Analysis of the human health damage and ecosystem quality impact of the palm oil plantation using the life cycle assessment approach

Khaled Obaideen1, Yong Chai Tan2, Pow Seng Yap3, Muhamad Awang4, Abdul Azim Abd Ghani5, Vijaya Subramaniam6 and Vin Cent Tai7

1Institute of Graduate Studies, Faculty of Engineering and the Built Environment, SEGi University.
2Centre for Modelling and Simulation, Faculty of Engineering and Built Environment, SEGi University.
3Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia.
4Faculty of Environmental Studies, Universiti Putra Malaysia.
5Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.
6Engineering and Processing Division, Malaysian Palm Oil Board.
7Centre for Modelling and Simulation, Faculty of Engineering and Built Environment, SEGi University.

Email: khaled.obaideen@gmail.com.

Abstract. In recent years the palm oil has been criticized because of its impacts on the environment and human health. Therefore, this study focused on the investigation of human health and ecosystem quality impacts that arose from the plantation of fresh fruit bunch of palm oil by employing an open-source software, namely OpenLCA version 1.5. The life cycle assessment approach was used for the analysis of the investigated impacts. The effects of land use changes on the human health and ecosystem quality were assessed. By employing ReCiPe Endpoint methodology in life cycle impact assessment phase the total ecosystems impact 0.00017 species per year while total human health damage was 0.00146 DALY. The results showed that the land use change has an impact on all the impacts categories except the freshwater eutrophication, freshwater ecotoxicity, ozone depletion, terrestrial ecotoxicity, and terrestrial acidification. In addition, the analysis showed that the application of the fertilizers and pesticides were the main contributor in all the impact categories. The results show that transportation is not the major contributor in any one of the impact categories.

1. Introduction

The United Nations launched a set of 17 Sustainable Development Goals (SDGs) in 2015 [1]. The palm oil industry has the great opportunity to assist in achieving these goals, especially in ending the poverty and hunger, promoting the economic growth sustainably, and addressing climate change. The palm oil can aid to end hunger by maximizing the land usage since it has the highest yield per hectare [2] and provides nutrients to billions of people in the world [3]. The growing palm oil industry has assisted in reducing poverty since a very significant amount of palm oil (around 40%) is produced by the smallholder [4]. In addition, the palm oil is mainly produced in the developing countries, in particular with its recent exploration in Africa [5].

A reasonable amount of literature has been covered the impacts of oil palm plantation on the environments and human health impacts [6,7] [8–10]. Most of those studies focused on greenhouse gas emissions and energy balances. Although some studies included other impacts, the impacts covered were not comprehensive. Additionally, most of the previous studies used paid software [8,11–13] such as GaBi and SimaPro. This shows...
that there is a need to analyse the environmental impacts of oil palm more comprehensively and understand the relation between the impact categories and oil palm plantation activists. By understanding this relation, the decision maker and oil palm manager will able to reduce their environmental impacts more effectively. This reduction should not only cover the climate change, but it should also cover the other environmental impacts. In addition, since around 40% [14] of oil palm is produced by the smallholders the free software needs should be utilized more. In the present study, a total of 15 impact categories were investigated utilizing the most recent ReCiPe Midpoint (version 1.11) Ecoinvent database, version 3.4. An open-source software, namely OpenLCA (version 1.5) was employed.

2. Methodology

Life cycle assessment (LCA) is the only standard, recognized internationally for estimating the environmental impacts of a product, process, or activity [15]. LCA gives decision-makers the ability to identify and quantify the environmental impacts of a product, process, or activity during its entire life cycle. The LCA results depend on the quality of the data provided in the life cycle inventory (LCI) [16]. LCI data in this study was obtained from two main studies, namely Zulkifli et al. [11] and Choo et al. [12]. These two studies were conducted by the Malaysian Palm Oil Board (MPOB) and with assistance from the Industrial Research Institute of Malaysia (SIRIM) and representatives of the stakeholders from the palm oil industry.

2.1. Goal and scope

This paper aims to analyze human health damage and ecosystem quality arise from the plantation of fresh fruit bunches (FFB) of palm oil.

2.2. Functional unit

The functional unit was based on 1 ton of FFB produced and land use change (LUC) assumption was based on a hectare.

2.3. System boundary and system characteristics

This system followed a cradle-to-gate approach. It starts with the land preparation and transferring of the seedlings from the nursery to plantation until the FFB are distributed to the mill.

Included criteria	Excluded criteria
Manufacture of urea ammonium sulphate, phosphate rock, muriate of potash and plantation pesticides	Indirect land use change
Application of fertilizers, pesticides	Impact of heavy metals
Transportation	Manufacture of maintenance and replacement of capital equipment
Land use change	Manufacture of kieserite fertilizer, borate fertilizer, NPK compound fertilizer
Energy usage	Output to air, water, and soil

2.4. Life cycle inventory (LCI)

The source of the data was from Malaysian Palm Oil Board (MPOB). The database used was the Ecoinvent version 3.4 database.

2.5. Life cycle impact assessment (LCIA)

Life cycle impact assessment (LCIA) is an essential phase in LCA. LCIA assists the decision-makers to quantify the emissions and resource consumption associated with product life cycle [17]. It is done by categorizing the inventory data into different impact categories. LCIA methods are classified into two main orientations or classifications, namely midpoint methods and endpoint methods. Endpoint is supportive for the decision-makers, while midpoint, is helpful when specific environmental concerns are targeted.
2.6. Sensitivity analysis and data quality analysis
Monte Carlo (MC) analysis was used to analyze the uncertainties in the LCIA. The parameters used in MC were based on the literature review [8,9,18–21].

3. Results and discussion

3.1. Life cycle inventory (LCI)
Table 3 shows the LCI used in the analysis. The impacts of the LUC are reported and discussed separately. Table 4 shows the main assumption used in this study.

Flow	Amount	Unit	Flow	Amount	Unit
Sulfonyl urea	0.148	kg	Phosphate fertilizer	0.64	kg
Bipyridylum	0.104	kg	Phosphate rock	6.55	kg
Transport	55.25	t*km	Ammonium sulfate	8.05	kg
Nitrogen fertilizer	3.49	kg	Ammonium nitrate	0.76	kg
Phosphate fertilizer	2.8	kg	Dimethylamine	0.031	kg
Salt tailing from a potash mine	11.6	kg	Potassium fertilizer	11.5	kg
Potassium fertilizer	4.5	kg	Diesel burned in agricultural machinery	2.0145	l
Urea, as N	0.41	kg	Organophosphorus	0.064	kg
Ammonium chloride	0.72	kg	Seedling	0.33	Item(s)
Pyrethroid-compound	0.0215	kg	Pesticide, unspecified	2.087	kg
Glyphosate	0.338	kg			

Table 4 The assumptions used.

Plantation characteristics	
FFB yield (ton/ ha⁻¹ yr⁻¹)	20.7
Planting density (palm ha⁻¹)	142
Soil characteristics	Mineral soils
Plantation lifetime	25 years
No of plantations	102

3.2. Life cycle impact assessment (LCIA)
Table 5 shows the LCIA results using ReCiPe Midpoint (version 1.11), and the impacts when the LUC was considered and the significant source of this impact. Fig. 1 indicates the relationship between FFB LCI parameters, significant flow contributors, midpoint indicator and endpoint indicator using ReCiPe [22]. This figure only shows the major flow contributors. The complete details are available in the supplementary information. In the following section, the results and discussion of each impact are presented. The results show clearly that changes will also lead to changes in the midpoint indicator and endpoint indicator.

Impact category	LUC not accounted	LUC accounted	Major source of the impacts
Agricultural land occupation (m²a)	1.91	2.15	Pesticide
Climate Change (kg CO₂ eq)	95	723	Fertilizer
Freshwater ecotoxicity (kg 1,4-DB eq)	28.9	28.9	Fertilizer
Freshwater eutrophication (kg P eq)	0.024	0.024	Pesticide
Human toxicity (kg 1,4-DB eq)	32.5	38.7	Fertilizer
Ionizing radiation (kg U235 eq)	3.9	4.3	Fertilizer
Marine ecotoxicity (kg 1,4-DB eq)	1.3	1.5	Fertilizer
Marine eutrophication (kg N eq)	0.06	0.08	Fertilizer
Natural land transformation (m²)	0.008	2.633	Fertilizer
Ozone depletion (kg CFC-11 eq)	4.21E-05	4.31E-05	Pesticide
Particulate matter formation (kg PM₁₀ eq)	0.2	1.6	Fertilizer
Photochemical oxidant formation (kg NMVOC)	0.2	1.4	Fertilizer
3.3. Land use change impacts

Land competition is expected to continue to increase in the future for the palm oil plantation [23]. In this study, LUC was accounted independently. By doing that, the assumptions were reduced to the minimum. Table 6 provides details on the increase percentage when the LUC was included. The LUC accounted for the result of the carbon emission. Since natural land transformation impact is subjected to LUC [24], there are sharp increases in the value. The results indicated that LUC does not have any effects on the terrestrial ecotoxicity. The results also revealed that LUC has a very slight impact on freshwater eutrophication and freshwater ecotoxicity. Based on the results, the LUC influenced the ecosystem quality more than human health impact. The main impacts being resulted from the LUC were climate change, particulate matter formation, photochemical oxidant formation, ecosystems natural land transformation and the ecosystems-total. To reduce these impacts, the LUC should be reduced to the minimum.

Table 6 The additional percentage for LCIA when LUC was accounted.

Impact category	%	Impact category	%
Agricultural land occupation (m²a)	12.36	Ozone depletion (kg CFC-11 eq)	2
Climate Change (kg CO₂ eq)	665	Particulate matter formation (kg PM10 eq)	589
Freshwater ecotoxicity (kg 1,4-DB eq)	0.13	Photochemical oxidant formation (kg NMVOC)	559
Freshwater eutrophication (kg P eq)	1	Terrestrial acidification (kg SO₂ eq)	3
Human toxicity (kg 1,4-DB eq)	19	Terrestrial ecotoxicity (kg 1,4-DB eq)	0
Ionising radiation (kg U235 eq)	8.89	Ecosystems-total (species*year)	10377
Marine ecotoxicity (kg 1,4-DB eq)	12	Human Health-total (DALY)	563
Marine eutrophication (kg N eq)	25		

3.4. The relationship between FFB LCI parameters and LCIA

To understand the relationship between FFB LCI parameters and LCIA, the LCI parameters were categorized into three main categories i.e transportation, fertilizer and pesticides, as shown in Fig 1. The analysis showed...
that transportation was main contributors of the following flow: radon-222, nitrogen oxides, ammonia, and phosphate. The fertilizer was the key contributors of the following flow: nitrogen oxides, occupation forest intensive normal, ammonia, phosphate, the transformation from forest intensive, metsulfuron-methyl, and occupation construction site. The pesticides were the key contributors of the following flow: methane, tetrachloro- r-10, radon-222, manganese, dinitrogen monoxide. Each of these flows contributed to at least one of the impact categories. It should be noticed a 2% cutoff was used to simplify the relationship.

3.5. Uncertainties and data quality analysis
The input values adopted were based on two main data from Choo et al. [12] and Zulkifli et al. [11]. The results of MC are presented in Table 7. This table demonstrates the major elements. A total of 1000 MC simulations were run in OpenLCA 1.5. The high coefficient of variation provides the evidence that the plantation of palm oil has a high uncertainty in most of the impact categories. More analysis should be done to determine the source of this high uncertainty. It can be noticed that ozone depletion has the highest uncertainty. This was because the ozone depletion influenced by the application of the pesticide. The lowest uncertainty was on freshwater ecotoxicity. The small value of the coefficient of variation in the climate change impacts suggested that the result has high accuracy. There is a similarity between this result, the climate change impact, and the result from Schmidt [25]. In general, the uncertainty can be explained because each study has different functional units, different LCIA methods, various system boundaries, and various locations.

Impact category	Coefficient of variation	Uncertainty (%)	Impact category	Coefficient of variation	Uncertainty (%)
Agricultural land occupation	5.49	549%	Natural land transformation	1.61	161%
Climate Change	0.18	19%	Ozone depletion	13.3	1331%
Freshwater ecotoxicity	0	1%	Particulate matter formation	0.28	28%
Freshwater eutrophication	6.79	680%	Photochemical oxidant formation	0.61	62%
Human toxicity	0.52	52%	Terrestrial acidification	0.11	11%
Ionizing radiation	4.41	441%	Terrestrial ecotoxicity	0	0%
Marine ecotoxicity	0.25	26%	Ecosystems-total	0.11495	11%
Marine eutrophication	0.35	36%	Human Health-total	0.247014	25%

4. Conclusion
The palm oil industry can assist in achieving the 17 Sustainable Development Goals. The results obtained using an open-source software were consistent with other research findings, thus this proved that smallholders can use these results, but have to adjust according to its data. The analysis showed the total ecosystems impact 0.00017 species per year while total human health damage was 0.00146 DALY. A detail relation between oil palm plantation activities, major flow contributors, midpoint indicator, endpoint indicator, and the impact was identified as shown in figure 1. The results could be used by the decision maker to determine ways to reduce human health damage and ecosystem quality from their oil palm plantation. The main focuses should be in reducing the application of the fertilizers and pesticides. While the transportation should be given the lower focuses because it has a lower impact in comparison with other activities. Because 16 impacts were covered, this would also give the decision maker the ability to avoid increasing the other impacts while trying to reduce one. When LUC was included, the results significantly changed in most of the impacts categories. The uncertainties analysis showed that the results were dependent on the values adopted in the LCI, especially pesticides and fertilizer values.

References
[1] Hák T, Janoušková S and Moldan B 2016 Sustainable Development Goals: A need for relevant indicators Ecol. Indic. 60 565–73
[2] Gui M M, Lee K T and Bhatia S 2008 Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock Energy 33 1646–53
[3] Lam M K, Tan K T, Lee K T and Mohamed A R 2009 Malaysian palm oil: Surviving the food versus fuel
dispute for a sustainable future *Renew. Sustain. Energy Rev.* 13 1456–64

[4] Ruys Schaert D and Salles D 2014 Towards global voluntary standards: Questioning the effectiveness in attaining conservation goals. The case of the Roundtable on Sustainable Palm Oil (RSPO) *Ecol. Econ.* 107 438–46

[5] Hansen S B, Padfield R, Syayuti K, Evers S, Zakariah Z and Mastura S 2015 Trends in global palm oil sustainability research *J. Clean. Prod.* 100 140–9

[6] Bessou C, Basset-Mens C, Tran T and Benoist A 2013 LCA applied to perennial cropping systems: A review focused on the farm stage *Int. J. Life Cycle Assess.* 18 340–61

[7] Manik Y and Halog A 2012 A Meta-Analytic Review of Life Cycle Assessment and Flow Analyses Studies of Palm Oil Biodiesel *Integr. Environ. Assess. Manag.* 9 134–41

[8] Yusoff S and Hansen S 2007 Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia (9 pp) *Int. J. Life Cycle Assess.* 12 50–8

[9] Chew Y L and Shimada S 2013 Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer – A case study of Malaysia *Biomass and Bioenergy* 51 109–24

[10] Yee K F, Tan K T, Abdullah A Z and Lee K T 2009 Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability *Appl. Energy* 86 S189–96

[11] Zulkifli H, Halimah M, Chan K W, Choo Y M and Mohd Basri W 2010 Life cycle assessment for oil palm fresh fruit bunch production from continued land use for oil palm planted on mineral soil (part 2) *J. Oil Palm Res.* 22 887–94

[12] Choo Y M, Muhamad H, Hashim Z, Subramaniam V, Puah C W and Tan Y 2011 Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach *Int. J. Life Cycle Assess.* 16 669–81

[13] Stichnothe H and Schuchardt F 2011 Life cycle assessment of two palm oil production systems *Biomass and Bioenergy* 35 3976–84

[14] RSPO 2017 Smallholders

[15] Bessou C, Basset-Mens C, Benoist A, Biard Y, Burte J, Feschet P, Payen S, Tran T and Perret S 2016 Life Cycle Assessment to Understand Agriculture-Climate Change Linkages *Climate Change and Agriculture Worldwide* ed E Torquebiau (Dordrecht: Springer Netherlands) pp 263–75

[16] Rebitzer G, Ekvall T, Frischknecht R, Hunekeler D, Norris G, Rydberg T, Schmidt W P, Suh S, Weidema B P and Pennington D W 2004 Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications *Environ. Int.* 30 701–20

[17] Finkbeiner M, Inaba A, Tan R, Christiansen K and Klüppel H-J 2006 The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044 *Int. J. Life Cycle Assess.* 11 80–5

[18] Chew Y L, Iwata T and Shimada S 2011 System analysis for effective use of palm oil waste as energy resources *Biomass and Bioenergy* 35 2925–35

[19] Norfaradila J, Norela S, Salmijah S and Ismail B S 2014 Life cycle assessment (LCA) for the production of palm biodiesel: A case study in Malaysia and Thailand *Malaysian Appl. Biol.* 43 53–63

[20] Reeb C W, Hays T, Venditti R A, Gonzalez R and Kelley S 2014 Supply Chain Analysis, Delivered Cost, and Life Cycle Assessment of Oil Palm Empty Fruit Bunch Biomass for Green Chemical Production in Malaysia *Bioresources* 9 5385–416

[21] Schmidt J H 2007 Life cycle inventory of rapeseed oil and palm oil (Aalborg University)

[22] Goedkoop M, Heijungs R, De Schryver A, Struijs J and van Zelm R 2013 ReCiPe 2008. A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level. Characterisation. *A life cycle impact 133

[23] Wicke B, Sikkema R, Dornburg V and Faaij A 2011 Exploring land use changes and the role of palm oil production in Indonesia and Malaysia *Land use policy* 28 193–206

[24] Goedkoop M J, Heijungs R, Huijbregts M and others 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation. 2008 Available from internet http//www. lcia-recipe. net

[25] Schmidt J H, Weidema B P and Brandão M 2015 A framework for modelling indirect land use changes in Life Cycle Assessment *J. Clean. Prod.* 99 230–8