Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms

Vibe Skov1*, Mads Thomassen2, Lasse Kjær1, Christina Ellervik3, Morten Kranker Larsen1, Trine Alma Knudsen1, Torben A. Kruse2, Hans C. Hasselbalch1

1 Department of Hematology, Zealand University Hospital, Roskilde, Denmark, 2 Department of Clinical Genetics, Odense University Hospital, Odense, Denmark, 3 Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

* vihs@regionsjaeland.dk

Abstract

Chronic inflammation is considered a major driving force for clonal expansion and evolution in the Philadelphia-negative myeloproliferative neoplasms, which include essential thrombocythemia, polycythemia vera and primary myelofibrosis (MPNs). One of the key mutation drivers is the JAK2V617F mutation, which has been shown to induce the generation of reactive oxygen species (ROS). Using whole blood gene expression profiling, deregulation of several oxidative stress and anti-oxidative defense genes has been identified in MPNs, including significant downregulation of TP53, the NFE2L2 or NRF2 genes. These genes have a major role for maintaining genomic stability, regulation of the oxidative stress response and in modulating migration or retention of hematopoietic stem cells. Therefore, their deregulation might give rise to increasing genomic instability, increased chronic inflammation and disease progression with egress of hematopoietic stem cells from the bone marrow to seed in the spleen, liver and elsewhere. Interferon-alpha2 (rIFNα) is increasingly being recognized as the drug of choice for the treatment of patients with MPNs. Herein, we report the first gene expression profiling study on the impact of rIFNα upon oxidative stress and antioxidative defense genes in patients with MPNs (n = 33), showing that rIFNα downregulates several upregulated oxidative stress genes and upregulates downregulated antioxidative defense genes. Treatment with rIFNα induced upregulation of 19 genes in ET and 29 genes in PV including CXCR4 and TP53. In conclusion, this rIFNα- mediated dampening of genotoxic damage to hematopoietic cells may ultimately diminish the risk of additional mutations and accordingly clonal evolution and disease progression towards myelofibrotic and leukemic transformation.
Introduction

The Philadelphia-negative myeloproliferative neoplasms (MPNs) include essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF), which in the large majority are acquired hematopoietic stem cell diseases, arising and driven by somatic stem cell mutations (JAK2V617F, CALR, MPL). Additional mutations are key determinants for clonal expansion and evolution [1, 2]. Chronic inflammation is today considered a major driving force for clonal expansion and evolution in the biological continuum from the early cancer stages (ET, PV) towards the advanced myelofibrosis stage with bone marrow failure, huge splenomegaly and ultimately leukemic transformation [3–27]. The JAK2V617F mutation has been shown to generate reactive oxygen species (ROS) [28]. Both the JAK2V617F mutation and ROS associate with an increased risk of thrombosis [29–33], extracellular neutrophil trap formation (NETosis) [32] ischemic heart disease [34–39], and cancer as well [34, 40, 41]. Most recently, the CALR mutation has also been shown to be involved in the development of a chronic inflammatory state, cells harboring the CALR mutation exhibiting cell-autonomous activation of the IL-6 pathway [42].

By whole blood transcriptional profiling, we have previously identified a massive deregulation of several oxidative stress and antioxidative defense genes in patients with MPNs [43]. Amongst the genes significantly downregulated are TP53 and the NFE2L2 or NRF2 gene, the latter having a key role in the regulation of the oxidative stress response and in modulating both migration and retention of hematopoietic stem cells (HSCs). During MPN-disease progression, the HSC pool is steadily expanding with the egress of CD34+ cell from stem cell niches into the circulation. In addition to NRF2, several other genes are involved in this process, including CXCR4, which is also significantly downregulated in MPNs [43].

Interferon-alpha2 (rIFNα) is increasingly been recognized as a very efficacious and promising treatment modality in the treatment of MPNs [44–60]. Taken into account that chronic inflammation with ROS accumulation has a major role in the pathogenesis of MPNs [3–28], ultimately implying the induction of an altered redox balance of pivotal significance for stem cell mobilization [31, 43], we herein report the first study containing novel information on the impact of rIFNα upon oxidative stress and antioxidative defense genes, showing that rIFNα downregulates several upregulated oxidative stress genes and upregulates downregulated antioxidative defense genes.

Materials and methods

Nineteen patients with ET, 41 patients with PV, and 9 patients with PMF (data set 1), and 8 patients with ET, 21 patients with PV, and 4 patients with PMF (data set 2) as well as 21 control subjects participated in the study. Patients from data set 2 received monotherapy with rIFNα, in the large majority in a dosage ranging from 45 μg x 1 sc/week to 90 μg x 1 sc/week. When patients initiated IFN-monotherapy, hydroxyurea (n = 18) or anagrelide (n = 6) were discontinued. Patient characteristics are presented in Tables 1 and 2, which have been published previously [43]. The study was approved by the regional ethics committee and was performed in accordance with the declaration of Helsinki. Informed written consent was obtained from all subjects before participation.

In data set 1 and 2, gene expression profiles from patients with ET, PV or PMF were compared with 21 control subjects. In data set 2, gene expression profiling of patients with ET, PV and PMF was performed at baseline and after 3 months of treatment with rIFNα. The effect of rIFNα on transcriptional changes in patients from data set 2 was tested using gene expression profiling of 38,500 genes. Whole blood was collected in Paxgene tubes (Preanalytix, Hombrichtikon, Switzerland), stored at room temperature for 24 h, then at -20°C for minimum
one day, and finally transferred to a -80˚C freezer. The Paxgene Blood RNA kit (Qiagen, Franklin Lakes, NJ, USA) was used to extract total RNA from each sample. The quantity and quality of RNA were tested with NanoDrop spectrophotometer ND-8000 (NanoDrop Technologies) and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA), respectively. Three hundred ng of purified total RNA were converted to biotin-labeled aRNA using the Message-AmpTM III RNA amplification kit (Ambion, Austin, TX). Amplified RNA was hybridized to Affymetrix HG-U133 2.0 Plus microarrays and scanned with the Affymetrix GeneChip Scanner 3000-7G (Affymetrix, Santa Clara, CA).

The R statistical software [61] and the “robust multi-array average method” (RMA) [62] from the Bioconductor package “affy” were applied to perform background correction, normalization, and gene expression index calculation of probe intensities. Only perfect match probes were used for data analysis. Differences in gene expression between patients and controls (data set 1 and 2) as well as in patients before and after 3 months of treatment with rIFNα (data set 2) were calculated using the regularized t-test from the Bioconductor package “limma” for unpaired and paired data, respectively. Data set 1 has been performed and analyzed as a hypothesis generating study, therefore we applied an FDR value < 0.05 to control for

Table 1. Patient characteristics. Data set 1.

No	Gender	Age	Disease duration (months)	JAK2	JAK2	Therapy	Thrombosis (+/-)	
	(m/f)	(years)		V617F	V617F	(+/-)	(%)	
ET	19	9/10	60 (35–87)	40 (15–278)	9/10	23 (1–55)	9/10	
PV	41	21/20	69 (35–85)	39 (2–171)	40/1	37 (28–48)	19/22	
PMF	9	3/6	68 (53–74)	31 (11–204)	2/7	59	HU = 1	1/8

Age: Median and range; Disease duration: Median and range; JAK2V617F %: median and 95% confidence interval; HU = hydroxyurea; rIFNα = interferon-alpha2; ANA = anagrelide; BU = busulfan.

Table 2. Patient characteristics at baseline. Data set 2.

No	Gender	Age	JAK2	JAK2	Therapy at baseline		
	(m/f)	(years)	V617F	V617F	(+/-)	(%)	
ET	8	4/4	57 (45–66)	6/2	14 (1–48)	HU = 5	
							None = 3
PV	21	10/11	62 (26–69)	21/0	20 (10–79)	HU = 14	
							None = 5
PMF	4	2/2	68 (55–73)	4/0	30 (6–92)	None = 2	
							None = 4

Age: Median and range; JAK2V617F %: median and 95% confidence interval; HU = hydroxyurea; ANA = anagrelide.

https://doi.org/10.1371/journal.pone.0270669.t002
multiple hypothesis testing. Data set 2 was performed later and hypotheses generated in data set 1 were tested in data set 2. Thus, a p value \(< 0.05\) was applied as a cut off for significance in data set 2. Data are available from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo; accession no. GSE57793).

Results

Single gene analysis of 148 genes found to be included in previous studies focusing on deregulation of oxidative stress and antioxidative defense genes in various diseases were chosen for further analysis. Since our previous study of gene expression profiling of oxidative stress genes in patients with MPNs compared to control subjects [43], 6 genes have been added to the panel of oxidative stress and antioxidative defense genes, totaling 154 genes. In response to treatment with rIFNα, 19 genes were upregulated in ET including CXCR4 and TP53, and 11 genes were downregulated including FOXO3, PRDX2, and PRDX6 (Table 3).

In patients with PV, ATOX1, CXCR4, SEPP1, and TP53 were among the 29 upregulated genes, and FOXO3 and PRDX2 were among the 14 downregulated genes (Table 4).

In response to treatment with rIFNα, two genes were upregulated in PMF which were CYBB and MSRA, and nine genes were downregulated including PRDX2, and FOXO3 (Table 5) (All P < 0.05).

The Top 10 significantly up- or downregulated genes in ET or PV during treatment with rIFNα are shown in Figs 1 and 2, respectively, and the significantly up- or downregulated genes in PMF during rIFNα therapy are shown in Fig 3.

In a previous microarray study (data set 1) [43], we have shown significant downregulation of genes associated with oxidative stress and antioxidative defense including ATM, CYBA, NRF2, SIRT2, and TTN, and significant upregulation of AKR1B1, CCND1, DEFB122, GPX8 and PTGS1 in patients with ET, PV, and PMF compared to controls. These genes were not significantly deregulated during treatment with rIFNα in any of the disease entities. In ET and PV, CXCR4 and TP53 were significantly downregulated at baseline and significantly upregulated during treatment with rIFNα. In PV and PMF, FOXO3 and GCLC were significantly upregulated at baseline and significantly downregulated during treatment with rIFNα. In addition, PRDX2 was significantly upregulated at baseline and significantly downregulated during treatment with rIFNα in all three disease entities. Fold changes and p-values for all 154 oxidative stress and antioxidative defense genes at baseline and during treatment with rIFNα are presented in S1 Table.

Discussion

In recent years, several studies have substantiated that rIFNα is highly efficacious in the treatment of patients with ET, PV and early hyperproliferative myelofibrosis, implying a normalization of elevated blood cell counts within weeks, a decrease in the JAK2V617F allele burden within the first year in most patients [45–60], and in a subset of patients even induction of minimal residual disease as defined by low-burden JAK2V617F (< 1%) in concert with normalization of the bone marrow after long-term treatment (> 5 years) [63–67]. The mechanisms of action of rIFNα are pleitropic including upregulation of downregulated HLA-genes [68] and boosting of virtually all immune cells [69–71]. Furthermore, rIFNα has been shown to exhaust and/or deplete malignant stem cells by inducing changes in the cell cycle and apoptosis [50, 51, 57]. Adding these mechanisms, we herein report that rIFNα has a major impact upon deregulated oxidative stress genes and antioxidative defense genes, implying a gene signature that in essence corresponds to decreased oxidative stress and enhancement of antioxidative defense genes. We have previously reported significant deregulation of several oxidative...
Table 3. The significantly most up- or downregulated genes in patients with ET during treatment with rIFNα (data set 2). In addition, data from the same patients compared to controls (data set 2) and another cohort (data set 1) are presented.

Upregulated genes	Data set 1	Data set 2	Data set 2									
	Ctrl vs baseline	Ctrl vs baseline	Baseline vs rIFNα									
Symbol	ET	FDR	FC	Pvalue	ET	FDR	FC	Pvalue	ET	FDR	FC	Pvalue
MSRA	-1,2	0,1	2,6	3,7E-09	1,9	0,0002						
DEFA4	1,5	0,2	1,8	0,04	1,7	0,02						
DEFA1	1,1	0,8	1,6	0,09	1,7	0,047						
PRDX4	-1,02	0,9	1,3	0,09	1,3	0,004						
PRPS2	-1,1	0,3	1,1	0,2	1,3	0,01						
DEFT1P	1,1	0,4	1,2	0,006	1,2	0,04						
AKR1A1	-1,1	0,2	1,3	0,005	1,2	0,02						
HSPA1A	-1,8	0,002	1,2	0,02	1,2	0,02						
TP53	-1,4	0,0003	-1,2	0,009	1,2	0,006						
GLRX	-1,0	0,8	1,1	0,5	1,2	0,01						
PRDX1	-1,2	0,02	1,02	0,9	1,2	0,04						
DEFB106A	1,1	0,2	1,1	0,4	1,2	0,04						
MPO	1,3	0,005	1,2	0,009	1,2	0,02						
SEL5	-1,4	0,0006	-1,03	0,8	1,2	0,04						
PFKP	-1,1	2,0E-01	1,1	0,1	1,2	0,04						
CXCR4	-2,1	3,7E-09	-1,1	0,2	1,2	0,04						
MGST2	-1,0	0,9	1,03	0,7	1,2	0,04						
PFKM	-1,1	1,7E-01	1,3	5,3E-06	1,1	0,01						
ALDOA	-1,3	0,002	1,1	0,2	1,1	0,03						

Downregulated genes	Data set 1	Data set 2	Data set 2									
	Ctrl vs baseline	Ctrl vs baseline	Baseline vs rIFNα									
Symbol	ET	FDR	FC	Pvalue	ET	FDR	FC	Pvalue	ET	FDR	FC	Pvalue
IPCEF1	-1,1	0,2	1,03	0,9	-1,9	0,001						
PRDX2	1,6	0,01	1,01	1,0	-1,6	0,008						
CAT	-2,4	1,3E-08	-2,0	1,6E-06	-1,5	8,8E-05						
FOXO3	1,2	0,2	1,5	0,02	-1,5	0,0007						
CSDE1	-1,5	1,3E-05	-1,4	5,3E-08	-1,3	0,0007						
SOD2	-1,8	0,003	-1,9	0,005	-1,3	0,03						
NQO2	-1,2	3,0E-01	-1,5	0,046	-1,2	0,003						
PRDX6	1,3	0,03	1,3	0,03	-1,2	0,02						
GSTZ1	1,2	4,2E-04	-1,4	1,8E-06	-1,2	0,008						
SRXN1	1,1	0,6	-1,1	0,6	-1,2	0,01						
PKN1	1,1	0,1	-1,1	0,02	-1,1	0,03						

Ctrl: control; rIFNα: interferon-alpha2; ET: essential thrombocytopenia; FC: fold change; FDR: false discovery rate.

https://doi.org/10.1371/journal.pone.0270669.t003

Table 4. The significantly most up- or downregulated genes in patients with PV during treatment with rIFNα (data set 2). In addition, data from the same patients compared to controls (data set 2) and another cohort (data set 1) are presented.

Upregulated genes	Data set 1	Data set 2	Data set 2			
	Ctrl vs baseline	Ctrl vs baseline	Baseline vs rIFNα			
Symbol	PV	PV	PV	PV		
MSRA	1,1	0,3	1,5	0,0002	2,2	1,2E-08

(Continued)
Table 4. (Continued)

Symbol	Ctrl vs baseline	Ctrl vs baseline	Baseline vs rIFNoα
DEF4A	1.6 0.06	1.3 0.4	1.5 0.04
DEF4A1	1.2 0.5	1.01 1.0	1.5 0.04
TP53	-1.6 3.6E-06	-1.6 2.5E-06	1.3 1.3E-06
PRDX4	-1.1 0.4	-1.1 0.2	1.3 0.0004
CYBB	-1.6 7.3E-06	-1.4 0.0001	1.3 0.0003
MGST3	-1.1 0.3	1.3 0.02	1.3 0.02
PRDX1	-1.2 0.003	-1.2 0.02	1.2 0.0007
ATOX1	1.3 5.2E-06	1.2 7.0E-05	1.2 2.1E-05
PFKP	-1.2 6.8E-03	-1.1 0.06	1.2 0.003
HSPA1A	-1.2 0.2	1.1 0.2	1.2 0.001
CXCR4	-2.0 1.1E-11	-1.1 0.3	1.2 0.007
MPO	1.2 0.006	-1.2 0.002	1.2 1.7E-05
GLRX2	-1.0 1	-1.1 0.09	1.2 0.007
PRPS2	1.0 0.9	-1.1 0.5	1.2 0.03
AKR1A1	-1.1 0.1	-1.02 0.7	1.2 0.0002
GSTM4	-1.2 0.01	-1.3 0.003	1.2 0.003
SEPP1	1.3 0.0001	1.2 0.0004	1.2 0.009
GSR	1.1 0.2	-1.1 0.03	1.2 0.002
GLRX	1.2 0.1	-1.1 0.2	1.2 0.004
NCF1	-1.1 0.2	1.1 0.2	1.2 0.01
SELS	-1.4 5.2E-06	-1.2 0.006	1.1 0.02
GTF2I	-1.6 1.2E-07	-1.04 0.5	1.1 0.002
NUDT1	1.0 4.6E-01	-1.01 0.8	1.1 0.004
DGKK	-1.03 0.5	-1.1 0.07	1.1 0.005
MGST2	-1 0.9	-1.02 0.7	1.1 0.02
MGST1	1.05 0.4	-1.05 0.2	1.1 0.01
PFKM	-1.1 2.8E-01	1.01 0.8	1.1 0.02
TXNRD2	-1.1 0.03	-1 0.9	1.1 0.04

Downregulated genes

Symbol	PV	Symbol	PV
FOXO3	1.6 6.3E-05	CAT	-1.9 6.4E-06
NQO2	1.2 0.2	PRDX2	1.7 0.0004
GSTZ1	1.2 4.8E-05	IPCEF1	-1.05 0.5
SOD2	-1.6 0.004	GCLC	1.4 0.008
CSDE1	-1.3 4.8E-05	TALDO1	-1.1 1.5E-01
SQSTM1	1.2 4.6E-06	DEFA4	1.6 0.06

Ctrl: control; rIFNoα: interferon-alpha2; PV: polycythemia vera; FC: fold change; FDR: false discovery rate.
Table 5. The significantly most up- or downregulated genes in patients with PMF during treatment with rIFNα (data set 2). In addition, data from the same patients compared to controls (data set 2) and another cohort (data set 1) are presented.

Upregulated genes	Data set 1	Data set 2	Data set 2			
	Ctrl vs baseline	Ctrl vs baseline	Baseline vs rIFNα			
Symbol	PMF	FDR	PMF	Pvalue	PMF	Pvalue
MSRA	1.2	0.1	1.4	0.006	1.8	4.9E-05
CYBB	-1.2	0.2	-1.2	0.2	1.2	0.04

Downregulated genes	PMF	PMF	PMF			
Symbol	FC	FDR	FC	Pvalue	FC	Pvalue
FOXO3	1.7	0.008	1.9	0.0005	-1.7	0.003
PRDX2	4.4	9.1E-06	3.2	2.4E-06	-1.7	0.0008
SOD2	-2.1	0.006	-1.6	0.1	-1.5	0.009
GSTZ1	1.4	2.9E-05	-1.2	0.02	-1.3	0.01
GCLC	2.4	0.0002	2	0.0006	-1.3	0.03
CSDE1	-1.1	0.1	-1.02	0.7	-1.3	0.03
SRXN1	1.2	0.3	1.4	0.01	-1.3	0.01
PD1IM	1.4	0.1	1.5	0.008	-1.3	0.046
TALDO1	-1.2	0.07	1.1	0.4	-1.2	0.046

Ctrl: control; rIFNα: interferon-alpha2; PMF: primary myelofibrosis; FC: fold change; FDR: false discovery rate.

https://doi.org/10.1371/journal.pone.0270669.t005

Fig 1. The Top10 most up- or downregulated genes in patients with ET during rIFNα therapy. Fold changes for each gene are shown on the y-axis, and gene names are shown on the x-axis.

https://doi.org/10.1371/journal.pone.0270669.g001
stress and antioxidative defense genes in patients with MPNs compared to control subjects [43]. In regard to TP53—being significantly downregulated before rIFNα treatment—this gene was significantly upregulated in ET and PV and no longer deregulated in PMF during rIFNα treatment. Downregulation of TP53 implies genomic instability due to an increased burden of oxidative stress upon the genome, which accordingly is reduced by rIFNα treatment. Although our genome profile of upregulation of TP53 strongly argues for enhancement of genomic stability during rIFNα-treatment, this has to be confirmed in protein (e.g. proteomics) and functionality studies, confirming that the function of P53 as a tumor suppressor protein is indeed being improved during rIFNα-treatment of patients with MPNs. NRF2 is a master regulator of the antioxidative response and has a major role for normal stem cell function [72]. Furthermore, NRF2 also has a protective role in chronic inflammatory diseases by attenuating the inflammatory state, e.g. in rheumatoid arthritis and atherosclerosis [73]. Thus, our findings of a change in the NRF2 gene expression from being significantly downregulated before rIFNα exposure to not being deregulated during treatment with rIFNα may imply an improvement in the antioxidative defense mechanisms against increased oxidative stress and accumulation of ROS. These effects may not only dampen the chronic inflammatory drive on the malignant clone, but also potentially enhance the efficacy of immune cells, which are known to be malfunctioning in MPNs [74–76] and negatively impacted by ROS [77, 78]. Since ROS has been shown to decrease interferon production [79], the impact of rIFNα in regulating deregulated oxidative stress and antioxidative defense genes may actually also improve the defense against infections.
This is not trivial, since recent studies have documented MPN patients to have an increased morbidity and mortality due to infections [80, 81], which accordingly might not only be explained by impaired functionality of immune cells (e.g. T-cell exhaustion) [77] but also by defective interferon production, mediated by excessive ROS accumulation.

The CXCR4 gene was significantly downregulated at baseline in ET and PV patients and became significantly upregulated during treatment with rIFNα. CXCR4 has an important role for homing and retention of hematopoietic stem cells (HSC) [82] and for maintaining HSC quiescence as well [83]. We and others have previously reported CXCR4 to be significantly downregulated in MPNs, in particular in myelofibrosis [43], consistent with previous studies displaying downregulation of CXCR4 in CD34+ cells [84]. Accordingly, upregulation of the CXCR4 gene during rIFNα treatment might prohibit egress of CD34+ positive stem cells from bone marrow niches and accordingly development of extramedullary hematopoiesis in the spleen and liver. Indeed, by significantly upregulating Nrf2 and CXCR4, rIFNα may improve the balance between stem cell quiescence and proliferation, self-renewal and differentiation, and also significantly influencing homing and retention of HSCs in the bone marrow niche. Since excessive ROS accumulation and oxidative stress may also contribute to aberrant DNA methylation [85], which has been reported in patients with MPNs [86], including hypermethylation of the CXCR4 promoter in CD34+ cells in PMF patients, it is intriguing to consider, if rIFNα might actually normalize aberrant DNA methylation in MPNs—a research topic to be pursued in the future.
PRDX2 (Peroxiredoxin 2) is an antioxidant enzyme that is involved in the scavenging of
H_2O_2 and ROS, thereby protecting cells from oxidative stress [87]. The PRDX2 gene has been
found to be upregulated in several cancers, and most recently, PRDX2 has been included in a
6-gene anti-oxidant signature that effectively predicts the prognosis of patients with kidney
cancer [88]. Highly interesting, in our patients the PRDX2 gene was significantly upregulated
at baseline and treatment with rIFNα was followed by a significant downregulation of PRDX2
in all MPNs.

In conclusion, our findings of a major impact of rIFNα upon several oxidative stress genes
and antioxidative defense genes may imply an rIFNα mediated dampening of genotoxic dam-

Having for the first time demonstrated rIFNα as a potent ROS modifying agent, our study
has opened the avenue for further transcriptional studies to explore in depth the impact of stem-cell targeting therapy with rIFNα upon the epigenome, genome and proteome land-

Supporting information
S1 Table. The significantly most up- or downregulated genes in patients with ET, PV or
PMF during treatment with rIFNα (data set 2). In addition, data from the same patients
compared to controls (data set 2) and another cohort (data set 1) are presented. Ctrl: control;
rIFNα: interferon-alpha2; ET: essential thrombocythemia; PV: polycythemia vera; PMF: pri-
mary myelofibrosis; FC: fold change; FDR: false discovery rate.
(XLSX)

Acknowledgments
The authors wish to thank all the participating patients and their families.

Author Contributions
Conceptualization: Vibe Skov, Mads Thomassen, Torben A. Kruse, Hans C. Hasselbalch.
Data curation: Vibe Skov, Mads Thomassen, Torben A. Kruse, Hans C. Hasselbalch.
Formal analysis: Vibe Skov, Mads Thomassen, Torben A. Kruse, Hans C. Hasselbalch.
Funding acquisition: Vibe Skov, Hans C. Hasselbalch.
Investigation: Vibe Skov, Mads Thomassen, Lasse Kjær, Christina Ellervik, Morten Kranker
Larsen, Trine Alma Knudsen, Torben A. Kruse, Hans C. Hasselbalch.
Methodology: Vibe Skov, Mads Thomassen, Torben A. Kruse, Hans C. Hasselbalch.
Project administration: Vibe Skov, Hans C. Hasselbalch.
Resources: Vibe Skov, Mads Thomassen, Torben A. Kruse, Hans C. Hasselbalch.
Software: Vibe Skov.
Validation: Vibe Skov, Mads Thomassen, Lasse Kjær, Christina Ellervik, Morten Kranker Larsen, Trine Alma Knudsen, Torben A. Kruse, Hans C. Hasselbalch.

Visualization: Vibe Skov, Mads Thomassen, Torben A. Kruse, Hans C. Hasselbalch.

Writing – original draft: Vibe Skov, Hans C. Hasselbalch.

Writing – review & editing: Vibe Skov, Mads Thomassen, Lasse Kjær, Christina Ellervik, Morten Kranker Larsen, Trine Alma Knudsen, Torben A. Kruse, Hans C. Hasselbalch.

References

1. Campbell PJ, Green AR. Mechanisms of disease: the myeloproliferative disorders. N Engl J Med 2006; 355(23): 2452–66.
2. Spivak JL. Myeloproliferative Neoplasms. N Engl J Med. 2017; 376(22):2168–2181. https://doi.org/10.1056/NEJma1406186 PMID: 28564565
3. Hermouet S, Vilaine M. The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasms, and impaired defense against infection? Haematologica 2011; 96(11): 1575–9. https://doi.org/10.3324/haematol.2011.055392 PMID: 22058280
4. Barbi T, Carobbio A, Finazzi G, Vannucci AM, Barosi G, Antonioli E, et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin3. Haematologica 2011; 96(2): 315–8. https://doi.org/10.3324/haematol.2010.031070 PMID: 21173097
5. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 2012; 119(14): 3219–25. https://doi.org/10.1182/blood-2011-11-394775 PMID: 22318201
6. Hasselbalch HC. Chronic Inflammation as a Promoter of Mutagenesis in Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. A Human Inflammation Model for Cancer Development? Leuk Res 2013; 37(2): 214–20. https://doi.org/10.1016/j.leukres.2012.02.020 PMID: 23174192
7. Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev 2013; 24(2): 133–45. https://doi.org/10.1016/j.cytogfr.2013.01.004 PMID: 23415024
8. Hermouet S, Hasselbalch HC, Ćokić V. Mediators of Inflammation in Myeloproliferative Neoplasms: State of the Art. Mediators Inflamm. 2015; 2015: 964613. https://doi.org/10.1155/2015/964613 PMID: 28681841
9. Hermouet S, Bigot-Corbel E, Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators Inflamm 2015: 145293. https://doi.org/10.1155/2015/145293 PMID: 26536820
10. Fleischman AG. Inflammation as a Driver of Clonal Evolution in Myeloproliferative Neoplasm. Mediators Inflamm. 2015; 2015: 606819. https://doi.org/10.1155/2015/606819 PMID: 26538830
11. Geyer HL, Dueck AC, Scherber RM, Mesa RA. Impact of Inflammation on Myeloproliferative Neoplasm Symptom Development. Mediators Inflamm. 2015; 284706. https://doi.org/10.1155/2015/284706 PMID: 26538823
12. Hermouet S. Pathogenesis of myeloproliferative neoplasms: More than mutations. Exp Hematol. 2015 Dec; 43(12):993–4. https://doi.org/10.1016/j.exphem.2015.08.014 PMID: 26453965
13. Koschmieder S, Mughal TI, Hasselbalch HC, Barosi G, Valent P, Kladjian J-J, et al. Myeloproliferative neoplasms and inflammation.: whether to target the malignant clone or the inflammatory process or both. Leukemia 2016; 30:1018–1024. https://doi.org/10.1038/leu.2016.12 PMID: 26854026
14. Lussana F, Rambaldi A. Inflammation and myeloproliferative neoplasms. J Autoimmun. 2017 Dec; 85:58–63. https://doi.org/10.1016/j.jaut.2017.06.010 PMID: 28669446
15. Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoejer J, Ellervik C, Skov V, et al. Mathematical modeling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS One. 2017 Aug; 12(8):e0183620. https://doi.org/10.1371/journal.pone.0183620 PMID: 28859112; PMCID: PMC5578482.
16. Lussana F, Carobbio A, Salmoiraghi S, Guglielmelli P, Vannucci AM, Bottazzi B, et al. Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera. J Hematol Oncol. 2017 Feb 22; 10(1):54. https://doi.org/10.1186/s13045-017-0425-z PMID: 28228104; PMCID: PMC5522581.
36. Scioli MG, Storti G, D’Amico F, Rodríguez Guzmán R, Centofanti F, Doldo E, et al. Oxidative Stress and New Pathogenic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med. 2020 Jun 25; 9(6):1995. https://doi.org/10.3390/jcm9061995 PMID: 32630452

37. Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci. 2020 Jun 19; 21(12):4370. https://doi.org/10.3390/ijms21124370 PMID: 32575472

38. Xiao X, Yang C, Qu SL, Shao YD, Zhou CY, Chao R, et al. 100 proteins in atherosclerosis. Clin Chim Acta. 2020 Mar; 502:293–304. https://doi.org/10.1016/j.cca.2019.11.019 PMID: 31794767

39. Sabbatino F, Conti V, Liguori L, Polcaro G, Corbi G, Manzo V, et al. Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life (Basel). 2021 Jan 30; 11(2):105. https://doi.org/10.3390/life11020105 PMID: 33573162

40. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020; 38(2):167–197. https://doi.org/10.1016/j.ccell.2020.06.001 PMID: 32649885

41. Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021; 112(10):3945–395. https://doi.org/10.1111/cas.15068 PMID: 34286881

42. Balliu M, Calabresi L, Bartalucci N, Romagnoli S, Maggi L, Manfredini R, et al. Activated IL-6 signaling contributes to the pathogenesis of, and is a novel therapeutic target for, CALR-mutated MPNs. Blood Adv. 2021; 5(8):2184–2195. https://doi.org/10.1182/bloodadvances.2020003291 PMID: 33890979

43. Hasselbalch HC, Thomassen M, Riley CH, Kjær L, Larsen TS, Jensen MK, et al. Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression. PLoS One 2014, 9, 1–9. https://doi.org/10.1371/journal.pone.0112786 PMID: 25397683

44. Silver RT. Long-term effects of the treatment of polycythemia vera with recombinant interferon-alpha. Cancer 2006; 107:451–458. https://doi.org/10.1002/cncr.22026 PMID: 1604923

45. Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006; 108:2037–2040. https://doi.org/10.1182/blood-2006-03-009860 PMID: 16709929

46. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M et al. Pegylated interferon-alpha-2a induces complete haematological and molecular responses with low toxicity in polycythemia vera. Blood 2008; 112(8):3065–3072. https://doi.org/10.1182/blood-2008-03-143537 PMID: 18650451

47. Kiladjian JJ, Chomienne C, Fenaux P. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008; 22(11):1990–8. https://doi.org/10.1038/leu.2008.280 PMID: 18843285

48. Kiladjian JJ, Mesa RA, Hoffman R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood, 2011; 117(18):4706–15. https://doi.org/10.1182/blood-2010-08-258772 PMID: 21389325

49. Silver RT, Kiladjian JJ, Hasselbalch HC. Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev Hematol. 2013; 6(1):49–58. https://doi.org/10.1586/ehm.12.69 PMID: 23373780

50. Hasan S, Lacout C, Marty C, Cuignet M, Solary E, Vainchenker W, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood. 2013; 122(8):1464–1477. https://doi.org/10.1182/blood-2013-04-498956 PMID: 23863895

51. Lane SW, Mullaly A. Jak2V617F myeloproliferative neoplasm stem cells and interferon-alpha. Oncotarget. 2013; 4:500–501. https://doi.org/10.18632/oncotarget.896 PMID: 23660238

52. Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016 Apr; 30(4):776–81. https://doi.org/10.1038/leu.2015.326 PMID: 26601783

53. Bjern ME, Hasselbalch HC. Minimal residual disease or cure in MPNs? Rationales and perspectives on combination therapy with interferon-alpha 2a and ruxolitinib. Expert Rev Hematol. 2017 May; 10(5):393–40. https://doi.org/10.1080/17474086.2017.1284583 PMID: 28402197

54. Hasselbalch HC, Holmstrøm MO. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin Immunopathol 2019 Jan; 41(1):5–19. https://doi.org/10.1007/s00281-018-0700-2 PMID: 30203226

55. Kiladjian JJ, Barbui T. From leeches to interferon: should cytoreduction be prescribed for all patients with polycythemia vera? Leukemia. 2020 Nov; 34(11):2837–2839. https://doi.org/10.1038/s41375-020-0984-9 PMID: 32678292

56. How J, Hobbs G. Use of Interferon Alpha in the Treatment of Myeloproliferative Neoplasms: Perspectives and Review of the Literature. Cancers 2020; 12, 1954.
Interferon-alpha2 favorably deregulates oxidative stress and antioxidative genes in myeloproliferative cancer

57. Austin RJ, Straube J, Bruedigam C, Pali G, Jacquelin S, Vu T, et al. Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia. 2020; 34(4):1075–1089. https://doi.org/10.1038/s41375-019-0638-y PMID: 31732720

58. Abu-Zeinah G, Kirchovsky S, Cruz T, Hoberman G, Jaber D, Savage N, et al. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia. 2021 Mar 2. https://doi.org/10.1038/s41375-021-01183-8 PMID: 33654206

59. Barbui T, Vannucchi AM, De Stefano V, Masciulli A, Carobbio A, Ferrari A. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021; 8(3):e175–e184. Erratum in: Lancet Haematol. 2021 Mar;8(3):e170. https://doi.org/10.1016/S2352-3026(20)30373-2 PMID: 33476571

60. Hasselbalch HC, Silver RT. New perspectives of interferon-alpha2 and inflammation in treating Philadelphia-negative chronic myeloproliferative neoplasms. Hemasphere 2021 Nov 18; 5(12):e645. https://doi.org/10.1097/HSS.0000000000000645 PMID: 34805764

61. Ihaka R, Gentleman R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314.

62. Irizarry RA, Hobbs B, Beazer-barclay YD, Antonellis KJ, Scherf UWE, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. https://doi.org/10.1093/biostatistics/4.2.249 PMID: 12925520

63. Larsen TS, Pallisgaard N, Moller MB, Andersen MT, Moller MB, Hasselbalch HC. Sustained major molecular response on interferon alpha-2b in two patients with polycythemia vera. Ann Hematol. 2008; 87:847–850. https://doi.org/10.1007/s00277-008-0498-4 PMID: 18481066

64. Larsen TS, Moller MB, de Stricker K, Nargaard P, Samuelsson J, Marcher C, et al. Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete hematological remission. Hematology. 2009; 14:331–334. https://doi.org/10.1117/2010/04253309X12473408860587 PMID: 19941739

65. Quintás-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, et al. Pegylated interferon alpha-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocytemia and polycythemia vera. J Clin Oncol. 2009; 27:5418–5424. https://doi.org/10.1200/JCO.2009.23.6075 PMID: 19826111

66. Larsen TS, Iversen KF, Hansen E, Mathiasen AB, Marcher C, Frederiksen M, et al. Long term molecular responses in a cohort of Danish patients with essential thrombocytemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res. 2013; 37:1041–5. https://doi.org/10.1016/j.leukres.2013.06.012 PMID: 23827351

67. Utke Rank C, Weiss Bjerrum O, Larsen TS, Kjær K, de Stricker K, Riley CH, et al. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocytemia and polycythemia vera. Leuk Lymphoma. 2016; 57:348–354. https://doi.org/10.3109/10428194.2015.1049171 PMID: 25956046

68. Skov V, Riley CH, Thomassen M, Kjær L, Stauffer Larsen T, Bjerrum OW, et al. The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms. Leuk Lymphoma. 2017 Aug; 58(8):1914–1921. https://doi.org/10.1080/10428194.2016.1262032 PMID: 27911124

69. Riley CH, Jensen MK, Brimnes MK, Hasselbalch HC, Bjerrum OW, Stratent P, et al. Increase in circulating CD4+CD25+Foxp3+ T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-α. Blood. 2011; 118:2170–3. https://doi.org/10.1182/blood-2011-03-340992 PMID: 21708889

70. Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Stratent P, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol. 2015; 94:227–234. https://doi.org/10.1111/ejh.12420 PMID: 25082025

71. Riley CH, Brimnes MK, Hansen M, Jensen MK, Hasselbalch HC, Kjær L, et al. Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets, and dendritic cells in patients with JAK2V617F-positive essential thrombocytemia and polycythemia vera. Eur J Haematol. 2016; 97:83–92. https://doi.org/10.1111/ejh.12687 PMID: 26385526

72. Tsai JJ, Dudakov JA, Takahashi K, Shieh JH, Velardi E, Holland AM, et al. Nrf2 regulates hematopoietic stem cell function. Nature Cell Biology 2013; 15(3): 309–316. https://doi.org/10.1038/ncb2699 PMID: 23434824
73. Kim J, Cha YN, Surh Y-JY. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 2010; 690: 12–23. https://doi.org/10.1016/j.mrfmmm.2009.09.007 PMID: 19799917

74. Skov V, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA, et al. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis. Exp Hematol. 2012 Sep; 40(9):771–780. https://doi.org/10.1016/j.exphem.2012.05.011 PMID: 22659388

75. Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, et al. Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res. 2012 Nov; 36(11):1387–92. https://doi.org/10.1016/j.leukres.2012.07.009 PMID: 22877729

76. Barosi G. An immune dysregulation in MPN. Curr Hematol Malig Rep. 2014 Dec; 9(4):331–9. https://doi.org/10.1007/s11899-014-0227-0 PMID: 25139710

77. Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013 Jun; 32(3):249–70. https://doi.org/10.3109/08830185.2012.755176 PMID: 23617726

78. Holmström MO, Hasselbalch HC. Cancer immune therapy for myeloid malignancies: present and future. Semin Immunopathol. 2019 Jan; 41(1):97–109. https://doi.org/10.1007/s00281-018-0693-x PMID: 29987478

79. Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, et al. Reactive oxygen species oxidize STING and suppress interferon production. Elife. 2020 Sep 4; 9:e57837. https://doi.org/10.7554/eLife.57837 PMID: 32886065

80. Pedersen KM, Cölak Y, Hasselbalch HC, Ellervik C, Nordestgaard BG, Bojesen SE. Two-fold risk of pneumonia and respiratory mortality in individuals with myeloproliferative neoplasm: a population-based cohort study. EClinicalMedicine. 2020 Apr 6; 21:100295. https://doi.org/10.1016/j.eclinm.2020.100295 PMID: 22860605

81. Landtblom AR, Andersson TM, Dickman PW, Smedby KE, Eloranta S, Batyrbekova N, et al. Risk of infections in patients with myeloproliferative neoplasms - a population-based cohort study of 8363 patients. Leukemia. 2021 Feb; 35(2):476–484. https://doi.org/10.1038/s41375-020-0909-7 PMID: 32546772

82. Moll NM, Ransohoff RM. CXCL12 and CXCR4 in bone marrow physiology. Expert Rev Hematol 2010; 3(3): 315–22. https://doi.org/10.1586/ehm.10.16 PMID: 21082982

83. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008; 205: 777–83. https://doi.org/10.1084/jem.20072513 PMID: 18378795

84. Rosti V, Massa M, Vannucci AM, Bergamaschi G, Campanelli R, Pecci A, et al. The expression of CXCR4 is down-regulated on the CD34+ cells of patients with myelofibrosis with myeloid metaplasia. Blood Cells Mol Dis 2007; 38(3): 280–6. https://doi.org/10.1016/j.bcmd.2007.01.003 PMID: 17350297

85. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 2013; 14(9): 17643–63. https://doi.org/10.3390/ijms140917643 PMID: 23989608

86. Pe´rez C, Pascual M, Martin-Subero JI, Bellosillo B, Segura V, Delabesse E, et al. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica 2013; 98(9): 1414–20. https://doi.org/10.3324/haematol.2013.084160 PMID: 23716650

87. De Franceschi L, Bertoldi M, De Falco L, Santos Franco S, Ronzoni L, Turrini F, et al. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in b-thalassemic erythropoiesis. Haematologica 2011; 96, 1585–1604. https://doi.org/10.3324/haematol.2011.043612 PMID: 21750082

88. Ren X, Ma L, Wang N, Zhou R, Wu J, Xie X, et al. Antioxidant Gene Signature Impacts the Immune Infiltration and Predicts the Prognosis Kidney Renal Clear Cell Carcinoma. Front Genet. 2021 Aug 19; 12:721252. do https://doi.org/10.3389/fgene.2021.721252 PMID: 34490047

89. Čokić VP, Mossaz P, Han J, Socoro N, Beleslin-Čokić BB, Mitrović O, et al. Microarray and Proteomic Analyses of Myeloproliferative Neoplasms with a Highlight on the mTOR Signaling Pathway. PLoS One. 2015 Aug 14; 10(8):e0135463. https://doi.org/10.1371/journal.pone.0135463 PMID: 26275081

90. Đikic D, Marković D, Bogdanovic A, Mitrović-Afipic O, Suboticči T, Đikic M, et al. Oxidative and nitrosative stress in myeloproliferative neoplasms: the impact on the AKT / mTOR signaling pathway. J BUON. 2018 Sep-Oct; 23(5):1481–1491. PMID: 30570876