Is Bone Grafting Necessary in Opening Wedge High Tibial Osteotomy? A Meta-Analysis of Radiological Outcomes

Jae Hwi Han, MD1, Hyun Jung Kim, PhD2, Jae Gwang Song, MD1, Jae Hyuk Yang, MD1, Nikhl N Bhandare, MD4, Aldrich Raymund Fernandez, MD5, Hyung Jun Park, MD1, and Kyung Wook Nha, MD1

1Department of Orthopaedic Surgery, Inje University Ilsan Paik Hospital, Goyang; 2Department of Preventive Medicine, Institute for Evidence-based Medicine, Korea University College of Medicine, Seoul; 3Department of Orthopaedic Surgery, Veterans Health Service Medical Center, Seoul, Korea; 4Department of Orthopaedic Surgery, Bhandare Hospital, Panaji, India; 5Department of Orthopaedic Surgery, Army General Hospital, Bonifacio, Philippines

Purpose: Bone grafting in opening wedge high tibial osteotomy (OWHTO) is still controversial. The purpose of this study is to compare the radiological outcomes of OWHTO with bone graft (autogenous, allogenous, and synthetic bone graft) and those without bone graft.

Materials and Methods: PubMed, MEDLINE, EMBASE and Cochrane Register of Studies databases were searched using specific inclusion and exclusion criteria for radiological studies involving OWHTO with bone graft and without bone graft groups. All reported delayed union, nonunion and correction loss were analyzed. Data were searched from the time period of January 2000 through July 2014. In addition, a modified Coleman methodology score (CMS) system was used to assess the methodological quality of the included studies.

Results: Twenty-five studies with a mean CMS value of 77 (range, 61 to 85 score) were included. In total, 1,841 patients underwent OWHTO using 4 different procedures for bone graft: autobone graft (n=352), allobone graft (n=547), synthetic bone graft (n=541) and no bone graft (n=401). There was a similar tendency for delayed union, nonunion and correction loss rate among the osteotomy space filling methods.

Conclusions: The meta-analysis showed there was a similar tendency for radiological union and correction maintenance among patients undergoing OWHTO regardless of the type of bone in all of the studies. However, the currently available evidence is not sufficient to strongly support the superiority of OWHTO with bone graft to OWHTO without bone graft.

Keywords: Knee, Osteoarthritis, Osteotomy, Bone graft, Meta-analysis

Introduction

Opening wedge high tibial osteotomy (OWHTO) with medial plate fixation is a proven adequate and safe method for treatment of medial compartment osteoarthritis of the knee and varus deformity, particularly in young and/or active individuals1,2. Advantages of OWHTO, compared to closed wedge osteotomy, include preservation of bone stock, predictable and adjustable correction, relatively easy exposure with avoidance of proximal tibio-fibular joint disruption, fibular nerve palsy, and compartment syndrome3.

However, OWHTO creates a gap in the metaphysis of the tibia. To enhance bone healing and increase initial mechanical stability, a high degree OWHTO may require the application of bone graft/substitute to fill the osteotomy gap. Moreover, OWHTO has been associated with risk of nonunion, collapse and loss of correction4. Autologous bone graft is the “gold standard” to fill the bone defect, but iliac crest graft harvest has risks. The associated complications include pain, thigh hypoesthesia, infection, pelvic bone fracture and discomfort wearing clothes5-8. Allograft to avoid donor side morbidity was successfully applied in HTO9. However, the use of allograft increases additional risks such as disease transmission, immunologic reactions and slow remodeling.
Due to the limited autologous bone availability and the problem of donor-site morbidity, many efforts have been made to find adequate supporting material for augmentation after osteotomy. Hydroxyapatite, β-tricalcium phosphate or the combination of both are the most commonly used synthetic augments in OWHTO. In the meantime, some recent studies presented good short-term results of OWHTO without additional bone substitutes for filling the osteotomy gap\(^8\)\(^9\). Still, the most suitable material for filling the opening space in OWHTO has not been identified.

Over the past decade, there has been only one randomized controlled study on the comparison of autologous bone grafting and no filling method, which reported similar outcomes between the two methods\(^10\). Although randomized controlled trials (RCTs) are considered to offer the ideal and highest level of evidence for patient care, numerous “good” surgical practices have evolved into the “standard of care” without being randomized against placebo or ineffective treatment options\(^11\), which probably explains why only one RCT has been published. Considering that observational studies constitute the best available evidence\(^12\), we attempted to conduct a meta-analysis of observational studies for the purpose of providing surgeons with informed data for better decision-making in OWHTO.

Table 1. Inclusion and Exclusion Criteria

Inclusion criteria	Exclusion criteria
Studies on patients who received OWHTO	Studies on patients who received closing wedge HTO
Studies reporting minimum 1-year follow-up data on radiological outcomes and complications of OWHTO	Studies reporting less than 1-year follow-up data on radiological outcomes and complications of OWHTO
Level I, II, III, or IV evidence	Level V evidence (case report, technical note, letter to editor), biomechanical reports, and review articles
Articles written in English	Articles written in languages other than English
Human subjects	Non-human subjects
Study published or in press online between January 1, 2000 and May 1, 2014	Study published or in press online on or before January 1, 2000
Medial plate fixation for OWHTO	Other devices (external fixator, staple) for OWHTO

OWHTO: opening wedge high tibial osteotomy.

Table 2. Search Protocol

No.	Search terms	Results
1	osteoarthritis [tiab]	35,633
2	“osteoarthritis” [MeSH:NoExp]	28,000
3	1 OR 2	49,340
4	”knee joints” [tiab] OR knee [tiab] OR tibias [tiab] OR tibia [tiab]	106,972
5	("knee" [MeSH]) OR "knee joint" [MeSH]) OR " tibia" [MeSH]	72,058
6	4 OR 5	134,573
7	3 AND 6	16,821
8	“osteoarthritis, knee” [MeSH] OR "genu varum” [MeSH] OR "tibia/radiography” [MeSH] OR "tibia/surgery” [MeSH] OR "tibia/therapy” [MeSH] OR "genu valgum” [MeSH]	20,120
9	"knee osteoarthritis” [tiab] OR "osteoarthritis of knees” [tiab] OR "osteoarthritis of knee” [tiab] OR "genu varum” [tiab] OR "medial gonarthrosis” [tiab] OR "valgus knee” [tiab] OR "varus knee” [tiab] OR "varus deformity” [tiab] OR "valgus deformity” [tiab] OR "genu valgum” [tiab]	7,381
10	8 OR 9	23,707
11	7 OR 10	31,784
12	“osteotomy” [MeSH:NoExp] OR osteotomy [tiab] OR osteotomies [tiab]	31,896
13	11 AND 12	3,664
14	13 AND publication date from 2000/01/01 to 2014/05/02	2,057
The purpose of this study was to compare the radiological outcomes of OWHTO with bone graft (autogenous graft, allogeneous graft, and synthetic bone) and those without bone graft. The hypotheses were that the use of bone graft would produce superior radiological outcomes.

Materials and Methods

1. Eligibility Criteria

Published studies were included in this meta-analysis if they met the eligibility criteria described in Table 1. Patients included in this study were limited to osteoarthritis patients. There was no limitation in the age of patients. Fixation method was limited to plate fixation using either a locking or a non-locking plate.

2. Data Sources and Search Strategy

A literature search of online databases (MEDLINE, EMBASE and Cochrane Register of Studies) was performed. The search strategy used in the case of MEDLINE is presented in Table 2, which was modified for each of the other databases (Table 2).

Next, the references from the included studies were screened, and experts in the field were contacted for help in identifying additional studies. Two independent review authors (Han and Song) selected citations each based on the titles and abstracts. The eligibility of the full papers of those citations initially thought to fulfill the inclusion criteria was then assessed. In cases where a consensus could not be reached, a third review author (Nha) was consulted.

Table 3. Criteria of the Coleman Methodology Score for Studies

Criteria	Score
Part A–only one score to be given for each of the seven sections	
1. Study size–number of osteotomies	
>60	10
41–60	7
20–40	4
2. Mean follow-up (mo)	
>24	5
12–24	2
>12, not stated or unclear	0
3. Number of different surgical procedures included in each reported outcome	
One surgical procedure only	10
More than one surgical procedure, but >90% of subjects undergoing one procedure	7
Not stated, unclear or <90% of subjects undergoing one procedure	0
4. Type of study	
Randomised control trial	15
Prospective cohort study	10
Retrospective cohort study	0
5. Diagnostic certainty	
In all	5
In >80%	3
In <80%, no, unclear	0
6. Description of surgical procedure	
Adequate (technique stated with necessary details of the type of procedure)	5
Fair (technique only stated without elaboration)	3
Inadequate, not stated or unclear	0
7. Description of postoperative rehabilitation	
Well described with >80% of patients complying	10
Well described with 60%–80% of patients complying	5
Protocol not reported or <60%–80% of patients complying	0

Part B–scores may be given for each option in each of the three sections if applicable

1. Outcome criteria

Outcome measures clearly defined | 2 |
Timing of outcomes assessment clearly stated | 2 |
Use of outcome criteria with good reliability | 3 |
Use of outcome with good sensitivity | 3 |

2. Procedure for assessing outcomes

Subjects recruited | 5 |
Investigator independent of surgeon | 4 |
Written assessment | 3 |
Completion of assessment by subjects themselves with minimal investigator assistance | 3 |

3. Description of subject selection process

Selection criteria reported and unbiased | 5 |
Recruitment rate reported: >80% or <80% | 5 or 3|
Eligible subjects not included in the study satisfactorily accounted for or 100% recruitment | 5 |
3. Data Abstraction
A standardized form was used to extract data from the included papers on study characteristics, patient characteristics, surgical intervention, duration of follow-up, osteotomy size, postoperative rehabilitation protocol, radiological bone union period, nonunion rate, delayed union rate, correction loss rate and graft-related problems. The extracted data were then cross-checked for accuracy. Disagreements were settled by the Nha.

4. Statistical Analysis
Statistical analysis was performed using STATA/MP ver. 13.0 (Stata Corp., College Station, TX, USA). Effect sizes for dichotomous data (incidence of nonunion, delayed union, and loss of correction) were calculated using random-effect models and expressed as event rates. The mean values of the continuous data (the mean bone union period; the mean difference in bone union period) were compared using a t-test. For each effect size, a 95% confidence interval was given. Heterogeneity was calculated according to the method of Higgins et al. and expressed as I^2 (range, 0% [complete consistency] to 100% [complete inconsistency]). Analysis of comparative studies and level IV case series analysis were performed separately. Case series analysis was performed to investigate whether the case series support the results of the one RCT and four comparative studies.

5. Quality Assessment
The methodological quality of the included studies was assessed by the two review authors (Han and Song) using the 10 critical appraisal criteria of the Coleman methodology score (CMS) (Table 3). The final scores ranged from 0 to 100, with a perfect score (100) indicating a study design that completely avoids the influences of chances, various biases, and confounding factors.

6. Included Studies
Based on the full-text review, the final meta-analysis included 25 studies on OWHTO. A flowchart illustrating the study selection process is depicted in Fig. 1. The included studies are listed in Table 4. Twenty case series, one RCT and four comparative studies were included in the meta-analysis.

Results
1. Quality Assessment
The modified CMS value for individual study is presented in Table 3. The mean modified CMS value for all included studies was 77 (range, 61 to 85 score). The mean CMS value for each criterion is shown in Table 5.

2. Radiological Outcomes
The overall results are shown in Table 6.
1) Radiological bone union period

Only three studies with no-filling method, one study with allogenous graft and one study with synthetic graft presented mean radiological bone union periods and statistical deviations, rendering any statistical analysis meaningless. The radiological outcomes and radiological bone union periods are described in Table 7 and plotted in Fig. 2. Note that allogenous graft groups required a longer period for union.

2) Nonunion and delayed union.

Table 6 lists all papers that were included in this meta-analysis. Kolb et al. defined delayed union as prolonged osteotomy healing of more than four months, and defined nonunion as no evidence of healing six months after osteotomy. Shim et al. defined delayed union as the lack of bridging callus and the presence of radiolucent areas within the opening wedge defect more than three months after surgery, and nonunion as no evidence of
healing within six months. Hernigou and Ma32 defined delayed union as the presence of pain at the osteotomy site after 45 days with evidence of loss of correction. Yacobucci and Cocking7, defining nonunion as the absence of radiological union requiring iliac crest bone grafting, reported two cases of nonunion in corrections of 15 degrees and an unrecognized fracture of the lateral hinge in one of those cases.

Nonunion and delayed union rates assessed according to the filler type are presented in Table 8. There was a similar tendency for nonunion and delayed union rates among studies classified according to the filler type. The nonunion and delayed union rates were also analyzed according to the type of fixation. Table 9 shows nonunion and delayed union rates assessed according to the fixation type. There was also a similar tendency for nonunion and delayed union rates among studies classified according to the fixation type. No series were reported on OWHTO using an

| Overall Coleman Methodology Score for Each Criterion |
|---------------------------------|----------------|------------------|-----------------|
| Criteria (maximum score) | Mean | Standard deviation | Range |
| Part A |
Study size (10)	6.84	2.76	4–10
Mean follow-up (5)	4.4	1.22	2–5
No. of procedures (10)	10	0	10
Type of study (15)	7.8	4.58	0–15
Diagnostic certainty (5)	5	0	5
Surgery description (5)	4.4	1.22	3–5
Rehabilitation description (10)	7.6	4.35	0–10
Part B			
Outcome criteria (10)	7.96	1.67	4–10
Procedure for outcomes (15)	8	2.41	3–12
Selection process (15)	15	0	15
Total score (100)	77	6.58	61–85

Table 6. Overall Results of Studies

Author	Filling method	Radiological union (day), mean (SD)	Radiological union (year), mean (SD)	Osteotomy size (mm or \(\text{o}\)), mean (SD)	Loss of correction Nonunion Delayed union FWB (wk)	PWB (wk)		
Chae et al.5	Tricortical iliac crest	N/A	N/A	6/138	0	N/A	6	2
Yacobucci and Cocking7	Proximal tibial cortico-cancellous wedge allograft	120 (28)	10.1	1/50	2/50	N/A	N/A	8
Zorzi et al.10	Cancellous iliac crest autologous bone	87	9.9	1/23	0	N/A	N/A	8
Bode et al.15	No	96	10.2	2/23	0	N/A	N/A	8
Schroter et al.16	No	N/A	N/A	0	2/52	2/52	4	2–3
El-Azab et al.17	No	N/A	8.0 (2.0)	2/35	N/A	N/A	6–8	N/A
Brosset et al.18	N/A	135 (49)	N/A	0	2/51	N/A	N/A	
El-Assal et al.19	No	90 (15)	10.5 (1.5)	1/59	0	0	N/A	N/A
Kolb et al.20	No	90 (14)	10.9 (1.5)	0	1/51	0	6	N/A
Zaki and Rae21	No	N/A	N/A	0	0	N/A	N/A	N/A
Shim et al.22	Tricortical iliac crest	90	6.42	N/A	0	1/37	N/A	N/A
Schroter et al.23	Iliac crest bone wedge	N/A	8.2 (4.9)	N/A	N/A	N/A	6–8	N/A
Noyes et al.24	Tricortical iliac crest	90	9.7 (3.1)	1/55	0	3/55	8	4
Haviv et al.25	Tricortical iliac crest	180	5.0–17.5	0	0	0	13	6
Santic et al.26	Femoral head	168	8.6 (2.0)	0	0	0	12	6
DeMeo et al.27	Tricortical iliac crest+ cancellous bone chips	N/A	N/A	0	0	1/20	11.4	6–8
Saito et al.28	Hydroxyapatite Or β tricalcium phosphate wedge	N/A	12	0	0	1/64	N/A	N/A
autologous bone graft with a locking plate.

3) Loss of correction

Yacobucci and Cocking\(^7\) reported one case of correction loss with lateral cortex fracture, wherein the correction angle was 15 degrees. Saragaglia et al.\(^{29}\) also reported one case of correction loss associated with screw breakage. Tables 9 and 10 list the incidence and rate of loss of correction. There was a similar tendency for the correction loss rate when compared according to the filler type and fixation method.

Tables

Table 6. Continued

Author	Filling method	Radiological union (day), mean (SD)	Osteotomy size (mm or \(\)) mean (SD)	Loss of correction	Nonunion	Delayed union FWB (wk)	FWB (wk)	PWB (wk)
Saragaglia et al.\(^{29}\)	\(\beta\) tricalcium phosphate wedge	N/A	N/A	1/124	0	7/124	N/A	N/A
Ozalay et al.\(^{30}\)	Biphasic calcium phosphate	N/A	12.6	0	0	N/A	N/A	N/A
Koshino et al.\(^{31}\)	Porous hydroxyapatite wedge	96 (7)	N/A	0	0	N/A	8	3–4
Hernigou and Ma\(^{32}\)	Synthetic material	90	N/A	N/A	1/203	2/203	N/A	N/A
Pornrattanamaneewong et al.\(^{33}\)	Tricortical iliac crest autologous bone	N/A	N/A	N/A	0	0	4	2
Jung et al.\(^{34}\)	Allogenic cancellous bone chip graft	N/A	N/A	12/94	1/94	0	10	6
	Porous \(\beta\)-tricalcium phosphate wedge	N/A	N/A	6/92	0	0	6	POD 1 day
Kuremsky et al.\(^{35}\)	Tricortical iliac crest autologous bone	N/A	12.9	N/A	0	N/A	N/A	6
	Freeze-dried cortico-cancellous allogenic structural graft	N/A	11.8	N/A	0	N/A	N/A	6
Gouin et al.\(^{36}\)	Iliac crest tricortical autologous bone	78	10.0	6/22	0	N/A	N/A	N/A
	Calcium-phosphate ceramic spacer	154	10.0	1/18	0	N/A	N/A	N/A

SD: standard deviation, FWB: full weight-bearing, PWB: partial weight-bearing. N/A: not available, POD: postoperative day.

Table 7. Bone Union Period

Filler type	Author	Bone union period (day), mean (SD)
No	Brosset et al.\(^{18}\)	135 (49)
	El-Assal et al.\(^{19}\)	90 (15)
	Kolb et al.\(^{20}\)	90 (14)
Auto	Shim et al.\(^{22}\)	90
	Noyes et al.\(^{24}\)	90
Allo	Yacobucci and Cocking\(^7\)	120 (28)
	Haviv et al.\(^{25}\)	180
	Santic et al.\(^{26}\)	168
Synthetic	Koshino et al.\(^{31}\)	96 (7)
	Hernigou and Ma\(^{32}\)	90

SD: standard deviation, No: no filling, Auto: autogenous bone graft, Allo: allogenous bone graft, Synthetic: synthetic material filling.

Only one randomized prospective study was identified. Zorzi et al.\(^{10}\) reported there was no significant difference in bone union period based on the review of a two-year comparison of 23 cases of OWHTO using autografts and another 23 cases of OWHTO without filling. As for comparative studies, there were four. Pornrattanamaneewong et al.\(^{33}\) reported that there were
Han et al. Is Bone Grafting Necessary in OWHTO?

no significant differences of bone union period between their groups. Kuremsky et al. found that there was a 6-fold higher failure rate for the allograft group compared with the autograft group. Gouin et al. comparing an autologous bone graft group with a synthetic-material graft (BMCAPh) group, determined that correction loss was more frequent in the latter group (5% vs. 27%). Specifically, the presence of lateral cortical hinge tears significantly increased the risk of correction loss in the BMCAPh group. These results indicated that the synthetic material was less tolerant to high mechanical stress, and that radiological union occurred significantly later in the BMCAPh group than in the autologous bone graft group. Jung et al. defined loss of correction as less than 0 degrees of mechanical tibiofemoral angle at

Table 8. Rates of Nonunion/Delayed Union by Filler Type

Filler type	Author	Non-union	Event rate	I² (%)	Delayed union	Event rate	I² (%)
No filling	Bode et al.	2/52	0.038	2/52	0.04		
	El-Azab et al.	0/50	0.010	3/50	0.06		
	Brosset et al.	0/51	0.008	2/51	0.04		
	El-Assal et al.	0/59	0.020	0/59	0.01		
	Kolb et al.	1/51	0.010	0/51	0.01		
	Zaki and Rae	0/50	0.023	N/A	N/A		
Auto	Chae et al.	0/138	0.004	N/A	N/A		
	Shim et al.	0/37	0.013	1/37	0.03		
	Noyes et al.	0/55	0.009	3/55	0.05		
	Bode et al.	2/52	0.038	2/52	0.04		
	El-Azab et al.	0/50	0.010	3/50	0.06		
	Brosset et al.	0/51	0.008	2/51	0.04		
	El-Assal et al.	0/59	0.020	0/59	0.01		
	Kolb et al.	1/51	0.010	0/51	0.01		
	Zaki and Rae	0/50	0.023	N/A	N/A		
Allo	Yacobucci and Cocking	2/50	0.040	N/A	N/A		
	Haviv et al.	0/22	0.022	0/22	0.02		
	Santic et al.	0/310	0.002	0/310	0.00		
	DeMeo et al.	0/22	0.022	0/22	0.02		
Synthetic	Saito et al.	0/64	0.004	1/64	0.02		
	Saragaglia et al.	0/124	0.031	7/124	0.06		
	Ozalay et al.	0/15	0.005	0/15	0.03		
	Koshino et al.	0/21	0.008	0/21	0.02		
	Hernigou and Ma	1/203	0.009	2/203	0.01		

N/A: not available, Auto: autogenous bone graft, Allo: allogenous bone graft, Synthetic: synthetic material filling, I²: heterogeneity.

Table 9. Nonunion/Delayed Union/Correction Loss for MOWHTO with Plate Fixation

Fixation type	Nonunion	Event rate	I² (%)	Delayed union	Event rate	I² (%)	Correction loss	Event rate	I² (%)
Non-locking plate	2/576	0.02	0	15/388	0.04	0	13/524	0.02	0
No filling	0/109	0.02	0	3/109	0.03	1	4/94	0.04	25.8
Auto	0/230	0.01	0	4/92	0.04	0	7/193	0.04	0
Allo	2/92	0.03	0	1/42	0.04	0	1/92	0.02	0
Synthetic	0/145	0.03	0	7/145	0.05	0	1/145	0.01	0
Locking plate	3/578	0.00	0	5/528	0.01	0	5/526	0.00	0
No filling	3/204	0.02	0	4/154	0.03	0	0/152	0.01	0
Auto	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Allo	0/310	0.00	0	0/310	0.00	0	0/310	0.00	0
Synthetic	0/64	0.00	0	1/64	0.02	0	0/64	0.01	0

MOWHTO: medial opening wedge high tibial osteotomy, N/A: not available, Auto: autogenous bone graft, Allo: allogenous bone graft, Synthetic: synthetic material filling, I²: heterogeneity.

Only one case series.
the latest follow-up in the absence of an initial under-correction. The rate of correction loss or varus recurrence was higher in the group receiving the Asecula plate (B. Braun Korea, Seoul, South Korea) with the β-tricalcium phosphate wedge. The outcomes of all of the comparative studies are documented in Table 11. There was no significant difference in bone union period between the autogenous graft groups and no filling groups (Fig. 3).

4. Starting Point of Weight-Bearing

All twenty studies included in this meta-analysis reported on the starting point of weight-bearing (Table 6). There was a tendency of delayed onset of weight-bearing in patients with allograft. Jung et al.\(^{34}\) permitted full weight-bearing walking one month after surgery to their allograft patients. Pornrattananameewong et al.\(^{33}\) allowed full weight-bearing walking at the same time point for both groups (tricortical iliac crest autologous bone graft group and no filling group), and Zorzi et al.\(^{30}\) allowed partial weight-bearing walking at the same time point for both groups (cancellous iliac crest autologous bone graft group and no filling group); it must be noted, however, that the time point was not the endpoint of full weight-bearing walking but rather was the starting point of their rehabilitation protocol.

5. Bone Graft-Related Problem

Pornrattananameewong et al.\(^{33}\) and Kuremsky et al.\(^{35}\) described the graft harvest site as the source of pain that prolonged patient recovery time. Chae et al.\(^{5}\) also reported the graft harvest site as the source of pain for patients in the early postoperative period especially during trunk flexion. In addition, three of their patients underwent linear fracture of the iliac bone, which was treated conservatively. Schroter et al.\(^{23}\) reported that six patients suffered from hyperaesthesia or dysaesthesia at the iliac crest. Gouin et al.\(^{36}\), Koshino et al.\(^{31}\) and Ozalay et al.\(^{30}\) all reported...
poor incorporation of substitute material.

Discussion

In this meta-analysis, the RCT was found to have demonstrated similar bone union period, union rate and correction loss rate between the patients with autogenous bone graft and those without filling. One comparative study presented similar bone union period and union and delayed union rates between the autogenous graft group and the no filling group. Another comparative study showed similar union and delayed union rates between allogenous bone graft group and the synthetic material group. One comparative study reported the autogenous bone graft group showed shorter bone union period and lower correction rate compared to the synthetic material group. In analyzing the case series, there was a similar tendency for nonunion, delayed union or correction loss rates among the groups classified according to the filler type. The bone union period showed a tendency to increase in the allogenous bone graft groups. The results of case series showed a similar tendency for union and delayed union rates among groups classified according to the graft type but a different was noted with regard to the correction loss rate.

The surgical techniques for opening wedge HTO underwent many modifications with regard to augmentation with bone grafts or bone substitutes. In general, autogenous bone graft is considered as the most successful bone filling material, owing to its osteoconductive, osteoinductive and osteogenic properties. Nevertheless, autograft harvesting involves increased operative time as well as donor-site morbidity (hyper- or dysaesthesia, pain source and iliac crest fracture)\(^{24}\). Aryee et al.\(^{37}\) suggested that
iliac bone graft should be used only in high-risk patients (obese, smoker or opening gap larger than 10 mm). The use of bone allograft provides only an osteoconductive benefit, though, thanks to its availability without the need for additional surgical access, potential complications associated with the harvesting procedure of autogenous bone graft can be avoided\(^{36}\). However, allografts entail the risk of virus transfer\(^{38}\). Synthetic materials provide the osteoconductive benefit along with initial support; however several disadvantages such as soft-tissue irritation and infection have been reported\(^{39}\). van Hemert et al.\(^{40}\) reported synthetic bone augmentation does not aid much in primary stability and is not intended for load-bearing. Furthermore, it must be used in a mechanically stable environment; otherwise, it cannot remodel into bone and shows slow incorporation into bone\(^{41}\). Seven studies in this meta-analysis noted the disadvantages of autogenous grafts and synthetic materials. There were no studies reporting any disadvantages of allografts.

The recent trend of leaving the osteotomy with no graft is supported by some authors\(^{34,41}\). Zorzi et al.\(^{10}\) included in this meta-analysis reported that there was no significant difference in the time to bone healing between patients that had an autologous bone graft and those that did not. They suggested that bone grafts could be reserved for special situations such as larger corrections and patients with conditions that impair bone healing. In the study, the no filling group also obtained satisfactory results and showed no differences compared with the other groups. Pornratthanamanee et al.\(^{35}\) included in this meta-analysis reported that a significantly higher percentage of osteotomies with medial defects was found in the no bone graft group and all defects remained until the time of the 2-year follow-up. Recent studies attributed such medial defects in OWHTO to low interfractionary movement and tissue strain underneath the locking plate. They suggested that the use of dynamic locking screws in combination with early full load-bearing would increase the interfractionary movement and tissue strain and potentially induce good bone healing underneath the plate\(^{42}\).

El-Assal et al.\(^{19}\) performed OWHTO without bone graft for the opening size of 14 mm in 9 cases, and the outcome was good. Kolb et al.\(^{36}\) also performed OWHTO (up to 14 mm) and obtained favorable results. These two studies support the contention that OWHTO gaps of up to 14 mm in size can be healed without graft. Staubli et al.\(^{20}\) reported that the cases with opening sizes less than 15 mm did not have filling defects and showed good results overall. When an osteotomy size is smaller than 14 mm and rigid fixation and locking system are acquired, “no filling” of the osteotomy space can be a good option for OWHTO. OWHTO without bone graft is certainly very attractive particularly because it is effective for reducing the length of surgery as well as patient morbidity.

The bone-healing process is complex and requires ideal biological and mechanical environments and factors. Kuremsky et al.\(^{25}\) included in this meta-analysis reported that lateral cortex fracture and opening size play a major role in bone union and construct failure. With higher varus angles, stability is largely dependent on the intact lateral hinge, which, if lost, would lead to the loss of resistance to axial compression forces and, thereby, loss of correction. Stability plays a major role in this regard: the mechanical factors are functions of osteotomy stability, which depends on the osteotomy size, intact lateral cortex and rigid internal fixation\(^{43,44}\). Miller et al.\(^{23}\) detected a 58% reduction in axial stiffness and a 68% reduction in torsional stiffness in the case of lateral tibial cortex disruption. In case of lateral cortex fracture, there is instability resulting from the insufficient primary stability provided by non-angular stable wedge plates\(^{45}\). Spahn et al.\(^{47}\) suggested that high body mass index (BMI) after weight-bearing could be the cause of correction loss. van Houten et al.\(^{48}\) noted that the use of tobacco was a major risk factor for development of nonunion in patients undergoing OWHTO. Rigid fixation, opening size and the presence/absence of lateral cortex fracture all affect bone union and maintenance of correction. In cases where there is a possibility of either correction loss or nonunion caused by lateral cortex fracture or large opening size, smoking or high BMI with non-rigid fixation, additional autologous bone graft is a better choice, with all due caution, to prevent harvest-site morbidity.

Limitations

There are several limitations to the present analysis. First, most of the reviewed studies were level IV case series; only one RCT and four comparative studies were found on the topic of OWHTO. Thus, the level IV study results could not be directly compared, which may affect the reliability of the analysis results.

Second, although the number of reviewed studies was large, the study designs were different: there were one RCT, four non-randomized trial studies and twenty uncontrolled trial studies. If the results are arranged according to the study design, the number of studies per one result analysis becomes less than 6 at the most. On the assessment of publication bias, the power of the test of a meta-analysis based on the review of less than 10 studies is too low to derive definitive conclusions. In such a case, assessment for publication bias is not appropriate according to Cochrane handbook\(^{49}\). Accordingly, publication bias could not be assessed for our analysis.

Third, there were no precise common definitions of radiological
union, non-union, delayed union and loss of correction. Rather, these outcomes were assessed by the authors’ own subjective methods.

Fourth, there were not sufficient studies on OWHTO without bone graft. Finally, we did not include age, varus deformity angle and bone marrow density severity into the inclusion criteria. These might have affected patient selection bias.

Conclusions

This meta-analysis evaluated the effects of four established methods of augmentation for osteotomy defect in OWHTO. According to the published studies, all of the methods (autogenous bone grafting, allogenous bone grafting, synthetic material filling and no filling) appear to be appropriate operative treatment options for osteotomy defect in OWHTO.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Niemeyer P, Koestler W, Kaehny C, Kreuz PC, Brooks CJ, Strohm PC, Helwig P, Suedkamp NP. Two-year results of open-wedge high tibial osteotomy with fixation by medial plate fixator for medial compartment arthritis with varus malalignment of the knee. Arthroscopy. 2008;24:796-804.
2. Staubli AE, De Simoni C, Babst R, Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia: early results in 92 cases. Injury. 2003;34 Suppl 2:B55-62.
3. Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003;11:132-8.
4. Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H. The long-term outcome of high tibial osteotomy: a ten- to 20-year follow-up. J Bone Joint Surg Br. 2008;90:592-6.
5. Chae DJ, Shetty GM, Wang KH, Montalban AS Jr, Kim JJ, Nha KW. Early complications of medial opening wedge high tibial osteotomy using autologous tricortical iliac bone graft and T-plate fixation. Knee. 2011;18:278-84.
6. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716-20.
7. Yacubucci GN, Cocking MR. Union of medial opening-wedge high tibial osteotomy using a corticocancellous proximal tibial wedge allograft. J Bone Joint Surg Am. 2008;36:713-9.
8. Lobenhoffer P, Agneskirchner J, Zoch W. Open valgus alignment osteotomy of the proximal tibia with fixation by medial plate fixator. Orthopade. 2004;33:153-60.
9. Niemeyer P, Schmal H, Hauschild O, von Heyden J, Sudkamp NP, Kostler W. Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthritis and varus malalignment: 3-year results with regard to preoperative arthroscopic and radiographic findings. Arthroscopy. 2010;26:1607-16.
10. Zorzi AR, da Silva HG, Muszkat C, Marques LC, Cliquet A Jr, de Miranda JB. Opening-wedge high tibial osteotomy with and without bone graft. Artif Organs. 2011;35:301-7.
11. Maier RV. What the surgeon of tomorrow needs to know about evidence-based surgery. Arch Surg. 2006;141:317-23.
12. Kral JG, Dixon JB, Horber FF, Rossner S, Stiles S, Torgerson JS, Sugerman HJ. Flaws in methods of evidence-based medicine may adversely affect public health directives. Surgery. 2005;137:279-84.
13. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557-60.
14. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
15. Bode G, von Heyden J, Pestka J, Schmal H, Salzmann G, Sudkamp N, Niemeyer P. Prospective 5-year survival rate data following open-wedge valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2015;23:1949-55.
16. Schroter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D. High complication rate after biplanar open wedge high tibial osteotomy stabilized with a new spacer plate (Position HTO plate) without bone substitute. Arthroscopy. 2011;27:644-52.
17. El-Azab HM, Morgenstern M, Ahrens P, Schuster T, Imhoff AB, Lorenz SG. Limb alignment after open-wedge high tibial osteotomy and its effect on the clinical outcome. Orthopedics. 2011;34:e622-8.
18. Brosset T, Pasquier G, Migaud H, Gougeon F. Opening wedge high tibial osteotomy performed without filling the defect but with locking plate fixation (TomoFix™) and early weight-bearing: prospective evaluation of bone union, precision and maintenance of correction in 51 cases. Orthop
19. El-Assal MA, Khalifa YE, Abdel-Hamid MM, Said HG, Bakr HM. Opening-wedge high tibial osteotomy without bone graft. Knee Surg Sports Traumatol Arthrosc. 2010;18:961-6.

20. Kolb W, Guhlmann H, Windisch C, Kolb K, Koller H, Grutzner P. Opening-wedge high tibial osteotomy with a locked low-profile plate. J Bone Joint Surg Am. 2009;91:2581-8.

21. Zaki SH, Rae PJ. High tibial valgus osteotomy using the Tomofix plate: medium-term results in young patients. Acta Orthop Belg. 2009;75:360-7.

22. Shim JS, Lee SH, Jung HJ, Lee HI. High tibial open wedge osteotomy below the tibial tubercle: clinical and radiographic results. Knee Surg Sports Traumatol Arthrosc. 2013;21:57-63.

23. Schroter S, Mueller J, van Heerwaarden R, Lobenhoffer P, Stockle U, Albrect D. Return to work and clinical outcome after open wedge HTO. Knee Surg Sports Traumatol Arthrosc. 2013;21:213-9.

24. Noyes FR, Mayfield W, Barber-Westin SD, Albright JC, Heckmann TP. Opening wedge high tibial osteotomy: an operative technique and rehabilitation program to decrease complications and promote early union and function. Am J Sports Med. 2006;34:1262-73.

25. Havic B, Bronak S, Thein R, Kidron A, Thein R. Mid-term outcome of opening-wedge high tibial osteotomy for varus arthritic knees. Orthopedics. 2012;35:e192-6.

26. Santic V, Tudor A, Sestan B, Legovic D, Sirola L, Rakovac I. Bone allograft provides bone healing in the medial opening high tibial osteotomy. Int Orthop. 2010;34:225-9.

27. DeMeo PJ, Johnson EM, Chiang PP, Flamm AM, Miller MC. Midterm follow-up of opening-wedge high tibial osteotomy. Am J Sports Med. 2010;38:2077-84.

28. Saito T, Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y. Five- to ten-year outcome following medial opening-wedge high tibial osteotomy with rigid plate fixation in combination with an artificial bone substitute. Bone Joint J. 2014;96:339-44.

29. Saragaglia D, Blaysat M, Inman D, Mercier N. Outcome of opening wedge high tibial osteotomy augmented with a Biosorb wedge and fixed with a plate and screws in 124 patients with a mean of ten years follow-up. Int Orthop. 2011;35:1151-6.

30. Ozalay M, Sahin O, Akpinar S, Ozkoc G, Cinar M, Cesur N. Remodeling potentials of biphasic calcium phosphate granules in open wedge high tibial osteotomy. Arch Orthop Trauma Surg. 2009;129:747-52.

31. Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85:78-85.

32. Hernigou P, Ma W. Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee. 2001;8:103-10.

33. PORNWATTANANAMANEWONG C, NUMKANISORN S, CHAREANCHOLVANICH K, HARNROONGROJ T. A retrospective analysis of medial opening wedge high tibial osteotomy for varus osteoarthritic knee. Indian J Orthop. 2012;46:455-61.

34. Jung WH, Chun CW, Lee JH, Ha JH, Kim JH, Jeong JH. Comparative study of medial opening-wedge high tibial osteotomy using 2 different implants. Arthroscopy. 2013;29:1063-71.

35. Kuremsky MA, Schaller TM, Hall CC, Roehr BA, Mason J. Comparison of autograft vs allograft in opening-wedge high tibial osteotomy. J Arthroplasty. 2010;25:951-7.

36. Gouin F, Yaouanc F, Waast D, Melchior B, Delecrit J, Passuti N. Open wedge high tibial osteotomies: Calcium-phosphate ceramic spacer versus autologous bone graft. Orthop Traumatol Surg Res. 2010;96:637-45.

37. Aryee S, Imhoff AB, Rose T, Tischer T. Do we need synthetic osteotomy augmentation materials for opening-wedge high tibial osteotomy. Biomaterials. 2008;29:3497-502.

38. Gaasbeek RD, Toonen HG, Van Heerwaarden RJ, Buma P. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials. 2005;26:6713-9.

39. Pornrattanameewong C, Harnroongroj T, Chareancholvanich K. Loss of correction after medial opening wedge high tibial osteotomy: a comparison of locking plates with out bone grafts and non-locking compression plates with bone grafts. J Med Assoc Thai. 2012;95 Suppl 9:S21-8.

40. Van Hemert WL, Willems K, Van Heerwaarden RJ, Wymenga AB. Tricalcium phosphate granules or rigid wedge preforms in open wedge high tibial osteotomy: a radiological study with a new evaluation system. Knee. 2004;11:451-6.

41. Brinkman JM, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, Van Heerwaarden RJ. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br. 2008;90:1548-57.

42. Roderer G, Gebhard F, Duerselen L, Ignatius A, Claes L. Delayed bone healing following high tibial osteotomy re-
lated to increased implant stiffness in locked plating. Injury. 2014;45:1648-52.
43. Esenkaya I, Elmali N. Proximal tibia medial open-wedge osteotomy using plates with wedges: early results in 58 cases. Knee Surg Sports Traumatol Arthrosc. 2006;14:955-61.
44. Hartford JM, Hester P, Watt PM, Hamilton D, Rohmiller M, Pienkowski D. Biomechanical superiority of plate fixation for proximal tibial osteotomy. Clin Orthop Relat Res. 2003;(412):125-30.
45. Miller BS, Dorsey WO, Bryant CR, Austin JC. The effect of lateral cortex disruption and repair on the stability of the medial opening wedge high tibial osteotomy. Am J Sports Med. 2005;33:1552-7.
46. van Raaij TM, Brouwer RW, de Vlieger R, Reijman M, Verhaar JA. Opposite cortical fracture in high tibial osteotomy: lateral closing compared to the medial opening-wedge technique. Acta Orthop. 2008;79:508-14.
47. Spahn G, Kirschbaum S, Kahl E. Factors that influence high tibial osteotomy results in patients with medial gonarthrosis: a score to predict the results. Osteoarthritis Cartilage. 2006;14:190-5.
48. van Houten AH, Heesterbeek PJ, van Heerwaarden RJ, van Tienen TG, Wymenga AB. Medial open wedge high tibial osteotomy: can delayed or nonunion be predicted? Clin Orthop Relat Res. 2014;472:1217-23.
49. Higgins JPT, Green S. Recommendations on testing for funnel plot asymmetry [Internet]. London: The Cochrane Collaboration; 2011 [cited 2015 Nov 23]. Available from: http://handbook.cochrane.org/.