Less Can Be More When Targeting Interleukin-6-Mediated Cytokine Release Syndrome in Coronavirus Disease 2019

Brian C. Betts, MD1; James W. Young, MD2-4

Abstract: Coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome-coronavirus-2 is a worldwide public health emergency that will have a lasting generational impact in terms of mortality and economic devastation. Social distancing to prevent viral transmission and supportive care of infected patients are the main interventions now available. This global health crisis therefore merits innovative therapies. Cytokine release syndrome mediated by interleukin-6 is a critical driver of coronavirus disease 2019 mortality. Herein, we review and discuss key immunologic effects of direct interleukin-6 blockade, downstream nonselective Janus kinase inhibition, and selective Janus kinase 2 suppression to treat coronavirus disease 2019–related cytokine release syndrome. We provide evidence that selective targeting of interleukin-6 or Janus kinase 2 is well informed by existing data. This contrasts with broad, nonselective blockade of Janus kinase-mediated signaling, which would inhibit both deleterious and beneficial cytokines, as well as critical host antiviral immunity.

Key Words: coronavirus disease 2019; severe acute respiratory syndrome-coronavirus-2, cytokine release syndrome, interleukin-6, JAK

INTERLEUKIN-6 AS A DRIVER OF COVID-19 CYTOKINE RELEASE SYNDROME

Early in the characterization of COVID-19 disease, physicians in Wuhan, China, recognized that patients exhibited a second wave of symptoms consistent with cytokine release syndrome (CRS), characterized by high levels of interleukin-6 (IL-6), high fevers, and hypoxic pneumonitis often requiring mechanical ventilation (4, 5). As seen in other clinical settings prone to CRS (6), clinical investigators have identified this as a manifestation of an overly robust immune response to the SARS-CoV-2 (4, 5, 7). Mechanistically, pathogenic Th1 T cells fuel CRS by producing GM-CSF, which induces CD14+CD16+ monocytes to release IL-6, causing the resultant CRS (5, 7). Investigators in China thus made the rational choice to use the anti-IL-6 receptor monoclonal antibody (Mab), tocilizumab, to treat CRS and reduce the sequelae of IL-6-mediated inflammation (8–11) (Fig. 1). Emerging data show that early administration of tocilizumab can reverse the inflammatory pneumonitis associated with COVID-19, which in the best-case scenario results in radiographic improvement within 3 weeks of treatment (8). Investigators in the United States are similarly studying the efficacy of tocilizumab in COVID-19 pneumonia in a multicenter, randomized, placebo-controlled phase III clinical trial (ClinicalTrials.gov: NCT04320615, Table 1). Tocilizumab is FDA and EMA approved for the treatment of CRS after chimeric antigen receptor (CAR) T-cell therapy in the United States and Europe (6), and tocilizumab is now approved in China for the treatment of COVID-19-induced CRS. In the context of treating...
CRS after CAR T-cell therapy, tocilizumab has not caused severe adverse reactions, secondary infections, or deaths (6). Moreover, while tocilizumab blockade of the IL-6 receptor reduces the rampant systemic inflammation observed with CRS, there is no collateral damage to dendritic cell or T-cell function (12). Clinical investigators are also comparing siltuximab, a direct anti-IL-6 chimeric Mab (13), with glucocorticoids in treating COVID-19 pneumonia (ClinicalTrials.gov: NCT 04329650; Table 1).

**TARGETING JANUS KINASE1/2 TO SUPPRESS IL-6 RECEPTOR ACTIVITY**

In contrast to blockade of the IL-6 cytokine or its receptor, others have sought to blunt the severity of COVID-19 by therapeutically targeting signal transduction mediated by the IL-6 receptor, using the Janus kinase (JAK) 1/2 inhibitor, ruxolitinib (14, 15) (Table 1). Ruxolitinib is FDA-approved for the treatment of myelofibrosis (16), and more recently, steroid-refractory graft-versus-host disease (17). While ruxolitinib suppresses IL-6 receptor activity (18, 19), its very broad effects on JAK1/2 signaling also eradicate the functions of other important common gamma chain cytokines, e.g., IL-2, IL-7, and IL-15 (20, 21) (Fig. 1). Others and we have also demonstrated that ruxolitinib profoundly impairs key cell mediators of host antiviral immunity, chiefly beneficial cytotoxic T lymphocytes, natural killer cells, and dendritic cells (20–25). While ruxolitinib diminishes the systemic response to IL-6, as well as impairing Th1 cells implicated in the initiation of CRS, its overall suppression of cellular and innate immunity can also disable the clearance of SARS-CoV-2. Similar to a SCID-like immune phenotype, broad JAK1/2 inhibition by ruxolitinib is complicated by serious infections like cryptococcal pneumonia, tuberculosis, hepatitis B, and cytomegalovirus (24, 26, 27). Given that ruxolitinib clearly reduces antiviral immunity, the rationale to test its use in treating patients with severe or very severe COVID-19 illness merits at least equipoise or serious reconsideration. Caution is especially warranted in the context of an expanded access program for ruxolitinib, managed by Novartis in the United States (ClinicalTrials.gov: NCT 04337359), and a phase 3 clinical trial of
ruxolitinib, sponsored by Incyte in the United States and Novartis outside the United States, both of which are enrolling patients with CRS due to COVID-19 (ClinicalTrials.gov: NCT 04331665 and NCT 04334044).

**JAK INHIBITORS AS ANTIVIRAL THERAPY**

In contrast to ruxolitinib, another JAK1/2 inhibitor, baricitinib, is another potential therapeutic agent against SARS-CoV-2 (28, 29). An advantage of baricitinib over ruxolitinib, however, is that it can not only target IL-6 signal transduction; but it also exerts antiviral activity by neutralizing AAK1, a protein involved in viral entry by SARS-CoV-2 (28) (**Table 1**, **Fig. 1**). Hence baricitinib is also a candidate antiviral medication. Despite ruxolitinib’s capacity to bind AAK1 as well, it is 20-fold less potent in this regard than a comparable dose of baracitinib (29). Standard doses of ruxolitinib would therefore not achieve meaningful antiviral activity in COVID-19 patients. The unique antiviral effect of baricitinib combined with its ability to suppress IL-6 signal transduction have therefore led to its evaluation in a number of clinical trials for the treatment of COVID-19 (ClinicalTrials.gov: NCT 04358614 NCT 04340232 NCT 04346147 NCT 04320277 NCT 04321993 NCT 04345289).

**SELECTIVE JAK2 INHIBITION TO REDUCE IL-6 SIGNAL TRANSDUCTION**

Fedratinib and pacritinib are selective JAK2 inhibitors that exhibit negligible effects on JAK1 at standard doses (20, 30, 31) (**Table 1**). We have shown that fedratinib reduces dendritic cell maturation yet spares the activity of viral-specific T cells (32), and it exhibits intermediate suppression of NK cells compared with ruxolitinib (21). Moreover, the chief toxicities associated with fedratinib include gastrointestinal side effects, anemia, and rare encephalopathy, which thiamine supplementation can prevent (31). We have also shown that unlike broad JAK1/2 inhibition by ruxolitinib, selective JAK2 inhibition by pacritinib spares both nonalloreactive T cells specific for nominal antigens and the induction of beneficial Tregs, while significantly limiting NK cell activity (20). In a large, randomized clinical trial, the most common adverse events attributed to pacritinib were diarrhea and thrombocytopenia (30). To date, serious infectious complications have not been reported with either selective JAK2 inhibitor (30, 31). Additionally, fedratinib and pacritinib efficiently suppress Th1 cells that initiate CRS pathogenesis via GM-CSF (5, 20, 32). Similar to ruxolitinib, fedratinib has weak activity against AAK1 at standard doses and is therefore unable to exert direct antiviral effects against SARS-CoV-2 in the way that baracitinib can (29). The effects of pacritinib on AAK1 are unknown. Given that fedratinib and pacritinib spare antigen-specific T-cell function and have minimal risks for opportunistic infections, selective JAK2 inhibitors warrant preferential testing in treating COVID-19 CRS over broader JAK1/2 inhibitors like ruxolitinib (**Figure 1**).

**CONCLUSIONS**

COVID-19 is the most significant infectious global health threat experienced in generations. There is thus an essential need for innovative and novel applications of existing therapeutics to address the morbidity and mortality of this deadly virus. We must nevertheless thoughtfully weigh the risks and benefits of experimental investigations and rely on established data to guide interval decisions before there are clear-cut conclusions. The hunger for game changing therapies should not cloud clinical judgment and practice, diminish the need for disciplined clinical research, or minimize scientific rigor. One must carefully consider the severe immune consequences of ablating common gamma chain cytokines. While CRS has emerged as a critical driver of COVID-19 pathology and death, approaches to target IL-6 selectively are better informed by current data than broad, nonselective blockade of JAK1/2-mediated signaling, which would inhibit both deleterious and beneficial cytokines.

---

**TABLE 1. Inhibitors of Interleukin-6 Receptor Signal Transduction**

| Drug | Mechanism | Immune Profile | Antiviral Activity | Coronavirus Disease 2019 Trial NCT # |
|------|-----------|----------------|-------------------|--------------------------------------|
| Tocilizumab (7–10) | Anti-IL-6R Mab | ≠ DCs ≠ T cells | Not reported | NCT 04320615 |
| Siltuximab (13) | Anti-IL-6 Mab | Not reported | Not reported | NCT 04329650 |
| Ruxolitinib (17–21) | JAK1/2 inhibitor | ↓↓ DCs ↓↓ T cells ↓↓ NK cells | Weak AAK1 | NCT 04337359 NCT 04331665 NCT 04334044 |
| Baricitinib (28, 29) | JAK1/2 inhibitor | ↓↓ T cells | Strong AAK1 | NCT 04358614 NCT 04340232 NCT 04346147 NCT 04320277 NCT 04321993 NCT 04345289 |
| Fedratinib (21, 31, 32) | JAK2 inhibitor | ↓↓ DCs ≠ T cells ↓ NK cells | Weak AAK1 | Not reported |
| Pacritinib (20) | JAK2 inhibitor | ≠ T cells ↓↓ NK cells | Not reported | Not reported |

COVID-19 = coronavirus disease 2019, DC = dendritic cells, JAK = Janus kinase, NK = natural killer.
≠ = no change; ↓ = decrease in cell number and/or function.
ACKNOWLEDGMENTS

We thank Craig Weinert, MD, MPH (University of Minnesota); and Neil A. Halpern, MD, MCCM, FCCP, FACP; Stephen M. Pastores, MD, FACP, FCCP, FACC; and Sanjay Chawla, MD, FCCP, FACP, FCCM (Memorial Sloan Kettering Cancer Center, New York, NY) for their critical reviews of the manuscript.

Drs. Betts and Young researched, wrote, and edited the manuscript.

Dr. Betts reports pacritinib is supplied by CTI BioPharma for the conduct of clinical trial NCT 02891603. In addition, Dr. Betts has a pending patent WO2017058950A1: Methods of treating transplant rejection. Dr. Young owns shares of Amgen, Merck, and Pfizer common stock.

For information regarding this article, E-mail: Bett0121@umn.edu

REFERENCES

1. Dong E, Du H, Gardner L: An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20:533–534
2. Cortegiani A, Inoglia G, Ippolito M, et al: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57:279–283
3. Shen C, Wang Z, Zhao F, et al: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323:1582–1589
4. Chen G, Wu D, Guo W, et al: Clinical and immunologic features in severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130:2620–2629
5. Zhou Y, Fu B, Zheng X, et al: Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. National Science Review 2020 Mar 13. [online ahead of print]
6. Neelapu SS, Tummala S, Kebriaei P, et al: Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15:47–62
7. Ruan Q, Yang K, Wang W, et al: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46:846–848
8. Zhang X, Song K, Tong F, et al: First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv 2020; 4:1307–1310
9. Alzghari SK, Acuña VS: Supportive treatment with tocilizumab for COVID-19: A systematic review. J Clin Virol 2020; 127:104380
10. Zhang C, Wu Z, Li JW, et al: Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020; 55:105954
11. Xu X, Han M, Li T, et al: Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 2020; 117:10970–10975
12. Betts BC, St Angelo ET, Kennedy M, et al: Anti-IL6-receptor-alpha (tocilizumab) does not inhibit human monocyte-derived dendritic cell maturation or alloreactive T-cell responses. Blood 2011; 118:5340–5343
13. Deisseroth A, Ko CW, Nie L, et al: FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin Cancer Res 2015; 21:950–954
14. Ingraham NE, Lotfi-Emran S, Thielien BK, et al: Immunomodulation in COVID-19. Lancet Respir Med 2020; 8:544–546
15. Galimberti S, Baldini C, Baratè C, et al: The CoV-2 outbreak: How hematologists could help to fight Covid-19. Pharmacol Res 2020; 157:104866
16. Verstovsek S, Kantarjian H, Mesa RA, et al: Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363:1117–1127
17. Zeiser R, von Bubnoff N, Butler J, et al: REACH2 Trial Group: Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med 2020; 382:1800–1810
18. Spoerl S, Mathew NR, Bscheider M, et al: Activity of therapeutic JAK ½ blockade in graft-versus-host disease. Blood 2014; 123:3832–3842
19. Zeiser R, Burchert A, Lengerke C, et al: Ruxolitinib in corticosteroid refractory graft-versus-host disease after allogeneic stem cell transplantation: A multicenter survey. Leukemia 2015; 29:2062–2068
20. Betts BC, Bastian D, Iamsawat S, et al: Targeting JAK2 reduces GVHD and xenograft rejection through regulation of T cell differentiation. Proc Natl Acad Sci U S A 2018; 115:1582–1587
21. Curran SA, Shyer JA, St Angelo ET, et al: Human dendritic cells mitigate NK-cell dysfunction mediated by nonelective JAK1/2 blockade. Cancer Immunol Res 2017; 5:52–60
22. Schönberg K, Rudolph J, Vonnahme M, et al: JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res 2015; 75:2187–2199
23. Pampaloni Yajnanarayana S, Stübig T, et al: JAK1/2 inhibition impairs NK cell function in myeloproliferative neoplasms. Br J Haematol 2015; 169:824–833
24. Heine A, Brossart P, Wolf D: Ruxolitinib is a potent immunosuppressive compound: Is it time for anti-infective prophylaxis? JAMA 2013; 322:3843–3844
25. Heine A, Held SA, Daecke SN, et al: The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in patients with myeloproliferative neoplasms. JAMA 2018; 320:296–297
26. von Hofsten J, Johnsson Forsberg M, Zetterberg M: Cytomegalovirus retinitis in a patient who received ruxolitinib. N Engl J Med 2016; 374:296–297
27. Sant’Antonio E, Bonifacio M, Breccia M, et al: A journey through infectious risk associated with ruxolitinib. Br J Haematol 2019; 187:286–295
28. Richardson P, Griffin I, Tucker C, et al: Baricitinib as potential treatment for glucocorticoid-refractory acute graft-versus-host disease. Lancet Respir Med 2020; 20:400–402
29. Mascarenhas J, Hoffman R, Talpaz M, et al: Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: A randomized clinical trial. JAMA Oncol 2018; 4:652–659
30. Harrison CN, Schaap N, Vannucchi AM, et al: Janus kinase-2 inhibitor-fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): A single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol 2017; 4:e317–e324
31. Betts BC, Abdel-Wahab O, Curran SA, et al: Janus kinase-2 inhibition induces durable tolerance to alloantigen by human dendritic cell-stimulated T cells yet preserves immunity to recall antigen. Blood 2011; 118:5330–5339