Patients taking angiotensin-converting enzyme inhibitors/angiotensin II type I receptor blockers: higher risks of severe acute respiratory syndrome coronavirus 2 infection but milder clinical manifestations?

Jie-Lin Deng1,2, Yun-Qiu Jiang2, Yan-Kai Guo1,3, Hong-Liang Li2

1Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China; 2Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; 3Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China.

Recently, there has been an unprecedented interest in the topic of angiotensin converting enzyme 2 (ACE2)-associated drugs administration, such as angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II type I receptor blockers (ARBs), in COVID-19 patients. A recent article put forward the concern that patients taking ACEIs/ARBs were under higher risk of COVID-19 infection.[11] They revealed that expression of ACE2, the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter host cells, is up-regulated, thus facilitating the initial viral attachment step of SARS-CoV-2 in these patients.[2]

Right now, we have more questions than answers on the topic of ACEIs/ARBs and COVID-19. Firstly, can ACEIs/ARBs actually up-regulate ACE2 levels? How will they affect the two forms (cell membrane-bound and soluble) of ACE2? The latter form could be cleaved from the cell surface, but the biological significance of soluble ACE2 remains unclear. Theoretically, if membrane-bound ACE2 is predominantly elevated, it may lead to susceptibility to SARS-CoV-2. On contrary, if soluble ACE2 is dominantly elevated, it may potentially protect against viral infection through acting as a competitive interceptor of SARS-CoV-2 and other coronaviruses by preventing binding of the viral particle to the membrane-bound, full-length ACE2. Several animal studies suggested that ACEIs/ARBs could increase ACE2 levels.[3,4] For instance, Ferrario et al.[5] found lisinopril or losartan alone induced increases in cardiac ACE2 gene expression and cardiac ACE2 activity, whereas the combination of these two drugs was associated with elevated cardiac ACE2 activity but not the level of expression. The levels of membrane-bound ACE2 in these animal models have been shown to increase under the administration of ACEIs/ARBs. However, the given doses were much greater than those in clinical practice, rendering the observed effects not extrapetable to humans. Additionally, no direct clinical data identify the effects of ACEIs/ARBs on human tissue ACE2 expression or activity. In this regard, whether ACEIs/ARBs could increase the expression of membrane-bound ACE2 to increase the risk of COVID-19 infection still needs to be clarified.

Would ACEIs/ARBs contribute to the “milder symptoms” in COVID-19 patients? As a cellular entry receptor, ACE2, capable of facilitating the replication of the SARS-CoV-2,[6] is detected to degrade after binding to the virus.[7-9] ACE2 downregulation could lead to the angiotensin II/angiotensin II type 1 receptor (AT1R)-induced aggravation of lung injury or acute lung failure according to several animal findings of virus infection (severe acute respiratory syndrome coronavirus/H5N1).[8-10] ACEIs/ARBs have been shown to regulate the downstream signal of ACE2 (angiotensin II) and the inflammatory cascades, which may be related with better outcomes of the virus-associated lung injury.[11-14] In brief, ACEIs could inhibit angiotensin II production, and ARBs could block the binding of angiotensin II to the AT1R, both of which contribute to alleviate the angiotensin II-mediated inflammatory response and the acute lung injury. Taking the evidence together, ACEIs/ARBs treatment seems likely to provide better clinical outcomes through regulating ACE2 downstream inflammatory pathways. The following hypothesis has been raised based on the underlying mechanism of SARS-CoV-2-
induced lung injury mediated by ACE2 and the its association with ACEIs/ARBs [Figure 1].

Back to clinical practice, it is still too early to say ACEIs/ARBs treatment should be ceased or not. The vast majority of professional societies, including the European Society of Cardiology and American Heart Association, have suggested that patients should continue treatment with ACEIs/ARBs unless advised by their physicians, due to lack of convincing evidence that these drugs will increase the risks.

Below, two recently published cohort or cross-sectional studies are summarized, which are of higher quality and of professional societies, including the European Society of Cardiology and American Heart Association, have suggested that patients should continue treatment with ACEIs/ARBs unless advised by their physicians, due to lack of convincing evidence that these drugs will increase the risks.

ACEIs/ARBs treatment. In summary, extensive animal studies and large-scale optimized clinical studies are still warranted to explore the role of ACEIs/ARBs in COVID-19 patients.

Conflicts of interest
None.

References
1. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection. Lancet Respir Med 2020;8:21. doi: 10.1016/s2213-2600(20)30116-8.
2. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020;94:e00127–e00120. doi: 10.1128/JVI.00127-20.
3. Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension 2004;43:970–976. doi: 10.1161/01. HYP.0000124667.34652.1a.
4. Sukumaran V, Veeraveedu PT, Lakshmanan AP, Gurusamy N, Yamaguchi K, Ma M, et al. Olmesartan medoxomil treatment potently improves cardiac myosin-induced dilated cardiomyopathy via the modulation of ACE-2 and ANG I-7 metabolism. Free Radic Res 2012;46:850–860. doi: 10.3109/10715762.2012.684878.
5. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2003;111:2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461.
6. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
7. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–590. doi: 10.1007/s00134-020-05985-9.
8. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 in SARS coronavirus-induced lung injury. Nat Med 2005;11:875–879. doi: 10.1038/nm1267.
9. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112–116. doi: 10.1038/nature03712.
10. Zou Z, Yan Y, Shu Y, Gao R, Sun Y, Li X, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun 2014;5:3594. doi: 10.1038/ncomms4594.
11. Iyer SN, Chappell MC, Averill DB, Ferrario CM, Dahan D, Bluthchaaraya A, Alabjegovic A, Rippe C, Elkan M, Dahan D, et al. Loss of vascular myogenic tone in miR-143/145 knockout mice is associated with hypertension-induced vascular lesions in small mesenteric arteries. Arterioscler Thromb Vasc Biol 2018;38:414–424. doi: 10.1161/ATVBAHA.117.310499.
12. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 2000;46:264–268. doi: 10.1016/s0008-6363(00)00044-4.
13. Johnston CL. Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension 1994;23:258–268. doi: 10.1161/hyp.23.2.258.
14. Zou Z, Yan Y, Shu Y, Gao R, Sun Y, Li X, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res 2020;126:1671–1681. doi: 10.1161/CIRCRESAHA.120.417134.
15. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Inoue CT, Johnson SB, et al. Renin-angiotensin-aldosterone system inhibitors and risk of
17. Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002; 166:646–650. doi: 10.1164/rccm.2108086.

18. Stawiski EW, Diwanji D, Suryamohan K, Gupta R, Fellouse FA, Sathirapongsasuti JF, et al. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. bioRxiv 2020. doi: 10.1101/2020.04.07.024752.

19. Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC. Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med 2006; 34:1001–1006. doi: 10.1097/01.CCM.0000206107.92476.39.

How to cite this article: Deng JL, Jiang YQ, Guo YK, Li HL. Patients taking angiotensin-converting enzyme inhibitors/angiotensin II type I receptor blockers: higher risks of severe acute respiratory syndrome coronavirus 2 infection but milder clinical manifestations? Chin Med J 2020;133:2650–2652. doi: 10.1097/CM9.0000000000000996