Robust constraints on dark energy and gravity from galaxy clustering data

Yun Wang *

Homer L. Dodge Department of Physics & Astronomy, Univ. of Oklahoma, 440 W Brooks St., Norman, OK 73019, U.S.A.

25 April 2012

ABSTRACT

Galaxy clustering data provide a powerful probe of dark energy. We examine how the constraints on the scaled expansion history of the universe, \(x_h(z) = H(z)s \) (with \(s \) denoting the sound horizon at the drag epoch), and the scaled angular diameter distance, \(x_d(z) = D_A(z)/s \), depend on the methods used to analyze the galaxy clustering data. We find that using the observed galaxy power spectrum, \(P_g^{\text{obs}}(k) \), \(x_h(z) \) and \(x_d(z) \) are measured more accurately and are significantly less correlated with each other, compared to using only the information from the baryon acoustic oscillations (BAO) in \(P_g^{\text{obs}}(k) \). Using the \(\{x_h(z), x_d(z)\} \) from \(P_g^{\text{obs}}(k) \) gives a DETF dark energy FoM approximately a factor of two larger than using the \(\{x_h(z), x_d(z)\} \) from BAO only; this provides a robust conservative method to go beyond BAO only in extracting dark energy information from galaxy clustering data.

We find that a Stage IV galaxy redshift survey, with \(0.7 < z < 2 \) over 15,000 (deg)², can measure \(\{x_h(z), x_d(z), f_g(z)G(z)\hat{P}_G / s^4\} \) with high precision (where \(f_g(z) \) and \(G(z) \) are the linear growth rate and factor of large scale structure respectively, and \(\hat{P}_G \) is the dimensionless normalization of \(P_g^{\text{obs}}(k) \)), when redshift-space distortion information is included. The measurement of \(f_g(z)G(z)\hat{P}_G / s^4 \) provides a powerful test of gravity, and significantly boosts the dark energy FoM when general relativity is assumed.

Key words: cosmology: observations, distance scale, large-scale structure of universe

1 INTRODUCTION

The cosmic acceleration (i.e., dark energy) was discovered in 1998 (Riess et al. 1998; Perlmutter et al. 1999), and we are still in the dark about the nature of this mystery. We can hope to measure both the cosmic expansion history and the cosmic large scale structure growth history accurately and precisely with galaxy clustering (see, e.g., Guzzo et al. 2008; Wang 2008a) and weak lensing (see, e.g., Knox, Song, & Tyson 2006; Zhang et al. 2007; Heavens 2009) data from a space mission such as Euclid (Laureijs et al. 2011), and differentiate the two possible explanations for the observed cosmic acceleration: a new energy component, or a modification of Einstein’s theory of gravity.

Galaxy clustering has long been used as a cosmological probe (see, e.g. Hamilton 1998). At present, the largest data set comes from the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS), see [Anderson et al. 2012] and [Reid et al. 2012].

2 METHODOLOGY

2.1 The Fisher Matrix Formalism

We use the Fisher matrix formalism to study the parameter estimation using galaxy clustering data (Tegmark 1997; Seo & Eisenstein 2003), based on the approach developed in Wang 2006, 2008a, 2010a; Wang et al. 2010. In the limit where the length scale corresponding to the survey volume is much larger than the scale of any features in the observed galaxy power spectrum \(P_g(k) \), we can assume that the likelihood function for the band powers of a galaxy redshift survey is Gaussian (Feldman, Kaiser, & Peacock 1994), with a measurement error in \(\ln P(k) \) that is proportional to

\[
\sigma_{\ln P(k)}^2 = \frac{1}{P(k)} \sigma_P^2
\]

Here we explore different analysis techniques for galaxy clustering data, in order to obtain robust constraints on dark energy and general relativity. It is important to study how the dark energy and gravity constraints depend on the assumptions we make about the information that can be extracted from galaxy redshift survey data.

We present our methods in Sec.2, results in Sec.3, and summarize in Sec.4.
where the comoving number density n is assumed to only depend on the redshift (and constant in each redshift slice) for simplicity in the last part of the equation.

In order to propagate the measurement error in $\ln P_g(k)$ into measurement errors for the parameters p_i, we use the Fisher matrix (Tegmark 1997):

$$
F_{ij} = \int_{k_{min}}^{k_{max}} \frac{\partial \ln P_g(k)}{\partial p_i} \frac{\partial \ln P_g(k)}{\partial p_j} V_{eff}(k) \frac{dk^3}{2(2\pi)^3},
$$

where p_i are the parameters to be estimated from data, and the derivatives are evaluated at parameter values of the fiducial model. Note that the Fisher matrix F_{ij} is the inverse of the covariance matrix of the parameters p_i if the p_i are Gaussian distributed.

The observed galaxy power spectrum can be reconstructed using a particular reference cosmology, including the effects of bias and redshift-space distortions (Seo & Eisenstein 2003):

$$
P_g^{obs}(k) = \frac{D_A(z)^{ref}}{D_A(z)^{obs}} \frac{H(z)^{ref}}{H(z)^{obs}} b^2 \left(1 + \beta \mu^2\right)^2 \cdot [G(z)]^2 P_m(k)_{z=0} + P_{shot},
$$

where $H(z) = \dot{a}/a$ (with a denoting the cosmic scale factor) is the Hubble parameter, and $D_A(z) = r(z)/(1+z)$ is the angular diameter distance at z, with the comoving distance $r(z)$ given by

$$
r(z) = c |\Omega_L|^{-1/2} \sinh \left[|\Omega_L|^{1/2} \int_0^z \frac{dz}{H(z)} \right],
$$

where $\sinh(x) = \sinh(x)$, x, $\sin(x)$ for $\Omega_L < 0$, $\Omega_L = 0$, and $\Omega_L > 0$ respectively. The bias between galaxy and matter distributions is denoted by $b(z)$. The linear redshift-space distortion parameter $\beta(z) = f_g(z)/b(z)$ (Kaiser 1987), where $f_g(z)$ is the linear growth rate; it is related to the linear growth factor $G(z)$ (normalized such that $G(0) = 1$) as follows

$$
f_g(z) = \frac{d \ln G(z)}{d \ln a}.
$$

Note that $\mu = \mathbf{k} \cdot \mathbf{r} / k$, with \mathbf{r} denoting the unit vector along the line of sight; \mathbf{k} is the wavevector with $|\mathbf{k}| = k$. Hence $\mu^2 = k_\parallel^2 / k^2 = k_\parallel^2 / (k_\perp^2 + k_\parallel^2)$, where

$$
k_\parallel = k \cdot \mathbf{r} / k, \quad k_\perp = \sqrt{k^2 - k_\parallel^2} = k \sqrt{1 - \mu^2}.
$$

The values in the reference cosmology are denoted by the subscript “ref”, while those in the true cosmology have no subscript. Note that

$$
k_\perp^{ref} = k_\perp D_A(z)/D_A(z)^{ref}, \quad k_\parallel^{ref} = k_\parallel H(z)^{ref}/H(z).
$$

Eq. 3 characterizes the dependence of the observed galaxy power spectrum on $H(z)$ and $D_A(z)$ due to BAO, as well as the sensitivity of a galaxy redshift survey to the linear redshift-space distortion parameter β (Kaiser 1987). The linear matter power spectrum at $z = 0$ is given by

$$
P_m(k)_{z=0} = P_0 k^{\alpha_s} T^2(k),
$$

where $T(k)$ denotes the matter transfer function.

The measurement of $f_g(z)$ given $\beta(z) = f_g(z)/b(z)$ requires an additional measurement of the bias $b(z)$, which could be obtained from the galaxy bispectrum (Mathez, Verde, & Heavens [1997, Verde et al. 2002]. Alternatively, we can rewrite Eq. 3 as

$$
P_g^{obs}(k) = \frac{P_g^{obs}(k_\perp^{ref}, k_\parallel^{ref})}{P_g^{obs}(k_\perp, k_\parallel)/(h^{-1} \text{Mpc})^3} = \frac{[D_A(z)^{ref}]^2 H(z)^{ref}}{[D_A(z)]^2 H(z)^{obs}} \left(\frac{k}{\text{Mpc}}\right)^{n_a} T^2(k),
$$

where we have defined

$$
\sigma_g(z) \equiv b(z) G(z) \tilde{P}_0^{1/2} \quad \sigma_m(z) \equiv G(z) \tilde{P}_0^{1/2}.
$$

The dimensionless power spectrum normalization constant \tilde{P}_0 is just P_0 in Eq. 5 in appropriate units:

$$
\tilde{P}_0 = \frac{P_0}{(\text{Mpc}/h)^3(\text{Mpc})^{n_s}} = \frac{\sigma_g^2}{I_0 h^{n_a}},
$$

The second part of Eq. 11 is relevant if σ_g is used to normalize the power spectrum. Note that

$$
I_0 = \int_0^{\infty} dk^3 \left[\frac{\kappa}{2 \pi^2} T^2(\kappa \cdot h \text{Mpc}^{-1}) \frac{3 j_1(8\kappa)}{8\kappa} \right]^2,
$$

where $\kappa \equiv k / h \text{Mpc}^{-1}$, and $j_1(kr)$ is spherical Bessel function. Note that $I_0 = I_0(\omega_m, \omega_b, n_s, h)$. Since k_\parallel and k_\perp scale as $H(z)$ and 1/$D_A(z)$ respectively, $P_g^{obs}(k)$ in Eq. 9 does not depend on h.

Eq. 9 is analogous to the approach of Song & Percival (2009), who proposed the use of $f_g(z) \sigma_s(z)$ to probe growth of large scale structure. The difference is that Eq. 9 uses $f_g(z)$ rather than $f_s(z)$, which does not introduce an explicit dependence on h (as in the case of using $f_g(z)\sigma_g(z)$).

The uncertainty in redshift measurements is included by multiplying $P_g(k)$ with the damping factor, $e^{-k^2 \sigma_z^2}$, due to redshift uncertainties, with

$$
\sigma_r = \frac{dr}{dz} \sigma_z
$$

where r is the comoving distance. Note that the damping factor should be held constant when taking derivatives of $P_g(k)$.

2.2 $P(k)$ Method

Including the nonlinear effects explicitly, we can write (Seo & Eisenstein 2007)

$$
\frac{\partial P_g(k, \mu | z)}{\partial p_i} = \frac{\partial P_g^{lin}(k, \mu | z)}{\partial p_i} \cdot \exp \left(\frac{1}{2} k^2 \Sigma_{nl}^2\right).
$$

The damping is applied to derivatives of $P_g(k)$, rather than $P_g(k)$, to ensure that no information is extracted from the damping itself. Eq. 13 becomes

$$
F_{ij} = V_{survey} \int_{k_{min}}^{k_{max}} d\mu \int_{k_{min}}^{k_{max}} \frac{\partial \ln P_g^{lin}(k, \mu | z)}{\partial p_i} \frac{\partial \ln P_g^{lin}(k, \mu | z)}{\partial p_j} \cdot \left[\frac{n P_g^{lin}(k, \mu | z)}{n P_g^{lin}(k, \mu | z) + 1}\right]^2 e^{-k^2 \Sigma_{nl}^2} 2\pi k^2 dk / 2(2\pi)^3.
$$

© 000 RAS, MNRAS 000, 000–000
The linear galaxy power spectrum $P_g^{lin}(k, \mu | z)$ is given by Eq. [17]. The nonlinear damping scale

$$\Sigma^2_{nl} = (1 - \mu^2) \Sigma^2_\perp + \mu^2 \Sigma^2_{\|}$$

$$\Sigma_\perp = \Sigma(1 + f_{g})$$

$$\Sigma_\perp = 12.4 h^{-1}\text{Mpc} \left(\frac{\sigma_8}{0.8} \right) \cdot 0.758 G(z) p_{NL}$$

$$= 8.355 h^{-1}\text{Mpc} \left(\frac{\sigma_8}{0.8} \right) \cdot G(z) p_{NL}. \quad (16)$$

The parameter p_{NL} indicates the remaining non-linearity in the data; with $p_{NL} = 0.5$ (50% non-linearity) as the best case, and $p_{NL} = 1$ (100% non-linearity) as the worst case (Seo & Eisenstein 2007). For a fiducial model based on WMAP3 results (Spergel et al. 2007), $(\Omega_m = 0.24, h = 0.73, \Omega_\Lambda = 0.76, \Omega_k = 0, \Omega_b h^2 = 0.0223, \tau = 0.09, n_s = 0.95, T/S = 0)$, $A_0 = 0.5817, P_0 = 2710 \sigma^2_{8,g}$ (Seo & Eisenstein 2007).

In the $P(k)$ method, the full set of parameters that describe the observed $P_g(k)$ in each redshift slice are: [ln $H(z)$, ln $D_A(z)$, ln $f_g(z)$, ln $\sigma_8(z)$], with $\sigma_8(z) \equiv \Omega_m^{1/2} h$, and $\omega_b \equiv \Omega_b h^2$. We marginalize over $\{\ln \sigma_8(z), P_{shot}\}$ in each redshift slice, to obtain a Fisher matrix for $\{\ln H(z), \ln D_A(z), \ln f_g(z), \sigma_8(z)\}$; ω_b, ω_c, n_s. This full Fisher matrix, or a smaller set marginalized over various parameters, is projected into the standard set of cosmological parameters: $\{\omega_m, \omega_b, \Omega_\Lambda, \Omega_k, \omega_c, n_s, \ln A_0\}$. There are four different ways of utilizing the information from $P(k)$ (see Sect. 2.3).

2.3 BAO Only Method

The power of galaxy clustering as a dark energy probe was first recognized via studies of baryon acoustic oscillations (BAO) as a cause for the observed cosmic acceleration. These provide model-independent constraints on the cosmic expansion history and the growth rate of cosmic large scale structure. These allow the detection of dark energy evolution, and the differentiation between an unknown energy component and modified gravity as the causes for the observed cosmic acceleration.

3 RESULTS

3.1 Measurement of $H(z)$ and $D_A(z)$

The $H(z)$ and $D_A(z)$ observables that correspond to the BAO scale are

$$x_h(z) \equiv H(z)s$$

$$x_d(z) \equiv D_A(z)/s \quad (25)$$

where s is the sound horizon scale at the drag epoch ($h = 0.75$).

Fig. 1 shows the measurement precision of $x_h(z)$ and $x_d(z)$ for Stage IV+BOSS. The top panel shows the percentage errors on $x_h(z)$ and $x_d(z)$, the bottom panel shows the normalized correlation coefficient between them. The thick solid and dashed lines represent the measurement precision of $x_h(z)$ and $x_d(z)$ from the $P(k)$ method, marginalized over all other parameters. The thin dotted and dot-dashed lines represent the measurement of $x_h(z)$ and $x_d(z)$ from the BAO only method.

Note that the $x_h(z)$ and $x_d(z)$ measured using $P(k)$ are better than what is obtained from the BAO only method.

2 For a general and robust method for including Planck priors, see Mukherjee et al. (2009).
only weakly correlated. Since $x_h(z)$ and $x_d(z)$ represent independent degrees of freedom in a galaxy redshift survey, they should not be strongly correlated. This is consistent with the findings of [Chuang & Wang 2011] from their analysis of SDSS LRG data.

The $x_h(z)$ and $x_d(z)$ from using the BAO method are correlated with a normalized correlation coefficient of $r \sim 0.41$. They are positively correlated by construction: In both $P(k)$ and BAO only methods, the Fisher matrix element for $\{x_h(z), x_d(z)\}$ from the same redshift slice is negative. In the $P(k)$ method, the $x_h(z)$ and $x_d(z)$ from different redshift slices are correlated through the cosmological parameters $\{\Omega_m, \omega_b, n_s\}$ that are measured using information from all the redshift slices. When the cosmological parameters are marginalized over, the dependence on these parameters remains as a weak correlation between $x_h(z)$ and $x_d(z)$. In the BAO method, the $x_h(z)$ and $x_d(z)$ from different redshift slices are uncorrelated by construction. Inverting the 2×2 Fisher matrix of $x_h(z)$ and $x_d(z)$ in each redshift slice leads to positive and significant correlation between $x_h(z)$ and $x_d(z)$.

Finally, note that in using the $P(k)$ method to forecast dark energy constraints, two different methods have been used to account for nonlinear effects:

1. Setting $k_{\text{max}} = \pi/(2R)$, with R given by requiring that $\sigma^2(R)$ is small (e.g., $\sigma^2(R) = 0.25$), and imposing a uniform upper limit cutoff, e.g., $k_{\text{max}} \leq 0.2h$/Mpc. Note that in this case $p_{NL} = 0$ in Eq. (16); the nonlinear effects are minimized by imposing a minimum length scale that increases at lower redshift.

2. Setting k_{max} to a fixed value, and account for nonlinear effects through the exponential damping term in Eq. (16), e.g., $p_{NL} = 0.5$.

With a suitable choice of $\sigma^2(R)$ in (1) and k_{max} in (2), these two methods of accounting for nonlinear effects give the same DETF dark energy FoM. For StageIV+BOSS, for the $P(k)$ method only (no priors and marginalizing over growth information), (1) with $\sigma^2(R) = 0.28$ and $k_{\text{max}} \leq 0.2h$/Mpc gives FoM=49.9, while (2) with $p_{NL} = 0.5$ and $k_{\text{max}} = 0.2h$/Mpc gives FoM=49.6. These two cases give very similar uncertainties on $x_h(z)$ and $x_d(z)$.

Since these two nonlinear cutoff methods are very similar, we have chosen to use cutoff method (2) in the rest of this paper, since it is smooth with k, and is the approach used in the BAO only method.

3.2 Growth Rate Measurements

[Song & Percival 2009] showed that assuming a linear bias between galaxy and matter distributions, we can use $f_g(z)\sigma_m(z)$ to probe gravity without additional assumptions. We use a similar approach, but use $f_g(z)\sigma_m(z) \equiv f_g(z)G(z)\bar{P}^{1/2}_0$ to avoid introducing an explicit dependence on h through σ_m. We find that the $f_g(z)\sigma_m(z)$ measurements from the $P(k)$ method are highly correlated with the ω_m measurement, which makes the uncertainties on $f_g(z)\sigma_m(z)$ much larger than that of $\beta(z)$. Fortunately, we are able to find a scaled measurement of $f_g(z)\sigma_m(z)$,

$$f_g(z)\sigma_m(z) = \frac{f_g(z)\sigma_m(z)}{s^4} = \frac{f_g(z)G(z)\bar{P}^{1/2}_0}{s^4}, \quad (26)$$

that is nearly uncorrelated with ω_m, and has an uncertainty that approaches that of $\beta(z)$, see top panel of Fig. 2. The precision of both $f_g(z)\sigma_m(z)/s^4$ and $\beta(z)$ are insensitive to the choice of k_{max}.

To make sense of the scaling in Eq. (26), note that the observed power spectrum depends on ω_m only through s and $T(k)$, as follows (see Eq. (9)) for $P_{\text{shot}} = 0$:

$$P_{\text{obs}}^{s} \propto x_h(z) T^2(k) \frac{\sigma_g(z) + f_g(z)\sigma_m(z)\mu^2}{s^4} \cdot \frac{(ks)^{n_s}}{s^4} \cdot T^2(k)\cdot 2^{(n_s+3)}.$$\quad (27)

Note that at the peak of $P_m(k,z) = P_hk^{n_s}T^2(k), k = k_p$,

$$\left. \frac{\partial \ln T(k)}{\partial \ln k} \right|_{k_p} = 0, \quad (28)$$

where $\tilde{k} \equiv k/h$/Mpc. $T(k)$ depends only on $q \equiv k/h$/Mpc $\Theta_{\perp} \equiv \Omega_m h$ [Eisenstein & Hu 1998]. Thus at $k = k_p$,

$$\left. \frac{\partial \ln T(k)}{\partial q} \right|_{k_p} \sim \frac{1}{\omega_m} \cdot \frac{d \ln T}{dq}, \quad (30)$$

and we find

$$\left. \frac{\partial \ln T}{\partial \omega_m} \right|_{k_p} = \frac{\omega_m}{d \omega_m} \cdot \frac{d \ln T}{dq} \left. \bigg|_{k_p} = \frac{k_p}{\omega_m} \cdot \frac{d \ln T}{dq} = \frac{n_s}{2\omega_m}. \quad (31)$$

where we have used Eqs. (28) and (30). Using the approximate formula for s from [Eisenstein & Hu 1998].
we find that at the peak of \(P(k)\),
\[
\frac{\partial \ln T}{\partial \omega_m} \bigg|_{k_p} \simeq - \frac{n_s}{2} \ln(9.83/\omega_m) \frac{\partial \ln s}{\partial \omega_m} \simeq - 2 \frac{\partial \ln s}{\partial \omega_m}
\]
(33)
(34)

We have assumed \(\omega_m\) and \(n_s\) close to our fiducial values of \(\omega_m = 0.1326\) and \(n_s = 0.963\) in obtaining Eq. (34).

If we define the scaled parameters
\[
\sigma_g(z) \equiv \frac{\sigma_g(z)}{s^2} = \frac{(b(z)G(z)\bar{P}_1^2)}{s^4}
\]
(35)
\[
f_g(z)\sigma_m(z) \equiv \frac{f_g(z)\sigma_m(z)}{s^4} = \frac{f_g(z)G(z)\bar{P}_1^2}{s^4}
\]
(36)

we find
\[P_g^{obs} \propto \frac{x_h(z)}{x_d(z)} \left[\ln \sigma_g(z) + f_g(z)\sigma_m(z) \right]^2 \cdot (ks)^{n_s-\gamma-2}T^2(k)\]
(37)

In the new set of parameters, \(\{x_h(z), x_d(z), f_g(z)\sigma_m(z), \sigma_g(z), F_{shot}\} = \omega_m, \omega_b, n_s\), the dependence of \(P_g^{obs}\) on \(\omega_m\) only comes through the combination of \(s^4\ln \sigma_g(z)\) (Wang 2008b), which is only very weakly dependent on \(\omega_m\) (see Eq. (33)). Thus the dependence of \(P_g^{obs}\) on \(\omega_m\) is effectively removed or absorbed through the scaling of parameters in Eq. (35), leading to measurements on \(f_g(z)\sigma_m(z)\) that are essentially uncorrelated with \(\omega_m\), and greatly improved in precision over that of \(f_g(z)\sigma_m(z)\). This as expected, since the measurements of \(f_g(z)\sigma_m(z)\) are strongly correlated with that of \(\omega_m\) (i.e., \(P(k)\) shape).

The bottom panel of Fig. 2 shows the uncertainties on the growth rate powerlaw index \(\gamma\) for StageIV+BOSS, with and without Planck priors. Note that \(\gamma\) is parametrized by the growth rate as a powerlaw (Wang & Steinhardt 1998, Lue, Scoccimarro, & Starkman 2004). The solid lines show the precision on \(\gamma\) using only the \(\{x_h(z), x_d(z), f_g(z)\sigma_m(z)/s^4\}\) measured from \(P(k)\) and marginalized over all other parameters. The dashed lines show the precision on \(\gamma\) when the full \(P(k)\) is used, including the growth information (i.e., the \("P(k) + f_g\) method).

3.3 Dark Energy Figure of Merit

To calculate the DETF dark energy FoM (Albrecht et al. 2006), FoM = \(1/\sqrt{\text{det}[\text{Cov}(w_0, w_a)]}\) (Wang 2008b), we need to project our large set of measured parameters into the standard set of parameters \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b, n_s, \ln A_s\}\). The BA only method gives measurement of \(\{x_h(z), x_d(z)\}\) from each redshift slice. The Fisher matrix for these measurements are then projected into the Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\). Because the dependence on \(\{\omega_m, \omega_b\}\) only comes through \(s, \omega_m\) and \(\omega_b\) are perfectly degenerate if no priors are added. This can be shown explicitly by computing the submatrix for \(\{\omega_m, \omega_b\}\) in the Fisher matrix, which

\[
\text{det} \left[\frac{\partial f_g(z)\sigma_m(z)/s^4}{\partial w_0} \right] = 0
\]

the determinant of this submatrix is zero, thus the determinant of the entire Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\) is zero. It can be shown that the combination determined by the BAO only method is

\[
\tilde{\omega}_m \equiv \omega_m + w_b \left(\frac{\partial \ln x_h}{\partial \omega_b} \right)^{-1} = \omega_m + w_b \left(\frac{\partial \ln x_d}{\partial \omega_b} \right)^{-1}
\]

(38)

The BA only method gives measurement of \(\{x_h(z), x_d(z)\}\) from each redshift slice. The Fisher matrix for these measurements are then projected into the Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\). Because the dependence on \(\{\omega_m, \omega_b\}\) only comes through \(s, \omega_m\) and \(\omega_b\) are perfectly degenerate if no priors are added. This can be shown explicitly by computing the submatrix for \(\{\omega_m, \omega_b\}\) in the Fisher matrix, which

\[
\text{det} \left[\frac{\partial f_g(z)\sigma_m(z)/s^4}{\partial w_0} \right] = 0
\]

the determinant of this submatrix is zero, thus the determinant of the entire Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\) is zero. It can be shown that the combination determined by the BAO only method is

\[
\tilde{\omega}_m \equiv \omega_m + w_b \left(\frac{\partial \ln x_h}{\partial \omega_b} \right)^{-1} = \omega_m + w_b \left(\frac{\partial \ln x_d}{\partial \omega_b} \right)^{-1}
\]

(39)

It can be shown explicitly that the Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\) is exactly the same as the \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m\}\) submatrix of the original Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\). Thus to compute the FoM for BAO only, one only needs to drop the Fisher matrix elements for \(\omega_b\), then invert the resultant Fisher matrix to obtain the covariance matrix. Note that the Fisher matrix for \(\{w_0, w_a, \Omega_X, \Omega_k, \omega_m, \omega_b\}\) should be used when combining with Planck priors.

There are four different ways that we can extract dark energy information from the \(P(k)\) method (in the order of increasing information content):

1. \(\{x_h(z), x_d(z)\}\) from \(P(k)\): Project the Fisher matrix for \(\{\ln H(z_i), \ln D_A(z_i), \ln[f_g(z_i)\sigma_m(z_i)]; \omega_m, \omega_b, n_s\}\) into that of \(\{\ln x_h(z_i), \ln x_d(z_i), \ln[f_g(z_i)\sigma_m(z_i)/s^4]\};

\[
\Delta \ln \left[\frac{\partial f_g(z)\sigma_m(z)/s^4}{\partial w_0} \right] = 0
\]

(40)
ω_m, ω_b, n_s} (see Sec.2), then marginalize over $\{\ln[f_g(z_i)\sigma_m(z_i)/s^4]; \omega_m, \omega_b, n_s\}$, and project the Fisher matrix for $\{\ln x_h(z_i), \ln x_d(z_i)\}$ into the standard set of cosmological parameters.

(2) $\{x_h(z), x_d(z), f_g(z)\sigma_m(z)/s^4\}$ from $P(k)$: Project the Fisher matrix for $\{\ln H(z), \ln D_A(z), \ln[f_g(z)\sigma_m(z)/s^4]; \omega_m, \omega_b, n_s\}$ into that of $\{\ln x_h(z), \ln x_d(z), \ln[f_g(z)\sigma_m(z)/s^4]; \omega_m, \omega_b, n_s\}$ (see Sec.2), then marginalize over $\{\omega_m, \omega_b, n_s\}$, and project the Fisher matrix for $\{\ln x_h(z), \ln x_d(z), \ln[f_g(z)\sigma_m(z)/s^4]\}$ into the standard set of cosmological parameters.

(3) $P(k)$ marginalized over f_g: Marginalize over $\ln[f_g(z)\sigma_m(z)]$ to obtain the Fisher matrix for $\{\ln H(z), \ln D_A(z); \omega_m, \omega_b, n_s\}$, and project it into the standard set of cosmological parameters.

(4) $P(k) + f_g$: Project the Fisher matrix for $\{\ln H(z), \ln D_A(z), \ln[f_g(z)\sigma_m(z)]; \omega_m, \omega_b, n_s\}$ into the standard set of cosmological parameters.

Fig.3 shows the DETF dark energy FoM for StageIV+BOSS, without (top panel) and with (bottom panel) Planck priors, as a function of the nonlinear cutoff k_{max}. The four methods of using $P(k)$ described above, as well as the BAO only method, are shown. Note that the FoMs from the three most conservative methods, BAO only, $\{x_h(z), x_d(z)\}$ from $P(k)$, and $\{x_h(z), x_d(z), f_g(z)\sigma_m(z)/s^4\}$ from $P(k)$, are insensitive to the increase of k_{max} for $k_{max} \gtrsim 0.3 h/Mpc$. We have not included the nonlinearity in the RSD due to peculiar velocities here for simplicity. Adding a peculiar velocity of 300 km/s is equivalent to adding 0.001 in quadrature to the redshift dispersion $\sigma_z = 0.001(1+z)$; this has a negligible effect on the FoM for StageIV+BOSS, since the FoM is most sensitive to assumptions about the Stage IV survey, which is at $z \gtrsim 0.7$.

The most conservative of the $P(k)$ approaches, using $\{x_h(z), x_d(z)\}$ measured from $P(k)$ and marginalized over all other parameters, gives a dark energy FoM about a factor of two larger than that of the BAO only method, with or without Planck priors. This provides a robust conservative way to go beyond BAO only in extracting dark energy information from galaxy clustering data.

It is interesting to note that $\{x_h(z), x_d(z)\}$ from $P(k)$ (solid line) gives similar dark energy FoM to that of the full $P(k)$ marginalized over growth information (dotted line), when Planck priors are included. Similarly, $\{x_h(z), x_d(z), f_g(z)\sigma_m(z)/s^4\}$ gives dark energy FoM close to that of the full $P(k)$ with growth information included, when Planck priors are added.

3.4 Comparison With Previous Work

This work has the most overlap with Wang et al. [2010], which explored the optimization of a space-based galaxy redshift survey. The differences of this work from Wang et al. [2010] are:

(1) This work presents a new conservative approach to extract dark energy constraints from galaxy clustering data: the use of only the $H(z)$ and $D_A(z)/s$ measurements from the observed galaxy power spectrum, $P_g^\text{obs}(k)$, to probe dark energy. This bridges the methods using $P_g^\text{obs}(k)$ and the BAO method (which uses $H(z)$ and $D_A(z)/s$ measurements from fitting the BAO peaks).

(2) This work presents a new combination of growth information, $f_g(z)G(z)/s^4$, that can be measured nearly as precisely as the linear redshift-space distortion parameter β (see Fig.2), but can be used to probe the growth history of cosmic large scale structure without assuming a bias model. Wang et al. [2010] did not study growth constraints explicitly; they either marginalized over the growth rate information, or assumed that gravity is described by general relativity.

(3) This work focuses on model-independent constraints of dark energy and gravity in terms of $H(z)/s$, $D_A(z)/s$, and $f_g(z)G(z)/s^4$ measured in $\Delta z = 0.1$ redshift bins. Wang et al. [2010] focuses on the conventional dark energy model with dark energy equation of state given by $w_X(z) = w_0 + w_a(1-a)$ [Chevallier & Polarski 2001], and dark energy density function $X(z) = \rho_X(z)/\rho_X(0)$ parametrized by its value at $z = 3/4, 4/3$, and 2.

The methodology developed in this work differs from what is currently used in analyzing galaxy clustering data. This work proposes the simultaneous measurement of $H(z), D_A(z)/s$, and $f_g(z)G(z)/s^4$ from galaxy clustering data without imposing any priors. Because of the limited volume probed by current data, no simultaneous measurements of $H(z), D_A(z)$, and $f_g(z)$ have been made without imposing strong priors on cosmological parameters. The first simultaneous measurements of $H(z)$ and $D_A(z)/s$ were made by Chuang & Wang [2011] at $z_{eff} = 0.35$ using SDSS DR7 LRG data; they marginalized over growth information. Blake et al. [2011] measured $f_g(z)\sigma_m(z)$ at several redshifts while fixing the background cosmology. Most recently, Reid et al. [2012] published the first simultaneous measurement of $D_A(z)/H(z)$, $D_A(z)^2/H(z)$, and $f_g(z)\sigma_s(z)$ at $z_{eff} = 0.57$ using BOSS data, assuming WMAP7 priors.

This work presents forecasts of the precision of the most general measurements of cosmic expansion history (via $H(z)$ and $D_A(z)$) and gravity (via $f_g(z)G(z)$) that can be made from a Stage IV galaxy redshift survey. These will be the most model-independent results on probing dark energy and probing gravity from such a survey.

© 0000 RAS, MNRAS 000, 000–000
4 SUMMARY AND DISCUSSION

We have examined how the constraints on the scaled expansion history of the universe, $x_h(z) = H(z)/H_0$, and the scaled angular diameter distance, $x_d(z) = D_A(z)/s$, depend on the methods used to analyze the galaxy clustering data. We find that using the observed galaxy power spectrum, $P_g^{obs}(k)$, $x_h(z)$ and $x_d(z)$ are measured more accurately and are significantly less correlated with each other, compared to using only the information from the baryon acoustic oscillations (BAO) in $P_g^{obs}(k)$ (see Fig.1). Using the $\{x_{h}(z), x_{d}(z)\}$ from $P_g^{obs}(k)$ gives a DETF dark energy FoM approximately a factor of two larger than using the $\{x_{h}(z), x_{d}(z)\}$ from BAO only (see Fig.3); this provides a robust conservative method to go beyond BAO only in extracting dark energy information from galaxy clustering data. This is encouraging since Chuang & Wang (2011) found that $\{x_{h}(z), x_{d}(z)\}$ from SDSS galaxy clustering data are not sensitive to systematic uncertainties.

Furthermore, we find that if the redshift-space distortion information contained in $P_g^{obs}(k)$ is used, we can measure $\{x_h(z), x_d(z), f_g(z)G_z(z)P^3/s^4\}$ with high precision from a Stage IV galaxy redshift survey with $0.7 < z < 2$ over 15,000 (deg)2 (see Figs.1 and 2), where $f_g(z)$ and $G_z(z)$ are linear growth rate and growth factor of large scale structure respectively, and P_1 denotes the dimensionless normalization of $P_m^{lin}(k) = 0$. Adding $f_g(z)G_z(z)P_1^3/s^4$ to $\{x_h(z), x_d(z)\}$ significantly boosts the dark energy FoM, compared to using $\{x_h(z), x_d(z)\}$ only, or using $P_g^{obs}(k)$ marginalized over the growth information, assuming that gravity is not modified (see Fig.3). Alternatively, $f_g(z)G_z(z)P_1^3/s^4$ provides a powerful test of gravity, as dark energy and modified gravity models that give identical $H(z)$ likely give different $f_g(z)$ (Wang 2008a). Measuring $\{x_h(z), x_d(z), f_g(z)G_z(z)P_1^3/s^4\}$ simultaneously allows us to probe gravity without fixing the background cosmological model.

We will be adopting this approach to analyze simulated and real galaxy redshift catalogs in future work.

We have developed a conservative approach to analyzing galaxy clustering data that should be insensitive to systematic uncertainties, if only data on quasi-linear scales are used ($k_{max} \lesssim 0.2h$/Mpc). Since the dark energy FoM (see Fig.3) and the gravity constraints (see lower panel of Fig.2) are insensitive to the inclusion of smaller scale information at $k_{min} \gtrsim 0.3h$/Mpc, our results are likely robust indicators of how well a Stage IV galaxy redshift survey can probe dark energy and constrain gravity.

In analyzing real data, the systematic effects (bias between luminous matter and matter distributions, nonlinear effects, and redshift-space distortions) will ultimately need to be modeled in detail and reduced where possible (see, e.g., Percival et al. 2010, Blake et al. 2011, Padmanabhan et al. 2012). This will require cosmological N-body simulations that include galaxies, either by incorporating physical models of galaxy formation (see, e.g., Baugh 2006, Angulo et al. 2008), or using halo occupation distributions (HOD) measured from the largest available data sets (see, e.g., Zheng et al. 2009, and http://lass.phy.vanderbilt.edu/lassamas/overview.html). We can expect a Stage IV galaxy redshift survey to play a critical role in advancing our understanding of cosmic acceleration within the next decade.

ACKNOWLEDGMENTS

I am grateful to Chia-Hsun Chuang, and especially Will Percival for very useful discussions. This work was supported in part by DOE grant DE-FG02-04ER41305.

REFERENCES

Albrecht, A.; et al., Report of the Dark Energy Task Force, astro-ph/0609391

Albrecht, A.; et al., Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group, arXiv:0901.0772

Anderson, L., et al., 2012, arXiv:1203.6954

Angulo, R., Baugh, C. M., Frenk, C. S., Lacey, C. G. 2008, MNRAS, 383, 755

Baugh, C. M. 2006, Reports on Progress in Physics, 69, 3101.

Blake, C.; Glazebrook, G., 2003, ApJ, 594, 665

Blake, C., et al., 2011, MNRAS, 415, 2876

Chevallier, M., & Polarski, D. 2001, Int. J. Mod. Phys. D10, 213

Chuang, C.-H.; & Wang, Y ., arXiv:1102.2251

Eisenstein D; Hu W;1998;ApJ;496;605

Feldman, H.A., Kaiser, N., Peacock, J.A., 1994, ApJ, 426, 23

Geach, J. E.; et al., 2010, MNRAS, 402, 1330

Guzzo L et al., Nature 451, 541 (2008)

Hamilton, A. J. S., in "The Evolving Universe" ed. D. Hamilton, Kluwer Academic, p. 185-275 (1998)

Heavens, A. 2009, NuPhS, 194, 76

Hu, W., & Sugiyama, N. 1996, ApJ, 471, 542

Kaiser N;1987;MNRAS;227;1

Knox, L., Song, Y.-S., & Tyson, J.A., Phys.Rev.D74:023512,2006

Laureijs, R., et al., “Euclid Definition Study Report”, arXiv:1104.3193

Lue A, Scoccimarro R, Starkman G D:2004:PRD;69;124015

Majumdar, S.; Mohr, J.J., Astrophys.J.613:41-50,2004

Manera, M.; Mota, D.F., Mon.Not.Roy.Astron.Soc.371:1373,2006

Matarrese, S., Verde, L., Heavens, A. F., 1997, MNRAS, 290, 651

Mohr, J.J., ApJ, 594, 665

Mota, D.F., JCAP 09 : 006 (2008)

Mukherjee, P.; Kunz, M.; Parkinson, D.; Wang, Y., PRD, 78, 083529 (2008)

Orsi, A.; et al., 2010, MNRAS, 405, 1006

Padmanabhan, N.; et al., arXiv:1202.0990

Percival, W. J., et al., 2010, MNRAS, 401, 2148

Perlmutter, S. et al., 1999, ApJ, 517, 565

Reid, B.A., et al., 2012, arXiv:1203.6641

Riess, A. G., et al., 1998, Astron. J., 116, 1109

Sartoris, B.; Borgani, S.; Rosati, P.; Weller, J., arXiv:1112.0327

Seo H, Eisenstein D J;2003;ApJ;598;720

Seo, H., & Eisenstein, D. J. 2007, ApJ, 665, 14 [SE07].

Song, Y.-S., & Percival, W. J., JCAP 0910:004,2009

Spergel, D. N., et al., “Lambda CMB Power Spectra”, astro-ph/0603451

Verde, L. et al.:2002:MNRAS;335;432

Wang, L.; Steinhardt, P.J.;1998;ApJ;508;483

Wang, Y., 2006, ApJ, 647, 1

Wang, Y., 2008a, JCAP, 0805, 021

Wang, Y., 2008b, Phys. Rev. D 77, 123525

Wang, Y., MPLA, 25, 3093 (2010a)

Wang, Y., Dark Energy, Wiley-VCH (2010b)

Wang, Y.; et al., MNRAS, 409, 737 (2010)

Weinberg, D.H.; et al., arXiv:1201.2341

Zhang, P.; Liguori, M.; Bean, R.; & Dodelson. S. 2007, Phys.Rev.Lett. 99, 141302

4 See, e.g., Blake & Glazebrook (2003, 2003), for reviews, see Wang (2010b) and Weinberg et al. 2012.© 0000 RAS, MNRAS 000, 000-000
Zheng, Z.; et al., 2009, ApJ, 707, 554Z