Testing the special relativity theory with neutrino interactions

P. W. Cattaneo(a)

INFN, Sezione di Pavia - Via Bassi 6, I-27100, Pavia, Italy, EU

Received 8 November 2011; accepted in final form 9 August 2012

Published online 6 September 2012

PACS 13.15.+g – Neutrino interactions

Abstract – A recent measurement of the neutrino velocity by the OPERA experiment and the prediction of energy loss of superluminal neutrinos via the pair creation process $\nu \rightarrow e^+e^-$ stimulated a search of isolated e^+e^- pairs in detectors with good tracking capability traversed by a large flux of high-energy neutrinos like NOMAD. NOMAD has already searched for similar topologies. These results can be reinterpreted to provide stringent limits on special-relativity-violating parameters separately for each ν species.

Copyright © EPLA, 2012

Introduction. – The measurement of the ν velocity recently [1] reported by the OPERA experiment stimulated theoretical studies [2] (see also [3,4]) about the consequence of ν superluminality.

They predict that a superluminal ν would loose energy through Cerenkov-like processes like

$$\nu \rightarrow \begin{cases} \nu + \gamma & (a), \\ \nu + \nu_e + \nu_e & (b), \\ \nu + e^+ + e^- & (c). \end{cases}$$

(1)

The main effective process of energy loss is expected to be (c), that has a threshold $E_0 = 2m_e c^2 / \sqrt{\delta_\nu}$, where $m_e c^2$ is the electron rest energy and $\delta_\nu = \beta^2 - 1 \approx 2 \times (\beta - 1)$. References [2,3] report that the rate of pair emission and of energy loss are

$$\Gamma = k' \frac{G_F^2}{192\pi^3} E_\nu^5 \delta_\nu^3,$$

(2)

$$\frac{dE}{dx} = -k' \frac{G_F^2}{192\pi^3} E_\nu^5 \delta_\nu^3,$$

(3)

where $k = 25/448$ and $k' = 1/14$ are numerical constants, G_F is the Fermi constant of weak decay, E_ν the neutrino energy. From eq. (3) the average fractional energy loss is

$$\frac{1}{E} \frac{dE}{dx} \Gamma = -\frac{k}{k'} \approx 0.78.$$

(4)

Energy cutoff. – Equation (3) can be integrated, assuming δ_ν independent of energy, to obtain that a ν with initial energy E_0 after traveling a distance L will have energy E:

$$E^{-5} - E_0^{-5} = 5k' \frac{G_F^2}{192\pi^3} L \equiv E_T^{-5}.$$

(5)

E_T acts as a spectral cutoff, therefore for any value of δ_ν, the high-energy spectrum of a neutrino beam would be depleted over a sufficiently long path.

The absence of such cutoff at ICARUS [6] at LNGS ($L \approx 730$ km) up to above 50 GeV and at NOMAD [7,8] ($L \approx 1$ km) above 200 GeV allows to set the limits $\delta_\nu \lesssim 5 \times 10^{-6}$. Another effect that would deplete the ν distribution at high energy is the π decay kinematics. The phase space for the decay $\pi \rightarrow \mu\nu_\mu$ for superluminal ν_μ becomes smaller and smaller with increasing π energy; the effect is reducing the flux of high-energy ν down to zero above some threshold $[4,9]$. As noted in [2,3], this contradicts the measurements of high-energy neutrino interactions in underground detectors. The most stringent limits can be derived analyzing [3] high-energy atmospheric ν_μ ($\bar{\nu}_\mu$) detected in underground detectors [10].

An alternative approach is to look for the production of isolated e^+e^- pairs in neutrino detectors traversed by a high-energy, high-intensity neutrino flux such as the NOMAD detector [11].

The NOMAD detector. – The NOMAD detector was designed for searching the $\nu_\mu \rightarrow \nu_e$ oscillation at the CERN West Area Neutrino Facility (WANF) beam line. The detector includes an active target of drift chambers (DC) with a mass of 2.7 tons and a volume...
that show the undistorted (in detail in [7]). The results are summarized in fig. 1 for visibility) with the 1996–1998 dataset (4.1 \times 1055 p.o.t.).

The neutrino beam. – The neutrino beam impinging on the NOMAD detector originates from the CERN West Area Neutrino Facility (WANF) [15]; it is described in detail in [7]. The results are summarized in fig. 1 that shows the undistorted ($\delta_\nu = 0$) total neutrino fluxes, subdivided into the different components, traversing the active area of the NOMAD detector ($\approx 2.6 \times 2.6$ m2) during the period 1996–1998 for a total of 4.1 \times 1039 protons on target (p.o.t.). The ν_τ component, deduced from [16], is supposed to equal the ν_e component.

The e^+e^- pair spectrum in NOMAD. – The spectral forms of the e^+e^- pairs produced over a 4.0 m length in the NOMAD detector are affected for $\delta_\nu \gtrsim 10^{-6}$ by ν spectral distortion and for $\delta_\nu \lesssim 10^{-9}$ by threshold effects.

For intermediate values the spectra simply scale proportionally to δ_ν^3. The different spectral components according to eq. (3) are shown in fig. 2 for $\delta_\nu = 0.5 \times 10^{-6}$, a representative value of the scaling region. In order to ease a comparison with existing experimental data, the fluxes have been multiplied by an average detection efficiency $\epsilon = 0.26$ deduced by [12].

The most appropriate comparison with existing NOMAD data is [12], where e^+e^+ pairs from the decay of a heavy neutrino mixing with ν_τ were searched. This search established that the number of e^+e^- pairs is compatible with the expectations and additional sources can contribute no more than $O(1)$ events.

Limits on δ_ν. – The integrated e^+e^- fluxes $F_{e^+e^-} (\delta_\nu = 0.5 \times 10^{-6})$ for each species in the detector from fig. 2 are in the second column of table 1, while in the last column there are the values of δ_ν for which one e^+e^- pair is predicted. The last column is calculated accounting for distortion and threshold effects as shown in fig. 3, but it follows very closely the scaling law from eq. (3), $\delta_\nu = 0.5 \times 10^{-6}/F_{e^+e^-}^{1/3}$.

We emphasize that the limits derived with this analysis are approximate: the efficiency from [12] is relative to a different (softer) e^+e^- energy range, the spectrum of the process eq. 1(c) is assumed monochromatic and the statistical analysis is very crude. A dedicated analysis should be performed by the NOMAD Collaboration to obtain more precise limits.

Existing limits are $\delta_{\nu_\mu} < 4.0 \times 10^{-9}$ from SN1987 [17] and $\delta_{\nu_e} < 1.4 \times 10^{-8}$ [2]; in [2] stronger limits from high-energy events in IceCube are also presented for an

Table 1: Total e^+e^- pairs expected for $\delta_{\nu_e} = 0.5 \times 10^{-6}$ for each species and δ_{ν_e} giving one e^+e^- pair.

ν species	$F_{e^+e^-}$	δ_{ν_e}
ν_μ	1.8×10^5	8.4×10^{-10}
$\bar{\nu}_\mu$	5.1×10^6	2.7×10^{-9}
ν_e	1.6×10^6	4.0×10^{-9}
$\bar{\nu}_e$	2.2×10^5	7.8×10^{-9}
ν_τ	4.8×10^1	1.3×10^{-7}

Fig. 1: (Color online) Prediction of undistorted spectra of the different ν species crossing NOMAD (ν_τ is multiplied by 1000 for visibility) with the 1996–1998 data set (4.1 \times 1055 p.o.t.).

Fig. 2: (Color online) Spectra of the e^+e^- pairs produced by the different ν species in NOMAD (for visibility) with the 1996–1998 data set (4.1 \times 1055 p.o.t.) accounting for a spectral distortion caused by ν energy loss and for $\delta_{\nu_e} = 0.5 \times 10^{-6}$. An average detection efficiency $\epsilon = 0.26$ is included.
Testing the special relativity theory with neutrino interactions

unspecified ν species. Recently, following an approach similar to that presented in this paper, the ICARUS Collaboration set the limit $\delta_\nu < 2.5 \times 10^{-8}$ [6], presumably to be applied to ν_μ.

The limit in table 1 is the only one up to date on δ_ν. Following [18] we remark that these limits are valid for the extensions of the special relativity theory with a so-called “broken” Lorentz invariance, for which the processes in eq. (1) take place; alternative extensions of the theory with a so-called “deformed” Lorentz invariance, do not predict these processes and are not constrained by this analysis. Neither the possibility of a tachyonic superluminal neutrino is constrained by this analysis; nevertheless the discussions in [19,20] stress the difficulty of reconciling the data from accelerator experiments with this interpretation.

Conclusions. – We set strong bounds on special-relativity-violating processes involving neutrinos and antineutrinos of all species based on previous searches of isolated e^+e^- pairs in the NOMAD detector. This translates in strong limits on possible superluminal behaviours of neutrinos of all species for extensions of the special relativity theory with “broken” Lorentz invariance.

We strongly encourage the NOMAD Collaboration to perform a dedicated analysis to optimize these limits.

Thanks are due to Prof. S. R. Mishra from University of South Carolina, Columbia, SC, USA and Prof. L. Di Lella from CERN, Geneva, Switzerland for having supplied the neutrino spectra at NOMAD.

REFERENCES

[1] ADAM T. et al., Measurement of neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [hep-ph].
[2] COHEN A. G. and GLASHOW S. L., Phys. Rev. Lett., 107 (2011) 181803, arXiv:1109.6562 [hep-ph].
[3] BI X. J., YIN P. F., YU Z. H. and YUAN Q., Phys. Rev. Lett., 107 (2011) 241802, arXiv:1109.6667 [hep-ph].
[4] GONZALES-MESTRES L., Astrophysical consequences of the opera superluminal neutrino, arXiv:1109.6630 [hep-ph].
[5] ANTONELO M. et al., Phys. Lett. B, 713 (2012) 17, arXiv:1203.3433 [hep-ph].
[6] ANTONELO M. et al., Phys. Lett. B, 711 (2012) 270, arXiv:1110.3763 [hep-ph].
[7] ASTIER P. et al., Nucl. Instrum. Methods A, 515 (2003) 800.
[8] LYUBUSHKIN V. et al., Eur. Phys. J. C, 63 (2009) 355, arXiv:0812.4543 [hep-ph].
[9] COWSIK R., NUSSINOV S. and SARKAR U., Phys. Rev. Lett., 107 (2011) 251801, arXiv:1110.0241 [hep-ph].
[10] ABBASI R. et al., Phys. Rev. D, 83 (2011) 012001, arXiv:1010.3980 [hep-ph].
[11] ALTegoer J. et al., Nucl. Instrum. Methods A, 404 (1998) 96.
[12] ASTIER P. et al., Phys. Lett. B, 506 (2001) 27.
[13] ASTIER P. et al., Phys. Lett. B, 527 (2002) 23.
[14] ASTIER P. et al., Phys. Lett. B, 483 (2000) 371.
[15] ACQUISTASPACE G. et al., CERN-ECP/95-14 (1995).
[16] DE VYVER B. V., Nucl. Instrum. Methods A, 385 (1997) 91.
[17] LONGO M. J., Phys. Rev. D, 36 (1987) 3276.
[18] AMELINO-CAMELIA G., FRIEDEL L., KOWALSKI-GLIKMAN J. and SMOLIN L., Mod. Phys. Lett. A, 27 (2012) 1250063, arXiv:1110.0521 [hep-ph].
[19] AMELINO-CAMELIA G. et al., Int. J. Mod. Phys. D, 20 (2011) 2623, arXiv:1109.5172 [hep-ph].
[20] DRAGO A. et al., EPL, 97 (2012) 21002, arXiv:1109.5917 [hep-ph].