mRNA quantification and clinical evaluation of telomerase reverse transcriptase subunit (hTERT) in intracranial tumours of patients in the island of Crete

A Yannopoulos1, E Dimitriadis2, A Scorilas3, T Trangas2, E Markakis1 and M Talieri*4

1Department of Neurosurgery, University Hospital of Heraklio, Heraklio, Crete, Greece; 2Department of Genetics, Saint Savas Hospital, Athens, Greece; 3Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens 15711, Greece; 4G. Papanicolaou Research Center of Oncology, ‘Saint Savas’ Hospital, Athens 11522, Greece

Telomerase is a reverse transcriptase that maintains telomeres by adding telomeric TTAGGG repeats to the ends of human chromosomes. The aim of this study was to evaluate quantitatively the mRNA expression of telomerase catalytic subunit (hTERT) in different types of intracranial tumours in relation to their histologic pattern and grade and correlate it with progression-free (PFS) and overall survival (OS) of patients. Human telomerase reverse transcriptase mRNA levels were estimated by the use of real time RT–PCR in 68 samples of intracranial tumours. It revealed statistical correlation between hTERT mRNA expression levels and the grade of the tumours (P<0.001). Patients having negative expression of hTERT mRNA had statistically longer PFS (P = 0.031) and OS (P = 0.047). Cox univariate regression analysis revealed that hTERT mRNA-positive patients had a high and statistically significant risk of relapse (hazard ratio (HR) of 2.24 and P = 0.038). In the Cox multivariate regression model, the levels of hTERT mRNA were adjusted for tumour grade and patients age, and since there was statistically significant relationship between the levels of hTERT mRNA and the grade of the tumours (P = 0.003 or P = 0.006, respectively), hTERT mRNA levels could not be considered as an independent prognostic factor for PFS or OS.

British Journal of Cancer (2005) 93, 152 – 158. doi:10.1038/sj.bjc.6602642 www.bjcancer.com

Keywords: brain tumours; hTERT; real-time PCR; malignant gliomas; meningiomas; prognosis

Most eukaryotic cells that can divide in vivo cannot do so indefinitely. The process that limits the proliferative potential of cells has been termed cellular or replicative senescence. The mechanism by which cells sense the number of divisions they have completed appears to depend, at least in part, on the length of their telomeres (Campisi, 1997). Telomeres are long repetitive nucleotide sequences at both ends of chromosomes that consist of hundreds to thousands of tandem repeats of the sequence TTAGGG. Their primary role is to protect chromosome ends from recombination, fusion and DNA degradation. Telomeres shorten progressively with each round of cell division as a result of the inability of DNA polymerases to replicate the 5′ end of linear DNA, and erosion of these sequences beyond a critical point is thought to signal cell cycle arrest and entry into cellular senescence (O’Reilly et al, 1999). Telomerase is a ribonucleoprotein polymerase composed of an integral RNA component (hTR) (Feng et al, 1995) and several protein components, including the reverse transcriptase subunit human telomerase reverse transcriptase (hTERT) (Kilian et al, 1997; Nakayama et al, 1998). The RNA component hTR contains the template for the reverse transcription of telomeres, and hTERT is the reverse transcriptase that catalyses this reaction. The RNA component hTR and hTERT are indispensable for telomerase activity, and expression of these subunits in vitro leads to the formation of a functional telomerase enzyme (Weinrich et al, 1997; Counter et al, 1998; Nakayama et al, 1998). In vertebrate organisms, telomerase activation is a mechanism known to stabilise the loss of telomeres. Most somatic cells, regardless of their rate of proliferation undergo a steady-state rate of telomere loss and do not possess detectable telomerase activity. In contrast, all immortal cells examined to date show no loss of telomere length or sequence with division, suggesting that maintenance of telomeres is required for cells to escape from replicative senescence and proliferate indefinitely (Kim, 1997; Dhaene et al, 2000). Recent studies in which the gene encoding hTERT was introduced into normal human cells that lack hTERT resulted in reconstitution of telomerase activity, maintenance of telomeres, extension of replicative capacity and transformation of normal cells into cancer cells (Hahn et al, 1999). In humans, telomerase has been detected in most types of cancer, including those of the brain (Kotoula et al, 2004; Novakovic et al, 2004; Snuders et al, 2004), suggesting a role for telomerase in sustaining proliferative capacity to cells, which is a requirement for progression towards malignancy. It is usually not detected in normal somatic cells, except for proliferating stem cells, during embryonic development, and in adult germline tissues.

Malignant gliomas account for the largest number of primary brain tumours in adults. Even with best conventional therapy, the
prognosis is poor. Most patients do not survive beyond 1 year after
the diagnosis of glioblastoma multiforme, for more than 5 years
with anaplastic astrocytoma, and usually for not more than 10
years with oligodendroglioma. Brain tumours were one of the first
systems in which telomerase activity was assessed as a marker of
malignancy (Langford et al, 1995). To date, it is generally accepted
that high telomerase activity levels characterise high-grade gliomas
(Langford et al, 1995; Falchetti et al, 1999; Huang et al, 1999; Harada et al,
2000; Sugita et al, 2000); however, there is no agreement on the
distinctive or prognostic value of this parameter (Kleinschmidt-
Demasters et al, 2000), while telomerase positivity rates vary
extensively among the different studies (23.6–100%) (Langford
et al, 1995; Chong et al, 1998; Le et al, 1998; Falchetti et al, 1999;
Huang et al, 1999; Harada et al, 2000; Kleinschmidt-Demasters
et al, 2000; Sugita et al, 2000).

Meningiomas are estimated to constitute up to 25% of primary
intracranial tumours (Kleihues and Cavenee, 2000). They are
typically benign tumours, but the incidence of growth at
inoperable sites and recurrence complicate surgical management.
The limited understanding of aetiology and growth of these
tumours has hindered the development of an adjuvant therapy.
The hypotheses that reactivation of telomerase is required to
maintain tumour growth (Kim et al, 1994) or may play a critical
role in the progression or maintenance of the malignant phenotype
(Rhyu, 1995) are in conflict with findings in benign meningiomas.
Several studies have reported that telomerase activity is present in
the vast majority of malignant brain tumours, while enzyme
activity could not be detected in benign meningiomas (Carroll
et al, 1999; Falchetti et al, 1999; Hiraga et al, 1999; Sano et al, 1998;
Cabuy and de Ridder 2001; Boldrini et al, 2003).

In the present study, the expression level of hTERT mRNA was
determined by the method of real-time quantitative RT–PCR in a
cohort of 68 intracranial tumours, consisting of 34 malignant
gliomas, 18 meningiomas, seven metastatic tumours to the brain
and seven miscellaneous intracranial tumours. Real-time quanti-
tative RT–PCR methodology is a modern technique that can
provide significant and quantitative information about gene
transcripts in an automated, rapid, versatile and cost-effective
way. Furthermore, the present study examines exclusively Greek
population leaving permanently through out their lives at the
island of Crete.

MATERIALS AND METHODS

Patients and samples

The 68 brain tumour samples used in this study were resected
surgically from 67 patients at the Department of Neurosurgery of
the University Hospital of Heraklion, Crete, between 1999 and
2003. Follow-up information was available for 60 of them.
Histologic diagnoses and grading of tumours were made based
on the revised World Health Organization (WHO) classification of
brain tumours (WHO, 2000). A total of 36 samples were
neuroepithelial tumours (17 glioblastomas multiforme (grade IV);
four astrocytomas (five grade I, one grade II, two grade
III)); two myeloblastomas (grade IV); three oligodendrogliomas
(grade III)); two ependymomas (one grade I and one grade II); four
neurinomas (one central neurinoma grade I and three acoustic
neurinomas, grade I)); 18 samples were meningial tumours
(meningiomas); seven miscellaneous brain tumours (one pituitary
adenoma; one non-Hodgkin B-lymphoma; one osteoma; one
cholesteatoma; one hemangioblastoma; one choroid plexus
papilloma; one non-specific inflammation) and seven metastatic
brain tumours (four from lung adenocarcinoma, two from breast
adenocarcinoma and one from melanoma) (Table 1). For a recurrent
glioblastoma multiforme case, both primary and recurrent
tumour was examined. In addition, adjacent normal brain
tissues, which were obtained by corticotomy while attempting to
reach the tumours of two primary glioblastomas multiforme
patients, were used as controls. The controls were sufficiently
separated from the tumours and appeared normal to the naked
eye. All cases under study came from total surgical removal. No
chemotherapy or radiotherapy was administered before surgery.
Investigations were carried out in accordance with the ethical
standards of the Helsinki Declaration of 1975, as revised in 1983.
Informed consent was obtained from all patients for the scientific
analysis of tumour samples.

Specimens for the analysis of hTERT and histologic observation
were taken from the same general region of the tumour during
surgery. Immediately after surgery, the samples were snap-frozen
and stored in liquid nitrogen until RNA extraction. Furthermore,
the patient with the recurrent glioblastoma multiforme was
previously irradiated locally with a dose of 60 gray (Gy) and
given 3 mg m⁻² dose of cisplatin. All patients with primary
glioblastoma multiforme and anaplastic astrocytoma also under-
went irradiation and were given cisplatin (2–4 mg m⁻²) after
surgery.

Total RNA isolation

Total RNA isolation was performed using the Trizol LS reagent
(Invitrogen; Carlsbad, CA, USA) according to the manufacturer’s
instructions. All of the preparation and handling steps of RNA
took place in a laminar flow hood, under RNAse-free conditions.
The isolated RNA was dissolved in RNA storage buffer (Ambion;
Houston, TX, USA) and stored at −80°C until used. RNA
centrification was determined by absorbance readings at 260 nm
with the HITACHI UV-VIS (U-2000) spectrophotometer. RNA
Molecular Diagnostics

154

integrity was tested by PCR amplification of the b-actin housekeeping gene, as we described previously (Spiropoulou et al, 2004).

Real-time RT – PCR for hTERT mRNA quantification

Human telomerase reverse transcriptase mRNA was quantified by the use of the LightCycler, Telo TAGGG hTERT quantification kit on a Light Cycler (both from Roche Molecular Biochemicals; Mannheim, Germany) according to the manufacturer’s instructions.

In short description, telomerase (hTERT)-encoding mRNA was reversed transcribed and a 198 bp fragment (corresponding to the full-length hTERT transcript) of the generated cDNA was amplified with specific primers in a one-step RT – PCR reaction. The amplicon was detected by fluorescence using a specific pair of hybridisation probes. The hybridisation probes consist of two different short oligonucleotides that hybridise to an internal sequence of the amplified fragment during the annealing phase of the amplification cycle. One probe is labelled at the 5'-end with LightCycler-Red 640, and to avoid extension, modified at the 3'-end by phosphorylation. The other probe is labelled at the 3'-end with fluorescein. The emitted fluorescence of LightCycler-Red 640 was then measured at the instrument LightCycler. In a separate one-step RT–PCR, mRNA, encoding for porphobilinogen deaminase (PBGD), was processed for use as a house-keeping gene. The reaction product served both as a control for RT–PCR performance and as a reference for relative quantification. During initial optimisation of PCR conditions, amplified products were analysed using agarose gels to ensure correct product size. Once the PCR product was determined with Light Cycler melting-curve analysis, it was used to control for the specificity of amplifications. The number of transcripts in samples was calculated with the LightCycler software, using the calibration data obtained from serial dilutions of purified PCR products containing known numbers of cDNA molecules of each gene (Figure 1). The results of real-time PCR were given as the ratio between hTERT and PBGD transcripts, expressed as a percentage and converted to arbitrary units by division by 1000. All experiments were performed in duplicate, with good consistency of results (the mean coefficient of variation was 9.5%). All samples were analysed in a blind-trial fashion.

Statistical analysis

A Cox proportional hazard regression model (Cox, 1972) was developed to evaluate the association (i.e. hazard ratio and its confidence interval) between the potential prognostic marker and progression-free (PFS) or overall survival (OS). This analysis was conducted at both univariate and multivariate levels. The multivariate model was adjusted for hTERT mRNA expression in tumours, tissue grade and patients age. Survival analysis was performed by constructing Kaplan–Meier PFS and OS curves (Kaplan and Meier, 1958) for hTERT-positive and hTERT-negative patients, and the log-rank test was used to compare survival between subgroups of patients. Progression-free survival was defined as the time interval between the date of surgery and the date of identification of recurrent or metastatic disease. Overall survival was defined as the time interval between the date of surgery and the date of death. Other analyses of statistical links between biological and clinical parameters were performed using standard tests.

RESULTS

We studied 68 intracranial tumours for the presence of hTERT mRNA using a real-time RT – PCR. Table 1 presents the classification of the samples examined in the study according to WHO histologic criteria and the percentage of detectable hTERT mRNA expression in them. The percentage of patients with detectable hTERT mRNA expression is markedly increased with enhanced malignancy (P < 0.001, Table 4): hTERT mRNA expression was detected in eight out of 33 samples of low malignancy (24.2%), in 19 out of 27 samples of high malignancy (70.4%) and in five out of seven samples metastatic to the brain (71.4%) (Table 2). Patient age ranged from 1 to 76 years with a mean of 48.6 ± 2.54; human telomerase reverse transcriptase arbitrary units ranged from 0.018–19.97 with a mean of 1.44 ± 0.42 (Table 3). The detection limit of hTERT was found to be 0.036 arbitrary units and half of this value (0.018 arbitrary units) was used for the estimation of negative values for hTERT mRNA. Enlistment of samples as positive or negative (Table 4) was calculated with the Kruskal – Wallis test, Figure 2 shows that there is a statistically significant correlation (P < 0.001) between hTERT mRNA expression and the grade of the tumours. Progression-free survival probability is significantly lower for patients having positive hTERT expression (P = 0.031) (Figure 3). Overall survival is significantly lower for patients with positive hTERT expression (P = 0.047) (Figure 4). Cox univariate regression analysis shows that hTERT-positive patients had a high and statistically significant risk for relapse (hazard ratio (HR) = 2.24, P = 0.038, respectively) (Table 5). Human telomerase reverse transcriptase values were adjusted for tumour grade and patients age in order to construct the Cox multivariate regression model. Since statistically significant relationship was found between hTERT mRNA and tumour grade (P < 0.001), hTERT mRNA could not be considered as an independent prognostic factor for PFS or OS of patients having intracranial tumours.

DISCUSSION

It seemed reasonable that telomerase expression might be a useful new prognostic marker in brain tumours, based on numerous studies in the literature on its prognostic implications in other tumour types, like breast, colorectal, endometrial, cervical or ovarian cancer. These studies come to diverse conclusions as to whether telomerase expression has prognostic utility and emphasise that the question needs to be addressed for each individual tumour type. The present study examines intracranial tumours of different histotypes as they presented randomly to the Neurosurgery Department of the University Hospital of Heraclio at the island of Crete, between the years 1999 and 2003. Most previous studies for hTERT expression have employed qualitative rather than quantitative methods. In regard to brain tumours, Langford et al (1997) observed a highly significant correlation in ordinary meningiomas between the presence of telomerase activity and a poor prognosis for the patient, a finding that was corroborated by Falchetti et al, 1999. In line with this, Boldrini et al (2003) reported a significant association between telomerase activity and hTERT mRNA expression, both tending to increase as the histologic grading of meningiomas increased, suggesting a role of telomerase reactivation in the progression of these tumours. In the present study, four out of 18 meningiomas and three out of eight grade 1 meningiomas were positive for hTERT mRNA expression (data not shown), suggesting also a trend for increased expression with histologic grading of meningiomas. On the other hand, studies by Falchetti et al (1999), Harada et al (2000), Cabuy and de Ridder (2001) and Tchirkov et al (2003) have generated conflicting results regarding the prognostic utility of telomerase expression in meningiomas and gliomas (predominantly of high grade).

In this study, we measured the hTERT mRNA level in 68 intracranial tumours using a recently introduced real-time quantitative PCR technique. We found a progressive increase in
the hTERT detection rate with increasing levels of malignancy ($P < 0.001$) (Table 4). Present data are coarsely in agreement with the detection rates of telomerase activity reported for similar tumour types (DeMasters et al., 1997; Hiraga et al., 1998; Le et al., 1998; Harada et al., 2000; Sugita et al., 2000). The correlation of hTERT mRNA expression with the level of malignancy is highly specific when comparing as a group the more aggressive tumours (gliomas and metastatic tumours) and tumours regarded usually as benign (meningiomas, neurinomas) ($P = 0.001$) (Table 4). This association is in line with the demonstration of a similar association at the level of hTERT-protein overexpression (Chakravarti et al., 2001). Among patients with detectable levels of hTERT mRNA, the amount of hTERT transcripts was significantly higher among glioblastoma patients as well as patients with metastatic tumours to the brain in comparison to patients with other tumour histotypes (data not shown). Unfortunately, the small number of samples present in each category does not allow separate statistical correlation for patients operated for neuroepithelial, meningial or...
metastatic tumours with their survival. Nevertheless, not all glioblastomas or all of metastatic tumours to the brain were found to express hTERT transcripts. Similar results have been reported from other authors. Tchirkov et al (2003), using the same method, reported hTERT mRNA-positive expression in 69.8% of glioblastoma multiforme samples, when in the present study we found 66.6%. Kleinschmidt-DeMasters et al (2000) analysed by the TRAP method and found hTERT expression in 89% of glioblastoma samples. All of those results are discordant with the conclusion of Falchetti et al (1999) that the assessment of telomerase activity influence tumour prognosis in malignant gliomas. Kleinschmidt-DeMasters et al (2000) addressed this question by analysing quantitatively two to three regions from each tumour and found three-fold regional variation in telomerase levels within the same tumour. They concluded that even in glioblastomas that show positivity for telomerase expression, there is variability in the level of telomerase expression from region to region within the tumour. They observed that areas of tissue were negative for telomerase expression when they contained small number of tumour cells. Some negative telomerase-expressing glioblastoma or metastatic samples of our study possibly are taken from infiltrating edge of tumours, where smaller numbers of tumour cells were present relative to reactive or normal tissue or from areas with extensive necrosis. Two out of the seven metastatic brain tumours examined in the present study were negative for hTERT mRNA expression.

Table 2
Classification of tumours examined for human telomerase reverse transcriptase (hTERT) mRNA expression according to their histologic malignancy status

Low malignancy	+ hTERT mRNA expression	
Meningiomas	18	4
Neurinomas	4	1
Ependymoma (grade I)	1	0
Astrocytoma (grade I)	5	1
Haemangioblastoma	1	0
Osteoma	1	0
Lipoma	1	1
Cholesteatoma	1	1
Choroid plexus papilloma	1	0
Total	33	8

High malignancy	+ hTERT mRNA expression	
Glioblastoma	17	10
Myeloblastoma	2	2
Ependymoma (grade II)	1	1
Astrocytoma (grade II or III)	3	3
B-lymphoma non-Hodgkin	1	1
Oligodendroglioma	3	2
Total	27	19

Nonspecific inflammation	+ hTERT mRNA expression	
	1	0

Metastatic from other tissues	+ hTERT mRNA expression	
	7	5

Table 3
Descriptive statistics of continuous variables of the study

Variable	Mean ± s.e.	Range	(Median)
hTERT (arbitrary units)	1.44 ± 0.42	0.018–19.97	0.018
Age (years)	48.6 ± 2.54	1–76	32.2

*aStandard error.

Table 4
Human telomerase reverse transcriptase (hTERT) mRNA (arbitrary units) distribution in low and high malignant potential brain tumours

Tumour	Mean ± s.e.	Median	Range	P-value*b
Primary low malignant brain tumours (N = 33)	0.31 ± 0.20	0.017	0.018–6.13	
Primary high malignant brain tumours (N = 27)	2.11 ± 0.68	0.37	0.018–14.06	<0.001
Metastatic high malignant brain tumours (N = 7)	4.54 ± 2.76	1.16	0.018–19.97	

*aStandard error. *bCalculated by Kruskal–Wallis test.
whenever the positive samples showed a great variability in the expression levels of hTERT mRNA. The time interval to demise for all patients with metastatic tumours was from 6 to 12 months (data not shown). Although the number of metastatic brain tumours in the present study is small, there is a similarity with the results of Kleinschmidt-DeMasters et al. (1998) reporting a four-fold logarithmic variability but no correlation with tumour type or interval to demise.

In conclusion, the present study revealed statistical correlation between hTERT mRNA expression levels and the grade of the tumours (examined regardless of their histotypes) ($P < 0.001$) (Figure 2). In our study, patients of all histological types having negative expression of hTERT mRNA had statistically longer PFS ($P = 0.031$) (Figure 3) and OS ($P = 0.047$) (Figure 4). Cox univariate regression analysis showed that hTERT mRNA-positive patients had a high and statistically significant risk of relapse (HR of 2.24 and $P = 0.038$) (Table 5). In the Cox multivariate regression model, the levels of hTERT mRNA were adjusted for tumour grade and patients age. Since there was statistically significant relationship between the levels of hTERT mRNA and the grade of the tumours ($P = 0.003$ or $P = 0.006$, respectively), hTERT mRNA levels could not be considered as an independent prognostic factor for PFS or OS.

![Figure 3](image1.png)
Figure 3 Kaplan–Meier curve for PFS of patients with hTERT mRNA-positive and hTERT mRNA-negative intracranial tumours.

![Figure 4](image2.png)
Figure 4 Kaplan–Meier curve for OS of patients with hTERT mRNA-positive and hTERT mRNA-negative intracranial tumours.

Table 5
Univariate and multivariate analysis of human telomerase reverse transcriptase (hTERT) mRNA status with regard to progression-free and overall survival

Variable	Progression-free survival	Overall survival				
	HRa	95% CIb	P-value	HRa	95% CIb	P-value
hTERT mRNA						
Negative	1.00			1.00		
Positive	2.24	1.046–4.97	0.038	2.26	0.97–5.24	0.057
log hTERT (continuous variable)	1.51	1.081–2.13	0.016	1.44	0.99–2.11	0.056
Grading (ordinal)	2.49	1.68–3.69	<0.001	2.38	1.57–3.61	<0.001
Age	1.02	1.00–1.04	0.031	1.03	1.00–1.05	0.022

	Univariate analysis			
hTERT mRNA				
Negative	1.00	0.83	0.33–2.04	0.68
Positive	0.71	0.91	0.66–1.37	0.84
log hTERT (continuous variable)	1.05	0.91	0.89–1.10	0.84
Grading (ordinal)	2.51	1.64	1.51–3.65	<0.001
Age	1.02	0.99	1.00–1.06	0.028

	Multivariate analysis			
hTERT mRNA				
Negative	1.00	0.83	0.33–2.04	0.68
Positive	0.71	0.91	0.66–1.37	0.84
log hTERT (continuous variable)	1.05	0.91	0.89–1.10	0.84
Grading (ordinal)	2.51	1.64	1.51–3.65	<0.001
Age	1.02	0.99	1.00–1.06	0.028

aHazard ratio (HR) estimated from Cox proportional hazard regression model. bConfidence interval of the estimated HR. cMultivariate models were adjusted for tumour grade and patient age.
REFERENCES

Boldrini L, Pistolesi S, Gisfredi S, Ursino S, Lupi G, Caniglia M, Pingitore R, Basolo F, Parenti S, Fontanini G (2003) Telomerase in intracranial meningiomas. Am J Pathol 162: 1763–1769

Cabuy E, de Ridder L (2001) Telomerase activity and expression of telomerase reverse transcriptase correlated with cell proliferation in meningiomas and malignant brain tumors in vivo. Virchows Arch 439: 176–184

Campisi J (1997) The biology of replicative senescence. Eur J Cancer 33: 703–709

Carroll T, Malby E, Boys J, Timperley W, Jellinek D (1999) Meningiomas, diencephalic choromosomes, gliomas, and telomerase activity. J Pathol 188: 395–399

Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A, Dyson NJ (2001) Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res 7: 2387–2392

Chong EY, Lam PY, Poon WS, Ng HK (1998) Telomerase expression in gliomas including the nonastrocytic tumors. Hum Pathol 29: 599–603

Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM, Sedivy JM, Weinberg RA (1998) Dissociation among in vitro telomerase, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 95: 14723–14728

Cox DR (1972) Regression models and life tables. R Stat Soc B 34: 187–202

DeMasters BK, Markham N, Lillehei KO, Shroyer KR (1997) Differential telomerase expression in human primary intracranial tumors. Am J Clin Pathol 107: 548–554

Dhaene K, van Marck E, Parwaresch R (2000) Telomeres, telomerase, and cancer: an up-date. Virchows Arch 437: 1–16

Falchetti ML, Pallini R, Larocca LM, D’Ambrosio E (1999) Telomerase expression in intracranial tumours: prognostic potential for malignant gliomas and meningiomas. J Clin Pathol 52: 234–236

Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Hiraga S, Ohnishi T, Izumoto S, Miyahara E, Kanemura Y, Matsumura H, Falchetti ML, Pallini R, Larocca LM, D’Ambrosio E (1999) Telomerase catalytic subunit gene, which reveals complex splicing observations.

Hiraga S, Ohnishi T, Izumoto S, Miyahara E, Kanemura Y, Matsumura H, Arita A (1998) Telomerase activity and alterations in telomere length in human brain tumors. Cancer Res 58: 2117–2125

Huang F, Kanno H, Yamamoto I, Lin Y, Kubota Y (1999) Correlation of clinical features and telomerase activity in human gliomas. J Neurooncol 43: 137–142

Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53: 457–481

Kilian A, Bowtell DDL, Abud HE, Hime GR, Venter DJ, Keese PK, Duncan EL, Reddel RR, Jefferson RA (1997) Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 6: 2011–2019

Kim NW (1997) Clinical implications of telomerase in cancer. Eur J Cancer 33: 781–786

Kim NW, Piatyszak MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015

Kleiheus P, Caveness WK, (eds), World Health Organisation (WHO) (2000) Classification of tumors. In Pathology and Genetics of Tumors of the Nervous System pp 6–70. Lyon: IARC Press

Kleinschmidt-DeMasters BK, Evans LC, Bobak JB, Lopez-Uribe D, Hopper D, Shroyer AL, Shroyer KR (2000) Quantitative telomerase expression in glioblastomas shows regional variation and down-regulation with therapy but no correlation with patient outcome. Hum Pathol 31: 905–913

Kleinschmidt-DeMasters BK, Shroyer AL, Hashizumi TL, Evans LC, Markham N, Kindt G, Shroyer KR (1998) Telomerase levels in human metastatic brain tumors show four-fold logarithmic variability but no correlation with tumor type or interval to patient demise. J Neurosurg Sci 161: 116–123

Kotoula V, Barbanis S, Nikolakaki E, Koufoyannis D, Papadimitriou CS, Karkavelas G (2004) Relative expression of human telomerase catalytic subunit (hTERT) transcripts in astrocytic gliomas. Acta Neuropathol 107: 443–451

Langford LA, Piatyszak MA, Xu R, Schold Jr SC, Shay JW (1995) Telomerase activity in human brain tumors. Lancet 346: 1267–1268

Langford LA, Piatyszak MA, Xu R, Schold Jr SC, Shay JW, Weinberg RA (1997) Telomerase activity in ordinary meningiomas predicts poor outcome. Hum Pathol 28: 416–420

Le S, Zhu jy, Anthoney DC, Greider CW, Black PM (1998) Telomerase activity in human gliomas. Neurosurgery 42: 1120–1124

Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, Nakanishi T, Thara E, Ide T, Ishikawa F (1998) Telomerase activation by hTERT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 18: 65–68

Novakovic S, Hocevar M, Zgajnar J, Besic N, Stegel V (2004) Detection of telomerase RNA in the plasma of patients with breast cancer, malignant melanoma or thyroid cancer. Oncol Rep 11: 245–252

O’Reilly M, Teichmann SA, Rhodes D (1999) Telomerases. Curr Opin Struct Biol 9: 56–65

Rhyu MS (1995) Telomerases, telomerase, and immortality. J Int Cancer Inst 87: 884–894

Santo T, Asai A, Mishima K, Fujimaki T, Kirino T (1998) Telomerase activity in 144 brain tumors. Br J Cancer 77: 1633–1637

Snuders P, Breuer R, Suterja T, Egging M, Voorhorst F, Steenbergen R, van der Linden H, Risse B, Erkhof J, de Vries E, van der Zee A, Postmus P, Meijer Ch, Smit E (2004) Elevated hTRET mRNA levels: a potential determinant of bronchial squamous cell carcinoma (in situ). Int J Cancer 109: 412–417

Spiropoulou T, Ferekidou L, Angelopoulou K, Stathopoulou A, Talieri M, Lianidou ES (2004) Effect of antineoplastic agents on the expression of human telomerase reverse transcriptase beta plus transcript in MCF-7 cells. Clin Biochem 37: 299–304

Sugita Y, Nakashima A, Kato S, Sakata K, Morimatsu M, Shigemori M (2000) Telomerase activity in gliomas with the use of non-radioisotopic and semi-quantitative procedure for terminal repeat amplification protocol. Oncol Rep 7: 1087–1092

Tchirkov A, Rolhion C, Kemeny J-L, Irthum B, Puget S, Khalil T, Chinot O, Kwiatkowski F, Perissel B, Vago P, Verrelle P (2003) Clinical implications of quantitative real-time RT–PCR analysis of hTERT gene expression in human gliomas. Br J Cancer 88: 516–520

Weinrich SL, Pruzan R, Bodnar AG, Lischteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTERT. Nat Genet 17: 496–502