VOLATILITY SPILLOVER AND CONTAGION EFFECTS BETWEEN EURODOLLAR FUTURE AND ZERO COUPONS MARKETS: EVIDENCE FROM ITALY

Konstantinos Tsiaras*

University of Ioannina, Greece

Abstract:
This paper examines the time-varying conditional correlations between the Eurodollar futures market and the zero coupons of Banca Fideuram. We apply a bivariate dynamic conditional correlation (DCC) GARCH model in order to capture potential contagion effects between the markets for the period 2005-2017. Empirical results reveal contagion during the under-investigation period regarding the twenty-one bivariate models, showing that the Eurodollar futures market has a major impact on the zero coupons of Banca Fideuram. Findings have crucial implications for policymakers who provide regulations for the above-mentioned derivative markets.

Keywords:
DCC-GARCH model, EURODOLLAR future market, zero coupons, financial contagion, dynamic conditional correlations.

Jel Classification:
C58, C61, G11, G15.

INTRODUCTION

This paper investigates the potential volatility spillover and contagion effects (Dimitriou, Kenourgios & Simos 2013) of the Eurodollar futures market and the zero coupons of Banca Fideuram. We consider the zero coupons of Banca Fideuram ending from 2018 to 2033. By employing a bivariate DCC-GARCH model, we show significant volatility spillover effects (Sehgal, Ahmad & Deisting 2015; Li & Giles 2015; Aboura & Chevallier 2015; Antonakakis, Floros & Kizys 2016). Moreover, we use the definition of contagion as suggested by Forbes and Rigobon (2002). They defined contagion as a significant increase in cross-market linkages after a shock. Dynamic conditional correlations reveal contagion effects (Dimitriou & Kenourgios 2015; Sensoy & Hacihasanoglu 2015) in sub-periods between the Eurodollar futures market and all the zero coupons of Banca Fideuram.

*E-mail: konstantinos.tsiaras1988@gmail.com
The motivation for this paper is analyzed as follows. Firstly, there is no other empirical research investigating the conditional second moments of the distribution between the Eurodollar futures market and the zero coupons of Banca Fideuram. Secondly, the potential existence of contagion between the Eurodollar futures market and the zero coupons of Banca Fideuram provides new evidence for financial theory. Thirdly, the under-investigation period is of great importance, since it entails major economic crises i.e., the financial crisis of 2008.

The paper is organized as follows. Section 2 presents the literature review and Section 3 provides the data characteristics. Section 4 provides the methodology. Section 5 shows the empirical results. The last section provides the conclusion.

LITERATURE REVIEW

There are numerous empirical studies investigating the spillovers among different future and financial markets (Mensi et al 2013; Kavussanos et al 2014; Li et al 2014; Antonakakis and Kizys 2015; Du and He 2015; Ewing and Malik 2016; Bagchi 2017; Roy and Roy 2017; Ma et al 2019; Tsiaras and Simos 2020; Tsiaras 2020, Tsiaras 2020).

Mensi et al (2013) find evidence of spillovers between the S&P 500 and commodity price indices for energy, food, gold, and beverages over the turbulent period from 2000 to 2011.

Kavussanos et al (2014) examine the existence of spillover effects between commodity and freight markets for the period 2006-2009. By using different GARCH models, they show the existence of spillovers effects.

Li et al (2014) show potential spillovers and dynamic conditional correlations between spot and forward tanker freight markets. By using a multivariate GARCH model, they examine the period from 2006 to 2011.

Antonakakis and Kizys (2015) find evidence of volatility spillover effects between commodity and FOREX markets: crude oil, gold, silver, platinum, CHF/USD, GBP/USD, EUR/USD. They investigate the period 1987 to 2014.

Du and He (2015) found evidence of significant spillover between crude oil and stock markets using daily data of the S&P 500 stock index and West Texas Intermediate (WTI). Based on their results, they supported the existence of positive risk spillovers from stock to crude oil markets and negative spillovers from crude oil to stock markets.

Ewing and Malik (2016) examine the volatility of oil and US stock market prices incorporating structural breaks using daily data from 1996 to 2013. By employing univariate and bivariate GARCH models, they find no volatility spillovers between the two markets.

Bagchi (2017) investigates the dynamic relationship between crude oil price volatility and stock markets in the emerging economies like BRIC (Brazil, Russia, India and China) countries. By using a AR-APARCH model, he finds evidence of positive and negative relationships between the under-investigation markets.

Roy and Roy (2017) show the financial contagion in Indian commodity derivative markets vis-à-vis bond, FOREX, gold, and stock markets. They applied a multivariate DCC-GARCH model for the period 2006-2016.

Ma et al (2019) examine the inter-connectedness between WTI oil price returns and the returns of listed firms in the US energy sector for the period 2008-2018.
They show that, although idiosyncratic information is mostly independent of oil shocks, individual energy stock returns do respond to WTI price movements.

Tsiaras and Simos (2020) prove the spillover effects among S&P 500, four national equity markets and the respective FOREX markets for the period from 2010 to 2018.

Tsiaras (2020) investigates and proves the spillovers between JPY/USD, KRW/USD, EUR/USD and INR/USD futures markets for the period 2014-2019. In our paper, we provide empirical evidence of spillover effects between major future FOREX market and Zero Coupons derivative markets.

To the best of our knowledge, there is no previous empirical evidence providing evidence of spillover effects between the under-investigation market.

DATA CHARACTERISTICS

We use daily data for Eurodollar futures market (DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE) and sixteen zero coupons of Banca Fideuram (BANCA FIDEURAM ZERO CPN. 2018, BANCA FIDEURAM ZERO CPN. 2019, BANCA FIDEURAM ZERO CPN. 2020, BANCA FIDEURAM ZERO CPN. 2021, BANCA FIDEURAM ZERO CPN. 2022, BANCA FIDEURAM ZERO CPN. 2023, BANCA FIDEURAM ZERO CPN. 2024, BANCA FIDEURAM ZERO CPN. 2025, BANCA FIDEURAM ZERO CPN. 2026, BANCA FIDEURAM ZERO CPN. 2027, BANCA FIDEURAM ZERO CPN. 2028, BANCA FIDEURAM ZERO CPN. 2029, BANCA FIDEURAM ZERO CPN. 2030, BANCA FIDEURAM ZERO CPN. 2031, BANCA FIDEURAM ZERO CPN. 2032 and BANCA FIDEURAM ZERO CPN. 2033). We downloaded data from the Datastream database. We set the period from January 4, 2005 to December 11, 2017 (3375 observations). We use the market returns generated by the equation $r_t = \log(p_t) - \log(p_{t-1})$, where p_t is the price of future market on day t and p_{t-1} is the price of future market on day $t-1$.

In tables 1, 2, 3 and 4 we see the summary statistics for the markets returns. BANCA FIDEURAM ZERO CPN. 2032 exhibits the highest mean value (0.00023071). Based on the highest maximum (0.077701), the second minimum (-0.066133) and the second highest std. deviation (0.0095707) values, BANCA FIDEURAM ZERO CPN. 2032 presents the largest fluctuations among all the markets. Additionally, all market returns are negatively skewed, except the cases of BANCA FIDEURAM ZERO CPN. 2018, BANCA FIDEURAM ZERO CPN. 2019, BANCA FIDEURAM ZERO CPN. 2020 and BANCA FIDEURAM ZERO CPN. 2021. Furthermore, we observe that all market returns show excess kurtosis. In addition, Jarque-Bera statistic results indicate the rejection of the null hypothesis of normality for all market returns. ADF (Dickey and Fuller 1979) test results reject the null hypotheses of unit root at 1% level, showing that the daily market returns appropriate for further testing.
Table 1 - Summary Statistics of the Daily Market Logarithmic Returns

	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE	BANCA FIDEURAM ZERO CPN. 2018	BANCA FIDEURAM ZERO CPN. 2019	BANCA FIDEURAM ZERO CPN. 2020	BANCA FIDEURAM ZERO CPN. 2021
Mean	-3.62e-005	0.00014653	0.00016334	0.00017082	0.00017633
Minimum	-0.034722	-0.034328	-0.037916	-0.032092	-0.036549
Maximum	0.032842	0.052911	0.057069	0.057384	0.059144
Std. Deviation	0.0058591	0.0040629	0.0042757	0.0050665	0.0054361
Skewness	-0.0067747	0.56365***	0.59049***	0.66735***	0.23680***
t-Statistic	0.16075	13.374	14.011	15.835	5.6187
p-Value	0.87229	8.5689e-041	1.3378e-044	1.7961e-056	1.9243e-008
Excess Krytosis	2.4752***	16.889***	16.837***	13.692***	9.9221***
t-Statistic	29.374	200.43	199.81	162.49	117.75
p-Value	1.1804e-189	0.00000	0.00000	0.00000	0.00000
Jarque-Bera	861.58***	40293***	40062***	26614***	13876***
p-Value	8.1273e-188	0.00000	0.00000	0.00000	0.00000
ADF Test	-34.0035***	-36.1749***	-35.1774***	-35.273***	-35.4105***

Table 2 - Summary Statistics of the Daily Market Logarithmic Returns

	BANCA FIDEURAM ZERO CPN. 2022	BANCA FIDEURAM ZERO CPN. 2023	BANCA FIDEURAM ZERO CPN. 2024	BANCA FIDEURAM ZERO CPN. 2025
Mean	0.0001646	0.00018798	0.0002024	0.00020046
Minimum	-0.036124	-0.051395	-0.048579	-0.045075
Maximum	0.059525	0.047033	0.049644	0.052734
Std. Deviation	0.0058674	0.0062433	0.0066364	0.0066885
Skewness	-0.14823***	-0.10383***	-0.23445***	-0.17699***
t-Statistic	3.5171	2.4636	5.5629	4.1996
p-Value	0.00043625	0.013754	2.6528e-008	2.6742e-005
Excess Krytosis	11.316***	8.4188***	6.8660***	6.0796***
t-Statistic	134.29	99.909	81.481	72.149
p-Value	0.00000	0.00000	0.00000	0.00000
Jarque-Bera	18021***	9973.1***	6660.3***	5215.4***
p-Value	0.00000	0.00000	0.00000	0.00000
ADF Test	-35.3086***	-34.3199***	-35.7359***	-34.922***
Table 3 - Summary Statistics of the Daily Market Logarithmic Returns

	BANCA FIDEURAM ZERO CPN. 2026	BANCA FIDEURAM ZERO CPN. 2027	BANCA FIDEURAM ZERO CPN. 2028	BANCA FIDEURAM ZERO CPN. 2029
Mean	0.00020225	0.00020596	0.00020595	0.00021448
Minimum	-0.056538	-0.057316	-0.056162	-0.06922
Maximum	0.058081	0.046397	0.049962	0.051293
Std. Deviation	0.0071898	0.0076207	0.0081711	0.0084838
Skewness	-0.18968***	-0.28312***	-0.31747***	-0.40512***
t-Statistic	4.2871	6.7177	7.5328	9.6126
p-Value	1.8099e-005	1.8466e-011	4.9673e-014	7.0759e-022
Excess Kyrtosis	6.4695***	5.4861***	5.1496***	5.6284***
t-Statistic	76.775	65.105	61.111	66.794
p-Value	0.000000	0.000000	0.000000	0.000000
Jarque-Bera	5904.1***	4277.5***	3785.8***	4547.1***
p-Value	0.000000	0.000000	0.000000	0.000000
ADF Test	-34.5052***	-35.2119***	-35.0801***	-35.9567***

Table 4 - Summary Statistics of the Daily Market Logarithmic Returns

	BANCA FIDEURAM ZERO CPN. 2030	BANCA FIDEURAM ZERO CPN. 2031	BANCA FIDEURAM ZERO CPN. 2032	BANCA FIDEURAM ZERO CPN. 2033
Mean	0.00021384	0.00021572	0.00023071	0.00022541
Minimum	-0.062678	-0.055032	-0.066133	-0.064688
Maximum	0.059321	0.076138	0.077701	0.074629
Std. Deviation	0.0087642	0.0092783	0.0095707	0.0097384
Skewness	-0.20305***	-0.069956***	-0.15964***	-0.14954***
t-Statistic	4.8178	1.6599	3.7878	3.5482
p-Value	1.4516e-006	0.096938	0.00015197	0.00038786
Excess Kyrtosis	5.6736***	5.0302***	5.8516***	5.4135***
t-Statistic	67.330	59.694	69.443	64.244
p-Value	0.000000	0.000000	0.000000	0.000000
Jarque-Bera	4549.9***	3560.9***	4829.5***	4133.8***
p-Value	0.000000	0.000000	0.000000	0.000000
ADF Test	-34.9155***	-34.9721***	-35.1153***	-34.9907***
Figure 1 graphs the logarithmic returns for DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE, BANCA FIDEURAM ZERO CPN. 2018, BANCA FIDEURAM ZERO CPN. 2019, BANCA FIDEURAM ZERO CPN. 2020, BANCA FIDEURAM ZERO CPN. 2021, BANCA FIDEURAM ZERO CPN. 2022, BANCA FIDEURAM ZERO CPN. 2023, BANCA FIDEURAM ZERO CPN. 2024, BANCA FIDEURAM ZERO CPN. 2025, BANCA FIDEURAM ZERO CPN. 2026, BANCA FIDEURAM ZERO CPN. 2027, BANCA FIDEURAM ZERO CPN. 2028, BANCA FIDEURAM ZERO CPN. 2029, BANCA FIDEURAM ZERO CPN. 2030, BANCA FIDEURAM ZERO CPN. 2031, BANCA FIDEURAM ZERO CPN. 2032 and BANCA FIDEURAM ZERO CPN. 2033. Based on the virtual observation of the graph, we see time varying levels of fluctuations, indicating the presence of heteroskedasticity and appropriate the use of the DCC-GARCH model.

Figure 1 - Actual Series of the Logarithmic Returns of the Markets.

METHODOLOGY

In the first stage, we generate the daily logarithmic returns:

\[y_t = \mu + \varepsilon_t, \quad \text{with } t = 1, \ldots, T \]

(1)

where \(\mu \) is constant, \(y_t = x_t + \varepsilon_t \) and \(\varepsilon_t \) is standardized residuals, defined as follows:

\[\varepsilon_t = \sqrt{h_t} u_t, \quad \text{where } \varepsilon_t \sim N(0, H_t) \text{ and } u_t \text{ are i.i.d.} \]

(2)

where \(u_t \) is standardized errors and \(h_t \) is conditional variance depending on \(h_t \) and \(\varepsilon_t \) for each market lagged one period, generated by the univariate GARCH(1,1) model (Bollerslev 1986):
where ω is constant, a and b are ARCH and GARCH effects.

In the second stage, we employ the Engle (2002) representation of the bivariate GARCH model in order to estimate the bivariate conditional variance matrix (H_t is $N \times N$ matrix, with N the number of markets, $i = 1, \ldots, N$) as follows:

$$H_t = D_t R_t D_t$$

D_t is the conditional variance matrix given by:

$$D_t = \text{diag} \left(\frac{1}{2} h_{11t}, \ldots, \frac{1}{2} h_{NNt} \right)$$

R_t is the condition correlation matrix of $N \times N$ dimension, and is defined, as follows:

$$R_t = (\rho_{ii}) = \text{diag} \left(\frac{1}{2} q_{11t}, \ldots, \frac{1}{2} q_{NNt} \right) Q_t \text{diag} \left(\frac{1}{2} q_{11t}, \ldots, \frac{1}{2} q_{NNt} \right)$$

where the $N \times N$ symmetric positive definite matrix $Q_t = (q_{ii,t})$ is given by:

$$Q_t = (1-\alpha-\beta)\overline{Q} + \alpha u_{t-1}' u_{t-1} + \beta Q_{t-1}$$

\overline{Q} is the $N \times N$ unconditional variance matrix of u_t, and α and β are nonnegative scalar parameters, satisfying $\alpha + \beta < 1$.

EMPIRICAL RESULTS

In this section, we present the empirical results generated by the multivariate DCC-GARCH model. Sub-section 5.1 shows the results of the univariate GARCH model, while in sub-section 5.2 we analyze the results of the multivariate DCC-GARCH model. In sub-section 5.3, we report an analysis of the generated Dynamic Conditional Correlations (DCCs).

RESULTS OF THE UNIVARIATE GARCH (1,1) MODEL

Tables 5, 6, 7 and 8 show the estimated values for mean equation and univariate GARCH (1,1) model. We observe statistically significant μ for all the market returns, except the case of DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE. Additionally, empirical results report statistically significant ω for all the market returns. Moreover, ARCH (a) and GARCH (b) terms are highly significant for all the markets returns.
Table 5 - Estimates of Univariate GARCH (1,1) Model

	DGCX- EUR/USD CONTINUOUS AVG.- SETT. PRICE	BANCA FIDEURAM ZERO CPN. 2018	BANCA FIDEURAM ZERO CPN. 2019	BANCA FIDEURAM ZERO CPN. 2020	BANCA FIDEURAM ZERO CPN. 2021
constant (μ)	0.0000377	0.0000221*	0.0000702***	0.0001333***	0.0001804***
t-Statistic	0.4768	1.517	3.051	3.603	3.624
p-Value	0.6335	0.1294	0.0023	0.0003	0.0003
constant (ω)	0.050450*	0.001737*	0.005068*	0.016843*	0.040020*
t-Statistic	1.107	1.288	1.370	1.464	1.478
p-Value	0.2683	0.1979	0.1708	0.1433	0.1394
ARCH (α)	0.037845***	0.114787***	0.099745***	0.081683***	0.070081***
t-Statistic	7.898	4.879	3.732	3.699	3.345
p-Value	0.0000	0.0000	0.0002	0.0002	0.0008
GARCH (b)	0.964238***	0.896551***	0.908039***	0.922360***	0.931229***
t-Statistic	227.3	49.48	42.07	48.76	48.81
p-Value	0.0000	0.0000	0.0000	0.0000	0.0000

Table 6 - Estimates of Univariate GARCH (1,1) Model

	BANCA FIDEURAM ZERO CPN. 2022	BANCA FIDEURAM ZERO CPN. 2023	BANCA FIDEURAM ZERO CPN. 2024	BANCA FIDEURAM ZERO CPN. 2025
constant (μ)	0.0002175***	0.0002566***	0.0002897***	0.0003358***
t-Statistic	3.763	3.874	3.815	4.154
p-Value	0.0002	0.0001	0.0001	0.0000
constant (ω)	0.062064*	0.117230*	0.181788*	0.373052**
t-Statistic	1.628	1.878	1.656	1.990
p-Value	0.1036	0.0604	0.0978	0.0466
ARCH (α)	0.064147***	0.066864***	0.060533***	0.074506***
t-Statistic	3.509	4.691	3.863	3.808
p-Value	0.0005	0.0000	0.0001	0.0001
GARCH (b)	0.935513***	0.931312***	0.935657***	0.917570***
t-Statistic	54.52	65.63	55.49	41.82
p-Value	0.0000	0.0000	0.0000	0.0000
Table 7 - Estimates of Univariate GARCH (1,1) Model

	BANCA FIDEURAM ZERO CPN. 2026	BANCA FIDEURAM ZERO CPN. 2027	BANCA FIDEURAM ZERO CPN. 2028	BANCA FIDEURAM ZERO CPN. 2029
constant (µ)	0.0003728***	0.0003899***	0.0003379***	0.000410***
t-Statistic	4.199	4.145	3.702	3.874
p-Value	0.0000	0.0000	0.0002	0.0001
constant (ω)	0.585090***	0.865811***	0.803986***	1.664445***
t-Statistic	2.282	2.165	2.104	2.049
p-Value	0.0225	0.0304	0.0354	0.0406
ARCH (α)	0.078349***	0.086326***	0.075854***	0.101611***
t-Statistic	4.625	4.194	4.193	3.700
p-Value	0.0000	0.0000	0.0000	0.0002
GARCH (b)	0.910445***	0.898462***	0.911873***	0.874166***
t-Statistic	44.88	34.42	40.40	23.27
p-Value	0.0000	0.0000	0.0000	0.0000

Table 8 - Estimates of Univariate GARCH (1,1) Model

	BANCA FIDEURAM ZERO CPN. 2030	BANCA FIDEURAM ZERO CPN. 2031	BANCA FIDEURAM ZERO CPN. 2032	BANCA FIDEURAM ZERO CPN. 2033
constant (µ)	0.000423***	0.000457***	0.000462***	0.000448***
t-Statistic	3.785	3.884	3.786	3.596
p-Value	0.0002	0.0001	0.0002	0.0003
constant (ω)	1.354293***	1.555353***	1.497339***	1.648639***
t-Statistic	1.903	2.129	2.453	2.399
p-Value	0.0571	0.0334	0.0142	0.0165
ARCH (α)	0.083461***	0.088127***	0.080689***	0.082399***
t-Statistic	3.603	4.198	4.700	4.553
p-Value	0.0003	0.0000	0.0000	0.0000
GARCH (b)	0.898062***	0.893645***	0.902314***	0.899750***
t-Statistic	28.59	31.76	40.47	37.88
p-Value	0.0000	0.0000	0.0000	0.0000
In figure 2, we observe the behavior of conditional variances for DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE, BANCA FIDEURAM ZERO CPN. 2018, BANCA FIDEURAM ZERO CPN. 2019, BANCA FIDEURAM ZERO CPN. 2020, BANCA FIDEURAM ZERO CPN. 2021, BANCA FIDEURAM ZERO CPN. 2022, BANCA FIDEURAM ZERO CPN. 2023, BANCA FIDEURAM ZERO CPN. 2024, BANCA FIDEURAM ZERO CPN. 2025, BANCA FIDEURAM ZERO CPN. 2026, BANCA FIDEURAM ZERO CPN. 2027, BANCA FIDEURAM ZERO CPN. 2028, BANCA FIDEURAM ZERO CPN. 2029, BANCA FIDEURAM ZERO CPN. 2030, BANCA FIDEURAM ZERO CPN. 2031, BANCA FIDEURAM ZERO CPN. 2032, and BANCA FIDEURAM ZERO CPN. 2033. We see strongly volatile conditional variances for all the market returns over time. Additionally, results indicate a common movement of conditional volatilities.

Figure 2 - Conditional Variances of the Univariate GARCH (1,1) Model.

RESULTS OF THE BIVARIATE DCC-GARCH (1,1) MODEL, DIAGNOSTIC TESTS AND SELECTED INFORMATION CRITERIA

Tables 9, 10, 11 and 12 present the results of the bivariate DCC model estimations. We observe that the average CORij is statistically significant for the pairs of markets: DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2027, DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2029 and DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2032. Furthermore, we see statistically significant α and β parameters, indicating strong ARCH and GARCH effects for all the pairs of market returns (Efimova and Serletis 2014; Li and Giles 2014; Sehgal and Ghosh 2016; Chang et al 2018; Sun et al 2019; Sukhonpitumart et al 2020; Yu et al 2020; Belhassine 2020). Additionally, we provide the estimates of the degrees of freedom (v) and of the log-likelihood.
Table 9 - Estimates of the Bivariate DCC-GARCH (1,1) Model, Degrees of Freedom, Log-likelihood

	DGCX-	DGCX-	DGCX-	DGCX-
	EUR/USD	EUR/USD	EUR/USD	EUR/USD
	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS
	AVG.- SETT.	AVG.- SETT.	AVG.- SETT.	AVG.- SETT.
	PRICE - BANCA	PRICE - BANCA	PRICE - BANCA	PRICE - BANCA
	FIDEURAM	FIDEURAM	FIDEURAM	FIDEURAM
	ZERO CPN.	ZERO CPN.	ZERO CPN.	ZERO CPN.
	2018	2019	2020	2021
Average CORij	-0.028369	-0.029169	-0.26245	-0.028106
t-Statistic	-0.7921	-0.8427	-0.7534	-0.7739
p-Value	0.4284	0.3995	0.4513	0.4390
alpha (\(\alpha\))	0.008466***	0.010216***	0.008200***	0.008050***
t-Statistic	3.041	3.571	3.473	3.449
p-Value	0.0024	0.0004	0.0005	0.0006
beta (\(\beta\))	0.983542***	0.979266***	0.983939***	0.984555***
t-Statistic	179.9	185.2	226.1	240.0
p-Value	0.0000	0.0000	0.0000	0.0000
degrees of freedom (\(df\))	5.730267***	5.875022***	6.500954***	6.450702***
t-Statistic	12.31	12.45	12.39	12.46
p-Value	0.0000	0.0000	0.0000	0.0000
log-likelihood	28728.993	28046.932	27161.298	26627.008

Table 10 - Estimates of the Bivariate DCC-GARCH (1,1) Model, Degrees of Freedom, Log-likelihood

	DGCX-	DGCX-	DGCX-	DGCX-
	EUR/USD	EUR/USD	EUR/USD	EUR/USD
	CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS
	AVG.- SETT.	AVG.- SETT.	AVG.- SETT.	AVG.- SETT.
	PRICE - BANCA	PRICE - BANCA	PRICE - BANCA	PRICE - BANCA
	FIDEURAM	FIDEURAM	FIDEURAM	FIDEURAM
	ZERO CPN.	ZERO CPN.	ZERO CPN.	ZERO CPN.
	2022	2023	2024	2025
Average CORij	-0.032175	-0.029485	-0.026158	-0.030716
t-Statistic	-0.9473	-0.8569	-0.7185	-0.8789
p-Value	0.3435	0.3915	0.4725	0.3795
alpha (\(\alpha\))	0.007305***	0.008021***	0.008913***	0.007824***
t-Statistic	3.280	3.461	3.563	3.340
p-Value	0.0010	0.0005	0.0004	0.0008
beta (\(\beta\))	0.984699***	0.983735***	0.982894***	0.984395***
t-Statistic	233.1	245.0	215.6	216.9
p-Value	0.0000	0.0000	0.0000	0.0000
degrees of freedom (\(df\))	6.448894***	6.700370***	6.856377***	7.074205***
t-Statistic	12.41	11.73	11.79	12.19
p-Value	0.0000	0.0000	0.0000	0.0000
log-likelihood	26326.015	26048.641	25727.520	25603.802
Table 11 - Estimates of the Bivariate DCC-GARCH (1,1) Model, Degrees of Freedom, Log-likelihood

	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2026	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2027	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2028	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2029
Average CORij	-0.021714	-0.036694*	-0.020921	-0.034145*
t-Statistic	-0.6194	-1.080	-0.6453	-1.064
p-Value	0.5357	0.2803	0.5188	0.2872
alpha (α)	0.007685***	0.007194***	0.006878***	0.007204***
t-Statistic	3.413	3.301	3.168	3.132
p-Value	0.0006	0.0010	0.0015	0.0018
beta (β)	0.984614***	0.985149***	0.985076***	0.984160***
t-Statistic	243.9	253.2	243.3	213.3
p-Value	0.0000	0.0000	0.0000	0.0000
degrees of freedom (df)	6.853648***	6.925275***	7.264400***	7.044709***
t-Statistic	12.27	11.90	11.70	11.62
p-Value	0.0000	0.0000	0.0000	0.0000
log-likelihood	25334.343	25132.457	24870.512	24754.147

Table 12 - Estimates of the Bivariate DCC-GARCH (1,1) Model, Degrees of Freedom, Log-likelihood

	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2026	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2027	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2028	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2029
Average CORij	-0.030906	-0.029990	-0.036048*	-0.029070
t-Statistic	-0.9881	-0.9409	-1.147	-0.8904
p-Value	0.3232	0.3468	0.2513	0.3733
alpha (α)	0.007099***	0.007192***	0.006640***	0.007193***
t-Statistic	3.039	2.999	3.031	3.168
p-Value	0.0024	0.0027	0.0025	0.0015
beta (β)	0.983747***	0.984130***	0.984981***	0.984612***
t-Statistic	209.6	196.7	222.6	214.6
p-Value	0.0000	0.0000	0.0000	0.0000
degrees of freedom (df)	7.029137***	7.042781***	6.986029***	7.010423***
t-Statistic	11.65	11.62	11.84	12.00
p-Value	0.0000	0.0000	0.0000	0.0000
log-likelihood	24602.282	24394.485	24298.304	24222.677
In tables 13, 14, 15, and 16, we report the results of the diagnostic tests and information criteria. The statistic results suggest that the null hypothesis of no spillovers is rejected at 1% significance level. Ljung-Box test results (Hosking, 1980; Li-McLeod, 1983) provide evidence of no serial autocorrelation, suggesting the absence of misspecification errors of the estimated multivariate GARCH model. Moreover, the estimated AIC and SIC information criteria are presented.

Table 13 - Diagnostic Tests and Information Criteria

	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2018	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2019	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2020	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2021
χ^2 (4)	8610.8**	7362.6**	1550.4**	1156.0**
p-Value	0.0000	0.0000	0.0000	0.0000
Hosking (50)	202.361	221.370	211.544	219.100
p-Value	0.4400240	0.1432761	0.2743670	0.1687156
Hosking2 (50)	171.515	166.338	226.453	230.384
p-Value	0.9133156	0.9506138	0.0808038	0.0571307
Li-McLeod (50)	202.575	221.452	211.587	219.146
p-Value	0.4358855	0.1424173	0.2736908	0.1681628
Li-McLeod2 (50)	172.026	166.843	226.539	230.334
p-Value	0.9087771	0.9476324	0.0802170	0.0573922
Akaike	0.002067	0.002187	0.002342	0.002436
Schwarz	0.023842	0.023961	0.024117	0.024211

Table 14 - Diagnostic Tests and Information Criteria

	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2022	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2023	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2024	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2025
χ^2 (4)	1970.3**	2510.7**	1463.2**	688.23**
p-Value	0.0000	0.0000	0.0000	0.0000
Hosking (50)	221.416	202.490	204.207	195.549
p-Value	0.1427906	0.4375132	0.4043224	0.5756642
Hosking2 (50)	201.280	181.741	194.714	191.925
p-Value	0.4217686	0.7901022	0.5527005	0.6082992
Li-McLeod (50)	221.507	202.618	204.279	195.733
p-Value	0.1418376	0.4350033	0.4029490	0.5720145
Li-McLeod2 (50)	201.571	182.022	194.924	192.107
p-Value	0.4161116	0.7857841	0.5484897	0.6046953
Akaike	0.002489	0.002537	0.002594	0.002616
Schwarz	0.024263	0.024312	0.024369	0.024390
Table 15 - Diagnostic Tests and Information Criteria

	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2026	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2027	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2028	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2029
x^2 (4)	850.54**	1487.7**	688.45**	11490144.8**
p-Value	0.0000	0.0000	0.0000	0.0000
Hosking (50)	189.425	189.649	198.376	191.851
p-Value	0.6931695	0.6890983	0.5191595	0.6479014
Hosking2 (50)	210.468	205.508	211.294	218.450
p-Value	0.2587621	0.3423628	0.2460402	0.1520976
Li-McLeod (50)	189.609	189.939	198.546	192.042
p-Value	0.6898251	0.6856063	0.5157553	0.6442619
Li-McLeod2 (50)	210.356	205.489	211.277	218.314
p-Value	0.2605135	0.3427115	0.2463003	0.1536092
Akaike	0.002663	0.002698	0.002744	0.002765
Schwarz	0.024438	0.024473	0.024519	0.024539

Table 16 - Diagnostic Tests and Information Criteria

	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2030	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2031	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2032	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2033
x^2 (4)	1615.6**	1320.5**	1265.8**	898.61**
p-Value	0.0000	0.0000	0.0000	0.0000
Hosking (50)	188.043	187.970	205.352	203.574
p-Value	0.7179321	0.7192047	0.3826575	0.4164732
Hosking2 (50)	207.557	202.431	192.019	197.642
p-Value	0.3063950	0.3995570	0.6064352	0.4938025
Li-McLeod (50)	188.272	188.175	205.438	203.681
p-Value	0.7138843	0.7155944	0.3810407	0.4144023
Li-McLeod2 (50)	207.483	202.369	192.069	197.676
p-Value	0.3076582	0.4007574	0.6054549	0.4931197
Akaike	0.002791	0.002828	0.002845	0.002858
Schwarz	0.024566	0.024603	0.024619	0.024633

Figures 3 and 4 plot the conditional covariances for all the pairs of market returns during the whole period. We observe a tremble trend for all the conditional covariances. Additionally, conditional covariances seem to be extremely volatile.
Figure 3 - Conditional Covariances of the Bivariate DCC-GARCH (1,1) Model.

Figure 4 - Conditional Covariances of the Bivariate DCC-GARCH (1,1) Model.
ANALYSIS OF THE DYNAMIC CONDITIONAL CORRELATIONS (DCCs)

Tables 17, 18, 19 and 20 show the descriptive statistics of the dynamic conditional correlations (DCCs) of the twenty-one pairs of markets generated by Equation 5. We observe the highest mean value (0.29828) for the pair of markets DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2028. The highest std. deviation value for the pair of markets DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2019 indicates that the specific DCC experiences larger fluctuations. The statistically significant Skewness, Excess Kyrtosis and the Jarque-Bera test statistics indicate that the DCCs for all the pairs of markets are not normally distributed.

Table 17 - Statistical Properties of the Multivariate GARCH-DCC’s

	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2018	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2019	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2020	DGCX-EUR/USD CONTINUOUS AVG.- SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2021
Mean	-0.039373	-0.042172	-0.03832	-0.043446
Minimum	-0.35803	-0.36773	-0.33772	-0.33122
Maximum	0.16949	0.19866	0.15557	0.13102
Std. Deviation	0.086969	0.088029	0.083352	0.081366
Skewness	-0.66274***	-0.59605***	-0.77505***	-0.86371***
p-Value	1.0141e-055	2.0647e-045	1.5787e-075	2.4504e-093
Excess Kyrtosis	0.77644***	0.67404***	0.74112***	0.71865***
p-Value	3.1330e-020	1.2544e-015	1.4292e-018	1.4835e-017
Jarque-Bera	331.84***	263.73***	415.13***	492.25***
p-Value	8.7272e-073	5.3801e-058	7.1627e-091	1.2891e-107
Akaike	0.002791	0.002828	0.002845	0.002858
Schwarz	0.024566	0.024603	0.024619	0.024633
Table 18 - Statistical Properties of the Multivariate GARCH-DCC’s

	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2022	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2023	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2024	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2025
Mean	-0.044479	-0.036367	-0.03233	-0.043351
Minimum	-0.29975	-0.32593	-0.32002	-0.31119
Maximum	0.13255	0.15368	0.16649	0.1375
Std. Deviation	0.075008	0.078369	0.086434	0.079562
Skewness	-0.59792***	-0.61477***	-0.61657***	-0.70375***
p-Value	1.0982e-045	3.3949e-048	1.8166e-048	1.3480e-062
Excess Kyrtosis	0.46461***	0.67357***	0.40503***	0.70271***
p-Value	3.5133e-008	1.3114e-015	1.5354e-006	7.4775e-017
Jarque-Bera	231.46***	276.40***	236.91***	348.03***
p-Value	5.4935e-051	9.5830e-061	3.6013e-052	2.6732e-076

Table 19 - Statistical Properties of the Multivariate GARCH-DCC’s

	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2026	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2027	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2028	DGCX-EUR/USD CONTINUOUS AVG.-SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2029
Mean	-0.033146	-0.042371	-0.032106	-0.042044
Minimum	-0.29929	-0.28349	-0.25206	-0.2736
Maximum	0.11153	0.092663	0.10489	0.096035
Std. Deviation	0.077377	0.071889	0.0673	0.069413
Skewness	-0.96329***	-0.95533***	-0.87138***	-0.93736***
p-Value	1.2552e-115	9.3446e-114	5.7226e-095	1.3692e-109
Excess Kyrtosis	0.93473***	0.91733***	0.87606***	1.0724***
p-Value	1.3611e-028	1.3410e-027	2.5739e-025	4.2329e-037
Jarque-Bera	644.83***	631.70***	535.03***	655.95***
p-Value	9.4906e-141	6.7291e-138	6.5873e-117	3.6472e-143
Table 20 - Statistical Properties of the Multivariate GARCH-DCC’s

	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2030	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2031	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2032	DGCX-EUR/USD CONTINUOUS AVG. - SETT. PRICE - BANCA FIDEURAM ZERO CPN. 2033
Mean	-0.038035	-0.037904	-0.043152	-0.037287
Minimum	-0.25894	-0.26307	-0.25104	-0.25792
Maximum	0.095731	0.10924	0.097284	0.10538
Std. Deviation	0.065429	0.06739	0.064469	0.068924
Skewness	-0.87481***	-0.79454***	-0.86477***	-0.92264***
p-Value	1.0575e-095	2.7998e-079	1.4595e-093	3.0921e-106
Excess Kyrtoisis	0.87804***	0.90575***	1.0857***	1.0885***
p-Value	2.0112e-025	6.0021e-027	5.4860e-038	3.5911e-038
Jarque-Bera	538.89***	470.47***	586.42***	645.45***
p-Value	9.5881e-118	6.8992e-103	4.5696e-128	6.9584e-141

Figures 5 and 6 present the pair-wise Dynamic Conditional Correlations (DCCs). We observe strong co-movements for all DCCs. DCCs have positive values in sub-periods, indicating the existence of contagion, implying the specific correlations risky for any investor. Furthermore, we can notice the effects of major economic events on the DCC graphs as we see that the lines are bouncing above and beyond, i.e. (a) the bankruptcy of Lehman Brothers (14/09/2008), (b) the European Central Bank announcement of an aggressive money-creation program, printing more than one trillion new euros (22/01/2015), (c) Black Monday (24/08/2015), and (d) the United Kingdom referendum (23/06/2016), among others.

Figure 5 - Dynamic Conditional Correlations for All the Pairs of Markets Generated by the Bivariate DCC-GARCH (1,1) Model.
CONCLUSIONS

This paper investigates the potential volatility spillovers effects and the existence of contagion effects of the Eurodollar futures market and sixteen zero coupons of Banca Fideuram by employing a bivariate DCC-GARCH model. We set the under-investigation period from 2005 until 2017. To the best of our knowledge, this is the first empirical study investigating volatility spillovers between the Eurodollar futures market and the zero coupons of Banca Fideuram.

The main empirical results are summarized as follows. Based on the descriptive statistics, BANCA FIDEURAM ZERO CPN. 2032 returns present the largest fluctuations compared to the rest markets. Furthermore, results of the bivariate DCC-GARCH model indicate strong evidence of volatility spillover effects. DCCs analysis shows evidence of strong co-movements for all the pairs of markets. Additionally, DCCs reveal contagion for all the pairs of markets in sub-periods. The empirical results are of interest to policymakers, who provide regulations for the under-investigation derivative markets, as well as to market-makers.

ACKNOWLEDGMENTS

This article was carried out by me independently. The research is original, and has not been submitted to any other journal. I want to thank the anonymous referees for their valuable comments and suggestions which helped me to improve the paper. Any responsibility for remaining errors in the resulting work is my own.
REFERENCES

Aboura, S., & Chevallier, J. (2015). Volatility returns with vengeance: financial markets vs. commodities. *Research in International Business and Finance* 33, 334–354. DOI: 10.1016/j.ribaf.2014.04.003.

Antonakakis, N., & Kizys, R. (2015). Dynamic spillovers between commodity and currency markets. *International Review of Financial Analysis* 41, 303-319. DOI: 10.1016/j.irfa.2015.01.016.

Antonakakis, N., Floros, C., & Kizys, R. (2016). Dynamic spillover effects in futures markets: UK and US evidence. *International Review of Financial Analysis* 48, 406–418. DOI: 10.1016/j.irfa.2015.03.008.

Bagchi, B. (2017). Volatility spillovers between crude oil price and stock markets: evidence from BRIC countries. *International Journal of Emerging Markets*, 12(2), 352-365. DOI: 10.1108/IJoEM-04-2015-0077.

Belhassine, O. (2020). Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises. *Research in International Business and Finance* 53. DOI: 10.1016/j.ribaf.2020.101195.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. *Journal of Econometrics* 31(3), 307-327. DOI: 10.1016/0304-4076(86)90063-1.

Chang, C.L., McAleer, M., & Wang, Y. (2018). Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances. *Energy* 151, 984-997. DOI: 10.1016/j.energy.2018.01.017.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. *Journal of the American Statistical Association* 74, 427-431. DOI: 10.2307/2286348.

Dimitriou, D. and Kenourgios, D. (2015). Contagion of the global financial crisis and the real economy: A regional analysis. *Economic Modelling* 44, 283-293. DOI: 10.1016/j.econmod.2014.10.048.

Dimitriou, D, Kenourgios, D., & Simos, T. (2013). Global financial crisis and emerging stock market contagion: A multivariate FIAPARCH-DCC approach. *International Review of Financial Analysis* 30, 46-56. DOI: 10.1016/j.irfa.2013.05.008.

Du, L., & He, Y. (2015). Extreme risk spillovers between crude oil and stock markets. *Energy Economics* 51, 455-465. DOI: 10.1016/j.eneco.2015.08.007.

Efimova, O., & Serletis, A. (2014). Energy markets volatility modelling using GARCH. *Energy Economics* 43, 264-273. DOI: 10.1016/j.eneco.2014.02.018.

Engle, R. F. (2002). Dynamic conditional correlation—a simple class of multivariate GARCH models. *Journal of Business & Economic Statistics* 20, 339-350. DOI: 10.1198/073500102288618487.

Ewing, B.T., & Malik, F. (2016). Volatility spillovers between oil prices and the stock market under structural breaks. *Global Finance Journal* 29, 12-23. DOI: 10.1016/j.gfj.2015.04.008.

Forbes, K., & Rigobon, R. (2002). No contagion, Only Interdependence: Measuring Stock Market CoMovements. *Journal of Finance*, 57, 2223-2261. DOI: 10.1111/0022-1082.00494.

Hosking, J. R. M. (1980). The Multivariate Portmanteau Statistic. *Journal of the American Statistical Association* 75(371), 602-608. DOI: 10.2307/2287656.

Hu, H., Chen, D., Sui, B., Zhang, L., & Wang, Y. (2020). Price volatility spillovers between supply chain and innovation of financial pledges in China. *Economic Modelling* 89, 397-413. DOI: 10.1016/j.econmod.2019.11.012.

Kavussanos, M.G., Visvikis, I.D., & Dimitrakopoulos, D.N. (2014). Economic spillovers between related derivatives markets: The case of commodity and freight markets. *Transportation Research Part E: Logistics and Transportation Review* 68, 79–102. DOI: 10.1016/j.tre.2014.05.003.

Li, K.X., Qi, G., Shi, W., Yang, Z., Bang, H.S., Woo, S.H., & Yip, T.L. (2014). Spillover effects and dynamic correlations between spot and forward tanker freight markets. *Maritime Policy & Management* 41(7), 683-696. DOI: 10.1080/03088839.2014.958585.

Li, Y., & Giles, D. E. (2015). Modelling volatility spillover effects between developed stock markets and Asian emerging stock markets. *International Journal of Finance and Economics* 20, 155-177. DOI: 10.1002/ijfe.1506.

McLeod, A. I., & Li, W. K. (1983). Diagnostic checking ARMA time series models using squared-residuals autocorrelations. *Journal of Time Series Analysis* 4(4), 269-273. DOI: 10.1111/j.1467-9892.1983.tb00373.x.
Ma, Y.R., Zhang, D., Ji, Q., & Pan, J. (2019). Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter? *Energy Economics* 81, 536-544. DOI: 10.1016/j.eneco.2019.05.003.

Mensi, W., Beljed, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. *Economic Modelling* 32, 15-22. DOI: 10.1016/j.econmod.2013.01.023.

Roy, R.P., & Roy, S.S. (2017). Financial contagion and volatility spillover: An exploration into Indian commodity derivative market. *Economic Modelling* 67, 368-380. DOI: 10.1016/j.econmod.2017.02.019.

Sehgal, S., Ahmad W., & Deisting, F. (2015). An investigation of price discovery and volatility spillovers in India’s foreign exchange market. *Journal of Economic Studies* 42(2), 261-284. ISSN: 0144-3585.

Sensoy, A., Hacihasanoglu, E., & Nguyen, D.K., (2015). Dynamic convergence of commodity futures: Not all types of commodities are alike. *Resources Policy* 44(3). DOI: 10.1016/j.resourpol.2015.03.001.

Singhal, S., & Ghosh, S. (2016). Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models. *Resources Policy. Vol. 50*(3), 276-288 (2016) DOI: 10.1016/j.resourpol.2016.10.001.

Sukhonpitumart, P., Jaroenjitkam, A., Maneenop, S., & Padungsaksawasdi, C. (2020). RETURN AND VOLATILITY SPILLOVERS BETWEEN STOCK AND FUTURES MARKETS IN THAILAND. *Academy of Accounting and Financial Studies Journal* 24(2), 1-14.

Sun, X., Haralambides, H., & Liu, H. (2019). Dynamic spillover effects among derivative markets in tanker shipping. *Transportation Research Part E: Logistics and Transportation Review* 122, 384-389. DOI: 10.1016/j.tre.2018.12.018.

Tsiaras, K., & Simos, T. (2020). FOREX and equity markets spillover effects among USA, Brazil, Italy, Germany and Canada in the aftermath of the Global Financial Crisis. *Journal of Finance and Accounting Research* 2(1). DOI: 10.32350/JFAR/0201/03.

Tsiaras, K. (2020). Dynamic relationship between future FOREX markets in the post Global Financial Crisis. *Journal of Quantitative Methods* 4(1), 30-52. DOI: 10.29145/2020/jqm/040102.

Tsiaras, K. (2020). Contagion in crude oil future market and 3Y, 4Y and 5Y CDS markets for the post-Global Financial Crisis: A multivariate GARCH-cDCC approach. *Ekonomická revue*. Accepted Paper for publication in the upcoming issue.

Yu, L., Zha, R., Stafylas, D., He, K., & Liu, J. (2020). Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models. *International Review of Financial Analysis* 68. DOI: 10.1016/j.irfa.2018.11.007.
PRELIVANJE NESTABILNOSTI I EFEKAT ZARAZE IZMEĐU TRŽIŠTA EVRO DOLARSKIH FJUČERSA I BEZKUPONSKIH OBVEZNICA: DOKAZI IZ ITALIJE

Rezime:
Ovaj rad ispituje vremenski različite uslovne korelacije između terminskog tržišta Eurodollar i nula kupona Banca Fideuram. Primjenjujemo GARCH model bivarijantne dinamičke uslovne korelacije (DCC) kako bismo zabeležili potencijalne efekte zaraze između tržišta za period 2005-2017. Empirijski rezultati otkrivaju zarazu tokom istražnog perioda u vezi sa dvadeset i jednim bivarijantnim modelom, pokazujući da tržište futura Eurodollar ima veliki uticaj na nulte kupone Banca Fideuram. Nalazi imaju presudne implikacije za kreatore politika koji pružaju propise za gore navedena tržišta derivata.

Ključne reči:
DCC-GARCH model, buduće tržište EURODOLLAR, nula kupona, financijska zaraza, dinamičke uslovne korelacije.

Klasifikacija jela:
C58, C61, G11, G15.