Editorial

First Things First - The Model of Research Shape the Results

Renato Carvalho-Vilella a, *

a Center of Physical Therapy Research, Centro Universitário de Lavras, Brazil

ARTICLE INFO

Article history:
Received 26 March 2021
Received in revised form 31 March 2021
Accepted 01 April 2021

© 2021 The Authors. Published by Iberoamerican Journal of Medicine. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

HOW TO CITE THIS ARTICLE: Carvalho-Vilella R. First Things First – The Model of Research Shape the Results. Iberoam J Med. 2021;3(2):102/104. doi: 10.5281/zenodo.4655961.

1. INTRODUCTION

In the past years, the number of scientific journals and publications has risen considerably [1] and will keep rising. Even for the scientific journals that have a peer-review system, a lot of articles do not have methodology quality nor have the results misinterpreted by the authors and the readers. Therefore exist an urgent need to clarify some points that remain obscure due to the overcomplicating of scientific terms, so health care professionals can understand and apply in clinical practice what they are reading.

By reading, interpreting critically, and applying in practice the available evidence, the professional uses in the most correct way the term “Evidence-Based Practice”, defined as the use of the best available evidence applied to the clinical practice [2].

Mainly, in medicine and health sciences, we have three types of different studies, observational, interventional, and reviews.

2. OBSERVATIONAL STUDIES

Observational studies usually, as the proper name defines, observe and understand associations and correlations between two or more variables, and cannot be used to define relations of cause and effect [3].

- **Transversal**

 In this type of study, the researchers define one specific moment of time of the chosen sample. It is used to define the prevalence (%) of some variable in the sample [3].

 \[\text{i.e. What is the prevalence of cardiopathy, in this region, that eats fast food?} \]

- **Case-Control**

 This is a retrospective study, so the researchers seek associations between one or more current conditions with variables that happened in the past [3].

 \[\text{i.e. The research has a sample of 100 cardiopathy} \]
volunteers, what health habits are associated with heart
diseases?

- **Cohort**
 This is a prospective study, so the researchers will develop a
 follow-up program for a determined sample to understand
 the incidence of a condition with time.

 *i.e. The research has a sample of 100 healthy volunteers, is
 fast food-related to heart diseases? The researchers will
 follow up with these volunteers for a determined time (it
 can be 3 months, 1 year, 10 years – it depends on the
 research) and be able to identify changes in health status
 as heart diseases.*

 The cohort studies are the most reliable in the
 observational studies because the researcher can control
 some of the possible variables that can influence the result
 of the study [3].

3. **INTERVENTIONAL OR CLINICAL TRIALS**

Clinical Trials are made to understand the relation cause
and effect, also to test and validate a null or alternative
hypothesis. This type of study assists the health care
professionals in decision-making. This kind of
interventional studies can be:

- **Controlled and Non-controlled**
 A Controlled Clinical Trial is when the research has two or
 more groups, being one of those groups a control/placebo.
 When there is no control/placebo group the research is
 defined as a Non-controlled Clinical Trial [4].

 *i.e. For a controlled trial, the researcher wants to try the
 effectiveness of drug therapy, so the sample is divided into
 two groups: The test group will receive the drug pill and
 the control/placebo will receive an empty pill.*

- **Randomized and Non-randomized**
 Randomization is the random allocation of the sample
 participants into the groups. It is made so the individual
 characteristics of the participants do not impact the results
 of the research, since there is 50% (in two-group research)
 allocation chance in any of the groups. When the research
 is non-randomized, the individual characteristics may
 cause a negative/positive bias impact [4].

 *i.e. To randomize the researcher may use playing cards, a
 coin flip, a computer randomization program.*

- **Blinded, Double-Blinded, Triple-Blinded, or
 Non-Blinded**
 Blinded is when one of the parts of the study does not
 know about the test or control group [4].

 *i.e. Blinded: Only the sample does not know. Double-
 Blinded: The sample and the professional applying the
 therapy do not know. Triple Blinded: The double-blinded
 case and also the statistical analyzer do not know.*

4. **REVIEWS**

- **Literature Review**
 This review is the simplest and less reliable review. Authors
 may be partial to their own opinion and influence the
 results of the review, therefore it is not recommended
 for publishing articles (except when it is a narrative or
 critical review that has different objectives) [5].

- **Systematic Review**
 It is the most common review in the scientific field. There
 is a protocol, search, data extraction, quality appraisal, and
 data analysis explicit and well defined. The author needs to
 be impartial and non-opinion, reducing the risk of bias and
 influence in the results [5].

- **Meta-analysis**
 It is the most reliable review type and meta-analysis will
 always be systematic reviews. In a meta-analysis the
 researchers group the clinical trials from the systematic
 review and re-analyze the statistics (only possible to Meta-
 analyze when the trials have at least one statistical
 measured variable in common) as one big clinical trial [5].

5. **CONCLUSIONS**

Although these definitions are not the only aspects of
research, as all have statistical analysis, interpretation of
the own results, and discussion of those results, it is
important for the researcher to keep in mind that for each
kind of research question, there is a specific research
model, and the model of research will shape the results and
the interpretation of it.

In addition, the cited definitions must be clear for the
reader to interpret, introduce, and use evidence-based
practice into the clinical practice, enhancing efficacy,
results, and safety of the treatments.
6. REFERENCES

1. National Science Foundation. Science and Engineering Indicators. Available from: https://data.worldbank.org/indicator/IP.JRN.ARTC.SC
 (accessed March 2021).

2. Mercuri M, Baigrie BS. What counts as evidence in an evidence-based world? J Eval Clin Pract. 2019;25(4):533-5. doi: 10.1111/jep.13220.

3. Rosenbaum PR. Observational Study. In: Everitt BS, Howell DC, editors. Encyclopedia of Statistics in Behavioral Science (Volume 3). Chichester: John Wiley & Sons, Ltd; 2005:1451-62.

4. Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA. 2003;290(12):1624-32. doi: 10.1001/jama.290.12.1624.

5. Wright RW, Brand RA, Dunn W, Spindler KP. How to write a systematic review. Clin Orthop Relat Res. 2007;455:23-9. doi:
 10.1097/BLO.0b013e31802e9098.