LIOUVILLE TYPE THEOREM FOR THE STATIONARY EQUATIONS OF MAGNETO-HYDRODYNAMICS

Simon SCHULZ

Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, United Kingdom
E-mail: simon.schulz1@maths.ox.ac.uk

Abstract We show that any smooth solution \((\mathbf{u}, \mathbf{H})\) to the stationary equations of magneto-hydrodynamics belonging to both spaces \(L^6(\mathbb{R}^3)\) and \(\text{BMO}^{-1}(\mathbb{R}^3)\) must be identically zero. This is an extension of previous results, all of which systematically required stronger integrability and the additional assumption \(\nabla \mathbf{u}, \nabla \mathbf{H} \in L^2(\mathbb{R}^3)\), i.e., finite Dirichlet integral.

Key words Liouville theorem; Caccioppoli inequality; Navier-Stokes equations; MHD

2010 MR Subject Classification 35B53; 35Q30; 76W05

1 Introduction

Liouville type theorems arise naturally when considering the regularity of solutions to the incompressible Navier-Stokes equations. Development in this direction has been led most notably by Chae, Nadirashvili, Seregin, and Šverák (cf. [2, 5, 7]). Intimately tied to the Navier-Stokes equations are the equations of magneto-hydrodynamics (MHD). The latter system models the motion of an incompressible fluid whose velocity field is affected by magnetic interactions, e.g., the movement of a magnetized plasma.

Liouville type theorems were known to hold for the MHD system, as demonstrated by the works [3, 9]. In [3], Chae proved that if a smooth solution of the stationary MHD equations is bounded in \(L^3(\mathbb{R}^3)\) and has finite Dirichlet integral, then it is identically zero. Later, in [9], Zhang-Yang-Qiu proved that if a smooth solution of the stationary MHD equations is bounded in \(L^2(\mathbb{R}^3)\) and has finite Dirichlet integral, then it is also identically zero. So far, no result exists without the finite Dirichlet integral assumption \(\nabla \mathbf{u}, \nabla \mathbf{H} \in L^2(\mathbb{R}^3)\).

The focus of this paper is to obtain a Liouville theorem for the equations of stationary MHD without the need for finite Dirichlet integral, and with only an \(L^6(\mathbb{R}^3)\) integrability criterion. To this end, we closely follow the scheme outlined by Seregin in [7]. In using this approach, we also reprove the original results in [3] and [9] without the requirement \(\nabla \mathbf{u}, \nabla \mathbf{H} \in L^2(\mathbb{R}^3)\). Although many of the estimates in this work are identical to those in [7], we go through them in detail for the sake of making this paper self-contained.

*Received February 6, 2018; revised October 15, 2018. The author is supported by the Engineering and Physical Sciences Research Council [EP/L015811/1].
2 Preliminaries

In what follows we employ the method of Seregin in [7], which first and foremost involves proving a Caccioppoli type inequality. Although Seregin’s paper is concerned with the stationary incompressible Navier-Stokes equations, his proof makes a similar Caccioppoli type inequality hold for the equations of magneto-hydrodynamics. In light of this, we structure our paper in the same way as was done in [7].

Below are the equations of stationary MHD. As per usual, u is the velocity of the fluid and H is the magnetic field,

$$
\begin{align*}
\text{div} u &= 0, \\
\mathbf{u} \cdot \nabla \mathbf{u} - \Delta \mathbf{u} + \nabla p &= \mathbf{H} \cdot \nabla \mathbf{H}, \\
\text{div} \mathbf{H} &= 0, \\
\mathbf{u} \cdot \nabla \mathbf{H} - \mathbf{H} \cdot \nabla \mathbf{u} &= \Delta \mathbf{H}.
\end{align*}
$$

(2.1)

Definition 2.1 We say that $f \in \text{BMO}^{-1}(\mathbb{R}^3)$ if there exists a skew-symmetric tensor $d \in \text{BMO}(\mathbb{R}^3)$ such that $f = \text{div} \, d$ \iff $f_i = d_{ij,j}$ for $i = 1, 2, 3$.

Remark 2.2 Observe that the requirement that a vector be the divergence of a skew-symmetric tensor is “equivalent” to this vector being equal to a curl. Formally, we have

$$
f = \text{div} \, d \text{ for } d = (d^3)_{i,j=1}^{3} \text{ skew-symmetric } \iff f = \nabla \times g \text{ for } g = \begin{pmatrix} d_{23} \\ -d_{13} \\ d_{12} \end{pmatrix} \iff \text{div} \, f = 0.
$$

Remark 2.3 If $d \in \text{BMO}(\mathbb{R}^3)$, then

$$
\Gamma(s) := \sup_{x_0 \in \mathbb{R}^3, r > 0} \left(\int_{B(x_0, r)} |d - [d]_{x_0, r}|^s \, dx \right)^{\frac{1}{s}} < \infty
$$

for each $1 \leq s < \infty$. Here, $[d]_{x_0, r}$ denotes the mean value of d in the ball $B(x_0, r)$. We recurrently use the finiteness of this quantity in our later estimates.

We begin by showing the following theorem.

Theorem 2.4 Let (u, H) be a smooth solution of system (2.1) with $u, H \in \text{BMO}^{-1}(\mathbb{R}^3)$. If we additionally require that $u, H \in L^q(\mathbb{R}^3)$ for $q \in (2, 6)$, then $u \equiv 0$ and $H \equiv 0$.

Note that the above covers the cases explored by Chae in [3] and Zhang-Yang-Qiu in [9]. However, unlike them, we do not additionally require $\nabla u, \nabla H \in L^2(\mathbb{R}^3)$. A supplementary argument then yield the result claimed in the abstract, which is contained in the theorem underneath.

Theorem 2.5 Let (u, H) be a smooth solution of system (2.1) with $u, H \in \text{BMO}^{-1}(\mathbb{R}^3)$. If we additionally require that $u, H \in L^6(\mathbb{R}^3)$, then $u \equiv 0$ and $H \equiv 0$.

\(\odot \) Springer
3 Proof of the Main Results

3.1 Caccioppoli Type Inequality

Much like in [7], we have at the heart of our proof a Caccioppoli type inequality, which we develop in this portion of the paper. We state this inequality below.

Lemma 3.1 Let \((u, H)\) be a smooth solution to system (2.1) with \(u, H \in \text{BMO}^{-1}(\mathbb{R}^3)\), and let \(v := u + H\). Then the Caccioppoli type inequality

\[
\int_{B(x_0, R/2)} |\nabla v|^2 \, dx \leq c R^{1-6/s} \left(\int_{B(x_0, R)} |v - v_0|^s \, dx \right)^{\frac{2}{s}}
\]

(3.1)

holds for any ball \(B(x_0, R) \subset \mathbb{R}^3\), any constant \(v_0 \in \mathbb{R}^3\), and any \(s > 2\).

Proof Begin by adding the two evolution equations together to obtain

\[
\begin{cases}
\div v = 0, \\
(u - H) \cdot \nabla v - \Delta v = -\nabla p.
\end{cases}
\]

(3.2)

Note that, since both \(u\) and \(H\) are in \(\text{BMO}^{-1}(\mathbb{R}^3)\), we know that their difference \(u - H\) and \(v\) are also \(\text{BMO}^{-1}\) vector fields. In particular, we know that there exists a skew-symmetric tensor \(d \in \text{BMO}(\mathbb{R}^3)\) such that \(u - H = \div d\).

Take an arbitrary ball \(B(x_0, R) \subset \mathbb{R}^3\) and a non-negative cut-off function \(\varphi \in C_c^\infty(B(x_0, R))\) with the properties: \(\varphi(x) = 1\) in \(B(x_0, \rho)\), \(\varphi(x) = 0\) outside of \(B(x_0, r)\), and \(|\nabla \varphi(x)| \leq c/(r - \rho)\) for any \(R/2 \leq \rho < r \leq R\). We let \(d = d - [d]_{x_0, R}\), where \([d]_{x_0, R}\) is the mean value of \(d\) on the ball \(B(x_0, R)\). From here on, we write \(\bar{v} = v - v_0\), where \(v_0\) is any constant in \(\mathbb{R}^3\).

Now, consider the following Dirichlet problem

\[
\begin{cases}
\div w = \div (\varphi \bar{v}) & \text{in } B(x_0, r), \\
w = 0 & \text{on } \partial B(x_0, r).
\end{cases}
\]

Since the right-hand side of the equation integrates to zero (by the divergence theorem) and is locally integrable, we deduce from Theorem 3.6 in Chapter 1 of [6] (or from [1]) that there exists \(w \in W_0^{1,s}(B(x_0, r))\) solving the above, and for which the following inequality holds for \(1 < s < \infty\),

\[
\int_{B(x_0, r)} |\nabla w|^s \, dx \leq c \int_{B(x_0, r)} |\div (\varphi \bar{v})|^s \, dx
\]

\[
= c \int_{B(x_0, r)} |\nabla \varphi \cdot \bar{v}|^s \, dx
\]

\[
\leq \frac{c}{(r - \rho)^s} \int_{B(x_0, r)} |\bar{v}|^s,
\]

here \(c = c(s)\) and is independent of \(x_0\) and \(R\).

Next, we follow the bounds as in [7], i.e., we test the second equation in (3.2) against \(\varphi \bar{v} - w\), to get

\[
\int_{B(x_0, r)} \varphi |\nabla v|^2 \, dx = -\int_{B(x_0, r)} \nabla v : (\nabla \varphi \otimes \bar{v}) \, dx + \int_{B(x_0, r)} \nabla w : \nabla v \, dx
\]

\[
- \int_{B(x_0, r)} (\div \bar{d} \cdot \nabla v) \cdot \varphi \bar{v} \, dx + \int_{B(x_0, r)} (\div \bar{d} \cdot \nabla v) \cdot w \, dx.
\]

We denote the previous integrals by \(I_1, \cdots, I_4\).
Remark 3.2 The term involving ∇p has vanished, since $\varphi \tilde{v} - \mathbf{w}$ is divergence-free and

$$\int_{B(x_0,r)} (\varphi \tilde{v} - \mathbf{w}) \cdot \nabla p \, dx = - \int_{B(x_0,r)} \text{div} (\varphi \tilde{v} - \mathbf{w}) p \, dx = 0,$$

where the boundary term has vanished due to the compact support of our test function.

Now we bound the numbered integrals I_1, \ldots, I_4,

$$|I_1| \leq \int_{B(x_0,r)} |\nabla v||\nabla \varphi||\tilde{v}| \, dx \leq \frac{c}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^2 \, dx \right)^{\frac{1}{2}} \leq \frac{c}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}} \leq \frac{c}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}} \leq \frac{c R^3 (\frac{s-2}{2})}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}}.$$

Similarly,

$$|I_2| \leq \int_{B(x_0,r)} |\nabla v||\nabla w| \, dx \leq \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\nabla w|^2 \, dx \right)^{\frac{1}{2}} \leq \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\nabla w|^s \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}} \leq \frac{c R^3 (\frac{s-2}{2})}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\nabla w|^s \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}}.$$

Note that we have implicitly assumed that $s > 2$.

For I_3 and I_4 we need to use the skew-symmetry of d.

$$|I_3| = \left| \int_{B(x_0,r)} \tilde{d}_{jm,m} v_{i,j} \varphi \tilde{v}_i \, dx \right| = \left| \int_{B(x_0,r)} \tilde{d}_{jm} v_{i,j} \varphi m \tilde{v}_i \, dx \right| \leq \frac{c}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{d}|^2 |\tilde{v}|^2 \, dx \right)^{\frac{1}{2}} \leq \frac{c}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{d}|^{\frac{2s}{s-2}} \, dx \right)^{\frac{s-2}{2s}} \leq \frac{c R^3 (\frac{s-2}{2})}{r - \rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\tilde{v}|^s \, dx \right)^{\frac{1}{2}}.$$

For the fourth integral

$$|I_4| = \left| \int_{B(x_0,r)} \tilde{d}_{jm,m} v_{i,j} w_i \, dx \right| = \left| \int_{B(x_0,r)} \tilde{d}_{jm} v_{i,j} w_{i,m} \, dx \right|.$$
\[
\begin{align*}
&\leq \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |d|^2 |\nabla w|^2 \, dx \right)^{\frac{1}{2}} \\
&\leq \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\nabla w|^4 \, dx \right)^{\frac{1}{4}} \left(\int_{B(x_0,r)} |d|^{\frac{2m}{m-2}} \, dx \right)^{\frac{m-2}{2m}} \\
&\leq cR^3 \left(\frac{\frac{\varepsilon}{2}}{r-\rho} \right) \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\bar{v}|^s \, dx \right)^{\frac{1}{2}}.
\end{align*}
\]

In total, we have
\[
\int_{B(x_0,\rho)} |\nabla v|^2 \, dx \leq \frac{cR^3 \left(\frac{\varepsilon}{2} \right)}{r-\rho} \left(\int_{B(x_0,r)} |\nabla v|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{B(x_0,r)} |\bar{v}|^s \, dx \right)^{\frac{1}{2}}.
\]

Applying a weighted Cauchy-Schwarz inequality, we obtain
\[
\int_{B(x_0,\rho)} |\nabla v|^2 \, dx \leq \frac{1}{4} \int_{B(x_0,r)} |\nabla v|^2 \, dx + cR^3 \left(\frac{\varepsilon}{2} \right) \left(\frac{r-\rho}{2} \right)^2 \left(\int_{B(x_0,r)} |\bar{v}|^s \, dx \right)^{\frac{1}{2}}.
\]

Suitable iterations then give the following Caccioppoli type inequality
\[
\int_{B(x_0,R/2)} |\nabla v|^2 \, dx \leq cR^3 \left(\frac{s}{2} \right)^{-2} \left(\int_{B(x_0,R)} |\bar{v}|^s \, dx \right)^{\frac{1}{2}}
\]
as required. \[\square\]

Remark 3.3 The positive constant \(c \) is independent of \(x_0 \) and \(R \), and depends only on \(s \).

3.2 The Proof of Theorem 2.4

The proof of Theorem 2.4 rests entirely on the observation that we can make the exponent \(1 - 6/s \) negative in the Caccioppoli type inequality (3.1). In view of this, we present our proof.

Proof of Theorem 2.4 Suppose \(u, H \in L^q(\mathbb{R}^3) \) for \(2 < q < 6 \), and let \(\varepsilon := 6/q - 1 \). Observe that \(\varepsilon > 0 \), so by choosing \(v_0 = 0 \) the Caccioppoli type inequality (3.1) now reads
\[
\int_{B(x_0,R/2)} |\nabla v|^2 \, dx \leq cR^{-\varepsilon} |v|_L^2(\mathbb{R}^3).
\]

By taking the limit as \(R \to \infty \) we recover \(\nabla v \equiv 0 \). This implies that \(v \) is constant, but since \(v \in L^q(\mathbb{R}^3) \), we know that this constant must be zero. Hence \(u \equiv -H \).

Using this relation, we know from the first evolution equation for \(u \) in (2.1) that
\[
\begin{align*}
&\text{div } u = 0, \\
&\Delta u = \nabla p. \\
\end{align*}
\]
(3.3)

As before, we can find a \(w \in W_0^{1,q}(B(x_0,r)) \) such that \(\text{div } w = \text{div } (\varphi \hat{u}) \), where \(\hat{u} = u - u_0 \) for some arbitrary constant \(u_0 \) in \(\mathbb{R}^3 \). Here, \(\varphi \) is the same cut-off function that we used in the proof of the Caccioppoli type inequality. Testing (3.3) against \(\varphi \hat{u} - w \) we obtain
\[
\int_{B(x_0,r)} \varphi |\nabla u|^2 \, dx = -\int_{B(x_0,r)} \nabla u : (\nabla \varphi \otimes \hat{u}) \, dx + \int_{B(x_0,r)} \nabla w : \nabla u \, dx.
\]

Once again, we obtain
\[
\int_{B(x_0,R/2)} |\nabla u|^2 \, dx \leq cR^{1-6/q} \left(\int_{B(x_0,R)} |\hat{u}|^q \, dx \right)^{\frac{2}{q}},
\]
so choosing $u_0 = 0$ we get

$$\int_{B(x_0,R/2)} |\nabla u|^2 \, dx \leq cR^{-\varepsilon}||u||^2_{L^6(\mathbb{R}^3)}.$$

Taking the limit as $R \to \infty$ we recover $u \equiv 0$, which concludes the proof of the theorem. \qed

3.3 The Proof of Theorem 2.5

In the case where $s = 6$ we cannot argue as we did previously. Putting $s = 6$ and $v_0 = 0$ in (3.1) yields

$$\int_{B(x_0,R/2)} |\nabla v|^2 \, dx \leq c||v||^2_{L^6(\mathbb{R}^3)}.$$

Hence, passing to the limit $R \to \infty$ gives the reverse Sobolev inequality

$$||\nabla v||_{L^2(\mathbb{R}^3)} \leq c||v||_{L^6(\mathbb{R}^3)},$$

(3.4)

This is not particularly useful in itself, and does not readily produce a reverse Sobolev inequality for the individual vector fields u and H. Instead, one can pick $s = 3$ and $v_0 = [v]_{x_0,R}$ with the aim of constructing an inequality between maximal functions. This is precisely how the proof of Theorem 2.5 runs, which we elaborate on in the next few paragraphs.

Proof of Theorem 2.5 Firstly recall the Gagliardo-Nirenberg type inequality

$$||\bar{v}||_{L^3(B(x_0,R))} \leq c||\nabla \bar{v}||_{L^{\frac{3}{2}}(B(x_0,R))},$$

(3.5)

Now choose $s = 3$ and $v_0 = [v]_{x_0,R}$ in the Caccioppoli type inequality (3.1), and couple this with (3.5) to obtain the reverse Hölder inequality

$$\int_{B(x_0,R/2)} |\nabla v|^2 \, dx \leq c\left(\int_{B(x_0,R)} |\nabla v|^\frac{3}{2} \, dx\right)^{\frac{2}{3}},$$

(3.6)

where c is independent of x_0 and R, as per usual.

Define the function $h := |\nabla v|^\frac{1}{2} \in L^\frac{3}{2}(\mathbb{R}^3)$ and let

$$M_h(x_0) = \sup_{R>0} \int_{B(x_0,R)} h(x) \, dx$$

be its Hardy-Littlewood maximal function. Now the reverse Hölder inequality (3.6) reads

$$M_h^\frac{2}{3}(x_0) \leq cM_h^\frac{3}{2}(x_0), \quad \forall x_0 \in \mathbb{R}^3.$$

From the maximal function inequality in $L^p(\mathbb{R}^3)$ for $p > 1$ (c.f. [8]), we know that there exists a universal constant $c_0 > 0$ such that

$$\int_{\mathbb{R}^3} M_h^\frac{2}{3}(x) \, dx \leq c_0 \int_{\mathbb{R}^3} h^\frac{3}{2}(x) \, dx$$

$$= c_0 \int_{\mathbb{R}^3} |\nabla v|^2 \, dx$$

$$\leq c||v||^2_{L^6(\mathbb{R}^3)},$$

where the last inequality is exactly (3.4). Thus we have shown that both $h^\frac{3}{2}$ and its maximal function $M_h^\frac{3}{2}$ are $L^1(\mathbb{R}^3)$ functions, which is only possible if $h \equiv 0$ (c.f. [8]). This implies that v is constant, thus once again we arrive at $u \equiv -H$. \qed

\copyright Springer
We now show that we must have \(u \equiv 0 \). Making use of the relation \(u \equiv -H \) as we did in the proof of Theorem 2.4, we recover (3.3) and the Caccioppoli type inequality
\[
\int_{B(x_0, R/2)} |\nabla u|^2 \, dx \leq c R^{1-6/q} \left(\int_{B(x_0, R)} |\bar{u}|^q \, dx \right)^{\frac{2}{q}}.
\]
Picking \(q = 6 \) and \(u_0 = 0 \) we recover
\[
||\nabla u||_{L^2(\mathbb{R}^3)} \leq c ||u||_{L^6(\mathbb{R}^3)},
\]
as expected. Selecting \(q = 3 \) and \(u_0 = [u]_{x_0, R} \) and using the same strategy as before, we arrive at the maximal function inequality
\[
M_{\tilde{h}}^4(x_0) \leq c M_{\tilde{h}}^\frac{2}{3}(x_0) \quad \forall x_0 \in \mathbb{R}^3,
\]
where \(\tilde{h} = |\nabla u|^\frac{2}{3} \). The same argument as before then yields \(u \equiv 0 \), as required. \(\square \)

Acknowledgements The author wishes to thank Gui-Qiang Chen and Gregory Seregin for useful discussions.

References

[1] Bogovskiĭ M E. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl Akad Nauk SSSR, 1979, 248(5): 1037–1040
[2] Chae D. Liouville type theorems for the Euler and Navier-Stokes equations. Adv Math, 2011, 228: 2855–2868
[3] Chae D, Weng S. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete Contin Dyn Syst, 2016, 36(10): 5267–5285
[4] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001
[5] Koch G, Nadirashvili N, Seregin G A, Šverák V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math, 2009, 203: 83–105
[6] Seregin G A. Lecture Notes on Regularity Theory for the Navier-Stokes Equations. Hackensack, NJ: World Scientific Publishing Co Pte Ltd, 2015
[7] Seregin G A. Liouville type theorem for stationary Navier-Stokes equations. Nonlinearity, 2016, 29: 2191–2195
[8] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press, 1970
[9] Zhang Z, Yang X, Qiu S. Remarks on Liouville type result for the 3D Hall-MHD system. J Part Diff Equ, 2015, 28(3): 286–290