Pointwise analog of the Stečkin approximation theorem

Włodzimierz Łenski
University of Zielona Góra
Faculty of Mathematics, Computer Science and Econometrics
65-516 Zielona Góra, ul. Szafrana 4a
P O L A N D
W.Lenski@wmie.uz.zgora.pl

Abstract

We show the pointwise version of the Stečkin theorem on approxima-
tion by de la Vallée-Poussin means. The result on norm approximation is
also derived.

Key words: Pointwise approximation by de la Vallée-Poussin means

2000 Mathematics Subject Classification: 42A24,
1 Introduction

Let \(L^p (1 \leq p < \infty) [C] \) be the class of all \(2\pi \)-periodic real-valued functions integrable in the Lebesgue sense with \(p \)-th power \([\text{continuous}]\) over \(Q = [-\pi, \pi] \) and let \(X^p = L^p \) when \(1 \leq p < \infty \) or \(X^p = C \) when \(p = \infty \).

Let us define the norms of \(f \in X^p \) as

\[
\| f \| = \| f \|_{X^p} = \| f(\cdot) \|_{X^p} := \left\{ \begin{array}{ll}
\int_Q |f(x)|^p \, dx & \text{when } 1 \leq p < \infty \\
\sup_{x \in Q} |f(x)| & \text{when } p = \infty
\end{array} \right.
\]

and

\[
\| f \|_{x,\delta} = \| f \|_{X^p,x,\delta} = \| f(\cdot) \|_{X^p,x,\delta} := \sup_{0<h \leq \delta} \| f(\cdot) \|_{X^p,x,h}
\]

where

\[
\| f \|^{\circ}_{x,\delta} = \| f \|_{X^p,x,\delta} = \| f(\cdot) \|_{X^p,x,\delta}^{\circ} := \left\{ \begin{array}{ll}
\frac{1}{2\pi} \int_{x-h}^{x+h} |f(t)|^p \, dt & \text{when } 1 \leq p < \infty \\
\sup_{0<h \leq \delta} \sup_{0<|t|\leq h} |f(x+t)| & \text{when } p = \infty
\end{array} \right.
\]

We note additionally that

\[
\| f \|_{x,0} = \| f \|^{\circ}_{x,0} = \| f(\cdot) \|_{x,0} = |f(x)|.
\]

Consider the trigonometric Fourier series of \(f \)

\[
Sf(x) = \frac{a_0(f)}{2} + \sum_{k=0}^{\infty} (a_k(f) \cos kx + b_k(f) \sin kx)
\]

with the partial sums \(S_k f \).

Let

\[
\sigma_{n,m} f(x) := \frac{1}{m+1} \sum_{k=n-m}^{n} S_k f(x) \quad (m \leq n = 0, 1, 2, \ldots)
\]

As a measure of approximation by the above quantities we use the pointwise
characteristics

\[w_x f(\delta) = w_{x f}(\delta)_{X^p} := \| \Delta_x f(\cdot) \|_{X^p x, \delta} \]

\[
= \begin{cases}
\sup_{0 < h \leq \delta} \left\{ \frac{1}{2h} \int_{-h}^h |\Delta_x f(t)|^p dt \right\}^{1/p} & \text{when } 1 \leq p < \infty \\
\sup_{0 < h \leq \delta} \left\{ \sup_{0 < |t| \leq h} |\Delta_x f(t)| \right\} & \text{when } p = \infty
\end{cases}
\]

cf. [1] and

\[w^o_x f(\delta) = w_{x f}^o(\delta)_{X^p} := \| \Delta_x f(\cdot) \|^o_{X^p x, \delta} \]

\[
= \begin{cases}
\left\{ \frac{1}{2\delta} \int_{-\delta}^\delta |\Delta_x f(t)|^p dt \right\}^{1/p} & \text{when } 1 \leq p < \infty \\
\sup_{0 < |t| \leq \delta} |\Delta_x f(t)| & \text{when } p = \infty
\end{cases}
\]

and also

\[
\Omega_{x f} \left(\frac{\pi}{n+1} \right) = \Omega_{x f} \left(\frac{\pi}{n+1} \right)_{X^p} := \frac{1}{n+1} \sum_{k=0}^n w_x f(\frac{\pi}{k+1})_{X^p}
\]

\[
\Omega_{x f}^o \left(\frac{\pi}{n+1} \right) = \Omega_{x f}^o \left(\frac{\pi}{n+1} \right)_{X^p} = \frac{1}{n+1} \sum_{k=0}^n w_{x f}^o(\frac{\pi}{k+1})_{X^p},
\]

where \(\Delta_x f(t) := f(x+t) - f(x) \),

constructed on the base of definition of \(X^p - points \) ([Lebesgue points\(L^p\) - points]) or [points of continuity \(C\) - points]). We also use the modulus of continuity of \(f \) in the space \(X^p \) defined by the formula

\[\omega f(\delta) = \omega f(\delta)_{X^p} := \sup_{0 < |h| \leq \delta} \| \Delta_x f(h) \|_{X^p} \]

and its arithmetic mean

\[
\Omega f \left(\frac{\pi}{n+1} \right) = \Omega f \left(\frac{\pi}{n+1} \right)_{X^p} = \frac{1}{n+1} \sum_{k=0}^n \omega f(\frac{\pi}{k+1})_{X^p}.
\]

We can observe that, for \(f \in X^{\tilde{p}} \) and \(\tilde{p} \geq p \),

\[||w \cdot f(\delta)_{X^p}||_C \leq \omega f(\delta)_C, \]

whence

\[||\Omega \cdot f(\delta)_{X^p}||_C \leq \Omega f(\delta)_C \]

and

\[||w \cdot f(\delta)_{X^p}||_{X^p} \leq \omega f(\delta)_{X^p}, \]
whence
\[\|\Omega^2 f(\delta)\|_{X^p} \leq \Omega f(\delta)_{X^p}. \]

Let introduce one more measure of pointwise approximation analogical to the best approximation of function \(f \) by trigonometric polynomials \(T \) of the degree at most \(n \) \((T \in H_n)\)

\[E_n(f)_{X^p} := \inf_{T \in H_n} \{ \| f(\cdot) - T(\cdot) \|_{X^p} \}, \]

namely

\[E_n(f, x; \delta) = E_n(f, x; \delta)_{X^p} := \inf_{T \in H_n} \{ \| f(\cdot) - T(\cdot) \|_{X^p, x, \delta} \} \]

\[= \begin{cases} \inf_{T \in H_n} \left\{ \sup_{0<h \leq \delta} \left[\frac{1}{h} \int_{-h}^{h} |f(x+t) - T(x+t)|^p dt \right]^\frac{1}{p} \right\} & \text{when } 1 \leq p < \infty \\ \inf_{T \in H_n} \left\{ \sup_{0<|h| \leq \delta} |f(x+h) - T(x+h)| \right\} & \text{when } p = \infty \end{cases} \]

and

\[E_n^o(f, x; \delta) = E_n^o(f, x; \delta)_{X^p} := \inf_{T \in H_n} \{ \| f(\cdot) - T(\cdot) \|_{X^p, x, \delta}^o \}. \]

We will also use its arithmetic mean

\[F_{n,m}(f, x) = F_{n,m}(f, x)_{X^p} := \frac{1}{m+1} \sum_{k=0}^{m} E_n\left(f, x; \frac{\pi}{k+1}\right)_{X^p} \]

and

\[F_{n,m}^o(f, x) = F_{n,m}^o(f, x)_{X^p} := \frac{1}{m+1} \sum_{k=0}^{m} E_n^o\left(f, x; \frac{\pi}{k+1}\right)_{X^p}. \]

Denote also

\[X^p(w_x) = \{ f \in X^p : w_x f(\delta) \leq w_x(\delta) \}, \]

where \(w_x \) is a function of modulus of continuity type on the interval \([0, +\infty)\), i.e. a nondecreasing continuous function having the following properties: \(w_x(0) = 0 \), \(w_x(\delta_1 + \delta_2) \leq w_x(\delta_1) + w_x(\delta_2) \) for any \(0 \leq \delta_1 \leq \delta_2 \leq \delta_1 + \delta_2 \).

Using these characteristics we will show the pointwise version of the Stečkin generalization of the Fejér-Lebesgue theorem. As a corollaries we will obtain the mentioned original result of S. B. Stečkin on norm approximation as well the result of N. Tanović-Miller.

By \(K \) we shall designate either an absolute constant or a constant depending on some parameters, not necessarily the same of each occurrence.
2 Statement of the results

At the begin we formulate the partial solution of the considered problem.

Theorem 1 If \(f \in X^p \) then, for any positive integer \(m \leq n \) and all real \(x \),

\[
|\sigma_{n,m} f(x) - f(x)| \leq \pi^2 E_{n-m}^\circ (f, x, \pi \frac{\pi}{2n-m+1}) X + 6F_{n-m,m}^\circ (f, x)_X + \int_{\pi \frac{\pi}{2n-m+1}}^{\pi m+1} E_{n-m}^\circ (f, x, t)_X \frac{dt}{t} + E_{n-m}^\circ (f, x; 0)_X.
\]

and

\[
|\sigma_{n,m} f(x) - f(x)| \leq (6 + \pi^2) F_{n-m,m}^\circ (f, x)_X \left[1 + \ln \frac{n+1}{m+1} \right] + E_{n-m}^\circ (f, x; 0)_X.
\]

Now, we can present the main result on pointwise approximation.

Theorem 2 If \(f \in X^p \) then, for any positive integer \(m \leq n \) and all real \(x \),

\[
|\sigma_{n,m} f(x) - f(x)| \leq K \sum_{\nu=0}^{n} F_{n-m+m+\nu,m}^\circ (f, x)_X + F_{n-m+m+\nu,\nu}^\circ (f, x)_X + E_{2n}^\circ (f, x; 0)_X.
\]

This immediately yields the following result of Stečkin [5].

Theorem 3 If \(f \in C \) then, for any positive integer \(n \) and \(m \leq n \)

\[
||\sigma_{n,m} f(\cdot) - f(\cdot)||_C \leq K \sum_{\nu=0}^{n} E_{n-m+m+\nu}^\circ (f)_C \frac{1}{m+\nu+1}.
\]

Remark 1 Theorem also holds if instead of \(C \) we consider the spaces \(X^p \) with \(1 \leq p < \infty \). In the proof we need the Hardy-Littlewood estimate of the maximal function.

At every \(X^p - point \) \(x \) of \(f \)

\[
\Omega_x f(\gamma)_{X^p} = o_x(1) \quad \text{as} \quad \gamma \to 0+.
\]

and thus from Theorem 1 we obtain the corollary which state the result of the Tanović-Miller type [6].

Corollary 1 If \(f \in X^p \) then, for any positive integer \(m \leq n \) at every \(X^p - point \) \(x \) of \(f \),

\[
|\sigma_{n,m} f(x) - f(x)| = o_x(1) \left[1 + \ln \frac{n+1}{m+1} \right] \quad \text{as} \quad n \to \infty.
\]
3 Auxiliary results

In order to prove our theorems we require some lemmas

Lemma 1 If T_n is the trigonometric polynomial of the degree at most n of the best approximation of $f \in X^p$ with respect to the norm $\| \cdot \|_{X^p}$ then, it is also the trigonometric polynomial of the degree at most n of the best approximation of $f \in X^p$ with respect to the norm $\| \cdot \|_{X^p, x, \delta}$ for any $\delta \in [0, \pi]$.

Proof. From the inequalities

$$\| E_n(f, \cdot, \delta)_{X^p} \|_{X^p} \geq \| E_n^o(f, \cdot, \delta)_{X^p} \|_{X^p} = \| f - T_n, \delta \|_{X^p, \cdot, \delta} \|_{X^p} = \| f - T_n \|_{X^p} = E_n(f)_{X^p},$$

and

$$\| E_n^o(f, \cdot, \delta)_{X^p} \|_{X^p} \leq \| f - T_n \|_{X^p, x, \delta} \|_{X^p} = \| f - T_n \|_{X^p} = E_n(f)_{X^p},$$

where T_n, δ and T_n are the trigonometric polynomials of the degree at most n of the best approximation of $f \in X^p$ with respect to the norms $\| \cdot \|_{X^p, x, \delta}$ and $\| \cdot \|_{X^p}$ respectively, we obtain relation

$$\| f - T_n, \delta \|_{X^p} = \| f - T_n \|_{X^p} = E_n(f)_{X^p},$$

whence $T_n, \delta = T_n$ for any $\delta \in [0, \pi]$ by uniqueness of the trigonometric polynomial of the degree at most n of the best approximation of $f \in X^p$ with respect to the norm $\| \cdot \|_{X^p}$ (see e.g. [2], p. 96). We can also observe that for such T_n and any $h \in [0, \delta]$

$$\| f - T_n \|_{X^p, x, h} = E_n^o(f, x, h)_{X^p} \leq E_n(f, x, \delta)_{X^p} \leq \| f - T_n \|_{X^p, x, \delta}.$$

Hence

$$E_n(f, x, \delta)_{X^p} = \| f - T_n \|_{X^p, x, \delta}$$

and our proof is complete. \blacksquare

Lemma 2 If $n \in \mathbb{N}_0$ and $\delta > 0$ then $E_n(f, x; \delta)_{X^p}$ is nonincreasing function of n and nondecreasing function of δ. These imply that for $m, n \in \mathbb{N}$ the function $F_{n, m}(f, x)_{X^p}$ is nonincreasing function of n and m simultaneously.
Proof. The first part of our statement follows from the property of the norm $\| \cdot \|_{x,\delta}$ and supremum. The second part is a consequence of the calculation

$$
\frac{F_{n,m+1}(f,x)_{X^p}}{F_{n,m}(f,x)_{X^p}} = \frac{m+1}{m+2} \left(1 + \frac{E_n(f,x;\frac{\pi}{m+2})_{X^p}}{\sum_{k=0}^m E_n(f,x;\frac{\pi}{k+1})_{X^p}} \right)
\leq \frac{m+1}{m+2} \left(1 + \frac{E_n(f,x;\frac{\pi}{m+1})_{X^p}}{\sum_{k=0}^m E_n(f,x;\frac{\pi}{k+1})_{X^p}} \right)
= \frac{m+1}{m+2} \left(1 + \frac{1}{m+1} \right) = 1.
$$

Lemma 3 Let $m, n, q \in \mathbb{N}_0$ such that $m \leq n$ and $q \geq m + 1$. If $f \in X^p$ then

$$
|\sigma_{n+q,m} f(x) - \sigma_{n,m} f(x)| \leq K F_{n-m,m}(f,x)_{X^p} \sum_{\nu=0}^{q-1} \frac{1}{m+\nu+1}.
$$

Proof. It is clear that

$$
\sigma_{n,m} f(x) = \frac{1}{m+1} \sum_{k=n-m}^n \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) D_k(t) \, dt
= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) V_{n,m}(t) \, dt
$$

where

$$
V_{n,m}(t) = \frac{1}{m+1} \sum_{k=n-m}^n D_k(t) \quad \text{and} \quad D_k(t) = \frac{\sin \frac{(2k+1)t}{2}}{2 \sin \frac{t}{2}}.
$$

Hence, by orthogonality of the trigonometric system,

$$
\sigma_{n+q,m} f(x) - \sigma_{n,m} f(x)
= \frac{1}{\pi} \int_{-\pi}^{\pi} \left[f(x+t) - T_{n-m}(x+t) \right] \left(V_{n+q,m}(t) - V_{n,m}(t) \right) \, dt
= \frac{1}{\pi (m+1)} \sum_{k=n-m}^n \int_{-\pi}^{\pi} \left[f(x+t) - T_{n-m}(x+t) \right] \left(D_{k+q}(t) - D_k(t) \right) \, dt
= \frac{1}{\pi (m+1)} \sum_{k=n-m}^n \int_{-\pi}^{\pi} \left[f(x+t) - T_{n-m}(x+t) \right] \frac{\sin \frac{(2k+2q+1)t}{2} - \sin \frac{(2k+1)t}{2}}{2 \sin \frac{t}{2}} \, dt
= \frac{1}{\pi (m+1)} \sum_{k=n-m}^n \int_{-\pi}^{\pi} \left[f(x+t) - T_{n-m}(x+t) \right] \frac{\sin \frac{at}{\pi} \cos \frac{(2k+q+1)t}{2}}{\sin \frac{t}{2}} \, dt
$$

7
with trigonometric polynomial T_{n-m} of the degree at most $n-m$ of the best approximation of f.

Using the notations

$$I_1 = \left[-\frac{\pi}{q}, \frac{\pi}{q}\right], \quad I_2 = \left[-\frac{\pi}{m+1}, \frac{\pi}{m+1}\right] \cup \left[\frac{\pi}{q}, \frac{\pi}{m+1}\right]$$

$$I_3 = \left[-\pi, -\frac{\pi}{m+1}\right] \cup \left[\frac{\pi}{m+1}, \pi\right]$$

we get

$$\sum = \frac{1}{\pi (m+1)} \sum_{k=n-m}^{n} \left(\int_{I_1} + \int_{I_2} + \int_{I_3}\right) [f(x+t) - T_{n-m}(x+t)]$$

$$\sin\frac{q\pi}{2} \cos \frac{(2k+q+1)t}{2} \sin \frac{t}{2} dt$$

$$= \sum_1 + \sum_2 + \sum_3.$$

and

$$\sum_1 \leq \frac{1}{\pi (m+1)} \sum_{k=n-m}^{n} \int_{I_1} |f(x+t) - T_{n-m}(x+t)| qdt$$

$$= \frac{q}{\pi} \int_{I_1} |f(x+t) - T_{n-m}(x+t)| dt$$

$$\leq 2E_{n-m} \left(f, x; \frac{\pi}{q}\right)_{X^p}$$

We next evaluate the sums \sum_2 and \sum_3 using the partial integrating and Lemma 1. Thus

$$\sum_2 \leq \int_{I_2} \frac{|f(x+t) - T_{n-m}(x+t)|}{t} dt$$

$$= 2 \left[\frac{1}{2t} \int_{-t}^{t} |f(x+u) - T_{n-m}(x+u)| du\right]_{t=\frac{\pi}{q}}^{t=\frac{\pi}{m+1}}$$

$$+ 2 \int_{\frac{\pi}{q}}^{\frac{\pi}{m+1}} \frac{1}{t} \left[\frac{1}{2t} \int_{-t}^{t} |f(x+u) - T_{n-m}(x+u)| du\right] dt$$

$$\leq 2E_{n-m} \left(f, x; \frac{\pi}{m+1}\right)_{X^p} + 2 \int_{-t}^{t} \frac{1}{t} E_{n-m} \left(f, x; t\right)_{X^p} dt$$

$$\leq 4E_{n-m} \left(f, x; \frac{\pi}{m+1}\right)_{X^p} \left[1 + \ln \frac{q}{m+1}\right]$$

$$\leq 4E_{n-m} \left(f, x; \frac{\pi}{m+1}\right)_{X^p} \left[1 + \sum_{\nu=0}^{q-1} \frac{1}{m+\nu+1}\right]$$

8
\[
\sum_3 \leq \frac{1}{m + 1} \int_{I_3} \left| \frac{f(x + t) - T_{n-m}(x + t)}{t} \right| \left| \sum_{k=n-m}^n \cos \left(kt + \frac{q + 1}{2} t \right) \right| dt
\]
\[
\leq \frac{1}{m + 1} \int_{I_3} \left| \frac{f(x + t) - T_{n-m}(x + t)}{t} \right| \left| \frac{2 \sin \left(\frac{(n+1)t}{2} \right) \cos \left(\frac{2(n-m+q+1)t}{2} \right)}{2 \sin \frac{\pi}{2}} \right| dt
\]
\[
\leq \frac{\pi}{m + 1} \int_{I_3} \left| \frac{f(x + t) - T_{n-m}(x + t)}{t^2} \right| dt
\]
\[
= \frac{\pi}{m + 1} \left\{ 2 \left[\frac{1}{2t} \int_{-t}^t |f(x + u) - T_{n-m}(x + u)| du \right]_{t=\frac{\pi}{m+1}}^{t=\pi} + 4 \int_{\frac{\pi}{m+1}}^\pi \frac{1}{t^2} \left[\frac{1}{2t} \int_{-t}^t |f(x + u) - T_{n-m}(x + u)| du \right] dt \right\}
\]
\[
\leq \frac{\pi}{m + 1} \left\{ 2E_{n-m}(f, x; \pi)_{X_0} + 4 \int_{\frac{\pi}{m+1}}^\pi \frac{1}{t^2} \int_{-t}^{\pi} E_{n-m}(f, x; t)_{X_0} dt \right\}
\]
\[
= \frac{2\pi}{m + 1} \left\{ E_{n-m}(f, x; \pi)_{X_0} + 2 \int_{1}^{m+1} \frac{E_{n-m}(f, x; \frac{\pi}{u})_{X_0}}{u^2} du \right\}
\]
\[
= \frac{2\pi}{m + 1} \left\{ E_{n-m}(f, x; \pi)_{X_0} + \frac{2}{\pi} \sum_{k=0}^{m-1} \int_{k+1}^{k+2} E_{n-m}(f, x; \frac{\pi}{u})_{X_0} du \right\}
\]
\[
\leq \frac{2\pi}{m + 1} \left\{ E_{n-m}(f, x; \pi)_{X_0} + \frac{2}{\pi} \sum_{k=0}^{m-1} \int_{k+1}^{k+2} E_{n-m}(f, x; \frac{\pi}{k+1})_{X_0} \right\}
\]
which proves Lemma 2. ■

Before formulating the next lemmas we define a new difference. Let \(m, n \in \mathbb{N}_0 \) and \(m \leq n \). Denote
\[
\tau_{n,m} f(x) := (m + 1) \left\{ \sigma_{n+m+1,m} f(x) - \sigma_{n,m} f(x) \right\}.
\]
Lemma 4 Let \(m, n, \mu \in \mathbb{N}_0 \) such that \(2\mu \leq m \leq n \). If \(f \in X^p \) then

\[
|\tau_{n,m} f(x) - \tau_{n-\mu,m-\mu} f(x)| \leq K\mu F_{n-\mu+1,\mu-1} (f, x)_{X^p} \ln \frac{m}{\mu}.
\]

Proof. The proof follows by the method of Leindler[3]. Namely

\[
\tau_{n,m} f(x) - \tau_{n-\mu,m-\mu} f(x) = \left(\sum_{k=n+m-2\mu+2}^{n+m+1} - 2 \sum_{k=n-\mu+1}^{n} \right) [S_k f(x) - f(x)]
\]

and

\[
|\tau_{n,m} f(x) - \tau_{n-\mu,m-\mu} f(x)| \leq \left| \left(\sum_{k=n+m-2\mu+2}^{n+m+1} - 2 \sum_{k=n-\mu+1}^{n} \right) [S_k f(x) - f(x)] \right|
\]

\[
= \mu |\sigma_{n+m-\mu+1,\mu-1} f(x) - \sigma_{n-\mu-1} f(x)| + \mu |\sigma_{n+m+1,\mu-1} f(x) - \sigma_{n-\mu-1} f(x)|.
\]

By Lemma 2, for \(2\mu \leq m \),

\[
|\tau_{n,m} f(x) - \tau_{n-\mu,m-\mu} f(x)| \leq K\mu F_{n-\mu+1,\mu-1} (f, x)_{X^p} \left[1 + \ln \left(\frac{n-\mu+1+\mu-1}{\mu} \right) \right]
\]

\[
+ K\mu F_{n-\mu+1,\mu-1} (f, x)_{X^p} \left[1 + \ln \left(\frac{m+\mu-1}{\mu} \right) \right]
\]

\[
\leq K\mu F_{n-\mu+1,\mu-1} (f, x)_{X^p} \left[1 + \ln \left(\frac{m}{\mu} \right) \right]
\]

and our proof is complete. ■

Lemma 5 Let \(m, n \in \mathbb{N}_0 \) and \(m \leq n \). If \(f \in X^p \) then

\[
|\tau_{n,m} f(x)| \leq K \sum_{k=n-m}^{n} F_{k,k+n+m} (f, x)_{X^p}.
\]

Proof. Our proof runs parallel with the proof of Theorem 1 in [5]. If \(m = 0 \) then

\[
|\tau_{n,0} f(x)| = |\sigma_{n+1,0} f(x) - \sigma_{n,0} f(x)| \leq K F_{n,0} (f, x)_{X^p}.
\]
and if $m = 1$ then

$$|	au_{n,1} f(x)| \leq 2 |\sigma_{n+1,1} f(x) - \sigma_{n,1} f(x)| \leq K F_{n-1,1} (f,x)_{X^p}$$

$$\leq K [F_{n-1,1} (f,x)_{X^p} + F_{n-1,1} (f,x)_{X^p}]$$

by Lemma 2 and Lemma 3.

Next we construct the same decreasing sequence (m_{s}) of integers that was given by S. B. Stečkin. Let

$$m_0 = m, \quad m_s = m_{s-1} - \left[\frac{m_{s-1}}{2} \right] \quad (s = 1, 2, \ldots)$$

where $[y]$ denotes the integral part of y. It is clear that there exists a smallest index $t \geq 1$ such that $m_t = 1$ and

$$m = m_0 > m_1 > \ldots > m_t = 1.$$

By the definition of the numbers m_s we have

$$m_s \geq m_s - 1 / 2$$

$$m_{s-1} - m_s = \left[\frac{m_{s-1}}{2} \right] \geq \left[\frac{m_{s-1}}{3} \right] \quad (s = 1, 2, \ldots, t)$$

whence

$$m_{t-1} = 2, \quad m_{t-1} - m_t = 1$$

and

$$m_{s-1} - m_s \leq 3 (m_s - m_{s+1}) \quad (s = 1, 2, \ldots, t-1)$$

follow.

Under these notations we get the following equality

$$\tau_{n,m} f(x) = \sum_{s=1}^{t} (\tau_{n-m+m_{s-1},m_s-1} f(x) - \tau_{n-m+m_s,m_s} f(x)) + \tau_{n-m+m_t,m_t} f(x)$$

whence, by $m_t = 1$,

$$|\tau_{n,m} f(x)| \leq \sum_{s=1}^{t} |\tau_{n-m+m_{s-1},m_s-1} f(x) - \tau_{n-m+m_s,m_s} f(x)| + |\tau_{n-m+m_t,m_t} f(x)|$$

follows.

It is easy to see that the terms in the sum $\sum_{s=1}^{t}$, by Lemma 4, with $\mu = m_{s-1} - m_s$ and $m = m_{s-1}$ do not exceed

$$K (m_{s-1} - m_s) F_{n-m+m_{s+1},m_{s+1}-1} (f,x)_{X^p} \ln \frac{m_{s-1}}{m_{s-1} - m_s},$$

where $(s = 1, 2, \ldots, t-1)$.

11
and by Lemma 3 we get
\[|\tau_{n-m+1,1} f(x)| \leq 2|\sigma_{n-m+2,1} f(x) - \sigma_{n-m+1,1} f(x)| \leq K F_{n-m,1} (f,x)_{X_p} \]

Thus
\[|\tau_{n,m} f(x)| \leq K \sum_{s=1}^{t-1} 3(m_s - m_{s+1}) F_{n-m+s+1,m_s} (f,x)_{X_p} \ln 3 \]
\[+ K F_{n-m+2,m-2} (f,x)_{X_p} + K F_{n-m,1} (f,x)_{X_p} \]

whence, by the monotonicity of \(F_{\nu,\mu} (f,x)_{X_p} \),
\[|\tau_{n,m} f(x)| \]
\[\leq K \left(\sum_{s=1}^{t-1} \sum_{\nu=m_{s+1}+1}^{m_s} F_{n-m+s+1,\nu} (f,x)_{X_p} + \sum_{\nu=0}^{2} F_{n-m+\nu,m-\nu-1} (f,x)_{X_p} \right) \]
\[+ K F_{n-m,1} (f,x)_{X_p} \]
\[\leq K \sum_{\nu=0}^{m_{1+1}} F_{n-m+\nu,\nu} (f,x)_{X_p} + K F_{n-m,1} (f,x)_{X_p} \]
\[\leq K \sum_{\nu=0}^{m} F_{n-m+\nu,\nu} (f,x)_{X_p} + K F_{n-m,1} (f,x)_{X_p} \]
\[\leq K \sum_{k=n-m}^{n} F_{k,k-n+m} (f,x)_{X_p} + K F_{n-m,1} (f,x)_{X_p} \]

\[\blacksquare \]

4 Proofs of the results

4.1 Proof of Theorem 2

The proof follows the lines of the proofs of Theorem 4 in [5] and Theorem in [3]. Therefore let \(n > 0 \) and \(m \leq n \) be fixed. Let us define an increasing sequence \((n_s : s = 0, 1, ..., t) \) of indices introduced by S. B. Stečki in the following way. Set \(n_0 = n \). Assuming that the numbers \(n_0, ..., n_s \) are already defined and \(n_s < 2n \), we define \(n_{s+1} \) as follows: Let \(\nu_s \) denote the smallest natural number such that
\[F_{n_s-m+\nu_s,\nu} (f,x)_{X_p} \leq \frac{1}{2} F_{n_s-m,\nu} (f,x)_{X_p} \quad (\nu = 0, 1, ..., n). \]

According to the magnitude of \(\nu_s \) we define
\[n_{s+1} = \begin{cases}
 n_s - m + 1 & \text{for } \nu_s \leq m, \\
 n_s + \nu_s & \text{for } m + 1 \leq \nu_s < 2n + m - n_s, \\
 2n + m & \text{for } \nu_s \geq 2n + m - n_s.
\end{cases} \]
If \(n_{s+1} < 2n \) we continue the procedure, and if once \(n_{s+1} \geq 2n \) then we stop the construction and define \(t := s + 1 \).

By the above definition of \((n_s)\) we have the following obvious properties:

\[
t \geq 1, \quad n = n_0 < n_1 < \ldots < n_t, \quad 2n \leq n_t \leq 2n + m,
\]

and

\[
n_{s+1} - n_s \geq m + 1 \quad (s = 0, 1, \ldots, t - 1),
\]

and relations

\[
F_{n_{s+1}-m,\nu} (f, x)_{X^p} \leq \frac{1}{2} F_{n_s - m, \nu} (f, x)_{X^p} \quad \text{for } s = 0, 1, \ldots, t - 2,
\]

and

\[
\frac{1}{2} F_{n_s - m, \nu} (f, x)_{X^p} \leq F_{n_{s+1} - m, \nu} (f, x)_{X^p} \quad \text{for } s = 0, 1, \ldots, t - 1
\]

whenever \(n_{s+1} - n_s > m + 1 \).

Let us start with

\[
|\sigma_{n,m} f (x) - f (x)| = \sum_{s=0}^{t-1} \left[|\sigma_{n_s,m} f (x) - f (x)| - |\sigma_{n_{s+1},m} f (x) - f (x)| \right]
\]

\[
+ |\sigma_{n_t,m} f (x) - f (x)|
\]

\[
\leq \sum_{s=0}^{t-1} |\sigma_{n_{s+1},m} f (x) - \sigma_{n_s,m} f (x)| + |\sigma_{n_t,m} f (x) - f (x)|
\]

\[
= \sum_{s=0}^{t-1} \frac{1}{m + 1} |\tau_{n_s,m} f (x)| + |\sigma_{n_t,m} f (x) - f (x)|.
\]

Using Theorem 1 and that \(2n \leq n_t \leq 2n + m \) we get

\[
|\sigma_{n,m} f (x) - f (x)| \leq K F_{n_t - m, \nu} (f, x)_{X^p} \left[1 + \ln \frac{n_t + 1}{m + 1} \right] + |f (x) - T_{n_t - m} (x)|
\]

\[
\leq K \sum_{\nu=0}^{n} \frac{F_{n-m+m, \nu} (f, x)_{X^p}}{m + \nu + 1} + |f (x) - T_{n_t - m} (x)|
\]

\[
\leq K \sum_{\nu=0}^{n} \frac{F_{n-m+m, \nu} (f, x)_{X^p} + F_{n-m+m, \nu} (f, x)_{X^p}}{m + \nu + 1} + |f (x) - T_{n_t - m} (x)|
\]

\[
\leq K \sum_{\nu=0}^{n} \frac{F_{n-m+m, \nu} (f, x)_{X^p} + F_{n-m+m, \nu} (f, x)_{X^p}}{m + \nu + 1} + E_{n_t - m} (f, x; 0)_{X^p}
\]

\[
\leq K \sum_{\nu=0}^{n} \frac{F_{n-t,0} (f, x)_{X^p} + F_{n-t,0} (f, x)_{X^p}}{m + \nu + 1} + E_{2n} (f, x; 0)_{X^p}.
\]

The estimate of the sum we derive from the following one

\[
\left| \frac{1}{m + 1} \tau_{n_s,m} f (x) \right| \leq K \sum_{\nu=0}^{n_{s+1} - n_s - 1} \frac{F_{n_{s+1} - m, \nu} (f, x)_{X^p} + F_{n_s - m, \nu} (f, x)_{X^p}}{m + \nu + 1}.
\]
The proof of this inequality we split in two parts. If \(n_{s+1} - n_s = m + 1 \), then by Lemma 5,

\[
\frac{1}{m+1} \sum_{s=0}^{n_{s+1} - n_s} F(x) \leq K \frac{1}{m+1} \sum_{k=n_s-m}^{n_s} F_{k,k+n_s+m} (f, x)_{X_\nu} \leq K \sum_{\nu=0}^{n_{s+1} - n_s - 1} \frac{F_{n_s-m+\nu,\nu} (f, x)_{X_\nu}}{m+\nu+1}.
\]

If \(n_{s+1} - n_s > m + 1 \), then, by Lemma 3,

\[
\frac{1}{m+1} \sum_{s=0}^{n_{s+1} - n_s} F(x) \leq K F_{n_s-m,m} (f, x)_{X_\nu} \leq K \sum_{\nu=0}^{n_{s+1} - n_s - 1} \frac{1}{m+\nu+1}.
\]

and since \(\frac{1}{2} F_{n_s-m,m} (f, x)_{X_\nu} \leq F_{n_s+1-m-1,m} (f, x)_{X_\nu} \) we have

\[
\frac{1}{m+1} \sum_{s=0}^{n_{s+1} - n_s} F(x) \leq 2K \sum_{\nu=0}^{n_{s+1} - n_s - 1} \frac{F_{n_s-m+\nu,m} (f, x)_{X_\nu} + F_{n_s-m+\nu,\nu} (f, x)_{X_\nu}}{m+\nu+1}.
\]

Consequently,

\[
\sum_{s=0}^{t-1} \frac{1}{m+1} \sum_{s=0}^{n_{s+1} - n_s} F(x) \leq 2K \sum_{s=0}^{t-1} \sum_{\nu=0}^{n_{s+1} - n_s - 1} \frac{F_{n_s-m+\nu,m} (f, x)_{X_\nu} + F_{n_s-m+\nu,\nu} (f, x)_{X_\nu}}{m+\nu+1}.
\]

Since \(n_{s+1} - n_s \leq 2n + m - n - 1 = n + m - 1 \) for all \(s \leq t - 1 \), changing the order of summation we get

\[
\sum_{s=0}^{t-1} \frac{1}{m+1} \sum_{s=0}^{n_{s+1} - n_s} F(x) \leq 2K \sum_{\nu=0}^{n+m-1} \frac{1}{m+\nu+1} \sum_{s=n_{s+1} - n_s > \nu} [F_{n_s-m+\nu,m} (f, x)_{X_\nu} + F_{n_s-m+\nu,\nu} (f, x)_{X_\nu}].
\]

Using the inequality

\[
F_{n_{s+1}-m,\nu} (f, x)_{X_\nu} \leq \frac{1}{2} F_{n_s-m,\nu} (f, x)_{X_\nu} \quad \text{for} \quad \nu = 0, 1, 2, ..., n_{s+1} - n_s - 1 \quad \text{with} \quad s = 0, 1, 2, ..., t - 2.
\]
we obtain
\[\sum_{s: n_{s+1}-n_s > \nu} \left[F_{n_s-m,\nu,m} (f, x)_{X^p} + F_{n_s-m,\nu,\nu} (f, x)_{X^p} \right] = F_{n_p-m,\nu,m} (f, x)_{X^p} + F_{n_p-m,\nu,\nu} (f, x)_{X^p} \]
\[+ \sum_{s \geq p+1: n_{s+1}-n_s > \nu} \left[F_{n_{s+1}-m,\nu,m} (f, x)_{X^p} + F_{n_{s+1}-m,\nu,\nu} (f, x)_{X^p} \right] \]
\[\leq F_{n_p-m,\nu,m} (f, x)_{X^p} + F_{n_p-m,\nu,\nu} (f, x)_{X^p} \]
\[+ \sum_{s \geq p+1} F_{n_s-m,m} (f, x)_{X^p} \left[F_{n_s-m,m} (f, x)_{X^p} + F_{n_s-m,\nu} (f, x)_{X^p} \right] \]
\[\leq F_{n_p-m,\nu,m} (f, x)_{X^p} + F_{n_p-m,\nu,\nu} (f, x)_{X^p} + 2 \left[F_{n_{p+1}-m,m} (f, x)_{X^p} + F_{n_{p+1}-m,\nu} (f, x)_{X^p} \right] \]
\[\leq 3 \left[F_{n_p-m,\nu,m} (f, x)_{X^p} + F_{n_p-m,\nu,\nu} (f, x)_{X^p} \right], \]
where \(p \) denote the smallest index \(s \) having the property \(n_{s+1}-n_s > \nu \).

Hence
\[\sum_{s=0}^{t-1} \frac{1}{m+1} r_{n_s,m} f (x) \leq K \sum_{\nu=0}^{n+m-1} \frac{F_{n-m,\nu,m} (f, x)_{X^p} + F_{n-m,\nu,\nu} (f, x)_{X^p}}{m+\nu+1} \]
\[\leq K \sum_{\nu=0}^{n} \frac{F_{n-m,\nu,m} (f, x)_{X^p} + F_{n-m,\nu,\nu} (f, x)_{X^p}}{m+\nu+1}. \]

and our proof follows.

\[\square \]

4.2 Proof of Theorem 3

The proof follows by the obvious inequality
\[\|E_n (f, x; \delta)_{C} \|_C \leq E_n (f)_{C}. \]

\[\square \]

References

[1] S. Aljančić, R. Bojanic and M. Tomić, On the degree of convergence of Fejér-Lebesgue sums, L’Enseignement Mathematique, Geneve, Tome XV (1969) 21-28.

[2] P. L. Butzer, R.J. Nessel, Fourier analysis and approximation, Basel und Stuttgart 1971.

[3] L. Leindler, Sharpening of Stečkin’s theorem to strong approximation, Analysis Math. 16 (1990), 27-38.
[4] W. Lenski, Pointwise best approximation and de la Vallée-Poussin means, submitted.

[5] S. B. Stečkin, On the approximation of periodic functions by de la Vallée Poussin sums, Analysis Math. 4 (1978), 61-74.

[6] N. Tanović-Miller, On some generalizations of the Fejér-Lebesgue theorem, Boll. Un. Mat. Ital. B(6) 1 (1982), no. 3, 1217-1233.