Performance of nonconforming spectral element method for Stokes problems

N. Kishore Kumar1 · Subhashree Mohapatra2

Received: 30 November 2021 / Revised: 8 March 2022 / Accepted: 21 March 2022 / Published online: 28 April 2022
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022

Abstract
A nonconforming spectral element method for the Stokes problem on nonsmooth domains has been proposed in Mohapatra et al. (J Comput Appl Math 372:112696, 2020). The main focus of this article is to study the performance of this method for Stokes problems on smooth curvilinear domains and Stokes problem with mixed boundary conditions. Various test cases are considered including the generalized Stokes problem in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) to verify the exponential accuracy of the method.

Keywords Stokes equations · Velocity · Pressure · Spectral element · Nonconforming · Exponential accuracy · PCGM

Mathematics Subject Classification 65N35 · 65F10 · 35J57

1 Introduction

The stationary Stokes equations are linearized form of the stationary Navier–Stokes equations. These equations describe the flow of the incompressible fluids. Stokes problem arise in various applications in physics and engineering. The numerical solution of stationary Stokes equations has been extensively studied in the literature. Finite difference method, finite-element method, Spectral methods, discontinuous Galerkin methods, Least-squares finite-element methods, and meshless methods etc. are popular methods among the numerical techniques to solve the Stokes problem.
Standard central differences do not give stable discretizations on uniform grids to Stokes equations due to the failure of the discrete inf-sup condition (Chen 2022). The marker and cell method (MAC Scheme) is a simple and more efficient numerical scheme for solving Stokes and Navier–Stokes problems. Finite difference MAC scheme has been studied in Chen (2022), Ito and Qiao (2008). Details of the other finite difference schemes can be found in Song et al. (2020), Strikwerda (1984a), Strikwerda (1984b). The finite volume MAC scheme has been studied in Rui and Li (2017) and the references therein.

The finite-element method for Stokes problem has been widely studied. Standard Galerkin formulation is viewed as a saddle-point problem. Mixed FEM imposes restrictions such as inf-sup or Ladyzhenskaya–Babuska–Brezzi (LBB) condition while choosing approximation spaces for different unknowns because of which same order polynomials cannot be used for different unknowns. Therefore, it uses two different finite-element spaces for velocity and pressure, respectively. The analysis of mixed FEM is based on the theory of saddle point problem which has been developed in Babuska (1973), Brezzi (1974). Use of different order polynomial spaces makes computation cumbersome. In addition, choosing a suitable pair of polynomial order spaces is not easy in general. Mass conservation is another issue in the approximation of the solution of the Stokes problem.

To overcome the problem of using different finite-element spaces for velocity and pressure variables, in stabilized finite-element method, the standard bilinear form is modified such that any pair of finite-element spaces can be chosen. Stabilized finite-element method for the Stokes problem has been introduced in Brezzi and Douglas (1988), Hughes and Franca (1987), Hughes et al. (1986). Details of several other stabilized finite-element formulations can be found in Arnold et al. (1984), Barrenechea and Valentin (2002), Blasco (2007), Boffi et al. (2008), Codina (2001), Douglas and Wang (1989) and the references therein. Divergence-free finite-element methods have been studied in Blank (2014), Crouzeix and Raviart (1973), Mu and Ye (2017), Wang et al. (2009) and the references therein. Divergence-free methods eliminate pressure variable from the saddle point system and result in positive definite linear systems and also avoid the mass conservation issue.

Least-squares methods have various advantages when applied to systems of differential equations (Aziz et al. 1985; Bochev and Gunzburger 1998; Eason 1976; Gunzburger and Bochev 2009; Jiang 1998). Least-squares based methods do not require LBB condition while choosing the approximation spaces and also leads to symmetric positive definite linear systems when applied to linear problems. In the least-squares formulation Stokes problem is transformed into a first-order system. There are different first order formulations for Stokes system. For example velocity–vorticity–pressure formulation (Amara et al. 2003; Bochev and Gunzburger 2009; Bramble and Pasciak 1996; Cai et al. 1995; Chang and Yang 2002; Duan and Liang 2003; Dubois 2002; Jiang 1998), velocity–stress–pressure formulation (Bochev and Gunzburger 1995; Bramble and Pasciak 1996; Kim and Shin 2002) and acceleration–pressure formulation (Chang 1990). Mass conservation issues also arise in least-squares methods because of the inclusion of the continuity equation in minimizing functional (Deang and Gunzburger 1998). The mass conserving properties of the least-squares methods have been addressed also in Bolton and Thatcher (2005), Chang and Nelson (1997), Proot and Gerritsma (2006).

Stokes problem has also been studied using spectral/spectral element methods. The spectral method has been proposed for this problem in Schumack et al. (1991). Proot and Gerritsma (2002a, b, 2006) have proposed a least-squares spectral element scheme for Stokes equations in velocity–vorticity–pressure formulation. Numerical results conclude that the pressure variable to be one order less accurate compared to the velocity variable as pressure is not prescribed on the boundary. The least-squares spectral collocation method has been studied
in Heinrichs (2004), Kim et al. (2003). If the data in the given problem is analytic then these methods gives exponential convergence.

Nonconforming methods such as mortar finite-element methods (Belgacem 2000; Belgacem et al. 2002), discontinuous Galerkin methods (Burman and Stamm 2010; Cockburn et al. 2002; Li et al. 2020; Montlaur et al. 2008; Montlaur and Fernandez-Mendez 2014), and some others in (Apel et al. 2020; Bochev et al. 2012, 2013) provide a numerical approximation to the Stokes equations. Meshless methods always avoid the problem of mesh generation on the domains with complex geometries. Meshless methods for the Stokes problem have been studied in Ahmad et al. (2020), Desimone et al. (1998), Li (2015), Tan et al. (2013), Traska et al. (2016).

In this article, we have also considered the generalized Stokes problem. This problem occurs in the numerical treatment of the time dependent Navier–Stokes equations. Generalized Stokes equations look very similar to the Stokes equations. This problem has been studied in Barrenechea and Valentin (2002), Burman and Hansbo (2006), Butt (2018), Calgaro and Laminie (2000), Chou (1997), Codina (2001), Larin and Reusken (2007), Nafa (2009), Sarin and Samesh (1998).

In Mohapatra et al. (2020) an exponentially accurate non-conforming least-squares spectral element method for Stokes equations on non-smooth domains has been proposed. This is different from the standard least-squares FEM formulations, where the Stokes system is converted into a first order system as mentioned earlier. The minimizing functional in the least-squares formulation includes the residuals in the partial differential equations and residuals in the boundary conditions in appropriate Sobolev norms. The method is nonconforming and higher order spectral element functions have been used. Various numerical examples with singular solutions were presented to verify the exponential accuracy of the method. In Mohapatra and Ganesan (2016), authors have studied the spectral element method for Oseen equations with applications to Navier–Stokes equations. They have presented various numerical examples on square domains in \(\mathbb{R}^2 \) with Dirichlet boundary conditions.

In this article, we study the performance of this method for Stokes problems on smooth curvilinear domains with mixed boundary conditions. The normal equations in the least-squares formulation are solved using preconditioned conjugate gradient method without storing the matrix. The exponential accuracy of the method is verified through various numerical tests.

This paper is organized as follows. In Sect. 2, we have considered the generalized Stokes equations on smooth domains. The discretization of the domain and the numerical scheme are described. Numerical results are presented in Sect. 3. Finally we conclude with Sect. 4. Some necessary notations to describe the numerical formulation are given in the appendix and also the stability estimate is stated.

Here we give some notations and define required function spaces. Let \(\Omega \in \mathbb{R}^2 \), be an open bounded set with sufficiently smooth boundary \(\partial \Omega \). \(H^m(\Omega) \) denotes the Sobolev space of functions with square integrable derivatives of integer order less than or equal to \(m \) in \(\Omega \) equipped with the norm:

\[
\|u\|_{H^m(\Omega)}^2 = \sum_{|\alpha| \leq m} \|D^\alpha u\|_{L^2(\Omega)}^2.
\]

Furthermore, let \(I = (-1, 1) \). Then we define fractional norms \((0 < s < 1) \) by

\[
\|w\|_{s,I}^2 = \|w\|_{0,I}^2 + \int_I \int_I \frac{|w(\xi) - w(\xi')|^2}{|\xi - \xi'|^{1+2s}} \, d\xi \, d\xi'.
\]
where \(I \) denotes an interval contained in \(\mathbb{R} \). Moreover
\[
\|w\|_{1+s,I}^2 = \|w\|_{0,I}^2 + \left\| \frac{\partial w}{\partial \xi} \right\|_{s,I}^2 + \left\| \frac{\partial w}{\partial \eta} \right\|_{s,I}^2.
\]
We shall denote the vectors by bold letters. For example
\[
\mathbf{u} = (u_1, u_2)^T, \quad H^k(\Omega) = H^k(\Omega) \times H^k(\Omega), \quad \text{etc.}
\]
The norms are given by
\[
\|\mathbf{u}\|_{k,\Omega}^2 = \|u_1\|_{k,\Omega}^2 + \|u_2\|_{k,\Omega}^2 \quad \text{for} \quad \mathbf{u} \in H^k(\Omega),
\]
\[
\|\mathbf{u}\|_{s,I}^2 = \|u_1\|_{s,I}^2 + \|u_2\|_{s,I}^2, \quad \text{etc.}
\]

2 Discretization and numerical formulation

In this section, we describe the discretization of the domain and derive the numerical formulation. We consider the generalized Stokes problem with Dirichlet boundary condition to describe the numerical formulation.

2.1 Generalized Stokes problem

Consider the generalized Stokes equations in \(\Omega \subset \mathbb{R}^2 \), with sufficiently smooth boundary \(\partial\Omega = \Gamma \) (as shown in Fig. 1).

\[
\begin{aligned}
\alpha \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p &= \mathbf{f} \quad \text{in} \quad \Omega, \\
-\nabla \cdot \mathbf{u} &= h \quad \text{in} \quad \Omega, \\
\mathbf{u} &= \mathbf{g} \quad \text{on} \quad \partial\Omega.
\end{aligned}
\]

Here, \(\mathbf{u} \) is the velocity field, \(p \) is the pressure and \(\alpha, \nu > 0 \). Assume that the positive parameters \(\alpha, \nu \) are not simultaneously zero. When \(\alpha = 0 \) it reduces to Stokes problem.

Let \(h \in L^2(\Omega) \) and such that \(\int_\Omega h \, dx = 0 \) and \(\mathbf{g} \) satisfies the compatibility condition \(\int_\Gamma \mathbf{g} \cdot \mathbf{n} = 0 \), where \(\mathbf{n} \) is the unit outward normal to \(\Gamma \). Let \(\mathbf{f} \in L^2(\Omega), \mathbf{g} \in H^1(\partial\Omega) \).

Then the generalized Stokes problem (1–3) has the solution \((\mathbf{u}, p) \in H^1(\Omega) \times L^2(\Omega)\), where \(p \) is unique up to an additive constant. \(p \) can be obtained uniquely in \(L^2(\Omega)/\mathbb{R} \) or in \(L^2_0(\Omega) = \{ u \in L^2(\Omega) | \int_\Omega u = 0 \} \) (Burman and Hansbo 2006). Furthermore, a regularity estimate also holds good (see Appendix A1).

2.2 Discretization and spectral element functions

The domain \(\Omega \) is divided into \(L \) quadrilaterals \(\Omega_1, \Omega_2, \ldots, \Omega_L \) as shown in Fig. 1 (some of them are curvilinear elements). Let \(\mathbf{x} = (x_1, x_2) \) be any point in the domain. A set of nonconforming spectral element functions are defined on these elements which are a sum of tensor products of polynomials of degree \(W \). Let \(S \) denote the master element \(S = (-1, 1)^2 \). Now, there is an analytic map \(M_l(\xi, \eta) \) from \(S \) to \(\Omega_l \) which has an analytic inverse (blending function mapping Gordan and Hall 1973):

\[
x_1 = X_1^l(\xi, \eta) \quad \text{and} \quad x_2 = X_2^l(\xi, \eta).
\]

Define the spectral element functions \(\hat{\mathbf{u}}_l \) and \(\hat{p}_l \) on \(S \) by
\[
\hat{\mathbf{u}}(\xi, \eta) = \sum_{i=0}^W \sum_{j=0}^W a_{i,j} \xi^i \eta^j, \quad \hat{p}(\xi, \eta) = \sum_{i=0}^W \sum_{j=0}^W b_{i,j} \xi^i \eta^j.
\]
Then, \mathbf{u}_l and p_l on Ω_l are given by

$$\mathbf{u}_l(x_1, x_2) = \hat{\mathbf{u}}(M_l^{-1})$$
and

$$p_l(x_1, x_2) = \hat{p}(M_l^{-1}).$$

Let $\Pi^{L,W} = \{ \{ \mathbf{u}_l \}_{1 \leq l \leq L}, \{ p_l \}_{1 \leq l \leq L} \}$ be the space of spectral element functions consisting of the above tensor products of polynomials of degree W.

2.3 Numerical formulation

Let $\mathcal{L}(\mathbf{u}, p)$ and $\mathcal{D}\mathbf{u}$ be the differential operators for the momentum equations and the continuity equation, respectively. Thus

$$\mathcal{L}(\mathbf{u}, p) = \alpha \mathbf{u} - \nu \nabla^2 \mathbf{u} + \nabla p,$$

and

$$\mathcal{D}(\mathbf{u}) = -\nabla \cdot \mathbf{u}.$$

Let $J_l(\xi, \eta)$ be the Jacobian of the mapping $M_l(\xi, \eta)$ from $S = (-1, 1)^2$ to Ω_l for $l = 1, 2, ..., L$. Now

$$\int_{\Omega_l} |\mathcal{L} \hat{\mathbf{u}}_l|^2 \, dx_1 \, dx_2 = \int_{S} |\mathcal{L} \hat{\mathbf{u}}_l|^2 J_l \, d\xi \, d\eta.$$

Define $\mathcal{L}_l \hat{\mathbf{u}}_l = \mathcal{L} \hat{\mathbf{u}}_l / \sqrt{J_l}$. Then

$$\int_{\Omega_l} |\mathcal{L} \mathbf{u}_l|^2 \, dx_1 \, dx_2 = \int_{S} |\mathcal{L} \hat{\mathbf{u}}_l|^2 \, d\xi \, d\eta.$$

Similarly, we define $\mathcal{D}_l \hat{\mathbf{u}}_l = \mathcal{D} \hat{\mathbf{u}}_l / \sqrt{J_l}$.

Let $\hat{x} = (\xi, \eta)$. Let $\mathbf{f}_l(\hat{x}) = f(M_l(\xi, \eta)), h_l(\hat{x}) = h(M_l(\xi, \eta))$, for $l = 1, 2, \ldots, L$. Define

$$\mathbf{F}_l(\hat{x}) = \mathbf{f}_l(\hat{x}) \sqrt{J_l(\hat{x})} \quad \text{and} \quad H_l(\hat{x}) = h_l(\hat{x}) \sqrt{J_l(\hat{x})}.$$
Now, consider the boundary condition \(\mathbf{u} = \mathbf{g} \) on \(\partial \Omega \). Let \(\gamma_s \subseteq \partial \Omega \cap \Omega_l \) be the image of \(\xi = 1 \) under the mapping \(M_l \) which maps \(S \) to \(\Omega_l \). Let

\[
\mathbf{g}_l = \mathbf{g}(M_l(1, \eta)).
\]

We now define the least-squares functional

\[
\mathcal{R}^{L, W}(\mathbf{u}, p) = \sum_{l=1}^{L} \left\| \mathcal{L}_l \mathbf{u}_l - \mathbf{F}_l \right\|_{0, S}^2 + \sum_{l=1}^{L} \left\| \mathcal{D}_l \mathbf{u}_l - H_l \right\|_{1, S}^2
\]

\[
+ \sum_{\gamma_s \subseteq \partial \Omega \cap \Omega_l} \left(\left\| [\mathbf{u}] \right\|_{0, \gamma_s}^2 + \sum_{k=1}^{2} \left\| [\mathbf{u}_k] \right\|_{2, \gamma_s}^2 + \left\| p \right\|_{2, \gamma_s}^2 \right) + \sum_{\gamma_s \subseteq \partial \Omega \cap \Omega_l} \left\| \mathbf{u}_l - \mathbf{g}_l \right\|_{3, \gamma_s}^2. \tag{4}
\]

We choose our approximate solution the unique \((\mathbf{z}, q) \in \Pi^{L, W} \) which minimizes the functional \(\mathcal{R}^{L, W}(\mathbf{u}, p) \) overall \((\mathbf{u}, p) \in \Pi^{L, W} \). Here, \(\Pi^{L, W} \) denotes the space of spectral element functions.

The details of the jump terms \(\left\| [\mathbf{u}] \right\|_{0, \gamma_s}^2 \), \(\left\| [\mathbf{u}_k] \right\|_{2, \gamma_s}^2 \) and \(\left\| p \right\|_{2, \gamma_s}^2 \) in (4) are described in the appendix A2. The functional \(\mathcal{R}^{L, W}(\mathbf{u}, p) \) is closely related to the quadratic form \(\mathcal{V}^{L, W}(\mathbf{u}, p) \) which is also defined in A2.

Error estimate

Theorem 1 Let \((\mathbf{z}, q) \) minimize \(\mathcal{R}^{L, W}(\mathbf{u}, p) \). Then, for \(W \) large enough there exists constants \(C \) and \(b \) (being independent of \(W \)) such that the estimate

\[
\sum_{l=1}^{L} \left\| \mathbf{z}_l(\hat{\mathbf{x}}) - \mathbf{u}_l(\hat{\mathbf{x}}) \right\|_{2, S}^2 + \sum_{l=1}^{L} \left\| q_l(\hat{\mathbf{x}}) - p_l(\hat{\mathbf{x}}) \right\|_{1, S}^2 \leq Ce^{-bW} \tag{5}
\]

holds true.

Proof of the this theorem easily follows from Theorem 4.2 in Mohapatra et al. (2020).

Remark After obtaining a nonconforming solution a set of corrections can be made such that velocity variable \(\mathbf{z} \) becomes conforming (Kishore Kumar 2014; Schwab 1998). So \(\mathbf{z} \in H^1(\Omega) \) and we have the following error estimate

\[
\left\| \mathbf{u} - \mathbf{z} \right\|_{1, \Omega} + \left\| p - q \right\|_{0, \Omega} \leq Ce^{-bW}. \tag{6}
\]

Residue computations and preconditioner

The solution will be obtained at Gauss–Legendre–Lobatto (GLL) quadrature points by minimizing the residue \(\mathcal{R}^{L, W}(\mathbf{u}, p) \). The normal equations obtained from the minimization will be solved using preconditioned conjugate gradient method (PCGM) efficiently. The details of the residual computations in each element and procedure of solving the normal equations are shown in detail in Dutt et al. (2007), Kishore Kumar (2014), Mohapatra et al. (2020).

We use the following quadratic form

\[
\mathcal{U}^{L, W}(\mathbf{u}, p) = \sum_{l=1}^{L} \left\| \mathbf{u}_l \right\|_{2, S}^2 + \sum_{l=1}^{L} \left\| p_l \right\|_{1, S}^2. \tag{7}
\]

as a preconditioner which is spectrally equivalent to \(\mathcal{V}^{L, W}(\mathbf{u}, p) \) (defined in appendix A2).
Fig. 2 Discretization of $[0, 1]^2$

3 Numerical results

Here, we verify the exponential convergence of the numerical scheme by considering various numerical examples. The numerical examples include the Stokes equations on curvilinear domains, Stokes problem with mixed boundary conditions, and generalized Stokes equations in \mathbb{R}^2 and \mathbb{R}^3. Spectral element functions of higher order of degree W are used and uniform W is used for all the elements in the discretization. Let z and q be the approximate solutions of the velocity u and pressure p, respectively. $\| E_u \|_1 = \frac{\| u - z \|_1}{\| u \|_1}$ denotes the relative error in u in H^1 norm, $\| E_p \|_0 = \frac{\| p - q \|_0}{\| p \|_0}$ denotes relative error in pressure in L^2 norm and $\| E_c \|_0$ denotes error in continuity equation in L^2 norm. ‘Iter’ denotes the total number of iterations required to reach the desired accuracy. In the case of Dirichlet boundary value problem, pressure is specified to be zero at one point of the domain to ensure the uniqueness in each problem. The numerical code was written in FORTRAN 90. Computations were performed on intel core i7-6700 CPU@3.40 GHz × 8 with 32 GB RAM.

Example 1: Generalized Stokes problem on $[0, 1]^2$

Consider the generalized Stokes equation (1–3) with $\alpha = 1$, $\nu = 1$ and $h = 0$ on $[0, 1]^2$. Chosen the data, such that

$$\begin{align*}
u_1 &= \sin \pi x_1 \sin \pi x_2, \\
u_2 &= \cos \pi x_1 \cos \pi x_2, \\
p &= 150 \left(x_1 - \frac{1}{2} \right) \left(x_2 - \frac{1}{2} \right) + c.
\end{align*}$$

The domain $[0, 1]^2$ is divided into 4 elements with equal step size $h = \frac{1}{2}$ in both x_1 and x_2 directions (see Fig. 2). The approximate solution is obtained and the relative errors $\| E_u \|_1$ and $\| E_p \|_0$ for various values of W are shown in Table 1. Table 1 also shows the total number of iterations of PCGM to reach the achieved accuracy and the error in the continuity equation $\| E_c \|_0$. One can see that the errors $\| E_u \|_1$, $\| E_p \|_0$ and $\| E_c \|_0$ decays exponentially. Figure 3 shows the graph of the log of the relative errors $\| E_u \|_1$ and $\| E_p \|_0$ against W. The curves are almost linear. This shows the exponential decay of the errors.
Table 1 Error $\|E_u\|_1$, $\|E_p\|_0$ and $\|E_c\|_0$ for different W

W	$\|E_u\|_1$	$\|E_p\|_0$	$\|E_c\|_0$	Iter
2	5.139862909E−01	1.547329906E−01	1.177314788E−00	22
3	9.320542876E−02	5.59518233E−02	3.465516273E−02	116
4	1.644416626E−02	6.011788360E−03	3.739501208E−03	227
5	1.611022198E−03	6.748736448E−04	3.739501208E−03	442
6	1.693357558E−04	6.570180017E−05	4.172145413E−04	761
7	2.471931274E−05	7.480811937E−06	6.553699066E−05	1204
8	3.451649675E−06	4.728984810E−07	8.701982919E−06	1788

Fig. 3 Log of relative error vs. W

Example 2: Stokes problem involving Reynolds number

Consider the following equation on $\Omega = [\frac{1}{2}, \frac{1}{2}] \times [0, 1]$

$$-\frac{1}{Re} \Delta u + \nabla p = f \text{ in } \Omega,$$
$$\nabla \cdot u = 0 \text{ in } \Omega,$$
$$u = 0 \text{ on } \Gamma.$$

Choose the data such that

$$u_1 = 1 - e^{\lambda x_1} \cos(2\pi x_2),$$
$$u_2 = \frac{\lambda}{2\pi} e^{\lambda x_1} \sin(2\pi x_2),$$
$$p = \frac{1}{2} e^{2\lambda x_1} + c.$$

Here, $\lambda = \frac{Re}{2} - \sqrt{\frac{(Re)^2}{4} + 4\pi^2}$ and Re is Reynolds number (Mu and Ye 2017).
The domain is divided into 4 elements with step size \(h = \frac{1}{2} \) in both directions. We have obtained the approximate solution of the given Stokes system for different values of \(Re = 1, 10, 100, 1000 \). Table 2 shows the relative errors \(\| E_u \|_1 \) and \(\| E_p \|_0 \) for various values of \(W \) for \(Re = 1, 10 \). Table 3 shows the relative errors \(\| E_u \|_1 \) and \(\| E_p \|_0 \) for various values of \(W \) for \(Re = 100, 1000 \).

Figure 4a shows the graph of the log of the relative error \(\| E_u \|_1 \) vs. \(W \) and Fig. 4b shows the graph of log of the relative error \(\| E_p \|_0 \) vs. \(W \) for \(Re = 1, 10, 100 \) and 1000. Both the graphs shows that the error decays exponentially. One can see that the iteration count is high for \(Re = 1000 \) to achieve the relative errors of \(O(10^{-7}) \) and \(O(10^{-6}) \), but the iteration count is not high to achieve the accuracy of \(O(10^{-4}) \) or \(O(10^{-5}) \).

Example 3: Stokes problem on annular domain

Consider the Stokes problem (problem (1)–(3) with \(\alpha = 0, \nu = 1 \) and \(h = 0 \)) on the annular domain \(\Omega = \{(r, \theta) : 1 \leq r \leq 4 \text{ and } 0 \leq \theta \leq \frac{\pi}{2}\} \) with Dirichlet boundary condition on the boundary.
W	$Re = 1$	$Re = 10$	Iter				
	$\|E_u\|_1$	$\|E_u\|_1$	$\|E_u\|_1$	$\|E_p\|_0$	$\|E_p\|_0$	$\|E_p\|_0$	Iter
4	2.366975497E−01	4.34268366E−01	12	1.131661632E−01	1.198261163E−01	40	
5	4.869971324E−02	1.76876076E−01	129	1.184006906E−02	1.227193197E−02	120	
6	8.623443013E−03	8.20262592E−02	321	3.004801200E−03	1.629441123E−03	195	
7	1.518313601E−03	1.30971235E−02	733	2.839200284E−04	3.512941780E−04	346	
8	2.667438050E−04	3.12678320E−03	1206	3.181384304E−05	4.256880275E−05	561	
9	4.391290170E−05	6.57675621E−04	1862	1.053751269E−06	9.059197820E−06	967	
10	7.408947632E−06	1.56727777E−04	2539	1.718964312E−07	2.683927048E−07	1843	
Table 3 Relative errors against W for $Re = 100, 1000$

W	$Re = 100$	$Re = 1000$				
	$\|E_u\|_1$	$\|E_p\|_0$	Iter	$\|E_u\|_1$	$\|E_p\|_0$	Iter
4	4.270224166E−01	1.971826154E−01	26	3.7944941768E−01	2.480889414E−01	36
5	4.244262501E−02	1.618248455E−02	179	3.8779299147E−02	2.947725331E−02	654
6	3.958119651E−03	1.747850562E−03	325	2.3764211892E−03	5.438172800E−04	1703
7	3.201794986E−04	1.504988745E−04	514	1.9140466720E−04	5.837954856E−05	3190
8	1.26502314E−05	3.527247772E−05	748	1.5032229108E−05	5.156661742E−06	4569
9	3.187641118E−06	2.098243693E−06	936	3.5580252816E−06	1.602969000E−06	5721
10	3.037312630E−07	1.211241028E−07	1271	7.451543690E−07	6.117219799E−07	7160
Table 4 \(\|E_u\|_1, \|E_p\|_0 \) and \(\|E_c\|_0 \) for various values of \(W \)

\(W \)	\(\|E_u\|_1 \)	\(\|E_p\|_0 \)	\(\|E_c\|_0 \)	Iter
2	3.73710182E−01	1.000929095E−00	558.6790137E−00	4
3	5.47325472E−02	1.019245995E−01	149.7030088E−00	91
4	9.27471997E−03	1.026087077E−02	17.92350320E−00	178
5	2.27183319E−03	4.526209660E−03	7.01641256E−00	360
6	4.61843438E−04	6.17589621E−04	1.262648344E−00	451
7	4.52049220E−05	1.124195597E−04	1.507379559E−01	935
8	8.47350232E−06	5.888507439E−06	2.12266602E−02	1252
9	7.82707160E−07	1.396124323E−06	2.061182562E−03	1930
10	1.52518872E−07	1.042122306E−07	3.131737628E−04	2748

Fig. 6 Log of relative errors against \(W \)

The domain is divided into 4 curvilinear elements, as shown in Fig. 5. Blending elements have been used (Gordan and Hall 1973). The data is chosen such that

\[
\begin{align*}
 u_1 &= 20x_1x_2^3, \\
 u_2 &= 5(x_1^4 - x_2^4), \\
 p &= 60x_1^2x_2 - 20x_2^3 + c.
\end{align*}
\]

Table 4 shows the relative errors \(\|E_u\|_1, \|E_p\|_0 \) and \(\|E_c\|_0 \) for various values of \(W \). Figure 6 shows the log of the relative errors against \(W \). This shows that the error decays exponentially in \(\|E_u\|_1 \) and \(\|E_p\|_0 \) norms.

Example 4. Stokes problem on a square domain with a circular hole

Consider the Stokes problem on a square domain \([0, 1]^2\) with a circular hole, where the circle is centered at \((0.5, 0.5)\) with radius 0.2 (see Fig. 7). As shown in Fig. 7, we have the boundaries on the sides of the unit square and also on the circle.
The data are chosen, such that

\[u_1 = x_1 + x_2^2 - 2x_1x_2 + x_1^3 - 3x_1x_2^2 + x_2x_1^2, \]
\[u_2 = -x_2 - 2x_1x_2 + x_2^3 - 3x_2x_1^2 + x_2^3 - x_1x_2^2, \]
\[p = x_1x_2 + x_1 + x_2 + x_1^3x_2^2 + c. \]

The given domain is decomposed into 4 elements, as shown in Fig. 7. Table 5 shows the relative errors \(\| \mathbf{E}_u \|_1 \) and \(\| \mathbf{E}_p \|_0 \) for various values of \(W \).

So far, we have considered the Stokes problem with Dirichlet condition on the boundary. Here, we consider Stokes problem with mixed boundary conditions. We consider the following Neumann type boundary conditions on some part of the boundary of the domain Benes and Kucera (2016), Manouzi (1990)

\[\gamma_N(u, p) = \frac{\partial u}{\partial n} - pn = g^N \text{ or} \]
\[\gamma_N(u, p) = \left((\nabla u + \nabla u^T) - pl \right) n = g^N \]

where \(n = (n_1, n_2) \) is unit outward normal vector and \(I \) is \(2 \times 2 \) identity matrix.

Details of the existence and regularity of the solution of the Stokes problem with mixed boundary conditions can be found in Benes and Kucera (2016). The numerical method proposed in this article also works for mixed boundary conditions. In this case, we add the following term to the minimizing functional \(\mathcal{R}_{L,W}(u, p) \) defined in (4)

\[\sum_{\gamma_N \subseteq \Gamma^N \cap \Omega_l} \left\| \gamma_N(u, p) - g_{\gamma_N}^N \right\|_{\frac{1}{2}, \gamma_N}^2, \]

where \(\Gamma^N \) is the part of the boundary of the domain on which the Neumann type of boundary condition is specified.
Example 5: Stokes problem with mixed boundary conditions on a square domain

Consider the Stokes problem (Eqs. (1)–(3) with $\alpha = 0$ and $\nu = 1$) on $[0, 1]^2$ with mixed boundary conditions. Dirichlet boundary condition is considered on the sides $x = 0$, $x = 1$ and $y = 1$ and the following Neumann type boundary condition is taken on the side $y = 0$:

$$\frac{\partial u}{\partial n} - p n = g^N.$$

Chosen the data such that the exact solution of the problem is

$$u_1 = \sin \pi x_1 \sin \pi x_2,$$
$$u_2 = \cos \pi x_1 \cos \pi x_2,$$
$$p = 150 \left(x_1 - \frac{1}{2} \right) \left(x_2 - \frac{1}{2} \right).$$

The domain $[0, 1]^2$ is divided into 4 elements with equal step size $h = \frac{1}{2}$ in each direction. The relative errors $\|E_u\|_1$, $\|E_p\|_0$ and $\|E_c\|_0$ for various values of W are shown in Table 6. The errors decays very faster and the decay of the error $\|E_c\|_0$ shows that the method has good mass conservative property.

Example 6: Stokes problem with mixed boundary conditions on an annular domain

Consider the Stokes problem on the annular domain which was considered in the example 3. The following Neumann type boundary condition is considered on the side $y = 0$:

$$\left((\nabla u + \nabla u^T) - p I \right) n = g^N.$$

Dirichlet boundary conditions are considered on the other parts of boundary of the annular domain.

We have considered the same data as in example 3 and the domain is divided into 4 elements (see Fig. 5). Table 7 shows the relative errors $\|E_u\|_1$ and $\|E_p\|_0$ for various values of W. The error decays quickly and this shows the exponential accuracy of the numerical method. The iteration count is also less compared to the number of iterations in Example 3.
Consider the generalized Stokes problem (problem \((1–3)\)) in \(\mathbb{R}^3\) with \(\alpha = 1\) on the domain \([-1, 1]^3\) with Dirichlet boundary condition on the boundary. Let \(x = (x_1, x_2, x_3)\) be a point in the domain and \(u = (u_1, u_2, u_3)\) be the velocity vector. The force function and boundary data are chosen such that the exact solution of the given problem is given by

\[
\begin{align*}
\ u_1(x_1, x_2, x_3) &= 4x_1^2x_2x_3(1 - x_1)^2(1 - x_2)(1 - x_3)(x_3 - x_2), \\
\ u_2(x_1, x_2, x_3) &= 4x_1x_2^2x_3(1 - x_1)(1 - x_2)^2(1 - x_3)(x_1 - x_3), \\
\ u_3(x_1, x_2, x_3) &= 4x_1x_2x_3^2(1 - x_1)(1 - x_2)(1 - x_3)^2(x_2 - x_1), \\
\ p(x_1, x_2, x_3) &= -2x_1x_2x_3 + x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3 - x_1 - x_2 - x_3.
\end{align*}
\]

Only one element is considered (i.e., \([-1, 1]^3\)) and obtained the approximate solution of the generalized Stokes problem for \(v = 1, 10\). Table 8 shows the errors \(\|E_u\|_1, \|E_p\|_0\) and \(\|E_c\|_0\) against different values of \(W\) for \(v = 1\) and Table 9 shows for \(v = 10\).

The results shows that the errors \(\|E_u\|_1, \|E_p\|_0\) and \(\|E_c\|_0\) decays exponentially. We have presented the error in the continuity equation \(\|E_c\|_0\) against \(W\) in few other examples also.
in this section. The decay of $\|E_c\|_0$ shows the mass conservation property of the method. Similar behavior has been observed in all the other examples too.

4 Conclusions and future work

In this article, we have studied the performance of the nonconforming least-squares spectral element method for Stokes problems on smooth domains. The generalized Stokes equation, Stokes problem with mixed boundary conditions, and also the Stokes problem on curvilinear domains were considered. The spectral approximation is nonconforming and same order spectral element functions are used for both velocity and pressure variables. The numerical results show that the method is exponentially accurate in both u and p. Since the numerical method is least-squares, the obtained linear system is symmetric positive definite. In addition to these advantages, the numerical scheme has good mass conservation property. The decay of the error in continuity equation in L^2 norm shows that the method works very well while conserving the mass. Studying the performance of this approach for unsteady flow problems on curvilinear domains is in progress. The Stokes interface problem is under consideration for future work.

Appendix

Here, we state the regularity estimate for the generalized Stokes problem (1)–(3) and define the jumps in u, p and u_{x_k} in different Sobolev norms. Finally we state the stability estimate.

A1. Regularity estimate

The following fundamental regularity estimate is based on ADN (Agmin–Douglis–Nirenberg) theory (Agmon et al. 1964).

Let Ω be an open bounded subset of class C^r, $r = \max(m + 2, 2)$. For $u \in W^{1,2}(\Omega)$, $p \in L^2(\Omega)$ being solutions of the generalized Stokes equations (1)–(3) and for $f \in W^{m,2}(\Omega)$, $h \in W^{m+1,2}(\Omega)$ and $g \in W^{m+2,2}(\Gamma)$, then $u \in W^{m+2,2}(\Omega)$, $p \in W^{m+1,2}(\Omega)$ and there exists a constant $C_0(\alpha, m, \Omega)$ such that

$$
\|u\|_{W^{m+2,2}(\Omega)} + \|p\|_{W^{m+1,2}(\Omega)/\mathbb{R}} \leq C_0 \left(\|f\|_{W^{m,2}(\Omega)} + \|h\|_{W^{m+1,2}(\Omega)} + \|g\|_{W^{m+2,2}(\Gamma)} \right).
$$

A2. Stability estimate

Since the approximation is nonconforming, to enforce the continuity along the inter element boundaries we introduce the jumps in u, u_{x_1}, u_{x_2} and p in suitable Sobolev norms. Let the edge γ_s be common to the adjacent elements Ω_l and Ω_m. Assume that edge γ_s is the image of $\eta = 1$ under the map M_l which maps S to Ω_l and also the image of $\eta = -1$ under the map M_m which maps S to Ω_m. Then the jumps along the inter-element boundaries are defined as

$$
\left\| \left[u \right] \right\|^2_{0,\gamma_s} = \left\| \hat{u}_m(\xi, -1) - \hat{u}_l(\xi, 1) \right\|^2_{0,\gamma_s},
$$

$$
\left\| \left[u_{x_k} \right] \right\|^2_{1,\gamma_s} = \left\| (\hat{u}_m)_{x_k}(\xi, -1) - (\hat{u}_l)_{x_k}(\xi, 1) \right\|^2_{1,\gamma_s},
$$
\[
\|\|\|p\|\|_2^\frac{1}{2},\gamma_s = \|\hat{p}_m(\xi, -1) - \hat{p}_l(\xi, 1)\|_2^\frac{1}{2},I.
\]

Here, \(I = (-1, 1)\). The expressions on the right hand side in the above equation are given in the transformed coordinates \(\xi\) and \(\eta\).

Let us consider the boundary condition. Let \(\gamma_s \subseteq \partial \Omega \cap \Omega_l\) be the image of \(\xi = 1\) under the mapping \(M_l\) which maps \(S\) to \(\Omega_l\). Then

\[
|||\mathbf{u}_l|||_2^\frac{1}{2},\gamma_s = |||\hat{\mathbf{u}}_l(1, \eta)|||_2^\frac{1}{2},I.
\]

Let \(\mathbf{u}, p \in \Pi^{L,W}_{\Omega_1}\). We now define the quadratic form

\[
\mathcal{V}_{L,W}(\mathbf{u}, p) = \sum_{l=1}^{L} |||\mathcal{L}(\mathbf{u}_l, p_l)|||_{0,\Omega_l}^2 + \sum_{l=1}^{L} |||\mathbf{D}\mathbf{u}_l|||_{1,\Omega_l}^2 + \sum_{\gamma_s \subseteq \partial \Omega \cap \Omega_l} \left(|||\mathbf{u}|||_{0,\gamma_s}^2 + \sum_{k=1}^{2} |||\mathbf{u}_{x_k}|||_{2,\gamma_s}^2 + |||p|||_{2,\gamma_s}^2 \right) + \sum_{\gamma_s \subseteq \partial \Omega \cap \Omega_l} |||\mathbf{u}_l|||_{3,\gamma_s}^2.
\]

(9)

Then, we have the following result.

Theorem For \(W\) large enough, there exists a constant \(C > 0\) such that the estimate

\[
\mathcal{U}_{L,W}(\mathbf{u}, p) \leq C (\ln W)^2 \mathcal{V}_{L,W}(\mathbf{u}, p)
\]

(10)

holds. Where \(\mathcal{U}_{L,W}(\mathbf{u}, p)\) is defined in Sect. 2 (see (7)). The proof of this one is very similar to Theorem 4.1 in (Mohapatra et al. 2020).

References

Ahmad M, Siraj-ul-Islam, Ullah B (2020) Local radial basis function collocation method for stokes equations with interface conditions. Eng Anal Bound Elements 119:246–256

Agmon S, Dougis A, Nirenberg L (1964) Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun Pure Appl Math 17:35–92

Amara A, Chacon Vera E, Trujillo D (2003) Vorticity–velocity–pressure formulation for Stokes problem. Math Comput 73(248):1673–1697

Apel T, Kempf V, Linke A, Merden C (2020) A nonconforming pressure robust finite element method for the Stokes equations on anisotropic meshes. arXiv:2002.1217V1

Arnold D, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21(4):337–344

Aziz AK, Kellog RB, Stephens AB (1985) Least squares methods for elliptic systems. Math Comput

Babuska I (1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192

Barrenechea G, Valentin Frederic (2002) An unusual stabilized finite element method for a generalized Stokes problem. Numer Math 92:653–677

Belgacem FB (2000) The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis. SIAM J Numer Anal 37(4):1085–1100

Belgacem FB, Chilton LK, Seshaiyer P (2002) Non-conforming hp finite element methods for Stokes problems, In: Pavarino LF, Toselli A (eds) Recent developments in domain decomposition methods. Lecture notes in computational science and engineering, vol 23

Benes M, Kucera P (2016) Solutions to the Navier–Stokes equations with mixed boundary conditions in two-dimensional bounded domains. Math Nach 289(2–3):194–212

Blank L (2014) On divergence-free finite element methods for the Stokes equations. Master thesis, Frieburg Universitat, Berlin

Blasco J (2007) A pressure-stabilized formulation of incompressible flow problems on anisotropic finite element meshes. Comput Math Appl 53(6):895–909
Bochev PB, Gunzburger MD (1995) Least-squares methods for the velocity–pressure–stress formulation of the Stokes equations. Comput Methods Appl Mech Eng 126:267–287
Bochev PB, Gunzburger MD (1998) Finite element methods of least-square type. SIAM Rev 40(4):789–837
Bochev PB, Gunzburger MD (2009) A locally conservative mimetic least-squares finite element method for the Stokes equations. In: Lirkov I, Margenov S, Wasniewski J (Eds) In proceedings LSSC 2009, Springer lecture notes in computer science, vol 5910, pp 637–644
Bochev PB, Lai J, Olson L (2012) A locally conservative discontinuous least-squares finite element method for the Stokes equations. Int J Numer Methods Fluids 68(6):782–804
Bochev PB, Lai J, Olson L (2013) A non-conforming least-squares finite element method for incompressible fluid flow problems. Int J Numer Method Fluids 72(3):375–402
Boffi D, Brezzi F, Fortin M (2008) Finite elements for the Stokes problem. In: Boffi D, Gastaldi L (eds) Mixed finite elements, compatibility conditions, and applications. Lecture notes in mathematics, vol 1939. Springer, Berlin
Bolton P, Thatcher RW (2005) On mass conservation in least-squares methods. J Comput Phys 203(1):287–304
Bramble JH, Pasciak JE (1996) Least-squares methods for Stokes equations based on a discrete minus one inner product. J Comput Appl Math 74:155–173
Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Ser Rouge 8:129–151
Brezzi F, Douglas J Jr (1988) Stabilized mixed methods for Stokes problem. Numer Math 53:225–235
Burman E, Hansbo P (2006) Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput Methods Appl Mech Eng 195:2393–2410
Burman E, Stamm B (2010) Bubble stabilized discontinuous Galerkin method for Stokes problem. Math Model Methods Appl Sci 20(2):297–313
Butt MM (2018) On multigrid solver for generalized Stokes equations. J Math 50(3):53–66
Cai Z, Manteuffel TA, McCormick SF (1995) First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity. Electron Trans Numer Anal 3:150–159
Calgaro C, Laminie J (2000) On the domain decomposition method for the generalized Stokes problem with continuous pressure. Numer Methods Partial Differ Equ 16(1):84–106
Chang CL (1990) A mixed finite element method for the Stokes problem, an acceleration-pressure formulation. Appl Math Comput 30:83–146
Chang CL (1997) Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM J Numer Anal 34:480–482
Chang CL, Yang SY (2002) Analysis of the L^2 least-squares finite element method for the velocity-vorticity-pressure Stokes equations with velocity boundary conditions. Appl Math Comput 130:121–144
Chen L (2022) Finite difference scheme for Stokes equations: MAC scheme. Technical Report, University of California
Chou SH (1997) Analysis and convergence of a covolume method for the generalized Stokes problem. Math Comput 66(217):85–104
Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190:2681–2706
Cockburn B, Kanschat G, Schotzau D, Schwab Ch (2002) Local discontinuous Galerkin methods for the Stokes system. SIAM J Numer Anal 40(1):319–343
Crouzeix M, Raviart P (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal Numer 7:33–76
Deang JM, Gunzburger MD (1998) Issues related to least-squares finite element methods for the Stokes equations. SIAM J Sci Comput 20:878–906
Desimone H, Urquiza S, Arrieta H, Pardo E (1998) Solution of Stokes equations by moving least-squares. Commun Numer Methods Eng 14:907–920
Douglas J Jr, Wang J (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comput 52(186):495–508
Duan HY, Liang GP (2003) On the velocity-pressure-vorticity least-squares mixed finite element method for the 3D Stokes equations. SIAM J Numer Anal 41(6):2114–2130
Dubois F (2002) Vorticity–velocity–pressure formulation for the Stokes problem. Math Methods Appl Sci 25(13):1091–1119
Dutt PK, Kishore Kumar N, Upadhyay CS (2007) Non-conforming $h-p$ spectral element methods for elliptic problems. Proc Indian Acad Sci (Math Sci) 117(1):109–145
Eason ED (1976) A review of least-squares methods for solving partial differential equations. Int J Math 10:1021–1046
Gordan WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21(2):109–129
Gunzburger MD, Bochev PB (2009) Least-squares finite element methods. Springer, Berlin
Heinrichs W (2004) Least-squares spectral collocation for the Navier–Stokes equations. J Sci Comput 21:81–90
Huges TJR, Franca LP (1987) A new finite element formulation for computational fluid mechanics: VII. The Stokes problem with various wellposed boundary conditions: symmetric formulation that converges for all velocity/pressure spaces. Comput Methods Appl Mech Eng 65(1):85–96
Huges TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comput Methods Appl Mech Eng 59:85–99
Ito K, Qiao J (2008) A high order compact MAC finite difference scheme for the Stokes equations: augmented variable approach. J Comput Phys 227:8177–8190
Jiang BN (1998) On the least-squares method. Comput Methods Appl Mech Eng 152:239–257
Kim SD, Shin BC (2002) H^{-1} least-squares method for the velocity-pressure-stress formulation of the Stokes problem. Appl Numer Math 40(4):451–465
Kim SD, Lee HC, Shin BC (2003) Least-squares spectral collocation method for the Stokes equations. Numer Methods Partial Differ Equ 20(1):128–139
Kishore Kumar N (2014) Nonconforming spectral element method for elasticity interface problems. J Appl Math Inf 32(5–6):761–781
Larin M, Reusken A (2007) A comparative study of efficient iterative solvers for generalized Stokes equations. Numer Linear Algorithms Appl 15(1):13–34
Li X (2015) A meshless interpolating Galerkin boundary node method for Stokes flows. Eng Anal Bound Elements 51:112–122
Li R, Sun Z, Yang Z (2020) A discontinuous Galerkin method for Stokes equations by divergence-free patch reconstruction. Numer Methods Partial Differ Equ 36:756–771
Mu L, Ye X (2017) A simple finite element method for the Stokes equations. Adv Comput Math 43:1305–1324
Mohapatra S, Ganesan S (2016) Non-conforming least squares spectral element formulation for Oseen equations with applications to Navier–Stokes equations. Numer Funct Anal Optim 37(10):1295–1311
Mohapatra S, Dutt P, Rathish Kumar BV, Gerritsma Marc I (2020) Non-conforming least-squares spectral element method for Stokes equations on non-smooth domains. J Comput Appl Math 372:112696
Manouzi H (1990) The Stokes problem and the mixed boundary conditions. C R Math Rep Acad Sci Canada XII(5):155–160
Montlaur A, Fernandez-Mendez S (2014) Analysis of the discontinuous Galerkin interior penalty method with Solenoidal approximations for the Stokes equations. Int J Numer Anal Model 11(4):715–725
Montlaur A, Fernandez-Mendez S, Huerta A (2008) Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int J Numer Method Fluids 57(9):1071–1092
Nafa K (2009) Improved local projection for the generalized Stokes problem. Adv Appl Math Mech 1(6):862–873
Proot MMJ, Gerritsma MI (2002a) A least-squares spectral element formulation for the Stokes problem. J Sci Comput 17:285–296
Proot M, Gerritsma MI (2002b) Least-squares spectral elements applied to the Stokes problem. J Comput Phys 181:454–477
Proot MMJ, Gerritsma MI (2006) Mass and momentum conservation of the least-squares spectral element method for Stokes problem. J Sci Comput 27:389–401
Rui H, Li X (2017) Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J Numer Anal 55(3):1135–1158
Sarin V, Samesh A (1998) An efficient iterative method for the generalized Stokes problem. SIAM J Sci Comput 19(1):206–226
Schumack MR, Schultz WW, Boyd JP (1991) Spectral method solution of the Stokes equations on nonstaggered grids. J Comput Phys 94(1):30–58
Schwab Ch (1998) p and h – p Finite element methods. Clarendon Press, Oxford
Song L, Li PW, Gu Y, Fan CM (2020) Generalized finite difference method for solving stationary 2D and 3D Stokes equations with a mixed boundary condition. Comput Math Appl 80:1726–1743
Strikwerda JC (1984a) An iterative method for solving finite difference approximations to the Stokes equations. SIAM J Numer Anal 21(3):447–458
Strikwerda JC (1984b) Finite difference methods for Stokes and Navier–Stokes equations. SIAM J Sci Stat Comput 5(1):56–68
Tan F, Zhang Y, Li Y (2013) Development of a meshless hybrid boundary node method for Stokes flows. Eng Anal Bound Element 37:899–908
Traska N, Maxey M, Hub Xiaozehe, (2016) A compatible higher-order meshless method for the Stokes equations with applications to suspension flows. arXiv:1611.03911
Wang J, Wang Y, Ye X (2009) A robust numerical method for Stokes equations based on divergence-free $H(\text{DIV})$ finite element methods. SIAM J Sci Comput 31:2784–2802

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.