In utero exposure to analgesic opioids and language development in 5-year old children

Eva Skovlund¹,², Randi Selmer¹, Svetlana Skurtveit²,³, Ragnhild Eek Brandlistuen¹, Marte Handal¹

¹ Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway.
² Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
³ Norwegian Centre for Addiction Research, University of Oslo, Oslo, Norway.

10 February 2020

Corresponding author: Eva Skovlund, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, PO Box 8905, 7491 Trondheim, Norway. eva.skovlund@ntnu.no

Key points:

- This study assessed the association between prenatal exposure to opioids and development of language competence and communication skills in 5-year old children using three different validated instruments
- In the cohort a small proportion of mothers reported use of analgesic opioids; primarily codeine in very short periods.
- No increase in risk of delayed language development or communication skills was seen in exposed children
- The results should not be generalized to strong opioids, large doses, or long duration of use during pregnancy

Keywords: Opioids, Language competence, Communication skills, Neurodevelopment, MoBa, MBRN
ABSTRACT

Purpose An increasing consumption of opioids has been reported. The primary aim of the present study was follow-up of neurocognitive development in children exposed to analgesic opioids during pregnancy, using three different validated instruments to assess language and communication development at 5 years.

Methods The Norwegian Mother and Child Cohort Study (MoBa) prospectively included pregnant women 1999-2008. Participants reported medication use at pregnancy week 17/18 and 30, and 6 months after birth. Children’s language competence and communication skills at 5 years were reported by mothers on three different validated scales; The Ages and Stages Questionnaire (ASQ), The Speech and Language Assessment Scale (SLAS) and The Twenty Statements about Language-Related Difficulties list (Language20Q).

Results A total of 27 428 women with 33 407 singleton pregnancies were included. Use of analgesic opioids was reported in 584 pregnancies (1.7%). No associations between opioid use and lower language competence or communication skills were found. For ASQ the OR of being in the lowest category vs the group with maximum mean score was 0.82 (95%CI 0.57, 1.17), for SLAS the OR of scoring worse than typical for age vs better than typical for age was 0.84 (0.61, 1.17) in children exposed to opioids in utero. For Language20Q using the best performance category as reference, the OR of scoring in the lower performance category was 0.57 (0.35, 0.91) with exposure to opioids.

Conclusion Use of analgesic opioids in pregnant women does not seem to negatively affect language development or communication skills in children at 5 years.
Introduction

A remarkable increase in use of opioid analgesics during the last two decades has been documented in the general population worldwide [1-6]. This worrying trend has been accompanied by a rise in abuse of these agents [7]. In the U.S. harm from prescription opioid misuse has increased to epidemic proportions [8]. Even among pregnant women there is a high prevalence of opioid use, especially in the U.S. [9-12]. In Norway the prevalence of use is lower, but opioids have been reported to be the CNS acting drugs most frequently prescribed to pregnant women [13]. Furthermore, studies from the U.S. pregnant population suggest that the opioid crisis in the general population extends to use during pregnancy [9, 11, 14]. Consumption data indicate an increased use of opioids also in Scandinavia [15-17]. In Norway the increased use in the general population is also seen in adolescents (http://www.norpd.no/Prevalens.aspx) and the latter might gradually affect use also during pregnancy. Although no increasing trend in analgesic opioid use is so far observed in the population of pregnant women in Norway [18, 19], it is important to gain knowledge on potential harmful effects to the offspring.

Any effect of drug consumption during pregnancy on language and communication development in the offspring would be an important safety issue, as language deficits in children are associated with psychiatric disorders in young adults [20-23] and are also often found to be associated with developmental delay in other domains [20, 24].

In a previous study on language competence and communication skills in 3-year old children no association with prenatal exposure to analgesic opioids was found [25]. Two different instruments, a validated language grammar rating scale [26] and the Ages and Stages Questionnaire (ASQ) [27] were used as markers of neurocognitive development. Although there were no trends towards an effect of analgesic opioids at three years it was considered important to strengthen the conclusion by studying language and communication development in the same cohort at a later stage (five years) using other validated instruments. Language skills have been shown to be more stable from age 4-5 years compared to earlier years [28, 29] and thereby stronger predictors of later outcomes [30]. As language skills in children develop and become increasingly complex with age, it is also possible to measure different aspects of language development such as articulation, syntax, and receptive skills that could be differentially affected by prenatal exposure to analgesic opioids.

The aim of the present study was to assess the effect of exposure to analgesic opioids during pregnancy on development of language and communication skills in 5-year old children.
Material and methods

The MoBa cohort

The Norwegian Mother and Child Cohort Study (MoBa) is a prospective population-based pregnancy cohort run by the Norwegian Institute of Public Health [31, 32]. Data collection is based on detailed self-administered questionnaires both during pregnancy and after birth. In the period from 1999 to 2008 pregnant women in Norway were invited by post to participate in MoBa prior to their first ultrasound scan at week 17/18 and consent to participate was given in 40.6% of pregnancies. Participants answered three questionnaires during pregnancy and 6 months, 18 months, and 3, 5, 7, 8, 13, and 14 years after birth and the study is ongoing. The cohort includes 114,500 children, 95,200 mothers and 75,200 fathers, and follow-up is continuing. Some of the information in MoBa is obtained by linkage to the Medical Birth Registry of Norway (MBRN) which is a nationwide registry based on mandatory notification of all births or late abortions in Norway [33].

Study population

The present study is based on data from pregnant women and their offspring having reached the age of five years (MoBa data file version 9). The age five questionnaire was returned for 34,065 children from singleton pregnancies and without malformations or chromosomal abnormalities. Pregnancies with no information on one or more language or communication skills questionnaires (n=658) were excluded, resulting in 33,407 pregnancies in 27,428 women.

Analgesic opioid use

Opioids were defined as all analgesics classified in ATC-group N02A based on the Anatomic Therapeutic Chemical classification system as of 2013 [34]. Mothers were asked to report on medication use at pregnancy week 17-18, 30, and 6 months after birth [35], covering the period from 6 months before pregnancy to week 17-18, the period from week 19-29, and the period from week 30 to birth. In the two first questionnaires the women reported drug use during pregnancy in separate boxes covering 4-week intervals, and in the last questionnaire drug exposure during pregnancy after week 30. Complete questionnaires are available from the Norwegian Institute of Public Health (http://www.fhi.no/enmoba).

Mothers were defined as analgesic opioid users if they had reported use of any analgesic opioid on at least one of the three questionnaires by naming a drug as well as ticking a box indicating that they had used the drug during pregnancy. In addition to categorizing opioid use as yes or no (primary analysis), we tried to capture the extent of exposure in different ways: 1) during one period only, or during two or all three pregnancy periods, and 2) repeated use (reported in ≥5 separate time intervals/tick boxes), occasional use (1-4 separate intervals), and no use during pregnancy. We also stratified opioid use by trimesters.

Outcome measures - language and communication development at 5 years

The primary outcome of this study was language and communication development at five years, and three scales from the five-year questionnaire were included. The Ages and Stages Questionnaire...
(ASQ5) was used to measure language function [36]. The Norwegian ASQ has shown good construct validity [36]. Different versions are developed for different age groups and the ASQ for 3-year-olds was used in our previous study on development of language and communication skills in three-year old children prenatally exposed to opioids [25]. The ASQ5 instrument consists of six questions answered by the mother. The items have three response categories (yes, sometimes, and not yet) and were scored 10, 5 and 0, respectively. In accordance with the previous study in 3-year old children [25] the mean score was calculated and grouped in three categories (maximum mean score=10, mean score 8-9.5, and mean score ≤7.5). For sensitivity analyses a cut-off at 1.5 SD below the mean (low score indicating risk) was chosen. This is in accordance with previous analyses of the MoBa data, and in line with ASQ recommendations [25, 27, 37].

The Speech and Language Assessment Scale (SLAS) was used to measure children’s articulation, assertiveness, responsiveness, semantics and syntax skills compared with peers [38]. The mothers were asked to rate the statements in a 5-point Likert scale from ‘very much lower’ to ‘very much higher’. A mean score of 3 corresponds to responding “typical of age” on average. The mean score was classified as “lower or very much lower” <3, “typical of age” =3, or “higher or very much higher” >3.

The Twenty Statements about Language-Related Difficulties list (Language 20Q) was developed to identify children with risk for language impairment [39]. The checklist is a commonly used Norwegian instrument to identify children with language impairment. The checklist consists of 20 statements describing language-related difficulties. All answers were scored on a 5-point Likert scale from ‘Doesn’t fit the child, absolutely wrong’ to ‘fits fine with the child, absolutely right’. The Language20Q is validated in a Norwegian sample, in a study of 250 children with typical language development and 48 language impaired children against Language6-16, an established scale [39]. The Language 20Q has shown acceptable fit in a confirmatory factor analysis and satisfactory ability to identify children with language difficulties in a population-based sample [40]. The overall mean score was categorized as “best performance” mean score= 1, “middle performance” mean score=1.01-2, and “lower performance” mean score >2.

Potential confounding factors

Maternal use of opioids during pregnancy has been shown to be less common with increasing maternal and paternal education as well as in working mothers, whereas the proportion of users increased with increasing maternal age, parity and body mass index (BMI, kg/m²) [25]. The proportion of opioid users was also higher when the mother reported pain, symptoms of anxiety and depression according to Hopkins Symptom Checklist (HSCL≥2), chronic disease, smoking, paracetamol use, triptans, benzodiazepines, SSRIs and illegal drugs [25]. These variables as well as paternal age, whether the pregnancy was planned or not, and marital status, were considered to be potential confounding factors and were included in adjusted models. Since the three pregnancy questionnaires posed questions on pain slightly differently, all categories of reported pain were merged into a dichotomous pain variable. Maternal chronic disease was defined if the mother reported asthma, diabetes, hypertension, arthritis, lupus, Crohn’s disease, epilepsy, multiple sclerosis or cancer in the first questionnaire.
Statistics

The scales were constructed to capture children with specific problems and had highly skewed distributions (i.e. few mothers reported language difficulties) as shown in Figure 1. The variables were therefore transformed into categorical variables. Multinomial logistic regression was applied to estimate the association between prenatal analgesic opioid exposure and language and communication development, respectively. All outcome variables were ordered in three categories in the primary analyses. Cut-offs were chosen based on a combination of clinical reasoning and enough analgesic opioid users in each category. Binary logistic regression was used to estimate the association between prenatal analgesic opioid exposure and ASQ-score below -1.5 SD.

Additional sensitivity analyses of the same outcomes in three to five categories using both ordinal and multinomial logistic regression, and binary logistic regression with different two category cut-offs of the outcome variables were also performed.

Unadjusted as well as adjusted analyses, including all potential confounding factors were performed, and 95% confidence intervals (CI) for the OR were calculated. Standard errors were estimated using the clustered sandwich estimator to handle multiple pregnancies in the same woman. Statistical analyses were conducted using Stata 14.

Ethics

The establishment of MoBa and initial data collection was based on a license from the Norwegian Data protection agency and approval from The Regional Committee for Medical Research Ethics. The MoBa cohort is currently regulated by the Norwegian Health Registry Act. The current study was approved by The Regional Committee for Medical Research Ethics 2015/1897/REK sør-øst. Informed consent was obtained from each participant upon recruitment.
Results

Analgesic opioid use was reported in 584 (1.7%) of the 33 407 pregnancies. The substance primarily used was codeine in combination with paracetamol. Use of codeine was reported in 526 (90%) of the exposed pregnancies, whereas a strong opioid was reported to have been used in 83 (14%). The extent of exposure was limited. Repeated use defined as reported in at least 5 time intervals during pregnancy was reported by 60 mothers. A total of 466 mothers reported analgesic opioid use in one pregnancy period only, and in 28 pregnancies the mother had consumed an opioid one or more times during all three periods of the pregnancy.

The proportion exposed to opioids during pregnancy by parental characteristics is presented in Table 1. Table 2 shows the distribution of language and communication skills according to the three different instruments in children with or without exposure to analgesic opioids during pregnancy. No obvious differences between exposed and unexposed children were observed. On the ASQ, 6.5% of children have a mean score in the lowest development category in both groups. The proportion scoring lower than typical for age on the SLAS is also the same in exposed and unexposed children, 8.4%. There was a small numerical difference in the proportion classified in the lower performance category on Language20Q, 4.5% in children prenatally exposed to opioids and 5.9% in unexposed children. It is demonstrated also in Figure 1 that the distributions of scores on the three different scales are very similar in exposed and unexposed children.

Table 3 shows estimated odds ratios in unadjusted and adjusted analyses of language and communication development. No association with use of analgesic opioids was shown in unadjusted analyses for either of the instruments.

In analyses adjusted for paracetamol, any pain, chronic disease, planned pregnancy, smoking, mother’s education, father’s education, mother’s work situation, mother’s age, father’s age, parity, marital status, body mass index, alcohol consumption, anxiety and depression, illegal drugs, benzodiazepine use, triptan use, and SSRI use, the results were similar. No association between opioid use and development according to ASQ or SLAS was demonstrated. For Language20Q the OR of the lower performance score category with the best category as reference was estimated to OR=0.57 (95% CI 0.35, 0.91) in children exposed to opioids in utero. Models without adjustment for pain in addition to the other covariates led to the same results as those presented in the table.

The additional ASQ z-score analysis with cutoff 1.5 SD below the mean corresponded exactly to using a cutoff of ASQ≤7.5, OR=0.91 (95% CI 0.65, 1.28). For SLAS and Language20Q various analyses of 3 to 5 categories with different cutoffs gave comparable results to those presented in Table 3. Analyses with exposure classified in number of pregnancy periods or as no, occasional (reported in 1–4 time intervals) or repeated use (≥5 time intervals) did not reveal any pattern of increased risk with increased exposure (Supplementary tables 1 and 2). Stratification by trimester led to small numbers exposed, and no pattern in the estimated associations was seen (data not shown).
Discussion

This prospective study assessed the association between prenatal exposure to analgesic opioids and language and communication development in children at 5 years of age. No associations were found between opioid exposure and scores on three instruments measuring different aspects of language development such as function (ASQ5), a composite of articulation, assertiveness, responsiveness, semantics, and syntax skills (SLAS), or language related difficulties (Language 20Q).

To our knowledge only one study has assessed the association between exposure to analgesic opioids during pregnancy and neurocognitive effects as measured by validated instruments on language development and communication skills [25] and to our knowledge no studies of an association in older children have been performed. Even if no harmful associations were seen in 3-year-olds, it was thus considered important to add longer follow-up and assess any association in the same cohort at five years of age using different instruments.

In line with the results in 3-year old children, we found no association between prenatal exposure to analgesic opioids and language and communication development at the age of five. To increase robustness and sensitivity, three validated instruments measuring different aspects of language development were applied. The estimated associations are relatively precise, and the upper limits of the 95% confidence intervals seem to preclude any large, undetected effect of exposure to analgesic opioids during pregnancy.

A major strength of the present study is its prospective design including three questionnaires on drug consumption during pregnancy which reduces the risk of long-term recall bias. The participants responded to many questions on sociodemographic and health related issues, and it was thus possible to adjust for several potential confounding factors. However, residual confounding cannot be excluded as unmeasured confounders may exist. The apparent protective effect of opioid use according to the adjusted analysis of Language20Q may well be due to residual confounding, or it may be a chance finding. The fact that the upper limit of the 95% CI is below 1 should not receive too much attention since several 95% confidence intervals have been estimated.

Only women agreeing to participate in MoBa have been included in the study. This is probably a selected group of pregnant women. It has been shown that MoBa participants have a healthier lifestyle than the total pregnant population in Norway [41] and these women may also be more cautious about drug use during pregnancy. The prevalence of opioid use is lower in the MoBa cohort than what has been reported in studies based on the Norwegian Prescription Database [18, 19]. One explanation may be that prescribed drugs may not actually be consumed, another that MoBa participants comprise a selected sample of pregnant women in Norway. However, a comparison of MoBa participants and all women giving birth in Norway suggests that estimates of exposure-outcome associations are unbiased [41]. Due to drop out as the child is ageing, as well as missing information of language development on one or more instruments in mothers still participating, the number of pregnancies included in this study is only approximately one third of all pregnancies included in the full MoBa cohort. The dropout does not affect exposure estimates, however. In the full MoBa cohort the percentage reporting exposure to opioids is 1.7%, i.e. identical to the estimate in our study.

The study includes a large number of pregnancies, but only 584 children (1.7%) had been exposed to analgesic opioids during pregnancy according to mothers’ self-report. We do not have detailed
information on dosage or duration of use of opioids but have tried to capture extent of exposure by 1) the number of pregnancy periods with reports of opioid use (0-3), and 2) identification of repeated use defined as exposure to an opioid in at least 5 time intervals during pregnancy, not necessarily consecutively. The number of mothers with repeated use according to the above definition was only 60 (<0.2%) and in utero exposure to prescribed analgesic opioids is thus low and rare in this cohort. Our results should therefore not be extended to long-term use or high doses.

Previous studies have demonstrated a lower proportion of self-reported drug use in MoBa compared to data from the NorPD in the same sample [42]. This may partly be due to dispensed drugs not being consumed. However, there is also a risk that mothers underreport their use of drugs in the questionnaires. Nevertheless, it has been shown that self-reported tobacco use in pregnant women in MoBa is a valid marker for actual exposure [43], which supports the validity of self-reported opioid use. Since the questionnaires are filled in three times during pregnancy, the potential for recall bias is reduced. Whereas we cannot preclude some misclassification due to underreporting, we strongly believe that when a pregnant woman states that she has used a specific medication, this is the case. Thus, specificity is believed to be high. It has been shown that when prevalence of exposure is low, specificity is more important than sensitivity. [44] As exposure was registered without knowledge of future outcome, it seems reasonable to assume non-differential misclassification. We therefore regard severe bias of the estimated association as unlikely, but a small bias towards the null cannot be completely ruled out.

In Norway, the weak opioid codeine is the dominating prescribed opioid analgesic (30 mg per tablet [10]) and this is the case also in the MoBa cohort. Only few pregnant women reported use of tramadol or a strong opioid like oxycodone and it was not possible to study specific opioids separately. An exploratory unadjusted analysis of strong opioids was performed in the study of 3-year old children [25] and led to approximately the same results as for all opioids combined.

Parental self-report is generally considered appropriate to measure early expressive vocabulary, especially for severe language delay. We have used validated instruments on language and communication development, and both ASQ and L20Q have been validated in Norwegian. The distributions of mean scores were extremely skewed for all three scales and after inspection of residuals it was not considered appropriate to estimate associations using multiple linear regression analysis. We therefore chose multinomial regression with three categories as the primary analysis of all three scales. Supplementary analyses with different cutoffs and up to five categories resulted in very small numbers in some categories and did not reveal any additional information. A recommended cutoff for clinical follow-up in a screening setting has been established for ASQ (1.5SD) [27] and we performed an additional analysis using this strategy. The recommended z-score cut-off corresponded exactly to the lowest of the three ASQ3 score categories (≤7.5) and no additional information was achieved.

Conclusion

No association between maternal analgesic opioid use during pregnancy and language and communication development in 5-year old children was detected. The estimated upper limits of the confidence intervals preclude any strong effect on language and communication development. Health care providers should in any case carefully consider the need of analgesic treatment in a
pregnant woman before prescribing an opioid. In this cohort a small proportion reported use of analgesic opioids; primarily codeine in very short periods. The results should thus not be generalized to strong opioids, large doses, or long duration during pregnancy.
Acknowledgment

The Norwegian Mother and Child Cohort Study is supported by the Norwegian Ministry of Health and the Ministry of Education and Research, NIH/NIEHS (contract no N01-ES-75558), NIH/NINDS (grant no.1 U01 NS 047537-01 and grant no.2 U01 NS 047537-06A1). We are grateful to all the participating families in Norway who take part in this on-going cohort study.

This manuscript contains original unpublished work and is not being submitted for publication elsewhere at the same time.
References

1. Sullivan MD, Edlund MJ, Fan MY et al. Trends in use of opioids for non-cancer pain conditions 2000-2005 in commercial and Medicaid insurance plans: the TROUP study. Pain 2008; 138: 440-449.
2. Fredheim OM, Skurtveit S, Breivik H, Borchgrevink PC. Increasing use of opioids from 2004 to 2007 - pharmacoepidemiological data from a complete national prescription database in Norway. Eur J Pain 2010; 14: 289-294.
3. Clausen TG. International opioid consumption. Acta Anaesthesiol Scand 1997; 41: 162-165.
4. Karanges EA, Blanch B, Buckley NA, Pearson SA. Twenty-five years of prescription opioid use in Australia: A whole-of-population analysis using pharmaceutical claims. Br J Clin Pharmacol 2008; 64: 411-415.
5. Wagemaakers FN, Hollingworth SA, Kreijkamp-Kaspers S et al. Opioid analgesic use in Australia and The Netherlands: a cross-country comparison. Int J Clin Pharm 2017; 39: 874-880.
6. Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain - United States, 2016. MMWR Recomm Rep 2016; 65: 1-49.
7. Levy B, Paulozzi L, Mack KA, Jones CM. Trends in Opioid Analgesic-Prescribing Rates by Specialty, U.S., 2007-2012. Am J Prev Med 2015; 49: 409-413.
9. Desai RJ, Hernandez-Diaz S, Bateman BT, Huybrechts KF. Increase in prescription opioid use during pregnancy among Medicaid-enrolled women. Obstet Gynecol 2014; 123: 997-1002.
10. Bateman BT, Hernandez-Diaz S, Rothell JP et al. Patterns of opioid utilization in pregnancy in a large cohort of commercial insurance beneficiaries in the United States. Anesthesiology 2014; 120: 1216-1224.
11. Epstein RA, Bobo WV, Martin PR et al. Increasing pregnancy-related use of prescribed opioid analgesics. Ann Epidemiol 2013; 23: 498-503.
12. Yazdy MM, Desai RJ, Brogly SB. Prescription Opioids in Pregnancy and Birth Outcomes: A Review of the Literature. J Pediatr Genet 2015; 4: 56-70.
13. Engeland A, Bramness JG, Daltveit AK et al. Prescription drug use among fathers and mothers before and during pregnancy. A population-based cohort study of 106,000 pregnancies in Norway 2004-2006. Br J Clin Pharmacol 2008; 65: 653-660.
14. Patrick SW, Dudley J, Martin PR et al. Prescription opioid epidemic and infant outcomes. Pediatrics 2015; 135: 842-850.
15. Birke H, Ekholm O, Sjogren P et al. Tramadol use in Norway: A register-based population study. Pharmacoepidemiol Drug Saf 2019; 28: 54-61.
16. Mahic M, Fredheim OM, Borchgrevink PC, Skurtveit S. Use of prescribed opioids by children and adolescents: Differences between Denmark, Norway and Sweden. Eur J Pain 2015; 19: 1095-1100.
17. Muller AE, Clausen T, Sjogren P et al. Prescribed opioid analgesic use developments in three Nordic countries, 2006-2017. Scand J Pain 2019; 19: 345-353.
18. Handal M, Engeland A, Ronning M et al. Use of prescribed opioid analgesics and co-medication with benzodiazepines in women before, during, and after pregnancy: a population-based cohort study. Eur J Clin Pharmacol 2011; 67: 953-960.
19. Engeland A, Bjorge T, Klungsøy K et al. Trends in prescription drug use during pregnancy and postpartum in Norway, 2005 to 2015. Pharmacoepidemiol Drug Saf 2018; 27: 995-1004.
20. Wang MV, Lekhal R, Aaro LE, Schjolberg S. Co-occurring development of early childhood communication and motor skills: results from a population-based longitudinal study. Child Care Health Dev 2014; 40: 77-84.
21. Young AR, Beitchman JH, Johnson C et al. Young adult academic outcomes in a longitudinal sample of early identified language impaired and control children. J Child Psychol Psychiatry 2002; 43: 635-645.
22. Snowling MJ, Adams JW, Bishop DV, Stothard SE. Educational attainments of school leavers with a preschool history of speech-language impairments. Int J Lang Commun Disord 2001; 36: 173-183.

23. Beitchman JH, Wilson B, Johnson CJ et al. Fourteen-year follow-up of speech/language-impaired and control children: psychiatric outcome. J Am Acad Child Adolesc Psychiatry 2001; 40: 75-82.

24. Hill EL. Non-specific nature of specific language impairment: a review of the literature with regard to concomitant motor impairments. Int J Lang Commun Disord 2001; 36: 149-171.

25. Skovlund E, Handal M, Selmer R et al. Language competence and communication skills in 3-year-old children after prenatal exposure to analgesic opioids. Pharmacoepidemiol Drug Saf 2017; 26: 625-634.

26. Dale PS, Price TS, Bishop DV, Plomin R. Outcomes of early language delay: I. Predicting persistent and transient language difficulties at 3 and 4 years. J Speech Lang Hear Res 2003; 46: 544-560.

27. Squires J, Bricker D, Potter L. Revision of a parent-completed development screening tool: Ages and Stages Questionnaires. J Pediatr Psychol 1997; 22: 313-328.

28. Bornstein MH, Hahn CS, Putnick DL. Stability of core language skill across the first decade of life in children at biological and social risk. J Child Psychol Psychiatry 2016; 57: 1434-1443.

29. Bornstein MH, Hahn CS, Putnick DL, Suwalsky JT. Stability of core language skill from early childhood to adolescence: a latent variable approach. Child Dev 2014; 85: 1346-1356.

30. Hjetland HN LA, Lyster SAH, Hagtvet BE, Hulme C, Melby-Lervåg M. Pathways to reading comprehension: A longitudinal study from 4 to 9 years of age. Journal of Educational Psychology 2019; 111: 751-763.

31. Magnus P, Birke C, Vejrup K et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 2016.

32. Magnus P, Irgens LM, Haug K et al. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 2006; 35: 1146-1150.

33. Irgens LM. The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30 years. Acta Obstet Gynecol Scand 2000; 79: 435-439.

34. ATC Classification Index with DDDs. In. WHO Collaborating Centre for Drug Statistics Methodology. 2013.

35. Skurtveit S, Selmer R, Roth C et al. Prenatal exposure to antidepressants and language competence at age three: results from a large population-based pregnancy cohort in Norway. BJOG 2014; 121: 1621-1631.

36. Richter J, Janson H. A validation study of the Norwegian version of the Ages and Stages Questionnaires. Acta Paediatri 2007; 96: 748-752.

37. Zambrana IM, Pons F, Eadie P, Ystrom E. Trajectories of language delay from age 3 to 5: persistence, recovery and late onset. Int J Lang Commun Disord 2014; 49: 304-316.

38. Hadley PA RM. Parental judgments of preschoolers' speech and language development: A resource for assessment and IEP planning. Seminars in Speech and Language 1993; 14: 278-288.

39. Ottem E. 20 spørsmål om språkferdigheter - en analyse av sammenhengen mellom observasjonsdata og testdata. Skolepsykologi 2009; 11-17.

40. Helland SS, Roysamb E, Wang MV, Gustavson K. Language difficulties and internalizing problems: Bidirectional associations from 18 months to 8 years among boys and girls. Dev Psychopathol 2017; 1-14.

41. Nilsen RM, Vollset SE, Gjessing HK et al. Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr Perinat Epidemiol 2009; 23: 597-608.

42. Skurtveit S, Selmer R, Odsbu I, Handal M. Self-reported data on medicine use in the Norwegian Mother and Child Cohort Study compared to data from the Norwegian Prescription Database. Norsk Epidemiologi 2014; 24: 209-216.
43. Kvalvik LG, Nilsen RM, Skjaerven R et al. Self-reported smoking status and plasma cotinine concentrations among pregnant women in the Norwegian Mother and Child Cohort Study. Pediatr Res 2012; 72: 101-107.

44. Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol 1996; 25: 1107-1116.
Table 1 Exposure to opioids during pregnancy by parental characteristics

	Exposed pregnancies	Unexposed pregnancies
Maternal age in years (n=33 407)		
<25	41	2 569
25-29	186	10 630
30-34	228	13 410
≥35	129	6 214

Paternal age in years (n=33 330)		
<25	13	1 075
25-29	129	7 093
30-34	231	13 070
≥35	208	11 511

Maternal education (n=33 282)		
≤12	179	7 915
≥13	405	24 783

Paternal education (n=32 592)		
≤12	269	13 434
≥13	304	18 585

Marital status (n=33 407)		
Married or living with partner	560	31 758
Other	24	1 065

Parity (n= 33 407)		
0	252	15 700
1	216	11 387
≥2	116	5 736

Planned pregnancy (n=33 130)		
No	95	5 221
Yes	483	27 331

Maternal work situation (n=33 290)		
Working	516	30 500
Not working	35	1 571
Disability pensioner	23	202
Other	9	434

Maternal BMI (n=32 869)		
<25	356	22 697
25-29	143	6 859
30-34	52	1 994
≥35	28	740

Maternal smoking week 17-18 (n=32 076)		
No	506	29 668
Sometimes	37	1 246
Daily	20	599

Maternal alcohol use during pregnancy (n=33 362)		
No	275	17 056
Occasionally	281	14 503
Regularly	27	1 220

Maternal chronic disease (n=33 407)		
No	518	30 991
Yes	66	1 832

Maternal pain during pregnancy (n=33 407)		
No	21	2 993
Yes	563	29 830
Maternal anxiety and depression during pregnancy; HSCL ≥2 (n=32 651)

	No	Yes
	469	92
	1.6	3.3
	29 432	2 658
	98.4	96.7

Maternal triptan use in pregnancy (n=33 407)

	No	Yes
	551	33
	1.7	11.1
	32 559	264
	98.3	88.9

Maternal benzodiazepine use in pregnancy, including z-hypnotics (n=33 407)

	No	Yes
	551	26
	1.7	10.9
	32 610	213
	98.3	89.1

Maternal SSRI use in pregnancy (n=33 407)

	No	Yes
	574	10
	1.7	3.9
	32 576	247
	98.3	96.1

Maternal paracetamol use in pregnancy (n=33 407)

	No	Yes
	132	452
	0.7	3.1
	18 554	14 269
	99.3	96.9

Maternal illegal drug use in pregnancy (n=33 407)

	No	Yes
	578	6
	1.7	6.9
	32 742	81
	98.3	93.1

Maternal folic acid supplements in early pregnancy (n=33 407)

	No	Yes
	124	460
	1.9	1.7
	6 361	26 462
	98.1	98.3
Table 2. Distribution of language and communication development at 5 years with and without prenatal exposure to prescribed opioids.

Performance categories	Yes n=584	No n=32823
ASQ5		
Lower (mean score ≤7.5)	38 (6.5)	2,143 (6.5)
Middle (mean score 8-9.5)	196 (33.6)	11,032 (33.6)
Best possible (mean score 10)	350 (59.9)	19,648 (59.9)
SLAS		
Lower or very much lower than typical for age (mean score >3)	49 (8.4)	2,759 (8.4)
Typical for age (mean score=3)	109 (18.7)	6,321 (19.3)
Higher or very much higher than typical for age (mean score<3)	426 (73.0)	23,743 (72.3)
Language 20Q		
Lower (mean score ≥2)	26 (4.5)	1,924 (5.9)
Middle (mean score 1.01-1.99)	379 (64.9)	19,971 (60.8)
Best (mean score 1)	179 (30.7)	10,928 (33.3)
Table 3. Association between exposure to opioid during pregnancy and language and communication development at 5 years.

Performance category	Opioid exposure	Unadjusted model n=33 407	Unadjusted model n=30 000*	Adjusted model** n=30 000*
		OR (95% CI)	OR (95% CI)	OR (95% CI)
ASQ5				
Middle (mean score 8-9.5) vs best possible (mean score 10)	No	1	1	1
	Yes	1.00 (0.84, 1.19)	0.97 (0.80, 1.17)	0.90 (0.74, 1.08)
Lower (mean score ≤7.5) vs best possible (mean score 10)	No	1	1	1
	Yes	1.00 (0.71, 1.39)	0.99 (0.69, 1.41)	0.82 (0.57, 1.17)
SLAS				
Typical for age (mean score 3) vs higher or much higher (mean score<3)	No	1	1	1
	Yes	0.96 (0.78, 1.19)	0.95 (0.76, 1.19)	0.99 (0.79, 1.25)
Lower or very much lower (mean score >3) vs higher or much higher (mean score<3) than typical for age	No	1	1	1
	Yes	0.99 (0.73, 1.33)	0.91 (0.65, 1.26)	0.84 (0.61, 1.17)
Language 20Q				
Middle (mean score 1.01-1.99) vs best performance category (mean score 1)	No	1	1	1
	Yes	1.16 (0.97, 1.39)	1.16 (0.96, 1.40)	1.04 (0.86, 1.26)
Lower (mean score ≥2) vs best performance category (mean score 1)	No	1	1	1
	Yes	0.83 (0.55, 1.25)	0.73 (0.46, 1.17)	0.57 (0.35, 0.91)

*cases with missing values on one or more covariates excluded ** adjusted for paracetamol, any pain, chronic disease, planned pregnancy, smoking, mother’s education, father’s education, mother’s work situation, mother’s age, father’s age, parity, marital status, body mass index, alcohol consumption, anxiety and depression (mean HSCL), illegal drugs, benzodiazepine use, triptan use, SSRI use.
Supplementary table 1. Distribution of language and communication development at 5 years according to number of pregnancy periods with reported exposure to prescribed opioids.

Performance categories	Opioids during pregnancy, n (%)		
	No opioid use n=32 823	One period n=466	Two or three periods n=118
ASQ5			
Lower (mean score ≤7.5)	2 143 (6.5)	32 (6.9)	6 (5.1)
Middle (mean score 8-9.5)	11 032 (33.6)	157 (33.7)	39 (33.1)
Best possible (mean score 10)	19 648 (59.9)	277 (59.4)	73 (61.9)
SLAS			
Lower or very much lower than typical for age (mean score >3)	2 759 (8.4)	37 (7.9)	12 (10.2)
Typical for age (mean score=3)	6 321 (19.3)	91 (19.5)	18 (15.3)
Higher or very much higher than typical for age (mean score<3)	23 743 (72.3)	338 (72.5)	88 (74.6)
Language 20Q			
Lower (mean score ≥2)	1 924 (5.9)	23 (4.9)	3 (2.5)
Middle (mean score 1.01-1.99)	19 971 (60.8)	304 (65.2)	75 (63.6)
Best (mean score 1)	10 928 (33.3)	139 (29.8)	40 (33.9)
Supplementary table 2. Distribution of language and communication development at 5 years according to extent of reported prescribed opioid use during pregnancy.

Performance categories	Opioids during pregnancy, n (%)		
	No opioid use n=32 823	Occasional use n=524	Repeated use n=60
ASQ5			
Lower (mean score ≤7.5)	2 143 (6.5)	35 (6.7)	3 (5.0)
Middle (mean score 8-9.5)	11 032 (33.6)	179 (34.2)	17 (28.3)
Best possible (mean score 10)	19 648 (59.9)	310 (59.2)	40 (66.7)
SLAS			
Lower or very much lower than typical for age (mean score >3)	2 759 (8.4)	44 (8.4)	5 (8.3)
Typical for age (mean score=3)	6 321 (19.3)	99 (18.9)	10 (16.7)
Higher or very much higher than typical for age (mean score<3)	23 743 (72.3)	381 (72.7)	45 (75.0)
Language 20Q			
Lower (mean score ≥2)	1 924 (5.9)	24 (4.6)	2 (3.3)
Middle (mean score 1.01-1.99)	19 971 (60.8)	340 (64.9)	39 (65.0)
Best (mean score 1)	10 928 (33.3)	160 (30.5)	19 (31.7)

Occasional use: reported in 1-4 tick boxes during pregnancy, repeated use: reported in ≥5 tick boxes during pregnancy
Figure 1. Distribution of language and communication skills in children exposed (upper panels) and not exposed (lower panels) to opioids during pregnancy.