Research article

Factors driving the global decline of cycad diversity

Ledile T. Mankga¹ and Kowiyou Yessoufou²*

¹ Department of Life and Consumer Sciences, University of South Africa, Florida campus, Florida 1710, South Africa.
² Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, APK Campus, Auckland Park 2006, Johannesburg, South Africa.

Received: 15 November 2016; Editorial decision: 21 May 2017; Accepted: 26 May 2017; Published: 29 May 2017

Associate editor: Dennis F. Whigham

Citation: Mankga LT, Yessoufou K. 2017. Factors driving the global decline of cycad diversity. AoB PLANTS 9: plx022; doi:10.1093/aobpla/plx022

Abstract. Mounting evidence indicates that we are witnessing the sixth mass extinction period. Given the important goods and services biodiversity delivers to humans, there is a need for a continued commitment to investigate what pre-disposes some taxa to greater risk of extinction. Here, we investigate this question using a phylogenetic comparative method and fitting a cumulative link mixed effect model on biological, ecological and evolutionary data of cycads, the most threatened lineage in the plant kingdom. We identified nine groups of threats to cycads, with habitat loss, over-collection, fire and reproduction failure being the most prominent, but only four of these threats (habitat loss, over-collection, medicinal uses and reproduction failure) clustered on the cycad tree of life. This clustering suggests that closely related species may be exposed to similar threats, perhaps because of geographic regionalization of cycad genera. Nonetheless, the diversity of threats and several variables linked to the biology and ecology of cycads correlate with extinction risk (e.g. altitude, height, diameter, geographic range), and different variables seem to be linked to different IUCN status of cycads. Although their predictive power is generally < 50%, geographic range and maximum diameter stood out as the best predictors particularly for the Vulnerable (VU) category, with a predictive power of 87% and 69%, respectively. Using our best model for VU, we predicted all five Data Deficient (DD) species of cycads to be in the VU category. Collectively, our results elucidate the pattern of extinction risk in cycads and, since most threats that we identified as drivers of extinction risk of cycads are anthropogenically mediated, we recommend stronger legislation to regulate human–cycad interactions and the commitment of all governments globally to implement this regulation.

Keywords: Anthropogenic pressure; cycad ecology and biology; data deficient species; evolutionary distinctiveness; species loss; tree of life.

Introduction

A better understanding of the drivers of extinction risk is necessary to inform conservation decisions, and predicting future risk could be informed of the historical extinction events. However, there is a disparity in efforts devoted to unravelling these drivers and the extinction risk patterns of vertebrates (e.g. Cooper et al. 2008; Davies and Yessoufou 2013; Luiz et al. 2016; Schachat et al. 2016; Veron et al. 2016; see further references in Pellens and Grandcolas 2016) in comparison to plants, and the only few extinction risk studies that focus on plants prioritize angiosperms (e.g. Sodhi et al. 2008; Yessoufou et al. 2012;...
Daru et al. 2013; Leao et al. 2014). As a result, we are comparatively well-informed of the pre-disposition of vertebrates and, to a lesser extent, angiosperms, to extinction risk as well as how their phylogenetic trees would be affected by species loss (Davies et al. 2011; Mooers et al. 2012; Davies and Yessoufou 2013). In contrast, such knowledge is yet to be well-demonstrated for gymnosperms, although the latter group is more threatened than angiosperm (e.g. ~70% of cycads are threatened, IUCN 2010; Yessoufou et al. 2017).

Cycads are a group of gymnosperm of particular interest due to their evolutionary history (Nagalingum et al. 2011; Yessoufou et al. 2014; Condamine et al. 2015) and their morphological features shared between ferns and angiosperms (Norstog and Nicholls, 1997; Brenner et al. 2003). Their origin dated back to ~300 million years ago (Hendricks 1987), and in the Mesozoic era, cycads exhibited a worldwide distribution (Hermsen et al. 2009). However, the age of the extant cycads is much younger (12–2 Ma, Nagalingum et al. 2011), and they are restricted to tropical and subtropical regions of the world. Unfortunately, 70% of all the 339 cycad taxa (Yessoufou et al. 2017) are threatened with high risk of extinction (IUCN, 2010; Osborne et al. 2012; Yessoufou et al. 2017). Current knowledge indicates that ecological or biological factors (Sodhi et al. 2008; Yessoufou et al. 2012) as well as evolutionary history (Davies et al. 2011) pre-dispose a particular taxonomic group to risk of extinction. For example, life history trait such as body size pre-dispose vertebrates to extinction risk (Cardillo 2003), but the role of size in pre-disposing plants to extinction remains debatable (Freville et al. 2007; Bradshaw et al. 2008; Sodhi et al. 2008). In contrast, evidence suggests that extinction risk in plants may be rather linked to their evolutionary rather than life history (Lozano and Schwartwitz 2005; Vamosi and Wilson 2008; Davies et al. 2011; Daru et al. 2013).

On the basis of this knowledge, we compiled a list of putative biological and ecological parameters linked to extinction risk in previous studies. This includes altitude, diameter, diversity of threats (i.e. number of threats recorded for each species), generation time, geographic range and height. For example, high-altitude habitats are usually considered a ‘safe haven’ for ancient but threatened taxa (Fjeldsa and Lovett 1997; Fjeldsa et al. 2012). Also, an early study found a higher richness of threatened species at high altitude (Yessoufou et al. 2012). In addition, extinction risk in animals has also been linked to body size, generation time and geographic range with the expectations that species with larger size, longer generation time and smaller geographic range would be more at risk (Bennett and Owens 1997; Russell et al. 1998; Purvis et al. 2000; Cardillo 2003; Fisher and Owens 2004; Cooper et al. 2008, IUCN 2010). The representatives of body size in the present study are diameter and height (see also Sodhi et al. 2008).

Furthermore, evidence that evolutionarily younger or older taxa tend to more at risk is indicative of an evolutionary pre-disposition to extinction (Purvis et al. 2000; Vamosi and Wilson 2008; Davies et al. 2011; Daru et al. 2013). Also, because phylogenetically conserved traits can be linked to extinction (e.g. phenology, Willis et al. 2008), it becomes necessary to assess the distribution of extinction risk along a phylogenetic tree (Fritz and Purvis 2010; Davies et al. 2011; Yessoufou et al. 2012), although extinction risk is not an evolving trait (Grandcolas et al. 2011). Such a phylogenetic signal analysis of extinction risk would help predict whether unrelated species (e.g. species with high value of evolutionary distinctiveness (ED); Isaac et al. 2007) or closely related ones are more at risk (Purvis et al. 2000). However, the phylogenetic analysis of extinction risk is traditionally conducted based on IUCN threat categories (Davies et al. 2011). This tradition is recently showed to be potentially misleading as long as the drivers of extinction risk are not taken into consideration (see Schachat et al. 2016). Similarly, conservation decisions could be further misled if the threat status of some species remains unknown (e.g. Data Deficient, DD, species; Luiz et al. 2016; Veron et al. 2016).

In the present study, our objective is to provide a better explanation of extinction risk in the cycad group. Specifically, we identified and categorized all threats to cycads, tested for phylogenetic signal in the threat categories, and generate the best model of extinction risk that was then used to predict the threat status of DD species.

Methods

Global cycad diversity, IUCN status and categories of threats

In a recent study, our research group compiled a list of 339 cycad taxa following a thorough literature search (e.g. Lindström 2009; Nagalingum et al. 2011; Osborne et al. 2012) and taking into account some synonymous names [see Supporting Information I]. In the same study, IUCN threat categories for all taxa were also compiled (www.redlist.org, August 2016; Osborne et al. 2012): DD (five taxa), Least Concern (LC: 47 taxa), Near Threatened (NT: 68 taxa), Vulnerable (VU: 78 taxa), Endangered (EN: 70) and Critically endangered (CR: 67 taxa). In the present study, we complemented these data with additional information on different threats to cycads available from various sources including the IUCN.
database (www.redlist.org, August 2016) [see Supporting Information—Table S1].

Cycad tree of life
The phylogenetic tree used in this study is the complete cycad tree comprising 339 taxa recently assembled in our research group (see Yessoufou et al. 2017) by combining DNA sequences of the nuclear region PHYP for 199 species (Nagalingum et al. 2011) and taxonomic information following the Thomas et al.’s (2013) approach. This tree is submitted to TreeBase with the submission ID # 20161 and the details of tree reconstruction are available in a recent paper that we published (Yessoufou et al. 2017).

Potential predictors of IUCN status
To fit predictive models of IUCN status for all cycads, we compiled a list of putative variables including altitude, diameter, diversity of threats, ED, generation time, geographic range and height. We recorded the minimum and maximum of the altitudinal occurrence of each species from IUCN (2010). Two types of diameters were recorded, the minimum and the maximum diameter. The diversity of threats was defined as the number of threat categories (as defined above) recorded for each species. ED is a metric that approximates the evolutionary ages of each species such that a species with a higher ED value is subtended on a phylogeny by a longer branch (Isaac et al. 2007). ED values for all cycads were compiled from Yessoufou et al. (2017) [see Supporting Information I]. Data on generation time were retrieved from the IUCN database (www.redlist.org, August 2016). Geographic range data were compiled in two ways; first as surface area of geographic ranges (in km²) and these data were retrieved from IUCN (2010) and, second, as the number of locations where a species occurs (defined in Osborne et al. 2012). Finally, we documented the minimum and maximum height for each cycad species also from IUCN. Overall, 11 variables were included in our predictive models, and values for all these variables are presented in [Supporting Information—Table S1].

Data analysis
All analyses were conducted in R (R Core Team 2015) and detailed below. Prior to analyses we checked for correlations among all the 11 variables to avoid redundancy. We found that minimum altitude and maximum altitude do correlate, as well as minimum and maximum height [see Supporting Information—Fig. S1]. We therefore discarded maximum altitude and maximum height, implying that our analysis on modelling presented below focused only on the remaining nine variables.

Phylogenetic signal in threat groups to cycads
Each threat identified was coded as follows; 1: when a threat is reported for a species; 0: when a threat is not reported for a species and NA: when information for a species was missing for a given threat [see Supporting Information—Table S1]. Prior to any analysis, missing data were explored using a combination of graphical displays (Prantner 2011), first for threats [see Supporting Information—Fig. S2], then for predictors of IUCN status [see Supporting Information—Figs S3 and S4], and last, we used the k-nearest-neighbour imputation method implemented in the R package VIM (Templ et al. 2016) to impute NA values. Next, we applied the D statistic (Fritz and Purvis 2010) to assess the phylogenetic signal in each threat using the complete cycad phylogeny of Yessoufou et al. (2017). The D statistic provides an estimate of phylogenetic conservatism for binary traits that can be compared with both a random shuffle of trait values at the tips of a phylogeny and a Brownian threshold model (BM; Fritz and Purvis 2010), but we report here only the significance at random. When $D = 1$ then traits are randomly distributed at the tips of the phylogeny; $D = 0$ corresponds to a BM model; $D < 0$ signifies traits are highly conserved, whereas $D > 1$ signifies traits are over-dispersed on phylogenetic tree. If a D value falls between 0 and 1, we tested whether this value is statistically different from 1 (random); if so, then we concluded that the observed D value is non-random. If D value is not statistically different from 1, then the observed value is considered as random.

Predictive models for extinction risk of cycads
We explored the power of each of our nine variables to predict the IUCN threat status of cycad species by fitting the cumulative link mixed effect model (CLMM; Christensen 2013). The IUCN status is a ranked categorical status defined as LC, NT, VU, EN, CR. We preferred the CLMM approach as our modelling method to the machine-learning methods based on a number of advantages the CLMM provides (see Luiz et al. 2016 for details). In summary, CLMM is a better approach as it allows a direct analysis of ranked categorical variables (here IUCN categories: LC, NT, VU, EN, CR) as response variables without necessarily converting them into numerical values (and such conversion is the tradition; e.g. see Mooers et al. 2008; Davies et al. 2011 or Yessoufou et al. 2012). In so doing, CLMM has the advantage of preserving the variance structure of the original ordinal ranks of the categorical response variables, and thus prevents the loss of information generally observed when categorical values are either converted into numerical values or grouped into binomial classifications.
(e.g. non-threatened vs. threatened categories). CLMM also prevents an unnecessary elevated type I error generally observed when IUCN categories are converted into numerical values where differences between adjacent risk levels are assumed equivalent (e.g. LC = 0 and NT = 1 or EN = 3 and CR = 5).

In our models, the response variable is the IUCN status, and the dependent variables used as fixed effects are altitude, diameter, diversity of threats, ED, generation time, geographic range and height. We also included the taxonomic ranks ‘Genus’ within ‘Family’ and ‘Family’ within ‘Order’ as a random effect in our models to account for potential effects of shared ancestry, using the R function ‘clmm’ (package ‘ordinal’ Christensen 2013).

Two types of models were generated, univariate and multivariate. For our multivariate model, we conducted model selection using a backward stepwise removal of non-significant fixed-effect terms from the full model, based on log-likelihood ratio tests. The predictive power of our model fit was quantified as the percentage of species whose IUCN status are correctly predicted by the model; this is referred to, in Luiz et al. (2016), as Percentage Correct Classified (PCC). The PCC value was calculated in two ways; first, PCC was calculated for each best model identified considering all species (i.e. overall predictive power of each model) and second, PCC was also calculated for each best model considering species in each IUCN category (i.e. predictive power of each model per IUCN category). Models were fitted using the function ‘clm’ from the R package ‘ordinal’ (Christensen 2013). We used the coefficients of our final model to estimate the IUCN threat status of the five DD species (the R function ‘predict’ implemented in the package ‘ordinal’).

Results
Cycad group comprises ~64 % of threatened species in the categories VU (23 %), EN (21 %) and CR (20 %), and almost 1 % and 2 % of species are in the categories Extinct in the Wild and DD, respectively (Fig. 1A). Such a high level of extinction risk is driven mainly by nine categories of threats including pre-dominantly habitat loss (38 %), over-collection (29 %), fire (9 %) and reproduction failure (8 %) and to a lesser extent invasive species (3 %; Fig. 1B). In total, we identified five variables that correlate significantly with the extinction risk, of which three correlate negatively (geographic range measured as number of locations of species occurrence), minimum height and maximum diameter) and the remaining two correlate positively (threat diversity, i.e. number of threats facing each species and minimum altitude; Table 1, Fig. 1C). However, our multivariate model (that includes threat diversity, maximum diameter and geographic range) has the overall highest predictive power of extinction risk (PCC = 33 %) and maximum diameter the lowest (PCC = 24 %; Fig. 1C). At IUCN category level, although we found that all models (uni- and multivariate) yielded their best prediction for VU category (except for minimum altitude, Fig. 2), we also found that different variables are good predictors of different IUCN categories. For example, geographic range (measured as number of locations), maximum diameter and minimum height are excellent predictors of VU (87 %, 69 % and 54 %, respectively); minimum altitude for CR (41 %), diversity of threats for EN (32 %) and VU (33 %; Fig. 2).

All these models indicate that the DD species are threatened (VU, EN or CR). In particular, based on the geographic range (number of locations) that showed the highest predictive power for VU (87 %), all DD species (Cycas aenigma, C. indica, C. sphaerica, Ceratozamia brevifrons and Zamia lindleyi) are predicted to be in the VU category.

Finally, we further explored the phylogenetic pre-disposition of cycads to extinction risk. Of the nine categories of threats that we identified, we found evidence of phylogenetic signal in only four: habitat loss, medicinal uses, over-collection and reproduction failure (Fig. 3).

Discussion
We summarized all threats to cycads into nine categories, of which seven are directly linked to human activities (habitat loss, over-collection, fire, deforestation, medicinal uses, grazing, invasive alien plants), one to the biology of cycad (reproduction failure) and the last one is linked to climate change impacts (flood/drought). This is indicative of the prominent role human plays in driving the loss of biodiversity (Wake and Vredenburg 2008), particularly under the tropic (cycads are mainly tropical), thus supporting the well-known ‘tropical biodiversity crisis’ (Vamosi and Vamosi 2008).

Although there is a general trend for closely related species to be threatened (phylogenetic signal) irrespective of the taxonomic group at hand (Purvis, 2008; Purvis et al. 2000; Davies et al. 2011; Yessoufou et al. 2012; see Yessoufou and Davies 2016 for further references), a recent study revealed that such evidence does not hold for cycads, i.e. threatened cycad species are not significantly clustered on the cycad tree of life (Yessoufou et al. 2017). The phylogenetic signal analysis is traditionally explored on IUCN threat categories (e.g. Fritz and Purvis 2010; Davies et al. 2011; Yessoufou et al. 2017), but a recent study demonstrated convincingly that the causes of
extinction rather than the extinction risk status should be integrated into the phylogenetic comparative analysis of extinction risk (Schachat et al. 2016). As opposed to Yessoufou et al. (2017) who found no evidence for a phylogenetically patterned extinction risk for cycads, our results here indicate that certain causes of extinction of cycad species can be linked to phylogenetic pre-disposition. For example, we found evidence that phylogenetically closely related species are more threatened than expected by habitat loss, over-collection, medicinal uses and reproduction failure. This finding suggests a phylogenetic pre-disposition of cycads to extinction such that closely related species may share similar vulnerabilities in the face of similar threats. Such phylogenetic pre-disposition could be the result of closely related species sharing similar life history traits that evolve along the phylogeny. It could also be because closely related species are in fact exposed to similar threats, given the geographic regionalization of cycad genera (e.g. all species within the genus Encephalartos occur in Africa, and all species in the genus Ceratozamia occur in the New World, etc.).

We further tested for correlates of extinction risk of cycads fitting a CLMM on nine biological, ecological and evolutionary variables. Two of these variables correlate positively with extinction risk (diversity of threats and minimum altitude). Our finding that species facing a high diversity (number) of threat are more at risk of extinction is not a surprise. So is the positive correlation of extinction with altitude, as higher altitude may be playing the role of refugia for species that are threatened at lower altitude due to human pressure (Sandel et al. 2011; Yessoufou et al. 2012; White and Bennett 2015). Positive correlation of ED, a phylogenetic metric, with extinction risk was previously reported for cycads (e.g. Yessoufou et al. 2017), and this provides support for a phylogenetic

Figure 1. General pattern of extinction risk in the cycad group. (A) Cycad species richness in each IUCN threat categories (LC, least concern; NT, near threatened; VU, vulnerable; EN, endangered; CR, critically endangered; DD, data deficient; EW, extinct in the wild); (B) identified causes of threats to cycad globally; (C) the overall predictive power of all significant correlates of extinction risk of cycads. Multivariate = the best multivariate model; this model includes maximum diameter, geographic range (measured as number of locations of species occurrence) and diversity of threats (Table 1).
pre-disposition of plants to extinction (Vamosi and Wilson 2008; Davies et al. 2011; Condamine et al. 2013; Daru et al. 2013). How does phylogenetic history pre-dispose plant to extinction risk remains to be elucidated. In the Cape Floristic Region, young plant lineages are more at risk (Davies et al. 2011) whilst the opposite trend was recently reported for plant lineages in mangrove ecosystems (Daru et al. 2013). However, the correlation between ED and extinction risk reported in Yessoufou et al. (2017) is not confirmed in the present study for cycads, and this is because Yessoufou et al. (2017) did not account for shared ancestry among species in their analysis.

Furthermore, geographic range (measured as number of geographic locations where species are found; Osborne et al. 2012), minimum height and maximum diameter show a negative correlation with extinction risk. This result for geographic range is not surprising as this

Table 1. Parameters of the cumulative linear mixed effects models with the IUCN red list category as an ordinal categorical response variable. Significant variables are indicated by stars (*) and the number of stars indicate the level of significance. NS, not significant.

Variables	Estimate	Standard error	Z values	Probability values
Univariate model				
Diversity of threats (log + 1)	1.531	0.244	6.260	P < 0.001***
ED (log)	0.500	0.256	1.953	P = 0.05
Range (km²) (log)	−0.087	0.055	−1.572	P = 0.116
Minimum altitude (log alt + 1)	0.234	0.061	3.83	P < 0.001***
Minimum height (log)	−0.287	0.111	−2.594	P = 0.009**
Generation time (log)	−0.039	0.312	−0.127	P = 0.899NS
Maximum diameter (log)	−0.0404	0.185	−2.177	P = 0.029*
Geographic range (number of locations) (log)	−0.625	0.154	−4.036	P < 0.001***
Multivariate model				
Maximum diameter (log)	−0.471	0.189	−2.491	P = 0.012**
Geographic range (log)	−0.647	0.156	−4.139	P < 0.001***
Diversity of threats (log)	1.554	0.245	6.319	P < 0.001***

Figure 2. Predictive powers of all significant correlates of extinction risk in each IUCN categories. LC, least concern; NT, near threatened; VU, vulnerable; EN, endangered; CR, critically endangered.
variable is one of the key of IUCN threat categorization system (IUCN 2010). However, a negative correlation of height with extinction is counterintuitive, as we would expect taller species to be more at risk because they are easy to spot by illegal cycad collectors. Our finding could perhaps be an indication that shorter cycads might be more VU to a number of threats that we identified above, including flood, invasive plants, and particularly to grazing and fire (see lanky and corky strategy of Dantas and Pausas 2013). The correlation of height with extinction risk could also result in the correlation that we found for diameter, given the well-known allometric relationship between height and diameter (e.g. Mugasha et al. 2013). In particular, species with small diameter may have invested more in vertical growth (i.e. height), and in light of the negative correlation between height and extinction risk, the negative correlation between diameter and extinction risk becomes meaningful.

Despite these significant correlations, the overall predictive power of the models generated are only between 24 % and 33 %, indicating that many other variables driving the extinction risk of cycads are not included in our study. This provides room for further investigations of the pre-disposition of cycad to high risk of extinction. In contrast, we found a strong predictive power while looking at each IUCN threat category level particularly for geographic range (number of locations of species occurrence), which predicts correctly 87 % of VU status. Such strong predictive power per IUCN threat category was used to clarify the status of DD species. All five DD cycad species were predicted to be in the VU category, thus adding five more species to the threatened cycad species richness.

Conclusion

In the present study, we explore what pre-disposes cycads to high risk of extinction. Mainly human induced pressures (e.g. habitat loss, grazing, fire, medicinal...
uses, etc.), the biology of cycads (e.g. reproduction failure) and climate related variables (e.g. drought, flood) threaten cycad diversity, putting at risk the evolutionary history accumulated in the cycad tree of life over million years. We acknowledge that many other threats particularly linked to the biology and ecology of cycad (e.g. dispersal ability, availability of pollinators, cycad–pollinator interactions, etc.) could also be playing a role in shaping the current extinction risk pattern, but these variables are not evaluated in the present study. We explicitly explore this pattern and reveal a phylogenetic basis for extinction risk of cycad such that phylogenetically closely related species are exposed to similar threats. It is well-established that excluding DD species from extinction risk analysis (this is the tradition, Biebl et al. 2006; Yessoufou et al. 2012) is likely to induce bias in decision-making process (Whittaker et al. 2005; Luiz et al. 2016) and could therefore mislead our understanding of how extinction risk may prune the tree of life (Veron et al. 2016). More critically, we identified significant (statistically) correlates of extinction risk for cycads, and used predictive models to determine the IUCN threat status of the five DD cycad species. As such, our study allows for a comprehensive picture of the extinction pattern in cycad group and elucidates the evolutionary pre-disposition of plants to extinction risk.

Sources of Funding

Funding for this study was provided to Dr Kowiyou Yessoufou through the South Africa’s National Research Foundation Grant No: 103944, South Africa, and the 2016 Research Prize of the Société Botanique de France, France (No grant number).

Contributions by the Authors

K.Y. designed the project, L.T.M. and K.Y. collected and analysed the data, L.T.M. and K.Y. wrote the manuscript and K.Y. coordinated the whole project.

Conflict of Interest Statement

None declared.

Acknowledgements

We thank the editor and two anonymous reviewers who have contributed greatly to the quality of this paper.

Supporting Information

The following additional information is available in the online version of this article —

Table S1. Raw data for all ecological, biological and evolutionary information used in this study.

Figure S1. Test for autocorrelation among variables.

Figure S2. Aggregation graphic of the imputed missing data for all threats identified for cycads. Left: Barplots indicating that all threats have the same amount of imputed values; Right: An aggregation plot, showing all existing combinations of imputed (orange) and observed (blue) values. Far Right: small barplot showing the frequencies of different combinations. Threats are coded as follows: Hab_Des = habitat destruction; Def = deforestation; Med = medicinal uses; Ove = over-collection; Fl_Dr = flood/drought; Rep = reproduction failure; Gr = grazing; Inv = invasive species; No_th = number of threats.

Figure S3. Aggregation graphic of the imputed missing data for all predictors of extinction risk included in the study. Left: Barplots indicating geographic range (m²) and Minimum height have the largest amount of imputed values; Right: An aggregation plot, showing all existing combinations of imputed (orange) and observed (blue) values. Far Right: small barplot showing the frequencies of different combinations. Overall, the aggregation plot shows that a species for which the geographic range (m²) is missing will also likely lack data on altitude and height. The predictors are: ED = evolutionary distinctiveness; m² = geographic range measured as surface area; al_min = minimum altitude; al_max = maximum altitude; H_min = minimum height; H_max = maximum height; Gen = generation time; D_min = minimum diameter; D_max = maximum diameter; Geo = geographic range measured as number of locations of species occurrence.

Figure S4. Aggregation graphic of the imputed missing data for some predictors of extinction risk. These predictors are those that have minimum and maximum values as indicated in [Supporting Information—Fig. S3] (e.g. minimum and maximum height); the difference with [Supporting Information—Fig. S3] is that we only show maximum value of predictors unlike in [Supporting Information—Fig. S3] where both maximum and minimum values are shown. Left: Barplots indicating geographic range (m²) and Minimum height have the largest amount of imputed values; Right: An aggregation plot, showing all existing combinations of imputed (orange) and observed (blue) values. Far Right: small barplot showing the frequencies of different combinations. Overall, the aggregation plot shows that a species for which the geographic range (m²) is missing will also likely lack data on altitude and height. The predictors
are: ED = evolutionary distinctiveness; \(km^2 \) = geographic range measured as surface area; al\(_{mi} \) = minimum altitude; al\(_{ma} \) = maximum altitude; H\(_{min} \) = minimum height; H\(_{max} \) = maximum height; Gen = generation time; D\(_{mi} \) = minimum diameter; D\(_{ma} \) = maximum diameter; Geo = geographic range measured as number of locations of species occurrence.

Literature Cited

Bennett PM, Owens IPF. 1997. Variation in extinction risk among birds: chance or evolutionary predisposition. *Proceedings of Royal Society London Biology* **264**:401–408.

Bielby J, Cunningham AA, Purvis A. 2006. Taxonomic selectivity in amphibians: ignorance, geography or biology? *Animal Conservation* **9**:135–143.

Bradshaw CJA, Giam X, Tan HTW, Brook BW, Sodhi NS. 2008. Threat or invasive status in legumes is related to opposite extremes of the same ecological and life history attributes. *Journal of Ecology* **96**:869–883.

Brenner ED, Stevenson DW, Twigg RW. 2003. Cycads: evolutionary innovations and the role of plant-derived neurotoxins. *Trends in Plant Science* **8**:446–452.

Cardillo M. 2003. Biological determinants of extinction risk: why are smaller species less vulnerable? *Animal Conservation* **6**:63–69.

Christensen RHB. 2013. Package “Ordinal”: regression models for ordinal data. Copenhagen, Denmark. (Version 2012.09-11).

Condamine FL, Nagalingum NS, Marshall CR, Morlon H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMC Evolutionary Biology* **15**:65.

Condamine FL, Rolland J, Morlon H. 2013. Macroevolutionary perspectives to environmental change. *Ecology Letters* **16**:72–85.

Cooper N, Bielby J, Thomas HG, Purvis A. 2008. Macroevolution and extinction risk correlates of frogs. *Global Ecology and Biogeography* **17**:211–221.

Dantas VL, Pousas JG. 2013. The lanky and the corky: fire-escape strategies in savanna woody species. *Journal of Ecology* **101**:1265–1272.

Daru BH, Yessoufou K, Mankga LT, Davies TJ. 2013. A global trend towards the loss of evolutionary unique species in Mangrove ecosystem. *PLoS ONE* **8**:e66686.

Davies TJ, Smith GF, Bellstedt DU, Boatwright JS, Byetebier B, Cowling RM, Forest F, Harmon LJ, Muasya AM, Schrire BD, Steenkamp Y, van der Bank M, Savolainen V. 2011. Extinction risk and diversification are linked in a plant biodiversity hotspot. *PLoS Biology* **9**:e1000620.

Davies TJ, Yessoufou K. 2013. Revisiting the impacts of non-random extinction on the tree-of-life. *Biological Letters* **20130343**.

Fisher DO, Owens IPF. 2004. The comparative method in conservation biology. *Trends Ecology Evolution* **19**:391–398.

Fjelds J, Lovett JC. 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. *Biodiversity and Conservation* **6**:325–346.

Freiville H, McConway K, Dodd M, Silvertown J. 2007. Prediction of extinction in plants: interactions of extrinsic threats and life history traits. *Ecology* **88**:2662–2672.

Fritz SA, Purvis A. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. *Conservation Biology* **24**:1042–1051.

Grandcolas P, Nattier R, Legendre F, Pellens R. 2011. Mapping extrinsic traits such as extinction risks or modelled bioclimatic niches on phylogenies: does it make sense at all? *Cladistics* **27**:181–185.

Hendricks JS. 1987. The Gondwanan Cycas. *Encephalartos* **10**:24–25.

Hermsen EJ, Taylor EL, Taylor TN. 2009. Morphology and ecology of the Antarcticycas plant. *Review of Palaeobotany and Palynology* **153**:108–123.

Isaac NJ, Turvey ST, Collen B, Waterman C, Baillie JE. 2007. Mammals on the EDGE: conservation priorities based on threat and phylogeny. *PLoS ONE* **2**:e296.

IUCN. 2010. IUCN Red List Categories and Criteria. Version 3.1. www.iucnredlist.org (August 2016).

Leao TCC, Fonseca CR, Peres CA, Tabarelli M. 2014. Predicting extinction risk of Brazilian Atlantic Forest Angiosperms. *Conservation Biology* **28**:1349–1359.

Lindström AJ. 2009. Typification of some species names in Zamia L. (Zamiaceae), with an assessment of the status of Chigua D.W. Stev. *Taxon* **58**:265–270.

Luiz OJ, Woods RM, Madin EMP, Madin JS. 2016. Predicting IUCN extinction risk categories for the world’s data deficient groupers (Teleostei: Epinephelidae). *Conservation Letters* **9**:342–350.

Mooers AØ, Faith DP, Maddison WP. 2008. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. *PLoS ONE* **3**:e3700.

Mooers A, Gasueil O, Stadler T, Li H, Steel M. 2012. Branch lengths on birth–death trees and the expected loss of phylogenetic diversity. *Systematic Biology* **61**:195–203.

Mugasha WA, Bollandsås OM, Eid T. 2013. Relationships between diameter and height of trees in natural tropical forest in Tanzania. *Southern Forests* **75**:221–237.

Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Matthews S. 2011. Recent synchronous radiation of a living fossil. *Science* **334**:796–799.

Norstog KJ, Nicholls TJ. 1997. The biology of the cycads. Ithaca, New York: Cornell University Press.

Osborne R, Calonje MA, Hill KD, Stanberg L, Stevenson DW. 2012. The world list of Cycads. *Memoirs of the New York Botanical Garden* **106**:480–510.

Pellens R, Grandcolas P. 2016. Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis. Switzerland: Springer International Publishing AG.

Printzner B. 2011. Visualization of imputed values using the R-package VIM. http://cran.r-project.org/web/packages/VIMGUI/ vignettes/VIM-Imputation.pdf (29 April 2017).
Purvis A. 2008. Phylogenetic approaches to the study of extinction. *Annual Review of Ecology and Systematics* **39**:301–319.

Purvis A, Agapow PM, Gittleman JL, Mace GM. 2000. Nonrandom extinction and the loss of evolutionary history. *Science* **288**:328–330.

R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Russell GJ, Brooks TM, McKinney MM, Anderson CG. 1998. Present and future taxonomic selectivity in birds and mammal extinctions. *Conservation Biology* **12**:1365–1376.

Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. 2011. The influence of late quaternary climate-change velocity on species endemism. *Science* **334**:660–664.

Schachat SR, Mulcahy DG, Mendelson JR III. 2016. Conservation threats and the phylogenetic utility of IUCN Red List rankings in *Incilius* toads. *Conservation Biology* **30**:72–81.

Sodhi NS, Koh LP, Peh KS-H, Tan HTW, Chazdon RL, Corlett RT, Lee TM, Cowell RK, Brook BW, Sekercioglu CH, Bradshaw CJ.A. 2008. Correlates of extinction proneness in tropical angiosperms. *Diversity and Distribution* **14**:1–10.

Templ M, Alfons A, Kowarik A, Prantner B. 2016. VIM: Visualization and Imputation of Missing Values. R package version 4.6.0. https://CRAN.R-project.org/package=VIM.

Thomas GH, Hartmann K, Jetz W, Joy JB, Mimoto A, Mooers AO. 2013. PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences. *Methods in Ecology and Evolution* **4**:1011–1017.

Wake DB, Vredenburg VT. 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. *Proceedings of the Natural Academy of Sciences of the United States of America* **11**:466–11473.

White RL, Bennett PM. 2015. Elevational distribution and extinction risk in birds. *PLoS ONE* **10**:e0121849.

Whittaker RJ, Araujo MB, Paul J, Ladle RJ, Watson JEM, Willis KJ. 2005. Conservation Biogeography: assessment and prospect. *Diversity and Distributions* **11**:3–2.

Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Davis CC. 2008. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. *Proceedings of the Natural Academy of Science United State of America* **105**:17029–17033.

Vamosi JC, Vamosi SM. 2008. Extinction risk escalates in the tropics. *PLoS ONE* **3**:e3886.

Vamosi JC, Wilson JRU. 2008. Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. *Ecology Letters* **11**:1047–1053.

Veron S, Penone C, Clergeau P, Costa GC, Oliveira BF, Sao-Pedro VA, Pavone S. 2016. Integrating data-deficient species in analyses of evolutionary history loss. *Ecology and Evolution* **6**:8502–8514.

Yessoufou K, Bamigboye SO, Daru BH, van der Bank M. 2014. Evidence of constant diversification punctuated by a mass extinction in the African cycads. *Ecology and Evolution* **4**:50–58.

Yessoufou K, Daru BH, Davies TJ. 2012. Phylogenetic patterns of extinction risk in the Eastern arc ecosystem an African biodiversity hotspot. *PLoS ONE* **7**:e47082.

Yessoufou K, Davies TJ. 2016 *Re-considering the loss of evolutionary history: how does non-random extinction prune the tree of life?* In: Pellens R, Grandcolas P, eds. Biodiversity conservation and phylogenetic systematics. *Vol. 14*: 57–80.

Yessoufou K, Daru BH, Tafirei R, Elansary HO, Rampedi I. 2017. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. *Ecology and Evolution* **7**:2735–2746.