CKD-EPI creatinine-cystatin C glomerular filtration rate estimation equation seems more suitable for Chinese patients with chronic kidney disease than other equations

Xiao-Hua Chi1, Gui-Ping Li1, Quan-Shi Wang1, Yong-Shuai Qi1, Kai Huang1, Qian Zhang2 and Yao-ming Xue2*

Abstract

Background: The aim of this study was to identify the optimal equation that accurately estimates the glomerular filtration rate (GFR) and the chronic kidney disease (CKD) stage in the Chinese population.

Methods: A total of 1296 Chinese patients aged 18–65 years old were enrolled in this study. The estimated GFRs (eGFRs) calculated separately by three Diet in Renal Disease (MDRD) equations and three Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations were compared with the reference GFR (rGFR) measured by the 99mTc-DTPA renal dynamic imaging method.

Results: By Bland-Altman analysis, eGFR cys and eGFR scr_cys performed similarly, showing the tightest limits of agreement among the six equations. They also achieved the first and second highest 30% and 50% accuracies. Using a combination of the serum creatinine and cystatin C levels (eGFR scr_cys) could improve the bias (−0.3 for eGFR scr_cys) of the equation and achieve the highest diagnostic accuracy for renal insufficiency (AUC60, 0.953; P < 0.05, except for eGFR MDRD). All equations predicted stage 3 CKD with moderate accuracy (49.7–51.4%) and stage 5 CKD with good accuracy (90.2–96.4%). For stage 1 CKD, eGFR cys showed a higher percentage of misclassification than the other equations. All equations seemed to perform poorly at predicting stage 2 and 4 CKD, as compared to the other CKD stages. eGFR scr_cys was the best-performing equation in terms of accurate classification of the CKD stage based on the overall performance (kappa value, 0.423).

Conclusion: For a Chinese population, the CKD-EPI scr_cys equation seems more suitable for estimating the GFR than the other equations. Each equation had its own advantages in predicting different CKD stages.

Keywords: Serum creatinine, Cystatin C, Glomerular filtration rate, Chronic kidney disease
of renal dysfunction, it has been reported to be influenced by age, gender, body mass index, smoking status, the C-reactive protein level, nephritis, and hypertension [3–6].

The estimated GFR (eGFR), calculated by different equations, is commonly used for clinical care and research. The Modification of Diet in Renal Disease (MDRD) equation, initiated in 1999 and based on the serum creatinine level, is still applied clinically after several modifications [7, 8]. Recently, new equations such as the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations based on cystatin C and/or serum creatinine have been recommended for clinical applications [9, 10]. Some reports showed an improved accuracy of the eGFR using the cystatin C-based eq. [11, 12]. However, it is still controversial whether cystatin C-based GFR-estimating formulae are superior to serum creatinine-based ones [6].

Until now, limited data are available on the comparison of six GFR-estimating equations (CKD-EPIscr, CKD-EPIcys, CKD-EPIscr_cys, abbreviated MDRD, Chinese MDRD, and original MDRD) in Chinese CKD patients. The aim of this study was to identify the equation that is the most accurate and acceptable for predicting the GFR and the CKD stage in a large Chinese population in a single center.

Methods

Subjects

A total of 7676 Chinese participants who underwent GFR measurement using 99Tcm-diethylene triamine pentaacetic acid (99Tcm-DTPA) scintigraphy from January 2009 to March 2016 in Nanfang Hospital, China, were observed. The following exclusion criteria were used: 1) younger than 18 years old or older than 65 years old ($n = 1124$); 2) obstructive nephropathy ($n = 4060$); 3) solitary kidney or a single kidney ($n = 6$); 4) urinary inflammation ($n = 58$); 5) acute renal insufficiency or injury ($n = 10$); 6) any history of malignancy or kidney surgery ($n = 918$); 7) hyperthyroidism ($n = 4$); 8) use of antibacterial agents within 2 weeks ($n = 145$); 9) malignant hypertension ($n = 44$). A total of 1307 patients were screened in the preliminary study, and 11 out of 1307 patients failed to meet diagnostic criteria of CKD who were excluded from the study. Finally, a total of 1296 eligible patients were enrolled in this study. The diagnostic criteria of CKD are in accordance with the K/DOQI practice guidelines. Written informed consent was obtained from each subject prior to participation. This study was approved by the Ethics Committee of the Nanfang Hospital of Southern Medical University.

Measurement of reference GFR (rGFR) and CKD classification

The rGFR was measured by nuclear medicine techniques. Participants were well hydrated before examination. 99Tcm-DTPA (radiochemical purity, >95%; percentage of 99Tcm-DTPA bound to plasma protein, <5%) was provided by Guangzhou Atomic Isotope Hi-Tech Pharmaceutical Co., Ltd., China.

CKD was classified into five stages based on the rGFR values as follows [13]: stage 1, rGFR ≥90 mL/min/1.73 m2; stage 2, 60 mL/min/1.73 m2 ≤ rGFR <90 mL/min/1.73 m2; stage 3, 30 mL/min/1.73 m2 ≤ rGFR <60 mL/min/1.73 m2; stage 4, 15 mL/min/1.73 m2 ≤ rGFR <30 mL/min/1.73 m2; stage 5, rGFR <15 mL/min/1.73 m2. Renal insufficiency was defined as rGFR <60 mL/min/1.73 m2.

Measurement of serum creatinine and cystatin C levels

Serum creatinine and cystatin C levels were measured in the fasting state by a sarcosine oxidase assay kit (Sichuan Maker Biotechnology Co., Ltd., China) and an immunoturbidimetric assay kit (Beijing Leadman Biotechnology Co., Ltd., China) on an Olympus AU5421® analyzer, respectively.

The eGFR was calculated based on the serum creatinine and/or cystatin C levels using six estimating equations (Table 1).

Statistical analysis

Statistical analysis was performed using SPSS20.0 (SPSS Inc., Somers, NY, USA) and MedCalc13.0 (MedCalc, Mariakerke, Belgium). Quantitative data were tested for homogeneity of variance by the Kolmogorov-Smirnov one-sample test. Bland-Altman analysis was used to determine the agreement between the rGFR and eGFR values, which were calculated by different equations. The receiver operating characteristic (ROC) curve was used to determine the diagnostic power at predicting the renal insufficiency (ROC $>$ 0.60), good agreement (0.61–0.80), moderate agreement (0.41–0.60), and excellent agreement (0.81–1.0). The paired sample t test was carried out to evaluate inter-group differences. Differences with $P < 0.05$ were considered statistically significant.

Results

Participant characteristics

A total of 1296 participants aged 45.0 (35.0, 55.0) years old were enrolled, including 814 males and 482 females. The mean eGFR was 46.8 (29.8, 68.3) mL/min/1.73 m2, whereas the mean eGFR varied based on the different calculation formulae and ranged from 40.1 (19.2, 69.3) mL/min/1.73 m2 to 52.0 (21.6, 88.3) mL/min/1.73 m2. The basic characteristics of the participants are shown in Table 2.
Performance of the six equations compared with the rGFR
The agreement or disagreement between the eGFR values and the rGFR values was analyzed by Bland-Altman plots (Fig. 1). According to these plots, the limits of the regression lines varied by each equation and were 73.5 for eGFR_{scr}, 64.3 for eGFR_{cys}, 90.3 for eGFR_{scr_cys}, 107.6 for eGFR_{a_MDRD}, and 108.3 for eGFR_{MDRD}. The eGFR_{cys} and eGFR_{scr_cys} equations performed similarly, showing the tightest limits of agreement among the six equations. The biases of eGFR_{cys} and eGFR_{scr_cys} (2.4 and -0.3, respectively) were much less than those of eGFR_{sc}, eGFR_{a_MDRD}, eGFR_{c_MDRD}, and eGFR_{MDRD} (-4.8, -6.0, -8.9, and -11.5, respectively). Thus, the equations based on serum creatinine, eGFR_{sc}, eGFR_{a_MDRD}, eGFR_{c_MDRD}, and eGFR_{MDRD}, had poor agreement with the rGFR (eGFR_{c_MDRD} and eGFR_{MDRD} in particular). Using a combination of serum creatinine and cystatin C levels could improve the bias (-0.3 for eGFR_{scr_cys}) of the equation.

Diagnostic performance of the six equations for predicting renal insufficiency
The diagnostic performance for predicting renal insufficiency based on the six equations is summarized in Table 3. The AUC_{60} at a cutoff point of 59.6 mL/min/1.73 m^2 in eGFR_{scr_cys} achieved the highest value (0.953), with a sensitivity of 87.6% and a specificity of 89.1%, suggesting the highest diagnostic accuracy for predicting renal insufficiency (P < 0.05 vs. the others, except for eGFR_{MDRD}). The optimal cutoff point of eGFR_{cys} for predicting renal insufficiency was 46.8 mL/min/1.73 m^2, with a sensitivity of 93.6%, a specificity of 81.0%, and an AUC_{60} of 0.945. A revised cutoff value of eGFR_{cys} to 60.6 mL/min/1.73 m^2 led to an improved specificity of 91.5% and a decreased sensitivity of 77.1%.

Misclassification of CKD stages by the six equations
All equations had a high accuracy (range, 90.2–96.4%) for the diagnosis of stage 5 CKD; whereas all of them exhibited a moderate accuracy for the diagnosis of stage 3 CKD (Table 4). In stage 1 CKD, eGFR_{cys} showed a higher percentage of misclassification than the other equations. Although eGFR_{scr_cys} exhibited the highest accuracy for estimating stage 2 CKD (49.8%), all equations seemed to perform poorly at predicting stage 2 and 4 CKD, as compared to the other CKD stages. In addition, based on the overall performance, eGFR_{scr_cys} had the highest kappa value (0.423), compared to the other five equations, suggesting that eGFR_{scr_cys} might be the best-performing equation in terms of accurate classification of the CKD stage.

Accuracy of the six eGFRs and the rGFR
Among the six equations, eGFR_{scr_cys} had the smallest bias, whereas eGFR_{cys} exhibited the highest 30% accuracy and 50% accuracy (Table 5).
Discussion

Each GFR-estimating equation has its own advantages for different stages of impaired renal function. In addition, their performances are affected by various factors. First, the serum creatinine level is determined by different methods. Compared with the Jaffe method, the enzymatic method is less affected by external factors [14–16]. A previous study has shown a significantly higher accuracy for the GFR-estimating equation using the enzymatic method to measure creatinine than that measured by the picric acid method when the rGFR is ≥60 mL/min/1.73 m² [17].

Second, the patients had different ages. The research performed by Roberts et al. showed that the MDRD equation overestimates the renal function in different age groups, which does not become apparent until after 65 years of age [18]. Thus, the role of age in GFR estimation should be taken into consideration, and the elderly participants (over 65 years old) need to be observed separately. Therefore, this study only included patients aged 18–65 years old in order to minimize the possible bias of the study.

Third, racial factors can affect the results. A meta-analysis has revealed that cystatin C has a better diagnostic value for CKD in the West than in Asia [19], suggesting the performance of the equation differs in different racial and ethnic populations.

The inulin clearance rate has been considered as the gold standard, but it is an impractical method for estimating renal function, probably due to its costly, cumbersome features. Thus, radioisotopic methods, such as

Table 2 Baseline characteristics of the participants

Variable	Value
Age, years	45.0 (35.0, 55.0)
Gender, male, n (%)	814 (62.8%)
Weight, kg	62.0 (54.0, 70.0)
Height, cm	165.0 (158.0, 170.0)
Body surface area, m²	1.7 ± 0.2
Body mass index, Kg/m²	22.9 (20.8, 25.4)
Serum creatinine, mg/dL	1.5 (1.0, 3.2)
Serum cystatin C, mg/L	1.7 (1.1, 2.9)
rGFR, mL/min/1.73 m²	46.8 (29.8, 68.3)
eGFR, mL/min/1.73 m²	
eGFRsc	49.7 (19.6, 85.8)
eGFRsyc	40.1 (19.2, 69.3)
eGFRsc_MDRO	44.7 (18.6, 76.5)
eGFRsc_MDRO	48.9 (20.1, 81.0)
eGFRsc_MDRO	49.4 (19.1, 85.2)
eGFRsc_MDRO	52.0 (21.6, 88.3)
rGFR based on CKD stage, mL/min/1.73 m²	
Stage 1 (n = 104)	101.4 (96.2, 111.2)
Stage 2 (n = 331)	73.2 ± 8.6
Stage 3 (n = 529)	43.5 (37.0, 51.5)
Stage 4 (n = 220)	23.6 (19.5, 27.0)
Stage 5 (n = 112)	10.8 (8.5, 13.2)

GFR estimated glomerular filtration rate, rGFR reference glomerular filtration rate, CKD chronic kidney disease, MDRD modification of diet in renal disease, CKD-EPI chronic kidney disease epidemiology collaboration.

Fig. 1 Bland-Altman plots of the rGFR and eGFR (mL/min/1.73 m²). eGFRsc and eGFRsc_MDRO performed similarly, showing the tightest limits of agreement among the six equations. eGFRsyc showed the least bias among the six equations. eGFRsc (a), eGFRsyc (b), eGFRsc_MDRO (c), eGFRsc_MDRO (d), eGFRsc_MDRO (e), and eGFRsc_MDRO (f).
Table 3 Diagnostic performance of the six equations for predicting renal insufficiency (mL/min/1.73 m^2)

Equation	eGFR_{scr}	eGFR_{cys}	eGFR_{scr,cys}	eGFR_{a,MDRD}	eGFR_{c,MDRD}	eGFR_{MDRD}
Cutoff Value	62.8	46.8	59.6	59.3	63.2	69.0
AUC_{95%}CI	0.948*	0.945*	0.953	0.945*	0.948*	0.951*
Youden index	0.745	0.745	0.767	0.743	0.748	0.760
Sensitivity	89.0	93.6	87.6	89.9	88.7	86.9
Specificity	85.5	81.0	89.1	84.5	86.1	89.1
Adjustment Cutoff Value	60.4	60.6	60.2	60.0	60.3	59.8
Sensitivity	90.3	77.1	86.7	88.1	89.9	92.2
Specificity	84.1	91.5	89.1	84.7	83.9	81.7

*P = 0.4206 compared with eGFR_{scr,cys}

*P < 0.05 compared with eGFR_{scr,cys}

Table 4 CKD stage classification based on eGFR estimation by the six equations (n = 1296)

Equation	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Kappa
eGFR_{scr}	98 (94.2%)	121 (36.6%)	263 (49.7%)	83 (37.7%)	107 (95.5%)	0.392
eGFR_{cys}	78 (75.0%)	152 (45.9%)	266 (50.3%)	101 (45.9%)	103 (92.0%)	0.406
eGFR_{scr,cys}	88 (84.6%)	165 (49.8%)	272 (51.4%)	79 (35.9%)	108 (96.4%)	0.423
eGFR_{a,MDRD}	93 (89.4%)	137 (41.4%)	269 (50.9%)	87 (39.5%)	107 (95.5%)	0.407
eGFR_{c,MDRD}	98 (94.2%)	116 (35.0%)	264 (49.9%)	81 (36.8%)	108 (96.4%)	0.387
eGFR_{MDRD}	99 (95.2%)	109 (32.9%)	264 (49.9%)	95 (43.2%)	101 (90.2%)	0.388

Conclusions

This study has one particular strength. Considering that racial factors can affect the results, this study focused on data from a Chinese population for the purpose of identifying an appropriate GFR equation for the Chinese population. Also, this study only included Chinese patients aged 18–65 years old to minimize age-related bias of the study effectively.
This study also has some limitations. First, this was a retrospective, single-center study in China. Thus, caution must be used when generalizing the results of this study in a different population. Second, this study included adult patients aged from 18 to 65 years old. Considering the age-related decline in the GFR, we cannot be sure of the relevance of the results among children or elderly patients. Third, the role of some unmeasured factors (diet, muscle mass, etc.) that could have possibly influenced the observed association cannot be entirely ruled out. Forth, although \(^{99}\text{Tc}^{m}\)-DTPA renal dynamic imaging has been served association cannot be entirely ruled out. Forth, although \(^{99}\text{Tc}^{m}\)-DTPA renal dynamic imaging has been widely as reference standard for clinical evaluation of renal function, it still has its disadvantages. Some researchers believe that \(^{99}\text{Tc}^{m}\)-DTPA renal dynamic imaging may underestimate the true GFR [30] because a very small part of \(^{99}\text{Tc}^{m}\)-DTPA bounds to plasma proteins, although this is only speculated theoretically, not on the basis of pathological biopsy, and is usually neglected.

In conclusion, the CKD-EPI equations had higher agreement with the rGFR than the MDRD equations. Our study also found that the CKD-EPI\(_{\text{scr,cys}}\) equation achieved the top accuracy for overall CKD classification in the Chinese population. Compared with CKD-EPI\(_{\text{scr}}\) and CKD-EPI\(_{\text{cys}}\), the use of the combination of serum creatinine and cystatin C (CKD-EPI\(_{\text{scr,cys}}\)) levels could improve the bias of the equation and achieve a higher diagnostic accuracy for renal insufficiency. Each equation had its own advantages in predicting different CKD stages and needs further research.

Table 5 Comparison of bias and accuracy between the eGFR and rGFR

Equation	Bias (mL/min/1.73 m\(^2\))	Bias of 95% CI	30% accuracy	50% accuracy
eGFR\(_{\text{scr}}\)*	-4.8	-58, -38	51.2%	77.6%
eGFR\(_{\text{cys}}\)*	2.4	1.5, 3.3	60.3%	86.4%
eGFR\(_{\text{scr,cys}}\)▲	-0.3	-1.2, 0.6	57.4%	83.7%
eGFR\(_{\text{scr,MDRD}}\)*	-6.0	-7.3, -4.8	52.1%	76.4%
eGFR\(_{\text{cys,MDRD}}\)*	-8.9	-10.4, -7.4	47.1%	71.3%
eGFR\(_{\text{MDRD}}\)*	-11.5	-13.0, -10.0	49.0%	73.5%

*Compared with rGFR, \(P = 0.000\)
▲Compared with rGFR, \(P = 0.550\)

Availability of data and materials
The datasets analyzed during the current study are not publicly available due to the privacy of patients as well as joint ownership of research data in our institution. The data are available from the corresponding author on reasonable request, and the contact way can get through by email to hyxknfyy@163.com or dial the phone number 13926066999.

Authors’ contributions
GPL, QSW, and YMX conceived the study and participated in the design of the study; XHC analyzed the data and drafted the manuscript; YSQ and QZ analyzed the data; KH carried out the experiments. All authors read and approved the final manuscript.

Ethics approval and consent to participate
This study was conducted with the permission of the Ethics Committee of the Nanfang Hospital of Southern Medical University. Written informed consent was obtained from each subject prior to participation.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments
We thank Professor An Shengli and Dr. Liu Wenjuan for their help with statistical analysis of the data.

Funding
This work was supported, in part, by grants from the National Natural Science Foundation of China (81570724) and the President Foundation of Nanfang Hospital Southern Medical University (2013C021).

Abbreviations
\(^{99}\text{Tc}^{m}\)-DTPA: \(^{99}\text{Tc}^{m}\)-diathylenetriamine pentaacetic acid; AUC: The areas under the ROC curve; CKD: Chronic kidney disease; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; eGFR: Estimated GFR; GFR: Glomerular filtration rate; MDRD: Modification of Diet in Renal Disease; rGFR: Reference GFR; ROC: Receiver operating characteristic.

References
1. Jha V, Garcia-Garcia G, Ikiz K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–72.
2. Vinge E, Lindergard B, Nilsson-Ehle P, Grubb A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest. 1999;59:587–92.
3. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416–21.
4. Wei L, Ye X, Pei X, Wu J, Zhao W. Reference intervals for serum cystatin C and factors influencing cystatin C levels other than renal function in the elderly. PLoS One. 2014;9:e80666.
5. Groebeke D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, Furrth S. Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol. 2008;3:1777–85.
1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate prediction equation for estimating glomerular filtration rate. Ann Intern Med. 1999;130:461–70.

2. Qutb A, Syed G, Tamim HM, Al Jondeby M, Jaradat M, Tamimi W, Al Ghamdi G, Levey AS, Bosch JP, Lewis JB, Greene T, et al. A new equation to estimate glomerular filtration rate. Clin J Am Soc Nephrol. 2008;3:672–9.

3. Andrassy KM. Comments on 'KDIGO 2012 clinical practice guideline for the evaluation and Management of Chronic Kidney Disease'. Kidney Int. 2013;84:622–3.

4. Liu WS, Chung YT, Yang CY, Lin CC, Tsai KH, Yang WC, Chen TW, Lai YT, Li SY, Liu TY. Serum creatinine determined by Jaffe, enzymatic method, and isotope dilution-liquid chromatography-mass spectrometry in patients under hemodialysis. J Clin Lab Anal. 2012;26:206–14.

5. Greenberg N, Roberts WL, Bachmann LM, Wright EC, Dalton RN, Zakowski JJ, Miller WG. Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and Jaffe method principles. Clin Chem. 2012;58:391–401.

6. Nah H, Lee SG, Lee KS, Won JH, Kim HO, Kim JH. Evaluation of bilirubin interference and accuracy of six creatinine assays compared with isotope dilution-liquid chromatography mass spectrometry. Clin Biochem. 2016;49:274–81.

7. Qiu L, Guo X, Zhu Y, Shou W, Gong M, Zhang L, Han H, Quan G, Xu T, Li H, et al. Effect of picric acid and enzymatic creatinine on the efficiency of the glomerular filtration rate predictor formula. Clin Lab. 2013;59:511–22.

8. Roberts GW, Ibsen PM, Schio ler CT. Modified diet in renal disease method overestimates renal function in selected elderly patients. Age Ageing. 2009;38:698–703.

9. Wei L, Ye X, Pei X, Wu J, Zhao W. Diagnostic accuracy of serum creatinine in chronic kidney disease: a meta-analysis. Clin Nephrol. 2015;84:86–94.

10. Chen M, Xia J, Pei G, Zhang Y, Wu S, Qin Y, Deng Y, Guo S, Guo Y, Xu G, et al. A more accurate method procurement by a comparison of the prediction equations for estimating glomerular filtration rate in Chinese patients with obstructive nephropathy. BMC Nephrol. 2016;17:150.

11. Trimarchi H, Munyan A, Martin D, Toscano A, Iriarte R, Campolo-Girard V, Forrester M, Pomerantz V, Fitzsimons C, Lombi F, et al. Creatinine- vs. cystatin C-based equations compared with 99mTcDTPA scintigraphy to assess glomerular filtration rate in chronic kidney disease. J Nephrol. 2012;25:1003–15.

12. Chi XH, Li GP, Wang QS, Wu DJ, Huang K. Changes of blood Cys C, creatinine and hemoglobin levels in patients with different degrees of renal function impairment. J of Radioimmunology. 2011;246–8.

13. Christenson A, Eldberg J, Grubb A, Eldberg H, Lindstrom V, Lilja H. Serum cystatin C is a more sensitive and more accurate marker of glomerular filtration rate than enzymatic measurements of creatinine in renal transplantation. Nephron Physiol. 2003;94:19–27.

14. Hari P, Ramakrishnan L, Gupta R, Kumar R, Bagg A, Cystatin C-based glomerular filtration rate estimating equations in early chronic kidney disease. Indian Pediatr. 2014;51:273–7.

15. Randers E, Erlandsen EJ, Pedersen OL, Hasting C, Danielsen H. Serum cystatin C as an endogenous parameter of the renal function in patients with normal to moderately impaired kidney function. Clin Nephrol. 2000;54:203–9.

16. Tan TZ. Clinical nuclear medicine. People's Medical Publishing House. 2003;755.