Study of the Effect of Absorbed Cu Species on the Surface of Specularite (0 0 1) by the DFT Calculations

Mingzhu Huangfu 1, Jiaxin Li 1, Xi Zhang 2,* , Yiming Hu 1, Jiushuai Deng 2,3,*, Yu Wang 2 and Pingping Wei 2

Abstract: Cu²⁺ exhibited a good activation effect on specularite. However, its microscopic activation mechanism needs further study. Additionally, Cu²⁺ was mainly present in the flotation solution as Cu³⁺, Cu(OH)⁺, and Cu(OH)₂ at pH = 7. Therefore, density functional theory (DFT) calculations were used to investigate the effect of Cu species such as Cu³⁺, Cu(OH)⁺, and Cu(OH)₂ adsorbed on the crystal structure and properties of the specularite (0 0 1) surface. The adsorption mechanism of different Cu components on the surface was also further clarified by the analyses of the adsorption model, adsorption energy, partial density of states (PDOS), charge transfer, and bond properties. In addition, the obtained results are discussed. Based on the obtained results, it can be concluded that the geometric structure and electronic properties on the surface changed after adsorbing Cu components and that the O₃–Fe₁–O₁ structure was more susceptible to the adsorbates. The adsorption engines results show that Cu components could be spontaneously adsorbed onto the specularite (0 0 1) surface with adsorption energies of –0.76, –0.85, and –1.78 eV, corresponding to Cu³⁺, CuOH⁺, and Cu(OH)₂, respectively. Therefore, the adsorption stability of the Cu species on the specularite surface increased in the order of Cu²⁺ < Cu(OH)⁺ < Cu(OH)₂. Additionally, the adsorption sites for Cu species on the surface were different. Cu²⁺ interacted mainly with O atoms on the surface, forming Cu–O complexes, while Cu(OH)⁺ and Cu(OH)₂ acted mainly through the O atom of –OH, interacting with Fe atoms to form Cu–O–Fe complexes. The formation of Cu–O and Cu–O–Fe complexes increased the adsorption sites for sodium oleate, with more hydrophobic species being generated to improve the floatability of specularite.

Keywords: specularite; Cu species; crystal structure and properties; activation mechanism; DFT

1. Introduction

Copper ions are often used as an activating ion in flotation to increase the floatability of minerals, and there were many studies on the activation mechanisms of copper ions on metallic sulfide minerals (e.g., sphalerite and pyrite) and nonmetallic oxidized ore (e.g., chlorite and quartz) [1–3]. Scholars [4,5] analyzed the hydrolysis products of Cu²⁺ in different pH ranges by solution chemistry calculations. Cu²⁺ could be hydrolyzed in the aqueous solution with the change of pH to form five components: Cu³⁺, Cu(OH)⁺, Cu(OH)₂, Cu(OH)₃⁻, and Cu(OH)₄²⁻. At pH less than 7.0, Cu²⁺ was the predominant species, and CuOH⁺ and Cu(OH)₂ became the main species at pH of 7.0–10.7, while at pH greater than 10.7, the copper species in the solution were mainly in the form of Cu(OH)₂, Cu(OH)₃⁻, and Cu(OH)₄²⁻.

Flotation is one of the most common methods used to recover iron ore, which includes reverse flotation of gangue with cationic collector [6–8] and direct flotation of iron ore with anionic collector [9–11]. Compared with reverse flotation, direct flotation of iron ore...
has the advantages of being a simple process and having convenient operation and low production cost. Therefore, studying the direct flotation of iron ore is of great significance to the comprehensive utilization of iron resources. However, the flotation index of specularite is relatively poor. Thus, efficient recovery of specularite is crucial to the comprehensive utilization of iron ore.

A previous study [12] showed that Cu2+ had a good activation effect on specularite. When the concentration of Cu2+ was 63.55 mg/L, the concentration of NaOL was 1.5 mg/L, the pH was 7, and the recovery of specularite reached 74.63%. The activation mechanism of Cu2+ on specularite with sodium oleate as the collector was investigated via zeta potential measurement and solution chemistry calculation. The results of zeta potential measurement showed that the adsorption of Cu species could positively shift the surface potential to promote the adsorption capacity of sodium oleate on a specularite surface. The results of solution chemistry calculation showed that Cu2+ was mainly present in the flotation pulp as Cu2+, Cu(OH)+, and Cu(OH)\textsubscript{2} at a pH = 7. However, the previous studies did not comprehensively discuss the influence of Cu2+ adsorption on the crystal structure and properties of specularite or its activation mechanism. It is difficult to elaborate the microscopic mechanism of Cu2+ activation of specularite using only experimental methods.

Density functional theory (DFT) is a method for studying the electronic structure of multi-electron systems [13], and it is widely used in flotation processes [14–17]. It can be used to investigate the mechanism of the interaction between the agents and the minerals surface during flotation. Zhao et al. [18] verified that cyclohexyl isohydroxamic acid (CHA) was better than benzydroxamic acid (BHA) as a flotation collector for scheelite using DFT calculations. Li et al. [19] used the DFT calculations to investigate the structure-activity of chelating collectors for flotation. DFT calculations can also be used for the influencing mechanism of activators, inhibitors, and dispersants on the target minerals in flotation systems. Zhao et al. [20] used the DFT calculations to investigate the effect of different adsorption sites of HS− on the smithsonite (1 0 1) surface on the surface structure and properties and revealed the optimal adsorption sites of HS− on the smithsonite surface. Liu et al. [21,22] explored the mechanism of Cu adsorption on the sphalerite (1 1 0) surface by DFT calculations. Deng et al. [3,23] used the DFT/B3LYP method to simulate the interaction between ethyl xanthate and Cu/Fe ions and calculated the action mechanism of Cu2+ on chalcopyrite surface using DFT. Lin et al. [24] used the DFT calculations to investigate the inhibition behaviors and mechanism of bismuthinite flotation by pyrogallol. Han et al. [25] used DFT calculations to study the crystal structure and surface properties of clay minerals, such as kaolin and smectite, which have a serious impact on the flotation process from a microscopic point of view, and their interactions with commonly used dispersants and inhibitors mechanism were studied. The above results indicate that DFT calculations are applicable to various applications of surface science, and they can complement the action mechanism of agents and mineral surfaces. Therefore, it is reasonable to use DFT calculations to simulate the mechanism of action of Cu species on the surface of specularite.

The current study used DFT simulation to construct adsorption models of Cu2+, Cu(OH)+, and Cu(OH)\textsubscript{2} on a specularite (0 0 1) surface and to optimize the structures, as well as to explore the influence of Cu species on the crystal structure and properties of specularite (0 0 1) surface. Additionally, the adsorption mechanism of Cu species on the surface of specularite was studied by an adsorption model, adsorption energy, partial density of states (PDOS), charge transfer, and bond properties, etc. The microscopic activation mechanism of Cu2+ absorbed on specularite is illustrated at atomic scale.

2. Computational Details

DFT calculations were accomplished using the CASTEP module in Material Studio 2017 software. The exchange correlation functional adopted the Perdew–Wang 91 (PW91) gradient correction under the generalized gradient approximation (GGA) and used the BFGS algorithm to optimize the structure of the model [26]. The cutoff energy was 400 eV.
The convergence tolerances were set as follows: energy tolerance, 2×10^{-5} eV/atom; maximum force tolerance, 0.05 eV/Å; maximum displacement tolerance, 0.002 Å; maximum stress, 0.1 GPa; SCF tolerance, 1×10^{-6} eV/atom. If there was no special explanation, all parameter settings were consistent during the calculation process.

First, the original unit cell of specularite was constructed. The unit cell parameters were $a = b = 5.03$ Å, $c = 13.75$ Å, $\alpha = \beta = 90^\circ$, and $\gamma = 120^\circ$. Li et al. [27] studied the surface energy of several specularite crystal surfaces through DFT calculations, and the results showed that the $(0 0 1)$ surface of specularite has the lowest surface energy. Therefore, the $(0 0 1)$ surface was constructed according to the overall structure of specularite. A $2 \times 2 \times 1$ supercell with 12 atomic layers was used for the simulation. The vacuum-layer thickness was set to 40 Å to avoid the interaction between the surface structure layers as well as to eliminate the effect of periodicity. The optimal surface structure was obtained by optimizing the geometry of the supercell, as shown in Figure 1. Then, the optimized Cu species were placed on the surface of the model, and their interaction was simulated.

![Figure 1. Specularite Fe$_2$O$_3$ (0 0 1) surface: (a) front view, (b) vertical view.](image)

The stability of adsorbates surface could be determined using the adsorption energies (E_{ads}) [25], and the adsorption energy of the adsorbates on the specularite surface was calculated as follows [28–30]:

$$E_{\text{ads}} = E_{\text{adsorbate/slab}} - (E_{\text{adsorbate}} + E_{\text{slab}})$$ \hspace{1cm} (1)

where E_{ads} represents the adsorption energy; $E_{\text{adsorbate/slab}}$ represents the energy of the adsorbed specularite $(0 0 1)$ surface; $E_{\text{adsorbate}}$ represents the energy of the adsorbate; and E_{slab} represents the energy of the specularite $(0 0 1)$ surface. The more negative the adsorption energy, the stronger the interaction between the adsorbates and the specularite surface [31,32].

3. Results and Discussion

3.1. The Effect of Cu Species Adsorbed on the Structure of the Specularite (0 0 1) Surface

Copper ions were hydrolyzed into different species in an aqueous solution as a function of pH. Previous studies [12] had shown that specularite modified with Cu$^{2+}$ has better floatability. In addition, Cu$^{2+}$, Cu(OH)$^+$, and Cu(OH)$_2$ were the main species of copper ions in flotation pulp under pH = 7. Therefore, the adsorption models of three
Cu components on the specularite \((0 \ 0 \ 1)\) surface were constructed and optimized by DFT calculations to comprehensively understand the adsorbing detail of Cu components. Figure 2 lists the adsorbed specularite models of different Cu components before and after optimization. The migration of atoms can be found on specularite \((0 \ 0 \ 1)\) surface after geometrical optimization.

Figure 2. Cont.
Figure 2. The specularite (0 0 1) surface models with original and various Cu species adsorption before and after optimization: (a) original, (b) Cu\(^{2+}\), (c) Cu(OH\(^+\)), (d) Cu(OH\(_2\)).

Differences in the geometric structure of the specularite (0 0 1) surface modified with Cu species can be concluded. The respective bond lengths of some atoms on the specularite (0 0 1) surface are shown in Table 1. The bond lengths of Fe–O on specularite (0 0 1) surface untreated with Cu species were 1.749 Å, 1.918 Å, 1.910 Å, and 1.749 Å after optimization. When Cu\(^{2+}\) adsorbed on the specularite (0 0 1) surface, the bond lengths of Fe–O were 1.809 Å, 1.943 Å, 1.925 Å, and 1.764 Å. When Cu(OH\(^+\)) adsorbed on the specularite (0 0 1) surface, the bond length of Fe–O on specularite (0 0 1) surface became 1.887 Å, 1.912 Å, 1.926 Å, and 1.775 Å. Additionally, when Cu(OH\(_2\)) adsorbed on the specularite (0 0 1) surface, the bond lengths of Fe–O on the specularite (0 0 1) surface were 1.844 Å, 1.908 Å, 1.930 Å, and 1.722 Å, which indicates that obvious variation occurs on the bond lengths of Fe and O on specularite (0 0 1) surface after Cu species adsorption. In other words, the variation of Fe–O near adsorbates surface is more favorable, and the bond lengths change differently when Cu components adsorbed on the specularite (0 0 1) surface.

Table 1. Neighboring bond length before and after Cu species adsorption on specularite (0 0 1) surface.

Adsorbates	Bond Length (Å)			
	Fe1–O1	O1–Fe2	Fe2–O2	O3–Fe1
Original	1.749	1.918	1.910	1.749
Cu\(^{2+}\)	1.809	1.943	1.925	1.764
Cu(OH\(^+\))	1.887	1.912	1.926	1.775
Cu(OH\(_2\))	1.844	1.908	1.930	1.722

The differences of bond angles on specularite (0 0 1) surface could be found after Cu species adsorption. Table 2 shows the bond angles of Fe and O on specularite (0 0 1) surface after various Cu species adsorption. The bond angles of Fe1–O1–Fe2, O1–Fe2–O2, O3–Fe1–O1, O1–Fe2–O4, and O4–Fe2–O2 on the untreated specularite surface were 118.461°, 101.402°, 115.903°, 86.237°, and 82.717°, respectively. After adsorption with Cu\(^{2+}\) component, the bond angles of these were turned to 119.474°, 100.695°, 108.848°, 87.559°, and 83.609°, respectively. In comparison, the bond angles of Fe1–O1–Fe2, O1–Fe2–O4, and O4–Fe2–O2 increased by 1.013°, 1.322°, and 0.892°, respectively; the bond angles of O1–Fe2–O2 and O3–Fe1–O1 decreased by 0.707° and 7.055°, respectively. When Cu(OH\(^+\)) adsorbed on specularite (0 0 1) surface, the bond angles of Fe1–O1–Fe2, O1–Fe2–O2, O3–Fe1–O1, O1–Fe2–O4, and O4–Fe2–O2 were changed to 119.829°, 99.038°, 111.672°, 86.879°, and 83.956°, respectively. In comparison, the bond angles of Fe1–O1–Fe2, O1–Fe2–O4, and O4–Fe2–O2 increased by 1.368°, 0.642°, and 1.239°, respectively; those of O1–Fe2–O2, and O3–Fe1–O1 decreased by 2.364° and 4.231°, respectively. After Cu(OH\(_2\)) adsorbed on the surface, the
bond angles of Fe1–O1–Fe2, O1–Fe2–O2, O3–Fe1–O1, O1–Fe2–O4, and O4–Fe2–O2 became 118.235°, 100.270°, 112.594°, 87.574°, and 83.873°. In comparison, the bond angles of O1–Fe2–O4 and O4–Fe2–O2 increased by 1.337° and 1.156°, respectively; those of Fe1–O1–Fe2, O1–Fe2–O2, and O3–Fe1–O1 decreased by 0.226°, 1.132°, and 3.309°, respectively. The results indicate that the structure of O–Fe–O and Fe–O–Fe on the specularite surface was influenced by the Cu species adsorbed. When Cu species adsorbed on specularite (0 0 1) surface, the variation of bond angle of O3–Fe1–O1 was maximum, indicating that the O3–Fe1–O1 near the Cu components on the specularite surface was more influenced by Cu species absorbed.

Table 2. Neighboring bond angles before and after Cu species adsorption on specularite (0 0 1) surface.

Adsorbates	Fe1–O1–Fe2	O1–Fe2–O2	O3–Fe1–O1	O1–Fe2–O4	O4–Fe2–O2
Original	118.461	101.402	115.903	86.237	82.717
Cu^{2+}	119.474	100.695	108.848	87.559	83.609
Cu(OH)^+	119.829	99.038	111.672	86.879	83.956
Cu(OH)_2	118.235	100.270	112.594	87.574	83.873

3.2. The Effect of Cu Species Adsorption on the Electronic Properties of Specularite

To understand the effect of Cu^{2+} adsorption on the surface electronic properties of specularite, the PDOS of the Fe and O atoms on original and Cu-modified specularite surface were analyzed. The results show that the PDOS of surface atoms changed after Cu species adsorbed on the specularite (0 0 1) surface. Figure 3 shows the PDOS of Fe1 atom on specularite (0 0 1) surface before and after treatment with Cu^{2+}. The black dotted line at 0 eV in the figure represents the Fermi level. The valence electron configuration of the Fe atom was Fe 3d\(^6\) 4s\(^2\). The PDOS of Fe atom was composed of 4s, 3p, and 3d orbitals, and the PDOS of Fermi level was mainly contributed by the Fe 3d orbital. Compared with the results before Cu\(^{2+}\) adsorption (Figure 3a), the PDOS of Fe atom changed significantly after Cu components adsorbed on the surface of the specularite. After Cu\(^{2+}\) component adsorbed on the specularite surface (Figure 3b), the PDOS of Fe 3d orbital on the surface decreased, and a new Fe 3d orbital peak appeared at about −2 eV, while the PDOS of Fe 3p orbital decreased. After Cu(OH)^+ adsorbed on the specularite surface (Figure 3c), the peak of Fe 3d orbital increased strongly. Similarly, the number of Fe 3d orbital peaks also increased to a certain extent. However, the PDOS peak of Fe 3d orbital disappeared after 4 eV. Although the PDOS peak of Fe 4s orbital increased, its peak near the Fermi level disappeared, which indicates that the contribution of Fe 4s orbital to Fe atom activity was reduced. It is noteworthy that the two new PDOS peaks of the Fe 4s orbital and a new PDOS peak of the Fe 3d orbital appeared at around −20 eV. This may have been caused by the interaction between the Fe atom on the surface of specularite and the Cu(OH)^+ component. After Cu(OH)_2 adsorbed on the surface of specularite (Figure 3d), the PDOS of the Fe 3d orbital disappeared after 4 eV. The PDOS of the 4s orbital increased, but its PDOS peak near the Fermi level disappeared, indicating that the contribution of the 4s orbital to the activity of Fe atoms decreased. It is worth noting that the PDOS of Fe 4s and Fe 3d orbitals each added a new peak at around −20 eV, which may have been caused by the interaction of the Fe atom on the surface of the specularite and Cu(OH)_2 component.

The adsorption of Cu species on the surface of specularite can also cause changes in the PDOS of O atoms. Therefore, the changes in the PDOS of O atom on the surface before and after the adsorption of Cu components on the specularite surface were studied (Figure 4). The valence electron configuration of O was 2s\(^2\) 2p\(^3\), which indicates that the PDOS of the O atom was composed of 2s and 2p orbitals. As shown in Figure 4, the PDOS of O 2s orbital made little contribution to the reactivity of the O atom on the surface that was far from the Fermi level, and the PDOS vicinity of the Fermi level was mainly contributed
by the O 2p orbital. Compared with the PDOS before the Cu components adsorbed, the position of the O atom PDOS peak did not move significantly, but the peak intensity had a certain change. In particular, the PDOS of the O atom changed most obviously after the Cu$^{2+}$ component adsorbed on the specularite (0 0 1) surface. After Cu$^{2+}$ adsorbed on the surface of the specularite (Figure 4b), the PDOS peak intensity of the O 2s orbital on the surface was significantly reduced, and the PDOS peak intensity of O 2p orbital was significantly enhanced, especially the PDOS peak at −2 eV. After Cu(OH)$^+$ and Cu(OH)$_2$ adsorbed on the specularite surface (Figure 4c,d), the PDOS of the O 2s orbital and the O 2p orbital changed little. These indicate that there was a strong interaction between the O atoms on the surface of the specularite and the Cu$^{2+}$ component, but its adsorption of Cu(OH)$^+$ and Cu(OH)$_2$ showed weak reactivity.

![Figure 3](image.png)

Figure 3. PDOS of Fe1 atom on the surface of different adsorption models. (a) Initial configuration, (b) after Cu$^{2+}$ adsorption, (c) after Cu(OH)$^+$ adsorption, and (d) after Cu(OH)$_2$ adsorption.

3.3. Adsorption of Cu Species on the Surface of Specularite

3.3.1. The Role of Cu Species Absorbed on the Surface of Specularite

Figure 2 shows the adsorption model of different Cu components on the specularite (0 0 1) surface before and after geometric optimization. The distance between the atoms in the adsorbate and that of the surface before and after the optimization and the adsorption energy (E_{ads}) of the different Cu components are listed in Table 3.
Figure 4. PDOS of O1 atom on the surface of different adsorption models. (a) Initial configuration, (b) after Cu$^{2+}$ adsorption, (c) after Cu(OH)$^+$ adsorption, and (d) After Cu(OH)$_2$ adsorption.

Table 3. Interaction distance and adsorption energy of Cu species before and after adsorption on the surface of specularite.

Adsorbates	DCu–Fe1 (Å)	DCu–O1 (Å)	DFe1–O1 (Å)	DFe2–OII (Å)	Energy (eV)
Cu$^{2+}$	Before	1.614	1.613	–	–
	After	2.387	1.987	–	–0.76
CuOH$^+$	Before	1.665	1.661	1.538	–
	After	2.808	1.985	1.854	–0.85
Cu(OH)$_2$	Before	1.708	1.713	1.721	2.296
	After	2.750	2.146	1.887	1.909 –1.78

When Cu$^{2+}$ was placed on the (0 0 1) surface of the specularite (as shown in Figure 2b), the distances between the Cu atoms and Fe1 and O1 atoms on the specularite surface were 1.614 Å and 1.613 Å, respectively. After geometric optimization, the distance between Cu and O1 atoms on the surface increased to 1.987 Å, but it was smaller than the sum of the radii of Cu and O atoms. When the distance between two atoms was close to or less than the sum of their atomic radii, a chemical bond was formed between these atoms [33,34], indicating that Cu atoms and O1 atoms on the surface may form Cu–O
chemical bonds. Among them, the distance between Cu and Fe1 atoms increased to 2.387 Å, which was larger than the distance between Cu and O1 atoms, indicating that the O atoms on the surface of specularite (0 0 1) had a stronger adsorption effect on Cu$^{2+}$ and that the adsorption of Cu$^{2+}$ on the specularite surface was mainly through Cu atom bonding with O1 atoms on the surface. The adsorption energy of Cu$^{2+}$ on the surface of specularite was calculated to be -0.76 eV, and a negative value indicates that the adsorption of Cu$^{2+}$ component on the (0 0 1) surface of specularite was spontaneous.

When Cu(OH)$^+$ was placed on the specularite (0 0 1) surface (as shown in Figure 2c), the distances between the Cu atoms of Cu(OH)$^+$ and the Fe1 and O1 atoms on the specularite surface were 1.665 Å and 1.661 Å, respectively, and the distance between O1 atom of Cu(OH)$^+$ and Fe1 atoms on the specularite surface was 1.538 Å. After geometric optimization, the bond length between the Cu atom and the surface O1 atom increased to 1.930 Å, but it was less than the sum of the radii of the Cu and the O atoms, indicating that the Cu atom might have formed a chemical bond with the surface O1 atom. The distance between Cu and Fe1 atoms increased to 2.675 Å, which was significantly larger than the bond length of Cu–O, indicating that the oxygen atoms on the specularite surface (0 0 1) had a stronger adsorption effect on Cu atoms of Cu(OH)$^+$. At the same time, the distance between O1 atoms of Cu(OH)$^+$ and Fe1 atoms on the specularite surface changed from 1.538 Å to 1.876 Å after optimization, which was smaller than the sum of the radii of Fe and O atoms. It shows that the adsorption of Cu(OH)$^+$ on the surface was achieved not only by the bonding of Cu atoms in the Cu(OH)$^+$ component with the surface O1 atoms but also by the bonding of O1 atoms with the surface Fe atoms. The adsorption energy of Cu(OH)$^+$ on the specularite surface was calculated to be -0.85 eV. A negative value indicates that the adsorption of Cu(OH)$^+$ on the (0 0 1) surface of specularite was spontaneous.

When Cu(OH)$_2$ was placed on the specularite (0 0 1) surface (as shown in Figure 2d), the distances between Cu atoms of Cu(OH)$_2$ and Fe1 and O1 atoms on the surface of specularite were 1.708 Å and 1.713 Å, respectively. In addition, the distance between O1 atoms of Cu(OH)$_2$ and Fe1 atoms on the surface of specularite was 1.712 Å, and the distance between OII atoms and Fe5 atoms on the surface of specularite was 2.296 Å. After geometric optimization, the distances between the Cu atom of Cu(OH)$_2$ and the surface O1 and Fe1 atoms increased to 2.146 Å and 2.750 Å, respectively. The distance between the Cu atom and the O1 atom was greater than the sum of its atomic radii, indicating that the Cu atom of Cu(OH)$_2$ did not form a chemical bond with the surface O1 atom. While the distance between the O1 atom of Cu(OH)$_2$ and the Fe1 atom on the specularite surface changed from 1.721 Å to 1.887 Å, and the distance between the OII atom and the Fe5 on the specularite surface had been reduced from 2.296 Å to 1.909 Å, both of which were smaller than the sum of the radii of Fe and O atoms, indicating that the adsorption of Cu(OH)$_2$ on the specularite surface was mainly achieved by the bonding of O1 and OII atoms of the Cu(OH)$_2$ component with Fe1 and Fe5 on the specularite surface, respectively. The adsorption energy of Cu(OH)$_2$ on the surface of specularite was calculated to be -1.78 eV. A negative value indicates that the adsorption of Cu(OH)$_2$ on the specularite(0 0 1) surface was spontaneous.

The more negative the adsorption energy is, the stronger the adsorption capacity of the adsorbate on the mineral surface is [35–37]. Comparing the adsorption energy of Cu components on the surface of specularite, the results show that the adsorption energy of Cu(OH)$_2$ component on the specularite (0 0 1) surface was the largest, followed by CuOH$^+$ and Cu$^{2+}$. Therefore, the adsorption stability of Cu species on the surface of specularite increased in the order of Cu$^{2+}$ < CuOH$^+$ < Cu(OH)$_2$.

3.3.2. Density of States Analysis of Interaction between Cu Species and Specularite (0 0 1) Surface

In order to further verify the interaction of Cu$^{2+}$, CuOH$^+$, and Cu(OH)$_2$ on the surface of specularite, the partial density of states (PDOS) of atoms of Cu components are shown in Figure 5. As shown in Figure 5, the PDOS of Cu atoms after adsorption on the specularite surface was composed of Cu 4s, Cu 2p, and Cu 3d orbitals. When Cu$^{2+}$ adsorbed on the
specularite (0 0 1) surface (Figure 5a), the PDOS of the Cu atom near the Fermi level was contributed by the 4s, 2p, and 3d orbitals, in which the contributions of Cu 3d and 4s orbitals were strong, and that played an important role in the reactivity of Cu$^{2+}$ adsorbed on the surface of specularite. Combined with the PDOS of Fe1 and O1 atoms on the surface of specularite (Figures 3b and 5a), it can be observed that the PDOS of the Cu 3d orbital peak at -1.3 eV and the Cu 2p orbital at 5 eV overlapped with the 2p orbital of the O1 atom on the specularite surface, indicating that Cu$^{2+}$ mainly interacted with the O atoms on the surface of the specularite.

![Density of States (a) Cu$^{2+}$, (b) Cu(OH)$^+$, (c) Cu(OH)$_2$.](image)

Figure 5. Partial density of states (PDOS) of different atoms of adsorbates: (a) Cu$^{2+}$, (b) Cu(OH)$^+$, (c) Cu(OH)$_2$.

When Cu(OH)$^+$ adsorbed on the specularite (0 0 1) surface (Figure 5b), the PDOS of the Cu 4s orbital peak near the Fermi level became weaker and shifted to the right, and the PDOS of Cu 4s orbital at 1.96 eV overlapped with that of the O1 atom of Cu(OH)$^+$. Combined with the PDOS of O1 atom on the specularite surface (Figure 4c), it was found that the 4s orbital of the Cu atom overlapped with the 2s orbital of O atom on the specularite surface, indicating that the Cu atom of Cu(OH)$^+$ may have interacted with the O atoms on the specularite surface. At the same time, by comparing the PDOS of O1 atoms of Cu (OH)$^+$ with that of Fe1 atoms on the surface of specularite (Figures 5c and 5b), it can be seen that the new peaks appeared at -20 eV, which attributed to the Fe 4s and 3d orbital and overlapped with the O1 2p orbital, indicating that the O1 atoms of Cu(OH)$^+$ interacted with the Fe atoms on the surface of the specularite, which further confirmed that the appearance
of new 4s orbital peaks of Fe atoms on the surface of specularite at –20 eV was caused by
the adsorption of Cu(OH)⁺.

Similarly, when Cu(OH)₂ adsorbed on the specularite (0 0 1) surface (Figure 5c), the
PDOS of the Cu 4s orbital near the Fermi level disappeared, indicating that the contribution
of the Cu 4s orbital to the activity of the Cu atom of Cu(OH)₂ was reduced, and the
activity of Cu atom was mainly contributed by the Cu 3d orbital. The PDOS of Cu atoms
overlapped with two O atoms (O₁ and OII) of Cu(OH)₂, and there was no obvious overlap
compared with the PDOS of O atoms on the surface of specularite, indicating that Cu
atoms did not interact with the O atoms on the surface of specularite. By comparing the
PDOS of the OI atom with that of the FeI atom on the surface (Figures 3d and 5c), it
is obvious that the two new Fe 4s orbital peaks and a new Fe 3d orbital peak of the Fe₁ atom
at –20 eV overlapped with the O 2s orbital of the OI atom, indicating that Cu(OH)₂ was
mainly absorbed on the specularite surface through the OI atom of –OH interacting with
the surface Fe atoms. This further confirmed that the appearance of two new 4s orbital
peaks and a new 3d orbital peak of Fe atom on the specularite surface at –20 eV was caused
by the adsorption of Cu(OH)₂.

In summary, the adsorption of Cu species on the surface of specularite was different.
Cu²⁺ may be adsorbed on the surface of specularite through the Cu atom directly interacting
with O atoms to form Cu–O complexes, while Cu(OH)⁺ and Cu(OH)₂ may be adsorbed on
the surface of specularite through the interaction between OI (OII) atoms in –OH and Fe
atoms on the surface of specularite to form Cu–O–Fe complexes.

3.3.3. Interatomic Charge Transfer Analysis of Interaction between Cu Species and
Specularite (0 0 1) Surface

Mulliken charge populations of bonding atoms before and after Cu species adsorption
are shown in Table 4. The results show that the adsorption of adsorbates on the surface of
specularite (0 0 1) led to a change in the charge of the bonding atoms and that the variation
of them was in regard to Cu species. In the absence of an adsorbate on the surface, the
charge of the FeI atom exhibited 0.86 e, in which Fe atoms lost electrons in the 4s and 2p
orbitals and gained electrons in the 3d orbital; the charge of the OI atom was –0.59 e, in
which the O lost electrons in the 2s orbital and gained electrons in the 2p orbital, indicating
that electrons were transferred from Fe atoms to O atoms to form Fe–O bonds. When Cu
²⁺ adsorbed on the surface of specularite, the charge of Fe1 atom decreased from 0.86 to 0.68 e,
with a decrease of 0.18 e; the charge of OI atoms decreased from –0.59 to –0.62 e, with a
decrease of 0.03 e. The electrons were obtained mainly in the O 2p orbitals, while the charge
of the Cu atom was 0.50 e; the electrons were mainly lost in the Cu 4s orbital compared
with the charge before adsorption. Combining the above charge analysis between atoms,
it is clear that the charges in the Cu–O₁ bond formed by the adsorption of Cu²⁺ on the
surface of specularite were mainly transferred from the Cu 4s orbital to the Cu atom to the 2p
orbital of the OI atom.

When CuOH⁺ adsorbed on the surface of specularite, the charge of surface Fe₁ atom
increased by 0.09 e from 0.86 to 0.95 e, where the main contributions of lost electrons were Fe
4s and Fe 2p orbitals. The charge of OI atoms decreased by 0.05 e from –0.59 to –0.64 e, with
the gained electrons mainly in the O 2p orbitals, while the charge of the Cu atom increased
from 0.48 to 0.50 e, with the loss of electrons mainly in the Cu 4s orbital. In addition, the
charge of the OI atom of Cu(OH)⁺ increased from –0.93 to –0.83 e, with the gain of electrons
mainly in the OI 2p orbital. Combined with the above charge analysis between atoms, it
is observed that the charges in the Cu–O₁ bond formed after the adsorption of Cu(OH)⁺
were mainly transferred from the Cu 4s orbital to the O₁ 2p orbital and that the charges in
the Fe₁–OI bond formed were mainly transferred from the 4s and 2p orbitals of the Fe₁ atom
to the 2p orbital of the OI atom.
Table 4. Mulliken charge populations of bonding atoms before and after different Cu species adsorption.

Adsorbates	Atom	s	p	d	f	Total Charge/e
Cu	Before	1.00	0.00	10.00	0.00	11.00
	After	0.78	0.12	9.81	0.00	10.71
Cu\(^{2+}\)	Fe1	0.40	0.24	6.49	0.00	7.14
	After	0.41	0.38	6.54	0.00	7.32
	O1	1.88	4.71	0.00	0.00	6.59
	After	1.86	4.76	0.00	0.00	6.62
CuOH\(^+\)	Cu	0.65	0.11	9.76	0.00	10.52
	After	0.53	0.17	9.79	0.00	10.50
	O1	1.90	5.03	0.00	0.00	6.93
	After	1.87	4.96	0.00	0.00	6.83
	Fe1	0.40	0.24	6.49	0.00	7.14
	After	0.27	0.32	6.45	0.00	7.05
	O1	1.88	4.71	0.00	0.00	6.59
	After	1.86	4.78	0.00	0.00	6.64
Cu(OH)$_2$	Cu	0.62	0.09	9.44	0.00	10.16
	After	0.58	0.08	9.67	0.00	10.33
	O1	1.90	4.98	0.00	0.00	6.87
	After	1.87	4.94	0.00	0.00	6.81
	OII	1.90	4.99	0.00	0.00	6.88
	After	1.86	4.96	0.00	0.00	6.83
	Fe1	0.40	0.24	6.49	0.00	7.14
	After	0.27	0.35	6.43	0.00	7.05
	O1	1.88	4.71	0.00	0.00	6.59
	After	1.87	4.76	0.00	0.00	6.62

When Cu(OH)$_2$ adsorbed on the surface of specularite, the charge of surface Fe1 atoms increased from 0.86 to 0.95 e, with an increase of 0.09 e, in which the main contributions of lost electrons were Fe 4s and Fe 2p orbitals. The charge of O1 atoms remained essentially unchanged, indicating that the adsorption of Cu(OH)$_2$ had no significant effect on the charge of O1 atoms on the surface, which further confirms that the surface O1 atoms were not participating in the adsorption of Cu(OH)$_2$ on the specularite. The charge of the Cu atom decreased from 0.84 to 0.67 e, and the orbital lost electrons were mainly in Cu 4s, while the charges of OI and OII atoms increased from −0.87 and −0.88 to −0.81 and −0.83 e, with an increase of 0.06 e and 0.05 e, respectively, and the orbital gained electrons mainly in OI(OII) 2p. Combining the above charges between the atoms, it is clear that the charges in the Fe1–OI(OII) bond formed after the adsorption of Cu(OH)$_2$ were mainly transferred from the 4s and 2p orbitals of the Fe1 atom to the 2p orbitals of the OI(OII) atom. To further investigate the interaction between Cu components and the specularite surface, an electron density of different adsorbents adsorbed on the surface of specularite is shown in Figure 6, where different charge density is represented by different colors. Where the color goes from red to blue represents a gradual decrease in the ability of the atoms to gain electrons. The results in Figure 6 are consistent with the charge transfer results described above.

3.3.4. Analysis of Bond Properties of Cu Species Adsorbed on the Specularite Surface

The Mulliken bond population can reflect the strength of ionicity and covalency. The larger the bond population, the stronger the covalency, and the smaller the bond population, the stronger the ionicity [33,38,39]. In order to further understand the bonding properties between atoms in the specularite surface and Cu components, we compared the Mulliken bond populations of different Cu components adsorbed on the surface of specularite (0 0 1), as shown in Table 5.
Figure 6. Electron density of different adsorbents adsorbed on the surface of specularite: (a) Original, (b) Cu$^{2+}$, (c) Cu(OH)$^+$, (d) Cu(OH)$_2$.

Table 5. Mulliken bond populations of different Cu components adsorbed on the specularite (0 0 1) surface.

Adsorbates	Bond	Population
Cu$^{2+}$	O1–Cu	0.14
Cu(OH)$^+$	O1–Cu	0.17
	OI–Fe1	0.33
Cu(OH)$_2$	OI–Fe1	0.30
	OII–Fe5	0.30

When Cu$^{2+}$ adsorbed on the specularite surface, the bond population of Cu–O1 was 0.14, which indicates that Cu–O had stronger ionicity and weaker covalency. When Cu(OH)$^+$ adsorbed on the specularite surface, the bond populations of Cu–O1 and Fe–OI were 0.17 and 0.33, respectively, indicating that Cu–O had stronger ionicity, while Fe–O had stronger covalency. When Cu(OH)$_2$ adsorbed on the surface of specularite, the bond population of Fe1–OI(OII) was 0.30. It shows that Fe–O had stronger ionicity and weaker covalency. By comparing the Cu–O and Fe–O of the three Cu components on the surface of specularite (0 0 1), it can be seen that the bond population of Cu–O was smaller than that of Fe–O, indicating that the Cu–O was more ionic and Fe–O was more covalent.

4. Conclusions

In this work, the effect of Cu species adsorption on the crystalline structure and properties of specularite (0 0 1) was investigated by DFT calculations. Additionally, the activation mechanism of Cu$^{2+}$ on the flotation of specularite was discussed based on
analyses of the adsorption model, adsorption energy, partial density of states (PDOS), charge transfer, and bond properties. Based on the defined methods of analysis and the obtained results, it can be concluded:

(1) The results of crystalline structure and electronic properties of a specularite (0 0 1) surface show that the geometric structure and electronic properties of the surface of specularite (0 0 1) are significantly changed after absorbing the Cu species, and the structure of O3–Fe1–O1 near the absorbate is more easily affected.

(2) The results of adsorption energy analysis show that Cu$^{2+}$, Cu(OH)$^+$, and Cu(OH)$_2$ can be spontaneously adsorbed on the surface of specularite (0 0 1), and the adsorption stability of Cu components that are on the surface of specularite increase in the order of Cu$^{2+} < $ Cu(OH)$^+ < $ Cu(OH)$_2$.

(3) The results of the adsorption module and PDOS analysis show that the adsorptions of Cu species on the surface of specularite are different. Cu$^{2+}$ may be adsorbed on the surface of specularite through a Cu atom directly interacting with O atoms to form Cu–O complexes, while Cu(OH)$^+$ and Cu(OH)$_2$ may be adsorbed on the surface of specularite through the interaction between OI (OII) atoms in –OH and Fe atoms on the surface of specularite to form Cu–O–Fe complexes.

(4) The results of charge transfer analysis show that the charges in the Cu–O bond formed after the adsorption of absorbates were mainly transferred from the Cu 4s orbital to the O 2p orbital and that the charges in the Fe–O bond formed were mainly transferred from the 4s and 2p orbitals of the Fe atom to the 2p orbital of the O atom.

(5) By comparing Cu–O and Fe–O of the three Cu components on the surface of specularite (0 0 1), it can be seen that the bond populations of Cu–O are smaller than those of Fe–O, indicating that Cu–O is more ionic and Fe–O is more covalent.

Simply, the adsorption effects of various Cu species on a specularite (0 0 1) surface are obviously different. At pH = 7, the formation of Cu–O and Cu–O–Fe complexes increase the adsorption sites for sodium oleate on a specularite surface of Cu$^{2+}$-modified specularite. More hydrophobic substances were formed on the surface, which improves the floatability of specularite.

Author Contributions: Conceptualization, M.H. and J.D.; methodology, X.Z.; formal analysis, J.L. and Y.H.; investigation, Y.W.; resources, M.H.; data curation, X.Z. and J.D.; writing—original draft preparation, M.H.; writing—review and editing, X.Z.; visualization, P.W.; supervision, Y.H.; project administration, J.L. and Y.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the NSFC (U1860113, 51764022, 51674001), Fok Ying Tong Education Foundation (161046), the Fundamental Research Funds for the Central Universities (2020XJHH04), and the Yueqi outstanding scholar award. We thank Le Yang and Zhenwu Sun for contributing this manuscript.

Acknowledgments: The authors are grateful to the financial support of the NSFC (U1860113, 51764022, 51674001), Fok Ying Tong Education Foundation (161046), the Fundamental Research Funds for the Central Universities (2020XJHH04), and the Yueqi outstanding scholar award. We thank Le Yang and Zhenwu Sun for contributing to this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chandra, A.P.; Gerson, A.R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. *Adv. Colloid Interface Sci.* **2009**, *145*, 97–110. [CrossRef]
2. Chen, Z.; Yoon, R.-H. Electrochemistry of copper activation of sphalerite at pH 9.2. *Int. J. Miner. Process.* **2000**, *58*, 57–66. [CrossRef]
3. Deng, J.; Wen, S.-M.; Liu, J.; Wu, D.-D.; Feng, Q. Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation. *Trans. Nonferr. Met. Soc. China* **2014**, *24*, 3955–3963.
4. Cao, Z.; Zhang, Y.H.; Sun, C.Y.; Cao, Y.D. Activation mechanism of serpentine by Cu (II) and Ni (II) ions in copper-nickel sulfide ore flotation. *Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferr. Met.* **2014**, *24*, 506–510.
5. Qiu, T.; Qiu, X.; Yang, X. Density functional theory and experimental studies of Cu
2+ activation on a cyanide-leached sphalerite surface. J. Ind. Eng. Chem. 2016, 45, 307–315. [CrossRef]

6. Yin, W.Z.; Wang, J.Z.; Wang, N.L.; Luo, X.M.; Wang, Y.L. Effect of flotation reagents on direct reverse flotation of carbonate-
containing iron ores. Beijing Keji Daxue Xuebaof. Univ. Sci. Technol. Beijing 2014, 36, 153–160.

7. Lin, L.; Jiong-tian, L.; Yong-tian, W.; Yi-jun, C.; Hai-jun, Z.; He-sheng, Y. Experimental research on anionic reverse flotation of hematite with a flotation column. Procedia Earth Planet. Sci. 2009, 1, 791–798. [CrossRef]

8. Mowla, D.; Karimi, G.; Ostadnezhad, K. Removal of hematite from silica sand ore by reverse flotation technique. Sep. Purif.
Technol. 2008, 58, 419–423. [CrossRef]

9. Ng, W.S.; Sonsie, R.; Forbes, E.; Franks, G.V. Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector. Miner. Eng. 2015, 77, 64–71. [CrossRef]

10. Araujo, A.; Viana, P.; Peres, A.E.C. Reagents in iron ores flotation. Miner. Eng. 2005, 18, 219–224.

11. Abaka-Wood, G.B.; Addai-Mensah, J.; Skinner, W. A study of flotation characteristics of monazite, hematite, and quartz using
anionic collectors. Int. J. Miner. Process. 2017, 158, 55–62. [CrossRef]

12. Ze, C.; Mingyang, L.; Yiming, H.; Xiangpeng, G.; Jun, L. Activation Effect and Mechanism of Cu(II)/Ni(II) ions on Specularite and Chlorite Flotation. Bull. Chin. Ceram. Soc. 2020, 39, 182–186.

13. Kaka, A. Study the Electronic Structure of In 1 x Al x P with variable concentration of Aluminum using Density Functional Theory. Int. J. Therm. Technol. 2015, 55, 2277–4114.

14. Zaky, R.; Fekri, A.; Gaber, Y.; Moustafa, H.; Abdulrahman, Y. Structural, spectral, dft, ion-flotation and biological studies on transition metal complexes of 2-aminothiazole derivatives. Int. J. Adv. Res. 2016, 4, 1705–1717. [CrossRef]

15. Chen, J.H.; Chen, Y.; Yu-Qiong, L. I.I. DFT calculation of amine cation collectors for zinc oxide flotation. J. Guangxi Univ. (Nat. Sci. Ed.) 2009, 34, 67–72.

16. Jiang, D.; Deng, W.; Lan, Y. A DFT Study of the Effect of Natural Impurities on the Electronic Structure of Sphalerite. Adv. Mater. Res. 2013, 669, 39–45. [CrossRef]

17. Tian, M.; Gao, Z.; Khoso, S.; Sun, W.; Hu, Y. Understanding the activation mechanism of Pb
2+ ion in benzoxydric acid flotation of spodumene: Experimental findings and DFT simulations. Miner. Eng. 2019, 143, 106006. [CrossRef]

18. Zhao, G.; Zhong, H.; Qu, X.; Wang, S.; Gao, Y.; Dai, Z.; Huang, J.; Liu, G. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation. Miner. Eng. 2019, 43, 54–60. [CrossRef]

19. Li, Y.; Liu, Y.; Chen, J.; Zhao, C. Structure-activity of chelating collectors for flotation: A DFT study. Miner. Eng. 2020, 146, 106133. [CrossRef]

20. Zhao, W.; Liu, D.; Feng, Q.; Wen, S.; Chang, W. DFT insights into the electronic properties and adsorption mechanism of HS− on smithsonite (1 0 1) surface. Miner. Eng. 2019, 141, 105846. [CrossRef]

21. Liu, J.; Wen, S.; Wang, Y.; Deng, J.; Chen, X. Transition state search study on the migration of Cu absorbed on the S sites of sphalerite (110) surface. Int. J. Miner. Process. 2016, 147, 28–30. [CrossRef]

22. Liu, J.; Wen, S.; Chen, X.; Bai, S.; Liu, D.; Cao, Q. DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface. Miner. Eng. 2013, 46–47, 1–5. [CrossRef]

23. Deng, J.; Lei, Y-H.; Wen, S.; Chen, Z. Modeling interactions between ethyl xanthate and Cu/Fe ions using DFT/B3LYP approach. Int. J. Miner. Process. 2015, 140, 1–37. [CrossRef]

24. Lin, S.; He, J.; Liu, R.; Hu, Y.; Sun, W. Depression behavior and mechanism of pyrogallol on bismuthinite flotation. J. Clean. Prod. 2021, 281, 125322. [CrossRef]

25. Han, Y.; Liu, W.; Chen, J. DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces. Appl. Surf. Sci. 2016, 370, 403–409. [CrossRef]

26. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396.

27. Li, M.; Liu, J.; Gao, X.; Hu, Y.; Yuan, Q. Surface Properties and Floatability Comparison of Aegirite and Specularite by Density Functional Theory Study and Experiment. Minerals 2019, 9, 782. [CrossRef]

28. Sarvaramini, A.; Larachi, F.; Hart, B. Collector attachment to lead-activated sphalerite—Experiments and DFT study on pH and
solvent effects. Appl. Surf. Sci. 2016, 367, 459–472. [CrossRef]

29. Zhang, H.L.; Xu, Z.J.; Chen, D.X.; Hu, B.; Zhou, Q.Q.; Chen, S.D.; Li, S.; Sun, W.; Zhang, C.Y. Adsorption mechanism of water molecules on hematite (104) surface and the hydration microstructure. Appl. Surf. Sci. 2021, 550, 149328. [CrossRef]

30. Wang, Y.; Xue, Y.; Pan, M.; Wen, S. Interaction of salicylhydroxamic acid with the surface of MgTi2O5: A study combined DFT and
experiment. J. Alloys Compd. 2018, 774, 222–228. [CrossRef]

31. Yin, X.; Wang, H.; Han, E.-H. Effects of solvation and applied potential on the adsorption behaviors of H, O, OH and H2O on Fe(110) surface. Surf. Sci. 2019, 691, 121504. [CrossRef]

32. Zhong, W.; Yin, W.; Wang, Y.; Yao, J. Selective flotation of magnesite from dolomite using α-chloro-oleate acid as collector. Powder
Technol. 2020, 373, 147–151. [CrossRef]

33. Feng, Q.; Wen, S.; Deng, J.; Zhao, W. DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface. Appl. Surf. Sci. 2017, 396, 920–925. [CrossRef]

34. Rabanal-León, W.; Arratia-Perez, R. Relativistic-DFT study of the electronic structure, bonding and energetic of the [ReF6]− and
UF2− ions. J. Chil. Chem. Soc. 2013, 58, 2020–2024. [CrossRef]
35. Jian-Hua, C.; Xian-Hao, L.; Cui-Hua, Z.; Duan, K.; Jin, G. DFT calculation on relaxation and electronic structure of sulfide minerals surfaces in presence of H_2O molecule. *J. Cent. South Univ. Technol.* 2014, **21**, 3945–3954.

36. Gao, Z.; Li, C.; Sun, W.; Hu, Y. Anisotropic surface properties of calcite: A consideration of surface broken bonds. *Colloids Surf. A Physicochem. Eng. Asp.* 2017, **520**, 53–61. [CrossRef]

37. Nourmohamadi, H.; Aghazadeh, V.; Esrafili, M. A comparative DFT study of Fe$^{3+}$ and Fe$^{2+}$ ions adsorption on (100) and (110) surfaces of pyrite: Electrochemical point of view. *Surf. Interface Anal.* 2019, **52**, 1–9.

38. Wu, D.; Mao, Y.; Deng, J.; Wen, S. Activation mechanism of ammonium ions on sulfidation of malachite (−201) surface by DFT study. *Appl. Surf. Sci.* 2017, **410**, 126–133. [CrossRef]

39. Wang, Y.; Xian, Y.; Wen, S.; Deng, J.; Wu, D. The electronic structures of magnesium-bearing anosovite ($\text{Mg}_n\text{Ti}_{3-n}\text{O}_5$ $0 \leq n \leq 1$) and its response to flotation. *J. Alloys Compd.* 2017, **708**, 982–988. [CrossRef]