Measurement of the CP Asymmetry and Branching Fraction of $B^0 \rightarrow \rho^0 K^0$

B. Aubert, R. Barate, M. Bona, D. Boutigny, F. Couderc, Y. Karyotakis, J. P. Lees, V. Poireau, V. Tisserand, A. Zghiche, E. Grauges, A. Palano, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofe, B. Stugu, G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, M. S. Gill, Y. Grosman, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Y. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, W. A. Wenzel, P. del Amo Sanchez, M. Barrett, T. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson, T. Held, H. Koch, B. Lewandowski, M. Pelizaeeus, K. Peters, T. Schroeder, M. Steinke, J. T. Boyd, J. P. Burke, W. N. Cottingham, D. Walker, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, A. Khan, P. Kyberd, M. Saleem, D. J. Sherwood, L. Teodorescu, V. E. Blinov, A. D. Bokin, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu Todyshev, D. S. Best, M. Bondioli, M. Brinsmead, M. Chao, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, R. K. Mommens, W. Roethel, D. P. Stoker, S. Abachi, C. Buchanan, S. D. Foulkes, J. W. Gary, O. Long, B. C. Shen, K. Wang, L. Zhang, H. K. Hadavand, E. J. Hill, H. P. Paa, S. Rahatli, V. Sharma, J. W. Berryhill, C. Campagnoli, A. Cuna, B. Dahmes, T. M. Hong, D. Kovalskyi, J. D. Richman, T. W. Beck, A. M. Eisner, C. J. Flacco, A. C. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson, J. Albert, Y. H. Chen, A. Dvoretskii, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff, F. Blanc, P. C. Bloom, S. Chen, W. T. Ford, J. F. Hirschar, A. Kreisel, M. Nagel, U. Nauenberg, A. Olivas, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zang, A. Chen, E. A. Eckhart, A. Soffer, W. H. Toki, R. J. Wilson, F. Winkelman, Q. Zeng, D. D. Altenburg, E. Feltese, A. Hauke, H. Jasper, A. Petzold, B. Spaan, T. Brandt, V. Klose, H. M. Lacker, W. F. Mader, R. Nagowski, J. Schubert, K. R. Schubert, R. Schwierz, J. E. Sundermann, A. Volk, D. Bernard, G. R. Bonneaud, P. Grenier, E. Latour, Ch. Thiebaux, M. Verderi, P. J. Clark, W. Gradl, F. Muheim, S. Playfer, A. I. Robertson, Y. Xie, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, G. Cribbinet, E. Luppi, M. Negrini, A. Petrella, L. Piemontese, E. Prencipe, F. Amulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, A. Buzzo, R. Capra, R. Contr, M. Lo Vetere, M. M. Macri, M. R. Mong, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, G. Brandenburg, K. S. Chaisanguanthum, M. Morii, J. Wu, R. S. Dubitzky, J. Z. Marks, S. Schenk, U. Uwer, D. J. Bard, W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, R. L. Flack, J. A. Nash, M. B. Nikolich, W. Panduro Vazquez, P. K. Behera, X. Chai, M. J. Charles, U. Mallik, N. T. Meyer, V. Ziegler, J. Cochran, H. B. Crawley, L. Dong, V. Eyges, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubini, S. G. Deniz, M. Fritsch, G. Schott, N. Arnaud, M. Davier, G. Grosdidier, A. Höcker, F. Le Diberder, V. Lepeltier, A. M. Lutz, A. Oyanguren, S. Pruvot, S. Rodier, P. Roudeau, M. H. Schune, A. Stocchi, W. F. Wang, G. Wornser, C. H. Cheng, D. J. Lange, D. M. Wright, C. A. Chavez, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, K. A. George, D. E. Hutchcroft, D. J. Payne, K. C. Schofield, C. Touramanis, A. J. Bevan, D. I. Lodovico, W. Menges, R. Sacco, G. Cowan, H. U. Flaecher, D. A. Hopkins, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvatore, A. C. Wren, D. N. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. D. Lafferty, M. T. Naisbit, I. C. Williams, J. I. Yi, C. Chen, W. D. Hulsbergen, A. Jawahery, C. K. Lae, D. A. Roberts, G. Simi, G. Blaylock, C. Dallapiccola, S. S. Hertzbach, S. Li, T. B. Moore, S. Saremi, H. Staengle, R. Cowan, G. Sciolla, S. J. Sekula, M. Spitznagel, F. Taylor, R. K. Yamamoto, H. Kim, S. E. Melachlin, P. M. Patel, S. H. Robertson, A. Lazzaro, V. Lombardo, F. Palombo, J. M. Bauer, L. Cremaldi, R. Eschenburg, R. Godang, R. Kroeber, D. A. Sanders, D. J. Summers, H. W. Zhao.
No.	Institution Name	City, State/Country
3	University of Cincinnati	Cincinnati, Ohio 45221, USA
20	University of Colorado	Boulder, Colorado 80309, USA
21	Colorado State University	Fort Collins, Colorado 80523, USA
22	Universität Dortmund	Institut für Physik, D-44221 Dortmund, Germany
23	Technische Universität Dresden	Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24	Ecole Polytechnique	Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France
25	University of Edinburgh	Edinburgh EH9 3JZ, United Kingdom
26	Universität Dortmund, Institut für Physik	D-44221 Dortmund, Germany
27	Università di Ferrara	Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
28	Laboratori Nazionali di Frascati	dell’INFN, I-00044 Frascati, Italy
29	Università di Genova	Dipartimento di Fisica e INFN, I-16146 Genova, Italy
30	Harvard University	Cambridge, Massachusetts 02138, USA
31	Universität Heidelberg	Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32	Imperial College London	London, SW7 2AZ, United Kingdom
33	University of Iowa	Iowa City, Iowa 52242, USA
34	Iowa State University	Ames, Iowa 50011-3160, USA
35	Johns Hopkins University	Baltimore, Maryland 21218, USA
36	Universität Karlsruhe	Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37	Laboratoire de l’Accélérateur Linéaire	IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 3, F-91898 ORSAY Cedex, France
38	Lawrence Livermore National Laboratory	Livermore, California 94550, USA
39	University of Liverpool	Liverpool L69 7ZE, United Kingdom
40	Queen Mary University of London	E1 4NS, United Kingdom
41	University of London	Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42	University of Louvain	Louvain-la-Neuve, Belgium 1348, Belgium
43	University of Manchester	Manchester M13 9PL, United Kingdom
44	University of Maryland	College Park, Maryland 20742, USA
45	University of Massachusetts	Amherst, Massachusetts 01003, USA
46	Massachusetts Institute of Technology	Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47	McGill University	Montréal, Québec, Canada H3A 2T8
48	Università di Milano	Dipartimento di Fisica e INFN, I-20133 Milano, Italy
49	University of Mississippi	University, Mississippi 38677, USA
50	Université de Montréal	Physique des Particules, Montréal, Québec, Canada H3C 3J7
51	Mount Holyoke College	South Hadley, Massachusetts 01075, USA
52	Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy	
53	NIKHEF, National Institute for Nuclear Physics and High Energy Physics	NL-1009 DB Amsterdam, The Netherlands
54	University of Notre Dame	Notre Dame, Indiana 46556, USA
55	Ohio State University	Columbus, Ohio 43210, USA
56	University of Oregon	Eugene, Oregon 97403, USA
57	Università di Padova, Dipartimento di Fisica e INFN	I-35131 Padova, Italy
58	Université Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Énergies	F-75252 Paris, France
59	University of Pennsylvania	Philadelphia, Pennsylvania 19104, USA
60	Università di Perugia	Dipartimento di Fisica e INFN, I-06100 Perugia, Italy
61	Università di Pisa	Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62	Prairie View A&M University	Prairie View, Texas 77446, USA
63	Princeton University	Princeton, New Jersey 08544, USA
64	University of Rome La Sapienza	Dipartimento di Fisica e INFN, I-00185 Roma, Italy
65	Universität Rostock	D-18051 Rostock, Germany
66	Rutherford Appleton Laboratory	Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67	DSM/Dapnia, CEA/Saclay	F-91191 Gif-sur-Yvette, France
68	University of South Carolina	Columbia, South Carolina 29208, USA
69	Stanford Linear Accelerator Center	Stanford, California 94309, USA
70	Stanford University	Stanford, California 94305-4060, USA
71	State University of New York	Albany, New York 12222, USA
72	University of Tennessee	Knoxville, Tennessee 37996, USA
73	Texas A&M University	College Station, Texas 77842, USA
74	University of Texas at Dallas	Richardson, Texas 75083, USA
75	Università di Torino, Dipartimento di Fisica Sperimentale	e INFN, I-10125 Torino, Italy
76	Università di Trieste	Dipartimento di Fisica e INFN, I-34127 Trieste, Italy
77	IFIC, Universitat de Valencia-CSIC	E-46010 Valencia, Spain
78	University of Victoria	Victoria, British Columbia, Canada V8W 3P6
79	Department of Physics	University of Warwick, Coventry CV4 7AL, United Kingdom
80	University of Wisconsin	Madison, Wisconsin 53706, USA
81	Yale University	New Haven, Connecticut 06511, USA
We present a measurement of the branching fraction and time-dependent CP asymmetry of $B^0 \rightarrow \rho^0 K^0$. The results are obtained from a data sample of $227 \times 10^6 \ U(4S) \rightarrow BB$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a time-dependent maximum likelihood fit yielding 111 ± 19 signal events we find $B(B^0 \rightarrow \rho^0 K^0) = (4.9 \pm 0.8 \pm 0.9) \times 10^{-6}$, where the first error is statistical and the second systematic. We report the measurement of the CP parameters $S_{\rho^0 K^0} = 0.20 \pm 0.52 \pm 0.24$ and $C_{\rho^0 K^0} = 0.64 \pm 0.41 \pm 0.20$.

Decays of B^0 mesons to the $\rho^0 K^0$ final state are expected to be dominated by $b \rightarrow s$ penguin amplitudes. Neglecting Cabibbo-Kobayashi-Maskawa (CKM) suppressed amplitudes, the mixing-induced CP violation parameter $S_{\rho^0 K^0}$ should equal $\sin 2\beta$, which is well measured in $B^0 \rightarrow J/\psi K^0$ decays $[1]$. Within the Standard Model (SM), only small deviations from this prediction are expected $[2]$. In the Standard Model, a single phase in the CKM matrix governs CP violation $[3]$, but if heavy non-SM particles appear in additional penguin diagrams, new CP-violating phases could enter and $S_{\rho^0 K^0}$ would not equal $\sin 2\beta$ $[4]$. Observation of a significant discrepancy would be a clear signal of new physics.

In this Letter we present the first observation of the decay $B^0 \rightarrow \rho^0 K^0$ and a measurement of the CP-violating asymmetries $S_{\rho^0 K^0}$ and $C_{\rho^0 K^0}$ from a time-dependent maximum likelihood analysis. A non-zero value of $S_{\rho^0 K^0}$ indicates CP violation due to the interference between decays with and without mixing. Direct CP violation leads to a non-zero value of $C_{\rho^0 K^0}$. We take a quasi-two-body (Q2B) approach, restricting ourselves to the region of the $B^0 \rightarrow \pi^+\pi^- K^0_S$ Dalitz plot dominated by the ρ^0 and treating other $B^0 \rightarrow \pi^+\pi^- K^0_S$ contributions as non-interfering background. The effects of interference with other resonances are estimated and taken as systematic uncertainties.

The data were collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage ring at SLAC. An integrated luminosity of 205 fb$^{-1}$, corresponding to $227 \times 10^6 BB$ pairs, was collected at the $\Upsilon(4S)$ resonance (center-of-mass (CM) energy $\sqrt{s} = 10.56$ GeV), and 16 fb$^{-1}$ was collected about 40 MeV below the resonance (off-resonance data). The BABAR detector is described in detail elsewhere $[5]$. Charged particles are detected and their momenta measured by the combination of a silicon vertex tracker (SVT), consisting of five layers of double sided detectors, and a 40-layer central drift chamber (DCH), both operating in the 1.5 T magnetic field of a solenoid. Charged-particle identification is provided by the average energy loss in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central region.

We reconstruct $B^0 \rightarrow \rho^0 K^0_S$ candidates (B^0_{rec} in the following) from combinations of ρ^0 and K^0_S candidates, both reconstructed in their $\pi^+\pi^-$ decay mode. For the $\pi^+\pi^-$ pair from the ρ^0 candidate, we remove tracks identified as very likely to be electrons, kaons, or protons. The mass of the ρ^0 candidate is restricted to the interval $0.4 < m(\pi^+\pi^-) < 0.9$ GeV/c^2. The K^0_S candidate is required to have a mass within 13 MeV/c^2 of the nominal K^0_S mass $[6]$ and a decay vertex separated from the ρ^0 decay vertex by at least three times the estimated separation measurement uncertainty. In addition, the cosine of the angle in the lab frame between the K^0_S flight direction and the vector between the ρ^0 decay vertex and the K^0_S decay vertex must be greater than 0.995. Vetoes against $B^0 \rightarrow D^+\pi^-$ and $B^0 \rightarrow K^*\pi^-(K^* \rightarrow K^0_S\pi^+)$ are imposed by requiring that the invariant masses of both $K^0_S\pi$ combinations are more than 0.055 GeV/c^2 and 0.040 GeV/c^2 from the K^* and D^+ masses $[7]$ respectively. To exclude events with poorly reconstructed vertices we require the estimated error on Δt to be less than 2.5 ps and that $|\Delta t|$ must be less than 20 ps, where Δt is the proper time difference between the decay of the reconstructed B meson (B^0_{rec}) and its unreconstructed partner (B^0_{tag}), $t_{\text{rec}} - t_{\text{tag}}$. It is determined from the measured relative displacement of the two B-decay vertices and the known boost of the e^+e^- system.

Two kinematic variables are used to discriminate between signal and combinatorial background. The first is ΔE, the difference between the measured CM energy of the B candidate and $\sqrt{s}/2$, where \sqrt{s} is the CM beam energy. The second is the beam-energy substituted mass $m_{\text{ES}} = \sqrt{(s/2 + p_i \cdot p_B)/E_i - p_B^2}$, where the B^0_{rec} momentum p_B and the four-momentum of the initial $\Upsilon(4S)$ state (E_i, p_i) are defined in the laboratory frame. We require $|\Delta E| < 0.15$ GeV and $5.25 < m_{\text{ES}} < 5.29$ GeV/c^2.

Continuum $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) events are the dominant background. To enhance discrimination between signal and continuum, we use a neural network (NN) to combine five variables: the cosine of the angle between the B^0_{rec} direction and the beam axis in the CM, the cosine of the angle between the thrust axis of the B^0_{rec} candidate and the beam axis, the sum of momenta transverse to the direction of flight of the B^0_{rec} and the zeroth and second angular moments $L_{0,2}$ of the energy flow about the B^0_{rec} thrust axis. The moments are defined by $L_i = \sum_i p_i \times |\cos \theta_i|$, where p_i is its momentum and θ_i is the angle with respect to the B^0_{rec} thrust axis of the track or neutral cluster i excluding the tracks that make up the B^0_{rec} candidate. The NN is trained with off-resonance data and Monte Carlo (MC) $[8]$ simulated signal events.

Selected signal events are reconstructed incorrectly
with low momentum tracks from the other B meson being used to form the ρ^0 candidate. In total, 20,073 events pass all selection criteria in the on-resonance sample.

An unbinned extended maximum likelihood fit is used to extract the $\rho^0 K^0_S$ CP asymmetry and branching fraction. There are ten components in the fit: signal, continuum background and eight separate backgrounds from B decays. Large samples of MC-simulated events are used to identify these specific B backgrounds. Where an individual decay mode makes a significant contribution to the dataset (one or more events expected in the data) we include it as a separate contribution to the fit. Probability density functions (PDFs) are taken from simulation and MC efficiencies (Table I). Where only upper limits are available, decay modes are not included in the default fit but are used in alternate fits to evaluate systematics.

Events from B decays that do not come from individually significant channels are collected together into two “bulk” B contributions to the fit (B^0 and B^+. The assumption is made that $B^0 \rightarrow f_0(600)K^0_S$ can be neglected, with support from \mathcal{B} and MC efficiencies (Table II). Where only upper limits are available, decay modes are not included in the default fit but are used in alternate fits to evaluate systematics.

The events in the data sample have their untagged B_s flavor-tagged as B^0 or \bar{B}^0 with the method described in [10]. Events are separated into four flavor-tagging categories and an “untagged” category, depending upon the method used to determine the flavor. Each category has a different expected purity and accuracy of tagging. The likelihood function for the N_k candidates in flavor tagging category k is

$$L_k = e^{-N_k} \prod_{i=1}^{N_k} \left[N_{S^k} \left(1 - f_{MR}^k \right) P_{i,k}^{S^k} + f_{MR}^k P_{i,k}^{MR} \right] R_{C,k} \sum_{j=1}^{N_{B,j}} N_{B,j} f_{j,k} P_{i,k}^{B_j} \right],$$

(1)

where N_k is the sum of the signal and background yields for events tagged in category k, N_S is the number of $\rho^0 K^0_S$ signal events in the sample, ϵ_k is the fraction of signal events tagged in category k, f_{MR}^k is the fraction of mis-reconstructed (MR) signal events in tagging category k and the superscript CR implies correctly reconstructed signal. $N_{C,k}$ is the number of continuum background events that are tagged in category k, and $N_{B,j} f_{j,k}$ is the number of B-background events of class j that are tagged in category k. The B-background event yields are fixed in the default fit to values shown in Table II. The values ϵ_k and f_k are determined from MC for B-backgrounds and from a sample of B decays of known flavor for signal. The total likelihood L is the product of the likelihoods for each tagging category.

Each signal and background PDF is defined as $P_k = \mathcal{P}(m_{ES}) \cdot \mathcal{P}(\Delta E) \cdot \mathcal{P}(NN) \cdot \mathcal{P}(\cos \theta_{\pi^+}) \cdot \mathcal{P}(\Delta t) \cdot \mathcal{P}(m_{\pi^+\pi^-})$

Table I: Expected number of events from each B background source.

Background Mode	N_{expected}
Bulk B^+	197±98
Bulk B^0	197±98
$B^0 \rightarrow D^+\pi^-$	40±6
$B^0 \rightarrow \eta' K^0_S$	34±5
$B^0 \rightarrow f_0(980)K^0_S$	22±4
$B^0 \rightarrow K^0_s(1430)^+\pi^-$	7±1
$B^0 \rightarrow \rho^0 K^{*0}$	3±3
$B^0 \rightarrow (K^0_s\pi^+\pi^-)_{\text{NR}}$	2±1

where m_{ES}, ΔE, NN, $m(\pi^+\pi^-)$ are the variables described previously, and $\cos \theta_{\pi^+}$ is the angle between the K^0_S and the π^+ from the ρ^0 meson’s center-of-mass frame.

The Δt PDF for signal events is defined as

$$\mathcal{P}(\Delta t) = \frac{e^{-i \Delta t / \tau_B}}{\tau_B} \times \left[1 + \Delta_D + q(D) \left(S_{\rho^0 K^0_S} \sin(\Delta m_d \Delta t) - C_{\rho^0 K^0_S} \cos(\Delta m_d \Delta t) \right) \right] \otimes R_{\text{sig}}(\Delta t, \sigma_{\Delta t}),$$

(2)

where τ_B and Δm_d are the average lifetime and eigenstate mass difference of the neutral B meson, $q = 1$ (-1) when $B^0_{\text{rec}} = B^0$ (\bar{B}^0). $(D), \Delta D$ and the Δt resolution function, $R_{\text{sig}}(\Delta t, \sigma_{\Delta t})$, have parameters fixed to values taken from a sample where B_s of known flavor can be reconstructed [10]. “Untagged” events have a (D) of 0, reflecting the lack of tag information.

The m_{ES}, ΔE, NN, $m(\pi^+\pi^-)$ PDFs for signal and B background are taken from MC simulation. In general they are non-parametric, with the exception of m_{ES} and ΔE for signal PDFs appear as solid curves in Figure I. The CP parameters for $\eta' K^0_S$ and $f_0 K^0_S$ backgrounds are fixed to $C = 0$ and $S = \sin 2\beta$ (for $\eta' K^0_S$) and $S = -\sin 2\beta$ (for $f_0 K^0_S$), in accordance with SM expectations. For the remaining B backgrounds the parameters C and S are fixed to 0. The PDF parameters describing the continuum background are either allowed to vary freely in the fit or else determined separately from off-resonance data.

There are 16 free parameters in the fit: the yield of signal events, $S_{\rho^0 K^0_S}$ and $C_{\rho^0 K^0_S}$ and 13 that parameterize the continuum background. The continuum parameters are: the yields (5), and those associated with the second order polynomial describing the ΔE distribution (2), the ARGUS [11] function describing the m_{ES} distribution (1) and the double Gaussian used to model the Δt distribution (5).

The fit yields 111 ± 19 signal events. We calculate
the branching fraction from the measured signal yield, efficiency (including the $\rho^0 \rightarrow \pi^+\pi^-$, $K^0 \rightarrow K^0_s$ and $K^0_s \rightarrow \pi^+\pi^-$ branching fractions), and the number of $B\overline{B}$ events. The result is $\mathcal{B}(B^0 \rightarrow \rho^0 K^0) = (4.9 \pm 0.8 \pm 0.9) \times 10^{-6}$, where the first error is statistical and the second systematic. The likelihood ratio between the fit result of 111 signal events and the null hypothesis of zero signal shows that this is excluded at the 8.7σ level. When additive systematic effects are included we exclude the null hypothesis at the 5.0σ level. The fit for CP parameters gives $S_{\rho^0 K^0_s} = 0.20 \pm 0.52 \pm 0.24$ and $C_{\rho^0 K^0_s} = 0.64 \pm 0.41 \pm 0.20$.

Figure 1 shows plots of the discriminating variables in the fit. Knowledge of the level of background and our ability to distinguish it from signal can be gained from the errors in these plots. In addition, Fig. 1(f) shows the ratio $L_S/(L_S + L_B)$ for all events, where L_S and L_B are the likelihoods for each event to be signal or background, respectively.

Systematic errors are listed in Table II. We estimate biases due to the fit procedure from fits to a large number of simulated experiments. We vary parameters fixed in the nominal fit by their uncertainty and include the change in result as the corresponding systematic error. The systematic uncertainties arise from sources including the parameterization of the signal Δt resolution function, the mistag fractions, and discrepancies between data and the simulation including the effect of alternative models for resonances.

We estimate the systematic uncertainty due to neglecting the interference between $B^0 \rightarrow K^0_s \pi^+\pi^-$ from both parameterized and full simulations that take interference into account. We include contributions from $\rho^0(770)K^0_s$, $f_2(980)K^0_s$, $K^*_S(1430)^+\pi^-$, $K^*_S(892)^+\pi^-$ and $f_2(1270)K^0_s$, as well as two $K^0_s\pi\pi$ non-resonant contributions. We simulate many samples with different relative phases between modes. We also vary the amplitude of each mode within limits based on the best available information. Each simulation is then subjected to the standard selection and fitting procedure. The systematic uncertainty is taken from the width of a Gaussian fitted to the distribution of the results.

In summary, we have established the existence of the decay $B^0 \rightarrow \rho^0 K^0$ and measured its branching fraction with the significance of 5 standard deviations. Our measurement agrees with errors within $\mathcal{B}(B^0 \rightarrow \omega K^0)$ as measured in Ref. 13, as expected if a single penguin amplitude dominates these decays. We have extracted the CP violating parameters S and C for $B^0 \rightarrow \rho^0 K^0_s$ which are consistent with those measured in charmonium channels [1].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
FIG. 2: Plots of Δt, overlaid with projected signal PDFs, split into (a) $B^0_{u\bar{s}}$ tags, (b) $B^0_{d\bar{s}}$ tags and (c) the asymmetry $(N_{B^0_{u\bar{s}}} - N_{B^0_{d\bar{s}}})/(N_{B^0_{u\bar{s}}} + N_{B^0_{d\bar{s}}})$ as a function of Δt.

Mis-reco'd events and fit bias	0.12 0.09 10
PDF uncertainties	0.13 0.18 2
Tagging parameters	0.02 0.01 -
Neglect of interference	0.14 0.09 7
ρ^0 mass shape	0.07 0.05 3
B Background BF	0.02 0.10 13
CP of background	0.04 0.00 -
Tracking efficiency & B counting	- - 6
Total	0.24 0.20 19

TABLE II: Summary of contributions to the systematic error.