BHU-VANESH SUNDAR, ERICH MUELLER, Cornell University — We propose an experimental protocol to directly observe the Kondo effect by scattering ultracold atoms with spin-dependent interactions. The Kondo effect is a transport anomaly which occurs when conduction electrons interact with magnetic impurities. We consider an ultracold system consisting of a gas of fermionic 6Li atoms and a gas of bosonic 87Rb atoms, where 6Li atoms play the role of conduction electrons and 87Rb atoms play the role of magnetic impurities. We propose a method to engineer Kondo-like interactions between them. To measure the Kondo effect, we imagine launching the 87Rb gas into the 6Li gas, and calculate the momentum transferred to the 6Li gas. We show that the temperature dependence of this momentum is logarithmic at low temperatures and has a minimum, characteristic of the Kondo effect and analogous to the behavior of electrical resistance of magnetic alloys. Experimental implementation of our proposal will give a new perspective on an iconic problem.

Abstract Submitted
for the DAMOP15 Meeting of
The American Physical Society