Subjective SES is associated with children’s neurophysiological response to auditory oddballs

Alexander L. Anwyl-Irvine*¹, Edwin S. Dalmaijer¹, Andrew Quinn², Amy Johnson¹, and Duncan E. Astle¹

¹ MRC Cognition and Brain Sciences Unit, University of Cambridge
² Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford

* Corresponding Author: Alexander.Irvine@mrc-cbu.cam.ac.uk

Keywords: Phonological processing, MEG, Auditory oddball, Socioeconomic status, Language development

© The Author(s) 2020. Published by Oxford University Press.
Subjective SES and neurophysiological response to auditory oddballs

Abstract

Language and reading acquisition are strongly associated with a child’s socioeconomic environment (SES). There are a number of potential explanations for this relationship. We explore one potential explanation—a child’s SES is associated with how children discriminate word-like sounds (i.e. phonological processing), a foundational skill for reading acquisition. Magnetoencephalography data from a sample of 71 children (aged 6 years 11 months – 12 years 3 months), during a passive auditory oddball task containing word and non-word deviants, were used to test where (which sensors) and when (at what time) any association may occur. We also investigated associations between cognition, education, and this neurophysiological response. We report differences in the neural processing of word and non-word deviant tones at an early N200 component (likely representing early sensory processing) and a later P300 component (likely representing attentional and/or semantic processing). More interestingly we found Parental Subjective SES (the parents rating of their own relative affluence) was convincingly associated with later responses, but there were no
significant associations with equivalised income. This suggests that the socioeconomic environment as rated by their parents, is associated with underlying phonological detection skills. Furthermore, this correlation likely occurs at a later time-point in information processing, associated with semantic and attentional processes. In contrast, household income is not significantly associated with these skills. One possibility is that the subjective assessment of SES is more impactful on neural mechanisms of phonological processing than the less complex and more objective measure of household income.

Introduction

The ability to decode sound structures within language – sometimes called phonological processing – is a key building block for language acquisition (Wagner & Torgesen 1987; Torgesen et al. 1994; Vihman 1996) and becoming a skilled reader (Wagner et al. 1997). Behavioural measures of language proficiency, reading ability, and phonological processing are all highly related to each other (Nation & Snowling 2004). This broad category of phonological processing can be sub-divided into lower-level abilities: phonological awareness, phonological/verbal working memory, and phonological retrieval (Wagner & Torgesen 1987). Here, we focus on the lowest level, *phonological awareness*, which describes the degree to which an individual can perceive, judge, and utilise constituent sounds of language (Hulme et al. 2005). We specifically look at how the processing underlying phonological awareness is associated with socioeconomic status (SES), and behavioural measurements.
Socio-economic status is associated with phonological processing, reading and language

SES is a factor that captures family or individual income, education, welfare, and cultural capital (Kolenikov & Angeles 2009; McLoyd 1998). In children, SES directly relates to attitudes, cognition, educational outcomes, and mental health (Dalmaijer et al. 2019). However, in terms of effect size, one of the strongest relationships is between SES and language development (Bus et al. 1995; Pungello et al. 2009). Children who grow up in low-income households are more likely to have poorer language skills as an adult (Schoon et al. 2010), show poor reading ability (Buckingham et al. 2014; Noble et al. 2006), and perform poorly on tasks that require phonological awareness (Noble et al. 2005 2006 2007; Whitehurst 1997). A recent study by Dolean et al (2019) drew on a sample of 322 children facing severe poverty in the Roma community, and contrasted it with 178 non-Roma children. This study illustrated the core problem: low SES directly negatively impacts reading development, as well as all variables that contribute to it, such as school absence, rapid automised naming, phonological awareness, letter knowledge, and non-verbal IQ.

One influential model proposes that SES also impacts brain development through two parallel paths (Noble et al. 2012; Ursache & Noble 2016). One of these paths posits that SES impacts a child’s language skill through the linguistic environment at home, which in turn leads to structural differences in the brain, specifically in the left inferior frontal and left superior temporal gyri. Another path shows low SES increasing stress, which influences multiple brain areas, and in turn degrades social-emotional processing, memory and self-regulation. In line with this model, research has shown that SES does indeed moderate the relationship between task-measured phonological performance and left fusiform gyrus activation. Noble et al (2006) selected children matched in phonological skill, but from a
range of SES backgrounds and had them perform a pseudo-word reading task during fMRI. Lower SES children’s brain activity appeared to moderate task performance, whereas higher SES children showed an attenuated relationship. This was apparent in the left fusiform and perisylvian regions. These brain regions were selected a priori for the regression analysis, so there may have been a wider pattern across brain regions – and the relationship in Noble’s model may extend beyond the fusiform gyri.

In more recent work, Younger, Lee Demir-Lira, and Booth (2019), reveal that greater maternal education (ME) (an element of SES) is associated with different patterns of brain lateralisation in 5-year olds. Increased ME was related to higher brain lateralisation towards the left inferior frontal gyrus. Furthermore, this interacted with phonological awareness performance, such that performance was related to a leftward bias in the superior temporal gyrus in low ME children, but with a rightwards bias in high ME children. These results suggest that an SES factor (maternal education), impacts actual neural recruitment during language processing – supporting the concept of an SES-moderated language developmental path in the brain.

Based on this prior work, it is therefore uncontroversial that phonological skill, and related processes, are influenced by a child’s socio-economic status (SES) (Hoff-Ginsberg 1998; Pungello et al. 2009). As alluded to above, there are many possible mechanisms by which a child’s environment could influence this set of processes. One possibility is that SES is associated with the ability to discriminate word-like sounds. We test this in the current study, by measuring the neurophysiological response to passively perceived sound structures using Magnetoencephalography (MEG). Specifically, we looked at the response to
irregular word sound structures against frequent non-word sounds – representing sensitivity to the words. We investigated at which time-points and locations in the information processing stream this neurophysiological process is influenced by a child’s SES. Our whole brain/sensor analysis approach allows us to build on the a priori area selection findings from work such as Noble et al (2006) and Younger et al (2019), by potentially revealing new areas that relate to SES. Furthermore, as SES captures such a variety of factors, we also split our measures into two aspects: one reflecting the absolute financial means available to the child’s family, and another using a subjective rating of the families means. Previous work has shown that subjective and objective measures of SES make independent contributions to children’s executive functions, stress and cortisol (Ursache et al. 2015).

Auditory oddballs and phonological processing

It is helpful to characterise the utility of the oddball paradigm for this type of research. An oddball tasks consist of sequences of repetitions of a “standard” stimulus, interspersed with infrequent deviant stimuli. Comparing the neural response of the subject’s brain to frequent and infrequent stimuli provides a measure of whether and when those stimuli are detected as different by the brain (Dehaene-Lambertz & Gliga 2004), independent of whether they were attended or consciously perceived (Schröger 1997). The observed difference in response between standard and deviant stimuli (“mismatch signal”) relies on networks of neurons adapting to a repetition of input by suppressing their activation, and then releasing from this adaptation when a change is detected (Naccache & Dehaene 2001). In MEG and EEG, this signal leads to a negative peak at roughly 200ms, termed Mismatch Negativity (MMN), and later components such as the P300, which is associated with further semantic (Meador et al. 1987) and attentional processing (Bennington & Polich 1999).
Oddball experiments have been deployed by researchers to investigate the underlying mechanisms of phonological awareness in both children (Cheour et al. 2001; Korpilahti et al. 2001; Linnavalli et al. 2017) and adults (Näätänen 1990). Additionally, a large literature investigates specific conditions, for example: autism (Oram Cardy et al. 2005), dyslexia (Wehner et al. 2007), Specific Language Impairment (Shafer et al. 2005), or community samples, such as poor readers (Bernal et al. 2000). In contrast, there is little research on the impact of SES on oddball-evoked responses, especially in typically developing children. One study utilised a visual oddball (i.e. a novel picture in a stream of standard shapes) in a group design, with 26 subjects aged 7-12 years, split between low-SES and high-SES groups. It found attenuated early mismatch responses, but no SES-related P300 differences (Kishiyama et al. 2009). The inclusion of only 13 children in each group of this study potentially obscures any subtler relationships between the mismatch effect and SES. In fact, developmental auditory oddball studies often have smaller sample sizes and/or group designs that potentially limit sensitivity, for example: Korpilahti et al. (2001) N=10, Lovio et al. (2009) N=17, Cao et al. (2008) N=12 per group, Bakos et al. (2016) N=14 and N=15 in each group, Orinstein and Stevens (2014) N=18 and N=20 in each group.

The current study

In the current study we tested whether the neurophysiological mechanisms, by which simple word-like sounds are distinguished, varies according to a child’s SES. We used a passive oddball task to test this. Children sat in the magnetoencephalography (MEG) scanner whilst watching cartoons. During their viewing they listened to trains of sounds containing carefully matched oddball words and non-words alongside fillers. The children
also took part in a structural MRI scan, allowing us to try and localise the MEG activity to a brain model created from their scan.

We recruited children and their families to take part in a MEG & MRI scan, from a wide variety of household incomes (range £5,700 to £66,000 annual household income). The age range was from just under 7 years old to just over 13 years – a wider range than previous studies such as Kishiyama et al. (2009). This may allow us to capture more developmental changes. Additionally it expands on the phonological electrophysiology literature that focuses on earlier ages (<5 years) when these systems are just developing.

We used a general linear model that included behavioural and demographic variables to predict evoked neural activity in three dimensions (time and 2D space) during the phonological oddball task. This tests how variance across the whole group predicts the underlying neural activity, as opposed to the limited single contrasts in group designs. This general linear model allowed us to take a data-driven approach, asking whether a child’s SES is associated with their neurophysiological response to carefully matched words, and crucially, if so, when this influence occurs. One possibility is that SES will covary with the earliest neurophysiological response to an oddball (Korpilahti et al. 2001). Alternatively, it may covary with a later processing stage more likely to reflect order, semantics or attentional processing (Bennington & Polich 1999; Hill et al. 2004; Meador et al. 1987). Our general linear model will enable us to detect either, or both of these effects, if they exist.

SES was characterised using equivalised household income as an objective measure, and parent’s self-reported SES as a subjective measure. Parental education level is another
potential metric used within the literature, but it has relatively few levels (high school, university degree, higher education) by comparison with the other SES metrics. We also collected behavioural data from these children: measures of educational attainment in reading and maths, and cognitive measures of working memory, verbal skills and general IQ. These were incorporated within the general linear model, to test whether these individual differences were also associated with the phonological processing of word oddballs, independent of socioeconomic status.

Materials and Methods

Participants

A total of 82 participants took part in the study, conducted at the MRC Cognition and Brain Sciences Unit. Due to technical problems with the scanner (4 children), attrition between sessions (2 children), and children opting out of either MRI or MEG (5 children) scan only 71 full datasets remain. There were two visits for each child, on the first, behavioural measures were collected and then a MEG scan took place. On the second (which was optional) the participants had a structural MRI. There was no more than a month between visits.

The mean age of the children was 9 years and 11 months (range: 6y 11.6m - 12y 9.3m), 44 of the children were boys. We computed the average net household equivalised income, which is income after tax deductions and benefit additions, weighted by number of children and adults using OECD equivalence scale (Anyaegbu 2010). This was £24,313 on average, with a standard deviation of £12,261, ranging from £5,747 to £66,666. Our sample was thus socio-economically diverse, but of lower means than the UK median at time of testing (£31,876), 2017/18. In fact, 26.8% (22 children) were living under the UK poverty line –
classified as 60% of the median income or less (Households below average income 2018). All our families live in the Cambridges and East Anglia area, where the cost of living is high by UK standards, so it is likely that this statistic underestimates the proportion living below the poverty line. We did not record ethnicity of our participants, however the vast majority of Cambridge (82.51%) and East of England (85.1%) (Office for National Statistics 2018) are White, and we were unlikely to have recruited enough of other groups for meaningful statistical inference.

A questionnaire was given to parents to ascertain subjective SES, obtained by having caregivers place a cross on a ladder of 10 rungs, with the top representing those who were better off in the UK, and the bottom representing those the worse-off. This is a frequently used measure of subjective SES (e.g. Ostrove, Adler, Kuppermann & Washington 2000; Singh-Manoux, Marmot, & Adler 2005).

Procedure

Volunteers and their families took part in all research sessions at the Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge. Parents provided written informed consent, and children provided verbal assent. The study was approved by the Psychology Research Ethics Committee at the University of Cambridge (Reference: 2015.11).

Behavioural Measures

Children and their families visited the Unit for a battery of educational attainment and cognitive assessments. These included: Mathematics and Reading Fluency scales from The
Woodcock-Johnson III Form B Tests of Achievement (Woodcock et al. 2001), the Matrix Reasoning and Vocabulary sub-tests of the Wechsler Abbreviated Scale of Intelligence (WASI-II) (McCrimmon & Smith 2013), and the Automated Working Memory Assessment (AWMA) (Tracy P. Alloway et al. 2008), and the Phonological Assessment Battery (PhAB) (Gallagher & Frederickson 1995).

Phonological Oddball

MEG Scan

During the first visit, neuroimaging data was acquired on a high-density VectorView MEG System (Elekta-Neuromag) with 102 magnetometers and 102 orthogonal pairs of planar gradiometers (306 sensors in total). Head Position Indicator (HPI) coils were attached to the child’s head (one on each mastoid bone, two on the child’s forehead, and one on the top of their head). A 3D digitiser was used to record the positions of each HPI coil, and a number of scalp points (50+) in order to assist in co-registration of MRI scans. To capture eye-movements and blinks, vertical and horizontal electrooculagrams (EOG) were measured with a pair of electrodes to the side of each child’s eyes, and another pair placed above and below the left eye. To record heart rate, an electrocardiogram (ECG) was taken with electrodes attached to each wrist. Audio was presented to the participants using in-ear earpieces attached to a long plastic tube that went outside the MEG’s shielded room, where they were attached to the speaker and amplifier. This minimised the impact of any electrical signal from audio amplification and production.
MRI Scan

During separate visit, participants took part in an MRI scan, which yielded T1-weighted images from a Siemens 3T Tim Trio system. For these images, a Magnetisation Prepared Rapid Acquisition Gradient Echo (MP RAGE) sequence with 1mm isometric image resolution, 2.98ms echo time and 2250ms was used.

Task

Three auditory stimuli were used: a novel pseudo-word frequent (‘boak’), a known word oddball (‘boat’) and a novel pseudo-word oddball (‘boap’). The ratio between these stimuli was 6:1:1, i.e. one of each oddball for every six frequent stimuli. The task started with a train of 10 standard stimuli, so that participants could habituate to the frequent non-word. There were 1200 trials in total (900 non-word standard, 150 word oddball, 150 non-word oddball). In a pseudo-random manner, there were either 2, 3, 4, or 5 standard non-word stimuli between deviants. The inter-stimulus interval (ISI) was 800ms from the offset of one stimulus to the onset of the next.

The stimuli themselves were taken from (Hawkins et al. 2014). All words had identical first consonant-vowel, /boʊ/ (‘boa’), which was spliced from natural spoken word taken from speaking the word /boʊt/ (‘boat’). For each stimuli this sound was then cross-spliced with a voiceless-stop consonant, that was either: /k/ to make standard non-word /boʊk/ (‘boak’), /t/ to make oddball word /boʊt/ (‘boat’), or /p/ to make oddball non-word /boʊp/ (‘boap’). The first consonant-vowel was acoustically and coarticulatory identical until the final stop vowel, and peak sound energy was equated across all stimuli. This meant that the ability to
perceive the sounds as different only happened at the last phoneme, which should target as exclusively as possible the systems underlying phonological awareness.

During the oddball task, all children watched a cartoon (Tom and Jerry: The Classic Selection Volume 1) (Takeda & Kimura 2014), without any audio. This particular cartoon had the benefit of not having any moving mouths for speech – so visual speech cues would not confound or convolute signal from the auditory cortex (Sams et al. 1991). It also kept the children relatively entertained during the scanning session.

Analysis

Data was analysed primarily with the MNE-Python toolbox v0.19 (Gramfort et al. 2013) on CentOS Linux.

Preprocessing

Raw data underwent Signal Source Separation (SSS), Temporal Extension (SE), and movement compensation using Maxfilter 2.2. These data were loaded into MNE-Python and then high-pass filtered at 1Hz and low-pass filtered at 50Hz. In order to remove noise associated with heart beats and blinks, a two-stage Independent Component Analysis (ICA) denoising procedure was used. An ICA was done using fastica with 25 components specified. Stage 1 involved automatic rejection of components that correlated with ECG or EOG electrodes more than 0.3. Stage 2 involved manual checking of excluded component topography, and selection of components to exclude for participants with insufficient ECG or EOG electrode signal. Data for each child was visually checked before and after to ensure the components were not present still.
Raw data were then epoched between 200ms before and 1000ms after the presentation of auditory stimuli. As participant data was split up into two runs, these were processed separately until epoching, where epochs were concatenated and treated as one after this.

Source Localisation

FreeSurfer (Fischl 2012) was used to construct whole brain surface from MRI scans, using the recon-all command. A single layer Boundary Element Model (BEM) of the inner skull was constructed using the MNE watershed method. A source space was made using the cortical surface from the FreeSurfer output. Our inverse model consisted of this one-layer BEM, and the method used to invert the evoked signals was the MNE toolbox’s implementation of dynamic Statistical Parametrical Maps (dSPM), with empirical whitening done using a noise-covariance matrix taken from the baseline period, which we found to produce the most consistent results. Participants who lacked an MRI or moved too much during the MRI scan had models created using FreeSurfer’s FSAVERAGE model.

Behavioural Statistical Analysis

We had a large number (12) of likely highly corelated behavioural measures. This multicollinearity makes using these predictors in our later general linear model inappropriate. Consequently, these were reduced to separate components using Principal Component Analysis (PCA) with orthogonalisation through varimax rotation. Behavioural variables (Woodcock-Johnson III sub-tests, AWMA, and WASI-II) were reduced to 3 factors, which we labelled Working Memory & Executive, Classic IQ, Verbal Short Term Memory (STM) & Working Memory (WM) – these were chosen as plausible factors based on previous
work (Alloway et al. 2005), and explained 45.5% of total variance. Education (the Woodcock-Johnson III measures) was subject to a separate factor reduction. Parallel analysis revealed that in the best solution WJ Reading and Mathematics was a single factor solution, explaining 47.8% of variance in those scores. The factor weightings can be seen in Table 1. Even though the WJ were used to derive a single factor, we show correlations between all the components/factors and the scores. You can see that the WJ scores correlated with some of the other three factors, however they did not contribute to those factor scores.

We did not include scores from the PhAB alliteration measure, this task was too easy for children of this age, without phonological awareness difficulties. Fifty one out of 71 (70.4%) of the children answered all items correctly, so showed little variance. We used age standardised (WASI t scores, AWMA & Woodcock-Johnson standard scores), scores in all or our analyses, with age in years then added as a covariate in the later GLM, such that age would be independent against all measures.

MEG Statistical Analysis

Comparison of Word and Non-word contrasts

In order to investigate whether there was a significant difference between the word and non-word MMN a non-parametric, cluster corrected, two-tailed repeated measures permutation t-test was calculated using the difference field between the two. A connectivity matrix was computed over time and space, and a cluster forming threshold of t=4 was also used to calculate the clusters. This was much higher than the critical t of 2 calculated from an effect size (0.28) reported in a meta-analysis of oddball tasks in children (Cheng et al. 2016) with an error probability of .05 and a sample size of 71. The threshold is statistically
arbitrary, since it is repeated in each permutation (Friston et al. 1994), but having a narrower definition of clusters makes them far easier to interpret in terms of their spatial extent. The permutation test produces null-distributions of cluster t-statistics based on shuffling data, which is then compared to the actual observed cluster t-values. This is more computationally demanding than False Discovery Rate (FDR) methods, however it is also more conservative and has the benefit of directly controlling the Family-wise Error Rate, rather than the FDR statistic (Nichols & Hayasaka 2003; Lage-Castellanos, Martínez-Montes, Harnández-Cabrera & Galán 2008). We used a monte-carlo p-value of 0.05 to identify significant clusters over 5000 permutations—in other words, clusters identified were in the 95th percentile or higher.

General Linear Model

A mass multivariate General Linear Model (GLM) was constructed to analyse the three dimensional (2D sensor-space x time) average evoked responses for each individual in relation to the behavioural factor scores (in Table 1), along with age (in days), equivalised income and subjective SES. This allows us to test how individual’s spatio-temporal responses predict their cognitive, attainment and demographic attributes. For the neurophysiological data we used only the Word contrast (i.e. word versus non-word fillers), as this represents the sensitivity to Word phonological forms, rather than the non-Word contrast which is concerned only with sensitivity to sounds unrelated to real words.

A design matrix was constructed with each row containing a continuous regressor of value 1, representing a single participant’s word contrast (102 magnetometers in 2D space x 1200 ms time samples), and a single value regressor for each of: Working Memory & Executive
Factor, Classic IQ Factor, Verbal STM & WM Factor, Attainment Factor, Age in Years, Equivalised Income, Subjective SES. All regressors were z-transformed (so they were normalised and centred around zero). The final design matrix was thus 71 x 8.

In order to find our best estimates of the model’s betas, we used Ordinary Least Squares (OLS) to minimise the models error terms. This resulted in beta weights for each predictor at each point in time and space. These beta values (and statistics inferred from them) represent the relationship between regressor and evoked response for each timepoint. Larger values reflect a stronger relationship at that spatio-temporal measurement.

We then took a cluster permutation approach to establish inference from our model. The t-values were calculated for each beta value, and spatio-temporal clusters (2-tailed) were extracted from this (as in the previous analysis), and the mean t-value taken. We found that the cluster forming threshold of 4 yielded large numbers of small clusters, so reduced the value to create larger more interpretable clusters before permuting. This was a statistically arbitrary cluster forming threshold of 2.8. As before, 2.8 was higher than the critical t value for an expected effect size of 0.28, based on an oddball meta-analysis of children (Cheng et al. 2016), with a sample size of 71 and an alpha of 0.05.

We then permuted each of the 9 regressors in the model 5000 times (45,000 total permutations), where the rows of that regressor were randomly shuffled, whilst holding covariates constant (so they no longer matched the participant’s data), spatio-temporal clusters were re-calculated, and the average t-value taken. This gave us a Monte-Carlo distribution for each regressor that was centred at zero, which was compared to the original
clusters. Any original (un-shuffled) cluster with a value in the 95th percentile of the Monte-Carlo distribution was kept as a significant cluster.

Results

Group Level MMN evoked response

Evoked responses for the non-word frequents, non-word deviants, and word deviants can be seen for all magnetometers in **Figure 1**. This figure is purely illustrative, it shows the evoked signal for each trial-type before subtractions, on a handful of representative electrodes. For reference we identify the beginning of the sound, and the differentiation point (the final phoneme) on all points. Based on the topography of these responses, we selected right and left parietal sensors that showed the clearest apparent auditory evoked topography (the mean of this sensors is also illustrated in **Figure 1**).

There is a clear auditory evoked component at around 150 ms after the onset of the sound, the direction in power compared to baseline is positive on the right sensors and negative on the left sensors. There appears to be a difference in the evoked responses to the oddballs and the frequent stimuli that begins appearing around 200ms after the onset of the final phoneme, with more pronounced differences by 400ms. In order to test this statistically, we compared deviant minus frequent subtractions for the words and non-words. All sensors and timepoints where entered into a cluster-permutated t-test, detailed in the methods section.

There were clear differences between the two different mismatch contrasts: words (i.e. Word deviants, relative to non-word frequents) and non-word (i.e. Non-Word deviants
relative to non-word frequents). In sensor-space the evoked topography for these word and non-word contrasts is plotted in Figure 2. There is a clear pattern of left and right parietal activation at the 400ms and 500ms bins, where results are (qualitatively) similar between contrasts. At the 200ms bin, we see a unilateral decrease for the word contrast in the right parietal area, and this pattern is reversed in the non-word contrast.

The binned topography is a very coarse metric. Greater granularity is provided by looking at the spatio-temporal clusters from the cluster-permuted t-test. Four spatio-temporal (i.e. sensor-timepoint) clusters survived permutation testing, these are illustrated in Figure 3: 3.a shows a right-temporal topology with a higher response to word deviants vs non-word deviants at 177-243 ms, 3.b shows a left-parietal response in the same direction (Word deviants higher than non-word deviants) higher later at 317-398ms, 3.c shows a right-temporal topology with Non-word deviants responding higher in the same temporal pattern as 2.a at 170-229ms, and 3.d shows a very similar topology and relationship to 2.c but later on at 335-401ms. As mentioned above these locations and times are a coarse indication of the ‘true’ effect as we have not permuted these dimensions. More detailed statistics on the clusters are available in Table 2.

Whilst not critical for our core research questions, we were interested in where these responses originated from. Quality source-reconstruction was possible for 47 of our participants – this was not high enough to go through with source analysis. However, we are able to show the average topology for these participants. Figure 4 illustrates the likely origins of the mismatch response. This replicated the sensor-level data, but also shows the
word contrast more prominently localised to the left anterior temporal lobe at approximately 400 ms, compared to the non-word contrast.

Group Level Behavioural GLM

The Attainment Factor, Age in Years and Subjective SES regressors all yielded clusters that were robust to our permutation testing (Table 3). The predictors Working Memory & Executive Factor, Classic IQ Factor, Verbal STM & WM Factor, and Equivalised Income did not survive this testing, and we found no evidence for a relationship between these variables and the MMN response.

The topography of three of the clusters (Figure 5: A, B and D) showed clear overlap with the evoked response shown in the results above, whereas the third cluster (Figure 5.C) did not overlap with this temporally or spatially. The Education cluster (Figure 5.A) had a right-parietal topography, started around 460 ms after the differentiation point, and predicted an increased response to word oddballs against non-word frequents. The Age cluster (Figure 5.B) showed a right-temporal topography, started around 500 ms, and predicted a decreased response to word oddballs versus non-word frequents. The first Subjective SES cluster (Figure 5.C) had a fronto-central topography, an unexpected time-course that started at the differentiation point (with an onset just after differentiation), and predicted a more negative response to oddball words relative to frequent non-words. The second subjective SES cluster showed a more plausible time-course and topology, with a left-
Subjective SES and neurophysiological response to auditory oddballs

Parietal topology starting around 350ms after the differentiation point, and predicted a more negative response to oddball words versus frequent non-words. We report the temporal & spatial elements of these clusters roughly, as these dimensions of the clusters are estimates (Sassenhagen & Draschkow 2019).

Discussion

We used an auditory oddball paradigm to explore the relationship between children’s sensitivity to phonological deviations, and their SES. Measures of cognition and educational attainment were also included in the model. Children showed a robust and differential response to the final phoneme of word deviants versus non-word deviants. The significant clusters of difference were at ~200ms, with two clusters showing opposing responses to words vs non-words – both on the right hemisphere, and then at ~350ms showing the same polar differences, but with a contralateral topography. Importantly, a child’s subjective SES is associated with their neurophysiological response to deviant words, and one cluster showed overlap with a later P300 response. Attainment and age also show statistically significant associations with the evoked response to word deviants, and these clusters occurred later, also consistent with a late P300 component. There was no evidence that these factors are associated with the earlier N200 response, and there was no evidence for cognitive measures or household income to be associated with the evoked response.

Differences in Word and Non-Word contrasts

We report components that show a difference between the Word and Non-Word contrasts, a N200 and P300 component. The N200, or mismatch negativity, component implies that
there is an early sensory detection between the processing of unexpected Word and Non-word phonemes – this was expected and replicates previous observations (Junge et al. 2012; Korpilahti et al. 2001; Maurer et al. 2003). The P300 component is commonly associated with conscious processing and attentional orienting (Bennington & Polich 1999; Polich 2007; Sommer & Matt 1990). Despite the explicit instructions to ignore the stimuli and focus on the simultaneous cartoon playback, it is likely the irregular stimuli led to an involuntary orienting of attention (Lyytinen et al. 1992). The differences between word and non-word contrasts are therefore likely to reflect some degree of differing involuntary attentional shifting, or at least an increased demand on attention (Bennington & Polich 1999), and the neural processing associated with this. Another strong possibility is that this component is associated with semantic processing (Meador et al. 1987) and phonological categorisation (Hill et al. 2004), perhaps indicating that this later difference could also reflect differing processing of semantics and categorization – which is likely given that our contrast of interest is between words and non-words.

Subjective SES is associated with the oddball response

A child’s oddball response was not significantly associated with equivalised family income, but it was significantly associated with parental rating of subjective SES. We conclude from this that the economic situation *per se* is not the ingredient that drives SES-phonology associations, but instead that it is the wider environmental impact of SES, which the parent is uniquely placed to assess. Greater relative deprivation, which cannot be completely captured by standard measures like income, likely negatively impacts the development of phonological processes – the subjective SES effect may well reflect this. An alternative
explanation is that lower subjective SES is associated with poorer parental mental health, which in turn leads to less support for language development and therefore phonological processing. Supporting this second explanation, lower subjective SES in adults is indeed associated with poorer mental health (Scott et al. 2014; Odgers & Adler 2018), and poor parental mental health is negatively associated with early (1-2 years) language development (Lung, Shu, Chiang & Lin 2009; Paulson, Keefe & Leiferman 2009). We did not measure parental mental health, but this may be a potential mediating factor, and would provide a future direction for research.

Irrespective of the explanation, the results speak to the complex nature of socioeconomic status, which is often characterised as purely with income or occupation (Rubin et al. 2014). As income was included as a predictor in the GLM, it is likely that the subjective SES clusters represent variance independent of income. Indeed, this observation partly parallels research into children’s executive functions where objective SES and subjective SES were shown to make independent contributions (Ursache et al. 2015). Across the literature, the way we conceptualise SES seems to be crucial. When maternal education is used to group children, differences in selective attention (Stevens et al. 2009) and auditory refractory periods (Stevens et al. 2015) are observed. By contrast, grouping by income alone does not always produce significant differences (Garcia-Sierra et al. 2011). Taken in concert with our results, this could also support one path of the theoretical model put forward by Noble et al. (2012) and Ursache & Noble (2016) – that language and phonological development are moderated by some elements of SES and impact later outcomes in children. In our case, it seems to be the subjective experience of SES, rather than income per se.
We found two SES-predictive clusters that survived permutation testing. One frontal-central cluster that starts very early (almost at the differentiation point), and a second more left-dorsal cluster that has an onset consistent with a P300 component. We are dubious about the first of these. Only the cluster statistics are permuted, not their spatial or temporal extent — meaning we cannot make statistical inferences about the precise time and space (Sassenhagen & Draschkow 2019). The shape and location of clusters are liable to display spreading. This limitation can explain the first SES cluster (Figure 5.C), which appears implausibly early. It is possible that the true effect has occurred later and by chance the original cluster had been formed in its current location. If this is the case, this may indicate an association with earlier sensory processing in reaction to the word oddballs, perhaps in relation to observations of auditory ventral stream processing reported in oddball tasks (Kim 2014). However, due to its dubious time-course, this is unclear.

The second cluster (Figure 5.D) is more easily interpretable as the topology and timescale overlap highly with the left late P300 component shown in Figure 3.B. A reasonable interpretation is that subjective SES associated with the process of attentional orienting and/or semantic processing referred to above. In contrast with this finding, altered development of language systems – either through low SES or in children with neurodevelopmental conditions – have often been ascribed to early sensory differences. For instance, Stevens, Lauinger and Neville (2009) reported that low SES children showed reduced evoked activity from selective attention to spoken stories at around 100ms post cue. Our results do not replicate this type of early sensory finding. However, our subjects are relatively old, and it could be that we would see this kind of early effect in younger children, but that its timing is developmentally specific. The later effects that we observe
are however consistent with some findings in the dyslexia literature. Dyslexia prevalence increases with lower SES, and dyslexic children and adults show altered P3 responses and long latency ERPs during reading and rhyming tasks (see Taylor and Baldwig, 2002). However, there may be many factors that explain this relationship between the later neurophysiological response and subjective SES, including important mediating factors that we did not measure. Identifying these factors could provide necessary information as to the mechanistic origins of this association.

Educational Attainment but not cognition is associated with oddball responses

From our behavioural measures, only the attainment factor (weighting primarily on the Mathematics and Reading WJ scores) was associated with MEG signal, rather than any of the factors that encompassed STM/Working Memory and IQ assessments. We think this is likely because we do not have good phonological awareness measures in our cognitive battery. We included the alliteration measure from the Phonological Awareness Battery (PHaB), however we discovered this contained many ceiling effects. These ceiling effects have also been reported in previous studies (Wheldall & Pogorzelski 2003). This is likely because of the age of our participants, As the PHaB measures are typically sensitive to individual differences earlier in development (Anthony et al. 2007; Cronin & Carver 1998; Furnes & Samuelsson 2011). One possibility is that the educational attainment measures are strongly associated because they in part reflect the longer-term outcome of these earlier differences. This is somewhat compatible with research showing that younger children’s phonological abilities predicted their numerical competency and literacy (Krajewski & Schneider 2009).
Study limitations

There are several limitations of our study. Firstly, as outlined above, cluster permutation testing permutes the test-statistic, but not the spatiotemporal aspects of the clusters themselves – thus the time-course and sensors in the cluster should be used as a general indication rather than a formal test of these attributes. A second limitation is the age of our participants. They are mid- primary school age to early secondary school, and arguably there could be strong relationships between phonological sensitivity and our factors earlier in development.

Lastly, our analysis approach – using a GLM – identifies how evoked brain data are associated with regressors. Whilst we select a wide range of regressors, our reported relationships could be explained by any number of unseen covariates, such as parental mental health as we mention earlier. However, this is broadly true for any model on this type of data – the regressors included are not exhaustive. Nonetheless, we believe our results are still important. The next step is to understand more precisely which elements of subjective SES may be the active ingredients in shaping the relationship with phonological detection skills.

Conclusions

Children have a differential neurophysiological response to word vs. non-word deviants in a phonological oddball task. These differences arise at both the N200 and P300 components, likely reflecting differences in early perceptual sensitivity, and later semantic processing and attentional orienting systems. The P300 components of the word condition were predicted...
Subjective SES and neurophysiological response to auditory oddballs

by measures of age, attainment, and the families’ ratings of their socio-economic status, but not by cognitive measures or household income. This shows that complex demographic measures like SES are predictive of the underlying mechanisms involved in phonological processing, and specifically affecting (for the most part) the later stages associated with semantic processing and involuntary attentional orienting.

Acknowledgements

We thank Matt Davis and Kate Baker for their feedback and discussions regarding the article. Authors have no competing interests to declare. Research is funded by a grant from the Templeton World Charity Foundation and the Medical Research Council, awarded to Duncan Astle (TWCF no. 0159).

References

Alloway TP, Gathercole SE, Kirkwood H, Elliott J. 2008. Evaluating the validity of the Automated Working Memory Assessment. Educational Psychology. 28(7):725–734. https://doi.org/10.1080/01443410802243828

Alloway TP, Gathercole SE, Adams A-M, Willis C, Eaglen R, Lamont E. 2005. Working memory and phonological awareness as predictors of progress towards early learning goals at school entry. British Journal of Developmental Psychology. 23(3):417–426. https://doi.org/10.1348/026151005X26804

Anthony JL, Williams JM, McDonald R, Francis DJ. 2007. Phonological processing and emergent literacy in younger and older preschool children. Annals of Dyslexia. 57(2):113. https://doi.org/10.1007/s11881-007-0008-8
Anyaegbu G. 2010. Using the OECD equivalence scale in taxes and benefits analysis. Economic & Labour Market Review. 4(1):49–54. https://doi.org/10.1057/elmr.2010.9

Bakos S, Töllner T, Trinkl M, Landes I, Bartling J, Grossheinrich N, Schulte-Körne G, Greimel E. 2016. Neurophysiological Mechanisms of Auditory Information Processing in Adolescence: A Study on Sex Differences. Developmental Neuropsychology. 41(3):201–214. https://doi.org/10.1080/87565641.2016.1194840

Bennington JY, Polich J. 1999. Comparison of P300 from passive and active tasks for auditory and visual stimuli. International Journal of Psychophysicsiology. 34(2):171–177. https://doi.org/10.1016/S0167-8760(99)00070-7

Bernal J, Harmony T, Rodríguez M, Reyes A, Yáñez G, Fernández T, Galán L, Silva J, Fernández-Bouzas A, Rodríguez H, Guerrero V, Marosi E. 2000. Auditory event-related potentials in poor readers. International Journal of Psychophysiology. 36(1):11–23. https://doi.org/10.1016/S0167-8760(99)00092-6

Buckingham J, Beaman R, Wheldall K. 2014. Why poor children are more likely to become poor readers: The early years. Educational Review. 66(4):428–446. https://doi.org/10.1080/00131911.2013.795129

Bus AG., van IJzendoorn MH, Pellegrini AD. 1995. Joint Book Reading Makes for Success in Learning to Read: A Meta-Analysis on Intergenerational Transmission of Literacy. Review of Educational Research. 65(1):1–21. https://doi.org/10.3102/00346543065001001

Cao F, Bitan T, Booth JR. 2008. Effective brain connectivity in children with reading difficulties during phonological processing. Brain and Language. 107(2):91–101. https://doi.org/10.1016/j.bandl.2007.12.009
Cheng CH, Chan PYS, Hsieh YW., Chen KF. 2016. A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders. Neuroscience Letters. 612:132–137. https://doi.org/10.1016/j.neulet.2015.11.033

Cheour M, Korpilahti P, Martynova O, Lang A-H. 2001. Mismatch Negativity and Late Discriminative Negativity in Investigating Speech Perception and Learning in Children and Infants. Audiology and Neurotology. 6(1):2–11.
https://doi.org/10.1159/000046804

Chung K, Park JY. 2018. Beyond the real world: attention debates in auditory mismatch negativity. Neuroreport. 29(6):472-477.

Cronin V, Carver P. 1998. Phonological sensitivity, rapid naming, and beginning reading. Applied Psycholinguistics. 19(3):447–461.
https://doi.org/10.1017/S0142716400010262

Dalmaijer ES, Bignardi G, Anwyl-Irvine AL, Smith TA, Siugzdaite R, Uh S, Johnson A, Astle D. 2019. Direct and indirect links between children’s socio-economic status and education: Pathways via mental health, attitude, and cognition [Preprint]. PsyArXiv.
https://doi.org/10.31234/osf.io/yfn56

Dehaene-Lambertz G, Gliga T. 2004. Common Neural Basis for Phoneme Processing in Infants and Adults. Journal of Cognitive Neuroscience. 16(8):1375–1387.
https://doi.org/10.1162/0898929042304714

Dolean D, Melby-Lervåg M, Tincas I, Damsa C, Lervåg A. 2019. Achievement gap: Socioeconomic status affects reading development beyond language and cognition in children facing poverty. Learning and Instruction. 63:101218.
https://doi.org/10.1016/j.learninstruc.2019.101218
Erlbeck H, Küber A, Kotchoubey B, Veser S. 2014. Task instructions modulate the attentional mode affecting the auditory MMN and the semantic N400. Frontiers in Human Neuroscience. 8:654. https://doi.org/10.3389/fnhum.2014.00654

Fischl B. 2012. FreeSurfer. NeuroImage. 62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

Furnes B, Samuelsson S. 2011. Phonological awareness and rapid automatized naming predicting early development in reading and spelling: Results from a cross-linguistic longitudinal study. Learning and Individual Differences. 21(1):85–95. https://doi.org/10.1016/j.lindif.2010.10.005

Friston KJ, Worsley KJ., Frackowiak RS, Mazziotta JC, Evans AC. 1994. Assessing the significance of focal activations using their spatial extent. Human brain mapping. 1(3):210-220.

Gallagher A, Frederickson N. 1995. The Phonological Assessment Battery (PhAB): An initial assessment of its theoretical and practical utility. Educational and Child Psychology. 12(1):53–67.

Garcia-Sierra A, Rivera-Gaxiola M, Percaccio CR, Conboy BT, Romo H, Klarman L, Ortiz S, Kuhl PK. 2011. Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word production. Journal of Phonetics. 39(4):546–557. https://doi.org/10.1016/j.wocn.2011.07.002

Gramfort A. Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M. 2013. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience. 7. https://doi.org/10.3389/fnins.2013.00267

Hill PR, McArthur GM, Bishop DVM. 2004. Phonological categorization of vowels: A mismatch negativity study. NeuroReport. 15(14):2195–2199.
Hoff-Ginsberg E. 1998. The relation of birth order and socioeconomic status to children’s language experience and language development. Applied Psycholinguistics. 19(4):603–629. https://doi.org/10.1017/S0142716400010389

Hulme C, Snowling M, Caravolas M, Carroll J. 2005. Phonological Skills Are (Probably) One Cause of Success in Learning to Read: A Comment on Castles and Coltheart. Scientific Studies of Reading. 9(4):351–365. https://doi.org/10.1207/s1532799xssr0904_2

Junge C, Cutler A, Hagoort P. 2012. Electrophysiological evidence of early word learning. Neuropsychologia. 50(14):3702–3712. https://doi.org/10.1016/j.neuropsychologia.2012.10.012

Justen C, Herbert C. 2018. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: A sLORETA study. BMC Neuroscience. 19(1):25. https://doi.org/10.1186/s12868-018-0422-3

Kim H. 2014. Involvement of the dorsal and ventral attention networks in oddball stimulus processing: A meta-analysis. Human Brain Mapping. 35(5):2265–2284. https://doi.org/10.1002/hbm.22326

Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT. 2009. Socioeconomic Disparities Affect Prefrontal Function in Children. Journal of Cognitive Neuroscience. 21(6):1106–1115. https://doi.org/10.1162/jocn.2009.21101

Kolenikov S, Angeles G. 2009. Socioeconomic Status Measurement with Discrete Proxy Variables: Is Principal Component Analysis a Reliable Answer? Review of Income and Wealth. 55(1):128–165. https://doi.org/10.1111/j.1475-4991.2008.00309.x

Korpilahti P, Krause CM, Holopainen I, Lang AH. 2001. Early and Late Mismatch Negativity Elicited by Words and Speech-Like Stimuli in Children. Brain and Language. 76(3):332–339. https://doi.org/10.1006/brln.2000.2426
Subjective SES and neurophysiological response to auditory oddballs

Krajewski K, Schneider W. 2009. Exploring the impact of phonological awareness, visual–spatial working memory, and preschool quantity–number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology. 103(4):516–531.
https://doi.org/10.1016/j.jecp.2009.03.009

Lage-Castellanos A, Martínez-Montes E, Hernández-Cabrera JA, Galán L. 2010. False discovery rate and permutation test: an evaluation in ERP data analysis. Statistics in Medicine. 29(1):63-74.

Linnavalli T, Putkinen V, Huotilainen M, Tervaniemi M. 2017. Phoneme processing skills are reflected in children’s MMN responses. Neuropsychologia. 101:76–84.
https://doi.org/10.1016/j.neuropsychologia.2017.05.013

Lovio R, Pakarinen S, Huotilainen M, Alku P, Silvennoinen S, Näätänen R, Kujala T. 2009. Auditory discrimination profiles of speech sound changes in 6-year-old children as determined with the multi-feature MMN paradigm. Clinical Neurophysiology. 120(5):916–921. https://doi.org/10.1016/j.clinph.2009.03.010

Lyytinen H, Blomberg AP., Näätänen R. 1992. Event-Related Potentials and Autonomic Responses to a Change in Unattended Auditory Stimuli. Psychophysiology. 29(5):523–534. https://doi.org/10.1111/j.1469-8986.1992.tb02025.x

Lung, FW, Shu, BC, Chiang, TL, Lin, SJ. 2009. Parental mental health, education, age at childbirth and child development from six to 18 months. Acta Paediatrica. 98(5):834-841.

Maurer U, Bucher K, Brem S, Brandeis D. 2003. Development of the automatic mismatch response: From frontal positivity in kindergarten children to the mismatch negativity.
Clinical Neurophysiology. 114(5):808–817. https://doi.org/10.1016/S1388-2457(03)00032-4

McCrимmon AW, Smith AD. 2013. Review of the Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II). Journal of Psychoeducational Assessment. 31(3):337–341. https://doi.org/10.1177/0734282912467756

McLoyd VC. 1998. Socioeconomic disadvantage and child development. The American Psychologist. 53(2):185–204. https://doi.org/10.1037//0003-066x.53.2.185

Meador KJ, Hammond EJ, Loring DW, Feldman DS, Bowers D, Heilman KM. 1987. Auditory P3 Correlates of Phonemic and Semantic Processing. International Journal of Neuroscience. 35(3–4):175–179. https://doi.org/10.3109/00207458708987125

Näätänen R. 1990. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences. 13(2):201–233. https://doi.org/10.1017/S0140525X00078407

Naccache L, Dehaene S. 2001. The Priming Method: Imaging Unconscious Repetition Priming Reveals an Abstract Representation of Number in the Parietal Lobes. Cerebral Cortex. 11(10):966–974. https://doi.org/10.1093/cercor/11.10.966

Nation K, Snowling MJ. 2004. Beyond phonological skills: Broader language skills contribute to the development of reading. Journal of Research in Reading. 27(4):342–356. https://doi.org/10.1111/j.1467-9817.2004.00238.x

Nichols T, Hayasaka S. 2003. Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research. 12(5):419-446.
Noble KG, Houston SM, Kan E, Sowell ER. 2012. Neural correlates of socioeconomic status in the developing human brain. Developmental Science. 15(4):516–527. https://doi.org/10.1111/j.1467-7687.2012.01147.x

Noble KG, McCandliss BD, Farah MJ. 2007. Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science. 10(4):464–480. https://doi.org/10.1111/j.1467-7687.2007.00600.x

Noble KG, Norman MF, Farah MJ. 2005. Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science. 8(1):74–87. https://doi.org/10.1111/j.1467-7687.2005.00394.x

Noble KG, Wolmetz ME, Ochs LG, Farah MJ, McCandliss BD. 2006. Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental Science. 9(6):642–654. https://doi.org/10.1111/j.1467-7687.2006.00542.x

Odgers CL, AdlerNE. 2018. Challenges for low-income children in an era of increasing income inequality. Child Development Perspectives. 12(2):128-133.

Office for National Statistics. 2018. Regional Ethnic Diversity. Ethnicity Facts and Figures, GOV.UK. Retrieved on 27th July 2020 from: https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity/national-and-regional-populations/regional-ethnic-diversity/latest

Oram Cardy JE, Flagg EJ, Roberts W, Roberts TPL. 2005. Delayed mismatch field for speech and non-speech sounds in children with autism. NeuroReport. 16(5):521.
Orinstein AJ, Stevens MC. 2014. Brain activity in predominantly-inattentive subtype attention-deficit/hyperactivity disorder during an auditory oddball attention task. Psychiatry Research: Neuroimaging. 223(2):121–128. https://doi.org/10.1016/j.pscychresns.2014.05.012

Ostrove JM, Adler NE, Kuppermann M, Washington AE. 2000. Objective and subjective assessments of socioeconomic status and their relationship to self-rated health in an ethnically diverse sample of pregnant women. Health Psychology. 19(6):613.

Paulson JF, Keefe HA, Leiferman JA. 2009. Early parental depression and child language development. Journal of Child Psychology and Psychiatry. 50(3):254-262.

Polich J. 2007. Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology. 118(10):2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019

Pungello EP, Iruka IU, Dotterer AM, Mills-Koonce R, Reznick JS. 2009. The Effects of Socioeconomic Status, Race, and Parenting on Language Development in Early Childhood. Developmental Psychology. 45(2):544–557. https://doi.org/10.1037/a0013917

Rubin M, Denson N, Kilpatrick S, Matthews KE, Stehlik T, Zyngier D. 2014. “I Am Working-Class”: Subjective Self-Definition as a Missing Measure of Social Class and Socioeconomic Status in Higher Education Research. Educational Researcher. 43(4):196–200. https://doi.org/10.3102/0013189X14528373

Sams M, Aulanko R, Hämäläinen M, Hari R, Lounasmaa OV, Lu ST., Simola J. 1991. Seeing speech: Visual information from lip movements modifies activity in the human
auditory cortex. Neuroscience Letters. 127(1):141–145.
https://doi.org/10.1016/0304-3940(91)90914-F

Sassenhagen J, Draschkow D. 2019. Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. Psychophysiology. 56(6):e13335. https://doi.org/10.1111/psyp.13335

Schoon I, Parsons S, Rush R, Law J. 2010. Childhood Language Skills and Adult Literacy: A 29-Year Follow-up Study. Pediatrics. 125(3):e459–e466.
https://doi.org/10.1542/peds.2008-2111

Schröger E. 1997. On the detection of auditory deviations: A pre-attentive activation model. Psychophysiology. 34(3):245–257. https://doi.org/10.1111/j.1469-8986.1997.tb02395.x

Scott KM, Al-Hamzawi AO, Andrade LH, Borges G, Caldas-de-Almeida JM, Kawakami N. 2014. Associations between subjective social status and DSM–IV mental disorders: Results from the World Mental Health surveys. JAMA Psychiatry. 71:1400–1408.

Shafer VL, Morr ML, Datta H, Kurtzberg D, Schwartz RG. 2005. Neurophysiological Indexes of Speech Processing Deficits in Children with Specific Language Impairment. Journal of Cognitive Neuroscience. 17(7):1168–1180.
https://doi.org/10.1162/0898929054475217

Singh-Manoux A, Marmot MG, Adler NE. 2005. Does subjective social status predict health and change in health status better than objective status?. Psychosomatic medicine. 67(6):855-861.
Sommer W, Matt J. 1990. Awareness of P300-Related Cognitive Processes: A Signal Detection Approach. Psychophysiology. 27(5):575–585.
https://doi.org/10.1111/j.1469-8986.1990.tb01980.x

Stevens C, Lauinger B, Neville H. 2009. Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: An event-related brain potential study. Developmental Science. 12(4):634–646.
https://doi.org/10.1111/j.1467-7687.2009.00807.x

Stevens C, Paulsen D, Yasen A, Neville H. 2015. Atypical auditory refractory periods in children from lower socio-economic status backgrounds: ERP evidence for a role of selective attention. International Journal of Psychophysiology. 95(2):156–166.
https://doi.org/10.1016/j.ijpsycho.2014.06.017

Takeda Y, Kimura M. 2014. The auditory N1 amplitude for task-irrelevant probes reflects visual interest. International Journal of Psychophysiology. 94(1):35–41.
https://doi.org/10.1016/j.ijpsycho.2014.07.007

Taylor MJ, Baldeweg, T. 2002. Application of EEG, ERP and intracranial recordings to the investigation of cognitive functions in children. Developmental Science. 5(3):318-334.

Torgesen JK, Wagner RK, Rashotte CA. 1994. Longitudinal Studies of Phonological Processing and Reading. Journal of Learning Disabilities. 27(5):276–286.
https://doi.org/10.1177/002221949402700503

Ursache A, Noble KG. 2016. Neurocognitive development in socioeconomic context: Multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology. 53(1):71–82. https://doi.org/10.1111/psyp.12547
Ursache A, Noble KG, Blair C. 2015. Socioeconomic Status, Subjective Social Status, and Perceived Stress: Associations with Stress Physiology and Executive Functioning. Behavioral Medicine. 41(3):145–154. https://doi.org/10.1080/08964289.2015.1024604

Vihman MM. 1996. Phonological development: The origins of language in the child. Blackwell Publishing.

Wagner RK, Torgesen JK, Rashotte CA, Hecht SA, Barker TA, Burgess SR, Donahue J, Garon T. 1997. Changing relations between phonological processing abilities and word-level reading as children develop from beginning to skilled readers: A 5-year longitudinal study. Developmental Psychology. 33(3):468–479. https://doi.org/10.1037//0012-1649.33.3.468

Wagner RK, Torgesen JK. 1987. The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin. 101(2):192–212. https://doi.org/10.1037/0033-2909.101.2.192

Wehner DT, Ahlfors SP, Mody M. 2007. Effects of phonological contrast on auditory word discrimination in children with and without reading disability: A magnetoencephalography (MEG) study. Neuropsychologia. 45(14):3251–3262. https://doi.org/10.1016/j.neuropsychologia.2007.06.018

Wheldall K, Pogorzelski S. 2003. Is the phab really fab? The utility of the phonological assessment battery in predicting gains made by older low-progress readers following two terms of intensive literacy instruction. Educational Psychology. 23(5):569–590. https://doi.org/10.1080/0144341032000123804
Whitehurst GJ. 1997. Language processes in context: Language learning in children reared in poverty. In Research on communication and language disorders: Contribution to theories of language development (pp. 233–266). Brookes.

Woodcock RW, McGrew KS, Mather N. 2001. Woodcock-Johnson III Test. Riverside Publishing Company.

Tables

	Working Memory & Executive	Classic IQ	Verbal STM & WM	Attainment
AWMA Digit Recall	-0.05	0.23	0.71	0.24
AWMA Dot Matrix	0.62	0.02	0.00	0.00
AWMA Mr X	0.60	0.36	-0.03	0.02
AWMA Backward Digit	0.17	0.28	0.50	0.12
WASI Vocabulary	0.02	0.74	0.26	0.36
WASI Matrix Reasoning	0.42	0.59	0.19	0.28
WJ Reading	0.10	0.48	0.36	0.50
WJ Mathematics	0.24	0.33	0.34	0.45

Table 1. The factor weightings for each of the component scores extracted. This is shown as each component variables Pearson correlation with the factors. The WJ subtests were used
to derive the ‘Attainment’ component, but excluded from the other components – correlations across all components and scores are still included for completeness.

	A	B	C	D
Mean t-value	0.1480	0.0776	0.0373	-0.1101
Monte Carlo p	0.0004	0.0002	0.0002	0.0002
Number of Sensors	5	13	8	8
Epoch Start Time (ms)	177	317	170	335
Temporal Extent (ms)	66	81	59	66

Table 2. Statistics for the evoked cluster. Mean T-value is calculated by averaging the observed T output from the test statistic at each timepoint and each sensor in the cluster.
Table 3. Summary of statistics for GLM clusters surviving permutation testing. T values and Beta values are the average from each cluster over sensors and time points. Beta values are in the scale of magnetometers field strength.
Captions to figures
Figure 1. Illustrative topography and time course of the evoked responses for the frequent non-word and the word/non-word deviants. A sub-section of left and right sensors were selected and averaged to produce the time-courses above and below the helmet illustration.

Figure 2. Field Strength topography of evoked contrasts for Words and Non-Words. Final Phoneme is marked with a blue line.
Figure 3. Evoked Field Cluster topography and time-courses for word and non-word mismatch subtractions. Mean T statistic maps are shown projected onto MEG helmet, significant sensors are marked in white. Time course showing Mean (line) and bootstrapped 95% confidence intervals (shaded area) field strength for each evoked contrast, stimuli start and final phoneme onset marked in blue, and cluster onset/offset shaded in yellow. A) shows MMN for Non-Word deviants and C) shows MMN for Word deviants; B) and D) show later difference in response.
Figure 4. Average source-localised evoked contrasts for Words and Non-Words. Final phoneme is marked with a blue line. DSPM used to invert sensor-level data. For visualisation the estimates are binned into 100ms segments – so each image is a mean average across a bin.
Figure 5. General Linear Model clusters for Attainment, Subjective SES and Age in Years.

Topography of Beta-Weights with cluster sensors plotted shown on the left. Time-course of beta weights, with stimuli and final phoneme marked in blue, and cluster temporal extent shaded in yellow. It should be noted that spatial and temporal cluster extent are not cluster permuted, just the statistic – so this should be interpreted as an estimate of these dimensions. Beta values are in the scale of magnetometers field strength.