INTRODUCCIÓN

El término “estrés” fue acuñado por Hans Selye, quien descubrió los estímulos que podían provocar esta condición. Este autor definió el estrés como “la acción de estímulos nerviosos y emocionales provocados por el ambiente sobre los sistemas nervioso, endocrino, circulatorio y digestivo de un animal, produciendo cambios medibles en los niveles funcionales de estos sistemas”\(^6\). Además, señaló que el estrés presenta una relación positiva entre la agresividad del medio externo y la magnitud de la respuesta orgánica del individuo, es decir una reacción de defensa ante los agentes inductores de estrés, que desencadenan respuestas orgánicas capaces de alterar los mecanismos reguladores de la homeostasis. Está bien establecido que las consecuencias fisiológicas y patológicas de la exposición al estrés dependen de las características de la situación estresante, así como de las diferencias individuales\(^6\). El estrés desencadena alteraciones agudas y crónicas en las concentraciones plasmáticas de cortisol y hormonas tiroideas; además, puede acarrear alteraciones en las reacciones fisiológicas y en el comportamiento de los animales\(^3\).

El cortisol es un corticosteroid producido por la corteza suprarenal, se sintetiza a partir del colesterol y su secreción es regulada por la hormona adrenocorticotrópica (ACTH) producida en la hipófisis\(^5\). La medición de los niveles de cortisol en sangre antes y después de la exposición al factor estresante, indica la respuesta individual al estrés biológico\(^5\). En condiciones de estrés metabólico asociado con factores ambientales y de comportamiento, el eje Hipotálamo Hipófisis Adrenal (HPA) estimula la hipófisis para segregar más ACTH, en comparación con las condiciones normales\(^6\).

Los polifenoles (PFs) son un grupo heterogéneo de sustancias químicas encontradas en plantas), que se caracterizan por la presencia de un anillo aromático con grupos hidroxilos, incluido esteres y glucósidos\(^7\). Los PFs son clasificados de acuerdo con el número de carbonos y anillos fenólicos; además del tipo y número de elementos estructurales unidos a la molécula(Ver Tabla 1)\(^8\). Antiguamente, algunos se consideraban antinutrientes porque tenían la peculiaridad de precipitar macromoléculas como proteínas, carbohidratos y enzimas digestivas, y reducen la digestibilidad de algunos alimentos. Sin embargo, en la década de los noventas aumentó el interés por los PFs por sus posibles efectos beneficiosos sobre la salud. Se propusieron efectos favorables en enfermedades cardiovasculares\(^9\) o neurodegenerativas\(^10\), en la prevención y tra-
El objetivo del presente trabajo fue determinar la actividad de la cortisold en ratas sometidas a estrés crónico suplementadas con resveratrol.

MATERIALES Y MÉTODOS

Localización: El trabajo experimental se realizó en el Laboratorio de Nutrición y Salud Avícola de la Universidad Caldas, sede Manizales (Caldas, Colombia). Dicho laboratorio cuenta con jaulas adaptadas para la especie investigada, así mismo los comederos y bebederos. Además, el laboratorio posee ambiente controlado.

Animales: Se utilizaron 48 ratas hembras adultas y 16 machos de la cepa wistar (Rattus norvegicus) de tres meses de edad y con un peso corporal de 200-250g y 300-350 g, para hembras y machos, respectivamente, que permanecieron en condiciones ambientales controladas, temperatura 20±2°C de ciclos de luz-oscuridad 14 y 10 horas respectivamente. La salud de los animales fue evaluada por examen clínico antes del periodo experimental. Los animales fueron distribuidos en cuatro grupos experimentales al azar de 12 hembras y cuatro machos cada uno, que fueron ubicados en cuatro jaulas compuestas cada una por tres hembras y un macho. Cada jaula se tomó como una unidad experimental. Todos los procedimientos de la fase experimental, se llevaron a cabo en relación con la Legislación Colombiana sobre el Cuidado de los Animales (Resolución 8030 de 1993) y aprobado por el Comité de Ética de la Universidad de Caldas, Manizales, Colombia.

Periodo de adaptación: Los biomodelos fueron procedentes del Bioterio de la Universidad del Valle, Cali, Colombia. Los animales fueron transportados durante cuatro horas en cajas plásticas de 40 litros (57 cm largo x 37 cm de ancho x 37 cm de altura) a razón de cuatro. Los animales tuvieron un periodo de adaptación de diez días, momento en el cual se conformaron cuatro grupos al azar de 16 ratas (12 hembras y cuatro machos) por tratamiento, distribuidos en cuatro jaulas (tres hembras y un macho, cada una) y se les proporcionó alimento comercial (Rodentina, Agrinal Colombia S.A.) balanceado para ratas (proteína mínima 23,5%; grasa mínima 6,5%; fibra máxima 5% y cenizas máxima 8%), con libre acceso al agua.

Tratamientos: Grupo 1, fue tratado con 5 μg/kg de ACTH intraperitoneal (i.p.) (Tetraicosactrin acetato; Synacthen, Novartis®, Barcelona, España) cada 12 horas (7:00 a.m. y 7:00 p.m.), durante 30-33 días; grupo 2, recibió el mismo tratamiento con ACTH además de una suplementación oral por gavage de 40 mg/kg de extracto de uva (Resverasor®, Soria Natural S.A. Garray Soria, España); grupo 3, solo recibió extracto de uva 40 mg/kg y grupo 4, sirvió como control y recibieron solución salina (0,9%) i.p. y oral. Las hembras estuvieron separadas del macho por un vidrio, que se retiró 10 días post adaptación, y desde este momento, cada 12 horas, se evaluó visualmente la presencia o ausencia de tapón vaginal cada para determinar la cópula, que fue tomado como día 0 de gestación.

Toma de muestras y análisis del cortisol: Para la medición del cortisol plasmático, se tomaron 2 muestras de sangre en horas de la mañana (7:00 a.m.) antes del tratamiento (día 0) y después del tratamiento (día 30-33 y 23), momento en que los animales fueron sacrificados, para hembras y machos respectivamente. Las muestras sanguíneas fueron tomadas por ruptura del plexo venoso de la órbita ocular (1 mL) con un capilar heparinizado, con el animal anestesiado por poco tiempo con éter dietilico. Al final del periodo experimental, la muestra de sangre fue obtenida por punción cardíaca, inmediatamente después del sacrificio. Posteriormente, la sangre fue puesta en tubos vacutainer, centrifugada a 1300 × g durante 5 minutos y el plasma obtenido (0,2 mL) se guardó en alícuotas en condiciones de congelación a -20 ºC, hasta su procesamiento. La concentración sanguínea de cortisol (µg/dL) se determinó con la técnica de electroquimio luminiscencia (Advia Centauro de Siemens), que consiste en reacciones químicas en las que un precursor quimioluminiscente es tratado con sustancias oxidantes y catalizadores para producir un producto intermedio que, excitado electrónicamente produce radiaciones electromagnéticas en un espectro de fotones, visible. La sensibilidad analítica fue de 0,018 μg/dl y una sensibilidad funcional de 0,07 μg/dl. La medición se realizó en el Laboratorio clínico, Comfamiliares, Manizales, Caldas. Las muestras fueron tomadas a una hembra y a un macho por jaula (unidad experimental), de cada uno de los tratamientos. La medición se realizó en el Laboratorio Clínico,

Átomos de Carbono	Esqueleto	Tipo
6	C₆	Fenoles Simples
7	C₆-C₁	Benzoquinonas
8	C₆-C₂	Ácidos Fenólicos
9	C₆-C₃	Derivados de Tiro sina
10	C₆-C₄	Ácidos Fenilacéticos
13	C₆-C₁-C₆	Ácidos cinámicos
14	C₆-C₂-C₆	Fenilpropanos Gumarinas
15	C₆-C₃-C₆	Xantonas
18	[C₆-C₁]₂	Antraquinonas Flavonoïdes
30	(C₆-C₁-C₂)₂	Isolignanoides
n9	(C₆-C₈)n	Lignanos
n6	(C₆)n	Neolignanos Bioflavonoides
n15	(C₆-C₅-C₆)n	Melaninas Catécolicas

Tabla 1. Clasificación de los principales polifenoles de acuerdo con el número de átomos de carbono del esqueleto base.
El diseño fue comple-

El ritmo circadiano de 24 horas aproximadamente

observa con el cortisol, que además del ritmo ultradiano, sigue un

la secreción pulsátil de algunas hormonas (cada 2 horas), como se

mayor frecuencia, denominados ultradianos, que corresponden a

perpuestos a los ritmos circadianos, se encuentran los ritmos de

nos aquellos que tienen una frecuencia próxima a un día, es decir

De acuerdo con su frecuencia, se clasifican como ritmos circadia-

tocílico del hipotálamo. Debido a su origen endógeno, estos ritmos

en los mamíferos se encuentra situado en el núcleo supraquiasmá-

Los ritmos endógenos son producidos por un reloj biológico, que

ha reportado que sólo se consideran ritmo cuando es endógeno

sintetizados por la corteza adrenal en esta especie), lo que genera

una alta dispersión de los valores plasmáticos de estas hormonas20.

Este conjunto de resultados sugiere que, el ritmo circadiano de

secreción de glucocorticoides por la corteza adrenal, está regulado

no sólo por el control del núcleo supraquiasmático sobre los niveles

plasmáticos de ACTH, sino también por una vía de inervación di-

recta demostrada por Buijs y cols.20 Sin embargo, estos resultados

no excluyen una capacidad intrínseca de la corteza adrenal para

producir funciones rítmicas.

RESULTADOS Y DISCUSIÓN

A partir de los resultados obtenidos, no se encontraron diferencias

significativas en las concentraciones del cortisol, con respecto al
día y tratamiento (p>0,05) (Cuadro 1).

Ulrich-Lai y colaboradores, han descrito la regulación positiva de

ACTH sobre la producción de glucocorticoides por la adrenal en ra-
tas16. La ACTH estimula la secreción de glucocorticoides y eleva

los niveles intracelulares de AMPc, lo que induce rápidamente un

aumento en la actividad de la enzima Steroidogenic Acute Regula-
tory (STAR), incrementa la entrada de colesterol a la mitocondria.

Por otro lado, la ACTH aumenta la actividad de otras enzimas

como las citocromos P450, involucradas en la síntesis de glucocor-

ticoides y contribuye a un aumento neto de su producción. Los

niveles plasmáticos de glucocorticoides actúan directamente sobre

la hipófisis o sobre neuronas del hipotálamo y ejercen una retroa-

limentación negativa sobre su secreción, protege al organismo de

los efectos del hiper cortisolismo17.

Los glucocorticoides circulantes, presentan ritmos circadianos que

se caracterizan por una máxima actividad en las primeras horas

del día para los animales diurnos, incluido el hombre y al anoc-
ечен en animales nocturnos18. El ritmo puede ser endógeno o exó-

genio, según sea o no generado por el propio organismo, aunque se

ha reportado que sólo se consideran ritmo cuando es endógeno 19.

Los ritmos endógenos son producidos por un reloj biológico, que

en los mamíferos se encuentra situado en el núcleo supraquiasmá-

tico del hipotálamo. Debido a su origen endógeno, estos ritmos

se expresan aun ante la ausencia de ciclos externos ambientales.

De acuerdo con su frecuencia, se clasifican como ritmos circadia-

nos aquellos que tienen una frecuencia próxima a un día, es decir

entre 22 y 28 horas. Sin embargo, es preciso mencionar que su-

perpuestos a los ritmos circadianos, se encuentran los ritmos de

mayor frecuencia, denominados ultradianos, que corresponden a

la secreción pulsátil de algunas hormonas (cada 2 horas), como se

observa con el cortisol, que además del ritmo ultradiano, sigue un

ritmo circadiano de 24 horas aproximadamente20.

En hamsters, lesiones del núcleo supraquiasmático suprimen el rit-

tmo circadiano de cortisol y corticosterona (ambos esteroides son

sintetizados por la corteza adrenal en esta especie), lo que genera

una alta dispersión de los valores plasmáticos de estas hormonas20.

Se cree que los glucocorticoides son cruciales para respuestas, al

inicio y al final del estrés. Parece ser que el papel de los recep-
tores de los glucocorticoides se ejerce en la última fase de res-
puesta, y da como resultado la recuperación desde la situación de

estrés inicial a un estado normal del organismo. En esta última

fase, se produce almacenamiento en la memoria de lo sucedido,

lo que permite preparar el organismo a nuevas situaciones simi-

lares de emergencia. Además, se movilizan recursos energéticos,

se prepara para futuros acontecimientos, restituyen, además, la

homeostasis alterada previamente en la fase inicial por la salida

de glucocorticoides24. Por lo tanto, el estrés crónico puede causar

un incremento en la secreción de ACTH que se compensa por la

retroalimentación cortical negativay la memoria almacenadaposi-

tivos de los glucocorticoides se ejerce en la última fase de res-

tores de los glucocorticoides se ejerce en la última fase de res-

respuesta a ACTH cuando los animales se agruparon según

concentración basal de corticosterona (38 a 373 ng/ml), lo que

podría implicar que, la glándula adrenal mantiene su capacidad

intrínseca de responder diferencialmente a ACTH21. Según algu-

nos autores25, contrario a lo reportado por Ulrich-Lai y cols.16, en

ratas con el núcleo supraquiasmático intacto, la diferencia mañana/
tarde de sensibilidad a ACTH desaparece cuando se denerva la

glándula adrenal.

Al tener en cuenta lo anterior, la hora del día en la que se toman

las muestras de sangre para la medición del cortisol, puede ser un

factor fundamental, debido al ritmo circadiano que presenta la

hormona. A diferencia de lo encontrado en otras investigacio-

nes realizadas, en las que no se especifican el momento en el que

se tomó la muestra, en el presente estudio esto no fue un factor

de variación de los resultados obtenidos por Radahmadi y cols.23

reportaron que, los niveles de cortisol determinados 14 días des-
púes de generado el estrés en ratas (diabéticas con y sin estrés y

no diabéticas con y sin estrés), no presentan alteraciones, puesto que

la adrenal puede adaptarse al estímulo que produce el estrés. Así

que, cuando existe un agente estresor repetido, la glándula supra-

renal no puede responder debido posiblemente a la adaptación al

estrés físico.

Se cree que los gluocorticoides son cruciales para respuestas, al

inicio y al final del estrés. Parece ser que el papel de los recep-
tores de los glucocorticoides se ejerce en la última fase de res-
puesta, y da como resultado la recuperación desde la situación de

estrés inicial a un estado normal del organismo. En esta última

fase, se produce almacenamiento en la memoria de lo sucedido,

lo que permite preparar el organismo a nuevas situaciones simi-

lares de emergencia. Además, se movilizan recursos energéticos,

se prepara para futuros acontecimientos, restituyen, además, la

homeostasis alterada previamente en la fase inicial por la salida

de glucocorticoides24. Por lo tanto, el estrés crónico puede causar

un incremento en la secreción de ACTH que se compensa por la

retroalimentación cortical negativay la memoria almacenadaposi-

tivamente generada por las experiencias previas.

En animales

Diseño experimental y análisis estadístico: El diseño fue comple-
tamente experimental, al azar balanceado y completo, con una

asignación de los tratamientos en un arreglo factorial 2x2, con dos

niveles de ACTH (ausencia y presencia) y dos niveles de polifenol

(ausencia y presencia); con cuatro réplicas. La unidad experimenta-

bal estaba conformada por una jaula con tres hembras y un macho.

Mediante análisis de varianza se evaluó el efecto del ACTH y pol-

ifenol y su interacción lineal sobre cortisol. También se evaluó el

efecto día sobre la concentración de cortisol.

Cortisol (µg/dl)	G1	G2	G3	G4
Día -11	0,43±0,22	0,43±0,21	0,48±0,22	0,57±0,22
Día 11	0,72±0,21	1,06±0,20	0,89±0,22	0,22±0,25

* No hubo diferencias significativas entre tratamientos o días.

Tanto el ritmo circadiano de glucocorticoides como la sensibilidad

del estrés crónico a ACTH dependen del núcleo supraquiasmático. En ratas tratadas con dexametasona, previamen-
temente lesionadas el sistema nervioso central por electrocoagulación, tratamiento que inhibe la ACTH endógena, indicó cambios en la sensibilidad de la glándula adrenal. Sin embargo, en las ratas trata-
das con dexametasona, se observaron diferencias en la magnitud

de la respuesta a ACTH cuando los animales se agruparon según

concentración basal de corticosterona (38 a 373 ng/ml), lo que

podría implicar que, la glándula adrenal mantiene su capacidad

intrínseca de responder diferencialmente a ACTH21. Según algu-
nos autores25, contrario a lo reportado por Ulrich-Lai y cols.16, en

ratas con el núcleo supraquiasmático intacto, la diferencia mañana/
tarde de sensibilidad a ACTH desaparece cuando se denerva la

glándula adrenal.

Vélez-Marín M et al /Colombia Médica - Vol. 43 Nº 3, 2012 (Julio-Septiembre)
sometidos a condiciones de estrés oxidativo, los diferentes sistemas biológicos atacados emiten a través de los nervios simpáticos una señal de alerta que se transforma por medio de una serie de etapas metabólicas y endocrinias en glucocorticoides. Los antioxidantes tienen como fin disminuir el efecto tóxico y controlar el origen de las patologías causadas por el estrés oxidativo. Por lo tanto, al enfrentar el estrés oxidativo con un producto antioxidante como el resveratrol, los niveles de glucocorticoides posiblemente deben disminuir. Debido a que las ratas llegaron a la etapa de resistencia al estrés, es decir, que los animales afrontaron la presencia del factor amenazante, con ACTH, posiblemente a la acción del antioxidante y es en esta etapa donde participa el eje hipotálamo–hipófisis y la corteza adrenal, ocurriendo una normalización de los niveles de glucocorticoides.

La aplicación de ACTH cada 12 horas no produjo cambios en las concentraciones plasmáticas de cortisol entre los cuatro grupos tratados; sin embargo la manipulación de los animales puede crear una adaptación suprarrenal, razón por la cual probablemente no se observaron cambios en la concentración de cortisol plasmático.

CONCLUSIÓN
Los resultados sugieren que el estrés crónico inducido por ACTH y el consumo de resveratrol no alteran directamente los niveles plasmáticos de cortisol en ratas tratadas y no tratadas. De la misma manera, la dosis utilizada de ACTH no produjo estimulación de la glándula adrenal en las ratas.

AGRADECIMIENTOS
A la Vicerrectora de Investigaciones y Posgrados (VIP) de la Universidad de Caldas, Manizales Colombia; por la financiación para la ejecución de la presente investigación.

conflicto de intereses
Declaramos no tener conflicto de intereses con la Universidad de Caldas quien patrocinó la investigación.

REFERENCIAS
1. Selye H. The evolution of the stress concept. Am Sci. 1973;61(6):692-699.
2. Nadal RA. Mecanismos de susceptibilidad al estrés. Hipertensión y Riesgo Vascular. 2010;27:117-124.
3. Vélez-Marín M U-VL. ¿Cómo afecta el estrés calórico la reproducción? Biosalud9(2)_.pdf (objeto aplicación/pdf). 2010; http://biosalud.ucaldas.edu.co/downloads/Biosalud9(2)_.pdf.
4. Miller DB, O’Callaghan JP. Neuroendocrine aspects of the response to stress. Elsevier Metabolism 2002:865-871.
25. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. Vol 53. 2002:865-871.
22. Dijkstra I, Binnekade R, Tilders FJ. Diurnal variation in resting levels of corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol. Vol 290. 2006:R1128-R1135.
23. Radahmadi M, Shadan F, Karimian SM, Sadr SS, Nasimi A. Effects of stress on exacerbation of diabetes mellitus, serum glucose and cortisols levels and body weight in rats. Pathophysiology. Vol 13:51-55.
24. Pascual-Leoné Pascual AM, Pascual AMP-L. Acciones cerebrales de los esteroides: estado actual de la respuesta al estrés e implicaciones en la conducta. Monografías de la Real Academia Nacional de Farmacia. 17/03/2010 2010;0(0).
25. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. Vol 53. 2002:865-871.
26. Hata摸索 H, Baptista Sobrinho CA, Nichi M, Barnabe VH, Barnabe RC, Cortada CN. Effects of dexamethasone treatment (to mimic stress) and Vitamin E oral supplementation on the spermiogram and on seminal plasma spontaneous lipid peroxidation and antioxidant enzyme activities in dogs. Theriogenology. Vol 66.
Actividad del cortisol plasmático en ratas en condiciones de estrés crónico suplementadas con resveratrol

RESUMEN

Objetivo: Determinar la actividad de cortisol en ratas tratadas con hormona adrenocorticotropa (ACTH) exógena y un suplemento de resveratrol.

Metodología: Se utilizaron 48 ratas hembras adultas y 16 machos de la cepa wistar (Rattus norvegicus) de tres meses de edad y con un peso corporal de 200-250 g y 300-350 g, para hembras y machos, respectivamente, que permanecieron en condiciones ambientales controladas, temperatura 20±2°C de ciclos de luz-oscuridad de 14 y 10 horas, respectivamente. Se les proporcionó alimento balanceado con libre acceso a agua. Las ratas fueron divididas en cuatro grupos al azar: grupo 1, fue tratado con 5 µg/kg de ACTH i.p. cada 12 horas; grupo 2, recibió el mismo tratamiento con ACTH además de una suplementación oral de 40 mg/kg de extracto deshidratado de uva (resveratrol); grupo 3, solo recibió extracto de uva y el grupo 4, recibió solución salina y sirvió como control y (0,9%) i.p. y oral. El diseño experimental fue en factorial 2×2, con dos niveles de ACTH y dos niveles de polifenol.

Resultados: No se encontraron diferencias significativas del cortisol sanguíneo, con respecto al día y sexo, entre los tratamientos (0,75ug/dL ± 0,11; p<0,001).

Conclusión: Los resultados sugieren que el estrés crónico y el consumo de resveratrol no alteran directamente los niveles plasmáticos de cortisol, en ratas estresadas y no estresadas. De la misma manera que, posiblemente la dosis utilizada de ACTH no produjo estimulación de la glándula suprarrenal en las ratas.

Palabras clave: Antioxidantes, Compuestos Fenólicos, Hormona Adrenocorticotrópica.