GENERATING FUNCTION FOR GL$_n$-INVARIANT DIFFERENTIAL OPERATORS IN THE SKEW CAPPELLI IDENTITY

TAKASHI HASHIMOTO

ABSTRACT. Let Alt$_n$ be the vector space of all alternating $n \times n$ complex matrices, on which the complex general linear group GL$_n$ acts by $x \mapsto gxg^t$. The aim of this paper is to show that Pfaffian of a certain matrix whose entries are multiplication operators or derivations acting on polynomials on Alt$_n$ provides a generating function for the GL$_n$-invariant differential operators that play a role in the skew Capelli identity, with coefficients the Hermite polynomials.

1. INTRODUCTION

Let Alt$_n$ be the vector space consisting of all alternating $n \times n$ complex matrices, and C[Alt$_n$] the C-algebra of all polynomial functions on Alt$_n$. Then the complex general linear group GL$_n$ acts on Alt$_n$ by

$$g \cdot x := gxg^t \quad (g \in \text{GL}_n, x \in \text{Alt}_n),$$

from which one can define a representation π of GL$_n$ on C[Alt$_n$] by

$$\pi(g)f(x) := f(g^{-1} \cdot x) \quad (g \in \text{GL}_n, f \in \text{C}[\text{Alt}_n]).$$

For $x = (x_{i,j})_{i,j=1,...,n} \in \text{Alt}_n$, with $x_{j,i} = -x_{i,j}$, let $M := (x_{i,j})_{i,j}$ and $D := (\partial_{i,j})_{i,j}$ be the alternating $n \times n$ matrices whose (i, j)-th entries are given by the multiplication operator $x_{i,j}$ and the derivation $\partial_{i,j} := \partial/\partial x_{i,j}$, respectively. Then the representation $d\pi$ of gl_n, the Lie algebra of GL$_n$, induced from π is given by

$$d\pi(E_{i,j}) = -\sum_{k=1}^{n} x_{k,i} \partial_{k,i} \quad (i, j = 1, 2, \ldots, n)$$

where $E_{i,j}$ denotes the matrix unit of size $n \times n$ which is a basis for gl_n.

Let us denote the ring of differential operators on Alt$_n$ with polynomial coefficients by $\mathcal{D} \text{Alt}_n$, and its subring consisting of GL$_n$-invariant differential operators by $\mathcal{D} \text{GL}_n \text{Alt}_n$. Moreover, for a positive integer n, $[n]$ denotes the set $\{1, 2, \ldots, n\}$, and for a real number x, $\lfloor x \rfloor$ the greatest integer not exceeding x. Then the following fact is known:

Theorem ([4]). For $k = 0, 1, \ldots, \lfloor n/2 \rfloor$, let

$$\Gamma_k := \sum_{\ell \in \binom{[n]}{\ell}} \text{Pf}(x_{\ell}) \text{Pf}(\partial_{\ell}),$$

Date: February 4, 2009.

2000 Mathematics Subject Classification. 17B45, 15A15.

Key words and phrases. skew Capelli identity, GL$_n$-invariant differential operator, generating function, noncommutative Pfaffian, Hermite polynomial.
where the summation is taken over all \(I \subset [n] \) such that its cardinality is \(2k \), and \(x_i \) and \(\partial_i \) denote submatrices of \(M \) and \(D \) consisting of \(x_{i,j} \) and \(\partial_{i,j} \) with \(i, j \in I \), respectively. Then \(\{ \Gamma_k \}_{k=0,1,...,[n/2]} \) forms a generating system for \(\mathcal{P} \mathcal{D}(\text{Alt}_n)^{\text{GL}_n} \).

The aim of this paper is to find a generating function for \(\{ \Gamma_k \} \).

Following [6, 8], let us consider an alternating matrix with entries in \(\mathcal{P} \mathcal{D}(\text{Alt}_n) \) given by:

\[
\Phi(u) := \begin{bmatrix}
0 & x_{1,2} & \cdots & x_{1,n} & u \\
-x_{1,2} & 0 & \ddots & \vdots & u \\
\vdots & \ddots & \ddots & 0 & \ddots \\
-x_{1,n} & \cdots & -x_{n-1,n} & 0 & \ddots \\
-u & -u & \cdots & -u & 0 \\
-u & -\partial_{1,2} & \cdots & -\partial_{1,n} & 0 \\
-u & -\partial_{2,1} & \cdots & -\partial_{n,1} & 0 \\
-u & -\partial_{3,1} & \cdots & -\partial_{n,2} & 0 \\
\end{bmatrix}
\]

with \(u \in \mathbb{C} \) a parameter. We remark that the matrix \(\Phi(u) \) (or rather, \(\Phi(u) \) given below) naturally appears if we regard \(\text{GL}_n \) and \(\text{Alt}_n \) as a subgroup of the complex special orthogonal group \(\text{SO}_{2n} \) by the map (2.4) below and the holomorphic tangent space at the origin of the corresponding Hermitian symmetric space of noncompact type, respectively (see [2] for details, though we only deal with its commutative counterpart therein, i.e. the principal symbol).

Our main result of this paper is the following. Pfaffian \(\text{Pf}(\Phi(u)) \) of \(\Phi(u) \) (see the next paragraph for the definition of Pfaffian) provides a generating function for \(\{ \Gamma_k \} \), with coefficient being monic polynomial in \(u \) of degree \(n - 2k \), which is essentially equal to the Hermite polynomial, i.e.

\[
\text{Pf}(\Phi(u)) = \sum_{k=0}^{\lfloor n/2 \rfloor} \left(-\frac{i}{2}\right)^{n-2k} H_{n-2k}(iu) \Gamma_k,
\]

where \(i = \sqrt{-1} \) and \(H_m(x) \) denotes the Hermite polynomial of degree \(m \). Note that the minor summation formula of Pfaffian with commutative entries (cf. [3]) immediately implies that the principal symbol \(\sigma(\text{Pf}(\Phi(u))) \) of \(\text{Pf}(\Phi(u)) \) can be expanded as

\[
\sigma(\text{Pf}(\Phi(u))) = \sum_{k=0}^{\lfloor n/2 \rfloor} u^{n-2k} \gamma_k,
\]

where \(\gamma_k \) denotes the principal symbol of \(\Gamma_k \).

In general, for an associative algebra \(\mathcal{A} \) over a field \(\mathbb{K} \) of characteristic 0, which is not necessarily commutative, Pfaffian \(\text{Pf}(A) \) of an alternating matrix \(A = (A_{i,j}) \), \(A_{j,i} = -A_{i,j} \in \mathcal{A} \), is defined by

\[
\text{Pf}(A) = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \text{sgn}(\sigma) A_{\sigma(1),\sigma(2)}A_{\sigma(3),\sigma(4)} \cdots A_{\sigma(n-1),\sigma(n)}
\]
\[
\frac{1}{n!} \sum_{\sigma \in \Sigma_{2n} \atop \sigma(2i-1) < \sigma(2i)} \text{sgn}(\sigma) A_{\sigma(1),\sigma(2)} A_{\sigma(3),\sigma(4)} \cdots A_{\sigma(2n-1),\sigma(2n)}.
\]
(c.f. [7]). If the algebra \(\mathcal{A} \) happens to be commutative, then this reduces to:

\[
Pf(A) = \sum_{\sigma} \text{sgn}(\sigma) A_{\sigma(1),\sigma(2)} A_{\sigma(3),\sigma(4)} \cdots A_{\sigma(2n-1),\sigma(2n)},
\]
where the summation is taken over those \(\sigma \in \Sigma_{2n} \) satisfying

\[
\sigma(2i-1) < \sigma(2i) \quad (i = 1, 2, \ldots, n) \quad \text{and} \quad \sigma(1) < \sigma(3) < \cdots < \sigma(2n-1).
\]
When dealing with Pfaffian, however, it is sometimes convenient to consider square matrices alternating along the anti-diagonal, which we call anti-alternating for short in this paper. Note that a \(2n \times 2n \) matrix \(X \) is anti-alternating if and only if \(X J_{2n} \) is alternating, where \(J_{2n} \) denotes the nondegenerate \(2n \times 2n \) symmetric matrix with \(1 \)'s on the anti-diagonal and \(0 \)'s elsewhere. We simply denote \(\text{Pf}(X J_{2n}) \) by \(\text{Pf}(X) \) when there is no danger of confusion. Moreover, adopting the convention that \(-i \) means \(2n + 1 - i \) for \(i = 1, \ldots, 2n \), a square matrix \(X = (X_{i,j}) \) is anti-alternating if and only if \(X_{i,j} = -X_{j,-i} \) for all \(i, j \). Thus, we will consider the anti-alternating matrix given by

\[
\Phi(u) := \tilde{\Phi}(u) J_{2n}
\]
and calculate its Pfaffian in what follows.

The organization of this paper is as follows. In Section 2, we show that \(\text{Pf}(\Phi(u)) \) is invariant under the action of \(\text{GL}_n \). In Section 3, we calculate Pfaffian \(\text{Pf}(\Phi(u)) \) and show that it provides a generating function for \(\{\Gamma_k\} \) with coefficient essentially equal to the Hermite polynomial.

2. Invariant Differential Operators

As in the Introduction, let \(\pi \) denote the representation of \(\text{GL}_n \) on \(\mathbb{C}[\text{Alt}_n] \) defined by (1.2), and let \(M_{i,j} \) and \(D_{i,j} \) denote the multiplication operator by \(x_{i,j} \) and the derivation \(\partial_{i,j} \), respectively. The conjugation by \(\pi(g) \) of them are given by the following.

Lemma 2.1. We have

\[
\pi(g) D_{i,j} \pi(g)^{-1} = \sum_{a < b} \det(g_{i,j}^{a,b}) D_{a,b}, \quad (2.1)
\]
\[
\pi(g) M_{i,j} \pi(g)^{-1} = \sum_{a < b} \det((g^{-1})^{i,j}_{a,b}) M_{a,b} \quad (2.2)
\]
for all \(g = (g_{a,b})_{a,b} \in \text{GL}_n \), where \(g_{i,j}^{a,b} \) denotes a \(2 \times 2 \) submatrix of \(g \) whose row- and column indices are in \([a, b] \) and \([i, j] \), respectively.

Proof. First, we note that

\[
g(E_{i,j} - E_{j,i}) g' = \sum_{a < b} \det(g_{i,j}^{a,b})(E_{a,b} - E_{b,a}). \quad (2.3)
\]
Therefore, setting \(x = \sum_{a < b} x_{a,b} (E_{a,b} - E_{b,a}) \), we have

\[
\pi(g) D_{i,j} \pi(g)^{-1} f(x) = \frac{d}{d\epsilon} \bigg|_{\epsilon=0} f(x + \epsilon g(E_{i,j} - E_{j,i}) g').
\]
and hence obtain the first formula.

As for the multiplication operator $M_{i,j}$, it follows from (2.3) that the (i, j)-th entry of $g^{-1}x(g')^{-1}$ equals $\sum_{a<b} \det((g^{-1})_{a,b})x_{a,b}$. Therefore,

$$\pi(g)M_{i,j}\pi(g)^{-1}f(x) = \left(M_{i,j}\pi(g)^{-1}f\right)(g^{-1}x(g')^{-1})$$

$$= \sum_{a<b} \det((g^{-1})_{a,b})x_{a,b} \left(\pi(g)^{-1}f\right)(g^{-1}x(g')^{-1})$$

$$= \sum_{a<b} \det((g^{-1})_{a,b})M_{a,b}f(x).$$

This completes the proof. \hfill \Box

Henceforth, we will use $x_{i,j}$ and $\partial_{i,j}$ to denote $M_{i,j}$ and $D_{i,j}$ for simplicity.

For $g \in \text{GL}_n$ and $X = (X_{i,j}) \in \text{Mat}_{2n}(\mathbb{C}) \otimes \mathcal{P}(\text{Alt}_n)$, let us denote by $\text{Ad}_{\pi(g)}(X)$ the $2n \times 2n$ matrix whose (i, j)-th entry is given by $\pi(g)X_{i,j}\pi(g)^{-1}$ for $i, j = 1, \ldots, 2n$, following [7]. Furthermore, let $\text{SO}_{2n} := \{g \in \text{GL}_{2n}; g^tJ_{2n}g = J_{2n}, \det g = 1\}$, and ι the embedding of GL_n into SO_{2n} given by

$$\iota : g \mapsto \begin{bmatrix} g & 0 \\ 0 & J_n(g')^{-1}J_n \end{bmatrix}.$$ \hfill (2.4)

Proposition 2.2. Let $\Phi(u)$ be the matrix given by (1.6). Then we have

$$\text{Ad}_{\pi(g)}(\Phi(u)) = \iota(g')\Phi(u)\iota(g)^{-1}$$ \hfill (2.5)

for all $g \in \text{GL}_n$.

Proof. If we denote the $n \times n$ matrices $(\pi(g)\partial_{i,j}\pi(g)^{-1})_{i,j}$ and $(\pi(g)x_{i,j}\pi(g)^{-1})_{i,j}$ by \tilde{D} and \tilde{M}, respectively, then the left-hand side of (2.5) can be written as

$$\text{Ad}_{\pi(g)}(\Phi(u)) = \begin{bmatrix} u1_n & \tilde{D}J_n \\ -J_n\tilde{M} & -u1_n \end{bmatrix}.$$ \hfill (2.5)

On the other hand, since the upper-right block and the lower-left block of $\Phi(u)$ can be written as DJ_n and $-J_nM$, respectively, the right-hand side of (2.5) equals

$$\begin{bmatrix} g' & J_n g^{-1}J_n \\ J_n g^{-1}J_n & -J_nM & -u1_n \end{bmatrix} \begin{bmatrix} u1_n & DJ_n \\ -J_nM & -u1_n \end{bmatrix}$$

$$= \begin{bmatrix} u1_n & g'DgJ_n \\ -J_n g^{-1}M(g')^{-1} & -u1_n \end{bmatrix}.$$ \hfill (2.5)

Now, it follows from (2.3) that

$$g'Dg = \sum_{i<j} \partial_{i,j}g^t(E_{i,j} - E_{j,i})g$$

$$= \sum_{i<j_a<b} \det(g_{i,j}^a)\partial_{a,b}(E_{i,j} - E_{j,i}),$$
which equals the matrix \hat{D} by Lemma 2.1. The same calculation shows that $g^{-1}M(g')^{-1} = \hat{M}$. Thus we obtain the proposition.

As in the commutative case, the noncommutative Pfaffian transforms under the action of $GL_{2n}(K)$ as follows (see [7]).

Lemma 2.3. Let X be an anti-alternating matrix with coefficient in \mathcal{A}. For $g \in GL_{2n}(K)$, we have

$$Pf(gXg'^t) = \det g \cdot Pf(X),$$

where we set $g'^t := J_{2n}g'J_{2n}$ for brevity.

By Proposition 2.2 and Lemma 2.3, we obtain the following.

Corollary 2.4. The Pfaffian $Pf(\Phi(u)) \in \mathcal{PD}(\text{Alt}_n)$ is invariant under the action of GL_n. Namely, we have

$$\pi(g)Pf(\Phi(u))\pi(g)^{-1} = Pf(\Phi(u))$$

for all $g \in GL_n$.

3. Generating Function

In this section, we show that Pfaffian $Pf(\Phi(u))$ of the matrix $\Phi(u)$ given by (1.6) provides a generating function for the invariant differential operators $\{\Gamma_k\}$ with coefficients the Hermite polynomials, which, combined with Corollary 2.4, implies that each Γ_k is GL_n-invariant.

As is well known, Pfaffian is closely connected with the exterior algebra. Denoting by $[\pm n]$ the set $\{1, 2, \ldots, n, -n, \ldots, -2, -1\}$, let V be a $2n$-dimensional vector space over K with a basis $\{e_i\}_{i \in [\pm n]}$ and $\wedge^* V$ the exterior algebra associated to V. For $\omega, \theta \in \wedge^* V$, write the exterior product $\omega \wedge \theta$ as $\omega \theta$ for short. Furthermore, let $\wedge^* V \otimes \mathcal{A}$ be the exterior algebra with coefficient in \mathcal{A}, whose product is determined by

$$(\omega \otimes X)(\theta \otimes Y) := \omega \theta \otimes XY$$

for $\omega, \theta \in \wedge^* V$ and $X, Y \in \mathcal{A}$.

To an anti-alternating matrix $X = (X_{i,j})_{i,j \in [\pm n]}$ with $X_{i,j} \in \mathcal{A}$, we associate a 2-form Ξ_X defined by

$$\Xi_X := \sum_{i,j \in [\pm n]} e_i e_{-j} \otimes X_{i,j} \in \wedge^2 V \otimes \mathcal{A}. \quad (3.1)$$

Then the Pfaffian $Pf(X)$ is the coefficient of the volume form $e_1 e_2 \cdots e_n e_{-n} \cdots e_{-1}$ in Ξ_X divided by $2^n n!$:

$$\Xi_X^\otimes = 2^n n! e_1 e_2 \cdots e_n e_{-n} \cdots e_{-1} \otimes Pf(X). \quad (3.2)$$

Henceforth, to keep formulas concise, for a subset $I = \{i_1 < i_2 < \cdots < i_k\} \subset [n]$, put $-I := \{-i_k < \cdots < -i_2 < -i_1\}$ and write e_I and e_{-I} instead of $e_{i_1} e_{i_2} \cdots e_{i_k}$ and $e_{-i_1} \cdots e_{-i_k}$, respectively; for $\omega \in \wedge^* V$ and $X \in \mathcal{A}$, write ωX instead of $\omega \otimes X$.

Now take \mathcal{A} to be $\mathcal{PD}(\text{Alt}_n)$, and define 2-forms $\tau, \Theta_- , \Theta_+ \in \wedge^2 V \otimes \mathcal{PD}(\text{Alt}_n)$ by

$$\tau := \sum_{i,j \in [n]} e_i e_{-j}, \quad \Theta_- := \sum_{i,j \in [n]} e_i e_{j} X_{i,j}, \quad \Theta_+ := \sum_{i,j \in [n]} e_{-j} e_{-i} \partial_{i,j}. \quad (3.3)$$
Then $\Omega := \Theta_- + 2\mu + \Theta_+$ is the 2-form corresponding to $\Phi(u)$ under (3.1), and $\text{Pf}(\Phi(u))$ is the coefficient of volume form $e_{[n]}e_{-[n]}$ in Ω^n divided by $2^n n!$.

Lemma 3.1. We have the following commutation relations among τ, Θ_- and Θ_+:

$$[\tau, \Theta_-] = [\tau, \Theta_+] = 0, \quad [\Theta_+, \Theta_-] = 2\tau^2. \quad (3.4)$$

Proof. These follow from easy calculation. For example, we see that

$$[\Theta_+, \Theta_-] = 4 \sum_{i < j, k < l} (e_{-j}e_{-l}e_k e_l \partial_{ij} x_{kl} - e_k e_l e_{-j} e_{-l} x_{ik} \partial_{ij})$$

is the coefficient of volume form $e_{[n]}e_{-[n]}$ for any n. We extend it to $\mathcal{P}(\text{Alt}_n)$ by definition, we obtain that

$$\Theta_+ \Theta_- = \sum_{k=0}^{m} \binom{m}{k} \Theta_+^k \Theta_-^{m-k} \quad (3.5)$$

for all $m \in \mathbb{N}$.

Proposition 3.2. Let m be a nonnegative integer. Then we have

$$(\Theta_- + \Theta_+)^m = \sum_{k=0}^{\lfloor m/2 \rfloor} c_k(m)(2\tau^2)^k (\Theta_- + \Theta_+)^{m-2k}, \quad (3.6)$$

where $c_k(m)$ are given by

$$c_k(m) = \frac{m!}{2^k k! (m-2k)!} \quad (3.7)$$

for $k = 0, 1, 2, \ldots, \lfloor m/2 \rfloor$, and $c_k(m) = 0$ for $k < 0$ and $k > \lfloor m/2 \rfloor$.

We need the following lemma to prove the proposition, though we will only use the case where $a = 1$.

Lemma 3.3. For nonnegative integers a and b, we have

$$\Theta_+^a \Theta_-^b = \sum_{k=0}^{\min(a, b)} a^k b^{k \downarrow} (2\tau^2)^k \Theta_+^{a-k} \Theta_-^{b-k}, \quad (3.8)$$

where, for $z \in \mathbb{C}$ and $k \in \mathbb{N}$, z^k denotes the descending factorial $z(z-1) \cdots (z-k+1)$. Note that $z^k = 0$ if $z \in \mathbb{N}$ and $k > z$.

Proof. In view of the convention about the descending factorial, we can assume that $a \leq b$ in (3.8). Now we use induction on a. It is trivial if $a = 0$. Suppose it is true for some $a \geq 0$. Then applying Lemma [3.1], we obtain that

$$
\Theta_+^{a+1} \Theta_-^b = \sum_{k=0}^{a} \binom{a}{k} b^k (2\tau^2)^k \Theta_+ \Theta_-^{a-k} \Theta_+^k
$$

$$
= \sum_{k=0}^{a} \binom{a}{k} b^k (2\tau^2)^k \left(\Theta_-^k \Theta_+ + [\Theta_+, \Theta_-^{a-k}] \right) \Theta_+^{a-k}
$$

$$
= \sum_{k=0}^{a} \binom{a}{k} b^k (2\tau^2)^k \left(\Theta_-^k \Theta_+^{a-k} + (b - k)2\tau^2 \Theta_+^{b-1-k} \Theta_-^{a-k} \right)
$$

$$
= \sum_{k=0}^{a} \binom{a}{k} b^k (2\tau^2)^k \Theta_-^k \Theta_+^{a+1-k} + \sum_{k=0}^{a} \binom{a}{k} b^k (2\tau^2)^k \Theta_-^{b-1-k} \Theta_+^{a-k}
$$

$$
= \sum_{k=0}^{a+1} \binom{a+1}{k} b^k (2\tau^2)^k \Theta_-^{b-k} \Theta_+^{a+1-k}.
$$

This completes the proof. \(\square\)

Proof of Proposition 3.2. Use induction on m. There is nothing to prove when $m = 0$. Suppose that (3.6) is true for some $m \geq 0$. Multiplying (3.6) by $\Theta_- + \Theta_+$ from the left, we obtain that

$$(\Theta_- + \Theta_+)^{m+1}$$

$$
= \sum_{k=0}^{[m/2]} c_k (m)(2\tau^2)^k \sum_{s=0}^{m-2k} \binom{m-2k}{s} \left(\Theta_-^{s+1} \Theta_+^{m-2k-s} + \Theta_+^s \Theta_-^{m-2k-s} \right)
$$

$$
= \sum_{k=0}^{[m/2]} c_k (m)(2\tau^2)^k \sum_{s=0}^{m-2k} \binom{m-2k}{s} \left(\Theta_-^{s+1} \Theta_+^{m-2k-s} + \Theta_+^s \Theta_-^{m+1-2k-s} + s2\tau^2 \Theta_-^{s-1} \Theta_+^{m-2k-s} \right).
$$

Now, in the inner summation, since $\binom{m-2k}{s-1} + \binom{m-2k}{s} = \binom{m+1-2k}{s}$, the first and second sums equal

$$
\sum_{s=0}^{m-2k} \binom{m-2k}{s} \left(\Theta_-^{s+1} \Theta_+^{m-2k-s} + \Theta_+^s \Theta_-^{m+1-2k-s} \right)
$$

$$
= \sum_{s=0}^{m+1-2k} \binom{m+1-2k}{s} \Theta_-^{s+1} \Theta_+^{m+1-2k-s}
$$

$$
= o \left((\Theta_- + \Theta_+)^{m+1-2k} \right)
$$

while the last equals

$$
\sum_{s=0}^{m-2k} \binom{m-2k}{s} s2\tau^2 \Theta_-^{s-1} \Theta_+^{m-2k-s}
$$
\[(m - 2k)2^2 \sum_{s=0}^{m-2k} \binom{m - 1 - 2k}{s} \Theta^s_+ \Theta^{m-1-2k-s}_-\]
\[= (m - 2k)2^2 \Theta^s_+ (\Theta_+ \Theta^-)^{m-1-2k} \Theta^s_+ \Theta^{m-1-2k-s}_- \]

Thus
\[(\Theta_+ \Theta^-)^{m+1} = \sum_{k=0}^{\lfloor m/2 \rfloor} c_k(m)(2\tau^2)^k_0 (\Theta_+ \Theta^-)^{m+1-2k} \Theta^s_+ \Theta^{m-1-2k-s}_- \]
\[+ \sum_{k=1}^{\lfloor m/2 \rfloor + 1} (m + 2 - 2k)c_{k-1}(m)(2\tau^2)^{k-1}_0 (\Theta_+ \Theta^-)^{m+1-2k} \Theta^s_+ \Theta^{m-1-2k-s}_- \]

Therefore, it suffices to show that
\[c_k(m + 1) = c_k(m) + (m + 2 - 2k)c_{k-1}(m), \quad (3.9)\]
which follows immediately from the definition \[(3.7)\] of \(c_k(m)\). In fact, the right-hand side of \[(3.9)\] equals
\[
\frac{m!}{2^k k! (m - 2k)!} + \frac{(m + 2 - 2k)m!}{2^{k-1} (k - 1)! (m - 2k + 2)!}
\[= \frac{(m + 1)!}{2^k k! (m - 2k)!} = c_k(m + 1). \]
Hence \[(3.6)\] is true for \(m + 1\). \(\square\)

Remark 3.4. Proposition \[3.2\] holds true in a more general situation. Namely, let \(A\) be a noncommutative associative algebra over an arbitrary field of characteristic 0, and \(A, B\) two elements of \(A\) such that their commutator \([A, B] := AB - BA\) commutes with both \(A\) and \(B\):
\[[A, [A, B]] = [B, [A, B]] = 0. \]
Then exactly the same argument as in the proposition yields the following formula:
\[(A + B)^m = \sum_{k=0}^{\lfloor m/2 \rfloor} c_k(m) ([A, B])^{2k} \sum_{s=0}^{m-2k} \binom{m - 2k}{s} B^s A^{m-2k-s} \]
with \(c_k(m)\) given by \[(3.7)\].

Now we are ready.

Theorem 3.5. The Pfaffian \(\text{Pf}(\Phi(u))\) provides a generating function for the \(\text{GL}_n\)-invariant differential operators \(\{\Gamma_k\}\):
\[\text{Pf}(\Phi(u)) = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{n-2k}(u) \Gamma_k, \]
where \(a_m(u)\) are monic polynomials in \(u\) given by
\[a_m(u) = \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{m!}{2^{2k}(m - 2k)!k!} u^{m-2k}. \]
for \(m = 0, 1, 2, \ldots \).
Proof. By Lemma 3.1 and Proposition 3.2, we have

\[
\Omega^n = \sum_{p=0}^{n} \binom{n}{p} (2u\tau)^{n-p}(\Theta_- + \Theta_+)^p
\]

\[
= \sum_{p=0}^{n} \sum_{q=0}^{\lfloor p/2 \rfloor} \frac{n!}{(n-p)! q! (p-2q)!} (2u\tau)^{n-p-2q} (\Theta_- + \Theta_+)^{p-2q}
\]

\[
= \sum_{p=0}^{n} \sum_{q=0}^{\lfloor p/2 \rfloor} \sum_{r,s=0}^{p-2q} \frac{n!}{(n-p)! k! r! s!} (2u\tau)^{p+2q} \Theta_+ \Theta_-^s.
\]
(3.10)

Using the relations

\[
\Theta_- = 2^r! \sum_{I\in\binom{[n]}{r}} e_I \text{Pf}(x_I) \quad \text{and} \quad \Theta_+ = 2^s! \sum_{J\in\binom{[n]}{s}} e_J \text{Pf}(\partial_J)
\]

we obtain

\[
\Omega^n = \sum_{p=0}^{n} \sum_{q=0}^{\lfloor p/2 \rfloor} \sum_{r+s=p-2q} \frac{n!}{(n-p)! q!} 2^{p-2q} u^{n-p-2q} \sum_{I\in\binom{[n]}{r}, J\in\binom{[n]}{s}} e_{-I} e_J \text{Pf}(x_I) \text{Pf}(\partial_J).
\]
(3.11)

With \(u^{n-p+2q}\) expanded as

\[
u^{n-p+2q} = (n-p+2q)! \sum_{K\in\binom{[n]}{n-p+2q}} e_K e_{-K},
\]

the only terms that survive in the summation \(\sum_{K,I,J}\) are those corresponding to \(I = J = [n] \setminus K\); in particular, \(r = s\) and \(p\) is even. Thus the sum \(\sum_{K,I,J}\) is equal to

\[
\sum_{I\in\binom{[n]}{r}} e_{[n]-I} e_{-[n]-I} e_I e_{-I} \text{Pf}(x_I) \text{Pf}(\partial_I)
\]

\[
= \sum_{I\in\binom{[n]}{r}} \text{sgn}\left([n]-I\right) e_{[n]} e_{-[n]-I} e_{-I} \text{Pf}(x_I) \text{Pf}(\partial_I)
\]

\[
= e_{[n]} e_{-[n]} \sum_{I\in\binom{[n]}{r}} \text{Pf}(x_I) \text{Pf}(\partial_I)
\]

since \(\text{sgn}\left([n]-I\right) = \text{sgn}\left(-[n]-I\right)\). Letting \(p = 2\nu\), we obtain that

\[
\text{Pf}(\Phi(u)) = \sum_{\nu=0}^{\lfloor n/2 \rfloor} u^{n-2\nu} \sum_{s=0}^{\nu} \frac{(n-2s)!}{(n-2\nu)! (\nu-s)! 2^{2(\nu-s)} \Gamma_s}
\]

\[
= \sum_{s=0}^{\lfloor n/2 \rfloor} \sum_{\nu=s}^{\lfloor n/2 \rfloor} \frac{(n-2s)!}{(n-2\nu)! (\nu-s)! 2^{2(\nu-s)} \Gamma_s} u^{n-2\nu} \Gamma_s
\]

\[
= \sum_{s=0}^{\lfloor n/2 \rfloor} \sum_{\nu=s}^{\lfloor n/2 \rfloor-s} \frac{(n-2s)!}{(n-2s-2r)! r! 2^r \Gamma_s} u^{n-2s-2r} \Gamma_s
\]
\[
\sum_{s=0}^{\lfloor n/2 \rfloor} a_{n-2s}(u) \Gamma_s.
\]

This completes the proof. \(\square\)

The polynomials \(a_m(u)\) are essentially equal to the Hermite polynomials given by
\[
H_m(x) = (-1)^m e^{x^2} \left(\frac{d}{dx} \right)^m e^{-x^2}.
\]
In fact, it is well known that the generating function for \(H_m(x)\) is given by
\[
e^{2tx-x^2} = \sum_{m=0}^{\infty} \frac{t^m}{m!} H_m(x),
\]
from which one can derive that
\[
H_m(x) = m! \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{(-1)^k 2^{m-2k}}{k!(m-2k)!} x^{m-2k}.
\]

Therefore,
\[
a_m(u) = \left(-\frac{\nu-1}{2}\right)^m H_m(\sqrt{-1}u),
\]
and we obtain (1.5).

REFERENCES

1. R. Goodman and N. W. Wallach, Representations and invariants of the classical groups, Encyclopedia of Math. its Appl., vol. 68, Cambridge Univ. Press, 1998.
2. T. Hashimoto, On the principal symbols of \(K_C\)-invariant differential operators on Hermitian symmetric spaces, arXiv:0804.4038 [math.RT].
3. , A central element in the universal enveloping algebra of type \(D_n\) via minor summation formula of Pfaffians, J. Lie Theory 18 (2008), 581–594.
4. R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991), 565–619.
5. M. Ishikawa and M. Wakayama, Application of minor summation formula III, Plücker relations, lattice paths and Pfaffian identities, J. Comb. Theory A 113 (2006), 113–155.
6. M. Itoh, A Cayley-Hamilton theorem for the skew Capelli elements, J. Algebra, 242 (2001), 740–761.
7. M. Itoh and T. Umeda, On central elements in the universal enveloping algebras of the orthogonal Lie algebra, Compositio Math. 127 (2001), 333–359.
8. K. Kinoshita and M. Wakayama, Explicit Capelli identities for skew symmetric matrices, Proc. Edin-burgh Math. Soc. 45 (2002), 449–465.