Gloriosa superba and Colchicum autumnale multi-tissue transcriptome analysis for colchicine pathway and rhizome development candidate gene identification

CURRENT STATUS: POSTED

John Samuel Bass
University of Houston

David R. Gang
Washington State University

Toni M. Kutchan
Donald Danforth Plant Science Center

Ganapathy Sivakumar
University of Houston

✉ sganapa3@central.uh.edu*Corresponding Author*
ORCiD: https://orcid.org/0000-0002-9420-4834

DOI:
10.21203/rs.2.9594/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
Biorhizome, bioinformatics, biomanufacturing, biomedicine, synthetic biotechnology
Abstract

Background

The continued emergence of side-effects caused by synthetic drugs underscores the need for plant-based drugs in human medicine. Medicinal rhizomatous crops are a “goldmine for modern drugs”, and include such species as Gloriosa superba L. and Colchicum autumnale L., the producers of colchicine, a plant-based medicine. The natural isomer of bioactive colchicine is used to effectively treat major diseases such as cancer, cardiovascular disease, and gout. The medicinal properties of colchicine are well characterized, however, almost nothing is known about its biosynthesis. The paucity of information on the colchicine biosynthetic pathway is a significant barrier to biomanufacturing of this biomedicine. A comparative transcriptome study of G. superba and C. autumnale serves as a sequence resource to aid with identification of this biomedicine pathway and rhizome development genes for synthetic biotechnology toolbox, which will enable improved colchicine biomanufacturing.

Result

Transcriptomes of two colchicine synthesizing monocots G. superba and C. autumnale were interrogated to identify putative cDNAs encoding enzymes and transcription factors involved in the colchicine biosynthetic pathway and rhizome development. Mining of the transcriptomes using Blast2GO led to the identification from G. superba and C. autumnale, respectively, of 20 and 29 candidate colchicine biosynthetic genes N-methyltransferases, 3-O-methyltransferases, cytochrome P450s, a class that could catalyze several steps in the pathway, and N-acetyltransferases. Similarly, 19 and 15 candidate rhizome developmental genes, which belongs to several classes including GIGANTEA, CONSTANS, Phytochrome B, Sucrose Synthase), Flowering Locus T, and REVOLUTA. Likewise, about 16 and 12 transcription factors involved in regulating rhizome development and secondary metabolic pathways in rhizomes such as MADS-box, AP2-EREBP, bHLH, MYB, NAC, and WRKY were also found in G. superba and C. autumnale, respectively.

Conclusion

The predicted genes in G. superba and C. autumnale encode colchicine pathway enzymes that provide fundamental information for plant-based biomedicine engineering in biorhizomes and
microorganisms, a potentially important area of synthetic biotechnology. Additionally, increasing our understanding of rhizome functional genomics will lead to improved colchicine biomanufacturing, and generate important knowledge that can be applied to many other medicinal plant species, allowing for the engineered production of additional biomedicines in medicinal rhizomes.

Background
The growing need for ultrapure plant-based medicines to treat human disease often cannot be met due to a lack of feasible upstream biomanufacturing processes. For example, therapeutic colchicine alkaloid, a drug used to treat cancer, cardiovascular disease, and gout [1-25], is uniquely biosynthesized by the Colchicaceae family and extracted commercially from Gloriosa superba and Colchicum autumnale, important rhizome crops and the prime pharmaceutical source of colchicine. Further, colchicine is an FDA approved drug [26]. The colchicine analog CH-35 was more effective at inhibiting the βIII isotype of breast cancer than taxol [27-30]. The results of clinical trials suggest that colchicine could prevent the recurrence of atrial fibrillation after cardiac surgery and renal diseases [31-34]. Moreover, colchicine is undergoing clinical trials to treat non-diabetic metabolic syndrome and diabetic nephropathy [35-37]. The best chemical synthesis method available generates only a 9.2% yield of >99% (-)-colchicine [38-39]. On the other hand, plant-based colchicine from G. superba yields approximately 1% DW[22, 40]. However, the annual production of pharmaceutical colchicine is limited by its source [41-45].

Despite the availability of sequence data for the G. superba and C. autumnale transcriptomes (from the Medicinal Plant Transcriptome https://medplantrnaseq.org/) and their chloroplast genomes, little is known about the colchicine biosynthetic pathway and its regulation in the plant [46]. The efficiency of colchicine biosynthesis likely depends on the interaction of gene circuit elements with other components within the biosynthetic network and how those gene circuits are regulated. This situation with colchicine production is not unusual—as more plant-based medicinally important compounds are discovered, especially where high purity and large amounts are required. To overcome the plant-based therapeutic colchicine production limitation, an advanced non-dormant in vitro biorhizome technology from G. superba has been established [47]. Biorhizomes are non-transgenic cultures that
produce important biomedicine, which also serves as asexual reproductive organs, and are an advanced biotechnological platform compared to root and cell cultures due to their continuous and rapid colchicine production [48]. Nevertheless, the biochemical pathways and regulatory networks in the biorhizomes that control colchicine biosynthesis are yet to be characterized, leaving a significant barrier to improving colchicine biomanufacturing. Therefore, the first steps in building a synthetic biology toolbox for colchicine production include analysis of genes from the different Colchicaceae species in order to identify regulatory steps and factors that can then be adjusted to enhance colchicine biomanufacturing in the biorhizomes.

The current understanding of colchicine biosynthesis in planta is based on radiolabeling studies [49-51] and the transformation of O-methylandrocymbine to demecolcine by microsomes prepared from immature C. autumnale seeds [52]. The phenylalanine precursor in the phenylpropanoid pathway and trihydroxylated phenethylisoquinoline in the colchicine pathway have been studied [53-56]. However, research has not been performed at the molecular level to uncover enzymes and regulatory proteins in the colchicine biosynthetic pathway in G. superba or C. autumnale. To fully understand how colchicine is biosynthesized in Gloriosa biorhizomes, the key genes and enzymes that control the colchicine pathway from the alkaloidal precursor trihydroxylated phenethylisoquinoline to colchicine must be identified. To this end, we constructed a full-length cDNA library using mRNA isolated from G. superba leaves that consists of 2,790 processed sequences, of which 1,379 were assembled into 292 contigs and 1,411 singletons [47]. The cDNA library contains gene families expected to be involved in the colchicine pathway, including NMT, 3-OMT, cytochrome P450s: CYP96T1, CYP82E10, and NAT. Furthermore, we manually curated these gene families and identified specific genes whose corresponding enzymes are excellent candidates for involvement in the colchicine pathway, from the alkaloid formation steps to later steps in the pathway (Figure 1), including: 1) an NMT enzyme that catalyzes the conversion of the trihydroxylated phenethylisoquinoline intermediate to (S)-autumnaline; 2) a P450: CYP96T1 that catalyzes (S)-autumnaline to isoandrocymbine; 3) an OMT enzyme that catalyzes the transformation of isoandrocymbine to 3-O-methylandrocymbine; 4) a P450 that catalyzes O-methylandrocymbine to demecolcine; 5) an additional P450CYP82E10 that catalyzes
the conversion of demecolcine to deacetylcolchicine; and 6) a NAT enzyme that catalyzes the transfer of an acetyl group from acetyl-CoA to a deacetylcolchicine nitrogen group to yield colchicine [47].

Although significant progress has been made in understanding rhizome-specific functions in plants, the mechanisms underlying the regulation of *Gloriosa* biorhizome growth, and the dormancy of field-grown *G. superba* and *C. autumnale* are not yet known [57-59]. Similar to many other rhizomatous species, natural *G. superba* and *C. autumnale* rhizomes undergo a dormancy period in their normal growth cycle, but the biorhizomes do not go dormant. Extensive studies examined the phenotypic variation between plant species, but why dormancy-free biorhizomes from different *Gloriosa* species produce different levels of colchicine in the controlled bioreactor environment remains unclear. The function of dormancy-associated genes (such as specific transcription factors) in biorhizomes and the core regulatory machinery that controls differential colchicine biosynthesis between species are not known. We hypothesize that *G. superba* and *C. autumnale* genes and gene networks are comparable, but that subtle differences in their regulation lead to changes in colchicine accumulation between the species. Comparison of the transcriptomes of these species will aid in filling the identified knowledge gaps.

Results

Benchmarking universal single-copy orthologue (BUSCO) analysis: Three *in vivo* tissues (leaf, fruit, and rhizome) were previously used to generate a combined RNA-seq dataset of *G. superba* and *C. autumnale* (https://medplantrnaseq.org/). This investigation of the dataset indicated that the N50 for the assembly was fairly long at 2,134, given that contigs of ≥ 100 (instead of ≥ 200) were included in the assembly and that the data were generated from 50 bp single-end reads. The average contig length was somewhat short, however, as the statistic was skewed due to the inclusion of several contigs that were shorter than 200. BUSCO analysis, which in this case examined the core eukaryotic genes in plants, indicated that the dataset was ~89% complete (64% of the genes detected were found as a single sequence in the assembly, and 25% had duplicated sequences). In comparison, a total transcriptome analysis that we conducted in a different species and that focused on only a single sample type (containing combined RNA samples from the 1st and 2nd Asian Citrus Psyllid instars,
including six biological replicates and utilizing 150 bp reads), led to BUSCO analysis results suggesting that the dataset was 96% complete (13% single sequence and 83% duplicate sequences), with only 1.4% fragments of core genes and 2.6% missing core genes. Thus, although the sequence data used in this analysis were of high quality, it is likely that some important genes may nevertheless still be missing from the dataset.

Annotation and comparative transcriptomes analysis: The *C. autunnale* and *G. superba* transcriptomes consist of 60,927 and 32,312 assembled multiple-tissue transcripts with 21,948 and 15,089 unigenes, respectively, identified as having functions belonging to known plant-specific gene ontology (GO) terms. Among these, 23,247 and 45,292 sequences were assigned and annotated as biological processes, 27,199 and 52,366 sequences as cellular components, and 22,760 and 44,942 sequences as molecular functions in *G. superba* and *C. autunnale*, respectively (Figure 2). The *G. superba* leaf tissue cDNA library was also annotated using the Blast2GO suite and contained a total of 1,703 unigenes with 588 sequences were assigned to biological process, 700 sequences to cellular component, and 568 sequences to molecular function categories (Figure 2). Figure 3 shows the percentages of GO terms assigned to the transcriptomes of *G. superba* and *C. autunnale*, and the cDNA library. Additional GO terms were used to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway members, putative colchicine pathway enzymes, and rhizome developmental genes, along with transcription factors. KEGG annotated 15184 of 57580 (26.4%) and 33505 of 100528 (33.3%) sequences in *G. superba* and *C. autunnale* transcriptomes, respectively (Figure 4), suggesting that many of the transcripts belong to non-canonical pathways (e.g., are not involved in known signaling pathways or biosynthetic pathways). Many of these reads were characterized as “unknown”, as is still typical in transcriptomic analysis of non-model plant species [60-61]. *G. superba* cDNA library was also annotated by BlastKOALA, which annotated 66 of 848 (7.8%) sequences sets of proteins based on their role in specific pathways (Figure 4).

The mining of *G. superba* and *C. autumnale* transcriptomes revealed a total of 1299 genes that were possible initial candidates for involvement in the colchicine pathway, which included 647 sequences from *G. superba* and 652 from *C. autumnale*. From 647 candidate sequences in *G. superba*, 186 coded
for NMTs, 105 for OMTs, 19 for NATs, and 337 for P450s; while from 652 candidate sequences in \textit{C. autumnale}, 16 were putative NMTs, 106 OMTs, 20 NATs, and 510 P450s (Figure 5). Further, these transcripts were narrowed down to candidates for the genes that catalyze the reactions in the colchicine biosynthetic pathway. Moreover, a total of 339 putative rhizome developmental genes identified based on comparison to known rhizome developmental genes (119 sequences) from \textit{Nelumbo nucifera} and tuber developmental genes (142 sequences) from \textit{Solanum tuberosum} such as \textit{GI, CO, PHYB, SuSy, FT, and REV} were also identified in \textit{G. superba} and \textit{C. autumnale} transcriptomes (Figure 6). Notably, 113 sequences from \textit{G. superba} and 226 from \textit{C. autumnale}. In addition, a total of 1146 transcription factor sequences associated with rhizome development namely MADS-box, AP2-EREBP, bHLH, MYB, NAC, and WRKY were analyzed (Figure 7). This included 481 sequences from \textit{G. superba} and 665 from \textit{C. autumnale}. Phylogenetic trees of colchicine pathway, rhizome development, and transcription factors (with a total of 65, 58, and 59, respectively) of full-length amino-acid candidate and reference genes were constructed using the PHYLIP-3.697 software with the objective to examine the genetic divergence between two colchicine producing plants, \textit{G. superba} and \textit{C. autumnale}, and their reference sequences.

Discussion

What genes are expressed in rhizomes? Several recent investigations have identified rhizome-specific genes in different rhizomatous plants by directly comparing leaves, other tissues, and rhizomes, leading to the detection of genetic mechanisms responsible for controlling rhizome development, growth, and metabolism. Many genes exhibit significantly altered expression during rhizome development but genes associated with auxin hormone signaling appear to trigger rhizome induction [57-59]. The rhizome developmental gene \textit{REV} is highly expressed in bamboo rhizome buds and plays an important role in meristem initiation [62]. In potato plants, calmodulin-binding protein plays a regulatory role in signal transduction for tuber formation [63]. In addition, the \textit{FT, CO, and GI} genes are involved in the transduction of photoperiodic signals, which may promote rhizome budding in potatoes [64-65]. Tubers are not rhizomes, but there are some similarities to their growth that may include involvement of analogous genes. There are 14 other important rhizome formation-related
genes, including a MADS-box that could be involved in rhizome enlargement [66]. Genes encoding PHYB, CO, GI, FT and SuSy were identified in Lotus rhizomes, but their expression and regulation differed in the shoot and rhizome [60]. Transcription factor families such as AP2-EREBP, bHLH, MYB, NAC, and WRKY were reported to be important in regulating specialized metabolic pathways in rhizomes [61]. Bioactive small molecules such as curcuminoid and candidate genes for gingerol synthesis are also highly expressed in rhizomes [67-71]. Notably, biosynthetic genes involved in benzyliisoquinoline alkaloid formation were highly upregulated during bulb development in Corydalis yanhusuo [72]. In wild rice, microRNAs were differentially expressed in aerial shoots and rhizomes [73]. However, the exact roles that the corresponding genes might play in biorhizomes are not known. This information provides a framework for our analysis of biorhizome-expressed genes and the identification of specific genes involved in biorhizome growth, resistance to dormancy and production of colchicine in this interesting biotechnology platform.

Why are colchicine pathway candidate NMT, P450s (CYP96T1 and CYP82E10), 3-OMT, and NAT genes from the transcriptomes the best targets? First, a cDNA contig consisting of three sequences showed significant sequence similarity to Ricinus communis NAT and partial similarity to an analogous gene from Oryza sativa. This contig, which contains a full-length transcript (cDNA Gloriosa 148), is a potential candidate for encoding the enzyme that catalyzes the acetyl transfer from acetyl-CoA to deacetylcolchicine to form colchicine, the final step in the proposed colchicine pathway [52]. The putative NAT gene also showed 100% homology to a full-length transcript in the G. superba transcriptome (Gloriosa-20120814|26859). Similarly, two NAT catalyzed reactions were identified in melatonin biosynthesis in O. sativa[74-75], carried out by SNAT1 and SNAT2 enzymes. The SNAT1 transcript Q5KQI6.1 is a possible alternative reference sequence, with an identity of 69%, and 77%, respectively, to transcripts in the G. superba and C. autumnale transcriptomes (Gloriosa-20120814|70209_1 and Colchicum_20101112|6813; see Table 1 and Figure 8).

Second, the cDNA clone (Gloriosa 14D06) identified as encoding a putative NMT is a partial clone consisting mainly of the 3´ end of the cDNA (Table 1 and Figure 8). The putative NMT clone had high sequence homology to a Coptis japonica NMT, which catalyzes a similar N-methylation reaction
involved in (S)-N-methylcoclaurine formation in the benzylisoquinoline pathway and has a near identical full-length transcript in the G. superba transcriptome (Gloriosa-20120814_33123). The putative NMT is a one candidate for the N-methylation step that converts the trihydroxylated phenethylisoquinoline intermediate to (S) autumnaline, the first alkaloidal precursor formation step in the proposed colchicine pathway [52, 76]. Other candidates include, the G. superba putative NMT transcript Gloriosa-20120814|64082_1, which was found to be 58% identical to C. japonica coclaurine NMT (BAB74802.1), and Colchicum_20101112|85, a transcript with 48.7% identity to pavine NMT (PNMT, sp|C3SBW0.1) from Thalictrum flavum (PNMT) converts (S)-tetrahydropapaverine to (S)-laudanosine in the benzylisoquinoline alkaloid pathway that is common in many plants [77]. PNMT is also considered a possible alternative reference sequence due to its capability of adding a methyl group to (S)-tetrahydropapaverine where the nitrogen is present, which is similar to the colchicine pathway mechanism. These putative transcripts also share homology with reticuline NMT involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy roots [78].

Third, the cDNA clone (Gloriosa 8E03) identified as a putative P450 is a partial clone with 87% sequence homology to Narcissus pseudonarcissus CYP96T1, which catalyzes a C-C phenol coupling reaction in noroxomaritidine biosynthesis in the haemanthamine pathway and has an identical full-length transcript in the C. autumnale transcriptome (Colchicum-20101112_3005). This putative enzyme might be a candidate for the para-para phenol-tropolone oxidative coupling bridge-forming P450 CYP96T1, that is NADPH and O2-dependent and converts (S)-autumnaline to isoandrocymbine [79-80]. In Papaver somniferum, salutaridine synthase enzyme (CYP719B1)is responsible for the C-C phenol coupling converting (R)-reticuline to salutaridine by connecting the 12 and 13 carbon [81-82]. P. somniferum CYP719B1 enzyme could also be considered as an alternative reference gene because of its C-C phenol-coupling mechanisms in the morphine pathway. Furthermore, in C. japonica, CYP80G2 has been shown to convert (S)-reticuline to (S)-corytuberine through C-C phenol-coupling in an isoquinoline alkaloid pathway [83]. The G. superba and C. autumnale transcriptomes contained transcripts (Gloriosa-20120814|30999_1 and Colchicum_20101112|76071) that shared of 52.7% and 51.7% identity, respectively, with CYP80G2 (sp|A8CDR5.1; see Table 1 and Figure 8).
Fourth, the cDNA clone (Gloriosa 7D05) identified as a putative OMTs a partial clone with high sequence homology to Narcissus sp. aff. pseudonarcissus norbelladine-4-OMT, which participates in a similar O-methylation reaction to form O-methylnorbelladine in the galanthamine pathway and has an identical full-length transcript in the G. superba transcriptome (Gloriosa-20120814_6585 and Gloriosa-20120814|82787_1). This putative OMT is a likely candidate for the proposed 3-O-methylation step that would catalyze the conversion of isoandrocymbine to O-methylandrocymbine [84]. The 3-OMT is expected to be a class I methyltransferase, similar to other members of this gene family that are involved in plant alkaloid metabolism. Additional reference 3-OMT sequences, such as AFB74613.1 from P. somniferum and sp|A0A077EWA5.1| from N. pseudonarcissus, were considered when filtering G. superba and C. autumnale transcriptomes for possible alternative 3-OMTs Gloriosa-20120814|16875_1 and Gloriosa-20120814|82787_1 were found to possess 50.9% and 72.8% identity, respectively, to the sequences. The transcript Colchicum_20101112|23611 showed an identity of 58.1% to the N. pseudonarcissus gene (Table 1 and Figure 9). In P. somniferum 3-OMT catalyzes the conversion of 4´-O-desmethyl-3-O-acetylpapaveroxine to 3-O-acetylpapaveroxine by forming a heterodimer with 2-OMT in the noscapine pathway [85-86].

Fifth, the cDNA clone (Gloriosa 1F02) identified as another putative P450 is a partial clone with 79% sequence homology to CYP82E10 from Fragaria x ananassa and Nicotiana tabacum, which catalyzes an N-demethylation reaction from nicotine to nornicotine and has a full-length homolog in the C. autumnale transcriptome (Colchicum-20101112_5364). This putative P450 enzyme might be a candidate for the N-demethylation that converts demecolcine to deacetylcolchicine [87]. Nevertheless, in N. tabacum three cytochrome P450 superfamily of monooxygenases that catalyze the N-demethylation of nicotine have been identified, CYP82E4, CYP82E5v2, and CYP82E10[88]. CYP82E4 is the major nicotine demethylase enzyme responsible for converting nicotine to nornicotine [89]. The demethylase P450 enzymes CYP82E5v2 and CYP82E10 were expressed in nonsenescent green leaves and/or root tissue in N. tabacum [87, 89-93]. The transcripts, Gloriosa-20120814|5091 and Colchicum_20101112|74349 were found to possess 53.4%, and 54% identity, respectively, to NP_001312976.1 (CYP82E4; see Table 1 and Figure 9). Thus, enzymes belonging to the predicated
NMT, 3-OMT, CYP96T1, CYP82E10, and NAT families are likely to be early targets for cloning and characterization in the colchicine pathway. However, the possibility exists that one or more of the candidate genes will not function as predicted. In this case, other genes from the *G. superba* and *C. autumnale* transcriptomes that show homology to colchicine pathway enzymes would also be considered as candidate genes.

What genes are candidate rhizome developmental genes from *G. superba* and *C. autumnale?*

Underground rhizome (storage organ) development and the molecular mechanisms controlling rhizome enlargement and dynamics remain unclear, even in well-studied medicinal and invasive plants [60, 68-69]. Biorhizomes can be a suitable system to study rhizome growth and biomedicine biomanufacturing because they are much more accessible than plant tissues growing in the soil. In addition, it is useful to identify genes related to rhizome development as they likely control key resources involved in biomass yield. Several genes have been identified from other species that affect rhizome formation in different rhizomatous crops, but comparable genes have not been characterized in the Colchicaceae. Therefore, characterizing rhizome developmental genes from *G. superba* and *C. autumnale* could allow clarification of molecular intricacies involved in biorhizome biomass production and lead to enhanced biomanufacturing. To screen for rhizome developmental genes in colchicine producing species, the transcriptomes from *G. superba* and *C. autumnale* were analyzed as described above for metabolism related genes. Specific results related to major development-related genes are outlined below.

GI is a sensor gene that involved in seasonal growth, which includes tuber development in potato [61, 94-96]. The reference *GI* sequence from *N. nucifera* transcriptome (gi|720040388|ref|XP_010268589.1|) and *S. tuberosum* transcriptome (PGSC0003DMT4000048370) were compared with *G. superba* and *C. autumnale* transcriptomes. Two potential full-length candidate genes *Gloriosa*-20120814|8521_1 and *Gloriosa*-20120814|11998_1 1 shared an identity of 70%, and 76%, respectively, to these genes (Table 2 and Figure 9).

CO genes play an important role in the circadian clock and rhizome development in radish and potato [97-98]. Five full-length sequences reveled *CO* functionality in *Gloriosa*-20120814|18001_1, *Gloriosa*-
The reference sequence from *S. tuberosum* (NP_001274795.1) shared an identity with candidate sequences of 64%-73%. While *Colchicum_20101112|3159*, *Colchicum_20101112|5391*, *Colchicum_20101112|26221*, and *Colchicum_20101112|27602* shared an identity of 72%-82%. The alternate reference sequence from *S. tuberosum* (PGSC0003DMT400067656) shared an identity with candidate sequences *Gloriosa*-20120814|51159_1 of 76% and *Colchicum_20101112|3159* of 82%. The reference sequence from *N. nucifera* (gi|719967386|ref|XP_010261698.1|) shared an identity with candidate sequences *Gloriosa*-20120814|51159_1 of 84% and *Colchicum_20101112|3159* of 82% (Table 2 and Figure 9).

FT and *FT*-like protein StSP6A are key components of tuberigen and a systemic floral inducer in potato [99]. By employing computational analysis using RNA-Seq data, we identified five full-length *FT* candidate genes such as *Gloriosa*-20120814|55554_1, *Gloriosa*-20120814|55004_1, *Gloriosa*-20120814|26010_1, *Gloriosa*-20120814|45011_1, and *Gloriosa*-20120814|52745_1, while two candidate genes from *Colchicum_20101112|8829* and *Colchicum_20101112|22914*. The *FT* reference sequence from *S. tuberosum* (StSP6A NP_001274897.1) shared an identity range with candidate genes of 60%-74%. The alternative *FT* reference sequence from *S. tuberosum* (PGSC0003DMT400060057) shared an identity with candidate sequence *Gloriosa*-20120814|55554_1 of 76% and two sequences with *Colchicum_20101112|8829* and *Colchicum_20101112|22914* of 75% and 79%, respectively. The *FT* reference sequence from *N. nucifera* (gi|720039388|ref|XP_010268289.1|) shared an identity with *Gloriosa*-20120814|55554_1 of 84% and two candidate genes with *Colchicum_20101112|8829* and *Colchicum_20101112|22914* of 81% and 86%, respectively (Table 2 and Figure 9).

The photoreceptor *PHYB* is involved tuber induction and microRNA, *miR172* highly expressed in potato tuber [100]. It has been shown in *N. nucifera* that *PHYB* and/or other phytochromes might measure the length of the light period to affect rhizome girth enlargement [61]. The *PHYB* candidate gene *Gloriosa*-20120814|36050_1 and *Colchicum_20101112|1221 shared an identity of 81% with the reference sequence from *N. nucifera* (gi|720038316|ref|XP_010267948.1|). The *PHYB* reference
sequence from *S. tuberosum* (PGSC0003DMT400061712) shared an identity of 81% with candidate sequence *Gloriosa*-20120814|85746_1 and 80% with *Colchicum* _20101112|1221 (Table 2 and Figure 9).

SuSy plays a key role in tubers biomass allocation, starch biosynthesis and storage, and cleaves sucrose into fructose and UDP-glucose [101-102]. Two full-length *SuSy* sequences were identified in *G. superba* such as *Gloriosa*-20120814|9073_1 and *Gloriosa*-20120814|69933_1); whereas five candidate genes in *C. autumnale* *Colchicum* _20101112|583, Colchicum* _20101112|593, Colchicum* _20101112|2693, Colchicum* _20101112|13826, and Colchicum* _20101112|33099, which shared an identity of 81-82% with *N. nucifera* (gi|720050864|ref|XP_010271909.1)). The reference sequence from *S. tuberosum* (PGSC0003DMT400007506) shared an identity of 78% with candidate sequence *Colchicum* _20101112|2693 (Table 2 and Figure 9).

REV plays an important role during morphogenesis and controlling the apical meristem formation during rhizome development in bamboo [61, 103]. Since, biorhizomes are compressed scale leaves that replicate rhizomes possessing vegetative buds [47], at the molecular level an intricate regulatory network determines initial biorhizome development and *REV* could antagonistically regulate lamina structures that trigger formation of specialized organs. The *REV* reference sequence from *N. nucifera* (gi|720097995|ref|XP_010247499.1)) shared an identity with candidate *Gloriosa*-20120814|11056_1 sequence of 86% and *Colchicum* _20101112|467 of 85%. The reference sequence from *S. tuberosum* (PGSC0003DMT4000030829) shared an identity with *Gloriosa*-20120814|17486_1 of 81% and *Colchicum* _20101112|467 of 81%. Additionally, the *REV*-like homolog (*PpHB1*) was found in bamboo, which highly expressed in the tips of lateral buds at several developmental stages [104]. BLAST analysis of *Gloriosa*-20120814|15982_1 and *Colchicum* _20101112|6503 showed a 79% and 78% identity when compared to *PpHB1*, respectively (Table 2 and Figure 9).

What are the transcription factors in *G. superba* and *C. autumnale? Currently, no information is known about transcription factors in *G. superba* and *C. autumnale*. Besides rhizome developmental genes, an important subset of rhizome transcription factors genes was also identified. It was suggested that MADS-box (containing the MADS domain), AP2-EREBP (APETALA2/ethylene-responsive element
binding protein), bHLH (basic helix-loop-helix), MYB (myeloblastosis related), NAC (no apical meristem), and WRKY (contain the highly conserved amino acid sequence WRKYGQK and the zinc-finger-like motifs Cys(2)-His(2) or Cys(2)-HisCys, and bind to the TTGAC(C/T) W-box cis-element in the promoter of their target genes) proteins can act as rhizome developmental transcription factors [105-108]. Several genome-wide analyses have been conducted on these transcription factors in *S. tuberosum*, *N. nucifera* and *Sinopodophyllum hexandrum* [61, 105, 109]. The screened candidate transcription factors listed below could contribute to our understanding of the molecular mechanism of biorhizome development. Moreover, a better understanding of the regulation of colchicine production will be gained by identifying how candidate colchicine biosynthetic gene family members interact with and are controlled by rhizome developmental genes and transcription factors in *G. superba* and *C. autumnale*.

MADS-box genes were present on all 12 potato chromosomes, and StMADS1 and StMADS13 were proposed to be likely downstream targets of StSP6A and involved in tuber development [105]. Therefore, the known *S. tuberosum* and *N. nucifera MADS-box* sequences were used as query to perform BLAST against the *G. superba* and *C. autumnale* protein databases. One full-length candidate sequence *Gloriosa*-20120814|19828_1 shared an identity of 77% with an *N. nucifera* gene (gi|720053055|ref|XP_010272608.1|). The reference sequence from *S. tuberosum* (PGSC0003DMT400000026) shared an identity of 81 and 82% with candidate sequences *Colchicum*_20101112|22985 and *Gloriosa*-20120814|35037_1, respectively (Table 3 and Figure 9). AP2 (APETALA2) and EREBPs are some of the largest and the prototypic families of transcription factors unique to plants and are upregulated in rhizomes [110-111]. Four *AP2-EREBP* candidate genes were *Gloriosa*-20120814|77954_1, *Gloriosa*-20120814|7267_1, *Gloriosa*-20120814|54352_1, and *Gloriosa*-20120814|45526_1 based on homology to the reference sequences in *N. nucifera* (gi|720011136|ref|XP_010259468.1|) with identities of 66%, 69%, 82%, and 86%, respectively. In addition, full-length alternative sequences were identified using a reference sequence from *S. tuberosum* (PGSC0003DMT400016585) such as *Colchicum*_20101112|4936 and *Colchicum*_20101112|10921 from *C. autumnale* with identities of 76% and 82%, respectively. Of the
six AP2-EREBP candidate genes, two (Gloriosa-20120814|7267_1 and Gloriosa-20120814|77954_1) were found to be 100% identical to G. superba leaf tissue cDNA Gloriosa 8E03 (Table 3 and Figure 9). The bHLH superfamily of proteins is the second largest transcription factor family in plants and StbHLH76 and StbHLH86 had relatively high expression levels in the potato tuber compared to other tissues [112]. The full-length sequence of Gloriosa-20120814|6279_1 demonstrated possible bHLH functionality with a reference sequence from N. nucifera (gi|720006121|ref|XP_010257880.1]) with an identity of 90%. The reference sequence from S. tuberosum (PGSC0003DMT400022702) shared an identity of 89% with the bHLH candidate sequence Gloriosa-20120814|53746_1). Additionally, the reference sequence from N. nucifera (gi|719971259|ref|XP_010273628.1]) shared an identity of 82% with the bHLH candidate sequence from C. autumnale Colchicum_20101112|7042. Likewise, S. tuberosum (PGSC0003DMT400022701) shared an identity of 86% with the candidate sequence Colchicum_20101112|21881 (Table 3 and Figure 9)
The MYB transcription factors are considered potentially important regulators of secondary metabolism, where the R2R3-MYB proteins are specific to plants [113-115]. The reference R2R3-MYB sequence from N. nucifera (gi|719972251|ref|XP_010277005.1]) shared an identity of 91% with the MYB candidate sequence (Gloriosa-20120814|15461_1). The reference sequence from S. tuberosum (PGSC0003DMT400012203) shared an identity of 91% with the MYB candidate sequence Gloriosa-20120814|15461_1. In C. autumnale, candidate sequence Colchicum_20101112|11314 shared an identity of 87% with N. nucifera (gi|719993192|ref|XP_010253806.1]). Likewise, the S. tuberosum sequence(PGSC0003DMT400017709) shared an identity of 86% with candidate sequence Colchicum_20101112|20668 (Table 3 and Figure 9).
There is abundant evidence indicating that NAC proteins play crucial roles in hormone signaling, lateral root development and are upregulated during rhizome formation [61, 116-117]. NAC candidate sequence Gloriosa-20120814|28710_1 shows 84% identity with reference gene from N. nucifera (gi|720085419|ref|XP_010243512.1]). An alternative gene Gloriosa-20120814|18396_1, was 81% identical to S. tuberosum PGSC0003DMT400045294. The reference sequence from N. nucifera (gi|720046186|ref|XP_010270427.1]) shared an identity of 71% with candidate sequence
Colchicum_20101112|44481 and S. tuberosum (PGSC0003DMT400079789) shared an identity 71% with Colchicum_20101112|794 (Table 3 and Figure 9).

WRKY proteins can regulate diverse responses in rhizome-related gene networks, including sprouting mechanisms in potato tuber and in specialized metabolism [118-119]. Two full-length candidate sequences, Colchicum_20101112|3957 and Colchicum_20101112|49701, shared significant homology with the reference sequence from Sinopodophyllum hexandrum (ALD83482.1), with 76% and 80% identity, respectively. A similar sequence from Gloriosa-20120814|20138_1 shared an identity of 72%. The reference sequence from N. nucifera (gi|720006863|ref|XP_010258120.1) shared an identity of 77% with Gloriosa-20120814|20164_1. The reference sequence from S. tuberosum (PGSC0003DMT400028529) shared an identity of 77% with candidate sequence Gloriosa-20120814|66904_1. The alternative reference sequence from N. nucifera (gi|720007162|ref|XP_010258216.1) shared an identity of 81% with candidate sequence Colchicum_20101112|22998 and S. tuberosum (PGSC0003DMT400072835) shared and identity percentage with Colchicum_20101112|22998_ of 81% (Table 3 and Figure 9).

Phylogenetic analysis of colchicine pathway, rhizome developmental, and transcription factor protein in G. superba and C. autumnale: A total of 20 and 29 candidate colchicine pathway enzymes in G. superba and C. autumnale transcriptomes, respectively, were split into four primary clusters and mapped against 4 cDNA and 12 reference enzymes (Table 1 and Figure 10A). Among these, step 1 NMT contained 7 genes in the clade such as 3 from G. superba transcriptome, 1 from G. superba cDNA, and 1 from C. autumnale transcriptome. Both step 2 and step 4 P450s genes were closely related and aligned in the same clade but step 2 P450 genes was nested within step 4. Within the step 2 P450’s nest, 2 genes in G. superba and 5 in C. autumnale transcriptomes and 1 cDNA. While in step 4, 1 in G. superba and 4 in C. autumnale transcriptomes and 1 in cDNA, which indicates that the P450 genes could be evolutionarily similar. The largest clade represented by OMT, which encompassed 15 G. superba and 10 C. autumnale genes. The last cluster NAT was comprised of 4 genes in G. superba and 3 in C. autumnale transcriptomes and 1 in cDNA.

Additionally, rhizome developmental gene identification of potential orthologous between G. superba
and *C. autumnale* is one of the most important bottlenecks in transcriptomics [120]. Notably, rhizome developmental genes such as *GI, CO, FT, PHYB, SuSy, and REV* have been mapped in *G. superba* and *C. autumnale* transcriptomes using reference genes from *S. tuberosum, N. nucifera, A. thaliana*, and *P. praecox*. A total of 19 *G. superba* and 15 *C. autumnale* candidate genes were mapped against 24 reference genes to identify possible rhizome developmental unigenes (Figure 10B). Furthermore, rhizome developmental phylogenetic analysis shows 6 distinct clusters, among them *CO* represents the largest clade. In addition, the transcription factor plays a crucial role in rhizome development [121]. A total of 16 and 12 transcription factors were mapped in the *G. superba* and *C. autumnale* transcriptomes, respectively (Figure 10C). To better reveal the genes associated with rhizome development, 6 transcription factor families were analyzed such as *MADS-box, AP2-EREBP, bHLH, MYB, NAC, and WRKY* that showed good correlation between the clusters of protein families. The mapped rhizome developmental gene families explains the conserved sequence homology between reference and candidate genes, which indicates a network of genetic mechanisms in *G. superba* and *C. autumnale* are crucial for rhizome development.

Interestingly, the phylogenetic trees of colchicine pathway, rhizome developmental, and transcription factors indicate that the candidate genes of *G. superba* and *C. autumnale* were common to Colchicaceae due to high homology and evolution similarity of the candidate genes. This suggests that the predicted candidate genes not only are involved in colchicine biosynthesis in rhizomes but are also involved in the rhizome metabolism. In comparison with tuber producing *S. tuberosum* and *N. nucifera*, rhizome developmental and transcription factor genes from *G. superba* and *C. autumnale* showed nearly the same transcriptional regulation map that are possible downstream targets of rhizome initiation or biomass production. The annotated genes from *G. superba* and *C. autumnale* can contributes to identifying candidate genes in the biosynthesis of different groups of secondary metabolites in biorhizome and rhizome developmental genes, which could serve as a comprehensive resource for molecular mechanism research of colchicine biosynthesis in *G. superba*. This provides a molecular platform and resource for future genetic and functional rhizomatous medicinal crops genomic research.
Conclusions
In this study, we have interrogated two evolutionarily diverse transcriptomes of *G. superba* and *C. autumnale* to predict genes that encode candidate proteins of colchicine biosynthesis and rhizome metabolism. *G. superba* and *C. autumnale* are rhizomatous medicinal plants that lack reference genomes. Collectively, transcriptomes and cDNA approaches were applied to select candidate genes for each predicted colchicine pathway step, which should help to elucidate the colchicine biosynthetic pathway. Additionally, our work will be useful to identifying rhizome developmental genes and transcription factors in *G. superba* and *C. autumnale*, with the ultimate goal of improving biorhizome biomass. The predicted genes in this work now need to be functionally validated, and are an important resource for metabolic engineering or synthetic biotechnology that could improve colchicine biomanufacturing.

Methods

cDNA library

A full-length cDNA library was constructed from a month-old *G. superba* biorhizome derived leaves. Total RNA isolation and cDNA library construction were performed according to previous protocols [122]. The assembled cDNA sequences were BLASTed against the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/), and *G. superba* and *C. autumnale* transcriptomes.

Prediction of colchicine pathway and rhizome developmental proteins

The *G. superba* and *C. autumnale* transcriptomes were obtained from our Medicinal Plant Transcriptome database (https://medplantrnaseq.org/). BUSCO analysis of transcriptomes were processed according to Waterhouse et al. [123]. Colchicine pathway and rhizome developmental along with its transcription factors encoding proteins were predicted from the NCBI database.

Functional annotation of transcriptomes, colchicine pathway and rhizome developmental proteins

The *G. superba* and *C. autumnale* transcriptomes GO classification of the identified know plant proteins was performed using the web-accessible Blast2GO v5 annotation system (https://www.blast2go.com/) [124]. Blast2GO is an all-in-one bioinformatics software for protein
functional prediction and the genome-wide analysis of annotation data. KEGG pathway enrichment analysis was used to analyze the functional significance of biochemical pathways using BlastKOALA and GhostKOALA. The first step in Blast2GO is to align cDNA nucleotide sequences against the NCBI non-redundant database by Basic Local Alignment Search Tool protein (BLASTp/BLASTn) with an expectation value of $1e^{-5}$. Next, transcriptomes FASTA protein sequences were uploaded to Blast2GO for BLAST analysis to identify homologous sequences, then mapping and annotation were performed. The significantly enriched biological processes, molecular function, cellular component and KEGG pathway were identified by p value less than threshold value 0.05. The colchicine pathway candidate genes with their specific enzymatic function and high homology were identified using alkaloid metabolic reference genes such as NMT; 3-OMT; two cytochrome P450s: $CYP96T1$ and $CYP82E10$; and NAT for comparison [74-89]. Rhizome developmental genes namely Gl, CO, $PHYB$, $SuSy$, FT and REV as well as transcription factors such as $MADS$-box, $AP2$-$EREBP$, $bHLH$, MYB, NAC, and $WRKY$, were identified in like manner using reference genes from S. $tuberosum$ and N. $nucifera$ [https://plants.ensembl.org/Solanum_tuberosum/Info/Index and ftp://ftp.ncbi.nih.gov.genomes/].

Phylogenetic analysis of possible total colchicine pathway, rhizome developmental, and transcription factor proteins

$Gloriosa$ $superba$ and $Colchicum$ $autumnale$ possible candidate colchicine pathway, rhizome developmental, and transcription factor protein sequences were aligned using ClustalW version 2.1. The phylogenetic trees were constructed from the PHYLIP-3.697 package using the Seqboot, Protdist, Neighbor, and Consense programs [125]. For tree visualization, Interactive Tree of Life (iTOL) software was used [https://itol.embl.de/] [105].

Abbreviations

AP2-$EREBP$PAPETALA2/ethylene-responsive element binding protein

bHLH Basic-Helix-Loop-Helix

BLASTBasic Local Alignment Search Tool

BUSCOBenchmarking universal single-copy orthologue

cDNA Complementary DNA
CO CONSTANS
DW Dry weight
FT Flowering Locus T
GI GIGANTEA
GO Gene Ontology
iTOL Interactive Tree of Life
KEGG Kyoto Encyclopedia of Genes and Genomes
MADS Mini chromosome maintenance 1
MYB Myeloblastosis related
NAC No apical meristem
NAT N-acetyltransferase
NCBI National Center for Biotechnology Information
NMT N-methyltransferase
OMT O-methyltransferase
PHYB Phytochrome B
PHYLIP PHYLogeny Inference Package
qRT-PCR Quantitative Real Time Polymerase Chain Reaction
REV REVOLUTA
SuSy Sucrose Synthase

Declarations
Ethics approval and consent to participate
Not applicable
Consent for publication
Not applicable
Availability of data and materials
The Gloriosa superba and Colchicum autumnale transcriptomes are available at Medicinal Plant Transcriptome database at https://medplantrnaseq.org/.
Competing interests

The authors declare that they have no competing interests.

Funding

The authors would like to thank National Research University Fund #110661 from the University of Houston.

Author’s contribution

JSM carried out the sequence annotations and bioinformatic analyses. GS provided cDNA and the design of the study as well as wrote the manuscript. TMK established transcriptomes and DG conceived of, designed and coordinated the rhizome developmental gene verification. All authors read and approved the final manuscript.

Acknowledgments

We acknowledge Megan M. Augustin for transcriptome establishment.

References

1. Ozmen N, Kaya-Sezginer E, Bakar-Ates F. The cellular uptake and apoptotic efficiency of colchicine is correlated with down-regulation of MMP-9 mRNA expression in SW480 colon cancer cells. Anticancer Agents Med Chem. 2018, 18: 1927-1933.

2. Blasco V, Cuñat AC, Sanz-Cervera JF, Marco JA, Falomir E, Murga J, Carda M. Arylureas derived from colchicine: Enhancement of colchicine oncogene downregulation activity. Eur J Med Chem. 2018, 150: 817-828.

3. Dybowska M, Szturmowicz M, Kuca P, Kazanecka B, Burakowski J, Czajka C, Grzegorczyk F, Langfort R, Burakowska B, Rudziński P, Tomkowski W. Intrapericardial cisplatin combined with oral colchicine resulted in long term control of malignant pericardial effusion in the course of metastatic renal cancer. Adv Respir Med. 2018, doi: 10.5603/ARM.a2018.0030.

4. Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL. Colchicine: An ancient drug with novel applications. Br J Dermatol. 2018, 178: 350-356.

5. Roitman A, Ben-Zvi I, Mendel L, Livneh A. Inflammation and cardiovascular disease in familial Mediterranean fever. An analysis of hospital admissions for acute cardiovascular event. Clin Exp
6. Cimmino G, Tarallo R, Conte S, Morello A, Pellegrino G, Loffredo FS, Calì G, De Luca N, Golino P, Trimarco B, Cirillo P. Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vascul Pharmacol. 2018, 111: 62-70.

7. Vaidya K, Martínez G, Patel S. The role of colchicine in acute coronary syndromes. Clin Ther. 2019, 41: 11-20.

8. Schenone AL, Menon V. Colchicine in pericardial disease: From the underlying biology and clinical benefits to the drug-drug interactions in cardiovascular medicine. Curr Cardiol Rep. 2018, 20: 62.

9. Chaldakov GN. Colchicine, a microtubule-disassembling drug, in the therapy of cardiovascular diseases. Cell Biol Int. 2018, 42: 1079-1084.

10. Arbel Y, Abuzeid W, Rosenson RS, Weisman A, Farkouh ME. Old drugs for new indications in cardiovascular medicine. Cardiovasc Drugs Ther. 2018, 32: 223-232.

11. Akodad M, Fauconnier J, Lacampagne A, Roubille F. Reply concerning "Colchicine in coronary artery disease: Role of anti-inflammatory medications redefined": Prime time for anti-inflammatory agents for the management of cardiovascular diseases. Int J Cardiol. 2018, 254: 52.

12. Ashish K, Bandyopadhyay D, Mondal S, Ghosh RK. Colchicine in coronary artery disease: Role of anti-inflammatory medications redefined. Int J Cardiol. 2018, 254: 51.

13. Liantinioti G, Argyris AA, Protogerou AD, Vlachoyiannopoulos P. The role of colchicine in the treatment of autoinflammatory diseases. Curr Pharm Des. 2018, 24: 690-694.

14. Vaidya K, Arnott C, Martínez Gj, Ng B, McCormack S, Sullivan DR, Celermajer DS, Patel S. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: A CT coronary angiography study. ACC Cardiovasc Imaging, 2018, 11: 305-316.

15. Slobodnick A, Krasnokutsky S, Lehmann RA, Keenan RT, Quach J, Francois F, Pillinger MH. Colorectal cancer among gout patients undergoing colonoscopy. Clin Rheumatol. 2018, doi: 10.1097/RHU.0000000000000893.

16. Pascart T, Richette P. Colchicine in gout: An update. Curr Pharm Des. 2018, 24: 684-689.

17. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology
18. Capistrano R, Vangestel C, Wouters A, Dockx Y, Pauwels P, Stroobants S, Apers S, Lardon F, Pieters L, Staelens S. Efficacy screening of Gloriosa superba extracts in a murine pancreatic cancer model using (18)F-FDG PET/CT for monitoring treatment response. Cancer Biother Radiopharm. 2016, 31: 99-109.

19. Capistrano I R, Vangestel C, Vanpachtenbeke H, Fransen E, Staelens S, Apers S, Pieters L. Coadministration of a Gloriosa superba extract improves the in vivo antitumoural activity of gemcitabine in a murine pancreatic tumour model. Phytomedicine, 2016, 23: 1434-1440.

20. Budchart P, Khamwut A, Sinthuvanich C, Ratanapo S, Poovorawan Y, Thienprasert NP. Partially purified Gloriosa superba peptides inhibit colon cancer cell viability by inducing apoptosis through p53 upregulation. Am J Med Sci. 2017, 354: 423-429.

21. Johnson L, Goping IS, Rieger A, Mane JY, Huzil T, Banerjee A, Luduena R, Hassani B, Winter P, Tuszynski JA. Novel colchicine derivatives and their anti-cancer activity. Curr Top Med Chem. 2017, 17: 2538-2558.

22. Sivakumar G. Colchicine semisynthetics: Chemotherapeutics for cancer? Curr Med Chem. 2013, 20: 892-898.

23. Arnst KE, Wang Y, Hwang DJ, Xue Y, Costello T, Hamilton D, Chen Q, Yang J, Park F, Dalton JT, Miller DD, Li W. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes Taxane resistance. Cancer Res. 2018, 78: 265-277.

24. Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V. Rational design of colchicine derivatives as anti-HIV agents via QSAR and molecular docking. Med Chem. 2018, doi: 10.2174/1573406414666180924163756.

25. Ghawanmeh AA, Chong KF, Sarkar SM, Bakar MA, Othaman R, Khalid RM. Colchicine prodrugs and codrugs: Chemistry and bioactivities. Eur J Med Chem. 2018, 144: 229-242.

26. Kesselheim AS, Franklin JM, Kim SC. Reductions in use of colchicine after FDA enforcement of market exclusivity in a commercially insured population. J Gen Intern Med. 2015, 30: 1633-1638.

27. Yeh LC, Banerjee A, Prasad V, Tuszynski JA, Weis AL, Bakos T, Yeh IT, Ludueña RF, Lee JC. Effect of
CH-35, a novel anti-tumor colchicine analogue, on breast cancer cells overexpressing the βIII isotype of tubulin. Invest New Drugs, 2016, 34: 129-137.

28. Johnson L, Goping IS, Rieger A, Mane JY, Huzil T, Banerjee A, Luduena R, Hassani B, Winter P, Tuszynski JA. Novel colchicine derivatives and their anti-cancer activity. Curr Top Med Chem. 2017, 17: 2538-2558.

29. Sun Y, Lin X, Chang H. Proliferation inhibition and apoptosis of breast cancer MCF-7 cells under the influence of colchicine. J Buon. 2016, 21: 570-575.

30. Kumar A, Singh B, Mahajan G, Sharma PR, Bharate SB, Mintoo MJ, Mondhe DM. A novel colchicine-based microtubule inhibitor exhibits potent antitumor activity by inducing mitochondrial mediated apoptosis in MIA PaCa-2 pancreatic cancer cells. Tumour Biol. 2016, 37: 13121-13136.

31. Deftereos SG, Vrachatis DA, Angelidis C, Vrettou AR, Sarri EK, Giotaki SG, Varytimiadi E, Kossyvakis C, Kotsia E, Deftereos GS, Doudoumis K, Giannopoulos G. The role of colchicine in treating postoperative and post-catheter ablation atrial fibrillation. Clin Ther. 2019, 41: 21-29.

32. Vrachatis DA, Kossyvakis C, Angelidis C, Panagopoulou V, Sarri EK, Giotaki S, Siasos G, Vavuranakis M, Deftereos SG. Colchicine in post-operative Atrial Fibrillation: A review. Curr Pharm Des. 2018, 24: 695-701.

33. Marinaki S, Skalioti C, Boletis JN. Colchicine in renal diseases: Present and future. Curr Pharm Des. 2018, 24: 675-683.

34. Solak Y, Siriopol D, Yildiz A, Yilmaz MI, Ortiz A, Covic A, Kanbay M. Colchicine in renal medicine: New virtues of an Ancient friend. Blood Purif. 2017, 43: 125-135.

35. Demidowich AP, Davis AI, Dedhia N, Yanovski JA. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation. Med Hypotheses. 2016, 92: 67-73.

36. Mubayed L, Muller BA, Jacobson JL, Hast HA, Nguyen HH. Acute pediatric colchicine toxicity is associated with marked bradydysrhythmias. J Emerg Med. 2018, 55: e65-e69.

37. Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A review on chemical structure and clinical usage. Infect Disord Drug Targets. 2018, 18: 105-121.

38. Chen B, Liu X, Hu YJ, Zhang DM, Deng L, Lu I, Min L, Ye WC, Li CC. Enantioselective total synthesis
of (-)-colchicine, (+)-demecolcinone and metacolchicine: determination of the absolute configurations of the latter two alkaloids. Chem Sci. 2017, 8: 4961-4966.

39. Chien CW, Teng YG, Honda T, Ojima I. Synthesis of colchicinoids and allocolchicinoids through Rh(I)-catalyzed [2+2+2+1] and [2+2+2] cycloadditions of o-phenylenetriynes with and without CO. J Org Chem. 2018, 83: 11623-11644.

40. Gumustas M, Polat DC, Kilic CS, Akalin K, Ozkan SA, Coskun M. Comparison of seeds of Colchicum speciosum and Gloriosa superba in respect to colchicine and colchicoside contents by RP-LC. Nat Prod Commun. 2016, 11: 397-400.

41. Misra A, Shukla PK, Kumar B, Chand J, Kushwaha P, Khalid M, Singh Rawat AK, Srivastava S. High-performance thin-layer chromatographic-densitometric quantification and recovery of bioactive compounds for identification of elite chemotypes of Gloriosa superba L. collected from Sikkim Himalayas (India). Pharmacogn Mag. 2017, 13: S700-S705.

42. Arun Kumar P, Elangaimannan R. Evaluation of Gloriosa superba for yield attributing characters and quantification of colchicine originated from different agro climatic zones of Tamil Nadu and Andhra Pradesh. IJPCR, 2017; 9: 183-192.

43. Pandey DK, Malik T, Dey A, Singh J Banik RM. Improved growth and colchicine concentration in Gloriosa Superba on mycorrhizal inoculation supplemented with phosphorus-fertilizer. Afr J Tradit Complement Altern Med. 2014, 11: 439-446.

44. Jana S, Shekhawat GS. Critical review on medicinally potent plant species: Gloriosa superba. Fitoterapia, 2011, 82: 293-301.

45. Zarev Y, Foubert K, Ionkova I, Apers S, Pieters L. Isolation and structure elucidation of glucosylated colchicinoids from the seeds of Gloriosa superba by LC-DAD-SPE-NMR. J Nat Prod. 2017, 80: 1187-1191.

46. Nguyen PA, Kim JS, Kim JH. The complete chloroplast genome of colchicine plants (Colchicum autumnale L. and Gloriosa superba L.) and its application for identifying the genus. Planta. 2015, 242: 223-237.

47. Sivakumar G. Upstream biomanufacturing of pharmaceutical colchicine. Crit Rev Biotechnol. 2018,
38: 83-92.

48. Sivakumar G, Kamran A, Phillips GC. Biorhizome: A biosynthetic platform for colchicine manufacturing. Front Plant Sci. 2017, 8: 1137.

49. Nasreen A, Gundlach H, Zenk MH. Incorporation of phenethylisoquinolines into colchicine in isolated seed of Colchicum autumnale. Phytochemistry, 1997, 46: 107-115.

50. Nasreen A Rueffer M, Zenk MH. Cytochrome P-450 dependent formation of isoandrocymbine from autumnaline in colchicine biosynthesis. Tetrahedron Lett. 1996, 37: 8161-8164.

51. Herbert RB, Kattah AE, Knagg E. The biosynthesis of the phenethylisoquinoline alkaloid colchicine. Early and intermediate stage. Tetrahedron Lett. 1990, 46: 7119-7138.

52. Rueffer M, Zenk MH. Microsome-mediated transformation of O-methylandrocymbine to demecolcine and colchicine. FEBS Lett. 1998, 438: 111-113.

53. Samanani N, Park SU, Facchini PJ. Cell type-specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell. 2005, 7: 915-26.

54. Liao D, Wang P, Jia C, Sun P, Qi J, Zhou L, Li X. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusou bulbs. Sci Rep. 2016, 6: 19460.

55. Woodhouse RN, McDonald E, Ramage R, Battersby AR. Biosynthesis. Part 29. Colchicine: studies on the ring expansion step focusing on the fate of the hydrogens at C-3 of autumnaline. J Chem Soc Perkin Trans 1, 1998, 18: 2995-3001.

56. Karamanou M, Tsoucalas G, Pantos K, Androutsos G. Isolating colchicine in 19th century: An old drug revisited. Curr Pharm Des. 2018, 24: 654-658.

57. Cheng L, Li S, Xu X, Hussain J, Yin J, Zhang Y, Li L, Chen X. Identification of differentially expressed genes relevant to corm formation in Sagittaria trifolia. PLoS One, 2013, 8: e54573.

58. Novak SD, Whitehouse GA. Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae). AoB Plants, 2013, 5: pls053.

59. Masuda J, Ozaki Y, Okubo H. Rhizome transition to storage organ is under phytochrome control in lotus (Nelumbo nucifera). Planta, 2007, 226: 909-915.
60. Kim MJ, Nelson W, Soderlund C, Gang DR. Next-generation sequencing-based transcriptional profiling of Sacred Lotus "China Antique". Trop Plant Biol. 2013, 6: 161-179.

61. Yang M, Zhu L, Pan C, Xu L, Liu Y, Ke W, Yang P. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Sci Rep. 2015, 5: 13059.

62. Wang K, Peng H, Lin E, Jin Q, Hua X, Yao S, Bian H, Han N, Pan J, Wang J, Deng M, Zhu M. Identification of genes related to the development of bamboo rhizome bud. J Exp Bot. 2010, 61: 551-561.

63. Reddy AS, Day IS, Narasimhulu SB, Safadi F, Reddy VS, Golovkin M, Harnly MJ. Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem. 2002, 277: 4206-4214.

64. Yang M, Zhu L, Pan C, Xu L, Liu Y, Ke W, Yang P. Transcriptomic analysis of the regulation of rhizome formation in temperate and Tropical Lotus (Nelumbo nucifera). Sci Rep. 2015, 5: 13059.

65. Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by Flowering Locus T. Nature, 2011, 478: 119-122.

66. Cheng L, Li S, Yin J, Li L, Chen X. Genome-wide analysis of differentially expressed genes relevant to rhizome formation in Lotus root (Nelumbo nucifera Gaertn). PLoS One, 2013, 8: e67116.

67. Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol. 2012, 54: 703-712.

68. Koo HJ, Gang DR. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One, 2012, 7: e51481.

69. Koo HJ, McDowell ET, Ma X, Greer KA, Kapteyn J, Xie Z, Descour A, Kim H, Yu Y, Kudrna D, Wing RA, Soderlund CA, Gang DR. Ginger and turmeric expressed sequence tags identify signatures for rhizome identity and development and biosynthesis of curcuminoids, gingerols and terpenoid. BMC Plant Biol. 2013, 13: 27.

70. Chen H, Deng C, Nie H, Fan G, He Y. Transcriptome analyses provide insights into the difference of alkaloids biosynthesis in the Chinese goldthread (Coptis chinensis Franch.) from different biotopes. PeerJ. 2017, 5: e3303.
71. Samanani N, Park SU, Facchini PJ. Cell type-specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell. 2005, 7: 915-26.
72. Liao D, Wang P, Jia C, Sun P, Qi J, Zhou L, Li X. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuobulbs. Sci Rep. 2016, 6: 19460.
73. Zonga Y, Huanga L, Zhanga T, Qina Q, Wanga W, Zhaoa X, Hub F, Fua B, Lia Z. Differential microRNA expression between shoots and rhizomes in Oryza longistaminata using high-throughput RNA sequencing. Crop J. 2014, 2: 102-109.
74. Kang K, Lee K, Park S, Byeon Y, Back K. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res. 2013, 55: 7-13.
75. Byeon Y, Lee HY, Back K. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa). J Pineal Res. 2016, 61: 198-207.
76. Choi KB, Morihige T, Shitan N, Yazaki K, Sato F. Molecular cloning and characterization of cochlaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem. 2002, 277: 830-835.
77. Torres MA, Hoffarth E, Eugenio L, Savtchouk J, Chen X, Morris JS, Facchini PJ, Ng KK. Structural and functional studies of pavine N-Methyltransferase from Thalictrum flavum reveal insights into substrate recognition and catalytic mechanism. J Biol Chem. 2016, 291: 23403-23415
78. Morris JS, Facchini PJ. Isolation and characterization of reticuline N-Methyltransferase involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy. J Biol Chem. 2016, 291: 23416-23427.
79. Maier UH, Zenk MH. Colchicine is formed by para-para phenol coupling from autumnaline. Tetrahedron Lett. 1997, 38: 7357-7360.
80. Kilgore MB, Augustin MM, May GD, Crow JA, Kutchan TM. CYP96T1 of Narcissus sp. aff. pseudonarcissus catalyzes formation of the para-para C-C phenol couple in the Amaryllidaceae alkaloids. Front Plant Sci. 2016, 7: 225.
81. Gesell A, Rolf M, Ziegler J, Di´az Cha´vez ML, Huang FC, Kutchan TM. CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J. Biol. Chem.
82. Gesell A, Rolf M, Ziegler J, Di´az Cha´vez ML, Huang FC, Kutchan TM. CYP719B1 is salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem. 2009, 284: 24432-24442.

83. Ikezawa N, Iwasa K, Sato F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem. 2008, 283: 8810-8821.

84. Kilgore MB, Augustin MM, Starks CM, O’Neil-Johnson M, May GD, Crow JA, Kutchan TM. Cloning and characterization of a norbelladine 4’-O-methyltransferase involved in the biosynthesis of the Alzheimer’s drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One, 2014, 9: e103223.

85. Park MR, Chen X, Lang DE, Ng KKS, Facchini PJ. Heterodimeric O-methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant J. 2018, 95 :252-267.

86. Li Y, Li S, Thodey K, Trenchard I, Cravens A, Smolke CD. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc Natl Acad Sci USA. 2018, 115: E3922-E3931.

87. Cai B, Siminszky B, Chappell J, Dewey RE, Bush LB. Enantioselective demethylation of nicotine as a mechanism for variable nornicotine composition in tobacco leaf. J Biol Chem. 2012, 287: 42804-42811.

88. Lewis RS, Bowen SW, Keogh MR, Dewey RE. Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: functional characterization of the CYP82E10 gene. Phytochemistry, 2010, 71: 1988-1998.

89. Liedschulte V, Schwaar JD, Laparra H, Vuarnoz A, Philippon B, Bakaher N, Sierro N, Bovet L, Lang G, Goepfert S. Identification of CYP82E21 as a functional nicotine N-demethylase in tobacco flowers. Phytochemistry, 2016, 131: 9-16.

90. Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernage B, Clissold L, McLay K, Buell CR, O’Connor SE. Genome-guided investigation of plant natural product biosynthesis. Plant J. 2015, 82: 680-692.

91. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F,
92. Kautsar SA, Suarez Duran HG, Medema MH. Genomic identification and analysis of specialized metabolite biosynthetic gene clusters in plants using PlantiSMASH. Methods Mol Biol. 2018, 1795:173-188.

93. Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. PlantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res. 2017, 45: W55-W63.

94. Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, Zambrano JA, Zheng B, Eriksson ME, Nilsson O. GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytol. 2018, 218: 1491-1503.

95. de Montaigu A, Coupland G. The timing of GIGANTEA expression during day/night cycles varies with the geographical origin of Arabidopsis accessions. Plant Signal Behav. 2017, 12: e1342026.

96. Tang W, Yan H, Su ZX, Park SC, Liu YJ, Zhang YG, Wang X, Kou M, Ma DF, Kwak SS, Li Q. Cloning and characterization of a novel GIGANTEA gene in sweet potato. Plant Physiol Biochem. 2017, 116: 27-35.

97. Hu T, Wei Q, Wang W, Hu H, Mao W, Zhu Q, Bao C. Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus). PLoS One, 2018, 13: e0204137.

98. Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr Biol. 2016, 26: 872-881.

99. Teo CJ, Takahashi K, Shimizu K, Shimamoto K, Taoka KI. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol. 2017, 58: 365-374.

100. Martin A, Adam H, Díaz-Mendoza M, Zurczak M, González-Schain ND, Suárez-López P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136: 2873-2881.

101. Hastilestari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, Sonnewald S. Deciphering
source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ. 2018, 41: 2600-2616.

102. Akakpo R, Scarcelli N, Chaïr H, Dansi A, Djedatin G, Thuillet AC, Rhoné B, François O, Alix K, Vigouroux Y. Molecular basis of African yam domestication: analyses of selection point to root development, starch biosynthesis, and photosynthesis related genes. BMC Genomics, 2017, 18: 782.

103. Merelo P, Paredes EB, Heisler MG, Wenkel S. The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion. Curr Opin Plant Biol. 2017, 35: 111-116.

104. Peng HZ, Lin EP, Sang QL, Yao S, Jin QY, Hua XQ, Zhu MY. Molecular cloning, expression analyses and primary evolution studies of REV- and TB1-like genes in bamboo. Tree Physiol. 2007, 27: 1273-1281.

105. Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. BMC Genomics, 2018, 19: 726.

106. Huang Q, Huang X, Deng J, Liu H, Liu Y, Yu K, Huang B. Differential gene expression between leaf and rhizome in Atractylodes lancea: A comparative transcriptome analysis. Front Plant Sci. 2016, 7: 348.

107. Su X, Lu G, Guo H, Zhang K, Li X, Cheng H. The dynamic transcriptome and metabolomics profiling in Verticillium dahliae inoculated Arabidopsis thaliana. Sci Rep. 2018, 8: 15404.

108. Bakshi M, Oelmüller R. WRKY transcription factors. Plant Signal Behav. 2014, 9; e27700.

109. Kumari A, Singh HR, Jha A, Swarnkar MK, Shankar R, Kumar S. Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures. BMC Genomics, 15: 871.

110. Zhang T, Huang L, Wang Y, Wang W, Zhao X, Zhang S, Zhang J, Hu F, Fu B, Li Z. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS One. 2017, 12: e0188625.

111. Charfeddine M, Saïdi MN, Charfeddine S, Hammami A, Gargouri Bouzid R. Genome-wide analysis and expression profiling of the ERFtranscription factor family in potato (Solanum tuberosum L.). Mol
112. Wang R, Zhao P, Kong N, Lu R, Pei Y, Huang C, Ma H, Chen Q. Genome-wide identification and characterization of the potato bHLH transcription factor family. Genes (Basel), 2018, 9: pii: E54.

113. Kodama M, Brinch-Pedersen H, Sharma S, Holme IB, Joernsgaard B, Dzhanfezova T, Amby DB, Vieira FG, Liu S, Gilbert MTP. Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq. BMC Genomics, 2018, 19: 811.

114. Liu F, Yang Y, Gao J, Ma C, Bi Y. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation. PLoS One. 2018, 13: e0191406

115. Kumar P, Jaiswal V, Pal T, Singh J, Chauhan RS. Comparative whole-transcriptome analysis in Podophyllum species identifies key transcription factors contributing to biosynthesis of podophyllotoxin in P. hexandrum. Protoplasma, 2017, 254: 217-228.

116. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419: 167-170.

117. Zhang Y, Li D, Wang Y, Zhou R, Wang L, Zhang Y, Yu J, Gong H, You J, Zhang X. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS One, 2018, 13: e0199262.

118. Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: Molecular regulation and stress responses in plants. Front Plant Sci. 2016, 7: 760.

119. Li LQ, Zou X, Deng MS, Peng J, Huang XL, Lu X, Fang CC, Wang XY. Comparative morphology, transcription, and proteomics study revealing the key molecular mechanism of camphor on the potato tuber sprouting effect. Int J Mol Sci. 2017, 18: 2280.

120. Jiang Y, Huang M, Wisniewski M, Li H, Zhang M, Tao X, Liu Y, Zou Y. Transcriptome analysis provides insights into gingerol biosynthesis in ginger (Zingiber officinale). Plant Genome, 2018, 11: 1-11.

121. Hu R, Yu C, Wang X, Jia C, Pei S, He K, He G, Kong Y, Zhou G. De novo transcriptome analysis of Miscanthus iutarioiriparius identifies candidate genes in rhizome development. Front Plant Sci. 2017,
8: 492.

122. Teoh KH, Sivakumar G. An expressed sequence tag database analysis of fatty acid genes in Stichococcus bacillaris strain siva2011. In: Kim SK, editor. Biotechnology Advances. London: Academic Press, Elsevier; 2015. p. 429-438.

123. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017, 35: 543-548.

124. Götz S, García-Gómez J, Terol J, Williams T, Nagaraj S, Nueda M, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36: 3420–3435.

125. Shimada MK, Nishida T. A modification of the PHYLIP program: A solution for the redundant cluster problem, and an implementation of an automatic bootstrapping on tree inferred from original data. Mol Phylogenet Evol. 2017, 109: 409-414.

Tables
Table 1. Predicted candidate colchicine pathway genes in Gloriosa superba and Colchicum autumnale transcriptomes.

Colchicine Pathway Genes	Candidate Gene ID	Reference Gene ID	% Identity	e-Value		
Step 1: NMT	Gloriosa-20120814	BAB71802.1 [Coptis japonica]	57.792	1.88E-63		
	64082_1					
	Gloriosa-20120814	BAB71802.1 [Coptis japonica]	52.866	2.28E-123		
	31585_1					
	Colchicum_2010112	BAB71802.1 [Coptis japonica]	51.862	4.03E-127		
	85_					
	Colchicum_2010112	C3SBW0.1 [Thalictrum flavum subsp. glaucum]	48.703	3.10E-116		
	85_					
	Gloriosa-20120814	C3SBW0.1 [Thalictrum flavum subsp. glaucum]	51.299	9.25E-53		
	64082_1					
	Gloriosa-	C3SBW0.1	51.29	7.38E-111		
Date	Accession	Species	Gene	Protein Name	Plant Family	Score
--------------	-------------	----------------------------------	--------	------------------	-------------------	--------
20120814	12877_1	Thalictrum flavum subsp. glaucum	P450	CYP719B1	Papaver somniferum	50
20120814	29610_2	Colchicum_201011	CYP96T1	[Narcissus pseudonarcissus]	51.282	9.95E-24
20120814	67076_2	Gloriosa-201011	CYP80G2	[Coptis japonica]	52.778	1.79E-06
20120814	30999_1	Gloriosa-201011	CYP80G2	[Coptis japonica]	52.206	8.23E-35
20120814	85639_1	Gloriosa-201011	CYP80G2	[Coptis japonica]	51.724	1.24E-27
20120814	76071_2	Gloriosa-201011	CYP80G2	[Coptis japonica]	50	2.01E-07
20120814	88526_2	Gloriosa-201011	CYP80G2	[Coptis japonica]	50	7.77E-31
20120814	99151_2	Gloriosa-201011	CYP80G2	[Coptis japonica]	50	2.01E-07

Date	Accession	Species	Gene	Protein Name	Plant Family	Score
20120814	31595_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	55.814	6.62E-10
20120814	18437_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	54.795	2.60E-21
20120814	13320_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	52	5.10E-20
20120814	46280_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	51.429	3.68E-07
20120814	6585_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	51.282	4.34E-08
20120814	2006_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	51.163	7.24E-08
20120814	16875_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	50.909	1.37E-33
20120814	31794_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	50.847	1.32E-15
20120814	36043_1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	50.588	4.80E-22
	Q9LEL5.1	Gloriosa-20120814	AFB74613.1	[Papaver somniferum]	62.162	5.4E-11
Date	Accession	Gene	Similarity	E-value		
------------	-------------	-----------------------	------------	-----------		
20120814	25318_1	japonica	Q9LEL5.1	Coptis		
20120814	2864_1	japonica	Q9LEL5.1	Coptis		
20120814	25750_1	japonica	Q9LEL5.1	Coptis		
20120814	82787_1	japonica	A0A077EWA5.1	Narcissus		
20120814	42115_1	japonica	A0A077EWA5.1	Narcissus		
20120814	238_1	japonica	A0A077EWA5.1	Narcissus		
20120814	10195_1	japonica	A0A077EWA5.1	Narcissus		
20120814	68404_1	japonica	A0A077EWA5.1	Narcissus		
20120814	14671_1	japonica	A0A077EWA5.1	Narcissus		
20120814	34468_1	japonica	A0A077EWA5.1	Narcissus		
20120814	9022_1	japonica	A0A077EWA5.1	Narcissus		
20120814	75393_1	japonica	A0A077EWA5.1	Narcissus		
20120814	29556_1	japonica	A0A077EWA5.1	Narcissus		
20120814	23611_1	japonica	A0A077EWA5.1	Narcissus		
Step 4: P450	Gloriosa-20120814	5091_1	CYP82E5v2 [Nicotiana tabacum]	52.326	1.27E-24	
-------------	-----------------	-------------------	-----------------	--------	---------	
Colchicum_2010111 2	74349_	CYP82E5v2 [Nicotiana tabacum]	55.172	4.87E-29		
Colchicum_2010111 2	75506_	CYP82E5v2 [Nicotiana tabacum]	50.962	6.75E-34		
Gloriosa-20120814	5091_1	CYP82E10 [Nicotiana tabacum]	51.163	6.91E-25		
Colchicum_2010111 2	74349_	CYP82E10 [Nicotiana tabacum]	55.172	4.41E-29		
Colchicum_2010111 2	54622_	CYP82E10 [Nicotiana tabacum]	51.24	3.41E-34		
Colchicum_2010111 2	39301_	CYP82E10 [Nicotiana tabacum]	50	4.66E-22		
Colchicum_2010111 2	75506_	CYP82E10 [Nicotiana tabacum]	50	4.23E-34		
Gloriosa-20120814	5091_1	CYP82E4 [Nicotiana tabacum]	53.488	1.63E-24		
Colchicum_2010111 2	74349_	CYP82E4 [Nicotiana tabacum]	54.023	1.36E-27		
Colchicum_2010111 2	75506_	CYP82E4 [Nicotiana tabacum]	50	8.59E-32		
Step 5: NAT	Gloriosa-20120814	32279_1	BAG90782.1 [Oryza sativa Japonica Group]	67.702	1.42E-74	
Colchicum_2010111 2	8688_	BAG90782.1 [Oryza sativa Japonica Group]	71.034	3.05E-67		
Gloriosa-20120814	70209_1	Q5KQI6.1 [Oryza sativa Japonica Group]	69.136	1.54E-108		
Gloriosa-20120814	51165_1	Q5KQI6.1 [Oryza sativa Japonica Group]	68.016	2.70E-106		
Gloriosa-20120814	30717_1	Q5KQI6.1 [Oryza sativa Japonica Group]	64.615	6.09E-104		
Colchicum_2010111 2	6813_	Q5KQI6.1 [Oryza sativa Japonica Group]	76.768	5.79E-109		
Colchicum_2010111 2	37095_	Q5KQI6.1 [Oryza sativa Japonica Group]	70.476	1.26E-102		
Table 2. Predicted candidate rhizome developmental genes in *Gloriosa superba* and *Colchicum autumnale* transcriptomes.

Rhizome Developmental Genes	Candidate Gene ID	Reference Gene ID	% Identity	e-Value			
GIGANTEA	Colchicum_2010111	XP_010261025.1	82.004	0			
	2	2617_	*Nelumbo nucifera*				
	Gloriosa-20120814	11998_1	76.132	0			
	Gloriosa-20120814	8521_1	69.743	0			
	Colchicum_2010111	2	2617_	PGSC0003DMT4000 048370 *Solanum tuberosum*	82.609	1.68E-173	
	2	3159_	PGSC0003DMT4000 048370 S. tuberosum*				
	CONSTANS	Gloriosa-20120814	51159_1	84.091	7.14E-12		
	Colchicum_2010111	2	3159_	XP_010261698.1	*Nelumbo nucifera*	81.818	1.79E-11
	Gloriosa-20120814	51159_1	PGSC0003DMT4000 67656 S. tuberosum*	75.51	1.14E-13		
	Colchicum_2010111	2	3159_	PGSC0003DMT4000 26065 S. tuberosum*	81.818	4.61E-12	
	Gloriosa-20120814	17037_1	NP_001274795.1 *Solanum tuberosum*	72.5	4.85E-30		
	Gloriosa-20120814	51159_1	NP_001274795.1 *Solanum tuberosum*	68.627	3.75E-10		
	Gloriosa-20120814	18001_1	NP_001274795.1 *Solanum tuberosum*	68.627	4.24E-10		
	Gloriosa-20120814	20079_1	NP_001274795.1 *Solanum tuberosum*	67.442	2.97E-11		
	Gloriosa-20120814	72100_1	NP_001274795.1 *Solanum tuberosum*	64	4.59E-29		
	Colchicum_2010111	2	3159_	NP_001274795.1 *Solanum tuberosum*	81.818	2.96E-10	
Gene Name	Accession	Description	Identity	E-value			
-----------	-----------	-------------	----------	---------			
Colchicum_2010111	NP_001274795.1	Solanum tuberosum	73.75	1.17E-23			
Colchicum_2010111	NP_001274795.1	Solanum tuberosum	79.365	7.90E-29			
Colchicum_2010111	NP_001274795.1	Solanum tuberosum	71.795	1.62E-12			
Phytochrome B	XP_010267948.1	Nelumbo nucifera	81.445	0			
Gloriosa-20120814	36050_1	XP_010267948.1	Nelumbo nucifera	80.142	0		
Gloriosa-20120814	85746_1	PGSC0003DMT4000 61712	S. tuberosum*	80.927	0		
Colchicum_2010111	PGSC0003DMT4000 61712	S. tuberosum*	79.539	0			
Sucrose	XP_010271909.1	Nelumbo nucifera	81.886	0			
Synthase	XP_010271909.1	Nelumbo nucifera	81.39	0			
Colchicum_2010111	XP_010271909.1	Nelumbo nucifera	80.15	0			
Colchicum_2010111	XP_010271909.1	Nelumbo nucifera	81.404	0			
Colchicum_2010111	XP_010271909.1	Nelumbo nucifera	71.535	0			
Colchicum_2010111	XP_010271909.1	Nelumbo nucifera	71.411	0			
Gloriosa-20120814	9073_1	PGSC0003DMT4000 07506	S. tuberosum*	76.923	0		
Colchicum_2010111	PGSC0003DMT4000 07506	S. tuberosum*	76.289	0			
Flowering	XP_010268289.1	Nelumbo nucifera	80.925	1.75E-109			
Locus T	XP_010268289.1	Nelumbo nucifera	86.232	1.56E-92			
Gloriosa-20120814	55554_1	XP_010268289.1	Nelumbo nucifera	83.815	2.85E-113		
Genbank Accession	Original Accession	Species	% Identity	E Value			
-------------------	--------------------	---------	------------	---------			
Colchicum_2010111 2	22914_	PGSC0003DMT4000 60057 S. tuberosum*	78.788	9.86E-81			
Colchicum_2010111 2	8829_	PGSC0003DMT4000 60057 S. tuberosum*	75	2.51E-97			
Gloriosa-20120814	55554_1	PGSC0003DMT4000 60057 S. tuberosum*	75.595	4.17E-99			
Colchicum_2010111 2	8829_	NP_001274897.1 Solanum tuberosum	73.81	5.00E-93			
Colchicum_2010111 2	22914_	NP_001274897.1 Solanum tuberosum	77.273	1.98E-76			
Gloriosa-20120814	55554_1	NP_001274897.1 Solanum tuberosum	74.405	8.62E-95			
Gloriosa-20120814	55004_1	NP_001274897.1 Solanum tuberosum	67.066	3.03E-82			
Gloriosa-20120814	26010_1	NP_001274897.1 Solanum tuberosum	64.968	1.36E-71			
Gloriosa-20120814	45011_1	NP_001274897.1 Solanum tuberosum	72.034	4.46E-63			
Gloriosa-20120814	52745_1	NP_001274897.1 Solanum tuberosum	60	1.55E-66			
	REVOLUTA	XP_010247499.1 Nelumbo nucifera	86.244	0			
Colchicum_2010111 2	467_	XP_010247499.1 Nelumbo nucifera	85.221	0			
Colchicum_2010111 2	467_	PGSC0003DMT4000 30829 S. tuberosum*	81.02	0			
Gloriosa-20120814	17486_1	PGSC0003DMT4000 30829 S. tuberosum*	81.182	0			
Gloriosa-20120814	15982_1	AAY32332.1 Phyllostachys praecox	78.851	0			
Colchicum_2010111 2	6503_	AAY32332.1 Phyllostachys praecox	78.091	0			

*Sequence from Solanum tuberosum transcriptome
Table 3. Predicted candidate transcription factors in *Gloriosa superba* and *Colchicum autumnale* transcriptomes.

Transcription Factors	Candidate Gene ID	Reference Gene ID	% Identity	e-Value	
MADS-box	Gloriosa-20120814	XP_010272608.1 Nelumbo nucifera	77.366	2.02E-138	
	Gloriosa-20120814	PGSC0003DMT400000026 Solanum tuberosum*	82.432	3.32E-42	
	Gloriosa-20120814	PGSC0003DMT400000026 Solanum tuberosum*	60.317	9.37E-23	
	Colchicum_2010111	PGSC0003DMT400000026 Solanum tuberosum*	81.159	3.61E-37	
AP2-EREBP	Colchicum_2010111	XP_010263474.1 Nelumbo nucifera	73.684	3.88E-88	
	Gloriosa-20120814	XP_010271250.1 Nelumbo nucifera	86.047	9.56E-22	
	Gloriosa-20120814	XP_010271250.1 Nelumbo nucifera	82.353	1.69E-16	
	Gloriosa-20120814	XP_010271250.1 Nelumbo nucifera	68.831	3.04E-32	
	Gloriosa-20120814	XP_010271250.1 Nelumbo nucifera	66.667	1.15E-18	
	Gloriosa-20120814	XP_010271250.1 Nelumbo nucifera	65.854	4.44E-33	
	Gloriosa-20120814	PGSC0003DMT400016585 Solanum tuberosum*	80.905	1.16E-97	
	Colchicum_2010111	PGSC0003DMT400016585 Solanum tuberosum*	75.701	6.49E-99	
	Colchicum_2010111	PGSC0003DMT400016584 Solanum tuberosum*	83.929	5.12E-64	
bHLH	Gloriosa-20120814	XP_010257880.1 Nelumbo nucifera	89.744	3.68E-18	
MYB	Gloriosa-20120814	53746_1	XP_010273628.1 Nefumbo nucifera	81.818	1.93E-48
--------------	----------------	---------	---------------------------------	-------	--------
Colchicum_2010111 2	21881_	PGSC0003DMT4000 22701 Solanum tuberosum*	88.889	1.27E-11	
MYB	Gloriosa-20120814	15461_1	XP_010277005.1 Nefumbo nucifera	90.698	8.02E-86
Colchicum_2010111 2	11314_	XP_010253806.1 Nefumbo nucifera	87.097	1.43E-14	
MYB	Gloriosa-20120814	15461_1	PGSC0003DMT4000 12203 Solanum tuberosum*	90.698	1.34E-87
Colchicum_2010111 2	20668_	PGSC0003DMT4000 17709 Solanum tuberosum*	86.301	2.98E-41	
NAC	Gloriosa-20120814	28710_1	XP_010243512.1 Nefumbo nucifera	84.397	1.10E-89
Colchicum_2010111 2	44481_	XP_010270427.1 Nefumbo nucifera	71.429	1.09E-07	
NAC	Gloriosa-20120814	18396_1	PGSC0003DMT4000 45294 Solanum tuberosum*	81.212	2.64E-101
	Colchicum_2010111 2	794_	PGSC0003DMT4000 79789 Solanum tuberosum*	71.429	7.85E-91
WRKY	Colchicum_2010111 2	22998_	XP_010258216.1 Nefumbo nucifera	80.952	5.53E-07
	Gloriosa-20120814	20164_1	XP_010258120.1 Nefumbo nucifera	76.596	7.13E-50
WRKY	Gloriosa-20120814	66904_1	PGSC0003DMT4000 28529 Solanum tuberosum*	77.419	3.60E-28
	Colchicum_2010111 2	22998_	PGSC0003DMT4000 72835 Solanum tuberosum*	80.952	5.16E-07
	Colchicum_2010111 2	49701_	ALD83482.1 Sinopodophyllum hexandrum	80	2.46E-14
	Colchicum_2010111 2	3957_	ALD83482.1 Sinopodophyllum	76	2.38E-19
*Sequence from *Solanum tuberosum* transcriptome

[https://plants.ensembl.org/Solanum_tuberosum/Info/Index]

Figures

Figure 1
Proposed colchicine pathway in *Gloriosa superba*. TH: Tyrosine hydroxylase; L-DOPAD: L-Dihydroxyphenylalanine decarboxylase; PAL: Phenylalanine ammonia-lyase; NMT: N-methyltransferase; OMT: O-methyltransferase; NAT: N-acetyltransferase [47]

Figure 2
Gene ontology (GO) annotation of *G. superba* and *Colchicum autumnale* transcriptomes.

Figure 3
Percentage of gene ontology annotations for molecular function, biological process, and cellular components in *G. superba* and *C. autumnale* transcriptome and *G. superba* leaf cDNA library.

Figure 4
Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation of *G. superba* and *C. autumnale* transcriptomes and *G. superba* leaf cDNA library predicted proteins.

Figure 5
Total number of transcripts in colchicine pathway in *G. superba* and *C. autumnale* transcriptomes and *G. superba* leaf cDNA library.
Figure 6
Total number of transcripts of rhizome developmental genes in G. superba and C. autunnale transcriptomes and G. superba leaf cDNA library. Solanum tuberosum and Nelumbo nucifera were reference transcriptomes.

Figure 7
Total number of transcripts of transcription factors in G. superba and C. autunnale transcriptomes and G. superba leaf cDNA library. S. tuberosum and N. nucifera were reference transcriptomes.

Figure 8
Possible candidate colchicine pathway genes in G. superba and C. autunnale transcriptomes and G. superba leaf cDNA library.

Figure 9
Possible candidate rhizome developmental genes and transcription factors in G. superba and C. autunnale transcriptomes.
Figure 10

A. Predicted colchicine pathway phylogenetic tree of G. superba and C. autumnae transcriptomes with reference genes. Neighbor-joining tree of pathway enzymes shown with NMT, P450s, OMT, and NAT was generated from PHYLIP-3.697 software suite with 1000 replicates in bootstrap values. B. Neighbor-joining phylogenetic tree of rhizome developmental genes in G. superba and C. autumnae transcriptomes with reference genes from S. tuberosum, N. nucifera, A. thaliana, and P. praecox. The phylogenetic relationship of GI, CO, FT, PHYB, SuSy, and REV were generated from the PHYLIP-3.697 package with 1000 replicates in bootstrap values. C. Phylogenetic tree of rhizome transcription factors such as MADS-box, AP2-EREBP, bHLH, MYB, NAC, and WRKY in G. superba and C. autumnae transcriptomes with reference genes from S. tuberosum, N. nucifera, A. thaliana, and S. hexandrum. The phylogenetic relationship were conducted from the PHYLIP-3.697 package with 1000 replicates in bootstrap values.