Upregulation of P2Y12 inhibits chondrocyte apoptosis in lumbar osteoarthritis through the PI3K/AKT signaling pathway

Guanyin Wu1 · Pengfei Xue1 · Huricha Jin1 · Mo Zhang3 · Chao Gui1 · Guofeng Bao1 · Guanhua Xu1 · Jiawei Jiang1 · Jinlong Zhang1 · Shengyu Cui1 · Zhiming Cui1 · Yuyu Sun2

Received: 3 February 2022 / Accepted: 8 April 2022 / Published online: 17 May 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Lumbar facet osteoarthritis (FJOA) is a major cause of severe lower back pain and disability worldwide. However, the mechanism underlying cartilage degeneration in FJOA remains unclear. The purpose of this study was to investigate the regulation and mechanism of P2Y12 on chondrocyte apoptosis in FJOA. The experimental rats were randomly divided into non-operation (n=20) and operation groups (n=20). In the operation group, Sodium iodoacetate (MIA, Sigma, 200 mg/mL) was injected into the right L4/5 facet process using a blunt nanoneedle 26 (WPI, Sarasota, FL, USA) under the control of an injection pump. The final injection volume was 5µL and the injection rate was 2µL/min. The facet joint was removed four weeks after surgery. After the operation, samples were stored at -80 °C until further use, whereby the right facet joints in each group were tested. Hematoxylin and eosin (HE) and iron-red solid green staining were used to observe the degeneration of articular chondrocytes in rats. Immunohistochemistry and western blotting were used to observe the expressions of P2Y12, Matrix metalloproteinase 13 (MMP13), Collagen II (COL2), and other cartilage degeneration and apoptosis-related genes. Co-localization of P2Y12-cleaved caspase-3 in the apoptosis model was detected by dual-standard immunofluorescence staining. Apoptosis was also detected by flow cytometry and TUNEL assay. P2Y12 is highly expressed in OA cartilage tissue, and inhibits IL-1β -induced chondrocyte apoptosis through PI3K/AKT signaling pathway, thus playing a certain protective role on cartilage.

Keywords P2Y12 · FJOA · Osteoarthritis · Apoptosis · PI3K/Akt

Abbreviations
FJOA Lumbar facet osteoarthritis.
MMP13 Matrix metalloproteinase 13.
COL2 Collagen II.
MIA Sodium iodoacetate.
HE Hematoxylin and eosin.
TNF-A tumor necrosis factor α.
IL-1B interleukin 1B.
PVDF polyvinylidene difluoride.
HRP horseradish peroxidase.

TUNEL Terminal deoxynucleotidyl transferase dUTP notched-end labeling.
GIRKs G-protein-gated inward rectifier potassium channel.

Introduction
Facet joints exhibit the typical characteristics of synovial joints, wherein, the articular cartilage covers the opposite sides of each facet joint, located on the thickened layer of subchondral bone, and the synovial membrane connects to the edges of the articular cartilage [1], thus constituting three connected complexes of functional units [2]. Lumbar facet osteoarthritis (FJOA) is a common degenerative disease of the spine. Facet joint degeneration (FJD) is the pathological basis underlying lumbar degeneration. Chronic lower back pain can be caused by degenerative diseases and is common among middle-aged and elderly individuals [3]. The
basic pathological features include articular chondrocyte
damage, hyperplasia of the subchondral and periarticular
bones, and osteophyte formation on lumbar facet joints [4].
The occurrence of osteoarthritis (OA) is affected by several
inflammatory factors, including the tumor necrosis factor α
(TNF-α) and interleukin 1B (IL-1B) [5]. In FJOA progression,
these pro-inflammatory cytokines are considered to be
the key factors promoting chondrocyte apoptosis. In addition,
activation of Caspase-3 is involved in the occurrence of
OA [6]. Caspase-3 is one of the most critical effector pro-
teases in cellular apoptosis. However, a basic evaluation of
FJOA and the underlying specific molecular mechanisms
is lacking. P2Y12R gene is located on chromosome 3q21-
q25. The P2Y receptor is a G-coupled transmembrane pro-
tein found in almost all cell types; its ligands are purine and
pyrimidine nucleotides. From a phylogenetic and structural
perspective, two P2Y receptor subgroups with high structural
differences have been identified. The first subgroup
includes the Gq-coupled subgroups (P2Y1, P2Y2, P2Y4,
P2Y6, and P2Y11), while the second subgroup comprises
the Gi coupling subtypes (P2Y12, P2Y13, and P2Y14) [7].
As a G protein coupled receptor, P2Y12 has typical charac-
teristics of 7-transmembrane domain (TM) regions. Its inner
and outer sides are connected with three intracellular loops
(IL) and three extracellular loops (EL) respectively[8]. The
human P2Y12 receptor is a 342 amino acid residue-long
protein [9]. Like most G protein-coupled receptors, P2Y12
receptors are in the extracellular N-terminal (Cys17), the
first extracellular ring (Cys97), the second extracellular ring
(CYS175), and the third extracellular ring (Cys270) having
four extracellular hormone residues [9]10. These are acti-
vated by nucleotides and extracellular signaling molecules
released by damaged cells under inflammatory, ischemic,
and hypoxia conditions [11]. P2y12-like receptors have
been reported to be involved in platelets [12], microglia
[10, 13–14] chemotactic, and phagocytosis in apoptosis
and inflammation, and have played a role in bone metabo-
lism, such as inhibiting osteoclast production and promot-
ing osteogenesis [15]. Abnormal bone cell metabolism is a
response to changes in the inflammatory microenvironment
and may play a key role in chondrogenesis and OA progres-
sion [16]. Whether P2Y12 regulates the cartilage steady-
state in the pathogenesis of OA remains unclear.

The activated P2Y12 receptor initially phosphorylates
BAD through the PI3K Akt pathway, following which the
liquid acidified BAD binds to the 14-3-3 protein, result-
ing in the separation of BAD from the BAD Bcl-XL complex
and the release of free Bcl-XL. Free Bcl-XL can directly
bind to BAK, thus downregulating the dimerization of BAK
and inhibiting its activation. Although Bcl-XL and Bax do
not bind directly in platelets, they may inhibit Bax activa-
tion by reducing its translocation from the cytoplasm to
the mitochondria in some indirect ways. In nucleated cells,
BAD is an important downstream target gene of Akt [17]
and belongs to the pro-apoptotic Bcl-2 family of proteins.
The pro-apoptotic function of Bcl-XL is realized upon bind-
ing to the anti-apoptotic protein, Bcl-XL, thus inhibiting
its anti-apoptotic activity. In nucleated cells, Akt activation
inhibits the pro-apoptotic activity through flow acidification.
As an important anti-apoptotic protein, dissociated Bcl-XL
mainly binds to BAK or Bax and inhibits their pore-pro-
moting activity [18] to achieve its anti-apoptotic function.

These findings suggest that P2Y12 can potentially regulate
cell death but its expression in FJOA and mechanistic role
remain unclear. Considering the similarity of phenotypes
between the SW1353 cells and human chondrocytes, which
have been successfully used in previous scientific experi-
ments, we decided to use the SW1353 cell line for a series
of experiments in this study [19]. To the best of our know-
ledge, this is the first study aimed at evaluating and locat-
ing the differential expression and elucidating the role of
P2Y12 in FJOA. The findings herein may provide useful
clues and potential therapeutic targets for LFJ degeneration
and arthritis-induced lower back pain.

Materials and methods

Experimental animals

All animal experimental protocols were in line with the
National Health Center “Experimental Animal Nurs-
ing and Use Guide” and approved by the Jiangsu Branch
of China’s National Medical Experimental Animal Com-
mitee. Male SD rats (n = 40), aged 40–50 days, weighing
200–250 g, were housed in a room with constant tempera-
ture (37 ± 0.5 °C) with a light-dark cycle of 12 h. Based on
the previously reported method for [20] intra-articular MIA
injection, the surgical FJOA model was established for the
facet joint. The rats were randomly divided into non-surgical
(n = 20) and surgical groups (n = 20). In the surgical group,
der under the control of a syringe pump, using a 26-gauge blunt
nano fil needle (WPI, Sarasota, FL, USA) MIA (Sigma,
200 mg/mL) was injected into the right L4/5 facet joint; the
final injection volume was 5μL, and the injection rate was
2μL/min. The facet joints were collected four weeks after
the operation and some samples were stored at-80 °C until
further use. The remaining samples were fixed with 10%
neutral buffered formalin, decalcified with 10% formic acid,
and embedded in paraffin. The sagittal histological sections
of the articular chondrocytes from the right facet joints were
analyzed. The right facet joints of each group were used for
further experiments.
Histopathological analysis

The lumbar facet joints of rats were obtained and fixed with 4% paraformaldehyde. The samples were decalcified in 10% EDTA solution for 21 days and subsequently embedded in paraffin. Tissue sections (5 μm) were stained with Tibetan red O/ solid green solution following the standard regimen to determine cartilage degradation under light microscopy. The scoring system (OARSI) of the International Society for the Study of Osteoarthritis was used to evaluate articular cartilage degeneration [21]. Immunohistochemistry was further performed to analyze the protein expressions of P2Y12, MMP13, and COL2 in the lumbar facet joint tissue sections of rats. Primary antibodies against P2Y12 (Abcam), MMP13, and COL2 (Proteintech) were used in 1:100 to 1:200 dilution and incubated overnight at 4 °C. The sections were then incubated with the biotinylated secondary antibody (Vector Laboratories, USA). DAB kits were used for the reaction. The expressions of P2Y12, MMP13 and COL2 were assessed by calculating the percentage of immune positive cells.

Cell culture and stimulation

Human SW1353 chondrosarcoma cells (Institute of Biochemistry and Cell Biology, Shanghai, China) were cultured in Lebovitz’s L-15 medium, supplemented with 10% fetal bovine serum (GIBCO, USA) in a humidified atmosphere at 37 °C and 5% CO2. The cells were passaged every three to four days. For stimulation, 20 ng/ml human IL-1β (Proteintech) was added to the cells, 0, 6, 12, 24, or 48 h before harvesting.

siRNA transfection

P2Y12-siRNA was synthesized by Guangzhou RiboBio Co. Ltd. The siRNA targeting the P2Y12 sequence was: 5'-TGGGACTGATAACTATCGA-3'. Following the manufacturer’s instructions, we transfected the SW1353 cells with P2Y12-siRNA. After 48 h of transfection, these cells were collected for subsequent experiments.

Western blot analysis

After the necessary treatments, the SW1353 cells were harvested and the protein samples were extracted using the cell lysis buffer. 50 mg of total protein was loaded into 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE); the separated proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane. The membrane was blocked with 5% skimmed milk at room temperature for 1 h, and subsequently incubated with primary antibodies against P2Y12 (anti-rabbit 1:500; proteintech), cleaved caspase-3 (anti-mouse, 1:1000, proteintech), MMP13 (anti-rabbit, 1:1000, proteintech), and GAPDH (anti-rabbit, 1:1000, abcam), overnight at 4 °C. After incubation with the secondary antibody conjugated with horse-radish peroxidase (HRP), the proteins were visualized using an enhanced chemiluminescence kit (ECL, Pierce).

Double immunofluorescence staining

The cells were seeded in a 24-well plate (2 × 10⁴ cells/cover glass) and treated with IL-1β (20 ng/ml) for 36 h. The cells were incubated with primary antibodies for P2Y12, cleaved caspase-3, and further with fluorescently labeled secondary antibodies to detect the corresponding protein localizations in SW1353 cells. Finally, the fluorescence was observed using a Zeiss fluorescence microscope (Germany) or Leica confocal microscope (Germany).

Measurement of apoptosis

According to the manufacturer’s instructions (Becton Dickinson), the cells were stained in the dark with annexin V-FITC/ propidium iodide (PI) for 15 min. The stained cells were detected by flow cytometry and analyzed using the FlowJo software. Apoptosis of chondrocytes was detected using the Terminal deoxynucleotide transferase dUTP notched-end labeling (TUNEL) assay kit (Beyotime) following the manufacturer’s instructions.

Statistical analysis

All data were analyzed using the GraphPad Prism 10 software (GraphPad Software, Inc., La Jolla, CA, USA). One-way analysis of variance, Tukey’s post hoc multiple comparison test and double comparison unpaired t-test were used for statistical analysis. P < 0.05 was considered statistically significant.

Results

P2Y12 expression is upregulated in the articular cartilage of rat lumbar facet joints

In the FJOA model, P2Y12 expression was elevated in the articular chondrocytes. However, whether P2Y12 participates in the FJOA process herein, remains unclear. The experimental FJOA model of SD rats injected with MIA was constructed to elucidate the relationship between chondrocyte apoptosis and P2Y12. The changes in articular facet chondrocytes between the operation and the non-operation
groups were investigated by the saffron solid green and H&E staining assays. As compared to the operation group, the facet joints of the rats in the non-operation group were smooth and the chondrocytes showed a more orderly arrangement (Fig. 1 A -B). OARSI grade scores confirmed cartilage damage caused by MIA injection (Fig. 1 C). Immunohistochemical analyses suggested that as compared to the non-surgical group, P2Y12 positive cells and MMP13 positive cells were increased but the proportion of COL2 positive cells showed a decline in the surgical group (Fig. 1D and G). Western blot analysis also confirmed that the expression of P2Y12 was consistent with those of the markers of facet joint degeneration (Fig. 1E and F).

IL-1β induces an increase in P2Y12 expression and apoptosis in SW1353 cells

Given that the main pathogenic mechanism underlying FJOA is caspase-dependent apoptosis in chondrocytes, an IL-1β induced SW1353 chondrocyte apoptosis model was established, which showed the relationship between chondrocyte apoptosis and P2Y12. Western blot analysis showed the temporal expression patterns of P2Y12 in the chondrocyte apoptosis model. As shown in Fig. 2 A and B, the expression of P2Y12 was low at 0 h but after IL-1β induction, P2Y12 levels were up-regulated within 12 h and reached the peak expression at 36 h (P<0.05). Immuno-blot analysis was also performed to evaluate the expressions of the known apoptosis markers, caspase-3 and Bax. In the IL-1β-induced SW1353 cell apoptosis model, the levels of expression of cleaved caspase-3 and Bax were up-regulated at 12 h and reached their peak at 36 h. In addition, cellular immunofluorescence assays exhibited the co-localization of P2Y12 and cleaved caspase-3 under IL-1βstimulation, as shown in Fig. 2 C. These data indicated that during FJOA progression, the caspase-dependent apoptotic pathway may play an important role through P2Y12 and chondrocyte apoptosis.

Inhibition of P2Y12 promotes IL-1β-mediation induction of SW1353 cell apoptosis

To further determine the correlation between P2Y12 and chondrocyte apoptosis, SW1353 cells were transfected with siRNAs to knock down the expression of the P2Y12 protein; 48 h post-transfection, the efficiencies in P2Y12-siRNA, non-specific siRNA, and negative control groups were detected. As shown in Fig. 3 A and B, in the IL-1β-induced SW1353 cells, the siRNA could significantly...

Fig. 1 P2Y12 expression is elevated in the FJOA rat model. A representative image of saffron solid green staining (scale=100 μm). B Representative image of H&E staining (scale=100 μm). C The chart shows the OARSI scores calculated using all sections of the facet joints. D and G Immunohistochemistry to detect the expressions of P2Y12, COL2, and MMP13 in rat FJOA and normal cartilage (scale=100 μm). E Western blotting shows the expressions of P2Y12, COL2, and MMP13 in rat FJOA and normal cartilage samples. F The bar chart shows the expressions of the ratio of P2Y12, MMP13, and COL2 normalized against GAPDH levels. Data are presented as mean ± SEM (n=3, *P<0.05, statistically significant difference relative to the non-surgery group).

Fig. 2 Increased P2Y12 expression and apoptosis in SW1353 cells. A Western blot analysis shows that after IL-1β (20ng/ml) stimulation, P2Y12 and apoptosis marker proteins (Bax and cleaved Caspase-3) are expressed in SW1353 cells. B The bar graph B shows the ratios of expressions of P2Y12, Bax, and cleaved caspase-3 relative to GAPDH. *P<0.001 vs. N. C Immunofluorescence staining showing the co-localization P2Y12 (green) and caspase-3 lysis (red) in SW1353 cells(scale bar ¼ 20 mm) stimulated with IL-1β.
signaling pathway due to an increase in phosphorylation at Ser473, resulting in the active form of AKT. As shown in Fig. 5 A and 5 B, after transfection with siP2Y12, the phosphorylation level of AKT in IL-1β-treated chondrocytes increased significantly but the total AKT protein level in the treated cells remain unchanged. To investigate whether the effects of P2Y12 on chondrocytes were modulated by the PI3K/AKT signaling pathway, we treated the chondrocytes with LY294002, a specific PI3K inhibitor, in the presence of IL-1β. Western blot analysis showed that cleaved Caspase-3 expression decreased substantially, while that of BCL 2 increased after LY294002 treatment in siP2Y12-transfected chondrocytes (Fig. 5 C-5 F). Subsequently, the results of the TUNEL experiment verified the above results (Fig. 5G). Taken together, these findings suggested that the PI3K/AKT signaling pathway was involved in the regulation of P2Y12-mediated chondrocyte apoptosis.

Discussion

FJOA is a degenerative joint disease characterized by chondrocyte degeneration [22] and apoptosis [8]. Although
through caspase-dependent signaling. Flow cytometry showed that P2Y12 gene knockout significantly enhanced IL-1β-induced apoptosis of SW1353 cells. Western blot analysis and TUNEL showed that the expression of apoptosis-related genes was decreased after LY29004 was added into IL-1β induced chondrocyte apoptosis. Based on our data, we conclude that: P2Y12 may play an important role in inhibiting the apoptosis of FJOA chondrocytes through PI3K/AKT signaling pathway.

P2Y12 receptor inhibits apoptosis by coupling with GαI2 subunit to activate the PI3K/Akt pathway [25]. After stimulation, decomposition of Gα and Gβγ subunits leads to activation of signal transduction pathways [26]. Gβγ subunit stimulates the activity of phosphatidylinositol 3 kinase (PI3K), leading to late accumulation of phosphatidylinositol 3, 4-bisphosphonates [PtdIns (3,4) P2] and phosphatidylinositol 3, 4, 5-triphosphonates [PtdIns(3,4) P3] rapid and transient accumulation,5). The PI3K pathway also activates Rap1b [14] and Akt [26]. Gβγ dimer activates g-protein-gated inward rectifier potassium channels (GIRKs) of Src tyrosine kinase [30]. Upregulation of P2Y12 induces Akt and undesirable phosphorylation. After phosphorylation by Akt, Bad is sequestrated in the cytoplasm by the adapter protein 14-3-3, which prevents Bad from binding to Bcl-XL. Therefore, the free Bcl-XL heterodimer bound to Bak blocks the dimerization of Bak in mitochondria, thereby antagonizing its pro-apoptotic activity. Bcl-xl activates Bax indirectly by inhibiting translocation of Bax to mitochondria [15]. P2Y12 receptor is mainly expressed in platelets and neuronal tissues [28]. Only a few studies have reported the function of P2Y12 in articular chondrocytes of the lumbar facet. Based on these findings, we speculate that upregulation of P2Y12 may play an important role in inhibiting FJOA chondrocyte apoptosis. President study, we did not study whether P2Y12 expression is involved in the development of FJOA and whether it is positively correlated with severity. Further research is needed to clarify.

Conclusions

In conclusion, P2Y12 expression was significantly upregulated in FJOA. Inhibition of P2Y12 enhanced cellular apoptosis of SW1353 cells induced by IL-1β. These observations indicate that the upregulation of P2Y12 may play an important role in inhibiting FJOA chondrocyte apoptosis. Further studies on the function of P2Y12 in chondrocytes may provide new insights into the pathophysiology and provide advanced strategies for the treatment of FJOA.

Acknowledgements This work was supported by Scientific research project of Nantong Health and Family Planning Commission (QA2019013), Mandatory subject of Nantong Science and Technology.
References

1. Gelhorn AC, Katz JN, Suri P (2013 Apr) Osteoarthritis of the spine: the facet joints. Nat Rev Rheumatol 9(4):216–224. doi: https://10.1038/nrrheum.2012.199. Epub 2012 Nov 13. PMID: 23147891; PMCID: PMC4012322

2. Yong-Hing K, Kirkaldy-Willis WH The pathophysiology of degenerative disease of the lumbar spine. Orthop Clin North Am. 1983Jul; 14(3):491–504. PMID: 6346204.

3. Chu C, Chunshuai W, Jiajia C, Jinlong Z, Pengfei X, Jiawei J, Zhiming C Transcriptional information revealed differentially expressed circular RNAs in facet joint osteoarthritis. Biochem Biophys Res Commun. 2018 Mar 4;497(2):790–796. doi: https://doi.org/10.1016/j.bbrc.2018.02.157. Epub 2018 Feb 19. PMID: 29470979

4. Li J, Muehlemann C, Abe Y, Masuda K Prevalence of facet joint degeneration in association with intervertebral joint degeneration in a sample of organ donors. J Orthop Res. 2011Aug; 29(8):1267–74. doi: https://doi.org/10.1002/jor.21387. Epub 2011 Feb 25. PMID: 21360583; PMCID: PMC3115475.

5. Tianxu C, Hongt J et al (2006) "NF-kappaBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1-beta-induced and TNF-alpha-induced chondrocytes. " Osteoarthr Cartil 4(3):367–376

6. Ju XD, Deng M, Ao YF, Yu CL, Wang JQ, Yu JK, Cui GQ, Hu YL The protective effect of tetramethylpyrazine on cartilage explants and chondrocytes. J Ethnopharmacol. 2010 Nov 11;132(2):414–20. doi: 10.1016/j.jep.2010.08.020. Epub 2010 Aug 17. PMID: 20723588

7. Abbraccio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Porugal MT, King BF, Gachet C, Jacobson KA, Weisman GA (2005 Jan) The recently deorphamized GPR80 (GPR99) proposed to be the P2Y15 receptor is not a genuine P2Y receptor. Trends Pharmacol Sci 26(1):8–9. doi: https://doi.org/10.1016/j.tips.2004.10.010. PMID: 15629198; PMCID: PMC5905457

8. Gachet C (2005 Nov) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacother 108(2):180–192. doi: https://doi.org/10.1016/j.pharmthera.2005.03.009. Epub 2005 Jun 13. PMID: 15955565

9. Takasaki J, Komohara M, Saito T, Matsumoto M, Matsumoto S, Ohishi T, Soga T, Matushime H, Furuichi K (2001 Sep) Molecular cloning of the platelet P2T(AC) ADP receptor: pharmacological comparison with another ADP receptor, the P2Y(1) receptor. Mol Pharmacol 60(3):432–439 PMID: 11502873

10. Haynes SE, Hollopetter G, Yang G, Kurpits D, Dailey ME, Gan WB, Julius D (2006 Dec) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi: https://doi.org/10.1038/nn1805. Epub 2006 Nov 19. PMID: 17115040

11. Jacobson KA, Deflorian F, Mishra S, Costanzo S (2011 Sep;7(3):305 – 24 Pharmacoochemistry of the platelet purinergic receptors. Purinergic Signal. doi: 10.1007/s11302-011-9216-0. Epub 2011 Feb 18. PMID: 21484092; PMCID: PMC3166987

12. Zhang S, Ye J, Zhang Y, Xu X, Liu J, Zhang SH, Kunapuli SP, Ding Z (2013 Jan;11(1):149 – 60 P2Y12 protects platelets from apoptosis via PI3k-dependent Bak/Bax inactivation. J Thromb Haemost. doi: https://doi.org/10.1111/j.1538-7836.2006.0192x. PMID: 17059469

13. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohswa K, Tsuda M et al (2007) UDP acting at P2Y6 receptors is a mediator of microglial phago-cytosis. Nature 446:1091–1095

14. Preissler J, Grosche A, Lede V, Le Duc D, Krugel K, Matyash V et al (2015) Alteredmicroglial phagocytosis in GPR34-deficient mice. Glia 63:206–215

15. Kang JH, Lim H, Lee DS, Yim M (2018 Aug) Montelukast inhibits RANKL-induced osteoclast formation and bone loss via CysLTR1 and P2Y12. Mol Med Rep 18(2):2387–2398. doi: https://doi.org/10.3892/mmr.2018.9179. Epub 2018 Jun 15. PMID: 29916540

16. Zheng L, Zhang Z, Sheng P, Mobasheri A (2021 Mar) The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 66:101249. doi: https://doi.org/10.1016/j.arr.2020.101249. Epub 2020 Dec 29. PMID: 33383189

17. Lin KH et al (2009) Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet-activating agents. Platelets 20(8):575–581

18. Leytin V et al (2006) Thrombin-triggered platelet apoptosis. J Thromb Haemost 4(12):2656–2663

19. Wang JJ, Huan SK, Hsieh KH, Chou HC, Hsiao G, Jayakumar T, Sheu JR (2013) Inhibitory effect of midazolam on MMP-9, MMP-1 and MMP-13 expression in PMA-stimulated human chondrocytes via recovery of NF-κB signaling. Arch Med Sci. Apr 20;9(2):332-9. doi: https://doi.org/10.5114/ams.2013.129940. Epub 2012 Oct 8. PMID: 23671446; PMCID: PMC3648813

20. Gong K, Shao W, Chen H, Wang Z, Luo ZJ (2011 Mar;10(3):145 – 52 Rat model of lumbar facet joint osteoarthritis associated with facet-mediated mechanical hyperalgesia induced by intra-articular injection of monosodium iodoacetate. J Formos Med Assoc. doi: https://doi.org/10.1016/S0929-6646(11)60024-7. PMID: 21497277

21. Gerwin N, Bendele AM, Glasson S, Carlson CS (2010) The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis Cartilage. Oct;18 Suppl 3:S24-34. doi: https://doi.org/10.1016/j.joca.2010.05.030. PMID: 20864021

22. Yeh TT, Wen ZH, Lee HS, Lee CH, Yang Z, Jean YH, Wu SS, Niimi ME, Han B Intra-articular injection of collagenase induced experimental osteoarthritis of the lumbar facet joint in rats. Eur Spine J. 2008May; 17(5):734–42. doi: https://doi.org/10.1007/s00586-008-0594-0. Epub 2008 Jan 26. PMID: 18224353; PMCID: PMC2367420.

23. Ashraf S, Mapp PI, Burston J, Bennett AJ, Chapman V, Walsh DA (2014) Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animalmodels of osteoarthritis. Ann Rheum Dis 73(9):1710–1718

24. Sagar DR, Ashraf S, Xu L et al (2014) Osteoprotegerin reduces the development of pain behaviour and joint pathology in amodel of osteoarthritis. Ann Rheum Dis 73(8):1558–1565

25. Kahnner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP (2006) Nov;4(11):2317-26 Nucleotide receptor signaling in platelets. J Thromb Haemost. doi: https://doi.org/10.1111/j.1538-7836.2006.02192.x. PMID: 17059469

26. Shankar H, Kahnner BN, Prabhakar J, Lakhani P, Kim S, Kunapuli SP G-protein-gated inwardly rectifying potassium channels regulate ADP-induced cPLA2 activity in platelets through Src family kinases. Blood. 2006 Nov 1;108(9):3027-34. doi: https://doi.org/10.1182/blood-2006-03-010330. Epub 2006 Jul 20. PMID: 16857990; PMCID: PMC1895524
27. Kauffenstein G, Bergmeier W, Eckly A, Ohlmann P, Léon C, Cazenave JP, Nieswandt B, Gachet C (2001) The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha IIb beta 3 integrin–a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett. 2001 Sep 14;505(2):281–90. doi: https://doi.org/10.1016/S0014-5793(01)02824-1. PMID: 11566191

28. Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, Baldini C, Torti M (2003) A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem. 2003 Jan 3;278(1):131-8. doi: https://doi.org/10.1074/jbc.M204821200. Epub 2002 Oct 28. PMID: 12407113

29. Kim S, Jin J, Kunapuli SP (2004) Akt activation in platelets depends on Gi signaling pathways. J Biol Chem. Feb 6;279(6):4186-95. doi: https://doi.org/10.1074/jbc.M306162200. Epub 2003 Nov 17. PMID: 14623889

30. Gachet C (2001) Identification, characterization, and inhibition of the platelet ADP receptors. Int J Hematol. doi: https://doi.org/10.1007/BF02982079. PMID: 11794691

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.