its effect on productive traits in NAPRI X broiler chickens. Traits measured were bodyweight and morphometric traits (Neck length, back length, keel length, breast length, thigh length and shank length). Pedigree information which consists of the base generation, 1060 (sire line) and 341 (dam line) birds; in generation 1, there were 565 (sire line selection), 859 (dam line selection), 433 (sire line control), and 592 (dam line control); and in generation 2, there were 595 (sire line selection), 764 (dam line selection), 457 (sire line control), and 654 (dam line control) were used to calculate inbreeding using J.M.P genomics software. Inbreeding significantly (p<0.05) influenced bodyweight and

*Corresponding author: E-mail: lizzyubani@yahoo.com;
morphometrics in a positive direction (0.020 - 1.052) though some of the traits are tending to zero. The trend in inbreeding coefficient was quadratic from the base generation to the second generation with a range of 0.38-0.81 in SLS, 0.41-0.96 in DLS, 0.51-0.80 in SCL and 0.30-1.03 in DCL. It is therefore concluded that there is a gradual build-up of inbreeding in NAPRI X population thus, the use of mate allocation programs is hereby recommended to put a limit or constraint on the level of inbreeding for the future progeny of NAPRI X broiler chickens.

Keywords: Chicken; inbreeding; traits, NAPRI X; productive

1. INTRODUCTION

The mating of people who share a common ancestor is known as inbreeding. The inbreeding coefficient (F) is defined as the likelihood that two alleles at any given locus in an individual are identical-by-descent (IBD) and hence descended from a common ancestor [1]. Inbreeding leads to a rise in homozygosity, which indicates a loss of genetic variety, and can eventually lowering the performance of economically significant traits [2-7]. Inbreeding coefficients have traditionally been calculated using pedigree information (FPED), which evaluates parentage relationships [8]. Inbreeding also results in a decline in the mean phenotypic values of some traits, mainly including those related to fitness and physiological efficiency in normal outbreeding species, which is known as inbreeding depression [9]. In comparison to earlier studies, Niknafs et al. [9] found a higher inbreeding coefficient in native chickens after 18 generations of selection, which could be due to the fact that the birds were part of a selection program. In commercial chicken populations, there are limited instances of inbreeding coefficients [4-11]. Szwaczkowski et al. [12] estimated very low levels of inbreeding in two lines of broiler and laying birds, while Muir et al. (2008) showed high levels of inbreeding likely due to the purebred nature of the populations studied. This method has limitations as it requires a complete and reliable pedigree, it is unable to accurately capture the Mendelian sampling that occurs during mating, and it assumes that founders are unrelated [13]. Consequently, inbreeding coefficients based on pedigree records (FPED) have been shown to underestimate the true level of inbreeding in an individual [14].

In a review by Leroy [15], a meta-analysis was completed investigating inbreeding depression according to species and trait. Overall, the author observed a 0.14% decrease of the mean of a trait per 1% increase in inbreeding. Additionally, production traits were seen to be strongly affected by inbreeding depression, in comparison to other traits. The meta-analysis by Leroy [15] concluded, however, that in livestock species, any kind of selected trait may be affected by inbreeding depression where the degree of the effect of inbreeding depression largely depends on the importance of dominance variance within the trait (Misztal et al., 1997).

Inbreeding has been quantified using different methods in humans [16] (Verweij et al., 2014), cattle [17-19], swine [20,21], and sheep [22,17], but limited research is available on the topic in poultry, especially in NAPRIX broiler chickens undergoing genetic selection. Knowledge of inbreeding in NAPRI X broiler birds under selection will allow for more effective management and monitoring of economic traits and reduction in mortality of the birds so as to conserve the genetic resources. This will allow for the animal agriculture industry to continue to provide healthy products to consumers while meeting the rising food needs of the world’s growing population in a sustainable manner. The goal of this research project was to investigate inbreeding using the pedigree methods to analyze the effect on the production traits. Within this goal, the specific objectives were to estimate yearly trend in inbreeding coefficient in sire and dam lines of NAPRI X broiler birds under genetic selection and evaluate the effect of inbreeding depression on body weight and body linear measurements traits in sire and dam lines of NAPRI X broiler birds.

2. MATERIALS AND METHODS

2.1 Location of the Study

The research was conducted at the Poultry Breeding Unit of Poultry Research Programme of the National Animal Production Research Institute (NAPRI) Shika, Zaria. Shika is located in the semi-arid, Northern Guinea savanna zone of Nigeria within latitude 11°8’N and 07°4’E with an
elevation of 2178 feet (663.77 metres) above sea level (Ovimaps, 2014).

2.1.1 Description of the original stock

A total of 2,800 day old grandparent broiler chicks were imported between the years 2006 to 2008. They belonged to two strains of meat type chickens {Anak (A) and Hubbard (B)}. Both sire-line and dam-line were present within each strain. The two strains were all white in colour. For the formation of F1 generation, the parental strains were crossed according to the monoallelic system. For this purpose mating was arranged among the surviving 831 and 742 hens of dam-line and sire-line respectively and their matching 242 and 371 cockerels to produce the F1 generation chicks of four different genotypes each in both sire-line and dam-line.

This base population was divided into two selection lines and two control lines as follows:-

- Population I - Line selected for bodyweight male line (Sire line)
- Population II - Line selected for bodyweight female line (Dam line)
- Population III - Control line reproduced by random mating (Sire line)
- Population IV - Control line reproduced by random mating (Dam line).

2.2 Sub lines Formation and Selection Method

From the original stock, two sub-lines were developed in the following ways: The individuals in the base generation (G0) with high 8-weeks body weight in the two lines formed the parental stock for the two lines. Thereafter both lines were maintained separately and the selection was practiced within each line in subsequent generations following the criteria of selection described above.

A total of 1200 hens and 1000 cockerels were pedigree hatched for each line (sire line and dam line). Chicks were wing-banded at day old, brooded and reared to point of lay. A total of 1060 (sire line) and 341 birds (dam line) had complete records at the end of 8 weeks. At the end of rearing, a total of 10 cockerels and 60 hens were picked at random to constitute the control population, while 20 cockerels and 120 hens with the highest body weights were selected based on their corrected eight week body weights for each line. The birds were mated in the ratio of 1 cockerel to 6 hens to produce eggs which were hatched for generation 1. A total of 565 (sire line selection), 859 (dam line selection), 433 (sire line control) and 592 (dam line control) had complete records at the end of 8 weeks. Breeding and selection were similar to the base generation. A total of 595 (sire line selection), 764 (dam line selection), 457 (sire line control) and 654 (dam line control) had complete records at the end of 8 weeks. Breeding and selection were similar to the base generation and generation 1. A total of 585 (sire line selection), 551 (dam line selection), 461 (sire line control) and 529 (dam line control) had complete records at the end of 8 weeks. Breeding and selection were similar to the base generation, generations 1 and 2.

2.3 Bird Management

The deep litter system of management was used to rear the birds from day old to 8 weeks of age. The birds were brooded with the aid of electric bulbs, coal pots and kerosene stoves. A starter ration containing 23% crude protein (CP) and 2800kcal ME/kg was fed ad libitum during the first four weeks. Thereafter, the feed was changed to broiler finisher containing 20% CP and 3000kcal ME/kg for the next four weeks of the study.

2.4 Data Collection

2.4.1 Live body weight

The weight of individual birds was taken first at day old using a digital weighing scale measuring to the nearest one gram and thereafter bi-weekly until 8 weeks of age.

2.4.2 Morphometric trait measurements

Morphometric trait measurements were taken at 8 weeks of age, using a measuring tape in centimeters.

The neck length, which was measured in centimeters, was taken on the live birds, using a tape rule. The neck being somewhat arched was straightened out with the hand and measurements were taken. The measurement covered the entire length of the straightened axial skeleton, which included the first neck bone after the skull and the last cervical vertebra at the shoulder point.
The back length was measured in centimeters from the base of the neck to the uropygial gland at the base of the tail. The measurement included the cape and saddle parts of the bird.

The shank (Tarso-Metatasus) length was measured in centimeters using a tape-rule from the lower thigh joint to the base of the three toes.

The keel length was measured in centimeters from the anterior end to the posterior end of the keel, using a tape rule.

The thigh length was measured with a tape rule in centimeters from upper thigh joint to the lower thigh joint.

3. RESULTS AND DISCUSSION

Average inbreeding coefficients by generation of selection are shown in Figure 1. The rate of inbreeding increased from 0.38% in generation 1 to 0.81% in generation 2 for sire line selected. In dam line selected, it was 0.41% in base generation and increased to 0.96% in generation 2. In the sire control line, the increased from 0.51% to 0.80% while in the dam control line, the inbreeding increased from 0.30% to 1.03%. These discrepancies are because of the use of a few proven cocks in the breeding program and may indicate the lack of an ongoing mating strategy to control inbreeding.

Estimates of inbreeding depression for bodyweight and body linear measurement in sire line selected of NAPRI X broiler birds are presented in Table 1. Inbreeding significantly increased ($P < 0.01$) bodyweight by 0.085g, neck length by 0.378cm, back length by 0.038cm, keel length by 0.358cm, breast length by 0.437cm and shank length by 1.052 with the exception of thigh length for each 1% increase in inbreeding.

Table 2 the estimates of inbreeding depression for bodyweight and body linear measurement in dam line selected of NAPRI X broiler birds. With the exception of breast length, inbreeding significantly ($P<0.05$) influenced bodyweight by 0.517g, neck length by 0.330cm, back length by 0.051cm, keel length by 0.254cm, thigh length by 0.031cm, breast length by 0.019cm and shank length by 0.096cm.

Table 3 the estimates of inbreeding depression for 1% increase of inbreeding and their corresponding P-value for production traits in random control sire line. With the exception of neck length, keel length and breast length, inbreeding significantly ($P<0.05$) influenced bodyweight by 0.501g, back length by 0.092cm, thigh length by 0.107cm and shank length by 0.144cm.
Estimates of inbreeding depression for bodyweight and body linear measurement in randombred control dam line in NAPRI X broiler birds are presented in Table 4. Inbreeding significantly increased ($P < 0.01$) bodyweight by 0.729g, neck length by 0.062cm, keel length by 0.072cm, breast length by 0.107cm, thigh length by 0.104cm and shank length by 0.074cm for each 1% increase in inbreeding.

The significant, positive and small increase in inbreeding may be attributed to the high probability of controlled matings among relative NAPRI X broiler chickens. Overall, estimates of inbreeding depression obtained from the present study were consistent with the results reported in the literature. The effect of inbreeding was positive for all production traits. This is an indication that inbreeding has not shown depression on the production traits. The low inbreeding coefficient in this study was in contrast with the report of Niknafs et al., [9] who reported a greater inbreeding coefficient in native chickens, after 18 generations of selection, compared to other studies, which may relate to the fact that the birds were involved in a selection program. The variations might be link to the fact that selection was concluded in the 2nd generations in this study. Likewise, few accounts of inbreeding coefficients are known in commercial chicken populations. Szwaczkowski et al. [12] estimated very low levels of inbreeding in two lines of laying hens which agrees with the trend reported in this study, while Muir et al. (2008) showed high levels of inbreeding likely due to the purebred nature of the populations studied. Most recent estimates of inbreeding coefficients in turkey populations consist of those completed on two purebred lines in a research thesis by Melka (2010). Estimates of the rates of inbreeding obtained in the current study are still considerably higher (0.41-1.28%/yr) than the critical level of 0.5%/yr suggested for animal breeding programs (Nicholas, 1989). The higher rates of inbreeding coefficient might be connected to extensive use few cocks in all the generations.

The positive and low inbreeding depression in this study implies that occasional intense inbreeding does occur in these populations. Woodard et al. (1983) demonstrated that a low negative effect of inbreeding on body weight which was in contrast to the positive effect obtained in this study. Kamali et al. (2007)

Table 1. Estimates of inbreeding depression for 1% increase of inbreeding and their corresponding P-value for production traits in sire line selected

Traits	Inbreeding depression	Wald p value
Bodyweight (g)	0.085	0.0002*
Neck length (cm)	0.378	<.0001*
Back length (cm)	0.038	0.0108*
Keel length (cm)	0.358	<.0001*
Thigh length (cm)	0.020	0.0663
Breast length (cm)	0.437	<.0001*
Shank length (cm)	1.052	<.0001*

* *p<0.05-Significant

Table 2. Estimates of inbreeding depression for 1% increase of inbreeding and their corresponding P-value for production traits in dam line selected

Traits	Inbreeding depression	Wald p value
Bodyweight (g)	0.517	<.0001*
Neck length (cm)	0.330	<.0001*
Back length (cm)	0.051	0.0014*
Keel length (cm)	0.254	<.0001*
Thigh length (cm)	0.031	0.0015*
Breast length (cm)	0.019	0.0709
Shank length (cm)	0.096	<.0001*

* *p<0.05-Significant
Table 3. Estimates of inbreeding depression for 1% increase of inbreeding and their corresponding P-value for production traits in control sire line

Traits	Inbreeding depression	Wald p value
Bodyweight (g)	0.501	0.0009*
Neck length (cm)	0.036	0.1035
Back length (cm)	0.092	0.0158*
Keel length (cm)	0.030	0.1140
Thigh length (cm)	0.107	0.0098*
Breast length (cm)	0.039	0.0778
Shank length (cm)	0.144	0.0081*

*p<0.05 - Significant

Table 4. Estimates of inbreeding depression for 1% increase of inbreeding and their corresponding P-value for production traits in control dam line

Traits	Inbreeding depression	Wald p value
Bodyweight (g)	0.729	0.0003*
Neck length (cm)	0.062	0.0157*
Back length (cm)	0.009	0.3642
Keel length (cm)	0.072	0.0106*
Thigh length (cm)	0.140	0.0026*
Breast length (cm)	0.107	0.0042*
Shank length (cm)	0.074	0.0113*

*p<0.05 - Significant

Reported that a reduction in 12-week body weight and body linear measurement is due to increased inbreeding. In this population, the low level of inbreeding may be attributed to mating policy. One male was mated to about 10 females with special attention being aid to avoid the mating between closely related individuals. Also, individuals in the base population assumed to be unrelated and non-inbred.

4. CONCLUSION

The trend of inbreeding coefficient was quadratic from the base generation to the second generation with a range of 0.38-0.81 in SLS, 0.41-0.96 in DLS, 0.51-0.80 in SCL and 0.30-1.03 in DCL; thus, this suggest using mate allocation programs that put a limit or constraint on the level of inbreeding for the future progeny of NAPRI X broiler chickens. The buildup of inbreeding coefficient had not depressed the bodyweight and body measurement traits though some traits are tending towards zero in control and selected sire and dam line, and mating should be carefully design to avoid inbreeding depression in the NAPRI X broiler chicken under selection.

5. RECOMMENDATION

Mating should be carefully design to avoid inbreeding depression in NAPRI X broiler chickens. The use of mate allocation program should be encourage, to effectively manage inbreeding that put a limit or constraint on the level of inbreeding of the future progeny.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Wright S. Coefficients of Inbreeding and Relationship. American. National. 1922;56:330–338.
2. Crow JF. Breeding structure of populations. II. Effective population number. depression: A gate to new opportunities. Revista Brasilia Zootecntical. 1954;46(9):773–782.
3. Curik I, Ferenčakovic M, Sölkner J. Genomic dissection of inbreeding depression: A gate to new opportunities. Revista. Brasilia. Zootechnical. 2017;46(9):773–782.
4. Ferenčaković M, Hamzić E, Gredler-Grandl B, Solberg TR, Klemetsdal G, Curik I, Sölkner J. Estimates of autozygosity derived from runs of homozygosity: Empirical evidence from selected cattle populations. Journal of
Animal Breeding and Genetics. 2011;130:286–293.
5. Hammerly SC, Morrow ME, Johnson JA. A comparison of pedigree- and DNA-based measures for identifying inbreeding depression in the critically endangered Attwater’s Prairie-chicken. Molecular Ecology. 2013;22:5313–5328.
6. Marras G, Gaspa G, Sorbolini S, Dimaro C, Ajmone-Marsan P, Valentini A, Williams JL, MacCiotta NPP. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics. 2014;46:110–121.
7. Van Raden PM. Efficient methods to compute genomic predictions. Journal of Dairy Science Genetics. 2008;45:618–628.
8. Meuwissen THE, Luo Z. Computing inbreeding coefficients in large populations. Genetics Selection and Evolution. 1992;24:305–313.
9. Niknafs S, Abdi H, Fatemi S, Zandi M, Baneh H. Genetic trend and inbreeding coefficients effects for growth and reproductive traits in Mazandaran indigenous chicken. Journal of Biology. 2013;03:25–31. Available: www.scientific-journals.co.uk
10. Van Raden PM, Olson KM, Wiggans GR, Cole JB, Tooker ME. Genomic inbreeding and relationships among Holsteins, Jerseys, and Brown Swiss. Journal of Dairy Science Genetics. 2011;94:5673–5682. DOI:10.3168/jds.2011-4500
11. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genomewide complex trait analysis. America Journal of Human Genetics. 2011;88:76–82.
12. Szwaczkowski T, Cywa-Benko K, Wezyk S. A note on inbreeding effect on productive and reproductive traits in laying hens. Animal Science. Pap. Reports. 2003;21:121–124.
13. Keller MC, Visscher PM, Goddard ME. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics. 2011;189:237–249.
14. Forutan M, Ansari Mahyari S, Baes C, Melzer N, Schenkel FS, Sargolzaei M. North American Holstein cattle. BMC Genomics. 19:98. DOI:10.1186/s12864-018-91:4414–4423
15. Leroy G. Inbreeding depression in livestock species: Review and meta-analysis. Anim. European populations. America Journal of Human Genetics. 2014;83:359–372.
16. McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, Smolej Narancic N, Janicijevic B, Polasek O, Tenesa A, MacLeod AK, Farrington SM, Rudan P, Hayward C, Vitart V, Rudan I, Wild SH, Dunlop MG, Wright AF, Campbell H, Wilson JF. Runs of homozygosity in European populations. America Journal of Human Genetics. 2008;83:359–372.
17. Mastrangelo S, Tolone M, Di Gerlando F, Fontanesi L, Sardina MT, Portolano B. Genomic inbreeding estimation in small populations: Evaluation of runs of homozygosity in three local dairy cattle breeds. Animal. 2016;10:746–754.
18. Peripolli E, Stafuzza NB, Munari DP, Lima ALF, Irgang R, Machado MA, do JC, Panetto C, Ventura RV, Baldi F, da Silva MVGB. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics. 2018;19:34. DOI:10.1186/s12864-017-4365-3
19. Makanjuola BO, Miglior F, Abdalla EA, Maltecca C, Schenkel FS, Baes CF. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. Journal of Dairy Science. 2020;103:45-48.
20. Gomez-Raya L, Rodríguez C, Barragán C, Silió L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection and Evolution. 2015;47:81. DOI:10.1186/s12711-015-0153-1
21. Xu Z, Sun H, Zhang Z, Zhao Q, Olasege BS, Li Q, Yue Y, Ma P, Zhang X, Wang Q, Pan Y. Assessment of autozygosity derived from runs of homozygosity in Jinhua pigs disclosed by sequencing data. Frontier Genetics. 2019;10:274.
22. Chitneedi PK, Arranz JJ, Suarez-Vega A, García-Gámez E, Gutiérrez-Gil B. Estimations of linkage disequilibrium,
effective population size and ROH-based inbreeding coefficients in Spanish Churra sheep using imputed high-density SNP genotypes. Animal. Genetics. 2017; 48:436–446. DOI:10.1111/age.12564

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/83316