1. Introduction

Thermally driven turbulence is omnipresent in nature and technology. The thermal driving can be thanks to the temperature boundary conditions such as in Rayleigh-Bénard convection (RBC)—a flow in a container heated from below and cooled from above (Ahlers et al., 2009; Chilla & Schumacher, 2012; Lohse & Xia, 2010)—or in horizontal convection (HC) (Hughes & Griffiths, 2008; Shishkina & Wagner, 2016; Shishkina et al., 2016), where parts of the top, bottom, or sidewalls of the container are set at different temperatures. However, the thermal driving can also be thanks to internal heating, where the temperature field is driven by some forcing in the bulk. In many cases in nature, both ways of driving play a role at the same time. For example, this holds for the Earth's mantle due to the driving through the hot inner core of the Earth and an additional driving due to the decay of radioactive materials, producing heat (Bercovici et al., 1989; Bunge et al., 1996; Houseman, 1988; Lay et al., 2008; Mallard et al., 2016; Moore & Webb, 2013; Schubert et al., 2001; Tackley et al., 1993). Thus, in the Earth's mantle, about 10%–20% of the heat is transferred from the core, while the rest occurs due to the internal heating (Schubert et al., 2001). The internal heating dominates also in the atmosphere of Venus (Tritton, 1975; Tritton and Zarraga, 1967), which is heated up due to the absorption of solar light. One more example is the formation of Pluto's polygonal terrain, which is caused not only by convection of Rayleigh-Bénard type (McKinnon et al., 2016; Trowbridge et al., 2016), but also by internally heated convection (IHC) (Vilella & Deschamps, 2017). And, of course, IHC is relevant in many engineering applications, for example, liquid-metal batteries (Kim et al., 2013; Xiang & Zikanov, 2017).
and Spiegel (2012), Goluskin and van der Poel (2016), Goluskin (2016), and Vilella et al. (2018). For the former case, Grossmann and Lohse (GL) have developed a unifying theory (Grossmann & Lohse, 2000, 2001, 2002, 2004; Stevens et al., 2013), with which the heat transfer and the degree of turbulence can quantitatively be described as function of the control parameters, in excellent agreement with the experimental and numerical data over a range of more than 7 orders of magnitude in the control parameters Ra and Pr. Later this theory was also extended to HC (Shishkina et al., 2016) and double diffusive convection (Y. Yang et al., 2018). GL arguments were also applied to IHC, to estimate the bulk temperature for small and moderate Pr (Goluskin & Spiegel, 2012). A complete theory, however, does not yet exist for purely IHC.

The objective of the present work is to apply the reasoning of GL’s theory to the case of purely IHC and to develop a unifying theory for this case. In addition, we perform direct numerical simulations (DNS) of turbulent purely IHC over a large range of control parameters and compare the DNS results with the theoretical predictions. The DNS are conducted in two dimensions (2-D), as (i) the theory is based on Prandtl’s equations, which are also 2-D in spirit, as (ii) 2-D and 3-D thermally driven turbulence show very close analogies with respect to the integral quantities, in particular for large Prandtl numbers $Pr \geq 1$ (van der Poel et al., 2013), and as (iii) otherwise, due to unavoidable limitations in available CPU time, we could explore only a much smaller portion of the parameter space.

2. Control and Response Parameters and Governing Equations

In RBC, next to the geometric aspect ratio Γ of the sample (the ratio between lateral and vertical extensions), the control parameters of the system are the temperature difference between top and bottom wall (in dimensionless form, the Rayleigh number) and the ratio between kinematic viscosity ν and thermal diffusivity κ, namely the Prandtl number $Pr = \nu / \kappa$. The response of the system consists of the heat flux from bottom to top (in dimensionless form, the Nusselt number Nu) and the degree of turbulence (in dimensionless form, the Reynolds number Re). In IHC, instead of the Rayleigh number, the dimensionless driving strength Rr of the temperature field takes the role of the second control parameter, next to Pr. It is often called Rayleigh-Roberts number (and that is why we use the abbreviation Rr) and will be defined below. The main response parameter, next to Re, is the mean temperature which the bulk achieves thanks to the internal driving. This is related to the heat fluxes into the top and bottom plates; note that they are different from each other. So the objective of this paper is to explain how the mean temperature and the Reynolds number in turbulent IHC depend on Rr and Pr, for large enough aspect ratio Γ of the sample.

The flow in IHC is confined between two parallel plates with distance L, with the gravitational acceleration $g \equiv -g\varepsilon$ acting orthogonally to these plates. The underlying dynamical equations within the Boussinesq approximation are the compressibility condition $\partial_i u_i = 0$, and

$$\partial_t u_i + u_j \partial_j u_i = -\partial_i p + \nu \partial_j^2 u_i + \beta g \delta_{ij} \theta,$$

$$\partial_t \theta + u_j \partial_j \theta = \kappa \partial_j^2 \theta + \Omega,$$

for the velocity field $u(x, t)$, the kinematic pressure field $p(x, t)$, and the reduced temperature field $\theta(x, t) \equiv T(x, t) - T_{\text{plate}}$. Here T_{plate} is the temperature of both top and bottom plates, β is the thermal expansion coefficient, δ_{ij} the Kronecker delta and Ω the constant bulk driving of the temperature field, which in nondimensional form is called Rayleigh-Roberts number

$$Rr = \beta g L^2 \Omega / (\kappa^2 \nu).$$

Equations 1 and 2 are supplemented by the boundary conditions (BCs) $u_i = 0$ and $\theta = 0$ at both plates. Periodic BCs are used in the horizontal direction.

The main responses of the system can be expressed in terms of the mean temperature $\Delta \equiv \langle \theta(x, t) \rangle_{V}$ achieved in the system, where the average $\langle \cdot \rangle_{V}$ is over volume and time. The nondimensional form of this response parameter is

$$\tilde{\Delta} = \kappa \Delta / (\Omega L^2).$$
The other main nondimensional response parameter is the Reynolds number \(Re = \frac{UL}{\nu} \), with \(U = \sqrt{\langle u_z^2 \rangle} \). There are different definitions of the Reynolds number (Ahlers et al., 2009), while these different \(Re \) usually have similar power-law dependence on \(Ra \). In DNS, one usually looks at the \(Re \) based on the global volume averaged root-mean-square velocity, as this \(Re \) reflects the flow strength of the whole flow field (Shishkina & Horn, 2016; Stevens et al., 2018; van der Poel et al., 2013; Wang et al., 2020a, 2020b; R. Yang et al., 2020).

Obviously, due to the internal heating, the heat flux \(Q(z) = \langle u_z \theta \rangle - \kappa \langle \partial_z \theta \rangle \) (or in dimensionless form \(\tilde{Q}(z) = Q(z) / (\Omega L) \)) in the system is not constant as in RBC, but depends on the height \(z \). Here, \(\langle \cdot \rangle \) means average in time and in a plane of constant \(z \). However, a simple time and plane average of Equation 2 yields that the quantity

\[
\tilde{Q}_0 = z / L - \bar{Q}(z)
\]

is constant for all \(z \) and equals \(\tilde{Q}_0 = -\bar{Q}(z = 0) = \frac{\kappa}{\Omega L} \langle \partial_z \theta \rangle \mid_{z=0} \geq 0 \).

\(\tilde{Q}_0 \) is thus a further dimensionless response parameter of the system. Equation 7 implies that the dimensionless heat flux \(\bar{Q} \) is nonpositive at \(z = 0 \). Applying Equation 6 at \(z = L \) gives the dimensionless flux at \(z = L \),

\[
\tilde{Q}(z = L) = -\frac{\kappa}{\Omega L} \langle \partial_z \theta \rangle \mid_{z=L} \geq 1 - \tilde{Q}_0 \geq 0,
\]

Relations 7 and 8 immediately show that \(0 \leq \tilde{Q}_0 \leq 1 \).

3. Application of Grossmann and Lohse’s Unifying Theory

As it is well known (Ahlers et al., 2009; Shraiman & Siggia, 1990), in RBC exact relations between the time and volume averaged thermal and kinetic dissipation rates, \(\epsilon_\theta = \kappa \langle \partial_t \theta(x,t)^2 \rangle_v \) and \(\epsilon_u = \nu \langle \partial_t u(x,t)^2 \rangle_v \), and the dimensionless control and response parameters \(Nu, Ra, \) and \(Pr \) can be obtained from multiplying the thermal advection equation with \(\partial \theta(x,t) \) and the Navier-Stokes equation with \(u_i(x,t) \) and subsequent Gauss integration and time and space averaging. Here, we apply the same procedure to Equations 2 and 1 and obtain

\[
\epsilon_\theta = \frac{\Omega \Delta L^2}{\kappa \Omega^2 \Delta^2} = \frac{\kappa \Delta^2}{L^2} \Delta^{-1},
\]

\[
\epsilon_u = \frac{\nu^3}{L^3} R r P r^{-2} \left(\frac{1}{2} - \tilde{Q}_b \right).
\]

As \(\epsilon_u \geq 0 \) is nonnegative by definition, we can now further restrain the magnitude of the dimensionless heat flux through the bottom plate: \(0 \leq \tilde{Q}_b \leq 1 / 2 \). Just as the corresponding relations in RBC, also here, Equations 9 and 10 relate the averaged thermal and kinetic dissipation rates with the dimensionless control (\(Rr, Pr \)) and response (\(\Lambda, \tilde{Q}_b \)) parameters.

The key idea of the GL theory (Grossmann & Lohse, 2000, 2001) is to split the kinetic and thermal dissipation rates into contributions from the corresponding boundary layers (BLs) and bulks,

\[
\epsilon_u = \epsilon_{u,BL} + \epsilon_{u,Bulk}, \quad \epsilon_\theta = \epsilon_{\theta,BL} + \epsilon_{\theta,Bulk},
\]

and to apply the respective scaling relations for those (i.e., for \(\epsilon_{u,BL}, \epsilon_{u,Bulk}, \epsilon_{\theta,BL}, \) and \(\epsilon_{\theta,Bulk} \)), based on BL theory and Kolmogorov’s theory for fully developed turbulence in the bulk. The introduced scaling regimes I, II, III, and IV correspond to BL–BL, bulk–BL, BL–bulk, and bulk–bulk dominance in \(\epsilon_u \) and \(\epsilon_\theta \), respectively. Here, one should also take into account mean thicknesses of the thermal BLs (\(\lambda_\theta \)) and viscous BLs (\(\lambda_u \)).
The cases $\lambda_0 < \lambda_u$ (large Pr) and $\lambda_0 > \lambda_u$ (small Pr) correspond to different scaling regimes, and therefore we assign the subscripts u and ℓ to regimes I, II, III and IV, which indicate the upper-Pr and lower-Pr cases, respectively. Equating ϵ_u and ϵ_ℓ to their estimated either bulk or BL contributions and employing the classical Prandtl scaling relations for the BL thicknesses λ_0 and λ_u (Schlichting, 1979), one in principle obtains eight theoretically possible scaling regimes. The fractions of the phase space occupied by regimes II, III and IV are rather small, because, for example, in II, it is expected that $\lambda_0 \geq \lambda_u$ due to the BL-dominance in ϵ_u, but on the other hand, $\lambda_0 \leq \lambda_u$ should hold due to the large Pr. By similar arguments, regime III is also small.

The mean thicknesses of the BLs are estimated as follows: $\lambda_u \sim L / \sqrt{Re}$, as in RBC (Ching et al., 2019; Grossmann & Lohse, 2000, 2001; Shishkina et al., 2015), and $\lambda_\ell = 2 / (\lambda_\ell^\text{top} + \lambda_\ell^\text{bottom})$. Approximating ϵ_u and ℓ at $z = 0$ and $z = H$ with the ratio of Δ and the top and bottom thermal BL thicknesses, λ_ℓ^top and $\lambda_\ell^\text{bottom}$, from Equations 4, 7, and 8 we obtain $\lambda_0 \sim L\Delta$.

The value of $\epsilon_u\text{bulk}$ is estimated as

$$\epsilon_u\text{bulk} \sim U^2 \left(\frac{L - \lambda_u}{L} \right) \approx U^3 \frac{v^3}{L^2} Re^3,$$

which is relevant in the $\epsilon_u\text{bulk}$ dominating regimes ℓ, IV_u, and IV_w, while the value of $\epsilon_\ell\text{bulk}$ is estimated as

$$\epsilon_\ell\text{bulk} \sim U^2 \left(\frac{L - \lambda_\ell}{L} \right) \approx U^3 \frac{k\Delta^2}{L^2} Re,$$

which is relevant in the $\epsilon_\ell\text{bulk}$ dominating regime III_c. For large Pr (regimes ℓ, III_u, and IV_u), the thermal BL is embedded into the kinetic one and therefore in Equation 10, the magnitude of the velocity of the flow, which carries the temperature in the bulk, is reduced from U to $(\lambda_0/\lambda_u)U$, leading to

$$\epsilon_\ell\text{bulk} \sim \frac{\lambda_\ell U^3}{\lambda_u} \left(\frac{L - \lambda_\ell}{L} \right) \approx \frac{k\Delta^2}{L^2} Re^{3/2} \Delta.$$ (11)

The kinetic dissipation rate in the BL is $\sim v(U / \lambda_u)^2$. Hence,

$$\epsilon_u\text{BL} \sim \frac{v^3}{L^2} Re^{3/2},$$ (12)

which is relevant in the $\epsilon_u\text{BL}$ dominating regimes ℓ, I_u, and III_u. As in Grossmann and Lohse (2000, 2001), the factor λ_u/L accounts for the volume fraction of the kinetic BL. With increasing Pr, λ_u saturates to $\sim L$, so this factor becomes one (just as argued in Grossmann and Lohse [2001]), which yields

$$\epsilon_u\text{BL} \sim \frac{v^3}{L^2} Re^2.$$ (13)

For small Ra or very large Pr, this leads to special regimes ℓ, III_u, and III_c on top of, respectively, I_u and III_u. In III_u, also $\epsilon_\ell\text{bulk}$ scales differently to (11), namely as

$$\epsilon_\ell\text{bulk} \sim \frac{\lambda_\ell U^3}{L} \left(\frac{L - \lambda_\ell}{L} \right) \approx \frac{k\Delta^2}{L^2} Re^{3/2} \Delta.$$ (14)

The thermal dissipation rate in the BL scales as $\sim k(\Delta / \lambda_\ell)^2$, which is relevant in the $\epsilon_\ell\text{BL}$ dominating regimes ℓ, I_u, I_c, and III_c. This (again with the volume fraction factor) leads to

$$\epsilon_\ell\text{BL} \sim k \left(\frac{\lambda_\ell}{\lambda_u} \right)^2 \frac{\Delta^2}{L} \approx k \frac{\lambda_\ell^2}{L^2} \lambda_u Re^3.$$ (14)

In the limiting regimes ℓ, I_u, and I_c, it holds $\lambda_\ell/\lambda_0 \sim Pr^{3/2}$ (Schlichting & Gersten, 2000; Shishkina et al., 2017), while in regime I_u it holds $\lambda_u/\lambda_0 \sim Pr^{3/2}$, all just as in the classical Prandtl-Blasius-Pohlhausen theory (Schlichting, 1979).

Equating ϵ_u (Equation 9) and ϵ_ℓ (Equation 10) to their estimated bulk or BL contributions, we obtain the scalings of Δ and Re in IHC, which are summarized in Table 1 and sketched in Figure 1.
As already mentioned above, the very same idea was already applied to HC (Shishkina et al., 2016). Interestingly enough, even a formal analogy between IHC and HC exists, out of which we could have already derived the scaling relations of Table 1 and Figure 1. The reason for this formal analogy is that the relations obtained for \(\epsilon_0 \) and \(\epsilon_\phi \) (see Equations 5 and 6 of Shishkina et al. [2016]) formally resemble the corresponding relations 9 and 10 here. For the first equation this becomes particular obvious when writing \(\epsilon_0 = \frac{L^2}{\kappa} \Omega^2 \Delta^2 = \frac{K}{L^2} R^2 \Delta^{-1} \) and for the second when realizing that \(\left(\frac{1}{2} - \bar{\Theta}_0 \right) \) is only a dimensionless factor between 0 and 1/2. Then one sees immediately that the role of the control parameter \(Ra \) in HC is taken by that of the control parameter \(Rr \) in IHC and the role of the response parameter \(Nu \) in HC is taken by that of the (inverse) response parameter \(\Delta^{-1} \) in IHC. All derived scaling relations in the different limiting regimes of HC can directly be taken over. The corresponding values for IHC give the same results as obtained above and have already been shown in Table 1 and Figure 1.

4. Comparison With Direct Numerical Simulations

To check these predictions of the GL theory generalized to IHC, we have performed 2-D DNS according to Equations 1 and 2 with the corresponding BCs. We chose an aspect ratio of \(\Gamma = 2 \) for the laterally periodic box. The numerics have been validated by making sure that the exact relations 9 and 10 are fulfilled. Simulations were performed using the second-order staggered finite difference code AFiD (van der Poel et al., 2015; Verzicco & Orlandi, 1996). This code has already been extensively used to study RBC (see Wang et al., 2020a, 2020b).

The parameter combinations \((Rr, Pr) \) for which we performed simulations are shown in the parameter space of Figure 2a. A typical snapshot of the temperature field together with the mean temperature profile for one parameter combination are displayed in Figure 2b. One can see the stably stratified layer near the bottom plate. The interaction of the upper convection zone and the lower stably stratified region leads to the so-called penetrative convection (Veronis, 1963; Wang et al., 2019). The mean temperature profile, which, as expected and typical for IHC, displays top-down asymmetry.

The results for the response parameters \(\bar{\Delta} \) and \(Re \) as functions of the control parameters \(Rr \) and \(Pr \) are shown in Figures 3 and 4. As can be seen, in general, there are no pure scaling laws over the simulated range, but smooth crossovers from one regime to the other, very similarly as in RBC (Stevens et al., 2013), reflecting the key idea of the unifying theory by Grossmann and Lohse (2000, 2001). We first discuss the dependences for the dimensionless mean temperature \(\bar{\Delta} \), see Figures 3a and 3b. As a function of \(Pr \) (Figure 3b), for all \(Rr \) the transition from \(\bar{\Delta} \sim Pr^{-1/10} \) of regime I\(_I\) to the \(Pr^{-1/5} \) of regime I\(_\infty\) can clearly be seen. The more turbulent regimes IV\(_{u,c}\) are not yet realized, as the driving is not strong enough. This is also reflected in the \(Rr \) dependence \(\bar{\Delta} \sim Rr^{-1/5} \) reflecting that of regimes IV\(_{u,c}\). No indication to a stronger dependence as typical for the more turbulent regimes IV\(_{u,c}\) can yet be seen. This is also seen in the dependences of the Reynolds number (Figures 3c and 3d): For small \(Pr \leq 1 \), it goes like \(Re \sim Rr^{2/3} \) as in regimes IV\(_{u,c}\). For large \(Pr \geq 10 \) the results are consistent with \(Re \sim Rr^{1/4} \) as in regime I\(_\infty\). This scaling should go hand in hand with the scaling \(\bar{\Delta} \sim Rr^{-1/4} \) for the dimensionless mean...
temperature, but as seen from Figure 3a, those data are presumably better described by $\Delta \sim Rr^{-1/5}$. Finally, on the Pr-dependence of Re: As seen from Figure 3d, for all Rr the data show a transition from the $Re \sim Pr^{-4/5}$ scaling of regimes I_u, ℓ to the $Re \sim Pr^{-1}$ scaling of regime I_{∞}, consistent with the corresponding transition for $\hat{\Delta}$ in Figure 3b.

All these results are consistent with our unifying theory, which however goes much beyond the simulated parameter range into the regimes in which the kinetic and thermal energy dissipation rates are dominated by the turbulent bulk contributions. These regimes are inaccessible with our present numerical simulations, even in 2-D.

As an additional check of our unifying theory we also plot the kinetic energy dissipation rate as function of Re, see Figure 5. Indeed, we find $\varepsilon_u / (L^{-3} \nu^{4}) \sim Re^{5/2}$ and $\sim Re^{2}$ as characteristic for the kinetic BL dominated regimes I_u, ℓ and I_{∞}, consistent with what we have seen in Table 1 and Figure 3.

Another (less important) response parameter of IHC is the magnitude of the dimensionless heat flux \bar{Q} through the bottom plate. The numerical results for \bar{Q} are shown in Figure 6. One sees from Figure 6a that \bar{Q} only weakly depends on Rr in the present parameter range; this behavior has also been found before in Goluskin and van der Poel (2016). Figure 6b illustrates that much less heat is transported outwards from the bottom plate with increasing Pr. The small \bar{Q} for large Pr is due to the less efficient shear-driven mixing of the fluid near the bottom plate.

5. Conclusions

In conclusion, in the spirit of the prior unifying theories for RBC (Grossmann & Lohse, 2000, 2001) and for HC (Shishkina et al., 2016), in this paper we have developed a unifying theory of IHC for the scaling of the mean temperature and the Reynolds number as functions of the control parameters Rr and Pr. The main

Figure 2. (a) Rr versus Pr parameter space of the simulated cases. Symbols denote the different grid resolutions used in DNS: 512 × 256 (△), 1024 × 512 (□), 2048 × 1024 (○). (b) Instantaneous temperature field (color coded) and mean temperature profile for $Rr = 10^{10}$ and $Pr = 1$.

Figure 3. Response parameters $\hat{\Delta}$ (the dimensionless mean temperature of the bulk) and Re as function of the control parameters Rr and Pr: (a) Compensated Δ as function of Rr for fixed $Pr = 10^{-1}, 1, 10$. (b) Compensated Δ as function of Pr for fixed $Rr = 10^{8}, 10^{9}, 10^{10}$. (c) Compensated Re as function of Rr for fixed $Pr = 10^{-1}, 1, 10$. (d) $RePr$ as function of Pr for fixed $Rr = 10^{8}, 10^{9}, 10^{10}$. The straight lines with the corresponding scaling laws are added as guide to the eye.
result is visualized in Figure 1. We have shown that the 2-D DNS results are consistent with this theory, though the numerically accessible regimes are still dominated by the BLs, and not all predictions of the theory can already be tested at this point. Also 3-D DNS over a large fraction of the control parameter space are presently too demanding from the viewpoint of computational cost and have not yet been done. We have furthermore pointed toward the formal analogy between IHC and HC and it will be illuminating to explore this analogy also numerically.

Data Availability Statement

The data used in this paper are available for download at http://doi.org/10.5281/zenodo.4081485.
Acknowledgments
R. Verzicco, D. Goluskin, and K. L. Ching are gratefully acknowledged for discussions and support. The authors also acknowledge the Twente Max-Planck Center, the Deutsche Forschungsgemeinschaft (Priority Programme SP 1881 "Turbulent Superstructures"), PRACE for awarding us access to MareNostrum 4 based in Spain at the Barcelona Computing Center (BSC) under PRACE project 2020245335. The simulations were partly carried out on the national e-infrastructure of SURFsara, a subsidiary of SURF cooperation, the collaborative ICT organization for Dutch education and research. Q. Wang acknowledges financial support from China Scholarship Council (CSC) and Natural Science Foundation of China under grant no. 11621202.

References

Ahlers, G., Grossmann, S., & Loseh, D. (2009). Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 81, 503–537.

Bercovici, D., Schubert, G., & Glatzmaier, G. A. (1989). Three-dimensional spherical models of convection in the Earth's mantle. Science, 244(4907), 950–955.

Bunge, H. P., Richards, M. A., & Baumgardner, J. R. (1996). Effect of depth-dependent viscosity on the plandriform mantle convection. Nature, 379(6564), 436–438.

Chilla, F., & Schumacher, J. (2012). New perspectives in turbulent Rayleigh-Bénard convection. The European Physical Journal. E, Soft Matter, 35, 58.

Ching, E. S. C., Leung, H. S., Zwimer, L., & Shishkina, O. (2019). Velocity and thermal boundary layer equations for turbulent Rayleigh-Bénard convection. Physical Review Research, 1, 033–037.

Goluskin, D. (2016). Internally heated convection and Rayleigh-Bénard convection. Springer.

Goluskin, D., & Spiegel, E. A. (2012). Convection driven by internal heating. Physics Letters A, 377(1–2), 83–92.

Goluskin, D., & van der Poel, E. P. (2016). Penetrative internally heated convection in two and three dimensions. Journal of Fluid Mechanics, 791, R6.

Grossmann, S., & Loseh, D. (2000). Scaling in thermal convection: A unifying view. Journal of Fluid Mechanics, 407, 27–56.

Grossmann, S., & Loseh, D. (2001). Thermal convection for large Prandtl number. Physical Review Letters, 86, 3316–3319.

Grossmann, S., & Loseh, D. (2002). Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Physical Review E, 66, 016305.

Grossmann, S., & Loseh, D. (2004). Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes. Physics of Fluids, 16, 4462–4472.

Houseraman, H. (1988). The dependence of convection plateon on mode of heating. Nature, 332(6162), 346–349.

Hughes, G. O., & Griffiths, R. W. (2008). Horizontal convection. Annual Review of Fluid Mechanics, 40, 185–208.

Kim, H., Boyes, D. A., Newhouse, J. M., Spatocco, B. L., Chung, B., Burke, P. J., et al. (2013). Liquid metal batteries: Past, present, and future. Chemical Reviews, 113(3), 2075–2094.

Lay, T., Hennlund, J., & Buffett, B. A. (2008). Core–mantle boundary heat flow. Nature Geoscience, 1(1), 25.

Loseh, D., & Xia, K.-Q. (2010). Small-scale properties of turbulent Rayleigh-Bénard convection. Annual Review of Fluid Mechanics, 42, 335–364.

Mallard, C., Cottice, N., Seton, M., Müller, R. D., & Tackley, P. J. (2016). Subduction controls the distribution and fragmentation of earth's tectonic plates. Nature, 530(7561), 140–143.

McKinnon, W. B., Nimmo, F., Wong, T., Schenk, P. M., White, O. L., Roberts, J. H., et al. (2016). Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological harbour. Nature, 537(7605), 82–85.

Moore, W. B., & Webb, A. A. G. (2013). Heat-pipe dwarf. Nature, 501(7468), 501–505.

Ng, C. S., Ooi, A., Loseh, D., & Chung, D. (2015). Vertical natural convection: Application of the unifying theory of thermal convection. Journal of Fluid Mechanics, 764, 349–361.

Ng, C. S., Ooi, A., Loseh, D., & Chung, D. (2017). Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection. Journal of Fluid Mechanics, 825, 559–572.

Ng, C. S., Ooi, A., Loseh, D., & Chung, D. (2018). Bulk scaling in wall-boundary and homogeneous vertical natural convection. Journal of Fluid Mechanics, 841, 825–850.

Roberts, P. H. (1967). Convection in horizontal layers with internal heat generation. Journal of Fluid Mechanics, 30(1), 33–49.

Schlichting, H. (1979). Boundary layer theory (7th ed.). New York, NY: McGraw Hill.

Schlichting, H., & Gersten, K. (2000). Boundary layer theory (8th ed.). Berlin: Springer Verlag.

Schubert, G., Turcotte, D. L., & Olson, P. (2001). Mantle convection in the Earth and planets. Cambridge University Press.

Shishkina, O. (2016). Momentum and heat transport scalings in laminar vertical convection. Physical Review E, 93, 051102(R).

Shishkina, O., Emran, M., Grossmann, S., & Lohse, D. (2017). Scaling relations in large-Prandtl-number natural thermal convection. Physical Review Fluids, 2(103), 302.

Shishkina, O., Grossmann, S., & Loseh, D. (2016). Heat and momentum transport scalings in horizontal convection. Geophysical Research Letters, 43, 1219–1223. https://doi.org/10.1002/2015GL067005

Shishkina, O., & Horn, S. (2016). Thermal convection in inclined cylindrical containers. Journal of Fluid Mechanics, 790, R3.

Shishkina, O., Horn, S., Wagner, S., & Ching, E. S. C. (2015). Thermal boundary layer equation for turbulent Rayleigh-Bénard convection. Physical Review Letters, 114, 114302.

Shishkina, O., & Wagner, S. (2016). Prandtl-number dependence of heat transport in laminar horizontal convection. Physical Review Letters, 116, 024302.

Shrak-Yam, B. I., & Siggia, E. D. (1990). Heat transport in high-Rayleigh number convection. Physical Review A, 42, 3650–3653.

Stevens, R. J. A. M., Blass, A., Zhu, X.-J., Verzicco, R., & Loseh, D. (2018). Turbulent thermal superstructures in Rayleigh-Bénard convection. Physical Review Fluids, 3(4), 041501.

Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S., & Loseh, D. (2013). The unifying theory of scaling in thermal convection: The updated prefactors. Journal of Fluid Mechanics, 730, 295–308.

Tackley, P. J., Steven, D. J., Glatzmaier, G. A., & Schubert, G. (1993). Effects of an convective phase transition at 670 km depth in a spherical model of convection in the Earth's mantle. Nature, 361(6414), 699–704.

Tritton, D. J. (1975). Internally heated convection in the atmosphere of Venus and in the laboratory. Nature, 257(5522), 110–112.

Tritton, D. J., & Zarraga, M. N. (1967). Convection in horizontal layers with internal heat generation. Journal of Fluid Mechanics, 30(1), 21–31.

Trowbridge, A. J., Melosh, H. J., Steckloff, J. K., & Freed, A. M. (2016). Vigorous convection as the explanation for Pluto's polygonal terrain. Nature, 534(7605), 79–81.

van der Poel, E. P., Ostilla-Mónico, R., Donners, J., & Verzicco, R. (2015). A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Computers & Fluids, 116, 10–16.

van der Poel, E. P., Stevens, R. J. A. M., & Loseh, D. (2013). Comparison between two- and three-dimensional Rayleigh-Bénard convection. Journal of Fluid Mechanics, 738, 177–194.

Veronis, G. (1963). Penetrative convection. The Astrophysical Journal, 137, 641.
Verzicco, R., & Orlandi, P. (1996). A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. *Journal of Computational Physics, 123*(2), 402–414.

Vilella, K., & Deschamps, F. (2017). Thermal convection as a possible mechanism for the origin of polygonal structures on Pluto's surface. *Journal of Geophysical Research: Planets, 122*(5), 1056–1076. https://doi.org/10.1002/2016JE005215

Vilella, K., Limare, A., Jaupart, C., Farnetani, C. G., Fourel, L., & Kaminski, E. (2018). Fundamentals of laminar free convection in internally heated fluids at values of the Rayleigh–Roberts number up to 10^7. *Journal of Fluid Mechanics, 846*, 966–998.

Wang, Q., Chong, K.-L., Stevens, R. I. A. M., Verzicco, R., & Lohse, D. (2020b). From zonal flow to convection rolls in Rayleigh–Bénard convection with free-slip plates. *Journal of Fluid Mechanics, 905*, A21.

Wang, Q., Verzicco, R., Lohse, D., & Shishkina, O. (2020a). Multiple states in turbulent large-aspect ratio thermal convection: What determines the number of convection rolls? *Physical Review Letters, 125*(074), 501.

Wang, Q., Zhou, Q., Wan, Z.-H., & Sun, D.-J. (2019). Penetrative turbulent Rayleigh–Bénard convection in two and three dimensions. *Journal of Fluid Mechanics, 870*, 718–734.

Xiang, L., & Zikanov, O. (2017). Subcritical convection in an internally heated layer. *Physical Review Fluids, 2*(6), 063501.

Yang, R., Chong, K.-L., Wang, Q., Verzicco, R., Shishkina, O., & Lohse, D. (2020). Periodically modulated thermal convection. *Physical Review Letters, 125*, 154502.

Yang, Y., Verzicco, R., & Lohse, D. (2018). Two-scalar turbulent Rayleigh–Bénard convection: Numerical simulations and unifying theory. *Journal of Fluid Mechanics, 848*, 648–659.