A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment

Ganapathy Rajaseger*1, Chin Leong Lim†1, Lee Koon Wui1, Padmanabhan Saravanan†2, Kai Tang3, Ponnampalam Gopalakrishnakone1,2, Yap Eric Pen-huat1, Jia Lu1 and Moochhala M Shabbir1

Address: 1Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge 117510, Singapore, 2Department of Anatomy (MD10), Venom and Toxin Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Lower Kent Ridge Road 117597, Singapore and 3School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore

Email: Ganapathy Rajaseger* - grajaseg@dso.org.sg; Chin Leong Lim - lchinleo@dso.org.sg; Lee Koon Wui - lkoonwui@dso.org.sg; Padmanabhan Saravanan - antv9@nus.edu.sg; Kai Tang - ktang@pmail.ntu.edu.sg; Ponnampalam Gopalakrishnakone - antgopal@nus.edu.sg; Yap Eric Pen-huat - ypenghua@dso.org.sg; Jia Lu - ljia@dso.org.sg; Moochhala M Shabbir - mshabbir@dso.org.sg

* Corresponding author †Equal contributors

Abstract

Background: Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42°C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches

Results: The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene β-actin

Conclusion: The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.
Background
Thermoregulation is a key physiological characteristic of humans and mammals. Exploration of the underlying mechanism of thermoregulation is of major concern to understand the patho-physiology of heat stress (HS) related illnesses. HS is induced by both exogenous and endogenous factors, and is associated with inflammatory and homeostatic responses [1]. HS results in responses of increased temperature, heart rate and sweating [2,3]. When exaggerated it can lead to heat stroke, a condition that involves a multitude of host-defense responses by activation of pro-inflammatory and inflammatory cytokines. Inflammatory response plays a significant role in the mechanistic pathways of HS lead stroke, which can cause clinical conditions of hemorrhage and multi-organ dysfunction [4,5].

The liver, as a major site of metabolism and detoxification, is a system of choice in studies involving toxicoproteomics, metabolic disorder and stress effects due to various pathobiological processes. It is evidenced the liver synthesizes acute phase proteins upon stimulation by cytokines that regulate physiologic response to inflammatory stimuli [6,7]. Previous studies have clearly demonstrated the effects of inflammatory cytokines involved in inflammation and associated pathological outcome of HS [8-10], and have utilized turpentine (T) administration as a method of choice for sterile induction of proinflammatory cytokines [11,12]. Although, these studies have provided a wealth of biochemical information on HS induced changes, early protein expression changes in the liver arising from the HS effect can be more characteristic and sensitive than pathological endpoints. We have previously investigated the effect of local inflammation induced by T treatment on the thermal effects of heat. T treatment compromised heat tolerance by enhancing the inflammatory response and tissue damage during heat stress. This is evident from decreased survival rate and duration at 42°C and elevated plasma cytokines IL-6, TNF-α and IL-1β [4]. Little is known about the cellular protein expression pattern of HS with and without T induced inflammation which could provide comprehensive data to understand the intrinsic pathways underlying the effect.

The study presented here examined the altered protein expressions in the liver of rats exposed to HS alone and with T treatment (T+HS). This was accomplished through a proteomic approach based on two-dimensional gel electrophoresis (2-DE) followed by in-gel tryptic digestion and MALDI-TOF-MS/MS for protein identification.

Methods
Materials
Immobilized pH gradient (IPG) strips (pH 3–10, 11 cm) and Criterion gels (10–20%, 4% stacking gel) for running 11 cm IPG strips were purchased from Bio-Rad (USA). CHCA (α-Cyano-4-hydroxycinnamic acid), ammonium bicarbonate, CHAPS and thiourea were purchased from Sigma Aldrich (St. Louis, MO, USA). Acetic acid, Acetonitrile (ACN) and trifluoroacetic acid (TFA) were from J. T. Baker (Griesheim, Germany). Mass spectrometry grade, Tryptsin, was purchased from Promega Biosciences (San Luis Obispo, CA, USA). RNasea4 mini kit and RNase-free DNase-I were purchased from QIAGEN (USA). LightCycler FastStart DNA MasterPLUS SYBRGreen-I kit was obtained from Roche Diagnostics (Penzberg, Germany).

Animal Experiments
Adult male Wistar rats (n = 24), weighing between 400 and 450 g were used. All animals were allowed to adapt to the environment for 1 week before the experiment and fed on laboratory chow. Water was provided ad libitum. In the conduct of animal experiments, we adhered to the guidelines for care and use of laboratory animals. All procedures received prior approval from the Institutional Animal Care and Use Committee for experimentation. Six rats were used per study group and subjected to heat stress (HS, Tc 42°C) with an infrared heating lamp positioned 40 cm above the rat. Tc was measured by a rectal probe inserted 8–10 cm past the anal sphincter and connected to a digital display for continuous monitoring. For turpentine treatment each group of rats (n = 6) treated with 0.05 ml turpentine (T) i.m. in the right hindlimb were compared with those of T and HS (T+HS). The volume of T and duration of passive treatment was based on our previous study data of IL-1β, IL-6 and TNF-α production 2 h post treatment [4].

Two dimensional gel electrophoresis (2-DE)
2-DE was performed on treated and control samples with modification of the method as described [13]. To ensure reproducibility, all 2-DE gels were run under the same conditions and three gel replicates were used for each pooled rat liver extract to overcome inter-individual changes in animals. In brief, protein concentration of the lysate was adjusted to 200 μg/185μl volume of rehydration buffer and applied onto IPG strips (11 cm ReadyStrip IPG strips, Bio-Rad, USA). After16 h passive rehydration in the tray, first dimension isoelectric focusing (IEF) was performed on treated and control samples with modification of the method as described [13]. Two dimensional gel electrophoresis (2-DE) followed by in-gel tryptic digestion and MALDI-TOF-MS/MS for protein identification.
ond-dimension SDS-PAGE was accomplished using Crite-
ron precast gels (10–20%, 4% stacking gel, for use with
11 cm ReadyStrip IPG strips; 13.3 × 8.7 cm) and proteins
visualized by silver staining protocol using Silver stain
Plus™ stain as per manufacturer’s instructions (Bio-Rad,
USA). This method is highly sensitive to 1 ng level of
detection with low background and is mass spectrometry
compatible. The molecular masses were determined by
running pre-stained standard protein markers (Precision
plus protein standard kaleidoscope, Bio-Rad, USA) cover-
ing the range 10–250 kDa.

Image analysis and tryptic in-gel digestion
Visual inspection of the gels was done to choose the best
from the triplicates based on the highest image resolution
and number of spots. The gels were then scanned and ana-
lyzed with PDQuest™ software (Bio-Rad, V7.2.0). Promi-
inent gel spots were excised, reduced, and alkylated prior
to digestion with 20 ng/µl of modified porcine trypsin.
Extracted peptides were then desalted using Zip-Tip
method (Agilent cleanup C18 Pipette Tips).

MALDI-TOF/MS/MS analysis
For MALDI-TOF, 1 µl of the peptide mixture was spotted
onto a metal MALDI-TOF target and allowed to air-dry.
Thereafter, 1 µl of the CHCA matrix solution consisting of
10 mg/ml in 50% ACN and 0.1% TFA was applied to the
dried sample and again allowed to air-dry. MALDI tandem
mass spectrometry was performed on a TOF/TOF sys-
tem (4800 Proteomics Analyzer, Applied Biosystems,
USA). For MS mode, 800–4000 m/z mass range was used
with 1000 laser shots per spectrum. A maximum of 10
precursors per spot with minimum signal/noise ratio of
50 were selected for MS/MS analysis. 1 KV collision energy
was used for collision induced dissociation (CID), and
1500 acquisitions were accumulated for each MS/MS
spectrum. Resultant spectra were searched against the
International protein index (IPI) rat protein database from
the European Bioinformatics Institute (EBI) using the
GPS (Global Proteome Server) Explorer™ Software
(v3.6, Applied Biosystems) running mascot search algo-
rithm (v2.1, Matrix Science, London, UK) for protein
identification. A mass tolerance of 100 ppm and 0.3 Da
was used for precursors and fragment ions, respectively.
MS/MS spectra were searched with GPS software using a
95% confidence interval (C.I.) threshold (p < 0.05), with
which a minimum Mascot score of > 61 was considered
imperative for further analysis. Representative protein
coding genes (FAH, FBP1, ASS, DMGDH, PK, TKT,
PPIA, and CEH) involved in metabolic and regulatory pathways
were chosen for QRT-PCR confirmation of its differential
expression pattern seen in 2D gels as analysed through
PDQuest™ software. The expression levels were normal-
ized with the house keeping gene β-actin

Extraction of total RNA
Total RNA extraction was performed from rat liver extract
of control and treated group using RNeasy® mini kit. The
RNA sample was subsequently treated with RNase-free
Dnase-I at room temperature for 20 min and stored at
-80°C until use. The quality and quantity of extracted RNA
was determined by spectrophotometry (Bio-Rad, USA).
All RNA samples used for Quantitative fluorescence-based
real-time PCR (QRT-PCR) experiments were of highest
purity with A260/A280 ratios of 1.9–2.1.

QRT-PCR confirmation of representative genes for their
differential expression
QRT-PCR was carried out according to the manufacturer's
instructions using the LightCycler system (Roche Dia-
nostics, Penzberg, Germany) as an independent method
for assessing the relative gene expression. A set of 8 genes
coding proteins FAH, FBP1, ASS, DMGDH, PK, TKT,
PPIA, and CEH) were analyzed for their expression pat-
terns. Reverse Transcription (RT) of RNA and QRT-PCR
were performed as follows: single stranded cDNA was
generated from 3 mg of total RNA, 200 mM nucleotides,
500 units Superscript II reverse transcriptase (Invitrogen)
and 1.5 mM oligo(dT)15 primers in 50 µl reactions.
Reverse transcription was stopped after 1 h by heating to
95°C for 5 min. The sense and antisense primers used for
specific amplification are shown in Table 1. The primers
were designed and subsequently checked for specificity
using NCBI-BLAST. All primers were synthesized by 1st
BASE Pvt Ltd. (Singapore). The expression of β-actin
was used as an internal calibrator for equal RNA loading,
and to normalize relative expression data for all other genes
analyzed. The copy ratio of each analyzed cDNA was
determined as the mean of three experiments and quanti-
fied using the relative quantification (2-ΔΔCT) method
[14].

Statistical analysis
The unpaired t-test and one-way ANOVA was used to
compare the relative ratio of gene expression among the
treatment groups. Statistical analyses were performed
using Graphpad Prism version 4.01 for Windows, Graph-
pad software. Results are represented as mean ± standard
error of the mean (SEM) with P level of < 0.05 signifi-
cance.

Results and Discussion
2-DE of rat liver extract of treatment groups (HS, T, and
T+HS) have identified a number of differentially expressed
proteins compared to the control group as examined by
scanning and image analysis of silver stained gels (figure
1). MALDI-TOF/MS/MS data analysis using MASCOT
identified a number of GenBank annotated proteins
under each condition that were then curated, and func-
tional roles analyzed using pathway analysis software
The study revealed proteins of different functions including signal transduction pathways, cell and energy metabolism, defense, apoptosis, and respiration. A list of these proteins and their properties can be found in the additional file 1. 2-DE coupled with MS is currently the key approach for profiling thousands of proteins of a given proteome simultaneously and offer the possibility to analyze complex biological processes directly on the level of quantitative protein expression. However, this method is labour-intensive.
sive and not readily interfaced with protein identification by MS. In addition hydrophobic, extremely basic proteins and those with a very high or low MW are often difficult to analyse using this approach.

Fourteen proteins showed altered expression upon turpentine treatment without HS, 6 up-regulated and 8 down-regulated as shown (Table 2). Twenty-five differentially expressed proteins (including 21 up-regulated and 4 down-regulated) in the HS group and 29 (22 up-regulated and 7 down-regulated) in the T+HS group were identified compared to resting control group. Proteins that are up-regulated in T+HS compared to T group include Tubulin beta, Aldehyde dehydrogenase (ADH), Sorbitol dehydrogenase (SDH), L-iditol-2-dehydrogenase, fructose-1,6-biphosphatase1 (FBP1), pyruvate kinase (PK) and carboxylic ester hydrolase (CEH). Down-regulated proteins in T+HS group compared to T group include Liver glycogen phosphorylase isozyme, eukaryotic translation elongation factor-2 and H(+)-transporting ATP synthase. A total of 8 protein coding genes (Ceh, Ppia, Pk, Tkt, Dmgdh, Ass, Fah, and Fbp1) were chosen based on their consistency in the 2D gels and their representing roles in metabolism (carbohydrate, aminoacid) and biological regulation (hydrolase, transketolase activities) for quantitative expression analysis. A quantitative real-time RT-PCR analysis was used to determine the gene expressions in the HS and T+HS groups and compared against control using the relative quantification (2-ΔΔCT) method. The expression level of each gene was normalized to the house keeping gene, β-actin. Using a cutoff value of ≥± 2-fold change in transcript abundance in all the experiments, a total of 7 genes (5 increased and 2 decreased significantly, P < 0.05) among the HS group and 6 genes (3 increased and 3 decreased, P < 0.05) among the T+HS group have revealed significant changes in their expression (Table 3).

Prominent proteins that are down-regulated both in the HS and T+HS groups include FAH and ASS (Table 3). Significant suppression of FAH (P < 0.01) was observed in T+HS group compared to control and HS groups. FAH is the last enzyme involved in the breakdown of tyrosine, and suppression of this enzyme would eventually lead to accumulation of upstream metabolites such as succinylacetone, maleylacetoacetate (MAA), and fumarylacetoacetate (FAA). FAA is cytotoxic to cells and leads to cell cycle arrest and apoptosis. It also causes Golgi apparatus disruption and elicits ER stress response [15]. This is elucidated by the fact that with their electrophilic properties, MAA and FAA are likely to interfere with sulfhydryl reactions by forming adducts with glutathione and other sulfhydryl groups [16]. Downregulation of ASS may interfere with the cellular regulation of nitric oxide (NO), caspase 3 (CASP3), arginine and Bcl2. T+HS group has revealed pronounced cellular perturbances in the liver compared to the HS group.

Dimethylglycine dehydrogenase (DMGDH) found with increased expression in the HS group, on the contrary, was down-regulated (-2.99, P < 0.05) among the T+HS group. Down-regulation of this mitochondrial enzyme could eventually affect the metabolic fate of choline by preventing catalysis of oxidative demethylation of dimethylglycine (DMG) to sarcosine and ultimately glycine. Deficiency of DMGDH is involved in the accumulation of DMG in the urine and serum of patient who presented with “fish-odor syndrome”. This appeared to be the result of a homozygous point mutation in the DMGDH gene [17].

Substantial up-regulation of PPIA and CEH were observed in the HS group compared to the T+HS (P < 0.01) group (Table 3). CEH catalyzes the hydrolysis of various xenobiotics and endogenous substrates such as ester, amide, and thioester bonds and are thought to function mainly in drug metabolism [18]. Overexpression of CEH (fold change 34.54) and chaperone protein PPIA (18.01) in the HS group could probably indicate an adaptive response of liver to sustain cell homeostasis from thermal injury. Despite its role in facilitating protein folding and assembly in response to a cellular stress, the induced expression of PPIA exert a protective effect helping to cope with insults and to prevent apoptosis [19].

Pyruvate kinase (PK) is a hydrolase enzyme involved in glycolysis and the elevated expression of this enzyme in

Table 2: List of altered protein expression upon turpentine (T) treatment

Down-regulated proteins	Up-regulated proteins
Mitochondrial aldehyde dehydrogenase precursor	Liver glycogen phosphorylase isozyme
Mitochondrial aldehyde dehydrogenase	Alcohol dehydrogenase
Aldehyde dehydrogenase	Peptidylprolyl isomerase A
Tubulin, beta 5	Microsomal GST 1
Glutathione-S-Transferase (GST), Mu type 3	Eukaryotic translation elongation factor 2
GST, alpha type 2	III beta-2-globin
Ribosomal protein S19	
Hist2hax1 protein	
The fold changes are mean of three values compared to control groups and using a cut-off of ≥ 2.0 for significance (*P < 0.05).
(a) The standard deviation (SD) quantifies variability or scatter of a data set, and is expressed in the same units as the data. If the data are sampled from a Gaussian distribution, then 95% of the values is expected to lie within two SD of the mean.
(b) Coefficient of variation (CV) represents the ratio of the SD to the mean of the data and indicates the relative variability of SD value to the mean value of the datasets.
(c) The samples were analyzed using QRT-PCR and the Ct data were imported into Microsoft excel. The mean fold change in expression of the target gene at HS and T+HS was normalized relative to the house keeping gene (β-actin) treated – (CT Target – CT Actin) control. The mean ± SD values of β-actin calculated for control, HS and T+HS were 18.72 ± 0.516, 24.04 ± 0.106 and 25.78 ± 0.092 respectively.

Table 3: The expression pattern of genes as analyzed by Quantitative real time RT-PCR

Gene	HS group	T+HS group				
	Mean fold changes (2^ΔΔCT)c	SD*	CVb	Mean fold changes (2^ΔΔCT)c	SD	CV
FAH	-4.55*	0.76	16.76	-11.18*	1.27	11.34
FBP1	-1.06	0.05	4.72	-1.23	0.15	12.14
ASS	-2.21*	0.33	15.12	-2.07*	0.41	19.74
DMGDH	2.73*	0.57	20.95	-2.99*	0.69	23.31
PK	10.12*	0.81	8.02	19.11*	2.18	11.4
TKT	4.67*	0.66	14.13	-1.30	0.30	22.96
PPIA	18.01*	2.21	12.27	3.02*	0.64	21.06
CEH	34.54	7.92	22.94	4.69*	0.65	13.90

The fold changes are mean of three values compared to control groups and using a cut-off of ≥ 2.0 for significance (*P < 0.05).
(a) The standard deviation (SD) quantifies variability or scatter of a data set, and is expressed in the same units as the data. If the data are sampled from a Gaussian distribution, then 95% of the values is expected to lie within two SD of the mean.
(b) Coefficient of variation (CV) represents the ratio of the SD to the mean of the data and indicates the relative variability of SD value to the mean value of the datasets.
(c) The samples were analyzed using QRT-PCR and the Ct data were imported into Microsoft excel. The mean fold change in expression of the target gene at HS and T+HS was normalized relative to the house keeping gene (β-actin) treated – (CT Target – CT Actin) control. The mean ± SD values of β-actin calculated for control, HS and T+HS were 18.72 ± 0.516, 24.04 ± 0.106 and 25.78 ± 0.092 respectively.

The HS (10.12 fold) and T+HS (19.11 fold) groups (Table 3) revealed acute alterations in energy metabolism to maintain cell homeostasis. This is in agreement with a previous study on glial cells in which up-regulation of PK was found associated with tolerance to hypoxia induced ischemic stress [20]. Transketolase (TKT) is a thiamine dependent enzyme that plays critical roles in the providing key phosphorylated carbohydrate intermediates to the cell and thereby connects the PPP to glycolysis [20,21]. TKT (protein score 87) was significantly up-regulated in HS group (fold change 4.67, P < 0.01) and no significant variation was noticed among the T+HS group (P > 0.05 not significant). Differential expression of TKT may have an effect on the PPP (pentose phosphate pathway) metabolic pathway, besides methyltransferase and oxidoreductase activities [22]. The study result coincides with a study report wherein the elevated TKT expression was found associated with tolerance to hypoxia induced ischemic stress [20,21]. Transketolase (TKT) is a thiamine dependent enzyme that plays critical roles in the providing key phosphorylated carbohydrate intermediates to the cell and thereby connects the PPP to glycolysis [20,21].

Other notable proteins that are up-regulated in the T+HS group include phosphatidylethanolamine binding protein (PEBP1, protein score 108), glutathione S-transferase (GST)-Mu1 (protein score 506), urate oxidase (UOX, score 155), sorbitol dehydrogenase (SDH, score 246), tumor rejection antigen gp96 (score 217) and apolipoprotein-E (score 186). PEBP1, a cytosolic protein also known as "Raf-1 kinase interacting protein" (RKIP), has been shown to be differentially expressed in the disease process of acute liver failure (ALF) and hypothesized as a potential plasma biomarker for ALF diagnosis [24]. Increased GSTs in the present study is indicative of the presence of increased lipid peroxides in the T+HS treated rat livers. GSTs have been shown to play role in detoxification of toxic substances, xenobiotics, and products of oxidative stress [25]. Elevated UOX (protein score 155) and SDH (protein score 246) expression maybe in response to disruption caused in the liver. In support of the data, the expression level of SDH was found directly proportional to the extent of liver damage [26]. Gp96 is a member of the Hsp90 family of molecular chaperones that resides within the lumen of endoplasmic reticulum (ER). In addition to its chaperone role, administration of tumor derived gp96 induces protective tumor-specific immunity and anti-inflammatory properties [27-29]. Up regulation of gp96 (protein score 217) in the T+HS group is apparently an adaptive response to induced inflammation.

In the HS group enoyl coenzyme A-hydratase (ECHS), aldehyde dehydrogenase (ALDH1), laminin receptor (LR)-1 and betaine-homocysteine methyltransferase (BHMT) were up-regulated (for details refer additional file 1). BHMT is involved in the pathway of choline oxidation. It catalyzes a methyl transfer from betaine to homocysteine to form dimethylglycine and methionine, respectively [21,30,31]. Up-regulation of BHMT could be a protective response to reduce the generated oxidative stress in liver. On the other hand, decreased BHMT has eventually led to the impairment of mitochondrial function and generation of oxidative stress [30-34]. Laminin is a cell adhesion protein important for development and maintenance of specialized tissue architecture. In the adult rat liver, it is present in small amounts as part of an incomplete basement membrane separating endothelial cells of the sinusoids from hepatocytes [35]. We observed
an up-regulation of LR-1 in liver cells of HS rats compared to resting controls. On the other hand, a proteomic studies on rat liver have not identified the LR-1 among the 273 proteins reported. For more details please refer Table 1 of the article cited [36] is indicative of an adaptive response to maintain the integrity of the cells.

A report on proteome analysis of liver or rats with chronic alcohol consumption that induce oxidative stress and elevate proinflammatory cytokines has identified changes in abundance of proteins. The study has revealed up-regulation of UOX, FAA, ECHS and aldolase B, and down-regulation of FBP1, TKT, ETF, HSP90, enolase, and GAPDH [37]. We do observe some similarities and disparity in the protein expression profiles compared to their study. Similarities in protein pattern include an up-regulation of UOX and FAA, and down-regulation of TKT, was observed in the T treatment group. On the contrary, ECHS was down-regulated, and ETF, enolase and HSP90 were up-regulated. Aldolase B and GST mu type 2 expression remain normal in our study.

A recent study has demonstrated that in rats, during a localized inflammation induced by intramuscular T administration, the expression of heme-oxygenase-1 (HO-1) is strongly induced in the macrophages of the injured muscle and in liver parenchyma. HO-1 play important role in cytoprotection of hepatocytes, which might become damaged under inflammatory conditions [38]. In contrast, we have not observed differential expression of HO-1 upon T treatment in our study.

Conclusion
In summary, we performed the proteome analysis of rat liver under the conditions of HS and induced inflammation with HS (T+HS). Comparison of 2-DE patterns of the control group with those of treatment groups has identified a number of differentially expressed proteins involved in energy metabolism and signal transduction pathways. Significant alterations in the expression of PK, ASS, DMGDH, PPIA, CEH, TKT and FAH have important implications in the mechanistic pathways of metabolism and regulation induced tissue damage and inflammation. PEBP1, SDH, GSTs, BHMT, UOX, and ECHS1 are other prominent proteins, the participation of which in metabolism reflects the importance in the regulation of redox equilibrium. Further work will be necessary to measure these up-regulated proteins and will allow a better comprehension of the cellular events underlying the effect.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
RG, LKW and SP performed protein extraction, two-dimensional gel electrophoresis, identification of differentially expressed proteins, and data handling. LCL did the animal experiments, TK did the MALDI-TOF-MS/MS analysis, GPs' facility confirmed the differential expression of genes by QRT-PCR, YEP, LJ and MS designed the study.

Additional material

Additional file 1
Supplementary table. Prominent annotated proteins that exhibited differential expression upon treatment as identified by MALDI-TOF-MS/MS.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1477-5956-7-1-S1.doc]

Acknowledgements
The authors acknowledge the support from DSO National Laboratories, Internally Directed Fund (IDP No. 20040082), Singapore. We thank Barbara Sorotolo, Leonard M. Miller School of Medicine, Miami, Florida 33101, for proof reading the manuscript.

References
1. Barthel HJ: Exertion-induced heat stroke in a military setting. Mil Med 1990, 155:116-119.
2. Sieck GC: Molecular biology of thermoregulation. J Appl Physiol 2002, 92:1365-1366.
3. Keim SM, Guisto JA, Sullivan JB Jr: Environmental thermal stress. Ann Agric Environ Med 2002, 9:1-15.
4. Lim CL, Wilson G, Brown L, Coombes JS, Mackinnon LT: Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress. Am J Physiol Regul Integr Comp Physiol 2007, 292:R186-194.
5. Brealey D, Karyampudi S, Jaques TS, Novelli M, Stidwill R, Taylor V, Smolenski RT, Singer M: Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 2004, 286:R491-R497.
6. Sandakov D, Gerein V: Turpentine-induced fever during stimulation and inhibition of hepatic protein synthesis. J Thermal Biol 2003, 28:439-443.
7. Castell JV, Andus T, Kunz D, Heinrich PC: Interleukin-6: the major regulator of acute phase protein synthesis in man and rats. Ann N Y Acad Sci 1989, 557:87-99.
8. Scocci M, Hiron M, Masson S, Lyoumi S, Banine F, Ténière P, Lebreton JP, Daveau M: Differential expression of cytokine genes in monocytes, peritoneal macrophages and liver following endotoxin- or turpentine-induced inflammation in rat. Cytokine 1996, 8:115-120.
9. Siewert E, Bort R, Kluge R, Heinrich PC, Castell J, Jover R: Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology 2000, 32(1):49-55.
10. Hammami MM, Bouchama A, Al-Sedairy S, Shail E, AlOhaly Y, Mohamed GED: Concentrations of soluble tumor necrosis factor and interleukin-6 receptors in heatstroke and heat stress. Crit Care Med 1997, 25(8):1314-1319.
11. Leon LR, Conn CA, Glaccum M, Kluger MJ: IL-1 type 1 receptor mediates acute phase response to turpentine, but not lipopolysaccharide, in mice. Am J Physiol Regul Integr Comp Physiol 1996, 271:1668-1675.
12. Szoszynski D, Krajewska M: Lack of cross tolerance between pyrogenic effects of LPS and tumor in rats. J Thermal Biol 2003, 28:29-37.

13. Fella K, Gluckmann M, Hellmann J, Karas M, Kramer P, Kröger M: Use of two-dimensional gel electrophoresis in predictive toxicology: Identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis. Proteomics 2005, 5:1914-1927.

14. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta CT) method. Methods 2001, 25:402-408.

15. Bergeron A, Jorquera R, Orefuji D, Tanguay RM: Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I. J Biol Chem 2006, 281:5329-5334.

16. Lindblad B, Lindstedt S, Steen G: On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA 1977, 74:4641-4645.

17. Binek BA, Wevers RA, Moolenaar SH, Lee Y, Hwu W, Poggi-Bach J, Poggi-Bach J, Engelke UFH, Hoard HM, Vockley JG: Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. Am J Hum Genet 2001, 68:839-847.

18. Hoekzema M, Funahata T, Yaginuma Y, Yamamoto N, Watanabe N, Tsukada E, Ohhata Y, Kobayashi K, Satoh T, Chiba K: Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metab Pharmacokinet 2008, 23(1):73-84.

19. Carboni L, Piubelli C, Pozzato C, Astner H, Arban R, Righetti PG, Hamdan M, Dundeck S, Steen G: Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neurosci 2006, 137:1237-1246.

20. Shimizu T, Uehara T, Nomura Y: Possible involvement of pyruvate kinase in acquisition of tolerance to hypoxic stress in glial cells. J Neurochem 2004, 91:167-175.

21. Millian NS, Garrow TA: Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch Biochem Biophys 1998, 356(1):93-98.

22. Schenk G, Duggleby RG, Nixon PF: Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998, 30:1297-1318.

23. Slekar KH, Kosman DJ, Culotta VC: The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 1996, 271:28831-28836.

24. Lv S, Wei L, Wang JH, Wang JY, Liu F: Identification of novel molecular candidates for acute liver failure in plasma of BALB/c murine model. J Proteome Res 2007, 6(7):2746-2752.

25. Makar TK, Nedergaard M, Preuss A, Perumal AS, Cooper AJ: Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 1994, 62:45-53.

26. DeCicco LA, Rickens LE, Tutor CG, Hornbrook KR: Serum and liver concentrations of tumor necrosis factor a and interleukin-1b following administration of carbon tetrachloride to male rats. Toxicol Lett 1998, 98:113-121.

27. Slack LK, Muthana H, Hopkinson K, Suzanna SK, Espigares E, Mirza S, Fairburn B, Pockley AG: Administration of the stress protein gp96 prolongs rat cardiac allograft survival, modifies rejection-associated inflammatory events, and induces a state of peripheral T-cell hyporesponsiveness. Cell Stress Chaperones 2007, 12(1):71-82.

28. Chandawarkar RY, Wagh MS, Srivastava PK: The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 1999, 189:1437-1442.

29. Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P: Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 2004, 16:615-624.

30. McKeever MP, Weir DG, Melloy A, Scott JM: Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin Sci 1991, 81(4):551-556.

31. Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA: Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 1997, 345(1):171-174.

32. Ichibangase T, Moriya K, Koike K, Imay A: A proteomics method revealing disease-related proteins in livers of hepatitis-infected mouse model. J Proteome Res 2007, 6(7):2841-2849.

33. Liang CR, Leow CK, Neo JC, Tan GS, Lo SL, Lim JW, Seow TK, Lai PB, Chung MC: Proteomic analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 2005, 5(8):2258-2271.

34. Heil SG, Livers K, Boers GH, Verhof P, Den-Heijer M, Triebels FJ, Blom HJ: Betaine-homocysteine methyltransferase (BHMT): Genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans. Mol Genet Metab 2000, 71(3):511-519.

35. Forsberg E, Paulsson M, Timpi R, Johansson S: Characterization of a Laminin Receptor on Rat Hepatocytes. J Biol 1990, 265(11):6376-6381.

36. Fountoulakis M, Suter L: Proteomic analysis of the rat liver. J Chromatogr B 2002, 782:197-218.

37. Klouckova I, Hrncirova P, Mechref Y, Arnold RJ, Li TK, McBride WJ, Novotny MV: Changes in liver protein abundance in inbred alcohol preferring rats due to chronic alcohol exposure, as measured through a proteomics approach. Proteomics 2006, 6:3060-3074.

38. Tron K, Novosyadlyj R, Dudas J, Samoylenko E, Kietzmann T, Ramadori G: Upregulation of heme oxygenase-1 gene by turpentine oil-induced localized inflammation: involvement of interleukin-6. Lab Invest 2005, 85:376-387.