PREVALENCE OF EXTENDED-SPECTRUM BETA-LACTAMASE PRODUCING ENTEROBACTERIACEAE MEMBERS ISOLATED FROM CLINICALLY SUSPECTED PATIENTS

MOORTHY KANNAIYAN1,2, GEDIF MESERET ABEBE3, CHINNASAMY KANIMOZHI1, PUNITHA THAMBIDURAI1, SARANYA ASHOKAPURAM SELVAM1, RAJA VINODHINI4,*, MICKYMARAY SURESH2

1Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal - 637 205, Tamil Nadu, India. 2Department of Microbiology, Wolaita Sodo University, Wolaita Zone, Ethiopia, Eastern Africa. 3Department of Microbiology, San International College of Arts and Science, Mavuthampathy Village, (Walayar), Coimbatore - 641 105, Tamil Nadu, India. 4Department of Microbiology, Shri Sathkikailaashs Women’s College, Salem - 636 003, Tamil Nadu, India. 5Department of Biology, Central Bioscience Research Laboratories (CBRL) College of Science, Al- Zulfi, Majmaah University-Majmaah 11952, Kingdom of Saudi Arabia. Email: rvinodhini71@gmail.com

Received: 24 December 2017, Revised and Accepted: 30 January 2018

ABSTRACT

Objective: Emergence of extended-spectrum beta-lactamases (ESBLs) production poses another clinical problem with Gram-negative bacterial infections. The present study was aimed to evaluate the ESBL producers among various clinical samples of clinically suspected patients.

Methods: A total of 1279 samples (urine [918], pus [207] and stool [154]) were collected and 465 isolates (Escherichia coli [320], Enterobacter aerogenes [119] and Klebsiella pneumoniae [26]) were isolated and screened for the presence of ESBL producers using combination disc method and double disc synergy test.

Results: Of the 465 culture positive isolates, 130 (E. coli [93] [29.06%], E. aerogenes 35 [29.41%] and K. pneumoniae 2 [7.69%]) were identified as ESBL producers. Among the three Enterobacteriaceae members, E. coli [93] (29.06%) was found to be predominant ESBL producer next in order E. aerogenes 35 [29.41%] and K. pneumoniae 2 (7.69%). Maximum number of ESBL producers were recovered from urine (n=111) followed by pus (n=14) and stool (n=5). All the ESBL-producing isolates were subjected to antibiotic sensitivity test using 10 different antibiotics. ESBL producers were chiefly resistant to ceftriaxone followed by cefazidime and cefotaxime. Of 130 ESBL producers, 15 (E. coli [8], E. aerogenes [6] and K. pneumoniae [1]) strains were selected for genotypic identification. Among only two strains of E. aerogenes were positive isolates for CTX-M type ESBL in polymerase chain reaction.

Conclusion: This study concluded that among Enterobacteriaceae members, E. coli was the predominant ESBL producers and urine was noted as the prime source for the ESBL positive isolates when compared to other source. Genotypic identification was the best method to differentiate ESBL types which were essential to provide proper treatment.

Keywords: Extended-spectrum beta-lactamase, Enterobacteriaceae, Escherichia coli, Enterobacter aerogenes and Klebsiella pneumoniae.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.19363

INTRODUCTION

Infections caused by extended-spectrum beta-lactamase (ESBL)-producing, Gram-negative bacteria are associated with increased morbidity and mortality, which is linked to inappropriate or delayed antimicrobial treatment [1]. Since the introduction to the extended spectrum cephalosporins into clinical use, strains expressing ESBL have been reported from to the world in increasing numbers [2]. There is no consensus on the precise definition of ESBLs. A commonly used working definition is that the ESBLs are beta-lactamases capable of hydrolyzing of the antibiotics such as penicillins, first-, second- and third-generation cephalosporins and aztreonam (AT) (but not the cefamycins or carbapenems) and which are inhibited by beta-lactam inhibitors such as clavulanic acid [3]. The first report on plasmid-encoded beta-lactamases capable of hydrolyzing the extended-spectrum cephalosporase was published in 1983 [4]. Among the family Enterobacteriaceae, the production of plasmid-mediated extended-spectrum beta-lactamase (ESBLs) has emerged as an important mechanism of resistance to beta-lactam drugs [5]. ESBLs have been found mainly in Klebsiella spp., and Escherichia coli, but have been also reported on other genera worldwide, such as Citrobacter, Enterobacter, Morganella, Proteus, Providencia, Salmonella, Serratia and P. pseudomonas [6,7].

The ESBL genes are mostly plasmid-encoded [8], and most ESBLs can be divided into three genotypes: Temoniera (TEM), sulhydryl variable (SHV), and CTX-M [3]. The predominant ESBL genotypes were TEM and SHV [9]. Most ESBLs are TEM and SHV enzyme derivatives characterized using a few point mutations at selected loci within the gene [2,10]. This enzyme was found in a blood culture isolate of E. coli from a Greek patient named TEM, hence the designation TEM [11]. The SHV-type ESBLs may be more frequently found in clinical isolates than any other type of ESBLs [12]. SHV refers to SHV. In addition, a genotype the CTX-M enzyme emerged worldwide when compared to TEM and SHV [9]. The plasmid-mediated ESBLs, which preferentially hydrolyze cefotaxime (CE) and are better inhibited by tazobactam than by sulbactam and clavulanate so-called as CTX-M enzymes [11]. In the 1990s, a novel type of ESBL, the CTX-M enzyme, emerged worldwide [9]. The CTX-M types, now exceeding 50 different types, can be divided into five groups based on their amino acid identities: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25 [13]. These enzymes are not very closely related to TEM and SHV beta-lactamases as they show only 40% identity with these enzymes [14].

Infections caused by ESBL-producing bacteria often involve immune-compromised patients, making it difficult to eradicate these organisms in high-risk wards, such as intensive care units [15,16]. Drug susceptibility data are of major importance to the clinical management of patients infected by these organisms [10]. Thus, monitoring of the prevalence and the types of extended-spectrum beta-lactamase enzymes...
may contribute to the degree of the problem with a specific geographical area, and to establish a proper treatment protocol [17]. The aim of this study was to determine the prevalence of ESBL-producing Enterobacteriaceae members of the Department of Microbiology, DDC laboratory in Tiruchirappalli, India.

MATERIALS AND METHODS

The study was conducted in the Doctor’s Diagnostic Centre, Tiruchirappalli, over a period of month from July to August 2013. A total of 1,279 consecutive, non-repetitive, Gram-negative isolates from various clinical samples such as urine (n=918), pus (n=207), and stool (n=154) were included in the study.

Isolation and identification

The cultures were isolated from selective agar, MacConkey agar, and blood agar (Himedia, Mumbai) to study their cultural characteristics. A single isolated colony was considered for further studies and identification was done using the standard procedure. Gram’s staining, morphological, cultural, and biochemical tests were performed [18].

Antibiotic sensitivity test

The resistance to one or more 3rd generation cephalosporin’s (ceftazidime [CAZ], ceftriaxone [CTR], cefotaxime, etc.) prompted us to detect ESBL producers, the common mechanism of beta-lactam resistance.

All the isolates were subjected to antimicrobial susceptibility agents and were determined using Disc Diffusion method of Kirby-Bauer [19] on Mueller-Hinton Agar as described by the Clinical and Laboratory Standard Institute (CLSI). The antibiotic discs used (Himedia, Mumbai) were Cefotaxin (30 mcg), Cefepime (30 mcg), Ceftazidime+Tazobactam (30/10 mcg), CAZ (30 mcg), cefotaxime-clavulanic acid (30/10 mg), imipenem (10 mcg), and AT (30 mcg) [20].

Combination disc method

The combination disc test using both CE and CAZ, alone and in combination with clavulanic acid, was performed for the detection of ESBL according to the CLSI guidelines. In this test, an overnight culture suspension of the test isolate which was adjusted to 0.5 McFarland standards was inoculated using sterile cotton swab on the surface of a Mueller-Hinton agar plate. The CE (30 µg) and cefotaxime-clavulanic acid (30/10 µg) disks were placed 20 mm apart on the agar. Similarly, CAZ (30 µg) and ceftazidime-clavulamic acid (30/10 µg) disks were placed 20 mm apart. After incubating overnight at 37°C, a 5 mm increase from the zone diameter for either antimicrobial agent which was tested in combination with clavulanic acid. Its zone, when tested for, was interpreted as positive for ESBL production [21].

Double disc synergy test

The test inoculums (0.5 McFarland tube) was spread as a lawn onto Mueller-Hinton agar (MHA) plate using a sterile cotton swab. A disc of CAZ (30 µg) + clavulanic acid (10 µg) was placed on the surface of MHA, then the disc of CAZ (30 µg) was placed at the distance of 15 mm from the ceftazidime+clavulanic acid disc by the edge to edge. The inoculated plates were incubated at 35°C in the incubator for 18–24 h. The zone of inhibition between the CAZ and cefotaxime+clavulanic acid was compared. The difference in the zone diameter of ≥5 mm was interpreted as positive for ESBL production [22].

Molecular identification

Isolation of DNA

TE buffer was added to overnight grown cells by gentle pipetting. Then, each of the tubes were added with 30 µl of 10% SDS and 3 µl of 20 mg/ml Proteinase K. The tubes were vortexed and then incubated at 37°C for 1 h. A volume of 100 µl of CTAB/NaCl solution was added to 150 µl of 5 M NaCl, mixed well and incubated at 65°C for 10 min and an equal volume of chloroform:isoamyl alcohol mixture was added and centrifuged. The aqueous viscous supernatant was transferred to fresh tube equal volumes of phenol:chloroform:isoamyl alcohol (25:24:4) was added. After centrifugation, the supernatant ice-cold isopropanol was added and mixed well. The pellets were washed with 70% ethanol, and the nucleic acids were recovered by centrifugation. The pellets were then kept for drying after the complete removal of the supernatant and finally resuspended in 15 µl of distilled water and stored at 4°C [23].

Polymerase chain reaction (PCR) amplification for CTX-M was carried out for all the isolates, based on the producers described by Woodford et al. [24]. After this, the amplified DNA fragments were purified from agarose gels using QIA gel extraction kit manufacturer’s protocol and sequenced using forward and reverse about 771 bp were carried out in Xcelris, Ahmedabad.

RESULTS

A total of 1279 various clinical samples were recovered from clinically suspected patients which include, urine 918 (71.77%), pus 207 (16.18%), and stool 154 (12.04%). Based on the standard laboratory procedures, three Enterobacteriaceae members (E. coli 320 [68.81%], Enterobacter aerogenes 119 [25.59%] and Klebsiella pneumoniae 26 [5.59%]) are identified in Table 1.

Further, these 465 isolates were screened for the presence of ESBL producers using combination disc method and double disc synergy test. Of the 465 culture positive isolates, 130 (E. coli 93 [29.06%], E. aerogenes 35 [29.41%], and K. pneumoniae 2 [7.69%]) were identified as ESBL producers, and remaining 335 were non-ESBL producers (E. coli 93 [70.93%], E. aerogenes 35 [70.58%), and K. pneumoniae 2 [92.30%]) (Table 2).

A maximum number of ESBL producers were recovered from urine (n=111) followed by pus (n=14) and stool (n=5). Female patients were more prone to infection caused by ESBL producing isolates 78 (urine [38], pus [10], and stool [4]) than male patients 52 (urine [73], pus [4], and stool [1]) (Fig. 1). The susceptibility profile of ESBL producers is depicted in Fig. 2. Of the 10 antibacterial agents, a maximum number of ESBL producers were resistance to CTR (126/130) followed by CAZ (115/130) and CE (110/130). Interestingly, except one isolate (1/130), all the ESBL producers were susceptible to imipenem.

For the genotypic identification, 15 ESBL positive strains (E. coli 8, E. aerogenes 6 and K. pneumoniae 1) were selected, among two strains of E. aerogenes were positive isolates for CTX-M type ESBL in PCR. The amplified CTX-M gene after gel elution was sequenced using forward and reverse, about 415 and 771 bp were carried out in Xcelris, Ahmedabad. The sequences obtained were aligned with previously published sequences available in NCBI using BLAST [25]. The gene accession number was KJ131192.1 and KJ131193.1. The sequence of the amplified product was as follows.

KJ131192.1

GGTTACAGCTT AFGGACGAG CCAAGCTGAC GCTTGATGAG CCGCGATGTC GCCAACGAGG GACGTAGAC AAAAACTTGC CGAATTAGAG CGGCAGTCGG

KJ131193.1

CGCTGTATGC GTTCACGCTG ATGGCGACGG CAACCGTCAC GCTGTTGTTA GGAAGTGATC GAGGCAGACT GCCAAACGGCG GACGTACAGC AAAAACTTGC CGAATTAGAG CGGCAGTCGG

Asian J Pharm Clin Res, Vol 11, Issue 5, 2018, 364-369

365
DISCUSSION

In hospital environment, resistance of bacterial pathogens to common antibiotic therapies was increasing at an alarming rate [26]. The use of antibiotics for any infection causes a "selective pressure" on bacterial populations, which emerge the resistant mutants and it can flourish [27]. The incidence of ESBL producing strains of clinical isolates has been steadily increasing from the past years resulting in limitation of therapeutic options [20]. These bacteria are showing rising rates of resistance to current therapies [29]. The problems which are associated with ESBLs include multidrug resistance, difficulty in detection and treatment, and increased mortality. ESBL-producing organisms, being the most common nosocomial pathogens, it is essential to detect and treat them as early as possible [30].

Nosocomial infections with Gram-negative bacilli are not uncommon for the local setting and can be perceived as a growing threat to public health [31]. In this study, out of 1279 different clinical samples, 465-Gram-negative isolates were recovered among that E. coli 320 (68.81%), E. aerogenes 119 (25.59%), and K. pneumoniae 26 (5.59%). Similarly, a previous study recorded that, E. coli (42.4%) was the most predominant isolate followed by K. pneumoniae (28.5%) [32]. However, the study conducted by Nazneen et al. (47%) [31], Menon et al. (47.14%) [33], Shohba et al. (45.62%) [34], and Nevine et al. (41.17%) [35] recorded that K. pneumoniae was the predominant isolate.

The important reason for its detection is a failure to treat ESBL-producing organisms due to limited therapeutic choices [36]. The isolates resistant to cefotaxime were tested for ESBL production by double disc synergy test method [37-39]. Similarly, in the present study, ESBL production was detected using combination disc method and double disk synergy test. Similarly, a study conducted by Umadevi et al. [30] used the combination disc method, and some other studies used the double disk synergy test of the detection of ESBL producer [40-43].

ESBL-producing organisms predominantly isolated from urine sample [31,44-47]. Similarly, in our study, urine sample (85.38%) was the major source of ESBL producing strains followed by pus (10.76%) and stool (3.84%). However, a study by Sharma et al. [41] recorded that high prevalence of ESBL producing strains isolated from respiratory tract samples (63.83%) was the major source of ESBL-producing strains followed by stool samples, urine, body fluid, pus, and blood.

The sex plays an important role in the infection which was affected by Gram-negative ESBL-producing organisms. A study by Shah et al. [48] was documented that male patients 10 (62.50%) were predominant than female 6 (37.50%) for the ESBL producers. Conversely, in our study, ESBL-producing isolates were predominantly recorded in female (n=78) than male (n=52). ESBL-producing isolates from urine were more common to males than females, in agreement with a previous report [49]. Contrary, in our study, male patients were more prevalent to ESBL in pus (10) and stool (5) samples than the female patients. On the other hand, ESBL prevalence in female patients was found to be the highest in urine samples (73).

Table 1: Frequency of Gram-negative bacteria among various clinical samples

Sample	Culture positive			
	E. coli	E. aerogenes	K. pneumoniae	Total
Urine (n=918)	253	101	18	372
Pus (n=207)	34	18	8	60
Stool (n=154)	33	-	-	33
Total	320	119	26	465

Table 2: Detection of ESBL production in E. coli, E. aerogenes and K. pneumoniae

Sample	E. coli	E. aerogenes	K. pneumoniae	Total
Urine	80	30	1	111
Pus	8	5	1	14
Stool	5	-	-	5
Total	93	35	2	130

Sample	E. coli	E. aerogenes	K. pneumoniae	Total
Urine	173	71	17	261
Pus	26	5	13	46
Stool	28	-	-	28
Total	227	84	24	335
According to the geographical region, the fraction of putative ESBL-producing isolates can vary. These variations could be due to the differences in selecting a type of antibiotic, antibiotic selection pressure, local antibiotic, and prescribing habits, which differ from state to state, country to country, and from institution to institution. The prevalence of ESBL-producing bacteria has been on the rise, particularly in Asia compared to other regions [50]. A study from China, the figures of ESBL producers vary between 25% and 40% [51]. In India, the prevalence rate varies in different institutions from 28% to 84% [52], but Ali et al. [53] reported that ESBL producers making a frequency of 45 %. Another study recorded that ESBL production was found to be 52.49% [41]. Similarly, a study from Malaysia in 2001 by Nurul et al. [54] depicted a prevalence of ESBL as 58.6%. A recent study in 2005, from New Delhi, showed 68.78% of the strains of Gram-negative bacteria to be ESBL producers [55]. A study by Naizeen et al. [31], Mathur et al. [56], and Nevine et al. [35] noted 61%, 69%, and 65.8% of ESBL producer correspondingly; these prevalence were quite high when compared to our studies. Differently, in our study, the prevalence of ESBL producers was 27.95%. A study by Basavaraj et al. [57] from Karnataka and Sharma and Grover [58] from Himachal Pradesh reported an incidence of 32.1% and 38.5% which is slightly accordance with our results. While studies conducted by Rodrigues et al. [59], Kumar et al. [60], and Menon et al. [33] reported 6.9%, 19.8%, and 20% respectively, which were quite low when compared to our study.

ESBLs in Gram-negative bacteria have emerged as a major problem of hospitalized as well as community-based patients [31]. Important ESBL-producing Gram-negative bacilli includes K. pneumoniae, E. coli, and P. mirabilis, Enterobacter spp., Citrobacter freundii, P. aeruginosa, Acinetobacter and Stenotrophomonas maltophilia [61]. A study from Egypt reported that 46% of ESBL-producing isolates of K. pneumoniae were from the clinical isolates [62]. ESBL are more prevalent in Klebsiella spp. followed by E. coli [63]. Similarly, a study by Naizeen et al. [31], Mathur et al. [56], Gupta et al. [64], Sharma et al. [41], and Ali et al. [53], were reported that, K. pneumoniae 74%, 73%, 71%, 67%, and 57% was more prevalent than E. coli 62%, 62%, 64%, 64%, and 39%, respectively. Conversely, in the present study, the highest incidence of ESBL was noted in E. coli (29.06%), E. aerogenes (29.41%), and K. pneumoniae (7.69%).

Klebsiella is the genus which frequently harbors ESBL [65]. However, in other studies, E. coli was the major ESBL producer [30,44,66,67]. Similarly, in the present study, the highest incidence of ESBL was noted in E. coli (29.06%), E. aerogenes (29.41%) and K. pneumoniae (7.69%).

CONCLUSION

The study results suggested that, among Enterobacteriaceae members, E. coli was the predominant ESBL producers and urine was noted as the prime source for the ESBL positive isolates when compared to another source. Although many phenotypic methods were available, genotypic identification was the best method to differentiate ESBL types which were essential to provide proper treatment. Constant and careful surveillance, proper detection methods, and proper management are recommended to control the spread of these organisms as the infections by ESBL-producing organisms.

ACKNOWLEDGMENTS

The authors are thankful to Prof. M. Karunanithi, Chairman and Secretary, Vivekananda Educational Institutions, Elayampalayam, and Dr. A. Malavrizhi, Head Department of Microbiology, Vivekananda College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal District, Tamil Nadu for providing all the facilities for our research work.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

REFERENCES

1. Knudsen JD, Andersen SE, Biiphejerg Intervention Group. A multidisciplinary intervention to reduce infections of ESBL-and ampC-producing, gram-negative bacteria at a university hospital. PLoS One 2014;9:e86457.
2. Jacoby GA, Medeiros AA. More extended spectrum β lactamases. Antimicrob Agents Chemother 1991;35:1697-704.
3. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev 2005;18:657-86.
4. Knothe H, Shah P, Kcmenry V, Antal M, Mitsushahi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983;11:315-17.
5. Bonnet R, De Champs C, Sirot D, Chanal C, Labia R, Sirot J, et al. Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother 1999;43:2671-7.
6. Choi SH, Lee JE, Park SJ, Kim MN, Choo EJ, Kwak YG, et al. Prevalence, microbiology, and clinical characteristics of extended-spectrum beta-lactamase-producing Enterobacter spp., Serratia marcescens, Citrobacter freundii, and Morganella morgani in Korea. Eur J Clin Microbiol Infect Dis 2007;26:557-61.
7. Ivanova D, Markovska R, Hadjieva N, Schneider I, Mitov I, Baumfeind A. Extended-spectrum β-lactamase-producing Serratia marcescens outbreak in a Bulgarian hospital. J Hosp Infect 2008;70:60-5.
8. Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Miyamoto Y, Higuchi T, et al. Epidemiology of Escherichia coli, Klebsiella species, and Proteus mirabilis strains producing extended-spectrum β-lactamases from clinical samples in the Kinki region of Japan. Am J Clin Pathol 2012;137:620-6.
9. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933-51.
10. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39:1211-33.
11. Giamarello H. Multidrug resistance in gram-negative bacteria that produce extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect 2005;11:Suppl 4:1-16.
12. Jacoby GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oximino-beta-lactams. Infect Dis Clin North Am 1997;11:875-87.
13. Bonnet R. Growing group of extended-spectrum β-lactamases: The CTX-M enzymes. Antimicrob Agents Chemother 2004;48:1-14.
14. Tzouvelekis LS, Tzelep E, Tassios PT, Legakis NJ. CTX-type β-lactamases: An emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000;14:137-43.
15. Bonnet R, Sampaio JL, Bara C, Sirot D, De Champs C, Viallard JL, et al. A novel class a extended-spectrum beta-lactamase (BES-1) in Serratia marcescens isolated in Brazil. Antimicrob Agents Chemother 2000;44:3061-8.
16. Jean SS, Hsuhe PR, Lee WS, Chang HT, Chou MY, Chen IS, et al. Nationwide surveillance of antimicrobial resistance among Enterobacteriaceae in intensive care units in Taiwan. Eur J Clin Microbiol Infect Dis 2009;28:215-20.
17. Batchoun RG, Swedan SF, Shuman AM. Extended spectrum β-lactamases among gram-negative bacterial isolates from clinical specimens in three major hospitals in Northern Jordan. Int J Microbio 2009. Article ID: 513874, 9 pages.
18. Collee JG, Fraser AG, Marmion BP, Simmons A. Mackie and McCartney Practical Medical Microbiology. 14th ed. London: Churchill Livingstone; 1996. p. 417-23.
19. Saua AW, Kirby MD, Sherris JC, Turek M. Antibiotic susceptibility testing by standardized single disk diffusion method. Am J Clin Pathol 1966;45:493-6.
20. Clinical and Laboratory Standards Institute (CLSI). Performance Standard for Antimicrobial Susceptibility Testing. 16th Informational Supplement. Wayne, PA: CLSI Document M100-S16; 2006.
21. Clinical and Laboratory Standards Institute (CLSI). Performance standard for Antimicrobial Susceptibility Testing. Wayne, PA, USA: CLSI Approved Standards CLSI M-100-S20; 2010.
22. Balan K. Detection of extended spectrum beta lactamase among gram negative clinical isolates from a tertiary care hospital in south India. Ind J Med Sci 2013;1:28-30.
23. Anselub M, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current Protocols in Molecular Biology. Vol. 1. New York, USA: Wiley & Sons, Inc.; 1995.
24. Woodford N, Fagan TJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 2006;57:154-5.
25. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402.
26. Yusuf I, Haruna M, Yahaya H. Prevalence and antibiotic susceptibility of Ampe and ESBL producing clinical isolates at a tertiary health care center in Kano, Northwest Nigeria. Afr J Clin Exper Microbiol 2013;2:103-10.
27. Patel MH, Trivedi GR, Patel SM, Vagad MM. Antibiotic susceptibility pattern in urinary isolates of gram negative bacilli with special reference to ampic β-lactamase in a tertiary care hospital. Urol Ann 2010;2:7-11.
28. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.
29. Soltani R, Ehsanpoor M, Khorvash F, Shokri MM. Antibiotic susceptibility pattern of extended-spectrum β-lactamase-producing bacteria causing nosocomial urinary tract infections in an Iranian referral teatral hospital. Iran J Med Sci 2013;8:117-20.
30. Umadevi S, Kandhakumari G, Joseph NM, Kumar S, Easow JM, Podschun R, Ullmann U. Antibiotic susceptibility pattern in urinary isolates of gram negative bacilli. J Clin Diag Res 2011;5:236-9.
31. Nazneen S, Jayshree B, Ajit D, Jyoti B. Prevalence of extended spectrum beta lactamases (ESBL) producers in clinical isolates. Afr J Med Sci 2013;58 Suppl:41-4.
32. Chaudhary M, Kumar S, Payasi A. Prevalence and antimicrobial resistance pattern in urinary isolates of gram negative bacilli. J Clin Diag Res 2011;5:236-9.
33. Shanthi M, Sekar U. Extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae isolated from cancer patients and others. Int J Pharm Sci 2015;7:122-12.
34. further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diag Res 2013;7:2173-7.
35. Hansota JB, Agarwal V, Pathak AA, Saoji AM. Extended spectrum beta-lactamase mediated resistance to third generation cephalosporins in Klebsiella pneumoniae in Nagpur, central India. Indian J Med Res 1997;105:158-61.
36. Dechen CT, Shyamasee D, Luna A, Ranabir P, Takhellamamb SK. Extended spectrum beta-lactamase detection in gram-negative bacilli of nosocomial origin. J Glob Infect Dis 2009;1:87-90.
37. Shanthi M, Sekar U. Extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes. J Assoc Physicians India 2010;58 Suppl:41-4.
38. Iqbal A, Nifurah YN. Antibiogram of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae isolated from hospital samples. Bangladesh J Med Microbiol 2010;4:32-6.
39. Saha R, Muhammad F, Shahida H. Prevalence and comparison of beta-lactamase producing Escherichia coli and Klebsiella spp. from clinical and environmental isolates in Lahore, Pakistan. AJ Microbio Res 2012;6:465-70.
40. Kulkarni R, Vaisali D, Ghadge D, Bhore A. A study of extended spectrum beta lactamases (ESBL) producers in clinical isolates. Med J Ind Med Ass 2013;41:8-2.
41. Shah RK, Singh YI, Sanjana RK, Navin C, Dominic S. Study of extended spectrum beta-lactamases (ESBLs) producing Klebsiella species in various clinical specimens: A preliminary report. J Coll Med Nepal 2010;6:19-23.
42. Graffunder EM, Preston KE, Evans AM, Venezia A. Risk factors associated with extended-spectrum β-lactamase-producing organisms at a tertiary care hospital. J Antimicrob Chemother 2005;56:139-45.
43. Harada Y, Morinaga Y, Yamada K, Migiyama Y, Nagaoka K, Nakamura U, et al. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli in a Japanese tertiary hospital. J Med Microbiol Diag 2013;2:2161-70.
44. Yu Y, Zhou W, Chen Y, Ding Y, Ma Y. Epidemiological and antibiotic resistant study on extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Zhejiang province. Chin Med J (Engl) 2002;115:1479-82.
45. Das A, Ray P, Garg R, Kaur B. Proceedings of the Silver Jubilee Conference. New Delhi: All India Institute of Medical Sciences; 2010. Extended Spectrum Beta-Lactamase Production in Gram Negative Bacterial Isolates from Cases of Septicemia 2001.
46. Ali AM, Rafi S, Qureshi AH. Frequency of Extended Spectrum Beta Lactamase Producing Gram Negative Bacilli among Clinical Isolates at Clinical Laboratories of Army Medical College, Rawalpindi. Available from: http://nursingmed.edu.pk/JAMC/PAST/16-Aaarf.htm.
47. Nurul MA, Loo HK, Subramaniam G, Wong EH, Selvi P, Ho S, et al. Faecal prevalence of extended- spectrum β-lactamase (ESBL)- producing coliforms in a geriatric population and among haematology patients. Malaysian J Pathol 2005;27:75-81.
48. Mohanty S, Singhal R, Sood S, Dhanv D, Das BK, Kapil A, et al. Comparative in vitro activity of beta-lactam/beta-lactamase inhibitor combinations against gram negative bacteria. Indian J Med Res 2005;122:425-8.
49. Mathur P, Kapil A, Das B, Dhawan B. Prevalence of extended spectrum beta-lactamase producing gram negative bacteria in a tertiary care hospital. Indian J Med Res 2002;115:153-7.
50. Basavaraj PJ, Basavaraj PV. The prevalence of ESBL among Enterobacteriaceae in a tertiary care hospital of north Karnataka, India. J Clin Diag Res 2011;5:470-5.
51. Sharma A, Grover PS. Application of WHONET for the surveillance of antimicrobial resistance. Indian J Microbiol 2004;22:115-8.
52. Rodrigues C, Yoshi P, Jani SH, Alphonse M, Radhakrishnan R, Mehta A. Detection Of β-lactamases in nosocomial gram negative clinical isolates. Indian J Med Microbiol 2004;22:247-50.
53. Kumar MS, Lakshmi V, Rajagopalan R. Occurrence of extended spectrum beta-lactamases among Enterobacteriaceae spp. isolated at a tertiary care institute. Indian J Med Microbiol 2006;24:208-11.
54. Coudron PE, Moland ES, Sanders CC. Occurrence and detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae at a veterans medical center: Seek and you may find. J Clin Microbiol 1997;35:2593-7.
55. El-mahdy TS, Abdelaziz MO, El-domany RA. Prevalence and molecular characterization of extended spectrum β-lactamases in Klebsiella pneumoniae isolates from cancer patients and others. Int J Pharm Sci 2015;7:122-12.
63. Nathisuwan S, Burgess DS, Lewis JS. ESBLs: Epidemiology, detection and treatment. Pharmacotherapy 2001;28:920-8.
64. Gupta V, Singla N, Jagdish C. Detection of selleS using third and fourth generation cephalosporins in double disc synergy test. Indian J Med Res 2007;126:486-7.
65. Khurana S, TanEja N, Sharma M. Extended spectrum β-lactamase mediated resistance in urinary tract isolates of family Enterobacteriaceae. Indian J Med Res 2002;116:145-9.
66. Abhilash KP, Veeraraghavan B, Abraham OC. Epidemiology and outcome of bacteremia caused by extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp. In a tertiary care teaching hospital in south India. J Assoc Physicians India 2010;58 Suppl:13-7.
67. Wattal C, Goel N, Oberoi JK, Raveendran RS, Dutta S, Prasad KJ. Surveillance of multidrug resistant organisms in a tertiary care hospital in Delhi, India. J Assoc Physicians India 2010;58 Suppl:32-6.
68. Ananthakrishnan AN, Kanungo R, Kumar A, Badrinath S. Detection of extended spectrum beta-lactamase producers among surgical wound infections and burn patients in JIPMER. Indian J Med Microbiol 2000;18:160-5.
69. Shaikh S, Fatima J, Shakil S, Rizvi MS, Kamal MA. Risk factors for acquisition of extended spectrum beta lactamases producing Escherichia coli and Klebsiella pneumonia in North-Indian hospitals. Saudi J Biol Sci 2015;22:37-41.
70. Shrestha S, Amatya R, Dutta R. Prevalence of extended spectrum beta lactamase (ESBL) production in gram negative isolates from pyogenic infection in tertiary care hospital of Eastern Nepal. Nepal Med Coll J 2011;13:186-9.
71. Jain S, Geeta W, Rubina M. Prevalence and antimicrobial susceptibility pattern of ESBL producing gram negative bacilli in 200 cases of urinary tract infections. Int J Pharm Pharm Sci 2014;6:210-1.
72. Babypadmini S, Appalaraju B. Extended spectrum beta-lactamases in urinary isolates of Escherichia coli and Klebsiella pneumoniae-prevalence and susceptibility pattern in a tertiary care hospital. Indian J Med Microbiol 2004;22:172-4.