Does vitamin D deficiency contribute to erectile dysfunction?

Marc B. Sorenson1 and William B. Grant2

1Sunlight Institute; Saint George, UT USA; 2Sunlight, Nutrition, and Health Research Center; San Francisco, CA USA

Keywords: vitamin D, erectile dysfunction, vascular diseases, peripheral arterial disease, nitric oxide, inflammation, calcification, hypertension, diabetes, vasodilation

Introduction: Important Facts Pertaining to this Discussion

Vitamin D is a steroid hormone produced in human skin by sunlight stimulation, specifically the ultraviolet-B (UVB) portion of the sunlight spectrum; about 80% of vitamin D is thus obtained.1 The angle of sunlight varies greatly by season. In summer, the sun is overhead at noon, but in winter it stays closer to the horizon, and sunlight must pass through more atmosphere, which filters out much or all of the UVB. Therefore, availability of UVB exposure, and its resultant vitamin D production in skin, is highest in late spring through early fall and lowest from late fall through early spring. Consequently, vitamin D levels in the bloodstream also vary by season, with levels highest in late spring through early fall and lowest from late fall through early spring. For example, vitamin D levels in the UK are about 50% higher at the end of summer than at the end of winter.1

Vitamin D deficiency (VDD) has increased profoundly in the last two decades. According to data from the National Health and Nutrition Examination Survey (NHANES), 45% of the US population had serum vitamin D levels of 30 ng/mL (considered adequate for health1) in 1998–1994, whereas in 2001–2004, this figure was only 23%, a drop of 49%.3 Concomitantly, the incidence of erectile dysfunction (ED) is rising: worldwide, the number of men with ED will increase from 150 million in 1995 to an estimated 322 million in 2025.4 ED is also prevalent in the US, affecting approximately 18–30 million men older than 20 y.5,6 Much of the worldwide upsurge may be due to an aging population, a deteriorating diet, lack of exercise and other unhealthful practices.

One recent study found risk of ED associated with “body mass index (BMI), irritative lower urinary tract symptoms, diabetes mellitus, chronic obstructive pulmonary disease (COPD) and sexual inactivity.”7 “Most cases [of ED] have a multifactorial origin and it is admitted the influence on its pathogenesis of systemic diseases, different kind of drugs, psychogenic factors, cardiovascular, endocrinological and neurological diseases. Neurologic causes of erectile dysfunction may have their origins in the central or peripheral nervous system. Among possible process of neurogenic erectile dysfunction of central origin would be tumors, cerebral vascular accidents, encephalitis, Parkinson disease, multiple sclerosis and other demyelination diseases, dementias, olivopontocerebellar degeneration and epilepsy.”8

It has been estimated that about half of ED is related to vascular causes.9 VDD also contributes to ED apart from its negative influence on classic CVD risk factors.

The Role of Vascular Disorders in ED

ED is an inability to produce an erection sufficiently rigid for sexual intercourse. ED incidence increases with age; the most severe form (defined as never being able to achieve an erection) occurs in 2% of men aged 20–39 y, increasing to 47% of men aged 75 y.10
The penis is a highly vascularized organ, and erections are primarily vascular events. Sexual stimulation causes the release of neurotransmitters from the corpus cavernosa (the two cylindrical chambers that run the length of the penis) and a relaxing factor, now established as nitric oxide (NO), from the endothelial cells of the penis. NO is particularly important; vasodilation is essential to erection, and NO is the trigger for vasodilation in the vascular endothelium. The neurotransmitters, together with NO, cause the corpus cavernosa to relax and allow blood to flow into the penis, causing the penis to expand and sustain an erection until the process is reversed. Any disorder causing endothelial dysfunction (END) will also interfere with vasodilation, which prevents erection. END is an early marker for the development of atherosclerosis. In fact, END is the key factor in the pathophysiology of ED, and men with penile END also have END in other blood vessels.

The number of patients with CVD risk factors parallels the worldwide increase in ED prevalence, which one would expect given that the two disorders result from intertwined disease processes. Although nonvascular factors such as depression, fatigue, stress, Parkinson disease, multiple sclerosis (MS), and hypertensive medications may affect ED, it is primarily a vasculogenic disease. Its most prevalent cause is the arterial occlusion of atherosclerosis, which also affects the coronary arteries and can lead to heart attack or, in other parts of the body, vascular events such as stroke and peripheral arterial disease (PAD).

Because the penile arteries are smaller than arteries supplying other areas of the body, the first symptoms of atherosclerosis may manifest as ED, making ED one of the best predictors of CVD. Coronary artery disease is a CVD that is highly predictable by the presence of ED. Jackson and colleagues have stated that after the onset of ED, many men experience CVD symptoms in 2–3 years and then suffer cardiovascular events (such as heart attack or stroke) in 3–5 years. One CVD, PAD, is also associated with the presence of ED. ED is an independent predictor of PAD, and increasing severity of ED is associated with increasing prevalence of PAD.

Bohm and colleagues, after conducting a 2-year randomized, controlled trial to determine whether ED was a harbinger of CVD events, demonstrated that ED was a potent predictor of myocardial infarction, stroke, and heart failure in men with preexisting CVD. ED also predicted an increased hazard ratio of 1.84 (95% CI, 1.21–2.81; p = 0.005) for all-cause death. In discussing the results of this study and the danger that ED drugs (phosphodiesterase-5 inhibitors) might pose by causing ED patients to ignore the presence of CVD, Bohm observed the following: “The drug works and the patient doesn’t show up anymore. These men are being treated for ED, but not the underlying cardiovascular disease. A whole segment of men is being placed at risk.” Other researchers have concluded that the presence of ED should trigger an aggressive assessment for occult vascular disease.

Because both CVD and ED are, at least in part, vascular diseases, and ED is a potent predictor of CVD, the presence of risk factors for CVD also predicts the presence of ED, and treatments that improve CVD often also do so for ED. Treatments with lifestyle changes, for example, are quite effective. Gupta and colleagues performed a meta-analysis of randomized, controlled clinical trials and demonstrated that with lifestyle modification and CVD risk-factor reduction programs in men with ED, sexual function increased by 2.4 times with lifestyle changes alone and by 2.66 times when statin therapy was included. One effect of some statins is an increase in serum 25(OH)D concentrations.

One effective lifestyle change included a diet rich in whole grains, fruits, vegetables, legumes, walnuts, and olive oil; another was an exercise program (running or vigorous outdoor activity). Optimizing vitamin D levels through sunlight exposure or supplementation was not part of the lifestyle changes, but it should have been: VDD is associated with arterial stiffness and vascular dysfunction. Vasculogenic ED results from impaired smooth-muscle relaxation (endothelial-dependent or -independent), occlusion of the cavernosal arteries by atherosclerosis, or both.

The Role of Vitamin D and Sunlight on CVD

VDD is rampant among heart disease patients; University of Kansas researchers found that 70.3% of their heart disease patients had serum vitamin D levels below 30 ng/mL (the measure considered adequate for health) and that supplemental vitamin D was associated with a 61% reduction in the risk of death. Giovannucci and colleagues showed that men with the lowest levels of serum vitamin D had a 2.4-times-increased risk of heart attack.

Possible Influence of Sunlight or Vitamin D on Four Major Risk Factors for CVD and ED

We hypothesize that optimizing vitamin D levels in men with ED could achieve similar positive influences on that disease. We first discuss four classic risk factors for CVD and ED and present research suggesting the influence of sunlight or vitamin D on each factor. We then briefly discuss other influences of vitamin D on ED that have not been thoroughly covered in conjunction with the four common risk factors discussed.

Arterial calcification. Arterial calcification is a common feature of atherosclerosis, occurring in more than 90% of angiographically significant lesions. Measures of arterial calcification have been used since 1964 to predict myocardial infarction, and in 1990, 83–90% of CVD patients showed calcification of their coronary arteries—a far higher percentage than disease-free people. Arterial calcification remains a strong marker of increased risk of CVD, independent of other known risk factors.

Arterial calcification is also a risk factor for ED. Lee and colleagues demonstrated that men who had ED were about 40% more likely to have measurable coronary artery calcification than those without ED. They concluded that ED “is significantly associated with abnormal coronary artery calcification and, like PAD, might warrant consideration as a coronary artery disease risk equivalent.”
Serum vitamin D levels and arterial calcification have a strong inverse relationship, provided that vitamin D levels are not excessively high, which can exacerbate calcification. Zittermann and colleagues explain that vitamin D exerts a biphasic dose–response curve on vascular calcification with deleterious consequences not only for vitamin D excess but also for VDD. They also note, however, that vitamin D excess seldom occurs in the general population. These researchers also mention that in rats, low levels of activated vitamin D (1,25-dihydroxyvitamin D or calcitriol) are associated with massive calcification of blood vessels and other soft tissues.

We hypothesize that optimizing vitamin D levels through sunlight exposure or supplementation would have positive benefits for those suffering from ED associated with vascular calcification.

Diabetes mellitus. Diabetes mellitus (DM) is a disorder of carbohydrate metabolism characterized by excessive glucose levels in urine due either to inadequate production of insulin (insulin-dependent, or type-1 DM) or to poor insulin utilization (adult-onset, or type-2 DM), both of which result in increased urine flow. Ninety percent to 95% of diabetes cases in the US are type-2. The presence of DM is a profound predictor of CVD, correlating to an increased risk of CVD of approximately 2.5 times. Although incidence of CVD has decreased somewhat in the past few decades, it has done so only in those without DM. The incidence of DM rapidly increased from 1970 to 2000, especially during the 1990s, and those with DM have shown a dramatic upsurge in the risk of CVD. For example, during the 1990s, the risk of acute myocardial infarction increased among those with DM by 51%, and general CVD rates in men with DM increased by 61%. Diabetes leads to CVD by causing END, a precursor to atherosclerosis, as follows: High levels of glucose in the blood inhibit the production of NO. This inhibition impairs vasodilation of vessels and leads to atherosclerosis by promoting vasoconstriction, hypertension, vascular smooth-muscle growth, inflammation, expression of cellular adhesion molecules (CAMs), platelet activation, decreased fibrinolysis and thrombosis. Both type-1 and type-2 DM follow this pattern. Awad and colleagues stated that “the diabetes control and complications trial clearly showed that better long-term control of blood glucose in diabetes type-1 is associated with decreased frequency and delayed the onset of microvascular complications.” These changes in the vessel walls affect the brain as well as the heart: diabetes younger than 55 y have 11.6 times the risk of stroke.

DM also is associated closely with the risk of ED, as one would expect given how DM damages the vascular system. Reviewing the literature, Phe and Roupret concluded that “the pathophysiology is multifactorial, involving END, specific consequences not only for vitamin D excess but also for VDD. They also note, however, that vitamin D excess seldom occurs in the general population.” These researchers also mention that in rats, low levels of activated vitamin D (1,25-dihydroxyvitamin D or calcitriol) are associated with massive calcification of blood vessels and other soft tissues.

Sunlight exposure relates to DM. One paper showed that blood sugar levels are lower during summer than in winter, and another showed that exposure to UVB light increases insulin secretion.

Vitamin D research indicates a close association between vitamin D and DM. Pittas and colleagues reported on research conducted on adults with impaired sugar tolerance and insulin resistance (both risk factors for diabetes). For 3 y, half received a placebo and the other half received vitamin D plus calcium. The rise in blood sugar levels was 15 times higher in the placebo group, and their increase in insulin resistance was 18 times higher. Moreover, a 4-week program of high-dose vitamin D supplementation (10,000 IU daily) in subjects with impaired fasting glucose was associated with an improved insulin sensitivity and a decreased acute insulin response to glucose, both risk factors for DM. Finally, a 16-week randomized, placebo-controlled study demonstrated that subjects who took 2,000 IU of vitamin D3 daily had increased β-cell function, as shown by a 37% improvement in insulin secretion.

We hypothesize that vitamin D optimization through sunlight exposure and/or vitamin D3 supplementation would decrease END and subsequent vascular damage caused by diabetes and would reduce the risk of ED.

Hypertension and stroke. High blood pressure, or hypertension, especially systolic pressure, is a vascular disorder that is a potent predictor of CVD, and a strong, linear, and independent relationship exists between the two. Hypertension is also one of the most important risk factors for stroke. Because hypertension leads to vascular damage and END, one would expect this outcome. The hypertension–ED–stroke connection is clear in the fact that over a 5-y period, men with ED have a 29% higher risk of stroke than those without ED.

The control of renin and angiotensin also affects hypertension. Renin is an enzyme that profoundly raises blood pressure by activating the peptide angiotensin, a vasoconstrictor. Vitamin D may suppress hypertension by modulating the renin-angiotensin system, a regulatory cascade essential in regulating blood pressure. Vitamin D is a potent endocrine suppressor of renin biosynthesis, and VDD stimulates renin expression in normal mice. Also, mice lacking vitamin D receptors produce more renin and angiotensin, leading to hypertension.

A direct relationship exists among hypertension, sunlight exposure, and stroke; the incidence of hypertension is considerably higher in winter than summer. One study of elderly hypertensive subjects showed that blood pressure levels averaged 165/90 in winter but 134/74 in the summer, and both stroke and heart attack rates doubled in winter. Hypertension also follows the same pattern in children. UVB light from sun lamps also effectively treats hypertension. In subjects who participated in three sessions per week of whole-body UVB exposure, vitamin D levels rose 162% after 6 weeks, and blood pressure dropped six points on both systolic and diastolic measurements.

Sunlight exposure’s ability to lower blood pressure may also be due to another spectrum of UV light—UVA. Opländer and
We hypothesize that vitamin D optimization through sunlight exposure or vitamin D3 supplementation would decrease vascular damage caused by hypertension and reduce the risk of ED.

Inflammation in the vascular endothelium. Inflammation is a reaction of damaged tissue that manifests as redness, swelling, pain, tenderness and heat. It is primarily a protective response against injury. Normal vascular endothelium has anti-inflammatory properties, but endothelial function is impaired in the presence of inflammatory conditions and increased oxidative stress.17,84 When injurious agents persist or healing is disturbed, inflammation, tissue injury and attempts at repair coexist. This combination of factors can lead to chronic inflammation, harming many body systems, including the vascular system.59 Inflammation drives the formation, progression, and rupture of atherosclerotic plaques; it is one of the stimuli that cause CAMs to further recruit inflammatory blood monocytes that adhere to the endothelium, and through chemotactic stimulus by inflammatory proteins known as chemokines and inflammatory cytokines, enter between the endothelial cells and invade the intima of the blood vessel. In the intima, they mature into macrophages, which engulf lipids and create foam cells, leading to atherosclerotic lesions.86,87 Macrophages also release growth factors that are destructive to blood vessels.58-71 Even subclinical inflammation affects endothelial function and is involved in all stages of atherosclerosis.17 Thus, the endothelium as well as the entire blood vessel is damaged, and atherosclerosis proceeds.

ED is also closely associated with inflammation. C-reactive protein (CRP), a major marker of inflammation, is significantly higher in patients with ED than in subjects without ED.92,93 Interestingly, CRP itself reduces production of NO, leading to further vascular damage.94 Also, CAMs are increased in men with ED who have not manifested cardiovascular risk factors or overt vascular damage.95 Another marker of inflammation is tumor necrosis factor α (TNFα), an inflammatory cytokine that is markedly elevated in men with ED and is another common link between ED and CVD.96

Vitamin D may promote vascular health by inhibiting inflammation.97 Vitamin D supplements and injections may lower CRP levels as much as 40%98 and improve cytokine profiles; it inhibits the production of proinflammatory cytokines99,100 while stimulating the production of anti-inflammatory cytokines.100,101 One pro-inflammatory cytokine, TNFα, is inversely related to regular exposure to sunlight and artificial sources of UVB among women,102 and the same is probably true for men. Two CAMs induced by TNFα are also significantly decreased after incubation with activated vitamin D.103 In addition, Oh and colleagues have shown that in patients with type 2 diabetes, active vitamin D inhibits foam cell formation and suppresses macrophage cholesterol uptake,104,105 inhibiting the inflammatory atherosclerotic process described earlier.

We hypothesize that vitamin D optimization through sunlight exposure or vitamin D3 supplementation would decrease vascular damage caused by inflammation and reduce the risk of ED. We searched pubmed.gov for evidence contradicting our hypothesis regarding VDD and ED but found none.

Other influences of vitamin D on ED. Endothelial progenitor cells. Endothelial progenitor cells (EPCs) are necessary for maintaining the health of the arterial endothelium. VDD is associated with depletion of EPCs and consequent END in patients with type 2 DM.106 This research also showed that VDD was associated with reduced vasodilation as measured by brachial artery flow–mediated dilation.

NO synthases. NO synthases (NOS) are a family of enzymes that catalyze the production of NO from l-arginine. Activated vitamin D stimulates the production of substantial quantities of NOS and NO in macrophages produced in response to tuberculosis,107 in bone108 and in endothelial cells,109 the last being vital to vascular dilation and thereby important to inhibiting ED. This behavior may explain why endothelium-derived, NO-evoked dilation is halved in arteries from vitamin D–deficient male rats.110

PAD. PAD is a CVD that is closely associated with the presence of ED. Chua and colleagues have shown that VDD could be an easily correctable independent risk factor for PAD.111

Platelet activation. Platelet activation by proinflammatory factors is another aspect of END. In experiments, vitamin D attenuates platelet activation while reducing the expression of two CAMs, VCAM-1 and MT1-MMP.112 Researchers in Israel also identified 50 patients who had a heart attack or an episode of unstable angina, placing half of them on a regimen of 4,000 IU of vitamin D daily for 5 d. The vitamin D group showed a decrease in VCAM-1 as well as another inflammation marker, interleukin 6. The patients who did not receive vitamin D showed clear increases in both inflammation markers.113 The researchers stated, “VCAM-1 is central to atherosclerotic plaque formation and [interleukin 6] is broadly associated with coronary risk.” Both studies indicate that vitamin D has actions that reduce END and thereby have a positive influence on ED.

Vascular smooth-muscle cell proliferation. Vascular smooth-muscle cell (VSMC) proliferation is part of the process of atherosclerosis. Vitamin D has an antiproliferative influence on VSMC,114,115 which indicates antiatherosclerotic properties that may positively influence ED.

Vasodilation. Vasodilation is vital to achieving erection. VDD is inversely associated with flow-mediated vasodilation, END, and arterial stiffness irrespective of the traditional risk factors for CVD and ED53 discussed here. Therefore, VDD—in addition to exacerbating the classical risk factors for CVD—may directly lead to ED.

Nonvascular conditions comorbid with ED and influenced by vitamin D. We have thus far discussed the relationship of ED
to CVD and considered the influence of vitamin D levels or treatment on both disorders. Evidence in addition to that presented in this review in support of the hypothesis that VDD contributes to ED risk was sought by searching pubmed.gov for papers linking ED to sun exposure, race, and disorders linked to VDD, and whether animal models regarding vitamin D and ED had been conducted. No evidence linking ED to sun exposure was found. No animal model studies of ED and vitamin D were found. In a cross-sectional study in the United States in 2000 and 2001, the estimated prevalence of ED was "21.9% (95% CI, 18.8–24.9) in whites, 24.4% (95% CI, 18.4–30.5) in blacks, and 19.9% (95% CI, 13.9–25.9) in Hispanics." Another paper reported that Black and Hispanic men in the Boston area had 25% higher rate of ED, but attributed the finding to socioeconomic status rather than race.

Several other nonvascular diseases and conditions are closely associated with both ED and VDD, strengthening the hypothesis that VDD contributes to ED and offering another avenue whereby vitamin D optimization might mitigate or reverse it. Those diseases and conditions include Alzheimer, asthma, chronic kidney disease, depression, falls and fractures, metabolic syndrome, MS, obesity, Parkinson, periodontal disease, psoriasis, and smoking. Table 1 summarizes research regarding those diseases and conditions. For all of these diseases, VDD appears to be an important risk factor. Thus, avoiding VDD earlier in life may reduce the risk of ED. In addition, for some of the diseases such as atopic dermatitis and multiple sclerosis, increasing vitamin D intake or production can reduce the symptoms and may also reduce the risk of ED.

Table 1. Evidence for influences of vitamin D on nonvascular diseases and conditions associated with ED

Disease or condition	Finding (some measure of correlation)	Reference	Evidence for vitamin D deficiency
Alzheimer disease	Loss of erection was reported in 53% of 55 male Alzheimer disease patients with a mean age of 70.25 y. Loss of erection is not related to degree of cognitive impairment, age, or depression.	118, 119	119
Asthma	Subjects with asthma experienced a 1.9-fold (95% CI, 1.3–2.9; p = 0.002) increase in incident ED.	120, 121	121
Chronic kidney disease	Prevalence of ED of various degrees was 87.7% among 73 patients with chronic kidney disease in Iran.	122, 123, 124	123, 124
Depression	Comorbid conditions ED and depression are highly prevalent in men, and men with high depression scores are nearly twice as likely to report ED than nondepressed men.	125, 126	126
Falls, fractures	ED (2.01; 95% CI, 1.30–3.09) was associated with increased risk of osteoporotic fractures in adjusted models.	127, 128	128
Metabolic syndrome	Metabolic syndrome appears to be strongly related to ED.	129, 130	130
Multiple sclerosis	91% of men with multiple sclerosis report having symptoms of either ED or impotence.	131, 132, 133, 134	133, 134
Obesity	Obesity in Taiwanese military conscripts predicted more than an 83-times-increased risk of ED.	135, 136	136
Parkinson disease	ED was severe in 54% of Parkinson cases and moderate in 26.6%.	137, 138	138
Periodontal disease	Chronic periodontal disease was significantly more prevalent among men with mild ED (p = 0.004) and moderate to severe ED (p = 0.007) than in men without ED.	139, 140	140
Psoriasis	Patients with ED were more likely to have been diagnosed with psoriasis before the index date than controls (odds ratio = 3.85; 95% CI I = 2.72–5.44)	141, 142	142
Smoking	In comparison with never smokers, the OR of ED was 2.41 for current smokers and 2.15 for ex-smokers and increased with duration of the habit.	143, 144	144
Atopic dermatitis	cases were more likely to have prior AD than controls (OR = 1.60; 95% CI = 1.42–1.80, p < 0.001) after multifactorial adjustment	145, 146	146

Conclusion

The research presented suggests that many common mechanisms underlie both CVD and ED, and that VDD is closely associated with both disorders. We hypothesize that optimizing serum vitamin D levels through sunlight exposure or vitamin D supplementation helps delay the onset of ED. Coupled with positive changes in lifestyle, such optimization may restore normal sexual function to some men. This hypothesis should be tested through observational and intervention studies. If proven by further research, such therapy would offer an alternative or complement to phosphodiesterase-5 inhibitors, which, though exceptionally effective and a first choice for treatment, have been associated with many negative side effects, and which, because of their efficacy in producing erections, may cause men with ED to ignore the possibility they might have occult underlying CVD.
References

1. Pilz S, Tomaszchitz A, Mair W, Drechsler C, Ritz E, Zittermann A, et al. Vitamin D, cardiovascular disease and mortality. Clin Endocrinol (Oxf) 2011; 75:575-84; PMID:21628758; http://dx.doi.org/10.1111/j.1365-2265.2011.04417.x

2. Souberbielle JC, Body JJ, Lappe JM, Plebani M, Schoenfeld Y, Wang TJ, et al. Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmun Rev 2010; 9:709-15; PMID:20601202; http://dx.doi.org/10.1016/j.autrev.2010.06.009

3. Ginde AA, Liu MC, Camargo CA, Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988-2004. Arch Intern Med 2009; 169:626-32; PMID:19307527; http://dx.doi.org/10.1001/archinternmed.2008.604

4. Ayta IA, McKinlay JB, Krane RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int 1999; 84:50-6; PMID:10444124; http://dx.doi.org/10.1046/j.1464-410x.1999.00142.x

5. Araujo AB, Hall SA, Ganz P, Chiu GR, Rosen RC, Kupelian V, et al. Does erectile dysfunction contribute to cardiovascular disease risk prediction beyond the Framingham risk score? J Am Coll Cardiol 2010; 55:550-6; PMID:20117441; http://dx.doi.org/10.1016/j.jacc.2009.08.058

6. McKinlay JB. The worldwide prevalence and epidemiology of erectile dysfunction. Int J Impot Res 2000; 12:Suppl 4:S11-6; PMID:11055880; http://dx.doi.org/10.1038/sj.ijir.3900567

7. Schouten BW, Bohnen AM, Dohle GR, Groeneveld DA, Esposito K, Ignarro LJ. The link between erectile dysfunction and cardiovascular disease: efficacy and safety of phosphodiesterase type 5 inhibitors in men with both conditions. Mayo Clin Proc 2009; 84:139-48; PMID:19181648; http://dx.doi.org/10.4065/84.2.139

8. Menezes A, Aranth S, Lavie CJ, Milan RV, O’Keefe J. Erectile dysfunction and cardiovascular disease. Postgrad Med 2011; 124:7-16; PMID:21566411

9. Kronzon I, Tunic PA. Aortic atherosclerotic disease and stroke. Circulation 2006; 114:63-75; PMID:16818829; http://dx.doi.org/10.1161/CIRCULATIONAHA.107.593418

10. Stöppler MC, Lee D, Kulic D, Peripheral MD. Vascular Disease. Medicine Net.com. http://www.medicinenet.com/vascular_disease/article.htm. Accessed January 5, 2012.

11. Erectile dysfunction. Mayo Clinic Online. http://www.mayoclinic.com/health/erectile-dysfunction/HR000074 Accessed October 25, 2011.

12. Gazzaruso C, Coppola A, Montalcini T, Valenti C, Gattanii A, Pelizzo G, et al. Erectile dysfunction can improve the effectiveness of the current guidelines for the screening for asymptomatic coronary artery disease in diabetics. Endocrinol 2011; 40:273-9; PMID:21861245; http://dx.doi.org/10.1016/j.endcr.2010.01-9523-9

13. Salem S, Abdi S, Mehrsah A, Saboury B, Saraji A, Shokohideh V, et al. Erectile dysfunction severity as a risk predictor for coronary artery disease. J Sex Med 2009; 6:3425-32; PMID:19796020; http://dx.doi.org/10.1111/j.1743-6109.2009.01515.x

14. Billups KL, Bank AJ, Padma-Nathan H, Katz S, Williams R. Erectile dysfunction is a marker for cardiovascular disease: results of the minority health institute expert advisory panel. J Sex Med 2010; 7:236-42; PMID:19796020; http://dx.doi.org/10.1111/j.1743-6109.2009.01515.x

15. Jackson G, Boon N, Eardley I, Kirby M, Dean J, Hackert G, et al. Erectile dysfunction and coronary artery disease prediction: evidence-based guidance and consensus. Int J Clin Pract 2010; 64:84-87; PMID:20584218; http://dx.doi.org/10.1111/j.1742-1241.2010.02410.x

16. Polonosky TS, Taillon LA, Sheh H, Min JK, Archer SL, Ward RP. The association between erectile dysfunction and peripheral arterial disease as determined by screening ankle-brachial index testing. Atherosclerosis 2009; 207:440-4; PMID:19501825; http://dx.doi.org/10.1016/j.atherosclerosis.2009.05.005

17. Böhm M, Baumhäkel M, Teo K, Sleight P, Probstfield JL, et al. Randomized Assessment Study in ACE iNtolerant patients receiving telmisartan, ramipril, or both: The ONTARGET/TRANSCEND Erycile Dysfunction Sub Study Investigators. J Am Coll Cardiol 2011; 59:349-60; PMID:21191815; http://dx.doi.org/10.1016/j.jacc.2011.02.051

18. Makiyama SK, Kurotani M, Exercise GL, Walker AE, Seals DR. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hyper- tension 2011; 57:63-9; PMID:2115878; http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.160929

19. Fike JL, Vangya SR, Good M, Lai SM, Lakkereddy D, Howard PA. Vitamin D deficiency and supplementation and relation to cardiovascular health. Am J Cardiol 2010; 105:59-63; PMID:20271212; http://dx.doi.org/10.1016/j.amjcard.2010.09.020

20. Giovanniucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myocardial infarction in men. Ann Intern Med 2008; 167:1174-80; http://dx.doi.org/10.1001/archinternmed.168.11.1174

21. Watson KE, Abrolad ML, Malone LL, Hoeg JM, Doherty T, Derrano R, et al. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 1997; 96:1755-60; PMID:9323058

22. Beanderkon WG, Dassa AS, Love BM. Calcification in the coronary arteries and its relationship to arteriosclerosis and myocardial infarction. Am J Roentgenol Ther Nucl Med 1964; 92:865-71; PMID:14215099

23. Agostonis AS, Janowitz WR, Hildner FJ, Zusmer NR, Vacek JL, Berman D, et al. Thoracic aorta calcification: Detection of coronary artery stenosis in Japanese patients. obtained by helical computed tomography. Arq Bras Cardiol 2000; 75:471-80; PMID:11175472; http://dx.doi.org/10.1597/0735-1097/90/90282-T

24. Feldman C, Vitol D, Schiavo N. Detection of coronary artery disease based on the calcification index obtained by helical computed tomography. J Am Coll Cardiol 1998; 35:1827-32; PMID:2407762; http://dx.doi.org/10.1016/0735-1097(98)00208-2

25. Kimura A, Kobayashi T, Ueda K, Okada T, Awata N, Sano S, et al. Evaluation of coronary artery calcification by multi-detector row computed tomography for the detection of coronary artery stenosis in Japanese patients. J Epidemiol 2005; 15:187-93; PMID:16195639; http://dx.doi.org/10.1001/archinHEMA.168.11.1174

26. Agostonis AS, Janowitz WR, Hildner FJ, Zusmer NR, Vacek JL, Berman D, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1998; 35:1827-32; PMID:2407762; http://dx.doi.org/10.1016/0735-1097(98)00208-2

27. Makiyama SK, Kurotani M, Exercise GL, Walker AE, Seals DR. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hyper- tension 2011; 57:63-9; PMID:2115878; http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.160929

28. Böhm M, Baumhäkel M, Teo K, Sleight P, Probstfield JL, et al. Randomized Assessment Study in ACE iNtolerant patients receiving telmisartan, ramipril, or both: The ONTARGET/TRANSCEND Erycile Dysfunction Sub Study Investigators. J Am Coll Cardiol 2011; 59:349-60; PMID:21191815; http://dx.doi.org/10.1016/j.jacc.2011.02.051

29. Los Angeles Times Online. March 16, 2010. http://articles.latimes.com/2010/mar/16/science/la-sc-ed-heart16-2010-Mar16 Accessed October 26, 2011.
Selvin E, Burwell AL, Platz EA. Prevalence and risk factors for erectile dysfunction in the US. Am J Cardiol 2007; 120:1517-7; PMID:17275456; http://dx.doi.org/10.1016/j.amjcard.2006.06.010

58. Martin-Morales A, Sanchez-Cruz JJ, Saenz de Tejada I, Rodriguez-Vela L, Jimenez-Cruz JF, Burgos-Rodriguez R. Prevalence and independent risk factors for erectile dysfunction in Spain: results of the Epidemiologia de La Disfuncion Erectil Masculina Study. J Urol 2001; 166:569-74, discussion 574-5; PMID:11458070; http://dx.doi.org/10.1016/S0022-5347(01)03968-1

59. Mahaziwa LS, Leonard S. Erectile dysfunction in diabetes mellitus. J Sex Med 2009; 6:123-42; PMID:19210786; http://dx.doi.org/10.1111/j.1743-6109.2008.01168.x

60. Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol 1994; 151:54-61; PMID:8245833

61. Ishii H, Suzuki H, Baba T, Nakamura K, Watanabe T. Seasonal variation of labile nitric oxide in healthy adults. Horm Metab Res 2006; 38:1507-17. doi:10.1055/s-2006-941202

62. Nazarian S, Perri MB, Paniagua E, Kaptein A, Shamoon R, Joffe J. Effects of vitamin D3 supplementation on plasma markers of cardiovascular disease in healthy postmenopausal women. J Clin Endocrinol Metab 2011; 96:3379-85; PMID:21623689; http://dx.doi.org/10.1210/jc.2010-2535

63. Zeltzer LK, Judd HL. Sexual dysfunction in hypertensive men. J Sex Med 2005; 2:141-6; PMID:15585814; http://dx.doi.org/10.1111/j.1743-6109.2004.00286.x

64. Nazarian S, St Peter JV, Boston RC, Jones SA, Mariash CN. Vitamin D3 supplementation improves insulin sensitivity in subjects with impaired fasting glucose. Transl Res 2011; 158:276-81; PMID:22005267; http://dx.doi.org/10.1016/j.trsl.2011.05.002

65. Mitri J, Dawson-Hughes B, Hu FB, Pittas AG. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 2011; 94:486-94; PMID:21715514; http://dx.doi.org/10.3945/ajcn.111.011684

66. Bowman TS, Sesso HD, Gaziano JM. Effect of age on blood pressure parameters and risk of cardiovascular disease in Chinese men and women. Am J Hypertens 2008; 21:265-72; PMID:18181815; http://dx.doi.org/10.1038/ajh.2007.59

67. Gu D, Kelly TN, Wu X, Chen J, Duan X, Huang JF, Liu WH, Sun Y. Sunlight and blood pressure: a meta-analysis. J Hypertens 2012; 30:1425-33; PMID:22815036; http://dx.doi.org/10.1097/HJH.0b013e32835343d8

68. Talmud PJ, Ait-Ahmed B, Sowers MR, Yeung CA, Hughes MD, Rennarts R, et al. Effect of vitamin D supplement on blood pressure in non-assistive wheelchair users: a randomized controlled trial. JAMA Intern Med 2013; 173:1979-86; PMID:23925696; http://dx.doi.org/10.1001/jamainternmed.2013.2742

69. Sacco RL, Benjamin EJ, Broderick JP, Diver DJ, Dworkin L, et al. Antihypertensive drug treatment and cardiovascular outcomes: a trial sequential analysis. JAMA 2010; 303:2389-97; PMID:20461197; http://dx.doi.org/10.1001/jama.2010.813

70. Manolis A, Doumas M. Sexual dysfunction: the Greek experience. J Sex Med 2009; 6:554-60; PMID:19294733; http://dx.doi.org/10.1111/j.1743-6109.2008.01168.x

71. Rees RM, Donnan GA. Risk factors for stroke due to large-artery atherosclerosis: epidemiology, pathophysiology, and management. J Neurol 2008; 255:1093-102; PMID:18403182; http://dx.doi.org/10.1007/s00415-008-0375-6

72. Girotto OA, Girotto O, De Marchi M, Oliveri A, Costanzo A, Robles E. Prevalence of erectile dysfunction among 7689 patients with diabetes or hypertension, or both. Urology 2006; 64:1196-201; PMID:1559616; http://dx.doi.org/10.1016/j.urology.2004.08.059

73. Chung SD, Chen YK, Lin HC, Lin HC. Increased risk of stroke among men with erectile dysfunction: a nationwide population-based study. J Sex Med 2011; 8:24-9; PMID:20722781; http://dx.doi.org/10.1111/j.1743-6091.2010.01973.x

74. Sigmund CD. Regulation of renin expression and blood pressure by vitamin D3. J Clin Invest 2002; 110:155-6; PMID:12122105

75. Li YC, Gao Q, Ulkovski M, Xiong W, Zheng W, Kong J, Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol 2004; 89:387-92; PMID:15225806; http://dx.doi.org/10.1016/j.jbmb.2003.03.004

76. Forman JP, Williams JS, Fisher ND. Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension 2010; 55:1238-8; PMID:20353344; http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.116019

77. Ullah MI, Uwafio GI, Nicholas WC, Koch CA. Does vitamin d deficiency cause hypertension? Current evidence from clinical studies and potential mechanisms. Int J Endocrinol 2010; 2010:579640; PMID:20490517

78. Charach G, Rabinovich PD, Weintraub M. Seasonal changes in blood pressure and frequency of related complications in elderly Israeli patients with essential hypertension. Gerontologist 2004; 40:315-21; PMID:15531861; http://dx.doi.org/10.1093/geront/40.3.315

79. Polat M, Akil I, Yukel H, Coskun S, Yilmaz D, Enguer I, et al. The effect of seasonal changes on blood pressure and urine specific gravity in children living in Mediterranean climate. Med Sci Monit 2006; 12:CR186-90; PMID:16572065

80. Krause R, Bühring M, Hopfenmüller W, Holick MF, Sharma MA. Ultraviolet B and blood pressure. Lancet 1998; 352:709-10; PMID:9728997; http://dx.doi.org/10.1016/S0140-6736(05)67087-6

81. Opländer C, Volkmann CM, Paunel-Görgülü A, van Faassen EE, Heiss C, Kelm M, et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circ Res 2010; 105:1031-40; PMID:20197716; http://dx.doi.org/10.1161/CIRCRESAHA.109.110706

82. Forman JP, Giovannucci E, Blondeau NA, Bischoff-Ferrari HA, Tworoger SS, Willett WC, et al. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 2007; 49:1063-9; PMID:17372031; http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.087288

83. Anderson JL, May HT, Horne BD, Bair TL, Hall NL, Agostino RB, Sr.. Trends in the incidence of hypertension-related quality-of-life complications. J Hypertens 2008; 26:1189-94; PMID:18540399; http://dx.doi.org/10.1097/HJH.0b013e3282e36d6f

84. Trepels T, Zeiber AM, Fichtscher S. The endothelium and inflammation. Endothelium 2006; 13:423-5; PMID:17169774; http://dx.doi.org/10.1080/10623320601061862

85. Mani C. Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J 2011; 75:2739-48; PMID:22067929; http://dx.doi.org/10.1253/circnj.CJ-11-1184
86. Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circ J 2010; 74:213-20; PMID:20065669; http://dx.doi.org/10.1253/circj.CJ-09-0706

87. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 2006; 83:565-605; PMID:16470012

88. Cybulsky MI, Gimbrone MA, Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251:788-89; PMID:1990440; http://dx.doi.org/10.1126/science.1990440

89. Li H, Cybulsky MI, Gimbrone MA, Jr., Libby P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol 1993; 143:1551-9; PMID:7504883

90. Liu I, Okada Y, Clinton SK, Gerard C, Sudhova GK, Libby P, et al. Absence of monocyte chemotractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998; 2:275-81; PMID:9734366; http://dx.doi.org/10.1016/S1097-2765(00)80139-2

91. Boring H, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice, implies a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394:894-7; PMID:9732872; http://dx.doi.org/10.1038/29788

92. Chiurlia E, Amico R, Ratti C, Granata AR, Romagnoli R, Modena MG, et al. Subclinical coronary artery atherosclerosis in patients with erectile dysfunction. J Am Coll Cardiol 2005; 46:1503-6; PMID:16659574; http://dx.doi.org/10.1016/j.jacc.2006.01.004

93. Oh J, Weng S, Felino SK, Bhandare S, Rice A, Butler B, et al. Vitamin D induces foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes. Circulation 2009; 120:687-98; PMID:19667238; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.879967

94. Riek AE, Oh J, Bernal-Mizrachi C. Vitamin D regulates macrophage cholesterol metabolism in diabetes. J Steroid Biochem Mol Biol 2010; 121:430-3; PMID:20358328; http://dx.doi.org/10.1016/j.jsbmb.2010.03.018

95. You YF, Chan YH, You KH, Sui CW, Li SW, Wong LY, et al. Vitamin D deficiency is associated with depletion of circulating endothelial progenitor cells and endothelial dysfunction in patients with type 2 diabetes. J Clin Endocrinol Metab 2011; 96:E830-5; PMID:21231559; http://dx.doi.org/10.1210/jc.2010-2212

96. Rockett KA, Brookes R, Uddalov I, Vidal V, Hill AV, Kwizdowski D. 1,25-Dihydroxyvitamin D3 induces tumor necrosis factor-alpha-induced adhesion molecule expression in endothelial cells. Cell Biol Int 2006; 30:365-75; PMID:16549374; http://dx.doi.org/10.1016/j.cellbi.2006.01.004

97. Bocchino C, Desideri G, Scarfelli P, Necozione S, Properzi G, Sartore C, et al. Endothelial cell activation in men with and without erectile dysfunction: case-control study. Sao Paulo Med J 2010; 128:137-40; PMID:20963656; http://dx.doi.org/10.1590/S1516-00402010000300006

98. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badwala MV, et al. A self-filling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002; 106:913-9; PMID:12148793; http://dx.doi.org/10.1161/01.CIR.0000029828.88087.5E

99. Bocchino C, Desideri G, Scarfelli P, Necozione S, Properzi G, Sartore C, et al. Endothelial cell activation in men with and without erectile dysfunction: case-control study. Sao Paulo Med J 2010; 128:137-40; PMID:20963656; http://dx.doi.org/10.1590/S1516-00402010000300006

100. Schleihoff SS, Zittermann A, Tenderich G, Berhold HK, Stolpe P, Koerfer R. Vitamin D supplementation increases cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 2006; 83:731-2; PMID:16600920

101. Canning MO, Gretenhuis K, de Wit H, Rawholf C, Dreuxhaege H, 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol 2001; 145:351-7; PMID:11517017; http://dx.doi.org/10.1530/ej.0.1453511

102. Peterson CA, Hefferman ME. Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. J Lymphom (Lond) 2008; 5:10; PMID:18656280; http://dx.doi.org/10.1111/j.1476-5550.2015.00167.x

103. Martinez M, Bruni S, Shi M, Trees C, 1,25-Dihydroxyvitamin D3 inhibits tumor necrosis factor-alpha-induced adhesion molecule expression in endothelial cells. Cell Biol Int 2006; 30:365-75; PMID:16549374; http://dx.doi.org/10.1016/j.cellbi.2006.01.004

104. Oh J, Weng S, Felino SK, Bhandare S, Rice A, Butler B, et al. Vitamin D induces foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes. Circulation 2009; 120:687-98; PMID:19667238; http://dx.doi.org/10.1161/CIRCULATIONAHA.109.879967

105. Riek AE, Oh J, Bernal-Mizrachi C. Vitamin D regulates macrophage cholesterol metabolism in diabetes. J Steroid Biochem Mol Biol 2010; 121:430-3; PMID:20358328; http://dx.doi.org/10.1016/j.jsbmb.2010.03.018

106. Liu I, Okada Y, Clinton SK, Gerard C, Sudhova GK, Libby P, et al. Absence of monocyte chemotractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998; 2:275-81; PMID:9734366; http://dx.doi.org/10.1016/S1097-2765(00)80139-2
124. Pfizer, S. Indocid, S. Zittermann, A. Grant, W.B., Gandini, S. Vitamin D status and mortality risk in CKD: a meta-analysis of prospective studies. Am J Kidney Dis 2011; 58:374-82; PMID:21636193

125. Perelman, M., Abrahamsen, B., Masud, T., Brixen, K. Risk of erectile dysfunction and depression: screening and treatment. Urol Clin North Am 2011; 38:125-39; PMID:21621079; http://dx.doi.org/10.1016/j.ucl.2011.03.004

126. Hoang, M.T., Defina, L.F., Willis, B.L., Leonard, D.S., Perelman, M.A. Erectile dysfunction and depression: a meta-analysis of randomized controlled trials. JAMA 2011; 305:230-40; PMID:21621079; http://dx.doi.org/10.1001/jama.2011.241086

127. Frost, M., Andrew, D., Al-Othman, A., et al. Modest reversal of multiple sclerosis in patients with early Parkinson disease using the International Index of Erectile Dysfunction (IIEF-15). Prog Urol 2011; 21:67-71; PMID:2193148

128. Bischoff-Ferrari, H.A., Willett, W.C., Wong, J.B., Giovannucci, E., Dietrich, T., Dawson-Hughes, B. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 2005; 293:2257-64; PMID:15886381; http://dx.doi.org/10.1001/jama.293.18.2257

129. Lee, R.K., Chughtai, B., Te, A.E., Kaplan, S.A. Sexual function in men with metabolic syndrome. Urol Clin North Am 2012; 39:53-62; PMID:22118345; http://dx.doi.org/10.1016/j.ucl.2011.09.008

130. Al-Daghri, N.M., Alkharfy, K.M., Al-Saleh, Y., Al-Atas, O.S., Alokail, M.S., Al-Othman, A., et al. Modest reversal of metabolic syndrome manifestations with vitamin D status correction: a 12-month prospective study. Metabolism 2011; In press; PMID:22075268; http://dx.doi.org/10.1016/j.metabol.2011.09.017

131. Severson, B. Sexual Dysfunction and Multiple Sclerosis. U.S. Dept. of Veterans Affairs, Multiple Sclerosis Center of Excellence. 2010. Available at http://www.va.gov/MS/articles/Sexual_Dysfunction_and_Multiple_Sclerosis.asp. Accessed Dec. 27, 2011.

132. Boston Medical Group Online. Multiple Sclerosis and Erectile dysfunction. http://www.multiplesclerosisandereciledysfunction.com/ Accessed December 27, 2011.

133. Munger, K.L., Zhang, S.M., O'Reilly, E., Hernán, M.A., Olek, M.J., Willett, W.C., et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 2004; 62:60-5; PMID:14718698

134. Mirzaei, F., Michels, B.K., Munger, K., O'Reilly, C.S., Chitnis, T., Forman, M.R., et al. Gestational vitamin D and the risk of multiple sclerosis in offspring. Ann Neurol 2011; 70:39-40; PMID:21786697; http://dx.doi.org/10.1002/ana.22456

135. Rácz, E., Reilly, E., Chitnis, T., Forman, M.R., et al. Association between low serum 25-hydroxyvitamin D and depression in a large sample of healthy adults: the Cooper Center longitudinal study. Mayo Clin Proc 2011; 86:1050-5; PMID:21621079; http://dx.doi.org/10.1001/archneurol.2011.30

136. Earthman, C.P., Beckman, L.M., Masodkar, K., Sibley, S.D. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes (Lond) 2011; 36:374-82; PMID:21636193

137. Roumgiau, M., Guillotreau, J., Castel-Lacanal, E., Malavaud, B., De Boisserie, N., Marque, P., et al. [Assessment of sexual function in men with idiopathic Parkinson’s disease using the International Index of Erectile Dysfunction (IIEF-15)]. Prog Urol 2011; 21:67-71; PMID:2193148

138. Evtar, M.L., Delong, M.R., Kumar, M., Anderer, P., McDermott, M.P., Tangerich, V., Parkinson Study Group DATATOP Investigators. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neurol 2011; 68:314-9; PMID:21403017; http://dx.doi.org/10.1001/archneurol.2011.30

139. Zadik, Y., Becher, R., Galor, S., Justo, D., Heruti, R.J. Erectile dysfunction might be associated with chronic periodontal disease: two ends of the cardiovascular spectrum. J Sex Med 2009; 6:1111-6; PMID:19708861; http://dx.doi.org/10.1016/j.jsm.2008.11.014

140. Grant, W.B., Boucher, B.J. Are Hill's criteria for causality satisfied for vitamin D and periodontal disease? Dermatoendocrinol 2010; 2:30-6; PMID:21547146; http://dx.doi.org/10.4161/derm.2.1.12488

141. Chung, S.D., Keller, J.J., Chu, T.W., Lin, H.C. Psoriasis and the risk of erectile dysfunction: a population-based case-control study. J Sex Med 2012; 9:130-5; PMID:22023713; http://dx.doi.org/10.1111/j.1743-6109.2011.02510.x

142. Rácz, E., Prens, E.P., Kurek, D., Kant, M., de Ridder, D., Mouriès, S., et al. Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and TH17 pathways. J Invest Dermatol 2011; 131:1547-58; PMID:21412260; http://dx.doi.org/10.1038/ijd.2011.53

143. Safarinejad, M.R. Prevalence and risk factors for erectile dysfunction in a population-based study in Iran. Int J Impot Res 2003; 15:246-52; PMID:12934051; http://dx.doi.org/10.1038/sj.ijir.3901024

144. Bent, C., Jorgensen, N.R., Sorensen, O.H. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr 1999; 53:920-6; PMID:10602348; http://dx.doi.org/10.1038/sj.ejcn.1600870

145. Chung, S.D., Keller, J.J., Lin, H.C. Association of erectile dysfunction with atopic dermatitis: a population-based case-control study. J Sex Med 2012; 9:679-85; PMID:22240253; http://dx.doi.org/10.1111/j.1743-6109.2011.02587.x

146. Amesteanii, M., Salehi, B.S., Vaigh, M., Sehbidhaz, A., Karami, M., Alinia, H., et al. Vitamin D supplementation in the treatment of atopic dermatitis: a clinical trial study. J Drugs Dermatol 2012; 11:327-30; PMID:2295583

147. Drugs.com. Viagra Side Effects. http://www.drugs.com/sfx/viagra-side-effects.html. Accessed Dec. 20, 2011.