Analytical Design and Modelling of GaN Vertical Trench Junction Barrier Schottky Diodes

Jian Yin
Shandong University

Sihao Chen
Shandong University

Hang Chen
Shandong University

Shuti Li
South China Normal University

Chao Liu (✉ chao.liu@sdu.edu.cn)
Shandong University

Research Article

Keywords: breakdown voltage, device physics, GaN, surface electric field shielding effect, trench junction barrier Schottky diodes

Posted Date: January 21st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1271345/v1

License: ☋ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Analytical Design and Modelling of GaN Vertical Trench Junction Barrier Schottky Diodes

Jian Yin¹,², Sihao Chen¹,², Hang Chen¹,², Shuti Li³, and Chao Liu¹,² *

1 School of Microelectronics, Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
2 Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
3 Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, China.

* Corresponding author.

E-mail addresses: chao.liu@sdu.edu.cn.
Abstract

We report GaN vertical trench junction barrier Schottky (TJBS) diodes and systematically investigate the impacts of the key design parameters on the reverse and forward characteristics of GaN-based TJBS diodes by numerical simulation. Compared with conventional planar junction barrier Schottky (PJBS) diodes, the TJBS structure can suppress the electric field at the Schottky interface more effectively by taking advantage of the electric field shielding effect. We found that the electric field profile can be influenced by the doping concentration, thickness and spacing of p-GaN, as well as the depth and angle of the trench sidewalls. Furthermore, the effect of the cross-sectional profile on the forward characteristics of the TJBS diodes are investigated and the analytical model of the forward conduction is also developed. The results can pave the way towards a high-power, high-voltage, and low-loss GaN vertical Schottky barrier diodes for high-efficiency power system applications.

Keywords: breakdown voltage, device physics, GaN, surface electric field shielding effect, trench junction barrier Schottky diodes

1. Introduction

GaN is widely used in high-voltage and high-power devices due to its advantages of wide bandgap, high electron mobility and high critical electric field, compared to their Si and SiC counterparts [1-3]. Recently, GaN-based vertical power devices have shown great potential for the next-generation of high-voltage and high-current power systems [4-13]. Due to their unique properties of fast switching speed and low turn-on voltage, Schottky barrier diodes (SBDs) are considered as the indispensable components in modern power systems [14-16]. However, the conventional SBDs typically suffer from the Schottky barrier lowering effect induced by image force, which results in a large leakage current and premature breakdown of the devices [17]. Several approaches have been proposed to modulate the electric field at the Schottky junction interface, so as to alleviate the reverse leakage and improve the breakdown of the devices.

A trench metal-insulator-semiconductor (MIS) barrier Schottky (TMBS) structure has been
proven to be effective, by utilizing a MIS structure to shield the electric field at the Schottky surface [18-21]. An alternative way to improve the reverse characteristics of the SBDs is to employ a pn junction in the vicinity of the Schottky interface, such as merged pn-Schottky (MPS), and junction barrier Schottky (JBS) structures [22-27]. Compared to TMBS structures, the fabrication of MPS and JBS structures does not involve the deposition of an insulating dielectric layer, which is accompanied with high density of interface and bulk traps, sequentially degrading the dynamic performance of the devices. However, the ion implantation and activation technology for p-type GaN is far from mature, resulting in a low concentration and mobility of the activated free holes within the material [28-29]. Therefore, the performance of the MPS diodes is greatly limited due to the difficulty in forming ohmic contact to the implanted p-type region. On the other hand, the anode of the JBS diodes forms Schottky contact with the p-GaN region [27], which simplifies the fabrication process.

As is known, the enhancement of the reverse characteristics by the JBS structure rely heavily on the electric field shielding effect generated from the adjacent pn junctions to alleviate the electric field crowding at the Schottky interface [30-36]. Typically, a deep pn junction is demanded for the purpose of an effective shielding effect. As a result, a relatively high implantation energy has to be set to form a deep p-type region [29,37], which may induce higher defect density either at the interface or within the bulk p-GaN and limit the performance of the JBS diodes [38]. In this paper, we propose a trench JBS (TJBS) structure with a p-GaN surrounded trench mesa. The presence of the trench can help to realize a deeper pn junction in the drift layer, avoiding the utilization of high-energy ion implantation and thus reducing the density of defects. Furthermore, the influence of the key parameters on the reverse and forward characteristics of GaN-based TJBS diodes are investigated and analyzed systematically. The results can provide a theoretical guideline for the development of high performance GaN-based TJBS diodes for potential applications including fast charging, automobiles, and energy harvesting.
2. Device architectures and principles

Figure 1(a)-(b) show the schematic diagram of the conventional planar JBS (PJBS) diodes and the TJBS diodes. Both devices consist of a 2-μm-thick n+-GaN substrate (Si = 5×10^{18} cm^{-3}) and a 12-μm-thick n--GaN drift layer, except that the pn junction in the TJBS diodes is deeper than that in the PJBS diode due to the existence of the trench. The anode on the top of the device is set as a Schottky contact, and the cathode on the back of the GaN substrate is an ohmic contact. For an explicit understanding of the electric field shielding effect by the TJBS structure, we plot and compare the schematic one dimensional (1D) electric field distributions along the midline of the GaN-based PJBS and GaN-based TJBS, as shown in Figure 1. While the conventional SBD suffers from a high electric field at the Schottky interface [shown by the triangular electric field distribution in Figure 1(a)], the PJBS and TJBS structures can effectively alleviate the electric field crowding effect and result in a quadrilateral electric field.
distribution into the drift layer. Thanks to the combined effect by the trench and p-GaN structures, a stronger electric field shielding effect can be observed from the TJBS structure in Figure 1(b), which allows a substantial reduction of the electric field at the Schottky surface, compared to the PJBS structure. Meanwhile, the electric field peak moves further into the drift layer due to the adoption of the trench and allows the formation of deeper pn junction.

The reverse blocking capability of TJBS diodes is dominated by the electric field distribution, which is closely correlated with the electric field shielding effect from the pn junction and the vertical trench structure. Therefore, the influence of the key design parameters on the device performance is investigated by varying the doping concentration and the thickness of the p-GaN (T_p), the width of the channel (W_c) between adjacent p-GaN, the depth of the trench (D_{tr}), and the angle (θ) of the trench slope. The breakdown voltage is defined as the reverse bias value corresponding to a current density of 1 A/cm2.

We conduct the numerical investigation based on the Advanced Physical Models of Semiconductor Devices (APSYS) software [39]. The key physical models used in the simulation include models for carrier drift-diffusion, generation-recombination, continuity and Poisson equations, low-field mobility, saturation velocity, impact ionization. The breakdown process of the device is mainly determined by the impact ionization model, in which the impact ionization coefficients of electrons and holes of GaN are set according to literature [19,40,41], and the impact ionization coefficients of electrons and holes, as a function of the electric field (E) in the drift layer, can be expressed as

$$\alpha_e (E) = 2.90 \times 10^8 \, \text{cm}^{-1} \cdot \exp \left(-\frac{3.40 \times 10^7 \, V/cm}{E} \right)$$

(1)

$$\alpha_h (E) = 1.34 \times 10^8 \, \text{cm}^{-1} \cdot \exp \left(-\frac{2.03 \times 10^7 \, V/cm}{E} \right)$$

(2)

On the other hand, the incomplete ionization model can accurately reflect the incomplete ionization of Mg acceptor within GaN under equilibrium condition, which accounts for the
acceptor ionization energy of 200 meV above the valence band maximum. And the concentration of ionized acceptors P_A^- can be calculated by the following expression.

$$P_A^- = \frac{N_A}{1 + g_A \exp\left(\frac{E_A - E_F}{kT}\right)}$$ \hspace{1cm} (3)

where g_A is the acceptor degeneracy factor, and E_F is the Fermi level, E_A is the acceptor level.

Furthermore, the concentration of ionized Mg acceptors is considered to be much higher in the simulation procedure under non-equilibrium condition than under equilibrium condition, as experimentally reported in Reference [42].

3. Results and discussion

3.1 Effect of p-doping concentration and thickness on the reverse blocking performances of TJBS diodes

Figure 2(a) depicts the influence of the p-doping concentration on the breakdown voltage of the TJBS diodes, with different drift layer doping concentrations. Other key parameters W_c, D_r and T_p of the TJBS diode are kept at constant values of 2 μm, 1 μm and 0.5 μm respectively.
For a given p-doping concentration, the breakdown voltage increases with decreased drift layer
doping concentration, owing to the increased depletion depth in the drift region at reverse bias
condition. On the other hand, a similar variation trend of the breakdown voltage with the p-
doping concentration can be observed with different drift layer doping concentrations. As the
p-doping concentration increases, the breakdown voltage of the TJBS diodes first increases and
then decreases. A peak breakdown value of 1210 V is recorded with a p-doping concentration
of 2×10^{17} cm$^{-3}$ and a drift layer doping concentration of 2×10^{16} cm$^{-3}$. Note that the p-doping
concentration for the optimum breakdown characteristics is slightly different for TJBS diodes
with different drift layer doping concentrations. A lower p-doping concentration is demanded
to achieve the best breakdown voltage for the TJBS diodes with a lower drift doping
concentration.

To explore the breakdown mechanism of the TJBS diodes with different p-doping
concentrations, we extracted the lateral 1D electric field profiles from the bottom interface
between p-GaN and the n'-GaN drift layer, as shown by the dash line in the inset of the Figure
2(b). With a high p-doping concentration of 2×10^{18} cm$^{-3}$ and above, a high electric field can be
observed at the corner of the p-GaN structure, which exceeds the critical breakdown field of
GaN and leads to premature breakdown. A more uniform distribution of the electric field can
be observed with p-doping concentration of 2×10^{17} cm$^{-3}$, which can result in an improved
breakdown voltage compared to that at a higher p-doping concentration. With a p-doping
concentration of 2×10^{16} cm$^{-3}$, a further reduction in the electric field value is recorded at the
bottom of the p-GaN. However, the corresponding breakdown voltage of the TJBS diodes is
lower, which cannot be explained with the 1D electric field profile in Figure 2(b).

For the purpose of understanding the electric field distribution more explicitly, we compare
the two-dimensional (2D) electric field contours of the TJBS diodes with different p-doping
concentrations in Figure 3. With a p-doping concentration of 2×10^{16} cm$^{-3}$ in Figure 3(a), the
majority of the electric field concentrates at the corner of the trench, leading to a premature
breakdown of the TJBS diodes. Due to the insufficient charge coupling effect by the pn junction, only a negligible proportion of the electric field is moved from the trench corner to the bottom of the p-GaN, which corresponds to the lowest value of the electric field in the 1D electric field profile from Figure 2(b) and well explains the reduced breakdown voltage with a p-doping concentration of 2×10^{16} cm$^{-3}$ in Figure 2(a). As the p-doping concentration increases to 2×10^{17} cm$^{-3}$ in Figure 3(b), the crowded electric field at the trench corner is eliminated and replaced by a uniformly distributed profile at the bottom of the p-GaN structure, resulting in an optimum reverse blocking capability. Further increase of the p-doping concentration in Figure 3(c)-(d) leads to an accumulation of the electric field at the p-GaN corner and thus a premature breakdown of the devices. Therefore, an optimal p-doping concentration of 2×10^{17} cm$^{-3}$ is

Figure 3. Local 2-D electric field distributions of TJBS diodes with p-doping concentrations of (a) 2×10^{16} cm$^{-3}$, (b) 2×10^{17} cm$^{-3}$ and (c) 2×10^{18} cm$^{-3}$, (d) 2×10^{19} cm$^{-3}$ at 600 V reverse biased and a drift layer concentration of 2×10^{16} cm$^{-3}$.
highly demanded to prevent the undesirable premature breakdown from the perspective of electric field distribution.

In addition to the doping concentration, the thickness of the p-GaN structure also plays a crucial role in the reverse characteristics of the TJBS diodes, as illustrated in Figure 4(a). A stronger correlation between the breakdown voltage and the p-GaN thickness can be observed with a lower p-doping concentration. Specifically, with a p-doping concentration of 2×10^{16} cm$^{-3}$, the breakdown voltage of the TJBS diodes increases monotonously with the p-GaN thickness. By increasing the p-doping concentration to 2×10^{17} cm$^{-3}$, the breakdown voltage experiences a
sharp increase with the p-GaN thickness before reaching a saturation at a p-GaN thickness of 0.4 μm. The breakdown voltage of the TJBS diodes remains constant with the p-GaN thickness when the p-doping concentration exceeds 2×10^{18} cm$^{-3}$.

Figure 4(b)-(c) shows the lateral 1D electric field profile for the analysis of the breakdown mechanism of TJBS diodes with different p-GaN thickness. The premature breakdown occurs at the trench corner with a p-doping concentration of 2×10^{16} cm$^{-3}$. Therefore, we extracted the electric field profile from the bottom of the trench, as shown by the dash line in the inset of Figure 4(b). To maintain a constant channel width (W_c), the width of the mesa (W_m) was varied in accordance with the thickness of the p-GaN (T_p). Thus, the position of the electric field peak also moves correspondingly. The peak value of the electric field gradually reduces with increased p-GaN thickness, effectively lowering the possibility of premature breakdown at the corner of the trench. As we increase the p-doping to 2×10^{17} cm$^{-3}$, the electric field peaks at the corner of the p-GaN, as shown in Figure 4(c). With increased p-GaN thickness from 0.2 μm to 1 μm, an obvious reduction in the peak electric field can be observed, while the 1D electric field profile remained unchanged with further increased p-GaN thickness to 1.8 μm, which agrees with the aforementioned variation trend in the device breakdown voltage. With a p-doping concentration of 2×10^{18} cm$^{-3}$, identical profiles for the 1D electric field can be observed with different p-GaN thickness, which can well explain the constant breakdown voltage in Figure 4(a).

3.2 Effect of p-GaN spacing and trench depth on the reverse blocking performances of TJBS diodes

After addressing the effects of the p-GaN related design parameters (p-doping concentration and thickness), we then look into the influence of the geometrical dimensions (p-GaN spacing and trench depth) on the reverse characteristics of the TJBS diodes, as presented in Figure 5(a). An inverse proportional relationship can be recorded between the breakdown voltage and the spacing between two adjacent p-GaN structures (W_c), regardless of the p-doping concentration.
Note that a much sharper decrease of the breakdown value with W_c can be observed with a higher p-doping concentration of 2×10^{19} cm$^{-3}$, resulting in the lowest breakdown voltage at a W_c of 3 μm. While the spacing has a significant effect on the reverse characteristics of the TJBS diodes, the trench depth exerts a minor influence on the breakdown voltage with a p-doping concentration higher than 2×10^{17} cm$^{-3}$. With a lower p-doping concentration of 2×10^{16} cm$^{-3}$, the
distinction in the breakdown voltage is more pronounced between the TJBS diodes with a trench depth of 1 μm and 2 μm, respectively, which can be further enlarged with a larger W_c.

The breakdown mechanism of the TJBS diodes is investigated by analyzing their 1D electric field profiles at different W_c and D_{tr}. Figure 5 (b) presents the lateral electric field profile along the bottom of the p-GaN with a doping concentration of 2×10^{17} cm$^{-3}$. By increasing the W_c from 1μm to 3 μm, the peak electric field value increases moderately, resulting in a slight reduction in the breakdown voltage of the TJBS diodes. An identical electric field profile can be observed for the TJBS diodes with different D_{tr} for a smaller W_c of 1 μm and 2 μm, while a larger D_{tr} can lead to an increased electric field with a larger W_c of 3 μm, which agrees with the slight drop of the breakdown voltage at a W_c of 3 μm, as shown in Figure 5 (a). With a relatively low p-doping concentration of 2×10^{16} cm$^{-3}$ in Figure 5(c), an increase in either W_c or D_{tr} is accompanied by a larger value of the electric field at the corner of the trench, causing a premature breakdown of the TJBS diodes. Under the condition of a high p-doping concentration of 2×10^{19} cm$^{-3}$ in Figure 5(d), a large proportion of the electric field concentrates at the edge of the p-GaN and increases dramatically with W_c, which can well explain the sharp decrease of the breakdown voltage in Figure 5 (a). Therefore, the geometrical parameters also play a crucial role in the reverse characteristics of the TJBS diodes, jointly determining the breakdown voltage of the devices with the p-doping concentration by tuning the distribution of the electric field.

3.3 Effect of trench bevel on the blocking performances and forward characteristics of TJBS diodes

Based on the analysis above, an optimum reverse blocking performance of the TJBS diodes can be obtained with the p-doping concentration, T_p, W_c, and D_{tr} of 2×10^{17} cm$^{-3}$, 0.8μm, 1.5 μm, and 1 μm, respectively. Note that the key structural parameters are optimized with a trench angle (θ) of 90° [see Figure 1]. To develop a systematic study, we further investigated the effect of the angle on the reverse blocking performance and the forward characteristic of the TJBS
Figure 6. Breakdown voltage and on-resistance of the TJBS diodes as a function of the variation of the angle (θ) of the trench slope.

Figure 7. Local 2-D electric field distributions of TJBS diodes with a θ of (a) 40°, (b) 60° and (c) 80°, (d) 100° with a p-doping concentration of 2×10^{17} cm$^{-3}$ at a reverse bias of 1000 V.
diodes based on the optimized structure. As is shown in Figure 6, as θ increases from 40° to 100°, the reverse breakdown voltage increases monotonously from 1000 V to 1260 V, with a concomitant increase in on-resistance (R_{on}). Specially, when the value of θ changes from 90° to 100°, a sharp increase of the R_{on} can be observed from 1.8 mΩ·cm2 to 3.5 mΩ·cm2, which can be attributed to a narrower current conduction channel.

The reason for the increased breakdown voltage with a larger θ can be derived from the 2D electric field distribution in Figure 7. At a small θ of 40° in Figure 7(a), the electric field crowding effect is locally significant at the bottom of the p-GaN. As θ gradually increases to 100° in Figure 7(d), the electric field crowding effect can be effectively suppressed and the electric field exhibits a more uniform distribution at the bottom of the p-GaN, while an excellent electric field shielding effect can be formed under the Schottky interface. However, a larger θ leads to a smaller W_c between the adjacent p-GaN, thus results in a stronger depletion effect on the channel electric field by the adjacent pn junction.

To systematically explain the mechanism behind the variation trend of R_{on} with θ, the current path of the TJBS diodes under the forward conduction condition is analyzed in Figure 8, in which the current spreading region is represented by the grey part while the depletion region is marked with white color. For a TJBS diode, due to the presence of pn junction, the series resistance in the drift region can be divided into three different components, namely, the channel resistance (R_{ch}), the spreading resistance (R_{sp}) and the drift region resistance (R_{dr}), respectively. According to the analysis in the Reference [34] and [43], on the condition that the angle of trench is not 90°, the angle (α) in Figure 8 can be expressed as

$$\alpha = 135^\circ - \theta$$

(4)

The overall resistance R_{on} of device is determined by the resistive components, which can be given by

$$R_{on} = R_{ch} + R_{sp} + R_{dr} + R_{sub} + R_{con}$$

(5)
where \(R_{\text{sub}} \) and \(R_{\text{con}} \) represent the substrate resistance and the ohmic contact resistance, which are determined by the conductivity of the selected substrate and the process of forming ohmic contact, respectively. In detail, specific \(R_{\text{ch}} (R_{\text{ch},sp}) \), specific \(R_{\text{sp}} (R_{\text{sp},sp}) \) and specific \(R_{\text{dr}} (R_{\text{dr},sp}) \) can be derived as

\[
R_{\text{ch},sp} = P \rho_D M \ln \left(1 + \frac{X_d}{DM} \right)
\] (6)

\[
R_{\text{sp},sp} = P \rho_D M \ln \left(\frac{PM}{DM+X_d} \right)
\] (7)

\[
R_{\text{dr},sp} = \rho_D \left(T_D - X_j - \frac{W_d}{2} - \frac{PM-DM-X_d}{MN} \right)
\] (8)

where \(P \) is the width of the whole device cell, \(\rho_D \) is the resistivity of the drift layer, and \(X_d, M, N \) are abbreviations used for ease of calculation and can be given by

\[
X_d = X_j + \frac{W_d}{2}; \ M = \tan \theta; \ N = \tan \alpha
\] (9)

Figure 8. Current path in TJBS diode used for on-state analysis.
Taking the adoption of the p+ structure in the TJBS diodes into account, the relationship between the forward voltage drop \(V_{FS}\) and the current density for the Schottky barrier can be expressed as

\[
V_{FS} = \Phi_B + \frac{kT}{q} \ln \left(\frac{J_{FS}}{A^*T^2} \right)
\]

(10)

where \(\Phi_B\) is the Schottky barrier height, \(q\) is the electron charge, \(k\) is the Boltzmann constant, \(T\) is the Kelvin temperature, and \(A^*\) is the Richardson constant. \(J_{FS}\) represents the current density through the Schottky surface, which is proportional to the cell current density \((J_{FC})\) by the following expression

\[
J_{FS} = \left(\frac{\rho}{D} \right) \cdot J_{FC}
\]

(11)

where \(D\) is the width of the Schottky interface under the conduction path, which is related to the width of the channel \((W_c)\) and the junction depletion region \((W_d)\)

\[
D = \frac{W_c}{2} - W_d
\]

(12)

\(W_d\) can be derived from the following equation:

\[
W_d = \sqrt{\frac{2\varepsilon_s(V_{bi} - V_F)}{qN_D}}
\]

(13)

where \(\varepsilon_s\), \(V_{bi}\), \(V_F\) and \(N_D\) are the dielectric constant, the built-in potential difference, the applied forward bias and the drift layer doping concentration, respectively. Furthermore, the simulated \(R_{on}\) of the TJBS diodes with \(\theta\) of 60° in terms of \(W_c\) is presented in Figure 9, in which the curve of \(R_{on}\) calculated according to the proposed analytical calculation model is also shown. It can be seen that there is a favorable agreement between the calculation values and the simulation results, confirming the validity of the proposed analytical calculation model.

The analytical model can be used for intuitively analyzing the variation of \(R_{on}\) and calculate the forward voltage drop \((V_{FS})\) of the TJBS diodes, which can pave the way for the design of
high performance TJBS diodes for a variety of applications.

4. Conclusion

In summary, we report GaN-based trench junction barrier Schottky diodes and systematically analyzed the effects of the key design parameters on the reverse and forward characteristics of the devices. By taking advantage of the charge coupling effect with the TJBS structure, the barrier lowering effect at the Schottky junction at can be effectively suppressed. With an optimal set of design parameters, the locally concentrated electric field at either the corner of the trench or the edge of the p-GaN can be effectively alleviated, resulting in a boosted breakdown performance in the TJBS diodes. In addition, an analytical model is explored and developed to explain physical mechanism behind the forward conduction behaviors. We believe that the results can provide a systematical design strategy for the development of low-loss, high-voltage, and high-power GaN power diodes towards an efficient power system.

Authors’ contributions

Jian Yin carried out the simulation, analyzed the data and physical mechanism, and wrote
the paper. Sihao Chen, Hang Chen, and Shuti Li participated in the simulation and discussion. Chao Liu supervised the whole work and revised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 62104135, in part by the Shenzhen Science and Technology Program under Grant JCYJ20210324141212030, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515111018, in part by the Shandong Provincial Natural Science Foundation under Grant ZR2020QF079, and in part by the Qilu Young Scholar program under Grant 11500089963075.

Availability of data and materials

All data generated or analyzed during this study are included within the article.

References

[1] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, IEEE Trans. on Power Electron., **2014**, 29, 2155.

[2] F. Roccaforte, P. Fiorenza, G. Greco, R. L. Nigro, F. Giannazzo, F. Iucolano, and M. Saggio, Microelectron. Eng., **2017**, 187, 66.

[3] S. Chowdhury, and T. P. Chow, Phys. Status-Solidi C, **2016**, 13, 360.

[4] C. Liu, R. Abdul Khadar and E. Matioli, IEEE Electron Device Lett., **2018**, 39, 1034.

[5] D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, and T. Ueda, in IEDM Tech. Dig., **2016**, 10.1.1.

[6] C. Liu, R. Abdul Khadar and E. Matioli, **2018**, IEEE Electron Device Lett., 39, 71.

[7] Y. Cao, R. Chu, R. Li, M. Chen, R. Chang, and B. Hughes, Appl. Phys. Lett., **2016**, 108, 062103.
[8] K. Nomoto Z. Hu, B. Song, M. Zhu, M. Qi, R. Yan, V. Protasenko, E. Imhoff, J. Kuo, N. Kaneda, T. Mishima, T. Nakamura, D. Jena, and H. Grace Xing, in IEDM Tech. Dig., 2015, 9.7.1.

[9] S. W. Huang Chen, H. Y. Wang, C. Hu, Y. Chen, H. Wang, J. Wang, W. He, X. Sun, H. C. Chiu, H. C. Kuo, W. Wang, K. Xu, D. Li, X. Liu, J. Alloy. Compd., 2019, 804, 435.

[10] R. A. Khadar, C. Liu, R. Soleimanzadeh and E. Matioli, IEEE Electron Device Lett., 2019, 40, 443.

[11] S. Chowdhury and U. K. Mishra, IEEE Trans. Electron Devices., 2013, 60, 3060.

[12] X. Guo, Y. Zhong, J. He, Y. Zhou, S. Su, X. Chen, J. Liu, H. Gao, X. Sun, Q. Zhou, Q. Sun, H. Yang, IEEE Electron Device Lett., 2021, 42, 473.

[13] R. J. Kaplar, B. P. Gunning, A. A. Allerman, M. H. Crawford, J. D. Flicker, A. M. Armstrong, L. Yates, A. T. Binder, J. R. Dickerson, G. Pickrell, P. Sharps, T. Anderson, J. Gallagher, A. Jacobs, A. Koehler, M. Tadjer, K. Hobart, M. Ebrish, M. Porter, R. Martinez, K. Zeng, D. Ji, S. Chowdhury, O. Aktas, and J. Cooper, in IEDM Tech. Dig., 2020, 5.1.1.

[14] Y. Li, M. Wang, R. Yin, J. Zhang, M. Tao, B. Xie, Y. Hao, X. Yang, C. P. Wen and, B. Shen, IEEE Electron Device Lett., 2020, 41, 329.

[15] H. Fu, X. Huang, H. Chen, Z. Lu, I. Baranowski, and Y. Zhao, Appl. Phys. Lett., 2017, 111, 152102.

[16] E. Bahat-Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Würfl, and G. Tränkle, IEEE Electron Device Lett., 2012, 33, 357.

[17] Z. Bian, T. Zhang, J. Zhang, S. Zhao, H. Zhou, J. Xue, X. Duan, Y. Zhang, J. Chen, and K. Dang, Appl. Phys. Express, 2019, 12, 084004.

[18] K. Hasegawa, G. Nishio, K. Yasunishi, N. Tanaka, N. Murakami, and T. Oka, Appl. Phys. Express, 2017, 10,121002.

[19] X. Jia, S. W. H. Chen, Y. Liu, X. Hou, Y. Zhang, Z. -H. Zhang and H. C. Kuo, IEEE Trans. Electron Devices, 2020, 67, 1931.
[20] Y. Zhang, M. Sun, Z. Liu, D. Piedra, M. Pan, X. Gao, Y. Lin, A. Zubair, L. Yu, and T. Palacios, IEDM Tech. Dig., 2016, 10.2.1.

[21] S. Chen, H. Chen, Y. Qiu, and C. Liu, IEEE Trans. Electron Devices., 2021, 68, 5707.

[22] T. Hayashida, T. Nanjo, A. Furukawa, M. Yamamuka, Appl. Phys. Express, 2017, 10, 061003.

[23] W. Li, K. Nomoto, M. Pilla, M. Pan, X. Gao, D. Jena, and H. Grace Xing, IEEE Trans. Electron Devices., 2017, 64, 1635.

[24] Y. Zhang, Z. H. Liu, M. J. Tadjer, M. Sun, D. Piedra, C. Hatem, T. J. Anderson, L. E. Luna, A. Nath, A. D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B. N. Feigelson, K. D. Hobar, T. Palacios, IEEE Electron Device Lett., 2017, 38, 1097.

[25] A. D. Koehler, T. J. Anderson, M. J. Tadjer, A. Nath, B. N. Feigelson, D. I. Shahin, K. D. Hobart, F. J. Kub, ECS J. Solid State Sci. Technol., 2016, 6, Q10.

[26] T. Hayashida, T. Nanjo, A. Furukawa, T. Watahiki, and M. Yamamuka, Jpn. J. Appl. Phys., 2018, 57, 040302.

[27] L. Liu, N. Ren, J. Wu, Z. Zhu, H. Xu, Q. Guo, K. Sheng in Proc. 32nd Int. Symp. Power Semiconductor Devices ICs (ISPSD), 2020, 210.

[28] J. Hu, Y. Zhang, M. Sun, D. Piedra, N. Piedra, N. Chowdhury, T. Palacios, Mater. Sci. Semicond. Process, 2018, 78, 75.

[29] T. Narita, H. Yoshida, K. Tomita1, K. Kataoka, H. Sakurai, M. Horita, M. Bockowski, N. Ikarashi, J. Suda, T. Kachi, and Y. Tokuda, J. Appl. Phys., 2020, 128, 090901.

[30] W. Dou, Q. Song, H. Yuan, X. Tanga, Y. Zhang, Y. Zhang, L. Xiao, L. Wang, J. Cryst. Growth, 2020, 533, 125421.

[31] W. Xin, R. Yue, Y. Wang and L. Zhang, 2013 International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), 2013, 852.

[32] T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, Y. Yokotsuji, in IEDM Tech. Dig., 2011, 26.5.1.
[33] N. Ren and K. Sheng, IEEE Trans. Electron Devices, 2014, 61, 4158.

[34] N. Ren, J. Wang and K. Sheng, IEEE Trans. Electron Devices, 2014, 61, 2459.

[35] L. Di Benedetto, G. D. Licciardo, T. Erlbacher, A. J. Bauer and S. Bellone, IEEE Trans. Electron Devices, 2016, 63, 2474.

[36] K. Konishi, N. Kameshiro, N. Yokoyama, A. Shima, Y. Shimamoto, Jpn. J. Appl. Phys., 2017, 56, 121301.

[37] T. Oikawa, Y. Saijo, S. Kato, T. Mishima, T. Nakamura, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 2015, 365, 168.

[38] Y. He, H. Lv, X. Tang, Q. Song, Y. Zhang, C. Han, Y. Zhang, Y. Zhang, Solid-State Electron., 2017, 129, 175.

[39] Crosslight Software Inc. APSYS 2018 and APSYS Technical Manuals. [Online]. Available: http://www.crosslight.com.

[40] A. G. Chynoweth, Phys. Rev., 1958, 109, 1537.

[41] V. K. Sundaramoorthy and I. Nistor, Phys. Status Solidi, 2011, 8, 2270.

[42] P. Kozodoy, S. P. DenBaars, and U. K. Mishra, J. Appl. Phys., 1999, 87770.

[43] L. Zhu and T. P. Chow, IEEE Trans. Electron Devices, 2008, 55, 1857.