THE BERRY-ESSEEN THEOREM FOR CIRCULAR β-ENSEMBLE

BY RENJIE FENG1,a, GANG TIAN2,b AND DONGYI WEI2,c

1Max Planck Institute for Mathematics, Bonn, Germany, 53111, afeng@mpim-bonn.mpg.de

2Beijing International Center for Mathematical Research and School of Mathematical Sciences, Peking University, Beijing, China, 100871, bgtian@math.pku.edu.cn; cjnwdyi@pku.edu.cn

We will prove the Berry-Esseen theorem for the number counting function of the circular β-ensemble (CβE), which will imply the central limit theorem for the number of points in arcs of the unit circle in mesoscopic and macroscopic scales. We will prove the main result by estimating the characteristic functions of the Prüfer phases and the number counting function, which will imply the uniform upper and lower bounds of their variance. We also show that the similar results hold for the Sineβ process. As a direct application of the uniform variance bound, we can prove the normality of the linear statistics when the test function $f(\theta) \in W^{1,p}(S^1)$ for some $p \in (1, +\infty)$.

1. Introduction. The circular β-ensemble (measure $\mu_{\beta,n}$, $\beta > 0$) is a random process on the unit circle and the joint density of its eigenangles $\theta_j \in [0, 2\pi)$, $1 \leq j \leq n$ with respect to the Lebesgue measure is

$$J(\theta_1, \cdots, \theta_n) = \frac{1}{C_{\beta,n}} \prod_{j<k} |e^{i\theta_j} - e^{i\theta_k}|^{-\beta},$$

where $\beta > 0$ and $C_{\beta,n} = (2\pi)^n \frac{\Gamma(1+\beta n/2)}{(\Gamma(1+\beta/2))^n}$ is the normalization constant [9].

There are many results regarding the normality of CβE and GβE (we refer to [9] for the definition of GβE). For CβE, Killip [14] proved the central limit theorem for the number of points in the fixed arcs, and the variance is logarithmic in n, where the result can be considered as the macroscopic statistics. For GβE, Costin-Lebowitz proved the normality of eigenvalues in the particular cases $\beta \in \{1, 2, 4\}$ and the variance is also logarithmic with respect to the mean [5]. These results can be extended to more general point processes, we refer to [1, 2, 3, 7, 10, 11, 12, 13, 17, 18, 19, 21, 22, 23, 24] and the references therein.

Recently, in [20], Najnudel-Virág proved uniform upper bounds on the variance of the number of points in intervals for both CβE and GβE. Their bounds are uniform in n which cover microscopic, mesoscopic and macroscopic scales. And if one rescales the interval or the arc in such a way that the average spacing between the points has order 1, then the upper bounds are logarithmic in the length of the interval or the arc. To be more precise, in the case of CβE, let’s write $N_n(a,b)$ for the number of points in a sample from $\mu_{\beta,n}$ that lie in the arc between a and b, Najnudel-Virág proved the following uniform upper bound

$$(1) \quad \mathbb{E}[|N_n(0, \theta) - n\theta/(2\pi)|^2] \leq C_\beta \ln(2 + n\theta).$$

In this paper, we will study the normality of the number counting function and the linear statistics for CβE. Our first main result is the following Berry-Esseen theorem [4, 8] for the number counting function, which is novel and not proved elsewhere.

MSC2020 subject classifications: Primary: 60B20.

Keywords and phrases: Berry-Esseen theorem, normality, CβE, Sineβ process, linear statistics.
Theorem 1.1. Let \(\theta \in (0, \pi] \) that may depend on \(n \), we have the uniform estimate

\[
\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left[\sqrt{\frac{\pi^2 \beta}{2 \ln (2 + n\theta)}} \left[N_n(0, \theta) - \frac{n\theta}{2\pi} \right] \leq x \right] - \int_{-\infty}^{x} e^{-t^2/2} \sqrt{2\pi} dt \right| \leq \frac{C}{(\ln (2 + n\theta))^{\frac{1}{2}}},
\]

here \(C > 0 \) is a constant depending only on \(\beta \).

As a direct consequence of Theorem 1.1, we have the following central limit theorem for the number of points in arcs of the unit circle for \(C \beta \mathcal{E} \) in both mesoscopic and macroscopic scales.

Corollary 1.1. Let \(\theta_n \in (0, \pi] \) and assume \(n\theta_n \to +\infty \), then we have the following central limit theorem

\[
\sqrt{\frac{\pi^2 \beta}{2 \ln (2 + n\theta_n)}} \left[N_n(0, \theta_n) - \frac{n\theta_n}{2\pi} \right] \xrightarrow{d} N(0, 1)
\]
as \(n \to \infty \). Here, \(N(0, 1) \) denotes the standard Gaussian random variable, and \(\xrightarrow{d} \) means the convergence in distribution.

Notice that, Corollary 1.1 is the main result proved in [14] for the case where \(\theta_n = \theta \) is fixed.

To show the key steps to prove Theorem 1.1, we begin with some preliminary results proved in [14, 15]. Let \(\gamma_j \sim \Theta_{\beta(j+1)+1} \) be independent random variables for \(j \geq 0 \) and let \(\eta \) be a uniform random variable on \([0, 2\pi) \) independent of \((\gamma_j)_{j \geq 0} \). We define the so-called Prüfer phases \((\psi_k(\theta))_{\theta \in \mathbb{R}, k \geq 0} \) as follows:

\[
\psi_{k+1}(\theta) = \psi_k(\theta) + \theta + 2\text{Im} \ln \left(\frac{1 - \gamma_k}{1 - \gamma_k e^{i\psi_k(\theta)}} \right).
\]

Then the random set

\[
\{ \theta \in \mathbb{R}, \psi_{n-1}(\theta) \equiv \eta (\text{mod} \ 2\pi) \}
\]

has the same law as the set of all determinations of the arguments of the \(n \) points of a \(C \beta \mathcal{E} \) (see §2.2 in [14] for more details of this result). Here, a complex random variable \(X \) with values in the unit disk \(\mathbb{D} \) is \(\Theta_\nu \)-distributed (for \(\nu > 1 \)) if (see Definition 2.1 in [14] also)

\[
\mathbb{E}[f(X)] = \frac{\nu - 1}{2\pi} \int_{\mathbb{D}} f(z)(1 - |z|^2)^{(\nu-3)/2}d^2z.
\]

Simple computations show

\[
\mathbb{E}[X] = 0, \quad \mathbb{E}[|X|^2] = \frac{2}{\nu + 1}, \quad \mathbb{E}[|X|^4] = \frac{8}{(\nu + 1)(\nu + 3)}
\]

and

\[
(2) \quad \mathbb{E}[(-\ln(1 - |X|^2))^m] = \frac{\nu - 1}{2} \int_0^\infty t^m e^{-(\nu - 1)t/2} dt = \Gamma(m + 1) \left(\frac{2}{\nu - 1} \right)^m,
\]

where we change the variable \(e^{-t} = 1 - |X|^2 \).

The above result tells us that

\[
N_n(0, \theta) \xrightarrow{d} \left\lfloor \frac{\psi_{n-1}(\theta) - \eta}{2\pi} \right\rfloor + 1
\]
for \(\theta \in (0, 2\pi) \). Here \([x]\) is the floor function, \(X \overset{d}{=} Y \) means that the random variables \(X, Y \) have the same distribution, we also used the fact that \(\psi_{n-1}(0) = 0 \), and that \(\psi_{n-1}(\theta) \) is increasing with respect to \(\theta \). By rotational invariance we have

\[
\mathbb{E}[N_n(0, \theta)] = n\theta/(2\pi)
\]

and

\[
N_n(0, 2\pi - \theta) \overset{d}{=} N_n(\theta, 2\pi) = n - N_n(0, \theta),
\]

i.e., there is a natural symmetry between \(\theta \) and \(2\pi - \theta \), therefore, it is enough to study the case \(\theta \in (0, \pi] \).

Throughout the article, we will use \(C > 0 \) to denote a universal constant depending only on \(\beta \) which may change from line to line.

To prove Theorem 1.1, the key lemma is the following estimate regarding the characteristic function of the Prüfer phases.

Lemma 1.1. Let \(\theta \in (0, \pi] \), \(\lambda \in \mathbb{R} \), \(\lambda^2 \leq \beta/8 \). There exists a constant \(C > 0 \) depending only on \(\beta \) such that

\[
|\mathbb{E}[e^{i\lambda(\psi_{n-1}(\theta) - n\theta)}] - e^{-(4\lambda^2/\beta)\ln(2+n\theta)}| \leq C\lambda^2 e^{-(4\lambda^2/\beta)\ln(2+n\theta)}.
\]

Moreover, as a consequence of Lemma 1.1, we can prove the following uniform bound first for the variance of \(\psi_{n-1}(\theta) \), then for the variance of \(N_n(0, \theta) \).

Corollary 1.2. There exists a constant \(C > 0 \) depending only on \(\beta \) such that for \(\theta \in (0, \pi] \), \(n \in \mathbb{Z} \), \(n > 0 \), \(\lambda \in [-2\pi\sqrt{\beta/8}, 2\pi\sqrt{\beta/8}] \), we have

\[
|\mathbb{E}[(\psi_{n-1}(\theta) - n\theta)^2] - (8/\beta)\ln(2+n\theta)| \leq C, \quad (3)
\]

\[
|\mathbb{E}[e^{i\lambda(N_n(0,\theta) - n\theta/(2\pi))] - e^{-(\lambda^2/\beta^2)\cdot\ln(2+n\theta)}| \leq C\lambda^2, \quad (4)
\]

\[
|\mathbb{E}\left[[N_n(0,\theta) - n\theta/2\pi]^2 - 2\ln(2+n\theta)\right]/\pi^2\beta| \leq C. \quad (5)
\]

The inequality (5) gives both the upper and lower uniform variance bounds which improves the estimate (1).

The Sine\(_\beta \) point process is the scaling limit of the C\(\beta \)E, and its central limit theorem has been proved in [16]. In this article, we can further prove the following uniform variance bound and the Berry-Esseen theorem for the Sine\(_\beta \) point process. Let’s denote \(\text{Card}(A) \) the cardinality of a set \(A \).

Corollary 1.3. Let \(L \) be the Sine\(_\beta \) point process, there exists a constant \(C > 0 \) depending only on \(\beta \) such that for \(x > 0 \), we have

\[
|\mathbb{E}[(\text{Card}(L \cap [0,x]) - x/(2\pi))^2] - 2/(\beta^2)\cdot\ln(2+x)| \leq C, \quad (6)
\]

\[
\sup_{y \in \mathbb{R}} \mathbb{P}\left[\sqrt{\frac{\pi^2\beta}{2\ln(2+x)}} \left[\text{Card}(L \cap [0,x]) - \frac{x}{2\pi}\right] \leq y \right] - \int_y^y e^{-t^2/2} dt \leq C, \quad (7)
\]

\[
\leq C(\ln(2+x))^{-\frac{1}{2}}.
\]
In the end, as a direct application of the uniform variance bound (5), we can prove the normality of the linear statistics for CβE when the test function is in \(W^{1,p}(S^1) \) for some \(p \in (1, +\infty) \), and \(p \) will be fixed. Let’s denote
\[
\xi_n = \sum_{j=1}^{n} \delta_{\theta_j}
\]
the empirical measure of a sample from \(\mu_{\beta,n} \), and we consider the linear statistics
\[
\langle \xi_n, f \rangle = \sum_{j=1}^{n} f(\theta_j).
\]
We will prove the following result.

Theorem 1.2. Let \(f \in W^{1,p}(S^1) \) be a real-valued and periodic function with \(f(0) = f(2\pi) \), and \(\int_0^{2\pi} f(x)dx = 0 \) where \(p \in (1, +\infty) \), then \(\langle \xi_n, f \rangle \) converges in law to a Gaussian random variable of mean zero and variance \(2\sigma^2 \), where
\[
\sigma^2 = \frac{2}{\beta} \sum_{j=1}^{\infty} j|a_j|^2, \quad a_j = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ijx}dx, \quad j \in \mathbb{Z}.
\]

To prove Theorem 1.2, we will need the variance estimate of the linear statistics (see Lemma 6.1 in §6) which is based on the uniform variance bound (5). The rest proof makes use of Lemma 6.3 (proved in [10]) and the approximation of the \(W^{1,p}(S^1) \) space by the Féjer kernel.

Such result was first proved for CUE with \(\beta = 2 \) by Diaconis-Evans in [6] for the test function \(f \in H^{1/2}(S^1) \). In [10], Jiang-Matsumoto proved the result for CβE if \(f(x) \) is a polynomial of \(e^{ix} \), and they also proved the cases \(\beta = 1 \) if \(f \in H^{1/2}(S^1) \) and \(\beta = 4 \) if \(f \in H^{1/2+}(S^1) \). We also refer to [7, 11, 12, 19, 25] for other related results.

The organization of the article is as follows. In §2, we will review some known results on CβE which are proved in [14, 15]. In §3, we will derive Lemma 1.1 and prove Corollary 1.2. In §4, we will finish the proof of Theorem 1.1. In §5, we will prove Corollary 1.3 for the Sine\(_\beta\) process. In §6, as an application of the uniform variance bound (5), we will prove Theorem 1.2.

Acknowledgement: We are indebted to the anonymous reviewers for providing insightful comments, this paper would not have been possible without their supportive work.

2. Preliminary results. In this section, we will collect several properties regarding CβE proved in [14, 15] which will be useful in the proof of Theorem 1.1.

Now we introduce
\[
\Upsilon(\psi, \alpha) = -2\text{Im} \ln[1 - \alpha e^{i\psi}] = \text{Im} \sum_{l=1}^{\infty} \frac{2}{l} e^{il\psi} \alpha^l,
\]
and
\[
\Upsilon_1(\psi, \alpha) = \Upsilon(\psi, \alpha) - \Upsilon(0, \alpha).
\]
Then we have [15]
\[
\psi_{k+1}(\theta) = \psi_k(\theta) + \theta + \Upsilon_1(\psi_k(\theta), \gamma_k).
\]
We have the following estimates about \(\Upsilon \) (Lemma 2.5 in [14]).
LEMMA 2.1. Suppose $\phi, \psi \in \mathbb{R}$ and $\alpha \sim \Theta_{\nu}$. If $\tilde{\Upsilon}(\psi, \alpha) = 2\text{Im}[\alpha e^{i\psi}]$, then
\[
E[\Upsilon(\psi, \alpha)] = E[\tilde{\Upsilon}(\psi, \alpha)] = 0,
\]
\[
E[\tilde{\Upsilon}(\psi, \alpha) \Upsilon(\phi, \alpha)] = \frac{4}{\nu + 1} \cos(\psi - \phi),
\]
\[
E[\tilde{\Upsilon}(\psi, \alpha)^4] = \frac{48}{(\nu + 1)(\nu + 3)},
\]
\[
E[|\Upsilon(\psi, \alpha) - \tilde{\Upsilon}(\psi, \alpha)|^2] \leq \frac{16}{(\nu + 1)(\nu + 3)}.
\]
\[
E[|\Upsilon(\psi, \alpha)|^2] \leq \frac{8}{\nu + 1}.
\]

By rotational invariance, we also have $E[\alpha^3] = E[|\alpha|^2 \alpha] = 0$, which implies
\[
E[(\tilde{\Upsilon}(\psi, \alpha) - \tilde{\Upsilon}(\phi, \alpha))^3] = 0.
\]
We apply Plancherel’s theorem to the power series of Υ to get
\[
E[(\Upsilon(\psi, \alpha) - \tilde{\Upsilon}(\psi, \alpha)) \Upsilon(\phi, \alpha)] = 0.
\]
We also have the following estimate on Υ_1 (see Proposition 2.3 in [15]),
\[
\left| \int_0^{2\pi} \Upsilon_1(\psi, re^{i\theta}) \Upsilon_1(\phi, re^{i\theta}) \frac{d\theta}{2\pi} \right| \leq 2(|\psi| + |\phi|) \ln \frac{1}{1 - r^2}, \forall r \in [0, 1).
\]
The following estimates are proved in Corollary 2.4 in [15].

LEMMA 2.2. For $s \geq 0$, we have
\[
E[\psi_s(\theta)] = (s + 1)\theta, \ E[|\psi_s(\theta)|] = (s + 1)|\theta|,
\]
and for $0 \leq k \leq m$, we have
\[
E[|\psi_m(\theta) - \psi_k(\theta) - (m - k)\theta|^2] = \sum_{s=k}^{m-1} E[|\Upsilon_1(\psi_s(\theta), \gamma_s)|^2].
\]

By Lemma 2.2, we can further prove

LEMMA 2.3. For $0 \leq k \leq m$, we have
\[
E[|\psi_m(\theta) - \psi_k(\theta) - (m - k)\theta|^2] \leq 8(m - k)|\theta| / \beta.
\]
In particular, for $k = 0$ we have
\[
E[|\psi_m(\theta) - (m + 1)\theta|^2] \leq 8m|\theta| / \beta.
\]

PROOF. Using Lemma 2.2, by (2), (10) and the rotational invariance we have
\[
E[|\psi_m(\theta) - \psi_k(\theta) - (m - k)\theta|^2] = \sum_{s=k}^{m-1} E[|\Upsilon_1(\psi_s(\theta), \gamma_s)|^2]
\leq \sum_{s=k}^{m-1} 4E[|\psi_s(\theta)| \ln \frac{1}{1 - |\gamma_s|^2}]
= \sum_{s=k}^{m-1} 4E[|\psi_s(\theta)|] E\left[\ln \frac{1}{1 - |\gamma_s|^2}\right]
\leq \sum_{s=k}^{m-1} 4(s + 1)|\theta| \frac{2}{\beta(s + 1)} = \sum_{s=k}^{m-1} \frac{8|\theta|}{\beta} = \frac{8(m - k)|\theta|}{\beta}.
\]
Here, we take $\nu = \beta(s + 1) + 1$ for γ_s. This completes the proof. \qed
3. The characteristic function and the uniform variance bound. Let’s define the characteristic function of the Prüfer phases
\[a_k(\lambda) := a_k(\lambda, \theta, \beta) = \mathbb{E}[e^{i\lambda(\psi_k(\theta) - (k+1)\theta)}]. \]
Then \(|a_k(\lambda)| \leq 1\) for \(\lambda \in \mathbb{R}\). In this section, we will derive several estimates regarding the sequence \(\{a_k(\lambda)\}_{k=0}^{\infty}\), then we can prove Lemma 1.1 and Corollary 1.2.
We first have

Lemma 3.1. Suppose \(\phi, \lambda \in \mathbb{R}\) and \(\alpha \sim \Theta_\nu\), then
\[
\left| \mathbb{E}[e^{i\lambda Y_1(\phi, \alpha)}] - 1 + 4\frac{\lambda^2(1 - \cos \phi)}{\nu + 1} \right| \leq \frac{64\lambda^2 + 416\lambda^4}{(\nu + 1)(\nu + 3)},
\]
and
\[
\left| \mathbb{E}[e^{i\lambda Y_1(\phi, \alpha)}] - 1 \right| \leq \frac{16\lambda^2}{\nu + 1}.
\]

Proof. Let \(X = Y_1(\phi, \alpha)\), \(X_1 = \tilde{Y}(\phi, \alpha) - \tilde{Y}(0, \alpha), X_3 = Y(\phi, \alpha) - \tilde{Y}(\phi, \alpha), X_4 = \tilde{Y}(0, \alpha) - Y(0, \alpha), X_2 = X_3 + X_4\), here \(\tilde{Y}(\psi, \alpha) = 2\text{Im}[\alpha e^{i\psi}]\) for every \(\psi \in \mathbb{R}\), then we have \(X = X_1 + X_3 + X_4 = X_1 + X_2\). By Lemma 2.1 we have
\[
\mathbb{E}[X_1] = \mathbb{E}[X_3] = \mathbb{E}[X_4] = 0, \quad \mathbb{E}[X_2] = \mathbb{E}[X] = 0,
\]

(11) \[
\mathbb{E}[|X_3|^2] \leq \frac{16}{(\nu + 1)(\nu + 3)}, \quad \mathbb{E}[|X_4|^2] \leq \frac{16}{(\nu + 1)(\nu + 3)},
\]

(12) \[
\mathbb{E}[|X_2|^2] \leq 2\mathbb{E}[|X_3|^2 + |X_4|^2] \leq \frac{64}{(\nu + 1)(\nu + 3)},
\]

(13) \[
\mathbb{E}[|X_1|^4] \leq 8\mathbb{E}[|\tilde{Y}(0, \alpha) + \tilde{Y}(\phi, \alpha)|^4] \leq \frac{768}{(\nu + 1)(\nu + 3)},
\]

(14) \[
\mathbb{E}[|X_1|^2] = \frac{8(1 - \cos \phi)}{\nu + 1}, \quad \mathbb{E}[|X|^2] \leq \frac{32}{\nu + 1}.
\]

By (8), (9) we have \(\mathbb{E}[X_3^3] = \mathbb{E}[X_1X_2] = 0\). Notice that
\[
e^{i\lambda X} - e^{i\lambda X_1} = e^{i\lambda X_1}(e^{i\lambda X_2} - 1)
\]
\[= e^{i\lambda X_1}(e^{i\lambda X_2} - i\lambda X_2 - 1) + (e^{i\lambda X_1} - i\lambda X_1 - 1)(i\lambda X_2) + i\lambda X_2(i\lambda X_1 + 1),
\]
and that \(|e^{ix} - ix - 1| \leq |x|^2/2\) for \(x \in \mathbb{R}\) by Taylor expansion, we have
\[
|e^{i\lambda X} - e^{i\lambda X_1} - i\lambda X_2(i\lambda X_1 + 1)| \leq |\lambda X_2|^2/2 + |\lambda X_1|^2|\lambda X_2|/2,
\]

which together with \(\mathbb{E}[X_2] = \mathbb{E}[X_1X_2] = 0\) and (13), (14) gives
\[
|\mathbb{E}[e^{i\lambda X} - e^{i\lambda X_1}]| = |\mathbb{E}[e^{i\lambda X} - e^{i\lambda X_1} - i\lambda X_2(i\lambda X_1 + 1)]|
\]
\[
\leq \mathbb{E}[|\lambda X_2|^2/2 + |\lambda X_1|^2|\lambda X_2|/2] \leq \mathbb{E}[|\lambda X_2|^2 + |\lambda X_1|^4/2]
\]
\[
\leq \frac{64\lambda^2}{(\nu + 1)(\nu + 3)} + \frac{384\lambda^4}{(\nu + 1)(\nu + 3)}.
\]

Since \(|e^{ix} + ix^3/6 + x^2/2 - ix - 1| \leq |x|^4/24\) for \(x \in \mathbb{R}\) by Taylor expansion and \(\mathbb{E}[X_1^3] = \mathbb{E}[X_1] = 0\), by (14) we have
\[
|\mathbb{E}[e^{i\lambda X_1}] - 1 + \lambda^2 \mathbb{E}[|X_1|^2]/2| = |\mathbb{E}[e^{i\lambda X_1} + i\lambda^3 X_1^3/6 + \lambda^2 X_1^2/2 - i\lambda X_1 - 1]|
\]
\[
\leq \mathbb{E}[|\lambda X_1|^4]/24 \leq \frac{32\lambda^4}{(\nu + 1)(\nu + 3)}.
\]
which together with (15), (16) gives
\[
\left| \mathbb{E}[e^{i\lambda X}] - 1 + \frac{4\lambda^2(1 - \cos \phi)}{\nu + 1} \right|
\leq |\mathbb{E}[e^{i\lambda X} - e^{i\lambda X_1}]| + \left| \mathbb{E}[e^{i\lambda X_1}] - 1 + \lambda^2\mathbb{E}[|X_1|^2]/2 \right|
\leq 64\lambda^2 + 384\lambda^4 + \frac{32\lambda^4}{(\nu + 1)(\nu + 3)} + \frac{32\lambda^4}{(\nu + 1)(\nu + 3)} = 64\lambda^2 + 416\lambda^4.
\]
This completes the proof of the first inequality. Since \(|e^{ix} - ix - 1| \leq |x|^2/2\) for \(x \in \mathbb{R}\) by Taylor expansion and \(\mathbb{E}[X] = 0\), by (15) we have
\[
|\mathbb{E}[e^{i\lambda X}] - 1| = |\mathbb{E}[e^{i\lambda X} - i\lambda X - 1]| \leq \mathbb{E}[|\lambda X|^2]/2 \leq \frac{16\lambda^2}{\nu + 1}.
\]
This completes the proof of the second inequality.

\[\square\]

We need the following estimate of the sequence \(\{a_k(\lambda)\}_{k=0}^{+\infty}\).

Lemma 3.2. Let \(\theta \in (0, \pi)\), \(\lambda \in \mathbb{R}\), then we have
\[
|a_{k+1}(\lambda) - a_k(\lambda)| + \frac{\lambda^2(4a_k(\lambda) - 2e^{i(k+1)\theta}a_k(\lambda + 1) - 2e^{-i(k+1)\theta}a_k(\lambda - 1))}{\beta(k + 1) + 2} \leq \frac{64\lambda^2 + 416\lambda^4}{(\beta(k + 1) + 2)(\beta(k + 1) + 4)}
\]
and
\[
|a_{k+1}(\lambda) - a_k(\lambda)| \leq \frac{16\lambda^2}{\beta(k + 1) + 2}.
\]

Proof. Let \(X_k := \psi_k(\theta)\), \(Y_k := \Upsilon_k(\psi_k(\theta), \gamma_k)\), then
\[
X_{k+1} = X_k + \theta + Y_k.
\]
For the sigma algebras
\[
\mathcal{M}_{k-1} := \sigma(\gamma_0, \cdots, \gamma_{k-1}),
\]
\(\gamma_k\) is independent of \(\mathcal{M}_{k-1}\) and \(X_k\) is measurable in \(\mathcal{M}_{k-1}\). By Lemma 3.1 we have (taking \(\nu = \beta(k + 1) + 1\) for \(\gamma_k\))
\[
(17) \quad |\mathbb{E}[e^{i\lambda Y_k} | \mathcal{M}_{k-1}] - 1 + \frac{4\lambda^2(1 - \cos X_k)}{\beta(k + 1) + 2} | \leq \frac{64\lambda^2 + 416\lambda^4}{(\beta(k + 1) + 2)(\beta(k + 1) + 4)}
\]
and
\[
|\mathbb{E}[e^{i\lambda Y_k} | \mathcal{M}_{k-1}] - 1 | \leq \frac{16\lambda^2}{\beta(k + 1) + 2}.
\]

Let’s denote
\[
Z_k(\lambda) := e^{i\lambda(X_k - (k+1)\theta)},
\]
then we have
\[
Z_k(\lambda) = e^{i\lambda(\psi_k(\theta) - (k+1)\theta)}, Z_{k+1}(\lambda) = e^{i\lambda Y_k}Z_k(\lambda), a_k(\lambda) = \mathbb{E}[Z_k(\lambda)]
\]
and
\[2Z_k(\lambda) \cos X_k = Z_k(\lambda)(e^{iX_k} + e^{-iX_k}) = e^{i(\lambda+1)X_k-i\lambda(k+1)\theta} + e^{i(\lambda-1)X_k-i\lambda(k+1)\theta} \]
\[= Z_k(\lambda+1)e^{i(k+1)\theta} + Z_k(\lambda-1)e^{-i(k+1)\theta}. \]

Let’s denote
\[V_k(\lambda) := Z_{k+1}(\lambda) - Z_k(\lambda) + Z_k(\lambda) \frac{4\lambda^2(1 - \cos X_k)}{\beta(k+1) + 2} \]
\[= e^{i\lambda Y_k} Z_k(\lambda) - Z_k(\lambda) + Z_k(\lambda) \frac{4\lambda^2(1 - \cos X_k)}{\beta(k+1) + 2} \]
\[= Z_{k+1}(\lambda) - Z_k(\lambda) + \frac{\lambda^2(4Z_k(\lambda) - 2Z_k(\lambda+1)e^{i(k+1)\theta} - 2Z_k(\lambda-1)e^{-i(k+1)\theta})}{\beta(k+1) + 2}. \]

Then by (17) and the fact that \(|Z_k(\lambda)| = 1, a_k(\lambda) = \mathbb{E}[Z_k(\lambda)]\) we have
\[|\mathbb{E}[V_k(\lambda)|\mathcal{M}_{k-1}]| = |\mathbb{E}[e^{i\lambda Y_k}|\mathcal{M}_{k-1}]Z_k(\lambda) - Z_k(\lambda) + Z_k(\lambda) \frac{4\lambda^2(1 - \cos X_k)}{\beta(k+1) + 2}| \]
\[= |Z_k(\lambda)| \left| \mathbb{E}[e^{i\lambda Y_k}|\mathcal{M}_{k-1}] - 1 + \frac{4\lambda^2(1 - \cos X_k)}{\beta(k+1) + 2} \right| \leq \frac{64\lambda^2 + 416\lambda^4}{(\beta(k+1) + 2)(\beta(k+1) + 4)}, \]

and
\[|a_{k+1}(\lambda) - a_k(\lambda)| = \left| \mathbb{E}[Z_{k+1}(\lambda) - Z_k(\lambda)] \right| \leq \mathbb{E} \left| \mathbb{E}[e^{i\lambda Y_k}|\mathcal{M}_{k-1}]Z_k(\lambda) - Z_k(\lambda) \right| \leq \frac{16\lambda^2}{\beta(k+1) + 2}, \]

which is the first inequality. Similarly, we have
\[|a_{k+1}(\lambda) - a_k(\lambda)| = \left| \mathbb{E}[Z_{k+1}(\lambda) - Z_k(\lambda)] \right| \leq \mathbb{E} \left| \mathbb{E}[e^{i\lambda Y_k}|\mathcal{M}_{k-1}]Z_k(\lambda) - Z_k(\lambda) \right| \leq \frac{16\lambda^2}{\beta(k+1) + 2}, \]

which is the second inequality. This completes the proof.

\[\square \]

Lemma 3.3. Let \(\theta \in (0, \pi], \quad \delta \in [-\pi, \pi] \setminus \{0\}, \quad \lambda \in \mathbb{R}, \) then we have
\[\left| \sum_{j=k}^{n-1} \frac{e^{ij\delta}a_j(\lambda)}{\beta(j+1) + 2} \right| \leq \frac{2 + 16\lambda^2/\beta}{|1 - e^{i\delta}|(\beta(k+1) + 2)}. \]

Proof. Let \(\epsilon_j = 1/((\beta(j+1) + 2), \quad a_j = a_j(\lambda), \) using summation by parts
\[\sum_{j=k}^{n-1} e^{ij\delta} a_j(\lambda) = \sum_{j=k}^{n-1} \frac{e^{ij\delta a_j(\lambda) - e^{i(j+1)\delta a_j(\lambda)}}{1 - e^{i\delta}} \]
\[= \frac{e^{ik\delta} a_k - e^{i\delta k} e^{i\delta n} a_n}{1 - e^{i\delta}} + \sum_{j=k}^{n-1} \frac{(\epsilon_j + 1 - \epsilon_j) e^{i(j+1)\delta a_j}}{1 - e^{i\delta}} + \sum_{j=k+1}^{n} \epsilon_j e^{ij\delta} (a_j - a_{j-1}) \frac{1}{1 - e^{i\delta}}, \]
and using $|a_j(\lambda)| \leq 1$ we have
\[
\left| \sum_{j=k}^{n-1} e^{ij\beta} \epsilon_j a_j \right| \leq \frac{|\epsilon_k| + |\epsilon_n| + \sum_{j=k+1}^{n} |\epsilon_j - \epsilon_{j-1}| + \sum_{j=k+1}^{n} |\epsilon_j(a_j(\lambda) - a_{j-1}(\lambda))|}{|1 - e^{i\delta}|}.
\]
Since $\epsilon_{j-1} > \epsilon_j > 0$, we have
\[
\sum_{j=k+1}^{n} |\epsilon_j - \epsilon_{j-1}| = \epsilon_k - \epsilon_n
\]
and
\[
|\epsilon_k| + |\epsilon_n| + \sum_{j=k+1}^{n} |\epsilon_j - \epsilon_{j-1}| = 2\epsilon_k.
\]
By Lemma 3.2 we have
\[
|a_j(\lambda) - a_{j-1}(\lambda)| \leq 16\lambda^2 \epsilon_{j-1},
\]
this together with $\epsilon_{j-1} - \epsilon_j = 2\epsilon_{j-1} \epsilon_j > 0$ implies that
\[
\sum_{j=k+1}^{n} |\epsilon_j(a_j(\lambda) - a_{j-1}(\lambda))| \leq \sum_{j=k+1}^{n} 16\lambda^2 |\epsilon_j| \epsilon_{j-1} = (16\lambda^2/\beta)(\epsilon_k - \epsilon_n).
\]
Summing up we conclude that
\[
\sum_{j=k}^{n-1} e^{ij\beta} \epsilon_j a_j(\lambda) \leq \frac{2\epsilon_k + (16\lambda^2/\beta)\epsilon_k}{|1 - e^{i\delta}|} = \frac{2 + 16\lambda^2/\beta}{|1 - e^{i\delta}|(\beta(k + 1) + 2)}.
\]
This completes the proof.

Lemma 3.4. Given complex valued sequences ϵ_j, a_j, b_j, c_j and $n \in \mathbb{Z}$, $n > 0$, $\lambda \in \mathbb{R}$ such that $|a_j| \leq 1$, $\epsilon_j > 0$, $a_{j+1} - a_j + \lambda^2(\epsilon_j a_j - b_j) = c_j$, let $s_k = \sum_{j=0}^{k-1} \epsilon_j$, $t_k = \sum_{j=k}^{n-1} b_j$, then we have (for $k \in [0, n-1] \cap \mathbb{Z}$)
\[
|e^{\lambda^2 s_k} a_k - e^{\lambda^2 s_n} a_n| \leq |e^{\lambda^2 s_k} \lambda^2 |t_k| + \sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} (|c_j| + \lambda^4 \epsilon_j^2 / 2 + \lambda^4 |\epsilon_j t_j|).
\]

Proof. By the definition of t_k we have $b_j = t_j - t_{j+1}$, inserting this into the equation of c_j we have $a_{j+1} + \lambda^2 t_{j+1} - a_j + \lambda^2 (\epsilon_j a_j - t_j) = c_j$. Let $\tilde{a}_j = a_j + \lambda^2 t_j$ then
\[
\tilde{a}_{j+1} - e^{-\lambda^2 \epsilon_j} \tilde{a}_j = c_j + (1 - \lambda^2 \epsilon_j - e^{-\lambda^2 \epsilon_j}) a_j + \lambda^2 (1 - e^{-\lambda^2 \epsilon_j}) t_j.
\]
Since $|1 - x - e^{-x}| \leq |x|^2 / 2$, $|1 - e^{-x}| \leq |x|$ for $x \geq 0$ by Taylor expansion and $|a_j| \leq 1$, we have
\[
|\tilde{a}_{j+1} - e^{-\lambda^2 \epsilon_j} \tilde{a}_j| \leq |c_j| + \lambda^4 \epsilon_j^2 / 2 + \lambda^4 |\epsilon_j t_j|.
\]
By the definition of s_k we have $s_{j+1} = s_j + \epsilon_j$, thus
\[
|e^{\lambda^2 s_k} a_k - e^{\lambda^2 s_n} a_n| \leq \sum_{j=k}^{n-1} |e^{\lambda^2 s_{j+1}} \tilde{a}_{j+1} - e^{\lambda^2 s_j} \tilde{a}_j| = \sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} |\tilde{a}_{j+1} - e^{-\lambda^2 \epsilon_j} \tilde{a}_j|
\]
\[
\leq \sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} (|c_j| + \lambda^4 \epsilon_j^2 / 2 + \lambda^4 |\epsilon_j t_j|).
\]
(18)
Notice that \(t_n = 0, \ e^{\lambda^2 s_n \bar{a}_k} - e^{\lambda^2 s_n a_n} = e^{\lambda^2 s_k a_k} - e^{\lambda^2 s_n a_n} + e^{\lambda^2 s_k} \lambda^2 t_k, \) and
\[
|e^{\lambda^2 s_k a_k} - e^{\lambda^2 s_n a_n}| \leq e^{\lambda^2 s_k} \lambda^2 |t_k| + |e^{\lambda^2 s_n \bar{a}_k} - e^{\lambda^2 s_n a_n}|,
\]
which together with (18) concludes the proof.

\[\frac{\epsilon_k}{\epsilon_k - \lambda} = 4/\beta(k+1) + 2, \ s_k = \sum_{j=0}^{k-1} \epsilon_j, \text{ then for } n, k \in \mathbb{Z}, n > k \geq 0 \]
\[
\left| e^{\lambda^2 s_k a_k(\lambda)} - e^{\lambda^2 s_n a_n(\lambda)} \right| \leq \frac{C}{\theta} (\lambda^2 + \lambda^4) \epsilon_k, \quad n > k \geq 0
\]
here \(C > 0 \) is a constant depending only on \(\beta. \)

\[\frac{2e^{i(k+1)\theta} a_k(\lambda + 1) + 2e^{-i(k+1)\theta} a_k(\lambda - 1)}{\beta(k + 1) + 2}, \quad c_k = a_{k+1} - a_k + \lambda^2(\epsilon_k a_k - b_k), \text{ by Lemma 3.2 we have } |c_k| \leq (4\lambda^2 + 26\lambda^4) \epsilon_k^2. \]
We can write \(t_k = \sum_{j=0}^{k-1} \beta_j = 2(t_{k,1} + t_{k,2}) \) such that
\[
t_k = \sum_{j=0}^{k-1} \frac{e^{i(j+1)\theta} a_j(\lambda + 1)}{\beta(j + 1) + 2}, \quad t_{k,2} = \sum_{j=0}^{k-1} \frac{e^{-i(j+1)\theta} a_j(\lambda - 1)}{\beta(j + 1) + 2}.
\]

By Lemma 3.3 we have
\[
|t_{k,1}| \leq \frac{2 + 16(\lambda + 1)^2 / \beta}{|1 - e^{i\theta}|(\beta(k + 1) + 2)}, \quad |t_{k,2}| \leq \frac{2 + 16(\lambda - 1)^2 / \beta}{|1 - e^{-i\theta}|(\beta(k + 1) + 2)};
\]
thus
\[
|t_k| \leq 2(|t_{k,1}| + |t_{k,2}|) \leq 4\frac{2 + 16(\lambda^2 + 1) / \beta}{|1 - e^{i\theta}|(\beta(k + 1) + 2)} \leq \frac{C(\lambda^2 + 1) \epsilon_k}{|1 - e^{i\theta}|}.
\]

Summing up we have
\[
(|c_j| + \lambda^4 \epsilon_j^2 / 2 + \lambda^4 |\epsilon_j t_j|) \leq (4\lambda^2 + 26\lambda^4) \epsilon_j^2 + \lambda^4 \epsilon_j^2 / 2 + \frac{C\lambda^4 \epsilon_j^2 (\lambda^2 + 1)}{|1 - e^{i\theta}|}
\]
\[
\leq C(\lambda^2 + \lambda^4) \epsilon_j^2 + C\lambda^4 \epsilon_j^2 (\lambda^2 + 1) / \theta \leq C(\lambda^2 + \lambda^6) \epsilon_j^2 / \theta.
\]

By Lemma 3.4 we have
\[
\left| e^{\lambda^2 s_k a_k(\lambda)} - e^{\lambda^2 s_n a_n(\lambda)} \right| \leq e^{\lambda^2 s_k} \lambda^2 |t_k| + \sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} (|c_j| + \lambda^4 \epsilon_j^2 / 2 + \lambda^4 |\epsilon_j t_j|)
\]
\[
\leq e^{\lambda^2 s_k} \frac{C\lambda^2 (\lambda^2 + 1) \epsilon_k}{|1 - e^{i\theta}|} + C\sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} (\lambda^2 + \lambda^6) \epsilon_j^2 / \theta.
\]
This completes the proof.

\[\frac{\epsilon_k}{\epsilon_k - \lambda} = 4/\beta(k+1) + 2, \ s_k = \sum_{j=0}^{k-1} \epsilon_j, \text{ then } |s_k - (4/\beta) \ln(k+1)| \leq C, \]
here \(C > 0 \) is a constant depending only on \(\beta. \)
PROOF. By definition we have $s_0 = 0$ and $s_k - s_{k-1} = \epsilon_{k-1}$ for $k \geq 1$. Let $\tilde{s}_k = s_k - (4/\beta) \ln(k+1)$, then we have $\tilde{s}_0 = 0$ and $\tilde{s}_k - \tilde{s}_{k-1} = \epsilon_{k-1} - (4/\beta) \ln(1 + 1/k)$ for $k \geq 1$. Thus

$$|\tilde{s}_k - \tilde{s}_{k-1}| \leq |\epsilon_{k-1} - 4/(\beta k)| + |4/(\beta k) - (4/\beta) \ln(1 + 1/k)|$$

$$= |4/(\beta k + 2) - 4/(\beta k)| + |4/\beta| \ln(1 + 1/k) - 1|$$

$$\leq 8/(\beta k)^2 + (4/\beta)(1/k^2)/2 = (8/\beta^2 + 2\beta)/k^2,$$

and

$$|s_k - (4/\beta) \ln(k + 1)| = |\tilde{s}_k| \leq \sum_{j=1}^{k} |\tilde{s}_j - \tilde{s}_{j-1}| \leq \sum_{j=1}^{k} (8/\beta^2 + 2\beta)/j^2$$

$$\leq (8/\beta^2 + 2\beta)(\pi^2/6).$$

This completes the proof.

Lemma 3.7. Let $\theta \in (0, \pi]$, $\lambda \in \mathbb{R}$, $\lambda^2 \leq \beta/8$, $\epsilon_k = 4/(\beta(k+1) + 2)$, $s_k = \sum_{j=0}^{k-1} \epsilon_j$, then (for $n, k \in \mathbb{Z}$, $n \geq k \geq 0$)

$$|e^{\lambda^2 s_k} a_k(\lambda) - e^{\lambda^2 s_n} a_n(\lambda)| \leq C \lambda^2 e^{\lambda^2 s_k} / (\theta(k + 1)),$$

here $C > 0$ is a constant depending only on β.

Proof. If $n = k$ the result is clearly true, now we assume $n > k \geq 0$. By Lemma 3.6 we have

$$\sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} \epsilon_j^2 \leq C \sum_{j=k}^{n-1} (j + 2)(4/\beta)^{j+1} \lambda^2 (j + 1)^{-2} \leq C \sum_{j=k}^{n-1} (j + 2)(4/\beta)\lambda^2 - 2$$

$$\leq C(k + 1)(4/\beta)\lambda^2 - 1 \leq C e^{\lambda^2 s_k} (k + 1)^{-1}.$$

Here we used the fact that $\lambda^2 \leq \beta/8$, $(4/\beta)\lambda^2 \leq 1/2 < 1$, which also implies that $\lambda^2 + \lambda^4 \leq C\lambda^2$, $\lambda^2 + \lambda^6 \leq C\lambda^2$. By Lemma 3.5 we have

$$\left|e^{\lambda^2 s_k} a_k(\lambda) - e^{\lambda^2 s_n} a_n(\lambda)\right| \leq \frac{C}{\theta} (\lambda^2 + \lambda^4) e^{\lambda^2 s_k} \epsilon_k + \frac{C}{\theta} (\lambda^2 + \lambda^6) \sum_{j=k}^{n-1} e^{\lambda^2 s_{j+1}} \epsilon_j^2$$

$$\leq \frac{C}{\theta} \lambda^2 e^{\lambda^2 s_k} (k + 1)^{-1} + \frac{C}{\theta} \lambda^2 e^{\lambda^2 s_k} (k + 1)^{-1} \leq \frac{C \lambda^2 e^{\lambda^2 s_k}}{\theta(k + 1)}.$$

This completes the proof.

Lemma 3.8. Let $\theta \in (0, \pi]$, $\lambda \in \mathbb{R}$, then

$$|a_k(\lambda) - 1| \leq 4\lambda^2 k|\theta|/\beta.$$

Proof. Let $X_k = \psi_k(\theta) - (k + 1)\theta$. By Lemma 2.2 and Lemma 2.3 we have $\mathbb{E}[X_k] = 0$, $\mathbb{E}[X_k^2] \leq 8k|\theta|/\beta$, which together with Taylor expansion $|e^{ix} - ix - 1| \leq |x|^2/2$ for $x \in \mathbb{R}$ gives

$$|a_k(\lambda) - 1| = |\mathbb{E}[e^{i\lambda X_k}] - 1| = |\mathbb{E}[e^{i\lambda X_k} - i\lambda X_k - 1]| \leq \mathbb{E}[|\lambda X_k|^2/2] \leq 4\lambda^2 k|\theta|/\beta.$$

This completes the proof.
3.1. Proof of Lemma 1.1. Now we are ready to prove Lemma 1.1. The proof relies on Lemma 3.7 and Lemma 3.8 with \(n \) replaced by \(n - 1 \).

Proof. Let's denote

\[
 b_k(\lambda) = e^{-(4\lambda^2/\beta)\ln(2+k\theta)}, \quad \epsilon_k = 4/(\beta(k+1) + 2), \quad s_k = \sum_{j=0}^{k-1} \epsilon_j
\]

for every \(k \in \mathbb{Z}, \ k \geq 0 \).

If \(n\theta \leq 2 \), by Lemma 3.8 we have

\[
 |a_{n-1}(\lambda) - 1| \leq 4\lambda^2(n-1)|\theta|/\beta \leq 8\lambda^2/\beta.
\]

By Taylor expansion we have

\[
 |b_n(\lambda) - 1| \leq (4\lambda^2/\beta) \ln(2+n\theta) \leq (4\lambda^2/\beta) \ln 4 \leq (1/2) \ln 4
\]

and

\[
 e^{(4\lambda^2/\beta)\ln(2+n\theta)} \leq e^{(1/2)\ln 4} = 2.
\]

Thus we have

\[
 |E[e^{i\lambda(\psi_{n-1}(\theta) - n\theta)}] - e^{-(4\lambda^2/\beta)\ln(2+n\theta)}| = |a_{n-1}(\lambda) - b_n(\lambda)|
\]

\[
 \leq |a_{n-1}(\lambda) - 1| + |b_n(\lambda) - 1| \leq 8\lambda^2/\beta + (4\lambda^2/\beta) \ln 4
\]

\[
 \leq (8 + 4 \ln 4)(\lambda^2/\beta)(2e^{-(4\lambda^2/\beta)\ln(2+n\theta)}) \leq C\lambda^2e^{-(4\lambda^2/\beta)\ln(2+n\theta)}.
\]

If \(n\theta \geq 2 \), we take \(k = \lfloor 1/\theta \rfloor \), then we have \(0 \leq k \leq 1/\theta \leq n/2 < n \), thus \(k \leq n - 1 \). By Lemma 3.8 we have

\[
 |a_k(\lambda) - 1| \leq 4\lambda^2 k|\theta|/\beta \leq 4\lambda^2/\beta.
\]

By Lemma 3.6 we have

\[
 |(s_{n-1} - s_k) - (4/\beta)\ln(n/(k+1))| \leq C.
\]

We also have \(k\theta \leq 1 \leq (k+1)\theta \leq 1 + \theta \leq 1 + \pi \), \(0 \leq \ln((k+1)\theta) \leq C \), \(0 \leq \ln(2/(n\theta) + 1) \leq \ln 2 \), and \(\ln(2/n\theta) - \ln(n/(k+1)) = \ln(2/((n\theta) + 1) + \ln((k+1)\theta)) \leq C \), thus

\[
 |(s_{n-1} - s_k) - (4/\beta)\ln(2+n\theta)| \leq C,
\]

therefore, we have

\[
 |e^{i\lambda^2(s_k-s_{n-1})} - e^{-(4\lambda^2/\beta)\ln(2+n\theta)}| \leq C\lambda^2e^{-(4\lambda^2/\beta)\ln(2+n\theta)}.
\]

By Lemma 3.7, we have

\[
 |e^{\lambda^2 s_k a_k(\lambda)} - e^{\lambda^2 s_{n-1} a_{n-1}(\lambda)}| \leq C\lambda^2e^{\lambda^2 s_k/\theta(k+1)},
\]

and thus we have

\[
 |e^{\lambda^2(s_k-s_{n-1})}a_k(\lambda) - a_{n-1}(\lambda)| \leq C\lambda^2e^{\lambda^2(s_k-s_{n-1})/\theta(k+1)}
\]

\[
 \leq C\lambda^2e^{\lambda^2(s_k-s_{n-1})} \leq C\lambda^2e^{-(4\lambda^2/\beta)\ln(2+n\theta)}.
\]

Now we have (recall \(b_n(\lambda) = e^{-(4\lambda^2/\beta)\ln(2+n\theta)} \) and \(|a_k(\lambda) - 1| \leq 4\lambda^2/\beta \))

\[
 |e^{\lambda^2(s_k-s_{n-1})}a_k(\lambda) - b_n(\lambda)| \leq |e^{\lambda^2(s_k-s_{n-1})} - b_n(\lambda)| + |e^{\lambda^2(s_k-s_{n-1})}(a_k(\lambda) - 1)|
\]

\[
 \leq C\lambda^2b_n(\lambda) + Cb_n(\lambda)(a_k(\lambda) - 1) \leq C\lambda^2b_n(\lambda)
\]
and

\[|e^{\lambda^2(s_k-s_{n-1})}a_k(\lambda) - a_{n-1}(\lambda)| \leq C\lambda^2 b_n(\lambda). \]

Therefore, we have

\[|a_{n-1}(\lambda) - b_n(\lambda)| \leq C\lambda^2 b_n(\lambda). \]

Now the result follows by the definitions of \(a_{n-1}(\lambda)\) and \(b_n(\lambda)\). \(\square\)

3.2. Proof of Corollary 1.2.

As a consequence of Lemma 1.1, we now give the proof of Corollary 1.2.

Proof. Let \(X = \psi_{n-1}(\theta) - n\theta\), \(Z = [\psi_{n-1}(\theta) - \eta] + 1\), then \(N_n(0, \theta) \overset{d}{=} Z\). Taking the real part in Lemma 1.1 we have

\[|E[\cos(\lambda X)] - e^{-(4\lambda^2/\beta)\ln(2+n\theta)}| \leq C\lambda^2 e^{-(4\lambda^2/\beta)\ln(2+n\theta)} \leq C\lambda^2, \]

\[|E[(1 - \cos(\lambda X))/\lambda^2] - (1 - e^{-(4\lambda^2/\beta)\ln(2+n\theta)})/\lambda^2 | \leq C, \]

for \(\lambda \in [-\sqrt{\beta}/8, \sqrt{\beta}/8] \setminus \{0\}\). Letting \(\lambda \to 0\) we conclude that

\[|E[X^2/2] - (4/\beta)\ln(2 + n\theta)| \leq C, \]

which implies (3). Since \(\eta\) is a uniform random variable on \([0, 2\pi)\), we have

\[E[|x - \eta/(2\pi)| + 1] = \frac{1}{2\pi} \int_0^{2\pi} (|x - \eta/(2\pi)| + 1) \, d\eta = \int_{x-1}^x (|y| + 1) \, dy = \int_{x-1}^x |y| \, dy, \]

for \(x \in \mathbb{R}\). Since \(\eta\) is independent of \(\psi_{n-1}(\theta)\) and \(N_n(0, \theta) \overset{d}{=} Z = [\psi_{n-1}(\theta) - \eta] + 1\), we have \(E[Z|\psi_{n-1}(\theta)] = \psi_{n-1}(\theta)/(2\pi)\). Let \(Z_1 := Z - \psi_{n-1}(\theta)/(2\pi)\) then \(|Z_1| \leq 1\), \(E[Z_1|\psi_{n-1}(\theta)] = 0\). For \(\lambda \in \mathbb{R}\) we first have

\[|E[e^{i\lambda(Z - n\theta/(2\pi))}] - E[e^{i\lambda(\psi_{n-1}(\theta) - n\theta)/(2\pi))]| = |E[e^{i\lambda Z} - e^{i\lambda \psi_{n-1}(\theta)/(2\pi))]| \leq |E(e^{i\lambda Z_1} - 1)| = |E[e^{i\lambda Z_1} - 1 - i\lambda Z_1]\psi_{n-1}(\theta)]| \leq \lambda^2/2. \]

On the other hand, for \(\lambda \in [-2\pi\sqrt{\beta}/8, 2\pi\sqrt{\beta}/8]\), let \(\lambda_1 = \lambda/(2\pi)\) then \(\lambda_1^2 \leq \beta/8\), by Lemma 1.1 we have

\[|E[e^{i\lambda(\psi_{n-1}(\theta) - n\theta)/(2\pi))]| - e^{-(\lambda_1^2/(\beta\pi^2))\ln(2+n\theta)}| \leq C\lambda_1^2 e^{-(4\lambda_1^2/\beta)\ln(2+n\theta)} \leq C\lambda_1^2 \leq C\lambda^2. \]

Therefore, we have

\[|E[e^{i\lambda(Z - n\theta/(2\pi))}] - e^{-(\lambda^2/(\beta\pi^2))\ln(2+n\theta)}| \leq C\lambda^2, \]

which implies (4). We also have

\[E[|N_n(0, \theta) - n\theta/(2\pi)|^2] = E[|Z - n\theta/(2\pi)|^2] \]

\[= E[|\psi_{n-1}(\theta) - n\theta|^2/(2\pi)^2] + E[|Z - \psi_{n-1}(\theta)/(2\pi)|^2] \]

(19) \[0 \leq E[|Z - \psi_{n-1}(\theta)/(2\pi)|^2] = E(|Z_1|^2) \leq 1. \]

Using (3), (19) and (20), we conclude (5). \(\square\)
4. Proof of Theorem 1.1. In this section, we will finish the proof of Theorem 1.1. Let $F(x)$ be the distribution function of a random variable X and let

$$(21) \quad G(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

be the Gaussian distribution function. Let’s denote

$$M = \sup_{x \in \mathbb{R}} |F(x) - G(x)|, \quad \delta = M(\pi/2)^{1/2}$$

and let

$$\phi(t) := \mathbb{E}[e^{itX}] = \int_{\mathbb{R}} e^{itx} dF(x), \quad \psi(t) := \int_{\mathbb{R}} e^{itx} dG(x) = e^{-t^2/2}$$

be the characteristic functions.

For every $T > 0$ we have the following bound (see (30) in [?])

$$(22) \quad A(T\delta) \leq \int_{0}^{T} (T-t) |\phi(t) - \psi(t)| dt \leq T \int_{0}^{T} |\phi(t) - \psi(t)| dt,$$

where

$$A(u) = (2\pi)^{1/2} \cdot u \cdot \left(3 \int_{0}^{u} 1 - \cos \frac{x}{\beta} dx - \pi \right).$$

Now we take

$$T = \sqrt{\ln(2 + n\theta)}, \quad X = \sqrt{\beta/8}(\psi_{n-1}(\theta) - n\theta)/T,$$

for $\theta \in (0, \pi]$. Let $a_k(\lambda) = \mathbb{E}[e^{i\lambda \psi_k(\theta) - (k+1)\theta}]$ as in §3, then we have

$$\phi(t) = \mathbb{E}[e^{itX}] = a_{n-1}(t\sqrt{\beta/8}/T).$$

By Lemma 1.1 we have (for $\lambda \in \mathbb{R}$, $\lambda^2 \leq \beta/8$)

$$|a_{n-1}(\lambda) - e^{-\left(4\lambda^2/\beta\right)\ln(2 + n\theta)}| \leq C\lambda^2 e^{-\left(4\lambda^2/\beta\right)\ln(2 + n\theta)}.$$

Notice that if $t \in [0, T]$, $\lambda = t\sqrt{\beta/8}/T$, then $\lambda^2 \leq \beta/8$, $(4\lambda^2/\beta)\ln(2 + n\theta) = t^2/2$. Thus we have

$$|\phi(t) - \psi(t)| = |a_{n-1}(t\sqrt{\beta/8}/T) - e^{-t^2/2}| \leq C\beta t^2/(8T^2) \cdot e^{-t^2/2}$$

and

$$T \int_{0}^{T} |\phi(t) - \psi(t)| dt \leq CT \int_{0}^{T} \beta t^2/(8T^2) \cdot e^{-t^2/2} dt \leq C/T \leq C.$$

By (22) we have $A(T\delta) \leq C$. As \(\lim_{u \to +\infty} A(u) = +\infty \), we have $T\delta \leq C$. Recall that $\delta = M(\pi/2)^{1/2}$, we have $\delta \leq C/T$, $M \leq C/T$. Recall that $T = \sqrt{\ln(2 + n\theta)}$, $M = \sup_{x \in \mathbb{R}} |F(x) - G(x)|$, $F(x) = \mathbb{P}[X \leq x]$, $X = \sqrt{\beta/8}(\psi_{n-1}(\theta) - n\theta)/T$, now we have proven the following result.

Lemma 4.1. Let $\theta \in (0, \pi]$, $n > 0$, $n \in \mathbb{Z}$, then

$$\sup_{x \in \mathbb{R}} |\mathbb{P}[\sqrt{\beta/8(\ln(2 + n\theta))}(\psi_{n-1}(\theta) - n\theta) \leq x] - G(x)| \leq C(\ln(2 + n\theta))^{-1/2}.$$

Here, $C > 0$ is a constant depending only on β.

4.1. Proof of Theorem 1.1. Now we give the proof of Theorem 1.1.

PROOF. Since \(N_n(0, \theta) \overset{d}{=} Z \) for \(Z = \frac{\psi_{n-1}(\theta) - \eta}{2\pi} + 1 \) and \(\eta \in [0, 2\pi) \), we have \(|Z - \frac{\psi_{n-1}(\theta)}{2\pi}| \leq 1 \). Let \(T_1 = \sqrt{\frac{2n^2}{\ln(2 + n\theta)}} \), then we have \(T_1/(2\pi) = \sqrt{\beta/(8\ln(2 + n\theta))} \). Thus for \(x \in \mathbb{R} \), by Lemma 4.1 we have

\[
\mathbb{P}[T_1(N_n(0, \theta) - n\theta/(2\pi)) \leq x] = \mathbb{P}[T_1(Z - n\theta/(2\pi)) \leq x] \\
\leq \mathbb{P}[T_1(\psi_{n-1}(\theta)/(2\pi) - 1 - n\theta/(2\pi)) \leq x] \\
= \mathbb{P}[T_1/(2\pi) \cdot (\psi_{n-1}(\theta) - n\theta) \leq x + T_1] \leq G(x + T_1) + C(\ln(2 + n\theta))^{-1/2} \\
\leq G(x) + T_1/\sqrt{2\pi} + C(\ln(2 + n\theta))^{-1/2} \leq G(x) + C(\ln(2 + n\theta))^{-1/2},
\]

here we used the fact that \(0 \leq G'(x) = e^{-x^2/2}/\sqrt{2\pi} \) for \(x \in \mathbb{R} \) which implies that \(|G(x) - G(y)| \leq |x - y|/\sqrt{2\pi} \) for \(x, y \in \mathbb{R} \). Similarly, we have

\[
\mathbb{P}[T_1(N_n(0, \theta) - n\theta/(2\pi)) \leq x] \geq \mathbb{P}[T_1/(2\pi) \cdot (\psi_{n-1}(\theta) - n\theta) \leq x - T_1] \\
\geq G(x - T_1) - C(\ln(2 + n\theta))^{-1/2} \geq G(x) - C(\ln(2 + n\theta))^{-1/2}.
\]

Combining the upper and lower bounds we conclude that

\[
\sup_{x \in \mathbb{R}} [\mathbb{P}[T_1(N_n(0, \theta) - n\theta/(2\pi)) \leq x] - G(x)] \leq C(\ln(2 + n\theta))^{-1/2}.
\]

This completes the proof of Theorem 1.1 by the definitions of \(T_1 \) and \(G(x) \). \(\square \)

5. Results for Sine_{\beta} process. Now we give the proof of Corollary 1.3.

PROOF. Since the Sine_{\beta} point process is the scaling limit of the C\beta E, by Skorokhod’s representation theorem, one can construct point processes \(L_n \) and \(L \) such that the point measure corresponding to \(L_n \) converges locally weakly to the measure corresponding to \(L \) almost surely [20], and

\[
\text{Card}(L_n \cap [0, x]) \overset{d}{=} N_n(0, x/n), \quad 0 < x < 2\pi n.
\]

Let \(x > 0, \lambda \in [-2\pi\sqrt{\beta/8}, 2\pi\sqrt{\beta/8}] \). Since \(L \) almost surely does not contain the points 0 and \(x \), we have almost surely

\[
\text{Card}(L_n \cap [0, x]) \rightarrow \text{Card}(L \cap [0, x]),
\]

and

\[
e^{i\lambda(\text{Card}(L_n \cap [0, x]) - x/(2\pi))} \rightarrow e^{i\lambda(\text{Card}(L \cap [0, x]) - x/(2\pi))}.
\]

By dominated convergence theorem we have

\[
\mathbb{E}[e^{i\lambda(\text{Card}(L_n \cap [0, x]) - x/(2\pi))}] \rightarrow \mathbb{E}[e^{i\lambda(\text{Card}(L \cap [0, x]) - x/(2\pi))}].
\]

For \(n > x/\pi \) we have \(\pi n > x \), and by (4) in Corollary 1.2 we have

\[
|\mathbb{E}[e^{i\lambda(\text{Card}(L_n \cap [0, x]) - x/(2\pi))}] - e^{-\lambda^2/\beta(1+x)}| \\
= |\mathbb{E}[e^{i\lambda(N_n(0,x/n) - x/(2\pi))}] - e^{-\lambda^2/\beta(1+x)}| \leq C\lambda^2,
\]

which implies

\[
|\mathbb{E}[e^{i\lambda(\text{Card}(L \cap [0, x]) - x/(2\pi))}] - e^{-\lambda^2/\beta(1+x)}| \leq C\lambda^2.
\]
Taking the real part we have

$$|E[(1 - \cos(\lambda (\text{Card}(L \cap [0,x])) - x/(2\pi)))]/\lambda^2] - (1 - e^{-\lambda^2/(\beta \pi^2 \cdot \ln(2 + x)})/\lambda^2| \leq C,$$

for \(\lambda \in [-2\pi \sqrt{\beta/8}, 2\pi \sqrt{\beta/8}] \setminus \{0\} \). Letting \(\lambda \to 0 \) we conclude that

$$|E[(\text{Card}(L \cap [0,x])) - x/(2\pi)]^2/2] - 1/(\beta \pi^2 \cdot \ln(2 + x)| \leq C,$$

which implies (6).

Now let \(x > 0, y \in \mathbb{R}, X_n = \text{Card}(L_n \cap [0,x]), X = \text{Card}(L \cap [0,x]), T_1 = \sqrt{\frac{\pi \beta}{2 \ln(2 + x)}}, \)
then we have \(X_n \to X \) almost surely. For \(n > x/\pi \) we have \(\pi n > x \), and \(X_n \overset{d}{=} N_n(0, x/n) \), by Theorem 1.1, we have

$$|\mathbb{P}[T_1(X_n - x/(2\pi)) \leq y] - G(y)| \leq C(|\ln(2 + x)|)^{-1/2},$$

where the function \(G \) is defined in (21). For every \(a > 0 \) we have

$$\mathbb{P}[T_1(X - x/(2\pi)) \leq y] \leq \lim_{n \to +\infty} \mathbb{P}[T_1(X_n - x/(2\pi)) \leq y + a] \leq G(y + a) + C(|\ln(2 + x)|)^{-1/2}.$$

Since \(G \) is continuous we have

$$\mathbb{P}[T_1(X - x/(2\pi)) \leq y] \leq G(y) + C(|\ln(2 + x)|)^{-1/2}.$$

Similarly, we have

$$\mathbb{P}[T_1(X - x/(2\pi)) \leq y] \geq G(y) - C(|\ln(2 + x)|)^{-1/2}.$$

Combining the upper and lower bounds we conclude that

$$\sup_{y \in \mathbb{R}} |\mathbb{P}[T_1(X - x/(2\pi)) \leq y] - G(y)| \leq C(|\ln(2 + x)|)^{-1/2},$$

which gives (7) by the definitions of \(T_1, X \) and \(G(y) \). This completes the proof. \(\square \)

6. Application: normality of linear statistics. In this section, we will prove Theorem 1.2.

6.1. Variance bound. We first need the following estimate on the variance of the linear statistics. We write \(||g||_{L^p} = ||g||_{L^p(0,2\pi)} \).

Lemma 6.1. Let \(f \in W^{1,p}(S^1) \) be real valued and \(\int_0^{2\pi} f(x)dx = 0 \), then

$$E[\langle \xi_n, f \rangle] = 0, \ E[\langle \xi_n, f \rangle]^2 \leq C ||f'||^2_{L^p},$$

here \(p \in (1, +\infty) \), and \(C > 0 \) is a constant depending only on \(\beta, p \).

To prove Lemma 6.1, we first need the following lemma which is the consequence of the uniform variance bound (5) in Corollary 1.2.

Let \(\tilde{N}_n(a,b) = N_n(a,b) - n(b-a)/(2\pi) \), \(\tilde{N}_n(b,a) = -\tilde{N}_n(a,b) \) for \(0 \leq a \leq b < 2\pi \). As \(N_n(a,b) = N_n(0,b) - N_n(0,a) \), for \(0 \leq a \leq b < 2\pi \), we have \(\tilde{N}_n(a,b) = \tilde{N}_n(0,b) - \tilde{N}_n(0,a) \) for \(a,b \in [0,2\pi) \).

Lemma 6.2. For \(a,b \in [0,2\pi), a \neq b \) we have

$$|E[\tilde{N}_n(a,b)^2] - 2 \ln n/(\pi^2 \beta)| \leq C(1 - \ln \sin(|a-b|/2)),$$

here \(C > 0 \) is a constant depending only on \(\beta \).
PROOF. By symmetry we only need to consider the case $0 \leq a < b < 2\pi$. For $x \in (0, \pi]$, by (5) in Corollary 1.2 we have
\[|\mathbb{E}[\tilde{N}_n(0, x)] - 2 \ln(2 + nx)/(\pi^2 \beta)| \leq C. \]
Thus we have
\[\mathbb{E}[\tilde{N}_n(0, x)] \leq 2 \ln(2 + nx)/(\pi^2 \beta) + C \]
\[\leq 2 \ln(6n)/(\pi^2 \beta) + C \leq 2 \ln n/(\pi^2 \beta) + C \]
and
\[\mathbb{E}[\tilde{N}_n(0, x)] \geq 2 \ln(2 + nx)/(\pi^2 \beta) - C \geq 2 \ln(nx)/(\pi^2 \beta) - C \]
\[\geq 2 \ln n/(\pi^2 \beta) - C(1 - \ln\sin(x/2)), \]
here we used the fact that $\sin(x/2) \leq 1$, $2\sin(x/2) \leq x$, $\ln\sin(x/2) \leq 0$. Combining the upper and lower bounds we conclude that
(23) \[|\mathbb{E}[\tilde{N}_n(0, x)] - 2 \ln n/(\pi^2 \beta)| \leq C(1 - \ln\sin(x/2)) \]
for $x \in (0, \pi]$. If $x \in [\pi, 2\pi)$, by rotational invariance we have $\tilde{N}_n(0, x) = -\tilde{N}_n(0, 2\pi - x)$
\[\tilde{N}_n(0, 2\pi - x), \quad 2\pi - x \in (0, \pi) \] and
\[|\mathbb{E}[\tilde{N}_n(0, x)] - 2 \ln n/(\pi^2 \beta)| = |\mathbb{E}[\tilde{N}_n(0, 2\pi - x)] - 2 \ln n/(\pi^2 \beta)| \]
\[\leq C(1 - \ln\sin((2\pi - x)/2)) = C(1 - \ln\sin(x/2)). \]
Thus (23) is true for $x \in (0, 2\pi)$. Now for $0 \leq a < b < 2\pi$, by rotational invariance we have $\tilde{N}_n(a, b) \overset{d}{=} -\tilde{N}_n(0, b - a)$, and by (23) we have
\[|\mathbb{E}[\tilde{N}_n(a, b)] - 2 \ln n/(\pi^2 \beta)| = |\mathbb{E}[\tilde{N}_n(0, b - a)] - 2 \ln n/(\pi^2 \beta)| \]
\[\leq C(1 - \ln\sin((b - a)/2)). \]
This completes the proof. \hfill \Box

Now we give the proof of Lemma 6.1.

PROOF. By definition and $\int_0^{2\pi} f(x)dx = 0$ and integration by parts we have
\[\langle \xi_n, f \rangle = \int_0^{2\pi} f(x)dN_n(0, x) = \int_0^{2\pi} f(x)d(N_n(0, x) - nx/(2\pi)) \]
\[= -\int_0^{2\pi} f'(x)(N_n(0, x) - nx/(2\pi))dx. \]
By rotational invariance we have $\mathbb{E}[N_n(0, x)] = nx/(2\pi)$, which implies $\mathbb{E}[\langle \xi_n, f \rangle] = 0$. By the definition of $\tilde{N}_n(a, b)$ we have
\[|\langle \xi_n, f \rangle|^2 = \int_0^{2\pi} \int_0^{2\pi} f'(x)f'(y)\tilde{N}_n(0, x)\tilde{N}_n(0, y)dxdy \]
\[= -\frac{1}{2}\int_0^{2\pi} \int_0^{2\pi} f'(x)f'(y)(\tilde{N}_n(0, x) - \tilde{N}_n(0, y))^2dxdy \]
\[+ \int_0^{2\pi} \int_0^{2\pi} f'(x)f'(y)\bar{N}_n(0,x)^2 dx dy \]
\[= - \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} f'(x)f'(y)\bar{N}_n(y,x)^2 dx dy, \]

here we used the fact that \(f'(y)dy = f(2\pi) - f(0) = 0 \), which also implies that

\[\mathbb{E}|\langle \xi_n, f \rangle|^2 = -\frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} f'(x)f'(y)\mathbb{E}[\bar{N}_n(y,x)^2] dx dy \]
\[= -\frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} f'(x)f'(y)(\mathbb{E}[\bar{N}_n(y,x)^2] - 2 \ln n/(\pi^2\beta)) dx dy. \]

By Lemma 6.2 we have

\[\mathbb{E}|\langle \xi_n, f \rangle|^2 \leq \frac{1}{2} \int_0^{2\pi} \int_0^{2\pi} |f'(x)f'(y)||\mathbb{E}[\bar{N}_n(y,x)^2] - 2 \ln n/(\pi^2\beta)| dx dy \]
\[\leq C \int_0^{2\pi} \int_0^{2\pi} |f'(x)f'(y)|(1 - \ln |x - y|/2)) dx dy. \]

Notice that

\[\int_0^{2\pi} (1 - \ln |x - y|/2))^{p'} dy = \int_0^{2\pi} (1 - \ln (y/2))^{p'} dy = C_p < +\infty, \]

for \(x \in [0, 2\pi] \), where \(p' = p/(p - 1) \) and \(C_p \) is a constant depending only on \(p \). By Hölder’s inequality we have

\[\int_0^{2\pi} |f'(y)|(1 - \ln |x - y|/2)) dy \leq \|f'\|_{L^{p'}} C_p^{1-1/p} \]

for \(x \in [0, 2\pi] \), and

\[\mathbb{E}|\langle \xi_n, f \rangle|^2 \leq C\|f'\|_{L^{p'}} C_p^{1-1/p} \int_0^{2\pi} |f'(x)| dx \leq C\|f'\|_{L^{p'}} C_p^{1-1/p}\|f'\|_{L^{p'}.} \]

This completes the proof. \(\square \)

6.2. **Proof of Theorem 1.2.** Now we are ready to prove Theorem 1.2. The proof is based on the following result of Jiang-Matsumoto for the case \(f(x) \) a finite sum of \(\{e^{ikx}\}_{k \in \mathbb{Z}} \) (see Corollary 3 in [10]).

Lemma 6.3. Let \((\theta_1, \cdots, \theta_n) \) be a sample from \(\mu_{\beta,n} \). Let \(g(z) = \sum_{k=0}^{m} c_k z^k \) with fixed \(m \) and \(c_k \in \mathbb{C} \) for all \(k \). Set \(X_n = \sum_{j=1}^{n} g(e^{\theta_j}) \), then \(X_n - \mu_n \) converges in law to a complex Gaussian random variable \(\sim \mathcal{C}N(0,\sigma^2) \), where

\[\mu_n = n c_0, \quad \sigma^2 = \frac{2}{\beta} \sum_{j=1}^{+\infty} j|c_j|^2. \]

Lemma 6.3 tells us that if \(c_0 = 0 \), \(f(x) = g(e^{ix}) + g(e^{-ix}) \) then \(X_n + \bar{X}_n = \langle \xi_n, f \rangle \) converges in law to a real Gaussian random variable \(\sim N(0,2\sigma^2) \).

Now we give the proof of Theorem 1.2.
PROOF. It is enough to prove of the convergence of the characteristic functions
\begin{equation}
\lim_{n \to +\infty} \mathbb{E}[e^{i\lambda(\xi_n, f_N)}] = e^{-\lambda^2 \sigma^2}, \quad \forall \lambda \in \mathbb{R}.
\end{equation}
Given a function \(f \in W^{1, p}(S^1) \), we will prove that \(f_N := f * K_N \) approximates \(f \) in \(W^{1, p}(S^1) \), where \(f_N := \int_0^{2\pi} f_1(y)f_2(x-y)dy \), and \(K_N(x) \) is the Féjer kernel
\[K_N(x) = \frac{1}{2\pi} \sum_{j=-N}^{N} \left(1 - \left| \frac{j}{N} \right| \right) e^{ijx} = N \frac{\sin(Nx/2)}{N \sin(x/2)}^2, \quad N > 0, \ N \in \mathbb{Z}. \]
In fact \(K_N(x) \geq 0, \ ||K_N||_{L^1} = 1, \ f'_N = f' * K_N \), and
\[\lim_{N \to +\infty} ||K_N||_{L^1(\delta, 2\pi - \delta)} = 0, \ \forall \ \delta \in (0, \pi). \]
The following results are classical
\[||g * K_N||_{L^p} \leq ||g||_{L^p}, \ \lim_{N \to +\infty} ||g * K_N - g||_{L^p} = 0, \ \forall \ g \in L^p(0, 2\pi). \]
Thus we have
\begin{equation}
||f'_N||_{L^p} \leq ||f'||_{L^p}, \ \lim_{N \to +\infty} ||f'_N - f'||_{L^p} = 0.
\end{equation}
We also have
\[f_N(x) = \frac{N}{2\pi} \sum_{j=-N}^{N} \left(1 - \left| \frac{j}{N} \right| \right) a_j e^{ijx}, \]
where \(a_j \) is defined in Theorem 1.2. Since \(f \) is real valued and \(\int_0^{2\pi} f(x)dx = 0 \), we have \(a_0 = 0, \ a_{-j} = \overline{a_j}, \ f_N(x) = g_N(e^{iz}) + g_N(e^{-iz}) \) with \(g_N(z) = \sum_{j=1}^{N} (1 - j/N) a_j z^j \). By Lemma 6.3, \(\langle \xi_n, f_N \rangle \) converges in law to \(J_N \sim N(0, 2\sigma_N^2) \) as \(n \to +\infty \) for every fixed \(N \), where
\[\sigma_N^2 = \frac{2}{N} \sum_{j=1}^{N} (1 - j/N)^2 |a_j|^2 \]
with \(\sigma_{N+1} \geq \sigma_N \). Thus
\begin{equation}
\lim_{n \to +\infty} \mathbb{E}[e^{i\lambda(\xi_n, f_N)}] = e^{-\lambda^2 \sigma_N^2}, \quad \forall \lambda \in \mathbb{R}.
\end{equation}
As \(a_0 = 0, \ \int_0^{2\pi} f_N(x)dx = 0 \), by Lemma 6.1 and Fatou’s Lemma we have
\[2\sigma_N^2 = \mathbb{E}[J_N^2] \leq \liminf_{n \to +\infty} \mathbb{E}[||\langle \xi_n, f_N \rangle||^2] \leq C||f'_N||_{L^p}^2, \]
which implies
\[\sigma_N^2 \leq C||f'_N||_{L^p}^2 \leq C||f'||_{L^p}^2. \]
Thus by monotone convergence theorem we have
\begin{equation}
\sigma^2 = \lim_{N \to +\infty} \sigma_N^2 \leq C||f'||_{L^p}^2 < +\infty,
\end{equation}
where \(\sigma \) is defined in Theorem 1.2. By Lemma 6.1 again we have
\[\mathbb{E}[||\langle \xi_n, f_N \rangle - \langle \xi_n, f \rangle||^2] \leq C||f'_N - f'||_{L^p}^2, \]
and thus
\[|E[e^{i\lambda\langle \xi_n, f_N \rangle} - e^{i\lambda f_N}]| \leq E[|\lambda||\langle \xi_n, f_N \rangle - \langle \xi_n, f \rangle|] \leq C|\lambda|\|f'_N - f'||_{L^p}, \forall \lambda \in \mathbb{R}, \]
which together with (26) gives
\[\limsup_{n \to +\infty} |E[e^{i\lambda\langle \xi_n, f \rangle}] - e^{-\lambda^2\sigma^2}| \leq C|\lambda|\|f'_N - f'||_{L^p} + |e^{-\lambda^2\sigma^2} - e^{-\lambda^2\sigma^2}| \]
for every \(\lambda \in \mathbb{R}, N > 0, N \in \mathbb{Z}. \) By (25), (27), (28) we have
\[\limsup_{n \to +\infty} |E[e^{i\lambda\langle \xi_n, f \rangle}] - e^{-\lambda^2\sigma^2}| \leq \limsup_{N \to +\infty} (C|\lambda|\|f'_N - f'||_{L^p} + |e^{-\lambda^2\sigma^2} - e^{-\lambda^2\sigma^2}|) = 0, \forall \lambda \in \mathbb{R}, \]
which implies (24). This completes the proof. \(\square \)

REFERENCES

[1] F. Benaych-Georges, A. Guionnet and C. Male. Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices. C. Commun. Math. Phys. (2014) 329: 641.
[2] F. Bekerman, T. Leblé, and S. Serfaty. CLT for fluctuations of \(\beta \)-ensembles with general potential. Electron. J. Probab., 23, 2018.
[3] F. Bekerman and A. Lodhia. Mesoscopic central limit theorem for general \(\beta \)-ensembles. Ann. Inst. H. Poincaré Probab. Statist. Volume 54, Number 4 (2018), 1917-1938.
[4] Andrew C. Berry, The Accuracy of the Gaussian Approximation to the Sum of Independent Variates, Transactions of the American Mathematical Society, 49 (1): 122-136.
[5] O. Costin and J. L. Lebowitz. Gaussian fluctuation in random matrices. Phys. Rev. Lett., 75(1):69-72, 1995.
[6] P. Diaconis and S. N. Evans. Linear Functionals of Eigenvaues of Random Matrices. Transactions of the American Mathematical Society, Vol. 353, No. 7 (Jul., 2001), pp. 2615-2633.
[7] P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49-62, 1994. Studies in applied probability.
[8] Carl-Gustav Esseen, On the Liapunoff limit of error in the theory of probability, Arkiv för Matematik, Astronomi och Fysik. A28: 1-19.
[9] P.J. Forrester. Log-gases and random matrices, LMS-34, Princeton University Press.
[10] T. Jiang and S. Matsumoto. Moments of traces of circular beta-ensembles. Ann. Probab., 43(6):3279-3336, 2015.
[11] K. Johansson. On random matrices from the classical compact groups. Ann. of Math. 145 (1997), 519-545.
[12] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J., 91(1):151-204, 1998.
[13] K. Johansson and G. Lambert. Gaussian and non-Gaussian fluctuations for mesoscopic linear statistics in determinantal processes. Ann. Probab. Volume 46, Number 3 (2018), 1201-1278.
[14] R. Killip. Gaussian fluctuations for \(\beta \) ensembles. Int. Math. Res. Not. IMRN, no. 8, Art. ID rnn007, 19 pp, 2008.
[15] R. Killip, M. Stoiciu. Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. J., 146(3):361-399, 2009.
[16] E. Kritchevski, B. Valkó and B. Virág. The scaling limit of the critical one-dimensional random Schrödinger operator, Comm. Math. Phys. 314(3) (2012), 775-806.
[17] G. Lambert, M. Ledoux and C. Webb. Quantitative Normal Approximation of Linear Statistics of \(\beta \)-ensembles. Ann. Probab. 47(5): 2619-2685.
[18] G. Lambert. Limit theorems for biorthogonal ensembles and related combinatorial identities. Adv. Math., Volume 329 (2018), 590-648.
[19] G. Lambert, Mesoscopic central limit theorem for the circular \(\beta \)-ensembles and applications. Electronic Journal of Probability 26, 1-33.
[20] J. Najnudel and B. Virág. Uniform point variance bounds in classical beta ensembles. Random Matrices: Theory and Applications, Vol. 10, No. 04, 2150033 (2021)
[21] A. B. Soshnikov. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Statist. Phys., 100(3-4):491-522, 2000.
[22] A. B. Soshnikov. The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab., 28(3):1353-1370, 2000.
[23] A. B. Soshnikov. Gaussian limit for determinantal random point fields. Ann. Probab., 30(1):171-187, 2002.
[24] M. Shcherbina. Fluctuations of linear eigenvalue statistics of matrix models in the multi-cut regime. J. Stat. Phys., 151(6):1004-1034, 2013.
[25] C. Webb. Linear statistics of the circular β-ensemble, Stein’s method, and circular Dyson Brownian motion. Electron. J. Probab., 21:Paper No. 25, 2016.