Using GENERATINGFUNCTIONOLOGY to Enumerate Distinct-Multiplicity Partitions

Doron ZEILBERGER

In fond memory of Guru Herbert Saul WILF (28 Sivan 5691- 12 Tevet 5772) zecher gaon l’bracha

Preamble

About a year ago, Herb Wilf posed, on-line, eight intriguing problems. I don’t know the answer to any of them, but I will say something about the sixth question.

Herb Wilf 6th Question: Let \(T(n) \) be the set of partitions of \(n \) for which the (nonzero) multiplicities of its parts are all different, and write \(f(n) = |T(n)| \). See Sloane’s sequence A098859 for a table of values. Find any interesting theorems about \(f(n) \) . . .

First, I will explain how to compute the first few terms of \(f(n) \). Shalosh can easily get the first 250 terms, but as \(n \) gets larger it gets harder and harder to compute, unlike its unrestricted cousin, \(p(n) \). I conjecture that the fastest algorithm takes exponential time, but I have no idea how to prove that claim. I am impressed that, according to Sloane, Maciej Ireneusz Wilczynsk computed 508 terms.

Recall that the generating function for the number of integer partitions of \(n \) whose largest part is \(\leq m \), \(p_m(n) \), is the very simple rational function

\[
\sum_{n=0}^{\infty} p_m(n) q^n = \frac{1}{(1-q)(1-q^2) \cdots (1-q^m)}.
\]

The main purpose of this note is to describe, using Generatingfunctionology, so vividly and lucidly preached in W’s classic book [W2], how to compute the generating function (that also turns out to be rational) for the number of partitions of \(n \) whose largest part is \(\leq m \) and all its (nonzero) multiplicities are distinct, let’s call it \(f_m(n) \). As \(m \) gets larger, the formulas get more and more complicated, but we sure do have an answer, in the sense of the classic article [W3], for any fixed \(m \), but of course not for a symbolic \(m \).

Even more is true! Because, like \(\frac{1}{(1-q)(1-q^2) \cdots (1-q^m)} \), the generating function of \(f_m(n) \), \(\sum_{n=0}^{\infty} f_m(n) q^n \), turns out (as we will see) to only have roots-of-unity poles, whose highest order is \(m \), it follows that \(f_m(n) \) is a quasi-polynomial of degree \(m - 1 \) in \(n \). Now that’s a very good answer! (in W’s sense, albeit only for a fixed \(m \)).

1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu , http://www.math.rutgers.edu/~zeilberg/ . Jan. 18, 2012. Accompanied by Maple package DMP downloadable from http://www.math.rutgers.edu/~zeilberg/tokhniot/DMP . Sample input and output files may be viewed in the front of this article: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dmp.html . Supported in part by the USA National Science Foundation.
How to Compute Many terms of $f(n)$?

$p_m(n)$ is very easy to compute. For example, one may use the recurrence

$$p_m(n) = p_{m-1}(n) + \sum_{i=1}^{\lfloor n/m \rfloor} p_{m-1}(n-mi)$$

together with the initial condition $p_1(n) = 1$, $p_m(0) = 1$.

How can we adapt this in order to compute $f_m(n)$? The contribution from the partitions counted by $f_m(n)$ where m does not show up is $f_{m-1}(n)$, in analogy with the $p_{m-1}(n)$ term in the above recurrence. But if m does show up, it does so with a certain multiplicity, i, say, where $1 \leq i \leq \lfloor n/m \rfloor$, and removing these i copies of m results in a partition counted by $f_{m-1}(n-mi)$-so all its multiplicities are different- and in addition none of these multiplicities may be i. Continuing, we are forced to introduce a much more general discrete function $f_m(n;S)$ whose arguments are m and n and a set of “forbidden multiplicities”, S.

So let’s define $f_m(n;S)$ to be the number of partitions of n with parts $\leq m$, with all its multiplicities distinct and none of these multiplicities belonging to S. Our intermediate object of desire, $f_m(n)$, is simply $f_m(n;\emptyset)$, and the ultimate object, $f(n)$, is $f_n(n;\emptyset)$.

The recurrence for $f_m(n;S)$ is, naturally

$$f_m(n;S) = f_{m-1}(n;S) + \sum_{i=1, i \notin S}^{\lfloor n/m \rfloor} f_{m-1}(n-im;S \cup \{i\})$$

because once we decided on the number of times m shows up, let’s call it i, where i is between 1 and $\lfloor m/m \rfloor$ and $i \notin S$, the partition (of $n-im$) obtained by removing these i copies of m must forbid the set of multiplicities $S \cup \{i\}$.

In the Maple package DMP, procedure qnS(n,m,S) implements $f_m(n;S)$ and procedure qn(n) implements $f(n)$.

Inclusion-Exclusion

Let $P_m(n)$ be the set of partitions of n whose parts are all $\leq m$, in other words, the set that $p_m(n)$ is counting. Consider the set of all partitions whose largest part is $\leq m$, where we write a partition in frequency notation:

$$P_m := \{1^{a_1}2^{a_2} \ldots m^{a_m} \mid a_1, \ldots, a_m \geq 0\}$$

For example $1^32^54^2$ is the partition of twenty-one usually written as 4422222111. Introducing symbols x_1, x_2, \ldots, x_m, we define the Weight of a partition to be

$$\text{Weight}(1^{a_1}2^{a_2} \ldots m^{a_m}) := x_1^{a_1}x_2^{a_2} \cdots x_m^{a_m}$$
The weight-enumerator of \mathcal{P}_m is, by ordinary-generating-functionology

$$
\text{Weight}(\mathcal{P}_m) = \frac{1}{(1-x_1)(1-x_2)\cdots(1-x_m)},
$$

since we make m independent decisions:

- how many copies of 1? (Weight enumerator = $1 + x_1 + x_1^2 + \ldots = (1 - x_1)^{-1}$),
- how many copies of 2? (Weight enumerator = $1 + x_2 + x_2^2 + \ldots = (1 - x_2)^{-1}$),

...
- how many copies of m? (Weight enumerator = $1 + x_m + x_m^2 + \ldots = (1 - x_m)^{-1}$).

But we want to find the weight-enumerator of the much-harder-to-weight-count set

$$
\mathcal{F}_m := \{1^{a_1}2^{a_2}\ldots m^{a_m} | a_1, \ldots, a_m \geq 0; a_i \neq a_j \text{ (if } a_i > 0, a_j > 0)\}.
$$

Calling the members of \mathcal{F}_m good, we see that a member of \mathcal{P}_m is good if it does not belong to any of the following $(\begin{pmatrix} m
2 \end{pmatrix})$ sets, $S_{ij} \ 1 \leq i < j \leq m$:

$$
S_{ij} := \{1^{a_1}2^{a_2}\ldots m^{a_m} \in \mathcal{P}_m | a_i = a_j > 0\}.
$$

By inclusion-exclusion, the weight-enumerator of \mathcal{F}_m is

$$
\sum_G (-1)^{|G|} \text{Weight} \left(\bigcap_{ij \in G} S_{ij} \right),
$$

where the summation ranges over all $2^{m(m-1)/2}$ subsets of $\{(i, j) | 1 \leq i < j \leq m\}$.

But the G's can be naturally viewed as labeled graphs on m vertices. Such a graph has several connected components, and together they naturally induce a set partition $\{C_1, C_2, \ldots, C_r\}$ of $\{1, 2, \ldots, m\}$. We have:

$$
\text{Weight} \left(\bigcap_{ij \in G} S_{ij} \right) = \prod_{i=1}^r \text{weight}(C_i),
$$

where if $|S| = 1$, $S = \{s\}$, say, then $\text{weight}(S) = \frac{1}{1-x_s}$, and if $|S| = d > 1$, $S = \{s_1, s_2, \ldots, s_d\}$, say, then

$$
\text{weight}(S) = \frac{x_{s_1}x_{s_2}\cdots x_{s_d}}{1-x_{s_1}x_{s_2}\cdots x_{s_d}}.
$$

To justify the latter, note that if vertices s_1, s_2, \ldots, s_d all belong to the same connected component of our graph then, by transitivity, we have that all $a_{s_1} = a_{s_2} = \ldots = a_{s_d} > 0$, and the weight-enumerator is the infinite geometric series

$$
\sum_{\alpha=1}^{\infty} (x_{s_1} \cdots x_{s_d})^\alpha = \frac{x_{s_1}x_{s_2}\cdots x_{s_d}}{1-x_{s_1}x_{s_2}\cdots x_{s_d}}.
$$
But quite a few graphs correspond to any one set-partition. To find out the coefficients in front, for any set-partition \(\{C_1, C_2, \ldots, C_r\} \) of \(\{1, \ldots, m\} \) we must find
\[
\sum_G (-1)^{|G|},
\]
summed over all the graphs that gives rise to the above set partition. But this is the product of the analogous sums where one focuses on one connected component at a time, and then multiplies everything together.

Let’s digress and figure out \(\sum_G (-1)^{|G|} \) over all connected labeled graphs on \(n \) vertices. For the sake of clarity, let’s, more generally, figure out \(\sum_G y^{|G|} \) with a general variable \(y \).

By exponential-generatingfunctionology\([W2]\) (see also \([Z]\)), this sum is nothing but the coefficient of \(t^n/n! \) in
\[
\log \left(\sum_{i=0}^{\infty} (1 + y) \frac{t^i}{i!} \right).
\]

Going back to \(y = -1 \), we see that we need the coefficient of \(t^n/n! \) in
\[
\log \left(\sum_{i=0}^{\infty} (1 - 1) \frac{t^i}{i!} \right) = \log \left(\sum_{i=0}^{\infty} 0 \frac{t^i}{i!} \right) = \log(1 + t)
\]
\[
= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{t^n}{n} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(n-1)! t^n}{n!}.
\]
So the desired sum is \((-1)^{n-1}(n-1)! \).

Let’s define for any set of positive integers, \(S \),
\[
mishkal(S) = \begin{cases}
1/(1 - x_s), & \text{if } |S| = 1 \text{ where } S = \{s\}; \\
(-1)^{d-1}(d-1)!/(1-x_{s_1}\cdots x_{s_d}),(1-x_{s_1}\cdots x_{s_d}), & \text{if } |S| = d > 1 \text{ where } S = \{s_1,\ldots,s_d\}.
\end{cases}
\]

For any set partition \(C = \{C_1,\ldots,C_r\} \) let’s define
\[
Mishkal(C) = mishkal(C_1)\cdots mishkal(C_r) .
\]

It follows that the weight-enumerator of \(\mathcal{F}_m \) according to \(\text{Weight}(1^{a_1}2^{a_2}\ldots m^{a_m}) := x_1^{a_1}x_2^{a_2}\cdots x_m^{a_m} \) is
\[
\sum_C Mishkal(C) ,
\]
where the sum has \(B_m \) terms (\(B_m \) being the Bell numbers), one for each set-partition of \(\{1,\ldots,m\} \).

Finally, to get an “explicit” formula (as a sum of \(B_m \) terms, each a simple rational function of \(q \)), for the generating function \(\sum_{n=0}^{\infty} f_m(n)q^n \), all we need is replace \(x_i \) by \(q^i \), for \(i = 1 \ldots m \), getting
\[
\sum_{n=0}^{\infty} f_m(n)q^n = \sum_C Poids(C) ,
\]
where the sum has \(B_m \) terms (\(B_m \) being the Bell numbers), one for each set-partition of \(\{1,\ldots,m\} \).
where for a set partition \(C = \{C_1, \ldots, C_r\} \)

\[
Poids(C) = poids(C_1) \cdots poids(C_r) ,
\]

and where for an individual set \(S \):

\[
poids(S) = \begin{cases}
1/(1-q^s), & \text{if } |S| = 1 \text{ where } S = \{s\}; \\
(-1)^{d-1}(d-1)!q^{s_1+\ldots+s_d}/(1-q^{s_1+\ldots+s_d}), & \text{if } |S| = d > 1 \text{ where } S = \{s_1, \ldots s_d\}.
\end{cases}
\]

It follows that indeed \(f_m(n) \) is a quasi-polynomial of degree \(m - 1 \) in \(n \). Furthermore, since the only pole that has multiplicity \(m \) is \(q = 1 \), it follows that the leading term (of degree \(m - 1 \)) is a pure polynomial.

The generating function, \(\sum_{n=0}^{\infty} f_m(n)q^n \), for any desired positive integer \(m \), is implemented in procedure \(\text{GFmq}(m,q) \) in the Maple package \(\text{DMP} \). For the Weight-enumerator (or rather with \(x_i \) replaced by \(q^ix_i \), for \(i = 1,\ldots,m \)), see \(\text{GFmxq}(m,x,q) \). Since the Bell numbers grow very fast, the formulas get complicated rather fast, but in principle we do have a very nice answer for any specific \(m \), but in practice, for large \(m \) it is only “nice” in principle. Of course it is anything but nice when viewed also as function of \(m \), and that’s why \(f(n) = f_n(n) \) is probably very hard to compute for larger \(n \).

To see the outputs of \(\text{GFmq}(m,q) \) for \(1 \leq m \leq 8 \) see: http://www.math.rutgers.edu/~zeilberg/tokhniot/oDMP3.

Asymptotics

Recall that Hardy and Ramanujan tell us that as \(n \) goes to infinity, \(p(n) \) is asymptotic to \(\frac{1}{4n\sqrt{3}}exp(C\sqrt{n}) \) where \(C = \sqrt{2/3\pi} = 2.565099661 \ldots \), and hence \(\log p(n)/\sqrt{n} \) converges to \(C \). By looking at the sequence \(\log f(n)/\sqrt{n} \) for \(1 \leq n \leq 508 \), it seems that this too converges to a limit, that appears to be a bit larger than 1.517 (but of course way less than 2.565099661 \ldots \). Let’s call that constant the Wilf constant.

The numerical evidence is here: http://www.math.rutgers.edu/~zeilberg/tokhniot/oDMP4.

Let me conclude with two challenges.

- Prove that the Wilf constant exists.
- Determine the exact value of the Wilf constant (if it exists) in terms of \(\pi \) or other famous constants. Failing this, find non-trivial rigorous lower and upper bounds.
References

[W1] Herbert Wilf, *Some Unsolved problems*,
http://www.math.upenn.edu/%7Ewilf/website/UnsolvedProblems.pdf, posted: Dec. 13, 2010. (viewed Jan. 16, 2012)

[W2] Herbert S. Wilf, “Generatingfunctionology”, Academic Press, First edition 1990, Second Edition 1994. Third Edition: AK Peters, 2005. Second edition is freely downloadable from http://www.math.upenn.edu/%7Ewilf/gfology2.pdf.

[W3] Herbert S. Wilf, *What is an Answer?*, Amer. Math. Monthly 89 (1982), 289-292.

[Z] Doron Zeilberger, *Enumerative and Algebraic Combinatorics*, in: “Princeton Companion to Mathematics” , (Timothy Gowers, ed.), Princeton University Press, 550-561. Available from: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/enu.pdf