A **Flexible Primal-Dual ToolBox**

Technical Report

Hendrik Dirks*

March 21, 2016

Abstract

FlexBox is a flexible MATLAB toolbox for finite dimensional convex variational problems in image processing and beyond. Such problems often consist of non-differentiable parts and involve linear operators. The toolbox uses a primal-dual scheme to avoid (computationally) inefficient operator inversion and to get reliable error estimates. From the user-side, **FlexBox** expects the primal formulation of the problem, automatically decouples operators and dualizes the problem. For large-scale problems, **FlexBox** also comes with a C++-module, which can be used stand-alone or together with MATLAB via MEX-interfaces. Besides various pre-implemented data-fidelities and regularization-terms, **FlexBox** is able to handle arbitrary operators while being easily extendable, due to its object-oriented design.

The toolbox is available at http://www.flexbox.im

Keywords: Convex optimization, primal-dual methods, image processing, variational methods, MATLAB toolbox

1 **Introduction**

Many variational problems in image processing can be written in the form

\[
\arg\min_x G(x) + F(Ax),
\]

(1)

where \(A \) denotes some linear operator (see [A]) and both \(G \) and \(F \) are proper, convex and lower-semicontinuous functions. Problem (1) refers to the so-called *primal* formulation of the minimization problem and \(x \) is known as the primal variable. It can be shown (see [II]) that minimizing (1) is equivalent to solving the *primal-dual* or *saddle-point* formulation

\[
\arg\min_x \arg\max_y G(x) + \langle y, Ax \rangle - F^*(y).
\]

(2)
Here, F^* refers to the convex conjugate (see A) of F and y is denoted as the dual variable. It the recent years, algorithms like ADMM [8, 14] or primal-dual [10, 8, 17, 5] for efficiently solving these saddle-point problems have become very popular. FlexBox makes use of the latter, which can be sketched up as follows: For $\tau, \sigma > 0$ and a pair $(\hat{x}^0, y^0) \in X \times Y$ we iteratively solve:

$$y^{k+1} = \text{prox}_{\sigma F^*}(y^k + \sigma A\hat{x}^k)$$ (3)

$$x^{k+1} = \text{prox}_{\tau G}(x^k - \tau A^Ty^{k+1})$$ (4)

$$\hat{x}^{k+1} = 2x^{k+1} - x^k$$ (5)

Here, $\text{prox}_{\tau G}$ (resp. σF^*) denotes the proximal or resolvent operator

$$\text{prox}_{\tau G}(y) = (I + \tau \partial G)^{-1}(y) := \arg \min_v \left\{ \|v - y\|_2^2 + \tau G(v) \right\},$$

which can be interpreted as a compromise between minimizing G and being close to the input argument y. The efficiency of primal-dual algorithms relies on the fact that the prox-problems are computationally efficient to solve.

1.1 Contribution

Since primal-dual algorithms have been extensively applied to all classes of convex optimization problems, we found that people are spending a lot of effort on calculating convex conjugates or solutions for prox-problems repeatedly for similar problems. Let us consider, for example, the isotropic total variation $\|\nabla u\|_{1,2}$, where the convex conjugate is an indicator function of the L^∞-ball and the solution of the prox-problem is a point-wise projection onto L^2-balls. These results hold not only for $A = \nabla$, but for arbitrary operators. FlexBox makes use of this generalization and simply works on the level of terms in the primal problem. After adding a certain term, FlexBox automatically decouples operators, creates dual variables and calculates step-sizes (τ, σ). FlexBox already contains a variety of data-fidelity (e.g. L^1, L^2, Kullback-Leibler) and regularization terms (e.g. L^2, TV, Laplace, curl), but is also compatible with user-defined operators. Moreover, the class-based structure allows easy extension and creation of custom terms. A full list of available terms can be found in Table 4.2.

Core components of FlexBox are written in MATLAB, but there exists an optional C++-module to improve compatibility and runtime. This module can be compiled and will afterwards be used automatically via a MEX-interface. The C++-module can also be used without MATLAB (but e.g. with OpenCV [1, 2]), but does not have the full functionality and whole variety of terms included.

2 Architecture and Features

Basic Idea: To work with FlexBox, the user has to derive the primal formulation of the variational problem first. Afterwards, each primal variable includ-
ing its dimensions is added to FlexBox. Then, the primal problem is put into the toolbox term by term, using the implemented functional terms from Table 4.2. Once the computation is finished, the result stored in the primal variables can be requested and used.

Design: FlexBox is designed as one core class, which holds a list of functional terms. For each term the toolbox decides whether it has to be dualized and creates necessary dual variables. The main object holds the data of primal and dual variables \(x_i \) and \(y_i \) and all parameters. Terms always correspond to at least one primal variable, whereas dual terms also correspond to at least one dual variable and contain the involved operators.

In the primal-dual algorithm (5), applications of the operator can be decoupled defining

\[
\tilde{y} := y^k + \sigma Ax^k, \quad \text{and} \quad \tilde{x} := x^k - \tau A^T y^{k+1}.
\]

Since dual terms bind the operators, calculations of \(\tilde{y} \) and \(\tilde{x} \) are done inside the corresponding dual terms, accessing the variables held by the core class. Finally, primal and dual terms specify prox-methods to solve the arising prox-problems while again accessing the variables held by the FlexBox core class.

Parameters: To ensure convergence, the parameters \(\tau \) and \(\sigma \) have to fulfill \(\tau \sigma \|A\| < 1 \). A static choice of these parameters might lead to slow convergence speed, because it is dominated by the smallest possible value along all operators. A fully automatic strategy for finding optimal parameters can be extrapolated from [9]. Summing up the absolute values of row elements (for \(\sigma_i \)) resp. column elements (for \(\tau_i \)) leads to custom parameters for each term in the functional. This strategy is inherited by FlexBox.

Stopping Criterion: As a powerful stopping criterion FlexBox uses the primal-dual residual, proposed by Goldstein, Esser and Baraniuk [6], which can be calculated after the \((k+1)\)-th iteration as

\[
p^k := \left| \frac{x^k - x^{k+1}}{\tau} - A^T (y^k - y^{k+1}) \right|, \quad d^k := \left| \frac{y^k - y^{k+1}}{\sigma} - A(x^k - x^{k+1}) \right|,
\]

with \(|·|\) being the sum of absolute values. We denote \(p^k \) as the primal and \(d^k \) as the dual residual. The total residual is then given by the sum of primal- and dual residual, which is afterwards scaled with the size of the problem and number of variables. Since evaluating the residual is computationally expensive, it is regularly computed after a fixed number of iterations (default 100).

Besides evaluating the primal-dual residual, FlexBox automatically stops after a static number of iterations (default 10000) and can be continued afterwards.
3 Examples

3.1 Rudin-Osher-Fatemi

The Rudin-Osher-Fatemi model \cite{12} has very popular applications in image denoising. The primal formulation reads

$$\arg \min_u \frac{1}{2} \| u - f \|^2_2 + \alpha \| \nabla u \|_{1,2}, \quad (6)$$

where the first part fits the unknown \(u \) to the given input image \(f \) and the second part refers to the isotropic total variation, which penalizes the total sum of jumps in the solution. Minimizing this problem with FlexBox can be done with the following lines of code:

```matlab
%Begin: Code example
main = flexbox;
numberU = main.addPrimalVar(size(f));
main.addTerm(L2dataTerm(1,imageNoisy),numberU);
main.addTerm(L1gradientIso(0.08,size(f)),numberU);
main.runAlgorithm;
result = main.getPrimal(numberU);
%End: Code example
```

To keep this example short, we omitted parts of the code where the image \(f \) is read. Let us begin in line 2, which initializes a FlexBox object and saves it to the variable `main`. Line 4 then adds the primal objective variable \(u \), which has the same size as the input image \(f \). The toolbox returns the internal number of this primal variable, which is saved in `numberU`.

In line 6 and 7, the L\(^2\)-data-term with weight 1 (the weight is divided by 2 internally for L\(^2\) terms) and corresponding image \(f \) is added. Moreover, the isotropic TV-term with weight 0.08 is pushed into the framework. Note that the function `addTerm` always requires a functional part and the internal number of the corresponding primal variable(s).

The function call in line 9 finally starts the calculation. Once this is finished we transfer the solution into the variable `result` in line 11.

3.2 Optical Flow

Estimating the motion between two consecutive images \(f_1 \) and \(f_2 \) based on the displacement of intensities in both images is called optical-flow estimation. The unknown velocity field \(\mathbf{v} \) is usually connected to the image by the brightness-constancy-assumption \(f_2(x + \mathbf{v}) - f_1(x) = 0 \). This formulation is non-linear in terms of \(\mathbf{v} \) and therefore linearized (see e.g. \cite{16,4}). A corresponding variational
problem incorporating total variation regularization can be written as

\[
\arg\min_{v=(v_1,v_2)} \frac{1}{2} \| f_2 - f_1 + \nabla f_2 \cdot v \|_1 + \alpha_1 \| \nabla v_1 \|_{1,2} + \alpha_2 \| \nabla v_2 \|_{1,2}.
\]

(7)

Solving this problem with FlexBox can be done in a similar manner as for the ROF example:

```matlab
%Begin: Code example
main = flexbox;
numberV1 = main.addPrimalVar(size(f1));
numberV2 = main.addPrimalVar(size(f2));
%add optical flow data term
main.addTerm(L1opticalFlowTerm(1,f1,f2),[numberV1,numberV2]);
%add regularizers - one for each component
main.addTerm(L1gradientIso(0.05,size(f1)),numberV1);
main.addTerm(L1gradientIso(0.05,size(f1)),numberV2);
main.runAlgorithm;
resultV1 = main.getPrimal(numberV1);
resultV2 = main.getPrimal(numberV2);
%End: Code example
```

In lines 4 and 5 primal variables for both components of the velocity fields are added. Afterwards, in lines 8, 11 and 12 the data term and regularizers for both components are inserted. Please note that the optical flow term now refers to two primal variables written as the vector \([\text{numberV}1, \text{numberV}2]\). Afterwards, the algorithm is started and both results are retrieved.

3.3 Segmentation

Dividing an image into different regions is called segmentation. Assuming that the image \(f\) consists of \(k\) different regions, each of them having a mean intensity \(c_i\) for \(i = 1, \ldots, k\), the segmentation problem including total variation regularization can be written as

\[
\arg\min_{u=u_1,\ldots,u_k} \sum_{i=1}^k u_i \frac{1}{2} \| f - c_i \|_2^2 + \alpha \| \nabla u_i \|_{1,2},
\]

s.t. \(u_i \geq 0, \sum_{i=1}^k u_i = 1 \),

(8)

(9)

where \(u\) is a labeling vector (see [7, 15]). This labeling formulation is a convex relaxation of the integer assignment \(u_i \in \{0, 1\}\). The MATLAB implementation of this problem is again rather short:

```matlab
%Begin: Code example
numberOfLabels = 3;
%End: Code example
```
We begin by choosing a fixed number of regions and choose the mean intensity in each region as random values in line 4. Afterwards, the main object is initialized and a primal variable for each u_i is created in lines 8-10. In line 13, we create the labeling term using the previously defined labels and draw a connection for primal variables $1: numberOfLabels$. The loop in line 13-15 generates a total variation regularizer for each of the primal variables. The problem is solved in line 19 and we save each labeling function as a layer in a 3d matrix.

4 Features

4.1 General

- FlexBox can be stopped at any time and afterwards continued from the current state. Due to this feature, we are able to change parameters after the problem has converged and use the current state as an initial guess for the next run.

- The toolbox supports arbitrary user-defined operators consisting of blocks A_i (see General operator regularization in Table 4.2) that can be submitted by defining A as a cell-array of blocks, where each numPrimals element correspond to one row in the overall operator. An example for a user-defined operator is provided with the software package.
4.2 Available Terms

Term	Classname	Parameters
\(\alpha \| u - f \|_1\)	L1dataTerm(\alpha,f)	\(\frown\): input data weight \(\alpha\)
\(\alpha \| Au - f \|_1\)	L1dataTermOperator(\alpha,A,f)	\(\frown\): input data weight \(\alpha\), \(A\): operator
\(\alpha \| u - f \|_2^2\)	L2dataTerm(\alpha,f)	\(\frown\): input data weight \(\alpha\)
\(\alpha \| Au - f \|_2^2\)	L2dataTermOperator(\alpha,A,f)	\(\frown\): input data weight \(\alpha\), \(A\): operator
\(\| Au - f + f \log \frac{b}{\epsilon} \) \(\geq 0\)	KLdataTermOperator(\alpha,A,f)	\(\frown\): input data weight \(\alpha\), \(A\): operator
\(\alpha \| Vf_2 \times Vf_2 - f_1 f_2 \|_1\)	L1opticalFlowTerm(\alpha,f_1,f_2)	\(\frown\): input data weight \(\alpha\)
\(\alpha \| Vf_2 \times Vf_2 - f_1 f_2 \|_2^2\)	L2opticalFlowTerm(\alpha,f_1,f_2)	\(\frown\): input data weight \(\alpha\)
\(\sum_{i=1}^n w_i f_i \) \(\geq 0\), \(\sum_{i=1}^n w_i = 1\)	labelingTerm(\alpha,f,l)	\(\frown\): image weight \(\alpha\)
\(\alpha \| Vv \|_1\)	L1IdentityOperator(\alpha,dims)	\(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_2\)	L2IdentityOperator(\alpha,dims)	\(\frown\): dimension of \(\alpha\)
\(\alpha \| Vf \|_{H,\epsilon}\)	HuberGradient(\alpha,dims,\epsilon)	\(\frown\): weight \(\alpha\), \(\epsilon\): for Huber-norm
\(\alpha \| V(u-w) \|_1\)	L1gradientDiffAniso(\alpha,dims)	\(\frown\): weight \(\alpha\), \(\frown\): dimension of \(\alpha\)
\(\alpha \| V(u-w) \|_2\)	L1gradientDiffIso(\alpha,dims)	\(\frown\): weight \(\alpha\), \(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_{H,\epsilon}\)	HuberGradient(\alpha,dims,\epsilon)	\(\frown\): weight \(\alpha\), \(\epsilon\): for Huber-norm
\(\alpha \| V(u-w) \|_1\)	L1gradientDiffAniso(\alpha,dims)	\(\frown\): weight \(\alpha\), \(\frown\): dimension of \(\alpha\)
\(\alpha \| V(u-w) \|_2\)	L1gradientDiffIso(\alpha,dims)	\(\frown\): weight \(\alpha\), \(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_{H,\epsilon}\)	HuberGradient(\alpha,dims,\epsilon)	\(\frown\): weight \(\alpha\), \(\epsilon\): for Huber-norm
\(\alpha \| V(u-w) \|_1\)	L1IdentityOperator(\alpha,dims)	\(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_2\)	L2IdentityOperator(\alpha,dims)	\(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_{H,\epsilon}\)	HuberGradient(\alpha,dims,\epsilon)	\(\frown\): weight \(\alpha\), \(\epsilon\): for Huber-norm
\(\alpha \| V(u-w) \|_1\)	L1IdentityOperator(\alpha,dims)	\(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_2\)	L2IdentityOperator(\alpha,dims)	\(\frown\): dimension of \(\alpha\)
\(\alpha \| Vv \|_{H,\epsilon}\)	HuberGradient(\alpha,dims,\epsilon)	\(\frown\): weight \(\alpha\), \(\epsilon\): for Huber-norm

Table 1: List of terms currently available in FlexBox (incomplete).
A General Considerations

- Throughout this report, we consider finite dimensional optimization problems with primal variables $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- The sets $\mathcal{X} \subset \mathbb{R}^N$ and $\mathcal{Y} \subset \mathbb{R}^M$ are assumed to be convex.
- We do not explicitly distinguish between a variable x_c on a regular cartesian grid $N_1 \times \ldots \times N_d$ (s.t. $N_1 \cdot \ldots \cdot N_d = N$) and its vectorized equivalent $x \in \mathbb{R}^N$, which is gained by concatenating x along the first dimension.
- The scalar product of two vectors on \mathcal{X} is defined as
 \[\langle u, v \rangle = \sum_i u_i v_i, \quad u, v \in \mathcal{X}. \]

- FlexBox expects the matrix representation of the linear operator A, hence $A \in \mathbb{R}^{M \times N}$ and $A^* = A^T$. Note that the evaluation of a linear operator can always be written as a matrix-vector multiplication by applying the Kronecker product (see e.g. [13]).
- The function F^* refers to the convex conjugate or Legendre-Fenchel transformation of F and is defined as
 \[F^*(y^*) := \sup_{y \in \mathcal{Y}} \langle y^*, y \rangle - F(y). \]

Acknowledgements

- Thanks to Eva-Maria Brinkmann, Janic Föcke, Lena Frerking, Julian Rasch and Carolin Roßmanith for testing FlexBox and discussing useful features.
- FlexBox makes use of the primal-dual algorithm working on concrete functional terms. A MATLAB toolbox consisting of a more general class of solvers for optimization problems is OOMFIP, developed by Martin Benning. Thank you for your advices!
References

[1] Gary Bradski et al. The opencv library. *Doctor Dobbs Journal*, 25(11):120–126, 2000.

[2] Gary Bradski and Adrian Kaehler. *Learning OpenCV: Computer vision with the OpenCV library*. O’Reilly Media, Inc., 2008.

[3] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145, 2011.

[4] Hendrik Dirks. *Variational Methods for Joint Motion Estimation and Image Reconstruction*. PhD thesis, WWU Münster, 2015.

[5] Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. *SIAM Journal on Imaging Sciences*, 3(4):1015–1046, 2010.

[6] Tom Goldstein, Min Li, Xiaoming Yuan, Ernie Esser, and Richard Baraniuk. Adaptive primal-dual hybrid gradient methods for saddle-point problems. *arXiv preprint arXiv:1305.0546*, 2013.

[7] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and associated variational problems. *Communications on pure and applied mathematics*, 42(5):577–685, 1989.

[8] Neal Parikh and Stephen P Boyd. Proximal algorithms. *Foundations and Trends in optimization*, 1(3):127–239, 2014.

[9] Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In *Computer Vision (ICCV), 2011 IEEE International Conference on*, pages 1762–1769. IEEE, 2011.

[10] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle. An algorithm for minimizing the mumford-shah functional. In *Computer Vision, 2009 IEEE 12th International Conference on*, pages 1133–1140. IEEE, 2009.

[11] Ralph Tyrell Rockafellar. *Convex analysis*. Princeton university press, 2015.

[12] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. *Physica D: Nonlinear Phenomena*, 60(1):259–268, 1992.

[13] Willi-Hans Steeb. *Kronecker product of matrices and applications*. BI-Wissenschaftsverlag, 1991.
[14] Bo Wahlberg, Stephen Boyd, Mariette Annergren, and Yang Wang. An admm algorithm for a class of total variation regularized estimation problems. arXiv preprint arXiv:1203.1828, 2012.

[15] Christopher Zach, David Gallup, Jan-Michael Frahm, and Marc Niethammer. Fast global labeling for real-time stereo using multiple plane sweeps. In VMV, pages 243–252, 2008.

[16] Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for realtime tv-l 1 optical flow. In Pattern Recognition, pages 214–223. Springer, 2007.

[17] Xiaoqun Zhang, Martin Burger, and Stanley Osher. A unified primal-dual algorithm framework based on bregman iteration. Journal of Scientific Computing, 46(1):20–46, 2011.