Catalytic Properties of the Isolated Diaphorase Fragment of the NAD\(^+\)-Reducing [NiFe]-Hydrogenase from *Ralstonia eutropha*

Lars Lauterbach\(^1\), Zulkifli Idris\(^2\), Kylie A. Vincent\(^2\)*, Oliver Lenz\(^1\)*

\(^1\)Institute of Biology, Department of Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany, \(^2\)Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom

Abstract

The NAD\(^+\)-reducing soluble hydrogenase (SH) from *Ralstonia eutropha* H16 catalyzes the H\(_2\)-driven reduction of NAD\(^+\), as well as reverse electron transfer from NADH to H\(^+\), in the presence of O\(_2\). It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H\(^+/\)H\(_2\) cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD\(^+\) reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD\(^+\)/NADH couple. Michaelis-Menten constants of 56 \(\mu\)M and 197 \(\mu\)M were determined for NADH and NAD\(^+\), respectively. Catalysis in both directions is product inhibited with \(K_i\) values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O\(_2\), however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.

Introduction

One obvious strategy of evolution is the recurrent use of conserved protein domains or even whole catalytic modules in different contexts allowing the connection of previously unlinked catalytic functions. One prominent example is Complex I, which usually connects the oxidation of NADH with the reduction of ubiquinone coupled to transmembrane H\(^+\) pumping, thereby establishing a proton-motive force. Substructures of Complex I are found as constituents of several different proteins and protein complexes in all three domains of life [1]. For instance, the NADH dehydrogenase/diaphorase module of Complex I is part of NAD\(^+\)-reducing formate dehydrogenases, and hydrogenases [2,3] (see Figs. S1,S2,S3). Here we concentrate on the functional characterization of the NADH dehydrogenase module of the NAD\(^+\)-reducing soluble [NiFe]-hydrogenase (SH) from the Knallgas bacterium *Ralstonia eutropha* H16 [4,5,6,7,8]. The SH belongs to a subclass of “bidirectional” [NiFe]-hydrogenases and provides cells with reducing equivalents in the form of NADH generated from the H\(_2\) oxidation. The thermodynamic potentials for the 2H\(^+)/\)H\(_2\) couple (\(-410\) mV) and the NAD\(^+\)/NADH couple (\(-320\) mV) at pH 7.0 are closely spaced, so the catalytic direction is susceptible to small changes in reactant/product concentrations. The SH may also function as an electron valve in vivo under conditions of excessive reductant supply, coupling NADH oxidation to H\(^+\) reduction [9], as proposed for the cyanobacterial bidirectional hydrogenases [10]. Catalytic activity of *R. eutropha* SH is sustained in both directions in the presence of O\(_2\) [7] which makes the enzyme attractive for biotechnological applications. Thus the SH belongs to a group of “O\(_2\) tolerant” [NiFe]-hydrogenases including the membrane-bound hydrogenase from *R. eutropha* and the Hyd 1 enzymes of *Aquifex aeolicus*, and *Escherichia coli* [11,12,13].

R. eutropha SH comprises six subunits, HoxHYFUI2 and can be considered as two catalytic moieties, HoxHY and HoxFU which harbour the hydrogen cycling and diaphorase (NAD\(^+\)/NADH cycling) activities respectively, Figure 1. All subunits of the SH, except for HoxI, have orthologous counterparts within the peripheral arm of Complex I. HoxH and HoxY share similarities with the Nqo4 and Nqo6 subunits (nomenclature according to the crystallized peripheral arm of Complex I from *Thermus thermophilus* [14]), whereby the quinone-binding site in Nqo4 is replaced by the Ni-Fe active site in HoxH [14]. The SH diaphorase module is
been observed both for SH and Complex I [20,21]. In the case of Complex I, it has been postulated that the [2Fe-2S] cluster N1a in Nqo2, which lies outside the main electron transfer chain (Figure 1B), diminishes the production of reactive oxygen species (ROS) by accepting electrons from the reduced flavin [22,23]. Notably, a [2Fe-2S] cluster at the corresponding position is absent in the SH.

We have used genetic strategies to separate and isolate, individually, the HoxHY and HoxFU moieties. The isolated HoxHY module shows H2 oxidation and H+ reduction activity in solution assays and in protein film electrochemistry (PFE) experiments [16]. We have now applied a similar strategy to isolate and characterize the HoxFU diaphorase moiety independently, involving overproduction of the heterodimeric HoxFU protein in R. eutropha and purification of the protein to homogeneity. Biochemical, electrochemical and spectroscopic methods were used to probe details of catalytic bias, ROS production and O2 tolerance. Results are interpreted alongside the behavior and physiological role of the native SH (HoxHYFU12) and the characteristics reported for Complex I.

Results

Homologous overproduction and purification of the functional SH diaphorase moiety

For homologous overproduction and subsequent purification of HoxFU, a plasmid was used that originally contained the SH-related hoxFUHWHI operon. From this plasmid, the hoxYH genes, encoding the hydrogenase module, were deleted and the 5′ end of hoxF was equipped with a Strep-tagII-encoding sequence.

In order to test whether the resulting plasmid pGE553 encodes functional hoxFU, it was conjugatively transferred to the R. eutropha derivative HF903, which carries an in-frame deletion in the hoxFU genes. Table 1 shows data confirming that plasmid pGE553 indeed restores H2-dependent NAD+ reducing activity. The observation that only 50% of the wild-type activity was obtained can be explained by the fact that the in trans complementation provokes a spatial separation of the synthesis of the hydrogenase and diaphorase moieties, which may lead to a less efficient assembly of the modules in *vivo*.

For HoxFU purification, plasmid pGE553 was transferred to R. eutropha HF424, which is a mutant derivative that does not synthesize the energy-generating membrane-bound and soluble hydrogenase [24]. The resulting transconjugant cells were grown in liquid fructose-glycerol minimal medium to the late stationary phase. Strep-tagged HoxFU heterodimer was purified to homogeneity from the soluble cell extract by means of Strep-Tactin affinity and subsequent size exclusion chromatography. The second purification step

Table 1. SH activities in CTAB-treated cells of different R. eutropha derivatives grown in FGN medium.
**R.
eutropha
strain
HF798
HF903
HF903 (pGE553)

Values represent the arithmetic mean and standard deviation of three independent experiments. doi:10.1371/journal.pone.0025939.001001

"..."
was efficient in removing inactive HoxFU conformations and a non-related protein of ca. 60 kDa (Figure 2). HoxFU eluted in a prominent peak at an apparent molecular mass of 110 kDa. From 32 g cells (wet weight), we routinely obtained 0.5 mg of HoxFU with high activity (Table S1).

The two protein bands with molecular masses of approximately 25 and 27 kDa (Figure 2) could be unambiguously assigned to HoxU by peptide mass fingerprinting (Table S2). Both subforms still contained the original N- and C-termini, which excludes proteolysis as the reason for the different electrophoretic migration properties and suggests a yet unidentified protein modification.

On the basis of SDS-PAGE analysis, no protein bands attributable to HoxU were observed in the purified HoxFU samples (Figure 2), confirming that the HoxI subunits dissociate from HoxFU during the purification process, which employed a higher ionic strength (150 mM KCl) and slightly alkaline conditions (pH 8.0) [6].

Biochemical characterization of purified HoxFU

The NADH:benzyl viologen (BV) oxidoreductase activity of the HoxFU preparation was determined at pH values ranging from 6–11 (Figure S4). Maximum activity was reached at pH 10. Notably, the pH optimum for H$_2$-dependent NAD$^+$ reduction catalyzed by the native SH is pH 8.0 [7]. However, the HoxFU-mediated NADH oxidation activity at pH 10 was significantly diminished after approximately 30 s indicating protein instability at this non-native SH. Pre-incubation of HoxFU for 15 min with NADH at concentrations exceeding the K_M led to a significant decrease in activity (Table 2). This was consistent with the release of the HoxFU-bound FMN into the supernatant as determined by fluorescence spectroscopy. Minimal background FMN release, even in the absence of NADH, can be explained by mechanical and slight temperature changes in the course of the centrifugation process.

To exclude free FMN in the assay prevented the inactivation and even increased the activity of the HoxFU module. A similar effect has previously been observed for native SH [7,15].

Cofactor analysis in HoxFU

Fluorescence determination revealed 0.8–0.9 FMN per HoxFU unit, and the FMN in the catalytically active HoxFU protein showed typical spectrofluorometric emission and excitation spectra (Figures S7, S8) [7]. Using inductively coupled plasma optical emission spectrometry, 11–13 Fe per FMN were detected. This is close to the 14 Fe atoms predicted for HoxFU on the basis of conserved iron/sulfur cluster coordination sites that are involved in Fe-S cluster coordination in Complex I (Figures S1, S2, S3).

The content and redox activity of cofactors in HoxFU was further analyzed by UV/visible spectroscopy. Figure 3 (panel A) shows broad shoulders at around 380 nm and 450 nm which can be attributed to FMN in its oxidized form [26,27]. Additional shoulders at 322/380 nm and 421/480 nm are consistent with the presence of [2Fe-2S] and [4Fe-4S] clusters, respectively [28,29,30]. On the basis of these results and the homology to the Nqo1, Nqo2 and Nqo3 subunits of Complex I from R. thermophilus (Figures S1, S2, S3), we assign one FMN, one [2Fe-2S] cluster and three [4Fe-4S] clusters as the cofactor constituents of the HoxFU modules from R. eutropha. The high similarity of the absorbance spectrum of oxidised R. eutropha HoxFU to that of the HoxFU subcomplex from Rhodococcus opacus [17] suggests that these proteins have the same cofactor composition.

Dithionite-reduced HoxFU samples display shoulders at 555 nm, 605 nm and 665 nm (Figure 3, panel B), which are found for neutral semiquinone radicals [31,32,33,34,35,36]. We cannot exclude contributions from [Fe-S] clusters to these signals. However, due to the low extinction coefficients of [2Fe-2S] and [4Fe-4S] clusters in the reduced state, they should be minor. The additional signals at 370 nm 388 nm and 399 nm can be attributed to the anionic semiquinone radical form of the flavin [31,34,35,36]. So far the anionic semiquinone level of the flavin has not been reported for any SH [17] suggesting that this cannot be attributed to FMN in its oxidized form [26,27]. Additional shoulders at 322/380 nm and 421/480 nm are consistent with the presence of [2Fe-2S] and [4Fe-4S] clusters, respectively [28,29,30]. On the basis of these results and the homology to the Nqo1, Nqo2 and Nqo3 subunits of Complex I from R. thermophilus (Figures S1, S2, S3), we assign one FMN, one [2Fe-2S] cluster and three [4Fe-4S] clusters as the cofactor constituents of the HoxFU modules from R. eutropha. The high similarity of the absorbance spectrum of oxidised R. eutropha HoxFU to that of the HoxFU subcomplex from Rhodococcus opacus [17] suggests that these proteins have the same cofactor composition.

Table 2. NADH-mediated reduction leads to the release of FMN and concomitant inactivation of the HoxFU moiety.

NADH [µM]	FMN release [%]	Specific activity [U/mg]a					
	– FMN	+ FMN					
0	16±2	294±8	356±0	297±41	371±6	138±35	356±22
25	29±3	297±41	371±6	138±35	356±22		
100	62±3	138±35	356±22				
500	96±4	59±10	246±41				

*Purified HoxFU was incubated with various NADH concentrations in the presence (500 µM) and absence of exogenous FMN. After 15 min, benzyl viologen was added and the specific NADH–BV activity was determined. The release of FMN from the HoxFU module (without addition of exogenous FMN) was determined by analyzing the HoxFU filtrate from centrifugal filter devices (3 kD cut-off size, 4°C, 7 minutes at 14000 x g Millipore, Bedford, MA, USA) by fluorescence spectroscopy.

doi:10.1371/journal.pone.0025939.t002
state is only formed at low potentials that can be experienced in isolated HoxFU.

Using an extinction coefficient of 12,500 M⁻¹ cm⁻¹ for FMN at 450 nm (the value was chosen because it represents an average of the extinction coefficients for bound FMN in various proteins ranging between 10,500–15,400 M⁻¹ cm⁻¹ [37]), 0.9 FMN per HoxFU protein was calculated from the difference spectrum. This shows that the FMN in HoxFU was reduced quantitatively by dithionite.

Production of reactive oxygen species

For quantification of superoxide production by HoxFU in the presence of NADH and O₂, we used an established assay that exploits the superoxide-dependent oxidation of hydroxylamine to nitrite [21]. In order to avoid HoxFU inactivation, measurements were done in the presence of 25 µM NADH which is below Kₘ and prevented inactivation and concomitant FMN release from HoxFU upon reaction with NADH. The HoxFU module generated 53.5 nmol superoxide per mg per min at ambient O₂ (300 µM [38]) corresponding to a turn-over rate of 5.9 min⁻¹ (Table 3). Thus, the HoxFUs-mediated O₂−-reduction activity was more than 6500-fold lower than the BV reduction activity (349 µmol min⁻¹ mg⁻¹). However, in fully O₂−-saturated buffer (~1.4 mM O₂), the superoxide production increased by 8–9 fold.

Table 3. NADH-mediated superoxide production by HoxFU in the presence of O₂−.

O₂ concentration in the assay [µM]	Superoxide production	Turnover rate
300 µM (air-saturated)	53.5±7.4	5.9±0.8
1428 µM (100% O₂)	465.0±23.9	51.2±2.6
1428 µM (100% O₂+650 Units SOD)	13.0±4.9	1.4±0.5

aHoxFU (4.9 pmol) was incubated with 25 µM NADH at two different O₂ concentrations. Superoxide production was measured spectrophotometrically on the basis of hydroxylamine oxidation. bOne Unit of superoxide dismutase (SOD) is defined as the amount of SOD required to inhibit the rate of xanthine oxidase-mediated reduction of cytochrome c by 50% [17]. Values represent the arithmetic means and standard deviations of three independent experiments.

doi:10.1371/journal.pone.0025939.t003

The addition of superoxide dismutase essentially abolished the liberation of superoxide confirming the specificity of the assay (Table 3).

Electrochemical analysis

Figure 4 shows voltammograms recorded at an electrode modified with HoxFU in Tris-HCl buffer solution (50 mM, pH 8.0) at 30°C which show that the diaphorase moiety catalyses both NAD⁺ reduction at low potentials and NADH oxidation at higher potentials. The electrode is rotated rapidly to provide an efficient supply of substrate and removal of product at the electrode. No Faradaic current is observed for an unmodified electrode in solutions containing NAD⁺ and NADH over the experimental potential range (~600 to +250 mV). The voltammograms in Figure 4 were recorded at different ratios of NAD⁺ : NADH with the total concentration [NAD⁺]+[NADH] kept at 2 mM; these concentrations are likely to cover the range found in the cytoplasm under normal cell conditions [39]. At 2 mM NAD⁺ (panel A), a well-defined electrocatalytic wave corresponding to NAD⁺ reduction by HoxFU commences at about −280 mV. At 2 mM NADH (panel B), oxidation of NADH commences at ca. −450 mV. The drop in catalytic current between the first and second cycles is likely to arise from slow dissociation of the protein film from the electrode, but could also be due to protein denaturation or loss of activity due to dissociation of FMN. Figure 4C shows voltammograms recorded at different mixtures of NAD⁺ and NADH. The catalytic current now crosses the current axis close to the thermodynamic potential for E(NAD⁺/NADH) for each set of conditions (shifting by 30 mV with each decade of change in [NAD⁺]/[NADH]). Potentials for the 2H⁺/H₂ couple in the range 100 nM–10 µM H₂ (pH 8.0, 30°C) are marked on panel C (shaded box). Thermodynamically efficient catalysis of NAD⁺ reduction and NADH oxidation by HoxFU maximizes the driving force for coupling these reactions to H₂ oxidation and H⁺ reduction respectively. Each trace in Figure 4C was performed on a fresh film of HoxFU. Variation in protein coverage from one film to another means that the magnitude of the current is not a reliable indicator of the absolute activity at each substrate concentration. However, the relative current (activity) for NAD⁺ reduction vs NADH oxidation in each voltammogram, measured at 140 mV on either side of the zero current potential (panel D), indicates the catalytic bias at each set of conditions. At all NAD⁺ / NADH ratios sampled in this set of experiments the catalytic activity is higher for NAD⁺ reduction than NADH oxidation.
In the absence of substrate, cyclic voltammograms for HoxFU show peaks at ca 280 mV on the forward and return scans characteristic of a surface adsorbed species (Figure S9). Free FMN adsorbs strongly onto a graphite electrode, giving rise to peaks at the same potential. It is thus likely that the features observed for HoxFU arise from flavin cofactor that has dissociated from the protein and adsorbed onto the graphite, rather than electron transfer to and from flavin within the protein. The peaks were not observed in catalytic voltammograms recorded in the presence of \(\text{NAD}^+ \) and/or \(\text{NADH} \) (Figure 4).

Electrochemical determination of \(K_M \) for NADH oxidation and NAD\(^+\) reduction

We next used electrochemical experiments to determine Michaelis-Menten constants for NADH oxidation, \(K_{\text{M,NADH}} \), and NAD\(^+\) reduction, \(K_{\text{M,NAD}} \). Figure 5A shows an experiment in which the electrode is held at a constant potential of \(-62\) mV while the concentration of NADH is increased by injections into the solution. The inset shows a plot of \(\text{[NADH]} / \text{current} \) vs \(\text{[NADH]} \). Since the current is directly proportional to catalytic activity, this plot is analogous to a Hanes or Woolf plot [40], [substrate]/activity vs [substrate], such that the x-intercept = \(-K_M\). This experiment was performed 6 times, giving a mean value for \(K_{\text{M,NADH}} \) of \(58 \pm 18 \) \(\mu\text{M} \), comparable to the value obtained from solution experiments (56 \(\mu\text{M} \)) with BV as electron acceptor. Figure 5B shows an analogous experiment for determination of a value for \(K_{\text{M,NAD}} \), in which the electrode is held at a constant potential of \(-412\) mV while the concentration of NAD\(^+\) is increased. This experiment was repeated 9 times, yielding \(K_{\text{M,NAD}} \) = 197 \pm 28 \(\mu\text{M} \). Following the first addition of NAD\(^+\) (89 \(\mu\text{M} \)) to the substrate-free solution, the current magnitude increases slowly (Figure 5B) whereas the response on addition of NADH is fast (panel A). The slow response to NAD\(^+\) is therefore not merely due to solute mixing and suggests that a structural rearrangement occurs when enzyme molecules first encounter NAD\(^+\).

Product inhibition of NADH oxidation and NAD\(^+\) reduction

The results in Figure 6A show that NADH oxidation by HoxFU is inhibited by product, NAD\(^+\). In the experiment shown in panel A(i), NADH is first introduced at a standard concentration,
be modelled by a simple function. The set of experiments was driven by the electrode surface, or damage to the enzyme, and therefore cannot be used to determine a value for the inhibition constant, K_i. However, the drop in current that follows each NADH addition is not significantly inhibited by O$_2$.

Inactivation at low potentials: substrate concentration effects

The cyclic voltammograms in Figure 7 were recorded at a slow scan rate during reduction of NAD$^+$ by HoxFU and show irreversible loss of activity at low potentials. During these slow scans, there is considerable background loss of enzyme activity attributed to dissociation of protein from the electrode. However, an additional effect is observed in cycles with a lower potential limit which is more negative than about -0.4 mV: considerable hysteresis is observed in the catalytic current for the forward and reverse potential sweeps (see Figure 7B) and the second cycle shows a shift in the onset for catalysis towards more negative potentials. This is confirmed by examination of the derivative plot, dI/dE vs E (not shown). This effect becomes more pronounced as the concentration of NAD$^+$ is decreased, and at 25 μM NAD$^+$ activity is lost almost completely during the forward sweep. The experiment was repeated keeping a constant total concentration of [NAD$^+$/NADH] (2 mM), but the extent of irreversible inactivation was indistinguishable (data not shown).

Activity in the presence of O$_2$

Figure 8 shows experiments which report on the activity of HoxFU in the presence of O$_2$. The experiment shown in Panel A was carried out in a solution of 2 mM NADH, and the potential was held at $+243$ mV in order to drive NADH oxidation by the enzyme while avoiding direct reduction of O$_2$ at the graphite electrode. Some background loss in current is observed due to instability of the enzyme film. At 25 s, an aliquot of buffer containing 2 mM NADH (to avoid substrate dilution) and saturated with O$_2$ was injected into the cell solution to give an O$_2$ concentration of ca 0.33 mM. No drop in current in response to O$_2$ was detected, indicating that oxidation of NADH by HoxFU is not significantly inhibited by O$_2$.

The cyclic voltammograms in panel B (all recorded at 25 μM NAD$^+$) demonstrate the ability of HoxFU to reduce NAD$^+$ in the presence of O$_2$. Experiments in this potential regime are more complicated because of direct reduction of O$_2$ at the electrode, but we use the characteristic shape of the HoxFU electrocatalytic wave (solid black trace) to confirm HoxFU activity. In the red and blue traces, an aliquot of O$_2$-saturated buffer (containing NAD$^+$) was injected at approximately -310 mV on the sweep towards negative potentials; the O$_2$ is then flushed out of solution by the rotating electrode during the course of the scan. For an unmodified electrode (no HoxFU, blue trace), the O$_2$ injection leads to a rapid increase in reductive current followed by a decay in current as the O$_2$ concentration diminishes. For a HoxFU electrode (freshly prepared film, red), introduction of O$_2$ gives rise to an increase in current due to O$_2$ reduction superimposed on enzyme-catalyzed NAD$^+$ reduction; the total current continues to rise as the driving force for NAD$^+$ reduction increases, but slowly returns to the level expected for the enzyme under fully anaerobic conditions.
conditions as O2 is flushed out. Subtraction of the blue trace (contribution from direct O2 reduction) from the red HoxFU trace yields the thin black line which is similar in shape to the solid black trace, confirming that the characteristic shape of the HoxFU electrocatalytic wave is retained in the presence of O2. (Variations in capacitive current and O2 reduction current for bare graphite versus the enzyme-modified electrodes cause slight errors in the subtraction, so the traces do not overlay perfectly.)

The ability of HoxFU to reduce NAD\(^+\) in the presence of O2 is further confirmed by an experiment in which HoxFU is inhibited by ADP-ribose in the presence and absence of O2 (Figure S10).

Discussion

In this work, we report the homologous overproduction and isolation of the HoxFU diaphorase subcomplex of *R. eutropha* O2\(^-\)-tolerant NAD\(^+\)-reducing soluble hydrogenase. The subcomplex is catalytically active in transferring electrons from NADH to benzyl viologen, and exhibits electrocatalytic NADH oxidation and NAD\(^+\) reduction on a graphite electrode. This has allowed us to characterize the diaphorase activity of the SH in isolation from its hydrogen cycling moiety and full electron transfer chain. We have therefore been able to examine the catalytic bias of the NAD\(^+\)/NADH site, its ability to function in the presence of O2, and its production of ROS under aerobic conditions. These results are interpreted in the context of the behavior of the intact hexameric SH, the physiological role of the enzyme, and its relationship to Complex I.

Direction of catalysis and possible control mechanisms

No crystallographic structure is available for an NAD\(^+\)-reducing hydrogenase, but a high-resolution X-ray structure of the soluble domains of *T. thermophilus* Complex I shows NADH stacked next to the FMN of Nqo1 (analogous to FMN-b of the SH) in an orientation compatible with direct hydride transfer from NADH to FMN \[41\]. It is highly likely that oxidation of NADH in the SH also proceeds via direct hydride transfer to oxidized FMN. Electrons must then be transferred one at a time from the reduced FMN to the FeS clusters or artificial electron acceptors (here, BV).

At least two alternative reaction pathways are possible: (1) The FMN site is re-oxidized by an electron acceptor before dissociation of NAD\(^+\) or (2) NAD\(^+\) may dissociate from the reduced binding site, leaving an electron acceptor to re-oxidize the product-free enzyme. A simple hyperbolic initial rate is observed for NADH oxidation by BV (Figure S6), which, according to steady-state kinetics, is consistent with the behavior expected for route (1). The reverse reaction, reduction of NAD\(^+\), observed for HoxFU on an electrode, is likely to proceed via hydride transfer from reduced flavin to NAD\(^+\), although the series of steps during catalysis need not necessarily represent the reverse of steps in NADH oxidation since the reactions are driven at different potentials (energies).

Figure 6. Demonstration of product inhibition of HoxFU. Raw data for experiments examining NADH oxidation at \(-412\) mV (B) and NAD\(^+\) reduction at \(-62\) mV (A) are shown in plot (i) in each case. The substrate concentration was zero at the start of each experiment, and 50 \(\mu\)M substrate was then injected as indicated to provide a control step for normalization of the catalytic activity of each film. The substrate concentration was then adjusted to \(x\ \mu\)M (by dilution or addition as required) in the experiments shown in panels labelled (i), \(x = 100\). Aliquots of the inhibitor were then injected from a stock solution containing \(x \mu\)M substrate in order to keep the substrate level at \(x \mu\)M throughout the remainder of the experiment. Panels labelled (ii) show Dixon plots presenting data from a series of such experiments. Experiments were performed at 30°C, electrode rotation rate: 2500 rpm. doi:10.1371/journal.pone.0025939.g006

NAD\(^+\)-Reduction by [NiFe]-Hydrogenase Submodule

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e25939
When *R. eutropha* grows under aerobic growth conditions in the presence of H$_2$, the normal direction of catalysis for the SH is NAD$^+$ reduction by H$_2$. The majority of NADH produced by the SH will be used by Complex I to establish a proton motive force, while some NADH will be converted by transhydrogenases to NADPH which is required for anabolic metabolism [42]. It has been reported that the SH may also act as an electron valve, working in the reverse direction (NADH oxidation coupled to H$^+$ reduction) under conditions where the NADH/NAD$^+$ pool has become too reduced [9]. In particular, short-lived NADH oxidation coupled to H$^+$ reduction may be important in balancing the NAD$^+$/NADH pools when *R. eutropha* is shifted from aerobic to anaerobic growth conditions [4,9]. Similarly, in Complex I, where the normal function is in NADH oxidation, reverse electron flow can occur under certain conditions to reduce NAD$^+$ [43]. Additionally, the ability of the SH to channel electrons from NADH to the NiFe hydrogenase active site could be important in re-activating oxidized inactive states of the Ni-Fe centre [7,16].

The bidirectionality of the HoxFU module agrees with previous observations on the cognate HoxHY hydrogenase moiety of the SH [16]. However, while native SH and HoxFU are biased towards H$_2$ oxidation and NAD$^+$ reduction, respectively, the isolated HoxHY heterodimer showed a slight preference for proton reduction. The detachment of HoxHY from the SH holoenzyme resulted in a significant decrease of both the H$_2$ oxidation and H$^+$ reduction activities preventing a firm conclusion on the catalytic bias of this module. By contrast, the HoxFU moiety showed catalytic activities comparable to those of the native SH, minimizing the risk of misinterpretation by studying a genetically constructed subcomplex.

Figure 7. Cyclic voltammograms showing irreversible inactivation of HoxFU at low potentials at different NAD$^+$ concentrations.
In each case the scan rate was 1 mV/s, the electrode was rotated at 2500 rpm, and other conditions were: 50 mM Tris-HCl buffer, pH 8.0, 30°C; (A) 2 mM NAD$^+$ and (B) 25 μM NAD$^+$. The first cycle for each film is shown as a thick line and the second cycle is shown as a thin line. Arrows indicate the direction of scan. Inset in (A) shows a scan over a narrower potential range.
doi:10.1371/journal.pone.0025939.g007

Figure 8. Ability of HoxFU to (A) oxidize NADH and (B) reduce NAD$^+$ in the presence of O$_2$.
In panel A, the potential was held at 243 mV so that the enzyme film oxidises NADH. The drop in current throughout the experiment is attributed to enzyme dissociation from the electrode. An aliquot of air-saturated solution was introduced as indicated. Panel B shows a series of cyclic voltammetric experiments recorded at a scan rate of 1 mV/s with the electrode rotated at 2500 rpm in a solution of 50 mM TrisHCl pH 8.0 containing 25 μM NAD$^+$. The solid black line shows the response for a HoxFU film as the potential is swept from −0.2 V to −0.6 V. The blue line shows the response for an unmodified electrode, as O$_2$ is introduced into the solution during the forward scan as indicated. The red line shows the response when the same amount of O$_2$ is introduced during a potential cycle for an electrode modified with a fresh film of HoxFU (normalized to the current magnitude of the black forward trace at −300 mV). Subtraction of the blue trace (contribution from direct O$_2$ reduction) from the red trace yields the thin black trace which is similar in shape to the solid black trace, confirming that the characteristic shape of the HoxFU electrocatalytic wave is retained in the presence of O$_2$.
doi:10.1371/journal.pone.0025939.g008
The affinity constants of HoxFU for NADH and NAD+, and product inhibition of both NADH oxidation and NAD+ reduction may serve as control mechanisms to balance these reactions. The value of $K_{M\text{NADH}}$, determined for HoxFU in this study (56 μM) is of the same order of magnitude as that of bovine Complex I (90 μM) [44]. This suggests that the SH is capable of functioning in the NADH oxidation direction under physiological conditions. However, assuming that the NAD+/NADH ratio under aerobic conditions in *R. eutropha* is approximately 10:1, as previously determined for *E. coli* [39], and taking into account the product inhibition at physiologically relevant levels of NAD+ ($K_{M\text{NADH}}$, ca 0.1–0.3 mM), catalytic NADH oxidation by the SH under aerobic conditions is rather unlikely. This may represent a control mechanism to avoid excessive loss of reducing power from the cell in the form of H\textsubscript{2} which escapes readily.

Electrocatalytic NAD+ reduction is clearly observed in PFE studies. These yield a value of 197\pm28 μM for $K_{M\text{NADH}}$, about 2.5 \times lower than the value obtained for H\textsubscript{2}/NAD+ activity in the intact SH (500 μM) [7]. Interestingly, these values are significantly higher than $K_{M\text{NADH}}$, for bovine mitochondrial Complex I (7 μM) [45]. The relatively low affinity of the SH for NAD+ and significant product inhibition of NAD+ reduction ($K_{M\text{NADH}}$ ca 0.2–0.3 mM) would slow the rate of H\textsubscript{2}/NAD+ activity, perhaps assisting NADH oxidation under conditions where the NADH/NAD+ pool is too reduced (i.e. by hindering the back reaction).

Protein film electrochemistry experiments on HoxFU confirm that NAD+ reduction and NADH oxidation occur very close to $E_{N\text{AD}^+/\text{NADH}}$ (corrected for the experimental conditions), i.e. HoxFU operates in either direction with minimal overpotential. This would be critical to the function of the SH because $E(H^+/H_2)$ is very closely spaced in potential to $E(N\text{AD}^+/\text{NADH})$ leaving minimal driving force for either H\textsubscript{2}/NAD+ or NADH/H\textsubscript{2} activity. Voltammetric experiments conducted over a range of NAD+/NADH ratios (with total concentration 2 mM) reveal that catalysis by HoxFU is most active in the direction of NAD+ reduction over this range, despite $K_{M\text{NADH}}$, being higher than $K_{M\text{NADH}}$. Although we are unable to determine the catalytic constant, k_{cat}, from PFE experiments because we do not know the electroactive coverage for each enzyme film, k_{cat} must be higher for NAD+ reduction relative to NADH oxidation in order for the observed current magnitude (activity) to be higher for NAD+ reduction for a given film (Figure 4C). Thus the SH would be effective in NAD+ reduction by H\textsubscript{2} under normal operating conditions in the cell despite the relatively high $K_{M\text{NADH}}$. Furthermore, continual consumption of NADH produced by the SH, either by Complex I or transhydrogenases, will keep the NADH/NAD+ pool relatively oxidized. The diaphorase moiety of the SH thus appears to be finely tuned to balance the NAD+/NADH ratio within tight limits.

Potential-dependent effects on activity and FMN release

PFE studies by Hirst and coworkers showed that NAD+ reduction by a sub-complex of Complex I from bovine mitochondria comprising the 51 and 24 kDa subunits [analogous to the subunits Nqo1 and Nqo2 of Complex I from *T. thermophilus*] undergoes a reversible reductive inactivation process at potentials close to that of the FMN centre (ca -0.4 V) [45]. Two models gave simulated voltammograms consistent with the experimental data, one involving enhanced activity at the semi-reduced level of the flavin, and the other model invoking effects of redox state of the nearby 2Fe-2S cluster in the 24 kDa subunit (analogous to Nqo2). It was suggested that this potential-dependent switch could have a physiological role in hindering reverse electron transport (ubiquinol:NAD+) in Complex I [46]. We did not observe a sharp switch-off/on in electrocatalytic NAD+ reduction by HoxFU of the SH at NAD+ concentrations above $K_{M\text{NADH}}$. The equivalent of the 24 kDa subunit 2Fe-2S cluster is absent in HoxFU, lending support to the involvement of this cluster in Complex I activity switch during NAD+ reduction. Slow loss of HoxFU activity is observed at negative potentials, particularly at NAD+ concentrations well below $K_{M\text{NADH}}$ (see the voltammogram in Figure 7B recorded at 25 μM NAD+), but there is no evidence for oxidative recovery of activity when the potential is swept back to positive values, and this effect is likely to be due to oxidative damage to the protein. Reducing conditions were previously described to lead to the loss of FMN-a in the SH or the corresponding flavin in Complex I, particularly in the absence of NAD+ [15,47].

The hysteresis observed on sustained treatment at potentials below about -0.4 mV and the shift in the onset for catalytic NAD+ reduction (Figure 7) suggests that the remaining activity is associated with a damaged fraction of enzyme. Simulation of the voltammetric response for Complex I also required consideration of enhanced denaturation or FMN loss at negative potentials. We were unable to determine the potential of FMN in HoxFU, but by analogy with the potential of the flavin in Complex I, its 2e− reduction potential is likely to be around -0.4 V, consistent with the potential at which oxidative loss of activity is observed. At concentrations of NAD+ well below $K_{M\text{NADH}}$, the flavin site spends significant time unoccupied; when the electrode is driven to low potentials in PFE studies, the FMN will be readily reduced and lost. In solution studies, high NADH concentrations were also found to cause loss of activity related to FMN release, and this can be explained by the reducing conditions imposed by a high NADH:NAD+ ratio. The stability of the catalytic current for NAD+ reduction and NADH oxidation by immobilised HoxFU seems to depend on the relative concentrations of the two substrates (see for example Figure 6), suggesting that bound substrate stabilises the enzyme to some extent. Further work to determine the midpoint potentials for redox centres in HoxFU using EPR redox titrations will be informative in making further comparisons to Complex I.

Role of FMN for superoxide production

In Complex I, reduced flavin [48] and a second site, the 4Fe-4S cluster known as N2 in Nqo6 or a semiquinone [21,49] are recognized as important contributors to superoxide (O\textsubscript{2}−) production, especially during reverse electron transfer (ubiquinol:NAD+) or at high NADH/NAD+ ratios. In the presence of NADH, HoxFU produced superoxide with a turnover rate of 5.9 min−1, which is higher than the corresponding rates of the SH holoenzyme (0.5 min−1), glutathione reductase (0.8 min−1), but moderate to low compared to succinate dehydrogenase (13 min−1), bovine heart Complex I (40 min−1), and fumarate reductase (1,600 min−1) [21,48,50]. However, we assign HoxFU as the major source of ROS in the entire SH. Direct hydride transfer between NADH and FMN will lead to the 2e−−reduced state of FMN, but single electron transfers to the Fe-S clusters will generate semiquinone radical states of the cofactor, and we observed semiquinone radical formation upon reduction of HoxFU by dithionite or NADH. In Complex I, it has been suggested that the 2Fe-2S cluster in the 24 kDa subunit may minimize the lifetime of the reduced flavin by transiently accepting an electron [22], and the absence of an analogue to this cluster in HoxFU may be a contributor to the high production of O\textsubscript{2}−.

In the intact SH, the electron transport chain and the ready availability of H+ for reduction at the NiFe hydrogenase active site is also likely to support rapid electron transfer away from reduced flavin. (In PFE experiments in which O\textsubscript{2} is introduced during electrocatalytic NADH oxidation, the electrode provides a
sink for rapid removal of electrons from reduced FMN via the FeS clusters, and we would not expect to observe significant O$_2^-$ formation.)

Ability of the SH to function under aerobic conditions

The PFE experiments on HoxFU show that its activity in either direction (NAD$^+$ reduction or NADH oxidation) is retained in the presence of O$_2$. This is consistent with the requirement for the SH to function under aerobic conditions, although the relatively high rate of superoxide production by HoxFU suggests that some electrons are 'short-circuited' at the FMN site and used for partial reduction of O$_2$. Since the superoxide production rate of the SH holoenzyme is one order of magnitude lower than that of HoxFU, the short-circuiting might be a result from the detachment of the hydrogenase module.

There is much interest in using hydrogenases (*in vitro* or *in vivo*) for H$_2$ production coupled to oxygenic photosynthesis. Thus understanding the mechanism and scope of O$_2$ tolerance in hydrogenases able to carry out hydrogen cycling in air is crucial for these applications. Recent spectroscopic studies of the SH in whole cells and the isolated HoxHY moiety indicate a standard set of inorganic ligands, *i.e.*, one CO and two CN$^-$ [16,51]. This is in contrast to previous reports that correlated the O$_2$ tolerance of the SH to the presence of additional cyanide ligands in the Ni-Fe active site [8,52,53,54]. In PFE experiments on the isolated HoxHY module of the *R. eutropha* SH, we found that O$_2$-inactivated states require low-potential electrons for re-activation [16]. In the intact SH, it is likely that electrons for reactivation of the NiFe site can be supplied from NADH oxidation at FMN-b. The fact that HoxFU remains catalytically competent in both aerobic conditions in the NiFe site can be supplied from NADH oxidation at FMN-b.

The short-circuiting might be a result from the detachment of the holoenzyme is one order of magnitude lower than that of HoxFU, the short-circuiting might be a result from the detachment of the hydrogenase module.

Materials and Methods

Purification and biochemical characterization of HoxFU

For isolation of HoxFU, cells of *R. eutropha* HF798(pGE553) harboring *Strep*-tagged HoxF in a HoxHY$^{-}$ background [6] were cultivated in mineral salts medium containing 0.4% (w/v) fructose or a mixture of 0.2% (w/v) fructose and 0.2% (v/v) glycerol (FGN medium) [55] supplemented with 1 mM NiCl$_2$ and 1 mM ZnCl$_2$. Large scale cultivation was performed in a 10 L fermenter (Braun Biotech), cells were harvested at an optical density (at 436 nm) of 9 to 11. The cells were washed with 50 mM potassium phosphate (K-PO$_4$) buffer, pH 7.0 containing 50 mM succinate and subsequently resuspended in twice their volume of resuspension buffer (50 mM Tris-Cl, 150 mM KCl, 5% glycerol, pH 8.0 containing additional Protease Inhibitor (EDTA-free, Roche)). After two passages through a chilled French pressure cell at 6.2 MPa, the suspension was centrifuged at 100,000 x g for 45 min. The soluble extract was applied to a 2 mL Sephadex Superflow column (IBA), washed with 6 mL of resuspension buffer and eluted with the same buffer containing 5 mM dithiothreitol. The eluate was then concentrated in an Amicon Diaflo cell (YM 30 membrane; Amicon, Witten, Germany) and subjected to gel filtration (Superdex 200, Amersham Biosciences, 120 mL bed volume) The column was run with resuspension buffer at a flow rate of 1 mL/min. The molecular mass of HoxFU was determined in reference to the migration properties of standard proteins with known sizes. The column steps used in this procedure ensured that Hox1 dissociated from HoxFU.

The NADH oxidation activity was measured anaerobically at 30°C in 50 mM Tris-HCl buffer (pH 8.0) containing 1 mM NADH, 5 mM benzyl viologen (oxidized), 90 µM dithionite, and 10 to 50 pmol of enzyme. The absorbance was monitored spectrophotometrically at 578 nm (Varian Cary 50, ε = 8.9 mM$^{-1}$ cm$^{-1}$ for benzyl viologen).

Protein concentrations were determined according to the method of Bradford [56]. UV/visible spectra were recorded with a Varian Cary 300 at 16°C. SDS-PAGE was performed according to Laemmli [57,58], and peptide mass fingerprinting was performed as described in reference [59]. The iron content of the diaphorase subcomplex was quantified by ICP-OES analysis (Optima 2100 DV, PerkinElmer Life Sciences) using multiple element standard solution XVI (Merck) as reference. Flavin mononucleotide concentrations were analyzed fluorometrically using the method described by Schneider [7] modified for a 96-well plate reader (Spectramax M4 spectrophuorometer). FMN (75-79% fluorometric grade, Sigma) was used to prepare standards; and these were normalized using a higher purity FMN sample (approximately 95% by HPLC, Sigma). Superoxide formation was quantified by the oxidation of hydroxylamine to nitrite which was subsequently quantified according to a modified protocol of Schneider and coworkers [21]. The reaction was conducted at 30°C in 50 mM K-PO$_4$ buffer, pH 7.0, containing HoxFU (0.54 µg) and hydroxylamine hydrochloride (0.5 mM). The formation of nitrite was determined by measuring the absorption at 530 nm at 20 min after the addition of 2-naphthylamine (2.33 mM) and sulphanilic acid (6.33 mM). Sodium nitrite was used as standard. When required, superoxide dismutase (SOD, Cu-Zn-SOD from bovine erythrocytes, Sigma) was added.

For complementation experiments hoxFU was deleted in *R. eutropha* HF798 [50] using the conditionally lethal plasmid pCH1462 [16], resulting in HF903. For H$_2$-dependent NAD$^+$-reduction measurements, cells were permeabilized by treatment with 33 mg mL$^{-1}$ cetyl-trimethyl-ammonium bromide (CTAB) as described previously [60].

Electrochemistry

Experiments were conducted in an N$_2$-filled anaerobic glove box (M. Braun or Glove Box Technology ≤1 ppm O$_2$). A pyrolytic graphite ‘edge’ (PGE) rotating disk electrode (area 0.03 cm2) was used with an electrode rotator (EG&G 636). The counter electrode was a Pt wire, and a saturated calomel electrode (SCE) was employed as the reference. The electrochemical cell was washed with *aqua regia* between sets of experiments to remove traces of FMN and then rinsed thoroughly with water. Potentials were controlled using an Autolab128N or 302N potentiostat (EcoChemie, Netherlands) and were converted to V vs standard hydrogen electrode (SHE) using the conversion E(SHE) $= E$(SCE)+242 mV at 25°C (+238 mV at 30°C). To prepare a protein film, the PGE working
electrode was first freshly polished with a slurry of titania-alumina (1 μm, Brachler), then rinsed and sonicated for 10 s before application of 0.5 μL of protein (0.4 mg mL⁻¹) which was allowed to adsorb over 30 seconds. Excess protein solution was then withdrawn from the electrode by pipette. In most cases the electrode was then rinsed in enzyme-free buffer before inserting into the electrochemical cell. No differences in electrochemical response were observed if this washing step was omitted. The temperature in the jacketed cell was maintained at 30°C by water flow from a circulator (Grant). All experiments were carried out in 50 mM Tris-HCl buffer, pH 8.0, prepared using MilliQ water (resistivity >18.2 MΩ cm). When necessary, NADH (Melford) and NAD⁺ (Sigma or Melford) were purified by ion-exchange chromatography on a Q HyperD F column (Pall Corporation), and concentrations of eluant fractions were determined by comparison of A340 and A260 with those of standard solutions. For K₄₃ and K₅₄ measurements, aliquots of NAD⁺ and NADH were injected from stock solutions into the cell solution using small-volume syringes (Hamilton). Errors on electrochemically determined K₄₃ measurements are indicated as ±1 standard deviation.

Supporting Information

Figure S1 Sequence alignment of the C-terminal part of HoxF from the *R. eutropha* SH with subunits from related hydrogenases, the FdsA subunit of the NAD⁺-dependent formate dehydrogenase of *R. eutropha* and the Complex I subunits NuoF from *R. eutropha* and Nqo1 from *T. thermophilus*. Cysteine residues involved in coordination of the [4Fe4S] cluster in Nqo1 of *T. thermophilus* [14] which are conserved in all the other proteins are boxed. Abbreviations: R.e., *R. eutropha*; R.o., *Rhodococcus opacus*; T.t., *Thiocapsa roseopersicina*; Synyc., *Synechocystis* PCC 6803; Synco., *Synechococcus* PCC 7002; T.th., *Thermus thermophilus*. Amino acids residues conserved in all proteins are marked with a *.

(TIF)

Figure S2 Sequence alignment of the N-terminal part of HoxF from the *R. eutropha* SH with subunits from related hydrogenases and the Complex I subunits NuoE from *R. eutropha* and Nqo2 from *T. thermophilus*. Cysteine residues involved in coordination of the [2Fe2S] cluster in Nqo2 [14] are indicated by black boxes. The absence of most of these cysteine residues suggests that HoxF of *R. eutropha* does not contain a [2Fe2S] cluster. Abbreviations: R.e., *R. eutropha*; R.o., *Rhodococcus opacus*; T.t., *Thiocapsa roseopersicina*; Synyc., *Synechocystis* PCC 6803; Synco., *Synechococcus* PCC 7002; T.th., *Thermus thermophilus*. Amino acids residues conserved in all proteins are marked with a *.

(TIF)

Figure S3 Sequence alignment of the HoxU from the *R. eutropha* SH with subunits from related hydrogenases, the FdsA subunit of the NAD⁺-dependent formate dehydrogenase of *R. eutropha* and the N-terminal parts of the Complex I subunits NuoG from *R. eutropha* and Nqo3 from *T. thermophilus*. Cysteine and histidine residues involved in coordination of the [2Fe2S] cluster (black) and the two [4Fe4S] clusters (red+blue) in Nqo3 [14] are highlighted. Amino acids residues conserved in all proteins are marked with a *.

Abbreviations: R.e., *R. eutropha*; R.o., *Rhodococcus opacus*; T.t., *Thiocapsa roseopersicina*; Synyc., *Synechocystis* PCC 6803; Synco., *Synechococcus* PCC 7002; T.th., *Thermus thermophilus*.

(TIF)

Figure S4 Determination of the pH optimum for NADH-mediated reduction of benzyl viologen (BV) by HoxFU. The highest specific activity (297 Units / mg of protein) was observed at pH 10 and set to 100%.

(TIF)

Figure S5 Individual data points of the activity measurements (NADH→BV) used for the determination of the Michaelis Menten constant for BV by non linear regression (R² = 0.945).

(TIF)

Figure S6 Individual data points of the activity measurements (NADH→BV) used for the determination of the Michaelis Menten constant for NADH by non linear regression (R² = 0.949).

(TIF)

Figure S7 Emission spectrum of HoxFU (4.5 μM) excited at 430 nm. The spectrum is typical for FMN. RFU, relative fluorescence units.

(TIF)

Figure S8 Excitation spectrum of HoxFU (4.5 μM). The fluorescence at 525 nm was monitored as a function of the excitation wavelength. The spectrum is typical for FMN. RFU, relative fluorescence units.

(TIF)

Figure S9 Cyclic voltammograms for a pyrolytic graphite ‘edge’ electrode modified with 2 μM FMN (black) and *R. eutropha* HoxFU (grey). These were recorded at 100 mV/s in a solution of 50 mM Tris-HCl pH 8.0 buffer at 1°C.

(TIF)

Figure S10 Set of electrochemical experiments designed to confirm that HoxFU remains active in the presence of O₂, using an inhibition method established by Armstrong and coworkers [Goldet G, Wait AF, Cracknell JA, Vincent KA, Ludwig M, et al. (2008) Hydrogen production under aerobic conditions by membrane bound hydrogenases from *Ralstonia* species. J Am Chem Soc 130: 11106–11113]. In all experiments the electrode was poised at −412 mV in 0.14 mM NAD⁺, pH 8.0 Tris-HCl buffer, 50 mM. ADP-ribose (ADPR, Sigma) was used without further purification. Panel A shows the effect of injections of ADP-ribose on NAD⁺ reduction by HoxFU, confirming that ADP-ribose is an inhibitor. Panel B shows O₂ reduction by an unmodified electrode following injection of O₂, and confirms that injections of ADP-ribose do not affect the O₂ reduction current. Panel C shows an analogous experiment on a film of HoxFU, showing that injections of ADP-ribose now cause a drop in current magnitude, confirming that HoxFU must remain active in the presence of O₂ with electrocatalytic NAD⁺ reduction current contributing to the total negative current.

(TIF)

Table S1 Purification of HoxFU from *R. eutropha*.

(TIF)

Table S2 Results from peptide mass fingerprinting analyses of purified HoxFU protein.

(TIF)
Acknowledgments

We thank Anne Pohlmann for protein analysis using peptide mass fingerprint (Humboldt University, Berlin), Silke Leimkühler for metal analysis using ICP-OES (University of Potsdam) and Barbel Friedrich for critical comments and helpful discussions.

References

1. Friedrich T, Scheide D (2000) The respiratory Complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479: 1-5.
2. Alfachri S, van der Linden E, Faber BW (2003) Quantitative amino acid analysis of bovine NADH:ubiquinone oxidoreductase (Complex I) and related enzymes. Consequences for the number of prosthetic groups. Biochim Biophys Acta 1557: 41-49.
3. Cramm R (2009) Genomic view of energy metabolism in *Rhodobacter capsulatus*. J Mol Microbiol Biotechnol 16: 38-52.
4. Burgdorf T, Lenz O, Bühler T, van der Linden E, Jones AK, et al. (2005) [NiFe]-hydrogenases of *Rhodobacter capsulatus* H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10: 181-196.
5. Burgdorf T, Loscher S, Liebisch P, van der Linden E, Galandier M, et al. (2005) Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from *Rhodobacter capsulatus* detected by X-ray absorption, EPR, and FTIR spectroscopy. J Am Chem Soc 127: 576-592.
6. Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, et al. (2005) The soluble NAD+-reducing [NiFe]-Hydrogenase from *Rhodobacter capsulatus* H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187: 3122-3132.
7. Schneider K, Schlegel HG (1976) Purification and properties of Soluble Hydrogenase from *Alcaligenes eutrophus* H16. Biochim Biophys Acta 452: 66-80.
8. van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, et al. (2006) An improved purification procedure for the soluble [NiFe]-hydrogenase of *Rhodobacter capsulatus*. J Bacteriol 188: 247-260.
9. Kuhn M, Steinbüchel A, Schlegel HG (1984) Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. J Bacteriol 159: 303-308.
10. Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional activation of the NAD-reducing hydrogenase from *Escherichia coli* membrane-bound hydrogenase I from the hyperthermophilic bacterium *Escherichia coli* H16 and from *Nocardia opaca* H16. Biochim Biophys Acta 1230: 23-30.
11. Loomis AG (1928) Solubilities of gases in water. In: Washburn EW, West CJ, editors. Physical chemistry of dissolved gases. McGraw-Hill: New York. p. 799-804.
12. Lütke MJ, Parkin A, Roesler MM, Murphy BJ, Harmon J, et al. (2010) Hsd *Escherichia coli* is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285: 3926-3936.
13. Saunazov LA, Hinchliffe P (2006) Structure of the hypothetical domain of respiratory Complex I from *Thermus thermophilus*. Science 311: 1430-1436.
14. van der Linden E, Faber BW, Bleilevens B, Burgdorf T, Bernhard M, et al. (2004) Selective release and function of one of the two FMN groups in the NADH:ubiquinone oxidoreductase (Complex I) from *Escherichia coli* and *Rhodobacter capsulatus*. Biochim Biophys Acta 1607: 79–90.
15. Johannessen W, Gerberding H, Rohde M, Zaborosch C, Mayer F (1991) Structural aspects of the soluble NAD-reducing hydrogenase isolated from *Escherichia coli* and *Thermus thermophilus*. Eur J Biochem 138: 533–541.
16. Massanc C, Schmid M, Friedrich B (1998) Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of *Alcaligenes eutrophus*. J Bacteriol 180: 1023-1029.
17. Schneider K, Schlegel HG (1978) Identification and quantitative determination of flavin component of soluble hydrogenase from *Alcaligenes eutrophus*. Biochim Biophys Acta 452: 66-80.
18. Kühn K, Schlegel HG, Jochim K (1984) Effect of nickel on activity and localization of the NADH:ubiquinone oxidoreductase (Complex I) from *Escherichia coli*. J Biol Chem 259: 589-597.
19. Mansy V, Palmer G (1960) On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for quantitative production of flavoprotein semiquinones. Biochemistry 3: 3181–3190.
20. Noll G (2008) Spectroscopic investigation of flavoprotein-iron-sulfur proteins: Mechanistic differences between (electro)chemical and photoreduction and oxidation. J Photochem Photobiol A Chem 200: 34–38.
21. Ghidula S, Mansy V, Hooze JM, Mayweg SW (1974) Fluorescence and optical characteristics of reduced flavins and flavoproteins. Biochemistry 13: 509–597.
22. Lorenz AR (1928) Solubilities of gases in water. In: Washburn EW, West CJ, editors. Physical chemistry of dissolved gases. McGraw-Hill: New York. p. 799-804.
23. Bennett BD, Kimball EH, Hooze JM, Mayweg SW (1974) Fluorescence and optical characteristics of reduced flavins and flavoproteins. Biochemistry 13: 509–597.
24. Berrisford JM, Thompson CJ, Saunazov LA (2000) Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of Complex I from *Escherichia coli* and *Thermus thermophilus*. Biochemistry 47: 10262-10270.

Author Contributions

Conceived and designed the experiments: KAV OL. Performed the experiments: LL ZI. Analyzed the data: LL ZI KAV OL. Wrote the paper: LL ZI KAV OL.
50. Imlay JA (1995) A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol Chem 270: 19767–19777.

51. Horch M, Lauterbach L, Sagg M, Hildebrandt P, Lendzian F, et al. (2010) Probing the active site of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 by in situ EPR and FTIR spectroscopy. Angew Chem Int Ed 49: 8026–8029.

52. Bleijlevens B, Buhler T, van der Linden E, Friedrich B, Albracht SPJ (2004) The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 279: 46686–46691.

53. Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C, et al. (2000) Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466: 259–263.

54. van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, et al. (2004) The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 9: 615–626.

55. Schwartz E, Gerischer U, Friedrich B (1998) Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180: 3197–3204.

56. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72: 248–254.

57. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of Bacteriophage-T4. Nature 227: 680–685.

58. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets- procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354.

59. Neubauer O, Alfandega A, Schoknecht J, Sterneck U, Pohlmann A, et al. (2009) Two essential arginine residues in the T components of energy-coupling factor transporters. J Bacteriol 191: 6482–6488.

60. Friedrich B, Heine E, Finck A, Friedrich CG (1981) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 145: 1144–1149.