Electrical Properties of Two Types of Lithium-Based Glass Ceramics

Staklokeramika je polikristaličan materijal s posebnim svojstvima koja mu omogućuju svakodnevnu primjenu (1–4). Takve keramike sastoje se od krstala u staklokeramičkoj matrici (5). Posebno su zanimljive one s kristalima dobrih mehaničkih svojstava pa se tako posljednje generacije staklokeramika temelje na litijevoj silikati (LS-20) i litijevoj silikati (LS-10) ili sličnim kristalima (1,6).

Uz to, te keramike sadržavaju dodatne aditive, pigmente, stabilizatore i slično koji im povećavaju optička svojstva kako bi bile prikladne za korištenje u dentalne svrhe. U dentalnoj medicini se LS-20 može zamijeniti cirkonijevim oksidom ojačanim litijevoj silikatnom keramikama (LS-10) koje imaju slična svojstva kao i LS-20. Prema mišljenju Zimmermannmanna i suradnika (7), materijal LS-20 (u usporedbi s LS-10) se lako deformira na pucanje. Međutim, autori nisu oba-
vili električna mjerenja te nisu raspravljali o njihovoj korela-
ciji sa spomenutim svojstvima. Zato što se konstantno razvi-
jaju, trenutačno je na tržištu sve veći izbor staklokeramičkih materijala (8–10).

Indikacije za staklokeramiku najčešće su estetske ljuske, krunice i mali mostovi (11) koji se mogu jednostavno pripre-

1 Department of Prosthodontics, School of Dental Medicine, University Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
2 Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10000 Zagreb, Croatia

Abstract

The dental ceramic materials are constantly being developed due to their continuous clinical application in the field of aesthetic dentistry. Glass ceramics (GC) materials are also of special interest for dental application due to their specific properties; and thus, they can be applied as crowns, veneers and small bridges. Purpose: However, due to a variety of different GC materials, it is of keen interest to inspect their morphology and ion-diffusion, which also governs aging properties. Material and methods: In this study, two different GC materials were processed, i.e., lithium silicate (LS-10) and lithium disilicate (LS-20). The aforementioned properties can be inspected by using impedance spectroscopy (IS) and scanning electron microscopy (SEM). Results: SEM study suggested that LS-10 material is harder to mechanically process by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Furthermore, IS measurements showed that LS-20 (vs. LS-10) has more pronounced resistance properties. Conclusion: According to IS data, it was concluded that LS-20 (vs. LS-10) has more pronounced resistance properties that point out to hindered ion-diffusion and to better aging properties.

Uvod

Staklokeramika je polikristaličan materijal s posebnim svojstvima koja mu omogućuju svakodnevnu primjenu (1–4). Takve keramike sastoje se od krstala u staklokeramičkoj matrici (5). Posebno su zanimljive one s kristalima dobrih mehaničkih svojstava pa se tako posljednje generacije staklokeramika temelje na litijevoj silikati (LS-20) i litijevoj silikati (LS-10) ili sličnim kristalima (1,6).

Uz to, te keramike sadržavaju dodatne aditive, pigmente, stabilizatore i slično koji im povećavaju optička svojstva kako bi bile prikladne za korištenje u dentalne svrhe. U dentalnoj medicini se LS-20 može zamijeniti cirkonijevim oksidom ojačanim litijevoj silikatnom keramikama (LS-10) koje imaju slična svojstva kao i LS-20. Prema mišljenju Zimmermannmanna i suradnika (7), materijal LS-20 (u usporedbi s LS-10) se lako deformira na pucanje. Međutim, autori nisu obavili električna mjerenja te nisu raspravljali o njihovoj korelaciji sa spomenutim svojstvima. Zato što se konstantno razvijaju, trenutačno je na tržištu sve veći izbor staklokeramičkih materijala (8–10).

Indikacije za staklokeramiku najčešće su estetske ljuske, krunice i mali mostovi (11) koji se mogu jednostavno pripre-
GC indications are mostly for the fabrication of veneers, crowns and small bridges (11). They are easily produced by the utilization of digital technology, i.e., computer-aided design/computer-aided manufacturing (CAD/CAM) technology (12–14). Computer-aided design (CAD) and Computer-aided Manufacturing (CAM) can be defined by three different procedures which are conducted by using: scanners (intraoral or extraoral), software (CAD and CAM or jointed in single one for in-office use) and milling units. Therefore, the appearance of the final CAD/CAM product (e.g., crowns) is governed by the quality of each step conducted by a dental technician.

The conductivity properties of zirconia materials have been thoroughly investigated by Badwal et al. (15, 16). However, the conductivity properties of glass-ceramics materials such as LS-10 and LS-20 dental materials have not been systematically studied (17). These properties are of keen interest for the clinical application as they could be used to predict aging properties of GC materials. Therefore, it would be beneficial to inspect electrical properties of LS-10 and LS-20 dental materials.

We were interested in comparing Equivalent Electrical Circuit (EEC) parameters data of both LS-10 and LS-20 materials. A special interest was focused on analyzing the resistivity values, as they should point out some defects in the structure that might reduce the material’s clinical application. Also, the (pseudo)capacitance values should reveal more data regarding the role of cations and their mobility in the probed LS-10 and LS-20 glass ceramic materials.

Materials and methods

Preparation of the Samples

The samples in this study were prepared by using two different materials: zirconia-reinforced lithium-silicate glass (LS-10) ceramics (Celtra Duo, DentsplySirona, Bensheim, Germany) and lithium disilicate (LS-20) ceramics (IPS e.max CAD, Ivoclar, Vivadent, Schaan, Liechtenstein). These materials are different in their composition; however, their exact composition is not provided by the manufacturer(s). The samples were prepared as discs (10 mm in diameter and 1 mm in thickness). The shaping process was conducted by using a dental milling unit (Cerec, MCXL, DentsplySirona, Bensheim, Germany). The utilization discs dimension enabled us to conduct all analyses in this study without the modification of the as-prepared discs. The discs were not additionally crystalized.

SEM investigation

Scanning electron microscope (SEM) images were recorded on a JSM-7000F, thermal field emission scanning electron microscope (FE-SEM) manufactured by Jeol Ltd. (Tokyo, Japan). The samples were not coated by a conductive layer. Hence, each sample was examined without any modifications of discs.

Impedance Spectroscopy

Prior to electrochemical investigations, the discs were polished and then, gold electrodes, 7 mm in diameter, were plated digitalnom tehnologijom, odnosno CAD/CAM-om (računalno potpomognut dizajn i izrada). CAD/CAM se sastoji od triju različitih dijelova – skenera (ordinacijski ili laboratorijski), programa (CAD i CAM koji mogu biti i objedinjeni u ordinacijskim sustavima) i glodalice. Konačni rezultat CAD/CAM izrade (npr. krunice) ovisi o kvaliteti svih komponenti sustava i kontroli dentalnoga tehničara.

Vodljivost cirkonijevih oksidnih materijala temeljito je ispitao Badwal sa suradnicima (15, 16). No provodljivost staklokeramičkih materijala kao što su LS-10 i LS-20 nije dovoljno istražena (17). Ispitivanje vodljivosti može biti itekako zanimljivo kada je riječ o kliničkoj primjeni zato što se može koristiti za predviđanje starenja materijala. Zbog toga je potrebno ispitati električna svojstva materijala LS-10 i LS-20.

Također je zanimljivo usporediti parametre ekvivalentnoga električnoga kruga (EEC) za materijale LS-10 i LS-20. Posебna pozornost bit će usmjerena na analizu vrijednosti otpora jer bi ona trebala upozoriti na neke nedostatke u strukturi koji bi mogli smanjiti kliničku primjenu materijala. Vrijednosti (pseudo)kapaciteta također bi trebale otkriti više podataka o ulozi iona i njihovoj pokretljivosti u ispitivanim staklokeramičkim materijalima LS-10 i LS-20.

Materijal i metode

Priprema uzoraka

Uzorci potrebni u ovoj studiji pripremljeni su od dvaju različitih materijala – litijeva silikata ojačanog cirkonijevim dioksidom (LS-10) (Celtra Duo, DentsplySirona, Bensheim, Njemačka) i litijeve disilikate (LS-20) staklokeramičke (IPS e.max CAD, Ivoclar, Schaan, Liechtenštajn). Ti su materijali različiti po sastavu, no proizvođači ne navode točne podatke. Uzorci su pripremljeni kao diskovi (promjera 10 mm i debljine 1 mm), a oblikovani su digitalnom tehničarkom (Cerec, MCXL, DentsplySirona, Bensheim, Njemačka). Dimenzija uporabnih diskova omogućila je obavljanje svih analiza u ovome radu bez modifikacije pripremljenih diskova. Diskovi nisu dodatno kristalizirani.

SEM istraživanje

SEM slike dobivene su korištenjem pretražnoga elektronoskoga mikroskopa JSM-7000F, s emisijom polja elektrona (FE-SEM) proizvođača Jeol Ltd. (Tokio, Japan). Uzorci nisu bili obloženi vodljivim slojem. Zato je svaki uzorak ispitan bez modifikacije diskova.

Spektroskopija impedancije

Prijе elektrochemičkih istraživanja diskovi su polirani, a zatim su po površini uzorka raspršene zlatne elektrode (7
sputtered onto both sides of the samples using an SC7620 sputter coater (Quorum Technologies Ltd., Laughton, East Sussex, UK). The complex impedance values were collected by utilizing an impedance analyzer (Novocontrol Alpha-AN dielectric spectrometer, Novocontrol Technologies GmbH & Co. KG, Hundsangen, Germany) over the frequency range from 0.04 Hz to 1 MHz and at 423 K. The temperature was controlled to an accuracy of ± 0.5 K.

Results

Morphology investigations

Figure 1 depicts samples LS-10 and LS-20 that were prepared in the dental laboratory by using a dental milling unit, which is part of CAD/CAM technology (18). The morphology of the LS-20 (vs. LS-10) specimen is more diverse as it consists of more tubes, grains and fibers (Figure 1). In addition, LS-20 material is characterized by a needle-like lithium disilicate material of approximately 3-6 µm in length. This diversity in the LS-20 morphology suggests that this sample has more surface defects that can serve as centers for degradation and/or aging (see, e.g., (18, 19)).

At this point of the study, it would be interesting to inspect the possibility of monitoring the changes in LS-10 vs. LS-20 porosity by using electrical measurements’ data. However, in order to do that, it is necessary to conduct a more thorough study of the electrical data than those communicated in our previous work (19).

Electrical properties

The LS-10 and LS-20 experimental data presented in the Nyquist spectra (Figure 2) show both the presence of two depressed semicircles and a straight line in the far low frequency region. It appears that LS-10 sample has more observable capacitance behavior than LS-20 sample, which can be attributed to higher amount of “free” ions available for charge transfer. Additionally, higher number of “free” ions in LS-10 can also point out accelerated aging of the material, which is of potential interest for the clinical application. The aforementioned observation is supported by the lower imaginary impedance values (Figure 2 (left)). On the other hand, the LS-20 sample has higher resistance, which again can be attributed to a lower number of free charge carriers and/or higher crystallinity that can hinder ion-diffusion through the material.
Obavljena analiza sugerira da bi se u ovom radu trebala provesti opširnija studija svojstava vodljivosti. To se može postići korištenjem funkcije distribucije vremena relaksacije (DRT) (20, 21) i/ili električnoga ekvivalentnoga kruga (EEC) (22 – 24). Treba napomenuti da su danas oba pristupa široko prihvaćena u EIS studiji, ali treba imati na umu da je DRT (u usporedbi s EEC-om) pristup bez upotrebe matematičkoga modela (21). S druge strane, EEC analiza daje vrijednosti EEC parametara (25 – 27) koje se mogu koristiti u procesu usporedbе, što je u ovom radu ključno u proučavanju materijala. Zato je odlučeno da se u ovoj studiji primijeni EEC pristup.

Prema navedenoj raspravi, spektri LS-10 i LS-20 mogu se modelirati/anализirati sljedecom matematičkom modelom (vidi EEC na slici 2.):

\[
Z(\omega) = \frac{1}{R_g} + \sum_{i=1}^{n_e} \left(\frac{1}{R_{gb} + Y_{gb}(i\omega)\eta_{gb}} + \frac{1}{R_{el} + Y_{el}(i\omega)\eta_{el}} \right),
\]

gde su \(R_g, R_{gb}, R_{el} \), \(\omega \), i \(\eta \) parametri koji se odnose na porodicu vođa, granice zrna i za elektrode polarizaciju (el) (16).

To extract EEC parameters from the impedance data presented in Figure 2 one can apply the Levenberg-Marquardt algorithm (LMA) (29, 30). In addition, the Nelder-Mead algorithm (NMA) can be utilized for the same purpose (31), which is frequently applied in the impedance spectroscopy analysis of relaxation times (DRT) (22 – 24). Treba napomenuti da su danas oba pristupa široko prihvaćena u EIS studiji, ali treba imati na umu da je DRT (u usporedbi s EEC-om) pristup bez upotrebe matematičkoga modela (21). S druge strane, EEC analiza daje vrijednosti EEC parametara (25 – 27) koje se mogu koristiti u procesu usporedbе, što je u ovom radu ključno u proučavanju materijala. Zato je odlučeno da se u ovoj studiji primijeni EEC pristup.

Prema navedenoj raspravi, spektri LS-10 i LS-20 mogu se modelirati/anализirati sljedecom matematičkom modelom (vidi EEC na slici 2.):

\[
Z(\omega) = \frac{1}{R_g} + \sum_{i=1}^{n_e} \left(\frac{1}{R_{gb} + Y_{gb}(i\omega)^{\eta_{gb}}} + \frac{1}{R_{el} + Y_{el}(i\omega)^{\eta_{el}}} \right),
\]

gde su \(R_g, R_{gb}, \omega \), i \(\eta \) parametri koji se odnose na porodicu vođa, granice zrna i za elektrode polarizaciju (el) (16).

Prema navedenoj raspravi, spektri LS-10 i LS-20 mogu se modelirati/anализirati sljedecom matematičkom modelom (vidi EEC na slici 2.):

\[
Z(\omega) = \frac{1}{R_g} + \sum_{i=1}^{n_e} \left(\frac{1}{R_{gb} + Y_{gb}(i\omega)^{\eta_{gb}}} + \frac{1}{R_{el} + Y_{el}(i\omega)^{\eta_{el}}} \right),
\]

gde su \(R_g, R_{gb}, \omega \), i \(\eta \) parametri koji se odnose na porodicu vođa, granice zrna i za elektrode polarizaciju (el) (16).

Slika 2. The complex (Nyquist) spectra of LS-10 and LS-20 data. The spectra show two overlapped depressed semicircles and the straight line in the low frequency region. The Equivalent Electrical Circuit (EEC) used for data extraction is also given.

Slika 2. The complex (Nyquist) spectra of LS-10 and LS-20 data. The spectra show two overlapped depressed semicircles and the straight line in the low frequency region. The Equivalent Electrical Circuit (EEC) used for data extraction is also given.
study (31–33). However, when the applied EEC, e.g. (1), has a rather small number of unknowns (i.e., dimensions), NMA can be chosen against LMA. However, if a more complex EEC is applied, it is recommended to apply LMA over NMA (32). In this study, LMA was applied to extract EEC parameters (Table 1) by using EEC model (1). Data are shown in Figure 2.

Discussion

From the point of the clinical application, centers and defects shown in Figure 2 can destabilize bonding between clinical reconstruction and the biological environment. Therefore, prior to dental application, it is advisable to inspect morphology of dental biomaterials such as LS-10 and LS-20 (Figure 1). Also, it appears that LS-10 (vs. LS-20) was less damaged by the milling process. This is in agreement with the study performed by Zarone et al. (6), which clearly stated that machinability of LS-10 (vs. LS-20) is more difficult.

The occurrence of depressed semicircles (Figure 2) is usually observed in IS study (see, e.g., (20)), which indicates a deviation from the pure capacitor behavior (28). This kind of irregularity usually occurs due to non-homogeneous compositions of the investigated materials. Since these LS materials have diverse components such as pigments, additives, ZrO2 additions, lithium disilicate and lithium silicate embedded in a glassy matrix (1, 6), the deviations from pure capacitive behavior are expected.

The complex spectra in Figure 2 mirror different processes that occur in the high and low frequency regions that can be assigned to ionic diffusion in the grain (g) and at grain boundaries (gb) (15, 34). Also, the straight line in the low frequencies, which is clearly visible in LS-10 spectrum, can be attributed to the electrode polarization effect (el) induced by the accumulation of mobile ions at the electrode surface (16, 35, 36).

Furthermore, Table 1 clearly points to differences between LS-10 and LS-20 spectra shown in Figure 2. It is clear that grain resistance \(R_g \) is higher for LS-20 (vs. LS-10) specimen, which suggests a hindered diffusion of the migration ions within the grains. The hindered ion-diffusion properties reflect the resistivity of the LS-20 material to aging, which is important information regarding the clinical application. Interestingly, \(Y_g \) values that can be observed as the grain (pseudo)capacitance show the similar values although \(n_g \) value for LS-20 is closer to 1, which indicates pure capacitance (37). Furthermore, the pseudocapacitance of the grain boundary is alike for both LS-10 and LS-20 samples, which suggests that the concentration of the migrating ions is similar in both samples. However, this statement should be analytically confirmed.

Moreover, the higher \(n_{gb} \) value (0.733) of LS-10 (vs LS-20) sample might point to a more homogenous grain boundary. One interesting observation can be extracted from \(Y_{gb} \) values (Table 1); i.e., it seems that the concentration of the free migrating ions accumulated at the electrode is higher in the case of LS-10. In addition, \(n_g \) values (LS-10) are close to 0.5; and thus, this constant phase element can be discussed in terms of the Warburg element (38).

no mali broj nepoznanica (tj. dimenzija), može se izabrati NMA umjesto LMA-e. Međutim, ako se primjenjuje složeniji EEC, preporučuje se primjena LMA-e umjesto NMA-e (32). U ovom radu LMA je primijenjen za određivanje EEC parametara (tablica 1.) korištenjem EEC modela (1) i podataka prikazanih na slici 2.

Rasprava

Kada je riječ o kliničkoj primjeni, centri i defekti prikazani na slici 2. mogu destabilizirati vezu između kliničke restruktuiracije biološkoga okoliša. Zato se prije dentalne aplikacije preporučuje pregledati morfologiju dentalnih biomaterijala poput LS-10 i LS-20 (slika 1.). Također se čini da je LS-10 (u odnosu prema LS-20) manje oštećen u postupku gledanja. To se dobro slaže s radom Zaronea i suradnika (6) koji jasno ističu da je obradivost LS-10 teža (u odnosu prema LS-20).

Pojava polegnutih polukrugova (slika 2.) obično se očuva u analizi IS-a (vidi, npr. (20), što upućuje na odstupanje od čistoga kapacitivnoga ponašanja (28). Ta vrsta nepravilnosti obično nastaje zbog nehomogenoga sastava ispitivanih materijala. Budući da ti LS materijali imaju različite komponente kao što su pigmenti, aditivi, dodatci ZrO2, litijev disilikat i litijev silikat koje su ugrađene u staklenu matricu (1,6), mogu se očekivati odstupanja od čistoga kapacitivnoga ponašanja.

Spektri na slici 2. odražavaju različite procesi koji se pojavljuju u područjima visoke i niske frekvencije, a mogu se pripisati ionskoj difuziji u zrnu (g) i na granicama zrna (gb) (15, 34). I ravna linija u niskim frekvencijama, koja je jasno vidljiva u spektru LS-10, može se pripisati efektu polarizacije elektrode (el) induciranom akumulacijom pokretnih iona na površini elektrode (16, 35, 36).

Nadalje, u tablici 1. jasno se vide razlike između LS-10 i LS-20 spektara prikazanih na slici 2. Jasno je da je otpor zrna \(R_g \) veći za LS-20 uzorak (u odnosu prema LS-10), što sugerira otežanu difuziju migracijskih iona unutar zrna. Svojstva otežane ionske difuzije upućuju na otpornost materijala LS-20 na starenje, što je važna informacija u vezi s kliničkom primjenom. Zanimljivo, vrijednosti \(Y_g \) koje se mogu promatrati kao (pseudo) kapacitivnost zrna pokazuju slične vrijednosti, iako je vrijednost \(n_g \) za LS-20 bliža 1, što upućuje na čistiji kapacitet (37). Dalje, pseudokapacitivnost granice zrna ista je za uzorke LS-10 i LS-20, što sugeriira da je koncentracija migrirajućih iona slična u oba uzorka, iako bi tu tvrdnju trebalo analitički potvrditi.

Štoviše, viša vrijednost \(n_{gb} \) (0.733) uzorka LS-10 (u odnosu prema LS-20) mogla bi upućivati na homogeniju granica zrna. Zanimljivo zapoštanje može se izvaži iz \(Y_{gb} \) vrijednosti (tablica 1.) – naime, čini se da je koncentracija slobodnih migrirajućih iona nakupljenih na elektrodi veća u slučaju LS-10. Osim toga, \(n_{gb} \) vrijednosti (LS-10) blizu su 0,5 i zato se o ovom elementu konstantne faze može raspravljati u smislu Warburgova elementa (38).
Conclusion

In this study, two different types of glass ceramics dental materials (LS-10 and LS-20) were examined by SEM and Impedance Spectroscopy techniques. The acquired approaches clearly pointed to different properties of the investigated materials.

According to SEM study, LS-10 (vs. LS-20) material was rougher and harder to process/shape by CAD/CAM, which can be clearly observed from a more compact morphology of the milled sample. At the same time, LS-20 specimen showed the presence of the needle-like lithium disilicate crystals(s).

The conductivity investigations data have shown that LS-10 has a more pronounced capacitive behavior. At the same time, the resistivity component of LS-20 was more prominent. According to Electrical Equivalent Circuit (EEC) analyses, it is clear that the main difference in the resistance component of both LS-10 and LS-20 samples originated from both the grain and grain boundary resistances. This study suggests that the LS-20 material is more suitable for clinical application as it has more pronounced electrical resistivity properties that imply a more hindered aging process.

From the point of clinical application, the material like LS-20 that inhibits both the ion-diffusion and the aging process is preferable. The findings of this study have clearly implied that a more thorough electrical analysis of dental glass ceramics materials should be performed. The electrical data and EEC parameters values obtained in this study can be used to predict the resistivity of dental material to ion-diffusion and the aging process.

Conflict of interest

The authors declare no conflict of interest.

Zaključak

U ovom su istraživanju dvije različite vrste staklokera-
mičkih dentalnih materijala (LS-10 i LS-20) ispitivane teh-
nikama SEM-a i impedancijske spektroskopije. Upotrijebjle-
ne tehnike jasno su upozorile na različita svojstva ispitivanih materijala.

Prema SEM studiji materijal LS-10 (u odnosu prema LS-
20) bio je čvršći i teži za obрадu/oblikovanje s pomoću CAD/ CAM-a, što se može jasno vidjeti iz kompaktnije morfologije mljenog uzorka. Istodobno su u uzorku LS-20 uočeni igli-
časti kristali litijeva disilikata.

Podaci o ispitivanju vodljivosti pokazali su da se LS-10 izraženije kapacitativno ponaša. Istodobno je bila israženija komponenta otpora u LS-20. Prema analizama električnoga ekvivalentnoga kruga (EEC) jasno je da glavna razlika u komponenti otpora uzoraka LS-10 i LS-20 potječe iz otpora zrna i granica zrna. Ova studija pokazuje da je materijal LS-20 pri-
kładniji za kliničku primjenu zato što ima izraženija svojstva električnoga otpora koja impliciraju sporiji proces starenja.

Kada je riječ o kliničkoj primjeni, poželjan je materijal poput LS-20 jer inhibira i difuziju iona i proces starenja. Na-
laži se u ovom radu jasno su pokazali da je potrebna temeljitija analiza električnih svojstva dentalnih staklokera-
mičkih materijala. Podaci o vodljivosti i vrijednosti EEC parametara do-
biveni u ovoj studiji mogu se koristiti za predviđanje otpor-
nosti dentalnoga materijala na difuziju iona i proces starenja.

Zaključak

U ovom su istraživanju dvije različite vrste staklokera-
mičkih dentalnih materijala (LS-10 i LS-20) ispitivane teh-
nikama SEM-a i impedancijske spektroskopije. Upotrijebjle-
ne tehnike jasno su upozorile na različita svojstva ispitivanih materijala.

Prema SEM studiji materijal LS-10 (u odnosu prema LS-
20) bio je čvršći i teži za obradu/oblikovanje s pomoću CAD/ CAM-a, što se može jasno vidjeti iz kompaktnije morfologije mljenog uzorka. Istodobno su u uzorku LS-20 uočeni igli-
časti kristali litijeva disilikata.

Podaci o ispitivanju vodljivosti pokazali su da se LS-10 izraženije kapacitativno ponaša. Istodobno je bila israženija komponenta otpora u LS-20. Prema analizama električnoga ekvivalentnoga kruga (EEC) jasno je da glavna razlika u komponenti otpora uzoraka LS-10 i LS-20 potječe iz otpora zrna i granica zrna. Ova studija pokazuje da je materijal LS-20 pri-
kładniji za kliničku primjenu zato što ima izraženija svojstva električnoga otpora koja impliciraju sporiji proces starenja.

Kada je riječ o kliničkoj primjeni, poželjan je materijal poput LS-20 jer inhibira i difuziju iona i proces starenja. Na-
lazi u ovom radu jasno su pokazali da je potrebna temeljitija analiza električnih svojstva dentalnih staklokera-
mičkih materijala. Podaci o vodljivosti i vrijednosti EEC parametara do-
biveni u ovoj studiji mogu se koristiti za predviđanje otpor-
nosti dentalnoga materijala na difuziju iona i proces starenja.

Conflict of interest

The authors declare no conflict of interest.

Sukob interesa

Autori nisu bili u sukobu interesa.

Doprinos autora: M. J., M. Ž. – konceptualizacija; L. P., T. K. – formalna analiza; M. J., M. Ž. – metodologija; T. K., L. P. – softver; M. J., M. Ž. – nadzor; M. Ž. – pisanje izvornoga nacrta; M. J., M. Ž. – recenzija i redakcija. Svi su autori pročitali tekst i složili se sa završnom verzijom.
