The CLIP-Domain Serine Protease Homolog SPCLIP1 Regulates Complement Recruitment to Microbial Surfaces in the Malaria Mosquito Anopheles gambiae

Michael Povelones1*, Lavanya Bhagavatula1*, Hassan Yassine2*, Lee Aun Tan1, Leanna M. Upton1, Mike A. Osta2, George K. Christophides1*

1 Department of Life Sciences, Imperial College London, London, United Kingdom, 2 Department of Biology, American University of Beirut, Beirut, Lebanon

Introduction

The mosquito Anopheles gambiae is the main vector of Plasmodium falciparum malaria in sub-Saharan Africa and hence directly responsible for the death of hundreds of thousands of people every year and for a devastating socioeconomic burden especially in endemic countries. Mosquitoes launch a potent immune attack leading to the killing of the majority of invading Plasmodium parasites. Multiple mechanisms are thought to participate in these anti-Plasmodium reactions, amongst them a latent pathway resembling vertebrate complement [1]. RNAi knockdown (kd) studies, based on the injection of double stranded RNA (dsRNA) into adult A. gambiae mosquitoes, have revealed important roles of components of the complement-like pathway in defense against the murine malaria parasite Plasmodium berghei [2–6]. There is also significant evidence for a role of this pathway in defense against the human parasite, F. falciparum, in laboratory infections of A. gambiae [3,7–9].

Recent studies with natural A. gambiae populations revealed that the gene encoding the C3-like protein TEP1, a key player of the complement-like pathway, and the genomic locus encoding its interacting partner APL1C are under strong directional selection in an M form population but subject to balancing selection in another S form population [10,11]. Despite the fact that distinct TEP1 alleles have been associated with resistance to Plasmodium parasites [2,8,11–13], the selective pressure on TEP1 is hypothesized to be driven by pathogens in larval habitats rather than those encountered by adults. This is further supported by the rather generic immune specificity of TEP1 that functions also in anti-bacterial [3,14] and anti-fungal defense [15]. The polymorphic nature of TEP1 also suggests that the different alleles might follow different kinetics in interacting with LRIM1/APL1C as well as other TEP1 regulatory proteins, which could influence the efficiency of parasite killing or microbial clearance. Therefore, a better understanding of the mechanisms regulating complement activation and identification of the proteins involved will permit deciphering the functional relevance to Plasmodium of allelic interactions within this immune module on resistance.

The hallmark of activation of the mosquito complement-like pathway is the binding of TEP1 to microbial surfaces through a thioester bond, a reaction that is tightly linked to microbial killing [14]. TEP1 circulates in the mosquito hemolymph in two forms: the full-length form TEP1-F and the proteolytically processed form TEP1cut, corresponding to pro-C3 and the mature C3 protein after processing in the ER, respectively [14,16]. Unlike C3, TEP1 lacks an anaphylatoxin domain and the exposed thioester bond of TEP1cut is unstable [17]. TEP1cut is stabilized in the hemolymph through interactions with a heterodimer of the leucine-rich repeat (LRR) proteins LRIM1 and APL1C, which seems to confer specificity upon TEP1 activity [5,16]. While the structure and function of TEP1 and its C3 homolog are largely conserved from insects to mammals, LRIM1 and APL1C are...
Author Summary

Mosquitoes are vectors of numerous human diseases including malaria. Disease transmission requires that microbes overcome the robust mosquito immune system. In the African malaria mosquito, the TEP1 protein that is homologous to mammalian complement factor C3 is shown to play a central role in mosquito immunity to malaria parasites and bacteria. In this study, we report that another mosquito protein belonging to a class of non-catalytic enzymes that are specific to arthropods is a core component of the mosquito complement-like immune pathway. We found that this new protein, named SPCLIP1, regulates the accumulation of TEP1 on malaria parasites and bacteria, and show that this can lead to distinct defense reactions including lysis and melanization of the pathogen. This work is valuable because it reveals novel insight into the regulation of mosquito complement on microbial surfaces such as those of the malaria parasites. Unraveling the molecular mechanisms regulating these defense reactions may ultimately lead to the design of novel disease blocking strategies in the vector.

thought to be specific to mosquitoes [18] raising interesting questions about the degree of structural and/or functional conservation between other modules of the complement pathway such as those that stabilize or amplify complement on microbial surfaces. The research presented here aimed to address these questions and provide novel mechanistic insights into the regulation of mosquito complement pathway during infection.

Results

SPCLIP1 is a component of the complement-like pathway

To identify novel components of the mosquito complement pathway, we searched for genes that exhibited significant co-regulation with LRIM1 in a developmental transcriptome dataset of Expressed Sequence Tags (ESTs; [19]). Pearson correlation coefficient (PCC) identified 4 EST clusters showing similarity to LRIM1 developmental expression greater than 0.95. Importantly, 3 of the 4 clusters were found to encode proteins that had been previously shown to physically interact with LRIM1, including APL1C (PCC 0.964), TEP1 (PCC = 0.978) and TEP4 (PCC = 0.965) [5,16,20]. The fourth EST cluster (PCC = 0.980) did not correspond to any gene model in the A. gambiae genome. It encodes a protein with CLIP and serine protease domains, previously identified as SPCLIP1 and shown to be involved in defense against P. falciparum, P. berghei, Escherichia coli and Staphylococcus aureus [3]. SPCLIP1 maps within a genomic region encompassing 12 additional genes encoding proteins with CLIP and serine protease domains (Figure S1A). All residues corresponding to the serine protease catalytic triad (Asp-His-Ser) are substituted in SPCLIP1 indicating that it is non-catalytic (Figure S1B). Phylogenetic analysis places SPCLIP1 in the highly divergent CLIPE subfamily of non-catalytic CLIP-domain serine protease homologs (SPHs; Figure S1C).

Co-regulation with LRIM1 and the previously reported knock-down phenotypes [3] were suggestive of SPCLIP1 involvement in the A. gambiae complement-like pathway. To characterize SPCLIP1, we raised a polyclonal antibody against the entire protein and used it in western blots of adult mosquito hemolymph separated by non-reducing SDS-PAGE. The results showed that SPCLIP1 migrates at approximately 45 kDa, near its predicted 42 kDa molecular weight (Figure 1A). We examined whether the steady state levels of SPCLIP1 in the hemolymph are affected by silencing LRIM1 or TEP1. While TEP1 kd had no effect on SPCLIP1 levels, these were markedly reduced in LRIM1 kd (Figure 1B). This decrease of SPCLIP1 parallels the near complete loss of TEP1 cut from the hemolymph of LRIM1 or APL1C kd mosquitoes due to its accumulation on self-tissues (Figure 1B) [5,16]. To determine if the reduction of SPCLIP1 in LRIM1 kd is dependent on TEP1, we silenced LRIM1 and TEP1 simultaneously. Under these conditions, SPCLIP1 was restored to its baseline levels (Figure 1C). In contrast, silencing LRIM1 and SPCLIP1 together did not restore TEP1 cut levels, suggesting that SPCLIP1 functions downstream of TEP1 cut, and that in LRIM1 kd mosquitoes SPCLIP1 is likely to be sequestered on self-tissues together with TEP1 cut.

SPCLIP1 and TEP1 localization to ookinetes is mutually dependent

We investigated the role of SPCLIP1 in TEP1 binding to P. berghei. It has been previously established that TEP1 binds to the surface of P. berghei ookinetes as they traverse the mosquito midgut epithelium and come into contact with the hemolymph [2]. In SPCLIP1 kd mosquitoes, TEP1 staining on the ookinete surface was inhibited (Figure 2A). This, together with the TEP1-dependent reduction of SPCLIP1 from the hemolymph following LRIM1 kd, led us to hypothesize that SPCLIP1 is recruited to the parasite surface during infection. To test this, SPCLIP1 was immunolocalized in midgut epithelium 24 h after infection. We observed robust SPCLIP1 signal on dead ookinetes, judged by the
loss of their cytoplasmic GFP signal (Figure 2B). Given that TEP1 is also highly prevalent on dead ookinetes, this result indicates that SPCLIP1 and TEP1 likely co-localize to the same ookinetes; however, we could not simultaneously assay their distribution since both antibodies were raised in the same host species. No SPCLIP1 staining was observed in midgut epithelia dissected from SPCLIP1 kd mosquitoes, showing that the antibody is specific. Importantly, SPCLIP1 staining on the ookinet surface was inhibited after TEP1 kd. This suggests that the localization of TEP1 and SPCLIP1 to ookinetes is mutually dependent (Figure 2B).

SPCLIP1 is required for the utilization of TEP1-F

TEP1 present on microbial surfaces during infection may originate either from the TEP1cut or the TEP1-F pools. To clarify this point and investigate further the functional relationship between the two forms of TEP1 and SPCLIP1, we developed an alternative infection model that allowed us to monitor temporally and quantitatively the dynamics of the examined proteins after infection of E. coli bioparticles (chemically killed bacteria) into the hemocoele. This infection model offers the advantage of tight temporal monitoring of rapid immune responses such as those of complement, which occur within minutes of microbial exposure to the hemolymph. Hemolymph was collected from groups of mosquitoes at 15, 60, 120, 240 and 360 minutes post injection with bacteria or PBS (i.e. control) and proteins were analyzed by western blot. The results showed strong reduction in SPCLIP1, the LRIM1/APL1C complex, and TEP1-F levels in mosquito hemolymph after injection of E. coli bioparticles (Figure 3A). A marked reduction of these proteins was already observed at 60 min after injection and persisted up to 240 min when LRIM1/APL1C and TEP1-F levels began to rise. The kinetics of TEP1-F reduction demonstrate that this form of TEP1 is consumed quickly in the immune response to infection, in contrast to TEP1cut, which does not seem to vary significantly during that process, at least within the examined timeframe. In addition to the well-defined TEP1-F and TEP1cut bands, we also observed a broadly stained TEP1-specific smear at 50–60 kDa exhibiting depletion kinetics following bioparticle challenge similar to that of TEP1-F (Figure 3A). These C-terminal TEP1 fragments have been previously described [14]; whether they represent functional forms of TEP1 or are products of TEP1-F turnover remains to be determined.

LRIM1/APL1C and SPCLIP1 exhibited similar depletion kinetics as TEP1-F following bioparticle injections (Figure 3A), suggesting that these proteins are either required for TEP1-F utilization or are independently consumed in the immune reactions. To address this, we monitored the effect of SPCLIP1 silencing on the infection-dependent depletion of TEP1-F. Western blot analysis of hemolymph collected from SPCLIP1 and control LacZ kd mosquitoes challenged with E. coli bioparticles demonstrated that the loss of TEP1-F is abolished in SPCLIP1 kd mosquitoes compared to controls (Figure 3B), indicating that SPCLIP1 acts upstream of TEP1-F and is indeed required for the infection-induced loss of this protein. In contrast, the depletion of LRIM1/APL1C was not restored in the hemolymph of SPCLIP1 kd mosquitoes. Together, these data suggest that activation of mosquito complement by the LRIM1/APL1C/TEP1cut complex is a separate event upstream of the SPCLIP1-dependent complement amplification process that is poised to transform initial pathogen recognition into a robust attack.

SPCLIP1 is required for TEP1-F to TEP1cut conversion on microbial surfaces

An important aspect of the complement system is its specific activation on microbial surfaces. In order to address whether the observed reduction in SPCLIP1 and TEP1-F levels in the hemolymph after injection of E. coli bioparticles is due to their sequestration on bioparticle surfaces, we designed an assay that allows quantitative assessment of E. coli-bound versus hemolymph soluble pools of these proteins. E. coli bioparticles were injected into mosquito hemocoel, and hemolymph was extracted 15 min after injection. Bioparticles were separated from the hemolymph by centrifugation, washed extensively and their surface-bound proteins eluted for western blot analysis (Figure 4A). The results showed that SPCLIP1 was present in the E. coli-bound fraction in dsLacZ control mosquitoes (Figure 4B), which explains its reduced levels in the hemolymph after bacterial challenge and is consistent with its localization to ookinetes. In TEP1 kd mosquitoes, SPCLIP1 was lost from the E. coli-bound fraction and became enriched in the soluble fraction, indicating that TEP1 is required for SPCLIP1 recruitment to bacterial surfaces.

This assay also allowed us to monitor which of the two forms of TEP1 associates with the bacterial surface. In dsLacZ treated mosquitoes, TEP1-F was not detected in the E. coli-bound fraction, despite being almost fully depleted from the soluble material, in contrast to TEP1cut, which was clearly present. These data are
consistent with those reported previously using a cell culture assay and showing that bacteria only bound TEP1\textsubscript{cut} when incubated with the conditioned medium of a hemocyte-like cell line that contained both forms of TEP1 [14]. Importantly, TEP1\textsubscript{cut} signal in the bound material was dramatically reduced by SPCLIP1\textsubscript{kd}, concomitant with the detection of TEP1-F in the soluble fraction. These data indicate that TEP1\textsubscript{cut} accumulating on the surface of \textit{E. coli} is generated from TEP1-F and that its conversion requires recruitment of SPCLIP1 and a yet unidentified protease to the bacterial surface.

Figure 3. SPCLIP1 is required for the utilization of TEP1-F. (A) Western blot analysis of hemolymph collected from mosquitoes after injection with PBS (left) or \textit{E. coli} bioparticles (right) using a panel of different antibodies. Full-length and processed TEP1 are indicated as TEP1-F and TEP1\textsubscript{cut}, respectively. Re-probing with SRPN3 was used to confirm equal loading. (B) Western blot analysis of hemolymph collected from \textit{LacZ} dsRNA-injected (left) and \textit{SPCLIP1} kd (right) mosquitoes after injection with \textit{E. coli} bioparticles. Re-probing with PPO6 was used to confirm equal loading. Images are representative of three independent biological replicates.
doi:10.1371/journal.ppat.1003623.g003

Microbial infection promotes SPCLIP1 interaction with TEP1

The functional association between SPCLIP1 and TEP1 including their cooperative recruitment to microbial surfaces suggested that these two proteins might physically interact. To examine this possibility, we performed an immunoprecipitation (IP) assay on hemolymph samples collected from mosquitoes following challenge with \textit{E. coli} bioparticles using beads cross-linked to an affinity purified SPCLIP1 antibody. IP beads lacking antibody and mock bioparticle challenge (PBS injection) served as controls. The results revealed that SPCLIP1 was less abundant in the unbound fraction and significantly enriched in the bound fraction (Figure 5). In contrast, SPCLIP1 was not detected on control beads and the protein remained highly abundant in the unbound fraction. When samples were probed for TEP1, a signal for TEP1\textsubscript{cut} and a faint but clear TEP1-F signal were observed in the SPCLIP1 IP bound fraction. These bands were detectable only in samples collected from bioparticle challenged mosquitoes. These data indicate that SPCLIP1 and TEP1 can interact and that this interaction is induced by infection. These data raise the

Figure 4. SPCLIP1 and TEP1\textsubscript{cut} are localized on the surface of \textit{E. coli} bioparticles. (A) Schematic overview of sample preparation. Hemolymph containing \textit{E. coli} bioparticles was recovered 15 min after injection into mosquitoes after gene silencing. The bacteria were separated by centrifugation and the soluble fraction was collected. The bacterial pellet was washed with buffer and extracted for analysis. (B) Western blot analysis of soluble and bioparticle bound fractions using antibodies against TEP1 and SPCLIP1. Images are representative of two independent biological replicates.
doi:10.1371/journal.ppat.1003623.g004

Figure 5. SPCLIP1 and TEP1 interact after challenge with \textit{E. coli} bioparticles. IP beads containing SPCLIP1 antibody or control beads were used to capture proteins from hemolymph 15 min after injection with \textit{E. coli} bioparticles (+) or PBS (−). The beads were separated and samples of the unbound and bound fractions were analyzed by western blot under reducing and non-reducing conditions for TEP1 and SPCLIP1, respectively. Images are representative of two independent biological replicates.
doi:10.1371/journal.ppat.1003623.g005
PO activity in the mosquito hemolymph after bacterial injection. Indeed, SPCLIP1 kd resulted in a strong decrease in PO activity relative to dsLacZ-injected controls, which is comparable to that observed in CLIPA8 kd mosquitoes (Figure 6B). Similar to SPCLIP1 kd, silencing TEP1 also resulted in strong inhibition of both CLIPA8 cleavage and PO activity (Figure S2). These data demonstrate that activation of the melanization cascade is dependent on SPCLIP1-mediated TEP1 accumulation on the bacterial surface.

We next tested the function of SPCLIP1 in P. berghei melanization using as a model CTL4 kd mosquitoes which melanize nearly all ookinetes soon after they traverse the mosquito midgut and before they develop into oocysts [4]. Indeed, silencing CTL4 alone resulted in a marked decrease of the oocyst numbers and a reciprocal increase in melanized ookinetes, but concomitant silencing of SPCLIP1 completely blocked ookinete melanization and led to an increase in oocystes comparable to that of SPCLIP1 kd alone (Figure 6C). A similar inhibition of parasite melanization has been observed after silencing TEP1 or LRIM1/APL1C [2,4,5]. These data reveal that, as with bacterial melanization, SPCLIP1-mediated accumulation of TEP1 on the ookinete surface is required for parasite melanization.

Discussion

Here we characterize SPCLIP1, a non-catalytic CLIP-domain serine protease of the malaria vector mosquito *A. gambiae*, which localizes to the surface of *P. berghei* ookinetes and *E. coli* promoting rapid accumulation of the complement C3-like protein TEP1. Our results demonstrate that SPCLIP1 regulates a complement convertase-like activity henceforth referred to as TEP1 convertase. The TEP1 convertase is functionally analogous to the vertebrate C3 convertase, the formation of which is triggered by binding of antibodies or innate pattern recognition proteins on the microbial surfaces, or by spontaneous activation of C3 following hydrolysis of its thioester. The trigger for the formation of the TEP1 convertase is thought to be the binding on the microbial surface of TEP1 cut which circulates in the mosquito hemolymph together with the LRIM1/APL1C complex (Figure 7). LRIM1 and APL1C possess LRR domains, a feature that is versatile in its binding properties and common in pattern recognition receptors involved in host defense in animals and plants [23]. Therefore, the LRIM1/APL1C complex may play a dual role in the mosquito complement-like pathway by stabilizing TEP1 cut in the hemolymph and delivering it to the microbial surface upon infection. Given that the LRIM1 and APL1C belong to a mosquito-specific family of LRR proteins [5] whereas TEPs are widely conserved [24], different triggers of complement activity are likely to exist in other insects. A number of different putative pattern recognition receptors have been identified to play a role in TEP1-dependent defense against bacteria and malaria parasites [4,6,25–27] raising the possibility that mosquitoes may also have multiple recognitions systems that can activate the TEP1 convertase. It has been proposed that nitration of malaria parasites during their passage through the mosquito midgut epithelium is required for TEP1 binding [28]. Whether microbe nitration can trigger recognition by LRIM1/APL1C or other putative recognition receptors remains to be determined.

A study using recombinant proteins and an allele of TEP1 from mosquitoes that are refractory to *Plasmodium* has shown that the LRIM1/APL1C complex binds TEP1 cut lacking an intact thioester, and that TEP1 cut precipitates out of solution in the absence of LRIM1/APL1C [17]. A more recent study using a TEP1 cut allele from susceptible mosquitoes has revealed that the
LRIM1/APL1C complex can interact with TEP1cut with an active thioester [29]. These in vitro studies have led the authors to speculate that a complex between LRIM1/APL1C and TEP1cut may function in vivo as a TEP1 convertase. It remains unknown whether TEP1cut lacks an intact thioester in vivo, and whether its localization on mosquito tissues in the absence of LRIM1/APL1C is the result of protein precipitation or autoimmune attack by an active thioester motif [5,16]. The TEP1cut dependent SPCLIP1 depletions favor the hypothesis of an autoimmune attack that is tightly regulated to prevent collateral damage to host tissues. Indeed, SPCLIP1 loss from the hemolymph following artificial induction of TEP1cut attack of self-tissues is not accompanied by TEP1-F depletion, suggesting that downstream negative regulators prevent the full formation of the TEP1 convertase and/or that additional positive factors similar to vertebrate properdin may be required to stabilize the convertase on microbial surfaces.

SPCLIP1 lacks catalytic serine protease activity and likely acts as a regulatory component of the TEP1 convertase. Hence, an unidentified protease and possibly other factors are expected to also contribute to the mature convertase, catalyzing the activation cleavage of TEP1-F. The role of non-catalytic serine proteases as cofactors for active proteases is well documented in insects with examples from Holobrixia diomphalia [30], Manduca sexta [31] and Drosophila melanogaster [32].

The SPCLIP1-dependent rapid loss of TEP1-F from the hemolymph of bioparticle injected mosquitoes and the observation that SPCLIP1 kd in naive mosquitoes does not alter TEP1-F levels, suggests that the TEP1cut cargo circulating as a complex with LRIM1/APL1C is generated through a different mechanism than that produced by the TEP1 convertase. Of note, while bioparticle injection almost depletes TEP1-F from the hemolymph, only a minor reduction in TEP1cut levels is observed most significantly at 60 min post injection. A plausible explanation for this observation is that TEP1-F is converted to TEP1cut prior to binding to the bacterial surface, a fraction of which remains soluble in the hemolymph throughout the timeframe of the experiment.

Regardless of the activation mechanism, the C3 and TEP1 convertases function in very similar ways to recruit additional C3 and TEP1, respectively, from precursor pools on the microbial surface, and to initiate diverse effector cascades. In vertebrates, accumulation of the C3 cleavage product, C3b, on microbial surfaces triggers phagocytosis as well as assembly of the membrane attack complex that causes microbial lysis. In mosquitoes, in addition to triggering phagocytosis of bacteria [14,33] and lysis of malaria parasites [2,3], TEP1 accumulation on microbial surfaces triggers the PO cascade leading to melanization. Therefore, the strategy of complement driving diverse effector functions is ancient and not specifically co-opted by vertebrates. It remains to be further investigated whether this system is indeed an example of convergent evolution rooted to the functional conservation of thioester-containing proteins, a hypothesis consistent with our earlier findings that this pathway appears to have evolved de novo in each mosquito species by “bricolage” assemblages of the most suitable available components [34].

Materials and Methods

Ethics statement

This study was carried out in strict accordance with the United Kingdom Animals (Scientific Procedures) Act 1986. The protocols for maintenance of mosquitoes by blood feeding and for infection of mosquitoes with *P. berghei* by blood feeding on parasite-infected mice were approved and carried out under the UK Home Office License PL70/7185 awarded in 2010. The procedures are of mild to moderate severity and the numbers of animals used are minimized by incorporation of the most economical protocols. Opportunities for reduction, refinement and replacement of animal experiments are constantly monitored and new protocols are implemented following approval by the Imperial College Ethical Review Committee.

Mosquito maintenance, gene silencing and infection

A. gambiae G3 strain was maintained and assayed for infection with *P. berghei* CONGF strain as described previously [20]. Single and double knockdown experiments and parasite counts in dissected midguts were performed as described previously [3]. Primers used for synthesis of double stranded RNA have been reported elsewhere *LRIM1, TEP1, CTL4* [4,35]; *SPCLIP1* [3].

Generation and purification of SPCLIP1 antibody

The entire SPCLIP1 open reading frame lacking the endogenous signal peptide and stop codon was cloned into the pIEx10 insect cell expression plasmid (Novagen) incorporating a C-terminal 10× HIS-tag using the primers:

For: GACGACGACGACAAGATGAACTTCCCCGTTGGAA

Rev: GAGGAGAAGCCCGTTTATCGAAGCTGATCG-

The underlined sequences are extensions to allow ligase-independent cloning [5]. SF9 cells adapted for growth in
serum-free medium (Invitrogen) stably secreting SPCLIP1HIS were generated by selection with 1 mg/mL G418 following co-transfection using Escort IV (Sigma) of pIE1-0-SPCLIP1HIS and pEI-neo (Novagen). Clones of resistant cells were analyzed by western blot for the presence of SPCLIP1HIS in their conditioned medium and the line with the highest expression was chosen for protein production. SPCLIP1HIS was purified from 500 mL of conditioned medium using a 1 mL HiTrap column attached to an AKTA purifier (GE Healthcare). Bound protein was eluted in 15 mL of PBS containing 500 mM imidazole pH 8.0. Purified SPCLIP1HIS was quantified by Bradford assay and by coomassie staining of SDS-PAGE gels. The purified protein was used to generate a rabbit polyclonal antibody (Eurogentec). SPCLIP1 antibody was affinity purified from the positive immune serum by passage over an AminoLink column (Fierce) containing covalently bound SPCLIP1HIS.

Bioparticles challenge
A 20 mg/mL suspension of fluorescein or pHrodo labeled E. coli K-12 strain bacterial bioparticles (Invitrogen) in sterile PBS was injected into the mosquito hemocoeol (~4 × 10^4 bacteria in 69 mL). Hemolymph was collected directly into non-reducing SDS-PAGE sample buffer from groups of 30–40 mosquitoes 15, 60, 120, 240 and 360 min after the challenge and analyzed by reducing and non-reducing western as described previously [5]. Bioparticles surface extraction was performed by collecting in protein LoBind tubes (Eppendorf) hemolymph from 60 mosquitoes into 60 µL of 15 mM Tris (pH 8.0) containing 1 µl protease inhibitor cocktail (complete EDTA free, Roche) 15 min after bacterial injection. The soluble (unbound) fraction was collected after pelleting the bacteria by centrifugation for 4 min at 6000 g at 4 °C and then supplemented with SDS-PAGE buffer. The bacterial pellet was washed with 400 µL of 15 mM Tris (pH 8.0) and the bound fraction was extracted with 25 µL SDS-PAGE sample buffer. Western blot analysis was performed using 25 µL of each sample.

Immunoprecipitation and western analysis
Western blot analysis for TEP1, LRIM1/APLIC, SRPN3, CLIPA8 and PPO6 was performed as previously described [5,21]. The affinity purified rabbit α-SPCLIP1 antibody was used to probe western blots at a 1:1000 dilution of antibody in PBS containing 0.05% Tween 20 and 3% milk for 1 h at room temperature. Co-immunoprecipitation reactions were performed using the Pierce Co-IP kit according to the manufacturer's protocol (ThermoScientific). Hemolymph was collected from 100 mosquitoes into 200 µL ice-cold PBS containing 0.05% Triton X-100, supplemented with 1× protease inhibitor cocktail 15 min after PBS or E. coli bioparticle injection (69 nL of 4 mg/mL ~8×10^7 particles). The samples were centrifuged at 4000 g for 5 min to remove mosquito and bacterial cells. 40 µL of a 1:1 slurry of PBS and agarose beads containing crosslinked affinity purified α-SPCLIP1 antibody or control beads were added to the cleared hemolymph samples and mixed overnight at 4 °C on a rotating wheel. The unbound fraction was collected and supplemented with SDS-PAGE buffer. Then the beads were washed five times with collection buffer and bound material was eluted two times with 100 µL of elution buffer (0.2% SDS and 0.1% Tween-20 in 50 mM Tris pH 8.0). The eluents were pooled and supplemented with SDS-PAGE buffer. Western blot analysis was performed by loading 40 µL of each sample. Reducing samples were made by addition of 2-mercaptoethanol to a final concentration of 2.5%.

PPO activation and CLIPA8 cleavage
Cleavage of CLIPA8 was assayed in samples of hemolymph analyzed under reducing conditions as described previously [21]. PPO activation was determined assaying the conversion of L-DOPA to Dopachrome in samples of mosquito hemolymph collected after bacterial challenge [36].

Immunolocalization of TEP1 and SPCLIP1
TEP1 and SPCLIP1 were immunolocalized to ookinetes 26 h after P. berghei infection. Mosquito midguts were prepared and analyzed as previously described [5]. The SPCLIP1 antibody was used at a 1:250 dilution. Images were acquired on a Zeiss LSM 710 META confocal.

Supporting Information

Figure S1 SPCLIP1 genomic organization, multiple sequence alignment, and phylogenetic analysis. (A) In the top diagram genes are indicated above and below a 55 kb region of A. gambiae chromosome 3L depending on whether they are encoded by the positive or negative DNA strand, respectively. The bottom diagram shows an expanded view of an 8.2 kb region indicated in red in the top diagram to illustrate the experimentally derived intron-exon boundaries of SPCLIP1 and its tail-to-tail orientation with CLIPA7. Coding regions are depicted with dark gray boxes, untranslated regions with white boxes, and introns with black lines. Features within both diagrams are drawn to scale. The SPCLIP1 gene does not correspond to any gene model in the A. gambiae genome annotation and is only present as a SNAP gene model.

(B) Alignment of SPCLIP1 with representative members of the CLIP subfamilies A–D. The N-terminal CLIP domain is indicated by a blue background. Shaded residues indicate consensus similarity, light gray; conserved identity, dark gray; conserved cysteine, yellow; CLIPA and SPCLIP1 conserved tyrosine, red. Stars indicate the positions of the catalytic triad. The black outline indicates the predicted activation cleavage position in the CLIPB, C and D zymogens. The black outline indicates the predicted activation cleavage position in the CLIPB, C and D zymogens.

(C) Unrooted tree generated from analysis of the protease domain of 35 members of the A. gambiae CLIP family. Colored regions highlight the major subfamilies: CLIPA, yellow; CLIPB, blue; CLIPC, green; CLIPD, orange. White circles indicate bootstrap values >80.
Figure S2 TEP1 is required for CLIPA8 and PPO activation. (A) Reducing western analysis of CLIPA8 in hemolymph collected from control dsLacZ injected and TEP1 and CLIPA8 ds knockdown mosquitoes after injection with E. coli bioparticles. CLIPA8-C indicates the CLIPA8 cleavage product which is markedly reduced in TEP1 silenced mosquitoes. Blot was re-probed with an antibody against SRPN3 to confirm equal loading. (B) PO activity measured in hemolymph samples collected from dsTEP1, dsCLIPA8 and control dsLacZ treated mosquitoes 6 h after injection with bacteria. (TIF)

References

1. Blandin SA, Maron E, Levashina EA (2008) Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3: 364–374.

2. Blandin S, Shiao SH, Moita LF, Jane CJ, Waters AP, et al. (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116: 661–670.

3. Dong Y, Aguilar R, Xi Z, Warr E, Mougin E, et al. (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2: e32.

4. Osta MA, Christophides GK, Kafatos FC (2004) Effects of mosquito genes on Plasmodium development. Science 303: 2030–2032.

5. Povelones M, Waterhouse RM, Kafatos FC, Christophides GK (2009) Leucine-rich repeat protein complex activates complement in defense against Plasmodium parasites. Science 324: 258–261.

6. Riehle MM, Markianos K, Naore O, Xu J, Li J, et al. (2006) Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312: 577–579.

7. Garver LS, Bahia AC, Das S, Souza-Neto JA, Shiao J, et al. (2012) Anopheles ImmP pathway factors and effectors in infection intensity-dependent Plasmodium action. PLoS Pathog 8: e1002737.

8. Molina-Cruz A, Dejong RJ, Ortega C, Haile A, Abban E, et al. (2012) Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes. Proc Natl Acad Sci U S A 109: E1957–62.

9. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, et al. (2013) The human malaria parasite PfLR gene mediates evasion of the mosquito immune system. Science 340: 984–987.

10. Rottschäfer SM, Riehle MM, Coulbathy B, Sacko M, Naore O, et al. (2011) Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae. PLoS biology 9: e1000600.

11. White BJ, Ławniczak MK, Cheng C, Coulbathy MB, Wilson MD, et al. (2011) Adaptive divergence between incipient species of Anopheles gambiae increases resistance to Plasmodium. Proc Natl Acad Sci U S A 108: 244–249.

12. Blandin SA, Wang-Sattler R, Lamachia M, Gageur J, Lycett G, et al. (2009) Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326: 147–150.

13. Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, et al. (1986) Adaptive divergence between incipient species of Anopheles gambiae: from a complement-like protein TEP1 susceptible and resistant alleles. PLoS Pathog 8: e1002958.

14. Kim MS, Baek MJ, Lee MH, Park JW, Lee SY, et al. (2002) A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in Holotrichia diomphalia larvae. J Biol Chem 277: 39–51.

15. Yoshida J, Iwata T, Hanada H, Iwata H, et al. (2003) Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae. Science 307: 856–859.

16. Le BV, Williams M, Logozzagh S, Baxter RH (2012) Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles. PLoS Pathog 8: e1002585.

17. Kim MS, Back MJ, Lee MH, Park JW, Lee SY, et al. (2002) A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 33: 197–208.

18. Kambri Z, Brun S, Jung IH, Nam HJ, Romero Y, et al. (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr Biol 16: 808–813.

19. Koutsou AC, Blass C, Meister S, Schmidt S, MacCallum RM, et al. (2007) Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfly Drosophila melanogaster. Proc Natl Acad Sci U S A 104: 11304–11309.

20. Povelones M, Upton LM, Saha KA, Christophides GK (2011) Structure-function analysis of the Anopheles gambiae LRRM1/ALPIC complex and its interaction with complement C3-like protein TEP1. PLoS pathogens 7: e1002023.

21. Schnitzer AK, Kafatos FC, Osta MA (2007) The melanization reaction is not required for survival of Anopheles gambiae mosquitoes after bacterial infections. J Biol Chem 282: 21084–21088.

22. Vaka J, Muller HM, Zalasowszicz A, Kafatos FC, Osta MA (2006) A genetic module regulates the melanization reaction of Anopheles to Plasmodium. Cell Microbiol 8: 1392–1406.

23. Nurnberger T, Brummer F, Kemmerling B, Pieter L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immuno Rev 191: 249–266.

24. Blandin S, Levashina E (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40: 903–908.

25. Dong Y, Dimopoulos G (2009) Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 284: 9835–9844.

26. Dong Y, Taylor HE, Dimopoulos G (2006) AgDecam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4: e229.

27. Warr E, Das S, Dong Y, Dimopoulos G (2008) The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. Insect Mol Biol 17: 39–51.

28. Oliveira Gde A, Lieberman J, Barillas-Mury C (2012) Epidermal nitration by a peroxidase/NOX3 system mediates mosquito antiplasmodial immunity. Science 335: 856–859.

29. Le BV, Williams M, Logozzagh S, Baxter RH (2012) Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles. PLoS Pathog 8: e1002585.

30. Kim MS, Back MJ, Lee MH, Park JW, Lee SY, et al. (2002) A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in Holotrichia diomphalia larvae. J Biol Chem 277: 39–51.

31. Yu XQ, Jiang H, Wang Y, Kanost MR (2003) Nonproteolytic serine proteinase binding protein gene family: its role in the innate immune system of Anopheles gambiae. Science 307: 856–859.

32. Schnitzer AK, Kafatos FC, Osta MA (2009) Two C-type lectins in A. gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3: 364–374.

33. Yu XQ, Jiang H, Wang Y, Kanost MR (2003) Nonproteolytic serine proteinase binding protein gene family: its role in the innate immune system of Anopheles gambiae. Science 307: 856–859.

34. Yu XQ, Jiang H, Wang Y, Kanost MR (2003) Nonproteolytic serine proteinase binding protein gene family: its role in the innate immune system of Anopheles gambiae. Science 307: 856–859.

35. Habtewold T, Povelones M, Blagborough AM, Christophides GK (2008) Transmission blocking immunity in the malaria non-vector mosquito Anopheles gambiae. J Biol Chem 283: 1738–1743.

36. Schnitzer AK, Yassine H, Kafatos FC, Osta MA (2009) Two C-type lectins cooperatively to defend Anopheles gambiae against Gram-negative bacteria. J Biol Chem 284: 17616–17624.