Attack-Agnostic Adversarial Detection

Jiaxin Cheng Mohamed Hussein Jay Billa Wael AbdAlmageed
University of Southern California, Information Sciences Institution
chengjia,mehussein,jbilla,wamageed@isi.edu

Abstract

The growing number of adversarial attacks in recent years gives attackers an advantage over defenders, as defenders must train detectors after knowing the types of attacks, and many models need to be maintained to ensure good performance in detecting any upcoming attacks. We propose a way to end the tug-of-war between attackers and defenders by treating adversarial attack detection as an anomaly detection problem so that the detector is agnostic to the attack. We quantify the statistical deviation caused by adversarial perturbations in two aspects. The Least Significant Component Feature (LSCF) quantifies the deviation of adversarial examples from the statistics of benign samples and Hessian Feature (HF) reflects how adversarial examples distort the landscape of models’ optima by measuring the local loss curvature. Empirical results show that our method can achieve an overall ROC AUC of 94.9%, 89.7%, and 94.6% on CIFAR10, CIFAR100, and SVHN, respectively, and has comparable performance to adversarial detectors trained with adversarial examples on most of the attacks.

1 Introduction

Despite the success of deep neural networks (DNNs) in computer vision [33, 66, 26], natural language processing [27, 71, 19] and speech recognition [17, 77], DNNs are notoriously vulnerable to adversarial attacks[68] that inject carefully crafted imperceptible perturbations into the input and are able to deceive the model with a great chance of success.

There are three main orthogonal approaches for combating adversarial attacks — (i) Using adversarial attacks as a data augmentation mechanism by including adversarially perturbed samples in the training data to induce robustness in the trained model [41, 78, 79, 80, 10, 75, 8, 74]; (ii) Preprocessing the input data with a denoising function or deep network [38, 15, 22, 24, 45] to counteract the effect of adversarial perturbations; and (iii) Training an auxiliary network to detect adversarial examples and deny providing inference on adversarial samples [46, 37, 59, 60, 23, 39, 40, 35, 12, 25, 18, 1]. Our work falls under adversarial example detection as it does not require retraining the main network (as in adversarial training) nor degrade the input quality (as in preprocessing defenses).

Existing adversarial example detection methods [39, 40, 35, 12, 25] need to train auxiliary networks in a binary classification manner (e.g. benign versus adversarial attack(s)). The shortcoming of this strategy is that the detector is trained on specific attack(s) that are available and known at training time. To ensure good detection performance at inference time, the detection network needs to be trained on a large number of attacks. Otherwise, the detection network will perform poorly on unseen attacks during training (i.e. out of domain) or even on seen attacks during training due to overfitting [57]. We argue that a good adversarial detection method should be able to detect any adversarial attack, even if the defender is unaware of the type of adversarial attack. To this end, we propose to frame the adversarial sample detection as an anomaly detection problem, in which only one detection model is constructed and trained on only benign samples, such that the detection model is attack-agnostic.
We propose an anomaly detection framework for identifying adversarial examples by measuring the statistical deviations caused by adversarial perturbations. We consider the deviation of two complementary features that reflect the interaction of adversarial perturbation with the data and models. The first feature is Least Significant Component Feature (LSCF), which maps data to a subspace where the distribution of benign images is compact, while the distribution of adversarial images is spread. The second feature is Hessian Feature (HF), which uses the second order derivatives as a measure of the distortion caused by adversarial perturbation to the model’s loss landscape. Our results underscores the utility of each of the two features and their complementary nature.

The contributions of this paper are:

1. An anomaly detection framework for adversarial detection that measures statistical deviation caused by adversarial perturbations on two proposed features, LSCF and HF, which are theoretically justified and capture the interaction of adversarial perturbations with data and model.
2. Empirical analysis demonstrating the effectiveness of our method on detecting eight different adversarial attacks on three datasets. Our method achieves 94.9% AUC on CIFAR10, 89.7% AUC on CIFAR100 and 94.6%AUC on SVHN.
3. Comprehensive evaluation showing the computational efficiency, sensitivity to hyper parameters, cross-model generalization, and closeness to binary classification upper bound of the proposed anomaly detection method.

2 Related Work

Adversarial Attacks deceive DNNs by adding carefully crafted perturbations that are imperceptible to humans. Attacks can be classified according to their perturbation constraints. Typical attacks such as Fast Gradient Sign Method (FGSM) [21], Basic Iterative Method (BIM) [34] and Projected Gradient Method (PGD) [42] are \(l_\infty\) attacks which allow perturbation of all pixels but limit the maximum deviation a pixel can have. \(l_2\) attacks, such as Carlini & Wagner (CW) [9] and DeepFool [49], limit the total deviation of all pixels that an example can have. \(l_0\) attacks try to change as few pixels as possible but allow more perturbation budget for modified pixels, including one-pixel-attack (OnePixel) [67] and SparseFool [47]. Recently, AutoAttack [14] can better deceive DNN models by combining AutoPGD [14], Fast Adaptive Boundary Attack (FAB) [13] and Square attack [2].

Detecting Adversarial Examples The general approach for detecting adversarial attacks is to train an auxiliary model using benign and adversarial examples. Various network architectures and features have been used. Metzen et. al. [46] use the activations to train subnetwork detectors. Li et. al. [37] use PCA projected features to train cascaded detectors. Statistics of the examples are used in [59, 60]. Grosse et. al. [23] use Bayesian Uncertainty and train a logistic regression detector. Lu et. al. [39] train quantized RBF-SVM classifier on top of the penultimate ReLU features. Ma et. al. [40] use the feature distance of example to its nearest neighbours as images’ fingerprint. Lee et. al. [35] train classifier with confidence score computed from Mahalanobis distance under Gaussian discriminant analysis. Cohen et. al. [12] leverage influence function [31] and fit a k-NN model to detect adversarial examples. Harder et. al. [25] convert examples into frequency domain and detect adversarial examples using Fourier features. Deng et. al. [18] detect adversarial examples by converting models into Bayesian neural networks. Abusnaina et. al. [1] use neighborhood connectivity and graph neural network to detect adversarial examples. These mentioned approaches, while performing well, are all trained with supervision, limiting their generalization to unseen attacks. In contrast, our method is trained in anomaly detection fashion and thus generalizes better to unseen attacks.

Anomaly Detection aims to detect unusual samples in data. Classic approaches includes One-class SVM [64], Random Forest [6], Kernel Density Estimation [11], Local Outlier Factor [7], EllipticEnvelope [51]. Deep Anomaly Detection [62, 63, 56, 36, 48, 3, 76, 51, 5, 16, 53, 54, 55, 20] takes the advantage of DNNs to have better scalability and performance on high dimensional data. In this work, we apply classic anomaly detection approaches for detecting adversarial examples as we find that deep learning-based anomaly detectors are not adequate for detecting adversarial attacks since they learn image-level semantic representations that cannot capture local image subtleties introduced by adversarial attacks.
3 Attack-Agnostic Adversarial Detection

We present our Hessian and Eigen-decomposition-based Adversarial Detection (HEAD) by first motivating adversarial detection as an anomaly detection problem. Then, we introduce Least Significant Component Feature and Hessian Feature and explain the rationale for using them to detect adversarial examples.

3.1 Challenges And Rationale

A fundamental assumption of existing adversarial attack detection [46, 37, 59, 60, 23, 39, 40, 35, 12, 25, 18, 1] as well as adversarial augmentation methods [39, 40, 35, 12, 25] is that adversarial attacks are known and samples can easily be generated using these attacks to train the detector or augment the main model being defended. This assumption, however, is not realistic, since more often than not the defender does not know the attacks a priori and therefore samples cannot be easily generated to train a supervised detector or train an adversarially-augmented model.

The absence of attack examples (i.e. negative) training examples and the need to be attack-agnostic both motivate framing the adversarial detection as an anomaly detection problem. More formally, the task of the defender is to protect the model trained on only benign examples X against adversarial examples \mathring{X} that are unknown during training. The detector D will be trained only on benign examples and will give a score $s(x) = D(f(x))$ for each testing sample x, indicating the likelihood that x is an adversarial attack, where $f \in \mathbb{R}^m \times \mathbb{R}^n$ is a feature extraction function and m and n are the dimensions of input and feature spaces, respectively. The feature extractor could be any hand-crafted function, such as principal component analysis (PCA), or method crafted specifically for adversarial detection such as LID [40] and Mahalanobis [35]. Similarly, D can be any arbitrary anomaly detector, e.g., classic approaches such as kernel density estimator [11] and One Class SVM [64], or DNN-based methods like DSVDD [62].

We propose to detect adversarial examples using two complementary features of the image that reflect the interaction between adversarial perturbation and dataset as well as DNN models, respectively. The first property, namely Least Significant Component Feature, quantifies the deviation of adversarial examples from the statistics of benign samples by eigen-decomposing the dataset and mapping the data to the eigenvectors that have smallest eigenvalues. The second property, namely Hessian Feature, distinguishes adversarial from benign images by inspecting the curvature of the loss landscape locally at the geometric optima of the model, which can be measured by the Hessian matrix of the loss w.r.t. to the inputs (or intermediate layer outputs).

3.2 Least Significant Component Feature (LSCF)

As mentioned in Section 2, we hypothesize that extracting image features that capture global context will not work well, since they tend to miss small subtleties introduced by the adversarial perturbations. Therefore, we hypothesize that we need to extract image features that are sensitive to small imperceptible image noise. To extract the LSCF, we use principal component analysis (PCA) to project the raw benign images to a new space with orthonormal basis (i.e. eigenvectors) in which different dimensions are linearly uncorrelated. Rather than retaining the projections that correspond to the largest eigenvalues (i.e. eigenvectors [70]), we retain the projections on the directions with smallest eigenvalues. Hence, the features consist of the least significant components of the data.

Suppose that the training data $D \in \mathbb{R}^{N \times m}$ has N samples and m input dimension. Its covariance matrix $C = D^\top D/(N - 1)$ can be decomposed into $C = VLV^\top$, where the columns of $V = [v_1\ldots v_m]$ are the eigenvectors of C, and L is a diagonal matrix having eigenvalues of C in descending order on its diagonal (i.e., $\text{diag}(L) = [\lambda_1\ldots\lambda_m]$, $\lambda_i \geq \lambda_{i+1} \forall i \in \{1..m - 1\}$). The LSCF of image x is transformed by the eigenvectors v that have the smallest eigenvalues.

$$f_{LSCF}(x) = x^\top v \in \mathbb{R}^{1 \times d}$$

where d is the dimension of LSCF and $v = [v_1\ldots v_{m-d+1}] \in \mathbb{R}^{m \times d}$ is the last d columns of V. We explain the reason for mapping images on the least significant eigenvectors by estimating an upper bound on the expected deviation caused by perturbation for different eigenvectors. Let $p_t = x^\top v_t$ be the mapping of image x, and $p_t' = (x + \Delta x)^\top v_t$ be the mapping of the adversarially perturbed image on the ith eigenvector, respectively. Since the transformation is linear, the change of
When studying model optimization, [29, 81] observed that perturbation on model weights can improve generalization, and [73, 69, 72] later proved that such improvement happens because the perturbation

Figure 1: The gap between upper bound in eq. (3) and deviations of \(p_i \) caused by adversarial (FGSM), Gaussian and Uniform perturbation on CIFAR10.

\[p_i \text{ caused by } \Delta x = \Delta x^\top v_i. \] The variance of \(p_i \) measures the spread of data in the direction of \(v_i \) and hence has \(\text{Var}(p_i) = \lambda_i \), while the variance of \(p'_i \) has an upper bound of \(\lambda_i + \mathbb{E}((\Delta p_i)^2) \), as shown in Equation (2),

\[
\text{Var}(p'_i) = \text{Var}(p_i) + \text{Var}(\Delta p_i) \\
= \lambda_i + \mathbb{E}(\Delta p_i^2) - \mathbb{E}(\Delta p_i)^2 \\
\leq \lambda_i + \mathbb{E}(\Delta p_i^2)
\]

assuming that the adversarial perturbation is independent from the data. Further, the expected deviation of perturbation \(\mathbb{E}(\Delta p_i^2) \) can be no larger than the norm of the perturbation \(||\Delta x||^2 \) as shown in Equation (3)

\[
\mathbb{E}(\Delta p_i^2) = \mathbb{E}((\Delta x^\top v_i)^2) = \mathbb{E}((||\Delta x||^2 ||v_i||^2) \\
\leq \mathbb{E}((||\Delta x||^2) \leq ||\Delta x||^2)
\]

where \(1 \) is due to the Cauchy–Schwarz inequality, \(2 \) holds as \(v_i \) is an eigenvector with ||\(v_i \)|| = 1, and \(3 \) holds since for adversarial attacks, the injected perturbation budget ||\(\Delta x || \) is the same for all images (if the maximum budget is always achieved). By combining Equations (2) and (3), we obtain that \(\text{Var}(p'_i) \) can be no larger than \(\lambda_i + ||\Delta x||^2 \). The empirical analysis in Figure 1 suggests that the actual variance of perturbed projected perturbed images on the least significant eigenvector is much closer to that upper bound than random noises. The perturbation budget in the figure varies from 1/255 to 8/255, and for each budget, the result is the average of 1,000 CIFAR10 images.

When the difference between \(\text{Var}(p'_i) \) and \(\text{Var}(p_i) \) is large, we can easily distinguish benign images from adversarial images by mapping them onto eigenvector \(v_i \). We quantify this difference by the ratio of \(\text{Var}(p'_i)/\text{Var}(p_i) \), which has an upper bound of \(1 + ||\Delta x||^2/\lambda_i \), from Equations (2) and (3). Since the perturbation budget ||\(x || \) is predefined before attack, the value of \(\lambda_i \) determines the differentiability between \(p'_i \) and \(p_i \). The smaller the value of \(\lambda_i \), the easier to distinguish adversarial from benign images. As a result, mapping data onto the least significant components gives highest distinguishability of attack. Figure 4 visualizes the distribution of projected values for 1,000 adversarial and benign images on major principal components and least significant components. We can see that the distributions for the two types of images are indistinguishable in the major PCA components, but are clearly distinguishable in the least significant components.

3.3 Hessian Feature

When studying model optimization, [29, 81] observed that perturbation on model weights can improve generalization, and [73, 69, 72] later proved that such improvement happens because the perturbation

\[
\text{log}(\|\Delta x\|) \\
\text{logVar}(p'_i)
\]

\textbf{Upper Bound} \\
\textbf{Adversarial} \\
\textbf{Gaussian} \\
\textbf{Uniform}

\textbf{Image Resolution} \\
0 \\
200 \\
400 \\
600 \\
800 \\
1000 \\
1200

\textbf{Computation Time (sec.)} \\
Generalized Gauss Newton \\
Hessian

Figure 2: As a good approximation for Hessian, there is a strong correlation between the matrix modulus of GGN and Hessian.

Figure 3: The computation time of Hessian and GGN under different image sizes.
changes the smoothness of the loss function’s landscape, which can be measured by the Hessian matrix of the loss. Motivated by this observation, we hypothesize that the Hessian can be used to characterize the loss landscape and find locations that are exploited by the adversarial perturbations. In fact, the adversarial attack creation problem is very similar to the problem of model optimization in the sense that they bear similarity to Lagrange duality.

More formally, model optimization can be expressed by Equation (4)

$$\text{minimize}_{W} \quad L[Y, f(W, X)] \quad \text{s.t.} \quad X = D$$

while the target of adversarial attack can be written as Equation (5)

$$\text{maximize}_{X} \quad L[Y, f(W^*, X)] + \sum_{u_i} u_i \|X_i - D_i\|_p$$

$$\text{s.t.} \quad u_i \leq 0, \quad \forall i \in [1, N]$$

where L is the loss function, W represents the parameters of the model f, D is the training data, Y is corresponding target, and W^* is the optimized (i.e., trained) model weights that achieves $inf_{W}[L[Y, f(W, X)]]$. If we regard the Lagrange regularizers as the adversarial perturbation constraints (i.e., l_{∞}, l_2 or l_0), Equation (5) can be seen as the adversarial attack against the dataset where $L[Y, f(W^*, X)]$ corresponds to maximizing the prediction error and $\sum_{u_i} u_i \|X_i - D_i\|_p$ corresponds to limiting the perturbation budget under l_p constraint. Such correspondence in duality motivates us to measure the statistical deviation of the Hessian matrix to detect adversarial examples.

The Hessian we use is the second-order derivative of the loss w.r.t. the input or the outputs of the intermediate layers, i.e.

$$H \equiv \frac{\partial^2 L(x)}{\partial^2 x} \quad \text{where} \quad H[i, j] = \frac{\partial^2 L(x)}{\partial x_i \partial x_j},$$

x is input or the outputs of the intermediate layers of the model (e.g., outputs of ReLU layers), x_i and x_j are the ith and jth entry (e.g., pixels in image) of the input, respectively. The size Hessian matrix is proportional to the square of the input dimension, which can cause computational and performance problems for anomaly detection models due to the curse of high dimensionality [4]. For example, the dimension of the Hessian w.r.t. the input in the case of CIFAR10 images is $3072 \times 3072 = 9, 437, 184$. This dimensionality is prohibitive for any existing anomaly detector.

In order to handle this challenge, we use the modulus of the Hessian as an approximation of the Hessian. Specifically, we use l_1 norm $\|H\|_1 = \sum_{i, j} |H[i, j]|$ of the matrix as we empirically found that the result of using l_1 and l_2 norm does not have big difference. The modulus operation reduces

\[\text{We slightly abuse the name of Lagrange regularizer as the norm } \| \cdot \|_p \text{ is not required in Lagrange duality.}\]
the spatial dimension of Hessian matrix to only one scalar number. Figure 5 shows the Hessian modulus distribution of benign and PGD10 images. The distributions suggest that the modulus of the Hessian can be used to separate benign and adversarial samples. Nevertheless, our final Hessian feature includes multiple dimensions by using the moduli of Hessian matrices for multiple network layers along with the Hessian matrix for the input.

3.4 Generalized Gauss-Newton Matrix for Approximating Hessian Matrix

We compute the Generalized Gauss-Newton matrix \[\[G\] \] instead to significantly speed up calculating the Hessian. Let \(L \) be the loss, \(x \) be the variable to the loss (e.g. images) and \(z \) be the inputs of penultimate layer (e.g. the Softmax layer in DNNs). The GGN can be computed as

\[
G = (J^T_z x) \odot H^L_z \odot J^T_z \tag{7}
\]

where \(\odot \) is the matrix multiplication, \(J^T_z \) is the Jacobian of the penultimate layer \(z \) w.r.t. the input \(x \) and \(H^L_z \) is the Hessian of loss \(L \) w.r.t. penultimate layer \(z \). Please note that the ground truth label is not required during computation and any choice of label will give the same result since GGN/Hessian modulus only show the curvature of the loss landscape. Though GGN approximates Hessian well [65, 43, 44], it is unclear how good the modulus of GGN approximates the modulus of Hessian. We empirically show the approximation accuracy by randomly picking 1,000 samples from CIFAR10 and computing their Hessian and GGN. Figure 2 shows the matrix modulus of Hessian and GGN while Figure 3 summarizes the computation time of Hessian and GGN under different image sizes. We notice that GGN is strongly correlated to Hessian, while being much more computationally efficient to calculate. Therefore we use GNN as a substitute for Hessian [65].

4 Experimental Evaluation

4.1 Benchmarks and Baselines

To evaluate the performance of HEAD, we conduct a series of experiments on the CIFAR10 [32], CIFAR100 [32], and SVHN [50] datasets and compare HEAD’s performance using several anomaly detection methods. As described in Section 3, HEAD-based anomaly detectors are trained on benign images only. We base our experiments on the VGG16 [66] model. There is no specific reason for this choice of model, beyond convenience and (relatively lower) computational requirements, the methodology itself is model-agnostic. All of results are obtained with Nvidia 1080Ti GPUs.

Baseline features: To provide a broad set of comparative baseline features, we compare HEAD against one naive image feature (PCA), two hand-crafted features (LID [40] and Mahalanobis [35]), and one self-trained deep feature (DSVDD [62]). We extract 32-dimensional principal components for PCA. Our choice of LID and Mahalanobis is driven by the fact that they do not require supervision to compute features and have less complexity than other methods such as [18], which requires the modification of the underlying model followed by finetuning. For both LID and Mahalanobis, we follow the original papers but change the target network to VGG16 [66] to provide a fair comparison to the HEAD features. DSVDD integrates both the feature extractor and anomaly detector. We train the feature extractor for 100 epochs and tune the anomaly detector for 50 epochs, following [62].

HEAD features: As explained in 3, HEAD features consists of two parts. First, we extract a 32-dimensional LSCF feature, as described in Section 3.2. We then compute the Hessian feature by evaluating the Hessian of the loss w.r.t. the input and the intermediate features from the ReLU layers to form a 13-dimensional feature, as described in Section 3.3. The LSCF and Hessian features are concatenated to create a 45-dimensional HEAD feature for each image.

Anomaly Detectors: We train both kernel density estimator (KDE) and One-Class SVM (OCSVM) based anomaly detectors on each set of features. For KDE, we evaluate using Gaussian, Epanechnikov, exponential, linear, and uniform kernels. For OCSVM, we evaluate using RBF, Sigmoid, linear and polynomial kernels. We also conduct a grid search for hyperparameters and report the best performance, the corresponding ablation studies can be found in the Appendix.

Adversarial Attacks: Each anomaly detector is evaluated across eight standard attacks. For \(l_\infty \) attacks with max perturbation 8/255, we use (1) PGD10 [42], (2) FGSM [21] and (3) BIM [34]. For \(l_2 \) attacks with total perturbation budget of 1, we use (4) DeepFool [49] and (5) CW [9]. For
4.2 Evaluation Results

Each anomaly detector is evaluated using the area under receiver operating characteristic curve (ROC AUC) on all adversarial attacks. We report performance on both each attack variant as well as the overall performance across all eight attacks. The results are summarized in Table 1. Note that, unlike supervised training where the detector is trained and evaluated on a specific attack, here, the same anomaly detector is used to detect any of the eight attacks.

We observe that, with very few exceptions, across all anomaly detection variants, HEAD-based anomaly detectors demonstrate the best performance. In general, features that represent holistic image features, such as PCA and DSVDD, do not perform well. The subtle and localized adversarial perturbations are likely overwhelmed by these global image features.

HEAD features, in particular, perform well against both l_∞ attacks and AutoAttack. We find that AutoAttack is easy to detect for all but the PCA-based anomaly detectors. We speculate that the reason for this behavior is that ensemble attacks leave more traces of tampering and are therefore easier to detect. HEAD features appear to be particularly robust to l_∞ attacks vis-à-vis the other approaches. Even on l_2 and l_0 attacks, HEAD features perform better than most of the compared features. Across all attacks, HEAD features achieve almost 95% AUC on CIFAR10 and SVHN, and almost 90% AUC on CIFAR100.

4.3 Cross-model Adversarial Detection

Adversarial examples generated by one model are known to be transferrable in that they can deceive a trained model with a different architecture [52]. In such cases, the defender attempts to detect adversarial images generated by an unknown model. To evaluate this scenario, we generate adversarial images with a ResNet18 [26] model and the defender’s task is to protect a VGG16 [66] model.

Dataset	Method	l_∞ Attacks	l_2 Attacks	l_0 Attacks	Combined Attacks	Overall					
		PGD10	FGSM	BIM	DeepFool	CW	SparseFool	OnePixel	AutoAttack		
CIFAR10	PCA+OCSVM	0.497	0.498	0.497	0.500	0.500	0.109	0.497	0.293	0.424	
	PCA+KDE	0.501	0.498	0.500	0.501	0.500	0.502	0.500	0.501	0.500	
	DSVDD [62]	0.569	0.614	0.566	0.505	0.507	0.901	0.505	0.958	0.641	
	LID+OCSVM	0.551	0.596	0.575	0.583	0.585	0.914	0.559	0.968	0.666	
	LID [40]+KDE	0.610	0.702	0.639	0.654	0.656	0.924	0.615	0.971	0.723	
	Mah.+OCSVM	0.880	0.787	0.898	0.852	0.837	0.941	0.899	0.898	0.894	
	Mah. [35]+KDE	0.896	0.887	0.893	0.603	0.587	0.899	0.578	0.966	0.789	
	HEAD+OCSVM (Ours)	0.999	0.999	0.999	0.841	0.941	0.985	0.821	0.988	0.947	
	HEAD+KDE (Ours)	1.000	1.000	1.000	0.846	0.943	0.986	0.825	0.989	0.949	
CIFAR100	PCA+OCSVM	0.497	0.497	0.497	0.500	0.500	0.221	0.497	0.353	0.445	
	PCA+KDE	0.498	0.501	0.499	0.500	0.501	0.501	0.500	0.497	0.500	
	LID+OCSVM	0.570	0.579	0.581	0.504	0.504	0.777	0.501	0.852	0.612	
	LID [40]+KDE	0.642	0.655	0.654	0.511	0.515	0.768	0.549	0.849	0.643	
	Mah.+OCSVM	0.708	0.719	0.709	0.816	0.811	0.772	0.883	0.916	0.792	
	Mah. [35]+KDE	0.845	0.926	0.848	0.535	0.541	0.760	0.530	0.789	0.723	
	HEAD+OCSVM (Ours)	0.999	0.999	0.999	0.728	0.814	0.498	0.819	0.906	0.907	
	HEAD+KDE (Ours)	1.000	1.000	1.000	0.846	0.943	0.986	0.825	0.989	0.949	
SVHN	PCA+OCSVM	0.499	0.501	0.499	0.500	0.500	0.242	0.497	0.342	0.448	
	PCA+KDE	0.500	0.499	0.499	0.499	0.499	0.499	0.501	0.500	0.495	0.499
	DSVDD	0.717	0.812	0.714	0.524	0.527	0.911	0.521	0.981	0.713	
	LID+OCSVM	0.680	0.640	0.693	0.654	0.680	0.927	0.525	0.984	0.723	
	LID [40]+KDE	0.761	0.747	0.772	0.726	0.749	0.938	0.560	0.986	0.780	
	Mah.+OCSVM	0.747	0.699	0.766	0.917	0.941	0.966	0.663	0.994	0.837	
	Mah. [35]+KDE	0.833	0.748	0.848	0.904	0.914	0.909	0.638	0.971	0.846	
	HEAD+OCSVM (Ours)	1.000	1.000	1.000	0.868	0.975	0.992	0.954	0.993	0.934	
	HEAD+KDE (Ours)	1.000	1.000	1.000	0.917	0.979	0.994	0.946	0.994	0.946	

Table 1: The ROC AUC performance on detecting eight adversarial attacks. Best performance is reported in **bold** and second best with *underline*.

l_0 attacks, we use (6) OnePixel [67] and (7) SparseFool [47] with hyperparameter $\lambda = 3$. For combined attacks with perturbation budget equals to 0.3 under l_∞, we use (8) AutoAttack [14]. We use the torchattacks’ [30] implementation for all attacks.
cross-model adversarial detection with LID [40] and Mahalanobis [35], we find that the baseline anomaly detectors perform quite poorly. To provide a stronger comparison, we instead compare against the LID and Mahalanobis supervised models. (Note that supervised models are trained on adversarial images of VGG16 but evaluated on adversarial images of ResNet18.) The supervised model is a binary classifier consisting of four fully connected layers with output dimensions of 64, 32, 8, and 1. ReLU layers and batch normalization layers [28] are attached after the first three fully connected layers, and Sigmoid layer after the last one. We optimize this model with SGD [58], with learning rate = 0.001, for 100 epochs using binary cross-entropy loss. For HEAD however, we use the same anomaly detection models as in Section 4.1. As shown in Table 2, across all datasets and attacks, HEAD based anomaly detectors significantly outperforms the supervised LID and Mahalanobis feature based models. Only on l_2 DeepFool attack, Mahalanobis-based supervised model slightly outperforms the HEAD-based anomaly detector. To reiterate, a HEAD based anomaly detector, trained on benign images only, outperforms supervised models, trained on LID or Mahalanobis features, on the cross-model adversarial detection task.

4.4 Sensitivity and Ablation Studies

To further understand the properties of the HEAD features, we conduct experiments on CIFAR10 to evaluate (i) effectiveness of LSCF and HF, (iii) performance gap between anomaly detection and binary classification, (iii) method sensitivity to the anomaly detectors, and (iv) method robustness when distinguish benign noisy images and adversarial images. The result of (iii) and (iv) are provided in the Appendix due to page limitation.

Effectiveness of Least Significant Component Feature And Hessian Feature components of HEAD: To compare the effectiveness of Least Significant Component Feature and Hessian Feature we ablate on the number of feature components. Specifically, for LSCF, we use 0, 4, 16, 32, 64-dimensional feature variants. For HF, we use 0, 1 (only input), 5 (from input to b_2_r2), 9 (from input to b_4_r1) and 13-dimensional (from input to b_5_r3) features. When one feature size (LSCF or HF) is changed, we use the best number of feature components for the other feature. Results are detailed in the Table 3. Both features show improved performance as the number of feature components increases. We observe that LSCF and HF are complementary in that the largest performance gains are obtained when LSCF and HF are concatenated. For LSCF, performance plateaus at 32 dimensions and does not increase with doubling the number of dimensions. Based on this ablation study, we choose 13-dimensional HF and 32-dimensional LSCF in the experiments of the remaining paper.

Binary benign/attack classification vs. anomaly detection: Anomaly detection, in general, does not require examples of the outliers, i.e. the adversarial images in this study. An interesting question is what, if any, performance improvement could be gained by incorporating knowledge of the adversarial examples? To answer this question, we use a binary benign/attack classifier to provide an upper bound on the performance, where we train neural networks on benign and adversarial images as inputs with image class (benign or adversarial) as the output. The binary classifier has the same architecture as the previously described LID and Mahalanobis models in Section 4.3. Figure 6 compares supervised
Table 3: The effectiveness of different dimensional Hessian Feature (left) and Least Significant Component Feature (right). The performance is shown in ROC AUC over all attacks. Dimension=0 implies the feature is not used. The right column shows the incremental performance improvement over the prior row.

HF Dimension	ROC AUC	Improve
0	0.885	-
1	0.936	+0.051
5	0.946	+0.010
9	0.948	+0.002
13	0.949	+0.001

LSCF Dimension	ROC AUC	Improve
0	0.860	-
4	0.923	+0.063
16	0.939	+0.016
32	0.949	+0.010
64	0.949	+0.000

5 Conclusion

We frame adversarial detection as an anomaly detection problem to better reflect the challenge of detecting adversarial examples in real life. We propose Hessian and Eigen-decomposition-based Adversarial Detection, which measures the statistical deviation caused by adversarial perturbation on two complementary features: LSCF, which captures the deviation of adversarial images from the benign data, and HF, which reflects the deformation of the model’s loss landscape at adversarially perturbed images. We provide the theoretical rationale behind using LSCF and HF. We propose using the Generalized Gauss-Newton as a very efficient and faithful approximation to the Hessian matrix in HF. Empirical results prove the effectiveness of HEAD and show that comparable performance to binary classification based adversarial detection can be achieved with anomaly detection. Our method does not use any outlier examples upon training anomaly detection, which could be a limitation in cases where outlier examples are easy to obtain. We defer the study of this case to our future research.

References

[1] Ahmed Abusnaina, Yuhang Wu, Sunpreet Arora, Yizhen Wang, Fei Wang, Hao Yang, and David Mohaisen. Adversarial example detection using latent neighborhood graph. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7687–7696, 2021.

[2] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a query-efficient black-box adversarial attack via random search. In European Conference on Computer Vision, pages 484–501. Springer, 2020.
[3] Laura Beggel, Michael Pfeiffer, and Bernd Bischof. Robust anomaly detection in images using adversarial autoencoders. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 206–222. Springer, 2019.

[4] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[5] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4183–4192, 2020.

[6] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pages 93–104, 2000.

[8] Qi-Zhi Cai, Min Du, Chang Liu, and Dawn Song. Curriculum adversarial training. arXiv preprint arXiv:1805.04807, 2018.

[9] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE Symposium on Security and Privacy, pages 39–57. IEEE, 2017.

[10] Yair Carmon, Adrii Raghu Nathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled data improves adversarial robustness. Advances in Neural Information Processing Systems, 32, 2019.

[11] Yan-Cho Chen. A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemiology, 1(1):161–187, 2017.

[12] Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence functions and nearest neighbors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 14453–14462, 2020.

[13] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary attack. In International Conference on Machine Learning, pages 2196–2205. PMLR, 2020.

[14] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International conference on machine learning, pages 2226–2216. PMLR, 2020.

[15] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Li Chen, Michael E Kounavis, and Duen Horng Chau. Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg compression. arXiv preprint arXiv:1705.02900, 2017.

[16] Lucas Deecke, Robert Vandermeulen, Lukas Ruff, Stephan Mandt, and Marius Kloft. Image anomaly detection with generative adversarial networks. In Joint European conference on machine learning and knowledge discovery in databases, pages 3–17. Springer, 2018.

[17] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. In 2013 IEEE international conference on acoustics, speech and signal processing, pages 8599–8603. IEEE, 2013.

[18] Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu. Libre: A practical bayesian approach to adversarial detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 972–982, 2021.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[20] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transformations. Advances in neural information processing systems, 31, 2018.

[21] Ian J Goodfellow, Jonathan Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learning Representations, 2015.

[22] Abigail Graese, Andras Rozsa, and Terrance E Boult. Assessing threat of adversarial examples on deep neural networks. In 2016 15th IEEE Conference on Machine Learning and Applications (ICMLA), pages 69–74. IEEE, 2016.

[23] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

[24] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

[25] Paula Harder, Franz-Josef Pfreundt, Margret Keuper, and Janis Keuper. Spectraldefense: Detecting adversarial attacks on cnns in the fourier domain. In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

[29] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.
[30] Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint arXiv:2010.01950, 2020.

[31] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In International conference on machine learning, pages 1885–1894. PMLR, 2017.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 2012.

[34] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels make adversarial attacks using high-level representation guided denoiser. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5216–5223, 2020.

[35] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[36] James Martens. Deep learning via hessian-free optimization. In International Conference on Machine Learning, 2010.

[37] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193, 2014.

[38] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pages 135–147, 2017.

[39] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial perturbations. In International Conference on Learning Representations, 2017.

[40] Aleksi Päivärinta, Joonas Heikkilä, and Jorma Toivonen. Characterizing adversarial subspaces using local intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations, 2018.

[42] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations, 2018.

[43] James Martens. Deep learning via hessian-free optimization. In International Conference on Machine Learning, 2010.

[44] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193, 2014.

[45] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, pages 135–147, 2017.

[46] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial perturbations. In International Conference on Learning Representations, 2017.

[47] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels make a big difference. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9087–9096, 2019.

[48] Sin A Mohseni, Mandar Pitale, JBS Yadawa, and Zhangyang Wang. Self-supervised learning for generalizable out-of-distribution detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 5216–5223, 2020.

[49] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[50] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[51] Guansong Pang, Chunhua Shen, and Antón van den Hengel. Deep anomaly detection with deviation networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 353–362, 2019.

[52] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference on computer and communications security, pages 506–519, 2017.

[53] Hyunjong Park, Jongyoun Noh, and Bumsub Ham. Learning memory-guided normality for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14372–14381, 2020.

[54] Pramuditha Perera and Vishal M Patel. Learning deep features for one-class classification. IEEE Transactions on Image Processing, 28(11):5450–5463, 2019.

[55] Pramuditha Perera and Ramesh Nallapati, and Bing Xiang. Ocgan: One-class novelty detection using gans with constrained latent representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2898–2906, 2019.
[56] Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen. Panda: Adapting pretrained features for anomaly detection and segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2806–2814, 2021.

[57] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In International Conference on Machine Learning, pages 8093–8104. PMLR, 2020.

[58] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.

[59] Bita Darvish Rouhani, Mohammad Samragh, Tara Javidi, and Farinaz Koushanfar. Curtail: Characterizing and thwarting adversarial deep learning. arXiv preprint arXiv:1709.02538, 2017.

[60] Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad H Rohban, and Hamid R Rabiee. Multiresolution knowledge distillation for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14902–14912, 2021.

[61] Bita Darvish Rouhani, Mohammad Samragh, Tara Javidi, and Farinaz Koushanfar. Towards safe deep learning: Unsupervised defense against generic adversarial attacks. 2018.

[62] Peter J Rousseeuw and Katrien Van Driessen. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3):212–223, 1999.

[63] Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad H Rohban, and Hamid R Rabiee. Multiresolution knowledge distillation for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14902–14912, 2021.

[64] Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support vector method for novelty detection. Advances in neural information processing systems, 12, 1999.

[65] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural computation, 14(7):1723–1738, 2002.

[66] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. 2015.

[67] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

[68] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning Representations, 2014.

[69] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale invariant definition of flat minima for neural networks using pac-bayesian analysis. In International Conference on Machine Learning, pages 9636–9647. PMLR, 2020.

[70] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 586–591, 1991.

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[72] Huan Wang, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. Identifying generalization properties in neural networks. arXiv preprint arXiv:1809.07402, 2018.

[73] Huan Wang, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. Assessing local generalization capability in deep models. In International Conference on Artificial Intelligence and Statistics, pages 2077–2087. PMLR, 2020.

[74] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

[75] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving adversarial robustness requires revisiting misclassified examples. In International Conference on Learning Representations, 2019.

[76] Jihun Yi and Sungroh Yoon. Patch svdd: Patch-level svdd for anomaly detection and segmentation. In Proceedings of the Asian Conference on Computer Vision, 2020.

[77] Dong Yu and Li Deng. Automatic speech recognition, volume 1. Springer, 2016.

[78] Hongyang Zhang, Yaodong Yu, Jianqiao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically principled trade-off between robustness and accuracy. In International conference on machine learning, pages 7472–7482. PMLR, 2019.

[79] Jingfeng Zhang, Xiaile Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankanhalli. Attacks which do not kill training make adversarial learning stronger. In International conference on machine learning, pages 11278–11287. PMLR, 2020.

[80] Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli. Geometry-aware instance-reweighted adversarial training. In International Conference on Learning Representations, 2021.

[81] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic gradient descent: Its behavior of escaping from sharp minima and regularization effects. arXiv preprint arXiv:1803.00195, 2018.
A Additional Ablation Studies

Sensitivity to anomaly detector parameters: KDE requires a choice of kernel and bandwidth, and OCSVM requires a selection of kernel and ν value. We evaluate KDE using Gaussian, Epanechnikov, exponential, linear, and uniform kernels with bandwidth values from 1 to 25. Figure 7 shows the overall AUCs for these parameter values. The results indicate the choice of the kernel is not critical, since all kernels achieve similar performance with an appropriate bandwidth choice. For OCSVM, we evaluate using RBF, Sigmoid, linear and polynomial kernels with ν values from 0.1 to 0.9. Results are shown in Figure 8. Unlike KDE, OCSVM is sensitive to the choice of kernel, with the RBF kernel significantly outperforming all other kernels. That said, with an appropriate choice of hyperparameters, HEAD-based detector performance is insensitive to the choice of anomaly detector.

![Figure 7: Ablation study of using different KDE kernels and kernel bandwidth.](image)

![Figure 8: Ablation study of using different OCSVM kernels and ν values.](image)

Noise Type	Gaussian	Uniform
Noise Level	AUC Drop	AUC Drop
-------------	---------	---------
0	0.949	0.949
1/255	0.929 -0.020	0.934 -0.015
2/255	0.910 -0.019	0.920 -0.014
4/255	0.886 -0.024	0.900 -0.020
8/255	0.867 -0.019	0.880 -0.020
16/255	0.834 -0.033	0.856 -0.024
32/255	0.784 -0.050	0.813 -0.043

Table 4: Performance of adversarial anomaly detector on distinguishing noisy benign images and adversarial images.

Robustness To Harmless Random Noise: While random noise can be viewed as a perturbation to clean images, they do not generally result in wrong predictions except at high noise levels. A good adversarial anomaly detector should be able to distinguish noisy benign images from adversarial images. To evaluate this behavior we train anomaly detectors on benign images (without noise) and test on noisy benign images and adversarial images. As additive noise, we use either zero-mean Gaussian noise with standard deviation set to a specified noise level, or zero-mean uniform noise with maximum value equal to a specified noise level. Table 4 details overall performance under six different noise levels using the KDE detector. The gray band in the table represents the noise level equivalent to the perturbation budget used in the adversarial attacks. We observe that when noise levels are low, the performance of the detectors does not drop significantly, and remains higher than 85% AUC. Even when the noise level is double that of the adversarial perturbation budget (i.e., noise level=16/255), the performance is still above 80% AUC. In general, HEAD-based anomaly detectors appear to be robust to random noise no larger than perturbation budgets, while experiencing larger performance drop under strong noise (e.g., noise level=32/255).