Sang Loon Tan and Edward R.T. Tiekink*

Crystal structure of the co-crystal 2-[(2-carboxyphenyl)disulfanyl]benzoic acid – 3-chlorobenzoic acid (2/1), C_{35}H_{25}ClO_{10}S_{4}

The molecular structure is shown in the figure. Tables 1 and 2, respectively, contain details on crystal characteristics and measurement conditions, and a list of the atoms including atomic coordinates and displacement parameters.

\[\text{Table 1: Data collection and handling.} \]

Crystal:	Colourless prism
Size:	0.09 × 0.07 × 0.04 mm
Wavelength:	Cu K\(\alpha\) radiation (1.54178 Å)
\(\mu\):	3.99 mm\(^{-1}\)
Diffractometer, scan mode:	XtaLAB Synergy, \(\omega\)
Completeness:	76.1\(^\circ\), >99\%

\[\text{Table 2: Crystal characteristics.} \]

Crystal system:	Triclinic
Space group:	\(P\bar{1}\) (no. 2)
\(a\):	7.9798(2) Å
\(b\):	10.2392(3) Å
\(c\):	20.6956(4) Å
\(\alpha\):	103.632(2) \(^\circ\)
\(\beta\):	96.082(2) \(^\circ\)
\(\gamma\):	96.053(2) \(^\circ\)
\(V\):	1619.13(7) Å\(^3\)
\(Z\):	2
\(R_{gt}(F)\):	0.0493
\(wR_{ref}(F^2)\):	0.1413
Source of material:	The title co-crystal was prepared through solvent drop grinding of 2-mercaptobenzoic acid (2-MBA; Merck) and 3-chlorobenzoic acid (CIBA; Merck) in a 1:1 molar ratio (0.001 mol, 0.154 g for 2-MBA and 0.157 g for CIBA). The mixture was ground for 15 min in the presence of few drops of methanol; the procedure was repeated three times. Colourless block crystals were obtained by carefully layering benzene (1.5 mL) on a dichloromethane (1.5 mL) solution of the ground co-crystal. M.p. (Hanon MP-450): 448.4–451.8 K. IR (Bruker Vertex 70v; cm\(^{-1}\)): 3074–2819\((w)\) \(\nu(C–H)\), 1675\((s)\) \(\nu(C=O)\), 1597\((s)\) and 1468\((m)\) \(\nu(C=C)\), 1414\((s)\) \(\delta(C–H)\), 740\((s)\) \(\delta(C–Cl)\).

\[\text{Experimental details} \]

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with \(U_{iso}(H) = 1.2U_{eq}(C)\). The O-bound H-atoms were located in difference Fourier maps but were refined with a distance restraint of O–H = 0.84 ± 0.01 Å, and with \(U_{eq}(H)\) set to 1.5\(U_{eq}(O)\). Owing to poor agreement, three reflections, i.e. (1 6 3), (9 4 5) and (9 4 6), were omitted from the final cycles of refinement.

*Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my

Sang Loon Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Open Access. © 2019 Sang Loon Tan et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.
Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	y	z	Uiso*/Ueq
C1	0.99576(11)	0.78924(9)	0.30664(4)	0.0374(2)
O1	0.7090(3)	0.5151(3)	0.00324(12)	0.0370(6)
O2	0.5573(3)	0.5863(3)	0.08599(13)	0.0342(5)
H2O	0.480(8)	0.551(8)	0.054(3)	0.16(4)*
C1	0.6993(4)	0.5270(3)	0.06257(16)	0.0258(6)
C2	0.8567(4)	0.6284(3)	0.11016(16)	0.0244(6)
C3	0.8490(4)	0.6768(3)	0.17820(16)	0.0259(6)
H3	0.7429	0.6755	0.1951	0.031*
C4	0.9988(4)	0.7269(3)	0.2206(9)	0.0285(7)
C5	1.1553(4)	0.7277(3)	0.19732(18)	0.0312(7)
H5	1.2571	0.7611	0.2276	0.037*
C6	1.1614(4)	0.6795(3)	0.12970(18)	0.0310(7)
H6	1.2680	0.6804	0.1132	0.037*
C7	1.0129(4)	0.6296(3)	0.08563(17)	0.0285(6)
H7	1.0175	0.5965	0.0390	0.034*
S1	0.78621(9)	0.40830(7)	0.26149(3)	0.02272(17)
S2	0.81972(9)	0.50572(7)	0.36157(3)	0.02302(17)
O3	0.7184(3)	0.3119(2)	0.12761(10)	0.0232(4)
O4	0.9046(3)	0.2609(3)	0.05497(10)	0.0246(4)
H40	0.818(4)	0.2335(3)	0.0272(8)	0.056(1)*
C35	0.4784(4)	1.1473(3)	0.98131(13)	0.0194(5)
C33	0.1658(4)	1.0873(3)	0.9138(2)	0.0222(6)
C32	0.0246(4)	1.0321(3)	0.9138(2)	0.0222(6)
H31	0.0457(4)	0.9726(3)	0.83558(15)	0.0245(6)
C31	0.1514	1.1295	0.9926	0.027*
C34	0.3309(4)	1.0821(3)	0.93034(13)	0.0188(5)
C35	0.4784(4)	1.1473(3)	0.98131(13)	0.0194(5)

Table 2 (continued)

Atom	x	y	z	Uiso*/Ueq
C24	0.543(4)	1.0907(3)	0.5950(15)	0.0247(6)
C25	0.5872	1.0759	0.5516	0.030*
C26	0.4830(4)	1.2109(3)	0.62180(15)	0.0265(6)
H26	0.4757	1.2781	0.5972	0.032*
C27	0.4331(4)	1.2313(3)	0.68499(16)	0.0272(6)
H27	0.3905	1.3128	0.7038	0.033*
C28	0.4444(4)	1.1336(3)	0.72139(15)	0.0240(6)
H28	0.4080	1.1491	0.7645	0.029*
C29	0.5084(4)	1.0133(3)	0.69551(14)	0.0203(6)
C30	0.3519(4)	1.0168(3)	0.86387(14)	0.0197(5)
C31	0.2075(4)	0.9642(3)	0.81723(14)	0.0223(6)
H30	0.2198	0.9220	0.7722	0.027*
C32	0.0457(4)	0.9726(3)	0.83558(15)	0.0245(6)
C33	-0.0513	0.9372	0.8029	0.029*
C34	0.0246(4)	1.0321(3)	0.90117(16)	0.0251(6)
H32	-0.0863	1.0349	0.9138	0.030*
C35	0.1658(4)	1.0873(3)	0.94788(15)	0.0229(6)
H33	0.1514	1.1295	0.9926	0.027*
C36	0.3309(4)	1.0821(3)	0.93034(13)	0.0188(5)
C37	0.4784(4)	1.1473(3)	0.98131(13)	0.0194(5)

Comment

Owing to the presence of a central disulphide bond, 2-(2-carboxyphenyl)disulfanyl]benzoic acid (2,2'-dithiobenzoic acid; DTBA), is a flexible dicarboxylic acid. This conformational flexibility is emphasized in a recent report of a tri-polymorphic inclusion compound formed between DTBA and trimethylamine [5]. Indeed, most studies of DTBA are motivated by co-crystal formation and it is of interest that sometimes DTBA found in co-crystals is a product of co-crystallisation experiments starting with 2-mercaptobenzoic acid (2-MBA) [6, 7] whereby 2-MBA is oxidised to DTBA. As a continuation of studies in this area [6, 8, 9], the title co-crystal was isolated from the attempted 1:1 co-crystallisation experiments between 2-MBA and a second carboxylic acid, namely 3-chlorobenzoic acid (3-CIBA).

X-ray diffraction showed the asymmetric unit in title co-crystal comprises two independent molecules of DTBA and one of 3-CIBA, indicating oxidation of 2-MBA had occurred during co-crystal formation. Confirmation that the molecule of 3-CIBA exists as a carboxylic acid is readily seen in the pattern of Cl—O1, O2 bond lengths, i.e. 1.243(4) Å and 1.288(4) Å. A small twist from planarity is noted in the molecule. The r.m.s. deviation from the least-squares plane through the ring-carbon and chloride atoms being 0.0036 Å, and the dihedral angle between this plane and that through the carboxylic acid residue is 7.55(16)°. The crystal structure of 3-CIBA was originally reported in 1975 with a low temperature (105 K) re-determination of this P21/c polymorph [11] subsequently complimented by the report of a C2/c polymorph [12].
The comparable dihedral angles between C6/O2 in these structures are 4.1(4)° [11] and 5.8(2)° [12].

The conformations of the two DTBA molecules comprising the asymmetric unit resemble each other as seen in the respective r.m.s. bond and angle fits of 0.0054 Å and 0.491° for the inverted-S1 and S3-molecules [13]; each lacks crystallographically imposed symmetry. The patterns in the C—O(hydroxy), O(carbonyl) bond lengths are consistent with the presence of carboxylic acid residues. The C6/O2 dihedral angles are 3.7(3)° [O3-residue], 14.2(2)° [O5], 14.0(2)° [O7] and 4.1(2)° [O9]. This effectively co-planar relationship coupled with the observation each carbonyl-O atom is orientated towards the adjacent disulphide-S atom is indicative of attractive, hypervalent S···O interactions [14]. The shortest such interaction in the present co-crystal structure is 2.675(2) Å for S4···O9 and the longest, 2.737(2) Å, for O3···O7. The twists in the molecules is best indicated by the C14—S1—S2—C15 and C28—S3—S4—C29 torsion angles of −91.06(15)° and 87.15(15)°, respectively, and the dihedral angles between the two phenyl rings in the S1- and S3-molecules, i.e. 79.54(11)° and 80.76(11)°, respectively. The crystal structure of the parent DTBA molecule has been determined and shows the asymmetric unit to comprise one and a half molecules, with the latter disposed about a 2-fold axis of symmetry [15]. The comparable C=S=S=C torsion and C6=O2 dihedral angles are 86.12(14)° and 87.90(13)° for the molecule in the general position, and 87.90(13)° and 77.55(8)° for the symmetry molecule.

In the molecular packing, two distinct aggregation patterns based on conventional hydroxy-O—H···O(carbonyl) hydrogen bonding are discerned, each resulting in an eight-membered (⋯-HOCO)2 synthon. In the first of these, centrosymmetrically-related two-molecule aggregates of 3-CIBA are formed [O2—H20···O1i=1.78(7) Å, O2···O1i=2.608(4) Å with angle at H20=170(7)° for symmetry operation i: 1−x, 1−y, −z]. The second aggregate is a twisted, supramolecular chain comprising alternating S1- and S3-molecules [O4—H4o···O9i=1.84(4) Å, O4···O9i=2.665(3) Å with the angle at H4o=170(5)°; O6—H6o···O7: 1.82(3) Å, 2.648(3) Å and 175(3)°; O8—H8o···O5: 1.80(3) Å, 2.633(3) Å and 171(4)°; O10—H10o···O3iii: 1.84(3) Å, 2.663(3) Å and 171(3)°, for ii: x, −1+y, −1+z and iii: x, 1+y, 1+z]. The chain is orientated along [0 1 1]. Connections between the aggregates mediated by hydrogen bonding include π-stacking interactions between (C2—C7)···(C9—C14) and (C2—C7)···(C29—C34)° phenyl rings with ring-centroid separations of 3.6865(18) and 3.7346(18) Å, respectively. These interactions indicate the 3-CIBA molecule effectively bridges two independent DTBA molecules. The packing also features several parallel C···O···π interactions [16, 17] with C21—O5···π(C15—C20) presenting the shortest O···ring-centroid contact of 3.299(3) Å; the angle at O5 is 96.85(19)°.

Co-crystals of 3-CIBA with other carboxylic acids have not been reported and the sole example of a carboxylic acid co-crystal of DTBA is its 1:1 co-crystal with 2-MBA [7]. In the structure of this co-crystal, two DTBA molecules associate via hydroxy-O—H···O(carbonyl) hydrogen bonds leaving each of the outer carboxylic acid groups free to form eight-membered synthons with a 2-MBA molecule to result in the formation of a four-molecule aggregate.

Acknowledgements: Sunway University is thanked for support of crystal engineering studies (Grant No. INT-FST-RCCM-2016-01).

References

1. Agilent Technologies. CrysAlisPRO. Agilent Technologies, Santa Clara, CA, U.S.A. (2017).
2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
5. Yang, Y.; Li, L.; Zhang, L.; Dong, W.; Ding, K.: Three polymorphs of an inclusion compound of 2,2′-(disulfanediyl) dibenzoic acid and trimethyl-amine. Acta Crystallogr. C72 (2016) 981–989.
6. Broker, G. A.; Tiekink, E. R. T.: Co-crystal formation between 2,2′-dithiodibenzoic acid and each of 4,4′-bipyridine, trans-1,2-bis(4-pyridyl)ethene and 1,2-bis(4-pyridyl)ethane. CrystEngComm 9 (2007) 1096–1109.
7. Rowland, C. E.; Cantos, P. M.; Toby, B. H.; Frisch, M.; Deschamps, J. R.; Cahill, C. L.: Controlling disulphide bond formation and crystal growth from 2-mercaptobenzoic acid. Cryst. Growth Des. 11 (2011) 1370–1374.
8. Broker, G. A.; Bettens, R. P. A.; Tiekink, E. R. T.: Co-crystallisation of 2,2′-dithiodibenzoic acid with the isomeric n-pyridinealdazines, n = 2, 3 and 4: supramolecular polymers and the influence of steric factors upon aggregation patterns. CrystEngComm 10 (2008) 879–887.
9. Arman, H. D.; Miller, T.; Poplaukhin, P.; Tiekink, E. R. T.; 2,2′-(Disulfanediyl) dibenzoic acid-N,N′-bis(3-pyridylmethyl) ethanediamide(1/1). Acta Crystallogr. E66 (2010) o2590–o2591.
10. Gougoutas, J. Z.; Lessinger, L. J.: Solid state chemistry of organic polyvalent iodonium compounds. IV. Topotactic transformations of 2-iodo-3n-′-chlorodibenzyloxy peroxide and the crystal structure of m-chlorobenzoic acid. J. Solid State Chem. 12 (1975) 51–62.
11. Froncek, F. R.: Private communication to the Cambridge Structural Database. Refcode: MCBZAC02 (2015).
12. Hursthouse, M. B.; Hibbs, D. E.; Ramachandran, V. N.: Private communication to the Cambridge Structural Database. Refcode: MCBZAC01 (2003).
13. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.
14. Nakanishi, W.; Nakamoto, T.; Hayashi, S.; Sasamori, T.; Tokitoh, N.: Atoms-in-molecules analysis of extended hypervalent five-center, six-electron (5c−6e) C2Z2O interactions at the 1,8,9-positions of anthraquinone and 9-methoxyanthracene systems. Chem. Eur. J. 13 (2007) 255–268.
15. Humphrey, S. M.; Wood, P. T.: 2,2′-Disulfanyldibenzoic acid. Acta Crystallogr. E59 (2003) o1364–o1366.
16. Zukerman-Schpector, J.; Tiekink, E. R. T.: On the role of DMSO-O(lone pair)···π(arene), DMSO-S(lone pair)···π(arene) and S=O···π(arene) interactions in the crystal structures of dimethyl sulphoxide (DMSO) solvates. CrystEngComm 16 (2014) 6398–6407.
17. Murcia-García, C.; Bauzà, A.; Schnakenburg, G.; Frontera, A.; Streubel, R.: Surprising behaviour of M−CO(lone pair)···π(arene) interactions in the solid state of fluorinated oxaphosphirane complexes. CrystEngComm 17 (2015) 1769–1772.