Effects of the cefazolin shortage on the sales, cost, and appropriate use of other antimicrobials

Ryuji Koizumi¹, Yoshiki Kusama¹,²*, Yusuke Asai¹, Gu Yoshiaki¹, Yuichi Muraki³ and Norio Ohmagari¹,²,³

Abstract

Background: Shortages of antimicrobials lead to treatment failures, increase medical costs, and accelerate the development of antimicrobial resistance. We evaluated the effects of the serious cefazolin shortage in 2019 in Japan on the sales, costs, and appropriate use of other antimicrobials.

Methods: We evaluated monthly defined daily doses/1000 inhabitants/day (DID) values of antimicrobial sales from January 2016 to December 2019 using wholesaler’s sales databases. Using 2016–2018 sales data, we generated a prediction model of DID in 2019 under the assumption that the cefazolin shortage did not occur. We then compared the predicted DID and actual DID. Cefazolin, government-recommended alternatives, and government-not-recommended broad-spectrum alternatives were assessed. Antimicrobial groups according to the AWaRe classification were also assessed to evaluate the effect on appropriate antimicrobial use. In addition, we evaluated changes in costs between 9 months before and after the cefazolin shortage.

Results: DID values of total antimicrobials increased sharply 1 month before the decrease in cefazolin. Actual DID values were higher than predicted DIDs for ceftriaxone, flomoxef, clindamycin, cefotiam, piperacillin/tazobactam, and meropenem. Actual DID values were higher than the predicted DID values in the Watch group. The costs of antimicrobials between pre- and post-cefazolin shortage were unchanged.

Conclusion: The cefazolin shortage brought confusion to the antimicrobial market and led to a setback in the appropriate use of antimicrobials. Early recognition and structures for prompt reactions to antimicrobial shortages are needed. Moreover, development of a system to secure the supply of essential antimicrobials is required.

Keywords: Drug shortage, Appropriate antimicrobial use, Essential medicine, Cefazoline, AWaRe classification

Background

The sustainable supply of medical drugs is important for providing quality-assured medicine; therefore, countermeasures for preventing shortages are required [1–3].

According to a US Food and Drug Administration report, the United States has faced many drug shortages in various regions, and the shortages disturbed the use of quality-assured medicines [4]. A sustainable drug supply is also warranted for antimicrobials. Antimicrobial shortages can make first-line treatments unavailable, resulting in the use of less effective, more toxic, or more expensive alternatives [5]. In terms of treatment, narrow-spectrum antimicrobials can be compensated for by using broad-spectrum antimicrobials during shortages. However, such countermeasures increase the risk of the...
emergence of antimicrobial resistant organism [6]. The United States has repeatedly faced problems due to antimicrobial shortages, and their frequency has recently increased [7]. Piperacillin/tazobactam shortages increase the risk of nosocomial *Clostridioides difficile* infections [8], and it is estimated that one antimicrobial shortage results in excess costs of 2.4–3.5 million USD [9].

In January 2019, the largest pharmaceutical factory producing cefazolin in Japan experienced manufacturing difficulties. The background of the shortage was shown in Fig. 1 [10]. Cefazolin is the representative first-generation cephalosporin classified as an “Access” antimicrobial (i.e., countries should maintain availability at any time and in any situation) in the WHO Model Lists of Essential Medicines [11, 12]. It is often used for the treatment of methicillin-sensitive *Staphylococcus aureus* infections and many kinds of surgical prophylaxis [13–15].

In Japan, cefazolin is the second most widely used parenteral antimicrobial followed by ceftriaxone, and the most used antimicrobial among inpatients [16]. The Ministry of Health, Labour and Welfare of Japan published a list of alternative antimicrobials to cefazolin [17]; however, this caused secondary shortages among the alternative drugs [18]. Collapse of antimicrobial stewardship due to the cefazolin shortage has already been reported by a single center, and demonstrated the rapid increase in the use of third-generation cephalosporins after the cefazolin supply became limited [19].

The aim of this study was to clarify the effect of cefazolin shortages on the supply of other antimicrobials by observing trends in antimicrobial sales at the national level, and to evaluate the effects on appropriate antimicrobial use and drug costs brought about by the shortage.

Methods

Design
Retrospective observational study using sales data of antimicrobials collected through wholesalers.

Settings
Antimicrobial sales from 2013 to 2019 in all Japan.

Drug pricing system in Japan
In Japan, medical reimbursement costs, which include drug costs, are standardized by the Ministry of Health, Labour and Welfare in Japan en bloc. Therefore, prices of drugs paid by insurers to medical facilities are the same under all circumstances. These reimbursement prices of drugs are reviewed based on market situations in April every 2 years. To control health care expenditures, drug reimbursement prices tend to be gradually reduced. Although drug prices were not altered in 2019, the reimbursement prices were altered outside the usual schedule in October because of a tax increase that month.

Evaluating drug
The DID values of cefazolin, government-recommended alternatives (recommended by the Ministry of Health,
Labour and Welfare of Japan; see Table 1), and non-government-recommended broad-spectrum alternatives were evaluated. Among the recommended alternatives, we analyzed commonly used drugs (DID higher than 0.01) during the study period (namely, ceftriaxone, ampicillin/sulbactam, cefmetazole, vancomycin, levofloxacin, flomoxef, clindamycin, and cefotiam). In government-not-recommended broad-spectrum alternatives, we evaluated piperacillin/tazobactam and meropenem because they are frequently used broad-spectrum parenteral antimicrobials in Japan.

Assessing temporal trends in sales

We evaluated monthly sales volumes of parenteral antimicrobials and analyzed the distribution of antimicrobials in Japan. Sales volume was measured using defined daily doses according to the WHO Collaborating Center for Drug Statistics Methodology, and was represented as defined daily doses (DDDs)/1000 inhabitants/days (DID) [20]. The equation used is shown below.

Table 1 Government-recommended alternatives

Treatment	Parenteral antimicrobial	Oral antimicrobial
Sepsis caused by methicillin-sensitive *Staphylococcus aureus*	Ampicillin and sulbactam	Cefotaxime
	Ceftriaxone	Vancomycin
	Daptomycin	
Soft tissue infection (e.g., cellulitis, erysipelas)	Ampicillin and sulbactam	Cefotaxime
	Ceftriaxone	Clindamycin
	Clindamycin	
Acute osteomyelitis / septic arthritis	Ampicillin and sulbactam	Cefotaxime
	Ceftriaxone	Vancomycin
	Clindamycin	Daptomycin
Urinary infection (acute pyelonephritis)	Cefotiam	Cefotaxime
	Cefmetazole	Flomoxef
	Ceftriaxone	Aminoglycosides
Prophylaxis	Parenteral antimicrobial	Oral antimicrobial
Surgical cite / bacteria	Cefotiam	Cefmetazole
Neuro surgery/ *Staphylococcus aureus*, Streptococcus	Cefotaxime	Ceftriaxone
	Clindamycin	Vancomycin
Otorhinolaryngology/ *Staphylococcus aureus*, Oral anaerobic bacteria, Streptococcus	Ampicillin and sulbactam	Cefotiam
	Ceftriaxone	Clindamycin
Cardiovascular surgical procedure (heart, vessel)/ *Staphylococcus aureus*, Streptococcus	Cefotaxime	Ceftriaxone
	Clindamycin	
Thoracic surgery (lung, tracheal)/ Oral anaerobic bacteria, Streptococcus	Ampicillin and sulbactam	Cefotiam
	Clindamycin	

Table 1 Government-recommended alternatives (Continued)

Treatment	Parenteral antimicrobial	Oral antimicrobial
Breast surgery/ *Staphylococcus aureus*, Streptococcus	Cefotiam	
Upper Gastrointestinal Tract Surgery (esophagus, stomach, jejunum) / *Escherichia coli*, Klebsiella pneumoniae	Cefotiam	
Gastrointestinal surgery (liver, gallbladder, bile duct, pancreas)/ Enterobacteriaceae	Ampicillin and sulbactam	Cefotiam
	Cefmetazole	Flomoxef
Gynecology/ Enterobacteriaceae, Group of *Bacteroides fragilis*	Ampicillin and sulbactam	Cefotiam
	Cefmetazole	Flomoxef
Urology/ Enterobacteriaceae	Ampicillin and sulbactam	Ciprofloxacin
	Cefotiam	Levofloxacin
	Aminoglycoside	
Orthopedic surgery (Spinal Surgery, Artificial Bone Replacement, etc)/ *Staphylococcus aureus*, Streptococcus	Ciprofloxacin	
	Levofloxacin	
	Cefotiam	
	Cefmetazole	Flomoxef
	Clindamycin	Vancomycin

Koizumi et al. BMC Health Services Research (2021) 21:1118
Sales of each month (g)

\[
\text{DDD/g} = \frac{\text{Sales of each month (g)}}{\text{population of each year (1000 inhabitants) \times days}}
\]

We defined antimicrobials as code J01 according to Anatomical Therapeutic Chemicals developed by WHO Collaborating Centre for Drug Statistics Methodology [21]. We evaluated the temporal trend of monthly DID values of total antimicrobials and cefazolin in 2019 compared with the previous 3 years.

Comparing sales between the real and predicted data
We predicted DID values in 2019 by using DID values from 2013 to 2018 under the assumption that a cefazolin shortage did not occur, and compared real DID values. Prediction models were formulated using the seasonal autoregressive integrated moving average (SARIMA) model.

Assessing appropriateness
To assess the appropriateness of antimicrobial use, we created models of aggregate total antimicrobial sales, and of “Access”, “Watch”, and “Reserve” antimicrobials according to AWaRe classification. Predicted monthly sales were compared with actual monthly sales in 2019 by using box plots. We defined “appropriate” as an increase in drugs categorized under “Access” and “inappropriate” as an increase in drugs categorized under “Watch”.

Assessing drug costs
We evaluated the changes in drug costs between before and after the cefazolin shortage. Durations of analysis were set as the 9 months before (April to December 2018) and after (January to September 2019) the disruption in cefazolin manufacturing, because drug prices did not change in these periods. Additionally, to adjust for seasonal variations, we generated linear regressions of costs on DDD values in total antimicrobials, and compared the difference of the co-efficient in regression equations.

Data source
IQVIA Japan is a company that provides a database of pharmaceutical information obtained from wholesalers to researchers and companies. Although patient information is not included in this database, it stores data about all medical drugs sold by wholesalers to medical facilities. Almost all medical facilities in Japan purchase drugs through wholesalers, so this database is considered to be representative of national data. We purchased the database and retrospectively analyzed the data [22].
Fig. 2 Monthly DID values of parenteral antimicrobials from 2016 to 2019. The solid line represents DID values in 2019. The DID value of cefazolin decreased in May, and the DID value increase for total antimicrobials was observed one month before the decrease in cefazolin. Abbreviation: DID, defined daily doses/1000 inhabitants/day.

Fig. 3 Box plots of actual and predicted DID values of antimicrobials. Annual trends in box plots of monthly DID values are shown. Light gray box plots represent predictions of DID values in 2019 generated by 2013–2018 data under the assumption of non-occurrence of the cefazolin shortage. Solid line squares represent cefazolin, fine dashed lines represent government-recommended cefazolin alternatives, and red dashed lines represent government-not-recommended broad-spectrum cefazolin alternatives. Abbreviation: DID, defined daily doses/1000 inhabitants/day.
than predicted, and those in the Watch group were higher than predicted.

Drug cost

No differences in the ratio of total costs to total DID values were observed from 9 months before and after the cefazolin shortage (Fig. 5).

Discussion

Our study highlighted that the cefazolin shortage led to a steep increase in total antimicrobial sales due to the rush to secure alternative antimicrobials to cephazolin. The shortage also led to an increase in the use of broad-spectrum antimicrobial agents, which in turn led to inappropriate use of antimicrobials. The cefazolin shortage highlighted various aspects of problems with the drug supply, including a deficiency in the management of distribution, inadequate supply of alternative antimicrobials, and regulations to prevent the overuse of non-recommended alternatives. Meanwhile, the basic drug production system and low drug prices have caused many of these issues.

First, the shortage drew attention to the inadequate management of drug distribution. Temporal changes in DID values clearly showed that the shortage of essential antimicrobial brought confusion to the antimicrobial market. The cefazolin DID values decreased from April to May. Most Japanese hospitals buy drugs through wholesalers; therefore, wholesalers’ stockpiles might have resulted in this lag. Meanwhile, the total antimicrobial DID values increased from March to April, which was 1 month before the decline in the manufacture of cefazolin. This suggested that the increase in total antimicrobial sales was not brought by the cefazolin shortage itself, but by information provided on the coming shortage. The information resulted in hospitals stocking up on antimicrobials. From this perspective, action by the Ministry of Health, Labour and

Fig. 4 Box plots of actual and predicted DID values of antimicrobials according to AWaRe classifications. Annual trends in box plots of monthly DID values are shown. Light gray box plots represent predictions of DID values in 2019 generated by 2013–2018 data under the assumption of non-occurrence of the cefazolin shortage. Abbreviation: DID, defined daily doses/1000 inhabitants/day.
Welfare of Japan was later than when stocking up took place. This highlighted the importance of early recognition and the need for structures for an appropriate governmental response when a shortage occurs. We consider that the government should have moved more quickly and decisively to take control of the distribution. Accordingly, to move more quickly, the government, companies, and hospitals need to maintain a close connection, and exchange information with each other. Also, frameworks for avoiding reckless purchasing by hospitals and to secure the proper distribution of medical resources are needed.

Second, the inadequate supply of alternative antimicrobials and the lack regulations to prevent the overuse of non-recommended alternative are also problems that were revealed by the shortage. The cefazolin shortage also affected DID values of other antimicrobials. The actual DID values of the government-recommended alternatives ceftriaxone, flomoxef, clindamycin, and cefotiam were higher than their predicted DID values. It was suggested that drug makers increased the production of these drugs to alleviate damage caused by the cefazolin shortage; however, the production increases were insufficient to compensate for the cefazolin shortage, which led to secondary shortages among these drugs [19]. According to a questionnaire-based study, the cefazolin shortage caused considerable damage in the maintenance of quality-assured medicines in various hospitals [23]. Furthermore, antimicrobial surveillance in Japan in 2017 showed that 5 drugs—ceftriaxone, cefazolin, ampicillin/sulbactam, piperacillin/tazobactam, and meropenem—accounted for 59.2% of total parenteral antimicrobial sales [16]. Increases in DID values among government-not-recommended alternatives, such as piperacillin/tazobactam and meropenem, may be explained by the extra production capacity that was brought about by their superiority in the market. However, unlike meropenem and piperacillin/tazobactam, ampicillin/sulbactam was not increased. The reason for this might be due to a lack of extra production capacity (ampicillin/sulbactam have been subject to supply issues several times in the past). Vancomycin was not also increased, but the reason for this is considered to be that physicians in Japan do not routinely use vancomycin for treatment or prevention of infectious diseases. Comparison by AWaRe group between actual and predicted DID values showed a decrease in “Access” antimicrobials and an increase in “Watch” antimicrobials. This means more broad-spectrum antimicrobials were used than narrow-spectrum ones because of the cefazolin shortage, meaning that the shortage appeared to harm appropriate antimicrobial use.

Since materials of domestically used antimicrobials depend on imports from China or India, it is difficult to improve the vulnerability of the supply chain by domestic measures alone [18, 24]. Currently, problems in antimicrobial factories in China or India have caused critical damage to the supply chain in developed countries; these are similar issues irrespective of the country. Likewise, this cefazolin shortage was caused by a Chinese government requirement pertaining to environmental protection and a temporary order to stop factories. From a short-range view, it is important to secure multiple materials.
antimicrobial resources for risk management to maintain a sustainable antimicrobial supply. From a long-range view, developed countries may need to develop domestic production of antimicrobial resources, but this requires support at the national or international level.

Finally, systems in drug pricing and production are the problems. Despite the cefazolin shortage, the cost of antimicrobials per sales barely changed. This is thought to be because most antimicrobials used in Japan are generic drugs, and thus the cost differences between cefazolin and alternative drugs were small. Moreover, another important reason is that a cefazolin price increase did not occur because the reimbursement price of drugs is fixed by the government. Price setting is an important tool for securing the economy of medicine. However, reimbursement prices of drugs are gradually reduced year by year, which reduces the profit margins of pharmaceutical companies, especially for older drugs. This trend was accelerated by a recent increase in production cost [4, 25, 26]; cefazolin is also in the same situation. Low profits disrupt the production of affordable drugs and may lead to quality deterioration due to loss of investment. To maintain the stable production of essential medicines, the government should determine the appropriate drug price to sufficiently maintain companies’ investments. In the development of new antimicrobials, delinking profits and sales, for example, through government purchasing of drugs or the adoption of a subscription model, is desirable from a long-term perspective.

Our study has several limitations. First, because sales data can only clarify product circulation, the actual usage of antimicrobials was not assessed in this study. Different approaches such as the use of claims data or and hospital data are needed to evaluate the prognosis of patients and changes in bacterial resistance patterns. Second, we created models based on past antimicrobial sales using a SARIMA model, and the models did not include unspecific events. The most important unspecific events are the emergence of endemic contagious diseases; nevertheless, no specific contagious diseases, including SARS-CoV-2 became endemic during the study period [27].

Conclusion
We clarified the effects of the cefazolin shortage on other antimicrobials in terms of sales, costs, and appropriateness of usage. Our study revealed the confusion brought to the antimicrobial market and the worsening of appropriate antimicrobial use due to the cefazolin shortage. Although patients’ prognoses and bacterial resistance patterns should be assessed, our study highlights the need for a framework for risk management against antimicrobial shortages, and for national and international measures for securing the sustainable supply of antimicrobials.

Abbreviations
DID: Defined doses/1000 Inhabitants/Day; WHO: World Health Organization; DDD: Defined Daily Dose; SARIMA: Seasonal Autoregressive Integrated Moving Average; USD: United States Dollar

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12913-021-07199-2.

Acknowledgements
None.

Authors’ information (optional)
None

Authors’ contributions
Ryuji KOIZUMI: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing, original draft. Yoshihi KUSAMA: Conceptualization, Data curation, Methodology, Supervision, Writing – review & editing. Yusuke ASAI: Conceptualization, Data curation, Methodology, Supervision, Writing – review & editing. Yoshiaki GU: Conceptualization, Data curation, Methodology, Supervision, Writing – review & editing. Yuichi MURAKI: Conceptualization, Data curation, Methodology, Supervision, Writing – review & editing. Norio OHMAGARI: Funding acquisition, Methodology, Supervision, Writing – review & editing. The author(s) read and approved the final manuscript.

Funding
This work was supported by a Ministry of Health, Labour and Welfare research grant (grant number: 20HA2003).

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the IQVIA Japan.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Y.M. received an honorarium for lecturing from Pfizer Japan, Inc. The other authors have no conflicts of interest to declare.

Author details
1AMR Clinical Reference Center, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan. 2Collaborative Chairs Emerging and Reemerging Infectious Diseases, National Center for Global Health and Medicine, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan. 3Department of Clinical Pharmacoepidemiology, Kyoto Pharmaceutical University, Kyoto, Japan.

Received: 28 June 2021 Accepted: 5 October 2021
Published online: 19 October 2021

References
1. Ventola CL. The drug shortage crisis in the United States. P T. 2011;36:740–2 749-57.
2. Tucker EL, Cao Y, Fox ER, Sweet BV. The drug shortage era: a scoping review of the literature 2001-2019. Clin Pharmacol Ther. 2020;108:1150–5. https://doi.org/10.1002/cpt.1934.
3. Phuong JM, Penn JJ, Chaar B, Oldfield LD, Moles R. The impacts of medication shortages on patient outcomes: a scoping review. PLoS One. 2019;14(5). https://doi.org/10.1371/journal.pone.0215837.

4. US Food and Drug Administration. Drug shortages: root causes and potential solutions. https://www.fda.gov/media/131130/download. accessed 14 April 2021.

5. Gundlapalli AV, Beekman SE, Graham DR, Plogreen PM, Members of the Emerging Infections Network. Antimicrobial agent shortages: the new norm for infectious diseases physicians. Open Forum Infect Dis. 2018;5:ofy068. https://doi.org/10.1093/ofid/ofy068.

6. McLaughlin M, Advinula NR, Malczynski M, QI C, Bolon M, Scheetz MH. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob Agents Chemother. 2013;57:5131–3. https://doi.org/10.1128/aac.00607-13.

7. Griffith MM, Gross AE, Sutton SH, Bolon MK, Esterly JS, Patel JA, et al. The impact of anti-infective drug shortages on hospitals in the United States: trends and causes. Clin Infect Dis. 2012;54:684–91. https://doi.org/10.1093/cid/cis954.

8. Gross AE, Johannes RS, Gupta Y, Tabak YP, Srinivasan A, Bealsdale SC. The effect of a piperacillin/tazobactam shortage on antimicrobial prescribing and Clostridium difficile risk in 88 US medical centers. Clin Infect Dis. 2017; 65:613–8. https://doi.org/10.1093/cid/cix379.

9. World Health Organization. Meeting report: antibiotic shortages: magnitude and causes and possible solutions. https://www.who.int/publications/i/item/meeting-report-antibiotic-shortages-magnitude-causes-and-possible-solutions. accessed 14 April 2021.

10. Nichi-ko. Cefazolin sodium details of supply issue. https://www.nichiiko.co.jp/company/press/detail/4656/814/4541_20190513_CEZ_1.pdf. [in Japanese]. accessed 14 April 2021.

11. World Health Organization. Model list of essential medicines 21st list 2019. https://www.who.int/medicines/medicines-list. accessed 14 April 2021.

12. World Health Organization. List of antibiotics. https://aware.essentialmeds.org/list. accessed 14 April 2021.

13. Shoji T, Hirai Y, Osawa M, Totsuka K. Cefazolin therapy for methicillin-susceptible Staphylococcus aureus bacteremia in Japan. J Infect Chemother. 2020;26:736–41. https://doi.org/10.1093/infdis/jiaa103.

14. Ministry of Health, Labour and Welfare. Issues regarding the stable supply of ethical drugs and the efforts of the Japan Pharmaceutical Federation. https://www.mhlw.go.jp/content/10807000/000643578.pdf. [in Japanese]. accessed 14 April 2021.

15. Kakkar AK, Shafiq N, Malhotra S. Ensuring access to ‘access’ antibiotics: an imminent consideration for sustainable antimicrobial stewardship in the developing world. Infect Dis Ther. 2019;5:135–8. https://doi.org/10.1080/23744235.2019.1574978.

16. Japanese Society of Chemotherapy, The Japanese Association for Infectious Diseases, The Japanese Society for Clinical Microbiology, and Japanese Societies for the stable supply of antimicrobials. http://www.chemotherapy.or.jp/company/press/detail/4656/814/4541_20190513_CEZ_1.pdf. [in Japanese]. accessed 14 April 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions