Different types of drift in two seasonal forecast systems and their dependence on ENSO

Leon Hermanson1, H-L Ren2, M Vellinga1, ND Dunstone1, P Hyder1, S Ineson1, AA Scaife1, DM Smith1, V Thompson1, B Tian2, KD Williams1

1 Met Office Hadley Centre, UK 2 China Meteorological Administration, China

Summary

Seasonal forecasts are increasingly employed to provide regional climate predictions. For the quality of these to improve, regional biases caused by local processes must be reduced. This study uses two seasonal forecast systems to examine drifts in temperature and precipitation and compares them to the bias in the free-running version of each model. Drifts are considered from daily to multi-annual time scales. We find that initialization error and small amounts of initial precipitation mean that the bias found over the first few days can be different from that in the free-running model (not shown on this poster). Some drifts are simply too slow to have a big impact on seasonal forecasts, even though they are important for climate projections. We define three types of drift: asymptoting, overshooting and inverse drift (away from the long-term bias). Precipitation almost always has an asymptoting drift. Temperatures and precipitation, the two between the two forecasting systems, where one tends to overshoot and the other to have an inverse drift. Finally, we ask whether there are state-dependent drifts between forecast systems initialized with different ENSO phases. The magnitude of equatorial sea surface temperature drifts, both in the Pacific and other ocean basins, vary depending on the initial conditions. This is also seen for precipitation, where averaging over all hindcast years when calculating biases can hide details of the response to different ENSO phases.

Models and methods

This study uses the hindcasts from two operational seasonal forecast systems to study the evolution of biases as a function of forecast lead time. The Beijing Climate Center - Climate Prediction System (BCC-CPS) is the seasonal prediction system of the Beijing Climate Center (BCC) at the China Meteorological Administration (CMA). BCC-CPS is based on the BCC Climate System Model version 1.1m (BCC CSM1.1m). Its atmospheric component has a T68 resolution and the ocean horizontal resolution is 1°x1° refined to 1/3° in the tropics. The Met Office Unified Model (UM) Global Coupled configuration 2 (GC2) version of HadGEM3 is used in the GloSea. Seasonal forecast system version 5 (GloSea5) at the Met Office. The horizontal resolution in the atmosphere is N216 and in the ocean is 1/4°. We have used spun-up, free-running model versions of the BCC and HadGEM3-GC2 models as controls to determine the long-term biases. To assess drifts and drifts we use 30 years (1981-2010) of Ronda’s NOAA Oil V2 high resolution SST. We used this product as it is on a 1/4° grid that can resolve sharp SST gradients. We also did not want to favour any forecast system by using the SST data it is initialized with. To evaluate precipitation we used the same 30 years of GPCP V2.2 Combined Precipitation data set. Further details on the method can be found in the caption for Figure 1.

Figure 1

The types of initialized model bias drifts. The red dashed line represents the bias in a spun-up control integration using the same model. The hindcasts are initialized November (and 1 May) for at least 10 hindcast years with at least 8 ensemble members. The drifts represent the average progression of the bias over all hindcasts and ensemble members. The type of drift is diagnosed from the December – February mean bias. Asymptoting drift is of the same sign and smaller than the long-term bias. Overshooting drift is of the opposite sign and larger than the long-term bias. Inverse drift is of the opposite sign to the long-term bias. Figure 2 shows the drifts we found.

Figure 2

The average drift in SST and precipitation for the May and November hindcast start dates. The last two boxes are for GloSea5 for the same months. The types of drift (Figure 1) are (a)ymptoting, (o)vershooting and (i)inverse drift.

Drifts in SST and precipitation

Overshooting drifts are most common for precipitation, but not for SST, where BCC-CPS tends to overshoot and GloSea5 tends to inverse drift. This is true for both the tropics and the extra-tropics. We have not been able to determine why precipitation and SST tend to have different drifts. It is especially strange in the tropics where these two variables are often coupled. The difference between models in the SST drift can be primarily explained by how they move efficiently gain/loose heat to reach their long-term bias. However, GloSea5 warms in the northern hemisphere and cools in the tropics even though the long-term biases are the opposite. There is only one region where both initial months and both forecast systems have the same drift, that is an overshoot in the Indian Ocean SST. Most asymptotic drifts reach the long-term mean in 8 months or less (especially for precipitation), but there are exceptions such as the Southern Ocean SST in November for GloSea5 and precipitation in the Pacific ITCC in May for BCC-CMS, which take much longer. In addition, the other drift types obviously take longer than the length of a seasonal forecast to reach the long-term bias. This implies that some of the climate model biases are less important for the seasonal forecasts.

ENSO dependence

Both forecast systems have a different bias evolution, in terms of the magnitude of the drift, for NINO4.4 SST for different ENSO initial conditions. The BCC model has a mean state that is biased cold and BCC-CMS drifts the most when initialized with an El Niño state. In contrast, HadGEM3-GC2 has a mean state that is biased warm and drifts the most when initialized with a La Niña state. Figure 3 shows the average drift in GloSea5 for each ENSO state. The drift is strongest in the western Indian Ocean, East Pacific and the central Atlantic for La Niña years. There also appears to be some propagation towards the maritime continent. The eastward propagation that starts from about 50°E in November has a speed of roughly 1 m/s, consistent with an equatorial Kelvin wave, which could have been caused by a change in the wind forcing from initialization to the free-running forecast. The westward propagation starting at about 160°W is faster, so it is not a Rossby wave and could be mediated by the atmosphere. Another explanation for these drifts is a re-adjustment of the thermocline in the ocean.