Constraining the N$_2$O$_5$ UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

L. Kritten1,*, A. Butz2,*, M. P. Chipperfield3, M. Dorf1,*, S. Dhomse3, R. Hessaini3, H. Oelhaf2, C. Prados-Roman5,*, G. Wetzel2, and K. Pfeilsticker6

1Institute for Space Sciences (WEW), Free University Berlin, Berlin, Germany
2Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany
3Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
4Max-Planck-Institute for Chemistry, Mainz, Germany
5Atmospheric Chemistry and Climate Group, Institute of Physical Chemistry Rocasolano (CSIC), Madrid, Spain
6Institute of Environmental Physics (IUP), University of Heidelberg, Heidelberg, Germany

*formerly at: Institute of Environmental Physics (IUP), University of Heidelberg, Heidelberg, Germany

Correspondence to: L. Kritten (lkritten@wew.fu-berlin.de)

Received: 18 November 2013 – Published in Atmos. Chem. Phys. Discuss.: 20 February 2014
Revised: 29 July 2014 – Accepted: 7 August 2014 – Published: 16 September 2014

Abstract. The absorption cross section of N$_2$O$_5$, $\sigma_{N_2O_5}(\lambda, T)$, which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in Jet Propulsion Laboratory JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO$_2$ by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NO$_x$ (NO$_y$=(NO+NO$_2$)+NO$_3$+2N$_2$O$_5$ + ClONO$_2$ + HO$_2$NO$_2$ + BrONO$_2$ + HNO$_3$) photochemistry and a non-linear least square fitting of the model result to the NO$_2$ observations. Simulations are initialised with O$_3$ measured by direct sun observations, the NO$_x$ partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding – Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO$_2$ is found if the $\sigma_{N_2O_5}(\lambda, T)$ is scaled by a factor of 1.6 ± 0.8 in the UV-C (200–260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260–350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N$_2$O$_5$ lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended $\sigma_{N_2O_5}(\lambda, T)$, and stays more or less constant at SZAs of 60°. Our scaled N$_2$O$_5$ photolysis frequency slightly reduces the lifetime (0.2–0.6 %) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

1 Introduction

The NO$_x$ ozone loss cycle dominates catalytic ozone loss in the mid-stratosphere (25–45 km) and the ozone production via coupling with the HOx cycle below about 20 km (e.g. Brasseur and Solomon, 2005). In the future it is predicted to increase further in relevance, since the emissions of its major precursor N$_2$O are increasing, while emissions of other ozone-depleting substances (ODS) are decreasing (Ravishankara et al., 2009). Signs that this is already happening come from the recent analysis of ozone vertical profile time series from the SCanning Imaging Absorption spectroMeter...
for Atmospheric CHartographY (SCIAMACHY) limb measurements (Gebhard et al., 2013), since they show a negative trend of ozone in the tropics above 30 km and a positive trend below. The explanation most favoured by the authors is due to NO\textsubscript{x} photochemistry, which catalytically destroys stratospheric ozone (e.g. Crutzen, 1970; Johnston, 1971) (see below).

A second motivation to study the photolysis frequency of N\textsubscript{2}O\textsubscript{3} comes through the finding of often overpredicted N\textsubscript{2}O\textsubscript{3}, most strikingly found in comparison studies of MPAS/Envisat (environmental satellite) N\textsubscript{2}O\textsubscript{3} data with predictions of a suite of photochemical transport models for the lower and middle stratosphere (p > 10 mbar) (e.g. Brühl et al., 2007; Funke et al., 2011). Unpublished SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) sensitivity runs are indicating that a more rapid photolysis of N\textsubscript{2}O\textsubscript{3} (up to factor of 2) than supported by \(\sigma_{N_2O_3}(\lambda, T) \) from (Jet Propulsion Laboratory) JPL-2011 (Sander et al., 2011) would largely help to close this gap.

In the context of ozone loss, most crucial is how fast major night-time NO\textsubscript{x} species (e.g. HNO\textsubscript{3}, N\textsubscript{2}O\textsubscript{5}, and ClONO\textsubscript{2}) are recycled into ozone destroying NO\textsubscript{x} at daytime. Catalytic ozone destruction by the NO\textsubscript{x} photochemistry occurs through the following reactions.

\[
\begin{align*}
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 & (R1) \\
\text{O} + \text{NO}_2 & \rightarrow \text{NO} + \text{O}_2 & (R2) \\
\text{net: O} + \text{O}_3 & \rightarrow 2\text{O}_2 & (R3)
\end{align*}
\]

The primary source of stratospheric NO\textsubscript{x} is the photolytic destruction of N\textsubscript{2}O\textsubscript{3} (Reactions R4, R5, and R6).

\[
\begin{align*}
\text{N}_2\text{O} + \text{O}^+(1D) & \rightarrow 2 \cdot \text{NO} \quad (R4) \\
& \rightarrow \text{N}_2 + \text{O}_2 \quad (R5) \\
\text{N}_2\text{O} + h\nu & \rightarrow \text{N}_2 + \text{O}(^1D) \quad (R6)
\end{align*}
\]

N\textsubscript{2}O is mostly emitted by biological and combustion processes at the surface, but their N\textsubscript{2}O emissions are not regulated by the Montreal Protocol (e.g. IPCC, 2007; WMO, 2011). Accordingly, atmospheric N\textsubscript{2}O concentrations are presently increasing with a rate of 0.75 ppb per year (Park et al., 2012; WMO Press Release, 2013).

Four major processes determine the effect of N\textsubscript{2}O on stratospheric ozone:

1. The competition of the N\textsubscript{2}O destruction processes Reaction (R4) leading to NO\textsubscript{x} production (about 7% for any N\textsubscript{2}O destroyed) and Reactions (R5) and (R6) only destroying N\textsubscript{2}O without producing NO\textsubscript{x}.

2. The sink Reactions (R7) and (R8)

\[
\begin{align*}
\text{NO} + h\nu & \rightarrow \text{N}(^4S) + \text{O} \quad (R7) \\
\text{NO} + \text{N} & \rightarrow \text{N}_2 + \text{O} \quad (R8)
\end{align*}
\]

followed by

\[
\text{NO} + \text{N} \rightarrow \text{N}_2 + \text{O}
\]

3. Further, it is well known that during daytime Reaction (R1) and the photolysis of NO\textsubscript{2}:

\[
\text{NO}_2 + h\nu \rightarrow \text{NO} + \text{O} \quad (R9)
\]

readily establish a steady state between NO and NO\textsubscript{2}, thus determining the amount of NO\textsubscript{2} available for the odd-oxygen-destroying Reaction (R2).

4. The fourth major factor controlling the ozone depletion potential of NO\textsubscript{x}, and thus of N\textsubscript{2}O, are reactions leading to the so-called NO\textsubscript{x} reservoir species (NO\textsubscript{3} = NO\textsubscript{2} + NO\textsubscript{3} + 2N\textsubscript{2}O\textsubscript{5} + ClONO\textsubscript{2} + HO\textsubscript{2}NO\textsubscript{2} + BrONO\textsubscript{2} + HNO\textsubscript{3}) of which all except HNO\textsubscript{3} are important for the diurnal variation of NO\textsubscript{x}, and thus NO\textsubscript{x}-mediated ozone loss. Among them N\textsubscript{2}O\textsubscript{5} is most important in the tropical mid-stratosphere (as shown in Fig. 1). First NO\textsubscript{3} has to be formed by the reaction

\[
\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 \quad (R10)
\]

then N\textsubscript{2}O\textsubscript{5} can be formed by the termolecular reaction

\[
\text{NO}_2 + \text{NO}_3 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M} \quad (R11)
\]

and destroyed by thermal decomposition (Reaction R12), photolysis (Reaction R13) and the heterogeneous (Reaction R14), where aerosols are abundant, i.e. in the lower stratosphere (Brasseur and Solomon, 2005).

\[
\begin{align*}
\text{N}_2\text{O}_5 + \text{M} & \rightarrow \text{NO}_2 + \text{NO}_3 + \text{M} \quad (R12) \\
\text{N}_2\text{O}_5 + h\nu & \rightarrow \text{NO}_2 + \text{NO}_3 \quad (R13) \\
\text{N}_2\text{O}_5 + \text{H}_2\text{O}_{aqr} & \rightarrow 2\text{HNO}_3 \quad (R14)
\end{align*}
\]

Reaction (R13) is particularly relevant for the daytime increase of NO\textsubscript{x} in the tropical mid-stratosphere, since the product of photolysis rate \(J_{N_2O_5} \) and concentration of N\textsubscript{2}O\textsubscript{5} is the largest among the reservoir species under the given conditions (see Fig. 1). The \(J_{N_2O_5} \) is determined by the actinic flux \(F(\lambda) \), the absorption cross section of \(J_{N_2O_5} \), \(\sigma_{N_2O_5}(\lambda, T) \) and the quantum yield for photo-dissociation \(\phi(\lambda) \) into the channels:

\[
\begin{align*}
\text{N}_2\text{O}_5 + h\nu & \rightarrow \text{NO}_2 + \text{NO}_3 \quad (R15) \\
& \rightarrow \text{NO}_3 + \text{NO} + \text{O}^+(^3P) \quad (R16) \\
& \rightarrow \text{NO}_3 + \text{NO}_2* \quad (R17)
\end{align*}
\]

(see Brasseur and Solomon, 2005). The photolysis rate \(J_{N_2O_5} \) in each channel is then given by

\[
J_{N_2O_5} = \int F(\lambda) \cdot \sigma_{N_2O_5}(\lambda, T) \cdot \phi(\lambda) \cdot d\lambda.
\]
The slightly temperature-dependent $\sigma_{N_2O_5}(\lambda, T)$ decreases from the extreme UV-C ($\lambda = 200$ nm) to the visible spectral range ($\lambda = 400$ nm) over 8 to 9 orders of magnitude (Fig. 2). On the other hand, the actinic flux $F(\lambda)$ strongly increases with wavelength resulting in two distinct maxima of the actinic spectrum in the mid- and upper stratosphere (i.e. in the UV-C and UV-B) (Fig. 3), of which the shape depends on the solar zenith angle (SZA). The short-wavelength maximum of the actinic spectrum is located around $\lambda = 220$ nm and the long-wavelength maximum between $\lambda = 280$ and 320 nm.

In the laboratory, $\sigma_{N_2O_5}(\lambda, T)$ was first measured by Jones and Wulf (1937) and later by many others (see Sect. 2.2). Current estimates of $\sigma_{N_2O_5}(\lambda, T)$ together with their uncertainties (a factor of 2) are reported in the JPL-2011 compendium (Table 4-2). However, to our knowledge $\sigma_{N_2O_5}(\lambda, T)$ has never been inferred from field observations.

Here balloon-borne measurements in the tropical mid-stratosphere of the diurnal variation of NO$_2$ (Kritten et al., 2010) are exploited to infer $\sigma_{N_2O_5}(\lambda, T)$ under stratospheric conditions. For the interpretation of the measured data with respect to $\sigma_{N_2O_5}(\lambda, T)$, a 1-D photochemical model is used. The model is initialised and further constrained by trace gas observations (O$_3$, and a suite of NO$_x$ species) taken within the so-called tropical pipe over north-eastern Brazil during summer 2005. Further, an optimal estimation approach is used to minimise the quadratic difference of the measured from modelled concentration field of NO$_2$ as a function of time and height. For this purpose $\sigma_{N_2O_5}(\lambda, T)$ is scaled by two free parameters (denoted by s_1 and s_2) in the extreme UV-C (200–258 nm) (denoted by w_1 wavelength range), and UV-B/A spectral range (260–420 nm) (denoted by w_2 wavelength range).

The paper is organised as follows. In Sect. 2 the tools used in the study are described, including the NO$_2$ measurements, some details of the NO$_x$ photochemical modelling as well as the mathematics to retrieve $\sigma_{N_2O_5}(\lambda, T)$. Section 3 reports on the results and discusses uncertainties. Section 4 addresses the implication of our findings for stratospheric N$_2$O$_5$ and global ozone. Section 5 concludes the study.

2 Measurements, photochemical modelling and $\sigma_{N_2O_5}(\lambda, T)$ retrieval

This section describes our approach to constrain $\sigma_{N_2O_5}(\lambda, T)$ from the NO$_2$ measurements in the tropical mid-stratosphere (Kritten et al., 2010) (Sect. 2.1). Further the photochemical modelling including its initialisation by information gained from additional trace gas measurements in the tropical stratosphere and from simulations of the SLIMCAT chemical transport model (CTM) (Sect. 2.2) is described. Finally, the retrieval of the scaling parameters of $\sigma_{N_2O_5}(\lambda, T)$ for two wavelength intervals w_1 and w_2 (Sect. 2.3) is discussed.

2.1 Measurements

For this study, time-dependent profiles of stratospheric NO$_2$ are used, which were measured over north-eastern Brazil (5.1° S, 43.6° W) on 30 June 2005 (see Fig. 8 in Kritten et al., 2010). During the balloon flight, 187 limb spectra were recorded during 17 limb sequences, which covers 5:35 h from local sunrise (07:30 LT) into the early afternoon (13:05 LT). The measured limb spectra were analyzed for differential slant column densities (DSCDs) using the DOAS (differential optical absorption spectroscopy) technique (e.g. Weidner.
Prior to the inversion of the measured DSCDs into an NO2 concentration height and time field, the radiative transfer for each measurement is modelled using the radiative transfer model (RTM) McArtim (Deutschmann et al., 2011). Further, the RT calculations are validated against measured limb radiances and inferred O4 and O3. The measured array of NO2 DSCDs is then projected into a NO2 concentration vs. height and time field of equal altitude ($h_i = 0.5$ km) and time spacing ($t_j = 30$ min), using the optimal estimation technique (e.g. Rodgers, 2000; Kritten et al., 2010). Due to decay of the NO3 reservoir species during daytime, at 33 km where the NO2 profile peaks, NO2 increases by roughly 60% during our observation. Our analysis is limited to SZAs $\leq 85^\circ$ in order to reduce effects due to refraction which is not properly accounted for in the RTM McArtim (Deutschmann et al., 2011).

Major errors and shortcomings of our NO2 measurements are the remaining pitch and azimuth angle oscillations of the balloon platform (see Fig. 6 in Kritten et al., 2010). While the former lead to a vertical jitter in the field of view, resulting in an up to $\pm 10\%$ uncertainty in the inferred NO2 concentrations, the azimuth angle oscillations are more difficult to deal with. The latter is mainly due to the importance of polarisation (which is not yet considered in our RTM) of the scattered light from stratospheric limb measurements in the UV–visible wavelength range, mainly if during the course of the measurements the azimuthal scattering angle changes. Therefore, in order to remove any systematic errors due to the movement of the balloon gondola, the inferred NO2 field is re-normalised using the inferred field of O3. This is justified, by the constant O3 concentration during the course of the measurement, and the similar optical depths at the wavelengths considered in the spectral analysis of O3 and NO2. For this purpose a weighting matrix is derived by dividing the retrieved O3 concentration for each altitude (h_i) and time (t_j) step by the mean O3 concentration of the whole balloon flight.

$$[\text{NO}_2_{\text{corr}}]_{i,j} = \left[\text{NO}_2_{\text{retr}}\right]_{i,j} \cdot \frac{[\text{O}_3,\text{mean}]}{[\text{O}_3,\text{retr}]}_{i,j}$$

It is found that the re-normalisation alters the NO2 field by 15% at most. Further on in the study, the re-normalised NO2 field (shown in the lower panel of Fig. 4) is used, rather than the field inferred in Kritten et al. (2010) (see Fig. 8 therein).

2.2 Modelling of the NOx photochemical system

Since, for the present study, the calculation of the photolysis rates and the photochemical evolution is crucial, both deserve to be addressed. The photolysis rates are calculated by a module adopted from the SLIMCAT 3-D CTM (Bösch et al., 2003; Chipperfield, 2006) with updated molecular absorption cross sections for N2O5 and HNO3 (Sander et al., 2011). First, the actinic fluxes are calculated as recommended by Lary and Pyle (1991) and stored in a look-up table. Then, in order to scale the actinic fluxes to the actual atmospheric conditions, the calculated photolysis rates are interpolated to the actual pressure, temperature, SZA and overhead ozone. For the latter an ozone profile is used, which was measured by balloon-borne solar occultation observations a few days prior to the NO2 measurements (Butz et al., 2006). J$_{\text{NO}_2}$ skylight radiances were already validated in previous studies of our group (e.g. Bösch et al., 2003; Deutschmann et al., 2011).

For calculation of J_{NO_2}, the $\sigma_{\text{NO}_2}(\lambda, T)$ based on the recommendation of the JPL-2011 compendium (as shown in Fig. 2) is used (Sander et al., 2011). $\sigma_{\text{NO}_2}(\lambda, T)$ ranges over about 9 orders of magnitude (from about 10^{-17} cm2 at 200 nm to 10^{-26} cm2 at 450 nm). The temperature dependence of $\sigma_{\text{NO}_2}(\lambda, T)$ is derived according to Harwood et al. (1993). This only becomes significant at wavelengths greater than 280 nm, where $\sigma_{\text{NO}_2}(\lambda, T)$ decreases (decreasing with an increasing T-dependence for larger wavelengths).

The study of Oh et al. (1986) indicates that, besides NO3, the primary photolysis products of N2O5 are a wavelength-dependent mixture of NO2, NO2 and NO + O, where NO2 represents NO2 in an excited electronic state (see Reactions R15, R16 and R17). The measured quantum yield for the NO2 production is close to unity. Since all product channels finally lead to the production of NO3 through fast reactions (within several 10th of seconds), and the equilibrium between NO and NO2 is rapidly established in the sunlit stratosphere, the N2O5 photolysis is the time limiting factor for the NO2 production. The combined uncertainties of the absorption cross section and quantum yield cause σ_{NO_2} to be uncertain by a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011).

Figure 3 displays the actinic spectrum relevant for the photolysis of N2O5 at stratospheric conditions. It shows that two distinct wavelength regions are important for the photolysis.
of \(N_2O_3\), the region \(w_1 \quad (200–258 \text{ nm})\) and the region \(w_2 \quad (260–420 \text{ nm})\). While \(\sigma_{N_2O_3}(\lambda, T)\) decreases over the whole wavelength region, the actinic flux modulates the actinic spectrum, mainly due to the absorption by \(O_2\) and \(O_3\). The minimum between the two maxima is caused by the combined effects of the \(O_3\) absorption in the Hartley band, and the \(O_2\) absorption in the Herzberg band. Thus, overhead \(O_2\) and \(O_3\) are crucial for the photolysis of \(N_2O_3\) in the UV-C. The relative importance of each maximum depends on altitude and SZA. Therefore, if overhead ozone and total air mass is held fixed, observations at different altitudes and SZAs may provide independent information on the contribution of each wavelength region to \(J_{N_2O_3}\). Noteworthy is also that in the wavelength range \(w_1\), \(\sigma_{N_2O_3}(\lambda, T)\) is temperature independent and in \(w_2\) temperature dependent (Fig. 2).

The temporal evolution of the \(NO_y\) species is modelled on 11 height levels (located between 655 K potential temperature (25.5 km) and 1099 K (35.5 km)) using the 1-D chemistry model LABMOS, which is an updated version of the model used by Bösch et al. (2003). It includes all relevant photochemical reactions of oxygen, nitrogen, hydrogen, chlorine and bromine species according to kinetic and thermochemical data compiled in Sander et al. (2011). The model was integrated for 10 days using the commercial FACSIMILE software (FACSIMILE software). All modelled data shown are taken from the 10th day of the respective model run, in order to allow for spin-up of the \(NO_y\) partitioning.

The model is initialised for most species using the output of SLIMCAT simulations (Chipperfield, 2006) (run-ID 336) for \(5^\circ\, N, 43^\circ\, E\) at 02:00 LT on 17 June 2005, except for \(NO_y\) species and \(O_3\). For initialisation of the \(NO_y\) species \(HNO_3, N_2O_5, ClONO_2, HO_2NO_2\) and \(BrONO_2\), the measurements of the MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding – Balloon-borne version) instrument are taken, which were recorded 17 days prior to the mini-DOAS \(NO_2\) measurements (e.g. Wetzel et al., 2002 and unpublished data). The model is further constrained by ozone measured by solar occultation measurements taken from the LPMA/DOAS payload (limb profile monitor of the atmosphere/differential optical absorption spectroscopy) 13 days prior to the \(NO_2\) measurements.

Small mismatches in measured and modelled total \(NO_y\) are again removed by re-normalisation with the normalisation factor (\(n_f\)), defined by the ratio of the measured and modelled concentrations (\(NO_y\)) for the different \(NO_y\) species (Wiegele et al., 2009):

\[
n_f = \frac{NO_y,\text{MIPAS-B}}{NO_y,\text{SLIMCAT}}.
\]

such that the \(NO_y\) partitioning given by SLIMCAT is preserved, but the total amount is constrained to the \(NO_y\) measured by the MIPAS-B instrument. Depending on the altitude, the normalisation factor ranges between 1 and 1.2. Figure 1 provides an overview on how the different \(NO_y\) species contribute to daytime \(NO_y\) production at different altitudes. Here the lower boundary of the striped area denotes the temporal evolution of the particular gas, and the striped area shows the total amount of \(NO_y\), which is released by photolysis from the considered \(NO_y\) species. The dominant role of \(N_2O_3\) destruction (red) for \(NO_x\) formation by Reaction (R11), and Reaction (R12) in the tropical mid-stratosphere at daytime is evident. In contrast, all the other \(NO_y\) species including \(HNO_3\) contribute to less than 10% to the \(NO_x\) increase during daytime.

Figure 4. Temporal evolution of the \(NO_2\) concentration in the tropical mid-stratosphere (5.1\(^\circ\), 43.6\(^\circ\)W) for 13 June 2005, using the JPL-2011 recommendation for \(\sigma_{N_2O_3}(\lambda, T)\) i.e. \(s_1 = 1.0\) and \(s_2 = 1.0\) (upper panel). Middle panel: same as in the upper panel, but with the inferred \(s_1 = 1.6\) and \(s_2 = 0.9\). Lower panel: measured \(NO_2\). Units are given in molec/cm\(^3\).
2.3 Retrieval of $\sigma_{N_2O_5}(\lambda, T)$

If the model was complete (i.e. there was no missing chemistry), a comparison of measurements and model should provide information about the accuracy of the model and its components. We refer to the model output as NO$_2$calc, and the measured NO$_2$ as NO$_2$meas. However, “calculated” concentrations are not totally independent from the measurements, since O$_3$ is relevant for the calculation of the actinic fluxes (see Sect. 2.2) and the partitioning of NO$_y$ contributes to NO$_2$calc. Figure 4 shows NO$_2$calc and NO$_2$meas in the upper and lower panel, respectively. In the following we describe how the parameters s_1 and s_2 are retrieved from the measured and modelled field of NO$_2$. They are defined by

$$s_1 \cdot \sigma_{N_2O_5}(200 - 258 \text{ nm})_{\text{lab}} = \sigma_{N_2O_5}(200 - 258 \text{ nm})_{\text{ret}}$$

$$s_2 \cdot \sigma_{N_2O_5}(260 - 350 \text{ nm})_{\text{lab}} = \sigma_{N_2O_5}(260 - 350 \text{ nm})_{\text{ret}}$$

where the subscripts lab and ret denote the laboratory measured and retrieved $\sigma_{N_2O_5}$, respectively. The measurement vector y is given by the subsequently measured NO$_2$ concentrations for h_i and t_j (Sect. 2.1)

$$y_{i,j} = \text{NO}_2(h_i, t_j)$$

and the state x is defined by the scaling factors s_1 and s_2.

$$x_k = s_k$$

The sensitivity of the NO$_2$ field to s_1 and s_2 can be quantitatively expressed by a weighting function or Jacobian matrix of derivatives of [NO$_2$]$_{i,j}$ with respect to the parameters s_1 and s_2, i.e. ∂[NO$_2$]$_{i,j}/\partial s_k$. For a given NO$_2$ profile with the indices i for a given altitude h_i and j for a given time t_j (Fig. 5), the Jacobian with respect to s_1 and s_2 reads

$$K_{i,j,k} = \frac{\partial y_{i,j}}{\partial x_k}$$

The forward model $F(x) = y$ is constructed from the photochemical model as described in Sect. 2.2. The inferred sensitivity (i.e. Jacobians $K_{i,j,k}$) for s_1 and s_2 is shown in Fig. 5. For s_1 it is a factor of 6 lower than for s_2, but both peak around 28 to 35 km altitude, i.e. where the measurements are taken. The maximum sensitivity (∂[NO$_2$]$_{i,j}/\partial s_k$) is more extended in time for s_2 than for s_1, since in the UV-C the actinic flux is more dependent on SZA as compared to the UV-B/A wavelength range (w_2). Furthermore ∂[NO$_2$]$_{i,j}/\partial s_1$ peaks at higher altitudes as compared to ∂[NO$_2$]$_{i,j}/\partial s_2$, since attenuation in the UV-C occurs at smaller overhead air masses as compared to the UV-B/A wavelength range. For the purpose of a retrieval of s_1 and s_2, the matrix with elements $y_{i,j}$ is transformed into a 1-dimensional vector y, that contains the NO$_2$ profiles for subsequent time steps t_j. Similarly, the kernel $K_{i,j,k}$ is transformed into a 2-dimensional matrix K. In order to provide enough information on the state and to make the inversion mathematically feasible, we need an additional constraint. Since an a priori x_a and a priori covariance (it’s error matrix) is available and well defined through the JPL recommendations, we chose the optimal estimation technique (Rodgers, 2000) to estimate s_1 and s_2. Here, the retrieved state \hat{x} is constructed from both, prior information and the measurements, each weighted by the covariances S_a and S, respectively. Adopting the JPL recommendations as priori constraints, the a priori scaling factors s_k are unity and the associated a priori covariance matrix is diagonal with values of 2 in the diagonal.

The relationship between measurement and state is examined by the cost function defined by

$$\chi^2 = (\hat{x} - x_a)S_a^{-1}(\hat{x} - x_a)^T + (y_{\text{mod}} - y_{\text{meas}})S_e^{-1}(y_{\text{mod}} - y_{\text{meas}})^T.$$

Since the measurement and the state do not linearly map, the state x is iteratively retrieved from (the subscript n now denotes the nth step)

$$\hat{x}_{n+1} = x_n + (S_a^{-1} + K_nS_e^{-1}K_n)^{-1}\cdot K_nS_e^{-1}(y - F(x_n)) - S_n^{-1}(x_n - x_a).$$

where K_n is derived before each iteration for the current state x_n. As the starting state we choose $x_0 = x_a$. The diagonal elements of the measurement covariance S_e represent the squared error of the retrieved NO$_2$ measurements. For convergence criteria a certain step size from iteration n to $n+1$ is defined (Rodgers, 2000)

$$\sqrt{(x_{n+1} - x_n)^2} \leq 0.04,$$

which is about one order of magnitude smaller than the expected noise error of the solution, as derived in Sect. 3.1.

3 Results and discussion

Figure 6 shows χ^2 in the parameter space s_1 and s_2, where the minimum region ($\chi^2 = 30$) is located at around $s_1 = 1.2$ to 2.6 and $s_2 = 0.7$ to 1.1. After 10 iterations the global minimum is found at $s_1 = 1.6$ and $s_2 = 0.9$, i.e. our retrieval indicates a $\sigma_{N_2O_5}(\lambda, T)$ a factor 1.6 larger in the UV-C spectral range and a factor 0.9 smaller in the UV-B/A spectral range as compared to the recommended value in JPL-2011, with retrieval uncertainties of ± 0.80 and ± 0.26 for s_1 and s_2, respectively (see next section). Figure 6 shows the inferred result in the s_2-s_1 space together with their uncertainties, and the recommended JPL-2011 values. Figure 7 shows the resulting $\sigma_{N_2O_5}$.

Figure 4 shows the modelled (unscaled) s_1 and s_2 in the upper panel, scaled s_1 and s_2 in the middle panel) and the measured diurnal NO$_2$ concentration (lower panel). Since there is still some discrepancy in the diurnal behaviour of the forward modelled state and the measurement, in the next section.
we investigate to what extent the errors and uncertainties of the measurement, as well as errors and uncertainties of the forward model, propagate into the inferred s_1 and s_2 values (see Table 1 for an overview on the errors and uncertainties).

3.1 Retrieval uncertainties

The measurement error (S_{noise}) of NO$_2$ has already been discussed by Kritten et al. (2010). According to Rodgers (2000), the propagation of the measurement noise into the retrieval noise can be quantified by

$$S_{\text{noise}} = (K^T S^{-1} K)^{-1}.$$ \hspace{1cm} (12)

which leads to 1σ errors of ±0.80 and ±0.26 for s_1 and s_2, respectively.

3.2 Uncertainties in the forward model

We now discuss errors and uncertainties of s_1 and s_2 due to uncertainties in the forward model parameters, which are input parameters that influence the state but are not retrieved (Rodgers, 2000). Since the model is not linear in the forward model parameters, additional local retrievals of s_1 and s_2 at both the lower and upper boundary of the uncertainty range of these parameters are required. The difference in the retrieved s_1 and s_2 compared to the undisturbed case is taken as a measure for the uncertainty. The uncertainties are not symmetrical, hence in each case an upper and a lower range of uncertainty is given. The forward model parameters in this study are input parameters to the chemical model. Among the many input parameters (i.e. model initialisation parameters as well as kinetic and thermochemical data), only those parameters which arguably exert the most influence on the results are considered. For model initialisation, these are total NO$_y$ and O$_3$, and the absorption cross section of NO$_2$. We
also discuss the uncertainty in the actinic flux going into the calculation of $J_{N_2O_5}$. The following results are obtained:

1. Initialisation of NO_3: as outlined above (Sect. 2.2), the total amount of NO_3 is initialised from MIPAS-B measurements. The accuracy of the MIPAS-B NO_3 measurements above 20 km ranges between 4 and 7%. When initialising the model with NO_3 at the lower boundary of the uncertainty range, the retrieval gives $s_1 = 2.1$ and $s_2 = 1.0$. When initialising the model with NO_3 at the upper boundary of the uncertainty range, the retrieval gives $s_1 = 1.3$ and $s_2 = 0.7$. Accordingly, the uncertainties due to initialisation of NO_3 are $\Delta s_1 = +0.5/-0.3$ and $\Delta s_2 = +0.1/-0.2$.

2. Initialisation of O_3: as outlined above (Sect. 2.2), the O_3 profile is initialised from direct sun DOAS observations. The accuracy of these measurements above 20 km ranges between 5 and 29%. When initialising the model with O_3 at the lower boundary of the uncertainty range, the retrieval gives $s_1 = 1.3$ and $s_2 = 0.7$. When initialising the model with O_3 at the upper boundary of the uncertainty range, the retrieval gives $s_1 = 1.9$ and $s_2 = 1.2$. Accordingly, the uncertainties due to initialisation of O_3 are $\Delta s_1 = +0.3/-0.4$ and $\Delta s_2 = +0.3/-0.2$.

3. Absorption cross section of NO_2 (see Reaction R9): the combined uncertainty of the NO_2 absorption cross section and the quantum yield is a factor of 1.2 (Sander et al., 2011). When calculating the photolysis rates of NO_2 at the lower boundary of the uncertainty range of $\sigma_{NO_2}(\lambda, T)$, the retrieval gives $s_1 = 1.1$ and $s_2 = 0.6$. When calculating the photolysis rates of NO_2 at the upper boundary of the uncertainty range of $\sigma_{NO_2}(\lambda, T)$, the retrieval gives $s_1 = 2.2$ and $s_2 = 1.2$. Accordingly, the uncertainties due to $\sigma_{NO_2}(\lambda, T)$ are $\Delta s_1 = +0.6/-0.6$ and $\Delta s_2 = +0.3/-0.3$. Evidently, despite its relatively small uncertainty, uncertainties in $\sigma_{NO_2}(\lambda, T)$ directly propagate into the modelled NO_2 concentration.

4. The rate constant k_{NO+O_3} (see Reaction R1): the uncertainty of the rate constant k_{NO+O_3} is temperature-dependent (Sander et al., 2011) and varies at temperatures relevant for this study between a factor of 1.30 and 1.42. When implementing a rate constant k_{NO+O_3} at the lower boundary of the uncertainty range, the retrieval gives $s_1 = 2.1$ and $s_2 = 1.5$. When implementing a rate constant k_{NO+O_3} at the upper boundary of the uncertainty range, the retrieval gives $s_1 = 0.7$ and $s_2 = 0.6$. Accordingly, the uncertainties due to the rate constant k_{NO+O_3} are $\Delta s_1 = +0.5/-0.9$ and $\Delta s_2 = +0.6/-0.3$.

5. Actinic flux and $J_{N_2O_5}$: another uncertainty in the calculated actinic flux is due to uncertainties of the calculated actinic flux. In the mid- and upper stratosphere, uncertainties of the actinic flux are primarily due to the contribution of the direct solar irradiance rather than the contribution of scattered radiation from above or even from below (due to the absorption of ozone below 315 nm), for the altitude of interest (e.g. Madronich et al., 1985; Madronich, 1987; Bösch et al., 2003). Scattering from below by clouds is not considered, because we could find no evidence of clouds through a comparison of modelled and measured limb radiances. Therefore, we assume major uncertainties in the spectral actinic flux relevant for $J_{N_2O_5}$ are primarily due to (a) the solar activity-dependent irradiance being particularly variable in the UV-C and UV-B spectral ranges, (b) overhead ozone and (c) overhead O_3.

Retrieved value	Noise	NO_3 initialisation	O_3 initialisation	σ_{NO_2}	k_{NO+O_3}	Total	
s_1	1.6	±0.80	+0.5,−0.3	+0.3,−0.40	+0.5,−0.6	+0.6,−0.9	+1.26,−1.44
s_2	0.9	±0.26	+0.1,−0.2	+0.3,−0.2	+0.6,−0.3	+0.79,−0.57	
irradiance in the UV-A in 2003 and 2004 when the sunspot numbers were larger than in 2005 (Gurlit et al., 2005). In addition, recent solar irradiance measurements claim that from solar maximum to minimum, solar radiation in the extreme UV may decrease four to six times more than predicted by models (Haigh et al., 2010). Accordingly, we see no reason to assume that radiation in the UV-C was particularly elevated during our measurements, at least not in an amount to explain an increased s_1 value.

b. Ozone in the mid- and upper stratosphere used to scale the actinic flux was measured on several occasions during the same campaign. For our simulation overhead ozone measured at high accuracy by solar occultation spectroscopy is used (e.g. Butz et al., 2006; Dorf et al., 2008).

c. Further the total overhead air mass and thus O2 is determined by in situ measured pressures and temperatures, and any significant departure would have been detected through a curved rather than straight line in a Langley plot of measured slant column amount of ozone (or BrO) vs. total air mass (e.g. see Fig. 2 in Dorf et al., 2008).

Finally, the impact of a potentially too coarse wavelength grid (1 nm) in calculation of $J_{N_2O_3}$, (Eq. 1) should be very small because of the lack of differential structures in $\sigma_{N_2O_3}(\lambda, T)$ (Trentmann et al., 2003). In conclusion, the error in the calculated $J_{N_2O_3}$ due to uncertainties of the calculated actinic flux is assumed to be negligible.

The individual uncertainties and errors of our study on $\sigma_{N_2O_3}(\lambda, T)$ are summarised in Table 1. In order to estimate a total error, we added positive and negative deviations separately in quadrature, even though we are aware that a Monte Carlo estimation would be more adequate, we used this approximation due to high computational costs of a Monte Carlo approach. The individual noise and forward model parameter errors add to a total error of $+1.26$ to -1.44 for s_1 and $+0.79$ to -0.57 for s_2.

4 Implications

Now we relate our results concerning $\sigma_{N_2O_3}(\lambda, T)$ to earlier discrepancies of measured and modelled N_2O_3 in the stratosphere and assess possible implications on global ozone. Previous inter-comparisons of measured and modelled N_2O_3 in the stratosphere reveal the following:

a. The studies of Brühl et al. (2007) and Funke et al. (2011) also addressed inter-comparisons of N_2O_3 measured by MIPAS/Envisat. In particular for the retrieval from the IMK/IAA (Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucia), Brühl et al. (2007) stated a problem to reproduce the observed night-time partitioning between N_2O_5 and NO2 in the middle stratosphere using the recommended set of reaction coefficients and photolysis data, while for the Halloween solar proton event in late October 2003, the inter-comparison of measurements and model resulted in much larger modelled than measured N_2O_5, except for the KASIMA model (Funke et al., 2011).

b. At the same time, Wolff et al. (2008) stated a low bias (-0.25 ppb) of ACE-FTS N_2O_5 relative to the MIPAS IMK/IAA retrieval for the middle stratosphere around 30 km.

c. Moreover, in a recent study, Wetzel et al. (2012) found slightly larger measured MIPAS-B N_2O_5 concentrations than those modelled by EMAC (ECHAM/MESy Atmospheric Chemistry) (e.g. Jöckel et al., 2005) for the mid-stratosphere (22°–34 km) at high latitudes during mid-winter, i.e. SZA > 86°.

More recent sensitivity studies using SLIMCAT (not shown) indicate that in order to reconcile modelled and measured N_2O_5 for the studies mentioned in (a), the N_2O_5 photolysis frequency would need to be increased by at least a factor of 1.5 to 2 in the UV-B/A. However an increase in UV-B/A photolysis of N_2O_5 by a factor of 1.5 to 2 would deteriorate the existing agreement between N_2O_5 concentrations measured by ACE-FTS and simulated by SLIMCAT for sunrise and sunset (finding b), but at the same time it would potentially increase the discrepancy found in the study of Wetzel et al. (2012). Finally, such an increase is not supported by the result of our study.

A possible increase of $\sigma_{N_2O_3}(\lambda, T)$ in the UV-C spectral range as indicated by the present study would not resolve the discrepancies found in (a), mainly since below 10 mbar the UV-C radiation rapidly contributes less and less to the N_2O_5 photolysis as the altitude becomes lower. At the same time, it may not modify finding (b), and at best it would only slightly improve the mismatch found in (c).

Therefore, it is rather likely that the mismatch of the MIPAS/Envisat N_2O_5 with the various model predictions is not due to an incorrect $\sigma_{N_2O_3}(\lambda, T)$ used in the models, but due to an other reason.

In order to assess the consequences of our finding on global ozone, sensitivity simulations for the modified $\sigma_{N_2O_3}(\lambda, T)$ were performed using the SLIMCAT 3-D CTM (e.g. Chipperfield, 1999, 2006). The model was run at a horizontal resolution of 5.65×5.65 with 32 levels between the surface and ~ 60 km. The model was forced using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data and used the model’s standard stratospheric chemistry scheme. A first run (run R) used JPL-2011 photochemical data. A second run (N) was identical to run R but used the scaled values for $\sigma_{N_2O_3}$ derived in this work.
Run N was initialised from run R in July 2007 and integrated for 2 years. Output from 2008 was used for this exercise.

Figure 8 shows the percentage change in annual mean O₃, NO₂ and N₂O₅ between runs N and R for 2008, along with the O₃ change in September. N₂O₅ decreases above 30 km by up to 4% in the annual (24 h) mean due to the increased photolysis at short wavelengths. Below 30 km (35 km near the poles) N₂O₅ increases by up to 5% due to the slower photolysis at longer wavelengths. The change in NO₂ shows an opposite pattern reflecting the changing partitioning between NOₓ and N₂O₅. Overall, the impact of the change in σ_N₂O₅ on ozone is small. In the mid-stratosphere (30–35 km) the increased NOₓ, which is the main sink of odd oxygen in this region, leads to an O₃ decrease of about 0.25% with the scaled σ_N₂O₅. Below 30 km the ozone response changes sign, consistent with the NOₓ change, but it is still only around 0.25%. In September, O₃ loss inside the polar vortex is suppressed slightly (−0.6% change).

5 Summary and conclusion

For the first time the absorption cross section of N₂O₅ σ_N₂O₅(λ,T) is constrained from measurements of the diurnal increase in NO₂ in the tropical mid-stratosphere. It is found that in the UV-C (200–260 nm), σ_N₂O₅(λ,T) may be larger by a factor of 1.6 ± 0.8, and in the UVB/A (260–350 nm) smaller by a factor of 0.9 ± 0.26 as compared to the JPL-2011 recommendations. Additional uncertainties of our study are due to uncertainties of the forward model parameters, which are estimated to be up to +0.6 to −0.9 in the UV-C and up to +0.6 to −0.3 in the UV-B/A. A total error is estimated to be +1.26 to −1.44 in the UV-C and +0.79 to −0.57 in the UV-B/A. The outcome of our study could be improved if other NOₓ species (e.g. by MIPAS-B) were simultaneously measured. This was unfortunately not possible in a second attempt to simultaneously operate the MIPAS-B and mini-DOAS instrument in a joint deployment over north-eastern Brazil 2008 due to technical constraints.

Overall, above 30 km N₂O₅ concentrations decrease by 4% in the annual (24 h) mean due to the increased photolysis at short wavelengths, when using the retrieved σ_N₂O₅(λ,T). Below 30 km (35 km near the poles) N₂O₅ increases by up to 5% due to the slower photolysis at longer wavelengths. For this altitude region, in some cases lower measured than modelled N₂O₅ have been reported for the latemorning lower stratosphere (e.g. in yet unpublished comparison studies of SLIMCAT simulations with MIPAS/Envisat N₂O₅ measurements), which could be reconciled increasing σ_N₂O₅(λ,T) in the UV-B/A wavelength range by up to a factor of 2 compared to the JPL-2011 recommendations (e.g. as indicated by recent SLIMCAT runs). Increasing the N₂O₅ photolysis in the UV-C according to our finding is not enough to eliminate the stated mismatch of measured and modelled N₂O₅ for altitudes above 30 km. Therefore firm conclusions on a larger UV-C N₂O₅ absorption cross section as indicated by our study can not be drawn from previous measurement vs. model inter-comparison studies.

Further a sensitivity test using our revised vs. the JPL-2011 recommended σ_N₂O₅(λ,T) show little effects on global ozone. Above 30 km, where UV-C light is strongly contributing to the N₂O₅ photolysis, the increase in σ_N₂O₅(λ,T) (1.6 ± 0.8 in the w₁ wavelength region) leads to an increase in NO₂ and through Reaction (R2) to 0.2% less ozone at most. Below 30 km, where N₂O₅ photolysis due to UVB/A light is more important, our smaller σ_N₂O₅(λ,T) (0.9 ± 0.26 in the w₂ wavelength region) leads to slightly more ozone, i.e. 0.2% in the mid-latitude stratosphere, and as much as 0.6% in the 20–25 km region over the Antarctic in spring.

Finally, our approach could also be used to retrieve more and other parameters from simultaneous atmospheric measurements of the relevant NOₓ species, including a tighter assessment of the absorption cross section of NO₂.
Acknowledgements. Funding for this study came from the Deutsche Forschungsgemeinschaft (DFG) (grants Pf 384/5-1/2, PF384/9-1/2), Deutsches Zentrum für Luft und Raumfahrt (DLR) (contracts BMWi 50EE0840), the European Union (EU) through the EU projects ReconCile (FP7-ENV-2008-1-226365), and SHIVA (FP7-ENV-2007-1-226224) and the European Space Agency (ESA) (contract (ESA-ESRIN: no. RFQ-3-12092/07/I- 435 OL). The SLIMCAT modelling was supported by the NERC National Centre for Atmospheric Science (NCAS), UK, and we thank Wuhu Feng for his help. We thank the CNES equipe nacelles pointées and the balloon team from Aire sur l’Adour, France without which the balloon flight would not have been possible. We also thank our colleagues from the LPMA balloon team (P. Jesseck, I. Pepin and Y. Té) for the successful cooperation. Finally, we are grateful for the hospitality and support given by the personnel of the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, to successfully perform the balloon flight at Teresina, Brazil. A. Butz is funded through the Emmy Noether programme of the Deutsche Forschungsgemeinschaft (DFG) grant BU2599/1-1 (RemoteC).

Edited by: J. B. Burkholder

References

Bösch, H., Camy-Peyret, C., Chipperfield, M. P., Fitzenberger, R., Harder, H., Platt, U., and Pfeilsticker, K.: Upper limits of stratospheric IO and OIO inferred from center-to-limb-darkening corrected balloon-borne solar occultation visible spectra: Implications for total gaseous iodine and stratospheric ozone, J. Geophys. Res., 108, 4455, doi:10.1029/2002JD003078, 2003.

Brasseur, G. and Solomon, S.: Aeronomy of the middle atmosphere, Springer, P.O. Box 17, 3300 AADordrecht, the Netherlands, 2005.

Brühl, C., Steil, B., Stiller, G., Funke, B., and Jöckel, P.: Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 5585–5598, doi:10.5194/acp-7-5585-2007, 2007.

Butz, A., Bösch, H., Camy-Peyret, C., Chipperfield, M., Dorf, M., Dufour, G., Grunow, K., Jesseck, P., Kühn, S., Payan, S., Pepin, I., Pukite, J., Rozanov, A., von Savigny, C., Sioris, C., Wagner, T., Weidner, F., and Pfeilsticker, K.: Inter-comparison of stratospheric O3 and NO2 abundances retrieved from balloon borne direct sun observations and Envisat/SCIAMACHY limb measurements, Atmos. Chem. Phys., 6, 1293–1314, doi:10.5194/acp-6-1293-2006, 2006.

Chipperfield, M. P.: Multianannual simulations with a three-dimensional chemical transport model, J. Geophys. Res., 104, 1781–1805, 1999.

Chipperfield, M. P.: New Version of the TOMCAT/SLIMCAT Off-Line Chemical Transport Model: Intercomparision of Stratospheric Tracer Experiments, Q. J. Roy. Meteor. Soc., 132, 1179–1203, doi:10.1256/qj.05.51, 2006.

Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone content, Q. J. Roy. Meteor. Soc., 96, 320–325, 1970.

Deutschmann, T., Beirle, S., Frieß, U., Grzegorski, M., Kern, C., Kritten, L., Platt, U., Prados-Román, C., Pukite, J., Wagner, T., Werner, B., and Pfeilsticker, K.: The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features, J. Quant. Spectrosc. Rad., 112, 1119–1137, doi:10.1016/j.jqsrt.2010.12.009, 2011.

Dorf, M., Butz, A., Camy-Peyret, C., Chipperfield, M. P., Kritten, L., and Pfeilsticker, K.: Bromine in the tropical troposphere and stratosphere as derived from balloon-borne BrO observations, Atmos. Chem. Phys., 8, 7265–7271, doi:10.5194/acp-8-7265-2008, 2008.

FACSIMILE software, MCPA Software Ltd., Oxfordshire, UK, 1993.

Foukal, P., Fröhlich, C., Spruit, H., and Wigley, T. M. L.: Variations in solar luminosity and their effect on the Earth’s climate, Nature, 443, 161–166, doi:10.1038/nature05072, 2006.

Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., López-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarman, T., Vyshkova, T. Y., Wieters, N., and Wissing, J. M.: Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys., 11, 9089–9139, doi:10.5194/acp-11-9089-2011, 2011.

Gebhardt, C., Rozanov, A., Hommel, R., Weber, M., Bovensmann, H., Burrows, J. P., Degenstein, D., Froidevaux, L., and Thompson, A. M.: Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012, Atmos. Chem. Phys., 14, 831–846, doi:10.5194/acp-14-831-2014, 2014.

Gurlit, W., Bösch, H., Bovensmann, H., Burrows, J. P., Butz, A., Camy-Peyret, C., Dorf, M., Gerilowski, K., Lindner, A., Noël, S., Platt, U., Weidner, F., and Pfeilsticker, K.: The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements, Atmos. Chem. Phys., 5, 1879–1890, doi:10.5194/acp-5-1879-2005, 2005.

Haigh, J. D., Winning, A. R., Touni, R., and Harder, J. W.: An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, doi:10.1038/nature09426, 2010.

Harwood, M. H., Jones, R. L., Cox, R. A., Lutman, E., and Rattigan, O. V.: Temperature-dependent absorption cross-sections of N2O4, J. Photochem. Photobiol. A, 73, 167–175, 1993.

IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) – a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433–444, doi:10.5194/acp-5-433-2005, 2005.

Johnston, H. S.: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust, Science, 173, 517–522, 1971.

Jones, E. J. and Wulf, O. I.: The absorption coefficient of nitrogen pentoxide in the ultraviolet and the visible absorption spectrum of NO2, J. Chem. Phys., 5, 873–877, 1937.

Kritten, L., Butz, A., Dorf, M., Deutschmann, T., Kühn, S., Prados-Roman, C., Pukite, J., Rozanov, A., Schofield, R., and Pfeilsticker, K.: Time dependent profile retrieval of UV/vis absorbing
radicals from balloon-borne limb measurements – a case study on NO₂ and O₃, Atmos. Meas. Tech., 3, 933–946, doi:10.5194/amt-3-933-2010, 2010.

Kreycy, S., Camy-Peyret, C., Chipperfield, M. P., Dorf, M., Feng, W., Hossaini, R., Kritten, L., Werner, B., and Pfeilsticker, K.: Atmospheric test of the J(BrONO₂)/kBrO+NO₂ ratio: implications for total stratospheric Br and bromine-mediated ozone loss, Atmos. Chem. Phys., 13, 6263–6274, doi:10.5194/acp-13-6263-2013, 2013.

Lary, D. J. and Pyle, J. A.: Diffusive radiation, twilight and photochemistry, J. Atmos. Chem., 13, 373–392, 1991.

Madronich, S.: Photodissociation in the atmosphere I. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 92, 9740–9752, 1987.

Madronich, S., Hastie, D. R., Schiff, H. I., and Ridley, B. A.: Measurements of the photodissociation coefficient of NO₂ in the atmosphere, II. Stratospheric measurements, J. Atmos. Chem., 3, 233–245, 1985.

Oh, D., Sisk, W., Young, A., and Johnston, H.: Nitrogen Dioxide Fluorescence from N₂O₅ Photolysis, J. Chem. Phys., 85, 7146–7158, 1986.

Park, S., Croteau, P., Boering, K. A., Etheridge, D. M., Ferretti, D., Fraser, P. J., Kim, K.-R., Krummel, P. B., Langenfelds, R. L., van Ommen, T. D., Steele, L. P., and Trudinger, C. M.: Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940, Nat. Geosci., 5, 261–265, doi:10.1038/ngeo1421, 2012.

Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy (DOAS), Principle and Applications, Springer Verlag, Heidelberg, 2008.

Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, 2009.

Rodgers, C. D.: Inverse methods for atmospheric sounding, World Scientific, Singapore, New Jersey, London, Hongkong, 2000.

Sander, S., Friedl, R. R., Barkern, J., Golden, D., Kurylo, M., Wine, P., Abbot, J., Burkholder, J., Moortgat, C., Hui, R., and Orkin, R. E.: Chemical kinetics and photochemical data for use in atmospheric studies, Technical Report, NASA/JPL Publication, 17, 2011.

Trentmann, J., Bovensmann, H., Eyring, V., Mueller, R., and Burrows, J. P.: Impact of Accurate Photolysis Calculations on the Simulation of Stratospheric Chemistry, J. Atmos. Chem., 44, 225–240, 2003.

Weidner, F., Bösch, H., Bovensmann, H., Burrows, J. P., Butz, A., Camy-Peyret, C., Dorf, M., Gerilowski, K., Gurlitt, W., Platt, U., von Friedeburg, C., Wagner, T., and Pfeilsticker, K.: Balloon-borne limb profiling of UV/vis skylight radiances, O₃, NO₂, and BrO: technical set-up and validation of the method, Atmos. Chem. Phys., 5, 1409–1422, doi:10.5194/acp-5-1409-2005, 2005.

Wetzel, G., Oelhaf, H., Ruhnke, R., Friedl-Vallon, F., Kleinert, A., Kouker, W., Maucher, G., Reddmann, T., Seefeldner, M., Stowasser, M., Trieschmann, O., von Clarmann, T., and Fischer, H.: NOy partitioning and budget and its correlation with N₂O in the Arctic vortex and in summer mid-latitudes in 1997, J. Geophys. Res., 107, 4280, doi:10.1029/2001JD000916, 2002.

Wetzel, G., Oelhaf, H., Kirner, O., Friedl-Vallon, F., Ruhnke, R., Ebersoldt, A., Kleinert, A., Maucher, G., Nordmeyer, H., and Orphal, J.: Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex, Atmos. Chem. Phys., 12, 6581–6592, doi:10.5194/acp-12-6581-2012, 2012.

Wiegele, A., Kleinert, A., Oelhaf, H., Ruhnke, R., Wetzel, G., Friedl-Vallon, F., Lengel, A., Maucher, G., Nordmeyer, H., and Fischer, H.: Spatio-temporal variations of NOy species in the northern latitudes stratosphere measured with the balloon-borne MIPAS instrument, Atmos. Chem. Phys., 9, 1151–1163, doi:10.5194/acp-9-1151-2009, 2009.

WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52, 516 pp., Geneva, Switzerland, 2011.

WMO (World Meteorological Organization), Press Release No. 934, 2013.

Wolff, M. A., Kerzenmacher, T., Strong, K., Walker, K. A., Toohey, M., Dupuy, E., Bernath, P. F., Boone, C. D., Brohede, S., Catoire, V., von Clarmann, T., Coffey, M., Daffer, W. H., De Mazière, M., Duchateau, P., Glatthor, N., Griffith, D. W. T., Hannigan, J., Hase, F., Höpfner, M., Huret, N., Jones, N., Jucks, K., Kagawa, A., Kasai, Y., Kramer, I., Källmann, H., Kuttipurath, J., Mahieu, E., Manney, G., McElroy, C. T., McLinden, C., Mébarki, Y., Mikuteit, S., Murphy, J., Piccolo, C., Raspollini, P., Ridolfi, M., Ruhnke, R., Santee, M., Senten, C., Smale, D., Tétard, C., Urban, J., and Wood, S.: Validation of HNO₃, ClONO₂, and N₂O₅ from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), Atmos. Chem. Phys., 8, 3529–3562, doi:10.5194/acp-8-3529-2008, 2008.