Case Report: Diagnostic challenge of COVID-19 associated pulmonary aspergillosis (CAPA) [version 2; peer review: 1 approved, 1 approved with reservations]

Hanan Albasata, Maha M. Alamri, Saud A. Almuhaidb, Abdullah M. Aljebreen, Reem S. Almaghrabia

1 Section of Infectious Diseases, Department of Internal Medicine, King Faisal Specialist Hospital and research center, Riyadh, Saudi Arabia
2 Division of General Radiology, Department of Radiology, King Faisal Specialist Hospital and research center, Riyadh, Saudi Arabia

Abstract

Background: Coronavirus disease 2019 (COVID-19) was declared a pandemic in March 2020 by the World Health Organization (WHO). Severe COVID-19 is represented with acute respiratory distress syndrome (ARDS) that requires mechanical ventilation. Moreover, recent studies are reporting invasive fungal infection associated with severe COVID-19. It is unclear whether the prescription of immunotherapies such as corticosteroids, or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection itself is risk factor for COVID-19-associated invasive pulmonary aspergillosis (CAPA). Hence, fungal infections present an additional uncertainty in managing COVID-19 patients and further compromise the outcome.

Case study: Here we report a case of SARS-CoV-2 complicated by invasive pulmonary aspergillosis (IPA) in a patient with no traditional risk factors for IPA. Admitted to ICU due to ARDS on mechanical ventilation, the patient deteriorated clinically with unexplained increased of fraction of inspired oxygen (FiO₂) requirement from 50% to 80%. Investigations showed borderline serum galactomannan, nonspecific radiological findings reported to be atypical for COVID-19, and the respiratory sample grew Aspergillus spp.

Main diagnosis: COVID-19 related fungal infection. The patient was treated with antifungal therapy for four weeks. He improved clinically after one week of starting antimicrobial treatment. After a prolonged ICU stay (87 days) due to infection control precaution, he was discharged from the ICU and moved to a long-term facility for further management and support.

Conclusions: This case highlights the diagnostic challenge in such cases, and the importance of early recognition of CAPA which can optimize therapy by administration of appropriate antifungal agents that may impact mortality.
Keywords
COVID, SARS-CoV2, Aspergillosis, Invasive, Pulmonary, Critical.

This article is included in the Emerging Diseases and Outbreaks gateway.

This article is included in the Coronavirus collection.

Corresponding author: Hanan Albasata (halbasata_87@hotmail.com)

Author roles: Albasata H: Writing – Original Draft Preparation; Alamri MM: Writing – Original Draft Preparation; Almuhaibd SA: Writing – Original Draft Preparation; Aljebreen AM: Writing – Review & Editing; Almaghrabia RS: Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Albasata H et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Albasata H, Alamri MM, Almuhaibd SA et al. Case Report: Diagnostic challenge of COVID-19 associated pulmonary aspergillosis (CAPA) [version 2; peer review: 1 approved, 1 approved with reservations] F1000Research 2021, 10:58 https://doi.org/10.12688/f1000research.28424.2

First published: 01 Feb 2021, 10:58 https://doi.org/10.12688/f1000research.28424.1
Background

Invasive pulmonary aspergillosis (IPA) is typically thought to cause disease in immunocompromised hosts, particularly in neutropenic patients. In the last two decades, it has been more commonly recognized in critically ill patients, particularly those with severe acute respiratory distress syndrome (ARDS). An increasing number of IPA cases complicating severe influenza have been reported following the H1N1 influenza pandemic in 2009. Vanderbeke et al. described 128 cases published between 1952–2018. In late December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a public health emergency and has spread globally. Co-infections among patients with coronavirus disease 2019 (COVID-19) are currently well described in the literature. Chlamydophila pneumoniae, Mycoplasma pneumoniae, and human metapneumovirus are among the common pathogens identified. Intensive care unit admission is required in around 5–30% of patients with COVID-19. IPA has started to be recognized in severe SARS-CoV-2 infection, with multiple case series of severe COVID-19 pneumonia complicated by IPA having been reported since the start of the pandemic. Here we report a case of IPA that was diagnosed in a patient with severe SARS-CoV-2 infection.

Case

We report the case of a 29-year-old Saudi male security guard known to have diabetes mellitus and chronic kidney disease. He was admitted to hospital at the end of May 2020 as a case of COVID-19 pneumonia that was complicated with diabetic ketoacidosis and required admission to the intensive care unit (ICU). He rapidly deteriorated with progression to ARDS, requiring intubation and mechanical ventilation. He also suffered a cardiac arrest that required resuscitation for 12 minutes. He received lopinavir/ritonavir and ribavirin along with ceftriaxone in the referring hospital (dosage unknown). He did not receive any immunomodulatory medication nor steroids in the referring hospital. He was then transferred to the King Faisal Specialist Hospital and Research Centre (KFSHRC) around six days after his initial diagnosis and intubation for further management.

On day 0 of ICU admission at KFSHRC the patient was deeply sedated on intravenous (IV) propofol 150mg/hour and fentanyl 100mcg/hour, measured temperature 34.7 ºC, intubated on pressure control ventilation requiring FiO2 50% and positive end-expiratory pressure (PEEP) 8 cm H2O. He required IV norepinephrine 0.02–0.2 mcg/kg/min to maintain his mean arterial blood pressure above 65 mmHg. His blood workup on day 0 was white blood cell count (WBC) 8.28 x10^9 / L (3.9–11 x 10^9 / L), absolute lymphocytes count 0.5 x10^9 / L (1.50–4.30 x 10^9 / L), platelet 54 x10^9 / L (155–435 x 10^9 / L), creatinine 603 umol/L (64 – 115 umol/L), and galactomannan antigen (AG) 0.48 (>0.5 reactive). A beta D-glucan test was not done as it was not available.

The patient was started on continuous renal replacement therapy (CRRT); his clinical status deteriorated with increased ventilation requirement of FiO2 50% to 80%, PEEP 8 to 16 cm H2O on day 4. A chest X-ray showed multiple bilateral ill-defined patchy opacities in the right lower lung zone (Figure 1). A computed tomography (CT) scan for his chest was done and showed multiple bilateral patchy ground-glass opacities (Figure 2, Figure 3). Bilateral lower lobe consolidations with air bronchogram showed greater involvement of the right lower lobe, while an unenhanced CT of the brain demonstrated hyper-dense foci seen in the left inferior frontal, right parietal lobes with surrounding edema, and right central sulcus compatible with intra-parenchymal hemorrhage and subarachnoid hemorrhage, respectively. A follow-up MRI of the brain was obtained, showing an increased gyral pattern of T1 and FLAIR sequence, as observed in the bilateral occipital, bilateral frontal, and right parietal lobes, likely related to laminar necrosis from the anoxic-ischemic event. Gradient

Figure 1. Chest radiograph anteroposterior (AP) view. The radiograph shows multiple bilateral ill-defined patchy opacities more in the right lower lung zone.
On day 0, the patient was started on hydroxychloroquine 400mg orally every 12 hours for 1 day, followed by a maintenance dose of 200 mg every 12 hours and azithromycin 500 mg orally once followed by a maintenance dose of 250 mg daily, respectively, for a total duration for 5 days. Patient was also started on dexamethasone. His antimicrobial therapy was escalated to meropenem 0.5 gm IV every 12 hours. He continued to worsen, and thus his septic screen was repeated. His blood and urine culture remained negative.

Tracheal aspirate culture on day 0 grew Aspergillus fumigatus and Aspergillus flavus (Figure 4a, Figure 4b, Figure 5a, Figure 5b). Bronchoscopy was considered; however, it was not done due to concerns of SARS-CoV-2 transmission to the house staff. The patient was then started on dual antifungal therapy (day 4) for 1 week; voriconazole 400mg orally every 12 hours. Computed tomography (CT) scan of the chest (sagittal view). The scan shows a right middle lobe central ground-glass density with surrounding consolidation (arrow), giving the appearance of reversed halo sign ‘atoll-sign’. A peripheral ground-glass density (curved arrow) is seen in the right lower lobe; a typical picture of coronavirus disease 2019 (COVID-19).

Figure 2. Computed tomography (CT) scan of the chest (sagittal view). The scan shows a right middle lobe central ground-glass density with surrounding consolidation (arrow), giving the appearance of reversed halo sign ‘atoll-sign’. A peripheral ground-glass density (curved arrow) is seen in the right lower lobe; a typical picture of coronavirus disease 2019 (COVID-19).

The scan shows a left lower lobe nodule (arrow) with surrounding faint ground-glass densities giving halo sign appearance.

Figure 3. Computed tomography (CT) scan of the chest (axial view). The scan shows a left lower lobe nodule (arrow) with surrounding faint ground-glass densities giving halo sign appearance.

Recalled echo (GRE) sequence showed scattered areas of blooming artifacts that are likely to be related to recent extensive hemorrhage. The brain findings were suggestive of hemorrhage and hypoxic injuries of vascular causes of previous cardiac arrest events.

: A. flavus culture on sabouraud’s dextrose agar. Olive-lime green colony morphology on sabouraud’s dextrose agar.

Figure 4a. A. flavus culture on sabouraud’s dextrose agar. Olive-lime green colony morphology on sabouraud’s dextrose agar.

Figure 4b. Microscopic examination of A. flavus from culture. Radiate, biseriate conidia.

: A. flavus culture on sabouraud’s dextrose agar.

: Microscopic examination of A. flavus from culture.
Discussion

This case further supports the association between IPA and severe SARS-CoV-2 infection. It highlights the importance of early diagnosis and treatment of this serious complication that can impose increased mortality. The diagnosis of IPA in patients in ICU without classical risk factors like neutropenia remains challenging.

Multiple studies from China have reported different rates of Aspergillus infections among patients with COVID-19. The estimated rates of Aspergillus co-infection in these combined studies are as follows: in Jiangsu province, 60/257 (23.3%), Zhejiang province, 8/104 (7.7%); and lastly, Wuhan, 13/48 (27%). All these reported CAPA cases lack standardization in diagnostic criteria and use specific definitions to identify and define CAPA.

A European case series reported severe COVID-19 pneumonia complicated by IPA. All 27 cases were for patients admitted to the ICU, the majority of whom were intubated. The median duration between CAPA diagnosis and symptom onset was six days. Aspergillosis diagnosis was as early as three days post ICU admission or as late as 28 days. Our patient had his diagnosis 6 days after the initial diagnosis which is the same day of intubation and thus matches the median duration described. Of the 27 patients, 12 (44%) received corticosteroids during their ICU stay, and 19 (70%) were treated with mold-active antifungal medication.

European tertiary hospitals carried out a retrospective study in patients with confirmed SARS-CoV-2 by PCR who isolated Aspergillus spp. in respiratory samples from bronchial aspirates (BAS) and bronchoalveolar lavages (BAL). Galactomannan assays were performed in serum and/or BAL with a cut-off index of 0.5 for both samples. COVID-19 associated IPA cases were classified according to the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative

12 hours as a loading dose, then 200mg every 12 hours as maintenance. After this voriconazole monotherapy therapy (200mg orally every 12 hours) for a total duration of four weeks was completed in the hospital. One week after starting antifungal therapy (day 10 in the ICU), the secretions improved, and the ventilator setting was decreased to FiO2 30%. Unfortunately, the patient on day 5 of ICU admission was found to be in a vegetative state secondary to anoxic brain damage post-cardiac arrest. The Glasgow Coma Scale was GCS 10/15 on tracheostomy.

The patient had a prolonged ICU stay due to infection control precaution; his stay was complicated with rhabdomyolysis, difficulty to wean him from ventilation, nosocomial infection after 30 days of ICU admission, and persistent SARS-CoV-2 virus shedding up to 73 days. The patient was then moved to a long-term facility (on day 87) after discharging him from the ICU.

Worldwide, Aspergillus fumigatus is the commonest aspergillus species that causes invasive aspergillosis. The epidemiology is however different in the middle east region where aspergillus flavus is the most common species responsible for clinical disease. Aspergillus flavus is also responsible for the majority of invasive aspergillosis cases in the kingdom of saudi arabia. Our patient had both species isolated from his BAL. Mixed fungal infection similar to our case was reported in two patients in a study from Pakistan, one with *A. falvus* and *A. famigatus* diagnosed as CAPA, while a second patient was thought to be colonized with *A. falvus* and *A. niger*.

Diagnosis is challenging due to the difficulty in differentiating between colonization and active disease in positive culture cases. Recently Arastehfar et al. suggested that galactomannan (GM) testing of bronchoalveolar fluid (BALF), or even of tracheal aspirates, may support CAPA’s diagnosis, though the test has not been validated for these specimens and cut-off values are not yet established.

Spanish tertiary hospitals carried out a retrospective study in patients with confirmed SARS-CoV-2 by PCR who isolated Aspergillus spp. in respiratory samples from bronchial aspirates (BAS) and bronchoalveolar lavages (BAL). Galactomannan assays were performed in serum and/or BAL with a cut-off index of 0.5 for both samples. COVID-19 associated IPA cases were classified according to the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative

![Figure 5a. A. famigatus culture on sabouraud's dextrose agar.](image)

Gray-green colony morphology on sabouraud's dextrose agar.

![Figure 5b. Microscopic examination of A. famigatus from culture.](image)

Uniseriate conidiophore with columnar conidia.
Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group EORTC/MSG criteria and Aspergillus algorithm for use in critically ill patients AspICU algorithm. Aspergillus spp. were grown in ten patients from respiratory samples. Seven patients were intubated in the ICU. All isolates were detected from deep respiratory samples: eight BAS one sputum and one BAL. Galactomannan analyses were run in only three patients, one with positive values in both serum and BAL (1.97, 3.87) and another with repeated positive values in BAL samples (2.16, 1.11). The third patient had a negative serum galactomannan test (0.22).

Performing bronchoscopy and obtaining a bronchial wash is challenging in patients with COVID-19. It carries a significant risk of transmission to healthcare workers, which further complicates the diagnosis of IPA in this patient population. A surveillance strategy for fungal co-infections in intubated patients with COVID-19 was done by Brown et al. utilizing weekly serum-1-3-β-D-glucan, galactomannan Aspergillus enzyme immunoassay (EIA) and Aspergillus PCR from broncho-alveolar lavage or endotracheal aspirates. A total of 62 patients were examined, and a galactomannan test of tracheal aspirates was performed for 85 samples; positive results were seen in six out of 62 patients, of which positive Aspergillus PCR was seen in five out of the six, and two grew Aspergillus fumigatus in culture. CAPA was clinically suspected in two patients. One of these patients’ GM from BAL was not performed. Whether galactomannan positivity of endotracheal aspirates is a marker for CAPA or reflects upper airway colonization is not clear. It should be noted that none of their cases met the definition of CAPA.

The radiological differentiation between IPA and COVID-19 is often complex, as the radiological changes in IPA in non-neutropenic patients are diverse and non-specific. For instance, ground-glass opacities and dense consolidation are often found in COVID-19 and IPA.

Our patient was treated with combination therapy (caspofungin and voriconazole). Combination antifungal therapy (echinocandin and voriconazole) was thoroughly reviewed and has shown significant mortality benefits in the treatment of invasive aspergillosis. A study done by Marr et al. has shown improved 3-month survival rate in patients treated with combination of Caspofungin and voriconazole as compared to voriconazole monotherapy. The combination of caspofungin and voriconazole has also improved the 90-day survival rate especially when used in patients with renal failure or patients with Aspergillus fumigatus infection. Our patient had both factors and thus the choice was to give him dual antifungal therapy especially initially in the disease course.

To our knowledge there are only two reported cases of CAPA from Kuwait. Our case is the first to be reported in Saudi Arabia. This case report further supports published data about severe COVID-19 and invasive fungal infection. Diagnosis of IPA in critically ill patients with COVID-19 in ICUs remains a challenge. The difficulties we faced were that the CT chest scan showed left lower lobe nodules with surrounding faint ground-glass densities which are not sufficient to define CAPA, while tracheal aspirate cultures positive for the presence of A. fumigatus and A. flavus cannot differentiate between colonization or true invasion. Obtaining future tests from BAL to support the diagnosis is complicated by the restriction in performing bronchoscopy in patients with COVID-19 due to the risk of aerosol generation. The accuracy of serum galactomannan to diagnose IPA would increase if consecutive tests were performed to override its poor sensitivity in IPA detection in non-neutropenic patients in ICUs. Lastly, repeated chest imaging to assess clinical response of the patient with IPA after completion of antifungal therapy unfortunately was not done, as the patient was kept on conservative and minimal intervention management.

Conclusions
IPA can complicate severe COVID-19 pneumonia. The diagnosis of CAPA is often challenging and requires a high index of suspicion. A constellation of clinical, biochemical, to establish the diagnosis. Timely diagnosis and management are required for better outcomes.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Consent
Written informed consent for publication of their clinical details and clinical images was obtained from the relative of the patient.

References
1. Blot S, Rello J, Koulen P. Diagnosing invasive pulmonary aspergillosis in ICU patients: putting the puzzle together. Curr Opin Crit Care. 2019; 25(5): 430–437. PubMed Abstract | Publisher Full Text
2. Vanderbeke L, Spriet I, Breynaert C, et al. Invasive pulmonary aspergillosis complicating severe influenza: epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2018; 31(6): 471–480. PubMed Abstract | Publisher Full Text
3. Huang C, Wang Y, Li X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. PubMed Abstract | Publisher Full Text | Free Full Text
4. Lai CC, Wang CY, Hsueh PR: Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J Microbiol Immunol Infect. 2020; 53(4): 505–512. PubMed Abstract | Publisher Full Text | Free Full Text
5. Rutsaert L, Steinfort N, Van Hursel T, et al.: COVID-19-associated invasive...
Combination antifungal therapy for the treatment of invasive pulmonary aspergillosis. Ann Intensive Care. 2020; 10(1): 71.

Alrajhi AA, Delièvre S, Fodil S, et al.: Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med. 2020, 8(6): e48–e49.

Koehler P, Cornely OA, Böttiger BW, et al.: COVID-19 associated pulmonary aspergillosis. Mycoses. 2020; 63(6): 528–534.

van Arkel ALE, Rijpstra TA, Belderbos HNA, et al.: COVID-19-associated Pulmonary Aspergillosis. Am J Respir Crit Care Med. 2020; 202(1): 132–135.

Bartoletti M, Pascale R, Cricca M, et al.: Epidemiology of invasive pulmonary aspergillosis among COVID-19 intubated patients: a prospective study. Clin Infect Dis. 2020; ciaa1065.

Published Abstract | Publisher Full Text | Free Full Text

Blot SI, Taccone FS, Van den Abeele AM, et al.: A Clinical Algorithm to Diagnose Invasive Pulmonary Aspergillosis in Critically Ill Patients. Am J Respir Crit Care Med. 2012; 186(1): 56–64.

Falces-Romero I, Ruiz-Bastidán M, Díaz-Pollán B, et al.: Isolation of Aspergillus spp. in respiratory samples of patients with COVID-19 in a Spanish Tertiary Care Hospital. Mycoses. 2020; 63: 1144–1148.

Wahidi MM, Lamb C, Murgo S, et al.: American Association for Bronchology and Interventional Pulmonology (AABIP) Statement on the Use of Bronchoscopy and Respiratory Specimen Collection in Patients With Suspected or Confirmed COVID-19 Infection. J Bronchology Interv Pulmonol. 2020; 27(4): e52–e54.

Brown LAK, Ellis J, Gorton R, et al.: Surveillance for COVID-19-associated pulmonary aspergillosis. Lancet Microbe. 2020; 1(4): e152.

Shi H, Han X, Jiang N, et al.: Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020; 20(4): 425–434.

Shagaghi S, Daskareh M, Irannejad M, et al.: Target-shaped combined halo and reversed-halo sign, an atypical chest CT finding in COVID-19. Clin Imaging. 2021; 69: 72–74.

Georgiadou SR, Sipsas NV, Marom EM, et al.: The Diagnostic Value of Halo and Reversed Halo Signs for Invasive Mold Infections in Compromised Hosts. Clin Infect Dis. 2011; 53(9): 1144–1155.

Young JD: Combination Antifungal Therapy for the Treatment of Invasive Aspergillosis: A Review. Aust J Infect Dis. 2014; 1(3): 1–5. Reference Source

Marr KA, Boeckh M, Carter RA, et al.: Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis. 2004; 39(6): 797–802.

Singh N, Limaye AP, Forrest G, et al.: Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: A prospective, multicenter, observational study. Transplantation. 2006; 81(3): 320–6.

Albaid K, Yousef B, Al-Qattan E, et al.: Pulmonary aspergillosis in two COVID-19 patients from Kuwait. Access Microbiol. 2021.

Publisher Full Text
Open Peer Review

Current Peer Review Status: 未审核

Version 2

Reviewer Report 24 May 2021

https://doi.org/10.5256/f1000research.55460.r84820

© 2021 Badali H. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hamid Badali
Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran

Case report entitles “Case Report: Diagnostic challenge of COVID-19 associated pulmonary aspergillosis (CAPA)” report a case of SARS-CoV-2 complicated by invasive pulmonary aspergillosis (IPA) in a patient with no traditional risk factors for IPA. The manuscript needs to be improved, highlighting the important points of the article. Some critical issues need a revision of the manuscript.

The diagnosis of Case presentation is not very well written and needs a few modifications, which were a few spelling mistakes considering this standard of writing. I have listed the examples I noticed below in the specific feedback. Nevertheless, I have several comments in terms of the content:

○ The major problem, for proven Invasive Aspergillosis based on EORTC guidelines, histopathological finding from BAL or lung biopsy crucially needed, however, authors got only sputum samples which is not the correct specimen for diagnosis of Invasive Aspergillosis, please clarify this problem?

○ How did you confirm Aspergillus fumigatus or A. flavus?

○ Regrettably, however, the Case presentation is not filled with direct examination. Bronchoscopy was considered; however, it was not done due to concerns of SARS-CoV-2 transmission to the house staff.

○ Explain the risk factor, common etiological agents, and underlying condition of pulmonary aspergillosis infection in different patients in the Introduction section.

○ I encourage authors to carry out antifungal susceptibility testing (CLSI micro broth dilution method) on this isolate. This will improve the mycological aspect of this case report.

○ You should add information about extraction DNA and PCR protocol with references.
Clarify culture and media.

- Why you did not perform AFST? Please describe the result of the antifungal susceptibility test.

- Discussion and Conclusion sections also contain only information that was borrowed from textbooks and literature. The audience may be more interested in the information specific to the authors' hospital.

Minor points:

- Please summarize the abstract with the main objectives/aims of the study.

- Please explain which department and city.

- Informed consent was obtained from the patient's next of kin? Please mention it.

The following references must be informative which has been missed:

Patterson TF, Thompson GR, III, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JA, Bennett JE. 2016. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1–e60. http://dx.doi.org/10.1093/cid/ciw326

Nasri E, Shoaei P, Vakili B, Mirhendi H, Sadeghi S, Hajahmadi S, Sadeghi A, Vaezi A, Badali H, Fakhim H. Fatal Invasive Pulmonary Aspergillosis in COVID-19 Patient with Acute Myeloid Leukemia in Iran. Mycopathologia. 2020 Dec;185(6):1077-1084. doi: 10.1007/s11046-020-00493-2.

Salehi M, Ahmadiakia K, Badali H, Khodavaisy S. Opportunistic Fungal Infections in the Epidemic Area of COVID-19: A Clinical and Diagnostic Perspective from Iran. Mycopathologia. 2020 Aug;185(4):607-611. doi: 10.1007/s11046-020-00472-7. Epub 2020 Jul 31. PMID: 32737746; PMCID: PMC7393345.

References need to be updated based on the newly published papers.

References

1. Patterson T, Thompson G, Denning D, Fishman J, et al.: Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 2016; 63 (4): e1-e60 Publisher Full Text
2. Salehi M, Ahmadiakia K, Badali H, Khodavaisy S: Opportunistic Fungal Infections in the Epidemic Area of COVID-19: A Clinical and Diagnostic Perspective from Iran. Mycopathologia. 2020; 185 (4): 607-611 PubMed Abstract | Publisher Full Text
3. Nasri E, Shoaei P, Vakili B, Mirhendi H, et al.: Fatal Invasive Pulmonary Aspergillosis in COVID-19 Patient with Acute Myeloid Leukemia in Iran. Mycopathologia. 2020; 185 (6): 1077-1084 PubMed Abstract | Publisher Full Text

Is the background of the case's history and progression described in sufficient detail?

Yes

Are enough details provided of any physical examination and diagnostic tests, treatment
given and outcomes?
Partly

Is sufficient discussion included of the importance of the findings and their relevance to future understanding of disease processes, diagnosis or treatment?
Partly

Is the case presented with sufficient detail to be useful for other practitioners?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epidemiology of fungal infections

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
hospital or in KFSHRC? It should be possible to obtain those details from the referring hospital? State if none was given.

5. It would be useful to comment in the discussion on the isolation of Aspergillus species from baseline BAL (day 0).

6. It would be useful to comment on combination AFT for IPA.

7. What are the prevailing Aspergillus species in Saudi Arabia? Is the isolation of A. flavus unusual?

8. Are there any other reports of CAPA from the Middle East or the Gulf region?

9. The article below is a comprehensive review of CAPA reports up to August 2020. The authors might find it useful for their discussion.

Thank you

References
1. Salmanton-García J, Sprute R, Stemler J, Bartoletti M, et al.: COVID-19–Associated Pulmonary Aspergillosis, March–August 2020. Emerging Infectious Diseases. 2021; 27 (4). Publisher Full Text

Is the background of the case’s history and progression described in sufficient detail?
Yes

Are enough details provided of any physical examination and diagnostic tests, treatment given and outcomes?
Partly

Is sufficient discussion included of the importance of the findings and their relevance to future understanding of disease processes, diagnosis or treatment?
Partly

Is the case presented with sufficient detail to be useful for other practitioners?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious diseases in immune compromised hosts and critically ill patients

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 12 Mar 2021
Hanan AlBasata, King Faisal Specialist Hospital and research center, Riyadh, Saudi Arabia
Thank you for your review and comments, the following has been done in response to your valuable input:

Comment 1: edited.
Comment 2: Changed.
Comment 3: added.
Comment 4: Yes, he did receive dexamethasone in KFSH, added to the manuscript.
Comment 5: Added.
Comment 6: Added.
Comment 7: A paragraph was added for the most prevalent spp. locally and globally.
Comment 8: At the time of the writing no reported cases, however recently a case series in Kuwait was published and this was added in the discussion.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com