Proto-oncogene Activity of Melanoma Antigen-A11 (MAGE-A11) Regulates Retinoblastoma-related p107 and E2F1 Proteins*

Shifeng Su†1, John T. Minges‡1, Gail Grossman†, Amanda J. Blackwelder§1, James L. Mohler¶, and Elizabeth M. Wilson†1‡3

From the †Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599 and the ‡Department of Urology, Roswell Park Cancer Institute, and Department of Urology, University at Buffalo, State University of New York, Buffalo, New York 14263

Melanoma antigen-A11 (MAGE-A11) is a low-abundance, primate-specific steroid receptor coregulator in normal tissues of the human reproductive tract that is expressed at higher levels in prostate cancer. Increased expression of MAGE-A11 enhances androgen receptor transcriptional activity and promotes prostate cancer cell growth. Further investigation into the mechanisms of MAGE-A11 function in prostate cancer demonstrated interactions with the retinoblastoma-related protein p107 and Rb tumor suppressor but no interaction with p130 of the Rb family. MAGE-A11 interaction with p107 was associated with transcriptional repression in cells with low MAGE-A11 and transcriptional activation in cells with higher MAGE-A11. Selective interaction of MAGE-A11 with retinoblastoma family members suggested the regulation of E2F transcription factors. MAGE-A11 stabilized p107 by inhibition of ubiquitination and linked p107 to hypophosphorylated E2F1 in association with the stabilization and activation of E2F1. The androgen receptor and MAGE-A11 modulated endogenous expression of the E2F1-regulated cyclin-dependent kinase inhibitor p27Kip1. The ability of MAGE-A11 to increase E2F1 transcriptional activity was similar to the activity of adenovirus early oncoprotein E1A and depended on MAGE-A11 interactions with p107 and p300. The immunoreactivity of p107 and MAGE-A11 was greater in advanced prostate cancer than in benign prostate, and knockdown with small inhibitory RNA showed that p107 is a transcriptional activator in prostate cancer cells. These results suggest that MAGE-A11 is a proto-oncogene whose increased expression impacts multiple signaling mechanisms that contribute to prostate cancer growth and progression.

MAGE-A11 is a proto-oncogene whose increased expression impacts multiple signaling mechanisms that contribute to prostate cancer growth and progression.

Melanoma antigen-A11 (MAGE-A11) is a primate-specific steroid hormone receptor coregulator that increases transcriptional activity of the human androgen receptor (AR) (1) and isoform B of the human progesterone receptor (2). The effects of MAGE-A11 are mediated by interactions with p160 coactivators and p300 acetyltransferase (3, 4). MAGE-A11 interacts with the NH2-terminal FXXLF motif region of human AR that overlaps with the androgen-dependent NH2- and carboxyl-terminal interaction important for AR transcriptional activity (1, 5–8). MAGE-A11 also interacts with an extended LXXLL motif region in the NH2-terminal region of human progesterone receptor B, which is absent in the otherwise identical shorter progesterone receptor A (2). Lower mammals, such as mice, do not have the MAGE-A11 gene. Sequence differences in the FXXLF motif region of the mouse AR inhibit an interaction with MAGE-A11 (9). These findings suggest that the evolution of MAGE-A11 in primates provides greater regulatory control of steroid receptor transcriptional activity. It was shown recently that MAGE-A11 enhances human AR transcriptional activity by bridging AR dimers in a mechanism that accounts for the dual functions of the AR FXXLF motif in the androgen-dependent AR NH2- and carboxyl-terminal interaction and binding to MAGE-A11 (10).

* This work was supported, in whole or part, by National Institutes of Health Grant HD16910, by United States Public Health Service NICHD, National Institutes of Health Eunice Kennedy Shriver Grant HD067721, and by Cooperative Agreement NICHD, National Institutes of Health Eunice Kennedy Shriver Grant U54-HD35041 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research. This work was also supported by National Cancer Institute Grant P01-CAN17739.

† Present address: Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

‡ Present address: Human Nutrition Research Program, North Carolina Central University, Kannapolis, NC 28081.

§ Present address: Laboratories for Reproductive Biology, CB7500, University of North Carolina, Chapel Hill, NC 27599-7500. Tel.: 919-966-5168; Fax: 919-966-2203; E-mail: emw@med.unc.edu.

¶ The abbreviations used are: MAGE-A11, melanoma antigen-A11; AR, androgen receptor; Rb, retinoblastoma; E1A, early region 1A; PSA, prostate-specific antigen; DHT, dihydrotestosterone; Luc, luciferase.

© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 288, NO. 34, pp. 24809 – 24824, August 23, 2013

JOURNAL OF BIOLOGICAL CHEMISTRY 24809
Regulation of p107 and E2F1 by MAGE-A11

MAGE-A11 is a member of a family of cancer-testis antigen genes that are frequently overexpressed in cancer (11). MAGE-A11 is also expressed at low levels in normal tissues of the human male and female reproductive tracts. It was first identified as an AR-interacting protein in human testis and is present at low levels in human foreskin fibroblasts (1). MAGE-A11 expression is regulated hormonally in human endometrium during the menstrual cycle and up-regulated by cyclic AMP (12). MAGE-A11 expression is cell cycle-dependent (4), and its coregulator activity depends on Chk1, a cell cycle-dependent kinase that phosphorylates a threonine residue in the relatively conserved carboxyl-terminal MAGE homology domain that characterizes this gene family (13). MAGE-A11 mRNA can increase exponentially during prostate cancer progression to castration-recurrent growth (10, 11, 14). Inhibition of MAGE-A11 expression arrests the growth of androgen-stimulated prostate cancer cells (10).

The family of retinoblastoma proteins includes the retinoblastoma (Rb) tumor suppressor, p107 (also known as Rb-like protein 1 (pRb1)), and p130 (pRb2). Rb-like proteins suppress cell growth by restricting progression through the G1/S transition of the cell cycle by interacting through their so-called pocket regions to negatively regulate E2F transcription factors (15–17). Rb-related proteins are regulated by phosphorylation (18), and hypophosphorylated retinoblastoma proteins bind E2Fs to inhibit transcription. Phosphorylation by cyclin-dependent kinases in normally cycling cells releases bound E2Fs in a cell cycle-dependent manner (19). At least eight E2F transcription factors expressed in mammalian cells have been grouped as transcriptional activators or repressors (20).

The tumor suppressor function of Rb is often lost in late-stage cancer because of mutations in the pocket region that interfere with suppression of E2F transcriptional activity (21). In contrast, mutations in p107 have not been reported in cancer (21, 22), although p107 is important for cell cycle regulation (23, 24). Loss of Rb-related protein activity is also achieved by cancer cells through the action of viral oncogenes that target the pocket region (25, 26). One of these viral proteins, human adenovirus type 5 early region 1A (E1A), is important in cell transformation. E1A disrupts Rb-related protein complexes through competitive binding and release of transcriptionally active E2Fs that regulate genes that control the cell cycle (27–29). E1A displaces E2F transcription factors from all three Rb-related proteins and induces entry into S phase of the cell cycle.

In this report, we investigated mechanisms by which MAGE-A11 contributes to prostate cancer cell growth. We show that MAGE-A11 selectively regulates retinoblastoma family members through mechanisms similar to the adenoviral oncoprotein E1A. MAGE-A11 interacts with p107 and increases E2F1 transcriptional activity. Stabilization of p107 by MAGE-A11 correlated with increased p107 immunostaining in prostate cancer and acquisition of p107 transcriptional activator activity.

EXPERIMENTAL PROCEDURES

DNA Vectors—Human AR expression vectors included pCMV-hAR coding for 919-amino acid, full-length human MAGE-A11; pCMV-FLAG-MAGE; pCMV-FLAG-MAGE-(112–429) (1); and MAGE-A11 mutants in pSG5-MAGE and pSG5-HA-MAGE-(112–429), pSG5-HA-MAGE-(112–307), and pSG5-HA-MAGE-(112–298) with the human influenza HA tag (3, 4, 13). pSG5-HA-MAGE was created by PCR-amplifying pSG5-MAGE and inserting the fragment with EcoRI and SalI sites of pSG5-HA. Other expression vectors included pSG5-HA-p300 (4), pCMV-Rb (provided by Yue Xiong) (32), pcDNA3-p130 (33), pCMV-FLAG-ubiquitin (13), and CMX-E1A variant C (provided by Hong-Wu Chen) (34). CMV-neo-p107 (CMV-p107) expresses full-length human p107, and CMV-p107DE (CMV-p107Δ409–826) has a deletion in the pocket region (35). CMV-p107-(1–385) and CMV-p107-(385–1068) were provided by Joan Massagué (36). CMV-p107-(1–180) was constructed by cloning an EcoRI and BamHI fragment PCR-amplified from CMV-HA-p107-(1–385) into the same sites of pCMV-HA. All PCR-amplified regions were verified using DNA sequencing.

Luciferase reporter vectors included the prostate-specific antigen (PSA) enhancer luciferase PSA-Enh-Luc (4, 37) and E2F1-Luc, which contains the −728 nucleotide E2F1 promoter region in pGL2. E2F1-Luc(-E2F) is the same as E2F1-Luc, except for inactivating mutations in three E2F1 binding sites. E2F4-Luc contains a 3-kb E2F4 promoter fragment in pGL2 basic. E2F reporter vectors were provided by Joseph R. Nevins (38).

Expression Studies—Cells were grown in medium containing penicillin, streptomycin, and 2 mM l-glutamine (Invitrogen). Human cervical carcinoma HeLa and HeLa-AR3A-PSA-ARE4 cells that stably express human AR (39) were propagated in Dulbecco’s modified essential medium with 10% bovine calf serum and 20 mM Hepes (pH 7.2). LAPC-4 human prostate cancer cells were grown in RPMI 1640 medium with 10% bovine calf serum, 1 mM sodium pyruvate, and 1 mM methyltrienolone R1881, a synthetic androgen. HEK293 cells were maintained in Eagle’s minimum essential medium with 10% fetal bovine serum.

HeLa (5 × 10⁴ cells/well) and CV1 cells (10⁴ cells/well) in 12-well plates were transfected with expression and luciferase reporter DNA using X-tremeGENE 9 or FuGENE 6 (Roche Applied Science) (10). After 24 h, cells were transferred to serum-free, phenol red-free medium with or without 1 mM dihydrotestosterone (DHT). siRNAs for E2F1 and p107 (Dharmacon RNA Technologies) were expressed in LAPC-4 (3.8 × 10⁵ cells/well) or COS1 cells (4.5 × 10⁵ cells/well) in 6-well plates in 1 ml of medium without antibiotics using Lipofectamine 2000 (Invitrogen) (3, 4). Cells in 6- and 12-well plates were harvested in 0.25 ml of 1% Triton X-100, 2 mM EDTA, and 25 mM Tris phosphate (pH 7.8). Luciferase activity (mean ± S.D.) was measured in 0.1-ml aliquots using an automated Lumistar Galaxy luminometer. Data are representative of at least three independent experiments.

Immunoblots of extracts from COS1 cells (2 × 10⁶ cells/10-cm dish, 7 × 10⁵ cells/6-cm dish) transfected using DEAE-dextran were prepared in immunoblot lysis buffer containing...
Regulation of p107 and E2F1 by MAGE-A11

1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate, 0.15 M NaCl, 2 mM EDTA, 50 mM NaF, 2 mM sodium vanadate, 50 mM Tris-HCl (pH 7.5), 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, and protease inhibitors (Roche Applied Science). Immunoprecipitation of endogenous and expressed proteins was performed by transfecting pCMV-FLAG vectors in 10-cm dishes containing 2 × 10^6 COS1 or 1.5 × 10^7 HEK293 cells using DEAE-dextran (40, 41) or 7 mM Triton X-100, 0.15M NaCl, 50 mM NaF, 2 mM sodium vanadate, 2 mM EDTA, 50 mM Tris (pH 7.6), 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, and complete protease inhibitors (Roche Applied Science) with or without 0.5% deoxycholate or 10% glycerol. Samples containing deoxycholate were diluted 4-fold with lysis buffer without deoxycholate. Samples were precleared for 15 min at 4 °C using Sepharose CL-4B (Sigma) and immunoprecipitated for 2 h at 4 °C using anti-FLAG precleared for 15 min at 4 °C using Sepharose CL-4B (Sigma) and immunoprecipitated for 2 h at 4 °C using anti-FLAG M2-agarose affinity resin (9). For phosphorylation experiments, 30 µg of cell extract protein in 40 µl of immunoprecipitation buffer without NaF, sodium vanadate, EDTA, or deoxycholate was incubated for 1 h at 4 °C with or without 4000 IU λ protein phosphatase (New England Biolabs), according to the instructions of the manufacturer (3).

Endogenous expression of AR and MAGE-A11 was inhibited in LAPC-4 cells using lentivirus shRNA prepared using the Open Biosystems TRC1 shRNA library. HEK293 cell medium (0.15–0.3 ml) containing ~10^6 lentivirus particles/ml was added to LAPC-4 cells (10^7/10-cm dish) plated the day before in 6 ml of growth medium. Cells were incubated for 48 h at 37 °C with lentivirus for MAGE-A11 shRNA-947, 169, and 827; AR shRNA-5; a nonspecific 18-bp spacer; and empty lentivirus using DEAE-dextran (40, 41) or 7 mM Triton X-100, 0.15M NaCl, 50 mM NaF, 2 mM sodium vanadate, 2 mM EDTA, 50 mM Tris (pH 7.6), 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, and complete protease inhibitors (Roche Applied Science) with or without 0.5% deoxycholate or 10% glycerol. Samples containing deoxycholate were diluted 4-fold with lysis buffer without deoxycholate. Samples were precleared for 15 min at 4 °C using Sepharose CL-4B (Sigma) and immunoprecipitated for 2 h at 4 °C using anti-FLAG M2-agarose affinity resin (9). For phosphorylation experiments, 30 µg of cell extract protein in 40 µl of immunoprecipitation buffer without NaF, sodium vanadate, EDTA, or deoxycholate was incubated for 1 h at 4 °C with or without 4000 IU λ protein phosphatase (New England Biolabs), according to the instructions of the manufacturer (3).

Endogenous expression of AR and MAGE-A11 was inhibited in LAPC-4 cells using lentivirus shRNA prepared using the Open Biosystems TRC1 shRNA library. HEK293 cell medium (0.15–0.3 ml) containing ~10^6 lentivirus particles/ml was added to LAPC-4 cells (10^7/10-cm dish) plated the day before in 6 ml of growth medium. Cells were incubated for 48 h at 37 °C with lentivirus for MAGE-A11 shRNA-947, 169, and 827; AR shRNA-5; a nonspecific 18-bp spacer; and empty lentivirus controls. Cells were harvested using trypsin-EDTA and plated in 10-cm dishes in medium containing 3 µg/ml puromycin dihydrochloride (Cellgro) for cell selection after lentivirus transduction. After 4 days in culture, cells were incubated with 10 nM DHT for 24 h and extracted using immunoblot lysis buffer.

Acrylamide gels (8 or 10%) containing SDS were calibrated using dual color Precision Plus protein standards (Bio-Rad). Immunoblots were probed using the following antibodies from Santa Cruz Biotechnology, Inc. at 1:200 dilution unless indicated otherwise: p107 C-18 (sc-318) affinity-purified rabbit polyclonal antibody to a carboxyl-terminal human p107 peptide, E2F1 KH95 (sc-251) mouse monoclonal antibody to human E2F1 amino acid residues 342–386, E2F1 C-20 (sc-193) rabbit polyclonal antibody to a carboxyl-terminal epitope, E2F4 C-108 (sc-512) rabbit polyclonal antibody to human E2F4 amino acid residues 108–300, p130 C-20 (sc-317) affinity-purified rabbit polyclonal antibody to a human p130 carboxy-terminal peptide, and DP-1 K-20 (sc-610) rabbit polyclonal antibody. Additional antibodies included MAGE-A11 rabbit polyclonal antibody against FLAG-tagged human MAGE-A11 expressed in baculovirus (0.2 µg/ml for expressed MAGE-A11 and 10 µg/ml for endogenous MAGE-A11), AR32 rabbit polyclonal antibody to human AR 9–28 amino acid peptide (1 µg/ml) (42), AR52 rabbit polyclonal antibody to human AR 544–558 amino acid peptide (10 µg/ml) (30), anti-FLAG M2 F3165 monoclonal antibody (Sigma, 1:2000 dilution), Rb Ab-1 clone 1F8 mouse monoclonal antibody to human Rb amino acid residue epitope 703–722 (Thermo Scientific, 1:500 dilution), p27kip1 (p27) purified mouse antibody (BD Transduction Laboratories, 1:50 dilution), and rabbit polyclonal HA antibody ab9110 (Abcam, 1:1000 dilution). In some experiments, blots were stripped by incubating for 23 min using a hybridization rotator at 55 °C in 10 ml of prewarmed 2% SDS, 62.5 mM Tris-HCl (pH 6.7) containing 64 µl of β-mercaptoethanol and reprobing with antibody.

Quantitative Real-time RT-PCR—LAPC-4 cells (2.4 × 10^6 cells/6-cm dish) plated in growth medium containing 10% fetal calf serum were grown for at least 48 h to ~50% confluence and transferred to serum-free medium. The next day, cells were placed in medium containing 5% charcoal-stripped serum and incubated with or without DHT. Cells were harvested in 1 ml TRIzol reagent (Invitrogen). RNA was isolated using chloroform extraction and precipitated using isopropanol. First-strand cDNA was prepared using SuperScript II reverse transcriptase (Invitrogen) and oligo(dT) primer. Real-time PCR was performed using an Applied Biosystems StepOnePlus real-time PCR system and p27 forward primer 5’-GGTAAACCCGGGACTTGGGA-3’ and p27 reverse primer 5’-CACCCTTTGCACTCGTA-3’ and peptidylprolyl isomerase A housekeeping control forward primer 5’-ATCTTGTCCATGGCAATGTC-3’ and reverse primer 5’-GCTCTCCACATATTCCATGCC-3’ (Integrated DNA Technologies). Reactions (20 µl) contained 4 µl of cDNA (40 ng), 10 µl of Sso Advanced SYBR Green Supermix (Bio-Rad), 0.4 µl of ROX reference dye (Invitrogen), 2 µl of 2 µm amplification primers, and 1.6 µl of RNase-free H2O. Real-time PCR amplification was 1 cycle at 95 °C for 20 min followed by 45 cycles at 95 °C for 30 s, 57.5 °C for 30 s, 72 °C for 40 s, and 79 °C for 20 s. p27 and peptidylprolyl isomerase A standard curves were performed on the basis of 10-fold dilutions of cDNA.

Cell Growth Assays—LAPC-4 cells (4 × 10^5 cells/well) were plated in triplicate in 24-well plates in 0.5 ml of medium containing 10% charcoal-stripped serum without phenol red. The next day and 3 days later, 100 µl of serum-free medium with or without DHT were added. Cells were harvested daily, beginning 24 h after the first addition of DHT, by aspirating the medium and adding 0.2 ml of serum-free medium and 20 µl of cell counting kit 8 reagent (Dojindo Laboratories). After 2.5 h at 37 °C, 0.1 ml was analyzed spectrophotometrically at 485 nm.

Immunostaining—Benign prostate and prostate cancer tissues were obtained from prostatectomy specimens after informed consent and approval by institutional review boards at the University of North Carolina at Chapel Hill. Adjacent formalin-fixed, paraffin-embedded, 8-µm sections of androgen-stimulated benign prostate and androgen-stimulated and castration-recurrent prostate cancer were immunostained for endogenous p107 and MAGE-A11 using affinity-purified human p107 rabbit antibody C-18 (sc-318, 1:100 dilution, Santa Cruz Biotechnology) and affinity-purified human MAGE-A11 rabbit polyclonal anti-peptide MAGE-(94–108) antibody (6 µg/ml). Sections were pretreated with 4% H2O2 in 83% methanol for 30 min at room temperature, blocked using 2% goat serum, incubated overnight with primary antibody at 4 °C,
Regulation of p107 and E2F1 by MAGE-A11

Regulation of Human AR Transcriptional Activity by MAGE-A11 and p107—MAGE-A11 is expressed at very low levels in normal tissues of the human male reproductive tract and at higher levels in prostate cancer, where it increases AR transcriptional activity (4, 9). p107 inhibited AR activity without expressing MAGE-A11 and p300. AR activity was not inhibited by p130, another member of the Rb family, with or without MAGE-A11 and p300 (Fig. 1A). In HeLa cells with low MAGE-A11 expression relative to LAPC-4 cells (Fig. 1B), low levels of p107 slightly stimulated AR activity in the presence of MAGE-A11, but higher levels of p107 were inhibitory with or without MAGE-A11 (C). In contrast, the highest amounts of p107 that inhibited the MAGE-A11-dependent increase in AR activity in CV1 or HeLa cells did not inhibit AR in LAPC-4 cells (Fig. 1F, right).

The influence of MAGE-A11 and p107 on AR transcriptional activity was investigated further using a constitutively active AR-(1–660) NH2-terminal and DNA binding fragment that contains NH2-terminal activation function 1 and the FXXLF motif region that interacts with MAGE-A11 but lacks the AR ligand binding domain (1, 31). AR-(1–660) is similar to splice variants reported at low levels in prostate cancer (43, 44). Similar to full-length AR, p107 inhibited AR-(1–660) activity in a dose-dependent manner in HeLa cells with or without MAGE-A11 (Fig. 1, D and E). In contrast, p107 slightly increased AR-(1–660) activity in LAPC-4 cells (Fig. 1F, left).

The ability of p107, but not p130, to influence MAGE-A11 activation of the AR suggests that MAGE-A11 interacts selectively with Rb-related proteins. This possibility was investi-
Regulation of p107 and E2F1 by MAGE-A11

MAGE-A11 Mediates an Interaction between AR and p107—The modulation of AR transcriptional activity by MAGE-A11 and p107 suggests that MAGE-A11 might mediate an interaction between these proteins, which was investigated by immunoprecipitation of MAGE-A11 and p107 with FLAG-AR. MAGE-A11 associated with FLAG-AR with or without p107 (Fig. 3, lanes 10–17), which agreed with previous findings (1). However, an interaction between FLAG-AR and p107 was seen only when MAGE-A11 was expressed (Fig. 3, lanes 6–13). Treatment with EGF, a growth factor that increases phosphorylation in the MAGE homology domain and enhances MAGE-A11-AR interaction with p107 and modulation of transcriptional activity.

MAGE-A11 Mediates an Interaction between AR and p107—The modulation of AR transcriptional activity by MAGE-A11 and p107 suggests that MAGE-A11 might mediate an interaction between these proteins, which was investigated by immunoprecipitation of MAGE-A11 and p107 with FLAG-AR. MAGE-A11 associated with FLAG-AR with or without p107 (Fig. 3, lanes 10–17), which agreed with previous findings (1). However, an interaction between FLAG-AR and p107 was seen only when MAGE-A11 was expressed (Fig. 3, lanes 6–13). Treatment with EGF, a growth factor that increases phosphorylation in the MAGE homology domain and enhances MAGE-A11 interaction with the AR (13), promoted the MAGE-A11-dependent interaction between the AR and p107 (Fig. 3, lanes 10–13).

p107 has multiple interaction domains for regulatory proteins similar, but not identical, to other retinoblastoma family members (Fig. 4A). The domains of p107 that interact with MAGE-A11 were investigated using FLAG-MAGE and HA-tagged p107 fragments. p107 NH2-terminal fragments (1–180) and (1–385), carboxyl-terminal fragment (385–1068) containing the pocket region, and Δ409–826 with the pocket region deleted each associated with FLAG-MAGE (Fig. 4B, lanes 9–12) similar to full-length p107 (lane 8). FLAG-MAGE interacted with endogenous p107 in HEK293 cells (Fig. 4C) that have relatively high levels of p107 (see Fig. 12A). FLAG-MAGE also associated with endogenous E2F1 and E2F4 transcription factors important in cell cycle control (Fig. 4B, lanes 7–12).

The results suggest that MAGE-A11 interacts with multiple regions of p107 to modulate AR transcriptional activity. The association of MAGE-A11 with endogenous p107 and endogenous E2Fs places it in important cell growth regulatory pathways.

MAGE-A11 Stabilizes p107 and Modulates Ubiquitination—The effect of MAGE-A11 on p107 was investigated in stability studies. MAGE-A11 increased p107 levels in cells treated with or without EGF (Fig. 5A) but did not increase p130 (B). A second, more slowly migrating form of p107 was evident with the (112–429) carboxyl-terminal fragment that interacted with p107 (Fig. 2) associated with the fast- and slow-migrating forms of p107. However, MAGE-A11 fragments 112–307 and 112–298 had no effect on p107 levels (Fig. 5C).

The apparent stabilization of p107 by MAGE-A11 was investigated further by inhibiting protein synthesis using cycloheximide. In these experiments, p107 was detected in a time-dependent manner only when MAGE-A11 was expressed (Fig. 5D, lanes 1–8), p107 migrated as two distinct bands whose intensity declined with time, similar to MAGE-A11. There was a time-dependent shift from the faster-migrating to the slower-migrating form of p107. Treatment of cell extracts with A protein phosphatase did not alter the double-band migration of p107 (data not shown), which indicates that phosphorylation was not responsible. Immunoprecipitation of p107 from cells expressing FLAG-ubiquitin demonstrated that p107 undergoes ubiquitination in association with the stabilizing effects of MAGE-A11 (Fig. 5E). MAGE-A11 appeared to inhibit ubiquitination of p107.

These results suggest that MAGE-A11 stabilizes p107 by inhibiting ubiquitination. The specificity of MAGE-A11 stabilization of p107 provided further evidence that MAGE-A11 interacts preferentially with p107 of the Rb family.

MAGE-A11 Activates E2F Transcriptional Activity—The association of endogenous E2F1 and E2F4 with FLAG-MAGE
Regulation of p107 and E2F1 by MAGE-A11

FIGURE 4. MAGE-A11 interacts with multiple regions of p107, endogenous p107, and endogenous E2Fs. A, schematic of human p107 protein interaction domains. B, pCMV-FLAG or pCMV-FLAG-MAGE (4 µg) was expressed in COS1 cells with 1 µg of full-length CMV-p107-(1–1068), CMV-HA-p107-(1–180), or CMV-HA-p107-(1–385) or 3 µg of CMV-HA-p107-(385–1068) or CMV-HA-p107-(409–826). Cells were incubated for 24 h in serum-free medium containing 0.1 µg/ml EGF. Immunoprecipitations (IP, top panel) and cell extracts (40 µg of protein/lane, bottom panel) were probed with p107, HA, and MAGE-A11 antibodies. Endogenous E2F4 and E2F1 were detected using E2F4 (sc-512) and E2F1 (sc-251) antibodies. C, pCMV-FLAG or pCMV-FLAG-MAGE (3 µg) was expressed in HEK293 cells. Cells were incubated for 24 h before harvest in serum-free medium containing 0.1 µg/ml EGF and 1 µM MG132 proteasome inhibitor. Immunoprecipitates (top panel) and cell extracts (150 µg, center and bottom panels) were probed for endogenous p107 and FLAG-MAGE.

FIGURE 5. MAGE-A11 interacts with endogenous p107, stabilizes p107, and modulates p107 ubiquitination. A, pCMV5 or CMV-p107 (2 µg) was expressed in COS1 cells in 10-cm dishes with or without 2 µg of pSG5-MAGE. Cells were incubated for 24 h in serum-free medium with or without 0.1 µg/ml EGF. Cell extracts prepared in immunoblot lysis buffer (40 µg of protein/lane) were probed using p107 and MAGE-A11 antibodies. B, CMV-p107 (3 µg), 3 µg of pCMV5 (−), or 3 µg of pcDNA3-p130 was expressed in COS1 cells in 6-cm dishes with or without 1 µg of pSG5-MAGE. Cells were incubated for 24 h in serum-free medium with 0.1 µg/ml EGF. Cell extracts (40 µg of protein/lane) prepared in immunoblot lysis buffer were probed using p107 and MAGE-A11 antibodies. C, pCMV5 (2 µg) alone (−) or 2 µg of CMV-p107 with or without 100 ng of WT pSG5-HA-MAGE-(2–429), 25 ng of pSG5-HA-MAGE-(112–429), 50 ng of pSG5-HA-MAGE-(112–307), or 100 ng of pSG5-HA-MAGE-(112–298) were expressed in COS1 cells in 10-cm dishes. Cells were incubated for 24 h in serum-free medium. The next day, medium was exchanged, and cells were treated with 5 µM cycloheximide. Cells were harvested at 0, 8, 16, and 24 h in immunoblot lysis buffer. Cell extracts (50 µg of protein/lane) were probed using p107 and MAGE-A11 antibodies. E, pCMV-FLAG (6 µg) or 6 µg of pCMV-FLAG-ubiquitin (FLAG-Ub) was expressed in COS1 cells with or without 1 µg of pSG5-MAGE and/or 3 µg of CMV-p107. Cells were incubated for 24 h in serum-free medium containing 0.1 µg/ml EGF and immunoprecipitated using FLAG antibody affinity resin. Transblots of immunoprecipitates (IP, top panels) and cell extracts (40 µg of protein/lane, bottom panels) were probed using p107 and MAGE-A11 antibodies.

(Fig. 4B) suggests that MAGE-A11 interacts with additional cell cycle regulatory proteins influenced by phosphorylation (45). Immunoprecipitation studies of endogenous E2F1 in COS1 and HeLa cells showed that FLAG-MAGE associated with a faster-migrating form of endogenous E2F1 (Fig. 6A, lanes 4 and 6). MAGE-A11 interaction with hypophosphorylated E2F1 was confirmed by the shift to the faster-migrating form after treatment with λ protein phosphatase (Fig. 6B). The results show
that MAGE-A11 interacts with hypophosphorylated E2F1 and not with hyperphosphorylated E2F1.

A MAGE-A11-dependent release of active E2Fs from p107 or Rb would be expected to increase E2F transcriptional activity. This possibility was tested by expressing MAGE-A11 with E2F1-Luc, an E2F1-responsive luciferase reporter gene that contains the −728 nucleotide E2F1 promoter region (38). Increased expression of MAGE-A11 caused a dose-dependent increase in E2F1-Luc transactivation (Fig. 7A). The MAGE-

A11-dependent increase in E2F1-Luc transactivation was similar to that seen with E1A (Fig. 7B), an early adenoviral protein that interacts with Rb-related proteins and releases transcriptionally active E2Fs (29). Multiple inactivating mutations in the E2F1 response element region of E2F1-Luc in E2F1-Luc(-E2F) disrupted activation by E2F1 (38) eliminated activation by MAGE-A11 or E1A (Fig. 7B, right).

The specificity of MAGE-A11 activation of the two major classes of E2Fs was tested using E2F1-Luc and E2F4-Luc, where the latter contains a 3-kb E2F4 promoter region that is activated by E2F4 (38). Studies were performed with or without p300 on the basis of the synergistic actions of MAGE-A11 and p300 (4). MAGE-A11 increased transactivation of E2F1-Luc and E2F4-Luc to a similar extent, but the synergy between MAGE-A11 and p300 was greater for E2F1-Luc (Fig. 7C).

Several previously characterized MAGE-A11 mutations disrupt amino acid residues critical for steroid receptor coregulator activity (2–4, 13). Some of these site-specific mutants were tested for their effects on E2F1 transactivation. The synergistic effect of MAGE-A11 and p300 on E2F1-Luc transactivation was diminished with MAGE-I188A,F189A, in which the p300 interaction site was disrupted (Fig. 7D). This finding suggests that the synergy between MAGE-A11 and p300 in E2F transactivation depends on MAGE-A11 interaction with p300. The NH2-terminal deletion mutant MAGE-(111–429), Chk1 kinase phosphorylation site mutant T360A, monoubiquitination site mutant K240A,K245A, and hydrophobic F-box mutants L358A, L359A and V368A,L369A, which express at levels similar to the wild type (4, 10, 13), each inhibited MAGE-A11 activation of E2F1-Luc (Fig. 7E).

These results suggest that the interaction of MAGE-A11 with p107 releases transcriptionally active E2Fs, similar to adenovirus oncoprotein E1A. MAGE-A11 interaction with hypophosphory-

FIGURE 6. MAGE-A11 interacts with hypophosphorylated E2F1. A, pCMV-FLAG (3 μg) (−) or 3 μg of pCMV-FLAG-MAGE was expressed in COS1 cells (1.8 × 10⁶ cells/10-cm dish, left) using DEAE-dextran and 2 μg of pCMV-FLAG (−) or pCMV-FLAG-MAGE in HeLa cells (7.5 × 10⁶ cells/10-cm dish, right) using FuGENE 6 (Roche Applied Science). Cell extracts (40 μg of protein/lane) and immunoprecipitates (IP) were probed using MAGE-A11 antibody and E2F1 (sc-251) antibody for endogenous E2F1. B, pSG5-MAGE (2 μg) was expressed in COS1 cells with or without 2 μg of CMV-FLAG. Cells were incubated with 0.1 μg/ml EGF and 1 μM MG132 proteasome inhibitor for 24 h before harvest in immunoprecipitation lysis buffer without NaF, deoxycholate, sodium vanadate, or EDTA. Cell extracts (30 μg of protein/lane) were treated with or without λ protein phosphatase as described under “Experimental Procedures.” Transblots were probed using E2F1 (sc-193) and MAGE-A11 antibodies.

FIGURE 7. MAGE-A11 activates endogenous E2F1. A, pSG5 (100 ng) (−) or 2, 10, 25, or 100 ng of pSG5-MAGE was expressed in HeLa cells with 0.1 μg of E2F1-Luc. B, pSG5, pSG5-MAGE, or CMX-E1A (10, 25, 50, or 100 ng) was expressed in HeLa cells with 0.1 μg of E2F1-Luc or 0.1 μg of E2F1-Luc(E2F) with inactivating mutations in E2F1 response elements. C, pSG5 (10 ng) (−) or 10 ng of pSG5-MAGE was expressed in HeLa cells with or without 100 ng of pSG5 (−) or pSG5-HA-p300 and 0.1 μg of E2F1-Luc (left) or 0.1 μg of E2F1-Luc (right). D, pSG5 (50 ng) (−) or 10 ng of pSG5-MAGE WT or I188A,F189A mutant was expressed in HeLa cells with 0.1 μg of E2F1-Luc with or without 50 ng of pSG5 (−) or pSG5-HA-p300. E, pSG5 (0.1 μg) (−) or 0.1 μg of pSG5-MAGE WT or 111-429, T360A, K240A,K245A, S174A, I188A,F189A, L358A,L359A, or Y368A,L369A mutant was expressed in HeLa cells with 0.1 μg of E2F1-Luc. Luciferase activity is the mean ± S.D. (error bars) representative of three experiments.

AUGUST 23, 2013 • VOLUME 288 • NUMBER 34
Regulation of p107 and E2F1 by MAGE-A11

![Graph](image.png)

FIGURE 8. p107 inhibits MAGE-A11 activation of E2F1 in HeLa cells. A, pSG5 (25 ng) alone or 25 ng of pSG5-MAGE was expressed in HeLa cells with 0.1 μg of E2F1-Luc with or without 50 ng of pSG5 (−) or pSG5-HA−p300 and 10 ng of pCMV5 (−) or CMV-p107. B, pSG5 (50 ng) alone (−), 25 ng of pSG5-MAGE (left), or 25 ng of CMV-E1A (right) was expressed in HeLa cells with 0.1 μg of E2F1-Luc with 50 ng of pCMV5 (−) or 10, 25, or 50 ng of CMV-p107. C, pCMV5 (100 ng) (−) or 100 ng of pSG5-MAGE was expressed in HeLa cells with 0.1 μg of E2F1-Luc and 10 ng of pCMV5 (−), CMV-p107, CMV-p107Δ409–826 (DE) or pcDNA3-p130. Luciferase activity is the mean ± S.D. (error bars) representative of three experiments.

Ligated E2F1 is consistent with the release of active hyperphosphorylated E2F1. Amino acid residues important for steroid receptor coregulatory activity were required for MAGE-A11 to increase E2F2 transcriptional activity.

Transcriptional Regulation by MAGE-A11 and p107—The influence of MAGE-A11 on transcriptional activator or repressor activity of p107 was explored further by determining the effects of MAGE-A11 and p107 on E2F1-Luc transactivation. Synergy between MAGE-A11 and p300 and between E1A and p107 in E2F1-Luc transactivation was inhibited by p107 in HeLa cells (Fig. A and B). p107Δ409–826 (DE), in which the pocket region was deleted, inhibited MAGE-A11 activation of E2F1-Luc less than full-length p107, and p130 did not inhibit E2F1-Luc transactivation by MAGE-A11 (Fig. 8C).

In LAPC-4 cells, E2F1 or E1A activated E2F1-Luc to a greater extent than MAGE-A11 (Fig. 9A), possibly because of higher endogenous MAGE-A11 levels in LAPC-4 cells. When E2F1 expression was inhibited using siRNA (Fig. 9B), transactivation of E2F1-Luc by expressed or endogenous E2F1 was inhibited (C and D). However, increasing p107 did not inhibit, and slightly increased, E2F1-Luc transactivation in LAPC-4 cells (Fig. 9E).

These results suggest that transcriptional repression by p107 in HeLa cells that have low levels of MAGE-A11 is lost in LAPC-4 cells with higher MAGE-A11. The cellular environment of LAPC-4 cells that includes higher MAGE-A11 contributes to the transcriptional activator activity of p107.

Regulation of an endogenous E2F1-dependent Gene—p27 is a cyclin-dependent kinase inhibitor and tumor suppressor that inhibits the G1- to S-phase transition of the cell cycle (46). p27 is transcriptionally up-regulated by E2F1 (47, 48), but its levels are often low in advanced prostate cancer (49, 50). In agreement with this finding, endogenous p27 protein was almost undetectable in LAPC-4 cells, but its levels increased slightly in a dose-dependent manner in response to DHT (Fig. 10A, left). The DHT-dependent increase in p27 protein was more evident in cells treated with MG132, a proteasome inhibitor (Fig. 10A, right), and there was a transient increase in p27 mRNA in response to DHT (B).

The apparent rapid degradation of p27 mRNA and/or protein in LAPC-4 cells was consistent with the faster LAPC-4 cell growth in the presence of 1 or 10 nM DHT (Fig. 10C) and the increase in p27 protein with AR and MAGE-A11 lentivirus shRNA knockdown (D). The increase in p27 with AR or MAGE-A11 knockdown may reflect, in part, the dependence of LAC-P-4 cell growth on AR and MAGE-A11 (10) because loss of AR signaling can arrest androgen-dependent prostate cancer cells in G0/G1 phase of the cell cycle (51). The results suggest that AR and MAGE-A11 are involved in the regulation of endogenous p27.

MAGE-A11 Links E2F1 and p107 for Transcriptional Activation—Controversy regarding p107 association with E2F1 in transcriptional activation or repression (52–54) led us to determine the effects of MAGE-A11 on E2F1 interaction with p107. E2F1 was stabilized by MAGE-A11 (Fig. 11A), similar to the effect of MAGE-A11 on p107 (Fig. 5A). E2F1 was not detected without expression of MAGE-A11 (Fig. 11A, lanes 4 and 5) but was readily detected in an EGF-dependent manner when MAGE-A11 was expressed (Fig. 11A, lanes 6 and 7).

Stabilization of E2F1 and p107 by MAGE-A11 raised the possibility that MAGE-A11 links these regulatory proteins, as seen for AR and p107. Immunoprecipitation studies showed that E2F1 strongly associated with FLAG-p107 in the presence of MAGE-A11 (Fig. 11B). Endogenous E2F1 also associated with FLAG-p107 in LAPC-4 cells, although endogenous MAGE-A11 was too low for detection in the immunoprecipitate (Fig. 11C).

To obtain further evidence for p107 transcriptional activator activity in prostate cancer, the effect of p107 knockdown was assessed in LAPC-4 cells. p107 was detected in LAPC-4 cell extracts at levels similar to CWR-R1 and LNCaP prostate cancer cells and was not significantly different from levels in benign human prostate epithelial PWR-1E and RWPE-2 cells or CV1 or COS1 cells but greater than HeLa or HeLa cells expressing AR. HEK-293 cells had the highest endogenous p107 (Fig. 12A, lanes 18). AR was detected in prostate cancer and HeLa cells stably expressing AR (Fig. 12A, lanes 3–10). E2F1 was detected in all cell types examined. However, the mobility of E2F1 differed between benign and cancer cells that suggested differences in phosphorylation. E2F1 migrated as two major bands in prostate cancer cells (Fig. 12A, lanes 5–10) but not as the single faster-migrating hypophosphorylated form in PWR-1E and RWPE-2 benign prostate cells (lanes 11–14). Our earlier
results (Fig. 6A) showed that MAGE-A11 interacts with the faster-migrating hypophosphorylated form of E2F1. The E2F1 dimer partner DP-1 was detected in all cell types. MAGE-A11 was detected in LAPC-4 cells that express endogenous AR (Fig. 12A, lanes 9 and 10) and in HeLa cells that stably express AR (lanes 3 and 4), which suggests that an increase in AR is associated with an increase in endogenous MAGE-A11.

When p107 levels were lowered using siRNA (Fig. 12B), activation of E2F1-Luc by expressed or endogenous E2F1 was inhibited in LAPC-4 cells (Fig. 12, C and D). p107 siRNA-5, 6, and 9 decreased p107 levels and inhibited E2F1-Luc transactivation, whereas nonspecific siRNA or p107 siRNA-8 did not alter p107 levels or inhibit E2F1-Luc transactivation.

Immunostaining MAGE-A11 and p107 in representative samples of benign prostate and prostate cancer showed that MAGE-A11 and p107 are expressed weakly in stromal and epithelial cells of benign prostate tissue (Fig. 13, A–D). MAGE-A11 and p107 immunostaining increased in androgen-stimulated prostate cancer (Fig. 13, E and F) and was most intense in castration-recurrent prostate cancer (G and H). These results support the hypothesis that MAGE-A11 facilitates the transcriptional activator activity of p107 during prostate cancer progression.
The ability of MAGE-A11 to link p107 to AR and E2F1 and enhance prostate cancer cell growth suggests that MAGE-A11 is a transcriptional amplifier in primates important in cell cycle control. siRNA knockdown of p107 in prostate cancer cells showed that p107 is a transcriptional activator that has lost its ability to repress AR and E2F1 transcriptional activity. MAGE-A11 appears to act in a molecular hub for transcription regulation in primates by linking p107 to E2F1 and AR. The increase in MAGE-A11 (10, 11, 14) and p107 in prostate cancer suggests that MAGE-A11 is a proto-oncogene with properties similar to the adenoviral oncoprotein E1A.

Regulation of p107 by MAGE-A11—The retinoblastoma family members Rb, p107, and p130 regulate the cell cycle and have tumor suppressor activity through the modulation of E2F transcription factors (55–57). Rb is a tumor suppressor, whereas p107 and p130 are involved in cell cycle regulation (24). Hypophosphorylated Rb-related proteins interact with E2Fs and corepressors to actively repress E2F-dependent gene transcription and cause cell cycle arrest in G₀/G₁ (58–61). Mitogen-induced hyperphosphorylation of Rb or p107 by cyclin-dependent kinases releases active E2Fs to up-regulate genes involved in cell cycle control (18, 62). Rb is hypophosphorylated in G₀/G₁ and phosphorylated during the G₁-S transition (63). p107 levels vary during the cell cycle, are low in G₀ and accumulate during re-entry into S phase (64, 65). p107 associates with E2Fs and becomes phosphorylated by cyclin-dependent kinases during S phase (24, 66, 67).

We have shown that MAGE-A11 interacts preferentially with p107 and less with Rb and did not interact with p130. MAGE-A11 interaction with p107 resulted in stabilization and time-dependent ubiquitination of p107. MAGE-A11 may be part of a ubiquitin ligase complex as suggested for another member of the MAGE family (68). MAGE-A11 itself undergoes monoubiquitination on lysine residues in the MAGE homology domain required to stimulate transcriptional activity of human AR (13), human progesterone receptor-B (2) and E2F1. The increase in MAGE-A11 and its ability to stabilize p107 may contribute to the increase in p107 in prostate cancer and its function as a transcriptional activator.

Rb has been implicated in cross-talk with the AR NH₂-terminal region (69, 70). Overexpression of Rb increased AR transcriptional activity that was lost in Rb-deficient cells (71). However, whether Rb has direct effects on AR or indirect effects through coregulators remains unclear. MAGE-A11 interacts with the AR NH₂-terminal FXXLF motif region and could mediate the effects of Rb. Our studies suggest that p107 and possibly Rb are modulated by the AR coregulator MAGE-A11.

Regulation of E2F Transcriptional Activity by MAGE-A11—E2F transcription factors are DNA binding proteins that recognize the consensus sequence G/CTTTG/C in promoter regions of genes that regulate cell cycle entry and exit (72, 73). E2F binding to DNA is modulated by phosphorylation. Activator or repressor activity of E2Fs is influenced by interactions with transcription factors and coregulators (45, 74). E2Fs are negatively regulated by the Rb family (75, 76). Mitogens activate cyclin-dependent kinases to phosphorylate Rb-like proteins, release E2Fs, and induce E2F-regulated genes that control cell exit from G₁ and entry into S phase (20). Upon release in
response to mitogen-induced phosphorylation or viral transformation, E2Fs form heterodimeric complexes with the dimer partner DP-1 or DP-2 (77).

Most E2F-responsive genes regulate DNA synthesis and cell cycle progression. E2F1, E2F2, and E2F3 are thought to complex primarily with Rb. When activated, they induce entry into S phase or, depending on their levels, induce apoptosis (78, 79). E2F1 up-regulates its own expression during the cell cycle (38, 80). E2F4 and E2F5 have repressive activity and are involved in cell differentiation. E2F4 associates with p107 and E2F5 with p130 (81–83). E2F6, E2F7 and E2F8 are transcriptional repressors that do not interact with Rb-related proteins (73). E2F1, E2F2, and E2F3 are predominantly nuclear, whereas E2F4 and E2F5 are cytoplasmic and nuclear (53). Although p107 is considered a transcriptional repressor that associates primarily with E2F4 (84–86) and not with E2F1 (81, 87), recent studies in addition to our own suggest that p107 can have activator or repressor activity, with an interaction between p107 and E2F1 modulated during the cell cycle (52).

MAGE-A11 increased the interaction between p107 and E2F1, which was reported to be weaker than p107 interaction with E2F4 (88), and enhanced the transcriptional activity of E2F1. E2F1 is regulated by phosphorylation (89–91). We noted that a major hyperphosphorylated form of E2F1 in cancer cells was not evident in benign prostate cells. MAGE-A11 forms a stable complex with hypophosphorylated E2F1. The faster migration of E2F1 after treatment with λ protein phosphatase suggests that activation of E2F1 by phosphorylation is associated with release from MAGE-A11. Similar to E1A, MAGE-A11 appears to sequester hypophosphorylated E2F1 and promote the release of activated phosphorylated E2F1 from p107.

MAGE-A11 interaction with E2F transcription factors resembles, in some respects, other members of the MAGE gene family. Necdin, necdin-like protein 1 (MAGE-L2), and necdin-like protein 2 (MAGE-G1) are neuron-specific cell growth suppressors whose absence is associated with Prader-Willi syndrome and autistic disorders (92). Necdin and MAGE-G1 bind E2F1 and repress E2F1-dependent gene transcription (93, 94). We found that MAGE-A11 stabilized E2F1 and p107 and mediated an interaction of p107 with AR and E2F1 that caused transcriptional repression or activation, depending on MAGE-A11 levels.

MAGE-A11 activation of E2F1 may promote normal cycling cells to enter S phase of the cell cycle. A threshold model was proposed where genes that regulate cell proliferation or apoptosis are induced by different levels of E2F that act as positive or negative regulators of cell growth (53). Positive and negative cooperation in gene regulation by AR and E2F1 were reported in prostate cancer cells (95–97). Relative levels of MAGE-A11 and p107 influence AR and E2F1 transcriptional activation or repression.

MAGE-A11 and Viral Oncogene E1A—Human adenoviral early region protein E1A transforms cells indirectly by activating E2Fs through competitive interaction with Rb-related proteins (27, 28, 98–100). E1A interaction with Rb-related proteins releases active E2F transcription factors that activate...
target genes and cause cell cycle progression (29). E1A inactivates Rb in G1/G0 of the cell cycle, causing exit from G1 and induction of DNA synthesis in S phase in association with uncontrolled cell cycle progression and immortalization (27, 101–104). The effect of oncoprotein E1A overrides the inhibitory effects of p16 on cell cycle progression (105).

MAGE-A11 shares a remarkable similarity with E1A. MAGE-A11 and E1A form strong complexes with p300 (4, 106, 107) and interact with E2F transcription factors (27) and Rb-related proteins to activate or repress transcription (101, 108). Like E1A, MAGE-A11 relieves the constraint by p107 on E2F promotion of cell cycle progression. MAGE-A11 interaction with p107 caused a dose-dependent increase in E2F activity similar to E1A. MAGE-A11 shares a sequence similarity with E1A and E2F motifs that bind the pocket region of Rb-related proteins. MAGE-A11 amino acid sequence [410DPYSYPD-LYEC419] is similar to E1A [39EPPTLHELYD48], which binds Rb-related protein pocket regions, and E2F1 [417ELEGIRDLFD426] in the transactivation domain.

However, although the primate-specific MAGE-A11 gene is expressed at very low levels in normal cells and at higher levels in prostate cancer, E1A is a viral oncogene. Neither MAGE-A11 nor E1A bind DNA directly (109). E1A interacts indirectly with promoters of a large number of cell cycle regulatory genes by stimulating E2F DNA binding through increased E2F phosphorylation (45). E1A interaction with p300 and p107 follows a temporal sequence during cell replication (108), which also may occur with MAGE-A11. Synergy between MAGE-A11 and p300 in E2F-dependent gene transcription depends on E2F response element DNA and MAGE-A11 interaction with p300. MAGE-A11 also amplifies AR transactivation of androgen-dependent genes (3).

MAGE-A11 in Prostate Cancer—Interactions between Rb-related proteins and E2Fs are interrupted frequently in cancer, which result in E2F transactivation of cell cycle regulatory genes. Almost all cancers functionally inactivate Rb by gene mutation or deletion, dysregulation by cyclin-dependent kinases, or sequesteration of Rb-related proteins by oncopgenic proteins such as E1A. In agreement with Rb mutations in late-stage cancer, loss of Rb function is associated with advanced prostate cancer and increased AR expression (70). E2F1 and E2F3 increase during prostate cancer progression (110, 111).

Here we provide evidence that MAGE-A11 is a proto-oncogene that disrupts the tumor suppressor function of Rb-related proteins. MAGE-A11 increases during prostate cancer progression, enhances AR signaling, and promotes prostate cancer growth (10, 11, 14). The increase in MAGE-A11 in prostate and epithelial ovarian cancer results from promoter hypomethylation, and is associated with early cancer recurrence and poor survival (112). The cell growth-promoting effects of MAGE-A11 appear to be mediated through AR signaling and Rb-related proteins that increase E2F1 transactivation.

Prostate cancer is associated with greater AR sensitivity to increased levels of coregulators, such as MAGE-A11 (11, 14, 113, 114). The ability of AR and MAGE-A11 to regulate p27, an important physiological brake on the cell cycle, has implications for prostate cancer. In LNCaP prostate cancer cells, a biphasic androgen dose response influences p27 protein levels where higher DHT increases p27 protein and arrests cell growth (118, 119). Androgen-dependent changes in proteasomal degradation have been reported to influence p27 levels (116, 117). We found that higher DHT concentrations stimulated LAPC-4 cell growth in association with rapid degradation of p27. The increase in p27 protein in LAPC-4 cells after knockdown of AR or MAGE-A11 could reflect the loss of androgen-dependent proteasomal degradation of p27 (115, 120) and the dependence of prostate cancer cells on androgen-stimulated growth.

The biphasic LNCaP cell growth response to androgen has been linked previously to the Rb and E2F pathways (119). Increased LNCaP cell growth in response to 0.1 nM R1881 was attributed to increased hypophosphorylated Rb. With 10 nM R1881, increased p27 protein inhibited cyclin-dependent kinase phosphorylation of Rb (119). An increase in E2F1 at low androgen levels was inhibited at higher androgen levels. Our findings suggest that MAGE-A11 contributes to androgen and E2F1 regulation of p27.

Increased AR expression may be a molecular basis for prostate cancer progression (113). However, MAGE-A11 mRNA
increases during prostate cancer progression in an inverse relationship with AR mRNA (14). A subset of castration-recurrent prostate cancer specimens had 1000-fold higher MAGE-A11 mRNA, whereas AR mRNA was undetectable. p107 was also increased in castration-recurrent prostate cancer. These findings suggest that MAGE-A11 not only functions synergistically with AR and could compensate for lower levels of AR but also contributes to the activator function of p107. The increase in primate-specific expression of MAGE-A11 in prostate cancer facilitates AR transactivation and the inappropriate activation of E2F1 through selective interaction with Rb-related protein p107.

Acknowledgments—We thank Andrew T. Hnat for assistance and Frank S. French for reviewing the manuscript.

REFERENCES

1. Bai, S., He, B., and Wilson, E. M. (2005) Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol. Cell. Biol. 25, 1238–1257
2. Su, S., Blackwelder, A. J., Grossman, G., Minges, J. T., Yuan, L., Young, S. L., and Wilson, E. M. (2012) Primate-specific melanoma antigen-A11 regulates isoform-specific human progesterone receptor-B transactivation. J. Biol. Chem. 287, 34809–34824
3. Askew, E. B., Bai, S., Hnat, A. T., Minges, J. T., and Wilson, E. M. (2009) Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators. J. Biol. Chem. 284, 34793–34808
4. Askew, E. B., Bai, S., Blackwelder, A. J., and Wilson, E. M. (2010) Transcriptional synergy between melanoma antigen gene protein-A11 (MAGE-11) and p300 in androgen receptor signaling. J. Biol. Chem. 285, 21824–21836
5. He, B., Kemppainen, J. A., and Wilson, E. M. (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 275, 22986–22994
6. He, B., Lee, L. W., Minges, J. T., and Wilson, E. M. (2002) Dependence of selective gene activation on the androgen receptor NH2- and carboxyterminal interaction. J. Biol. Chem. 277, 25631–25639
7. He, B., Bowen, N. T., Minges, J. T., and Wilson, E. M. (2001) Androgen-induced NH2- and carboxy-terminal interaction inhibits p160 coactivator recruitment by activation function 2. J. Biol. Chem. 276, 42293–42301
8. He, B., Garpe, R. T., Jr., Kole, A. J., Hnat, A. T., Stanley, T. B., An, G., Stewart, E. L., Kalman, R. I., Minges, J. T., and Wilson, E. M. (2004) Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol. Cell 16, 425–438
9. Liu, Q., Su, S., Blackwelder, A. J., Minges, J. T., and Wilson, E. M. (2011) Gain in transcriptional activity by primate-specific coevolution of melanoma antigen-A11 and its interaction site in the androgen receptor. J. Biol. Chem. 286, 29951–29963
10. Minges, J. T., Su, S., Grossman, G., Blackwelder, A. J., Pop, E. A., Mohler, J. L., and Wilson, E. M. (2013) Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. J. Biol. Chem. 288, 1939–1952
11. Wilson, E. M. (2010) Androgen receptor molecular biology and potential targets in prostate cancer. Therap. Adv. Urol. 2, 105–117
12. Bai, S., Grossman, G., Yuan, L., Lessey, B. A., French, F. S., Young, S. L., and Wilson, E. M. (2008) Hormone control and expression of androgen receptor coregulator MAGE-11 in human endometrium during the window of receptivity to embryo implantation. Mol. Reprod. Dev. 14, 107–116
13. Bai, S., and Wilson, E. M. (2008) Epidermal growth factor-dependent phosphorylation and ubiquitylation of MAGE-11 regulates its interaction with the androgen receptor. Mol. Cell. Biol. 28, 1947–1963
14. Karpf, A. R., Bai, S., James, S. R., Mohler, J. L., and Wilson, E. M. (2009) Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP. Mol. Cancer Res. 7, 523–535
15. Burkhardt, D. L., and Sage, J. (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682
16. Morris, E. J., and Dyson, N. J. (2001) Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54
17. Genoves, C., Trani, D., Caputi, M., and Claudio, P. P. (2006) Cell cycle control and beyond. Emerging roles for the retinoblastoma gene family. Oncogene 25, 5201–5209
18. Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262
19. Rais, A., and Dijkstra, B. D. (2007) E2F-associated chromatin modifiers and cell cycle control. Curr. Opin. Cell Biol. 19, 658–662
20. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer. The next generation. Cell 144, 646–674
21. Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina, J., Boehm, J. S., Dobson, J., Urashima, M., McHenry, K. T., Pinchback, R. M., Ligon, A. H., Cho, Y. J., Haery, L., Greulich, H., Reich, M., Winckler, W., Lawrence, M. S., Weir, B. A., Tanaka, K. E., Chiang, D. Y., Bass, A. J., Loo, A., Hoffman, C., Prezens, J., Liefeld, T., Gao, Y., Yecies, D., Signoretti, S., Maher, E., Keyf, J. E., Sasaki, H., Tepper, J. E., Fletcher, J. A., Tabenero, J., Baselga, J., Tsa, M., Semichelis, F., Rubin, M. A., Janne, P. A., Daly, M. J., Nucera, C., Levine, R. L., Ebert, B. L., Gabriell, S., Rustgi, A. K., Antonescu, C. R., Ladanyi, M., Letai, A., and Garraway, L. A. (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905
22. Kondo, T., Higashi, H., Nishizawa, H., Ishikawa, S., Ashizawa, S., Yamada, M., Makita, Z., Koike, T., and Hatakeyama, M. (2001) Involvement of pRB-related p107 protein in the inhibition of S phase progression in response to genotoxic stress. J. Biol. Chem. 276, 17559–17567
23. Wirt, S. E., and Sage, J. (2010) p107 in the public eye. An Rb understudy and more. Cell Div. 5, 9
24. Bellacchio, E., and Paggi, M. G. (2011) Understanding the targeting of the RB-family proteins by viral oncoproteins to defeat their oncogenic machinery. J. Cell Physiol. 228, 285–291
25. Felsani, A., Mileo, A. M., and Paggi, M. G. (2006) Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25, 5277–5285
26. Fattaey, A. R., Harlow, E., and Helin, K. (1993) Independent regions of adenovirus E1A are required for binding to and dissociation of E2F protein complexes. Mol. Cell. Biol. 13, 7267–7277
27. Ikeda, M. A., and Nevin, J. R. (1993) Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol. Cell. Biol. 13, 7029–7035
28. Liu, X., and Marmorstein, R. (2007) Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes Dev. 21, 2711–2716
29. Lubahn, D. B., Joseph, D. R., Sar, M., Tan, J., Higgs, H. N., Larson, R. E., French, F. S., and Wilson, E. M. (1988) The human androgen receptor. Complementary DNA cloning, sequence analysis and gene expression in prostate. Mol. Endocrinol. 2, 1265–1275
30. Simantal, J., Sar, M., Lane, M. V., French, F. S., and Wilson, E. M. (1991) Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem. 266, 510–518
31. Li, Y., Nichols, M. A., Shay, J. W., and Xiong, Y. (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 54, 6078–6082
32. Claudio, P. P., Howard, C. M., Baldi, A., De Luca, A., Fu, Y., Condorelli, G., Sun, Y., Colburn, N., Calabretta, B., and Giordano, A. (1994) p130/pRb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRb and p107. Cancer Res. 54, 5556–5560
Regulation of p107 and E2F1 by MAGE-A11

34. Hsia, E. Y., Kalashnikova, E. V., Revenko, A. S., Zou, J. X., Borowsky, A. D., and Chen, H. W. (2010) Deregulated E2F and the AAA+ coregulator ANCCA drive proto-oncogene ACTR/AIB1 overexpression in breast cancer. Mol. Cancer Res. 8, 183–193

35. Zhu, L., van den Heuvel, S., Helin, K., Fattaey, A., Ewen, M., Livingston, D., Dyson, N., and Harlow, E. (1993) Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7, 1111–1125

36. Chen, C. R., Kang, Y., Siegel, P. M., and Massagué, J. (2002) E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 19–32

37. Huang, W., Shostak, Y., Tarr, P., Sawyers, C., and Carey, M. (1999) Cooperative assembly of androgen receptor into a nucleoplasmic complex that regulates the prostate-specific antigen enhancer. J. Biol. Chem. 274, 25756–25768

38. Johnson, D. G., Ohtani, K., and Nevins, J. R. (1994) Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 8, 1514–1525

39. Cherian, M. T., Wilson, E. M., and Shapiro, D. J. (2012) A competitive inhibitor that reduces recruitment of androgen receptor to androgen-responsive genes. J. Biol. Chem. 287, 23368–23380

40. Askew, E. B., Gampe, R. T., Jr., Stanley, T. B., Faggart, J. L., and Wilson, E. M. (2007) Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. J. Biol. Chem. 282, 25801–25816

41. He, B., Minges, J. T., Lee, L. W., and Wilson, E. M. (2002) The F box motif mediates androgen receptor-specific interactions with coregulators. J. Biol. Chem. 277, 10226–10235

42. Quarrey, V. E., Kempain, J. A., Sar, M., Lubahn, D. B., French, F. S., and Wilson, E. M. (1999) Expression of recombinant androgen receptor in cultured mammalian cells. Mol. Endocrinol. 4, 1399–1407

43. Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L., and Tindall, D. J. (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477

44. Sun, S., Sprenger, C. C., Vessella, R. L., Haugk, K., Soriano, K., Mostaghel, E. A., Page, S. T., Coleman, I. M., Nguyen, H. M., Sun, H., Nelson, P. S., and Plymate, S. R. (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J. Clin. Invest. 120, 2715–2730

45. Bagchi, S., Raychaudhuri, P., and Neivins, J. R. (1989) Phosphorylation-dependent activation of the adenovirus-inducible E2F transcription factor in a cell-free system. Proc. Natl. Acad. Sci. U.S.A. 86, 4352–4356

46. Polvak, K., Lee, M. H., Erdjument-Bromage, H., Koff, A., Roberts, J. M., Tempst, P., and Massagué, J. (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66

47. Wang, C., Hou, X., Mohapatra, S., Ma, Y., Cress, W. D., Pledger, W. J., and Chen, J. (2005) Activation of p27Kip1 expression by E2F1. A negative regulatory mechanism of an HDAC1/mSin3B corepressor complex. Genes Dev. 16, 933–947

48. Strobeck, M. W., Knudsen, K. E., Fribourg, A. F., DeCristofaro, M. F., Weissman, B. E., Balzano, A. N., and Knudsen, E. S. (2000) BRG-1 is required for BR-mediated cell cycle arrest. Proc. Natl. Acad. Sci. U.S.A. 97, 7748–7753

49. David, G., Grandinetti, K. B., Finnerty, P. M., Simpson, N., Chu, G. C., and Depinho, R. A. (2008) Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc. Natl. Acad. Sci. U.S.A. 105, 4168–4172

50. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323–330

51. Hume, A. J., and Kalejta, R. F. (2009) Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div. 4, 1

52. Graha, X., Gargi, J., and Mayol, X. (1998) Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383

53. Neivins, J. R. (1998) Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585–593

54. Xiao, Z. X., Ginsberg, D., Ewen, M., and Livingston, D. M. (1996) Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. Proc. Natl. Acad. Sci. U.S.A. 93, 4633–4637

55. Beijersbergen, R. L., Carle, L., Kerkhoven, R. M., and Bernards, R. (1995) Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev. 9, 1340–1353

56. Doyle, J. M., Gao, J., Wang, J., Yang, M., and Potts, P. R. (2010) MAGeRING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 39, 963–974

57. Lu, J., and Danielsen, L. M. (1998) Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein. J. Biol. Chem. 273, 31528–31533

58. Sharma, A., Yeow, W. S., Ertel, A., Coleman, I., Clegg, N., Thangavel, C., Morrissey, C., Zhang, X., Comstock, C. E., Witkiewicz, A. K., Gomella, L., Knudsen, E. S., Nelson, P. S., and Knudsen, K. E. (2010) The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. 120, 4478–4492

59. Yeh, S., Miyamoto, H., Nishimura, K., Kang, H., Ludlow, J., Hsiao, P., Wang, C., Su, C., and Chang, C. (1998) Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells. Biochem. Biophys. Res. Commun. 248, 361–367

60. Xu, X., Bieda, M., Jin, Y. X., Rabinovich, A., Oberley, M. J., Green, R., and Farnham, P. J. (2007) A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17, 1550–1561

61. Atwood, C., Lazzerini Denchi, E., and Helin, K. (2004) The E2F family.
Regulation of p107 and E2F1 by MAGE-A11

transforming proteins and cellular transcription factor E2F1. J. Biol. Chem. 273, 720–728
94. Kuwako, K., Taniura, H., and Yoshikawa, K. (2004) Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p57 neurotrophin receptor. J. Biol. Chem. 279, 1703–1712
95. Altintas, D. M., Shukla, M. S., Goutte-Gattat, D., Angelov, D., Rouault, J. P., Dimitrov, S., and Samarat, J. (2012) Direct cooperation between androgen receptor and E2F1 reveals a common regulation mechanism for androgen-responsive genes in prostate cells. Mol. Endocrinol. 26, 1531–1541
96. Li, Y., Zhang, D. Y., Ren, Q., Ye, F., Zhao, X., Daniels, G., Wu, X., Dynlacht, B., and Lee, P. (2012) Regulation of a novel androgen receptor target gene, the cyclin B1 gene, through androgen-dependent E2F family member switching. Mol. Cell Biol. 32, 2454–2467
97. Mallik, I., Davila, M., Tapia, T., Schanen, B., and Chakraborti, R. (2008) Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells. Biochim. Biophys. Acta 1783, 1737–1744
98. Harlow, E. Whyte, P., Franza, B. R. Jr., and Schley, C. (1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol. Cell Biol. 6, 1579–1589
99. Dyson, N., Buchkovich, K., Whyte, P., and Harlow, E. (1989) The cellular 10K7 protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58, 249–255
100. Ewen, M. E., Xing, Y. G., Lawrence, J. B., and Livingston, D. M. (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66, 1155–1164
101. Arany, Z., Newsome, D., Oldred, E., Livingston, D. M., and Eckner, R. (1995) A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374, 81–84
102. Rasti, M., Grand, R. J., Mymryk, J. S., Gallimore, P. H., and Turnell, A. S. (2005) Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A. J. Virol. 79, 5594–5605
103. Whyte, P., Williamson, N. M., and Harlow, E. (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56, 67–75
104. Ben-Israel, H., and Kleinberger, T. (2002) Adenovirus and cell cycle control. Front. Biosci. 7, 1369–1397
105. Alevizopoulos, K., Sanchez, B., and Amati, B. (2000) Conserved region 2 of p107 and E2F1 by MAGE-A11
Regulation of p107 and E2F1 by MAGE-A11

Wilson, E. M., and Karpf, A. R. (2013) DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. *Epigenetics* 8, 849–863

113. Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., and Sawyers, C. L. (2004) Molecular determinants of resistance to antiandrogen therapy. *Nat. Med.* 10, 33–39

114. Gregory, C. W., Johnson, R. T., Jr., Mohler, J. L., French, F. S., and Wilson, E. M. (2001) Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. *Cancer Res.* 61, 2892–2898

115. Fang, Z., Zhang, T., Dizeyi, N., Chen, S., Wang, H., Swanson, K. D., Cai, C., Balk, S. P., and Yuan, X. (2012) Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. *J. Biol. Chem.* 287, 2090–2098

116. Besson, A., Dowdy, S. F., and Roberts, J. M. (2008) CDK inhibitors. Cell cycle regulators and beyond. *Dev. Cell* 14, 159–169

117. Chu, I. M., Hengst, L., and Slingerland, J. M. (2008) The Cdk inhibitor p27 in human cancer. Prognostic potential and relevance to anticancer therapy. *Nat. Rev. Cancer* 8, 253–267

118. Tsihlias, J., Zhang, W., Bhattacharya, N., Flanagan, M., Klotz, L., and Slingerland, J. (2000) Involvement of p27Kip1 in G1 arrest by high dose 5α-dihydrotestosterone in LNCaP human prostate cancer cells. *Oncogene* 19, 670–679

119. Hofman, K., Swinnen, J. V., Verhoeven, G., and Heyns, W. (2001) E2F activity is biphasically regulated by androgens in LNCaP cells. *Biochem. Biophys. Res. Commun.* 283, 97–101

120. Yuan, X., Li, T., Wang, H., Zhang, T., Barua, M., Borgesi, R. A., Bubley, G. J., Lu, M. L., and Balk, S. P. (2006) Androgen receptor remains critical for cell-cycle progression in androgen-independent CWR22 prostate cancer cells. *Am. J. Pathol.* 169, 682–696