Non-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally. Here, we demonstrate a magnetic imaging technique based on a laser induced local thermal gradient combined with detection of the anomalous Nernst effect. We employ this method in one the most actively studied representatives of this class of materials—Mn₃Sn. We demonstrate that the observed contrast is of magnetic origin. We further show an algorithm to prepare a well-defined domain pattern at room temperature based on heat assisted recording principle. Our study opens up a prospect to study spintronics phenomena in non-collinear antiferromagnets with spatial resolution.
Harnessing the unique properties of non-collinear antiferromagnets (AFMs) will be essential for exploiting the full potential of antiferromagnetic spintronics. Indeed, many of the effects enabling ferromagnetic spintronic devices have a corresponding counterpart in materials with non-collinear spin structure. In addition, phenomena, such as the magnetic spin Hall effect or the chiral anomaly, were experimentally observed in non-collinear AFMs, and the presence of the equivalent to the ferromagnetic spin transfer torque via spin polarized currents was theoretically predicted. In spite of these developments, an interpretation of the rich physical phenomena observed in non-collinear antiferromagnets is challenging, since the microscopic spin arrangement, the magnetic domain distribution, and the domain orientations have proven notoriously difficult to access experimentally.

This is all the more problematic, as imaging and writing magnetic domains is of central importance for applications. Successful imaging is a basic requirement to experimentally confirm the spin transfer torque acting on non-collinear domain walls and therefore of eminent interest. Surface magnetic character of a non-collinear antiferromagnetic single crystal was probed via magneto-optical Kerr effect (MOKE). MOKE is, however, mostly surface sensitive and together with several other restrictions (details in Supplementary Note 1) MOKE might be of limited use for certain spatially resolved studies. Here we report that the local magnetic structure of the non-collinear AFM Mn$_3$Sn films can be imaged by scanning thermal gradient microscopy (STGM). The technique is based on scanning a laser spot over the sample’s surface, and recording the ensuing thermo-voltage. We image the magnetic structure at a series of different temperatures and show that at room temperature, the domain structure is not affected by the application of moderate magnetic fields. In addition to imaging, we establish a scheme for heat-assisted magnetic recording, using local laser heating in combination with magnetic fields to intentionally write domain patterns into the antiferromagnet.

Results

The antiferromagnetic semimetal Mn$_3$Sn. The antiferromagnetic semimetal Mn$_3$Sn is a prime representative of materials with a triangular spin structure and it is very actively discussed in the context of Weyl physics. It is of particular interest due to the topology of its electronic bands with strong Berry curvature contributions to anomalous magneto-transport. It has hexagonal structure with the magnetic moments residing in a c-plane kagome lattice (Fig. 1a). Fig. 1 shows the spin configuration experimentally confirmed in bulk Mn$_3$Sn, but several spin arrangements in the c-plane are discussed as energetically equivalent. Considering that our films exhibit the same Néel temperature $T_N = 420$ K as bulk Mn$_3$Sn, we expect that they also have an identical spin structure. The anisotropy of the three magnetic sublattices partly cancels out, which allows for the experimental manipulation of the antiferromagnetic order.

The Mn$_3$Sn epitaxial thin films studied here were prepared by ultra-high vacuum (UHV) sputtering (details on fabrication and characterization are compiled in the Methods, Supplementary Notes 2, 3 and Supplementary Figs. 1, 2). The films are oriented, such that the [001] crystal direction (c-axis) points out-of-plane and 5 μm wide Hall bars patterned by optical lithography are typically oriented along the [100] crystal direction of Mn$_3$Sn. A typical device and the experimental geometry are shown in Fig. 1c, d. The sample is placed in an optical cryostat with the magnetic field applied along the x-direction (perpendicular to the Hall bar). We scan a focused red laser ($\lambda = 800$ nm, P = 10 mW) across the Hall bar and record the ensuing thermo-voltage along the y-direction (Fig. 1c). As evident from Fig. 1e, the spatially resolved thermo-voltage response clearly reveals spatial contrast.

The anomalous Nernst effect. We discuss the origin of the signal in our thermal gradient microscopy. From a symmetry point of view, the anomalous Hall effect (AHE) is equivalent to a time-reversal odd axial vector $g \times E$ such that anomalous Hall current $J_{\text{AHE}} = g \times E$ where E is the electric field. The anomalous magneto transport plane (the plane in which the electric fields or currents are applied and recorded) is then perpendicular to g. Considering the Mott relation the symmetry of the anomalous Nernst effect (ANE) and AHE is identical with the applied electric field E replaced by a thermal gradient VT, therefore, $V_{\text{ANE}} \sim VT \times g$. The orientation of the vector g is determined by the non-collinear structure, as illustrated in Fig. 1b for two opposite domains. Note that the symmetry properties of the vector g also result in a tendency of the material to develop a net magnetic moment along the g vector. This net moment is, however, very weak (~$0.002 \mu_B/\AA^3$) and is not the source of the strong anomalous transport coefficients in Mn$_3$Sn.

As demonstrated (see also Supplementary Note 4 and Supplementary Fig. 3), the anomalous Nernst response of Mn$_3$Sn is strongly anisotropic. No anomalous Nernst voltage V_{ANE} is expected when the thermal gradient VT is applied in the c-plane, while V_{ANE} in the direction perpendicular to the g vector is expected when VT is applied along the c-axis. In our sample, laser generated heat drains into the substrate, the in-plane components (in c-plane) compensate each other and the remaining thermal gradient is along the z-direction (c-axis). Magnetic field is applied along the x-direction and we detect V_{ANE} along the y-direction. Thus, the thermo-voltage signal is determined by the projection of the g vector onto the x-direction. The different magnitude and sign of V_{ANE} observed depending on the position (x, y) of the laser spot on the sample thus reflects the corresponding local orientation of the vector g in the irradiated area. Note that the laser beam is focused to a diameter of 1.5 μm, such that V_{ANE} reflects the average of possibly different g orientations or domains present within the illuminated spot. The measured voltage is therefore proportional to the net (average) component of the g vectors perpendicular to the detection direction. The resolution of the STGM is discussed in more detail in the Supplementary Note 5. Remarkably, we observe very different V_{ANE} patterns depending on the sample history. As discussed below, magnetic domains can be intentionally written into the Mn$_3$Sn using local heating. The domain pattern shown in Fig. 1e is the result of such a process. On the other hand, upon cooling the sample from $T > T_N$ in zero magnetic field, domains are randomly populated resulting in more complex magnetic spatial contrast, as can be seen for example in Fig. 2a, b. Several Hall bars with different orientation with respect to the [100] direction of Mn$_3$Sn were measured showing similar results.

Scanning thermal gradient microscopy. In this section, we demonstrate that the V_{ANE} signal is indeed of magnetic origin, and that it can be reversed by an external magnetic field. It is important to note that the magnetic field required for the reversal of spins in Mn$_3$Sn thin films is higher compared to bulk Mn$_3$Sn crystals. Therefore, in our thin film samples, the spin structure cannot be reversed by 0.5 T (the experimentally available field) at temperatures below 300 K, as can be seen in Fig. 2a, b. At 375 K a small variation of the measured V_{ANE} signal depending on the polarity of the magnetic field can be seen (Supplementary.
within the scanned region as a function of the magnetic field. However, at 400 K, the domain structure can be qualitatively altered by an external magnetic field of 0.5 T. The STGM map is governed by the antiferromagnetic order in Mn$_3$Sn is evident from the evolution of the STGM signal with temperature.

Fig. 1 Crystal structure and experimental setup. a Mn$_3$Sn has hexagonal structure with P6$_3$/mmc space group. The magnetic moments (spins) are residing in the c-plane. b Two opposite magnetic domains with the corresponding g vectors (yellow arrows). c Schematics of STGM. Mn$_3$Sn films are grown on MgO (111) substrates with a 5 nm Ru underlayer. The laser beam is scanned over the sample surface and the resulting local thermo-voltage sign and magnitude reflects the local magnetic properties. d Microscope image of a typical device and the experimental geometry. e Image of the spatially resolved thermo-voltage recorded in the sample (in the part highlighted as a red rectangle in (d)). The thermo-voltage signal reveals clear magnetic contrast. The experiment was performed at 300 K, with a laser power of 10 mW, and in zero external magnetic field.

Fig. 2 Magnetic field dependence of the V_{ANE}. The magnetic domain structure measured at 300 K does not change upon the application of -0.5 T (a) and $+0.5$ T (b) magnetic field. However, at 400 K, the domain structure can be qualitatively altered by -0.5 T (c) and $+0.5$ T (d). e Shows the average $\langle V_{ANE}\rangle$ within the scanned region as a function of the magnetic field at 400 K. All scans were taken with a laser power of 10 mW. The red line is a guide for the eye.

Note 6, Supplementary Fig. 4) corresponding to a reorientation of domains with the weakest coercivity. In contrast, increasing the sample temperature to 400 K and then applying a magnetic field allows us to completely alter the domain pattern, as shown in Fig. 2c, d. At 400 K, the majority of domains is following the external magnetic field. A magnetic field of -0.5 T yields a positive STGM map (red color) across the entire region scanned with the laser spot (Fig. 2c), while for $+0.5$ T, the STGM map turns negative (blue color) (Fig. 2d). This shows that at 400 K, which is close to the Néel temperature $T_N = 420$ K, a magnetic field of 0.5 T suffices to align the g vector along the field direction in the entire sample. At the same time the net magnetic moment detected by SQUID magnetometry (see Supplementary Fig. 2) remains unchanged between 300 K and 400 K, such that ferromagnet-like phases appearing at higher temperatures can be excluded. To further study the impact of the magnetic field on the magnetic domain pattern, we recorded STGM maps for several different magnetic field values in a field sweep. As detailed in the Supplementary Note 7, a complex reversal behavior with multiple domains is observed (for individual maps at each magnetic field see Supplementary Fig. 5). In Fig. 2e, we plot the voltage $\langle V_{ANE}\rangle$ averaged over the whole scanned area as a function of the field strength, and find a global magnetic hysteresis curve with a clear saturation, coercivity and remanence. Since we observe a sign reversal in $\langle V_{ANE}\rangle$ as a function of the magnetic field, the signal is odd under spin reversal and, therefore, the main contribution has the Nernst symmetry. The magneto-thermo-voltage clearly cannot be explained by an ordinary Nernst effect, which is linear in magnetic field and does not show hysteresis. Instead, the observed V_{ANE} must be connected to the magnetic order parameter of the antiferromagnet. Moreover, when applying the magnetic field parallel to the voltage detection direction, $\langle V_{ANE}\rangle$ shows no remanence or saturation at 400 K (Supplementary Note 4, Supplementary Fig. 3). This supports the notion that the component of g perpendicular to the voltage detection determines V_{ANE}.

An additional confirmation that the spatial contrast of STGM maps is governed by the antiferromagnetic order in Mn$_3$Sn is evident from the evolution of the STGM signal with temperature.
Supplementary Note 8). The sample was zero magnetic field and then warmed up step by step to higher temperatures. No magnetic field was applied during this experiment, such that also data at 400 K exhibit a lower voltage function of external magnetic field (equivalent to the experiment in Fig. 2e) at 430 K (above the Néel temperature of Mn3Sn).

Fig. 3 shows V_{ANE} scans taken at different T in the range of 17–430 K (for more temperatures see Supplementary Fig. 6 and Supplementary Note 8). The sample was first cooled to 17 K in zero magnetic field and then warmed up step by step to higher temperatures. No magnetic field was applied during this experiment, such that also data at 400 K exhibit a lower voltage function of external magnetic field (equivalent to the experiment in Fig. 2e) at 430 K (above the Néel temperature of Mn3Sn).

Heat assisted writing. The capability to intentionally write magnetic domains is exceptionally important not only from an application perspective, but also to quantify spin transfer torque, domain wall motion or giant magnetoresistance in antiferromagnets. In Fig. 4, we show that magnetic domains can be intentionally written into the Mn3Sn film at room temperature, via a combination of high-power (50 mW) laser illumination and external magnetic fields. Hereby, it is of key importance that the external magnetic field does not alter the magnetic texture in Mn3Sn at room temperature in the absence of the laser heating (see Fig. 2a, b).

Fig. 4 shows a sequence of writing and erasing of domains at 300 K using the following procedure: First, the full area (region of interest) is scanned with a 50 mW laser spot in +0.5 T external field applied along x-direction. Subsequently, the same area is investigated using STGM with 10 mW laser power (Fig. 4a), showing a homogeneous thermo-voltage contrast and, thus, homogeneous g vector orientation. In the next step, only the area enclosed by the dashed line is scanned with 50 mW, now with applied −0.5 T, followed by imaging the entire area with STGM with 50 mW laser power (Fig. 4b). Repeated STGM maps with either 0.5 T, 0 T or −0.5 T have no impact on the written pattern (Supplementary Fig. 8), even a magnetic field of 6 T applied along
x-direction at 300 K could not erase the domain pattern (Supplementary Note 10 and Supplementary Fig. 9). However, increasing the laser power up to 50 mW again allows us to write domain patterns at will (Fig. 4e). In particular, rewriting the same area with the same magnetic field polarity does not alter the V_{ANE} contrast, while writing with opposite field polarity invariably reverses the sign of the thermo-voltage.

Discussion

Our work demonstrates that the magnetic structure in the non-collinear antiferromagnet Mn$_3$Sn can be spatially mapped out using local laser heating in combination with anomalous Nernst effect measurements. At room temperature and below, the magnetic structure is insensitive to magnetic fields up to 6 T. We further show that domains can be intentionally written into the magnetic structure, via the application of local heat in combination with moderate magnetic fields (\pm 0.5 T). Our experiments, thus, open a pathway to initializing and detecting a domain pattern in non-collinear antiferromagnetic thin films. This represents a first important step towards studying the intriguing physics of non-collinear AFMs with spatial resolution, such as spin transfer torque-induced domain wall motion or spin flip mechanisms in triangular spin systems. Our technique can be straightforwardly extended to a range of materials, given that they exhibit a finite magneto-thermal response (ANE, anisotropic magneto-thermo power etc.) and, therefore, represents a versatile tool for the investigation of local magnetic properties.

Methods

Growth. Mn$_3$Sn films were grown by a BesTec (https://www.bes-tec-berlin.de/) UHV magnetron sputtering system on MgO (111) substrates with a 5 nm Ru underlayer. Prior to deposition, the chamber was evacuated to a base pressure of less than 5 x 10$^{-9}$ mbar, while the process gas (Ar 5 N) pressure was 3 x 10$^{-3}$ mbar. The Ru underlayer was deposited at a rate of 0.45 Å/s by applying 30 W dc power to a 2 inch target. The Mn$_3$Sn films were grown by co-sputtering. The Mn was deposited at a rate of 0.49 Å/s by applying 42 W dc power and the Sn at a rate of 0.30 Å/s by applying 11 W dc power to a 3 and 2 inch target, respectively. The growth rates and the film thicknesses were determined by a quartz crystal microbalance and confirmed by using x-ray reflectivity measurements. The substrates were rotated during deposition, to ensure homogeneous growth. The Ru underlayer was grown at 400°C, the Mn$_3$Sn at RT and finally the stack was post-annealed at 300°C in situ for 10 min. All films were capped with 3 nm of Al to prevent oxidation.

Experimental setup. The thermal gradient is generated by a continuous wave laser operating at a wavelength of λ = 808 nm and focused by an objective lens to a spot size of \sim1.5 μm (see Fig. 1c). The laser power can be continuously tuned by a combination of a half-wave plate and a polarizer. Scanning of the laser spot across the Hall bar is accomplished by moving the objective lens with a 3D piezo-positioner and the thermo-voltage generated along the y-direction is recorded in each position. The laser beam is modulated by a chopper at frequency of 1.7 kHz and the generated thermo-voltage is detected using a lock-in amplifier.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

A homemade Python code was used to record and plot the STGM maps and it is available from the corresponding author upon reasonable request. The structural data were analyzed using xrayutilities software (https://xrayutilities.sourceforge.io/)

Received: 29 August 2019; Accepted: 4 November 2019; Published online: 29 November 2019

References

1. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
2. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).
3. Higo, T. et al. Large magneto-optical kerr effect and imaging of magnetic orientations in an antiferromagnetic metallic. Nat. Photonics 12, 73–78 (2018).
4. Ikhas, M. et al. Large anomalous nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
5. Nakatessi, S., Kiyohara, N. & Higo, T. Large anomalous hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
6. Nayak, A. K. et al. Large anomalous hall effect driven by a nonvanishing berry curvature in the noncollinear antiferromagnet Mn$_3$Ge. Sci. Adv. 2, e1501870 (2016).
7. Suergers, C., Fischer, G., Winkel, P. & Lohneysen, H. Large topological hall effect in the non-collinear phase of an antiferromagnet. Nat. Commun. 5, 3400 (2014).
8. Zhang, W. et al. Spin hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).
9. Kimata, M. et al. Publisher correction: magnetic and magnetic inverse spin hall effects in a non-collinear antiferromagnet. Nature 566, E4–E4 (2019).
10. Kuroda, K. et al. Evidence for magnetic weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).
11. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
12. Gray, L. et al. Spin seebeck imaging of spin-torque switching in antiferromagnetic Pt/CoO heterostructures. Phys. Rev. X 9, 041016 (2019).
13. Liu, J. et al. Imaging uncompensated moments and exchange-biased emergent ferromagnetism in ferrum thin films. Preprint at https://arxiv.org/abs/1906.07243v1 (2019).
14. Weiler, M. et al. Local charge and spin currents in magnetothermoclectric landscapes. Phys. Rev. Lett. 108, 106602 (2012).
15. Kuebler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous hall effect. EPL (Europhysics Letters) 108, 67001 (2014).
16. Liu, J. & Balents, L. Anomalous hall effect and topological defects in antiferromagnetic weyl semimetals: Mn$_3$Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).
17. Manna, K., Sun, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, weyl and berry. Nat. Rev. Mater. 3, 244–256 (2018).
18. Yang, H. et al. Topological weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).
19. Li, X. et al. Chiral domain walls of mnn3 and their memory. Nat. Commun. 10, 3021 (2019).
20. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).
21. Brown, P. J., Nunez, V., Tasset, F., Forsyth, J. B. & Radhakrishna, P. Determination of the magnetic structure of mnn3 using generalized neutron polarization analysis. Journal of Physics: Condensed Matter 2, 9409–9422 (1990).
22. Sticht, J., Hoeck, K.-H. & Kuebler, J. Non-collinear itinerant magnetism: the case of Mn5Sn. J. Phys. Condens. Matter 1, 8155–8176 (1989).
23. Sung, N. H., Ronning, F., Thompson, J. D. & Bauer, E. D. Magnetic phase dependence of the anomalous hall effect in Mn3Sn single crystals. Appl. Phys. Lett. 112, 132406 (2018).
24. Zhang, D. et al. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn5Z (Z=Ga, Sn and Ge) heusler compounds. J. Phys. Condens. Matter 25, 206006 (2013).
25. Markou, A. et al. Noncollinear antiferromagnetic Mn3Sn films. Phys. Rev. Mater. 2, 051001 (2018).
26. Kleiner, W. H. Space-time symmetry of transport coefficients. Phys. Rev. 142, 318–326 (1966).
27. Smekal, L., Rafael González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal hall effect in collinear antiferromagnets. Preprint at https://arxiv.org/abs/1901.00445 (2019).
28. Guo, G.-Y. & Wang, T.-C. Large anomalous nernst and spin nernst effects in the noncollinear antiferromagnets MnX (X=Sn,Ge,Ga). Phys. Rev. B 96, 224415 (2017).
29. Higo, T. et al. Anomalous hall effect in thin films of the weyl antiferromagnet Mn5Sn. Appl. Phys. Lett. 113, 202402 (2018).
30. You, Y. et al. Anomalous hall effect-like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv. Electron. Mater. 5, 1800818 (2019).
31. Bisson, W. G. & Wills, A. S. Anisotropy-driven spin glass transition in the kagome antiferromagnet hydronium jarosite, (H4O)2Fe6(SO4)3(OH)12. J. Phys. Condens. Matter 20, 452204 (2008).
32. Ritchey, I., Chandra, P. & Coleman, P. Spin folding in the two-dimensional heisenbergkagome antiferromagnet. Phys. Rev. B 47, 15342–15345 (1993).
33. Reichlova, H. et al. Large anomalous nernst effect in thin films of the weyl semimetal Co5MnGa. Appl. Phys. Lett. 113, 212405 (2018).
34. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
35. Dutta Gupta, S. et al. Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics 12, 333–336 (2015).
36. Gregg, J. F. et al. Giant magnetoresistive effects in a single element magnetic thin film. Phys. Rev. Lett. 77, 1580–1583 (1996).
37. Mei, A. B. et al. Local photothermal control of phase transitions for on-demand room-temperature rewriterable magnetic patterning. Preprint at https://arxiv.org/abs/1906.07239 (2019).
38. Singh, U., Echtenkamp, W., Street, M., Binek, C. & Adenwalla, S. Local writing of exchange biased domains in a heterostructure of co/pd pinned by magnetoelectric chromia. Adv. Funct. Mater. 26, 7470–7478 (2016).

Acknowledgements
We acknowledge Jakob Lindermir for technical support, IFW Dresden for providing access to the MST lab, EU FET Open RIA Grant no. 766066, support from the Grant Agency of the Czech Republic under EXPRO grant no. 19-28375X, the Ministry of Education of the Czech Republic Grants LM2015087 and LN5M-LNSpin, and financial support from the DPG through project BO5 and CO8 of SFB 1143 (project-id 247310070). D.K. acknowledges the support by the OP Research, Development and Education financed by ESIF and the Czech MSMT (Project No. CZ.02.2.69/0.0/0.0/16_027/0008215). J.Z. acknowledges the Grant Agency of the Czech Republic Grant No. 19-18623Y and support from the Institute of Physics of the Czech Academy of Sciences and the Max Planck Society through the Max Planck Partner Group programme.

Author contributions
H.R., J.W. and S.T.B.G planned and designed experiments. A.M., D.K., Z.S. and C.F. provided material and characterization. H.R., T.Ja., J.G., R.S., D.K. M.B., H.S., P.N. and J.W. built the experimental setup, performed and analyzed the experiments. H.R., S.T.B.G., J.W., J.Z. and T.Ja. interpreted the data. H.R. and S.T.B.G. wrote the paper with contributions from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-13391-z.

Correspondence and requests for materials should be addressed to H.R.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.