Blockade of PD-L1/PD-1 signaling promotes osteo-/odontogenic differentiation through Ras activation

So Mi Jeon, Je Sun Lim, Su Hwan Park, Hyung Joon Kim, Hyung-Ryon Kim and Jong-Ho Lee

INTRODUCTION

Human dental pulp stem cells (hDPSCs) are rich in human dental pulp tissues. Recently, hDPSCs have been substantially considered for several applications in the regenerative medicine and tissue engineering fields due to their benefits over the other sources. First, they are easily accessible and are easily obtained during routine dental procedures without ethical concerns, and can retain their stem cell properties even after long cryopreservation. Second, hDPSCs have a great potential with multilineage differentiation; they can differentiate into odontogenic lineage or whether PD-1 positively regulates hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.

The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs. Importantly, PD-L1/PD-1 signaling has been shown to negatively regulate the osteo-/odontogenic differentiation of hDPSCs. Mechanistically, depletion of either PD-L1 or PD-1 expression increased ERK and AKT phosphorylation levels through the upregulation of Ras enzyme activity, which plays a pivotal role during hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.

So Mi Jeon, Je Sun Lim, Su Hwan Park, Hyung Joon Kim, Hyung-Ryon Kim and Jong-Ho Lee

Received: 29 September 2021 Revised: 17 January 2022 Accepted: 8 March 2022
Published online: 01 April 2022

1Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea; 2Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea; 3Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea and 4Department of Biomedical Sciences, Dong-A University, Busan, Republic of Korea

Correspondence: Hyung-Ryong Kim (hrkimdp@gmail.com) or Jong-Ho Lee (Topljh19@dau.ac.kr)
PD-L1 inhibits hDPSCs differentiation into the osteo-/odontogenic lineage. As shown in Fig. 2e, PD-L1 knockdown (Fig. S1). Therefore, we checked whether these signals are affected by PD-L1 expression. As shown in Fig. 2e, PD-L1 knockdown markedly increased basal and ODM-induced phosphorylation levels of ERK and AKT, but not p38 (data not shown), in hDPSCs. Moreover, treatment of ERK inhibitor U0126 or PD98059 or Akt inhibitor MK-2206 abolished the PD-L1 silencing-induced expression levels of differentiation markers (Fig. 2f). Together, these results demonstrate that PD-L1 expression negatively regulates the hDPSCs differentiation into the osteo-/odontogenic lineage via downregulation of the ERK and AKT signals.
Fig. 1 PD-L1 expression is downregulated during hDPSCs differentiation into the osteo-/odontogenic lineage. a hDPSCs were harvested for the isolation of membrane and cytosolic fractions. Immunoblotting analyses were carried out and representative band intensity was quantified. b and c hDPSCs were cultured with or without ODM for the indicated days. Immunoblotting analyses were carried out and representative band intensity was quantified (b). Real-time PCR data for CD274, PDCD1, RUNX2, and DSPP (c). *P < 0.05; **P < 0.01; ***P < 0.001, Student’s t test. d and e hDPSCs were treated with or without A.A (L-ascorbic acid 2-phosphate), β-gly (β-glycerol phosphate), Dex (dexamethasone), or ODM for one day. Immunoblotting analyses were carried out and representative band intensity was quantified (d). Real-time PCR data for CD274 and PDCD1 (e). *P < 0.05; **P < 0.001, Student’s t test.
Based on our findings that PD-1 and PD-L1 had similar effects on Ras activity and its-dependent downstream signals and osteo-/odontogenic differentiation, we hypothesized that hDPSCs-intrinsic PD-1 signaling is engaged by PD-L1 to regulate osteo-/odontogenic differentiation and the corresponding signaling pathways. To confirm this, we used the FDA-approved
nivolumab (Opdivo), to block PD-L1-mediated intrinsic PD-1 signaling.13 We treated hDPSCs with nivolumab or isotype control antibody in the presence of ODM, and revealed that nivolumab-treated hDPSCs had higher activity and expression of Ras (Fig. 5a), phosphorylation levels of ERK and AKT (Fig. 5b), and expression levels of differentiation markers (Fig. 5c, d) compared to the IgG4 control antibody-treated cells. As a result, the nivolumab-treated cells exhibited increased ALP activities.

Fig. 3 PD-1 inhibits hDPSCs differentiation into the osteo-/odontogenic lineage. a and b The control siRNA or PD-1 siRNA-transfected hDPSCs were cultured with or without ODM for 3 days (for RUNX2) or 6 days (for DSPP). Immunoblotting analyses were carried out and representative band intensity was quantified (a). Real-time PCR data for RUNX2 and DSPP (b). **P < 0.01, two-way ANOVA test. c and d The control siRNA or PD-1 siRNA-transfected hDPSCs were cultured with or without ODM for 6 days (for ALP staining and activity assay) or 21 days (for Alizarin red S staining and quantification). ALP staining and activity assay were performed (c). Alizarin red S staining was performed and quantified (d). *P < 0.05; **P < 0.01, two-way ANOVA test. e The control siRNA or PD-1 siRNA-transfected hDPSCs were cultured with ODM for one day. Immunoblotting analyses were carried out and representative band intensity was quantified. f The control siRNA or PD-1 siRNA-transfected hDPSCs were cultured with ODM or the indicated inhibitors (U0126, 10 μmol·L⁻¹; PD98059, 10 μmol·L⁻¹; or MK-2206, 5 μmol·L⁻¹) for 3 days (for RUNX2) or 6 days (for DSPP). Immunoblotting analyses were carried out and representative band intensity was quantified.
Silencing of PD-L1/PD-1 promotes hDPSCs differentiation into the osteo-/odontogenic lineage via Ras activation. a hDPSCs were cultured with or without ODM for the indicated days. RBD pull-down assay and immunoblotting analyses were carried out, and representative band intensity was quantified. b hDPSCs were cultured with or without ODM for the indicated days. Immunoblotting analyses were carried out and representative band intensity was quantified. c hDPSCs were cultured with or without ODM or Abd-7 (20 μmol·L⁻¹) for one day. Immunoblotting analyses were carried out and representative band intensity was quantified. d and e hDPSCs were cultured with or without ODM or Abd-7 (20 μmol·L⁻¹) for 3 days (for RUNX2) or 6 days (for DSPP). Real-time PCR data for RUNX2 and DSPP (d). Immunoblotting analyses were carried out and representative band intensity was quantified (e). *P < 0.05; **P < 0.001, two-way ANOVA test. f hDPSCs were cultured with or without ODM or Abd-7 (20 μmol·L⁻¹) for 2 days. Immunoblotting analyses were carried out and representative band intensity was quantified. g and h hDPSCs were cultured with or without ODM or Abd-7 (20 μmol·L⁻¹) for 6 days (for ALP staining and activity assay) or 21 days (for Alizarin red S staining and quantification). ALP staining and activity assay were performed (g). Alizarin red S staining was performed and quantified (h). **P < 0.01, two-way ANOVA test. The control siRNA or PD-L1 siRNA-transfected hDPSCs were cultured with or without ODM for one day. RBD pull-down assay and immunoblotting analyses were carried out, and representative band intensity was quantified. The control siRNA, PD-L1 siRNA, or PD-1 siRNA-transfected hDPSCs were cultured with or without ODM or Abd-7 (20 μmol·L⁻¹) for 3 days (for RUNX2) or 6 days (for DSPP). Immunoblotting analyses were carried out and representative band intensity was quantified.
Fig. 5 PD-L1/PD-1 signaling blockade nivolumab promotes hDPSCs differentiation into the osteo-/odontogenic lineage. a hDPSCs were cultured with or without ODM for one day in the presence of IgG4 or Nivolumab (10 μg/mL). RBD pull-down assay and immunoblotting analyses were carried out, and representative band intensity was quantified. b hDPSCs were cultured with or without ODM for one day in the presence of IgG4 or Nivolumab (10 μg/mL). Immunoblotting analyses were carried out and representative band intensity was quantified. c and d hDPSCs were cultured with or without ODM for 3 days (for RUNX2) or 6 days (for DSPP) in the presence of IgG4 or Nivolumab (1 or 10 μg·mL⁻¹). Immunoblotting analyses were carried out and representative band intensity was quantified (c). Real-time PCR data for RUNX2 and DSPP (d). **P < 0.01, Student’s t test. e and f hDPSCs were cultured with or without ODM for 6 days (for ALP staining and activity assay) or 21 days (for Alizarin red S staining and quantification) in the presence of IgG4 or Nivolumab (10 μg/mL). ALP staining and activity assay were performed (e). Alizarin red S staining was performed and quantified (f). ***P < 0.001, Student’s t test. g Schematic diagram of the proposed mechanism.
DISCUSSION

Many types of dental stem cells have been identified. These stem cells include the dental pulp stem cells (DPSCs),6 stem cells from exfoliated deciduous teeth (SHED),8 periodontal ligament stem cells (PDLSCs),9 gingiva-derived MSCs (GMSCs),10 apical papilla stem cells (APSCs),11 and stem cells from dental follicles (DFSCs).12 DPSCs are ectoderm-derived stem cells, which are originated from migrating neural crest cells.13,14 DPSCs share many biological characteristics, such as a fibroblast-like morphology, surface marker expression, differentiation, proliferation, and colony-forming behavior similar to those of MSCs, including bone marrow MSCs (BM-MSCs) and adipose tissue-derived stem cells (ADSCs).15,16 However, their proliferation potential and differentiation potential varies; DPSCs have a higher proliferation rate and clonogenic potential than MSCs 1,27 DPSCs exhibit stronger odontogenesis and neurogenesis capabilities, but relatively low potential to produce osteogenic, adipogenic, and chondrogenic tissues than BM-MSCs.12,17 In addition to their potential for proliferation and multilineage differentiation capacities, DPSCs have been shown to possess potent immunosuppressive activities28–30 that are found in BM-MSCs.29,30

PD-1-mediated inhibitory signals play a critical role in immune tolerance and homeostasis. PD-1 signaling has been intensively studied with a focus on the PD-1–expressed immune cells, including activated T cells.8 Recently, functional roles of PD-1 signaling have been extended to non-immune cell types, such as tumor cells,31–33 retinal ganglion cells,34 and stem cells.35 In particular, Shi group demonstrated that SHED express PD-1, which regulates cell proliferation and differentiation.36 However, the potential functions and expression patterns of PD-L1 and PD-1 during the differentiation of hDPSCs into the odontogenic lineage are unknown.

In this study, we found out that hDPSCs constitutively express both PD-L1 and PD-1 in the cytomembrane. However, only PD-L1 expression was lost upon initiation of osteo-/odontogenic differentiation, indicating that PD-L1 expression may be unnecessary and could exert an inhibitory role in the hDPSCs differentiation into the osteo-/odontogenic lineage; when we depleted PD-L1 expression in hDPSCs, more hDPSCs differentiated into the osteo-/odontogenic lineage, demonstrating that PD-L1 expression negatively regulates the hDPSCs differentiation into the osteo-/odontogenic lineage. Although PD-1 expression was not altered during the hDPSCs differentiation into the osteo-/odontogenic lineage, PD-1 expression exhibited the same function as its ligand, PD-L1. Notably, nivolumab treatment, which prevents the binding of PD-L1 to PD-1, enhanced hDPSCs differentiation into osteo-/odontogenic lineage. These data suggest that the hDPSCs–intrinsic function of the PD-L1/PD-1 axis plays an inhibitory role in the osteo-/odontogenic differentiation.

Most defined PD-1 signaling has been demonstrated by studies on acutely activated T cells. In T-cell receptor (TCR)-stimulated T cells, ligands-engaged PD-1 becomes phosphorylated at two tyrosine residues in its cytoplasmic domain, leading to binding of protein tyrosine phosphatases (PTPs), such as SHP2.2 These PTPs directly dephosphorylate proximal TCR signaling molecules and subsequently antagonize downstream signaling of the TCR, such as PI3K/AKT and ERK.28 Notably, the inhibitory roles of PD-1 in the AKT and ERK signals were also observed in some specific tumor cells.39 Consistently, our study revealed that PD-1 signaling suppresses the pro-oste/o-odontogenic differentiating pathways, AKT and ERK, in hDPSCs. Interestingly, we found that Ras enzyme activity is induced; this is required for its own expression, the activation of both ERK and AKT pathways, and hDPSCs differentiation into osteo-/odontogenic lineage. To the best of our knowledge, this is the first study to show the role of Ras protein in hDPSCs differentiation into the odontogenic lineage. Nivolumab-mediated hDPSCs–PD-1 blockade and hDPSCs-specific PD-L1 or PD-1 knockdown studies showed that hDPSCs–intrinsic PD-1 signaling negatively regulates Ras enzyme activity and its dependent Ras expression. On the other hand, hDPSCs–intrinsic PD-1 silencing-induced osteo-/odontogenic differentiation was reversed by pharmacologic inhibition of Ras, suggesting that PD-1 silencing inhibits osteo-/odontogenic differentiation through deactivation of Ras enzyme activity. The divergent effects of PD-1 signaling on Ras activity have been reported in different cell types. For instance, PD-1 inhibits TCR-mediated activation of Ras through an unknown mechanism in T cells,36 in contrast; PD-1 signaling enhances Ras activation through phosphorylation of Ras GRP2 in tumor cells.37,38 In addition to SHP2 phosphorylation activity, it functions as an adapter that binds to receptor tyrosine kinases (RTKs) and recruits the GRB/SOS complex to the plasma membrane, enhancing GTPase-activating protein SOS-mediated Ras activation.39 SHP2 is also expressed by hDPSCs.40 However, there is a need for further investigations on whether SHP2 is directly or indirectly involved in the Ras activation for hDPSCs differentiation into osteo-/odontogenic lineage. In addition, further studies are needed for clear elucidation of the precise underlying mechanism of PD-1–mediated Ras inactivation in hDPSCs.

hDPSCs is from human adult permanent dental pulp tissue1 while SHED are isolated from exfoliated deciduous teeth.20 These cells have abilities in multilineage differentiation, self-renewal, and immunomodulatory functions.40 Hence, both hDPSCs and SHED have potential advantages in regenerative treatments and immunotherapy. Compared with hDPSCs, SHED show a higher differentiation potential, proliferation, and ability to form mineralized nodules in vivo.40–42 Liu et al. showed that PD-1 negatively regulates the SHED differentiation into osteo-/odontogenic lineage through suppressing β-catenin signal pathway,35 which is a distinct mechanism from our findings, although the role of PD-1 in the differentiation is the same in hDPSCs and SHED.

We showed different expression patterns of PD-L1 and PD-1 during the hDPSCs differentiation into osteo-/odontogenic lineage. In our differentiation system using general differentiation medium, only PD-L1 expression was downregulated during osteo-/odontogenic differentiation. It was revealed that dexamethasone inhibits CD274 transcriptional expression, but has no effect on PDCD1, in hDPSCs. Consistent with our results, dexamethasone has been shown to mediate transcriptional suppression of CD274 depending on the GR/STAT3 complex.43 These results suggest that the regulatory molecular mechanisms in the PD-L1/PD-1 expression seem to be different at the transcriptional levels.

Nivolumab is the most representative PD-1 inhibitor for the clinical treatment of advanced tumors.16–18 Besides cancer immunotherapy, as the first study demonstrating the effect of nivolumab in promoting hDPSCs differentiation into the osteo-/odontogenic lineage, the present study findings have strong clinical positive implications in the field of dental pulp therapy and provides a foundation for future clinical trials in dental pulp immunotherapy; our in vitro findings provide a basis for further research on the nivolumab effects with preclinical animal models.

In conclusion, we showed that inhibition of hDPSCs–intrinsic PD-L1/PD-1 signaling promotes osteo-/odontogenic differentiation via Ras activation (Fig. 5g). Moreover, for the first time, we showed that FDA-approved PD-1 blockade nivolumab exerted a
pro-osteo-/odontogenic differentiating effect on hDPSCs. Therefore, a combination of hDPSCs transplantation and PD-1 blockade or Ras activation could be a potential new therapeutic method for the regeneration or repairment of the dentin-pulp tissue.

MATERIALS AND METHODS

Chemicals and reagents

Abd-7 (Cat. # HY-122862) was purchased from MedChem Express (Princeton, NJ). l-ascorbic acid (Cat. # A4544), β-glycerophosphate (Cat. # 50020), dexamethasone (Cat. # D1756), ALP buffer (Cat. # A9226), p-Nitrophenyl phospahte tablets (Cat. # P5744), Alizarin Red (Cat. # TMS-008), hexadecylpyridinium chloride monohydrate (Cat. # C9002), and U0126 (Cat. # 662005) were acquired from Sigma-Aldrich (St. Louis, MO). hDPSCs (Cat. # PT-5025; Switzerland) were maintained in α-MEM (Welgene, South Korea), supplemented with 10% FBS (MERCK; Kenilworth, NJ). The passage numbers of the cells used in this study were from ReproCell (Beltsville, MD).

Culture of hDPSCs

hDPSCs (Cat. # PT-5025; Switzerland) were maintained in α-MEM (Welgene, South Korea), supplemented with 10% FBS (MERCK; Kenilworth, NJ). The passage numbers of the cells used in this study were limited to 2–3. To induce the hDPSCs differentiation into the osteo-/odontogenic lineage, the cells were cultured with osteo-/odontogenic differentiation medium (ODM) containing l-ascorbic acid (50 µg·mL⁻¹), β-glycerophosphate (10 mmol·L⁻¹), and dexamethasone (10 µmol·L⁻¹).

Real-time PCR analysis

Real-time PCR was performed as described in our previous study. For a ALP activity assay, hDPSCs were dissolved with ALP buffer, and then an ALP activity was determined in cell supernatant. An ALP staining was performed as described in our previous study. For a ALP activity assay, hDPSCs were dissolved with ALP buffer, and then an ALP activity was determined in cell supernatant.

Immunoblot analysis

Immunoblot analysis was performed in accordance to our previous study. The used antibodies were: rabbit anti-PD-L1 (1:1000), rabbit anti-ERK (pT202/pY204, 1:1000), rabbit anti-ERK (1:1000), rabbit anti-AKT (pS473, 1:1000), rabbit anti-AKT (1:1000), mouse anti-E-cadherin (1:500), mouse anti-PD-L1 (1:1000), rabbit anti-ERK (pT202/pY204, 1:1000), rabbit anti-AKT (pS473, 1:1000), mouse anti-ERK (1:1000), rabbit anti-AKT (pS473, 1:1000), rabbit anti-PD-1 (1:1000), mouse anti-E-cadherin (1:500), mouse anti-PD-L1 (1:1000), rabbit anti-ERK (pT202/pY204, 1:1000), rabbit anti-AKT (pS473, 1:1000), mouse anti-ERK (1:1000), rabbit anti-AKT (pS473, 1:1000), rabbit anti-PD-1 (1:1000), rabbit anti-ERK (pT202/pY204, 1:1000), rabbit anti-AKT (pS473, 1:1000), mouse anti-E-cadherin (1:500), mouse anti-PD-L1 (1:1000), rabbit anti-ERK (pT202/pY204, 1:1000), rabbit anti-AKT (pS473, 1:1000).

Data analysis

All the quantitative results are shown as means ± standard deviation (SD) of at least three independent experiments with duplicates or triplicates. A two-group comparison or a simultaneous comparison of more than two groups was conducted using a two-sided, two-sample Student's t-test or two-way ANOVA with Sidak's multiple comparisons test, respectively. P < 0.05 was considered statistically significant.

DATA AVAILABILITY

All data are included in the manuscript.

ACKNOWLEDGEMENTS

This work was supported by the Bio&Medical Technology Development Program funded by the Ministry of Science, ICT and Future Planning, Republic of Korea (NRF-2017M3A9E4047243), Research Base Construction Fund Support Program funded by Jeonbuk National University in 2021, and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST; 2020R1C1C1011350).
AUTHOR CONTRIBUTIONS
S.M.J. contributed to the conception, design, and data acquisition; J.S.L., S.H.P., H.J.K. contributed to data acquisition; H.-R.K. and J.-H.L., contributed to conception, design, data acquisition, interpretation and analysis, drafted and critically revised the manuscript.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41368-022-00168-2.

Competing interests: The authors declare no competing interests.

REFERENCES
1. Grontos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl Acad. Sci. USA 97, 13625–13630 (2000).
2. Zhang, W., Walboomers, X. F., Shi, S., Fan, M. & Jansen, J. A. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 12, 2813–2823 (2006).
3. Grontos, S. et al. Stem cell properties of human dental pulp stem cells. J. Dent. Res. 81, 531–535 (2002).
4. Batoul, S. et al. Comparison of stem-cell-mediated osteogenesis and dentino-genesis. J. Dent. Res. 82, 976–981 (2003).
5. Matsu, M., Kobayashi, T. & Tsutsui, T. W. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Hum. Cell 31, 127–138 (2018).
6. Prescott, R. S. et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod. 34, 421–426 (2008).
7. Sharpe, A. H. & Paik, K. E. The diverse functions of the PD-1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).
8. Boussiotis, V. A. Molecular and biochemical aspects of the PD-1 signaling pathway. N. Engl. J. Med. 375, 1767–1776 (2016).
9. Sharma, P., Hu-Lieskovsk, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).
10. Ferris, R. L. et al. Nivolublum for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).
11. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a new paradigm for cancer therapy. Cancer Cell 27, 450–461 (2015).
12. Page, D. B., Postow, M. A., Callahan, M. K., Allison, J. P. & Wolchok, J. D. Immune modulation in cancer with antibodies. Annu. Rev. Med. 65, 185–202 (2014).
13. Allak, H. O., O’Flaherty, A. & Murray, M. O’P-D1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol. 8, 561 (2017).
14. Karnoub, A. E. & Weinberg, R. A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).
15. Simanshu, D. K., Nisssley, D. V. & McCormick, F. Ras proteins and their regulators in human disease. Cell 170, 17–33 (2017).
16. Prior, I. A. & Hancock, J. F. Ras trafficking, localization and compartmentalized signalling. Semin. Cell Dev. Biol. 23, 145–153 (2012).
17. Jeon, S. M., Lim, J. S., Kim, H. R. & Lee, J. H. PFK activation is essential for the odontogenic differentiation of human dental pulp stem cells. Biochem. Biophys. Res. Commun. 544, 52–59 (2021).
18. Quevedo, C. E. et al. Small molecule inhibitors of RAS-effector protein interaction derived using an intracellular antibody fragment. Nat. Commun. 9, 3169 (2018).
19. Cruz-Migoni, A. et al. Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds. Proc. Natl Acad. Sci. USA 116, 2545–2550 (2019).
20. Miura, M. et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl Acad. Sci. USA 100, 5807–5812 (2003).
21. Seo, B. M. et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004).
22. Zhang, Q. et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J. Immunol. 183, 7787–7798 (2009).
23. Sonoyama, W. et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J. Endod. 34, 166–171 (2008).
24. Moreszcz, C. et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 24, 155–165 (2005).
25. Mayo, V., Sawatari, Y., Huang, C. Y. & Garcia-Godoy, F. Neural crest-derived dental stem cells—where we are and where we are going. J. Dent. 42, 1043–1051 (2014).
26. Lan, X., Sun, Z., Chu, C., Boltze, J. & Li, S. Dental pulp stem cells: an attractive alternative for cell therapy in ischemic stroke. Front. Neurol. 10, 824 (2019).
27. Jin, Q. et al. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif. Cells Nanomed. Biotechnol. 47, 1577–1584 (2019).
28. Wada, N., Menicanin, D., Shi, S., Bartold, P. M. & Grontos, S. Immunomodulatory properties of human periodontal ligament stem cells. J. Cell Physiol. 219, 667–676 (2009).
29. Pierdomenico, L. et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80, 836–842 (2005).
30. Davies, L. C., Heldring, N., Kadri, N. & Le Blanc, K. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 35, 766–776 (2017).
31. Kleeff, S. et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162, 1242–1256 (2015).
32. Du, S. et al. Blockade of tumor-expressed PD-1 promotes lung cancer growth. Oncotarget 7, e1408747 (2018).
33. Wang, X. et al. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc. Natl Acad. Sci. USA 117, 6640–6650 (2020).
34. Chen, L. et al. Role of the immune modulator programmed cell death-1 during development and apoptosis of mouse retinal ganglion cells. Invest. Ophthalmo. Vis. Sci. 50, 4941–4948 (2009).
35. Liu, Y. et al. PD-1 is required to maintain stem cell properties in human dental pulp stem cells. Cell Death Differ. 25, 1350–1360 (2018).
36. Patsoukis, N. et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal. 5, ra46 (2012).
37. Liotti, F. et al. PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/ RAS/MAPK signalling in thyroid cancer cells. J. Exp. Clin. Cancer Res. 40, 22 (2021).
38. Bunda, S. et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat. Commun. 6, 8859 (2015).
39. Ran, H., Tsutsumi, R., Araki, T. & Neel, B. G. Sticking it to Cancer with Molecular Glue for SHP2. Cancer Cell 30, 194–196 (2016).
40. Liu, J. et al. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33, 627–638 (2015).
41. Wang, X. et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch. Oral Biol. 57, 1231–1240 (2012).
42. Wang, H. et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol. Med. Rep. 17, 6551–6559 (2018).
43. Xiang, Z. et al. Dexamethasone suppresses immune evasion by inducing GR/ STAT3 mediated downregulation of PD-L1 and IDO1 pathways. Oncogene 40, 5002–5012 (2021).
44. Liu, R. et al. Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol. Cell 81, 2722–2735 e2729 (2021).