Strategies to Promote Biogas Generation and Utilisation from Palm Oil Mill Effluent

Steve Z. Y. Foong¹,² · Mei Fong Chong¹,³ · Denny K. S. Ng¹,²

Abstract
Palm oil mills generate a large amount of wastewater, known as palm oil mill effluent, during the production of crude palm oil. The high organic contents in palm oil mill effluent have an excellent potential for biogas utilisation. Besides, such effluent must be further treated before discharge or reused in milling processes. In this respect, an integrated biogas and wastewater treatment system should be developed. The aim of this paper is to synthesise and optimise an integrated biogas and wastewater treatment system via a process systems engineering tool that yields maximum economic performance. To illustrate the proposed approach, a typical palm oil mill case study in Malaysia is presented. The variation in palm oil mill effluent availability is considered to evaluate the changes in performance and ensuring the flexibility of the developed system. As shown in the results, implementation of integrated biogas and wastewater treatment system in a typical 60 t/h mill in Malaysia could export up to 1.9 MW electrical power on average. Alternatively, 110,800 GJ/year of compressed biomethane can be produced when feed-in to the national grid is not available. The implementation of integrated biogas and wastewater treatment system successfully reduces greenhouse gas emissions by 50,430 t CO₂e/year as compared with the conventional open ponding system practiced in the industry. Lastly, feasibility studies and strategies to promote biogas utilisation in the industry are performed.

Keywords Anaerobic digestion · Compressed biomethane · Process systems engineering · Process synthesis · Mathematical optimisation

Introduction
Palm oil production is the highest among other major vegetable oils, dominating more than 35% of total global oils and fats production in 2018 (USDA 2019). It is the most consumed oil in the planet, which plays an essential role in global food security and economic development (IUCN 2018). As the second-largest exporter of palm oil products after Indonesia, Malaysia produced up to 20.5 Mt of crude palm oil (CPO) annually (USDA 2019). It translates to a total of 44.72 billion MYR/year (~6%) in Malaysia’s gross domestic product (DOS 2018). The current practice in the palm oil industry requires 5–7.5 m³ of utility water to produce one ton of CPO (Ahmad et al. 2003). However, more than 50% of them ended up as liquid waste, known as palm oil mill effluent (POME). With this respect, approximately 50–75 million m³ of POME are generated in Malaysia annually. This waste effluent contains high organic content, which leads to high biochemical oxygen demand (BOD) and chemical oxygen demand (COD) levels (Ahmed et al. 2015). Table 1 shows the typical characteristics of POME released from palm oil mill (POM) during CPO productions. Direct discharge of POME to the watercourse will cause severe environment pollution (Poh and Chong 2009). To minimise the pollution, strict regulatory control through Malaysia Environmental Quality (Sewage and Industrial Effluents) Regulations 1979 is enforced where BOD and COD under 50 and 100 mg/L, respectively, must be
achieved upon discharge to the environment (Ong 1979). Meanwhile, a more stringent requirement has been imposed for POMs located in water catchment areas, specifically in East Malaysia with BOD and COD discharge limits set at 20 and 50 mg/L, respectively (Ong 1979; Asis et al. 2016).

In an effort to overcome this issue, open ponding system is commonly used in the current industry to treat POME for discharge due to low capital and operating costs (Tong and Jaafar 2004). In such a system, POME is treated in several ponds with different functions (e.g. cooling, mixing/de-oiling, acidification and facultative, anaerobic and aerobic ponds) (Hassan et al. 2005). Most of the organic compounds are broken down to produce biogas in a sequence of reactions, hydrolysis, fermentation (acidogenesis/acetogenesis) and methanogenesis (Gerardi 2003) in the anaerobic pond, with the presence of microbes and microorganisms (Ohimain and Izah 2017). The aerobic pond then removes the remaining organic compounds in POME before sending to settling pond for final discharge. It is estimated that every m3 of POME treated releases 34 Nm3 biogas containing 54.4% or 12.36 kg methane (CH$_4$) (Yacob et al. 2006). The biogas dissipated into the atmosphere causes a catastrophic impact on the environment as CH$_4$ has 25 times higher global warming potential than carbon dioxide (CO$_2$) (Garnder et al. 1993).

The high methane concentration in biogas contributes to a calorific/heating value of 17.9–29.9 MJ/Nm3 (Igoni et al. 2008), making it a suitable alternative to replace natural gas for power generations. This aligns with the Eighth Malaysia Plan to include renewable energy under the Five Fuel Diversification Policy to contribute 5% of the total energy mix in Malaysia (Economic Planning Unit 2000). Following that, legislative strategies such as the National Renewable Energy Policy and Action Plan (KeTTha 2008), National Green Technology Policy (KeTTha 2009) and Renewable Energy Act (KeTTha 2011) were executed to boost the national economy while promoting sustainable development. Meanwhile, the fifth core Entry Point Project under Palm Oil National Key Economic Areas programme plan also urges every POM in Malaysia to trap and utilise the biogas released (Dom Pok 2010).

During the 15th Conference of Parties (COP 15) at the United Nations Climate Change Conference 2009, the Malaysian government has pledged a voluntary 40% reduction of greenhouse gas (GHG) emission intensity from its 2005 level by 2020 (Peterson et al. 2011). In 2015, the commitment was enhanced to 45% by 2030 at the COP 21 held in Paris, France (UNFCCC 2016). In line with the increasing concern on sustainable waste management to mitigate climate change, international GHG emission reduction schemes such as Clean Development Mechanism (UNFCCC 2014) and International Sustainability Carbon Certification (ISCC 2018) were introduced. These schemes allow developing countries such as Malaysia to generate higher revenue by selling certified emission reduction (CER), promoting sustainable use of waste materials (i.e. POME) to reduce GHG emissions.

Integrated biogas and wastewater treatment (IBWT) system is developed to treat POME with a closed anaerobic digester, capturing and utilising the biogas emitted. In the meantime, IBWT system also reduces BOD and COD content in POME for discharge or further polished for reuse in milling processes. It is estimated that the GHG emissions from the palm oil industry could be reduced by 17–20 million tons CO$_2$ equivalent (CO$_2$e) annually if all POME in Malaysia is treated with such system (Bong et al. 2017). In general, IBWT system consists of several operations, as shown in Fig. 1.

Firstly, POME is pre-treated through a series of ponds for cooling, mixing, de-oiling and pH adjustment before digestion processes (Poh and Chong 2009). The pre-treated POME then undergoes anaerobic digestion to produce raw biogas. Technologies such as up-flow anaerobic sludge fixed film (Najafpour et al. 2006), membrane anaerobic system (Abdurahman et al. 2011), up-flow anaerobic sludge blanket (Fang et al. 2011), continuous stir tank reactor (Irvan et al. 2012), covered lagoon (Chin et al. 2013) and expanded granular sludge blanket (Wang et al. 2015) could be used to serve the purpose. Note that each technology has different performance in terms of hydraulic retention time (HRT), CH$_4$ yield,

Table 1 General characteristics of POME (Ahmed et al. 2015)

Parameter	Concentration range
Chemical oxygen demand (COD) (mg/L)	15,000–100,000
Biochemical oxygen demand (BOD@30 °C) (mg/L)	10,250–43,750
Total solid (mg/L)	11,500–79,000
Total suspended solid (mg/L)	5000–54,000
Oil and grease (mg/L)	130–18,000
Temperature (°C)	80–90
pH	3.4–5.2

POME characteristics change subject to fruits condition, milling processes, crop seasons, climate, etc.
biogas composition, BOD and COD removal efficiency (Ahmed et al. 2015; Ohimain and Izah 2017). Next, the treated POME from anaerobic digester undergoes aerobic digestion to reduce COD and BOD content. The commonly used aerobic digester includes aerobic lagoon system (Wong 1980), sequencing batch reactor (Chan et al. 2010, 2011), aerobic membrane bioreactor (Damayanti et al. 2011) and extended aeration system (Chan et al. 2012). In the process, both anaerobic and aerobic digestions generate wet sludge as a by-product.

Even though various anaerobic and aerobic digesters are available in the market, the treated POME is unable to fulfil the new discharge limits prescribed (BOD < 20 ppm). In order to further clean up the waste effluent, polishing technologies such as physicochemical treatment and electrocoagulation system are required. Physicochemical treatment consists of coagulation, flocculation and sedimentation processes in which colloidal particles are separated from the digested POME before being released to watercourse as discharge water (Ahmed et al. 2015). On the other hand, the electrocoagulation system uses aluminium electrodes to apply an electrical charge, causing agglomeration of suspended matters in the POME (Kobya et al. 2006; Sontaya et al. 2013). This process generates river quality water (Class IIA), which could be reused as utility water in POM (WEPA 2008).

Meanwhile, raw biogas produced during the anaerobic digestion process contains corrosive and hazardous gas (H\textsubscript{2}S), with concentration between 1500 and 3000 ppm (Tong and Jaafar 2004; Hosseini and Wahid 2014). Biological scrubber, activated carbon or metal oxide bed filters are the standard technologies used in biogas cleaning system to remove the H\textsubscript{2}S component (Sun et al. 2015; Khan et al. 2017). Following that, biogas could be utilised as a fuel to generate heat, electrical power or both via a boiler, gas engine and steam turbine. Electricity generated can then be feed into the national grid at a premium rate under the feed-in-tariff (FIT) scheme (SEDA Malaysia, 2017). Alternatively, it can be upgraded to compressed biomethane (bioCH\textsubscript{4}) at 250 bar, with more than 98\% CH\textsubscript{4} for injection into the natural gas grid (Miltner et al. 2017).

As shown earlier, the Malaysian government has implemented numerous efforts and policies with the increasing awareness of sustainable development. Besides, an extensive amount of scientific studies on POME for biogas utilisation, wastewater treatment and green energy development were reported. However, each technology operates separately with its performance, efficiency and cost requirement. Limited studies to connect and integrate different unit operations for POME processing as a complete system are reported. Besides, the performance of each technology may affect the selection of the surrounding unit operations, changing the overall performance of the entire system. To date, the adoption of POME for biogas utilisation still faces techno-economic challenges and knowledge gaps that hinder deployment.

According to the literature, the area of process systems engineering (PSE) has provided quantitative decision support aid using systematic computer-based approaches for simulation, optimisation, control and information processing (Grossmann 2004). Mathematical programming approach has been developed and widely used to address such issues, providing an optimal global solution for problem defined (Grossmann and Guillén-Gosálbez 2010). In order for mathematical models to work, explicit system constraints and optimisation objectives must be specified (Van Beek 2018). Such approach has been successfully applied in various fields, for instance (i) product discovery (de Pablo and Escobedo 2002; Ng et al. 2014; Ooi et al. 2018) and design (Ng and Ng 2013a; Tapia et al. 2018; Foong et al. 2018), (ii) enterprise (Badell and Puigjaner 2001; Shah 2004) and supply chain optimisation (Ng et al. 2012; Foo et al. 2013) and (iii) global life cycle assessment (Tan et al. 2008; Cho et al. 2011; Ramadhan et al. 2014).

Despite the usefulness of the aforementioned works, none of the contributions has focused on the synthesis of the IBWT system and biogas utilisation from POME. Thus, in this research work, the aim is to develop a systematic approach in synthesising an optimum IBWT system with the maximum economic performance to promote biogas utilisation. Besides, the developed system further treats POME to achieve discharge limit or reuse in POM. As shown in the case study, process capacity, costs, power consumptions and productions were considered for technology selection in system development. In order to ensure that the system developed is capable of coping with seasonal changes in POME availability, a multi-period optimisation approach is incorporated. Sensitivity analysis of different parameters to evaluate alternative
strategies, ensuring the feasibility of the developed system, is also performed at the end of this study. The proposed approach is illustrated by solving a typical 60 t/h POM case study in Malaysia.

The rest of the paper is organised as follows: Problem Statement section presents the problem statement and a generic superstructure of IBWT system developed in this work. Mathematical Optimisation Formulation section provides a detailed formulation for material balance, utility balance and economic analysis. Next, a Malaysian POM case study adapted from Foong et al. (2018) along with the basis used are presented in Case Study section. The model is then solved and the optimised results are discussed in Discussion section. In this section, two scenarios (with and without national grid connection) are considered, followed by sensitivity analysis to provide strategies to promote biogas utilisation in the industry. The last section concludes this study with the best strategy to encourage biogas utilisation from POME.

Problem Statement

A generic graphical representation for the problem is shown in Fig. 2. The synthesis problem is stated as follows: Given feedstock $i \in I$ with a flowrate of F_i and its quality q_i is sent to technology $j \in J$, converted into intermediate product $p \in P$. Intermediate product p with its quality q_p is further converted into final product $p' \in P'$ with quality $q_{p'}$, via technology $j' \in J'$. Apart from intermediate and final products p and p' generated, electricity $e \in E$ could also be produced in primary technology j and secondary technology j', respectively. Both primary technology j and secondary technology j' are provided with a specific power consumption per unit flowrate (i.e. $Y_{ije} Y_{j' e}$), or per unit equipment (i.e. $Y_{ije} Y_{j'e}$), respectively. The power consumption rate, $P_{Con e}$, is compensated by the on-site power generation, $P_{Gen e}$, to ensure a self-sufficient operation. In some scenarios where excess power is generated, it can be sold or exported to the power grid, $P_{Exp e}$.

The optimisation objective is to synthesise an IBWT system with maximum economic performance, EP (Eq. 1), given all the process constraints. Based on the fixed design capacities for primary technology j (F_{j}^{Design}) and secondary technology j' ($F_{j'}^{Design}$) in the market, the proposed approach will determine the equipment units required, represented by z_j and $z_{j'}$ respectively. Due to the variation in feedstock i supply with time, the model is solved via multi-period optimisation where each season $s \in S$ is assigned with a fraction of occurrence, α_s.

Maximise EP

$$\text{(1)}$$

Mathematical Optimisation Formulation

Based on Fig. 1, a detailed mathematical formulation for a proposed multi-period optimisation model is presented. Note that italic mathematical notations represent variables in the model, while non-italic notations are fixed parameters.

Material Balance

As mentioned previously, seasonal variation s in feedstock i supply is considered in this work for the synthesis of an optimal IBWT system. Equation 2 shows the component balance for a total flowrate of feedstock i (F_i), distributed into potential technology j with a flowrate of F_{ij}. F_{ij} distribution into potential primary technology j may change with the variation in F_i for each season s as follows:
\[
(F_p)_s = \left(\sum_{j=1}^{J} F_{ij} \right)_s \quad \forall i, \forall s
\]

(2)

In technology \(j\), feedstock \(i\) is converted to intermediate product \(p\) with conversion \(X_{ip}\). The total production rate for intermediate product \(p\) \((F_p)\) for all technology \(j\) is given in Eq. 3.

\[
(F_p)_s = \left(\sum_{i=1}^{I} \sum_{j=1}^{J} F_{ij}X_{ip} \right)_s \quad \forall p, \forall s
\]

(3)

Next, the flowrate of intermediate product \(p\) \((F_p)_s\) is distributed to potential technology \(j'\) with a flowrate of \(F_{p'}\) for further processing, as shown in Eq. 4.

\[
(F_p)_s = \left(\sum_{j=1}^{J} F_{pj} \right)_s \quad \forall p' \forall s
\]

(4)

Equation 5 shows the conversion of intermediate product \(p\) \((F_{p'})\) to final product \(p'\) via technology \(j'\) with conversion \(X_{pjp'}\) to give a total production rate for final product \(p'\) \((F_{p'})_s\).

\[
(F_{p'})_s = \left(\sum_{p=1}^{P} \sum_{j=1}^{J} F_{pj}X_{pjp'} \right)_s \quad \forall p' \forall s
\]

(5)

In the event where single or no technology is needed to produce the final product \(p'\), feedstock \(i\) and intermediate product \(p'\) can bypass technologies \(j\) and \(j'\) through a “blank” technology in which conversion does not take place. Besides, the formulation can easily be expanded repetitively for any number of conversion stages required to match the requirements of the case study despite only two steps of conversion technologies \(j\) and \(j'\) are presented in Fig. 1.

Energy Balance

Apart from material conversions, feedstock \(i\) and intermediate product \(p\) can be converted into electricity \(e\) via primary technology \(j\) and secondary technology \(j'\) with conversions \(V_{ije}\) and \(V_{pje}\), respectively. Equation 6 calculates the total power generated \(P_{\text{Gen}}^e\) by the system in kW as follows:

\[
(P_{\text{Gen}}^e)_s = \frac{1}{\text{AOT}} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} F_{ij}V_{ije} + \sum_{p=1}^{P} \sum_{f=1}^{F} F_{pf}V_{pfe} \right)_s \quad \forall e' \forall s
\]

(6)

where AOT represents the annual operating time of the process. Meanwhile, electrical power is also consumed in technologies \(j\) and \(j'\). Depending on the energy requirement in primary technology \(j\) and secondary technology \(j'\) selected, the total power consumption \(P_{\text{Con}}^e\) is calculated with Eq. 7 as follows:

\[
(P_{\text{Con}}^e)_s = \left(\sum_{i=1}^{I} \sum_{j=1}^{J} F_{ij}C_{i} + \sum_{p=1}^{P} \sum_{f=1}^{F} F_{pf}C_{p} + \sum_{e=1}^{E} \sum_{f=1}^{F} F_{ef}C_{e} - \text{OPEX} \right)_s \quad \forall e' \forall s
\]

(7)

where \(F_{ij}\) and \(F_{pf}\) are the flowrate of feedstock \(i\) and intermediate product \(p\) into technology \(j\) and \(j', \(Y_{ije}\) and \(Y_{pfe}\) are the specific power consumption per unit flow of feedstock \(i\) and intermediate product \(p\) processed, \(Y_{je}\) and \(Y_{je}\) are the specific power consumption per unit operation, while \(z_j\) and \(z_{j'}\) are the number of equipment unit needed for technologies \(j\) and \(j',\) respectively. The required equipment units for primary technology \(j\) \((z_j)\) and secondary technology \(j'\) \((z_{j'})\) are determined based on the processing throughput, shown in Eqs. 8 and 9.

\[
(z_j)'_{F_{j}}^Design \geq \left(\sum_{i=1}^{I} \sum_{p=1}^{P} F_{ij}X_{ijp} + \sum_{e=1}^{E} F_{iej} \right)_s \quad \forall j', \forall s
\]

(8)

\[
(z_{j'})_{F_{j'}}^Design \geq \left(\sum_{i=1}^{I} \sum_{p=1}^{P} F_{pj}X_{pjp'} + \sum_{e=1}^{E} F_{pje} \right)_s \quad \forall j', \forall s
\]

(9)

where \(F_{j}^Design\) and \(F_{j'}^Design\) represent the fixed design capacities for technologies \(j\) and \(j',\) respectively. \(z_j\) and \(z_{j'}\) are positive integers that reflect the equipment units of technologies \(j\) and \(j'\) needed for the given design capacities.

Economic Analysis

In order to perform an economic analysis on the IBWT system developed, the \(EP\) is evaluated via Eq. 10 as follows:

\[
EP = GP - CRF \times CAPEX
\]

(10)

where \(GP\), CRF and \(CAPEX\) represent the gross profit, capital recovery factor of the system developed and capital costs required, respectively. It is worth mentioning that \(EP\) shall always be positive with a higher value indicating a greater interest for investment in the developed system. Meanwhile, a negative \(EP\) value represents a higher investment cost as compared with the \(GP\) generated, making it an infeasible design. \(GP\) is calculated using Eq. 11 as follows:

\[
GP = AOT \sum_{s=1}^{S} \alpha_s \left(\sum_{p'=1}^{P'} F_{p'C_{p'}} - \sum_{i=1}^{I} F_{iC_i} + \sum_{e=1}^{E} P_{\text{Exp}}^e C_{e} - \text{OPEX} \right)_s
\]

(11)

where \(OPEX\) is the total operating costs of the IBWT system developed. The selling price for final product \(p'\) and electricity \(e\) are indicated by \(C_{p'}\) and \(C_{e}\), respectively. Meanwhile, the cost of feedstock \(i\) is given as \(C_i\). The \(GP\) formulation (Eq. 11) is subject to Eq. 12 as follows:
\[\sum_{s=1}^{s} a_s = 1 \] \hspace{1cm} (12)

in which the inclusion of \(a_s \) assessed the \(\text{GP} \) of the IBWT system developed for all \(s \). Each fraction of occurrence represents the time fraction where season \(s \) occurs. The summation of these fractions must equal to one as the time fraction is obtained by dividing the duration of season \(s \) with the total period considered.

CRF is used to annualise \(\text{CAPEX} \) by converting its present value into a stream of equal annual payments over a specified operation lifespan, \(t_{\text{max}} \). The net present value at \(t_{\text{max}} \) through the IBWT system developed is measured in several terms. The net present value at \(t_{\text{max}} \) is obtained by dividing the duration of season \(s \) with the total period considered.

\[\text{CRF} = \frac{r(1+r)^{s_{\text{max}}}}{(1+r)^s-1} k_{j/j'} \] \hspace{1cm} (13)

\(\text{CAPEX} \) and \(\text{OPEX} \) are calculated based on the selected technologies \(j \) and \(j' \) as well as their equipment unit, \(z_j \) and \(z_{j'} \) required, as shown in Eqs. 14 and 15 as follows:

\[\text{CAPEX} = \left(\sum_{j=1}^{j} z_j \text{CC}_j + \sum_{j'=1}^{j'} z_{j'} \text{CC}_{j'} \right) \] \hspace{1cm} (14)

\[(\text{OPEX})_s = \left(\sum_{j=1}^{j} z_j \text{OC}_j + \sum_{j'=1}^{j'} z_{j'} \text{OC}_{j'} \right) \] \hspace{1cm} (15)

where \(\text{OC}_j \) and \(\text{OC}_{j'} \) are operating costs, while \(\text{CC}_j \) and \(\text{CC}_{j'} \) are capital costs, for technologies \(j \) and \(j' \), respectively. \(z_j \) and \(z_{j'} \) during high crop season with the highest throughput is used to calculate the \(\text{CAPEX} \) of the system developed.

In this model, the effectiveness of investment made through the IBWT system developed is measured in several terms. The net present value at \(t_{\text{max}} \), \(\text{NPV}_{\text{max}} \), is defined as the summation of discounted \(\text{GP} \) generated by the system, as shown in Eq. 16.

\[\text{NPV}_{\text{max}} = \left(\sum_{s=1}^{t} \frac{\text{GP}}{(1+r)^s} \right) - \text{CAPEX} \] \hspace{1cm} (16)

The payback period, \(PP \), for the developed system to return its initial investment made before making a profit is then measured via Eq. 17. Following that, the internal rate of return, \(\text{IRR} \), of the developed system is then assessed using Eq. 18.

\[PP = \ln \left(\frac{1}{1-\left(\frac{\text{CAPEX} \times r}{\text{GP}} \right)} \right) / \ln(1+r) \] \hspace{1cm} (17)

\[\left(\sum_{s=1}^{t} \frac{\text{GP}}{(1+\text{IRR})^s} \right) - \text{CAPEX} = 0 \] \hspace{1cm} (18)

Additional Constraints

Although power is being generated (\(P_{\text{Gen}}^e \)) in the synthesised IBWT, it is also being consumed (\(P_{\text{Con}}^e \)) in technologies \(j \) and \(j' \) to process feedstock \(i \) and intermediate product \(p \). The optimisation objective in this work is to synthesise an independent IBWT system with maximum \(\text{EP} \) (given in Eq. 1), which is independent and self-sufficient to sustain its own operation without relying on external sources for power supply. To achieve this, additional constraint, Eq. 19, is added where the power consumption rate, \(P_{\text{Con}}^e \), must be compensated by the power generated on-site, \(P_{\text{Gen}}^e (P_{\text{Gen}}^e > P_{\text{Con}}^e) \). On the other hand, the excess power, \(P_{\text{Exp}}^e \), generated is sold or exported to the power grid.

\[(P_{\text{Gen}}^e)_s \geq (P_{\text{Con}}^e + P_{\text{Exp}}^e) \] \hspace{1cm} (19)

The quality \(q \) and \(q' \) of intermediate product \(p \) and final product \(p' \) plays an essential role in the synthesis of an IBWT system. Hence, it is necessary to trace the material quality across the entire process. Equations 20 and 21 show the quality of intermediate product \(p (q_p) \) and final product \(p' (q_{p'}) \) produced.

Table 2	POM operations throughout a year			
Season	Low	Medium	High	Average
Fraction of occurrence, \(\alpha_s \)	0.417	0.333	0.250	-
Material flowsrates				
Fresh fruit bunch, FFB (kt/year)	195.8	261.0	369.8	261.0
Crude palm oil, CPO (kt/year)	40.5	54.0	76.6	54.0
Palm oil mill effluent, POME (km³/year)	136.0	181.5	257.0	181.5
Average POME quality				
Biological oxygen demand, BOD (ppm)	35,000			
Chemical oxygen demand, COD (ppm)	74,000			
where \(q_i \) is the quality of feedstock \(i \). Meanwhile, \(W_{ijp} \) and \(W_{pj'p'} \) are the conversions of quality in technology \(j \) and \(j' \), respectively. In order to maintain the quality of final product \(p' \) produced \((q_{p'})\), an additional constraint is added to the model.

\[
\begin{align*}
T_{p'} & \geq q_{p'} \quad \forall p' \\
\end{align*}
\]

where \(T_{p'} \) is the target of the quality level specified in the case study.

Additionally, the variation in feedstock \(i \) supply may result in a change in the selection of primary technology \(j \) and secondary technology \(j' \). Hence, different technologies \(j \) and \(j' \) are invested and operated in an IBWT system under different season \(s \). As a result, huge capital investment is required for such an operation. In order to minimise the CAPEX required, the technologies \(j \) and \(j' \) selected for all season \(s \) should remain constant. Hence, Eqs. 23 and 24 are added to restrict the equipment units required, \(z_j \) and \(z_{j'} \) for technologies \(j \) and \(j' \) correspondingly.

\[
\begin{align*}
\left(z_j \right)_H & \geq \left(z_j \right)_M \geq \left(z_j \right)_L \\
\left(z_{j'} \right)_H & \geq \left(z_{j'} \right)_M \geq \left(z_{j'} \right)_L \\
\end{align*}
\]

A case study is presented to illustrate the proposed approach. The developed Mixed-Integer Nonlinear Programming (MINLP) model is solved via LINGO version 14 with Global solver (LINDO Systems Inc. 2016) with an Intel® Core™ i5 (2 × 3.20 GHz), 8 GB DDR3 RAM desktop unit.

Case Study

In this study, a potential miller in Malaysia is interested in implementing a new IBWT system to treat the POME generated from a 60 t/h palm oil mill is assumed. Apart from that, the existing mill is assumed to operate in similar behaviour as the POM presented by Foong et al. (2018), with the average POME quality given in Table 2. Note that the fraction of occurrence, \(\alpha_s \), is estimated based on the number of months in which the seasons occur in a year. The \(\alpha_s \) value of 0.25, 0.333 and 0.417 represents a duration of 3, 4 and 5 months, correspondingly. Besides, the anaerobic and aerobic digesters are operated in mesophilic conditions (~25 °C) where heating is not required. It is also assumed that a typical IBWT system works continuously over the year for 8000 h per annum.
AsPOMs are not operated continuously, oil recovery pits serve as a buffer tank to normalise the POME supply into the IBWT system. The synthesised system is expected to be built next to the POM with all products and energy sold.

Fig. 3 Superstructure for IBWT system

Fig. 4 Optimum IBWT system configuration for Scenario 1
on the site. In this respect, transportation costs and supply chain issues are neglected in this case study. Furthermore, the site required to build the system is not constrained as most POM in Malaysia is built in a rural area where land availability is not concerned. Table 3 shows the costs of materials and electricity associated with this study. The price of compressed bioCH4 is assumed to be the same as natural gas due to the absence of market price in the industry. Meanwhile, Table 4 shows the specifications for final products before reuse or discharge to the environment.

A graphical superstructure representation is developed to incorporate all available technologies and configurations in an IBWT system, as shown in Fig. 3. Note that every box presented in the superstructure represents different technology for j and j′ which may consist of varying equipment units, zj and zj′, respectively. In the superstructure, POME feedstock is first processed in the oil recovery pit to produce deoiled POME and recovered oil. Deoiled POME (an intermediate product) is processed in the cooling pond to produce cooled POME. Cooled POME from the cooling pond has the option to be processed in various anaerobic digestion technologies such as covered lagoon, membrane anaerobic system and up-flow anaerobic sludge blanket to produce raw biogas, anaerobically treated POME and wet sludge. Raw biogas and anaerobically treated POME are further processed in other technologies to produce final products such as electricity, bioCH4 and discharge water. Throughout the system, products such as recovered oil, wet sludge and treated biogas which are not processed further will be sold as final products. The list of technologies used and other information such as costs, conversion, material and power consumptions specified are provided in the Supplementary Material (Table S1).

In order to demonstrate the proposed approach, two scenarios are presented to synthesise an IBWT system under a seasonal change in POME availability. In the first scenario, the optimisation objective is set to maximise the EP of the IBWT system synthesised. The optimisation objective remains the same in the second scenario, but the IBWT system is optimised under the assumption that the connection to the national grid is not available on the site. Therefore, the excess power generated in this scenario is not saleable under the FiT scheme. Lastly, sensitivity analysis is performed to provide strategies in which biogas utilisation can be promoted in the oil palm industry.

Discussions

Scenario 1: With National Grid Connections

In this scenario, an IBWT system is synthesised to generate biogas while treating the POME from a 60 t/h POM. The objective is set to maximise EP (Eq. 1) with the constraints given in Eqs. 2–24. It is assumed that the system has an operation lifespan, \(t^\text{max} \), of 15 years with a discount rate, r, of 5% per annum. The costs of material and electricity given in Table 3 are used to evaluate the performance of the synthesised IBWT system. Meanwhile, the quality specifications for

Table 5 Economic parameters for Scenario 1

Economic parameters	Low season	Medium season	High season	Average
Capital cost, CAPEX (million US$)	2.94	2.94	2.94	2.94
Operating cost, OPEX (million US$/y)	0.35	0.37	0.42	0.37
Gross profit, GP (million US$/y)	0.60	0.87	1.40	0.90
Economic performance, EP (million US$/y)	0.38	0.64	1.12	0.61
Net present value, NPV\(^{\text{tmax}}\) (million US$)	-	-	-	6.30
Payback period, PP (y)	-	-	-	3.69
Internal rate of return, IRR (%)	-	-	-	29.7

Table 6 The flowrate of final products and power for Scenario 1

Flowrate	Low season	Medium season	High season	Average
Wet sludge (t/h)	1.83	2.43	3.45	2.43
Discharge water (m³/h)	15.03	20.04	28.39	20.04
Power generated, \(P^\text{gen} \) (kW)	1540	2000	2909	2035
Power consumed, \(P^\text{con} \) (kW)	106	121	133	118
Power exported, \(P^\text{exp} \) (kW)	1434	1879	2776	1918
final products generated given in Table 4 are achieved. The model consists of 821 continuous variables with 123 integer variables and 790 constraints. A global solution is achieved with negligible computational time (less than 1 s). The optimised IBWT system configuration is given in Fig. 4 with the economic parameters, flowrate of materials and power summarised in Tables 5 and 6.

From the optimised result, an average EP value of 0.61 million US$/year is achieved over an operational lifespan of 15 years. An average GP of 0.90 million US$/y is reported with an $NPV_{t\text{max}}$ of 6.30 million US$ generated. PP of 3.69 years are required to return the $CAPEX$ of 2.94 million US$ invested with an IRR of 29.7%. The corresponding technologies selected and equipment units needed for each season are summarised in Table 7. The upflow anaerobic sludge fixed film technology is chosen to generate biogas, which is then treated in a biological scrubber before combusted in the gas engine for power generation. On the other hand, anaerobically digested POME from anaerobic sludge fixed film technology is

Table 7	Chosen and operated technologies for Scenario 1			
Equipment	Design capacity (unit)	Low season (unit)	Medium season (unit)	High season (unit)
Oil recovery pit	800 m3	1	2	2
Cooling pond	2400 m3	1	1	1
Up-flow anaerobic sludge fixed film	2300 m3	1	1	1
Biological scrubber	310 Nm3/h	2	3	4
Gas engine	1 MW	2	2	3
Extended aeration system	2300 m3	1	1	1
Physicochemical treatment	30 m3/h	1	1	1
Total unit	9	11	13	

Fig. 5 Optimum IBWT system configuration for Scenario 2
treated in an extended aeration system before polishing via physicochemical treatment to produce discharge water. As shown, the equipment units operated increases as POME feedstock increases from nine units in low crop season (136 km3/y) to 13 units during high crop season (257 km3/y). Thus, OPEX increases correspondingly at 0.35, 0.37 and 0.42 million US$/year for low, medium and high seasons. However, the increment in OPEX is compensated with the raise in generated GP (0.60, 0.87 and 1.40 million US$/year for low, medium and high crop season, respectively) due to the increased production and exportation of electrical power. On average, 2.43 and 20.04 t/h of wet sludge and discharge water, respectively, with 2035 kW power are generated by the synthesised IBWT system. At the same time, an average of 118 kW is consumed to operate the system. Hence, an average of 1918 kW electrical power (1434, 1879 and 2776 kW for low, medium and high crop season, respectively) is exported and sold to the national grid under the FiT scheme.

Scenario 2: Without National Grid Connections

In the second scenario, it is assumed that the site is not connected to the national grid, and therefore, excess power generated cannot be exported. This is often the case for Malaysian POMs, which are usually located in the plantation area to reduce logistic costs for FFB. Due to the remote location of POMs, extra charges are required (i.e. 0.2 million US$/km) for power line installation (Electric Light & Power 2013; Vaillancourt 2014). As such, the cost of electricity, C_e, is set to be zero US$/kW, and the calculation for GP (Eq. 11) is modified into Eq. 25. Other material price and final product specifications remain the same as provided in Tables 3 and 4.

\[
GP = \frac{\text{AOT}}{s} \text{s} \left(\sum_{y=1}^{P} F_p C_p y - \sum_{i=1}^{F} F_i C_i - \text{OPEX} \right). \tag{25}
\]

The objective remains the same (Eq. 1) with the given constraints in Eqs. 2–10 and 12–25. Similar to the previous scenario, the optimisation problem consists of 821 continuous variables, 123 integer variables and 790 constraints, solved with global solver with negligible computational time (less than 1 s). The optimum IBWT system configuration is shown in Fig. 5, in which, the economic parameters of the system developed under such circumstances are given in Tables 8 with the flowrates of final products and power summarised in Table 9.

An average EP value of 0.10 million US$/year is obtained in this scenario (0.61 million US$/y previously) with an operational lifespan of 15 years. CAPEX and OPEX both increased to 3.03 million US$ and 0.47 million US$/year, respectively, while GP reduces to 0.39 million US$/year (from 0.90 million US$/y). As a result, NPV increases significantly, from 6.30 to 1.04 million US$ with additional 6.32 years (≈ 10.01 – 3.69 years) needed to return the investment. Besides, a great fall in IRR by 20% (from 29.7 to 9.7%) is also reported. As compared with the previous scenario, technologies in the

Table 8 Economic parameters for Scenario 2

Economic parameters	Low season	Medium season	High season	Average
Capital cost, CAPEX (million US$)	3.03			3.03
Operating cost, OPEX (million US$/y)	0.42	0.47	0.53	0.47
Gross profit, GP (million US$/y)	0.21	0.39	0.70	0.39
Economic performance, EP (million US$/y)	-0.36	0.11	0.40	0.10
Net present value, NPV_{max} (million US$)	-			1.04
Payback period, PP (y)	-			10.01
Internal rate of return, IRR (%)	-			9.7

Table 9 The flowrate of final products and power for Scenario 2

Flowrate	Low season	Medium season	High season	Average
Wet sludge (t/h)	1.83	2.43	3.45	2.43
Compressed biomethane, bioCH$_4$ (GJ/h)	10.00	13.50	20.00	13.85
River quality water (m3/h)	15.03	20.04	28.39	20.04
Power generated, P_{gen} (kW)	317	406	543	403
Power consumed, P_{con} (kW)	317	406	543	403
synthesised IBWT system remain the same (i.e. up-flow anaerobic sludge fixed film, extended aeration system and biological scrubber) where gas engine is equipped to combust part of the biogas produced, generating power to operate the system. It is noted that an additional 285 kW power ($= 403 - 118$ kW) is consumed on average to operate the electrolysis system to generate river quality water for reuse in the milling process. The generated power is consumed entirely by the system ($P_{Gen} = P_{Con}$), while the remaining biogas is upgraded into compressed bioCH$_4$ via gas membrane technology as an alternative product. Compressed bioCH$_4$ is produced at the rate of 10, 13.5 and 20 GJ/h for low, medium and high season, respectively, yielding a total of 110,800 TJ/year ($= 13.85$ GJ/h \times 8000 h/year).

Sensitivity Analysis

The synthesised IBWT system in Scenario 2 (without grid connection) requires higher costs (i.e. OPEX and CAPEX) but generates lower GP value. It is mainly due to the low price of compressed bioCH$_4$ in the market, as up to 40% of fossil gas market price is subsidised by the Malaysian government (Energy Commission Malaysia 2014). As compared with scenario 1 where national grid connection is available, additional 6.3 years (from 3.7 to 10 years) is required to return the investment made, causing the industry to lose interest to invest in such a system when grid connection is unavailable on site. To ensure the economic feasibility of the IBWT system developed for compressed bioCH$_4$ productions, reduction in CAPEX or extra charges for POME treated can be

Table 10 The basis used to calculate GHG emissions from POME

Variable	Value	Note
Annual operating time, AOT (h/year)	8000	From case study
Average POME supply, POME$_{avg}$ (m3/year)	181,500	
CO$_2$ conversion from CH$_4$, X_{comb} (kg/kg)	2.75	Stoichiometric equation: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (complete combustion reaction assumed)
CH$_4$ production for IBWT system, CH$_4$$_{IBWT}$ (kg/m3)	15.50	Yacob et al. (2006)
CO$_2$ production for IBWT system, CO$_2$$_{IBWT}$ (kg/m3)	16.71	
CH$_4$ production for open ponding system, CH$_4$$_{OP}$ (kg/m3)	12.36	Najafpour et al. (2006)
CO$_2$ production for open ponding system, CO$_2$$_{OP}$ (kg/m3)	28.57	
CH$_4$ global warming potential as compared to CO$_2$, GWP$_{CH4}$	25	Gardner et al. (1993)
Greenhouse gas emission by IBWT system, GHG$_{IBWT}$ (t CO$_2$/year)	10,756	Refer to Eq. 26
Greenhouse gas emission by open ponding system, GHG$_{OP}$ (t CO$_2$/year)	61,187	Refer to Eq. 27

implemented. In this regard, a sensitivity analysis is performed on the cost of POME feedstock and CAPEX reduction up to -5 US$/m^3$ and 70% at -0.5 US$/m^3$ and 10% intervals, respectively. The changes in PP with respect to POME price and CAPEX reduction are given in Fig. 6. In order for the synthesised IBWT system to attract the interest of palm oil millers, a PP below 6 years should be achieved. In that case, at least 1.11 US$ should be charged for every m3 of POME treated ($C_{POME} = -1.11$ US$/m^3$), or 34% reduction in CAPEX (2 million US$), or combination of both are required.

Fig. 8 IBWT system configuration for compressed bioCH$_4$ price below 0.489×10^{-2} US$/MJ$
Alternatively, it is suggested that subsidies for compressed bioCH\(_4\) and incentives for CER in such a system are needed to promote biogas utilisation in the industry. GHG emissions from POME treated with the IBWT (GHG\(_{IBWT}\)) and conventional open ponding systems (GHG\(_{OP}\)) can be computed via Eqs. 26 and 27, respectively, with the basis used for calculations given in Table 10. It was found that the implementation of IBWT system in a 60 t/h POM successfully reduces GHG emission by 82% or 50,431 t CO\(_2\)e/year (= 61,187 - 10,756 t CO\(_2\)e/year). Figure 7 shows a sensitivity analysis on the changes of PP for the IBWT system developed, based on the price of compressed bioCH\(_4\) and CER. Compressed bioCH\(_4\) price ranges between 50 to 200% of the current price (0.581 × 10\(^{-2}\) US$/MJ or 24.55 MYR/mmBtu) at 10% intervals, while CER incentive varies from 0 to 20 US$/t CO\(_2\)e at 1 US$/t CO\(_2\)e intervals.

\[
\text{GHG}_{\text{IBWT}} = \text{AOT} \times \text{POME}_{\text{avg}} (X_{\text{combCH}_4 \text{ IBWT}} + \text{CO}_2 \text{ IBWT}) \quad (26)
\]

\[
\text{GHG}_{\text{OP}} = \text{AOT} \times \text{POME}_{\text{avg}} (\text{GWP}_\text{CH}_4 \text{ CH}_4 \text{ OP} + \text{CO}_2 \text{ OP}) \quad (27)
\]

Note that the PP reduces significantly as compressed bioCH\(_4\) and CER prices increase except for the price of compressed bioCH\(_4\) ranging from 0.291 to 0.489 × 10\(^{-2}\) US$/MJ where PP remains constant (reduces as CER price increases). In this region, biogas is not upgraded to compressed bioCH\(_4\) but sold for domestic heating with energy price of 0.336 × 10\(^{-2}\) US$/MJ (Market Watch 2016) as shown in Fig. 8. CAPEX needed is reduced to 2.61 million US$ due to the removal of biogas upgrading technologies such as compressors and gas membranes from the system. Meanwhile, biogas is upgraded to compressed bioCH\(_4\) when the price is higher than 0.489 × 10\(^{-2}\) US$/MJ, as discussed in Scenario 2 (refer to Fig. 5). The increment in CAPEX causes a step increment in PP as compressed bioCH\(_4\) price increases above 0.489 × 10\(^{-2}\) US$/MJ, as shown in Fig. 7. In that case, CER incentive of 6 US$/t CO\(_2\)e is required with the current compressed bioCH\(_4\) price, or 40% subsidy on compressed bioCH\(_4\) price (0.814 × 10\(^{-2}\) US$/MJ), or combination of both strategies are needed to promote biogas utilisation from POME in the industry.

Conclusions

IBWT system generates renewable energy in the form of biogas while treating POME to achieve the discharge limit, set by the government. Such a system offers significant benefits to the industry as it generates income from liquid waste produced in POM (i.e. POME) while reducing GHG emission by 82% or 50,431 t CO\(_2\)e/year. In this work, a systematic approach for synthesis and optimisation of an IBWT system with maximum EP via multi-period optimisation is presented. The case study demonstrated that production of electricity sold to the national grid with a premium price under the FiT scheme is prioritised. On average, the developed IBWT system is capable to export up to 1.9 MW electrical power with a CAPEX of 2.94 million US$ and PP of 3.69 years. In the situation where national grid connection is not applicable, up to 110,800 GJ/year of compressed bioCH\(_4\) can be generated to substitute natural gas in the natural gas grid or vehicle fuels at gas stations. However, the latter process is proven less favourable as a longer payback period of 10 years is required to return the CAPEX of 3.03 million US$. In order to achieve a PP of less 6 years for compressed bioCH\(_4\) generation, a treatment cost of approximately 1.11 US$/m\(^3\) POME should be imposed to the miller, or 34% reduction in CAPEX to 2 million US$ is needed. Alternatively, strategies such as compressed bioCH\(_4\) subsidisation up to 0.489 × 10\(^{-2}\) US$/MJ and incentivising CER scheme by 6 US$/t CO\(_2\)e from the Malaysian government are suggested. It is worth mentioning that the model developed can be easily revised and reformulated to suite the applications in other countries where oil palm is cultivated extensively. Future prospects are reflected to consider operational feasibility and development of centralised IBWT system network in the industry.

Acknowledgements Accreditation to Havy’s Oil Mill Sdn Bhd for the technical data provided to develop an industrial case study in this work.

Code Availability The developed model is solved via LINGO version 14 with an Intel® Core™ i5 (2 × 3.20 GHz), 8 GB DDR3 RAM desktop unit.

Authors’ Contributions Conceptualisation: S.Z.Y. Foong, M.F. Chong and D.K.S. Ng
Methodology: S.Z.Y. Foong and D.K.S. Ng
Formal analysis and investigation: M.F. Chong and D.K.S. Ng
Writing—original draft preparation: S.Z.Y. Foong
Writing—review and editing: M.F. Chong and D.K.S. Ng
Funding acquisition: D.K.S. Ng
Resources: M.F. Chong and D.K.S. Ng
Data curation: S.Z.Y. Foong
Supervision: D.K.S. Ng

Funding Information The financial support from the Ministry of Higher Education, Malaysia, through LRGS Grant (LRGS/2013/UKM-UNMC/PT/05) is acknowledged.

Data Availability Industrial data is obtained from Havy’s Oil Mill Sdn Bhd.
Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of interest.

Nomenclature BioCH₄: biomethane; BOD: biochemical oxygen demand; CER: certified emission reduction; CH₄: methane; CO₂: carbon dioxide; CO₂eq: carbon dioxide equivalent; COM: chemical oxygen demand; COP: crude palm oil; DOS: Department of Statistics; F, feed-in-tariff; GHG: greenhouse gas; GHG₈₆₉₆: total greenhouse gas emissions from integrated biogas and wastewater system; GHG₉₀: total greenhouse gas emissions from open ponding system; H₂S: hydrogen sulphide; HRT: hydraulic retention time; IBWT: integrated biogas and wastewater treatment; MINLP: Mixed-Integer Nonlinear Programming; POM: palm oil mill; POME: palm oil mill effluent; PSE: process systems engineering; SEDA: Sustainable Energy Development Authority; SEDA: Sustainable Energy Development Authority; WEPA: Water Environment Partnership in Asia; e: index for electricity; i, index for feedstock; j, index for primary technology; j′, index for secondary technology; k, index for primary or secondary technology; p, index for intermediate product; p′, index for final product; s, index for season; t, index for time; CAPEx: total capital costs; Pᵢₑ₉ₑ, total power consumption; Pₑ₉ₑ, total power generated; Pₛₑ₉ₑ, total power sold or exported to the grid; EP, economic performance; Fₛₑ₉ₑ, flowrate of feedstock i into primary technology j; Fₑ₉ₑ, flowrate of intermediate product p; Fₛₑ₉ₑ, flowrate of intermediate product p into secondary technology j′; GP, gross profit; IRR, internal rate of return; NPV₉₆, net present value at P₉₆; OPEX, total operating costs; PP, payback period; qᵢₑ, quality of intermediate product p; qₑₙₑ, quality of final product p′; zₑ, number of units of technology selected for primary technologies j; zₑₙₑ, number of units of technology selected for secondary technology j′; AOT, annual operational time; CCₑₙₑ, capital cost of primary technology j; CCₑ₉ₑ, capital cost of secondary technology j′; Cₑₑ, cost of electricity e; CH₄₈₆₉₆, CH₄ generation for integrated biogas and wastewater system; CH₄ₑ₉ₑ, CH₄ generation for open ponding system; Cₑₚₑ, cost of feedstock i; CO₂ₑ₉ₑ, CO₂ generation for integrated biogas and wastewater system; CO₂ₑₙₑ, CO₂ generation for open ponding system; Cₑ₉ₑ, Cost of final product p′; CRF, capital recovery factor; P₀₉₆, fixed design capacity for primary technologies j; P₀ₑ₉ₑ, fixed design capacity for secondary technologies j′; Fₛₑ₉ₑ, flowrate of feedstock i; GWP₉₆, global warming potential of CH₄ as compared to CO₂; OCₑ₉ₑ, operating cost for secondary technology j′; OCₑₚₑ, operating cost for primary technology j; qₑₑ, quality of feedstock i; rₑₑ, discount rate; t₉₆₉ₑ, maximum operational lifespan for primary technology j and secondary technology j′; Tₑₑ, constraint specified for quality of final product p′; Vₑₑₑₑ, electricity conversion for primary technology j from feedstock i; Vₑₑₑₑₑₑ, electricity conversion for secondary technology j′ from intermediate product p; Wₑₑₑₑ, quality conversion of feedstock i in technology j; Wₑₑₑₑₑₑ, quality conversion of intermediate product p in technology j′; Xₑₑₑₑₑₑ, conversion of CO₂ from CH₄; Xₑₑₑₑₑₑₑₑ, mass conversion of primary technology j from feedstock i; Xₑₑₑₑₑₑₑₑₑ, mass conversion of secondary technology j′ from intermediate product p; Yₑₑₑₑₑₑ, specific power consumption per unit for primary technology j; Yₑₑₑₑₑₑₑₑ, specific power consumption per unit for secondary technology j′; Yₑₑₑₑₑₑₑₑₑ, specific power consumption per unit of feedstock i processed; Yₑₑₑₑₑₑₑₑₑₑ, specific power consumption per unit of intermediate product p processed; Tₑₑₑₑₑₑₑₑₑₑ, fraction of occurrence for season s

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdurahman NH, Rosli YM, Azhari NH (2011) Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination 266:208–212. https://doi.org/10.1016/J.DESAL.2010.08.028

Abu Bakar N, Lim WS, Loh SK, Abdul Aziz A, Mohamad Saad MF, Kamarudin, MKM, Lew YS, Lim DY (2017) Bio-compressed natural gas (BioCNG) production from palm oil mill effluent (POME). Malaysian Palm Oil Board

Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157: 87–95. https://doi.org/10.1016/S0011-9164(03)00387-4

Ahmed Y, Yaakob Z, Akhtar P, Sopian K (2015) Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renew Sust Energ Rev 42:1260–1278. https://doi.org/10.1016/J.RSER.2014.10.073

Asis AJ, Mohd Affiq MA, Ngenti R, Tahiruddin S, Kadir MOA (2016) Palm oil mill effluent tertiary treatment by physicochemical treatment using ferrous sulphate. Iran J Energy Environ 7:163–168. https://doi.org/10.5829/idosi.ije.2016.07.02.12

Badell M, Puijiganer L (2001) Advanced enterprise resource management systems for the batch industry. The TicTacToe algorithm. Comput Chem Eng 25:517–538. https://doi.org/10.1016/S0098-1354(01)00632-9

Biofuels Digest (2014) Liquid CO2, or liquid gold? Maybe both, as aemets adds CO2 liquefaction at its Keyes, CA Plant. http://www.biofuelsdigest.com/bdigest/2014/10/27/liquid-co2-or-liquid-gold-maybe-both-as-aemets-adds-co2 liquefaction-at-its-keyes-plant/

Bong CPC, Ho HS, Hashim H, Lim JS, Ho CS, Tan WSP, Lee CT (2017) Review on the renewable energy and solid waste management policies towards biogas development in Malaysia. Renew Sust Energ Rev 70:988–998. https://doi.org/10.1016/J.RSER.2016.12.004

Chan YJ, Chong MF, Law CL (2010) Biological treatment of anaerobically digested palm oil mill effluent (POME) using a lab-scale sequencing batch reactor (SBR). J Environ Manag 91:1738–1746. https://doi.org/10.1016/J.jenvman.2010.03.021

Chan YJ, Chong MF, Law CL (2011) Optimisation on thermophilic aerobic treatment of anaerobically digested palm oil mill effluent (POME). Biochem Eng J 55:193–198. https://doi.org/10.1016/J.BEJ.2011.04.007

Chan YJ, Chong MF, Law CL (2012) An integrated anaerobic-aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent (POME): startup and steady state performance. Process Biochem 47:485–495. https://doi.org/10.1016/J.PROCBIO.2011.12.005

Chin MJ, Poh PE, Tey BT, Chan ES, Chin KL (2013) Biogas from palm oil mill effluent (POME): start-up and steady state performance. Process Biochem 48:1048–1056. https://doi.org/10.1016/J.PROCBIO.2013.06.008

Choo YM, Muhamad H, Hashim Z, Subramaniam V, Puah CW, Tan YA (2011) Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. Int J Life Cycle Assess 16:669–681. https://doi.org/10.1007/s11367-011-0303-9

Damayanti A, Ujang Z, Salim MR (2011) The influenced of PAC, zeolite, and Moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME). Bioresour
Technol 102:4341–4346. https://doi.org/10.1016/j.biotech.2010.12.061

de Pablo JJ, Escobedo FA (2002) Molecular simulations in chemical
engineering: present and future. Am Inst Chem Eng J 48:2716–
2721. https://doi.org/10.1002/aic.690481202

Department of Statistics (DOS) Malaysia (2018) Selected agricultural
indicators, Malaysia, 2018. Putrajaya, Malaysia

Dompok BG (2010) Deepening Malaysia’s palm oil advantage. In: eco-
nomic transformation Programme: a roadmap for Malaysia. Prime
Minister’s Department, pp 281–314

Economic Planning Unit (2000) Eighth Malaysia plan 2001–2005. In:
Prime Minist. Dep. Complex. http://www.epu.gov.my/en/rmk/
eighth-malaysia-plan-2001-2005.

Electric Light & Power (2013) Underground vs. overhead: power line
installation-cost comparison and mitigation. http://www.clp.com/
articles/powergrid_international/print-volume-18-issue-2/features/
underground-vs-overhead-power-line-installation-cost-
comparison.html.

Energy Commission Malaysia (2017) Fuel prices. http://www.st.gov.my/
index.php/en/english/845-fuel-prices-tpa.

Energy Commission Malaysia (2014) National energy balance. Putrajaya

Fang C, O-Thong S, Boe K, Angeldaki I (2011) Comparison of UASB
e and EGSB reactors performance, for treatment of raw and deoiled
palm oil mill effluent (POME). J Hazard Mater 189:229–234.
https://doi.org/10.1016/j.jhazmat.2011.02.025

Foo DCY, Tan RR, Lam HL, Abdul Aziz MK, Klemes JJ (2013) Robust
models for the synthesis of flexible palm oil-based regional
bioenergy supply chain. Energy 55:68–73. https://doi.org/10.1016/
jeergy.2013.01.045

Foong SY, Lam YL, Andiappan V, Foo DCY, Ng DKS (2018) A
systematic approach for the synthesis and optimisation of palm oil
milling processes. Ind Eng Chem Res 57:2945–2955. https://doi.org/
10.1021/acs.iecr.7b04788

Gardner N, Manley BJW, Pearson JM (1993) Gas emissions from land-
fills and their contributions to global warming. Appl Energy 44:
165–174. https://doi.org/10.1016/0306-2619(93)90059-X

Gerardi MH (2003) Anaerobic digestion stages. In: The microbiology of
anaerobic digesters. John Wiley & Sons, Inc., Hoboken, NJ, USA,
pp 51–57

Grossmann IE (2004) Challenges in the new millennium: product discov-
ery and design, enterprise and supply chain optimization, global life
cycle assessment. Comput Chem Eng 29:29–39. https://doi.org/10.
1016/j.compchemeng.2004.07.016

Grossmann IE, Guillén-Gosálbez G (2010) Scope for the application of
mathematical programming techniques in the synthesis and plan-
ing of sustainable processes. Comput Chem Eng 34:1365–1376.
https://doi.org/10.1016/j.compchemeng.2009.11.012

Hassan MA, Yacob S, Shirai Y, Hung YT (2005) Treatment of palm oil
wastewaters. In: Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds)
Waste treatment in the food processing industry. CRC Press, pp
101–117

Hosseini SE, Wahid MA (2014) Development of biogas combustion in
combined heat and power generation. Renew Sust Energy Rev 40:
868–875. https://doi.org/10.1016/j.rser.2014.07.204

Ignoi AH, Abowei MFN, Ayotamuno MJ, Eze CL (2008) Comparative
evaluation of batch and continuous anaerobic digesters in biogas
production from municipal solid waste using mathematical models.
Agric Eng Int CIGR J 10:1–12

International Sustainability & Carbon Certification (ISCC) (2018)
ISCC’s objectives. https://www.iscc-system.org/about/objectives/

International Union for Conservation of Nature and Natural Resources
(IUCN) (2018) Issues brief. Gland, Switzerland

Irvan I, Trisakti B, Wongistani V, Tomichi Y (2012) Methane emission
digestion of palm oil mill effluent (POME) in a thermophilic
anaerobic reactor. Int J Sci Eng 3:32–35. https://doi.org/10.12777/
IJSE.3.1.32-35

KcTTha (2008) National renewable energy policy and action plan -
Malaysia

KcTTha (2009) National green technology policy

KcTTha (2011) Renewable Energy Act 2011 (Act 725)

Khan IU, Othman MHD, Hashim H, Matsuura T, Ismail AF, Rezai-
DashtArzhangh M, Wan Azlee I (2017) Biogas as a renewable energy
fuel – a review of biogas upgrading, utilisation and storage.
Energy Convers Manag 150:277–294. https://doi.org/10.1016/J.
ENCONMAN.2017.08.035

Koby M, Hiz H, Senturk E, Aydiner C, Demirbas E (2006) Treatment
of potato chips manufacturing wastewater by electrocoagulation.
Desalination 190:201–211. https://doi.org/10.1016/J.JDESAL.2005.
10.006

LINDO Systems Inc. (2016) LINGO the modelling language and
optimizer

Market Watch (2016) Oil settles sharply lower as U.S. crude inventories
climb; Natural-gas Futures Surge. https://www.marketwatch.com/
story/oil-prices-extend-gains-after-us-data-shows-falling-supplies-
2016-12-21. Accessed 29 Jan 2018

Miltnor M, Makaruk A, Harasek M (2017) Review on available biogas
upgrading technologies and innovations towards advanced solu-
tions. J Clean Prod 161:1329–1337. https://doi.org/10.1016/j.
jectpro.2017.06.045

Najaipour GD, Zinatizadeh AAL, Mohamed AR, Hasnain Isa M,
Nasrollahzadeh H (2006) High-rate anaerobic digestion of palm
oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor.
Process Biochem 41:370–379. https://doi.org/10.1016/J.PROCBIO.
2005.06.031

Ng DKS, Ng RTL (2013a) Applications of process system engineering in
palm-based biomass processing industry. Curr Opin Chem Eng 2:
448–454. https://doi.org/10.1016/j.coche.2013.09.005

Ng LY, Chemmangattuvallapil NG, Ng DKS (2014) A multiobjective
optimisation-based approach for optimal chemical product design.
Ind Eng Chem Res 53:17429–17444. https://doi.org/10.1021/
den402906a

Ng RTL, Ng DKS (2013b) Systematic approach for synthesis of integra-
eted palm oil processing complex. Part 1: single owner. Ind Eng Chem
Prod 34:57–10220. https://doi.org/10.1021/ie302926q

Ng RTL, Ng DKS, Tan RR (2013) Systematic approach for synthesis of
integrated palm oil processing complex. Part 2: multiple owners. Ind
Eng Chem Res 52:10221–10235. https://doi.org/10.1021/
iec400846g

Ng WPQ, Lam HL, Ng FY, Ng FY, Kamal M, Lim JHE (2012) Waste-to-
wealth: green potential from palm biomass in Malaysia. J Clean
Prod 34:57–65. https://doi.org/10.1016/j.jclepro.2012.04.004

Ohimain EI, Iah SC (2017) A review of biogas production from palm oil
mill effluents using different configurations of bioreactors. Renew
Sust Energy Rev 70:242–253. https://doi.org/10.1016/J.JSER.2016.
11.221

Ong KH (1979) Environmental Quality (Sewage and Industrial Effluents)
Regulations, 1979

Ooi J, Ng DKS, Chemmangattuvallapil NG (2018) Optimal molecular
design towards an environmental friendly solvent recovery process.
Comput Chem Eng 117:391–409. https://doi.org/10.1016/j.
compchemeng.2018.06.008

Peterson EB, Schleich J, Duscha V (2011) Environmental and economic
effects of the Copenhagen pledges and more ambitious emission
reduction targets

Poh PE, Chong MF (2009) Development of anaerobic digestion methods
for palm oil mill effluent (POME) treatment. Bioresour Technol
100:1–9. https://doi.org/10.1016/j.biotech.2008.06.022

Ramadhan NJ, Wan YK, Ng RTL, Ng DKS, Hassim MH, Avisio KB, Tan
RR (2014) Life cycle optimisation (LCO) of product systems with
consideration of occupational fatalities. Process Saf Environ Prot
92:390–405. https://doi.org/10.1016/j.psep.2014.04.003
