Gravitino Dark Matter
with broken R-parity

Alejandro Ibarra
DESY

In collaboration with W. Buchmüller, L. Covi, K. Hamaguchi and T. Yanagida
(JHEP 0703:037, 2007)
Introduction

“Standard” thermal history of the Universe

Temperature	time	Events
1eV	10^{13}s	decoupling of photons/CMB
1MeV	1s	decoupling of neutrinos
0.1MeV-10MeV	$10^2 - 10^{-2}\text{s}$	BBN
100MeV	10^{-4}s	QCD phase transition
100GeV	10^{-10}s	EW phase transition
$10^9 - 10^{10}\text{GeV}$	$10^{-24} - 10^{-26}\text{s}$	leptogenesis?
$?\text{GeV}$	$?$	reheating
$?$	$?$	inflation
$?$	0	Big Bang

Alejandro Ibarra (DESY)
New elements have to be incorporated into the thermal history of the Universe:

- Dark matter
- Dark energy

Cosmic pie determined by WMAP
New elements have to be incorporated into the thermal history of the Universe:

- Dark matter
- Dark energy

Cosmic pie determined by WMAP
New elements have to be incorporated into the thermal history of the Universe:

- **Dark matter**
- **Dark energy**

Cosmic pie determined by WMAP
New elements have to be incorporated into the thermal history of the Universe:

- **Dark matter**
- **Dark energy**

Cosmic pie determined by WMAP
Goal for this talk: construct a consistent thermal history of a Universe with supersymmetric dark matter (neutralino/gravitino)

Constraints:

- Leptogenesis \(T \gtrsim 10^9\text{GeV}, t \lesssim 10^{-24}\text{s} \)
- BBN \((T \sim 0.1 - 10\text{MeV}, t \sim 10^2 - 10^{-2}\text{s}) \)
- CMB \((T \sim 1\text{eV}, t \sim 10^{13}\text{s}) \)

And of course, the relic dark matter abundance should be the observed one \(\Omega_{DM} \sim 0.23 \).
Goal for this talk: construct a consistent thermal history of a Universe with supersymmetric dark matter (neutralino/gravitino)

Constraints:

- Leptogenesis \(T \gtrsim 10^9 \text{GeV}, \ t \lesssim 10^{-24} \text{s} \)
- BBN \((T \sim 0.1 - 10 \text{MeV}, \ t \sim 10^2 - 10^{-2} \text{s}) \)
- CMB \((T \sim 1 \text{eV}, \ t \sim 10^{13} \text{s}) \)

And of course, the relic dark matter abundance should be the observed one \(\Omega_{DM} \sim 0.23 \).
Neutralino dark matter

★ If the gravitino is **NOT** the lightest supersymmetric particle (i.e. the neutralino is the LSP), it decays into the lightest neutralino and a photon: $\psi_{3/2} \to \chi_1^0 \gamma$. The photons can dissociate the light-elements if the photon energy is above a certain threshold. For example $D + \gamma \to n + p$, $E_{th} = 2.225\text{MeV}$. Very problematic for BBN!

★ Even worst, if $m_{3/2} > m_{\tilde{g}}$ the gravitino could decay into gluon and gluino, that hadronize producing energetic hadrons \to hadro-dissociation of the primordial elements. Other hadronic channels are also dangerous.
Neutralino dark matter

* If the gravitino is NOT the lightest supersymmetric particle (*i.e.* the neutralino is the LSP), it decays into the lightest neutralino and a photon: $\psi_{3/2} \rightarrow \chi^0_1 \gamma$. The photons can dissociate the light-elements if the photon energy is above a certain threshold. For example $D + \gamma \rightarrow n + p$, $E_{th} = 2.225\text{MeV}$. Very problematic for BBN!

* Even worst, if $m_{3/2} > m_{\tilde{g}}$ the gravitino could decay into gluon and gluino, that hadronize producing energetic hadrons \rightarrow hadro-dissociation of the primordial elements. Other hadronic channels are also dangerous.

Difficult to reconcile with the leptogenesis requirement $T_R \gtrsim 10^9\text{GeV}$
Gravitino dark matter

Very interesting candidate for dark matter. The relic abundance is:

\[\Omega_{3/2} h^2 \simeq 0.1 \left(\frac{T_R}{10^9 \text{GeV}} \right) \left(\frac{5 \text{ GeV}}{m_{3/2}} \right) \left(\frac{m_{\tilde{g}}}{500 \text{ GeV}} \right)^2 \]

Nicely compatible with leptogenesis! It requires \(m_{3/2} \gtrsim 5 \text{ GeV} \)

But this is not the end of the story. What is the impact of the next-to-LSP on the thermal history of the Universe?

If the gravitino is the LSP and \(R \)-parity is conserved, the NLSP can only decay gravitationally into gravitinos and SM particles, with a decay rate suppressed by \(M_P \):

\[\Gamma_{\tilde{\tau}} \simeq \frac{m_{\tilde{\tau}}^5}{48\pi m_{3/2}^2 M_P^2} \implies \text{very long lifetimes.} \]

- RH stau: \(\tilde{\tau}_R \to \tau \psi_{3/2}, \quad \tau_{\tilde{\tau}} \simeq 9 \text{ days} \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^2 \left(\frac{150 \text{ GeV}}{m_{\tilde{\tau}}} \right)^5 \)

- Neutralino: \(\chi_1^0 \to \gamma \psi_{3/2}, \quad \tau_{\chi_1^0} \simeq 9 \text{ days} \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^2 \left(\frac{150 \text{ GeV}}{m_{\chi_1^0}} \right)^5 \) (for \(\chi_1^0 = \tilde{\gamma} \)).

The NLSP is present during and after BBN. Their decays could jeopardize the abundances of primordial elements.
Neutralino NLSP

The photons from $\chi_1^0 \rightarrow \gamma \psi_{3/2}$ can dissociate primordial elements. More importantly, $\chi_1^0 \rightarrow Z \psi_{3/2}$ could be kinematically allowed, and the hadronic decays of the Z could be disastrous.

For $\chi_1^0 = \tilde{B}$,

Incompatible with leptogenesis ($m_{3/2} \sim 5 - 100$ GeV).
Right-handed stau NLSP

The decay $\tilde{\tau}_R \rightarrow \tau \psi_{32}$ only releases electromagnetic energy \rightarrow not particularly dangerous.

However, recently another effect of stau NLSP during BBN has been realized: stau catalysis of lithium 6. Pospelov

\[^4\text{He} + D \rightarrow ^6\text{Li} + \gamma \]

The cross section for the catalyzed channel is around eight orders of magnitude larger than the standard channel! This leads to an overproduction of ^6Li of a factor 300-600.
Summary of the implications of a high reheat temperature \((T_R \gtrsim 10^9 \text{ GeV}) \) for SUSY dark matter:

- **Neutralino LSP**
 - \(\psi_{3/2} \rightarrow \chi_1^0 \) hadrons
 - Hadrodissociation of primordial elements
 - Conflict with BBN

- **Gravitino LSP**
 - \(\chi_1^0 \rightarrow \psi_{3/2} \) hadrons
 - Hadrodissociation of primordial elements
 - Conflict with BBN

- **RH stau NLSP**
 - Catalytic production of \(^6\text{Li} \)
 - Conflict with BBN
Summary of the implications of a high reheat temperature ($T_R \gtrsim 10^9$ GeV) for SUSY dark matter:

- Neutralino LSP
- Gravitino LSP

Neutralino NLSP
- RH stau NLSP

$\psi_{3/2} \rightarrow \chi_1^0$ hadrons
- Hadrodissoication of primordial elements
- Conflict with BBN

$\chi_1^0 \rightarrow \psi_{3/2}$ hadrons
- Hadrodissoication of primordial elements
- Conflict with BBN

Catalytic production of ^6Li
- Conflict with BBN

BBN is the Achilles’ heel of SUSY dark matter

Root of all the problems: the NLSP is very long lived.

Simple solution: get rid of the NLSP before BBN \rightarrow R-parity violation
Gravitino DM with broken R-parity

The superpotential now reads:

\[W = W_{MSSM} + \mu_i (H_u L_i) + \frac{1}{2} \lambda_{ijk} (L_i L_j) e^c_k + \lambda'_{ijk} (Q_i L_j) d^c_k + \lambda''_{ijk} (u^c_i d^c_j d^c_k) \]

The coupling \(\lambda_{ijk} \) induces the decay of the right-handed stau. For example, \(\tilde{\tau}_R \rightarrow \mu \nu_\tau \), with lifetime:

\[\tau_{\tilde{\tau}} \simeq 10^3 \text{s} \left(\frac{\lambda}{10^{-14}} \right)^{-2} \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}} \right)^{-1} \]

With more generality, the lightest stau also contains a left-handed stau component, and will (partially) decay hadronically through \(\lambda' \).

Even with a tiny amount of R-parity violation, the stau will decay well before the time of BBN.
Many questions arise:

- Is leptogenesis spoiled?
Many questions arise:

Is leptogenesis spoiled? **NO!**

The lepton/baryon number violating couplings λ, λ', λ'' can erase the lepton/baryon asymmetry. The requirement that an existing baryon asymmetry is not erased before the electroweak transition implies:

$$\lambda, \lambda' \lesssim 10^{-7}$$

Plenty of room! $10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7}$. In this range leptogenesis is unaffected.
Many questions arise:

- Is leptogenesis spoiled? **NO!**

The lepton/baryon number violating couplings λ, λ', λ'' can erase the lepton/baryon asymmetry. The requirement that an existing baryon asymmetry is not erased before the electroweak transition implies:

$$\lambda, \lambda' \lesssim 10^{-7}$$

Plenty of room! $10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7}$. In this range leptogenesis is unaffected.

- Are BBN and CMB affected by the R-parity breaking interactions?
Many questions arise:

Is leptogenesis spoiled? NO!

The lepton/baryon number violating couplings λ, λ', λ'' can erase the lepton/baryon asymmetry. The requirement that an existing baryon asymmetry is not erased before the electroweak transition implies:

$$\lambda, \lambda' \lesssim 10^{-7}$$

Plenty of room! $10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7}$. In this range leptogenesis is unaffected.

Are BBN and CMB affected by the R-parity breaking interactions? NO!

The R-parity breaking couplings are too small.
Many questions arise:

- **Is leptogenesis spoiled? NO!**

 The lepton/baryon number violating couplings $\lambda, \lambda ', \lambda ''$ can erase the lepton/baryon asymmetry. The requirement that an existing baryon asymmetry is not erased before the electroweak transition implies:

 $\lambda, \lambda ' \lesssim 10^{-7}$

 Plenty of room! $10^{-14} \lesssim \lambda, \lambda ' \lesssim 10^{-7}$. In this range leptogenesis is unaffected.

- **Are BBN and CMB affected by the R-parity breaking interactions? NO!**

 The R-parity breaking couplings are too small.

- **Are neutrino masses jeopardized by the new sources of lepton number violation?**
Many questions arise:

- **Is leptogenesis spoiled?** **NO!**

 The lepton/baryon number violating couplings $\lambda, \lambda', \lambda''$ can erase the lepton/baryon asymmetry. The requirement that an existing baryon asymmetry is not erased before the electroweak transition implies:

 $$\lambda, \lambda' \lesssim 10^{-7}$$

 Plenty of room! $10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7}$. In this range leptogenesis is unaffected.

- **Are BBN and CMB affected by the R-parity breaking interactions?** **NO!**

 The R-parity breaking couplings are too small.

- **Are neutrino masses jeopardized by the new sources of lepton number violation?** **NO!**

 Again, the R-parity breaking couplings are too small.
And the most important question:

Is the gravitino still a viable dark matter candidate?
And the most important question:

- **Is the gravitino still a viable dark matter candidate?** **YES!**

The gravitino is not stable anymore: $\psi_{3/2} \rightarrow \nu \gamma$. But the lifetime is:

$$\tau_{3/2} \sim 10^{26} \text{s} \left(\frac{\lambda}{10^{-10}} \right)^{-2} \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^{-3}$$

(Remember: age of the Universe $\sim 10^{17} \text{s}$)

Stable enough to constitute the dark matter of the Universe.
And the most important question:

- Is the gravitino still a viable dark matter candidate? **YES!**

The gravitino is not stable anymore: $\psi_{3/2} \rightarrow \nu \gamma$. But the lifetime is:

$$\tau_{3/2} \sim 10^{26} \text{ s} \left(\frac{\lambda}{10^{-7}} \right)^{-2} \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^{-3}$$

(Remember: age of the Universe $\sim 10^{17}$ s)

Stable enough to constitute the dark matter of the Universe.

In summary: The existence of a gravitino LSP with a mass in the range 5-100 GeV, and a small amount of R-parity violation $10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7}$, is consistent with the “standard” thermal history of the Universe + SUSY dark matter (allows leptogenesis, and does not spoil BBN or CMB observations).
And the most important question:

Is the gravitino still a viable dark matter candidate? YES!

The gravitino is not stable anymore: $\psi_{3/2} \rightarrow \nu \gamma$. But the lifetime is:

$$\tau_{3/2} \sim 10^{26} s \left(\frac{\lambda}{10^{-7}} \right)^{-2} \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^{-3}$$

(Remember: age of the Universe $\sim 10^{17} s$)

Stable enough to constitute the dark matter of the Universe.

In summary: The existence of a gravitino LSP with a mass in the range 5-100 GeV, and a small amount of R-parity violation $10^{-14} \lesssim \lambda$, $\lambda' \lesssim 10^{-7}$, is consistent with the “standard” thermal history of the Universe + SUSY dark matter (allows leptogenesis, and does not spoil BBN or CMB observations).

Question 1: is $10^{-14} \lesssim \lambda$, $\lambda' \lesssim 10^{-7}$ reasonable?

Question 2: which are the experimental signatures for this scenario?
A model for small (and peculiar) R-parity breaking

We want to construct a model with small lepton number violation $(10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7})$ and tiny baryon number violation $(\lambda'\lambda'' \lesssim 10^{-27})$

Some insights to construct such a model:

- For convenience, we use $SO(10)$ notation (but no GUT in our model!). Quarks and leptons in 16_i, Higgses in 10_H.

- To give Majorana masses to neutrinos, $B - L$ has to be broken, either by a $\overline{16}$, 16 (with $B - L = \pm 1$), or by 126 (with $B - L = 2$). To have just small representations, we use 16 and $\overline{16} \rightarrow R$-parity is necessarily broken when $\langle 16 \rangle \simeq \langle \overline{16} \rangle = v_{B-L}$.

There are two types of terms in the superpotential:

16\(i\) 16\(j\) 10\(_H\). "Good term". Produces Dirac masses.

16\(i\) 16\(j\) 16. "Good term". Produces right-handed neutrino masses.

16\(i\) 1610\(_H\). "Bad term". Produces \(v_{B-L} LH_u\). Too large neutrino masses.

16\(i\) 16\(j\) 16\(k\) 16. "Bad term". Produces \(\frac{v_{B-L}}{M_P} u^c d^c d^c\), \(\frac{v_{B-L}}{M_P} Q L d^c\). Too large \(p\) decay.
There are two types of terms in the superpotential:

$16_i 16_j 10_H$. “Good term”. Produces Dirac masses.

$16_i 16_j 10_H$. “Good term”. Produces right-handed neutrino masses.

$16_i 16_j 10_H$. “Bad term”. Produces $v_{B-L} L H_u$. Too large neutrino masses.

$16_i 16_j 16_k$. “Bad term”. Produces $\frac{v_{B-L}}{M_P} u^c d^c d^c$, $\frac{v_{B-L}}{M_P} Q L d^c$. Too large p decay.

Key point: the “bad terms” always involve the 16. We cannot get rid of 16, but we can try to suppress/forbid the couplings.
There are two types of terms in the superpotential:

$16_i 16_j 10_H$. "Good term". Produces Dirac masses.

$16_i 16_j \overline{16} \overline{16}$. "Good term". Produces right-handed neutrino masses.

$16_i \overline{16} 10_H$. "Bad term". Produces $v_{B-L} LH_u$. Too large neutrino masses.

$16_i 16_j 16_k 16$. "Bad term". Produces $\frac{v_{B-L}}{M_P} u^c d^c d^c$, $\frac{v_{B-L}}{M_P} Q L d^c$. Too large p decay.

Key point: the "bad terms" always involve the 16. We cannot get rid of 16, but we can try to suppress/forbid the couplings.

We will forbid the bad terms by means of a $U(1)_R$ symmetry:

	16_i	10_H	$\overline{16}$	16	1
R	1	0	0	-2	-1

(the $SO(10)$ singlet has been introduced to break the R-symmetry).
With this assignment, holomorphicity guarantees that there is no R-parity violation in the superpotential.
There are two type of terms in the superpotential:

$16_i 16_j 10_H$. “Good term”. Produces Dirac masses.

$16_i 16_j \overline{16} 16$. “Good term”. Produces right-handed neutrino masses.

$16_i \overline{16} 10_H$. “Bad term”. Produces $v_{B-L} LH_u$. Too large neutrino masses.

$16_i 16_j 16_k 16$. “Bad term”. Produces $\frac{v_{B-L}}{M_P} u^c d^c d^c$, $\frac{v_{B-L}}{M_P} Q L d^c$. Too large p decay.

Key point: the “bad terms” always involve the 16. We cannot get rid of 16, but we can try to suppress/forbid the couplings.

We will forbid the bad terms by means of a $U(1)_R$ symmetry:

R	16_i	10_H	$\overline{16}$	16	1
R	1	0	0	-2	-1

(the $SO(10)$ singlet has been introduced to break the R-symmetry).
With this assignment, holomorphicity guarantees that there is no R-parity violation in the superpotential.

Key point 2: the Kähler potential is not protected by holomorphicity. Terms line $1 \overline{16} 16_i 10_H$, $1^\dagger \overline{16} 16_i 10_H$ can appear in the Kähler potential, producing eventually bilinear R-parity violation.
The model

Particle content:

	16_i	10_H	$\overline{16}$	16	1
R	1	0	0	-2	-1
The model

Particle content:

	Q, u^c, e^c, d^c, L, ν^c	H_u, H_d	N	N^c	Φ	X	Z
$B - L$	$\pm 1/3, \pm 1$	0	1	-1	0	0	0
R	1	0	0	-2	-1	4	0

Φ and Z are spectator fields, $\langle \Phi \rangle = v_{B-L}$ and $\langle Z \rangle = F_Z\theta\theta$.

The effective theory is described by $W \simeq W_{\text{MSSM}} + W_{\nu^c} + W_{R_P}$:

- $W_{\text{MSSM}} = h^e L H_d e^c + h^d Q H_d d^c + h^u Q H_u u^c + \mu H_u H_d$
- $W_{\nu^c} = h^\nu L H_u \nu^c + M\nu^c\nu^c$, with $M_3 \sim \frac{v^2_{B-L}}{M_P}$
- $W_{R_P} = \frac{1}{2}\lambda\ LLe^c + \lambda'QLd^c + \lambda''u^cd^cd^c$

\[
\lambda \sim C\frac{v^2_{B-L}}{M_P^2}h^e \sim C\frac{M_3}{M_P}h^e
\]
\[
\lambda' \sim C\frac{v^2_{B-L}}{M_P^2}h^d \sim C\frac{M_3}{M_P}h^d
\]
\[
\lambda'' \sim m_3/2\frac{v^4_{B-L}}{M_P^5} \sim \frac{m_3/2}{M_P} \left(\frac{M_3}{M_P}\right)^2
\]
The model

Particle content:

	Q, u^c, e^c, d^c, L, ν^c	H_u, H_d	N	N^c	Φ	X	Z
$B - L$	$\pm 1/3, \pm 1$	0	1	-1	0	0	0
R	1	0	0	-2	-1	4	0

Φ and Z are spectator fields, $\langle \Phi \rangle = v_{B-L}$ and $\langle Z \rangle = F_Z \theta \theta$.

The effective theory is described by $W \simeq W_{\text{MSSM}} + W_{\nu^c} + W_{R_p}$:

- $W_{\text{MSSM}} = h^e L H_d e^c + h^d Q H_d d^c + h^u Q H_u u^c + \mu H_u H_d$
- $W_{\nu^c} = h^\nu L H_u \nu^c + M \nu^c \nu^c$, with $M_3 \sim \frac{v_{B-L}^2}{M_P}$
- $W_{R_p} = \frac{1}{2} \lambda \ L L e^c + \lambda' Q L d^c + \lambda'' u^c d^c d^c$

In a particular flavour model

- $\lambda \sim C \frac{v_{B-L}^2}{M_P^2} h^e \sim C \frac{M_3}{M_P} h^e \quad \lambda \sim 10^{-7} h^e$
- $\lambda' \sim C \frac{v_{B-L}^2}{M_P^2} h^d \sim C \frac{M_3}{M_P} h^d \quad \lambda' \sim 10^{-7} h^d$
- $\lambda'' \sim m_{3/2} \frac{v_{B-L}^4}{M_P^4} \sim \frac{m_{3/2}}{M_P} \left(\frac{M_3}{M_P} \right)^2 \quad \lambda'' \sim 10^{-28}$

Then, $\lambda_{3ij}, \lambda'_{3ij} \sim 10^{-8}$, within $10^{-14} \lesssim \lambda, \lambda' \lesssim 10^{-7}$
Signatures for gravitino DM with broken R-parity

I- Signatures at gamma ray observatories

The gravitino decays into photon and neutrino with a decay rate:

$$\Gamma(\psi_{3/2} \rightarrow \gamma \nu) = \frac{1}{32\pi} |U_{\tilde{\gamma}\nu}|^2 \frac{m_{3/2}^3}{M_P^2}$$

with $|U_{\tilde{\gamma}\nu}|$ the photino-neutrino mixing. One gets approximately:

$$\tau_{3/2} \simeq 4 \times 10^{27} \text{s} \left(\frac{\epsilon_3}{10^{-7}} \right)^{-2} \left(\frac{\tilde{m}}{200 \text{ GeV}} \right)^2 \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^{-3}$$

where $\epsilon_3 \equiv C \frac{\nu B - L}{M_P^2} \sim C \frac{M_3}{M_P}$ parametrizes the size of the R-parity breaking.

The lifetime is much longer than the age of the Universe, but a few decays are happening NOW.

The measurement of the extraterrestrial neutrino flux with an energy between 5-50 GeV is very difficult (same energy range as atmospheric neutrinos).

On the other hand, the photon flux could be observable as an extragalactic diffuse gamma-ray flux with a characteristic spectrum.

Shining dark matter
First analysis of Sreekumar et al. from the EGRET data gave an extragalactic flux described by the power law:

$$E^2 \frac{dJ}{dE} = 1.37 \times 10^{-6} \left(\frac{E}{1 \text{ GeV}} \right)^{-0.1} \text{(cm}^2 \text{str s)}^{-1} \text{GeV}, \text{ for } 50 \text{ MeV} \lesssim E \lesssim 10 \text{ GeV}$$

This implies $\tau_{3/2} \gtrsim 4 \times 10^{27} \text{ s}$. Very close to the prediction of our model:

$$\tau_{3/2} \simeq 4 \times 10^{27} \text{ s} \left(\frac{\epsilon_3}{10^{-7}} \right)^{-2} \left(\frac{\bar{m}}{200 \text{ GeV}} \right)^2 \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^{-3}$$
First analysis of Sreekumar et.al. from the EGRET data gave an extragalactic flux described by the power law:

\[E^2 \frac{dJ}{dE} = 1.37 \times 10^{-6} \left(\frac{E}{1 \text{ GeV}} \right)^{-0.1} (\text{cm}^2 \text{str s})^{-1} \text{GeV}, \text{ for 50 MeV} \lesssim E \lesssim 10 \text{ GeV} \]

This implies \(\tau_{3/2} \gtrsim 4 \times 10^{27} \text{ s} \). Very close to the prediction of our model!

\[\tau_{3/2} \simeq 4 \times 10^{27} \text{ s} \left(\frac{\epsilon_{3}}{10^{-7}} \right)^{-2} \left(\frac{\tilde{m}}{200 \text{ GeV}} \right)^{2} \left(\frac{m_{3/2}}{10 \text{ GeV}} \right)^{-3} \]

The more recent analysis by Strong, Moskalenko and Reimer ('04) shows a power law behaviour between 50 MeV and 2 GeV, but a clear excess between 2 GeV and 50 GeV!!
II- Signatures for colliders

The signatures depend on the nature of the NLSP (stau/neutralino)

- If the NLSP is a (mainly right-handed) stau
 - Main decay: $\tilde{\tau}_R \rightarrow \tau \nu_\mu, \mu \nu_\tau$ (through $\lambda L Le^c$)

$$cT_{\tilde{\tau}}^{lep} \sim 30 \text{ cm} \left(\frac{m_{\tilde{\tau}}}{200 \text{ GeV}} \right)^{-1} \left(\frac{\epsilon_2}{10^{-7}} \right)^{-2} \left(\frac{\tan \beta}{10} \right)^{-2}$$

Long heavily ionizing charged track followed by a muon track or a jet.
III- Signatures for colliders

The signatures depend on the nature of the NLSP (stau/neutralino)

- If the NLSP is a (mainly right-handed) stau
 - Main decay: $\tilde{\tau}_R \rightarrow \tau \nu_\mu, \mu \nu_\tau$ (through $\lambda LL e^c$)
 $$cT^\text{lep}_\tilde{\tau} \sim 30 \text{ cm} \left(\frac{m_{\tilde{\tau}}}{200 \text{GeV}} \right)^{-1} \left(\frac{\epsilon_2}{10^{-7}} \right)^{-2} \left(\frac{\tan \beta}{10} \right)^{-2}$$
 Long heavily ionizing charged track followed by a muon track or a jet.
 - Also, the small left-handed component induces $\tilde{\tau}_L \rightarrow b^c t$ (through $\lambda' Q L d^c$)
 $$cT^\text{had}_\tilde{\tau} \sim 1.4 \text{ m} \left(\frac{m_{\tilde{\tau}}}{200 \text{GeV}} \right)^{-1} \left(\frac{\epsilon_3}{10^{-7}} \right)^{-2}$$
 Long heavily ionizing charged track, followed by three jets.
II- Signatures for colliders

The signatures depend on the nature of the NLSP (stau/neutralino)

- If the NLSP is a (mainly right-handed) stau
 - Main decay: \(\tilde{\tau}_R \rightarrow \tau \nu_\mu, \mu \nu_\tau \) (through \(\lambda LLe^c \))
 \[
 cT_{\tilde{\tau}}^{\text{lep}} \sim 30 \text{ cm} \left(\frac{m_{\tilde{\tau}}}{200 \text{ GeV}} \right)^{-1} \left(\frac{\epsilon_2}{10^{-7}} \right)^{-2} \left(\frac{\tan \beta}{10} \right)^{-2}
 \]
 Long heavily ionizing charged track followed by a muon track or a jet.
 - Also, the small left-handed component induces \(\tilde{\tau}_L \rightarrow b^c t \) (through \(\lambda' Q_{Ld}^c \))
 \[
 cT_{\tilde{\tau}}^{\text{had}} \sim 1.4 \text{ m} \left(\frac{m_{\tilde{\tau}}}{200 \text{ GeV}} \right)^{-1} \left(\frac{\epsilon_3}{10^{-7}} \right)^{-2}
 \]
 Long heavily ionizing charged track, followed by three jets.

- If the NLSP is a neutralino
 - Main decays: \(\chi_1^0 \rightarrow \tau^\pm W^\mp \), or \(\chi_1^0 \rightarrow b_b^c \nu \)
 \[
 cT_{\chi_1^0}^{2-\text{body}} \sim 20 \text{ cm} \left(\frac{m_{\chi_1^0}}{200 \text{ GeV}} \right)^{-3} \left(\frac{\epsilon_3}{10^{-7}} \right)^{-2} \left(\frac{\tan \beta}{10} \right)^2
 \]
 \[
 cT_{\chi_1^0}^{3-\text{body}} \sim 600 \text{ m} \left(\frac{m_{\tilde{\nu}_L}}{300 \text{ GeV}} \right)^4 \left(\frac{m_{\chi_1^0}}{200 \text{ GeV}} \right)^{-5} \left(\frac{\epsilon_3}{10^{-7}} \right)^{-2} \left(\frac{\tan \beta}{10} \right)^{-2}
 \]
 If the neutralino decays inside the detector, jets will be observed.
Conclusions

During the 20th century, a consistent thermal history of the Universe was outlined. The recent discoveries of dark matter and dark energy require a revision of the thermal history.

We have concentrated on incorporating the supersymmetric dark matter into the thermal history of the Universe.

The requirements of successful leptogenesis, Big Bang Nucleosynthesis and a thermal CMB spectrum lead to a scenario with gravitino dark matter and tiny R-parity violation.

The photons from the gravitino decay contribute to the diffuse gamma background. They may have already been observed by EGRET. Unequivocal evidence for decaying dark matter would come from GLAST.

This scenario predicts striking signatures at the LHC, in particular a vertex of the NLSP significantly displaced from the beam axis.