STRONG CONTAINMENT OF SATURATED FORMATIONS OF
SOLUBLE LIE ALGEBRAS

DONALD W. BARNES

Abstract. It is shown that, if \(\mathcal{H}, \mathcal{K} \) are saturated formations of soluble Lie algebras over a field of non-zero characteristic, and \(\mathcal{H} \gg \mathcal{K} \) is a non-trivial example of strong containment, then \(\mathcal{H} = \mathcal{H}/\mathcal{N} \) and \(\mathcal{H} \) is not locally defined.

1. Introduction

The concept of strong containment for Schunck classes of finite soluble groups was introduced by Cline [8] in 1969. It is discussed extensively in Doerk and Hawkes [9].

Definition 1.1. Let \(\mathcal{H}, \mathcal{K} \) be Schunck classes of finite soluble groups. We say that \(\mathcal{H} \) strongly contains \(\mathcal{K} \), written \(\mathcal{H} \gg \mathcal{K} \) if, for every finite soluble group \(G \), every \(\mathcal{K} \)-projector of an \(\mathcal{H} \)-projector of \(G \) is a \(\mathcal{K} \)-projector of \(G \).

Much attention is given to the special case where \(\mathcal{H} \) and \(\mathcal{K} \) are formations. It is easy to give examples of strong containment of saturated formations of finite soluble groups. If \(\pi_1 \subset \pi_2 \) are sets of primes, then the class of soluble \(\pi_2 \)-groups is strongly contained in the class of soluble \(\pi_2 \)-groups since a Hall \(\pi_1 \)-subgroup of a Hall \(\pi_2 \)-subgroup of \(G \) is clearly a Hall \(\pi_1 \)-subgroup of \(G \).

I. S. Gutiérrez García has asked in a private communication to the author, if there exist non-trivial examples of strong containment of saturated formations of soluble Lie algebras.

In the following, all Lie algebras are soluble and finite-dimensional over the field \(F \) and \(\mathcal{H}, \mathcal{K} \) are Schunck classes of soluble Lie algebras over \(F \).

Definition 1.2. We say that \(\mathcal{H} \) is strongly contains \(\mathcal{K} \), written \(\mathcal{H} \gg \mathcal{K} \), if, for every soluble Lie algebra \(L \) and \(\mathcal{H} \)-projector \(H \) of \(L \), every \(\mathcal{K} \)-projector of \(H \) is a \(\mathcal{K} \)-projector of \(L \).

There are clearly three trivial cases, \(\mathcal{K} = 0 \), \(\mathcal{K} = \mathcal{H} \) and \(\mathcal{H} = \mathcal{S} \), the class of all soluble Lie algebras.

The cases of \(\text{char}(F) = 0 \) and \(\text{char}(F) \neq 0 \) are dramatically different.

Theorem 1.3. Suppose \(\text{char}(F) = 0 \). Let \(\mathcal{H} \supseteq \mathcal{K} \) be Schunck classes. Then \(\mathcal{H} \gg \mathcal{K} \).

Proof. Every soluble Lie algebra over \(F \) is completely soluble, so \(\mathcal{H} \gg \mathcal{K} \) by Barnes and Newell [7, Theorem 3.7].

For \(\text{char}(F) \neq 0 \), it is easy to produce examples of strong containment of Schunck classes, but the existence of non-trivial examples where \(\mathcal{H} \) and \(\mathcal{K} \) are formations remains unanswered.

2010 Mathematics Subject Classification. Primary 17B30, Secondary 20D10.
Key words and phrases. Lie algebras, Schunck classes, saturated formations, local definition.
To avoid continual reference to trivial cases, it is always assumed in the following that $\mathfrak{g} \neq \mathfrak{h} \neq \mathfrak{r} \neq 0$. The class of all nilpotent algebras is denoted by \mathfrak{r} and 0 is used to denote the zero element, the zero algebra and the class containing only the zero algebra according to context. As the case of characteristic 0 has been settled, in the following, it is assumed that $\text{char}(F) = p \neq 0$. The socle of the Lie algebra L is denoted by $\text{Soc}(L)$ and the nil radical of L is denoted by $\text{N}(L)$. If V is an L-module, $C_L(V)$ denotes the centraliser of V in L, that is, the kernel of the representation of L on V. If \mathfrak{g} is a formation, the \mathfrak{g}-residual of the algebra L is denoted by $L_\mathfrak{g}$. This is the smallest ideal K of L with $L/K \in \mathfrak{g}$.

That a result is the Lie algebra analogue of a result in Doerk and Hawkes [9] is indicated by (DH, Lemma x, p. y). Proofs which are exact translations are omitted.

2. Strong containment

In this section, we investigate basic properties of strong containment of Schunck classes.

Lemma 2.1. Suppose $\mathfrak{h} \gg \mathfrak{r}$. Then every \mathfrak{r}-projector of a soluble Lie algebra L is contained in some \mathfrak{h}-projector of L.

Proof. Let L be a soluble Lie algebra of least possible dimension with a \mathfrak{r}-projector K not contained in any \mathfrak{h}-projector of L. Let A be a minimal ideal of L. Then $K + A/A$ is contained in some \mathfrak{h}-projector H^*/A of L/A. If $H^* < L$, then there exists an \mathfrak{h}-projector H of H^* which contains K. But H is an \mathfrak{h}-projector of L by [6, Lemma 1.8]. Therefore $H^* = L$, and A is complemented in L by an \mathfrak{h}-projector H. If B is a minimal ideal of L contained in H, then $L/B \in \mathfrak{h}$ contrary to H being an \mathfrak{h}-projector. Therefore L is primitive and H is faithfully represented on A. Let $K_1 = H \cap (K + A)$. Since $H \simeq L/A$, K_1 is a \mathfrak{r}-projector of H and so also of L since $\mathfrak{r} \ll \mathfrak{h}$. Thus both K and K_1 are \mathfrak{r}-projectors of $K + A = K_1 + A$. By [6, Lemma 1.11], there exists $a \in A$ such that $\alpha_a(K_1) = K$ where $\alpha_a : L \to L$ is the automorphism $1 + \text{ad}_a$. Then $\alpha_a(H)$ is an \mathfrak{h}-projector of L which contains K. \Box

Lemma 2.2. Let L be an algebra of least possible dimension with an \mathfrak{h}-projector H and a \mathfrak{r}-projector K of H which is not a \mathfrak{r}-projector of L. Then L is primitive with H complementing $\text{Soc}(L)$.

Proof. Clearly $H \neq L$. Let A be a minimal ideal of L. Suppose $H + A < L$. Then H is an \mathfrak{h}-projector of $H + A$, so K is a \mathfrak{r}-projector of $H + A$. Also, $H + A/A$ is an \mathfrak{h}-projector of L/A and $K + A/A$ is a \mathfrak{r}-projector of $H + A/A$, so $K + A/A$ is a \mathfrak{r}-projector of L/A. As K is a \mathfrak{r}-projector of $K + A/A$, it is a \mathfrak{r}-projector of L. Therefore $H + A = L$. As this holds for every minimal ideal, there is only one minimal ideal and L is primitive. \Box

Definition 2.3. The boundary of the Schunck class \mathfrak{X} is the class $b(\mathfrak{X})$ of those Lie algebras not in \mathfrak{X} whose proper quotients are in \mathfrak{X}. A class \mathfrak{Y} of primitive algebras is called a boundary class if the intersection of \mathfrak{Y} with the class of proper quotients of algebras in \mathfrak{Y} is empty.

Clearly, $b(\mathfrak{X})$ is a boundary class. That every boundary class is the boundary of a Schunck class follows as in (DH, 2.3, p. 284).
Definition 2.4 (DH 4.15, p. 308). The avoidance class of \mathcal{F} is the class $a(\mathcal{F})$ of primitive algebras P with $H \cap \text{Soc}(P) = 0$ for all \mathcal{F}-projectors H of P.

Clearly, $b(\mathcal{F}) \subseteq a(\mathcal{F})$.

Lemma 2.5. Let $P \in a(\mathcal{R})$ and let M complement $A = \text{Soc}(P)$. Then M contains an \mathcal{R}-projector of P.

Proof. Let U be a \mathcal{R}-projector of P. Then $U \cap A = 0$. Let B/C be a composition factor of A as U-module. Then $U + C/C$ is an \mathcal{R}-projector of $U + B/C$ and $H^1(U, B/C) = 0$. Thus $H^1(U, A) = 0$ and so, if V complements A in $U + A$, then there exists $a \in A$ with $\alpha_a(U) = V$ where $\alpha_a : P \to P$ is the automorphism $1 + \text{ad}_a$. In particular, for $V = M \cap (U + A)$, we have that $V = \alpha_a(U)$ is a \mathcal{R}-projector of P. \hfill \Box

Theorem 2.6 (DH 1.5, p. 429). Let $\mathcal{F} \supset \mathcal{R}$ be Schunck classes. Then $\mathcal{F} \gg \mathcal{R}$ if and only if $b(\mathcal{F}) \subseteq a(\mathcal{R})$.

Proof. Suppose $\mathcal{R} \nsubseteq \mathcal{F}$. Then by Lemma 2.2, there exists a primitive algebra $L \in b(\mathcal{F}) \setminus a(\mathcal{R})$ and $b(\mathcal{F}) \nsubseteq a(\mathcal{R})$. Suppose $\mathcal{R} \ll \mathcal{F}$. Let $P \in b(\mathcal{F})$, let K be a \mathcal{F}-projector of P. Then $K \leq H$ for some \mathcal{R}-projector H of P. Since $H \cap \text{Soc}(P) = 0$, we have $K \cap \text{Soc}(P) = 0$ and $P \in a(\mathcal{R})$. \hfill \Box

There exist non-trivial examples of Schunck classes with $\mathcal{F} \gg \mathcal{R}$.

Example 2.7. Let \mathcal{R} be a Schunck class and suppose that $b(\mathcal{R})$ contains more than one (isomorphism type of) primitive algebra. Let \mathcal{X} be a non-empty subclass of $b(\mathcal{R})$, $\mathcal{X} \neq b(\mathcal{R})$. Let \mathcal{F} be the Schunck class with boundary \mathcal{X}. Then $\mathcal{X} \subset a(\mathcal{R})$ and we have $\mathcal{R} \ll \mathcal{F} \neq \mathcal{S}$.

3. Formations

We now investigate the special case in which the Schunck classes \mathcal{F}, \mathcal{R} are formations. Our investigation parallels the work of D’Arcy set out in Chapter VII of Doerk and Hawkes [9]. D’Arcy uses the formation functions f, g of the canonical local definitions of the saturated formations \mathcal{R}, \mathcal{F} and obtains the following necessary and sufficient condition for $\mathcal{R} \ll \mathcal{F}$.

Theorem 3.1 (DH, VII.5.1, p. 509). Let f, g be the canonical definitions of the saturated formations \mathcal{R}, \mathcal{F} of finite soluble groups. Then $\mathcal{R} \ll \mathcal{F}$ if and only if, for each $H \in \mathcal{F}$ and \mathcal{R}-projector K of H, we have $H_{\mathcal{R}(p)} \subseteq K_{f(p)}$ for all $p \in \text{char}(\mathcal{F})$.

A locally defined formation of soluble Lie algebras has a single defining formation, not a family as in the group case, which simplifies our analysis, as does our only needing to find a necessary condition for $\mathcal{R} \ll \mathcal{F}$. It is complicated by the fact that not all saturated formations of soluble Lie algebras are locally defined. We need a substitute for the defining formation. This is provided by the quotient formation \mathcal{F}/\mathcal{R} defined as follows.

Definition 3.2. Let \mathcal{F} be a saturated formation. We define the quotient of \mathcal{F} by \mathcal{R} to be

$$\mathcal{F}/\mathcal{R} = \{ L/A \mid L \in \mathcal{F}, A \triangleleft L, N(L) \leq A \}.$$
By Barnes [4, Lemma 3.2], \mathcal{F}/\mathcal{N} is a formation. If \mathcal{F} is locally defined by \mathcal{F}, then $\mathcal{F} = \mathcal{F}/\mathcal{N}$ by [4, Theorem 3.3].

Suppose that V is an L-module, K is an ideal of L and that $K \in \mathcal{F}$ for some saturated formation \mathcal{F}. By Barnes [5, Lemma 1.1], there is an L-module direct decomposition $V = V(K, R^+) \oplus V(K, R^-)$ where, as K-modules, $V(K, R^+)$ is \mathcal{F}-hypercentral and $V(K, R^-)$ is \mathcal{F}-hypereccentric.

Lemma 3.3. Let $A \in \mathcal{F}$ be a subalgebra of L and let B be a nilpotent ideal of L. Suppose that $L = A + B$. Suppose that $V(A, R^+) \subseteq V(B, R^+)$ for every L-module V. Then $A \supseteq B$.

Proof. Let V be a minimal counterexample and let K be a minimal ideal of L. Then $L/K, A + K/K, B + K/K$ satisfy the conditions of the lemma, so $A + K \supseteq B + K$. Thus $A + K = L$. The result holds if $A = L$, so A contains no minimal ideal of L. It follows that L is primitive and $N(L) = K$, so $B = K$. Now L has a faithful, completely reducible L-module. Since L has only one minimal ideal, it follows that there exists a faithful irreducible L-module V. But B acts nilpotently on the L-submodule $V(B, R^+)$. Since V is faithful and irreducible, this implies that $V(B, R^+) = 0$. Therefore $V(A, R^+) = 0$.

Let $\eta : L \to A$ be the epimorphism $\eta(x) = (x + B) \cap A$. Since $A \cap B = 0$, we can define a new action $x \cdot v = \eta(x)v$ of L on V. Let W be V with this new action. Put $X = \text{Hom}_L(W, V)$ and we have $X(B, R^+) = 0$. But for the identity function $f(v) = v$, we have $af = 0$ for all $a \in A$ and (f) is the trivial A-module. It is \mathcal{F}-central, contrary to $X(A, R^+) \subseteq X(B, R^+)$. □

Lemma 3.4. Let $A \in \mathcal{F}$ be a subalgebra of L and let B be a nilpotent ideal of L. Suppose that for every L-module V, we have $V(A, R^+) \subseteq V(B, R^+)$. Then $A \supseteq B$.

Proof. Put $M = A + B$. We prove that M, A, B satisfy the conditions of the lemma. Let $(L^e, [p])$ be a p-envelope of L and let U be the universal $[p]$-envelope of L^e. Let $U_1 \subseteq U$ be the universal $[p]$-enveloping algebra of the $[p]$-closure $M[p]$ of M. Let V be any M-module. Let $W = U \otimes_{U_1} V$ be the induced L^e-module. Then W is an L-module, so we have $W(A, R^+) \subseteq W(B, R^+)$. But $V_1 = \{1 \otimes v \mid v \in V\}$ is an M-submodule isomorphic to V. Since

$$V_1(A, R^+) = W(A, R^+) \cap V_1 \subseteq W(B, R^+) \cap V_1 = V_1(B, R^+),$$

we have $V(A, R^+) \subseteq V(B, R^+)$ for every M-module V. By Lemma 3.3, $A \supseteq B$. □

Lemma 3.5. Let \mathcal{H} be a saturated formation and let $\mathcal{G} = \mathcal{F}/\mathcal{N}$. Let $H \in \mathcal{H}$ and let V be an H-module. Then $V(H, R^+) \subseteq V(H, R^+)$.\]

Proof. Consider first the case where V is an \mathcal{H}-central irreducible H-module. Let C be the centraliser of V in H. Since V is \mathcal{F}-central, the split extension X of V by H/C is in \mathcal{F} and $X/V \in \mathcal{F}$. Thus $C \supseteq H_\mathcal{F}$. From this, it follows for any V, that $H_\mathcal{F}$ acts nilpotently on $V(H, R^+)$. Thus $V(H, R^+) \subseteq V(H, R^+)$. □

Now for the Lie algebra analogue of Theorem 3.1

Theorem 3.6. Suppose $\mathcal{H} \supseteq \mathcal{F}$ are saturated formations. Let $\mathcal{G} = \mathcal{H}/\mathcal{N}$. Then for each $H \in \mathcal{H}$, the \mathcal{G}-residual $H_\mathcal{G}$ is \mathcal{F}-hypercentral.

Proof. Let $H \in \mathcal{H}$ and let K be a \mathcal{F}-projector of H. Let V be an H-module and let L be the split extension of V by H. Put $W = V(H, R^+)$. By Lemma 3.5,
W ⊆ V^{(H \mathcal{G}, \mathcal{R}^+)}$. Now $W + H$ is the unique \mathcal{R}-projector of L which contains H. Also, $X = V^{(K, \mathcal{R}^+)}$ is a K-submodule and $X + K$ is the unique \mathcal{R}-projector of L which contains K, while $(X \cap W) + K$ is the unique \mathcal{R}-projector of $W + H$ which contains K. Since $\mathcal{R} \ll \mathcal{G}$, we must have $X \subseteq W$. By Lemma 3.4, $H_\mathcal{G} \subseteq K$ and by Barnes [3, Theorem 4], $H_\mathcal{G}$ is \mathcal{R}-hypercentral.

\section{4. Gutiérrez García containment}

In [10], I. Gutiérrez García introduced two weakened versions of strong containment for finite soluble groups, called G- and D-strong containment.

\textbf{Definition 4.1.} Let \mathcal{G} and \mathcal{H} be two saturated formations of finite soluble groups with \mathcal{H} the canonical local definition of \mathcal{G}. Suppose $\text{char}(\mathcal{G}) \subseteq \text{char}(\mathcal{H})$. We say that \mathcal{G} is G-strongly contained in \mathcal{H}, written $\mathcal{G} \ll_{\mathcal{G}} \mathcal{H}$, if, for each $H \in \mathcal{H}$, an \mathcal{G}-projector E of H satisfies $H_{\mathcal{G}(p)} \subseteq E$ for each $p \in \text{char}(\mathcal{G})$.

We say that \mathcal{G} is D-strongly contained in \mathcal{H}, written $\mathcal{G} \ll_{\mathcal{D}} \mathcal{H}$, if, for each $H \in \mathcal{H}$ an \mathcal{G}-projector E of H satisfies $H_{\mathcal{G}(p)} \subseteq E$ for each $p \in \text{char}(\mathcal{G})$.

For Lie algebras, there are no considerations of different primes and we can avoid the assumption that the formations are locally defined.

\textbf{Definition 4.2.} Let $\mathcal{R} \subseteq \mathcal{L}$ be saturated formations of soluble Lie algebras. Let $\mathcal{G} = \mathcal{L}/\mathcal{R}$. We say that \mathcal{R} is Gutiérrez García contained in \mathcal{L}, written $\mathcal{R} \ll_{\mathcal{G}} \mathcal{L}$, if for all $H \in \mathcal{L}$, $H_\mathcal{G}$ is \mathcal{R}-hypercentral.

This is equivalent to the condition that for each $H \in \mathcal{L}$, there exists a \mathcal{R}-projector K of H such that $H_\mathcal{G} \subseteq K$. By Theorem 3.6, if $\mathcal{R} \ll \mathcal{L}$ then $\mathcal{R} \ll_{\mathcal{G}} \mathcal{L}$.

In the following, $\mathcal{R} \ll_{\mathcal{G}} \mathcal{L}$ and $\mathcal{G} = \mathcal{L}/\mathcal{R}$.

\textbf{Lemma 4.3.} Suppose $\mathcal{H} \neq \mathcal{G}, \mathcal{G}$. Then there exists $L \notin \mathcal{G}$ with a minimal ideal A such that $L/A \in \mathcal{G}$ and with an \mathcal{G}-central but \mathcal{R}-eccentric module U such that $L/C_L(U) \in \mathcal{R}$.

\textit{Proof.} Take $L^1 \in \mathcal{H}, L^1 \notin \mathcal{G}$ of least possible dimension. Let A be a minimal ideal of L^1. Take $P \in \mathcal{G}, P \notin \mathcal{R}$ of least possible dimension. Let $U = \text{Soc}(P)$ and $Q = P/U$. Then $Q \in \mathcal{G} \cap \mathcal{R}$ and U is an \mathcal{R}-central but \mathcal{R}-eccentric Q-module. Put $L = L^1 \oplus Q$. Then A is a minimal ideal of L and $L/A \in \mathcal{G}$ and U is an L-module with the required properties. \hfill \Box

\textbf{Lemma 4.4.} Let A be an ideal of the Lie algebra L and let V be an L-module with $AV \neq 0$. Then there exists a section $V' = X/Y$ of V such that AV' is the only minimal submodule of V'.

\textit{Proof.} Take X a submodule of V of least possible dimension subject to the requirement that $AX \neq 0$. Take $Y \subset X$ of largest possible dimension subject to $Y \nsubseteq AX$. Then $V' = X/Y$ has the required properties. \hfill \Box

\textbf{Lemma 4.5.} Let L, A, U be as given by Lemma 4.3. There exists an \mathcal{G}-hypercentral L-module V with the following properties:

\begin{itemize}
 \item[(a)] V has a unique minimal submodule W.
 \item[(b)] $AV = W$.
 \item[(c)] W is \mathcal{R}-eccentric.
\end{itemize}
Lemma 4.7. Suppose that $\mathfrak{H} = L/\mathfrak{H}$, so L is \mathfrak{H}-hypercentral. Then $\mathfrak{H} = L/\mathfrak{H}$. □

Theorem 4.6. Suppose that $\mathfrak{K} \ll G \mathfrak{H}$ and that $0 \neq \mathfrak{K} \neq \mathfrak{H} \notin \mathfrak{G}$. Then $\mathfrak{H} = \mathfrak{H}/\mathfrak{H}$. □

Proof. Let $\mathfrak{H} = \mathfrak{H}/\mathfrak{H}$. Take L, A, U, V, W as given by Lemmas 4.3 and 4.5. Let L^*_A be the split extension of V by L. Then $L^*_A \in \mathfrak{H}$ since $L \in \mathfrak{H}$ and V is \mathfrak{H}-hypercentral.

Let X be any non-zero ideal of L^* which is contained in $A + V$. If $X \subseteq V$, then $X \supseteq W$ since W is the only minimal submodule of V. If $X \supsetneq V$, then there exists $a + v \in X$, $a \in A$, $v \in V$ with $a \neq 0$. The centraliser $C_A(V)$ is an ideal of L and, as A is minimal and acts non-trivially, $C_A(V) = 0$. Thus $aV \neq 0$. Since X is an ideal of L^*, $aV \subseteq X \cap W$. It follows that $X \supseteq W$.

Consider L^*_A. As $L^*_A = A$, we have $L^*/(A + V) \in \mathfrak{H}$. Thus $L^*_A \subseteq A + V$. If $L^*_A \neq 0$, then $L^*_A \supseteq W$. But W is \mathfrak{H}-eccentric contrary to $\mathfrak{H} \ll G \mathfrak{H}$. Therefore $L^*_A = 0$ and $L^*_A \in \mathfrak{H}$. But $L \simeq L^*/(V + M)$, so $L \in \mathfrak{H}$ contrary to the choice of L. Therefore $\mathfrak{H} = \mathfrak{H}/\mathfrak{H}$. □

Lemma 4.7. Suppose $\text{Loc}(\mathfrak{H}) = \mathfrak{H} \neq \mathfrak{G}$. Then $\mathfrak{H} \neq \mathfrak{H}$. □

Proof. Suppose $\mathfrak{H} = \mathfrak{H}$. Take $L \notin \mathfrak{H}$ of least possible dimension. Then L is primitive. Let $A = \text{Soc}(L)$. Then $L/A \in \mathfrak{H} = \mathfrak{H}$, so $L \notin \text{Loc}(\mathfrak{H}) = \mathfrak{H}$ contrary to assumption. □

Corollary 4.8. Suppose that $\mathfrak{K} \ll \mathfrak{H}$ non-trivially. Then $\mathfrak{H} = \mathfrak{H}/\mathfrak{H}$ and \mathfrak{H} is not locally defined. □

Proof. By Theorem 3.6, $\mathfrak{K} \ll G \mathfrak{H}$. By Lemma 4.7, \mathfrak{H} is not locally defined. □
1 Little Wonga Rd., Cremorne NSW 2090, Australia,
E-mail address: donwb@iprimus.com.au