Distinguishing Inert Higgs Doublet and Inert Triplet Scenarios

Shilpa Jangida Priyotosh Bandyopadhyayb
a,bIndian Institute of Technology Hyderabad, Kandi, Sangareddy-502287, Telangana, India

E-mail: ph19resch02006@iith.ac.in, bpriyo@phy.iith.ac.in

ABSTRACT: In this article we consider a comparative study between Type-I 2HDM and $Y = 0$, $SU(2)$ triplet extensions having one Z_2-odd doublet and triplet that render the desired dark matter (DM). For the inert doublet model (IDM) either a neutral scalar or pseudoscalar can be the DM, whereas for inert triplet model (ITM) it is a CP-even scalar. The bounds from perturbativity and vacuum stability are studied for both the scenarios by calculating the two-loop beta functions. While the quartic couplings are restricted to $0.1 - 0.2$ for a Planck scale perturbativity for IDM, these are much relaxed (0.8) for ITM. The RG-improved potentials by Coleman-Weinberg show the regions of stability, metastability and instability of the electroweak vacuum. The constraints coming from DM relic, the direct and indirect experiments like XENON1T, LUX and H.E.S.S., Fermi-LAT allow the DM mass $\gtrsim 700, 1176$ GeV for IDM, ITM respectively. Though mass-splitting among Z_2-odd particles in IDM is a possibility for ITM we have to rely on loop-corrections. The phenomenological signatures at the LHC show that the mono-lepton plus missing energy with prompt and displaced decays in the case of IDM and ITM can distinguish such scenarios at the LHC along with other complementary modes.

KEYWORDS: Higgs bosons, Beyond Standard Model, Dark matter, LHC
1 Introduction

Higgs boson was the last key stone predicted by Standard Model (SM), which was discovered at the LHC [1, 2]. So far five decay modes of the SM Higgs boson are discovered at the LHC [3, 4] and they fall nearly by SM prediction. In spite of immense success, SM cannot resolve many theoretical and experimental anomalies; like existence of dark matter (DM), explanation of very light neutrinos, Higgs mass hierarchy, vacuum stability, muon $g - 2$, etc. Though discovery of Higgs boson was a direct proof of the role of a scalar in electro-weak symmetry breaking (EWSB) the existence of other Higgs multiplets cannot be ruled out. Recent studies also show that SM stands in a metastable state [5] and need other scalar to make
the electro-weak (EW) vacuum stable till Planck scale. This motivates to extend the SM by other Higgs multiplets.

The simplest extension could be via a singlet [6–8] but there could be a possibility of extension with another SU(2) Higgs doublet, i.e. two Higgs doublet model (2HDM) [9–13] or with a SU(2) triplet [14] which can enhance the vacuum stability. The extensions of SM with fermions motivated by Seesaw mechanisms often suffer from vacuum instability and one needs some extra scalar to compensate the negative effects [15]. Many of these extensions have a Z2-odd particle, i.e. inert particle which is stable and being lightest among them, can be a dark matter candidate.

Supersymmetric sector in its minimal framework has 2HDM of Type-II [16]. However, the minimal scenario is often challenged by fine-tuning of ~ 125 GeV light SM-like Higgs boson mass. One of the remedies of this problem is also to extend the Higgs sector beyond its minimal form. This can be achieved by extension by a SM gauge singlet [17], SU(2) triplet [18] or via singlet and triplet superfields [19]. In this case the DM particles is generated by R-parity and it is a supersymmetric particle with odd R-parity. The extended Higgs superfields mix at the superpotential level causing the mixing of Higgs bosons after EWSB among different representations, i.e. doublet-singlet, doublet-triplet, etc [20].

In this article we consider two different extensions of SM to attain the dark sector. In the first one we extend SM to Type-I 2HDM with Z2-odd SU(2) doublet that constitutes the dark sector and the scenario is known as inert Higgs doublet (IDM). In the second case we consider the dark sector as Y = 0 SU(2) triplet which is again Z2-odd and the scenario is known as inert Higgs Triplet scenario (ITM). Both the scenarios help in extending the vacuum stability [9, 14]; however, we will see that they differ in various constraints coming from perturbativity, vacuum stability, DM relic abundance, direct detection and collider searches. IDM has more scalar with relatively larger mass splitting among the Z2-odd states whereas the ITM has only two Z2-odd states mass degenerate at the tree-level.

Another aspect extended Higgs sector is the search for Higgs quartic coupling. The SM Higgs quartic coupling is till to be measured precisely and only bounds are obtained from the di-Higgs production constraints at the LHC [21, 22]. Extended Higgs sectors have many such quartic couplings and they differ from IDM to ITM and are very crucial in determining the fate of the Higgs potential. One or few such quartic couplings can provide the much needed Higgs-DM coupling [7, 11]. In this case we focus our region where the DM mass is greater than discovered Higgs mass, i.e. 125 GeV. Considering the bounds from vacuum stability, perturbativity, DM relic and direct DM searches we estimate the allowed parameter space and try to distinguish IDM and ITM at the LHC via the compressed spectrum and less number Z2-odd states for the later.

Higgs sector dark matter also has appeal as the quartic coupling between SM-like Higgs boson and dark sector is crucial in measuring such scenario experimentally as well as theoretically. There have been lots of work done in measuring Higgs-DM coupling [7, 10, 11, 23, 24]; nevertheless a comprehensive study including bounds from vacuum stability, perturbativity, DM relic and direct DM is expected and which is the topic of this article.

This article is arranged as follows. In section 2 and section 3 we discuss the IDM and ITM briefly along with electro-weak symmetry breaking conditions and the tree-level Higgs boson masses. The comparative study of tree-level mass spectra between IDM and ITM is detailed in section 4. The perturbativity and vacuum stability bounds are discussed in section 5 and section 6 respectively. The DM relic and direct dark matter constraints are calculated in section 7 and section 8 respectively. Indirect bounds are discussed in section 9. In section 10 we dispense the parameter space verses the validity scale and in section 11 we discuss the LHC phenomenology briefly. Finally we conclude in section 12.

2 Inert Doublet Model (IDM)

The inert 2HDM is a minimalist (apart from SM singlet) extension of the SM with a second SU(2) Higgs doublet Φ2 with the same quantum numbers as the SM Higgs doublet Φ1. The Lagrangian is invariant
under the Z_2 parity transformation where $\Phi_2 \rightarrow -\Phi_2$, $\Phi_1 \rightarrow \Phi_1$ and all the SM fields are even under this symmetry. Such discrete symmetry guarantees the absence of Yukawa couplings between fermions and the inert doublet Φ_2 and prohibits any tree-level flavor changing neutral currents. The most general renormalizable, CP conserving potential for inert doublet model [10, 25]-[32] is given by

$$V_{\text{scalar}} = m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 + \lambda_1 (\Phi_1^\dagger \Phi_1)^2 + \lambda_2 (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2)$$

$$+ \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + [\lambda_5 ((\Phi_1^\dagger \Phi_2)^2) + h.c], \quad (2.1)$$

where,

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$$

and m_{11}^2, m_{22}^2 and λ_{1-5} are real parameters. Electro-weak symmetry breaking is achieved by giving real vev to the first Higgs doublet i.e. Φ_1 and the second Higgs doublet does not take part in EWSB. At EW minima,

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad (2.2)$$

with $v \approx 246$ GeV, whereas the second Higgs doublet, being Z_2-odd, does not take part in symmetry breaking; hence the name is ‘inert 2HDM’.

Using minimization conditions, we express the mass parameter m_{11}^2 in terms of other parameters as follows:

$$m_{11}^2 = -\lambda_1 v^2. \quad (2.3)$$

Except for the SM Higgs boson, h, four new physical scalar states are present: one charged Higgs boson pair H^\pm, one CP-even neutral Higgs boson H_0 and one CP-odd neutral Higgs boson A. Lightest of the two neutral Higgs bosons can be a candidate of cold dark matter that would be discussed later. After electroweak symmetry breaking, the masses of the scalar particles are given by:

$$M_{h_0}^2 = 2\lambda_1 v^2$$

$$M_{H_0}^2 = \frac{1}{2}(2m_{22}^2 + v^2(\lambda_3 + \lambda_4 + 2\lambda_5))$$

$$M_A^2 = \frac{1}{2}(2m_{22}^2 + v^2(\lambda_3 + \lambda_4 - 2\lambda_5))$$

$$M_{H^\pm}^2 = m_{22}^2 + \frac{1}{2}v^2\lambda_3. \quad (2.4)$$

Since, Φ_2 is inert, there is no mixing between Φ_1 and Φ_2 and the gauges eigenstates are same as the mass eigenstates for the Higgs bosons. The Z_2 symmetry prevents any such mass mixing through Higgs portal and it also prevents the second Higgs doublet to couple to fermions. In this case we get two CP-even neutral Higgs h and H_0, where h is likely to be the discovered Higgs boson around 125 GeV at the LHC [1, 2] and the other is yet to be found out. Similarly we are also looking for the pseudoscalar Higgs boson A and the charged Higgs boson H^\pm at the collider. It can be seen from Eq. 2.4 that H_0, A and H^\pm are nearly degenerate. Depending upon the sign of λ_5 one of scalar between H_0 and A can be lighter and a cold dark matter candidate [25]-[32]. Unlike [12, 13] here we concentrate of $M_{H_0}, M_A > m_h$ and the corresponding couplings.

3 Inert Triplet Model (ITM)

In completing SM with a dark sector we can have DM in the $SU(2)$ triplet representation which does not take part in the EWSB. This can be simply achieved by adding a $SU(2)$ real triplet scalar with $Y = 0$ hypercharge and again making it Z_2-odd to provide to take part in EWSB [14]. Here we introduce in addition to SM Higgs doublet i.e. Φ, another $SU(2)_L$ triplet scalar with $Y = 0$, i.e. T and due to Z_2-odd nature, the triplet field does not take part in EWSB, i.e. the vev of the triplet, $v_T = 0$.

3 Inert Triplet Model (ITM)
\[\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad T = \frac{1}{\sqrt{2}} \begin{pmatrix} T_0 & \sqrt{2}T^+ \\ \sqrt{2}T^+ & -T_0 \end{pmatrix}. \]

The Higgs Lagrangian for ITM case can be written as,

\[\mathcal{L}_h = (D^\mu \Phi)^\dagger (D_\mu \Phi) + \text{Tr}[(D^\mu T)^\dagger (D_\mu T)] - V(\Phi, T), \quad (3.1) \]

where the covariant derivatives involving the gauge-fields are given by,

\[D_\mu \Phi = (\partial_\mu - ig^2/2 \tau^a W^a_\mu - ig'2/2 B_\mu Y)\Phi, \quad (3.2) \]

\[D_\mu T = (\partial_\mu - ig^2/2 \tau^a W^a_\mu)T. \quad (3.3) \]

Now we impose an additional \(Z_2 \) symmetry under which triplet is assigned to be odd and other fields are even. The Lagrangian is invariant under the \(Z_2 \) parity transformation where \(T \to -T \) and all the SM fields are even. A \(Z_2 \) symmetric potential for ITM can be written as:

\[V = m_h^2 \Phi^\dagger \Phi + m_T^2 \text{Tr}\left(T^\dagger T \right) + \lambda_1 |\Phi^\dagger \Phi|^2 + \lambda_t (\text{Tr}|T^\dagger T|)^2 + \lambda_{ht} \Phi^\dagger \Phi \text{Tr}(T^\dagger T). \quad (3.4) \]

In ITM the triplet field does not get vev i.e., \(v_T = 0 \) and only doublet gets vev as given by,

\[\Phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v_h + h) + iG^0 \end{pmatrix}, \quad T = \frac{1}{\sqrt{2}} \begin{pmatrix} T_0 & \sqrt{2}T^+ \\ \sqrt{2}T^+ & -T_0 \end{pmatrix}. \]

Here \(v = 246 \text{ GeV} \) and the model in known as ‘inert triplet model’. In minimization conditions, we express the mass parameter \(m_h^2 \) in terms of other parameters as follows:

\[m_h^2 = -\lambda_1 v_h^2. \quad (3.5) \]

Triplet field does not contribute to mass of any of the SM particle and the gauge boson masses solely get contribution from \(\Phi \) as shown below:

\[M_a^2 = \frac{g^2}{2} v_h^2, \quad M_\rho^2 = \left(\frac{g^2 + g'^2}{4} \right) v_h^2. \quad (3.6) \]

Thus in this case \(\rho = \frac{M_a^2}{m_h^2 M_T^2} \) stays in SM value at the tree-level. Except for the SM Higgs boson, \(h \), three new physical scalar particle states are present: one charged Higgs boson pair \(T^\pm \) and one CP-even neutral Higgs boson \(T_0 \). After EWSB the physical Higgs boson masses can be read as:

\[M_h^2 = 2\lambda_1 v_h^2, \quad M_{h_0}^2 = \frac{1}{2} v_h^2 \lambda_{ht} + m_T^2, \quad M_{T^\pm}^2 = \frac{1}{2} v_h^2 \lambda_{ht} + m_T^2, \quad (3.7) \]

where \(m_T \) and \(\lambda_{ht} \) are the parameters as shown in the Higgs potential Eq. 3.4. Note that at the tree-level from Eq.3.7, masses of neutral and charged components are the same, but loop corrections tend to make the charged components, \(T^\pm \) slightly heavier than the neutral one \(T_0 \) with a mass gap of \(\delta M(M_T^2, M_{T_0}) = 166 \text{ MeV} \) [33]. Hence, \(T_0 \) turns out to be the lightest component of triplet scalar and a suitable DM candidate.

Next we compare both the models after EWSB by their physical mass eigenstates, mass spectrum and perturbativity, stability bounds. We mentioned earlier that for IDM we have one extra excitation as CP-odd Higgs boson i.e. \(A \) which can be a DM candidate. Whereas in case of ITM the DM is always a purely CP-even scalar. In sections below we categorically address the issues regarding the mass spectrum, bounds from perturbativity and vacuum stability, DM relic and direct dark matter detection.
4 Mass spectrum of IDM and ITM

In Figure 1 we describe the mass correlations among the heavier Higgs states for both IDM. Figure 1(a) depicts the mass correlation between M_{H_0} and M_λ in GeV and the green colour corresponds to the mass-splitting greater than M_W and red colour describes the mass-splitting less than M_W. In this case the tree-level mass splitting is generated by the λ_5 term. Such mass splitting is greater in the lower mass range and as the mass spectrum increases, m_{22} term dominates over the λ_{3-5} which makes all Z_2 odd states almost degenerate. We find that the mass splitting between M_{H_0} and M_λ is greater than W boson mass till $M_{H_0} = 600$GeV. This mass-splitting between M_{H_0} and M_λ keeps below M_W for $M_{H_0} \lesssim 400$ GeV as can be seen from Figure 1(b). We also note that the mass splitting between M_{H_0} and M_λ is lower than the corresponding splitting between M_{H_0} and M_λ.

Figure 1. 1(a): Mass correlation between M_{H_0} and M_λ in GeV; 1(b): Mass correlation between $M^-_{H_0}$ and M_λ in GeV. Green color corresponds to mass splitting greater than M_W and red color corresponds to mass splitting less than M_W. The mass splitting between $M^-_{H_0}$ and M_λ is lower than the corresponding splitting between M_{H_0} and M_λ.

Figure 2(a) shows the variation of λ_5 and $\delta M (M_{H_0} - M_\lambda)$ for different values of m_{22}. Purple, yellow and pink colours describe the variation for $m_{22}=150$, 2000 GeV and for 100 – 3000 GeV respectively. As the value of m_{22} is increasing it dominates the splitting effect of quartic couplings and the mass-splitting becomes lower and lower. Figure 2(b) depicts the mass splitting $\delta M (M_{H_0} - M_\lambda)$ with m_{22} for different values of λ_5. Here the magenta and orange colours correspond to $\lambda_5 = 0.01, 0.8$ respectively and the cyan region corresponds to $\lambda_5 = 0.01 - 0.80$. For lower values of m_{22}, mass splitting can be greater than ~ 100 GeV and it comes down to ~ 20 GeV for higher values $m_{22} \sim 3000$ GeV depending on the allowed parameter space.
Figure 2. 2(a): Variation of λ_5 verses $\delta M(M_{H_0} - M_A)$ in GeV for different values of m_{22}. Purple, yellow and pink colours describe the variation for $m_{22} = 150, 2000$ GeV and for $100 - 3000$ GeV respectively; 2(b): Variation of m_{22} versus $\delta M(M_{H_0} - M_A)$ in GeV for different values of λ_5. Here the magenta and orange colours correspond to $\lambda_5 = 0.01, 0.8$ respectively and the cyan region corresponds to $\lambda_5 = 0.01 - 0.80$. For lower values of m_{22}, mass splitting can be greater than ~ 100 GeV and it comes down to ~ 20 GeV for higher values $m_{22} \sim 3000$ GeV depending on the allowed parameter space.

![Diagram](image)

Figure 3. Variation of M_T^\pm vs M_{T_0} in GeV. At the tree-level there is no mass-splitting and the width describes the different solutions allowed by parameter space.

Figure 3 describes the variation of M_T^\pm vs M_{T_0} in GeV at tree-level. We see that at the tree-level there is no mass-splitting between triplet states. One has to rely on the loop-contributions for $\mathcal{O}(166)$ MeV mass splitting between T^\pm and T_0 which will be crucial for the phenomenological studies [33].

5 Perturbativity Bound

To emulate the theoretical bounds from perturbative unitarity of the dimensionless couplings, we impose that all dimensionless couplings of the model must remain perturbative for a given value of the energy scale μ, i.e. the couplings must satisfy the following constraints:

$$|\lambda_i| \leq 4\pi, \quad |g_j| \leq 4\pi, \quad |V_{ij}| \leq \sqrt{4\pi},$$

(5.1)
where λ_i with $i = 1, 2, 3, 4, 5$ are the scalar quartic couplings; g_j with $j = 1, 2$ are EW gauge couplings; and Y_k with $k = u, d, \ell$ are all Yukawa couplings for the up, down types quarks and leptons respectively. The two-loop beta functions generated by SARAH 4.13.0 [34], given in Appendix A and Appendix B are used to check the variations of the dimensionless couplings with the scale of the variation (μ in GeV).

The perturbativity behaviour of the scalar quartic couplings λ_3, λ_4 and λ_5 is studied in Figure 4(a)-4(c) respectively where the other quartic couplings $\lambda_i (i = 2, 3, 4, 5)$ are fixed at some values. Here red, green, blue and purple curves in each plot correspond to different initial conditions for λ_i (with $i = 2, 3, 4, 5$) at the EW scale, representative of very weak ($\lambda_i = 0.01$), weak ($\lambda_i = 0.1$), moderate ($\lambda_i = 0.4$) and strong ($\lambda_i = 0.8$) coupling limits respectively. The dashed black line corresponds to Planck scale (10^{19} GeV). Higgs quartic coupling λ_3 remains perturbative till Planck scale for $\lambda_3 \lesssim 0.51, 0.32$ for λ_i(EW) = 0.01, 0.10 respectively as shown in Figure 4(a). For λ_i(EW) = 0.40, 0.80 theory becomes non-perturbative at much lower scale $\sim 10^{8-9}, 10^{5.6}$ GeV respectively for almost all initial values of λ_3.

Figure 4(b) shows similar behaviour for λ_4 and here for the choice of λ_i(EW) = 0.01, 0.10 the perturbative limits remain valid till Planck scale for $\lambda_4 \lesssim 0.60, 0.30$ respectively. For higher values of λ_i(EW)

\[1\] The running of the strong coupling g_3 is same as in the SM, so we do not show it here.
the perturbative bounds remain similar to Figure 4(a). Figure 4(c) depicts the behaviour for λ_{5} for the chosen other $\lambda_{i}(\text{EW})$. Here for $\lambda_{i}(\text{EW}) = 0.01, 0.10$ the perturbative limit till Planck scale is valid for $\lambda_{5} \lesssim 0.28, 0.19$ respectively. In general when $\lambda_{i} \simeq 0.1 – 0.2$ at the EW scale, all the quartic couplings remains perturbative till Planck scale for IDM.

Figure 5 shows the variation of quartic coupling λ_{ht} which describes the interaction between SM doublet and $Y = 0$ Higgs triplet. The dashed black line corresponds to the Planck scale. Due to the existence of lesser number of quartic couplings compared to the 2HDM, the theory stays perturbative till Planck scale for much higher values of quartic couplings $\lambda_{t}, \lambda_{ht}$. For choice of $\lambda_{t}(\text{EW})=0.01, 0.1, 0.4$ and 0.8 the perturbative limits remains valid till Planck scale for $\lambda_{ht} = 0.1 – 0.8$ at EW scale. Perturbativity puts upper bound on Higgs quartic coupling $\lambda_{ht} \lesssim 0.50$ for $\lambda_{t} = 1.3$ at the EW scale. For ITM case the SM-like Higgs quartic coupling only takes part in the EWSB breaking and its values at two-loop level is fixed at 0.1264 for the SM-like Higgs boson mass at 125.50 GeV.

6 Stability Bound

In this section we discuss the stability of Higgs potential via two different approaches. Firstly via calculating two-loop scalar quartic couplings and checking if the SM-like Higgs quartic coupling λ_{h} is getting negative at some scale. In this case $\lambda_{i} = \lambda_{1}$ at tree-level but at one-loop and two-loop levels λ_{h} gets contribution from SM fields as well as the BSM scalars as we describe in the subsection 6.1. For the simplicity in subsection 6.1 we give the expressions of the corresponding beta functions at one-loop level and in the Appendix A, B the two-loop beta functions are given.

6.1 RG Evolution of the Scalar Quartic Couplings

To study the evaluations of dimensionless couplings we implemented both the IDM and the ITM scenarios in SARAH 4.13.0 [34] and the corresponding β-functions for various gauge, quartic and Yukawa couplings are calculated at one- and two-loop levels. The explicit expressions for the two-loop β-functions can be found in Appendix A, B and they are used in our numerical analysis of vacuum stability in this section. To illustrate the effect of the Yukawa and additional scalar quartic couplings on the RG evolution of the
SM-like Higgs quartic coupling λ_i in the scalar potential (2.1) and (3.4), let us first look at the one-loop β-functions. $\lambda_h = \lambda_1$ at tree-level and at the one-loop level, the β-function for the SM Higgs quartic coupling in this model receives two different contributions: one from the SM gauge, Yukawa, quartic interactions and the second from the inert scalar sectors of IDM/ITM as shown below:

$$\beta_{\lambda_1} = \beta_{\lambda_1}^{\text{SM}} + \beta_{\lambda_1}^{\text{IDM/ITM}},$$

(6.1)

where,

$$\beta_{\lambda_1}^{\text{SM}} = \frac{1}{16\pi^2} \left[\frac{27}{200} g_1^4 + \frac{9}{20} g_2^2 + \frac{9}{8} g_3^2 - \frac{9}{5} g_1^2 \lambda_1 - 9 g_2^2 \lambda_1 + 24 \lambda_1^2
+ 12 \lambda_1 \text{Tr} \left(Y_u Y_u^\dagger \right) + 12 \lambda_1 \text{Tr} \left(Y_d Y_d^\dagger \right) + 4 \lambda_1 \text{Tr} \left(Y_e Y_e^\dagger \right)
- 6 \text{Tr} \left(Y_u Y_d Y_u^\dagger Y_d^\dagger \right) - 2 \text{Tr} \left(Y_e Y_e^\dagger Y_e^\dagger \right) \right],$$

(6.2)

$$\beta_{\lambda_1}^{\text{IDM}} = \frac{1}{16\pi^2} \left[2 \lambda_3^2 + 2 \lambda_3 \lambda_4 + \lambda_4^2 + 4 \lambda_5^2 \right].$$

(6.3)

$$\beta_{\lambda_1}^{\text{ITM}} = \frac{1}{16\pi^2} \left[8 \lambda_5^2 \right].$$

(6.4)

Here g_1, g_2, g_3 are respectively the $U(1)_Y$, $SU(2)_L$, and $SU(3)_c$ gauge couplings, and Y_u, Y_d, Y_e are respectively the up, down and lepton-Yukawa coupling matrices of SM. We use the SM input values for these parameters at the EW scale: $\lambda_1 = 0.1264, g_1 = 0.3583, g_2 = 0.6478, y_1 = 0.9309$ and other Yukawa couplings are neglected [35, 36].

Figure 6 depicts the running of SM-like Higgs quartic coupling at two-loop level for four benchmark points with $(\lambda_{2,3,4,5})$ for IDM and $(\lambda_{h,t})$ for ITM to be 0.010, 0.060, 0.068 and 1.00 respectively. For both the cases $\lambda_1 = 0.1264$ is kept at two-loop level for the SM-like Higgs boson mass at 125.5 GeV. Here the red curve corresponds to the IDM and the green curve corresponds to the ITM. For $\lambda_t(EW) = 0.100$, in Figure 6(a), the effect of scalars on stability is less and both IDM and ITM becomes unstable at same scale $\sim 10^{9.7}$. In Figure 6(b) for $\lambda_t(EW) = 0.060$ we see that the λ_h becomes negative around 10^{12} GeV but λ_h turns upward at 10^{18} GeV and touches zero value for 10^{20} GeV in the case of IDM while for ITM it still stays negative. As $\lambda_t(EW)$ enhances to 0.068 in Figure 6(c), the stability scale increases to $\sim 10^{13.5}$ in ITM while IDM becomes completely stable. Since, there are more number of scalars in IDM than ITM, the theory becomes stable at much lower values of λ_1. Further enhancement of $\lambda_t(EW)$ to 0.100, Figure 6(d) makes both IDM and ITM stable till Planck scale.

6.2 Vacuum Stability from RG-improved potential Approach

In this section, we investigate the vacuum stability via RG-improved effective potential approach by Coleman and Weinberg [37], and calculate the effective potential at one-loop for IDM/ITM. The parameter space of the models are then scanned for the stability, metastability and instability of the potential by calculating the effective Higgs quartic coupling and implementing the constraints as discussed in the paragraph follows.

Before going to quantum corrected potential lets look at the stability conditions of the tree-level potential of IDM/ITM. The tree-level potential of IDM is given in Eq. (2.1) and the potential is bounded from below in all the directions is ensured by the tree-level stability conditions given by [38]

$$\lambda_1 \geq 0, \quad \lambda_2 \geq 0, \quad \lambda_3 \geq -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_4 + \lambda_5 - |\lambda_6| \geq -\sqrt{\lambda_1 \lambda_2}.$$

(6.5)

Similarly, the tree-level potential of ITM is given in Eq. (3.4) and the corresponding tree-level stability conditions are given by [23]

$$\lambda_h \geq 0, \quad \lambda_t \geq 0, \quad |\lambda_{ht}| \geq -2\sqrt{\lambda_h \lambda_t}.$$

(6.6)

Considering the running of couplings with the energy scale in the SM, we know that the Higgs quartic coupling λ_h gets a negative contribution from top Yukawa coupling y_t, which makes it negative around 10^{2-10} GeV [36, 39] and we expect a second deeper minimum for the high field values. Since, the other
minimum exists at much higher scale than the EW minimum, we can safely consider the effective potential in the h-direction to be
\[V_{\text{eff}}(h, \mu) \simeq \lambda_{\text{eff}}(h, \mu) \frac{h^4}{4}, \quad \text{with } h \gg v, \]
where $\lambda_{\text{eff}}(h, \mu)$ is the effective quartic coupling which can be calculated from the RG-improved potential. The stability of the vacuum can then be guaranteed at a given scale μ by demanding that $\lambda_{\text{eff}}(h, \mu) \geq 0$.

We follow the same strategy as in the SM in order to calculate $\lambda_{\text{eff}}(h, \mu)$ in our model, as described below.

The one-loop RG-improved effective potential in our model can be written as
\[V_{\text{eff}} = V_0 + V_{1}^{\text{SM}} + V_{1}^{\text{IDM/ITM}}, \]
where V_0 is the tree-level potential given by Eq. (2.1) for IDM and Eq. (3.4) for ITM. V_{1}^{SM} is the effective Coleman-Weinberg potential of the SM that contains all the one-loop corrections involving the SM particles at zero temperature with vanishing momenta. V_{1}^{IDM} and V_{1}^{ITM} are the corresponding one-loop effective potential terms from the IDM and the ITM loops. In general, V_1 can be written as
\[V_1(h, \mu) = \frac{1}{64\pi^2} \sum_i (-1)^F n_i M_i^4(h) \left[\log \frac{M_i^2(h)}{\mu^2} - c_i \right], \]
where the sum runs over all the particles that couple to the h-field, $F = 1$ and 0 for fermions and the bosons in the loop, n_i is the number of degrees of freedom of each particle, M_i^2 are the tree-level field-dependent masses given by

$$M_i^2(h) = \kappa_i h^2 - \kappa'_i,$$

(6.10)

with the coefficients given in Table 1 and m^2 corresponds to Higgs mass parameter. Note that the massless particles do not contribute to Eq. (6.10), and so to Eq. (6.9). Therefore, for the SM fermions, we only include the dominant contribution from top quarks, and neglect the other quarks. We take $h = \mu$ for the numerical analysis as at that scale the potential remains scale invariant [40].

Particles	i	F	n_i	c_i	κ_i	κ'_i
SM						
W^\pm	0	6	5/6		$g'_i/4$	0
Z	0	3	5/6		$(g_1^2 + g_2^2)/4$	0
t	1	12	3/2		Y_i^2	0
h	0	1	3/2		λ_h	m^2
G^\pm	0	2	3/2		λ_h	m^2
G^0	0	1	3/2		λ_h	m^2
IDM						
H^\pm	0	2	3/2		$\lambda_3/2$	0
H	0	1	3/2		$(\lambda_3 + \lambda_4 + 2\lambda_5)/2$	0
A	0	1	3/2		$(\lambda_3 + \lambda_4 - 2\lambda_5)/2$	0
ITM						
T^\pm	0	2	3/2		$\lambda_{bt}/2$	0
T	0	1	3/2		$\lambda_{bt}/2$	0

Table 1. Coefficients entering in the Coleman-Weinberg effective potential, cf. Eq. (6.9).

Using Eq. (6.9) for the one-loop potentials, the full effective potential in Eq. (6.8) can be written in terms of an effective quartic coupling as in Eq. (6.7). This effective coupling can be written as follows:

$$\lambda_{\text{eff}}(h, \mu) \simeq \lambda_h(\mu) + \frac{1}{16\pi^2} \sum_{i=W^\pm, Z, t, h, G^\pm, G^0} n_i \kappa_i^2 \left[\log \frac{\kappa_i h^2}{\mu^2} - c_i \right] + \frac{1}{16\pi^2} \sum_{i=H, A, H^\pm} n_i \kappa_i^2 \left[\log \frac{\kappa_i h^2}{\mu^2} - c_i \right],$$

(6.11)

where the corresponding coefficients for all the required fields are given in the Table 1. The nature of λ_{eff} in the models thus guides us to identify the possible instability and metastability regions, as discussed below.

6.3 Stable, Metastable and Unstable Regions

The parameter space where $\lambda_{\text{eff}} > 0$ is termed as the stable region, since the EW vacuum is the global minimum in this region. For $\lambda_{\text{eff}} < 0$, there exists a second minimum deeper than the EW vacuum. In this case, the EW vacuum could be either unstable or metastable, depending on the tunnelling probability from the EW vacuum to the true vacuum. The parameter space with $\lambda_{\text{eff}} < 0$, but with the tunnelling lifetime longer than the age of the universe is termed as the metastable region. The expression for the tunnelling probability to the deeper vacuum at zero temperature is given by

$$P = T_0^4 \mu^4 e^{-\frac{\kappa h^2}{16\pi^2 \mu^2}},$$

(6.12)
where T_0 is the age of the universe and μ denotes the scale where the probability is maximized, i.e. $\frac{\partial P}{\partial \mu} = 0$. This gives us a relation between the λ values at different scales:

$$\lambda_{\text{eff}}(\mu) = \frac{\lambda_{\text{eff}}(v)}{1 - \frac{3}{2\pi^2} \log \left(\frac{v}{\mu} \right) \lambda_{\text{eff}}(v)}, \quad (6.13)$$

where $v \simeq 246$ GeV is the EW VEV. Setting $P = 1$, $T = 10^{10}$ years and $\mu = v$ in Eq. (6.12), we find $\lambda_{\text{eff}}(v) = 0.0623$. The condition $P < 1$, for a universe about $T = 10^{10}$ years old is equivalent to the requirement that the tunnelling lifetime from the EW vacuum to the deeper one is larger than T_0 and we obtain the following condition for metastability [5]:

$$0 > \lambda_{\text{eff}}(\mu) \gtrsim \frac{-0.065}{1 - 0.01 \log \left(\frac{v}{\mu} \right)}, \quad (6.14)$$

The remaining parameter space with $\lambda_{\text{eff}} < 0$, where the condition (6.14) is not satisfied is termed as the unstable region. As can be seen from Eq. (6.11), these regions depend on the energy scale μ, as well as the model parameters, including the gauge, scalar quartic and Yukawa couplings.

Figure 7. Phase diagram in terms of Higgs and top pole masses in GeV for 7(a): SM like scenario, 7(b): Inert Higgs Doublet Model and 7(c): Inert Higgs Triplet Model. The red colour corresponds to the unstable region, yellow color corresponds to the metastable region and the green colour corresponds to the stable region. The contours and the dot show the current experimental $1\sigma, 2\sigma, 3\sigma$ regions and central value in the (M_h, M_t) plane.
Figure 7 represents the phase diagram in terms of Higgs and top pole masses in GeV. The red, yellow and green regions correspond to the unstable, metastable and stable regions respectively. The contours and the dot show the current experimental 1σ, 2σ, 3σ regions and central value in the (M_h, M_t) plane [36, 41]. To obtain the regions we vary all the $\lambda_i (\text{EW}) = 0.01 - 0.80$ for random values maintaining the Planck scale perturbativity and also maintain the m_h and m_t within limits shown in Figure 7. Figure 7(a) shows the scenario where $\lambda_1 \neq 0$ and all other $\lambda_i = 0$ and clearly the region is in metastable state as expected for SM [36]. Introduction of inert doublet adds more scalars to the effective potential so the λ_{eff} becomes more positive and the region is fully in the stable region as can be seen from Figure 7(b). In Figure 7(c) we depict the scenario for ITM, where such extra scalar degrees of freedoms are lesser than IDM but more than SM, so the 3σ contour in $m_h - m_t$ plane includes some region of metastability. In this context we also want to mention that the extra scalars are necessary and come as saviour for the models with right-handed neutrino with $\mathcal{O}(1)$ neutrino Yukawa coupling [15].

7 Calculation of Relic Density in freeze out scenario for IDM and ITM

After the theoretical constraints from perturbativity and vacuum stability we focus on the constraints coming from the measurement of the relic density of dark matter by WMAP and Planck experiments [42] and the current value is given by

$$\Omega_{\text{DM}} h^2 = 0.1199 \pm 0.0027, \quad (7.1)$$

where $h = 0.67 \pm 0.012$ is the scaled current Hubble parameter in units of 100km/s,Mpc. Here, we use this value as upper bound on the contribution on dark matter production for the models IDM [43] and ITM [14]. Before the onset of freeze-out, the universe was hot and dense and as the universe expands, the temperature falls down. In this scenario the respective dark matter particles will not be able to find each other fast enough to maintain the equilibrium abundance. For the case of IDM lightest of H_0 and A can become the dark matter candidate and for this study we focus on the A as the DM candidate and for ITM it is T_0. So when the equilibrium ends and the freeze-out starts, Inert particles T_0 and A, can contribute in the relic density of DM through freeze-out mechanism [44].

We now examine the thermal relic abundance of DM particle. $\phi_{\text{DM}} (A/T_0$ for IDM/ITM). The evolution of the number density of DM is obtained by solving the Boltzmann equation [45]

$$\frac{dn_{\phi_{\text{DM}}}}{dt} + 3H n_{\phi_{\text{DM}}} = -\langle \sigma v_{\phi_{\text{DM}}} \rangle (n_{\phi_{\text{DM}}}^2 - n_{\phi_{\text{DM}},eq}^2), \quad (7.2)$$

where H is the Hubble parameter, $v_{\phi_{\text{DM}}}$ stands for the relative velocity of the dark matter particles, $\langle ... \rangle$ represents the thermal average of a function in brackets, $n_{\phi_{\text{DM}}}$, $n_{\phi_{\text{DM}},eq}$ and σ are the number density of DM particle, the number density in thermal equilibrium and the total annihilation cross-section of ϕ_{DM} respectively. All the particles in the Z_2-odd multiplets for both IDM/ITM will eventually contribute with $\langle \sigma v_{\phi_{\text{DM}}} \rangle$. For IDM for lower mass splitting among A, H_0, H^\pm both the annihilation $AA \rightarrow \text{SM_SM}$ and co-annihilation $A^± \rightarrow \text{SM_SM}$ should be included while estimating $\langle \sigma v_{\phi_{\text{DM}}} \rangle$ as shown in Figure 8. $AA \rightarrow ZZ/FW^+W^-$ are the dominant channels in getting the DM relic for IDM but co-annihilation channel $H^\pm A \rightarrow \gamma W^\pm$ also contribute.

Unlike IDM, the mass splitting between dark matter (T_0) and charged components (T^\pm) is much smaller for ITM, $\mathcal{O}(166)$ MeV. Thus the co-annihilation $T_0 T^\pm \rightarrow ZZ/W^\pm$ contribution is substantial along with the annihilation $T_0 T_0 \rightarrow W^\pm W^\pm$ as shown in Figure 9. Below we scan the parameter space for both IDM and ITM to find out the regions with correct DM relic as given in Eq. (7.1).

For this scan we take the allowed parameter space from perturbativity and stability till Planck scale for the analysis of correct DM relic density by Micromegas 5.0.8 [46–48]. Figure 10 describes the variation of relic density with the masses of charged Higgs boson and DM (A/T_0 for IDM/ITM). The colour code of DM relic (Ωh^2) is shown from blue to red for $0.0 - 0.4$ for both IDM and ITM respectively. The correct values of $\Omega h^2 = 0.1199 \pm 0.0027$ is specified by a star in both the cases. We can read from Figure 10(a) that for IDM $M_A \geq 700$ GeV corresponds to correct DM relic value. However, for ITM the correct relic value corresponds to $M_{T_0} \geq 1170$ GeV as shown in Figure 10(b). The presence of one extra Z_2-odd scalar in IDM compared to ITM, results into higher the DM number density in IDM case and thus requires more
annihilation or co-annihilation to obtain the correct relic compared to the ITM case, leading to lower mass bound on DM mass for IDM. Even for relatively heavier mass spectrum of IDM corresponds mass gap of the order of $\mathcal{O}(1)$ GeV among the Z_2-odd particles. In comparison the ITM scenario leads to even smaller mass gap $\mathcal{O}(166)$ MeV coming from one-loop corrections. These mass gap also plays crucial role in the

Figure 8. Dominant annihilation and co-annihilation modes that contribute to DM relic for IDM.

Figure 9. Dominant annihilation and co-annihilation modes that contribute to DM relic for ITM.
annihilation and co-annihilation processes obtaining the correct relic.

\[\frac{\lambda_3 f_N^2}{4\pi M_h^2} \left(M_N + M_A \right)^2 \]
(8.1)

where \(M_h \) is the mass of the SM-like Higgs boson, \(M_A \) is the mass of the DM candidate, \(M_N \) is the nucleon mass that we took equal to the average of proton and neutron masses, \(f_N \) is the nucleon form factor, taken equal to 0.3 for the subsequent analysis and \(\lambda_{345} = \lambda_3 + \lambda_4 - 2\lambda_5 \), with \(\lambda_5 > 0 \), is the combined coupling that is responsible for the scattering. We have used Micromegas 5.0.8 [46-48] to calculate the direct spin-independent scattering cross-sections and DM relic density for the parameter space and later compare with the experimental bounds from different direct detection experiments as discussed later.

In the case of ITM, the \(T_0 \) DM candidate can interact with nucleon by exchanging Higgs boson and the DM-nucleon scattering cross section is given by [14] Eq 8.2

\[\frac{\lambda_3 f_N^2}{4\pi M_h^2} \left(M_N + M_{T_0} \right)^2 \]
(8.2)

where the coupling constant \(f_N \) is given by nuclear matrix elements and \(M_N = 0.939 \) GeV is nucleon mass which is average of the proton and neutron masses, \(M_h \) is the SM-like Higgs boson mass, \(M_{T_0} \) is the dark matter mass and \(\lambda_{345} \) is only responsible Higgs coupling here.

Figure 10. 3D plot describing the variation of relic density with dark matter mass and charged Higgs boson mass in GeV. 10(a): IDM, 10(b): ITM. The correct relic density corresponds to DM mass \(\gtrsim 700 \) GeV in IDM and the mass splitting between DM mass and charged Higgs boson mass is order of \(\mathcal{O}(1) \) GeV. In ITM scenario corresponds to DM mass of \(\gtrsim 1176 \) GeV with the mass gap being \(\mathcal{O}(166) \) MeV at one-loop.

8 Constrains from Direct Dark Matter experiments

In this section, we discuss the direct detection prospects of DM candidate for both IDM and ITM scenarios. Dark matter can be detected via elastic scattering with terrestrial detectors, the so-called direct detection method. From the particle physics point of view, the quantity that determines the direct detection rate is the dark matter-nucleon (DM – N) scattering cross-section. In the IDM, the DM – N scattering process relevant for direct detection is Higgs-mediated. The tree-level spin-independent DM-nucleon interaction cross section, in IDM scenario [49, 50] is given by Eq. (8.1)
There are several experiments to detect DM particles directly through the elastic DM-nucleon scattering. The strong bounds on the DM-nucleon cross section are obtained from XENON100 [51], LUX [52] and XENON1T [53] experiments. The minimum upper limits on the spin independent cross sections are:

\[
XENON100 : \sigma_{SI} \leq 2.0 \times 10^{-45} \text{ cm}^2 \\
LUX : \sigma_{SI} \leq 7.6 \times 10^{-46} \text{ cm}^2 \\
XENON1T : \sigma_{SI} \leq 1.6 \times 10^{-47} \text{ cm}^2 \\
XENONuT : \sigma_{SI} \leq 1.6 \times 10^{-48} \text{ cm}^2.
\]

Figure 11 describes the variation of spin independent (SI) DM-nucleon scattering cross-section with DM mass for both IDM and ITM. The red colour corresponds to the cross-section bound satisfied by XENON100 experiment [51], green colour satisfies the LUX experimental bound [52] and the blue colour corresponds to the experimental bound of XENON1T experiment [53] for both IDM and ITM. The cross-section varies with the DM mass and the Higgs quartic coupling \(\lambda_{345}\) for IDM and \(\lambda_{ht}\) for ITM. If the Higgs quartic coupling is chosen to be small enough \(\lambda_{345} = 0.01\) for IDM, the minimum DM mass satisfying the XENON1T bound is 420 GeV 11(a). Unfortunately this value of quartic coupling in ITM i.e. \(\lambda_{ht} = 0.01\) is not allowed by the vacuum stability. The enhancement in Higgs quartic coupling \(\lambda_{345}/\lambda_{ht} = 0.2\) increases the lower bound of DM mass to 2770 GeV by XENON1T data11(b).

The variation of DM mass with Higgs quartic coupling \(\lambda_3\) in IDM and \(\lambda_{ht}\) in ITM is depicted in Figure 12. The light purple and blue colour describe the allowed regions by stability and perturbativity till Planck scale for IDM and ITM respectively. The black vertical lines correspond to the relic density bound satisfied by DM mass 700, 1200 GeV for IDM, ITM respectively. The green and red colour points describe the minimum values of \(M_{DM}\) for a given \(\lambda_{345}/\lambda_{ht}\) for IDM and ITM respectively that satisfy the direct Dark matter constraint of XENON1T [53]. In IDM the effective quartic coupling \(\lambda_{345}\) allows to choose maximum allowed value of \(\lambda_3\) satisfying the direct DM constraints, while in the case of ITM the minimum value of \(M_{DM}\) increases with increase in \(\lambda_{ht}\).
Figure 12. Variation of DM mass with Higgs quartic coupling λ_3 in IDM and ITM. The light purple and blue color describe the allowed region by stability and perturbativity for IDM and ITM respectively. The black vertical lines correspond to the relic density bound satisfied by DM mass 700, 1200 GeV for IDM, ITM respectively. The green and red coloured points describe the minimum value of M_{DM} for a given $\lambda_{345}/\lambda_{ht}$ for IDM and ITM respectively that satisfy the direct Dark matter constraint of XENON1T.
Figure 13. Physical mass eigenstates of the Higgs bosons in IDM and ITM corresponding to
lightest possible DM mass satisfying the correct DM relic. h is the 125.5 GeV SM-like Higgs boson.
Green colour corresponds to physical mass eigenstates in IDM where A is DM with $M_A = 700.18$
GeV and $M_H^\pm = 702.364$ GeV, $M_{H_0} = 708.314$ GeV respectively. For ITM the lightest possible DM
mass is $M_{T_0} = 1176.00$ GeV along with almost degenerate charged Higgs mass $M_{T^\pm} = 1176.16$ GeV
represented in blue colour.

Figure 13 describes the mass spectrum for both IDM and ITM allowed by perturbativity and vacuum
stability till Planck scale, DM relic density and DM-nucleon scattering cross-section. The lightest allowed
values for IDM in the case are: $M_A = 700.18$ GeV, $M_H^\pm = 702.36$ GeV, $M_{H_0} = 708.31$ GeV. The same
reveals the lightest values for ITM are $M_{T_0} = 1176.00$ GeV and $M_{T^\pm} = 1176.16$ GeV where as the SM-like
Higgs stays with mass 125.5 GeV for both the cases. One more number of Z_2-odd field in IDM as compared
to ITM which contributes to the number density of the dark matter. Thus IDM requires more annihilation
cross-sections than ITM in getting the correct DM relic, which results in lower DM mass (~ 700) GeV for
IDM as compared to ~ 1.2 TeV for ITM.

9 Constraints from H.E.S.S and Fermi-Lat experimtns

Since both the cases (IDM and ITM) the dark matter annihilate to $W^\pm W^\mp$ directly, the bounds on $<\sigma v>$
in $W^\pm W^\mp$ mode from H.E.S.S [54] and Fermi-LAT [55] would be very evident. We impose such bounds
on our parameter space as shown in Figure 14 describes $<\sigma v>$ in $W^\pm W^\mp$ mode verses the DM mass
by pink lines: Figure 14(a) for IDM and Figure 14(b) for ITM respectively. The Blue line corresponds
to the H.E.S.S bounds [54] and the green line corresponds to Fermi-LAT bounds [55] in $W^\pm W^\mp$ mode.
As expected due to triplet coupling to W^\pm is larger (See Eq. 3.2) in comparison with the doublets,
the cross-section in $W^\pm W^\mp$ mode is larger for a given mass. The start (\ast) points are the chosen benchmark
points as discussed in Table 2 are allowed by both H.E.S.S [54] and Fermi-LAT [55] data in $W^\pm W^\mp$ mode.
In the context of IDM other indirect bounds are discussed in the literature [56].
Figure 14. $\langle \sigma v \rangle$ in $W^\pm W^\mp$ mode verses the DM mass as shown by pink lines in 14(a) for IDM and in 14(b) for ITM respectively. The Blue line corresponds to the H.E.S.S bounds [54] and the green line corresponds to Fermi-LAT bounds [55] in $W^\pm W^\mp$ mode. The start (⋆) the points are chosen benchmark points as discussed in Table 2.

10 Dependence on the validity scale

In this section we discuss how the parameter space depends on the validity scale of perturbativity and vacuum stability along with the relic and direct DM constraints. While implementing that we consider three different scales; namely the Planck scale ($\mu \lesssim 10^{19}$ GeV), the GUT scale ($\mu \lesssim 10^{15}$ GeV) and the 10^4 GeV scale as the upper limit of the theory. It would be interesting to see how two different DM models differ in such different requirements.

10.1 Validity till Planck scale

Here we consider that all the dimensionless couplings remain perturbative and the EW vacuum remains stable till Planck scale ($\mu \lesssim 10^{19}$ GeV). In Figure 15 we present the parameter points in DM mass verses DM relic density for both IDM and ITM. The Red coloured points are allowed by the electroweak symmetry breaking. Among those points, the Green coloured points correspond to the points which are allowed by both perturbativity and stability till Planck scale ($\mu \lesssim 10^{19}$ GeV). The black and blue lines correspond to those points which are allowed by direct detection cross-section bound of XENON1T [53] for two different benchmark scenarios chosen for IDM and ITM. The benchmark points chosen for direct detection are $\lambda_{345} = 0.050$ ($\lambda_3 = 0.200, \lambda_4 = 0.100, \lambda_5 = 0.125$) and $\lambda_{345} = 0.09$ ($\lambda_3 = 0.200, \lambda_4 = 0.200, \lambda_5 = 0.155$) for IDM as shown in Figure 15(a) described by black and blue lines. We see that the similar constraints for ITM are presented in Figure 15(b) for $\lambda_{ht} = 0.05$ and $\lambda_{ht} = 0.09$ respectively. In the case of ITM, the quartic coupling value $\lambda_{ht} = 0.05$ is allowed by perturbativity till Planck scale but only to $\mu \lesssim 10^9$ GeV by vacuum stability, while $\lambda_{ht} = 0.09$ is allowed by both till Planck scale. The dashed horizontal line defines the correct DM relic density as given in Eq: 7.1.
Figure 16. Relic density vs dark matter mass in GeV. 16(a): Inert Higgs Doublet Model; 16(b): Inert Higgs Triplet Model. Red color corresponds to the electroweak symmetry breaking allowed points, Green color corresponds to the points which are allowed by both perturbativity and stability till GUT scale. The black and blue lines correspond to those points which are allowed by direct detection cross-section bound of XENON1T.

Figure 15. Relic density vs dark matter mass in GeV. 15(a): Inert Higgs Doublet Model; 15(b): Inert Higgs Triplet Model. Red color corresponds to the electroweak symmetry breaking allowed points, Green color corresponds to the points which are allowed by both perturbativity and stability till Planck scale. The black and the blue lines correspond to those points which are allowed by direct detection cross-section bound of XENON1T for two different values of Higgs quartic coupling $\lambda_{345} = 0.05, 0.09$ in IDM and $\lambda_{ht} = 0.05, 0.09$ in ITM.

10.2 Validity till GUT scale

Figure 16 shows the DM mass verses relic density variation in IDM and ITM. Similar to previous case here also green colour corresponds to the points which are allowed by both perturbativity and vacuum stability till GUT scale (10^{16} GeV). For IDM and ITM, the allowed parameter space by both perturbativity and vacuum stability remain same as Planck scale. The black and blue lines again correspond to those points which are allowed by the direct detection cross-section bound of XENON1T [53]. The corresponding
benchmark points are chosen $\lambda_{345}/\lambda_{hi} = 0.05, 0.09$ for IDM/ITM respectively as shown in Figure 16(a) and Figure 16(b). As discussed earlier for ITM, the EW vacuum is stable till $\mu \sim 10^3$ GeV for $\lambda_{hi} = 0.05$.

10.3 Validity till 10^4 GeV

The above analysis is repeated for the benchmark points which are allowed by perturbativity, vacuum stability, DM relic bound and direct detection cross-section bound till scale $\mu \sim 10^4$ GeV as shown in Figure 17. In this scenario, green colour corresponds to points which are allowed by both perturbativity and vacuum stability till 10^4 GeV scale. The allowed parameter space by vacuum stability and perturbativity increases for both IDM and ITM as we see more green points as compared to Figure 15 and Figure 16. The corresponding benchmark points are chosen $\lambda_{345}/\lambda_{hi} = 0.05, 0.09$ for IDM/ITM respectively as shown in Figure 17(a) and Figure 17(b) and all the points are allowed by the perturbativity and vacuum stability constraints till $\mu \sim 10^4$ GeV.

![Figure 17](image.png)

Figure 17. Relic density verses dark matter mass in GeV: 17(a) Inert Higgs Doublet Model; 17(b) Inert Higgs Triplet Model. Red colour correspond to the electroweak symmetry breaking allowed points. Green colour correspond to the points which are allowed by both perturbativity and stability till 10^4 GeV scale. The black line corresponds to those points which are allowed by direct detection cross-section bound of XENON1T.

11 LHC Phenomenology

LHC is looking for the heavier states specially for the another Higgs bosons for both CP-even and CP-odd but so far no new resonances are found out and only cross-section bounds have been given by both CMS and ATLAS [57, 58]. In this article we consider the extension of SM with a inert $SU(2)$ doublet or inert $Y = 0$ $SU(2)$ triplet. In both the cases the extra scalar gives rise to a lightest Z_2-odd particle which does not decay and can contribute as missing energy in the collider [59, 60].

IDM has one pseudoscalar Higgs boson (A), one CP-even Higgs boson (H_0) and the charged Higgs boson (H^\pm) and all are from the inert doublet Φ, which is Z_2 odd and their mass splittings are mostly \(\lesssim M_W \) in allowed mass range, making a quasi-degenerate mass spectra. Contrary to IDM, ITM has only a CP-even real Higgs boson (T_0) and a charged Higgs boson (T^\pm). In this case their tree-level masses are identical unlike IDM case and only mass splitting of 166 MeV comes from loop-corrections.

In ITM the triplet does not take part in EWSB and so there is no mass mixing between the doublet and triplet which is very different from the supersymmetric triplet case [18, 19] where such mixing occur from the superpotential. Moreover, $Y = 0$ triplet nature does not allow it to couple to fermion in both SUSY and non-SUSY cases disparate from $Y = 2$ triplet case of Type-II seesaw. The normal $Y = 0$ triplet which takes part in EWSB, breaks the custodial symmetry ($v_T \neq 0$) which implies $g_{W - Z - H^\pm} \neq 0$ at tree-level.
Model	Masses in GeV	Decay Modes	BR in %	Decay Width in GeV	Decay Length in m
IDM	$M_A = 898.48$	$H_0 \rightarrow A\bar{d}d$	12.21		
	$M_H^\pm = 902.69$	$H_0 \rightarrow A\bar{s}s$	12.20		
	$M_{H_0} = 911.88$	$H_0 \rightarrow \sum_{i=2,3} A\bar{\nu}_i\nu_i$	10.75	5.80×10^{-7}	8.6×10^{-9}
ITM	$M_{T_0} = 1178.60$	$T^\pm \rightarrow T_0\bar{d}u$	72.72		
	$M_T^\pm = 1178.76$	$T^\pm \rightarrow T_0\nu\bar{\ell}^\pm$	24.30	1.51×10^{-16}	33.11

Table 2. Dominant 3-body decay modes and corresponding branching ratios, decay width and decay length for the benchmark points of IDM and ITM.

This makes $\rho > 1$, which strongly constrains $v_T \lesssim 5$ GeV [61]. In case of ITM, we have $v_T = 0$ as triplet stays in Z_2-odd, which certainly ceases the $g_{W^\pm Z_{-H^\pm}}$ coupling to exist. Thus the charged Higgs boson decays to mono-lepton or di-jet plus E_T via off-shell W^\pm and DM unlike tri-lepton plus missing energy in case of triplets that gets vev and breaks custodial symmetry at tree-level [62–65].

Associated production of charged Higgs boson with another triplet neutral scalar in ITM scenario thus gives rise to mono-lepton or di-jet plus missing energy signature. A pair of charged Higgs boson will give rise to di-lepton plus missing energy [66, 67]. The signatures of ITM and IDM [68–70] are very similar and the only difference is that in case of IDM we have additional neutral scalar (CP-even or CP-odd) which gives rise to distinguishing signature and thus can be separated from the ITM. Due to Z_2-odd, both inert Higgs bosons do not couple to fermions and their decay only happen via gauge mode on- or off-shell.

In Table 2 we present the benchmark points for the future collider study which are allowed by the vacuum stability, perturbativity bounds till Planck scale, dark matter relic and DM constraints. The heavy Higgs boson and charged Higgs boson mass stay around 912 GeV and 903 GeV respectively with the pseudoscalar boson mass around 899 GeV. In this allowed mass range, the mass gap among the other heavier Higgs bosons are of the order of $\mathcal{O}(1)$ GeV, giving rise to naturally soft decay products for the associated Higgs productions. Here the decays of a Z_2 odd Higgs boson is only possible via three-body decays to quarks and leptons via off-shell gauge boson and DM particle. In Table 2 we also show the dominant three-body decay modes for the heavy CP-even Higgs boson in IDM with branching fractions of $\text{BR}(H_0 \rightarrow Add) \sim 12.21\%$ and $\text{BR}(H_0 \rightarrow A\bar{s}s) \sim 12.20\%$ respectively with a total decay width of $\sim 5.80 \times 10^{-7}$ GeV. This corresponds to decay length of $\sim 10^{-9}$ meter, which essentially give rise to a prompt decay. The other subdominant decay modes are with $\text{BR}(H_0 \rightarrow \sum_{i=2,3} A\bar{\nu}_i\nu_i) \sim 10.75\%$ and $\text{BR}(H_0 \rightarrow A\bar{u}u) \sim 9.58\%$ respectively.

Similarly lower panel of Table 2 shows the benchmark point for the ITM scenario. Here the charged Higgs bosons and the triplet neutral scalar stay almost mass degenerate with $nM_{T_0} = 1178.60$ GeV and $M_T^\pm = 1178.76$ GeV respectively. Such spectrum only allows the three body decays with branching ratios of $\text{BR}(T^\pm \rightarrow T_0\bar{d}u) \sim 72.72\%$ and $\text{BR}(T^\pm \rightarrow T_0\nu\bar{\ell}^\pm) \sim 24.30\%$ respectively. A very small decay width of 1.51×10^{-16} GeV easily gives rise to $\mathcal{O}(33)$ meter displaced charged Higgs boson decay [8, 71–76].

Next we focus on the production cross-sections of the chosen benchmark points at the LHC with centre of mass energy of 14,100 TeV [77]. In Table 3 present the cross-sections of various associated
Higgs production modes at the LHC with centre of mass energy of 14 and 100 TeV. Here we used CaclcHEP 3.7.5 [78] for calculating the tree-level cross sections and decay branching fraction for the chosen benchmark points. For the cross-sections NNPDF 3.0 QED LO [79] is used as parton distribution function and \sqrt{s} is used as scale, where $s = E_{cm}^2$ is the known Mandelstam variable. The associated Higgs productions include the production modes of $H^\pm H^\mp$, $H^\pm H_0$, $H^\pm A$ in IDM and $T^\pm T^\mp$, $T^\pm T_0$ in ITM as shown in Table 3. The charged Higgs pair production and associated productions cross-sections at tree-level are $\sigma(H^\pm H^\mp) = 1.88 \times 10^{-2}$ fb, $\sigma(H^\pm H_0) = 3.49 \times 10^{-2}$ fb and $\sigma(H^\pm A) = 3.64 \times 10^{-2}$ fb respectively for IDM. Similar cross-sections for ITM are given by $\sigma(T^\pm T^\mp) = 3.07 \times 10^{-3}$ fb, $\sigma(T^\pm T_0) = 6.82 \times 10^{-3}$ fb respectively at the LHC with 14 TeV centre of mass energy. It is evident that the cross-sections are very low due to electro-weak nature of the process and around TeV mass of the particles. Nevertheless the situation improves at 100 TeV with $\sigma(H^\pm H^\mp) = 1.87$ fb, $\sigma(H^\pm H_0) = 3.29$ fb, $\sigma(H^\pm A) = 3.30$ fb for IDM and $\sigma(T^\pm T^\mp) = 6.16 \times 10^{-1}$ fb, $\sigma(T^\pm T_0) = 1.23$ fb for ITM respectively. At 100 TeV LHC and with sufficiently large integrated luminosity studying the mono-lepton plus missing energy with prompt and displaced leptons one can distinguish such scenarios. IDM has one more massive mode compared to ITM which could also be instrumental in distinguishing such scenarios [80].

Energy	IDM	ITM			
	$\sigma(H^\pm H^\mp)$	$\sigma(H^\pm H_0)$	$\sigma(H^\pm A)$	$\sigma(T^\pm T^\mp)$	$\sigma(T^\pm T_0)$
14 TeV	1.88×10^{-2} fb	3.49×10^{-2} fb	3.64×10^{-2} fb	3.07×10^{-3} fb	6.82×10^{-3} fb
100 TeV	1.87 fb	3.29 fb	3.30 fb	6.16 \times 10^{-1} fb	1.23 fb

Table 3. Production cross-section at LHC for 14 TeV and 100 TeV center of mass energy.

12 Conclusions

In this article we consider two possible extensions of SM which give rise to a potential DM candidate and further extensions of which can address many other phenomenological issues [13, 14]. For this purpose Z_2-odd $SU(2)$ doublet extension, IDM and $Y = 0$ $SU(2)$ triplet extension, ITM are analysed. The EWSB conditions in case of IDM give rise to extra CP-even(H_0) and CP-odd(A) Higgs bosons along with a charged Higgs boson H^\pm. Here lightest of the two neutral Higgs bosons can be the DM candidate. However, for ITM there is only one CP-even(T_0) neutral Higgs boson and one charged Higgs boson (T^\pm) that come from the Z_2 odd triplet multiplet. The EW mass gap among these Z_2-odd particles varies between $O(M_W)$ to $O(1)$ GeV in case of IDM at the tree-level. In comparison the Z_2 odd particles in ITM are all mass degenerate at the tree-level and only $O(1)$ MeV mass splitting comes from loop correction.

After EWSB we checked the perturbative unitarity of all the dimensionless couplings for both IDM and ITM scenarios. Due to existence of large numbers of scalars IDM scenario gets perturbative bounds below Planck scale even with relatively smaller values of one of the Higgs quartic couplings at the EW scale i.e. $\lambda_i \approx 0.1 - 0.2$. On the other hand, ITM scenario remains perturbative till Planck scale for higher values of Higgs quartic coupling, i.e. $\lambda_{H,H} \lesssim 0.8$ and $\lambda_{H,H} \lesssim 0.5$, $\lambda = 1.3$. Similar to perturbativity, the stability of EW vacuum gives bounds on the parameter space by requiring that SM direction of the Higgs potential is stable and for SM such validity scale is $\mu \sim 10^{9-10}$ GeV [36]. Introduction of the Z_2 scalar in both the cases i.e. IDM and ITM moves the region to greater stability. Thus models with right-handed neutrinos with large Yukawa can be in the stable region by the help of these scalars[15].

After checking the perturbative unitarity and stability we move to calculate the DM relic abundance for both the scenarios. The dominant mode of annihilation for both the cases are into $W^\pm W^\mp$ and co-annihilation is in association with the charged Higgs boson into $W^\pm Z$. However, due to presence of
one extra Z_2 scalar in IDM compared to ITM, the DM number density is relatively on higher side than ITM. This requires more annihilation or co-annihilation to obtain the correct relic compared to the ITM case, leading to lower mass bound on DM mass i.e. $m_{DM} \gtrsim 700$ GeV in IDM compared to ITM, where it is $m_{DM} \gtrsim 1176$ GeV. Later we also considered the direct-DM bounds from DM-nucleon scattering cross-section from XENON100, LUX and XENON1T [51–53]. The corresponding indirect bounds on $<\sigma v>$ in $W^\pm W^\mp$ mode from H.E.S.S [54] and Fermi-LAT [55] are also taken into account.

At the end we studied their decay modes by calculating their decay branching fractions for the allowed benchmark points. We also estimate their production cross-sections for various associated Higgs-DM production modes at the LHC for the centre of mass energy of 14, 100 TeV respectively. Compressed spectrum for ITM will easily lead to displaced mono- or di-charged leptonic or displaced jet final states along with missing energy. Such displaced case however not so natural in case of IDM. Nevertheless, such inert scenarios can easily be distinguished from the normal Type-I 2HDM and $Y = 0$ real scalar triplet, where both of them take part in EWSB as their decay products are not so restrictive [80].

Acknowledgements

PB wants to thank SERB project (CRG/2018/004971) for the financial support towards this work. SJ thanks DST/INSPIRES/03/2018/001207 for the financial support towards finishing this work. SJ thanks Arjun Kumar for useful discussions in Higgs Triplet and Anirban Karan for help in Mathematica.

A Two-loop β-functions for IDM

A.1 Scalar Quartic Couplings

\[
\beta_{\lambda_{123}} = \frac{1}{16\pi^2} \left[\frac{27}{200} g_1^4 + \frac{9}{20} g_1^2 g_2^2 + \frac{9}{8} g_2^4 - \frac{9}{5} g_1^2 \lambda_1 - 9 g_2^2 \lambda_1 + 24 \lambda_1^2 + 2 \lambda_2 + 2 \lambda_3 \lambda_4 + \lambda_4^2 + 4 \lambda_4^3 \\
+ 12 \lambda_1 \text{Tr}(Y_d Y_d^T) + 4 \lambda_1 \text{Tr}(Y_e Y_e^T) + 12 \lambda_1 \text{Tr}(Y_u Y_u^T) - 6 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) - 2 \text{Tr}(Y_e Y_e^T Y_e Y_e^T) \\
- 6 \text{Tr}(Y_u Y_u^T Y_u Y_u^T) \right] \\
+ \frac{1}{(16\pi^2)^2} \left[- \frac{3537}{2000} g_1^6 - \frac{1719}{400} g_1^4 g_2^2 - \frac{303}{80} g_1^2 g_2^4 + \frac{291}{16} g_2^6 + \frac{1953}{200} g_1^4 \lambda_1 + \frac{117}{20} g_2^2 \lambda_1^2 - \frac{51}{8} g_1^2 \lambda_1 + \frac{108}{5} g_1^2 \lambda_4^2 \\
+ 108 g_2^2 \lambda_1^2 - 312 \lambda_1^2 \lambda_2 - \frac{9}{10} g_1^4 \lambda_3 + \frac{13}{2} g_2^4 \lambda_3 + \frac{12}{5} g_1^2 \lambda_3^2 + 12 g_2^2 \lambda_3^2 - 20 \lambda_2 \lambda_3^2 - 8 \lambda_3^3 + \frac{9}{20} g_1^4 \lambda_4 \\
+ \frac{3}{5} g_1^2 \lambda_2^2 + \frac{13}{16} g_1^4 \lambda_4 + \frac{12}{5} g_1^2 \lambda_4 \lambda_2 + 12 g_2^2 \lambda_4 \lambda_3 - 20 \lambda_2 \lambda_4 \lambda_3 - 12 \lambda_3^2 \lambda_4 + \frac{6}{5} g_2^2 \lambda_4^2 \\
+ 3 g_2^2 \lambda_2^2 - 12 \lambda_1 \lambda_2^2 - 16 \lambda_2 \lambda_3 \lambda_4^2 - 6 \lambda_3^2 - \frac{12}{5} g_2^2 \lambda_3^2 - 56 \lambda_1 \lambda_3 \lambda_4 - 88 \lambda_4 \lambda_3^2 \\
+ \frac{1}{20} \left(- 5 (64 \lambda_1 \left(- 9 g_3^2 + 9 \lambda_1 \right) - 90 g_2^2 \lambda_1 + 9 g_2^2 + 9 g_2^2 \left(50 \lambda_1 + 54 g_2^2 \right) \right) \text{Tr}(Y_d Y_d^T) \\
- \frac{3}{20} \left(15 g_1^2 - 2 g_1 \left(11 g_2^2 + 25 \lambda_1 \right) + 5 \left(- 10 g_2^2 \lambda_1 + 64 \lambda_1+ g_2^2 \right) \right) \text{Tr}(Y_e Y_e^T) - \frac{171}{100} g_1^4 \text{Tr}(Y_u Y_u^T) \\
+ \frac{63}{10} g_1^2 g_2^2 \text{Tr}(Y_u Y_u^T) - \frac{9}{4} g_1^2 \text{Tr}(Y_e Y_e^T) + \frac{17}{2} g_1^2 \lambda_1 \text{Tr}(Y_u Y_u^T) + \frac{45}{2} g_2^2 \lambda_1 \text{Tr}(Y_e Y_e^T) \\
+ 80 g_2^2 \lambda_1 \text{Tr}(Y_e Y_e^T) + 32 g_2^2 \lambda_1 \text{Tr}(Y_u Y_u^T) - 4 g_1^2 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) - 32 g_2^2 \lambda_4 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) \\
- 3 \lambda_1 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) - 42 \lambda_1 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) - \frac{12}{5} g_2^2 \text{Tr}(Y_e Y_e^T Y_e Y_e^T) - \lambda_1 \text{Tr}(Y_u Y_u^T Y_u Y_u^T) \\
- \frac{8}{5} g_2^2 \text{Tr}(Y_d Y_d^T Y_u Y_u^T) - 32 g_2^2 \lambda_4 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) - 3 \lambda_1 \text{Tr}(Y_d Y_d^T Y_d Y_d^T) + 30 \text{Tr}(Y_d Y_d^T Y_d Y_d^T Y_d Y_d^T) \\
- 6 \text{Tr}(Y_d Y_d^T Y_e Y_e Y_e Y_e^T) - 6 \text{Tr}(Y_d Y_d^T Y_d Y_d Y_d Y_d^T) + 10 \text{Tr}(Y_e Y_e^T Y_e Y_e Y_e Y_e^T) + 30 \text{Tr}(Y_e Y_e^T Y_e Y_e Y_e Y_e^T) \right].
\]
\[
\beta_2 = \frac{1}{16\pi^2} \left[24\lambda_2^2 + 2\lambda_4^2 + 2\lambda_3\lambda_4 + 4\lambda_3^2 - 9g_d^2\lambda_3 + \frac{27}{200}g_4^2 + \frac{9}{20}g_1^2 \left(-4\lambda_2 + g_2^2 \right) + \frac{9}{5}g_1^2 + \lambda_1^2 \right] \\
+ \frac{1}{(16\pi^2)^2} \left[-3537 \frac{g_1^2}{2000} - 1719 \frac{g_1^2 g_2^2}{400} + \frac{303}{80} g_1^2 g_2^2 + \frac{201}{16} g_1^2 g_2^2 + \frac{1953}{200} g_1^2 g_2^2 \lambda_2 + \frac{117}{20} g_1^2 g_2^2 \lambda_2 - \frac{51}{8} g_1^2 \lambda_2 \\
+ 108g_2^2\lambda_2^2 - 312\lambda_3^2 + \frac{9}{10} g_1^2\lambda_3 + \frac{15}{2} g_2^2\lambda_3^2 + 12g_2^2\lambda_3\lambda_4 - 20\lambda_2\lambda_3\lambda_4 - 12\lambda_2^2\lambda_4 + \frac{6}{5} g_1^2\lambda_4^2 \\
+ 3g_2^2\lambda_4^2 - 12\lambda_2\lambda_4^2 - 16\lambda_3\lambda_4^2 - 6\lambda_3^2 - \frac{12}{5} g_1^2\lambda_5 + 56\lambda_2\lambda_5 + 80\lambda_3\lambda_5 + 88\lambda_4\lambda_5^2 + \frac{108}{5} g_2^2\lambda_5^2 \\
+ 9\left(2\lambda_2^2 + 2\lambda_4^2 + 4\lambda_3^2 + \lambda_1^2 \right) Tr \left(Y_d Y_d^d \right) - 2 \left(2\lambda_2^2 + 2\lambda_4^2 + 4\lambda_3^2 + \lambda_1^2 \right) Tr \left(Y_0 Y_0^d \right) \\
- 12\lambda_3^2 Tr \left(Y_0 Y_0^d \right) - 12\lambda_1\lambda_4 Tr \left(Y_0 Y_0^d \right) - 6\lambda_2^2 Tr \left(Y_0 Y_0^d \right) - 24\lambda_3^2 Tr \left(Y_0 Y_0^d \right) .
\]

\[
\beta_3 = \frac{1}{16\pi^2} \left[\frac{27}{100} g_1^4 - \frac{9}{10} g_1^2 g_2^2 + \frac{9}{4} g_2^4 - \frac{9}{4} g_2^2\lambda_3 + 9g_2^2\lambda_3 + 12\lambda_2\lambda_3 + 12\lambda_2\lambda_3 - 4\lambda_3^2 + 4\lambda_1\lambda_4 + 4\lambda_3^2 + 2\lambda_2^2 \\
+ 8\lambda_1^2 + 6\lambda_2^2 Tr \left(Y_d Y_d^d \right) + 2\lambda_4^2 Tr \left(Y_0 Y_0^d \right) + 6\lambda_4^2 Tr \left(Y_0 Y_0^d \right) \\
+ \frac{1}{(16\pi^2)^2} \left[-3537 \frac{g_1^2}{2000} + 909 \frac{g_1^2 g_2^2}{200} + \frac{33}{40} g_1^2 g_2^2 + \frac{291}{8} g_2^4 + \frac{27}{10} g_1^2 \lambda_1 - 3g_1^2 g_1^2 + \frac{45}{2} g_1^2 \lambda_1 + \frac{27}{10} g_1^2 \lambda_2 \\
- 9g_2^2 g_2^2 + 1\frac{1773}{200} g_1^2 \lambda_3 + \frac{33}{20} g_1^2 g_2^2 - \frac{111}{8} g_2^2 \lambda_3 + \frac{72}{5} g_1^2 \lambda_1 \lambda_3 + 72g_1^2 \lambda_1 \lambda_3 \\
- 60\lambda_2^2 + \frac{72}{5} g_1^2 \lambda_1 \lambda_3 + 72g_1^2 \lambda_1 \lambda_3 - 60\lambda_2^2 + \frac{6}{5} g_2^2 \lambda_3 + 6g_2^2 \lambda_3 - 72\lambda_2^2 - 72\lambda_2^2 \\
- 12\lambda_3^2 + \frac{9}{10} g_1^2 \lambda_4 - \frac{9}{5} g_1^2 \lambda_4 + \frac{15}{2} g_1^2 \lambda_4 + \frac{24}{5} g_1^2 \lambda_4 - 36g_2^2 \lambda_4 - 16\lambda_3^2 + \frac{24}{5} g_1^2 \lambda_4 \\
+ 36g_2^2 \lambda_3 - 36g_2^2 \lambda_3 - 16\lambda_3 \lambda_4 - 36g_2^2 \lambda_3 - 32\lambda_3 \lambda_4 - 32\lambda_3 \lambda_4 - 4\lambda_3^2 + \frac{12}{5} g_1^2 \lambda_4 \\
- 6g_2^2 \lambda_2^2 + 28\lambda_2^2 - 28\lambda_2^2 - 16\lambda_2^2 - 16\lambda_2^2 - 12\lambda_2^2 + \frac{48}{5} g_1^2 \lambda_2 - 144\lambda_2 \lambda_2 - 144\lambda_2 \lambda_2 \\
- 72\lambda_2 \lambda_2 - 176\lambda_2 \lambda_2 + \frac{1}{20} \left(-5 - 45g_2^2 \lambda_3 + 8 \left(-20g_2^2 \lambda_3 + 3 \left(2\lambda_2^2 + 4\lambda_1 \left(3\lambda_3 + \lambda_4 \right) + 4\lambda_3^2 + \lambda_1^2 \right) + 9g_2^4 \right) \right) Tr \left(Y_d Y_d^d \right) - \frac{1}{20} \left(45g_1^4 \right) \\
+ 5 \left(-15g_2^2 \lambda_3 + 3g_2^2 + \frac{8}{5} \lambda_3 + 4\lambda_3 + \lambda_1 \left(3\lambda_3 + \lambda_4 \right) + 4\lambda_3^2 + \lambda_1^2 \right) + g_1^2 \left(66g_2^2 - 75\lambda_3 \right) \right) Tr \left(Y_0 Y_0^d \right) \\
- \frac{17}{100} g_1^2 Tr \left(Y_0 Y_0^d \right) - 63 \frac{1}{16} g_1^2 g_2^2 Tr \left(Y_d Y_d^d \right) - \frac{9}{4} g_2^4 Tr \left(Y_d Y_d^d \right) + \frac{17}{4} g_1^2 \lambda_3 Tr \left(Y_d Y_d^d \right) \\
+ \frac{45}{4} g_1^2 g_2^2 \lambda_3 Tr \left(Y_0 Y_0^d \right) + 40g_1^2 g_2^2 \lambda_3 Tr \left(Y_0 Y_0^d \right) - 72\lambda_3 \lambda_3 Tr \left(Y_d Y_d^d \right) - 12\lambda_2^2 Tr \left(Y_d Y_d^d \right) \\
- 24\lambda_4^2 Tr \left(Y_0 Y_0^d \right) - 6\lambda_1^2 Tr \left(Y_0 Y_0^d \right) - 24\lambda_4^2 Tr \left(Y_0 Y_0^d \right) - \frac{27}{2} g_1^2 Tr \left(Y_0 Y_0^d Y_0 Y_0^d \right) \\
- 21\lambda_3 Tr \left(Y_d Y_d^d Y_d Y_d^d \right) - 24\lambda_4 Tr \left(Y_d Y_d^d Y_0 Y_0^d \right) - \frac{9}{2} \lambda_3 Tr \left(Y_0 Y_0^d Y_0 Y_0^d \right) - \frac{27}{2} \lambda_4 Tr \left(Y_0 Y_0^d Y_0 Y_0^d \right) \right] .
\]

\[
\beta_4 = \frac{1}{16\pi^2} \left[\frac{9}{5} g_1^2 g_2^2 - \frac{9}{5} g_1^2 \lambda_4 - 9g_2^2 \lambda_4 + 4\lambda_1 \lambda_4 + 4\lambda_2 \lambda_4 + 8\lambda_3 \lambda_4 + 4\lambda_3^2 + 32\lambda_2^2 + 6\lambda_4 Tr \left(Y_d Y_d^d \right) \\
+ 2\lambda_4 Tr \left(Y_0 Y_0^d \right) + 6\lambda_4 Tr \left(Y_0 Y_0^d \right) \right] \\
+ \frac{1}{(16\pi^2)^2} \left[-657 \frac{91}{50} g_1^2 + 42 \frac{1}{5} g_1^2 g_2^2 + 49g_2^2 \lambda_3 + 6g_1^2 g_2^2 \lambda_2 + \frac{1413}{200} g_1^4 \lambda_4 + \frac{153}{20} g_1^2 g_2^2 \lambda_4 \right] .
\]
\[
\beta_\lambda = \frac{1}{16\pi} \left[-\frac{9}{5} g_1^2 \lambda^5 - 9g_2\lambda^5 + 4\lambda_1\lambda_5 + 4g_2\lambda_5 + 8\lambda_2\lambda_5 + 8\lambda_3\lambda_5 + 12\lambda_4\lambda_5 + 6\lambda_5^2 \operatorname{Tr}(Y_d Y_u^\dagger) + 2\lambda_5^2 \operatorname{Tr}(Y_d Y_u^\dagger) \\
+ 6\lambda_5^2 \operatorname{Tr}(Y_d Y_u^\dagger) \right].
\]

A.2 Gauge Couplings

\[
\beta_{g_1} = \frac{1}{16\pi^2} \left[\frac{21}{5} g_1^3 \right] + \frac{1}{16\pi^2} \left[\frac{1}{20} g_1^3 \left(180g_1^2 + 208g_2^2 - 25\operatorname{Tr}(Y_d Y_d^\dagger) + 440g_5^2 - 75\operatorname{Tr}(Y_u Y_u^\dagger) - 85\operatorname{Tr}(Y_u Y_u^\dagger) \right) \right].
\]

\[
\beta_{g_2} = \frac{1}{16\pi^2} \left[-3g_2^3 \right] + \frac{1}{16\pi^2} \left[\frac{1}{10} g_2^3 \left(-120g_2^2 + 12g_1^2 - 15\operatorname{Tr}(Y_d Y_d^\dagger) - 15\operatorname{Tr}(Y_u Y_u^\dagger) + 5\operatorname{Tr}(Y_u Y_u^\dagger) + 80g_5^2 \right) \right].
\]

\[
\beta_{g_3} = \frac{1}{16\pi^2} \left[-7g_3^3 \right] + \frac{1}{16\pi^2} \left[\frac{1}{10} g_3^3 \left(-119g_3^2 + 20\operatorname{Tr}(Y_d Y_d^\dagger) + 20\operatorname{Tr}(Y_u Y_u^\dagger) + 260g_5^2 - 45g_2^2 \right) \right].
\]

A.3 Yukawa Coupling

\[
\beta_{Y_u} = \frac{1}{16\pi^2} \left[\frac{1}{3} \left(-Y_\nu Y_d^\dagger Y_u + Y_d Y_d^\dagger Y_u \right) \\
+ Y_\nu \left(3\operatorname{Tr}(Y_d Y_u^\dagger) + 3\operatorname{Tr}(Y_u Y_d^\dagger) - 8g_1^2 - \frac{17}{20} g_2^2 - \frac{9}{4} g_5^2 + \operatorname{Tr}(Y_u Y_u^\dagger) \right) \right] \\
+ \frac{1}{80} \left[20 \left(Y_\nu Y_d^\dagger Y_d Y_u^\dagger Y_u + Y_d Y_d^\dagger Y_u Y_u^\dagger Y_u + 6Y_d Y_d^\dagger Y_u Y_u^\dagger Y_u - Y_d Y_d^\dagger Y_u Y_u^\dagger Y_u \right) \right].
\]
\(B.1 \) Scalar Quartic Couplings

\[
\beta_{\lambda_h} = \frac{1}{16\pi^2} \left[\frac{27}{200} g_1^4 + \frac{9}{20} g_1^2 g_2^2 + \frac{9}{5} g_1^4 - \frac{9}{5} g_1^2 \lambda - 9 g_2^2 \lambda - 24 \lambda^2 + 8 \lambda_H^2 + 12 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) + 4 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) \right]
\]

\[
+ \frac{1}{16\pi^2} \left[\frac{-3411}{200} g_1^4 - \frac{1672}{200} g_1^2 g_2^2 - \frac{317}{80} g_1^6 + \frac{277}{16} g_2^4 + \frac{1887}{200} g_1^4 \lambda + \frac{117}{20} g_1^2 \lambda - \frac{29}{5} \lambda^2 \right]
\]

\[
+ \frac{108}{5} g_1^2 \lambda^2 + 108 g_2^2 \lambda^2 - 312 \lambda^3 + 10 g_1^2 \lambda_H^2 + 32 \lambda_H^2 \lambda_H^2 - 80 \lambda_H^2 - 128 \lambda_H^4
\]

\[
+ \frac{1}{20} \left(-5 \left(g_1^2 \left(-5 g_2^2 + 9 \lambda_H^2 \right) - 90 g_2^2 \lambda + 9 g_2^4 \right) + 9 g_1^4 + g_1^4 \left(50 \lambda + 54 g_2^2 \right) \right) \left(Y_\lambda Y_\lambda^\dagger \right)
\]

\[
+ \frac{3}{20} \left(15 g_1^4 - 2 g_1^2 \left(11 g_2^2 + 25 \lambda \right) + 5 \left(-10 g_2^2 + 64 \lambda^2 + g_1^4 \right) \right) \left(Y_\lambda Y_\lambda^\dagger \right) + \frac{171}{100} g_1^4 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right)
\]

\[
+ \frac{63}{10} g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) + \frac{9}{4} g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) + \frac{17}{2} g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) + \frac{45}{2} g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right)
\]

\[
+ \frac{80}{9} g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) - 144 \lambda^2 \left(Y_\lambda Y_\lambda^\dagger \right) + \frac{4}{9} g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) - 32 g_1^2 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right)
\]

\[
+ 3 \lambda T \left(Y_\lambda Y_\lambda^\dagger \right) - 12 \lambda T \left(Y_\lambda Y_\lambda \right) + 12 \lambda T \left(Y_\lambda Y_\lambda \right) + 6 \lambda T \left(Y_\lambda Y_\lambda \right) + 6 \lambda T \left(Y_\lambda Y_\lambda \right)
\]

\[
+ 10 \lambda T \left(Y_\lambda Y_\lambda \right) + 30 \lambda T \left(Y_\lambda Y_\lambda \right)
\]

\[
\beta_{\lambda_T} = \frac{1}{16\pi^2} \left[-24 g_1^2 \lambda_H + 88 \lambda_H^2 + 8 \lambda_H^2 + \frac{3}{2} g_2 \right]
\]

\[
+ \frac{1}{16\pi^2} \left[-\frac{68}{3} g_1^2 + 10 g_1^2 \lambda_H + \frac{48}{5} g_1^2 \lambda_H^2 + 48 g_1^2 \lambda_H^2 - 128 \lambda_H^4 + \frac{94}{3} g_1^4 \lambda_H - 320 g_1^2 \lambda_H + 64 g_2^2 \lambda_H^2
\]

\[
- 4416 \lambda_H^4 - 48 \lambda_H^4 \left(Y_\lambda Y_\lambda^\dagger \right) - 16 \lambda_H^4 \left(Y_\lambda Y_\lambda^\dagger \right) - 48 \lambda_H^4 \left(Y_\lambda Y_\lambda^\dagger \right)
\]

\[
\beta_{\lambda_H} = \frac{1}{16\pi^2} \left[\frac{3}{4} g_1^2 - \frac{9}{10} g_1^2 \lambda_H + \frac{33}{2} g_1^2 \lambda_H + 12 \lambda \lambda_H + 16 \lambda^2 + 24 \lambda \lambda_H + 6 \lambda \lambda_H + 2 \lambda \lambda_H \left(Y_\lambda Y_\lambda^\dagger \right) + 2 \lambda \lambda_H \left(Y_\lambda Y_\lambda^\dagger \right)
\]

\[
+ 6 \lambda \lambda_H \left(Y_\lambda Y_\lambda \right)
\]

\[
+ \frac{1}{16\pi^2} \left[-\frac{9}{16} g_1^2 + \frac{229}{48} g_2^2 + \frac{15}{2} g_2^4 \lambda_H^2 + 1671 \frac{g_1^4}{400} \lambda_H + \frac{9}{80} g_1^2 \lambda_H^2 + 1087 \frac{g_1^4}{48} \lambda_H + \frac{72}{5} g_1^2 \lambda_H^2
\]

\[
- 27 -
\]
\[+ 72g^3 \lambda_{HT} - 60 \lambda^2 + 12g^2 \lambda_{HT}^2 + 44g^2 \lambda_{HT} + 288 \lambda \lambda_{HT} - 168 \lambda_{HT} + 20g^2 \lambda + 144g^2 \lambda_{HT} \lambda_T \\
- 576 \lambda^2 \lambda_{HT} - 544 \lambda_{HT} \lambda_T^2 - \frac{1}{4} (3g^2 - 45g^2 \lambda_{HT} + \lambda_{HT}^2 \left(-160g^2 + 192 \lambda_{HT} + 288 \lambda - 5g^2 \right) \text{Tr}(Y_d Y_d) \\
- \frac{1}{4} (15g^2 \lambda_{HT} + \lambda_{HT} \left(15g^2 + 64 \lambda_{HT} + 96 \lambda \right) + g^2 \text{Tr}(Y_d Y_d') - \frac{3}{2} g^2 \text{Tr}(Y_d Y_d') \\
+ \frac{17}{4} g^2 \lambda_{HT} \text{Tr}(Y_d Y_d') + 45g^2 \lambda_{HT} \text{Tr}(Y_d Y_d') + 40g^2 \lambda_{HT} \text{Tr}(Y_d Y_d') - 72 \lambda_{HT} \text{Tr}(Y_d Y_d') \\
- 48 \lambda_{HT} \text{Tr}(Y_d Y_d') - \frac{27}{2} \lambda_{HT} \text{Tr}(Y_d Y_d' Y_d Y_d') - 21 \lambda_{HT} \text{Tr}(Y_d Y_d' Y_d Y_d') - \frac{9}{2} \lambda_{HT} \text{Tr}(Y_d Y_d' Y_d Y_d') \\
- \frac{27}{2} \lambda_{HT} \text{Tr}(Y_d Y_d' Y_d Y_d') \right]. \]

B.2 Gauge Couplings

\[\beta_{g_1} = \frac{1}{16\pi^2} \left[\frac{41}{10} g_1^3 + \frac{1}{(16\pi^2)^2} \left[\frac{1}{50} g_1^2 (135g^2 + 199g^2 - 25\text{Tr}(Y_d Y_d') + 440g^2 - 75\text{Tr}(Y_d Y_d') - 85\text{Tr}(Y_d Y_d')) \right] \right]. \]

\[\beta_{g_2} = \frac{1}{16\pi^2} \left[- \frac{17}{6} g_2^3 + \frac{1}{(16\pi^2)^2} \left[\frac{1}{30} g_2^2 (15\text{Tr}(Y_d Y_d') + 27g^2 + 360g^2 + 455g^2 - 45\text{Tr}(Y_d Y_d') - 45\text{Tr}(Y_d Y_d')) \right] \right]. \]

\[\beta_{g_3} = \frac{1}{16\pi^2} \left[- 7g_3^3 + \frac{1}{(16\pi^2)^2} \left[- \frac{1}{10} g_3^2 (11g^2 - 11g^2 + 20\text{Tr}(Y_d Y_d') + 20\text{Tr}(Y_d Y_d') + 260g^2 - 45g^2) \right] \right]. \]

B.3 Yukawa Coupling

\[\beta_{Y_u} = \frac{1}{16\pi^2} \left[- \frac{3}{2} \left(- Y_d Y_d' Y_u + Y_u Y_d Y_d' \right) \right. \]

\[+ \frac{1}{(16\pi^2)^2} \left[\frac{1}{80} (20(11Y_d Y_d' Y_u Y_u Y_u Y_d' Y_u' Y_u' + 6Y_u Y_u' Y_u' Y_u' Y_u Y_u Y_d' Y_u' Y_u') - Y_d Y_d' Y_u Y_u') \right. \]

\[+ Y_u Y_u' Y_u' (1280g^2 - 180\text{Tr}(Y_d Y_d') + 223g^2 - 540\text{Tr}(Y_d Y_d') - 540\text{Tr}(Y_d Y_d') + 675g^2 - 960 \lambda) \]

\[+ Y_u Y_u' Y_u' (100\text{Tr}(Y_d Y_d') - 1280g^2 + 300\text{Tr}(Y_u Y_u') + 300\text{Tr}(Y_u Y_u') - 43g^2 + 45g^2) \]

\[\left. + Y_u (\frac{1187}{600} g_4^4 - \frac{9}{25} g_4^3 g_2 - \frac{19}{4} g_4^2 + \frac{19}{15} g_4^2 g_2^2 + 9g_2^2 g_4^2 - 108g_4^2 + 6\lambda^2 + 4 \lambda_{HT} \right] \]

\[+ \frac{5}{8} \left(32g_2^2 + 9g_4^2 + g_2^4 \right) \text{Tr}(Y_d Y_d') + \frac{15}{8} (g_4^2 + g_2^2) \text{Tr}(Y_d Y_d') + \frac{17}{8} g_2^2 \text{Tr}(Y_d Y_d') + \frac{45}{8} g_2^2 \text{Tr}(Y_d Y_d') \]

\[+ 20g_2^2 \text{Tr}(Y_d Y_d') - \frac{27}{4} \text{Tr}(Y_d Y_d' Y_d Y_d') + \frac{3}{2} \text{Tr}(Y_d Y_d' Y_d Y_d') - \frac{9}{4} \text{Tr}(Y_d Y_d' Y_d Y_d') - \frac{27}{4} \text{Tr}(Y_d Y_d' Y_d Y_d'). \]

References

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214 [hep-ex]].

[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235 [hep-ex]].

[3] A. M. Sirunyan et al. [CMS Collaboration], Eur. Phys. J. C 79 (2019) no.5, 421 doi:10.1140/epjc/s10052-019-6909-y [arXiv:1809.10733 [hep-ex]].

[4] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2018-031.
[5] G. Isidori, G. Ridolfi and A. Strumia, Nucl. Phys. B 609 (2001) 387
doi:10.1016/S0550-3213(01)00302-9 [hep-ph/0104016].

[6] M. Gonderinger, H. Lim and M. J. Ramsey-Musolf, Phys. Rev. D 86 (2012) 043511
doi:10.1103/PhysRevD.86.043511 [arXiv:1202.1316 [hep-ph]]. M. Gonderinger, Y. Li, H. Patel
and M. J. Ramsey-Musolf, JHEP 1001 (2010) 053 doi:10.1007/JHEP01(2010)053
[arXiv:0910.3167 [hep-ph]]. R. Costa, A. P. Morais, M. O. P. Sampaio and R. Santos, Phys.
Rev. D 92 (2015) 025024 doi:10.1103/PhysRevD.92.025024 [arXiv:1411.4048 [hep-ph]].
N. Haba and Y. Yamaguchi, PTEP 2015 (2015) no.9, 093B05 doi:10.1093/ptep/ptv121
[arXiv:1504.05669 [hep-ph]]. W. L. Guo and Y. L. Wu, JHEP 1010 (2010) 083
doi:10.1007/JHEP10(2010)083 [arXiv:1006.2518 [hep-ph]]. V. Barger, P. Langacker,
M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Phys. Rev. D 79 (2009) 015018
doi:10.1103/PhysRevD.79.015018 [arXiv:0811.0393 [hep-ph]]. N. Khan and S. Rakshit, Phys.
Rev. D 90 (2014) no.11, 113008 doi:10.1103/PhysRevD.90.113008 [arXiv:1407.6015 [hep-ph]].
S. Back, P. Ko, W. I. Park and E. Senaha, JHEP 1211 (2012) 116
doi:10.1007/JHEP11(2012)116 [arXiv:1209.4163 [hep-ph]].

[7] P. Bandyopadhyay, E. J. Chun, R. Mandal and F. S. Queiroz, Phys. Lett. B 788 (2019) 530
doi:10.1016/j.physletb.2018.12.003 [arXiv:1807.05122 [hep-ph]].

[8] P. Bandyopadhyay, E. J. Chun and R. Mandal, Phys. Rev. D 97 (2018) no.1, 015001
doi:10.1103/PhysRevD.97.015001 [arXiv:1707.00874 [hep-ph]].

[9] N. Chakrabarty and B. Mukhopadhyaya, Eur. Phys. J. C 77 (2017) no.3, 153
doi:10.1140/epjc/s10052-017-4705-0 [arXiv:1603.05883 [hep-ph]]. N. Chakrabarty,
D. K. Ghosh, B. Mukhopadhyaya and I. Saha, Phys. Rev. D 92 (2015) no.1, 015002
doi:10.1103/PhysRevD.92.015002 [arXiv:1501.03700 [hep-ph]]. B. Swiezewska, JHEP 1507
(2015) 118 doi:10.1007/JHEP07(2015)118 [arXiv:1503.07078 [hep-ph]]. S. Gopalakrishna,
T. S. Mukherjee and S. Sadhukhan, Phys. Rev. D 93 (2016) no.5, 055004
doi:10.1103/PhysRevD.93.055004 [arXiv:1504.01074 [hep-ph]].

[10] L. Lopez Honorez and C. E. Yaguna, JHEP 1009 (2010) 046 doi:10.1007/JHEP09(2010)046
[arXiv:1003.3125 [hep-ph]].

[11] P. Bandyopadhyay, E. J. Chun and R. Mandal, Phys. Lett. B 779 (2018) 201
doi:10.1016/j.physletb.2018.01.071 [arXiv:1709.08581 [hep-ph]].

[12] N. Khan and S. Rakshit, Phys. Rev. D 92 (2015) 055006 doi:10.1103/PhysRevD.92.055006
[arXiv:1503.03085 [hep-ph]].

[13] A. Datta, N. Ganguly, N. Khan and S. Rakshit, Phys. Rev. D 95 (2017) no.1, 015017
doi:10.1103/PhysRevD.95.015017 [arXiv:1610.00648 [hep-ph]].

[14] S. Yaser Ayazi and S. M. Firouzabadi, Cogent Phys. 2 (2015) 1047559
doi:10.1080/23311940.2015.1047559 [arXiv:1501.06176 [hep-ph]]. N. Khan, Eur. Phys. J. C 78
(2018) no.4, 341 doi:10.1140/epjc/s10052-018-5766-4 [arXiv:1610.03178 [hep-ph]].

[15] C. Coriano, L. Delle Rose and C. Marzo, Phys. Lett. B 738 (2014) 13
doi:10.1016/j.physletb.2014.09.001 [arXiv:1407.8539 [hep-ph]]. C. Coriano, L. Delle Rose and
C. Marzo, JHEP 1602 (2016) 135 doi:10.1007/JHEP02(2016)135 [arXiv:1510.02379 [hep-ph]].
L. Delle Rose, C. Marzo and A. Urbano, JHEP 1512 (2015) 050
doi:10.1007/JHEP12(2015)050 [arXiv:1506.03360 [hep-ph]]. P. Bandyopadhyay, P. S. Bhupal
Dev, S. Jangid and A. Kumar, arXiv:2001.01764 [hep-ph]. I. Garg, S. Goswami,
K. N. Vishnudath and N. Khan, Phys. Rev. D 96 (2017) no.5, 055020
doi:10.1103/PhysRevD.96.055020 [arXiv:1706.08851 [hep-ph]].

[16] S. P. Martin, Adv. Ser.Direct.High Energy Phys. 21 (2010) 1 [hep-ph/9709356].

[17] U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496 (2010) 1
doi:10.1016/j.physrep.2010.07.001 [arXiv:0910.1785 [hep-ph]]. P. Bandyopadhyay, K. Huitu and S. Niyogi, JHEP 1607 (2016) 015
doi:10.1007/JHEP07(2016)015 [arXiv:1512.09241 [hep-ph]].

[18] P. Bandyopadhyay, K. Huitu and A. Sabanci, JHEP 1310 (2013) 091
doi:10.1007/JHEP10(2013)091 [arXiv:1305.6364 [hep-ph]]. P. Bandyopadhyay, S. Di Chiara, K. Huitu and A. S. KeÅgeli, JHEP 1411 (2014) 062
doi:10.1007/JHEP11(2014)062 [arXiv:1407.4836 [hep-ph]].

[19] P. Bandyopadhyay, C. Coriano and A. Costantini, JHEP 1509 (2015) 045
doi:10.1007/JHEP09(2015)045 [arXiv:1506.03634 [hep-ph]]. P. Bandyopadhyay, C. Coriano and A. Costantini, JHEP 1512 (2015) 127
doi:10.1007/JHEP12(2015)127 [arXiv:1510.06309 [hep-ph]].

[20] P. Bandyopadhyay, K. Huitu and A. Sabanci Keceli, JHEP 1505 (2015) 026
doi:10.1007/JHEP05(2015)026 [arXiv:1412.7359 [hep-ph]]. P. Bandyopadhyay, C. CorianÅš and A. Costantini, Phys. Rev. D 94, no. 5, 055030 (2016)
doi:10.1103/PhysRevD.94.055030 [arXiv:1512.08651 [hep-ph]]. P. Bandyopadhyay and A. Costantini, JHEP 1801 (2018) 067
doi:10.1007/JHEP01(2018)067 [arXiv:1710.03110 [hep-ph]].

[21] A. M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 122 (2019) no.12, 121803
doi:10.1103/PhysRevLett.122.121803 [arXiv:1811.09689 [hep-ex]].

[22] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2018-043.

[23] T. Araki, C. Q. Geng and K. I. Nagao, Int. J. Mod. Phys. D 20 (2011) 1433
doi:10.1142/S021827181101961X [arXiv:1108.2753 [hep-ph]].

[24] C. Arina, F. S. Ling and M. H. G. Tytgat, JCAP 0910 (2009) 018
doi:10.1088/1475-7516/2009/10/018 [arXiv:0907.0430 [hep-ph]].

[25] M. Gustafsson, PoS CHARGED 2010 (2010) 030 doi:10.22323/1.114.0030 [arXiv:1106.1719 [hep-ph]].

[26] W. Treesukrat and P. Uttayarat, J. Phys. Conf. Ser. 1380 (2019) no.1, 012093.
doi:10.1088/1742-6596/1380/1/012093

[27] S. Choubey and A. Kumar, JHEP 1711 (2017) 080 doi:10.1007/JHEP11(2017)080
[arXiv:1707.06587 [hep-ph]].

[28] A. Goudelis, B. Herrmann and O. StÄêl, JHEP 1309 (2013) 106
doi:10.1007/JHEP09(2013)106 [arXiv:1303.3010 [hep-ph]].

[29] L. Lopez Honorez, Nuovo Cim. C 035N1 (2012) 39. doi:10.1393/ncc/i2012-11135-7

[30] M. H. G. Tytgat, J. Phys. Conf. Ser. 120 (2008) 042026
doi:10.1088/1742-6596/120/4/042026 [arXiv:0712.4206 [hep-ph]].

[31] L. Lopez Honorez, arXiv:0706.0186 [hep-ph].

[32] L. Lopez Honorez, E. Nezri, J. F. Oliver and M. H. G. Tytgat, JCAP 0702 (2007) 028
doi:10.1088/1475-7516/2007/02/028 [hep-ph/0612275].
[33] M. Cirelli, N. Fornengo and A. Strumia, Nucl. Phys. B 753 (2006) 178
doi:10.1016/j.nuclphysb.2006.07.012 [hep-ph/0512090].

[34] F. Staub, Comput. Phys. Commun. 185, 1773 (2014) [arXiv:1309.7223 [hep-ph]].

[35] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and
A. Strumia, JHEP 1208, 098 (2012) [arXiv:1205.6497 [hep-ph]].

[36] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia,
JHEP 1312 (2013) 089 doi:10.1007/JHEP12(2013)089 [arXiv:1307.3536 [hep-ph]].

[37] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7 (1973) 1888.

[38] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phy

[39] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, Phys.
Lett. B 709 (2012) 222 doi:10.1016/j.physletb.2012.02.013 [arXiv:1112.3022 [hep-ph]].

[40] J. A. Casas, J. R. Espinosa, M. Quiros and A. Riotto, Nucl. Phys. B 436, 3 (1995) Erratum:
[Nucl. Phys. B 439, 466 (1995)] [hep-ph/9407389].

[41] I. Masina, Phys. Rev. D 87 (2013) no.5, 053001 doi:10.1103/PhysRevD.87.053001
[arXiv:1209.0393 [hep-ph]].

[42] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571 (2014) A16
doi:10.1051/0004-6361/201321591 [arXiv:1303.5676 [astro-ph.CO]].

[43] S. Banerjee, F. Boudjema, N. Chakrabarty, G. Chalons and H. Sun, Phys. Rev. D 100 (2019)
no.9, 095024 doi:10.1103/PhysRevD.100.095024 [arXiv:1906.11269 [hep-ph]].

[44] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and
F. S. Queiroz, Eur. Phys. J. C 78 (2018) no.3, 203 doi:10.1140/epjc/s10052-018-5662-y
[arXiv:1703.07364 [hep-ph]].

[45] T. Araki, C. Q. Geng and K. I. Nagao, Phys. Rev. D 83 (2011) 075014
doi:10.1103/PhysRevD.83.075014 [arXiv:1102.4006 [hep-ph]].

[46] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 180
(2009) 747 doi:10.1016/j.cpc.2008.11.019 [arXiv:0803.2360 [hep-ph]].

[47] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 176
(2007) 367 doi:10.1016/j.cpc.2006.11.008 [hep-ph/0607059].

[48] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Nuovo Cim. C 033N2 (2010) 111
doi:10.1393/nc/c/i2010-10591-3 [arXiv:1005.4133 [hep-ph]].

[49] M. A. DÄ¾az, B. Koch and S. Urrutia-Quiroga, Adv. High Energy Phys. 2016 (2016)
8278375 doi:10.1155/2016/8278375 [arXiv:1511.04429 [hep-ph]].

[50] C. Garcia-Cely and A. Ibarra, Nucl. Part. Phys. Proc. 263-264 (2015) 107.
doi:10.1016/j.nuclphysbps.2015.04.020

[51] E. Aprile et al. [XENON100 Collaboration], Phys. Rev. Lett. 109 (2012) 181301
doi:10.1103/PhysRevLett.109.181301 [arXiv:1207.5988 [astro-ph.CO]].

[52] D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 112 (2014) 091303
doi:10.1103/PhysRevLett.112.091303 [arXiv:1310.8214 [astro-ph.CO]].

[53] E. Aprile et al. [XENON Collaboration], JCAP 1604 (2016) 027
doi:10.1088/1475-7516/2016/04/027 [arXiv:1512.07501 [physics.ins-det]].
[54] H. Abdallah et al. [H.E.S.S. Collaboration], Phys. Rev. Lett. 117 (2016) no.11, 111301 doi:10.1103/PhysRevLett.117.111301 [arXiv:1607.08142 [astro-ph.HE]].

[55] M. L. Ahnen et al. [MAGIC and Fermi-LAT Collaborations], JCAP 1602 (2016) 039 doi:10.1088/1475-7516/2016/02/039 [arXiv:1601.06590 [astro-ph.HE]].

[56] F. S. Queiroz and C. E. Yaguna, JCAP 1602 (2016) 038 doi:10.1088/1475-7516/2016/02/038 [arXiv:1511.05967 [hep-ph]].

[57] M. Aaboud et al. [ATLAS Collaboration], JHEP 1801 (2018) 055 doi:10.1007/JHEP01(2018)055 [arXiv:1709.07242 [hep-ex]].

[58] A. M. Sirunyan et al. [CMS Collaboration], JHEP 1809 (2018) 007 doi:10.1007/JHEP09(2018)007 [arXiv:1803.06553 [hep-ex]].

[59] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki, arXiv:1903.04456 [hep-ph].

[60] N. Wan, N. Li, B. Zhang, H. Yang, M. F. Zhao, M. Song, G. Li and J. Y. Guo, Commun. Theor. Phys. 69 (2018) no.5, 617. doi:10.1088/0253-6102/69/5/617.

[61] M. Tanabashi et al. (Particle Data Group) Phys. Rev. D 98, 030001 Â– Published 17 August 2018

[62] P. Bandyopadhyay, C. Coriano and A. Costantini, JHEP 1509 (2015) 045 doi:10.1007/JHEP09(2015)045 [arXiv:1506.03634 [hep-ph]].

[63] P. Bandyopadhyay, K. Huitu and A. Sabanei Keceili, JHEP 1505 (2015) 026 doi:10.1007/JHEP05(2015)026 [arXiv:1412.7359 [hep-ph]].

[64] P. Bandyopadhyay and A. Costantini, JHEP 1801 (2018) 067 doi:10.1007/JHEP01(2018)067 [arXiv:1710.03110 [hep-ph]].

[65] G. Tavares-Velasco and J. J. Toscano, Phys. Rev. D 69 (2004) 017701 doi:10.1103/PhysRevD.69.017701 [hep-ph/0311066].

[66] C. W. Chiang, G. Cottin, Y. Du, K. Fuyuto and M. J. Ramsey-Musolf, arXiv:2003.07867 [hep-ph].

[67] N. F. Bell, M. J. Dolan, L. S. Friedrich, M. J. Ramsey-Musolf and R. R. Volkas, arXiv:2001.05335 [hep-ph].

[68] A. Arhrib, R. Benbrik and T. C. Yuan, Eur. Phys. J. C 74 (2014) 2892 doi:10.1140/epjc/s10052-014-2892-5 [arXiv:1401.6698 [hep-ph]].

[69] C. T. Lu, V. Q. Tran and Y. L. S. Tsai, arXiv:1912.08875 [hep-ph].

[70] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas, Phys. Rev. D 97 (2018) no.3, 035011 doi:10.1103/PhysRevD.97.035011 [arXiv:1612.00511 [hep-ph]].

[71] K. Huitu, K. Kannike, A. Racioppi and M. Raidal, JHEP 1101 (2011) 010 doi:10.1007/JHEP01(2011)010 [arXiv:1005.4409 [hep-ph]].

[72] P. Bandyopadhyay, JHEP 1709 (2017) 052 doi:10.1007/JHEP09(2017)052 [arXiv:1511.03842 [hep-ph]].

[73] P. Bandyopadhyay and E. J. Chun, JHEP 1505 (2015) 045 doi:10.1007/JHEP05(2015)045 [arXiv:1412.7312 [hep-ph]].

[74] P. Bandyopadhyay, E. J. Chun and J. C. Park, JHEP 1106 (2011) 129 doi:10.1007/JHEP06(2011)129 [arXiv:1105.1652 [hep-ph]].
[75] P. Bandyopadhyay, P. Ghosh and S. Roy, Phys. Rev. D 84 (2011) 115022
doi:10.1103/PhysRevD.84.115022 [arXiv:1012.5762 [hep-ph]].

[76] P. Bandyopadhyay and E. J. Chun, JHEP 1011 (2010) 006
doi:10.1007/JHEP11(2010)006
[arXiv:1007.2281 [hep-ph]].

[77] A. Ilnicka, M. Krawczyk and T. Robens, arXiv:1505.04734 [hep-ph].

[78] A. Belyaev, N. D. Christensen and A. Pukhov, Comput. Phys. Commun. 184 (2013) 1729
doi:10.1016/j.cpc.2013.01.014 [arXiv:1207.6082 [hep-ph]].

[79] R. D. Ball et al. [NNPDF Collaboration], JHEP 1504 (2015) 040
[arXiv:1410.8849 [hep-ph]].

[80] In Preparation, P. Bandyopadhyay, S. Jangid