Genetic and metabolic predictors of chemosensitivity in oligodendroglial neoplasms

C Walker
JK Douglas Laboratories, Clatterbridge Hospital

B Haylock
Clatterbridge Centre for Oncology

D. Husband
Clatterbridge Centre for Oncology

K A. Joyce
JK Douglas Laboratories, Clatterbridge Hospital

David L. Fildes
University of Wollongong, dfildes@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/commpapers

Part of the Business Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Walker, C; Haylock, B; Husband, D.; Joyce, K A.; Fildes, David L.; Jenkinson, M D.; Smith, Trevor A.; Broome, J; Kopitzki, K; du Plessis, D G.; Prosser, J; Vinjamuri, S; and Warnke, P C.: Genetic and metabolic predictors of chemosensitivity in oligodendroglial neoplasms 2006, 1424-1431.
https://ro.uow.edu.au/commpapers/2326

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Genetic and metabolic predictors of chemosensitivity in oligodendrogial neoplasms

Abstract
The −1p/−19q genotype predicts chemosensitivity in oligodendrogial neoplasms, but some with intact 1p/19q also respond and not all with 1p/19q loss derive durable benefit from chemotherapy. We have evaluated the predictive and prognostic significance of pretherapy 201Tl and 18F-FDG SPECT and genotype in 38 primary and 10 recurrent oligodendrogial neoplasms following PCV chemotherapy. 1p/19q loss was seen in 8/15 OII, 6/15 OAII, 7/7 OIII, 3/11 OAIII and was associated with response (Fisher-Exact: $P=0.000$) and prolonged progression-free (log-rank: $P=0.002$) and overall survival (OS) (log-rank: $P=0.0048$). Response was unrelated to metabolism, with tumours with high or low metabolism showing response. Increased 18F-FDG or 201Tl uptake predicted shorter progression-free survival (PFS) in the series (log-rank: 201Tl $P=0.0097$, 18F-FDG $P=0.0170$) and in cases with or without the −1p/−19q genotype. Elevated metabolism was associated with shorter OS in cases with intact 1p/19q (log-rank: 18F-FDG $P=0.0077$; 201Tl $P=0.0004$) and shorter PFS in responders (log-rank: 18F-FDG $P=0.005$; 201Tl $P=0.0132$). 201Tl uptake and 1p/19q loss were independent predictors of survival in multivariate analysis. In this initial study, 201Tl and 18F-FDG uptake did not predict response to PCV, but may be associated with poor survival following therapy irrespective of genotype. This may be clinically useful warranting further study.

Keywords
Genetic, metabolic, predictors, chemosensitivity, oligodendrogial, neoplasms

Disciplines
Business | Social and Behavioral Sciences

Publication Details
Walker, C., Haylock, B., Joyce, K. A., Fildes, D. L., Jenkinson, M. D., Smith, T. A., Broome, J., Kopitzki, K., du Plessis, D. G., Prosser, J., Vinjamuri, S. & Warnke, P. C. (2006). Genetic and metabolic predictors of chemosensitivity in oligodendrogial neoplasms. British Journal of Cancer, 95 (10), 1424-1431.

Authors
C Walker, B Haylock, D. Husband, K A. Joyce, David L. Fildes, M D. Jenkinson, Trevor A. Smith, J Broome, K Kopitzki, D G. du Plessis, J Prosser, S Vinjamuri, and P C. Warnke

This journal article is available at Research Online: https://ro.uow.edu.au/commpapers/2326
Oligodendroglial neoplasms with the \(-1p/-19q\) genotype have a more indolent clinical evolution, are associated with prolonged survival and are more likely to be chemosensitive than their morphologically equivalent counterparts with intact \(1p/19q\) (Cairncross et al., 1998; Smith et al., 2000; van den Bent, 2004). The biological basis behind these clinical differences are not yet well understood, but are likely to result from complex interactions between tumour genetics and host environment, as well as physiological factors that determine drug delivery (Warnke et al., 2003, 2005; Hartmann et al., 2004; Jeuken et al., 2004). Genotype and factors such as blood flow or blood volume and metabolism have been associated with chemoresponsiveness in anaplastic oligodendrogliomas (Warnke, 1998; Engelhard et al., 2003; Jager et al., 2005). Despite responsiveness to therapy, oligodendroglial neoplasms with the \(-1p/-19q\) genotype inevitably recur, sometimes with only short progression-free survival (PFS). Prognostic or predictive factors that may be used to identify patients likely to derive durable clinical benefit are therefore essential.

Metabolic imaging using radiolabeled tracers such as \(^{201}\)Thallium or \(^{18}\)F-fluorodeoxyglucose has been used in a number of glioma studies, to yield diagnostic or prognostic information (Benard et al., 2003; Padma et al., 2003; Datta et al., 2004), to guide biopsy (Levieri et al., 2002), to distinguish recurrent tumour from radiation necrosis (Stokkel et al., 1999) or monitor response to therapy (Vos et al., 2003) but the relationship between metabolism and chemosensitivity in oligodendroglial neoplasms has still to be determined.

In a multidisciplinary study of oligodendroglial neoplasms undergoing therapy at a single UK treatment centre between 2000 and 2003, the \(-1p/-19q\) genotype was associated with a more indolent clinical history with longer time to first oncology therapy and prolonged survival from first referral, than cases with intact \(1p/19q\) (Walker et al., 2005). Response and favourable outcome following procarbazine, lomustine and vincristine (PCV) chemotherapy was strongly associated with the \(-1p/-19q\) genotype (Walker et al., 2006). No relationship was observed between pretherapy single-voxel Magnetic Resonance Spectroscopy and genotype (Jenkinson et al., 2005). In contrast, pretherapy brain Single-Photon Emission Computed Tomography (SPECT) data revealed that tumours with \(1p/19q\) loss were more likely to show increased \(^{201}\)thallium uptake and to a lesser degree, \(^{18}\)F-fluorodeoxyglucose uptake than those without these losses (Walker et al., 2004).

The aim of the present study was to determine whether pre-therapy \(^{201}\)Ti or \(^{18}\)F-FDG SPECT may be used to predict therapeutic response and outcome in oligodendroglial neoplasms treated with PCV chemotherapy and to compare this with genotype.
PATIENTS AND METHODS

Case selection and pathology

Cases for investigation were from a prospective study of adult oligodendroglioma tumours at the Walton Centre for Neurology and Neurosurgery/Clatterbridge Center for Oncology diagnosed between May 2000 and July 2003 (Walker et al, 2005). For inclusion in this study, patients had pathology diagnosis and SPECT data pretherapy, were treated by PCV chemotherapy and gave research consent. Cases in this study were included in larger series reporting pretherapy associations between SPECT data, genotype and histopathology (*n* = 59) (Walker et al, 2004) and between genotype and response to PCV chemotherapy (*n* = 76) (Walker et al, 2006). The study had local ethics committee approval. Consensus pathological diagnosis and grading according to current WHO criteria (Kleihues and Cavanee, 2000) was undertaken by two consultant neuropathologists. The study included 38 previously untreated patients (11 oligoden- droglioma WHO grade II (OII), 14 oligoastrocytoma WHO grade II (OAI), five oligodendroglioma WHO grade III (OIII), eight oligoastrocytoma WHO grade III (OAIII) and 10 with tumours that recurred following previous radiotherapy (four OII, one OAI, two OIII, three OAIII). The median time between previous radiotherapy and metastatic imaging was 5.7 years (range 1.1–13.9 years). The median age was 43 (range 27–71). All patients had surgery prior to therapy. In all, 94% had biopsy only (three image-guided, 42 serial-stereotactic). Three patients had a partial resection with residual tumour clearly assessable on MRI postsurgery and before nuclear medicine imaging.

201Tl SPECT and 18F-FDG imaging

Nuclear medicine imaging was post surgery and pretherapy for 47 patients. One patient had imaging before biopsy and therapy. The median time from surgery to imaging was 19 days (range 21–301 days); 98% had imaging within 2 months of surgery. All cases had tumour clearly visible on MR or CT at the time of imaging with cross sectional area > 10 cm² (median 30 cm² (range 10–74 cm²)). 201Thallium (201Tl) SPECT and 18F-2-Fluoro-2-deoxy-d-glucose (18F-FDG) SPECT scans were obtained using a dual headed collimated gamma camera (DSTXL GESMVI, 1998). Images were acquired, reconstructed and reported using standard protocols as described previously (Walker et al, 2004). The spatial resolution of SPECT was 5 mm. 18F-FDG uptake was assessed as hypermetabolic or hypometabolic, if the intensity of signal within the known site of tumour was greater than or less than the equivalent site in the contralateral hemisphere, respectively. Similarly, scans were reported as having either increased or normal 201Tl uptake at the site of the tumour compared with the contralateral hemisphere. Semiquantitative data was obtained as described previously (Walker et al, 2004). Reconstructed transverse slices in interfer format were imported into NIH Image (http://rsb.info.nih.gov/nih-image). The tumour was located by comparison with MR or CT images and regions of interest (ROI) that delineated the part of tumour with the greatest difference in signal intensity and representative of the most aggressive biology were drawn. Uptake of 201Tl or 18F-FDG was measured in an axial slice containing the selected ROI and expressed as the ratio of the mean tumour counts in the ROI and the mean activity in an equivalent ROI mirrored in the contralateral hemisphere. 18F-FDG and 201Tl SPECT data reported as hypermetabolic or increased had uptake relative to the contralateral brain of > 0.9 and > 1.1, respectively. Postsurgery and pretherapy 201Tl SPECT data was available for 46 patients and 18F-FDG SPECT for 48 patients.

Chemotherapy

Chemotherapy followed nuclear medicine imaging, with median time interval 19 days (range 2–152 days); 92% had therapy within 2 months of imaging. PCV chemotherapy was administered according to standard clinical protocols (Levin et al, 1980). Lomustine (CCNU) (110 mg m⁻²), procarbazine (60 mg m⁻²) and vincristine (1.4 mg m⁻² (maximum 2 mg)) were given on Days 1, 8–21 and 8 and 29, respectively. Cycles were repeated every 6 weeks for a maximum of six cycles. The median pretherapy performance status, assessed using the ECOG scale, was 1 (range 0–4). Two high-grade cases died before completing the first cycle, the remainder received a median of four cycles with 33% completing six cycles. PCV was discontinued after cycle 1 in three cases, and treatment continued with temozolomide (2) or radiotherapy (1).

Response assessment

Response was assessed as described previously (Walker et al, 2006). A consultant neuroradiologist reviewed all available MR or CT images taken before, during and after chemotherapy, and at follow-up without knowledge of SPECT data, genotype or other clinical factors. The largest perpendicular diameters of the tumour were measured in axial sections of contrast-enhanced regions of T1-weighted MR or CT images or T2-weighted MR images. In 31 enhancing cases, response was assessed using Macdonald criteria (Macdonald et al, 1990). Response categories were: – CR-complete response (disappearance of all tumour, off steroids and neurologically stable or improved); PR – partial response (50% or greater reduction in cross-sectional area, steroids stable or reduced, and neurologically stable or improved); PD – progressive disease (25% or greater increase in cross sectional area or any new tumour on CT/MR images and/or neurologically worse with steroids stable or increased); SD – stable disease (all other situations). In 10 nonenhancing cases and three for whom contrast enhancement was not assessable, response was assessed using T2-weighted images (Hoang-Xuan et al, 2004; Stege et al, 2005). An additional minor response (MR) category (25–< 50% reduction in cross-sectional area, steroids stable or reduced, and neurologically stable or improved) was included, as some cases showed radiological reduction in cross sectional T2W area of > 25–< 50%, accompanied by clinical benefit. None of the enhancing cases had radiological changes in this range. Response was not assessed due to early death (two cases) or insufficient imaging data (two cases).

Clinical information

Information regarding current management, follow-up and outcome was collected prospectively. Progression-free survival and OS were calculated from the start of PCV. The median follow-up time was 25 months (range 1–57) from start of chemotherapy and 40 months (range 16–57) for the 28 patients alive at study.

Molecular genetics

For each case regions of tumour histology in pretherapy resected tumours or biopsy specimens representative of the most aggressive tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study. Laser capture microdissection was used to enrich the tissue available and the overall pathology diagnosis were selected for study.
Statistics

Statistical analysis was performed using SPSS. The Mann–Whitney test was used for non-normally distributed SPECT data and \(\chi^2 \) or Fisher’s Exact tests were used for categorical data. Kaplan–Meier survival curves were obtained and differences in PFS or OS were tested for statistical significance using the log-rank test. Univariate and multivariate analysis was used to determine if genotype, \({^{201}}\text{Tl} \) survival curves were obtained and differences in PFS or OS were Fisher’s Exact tests were used for categorical data. Kaplan–Meier regression multivariate analysis was performed on factors contrast enhancement, therapy for primary or recurrent tumour, and histopathology grade and subtype, contrast enhancement, therapy for primary or recurrent tumour had prognostic significance with respect to survival. Cox Regression multivariate analysis for factors was present in 4/15 OII, 3/7 OIII, 1/4 OIV, 5/9 OAII, 1/1 OAIV, and 1/6 OV. Using categorical or semiquantitative analyses, tumours with grade III pathology were more likely to show \({^{18}}\text{F-FDG} \) hypermetabolism or increased \({^{201}}\text{Tl} \) uptake than grade II cases. Similarly, increased uptake of \({^{201}}\text{Tl} \) was more likely in cases with loss of 1p36 and 19q13 than in cases without these losses in the series, in grade II cases (Fisher-Exact: 1p/19q loss 6/13, 1p/19q intact 1/15 \(P = 0.029 \), Mann–Whitney \(P = 0.001 \)) and primary tumours (\(\chi^2 - 1p/19q \) loss 10/18, 1p/19q intact 3/18 \(P = 0.015 \), Mann–Whitney \(P = 0.015 \)).

There was no association between the \(-1p/-19q \) genotype and \({^{18}}\text{F-FDG} \) uptake. Five grade II cases with loss of 1p36 and 19q13 were hypermetabolic and had increased uptake of thallium, but no grade II cases with intact 1p36 and 19q13 had both features of elevated metabolism (Fisher Exact: \(P = 0.013 \)). There was no difference in \({^{18}}\text{F-FDG} \) uptake in primary vs recurrent tumours (Table 1). Increased \({^{201}}\text{Tl} \) uptake was more likely in the recurrent cases, however 50% of recurrent cases had grade III pathology compared with 34% of primary cases.

RESULTS

SPECT data, histopathology and genotype

Associations of SPECT data with histopathology and genotype have been reported previously in a larger series (Walker et al., 2004). In this subgroup of the original series, loss of 1p36 and 19q13 was found in 8/15 OII, 6/15 OAll, 7/7 OIII, 3/11 OAIII and 18F-FDG uptake, gender, age, ECOG status, histopathology and 1p36/19q13 loss 18F-FDG uptake and the median and range for each group.

Table 1 Pretherapy SPECT data

	\(^{18}\text{F-FDG uptake}\)	\(^{201}\text{Tl uptake}\)								
	\(n \)	Hypermetabolic	\(P^* \)	Median (range)	\(P^- \)	\(n \)	Increased	\(P^* \)	Median (range)	\(P^- \)
Grade II	30	6	0.030	0.8 (0.5–2.4)	0.050	28	7	0.000	1.0 (0.8–7.6)	0.002
Grade III	18	9	1.1 (0.7–2.4)			18	14		3.3 (0.9–8.7)	
Cases with loss of 1p36/19q13	24	10	0.12	0.9 (0.5–2.4)	0.24	23	14	0.038	2.1 (0.9–7.6)	0.047
Cases without loss of 1p36/19q13	24	5	0.8 (0.5–2.0)			23	7		1.0 (0.8–7.8)	
Primary tumours	38	10	0.15	0.8 (0.5–2.4)	0.431	36	13	0.014	1.0 (0.8–8.7)	0.013
Recurrent tumours	10	5	1.1 (0.5–2.4)			10	8		3.0 (1.0–8.2)	

Pretherapy SPECT data in groups according to histology grade, genotype or therapy given to primary or recurrent tumour. Data given as \(n \) number of cases in each group, the number showing 18F-FDG hypermetabolism or increased 201TI uptake and the median and range for each group. \(P^- \) – probability calculated using * \(\chi^2 \) test. Weakly significant \(P \) values are given in italics; those of greater significance are given in bold.

Table 2 Response to chemotherapy

RESPONSE

Loss of 1p36 and 19q13	\(^{18}\text{F-FDG uptake}\)	\(^{201}\text{Tl uptake}\)				
	Hypometabolic	Hypermetabolic	\(P \)	Hypermetabolic	Hypermetabolic	\(P \)
All cases	20/22 (91%)	7/22 (32%)	\(0.000 \)	17/30 (57%)	10/14 (71%)	0.509
Primary tumours	15/17 (88%)	7/17 (41%)	\(0.010 \)	15/25 (60%)	7/9 (78%)	0.439
Recurrent tumours	5/5 (100%)	0/5 (0%)	\(0.000 \)	2/5 (40%)	3/5 (60%)	1.0
Grade II	13/14 (93%)	6/16 (38%)	\(0.002 \)	13/24 (54%)	6/6 (100%)	0.061
Grade III	7/8 (88%)	1/6 (17%)	\(0.026 \)	4/6 (67%)	4/8 (50%)	0.627
1p36/19q13 loss	11/12 (92%)	9/10 (90%)	1.0	8/8 (100%)	12/13 (92%)	1.0
1p36/19q13 intact	6/18 (33%)	1/4 (25%)	1.0	7/16 (44%)	0/5 (0%)	0.123
Enhancing tumours	17/18 (94%)	4/13 (31%)	\(0.000 \)	12/18 (67%)	9/13 (69%)	1.0
Nonenhancing or enhancement not assessable	3/4 (75%)	3/9 (33%)	0.266	5/12 (42%)	1/1 (100%)	0.462

Response data is given for the series as well as in subgroups according to therapy given to primary or recurrent tumour, histopathology grade, genotype and response assessment based on enhancing tumour or T2-weighted MR. Data shows the proportion of responding cases in each group; data given as number of cases showing response that is (CR+PR+MR)/number of cases and (%). \(P \) – probability calculated using Fisher’s exact test. Weakly significant \(P \) values are given in italics; those of greater significance are given in bold.
cantly associated with combined loss of 1p36 and 19q13, but 7/22 (32%) with intact 1p36 and 19q13 also responded (Table 2). Response was seen in cases that were hypermetabolic and hypometabolic with respect to 18F-FDG uptake and in cases that showed normal or increased 201Tl uptake. No associations between SPECT data and response were evident in the series (Table 2), or in subgroups of the series according to pathology subtype or grade, therapy given to primary or recurrent cases or 1p/19q status. Similarly, when only the 31 enhancing tumours assessed using Macdonald criteria were considered, response was not associated with metabolism. In the 13 cases assessed using T2-weighted MR, response was not significantly associated with genotype or metabolism. Analysis of semiquantitative data revealed no associations of metabolism with response in the series overall (Mann–Whitney test: 18F-FDG 201Tl uptake P = 0.08), or in primary (Mann–Whitney test: 18F-FDG P = 1.0; 201Tl uptake P = 0.62) or recurrent cases (Mann–Whitney test: 18F-FDG P = 1.0; 201Tl uptake P = 0.60). When grouped according to 1p/19q status there was no association between 18F-FDG uptake and response (Figure 1). In cases with intact 1p/19q all responders and 9/14 nonresponders had 201Tl uptake ≤ 1 and five nonresponders (four recurrent tumours which showed PD and one primary tumour with SD) had increased 201Tl uptake (Figure 1). This resulted in a statistically significant difference in 201Tl uptake between responders and nonresponders in tumours with intact 1p/19q, which was not seen in categorical analysis (Table 2).

Survival

To compare the prognostic significance of metabolism with that of genotype, Kaplan–Meier plots for PFS and OS following PCV chemotherapy are given in Figure 2. Patients whose tumours showed 18F-FDG hypermetabolism, increased 201Tl uptake or intact 1p36 and 19q13 had shorter PFS. Prolonged OS was significantly associated with loss of 1p36 and 19q13, while tumours with increased 201Tl uptake showed a trend toward shorter OS. 201Tl uptake and 1p/19q genotype were independent prognostic factors for PFS and OS in multivariate analysis (Table 3). In primary cases, 18F-FDG hypermetabolism was associated with shorter PFS (log-rank: P = 0.0119), and trends but not significant associations were seen between 18F-FDG uptake and OS, and between 201Tl uptake and PFS and OS. However, 18F-FDG hypermetabolism and increased 201Tl uptake in primary cases were both significantly associated with shorter PFS and OS when adjusted for genotype (log-rank: PFS: 18F-FDG P = 0.0005; 201Tl P = 0.0003; OS: 18F-FDG P = 0.0227; 201Tl P = 0.0026) (Supplementary Data). Despite the small number of anaplastic cases, those with 18F-FDG hypermetabolism had decreased PFS (log-rank P = 0.023). No significant associations between metabolism and survival were seen in recurrent cases, but numbers were low, especially for those with low metabolism. 18F-FDG and 201Tl uptake enabled significant prognostic discrimination for PFS in cases with or without the −1p/19q genotype, but for OS only in cases with intact 1p36 and 19q13 (Figure 3). Similar findings were observed if only primary cases were analysed (Supplementary Data). 201Tl uptake was an independent prognostic factor for PFS and OS in multivariate analysis in cases with intact 1p/19q (Cox Regression: PFS-HR 7.0 (95% CI 1.9–25.5), P = 0.003; OS-HR 9.1 (95% CI 2.2–37.9), P = 0.002).

Of the 27 cases that responded to therapy, 10 had 18F-FDG hypermetabolism and 12 had increased 201Tl uptake and elevated metabolism was significantly associated with short PFS (log-rank PFS: 18F-FDG P = 0.005; 201Tl P = 0.0132).

DISCUSSION

Although the association between 201Tl and 18F-FDG uptake and adverse prognosis has been reported previously in gliomas (Higa et al, 2001; Benard et al, 2003; Padma et al, 2003; Comte et al, 2006), this study represents the largest series of oligodendrogial neoplasms with response and outcome data following treatment by a uniform chemotherapeutic protocol, and is the only study to investigate metabolism and outcome in oligodendrogial neoplasms classified by molecular genetics. The cohort was drawn from a larger study of oligodendrogial neoplasms from a single treatment centre over a 3-year period (Walker et al, 2005, 2006) and reflects the range of patients with histopathological diagnosis of oligodendrogial tumour given PCV chemotherapy in the routine clinic. Associations of genotype with response and outcome in this subgroup compared well with the larger series that included >90% of oligodendrogial neoplasms given PCV in the study period (Walker et al, 2006). Previously we have shown that elevated metabolism is associated with 1p/19q loss, as well as with increased histopathological grade (Walker et al, 2004). Elevated metabolism was significantly more common in low-grade tumours with 1p/19q loss than in those with intact 1p/19q (Walker et al, 2004). These findings remained valid for 201Tl SPECT in the subset treated by PCV chemotherapy, but significant associations between genotype and 18F-FDG, which were weaker than 201Tl in the previous report, were not observed in this subset, due to the lower numbers and reduced statistical power. As in the previous study, increased uptake of both 18F-FDG and 201Tl in low-grade cases was found only in those with 1p/19q loss. The study included primary tumours given PCV as first oncology therapy as well as those receiving PCV following

Figure 1 18F-FDG and 201Tl uptake expressed as a ratio relative to uptake in the contralateral brain in responders (CR + PR + MR) and Nonresponders (SD + PD) to PCV chemotherapy with and without loss of 1p36 and 19q13. (A) uptake of 201Tl, (B) uptake of 18F-FDG. P-probability by Mann–Whitney test. Bars represent medians.
recurrence after radiotherapy, reflecting clinical practice. The recurrent group had a higher proportion of cases with grade III pathology and was more likely to show increased 201Tl uptake than primary cases. However, only 10 recurrent cases were investigated and as gliomas progress with time, they are likely to recur as a more aggressive tumour, which would be reflected in their metabolism. Further study in larger series would be necessary to explore metabolic differences between primary and recurrent tumours.

It has been suggested that increased metabolism may be related to therapeutic responsiveness to alkylating agents as these should exert a more beneficial effect in tumours with higher cell turnover and DNA-synthesis rates, which are known to correlate with higher glucose utilisation and metabolism (Herholz et al., 1993; Brock

![Graphs and tables showing outcomes and comparisons between primary and recurrent cases.](image)

Figure 2 Outcome following PCV chemotherapy. Kaplan–Meier plots of (A, C and E) PFS and (B, D and F) OS according to: – (A and B) 1p/19q status, (C and D) 18F-FDG uptake, (E and F) 201Tl uptake. Numbers in each group indicated in parentheses. P-Probabilities calculated by the log-rank test.

Table 3 Cox regression

	PFS Univariate	Multivariate	OS Univariate	Multivariate	
	P	HR (95% CI)	P	HR (95% CI)	P
Loss of 1p36 and 19q13 (yes* vs no)	0.008	16.4 (4.5–59.4)	0.000	12.9 (3.1–54.5)	0.000
18F-FDG uptake (hypo* vs hypermetabolic)	0.008	R	0.286	NS	
201Tl uptake (normal* vs increased)	0.008	14.9 (4.1–53.4)	0.045	9.5 (2.6–35.1)	0.000
Male* vs female	0.008	R	0.039	R	
Histology grade (II* vs III)	0.021	R	0.042	R	
Primary* vs recurrent	0.001	R	0.063	NS	

Cox regression analysis for PFS and OS ($n = 46$) comparing SPECT data and genotype with significant clinicopathological factors. Histological subtype, presence or absence of contrast enhancement, age and ECOG status were not significantly associated with outcome in this cohort. Data given as the hazard ratio (HR) relative to baseline (*) and 95% confidence interval. NS – not significant in univariate analysis. P-Probability; R-term removed. Weakly significant P values are given in italics; those of greater significance are given in bold.
et al, 2000; Prados, 2000). The methods for assessing response used in this study are widely utilised for gliomas, despite their limitations (Perry and Cairncross, 2003). As in other studies, response was strongly associated with the −1p/−19q genotype (Cairncross et al, 1998; Ino et al, 2001; van den Bent, 2004). Tumours with or without features of elevated metabolism showed response following PCV chemotherapy. Elevated metabolism was not necessary for response and no associations with response were evident in the series as a whole or subgroups according to grade, enhancement, or therapy given to primary or recurrent tumours. When subdivided by genotype, significant associations were only seen on analysis of semiquantitative data in cases with intact 1p/19q, where 201Tl uptake was greater in nonresponders. However, 64% of these had normal 201Tl uptake and significant differences were not obtained in categorical analysis. Further study of a larger series would be necessary to resolve this discrepancy. In the series overall, response was strongly associated with the −1p/−19q genotype, but not metabolism, suggesting that genetic lineage is dominant over metabolism in influencing chemoresponse. Metabolism measured by 201Tl or 18F-FDG uptake is not a useful noninvasive diagnostic procedure to predict chemoresponse in the absence of knowledge of genotype.

Although tumours with the −1p/−19q genotype are likely to respond to chemotherapy, all oligodendrogliomas neoplasms inevitably recur, with wide variations in PFS even in those with the −1p/−19q genotype (van den Bent, 2004). In addition, a significant proportion of oligodendrogliomas with intact 1p/19q may be chemoresponse, albeit associated with shorter PFS than those with 1p/19q loss (Ino et al, 2001; van den Bent et al, 2003; Walker et al, 2006). Identification of factors that enable prognostic stratification, would permit more effective clinical management and provision of chemotherapy to patients for which it may be of lasting benefit. In the present study, elevated 201Tl and 18F-FDG uptake were both significantly associated with shorter PFS, in the series, in separate analysis of cases with or without the −1p/−19q genotype and in cases that responded to therapy, 201Tl uptake was an independent prognostic variable in multivariate survival analysis in the series and in cases with intact 1p/19q. These findings suggest that SPECT data may potentially be useful to predict cases for which chemotherapy may not be of long-term benefit and where additional therapy should be implemented early at the first signs of recurrence. However, the heterogeneity of the cohort is a limitation of the study. Primary and recurrent cases were included, although similar findings were obtained if primary cases only were considered. Oligodendrogliomas and oligoastrocytomas are both commonly treated by chemotherapy and their histopathological diagnosis is highly subjective and notoriously difficult. Classification by molecular genetics is now widely accepted (Reifenberger and Louis, 2003). As in our larger series, the proportion of oligodendrogliomas with loss of 1p/19q (68%), was lower than reported in some studies, which may reflect diagnosis from small biopsies less prone to fixation artefact (Walker et al, 2005). Histopathological subtype was not associated with response or survival and elevated metabolism remained significantly associated with outcome after adjustment for histopathology subtype.

The most appropriate time to deliver therapy is a key question in the clinical management of patients that present with
oligodendrogial neoplasms with low-grade pathology (van den Bent, 2004). Conventional indicators of progression to a high-grade glioma include contrast enhancement and histopathology. However, histopathological grading relies on subjective judgment of morphological features and is frequently associated with inter-observer variability (Giannini et al., 2001), while contrast enhancement is also present in many low-grade oligodendrogial neoplasms (Walker et al., 2005; White et al., 2005). Elevated metabolism may also be considered an early indication of tumour progression (Higa et al., 2003; White et al., 2005; Pardo et al., 2004). Elevated metabolism had longer PFS and OS than cases with intact 1p/19q and high metabolism. Intriguingly, these data suggest that there may be differences in the thresholds at which metabolism becomes associated with aggressive behaviour and/or differences in the baseline biology of oligodendrogliomas with or without the 1p/19q genotype. However, further studies with more biological markers would be required to address this issue. Despite the limitations of the study and its small heterogeneous cohort, our findings show promise that metabolism may have prognostic significance irrespective of genotype. Confirmation in a larger more homogeneous series, particularly primary tumours, is therefore essential.

From a molecular genetic viewpoint, progression in gliomas is associated with sequential accumulation of genetic alterations with consequent deregulation of the cell cycle and increased angiogenesis (Hartmann et al., 2004; Jeukens et al., 2004). Uprogulation of angiogenesis factors and a variety of genetic alterations including deletion of CDKN2A, loss of chromosome 10, downregulation of ATase and cyclooxygenase-2 expression have been associated with progression and poor prognosis in oligodendrogial neoplasms (Jackle et al., 1998; Castilla et al., 2003; Hartmann et al., 2004; Jeukens et al., 2004). While genetic analysis to determine the 1p/19q status may be introduced into routine diagnostic practice, no single test is presently available to indicate tumour progression and poor outcome. Features of elevated metabolism in this and other studies of oligodendrogliomas (Giammarile et al., 2004) or gliomas (Vos et al., 2003; Pardo et al., 2004) have been associated with poor prognosis and may result as a consequence of deregulation of signal transduction through a variety of genetic changes, rather than being associated with a single genetic event. These data suggest that, in addition to the 1p/19q status, metabolic scans may be potentially useful to predict progression and identify cases with short-term benefit from PCV. This may be of greatest utility in determining those cases with intact 1p/19q that will benefit from chemotherapy.

In this initial study, we have shown that elevated metabolism is not predictive of response to therapy, but may be associated with poor survival following therapy irrespective of genotype. Further confirmation in a larger series is therefore warranted.

ACKNOWLEDGEMENTS

This research was made possible through the support of Clatterbridge Cancer Research Trust, Clatterbridge Centre for Oncology, the Walton Centre for Neurology and Neurosurgery and the Dept of Nuclear Medicine, Royal University Hospital, Liverpool. We thank Dr DR Sibson, Clatterbridge Cancer Research Trust, for helpful support and discussion.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Benard F, Romsa J, Hustinx R (2003) Imaging gliomas with positron emission tomography and single-photon emission computed tomography. *Semin Nucl Med* 33: 148 – 162
Brock CS, Young H, O’Reilly SM, Matthews J, Osman S, Evans H, Newlands ES, Price PM (2000) Early evaluation of tumour metabolic response using (18F)fluorooxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. *Br J Cancer* 82: 608 – 615
Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendroglioma. *J Natl Cancer Inst* 90: 1473 – 1479
Castilla EA, Prayson RA, Kanner AA, Rybiick LA, Tubbs RR, Vogelbaum MA, Barnett GH (2003) Cylooxygenase-2 in oligodendroglioma neoplasms. *Cancer* 98: 1465 – 1472
Comte F, Bauchet L, Rigau V, Hauet JR, Fabbro M, Coubes P, Chevalier J, Mariano-Goulart D, Rossi M, Zanca M (2006) Correlation of preoperative thallium SPECT with histological grading and overall survival in adult gliomas. *Nuc Med Commun* 27: 137 – 142
Datta NR, Pashricha R, Gambhir S, Prasad SN, Phadke RV (2004) Comparative evaluation of 201Tl SPECT and CT in the follow-up of irradiated brain tumors. *Int J Clin Oncol* 9: 51 – 58
Engelhard HH, Steela A, Mundt A (2003) Oligodendrogloma and anaplastic oligodendroglioma: clinical features, treatment, and prognosis. *Surg Neurol* 60: 443 – 456
Giammarile F, Cinotti LE, Jouvet A, Ramackers JM, Saint Pierre G, Thiesse P, Jouanneau E, Guyotat J, Pelissou-Guyotat I, Setiay A, Honnorat J, Le Bars D, Frappaz D (2004) High and low grade oligodendrogliomas (ODG): correlation of amino-acid and glucose uptakes using PET and histological classifications. *J Neurooncol* 68: 263 – 274
Giannini C, Scheithauer BW, Weaver AL, Burger PC, Kros JM, Mork S, Graeber MB, Baussman S, Buckner JC, Burton J, Riepe R, Tazelaar HD, Nascimento AG, Crotty T, Keeney GL, Piericcone P, Altermann H (2001) Oligodendrogliomas: reproducibility and prognostic value of histologic diagnosis and grading. *J Neuropathol Exp Neurol* 60: 248 – 262
Hartmann C, Mueller W, von Deimling A (2004) Pathological and molecular genetics of oligodendrogial tumors. *J Mol Med* 82: 635 – 655
Herholz K, Pietrzyk U, Voges J, Schroder R, Halber M, Treuer H, Sturm V, Heiss WD (1993) Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. *J Neurosurg* 79: 853 – 858
Higa T, Maetani S, Yoichiro K, Nabeshima S (2001) TI-201 SPECT compared with histopathologic grade in the prognostic assessment of cerebral gliomas. *Clin Nucl Med* 26: 119 – 124
Hoang-Xuan K, Capelle L, Kujas M, Talibert S, Duffau H, Lejeune J, Polivka M, Ciniere E, Marie Y, Mokhtari K, Carpentier AF, Laigle F, Simon JM, Cornu P, Broet P, Sanson M, Delattre JY (2004) Temozolomide as initial treatment for adults with low-grade oligodendrogliaomas or oligoastrocytomias and correlation with chromosome 1p deletions. *J Clin Oncol* 22: 3133 – 3138
Ino Y, Betensky RA, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, Ramsay DA, Cairncross JG, Louis DN (2001) Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. *Clin Cancer Res* 7: 839 – 845
Jackle KA, Eyre HJ, Townsend JJ, Schulman SN, Knudson HM, Belanich M, Yarosh DB, Bearman SI, Giroux DJ, Schol SC (1998) Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethyl nirrosourea: a Southwest Oncology Group study. *J Clin Oncol* 16: 3310 – 3315
Jager HR, Waldman AD, Benton C, Fox N, Rees J (2005) Differential Chemosensitivity of Tumor Components in a Malignant Oligodendroglioma.

British Journal of Cancer (2006) 95(10), 1424 – 1431 © 2006 Cancer Research UK
Assessment with Diffusion-Weighted, Perfusion-Weighted, and Serial Volumetric MR Imaging. *AJNR Am J Neuroradiol* 26: 274–278

Jenkinson MD, Smith TS, Joyce KA, Fildes D, du Plessis DG, Warnke PC, Walker C (2005) MRS of oligodendroglial tumors: correlation with histopathology and genetic subtypes. *Neurology* 64: 2085–2089

Jeuk JN, von Deimling A, Wesseling P (2004) Molecular pathogenesis of oligodendroglial tumors. *J Neurooncol* 37: 161–181

Kleihues P, Cavenee W (2000) Pathology and genetics of tumors of the nervous system. In: Kleihues P, Cavenee W (eds). Lyon: IARC Press

Levin VA, Edwards MS, Wright DC, Seager ML, Schimberg TP, Townsend JJ, Wilson CB (1980) Modified procarbazine, CCNU, and vincristine (PCV 3) combination chemotherapy in the treatment of malignant brain tumors. *Cancer Treat Rep* 64: 237–244

Levivier M, Wikler Jr D, Massager N, David P, Devriendt D, Lorenzoni J, Pirotte B, Desmedt F, Simon Jr S, Goldman S, Van Houte P, Brochti J (2002) The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review. *J Neurosurg* 97: 542–550

Macdonald DR, Cascino T J, Schold Jr SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. *J Clin Oncol* 8: 1277–1280

Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil JC (2003) Prediction of pathology and survival by FDG PET in gliomas. *J Neurooncol* 64: 227–237

Pardo FS, Aronen HJ, Fitzek M, Kennedy DN, Efrid J, Rosen BR, Fischman AJ (2004) Correlation of FDG-PET interpretation with survival in a cohort of glioma patients. *Anticancer Res* 24: 2359–2365

Perry JR, Cairncross JG (2003) Gliomas: How to Tell Which Work? *J Clin Oncol* 21: 3547–5349

Prados MD (2000) Systemic Chemotherapy. In: Bernstein M, Berger M (eds) *Neuro-Oncology*. Thieme: Verlag, pp 226–233

Reifenberger G, Louis DN (2003) Oligodendroglia: toward molecular definitions in diagnostic neuro-oncology. *J Neuropathol Exp Neurol* 62: 111–126

Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligoden-droglomas, astrocytomas, and mixed oligoastrocytomas. *J Clin Oncol* 18: 636–645

Stege EM, Kros JM, de Bruin HG, Enting RH, van Heuvel I, Looijenga LH, van der Rijt CD, Smitt PA, van den Bent MJ (2005) Successful treatment of low-grade oligodendroglial tumors with a chemotherapy regimen of procarbazine, lomustine, and vincristine. *Cancer* 103: 802–809

Stokkel M, Stevens H, Taphoorn M, Van Rijck P (1999) Differentiation between recurrent brain tumour and post-radiotherapy necrosis: the value of 201TI SPET versus 18F-FDG PET using a dual-headed coincidence camera–a pilot study. *Nucl Med Commun* 20: 411–417

van den Bent MJ (2004) Diagnosis and management of oligodendroglia. *Semin Oncol* 31: 645–652

van den Bent MJ, Looijenga LH, Langenberg K, Dinjens W, Graveland W, Uyttewilligen I, Sillevis Smitt PA, Jenkins RB, Kros JM (2003) Chromosomal anomalies in oligodendroglial tumors are correlated with clinical features. *Cancer* 97: 1276–1284

Vos MJ, Hoekstra OS, Barkhof F, Berkhof J, Heimans JJ, Van Groeningen CJ, Vandertop WP, Slotman BJ, Postma TJ (2003) Thallium-201 single-photon emission computed tomography as an early predictor of outcome in recurrent glioma. *J Clin Oncol* 21: 3559–3565

Walker C, du Plessis D, Fildes D, Haylock B, Husband D, Jenkinson MD, Joyce KA, Broome J, Kopitski K, Prosser J, Smith T, Vinjamuri S, Warnke PC (2004) Correlation of molecular genetics with molecular and morphological imaging in gliomas with an oligodendroglial component. *Clin Cancer Res* 10: 7182–7191

Walker C, du Plessis DG, Joyce KA, Fildes D, Gee A, Haylock B, Husband D, Smith T, Broome J, Warnke PC (2005) Molecular pathology and clinical characteristics of oligodendroglial neoplasms. *Ann Neurol* 57: 855–865

Walker C, du Plessis DG, Joyce KA, Machell Y, Thomson-Hehir J, Al Haddad SA, Broome JC, Warnke PC (2003) Phenotype versus genotype in gliomas displaying inter- or intratumoral histological heterogeneity. *Clin Cancer Res* 9: 4841–4851

Walker C, Haylock B, Husband D, Joyce KA, Fildes D, Jenkinson MD, Smith T, Broome J, du Plessis DG, Warnke PC (2006) Clinical use of genotype to predict chemosensitivity in oligodendroglial tumors. *Neurology* 66: 1661–1667

Warnke PC (1998) Physiological characterization of malignant oligodendroglomas responding to PCV chemotherapy. *J Neurosurg* 88: 399A

Warnke PC, Kopitski K, Ostertag CB, Vinjamuri S (2003) The role of functional imaging in brain tumours. *World J Nucl Med* 2: 37–44

Warnke PC, Timmer J, Ostertag CB, Kopitski K (2005) Capillary physiology and drug delivery in central nervous system lymphomas. *Ann Neurol* 57: 136–139

White ML, Zhang Y, Kirby P, Ryken TC (2005) Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomat? *AJNR Am J Neuroradiol* 26: 784–790
