Single tDCS session of motor cortex in patients with disorders of consciousness: a pilot study

Géraldine Martensa,b, Felipe Fregnia, Manon Carrièrea,b, Alice Barraa,b, Steven Laureysa,b,c, and Aurore Thibauta,b,c

aComa Science Group, GIGA Consciousness, University of Liege, Liège, Belgium; bCentre du Cerveau - Centre intégré pluridisciplinaire de l’étude du cerveau, de la cognition et de la conscience, University Hospital of Liège, Liège, Belgium; cHarvard Medical School, Neuromodulation Center, Spaulding Rehabilitation Hospital, Boston, MA, USA

ABSTRACT

Primary Objective: Patients with disorders of consciousness (DOC) face a lack of treatments and risk of misdiagnosis, potentially due to motor impairment. Transcranial direct current stimulation (tDCS) showed promising results over the prefrontal cortex in DOC and over the primary motor cortex (M1) in stroke. This pilot study aimed at evaluating the behavioral effects of M1 tDCS in patients with DOC.

Research Design: In this randomized double-blind sham-controlled crossover trial, we included 10 patients (49 ± 22 years, 7 ± 13 months since injury, 4 unresponsive wakefulness syndrome, 6 minimally conscious state, 5 traumatic etiologies).

Methods and Procedures: One session of tDCS (2 mA for 20 min) and one session of sham tDCS were applied over M1 in a randomized order with a washout period of minimum 24 h and behavioral effects were assessed using the CRS-R. At the group level, no treatment effect was identified on the total score ($p = .55$) and on the motor subscale ($p = .75$). Two patients responded to tDCS by showing a new sign of consciousness (visual pursuit and object localization).

Conclusions: One session of M1 tDCS failed to improve behavioral responsiveness in patients with DOC. Other application strategies should be tested.

Introduction

Patients with disorders of consciousness (DOC) following severe brain damage represent a challenging population regarding diagnosis and treatment. The gold standard for assessing the level of consciousness is the Coma Recovery Scale – Revised (CRS-R), that relies on behaviors observed at the bedside in response to external stimuli (1). It allows to disentangle an unresponsive wakefulness syndrome/vegetative state (UWS/VS – state of intermittent wakefulness without evidence of awareness of the environment or self (2)) from a minimally conscious state (MCS – fluctuating presence of signs of consciousness such as visual pursuit or command following (3)). However, the high dependency on motor abilities represent an issue for a proportion of clinically unresponsive patients showing partial preservation of cortical activity on neuroimaging and/or neurophysiological assessments (4). This specific situation coined MCS*, cognitive-motor dissociation or covert consciousness characterizes patients unable to display responses at bedside despite being conscious (4–6). Motor function appears, therefore, as one of the key means to increase the patient’s chances of showing signs of consciousness and may also allow the use of other behavioral therapies, requiring patients’ active participation, to promote recovery. Transcranial direct current stimulation (tDCS), a neuromodulation method known to transiently improve the functions of targeted cortical areas using non-invasive weak electrical currents (1–2 mA), can improve various skills in healthy controls and pathological populations (7). When applied on the projection of the primary motor cortex (M1; C3 – C4 according to the 10–20 EEG system (8)) in patients with stroke, it has shown to induce improvements in hand function, muscle strength or activities of daily living, among others (9). In patients with DOC, a single session of tDCS over the left dorsolateral prefrontal cortex (DLPFC) can effectively modulate the cortical excitability as measured by TMS-EEG (10). From a clinical standpoint, a randomized controlled trial performed on 55 patients showed a significant treatment effect in the 30 patients in MCS as measured by the CRS-R when one tDCS session was performed over the left DLPFC for 20 min at 2 mA and 43% of the patients in MCS showed a new sign of consciousness after the real stimulation that was not present before or after sham. These positive behavioral effects were however transient (11). Other studies evaluating the effects of prefrontal tDCS applied for a longer period of time have also shown positive results on behavioral improvements (12,13). After these encouraging results and in view of the extensive literature for motor cortex stimulation, we conducted a pilot study in patients with DOC investigating the beneficial effects of one session of M1 tDCS on their behavioral responses as measured by the CRS-R.
Material and methods

The study was approved by the local ethics committee (CE2009/201). Inclusion criteria were: presenting a DOC (UWS/VS or MCS) as established by international guidelines (14) and a stable vital condition (no recent event requiring hospitalization, change in medication or intubation). Exclusion criteria were the following: documented neurological condition prior to the accident; medication comprising sedative agents, Na\(^+\) or Ca\(^{2+}\) channel blockers or NMDA receptor antagonists; presence of metallic cerebral material; craniectomy under the stimulated area (i.e., prefrontal cortex) and uncontrolled epilepsy. Patients received one active and one sham session of tDCS in a randomized order with a 1:1 ratio. Direct current was applied by a battery-driven current stimulator (DC Stimulator Plus, Neurocare, Germany) using saline-soaked surface sponge electrodes (7 x 5 cm). Impedances were always kept below 10 k\(\Omega\) and voltage below 26 V through a built-in safety mode. The active electrode (anode) was placed on the area corresponding to C3 or C4 according to the 10–20 international system for EEG placement (the most affected side was stimulated based on the patient’s medical records) while the return electrode (cathode) was placed on the contralateral supraorbital area. During tDCS, the current was increased to 2 mA and applied for 20 min while for the sham condition, the same electrode placement was used but the current was applied for 5 s and then ramped down. The two tDCS and sham sessions were separated by at least 24 h of washout, which was estimated as a time interval long enough (above 90 min) for potential tDCS-related effects to disappear (15) and short enough for potential spontaneous recovery to not impact the behavioral outcomes. The device used offers a built-in blinding mode using anonymous code numbers provided by a third party which means both the patient and the investigator were blinded to the treatment allocation. Side-effects were collected after each session of tDCS (active and sham) using a questionnaire assessing if any of the following signs were observed during or following tDCS: redness of the skin, irritation/injury of the skin, signs of pain or discomfort, epileptic seizure, increased sleepiness. Behavioral assessments using the CRS-R were performed before and after each stimulation sessions by trained clinicians. The CRS-R is a standardized behavioral assessment scale consisting of 23 items hierarchically organized within 6 subscales interrogating auditory, visual, motor, verbal, communication, and arousal functions and is the only measurement tool recommended for clinical use in patients with DOC by the American Congress of Rehabilitation Medicine with minor reservations (1,16). Our primary outcome measure was the tDCS treatment effect computed using a Wilcoxon match-paired signed-rank test comparing the differences in CRS-R total score (deltas) as follows: [after sham minus before sham] and [after active minus before active]. The statistic Z was used to calculate the effect size (ES) \(r = Z/\sqrt{2n}\). The treatment effect was calculated only in the absence of a carry-over effect that was tested using the same test but comparing the CRS-R total scores before active tDCS and before sham tDCS. As a secondary outcome, we computed the treatment effect for the motor subscale score. As exploratory analyses, we looked at each CRS-R subscale separately using the method described above. We also checked for a potential significant difference between baseline and post-CRS-R total scores for both active and sham stimulation using a Wilcoxon match-paired signed-rank test. We then computed the treatment effect for patients in MCS only (n = 6; based on the baseline diagnosis) to compare our results to the existing literature. As further explorative analysis, we checked for a potential correlation between clinical improvement (i.e., CRS-R total score after active tDCS minus total score before active tDCS – delta active tDCS) and time since injury using a Spearman’s Correlation test. Statistical analyses were performed using R (17). Results were considered significant at \(p < .05\).

Results

Ten patients were enrolled (4 UWS and 6 MCS; 8 men; 49 ± 22 years; 7 ± 13 months since injury; 5 traumatic etiologies, 4 anoxic, 1 stroke – see Table 1). The median [IQR] time between the consecutive active and sham tDCS session was 1 [1–1.75] days. No side effects were observed after the active or the sham session.

At the group level, no carry-over effect was identified \((Z = −1.33; p = .22)\) and we did not find any significant treatment effect \((Z = −0.62; p = .55; ES = 0.10)\). Regarding the motor subscale, no significant treatment was observed \((Z = 0.56; p = .75)\) neither in any other subscale \((p > .05)\). There was no significant difference in the CRS-R total scores between the baseline condition and post-stimulation for both active \((Z = −1.73; p = .25)\) and sham stimulation \((Z = −1.09; p = .30)\). For MCS subjects only (n = 6), no significant treatment effect was identified either \((Z = −0.26; p = .89; ES = 0.06)\). Regarding the influence of time since injury, no significant correlation between delta active tDCS and days since injury was identified \((t = −0.291; p = .778)\). At the single-subject level, one 64-year-old male patient at a subacute stage (28 days post-stroke) showed visual pursuit after the active stimulation only, that was not observed beforehand or after sham stimulation (only reflexive blinking to threatening stimulus) and his diagnosis therefore changed from UWS to MCS. Another patient, a 19-year-old male patient 8-month post-traumatic brain injury, recovered object localization following active stimulation only but his diagnosis remained MCS. No patient changed diagnosis after the sham stimulation.

Discussion

We aimed to investigate the effects of one session of M1 tDCS on the behavioral responses of patients with DOC. As for prefrontal tDCS, M1 tDCS seems to be safe for patients with DOC. This aspect still needs to be carefully accounted for since single tDCS-related adverse effects, such as skin burn, have been reported in a healthy subject (18). We did not find any significant treatment effect in CRS-R total scores or in the motor subscale following the application of a single session of active tDCS as compared to sham. Beside the small sample size, we discuss three potential reasons to explain our results:
Table 1. Demographic data, tDCS allocation, and CRS-R total score (sub-score) of the study sample. TSO = Time Since Onset; CRS-R = Coma Recovery Scale-Revised; TBI = Traumatic Brain Injury; UWS = Unresponsive Wakefulness Syndrome; MCS = Minimally Conscious State.

ID	Age (years)	Gender	Etiology	TSO (days)	Baseline Diagnosis	tDCS Allocation	Main MRI lesions	Before Active	After Active	Before Sham	After Sham
P1	24 (M)		TBI	286	UWS	sham/active	left temporo-parietal region	4	4	4	4
P2	32 (M)		non-TBI	150	MCS	sham/active	left frontal subcortical region	(1-0-0-1-0-2)	(0-3-1-0-2-1)	(0-3-1-0-1-2)	(0-3-1-0-1-2)
P3	68 (M)		TBI	45	MCS	active/sham	basal ganglia, frontal lobes, left posterior parietal region	(0-1-3-1-0-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)
P4	70 (M)		TBI	7	MCS	active/sham	basal ganglia, left thalamus	(0-1-3-1-0-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)
P5	74 (M)		TBI	212	MCS	sh5/active	basal ganglia, posterior parietal lobes, thalamus, left posterior parietal region	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)
P6	21 (M)		TBI	1332	MCS	sham/active	left insula, left basal ganglia	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)
P7	51 (F)		TBI	42	MCS	sham/active	right frontal lobe	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)
P8	19 (M)		non-TBI	218	MCS	sh5/active	bilateral fronto-parieto-temporal areas, right thalamus	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)	(1-3-1-0-1-2)

Inclusion criteria. Despite the absence of a significant effect of single stimulation (ES) on clinical improvement, probably due to the small sample size. Once beyond the proof of concept, future studies should be careful to narrow down the time window following injury in their inclusion criteria. Despite the absence of a significant
treatment effect at the group level, relevant clinical results were obtained at the single-subject level. Indeed, one subacute patient (28 days post-stroke) with focal lesions in the left basal ganglia and the left insula showed visual pursuit only after the active stimulation, which had important clinical implications since his diagnosis changed to MCS for the first time. Another chronic patient (8-month post-traumatic brain injury) with lesions involving the frontal lobes and the hippocampi responded to tDCS by showing object localization for the first time after active stimulation. It should be noted that the evolution over time of these newly acquired behaviors is unknown. Indeed, no further CRS-R data point could be obtained since the patients were discharged from our facility afterward. Nonetheless, for these two responders, applying M1 tDCS has improved some oculomotor abilities as measured by the CRS-R visual subscale. Since the parietal visual areas and the frontal motor areas are interconnected through cortical and cerebellar pathways (28), increasing the excitability of one area using tDCS might propagate to distant but connected areas (29). Object localization (i.e., moving a limb toward a presented object) also requires a greater participation of motor abilities and stimulating M1 might have directly improved these abilities. The identification of these tDCS-responders showing significant behavioral improvements remains a key issue. To this end, it is now known that behavioral response to tDCS requires at least a partial preservation of the stimulated area both from a structural and a metabolic standpoint (30). Therefore, future studies should not only focus on the repetition of the sessions but also include patients based on the localization of their lesions (e.g., stimulate patients who do not suffer from significant damage in the motor cortex but present low scores on the CRS-R motor subscale). Combined therapies (e.g., tDCS and motor training) could also be effective to potentiate tDCS effects (31).

Conclusions

M1 tDCS in patients with DOC is safe but failed at improving motor responsiveness at the group level. When compared to previous studies, the DLPFC seems to currently be the best candidate for enhancing signs of consciousness, especially patients in MCS (11,12,32). However, it might be important to further investigate M1 tDCS for DOC. For instance, the repetition of sessions, the combination with motor training, or the concurrent stimulation of other areas might be interesting future studies.

Acknowledgments

We thank the whole staff from the Neurology department, University Hospital of Liège, as well as, patients, and their families.

Funding

The study was supported by the University and University Hospital of Liège, the French Speaking Community Concerted Research Action [ARC 12-17/01]; the Belgian National Funds for Scientific Research [FRS-FNRS]; Human Brain Project [EU-H2020-fetflagship-hbp-sg1ga720270]; Luminous project [EU-H2020-fetopen-ga686764]; DOCMA project [EU-H2020-MSCA–RISE–778234]; the James McDonnell Foundation, Mind Science Foundation, IAP research network P7/06 of the Belgian Government [Belgian Science Policy]; the European Commission, the Public Utility Foundation 'Université Européenne du Travail', 'Fondazione Europea di Ricerca Biomedica', the Bial Foundation.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Seel RT, Sherer M, Whyte J, Katz DJ, Giaicino JT, Rosenbaum AM, Hammond FM, Kalmar K, Pape TL–B, Zafonte R, et al. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil [Internet]. 2010 Nov 30 [accessed 2018 Jan 15];91:1795–813. http://www.ncbi.nlm.nih.gov/pubmed/21112421.
2. Laureys S, Celesia GG, Cohodon F, Lavrijsen J, Leon-Carrion J, Sannitta WG, Szabon L, Schmutzhard E, von Wild KR, Zeman A, et al. Unresponsive wakefulness syndrome: a new name for the vegetative state or apalic syndrome. BMC Med [Internet]. 2010 Nov 3;8:68. http://www.ncbi.nlm.nih.gov/pubmed/21040571.
3. Giaicino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DJ, Kelly JP, Rosenberg JH, Whyte J, Zafonte RD, et al. The minimally conscious state: definition and diagnostic criteria. Neurology [Internet]. 2002 Feb 13;58:439–53. http://www.ncbi.nlm.nih.gov/pubmed/11839831.
4. Schiff ND. Cognitive motor dissociation following severe brain injuries. JAMA Neurol [Internet]. 2015 [accessed 2018 Mar 9];72:1413–15. http://archneur.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2015.2899.
5. Gosselies O, Zasler ND, Laureys S. Recent advances in disorders of consciousness: focus on the diagnosis. Brain Inj. 2014;28:1141–50. doi:10.3109/02699052.2014.920522.
6. Stender J, Gosselies O, Bruno M-A, Charland-Verville V, Vanchaudenhuysse A, Demertzii A, Chatelle C, Thonnard M, Thibaut B, Heine L. et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet [Internet]. 2014;6736:8–16. http://www.the lancet.com/journals/a/article/PIIS0140-6736(14)60042-8/fulltext?5Cnhtp://linkinghub.elsevier.com/retrieve/pii/S0140673614600428.
7. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17:37–53. doi:10.1177/1073858410386614.
8. Herwig U, Satrapi P, Schonfeldt-Lecuona C. Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr [Internet]. 2004 Feb 24. 2003;16:95–99. http://www.ncbi.nlm.nih.gov/pubmed/14977202.
9. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke (Review). Cochrane Database Syst Rev. 2016. doi:10.1002/14651858.CD009645.pub3.
10. Bai Y, Xia X, Kang J, Yang Y, He J, Li X. tDCS modulates cortical excitability in patients with disorders of consciousness. NeuroImage Clin [Internet]. 2017 [accessed 2017 Aug 7];15:702–09. http://linkinghub.elsevier.com/retrieve/pii/S2213158217300244.
11. Thibaut A, Bruno M-A, Ledoux D, Demertzii A, Laureys S. tDCS in patients with disorders of consciousness Sham-controlled randomized double-blind study. Neurology. 2014;82:1112–18. doi:10.1212/WNL.0000000000005153.
12. Thibaut A, Wannez S, Donnaye A-F, Chatelle C, Gosselies O, Bruno M-A, Laureys S. Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state. Brain Inj. 2017;31:1–9. doi:10.1080/02699052.2017.1358397.
13. Martens G, Lejune N, O’Brien AT, Fregni F, Martial C, Wannez S, Laureys S, Thibaut A. Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state. Brain Stimul [Internet]. 2018 [accessed 2018 Oct 4];11:982–90. https://www.sciencedirect.com/science/article/pii/S1935861X18301463.

14. Giacino JT. The vegetative and minimally conscious states: consensus-based criteria for establishing diagnosis and prognosis. NeuroRehabilitation [Internet]. 2005 [accessed 2019 Mar 1];17:2004–19. 293–98. http://www.ncbi.nlm.nih.gov/pubmed/15671583.

15. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology [Internet]. 2001 [accessed 2019 Apr 9];57:1899–901. http://www.ncbi.nlm.nih.gov/pubmed/11723286.

16. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil [Internet]. 2004 Dec 18;85:2020–9. http://www.ncbi.nlm.nih.gov/pubmed/15605342.

17. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.

18. Wang J, Wei Y, Wen J, Li X. Skin burn after single session of transcranial direct current stimulation (tDCS). Brain Stimul [Internet]. 2015 [accessed 2019 Mar 1];8:165–66. https://www.sciencedirect.com/science/article/pii/S1935861X14003441.

19. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci [Internet]. 2007;25:123–9. http://www.ncbi.nlm.nih.gov/pubmed/17726271.

20. Ulam F, Shelton C, Richards L, Davis L, Hunter B, Fregni F, Higgins K. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neuro-rehabilitation of traumatic brain injury. Clin Neurophysiol [Internet]. 2014 [accessed 2018 Oct 3];126:486–96. https://www.sciencedirect.com/science/article/pii/S1388245714002909.

21. Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, Stagg CJ, Johansen-Berg H. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 2016;8:330re1–330re1. DOI:10.1126/scitransmed.aad5651.

22. Nair DG, Renga V, Lindenberg R, Zhu L, Schlaug G. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor Neurol Neurosci [Internet]. 2011;29:411–20. http://www.ncbi.nlm.nih.gov/pubmed/22124031.

23. Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, Barbano R, Hammond FM, Laureys S, Ling GSF, et al. Practice guideline update recommendations summary: disorders of consciousness: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology; the american congress of rehabilitation medicine; and the national institute on disability, independent living, and rehabilitation research. Neurology [Internet]. 2018;91:450–60. [accessed 2019 Jan 31]. http://www.ncbi.nlm.nih.gov/pubmed/30089618.

24. Wannez S, Heine L, Thonnard M, Gossieres O, Laureys S. The repetition of behavioral assessments in disorders of consciousness. Ann. Neurol. 2017;81:883–89. doi:10.1002/ana.v81.6.

25. Huang W, Wannez S, Fregni F, Hu X, Jing S, Martens G, He M, Di H, Laureys S, Thibaut A. Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: A sham-controlled randomized clinical trial. Brain Stimul. 2017;10:718–20. doi:10.1016/j.brs.2017.02.001.

26. Triccas LT, Burridge JH, Hughes A, Verheyden G, Desikan M, Rothwell J. A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation [Internet]. 2015 [accessed 2017 May 1];37:181–91. http://www.ncbi.nlm.nih.gov/pubmed/26684510.

27. Kinder J, Schumacher R, Cazzoli D, Gubbrod K, Koenig M, Nyffeler T, Dierks T, Müri RM. Theta burst stimulation over the right Broca’s homologue induces improvement of naming in aphasic patients. Stroke [Internet]. 2012 [accessed 2019 Mar 29];43:2175–79. https://www.ahajournals.org/doi/10.1161/STROKEAHA.111.647503.

28. Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci [Internet]. 2000 [accessed 2018 Dec 19];23:613–17. https://www.sciencedirect.com/science/article/pii/S0166223600016817.

29. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci [Internet]. 2005 Jul 28;22:495–504. http://www.ncbi.nlm.nih.gov/pubmed/16045502.

30. Thibaut A, Di Perri C, Chatelle C, Bruno M-A, Bahri MA, Wannez S, Piauria A, Bernard C, Martial C, Heine L, et al. Clinical response to tDCS depends on residual brain metabolism and grey matter integrity in patients with minimally conscious state. Brain Stimul. 2015;8:1116–23. doi:10.1016/j.brs.2015.07.024.

31. Wessel MJ, Zimerman M, Hummel FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci [Internet]. 2015 [accessed 2018 Mar 20];9:265. http://journal.frontiersin.org/Article/10.3389/fnhum.2015.00265/abstract.

32. Angelakis E, Liouta E, Andreadis N, Korfias S, Ktonas P, Stranjalis G, Sakas DE. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil. 2014;95:283–89. DOI:10.1016/j.apmr.2013.09.002.