Implementing Nurse Extracorporeal Membrane Oxygenation Specialists to Maintain a Sustainable Program

David L. Boyd
University of San Francisco, dlboyd@dons.usfca.edu

Follow this and additional works at: https://repository.usfca.edu/dnp_qualifying

Part of the Equipment and Supplies Commons, and the Nursing Commons

Recommended Citation
Boyd, David L., "Implementing Nurse Extracorporeal Membrane Oxygenation Specialists to Maintain a Sustainable Program" (2022). DNP Qualifying Manuscripts. 68.
https://repository.usfca.edu/dnp_qualifying/68

This Manuscript is brought to you for free and open access by the School of Nursing and Health Professions at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in DNP Qualifying Manuscripts by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.
Implementing Nurse Extracorporeal Membrane Oxygenation Specialists to Maintain a Sustainable Program

Abstract

Extracorporeal membrane oxygenation (ECMO) offers hope for patients with acute respiratory distress syndrome when other treatment methods fail. However, ECMO requires continuous hourly management leading to extremely high operating costs. With the onset of the COVID-19 pandemic, the high number of patients on ECMO led to a significant increase in the costs when using perfusionists to manage ECMO. Switching to a nurse-driven model resulted in a 52% decrease in costs related to the hourly management. Changing to a nurse-driven program provided increased nursing support and sustainability, and with determination and support, other ECMO centers can change to nurse-driven programs too.

Key Points:

- Despite being an effective treatment, extracorporeal membrane oxygenation management comes with extremely high costs.
- Implementing nurse ECMO specialists brought holistic care, stability, and sustainability to this program, and other programs can do the same.
- Despite significant cost savings, switching to a nurse-driven ECMO program requires close collaboration with key stakeholders, extensive training, and the executive team's support.
Introduction

For patients with acute respiratory distress syndrome (ARDS) or severe cardiogenic shock, extracorporeal membrane oxygenation (ECMO) is a highly complex life-saving therapy that provides oxygen to their bodies, allowing their hearts and lungs to recover.\(^1\) Though effective for the care of patients with ARDS secondary to COVID-19, ECMO therapy for more than ten days often costs patients more than $1,000,000 and requires close monitoring by highly skilled healthcare professionals.\(^1,2\) Over the last 2.5 years, nearly 80 million Americans contracted COVID-19 leading to high numbers of patients with ARDS needing ECMO.\(^3,4,5,6\) This manuscript explains the reasons for switching from a perfusionist-driven to a nurse-driven program, describes the experience, and includes a list of recommendations for nurse leaders to consider if switching to a nurse-driven program. This project's success relied heavily on the support from the executive team, collaboration with key stakeholders, review of ECMO devices inventory and need, staffing model, nurse ECMO specialist’s (NES) training, quality and outcome measures, and potential cost savings associated with using NES.

Background

The ECMO program at Providence Saint John’s Health Center (PSJHC) provides care for patients from the greater Los Angeles area. While many ways of managing ECMO exist, we initially managed our ECMO patients in the intensive care unit (ICU) with perfusionists from a contracted vendor. These perfusionists are healthcare professionals who complete an intense two-year certification course focused on fluid and gas exchanges and management of the ECMO device. They often manage patients on heart and lung bypass machines in the operating room during open-heart surgery, which is why many programs also lean on their expertise to manage ECMO in the ICU.\(^1\) Having this team of perfusionists helped ensure the program’s success until
the onset of the COVID-19 pandemic when the need for more perfusionists became dire, and the nursing leadership team decided to change to a nurse-driven model. From March 2020 through April 2022, the program had 78 patients with COVID-19 on ECMO. This high volume of patients requiring ECMO exceeded the number of local perfusionists available to provide adequate patient care and ECMO management. An outside contracted vendor provided perfusionists flown in from across the country to bridge this gap. However, this increased need for agency perfusionists led to much higher operating costs associated with managing patients on ECMO. The constant turnover of perfusionists made it nearly impossible to build consistency in staffing the ECMO program, and it limited the ability to standardize the processes. The risks these costs and staffing difficulties brought to this program led to a nurse-driven model.

Support of the CNO

Most projects that occur in health organizations require support and approval from the executive team, and the chief nursing officer (CNO) recognized the high costs and lack of consistency seen with using a contracted vendor managing patients on ECMO. However, moving to a nurse-driven ECMO program required an upfront cost of one million dollars and the commitment of the nursing leadership team to ensure the project’s success. To address the costs associated, the CNO, in conjunction with the director of critical care services, developed a proposed return on investment (ROI), which gained acceptance from the rest of the executive team and board of trustees. The CNO also collaborated with the executive team of our contracted vendor to establish a plan to provide training and support to our staff as we developed our program. The ICU manager became the project manager for implementing this nurse-driven nurse ECMO specialist model.

Key Stakeholders
In addition to the nursing leadership team, the identified key stakeholders included the contracted vendor perfusionists, cardiovascular surgeons, ICU physicians (intensivists), ICU clinical supervisors, and the cardiovascular (CV) surgery team. First, the ICU manager collaborated with the contracted vendor’s ECMO program coordinator to establish the initial training plan. This collaboration helped build consistency for the program and provided the opportunity to build a trusting relationship with each other. The support of the CV surgeons and ICU medical director was critical to helping move the program forward with implementing ECMO training and protocols. Finally, providing the current clinical supervisors with the vision to hire five additional clinical supervisors and train them as NES helped establish the importance of this project. The support and acceptance of each of these stakeholders led to the early acceptance of this new nurse-driven program.

Current Equipment

Several ECMO devices exist, and this program uses two different closed-circuit centrifugal pump systems, the Cardiohelp™ and Rotoflow™. Both devices provide adequate support for patients. The Cardiohelp™ has several additional monitoring capabilities, and it remains the preferred device for interfacility transports. However, the Cardiohelp™ device costs $100,000, and the disposable circuits required for each patient cost $11,500. In comparison, the Rotoflow™ device costs $50,000, and the disposable circuits cost $1,800. When renting the equipment, the Cardiohelp™ devices cost $8000 per month, and Rotoflow’s™ cost $2800 per month. The circuits are not interchangeable, and one patient may require multiple circuits throughout their time of ECMO.

Staffing Model
A review of the literature demonstrates that different staffing models exist for ECMO management. Some programs use one nurse to one patient for ECMO, where that nurse manages the patient’s care and the ECMO device. Another model uses a perfusionist to manage the ECMO device and a nurse to manage patient care. A third model uses nurses or respiratory therapists to manage the ECMO devices independently of other responsibilities.5,7 This program adopted a model that uses one bedside nurse with a 1:1 ratio to care for all aspects of the patient’s care while the nurse ECMO specialists manage the ECMO device. Our preferred ratio includes having each NES manage one or two ECMO devices, and our highest acceptable ratio is one NES to four ECMO devices. The ratio greatly depends on the stability and level of acuity of the patient on ECMO.8,9

Nurse ECMO Specialists

One critical reason for switching to a nurse-driven program was to increase the nursing care for patients on ECMO. Our experience using perfusionists proved that while experts in their field, perfusionists typically focus strictly on managing the ECMO device. Using nurses in this role brought added value, because the NES collaborate closely with the bedside nurses, intensivists, and other ancillary staff to the appropriate care. In addition to the clinical expertise in ECMO management, NES provide mentorship for bedside nurses, oversight for the clinical care, and support and education for the patients and families. Having the NES at the bedside 24-hours per day has brought increased clinical support, and the bedside nurses and clinical supervisors have voice strong support for the NES. Switching to a nurse-driven program, helped this program provide a higher level of care, maintain patient safety, and maximized our ability to provide holistic care.

ECMO Specialist Training
The current literature supports the implementation of a comprehensive training program to establish and maintain competencies for all concepts related to the initiation of ECMO on a patient, including initial cannulation on a patient, setting up and changing the ECMO circuit, daily care, and troubleshooting of the ECMO devices. The vendor used for perfusionists has a well-established training program for training nurse-driven programs, which provides this highly specialized training. The critical parts of the education included didactic training in conjunction with hands-on training and simulation (known as wet-lab training in the ECMO environment) to provide baseline knowledge and skills.

The ICU manager, educator, and eight clinical supervisors completed two 8-hour days of didactic and hands-on training that three of the vendor’s perfusionist educators provided. During this training, 17 different case studies related to ECMO emergencies and troubleshooting helped the nurses reinforce their knowledge learned throughout these classes. Each nurse demonstrated proficiency in priming and troubleshooting the Cardiohelp™ and Rotoflow™ circuits. On the last day of class, all nurses completed and passed a 100-question test that covered various concepts from the class's learning objectives. After completing these classes, each NES received a certificate of completion. The NES were proctored for 40-hours in the ICU and used a skills competency checklist to track the skills they performed. During this proctored time, the ICU had five patients on ECMO per day, which provided the nurses with many opportunities to perform their required skills. They were able to assist with cannulation, set up ECMO circuits, and change out the ECMO’s oxygenator (the artificial lung). These experiences established baseline competency and increased the NES’s confidence in the duties of their new role. Ongoing training includes a mandatory four-hour wet lab training every two months with case scenarios for the
NES in collaboration with the intensivists. Each NES must demonstrate continued competency in setting up and troubleshooting the ECMO circuit.

Statistical Analysis

From July 2019 through April 2022, the program cared for 130 patients, with 78 of these cases due to COVID-19. The current survival rate for patients on ECMO with a COVID-19 diagnosis is 40% (Figure 1), which meets the survival rates described in the literature of 40 to 53% survival. From the start of the pandemic, despite receiving hundreds of referrals, the program reached total capacity with eight patients on ECMO at one time. In addition, the program averaged four patients on ECMO for the entire year of 2021. Since January 2022, the program has averaged three patients on ECMO. Despite these high numbers of patients on ECMO through the height of the pandemic, it remains challenging to predict the future volumes, as it will most likely correlate with the future of the COVID-19 pandemic.

Continuous Quality Improvement

The Plan Do Study Act (PDSA) model developed by Deming provides a pathway for continued evaluation and process improvement. Embracing these principles helped ensure the timely identification and resolution of concerns related to the ECMO program. In addition, registering with the Extracorporeal Life Support Organization (ESLO), which requires data input and oversight for each patient on ECMO, further helps ensure that the care provided is consistent with national and international standards and benchmarks.

Program Sustainability

Even before calculating the costs of the 24 hours per day management required for each ECMO device, the complexity of ECMO makes it extremely costly. The cost for patients receiving ECMO therapy for more than ten days often exceeds $1,000,000. Most of the
operational costs, including the ECMO devices, the disposable circuits, and the oxygenators, are fixed costs. So, our most significant opportunity for cost savings included the costs of using NES instead of perfusionists to provide ECMO management 24 hours per day.

A review of the available literature provided critical insight for a path forward for this program to achieve sustainability. One study compared the costs of a perfusionist-driven program versus a nurse-driven program. To demonstrate the cost savings, the researchers compared the costs related to the wages of perfusionists versus the wages of nurses. They reached a break-even point with ten patients on ECMO in one year. Another study demonstrated a significant cost reduction after switching to a nurse-driven program. For our program, the contracted rates with the vendor for the day-to-day ECMO management reached $205 per hour for one patient, $308 per hour for two patients, $410 per hour for three patients, and $461 per hour for four patients. These rates cost the program $1,795,000 per year in perfusionists fees to manage one patient on ECMO and $4,038,360 in perfusionists fees to manage four patients. Using NES costs $100 per hour to manage up to four patients on ECMO, which costs $876,000 in NES wages to manage one or four patients on ECMO for a year (See Figure 2). These numbers demonstrate a $919,000 per year in cost savings when managing one ECMO patient with NES and a cost savings of $3,162,360 if managing four patients on ECMO. This analysis reflects the cost savings related only to the cost of NES versus perfusionists managing ECMO in the ICU.

The initial costs for the NES didactic training, wet lab, and precepting cost $102,000, and these costs were seen as a one-time training cost as they would only occur again to replace one of NES if they resigned. To maintain competency, each NES must complete a four-hour wet lab every other month. The nursing leadership team estimated a cost of $22,000 per year for ongoing
training and competency. The 100 dollars per hour cost for using NES includes the cost related to the continuing training for the NES. With the initial and ongoing training costs, the cost savings associated with managing our patients on ECMO with NES remains significant, further justifying our decision to make this change.

Recommendations for Nurse Leaders

While converting from a perfusionist-driven ECMO program to a nurse-driven ECMO program can produce significant cost savings, it remains critical to stay informed of the process to make a program successful. The following list of recommendations helps provides several essential concepts for nurse leaders to consider.

1. Having a clear understanding of the vision for the ECMO program is a critical component. In addition, the nursing leadership team’s vision must align with the executive team's vision.

2. Determining the type of ECMO device to use is dependent on the program’s budget and CV surgeon preference. However, the Cardiohelp™ is seen as the most “nurse-friendly” device, and Rotoflow™ is less expensive.

3. Training and supplying your own ECMO specialist will result in a more sustainable program, but you can start your program by contracting with a vendor to manage your patients on ECMO.

4. Using Nurse ECMO specialists brings added nursing support to the unit, and with their holistic approach they provide expertise in ECMO management and all clinical care of the patients.
5. Providing training for your ECMO specialists should occur at a minimum of every six months, but we recommend wet labs every other month, depending on the program’s volume.

6. Collecting data for the ELSO registry is labor-intensive. Therefore, you may want to do a cost-benefit analysis when deciding whether to outsource this to a company familiar with the registry.

7. Managing at least ten patients on ECMO per year justifies the use of nurse ECMO specialists.

8. Developing a nurse-driven ECMO program creates several opportunities for staff growth and empowerment, and it can help identify opportunities for quality improvement.

Conclusion

The increased number of patients requiring ECMO due to COVID-19 revealed an area of opportunity for our ECMO program. Initially, the program relied on a contracted vendor for perfusionists, which significantly increased the operating cost for patients on ECMO. However, the need to increase the number of patients managed on ECMO led to the realization of the critical need to build a sustainable program. The CNO and the ICU nursing leadership team opted to implement nurse ECMO specialists to address this need for ECMO management and ensure the program's cost-effectiveness. A collaboration with the key stakeholders led to the ultimate success of changing to a nurse-driven program. NES brought added value to the program by providing holistic care for both the patient and the ECMO devices. Other programs can follow these steps to develop a nurse-driven program, and this journey demonstrates the potential opportunities for growth and improvement.
Acknowledgments: A special thanks to Mary Lynne Knighten, DNP, RN, NEA-BC, who provided crucial direction and feedback for this manuscript. Thank you, Sara Horton-Deutsch PhD, RN, FAAN, ANEF, Caritas Coach® and Marlon Saria, Ph.D., RN, AOCNS, NEA-BC, NPD-BC, FAAN, for helping me refocus the direction of this manuscript.

Funding:

This project did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

1. Dhamija, A, Kakuturu, J, Schauble, D, et al., Outcome and cost of nurse-led vs perfusionist-led extracorporeal membrane oxygenation. *Annals of Thoracic Surgery*. 2021;(2021):1-8. doi.org/10.1016/j.athoracsur.2021.04.095

2. Cavarocchi, N, Wallace, S, Hong, E. A cost-reducing extracorporeal membrane oxygenation (ECMO) program model: A single institution experience. *Perfusion*. 2015;30(2):148-153 Doi:10.1177/0267659114534288 prf.sagepub.com

3. Garfield, B., Bianchi, P., Arachchilage, D et al. Six month mortality in patients with COVID-19 and non-COVID-19 viral pneumonitis managed with veno-venous extracorporeal membrane oxygenation, *ASAIO Journal*. 2021;67(9):982-988. doi:10.1097/MAT.0000000000001527

4. Badulak, J, Antonini MV, Stead CM, et al. Extracorporeal membrane oxygenation for COVID-19: Updated 2021 guidelines from the extracorporeal life support organization. *ASAIO J*. 2021;67(5):485-495. doi:10.1097/MAT.0000000000001422

5. Supady, A, Taccone, F, Lepper, P, et al. Survival after extracorporeal membrane oxygenation in severe COVID-19 ARDS: results from an international multicenter registry. *Critical Care*. 2021;25(90): 1-4. doi.org/10.1186/s13054-021-03486-9

6. Center for Disease and Control. Covid daily tracker. Available at https://covid.cdc.gov/covid-data-tracker/#datatracker-home. Accessed March 19, 2022

7. Melnikov, S., Furmanov, A., Gololobov, A, et al. Recommendations from the professional advisory committee on nursing practice in the care of ECMO–Supported patients. *Critical Care Nurse*. 2021;41(3):e1–e8. doi://10.4037/ccn2021415
8. Daly, K, Camporota, L, Barret, N. An international survey: The role of specialist nurses in adult respiratory extracorporeal membrane oxygenation. *British Association of Critical Care Nurses*. 2016;22(5):5-311. doi.org/10.1111/nicc.12265

9. Alshammari, M, Vellolikalam, C, Alfeeli, S. Perception of other healthcare professionals about the nurses' role and competencies in veno-venous extracorporeal membrane oxygenation care: A qualitative study. *Nursing Open*. 2022;(9):996–1004. doi.org/10.1002/nop2.1137

10. Extracorporeal Life Support Organization. ELSO guidelines for training and continuing education of ECMO specialists. ELSO. 2010;1-9. Available at https://www.elso.org/ecmo-resources/elso-ecmo-guidelines.aspx. Accessed March 19, 2022

11. Fouilloux V, Gran C, Guervilly C, Breaud J, El Louali F, Rostini P. Impact of education and training course for ECMO patients based on high-fidelity simulation: a pilot study dedicated to ICU nurses. *Perfusion*. 2019;34(1):29-34. doi:10.1177/0267659118789824

12. Deming, W. The new economics: For industry, government, education. MIT Press 2000.
Figure 1.

![Bar graph showing the total Covid ECMO cases at Providence Saint John's Health Center from 2020 - 2022 (78). The graph compares patients surviving ECMO and deceased ECMO patients.]

Figure 2.

![Bar graph showing the cost difference based on wages for perfusionist-led and nurse-led annual costs for different numbers of patients on ECMO. The annual costs range from $1,795,800 to $4,038,360.]

- **Total Covid ECMO Cases at Providence Saint John's Health Center From 2020 - 2022 (78):**
 - Patients Surviving ECMO: 31, 40%
 - Deceased ECMO Patients: 47, 60%

- **Cost Difference Based on Wages:**
 - Number of Patients on ECMO:
 - 1: $1,795,800
 - 2: $2,698,080
 - 3: $3,591,600
 - 4: $4,038,360
 - Perfusionist-led Annual Costs: $876,000
 - Nurse-led Annual Costs: $876,000
