Polygenic hazard score is associated with prostate cancer in multi-ethnic populations

Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS$_1$) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS$_2$ (PHS$_1$, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS$_2$ is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European ($n = 71,856$), Asian ($n = 2,382$), and African ($n = 6,253$) genetic ancestries ($p < 10^{-180}$). Comparing the 80th/20th PHS$_2$ percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS$_2$ risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.
Prostate cancer is the second most common cancer diagnosed in men worldwide, causing substantial morbidity and mortality\(^1\). Prostate cancer screening may reduce morbidity and mortality\(^2-3\), but to avoid overdiagnosis and overtreatment of indolent disease\(^6-9\), it should be targeted and personalized. Prostate cancer age at diagnosis is important for clinical decisions regarding if/when to initiate screening for an individual\(^10,11\). Survival is another key cancer endpoint recommended for risk models\(^12\).

Genetic risk stratification is promising for identifying individuals with a greater predisposition for developing cancer\(^13-16\), including prostate cancer\(^17\). Polygenic models use common variants—identified in genome-wide association studies—whose combined effects can assess the overall risk of disease development\(^18,19\). Recently, a polygenic hazard score (PHS) was developed as a weighted sum of 54 single-nucleotide polymorphisms (SNPs) that models a man’s genetic predisposition for developing prostate cancer\(^13\). Validation testing was done using ProtecT trial data\(^2\) and demonstrated the PHS to be associated with age at prostate cancer diagnosis, including aggressive prostate cancer\(^13\). However, the development and validation datasets were limited to men of European ancestry. While genetic risk models might be important clinical tools for prognostication and risk stratification, using them may worsen health disparities\(^20-24\) because most models are constructed using European data and may underestimate genetic variants important in persons of non-European ancestry\(^20-24\). Indeed, this is particularly concerning in prostate cancer, as race/ethnicity is an important prostate cancer risk factor; diagnostic, treatment, and outcomes disparities continue to exist between different races/ethnicities\(^25,26\).

Here, we assessed PHS performance in a multi-ethnic dataset that includes individuals of European, African, and Asian genetic ancestry. This dataset also includes long-term follow-up information, affording an opportunity to evaluate PHS for association with fatal prostate cancer.

Results

Adaptation of PHS for OncoArray. Of the 30 SNPs from PHS\(_1\) not directly genotyped on OncoArray, proxy SNPs were identified for 22 (linkage disequilibrium ≥ 0.94). Therefore, PHS\(_2\) included 46 SNPs, in total (Supplementary Information). PHS\(_2\) association with age at aggressive prostate cancer diagnosis in ProtecT was similar to that previously reported for PHS\(_1\) (\(z = 21.7, p = 3.6 \times 10^{-104}\) for PHS\(_1\); \(z = 21.4, p = 1.3 \times 10^{-101}\) for PHS\(_2\)). HR\(_{80/50}\) was 4.68 [95% CI: 3.62–6.15] for PHS\(_2\), compared to 4.61 [3.52–5.99] for PHS\(_1\).

PHS association with any prostate cancer in OncoArray. PHS\(_2\) was associated with age at prostate cancer diagnosis in all three OncoArray-defined genetic ancestry groups (Table 1). Comparing the 80th and 20th percentiles of genetic risk, men with high PHS had an HR of 5.32 [4.99–5.70] for any prostate cancer. Within each genetic ancestry group, men with high PHS had HRs of 5.54 [5.18–5.93], 4.49 [3.23–6.33], and 2.54 [2.08–3.10] for men of European, Asian, and African ancestry, respectively.

PHS association with aggressive prostate cancer in OncoArray. PHS\(_2\) was associated with age at aggressive prostate cancer diagnosis in all three OncoArray-defined genetic ancestry groups (Table 2). Comparing the 80th and 20th percentiles of genetic risk, men with high PHS had an HR of 5.88 [5.46–6.33] for aggressive prostate cancer; within each genetic ancestry group, men with high PHS had HRs of 5.62 [5.23–6.05], 5.16 [4.79–5.55], and 2.43 [2.26–2.61] for men of European, Asian, and African ancestry, respectively.

PHS association with fatal prostate cancer in OncoArray. PHS\(_2\) was associated with age at prostate cancer death for all men in the multi-ethnic dataset (\(z = 15.9, p = 6.3 \times 10^{-57}\)). Table 3 shows z-scores and corresponding HRs for fatal prostate cancer. Comparing the 80th and 20th percentiles of genetic risk, men with high PHS had a HR of 5.68 [5.07–6.46] for prostate cancer death.

Sensitivity analyses. Sensitivity analyses demonstrated that large changes in assumed population incidence had minimal effect on the calculated HRs for any, aggressive, or fatal prostate cancer (Supplementary Information).

PHS and family history. Family history was also associated with any prostate cancer (\(z = 39.7, p < 10^{-300}\)), aggressive prostate cancer (\(z = 32.4, p = 2.7 \times 10^{-230}\)), and fatal prostate cancer (\(z = 8.76, p = 1.4 \times 10^{-18}\)) in the multi-ethnic dataset. Among those with known family history, the combination of family history and PHS performed better than family history alone (log-likelihood \(p < 10^{-300}\)). This pattern held true when analyses were repeated on each genetic ancestry. Additional family history analyses are reported in the Supplementary Information.

PHS associations with aggressive prostate cancer using alternative ancestry groupings

Agnostic genetic ancestry groupings with fastSTRUCTURE. With fastSTRUCTURE, the optimal model was the one with K = 2 clusters: cluster 1 had mainly men of European OncoArray-defined genetic ancestry and self-reported race/ethnicity, cluster 2 had only men of African OncoArray-defined genetic ancestry and mostly Black/African American self-reported race/ethnicity, while the Admixed cluster included men of all Oncotype-defined genetic ancestries. Table 5 demonstrates the HR\(_{80/20}\) for aggressive prostate cancer for these K = 2 fastSTRUCTURE-defined clusters. Comparing the 80th and 20th percentiles of genetic risk, men with high PHS had HRs for aggressive prostate cancer of 5.60 [5.55, 5.64], 2.06 [2.03, 2.09], and 5.05 [4.89, 5.21] for

Table 1 Association of PHS with prostate cancer.

OncoArray genetic ancestry	z (p Value)	Hazard ratios [95% CI] comparing percentiles of PHS₂
All (n = 80,491)	54.3 [p < 10⁻³⁰⁰]	0.45 [0.43–0.46] 2.39 [2.31–2.47] 4.21 [3.99–4.47] 5.32 [4.99–5.70]
European (n = 71,586)	55.8 [p < 10⁻³⁰⁰]	0.44 [0.43–0.45] 2.44 [2.35–2.53] 4.34 [4.09–4.60] 5.54 [5.18–5.93]
Asian (n = 2382)	46.7 [p < 10⁻³⁰⁰]	0.48 [0.40–0.56] 2.15 [1.81–2.57] 2.77 [2.50–3.15] 4.49 [3.23–6.33]
African (n = 6253)	28.7 [p = 3.8 × 10⁻¹¹¹]	0.63 [0.57–0.69] 1.59 [1.44–1.76] 2.27 [1.91–2.71] 2.54 [2.08–3.10]

Hazard ratios (HRs) are shown comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk (≥80th percentile), average risk (30–70th percentile), and lowest 20% of genetic risk (≤20th percentile) across genetic ancestry. p Values reported are two-tailed from the Cox models.
Table 2 Association of PHS with aggressive prostate cancer.

OncoArray genetic ancestry	z (p Value)	Hazard ratios [95% CI] comparing percentiles of PHS₂			
		HR_{98/50} ≥98th percentile vs. 30–70th percentile	HR_{80/20} ≥80th percentile vs. 30–70th percentile	HR_{98/50} ≥98th percentile vs. 30–70th percentile	HR_{80/20} ≥80th percentile vs. 30–70th percentile
All (n = 58,600)	47.4 (p < 10^{−300})	0.43 [0.41–0.44]	2.50 [2.42–2.60]	4.61 [4.33–4.90]	5.88 [5.48–6.34]
European (n = 53,608)	46.4 (p < 10^{−300})	0.44 [0.42–0.45]	2.45 [2.36–2.55]	4.40 [4.15–4.70]	5.62 [5.25–6.05]
Asian (n = 1806)	43.8 (p < 10^{−300})	0.45 [0.37–0.55]	2.32 [1.88–2.89]	4.14 [2.92–6.03]	5.16 [3.45–7.78]
African (n = 3186)	23.6 (p = 7.2 × 10^{−23})	0.64 [0.49–0.81]	1.55 [1.23–2.00]	2.18 [1.44–3.43]	2.43 [1.51–4.05]

Hazard ratios (HRs) derived from Cox proportional hazards models are shown comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk (≥80th percentile), average risk (30–70th percentile), and lowest 20% of genetic risk (≤20th percentile) across genetic ancestry. p Values reported are two-tailed from the Cox models.

Table 3 Association of PHS with death from prostate cancer.

Ancestry	z (p Value)	Hazard ratios [95% CI] comparing percentiles of PHS₂			
		HR_{98/50} ≥98th percentile vs. 30–70th percentile	HR_{80/20} ≥80th percentile vs. 30–70th percentile	HR_{98/50} ≥98th percentile vs. 30–70th percentile	HR_{80/20} ≥80th percentile vs. 30–70th percentile
All (n = 78,221)	15.9 (p = 6.3 × 10^{−17})	0.43 [0.41–0.56]	2.47 [2.33–2.64]	4.46 [4.04–4.98]	5.68 [5.07–6.46]

Hazard ratios (HRs) derived from Cox proportional hazards models are shown comparing men in the highest 2% of genetic risk (≥98th percentile of PHS), highest 20% of genetic risk (≥80th percentile), average risk (30–70th percentile), and lowest 20% of genetic risk (≤20th percentile). p Values reported are two-tailed from the Cox models.

Table 4 Multivariable models with both PHS and family history of prostate cancer (≥1 first-degree relative affected) for association with any prostate cancer in the multi-ethnic dataset, and by genetic ancestry.

OncoArray genetic ancestry	Variable	beta	z-score	p Value	HR
All (n = 46,030)	PHS	1.98	53.3	<10^{−300}	4.48
Family history		0.94	38.6	<10^{−300}	2.55
European (n = 39,445)	PHS	2.06	56.2	<10^{−300}	4.80
Family history	PHS	0.92	38.1	<10^{−300}	2.50
Asian (n = 1028)	PHS	1.89	50.7	<10^{−300}	4.17
Family history		0.72	21.2	9.5 × 10^{−100}	2.05
African (n = 5557)	PHS	1.11	26.2	2.6 × 10^{−151}	2.22
Family history		1.14	46.7	<10^{−300}	3.11

This analysis is limited to individuals with known family history. Both family history and PHS were significantly associated with any prostate cancer in the combined models. Hazard ratios (HRs) for family history were calculated as the exponent of the beta from the multivariable Cox proportional hazards regression⁹. The HR for PHS in the multivariable models was estimated as the HR_{80/50} (men in the highest 20% vs. those in the lowest 20% of genetic risk by PHS₂) in each cohort. p Values reported are two-tailed from the Cox models. The model with PHS performed better than family history alone (log-likelihood p < 10^{−300}).

Table 5 Association of PHS with aggressive prostate cancer, by two clusters using fastSTRUCTURE.

fastSTRUCTURE K	Cluster	HR_{80/20} ≥80th percentile vs. ≤20th percentile
K = 2	1	5.60 [5.55–5.64]
	2	2.06 [2.03–2.09]
	Admixed	5.05 [4.89–5.21]

Hazard ratios (HRs) derived from Cox proportional hazards models are shown comparing men in the highest 20% of genetic risk (≥80th percentile) vs. the lowest 20% of genetic risk (≤20th percentile).

Discussion

These results confirm the previously reported association of PHS with age at prostate cancer diagnosis in Europeans and show that this finding generalizes to a multi-ethnic dataset, including men of European, Asian, and African ancestry. PHS is also associated with age at aggressive prostate cancer diagnosis and at prostate cancer death. Comparing the highest and lowest quintiles of genetic risk, men with high PHS had HRs of 5.32, 5.88, and 5.68 for any prostate cancer, aggressive prostate cancer diagnosis, and at prostate cancer death, respectively.

We found that PHS is associated with prostate cancer in men of European, Asian, and African genetic ancestry (and a wider range of self-reported race/ethnicities). Current prostate cancer screening guidelines suggest possible initiation at earlier ages for men of African ancestry, given higher incidence rates and worse survival when compared to men of European ancestry²⁹. Using the PHS to stratify men might help with decisions regarding when to initiate prostate cancer screening; perhaps a man with African genetic ancestry in the lowest percentiles of genetic risk by PHS could safely delay or forgo screening to decrease the possible harms associated with overdiagnosis and overtreatment³, while a man in the highest risk percentiles might consider screening at an earlier age. Similar

Self-reported race/ethnicity. HRs for aggressive prostate cancer comparing the 80th and 20th percentiles of genetic risk when participants are stratified by their self-reported race/ethnicity are shown in the Supplementary Information.
reasoning applies to men of all genetic ancestries. Risk-stratified screening should be prospectively evaluated.

PHS performance was better in those with OncoArray-defined European and Asian genetic ancestry than in those with African ancestry. For example, comparing the highest and lowest quintiles of genetic risk, men with OncoArray-defined European and Asian genetic ancestry with high PHS had HRs for any prostate cancer of 5.54 and 4.49 times, respectively, while the analogous HR for men of African genetic ancestry was 2.54. This trend was also observed for aggressive prostate cancer. Moreover, the optimal fastSTRUCTURE clustering of our dataset (K = 2) yielded one cluster that consisted of almost only men of African ancestry (by both self-report and OncoArray-defined genetic ancestry) and had inferior risk stratification with PHS (HR 2.06), compared to the performance observed in the other cluster (nearly all European) and an admixed cluster (HRs 5.60 and 5.05, respectively). Overall, these results suggest PHS can differentiate men of higher and lower risk in each ancestral group, but the range of risk levels may be narrower in those of African ancestry. Possible reasons for relatively diminished performance include increased genetic diversity with less linkage disequilibrium in those of African genetic ancestry27–29. Known health disparities may also contribute25, as the availability—and timing—of PSA results may depend on healthcare access. Alarming, there has historically been a poor representation of African populations in clinical or genomic research studies20,21. This pattern is reflected in the present study, where most men of African genetic ancestry were missing clinical diagnosis information used to determine disease aggressiveness. That such clinical information is less available for men of African ancestry also leaves open the possibility of systematic differences in the diagnostic workup—and therefore the age of diagnosis—across different ancestry populations. These are critical health disparities that will need to be addressed (and ultimately eliminated) to ensure equitable and accurate genomic prostate cancer stratification for all men. Notwithstanding these caveats, the present PHS is associated with age at prostate cancer diagnosis in men of African ancestry, possibly paving the way for more personalized screening decisions for men of African descent. Promising efforts are also underway to further improve PHS performance in men of African ancestry30.

The first PHS validation study used data from ProtecT, a large prostate cancer trial2,13. ProtecT’s screening design yielded biopsy results from both controls and cases with PSA ≥ 3 ng/mL, making it possible to demonstrate improved accuracy and efficiency of prostate cancer screening with PSA testing. Limitations of the ProtecT analysis, though, include few recorded prostate cancer deaths in the available data, and the exclusion of advanced cancer from that trial2. The present study includes long-term observation, with both early and advanced disease18, allowing for evaluation of PHS association with any, aggressive, and fatal prostate cancer; we found PHS to be associated with all outcomes.

Age is critical in clinical decisions of whether men should be offered prostate cancer screening31–34 and in how to treat men diagnosed with prostate cancer31,32. Age may also inform prognosis32,35. Age at diagnosis or death is therefore of clinical interest in inferring how likely a man is to develop cancer at an age when he may benefit from treatment. One important advantage of the survival analysis used here is that it permits men without cancer at the time of the last follow-up to be censored while allowing for the possibility of them developing prostate cancer (including aggressive or fatal prostate cancer) later on. Prostate cancer death is a hard endpoint with less uncertainty than clinical diagnosis (which may vary with screening practices and delayed medical attention). PHS may help identify men with a high (or low) genetic predisposition to develop lethal prostate cancer and could assist physicians in deciding when to initiate screening.

Current guidelines suggest considering a man’s individual cancer risk factors, overall life expectancy, and medical comorbidities when deciding whether to screen2. The most prominent clinical risk factors used in practice are family history and race/ethnicity46,47. Combined PHS and family history performed better than either alone in this multi-ethnic dataset. This finding is consistent with a prior report that PHS adds considerable information over family history alone. The prior study did not find an association of family history with age at prostate cancer diagnosis, perhaps because the universal screening approach of the ProtecT trial diluted the influence of family history on who is screened in typical practice13. In the present study, family history and PHS appear complementary in assessing prostate cancer risk genetic. Moreover, the HRs for PHS suggest clinical relevance similar or greater to predictive tools routinely used for cancer screening (e.g., breast cancer) and for other diseases (e.g., diabetes and cardiovascular disease). HRs reported for those tools are around 1–3 for disease development or other adverse outcome38–42; HRs reported here for PHS (for any, aggressive, or fatal prostate cancer) are similar or greater.

Limitations to this work include that the dataset comes from multiple, heterogenous studies, from various populations with variable screening rates. This allowed for a large, multi-ethnic dataset that includes clinical and survival data, but comes with uncertainties avoided in the ProtecT dataset used for original validation. However, the heterogeneity would likely reduce the PHS performance, not systematically inflate the results. Second, we note that no germline SNP tool, including this PHS, has been shown to discriminate men at risk of aggressive prostate cancer from those at risk of only indolent prostate cancer. Third, while the OncoArray-defined and fastSTRUCTURE genetic ancestry classifications used here may be more accurate than self-reported race/ethnicity alone43 and allowed for evaluation of admixed genetic ancestry, detailed analysis of local ancestry was not assessed. As noted above, clinical data availability was not uniform across contributing studies and was lower in men of OncoArray-defined African genetic ancestry. Efforts to improve genetic risk prediction should focus on consistent data collection patterns and elimination of data disparities so that models are widely applicable for all men. We also found that while the optimal fastSTRUCTURE model had K = 2 clusters for risk stratification men for aggressive prostate cancer, models with more K clusters also produced comparable (or larger ranges) of hazard ratios for risk stratification. The ability of these models with more K clusters to risk-stratify men well (while possibly being less representative of the available data) emphasizes the dire need for more complex and deeper studies evaluating the intersection of genetics, the granularity of ancestry, and prostate cancer risk. In addition, the PHS may not include all SNPs associated with prostate cancer; in fact, over 60 additional SNPs have been reported since the development of the original PHS18. Some of these SNPs are ethnicity-specific, including within non-European populations44–46, and will be included in further model optimization to improve prostate cancer risk stratification. Future work could also evaluate the PHS performance in relation to epidemiological risk factors associated with prostate cancer risk beyond those currently used in clinical practice (i.e., family history and race/ethnicity). Finally, various circumstances and disease-modifying treatments may have influenced post-diagnosis survival to an unknown degree. Despite this possible source of variability in survival among men with fatal prostate cancer, PHS was still associated with age at death, an objective, and meaningful endpoint. Future development and optimization hold promise for improving upon the encouraging risk stratification achieved here in men of different genetic ancestries, particularly African.

In summary, PHS was associated with age at any and aggressive prostate cancer, and at death from prostate cancer in a multi-ethnic
dataset. PHS performance was relatively diminished in men of African genetic ancestry, compared to performance in men of European or Asian genetic ancestry. PHS risk-stratifies men of various genetic ancestries for prostate cancer and should be prospectively studied as a means to individualize screening strategies seeking to reduce prostate cancer morbidity and mortality.

Methods
Participants. We obtained data from the OncoArray project\(^{47}\) that had undergone quality control steps\(^{34}\). This dataset includes 91,480 men with genotype and phenotype data from 64 studies (Supplementary Information). Individuals whose data were used in the prior development or validation of the original PHS model (PHS\(_1\)) were excluded (\(n = 10,989\))\(^{35}\), leaving 80,491 in the independent dataset used here. Table S8 describes available data. Individuals not meeting the endpoint for each analysis were censored at age of last follow-up. All contributing studies were approved by the relevant ethics committees; written informed consent was acquired from the study participants\(^{48}\). The present analyses used de-identified data from the PRACTICAL consortium.

Polygenic hazard score. The original PHS\(_1\) was validated for association with age at prostate cancer diagnosis in men of European ancestry using a survival analysis\(^{13}\). To ensure the score was not simply identifying men at risk of indolent disease, PHS\(_1\) was also validated for association with age at aggressive prostate cancer (defined as an intermediate-risk disease, or above\(^{5}\)) diagnosis\(^{36}\). PHS\(_1\) was calculated as the vector product of a patient’s genotype \(X_i\) for \(n\) selected SNPs and the corresponding parameter estimates \(\beta_i\) from a Cox proportional hazards regression:

\[
PHS = \sum_{i=1}^{n} X_i \beta_i
\]

The 54 SNPs in PHS\(_1\) were selected using PRACTICAL consortium data \((n = 31,747\) men) genotyped with a custom array (iCOGS, Illumina, San Diego, CA)\(^{13}\).

Adapting the PHS to OncoArray. Genotyping for the present study was performed using a commercially available, cancer-specific array (OncoArray, Illumina, San Diego, CA)\(^{18}\). Twenty-four of the 54 SNPs in PHS\(_1\) were directly genotyped on OncoArray. We identified proxy SNPs for those not directly genotyped and recalculated the SNP weights in the same dataset used for the original development of PHS\(_1\) (Supplementary Methods).

The performance of the adapted PHS (PHS\(_2\)), was compared to that of PHS\(_1\) in the ProtecT dataset originally used to validate PHS\(_1\) \((n = 6411)\). PHS\(_2\) was calculated for all patients in the multi-ethnic dataset and used as the sole independent variable in Cox proportional hazards regressions for the endpoint of age at prostate cancer diagnosis. Due to the potential for Cox proportional hazards results to be biased by a higher number of cases in our dataset than in the general population, sample-weight corrections were applied to all Cox models using population data from Sweden\(^{13,33}\) (additional details are in Supplementary Information). Significance was set at \(p = 0.01\)\(^{13}\).

These Cox proportional hazards regressions (with PHS\(_2\) as the sole independent variable and age at prostate cancer diagnosis as the outcome) were then repeated for subsets of data, stratified by genetic ancestry \((n = 80,491)\). HRs and 95% CIs for each genetic ancestry group were calculated to make the following comparisons: HR\(_{98/50}\), men in the highest 2% of genotypes vs. those with average risk \((30\text{-}70\%\) percentile\); HR\(_{20/50}\), men in the lowest 20% vs. those with average risk; HR\(_{20/0}\), men in the highest 20% vs. those with average risk, HR\(_{20/20}\) men in the lowest 20% vs. those with average risk; and HR\(_{0/20}\) men in the highest 20% vs. lowest 20%, CIs were determined by bootstrapping 1000 random samples from each genetic ancestry group\(^{52}\) while maintaining the same number of cases and controls. HRs and CIs were calculated for age at prostate cancer diagnosis separately for each genetic ancestry group.

Given that the overall incidence of prostate cancer in different populations varies, we performed a sensitivity analysis of the population case/control numbers, allowing the population incidence to vary from 25 to 400% of that reported in Sweden (chosen as an example population; Supplementary Information).

Aggressive prostate cancer. Recognizing that not all prostate cancer is clinically significant, we also tested PHS\(_2\) for association with age at aggressive prostate cancer diagnosis in the multi-ethnic dataset. For these analyses, we included cases that had known tumor stage, Gleason score, and PSA at diagnosis \((n = 60,617\) cases, Table 6). Aggressive prostate cancer cases were those that met any of the following criteria\(^{37}\): Gleason score \(\geq 7\), PSA \(\geq 10\) ng/mL, T3-T4 stage, nodal metastases, or distant metastases. As before, Cox proportional hazards models and sensitivity analysis were used to assess the association.

Fatal prostate cancer. Using an even stricter definition of clinical significance, we evaluated the association of PHS\(_2\) with age at prostate cancer death in the multi-ethnic dataset. All cases (regardless of staging completeness) and controls were included, and the endpoint was the age at death due to prostate cancer. This analysis was not stratified by genetic ancestry due to low numbers of recorded prostate cancer deaths in the non-European datasets. The cause of death was

Table 6 Participant characteristics, \(n = 80,491\).
OncoArray-defined genetic ancestry
All
Participants
Controls
Prostate cancer cases
Aggressive prostate cancer cases\(^a\)
Fatal prostate cancer cases
Number of participants with known first-degree family history information
Family history of prostate cancer available (prostate cancer cases, controls)
Age demographics
Median age, at diagnosis (IQR)
Median age, at last follow up (IQR)

\(^a\)Aggressive prostate cancer defined as: Gleason score \(\geq 7\), PSA \(\geq 10\) ng/mL, T3–T4 stage, nodal metastases, or distant metastases. IQR interquartile range.
determined by the investigators of each contributing study using cancer registries and/or medical records (Supplementary Information). At last follow-up, 3983 men had died from prostate cancer, 5806 had died from non-prostate cancer causes, and 70,702 were still alive. The median age at the last follow-up was 70 years (IQR: 63–76). As before, Cox proportional hazards models and sensitivity analysis were used to assess the association.

PHS and family history. Prostate cancer family history was also tested for association with aggressive, or fatal prostate cancer. Information on family history was standardized across studies included in PRACTICAL consortium data. A family history of prostate cancer was defined as the presence or absence of a first-degree relative with a prostate cancer diagnosis. There were 46,030 men with available prostate cancer family history data.

Cox proportional hazards models were used to assess family history for association with any, aggressive, or fatal prostate cancer. To evaluate the relative importance of each, a multivariable model using both family history and PHS was compared to using family history alone (log-likelihood test; available prostate cancer family history data).

Explorations of alternative ancestry groupings

Agnostic genetic ancestry groupings with FastSTRUCTURE

The primary analyses, above, used OncoArray-defined genetic ancestries, as prior reports have shown genetic ancestry may be more informative than self-reported race/ethnicities. However, for the purpose of this study, the OncoArray-defined categories may underestimate the impact of the inherent complexity of human genetic ancestry. Therefore, we further explored the impact of an array of alternative genetic ancestry subgroup definitions on PHS, performance using fastSTRUCTURE, which infers global admixture/ethnicity via a Bayesian approach. We ran fastSTRUCTURE v1.0 on all individuals in the multi-ethnic dataset using approximately 2300 ancestry informative markers and multiple (K) levels of population complexity to agnostically cluster the data into K = 2–6 populations. For each iteration of K populations, participants were placed into the cluster for which their maximum admixture proportion was ≥0.8. Those participants without a cluster for which their maximum admixture proportion was ≥0.8 were placed into a separate group termed “admixed.” The optimal number of clusters (K) for fastSTRUCTURE was chosen as that which maximized the marginal likelihood of the data. PHS was evaluated for association with aggressive prostate cancer (HR≥80/20) after stratification by each K population subgroup.

A comparison of fastSTRUCTURE clustering, OncoArray-determined genetic ancestry, and self-reported race/ethnicity was compiled. OncoArray-defined genetic ancestry was mostly concordant with self-reported race/ethnicity. Participants with other/unknown self-reported race/ethnicity were mostly grouped into OncoArray’s European genetic ancestry. Additional details are shown in the Supplementary Information.

Self-reported race/ethnicity. Finally, we also evaluated PHS performance for association with aggressive prostate cancer using participants’ self-reported race/ethnicity.

Data availability

PRACTICAL consortium data are available upon request to the Data Access Committee (http://practical.icr.ac.uk/blog/?page_id=135). Questions and requests for further information may be directed to PRACTICAL@icr.ac.uk. All other data are available within the Article, Supplementary information, or upon request to the authors.

References

1. Torre, L. A. et al. Global cancer statistics, 2012. *CA Cancer J. Clin.* 65, 87–108 (2015).

2. Hamey, F. C. et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. *N. Engl. J. Med.* 375, 1415–1424 (2016).

3. Bill-Axelson, A. et al. Radical prostatectomy or watchful waiting in prostate cancer—29-year follow-up. *N. Engl. J. Med.* 379, 2319–2329 (2018).

4. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. *N. Engl. J. Med.* 360, 2356–2357 (2009).

5. Jones, C. U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. *N. Engl. J. Med.* 365, 107–118 (2011).

6. NCCN Clinical Practice Guidelines in Oncology. Prostate Cancer. Version 1.2019.

7. Grossman, D. C. et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. *J. Am. Med. Assoc.* 319, 1901–1918 (2018).

8. Wolf, A. M. D. et al. American Cancer Society Guideline for the early detection of prostate cancer. *CA Cancer J. Clin.* 60, 70–98 (2010).

9. Ilic, D., Neuberger, M. M., Djulbegovic, M. & Dahm, P. Screening for prostate cancer. *Cochrane Database Syst. Rev.* 2013, CD004720 (2013).

10. Stangelberger A., Waldert M., Djavan B. Prostate cancer in elderly men. *Rev. Urol.* http://www.ncbi.nlm.nih.gov/pubmed/18660852 (2008).

11. Leitzmann M. F., Rohrmann S. Risk factors for the onset of prostate cancer: age, location, and behavioral correlates. *Clin. Epidemiol.* https://doi.org/10.2147/CLEP.S16747 (2012).

12. Kattan M. W., et al. American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognostic in the practice of precision medicine. *CA Cancer J. Clin.* https://doi.org/10.3322/caac.21339 (2016).

13. Seibert, T. M. et al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. *Br. Med. J.* 360, 1–7 (2018).

14. Witte, J. S. Personalized prostate cancer screening: improving PSA tests with genomic information. *Sci. Transl. Med.* 2, 62ps55 (2010).

15. Chen, H. et al. Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: results from the prostate cancer prevention trial. *Prostate* 76, 1120–1129 (2016).

16. Michalidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. *Nat. Genet.* 45, 353–361 (2013).

17. Fantus, R. J. & Helland, B. T. Germline genetics of prostate cancer: time to incorporate genetics into early detection tools. *Clin. Chem.* 65, 74–79 (2019).

18. Schork, N. J. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. *Nat. Genet.* 50, 928–938 (2018).

19. Benafis S., Kote-Jarai Z., Eeles R. A. A review of prostate cancer Genome-Wide Association Studies (GWAS). *Cancer Epidemiol Biomarkers Prev.* https://doi.org/10.1158/1055-9965.EPI-16-1046 (2016).

20. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. *Nat. Genet.* 51, 584–591 (2019).

21. Duncan L., et al. Analysis of polygenic risk score usage and performance in diverse human populations. *Nat Commun.* https://doi.org/10.1038/s41467-019-11112-0 (2019).

22. Petrovski S., Goldstein D. B. Unequal representation of genetic variation across ancestry groups creates healthcare inequality in the application of precision medicine. *Genome Biol.* https://doi.org/10.1186/s13059-016-1016-y (2016).

23. Grinde, K. E. et al. Generalizing polygenic risk scores from Europeans to Hispanics/Latinos. *Genet. Epidemiol.* 43, 50–62 (2019).

24. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. *Nature 538*, 1–164 (2016).

25. DeSantis, C. E. et al. Cancer statistics for African Americans, 2016; progress and opportunities in reducing racial disparities. *CA Cancer J. Clin.* 66, 290–308 (2016).

26. Tsodikov, A. et al. Is prostate cancer different in black men? Answers from three natural history models. *Cancer* 123, 2312 (2017).

27. Rotimi, C. N. et al. The genomic landscape of African populations in health and disease. *Hum. Mol. Genet.* 26, R225–R236 (2017).

28. Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for modern human origins, and complex disease mapping. *Annu. Rev. Genomics Hum. Genet.* 9, 403–433 (2008).

29. Gomze F., Harbo J., Tishkoff S. A. Genetic variation and adaptation in Africa: Implications for human evolution and disease. *Cold Spring Harbor Perspect. Biol.* https://doi.org/10.1101/cshperspect.a08524 (2014).

30. Karunamuni R., et al. African-specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer. *Int. J. Cancer.* https://doi.org/10.1002/ijc.290029262 (2020).

31. NCCN Guidelines Version 1.2019 Older Adult Oncology. (2019).

32. Bechis S. K., Carroll P. R., Cooperberg M. R. Impact of age at diagnosis on prostate cancer treatment and survival. *J. Clin. Oncol.* https://doi.org/10.1200/JCO.2010.30.2075 (2011).

33. Huyin-Le, M. P. et al. Age dependence of modern clinical risk groups for localized prostate cancer—a population-based study. *Cancer 126*, 1691–1699 (2020).

34. Huyin-Le, M. P. et al. A genetic risk score to personalize prostate cancer screening, applied to population data. *Cancer Epidemiol Biomark. Prev.* 29, 1731–1738 (2020).

35. Petterson A., Robinson D., Garino H., Holmberg L., Stattin P. Age at diagnosis and prostate cancer treatment and prognosis: a population-based cohort study. *Ann. Oncol.* https://doi.org/10.1093/annonc/mdy742 (2018).

36. Giri, V. N. & Beebe-Dimmer, J. L. Familial prostate cancer. *Semin. Oncol.* 43, 560–565 (2016).
37. Ankerst, D. P. et al. Prostate cancer prevention trial risk calculator 2.0 for the prediction of low- vs high-grade prostate cancer. Urology 83, 1362–1367 (2014).
38. Breast cancer risk assessment: long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncol. 4, e180174 (2018).
39. Yeh, H. C., Duncan, B. B., Schmidt, M. I., Wang, N. Y. & Brancati, F. L. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann. Intern. Med. 152, 10–17 (2010).

40. Wang, T. J. et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med. 350, 655–663 (2004).
41. Yang, X. et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med. Genet. 55, 546–554 (2018).
42. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).
43. Marini, S. et al. Comparison of genetic and self-identified ancestry in modeling intracerebral hemorrhage risk. Front. Neurosci. https://doi.org/10.3389/fneur.2018.00514 (2018).
44. Haiman C. A. et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001831 (2011).
45. Han, Y. et al. Generalizability of established prostate cancer risk variants in men of African ancestry. Int. J. Cancer 136, 1210–1217 (2015).
46. Cheng, L. et al. Evaluating genetic risk for prostate cancer among Japanese and Latinos. Cancer Epidemiol. Biomark. Prev. 21, 2048–2058 (2012).
47. Armitage, J. C. et al. The OncoArray consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomark. Prev. 26, 126–135 (2017).
48. Kote-Jarai, Z. et al. Multiple novel prostate cancer predisposition loci confirmed by an international study: the PRACTICAL consortium. Cancer Epidemiol. Biomark. Prev. 17, 2052–2061 (2008).
49. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2015).
50. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).
51. Efron B., Tibshirani R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy (Chapman and Hall/CRC, London, 2013).
52. Li Y., et al. FastPop: A rapid principal component derived method to infer ancestry. Nat. Commun. 7, 10 (2016).
53. Therneau, T. M. & Li, H. Computing the Cox Model for Case Cohort Designs. Lifetime Data Anal. 5, 99–112 (1999).
54. Karunamuni R. A., et al. The effect of sample size on polygenic hazard models for prostate cancer. Eur. J. Hum. Genet. https://doi.org/10.1038/s41431-020-0664-2 (2020).
55. Raj, A., Stephens, M. & Pritchard, J. K. FastSTRUCTURE: variance inflation for population structure in large SNP data sets. Genetics 197, 573–589 (2014).
56. Klein J. P., Houwenwijn H. C., Ibrahim J. G. S. & Pritchard, J. K. eds. Handbook of Survival Analysis (Chapman and Hall/CRC, London, 2013).

Acknowledgements

Acknowledgements for the PRACTICAL consortium and contributing studies are described in the Supplementary Material. This study was funded in part by a grant from the United States National Institute of Health/National Institute of Biomedical Imaging and Bioengineering (#K08EB026503), United States Department of Defense (#W81XWH-13-1-0391), University of California CRCC C21CR2060, the Research Council of Norway (#232237), K.G. Jebsen Stiftelsen, and South East Norway Health Authority. R.M. Martin is supported in part by the National Institute for Health Research Bristol Biomedical Research Centre. The CAP trial is funded by Cancer Research UK and the UK Department of Health (C11043/A426, C18281/A8145, C18281/A11326, C18281/A15064, and C18281/A24432). R.M. Martin was supported by a Cancer Research UK (C18281/A19169) program grant (the Integrative Cancer Epidemiology Programme). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily represent the official views of any of the funding agencies, who had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript. The authors have read and agreed to the manuscript for publication. Funding for the PRACTICAL consortium member studies is detailed in the Supplementary Information.

Author contributions

M.-P.H.-L., C.C.F., R.K., W.K.T., I.G.M., O.A.A., A.M.D., and T.M.S. designed the study concept, created the methodology, and analyzed/interpreted the data. M.-P.H.-L., M.E. M., R.A.E., Z.K.-J., K.M., J.S., N.P., J.B., H.G., D.E.N., J.L.D., F.C.H., R.M.M., S.F.N., B.G.N., F.W., C.M.T., G.G.G., A.W., D.A., R.C.T., W.I.B., W.Z., M.S., J.L.S., L.A.M., C.M.I.-W., A.S.K., O.C., S.B., S.K., D.C.S., C.C., E.M.G., F.M., K.-T.K., J.Y.P., S.A.L., G.M., R.J.M., S.N.T., B.S.R., T.-J.L., S.W., A.V., M.K., K.L.P., C.H., M.R.T., L.M., R.I., L. C.-A., H.B., E.M.I., R.K., C.J.L., S.L.N., K.D.R., H.P., A.R., L.F.N., J.H.F., M.G., N.U., F.C., M.G.-D., P.A.T., W.S.B., M.J.R., M.E.P., J.J.H., and T.M.S. acquired the data. M.-P.H.-L. and T.M.S. wrote the original drafts of the paper and Supplementary Information. All authors approved the final version of the paper and Supplementary Information.

Competing interests

A.M. Dale and T.M. Seibert report a research grant from the US Department of Defense. O.A. Andreassen reports research grants from K.G. Jebsen Stiftelsen, Research Council of Norway, and South East Norway Health Authority. N. Usmani reports grants from Astra Zeneca and Astellas, research collaboration, and financial in-kind support from Best Medical Canada and Concure Oncology. R.M. Martin reports grants from Cancer Research UK, during the conduct of the study. K.D. Sorensen reports grants from Danish Cancer Society, grants from Velux Foundation, during the conduct of the study. T.M. Seibert reports honoraria from Multimed Imaging Services Corporation for imaging segmentation and honoraria from Varian Medical Systems and WebMD, Inc. for educational content. A.S. Kibel reports advisory board memberships for Sanoit-Aventis, Dendreon, and Profound. R.A. Edees reports honoraria from GU-ASCO, honoraria/speaker fees from Janssen, honoraria from a invited talk to the University of Chicago, and educational honoraria from Bayer/Epleson. K.D. Sorensen reports personal fees from AstraZeneca, personal fees from Sanoit, outside the submitted work. N. Usmani reports honoraria from Janssen Canada and Bayer, outside the submitted work. M. Gamulki reports speaker/advisory board/travel fees for BMS, Pfizer, Novartis, Astellas, Sanoit, Janssen, Roche, Sandzob, Aragen, Bayern, PharmaSwiss, MSD, Alvogen. M. Gamulki also reports non-financial report for drugs from BMS, Roche, Janssen. A.M. Dale and T.M. Seibert report a patent (PRACTICAL consortium member studies is detailed in the Supplementary Information.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21287-0.

Correspondence and requests for materials should be addressed to T.M.S.

Peer review information Nature Communications thanks Ewan Birney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Minh-Phuong Huynh-Le1,2, Chun Chieh Fan2, Roshan Karunamuni1,2, Wesley K. Thompson3,4, Maria Elena Martínez5, Rosalind A. Eeles6,7, Zsofia Kote-Jarai5, Kenneth Muir8,9, Johanna Schleutker10,11, Nora Pashayan12,13,14, Jyotsna Batra15,16, Henrik Grönberg17, David E. Neal18,19,20, Jenny L. Donovan21, Freddie C. Hamdy22,23, Richard M. Martin24,25, Sune F. Nielsen26,27, Borge G. Nordestgaard28,29, Fredrik Wiklund30, Catherine M. Tangen31, Graham G. Giles32,33,34, Alicja Wolc35,36, Demetrios Albanes37, Ruth C. Travis38, William J. Blot39,40, Wei Zheng41, Maureen Sanderson42, Janet L. Stanford43,44, Lorelei A. Mucci45, Catharine M. L. West46, Adam S. Kibel47, Olivier Cussenot48,49, Sonja I. Berndt50, Stella Koutros50, Karina Dalsgaard Sørensen51,52, Cezary Cybulski53, Eli Marie Grindedal54, Florence Menegaux55,56, Kay-Tee Khaw57, Jong Y. Park58, Sue A. Ingles59, Christiane Maier60, Robert J. Hamilton61,62, Stephen N. Thibodeau63, Barry S. Rosenstein64,65, Yong-Jie Lu66, Stephen Watya67, Ana Vega68,69,70, Manolis Kogevinas71,72,73, Kathryn L. Penney74, Chad Huff75, Manuel R. Teixeira76,77, Luc Multigner78, Robin J. Leach79, Lisa Cannon-Albright80,81, Hermann Brenner82,83,84, Esther M. John85, Marie-Élise Parent104,105, Jennifer J. Hu106, Ian G. Mills107, Ole A. Andreassen108, Anders M. Dale109, Tyler M. Seibert110,111, UKGPCS collaborators, APCB (Australian Prostate Cancer BioResource), NC-LA PCaP Investigators, The IMPACT Study Steering Committee and Collaborators, CANary PASS Investigators, The Profile Study Steering Committee & The PRACTICAL Consortium

1Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA. 2Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA. 3Division of Biostatistics and Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA, USA. 4Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA. 5Moores Cancer Center, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA. 6The Institute of Cancer Research, London, UK. 7Royal Marsden NHS Foundation Trust, London, UK. 8Division of Population Health, Health Services Research and Primary Care, University of Manchester, Oxford Road, Manchester, UK. 9Warwick Medical School, University of Warwick, Coventry, UK. 10Institute of Biomedicine, Kinnamyllynkatu 10, FI-20014 University of Turku, Turku, Finland. 11Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland. 12University College London, Department of Applied Health Research, London, UK. 13Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, UK. 14Department of Applied Health Research, University College London, London, UK. 15Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. 16Translational Research Institute, Brisbane, QLD, Australia. 17Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden. 18Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK. 19Division of Biostatistics and Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA, USA. 20Cancer Epidemiology Unit, Nufi Department of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. 21Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA. 22Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 23Faculty of Medical Science, University of Oxford, Oxford, UK. 24Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia. 25Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia. 26Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia. 27Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 28Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. 29Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA. 30Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK. 31Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. 32Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. 33Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. 34Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 35Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA. 36Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA. 37Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia. 38Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK. 39Division of Epidemiology, Department of Medicine, National Cancer Institute, NIH, Bethesda, MD, USA. 40Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA. 41Division of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark. 42Division of Clinical Medicine, Aarhus University, Aarhus, Denmark. 43Department of Molecular Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA. 44Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA. 45Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 46Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK. 47Division of Urologic Surgery, Brigham and Womens Hospital, Boston, MA, USA. 48Sorbonne Universite, GRC n°5, AP-HP, Tenon Hospital, 4 Rue de la Chine, Paris, France. 49CeRePP, Tenon Hospital, Paris, France. 50Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA. 51Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark. 52Department of Clinical Medicine, Aarhus University, Aarhus, Denmark. 53International Hereditary Cancer Center,
