Extensions of Finite Abelian Groups

Guhan Venkat

February 12, 2010

Abstract

We study group extensions of Finite Abelian Groups using matrices. We also prove a Theorem for equivalence of extensions using matrices.

Introduction

Presentation of Abelian Groups

Every Abelian Group \((A, +)\) can be considered as a \(\mathbb{Z}\)-module under the ring action:

\[
\mathbb{Z} \times A \rightarrow A
\]

\[
(n, x) \mapsto nx = x + x + \ldots + x\text{ (}\text{ntimes}\text{)}
\]

\[
(-n, x) \mapsto -(nx) = -(x + x + \ldots + x)\text{ (}\text{ntimes}\text{)}
\]

We call \(x^d = (x_1, x_2, \ldots, x_n), x_i \in A\) a generating set of \(A\) if every element in \(A\) can be written as \(a = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n\) for some \(\alpha_i \in \mathbb{Z}\) under the ring action defined above.

A relation in \(A\) is an equation of the form

\[
\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = 0
\]

If we have have a set of ‘m’ relations

\[
\alpha_{11} x_1 + \alpha_{12} x_2 + \ldots + \alpha_{1n} x_n = 0
\]

\[
\alpha_{21} x_1 + \alpha_{22} x_2 + \ldots + \alpha_{2n} x_n = 0
\]

\[
\vdots
\]

\[
\alpha_{n1} x_1 + \alpha_{n2} x_2 + \ldots + \alpha_{nn} x_n = 0
\]
We can write that down as a matrix equation \(\alpha \vec{x} = 0 \) or

\[
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1n} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{n1} & \alpha_{n2} & \ldots & \alpha_{nm}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
= 0
\]

A complete set of relations of a group \(A \) is one from which every other relation of the group can be derived by a linear combination. A 'Presentation of an Abelian Group' is a generating set along with a complete set of relations.

Finite Abelian Groups and their Sylow Subgroups

Let \(A \) be a Finite Abelian Groups of order \(n \) where \(n = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_n^{\alpha_n} \) then \(A \cong \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \ldots \times \mathbb{Z}_{p_n} \), where each \(\mathbb{Z}_{p_i} \) is a Sylow subgroup associated with that prime. Therefore, we study abelian p-groups.

The Extension Problem for abelian p-groups

Given two p-groups \(G_{\lambda} \) and \(G_{\mu} \) of type \(\lambda \) and type \(\mu \) respectively, we describe all groups \(E \) containing \(G_{\lambda} \) such that \(E/G_{\lambda} \cong G_{\mu} \).

i.e. we have a Short Exact Sequence \(0 \rightarrow G_{\lambda} \rightarrow E \rightarrow G_{\mu} \rightarrow 0 \)

By the structure theorem for finite abelian groups, \(G_{\lambda} \) has a presentation with generating set \(y = \langle y_1, y_2, \ldots, y_l \rangle \) of \(l \) elements and relations \(p^{\lambda_i} y_i = 0 \forall i \) from 1 to \(l \) and for some integers \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_l > 0 \)

Similarly \(G_{\mu} \) is generated by \(m \) elements \(\langle x_1, x_2, \ldots, x_m \rangle \) with the relations \(p^{\mu_j} x_j = 0 \forall j \) from 1 to \(m \)

Now choose \(x_1^\sim, x_2^\sim, x_3^\sim, \ldots, x_m^\sim \in E \) such that \(\phi(x_i^\sim) = x_i \forall j \) from 1 to \(m \)

But from the above relations, we have \(\phi(p^{\mu_j} x_j^\sim) = p^{\mu_j} \phi(x_j^\sim) = \phi(x_j) = 0 \Rightarrow p^{\mu_j} x_j^\sim \in ker(\phi) = G_{\lambda} \) (Definition of Short Exact Sequence)

Since every element of \(G_{\lambda} \) can be written as some \(a \vec{y} \) we have \(p^{\mu_j} x_j^\sim = a_{j1} y_1 + a_{j2} y_2 + \ldots + a_{jl} y_l \forall j \) from 1 to \(m \)

Combining the two sets of relations, we have in hand altogether \(l + m \) relations. Putting these relations together as a matrix, we would get a pre-
sentation for \(E \)
\[
\begin{pmatrix}
 p^\lambda_1 \\
p^\lambda_2 \\
\vdots \\
a_{11} & a_{12} & \ldots & a_{1l} & p^{\mu_1} \\
a_{21} & a_{22} & \ldots & a_{2l} & p^{\mu_2} \\
\vdots \\
a_{21} & a_{22} & \ldots & a_{ml} & \ldots & \ldots & p^{\mu_m}
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
y_2 \\
\vdots \\
y_l \\
x_1 \sim \\
x_2 \sim \\
\vdots \\
x_m \sim
\end{pmatrix}
\] = 0

Or as blocks they would be
\[
\begin{pmatrix}
p^\lambda \\A \ p^{\mu}
\end{pmatrix}
_{m+l\times m+l}
\begin{pmatrix}
y \\x \sim
\end{pmatrix}
= 0
\]

One is now interested in classifying extensions upto isomorphisms
\[
\begin{array}{c}
0 \rightarrow G_{\lambda} \xrightarrow{\psi_1} E_1 \xrightarrow{\phi_1} G_{\mu} \rightarrow 0 \\
0 \rightarrow G'_{\lambda} \xrightarrow{\psi_2} E_2 \xrightarrow{\phi_2} G''_{\mu} \rightarrow 0
\end{array}
\]

If there exist isomorphisms \(f \) and \(g \) and a homomorphism \(h \) such that the above diagram commutes, then the extension in the first row is said to be equivalent to the extension in the second row. It then follows that \(h \) is also an isomorphism.

\[
G'_{\lambda} = \langle y'_i \rangle
\]

where \(i \) is from 1 to \(l \)

\[
G''_{\mu} = \langle x'_j \rangle
\]

where \(j \) is from 1 to \(m \) (We have assumed that isomorphic groups have equal number of generators and relations. In rigor, one should look at isomorphic groups through Tietze Transformations.)

We can now describe isomorphisms \(f, g \) and \(h \) as matrices acting on basis (vectors).

\[
f(\langle y_1, y_2, \ldots, y_l \rangle) = \langle y'_1, y'_2, \ldots, y'_l \rangle [F]
\]

\[
g(\langle x_1, x_2, \ldots, x_m \rangle) = \langle x'_1, x'_2, \ldots, x'_m \rangle [G]
\]

\[
h(\langle y_1, \ldots, y_l, x_1 \sim, \ldots, x_m \sim \rangle) = \langle y_1, \ldots, y'_l, x'_1 \sim, \ldots, x'_m \sim \rangle [H]
\]

Here \([F]\), \([G]\) and \([H]\) are the matrices of automorphisms. We write \([H]\) as
\[
\begin{bmatrix}
h_{11} & h_{12} \\h_{21} & h_{22}
\end{bmatrix}
\]

where \(h_{11} \) is \(l \times l \) and \(h_{22} \) is \(m \times m \).

Also the matrices are invertible and preserve the structure of the groups, i.e
\[F \in GL_l(\mathbb{Z}) \cap p^{-\lambda}GL_l(\mathbb{Z})p^\lambda \]
\[G \in GL_m(\mathbb{Z}) \cap p^{-\mu}GL_m(\mathbb{Z})p^\mu \]
\[H \in GL_{l+m}(\mathbb{Z}) \cap p^{-(\lambda+\mu)}GL_{l+m}(\mathbb{Z})p^{(\lambda+\mu)} \]

Using the fact that the above diagram commutes, we have
\[\psi_2(f(k)) = h(\psi_1(k)) \forall k \in G_\lambda \]
\[\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
\[\Rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} h_{11} \\ h_{21} \end{bmatrix} \Rightarrow h_{11} = F \text{ and } h_{21} = 0 \]
\[\phi_2(h(l)) = g(\phi_1(l)) \forall l \in E_1 \]
\[\begin{bmatrix} F & h_{12} \\ 0 & h_{22} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} G \end{bmatrix} \]
\[\Rightarrow \begin{bmatrix} h_{12} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ G \end{bmatrix} \]
\[\Rightarrow [H] = \begin{bmatrix} F & 0 \\ 0 & G \end{bmatrix} \]

Now, looking at the presentations for \(E_1 \) and \(E_2 \)
\[E_1 : \begin{bmatrix} y & x^\sim \end{bmatrix} \begin{bmatrix} A_1 & p^\lambda \\ p^\mu & 0 \end{bmatrix} = 0 \]
\[E_1 : \begin{bmatrix} y' & x'^\sim \end{bmatrix} \begin{bmatrix} A_2 & p^\lambda \\ p^\mu & 0 \end{bmatrix} = 0 \]

Note that the matrices have been transposed for convenience.

Using the isomorphism condition, i.e. \(h(0) = 0 \), we have
\[\begin{bmatrix} y & x^\sim \end{bmatrix} \begin{bmatrix} F & 0 \\ 0 & G \end{bmatrix} \begin{bmatrix} A_1 & p^\lambda \\ p^\mu & 0 \end{bmatrix} = 0_{E_2} \]
\[\begin{bmatrix} y & x^\sim \end{bmatrix} \begin{bmatrix} FA_1 & Fp^\lambda \\ Gp^\mu & 0 \end{bmatrix} = 0_{E_2} \]

But given that we have a complete set of relations in \(E_2 \), these matrices must be related by a column operation (Note, we had transposed the matrices and hence instead of row operations, we now must consider column operations).
\[\begin{bmatrix} A_2 & p^\lambda \\ p^\mu & 0 \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} FA_1 & Fp^\lambda \\ Gp^\mu & 0 \end{bmatrix} \]

4
\(\Rightarrow p^\mu \alpha = Gp^\mu \) or \(\alpha = p^{-\mu} Gp^\mu \)
\(\Rightarrow A_2 p^{-\mu} Gp^\mu + p^\lambda \gamma = F A_1 \)
\(\Rightarrow F^{-1} A_2 p^{-\mu} Gp^\mu + F^{-1} p^\lambda \gamma = A_1 \)
Now, given the conditions on \(F \) and \(G \), we re-write the above equation as
\[
F^{-1} A_2 G' + F^{-1} p^\lambda \gamma = A_1
\]
But, \(A_1 \) is taken modulo \(p^\lambda \Rightarrow F' A_2 G' = A_1 \) where \(G' = p^{-\mu} Gp^\mu \) and \(F' = F^{-1} \). Thus we have the following Theorem.

Theorem The extensions associated to two finite abelian groups \(E_1 \) and \(E_2 \) are equivalent if and only if there exist matrices \(F \in GL_l(\mathbb{Z}) \cap p^\lambda GL_l(\mathbb{Z}) p^{-\lambda} \) and \(G \in GL_m(\mathbb{Z}) \cap p^{-\mu} GL_m(\mathbb{Z}) p^\mu \) such that \(F A_2 G = A_1 \) where the \((i,j)\) entry of each matrix is taken modulo \(p^{\min(\lambda_i, \mu_j)} \).

Acknowledgements
This project was carried out under the guidance of Dr. Amritanshu Prasad, IMSc as a part of IAS - SRFP 2009.

References
[1] Garrett Birkhoff. Subgroups of Abelian Groups Proc. London Math. Soc. 38:385-401, 1935.
[2] David S. Dummit and Richard M. Foote Abstract Algebra Third Edition John Wiley and Sons inc. 2004.