Pair–rule segmentation genes regulate the expression of the homeotic selector gene, Deformed

Thomas Jack, Michael Regulski, and William McGinnis

Departments of Molecular Biophysics and Biochemistry, and Biology, Yale University, New Haven, Connecticut 06511 USA

Using antibodies directed against the protein produced from the homeotic selector locus Deformed (Dfd), we have determined its spatial distribution both in wild-type embryos and in embryos mutant for a variety of segmentation genes. The Dfd protein is first detectable in a single circumferential stripe of about six cells at the cellular blastoderm stage. During gastrulation and at later stages its principal domain of epidermal expression is in the mandibular and maxillary segments of the embryonic head. Though not strongly altered by mutations in most of the zygotic gap genes and other selector genes, the pattern of Dfd expression is dramatically altered in mutants for eight of the nine pair–rule segmentation genes. The precise delimitation of Dfd expression can be largely accounted for by hierarchical and combinatorial effects of segmentation gene activities. In addition, the control of Dfd expression is also regulated by at least two other factors that are differentially active on both the anterior–posterior and dorsal–ventral axes. Our results support the idea that a hierarchy of homeobox regulatory genes plays a key role in dividing and determining the Drosophila body pattern.

[Key Words: Drosophila, development, homeobox, homeotic genes, Deformed gene expression]

Received February 5, 1988, revised version accepted April 12, 1988.

In Drosophila the eventual determination of segmental identity is dependent upon stable, localized expression of homeotic selector genes [Garcia-Bellido 1977; Lewis 1978; Struhl 1982; Akam 1983; Levine et al. 1983]. Precise spatial limits on the expression of homeotic genes is important to both the form and function of the fruit fly because ectopic expression can trigger homeotic transformations that often result in embryonic or larval death [Lewis 1978; Hafen et al. 1983; Schneuwly et al. 1987]. Although the details are still obscure, the restricted spatial patterns of homeotic expression appear to be the focus of a hierarchy of genes that successively refine positional information in the early embryo [reviewed in Akam 1987; Scott and Carroll 1987]. A detailed description of the regulatory interactions among the different levels of the hierarchy will be necessary in order to guide and interpret a molecular description of Drosophila pattern formation.

Establishment of the initial limits on homeotic selector/gene expression is likely to be under the control of the zygotically active gap and pair–rule segmentation genes [Nüsslein-Volhard and Wieschaus 1980]. Both gap and pair–rule genes begin to be expressed during the period from 2 to 3 hr of development, just prior to and during the establishment of selector expression boundaries [Hafen et al. 1984a; Knipple et al. 1985]. The mutant phenotypes of gap genes indicate that they subdivide the embryonic space into large blocks of segments. For example, mutants in the gap gene hunchback (hb) are missing posterior head segments, all three thoracic segments, and parts of the seventh and eighth abdominal segments [A7 and A8] [Lehmann and Nüsslein-Volhard 1987]. At least part of this phenotype is due to the resulting disruptions in the expression limits of the homeotic genes Sex Combs Reduced (Scr), Antennapedia (Antp), and Ultrabithorax (Ubx). The normal domain of Scr expression extends posteriorly into the first thoracic segment, while in hb mutants several rows of cells in this region lack Scr protein [Riley et al. 1987]. Antp transcripts are not expressed in their normal parasegment 4 domain [Harding and Levine 1988], and Ubx expression expands both anteriorly and posteriorly in hb mutants [White and Lehmann 1986]. The extent to which these regulatory interactions are direct or indirect is as yet unclear.

A second group of segmentation genes, the pair–rule class, partition the embryo into two segment-width blocks. For example, mutants in fushi tarazu (ftz) are missing alternate segment boundaries, starting at the maxillary–labial border and continuing posteriorly to the border separating the eighth and ninth abdominal segments [A8 and A9] [Wakimoto and Kaufman 1981]. In addition to its effect on segment boundaries, ftz has been reported to be necessary for the proper amount of some downstream selector expression, specifically that from the Scr, Antp, and Ubx loci. For example, in ftz mutants fewer cells express the Scr protein, and the transcript levels of Scr, Antp, and Ubx never attain their early...
peaks of abundance in parasegments 2, 4, and 6 [PS2, PS4, PS6], respectively [Ingham and Martinez-Arias 1986; Riley et al. 1987; Martinez-Arias and White 1988].

The precise role of the plethora of segmentation genes in the initiation of homeotic gene expression is currently unclear. Given the lack of data, current models are necessarily vague about the direct regulatory contributions from hierarchical versus combinatorial interactions [Gergen et al. 1986; Ingham and Martinez-Arias 1986; Scott and O'Farrell 1986]. In a strict hierarchical model the maternal-effect genes activate the gap genes which in turn activate the pair-rule genes; in such a simple hierarchical model the end result of this serial cascade is the activation of a single product that activates or represses a homeotic gene. Alternatively, in an extreme combinatorial model the various gap and pair-rule products persist together in the same cells and a combination of factors is required to directly activate or repress a given downstream homeotic gene. Obviously, combinatorial and hierarchical regulatory interactions are not mutually exclusive, and the actual regulatory network will almost certainly involve both. Currently it is known that hierarchy plays an important role as evidenced by the cross-regulation among both pair-rule and gap genes as well as the alterations of pair-rule patterns in gap mutants [Carroll and Scott 1986; Harding et al. 1986; Howard and Ingham 1986; Jackie et al. 1986; DiNardo and O'Farrell 1987; Frasch and Levine 1987]. There is as yet no specific combinatorial code defined that is sufficient to direct the spatial activation of any gene in the early developmental hierarchy.

\textit{Dfd}, a homeotic selector gene of the Antennapedia complex [ANT-C], specifies the identity of many of the head structures which derive from the mandibular and maxillary segments [Merrill et al. 1987; Regulski et al. 1987]. One major transcript class is encoded by this locus, and this transcript accumulates in an circumferential, anterior stripe just prior to the cellularization of the blastoderm embryo, at about 2.75 hr after egg laying [AEL] [Chadwick and McGinnis 1987; Martinez-Arias et al. 1987]. In addition, during larval stages \textit{Dfd} is expressed in a specific region of the eye-antennal imaginal disc, and is required in this region of the disc for proper adult head development [Merrill et al. 1987; R. Chadwick, pers. comm.].

The early and highly restricted nature of its expression pattern make \textit{Dfd} an advantageous gene for studying the regulatory effects of gap and segmentation genes on selector gene expression. We have developed antiserum directed against the \textit{Dfd} protein and used it to stain whole-mount embryos from both wild-type and mutant \textit{Drosophila} embryos. Analysis of a variety of mutant embryos indicates that the \textit{Dfd} pattern is dramatically altered in almost all the mutants of the pair-rule class, but is only mildly affected or unchanged in mutants of the zygotic gap and homeotic selector classes that we

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Antibodies against full-length \textit{Dfd} protein. (a) Plasmid p\textit{ARDfd} used for the production of antibodies to \textit{Dfd}. A 1.8-kb \textit{SacI/EcoRV} fragment from the \textit{Dfd} cDNA plasmid p\textit{CDfd41} [Regulski et al. 1987] was cloned into the \textit{Ndel} site of the parental T7 vector pAR3040 which was cut with \textit{BamHI}, filled in, and then cut with \textit{Ndel}. In order to get the full-length \textit{Dfd} protein cloned into pAR3040, an 8-base oligonucleotide [insert above] was cloned between the \textit{Ndel} site of pAR3040 and the \textit{SacI} site of \textit{Dfd}. The location of the T7 \textit{\beta}10 promoter and T6 terminator sequences are indicated by black boxes, the \textit{Dfd} open reading frame [ORF] by a cross-hatched box. The prokaryotic Shine-Dalgarno [\textit{Sh-D}] sequence is indicated [Shine and Dalgarno 1974; Steitz and Jakes 1975]. b) SDS--polyacrylamide gel and Western transfer of extracts of cells containing \textit{Dfd} expression plasmids. (Lane 1) Total extract from IPTG-induced cells containing pAR3040. (Lane 2) Total extract from cells containing p\textit{ARDfd} before induction with IPTG. (Lane 3) Total extract from cells containing p\textit{ARDfd} after induction with IPTG. (Lanes 4–6) Replicate Western blot transfers of lanes 1–3, respectively, after staining with 1:1000 dilution of whole serum from a rabbit immunized with the T7-induced, full-length \textit{Dfd} protein. Size markers (M) kD are indicated at the left.}
\end{figure}
have analyzed. In addition to the regulatory effects of the pair-rule genes, our results suggest that the proper expression of Dfd is dependent on the presence of at least two other factors that are differentially distributed along both the anterior–posterior and dorsal–ventral axes.

Results

Dfd protein expression and production of antibodies

The Dfd gene lies in the ANT-C between Scr and bicoid (bcd) [Merrill et al. 1987]. Previous work [Regulski et al. 1985, 1987; Chadwick and McGinnis 1987] has shown that the sole major transcript from the Dfd locus contains an open reading frame that encodes a postulated 586 amino acid protein. Some of the distinctive features of this protein include a homeodomain similar in sequence to that of other homeotic selectors, as well as repetitive monotonic amino acid tracts like polyglutamine and polyasparagine. To obtain large amounts of Dfd protein we used the T7 expression system [Studier and Moffatt 1986]. In the construction of the expression plasmid, pARD/d [Fig. 1a], a 1.8-kb fragment from the cDNA plasmid pcDfd41 containing the entire open reading frame of Dfd was cloned into the T7 expression vector pAR3040. Upon induction amounts in the range of 5–10 mg/L of full-length Dfd protein are obtained. On SDS–polyacrylamide gels the Dfd protein migrates with an apparent molecular weight of 90–95-kD. [Fig. 1b], much higher than the expected molecular weight of 63.5 kD based upon conceptual translation.

For antibody production, the Dfd protein was partially purified as described in Materials and methods and then used to immunize rabbits. After a single boost, serum was successfully used to stain whole-mount embryos. To reduce background staining, the serum was immunobloted against 0–2 hr Drosophila embryos. A Western blot using the purified serum [Fig. 1b] shows that the antiserum recognizes only the Dfd protein and its degradation products and not Escherichia coli proteins.

Dfd protein localization in wild-type embryos

The Dfd protein distribution was determined by staining whole-mount embryos with secondary antibodies linked to horseradish peroxidase [HRP]. In order to show that the signals visualized on whole-mount embryos are due to Dfd, we stained Dfd null mutant embryos Dfd^{exv}/DF(3R)Scr [Hazeldrig and Kaufman 1983; Regulski et al. 1987], and obtained no detectable signals [data not shown].

The Dfd protein is first detectable at the cellular blastoderm stage, approximately 3 hr AEL [Fig. 2a and b]. At this stage Dfd is expressed at low levels in a stripe of about six cells that encircle the embryo. The protein in this initial stripe of cells is not solely localized in the nucleus, as it is at later stages. Early in gastrulation the cells that express Dfd invaginate to form the cephalic furrow. As germ band extension commences, cells within the cephalic furrow begin to proliferate [Campos-Ortega and Hartenstein 1985], increasing the depth of the furrow and the total number of Dfd-expressing cells. Most of these cells reemerge on the exterior surface of the embryo as the cephalic furrow retracts. After the emergence of the ventralmost cells from the cephalic furrow, Dfd expression spreads along the ventral midline while remaining more restricted dorsally [Fig. 2c]. At this stage it is clear that the Dfd protein, like other homeodomain proteins, is localized in the nucleus.

Before the germ band is fully extended along the dorsal surface, prior to the first signs of metamerism, a differential posterior border of Dfd expression develops in lateral and ventral positions [Fig. 2d]. Laterally the posterior boundary of Dfd expression is two or three cells farther posterior than the boundary is ventrally [Fig. 2e]. This difference appears to arise from new expression of Dfd in the cells that comprise the lateral offset, although migration of previously expressing cells has not been ruled out. At this stage, [about 4.5 hr AEL] a region 12 to 14 cell diameters in length expresses Dfd along the ventral midline, including cells of parasegments 0 and 1 [PS0 and PS1] as well as some cells anterior to parasegment 0. Laterally there are fewer Dfd-expressing cells, five to seven rows of cells posterior to the disappearing cephalic furrow, and one to three rows of cells anterior to the furrow. The morphological boundaries that arise immediately thereafter indicate that the lateral expression outlines the posterior boundary of the future maxillary segment, while the ventral posterior boundary corresponds to the posterior boundary of parasegment 1 [Fig. 2d]. The parasegmental position of the posterior boundary in these ventral cells has been confirmed by double labeling embryos from a transformant strain containing β-galactosidase under the control of the ftz promoter. At the cellular blastoderm stage the anterior boundary of the first ftz stripe and the posterior boundary of Dfd directly border one another at all dorsal–ventral positions, but do not overlap. In older embryos [5 hr AEL], the posterior boundary of Dfd expression in ventral cells abuts the anterior limit of ftz expression, establishing that this boundary is the PS1–PS2 boundary [data not shown].

When the germ band is fully extended, the first signs of metamerism are visible as the parasegmental grooves form along the ventral midline [Martinez-Arias and Lawrence 1985] and the tracheal pits invaginate laterally throughout the thoracic and abdominal segments. Overt signs of segmentation occur first in the head, with the appearance of the gnathal segment boundaries. The Dfd protein at this stage [Fig. 2f] is largely confined to the maxillary and mandibular segments laterally and parasegments 0 and 1 ventrally. In addition there is ventral expression anterior to the mandibular segment just posterior to the stomodeal opening, in the hypopharyngeal lobe. The hypopharyngeal labeling is transient, during germ band retraction these cells cease accumulating detectable Dfd protein. A reduction in the number of epidermal cells expressing Dfd is also seen in both the man-
dibular and maxillary segments. Only cells in the posterior half of the mandibular segment continue to express Dfd as the germ band retracts. In the maxillary segment the cells in anterior and lateral positions stop expressing detectable levels of Dfd. The cells at the posterior border of the maxillary segment continue to express Dfd and appear to accumulate relatively high levels as judged by staining intensity (Fig. 2g and 2h). Also at this stage, Dfd expression is visible on the dorsal surface in one or two rows of cells in the anterior portion of the dorsal ridge (Fig. 2h) [Jurgens et al. 1986].

Negative regulation of Dfd

Dfd is a good marker for the regulative effect of genes.
expressed earlier in development for two key reasons. First, the Dfd protein is detected considerably earlier than the proteins of the other homeotic selector genes. The Ser, Antp, and Ubx proteins are not visible until the extended germ band stage (White and Wilcox 1984, 1985; Beachy et al. 1985; Carroll et al. 1986; Wirz et al. 1986; White and Lehmann 1986; Mahaffey and Kaufman 1987; Riley et al. 1987), between 4 and 4.5 hr AEL, while Dfd can be detected at the cellular blastoderm stage, between 2.75 and 3 hr AEL. Second, Dfd is expressed in a contiguous block of cells, unlike Antp and Ubx which are found expressed periodically in groups of cells of many segments. With expression confined to a single block of cells, changes in pattern are easier to detect.

We detect normal Dfd expression patterns in three of the four zygotic gap mutants that we tested [hb], knirps [kn], and giant [gt]. In Kt [Krüppel] mutant embryos, we observe a slight increase in the number of Dfd-expressing cells in both ventral and lateral positions, but this increased expression affects the appearance of neither the anterior nor posterior boundaries of the Dfd pattern (data not shown). In addition, a variety of homeotic selector mutations tested [Ser’; Ser’ & Antp’; Ser’ & Antp’ & bithorax complex’ (BX-C) (Struhl 1983)] exhibit normal Dfd expression patterns (data not shown).

In sharp contrast, mutations in eight pair-rule genes yield unique and obvious changes in the wild-type Dfd pattern; the ninth, sloppy-paired (slp), exhibits little or no change. In mutants for three of the pair-rule loci, ftz, odd-skipped (odd), and hairy [h], there are more Dfd-expressing cells when compared to wild-type. These three genes, whose effects are among those described in detail below, appear to formally act as negative regulators of Dfd expression.

fushi tarazu (ftz) Strong ftz mutants exhibit the classic pair-rule phenotype; alternate segment boundaries are missing in ftz mutants. The first segment boundary that is missing in ftz' is the boundary between the maxillary and labial segments (Wakimoto et al. 1984), and the anterior boundary of ftz expression coincides with the parasegment 1—parasegment 2 boundary, midway through the maxillary segment (Carroll and Scott 1985). For a summary of all pair-rule expression/mutant phenotype patterns, see Fig. 3. This parasegmental boundary, which in wild-type is the ventral posterior limit of Dfd expression, is the site of ectopic expression of Dfd in ftz mutants. Figure 4b shows a ventral view of an ftz’ embryo. At this stage the parasegmental grooves are just barely visible and Dfd is expressed in the first double parasegment that results from the fusion of parasegments 1 and 2. Normally at this stage the posterior border of Dfd expression is about one-half segment further posterior in lateral positions than in the ventralmost cells [Fig. 4a]. In ftz' the converse is true, more cells express Dfd along the ventral midline than in wild-type. In some embryos, the ectopic Dfd-expressing cells spread ventrally almost to the parasegmental groove separating the fused, double-width parasegments resulting from the fusion of parasegments 1 and 2, and parasegments 3 and 4 [Fig. 4b]. In most ftz mutant embryos fewer cells express Dfd in posterior—lateral positions than in wild-type; this is likely due to the lack of the expression of en grailed (en) at this position in ftz mutants (Howard and Ingham 1986; DiNardo and O’Farrell 1987), as en appears to function as a positive regulator of Dfd (see following). In addition, the smooth boundary of expression that is present in wild-type at the maxillary—labial border is replaced by an uneven boundary that reflects both the patchy expression and uneven levels of Dfd expression as judged by staining intensity (Fig. 4b,c). In general the Dfd expression pattern in ftz mutants is more variable laterally than ventrally, in some embryos only two or three rows of cells posterior to the parasegment 0—parasegment 1 border express Dfd while in other embryos there are five or six rows that express in lateral positions. Unlike the dramatic change in Dfd expression seen in ftz mutants at germ band extension, the changes in the Dfd pattern at the cellular blastoderm...
Figure 3. Summary of the expression patterns of Dfd and pair-rule genes. The top half of the figure is a schematic of the gnathal segments showing the limits of Dfd expression (shaded) in wild-type embryos at germ band extension (5 hr AEL). At this stage, the major domains of expression are in the mandibular and maxillary segments laterally and in parasegments 0 and 1 ventrally. The bottom half of the figure is based on both the regions of expression and the mutant phenotypes of the pair-rule genes. Several of the pair-rule genes have been cloned, including prd, eve, h, en, and ftz; for these genes the specified regions of expression are based on molecular data. For run, opa, odd, and sip the regions of expression are based on the regions of the embryo that are phenotypically disrupted in mutants.

stage are visualized as a small increase in the width of the initial Dfd expression stripe from the normal five or six cells to seven cells in ftz mutants (cf., Fig. 5d,f).

odd-skipped (odd) The terminal phenotype of odd mutants is not the typical pair-rule phenotype as the segmental deletions in odd mutants span less than a complete segment [Nüsslein-Volhard et al. 1985; Gergen et al. 1986]. The odd- phenotype results from the deletion of the naked cuticle in the anterior compartment and the majority of the denticle band of each odd numbered abdominal segment along with a mirror image duplication of the remaining anteriormost rows of the denticle band. The duplication is associated with an expansion of the expression domain of the en protein [DiNardo and O’Farrell 1987]. By extrapolating into the head, the frame of segmental deletions found in the thorax, and abdomen, it seems likely that in odd mutants the anterior portion of the labial lobe is the most anterior segmental anlagen affected (Fig. 3).

In contrast to ftz mutants, it is the lateral posterior border of the Dfd expression pattern that is strongly altered in odd-. In wild-type embryos between five and seven rows of cells posterior to the cephalic furrow express Dfd at five hours of development [Figs. 6a, 2c]. In odd-, eight to ten rows of cells express Dfd in this position. The ectopic expression in odd- is most easily visu-
hairy

The segment boundaries that are present in wild-type, the lateral expression is offset posteriorly by well characterized. In weak alleles the cuticle within a mental and segmental boundaries of Dfd expression. In sip is not sloppy-paired {sip} The mutant phenotype of between four and seven cells. The cells that misexpress be due to the strength of the allele, which may not be fully penetrant (data not shown). The variability could be due to the strength of the sip allele, which may not be a null.

hairy (h) The segment boundaries that are present in

Table 1. Dfd protein expression in homeotic and segmentation mutants

Gene class locus/allele	Larval phenotypes	Effect on Dfd expression
Zygotlic gap		
hunchback hb^14Fl+1 hb^*L06	labial and thoracic segments missing, defects A7 and A8	no effect
giant gt^VAR2	labial segment and anterior head structures missing	no effect
Krüppel Kr^2	thoracic and A1–A5 segments missing, A6 duplicated	slight increase in the number of expressing cells
knirps kn^5F107	abdominal segments missing	no effect
Pair-rule		
hairy h^A1	even-numbered denticle bands missing	lateral patch of expression at labial-T1 boundary
runt run^v1	odd-numbered denticle bands missing, defects A4 and A5	reduced expression laterally at posterior boundary
even-skipped eve^13	unsegmented, lawn of denticles	central region missing both laterally and ventrally
eve^3T17.eve^D19	even-numbered denticle bands missing	like eve^13 ventrally, lateral expression only slightly reduced
fushi tarazu ftz^2HE2 ftz^2003	odd-numbered denticle bands missing	increased expression in parasegment 2 ventrally, slightly reduced expression laterally at posterior boundary
paired prd^2B82	even-numbered denticle bands missing	reduced expression at anterior boundary
odd-paired opq^5K97	odd-numbered denticle bands missing	reduced expression at posterior boundary
odd-skipped odd^ID36	odd-numbered denticle bands missing	increased expression at posterior boundary
sloppy-paired slp^DI650	even-numbered denticle bands missing	no consistent effects
engrailed en^II86	defects in posterior compartments of each segment	reduced expression laterally at posterior boundary
double and triple mutants	severe segmentation defects	additive: prd description plus odd description
prd^8.12 odd^ID36	severe segmentation defects	additive
prd^8.12 odd^ID36 eve^D19	severe segmentation defects	additive
prd^2B82 opq^4697	severe segmentation defects	additive
Homeotic selector		
Deformed Dfd^EX1/Dfd^3R(Scr)	larval atrium → pharynx	no detectable expression
Sex combs reduced Scrc^F1	T1 → T2, labial → maxillary	no effect
Scrc^E9/17 Scrc^A58 Scrc^2A72	T3, T2 → T1, labial → maxillary	no effect
Scrc^Cl Antp^M-RC3 Scrc^Cl Antp^M-RC3 Dfd	T2–A8 → T1, labial → maxillary	no effect

alized by looking at the offset between the parasegmental and segmental boundaries of Dfd expression. In wild-type, the lateral expression is offset posteriorly by two to three cells while in odd^− [Fig. 6b] the offset is between four and seven cells. The cells that misexpress Dfd in odd mutants would normally be included in the labial lobe.

sloppy-paired {slp} The mutant phenotype of slp is not well characterized. In weak alleles the cuticle within a single segment is missing in alternating segments including T2 and the odd-numbered abdominal segments [Fig. 3, Nüsslein-Volhard et al. 1982, 1984]. A few of the embryos mutant for slp appear to have a slightly larger Dfd expression domain in both lateral and ventral positions, but this effect is variable and subtle and is not fully penetrant [data not shown]. The variability could be due to the strength of the slp allele, which may not be a null.

hairy (h) The segment boundaries that are present in ftz mutants are missing in h mutants [Fig. 3; Nüsslein-Volhard and Wieschaus 1980]. Thus, the first segment boundary missing in h mutants is the mandibular–maxillary boundary [Ingham et al. 1985]. In addition, many of the cells of the mandibular and some cells of the anterior maxillary develop abnormally in h mutants.

In ftz and odd mutant embryos the misexpression of Dfd is in cells adjacent to the major domain of Dfd expression in the mandibular and maxillary segments. In contrast, the sole defect in h mutants involves misexpression in cells that are separate from the major domain of Dfd expression. In h^− the Dfd expression pattern is normal in the mandibular and maxillary segments but a new row of cells expresses Dfd in lateral cells approximately at the position of the labial–T1 segment boundary [Fig. 6c]. Thus, there are about five or six rows of cells that do not express Dfd between the maxillary-labial border and the ectopically expressing row of cells found in h mutants. Most typically the misexpression involves a single row of between four and six cells that
Figure 5. Early expression of Dfd in eve and ftz mutants. In all panels the anterior end of the embryo is to the left. Dfd staining of cellular blastoderm stage embryos from {a,d} wild-type, {b,e} eve^m2, and {c,f} ftz^m0 showing the whole embryo {a-c} and close-ups {d-f}. In wild-type embryos {a,d} Dfd protein initially appears as a band of from 5 to 6 cells. In eve mutants {b,e}, this initial band of expression is narrower, containing about 4 cells while in ftz mutants {c,f} the initial band is broader, about 7 cells wide.

extends ventrally from the lateral midline. Sometimes, instead of a row, there is a clump of five or six expressing cells near the lateral midline. In rare cases the misexpression is found more ventrally, in the middle of the labial segment, usually involving single cells rather than clusters.

Pair-rule genes that positively regulate Dfd

In mutants for the five pair-rule loci en, odd-paired (opa), runt (run), paired (prd), and even-skipped (eve), there are fewer Dfd-expressing cells. Of these five genes that formally appear to act as positive regulators, opa, run, and en are necessary in the posterior region of the Dfd-expression pattern, eve is necessary in the central region, and prd function is necessary for correct expression in the anterior region.

odd-paired (opa) Like odd and slp, the functional domains of opa in the head region are not well characterized. Mutants in opa delete the same segment boundaries as ftz, namely thorax 1—thorax 2, thorax 3—abdomen 1 (T1—T2, T3—A1), etc. [Nüsslein-Volhard et al. 1982; Jurgens et al. 1984]. If the frame of opa deletions is the same in the head as in the thorax and abdomen, then the maxillary—labial segment boundary should be missing with the deleted cuticle deriving mostly from the maxillary segment rather than deleting roughly equal numbers of cells from the maxillary and labial segments as in ftz (Fig. 3).

Of the three genes that regulate Dfd expression at the posterior boundary, opa mutants exhibit the most drastic reduction in the number of Dfd-expressing cells. The extent of the reduction in Dfd expression both laterally and ventrally is shown in Figure 7b. In wild-type embryos between five and seven rows of cells in lateral positions express Dfd posterior to the cephalic furrow. In opa mutants, only two or three rows of cells stain with Dfd antiserum. Ventrally the reduction is not quite as severe, typically involving a loss of Dfd expression in about three rows of cells. In rare embryos a few cells misexpress Dfd in lateral, more posterior positions (Fig. 7b, note arrows), at locations similar to the misexpression in h. This misexpression is sporadic and rarely involves more than four misexpressing cells.

runt (run) The segment boundaries missing in run are the same as those missing in ftz and opa [see Fig. 3; Nüsslein-Volhard and Wieschaus 1980; Gergen and Wieschaus 1986a]. The fact that run appears to be involved in the development of fewer maxillary cells than
ventrolateral view of an odd embryo at germ band extension. (c) Ventrolateral view of a ii embryo at germ left, [a] Ventro­

Dfd expression in the lateral cells that

Note the increase in

and

Figure 6. Expression of Dfd in odd and h mutants. In all panels the anterior end of the embryo is to the left. (a) Ventro­
lateral view of a wild-type embryo at germ band extension. (b) Ventrolateral view of an odd embryo at germ band extension.

Note the increase in Dfd expression in the lateral cells that comprise the posterior boundary, in the precursors of the labial segment. Dfd expression in ventral aspects of the embryo appears normal. (c) Ventrolateral view of a h embryo at germ band extension. Note the stripe of ectopic Dfd-expressing cells (arrow) in posterior and lateral positions at the approximate location of the labial-T1 segment boundary.

Opa may explain its less severe effect on the Dfd expression pattern. In run mutants [Fig. 7c] the lateral expression of Dfd is reduced about as much as in Opa but the reduction along the ventral aspect is less severe. Approximately two or three rows of cells stain posterior to the cephalic furrow in lateral positions, a reduction of between three and five rows of cells. Along the ventral midline Dfd expression is reduced by at most one row of cells.

Engrailed (en) Because the segmental defects in en can

occur in all segments, en is often classified as a segment polarity gene rather than as a pair-rule gene. It has been found that en is necessary for the proper development of the posterior compartment of each segment [Morata and Lawrence 1975; Kornberg 1981]. In the absence of en, the signals necessary for the correct formation of segment boundaries are not present, resulting in a fusion of segments. The most anterior stripe of en expression during early stages of germ band extension is in the posterior compartment of the mandibular segment [DiNardo et al. 1985; Kornberg et al. 1985]. The second stripe of en expression is in the maxillary segment; in wild-type embryos this stripe is the earliest en stripe to show high level accumulation of the en protein [Fig. 3].

Mutants in en lack Dfd expression in the two lateral, posterior rows of cells of the maxillary segment, while expression of Dfd in the mandibular segment is normal [Fig. 7d]. In the ventralmost cells of the maxillary segment the posterior boundary of Dfd expression appears normal. The rows of cells that are not expressing in en are those which make up the lateral offset in wild-type embryos. In later stage wild-type embryos [7 hr AEL] this posterior maxillary region shows the most intense staining for Dfd. In later stage en embryos, the maxillary–labial segment boundary does not form, and only cells near the maxillary–mandibular border express Dfd [data not shown].

Even-skipped (eve) In wild-type embryos the first stripe of eve-expressing cells overlaps the primordia for the mandibular–maxillary segment boundary, and roughly equal numbers of cells express eve in the primordia for the mandibular and maxillary segments [Fig. 3; Mac­Donald et al. 1986; Frasch et al. 1987]. Embryos containing amorphic eve alleles never exhibit any signs of segmentation; the terminal phenotype is an unseg­mented lawn of denticles.

In amorphic eve embryos [e.g., eve^{ts}] the reduction in the number of Dfd-expressing cells is visible at the late cellular blastoderm stage, as the initial Dfd expression stripe is four or five cells across instead of the five or six cell width that is seen in wild-type embryos [cf., Fig. 5d,e]. At the germ band extension stage, Dfd expression is sharply reduced both laterally and along the ventral midline [Fig. 8c]. Laterally only two to three rows of cells express Dfd whereas normally there are about eight rows of expressing cells at the extended germ band stage. On the ventral aspect, a domain six to eight cells wide expresses Dfd, while in wild-type embryos there are 12–14 cells that stain in this position. The Dfd-expressing cells are not always contiguous. In some mu­tant animals the clusters of expressing cells are sepa­rated by a gap of nonexpressing cells. Because the shape of neither the anterior nor the posterior border of Dfd expression appears normal, it is difficult to know with certainty from which segmental primordia these expressing cells derive. Based on extrapolation from the eve-expression pattern [Frasch et al. 1987], and the position of the cephalic furrow relative to the few cells stained in eve mutants, the Dfd-expressing cells likely derive in part from the most anterior regions of the Dfd-
Figure 7. Expression of Dfd in opa, run, and en mutants. In all panels the anterior end of the embryo is to the left and the arrowhead marks the position of the cephalic furrow. (a) Ventrolateral view of a wild-type embryo at early germ band extension (4.5 hr AEL). (b) Ventrolateral view of an opa− embryo at germ band extension. Note the reduction in Dfd expression in both lateral and ventral cells at the posterior boundary. In this embryo there are two or three isolated cells that express Dfd in the labial segment (arrows). (c) Ventrolateral view of a run− embryo. Dfd expression is reduced most drastically in the lateral cells that comprise the posterior boundary in wild-type embryos. (d) Ventrolateral view of an en− embryo. The reduction in Dfd expression is confined to the two rows of cells that extend posteriorly in lateral positions during early gastrulation in wild-type embryos.

expression pattern, with a few rows derived from the most posterior region (cells of the maxillary segment). The ventral–posterior extension of expression in eve− appears similar to the pattern of misexpression observed in ftz− embryos, and may be due to a lack of ftz protein in this position in eve− embryos [Carroll and Scott 1986].

Homzygous embryos for weaker alleles of eve (e.g., eve^67; eve^10) exhibit the classic pair–rule phenotype, with alternate segment boundaries missing beginning with the maxillary–mandibular boundary. The Dfd expression in hypomorphic eve mutants is normal in lateral positions, but ventrally there are fewer expressing cells than in amorphic eve mutants. As with many of the amorphic eve embryos, there is a gap of nonexpressing cells between regions of expression (Fig. 8d). Ventrally, just posterior to the stomodeum, there are several expressing cells that are separated from the main cluster of Dfd expression by a gap of five or six cells. The clump of anterior cells corresponds in position to the progenitors of the hypopharyngeal or anterior mandibular segment while the posterior band of expression is in the position of the maxillary segment. In eve hypomorphs, the gap between the clusters of expressing cells is more pronounced and occurs in a higher percentage of the mutant animals, when compared to eve amorphs. The gap between regions of expression likely corresponds to the cells of the posterior mandibular and anterior maxillary segments, the cells that fail to develop normally in hypomorphic eve embryos.

paired (prd) The segment boundaries missing in prd are the same as those missing in h and opposite those missing in ftz, run, and opa [see Fig. 3; Nüsslein-Volhard and Wieschaus 1980]. At the syncytial blastoderm stage (13th nuclear division), prd is expressed as a broad band from 60 to 75% egg length [Kilchherr et al. 1986]. At the 14th nuclear division this broad anterior stripe divides in two, with the anteriormost stripe slightly narrower than the six stripes more posterior. This most anterior prd stripe spans the mandibular–maxillary segment boundary, with the main region of expression in the precursor cells of the mandibular segment. When cellularization of the blastoderm is complete, cells in the middle of each of the prd-expression stripes, except the first, stop expressing prd. The first prd-expression stripe then narrows so that only the posteriormost cells of the stripe continue to exhibit prd transcript accumulation [Kilchherr et al. 1986].

In prd mutants, the pattern of Dfd expression appears normal in the maxillary segment and at the posterior boundary. In anterior cells, the Dfd protein is not expressed in a substantial part of the normal expression domain. Most of the cells of the mandibular and hypopharyngeal segments fail to express Dfd (Fig. 8b). In prd mutants, more cells express Dfd at the anterior border in
ventral cells than in lateral cells; this is visualized as a cluster of cells that project slightly farther anteriorly along the ventral midline.

Additive and independent effects via double and triple mutant combinations

To test for the independence of some of the pair-rule regulatory effects on *Dfd* expression, we stained embryos carrying double- and triple-mutant combinations. In an **odd** prd double mutant, Fig. 9a, the *Dfd*-expression pattern appears as the superimposition of the two single mutant patterns. That is, staining of anterior cells is missing as in prd$, and the lateral posterior boundary of staining is extended as in odd$. If a hypomorphic eve allele is added to the odd prd double mutant to make a triple mutant, there are even fewer D/d-expressing cells. In the triple mutant odd prd eve, Fig. 9b, one or two additional rows of cells along the ventral midline no longer stain when compared to the pattern seen in the odd prd double mutant. Likewise in prd opa the effects of the two mutants are additive. Single mutants in both prd and opa reduce the number of D/d-expressing cells, prd eliminating the anterior-most cells and opa eliminating the posterior-most cells of the wild-type pattern. Most, but not all of the Dfd-expressing cells are eliminated by prd opa double mutants. At germ band extension [5 hr AEL] in ventral positions there are only four or five patchy rows of Dfd-expressing cells [Fig. 9c]. There are even fewer expressing cells in prd opa mutants in lateral positions, with only one or two expressing rows. It is likely that the few cells that are expressing derive from the cells in the anterior-most positions of the maxillary segment where neither prd nor opa are expressed.

Discussion

We find that the expression of *Dfd* is negatively controlled primarily by the action of two pair-rule genes, odd and ftz, and positively controlled by the hierarchical and combinatorial action of six pair-rule genes, en, opa, eve, prd, run, and ftz. Our results also point to the probable existence of two other factors necessary to explain the activation of *Dfd* in the maxillary-mandibular region. One postulated positive factor [from either hb or bcd, or possibly both] would be generally localized anterior to the labial-T1 region; this requirement could also be satisfied by a posterior-polar negative regulatory factor or factors. The other postulated factor would be expressed during gastrulation and differentially localized on the dorsal-ventral axis. Although many other factors may be necessary to control fine structure details in the *Dfd* pattern, we propose that many of the principal regulatory genes are those described above [shown schematically in Fig. 10].

Figure 8. Expression of *Dfd* in prd and eve mutants. In all panels the anterior end of the embryo is to the left. (a) Ventral view of a stained wild-type embryo, just after the formation of the gnathal segment boundaries [6 hr AEL]. (b) Ventral view of a prd mutant embryo. *Dfd* expression in cells that comprise the anterior portion of the wild-type expression pattern is missing. (c) Ventral view of an eveembryo [amorphic allele]. There is a drastic reduction in the number of *Dfd*-expressing cells in both ventral and lateral positions. (d) Ventral view of an embryo containing the hypomorphic allele eve$. Notice the gap between regions of expression at the anterior and posterior boundaries along the ventral midline.
shifts to respect simultaneously both segmental and parasegmental boundaries at the extended germ band stage. Other homeotic expression patterns are confined by both segmental and parasegmental boundaries, but not in such an early and obvious fashion as Dfd. Scr, for example, is first expressed in parasegment 2, later Scr is expressed at high levels in the labial lobe and also in a few cells of the maxillary and T1 segments. The boundaries of Scr do show a quantitative but not a qualitative distinction between segmental [or compartmental] and parasegmental limits. The simultaneous appearance of Dfd within both parasegmental and segmental boundaries suggests that the morphological determination of the head may 'speeded up' when compared with the development of the thorax and abdomen. Supporting this, in the posterior body regions [thorax and abdomen] the parasegmental grooves form at about 5 hr AEL and segments are visible between 6.5 and 7 hr AEL, while in the head the gnathal lobes form at the same time as do the parasegmental grooves. Also consistent with this idea is the graded expression of the genes en and eve along the anterior-posterior axis, as the more anterior stripes appear before the expression stripes in more posterior body regions.

Hierarchical control of Dfd expression

The apparent dependence of Dfd on the pair-rule genes rather than the gap genes is consistent with a view of

Figure 9. Expression of Dfd in double- and triple-mutant combinations of pair-rule genes. In all panels the anterior end of the embryo is to the left. (a) Ventrolateral view of an embryo in the early stages of germ band retraction (8 hr AEL) containing the double-mutant combination prd^-odd-. The Dfd-expression pattern represents the additive nature of the two single mutant patterns; the lateral expression of Dfd is extended as in odd- [see Fig. 4b] and the ventral anterior cells fail to express as in prd- [see Fig. 6a]. (b) Ventral view of an embryo at the same stage as (a) with the genotype prd^-odd^-eve^D10 [for wild-type comparison see Fig. 2f]. The addition of the eve mutant to the prd^-odd^-double mutant results in the decrease in the expression of Dfd in the ventralmost cells of parasegment 1. (c) Ventrolateral view of a germ band extended prd^-opa^-embryo (5 hr AEL). This double-mutant combination eliminates most of the expression in cells at both the anterior and posterior boundaries of the normal Dfd-expression pattern.

Figure 10. Summary of the postulated elements involved in the initiation of Dfd expression. Both postulated positive and negative factors involved in the establishment of Dfd expression are indicated in schematic embryos. We postulate that the pair-rule gene ftz negatively regulates Dfd and defines the posterior boundary of Dfd expression. Combinations of the pair-rule genes prd, opa, and eve are necessary to activate the initial stripe of Dfd expression. In addition, we postulate the existence of an anterior activator (possibly hh or bcd) that acts in combination with the pair-rule genes and/or a posterior/polar repressor that prevents Dfd expression in other regions of the embryo.
developmental control of selectors that is largely hierarchical. In a simple hierarchical model, it is expected that developmental signals flow from the maternal effect genes to zygotic gap genes to pair-rule genes, and finally to homeotic genes. The apparent requirement for more than one pair-rule product in a certain position could be due to a successive, interdependent hierarchy of genes that must be expressed in a certain cell, eventually focusing on a single factor that throws the on or off switch. Alternatively, these alterations could be due to a network of combinatorial interactions, in which the amounts of pair-rule products are sampled on a cell-by-cell basis by Dfd regulatory sequences or factors, and in those cells which have the correct combination of factors, Dfd would be turned on. Of course, these two conceptual regulatory models are not mutually exclusive and we argue that the regulation of Dfd is a mixture of the above with evidence favoring a model in which many of the pair-rule genes act in a successive, interdependent fashion to control the expression of Dfd.

The ability to distinguish combinatorial versus hierarchical effects of pair-rule mutation on selector expression depends to a large degree on the amount of cross-regulation between the different genes of this class. Because not all pair-rule expression patterns have been analyzed, either in wild-type or other pair-rule mutant backgrounds, a complete picture cannot at present be drawn. However, some hierarchical relationships exist, as has been observed for the nonreciprocal alterations in the normal ftz and eve expression patterns in h and run mutants (Carroll and Scott 1986; Howard and Ingham 1986; Frasch and Levine 1987).

Gap genes. Our analysis of Dfd expression in the gap mutants hb, gt, and kn indicates that the zygotic products of these genes are dispensable for a normal expression pattern. The subtle changes in the Dfd pattern in Kr mutants are likely indirect and due, at least in part, to subtle changes in ftz expression in Kr mutants (Carroll and Scott 1986). The lack of any changes in kn mutants is not surprising, as this mutant is missing a block of abdominal segments. However, hb and gt mutants delete portions of the head. In strong hb mutants the labial segment, all three thoracic segments, and posterior abdominal segments are missing. gt mutants are missing structures derived from the labial lobe as well as parts of the cephalopharyngeal skeleton (Jergen and Wieschaus 1986b). The anlagen of these structures are fate mapped to locations more anterior and dorsal than the mandibular segment. Because both gt and hb mutants fail to eliminate the structures that Dfd specifies, it is again consistent that the Dfd-expression pattern is not affected in these mutants. At this point no zygotic gap gene has been identified whose mutant phenotype involves a deletion of the maxillary and mandibular segments. Recently it has been reported (Lehmann and Nüsslein-Volhard 1987) that hb has a maternal as well as a zygotic function. Embryos that lack both maternal and zygotic contributions of the hb gene exhibit extreme phenotypes that are missing all gnathal segments, including the maxillary structures specified by Dfd. Although we have not yet not tested the effect of this maternal contribution, it is likely that the presence of either the maternal or zygotic hb product is sufficient for normal spatial expression of Dfd, and the loss of both results in a lack of Dfd expression.

Homeotic selector genes. Mutations in other homeotic selector genes of the ANT-C and BX-C, which are expressed in approximately the same time frame as Dfd, and potentially act as regulators of the maintenance of proper Dfd spatial expression, had no effect on the maintenance of the Dfd pattern. Cross-regulatory interactions among the homeotic selector genes of the thorax and abdomen have been shown to be required for the correct maintenance (as opposed to initiation) of selector gene expression boundaries. For example, the normal posterior boundary of abundant and persistent Antp expression is in T3, but in embryos lacking the genes of the BX-C, Antp is persistently expressed as far posterior as A8, strongly suggesting that the BX-C genes repress Antp expression in wild-type embryos (Struhl 1983; Hafner et al. 1984b; Harding et al. 1985). If Dfd were to fit this general rule then it would be predicted that in the absence of Scr or other posteriorly expressed selector genes Dfd expression would spread posteriorly. However, in Scr mutants (as well as Scr− Antp+ double mutants, and Scr− Antp+ BX-C− triple mutants), the Dfd pattern is normal. The maintenance of the posterior boundary of Dfd expression does not appear to be regulated by the homeotic genes of the thorax and abdomen, perhaps relying more on an auto-regulatory loop than on cross-regulation.

Pair-rule negative regulators. Two of the pair-rule genes, ftz and odd, appear to function in part to set the posterior limit of Dfd protein expression. Dfd expression expands posteriorly in both these mutants so this limitation appears to be controlled by negative regulation of Dfd in cells immediately adjacent to the normal Dfd expression domain. It seems that ftz is more important in setting this limit in ventral cells, while odd is more important in lateral cells. Along the dorsal-ventral axis the boundary separating these two regions of control coincides with the division separating the segmental and parasegmental boundaries of Dfd expression seen in wild-type embryos.

This proposed role for ftz as a negative regulator of Dfd is in sharp contrast to its effect on other homeotic genes, considering that ftz is necessary to activate the early high-level expression of Scr, Antp and Ubx in parasegments 2, 4, and 6, respectively (Duncan 1986; Ingham and Martinez-Arias 1986; Martinez-Arias and White 1988). In wild-type embryos the first ftz expression stripe is in the primordia of the cells of parasegment 2 (Martinez-Arias and Lawrence 1985; Lawrence et al. 1987). Along the ventral midline the posterior boundary of Dfd expression is the parasegment 1–parasegment 2 boundary. Thus, the normal protein expression domains of Dfd and ftz are mutually exclusive. In ftz mutants

GENES & DEVELOPMENT 647
Dfd is misexpressed in the ventral cells of what would normally be parasegment 2, although not throughout the entire parasegmental domain. Thus, by the criterion of Dfd expression, the cells that normally give rise to parasegment 2 have not all been transformed into parasegment 1. In fact the expression of the fused PS1–PS2 appears to be partitioned by expression of Dfd and Scr. Dfd expressed roughly in the anterior half of the fused parasegment and Scr in the posterior half (cf., Fig. 4b with Fig. 4f from Riley et al. 1987). These results conflict with the conceptual view of ftz function proposed by Ingham and Martinez-Arias (1986; see particularly Fig. 2) and Duncan (1986). In their view, the loss of ftz function results in an embryo consisting of a string of double-wide, odd-numbered parasegments (or prosegments, Duncan 1986). The expression patterns of Dfd and Scr in ftz mutants do not support this view. Instead, the positive regulatory effect of ftz on the selectors Antp and Ubx and the negative regulatory effect on Dfd is better explained by a cell autonomous effect of ftz throughout its stable striped expression pattern. In this view ftz and the other pair–rule genes affect selector expression only in the regions of overlap between the pair–rule gene and the downstream selector. Thus, the regulatory activities of ftz are not fundamentally different from the regulatory activities of the other pair–rule genes.

The effects of odd are confined to the lateral cells of the anterior labial segment where the odd product appears to prevent Dfd expression in wild-type embryos. Currently the molecular details of the expression pattern of odd are not known, but it is unlikely that odd is expressed only in lateral positions as odd mutants exhibit segmental deletions in ventral as well as lateral cells. The misexpression of Dfd in the anterior cells of the labial segment correlates with the misexpression of en in these same cells in odd mutants [DiNardo and O'Farrell 1987]. The absence of odd and the presence of en are not sufficient to turn on Dfd in the lateral cells of the anterior labial segment. In addition another factor that is differentially distributed on the dorsal–ventral axis of the embryo is required. Perhaps this dorsal–ventral regulatory factor acts in conjunction with en to turn on Dfd in these lateral cells in the absence of the odd product (see following on positive regulators).

Pair–rule positive regulators At the posterior boundary of Dfd expression (the posterior region of the maxillary segment) on the lateral aspect of the embryo, the pair–rule genes that are necessary for Dfd protein accumulation include eve, run, ftz, opa, and en. Considering the relatively late appearance of en protein in this region, and since mutations in eve, ftz, run, and opa (Harding et al. 1986; Howard and Ingham 1986; DiNardo and O'Farrell 1987; Martinez-Arias and White 1988) remove or abolish en expression in this region, it is likely that many of these regulatory effects are mediated through en. Therefore, in the context of Dfd activation, it is possible that the en gene product functions directly as a positive regulator in this region, with the other pair–rule genes serving only to activate its expression in the posterior compartment of the maxillary segment. It is equally possible that one or more of the previously expressed pair–rule regulatory gene products serves both to activate en as well as to act in combination with it to activate Dfd.

As mentioned earlier, in wild-type embryos these posterior maxillary cells begin expressing Dfd during the early stages of germ band extension (about 4 hr AEL). At this stage the en protein is expressed in these same cells [DiNardo et al. 1985]. The en protein is expressed later than the proteins of some other pair–rule genes. Although this is consistent with the lag in appearance of Dfd expression in the posterior–lateral maxillary cells, en is not sufficient for the expression of Dfd in these maxillary segment cells since it does not induce Dfd expression on the ventral aspect of the embryo. These observations suggest that an additional factor is necessary for the posterior–lateral expression of Dfd in the maxillary segment, and that this unknown factor is differentially active on the dorsal–ventral aspect of the embryo. This postulated factor would also serve to explain the apparent paradox of ftz acting as both a positive and negative regulator at this position. On the lateral aspect of the embryo, this factor would be epistatic to the negative regulatory effect of ftz, and would allow en to positively regulate. As mentioned earlier, this same factor likely acts in combination with en to misexpress Dfd in the lateral cells of the labial segment in odd mutants.

In the anterior and central regions of the maxillary segment (central and posterior regions of parasegment 1) the gene products of run, opa, and eve are required to activate Dfd expression. All affect both ventral and lateral expression of Dfd. Judging from the cells no longer expressing Dfd in run mutants, run is required only within the central region of the maxillary segment (the posterior edge of parasegment 1). In contrast opa is required in an overlapping region that extends a few cells more anteriorly, almost to the anterior boundary of the maxillary segment. It does not appear that eve is required in the central region of the maxillary segment, but is required even farther anteriorly than opa, in cells of the anterior maxillary segment and the posterior mandibular segment (see Fig. 3). In addition, prd is required to positively regulate Dfd protein accumulation in the mandibular region. Because the anterior boundary of Dfd expression is still farther anterior than the anterior limit of prd circumferential expression, it is likely that an as yet unidentified gene or genes activate Dfd in these anterior cells, and may act in combination with prd in the cells of the mandibular segment.

Other factors necessary for control of Dfd expression Although the pair–rule genes as a class have a dramatic effect on the Dfd expression pattern, pair–rule genes alone are not sufficient to explain the localization of Dfd in the maxillary and mandibular segments of the head. The genes with positive regulatory effects (en, run, opa, ftz, eve, and prd), are expressed in combination throughout the thorax and abdomen. Thus at least one
additional product is necessary to localize the Dfd regulatory effects of pair-rule genes to the head. This additional factor could consist of a head-specific activator localized anterior to the labial–T1 region which acts in concert with the previously described pair-rule genes. Alternatively, there may be a posteriorly expressed repressor or repressors, localized posteriorly and at the anterior pole, which prevent the positive pair-rule genes from acting in regions outside the head (see Fig. 10). There are at least two candidate gene products for a head specific positive regulator for Dfd. The first is the maternally expressed product of the bb gene, which is localized in a gradient initiating at the anterior pole (Tautz et al. 1987; Tautz 1988). The second possibility is represented by the products of the maternal effect gene, bcd, a gene whose activity and transcripts are concentrated in the head and anterior thoracic region (Frigorio et al. 1986; Frohnhofer and Nüsslein-Volhard 1986). Consistent with this latter possibility, Dfd is not expressed in bcd- embryos (unpubl.).

In addition to a factor (or factors) localized along the anterior–posterior axis, proper expression of Dfd likely requires a second factor differentially distributed along the dorsal–ventral axis. The effects of many of the pair-rule genes on the Dfd pattern are localized to groups of cells in either ventral or lateral aspects of the embryo. For example, the effects of odd, en, and run are confined to lateral cells of the Dfd pattern while the primary effect of ftz is in ventral cells. Because the pair-rule gene products are distributed in both lateral and ventral locations, a differentially localized dorsal–ventral factor likely interacts with the pair-rule genes to bring about further specification of cell identity.

We speculate that some of the products of these proposed regulatory genes may act directly to regulate Dfd transcription, as activators and repressors. Based on their known or suspected locations in the hierarchy of pair-rule genes, and their time of expression relative to Dfd, the most likely direct regulators are ftz (negative) and prd, opa, and en (positive). Three of these four genes, ftz, prd, and en (Laughon and Scott 1984; McGinnis et al. 1984; Fjose et al. 1985; Poole et al. 1985; Bopp et al. 1986), are known to be homeobox genes; the molecular genetics and sequence of opa are as yet uncharacterized. Coupled with the increasing evidence that the homeodomain in its various manifestations has sequence-specific DNA-binding activity (Desplan et al. 1985; Hall and Johnson et al. 1987; Hoey et al. 1988), these results suggest that a hierarchy of homeobox regulatory genes play a large role in subdividing and determining the developmental pathways followed by cells during the early stages of Drosophila embryogenesis.

Materials and methods

Expression and purification of full-length Dfd protein and production of antibodies

To overproduce the Dfd protein we used the T7 expression system. In the construction of pARDfd [Fig. 1a], a 1.8-kb Sacl–EcoRV fragment from the Dfd cDNA plasmid pCDfdA1 was cloned into the T7 expression vector pAR3040 cut with BamHI, filled in, and cut with Ndel. The Sacl site in Dfd lies between the second and third amino acids, in order to get the full-length Dfd protein cloned into pAR3040, an eight-base oligonucleotide was cloned between the Ndel site of pAR3040 and the Sacl site of Dfd. The resulting plasmid, pARDfd, was transformed into the strain BL21, a lysogen that contains a single copy of the T7 RNA polymerase gene under the control of the lac promoter (Studier and Moffat 1986). Upon induction with isopropyl β-D-thio-galactopyranoside (IPTG) (Sigma), amounts in the range of 5–10 mg/l of full-length Dfd protein were obtained. For injection into rabbits, the Dfd protein was purified using two different methods. For the initial injection, the full-length Dfd protein was cut out of an SDS–polyacrylamide gel and prepared as described previously [White and Wilcox 1984]. A male New Zealand white rabbit was injected intradermally at about 50 sites [Vaitukaitis 1981] on day 0 with 200 μg of Dfd protein in a 1:1 emulsion with Freund’s complete adjuvant. The rabbit was boosted on day 34 with 75 μg of Dfd protein purified in the presence of urea on ion exchange columns containing the resins P11 and DE52. For boosts, the protein was mixed 1:2 with Freund’s incomplete adjuvant. On day 52, the rabbit was bled, and yielded serum specific for Dfd.

Collection and staining of whole-mount embryos

The Dfd serum used in the staining of whole-mount embryos was diluted 1:75, and immunosorbed with fixed, devitellinized 0–2 hr Drosophila embryos. Whole-mount embryo collection and fixation as well as antibody reactions were carried out as described previously [Karr and Alberts 1986; Frasch et al. 1987] with the following modifications for staining with antibodies conjugated to horseradish peroxidase (HRP). The secondary antibody was a biotinylated goat anti-rabbit IgG (Jackson Immunoresearch) preabsorbed against 0–12 hr embryos and diluted 1:500 to a concentration of 2 μg/ml. After washing the nonspecifically bound secondary antibody, the embryos were treated with a 1:500 dilution of conjugated streptavidin–HRP [Enzo] for 1 hr at 25°C. The staining was carried out according to the protocol of MacDonald and Struhl (1986). After staining the embryos were dehydrated in 100% ethanol, rinsed with xylene, and mounted under a coverslip in Permount. Embryos were viewed with Nomarski interference optics and photographed with Kodak Technical Pan 2415 film.

Acknowledgments

We thank Eric Wieschaus, Janni Nüsslein-Volhard, Gary Struhl, Yash Hirono, Jim Mahaffey, the Bowling Green Mid-America Drosophila Stock center, and the Levine lab for so generously supplying mutant stocks. We also thank Manfred Frasch for advice on antibody staining and Erich Frei for his help with protein purification and rabbit immunization. Also we are grateful to Markus Noll and Robin Chadwick for the communication of unpublished results. This research was supported by grants to W.M. from the National Research Foundation (NSF) and the Searle Scholar Fund.

References

Akam, M.E. 1983. The location of ultrabithorax transcripts in Drosophila tissue section. EMBO J. 2: 2075–2084.
——. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22.
Beachy, P.A., S.L. Helfand, and D.S. Hogness. 1985. Segmental distribution of bithorax complex proteins during Drosophila development. Nature 313: 545–551.
Bopp, D., M. Burri, S. Baumgartner, G. Frigerio, and M. Noll. 1986. Conservation of a large protein domain in the seg-

GENES & DEVELOPMENT 649

Downloaded from genesdev.cshlp.org on July 20, 2018 - Published by Cold Spring Harbor Laboratory Press
mation gene paired and in functionally related genes of *Drosophila*. Cell 47: 1033–1040.
Campos-Ortega, J.A. and V. Hartenstein. 1985. The Embryonic development of *Drosophila melanogaster*. Springer-Verlag, Berlin.
Carroll, S.B. and M.P. Scott. 1985. Localization of the *fushi tarazu* protein during *Drosophila* embryogenesis. Cell 43: 47–57.
———. 1986. Zygotically active genes that affect the spatial expression of the *fushi tarazu* segmentation gene during early *Drosophila* embryogenesis. Cell 45: 113–126.
Carroll, S.B., R.A. Layman, M.A. McCutcheon, P.D. Riley, and M.P. Scott. 1986. The localization and regulation of *Antennapedia* protein expression in *Drosophila* embryos. Cell 47: 113–122.
Chadwick, R. and W. McGinnis. 1987. Temporal and spatial distribution of transcripts from the Deformed gene of *Drosophila*. EMBO J. 6: 779–789.
Desplan, C., J. Theis and P.H. O’Farrell. 1985. The *Drosophila* developmental gene, *engrailed*, encodes a sequence-specific DNA binding activity. Nature 318: 630–635.
DiNardo, S., J.M. Kuner, J. Theis, and P.H. O’Farrell. 1985. Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear *engrailed* protein. Cell 43: 59–69.
DiNardo, S. and P. O’Farrell. 1987. Establishment and refinement of segmental pattern in the *Drosophila* embryo: spatial control of *engrailed* expression by pair-rule genes. Gen. Dev. 1: 1212–1225.
Duncan, I. 1986. Control of bithorax complex functions by the segmentation gene *fushi tarazu* of *D. melanogaster*. Cell 47: 297–309.
Fjose, A., W. McGinnis, and W.J. Gehring. 1985. Isolation of a homeobox-containing gene from the *engrailed* region of *Drosophila* and the spatial distribution of its transcripts. Nature 313: 284–289.
Foe, V.E. and B.M. Alberts. 1983. Studies of nuclear and cytoplasmic behavior during the five mitotic cycles that precede gastrulation in *Drosophila* embryogenesis. I. Cell. Sci. 61: 51–70.
Fraser, M., T. Hoey, C. Rushlow, H. Doyle, and M. Levine. 1987. Characterization and localization of the even-skipped protein of *Drosophila*. EMBO J. 6: 749–759.
Fraser, M. and M. Levine. 1987. Complimentary patterns of even-skipped and *fushi tarazu* expression involve their differential regulation by a common set of segmentation genes in *Drosophila*. Gen. Dev. 1: 981–995.
Frigerio, G., M. Burri, D. Bopp, S. Baumgartner and M. Noll. 1986. Structure of the segmentation gene paired and the *Drosophila* PRD gene set as part of a gene network. Cell 47: 735–746.
Frohnhofer, H.G. and C. Nüsslein-Volhard. 1986. Organization of anterior pattern in the *Drosophila* embryo by the maternal gene *bicoid*. Nature 324: 120–125.
Garcia-Bellido, A. 1977. Homeotic and atavistic mutations in insects. Amer. Zool. 17: 613–629.
Gergen, J.P., D. Coulter, and E. Wieschaus. 1986. Segmental pattern and blastoderm cell identities. In *Gametogenesis and the early embryo*. Alan R. Liss, New York, pp. 195–220.
Gergen, J.P., and E. Wieschaus. 1986a. Dosage requirements for runt in the segmentation of *Drosophila* embryos. Cell 45: 289–299.
———. 1986b. Localized requirements for gene activity in segmentation of *Drosophila* embryos: analysis of *armadillo*, fused, giant, and unpaired mutations in mosaic embryos. Wilhelm Roux’s Arch. Dev. Biol. 195: 49–62.
Hafen, E., M. Levine, R.L. Garber, and W.J. Gehring. 1983. An improved *in situ* hybridization methods for the detection of cellular RNAs in *Drosophila* tissue sections and its application for localizing transcripts of the homeotic *Antennapedia* gene complex. EMBO J. 2: 617–623.
Hafen, E., A. Kuroiwa, and W.J. Gehring. 1984a. Spatial distribution of transcripts from the segmentation gene *fushi tarazu* during *Drosophila* embryonic development. Cell 37: 833–841.
Hafen, E., M. Levine, and W.J. Gehring. 1984b. Regulation of *Antennapedia* transcript distribution by the bithorax complex in *Drosophila*. Nature 307: 287–289.
Hall, M.N. and A.D. Johnson. 1987. Homeo domain of the yeast repressor alpha 2 is a sequence specific DNA-binding domain but is not sufficient for repression. Science 237: 1007–1012.
Harding, K., C. Wdeen, W. McGinnis, and M. Levine. 1985. Spatially regulated expression of homeotic genes in *Drosophila*. Science 229: 1236–1242.
Harding, K., C. Rushlow, H.J. Doyle, T. Hoey, and M. Levine. 1986. Cross-regulatory interactions among pair-rule genes in *Drosophila*. Science 233, 953–959.
Harding, K., and M. Levine. 1988. Gap genes define the limits of *Antennapedia* and Bithorax gene expression during early development in *Drosophila*. EMBO J. 7: 205–214.
Hazelrigg, T., and T.C. Kaufman. 1983. Revertants of dominant mutations associated with the Antennapedia gene complex of *Drosophila melanogaster*: Cytology and genetics. Genetics 105: 581–600.
Hoey, T. and M. Levine. 1988. Divergent homeo box proteins recognize similar DNA sequences in *Drosophila*. Nature 332: 858–861.
Howard, K., and P. Ingham, P. 1986. Regulatory interactions between the segmentation genes *fushi tarazu*, *hairy*, and *engrailed* in the *Drosophila* blastoderm. Cell 44: 949–957.
Ingham, P.W., K.R. Howard, and D. Ish-Horowicz. 1985. Transcription pattern of the *Drosophila* segmentation gene *hairy*. Nature 318: 439–445.
Ingham, P.W., and A. Martinez-Arias. 1986. The correct activation of *Antennapedia* and bithorax complex genes requires the *fushi tarazu* gene. Nature 324: 592–597.
Jackle, H., D. Tautz, R. Schuh, E. Seifert, R. Lehmann. 1986. Cross-regulatory interactions among gap genes of *Drosophila*. Nature 324: 668–670.
Jurgens, G., E. Wieschaus, C. Nüsslein-Volhard, and H. Kluding. 1984. Mutations affecting the pattern of the larval cuticle in *Drosophila melanogaster*. II. Zygotic loci on the third chromosome. Wilhelm Roux’s Arch. Dev. Biol. 193: 283–295.
Jurgens, G., R. Lehmann, M. Schardin, and C. Nüsslein-Volhard. 1986. Segmental organization of the head in the embryo of *Drosophila melanogaster*. Wilhelm Roux’s Arch. Dev. Biol. 195: 359–377.
Karr, T.L. and B.M. Alberts. 1986. Organization of the cytoskeleton of early *Drosophila* embryos. J. Cell Biol. 102: 1489–1504.
Kilchherr, F., S. Baumgartner, D. Bopp, E. Frei, and M. Noll. 1986. Isolation of the paired gene of *Drosophila* and its spatial expression during embryogenesis. Nature 321: 493–499.
Knipple, D.C., E. Seifert, U.B. Rosenberg, A. Preiss, and H. Kluding. 1986. Spatial and temporal patterns of *Kruppel* gene expression in early *Drosophila* embryos. Nature 317: 40–44.
Kornberg, T. 1981. *engrailed*: a gene controlling compartment and segment formation in *Drosophila Proc. Natl. Acad. Sci. 78*: 1095–1099.
Kornberg, T., I. Siden, P. O’Farrell, and M. Simon. 1985. The *engrailed* locus of *Drosophila*: In situ localization of tran-
scripts reveals compartment-specific expression. Cell 40: 45–53.

Laughon, A. and M.P. Scott. 1984. Sequence of Drosophila segmentation gene: Protein structure homology with DNA-binding proteins. Nature 310: 25–31.

Lawrence, P.A., P. Johnston, P. MacDonald, and G. Struhl. 1987. Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature 328: 440–442.

Lehmann, R., and C. Nüsslein-Volhard. 1987. hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol. 119: 402–417.

Levine, M., E. Hafen, R.L. Garber, and W.J. Gehring. 1983. Spatial distribution of Antennapedia transcripts during Drosophila development. EMBO J. 2: 2037–2046.

Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

MacDonald, P.M. and G. Struhl. 1986. Molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324: 537–545.

MacDonald, P.M., P. Ingham, and G. Struhl. 1986. Isolation, structure and expression of even-skipped: A second pair-rule gene of Drosophila containing a homeo box. Cell 47: 721–734.

Mahaffey, J.W., and T.C. Kaufman. 1987. Distribution of the Sex combs reduced gene products in Drosophila melanogaster. Genetics 117: 51–60.

Martinez Arias, A. and P.A. Lawrence. 1985. Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642.

Martinez Arias, A., P.W. Ingham, M.P. Scott, and M.E. Akam. 1987. The spatial and temporal deployment of Dfd and Scr transcripts during development of Drosophila. Development 100: 673–680.

Martinez Arias, A. and R.A.H. White. 1988. Ultrabithorax and engrailed expression in Drosophila embryos mutant for segmentation genes of the pair-rule class. Development 102: 325–338.

McGinnis, W., R.L. Garber, J. Wirz, A. Kuroiwa, and W.J. Gehring. 1984. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: 403–408.

Merrill, V.K.L., F.R. Turner, and T.C. Kaufman. 1987. A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster. Dev. Biol. 122: 370–395.

Morata, G., and P.A. Lawrence. 1975. Control of compartment development by the engrailed gene in Drosophila. Nature 255: 614–617.

Nüsslein-Volhard, C., and E. Weischaus. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

Nüsslein-Volhard, C., E. Wieschaus, and G. Jurgens. 1982. Segmentation in Drosophila, a genetic analysis. Verh. Dtsch. Zool. Ges. 1982: 91–104.

Nüsslein-Volhard, C., E. Wieschaus, and H. Kluding. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux’s Arch. Dev. Biol. 193: 267–282.

Nüsslein-Volhard, C., H. Kluding, and G. Jurgens. 1985. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harbor Symp. Quant. Biol. 50: 145–154.

Poole, S.J., L.M. Kauvar, B. Drees, and T. Kornberg. 1985. The engrailed locus of Drosophila: Structural analysis of an embryonic transcript. Cell 40: 37–43.

Regulski, M., K. Harding, R. Kostriken, F. Karch, M. Levine, and W. McGinnis. 1985. Homeo box genes of the Antennapedia and Bithorax complexes of Drosophila. Cell 43: 71–80.

Regulski, M., N. McGinnis, R. Chadwick, and W. McGinnis. 1987. Developmental and molecular analysis of Deformed: A homeotic gene controlling Drosophila head development. EMBO J. 6: 767–777.

Riley, P.D., S.B. Carroll, and M.P. Scott. 1987. The expression and regulation of Sex combs reduced protein in Drosophila embryos. Gen. Dev. 1: 715–730.

Schneuwly, S., A. Kuroiwa, and W.J. Gehring. 1987. Molecular analysis of the dominant homeotic Antennapedia phenotype. EMBO J. 6: 210–206.

Scott, M.P., and P.H. O’Farrell. 1986. Spatial programming of gene expression in early Drosophila embryogenesis. Ann. Rev. Cell. Biol. 2: 49–80.

Scott, M.P., and S.B. Carroll. 1987. The segmentation and homeotic gene network in early Drosophila development. Cell 51: 689–698.

Shine, J., and L. Dalgarro. 1974. The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. 71: 1342–1346.

Steitz, J.A., and K. Jakes. 1975. How ribosomes select initiator regions in mRNA: base pair formation between the 3′-terminus of 16S RNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. 72: 4734–4738.

Struhl, G. 1982. Genes controlling segmental specification in the Drosophila thorax. Proc. Natl. Acad. Sci. 79: 7380–7384.

—. 1983. Role of the esc+ gene product in ensuring the selective expression of segment specific homeotic genes in Drosophila. J. Embryol. Exp. Morph. 76: 297–331.

Studier, F.W. and B.A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113–130.

Tautz, D., R. Lehmann, H. Schnurch, R. Schuh, E. Seifert, A. Kienlin, K. Jones, and H. Jackie. 1987. Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327: 383–389.

Tautz, D. 1988. Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centers. Nature 332: 281–284.

Vaitukaitis, J.L. 1981. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods Enzymol. 73: 46–52.

Wakimoto, B.T. and T.C. Kaufman. 1981. Analysis of larval segmentation in lethal genotypes associated with the Antennapedia gene complex in Drosophila melanogaster. Dev. Biol. 81: 51–64.

Wakimoto, B.T., F.R. Turner, and T.C. Kaufman. 1984. Defects in embryogenesis in mutants associated with the Antennapedia gene complex of Drosophila melanogaster. Dev. Biol. 102: 147–172.

White, R.A.H. and M. Wilcoxon. 1984. Protein products of the bithorax complex in Drosophila. Cell 39: 163–171.

—. 1985. Regulation of the distribution of Ultrabithorax protein in Drosophila. Nature 318: 563–566.

White, R.A.H. and R. Lehmann. 1986. A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. Cell 47: 311–321.

Wirz, J., L.I. Fessler, and W.J. Gehring. 1986. The localization of the Antennapedia protein in Drosophila embryos and imaginal discs. EMBO J. 5: 3327–3334.

Zalokar, M., and I. Erk. 1976. Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J. Microbiol. Cell. 25: 97–106.
Pair—rule segmentation genes regulate the expression of the homeotic selector gene, Deformed

Genes Dev. 1988, 2:
Access the most recent version at doi:10.1101/gad.2.6.635

References
This article cites 81 articles, 16 of which can be accessed free at:
http://genesdev.cshlp.org/content/2/6/635.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.