Provably-efficient GPU algorithms

Nodari Sitchinava
University of Hawaii

Joint work with Volker Weichert

July 1, 2014
GPU computing

- GPGPU – graphics cards for computation
- Hundreds of cores
- Thousands of threads

Nodari Sitchinava – Provably-efficient GPU algorithms
The Challenge

- How to write efficient program?
- How to design algorithms?
- What makes algorithms efficient on GPUs?
GPUs

Global Memory ($n \leq 3$GB)

Shared (Local) Memory ($M \approx 48$ kB)

Registers (≈ 32 kB)

Nodari Sitchinava – Provably-efficient GPU algorithms
GPUs

Global Memory ($n \leq 3\text{GB}$)
- Coalesced accesses ($w = 32$)

Shared (Local) Memory ($M \approx 48 \text{kB}$)

Registers ($\approx 32 \text{kB}$)
GPUs

Global Memory \((n \leq 3\text{GB})\)
- Coalesced accesses \((w = 32)\)
- Hyperthreading

Shared (Local) Memory \((M \approx 48\text{ kB})\)

Registers \((\approx 32\text{ kB})\)
GPUs

Global Memory $(n \leq 3\text{GB})$
- Coalesced accesses $(w = 32)$
- Hyperthreading

Shared (Local) Memory $(M \approx 48\text{ kB})$
- Memory banks

Registers $(\approx 32\text{ kB})$
GPUs

Global Memory ($n \leq 3\text{GB}$)
- Coalesced accesses ($w = 32$)
- Hyperthreading

Shared (Local) Memory ($M \approx 48\text{ kB}$)
- Memory banks

Registers ($\approx 32\text{ kB}$)
GPUs

- **Global Memory** \((n \leq 3\text{GB})\)
 - Coalesced accesses \((w = 32)\)
 - Hyperthreading

- **Shared (Local) Memory** \((M \approx 48\text{kB})\)
 - Memory banks

- **Registers** \((\approx 32\text{kB})\)
 - Private to each thread

Nodari Sitchinava – Provably-efficient GPU algorithms
GPUs

Global Memory ($n \leq 3\text{GB}$)
- Coalesced accesses ($w = 32$)
- Hyperthreading

Shared (Local) Memory ($M \approx 48\text{ kB}$)
- Memory banks

Registers ($\approx 32\text{ kB}$)
- Private to each thread
- Fastest if addressable at compile time
GPU: PRAM model?
GPU: PRAM model?

Parallel scan throughput
- Coalesced accesses: 165GB/s
- Random access: 5GB/s

PRAM Model

Nodari Sitchinava – Provable-efficient GPU algorithms
GPU: PRAM with local caches and blocked accesses?

- Access to global memory in contiguous blocks
Parallel External Memory (PEM) Model (SPAA ’08)

PEM: A simple model of locality and parallelism

- Explicit cache replacement
- Up to P block transfers $= 1$ I/O
- Block-level CREW access
Parallel External Memory (PEM) Model (SPAA ’08)

PEM: A simple model of locality and parallelism

- Explicit cache replacement
- Up to P block transfers $= 1$ I/O
- Block-level CREW access

Complexity: Parallel I/O complexity – number of *parallel* block transfers
$w = 32$ cores per cache

PEM model has only one core per cache
Model

- w cores/threads per cache
- Always load data into shared memory of size M
- Access global memory in blocks of size $B = \Theta(w)$
Branch divergence

SIMD algorithms
- E.g. sorting networks for sorting in shared memory
Bank conflicts

What about bank conflicts?
Effect of bank conflicts on runtime

![Graph showing the effect of bank conflicts on runtime. The graph compares the runtime of kernel 3, kernel 3 bank conflicts, and an improved kernel 3 runtime. The x-axis represents the number of colors, and the y-axis represents the runtime in milliseconds. The graph shows a significant increase in runtime with an increase in bank conflicts.](image-url)
GPU: PEM with multiprocessors and bank conflict free processing

Model

- \(w \) cores/threads per cache
- Access global memory in blocks of size \(B = \Theta(w) \)
- Always load data into shared memory of size \(M \)
- Design SIMD algorithms with no bank conflicts
Bank Conflict Free Computations
Modeling bank conflicts

Matrix view of shared memory

- Column-major layout in $w \times (M/w)$ matrix
- One thread per row
- Convert column-to row-major to process columns

Conversion for square matrices is a matrix transposition

Memory Bank 0	A[0]	A[8]	A[16]	A[24]	A[32]	A[40]	A[48]	A[56]
Memory Bank 1	A[1]	A[9]	A[17]	A[25]	A[33]	A[41]	A[49]	A[57]
Memory Bank 2	A[2]	A[10]	A[18]	A[26]	A[34]	A[42]	A[50]	A[58]
Memory Bank 3	A[3]	A[11]	A[19]	A[27]	A[35]	A[43]	A[51]	A[59]
Memory Bank 4	A[4]	A[12]	A[20]	A[28]	A[36]	A[44]	A[52]	A[60]
Memory Bank 5	A[5]	A[13]	A[21]	A[29]	A[37]	A[45]	A[53]	A[61]
Memory Bank 6	A[6]	A[14]	A[22]	A[30]	A[38]	A[46]	A[54]	A[62]
Memory Bank 7	A[7]	A[15]	A[23]	A[31]	A[39]	A[47]	A[55]	A[63]
Example: Bank Conflict Free Sorting

ShearSort [Sen et al. 1986]

Repeat \(\log(M/w)\) times:
- Sort columns in alternate order
- Sort rows in increasing order

Result: Sorted matrix in column-major order
Complexity

If $M = w^2$

$O((\text{sort}(w) \cdot \log w)$ time to sort M elements

Using a sorting network to sort each row/column

$O(w \log^3 w)$ time
Sorting network vs. ShearSort

- ShearSort with register optimization
- ShearSort
- Odd-Even Transposition Sort

Nodari Sitchinava – Provably-efficient GPU algorithms
Bank Conflict Free Sorting (Basecase)
Bank Conflict Free Sorting (Basecase)

![Graph showing runtime vs input size for different sorting algorithms.](image-url)

- thrust mergesort
- thrust mergesort (base case 1024)
- mergesort/shearsort (base case 1024)
- mergesort/shearsort (base case 8192)

Nodari Sitchinava – Provably-efficient GPU algorithms
Bank Conflict Free Merging

Merging two sorted streams

- Load $\frac{M}{2}$ items from each stream
- Repeat:
 - Sort M items
 - Output $\frac{M}{2}$ smallest items
 - Assign the rest $\frac{M}{2}$ items to the stream with the larger largest element
 - Load $\frac{M}{2}$ items from the other stream

Complexity

$O\left(\frac{N}{M} \cdot \text{sort}(M)\right)$ time
Bank Conflict Free Sorting (Full)

BCFMergeSort
- Sort N/M runs of M elements
- Repeatedly merge pairs of streams until $2P$ streams remain
- Using distribution, partition streams into P buckets
- Repeatedly merge pairs of streams within each bucket

Complexity
- $O\left(\frac{N}{Pw} \cdot (1 + \log^2(w) \cdot \log(N/w))\right)$ time
- $O(1 + \log(N/M))$ parallel scans
Bank Conflict Free Sorting (Full)

![Graph showing runtime per element vs input size for different sorting algorithms.](image)

- warpsort
- thrust
- BCFMergesort
- BCFMergesortPB

Nodari Sitchinava – Provably-efficient GPU algorithms
Conclusions

GPU Model

- Access global memory in blocks of size $B = \Theta(w)$
- Cache of size M (matrix)
- w cores/threads per cache
- Design SIMD algorithms that process items in cache by rows or columns
- Optimize by using registers
Future work

- Private registers of Kepler architecture as rows of the matrix
- Tradeoff between number of “processors” and cache size
- Design more algorithms
- Automatic scheduling of threads to cores
Thank you!