Abstract. We develop foundational theory for the Laplacian flow for closed G_2 structures which will be essential for future study. (1). We prove Shi-type derivative estimates for the Riemann curvature tensor Rm and torsion tensor T along the flow, i.e. that a bound on

$$\Lambda(x,t) = (|\nabla T(x,t)|^2_{g(t)} + |Rm(x,t)|^2_{g(t)})^{\frac{1}{2}}$$

will imply bounds on all covariant derivatives of Rm and T. (2). We show that $\Lambda(x,t)$ will blow up at a finite-time singularity, so the flow will exist as long as $\Lambda(x,t)$ remains bounded. (3). We give a new proof of forward uniqueness and prove backward uniqueness of the flow, and give some applications. (4). We prove a compactness theorem for the flow and use it to strengthen our long time existence result from (2). (5). Finally, we study compact soliton solutions of the Laplacian flow.

1. Introduction

In this article we analyse the Laplacian flow for closed G_2 structures, which provides a potential tool for studying the challenging problem of existence of torsion-free G_2 structures, and thus Ricci-flat metrics with exceptional holonomy G_2, on a 7-dimensional manifold. We develop foundational results for the flow, both in terms of analytic and geometric aspects.

1.1. Basic theory. Let M be a 7-manifold. A G_2 structure on M is defined by a 3-form φ on M satisfying a certain nondegeneracy condition. To any such φ, one associates a unique metric g and orientation on M, and thus a Hodge star operator $*_{\varphi}$. If ∇ is the Levi-Civita connection of g, we interpret $\nabla \varphi$ as the torsion of the G_2 structure φ. Thus, if $\nabla \varphi = 0$, which is equivalent to $d\varphi = d*_{\varphi} \varphi = 0$, we say φ is torsion-free and (M, φ) is a G_2 manifold.

The key property of torsion-free G_2 structures is that the holonomy group of the associated metric satisfies $\text{Hol}(g) \subset G_2$, and hence (M, g) is Ricci-flat. If (M, φ) is a compact G_2 manifold, then $\text{Hol}(g) = G_2$ if and only if $\pi_1(M)$ is finite, and thus finding torsion-free G_2 structures is essential for constructing compact manifolds with holonomy G_2. Notice that the torsion-free condition is a nonlinear PDE on φ, since $*_{\varphi}$ depends on φ, and thus finding torsion-free G_2 structures is a challenging problem.

Bryant [4] used the theory of exterior differential systems to first prove the local existence of holonomy G_2 metrics. This was soon followed by the

2010 Mathematics Subject Classification. 53C44, 53C25, 53C10.

Key words and phrases. Laplacian flow, G_2 structure, Shi-type estimates, uniqueness, compactness.
first explicit complete holonomy G_2 manifolds in work of Bryant–Salamon [7]. In ground-breaking work, Joyce [22] developed a fundamental existence theory for torsion-free G_2 structures by perturbing closed G_2 structures with “small” torsion which, together with a gluing method, led to the first examples of compact 7-manifolds with holonomy G_2. This theory has formed the cornerstone of the programme for constructing compact holonomy G_2 manifolds, of which there are now many examples (see [13, 29]).

Although the existence theory of Joyce is powerful, it is a perturbative result and one has to work hard to find suitable initial data for the theory. Such data is always close to “degenerate”, arising from a gluing procedure in known examples, and thus gives little sense of the general problem of existence of torsion-free G_2 structures. In fact, aside from some basic topological constraints, we have a primitive understanding of when a given compact 7-manifold could admit a torsion-free G_2 structure, and this seems far out of reach of current understanding. However, inspired by Joyce’s work, it is natural to study the problem of deforming a closed G_2 structure, not necessarily with any smallness assumption on its torsion, to a torsion-free G_2 structure, and to see if any obstructions arise to this procedure. A proposal to tackle this problem, due to Bryant (c.f. [5]), is to use a geometric flow.

Geometric flows are important and useful tools in geometry and topology. For example, Ricci flow was instrumental in proving the Poincaré conjecture and the $\frac{1}{4}$-pinched differentiable sphere theorem, and Kähler–Ricci flow has proved to be a useful tool in Kähler geometry, particularly in low dimensions. In 1992, in order to study 7-manifolds admitting closed G_2 structures, Bryant (see [5]) introduced the Laplacian flow for closed G_2 structures:

$$\begin{cases} \frac{\partial \varphi}{\partial t} = \Delta_\varphi \varphi, \\
\quad d\varphi = 0, \\
\quad \varphi(0) = \varphi_0, \end{cases}$$

where $\Delta_\varphi \varphi = dd^c \varphi + d^c d\varphi$ is the Hodge Laplacian of φ with respect to the metric g determined by φ and φ_0 is an initial closed G_2 structure. The stationary points of the flow are harmonic φ, which on a compact manifold are the torsion-free G_2 structures. The goal is to understand the long time behaviour of the flow; specifically, to find conditions under which the flow converges to a torsion-free G_2 structure. A reasonable conjecture (see [5]), based on the work of Joyce described above, is that if the initial G_2 structure φ_0 on a compact manifold is closed and has sufficiently small torsion, then the flow will exist for all time and converge to a torsion-free G_2 structure.

We note that there are other proposals for geometric flows of G_2 structures in various settings, which may also potentially find torsion-free G_2 structures (e.g. [16, 24, 36]). The study of these flows is still in development.

An essential ingredient in studying the Laplacian flow (1.1) is a short time existence result: this was claimed in [5] and the proof given in [8].

Theorem 1.1. For a compact 7-manifold M, the initial value problem (1.1) has a unique solution for a short time $t \in [0, \epsilon)$ with ϵ depending on φ_0.

To prove Theorem 1.1, Bryant–Xu showed that the flow (1.1) is (weakly) parabolic in the direction of closed forms. This is not a typical form of parabolicity, and so standard theory does not obviously apply. It is also
surprising since the flow is defined by the Hodge Laplacian (which is non-negative) and thus appears at first sight to have the wrong sign for parabolicity. Nonetheless, the theorem follows by applying DeTurck’s trick and the Nash–Moser inverse function theorem.

This short time existence result naturally motivates the study of the long time behavior of the flow. Here little is known, apart from a compact example computed by Bryant [5] where the flow exists for all time but does not converge, and recently, Fernández–Fino–Manero [15] constructed some noncompact examples where the flow converges to a flat G_2 structure.

1.2. Shi-type estimates. After some preliminary material on closed G_2 structures in §2 and deriving the essential evolution equations along the flow in §3, we prove our first main result in §4: Shi-type derivative estimates for the Riemann curvature and torsion tensors along the Laplacian flow.

For a solution $\varphi(t)$ of the Laplacian flow (1.1), we define the quantity

$$\Lambda(x, t) = \left(|\nabla T(x, t)|_{g(t)}^2 + |Rm(x, t)|_{g(t)}^2 \right)^{\frac{1}{2}},$$

(1.2)

where T is the torsion tensor of $\varphi(t)$ (see §2 for a definition) and Rm denotes the Riemann curvature tensor of the metric $g(t)$ determined by $\varphi(t)$. We show that a bound on $\Lambda(x, t)$ will induce a priori bounds on all derivatives of Rm and ∇T for positive time. More precisely, we have the following.

Theorem 1.2. Suppose that $K > 0$ and $\varphi(t)$ is a solution of the Laplacian flow (1.1) for closed G_2 structures on a compact manifold M^7 for $t \in [0, \frac{1}{C}]$. For all $k \in \mathbb{N}$, there exists a constant C_k such that if $\Lambda(x, t) \leq K$ on $M^7 \times [0, \frac{1}{C}]$, then

$$|\nabla^k Rm(x, t)|_{g(t)} + |\nabla^{k+1} T(x, t)|_{g(t)} \leq C_k t^{-\frac{k}{2}} K, \quad t \in (0, \frac{1}{C}).$$

(1.3)

We call the estimates (1.3) Shi-type (perhaps, more accurately, Bernstein–Bando–Shi) estimates for the Laplacian flow, because they are analogues of the well-known Shi derivative estimates in the Ricci flow. In Ricci flow, a Riemann curvature bound will imply bounds on all the derivatives of the Riemann curvature: this was proved by Bando [3] and comprehensively by Shi [34] independently. The techniques used in [3, 34] were introduced by Bernstein (in the early twentieth century) for proving gradient estimates via the maximum principle, and will also be used here in proving Theorem 1.2.

A key motivation for defining $\Lambda(x, t)$ as in (1.2) is that the evolution equations of $|\nabla T(x, t)|^2$ and $|Rm(x, t)|^2$ both have some bad terms, but the chosen combination kills these terms and yields an effective evolution equation for $\Lambda(x, t)$. We can then use the maximum principle to show that

$$\Lambda(t) = \sup_M \Lambda(x, t)$$

(1.4)

satisfies a doubling-time estimate (see Proposition 4.1), i.e. $\Lambda(t) \leq 2\Lambda(0)$ for all time $t \leq \frac{1}{C\Lambda(0)}$ for which the flow exists, where C is a uniform constant. This shows that Λ has similar properties to Riemann curvature under Ricci flow. Moreover, it implies that the assumption $\Lambda(x, t) \leq K$ in Theorem 1.2 is reasonable as $\Lambda(x, t)$ cannot blow up quickly. We conclude §4 by giving a local version of Theorem 1.2.
In §5 we use our Shi-type estimates to study finite-time singularities of the Laplacian flow. Given an initial closed G_2 structure φ_0 on a compact 7-manifold, Theorem 1.1 tells us there exists a solution $\varphi(t)$ of the Laplacian flow on a maximal time interval $[0, T_0)$. If T_0 is finite, we call T_0 the singular time. Using our global derivative estimates (1.3) for Rm and ∇T, we can obtain the following long time existence result on the Laplacian flow.

Theorem 1.3. If $\varphi(t)$ is a solution of the Laplacian flow (1.1) on a compact manifold M^7 in a maximal time interval $[0, T_0)$ with $T_0 < \infty$, then
$$\lim_{t \uparrow T_0} \Lambda(t) = \infty,$$
where $\Lambda(t)$ is given in (1.4). Moreover, we have a lower bound on the blow-up rate:
$$\Lambda(t) \geq \frac{C}{T_0 - t}$$
for some constant $C > 0$.

Theorem 1.3 shows that the solution $\varphi(t)$ of the Laplacian flow for closed G_2 structures will exist as long as the quantity $\Lambda(x, t)$ in (1.2) remains bounded.

1.3. **Uniqueness.** In §6 we study uniqueness of the Laplacian flow, including both forward and backward uniqueness.

In Ricci flow, there are two standard arguments to prove forward uniqueness. One relies on the Nash–Moser inverse function theorem [18] and another relies on DeTurck’s trick and the harmonic map flow (see [19]). Recently, Kotschwar [27] provided a new approach to prove forward uniqueness. The idea in [27] is to define an energy quantity $E(t)$ in terms of the differences of the metrics, connections and Riemann curvatures of two Ricci flows, which vanishes if and only if the flows coincide. By deriving a differential inequality for $E(t)$, it can be shown that $E(t) = 0$ if $E(0) = 0$, which gives the forward uniqueness.

In [26], Kotschwar proved backward uniqueness for complete solutions to the Ricci flow by deriving a general backward uniqueness theorem for time-dependent sections of vector bundles satisfying certain differential inequalities. The method in [26] is using Carleman-type estimates inspired by [1, 38]. Recently, Kotschwar [28] gave a simpler proof of the general backward uniqueness theorem in [26].

Here we will use the ideas in [26, 27] to give a new proof of forward uniqueness (given in [8]) and prove backward uniqueness of the Laplacian flow for closed G_2 structures, as stated below.

Theorem 1.4. Suppose $\varphi(t)$, $\tilde{\varphi}(t)$ are two solutions to the Laplacian flow (1.1) on a compact manifold M^7 for $t \in [0, \epsilon]$, $\epsilon > 0$. If $\varphi(s) = \tilde{\varphi}(s)$ for some $s \in [0, \epsilon]$, then $\varphi(t) = \tilde{\varphi}(t)$ for all $t \in [0, \epsilon]$.

As an application of Theorem 1.4, we show that on a compact manifold M^7, the subgroup $I_{\varphi(t)}$ of diffeomorphisms of M isotopic to the identity and fixing $\varphi(t)$ is unchanged along the Laplacian flow. Since I_{φ} is strongly constrained for a torsion-free G_2 structure φ on M, this gives a test for when the Laplacian flow with a given initial condition could converge.
1.4. Compactness. In the study of Ricci flow, Hamilton’s compactness theorem [20] is an essential tool to study the behavior of the flow near a singularity. In §7, we prove an analogous compactness theorem for the Laplacian flow for closed G_2 structures.

Suppose we have a sequence $(M_i, \varphi_i(t))$ of compact solutions to the Laplacian flow and let $p_i \in M_i$. For each $(M_i, \varphi_i(t))$, let

$$\Lambda_{\varphi_i}(x,t) := \left(|\nabla_{g_i(t)} T_i(x,t)|^2_{g_i(t)} + |Rm_{g_i(t)}(x,t)|^2_{g_i(t)} \right)^{1/2},$$

where $g_i(t)$ is the associated metric to $\varphi_i(t)$, and let $\text{inj}(M_i, g_i(0), p_i)$ denote the injectivity radius of $(M_i, g_i(0))$ at the point p_i. Our compactness theorem then states that under uniform bounds on Λ_{φ_i} and $\text{inj}(M_i, g_i(0), p_i)$ we can extract a subsequence of $(M_i, \varphi_i(t))$ converging to a limit flow $(M, \varphi(t))$.

Theorem 1.5. Let M_i be a sequence of compact 7-manifolds and let $p_i \in M_i$ for each i. Suppose that, for each i, $\varphi_i(t)$ is a solution to the Laplacian flow (1.1) on M_i for $t \in (a, b)$, where $-\infty \leq a < 0 < b \leq \infty$. Suppose that

$$\sup_i \sup_{x \in M_i, t \in (a,b)} \Lambda_{\varphi_i}(x,t) < \infty \quad (1.5)$$

and

$$\inf_i \text{inj}(M_i, g_i(0), p_i) > 0. \quad (1.6)$$

There exists a 7-manifold M, a point $p \in M$ and a solution $\varphi(t)$ of the Laplacian flow on M for $t \in (a, b)$ such that, after passing to a subsequence,

$$(M_i, \varphi_i(t), p_i) \to (M, \varphi(t), p) \quad \text{as } i \to \infty.$$

We refer to §7 for a definition of the notion of convergence in Theorem 1.5.

To prove Theorem 1.5, we first prove a Cheeger–Gromov-type compactness theorem for the space of G_2 structures (see Theorem 7.1). Given this, Theorem 1.5 follows from a similar argument for the analogous compactness theorem in Ricci flow as in [20].

As we indicated, Theorem 1.5 could be used to study the singularities of the Laplacian flow, especially if we can show some non-collapsing estimate as in Ricci flow (c.f. [32]) to obtain the injectivity radius estimate (1.6). Even without such an estimate, we can use Theorem 1.5 to strengthen Theorem 1.3 to the following desirable result, which states that the Laplacian flow will exist as long as the velocity of the flow remains bounded.

Theorem 1.6. Let M be a compact 7-manifold and $\varphi(t)$, $t \in [0, T_0)$, where $T_0 < \infty$, be a solution to the Laplacian flow (1.1) for closed G_2 structures with associated metric $g(t)$ for each t. If the velocity of the flow satisfies

$$\sup_{M \times [0, T_0)} |\Delta_{g(t)} \varphi(x,t)|_{g(t)} < \infty, \quad (1.7)$$

then the solution $\varphi(t)$ can be extended past time T_0.

In Ricci flow, the analogue of Theorem 1.6 was proved in [33], namely that the flow exists as long as the Ricci tensor remains bounded. It is an open question whether just the scalar curvature (the trace of the Ricci tensor) can control the Ricci flow, although it is known for Type-I Ricci flow [14] and Kähler–Ricci flow [39]. In §2.2, we see that for a closed G_2 structure
we have $\Delta_{\varphi} \varphi = i_{\varphi}(h)$, where $i_{\varphi} : S^2 T^* M \to \Lambda^3 T^* M$ is an injective map defined in (2.6) and h is a symmetric 2-tensor with trace equal to $\frac{2}{3}|T|^2$. Moreover, the scalar curvature of the metric induced by φ is $-|T|^2$. Thus, comparing with Ricci flow, one may ask whether the Laplacian flow for closed G_2 structures will exist as long as the torsion tensor remains bounded. This is also the natural question to ask from the point of view of G_2 geometry.

1.5. Solitons. In §9, we study soliton solutions of the Laplacian flow for closed G_2 structures, which are expected to play a role in understanding the behavior of the flow near singularities.

Given a 7-manifold M, a Laplacian soliton of the Laplacian flow (1.1) for closed G_2 structures on M is a triple (φ, X, λ) satisfying

$$\Delta_{\varphi} \varphi = \lambda \varphi + \mathcal{L}_X \varphi,$$ \hspace{1cm} (1.8)

where $d\varphi = 0$, $\lambda \in \mathbb{R}$, X is a vector field on M and $\mathcal{L}_X \varphi$ is the Lie derivative of φ in the direction of X. Laplacian solitons give self-similar solutions to the Laplacian flow. Specifically, suppose (φ_0, X, λ) satisfies (1.8). Define

$$\rho(t) = (1 + \frac{2}{3} \lambda t)\frac{4}{3}, \hspace{1cm} X(t) = \rho(t)^{-\frac{2}{3}} X,$$

and let ϕ_t be the family of diffeomorphisms generated by the vector fields $X(t)$ such that ϕ_0 is the identity. Then $\varphi(t)$ defined by

$$\varphi(t) = \rho(t)^{\frac{1}{4}} \phi_t^* \varphi_0$$

is a solution of the Laplacian flow (1.1), which only differs by a scaling factor $\rho(t)$ and pull-back by a diffeomorphism ϕ_t for different times t. We say a Laplacian soliton (φ, X, λ) is expanding if $\lambda > 0$; steady if $\lambda = 0$; and shrinking if $\lambda < 0$.

Recently, there are several papers considering soliton solutions to flows of G_2 structures, e.g. [25, 30, 37]. In particular, Lin [30] studied Laplacian solitons as in (1.8) and proved there are no compact shrinking solitons, and that the only compact steady solitons are given by torsion-free G_2 structures. We give the following result for compact Laplacian solitons.

Proposition 1.7. There is no compact Laplacian soliton of the type $\Delta_{\varphi} \varphi = \lambda \varphi$ unless φ is torsion free.

Combining Lin’s [30] result and the above proposition, any nontrivial Laplacian soliton on a compact manifold M (if it exists) must satisfy (1.8) for $\lambda > 0$ and $X \neq 0$. This phenomenon is somewhat surprising, since it is very different from Ricci solitons $Ric + \mathcal{L}_X g = \lambda g$: when $X = 0$, the Ricci soliton equation is just the Einstein equation $Ric = \lambda g$ and there are many examples of compact Einstein metrics.

Since a G_2 structure φ determines a unique metric g, it is natural to ask what condition the Laplacian soliton equation on φ will impose on g. We show that for a closed G_2 structure φ and any vector field X on M, we have

$$\mathcal{L}_X \varphi = \frac{1}{2} i_{\varphi}(\mathcal{L}_X g) + \frac{1}{2} (d^* (X \varphi))^2 \psi.$$ \hspace{1cm} (1.9)

Thus the symmetries of φ, namely the vector fields X such $\mathcal{L}_X \varphi = 0$, are precisely given by the Killing vector fields X of g with $d^* (X \varphi) = 0$ on M. Moreover, using (1.9) we can derive an equation for the metric g from the
Laplacian soliton equation (1.8), which we expect to be of further use (see Proposition 9.3). In particular, from this result, we can give a new short proof of the main result in [30].

To conclude the paper in §10, we provide a list of open problems that are inspired by our work and which we intend to study in the future.

2. Closed G_2 structures

We collect some facts on closed G_2 structures, mainly based on [5, 24].

2.1. Definitions. Let $\{e_1, e_2, \cdots, e_7\}$ denote the standard basis of \mathbb{R}^7 and let $\{e^1, e^2, \cdots, e^7\}$ be its dual basis. Write $e^{ijk} = e^i \wedge e^j \wedge e^k$ for simplicity and define the 3-form

$$\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}. $$

The subgroup of $\text{GL}(7, \mathbb{R})$ fixing ϕ is the exceptional Lie group G_2, which is a compact, connected, simple Lie subgroup of $\text{SO}(7)$ of dimension 14. Note that G_2 acts irreducibly on \mathbb{R}^7 and preserves the metric and orientation for which $\{e_1, e_2, \cdots, e_7\}$ is an oriented orthonormal basis. If $* \phi$ denotes the Hodge star determined by the metric and orientation, then G_2 also preserves the 4-form

$$* \phi \phi = e^{4567} + e^{2345} + e^{1357} - e^{1346} - e^{1256} - e^{1247}. $$

Using the ε-notation in [5] we write ϕ and $* \phi$ as

$$\phi = \frac{1}{6} \varepsilon_{ijk} e^{ijk}, \quad * \phi = \frac{1}{24} \varepsilon_{ijkl} e^{ijkl}, $$

where here and throughout the paper we use summation convention. The symbol ε satisfies the following identities:

$$\varepsilon_{ijk} \varepsilon_{ijl} = 6 \delta_{kl}, \quad (2.1)$$

$$\varepsilon_{ijq} \varepsilon_{ijkl} = 4 \varepsilon_{qkl}, \quad (2.2)$$

$$\varepsilon_{ipq} \varepsilon_{ijk} = - \delta_{pj} \delta_{qk} - \delta_{pk} \delta_{qj} + \varepsilon_{pjk}, \quad (2.3)$$

$$\varepsilon_{ipq} \varepsilon_{ijkl} = \delta_{pj} \varepsilon_{qkl} - \delta_{qk} \varepsilon_{pkl} + \delta_{pk} \varepsilon_{qjl} - \delta_{qs} \varepsilon_{qkl} - \delta_{pq} \varepsilon_{jkp}. \quad (2.4)$$

Let M be a 7-manifold. For $x \in M$ we let

$$\Lambda^3_+(M)_x = \{ \psi_x \in \Lambda^3 T^*_x M \mid \exists u \in \text{Hom}_R(T_x M, \mathbb{R}^7), u^* \phi = \psi_x \},$$

which is isomorphic to $\text{GL}_+(7, \mathbb{R})/G_2$ since ϕ has stabilizer G_2. The bundle $\Lambda^3_+(M) = \bigsqcup_x \Lambda^3_+(M)_x$ is thus an open subbundle of $\Lambda^3 T^* M$. We call a section φ of $\Lambda^3_+(M)$ a positive 3-form on M and denote the space of positive 3-forms by $\Omega^3_+(M)$. There is a 1-1 correspondence between G_2 structures (in the sense of subbundles of the frame bundle) and positive 3-forms, because given $\varphi \in \Omega^3_+(M)$, the subbundle of the frame bundle whose fibre at x consists of $u \in \text{Hom}(T_x M, \mathbb{R}^7)$ such that $u^* \phi = \varphi_x$ defines a principal subbundle with fibre G_2. Thus we usually call a positive 3-form φ on M a G_2 structure on M. The existence of G_2 structures is equivalent to the property that M is oriented and spin.
We now see that a positive 3-form induces a unique metric and orientation. For a 3-form φ, we define a $\Omega^7(M)$-valued bilinear form B_φ by

$$B_\varphi(u, v) = \frac{1}{6} (u \varphi) \wedge (v \varphi) \wedge \varphi,$$

where u, v are tangent vectors on M. Then φ is positive if and only if B_φ is positive definite, i.e. if B_φ is the tensor product a positive definite bilinear form and a nowhere vanishing 7-form which defines a unique metric g with volume form vol_g as follows:

$$g(u, v)vol_g = B_\varphi(u, v). \quad (2.5)$$

The metric and orientation determines the Hodge star operator $*_{\varphi}$, and we define $\psi = *_{\varphi} \varphi$, which is sometimes called a positive 4-form. Notice that the relationship between g and φ, and hence between ψ and φ, is nonlinear.

The group G_2 acts irreducibly on \mathbb{R}^7 (and hence on $\Lambda^k(\mathbb{R}^7)^*$), but it acts reducibly on $\Lambda^k(\mathbb{R}^7)^*$ for $2 \leq k \leq 5$. Hence a G_2 structure φ induces splittings of the bundles $\Lambda^k(T^*M)$ into direct summands, which we denote by $\Lambda^k(T^*M, \varphi)$ so that l indicates the rank of the bundle. We let the space of sections of $\Lambda^k(T^*M, \varphi)$ be $\Omega^k(M)$. We have that

$$\Omega^2(M) = \Omega^2_{\alpha}(M) \oplus \Omega^2_{\beta}(M),$$

$$\Omega^3(M) = \Omega^3_{\alpha}(M) \oplus \Omega^3_{\beta}(M) \oplus \Omega^3_{\gamma}(M),$$

where

$$\Omega^2_{\alpha}(M) = \{ \beta \in \Omega^2(M) | \beta \wedge \varphi = 2 *_{\varphi} \beta \} = \{ X : \varphi | X \in C^\infty(TM) \},$$

$$\Omega^2_{\beta}(M) = \{ \beta \in \Omega^2(M) | \beta \wedge \varphi = - *_{\varphi} \beta \} = \{ \beta \in \Omega^2(M) | \beta \wedge \psi = 0 \},$$

$$\Omega^3_{\beta}(M) = \{ f \varphi | f \in C^\infty(M) \},$$

$$\Omega^3_{\gamma}(M) = \{ X : \varphi | X \in C^\infty(TM) \},$$

$$\Omega^3_{\gamma}(M) = \{ \gamma \in \Omega^3(M) | \gamma \wedge \varphi = 0 = \gamma \wedge \psi \}.$$

Hodge duality gives corresponding decompositions of $\Omega^4(M)$ and $\Omega^5(M)$.

To study the Laplacian flow, it is convenient to write key quantities in local coordinates. We write a k-form α as

$$\alpha = \frac{1}{k!} \alpha_{i_1i_2\cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k}$$

in local coordinates $\{x^1, \cdots, x^7\}$ on M, where $\alpha_{i_1i_2\cdots i_k}$ is totally skew-symmetric in its indices. In particular, we write φ, ψ in local coordinates as

$$\varphi = \frac{1}{6} \varphi_{i_1i_2} dx^{i_1} \wedge dx^{i_2} \wedge dx^{i_3}, \quad \psi = \frac{1}{24} \psi_{i_1i_2i_3} dx^{i_1} \wedge dx^{i_2} \wedge dx^{i_3} \wedge dx^{i_4}.$$

Note that the metric g on M induces an inner product of two k-forms α, β, given locally by

$$\langle \alpha, \beta \rangle = \frac{1}{k!} \alpha_{i_1i_2\cdots i_k} \beta_{j_1j_2\cdots j_k} g^{i_1j_1} \cdots g^{i_kj_k}.$$

\footnote{Here we use the orientation in [5] rather than [24].}
As in [5] (up to a constant factor), we define an operator \(i_\varphi : S^2T^*M \to \Lambda^3T^*M \) locally by

\[
i_\varphi(h) = \frac{1}{2} h^i_1\varphi_{ijk}dx^i \wedge dx^j \wedge dx^k = \frac{1}{6}(h^i_1\varphi_{ijk} - h^j_1\varphi_{ikl} - h^k_1\varphi_{lij})dx^i \wedge dx^j \wedge dx^k
\]

(2.6)

where \(h = h_{ij}dx^i \wedge dx^j \). Then \(\Lambda^3_T(T^*M, \varphi) = i_\varphi(S^2_T T^*M) \), where \(S^2_T T^*M \) denotes the bundle of trace-free symmetric 2-tensors on \(M \). Clearly, \(i_\varphi(g) = 3\varphi \). We also have the inverse map \(j_\varphi \) of \(i_\varphi \),

\[
j_\varphi(\gamma)(u, v) = \ast\varphi((u_\ast\varphi) \wedge (v_\ast\varphi) \wedge \gamma), \quad u, v \in TM
\]

which is an isomorphism between \(\Lambda^1_0(T^*M, \varphi) \oplus \Lambda^3_0(T^*M, \varphi) \) and \(S^2T^*M \). Then we have \(j_\varphi(i_\varphi(h)) = 4h + 2tr_g(h)g \) for any \(h \in S^2T^*M \) and \(j_\varphi(\varphi) = 6g \).

From (2.1)–(2.4), we have the following contraction identities of \(\varphi \) and \(\psi \) in index notation (see [5, 24]):

\[
\varphi_{ijk}\varphi_{abk}g_{ia}g^{jb} = 6g_{kl},
\]

(2.7)

\[
\varphi_{ijq}\psi_{abk}g_{ia}g^{jb} = 4\varphi_{qkl},
\]

(2.8)

\[
\varphi_{ipq}\varphi_{ajk}g_{ia}g^{jb} = g_{pj}g_{qk} - g_{pk}g_{qj} + \psi_{pqjk},
\]

(2.9)

\[
\varphi_{ipq}\psi_{ajk}g_{ia}g^{jb} = g_{pj}\varphi_{qkl} - g_{jq}\varphi_{pkl} + g_{pk}\varphi_{jql} - g_{qk}\varphi_{jpl} + 6\varphi_{jkl} - g_{qk}\varphi_{jkl}.
\]

(2.10)

Given any \(G_2 \) structure \(\varphi \in \Omega^2(M) \), there exist unique differential forms \(\tau_0 \in \Omega^0(M), \tau_1 \in \Omega^1(M), \tau_2 \in \Omega^2(M) \), and \(\tau_3 \in \Omega^3(M) \) such that \(d\varphi \) and \(d\psi \) can be expressed as follows (see [5]):

\[
d\varphi = \tau_0 \psi + 3\tau_1 \wedge \varphi + \ast\varphi \tau_3,
\]

(2.11)

\[
d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi.
\]

(2.12)

We call \(\{\tau_0, \tau_1, \tau_2, \tau_3\} \) the intrinsic torsion forms of the \(G_2 \) structure \(\varphi \). The full torsion tensor is a 2-tensor \(T \) satisfying (see [24])

\[
\nabla_\varphi \psi_{jkl} = T_{i}^{m} \psi_{mijkl},
\]

(2.13)

\[
T_{i}^{j} = \frac{1}{24} \nabla_\varphi \psi_{lmn} \psi^{jlmn},
\]

(2.14)

and

\[
\nabla_m \psi_{ijkl} = -\left(T_{mijl} - T_{mijl} - T_{mkl} \varphi_{jil} - T_{ml} \varphi_{jki}\right),
\]

(2.15)

where \(T_{ij} = T(\partial_i, \partial_j) \) and \(T_{i}^{j} = T_{ik}g^{jk} \). The full torsion tensor \(T_{ij} \) is related to the intrinsic torsion forms by the following:

\[
T_{ij} = \frac{\tau_0}{4} g_{ij} - (\tau_1 \ast \varphi)_{ij} - (\tau_3)_{ij} - \frac{1}{2}(\tau_2)_{ij},
\]

(2.16)

where \((\tau_1 \ast \varphi)_{ij} = (\tau_1 \ast \varphi)_{ij} \) and \(\tau_3 \) is the trace-free symmetric 2-tensor such that \(\tau_3 = i_\varphi(\tau_3) \).

If \(\varphi \) is closed, i.e. \(d\varphi = 0 \), then (2.11) implies that \(\tau_0, \tau_1 \) and \(\tau_3 \) are all zero, so the only non-zero torsion form is \(\tau_2 = \frac{1}{2}(\tau_2)_{ij}dx^i \wedge dx^j \). Then from (2.16) we have that the full torsion tensor satisfies \(T_{ij} = -T_{ji} = -\frac{1}{2}(\tau_2)_{ij}, \) so
\[T = \frac{1}{2} \tau. \]
(2.17)

Since \(d\psi = \tau \wedge \varphi = -\ast \varphi \tau \), we have that
\[d^2 \tau = \ast \varphi d \ast \varphi \tau = -\ast \varphi d^2 \psi = 0, \]
(2.18)

which is given in local coordinates by \(g^{mi} \nabla_m \tau_{ij} = 0 \).

We can write the condition that \(\beta = \frac{1}{2} \beta_{ij} dx^i \wedge dx^j \in \Omega^2_{14}(M) \) as (see [24])
\[\beta_{ij} \varphi_{abk} g^{ia} g^{jb} = 0 \quad \text{and} \quad \beta_{ij} \psi_{abkl} g^{ia} g^{jb} = -2\beta_{kl} \]
(2.19)
in local coordinates.

2.2. Hodge Laplacian of \(\varphi \). Since \(d\varphi = 0 \), from (2.11) and (2.12) we have that the Hodge Laplacian of \(\varphi \) is equal to
\[\Delta \varphi \varphi = dd^* \varphi + d^* d\varphi = -d \ast \varphi d\tau, \]
(2.20)

where in the third equality we used \(\tau \wedge \varphi = -\ast \varphi \tau \) since \(\tau \in \Omega^2_{14}(M) \). In local coordinates, we write (2.20) as
\[\Delta \varphi \varphi = \frac{1}{6} (\Delta \varphi \varphi)_{ijk} dx^i \wedge dx^j \wedge dx^k, \]
with
\[(\Delta \varphi \varphi)_{ijk} = \nabla_i \tau_{jk} - \nabla_j \tau_{ki} - \nabla_k \tau_{ij}. \]
(2.21)

We can decompose \(\Delta \varphi \varphi \) into three parts:
\[\Delta \varphi \varphi = \pi^1_1(\Delta \varphi \varphi) + \pi^3_2(\Delta \varphi \varphi) + \pi^3_2(\Delta \varphi \varphi) = a \varphi + X \cdot \psi + \iota \varphi(\tilde{h}), \]
(2.22)
where \(\pi^1_1 : \Omega^k(M) \to \Omega^k(M) \) denotes the projection onto \(\Omega^k(M) \), \(a \) is a function, \(X \) is a vector field and \(\tilde{h} \) is a trace-free symmetric 2-tensor. We now calculate the values of \(a, X, \tilde{h} \).

For \(a \), we take the inner product of \(\varphi \) and \(\Delta \varphi \varphi \), and using the identity (2.19) (since \(\tau \in \Omega^2_{14}(M) \)),
\[a = \frac{1}{7} \langle \Delta \varphi \varphi, \varphi \rangle = \frac{1}{42} (\nabla_i \tau_{jk} - \nabla_j \tau_{ik} - \nabla_k \tau_{ij}) \varphi_{lmn} g^{i} g^{j} g^{k} \]
\[= \frac{1}{14} \nabla_i \tau_{jk} \varphi_{lmn} g^{i} g^{j} g^{k} \]
\[= \frac{1}{14} \nabla_i (\tau_{jk} \varphi_{lmn} g^{i} g^{j} g^{k}) - \frac{1}{14} \tau_{ij} \nabla_i \varphi_{lmn} g^{i} g^{j} g^{k} \]
\[= \frac{1}{14} \nabla_i \tau_{jk} \varphi_{lmn} g^{i} g^{j} g^{k} - \frac{1}{14} \tau_{ij} \nabla_i g^{j} g^{k} = \frac{1}{2} |\tau|^2, \]
where in the last equality we used \(|\tau|^2 = \frac{1}{2} \tau_{ij} \tau_{kl} g^{ik} g^{jl} \). For \(X \), we use the contraction identities (2.8), (2.10) and the definition of \(\iota \varphi \):
\[(\Delta \varphi \varphi, \psi)_l = (\Delta \varphi \varphi)^{ijk} \psi_{ijkl} \]
\[= a \varphi^{ijk} \psi_{ijkl} + X^m \psi^{ijk}_{m} \psi_{ijkl} + (\iota \varphi(\tilde{h}))^{ijk} \psi_{ijkl} \]
\[= -24X_l + (\tilde{h}^{im} \varphi_{m}^{jk} - \tilde{h}^{jm} \varphi_{m}^{ik} - \tilde{h}^{km} \varphi_{m}^{ij}) \psi_{ijkl} \]
\[= -24X_l - 12 \tilde{h}^{im} \varphi_{mil} = -24X_l, \]
\[X = \frac{1}{24} \tilde{h}^{im} \varphi_{mil}, \]
\[\iota \varphi(\tilde{h}) = -\frac{1}{12} \tilde{h}^{im} \varphi_{mil}. \]
where the index of tensors are raised using the metric g. The last equality follows from the fact that \bar{h}_{im} is symmetric in i, m, but φ_{mil} is skew-symmetric in i, m. Using (2.21), we have

$$X_l = -\frac{1}{24} (\Delta \varphi)^{ijk} \psi_{ijkl} = -\frac{1}{8} g^{mi} \nabla_m \tau^{jk} \psi_{ijkl}$$

$$= -\frac{1}{8} g^{mi} \nabla_m (\tau^{jk} \psi_{ijkl}) + \frac{1}{8} \tau^{jk} g^{mi} \nabla_m \psi_{ijkl}$$

$$= \frac{1}{4} g^{mi} \nabla_m \tau_{il} + \frac{1}{16} \tau^{jk} g^{mi} (\tau_{mi} \varphi_{jkl} - \tau_{mj} \varphi_{ikl} - \tau_{mk} \varphi_{jil} - \tau_{ml} \varphi_{jki}) = 0,$$

where in the above calculation we used (2.15), (2.18), (2.19) and the totally skew-symmetry in φ_{ijk} and ψ_{ijkl}. So $X = 0$ and thus the $\Omega^4_4(M)$ part of $\Delta \varphi$ is zero. To find h, using the decomposition (2.22), $X = 0$ and the contraction identities (2.8) and (2.9), we have (as in [17])

$$(\Delta \varphi)_{i}^{mn} \varphi_{jmn} + (\Delta \varphi)_{j}^{mn} \varphi_{imn}$$

$$= a \varphi_{i}^{mn} \varphi_{jmn} + X^l \psi_l^{mn} \varphi_{jmn} + (i_\varphi (\bar{h}))_{i}^{mn} \varphi_{jmn}$$

$$= a \varphi_{j}^{mn} \varphi_{imn} + X^l \psi_l^{mn} \varphi_{imn} + (i_\varphi (\bar{h}))_{j}^{mn} \varphi_{imn}$$

$$= \frac{12}{7} |\tau|^2 g_{ij} + 8 \bar{h}_{ij}.$$

The left-hand side of the above equation can be calculated using (2.21):

$$(\nabla_m \tau_{ni} - \nabla_n \tau_{mi} - \nabla_i \tau_{mn}) \varphi_{j}^{mn} + (\nabla_m \tau_{nj} - \nabla_n \tau_{mj} - \nabla_j \tau_{nm}) \varphi_{i}^{mn}$$

$$= 2 (\nabla_m \tau_{ni} \varphi_{j}^{mn} + \nabla_m \tau_{nj} \varphi_{i}^{mn}) - \nabla_i \tau_{nm} \varphi_{j}^{mn} - \nabla_j \tau_{nm} \varphi_{i}^{mn}$$

$$= 4 \nabla_m \tau_{ni} \varphi_{j}^{mn} + \tau_{nm} \nabla_i \varphi_{j}^{mn} + \tau_{nm} \nabla_j \varphi_{i}^{mn}$$

$$= 4 \nabla_m \tau_{ni} \varphi_{j}^{mn} + \tau_{nm} \nabla_i \varphi_{j}^{mn} + \tau_{nm} \nabla_j \varphi_{i}^{mn}$$

$$= 2 \tau^l \tau_{ij},$$

where we used (2.19) and that for closed G_2 structures, $\nabla_m \tau_{ni} \varphi_{j}^{mn}$ is symmetric in i, j (see Remark 2.3). Then

$$\bar{h}_{ij} = -\frac{3}{14} |\tau|^2 g_{ij} + \frac{1}{2} \nabla_m \tau_{ni} \varphi_{j}^{mn} - \frac{1}{4} \tau^l \tau_{ij}.$$

We conclude that

$$\Delta \varphi = d\tau = \frac{1}{7} |\tau|^2 \varphi + i_\varphi (\bar{h}) = i_\varphi (\bar{h}) \in \Omega^4_4(M) \oplus \Omega^4_2(M),$$

(2.23)

for

$$\bar{h}_{ij} = \frac{1}{2} \nabla_m \tau_{ni} \varphi_{j}^{mn} - \frac{1}{6} |\tau|^2 g_{ij} - \frac{1}{4} \tau^l \tau_{ij}. $$

(2.24)

2.3. Ricci curvature and torsion. Since φ determines a unique metric g on M, we then have the Riemann curvature tensor Rm of g on M. Our convention is the following:

$$R(X, Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z,$$

and $R(X, Y, Z, W) = g(R(X, Y)W, Z)$ for vector fields X, Y, Z, W on M. In local coordinates denote $R_{ijkl} = R(\partial_i, \partial_j, \partial_k, \partial_l)$. Recall that Rm satisfies the first Bianchi identity:

$$R_{ijkl} + R_{iklj} + R_{iljk} = 0.$$

(2.25)
We also have the following Ricci identities when we commute covariant
derivatives of a \((0, k)\)-tensor \(\alpha\):

\[
(\nabla_i \nabla_j - \nabla_j \nabla_i)\alpha_{i_1 i_2 \ldots i_k} = \sum_{l=1}^{k} R_{ijkl}^m \alpha_{i_{l-1}i_{l+1} \ldots i_k}. \tag{2.26}
\]

Karigiannis \[24\] derived the following second Bianchi-type identity for the
full torsion tensor.

Lemma 2.1.

\[
\nabla_s T_{jp} - \nabla_j T_{sp} = (T_{jm} T_{sn} + \frac{1}{2} R_{jmn}) \varphi_{p mn}. \tag{2.27}
\]

Proof. The proof of \((2.27)\) in \[24\] is indirect, but as remarked there, \((2.27)\)
can also be established directly using \((2.13)-(2.15)\) and the Ricci identity.
We provide the detail here for completeness.

\[
\nabla_s T_{jp} - \nabla_j T_{sp} = \frac{1}{24} \left(\nabla_s \left(\nabla_j \varphi_{abc} \psi_j^p \right) - \nabla_j \left(\nabla_s \varphi_{abc} \psi_j^p \right) \right)
= \frac{1}{24} \left(\nabla_s \nabla_j - \nabla_j \nabla_s \right) \varphi_{abc} \psi_j^p
\]

\[
= \frac{1}{24} \left(R_{sjm} \varphi_{abc} + R_{sjb} \varphi_{amc} + R_{sjc} \varphi_{abm} \right) \psi_j^p
\]

\[
= \frac{1}{24} \left(T_{jm} \psi_{mabc} - T_{j}^{a} \varphi_{p}^{bc} + T_{s}^{b} \varphi_{p}^{ac} - T_{s}^{c} \varphi_{p}^{ab} \right)
\]

\[
+ \frac{1}{24} \left(T_{s}^{m} \psi_{mabc} - T_{j}^{a} \varphi_{p}^{bc} + T_{j}^{b} \varphi_{p}^{ac} - T_{j}^{c} \varphi_{p}^{ab} \right)
\]

\[
= \frac{1}{2} R_{sjm} \varphi_{p}^{ma} + \frac{1}{2} T_{jm} T_{sa} \varphi_{p}^{ma} - \frac{1}{2} T_{sm} T_{ja} \varphi_{p}^{ma}
\]

where in the third equality we used \((2.13), (2.15)\) and \((2.26)\), and in the
forth equality we used the contraction identity \((2.8)\). \(\square\)

We now consider the Ricci tensor, given locally as \(R_{ik} = R_{ijkl} g^{jl}\), which
has been calculated for closed G\(_2\) structures (and more generally) in \[5, 12, 24\]. We give the general result from \[24\] here.

Proposition 2.2. The Ricci tensor of the associated metric \(g\) of the G\(_2\)
structure \(\varphi\) is given locally as

\[
R_{sk} = -(\nabla_j T_{sp} - \nabla_s T_{jp}) \varphi_j^{kp} + \text{Tr}(T) T_{sk} - T_{s}^{j} T_{jk} - T_{jm} T_{sn} \psi_{k}^{jmn}. \tag{2.28}
\]

In particular, for a closed G\(_2\) structure \(\varphi\), we have

\[
R_{sk} = \nabla_j T_{sp} \varphi_j^{kp} - T_{s}^{j} T_{jk}. \tag{2.29}
\]
Proof. We multiply (2.27) by $-\varphi^j_k$:

$$
-(\nabla_s T_{jp} - \nabla_j T_{sp}) \varphi^j_k
$$

$$
= -(T_{jm} T_{sn} + \frac{1}{2} R_{sjmn}) \varphi^{mn}_p \varphi^j_k + \frac{1}{2} R_{sjmn} \varphi^{jmn}_k
$$

$$
= (T_{jm} T_{sn} + \frac{1}{2} R_{sjmn}) (g^{mj} \delta_{nk} - \delta_{mk} g^{nj} - \psi^j_k)\varphi^{jmn}_k
$$

$$
= -T_s^j T_{jk} + Tr(T) T_{sk} - T_{jm} T_{sn} \psi^j_{k}^{jmn} - R_{sk} - \frac{1}{2} R_{sjmn} \psi^j_k
$$

$$
= -T_s^j T_{jk} + Tr(T) T_{sk} - T_{jm} T_{sn} \psi^j_{k}^{jmn} - R_{sk} - \frac{1}{6} (R_{sjmn} + R_{smnj} + R_{snjm}) \psi^j_k
$$

$$
= -T_s^j T_{jk} + Tr(T) T_{sk} - T_{jm} T_{sn} \psi^j_{k}^{jmn} - R_{sk},
$$

where the last equality is due to (2.25). The formula (2.28) follows.

For a closed G_2 structure, we have $T_{ij} = -\frac{1}{2} \tau_{ij}$, so T is skew-symmetric. Moreover, using (2.19), we have

$$
-\frac{1}{4} T_{jm} T_{sn} \psi^j_k^{jmn} = \frac{1}{4} \tau_{jm} \tau_{sn} \psi^j_k^{jmn} = \frac{1}{2} \tau_s^{mn} \tau_{nk} = -2 T_s^n T_{nk},
$$

and

$$
\nabla_s T_{jp} \varphi^j_k = \nabla_s (T_{jp} \varphi^j_k) - T_{jp} \nabla_s \varphi^j_k
$$

$$
= -\frac{1}{2} \nabla_s (\tau_{jp} \varphi^j_k) - T_{jp} T_s^m \psi^j_{mk}
$$

$$
= -\frac{1}{4} \tau_{jp} T_s^m \psi^j_{mk} = \frac{1}{2} \tau_s^{mn} \tau_{mk} = 2 T_s^n T_{mk}.
$$

Then we obtain

$$
R_{sk} = (\nabla_s T_{jp} - \nabla_j T_{sp}) \varphi^j_k + Tr(T) T_{sk} - T_s^j T_{jk} - T_{jm} T_{sn} \psi^j_k^{jmn}
$$

$$
= 2 T_s^m T_{mk} - \nabla_j T_{sp} \varphi^j_k - T_s^j T_{jk} - 2 T_s^n T_{nk}
$$

$$
= -\nabla_j T_{sp} \varphi^j_k + T_s^j T_{jk},
$$

which is (2.29). \(\square\)

Remark 2.3. By (2.29), for a closed G_2 structure, $\nabla_j T_{sp} \varphi^j_k$ is symmetric in s, k, since R_{sk} and $T_s^j T_{jk}$ are symmetric in s, k.

We can then deduce a useful known formula for the scalar curvature of the metric given by a closed G_2 structure.

Corollary 2.4. The scalar curvature of a metric associated to a closed G_2 structure satisfies

$$
R = -|T|^2 = -T_{ik} T_{jl} g^{ij} g^{kl}.
$$

(2.30)
Proof. By taking trace in (2.29), using $T_{ij} = -\frac{1}{2} \tau_{ij}$ and (2.19), we obtain the scalar curvature

$$R = R_{sk}g^{sk} = -(\nabla_j T_{sp}\varphi_k^{jp} + T_s^j T_{jk})g^{sk}$$

$$= -\nabla_j (T_{sp}\varphi_k^{jp})g^{sk} + T_{sp}\nabla_j \varphi_k^{jp} g^{sk} + |T|^2$$

$$= \frac{1}{2} \nabla_j (\tau_{sp}\varphi_k^{jp})g^{sk} + T_{sp} T_j^m \psi_{mn}^{jp} g^{sk} + |T|^2$$

$$= \frac{1}{4} T_{sp} T_j^m \psi_{mn}^{jp} g^{sk} + |T|^2 = -\frac{1}{2} T_{sp} T^{sp} + |T|^2$$

$$= -2 T_{sp} T^{sp} + |T|^2 = -|T|^2$$

as claimed. □

3. Evolution equations

In this section we derive evolution equations for several geometric quantities under the Laplacian flow, including the torsion tensor T, Riemann curvature tensor Rm, Ricci tensor Ric and scalar curvature R. These are fundamental equations for understanding the flow.

Recall that the Laplacian flow for a closed G_2 structure is

$$\frac{\partial}{\partial t} \phi = \Delta \phi \cdot \phi. \quad (3.1)$$

From (2.23) and (2.24), the flow (3.1) is equivalent to

$$\frac{\partial}{\partial t} \phi = i \phi (h), \quad (3.2)$$

where h is the symmetric 2-tensor given in (2.24). We may write h in terms the full torsion tensor T_{ij} as follows:

$$h_{ij} = -\nabla_j T_{ni}^{\varphi_m} - \frac{1}{3} |T|^2 g_{ij} - T_i^l T_{lj}. \quad (3.3)$$

For closed φ, the Ricci curvature is equal to

$$R_{ij} = \nabla_j T_{ni}^{\varphi_m} - T_i^k T_{kj},$$

so we can also write h as

$$h_{ij} = -R_{ij} - \frac{1}{3} |T|^2 g_{ij} - 2 T_i^k T_{kj}. \quad (3.4)$$

Notice that $T_i^k = T_{il} g^{kl}$ and $T_{il} = -T_{li}$.

3.1. Evolution of the metric. Under a general flow for G_2 structures

$$\frac{\partial}{\partial t} \phi(t) = i \phi(t) (h(t)) + X \cdot \psi(t), \quad (3.5)$$

where $h(t), X(t)$ are a time-dependent symmetric 2-tensor and vector field on M respectively, it is well known that (see [5, 23] and explicitly [24]) the associated metric tensor $g(t)$ evolves by

$$\frac{\partial}{\partial t} g(t) = 2h(t).$$
Substituting (3.4) into this equation, we have that under the Laplacian flow (3.1) (also given by (3.2)), the associated metric \(g(t)\) of the G\(_2\) structure \(\varphi(t)\) evolves by

\[
\frac{\partial}{\partial t}g_{ij} = -2R_{ij} - \frac{2}{3}|T|^2g_{ij} - 4T^k_iT_{kj}. \tag{3.6}
\]

Thus the leading term of the metric flow (3.6) corresponds to the Ricci flow, as already observed in [5].

From (3.6) we have that the inverse of the metric evolves by

\[
\frac{\partial}{\partial t}g^{ij} = -g^{ik}g^{jl}\frac{\partial}{\partial t}g_{kl} = g^{kl}(2R_{kl} + \frac{2}{3}|T|^2g_{kl} + 4T^m_kT_{ml}), \tag{3.7}
\]

and the volume form \(vol_g(t)\) evolves by

\[
\frac{\partial}{\partial t}vol_g(t) = \frac{1}{2}tr_g(\frac{\partial}{\partial t}g(t))vol_g(t) = tr_g(h(t))vol_g(t)
\]

\[
= (-R - \frac{7}{3}|T|^2 + 2|T|^2)vol_g(t) = \frac{2}{3}|T|^2vol_g(t), \tag{3.8}
\]

where we used the fact that the scalar curvature \(R = -|T|^2\). Hence, along the Laplacian flow, the volume of \(M\) with respect to the associated metric \(g(t)\) will non-decrease; in fact, the volume form is pointwise non-decreasing (again as already noted in [5]).

3.2. Evolution of torsion

By [24, Theorem 3.7], the evolution of the full torsion tensor \(T\) under the flow (3.5) is given by

\[
\frac{\partial}{\partial t}T_{ij} = T^k_ih_{kj} - \nabla_mh_{in}\varphi_j^{mn}. \tag{3.9}
\]

Substituting (3.3) into (3.9), we obtain

\[
\frac{\partial}{\partial t}T_{ij} = -\nabla_mh_{in}\varphi_j^{mn} + T^k_ih_{kj}
\]

\[
= -\nabla_m\left(-\nabla_pT_{qi}\varphi_n^{pq} - \frac{1}{3}|T|^2g_{in} - T^k_iT_{kn}\right)\varphi_j^{mn}
\]

\[
+ T^k_i\left(-\nabla_pT_{kj}\varphi_j^{pq} - \frac{1}{3}|T|^2g_{kj} - T^m_kT_{mj}\right)
\]

\[
= \nabla_m\nabla_pT_{qi}\varphi_n^{pq}\varphi_j^{mn} + \nabla_pT_{qi}\nabla_m\varphi_n^{pq}\varphi_j^{mn} - \frac{1}{3}\nabla_m|T|^2\varphi_j^{m}
\]

\[
+ \nabla_m(T^k_iT_{kn})\varphi_j^{mn} - T^k_i\nabla_pT_{kj}\varphi_j^{pq} - \frac{1}{3}|T|^2T_{ij} - T^m_kT_{m}T_{mj}. \tag{3.10}
\]

Using the contraction identity (2.9) and Ricci identity (2.26), the first term on the right hand side of (3.10) is equal to

\[
\nabla_m\nabla_pT_{qi}\varphi_n^{pq}\varphi_j^{mn} = \nabla_m\nabla_pT_{qi}(\delta_{pq}g^{mn} - \delta_{qj}g^{pm} + \psi_j^{pqm})
\]

\[
= \nabla^m\nabla_jT_{mi} - \nabla^m\nabla_jT_{mj} + \nabla_m\nabla_pT_{qi}\psi_j^{pqm}
\]

\[
= \Delta T_{ij} + \nabla_j\nabla^mT_{mi} + R^k_iT_{kj} + R_{mjik}T^{mk}
\]

\[
+ \frac{1}{2}(\nabla_m\nabla_pT_{qi} - \nabla_p\nabla_mT_{qi})\psi_j^{pqm}
\]
\[\begin{align*}
\Delta T_{ij} &= R^k_{ij} + R_{mijk}T^{mk} + \frac{1}{2}(R_{mpkl}kT_{qk} + R_{mpqk}kT_{kl})\psi^p_{qm},
\end{align*}\]

where we used \(\nabla^mT_{mi} = 0\) in the last equality. Using the contraction identity (2.10) and (2.13), we can calculate the second term on the right hand side of (3.10) as follows:

\[\begin{align*}
\nabla_pT_{qi}\nabla_m\varphi^p_{ij}\varphi^m_{mn} &= \nabla_pT_{qi}T^k_m\psi^p_{kn}\varphi^m_{mn} \\
&= \nabla_pT_{qi}T^k_m(\delta_{mk}\varphi^q_{ij} - g_{jk}\varphi^mpq + g^mp\varphi_k^q) \\
&\quad - \delta_{jp}\varphi^p_k^{mj} - g^{mq}\varphi_k^{qp} - \delta_{jq}\varphi^p_{km}) \\
&= -\nabla_pT_{qi}(T_{mj}\varphi^mpq - T^pk\varphi^q_{kj} + T^{qk}\varphi^p_{kj}),
\end{align*}\]

where in the last equality we used \(T^k\delta_{mk} = 0\) and \(T^k\varphi_{pq} = 0\) since \(\tau \in \Omega^2_{14}(M)\). Then substituting (3.11)–(3.12) into (3.10), we obtain

\[\frac{\partial}{\partial t}T_{ij} = \Delta T_{ij} + R^k_{ij}T^k + R_{mijk}T^{m} + \frac{1}{2}(R_{mpkl}kT_{qk} + R_{mpqk}kT_{kl})\psi^p_{qm} \\
- \nabla_pT_{qi}(T_{mj}\varphi^mpq - T^pk\varphi^q_{kj} + T^{qk}\varphi^p_{kj}) - \frac{1}{3}\nabla_m[T^2\varphi^m_{ij}] + \nabla_m(T^k_tT^k_{kn})\varphi^m_{ij} - T^k_t\nabla_pT_{qk}\varphi^p_{jq} - \frac{1}{3}[T^2T_{ij} - T^k_tT^m_{tk}T_{mj}],
\]

The above evolution of the torsion tensor can be expressed schematically as

\[\frac{\partial}{\partial t}T = \Delta T + Rm * T + Rm * T * \psi + \nabla T * T * \varphi + T * T * T,\]

where \(*\) indicates a contraction using the metric \(g(t)\) determined by \(\varphi(t)\).

3.3. Evolution of curvature.
To calculate the evolution of the Riemann curvature tensor we will use well-known general evolution equations. Recall that for any smooth one-parameter family of metrics \(g(t)\) on a manifold evolving by

\[\frac{\partial}{\partial t}g(t) = \eta(t),\]

for some time-dependent symmetric 2-tensor \(\eta(t)\), the Riemann curvature tensor, Ricci tensor and scalar curvature evolve by (see e.g. [10, Lemma 6.5])

\[\begin{align*}
\frac{\partial}{\partial t}R_{ijkl} &= \frac{1}{2}g^{lp}(\nabla_i\nabla_k\eta_{jp} + \nabla_j\nabla_p\eta_{ik} - \nabla_i\nabla_p\eta_{jk} - \nabla_j\nabla_k\eta_{ip}) \\
&\quad - R_{ijlk}\eta_{qp} - R_{ijkp}\eta_{qk},
\end{align*}\]

\[\frac{\partial}{\partial t}R_{ik} = -\frac{1}{2}(\Delta \eta_{ik} + \nabla_i\nabla_k(tr g\eta) + \nabla_i(\delta\eta)_k + \nabla_k(\delta\eta)_i),\]

\[\frac{\partial}{\partial t}R = -\Delta tr g(\eta) + div(div\eta) - \langle \eta, Ric\rangle,
\]

where \(\Delta_L\) denotes the Lichnerowicz Laplacian

\[\Delta_L\eta_{ik} := \Delta\eta_{ik} - R^{lp}_{i}\eta_{lk} - R^{lp}_{k}\eta_{ip} + 2R_{pikl}\eta_{lp}.
\]
and \((\delta \eta)_k = - (\text{div} \ \eta)_k = - \nabla^i \eta_{ik}\). Substituting (3.6) into (3.15), we have
\[
\frac{\partial}{\partial t} R_{ij}^l = - \nabla_i \nabla_j R_j^i - \nabla_j \nabla^i R_{ik} + \nabla_i \nabla^i R_{jk} + \nabla_j \nabla_k R_i^i
\]
\[
+ (R_{ij}^q R_{qp} + R_{qij} R_{pq}) g^{ip} + 2g^{ip} (R_{qij} T^q_{em} T_{mp} + R_{qip} T^m_{km} T_{mp})
\]
\[
- \frac{1}{3} g^{ip} (\nabla_i \nabla_k |T|^2 g_{jp} + \nabla_j \nabla_p |T|^2 g_{ik} - \nabla_i \nabla_p |T|^2 g_{jk} - \nabla_j \nabla_k |T|^2 g_{ip})
\]
\[
- 2g^{ip} (\nabla_i \nabla_k (T^m_{j} T_{mp}) + \nabla_j \nabla_p (T^m_{i} T_{mk}) - \nabla_i \nabla_p (T^m_{j} T_{mk}) - \nabla_j \nabla_k (T^m_{i} T_{mp})).
\]

The first six terms in the evolution equation come from the \(- 2 \text{Ric} \) term in (3.6). Then, in Ricci flow, by applying Bianchi identities and commuting covariant derivatives, we can obtain
\[
\frac{\partial}{\partial t} R_{ij}^l = \Delta R_{ij}^l + g^{pq} (R_{ij}^p R_{qk}^l - 2 R_{pik}^l R_{qj}^r + 2 R_{piq}^l R_{jkr}^r)
\]
\[
- g^{pq} (R_{ip} R_{qj}^l + R_{jp} R_{iq}^l) - g^{pq} (R_{kq} R_{ij}^l - R_{ki}^l R_{jq})
\]
\[
+ 2g^{ip} (R_{jlk} T^m_{q} T_{mp} + R_{ijp} T^m_{k} T_{mq})
\]
\[
- \frac{1}{3} g^{ip} (\nabla_i \nabla_k |T|^2 g_{jp} + \nabla_j \nabla_p |T|^2 g_{ik} - \nabla_i \nabla_p |T|^2 g_{jk} - \nabla_j \nabla_k |T|^2 g_{ip})
\]
\[
- 2g^{ip} (\nabla_i \nabla_k (T^m_{j} T_{mp}) + \nabla_j \nabla_p (T^m_{i} T_{mk}) - \nabla_i \nabla_p (T^m_{j} T_{mk}) - \nabla_j \nabla_k (T^m_{i} T_{mp})).
\]

We write the above equation schematically as in (3.13):
\[
\frac{\partial}{\partial t} Rm = \Delta Rm + Rm * Rm + Rm * T * T + \nabla^2 T * T + \nabla T * \nabla T. \quad (3.18)
\]

Then from (3.7) and (3.18), noting that \(|T|^2 = - R \leq |Rm|\), we have
\[
\frac{\partial}{\partial t} |Rm|^2 = \frac{\partial}{\partial t} (R_{ijkl} R_{abcd} g^{ik} g^{jl} g^{ab} g^{cd})
\]
\[
= Rm * Rm * (\text{Ric} + T * T) + 2 (Rm, \frac{\partial}{\partial t} Rm)
\]
\[
\leq \Delta |Rm|^2 - 2 |\nabla Rm|^2 + C |Rm|^3 + C |Rm|^2 |\nabla^2 T|
\]
\[
+ C |Rm| |\nabla T|^2 \quad (3.19)
\]

Similarly, substituting (3.6) into (3.16) and (3.17), we obtain the evolution equation of the Ricci tensor
\[
\frac{\partial}{\partial t} R_{ij} = \Delta L (R_{ik} + \frac{1}{3} |T|^2 g_{ik} + 2 T_{i}^{l} T_{lk}) - \frac{1}{3} \nabla_i \nabla_k |T|^2
\]
\[
- 2 (\nabla_i \nabla_j (T_{j}^{l} T_{lk}) + \nabla_k \nabla_j (T_{j}^{l} T_{lk})), \quad (3.20)
\]

and the evolution equation of the scalar curvature
\[
\frac{\partial}{\partial t} R = \Delta R - 4 \nabla^k \nabla^j (T_{j}^{l} T_{lk}) + 2 |\text{Ric}|^2 - \frac{2}{3} R^2 + 4 R^{ik} T_{i}^{l} T_{lk}. \quad (3.21)
\]
4. DERIVATIVE ESTIMATES OF CURVATURE AND TORSION

In this section, we use the evolution equations derived in §3 to obtain global derivative estimates for the curvature tensor Rm and torsion tensor T. Throughout, we use \ast to denote some contraction between tensors and often use the same symbol C for a finite number of constants for convenience.

First, we show a doubling-time estimate for $\Lambda(t)$ defined in (1.4), which roughly says that $\Lambda(t)$ behaves well and cannot blow up quickly.

Proposition 4.1 (Doubling-time estimate). Let $\varphi(t)$ be a solution to the Laplacian flow (1.1) on a compact 7-manifold for $t \in [0, \epsilon]$. There exists a constant C such that $\Lambda(t) \leq 2 \Lambda(0)$ for all t satisfying $0 \leq t \leq \min\{\epsilon, \frac{1}{C \Lambda(0)}\}$.

Proof. We will calculate an differential inequality for $\Lambda(x, t)$ given in (1.2),

$$\Lambda(x, t) = \left(|\nabla T(x, t)|^2_{g(t)} + |Rm(x, t)|^2_{g(t)} \right)^{\frac{1}{2}}$$

and thus for $\Lambda(t) = \sup_{x \in M} \Lambda(x, t)$. Since we already have an evolution equation for $|Rm|^2$ in (3.19), it suffices to compute the evolution of $|\nabla T|^2$.

Recall that for any smooth family of metrics $g(t)$ evolving by (3.14), the Christoffel symbols of the Levi-Civita connection of $g(t)$ evolve by

$$\frac{\partial}{\partial t} \Gamma_{ij}^k = \frac{1}{2} g^{kl} (\nabla_i \eta_{jl} + \nabla_j \eta_{il} - \nabla_l \eta_{ij}).$$

Thus, for any time-dependent tensor $A(t)$, we have the commutation formula (see [35, §2.3])

$$\frac{\partial}{\partial t} \nabla A - \nabla \frac{\partial}{\partial t} A = A \ast \nabla \frac{\partial}{\partial t} g.$$ \hspace{1cm} (4.1)

The fact that the metric g is parallel gives that for any two tensors A, B,

$$\nabla (A \ast B) = \nabla A \ast B + A \ast \nabla B.$$ \hspace{1cm} (4.2)

Then using (3.6), (3.13) and (4.1), we see that

$$\frac{\partial}{\partial t} \nabla T = \nabla \frac{\partial}{\partial t} T + T \ast \nabla \frac{\partial}{\partial t} g$$

$$= \nabla \Delta T + \nabla Rm \ast (T + T \ast \psi) + \nabla T \ast (Rm + Rm \ast \psi)$$

$$+ Rm \ast T \ast \nabla \psi + \nabla^2 T \ast T \ast \varphi + \nabla T \ast \nabla T \ast \varphi$$

$$+ \nabla T \ast T \ast \nabla \varphi + \nabla T \ast T \ast T$$

$$= \Delta \nabla T + \nabla Rm \ast (T + T \ast \psi) + \nabla T \ast (Rm + Rm \ast \psi)$$

$$+ Rm \ast T \ast T \ast \varphi + \nabla^2 T \ast T \ast \varphi + \nabla T \ast \nabla T \ast \varphi$$

$$+ \nabla T \ast T \ast T \ast \psi + \nabla T \ast T \ast T,$$ \hspace{1cm} (4.2)

where in the last equality we used (2.13) and (2.15) in the form

$$\nabla \varphi = T \ast \psi, \; \nabla \psi = T \ast \varphi,$$

and we commuted covariant derivatives using the Ricci identity, i.e.

$$\nabla \Delta T = \Delta \nabla T + Rm \ast \nabla T + \nabla Rm \ast T.$$
Then we can calculate the evolution of the squared norm of ∇T:

\[
\frac{\partial}{\partial t}|\nabla T|^2 = 2\langle \nabla T, \frac{\partial}{\partial t} \nabla T \rangle + \nabla T \ast \nabla T \ast \frac{\partial}{\partial g}
\]

\[
\leq \Delta|\nabla T|^2 - 2|\nabla^2 T|^2 + C|Rm||\nabla T|^2 + C|\nabla Rm||T||\nabla T|
\]

\[
+ C|Rm||T|^2|\nabla T| + C|\nabla^2 T||\nabla T||T|
\]

\[
+ C|\nabla T|^3 + C|\nabla T|^2|T|^2.
\]

\[
\leq \Delta|\nabla T|^2 - 2|\nabla^2 T|^2 + C|Rm||\nabla T|^2 + C|\nabla Rm||Rm|^2|\nabla T|
\]

\[
+ C|Rm|^2|\nabla T| + C|Rm|^3|\nabla^2 T||\nabla T| + C|\nabla T|^3,
\]

where we used $|T|^2 = -R \leq |Rm|$ in the last inequality.

Now, using (3.19), (4.3) and the Cauchy–Schwarz inequality, we obtain

\[
\frac{\partial}{\partial t} \Lambda(x, t)^2 \leq \Delta(|Rm|^2 + |\nabla T|^2) - 2|Rm|^2 - 2|\nabla^2 T|^2 + C|Rm|^3
\]

\[
+ C|Rm|^2|\nabla^2 T| + C|Rm||\nabla T|^2 + C|\nabla Rm||Rm|^2|\nabla T|
\]

\[
+ C|Rm|^2|\nabla T| + C|Rm|^3|\nabla^2 T||\nabla T| + C|\nabla T|^3
\]

\[
\leq \Delta \Lambda(x, t) - (|\nabla Rm|^2 + |\nabla^2 T|^2) + C(|Rm| + |\nabla T|)^3
\]

\[
\leq \Delta \Lambda(x, t)^2 - (|\nabla Rm|^2 + |\nabla^2 T|^2) + CA(x, t)^3.
\]

The idea behind the calculation of (4.4) is that there are enough negative gradient terms appearing in the evolution equations of $|\nabla T|^2$ and $|Rm|^2$ to kill the remaining bad terms to leave us with an effective differential inequality. This is precisely the motivation for the definition $\Lambda(x, t)$ in (1.2) as a combination of $|\nabla T|$ and $|Rm|$.

Recall that $\Lambda(t) = \sup_M \Lambda(x, t)$, which is a Lipschitz function of time t. Applying the maximum principle to (4.4), we deduce that

\[
\frac{d}{dt} \Lambda(t) \leq \frac{C}{2} \Lambda(t)^2,
\]

in the sense of lim sup of forward difference quotients. We conclude that

\[
\Lambda(t) \leq \frac{\Lambda(0)}{1 - \frac{1}{2}CA(0)t}
\]

as long as $t \leq \min\{\epsilon, \frac{2}{C\Lambda(0)}\}$, so $\Lambda(t) \leq 2\Lambda(0)$ if $t \leq \min\{\epsilon, \frac{1}{C\Lambda(0)}\}$. □

We now derive Shi-type derivative estimates for the curvature tensor Rm and torsion tensor T along the Laplacian flow, using $\Lambda(x, t)$ given in (1.2).

Theorem 4.2. Suppose that $K > 0$ and $\varphi(t)$ is a solution to the Laplacian flow (1.1) for closed G_2 structures on a compact manifold M^7 with $t \in [0, \frac{1}{K}]$. For all $k \in \mathbb{N}$, there exists a constant C_k such that if $\Lambda(x, t) \leq K$ on $M^7 \times [0, \frac{1}{K}]$, then for all $t \in [0, \frac{1}{K}]$ we have

\[
|\nabla^k Rm| + |\nabla^{k+1} T| \leq C_k t^{-\frac{k}{2}} K.
\]

Proof. The proof is by induction on k. The idea is to define a suitable function $f_k(x, t)$ for each k, in a similar way to the Ricci flow, which satisfies a parabolic differential inequality amenable to the maximum principle.
For the case $k = 1$, we define
\[f = (\|\nabla Rm\|^2 + \|\nabla^2 T\|^2) + \alpha(\|\nabla T\|^2 + \|Rm\|^2) \] \tag{4.7}
for α to be determined later. To calculate the evolution of f, we first need to calculate the evolution of ∇Rm and $\nabla^2 T$. Using (3.6), (3.18) and (4.1),
\[
\frac{\partial}{\partial t}\nabla Rm = \nabla \frac{\partial}{\partial t} Rm + Rm \ast \nabla \frac{\partial}{\partial t} g(t)
\]
\[
= \nabla \Delta Rm + Rm \ast \nabla Rm + \nabla Rm \ast T \ast T + Rm \ast T \ast T
\]
\[
+ \nabla^3 T \ast T + \nabla^2 T \ast \nabla T + Rm \ast \nabla (Ric + T \ast T)
\]
\[
= \Delta \nabla Rm + Rm \ast \nabla Rm + \nabla Rm \ast T \ast T + Rm \ast T \ast T
\]
\[
+ \nabla^3 T \ast T + \nabla^2 T \ast \nabla T, \tag{4.8}
\]
where in the last equality we used the commuting formula
\[
\nabla \Delta Rm = \Delta \nabla Rm + Rm \ast \nabla Rm.
\]
Then using (3.7) and (4.8),
\[
\frac{\partial}{\partial t} \|\nabla Rm\|^2 = \Delta \|\nabla Rm\|^2 - 2\|\nabla^2 Rm\|^2 + C\|\nabla Rm\|^2 |Rm|
\]
\[
+ C\|\nabla Rm\| \left(|Rm|^2 \|\nabla T\| + |Rm|^2 \|\nabla^3 T\| + \|\nabla^2 T\| \|\nabla T\| \right). \tag{4.9}
\]
Similarly, we can use (4.1) and (4.2) to obtain
\[
\frac{\partial}{\partial t} \|\nabla^2 T\|^2 = \Delta \|\nabla^2 T\|^2 + \|\nabla Rm\| \|\nabla^3 T\| |Rm|^2 \frac{1}{2}
\]
\[
+ C\|\nabla Rm\| \|\nabla^2 T\| |\nabla T| + |Rm|) + C\|\nabla^3 T\| |Rm|^2 \|\nabla^2 T\|^2 \|Rm^2 + |\nabla T|^2| \tag{4.10}
\]
\[
+ C\|\nabla^2 T\|^2 |Rm| + |\nabla T| + C\|\nabla^2 T\| |Rm|^2 \|\nabla^2 T\|^2 \|Rm^2 + |\nabla T|^2| \tag{4.11}
\]
Combining (4.9) and (4.11), and using the Cauchy–Schwarz inequality gives
\[
\frac{\partial}{\partial t} (\|\nabla Rm\|^2 + \|\nabla^2 T\|^2) \leq \Delta (\|\nabla Rm\|^2 + \|\nabla^2 T\|^2) - (\|\nabla^2 Rm\|^2 + \|\nabla^3 T\|^2)
\]
\[
+ C(\|\nabla Rm\|^2 + \|\nabla^2 T\|^2)(|\nabla T| + |Rm|) \tag{4.12}
\]
\[
+ C(\|\nabla Rm\| + |\nabla^2 T|)|Rm|^{\frac{1}{2}}(|Rm^2 + |\nabla T|^2|).
\]
Then from (4.4) and (4.12), we obtain
\[
\frac{\partial}{\partial t} f \leq \Delta f + Ct(\|\nabla Rm\|^2 + |\nabla^2 T|^2)(|\nabla T| + |Rm|)
\]
\[
+ Ct(|\nabla Rm| + |\nabla^2 T|)|Rm|^{\frac{1}{2}}(|Rm^2 + |\nabla T|^2|)
\]
\[
+ (1 - \alpha)(\|\nabla Rm\|^2 + |\nabla^2 T|^2) + \alpha(\|\nabla T\|^2 + |Rm|^2)^{\frac{3}{2}}.
\]
By hypothesis \(\Lambda(t) = \sup_{x \in M} \Lambda(x, t) \leq K \) and \(tK \leq 1 \), so using the above inequality and Cauchy–Schwarz implies that
\[
\frac{\partial}{\partial t} f \leq \Delta f + (C - \alpha)(|\nabla Rm|^2 + |\nabla^2 T|^2) + \alpha K^3. \tag{4.13}
\]
We can choose \(\alpha \) sufficiently large that \(C - \alpha < 0 \) and thus
\[
\frac{\partial}{\partial t} f \leq \Delta f + C\alpha K^3.
\]
Note that \(f(x, 0) = \alpha(|\nabla T|^2 + |Rm|^2) \leq \alpha K^2 \), so applying the maximum principle to the above inequality implies that
\[
\sup_{x \in M} f(x, t) \leq \alpha K^2 + C\alpha K^3 \leq CK^2.
\]
From the definition (4.7) of \(f \), we obtain (4.6) for \(k = 1 \):
\[
|\nabla Rm| + |\nabla^2 T| \leq CKt^{-\frac{1}{2}}.
\]
Given this, we next prove \(k \geq 2 \) by induction. It is clear that we need to obtain differential inequalities for \(|\nabla^k Rm|^2 \) and \(|\nabla^{k+1} T|^2 \), so this is how we proceed. Suppose (4.6) holds for all \(1 \leq j < k \). From (4.1), for any time-dependent tensor \(A(t) \) we have
\[
\frac{\partial}{\partial t} \nabla^k A - \nabla^k \frac{\partial}{\partial t} A = \sum_{i=1}^{k} \nabla^{k-i} A \ast \nabla^i \frac{\partial}{\partial t} g. \tag{4.14}
\]
By (3.6), (3.18) and (4.14), we have
\[
\frac{\partial}{\partial t} \nabla^k Rm = \nabla^k \frac{\partial}{\partial t} Rm + \sum_{i=1}^{k} \nabla^{k-i} Rm \ast \nabla^i \frac{\partial}{\partial t} g.
\]
\[
= \nabla^k \Delta Rm + \nabla^k(Rm \ast Rm) + \nabla^k(Rm \ast T^2) + \nabla^{k+1}(\nabla T \ast T)
\]
\[
+ \sum_{i=1}^{k} \nabla^{k-i} Rm \ast \nabla^i(Ric + T \ast T)
\]
\[
= \Delta \nabla^k Rm + \sum_{i=0}^{k} \nabla^{k-i} Rm \ast \nabla^i(Rm + T \ast T) + \sum_{i=0}^{k+1} \nabla^i T \ast \nabla^{k+2-i} T, \tag{4.15}
\]
where in the last equality we used the Ricci identity
\[
\nabla^k \Delta Rm - \Delta \nabla^k Rm = \sum_{i=0}^{k} \nabla^{k-i} Rm \ast \nabla^i Rm. \tag{4.16}
\]
Using (4.15), the evolution of the squared norm of \(\nabla^k Rm \) is:
\[
\frac{\partial}{\partial t} |\nabla^k Rm|^2 \leq \Delta |\nabla^k Rm|^2 - 2|\nabla^{k+1} Rm|^2
\]
\[
+ \sum_{i=0}^{k} \nabla^k Rm \ast \nabla^{k-i} Rm \ast \nabla^i(Rm + T \ast T)
\]
\[
+ \sum_{i=0}^{k+1} \nabla^k Rm \ast \nabla^i T \ast \nabla^{k+2-i} T. \tag{4.17}
\]
Applying (4.6) for $1 \leq j < k$ to (4.17) and using Cauchy–Schwarz, we get
\[
\frac{\partial}{\partial t}|\nabla^k Rm|^2 \leq \Delta |\nabla^k Rm|^2 - 2|\nabla^{k+1} Rm|^2 + CK^2 |\nabla^k Rm||\nabla^{k+2} T|
\]
\[
+ CK(|\nabla^k Rm|^2 + |\nabla^{k+1} T|^2) + CK^2 t^{-\frac{k}{2}} |\nabla^k Rm|
\]
\[
\leq \Delta |\nabla^k Rm|^2 - 2|\nabla^{k+1} Rm|^2 + CK^3 t^{-k}
\]
\[
+ CK(|\nabla^k Rm|^2 + |\nabla^{k+1} T|^2),
\]
where the constant C depends on the constants $C_j, 1 \leq j < k$ in (4.6).

Similarly, we have
\[
\frac{\partial}{\partial t}|\nabla^{k+1} T| = \nabla^{k+1} \frac{\partial}{\partial t} T + \sum_{i=1}^{k+1} \nabla^{k+1-i} T \ast \nabla^i \frac{\partial}{\partial t} g.
\]
\[
= \nabla^{k+1} T + \nabla^{k+1}(Rm \ast T) + \nabla^{k+1}(Rm \ast T \ast \psi) + \nabla^{k+1}(\nabla T \ast T \ast \varphi)
\]
\[
+ \sum_{i=1}^{k+1} \nabla^{k+1-i} T \ast \nabla^i (Ric + T \ast T)
\]
\[
= \Delta \nabla^{k+1} T + \sum_{i=0}^{k+1} \nabla^{k+1-i} T \ast \nabla^i Rm + \sum_{i=0}^{k+1} \nabla^{k+1-i} T \ast \nabla^i (T \ast T)
\]
\[
+ \sum_{i=0}^{k+1} \nabla^{k+1-i}(Rm \ast T) \ast \nabla^i \psi + \sum_{i=0}^{k+1} \nabla^{k+1-i}(\nabla T \ast T) \ast \nabla^i \varphi
\]
and
\[
\frac{\partial}{\partial t}|\nabla^{k+1} T|^2 \leq \Delta |\nabla^{k+1} T|^2 - 2|\nabla^{k+2} T|^2
\]
\[
+ \sum_{i=0}^{k+1} \nabla^{k+1} T \ast \nabla^{k+1-i} T \ast \nabla^i (Rm + T \ast T)
\]
\[
+ \sum_{i=0}^{k+1} \nabla^{k+1} T \ast \nabla^{k+1-i} (Rm \ast T) \ast \nabla^i \psi
\]
\[
+ \sum_{i=0}^{k+1} \nabla^{k+1} T \ast \nabla^{k+1-i} (\nabla T \ast T) \ast \nabla^i \varphi.
\]

The second line of (4.19) can be estimated using the second line of (4.17).
To estimate the third line of (4.19), for $2 \leq i \leq k + 1$ we have
\[
|\nabla^{k+1-i}(Rm \ast T)| \leq \sum_{j=0}^{k+1-i} |\nabla^{k+1-i-j} Rm \ast \nabla^j T| \leq Ct^{-\frac{k+1}{2}}(K^2 t^{-\frac{k}{2}} + K^2).
\]

For $i = 1$,
\[
\nabla^k(Rm \ast T) = \nabla^k Rm \ast T + \sum_{l=1}^{k} \nabla^{k-l} Rm \ast \nabla^l T,
\]
where
\[
\left| \sum_{l=1}^{k} \nabla^{k-l} Rm \ast \nabla^l T \right| \leq CK^2 t^{-\frac{k-1}{2}}. \tag{4.22}
\]

Similarly for \(i = 0 \), we have
\[
\nabla^{k+1}(Rm \ast T) = \nabla^{k+1} Rm \ast T + \nabla^k Rm \ast \nabla T + \sum_{l=2}^{k} \nabla^{k+1-l} Rm \ast \nabla^l T, \tag{4.23}
\]
where
\[
\left| \sum_{l=2}^{k} \nabla^{k+1-l} Rm \ast \nabla^l T \right| \leq CK^2 t^{-\frac{k}{2}}. \tag{4.24}
\]

Using (2.13) and (2.15), we can estimate \(\nabla^i \psi \):
\[
|\nabla^i \psi| \leq CK \sum_{j=0}^{i-2} K^j t^{\frac{j-i+2}{2}}. \tag{4.25}
\]

Combining (4.20)–(4.25), using (4.6) for \(0 \leq j < k \) and the assumption \(tK \leq 1 \), the third line of (4.19) can be estimated by
\[
|\nabla^{k+1} T \ast (\nabla^{k+1} Rm \ast T) \ast \nabla^i \psi|
\leq |\nabla^{k+1} T \ast (\nabla^{k+1} Rm \ast T + \nabla^k Rm \ast \nabla T) \ast \psi|
+ |\nabla^{k+1} T \ast \nabla^k Rm \ast \nabla \psi| + CK^2 t^{-\frac{k}{2}} |\nabla^{k+1} T|. \tag{4.26}
\]

Combining (4.18) and (4.26), we have
\[
\frac{\partial}{\partial t} (|\nabla^k Rm|^2 + |\nabla^{k+1} T|^2) \leq \Delta (|\nabla^k Rm|^2 + |\nabla^{k+1} T|^2) + CK^3 t^{-k} - |\nabla^{k+1} Rm|^2 - |\nabla^{k+2} T|^2
+ CK (|\nabla^{k+1} T|^2 + |\nabla^{k+1} T||\nabla^k Rm|). \tag{4.27}
\]

Given these calculations, we now define
\[
f_k = t^k (|\nabla^k Rm|^2 + |\nabla^{k+1} T|^2)
+ \beta_k \sum_{i=1}^{k} \alpha_i t^{-i} (|\nabla^{k-i} Rm|^2 + |\nabla^{k+1-i} T|^2), \tag{4.28}
\]
for some constants β_k to be determined later and $\alpha_i^k = \frac{(k-1)!}{(k-i)!}$. Assuming (4.6) holds for all $1 < i < k$, then by a similar calculation to those leading to (4.27), we have

$$
\frac{\partial}{\partial t}((\nabla^{k-i}Rm)^2 + |\nabla^{k+1-i}T|^2) \leq \Delta((\nabla^{k-i}Rm)^2 + |\nabla^{k+1-i}T|^2) + CK^3 i^{-k} - (\nabla^{k+1-i}Rm)^2 - |\nabla^{k+2-i}T|^2. \quad (4.29)
$$

From (4.27) and (4.29), we may calculate

$$
\begin{align*}
\frac{\partial}{\partial t} f_k & \leq \Delta f_k + (k! - 1 + CK t^k - \beta_k t^{k-1})((\nabla^k Rm)^2 + |\nabla^{k+1}T|^2) \\
& \quad + \beta_k \sum_{i=1}^{k-1} (\alpha_i^k(k-i) - \alpha_{i+1}^k) t^{k-i-1}((\nabla^{k-i}Rm)^2 + |\nabla^{k+1-i}T|^2) \\
& \quad + (C + C\beta_k \sum_{i=1}^{k} \alpha_i^k) K^3 \\
& \leq \Delta f_k + CK^3, \quad (4.30)
\end{align*}
$$

where we used the facts $\alpha_i^k(k-i) - \alpha_{i+1}^k = 0$, $K t \leq 1$ and chose β_k sufficiently large. Since $f_k(0) = \beta_k \alpha_k^k(|Rm|^2 + |T|^2) \leq \beta_k \alpha_k^k K^2$, applying the maximum principle to (4.30) gives

$$
\sup_{x \in M} f_k(x,t) \leq \beta_k \alpha_k^k K^2 + CtK^3 \leq CK^2
$$

Then from the definition of f_k, we obtain that

$$
|\nabla^k Rm| + |\nabla^{k+1}T| \leq CK t^{-\frac{3}{2}}.
$$

This completes the inductive step and finishes the proof of Theorem 4.2. \(\square\)

From Proposition 4.1, we know the assumption $\Lambda(x,t) \leq K$ in Theorem 4.2 is reasonable, since $\Lambda(x,t)$ can not blow up quickly along the flow. Note that the estimate (4.6) blows up as t approaches zero, but the short-time existence result (Theorem 1.1) already bounds all derivatives of Rm and T for a short time. In fact, when $\Lambda(x,t) \leq K$, from (4.12) we have

$$
\frac{d}{dt} \max_{M_t}(|\nabla Rm|^2 + |\nabla^2 T|^2) \leq CK \max_{M_t}(|\nabla Rm|^2 + |\nabla^2 T|^2) + CK^4,
$$

which gives us

$$
\max_{M_t}(|\nabla Rm|^2 + |\nabla^2 T|^2) \leq e^{CK t}(\max_{M_0}(|\nabla Rm|^2 + |\nabla^2 T|^2) + K^3) - K^3
$$

for $t \in [0, \varepsilon]$ if ε sufficiently small. Using (4.18)–(4.19) and the maximum principle, we may deduce that such estimates also hold for higher order derivatives, so $\max_{M_t}(|\nabla Rm|^2 + |\nabla^{k+1}T|^2)$ is also bounded in terms of its initial value and K for a short time.

We can also prove a local version of Theorem 4.2, stated below. Since we already established evolution inequalities for the relevant geometric quantities in the proof of Theorem 4.2, the proof just follows by applying a similar argument to Shi [34] (see also [19]) in the Ricci flow case, so we omit it.
\textbf{Theorem 4.3} (Local derivative estimates). Let $K > 0$ and $r > 0$. Let M be a 7-manifold, $p \in M$, and $\varphi(t), t \in [0, \frac{1}{K}]$ be a solution to the Laplacian flow (1.1) for closed G_2 structures on an open neighborhood U of p containing $B_{g(0)}(p, r)$ as a compact subset.

For any $k \in \mathbb{N}$, there exists a constant $C = C(K, r, k)$ such that if $\Lambda(x, t) \leq K$ for all $x \in U$ and $t \in [0, \frac{1}{K}]$, then for all $y \in B_{g(0)}(p, r/2)$ and $t \in [0, \frac{1}{K}]$, we have

$$|\nabla^k Rm| + |\nabla^{k+1} T| \leq C(K, r, k)t^{-\frac{k}{2}}.$$ \hspace{1cm} (4.31)

5. Long time existence I

Given an initial closed G_2 structure φ_0, there exists a solution $\varphi(t)$ of the Laplacian flow on a maximal time interval $[0, T_0)$, where maximal means that either $T_0 = \infty$, or that $T_0 < \infty$ but there do not exist $\epsilon > 0$ and a smooth Laplacian flow $\tilde{\varphi}(t)$ for $t \in [0, T_0 + \epsilon)$ such that $\tilde{\varphi}(t) = \varphi(t)$ for $t \in [0, T_0)$. We call T_0 the singular time.

In this section, we use the global derivative estimates (1.3) for Rm and ∇T to prove Theorem 1.3, i.e. $\Lambda(x, t)$ given in (1.2) will blow up at a finite time singularity along the flow. We restate Theorem 1.3 below.

\textbf{Theorem 5.1.} If $\varphi(t)$ is a solution to the Laplacian flow (1.1) for closed G_2 structures on a compact manifold M^7 in a maximal time interval $[0, T_0)$ and the maximal time $T_0 < \infty$, then $\Lambda(t)$ given in (1.4) satisfies

$$\lim_{t \nearrow T_0} \Lambda(t) = \infty.$$ \hspace{1cm} (5.1)

Moreover, we have a lower bound on the blow-up rate,

$$\Lambda(t) \geq \frac{C}{T_0 - t}$$ \hspace{1cm} (5.2)

for some constant $C > 0$.

\textbf{Proof.} Suppose the solution $\varphi(t)$ exists on a maximal finite time interval $[0, T_0)$. We first prove, by contradiction, that

$$\lim_{t \nearrow T_0} \sup \Lambda(t) = \infty.$$ \hspace{1cm} (5.3)

Suppose (5.3) does not hold, so there exists a constant $K > 0$ such that

$$\sup_{M \times [0, T_0]} \Lambda(x, t) = \sup_{M \times [0, T_0]} \left(|\nabla T(x, t)|^2_{g(t)} + |\nabla \Lambda(x, t)|^2_{g(t)} \right)^{\frac{1}{2}} \leq K,$$ \hspace{1cm} (5.4)

where $g(t)$ is the metric determined by $\varphi(t)$. Then, in particular, we have the uniform curvature bound

$$\sup_{M \times [0, T_0]} |Rm(x, t)|_{g(t)} \leq K,$$ which implies that

$$\sup_{M \times [0, T_0]} \left| \frac{\partial}{\partial t} g_{ij} \right|_{g(t)} = \sup_{M \times [0, T_0]} \left| -2R_{ij} - \frac{2}{3}|T|^2 g_{ij} - 4T^k_i T_k j \right|_{g(t)} \leq CK.$$
(Keep in mind that $|T|^2 = -R$). Then all the metrics $g(t)$ ($0 \leq t < T_0$) are uniformly equivalent (see e.g. [18, Theorem 14.1]), as $T_0 < \infty$. We also have from (2.17), (2.20) and (5.4):

$$\left| \frac{\partial}{\partial t} \varphi \right|_{g(t)} = |\Delta \varphi|_{g(t)} \leq CK, \tag{5.5}$$

for some uniform positive constant C.

We fix a background metric $\bar{g} = g(0)$, the metric determined by $\varphi(0)$. From (5.5) and the uniform equivalence of the metrics \bar{g} and $g(t)$, we have

$$\left| \frac{\partial}{\partial t} \varphi \right|_{\bar{g}} \leq C \left| \frac{\partial}{\partial t} \varphi \right|_{g(t)} \leq CK. \tag{5.6}$$

For any $0 < t_1 < t_2 < T_0$,

$$|\varphi(t_2) - \varphi(t_1)|_{\bar{g}} \leq \int_{t_1}^{t_2} \left| \frac{\partial}{\partial t} \varphi \right|_{\bar{g}} \, dt \leq CK(t_2 - t_1), \tag{5.7}$$

which implies that $\varphi(t)$ converges to a 3-form $\varphi(T_0)$ continuously as $t \to T_0$.

We may similarly argue using (3.6) and (5.4) that the uniformly equivalent Riemannian metrics $g(t)$ converge continuously to a Riemannian metric $g(T_0)$ as $t \to T_0$.

By (2.5), for each $t \in [0, T_0)$ we have

$$g_t(u, v) \text{vol}_{g(t)} = \frac{1}{6}(u \cdot \varphi(t)) \wedge (v \cdot \varphi(t)) \wedge \varphi(t). \tag{5.8}$$

Let $t \to T_0$ in (5.8). The left hand side tends to a positive definite 7-form valued bilinear form as the limit metric $g(T_0)$ is still a Riemannian metric. Thus, the right-hand side has a positive definite limit, and thus the limit 3-form $\varphi(T_0)$ is positive, i.e. $\varphi(T_0)$ is a G_2 structure on M. Moreover, note that $d\varphi(t) = 0$ for all t means that the limit G_2 structure $\varphi(T_0)$ is also closed. In summary, the solution $\varphi(t)$ of the Laplacian flow for closed G_2 structures can be extended continuously to the time interval $[0, T_0]$.

We now show that the extension is actually smooth, thus obtaining our required contradiction. We beginning by showing that we can uniformly bound the derivatives of the metric and 3-form with respect to the background Levi-Civita connection along the flow.

Claim 5.2. There exist constants C_m for $m \in \mathbb{N}$ such that

$$\sup_{M \times [0, T_0]} \left| \nabla^{(m)} g(t) \right|_{\bar{g}} \leq C_m,$$

where ∇ is the Levi-Civita connection with respect to \bar{g}.

Proof of Claim 5.2. Since $g(t)$ evolves by (3.6), the proof of the claim is similar to the Ricci flow case, see e.g. [10, §6.7], so we omit the detail here. \qed

Claim 5.3. There exist constants C_m for $m \in \mathbb{N}$ such that

$$\sup_{M \times [0, T_0]} \left| \nabla^{(m)} \varphi(t) \right|_{\bar{g}} \leq C_m.$$
Proof of Claim 5.3. We begin with $m = 1$. At any $(x, t) \in M \times [0, T_0)$,
\[
\frac{\partial}{\partial t} \nabla \varphi = \nabla \frac{\partial}{\partial t} \varphi = \nabla \Delta \varphi \varphi \\
= \nabla \Delta \varphi \varphi + A \ast \Delta \varphi \varphi,
\]
where we denote $A = \nabla - \nabla$ as the difference of two connections, which is a tensor. Then in a fixed chart around x we have
\[
\frac{\partial}{\partial t} A^k_{ij} = - \frac{\partial}{\partial t} \Gamma^k_{ij} = - \frac{1}{2} g^{kl} (\frac{\partial}{\partial t} g_{jl} + \nabla_j (\frac{\partial}{\partial t} g_{il}) - \nabla_l (\frac{\partial}{\partial t} g_{ij})) ,
\]
so
\[
\frac{\partial}{\partial t} A = - g^{-1} \nabla (\nabla T \ast T).
\]
Integrating in time t, we get
\[
|A(t)|_g \leq |A(0)|_g + \int_0^t \left| \frac{\partial}{\partial s} A \right|_g ds \\
\leq |A(0)|_g + C \int_0^t \left| \frac{\partial}{\partial s} A \right|_{g(s)} ds \\
\leq |A(0)|_g + C(\nabla R |g| + \nabla T |T|)tg \leq C ,
\]
since $t < T_0$ is finite and $|\nabla R| + \nabla T |T|$ is bounded by (4.6) and (5.4). Furthermore, we can derive from Claim 5.2 that
\[
|\nabla^k A(t)|_g \leq C \quad \text{for } 0 \leq k \leq m - 1. \tag{5.11}
\]
From (4.6), (5.9) and (5.10), we get
\[
\left| \frac{\partial}{\partial t} \nabla \varphi \right|_g \leq C,
\]
and then
\[
|\nabla \varphi(t)|_g \leq |\nabla \varphi(0)|_g + \int_0^t \left| \frac{\partial}{\partial s} \nabla \varphi(s) \right|_g ds \leq |\nabla \varphi(0)|_g + C T_0 , \tag{5.12}
\]
which gives the $m = 1$ case of Claim 5.3.
For $m \geq 2$, we can prove by induction that
\[
\left| \frac{\partial}{\partial t} \nabla^m \varphi \right|_g = |\nabla^m \Delta \varphi \varphi|_g \\
\leq C \sum_{i=0}^m |A|^i |\nabla^{m-i} \Delta \varphi \varphi| + C \sum_{i=1}^{m-1} |\nabla^i A||\nabla^{m-1-i} \Delta \varphi \varphi| . \tag{5.13}
\]
It then follows from (4.6), (5.11) and (5.13) that
\[
\left| \frac{\partial}{\partial t} \nabla^m \varphi \right|_g = |\nabla^m \Delta \varphi \varphi|_g \leq C . \tag{5.14}
\]
Then Claim 5.3 follows from (5.14) by integration.
Now we continue the proof of Theorem 5.1. We have that a continuous limit of closed G_2 structures $\varphi(T_0)$ exists, and in a fixed local coordinate chart U it satisfies

$$\varphi_{ijk}(T_0) = \varphi_{ijk}(t) + \int_t^{T_0} (\Delta \varphi(s))_{ijk} ds.$$ (5.15)

Let $\alpha = (a_1, \cdots, a_r)$ be any multi-index with $|\alpha| = m \in \mathbb{N}$. By Claim 5.3 and (5.14), we have that $\frac{\partial^m}{\partial x^\alpha} \varphi_{ijk}$ and $\frac{\partial^m}{\partial x^\alpha} (\Delta \varphi)_{ijk}$ are uniformly bounded on $U \times [0, T_0)$. Then from (5.15) we have that $\frac{\partial^m}{\partial x^\alpha} \varphi_{ijk}(T_0)$ is bounded on U and hence $\varphi(T_0)$ is a smooth closed G_2 structure. Moreover,

$$\left| \frac{\partial^m}{\partial x^\alpha} \varphi_{ijk}(T_0) - \frac{\partial^m}{\partial x^\alpha} \varphi_{ijk}(t) \right| \leq C(T_0 - t),$$ (5.17)

and thus $\varphi(t) \to \varphi(T_0)$ uniformly in any C^m norm as $t \to T_0$, $m \geq 2$.

Now, Theorem 1.1 gives a solution $\widetilde{\varphi}(t)$ of the Laplacian flow (1.1) with $\widetilde{\varphi}(0) = \varphi(T_0)$ for a short time $0 \leq t < \epsilon$. Since $\varphi(t) \to \varphi(T_0)$ smoothly as $t \to T_0$, this gives that $\widetilde{\varphi}(t) = \left\{ \begin{array}{ll} \varphi(t), & 0 \leq t < T_0, \\ \varphi(t - T_0), & T_0 \leq t < T_0 + \epsilon. \end{array} \right.$ is a solution of (1.1) with initial value $\widetilde{\varphi}(0) = \varphi(0)$ for $t \in [0, T_0 + \epsilon)$, which is a contradiction to the maximality of T_0. So we have

$$\limsup_{t \to T_0} \Lambda(t) = \infty.$$ (5.18)

We now prove (5.1) by replacing the lim sup in (5.18) by lim. Suppose, for a contradiction, that (5.1) does not hold. Then there exists a sequence $t_i \nearrow T_0$ such that $\Lambda(t_i) \leq K_0$ for some constant K_0. By the doubling time estimate in Proposition 4.1,

$$\Lambda(t) \leq 2 \Lambda(t_i) \leq 2 K_0,$$ (5.19)

for all $t \in [t_i, \min\{T_0, t_i + \frac{1}{C K_0}\})$. Since $t_i \to T_0$, for sufficiently large i we have $t_i + \frac{1}{C K_0} \geq T_0$. Therefore, for all i sufficiently large,

$$\sup_{M \times [t_i, T_0]} \Lambda(x, t) \leq 2 K_0,$$ (5.20)

but we already showed above that this leads to a contradiction to the maximality of T_0. This completes the proof of (5.1).

We conclude by proving the lower bound of the blow-up rate (5.2). Applying the maximum principle to (4.4) we have

$$\frac{d}{dt} \Lambda(t)^2 \leq C \Lambda(t)^3,$$

which implies that

$$\frac{d}{dt} \Lambda(t)^{-1} \geq - \frac{C}{2}.$$ (5.21)
We already proved that $\lim_{t \to T_0} \Lambda(t) = \infty$, so we have
\[
\lim_{t \to T_0} \Lambda(t)^{-1} = 0. \tag{5.22}
\]
Integrating (5.21) from t to $t' \in (t, T_0)$ and passing to the limit $t' \to T_0$, we obtain
\[
\Lambda(t) \geq \frac{2}{C(T_0 - t)}. \tag{6.1}
\]
This completes the proof of Theorem 5.1. \qed

Combining Theorem 5.1 and Proposition 4.1 gives us the following corollary on the estimate of the minimal existence time.

Corollary 5.4. Let φ_0 be a closed G_2 structure on a compact manifold M^7 with
\[
\Lambda_{\varphi_0}(x) = \left(|\nabla T(x)|^2 + |Rm(x)|^2 \right)^{\frac{1}{2}} \leq K
\]
on M, for some constant K. Then the unique solution $\varphi(t)$ of the Laplacian flow (1.1) starting from φ_0 exists at least for time $t \in [0, \frac{1}{C}K]$, where C is a uniform constant as in Proposition 4.1.

6. Uniqueness

In this section, we will use the ideas in [26, 27] to prove Theorem 1.4: the forwards and backwards uniqueness property of the Laplacian flow.

If $\varphi(t)$, $\tilde{\varphi}(t)$ are two smooth solutions to the flow (1.1) on a compact manifold M^7 for $t \in [0, \epsilon]$, $\epsilon > 0$, there exists a constant K_0 such that
\[
\sup_{M \times [0, \epsilon]} \left(\Lambda(x, t) + \tilde{\Lambda}(x, t) \right) \leq K_0, \tag{6.1}
\]
adopting the obvious notation for quantities determined by $\varphi(t)$ and $\tilde{\varphi}(t)$. By the Shi-type estimate (1.3), there is a constant K_1 depending on K_0 such that
\[
\sum_{k=0}^{2} \left(|\nabla^k Rm|_{g(t)} + |\nabla^k \tilde{Rm}|_{\tilde{g}(t)} \right) + \sum_{k=0}^{3} \left(|\nabla^k T|_{g(t)} + |\nabla^k \tilde{T}|_{\tilde{g}(t)} \right) \leq K_1 \tag{6.2}
\]
on $M \times [0, \epsilon]$. The uniform curvature bounds from (6.2) imply that $g(t)$ and $\tilde{g}(t)$ are uniformly equivalent on $M \times [0, \epsilon]$, so the norms $| \cdot |_{g(t)}$ and $| \cdot |_{\tilde{g}(t)}$ only differ by a uniform constant on $M \times [0, \epsilon]$. We deduce the following from (6.2).

Lemma 6.1. The inverse \tilde{g}^{-1} of the metric \tilde{g}, $\nabla^k \tilde{Rm}$ for $0 \leq k \leq 2$ and $\nabla^k \tilde{T}$ for $0 \leq k \leq 3$ are uniformly bounded with respect to $g(t)$ on $[0, \epsilon]$.

We will use this fact frequently in the following calculation. We continue to let $A \ast B$ denote some contraction of two tensors A, B using $g(t)$. We also recall that if $\varphi(s) = \tilde{\varphi}(s)$ for some $s \in [0, \epsilon]$, then the induced metrics also satisfy $g(s) = \tilde{g}(s)$.
6.1. **Forward uniqueness.** We begin by showing forward uniqueness of the flow as claimed in Theorem 1.4; namely, that if $\varphi(s) = \bar{\varphi}(s)$ for some $s \in [0, \varepsilon]$ then $\varphi(t) = \bar{\varphi}(t)$ for all $t \in [s, \varepsilon]$. The strategy to show this, inspired by [27], is to define an energy quantity $\mathcal{E}(t)$ by

$$
\mathcal{E}(t) = \int_M \left(|\phi(t)|^2_{g(t)} + |h(t)|^2_{g(t)} + |A(t)|^2_{g(t)} + |U(t)|^2_{g(t)}
+ |V(t)|^2_{g(t)} + |S(t)|^2_{g(t)} \right) \text{vol}_{g(t)}, \tag{6.3}
$$

and show that $\mathcal{E}(t)$ satisfies a differential inequality which implies that $\mathcal{E}(t)$ vanishes identically if $\mathcal{E}(0) = 0$ initially. Here in the definition (6.3) of $\mathcal{E}(t)$,

$$
\phi = \varphi - \bar{\varphi}, \quad h = g - \bar{g}, \quad A = \nabla - \bar{\nabla}; \\
U = T - \bar{T}, \quad V = \nabla T - \bar{\nabla} T, \quad S = Rm - \bar{Rm}.
$$

In local coordinates, we have $A^k_{ij} = \Gamma^k_{ij} - \bar{\Gamma}^k_{ij}$, $U_{ij} = T_{ij} - \bar{T}_{ij}$, $V_{ijk} = \nabla_i T_{jk} - \bar{\nabla}_i \bar{T}_{jk}$ and $S_{ijkl} = R_{ijkl} - \bar{R}_{ijkl}$.

We begin by deriving inequalities for the derivatives of the quantities in the integrand defining $\mathcal{E}(t)$.

Lemma 6.2. We have the following inequalities:

$$
\left| \frac{\partial}{\partial t} \phi(t) \right|_{g(t)} \leq C(|V(t)|_{g(t)} + |A(t)|_{g(t)}); \tag{6.4}
$$

$$
\left| \frac{\partial}{\partial t} h(t) \right|_{g(t)} \leq C(|S(t)|_{g(t)} + |h(t)|_{g(t)} + |U(t)|_{g(t)}); \tag{6.5}
$$

$$
\left| \frac{\partial}{\partial t} A(t) \right|_{g(t)} \leq C(|A(t)|_{g(t)} + |h(t)|_{g(t)}
+ |U(t)|_{g(t)} + |V(t)|_{g(t)} + |\nabla S(t)|_{g(t)}); \tag{6.6}
$$

$$
\left| \frac{\partial}{\partial t} U(t) \right|_{g(t)} \leq C(|\phi(t)|_{g(t)} + |A(t)|_{g(t)} + |U(t)|_{g(t)} + |S(t)|_{g(t)}
+ |\nabla V(t)|_{g(t)} + |V(t)|_{g(t)}); \tag{6.7}
$$

$$
\left| \frac{\partial}{\partial t} V(t) + \Delta V(t) - \text{div} \mathcal{V}(t) \right|_{g(t)} \nabla \mathcal{V}(t) \right}_{g(t)}
\leq C(|V(t)|_{g(t)} + |A(t)|_{g(t)} + |U(t)|_{g(t)} + |S(t)|_{g(t)}
+ |\phi(t)|_{g(t)} + |\nabla S(t)|_{g(t)} + |\nabla V(t)|_{g(t)}), \tag{6.8}
$$

where \mathcal{V} given by $\mathcal{V}_{ijk} = (g^{ab} \nabla_b - g^{ab} \bar{\nabla}_b) \nabla_i \bar{T}_{jk}$ satisfies

$$
|\mathcal{V}(t)|_{g(t)} \leq C(|h(t)|_{g(t)} + |A(t)|_{g(t)}); \tag{6.8}
$$

and

$$
\left| \frac{\partial}{\partial t} S(t) - \Delta S(t) - \text{div} S(t) \right|_{g(t)}
\leq C(|V(t)|_{g(t)} + |A(t)|_{g(t)} + |U(t)|_{g(t)} + |S(t)|_{g(t)} + |\nabla V(t)|_{g(t)}). \tag{6.9}
$$
where $S_{ijk}^a = (g^{ab} \nabla_b \tilde{g}^{cd} \nabla_c \tilde{g} + \tilde{g}^{cd} \nabla_c g) R_{ijkl}^a$ satisfies

$$|S(t)|_{g(t)} \leq C(|h(t)|_{g(t)} + |A(t)|_{g(t)}).$$

In the above inequalities, ∇, Δ and div are the Levi-Civita connection, Laplacian and divergence on M with respect to $g(t)$ and C denotes uniform constants depending on K_1 given in (6.2).

Proof. We have the following basic facts:

$$g^{ij} - \tilde{g}^{ij} = -g^{ik} \tilde{g}^{jl} h_{kl}, \quad \nabla_i h_{jk} = A_{ij}^l \tilde{g}_{lk} + A_{jk}^l \tilde{g}_{il}, \quad \nabla_k \tilde{g}^{ij} = A_{kl}^i \tilde{g}^{jl} + A_{kl}^j \tilde{g}^{il}.$$

The above equations can be expressed schematically as

$$g^{-1} - \tilde{g}^{-1} = \tilde{g}^{-1} h, \quad \nabla h = A \tilde{g}, \quad \nabla \tilde{g}^{-1} = \tilde{g}^{-1} A. \quad (6.10)$$

We now calculate the evolution equations of ϕ, h, A, U on $M \times [0, \epsilon]$.

From the Laplacian flow equation (1.1) and (2.20), we have

$$\frac{\partial}{\partial t} \phi = \Delta \phi - \Delta \tilde{\phi} = d\tau - d\tilde{\tau}.$$

This satisfies the estimate

$$\left| \frac{\partial}{\partial t} \phi \right|_{g(t)} \leq C|\nabla U(t)|_{g(t)} + C|\nabla T - \nabla \tilde{T} + (\nabla - \nabla) \tilde{T}|_{g(t)}$$

$$\leq C|V(t)|_{g(t)} + C|A(t)|_{g(t)} |\tilde{T}|_{g(t)} \leq C|V(t)|_{g(t)} + |A(t)|_{g(t)} ,$$

where we used the fact that $|\tilde{T}|_{g(t)}$ is bounded due to Lemma 6.1. We thus obtain the inequality (6.4).

From the evolution equation (3.6) for the metric, we have in coordinates

$$\frac{\partial}{\partial t} h_{ik} = -2(R_{ik} - \tilde{R}_{ik}) - \frac{2}{3}(|\tilde{T}|^2_{g(t)} g_{ik} - |\tilde{T}|^2_{\tilde{g}(t)} g_{ik}) - 4(T_{ij}^l T_{jk} - \tilde{T}_{ij}^l \tilde{T}_{jk})$$

$$= -2S_{ij}^k - \frac{2}{3} |\tilde{T}|^2_{g(t)} h_{ij} - \frac{2}{3} ((|\tilde{T}|^2_{g(t)} - |\tilde{T}|^2_{\tilde{g}(t)}) g_{ij}$$

$$- 4(g^{il} T_{il} T_{jk} - \tilde{g}^{il} \tilde{T}_{il} \tilde{T}_{jk}). \quad (6.11)$$

Since

$$|\tilde{T}|^2_{\tilde{g}(t)} - |\tilde{T}|^2_{g(t)} = T_{ij} T_{kl} g^{ik} g^{jl} - \tilde{T}_{ij} \tilde{T}_{kl} \tilde{g}^{ik} \tilde{g}^{jl}$$

$$= (T_{ij} + \tilde{T}_{ij}) U_{kl} g^{ik} g^{jl} + \tilde{T}_{ij} \tilde{T}_{kl} \tilde{g}^{ik} (g^{jl} - \tilde{g}^{jl})$$

$$= (T + \tilde{T}) \ast U + \tilde{T} \ast \tilde{g}^{-1} \ast \tilde{g}^{-1} \ast h$$

and

$$g^{il} T_{il} T_{jk} - \tilde{g}^{il} \tilde{T}_{il} \tilde{T}_{jk} = U_{il} T_{jk} g^{il} + \tilde{T}_{il} U_{jk} g^{jl} + (g^{il} - \tilde{g}^{il}) \tilde{T}_{il} \tilde{T}_{jk}$$

$$= (T + \tilde{T}) \ast U + \tilde{T} \ast \tilde{g}^{-1} \ast \tilde{g}^{-1} \ast h,$$

we obtain from (6.11) that

$$\frac{\partial}{\partial t} h = -2S - \frac{2}{3} |\tilde{T}|^2_{\tilde{g}} h + (T + \tilde{T}) \ast U \ast h + (T + \tilde{T}) \ast \tilde{g} \ast \tilde{T} \ast \tilde{g}^{-1} \ast h. \quad (6.12)$$

Then (6.5) follows from (6.12) and Lemma 6.1.

Recall that under any evolution (3.14) of $g(t)$, the connection evolves by

$$\frac{\partial}{\partial t} \Gamma_{ij}^k = \frac{1}{2} g^{kl} (\nabla_i \eta_{jl} + \nabla_j \eta_{il} - \nabla_l \eta_{ij}).$$
Thus, using (3.6), the tensor $A_{ij}^k = \Gamma_{ij}^k - \overline{\Gamma}_{ij}^k$ satisfies
\[
\frac{\partial}{\partial t}A = \tilde{g}^{-1} \ast \tilde{\nabla} \big(\text{Ric} + \frac{1}{3} |\tilde{T}|_g^2 \tilde{g} + \tilde{T} \ast \tilde{T} \big) - \tilde{g}^{-1} \ast \tilde{\nabla} \big(\text{Ric} + \frac{1}{3} |\tilde{T}|_g^2 \tilde{g} + \tilde{T} \ast \tilde{T} \big)
\]
\[
= (\tilde{g}^{-1} - \tilde{g}^{-1}) \ast \tilde{\nabla} \text{Rm} + (\tilde{\nabla} - \nabla) \ast \text{Rm} + \tilde{g}^{-1} \ast \nabla (\tilde{\text{Rm}} - \text{Rm})
\]
\[
+ (\tilde{g}^{-1} - \tilde{g}^{-1}) \ast \tilde{T} \ast \tilde{\nabla} \tilde{T} \ast \tilde{g}^{-1} + \tilde{\nabla} \tilde{T} \ast \tilde{\nabla} \tilde{T} \ast \tilde{g}^{-1}
\]
\[
+ \tilde{\nabla} \tilde{T} \ast (\tilde{T} - T) \ast \tilde{g}^{-1} + \tilde{\nabla} \tilde{T} \ast T \ast (\tilde{g}^{-1} - \tilde{g}^{-1})
\]
\[
= \tilde{g}^{-1} \ast \tilde{\nabla} \text{Rm} + A \ast \text{Rm} + \tilde{g}^{-1} \ast \nabla \tilde{S} + \tilde{g}^{-1} \ast h \ast \tilde{T} \ast \tilde{\nabla} \tilde{T} \ast \tilde{g}^{-1}
\]
\[
+ V \ast \tilde{T} \ast \tilde{g}^{-1} + \tilde{\nabla} \tilde{T} \ast U \ast \tilde{g}^{-1} + \tilde{\nabla} \tilde{T} \ast T \ast \tilde{g}^{-1} \ast h,
\]
which gives (6.13).

From the evolution equation (3.13) of T, we have
\[
\frac{\partial}{\partial t}U = \frac{\partial}{\partial t}T - \frac{\partial}{\partial t} \tilde{T}
\]
\[
= A \ast \tilde{\nabla} T + \tilde{\nabla} V + S \ast (\tilde{T} + \tilde{T} \ast \tilde{\psi}) + U \ast (\text{Rm} + \text{Rm} \ast \tilde{\psi})
\]
\[
+ \text{Rm} \ast T \ast (\tilde{\psi} - \psi) + V \ast \tilde{T} \ast \tilde{\phi} + \tilde{\nabla} \tilde{T} \ast U \ast \tilde{\phi}
\]
\[
+ \tilde{\nabla} T \ast T \ast \phi + U \ast (T \ast T + \tilde{T} \ast T + \tilde{T} \ast \tilde{T}).
\]

Noting that
\[
|\tilde{\psi} - \psi| \leq C|\tilde{\phi} - \phi| = C|\phi|,
\]
we see that (6.7) follows from the evolution equation for U.

We next compute the evolution of V using (4.2):
\[
\frac{\partial}{\partial t}V = \frac{\partial}{\partial t} \tilde{\nabla} T - \frac{\partial}{\partial t} \tilde{\nabla} \tilde{T}
\]
\[
= \Delta V + \nabla_a (g^{ab} \nabla_b \tilde{\nabla} \tilde{T} - \tilde{g}^{ab} \tilde{\nabla} \tilde{\nabla} \tilde{T}) + A \ast \tilde{\nabla} \tilde{T}
\]
\[
+ (A \ast \text{Rm} + \nabla S) \ast (\tilde{T} + \tilde{T} \ast \tilde{\psi}) + \nabla \text{Rm} \ast (U + U \ast \psi + T \ast (\tilde{\psi} - \psi))
\]
\[
+ V \ast (\tilde{\text{Rm}} + \tilde{\text{Rm}} \ast \psi) + \nabla \tilde{T} \ast (S + S \ast \psi + \text{Rm} \ast (\tilde{\psi} - \psi))
\]
\[
+ S \ast \tilde{T}^2 \ast \tilde{\phi} + \text{Rm} \ast U \ast (T + \tilde{T}) \ast \tilde{\phi} + \text{Rm} \ast T^2 \ast \phi
\]
\[
+ (A \ast \tilde{\nabla} \tilde{T} + \nabla V) \ast T \ast \phi + \tilde{\nabla} T \ast U \ast \tilde{\phi} + \tilde{\nabla} T \ast T \ast \phi
\]
\[
+ V \ast (\tilde{\nabla} \tilde{T} + T \ast \tilde{T}) \ast \tilde{\phi} + \nabla \tilde{T} \ast \nabla \tilde{T} \ast \phi + V \ast (\tilde{T}^2 + \tilde{T}^2 \ast \tilde{\psi})
\]
\[
+ \tilde{\nabla} T \ast T^2 \ast (\tilde{\psi} - \psi) + \tilde{\nabla} T \ast (T + \tilde{T}) \ast (U + U \ast \tilde{\psi}),
\]
where
\[
g^{ab} \nabla_b \tilde{\nabla} \tilde{T}_{jk} - \tilde{g}^{ab} \nabla_b \nabla_i \tilde{T}_{jk} = (\tilde{g}^{-1} \ast h \ast \tilde{\nabla} \tilde{T} + A \ast \tilde{\nabla} \tilde{T})_{ij}^a.
\]
We thus obtain (6.8) as claimed.

Finally, we compute the evolution of S using the evolution (3.18) for Rm:
\[
\frac{\partial}{\partial t}S = \frac{\partial}{\partial t} \text{Rm} - \frac{\partial}{\partial t} \overline{\text{Rm}}
\]
\[
= \Delta S + \nabla_a (g^{ab} \nabla_b \text{Rm} - \tilde{g}^{ab} \tilde{\nabla} \text{Rm}) + A \ast \tilde{\nabla} \text{Rm} + S \ast (\text{Rm} + \tilde{\text{Rm}})
\]
\[
+ S \ast T^2 + \tilde{\text{Rm}} \ast U \ast (T + \tilde{T}) + (A \ast \tilde{\nabla} \tilde{T} + \nabla V) \ast \tilde{T}
\]
\[
+ \tilde{\nabla} T \ast T \ast U + V \ast (\nabla T + \tilde{\nabla} \tilde{T}),
\]
We thus obtain (6.9) as required.

We now use Lemma 6.2 to obtain a differential inequality for $\mathcal{E}(t)$.

Lemma 6.3. The quantity $\mathcal{E}(t)$ defined by (6.3) satisfies

$$
\frac{d}{dt} \mathcal{E}(t) \leq C \mathcal{E}(t),
$$

where C is a uniform constant depending only on K_0 given in (6.1).

Proof. Under the curvature and torsion bounds (6.2), the evolution equations of the metric (3.6) and volume form (3.8) imply

$$
\left| \frac{\partial}{\partial t} g(t) \right|_{g(t)} \leq C, \quad \left| \frac{\partial}{\partial t} \text{vol}_{g(t)} \right|_{g(t)} \leq C. \tag{6.16}
$$

Then

$$
\frac{d}{dt} \mathcal{E}(t) \leq C \mathcal{E}(t) + 2 \int_M \left(\langle \phi(t), \frac{\partial}{\partial t} \phi(t) \rangle + \langle h(t), \frac{\partial}{\partial t} h(t) \rangle + \langle A(t), \frac{\partial}{\partial t} A(t) \rangle + \langle U(t), \frac{\partial}{\partial t} U(t) \rangle + \langle V(t), \frac{\partial}{\partial t} V(t) \rangle + \langle S(t), \frac{\partial}{\partial t} S(t) \rangle \right) \text{vol}_{g(t)}.
$$

Using Lemma 6.2, we may calculate the required estimate directly:

$$
\frac{d}{dt} \mathcal{E}(t) \leq C \mathcal{E}(t) + C \int_M \left(|\phi(t)|^2_{g(t)} + |h(t)|^2_{g(t)} + |A(t)|^2_{g(t)}
+ |U(t)|^2_{g(t)} + |V(t)|^2_{g(t)} + |S(t)|^2_{g(t)} \right) \text{vol}_{g(t)}

- \int_M (|\nabla S(t)|^2 + |\nabla V(t)|^2) \text{vol}_{g(t)}

+ C \int_M |\nabla V(t)||h(t)| + |A(t)| + |U(t)| + |V(t)| + |S(t)| \text{vol}_{g(t)}

+ C \int_M |\nabla S(t)||h(t)| + |A(t)| + |V(t)| \text{vol}_{g(t)}

\leq C \mathcal{E}(t),
$$

where in the last inequality we used Cauchy–Schwarz, particularly to use the negative third integral in the inequality to crucially cancel the terms involving ∇V and ∇S arising from the fourth and fifth integrals. \[\square \]

The forward uniqueness property in Theorem 1.4 now follows immediately from Lemma 6.3. If $\varphi(s) = \tilde{\varphi}(s)$ for some $s \in [0, \epsilon]$, then $\mathcal{E}(s) = 0$. Thus for $t \in [s, \epsilon]$, we can integrate the differential inequality in Lemma 6.3 to obtain

$$
\mathcal{E}(t) \leq e^{C(t-s)} \mathcal{E}(s) = 0,
$$

which implies that $\varphi(t) = \tilde{\varphi}(t)$ for all $t \in [s, \epsilon]$ as required.
6.2. Backward uniqueness. To complete the proof of Theorem 1.4, we need to show backward uniqueness of the flow: i.e. if \(\varphi(s) = \tilde{\varphi}(s) \) for some \(s \in [0, \varepsilon] \), then \(\varphi(t) = \tilde{\varphi}(t) \) for all \(t \in [0, s] \). To this end, we apply a general backward uniqueness theorem [26, Theorem 3.1] for time-dependent sections of vector bundles satisfying certain differential inequalities. Since we only consider compact manifolds, we state [26, Theorem 3.1] here for this setting.

Theorem 6.4. Let \(M \) be a compact manifold and \(g(t), t \in [0, \varepsilon] \) be a family of smooth Riemannian metrics on \(M \) with Levi-Civita connection \(\nabla = \nabla_{g(t)} \). Assume that there exists a positive constant \(C \) such that

\[
\left| \frac{\partial}{\partial t} g(t) \right|_{g(t)}^2 + \left| \nabla \frac{\partial}{\partial t} g(t) \right|_{g(t)}^2 \leq C, \quad \left| \frac{\partial}{\partial t} g^{-1}(t) \right|_{g(t)}^2 + \left| \nabla \frac{\partial}{\partial t} g^{-1}(t) \right|_{g(t)}^2 \leq C,
\]

and that the Ricci curvature of the metric \(g(t) \) is bounded below by a uniform constant, i.e. \(\text{Ric}(g(t)) \geq -Kg(t) \) for some \(K \geq 0 \). Let \(X \) and \(Y \) be finite direct sums of the bundles \(T_k^0(M) \), and \(X(t) \in C^\infty(X) \), \(Y(t) \in C^\infty(Y) \), for \(t \in [0, \varepsilon] \), be smooth families of sections satisfying

\[
\left(\frac{\partial}{\partial t} - \Delta_{g(t)} \right) X(t) \bigg|_{g(t)}^2 \leq C \left(|X(t)|_{g(t)}^2 + |\nabla X(t)|_{g(t)}^2 + |Y(t)|_{g(t)}^2 \right), \quad (6.17)
\]

\[
\left(\frac{\partial}{\partial t} \right) Y(t) \bigg|_{g(t)}^2 \leq C \left(|X(t)|_{g(t)}^2 + |\nabla X(t)|_{g(t)}^2 + |Y(t)|_{g(t)}^2 \right), \quad (6.18)
\]

for some constant \(C \geq 0 \), where \(\Delta_{g(t)} X(t) = g^{ij}(t) \nabla_i \nabla_j X(t) \) is the Laplacian with respect to \(g(t) \) acting on tensors. Then \(X(\varepsilon) \equiv 0 \), \(Y(\varepsilon) \equiv 0 \) implies \(X(t) \equiv 0 \), \(Y(t) \equiv 0 \) on \(M \) for all \(t \in [0, \varepsilon] \).

Suppose \(\varphi(s) = \tilde{\varphi}(s) \) for some \(s \in [0, \varepsilon] \). For our purpose, we let

\[
X(t) = U(t) \oplus V(t) \oplus W(t) \oplus S(t) \oplus Q(t), \quad (6.19)
\]

\[
Y(t) = \phi(t) \oplus h(t) \oplus A(t) \oplus B(t), \quad (6.20)
\]

where \(\phi, h, A, U, V, S \) are defined as in §6.1 and

\[
B = \nabla A, \quad W = \nabla^2 T - \tilde{\nabla}^2 \tilde{T}, \quad Q = \nabla Rm - \tilde{\nabla} \tilde{R}m.
\]

Then

\[
X(t) \in T_2(M) \oplus T_3(M) \oplus T_4(M) \oplus T_3^1(M) \oplus T_4^1(M)
\]

\[
Y(t) \in T_3(M) \oplus T_2(M) \oplus T_2^1(M) \oplus T_3^1(M).
\]

To be able to apply Theorem 6.4, we need to show that \(X(t) \), \(Y(t) \) defined in (6.19)–(6.20) satisfy the system of differential inequalities (6.17)–(6.18).

We begin with the following.

Lemma 6.5. The quantities \(\phi, h, A, U, V, S, B, W, Q \) defined above are uniformly bounded with respect to \(g(t) \) on \(M \times [0, \varepsilon] \).

Proof. At the beginning of this section, we argued that the metrics \(g(t) \) and \(\tilde{g}(t) \) are uniformly equivalent on \(M \times [0, \varepsilon] \). We immediately deduce
that $|h(t)|_{g(t)} = |g(t) - \tilde{g}(t)|_{g(t)}$ is bounded. From (6.2) and the uniform equivalence of $g(t)$ and $\tilde{g}(t)$, we further have

$$|V|_{g(t)} = |\nabla T - \tilde{\nabla} \tilde{T}|_{g(t)}, \quad |S|_{g(t)} = |Rm - \tilde{Rm}|_{g(t)},$$

$$|W|_{g(t)} = |\nabla^2 T - \tilde{\nabla}^2 \tilde{T}|_{g(t)}, \quad |Q|_{g(t)} = |\nabla Rm - \tilde{\nabla} \tilde{Rm}|_{g(t)}$$

are bounded on $M \times [0, \epsilon]$. Recall $|T|_{g}^2 = -R$, where R is the scalar curvature of g. Thus we also have that $|U|_{g(t)} = |T - \tilde{T}|_{g(t)}$ is bounded on $M \times [0, \epsilon]$.

Since $\varphi(s) = \tilde{\varphi}(s)$ for some $s \in [0, \epsilon]$, we have

$$|\phi(t)|_{g(t)} = |\varphi(t) - \tilde{\varphi}(t)|_{g(t)}$$

$$\leq |\varphi(t) - \varphi(s)|_{g(t)} + |\varphi(s) - \tilde{\varphi}(t)|_{g(t)}$$

$$\leq \left| \int_{t}^{s} \frac{\partial}{\partial u} \varphi(u) du \right|_{g(t)} + \left| \int_{t}^{s} \frac{\partial}{\partial u} \tilde{\varphi}(u) du \right|_{g(t)}$$

$$\leq C \left| \int_{t}^{s} |\Delta \varphi(u)|_{g(u)} + |\Delta \tilde{\varphi}(u)|_{\tilde{g}(u)} du \right| \leq C \epsilon,$n

where C is a uniform constant depending on K_1, and we used the uniform equivalence of $g(t)$ and $\tilde{g}(t)$ on $M \times [0, \epsilon]$.

Finally, we show A, B are bounded on $M \times [0, \epsilon]$. Since $A(s) = 0$, we have

$$|A(t)|_{g(t)} = |A(t) - A(s)|_{g(t)} \leq \int_{t}^{s} \left| \frac{\partial}{\partial u} A(u) \right|_{g(u)} du$$

$$\leq C \left| \int_{t}^{s} \tilde{g}^{-1} \tilde{\nabla} (\tilde{Ric} + \frac{1}{3} \tilde{T} \tilde{g} + \tilde{T} \ast \tilde{T}) - g^{-1} \nabla (Ric + \frac{1}{3} T g + T \ast T) \right|_{g(u)} du$$

$$\leq C \epsilon,$n

where we used (6.2), (6.13) and the uniform equivalence of $g(t)$ and $\tilde{g}(t)$. Similarly, we can bound $B = \nabla A$ on $M \times [0, \epsilon]$.

We derived the evolution equations of ϕ, h, A, U, V, S in §6.1, so now we compute the evolutions of B, W, Q.

Lemma 6.6. We have the following estimates on the evolution of B, W, Q:

$$\left| \frac{\partial}{\partial t} B(t) \right|_{g(t)}^2 \leq C \left(|h(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 + |B(t)|_{g(t)}^2 + |\nabla Q(t)|_{g(t)}^2 \right) + |U(t)|_{g(t)}^2 + |\nabla U(t)|_{g(t)}^2 + |\nabla V(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2 ; \quad (6.21)$$

$$\left| \frac{\partial}{\partial t} W(t) - \Delta W(t) \right|_{g(t)}^2 \leq C \left(|A(t)|_{g(t)}^2 + |B(t)|_{g(t)}^2 + |Q(t)|_{g(t)}^2 + |\nabla Q(t)|_{g(t)}^2 \right) + |\phi(t)|_{g(t)}^2 + |U(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2$$

$$+ |S(t)|_{g(t)}^2 + |W(t)|_{g(t)}^2 + |\nabla W(t)|_{g(t)}^2 ; \quad (6.22)$$

$$\left| \frac{\partial}{\partial t} Q(t) - \Delta Q(t) \right|_{g(t)}^2 \leq C \left(|A(t)|_{g(t)}^2 + |B(t)|_{g(t)}^2 + |Q(t)|_{g(t)}^2 + |S(t)|_{g(t)}^2 \right) + |U(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2 + |W(t)|_{g(t)}^2 + |\nabla W(t)|_{g(t)}^2 ; \quad (6.23)$$
Proof. Since A, as a difference of connections, is a tensor, \((4.1)\) gives
\[
\frac{\partial}{\partial t} B = \frac{\partial}{\partial t} \nabla A = \nabla \frac{\partial}{\partial t} A + A \ast \nabla \frac{\partial}{\partial t} \alpha.
\]
From \((6.10)\), \((6.13)\), Lemma 6.1 and Lemma 6.5, we then have
\[
\left| \frac{\partial}{\partial t} B(t) \right|_{g(t)}^2 \leq C \left(|h(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 + |\nabla^2 S(t)|_{g(t)}^2 + |\nabla U(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2 \right)
\]
\[
\leq C \left(|h(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 + |\nabla Q(t)|_{g(t)}^2 + |\nabla U(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2 + |\nabla V(t)|_{g(t)}^2 \right),
\]
where in the last inequality we used
\[
|\nabla^2 S(t)|_{g(t)}^2 = |\nabla^2\left(Rm(t) - \tilde{R}m(t) \right)_{g(t)}^2
\]
\[
= \nabla(\nabla Rm(t) - \tilde{\nabla} \tilde{R}m(t)) + \nabla(\nabla - \tilde{\nabla}) \tilde{R}m(t)_{g(t)}^2
\]
\[
\leq C \left(|\nabla Q(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 + |A(t)|_{g(t)}^2 \right).
\]
This gives the inequality \((6.21)\).

The inequalities \((6.22)\) and \((6.23)\) follow from similar calculations using \((4.8)\) and \((4.10)\).

We now observe from \((6.8)\), \((6.9)\), \((6.14)\) and \((6.15)\) that we have:
\[
\left| \frac{\partial}{\partial t} V(t) - \Delta V(t) \right|_{g(t)}^2 \leq C \left(|A(t)|_{g(t)}^2 + |B(t)|_{g(t)}^2 + |S(t)|_{g(t)}^2 + |\nabla S(t)|_{g(t)}^2 \right.
\]
\[
+ |\phi(t)|_{g(t)}^2 + |U(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2 + |\nabla V(t)|_{g(t)}^2 \right);
\]
\[
\left(6.24\right)
\]
\[
\left| \frac{\partial}{\partial t} S(t) - \Delta S(t) \right|_{g(t)}^2 \leq C \left(|A(t)|_{g(t)}^2 + |B(t)|_{g(t)}^2 + |S(t)|_{g(t)}^2 \right.
\]
\[
+ |U(t)|_{g(t)}^2 + |V(t)|_{g(t)}^2 + |\nabla V(t)|_{g(t)}^2 \right);
\]
\[
\left(6.25\right)
\]
Combining Lemma 6.2, Lemma 6.6, \((6.24)\) and \((6.25)\), we see that $X(t)$ and $Y(t)$ defined in \((6.19)\)–\((6.20)\) satisfy the system of differential inequalities \((6.17)\)–\((6.18)\) in Theorem 6.4. Since M is compact and we have the estimates \((6.2)\), the remaining required conditions in Theorem 6.4 are satisfied.

Hence, if $\varphi(s) = \tilde{\varphi}(s)$ at some time $s \in [0, \varepsilon]$, then $X(s) = Y(s) = 0$ and thus, by Theorem 6.4, $X(t) = Y(t) = 0$ for all $t \in [0, s]$. This in turn implies $\varphi(t) = \tilde{\varphi}(t)$ for all $t \in [0, s]$, which is the claimed backward uniqueness property in Theorem 1.4.

6.3. Applications. We finish this section with two applications of Theorem 1.4: specifically, to the isotropy subgroup of the G_2 structure under the flow, and to solitons.

Let M be a 7-manifold and let \mathcal{D} be the group of diffeomorphisms of M isotopic to the identity. For a G_2 structure φ on M, we let I_φ denote
the subgroup of D fixing φ. We now study the behaviour of I_φ under the Laplacian flow.

Corollary 6.7. Let $\varphi(t)$ be a solution to the Laplacian flow (1.1) on a compact manifold M for $t \in [0, \epsilon]$. Then $I_{\varphi(t)} = I_{\varphi(0)}$ for all $t \in [0, \epsilon]$.

Proof. Let $\Psi \in I_{\varphi(0)}$ and $\tilde{\varphi}(t) = \Psi^* \varphi(t)$. Then $\tilde{\varphi}(t)$ is closed for all t and

$$\frac{\partial}{\partial t} \tilde{\varphi}(t) = \Psi^* \left(\frac{\partial}{\partial t} \varphi(t) \right) = \Psi^* (\Delta \varphi(t) \varphi(t)) = \Delta \Psi^* \varphi(t) \Psi^* \varphi(t) = \Delta \varphi(t) \tilde{\varphi}(t),$$

so $\tilde{\varphi}(t)$ is also a solution to the flow (1.1). Since $\tilde{\varphi}(0) = \Psi^* \varphi(0) = \varphi(0)$ as $\Psi \in I_{\varphi(0)}$, the forward uniqueness in Theorem 1.4 implies that $\tilde{\varphi}(t) = \varphi(t)$ for all $t \in [0, \epsilon]$. Thus, $\Psi \in I_{\varphi(t)}$ for all $t \in [0, \epsilon]$.

Similarly, using the backward uniqueness in Theorem 1.4, we can show if $s \in [0, \epsilon]$ and $\Psi \in I_{\varphi(s)}$, then $\Psi \in I_{\varphi(t)}$ for all $t \in [0, s]$. Therefore, for all $t \in [0, \epsilon]$, $I_{\varphi(0)} \subset I_{\varphi(t)} \subset I_{\varphi(0)}$, which means $I_{\varphi(t)} = I_{\varphi(0)}$. □

Irreducible compact G_2 manifolds (M, φ) have I_φ finite, and it is often trivial in examples. Corollary 6.7 thus gives an immediate test on a closed G_2 structure φ_0 to determine when the Laplacian flow starting at φ_0 can converge to an irreducible torsion-free G_2 structure.

We can also use Theorem 1.4 in a straightforward way to deduce the following result, which says that any Laplacian flow satisfying the Laplacian soliton equation at some time must in fact be a Laplacian soliton.

Corollary 6.8. Suppose $\varphi(t)$ is a solution to the Laplacian flow (1.1) on a compact manifold M for $t \in [0, \epsilon]$. If for some time $s \in [0, \epsilon]$, $\varphi(s)$ satisfies the Laplacian soliton equation (1.8) for some $\lambda \in \mathbb{R}$ and vector field X on M, then there exists a family of diffeomorphisms ϕ_t and a scaling factor $\rho(t)$ with $\phi_s = \text{id}$ and $\rho(s) = 1$ such that $\varphi(t) = \rho(t) \phi_t^* \varphi(s)$ on $M \times [0, \epsilon]$.

7. Compactness

In this section, we prove a Cheeger–Gromov-type compactness theorem for solutions to the Laplacian flow for closed G_2 structures.

7.1. Compactness for G_2 structures. We begin by proving a compactness theorem for the space of G_2 structures.

Let M_i be a sequence of 7-manifolds and let $p_i \in M_i$ for each i. Suppose that φ_i is a G_2 structure on M_i for each i such that the associated metrics g_i on M_i are complete. Let M be a 7-manifold with $p \in M$ and let φ be a G_2 structure on M. We say that

$$(M_i, \varphi_i, p_i) \to (M, \varphi, p) \quad \text{as } i \to \infty$$

if there exists a sequence of compact subsets $\Omega_i \subset M$ exhausting M with $p \in \text{int}(\Omega_i)$ for each i, a sequence of diffeomorphisms $F_i : \Omega_i \to F_i(\Omega_i) \subset M_i$ with $F_i(p) = p_i$ such that

$$F_i^* \varphi_i \to \varphi \quad \text{as } i \to \infty,$$

in the sense that $F_i^* \varphi_i - \varphi$ and its covariant derivatives of all orders (with respect to any fixed metric) converge uniformly to zero on every compact subset of M.

We may thus give our compactness theorem for G_2 structures.
Theorem 7.1. Let \(M_i \) be a sequence of smooth 7-manifolds and for each \(i \) we let \(p_i \in M_i \) and \(\varphi_i \) be a \(G_2 \) structure on \(M_i \) such that the metric \(g_i \) on \(M_i \) induced by \(\varphi_i \) is complete on \(M_i \). Suppose that
\[
\sup_{i} \sup_{x \in M_i} \left(|\nabla_{g_i}^{k+1} T_i(x)|_{g_i}^2 + |\nabla_{g_i}^k Rm_{g_i}(x)|_{g_i}^2 \right)^{\frac{1}{2}} < \infty \quad (7.1)
\]
for all \(k \geq 0 \) and
\[
\inf \text{inf}(M_i, g_i, p_i) > 0,
\]
where \(T_i, Rm_{g_i} \) are the torsion and curvature tensor of \(\varphi_i \) and \(g_i \), respectively, and \(\text{inf}(M_i, g_i, p_i) \) denotes the injectivity radius of \((M_i, g_i)\) at \(p_i \).

Then there exists a 7-manifold \(M \), a \(G_2 \) structure \(\varphi \) on \(M \) and a point \(p \in M \) such that, after passing to a subsequence, we have
\[
(M_i, \varphi_i, p_i) \to (M, \varphi, p) \quad \text{as } i \to \infty.
\]

Proof. In the proof we always use the convention that, after taking a subsequence, we will continue to use the index \(i \).

By the Cheeger-Gromov compactness theorem [20, Theorem 2.3] for complete pointed Riemannian manifolds, there exists a complete Riemannian 7-manifold \((M, g)\) and \(p \in M \) such that, after passing to a subsequence,
\[
(M_i, g_i, p_i) \to (M, g, p) \quad \text{as } i \to \infty. \quad (7.2)
\]
The convergence in (7.2) means that, as above, there exist nested compact sets \(\Omega_i \subset M \) exhausting \(M \) with \(p \in \text{int}(\Omega_i) \) for all \(i \) and diffeomorphisms \(F_i : \Omega_i \to F_i(\Omega_i) \subset M_i \) with \(F_i(p) = p_i \) such that \(F_i^* g_i \to g \) smoothly as \(i \to \infty \) on any compact subset of \(M \).

Fix \(i \) sufficiently large. For \(j \geq 0 \) we have \(\Omega_i \subset \Omega_{i+j} \) and a diffeomorphism \(F_{i+j} : \Omega_{i+j} \to F_{i+j}(\Omega_{i+j}) \subset M_{i+j} \). We can then define a restricted diffeomorphism
\[
F_{i,j} = F_{i+j}|_{\Omega_i} : \Omega_i \to F_{i+j}(\Omega_i) \subset M_{i+j} \quad \text{for all } j \geq 0.
\]
The convergence (7.2) implies that the sequence \(\{g_{i,j} = F_{i,j}^* g_{i+j}\}_{j=0}^{\infty} \) of Riemannian metrics on \(\Omega_i \) converges to \(g_{i,\infty} = g \) on \(\Omega_i \) as \(j \to \infty \).

Let \(\nabla, \nabla_{g_{i,j}} \) be the Levi-Civita connections of \(g, g_{i,j} \) on \(\Omega_i \) respectively. As before, let \(h = g - g_{i,j} \) and \(A = \nabla - \nabla_{g_{i,j}} \) be the difference of the metrics and their connections, respectively. It is straightforward to see locally that
\[
A_{ab}^c = \frac{1}{2} (g_{i,j})^{cd} (\nabla_a h_{bd} + \nabla_b h_{ad} - \nabla_d h_{ab}).
\]
Since \(g_{i,j} \to g \) smoothly on \(\Omega_i \) as \(j \to \infty \), \(g_{i,j} \) and \(g \) are equivalent for sufficiently large \(j \), and \(|\nabla^k h|_g \) tends to zero as \(j \to \infty \) for all \(k \geq 0 \). Hence, \(A \) is uniformly bounded with respect to \(g \) for all large \(j \). Moreover,
\[
\nabla^{(k)} A_{ab}^c = \frac{1}{2} \sum_{l=1}^{k} \nabla^{(k-1-l)} (g_{i,j})^{cd} (\nabla^{(l)} A_{ab}^d + \nabla^{(l)} A_{bd}^a - \nabla^{(l)} A_{ad}^b)
\]
\[
= - \frac{1}{2} \sum_{l=1}^{k} \nabla^{(k-1-l)} h^{cd} (\nabla^{(l)} A_{ab}^d + \nabla^{(l)} A_{bd}^a - \nabla^{(l)} A_{ad}^b).
\]
Thus there exist constants \(c_k \) for \(k \geq 0 \) such that \(|\nabla^k A|_g \leq c_k \) for all \(j \geq 0 \).
Using each diffeomorphism $F_{i,j}$, we can define a G_2 structure $\varphi_{i,j} = F_{i,j}^{*} \varphi_{i+j}$ on Ω_i by pulling back the G_2 structure φ_{i+j} on M_{i+j}. We next estimate $|\nabla^k \varphi_{i,j}|_g$. First, since g and $g_{(i,j)}$ are all equivalent for large j, $|\varphi_{i,j}|_g \leq c_0 |\varphi_{i,j}|_{g_{i,j}} \leq 7c_0 = \tilde{c}_0$ for some constants c_0, \tilde{c}_0. We next observe trivially that

$$\nabla \varphi_{i,j} = \nabla_{g_{i,j}} \varphi_{i,j} + (\nabla - \nabla_{g_{i,j}})\varphi_{i,j},$$

so, since A is uniformly bounded, there is a constant \tilde{c}_1 such that

$$|\nabla \varphi_{i,j}|_g \leq c_0 |\nabla_{g_{i,j}} \varphi_{i,j}|_{g_{i,j}} + C|A|_g |\varphi_{i,j}|_g \leq \tilde{c}_1.$$

Similarly, we have

$$\nabla^2 \varphi_{i,j} = \nabla^2_{g_{i,j}} \varphi_{i,j} + (\nabla - \nabla_{g_{i,j}})\nabla_{g_{i,j}} \varphi_{i,j} + \nabla(\nabla - \nabla_{g_{i,j}})\varphi_{i,j} + (\nabla - \nabla_{g_{i,j}})\nabla \varphi_{i,j},$$

and so, since $A, \nabla A$ are uniformly bounded, there is a constant \tilde{c}_2 such that

$$|\nabla^2 \varphi_{i,j}|_g \leq C|\nabla_{g_{i,j}} \varphi_{i,j}|_{g_{i,j}} + C|A|_g |\nabla_{g_{i,j}} \varphi_{i,j}|_g + C|\nabla A|_g |\varphi_{i,j}|_g \leq \tilde{c}_2.$$

For $k \geq 2$, we have the estimate

$$|\nabla^k \varphi_{i,j}|_g \leq C^k \sum_{l=0}^{k} |A|_g^l |\nabla^{(k-l)}_{g_{i,j}} \varphi_{i,j}|_{g_{i,j}} + C^{k-1} \sum_{l=1}^{k-1} |\nabla^l A|_g |\nabla^{(k-1-l)} \varphi_{i,j}|_g.$$

By an inductive argument, using the estimate $|\nabla^k A|_g \leq c_k$ and the assumption (7.1), we can show the existence of constants \tilde{c}_k for $k \geq 0$ such that $|\nabla^k \varphi_{i,j}|_g \leq \tilde{c}_k$ on Ω_i for all $j, k \geq 0$.

The Arzelà–Ascoli theorem (see, e.g. [2, Corollary 9.14]) now implies that there exists a 3-form $\varphi_{i,\infty}$ and a subsequence of $\varphi_{i,j}$ in j, which we still denote by $\varphi_{i,j}$, that converges to $\varphi_{i,\infty}$ smoothly on Ω_i, i.e.

$$|\nabla^k (\varphi_{i,j} - \varphi_{i,\infty})|_g \to 0 \quad \text{as } j \to \infty \quad (7.3)$$

uniformly on Ω_i for all $k \geq 0$.

Since each $\varphi_{i,j}$ is a G_2 structure on Ω_i with associated metric $g_{i,j}$, the 7-form valued bilinear form

$$B_{\varphi_{i,j}}(u, v) = \frac{1}{6} (u \wedge \varphi_{i,j}) \wedge (v \wedge \varphi_{i,j}) \wedge \varphi_{i,j}$$

is positive definite for each j and satisfies

$$g_{i,j}(u, v) vol_{g_{i,j}} = B_{\varphi_{i,j}}(u, v), \quad (7.4)$$

where u, v are any vector fields on $\Omega_i \subset M$. Letting $j \to \infty$ in (7.4) gives

$$g_{i,\infty}(u, v) vol_{g_{i,\infty}} = B_{\varphi_{i,\infty}}(u, v). \quad (7.5)$$

Since the Cheeger–Gromov compactness theorem guarantees the limit metric $g_{i,\infty} = g$ is a Riemannian metric on Ω_i, (7.5) implies that $\varphi_{i,\infty}$ is a positive 3-form and hence defines a G_2 structure on Ω_i with associated metric $g_{i,\infty} = g$.

We now denote the inclusion map of Ω_i into Ω_k for $k \geq i$ by

$$I_{ik} : \Omega_i \to \Omega_k, \quad \text{for } k \geq i.$$
For each Ω_k, we can argue as before to define $g_{k,j}, \varphi_{k,j}$ which converge to $g_{k,\infty}, \varphi_{k,\infty}$ respectively as $j \to \infty$, after taking a subsequence. By definition,

$$I^*_k g_{k,j} = g_{i,j} \quad \text{and} \quad I^*_k \varphi_{k,j} = \varphi_{i,j}.$$

Since I^*_k is independent of j, by taking $j \to \infty$ here we find that

$$I^*_k g_{k,\infty} = g_{i,\infty} \quad \text{and} \quad I^*_k \varphi_{k,\infty} = \varphi_{i,\infty}.$$

(7.6)

From (7.6), we see that there exists a 3-form φ on M, which is a G_2 structure with associated metric g, such that

$$I^*_k g = g_{i,\infty}, \quad I^*_k \varphi = \varphi_{i,\infty},$$

(7.7)

where $I_i : \Omega_i \to M$ is the inclusion map.

Finally, we show that (M_i, φ_i, p_i) converges to (M, φ, p). For any compact subset $\Omega \subset M$, there exists i_0 such that Ω is contained in Ω_i for all $i \geq i_0$. Fixing i such that $\Omega \subset \Omega_i$, on Ω we have by (7.3) that

$$|\nabla^k (F^*_i \varphi - \varphi)|_g = |\nabla^k (F^*_{i+j} \varphi_{i+j} - \varphi)|_g, \quad \text{where} \quad l = i + j,$$

$$= |\nabla^k (\varphi_{i+j} - \varphi_{i,\infty})|_g \to 0 \quad \text{as} \quad l \to \infty$$

for all $k \geq 0$, as required. \hfill \Box

7.2. Compactness for the Laplacian flow. Now we can prove Theorem 1.5, the compactness theorem for the Laplacian flow for closed G_2 structures, which we restate here for convenience.

Theorem 7.2. Let M_i be a sequence of compact 7-manifolds and let $p_i \in M_i$ for each i. Suppose that $\varphi_i(t)$ is a sequence of solutions to the Laplacian flow (1.1) for closed G_2 structures on M_i with the associated metric $g_i(t)$ on M_i for $t \in (a, b)$, where $-\infty \leq a < 0 < b \leq \infty$. Suppose further that

$$\sup_i \sup_{x \in M_i, t \in (a, b)} \left(|\nabla_{g_i(t)} T_i(x, t)|_{g_i(t)}^2 + |Rm_{g_i(t)}(x, t)|_{g_i(t)}^2 \right)^{\frac{1}{2}} < \infty,$$

(7.8)

where T_i and $Rm_{g_i(t)}$ denote the torsion and curvature tensors determined by $\varphi_i(t)$ respectively, and the injectivity radius of $(M_i, g_i(0))$ at p_i satisfies

$$\inf_i \text{inj}(M_i, g_i(0), p_i) > 0.$$

(7.9)

There exists a 7-manifold $M, p \in M$ and a solution $\varphi(t)$ of the flow (1.1) on M for $t \in (a, b)$ such that, after passing to a subsequence, we have

$$(M_i, \varphi_i(t), p_i) \to (M, \varphi(t), p) \quad \text{as} \quad i \to \infty.$$

The proof is an adaptation of Hamilton’s argument in the Ricci flow case [20].

Proof. By a usual diagonalization argument, without loss of generality, we can assume a, b are finite. From the Shi-type estimates in §4 and (7.8), we have

$$|\nabla^k_{g_i(t)} Rm_{g_i(t)}(x, t)|_{g_i(t)} + |\nabla^{k+1}_{g_i(t)} T_i(x, t)|_{g_i(t)} \leq C_k.$$

(7.10)

Assumption (7.9) allows us to apply Theorem 7.1 to extract a subsequence of $(M_i, \varphi_i(0), p_i)$ which converges to a complete limit $(M, \tilde{\varphi}_\infty(0), p)$ in the sense described above. Using the notation of Theorem 7.1, we have

$$F^*_i \varphi_i(0) \to \tilde{\varphi}_\infty(0)$$

for each Ω_k, we can argue as before to define $g_{k,j}, \varphi_{k,j}$ which converge to $g_{k,\infty}, \varphi_{k,\infty}$ respectively as $j \to \infty$, after taking a subsequence. By definition,
smoothly on any compact subset $\Omega \subset M$ as $i \to \infty$. Since each $\varphi_i(0)$ is
closed, we see that $d_{I} \bar{\varphi}_\infty(0) = 0$.

Let $\tilde{\varphi}_i(t) = F_t^* \varphi_i(t)$. Fix a compact subset $\Omega \times [c, d] \subset M \times (a, b)$, and let i be sufficiently large so that $\Omega \subset \Omega_i$, in the notation of Theorem 7.1. Then $\tilde{\varphi}_i(t)$ is a sequence of solutions of the Laplacian flow on $\Omega \subset M$ defined for $t \in [c, d]$, with associated metrics $\tilde{g}_i(t) = F_t^* g_i(t)$. By Claims 5.2 and 5.3, we may deduce from (7.10) that there exist constants C_k, independent of i, such that
\[
\sup_{\Omega \times [c, d]} \left(|\nabla^k_{\tilde{g}_i(0)} \tilde{g}_i(t)|_{\tilde{g}_i(0)} + |\nabla^k_{\tilde{g}_i(0)} \tilde{\varphi}_i(t)|_{\tilde{g}_i(0)} \right) \leq C_k. \tag{7.11}
\]
Recall that $\tilde{\varphi}_i(0)$ and $\tilde{g}_i(0)$ converge to $\bar{\varphi}_\infty(0)$ and $\bar{g}_\infty(0)$ uniformly, with all their covariant derivatives, on Ω. By a similar argument to the proof of Theorem 7.1, we can show from (7.11) that there are constants \bar{C}_k such that
\[
\sup_{\Omega \times [c, d]} \left(|\nabla^k_{\bar{g}_\infty(0)} \bar{g}_\infty(t)|_{\bar{g}_\infty(0)} + |\nabla^k_{\bar{g}_\infty(0)} \bar{\varphi}_\infty(t)|_{\bar{g}_\infty(0)} \right) \leq \bar{C}_k, \tag{7.12}
\]
for sufficiently large i, which in turn gives us constants $\bar{C}_{k,i}$ such that
\[
\sup_{\Omega \times [c, d]} \left(|\frac{\partial}{\partial t} \nabla^k_{\bar{g}_\infty(0)} \bar{g}_\infty(t)|_{\bar{g}_\infty(0)} + |\frac{\partial}{\partial t} \nabla^k_{\bar{g}_\infty(0)} \bar{\varphi}_\infty(t)|_{\bar{g}_\infty(0)} \right) \leq \bar{C}_{k,i}, \tag{7.13}
\]
since the time derivatives can be written in terms of spatial derivatives via the Laplacian flow evolution equations. It follows from the Arzelà–Ascoli theorem that there exists a subsequence of $\tilde{\varphi}_i(t)$ which converges smoothly on $\Omega \times [c, d]$. A diagonalization argument then produces a subsequence that converges smoothly on any compact subset of $M \times (a, b)$ to a solution $\bar{\varphi}_\infty(t)$ of the Laplacian flow.

As in Ricci flow, we would want to use our compactness theorem for the Laplacian flow to analyse singularities of the flow as follows.

Let M be a compact 7-manifold and let $\varphi(t)$ be a solution of the Laplacian flow (1.1) on a maximal time interval $[0, T_0)$ with $T_0 < \infty$. Theorem 1.3 implies that $\Lambda(t)$ given in (1.4) satisfies $\lim \Lambda(t) = \infty$ as $t \nearrow T_0$. Choose a sequence of points (x_i, t_i) such that $t_i \nearrow T_0$ and
\[
\Lambda(x_i, t_i) = \sup_{x \in M, t \in [0, t_i]} \left(|\nabla T(x, t)|_{g(t)}^2 + |Rm(x, t)|_{g(t)}^2 \right)^{\frac{1}{2}},
\]
where T and Rm are the torsion and curvature tensor as usual.

We consider a sequence of parabolic dilations of the Laplacian flow
\[
\varphi_i(t) = \Lambda(x_i, t_i)^{\frac{2}{3}} \varphi(t_i + \Lambda(x_i, t_i)^{-1} t) \tag{7.14}
\]
and define
\[
\Lambda_{\varphi_i}(x, t) = \left(|\nabla_{g_i(t)} T_i(x, t)|_{g_i(t)}^2 + |Rm_i(x, t)|_{g_i(t)}^2 \right)^{\frac{1}{2}}. \tag{7.15}
\]
From the basic conformal property for 3-forms we have
\[
\bar{\varphi} = \lambda \varphi \implies \Delta_{\bar{\varphi}} \varphi = \lambda^2 \Delta_{\bar{\varphi}} \varphi.
\]
Thus, for each i, $(M, \varphi_i(t))$ is a solution of the Laplacian flow (1.1) on the time interval
\[
t \in [-t_i \Lambda(x_i, t_i), (T_0 - t_i) \Lambda(x_i, t_i))
satisfying \(\Lambda_{\varphi_i}(x_i, 0) = 1 \) and
\[
\sup_M |\Lambda_{\varphi_i}(x, t)| \leq 1 \quad \text{for } t \leq 0.
\]

From the doubling-time estimate (Proposition 4.1), there exists a uniform \(b > 0 \) such that
\[
\sup_M |\Lambda_{\varphi_i}(x, t)| \leq 2 \quad \text{for } t \leq b.
\]

Therefore, we obtain a sequence of solutions \((M, \varphi(t))\) to the Laplacian flow defined on \((a, b)\) for some \(a < 0 \), with
\[
\sup_i \sup_M |\Lambda_{\varphi_i}(x, t)| < \infty \quad \text{for } t \in (a, b).
\]

If we can establish the injectivity radius estimate
\[
\inf_i inj(M, g_i(0), x_i) > 0,
\]
which is equivalent to
\[
\inf_i inj(M, g(t_i), x_i) \geq c\Lambda(x_i, t_i)^{-1},
\]
we can apply our compactness theorem (Theorem 1.5) and extract a subsequence of \((M, \varphi_i(t), x_i)\) which converges to a limit flow \((M_\infty, \varphi_\infty(t), x_\infty)\). Such a blow-up of the flow at the singularity will provide an invaluable tool for further study of the Laplacian flow.

8. Long time existence II

Theorem 1.3 states that the Riemann curvature or the derivative of the torsion tensor must blow-up at a finite singular time of the Laplacian flow. However, based on Joyce’s existence result for torsion-free \(G_2\) structures \[22\], we would hope to be able to characterise the finite-time singularities of the flow via the blow-up of the torsion tensor itself.

In this section we will show that, under an additional continuity assumption on the metrics along the flow, that the Laplacian flow will exist as long as the torsion tensor remains bounded. From this result, stated below, our improvement Theorem 1.6 of Theorem 1.3 follows as a corollary.

Theorem 8.1. Let \(M^7 \) be a compact manifold and \(\varphi(t) \) for \(t \in [0, T_0) \), where \(T_0 < \infty \), be a solution to the Laplacian flow (1.1) for closed \(G_2 \) structures with associated metric \(g(t) \) for each \(t \). If \(g(t) \) is uniformly continuous and the torsion tensor \(T(x, t) \) of \(\varphi(t) \) satisfies
\[
\sup_{M \times [0, T_0)} |T(x, t)|_{g(t)} < \infty,
\]
then the solution \(\varphi(t) \) can be extended past time \(T_0 \).

Here we say \(g(t) \) is uniformly continuous if for any \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for any \(0 \leq t_0 < t < T_0 \) with \(t - t_0 \leq \delta \) we have
\[
|g(t) - g(t_0)|_{g(t_0)} \leq \epsilon,
\]
which implies that, as symmetric 2-tensors, we have
\[
(1 - \epsilon)g(t_0) \leq g(t) \leq (1 + \epsilon)g(t_0).
\]

Before we prove Theorem 8.1, we deduce Theorem 1.6 from Theorem 8.1.
Proof of Theorem 1.6 (assuming Theorem 8.1). We recall that, for closed G_2 structures φ,
$$\Delta \varphi \varphi = i_\varphi (h),$$
where h is a symmetric 2-tensor satisfying, in local coordinates,
$$h_{ij} = -\nabla_{mi} T_{nj} \varphi_{jmn} - \frac{1}{3} |T|^2 g_{ij} - T_{ij}. $$
The trace of h is equal to
$$tr_g (h) = g^{ij} h_{ij} = \frac{2}{3} |T|^2. $$
By [24, Proposition 2.9],
$$|\Delta \varphi \varphi |^2_g = |i_\varphi (h)|^2_g = (tr_g (h))^2 + 2 h^k h^l k.$$
Thus, under the assumed bound (1.7) on $\Delta \varphi (t) \varphi (t)$ from Theorem 1.6,
$$\sup_{M \times [0,T_0]} |T(x,t)|_g(t) < \infty \quad \text{and} \quad \sup_{M \times [0,T_0]} |h(x,t)|_g(t) < \infty. \quad (8.3)$$
Along the Laplacian flow (1.1), the metric $g(t)$ evolves by
$$\frac{\partial}{\partial t} g(x,t) = 2h(x,t),$$
so it follows from (8.3) that $g(t)$ is uniformly continuous. Theorem 8.1 then implies that the flow extends past time T_0 as required. \hfill \Box

Now we give the proof of Theorem 8.1.

Proof of Theorem 8.1. We adapt the argument for an analogous result for Ricci flow in [11, §6.4]. (Note that Sesum's original proof [33] of the Ricci flow result used Perelman's noncollapsing theorem, but Lei Ni pointed out that the result can be proved without the noncollapsing theorem.)

Assume, for a contradiction, that the conditions of Theorem 8.1 hold but the solution $\varphi (t)$ of the flow cannot be extended past the time T_0. By the long time existence theorem (Theorem 1.3), there exists a sequence of points and times (x_i,t_i) with $t_i \nearrow T_0$ such that
$$\Lambda (x_i,t_i) = \sup_{x \in M, t \in [0,t_i]} \left(|\nabla T(x,t)|^2_{g(t)} + |Rm(x,t)|^2_{g(t)} \right)^{\frac{1}{2}} \rightarrow \infty.$$
Then arguing as in §7.2, we can define $\varphi_i (t)$ by (7.14) and obtain a sequence of flows $(M, \varphi_i (t), x_i)$ defined on $[-t_i \Lambda (x_i,t_i),0]$. Moreover, $\Lambda \varphi_i (t) (x,t)$ given by (7.15) satisfies
$$\sup_{M \times [-t_i \Lambda (x_i,t_i),0]} |\Lambda \varphi_i (x,t)| \leq 1 \quad \text{and} \quad |\Lambda \varphi_i (x_i,0)| = 1,$$
and the associated metric $g_i (t)$ of $\varphi_i (t)$ is
$$g_i (t) = \Lambda (x_i,t_i) g(t_i + \Lambda (x_i,t_i)^{-1} t).$$
By assumption, $g(t)$ is uniformly continuous. Let $\epsilon \in (0,\frac{1}{2}]$ and let $\delta > 0$ be given by the definition of uniform continuity of $g(t)$ so that if $t_0 = T_0 - \delta$ then (8.2) holds for all $t_0 < t < T_0$. Suppose i is sufficiently large that $t_i \geq t_0$. From (8.2), for any $x,y \in M$ and $t \in [t_0,T_0)$, we have
$$(1 - \epsilon)^{\frac{1}{2}} d_{g(t_0)} (x,y) \leq d_{g(t)} (x,y) \leq (1 + \epsilon)^{\frac{1}{2}} d_{g(t_0)} (x,y).$$
Therefore, if $B_{g(t)}(x, r)$ denotes the geodesic ball of radius r centred at x with respect to the metric $g(t)$, we have

$$B_{g(t)}(x, r) \supset B_{g(t_0)}(x, (1 + \varepsilon)^{-\frac{1}{2}} r).$$

Along the Laplacian flow, the volume form increases, so

$$Vol_{g(t)}(B_{g(t)}(x, r)) \geq Vol_{g(t_0)}(B_{g(t_0)}(x, (1 + \varepsilon)^{-\frac{1}{2}} r))$$

for any $x \in M$, $r > 0$ and $t \in [t_0, T_0]$. Then, for $x \in M$ and $r \leq \Lambda(x_i, t_i)^{\frac{1}{2}}$ we have

$$Vol_{g_i(0)}(B_{g_i(0)}(x, r)) = \Lambda(x_i, t_i)^{\frac{7}{2}} Vol_{g(t_i)}(x, \Lambda(x_i, t_i)^{-\frac{1}{2}} r)$$

$$\geq \Lambda(x_i, t_i)^{\frac{7}{2}} Vol_{g(t_0)}(x, (1 + \varepsilon)^{-\frac{1}{2}} \Lambda(x_i, t_i)^{-\frac{1}{2}} r)$$

$$\geq c(1 + \varepsilon)^{-\frac{7}{2}} r^7,$$

for some uniform positive constant c. Hence we have

$$Vol_{g_i(0)}(B_{g_i(0)}(x, r)) \geq cr^7$$ (8.4)

for all $x \in M$ and $r \in [0, \Lambda(x_i, t_i)^{\frac{1}{2}}]$.

Note that by definition of Λ_{φ_i} in (7.15) that

$$|Rm_{g_i}(x, 0)| \leq \sup_{M \times [-t, \Lambda(x_i, t_i), 0]} |\Lambda_{\varphi_i}(x, t)| \leq 1$$

on M. By the volume ratio bound (8.4) and [11, Theorem 5.42], we have a uniform injectivity radius estimate $\text{inj}(M, g_i(0), x_i) \geq c$ for some constant $c > 0$. We can thus apply our compactness theorem (Theorem 1.5) to obtain a subsequence of $(M, \varphi_i(t), x_i)$ converging to a limit $(M_\infty, \varphi_\infty(t), x_\infty)$, $t \in (-\infty, 0]$ with $|\Lambda_{\varphi_\infty}(x_\infty, 0)| = 1$.

By the assumption (8.1) that T remains bounded and $\Lambda(x_i, t_i) \to \infty$ as $i \to \infty$, we have

$$|T_i(x, t)|_{g_i(t)}^2 = \Lambda(x_i, t_i)^{-1} |T(x, t_i + \Lambda(x_i, t_i)^{-1} t)|_{g(t_i + \Lambda(x_i, t_i)^{-1} t)}^2 \to 0$$ (8.5)

as $i \to \infty$. Therefore, $(M_\infty, \varphi_\infty(t))$ has zero torsion for all $t \in (-\infty, 0]$. Thus $Ric_{g_\infty(t)} \equiv 0$ for all $t \in (-\infty, 0]$, where $g_\infty(t)$ denotes the metric defined by $\varphi_\infty(t)$, since torsion-free G_2 structures define Ricci-flat metrics.

We can then argue as in [33] (see also [11, §6.4]) that $g_\infty(0)$ has precisely Euclidean volume growth; i.e. for all $r > 0$,

$$Vol_{g_\infty(0)}(B_{g_\infty(0)}(x_\infty, r)) = Vol_{g_{\mathbb{R}^7}}(B_{g_{\mathbb{R}^7}}(0, 1)) r^7.$$

Since a Ricci-flat complete manifold with this property must be Euclidean space, $Rm(g_\infty(0)) \equiv 0$ on M_∞. This contradicts the fact that

$$|Rm_{g_\infty}(x_\infty, 0)| = |\Lambda_{\varphi_\infty}(x_\infty, 0)| = 1,$$

where in the first equality we used the fact that the torsion of $(M_\infty, \varphi_\infty(0))$ vanishes. We have our required contradiction, so the result follows. \qed
9. Compact Laplacian solitons

In this section we study what are called soliton solutions of the Laplacian flow on a compact manifold.

Given a 7-manifold M, a Laplacian soliton of the Laplacian flow (1.1) for closed G_2 structures on M is a triple (ϕ, X, λ) satisfying

$$\Delta \phi = \lambda \phi + \mathcal{L}_X \phi,$$

(9.1)

where $d\phi = 0$, $\lambda \in \mathbb{R}$ and X is a vector field on M. We are interested in G_2 structures ϕ satisfying (9.1) as they naturally give self-similar solutions to the Laplacian flow (1.1).

Concretely, suppose the initial condition ϕ_0 satisfies (9.1) for some X and λ. Define, for all t such that $1 + \frac{2}{3} \lambda t > 0$,

$$\rho(t) = (1 + \frac{2}{3} \lambda t)^{-\frac{2}{3}}$$

and

$$X(t) = \rho(t)^{-\frac{2}{3}} X.$$

(9.2)

Let ϕ_t be the family of diffeomorphism generated by the vector fields $X(t)$ such that ϕ_0 is the identity. If we define

$$\phi(t) = \rho(t) \phi_t^* \phi_0,$$

(9.3)

which only changes by a scaling factor $\rho(t)$ and pullback by a diffeomorphism ϕ_t at each time t, then

$$\frac{\partial}{\partial t} \phi(t) = \rho'(t) \phi_t^* \phi_0 + \rho(t) \phi_t^* (\mathcal{L}_X(t) \phi_0)$$

$$= \rho(t)^{\frac{1}{3}} \phi_t^* (\lambda \phi_0 + \mathcal{L}_X \phi_0)$$

$$= \rho(t)^{\frac{1}{3}} \phi_t^* (\Delta \phi_0 \phi_0)$$

$$= \rho(t)^{\frac{1}{3}} (\Delta \phi_t^* \phi_0 \phi_t^* \phi_0) = \Delta \phi(t) \phi(t).$$

Hence, $\phi(t)$ defined in (9.3) satisfies the Laplacian flow (1.1) with $\phi(0) = \phi_0$.

Based on the formula (9.2) for the scaling factor $\rho(t)$, we say a Laplacian soliton (ϕ, X, λ) is expanding if $\lambda > 0$; steady if $\lambda = 0$; and shrinking if $\lambda < 0$. For a closed G_2 structure ϕ on M, we already showed in (2.23) that

$$\Delta \phi = \frac{1}{7}|\tau|^2 \phi + \gamma,$$

(9.4)

where $\gamma \in \Omega^3_{27}(M)$. Therefore, (9.1) is equivalent to

$$\left(\frac{1}{7}|\tau|^2 - \lambda\right) \phi = -\gamma + \mathcal{L}_X \phi.$$

(9.5)

We now give the proof of Proposition 1.7, which we restate here.

Proposition 9.1. The only compact Laplacian solitons of the type $\Delta \phi = \lambda \phi$ are when ϕ is torsion-free.

Proof. Let $X = 0$ in (9.5), so

$$\left(\frac{1}{7}|\tau|^2 - \lambda\right) \phi = -\gamma.$$

(9.6)

Since the left-hand side of (9.6) belongs to $\Omega^3_7(M)$ while the right hand side of (9.6) belongs to $\Omega^3_{27}(M)$, we have

$$\left(\frac{1}{7}|\tau|^2 - \lambda\right) \phi = -\gamma = 0.$$
Thus $\lambda = \frac{1}{7}|\tau|^2$, which means that

$$d\tau = \Delta_\varphi \varphi = \frac{1}{7}|\tau|^2 \varphi.$$

We can deduce that

$$\frac{1}{3} d(\tau \wedge \tau \wedge \tau) = \tau \wedge \tau \wedge d\tau = \frac{1}{7}|\tau|^2 \tau \wedge \tau \wedge \varphi = -\frac{1}{7}|\tau|^2 \tau \wedge *\varphi,$$

where in the third equality we used $\tau \wedge \varphi = -*\varphi \tau$ as $\tau \in \Omega^2_{14}(M)$. Since M is compact, integrating the above equality over M gives that

$$0 = \frac{1}{3} \int_M d(\tau \wedge \tau \wedge \tau) = -\frac{1}{7} \int_M |\tau|^4 *\varphi 1,$$

Thus $\tau = 0$ and $\lambda = 0$, which means that φ is torsion-free. \qed

We may call a vector field X such that $L^X \varphi = 0$ a symmetry of the G_2 structure φ. The following lemma shows that the symmetries of a closed G_2 structure correspond to certain Killing vector fields of the associated metric.

Lemma 9.2. Let φ be a closed G_2 structure on a compact manifold M with associated metric g and let X be a vector field on M. Then

$$L^X \varphi = \frac{1}{2} i_\varphi (L^X g) + \frac{1}{2} (d^*(X\varphi))^2 \beta,$$

where $i_\varphi : S^2T^*M \to \Lambda^3T^*M$ is the injective map given in (2.6). In particular, any symmetry X of the closed G_2 structure φ must be a Killing vector field of the associated metric g and satisfy $d^*(X\varphi) = 0$ on M.

Proof. Since φ is closed, we have

$$L^X \varphi = d(X\varphi) + X d\varphi = d(X\varphi).$$

Denote $\beta = X\varphi$. Then $\beta_{ij} = X_i \varphi_{ij}$ and

$$L^X \varphi = d\beta = \frac{1}{6} (\nabla_i \beta_{jk} - \nabla_j \beta_{ik} - \nabla_k \beta_{ji}) dx^i \wedge dx^j \wedge dx^k,$$

i.e., in index notation, we have

$$(L^X \varphi)_{ijk} = \nabla_i \beta_{jk} - \nabla_j \beta_{ik} - \nabla_k \beta_{ji}.$$

(9.8)

We decompose $L^X \varphi$ into three parts

$$L^X \varphi = \pi^3_1(L^X \varphi) + \pi^3_7(L^X \varphi) + \pi^3_{27}(L^X \varphi) = a \varphi + W \varphi + i_\varphi \eta,$$

where $\pi^k_1 : \Omega^k(M) \to \Omega^k_{14}(M)$ denotes the projection onto $\Omega^k_{14}(M)$, a is a function, W is a vector field and η is a trace-free symmetric 2-tensor on M.

We now calculate a, W and η, using a similar method to §2.2.
To calculate a:
\[a = \frac{1}{7} (\mathcal{L}X, \varphi) = \frac{1}{42} (\nabla_i \beta_{jk} - \nabla_j \beta_{ik} - \nabla_k \beta_{ij}) \phi^{ijk} \]
\[= \frac{1}{14} \nabla_i \phi^{ijk} = \frac{1}{14} \nabla_i (\phi^{ijk} - \frac{1}{14} \beta_{jk} \nabla_i \phi^{ijk}) \]
\[= \frac{1}{14} \nabla_i (X^l \phi_{lkj} \phi^{ijk}) - \frac{1}{14} X^l \phi_{lkj} T^m_l \psi^{mijk} \]
\[= 3 \nabla_l X_l + \frac{1}{28} X^l \phi_{lkj} T^m_l \psi^{mijk} \]
\[= 3 \nabla_l X_l + \frac{1}{14} X^l \phi_{lkj} \tau^m_l \psi^{mijk} \]
where we used (2.7), $\phi_{lkj} \tau^m_l = 0$ and $\tau^m_l \psi^{mijk} = 2 \tau_{ijk}$ in (2.19) since $\tau \in \Omega^2(M)$ for closed G_2 structures φ.

To calculate W, using the contraction identities (2.7)--(2.8),
\[(\mathcal{L}X, \varphi) \psi^{jk}_{ijkl} = (\mathcal{L}X, \varphi)^{jk}_{ijkl} \psi^{ijkl} \]
\[= \alpha \phi^{jk}_{ijkl} \psi^{ijkl} + W^m \psi^{mijk} \psi^{ijkl} + (i_\varphi(\eta))_{ijkl} \]
\[= -24 W_l + (\eta^m \phi^{mjk} - \eta^m \phi^{mik} - \eta^m \phi^{mk} \phi^{mik}) \psi^{ijkl} \]
\[= -24 W_l - 12 \eta^m \phi^{milk} = -24 W_l, \]
where the last equality follows since η_{im} is symmetric in i, m and ϕ_{mil} is skew-symmetric in i, m. Using (9.8), we have
\[W_l = -\frac{1}{24} (\mathcal{L}X, \varphi)^{jk}_{ijkl} \psi^{ijkl} = -\frac{1}{8} g^{mi} \nabla_m \beta^{jk}_{ijkl} \]
\[= -\frac{1}{8} g^{mi} \nabla_m (\beta^{jk}_{ijkl}) + \frac{1}{8} \beta^{jk} g^{mi} \nabla_m \psi^{ijkl} \]
\[= -\frac{1}{8} g^{mi} \nabla_m (X^n \phi^m \phi^{jk}_{ijkl}) \]
\[+ \frac{1}{16} \beta^{jk} g^{mi} (\tau_{mij} \phi^j_{kl} - \tau_{mjk} \phi^i_{kl} - \tau_{mki} \phi^j_{jl} - \tau_{mjl} \phi^i_{ki}) \]
\[= -\frac{1}{2} g^{mi} \nabla_m (X^n \phi^{nit}) - \frac{1}{8} X^n \phi^m \phi^{nit} \tau_{mjk} \phi^i_{kl} - \frac{1}{16} X^n \phi^m \phi^{nit} \tau_{mjl} \phi^i_{ki} \]
\[= -\frac{1}{2} g^{mi} \nabla_m (X^n \phi^{nit}), \]
where in the above calculation we used (2.8), (2.9), (2.15), (2.19) and skew-symmetry in the index of ψ^{ijkl}. So
\[W = \frac{1}{2} (d^* (X, \varphi))^2. \]

If we define the G_2 curl operator on vector fields by
\[\text{curl}(X) = (d^* (X^b \wedge \psi))^2 \] so \[\text{curl}(X) = \varphi_{ijk} \nabla^j X^k, \] (9.9)
then in local coordinates
\[W_l = -\frac{1}{2} g^{mi} \nabla_m (X^n \phi^{nit}) = -\frac{1}{2} \nabla^i X^n \phi^{nit} - \frac{1}{2} X^n \nabla^i \phi^{nit} \]
\[= \frac{1}{2} \text{curl}(X)_l - \frac{1}{2} X^n T^m_l \psi^{mnil} = \frac{1}{2} \text{curl}(X)_l + X^n T_{nl}, \]
i.e. the vector field W is

$$W = \frac{1}{2} (d^* (X \varphi))^\sharp = \frac{1}{2} \text{curl}(X) + X T. \quad (9.10)$$

Finally, to calculate η:

$$\left(\mathcal{L}_X \varphi \right)_{mni} \varphi^m_j + \left(\mathcal{L}_X \varphi \right)_{mnj} \varphi^m_i = a \varphi_{mni} \varphi^m_j + W^l \psi^m_{li} \varphi_{jmn} + i_\varphi (\eta)_{mni} \varphi^m_j$$

$$+ a \varphi_{mnj} \varphi^m_i + W^l \psi^m_{lj} \varphi_{imn} + i_\varphi (\eta)_{mnj} \varphi^m_i$$

$$= 12 a g_{ij} + 8 \eta_{ij}, \quad (9.11)$$

where in the last equation we used the contraction identity (2.8) to obtain

$$W^l \psi^m_{li} \varphi_{jmn} + W^l \psi^m_{lj} \varphi_{imn} = 4 W^l (\varphi_{jli} + \varphi_{ijl}) = 0.$$

We can calculate the left hand side of (9.11) as follows

$$\left(\mathcal{L}_X \varphi \right)_{mni} \varphi^m_j + \left(\mathcal{L}_X \varphi \right)_{mnj} \varphi^m_i$$

$$= (\nabla_m \beta_{ni} - \nabla_n \beta_{mi} - \nabla_i \beta_{mn}) \varphi^m_j$$

$$+ (\nabla_m \beta_{nj} - \nabla_n \beta_{mj} - \nabla_j \beta_{mn}) \varphi^m_i$$

$$= 2 (\nabla_m \beta_{ni} \varphi^m_j + \nabla_m \beta_{nj} \varphi^m_i)$$

$$- \nabla_{ij} \psi_{lijk}^m + \nabla_j (\nabla_i \varphi_{mni}) + \nabla_i (\nabla_j \varphi_{mnj})$$

$$+ \nabla_j (\nabla_i \varphi_{mni} \varphi^m_j) + \nabla_i (\nabla_j \varphi_{mnj} \varphi^m_i)$$

$$= 2 \text{div}(X) g_{ij} - 2 \nabla_i X_j + 2 \nabla_m (X^t \psi_{di}^m) + 4 X^t \varphi_{linj} T^k_{kj}$$

$$+ 2 \text{div}(X) g_{ij} - 2 \nabla_i X_j + 2 \nabla_m (X^t \psi_{di}^m) + 4 X^t \varphi_{linj} T^k_{kj}$$

$$+ 6 \nabla_i X_j - 4 X^t \varphi_{lkj} T^k_{ij} + 6 \nabla_j X_i - 4 X^t \varphi_{lkj} T^k_{ij}$$

$$= 4 \text{div}(X) g_{ij} + 4 (\nabla_i X_j + \nabla_j X_i),$$

where in the above calculation we again used the equations (2.7)-(2.9) and (2.19). We deduce that

$$\eta_{ij} = - \frac{3}{2} a g_{ij} + \frac{1}{2} \text{div}(X) g_{ij} + \frac{1}{2} (\nabla_i X_j + \nabla_j X_i)$$

$$= - \frac{1}{7} \text{div}(X) g_{ij} + \frac{1}{2} (\mathcal{L}_X g)_{ij}.$$

Then

$$\mathcal{L}_X \varphi = a \varphi + W \varphi + i_\varphi (\eta) = i_\varphi (\frac{1}{3} a g + \eta) + W \varphi$$

$$= \frac{1}{2} i_\varphi (\mathcal{L}_X g) + \frac{1}{2} (d^* (X \varphi))^\sharp \psi.$$

This proves the formula (9.7).

If X is a symmetry of the closed G_2 structure φ, i.e. $\mathcal{L}_X \varphi = 0$, then

$$i_\varphi (\frac{1}{2} \mathcal{L}_X g) = \pi^2_3 (\mathcal{L}_X \varphi) + \pi^3_3 (\mathcal{L}_X \varphi) = 0$$

and $\frac{1}{2} (d^* (X \varphi))^\sharp \psi = \pi^3_3 (\mathcal{L}_X \varphi) = 0$. This implies that $\mathcal{L}_X g = 0$ and $d^* (X \varphi) = 0$, since i_φ is an injective operator and $\Omega^3_2 (M) \cong \Omega^1 (M).$

□
We can now derive the condition satisfied by the metric g induced by φ when $((\varphi, X, \lambda)$ is a Laplacian soliton, which we expect to have further use.

Proposition 9.3. Let $((\varphi, X, \lambda)$ be a Laplacian soliton as defined by (9.1). Then the associated metric g of φ satisfies, in local coordinates,

$$- R_{ij} - \frac{1}{3} |T|^2 g_{ij} - 2T^k_i T_{kj} = \frac{1}{3} \lambda g_{ij} + \frac{1}{2} (\mathcal{L}_X g)_{ij}$$

(9.12)

and the vector field X satisfies $d^*(X \cdot \varphi) = 0$.

Proof. We know from §2.2 that for closed G_2 structures φ,

$$\Delta \varphi = i_{\varphi}(h) \in \Omega^3_1(M) \oplus \Omega^3_{27}(M),$$

where h is a symmetric 2-tensor satisfying

$$h_{ij} = -\text{Ric}_{ij} - \frac{1}{3} |T|^2 g_{ij} - 2T^k_i T_{kj}.$$

Since $\lambda \varphi \in \Omega^3_1(M)$, from the Laplacian soliton equation (9.1) we know that

$$\mathcal{L}_X \varphi = d(X \cdot \varphi) \in \Omega^3_1(M) \oplus \Omega^3_{27}(M).$$

Thus, from (9.7), we have

$$\mathcal{L}_X \varphi = i_{\varphi}(\frac{1}{2} \mathcal{L}_X g) \quad \text{and} \quad d^*(X \cdot \varphi) = 0.$$

(9.13)

Substituting the first equation of (9.13) into the Laplacian soliton equation (9.1), and noting that

$$\Delta \varphi = i_{\varphi}(h), \quad \lambda \varphi = i_{\varphi}(\frac{1}{3} \lambda g),$$

we get

$$i_{\varphi}(h - \frac{1}{3} \lambda g - \frac{1}{2} \mathcal{L}_X g) = 0.$$

Since i_{φ} is injective, the above equation implies that

$$h - \frac{1}{3} \lambda g - \frac{1}{2} \mathcal{L}_X g = 0,$$

which is equivalent to (9.12). \qed

Recall that Ricci solitons (g, X, λ) are given by $\text{Ric} = \lambda g + \mathcal{L}_X g$, so we see that (9.12) can be viewed as a perturbation of the Ricci soliton equation using the torsion tensor T. We also re-iterate that the non-existence of compact Laplacian solitons of the form $(\varphi, 0, \lambda)$ is somewhat surprising given that we have many compact Ricci solitons of the form $(g, 0, \lambda)$ since these correspond to Einstein metrics.

As an application of Proposition 9.3, we can give a short proof of the main result in [30].

Proposition 9.4. (a) There are no compact shrinking Laplacian solitons.
(b) The only compact steady Laplacian solitons are given by torsion-free G_2 structures.
Proof. Taking the trace of (9.12), we have
\[\frac{2}{3}|T|^2 = \frac{7}{3} \lambda + \text{div}(X). \]
When the soliton is defined on a compact manifold \(M \), integrating the above equation gives
\[\lambda \text{Vol}_g(M) = \frac{2}{7} \int_M |T|^2 \text{vol}_g \geq 0. \]
So \(\lambda \geq 0 \), and \(\lambda = 0 \) if and only if \(T \equiv 0 \). \(\square \)

In Ricci flow, every compact Ricci soliton is a gradient Ricci soliton, meaning that the vector field \(X \) in that case satisfies \(X = \nabla f \) for some function \(f \). This was proved by Perelman using the \(\mathcal{W} \)-functional and a logarithmic Sobolev inequality. In the Laplacian flow the situation is quite different and there is currently no reason to suspect that an analogous result to the Ricci flow will hold. In fact, we see from (9.9)–(9.10) and Proposition 9.3 that if \((\varphi, \nabla f, \lambda) \) is a Laplacian soliton then \(\nabla f \cdot T = 0 \). It is thus currently an interesting open question whether any non-trivial compact Laplacian soliton is a gradient Laplacian soliton.

10. Concluding remarks

The research in this paper motivates several natural questions that form objectives for future study. We list some of these problems here.

1. Show that torsion-free \(G_2 \) structures are dynamically stable under the Laplacian flow. This will be reported on in a forthcoming article by the authors [31].

2. Prove a noncollapsing result along the Laplacian flow for closed \(G_2 \) structures as in Perelman’s work [32] on Ricci flow. This would mean, in particular, that our compactness theory would give rise to well-defined blow-ups at finite-time singularities, which would further allow us to relate singularities of the flow to Laplacian solitons.

3. Study the behavior of the torsion tensor near the finite singular time \(T_0 \) of the Laplacian flow. Since for closed \(G_2 \) structures \(\varphi \), we have \(\Delta_\varphi \varphi = d\tau \), Theorem 1.6 says that \(d\tau \) will blow up when \(t \nearrow T_0 \) along the Laplacian flow. The question is whether the torsion tensor \(T \), or equivalently \(\tau \), will blow up when \(t \nearrow T_0 \). Since \(|T|^2 = -R \), this is entirely analogous to the question in Ricci flow as to whether the scalar curvature will blow up at a finite-time singularity. This is true for Type-I Ricci flow on compact manifolds by Enders–Müller–Topping [14] and Kähler–Ricci flow by Zhang [39], but it is still open in general and currently forms an active topic of research.

4. Find some conditions on the torsion tensor under which the Laplacian flow for closed \(G_2 \) structures will exist for all time and converge to a torsion-free \(G_2 \) structure. Based on the work of Joyce [23], it is expected that a reasonable condition to impose is that the initial \(G_2 \) structure \(\varphi_0 \) is closed and has sufficiently small torsion, in a suitable sense. The Laplacian flow would then provide a parabolic method for proving the fundamental existence theory for torsion-free \(G_2 \) structures (c.f. [23]).
(5) Study the space of gradient Laplacian solitons on a compact manifold. As mentioned earlier, this would show the similarities or differences with the analogous theory for Ricci solitons, which it would be instructive to study (see [9] for a recent survey on Ricci solitons).

(6) Construct nontrivial examples of Laplacian solitons. Recent progress on this problem has been made by Bryant [6], and also forms a topic of current investigation by the authors.

References

[1] S. Alexakis, Unique continuation for the vacuum Einstein equations, arXiv:0902.1131.
[2] B. Andrews and C. Hopper, The Ricci flow in Riemannian geometry: a complete proof of the differentiable 1/4-pinching sphere theorem, Lect. Notes Math 2011, Springer, Heidelberg, 2011.
[3] S. Bando, Real analyticity of solutions of Hamilton’s equation, Math. Z. 195 (1987), 93–97.
[4] R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. 126 (1987), 525–576.
[5] R. L. Bryant, Some remarks on G2-structures, Proceedings of Gökova Geometry-Topology Conference 2005, 75–109.
[6] R. L. Bryant, private communication.
[7] R. L. Bryant and S. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989), 829–850.
[8] R. L. Bryant and F. Xu, Laplacian flow for closed G2-structures: short time behavior, arXiv:1101.2004.
[9] H.-D. Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, pp. 1-38, Adv. Lect. Math. 11, Int. Press, Somerville, MA, 2010.
[10] B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs 110, American Mathematical Society, Providence, RI, 2004.
[11] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics 77, American Mathematical Society, Providence, RI, 2006.
[12] R. Cleyton and S. Ivanov, On the geometry of closed G2-structures, Comm. Math. Phys. 270 (2007), 53–67.
[13] A. Corti, M. Haskins, J. Nordström and T. Pacini, G2 manifolds and associative submanifolds via semi-Fano 3-folds, to appear in Duke Math. J.
[14] J. Enders, R. Müller and P. M. Topping, On type-I singularities in Ricci flow, Comm. Anal. Geom. 19 (2011), 905–922.
[15] M. Fernández, A. Fino and V. Manero, Laplacian flow of closed G2-structures inducing nilsolitons, arXiv:1310.1864.
[16] S. Grigorian, Short-time behaviour of a modified Laplacian coflow of G2-structures, Adv. Math. 248 (2013), 378–415.
[17] S. Grigoriant and S.-T. Yau, Local geometry of the G2 moduli space, Comm. Math. Phys. 287 (2009), 459–488.
[18] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255–306.
[19] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II. (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995.
[20] R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), 545–572.
[21] N. Hitchin, The geometry of three-forms in six dimensions, J. Diff. Geom. 55 (2000), 547–576.
[22] D. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2, I, II, J. Diff. Geom. 43 (1996), 291–328, 329–375.
[23] D. D. Joyce, Compact manifolds with special holonomy, OUP, Oxford, 2000.
[24] S. Karigiannis, Flows of G2 structures, I. Q. J. Math. 60 (2009), 487–522.
[25] S. Karigiannis, B. McKay and M.-P. Tsui, Soliton solutions for the Laplacian co-flow of some G2-structures with symmetry, Diff. Geom. Appl. 30 (2012), 318–333.
[26] B. Kotschwar, *Backwards uniqueness of the Ricci flow*, Int. Math. Res. Not. (2010), no. 21, 4064–4097.
[27] B. Kotschwar, *An energy approach to the problem of uniqueness for the Ricci flow*, Comm. Anal. Geom. 22 (2014), 149–176.
[28] B. Kotschwar, *A short proof of backward uniqueness for some geometric evolution equations*, arXiv:1501.00946
[29] A. G. Kovalev, *Twisted connected sums and special Riemannian holonomy*, J. Reine Angew. Math. 565 (2003), 125–160.
[30] C. Lin, *Laplacian solitons and symmetry in G\textsubscript{2}-geometry*, J. Geom. Phys. 64 (2013), 111–119.
[31] J. D. Lotay and Y. Wei, *Stability of torsion free G\textsubscript{2} structures along the Laplacian flow*, preprint.
[32] G. Perelman, *The entropy formula for the Ricci flow and its geometric applications*, arXiv math/0211159.
[33] N. Sesum, *Curvature tensor under the Ricci flow*, Amer. J. Math. 127 (2005), 1315–1324.
[34] W.-X. Shi, *Deforming the metric on complete Riemannian manifolds*, J. Diff. Geom. 30 (1989), 223–301.
[35] P. Topping, *Lectures on the Ricci flow*, LMS Lecture Notes Series 325, CUP, Cambridge, 2006.
[36] H. Weiss and F. Witt, *A heat flow for special metrics*, Adv. Math. 231 (2012), 3288–3322.
[37] H. Weiss and F. Witt, *Energy functionals and soliton equations for G\textsubscript{2}-forms*, Ann. Glob. Anal. Geom. 42 (2012), 585–610.
[38] W. W.-Y. Wong and P. Yu, *On strong unique continuation of coupled Einstein metrics*, Int. Math. Res. Not. (2012), no. 3, 544–560.
[39] Z. Zhang, *Scalar curvature behaviour for finite-time singularity of Kähler–Ricci flow*, Michigan Math. J. 59 (2010), 419–433.