Evaluating a German Sketch Grammar: A Case Study on Noun Phrase Case

Kremena Ivanova*, Ulrich Heid*, Sabine Schulte im Walde*, Adam Kilgarriff○, Jan Pomikálek○△

*Institute for Natural Language Processing, University of Stuttgart, Germany
○Lexical Computing Ltd, Brighton, UK
△Masaryk University, Brno, Czech Republic

{ivanovka, heid, schulte}@ims.uni-stuttgart.de,
adam@lexmasterclass.com, xpomikal@fi.muni.cz

Marrakech, Morocco, May 28, 2008
The Sketch Engine (Kilgarriff et al. 2004)
A system for corpus exploration

- Input: preprocessed corpora, e.g. tokenized, POS-tagged, lemmatized, ...

- Functions:
 - concordancing
 - collocation extraction with a sketch grammar, i.e. a set of regular expression search patterns over the corpus

- Output: Word sketches
 Sets of significant word pairs, grouped by grammatical relations, e.g. adjective + noun, verb + subject noun, coordinated elements, etc.
The Sketch Engine (Kilgarriff et al. 2004)
A system for corpus exploration

- Input: preprocessed corpora, e.g. tokenized, POS-tagged, lemmatized, ...
- Functions:
 - concordancing
 - collocation extraction with a sketch grammar, i.e. a set of regular expression search patterns over the corpus
The Sketch Engine (Kilgarriff et al. 2004)
A system for corpus exploration

• Input: preprocessed corpora,
e.g. tokenized, POS-tagged, lemmatized, …

• Functions:
 – concordancing
 – collocation extraction with a sketch grammar, i.e.
 a set of regular expression search patterns over the corpus

• Output: Word sketches
 Sets of significant word pairs, grouped by grammatical relations, e.g.
 adjective + noun, verb + subject noun, coordinated elements, etc.
The Sketch Engine – word sketches
A sample word sketch: collection of cooccurrence data

Node word + ‘collocates’:
Word sketch for verb öffnen ‘open’:
Lemma of cooccurrence partner – frequency (in BNC) – significance

subj	subj freq	subj freq%	obj-acc	obj-acc freq	obj-acc freq%	adv	adv freq	adv freq%
Tür	238	49.37	Tür	39	36.24	täglich	12	22.68
Pforte	35	35.20	Auge	26	26.67	versehentlich	3	16.92
Türe	29	33.78	Pforte	7	22.71	leicht	6	13.89
Tor	62	32.34	Wohnungstür	3	21.61	weit	13	13.61
Auge	114	32.29	Türe	5	19.38	gleichzeitig	4	12.37
Fenster	49	28.69	Datei	4	12.23	automatisch	3	11.42
Schleuse	10	23.27	Tor	4	11.7			

Source: DeWaC, 10 million words
Sketch Grammars
Regular expression-based: sequence patterns

Example:

POS sequences
• Adjective + Noun combination:

- finds sequences adjective + noun
- counts frequency, calculates significance
- allows for display of pair in list of adjective collocates of a given noun (1:...), e.g.

Adjective	Frequency	Significance
klein	274	37.68
umliegend	39	37.30
malerisch	20	28.96
entlegen	16	28.58

• Simple model of a noun phrase as a POS sequence:

DET? ADV* ADJA* NOUN

Ivanova et al. (LREC 2008)
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

• Adjective + Noun combination: 2:[tag="ADJA"] 1:[tag=NN"]
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2:[tag="ADJA"] 1:[tag=NN"]
 - finds sequences adjective + noun
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2:[tag="ADJA"] 1:[tag=NN]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2: [tag="ADJA"] 1: [tag=NN]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
 - allows for display of pair in
 * list of adjective collocates of a given noun (1:...), e.g. Dorf

Modifying adjectives	Freq	Sign
klein	274	37.68
umliegend	39	37.30
malerisch	20	28.96
entlegen	16	28.58

klein ‘small’
umliegend ‘surrounding’
malerisch ‘picturesque’
entlegen ‘remote’
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2: [tag="ADJA"] 1: [tag=NN]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
 - allows for display of pair in

* list of adjective collocates of a given noun (1: ...), e.g. *Dorf*

Modifying adjectives	Freq	Sign
klein ‘small’	274	37.68
umliegend ‘surrounding’	39	37.30
malerisch ‘picturesque’	20	28.96
entlegen ‘remote’	16	28.58

* list of noun nodes of a given adjective (2: ...), e.g. *klein*

Modified nouns	Freq	Sign
Ausschnitt ‘extract’	188	37.49
Junge ‘boy’	325	33.91
Dorf ‘village’	274	32.80
Meerjungfrau ‘mermaid’	46	31.19
Sketch Grammars
Regular expression-based: sequence patterns

Example: POS sequences

- Adjective + Noun combination: 2: [tag="ADJA"] 1: [tag=NN]
 - finds sequences adjective + noun
 - counts frequency, calculates significance
 - allows for display of pair in

 * list of adjective collocates of a given noun (1:...), e.g. Dorf

Modifying adjectives	Freq	Sign
klein	274	37.68
umliegend	39	37.30
malerisch	20	28.96
entlegen	16	28.58

 * list of noun nodes of a given adjective (2:...), e.g. klein

Modified nouns	Freq	Sign
Ausschnitt	188	37.49
Junge	325	33.91
Dorf	274	32.80
Meerjungfrau	46	31.19

- Simple model of a noun phrase as a POS sequence:
 DET? ADV* ADJA* NOUN
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun

- EN (configurational): by position wrt the verb:
 Subject < Verb < Object
 (Kilgarriff et al. 2004)
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun

- EN (configurational): by position wrt the verb:
 Subject < Verb < Object
 (Kilgarriff et al. 2004)
- CHI: by position and particles
 (Kilgarriff 2005)
Sketch Grammars
Identifying grammatical relations, e.g. verb + object noun

- EN (configurational): by position wrt the verb: Subject < Verb < Object
 (Kilgarriff et al. 2004)
- CHI: by position and particles
- CZ, SLO (inflecting): by inflectional affixes:
 SLO lépa hîša ("beautiful house"): NOM-SG
 lépi hîši: DAT-SG | LOC-SG (+ Prep.)
 (Kilgarriff et al. 2004, Krek/Kilgarriff 2006)
Sketch Grammars
Identifying grammatical relations in German texts
Sketch Grammars
Identifying grammatical relations in German texts

• not via word order:
 \(\text{den Mitarbeiter}_{\text{Acc}} \text{ lobt der Chef}_{\text{Nom}} \)
 (“the boss speaks highly of the collaborator”)
Constituent order is relatively free in German
Sketch Grammars
Identifying grammatical relations in German texts

• not via word order:
 \[\text{den Mitarbeiter} \text{Acc lobt der Chef} \text{Nom} \]
 ("the boss speaks highly of the collaborator")
 Constituent order is relatively free in German

• not often via inflection:
 \[\text{Hans} \text{Nom/Acc lobt Maria} \text{Nom/Acc} \]
 \[\text{weil der Chef} \text{Acc der Firma} \text{Gen/Dat in Berlin} \text{PP empfahl, . . . zu . . .} \]
 Only ca. 21% of all NPs are unambiguous wrt case (Evert 2004)
Sketch Grammars
Identifying grammatical relations in German texts

- not via word order:
 \[\text{den Mitarbeiter}^{\text{Acc}} \text{ lobt der Chef}^{\text{Nom}} \]
 (“the boss speaks highly of the collaborator”)
 Constituent order is relatively free in German

- not often via inflection:
 \[\text{Hans}^{\text{Nom/Acc}} \text{ lobt Maria}^{\text{Nom/Acc}} \]
 \[\text{weil der Chef}^{\text{Acc}} \text{ der Firma}^{\text{Gen/Dat}} \text{ in Berlin}^{\text{PP}} \text{ empfahl, } \ldots \text{zu } \ldots \]
 Only ca. 21% of all NPs are unambiguous wrt case (Evert 2004)

\[\Rightarrow \text{harder than in other languages} \]
A Sketch Grammar for German
Knowledge for the identification of grammatical relations

1. \{gender, number, case\} of nouns \leftrightarrow inflectional affixes
A Sketch Grammar for German
Knowledge for the identification of grammatical relations

1. \{gender, number, case\} of nouns \leftrightarrow inflectional affixes
2. Preferential constituent ordering:
 verb-final constituent order model is more regular than others
A Sketch Grammar for German
Knowledge for the identification of grammatical relations

1. \{gender, number, case\} of nouns \leftrightarrow inflectional affixes

2. Preferential constituent ordering:
 verb-final constituent order model is more regular than others

3. Constraints on subcategorization patterns, e.g.
 ‘No two identical grammatical functions in one sentence’
 (cf. ‘coherence’ in LFG)
A Sketch Grammar for German
Proportion between preprocessing (offline) and query (online)

1. Gender, number, case:
 not annotated: STTS: "NN" (UPenn: "NNS" – "NNP") → Need to identify these within the sketch grammar

2. Preferential constituent ordering under V-final:
 → Search in a subset of the corpus sentences

3. Constraints on subcategorization patterns:
 → Implementation as patterns in the sketch grammar
A Sketch Grammar for German
Proportion between preprocessing (offline) and query (online)

1. Gender, number, case:
 not annotated: STTS: "NN" (UPenn: "NNS" – "NNP")
 → Need to identify these within the sketch grammar

2. Preferential constituent ordering under V-final:
 → Search in a subset of the corpus sentences

3. Constraints on subcategorization patterns:
 → Implementation as patterns in the sketch grammar

⇒ To assess usefulness of these types of information:
Different versions of the sketch grammar which include the different types of information
A Sketch Grammar for German

Versions of the grammar with different types of information (1/2)

Conditions for the evaluation

Morphological restrictions: alternatives
A Sketch Grammar for German
Versions of the grammar with different types of information (1/2)
Conditions for the evaluation

Morphological restrictions: alternatives

- *inflection*:
 case guessing from the form of affixes (affix sequences)

\[\text{dem}_{\text{Dat}} \text{ kleinen}_{\text{Dat}} \text{ Haus}_{\text{Nom/Dat/Acc}} \]
Morphological restrictions: alternatives

- **inflection**: case guessing from the form of affixes (affix sequences)
 \[dem_{\text{Dat}} \, \text{kleinen}_{\text{Dat}} \, \text{Haus}_{\text{Nom/Dat/Acc}}\]

- **affix-gender**: case and gender guessing from derivational affixes and inflectional affixes
 \[den_{\text{ACC-SG-MASC/DAT-PL-FEM}} \, \text{Schwierigkeiten}_{\text{ANY-PL-FEM}}\]
 \[\Rightarrow \text{subset of nouns with known agreement properties}\]
A Sketch Grammar for German
Versions of the grammar with different types of information (2/2)
Conditions for the evaluation

Structural restrictions: alternatives
A Sketch Grammar for German

Versions of the grammar with different types of information (2/2)

Conditions for the evaluation

Structural restrictions: alternatives

- no-structure(-constraints):
 extraction without any structural constraints
A Sketch Grammar for German

Versions of the grammar with different types of information (2/2)

Conditions for the evaluation

Structural restrictions: alternatives

- **no-structure(-constraints):**
 extraction without any structural constraints

- **verb-final:**
 extraction only from verb-final sentences (= subclauses),
 according to constraints on subcategorization patterns
A Sketch Grammar for German

Versions of the grammar with different types of information (2/2)

Conditions for the evaluation

Structural restrictions: alternatives

- **no-structure(-constraints):**
 extraction without any structural constraints

- **verb-final:**
 extraction only from verb-final sentences (\(=\) subclauses), according to constraints on subcategorization patterns

- **all-clauses:**
 extraction from an explicit model of all verb position models (\(V1, V2, Vlast\)), according to subcategorization patterns
Evaluation: comparing versions of the Sketch Grammar

Combining the restrictions

no affix-gender	no structure	inflection = minimum knowledge
× verb-final (R)	all-clauses (R)	

(1) inflection + no-structure
(2) inflection + affix-gender + no-structure
(3) inflection + verb-final
(4) inflection + affix-gender + verb-final
(5) inflection + all-clauses
(6) inflection + affix-gender + all-clauses

• fewest restrictions (R)
• structural restrictions (R)
• most restr. (R)
Evaluation: comparing versions of the Sketch Grammar

Gold standard corpus

- 1000 randomly selected sentences from DeWaC
Evaluation: comparing versions of the Sketch Grammar
Gold standard corpus

- 1000 randomly selected sentences from DeWaC
- Manual annotation for NP (one annotator):
 - start and end point
 - case
- Example:

 \[
 [Ich]_{NP}^{nom} \text{ musste } [meine Arbeit]_{NP}^{akk} \text{ schon sehr gut machen, um anerkannt zu werden .}
 \]
 ‘I had to do my work really well to be approved.’
Evaluation: comparing versions of the Sketch Grammar
Gold standard corpus

• 1000 randomly selected sentences from DeWaC
• Manual annotation for NP (one annotator):
 – start and end point
 – case
• Example:
 \([Ich]_{NP}^{nom} \text{ musste } [meine Arbeit]_{NP}^{akk} \text{ schon sehr gut machen, um anerkannt zu werden }.\)
 ‘I had to do my work really well to be approved.’
• Figures: NPs in the 1000 sentences

Case	Count
Nominative	1.709
Genitive	437
Dative	149
Accusative	618
Evaluation: comparing versions of the Sketch Grammar
Results: recall and precision

Evaluated per case and per condition:
Exception: Genitive not implemented under conditions 3 + 4:
No verb with genitive object in the corpus, we only consider genitives in NPs

Case	N	Conditions									
		incl. inflection	incl. inflection + affix-gender								
		1	3	5	2	4	6				
Nominative	1,709	R	P	R	P	R	P	R	P	R	P
Accusative	618	R	P	R	P	R	P	R	P	R	P
Dative	149	R	P	R	P	R	P	R	P	R	P
Genitive	437	R	P	R	P	R	P	R	P	R	P

Ivanova et al. (LREC 2008)
German Sketch Grammar
5/28/2008 14 / 18
Evaluation: comparing versions of the Sketch Grammar

Recall vs. precision

Case	N	Conditions
		incl. *inflection*
		incl. *inflection* + affix-gender
	1	3
	2	4
	5	6
Nominative	1,709	85 28 7 76 26 65 43 53 9 81 28 60
Accusative	618	64 24 6 37 18 41 51 30 6 35 14 45
Dative	149	62 9 21 34 41 35 55 13 25 59 40 74
Genitive	437	78 34 65 79 57 44 60 82

- Condition 1 vs. condition 2: \(\oplus \) precision \(\ominus \) recall
- Condition 1 vs. 3, 2 vs. 4: \(\oplus \) precision \(\ominus \) recall
- Verb-final clauses: ca. 20% of all corpus sentences
 - Stronger changes than in condition 1 vs. 2
 - Cond. 4 vs. 6: better precision (!) and increased recall
- Recall: all-clauses is less restrictive than verb-final
- Precision: usefulness of explicit modelling?

Ivanova et al. (LREC 2008)
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

Case	N	incl. inflection	incl. inflection + affix-gender										
		1	3	5	2	4	6						
		R	P	R	P	R	P	R	P	R	P		
Nominative	1,709	85	28	7	76	26	65	43	53	9	81	28	60
Accusative	618	64	24	6	37	18	41	51	30	6	35	14	45
Dative	149	62	9	21	34	41	35	55	13	25	59	40	74
Genitive	437	78	34	65	79	57	44	60	82				

- **Condition 1 vs. condition 2**: \(\oplus\) precision \(\ominus\) recall
- Adding derivation-based gender-guessing
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

Case	N	Conditions	incl. inflection	incl. inflection + affix-gender																	
		1	2	3	4	5	6														
		R		P		R		P		R		P		R		P		R		P	
Nominative	1,709	85	28	7	76	26	65	43	53	9	81	28	60								
Accusative	618	64	24	6	37	18	41	51	30	6	35	14	45								
Dative	149	62	9	21	34	41	35	55	13	25	59	40	74								
Genitive	437	78	34	65	79	57	44	60	82												

- Condition 1 vs. condition 2: ⊕ precision ⊖ recall
 Adding derivation-based gender-guessing
- Condition 1 vs. 3, 2 vs. 4: ⊕ precision ⊖ recall
 Verb-final clauses: ca. 20% of all corpus sentences
 Stronger changes than in condition 1 vs. 2
Evaluation: comparing versions of the Sketch Grammar
Recall vs. precision

Case	N	Conditions	incl. inflection	incl. inflection + affix-gender									
		1	3	5	2	4	6						
	R	P	R	P	R	P	R	P					
Nominative	1,709	85	28	7	76	26	65	43	53	9	81	28	60
Accusative	618	64	24	6	37	18	41	51	30	6	35	14	45
Dative	149	62	9	21	34	41	35	55	13	25	59	40	74
Genitive	437	78	34	65	79	57	44	60	82				

- Condition 1 vs. condition 2: \oplus precision \ominus recall
 Adding derivation-based gender-guessing
- Condition 1 vs. 3, 2 vs. 4: \oplus precision \ominus recall
 Verb-final clauses: ca. 20% of all corpus sentences
 Stronger changes than in condition 1 vs. 2
- Cond. 4 vs. 6: better precision (!) and increased recall
 –recall: all-clauses is less restrictive than verb-final
 –precision: usefulness of explicit modelling?
Evaluation: comparing versions of the Sketch Grammar
Which German sketch grammar to choose?

So far: developer evaluation:

Case	N	Conditions incl. inflection	Conditions incl. inflection + affix-gender																		
		1	3	5	2	4	6	R	P	R	P	R	P	R	P	R	P	R	P	R	P
Nominative	1,709	85	28	7	76	26	65	43	53	9	81	28	60								
Accusative	618	64	24	6	37	18	41	51	30	6	35	14	45								
Dative	149	62	9	21	34	41	35	55	13	25	59	40	74								
Genitive	437	78	34			65	79	57	44			60	82								

- Best recall: condition 1: least constrained
- Best precision: condition 6: morph. + structural constraints
Evaluation: comparing versions of the Sketch Grammar
Which German sketch grammar to choose?

So far: developer evaluation:

Case	N	incl. inflection	incl. inflection + affix-gender
		1	2
		3	4
		5	6
		R	P
		R	P
		R	P

Case	N	incl. inflection	incl. inflection + affix-gender
		1	2
		3	4
		5	6
		R	P
		R	P
		R	P

- Best recall: condition 1: least constrained
- Best precision: condition 6: morph. + structural constraints

User evaluation: “Clients” would have to decide (ongoing work)

- Lexicographers: need high-precision data (→ condition 6)
- NLP researchers: may prefer large amounts of candidates (→ cond. 1)

But: decision to be taken on Word Sketches, not on precision/recall
Evaluation for lexicography

Sample word sketch

Word sketch for noun *Pflanze* ‘plant’

attr-adj	count	freq	subj-of	count	freq
gentechnisch	94	47.14	*wachsen*	26	24.45
verändert	100	42.3	*gedeihen*	6	18.46
genmanipuliert	30	39.44	*anbauen*	5	18.30
fleischfressend	16	35.93	*werden*	73	15.91
transgenen	16	34.59	*können*	44	15.15
exotisch	24	30.00	*sollen*	30	15.03
transgenerer	8	28.45	*gießen*	4	14.52

Ivanova et al. (LREC 2008)
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next
Beyond the current state

We have presented

• a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages

• a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

• further restrict the grammar, to improve precision, with a view to lexicographic use
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
- integrate lexical resources (e.g. on noun gender), to improve precision and to compensate for flat tagset
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
- integrate lexical resources (e.g. on noun gender), to improve precision and to compensate for flat tagset
- possibly use more deeply preprocessed data
Beyond the current state

We have presented

- a methodology for testing and evaluating (sketch) grammars for data extraction from corpora: applicable also to other languages
- a draft sketch grammar for German with different types and portions of linguistic knowledge

Next

- further restrict the grammar, to improve precision, with a view to lexicographic use
- integrate lexical resources (e.g. on noun gender), to improve precision and to compensate for flat tagset
- possibly use more deeply preprocessed data
- evaluate quality of word sketches from a lexicographic viewpoint