Sterile neutrinos as a source of CP violation

A Palazzo1,2

1 Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari, Italy
2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via E. Orabona 4, I-70126 Bari, Italy
E-mail: palazzo@ba.infn.it

Abstract. Several anomalous results have been reported at short-baseline neutrino oscillation experiments, which cannot be accommodated in the standard 3-flavor framework. The most popular interpretation of these anomalies entails new light sterile neutrinos (with mass in the eV range) which mix with the three ordinary “active” species. We show that the presence of sterile neutrinos induces new CP violating phenomena and how the the planned LBL experiments will be able to probe them.

1. Introduction

Several anomalous results have been reported in short-baseline (SBL) neutrino oscillation experiments, which cannot be explained in the standard 3-flavor scheme (see [1] for a recent review). The most popular interpretation of these anomalies involves new light sterile neutrinos (with mass in the eV range) which mix with the three ordinary “active” species.

In the simplest scenario, dubbed as 3+1 scheme, only one sterile neutrino species is introduced. The fourth mass eigenstate ν_4 is separated from the standard “triplet” (ν_1, ν_2, ν_3) by a large (~ 1 eV2) squared-mass, giving rise to the hierarchical spectrum $|\Delta m^2_{12}| \ll |\Delta m^2_{13}| \ll |\Delta m^2_{14}|$. The 4×4 mixing matrix can be parametrized as [2]

\[U = \tilde{R}_{34}R_{24}\tilde{R}_{14}R_{23}\tilde{R}_{13}R_{12}, \]

where R_{ij} (\tilde{R}_{ij}) is a real (complex) 4×4 rotation in the (i, j) plane. The complex rotations depend on the CP-phases δ_{ij}.

By construction, the 3 + 1 scheme predicts sizable oscillation effects at the short baselines where the new frequency $\Delta_{14} = \Delta m^2_{14}L/4E$ (L being the baseline and E the neutrino energy) is of order one. However, sterile neutrinos may leave their signs also in non-short-baseline experiments. The effects of sterile species have been studied in the context of solar neutrinos [3, 4, 5], atmospheric neutrinos [6], and LBL experiments [2, 7, 8]. In what follows we concisely describe the potential role of LBL experiments in the searches of CP violation (CPV) related to sterile neutrinos.

2. CPV induced by sterile neutrinos at long-baseline experiments

In order to measure any CP phase one must be sensitive to the quantum interference of two distinct oscillation frequencies. In the 3+1 scheme, at SBL setups, only one frequency is
observable (the new one) while the atmospheric and solar frequencies have no effect at all. For this reason the SBL setups have no sensitivity to CP violation (both in 3-flavor and 3+1 schemes). As first shown in [2], the situation is different at the long baseline (LBL) experiments, because in these setups the interference between two distinct frequencies becomes observable. In this way the LBL experiments can see both the effects of the standard CP phase and of the new ones. Therefore, the LBL setups are complementary to the SBL experiments in the searches related to the sterile neutrino properties.

We recall that the LBL experiments in the $\nu_{\mu} \rightarrow \nu_e$ (and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$) appearance channel are sensitive to the 3-flavor CPV because, at long baselines, the $\nu_{\mu} \rightarrow \nu_e$ transition amplitude contains an interference term between the atmospheric (Δm_{13}^2-driven) and the solar (Δm_{12}^2-driven) oscillations, which depends on the CP-phase δ. As first evidenced in [2], in the presence of sterile neutrinos a new interference term arises, which depends also on the new CP-phase (δ_{14}). In [2] (see also [10]), it has been shown that the transition probability can be approximated as the sum of three terms

$$P_{\mu e}^{4\nu} \simeq P_{\text{ATM}} + P_{\text{INT}}^1 + P_{\text{INT}}^2.$$ \hspace{1cm} (2)

Remarkably, for typical values of the mixing angles predicted by the current global 3+1 fits [9], the amplitude of the new interference term is almost equal to that of the standard one. As a consequence, one expects some sensitivity of the LBL experiments NOνA [11] and T2K [12] to the non-standard CP-phase δ_{14}. Therefore, these two experiments and their constraints on the CP-phase δ_{14}, should be included in any accurate analysis of the 3+1 scheme. This has been done in the work [13], where a joint analysis of SBL and LBL data has been performed for the first time.

Figure 1, taken from such a work, displays the projections of the $\Delta \chi^2$ for inverted hierarchy (IH). The left-bottom panel reports the projection on the plane of the two mixing angles

Figure 1. Regions allowed by the combination of the SBL and LBL data (NOνA and T2K) together with the θ_{13}-sensitive reactor results. Figure taken from [13].
The fourth panels represent two CP-violating cases δ_d, the price of losing some information on the standard CP phase δ_d choice. From Fig. 2 we learn that the sensitivity to δ_d range was obtained by varying the true values of the two undisplayed CP-phases in the θ bands. The two upper panels represent the CP-conserving scenarios of $0\pi/2, \pi/2, \pi/2$ and $\pi/2, \pi/2, \pi/2$. With this purpose we consider the four benchmark cases displayed in Fig. 3. The two upper panels represent the CP-conserving scenarios of $0\pi/2, \pi/2, \pi/2$ and $\pi/2, \pi/2, \pi/2$. With this purpose we consider the four benchmark cases displayed in Fig. 3.

Given that NOνA and T2K posses already a weak sensitivity to the new CP-phase δ_{14}, it is very interesting to ask how things will improve at the planned LBL experiments. This issue has been investigated in detail in the works $[14, 15, 16, 17]$ (see also $[18, 19]$). In Fig. 2, taken from $[15]$, we provide an illustrative example concerning the DUNE experiment. The bands displayed in the left, middle and right panels represent the discovery potential of the CPV induced by the three CP phases involved in the $3+1$ scheme. See the text for details. Figure taken from $[15]$.

The two upper panels represent the CP-conserving scenarios of $0\pi/2, \pi/2, \pi/2$ and $\pi/2, \pi/2, \pi/2$. With this purpose we consider the four benchmark cases displayed in Fig. 3. The two upper panels represent the CP-conserving scenarios of $0\pi/2, \pi/2, \pi/2$ and $\pi/2, \pi/2, \pi/2$. With this purpose we consider the four benchmark cases displayed in Fig. 3. The two upper panels represent the CP-conserving scenarios of $0\pi/2, \pi/2, \pi/2$ and $\pi/2, \pi/2, \pi/2$. With this purpose we consider the four benchmark cases displayed in Fig. 3.

Until now, we have focused on the discovery potential of the CPV generated by the two CP phases δ_{13} and δ_{14}. Here, we investigate the capability of reconstructing the true values of the two CP phases. With this purpose we consider the four benchmark cases displayed in Fig. 3. The two upper panels represent the CP-conserving scenarios of $0\pi/2, \pi/2, \pi/2$ and $\pi/2, \pi/2, \pi/2$. The third and fourth panels represent two CP-violating cases $[-\pi/2, -\pi/2]$ and $[\pi/2, \pi/2]$. In each panel, we draw the regions reconstructed around the true values of δ_{13} and δ_{14} by the three experiments T2K+NOνA, DUNE and T2HK. In this plot we have taken the NH as the true hierarchy and we have marginalized over the two possible hierarchies in the test model. The confidence levels

Figure 2. DUNE discovery potential of the CPV induced by the three CP phases involved in the $3+1$ scheme. See the text for details. Figure taken from $[15]$.

(θ_{14}, θ_{24}). The other two panels display the constraints in the plane formed by each one of the two mixing angles and the new CP-phase δ_{14}. Similar results (not shown) are obtained for normal hierarchy (NH). The three contours are drawn for $\Delta \chi^2 = 2.3, 4.6, 6.0$, corresponding to 68%, 90% and 95% C.L. for 2 d.o.f. The overall goodness of fit is acceptable (GoF = 24%), while the parameter goodness of fit, which measures the statistical compatibility between the appearance and disappearance data sets, is lower (GoF = 7%). This implies that even if the closed contours presented for the two new mixing angles θ_{14} and θ_{24} exclude the 3-flavor case with high significance (slightly more than six standard deviations), one cannot naively interpret this circumstance as an evidence for sterile neutrinos. In addition, we recall that light sterile neutrinos, unless endowed with new properties, are in tension with cosmological data.
3. Conclusions

In the case of a discovery of a light sterile neutrino at a new short-baseline experiment we will face the challenge of determining all the parameters that govern the extended framework and in particular the new CP-violating phases. In this context LBL experiments can give an important contribution being sensitive to new CP-violation phenomena. Therefore, the two classes of experiments (SBL and LBL) will be synergic in the searches of sterile neutrinos.
Acknowledgments
I would like to thank the organizers for the very stimulating and enjoyable conference. I acknowledge support by the research project TAsP funded by the Instituto Nazionale di Fisica Nucleare (INFN).

4. References
[1] Palazzo A 2013 Mod. Phys. Lett. A 28, 1330004.
[2] Klop N and Palazzo A 2015 Phys. Rev. D 91 no. 7, 073017.
[3] Palazzo A 2011 Phys. Rev. D 83, 113013.
[4] Palazzo A 2012 Phys. Rev. D 85, 077301.
[5] Giunti C and Li Y F 2009 Phys. Rev. D 80, 113007.
[6] Nunokawa H, Peres O L G. and Zukanovich Funchal R 2003 Phys. Lett. B 562, 279.
[7] Palazzo A 2015 Phys. Rev. D 91 no. 9, 091301.
[8] Palazzo A 2013 JHEP 1310, 172.
[9] Gariazzo S, Giunti C, Laveder M and Li Y F 2017 JHEP 1706, 135.
[10] Palazzo A 2016 Phys. Lett. B, 757 142.
[11] Adamson P et al. [NOvA Collaboration] 2017 Phys. Rev. Lett. 118, no. 23, 231801.
[12] Abe K et al. [T2K Collaboration] 2017 Phys. Rev. Lett. 118, no. 15, 151801.
[13] Capozzi F, Giunti C, Laveder M and Palazzo A 2017 Phys. Rev. D 95, no. 3, 033006.
[14] Agarwalla S K, Chatterjee S S, Dasgupta A and Palazzo A 2016 JHEP 1602, 111.
[15] Agarwalla S K, Chatterjee S S and Palazzo A 2016 JHEP 1609, 016.
[16] Agarwalla S K, Chatterjee S S and Palazzo A 2017 Phys. Rev. Lett. 118, no. 3, 031804.
[17] Agarwalla S K, Chatterjee S S and Palazzo A 2018 JHEP 1804, 091.
[18] Berryman J M, de Gouvea A, Kelly K J and Kobach A 2015 Phys. Rev. D 92, no. 7, 073012.
[19] Dutta D, Gandhi R, Kayser B, Masud M and Prakash S 2016 JHEP 1611, 122.