SUPPLEMENTAL MATERIALS

Title: Excessive EP4 signaling in smooth muscle cells induces abdominal aortic aneurysm by amplifying inflammation

Taro Hiromi, MD1,2, Utako Yokoyama, MD, PhD1,3, Daisuke Kurotaki, PhD4, Al Mamun, PhD1, Ryo
Ishiwata, PhD1, Yasuhiro Ichikawa, MD, PhD1, Hiroshi Nishihara, MD, PhD5, Masanari Umemura,
MD, PhD1, Takayuki Fujita, MD, PhD1, Shota Yasuda, MD, PhD6, Tomoyuki Minami, MD, PhD7,
Motohiko Goda, MD, PhD5, Keiji Uchida, MD, PhD7, Shinichi Suzuki, MD, PhD6, Ichiro Takeuchi,
MD, PhD2, Munetaka Masuda, MD, PhD6, Richard M. Breyer, PhD8, Tomohiko Tamura, MD, PhD4,
Yoshihiro Ishikawa, MD, PhD1

1Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
2Department of Emergency Medicine, Yokohama City University Graduate School of Medicine,
Yokohama, Japan
3Department of Physiology, Tokyo Medical University, Tokyo, Japan
4Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama,
Japan
5Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
6Department of Surgery, Yokohama City University, Yokohama, Japan
7Cardiovascular Center, Yokohama City University Medical Center, Yokohama, Japan
8Department of Medicine, Vanderbilt University, Nashville, TN, USA

*corresponding author
SUPPLEMENTAL MATERIAL

Detailed Methods

Reagents
EP4 agonist (ONO-AE1-329) and EP4 antagonist (ONO-AE3-208) were kindly provided by Ono Pharmaceutical Company (Osaka, Japan). An anti-IL-6R antibody (MR16-1) was kindly provided by Chugai Pharmaceutical Company (Tokyo, Japan). Indomethacin and BAY 11-10782 were purchased from Tokyo Chemical Industry (Tokyo, Japan). Prostaglandin E₂ (PGE₂), U0126, and 5Z-7-oxozeaenol were purchased from Calbiochem (Billerica, MA, USA). SB203580 and SP600125 were purchased from Cell Signaling Technology (Danvers, MA, USA). IKK16, SN50, and SB225002 were purchased from Cayman Chemicals (Ann Arbor, MI, USA). An antibody for GAPDH (#sc-25778) was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Antibodies for phospho-TAK1 (Ser412) (#9339), phospho-TAK1 (Thr187) (#4536), TAK1 (#4505), phospho-p38 (#9211), p38 (#9212), phospho-JNK (#9251), JNK (#9252), and phospho-IKKα/β (#2697) were purchased from Cell Signaling Technology. Antibodies for IL-6 (AB-206-NA for human samples, AB-406-NA for mouse samples) were purchased from R&D Systems (Minneapolis, MN, USA). Antibody for lysyl oxidase (#ab31238), and CD68 (#ab125212) were purchased from Abcam (Cambridge, UK). Antibody for CD45.2 (#109822), CD11b (#101245), Ly-6G (#127607), and Ly-6C (#128008) were purchased from BioLegend (SanDiego, CA, USA). Antibody for F4/80 (#MCA497) and CD68 (#MCA1957T) were purchased from Bio-Rad (Hercules, CA, USA). An antibody for smooth muscle actin (#A2547) was purchased from Sigma-Aldrich (St Louis, MO, USA). Rat IgG was purchased from BioX Cell (West Lebanon, NH, USA). Antibody for mouse IgG, Alexa Fluor 594 (#A11005), rabbit IgG, Alexa Fluor 488 and 546 (#A11008 and A10040), and goat IgG, Alexa Fluor488 (#A11055) were purchased from Invitrogen (Carlsbad, CA, USA). An antibody for mouse CXCL1 was purchased from NOVUS (Centennial, CO, USA).

Measurement of blood pressure
Blood pressure of mice was measured by the tail-cuff method using a BP-98A-L (Softron, Tokyo, Japan) in a quiet room at 7–10 AM. Blood pressure was calculated as the average of ten measurements taken on the same day for each mouse.

Cell isolation and culture
Adult mouse aortic smooth muscle cells were obtained by the explant method as previously described¹. Mice were euthanized with pentobarbital (13 mg, i.p.), and the descending aortas were collected. Aortic tissues were digested with collagenase II (Worthington) solution at 37 °C for 3 minutes. Adventitial tissue was removed with forceps, and the tunica media was cut into 1-mm-square pieces. The pieces were put on a 60-mm dish coated with fibronectin (Sigma-Aldrich, 10 g/ml × 3 ml) and cultured in DMEM (Sigma-Aldrich) containing 10% FBS for three weeks until the
cells migrated onto the dish. Human aortic smooth muscle cells derived from AAA were obtained as described elsewhere. Cells below passage 8 were used in the experiments. All cells were cultured in a moist tissue culture incubator at 37 °C in 5% CO2-95% ambient air.

In-vitro assays

VSMCs were plated on 96-well plates at 1×10^4 cells/well for analysis of IL-6 expression in culture media, on 12-well plates at 8×10^4 cells/well for RNA or protein extraction from cell lysates, or on 6-well plates at 1.5×10^5 cells/well for analysis of LOX expression in culture media. Cells were serum-starved for 24 h and then stimulated with PGE2 (1 μmol/L) or EP4 agonist (ONO-AE1-329, 1 μmol/L). For microarray analysis, aortic VSMCs isolated from two individual EP4-Tg mice were stimulated with PGE2 for 24 h. For human aortic VSMC culture, DMEM was used for starvation. To inhibit endogenous PGE2 production by VSMCs, indomethacin was administered at 100 μmol/L for 1 h before and during stimulation with PGE2 or EP4 agonist. ONO-AE3-208 (1 μmol/L), H89 (10 μmol/L), 5Z-7-oxozeaenol (0.5 μmol/L), U0126 (10 μmol/L), SB206580 (10 μmol/L), SP600125 (50 μmol/L), IKK16 (3 μmol/L) and SN50 (20 μmol/L) were administered in the same manner as indomethacin.

Measurement of intracellular cAMP concentration

After aortic VSMCs derived from EP4-Tg mice were cultured on 24-well plates with 10%FBS/DMEM, VSMCs were serum-starved for 24 h. VSMCs were treated with AE1-329 for 10 min followed by indomethacin for 1 h. According to the manufacturer’s instructions, ASMCs were lysed with 120 µl of 0.25% solution of dodecyltrimethylammonium bromide, and 100 μl of the lysate was used for the measurement of cAMP using an enzyme linked immunosorbent assay (ELISA) (RPN225, GE Healthcare Life Sciences, Piscataway, NJ, USA) according to the manufacturer’s instructions.

Cell viability assay

After EP4-Tg VSMCs were cultured on 96-well plates with 10%FBS/DMEM. The VSMCs were treated with AE1-329 for 24 h. According to the manufacturer’s instructions, EP4-Tg VSMCs were incubated reagents for XTT assay (#20-300-1000, Biological Industries, CT, USA) for 2 h.

Tissue and section staining

For evaluation of elastic fiber formation, aorta tissue sections were subjected to Elastica van Gieson staining (Muto Pure Chemicals, Tokyo, Japan) according to the manufacturer’s instructions. Immunohistochemical analysis and immunofluorescent imaging were performed as described.

Elastin degradation grade

To assess the severity of elastin layer destruction, elastin degradation grade was evaluated in EVG-stained tissue sections from the aorta. Elastin degradation grade ranged from Grade 1-4. Grade 1 represented a normal elastin layer, grade 2 represented minor breakdown of the elastin...
layer, grade 3 represented some elastin layer breakdown and grade 4 represented loss or rupture of elastin layer. Each aortic section was separated into six equal parts. Each part was assessed for elastin degradation grade and the average was calculated and used as the overall elastin degradation grade.

Gelatin zymography
MMP-9 activities were evaluated by gelatin zymography as described elsewhere. Murine aorta tissue was freed of connective tissues and lysed in neutral lysis buffer. Total proteins (5 µg) were assayed.

Quantification of protein expression
Protein expression was determined by ELISA (IL-6) according to the manufacturer’s instructions (R&D Systems). Abundance of IL-6 protein in aortic tissues was normalized by total protein concentration determined by Bradford assay. Abundance of LOX protein in culture media was determined by Western Blotting. Medium for LOX expression level analysis was condensed using Centrifugal Filter Units (UFC5010, MERCK Milipore, Burlington, MA, USA).

Collection of human aorta specimens
Tissues from AAA (n = 7) walls were collected from patients undergoing open-repair surgery at Yokohama City University and Yokohama City University Medical Center. Excised tissues were put in ice-cold physiological salt solution and immediately taken to the Cardiovascular Research Institute for analysis within 3 h after excision. Tissues were either fixed in 4% paraformaldehyde for histological analysis or were subjected to primary culture. Non aneurysmal abdominal aortic control samples (n = 6) were collected at autopsies. All specimens from human samples were approved by Institutional Review Board at Yokohama City University (B130307001).

Gene-Set Enrichment Analysis (GSEA)
Microarray was performed using SurePrint G3 Mouse GE 8x60K Microarray (Order number 252800515849, Agilent, Santa Clara, CA, USA). The data of this microarray were deposited to public database (accession number: GSE146758). GSEA was performed using the Broad Institute algorithm v2.2.2 on all the probe sets with a gene name. The data were classified and tested based on molecular function derived from Gene Ontology (GO) terms (c5.mf.v5.1.symbols.gmt).

Quantitative reverse transcriptase-PCR
Reverse transcription was performed using a PrimeScript RT reagent kit (TaKaRa Bio, Shiga, Japan) and quantitative reverse transcriptase-PCR (RT-PCR) was performed using either SYBR Premix Ex Taq Tli RNaseH Plus (TaKaRa Bio) or Taqman gene expression assay (Applied Biosystems, Waltham, MA, USA). The expression of each gene was calculated as the abundance relative to that of 18S ribosomal RNA using the ΔΔCT method. The sequences of primers used in
SYBR Green assay were as follows: mouse Ptgs2 (NM_011198.3, 5′-GCA CTA CAT CCT GAC CCA CTT C-3′ and 5′-GCT CCT TAT TTC CCT TCA CAC C-3′), mouse Il6 (NM_031168, 5′- GAA CGA TAG TCA ATT CCA GAA ACC-3′ and 5′-CAT TTC CAC GAT TTC CCA GA-3′), Lox (NM_010728, 5′-TCT TCT GCT GCG TGA CAA CC-3′ and 5′-GAG AAA CCA GCT TGG AAC CAG-3′), mouse Cxcl1 (NM_008176.3, 5′-GGA CGA TAG TCA ATT CCA GAA ACC-3′ and 5′-CAT TTC CAC GAT TTC CCA GA-3′) and 18S ribosomal RNA (5′-GTA ACC CGT TGA ACC CCA TT-3′ and 5′-CCA TCC AAT CGG TAG TAG CG-3′). The assay numbers of TaqMan probes used in the study were: mouse Ptger1, Mm00443097_m1; mouse Ptger2, Mm00436051_m1; mouse Ptger3, Mm01316856_m1; mouse Ptger4, Mm00436052_g1; and mouse + human Ptger4, Mm00436053_m1.

Calcium chloride (CaCl₂) treatment

AAA was induced in Non-Tg and EP4-Tg mice by periaortic application of 0.5M CaCl₂ between the renal arteries and bifurcation of the iliac arteries. After 10 minutes of treatment, the aorta was rinsed once with 0.9% sterile saline. During laparotomy, mice were anesthetized by 1.5% isoflurane with an airflow of 200 mL/h. Fourteen days after the procedure, mice were euthanized with pentobarbital (13 mg, i.p.) and their aortas were excised after formalin perfusion. Luminal aortic diameter and external adventitial diameter were determined at short axis of Elastica van Gieson-stained cross section in the maximally dilated region of the abdominal aorta using Image J software.
Supplemental Figure I. VSMC-selective EP4 overexpression in EP4-Tg (line A). (A) Generation of conditional EP4 overexpression using the Cre-loxP system. (B) Human EP4 (PTGER4) mRNA expression in EP4-Tg and Non-Tg aorta. (C) Total EP4 mRNA expression (mouse endogenous Ptger4 and overexpressed human PTGER4) in EP4-Tg and Non-Tg aortic tissues. n = 5 from 5 individual mice. (D) GFP fluorescence images of aorta sections of Non-Tg and EP4-Tg before and after AngII infusion. Scale bars; 50µm. (E) Intracellular cyclic AMP level in VSMCs of Non-Tg and EP4-Tg before and 10 min after ONO-AE1-329 (AE1-329, EP4 agonist, 1 mol/L) administration. n = 4. (F) A XTT assay in EP4-Tg VSMCs with or without 24 h of AE1-329 administration. n = 6. (G-I)
Expression levels of mouse Ptger1 (EP1), Ptger2 (EP2) and Ptger3 (EP3) mRNAs in Non-Tg and EP4-Tg aorta. \(n = 6-12 \) from 6-12 individual mice. *\(p < 0.05 \); ***\(p < 0.001 \); NS, not significant.
Supplemental Figure II. VSMC-selective EP4 overexpression in EP4-Tg (line B).

(A) Human PTGER4 mRNA expression in EP4-Tg and Non-Tg aorta. (B) Total EP4 mRNA expression (mouse endogenous Ptger4 and overexpressed human PTGER4) in EP4-Tg and Non-Tg aortic tissues. n = 4 from 4 individual mice. (C) Intracellular cyclic AMP level in VSMCs of Non-Tg and EP4-Tg before and 10 min after ONO-AE1-329 (AE1-329, EP4 agonist, 1 mol/L) administration. n = 4. (D-F) Expression levels of mouse Ptger1 (EP1), Ptger2 (EP2) and Ptger3 (EP3) mRNAs in Non-Tg and EP4-Tg aorta. n = 4-5 from 4-5 individual mice. *p < 0.05; **p < 0.01; ***p < 0.001; NS, not significant.
Supplement Figure III. Blood pressure changes after AngII infusion. (A) Systolic blood pressure of Non-Tg and EP4-Tg mice before and after AngII infusion (1.0 µg/kg/min). $n = 5-6$. (B) Systolic blood pressure of EP4<sup>fl/+;ApoE[−] and EP4^{fl/+;SM22-Cre;ApoE[−]} mice before and 4 weeks after AngII infusion (1.0 µg/kg/min). $n = 11-12$. (C) Systolic blood pressure for AngII-infused (1.0 µg/kg/min) Non-Tg and EP4-Tg mice with MR-16 or control rat IgG administration. $n = 4-7$. *** $p < 0.001$; NS, not significant.
Supplemental Figure IV. EP4 antagonist inhibited AngII-induced AAA in EP4-Tg mice.

(A) Representative image of the aorta of AngII-infused EP4-Tg mice with ONO-AE3-208 or saline administration. Scale bar; 5 mm. (B) Elastica van Gieson-stained sections of (A). Scale bars; 500 μm. (C) Survival rates of AngII-infused EP4-Tg mice with ONO-AE3-208 or saline administration. n = 15-16.
Supplemental Figure V. VSMC-selective EP4-Tg (line B) mice exhibited dissecting AAA after AngII infusion. (A) Elastica van Gieson-stained sections of the abdominal aorta of Non-Tg and EP4-Tg mice infused with AngII (3.0 µg/kg/min). Scale bars, 500 μm. (B-C) Maximum aortic diameter and elastin degradation grade of the aorta in Non-Tg and EP4-Tg mice infused with AngII for 4 weeks. n = 5-6. (D) IL-6 protein expression in abdominal aorta from EP4-Tg before and after 4 weeks of AngII infusion. n = 6-8. *p < 0.05; **p < 0.01; ***p < 0.001; NS, not significant.
Supplemental Figure VI. EP4 overexpression in VSMCs promoted true AAA after periaortic CaCl₂ application. (A) Representative images of aortas of Non-Tg and EP4-Tg mice after periaortic CaCl₂ application. Scale bars; 1 mm. (B, C) Maximum aortic diameter and elastin degradation grade of the aorta in Non-Tg and EP4-Tg mice with periaortic CaCl₂ application. n = 5-8. (D) Elastica van Gieson-stained sections of the abdominal aorta for Non-Tg and EP4-Tg mice after periaortic CaCl₂ application. Scale bars; 500 μm. (E) Representative images of aortas of
EP4+/+;SM22-Cre and EP4+/+;SM22-Cre mice after periaortic CaCl\textsubscript{2} application. (F, G) Maximum aortic diameter and elastin degradation grade of the aorta in EP4+/+;SM22-Cre and EP4fl/fl;SM22-Cre mice after periaortic CaCl\textsubscript{2} application. \(n = 10-11 \). (H) Elastica van Gieson-stained sections of the abdominal aorta for EP4+/+;SM22-Cre and EP4fl/fl;SM22-Cre mice after periaortic CaCl\textsubscript{2} application. Scale bars; 500 \(\mu \text{m} \). * \(p < 0.05 \); ** \(p < 0.01 \); *** \(p < 0.001 \); NS, not significant.
Supplemental Figure VII. EP4 signaling promoted TAK1 and MAPK phosphorylation and NF-κB activation in EP4-Tg VSMCs. (A) Immunofluorescence staining sections of the abdominal aorta of EP4-Tg after AngII infusion. Nuclei were stained by Hoechst 33342. Scale bars; 25 µm. (B) Gene set enrichment analysis (GSEA) of the microarray data using EP4-Tg VSMCs stimulated with PGE2 (1 µmol/L) for 24 h. (C-H) Representative images and time-dependent changes in ONO-AE1-329 (EP4 agonist, 1 µmol/L) induced phosphorylation of TAK1 (Ser412 and Thr187), JNK, p38, and IκBα expression in EP4-Tg VSMCs. n = 5-9. *p < 0.05; **p < 0.01; NS, not significant.
Supplemental Figure VIII. EP4 down signaling pathways were activated in VSMCs of AngII-induced AAA in EP4-Tg and human AAA. (A) Immunofluorescence staining of the abdominal aorta of EP4-Tg infused with AngII for 7 days. Nuclei were stained by Hoechst 33342. Scale bars; 50 µm. (B) Immunofluorescence staining of tissues of human AAA. Nuclei were stained by Hoechst 33342. Scale bars; 25 µm.
Supplemental Figure IX. CXCR2 antagonist did not inhibit AngII-induced AAA. (A) Chemokine (C-X-C motif) ligand 1 (Cxcl1) mRNA expression in EP4-Tg VSMCs stimulated with ONO-AE1-329 (EP4 agonist, 1 µmol/L). n = 7-8; ***p < 0.001.

(B) Immunohistochemically-stained sections of the abdominal aortas of Non-Tg and EP4-Tg mice after AngII infusion. Scale bars; 25 µm. (C) Survival rates of AngII-infused (1.0 µg/kg/min) EP4-Tg mice with and without SB225002 [C-X-C Motif Chemokine Receptor 2 (CXCR2) antagonist] administration. n = 7-8.
Supplemental Tables

Supplemental Table I. Basal characteristics of Non-Tg and EP4-Tg mice (line A)

	Non-Tg (n = 6-7)	EP4-Tg (n = 5-6)	p value
Body weight (g)	29.0 ± 1.5	30.4 ± 2.2	0.20
Cardiac function			
HR (beats per min)	479 ± 6.08	476 ± 4.5	0.66
LVDd (mm)	3.4 ± 0.03	3.3 ± 0.04	0.13
LVDS (mm)	2.1 ± 0.02	2.1 ± 0.03	0.14
LVEF (%)	75.0 ± 0.4	73 ± 0.7	0.13
LVFS (%)	36.5 ± 0.4	35.3 ± 0.6	0.25
Lipid profile			
Total cholesterol (mg/dl)	141.0 ± 8.1	136.2 ± 19.54	0.81
LDL cholesterol (mg/dl)	13.8 ± 1.5	14.5 ± 5.7	0.80
HDL cholesterol (mg/dl)	114.8 ± 11.5	110.7 ± 18.3	0.75
Triglyceride (mg/dl)	107.8 ± 26.9	101.5 ± 56.0	0.57
Free fatty acid (mEq/l)	2.5 ± 1.1	2.2 ± 0.9	0.69

BW, body weight; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening; HR, heart rate; LVDd, left ventricular diastolic diameter; LVDS, left ventricular systolic diameter; LDL, low-density lipoprotein; HDL, high-density lipoprotein
Supplemental Table II. Basal characteristics of Non-Tg and EP4-Tg mice (line B)

	Non-Tg (n = 4-8)	EP4-Tg (n = 4-8)	p value
Body weight (g)	26.1 ± 0.95	27.3 ± 0.83	0.35
Cardiac function			
HR (beats per min)	475 ± 11.8	496 ± 8.4	0.16
LVDd (mm)	4.2 ± 0.14	4.0 ± 0.1	0.47
LVDS (mm)	2.84 ± 0.12	2.74 ± 0.11	0.54
LVEF (%)	68 ± 1.6	68.6 ± 2.1	0.80
LVFS (%)	31.8 ± 1.1	32.1 ± 1.4	0.84
Lipid profile			
Total cholesterol (mg/dl)	106.00 ± 3.03	106.17 ± 3.16	0.97
LDL cholesterol (mg/dl)	14.50 ± 0.87	14.83 ± 0.79	0.78
HDL cholesterol (mg/dl)	77.00 ± 2.8	78.83 ± 1.87	0.61
Triglyceride (mg/dl)	29.75 ± 7.63	32.50 ± 4.79	0.77
Free fatty acid (mEq/l)	0.64 ± 0.09	0.61 ± 0.07	0.81
Supplemental Table III. Basal characteristics of EP4fl/fl;ApoE-/- and EP4fl/fl;SM22-Cre;ApoE-/- mice

	EP4fl/fl;ApoE-/- (n = 5-6)	EP4fl/fl;SM22-Cre;ApoE-/- (n = 5-7)	p value
Ptger4 mRNA expression	1.00 ± 0.15	0.53 ± 0.09	0.01
Body weight (g)	30.1 ± 0.8	29.1 ± 0.5	0.35
Cardiac function			
HR (beats per min)	482 ± 4.18	500 ± 5.11	0.43
LVDd (mm)	3.4 ± 0.12	3.5 ± 0.11	0.61
LVDS (mm)	2.0 ± 0.07	2.2 ± 0.09	0.50
LVEF (%)	77.1 ± 0.6	77.2 ± 1.0	0.61
LVFS (%)	39.1 ± 0.5	38.9 ± 0.9	0.38
Lipid profile			
Total cholesterol (mg/dl)	654.3 ± 183.8	855.8 ± 164.3	0.18
LDL cholesterol (mg/dl)	372.7 ± 111.5	476.7 ± 122.2	0.18
HDL cholesterol (mg/dl)	49.2 ± 0.8	47.2 ± 10.9	0.94
Triglyceride (mg/dl)	121.0 ± 80.3	156.2 ± 45.1	0.40
Free fatty acid (mEq/l)	1.1 ± 0.4	1.6 ± 0.7	0.31
Supplemental Table IV. Basal characteristics of EP4^{+/+};SM22-Cre and EP4^{fl/fl};SM22-Cre mice

	EP4^{+/+};SM22-Cre (n = 5-9)	EP4^{fl/fl};SM22-Cre (n = 5-7)	p value
Ptger4 mRNA expression	1.00 ± 0.15	0.57 ± 0.09	0.03
Body weight (g)	24.3 ± 0.8	29.8 ± 0.9	0.002
Cardiac function			
HR (beats per min)	471.6 ± 5.2	480.6 ± 9.4	0.44
LVDd (mm)	3.75 ± 0.15	3.67 ± 0.03	0.62
LVDS (mm)	2.41 ± 0.09	2.35 ± 0.02	0.45
LVEF (%)	74.6 ± 0.7	73.4 ± 0.9	0.61
LVFS (%)	36.8 ± 0.6	36.0 ± 0.7	0.38
Supplemental Table V. Gene Ontology molecular function terms (Size>100) upregulated significantly (FDR<0.25) by PGE2 in EP4-Tg VSMCs.

Gene set name	Size	NES	FDR q-value	Rank at MAX
GO_CATALYTIC_ACTIVITY_ACTING_ON_RNA	317	2.039	0.004	6822
GO_RIBONUCLEOPROTEIN_COMPLEX_BINDING	118	1.941	0.011	9155
GO_NUCLEOTIDYLTRANSFERASE_ACTIVITY	117	1.938	0.010	8341
GO_TRANSFERASE_ACTIVITY_TRANSFERRINGACYL_GROUPS	230	1.925	0.011	5958
GO_TRANSCRIPTION_COACTIVATOR_ACTIVITY	308	1.821	0.017	7323
GO_HISTONE_BINDING	174	1.818	0.017	8093
GO_S_ADENOSYLMETHIONINE_DEPENDENT_METHYLTRANSFERASE_ACTIVITY	129	1.803	0.018	8190
GO_ENHANCER_BINDING	127	1.798	0.017	5455
GO_HELICASE_ACTIVITY	138	1.798	0.017	8224
GO_PRIMARY_ACTIVE_TRANSMEMBRANETRANSFERER_ACTIVITY	101	1.781	0.017	5079
GO_UBIQUITIN_LIKE_PROTEIN_TRANSFERASE_ACTIVITY	371	1.779	0.017	8716
GO_MRNA_BINDING	215	1.771	0.017	7492
GO_MAGNESIUM_ION_BINDING	198	1.766	0.018	4126
GO_KINASE_REGULATOR_ACTIVITY	189	1.754	0.020	5805
GO_PROTON_TRANSMEMBRANE_TRANSFERER_ACTIVITY	104	1.730	0.024	6875
GO_ATPASE_ACTIVITY_COUPLED	323	1.706	0.028	6871
GO_TRANSFERASE_ACTIVITY_TRANSFERRING_HEXOSYL_GROUPS	176	1.696	0.031	5810
GO_HEAT_SHOCK_PROTEIN_BINDING	112	1.696	0.030	5847
GO_TRANSFERASE_ACTIVITY_TRANSFERRING_GLYCOSYL_GROUPS	236	1.676	0.033	5810
GO_CATALYTIC_ACTIVITY_ACTING_ON_A_TRNA	111	1.675	0.033	7094
GO_PHOSPHORIC_ESTER_HYDROLASE_ACTIVITY	333	1.655	0.040	4297
GO_MODIFICATION_DEPENDENT_PROTEIN_BINDING	126	1.641	0.044	7222
GO_CHROMATIN DNA_BINDING	106	1.640	0.044	6653
GO_ISOMERASE_ACTIVITY	132	1.639	0.044	5817
Function Description	Count	p-value	E-value	
---	-------	---------	---------	
GO_ATPASE_ACTIVITY	392	1.632	0.045	
GO_TRANSFERASE_ACTIVITY_TRANSFERRING_ONE Carbon Groups	186	1.620	0.050	
GO_PROTEIN_HETERODIMERIZATION_ACTIVITY	443	1.612	0.054	
GO_CHROMATIN_BINDING	494	1.604	0.057	
GO_DNA_BINDING_TRANScription_FACTOR_Binding	322	1.592	0.062	
GO_PROTEIN_N_TERMINUS_BINDING	102	1.589	0.063	
GO_GUANYL_NUCLEOTIDE_BINDING	336	1.583	0.063	
GO_NUCLEAR_HORMONE_RECEPTOR_BINDING	145	1.577	0.066	
GO_NUCLEASE_ACTIVITY	178	1.575	0.066	
GO_ATPASE_ACTIVITY_COUPLED_TO_MOVEMENT_OF_SUBSTANCES	109	1.570	0.068	
GO_PHOSPHATASE_ACTIVITY	240	1.564	0.069	
GO_UNFOLDED_PROTEIN_BINDING	112	1.563	0.067	
GO_ENDONUCLEASE_ACTIVITY	108	1.546	0.075	
GO_NUCLEAR_RECEPTOR_BINDING	103	1.541	0.077	
GO_PROTEASE_BINDING	103	1.537	0.078	
GO_CARBOXYLIC_ESTER_HYDROLASE_ACTIVITY	116	1.534	0.079	
GO_UBIQUITIN_LIKE_PROTEIN_LIGASE_ACTIVITY	206	1.533	0.079	
GO_UDP_GLUCOSYLTRANSFERASE_ACTIVITY	120	1.514	0.088	
GO_CATALYTIC_ACTIVITY_ACTING_ON_DNA	172	1.510	0.090	
GO_HORMONE_RECEPTOR_BINDING	172	1.507	0.090	
GO_TRANSCRIPTION_COREPRESSOR_ACTIVITY	223	1.493	0.095	
GO_ORGANIC_ACID_BINDING	174	1.481	0.100	
GO_PROTEIN_SERINE_THREONINE_KINASE_ACTIVITY	414	1.479	0.101	
GO_GTPASE_ACTIVITY	273	1.479	0.101	
GO_COFACOR_Binding	425	1.460	0.110	
GO_TRANSLATION_REGULATOR_ACTIVITY	121	1.460	0.109	
GO_UBIQUITIN_LIKE_PROTEIN_LIGASE_BINDING	281	1.449	0.116	
GO_SH3_DOMAIN_BINDING	121	1.449	0.116	
GO_PHOSPHOPROTEIN_PHOSPHATASE_ACTIVITY	172	1.445	0.119	
GO_HYDROLASE_ACTIVITY_ACTING_ON_CARBON_NITROGEN_BUT_NOT_PEP TIDE_BINDING	115	1.428	0.130	
GO_COENZYME_BINDING	267	1.424	0.132	
GO term	Count	Ratio	P-value	ID
---------	-------	-------	---------	----
GO:0042596	462	1.407	0.143	4634
GO:0005585	182	1.405	0.144	6537
GO:0004129	100	1.401	0.147	3091
GO:0004873	319	1.400	0.148	4497
GO:0004219	147	1.400	0.147	8553
GO:0003735	254	1.382	0.161	6667
GO:0005585	213	1.355	0.185	2615
GO:0005585	156	1.342	0.195	8299
GO:0005585	395	1.339	0.197	3983
GO:0005585	149	1.336	0.201	4626
GO:0005585	138	1.333	0.203	5833
GO:0005585	235	1.322	0.215	3695
GO:0005585	121	1.315	0.219	6598
GO:0005585	208	1.313	0.221	6851
GO:0005585	166	1.307	0.225	3315
GO:0005585	304	1.296	0.237	4183
Supplemental Table VI. The genes increased by PGE$_2$ in EP4Tg VSMCs within the gene set related to “GO-cytokine receptor binding”

Genbank Accession	Gene Symbol	Description	Fold change PGE$_2$/control
NM_031168	Il6	interleukin 6	46.6
NM_029796	Lrg1	leucine-rich alpha-2-glycoprotein 1	37.4
NM_011824	Grem1	gremlin 1	24.9
NM_019568	Cxcl14	chemokine (C-X-C motif) ligand 14	15.3
NM_008176	Cxcl1	chemokine (C-X-C motif) ligand 1	9.7
NM_009141	Cxcl5	chemokine (C-X-C motif) ligand 5	8.6
NM_177371	Tnfsf15	tumor necrosis factor (ligand) superfamily, member 15	7.8
NM_008109	Gdf5	growth differentiation factor 5	4.2
NM_007899	Ecm1	extracellular matrix protein 1, transcript variant 1	3.7
NM_008091	Gata3	GATA binding protein 3	3.5
NM_019952	Clcf1	cardiotrophin-like cytokine factor 1	3.1
NM_009370	Tgfbr1	transforming growth factor, beta receptor 1	2.6
NM_213659	Stat3	signal transducer and activator of transcription 3, transcript variant 1	2.5
NM_018827	Crlf1	cytokine receptor-like factor 1	2.5
NM_029646	Il34	interleukin 34, transcript variant 2	2.4
NM_010272	Gdf11	growth differentiation factor 11	2.4
NM_009404	Tnfsf9	tumor necrosis factor (ligand) superfamily, member 9	2.4
NM_007540	Bdnf	brain derived neurotrophic factor, transcript variant 1	2.3
NM_011577	Tgfb1	transforming growth factor, beta 1	2.2
NM_013654	Ccl7	chemokine (C-C motif) ligand 7	2.2
NM_011333	Ccl2	chemokine (C-C motif) ligand 2	2.1
NM_001098227	Sdcbp	syndecan binding protein, transcript variant 1	2.1
NM_206975	Ifna14	interferon alpha 1	2.0
Supplementary References

1. Kato Y, Yokoyama U, Yanai C, Ishige R, Kurotaki D, Umemura M, Fujita T, Kubota T, Okumura S, Sata M, Tamura T and Ishikawa Y. Epac1 deficiency attenuated vascular smooth muscle cell migration and neointimal formation. *Arteriosclerosis, Thrombosis, and Vascular Biology*. 2015;35:2617-25.

2. Aoki R, Yokoyama U, Ichikawa Y, Taguri M, Kumagaya S, Ishiwata R, Yanai C, Fujita S, Umemura M, Fujita T, Okumura S, Sato M, Minamisawa S, Asou T, Masuda M, Iwasaki S, Nishimaki S, Seki K, Yokota S and Ishikawa Y. Decreased serum osmolality promotes ductus arteriosus constriction. *Cardiovascular Research*. 2014;104:326-36.

3. Yokoyama U, Ishiwata R, Jin MH, Kato Y, Suzuki O, Jin H, Ichikawa Y, Kumagaya S, Katayama Y, Fujita T, Okumura S, Sato M, Sugimoto Y, Aoki H, Suzuki S, Masuda M, Minamisawa S and Ishikawa Y. Inhibition of EP4 signaling attenuates aortic aneurysm formation. *PloS ONE*. 2012;7:e36724.
Major Resources Tables

Mouse model (in vivo studies)

Mouse Models	Vendor or Source	Background Strain	Sex
EP4-Tg	In house breeding	C57BL/6J	Male
Non-Tg	In house breeding	C57BL/6J	Male
EP4^fl/+;SM22-Cre;ApoE^/-	In house breeding	C57BL/6N	Male
EP4^fl/+;ApoE^/-	In house breeding	C57BL/6N	Male
EP4^fl/+;SM22-Cre	In house breeding	C57BL/6N, C57BL/6J	Male
EP4^+/+;SM22-Cre	In house breeding	C57BL/6J	Male

EP4-Tg and Non-Tg mouse breeding

Parent	Vendor or Source	Breeding Strategy	Other Information
In house	EP4-Tg	C57BL/6J	Lab generated (from Drs. Richard M. Breyer & Matthew D. Breyer)
The Jackson Laboratory	Tg(Tagln-cre)1Her	C57BL/6J	Tg(Tagln-cre)1Her

EP4^fl/+;SM22-Cre;ApoE^/- and EP4^fl/+;ApoE^/- breeding

Parent	Vendor or Source	Breeding Strategy	Other Information
In house	EP4^fl/+;ApoE^/-	C57BL/6N	Lab generated (from Drs. Richard M. Breyer & Matthew D. Breyer)
In house	EP4^fl/+;SM22-Cre;ApoE^/-	C57BL/6N	Lab generated (from Drs. Richard M. Breyer & Matthew D. Breyer)

EP4^fl/+;SM22-Cre and EP4^+/+;SM22-Cre breeding

Parent	Vendor or Source	Breeding Strategy	Other Information
Lab generated (from Drs. Richard M. Breyer & Matthew D. Breyer)	EP4^fl/+;SM22-Cre;ApoE^/-	C57BL/6N	Lab generated (from Drs. Richard M. Breyer & Matthew D. Breyer)
The Jackson Laboratory	Tg(Tagln-cre)1Her	C57BL/6J	Tg(Tagln-cre)1Her
Antibodies for FACS

Target antigen	Vendor or Source	Catalog #	Working concentration	Lot #
CD45.2	BioLegend	#109822	200ng/mL (1:1000)	B202947
CD11b	BioLegend	#101245	800 ng/mL (1:100)	B05619
Ly6G	BioLegend	#127624	400 ng/mL (1:500)	B209108
Ly6C	BioLegend	#128008	8 ng/mL (1:10000)	B195689

Antibodies for Western Blotting

Target antigen	Vendor or Source	Catalog #	Working concentration	Lot #
p-TAK1 (Ser412)	Cell Signaling Technology	#9339	43ng/mL (1:1000)	2
p-TAK1 (Thr187)	Cell Signaling Technology	#4531	848ng/mL (1:250)	5
total TAK1	Cell Signaling Technology	#4505	460 ng/mL (1:250)	7
p-JNK	Cell Signaling Technology	#9251	146 ng/mL (1:1000)	25
total JNK	Cell Signaling Technology	#9252	50 ng/mL (1:1000)	1
p-p38	Cell Signaling Technology	#9211	20 ng/mL (1:1000)	20
total p38	Cell Signaling Technology	#9212	26 ng/mL (1:1000)	16
IκBα	Cell Signaling Technology	#4814	463 ng/mL (1:1000)	17
GAPDH	Santa Cruz Biotechnology	#sc-25778	200 ng/mL (1:500)	D0621
Lysyl oxidase	Abcam	#ab31238	2 µg/mL (1:500)	GR302344-1
Primary antibodies for Immunohistochemical analysis

Target antigen	Vendor or Source	Catalog #	Working concentration	Lot #
p-TAK1 (Ser412)	Cell Signaling Technology	#9339	mouse 430 ng/mL (1:100) human 143 ng/mL (1:300)	2
p-TAK1 (Thr187)	Cell Signaling Technology	#4531	mouse 2.12 µg/mL (1:100) human 707 ng/mL (1:300)	5
IL-6 (mouse)	R & D Systems	#AB-406-NA	5 µg/mL (1:200)	BF09
IL-6 (human)	R & D Systems	#MAB206	5 µg/mL (1:100)	HD4311011R
αSMA	Abcam	#Ab5694	400 ng/mL (1:500)	GR3183259-12
CD68	Bio-Rad	#MCA1957T	5 µg/mL (1:200)	1708
CXCL1	NOVUS	#NBP1-51188	10 µg/mL (1:100)	CN24151
Primary antibodies for Immunofluorescent analysis

Target antigen	Vendor or Source	Catalog #	Working concentration	Lot #
p-TAK1 (Ser412)	Cell Signaling Technology	#9339	860 ng/mL (1:50)	2
p-TAK1 (Thr187)	Cell Signaling Technology	#4531	4.24 µg/mL (1:50)	5
p-JNK	Cell Signaling Technology	#9251	760 ng/mL (1:50)	27
p-p38	Cell Signaling Technology	#9211	660 ng/mL (1:50)	25
p-IKKα/β	Cell Signaling Technology	#2697	420 ng/mL (1:50)	19
IL-6 (mouse)	R & D Systems	#AB-406-NA	20 µg/mL (1:50)	BF09
αSMA	Sigma Aldrich	#A2547	112 µg/mL (1:50)	084M4795V
CD68	Abcam	#ab125212	10 µg/mL (1:50)	GR3302988-2

Cultured Cells

Name	Vendor or Source	Sex (F, M, or unknown)
aortic VSMCs of EP4-Tg	Founder	Male
hAAA VSMCs	Isolated from human specimens	Female and Male

29