Few-layer HfS$_2$ transistors

Toru Kanazawa1, Tomohiro Amemiya2,3, Atsushi Ishikawa3,4,5, Vikrant Upadhyaya1, Kenji Tsuruta1, Takuo Tanaka3,5,6 & Yasuyuki Miyamoto1

HfS$_2$ is the novel transition metal dichalcogenide, which has not been experimentally investigated as the material for electronic devices. As per the theoretical calculations, HfS$_2$ has the potential for well-balanced mobility (1,800 cm2/V·s) and bandgap (1.2 eV) and hence it can be a good candidate for realizing low-power devices. In this paper, the fundamental properties of few-layer HfS$_2$ flakes were experimentally evaluated. Micromechanical exfoliation using scotch tape extracted atomically thin HfS$_2$ flakes with varying colour contrasts associated with the number of layers and resonant Raman peaks. We demonstrated the I-V characteristics of the back-gated few-layer (3.8 nm) HfS$_2$ transistor with the robust current saturation. The on/off ratio was more than 104 and the maximum drain current of 0.2 μA/μm was observed. Moreover, using the electric double-layer gate structure with LiClO$_4$:PEO electrolyte, the drain current of the HfS$_2$ transistor significantly increased to 0.75 mA/μm and the mobility was estimated to be 45 cm2/V·s at least. This improved current seemed to indicate superior intrinsic properties of HfS$_2$. These results provide the basic information for the experimental researches of electron devices based on HfS$_2$.

To realise ultra-low power circuits, three important electrical characteristics are desirable in channel materials for field-effect transistors (FETs). They are low supply voltage, high drivability, and small off-leakage current. The first two can be achieved by channel scaling in the same manner as that in previous techniques1. On the other hand, continuous scaling of channel length L$_{ch}$ can lead to a severe short-channel effect (SCE)2. SCE increases the off-leakage current and standby power consumption of logic circuits. One of the possible solutions to reduce SCE is the introduction of atomically thin body channel structure. However, in an extremely thin body channel consisting of conventional semiconductors such as silicon (Si)3, InGaAs4, and germanium5, surface roughness scattering severely reduces the carrier mobility6 and ballistic coefficient. Two-dimensional (2D) materials have layered crystal structure with strong covalent/ionic bond in a plane and a weak Van der Waals interaction between layers. From this unique property, 2D materials can obtain an atomically flat surface with discrete thickness defined by its single-layer thickness, a carrier transport with minimal surface roughness scattering and a strong immunity to short channel effect. These 2D material features can be useful in achieving ultra-low power operation because of the realisation of high mobility with extremely short and thin channel design. Another critical property for low leakage current operation is the bandgap value. Graphene7, which is the most famous 2D material, has no bandgap without the application of additional techniques$^9,^{10}$, and this property is a major hindrance in reducing the drain leakage. Zero (or very small) bandgap materials such as graphene show ambipolar behaviour in field-effect current modulation. The off current could not be small enough due to reverse polarity operation. Although, this property is useful in many applications (e.g. RF applications11 and sensing12), it becomes impractical in low-power logic circuits13. Moreover, to reduce the drain leakage current due to band-to-band tunnelling such as gate-induced drain leakage14, wide bandgap is desirable for materials with finite bandgap. Therefore, 2D materials with a finite bandgap, such as transition metal dichalcogenides (TMDs) (e.g. MoS$_2$,15,16 and WSe$_2$,17,18) or phosphorene19,20, are required for low power consumption FETs. The mobility and bandgap should be carefully and extensively investigated for various applications and for performance improvement.

HfS$_2$ (Hafnium disulphide) was previously considered as a semi-insulating material because the measured conductivity of HfS$_2$ is very low compared with that of MoS$_2$.21,22 However, in recent studies, some attractive properties of single-layered HfS$_2$ have been theoretically predicted. The long-wave acoustic phonon limited mobility μ_{AP} of TMDs estimated in ref. 23 and the energy bandgap E_g in ref. 24 are shown in Fig. 1, which indicate that a

1Department of Physical Electronics, Tokyo Institute of Technology, 152-8552 Japan. 2Quantum Nano Electronics Research Center, Tokyo Institute of Technology, 152-8552 Japan. 3Metamaterials Laboratory, RIKEN, 351-0198, Japan. 4Department of Electrical & Electronic Engineering, Okayama University, 700-8530, Japan. 5Innovative Photon Manipulation Research Team, RIKEN, 351-0198, Japan. 6Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 226-8502, Japan. Correspondence and requests for materials should be addressed to T.K. (email: kanazawa.t.aa@m.titech.ac.jp) or T.A. (email: amemiya.t.ab@m.titech.ac.jp)
Figure 1. Mobility and Bandgap plot of typical TMDs. The acoustic phonon-limited electron mobilities and energy band gap calculated in refs. 10 and 11 are plotted. The patterns indicate the coordinate structure (T: octahedral coordination and H: triangle prism coordination).

Figure 2. Calculated transport properties of single-layer HfS$_2$. (a) Current distribution in the 2D Brillouin zone. (b) Transfer characteristics at the ballistic limit. Two different directions are considered, but no significant difference in the total current is observed because the threefold M valleys are mixed.
substantial trade-off exists between μ_{AP} and E_g. Single-layer HfS$_2$ is expected to have good upper limit of mobility (~1800 cm2/V·s) and reasonable energy bandgap (~1.2 eV) for a high on/off ratio. Although several reports concerning the electron mobility of MoS$_2$ suggested the existence of several other scattering mechanisms, we understand that comparison of the mobilities in TMDs using the uniform calculation method will aptly represent the relative trend among these mobilities. Additionally, large electron affinity of HfS$_2$ has a possibility to achieve low contact resistance for n-type carrier transport because of basic principle of the contact formation between semiconductors and metals. Consequently, we planned to experimentally evaluate the FET performance of HfS$_2$ and reveal its potential for transistor channel. In addition, the other properties of thin-layered HfS$_2$ have not been thoroughly investigated, and we report some basic characteristics of atomically thin-layered HfS$_2$ essential for fabrication and characterisation.

Results and Discussion

Estimation of the ballistic current for single-layer HfS$_2$. Prior to the experiment, the ballistic current of a single-layer HfS$_2$ FET was calculated using a simple numerical method at the potential bottleneck to

Figure 3. Micromechanical exfoliation of HfS$_2$. (a) Single crystal piece of HfS$_2$. (b) Mechanical cleavage of HfS$_2$ using the ‘scotch tape’ method. The upper images show thicker layers, which were thinned by continuous exfoliations. (c) HfS$_2$ transferred to 285-nm-thick SiO$_2$ deposited on Si substrate. (d) Raman spectrum of the thin-film HfS$_2$ on SiO$_2$/Si substrate. Primary A_{1g} peak is observed at 337 cm$^{-1}$ with some satellite peaks.
Figure 4. Optical image and AFM profiles of HfS$_2$/Al$_2$O$_3$. Clear optical contrasts depending on the flake thickness are observed except in the thinnest region.

evaluate the potential of the HfS$_2$ channel. The electron effective masses, which are essential for this numerical calculation, were 0.24 m_e along the M–K and 3.3 m_e along the M–Γ124. The several assumptions used in the ballistic model were as follows: (1) the electron backscattering in the channel and drain injection is negligible for the ballistic limit. Therefore, only half of the states with positive wave numbers are considered. (2) The electron distribution thickness in the HfS$_2$ layer is not considered. In other words, all electrons exist at the interface between the oxide and HfS$_2$. (3) Parabolic and ellipsoidal conduction bands are assumed for threefold valleys at the M points in the Brillouin zone. (4) The equivalent oxide thickness is defined to be 1 nm. Further details of calculations are described in supplementary information. Figure 2(a) shows the current distribution in the 2D first Brillouin zone by the contour plot at 300 K. The arrows in the inset denote the direction of the channel selected with high symmetry (M–Γ and M–K). Figure 2(b) shows the calculated transfer characteristics of single-layer HfS$_2$ at room temperature (RT). The off current at a gate voltage of 0 V was defined to be 100 nA/μm. Although the electrons in the conduction band had strong anisotropy in the effective masses, the drain current did not indicate a significant difference in the channel direction because of the mixing of the threefold valleys with an angle of 120° from one another. It reached to 2 mA/μm at the gate voltage of 0.6 V.

Basic properties of HfS$_2$ flakes micromechanically transferred on Al$_2$O$_3$/Si. Figure 3(a) shows a piece of single-crystal HfS$_2$, which is commercially available with high orientation and purity. We performed mechanical exfoliation using scotch tape to obtain thin-film HfS$_2$ on the substrate. First, a small piece of HfS$_2$ was spread on the tape and then cleaved several times to reduce its layer thickness to an average size, as shown in Fig. 3(b). Thickness-dependent colour contrast was distinctly observable. Figure 3(c) shows the optical image of the exfoliated thin-film HfS$_2$ on a 285-nm-thick SiO$_2$/Si substrate. Triangular or hexagonal shape often appeared in the flakes. These cleaved edges indicate the crystal orientation of the exfoliated HfS$_2$. Incidentally, hexamethyldisilazane (HMDS) treatment helps in peeling a large size (>10 μm) atomically thin flake. The Raman spectrum of the thin HfS$_2$ layers (<10 nm) on the SiO$_2$/Si substrate with the excitation wavelength of 532 nm is shown in Fig. 3(d). The primary peak appeared at the Raman shift of approximately 337 cm$^{-1}$, and it was consistent with the previous experimental report of bulk HfS$_2$ that showed a first-order A$_{1g}$ peak28. Satellite peaks at 260 and 321 cm$^{-1}$ were also considered as E$_{2g}$ mode. These results indicate that single-crystal layers with well-aligned atoms remained intact during exfoliation and organic solvent cleaning. At this time, no remarkable change was observed from the bulk to the thin films. The visibility of the atomically thin HfS$_2$ layers could be strongly dependent on the thickness and permittivity of the flake and the insulator, as reported in graphene29 and MoS$_2$30. Figure 4 shows the optical microscope and the atomic force microscope (AFM) image (inset) with cut line profiles. The steps between the different contrast layers were approximately 0.7 nm/1.4 nm, and they appeared to be single/double atomic steps. On the 75-nm-thick Al$_2$O$_3$, the contrast in the single-layer HfS$_2$ was too weak to form electrodes using the alignment technique. However, several layers of HfS$_2$ were clearly observable by the optical microscope, and the thicknesses could be easily identified by the colour of the flakes.

HfS$_2$ has a CdI$_2$-like octahedral coordinated layered structure with an atomic layer thickness of 0.59 nm31 (Fig. 5(a)). The Hf atoms (blue spheres) are sandwiched by S atoms (yellow spheres), and the Hf atoms in each plane are stacked at the same position (1T, tetragonal symmetry). This crystal structure is different from that of MoS$_2$, which typically has a trigonal prismatic coordinate with ZH symmetry. The schematic image of a fabricated FET with proper biases is shown in Fig. 5(b). The thin-body channel contains several atomic layers that were transferred onto the atomic layer deposited 75-nm-thick Al$_2$O$_3$/$p^+ - $Si(100) substrate. At first, we fabricated by used plasma-enhanced chemical vapour-deposited (PECVD) SiO$_2$ (285 nm) as back-gate insulator for the first time. However, it could not work with clear current modulation by the back gate due to the small gate capacitance, high-density charge trapping and surface roughness caused due to PECVD SiO$_2$ (please see supplementary Information Fig. S3). Au/Ti electrodes were fabricated on thin-film HfS$_2$ as source and drain contacts. The source electrode was connected to the ground, and the drain electrode was positively biased with respect to the source.
(V_{DS}). Back-gate voltage V_{GS} was applied to the p^{++}-Si substrate. The optical microscope measurement suggested channel width and length of 10 μm (at the source edge) and 2 μm, respectively (Fig. 5(c)). From the cross-sectional height profile measured by AFM shown in Fig. 5(d), the thickness of the HfS₂ channel was approximately 3.8 nm, which was composed of 6 ± 1 atomic layers.

Figure 5. Device structure of fabricated HfS₂ FET. (a) Crystal structure of HfS₂. (b) Schematic of the device structure. The 3.8-nm-thick HfS₂ layers were exfoliated on 75-nm-thick Al₂O₃, which was atomic layer-deposited on the degenerately doped p^{++}-Si substrate. (c) Optical image of the fabricated HfS₂ FET device. The channel length and width at the source edge are estimated to be approximately 2 and 10 μm, respectively. (d) Height profile of the channel layer obtained by AFM. The thickness is approximately 3.8 nm, which suggests that the channel contains approximately six atomic layers of HfS₂.

Back gate operation of the HfS₂ FET. Figure 6(a) shows the output characteristics of fabricated few-layer HfS₂ FETs at RT. Clear saturation behaviour is observed in the I_D–V_{DS} curves for all V_{GS} biases and V_{DS} sweep (0–5 V). The robust current saturation at high V_{DS} (5 V) indicates that the HfS₂ bandgap is sufficient for short-channel FET fabrication. I_D continuously increments over the measured V_{GS} range. Unfortunately, our measurement system was not able to apply the voltage of over 40 V. A fully n-type enhancement mode operation with a threshold voltage greater than 8 V was observed. The I_D–V_{DS} curves at the small bias regime showed linearity without offset bias. Although the instability of the I–V curves depends on the measurement cycles and sweep conditions, current modulations are constantly obtained for over a month in the atmosphere. The I_D–V_{GS} (transfer) characteristics with logarithmic (left-hand side) and linear (right-hand side) scales for V_{DS} = 3 V are also shown in Fig. 6(b). A maximum drain current of 0.2 μA/μm was obtained at V_{GS} = 40 V. The on/off ratio was over 10,000 when the V_{GS} was varied from −5 V (off state) to 40 V (on state). These results were partially reported in ref. 32. The effective mobility of electrons was calculated to be around 0.1 cm²/V.s which is far smaller than the theoretical expectation. It was probably limited by many intrinsic and parasitic components such as the carrier...
scattering, quality of flakes, contact resistance and charge trapping. This device had a large hysteresis (~15 V) (please see supplementary Information Fig. S4), which could have been caused by the response of the traps at the interface between HfS$_2$ and Al$_2$O$_3$ or border/oxide traps in the bulk Al$_2$O$_3$. The gate leakage current I_G is also plotted in logarithmic scale, which shows that I_G is comparable with I_D for higher values of V_{GS}. Therefore, the on current and other performance of the present device can be improved by efficient modulation of the surface potential using a thinner gate dielectric with good interface properties.

Electric double layer transistor with HfS$_2$ channel. The gate-induced carrier density in the HfS$_2$ channel was limited by the back-gate properties such as interface/bulk charge trapping. To evaluate the potential of HfS$_2$, we introduced the electric double-layer (EDL) gate structure33 for device measurement. Schematics of the carrier density modulation by back gate and EDL are shown in Fig. 7(a). In the case of Al$_2$O$_3$ back gate, the gate electric fields pass through the thick insulator and are partially terminated at the immobile charges. On the other hand, in the case of EDL operation, anions and cations (ClO$_4^-$ and Li$^+$ respectively) can freely move in the electrolyte. These ions form the EDL with carriers in semiconductors and metals, and the electric field is localized near the surface (~5 nm). Therefore, the large gate capacitance was expected without the charge trapping. Moreover, the surface of the TMD does not have both dangling bond and disorder of atoms. The combination of TMD and electrolyte gate can potentially realise an ideal interface between the semiconductor and dielectric and efficient carrier modulation34. Figures 7(b,c) show the schematic device structure and transfer characteristics, respectively, of a fabricated HfS$_2$ EDL transistor. LiClO$_4$/PEO mixture was employed as an electrolyte gel.
for gate modulation. This time, the gate-contact electrode was far from the channel region and its area was not sufficiently large. Therefore, the effective gate voltage was smaller than the measured value (probably half or less). The measured drain current was over 0.75 mA/μm at $V_{DS} = 2$ V and $V_{GS} = 5$ V at RT. The I_D significantly increased from the back-gate operation and was notably high at the TMD channel in spite of the non-scaled channel length (1 μm). The maximum current density of a conventional TMD FET with a solid gate structure is approximately 0.5 mA/μm for MoS$_2$, and it is limited by the contact resistance between MoS$_2$ and the metal. The high drain current observed in this study indicates the superior potential of the low contact resistivity of HfS$_2$. The relative hysteresis against the bias range was significantly reduced by the EDL gate. It means that the density of trap charges in EDL gate was far smaller than that of Al$_2$O$_3$ back gate. Improvement in back gate insulator would increase the drain current and reduce the hysteresis. The remaining hysteresis of the EDL transistor appeared to be caused by the response time of the anions and cations in the electrolyte. According to the magnitude of the gate current, the drain current might not depend on the electrochemical reaction at the electrode surface. The effective mobility of EDL device was roughly estimated to be 45 cm2/Vs from the peak g_m by the assumption that the permittivity of the electrolyte is $5\varepsilon_0$ and the EDL thickness is 1 nm. It was clearly improved from the back-gate operation. However, the mobility is still smaller than the expected value (>1,000 cm2/V·s). One of the reasons can be attributed to the gate structure not being large enough for the voltage drop in the EDL to be negligible at the gate side. Therefore, the actual gate voltage for the channel EDL is less than the applied value. The accurate estimation of the contact resistance of Ti/HfS$_2$ contact was difficult for this device. According to the maximum value of I_D and applied V_{DS} on resistance was 2.7 kΩ·μm at most. The on resistance is comparable to the typical contact resistance of other many materials. Further evaluations and improvements is required to verify the potential of the HfS$_2$ as the channel material.

Figure 7. Schematics and I-V characteristics of an electric double layer transistor. (a) Carrier density modulation by the back gate and EDL. (b) Fabricated EDL transistor. PEO:LiClO$_4$ electrolyte gel is used for the EDL gate. (c) Transfer characteristics at $V_{DS} = 2$ V. The maximum drain current is 0.75 mA/μm at $V_{GS} = 5$ V.
Conclusion

In conclusion, we have demonstrated the fabrication and I–V characteristics of few layer HfS$_2$ FETs. Mechanical exfoliation using scotch tape provided an atomically thin HfS$_2$ single-crystal layer with reasonable Raman spectrum and optical contrast with several number of layers. For a channel thickness of 3.8 nm and back gate bias, robust saturation behaviour and a drain current of 0.2 μA/μm were observed with high on/off current ratio (>104). Moreover, EDL gate operation obtained the significant increase of the drain current (~0.75 mA/μm). This improved property seemed to indicate the intrinsic performance of HfS$_2$. These results provided basic information of HfS$_2$ as electronic devices, and the attractive properties considered as significant for ultra-low power applications were experimentally demonstrated.

Materials and Methods

Fabrication Process. Initially, 75-nm-thick Al$_2$O$_3$ was deposited on p$^+$$-$$Si$ (ρ < 0.001 Ω·cm) by thermal atomic layer deposition system (Ultratech/Cambridge Nanotech Savannah S100) as a back-gate insulator. Next, HfS$_2$ flakes were mechanically exfoliated from the highly oriented crystal with high purity (99.995%, HQ mal atomic layer deposition system (Ultratech/Cambridge Nanotech Savannah S100) as a back-gate insulator.

In conclusion, we have demonstrated the fabrication and I–V characteristics of few layer HfS$_2$ FETs. Mechanical exfoliation using scotch tape provided an atomically thin HfS$_2$ single-crystal layer with reasonable Raman spectrum and optical contrast with several number of layers. For a channel thickness of 3.8 nm and back gate bias, robust saturation behaviour and a drain current of 0.2 μA/μm were observed with high on/off current ratio (>104). Moreover, EDL gate operation obtained the significant increase of the drain current (~0.75 mA/μm). This improved property seemed to indicate the intrinsic performance of HfS$_2$. These results provided basic information of HfS$_2$ as electronic devices, and the attractive properties considered as significant for ultra-low power applications were experimentally demonstrated.

Measurement Systems. The thickness of the HfS$_2$ thin films were evaluated by AFM (Veeco Nanoscope III). All DC characteristics reported in this letter were measured by an Agilent 4155B semiconductor parameter analyser.

References

1. Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits SC-9, 256–268 (1974).
2. Fjellby, T. A. & Shur, M. Threshold Voltage Modeling and the Subthreshold Regime of Operation of Short-Channel MOSFETs. IEEE Trans. Electron Devices 40, 137–143 (1993).
3. Uchida, K. & Takagi, S. Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistor. Appl. Phys. Lett. 82, 2916–2918 (2003).
4. Kim, S. H. et al. Experimental study on electron mobility in In$_2$Ga$_{4-x}$As-on-insulator metal–oxide–semiconductor field-effect transistors with in content modulation and MOS interface buffer engineering IEEE Trans. Nanotechnology 12, 621–628 (2013).
5. Lee, C. H. et al. Characterization of electron mobility in ultrathin body germanium-on-insulator metal-insulator-semiconductor field-effect transistors. Appl. Phys. Lett. 102, 232107 (2013).
6. Jin, S., Fischetti, M. V. & Tang, T.-W. Modeling of surface–roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans. Electron Devices 54, 2191–2203 (2007).
7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
8. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
9. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
10. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
11. Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).
12. Wang, H., Wu, Y., Cong, C., Shang, J. & Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 4, 7221–7228 (2010).
13. Xia, F., Farmer, D. B., Lin, Y. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters 10, 715–718 (2010).
14. Chang, T. Y., Chen, J., Ko, P. K. & Hsu, C. The impact of gate-induced drain leakage current on MOSFET scaling. IEDM Tech. Dig. 1987, 718–721.
15. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS$_2$ transistors. Nature Nanotech 6, 147–150 (2011).
16. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS$_2$ crystals. Nature Nanotech. 3, 1011 (2012).
17. Fang, H. et al. High-Performance Single Layer WS$_2$ p-FETs Chemically Doped Contacts. Nano Lett. 12, 3788–3792 (2012).
18. Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WS$_2$ field effect transistors. Nano Letters 13, 1983–1990 (2013).
19. Liu, H. et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4034–4041 (2014).
20. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).
21. Conway, L. E. & Park, K. C. Electrical properties of the Group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide. Inorg. Chem. 7, 459–463 (1968).
22. Wieting, T. J. Electrical conductivity of thin single crystals of the IVB–VIB dichalcogenides. J. Phys. and Chem. of Solids 31, 2148–2151 (1970).
23. Zhang, W., Huang, Z., Zhang, W. & Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Research 7, 1731–1737 (2014).
24. Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).
25. Li, X. et al. Intrinsic electrical transport properties of monolayer silicon and MoS$_2$ from first principles. Phys. Rev. B 87, 115418 (2013).
26. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).
27. Natori, K. Ballistic metal–oxide–semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).
28. Cingolani, A., Lugara, M. & Lévy, F. Resonance Raman scattering in HfSe$_2$ and HfS$_2$. Physica Scripta 37, 389–391 (1988).
29. Blake, P. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).
30. Castellanos-Gomez, A., Agrait, N. & Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 26, 1445–1458 (1965).
31. Greenaway, D. L. & Nitsche, R. Preparation and optical properties of Group IV–VI2 chalcogenides having the CdI2 structure. *J. Phys. Chem. Solids* **96**, 213116 (2010).
32. Kanazawa, T. *et al.* Fabrication of Thin-Film HfS2 FET. *Proc. Device Research Conf.* 217–218 (2015).
33. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. *Phys. Chem. Chem. Phys.* **15**, 8983 (2013).
34. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 Thin Flake Transistors. *Nano. Lett.* **12**, 1136 (2012).

Acknowledgements

The authors would like to thank Prof. M. Watanabe for the advice and support on AFM measurement and S. Tamura for the technical support with the electron-beam lithography. This work was supported by Strategic Information and Communications R&D Promotion Programme (SCOPE) of Ministry of Internal Affairs and Communications (MIC).

Author Contributions

T.K., T.A., A.I., V.U. and Y.M. conceived and designed the experiments. T.K. and V.U. fabricated the samples. T.K. and V.U. carried out the DC measurement. A.I. and T.T. performed the total-reflection Raman spectroscopy measurement. T.K., A.I., V.U. and T.T. carried out the AFM measurement. A.I. and K.T. contributed to the electrolyte-gate device fabrication. T.K., T.A., A.I., V.U. and Y.M. wrote the paper. T.A. and Y.M. organise the research group. All authors discussed the results and commented on the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kanazawa, T. *et al.* Few-layer HfS2 transistors. *Sci. Rep.* **6**, 22277; doi: 10.1038/srep22277 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/