Abstract

A pseudo-random number generator (RNG) might be used to generate w-bit random samples in d dimensions if the number of state bits is at least dw. Some RNGs perform better than others and the concept of equidistribution has been introduced in the literature in order to rank different RNGs.

We define what it means for a RNG to be (d,w)-equidistributed, and then argue that (d,w)-equidistribution is not necessarily a desirable property.
1 Motivation

There is no such thing as a random number – there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.

John von Neumann [II, p. 768]

Suppose we are performing a simulation in \(d\) dimensions. For simplicity let the region of interest be the unit hypercube \(H = [0, 1)^d\).

For the simulation we may need a sequence \(y_0, y_1, \ldots\) of points uniformly and independently distributed in \(H\). A pseudo-random number generator gives us a sequence \(x_0, x_1, \ldots\) of points in \([0, 1)\). Thus, it is natural to group these points in blocks of \(d\), that is

\[
y_j = (x_{jd}, x_{jd+1}, \ldots, x_{jd+d-1}) .
\]

If our pseudo-random number generator is good and \(d\) is not too large, we expect the \(y_j\) to behave like uniformly and independently distributed points in \(H\).

2 Pseudo-random vs quasi-random

We are considering applications where the (pseudo-)random number generator should, as far as possible, be indistinguishable from a perfectly random source. In some applications, e.g. Monte Carlo quadrature, it is better to use quasi-random numbers which are intended for that application and give an estimate with smaller variance than we could expect with a perfectly random source.

For example, when estimating a contour integral of an analytic function, we might transform the contour to a circle and use equally spaced points on the circle.

However, when simulating Canberra’s future climate and water supply, it would not be a good idea to assume that exceptionally dry years were equally spaced!

3 Goodness of fit

If we use the \(\chi^2\) test to test the hypothesis that a set of data is a random sample from some distribution, then we typically reject the hypothesis if the \(\chi^2\) statistic is too large.
However, we should equally reject the hypothesis if χ^2 is too small (because in this case the fit is too good) \[9\].

4 Linear congruential generators

In the “old days” people often followed Lehmer’s suggestion and used linear congruential random number generators of the form

$$z_{n+1} = az_n + b \mod m.$$

This gives an integer in $[0, m)$ so needs to be scaled:

$$x_n = z_n / m.$$

Typically m is a power of two such as 2^{32} or 2^{64}, or a prime close to such a power of two.

Unfortunately, all such linear congruential generators perform badly in high dimensions, as shown in Marsaglia’s famous paper Random numbers fall mainly in the planes \[7\].

5 RANDU

Some linear congruential generators perform disastrously. For example, consider the infamous RANDU:

$$z_{n+1} = 65539z_n \mod 2^{31}$$

(with z_0 odd). These points satisfy

$$z_{n+2} - 6z_{n+1} + 9z_n = 0 \mod 2^{31}$$

so in dimension $d = 3$ the resulting points y_j all lie on a small number of planes, in fact 15 planes separated by distance $1/\sqrt{1^2 + 6^2 + 9^2} \approx 0.092$

In general, such behaviour is detected by the spectral test \[6\].

Even the best linear congruential generators perform badly because they have period at most m, so the average distance between points y_j is of order

$$\frac{1}{m^{1/d}}$$

(so the set of points closest to any one y_j has volume of order $1/m$).
6 Modern generators

Nowadays, linear congruential generators are rarely used in high-dimensional simulations. Instead, generators with much longer periods are used. A popular class is those given by a linear recurrence over F_2. These take the form

$$u_i = Au_{i-1} \mod 2$$

$$v_i = Bu_i \mod 2$$

$$x_i = \sum_{j=1}^{w} v_{i,j} 2^{-j}$$

where u_i is an n-bit state vector, v_i is a w-bit output vector which may be regarded as a fixed-point number x_i, and the linear algebra is performed over the field $F_2 = GF(2)$ of two elements $\{0, 1\}$. Here A is an $n \times n$ matrix and B is a $w \times n$ matrix (both over F_2). Usually A is sparse (so the matrix-vector multiplication can be performed quickly) and often B is a projection.

7 The period

Provided the characteristic polynomial of A is primitive over F_2, and $B \neq 0$, the period of such a generator is $2^n - 1$. This can be very large, e.g. $n = 4096$ for xorkeys [3] and $n = 19937$ for the Mersenne Twister [8]. For details we refer to L’Ecuyer’s papers [5, 12].

8 Equidistribution

Various definitions of (d, w)-equidistribution can be found in the literature. We follow Panneton and L’Ecuyer [12] without attempting to be too general.

Consider w-bit fixed-point numbers. There are 2^w such numbers in $[0, 1)$. Each such number can be regarded as representing a small interval of length 2^{-w}.

Similarly, in d dimensions, we can consider small hypercubes whose sides have length 2^{-w}. Each small hypercube has volume 2^{-dw} and there are 2^{dw} of them in the unit hypercube $[0, 1)^d$. A small hypercube can be specified by a d-dimensional vector of w-bit numbers (a total of dw bits).
Definition

Consider a random number generator with period 2^n. (A slight change in the definition can be made to accommodate generators with period $2^n - 1$.)

If the generator is run for a complete period to generate 2^n pseudo-random points in $[0,1)^d$, we say that the generator is (d,w)-equidistributed if the same number of points fall in each small hypercube.

The condition $n \geq dw$ is necessary. The number of points in each small hypercube is 2^{n-dw}.

RANDU (with $n = 29$) is not (d,w)-equidistributed for any $d \geq 3$, $w \geq 4$. However, most good long-period generators are (d,w)-equidistributed for $dw \ll n$.

9 Figures of merit

The maximum w for which a generator can be (d,w)-equidistributed is $w_d^* = \lfloor n/d \rfloor$. If a generator is actually (d,w)-equidistributed for $w \leq w_d$ then

$$\delta_d = w_d^* - w_d$$

is sometimes called the “resolution gap” and

$$\Delta = \max_{d \leq n} \delta_d$$

is taken as a figure-of-merit (small Δ is desirable). However, this only makes sense when comparing generators with the same period. When comparing generators with different periods, it makes more sense to consider

$$W = \sum_{d \leq n} w_d$$

as a figure of merit (a large value is desirable). An upper bound is $W \leq \sum_d w_d^* \sim n \ln n$.

10 Problems with equidistribution

A test for randomness should (usually) be passed by a perfectly random source.

(d,w)-equidistribution applies only to a periodic sequence: we need to know the period $N = 2^n$ (or $N = 2^n - 1$). A perfectly random source
is not periodic, but we can get a periodic sequence by taking the first \(N \) elements \((y_0, y_1, \ldots, y_{N-1})\) and then repeating them \((y_{i+N} = y_i)\). However, this sequence is unlikely to be \((d, w)\)-equi-distributed unless \(d\) and \(w\) are very small.

Consider the simplest case \(dw = n\). There are \(N = 2^n\) small hypercubes and \(N!\) ways in which each of these can be hit by exactly one of \((y_0, \ldots, y_{N-1})\) out of \(N^N\) possibilities. Thus the probability of equidistribution is

\[
\frac{N!}{N^N} \sim \frac{\sqrt{2\pi N}}{\exp(N)}.
\]

Recall that \(N = 2^n\) is typically very large (for example \(2^{4096}\)) so \(\exp(N)\) is gigantic.

Independence of ordering

\((d, w)\)-equidistribution is independent of the ordering of \(y_0, \ldots, y_{N-1}\).

Given a \((d, w)\)-equidistributed sequence, we can reorder it in any manner and the new sequence will still be \((d, w)\)-equidistributed.

For example, \(y_j = j \mod 2^n\) gives a \((1, n)\)-equidistributed sequence.

A common argument

It is often argued that, when \(n\) is large, we will not use the full sequence of length \(N = 2^n\), but just some initial segment of length \(M \ll N\). If \(M \ll \sqrt{N}\) then the initial segment may behave like the initial segment of a random sequence. However, if this is true, what is the benefit of \((d, w)\)-equidistribution?

11 Why consider equidistribution?

The main argument in favour of considering equidistribution seems to be that, for several popular classes of pseudo-random number generators, we can test if the sequence is \((d, w)\)-equi-distributed without actually generating a complete cycle of length \(N\).

For generators given by a linear recurrence over \(F_2\), \((d, w)\)-equidistribution is equivalent to a certain matrix over \(F_2\) having full rank. However, the fact that a property is easily checked does not mean that it is relevant. We actually need something weaker (but harder to check).
12 Conclusion

When comparing modern long-period pseudo-random number generators, \((d, w)\)-equidistribution is irrelevant, because it is neither necessary nor sufficient for a good generator.

References

[1] R. P. Brent, Note on Marsaglia’s xorshift random number generators, *J. Statistical Software*, 11, 5 (2004), 1–4. http://www.jstatsoft.org/

[2] R. P. Brent, Some long-period random number generators using shifts and xors, *ANZIAM Journal* 48 (CTAC2006), C188–C202, 2007. http://wwwmaths.anu.edu.au/~brent/pub/pub224.html

[3] R. P. Brent, Some uniform and normal random number generators: xorgens version 3.05, 20 September 2008. http://wwwmaths.anu.edu.au/~brent/random.html

[4] P. L. Ecuyer, Tables of maximally equidistributed combined LFSR generators, *Math. Comp.* 68 (1999), 261–269. http://www.ams.org/journals/mcom/1999-68-225/home.html

[5] P. L’Ecuyer. Random number generation. *Handbook of Computational Statistics* (J. E. Gentle, W. Haerdle and Y. Mori, eds.), Ch. 2. Springer-Verlag, 2004, 35–70. http://www.iro.umontreal.ca/~lecuyer/papers.html

[6] D. E. Knuth. *The Art of Computer Programming*, Vol. 2: Seminumerical Algorithms, third edition. Addison-Wesley, Reading, Massachusetts, 1997. http://www-cs-faculty.stanford.edu/~uno/taocp.html

[7] G. Marsaglia, Random numbers fall mainly in the planes, *Proc. Nat. Acad. Sci. USA* 61, 1, (1968), 25–28. http://www.pnas.org/content/61/1/25.full.pdf+html

[8] M. Matsumoto and T. Mishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. *ACM Trans. on Modeling and Computer Simulation* 8, 1 (1998), 3–30. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

[9] N. C. Metropolis, G. Reitweisner and J. von Neumann, Statistical treatment of values of first 2,000 decimal digits of \(e\) and \(\pi\) calculated on the ENIAC, *MTAC* 4 (1950), 109–111. Reprinted in [11] p. 765–767.
[10] J. von Neumann, Various techniques used in connection with random digits (summary by G. E. Forsythe), *J. Res. Nat. Bur. Stand. Appl. Math. Series* **12** (1951), 36–38. Reprinted in [11, p.768–780].

[11] *John von Neumann Collected Works* (ed. A. H. Taub), volume 5, Pergamon Press, New York, 1963.

[12] F. Panneton and P. L’Ecuyer. On the xorshift random number generators. *ACM Transactions on Modeling and Computer Simulation* **15**, 4 (2005), 346–361. http://www.iro.umontreal.ca/~lecuyer/papers.html