Deconvolution of ASCA X-ray data – I. Spectral-imaging method

D. A. White1* and D. A. Buote1,2,3

1Institute of Astronomy, Madingley Road, Cambridge CB3 OHA
2UCO/Lick, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
3AXAF Fellow.

Accepted 1999 October 11. Received 1999 October 4; in original form 1999 March 17

\textbf{ABSTRACT}

In this paper we describe a self-contained method for performing the spectral-imaging deconvolution of X-ray data on clusters of galaxies observed by the ASCA satellite. Spatially resolved spectral studies of data from this satellite require such a correction, because its optics redistribute photons over regions that are of comparable size to the angular scales of interest in clusters. This scattering is a function not only of spatial position but also of energy. To perform a correction for these effects we employ maximum-likelihood deconvolution of the image (within energy bands of 1 keV) to determine the spatial redistribution, followed by a Monte Carlo energy reassignment of photon energies with position to determine the spectral redistribution. We present tests on simulated cluster data, convolved with the various instrumental characteristics and the X-ray background, which show that our methodology can successfully recover a variety of intrinsic temperature profiles in typical observational circumstances. In Paper II (this issue) we shall apply our spectral-imaging deconvolution procedure to a large sample of galaxy clusters to determine temperature profiles.

\textbf{Key words:} methods: data analysis – methods: numerical – techniques: image processing – galaxies: fundamental parameters – intergalactic medium – X-rays: galaxies.

\section{1 INTRODUCTION}

One of the most important goals in the X-ray study of clusters of galaxies is the determination of their mass properties. The radial distribution of the total gravitating mass in a cluster can be constrained by accurate spatially resolved observations of the gas temperature and density, combined with the simple assumption of hydrostatic equilibrium. While the accurate determination of density profiles is well within the capabilities of previous instrumentation (e.g., \textit{ROSAT}), accurate radial temperature profile constraints require good spectral and spatial resolution.

The ASCA satellite has the spectral resolution required, but the spatial resolution provided by its nested foil mirrors is inadequate for the analysis of extended sources, such as galaxy clusters. The on-axis half-power diameter of the point spread function (PSF), of approximately 3 arcmin, increases and becomes more asymmetric with off-axis position. However, the essential problem with the PSF is that it varies with energy, such that scattering is more severe for harder photons. Consequently, if no correction is applied to an ASCA data set, then the determination of the spatially resolved temperature characteristics of a cluster will be incorrect. For a truly isothermal cluster, the PSF will produce a temperature profile which appears to rise with increasing radius from the cluster core (Takahashi et al. 1995).

Most of the results presented currently in the literature, that attempt to correct for the spatial and energy-dependent nature of the ASCA PSF, use a method created by Markevitch et al. (1996a). Their procedure relies on having an accurate prescription for the emissivity profile of the cluster – usually a β-model fit obtained from a \textit{ROSAT} surface-brightness profile. Simulated cluster photons are generated according to an initial guess for the cluster spectrum, and spatially distributed according to the emissivity profile. The photons are then convolved with the spatially variable PSF in different energy bands, and the model cluster is compared with the observational data. The source spectrum is then varied at different positions until the model and observational data are statistically consistent.

The advantage of their method is that the spatially variable nature of the PSF is easily incorporated, while the disadvantages are that the results may be compromised by the applicability of the spectral model and the accuracy of the emissivity profile. The latter issue may be important because the \textit{ROSAT} energy band (0.2–2 keV) is significantly different from that of ASCA (0.5–10 keV – although Markevitch et al. 1998, hereafter MFSV, use 2–10 keV). Therefore there may be a significant mismatch between the emissivity profile described by \textit{ROSAT} and that required for the ASCA data analysis, if the cluster exhibits spatial

*E-mail: daw@ast.cam.ac.uk

\textcopyright{} 2000 RAS
variations in temperature or other properties which affect the spectrum, i.e., a cooling-flow cluster will have many temperature components and a probable variation in the column density across the cluster (although this has to be large to affect the spectrum above 2keV).

Using the above method, MFSV and others (Henrickson & Markevitch 1996; Markevitch 1996; Markevitch et al. 1996a; Markevitch, Sarazin, & Irwin 1996b; Markevitch & Vikhlinin 1997; Donnelly et al. 1998; Sarazin, Wise, & Markevitch 1998) have presented temperature profiles for many clusters of galaxies. In particular, MFSV analysed a sample of 30 objects and found that most of these clusters have temperature profiles that decline with radius, which they parametrized with an average polytropic index of $\gamma = 1.24^{+0.20}_{-0.12}$.

This index is close to and consistent with, at the 2σ boundary of their uncertainties, the convective instability limit of $\gamma \approx 5/3 = 1.67$. While convective instability may be expected in clusters which have been disturbed, this should not be the case for relaxed clusters. Indeed, because cooling flows should be disrupted in significant merger events, they can be taken as an indicator of cluster relaxation (Buote & Tsai 1996; Buote 1998). However, as MFSV themselves find that approximately 60 per cent of their clusters contain a cooling flow, there is an inconsistency between the apparent proportion of relaxed clusters in their sample and the possibility that the sample is close to convective instability – as implied by their steep temperature gradients.

Additionally, the steep temperature gradients exacerbate the baryon problem in clusters (Briel, Henry & Böhringer 1992; White et al. 1993; White & Fabian 1995) – i.e., the apparent discrepancy between the large relative fraction of the total mass in baryons (i.e., essentially that seen as X-ray-emitting gas) and the fraction expected from the production of baryons during primordial nucleosynthesis in a flat ($\Omega_0 = 1$) universe. Declining temperature gradients imply smaller total cluster masses than would be inferred from isothermal temperature profiles (if the electron and ion temperatures are in equipartition; Ettori & Fabian 1998), thereby leading to even larger baryon fraction determinations.

Although Markevitch et al. themselves show that their average temperatures determinations agree well with those obtained from previous broad-beam satellites such as Einstein, EXOSAT and Ginga, the crucial question is whether the shape of their temperature profiles is correct. For this, their supporting evidence relies mainly on the consistency of the temperature profiles from the different ASCA detectors, Markevitch & Vikhlinin (1997) have performed a comparison of ASCA results with ROSAT temperature profiles, and found reasonable agreement, but the ROSAT temperature determinations have rather large uncertainties.

There are a growing number of results published which use different methods. Many of these results (i.e., Ikebe et al. 1997): A780; Fujita et al. 1996: A399 and A401; Ezawa et al. 1997: AWM7; Ohashi et al. 1997: 3A0336+098, MKW3s, A1795 and PKS 2354−35) have been compared with those from Markevitch et al. by Irwin, Bregman & Evard (1999). They highlighted the fact that many of these other authors determine that these clusters have isothermal temperature profiles, even in cases where Markevitch et al. find a clear decline. Irwin et al. also presented their own analysis of the ROSAT colour profiles, which showed that their clusters were generally consistent with isothermality. Most recently, (Molendi et al. 1999) have presented Beppo SAX results which show that A2319 is isothermal, although these authors are reluctant to claim any significant discrepancy with the Markevitch et al. results on the basis of this one observation.

Given the importance of generic temperature declines in clusters, and their contradiction with other results, it is essential that the ASCA data are analysed by independent means to check the MFSV results. Also, ASCA data currently still provide the best opportunity for the most accurate temperature profiles determinations for a large sample of clusters. Thus we have created our own ‘spectral-imaging’ deconvolution (SID) procedure. Our method is self-contained: it requires only ASCA observational data on the cluster, the background, and the energy-dependent PSF. It does not require ROSAT constraints on the emissivity profile. Also, no assumption about the various components contributing to the source spectrum is required in order to perform the deconvolution, and our method is essentially non-parametric. The main assumption that we have made is that a spatially invariant PSF is sufficient for our purposes. This has been done for computational speed and for convenience (we use a third-party image deconvolution routine – see Section 2.1), although the consequences of this assumption are examined, and shown to be acceptable.

Such tests are central to our methodology, in order that we may be confident in the validity of our results. Thus we have tested our procedure on simulated clusters by subjecting them to the various instrumental and background effects that will occur in the practical application of the method to real GIS data. For example, we have investigated the effect of the position-dependent nature of the PSF, looked at the degradation in performance with decreasing signal-to-noise ratio, and tested the ability of the procedure to recover a variety of intrinsic cluster temperature profiles.

In summary, this paper presents a spectral-imaging deconvolution method for practical use with ASCA data on clusters of galaxies. In Paper II (White 2000, this issue) we shall apply this method to a large sample of ASCA GIS cluster observations, and compare our results with those from MFSV.

2 METHOD

Our procedure for the spectral-image deconvolution (SID) of ASCA data can be broadly divided into two sections: image deconvolution followed by spectral reassignment, as summarized by a flow diagram of the method, shown in Fig. 1.

2.1 Image deconvolution

The image deconvolution is performed in the Interactive Data Language (IDL) environment using a maximum-likelihood (M-L) procedure, distributed with the ASTRON\(^1\) library of contributed routines by W. Landsman. Although this procedure accounts for the effect of Poissonian noise in the image, it has two significant drawbacks: it assumes (i) that the PSF is spatially invariant, and (ii) that the data are monochromatic.

The first issue of the spatial variance of the PSF is neglected, as we will assume that the PSF appropriate to the position of the cluster in the detector image can be used for the whole image deconvolution. We argue that this is reasonable, on the basis that most of the photons we are interested in arise from the core of the cluster. However, the impact of this assumption is assessed in the test detailed in Section 4.5.2.

\(^1\)http://idlastro.gsfc.nasa.gov/homepage.html

\(©\) 2000 RAS, MNRAS 312, 649–662
The monochromatic issue is dealt with by dividing the data according to energy, and executing the deconvolution on the image for each energy band. This can not be done for the data in each individual pulse-invariant (PI) channel, as the M-L deconvolution procedure requires more counts to work with than will be found within one PI channel, and the PSFs which are available in the ASCA calibration data base (CALDB) at HEASARC (High-Energy Astrophysics Archive, Goddard Space Flight Center) are only supplied in 1-keV bandwidths from 1 to 10 keV.

Our methodology is to take the X-ray events from each cluster observation and divide them into broad spectral energy bands, corresponding to the energy ranges of the PSF images. We then construct images from the data events in each of these energy bands (Fig. 1 - steps D.1 and D.2) and pass them, along with the appropriate PSF, to the image deconvolution procedure (step D.3). After 50 iterations the M-L procedure returns the deconvolved image for that energy band (step D.4). (The effect of varying the number of iterations is investigated in Section 4.5.)

These deconvolved images are then supplied to the spectral resassignment phase to determine the PI energy of events which will comprise the deconvolved data set.

2.2 Spectral re-assignment

From the M-L procedure we know the spatial probability distribution of photons in the deconvolved plane. We also know that the total number of counts is conserved between the convolved and deconvolved planes. Therefore we can create a random set of positions and energies from the deconvolved image and the observed PI distribution. However, we do not know which event has which PI energy.

Instead of attempting to recover the individual PI information for each event, we could have performed a colour analysis of the deconvolved surface-brightness profiles in each 1-keV energy band (approximately 85 PI channels). However, this would fail to utilize the superior spectral capabilities of ASCA, and would lead to a degeneracy in temperature and abundance determinations. Thus we have endeavoured to maintain the spectral resolution of

Figure 1. Flowchart of the spectral-imaging deconvolution procedure. 'SRC' refers to the 'source plane' data (i.e., the actual data before they are affected by the satellite instrumentation) which we are attempting to recover, and 'IMG' refers to the 'image plane' data (i.e., the observed data after convolution, etc.).
ASCa by finding a way of assigning energies to the events list created from the deconvolved images.

The obvious procedure would be to randomly assign an energy for each event using the overall spectral distribution of events within the 1-keV energy band, but this is not correct if there is spatial variation of the PI events over this energy band, as the following example illustrates. Consider two spatially distinct point sources within a single 1-keV energy band interval: one emitting 1.2-keV photons and the other 1.8-keV events. A random assignment of energies in this energy band, which does not take into account any spatial information, will result in each point source having half of the 1.2-keV photons and half of the 1.8-keV photons. If the same number of photons were detected from each source, they would both end up with an incorrect mean energy of 1.5 keV.

To make the correct reassignment we need to choose a ‘prior’ spatial distribution for the events within each 1-keV energy band. For this we use the M-L deconvolved image (while MFSV use the ROSAT data to obtain a higher spatial-resolution emissivity profile). We can then effectively ‘ray-trace’ events from this image through the telescope optics and determine the most likely association between events in the deconvolved and convolved planes. As we know the energies of each convolved event, we then know the energy of the deconvolved event.

In our ray-tracing method we assume that the PSF is invariant within each energy band. (We discuss the systematic bias that this can introduce into our results in Section 4.5.) For each PI channel we randomly generate the appropriate number of source-plane events from the deconvolved image (steps R.1 to R.3). We then use the PSF to scatter these events into the image-plane (step R.4). If any of these image-plane events correspond to the positions of an observed photon (for the PI energy in question), then we consider this ‘mapping’ to be successful (R.5). We do this until all the photons in the PI channel in question have been successfully mapped.

Having obtained the position and energy of a source-plane event we can store the information (R.6) and eliminate the appropriate photon from the observed event list. We continue the ray-tracing until all the observed events are accounted for (R.7). As the number of events to be reassigned declines, the probability of finding a successful mapping reduces. For efficiency we mask out parts of the PSF which can not provide a successful link between a source- and image-plane position. Each randomization is thereby guaranteed a successful mapping, and the computational efficiency is improved significantly.

2.3 Practical considerations

We have implemented our procedure in the Interactive Data Language (IDL) environment. The deconvolved events listings are written to standard (FITS) format files, which are then analysed using conventional X-ray data processing procedures (FTOOLS 4.2 and XSPEC 10.00 – see below). We currently only analyse GIS data as it has a larger field-of-view (FOV²) than the SIS – which allows us to determine cluster properties to larger radii. (The larger FOV also conserves more of the photons scattered to larger off-axis angles by the PSF. The SIS also has gaps between the CCDs, and the individual CCDs have differing instrumental gains.)

With the methodology we have defined above, there are various assumptions and complications which have to be assessed before we can be confident in applying it to real data. First, as we have noted, the M-L image deconvolution procedure only accepts a spatially invariant PSF, while the X-ray telescope (XRT) of ASCa exhibits a significant variation with position around the FOV (see, e.g., Fig. 2). In the spectral reassignment we also assume that the PSF does not change significantly across each 1-keV energy band. Secondly, observational data also include contaminating events from cosmic X-ray sources, and from the X-ray detector itself. Finally, systematic effects introduced by the procedure have to be minimized.

Dealing with the last of these points first, our experience has shown that a single realization of the deconvolved data is subject to systematic effects. In particular, we noticed that the abundance profiles show abrupt variations which were clearly due to systematics in the procedure (the M-L image deconvolution). However, these can be reduced by repeating the SID procedure many times. Due to time constraints, we found that 10 repetitions was the maximum number we could deal with practically. To perform the Monte Carlo procedure we randomize each input

Figure 2. In plots (a) and (b) we show (in logarithmic intensity) the combined XRT and GIS PSF (1–2 keV) at two extreme positions: 1.8 arcmin off-axis with a position angle of 5°, and 13 arcmin off-axis with a position angle 40°, respectively. This highlights the change of the PSF with position in the detector image.
We generate the basic simulated cluster data set from a radial analysis.

Impact of these various contaminants in practical observational circumstances. Physical properties of the intracluster gas are recovered by the deconvolution procedure. In the description below, we indicate how we create these various simulations and how we assess the impact of these various contaminants in practical observational circumstances.

3 ANALYSIS

3.1 Generating cluster models

We generate the basic simulated cluster data set from a radial density profile, parametrized by a standard β-model, and an isothermal temperature profile. The expected flux from each component (a second component is added to mimic a cooling-flow cluster) of the intracluster medium (ICM) is determined by projecting the volume emissivity along the line of sight and convolving this with the spectral response of the detector. The distribution of counts in each PI detector channel is then obtained by randomly sampling the intrinsic cluster spectrum. This is repeated until the total observed flux is obtained for each thermal component. Similarly, the detected spatial position of each event is determined by random generation from the projected emissivity, followed by convolution with the spatial PSF. Note that the effect of vignetting is implicitly incorporated by our use of a spatially variable PSF to create the simulated data sets, as the normalization of the PSF describes the efficiency of the detector at that position.

The cosmic background (from observations held at the ASCA CALDB at HEASARC) can also be included by adding in the expected number of background events from an observation of a blank area of real sky, and scaling for the relative exposure time of the simulated data set. Because the background data are taken from actual observations of blank-sky fields, these data are already convolved with the real spatially variable PSF and include all the various sources of noise, such as the GIS calibration source (see, e.g., Fig. 4b).

The convolved simulated data set, incorporating optional instrumental and background effects, is then supplied to our SID procedure, along with the PSFs. The PSFs in each 1-keV energy band are selected to correspond most closely to the position of the centre of the cluster in the detector image. In the following section we compare the results from the various tests which are designed to assess the impact of the assumptions implicit in our method, and the various observational contaminants such as the X-ray background.

We judge the success of the SID procedure by its ability to recover the properties of the original simulated cluster, and to do this we perform a spatially resolved spectral analysis on the original, convolved, and deconvolved events, and then compare the results graphically. Although the correct recovery of the original temperature profiles by the SID procedure implicitly requires that the original surface-brightness profiles are correctly recovered by the M-L deconvolution in each 1-keV energy band, this is explicitly shown in Fig. 3.

3.2 Spectral analysis

The spectral analysis procedure which we employ is fairly standard. We start by defining annular regions of interest, centred on the peak of the X-ray emission, and then fit a spectral model to each of these regions and compare the results. The maximum radius allowed for any cluster extraction is 20 arcmin from the centre of the FOV (although the region of most practical interest will generally be within the inner 10 arcmin). This eliminates the gain uncertainties at the edge of the GIS detector, and contamination from the calibration source. However, if the background has been incorporated, the maximum radius is usually reduced to the radius where the background-subtracted surface-brightness profile remains positive. The background spectrum is extracted from the blank-sky observations using the same spatial regions defined by the cluster data. In this way any gross position-dependent detector variations, such as instrument gain, should cancel out.

After defining each annular region, such that each annulus contains a certain fraction of the total (if applicable, background-subtracted) counts (0.1), which gives a theoretical maximum of 10 radial bins; see Paper II for details on the methodology), we extract events using {	t FTOOLS 4.2}. This is done for both the source and background spectra. These spectra, together with the ancillary response matrix (i.e., {	t ARF} file; determined using {	t ASCAarf}), are passed to the {	t SPECRAY 10.00} spectral analysis package (Arnaud 1996), and fitted with the chosen spectral model. We note that, until this point, no assumption has been made about the intrinsic cluster spectrum, and any chosen model can be fitted to the deconvolved data — contrary to the procedure used by MFSV, which requires a spectral model to be defined as an integral part of the deconvolution.

In this analysis we fit a single-temperature plasma emission model regardless of whether the simulated data were created with two thermal components. This means that we are not using the correct model for the data, but for the simulations this is not important. The crucial fact is whether we recover the same results from the deconvolved data as from the original data using the same spectral model. Thus in the following results we are looking for good agreement between the spectral fits to the deconvolved and original data sets (i.e., simulated data which have been convolved with the spectral response, but not the spatial PSF). (We do note, however, that our lack of a cooling-flow component, and particularly the excess absorption, in the fitted model is largely responsible for the radial increase in metallicities in the cooling-flow simulations, which is not apparent in the single-thermal-component models.)

3 The nominal fraction of the total number of background-subtracted counts per annulus is 0.1, the soft-limit on the minimum number of counts in an annulus is 1000, and the hard-limit is 500 counts.

4 Our specific model is that of a single MEKAL thermal component (i.e., Mewe, Gronenschild, & van den Oord 1985; Mewe, Lemen, & van den Oord 1986), absorbed (Morrison & McCammon 1983) by a foreground column density of foreground material.
Figure 3. This figure presents a comparison of the original (medium-dark, solid line), deconvolved (dark, solid line) and convolved (light, dashed line) surface-brightness profiles for the (TEST-NOBGD-30K) simulations with no background contamination. This enables a direct comparison to be made of how well the SID procedure recovers the true surface-brightness profiles in each energy band. Although the SID procedure introduces extra noise, the true surface-brightness profiles are clearly recovered well (the deconvolved data are truncated outside 20 arcmin), and are significantly better representations than the surface-brightness profiles from the convolved data, even in the higher energy bands which have few counts.
Figure 4. This figure compares the spatial and spectral characteristics of the original, convolved and deconvolved data sets. In (a) we show the image of the \textit{(TEST-GCF-30 K)} events before spatial convolution with the PSF and the addition of background events. The inclusion of these effects produces in the image shown in (b) – the calibration source in the top-right of the image comes from the blank-sky background data. The image shown in (c) is that obtained after the spectral-image deconvolution analysis – it is truncated at 20-arcmin radius from the centre of the field (before the deconvolution) to eliminate the calibration source in (b). (These images have a pixel scale of approximately 0.25 arcmin, have been smoothed with a Gaussian of 2-pixel width, and are displayed in logarithmic intensity.) Plot (d) shows the (1-9 keV) azimuthal profiles of the deconvolved (solid line), convolved (dashed), and the original data (dotted line) (from non-smoothed data). The upturn in the convolved and deconvolved profiles is due to the background, which is not included in the original data. In the final panel (e) we compare the spectral PI distribution of events extracted from within 3 arcmin of the peak position. The lower line is the spectrum from the convolved data set. The distribution of the original and deconvolved events, from the same aperture, are plotted above as a black line and lighter line respectively. This plot shows, first, that the effect of the PSF is significant – the spectral distribution of the convolved events from the central 3 arcmin are lower in normalization (emissivity) and also exhibits a different slope (temperature). Secondly, the plot shows that the spectral-imaging reassignment recovers the characteristics of the original data at full spectral resolution.
Finally, we note that if background contamination is included in the test, it is also applied to the convolved data (and thereby the deconvolved data), but not the original data. Thus no background subtraction is performed in the spectral analysis of the original data set. This also means that (except in the test which has no background added) the convolved and deconvolved results are subject to extra noise which is not in the original data set spectral fits.

4 CLUSTER SIMULATION RESULTS

4.1 Takahashi et al. model – the effect of the PSF on ASCA cluster data

In the introduction we referred to a paper by Takahashi et al. (1995) which showed that the energy-dependent PSF of ASCA can give rise to an apparently increasing temperature profile in an isothermal cluster, if the data were not corrected for the effect of the PSF. Before we discuss our various simulation results, where we investigate different observational and physical scenarios, we show that we can reproduce this systematic effect when using similar parameters. (The magnitude of the effect depends on various parameters, such as the apparent size of the cluster core.)

As the effect of the PSF becomes more severe for hotter clusters, we chose to approximate the hottest temperature profile modelled by Takahashi et al. (1995). We do this using a single β-model with a velocity dispersion of 1100 km s$^{-1}$ (which, with the $\beta_{\text{pec}} = 0.8$ which we use in our other models, gives a central temperature of approximately 9–10 keV), an index for the profile of $R_{\text{fit}} = 0.6$, and a core radius of $R_{\text{core}} = 0.13$ Mpc (resulting in a 1-arcmin core, similar to Takahashi et al.). Further details of the parameters used are given in Table 1 under the TEST-GCF-30 K model.

Table 1. Variable Parameters For Generating Simulated Clusters.

Test Name	Comments	Systematic/Instrumental Flags	Temperature Drop	Cluster Component Characteristics	Fig. Ref.				
TEST-TAK-30 K	Takahashi et al. model	Yes	N/A	N/A	5				
TEST-GCF-30 K	‘Standard’ model	Yes	4.5	30	6.61	6.8	1.65	0.3	6
TEST-MCF-30 K	Smaller cooling flow effect	3.31	7(a)	
TEST-ISO-30 K	Isothermal	N/A	N/A	N/A	7(b)	
TEST-DTX-30 K	Temperature decline	1.65	0	6.61	0.8	7(c)
TEST-NOBGD-30 K	No background	No	8	
TEST-GCF-15 K	Short exposure	25	10(a)	
TEST-GCF-60 K	Long exposure	150	10(b)	
TEST-NIT25-30 K	Less image deconv. Iterations	11
TEST-NIT150-30 K	More image deconv. Iterations	
TEST-OFF-30 K	Off-axis cluster	

In all but the single-phase temperature model (TEST-ISO-30), there are two gas phases, as indicated by the primary and secondary superscripts. The model components which are inappropriate (i.e., the TEST-ISO-30 K test) are indicated as such by ‘N/A’. Entries with ‘.’ indicate the values default back to the ‘standard model’: TEST-GCF-30 K. Parameters which are invariant between each test are: (i) the total column density (i.e., Galactic; acting on both components where applicable): 1.3×10^{21} cm$^{-2}$, (ii) redshift: 0.0881, (iii) baryon fraction: 0.1, (iv) β-parameter: 0.67, (v) abundance: 0.4 Z_{\odot}, (vi) velocity dispersion: 900 km s$^{-1}$ (both components where applicable), (vii) core radius: 0.2 Mpc (primary component), and (viii) maximum radial extent: 5 Mpc (primary component). Each test is labelled to indicate the primary point in question. Those tests which investigate different cluster temperature profiles are: giant cooling flow; ‘TEST-GCF-30 K’; moderate cooling flow; ‘TEST-MCF-30 K’; isothermal cluster; ‘TEST-ISO-30 K’; radially decreasing temperature; ‘TEST-DTX-30 K’. Those tests investigating instrumental effects are: inclusion of cosmic background ‘TEST-NOBGD-30 K’; off-axis position ‘TEST-OFF-30 K’; number of image-deconvolutions ‘TEST-NIT25-30 K’ and ‘TEST-NIT150-30 K’; exposure time in (ks) ‘TEST-GCF-15 K’ and ‘TEST-GCF-60 K’. The abbreviations for the the systematic/instrumental flags are as follows: ‘Bgd.’: background included; ‘Pos.’: off-axis position of the centre of the simulated cluster; ‘Exp.’: exposure duration; and ‘N$_{\text{IT}}$’: number of iterations used in the M-L image deconvolution stage. The abbreviations for the cluster properties are: gas temperature T_{c}; excess absorption (only on second component): ΔN_{H}; core-radius: R_{core}; and truncation maximum radius: R_{max}. Finally, ‘Fig.’ indicates the figure reference for each test, while each test is discussed in Section 4.

In Fig. 5 the effect of the PSF can be seen in the convolved data set’s temperature profile (dashed line with triangle symbols), where the temperature in the core is low and then gradually increases with radius. This trend is similar to the Takahashi et al. profile, which we present in the plot as square symbols with dashed error-bar lines. The diagram also shows that our SID method recovers the true radial temperature, metallicity and emissivity profiles from the convolved data.

In the following tests we create a suite of models to investigate the effects of various observational and physical conditions on the ability of the SID procedure to recover the true intracluster gas properties.

4.2 Standard test – a cluster with a strong core temperature decline

With our basic prescription for creating a simulated cluster data set (see Section 3.1), we choose our standard model to represent a ‘Giant Cooling Flow’ (TEST-GCF-30 K). The variation in the average temperature in this type of cluster is expected to be significant, and will therefore provide a severe test for the SID procedure. To produce a core temperature decline we add a second cooler thermal component to the core region. Although this is not a physically realistic representation of a cooling flow it mimics a core temperature drop (albeit rather sharply) which is seen in typical cooling-flow clusters (e.g., Centaurus – Allen & Fabian 1994). (Remember that we are not necessarily interested in the physical correctness of our model, but whether the SID recovers the intrinsic energy and spatial distribution of the simulated cluster – whatever that might be.)

The parameters have been chosen to approximate the physical characteristics of Abell 478. This is a cluster of moderate temperature, and distance, but is fairly luminous due to its large...
cooling flow. It should be remembered that some of the conclusions drawn from the following tests will be dependent on the characteristics of the cluster in question, e.g., whether the cluster has a cooling flow or not, how bright the cluster is, etc. Table 1 shows the parameters we have used in each test. The primary component has a temperature of 6.6 keV; the cooler component is at 1.65 keV, but its radial extent is truncated at 1.5 $R_{\text{core}} = 0.3 \text{ Mpc}$ to limit it to the centre of the cluster. The spectrum of the cooler component is also modified by an additional column of absorbing material of 5 times the assumed Galactic value (which is set at $1.36 \times 10^{21} \text{ cm}^{-2}$) to model excess absorption (see White et al. 1991 and Johnstone et al. 1992). For this standard model, the observational characteristics are an exposure of 30 ks, with the centre of the cluster placed 4.5 arcmin off-axis (fairly standard for an ASCA GIS observation), and the data are convolved using a spatially varying PSF. (The PSF is interpolated from the grid of 11 different positions for the PSF in each energy band, supplied in the CALDB.)

The effect of the spectral-image deconvolution on the convolved data becomes apparent when we look at the radial variations in the spectral fit parameters in Fig. 6. This figure shows that the variations of the original ICM properties are recovered by the SID, and are a much better representation of the original variations than those obtained from the convolved data. (If a hydrostatic mass determination were made from the convolved data on such a cluster, then careful consideration of the complications would be required, if meaningful results were to be obtained.) We note, however, that the abruptness of the temperature profile decline in the original data, which is rather artificial due to the construct of our model, is somewhat smoothed over in the deconvolved temperature profile.

4.3 A variety of different temperature profiles

In the next three tests we have attempted to span a wide range of possible temperature profiles. With the ‘Medium Cooling Flow’ model, TEST-MCF-30 K, we investigate whether a less dramatic temperature decline can be recovered. In this case, the simulated data were created by adding a secondary component which is slightly hotter, i.e., 3.3 keV, than in the previous model. Fig. 7(a) shows that the small differences between the original and convolved temperature profiles are still resolved with the deconvolved data.

In the TEST-ISO-30 K model, Fig. 7(b), we eliminate the second cooler component altogether, and produce an isothermal temperature profile. This test shows that the deconvolution procedure...
Figure 7. This figure summarizes the tests of differing temperature profiles, as follows: (a) moderate core temperature drop, (b) and isothermal temperature profile, and (c) and temperature decline with radius. The line styles, etc. are the same as those defined in Fig. 6.
essentially has no systematic effects which severely distort the recovery of a flat temperature profile and, for example, result in a temperature decline.

In the last temperature profile variation, TEST-DTX-30 K shown in Fig. 7(c), we have created a temperature profile which decreases radially outwards, to approximate the general trend for decreasing temperature profiles found by MFSV. This model was created by making the hotter component more extended (i.e., the core radius is larger) than the cooler component (note that the truncation is set at 5 Mpc for both components, and there is no excess absorption on the cooler emission component). Although the difference between the original and convolved temperature determinations in any particular radial bin is small, the general slope of the original profile is more accurately reproduced by the deconvolved data.

Despite the lower count rates from the TEST-MCF-30 K and TEST-ISO-30 K models, as they incorporate less flux from the secondary temperature component, these results show that the success of the deconvolution does not appear to be dependent on the intrinsic temperature variations, and that there are no severe systematic biases in the deconvolved profiles.

4.4 Statistical effects due to background and exposure

We now turn our investigation to the impact of the various instrumental and systematic effects which occur in ASCA observations of clusters; the effect of background event contamination, and the impact of signal-to-noise variations.

In TEST-NOBGD-30 K (Fig. 8) we see the intrinsic ability of the SID procedure in the absence of any background contamination. The results are clearly more accurate, but are still qualitatively similar to the results from the standard simulation data which includes the background. This shows that performance of the SID procedure is relatively unaffected by background noise, at the expected level.

In Fig. 9 we show the effect of variations in data quality, using exposure times of 15 and 60 ks, i.e., factors of a half and twice the standard exposure (TEST-GCF-15 K and TEST-GCF-60 K). These models include the cosmic background, and therefore the reduction in exposure time also results in a degradation of the signal-to-noise ratio.

In both cases the deconvolved temperature and emissivity profiles form much better representations of the original data than the convolved data. (The performance will, of course, differ for clusters with differing count distributions, i.e., surface-brightness profiles, and count rates, i.e., signal-to-noise ratio for a given exposure.)

4.5 Systematic effects from our procedure

In Section 2.3 we discussed the Monte Carlo technique which we have used to average-out systematic variations which occur in a single run of the SID procedure. We now discuss some potential sources for these systematic effects.

The primary assumptions in our procedure are that we can use a spatially invariant PSF for the image deconvolution phase, and that the PSF is invariant across each 1-keV energy band for the spectral reassignment. Before we investigate these issues, we will look at the effect of varying the number of iterations employed in the image deconvolution phase of the SID procedure.

4.5.1 The number of image deconvolution iterations

In the TEST-NIT-25 and TEST-NIT-150 tests we vary the number of iterations employed in the (M-L) image deconvolution stage of the SID procedure from the standard number of 50, to 25 and 150 iterations, respectively. Figs 10(a) and (b) essentially show that the results are similar, regardless of the number of iterations. A greater number of iterations will produce sharper features, and thus follow the sharp temperature decline in the cooling-flow models, but this will also exaggerate spurious features (although this will be minimized by the 10 Monte Carlo runs of the SID procedure). For this particular cluster model, we find that 50 iterations appears to be optimal for recovering of the core temperature decline without introducing severe systematic effects into the abundance profile.

4.5.2 The assumption of a spatially invariant PSF

In Section 2.1 we described the use of the M-L procedure, which requires the use of a spatially invariant PSF. However, the real ASCA PSF varies significantly with position (see, e.g., Fig. 2). Thus we have created all our simulated data using a spatially varying PSF (interpolating from the CALDB sample of 11 different PSF positions), and then deconvolved using a fixed PSF which is appropriate for the position of the centre of the cluster in the detector image. All the results presented so far show that this is a reasonable assumption which does not severely compromise the SID results. This is because most of the cluster photons arise from the core region, and therefore the fixed PSF approximation we have chosen is acceptable.

Our assumption will be poorer for more extended clusters, and...
Figure 9. This figure summarizes the test which investigates the effect of signal-to-noise ratio through different exposures [(a): 15 and (b): 60 ks, i.e., a factor of one-half and twice the standard test's exposure].

Figure 10. This figure summarizes the tests which utilize fewer (25) or greater (150) number of iterations in the M-L stage of the image deconvolution, compared to the standard number of 50.
discontinuity between the boundaries of each energy band.

events, but undoubtedly it will change the slope of the spectral properties of the object, e.g., the temperature and thereby mass profiles of galaxy clusters.

Markevitch et al. (1996a) has presented a procedure which attempts to correct for the ASCA PSF, and in an analysis of 30 clusters Markevitch et al. (1998) (MFSP) found that virtually all their temperature profile results decrease with radius, according to an average polytropic index of $\gamma = 1.24^{+0.20}_{-0.12}$. If correct, this result is very important, as it implies that clusters have less mass than would be assumed if they were isothermal, and thereby has implications for cosmology through cluster mass distributions and baryon fractions. However, the fact that the polytropic index is so steep, and close to the convective instability value of $\gamma = 5/3 = 1.67$, is of some concern, as many clusters in their sample are cooling flows and should therefore be relaxed clusters. It is therefore imperative that the MFSP results are verified by independent means.

We have developed an independent method which is self-contained, in that it does not require observational data on the same object from other X-ray satellites, or any assumption about the source spectrum. This means that potential systematic problems, arising from cross-calibration uncertainties, are eliminated. Also, unlike Markevitch et al., we present tests of our deconvolution procedure on realistic simulations of ASCA observations of clusters to show that our method successfully recovers the true radial properties of the intracluster gas from data under a wide variety of conditions. In particular, we have tested the recovery of differing intrinsic temperature profiles, and we have included contamination from the observed cosmic and instrumental background of ASCA, to show that the procedure will work in practical application on reasonably bright clusters. We have also shown that the various limitations (e.g., we were forced to assume a spatially invariant PSF) do not unduly compromise the ability of the procedure to successfully recover the original temperature profiles. All the deconvolved profiles we obtain are in good agreement with the true intrinsic properties.

In conclusion, our spectral-imaging deconvolution procedure is successful at recovering the original radial properties of the intracluster gas – for a range of different physical scenarios, and at the expected level of background and instrumental contamination. This procedure is, therefore, entirely capable of working in practical circumstances with observational data. In Paper II we shall apply this spectral-imaging deconvolution procedure to real ASCA data on 106 clusters, and compare the results with those from Markevitch et al.

5 Conclusions

In this paper we have presented a method for performing a spectral-imaging deconvolution analysis of X-ray data which has been affected by an energy- and position-dependent point spread function (PSF), such as that produced by the ASCA satellite mirror arrangement. Without correction any spatially resolved spectral analysis of ASCA data will be incorrect, as higher energy photons are scattered further than lower energy photons. In studying spatially extended sources, such as clusters of galaxies, it is essential that a correction is made for this effect if accurate conclusion are to be drawn from the radial variations in the spectral properties of the object, e.g., the temperature and thereby mass profiles of galaxy clusters.

4.5.3 The assumption of a spatially invariant PSF within each 1-keV energy band

The scatter of the PSF continually degrades with increasing photon energy. This means that for events at the upper end of the energy band we will be using a PSF which is too narrow, and for the lower energy data we will be using a PSF which is too wide. When the spectral-reassignment procedure determines a map of events between the source- and image-plane it will choose hard events which are too concentrated, and soft events which are too far away than would be correct. The precise effect of this is complicated and probably depends on the spatial distribution of events, and in an analysis of 30 K test we see the results for a cluster placed near the edge of the FOV (9 arcmin from the on-axis position). Although the (abundance profile in particular) results are worse than for the near on-axis results (TEST-GCF-30 K), the essential trends of the true emissivity and temperature profiles are recovered. We emphasize that most real cluster observations occur at the on-axis position we have selected for our standard TEST-GCF-30 K test.
ACKNOWLEDGMENTS

DAW acknowledges support from the PPARC and DAB that from PPARC and by NASA through Chandra Fellowship grant PF8-10001 awarded by the Chandra Science Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-39073. We thank S. W. Allen and A. C. Fabian for useful discussion, R. M. Johnstone for assistance, and the anonymous referee for useful comments.

This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center.

REFERENCES

Allen S. W., Fabian A. C., 1994, MNRAS, 269, 409
Arnaud K. A., 1996, in Jacoby G., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac, San Francisco, p. 17
Briel U. G., Henry J. P., Böhringer H., 1992, A&A, 259, L31
Buote D. A., 1998, MNRAS, 293, 381
Buote D. A., Tsai J. C., 1996, ApJ, 458, 27
Donnelly R. H., Markevitch M., Forman W. R., Jones C., David L. P., Churazov E., Gilfanov M., 1998, ApJ, 500, 138
Ettori S., Fabian A. C., 1998, MNRAS, 293, L33
Ezawa H., Fukazawa Y., Makishima K., Ohashi T., Takahara T., Xu H., Yamasaki N. Y., 1997, ApJ, 490, L36
Fujita Y., Koyama K., Tsuru T., Matsumoto H., 1996, PASJ, 48, 191
Henriksen M. J., Markevitch M., 1996, ApJ, 466, L79
Ikebe Y. et al., 1997, ApJ, 481, 660
Irwin J. A., Bregman J. N., Evrard A. E., 1999, ApJ, 519, 518
Johnstone R. M., Fabian A. C., Edge A. C., Thomas P. A., 1992, MNRAS, 255, 431
Markevitch M., 1996, ApJ, 465, L1
Markevitch M., Vikhlinin A., 1997, ApJ, 474, 84
Markevitch M., Mushotzky R., Inoue H., Yamashita K., Furuzawa A., Tawara Y., 1996a, ApJ, 456, L71
Markevitch M., Sarazin C. L., Irwin J. A., 1996b, ApJ, 472, L17
Markevitch M., Forman W. R., Sarazin C. L., Vikhlinin A., 1998, ApJ, 503, 77 (MFSV)
Mewe R., Gronenschild E.H.B.M., van den Oord G. H. J., 1985, A&AS, 62, 197
Mewe R., Lemen J. R., van den Oord G. H. J., 1986, A&AS, 65, 511
Molendi S., De Grandi S., Fusco-Femiano R., Colafrancesco S., Fiore F., Nesci R., Tamburelli F., 1999, ApJ, 525, L73
Morrison R., McCammon D., 1983, ApJ, 270, 119
Ohashi T., Honda H., Ezawa H., Kikuchi K., 1997, in Makino F., Mitsuda K., eds, X-Ray Imaging and Spectroscopy of Cosmic Hot Plasmas. Universal Academy Press Inc., Tokyo, Japan, p. 49
Sarazin C. L., Wise M. W., Markevitch M., 1998, ApJ, 498, 606
Takahashi T., Markevitch M., Fukazawa Y., Ikebe Y., Ishisaki Y., Kikuchi K., Makishima K., Tawara Y., 1995, ASCA Newsletter (NASA/GSFC), Vol. 3
White D. A., 2000, MNRAS, 312, 663 (Paper II), this issue
White D. A., Fabian A. C., 1995, MNRAS, 273, 72
White D. A., Fabian A. C., Johnstone R. M., Mushotzky R. F., Arnaud K. A., 1991, MNRAS, 252, 72
White S. D. M., Navarro J. F., Evrard A. E., Frenk C. S., 1993, Nat, 366, 429

This paper has been typeset from a \TeX file prepared by the author.