Short Communication

Molecular cloning, tissue distribution and the expression of cystine/glutamate exchanger (xCT, SLC7A11) in different tissues during development in broiler chickens

Janghan Choia, Weiqi Lia, Brayden Schindella, Lijun Nia, b, Shangxi Lia, Xiaoya Zhaoa, Joshua Gongc, Martin Nyachoti a, Chengbo Yanga, *

a Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
b Shanghai Lab-Animal Research Center, Shanghai, 201203, China
c Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, ON, N1G 5C9, Canada

A B S T R A C T

The cystine/glutamate exchanger (xCT, SLC7A11) is a component of the system Xc amino-acid antiporter that is able to export glutamate and import cysteine into cells. The xCT amino acid exchanger has received a lot of attention, due to the fact that cysteine is an essential substrate for the synthesis of glutathione (GSH), an endogenous antioxidant in cells. The objective of this research was to clone the full-length cDNA of chicken xCT, and to investigate the gene expression of xCT in different tissues, including intestinal segments of broiler chickens during development. The full-length cDNA of chicken xCT (2,703 bp) was obtained from the jejunum by reverse transcription-PCR and sequenced. Homology tests showed that chicken xCT had 80.4%, 80.2%, and 71.2% homology at the nucleotide level with humans, cattle, and rats, respectively. Likewise, amino acid sequence analysis showed that chicken xCT protein is 86.4%, 79.3%, and 75.6% homologous with humans, cattle, and rats, respectively. Additionally, phylogenetic analysis indicated that chicken xCT genes share a closer genetic relationship with humans and cattle, than with rats. The chicken xCT protein has 12 transmembrane helices, 6 extracellular loops, and 5 intracellular loops. The mRNA of xCT was detected in all tissues, including intestinal segments, in which the mRNA expression of xCT was significantly higher (P < 0.05) within the colon, compared to the jejunum and ileum. During development, a linear pattern of changes regarding the levels of the xCT mRNA was found, indicating that there was an abundance of xCT within the duodenum (P < 0.05). Furthermore, there were changes of the xCT mRNA abundance in the colon during development, which displayed linear and cubic patterns (P < 0.05). These results indicated that xCT is widely expressed both in intestinal segments, as well as other organs that are not associated with nutrient absorption. Further investigation is needed to characterize the functional relevance of xCT activity in oxidative stress and inflammation in the small intestine of broiler chickens.

© 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Oxidative stress is generally referred to as an imbalance between oxidants and antioxidants at the cellular level, which can cause the oxidative modification of cellular macromolecules, apoptosis, necrosis, and structural tissue damage (Lykkesfeldt and Svendsen, 2007; Lauridsen, 2018). Oxidative stress may be due to several factors, including the contamination of feed with mycotoxins (Lee et al., 2017), impaired fat quality (Leskovc et al., 2018; Lindblom et al., 2018), high dietary polyunsaturated fatty acids.
(PUFA) (Cherian and Hayat, 2009; Gao et al., 2010), heat stress (Gu et al., 2012; Sahin et al., 2017), insufficient intake of antioxidants (Voljc et al., 2011), fast growth rate (Zambonelli et al., 2016), increased activity of the immune system (e.g., vaccination and infection), pulmonary hypertension (Iqbal et al., 2001), and coccidiosis (Georgieva et al., 2006). Several studies have shown that oxidative stress may be associated with the pathogenesis of some intestinal diseases in broiler chickens, such as diarrhea and enteritis, as well as the decreased growth performance of broiler chickens (Estevez, 2015; Leskovec et al., 2018). As a result, antioxidant-based therapeutic effects have been examined in broiler chickens (Leskovec et al., 2018; Min et al., 2018).

Amino acids are key nutrients that are essential for maintaining gut mucosal growth and functions, serving as both metabolic fuels and precursors for the syntheses of various monomer and polymer nitrogenous compounds, which are essential to the gut and body (Burrin and Reeds, 1997; Ziegler et al., 2003). Cysteine is an essential substrate for the synthesis of glutathione (GSH). It is a tripeptide of cysteine, glutamate, and glycine, and is a major endogenous antioxidant in cells (Bannai, 1986; Patel et al., 2004; Koppula et al., 2018). Cystine uptake is closely associated with the expression of the cystine/glutamate exchanger (xCT, SLC7A11), which is a component of the system Xc sodium-independent amino acid antiporter (Bannai and Kitamura, 1980; Burdo et al., 2006). As shown in Fig. 1, the essential roles of the apical membrane-associated xCT and excitatory amino acid carrier 1 (EAAC1) are associated with other membrane amino acid (AA) transporters and intracellular biochemical steps, which provide intracellular L-glutamate, L-cysteine and glycine. These amino acids are utilized in maintaining intestinal epithelial homeostasis, de novo biosynthesis of GSH, and redox balance in broiler chickens. According to Tang et al. (2016), cystine deprivation depleted intracellular GSH in cells and induced cell death. In broiler chickens, it is evident that the antioxidative capacity is closely correlated with the intracellular GSH levels (Banerjee et al., 2008; Zhang et al., 2011, 2018). It has been shown that the expression level of xCT could be upregulated by oxidative stress induced by enhanced GSH biosynthesis in animals (Conrad and Sato, 2012). Thus, the expression of xCT at the cell surface may be an important regulator of intracellular redox balance (Lo et al., 2008), and chicken xCT may be a potential therapeutic target in treating complications associated with oxidative stress in the poultry industry. However, information about chicken xCT is limited. Therefore, the objective of this research was to gain more insight about chicken xCT by cloning the full-length coding region of xCT and to investigate the expression of xCT in different tissues, including intestinal segments of broiler chickens during development.

2. Materials and methods

The animal protocol for this study was approved by the University of Guelph Animal Care Committee.

Fig. 1. Schematic illustration of essential roles of the apical membrane-associated cysteine/glutamate exchanger (xCT) and excitatory amino acid carrier 1 (EAAC1) in relationships to other membrane amino acid (AA) transporters and intracellular biochemical steps in providing intracellular L-glutamate, L-cysteine, and glycine for maintaining intestinal epithelial homeostasis, de novo biosynthesis of glutathione and redox balance in broiler chickens. GSH – glutathione; EAAC1 – excitatory AA carrier 1; GTRAP3-18 – EAAC1-associated protein; xCT and 4F2hc, subunits of system Xc; GLYT1 – glycine transporter 1; TNF-α – tumor necrosis factor alpha; IκB kinase; γ-GCS – γ-gluamylcysteine synthetase; GSSG – glutathione disulfide; ROS – reactive oxygen species; RNS – reactive nitrogen species; JNK – Jun N-terminal kinases; AP-1 – activator-protein-1.
2.1. Animals and diets

For the study of xCT cloning, expression and distribution in different tissues, 35-day-old broiler chickens were obtained from the Arkell Poultry Research Station of the University of Guelph. The chickens were euthanized by CO₂, and tissues from the upper palate, tongue, heart, lung, proventriculus (true stomach), ventriculus (gizzard), liver, kidney, duodenum, jejunum, ileum, cecum, and colon were cut into small pieces, quickly immersed in RNAlater (Thermo Fisher Scientific, Waltham, MA) and stored at −20°C until RNA was extracted. Intestinal tissue included the mucosa, submucosa, muscularis, and serosa, which were sampled for further analyses.

In order to study xCT gene expression during development, twenty 1-day-old male Ross 308 broiler chickens were obtained from a local hatchery in Manitoba (Carleton Hatchery, Grunthal, Manitoba). Corn-soybean basal diets were formulated in order to meet the nutrient requirements of the National Research Council (1994), as shown in Table 1. The 20 chickens were randomly allotted to 2-oor pens (2.13 m × 1.52 m) containing straw bedding, and allowed free water and feed during the experiment period. The chickens were housed in a facility with controlled temperature and light conditions. The temperature was maintained at 31°C until RNA was extracted. The animal protocol for this experiment was approved by the University of Manitoba Animal Care Committee.

2.2. RNA extraction

Total RNA was isolated from 50 mg of tissue samples using an RNAqueous total RNA isolation kit (Ambion Inc., Foster City, CA), and DNA contamination was eliminated by DNase I (Invitrogen, Carlsbad, CA) treatment according to the manufacturer’s instructions. The RNA integrity was checked by a 1% agarose gel electrophoresis stained with SYBR Green (Invitrogen). OD260:OD280 and OD260:OD230 were measured using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE) to determine RNA concentrations. The RNA samples were stored at −80°C and kept for further analysis.

2.3. Full-length chicken xCT coding region cloning

The first strand of cDNA was synthesized using oligo (dT) 20 primers, and Superscript II reverse transcriptase (Invitrogen), according to the manufacturer’s instructions. Primers for amplifying the full-length of the chicken xCT coding region were designed with Primer Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome) based on the predicted chicken xCT mRNA sequence (GenBank: XM_426289.5); the primer sequences are listed in Table 2. The expected size of the reverse transcription (RT)-PCR product was 2,703 bp. PCR thermocycler conditions were as follows: 95°C denaturation 2 min, 40 cycles at 95°C for 30 s, 54°C for 30 s, 72°C for 30 s, and a final extension of 72°C for 10 min. Each PCR reaction mixture contained 38.1 µL of 0.1% diethylpyrocarbonate (DEPC)-treated water, 1 µL each of forward and reverse primer (10 µmol/L), 5 µL of 10 × PCR Buffer; 1 µL of dNTP mix (10 mmol/L), 0.4 µL of TaqDNA polymerase (5 U/µL), 1.5 µL of MgCl₂ (50 mmol/L), and 2 µL cDNA; the total volume was 50 µL. All PCR products were electrophoresed on a 2% agarose gel in Tris-borate-EDTA buffer, and visualized by staining with SYBR Green (Invitrogen). To confirm the identity of the PCR products, the PCR products were purified and sequenced by dideoxy-mediated chain termination sequencing at the University of Manitoba Molecular Supercenter. The nucleotide sequence of the xCT gene reported in this paper resides in the GenBank/EMBL data bank (accession no. MH760782.1).

2.4. Bioinformatics analyses

The homology of xCT mRNA and amino acid sequences among chicken (MH760782.1), humans (XM_011531802.2/XP_011530104.1), cattle (XM_015475398.1/XP_015330884.1), and rats (XM_006232323.3/XP_006232385.1) was analyzed by Clustal Omega, which is a multiple sequence alignment online-tool (http://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011).
phylogenetic relationship of the xCT amino acid sequences among chickens, mice, humans, and pigs was further analyzed, and the phylogenetic tree was constructed by the unweighted pair group method with arithmetic mean (UPGMA) method in the MEGA 5.05 software (Tamura et al., 2011). Visualization of the secondary structure of chicken xCT protein was conducted using Protter (http://wlab.ethz.ch/protter/start).

2.5. Real-time reverse transcription-PCR analysis

One microgram RNA was used to synthesize the first strand of cDNA using the iScript cDNA Synthesis Kit (Bio-Rad, Mississauga), according to the manufacturer’s instructions. Primers for chicken xCT and \(\beta \)-actin genes were designed with Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 2) and were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA). Real-time RT-PCR was performed using SYBR Green Supermix (Bio-Rad) on a CFX Connec Real-Time PCR Detection System (Bio-Rad) (Omonijo et al., 2018). One microgram cDNA was added to make a total volume of 20 \(\mu \)L containing 10 \(\mu \)L SYBR Green mix, and 1 \(\mu \)L each of forward and reverse primers. The following thermocycler conditions were used: denaturation 15 s at 95 \(^{\circ} \)C, annealing 15 s at 56 \(^{\circ} \)C, and extension 30 s at 72 \(^{\circ} \)C, and repeat cycle 45 times. Beta-actin was used as the internal control to normalize the amount of starting RNA used in the real-time RT-PCR. A melting curve program was conducted to confirm the specificity of each product, and the size of the products was verified by agarose gel electrophoresis. A duplicate assay was done for all the samples. The target gene expression was normalized with that of a selected reference gene, and relative gene expression was determined by using \(R = 2^{(\text{Ct(reference)}-\text{Ct(test)})} \) (Kleta et al., 2004). The efficiencies of PCR were acquired by amplification of the dilution series of the DNase-treated RNA according to formula \(10^{(\text{slope})}/\text{C}_0 \) (Pfafl, 2001). The efficiencies of all primers used in this study were between 96% and 105%.

2.6. Statistical analysis

Statistical Analysis System (SAS 9.4, SAS Institute, Cary, NC) was used to perform statistical analyses. The relative gene expression was statistically analyzed by ANOVA, followed by equally spaced orthogonal polynomial contrast, and Tukey’s test for individual comparison. GraphPad Prism 7 (GraphPad Software Inc, San Diego, CA) was used to make figures. All data were expressed as means ± SEM, and the level of statistically significant difference was set at \(P < 0.05 \).

3. Results

As shown in Fig. 2, the expected 2,703 bp chicken cDNA fragment of xCT gene was obtained from the jejunum through RT-PCR. The PCR product was further purified, sequenced, and submitted to GenBank/EMBL data bank (accession no. MH760782.1). Compared with other species, the coding region cDNA sequence of chicken xCT had 80.4%, 80.2%, and 71.2% homology with humans, cattle, and rats, respectively. Chicken xCT amino acid primary structure had 86.4%, 79.3% and 75.6% homology with humans, cattle, and rats, respectively. Phylogenetic analysis indicated that chicken xCT share a closer genetic relationship with humans and cattle, compared to rats (Fig. 4). Protter results revealed that chicken xCT protein contains 12 transmembrane helices, 6 extracellular loops, and 5 intracellular loops (Fig. 5).

As shown in Fig. 3A, the chicken xCT gene was expressed in the tissues including the upper palate, tongue, heart, lung, proventriculus (true stomach), ventriculus (gizzard), liver, kidney, duodenum, jejunum, ileum, cecum, and colon of broiler chickens. As shown in Fig. 3B, there was no difference observed in the xCT mRNA levels among the different tissues and organs. Table 2 presents the primers used in this study.

Table 2

Genes	Sequence (5’-3’)	Size, bp	Tm, °C	Location	Product size, bp	Purpose	GenBank ID
xCT	FP: TGACCTGGAAACGGCAGTTA 20	59.68	Exon 2	115	Real-time RT-PCR	MH760782.1	
	RP: AGGGGAAATACGACGAGTTT 20	59.67	Exon 3				
\(\beta \)-actin	FP: AGGTCCCTCGGATTGCAAA 20	60.03	Exon 1	112	Real-time RT-PCR	NM_205518.1	
	RP: GGGCCATACCCAGAATCAAG 20	60.03	Exon 2				
xCT	FP: GTAACCTCCGAGTGTCAACAGG 20	47.00		2,703	Clone	XM_426289.5	
	RP: GTTATCCTCCGTCTTATAC 19	45.90					

FP – forward primer; RP – reverse primer; Tm – melting temperature; xCT – cystine/glutamate exchanger; real-time RT-PCR – real-time reverse transcription PCR.
significantly higher (P < 0.05) than that at the age of 35 d. Both linear and cubic patterns of changes of xCT mRNA abundance were found in the colon during development (P < 0.05). The xCT mRNA abundance in the colon at the age of 14 d was significantly higher (P < 0.05) when compared with those at the ages of 28 and 35 d. There was no difference in the xCT mRNA abundance in the jejunum and ileum during development.

4. Discussion

Previous studies have indicated that the expression of xCT is most likely associated with the redox balance in animals (Conrad and Sato, 2012), since xCT transports cystine into the intracellular space, and then the cystine is further utilized for the synthesis of GSH, which is a natural endogenous antioxidant (Bannai, 1986; Patel et al., 2004; Koppula et al., 2018). A low level of cystine in the in vitro circumstance decreased the amount of GSH, and had similar effects on cytotoxicity (Tan et al., 2001). Thus, xCT plays a vital role in regulating the ability of cells to cope with oxidative stress, and is a potential novel therapeutic target for diseases associated with oxidative stress, due to xCT enhancing intracellular GSH levels (Burdo et al., 2006; Maher et al., 2008). The functions of xCT in humans and mice have been widely investigated (Conrad and Sato, 2012; Nasca et al., 2017; Kobayashi et al., 2018). However, the information about chicken xCT is still unclear. In this study, the full-length of the coding region of chicken xCT was cloned, and the expression of xCT in different tissues including intestinal segments of broiler chickens during development was investigated. The amino acid sequence of the chicken xCT had 75% to 86% homology with other species, which indicated that the xCT was highly conserved among chickens, humans, cattle, and rats. Moreover, the chicken xCT may have similar functions with the xCT of other species. This has also been confirmed by bioinformatics analyses, which has shown that chicken xCT protein has a similar secondary structure that is consistent with the 12 transmembrane helixes, 6 extracellular loops, and 5 intracellular loops in other species (Sato et al., 2000; Gasol et al., 2004; He et al., 2012; Tian et al., 2015). According to the phylogenetic tree, chicken xCT shares a closer genetic relationship with humans and cattle compared to rats. Therefore, further studies are needed to characterize the functions of chicken xCT. The results of the current study also showed that the xCT mRNA was widely detectable in the chicken tissues such as the upper palate, tongue, heart, liver, proventriculus (true stomach), ventriculus (gizzard), liver, kidney, duodenum, jejunum, ileum, cecum, and colon. This result indicates that xCT is widely expressed both in the intestinal segments and other organs that are not related to nutrient absorption, including the proventriculus. The function of xCT in non-digestive organs is unclear, and may be involved in the modulation of intracellular redox balance by regulating GSH synthesis. For example, GSH synthesis is active and rich in the liver of mammals and fish, which indicates that the expression of xCT in chicken liver may play an important role in the regulation of GSH synthesis (Lu, 2009; Ojopogogo et al., 2013). The results from the current study are somewhat consistent with the results from Fagerberg et al. (2014), showing that human xCT was detectable in 25 different human tissues (not including the kidney and liver), using RNA-seq analysis. The study conducted by Bassi et al. (2001) also demonstrated that human xCT mRNA was not expressed in the kidney and liver. However, xCT mRNA was detectable in the brain, kidney, and duodenum of mice (Burdo et al., 2006). The discrepancies among the various studies may be a result of the different species used. It would be beneficial to further investigate the protein abundance and localization of chicken xCT abundance among the duodenum, jejunum, ileum, and cecum. However, the mRNA abundance of xCT in the colon was significantly higher (P < 0.05) than that of the jejunum and ileum.

As shown in Table 3, xCT mRNA abundance in the duodenum changes occurred in a linear pattern (P < 0.05) during development. The mRNA abundance at the age of 7 d was significantly higher than that at the age of 35 d. Both linear and cubic patterns of changes of xCT mRNA abundance were found in the colon during development (P < 0.05). The xCT mRNA abundance in the colon at the age of 14 d was significantly higher (P < 0.05) when compared with those at the ages of 28 and 35 d. There was no difference in the xCT mRNA abundance in the jejunum and ileum during development.
in the intestine, although it is believed that xCT is located at the basolateral membrane of the intestine in humans (Bassi et al., 2001). It is evident that the small intestine is rich with amino acid transporters because the small intestine is the main area for nutrient uptake, and amino acid transporters are highly expressed in the ileum (Gilbert et al., 2007). However, our results indicated that the colon had relatively higher levels of xCT mRNA than the jejunum and ileum. These are consistent with the results from a previous study which showed the expression of colonic xCT (1.216 ± 0.585) was higher than that of duodenal xCT (0.217 ± 0.072) in humans (Fagerberg et al., 2014). One possible explanation for this is that the colon may need to transport more cysteine from the blood in order to carry out synthesis of GSH. Compared with relatively high intracellular concentrations of glutamate and glycine, intracellular cysteine concentrations are very low, and intracellular cysteine availability for GSH synthesis is believed to be the rate-limiting factor (McBean, 2002). Cysteine for intracellular GSH synthesis may come from 2 different mechanisms: 1) cystine can be transported into cells through xCT and then converted into cysteine (Sido et al., 2008); 2) there could be a direct uptake of cysteine through the EAAC1 (Zerangue and Kavanaugh, 1996). A study from Sido et al. (1998) suggested that decreased availability of cyst(e)ine in the distal ileum and colon for synthesis of mucosal GSH may contribute to the pathogenesis of Crohn’s disease, an inflammatory bowel disease in the distal ileum and colon in humans. Moreover, the lower gut of broiler chickens (e.g., colon) is the place where most pathogens reside and propagate, which could lead to more infection-associated oxidative stress or inflammation. Likewise, it is hypothesized that the expression of xCT in the colon is crucial for attenuating gut oxidative stress and inflammation in broiler chickens. However, this theory needs to be further investigated.

In the current study, the expression of xCT in intestinal segments in broiler chickens during development was also investigated. Although the xCT mRNA abundance in the jejunum and ileum during development did not show a significant difference, the expression of xCT mRNA in the duodenum changed, following a linear pattern during development. The xCT mRNA abundance in duodenum at the age of 7 d was significantly higher than that at the age of 35 d. There were linear and cubic patterns of changes in the expression of xCT in the colon during development. The colonic xCT mRNA abundance was significantly higher at the age of 14 d when compared with the ages of 28 and 35 d. In this study, abrupt changes of xCT mRNA abundance in the duodenum and colon between the first and second week were found, and according to Nakao et al. (2015), abrupt changes of nutrient transporters in the early ages of broiler chickens is a possible adaptation to the

![Fig. 5. A secondary structure model of chicken cystine/glutamate exchanger (xCT) protein produced by Protter (http://wlab.ethz.ch/protter/start) based on the amino acid sequence. The protein of chicken xCT is composed of 501 amino acids which form 12 transmembrane helixes, 6 extracellular loops and 5 intracellular loops.](http://wlab.ethz.ch/protter/start)

Table 3

Item	7 d of age	14 d of age	21 d of age	28 d of age	35 d of age	Pooled SE
Duodenum	0.73ab	0.47ab	0.38ab	0.47ab	0.26b	0.02
Jejunum	0.61a	0.63ab	0.39a	0.35a	0.39ab	0.04
Ileum	0.93ab	0.68ab	0.55a	0.71a	0.64a	0.02
Colon	2.16ab	3.25a	1.47ab	1.20b	1.39b	0.52

a,b Means with different superscript letters in the same row differ (P < 0.05) among the age groups.

1 The xCT mRNA expression was determined by real-time reverse transcription (RT)-PCR. Values represent means ± pooled SE (standard error).

2 Orthogonal polynomial contrasts represented a linear pattern (P < 0.05) of the age effects.

3 Orthogonal polynomial contrasts represented a cubic pattern (P < 0.05) of the age effects.
neutral amino acid transporter 1 (LAT1), heterodimeric amino acid fatty acid binding protein in birds, tends to change by the nutrient transporting, including fatty acid translocase and cytosolic intestinal segments were altered at an early age (by 14 d of age) in the results of the present study. Miska and Fetterer (2019) revealed corresponding to the change from yolk to feed, which is in line with Proszkowiec-Weglarz et al. (2018) demonstrated that Ca and P nutritional changes that occur after hatching. Additionally, Bassi M, GosJ, Manzoni M, Pineda M, Riboni M, Martin R, Zorzan A, Borsani G, Palacin M. Identification and characterisation of human xCT that co-expresses, with high 2 heavy chain, the amino acid transport activity system xc−. Pflug Arch 2001:442:286–96.

Burdo J, Dargusch R, Schubert D. Distribution of the cystine/glutamate antiporter system x− in the brain, kidney, and duodenum. J Histochem Cytochem 2006;54:549–57.

Burrin DG, Reeds PJ. Alternative fuels in the gastrointestinal tract. Curr Opin Gas- troenterol 1997;13:165–70.

Cherian G, Hayat Z. Long-term effects of feeding flaxseeds on hepatic lipid char-acteristics and histopathology of laying hens. Poult Sci 2009;88:2555–61.

Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system xc−: cystine supplier and beyond. Amino Acids 2012;42:231–46.

Estévez M. Oxidative damage to poultry: from farm to fork. Poult Sci 2015;94:133–78.

Fagerberg L, Hallström BM, Ökzdahl P, Kampf C, Djureinovic D, Odeberg J, Babuka M, Tahmasebpoor S, Danielsson A, Edlund K. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom 2014;13:397–406.

Gao J, Lin H, Wang X, Song Z, Jiao H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poult Sci 2010;89:318–27.

Gosal E, Jimenez-Vidal M, Challiron J, Zorzan A, Palacín M. Membrane topology of system xc-light subunit reveals a reentrant loop with substrate-restricted accessibility. J Biol Chem 2004;279:31228–36.

Gorbunov NV, Koirnarski V, Gadjeva V. Antioxidant status during the course of Eimeria tenella infection in broiler chickens. Vet J 2006;172:488–92.

Gilbert E, Li H, Emmerson D, Webb Jr K, Wong E. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult Sci 2007;86:1739–53.

Gu X, Hao Y, Wang X. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poult Sci 2012;91:790–9.

He X, Li H, Zhou Z, Zhao Z, Li W. Production of brown/yellow patches in the SLC7A11 transgenic sheep via testicular injection of transgene. J Genet Genomics 2012;39:281–5.

Iqbal M, Cawthon D, Widenman Jr R, Bottje W. Lung mitochondrial dysfunction in pulmonary hypertension syndrome. J. Oxidative stress and inability to improve function with repeated additions of adenosine diphosphate. Poult Sci 2001;80: 656–65.

Katongole J, March B. Fat utilization in relation to intestinal fatty acid binding protein and bile salts in chicks of different ages and different genetic sources. Poult Sci 1980;59:819–27.

Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S. Mutations in SLC6A19, encoding B0 AT1, cause Hartnup disorder. Nat Genet 2006;38:989–99.

Kobayashi S, Hamashima S, Homma T, Sato M, Kusumi R, Bannai S, Fujii J, Sato H. Cystine/glutamate transporter, system xc−, is involved in nitric oxide production in mouse peritoneal macrophages. Nitric Oxide 2018;78:32–40.

Koppula P, Zhang Y, Zhang L, Can B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 2018;38:12.

Lauridsen C. From oxidative stress to inflammation: redox balance and immune system. Poult Sci 2018:pey407.

Lee S, Kim D, Keum M, Han E, An B, Chang H, Choi Y, Moon B, Lee K. Effects of fumonisin B1 and mycotoxin binders on growth performance, tibia character-istics, gut physiology, and stress indicators in broiler chickens raised in different stocking densities. Poult Sci 2017;97:845–54.

Leskovsek J, Levart A, Nenec Svete A, Periš L, Dukić Stošić M, Žižek D, Salohr J, Rezar V. Effects of supplementation with n-3 polyunsaturated fatty acids, vitamin E, and their combination in linebred oil enriched diets on the oxidative status in broilers. Poult Sci 2018;97:1641–50.

Lindblom S, Gabler N, Bobek E, Kerr B. Oil source and peroxidation status interactively affect growth performance and oxidative status in broilers from 4 to 25 d of age. Poult Sci 2018;pey547.

Lo M, Wang YZ, Gout PW. The x-cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008;215:593–602.

Lu SC. Regulation of glutathione synthesis. Mol Asp Med 2009;30:42–59.

Lykovfeldt J, Svendsen G. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 2007;173:502–11.

Maher P, Lawerenz J, Lozano C, Torres JL. A novel approach to enhancing cellular glutathione levels. J Neurochem 2008;107:690–700.

McBean GJ. Cerebral cystine uptake: a tale of two transporters. Trends Pharmacol Sci 2002;23:299–302.

References

Banerjee A, Kunwar A, Mishra B, Priyadarshini K. Concentration dependent antioxidant/pro-oxidant effects of curcumin: a possible mechanism from AAPH induced he-molysis of RBCs. Chem-Biol Interact 2008;174:134–9.

Banni S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 1986;261:2256–61.

Banni S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 1980;255:2372–6.

Bassi M, Gosel E, Manzoni M, Pineda M, Riboni M, Martin R, Zorzan A, Borsani G, Palacin M. Identification and characterisation of human xCT that co-expresses, with high 2 heavy chain, the amino acid transport activity system xc−. Pflug Arch 2001:442:286–96.

Burdo J, Dargusch R, Schubert D. Distribution of the cystine/glutamate antiporter system x− in the brain, kidney, and duodenum. J Histochem Cytochem 2006;54:549–57.

Burrin DG, Reeds PJ. Alternative fuels in the gastrointestinal tract. Curr Opin Gas- troenterol 1997;13:165–70.
Min Y, Niu Z, Sun T, Wang Z, Jiao P, Zi B, Chen P, Tian D, Liu F. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poult Sci 2018;97:1238—44.

Miska KB, Fetterer RH. Expression of amino acid and sugar transporters, amino-peptidase, and the di-and tri-peptide transporter PepT1; differences between modern fast growing broilers and broilers not selected for rapid growth. Poult Sci 2019;pey583.

Nakao N, Kaneda H, Tsuchina N, Ohta Y, Tanaka M. Characterization of primary structure and tissue expression profile of the chicken apical sodium-dependent bile acid transporter mRNAs. Poult Sci 2015;94:722—7.

Nasca C, Bigio B, Zelli D, de Angelis P, Lau T, Okamoto M, Soya H, Ni J, Brichta L, Greengard P. Role of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to stress. Neuron 2017;96:402—13. e405.

National Research Council. Nutrient Requirements of Poultry. 9th rev. ed. Washington, DC: National Academy Press; 1994.

Omonijo FA, Liu S, Hui Q, Zhang H, Lahaye L, Bodin J-C, Gong J, Nyachoti M, Yang C. Effects of heat stress on the expression of amino acid and sugar transporters, amino-acid and calcium and phosphorus transporter genes expression in broiler chickens. Poult Sci 2017;96:4317.

Park CH, Kim DS, Cho J, Shin DS. Glutathione synthesis in patients with inflammatory bowel disease. Gut 1998;42:485—92.

Sido B, Lasitschka F, Giese T, Gassler N, Funke B, Schroder—Braunstein J, Brunnemer U, Meuer SC, Autschbach F. A prominent role for mucosal cysteine/cysteine metabolism in intestinal immunoregulation. Gastroenterology 2008;134:179—91.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011;7:539.

Tamura K, Peterson D, Peterson N, Stoecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731—9.

Tan S, Schubert D, Maher P. Oxytostox: a novel form of programmed cell death. Curr Top Med Chem 2001;1:497—506.

Tang D, Wu J, Jiao H, Wang X, Zhao J, Lin H. The development of antioxidant system in the intestinal tract of broiler chickens. Poult Sci 2018;98:664—78.

Tang X, Wu J, Ding C-K, Lu M, Keenan MM, Lin C-C, Lin C-A, Wang CC, George D, Hsu DS. Cystine deprivation triggers programmed necrosis in VHL-deficient renal cell carcinomas. Cancer Res: Canres 2016;2328:2015.

Tian X, Meng X, Wang L, Song Y, Zhang D, Ji Y, Li X, Dong C. Molecular cloning, mRNA expression and tissue distribution analysis of SLC7A11 gene in alpaca (Lama pacos) skins associated with different coat colors. Gene 2015;555:88—94.

Voljic M, Frankic T, Levart A, Nemec M, Salobir J. Evaluation of different vitamin E recommendations and bioactivity of a-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat. Poult Sci 2011;90:1478—88.

Xie P, Zhang A, Wang C, Azzam M, Zou X. Molecular cloning, characterization, and expression analysis of fatty acid translocase (FAT/CD36) in the pigeon (Columba livia domestica). Poult Sci 2012;91:1670—9.

Zambonelli P, Zappaterra M, Soglia F, Petracci M, Sirri F, Cavani C, Davoli R. Detection of differentially expressed genes in broiler pectoralis major muscle affected by white striping—wooden breast myopathies. Poult Sci 2016;95:2771—85.

Zeglen G, Kavanagh MP. Interaction of L-cysteine with a human excitatory amino acid transporter. J Physiol 1996;493:419—23.

Zhang J, Bai K, Su W, Wang A, Zhang L, Huang K, Wang T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult Sci 2018;97:1209—19.

Zhang W, Gao F, Zhu Q, Li C, Jiang Y, Dai S, Zhou G. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 2011;90:2592—9.

Ziegler TR, Evans ME, Fernandez-Estivariz C, Jones DP. Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function. Annu Rev Nutr 2003;23:229—61.