Data Article

Data on soil properties and halophilic bacterial densities in the Na Si Nuan Secondary Forest at Kantharawichai District, Maha Sarakham, Thailand

Kannika Chookietwattana a,*, Thalisa Yuwa-amornpitak a

a Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand

ARTICLE INFO

Article history:
Received 4 August 2019
Received in revised form 12 September 2019
Accepted 23 September 2019
Available online 28 September 2019

Keywords:
Soil properties
Saline soil
Soil bacterial density
Halophilic bacteria

ABSTRACT

Saline soil is one of the most crucial problems of arid and semi-arid regions because it reduces growth of plant and microorganisms. In Thailand, the inland saline soils are found mostly in the northeastern part especially in Maha Sarakham Province where 85% of the province has geological characteristics as rock salt beds. Saline soil often experiences low soil fertility problems which multiply the adverse effects on plant growth. Interestingly, the Na Si Nuan Secondary Forest, Kantharawichai District, Maha Sarakham, is not affected by salinity although almost the entire province of Maha Sarakham is salt-affected area. Saline soil is a habitat of halophilic bacteria. Bacteria are the most important microorganisms contribute to soil fertility and soil health. Thus data regarding the density of culturable halophilic bacteria and soil properties in this forest soil is useful for reclamation of saline soil and helping to sustain the forest ecosystem.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: kannika.c@msu.ac.th (K. Chookietwattana).
1. Data

The data are from the 14-sampling plots investigating the seasonal dynamics of main physical and chemical soil properties and the density of non-, slightly-, and moderately halophilic bacteria. Main physical and chemical properties of soil collected in three seasons (hot, rainy and cool) from Na Si Nuan Secondary Forest, Kantharawichai District, Maha Sarakham Province, Thailand, are summarized in Tables 1 and 2. The status of soil properties were assessed against the criteria from Land Classification Division and FAO Project Staff [1], Landon [2], and Soil Survey Division Staff [3] (Table 3).

Table 1
The pH, electrical conductivity (EC), and soil texture class of soil samples collected from Na Si Nuan Secondary Forest, Maha Sarakham, among the three seasons.

Sampling plot	pH (1:1 H2O)	EC (1:5) (dSm⁻¹)	Soil texture						
	Hot	Rainy	Cool	Hot	Rainy	Cool			
1	4.8	4.7	5.9	0.12	0.08	0.04	Sandy loam	Loamy sand	Sandy loam
2	5.4	5.5	6.3	0.11	0.10	0.05	Sandy loam	Loamy sand	Loamy sand
3	4.7	4.7	5	0.09	0.02	0.02	Loamy sand	Loamy sand	Sandy loam
4	4.7	4.1	4.9	0.04	0.08	0.01	Loamy sand	Sandy loam	Sandy loam
5	4.4	4.0	4.6	0.02	0.06	0.02	Sandy loam	Loamy sand	Loamy sand
6	4.2	3.8	4.9	0.06	0.07	0.01	Loamy sand	Loamy sand	Sandy loam
7	3.9	3.9	4.6	0.07	0.10	0.03	Loamy sand	Loamy sand	Loamy sand
8	4.0	3.8	4.9	0.08	0.08	0.02	Sandy loam	Loamy sand	Loamy sand
9	3.9	4.1	4.8	0.06	0.06	0.02	Sandy loam	Loamy sand	Sandy loam
10	4.1	3.8	5.0	0.08	0.08	0.02	Sandy loam	Loamy sand	Sandy loam
11	4.2	4.1	4.8	0.06	0.09	0.04	Loamy sand	Sandy loam	Sandy loam
12	4.2	4.0	5.0	0.13	0.08	0.01	Sandy loam	Sandy loam	Loamy sand
13	4.3	4.1	5.4	0.07	0.06	0.02	Loamy sand	Sandy loam	Loamy sand
14	4.3	4.2	6.0	0.08	0.09	0.04	Loamy sand	Sandy loam	Loamy sand
Max.	5.7	5.5	6.3	0.13	0.10	0.05			
Min.	3.9	3.8	4.6	0.02	0.02	0.01			
Ave.	4.4	4.2	5.2	0.08	0.08	0.03			
The density of non-, slightly-, and moderately halophilic bacteria of soil collected in three seasons from the study site are summarized in Table 4. The fifty-six bacterial isolates were obtained through bacterial enumeration processes. From an initial observation of the Gram stain status and morphological features of the bacterial isolates using a light microscope, most of them were Gram-positive endospore-forming rods. A one-way ANOVA was used to analyze the difference of soil properties and halophilic bacterial density among the three seasons (Table 5).

2. Experimental design, materials and methods

2.1. Description of sampling area

The sampling area, Na Si Nuan Secondary Forest at Maha Sarakham Province, Thailand, is situated between latitude 16°20’N and longitude 103°12’E with a total area of approximately 19.2 ha. The sampling sites were divided into 14 plots (Fig. 1).

2.2. Sample collection and analytical procedures

Soil samples were collected seasonally during June 2017 to March 2018. The samples were randomly taken from three subplots for each sampling site at a depth of 30 cm using a hand auger. Samples from

Parameter	Range	Average/Interpretation
pH	4.2–5.2	4.6/Low^a
Electrical conductivity	0.03–0.08	0.06/Non-saline^b
Soil texture class	Loamy sand - sandy loam	-/Coarse^c
Organic matter (%)	0.66–1.06	0.88/Low^a
Total nitrogen (%)	0.033–0.052	0.044/Low^a
Available phosphorus (mgkg⁻¹)	3.14–4.90	4.24/Low^a
Available potassium (mgkg⁻¹)	32.6–51.1	43.7/Low^a

^a Interpretation of soil properties from Land Classification Division and FAO Project Staff [1].

^b Interpretation of soil properties from Landon [2].

^c Interpretation of soil properties from Soil Survey Division Staff [3].

The density of non-, slightly-, and moderately halophilic bacteria of soil collected in three seasons from the study site are summarized in Table 4. The fifty-six bacterial isolates were obtained through bacterial enumeration processes. From an initial observation of the Gram stain status and morphological features of the bacterial isolates using a light microscope, most of them were Gram-positive endospore-forming rods. A one-way ANOVA was used to analyze the difference of soil properties and halophilic bacterial density among the three seasons (Table 5).

Parameter	Range	Average/Interpretation
pH	4.2–5.2	4.6/Low^a
Electrical conductivity	0.03–0.08	0.06/Non-saline^b
Soil texture class	Loamy sand - sandy loam	-/Coarse^c
Organic matter (%)	0.66–1.06	0.88/Low^a
Total nitrogen (%)	0.033–0.052	0.044/Low^a
Available phosphorus (mgkg⁻¹)	3.14–4.90	4.24/Low^a
Available potassium (mgkg⁻¹)	32.6–51.1	43.7/Low^a

^a Interpretation of soil properties from Land Classification Division and FAO Project Staff [1].

^b Interpretation of soil properties from Landon [2].

^c Interpretation of soil properties from Soil Survey Division Staff [3].

The density of non-, slightly-, and moderately halophilic bacteria of soil collected in three seasons from the study site are summarized in Table 4. The fifty-six bacterial isolates were obtained through bacterial enumeration processes. From an initial observation of the Gram stain status and morphological features of the bacterial isolates using a light microscope, most of them were Gram-positive endospore-forming rods. A one-way ANOVA was used to analyze the difference of soil properties and halophilic bacterial density among the three seasons (Table 5).

Parameter	Range	Average/Interpretation
pH	4.2–5.2	4.6/Low^a
Electrical conductivity	0.03–0.08	0.06/Non-saline^b
Soil texture class	Loamy sand - sandy loam	-/Coarse^c
Organic matter (%)	0.66–1.06	0.88/Low^a
Total nitrogen (%)	0.033–0.052	0.044/Low^a
Available phosphorus (mgkg⁻¹)	3.14–4.90	4.24/Low^a
Available potassium (mgkg⁻¹)	32.6–51.1	43.7/Low^a

^a Interpretation of soil properties from Land Classification Division and FAO Project Staff [1].

^b Interpretation of soil properties from Landon [2].

^c Interpretation of soil properties from Soil Survey Division Staff [3].

The density of non-, slightly-, and moderately halophilic bacteria of soil collected in three seasons from the study site are summarized in Table 4. The fifty-six bacterial isolates were obtained through bacterial enumeration processes. From an initial observation of the Gram stain status and morphological features of the bacterial isolates using a light microscope, most of them were Gram-positive endospore-forming rods. A one-way ANOVA was used to analyze the difference of soil properties and halophilic bacterial density among the three seasons (Table 5).

2. Experimental design, materials and methods

2.1. Description of sampling area

The sampling area, Na Si Nuan Secondary Forest at Maha Sarakham Province, Thailand, is situated between latitude 16°20’N and longitude 103°12’E with a total area of approximately 19.2 ha. The sampling sites were divided into 14 plots (Fig. 1).

2.2. Sample collection and analytical procedures

Soil samples were collected seasonally during June 2017 to March 2018. The samples were randomly taken from three subplots for each sampling site at a depth of 30 cm using a hand auger. Samples from
the same sampling site were mixed thoroughly to obtain the composite sample. Then a portion (one kilogram) of the composite soil samples was collected and stored at 4°C for further examination.

2.2.1. Physical and chemical analysis of soil samples

The pH, electrical conductivity (EC), soil texture class, organic matter, total nitrogen, available phosphorus and available potassium of the soil samples were determined seasonally. Details of the methods of physical and chemical analysis are given elsewhere on Page et al. [4,5] and Division of Soil analysis [6].

2.2.2. Density of culturable halophilic bacteria

The number of non-, slightly-, and moderately halophilic bacteria in soil samples were enumerated using a spread plate technique. The halobacteria medium [7] containing NaCl at 0, 3, and 6% (w/v) were used for enumeration of non-, slightly-, and moderately halophilic bacteria, respectively. The NaCl concentrations used were chosen from the level of salt requirements for the growth of each group of halophilic bacteria [8]. After incubation at 37°C for 2–3 days, the colony forming units (CFU) were counted. Then the density of culturable halophilic bacteria were calculated and reported as log CFU g⁻¹ of dry soil. Different colonies grown on media were selected and purified for further characterization.

Sampling plot	Non halophilic bacteria	Slightly halophilic bacteria	Moderately halophilic bacteria						
	Hot	Rainy	Cool	Hot	Rainy	Cool	Hot	Rainy	Cool
1	6.72	5.70	6.16	4.91	3.94	4.44	3.97	3.23	3.69
2	5.78	5.32	5.91	4.81	4.15	4.59	3.94	3.11	3.72
3	6.78	5.53	5.53	4.66	3.96	4.26	3.96	3.36	3.76
4	6.70	5.30	6.44	4.21	3.26	3.85	3.89	3.26	3.56
5	5.98	5.28	5.74	4.28	3.18	3.71	3.63	3.40	3.64
6	5.54	5.15	5.35	3.95	3.33	3.63	3.60	3.38	3.53
7	6.45	6.02	6.22	4.25	3.27	3.97	3.78	3.52	3.32
8	6.83	6.19	6.75	4.51	3.11	3.91	3.89	3.57	3.57
9	6.88	5.71	6.65	4.08	3.38	3.69	3.50	3.30	3.30
10	5.92	5.50	5.70	5.52	5.09	5.52	3.82	3.18	3.75
11	6.87	5.83	6.82	4.58	3.98	4.45	3.83	3.39	3.39
12	7.04	5.75	6.47	4.27	3.86	4.29	3.88	3.29	3.72
13	6.45	5.66	6.20	4.83	4.14	4.53	3.85	3.20	3.50
14	6.26	5.28	6.18	4.80	4.03	4.66	3.85	3.23	3.73

Max. 7.04 6.19 6.82 5.52 5.09 5.52 3.97 3.57 3.76
Min. 5.54 5.15 5.35 3.95 3.11 3.63 3.50 3.11 3.30
Ave. 6.44 5.59 6.15 4.55 3.76 4.25 3.81 3.32 3.60

Table 5: Statistical analysis of soil properties and halophilic bacterial density among the three seasons.

Parameters	Hot	Rainy	Cool
pH	4.4b	4.2b	5.2a
Electrical conductivity (dSm⁻¹)	0.08a	0.08a	0.03b
Organic matter (%)	0.92a	0.66b	1.06a
Total nitrogen (%)	0.46a	0.033b	0.052a
Available phosphorus (mgkg⁻¹)	4.99a	3.14a	4.67a
Available potassium (mgkg⁻¹)	51.1a	32.6b	47.4ab
Non-halophilic bacteria (log CFUg⁻¹ dry soil)	6.44a	5.59b	6.15a
Slightly-halophilic bacteria (log CFUg⁻¹ dry soil)	4.55a	3.76b	4.25a
Moderately-halophilic bacteria (log CFUg⁻¹ dry soil)	3.81a	3.32c	3.60b

abc Values with the same letter within rows indicate no significant difference with P ≥ 0.05.

the same sampling site were mixed thoroughly to obtain the composite sample. Then a portion (one kilogram) of the composite soil samples was collected and stored at 4 °C for further examination.

2.2.1. Physical and chemical analysis of soil samples

The pH, electrical conductivity (EC), soil texture class, organic matter, total nitrogen, available phosphorus and available potassium of the soil samples were determined seasonally. Details of the methods of physical and chemical analysis are given elsewhere on Page et al. [4,5] and Division of Soil analysis [6].

2.2.2. Density of culturable halophilic bacteria

The number of non-, slightly-, and moderately halophilic bacteria in soil samples were enumerated using a spread plate technique. The halobacteria medium [7] containing NaCl at 0, 3, and 6% (w/v) were used for enumeration of non-, slightly-, and moderately halophilic bacteria, respectively. The NaCl concentrations used were chosen from the level of salt requirements for the growth of each group of halophilic bacteria [8]. After incubation at 37 °C for 2–3 days, the colony forming units (CFU) were counted. Then the density of culturable halophilic bacteria were calculated and reported as log CFU g⁻¹ of dry soil. Different colonies grown on media were selected and purified for further characterization.
2.2.3. Data analysis

The values of soil physical and chemical properties and density of halophilic bacteria of each plot were averaged from its subplots. Data obtained from three seasons were compared by one-way analysis of variance (ANOVA) and the significance of mean difference among the three seasons was done by multiple comparison tests (Tukey’s HSD Post Hoc Test). Statistics analyses were performed using the SPSS version 17.0 (SPSS Inc., USA.).

Acknowledgments

This work was financially supported by Mahasarakham University, Thailand (Year 2018) with the grant number 6105047/2561.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Fig. 1. Map of the study area: shaded area depicts the location of Na Si Nuan Secondary Forest at Maha Sarakham Province, Thailand.
References

[1] Land Classification Division and FAO Project Staff, Soil Interpretation Handbook for Thailand, Department of Land Development, Ministry of Agriculture and Cooperatives, Bangkok, 1973.
[2] J.R. Landon, Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics, Longman, London, 1991.
[3] Soil Survey Division Staff, Soil Survey Manual, USDA Handbook 18, USDA, Washington, D.C., 1993.
[4] A.L. Page, R.H. Miller, D.R. Keeney, Methods of Soil Analysis Part 1, American Society of Agronomy, Wisconsin, 1982a.
[5] A.L. Page, R.H. Miller, D.R. Keeney, Methods of Soil Analysis Part 2, American Society of Agronomy, Wisconsin, 1982b.
[6] Division of Soil Analysis, Analytical of Physical and Chemical Properties of Soil in Laboratory, Land Development Department, Bangkok, 1996 (in Thai).
[7] R.M. Atlas, Handbook of Microbiological Media, second ed., CRC Press, Boca Raton, 1997.
[8] D.J. Kushner, Growth and nutrition of halophilic bacteria, in: R.H. Vreeland, L.I. Hochstein (Eds.), The Biology of Halophilic Bacteria, CRC Press, Boca Raton, 1993, pp. 87–89.