Exploiting Unlabeled Data with Vision and Language Models for Object Detection

Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, Vijay Kumar B.G, Anastasis Stathopoulos, Manmohan Chandraker, Dimitris Metaxas

ECCV 2022

Code: https://github.com/xiaofeng94/VL-PLM
Motivation

Traditional way to train a detector

Costly human annotations on limited categories

柴油 training data

Test data

Unlabeled data

 Detector

Detection results

้ำผล

Categories are limited due to costly human annotations ?? Easy-to-access unlabeled images are not leveraged
Two solutions to leverage the unlabeled

Semi-supervised object detection (SSOD)

- Task categories: N categories
- Data: Fully labeled, Unlabeled
- Ground truth: Fully labeled
- Pseudo labels: Unlabeled

Categories are fixed and limited
Unlabeled images are used

Zero-shot/Open vocabulary object detection (OVD)

- Task categories: Base, Novel
- Data: Partially labeled
- Ground truth: Base, Novel

Categories can be any or infinite
Unlabeled images are not leveraged
Motivation

Two solutions to leverage the unlabeled

Semi-supervised object detection (SSOD)

Task categories

Ground truth

N categories

Fully labeled

Unlabeled

Pseudo labels
Two solutions to leverage the unlabeled

Semi-supervised object detection (SSOD)
- Task categories: N categories
- Data: Fully labeled, Unlabeled

Zero-shot/Open vocabulary object detection (OVD)
- Task categories: Base, Novel
- Data: Partially labeled

😊 Categories are fixed and limited
😊 Unlabeled images are used

😢 Categories can be any or infinite
😢 Unlabeled images are not leveraged
Our solution

Our V&L-guided Pseudo-Label Mining (VL-PLM)

Motivation

😄 Unlabeled images are used

😊 Categories can be any or infinite
Overview of our pseudo label generation

Two steps:

• Generate region proposals using a pretrained two-stage class-agnostic proposal generator

• Classify region proposals into categories of interests with pretrained V&L model (e.g. CLIP)
Two-stage region proposal network (RPN) matters: A single-stage RPN introduces many noisy boxes. But those noisy boxes may converge to one location by repeating the box regression of RoI head (RoI refinement)
Classifying region proposals

Improving CLIP’s localization ability: RPN scores indicate localization quality of boxes for various objects. Thus, average CLIP and RPN scores as the final prediction score (RPN fusion)
Experiments

Quantitative results

VL-PLM achieves state-of-the-art performance on OVD and benefits SSOD

OVD on LVIS	Supervised	Supervised+PLs	Supervised+VL-PLM	ViLD [16]	Base + Novel	Base																			
Method	Training data	AP_r	AP_c	AP_f	mAP	AP_r	AP_c	AP_f	mAP	AP_r	AP_c	AP_f	mAP	AP_r	AP_c	AP_f	mAP	AP_r	AP_c	AP_f	mAP	AP_r	AP_c	AP_f	mAP
Supervised	Base + Novel	12.3	24.3	32.4	25.4	16.6	21.1	31.6	24.4	17.2	23.7	35.1	27.0	17.2	23.7	35.1	27.0	17.2	23.7	35.1	27.0	17.2	23.7	35.1	27.0
ViLD [16]	Base					16.6	21.1	31.6	24.4																
VL-PLM (Ours)	Base	17.2	23.7	35.1	27.0																				

SSOD on COCO	Supervised	Supervised+PLs	Supervised+VL-PLM	STAC [46]	STAC+VL-PLM	STAC	STAC+VL-PLM																			
Method	Training data	1% COCO	2% COCO	5% COCO	10% COCO	Novel	Base	Overall																		
Supervised	Base + Novel	9.25	12.70	17.71	22.10	0.31	29.2	24.9	0.31	29.2	24.9	0.31	29.2	24.9	0.31	29.2	24.9	0.31	29.2	24.9						
Supervised+PLs	Base	11.18	14.88	21.20	25.98	3.41	13.8	13.0	3.41	13.8	13.0	3.41	13.8	13.0	3.41	13.8	13.0	3.41	13.8	13.0						
Supervised+VL-PLM	Base	15.35	18.60	23.70	27.23	4.12	35.9	27.9	4.12	35.9	27.9	4.12	35.9	27.9	4.12	35.9	27.9	4.12	35.9	27.9						
STAC [46]		13.97	18.25	24.38	28.64																					
STAC+VL-PLM		17.71	21.20	26.21	29.61																					

Zero-shot/OVD on COCO

Method	Training Source	Novel AP	Base AP	Overall AP
Bansal et al. [4]	instance-level labels in S_B	0.31	29.2	24.9
Zhu et al. [63]	instance-level labels in S_B	3.41	13.8	13.0
Rahman et al. [40]	instance-level labels in S_B	4.12	35.9	27.9
OVR-CNN [56]	image-caption pairs in $S_B \cup S_N$	22.8	46.0	39.9
Gao et al. [14]	image-caption pairs in $S_B \cup S_N$	30.8	46.1	42.1
RegionCLIP [59]	instance-level labels in S_B	31.4	57.1	50.4
RegionCLIP* [59]	raw image-text pairs via Internet	14.2	52.8	42.7
ViLD [16]	instance-level labels in S_B	27.6	59.5	51.3
VL-PLM (Ours)	raw image-text pairs via Internet	34.4	60.2	53.5

[ViLD] Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary Object Detection via Vision and Language Knowledge Distillation. In ICLR 2022

[STAC] Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semisupervised learning framework for object detection. arXiv 2020

[RegionCLIP] Zhong, Y., Yang, J., Zhang, P., Li, C., Codella, N., Li, L.H., Zhou, L., Dai, X., Yuan, L., Li, Y., Gao, J.: RegionCLIP: Region-based language-image pretraining. In CVPR 2022
Experiments

Understanding pseudo label quality

Visualization of good pseudo labels
Experiments

Understanding pseudo label quality

Visualization of bad pseudo labels
Exploiting Unlabeled Data with Vision and Language Models for Object Detection

Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, Vijay Kumar B.G, Anastasis Stathopoulos, Manmohan Chandraker, Dimitris Metaxas

ECCV 2022

Website: https://www.nec-labs.com/~mas/VL-PLM/
Code: https://github.com/xiaofeng94/VL-PLM
Paper link: https://arxiv.org/abs/2207.08954