A comprehensive review on tyrosinase inhibitors

Samaneh Zolghadri⁎, Asieh Bahrami⁎, Mahmud Tareq Hassan Khan⁎, J. Munoz-Munoz⁎, F. Garcia-Molina⁎, F. Garcia-Canovas⁎ and Ali Akbar Saboury⁎

⁎Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran; ⁎Aura Dynamics, Tromsø, Norway; ⁎Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle upon Tyne, UK; ⁎GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-Å, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain; ⁎Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

ABSTRACT
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.

INTRODUCTION
Browning of fruits, fungi and vegetables and hyperpigmentation in human skin are two common undesirable phenomena. Tyrosinase is the primary enzyme responsible for this enzymatic browning and melanogenesis in mammals. This encouraged researchers and scientists to focus on the identification, isolation, synthesis and characterisation of new potent tyrosinase inhibitors for various application in the food, cosmetics and medicinal industries. However, very few inhibitors are qualified for clinical use and skin-whitening agents. Moreover, as the clinical and industrial demands for tyrosinase inhibitors increase, in vitro assays and improved screening techniques are also undergoing rapid development for in vitro high-throughput screening tyrosinase inhibitors and putative skin-whitening agents. In other words, sensitive and correct assay methods for screening and development of effective tyrosinase inhibitors are of great importance. For this purpose, several spectrophotometric, chromatographic, electrophoretic, radiometric and electrochemical assays have been applied and developed by researchers so far. Recently, a novel fluorescent biosensor and tyrosinase-based thin-layer chromatography-autography have been suggested for tyrosinase inhibitor screening.

Additionally, further improvements of in vitro detection methods for rapidly screening tyrosinase inhibitors may be achieved through using virtual screening and construction of quantitative structure–activity relationship (QSAR) models of inhibitors. Thus, a combination of bioinformatics simulation and biological in vitro analysis will be useful to understand the functional mechanisms of the tested compounds. Lately, Gao et al. have performed a virtual screening from Traditional Chinese medicine (TCM) and predicted tyrosinase inhibition by 3D QSAR pharmacophore models. For more information about successful utilisation of computational tools like QSAR-based and ligand-based virtual screening, a review published by Khan in 2012 organised and summarised novel and potent inhibitors of the enzyme. Furthermore, with regard to tyrosinase inhibition importance, several other reviews have presented the organisation of tyrosinase inhibitors from natural, semi- and full synthetic sources.

The present review also focuses on the tyrosinase inhibitors discovered from all sources, including synthetic compounds, extracts and active ingredients of natural products, virtual screening and structure-based molecular docking studies published in the last four decades. We hope that the knowledge offered in this review serves as an updated comprehensive database contributing to the development of new safe and efficient anti-tyrosinase agents for the prevention of browning in plant-derived foods, seafood and hyperpigmentation treatments.

THE ROLE OF TYROSINASE IN THE MELANIN BIOSYNTHESIS
Melanins, the main pigment primarily responsible in the skin, hair and eyes pigmentation of human, are produced by melanocytes through melanogenesis. Melanogenesis and skin pigmentation are the most important photoprotective factor in response to ultraviolet radiation damaging from the sun and skin photocarcinogenesis. The abnormal loss of melanin and depigmentation can be a serious facial esthetic and dermatological problem among human. On the contrary, the increased melanin synthesis and accumulation of these pigments occur in many types of skin disorders, including Acanthosis nigricans, Cervical Poikiloderma, melasma, Poribital hyperpigmentation, Lentigines, neuro-degeneration associated with Parkinson’s disease and skin cancer. Although melanogenesis is a complicated process represented by numerous enzymatic and chemical reactions, the enzymes such as tyrosinase and other tyrosinase-related proteins...
(TYRP1 and TYRP2) have a critical role in melanin synthesis. Tyrosinase is a multifunctional copper-containing metalloenzyme with dinuclear copper ions, which plays as a rate-limiting enzyme in the synthesis of melanin (Figure 1).\(^{52,67}\) Also, tyrosinase constitutes the primary cause for undesired browning of fruits and vegetables as well as diseases resulting from overproduction of melanin. Therefore, controlling the activity of enzyme by tyrosinase inhibitors is an essential endeavor for treating hypopigmentary disorders of mammals and enzymatic browning of fruits and fungi. To date, numerous effective inhibitors are identified and developed for use in medical and cosmetic products, as well as food bioprocessing and agricultural industries and environmental industries. However, in medicine, tyrosinase inhibitors are a class of important clinical antimelanoma drugs but only a few compounds are known to serve as effective and safe tyrosinase inhibitors.

Mushroom tyrosinase properties

Tyrosinases have been isolated and purified from different sources such as some plants, animals and microorganisms. Although many of them (such as human) have been sequenced, only few of them have been characterised. Recently, a novel tyrosinase produced by Sahara soil actinobacteria have been isolated and biochemically characterised with the aim to identify novel enzymes with exclusive features for biotechnological applications\(^{68-80}\). However, among different sources of tyrosinase, mushroom tyrosinase from *Agaricus bisporus* is a major and cheap source of tyrosinase with high similarity and homology compared to human tyrosinase\(^{78}\). Because of these good properties, the structural, functional and biochemical characteristics of mushroom tyrosinase have been studied extensively as a model system for screening of tyrosinase inhibitors and melanogenic studies, enzyme-catalysed reactions and enzyme-inhibitor structural studies so far\(^{81-90}\). Tyrosinase from *Agaricus bisporus* is a 120 kDa tetramer with two different subunits, heavy and light\(^{91}\), which was the first isolated by Bourquelot and Bertrand\(^{92}\) in 1895. It has three domains and two copper binding sites which bind to six histidine residues and interact with molecular oxygen in the tyrosinase active site. Also, a disulfide linkage stabilise its structure\(^{93}\). Recently, a 50 kDa tyrosinase isoform from *Agaricus bisporus* (H-subunit) have been purified with a high specific tyrosinase activity of more than 38,000 U/mg\(^{94}\).

Reaction mechanism

Tyrosinase (EC 1.14.18.1) has two activities in its catalytic cycle, see Figure 2\(^{95,96}\), a monophenolase activity where it hydroxylates monophenols (e.g L-tyrosine) to o-diphenols (e.g. L-dopa) and a diphenolase activity where tyrosinase oxidises o-diphenols to o-quinones (o-dopaquinone). At the same time of these enzymatic reactions, there are different chemical reactions coupled where two molecules of o-dopaquinone react their-selves generating an o-diphenol molecule (L-dopa) and a dopachrome molecule.

Diphenolase activity can be independently studied, when tyrosinase reacts with an o-diphenol (see Figure 2). The form met-tyrosinase (\(E_m\)) binds the o-diphenol (D) originating the complex \(E_mD\). This complex oxidises the o-diphenols transforming it to o-quinone and the enzyme is converted into the form deoxy-tyrosinase (\(E_d\), \(E_d\) has a very big affinity for the molecular oxygen originating the form oxy-tyrosinase (\(E_{ox}\)), which binds another o-diphenol molecule and originating the complex \(E_{ox}D\). After that, the o-diphenol is oxidised again to o-quinone and the form \(E_m\) is formed again completing the catalytic cycle. However, after these enzymatic reactions, two o-quinone molecules (e.g. o-dopaquinone) react generating dopachrome and regenerating a molecule of o-diphenol.

As mentioned before, we can independently study the diphenolase activity. However, it is not applicable for the monophenolase activity, see Figure 2, because the chemical reactions of

Figure 1. Scheme of the biosynthetic pathway of eumelanins and pheomelanins. The activities of tyrosinase are indicated in the scheme. Moreover, the enzyme can oxidize DHICA to its o-quinone directly, or it can oxidize DHICA and DHI indirectly via the formation of o-dopaquinone. TRP2 (dopachrome tautomerase) or Cu\(^{2+}\) can participate in the evolution of dopachrome to DHICA. The oxidation of DHICA can be catalyzed by TRP1, (DHICA oxidase), tyrosinase or Cu\(^{2+}\). When glutathione or L-cysteine attack o-dopaquinone, glutathione-dopa or cysteinyl-dopa adducts are formed and these later evolve to pheomelanins\(^{67}\).
diphenolase activity have to occur at the same time of monophenolase activity. Tyrosinase shows the monophenolase activity with a lag period. This period is the time that the enzyme requires to accumulate a quantity of o-diphenol in reaction medium and is proportional to the quantity of monophenol used. Figure 2 shows the new complexes appeared in the monophenolase activity: E_oM (oxy-tyrosinase bound to monophenol) and E_{ox}M (met-tyrosinase bound to monophenols). E_oM is active and is transformed into E_mD, which is an intermediate of the catalytic cycle⁹⁵. o-Quinones formed by these two oxidation cycle spontaneously react with each other to form oligomers⁹⁷.

Tyrosinase inhibition

Due to the critical role of tyrosinase in the melanogenesis and browning process, several investigations have been reported for the identification of tyrosinase inhibitor from both natural (fungi, bacteria, plants) and synthetic sources so far. General speaking, tyrosinase inhibitors are examined in the presence of a monophenolic substrate such as tyrosine or a diphenolic substrate such as L-dopa, and activity is assessed based on dopachrome formation.

Inhibition mechanism

Among different types of compounds such as specific tyrosinase inactivators and inhibitors, o-dopaquinone scavengers, alternative enzyme substrates, nonspecific enzyme inactivators and denaturants, only specific tyrosinase inactivators and reversible inhibitors actually bind to the enzyme as true inhibitors and really inhibit its activity:

a. Specific tyrosinase inactivators. They are called suicide inactivators or mechanism-based inhibitors. This group of compounds can be considered very interested from a pharmacological point of view, in hyperpigmentation processes (Figure 3)⁹⁸.

To explain the suicide inactivation of tyrosinase, mainly two mechanisms have been proposed^{98,99}. Accordingly, Haghbeen et al. have suggested that the conformational changes, triggered by the substrate then mediated by the solvent molecules, in the tertiary and quaternary structures of tyrosinase, might be the real reason for the suicide inactivation¹⁰⁰. On the other hand, however, based on reports, it was found that acetylation of tyrosine residues with N-acetylimidazole protects mushroom tyrosinase from the suicide inactivation in the presence of its catecholic substrate, 4-[(4-methylbenzo) azo]-1,2-benzenediol without any major impact on the secondary structure of enzyme¹⁰¹.

The studies about the kinetics of suicide inactivation of tyrosinase have been carried out with several o-diphenolic substrates¹⁰², ascorbic acid¹⁰³, L- and D-dopa¹⁰⁴ and with different aminophenols and o-diamines¹⁰⁵. The authors have established that the suicide inactivation could occur after the transference of a proton to the peroxide group on the active site of o-tyrosinase^{98,106}, also it has been proposed that the monophenols do not inactivate the enzyme^{107,108}. The chemical structure of the different substrates is diverse, but the process always requires a step of oxidation/reduction: o-diphenols^{102,104}, ascorbic acid¹⁰³, aminophenols and o-diamines¹⁰⁵, hydroxyhydroquinone¹⁰⁹, tetrahydrobiopterines¹¹⁰, tetrahydrofolic acid¹¹¹ and NADH¹¹².

b. Generally, the mode of inhibition by “true inhibitors” is one of these four types: competitive, uncompetitive, mixed type (competitive/uncompetitive), and noncompetitive. A competitive inhibitor can bind to a free enzyme and prevents substrate binding to the enzyme active site. Regarding the property that tyrosinase is a metalloenzyme, copper chelators such as many aromatic acids, phenolic and poly-phenolic compounds, a few non-aromatic compounds, can inhibit tyrosinase competitively by mimicking the substrate of tyrosinase^{52,60}. Recently, it was found that D-tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity, competitively¹¹³. In addition, L-tyrosine has been shown as an inhibitor¹¹⁴.

In contrast, an uncompetitive inhibitor can bind only to the enzyme-substrate complex and a mixed (competitive and uncompetitive mixed) inhibitor can bind to both forms of free enzyme and enzyme-substrate complex. Finally, noncompetitive inhibitors bind to a free enzyme and an enzyme–substrate complex with the same equilibrium constant¹¹⁵. Non-competitive and mixed-inhibition are frequent modes observed in the kinetics studies on mushroom tyrosinase activities. Phthalic acid and cinnamic acid hydroxyxypridinone derivatives¹¹⁶ are two examples of mixed type inhibitors of mono-phenolase activity¹¹⁷. Also, some compounds such as phthalic acid¹⁰⁶ and terephthalic acid¹¹⁸, D-(−)-arabinose¹¹⁹, brazilein¹²⁰, thymol analogs¹²¹ were demonstrated as mixed-type effector examples of di-phenolase activity. Furthermore, other compounds such as bi-pyridine derivatives¹²², two thiadiazole derivatives⁴⁴ barbamin¹²³, chlorocinnamic acids¹²⁴, propanoic acid¹²⁵, some N-(mono- or dihydroxybenzyl)-N-nitosohydroxylamines¹²⁶.
and \(p \)-alkylbenzaldehydes\(^{127} \) inhibited catecholase activity of mushroom tyrosinase uncompetitively. Some derivatives of thiazoles are examples for noncompetitive tyrosinase inhibition\(^{128} \).

In addition to determining the inhibition mechanism, inhibitory strength which is expressed as the IC\(_{50}\) value (the concentration of inhibitor at which 50% of your target is inhibited) should be calculated in the enzyme kinetics studies and inhibitor screening to compare the inhibitory strength of an inhibitor with others. However, the IC\(_{50}\) values may be incomparable due to the varied assay conditions (different substrate concentrations, incubation time, and different sources of tyrosinase) but a positive control can be used for this purpose\(^{52} \). Although, some researchers have not calculated IC\(_{50}\) and have not applied a positive control in their studies but, fortunately, in most studies conducted for screening new tyrosinase inhibitors, the popular whitening agents, such as kojic acid, arbutin, hydroquinone, and \(\beta \)-arbutin, were used as a positive control\(^{129} \) at the same time. However, among different types of mushroom tyrosinase inhibitors, some inhibitors such as hydroquinone\(^{49} \), arbutin, kojic acid\(^{15,49} \), azelaic acid, \(L \)-ascorbic acid, ellagic acid and tranexamic acid have been reported as skin-whitening agents in the cosmetic industry but there are a few reports failed to confirm their effect as an agent to lighten skin in clinical trials despite the safety of this compound\(^{5} \).

Recently, Mann et al., have compared the inhibitory effects of hydroquinone, arbutin and kojic acid by human tyrosinase and mushroom tyrosinase. They have found hydroquinone and arbutin and kojic acid (IC\(_{50}\) > 500 \(\mu \)mol/L) weakly inhibits human tyrosinase. In contrast, a resorcinyl-thiazole derivative, thiamidol, is a most potent inhibitor of human tyrosinase (IC\(_{50}\) of 1.1 \(\mu \)mol/L) but inhibits mushroom tyrosinase weakly (IC\(_{50}\) = 108 \(\mu \)mol/L)\(^{130} \). Also, deoxyarbutin, a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency, have been reported due to its increased skin penetration and binding affinity to human tyrosinase\(^{131} \). In another research, Sugimoto et al. have investigated a comparison of inhibitory effects of \(\alpha \)-arbutin and arbutin with human tyrosinase and they have found \(\alpha \)-arbutin is stronger than arbutin\(^{132} \).

Natural tyrosinase inhibitor sources

Natural sources including plants, bacteria and fungi have recently become of increasing interest for their antityrosinase activity by producing bioactive compounds. A number of researchers prefer to identify inhibitors from natural sources due to their less toxicity and better bioavailability, especially for food, cosmetic and medicinal applications.
Phenolic compounds are known to play a significant role in plant defense mechanisms against biotic and abiotic stresses. They are produced by plants as a result of their metabolic processes and are involved in various physiological functions such as growth regulation, defense against herbivores, and stress tolerance. Phenolic compounds are also known to possess a wide range of bioactivities, including antioxidant, antimicrobial, anti-inflammatory, and cancer preventive properties due to their structural features which include a phenolic hydroxyl group.

Plants

It is well known that phenolic compounds are the largest group of phytochemicals found in plants, which are mainly the factors responsible for the activities in plant extracts. Tyrosinase inhibitory activity of many plant extracts was carried out to find new sources of anti-tyrosinase compounds. For example, anti-tyrosinase activities of the following plants have been reported by various researchers: *Asphodelus microcarpus* [163], *Morus nigra* [134], *Grewia radiokeri Syzyphy* [135], *Limonium tetragonum* [135], *Arctostaphylus uva-ursi* [136], *Pleurotus ferulae* [137], *Agastache rugosa* Kuntze fermented with *Lactobacillus rhamnosus* and *Lactobacillus paracasei* [138]. Additionally, there are several reports on *Lactobacillus* sp. [166] and *Brevibacillus* sp. [170], which have been reported as a source of novel tyrosine inhibitors.

Fungi and bacteria

Fungi from different genera such as *Aspergillus* sp. [164], *Trichoderma* sp. [165], *Paeclomyces* sp. [166], *Phellinus linteus* [167], *Daedalea dickinsii* [168], *Dictyophora indusiata* [169] along with a liquid culture of *Neolentinus lepideus* [170] have been reported as a source of novel tyrosinase inhibitor by producing bioactive compounds. Also, there have been several reports on tyrosinase inhibitors from some marine fungi species such as *Myrothecium* sp. isolated from algae [171] and *Pestalotiopsis* sp. Z233 [172]. Also, there are several reports on tyrosinase inhibition by bacterial species and their metabolites.

Among them, *Streptomyces* sp., such as *S. hiroshimensis* TI-C3 isolated from soil [173], an actinobacterium named *Streptomyces wurtzbergensis* sp. Nov. [174] and *Streptomyces roseofuscus* NBRC 12815 [175] are potential bacterial sources of tyrosine inhibitors. Moreover, some tyrosinase inhibitors have been reported from a gram-negative marine bacterium *Thalassotalea* sp. Pp2-459 [176] and a toxic strain of the cyanobacterium, *Oscillatoria agardhii* [177]. Interestingly, some probiotics such as *Lactobacillus* sp. [178], which are used in the fermentation process have been investigated as natural tyrosinase inhibitor sources. Based on the studies, it has been confirmed that the physiological activities of fermented extracts are considerably higher than those of unfermented extracts and their cytotoxic activity is lower as compared to unfermented extracts [179]. Recently, tyrosinase inhibitors from bacteria comprise a smaller group of alkaloids, macrocides, and polyphenols, which competitively inhibit the enzyme [170].

Inhibitors from natural, semisynthetic and synthetic sources

Simple phenols

Phenolic compounds which are characterised by having at least one aromatic ring and one (or more) hydroxyl group are classified based on the number and arrangement of their carbon atoms. These compounds are commonly found to be conjugated to sugars and organic acids. Phenolics range from simple to large and complex tannins and derived polyphenols due to their molecular-weight and number of aromatic-rings [180]. The simple phenols such as hydroquinone [181,182] and its derivatives [183,184] deoxyarbutin [185,186] and its derivatives [187], 4-[(6-Hydroxy-2-naphthyl)-1,3-benzodiol, resorcinol (or resorcin) [188] and 4-n-butylresorcinol [189], vanillin [190] and its derivatives [191,192] have been reported in the scientific literature as possible tyrosinase inhibitors isolated from plant sources and fungi are mostly phenolic compounds, steroids, and alkaloids structurally comparable with each other. In contrast, tyrosinase inhibitors from bacteria comprise a smaller group of alkaloids, macrocides, and polyphenols, which competitively inhibit the enzyme [61].

Chemical structures of some simple phenolic compounds.

![Figure 4. Chemical structures of some simple phenolic compounds.](Image)

References:

[163] 283

Additional Reading:

For a comprehensive understanding of the role of phenolic compounds in plant defense and their bioactivities, the reader is referred to the following resources:

1. C. Fernandes, R. P. de Souza, A. C. C. da Silva, M. A. F. P. da Silva, E. M. C. da Silva, and K. L. S. de Oliveira, *J. Enzyme Inhibition Med. Chem.* 2017; 32(1): 1–17.

2. K. L. S. de Oliveira, R. P. de Souza, A. C. C. da Silva, M. A. F. P. da Silva, C. Fernandes, and E. M. C. da Silva, *J. Enzyme Inhibition Med. Chem.* 2017; 32(1): 1–17.
activity of tyrosinase and suppress melanin production in animal cells. The IC50 of this compound (37 µM) is less than hydroquinone (70 µM) as a known inhibitor of tyrosinase. They have suggested that the potent inhibitory effect of this derivative on tyrosinase activity is likely due to its heptadecenyl chain, which facilitates the oxidation of the hydroquinone ring.

Isotachioside, a methoxy-hydroquinone–1-O-beta-D-glucopyranoside isolated from Isotachis japonica and Protea neriifolia and its glycoside derivatives (glucose, xylose, cellobiose, and maltose) are categorized as analogs of arbutin. However, isotachioside and arbutin could not be determined as potent inhibitor. But, glucose, xylose, cellobiose and maltose derivatives, missing methyl and benzoyl groups, acted as tyrosinase inhibitors with IC50 of 417, 852, 623 and 657 µM, respectively. Among these novel inhibitors, glucoside derivative (IC50 = 417 µM) was the most potent, indicating that the structural combination of resorcinol and glucose was significant for inducing the inhibitory effect.

Hydroquinone and some of its known derivatives, including α and β-arbutin, are described as both a tyrosinase inhibitor and a substrate. Deoxyarbutin and its second-generation derivatives have been proposed as promising agents to ameliorate hyperpigmented lesions or lighten skin due to less toxicity at their effective inhibitory dose.

Monophenolic compounds such as L-tyrosine, L-β-methyl-tyrosine and tyramine are substrates of tyrosinase. α-Quinone evolves in the medium of reaction accumulating α-diphenol and this accumulation provokes that met-tyrosinase (E_m) is transformed into oxy-tyrosinase (Eox), which is the active form of the tyrosinase for monophenols and diphenols. Therefore, tyrosinase is active with monophenols such as: umbelliferone and p-coumaric acid when we add the following reagents to medium of reaction: hydrogen peroxide (trans-E_m) or a reducing agent such as ascorbic acid transforming E_m to E_d which, with molecular oxygen, is transformed into Eox. A particular case is deoxyarbutin, which acts as a substrate of tyrosinase even if any reagent is not added to the medium of reaction. Taking into consideration all the previous comments, several methods have been developed to discriminate between true inhibitors and alternative substrates of the enzyme.

Polyphenols

Plants produce a large diverse class of polyphenols including phenolic acids, flavonoids, stilbenes and lignans. A large number of these compounds have been reported as a weak or potent inhibitor of tyrosinase from natural and synthetic sources.

Flavonoids

Among polyphenolic compounds, some of the flavonoid derivatives mostly found in herbal plants, fruits and synthetic sources have been raveled to be the potent inhibitors of tyrosinase. There is a significant correlation between the inhibitory potency of flavonoids on mushroom tyrosinase and melanin synthesis in melanocytes. In searching effective tyrosinase inhibitors from natural products, many flavonoid compounds have been isolated and evaluated for their inhibitory activity on mushroom tyrosinase from different natural sources such as Trifolium nigrescens Subsp. Petrisavi, mung bean (Vigna radiatae L), calamondin peel,

Morus yunnanensis, Bhagwa and Arakta cultivar, Tibouchina semidecandra L, Maackia fauriei, Pleurotus ostreatus, Potentilla bifurca, Alpinia officinarum, roots of Morus lhou, Garcinia subelliptica, Arctagus altilis, Myrsine africana, Pulsatilla nua, Salvia mitiorhiza-Carthusan tinctorius (Danshen-Honghua, DH) herbal pair, and other various medicinal plants.

Generally, major flavonoids (Figure 5) are classified into several main classes: flavones, flavonols, isoflavones, flavanones, flavones and anthocyanidins. Minor flavonoids included: dihydroflavonols, flavan-3,4-diols, coumarins, chalcones, dihydrochalcones and aurones. Also, prenylated and vinylated flavonoids, such as flavonoid Glycosides, are other subclasses of flavonoids. Some flavonoid glycosides such as myricetin 3-galactoside and quercetin 3-O-β-D-galactopyranoside from Limonium tetragonum and 3′,5′-di-C-β glucopyranosylphloretin from unripe calamondin peel have been investigated for their inhibitory activities on tyrosinase. Moreover, the inhibitory activities of some other prenylated and vinylated flavonoids, such as kwannon C, papyriflavonol A, saanggenon D and soboliflavosconol, and saanggennon D (IC50 = 7.3 µM) against tyrosinase, have been approved by Lee et al. However, according to their findings, the prenylation with isoprenyl group or the vinylation of some flavonoid molecules does not enhance their tyrosinase inhibitory activity. Interestingly, it has even demonstrated that deglycosylation of some flavonoid glycosides by far-infrared irradiation can be improved tyrosinase inhibitory activity. In a survey from reported findings (2008–2013), Orhan et al. reviewed many examples of tyrosinase inhibitors from flavonoid structure. In the following, some tyrosinase inhibitors from various flavonoid classes have been mentioned and discussed.

Flavones and dihydroflavones

The most common flavones are luteolin, apigenin, baicalein, chrysos (e.g. apigenin, vetin, and baicalin). Furthermore, nobilin and tangeretin are the polymethoxylated flavones. Nguyen et al. have investigated the presence of apigenin and nobilin from the methanolic extract of the heartwood of Artocap altilis with 11 other phenolic compounds for their inhibitory activities on tyrosinase. In another research, Shang et al. have found a derivative of flavone, namely 7,8,4′-trihydroxyflavone which inhibits diphenolase activity of tyrosinase with an IC50 value of 10.31 ± 0.41 µM and a noncompetitive manner with a Ki of 9.50 ± 0.40 µM. The quenching anlaysis of tyrosinase by this compound showed a static mechanism and a single binding site with a binding constant of 7.50 ± 1.20 M⁻¹ at 298 K. Based on the thermodynamics parameters, the binding process involved hydrogen bonds and van der Waals forces. Also, docking simulation illustrated hydrogen bonds between this compound and the residues His244 and Met280 of active site.

In addition, several hydroxyflavones including baicalein, 6-hydroxyapigenin, 6-hydroxygalangin and 6-hydroxykaempferol and tricin (5,7,4′-trihydroxy-3′,5′-dimethoxyflavone) have been demonstrated as inhibitors of diphenolase activity of tyrosinase. The mechanism of inhibition by baicalein (IC50 = 0.11 mM) indicated a mix-type (Ki of 0.17 mM, x = 0.56). A single binding site with a binding constant of 2.78 × 10⁷ M⁻¹ was obtained from the quenching fluorescence analysis for this compound. Thermodynamic parameters suggested spontaneous binding through hydrogen bonding and van der Waals forces. Furthermore, circular dichroism spectra indicated a reduction in the content of α-helix from 32.67% to 29.00% due to this binding. Docking simulations also indicated that baicalein mainly bound tyrosinase via its Met280 residue. While, tricin was found as a noncompetitive inhibitor of tyrosinase with good efficacy.
Flavonoles. Myricetin, kaempferol, quercetin, morin, isorhamnetin, galangin and their glycosides (e.g. rutin, quercitrin, and astragalin) are the predominant flavonols most commonly found as O-glycosides209. So far, several flavonols such as kaempferol from Hypericum laricifolium Juss154 and Crocus sativus L 251, quercetin from Olea europaea L 252, quercetin-4’-O-beta-d-glucoside from Potentilla bifurca253, quercetin-3-O-(6-O-malonyl)-beta-d-glucopyranoside and kaempferol-3-O-(6-O-malonyl)-beta-d-glucopyranoside from mulberry leaves253, galangin from Alpinia officinarum235 and morin254 and (±) 2,3-cis-dihydromorin (IC\textsubscript{50} = 31.1 \textmu M), 2,3-trans-dihydromorin (IC\textsubscript{50} = 21.1 \textmu M) from Cudrania cochinchinensis255, were identified as tyrosinase inhibitors.

Based on kinetics studies, morin reversibly inhibited tyrosinase through a multi-phase kinetic process and bind to tyrosinase at a single binding site mainly by hydrogen bonds and van der Waals forces. It inhibited tyrosinase reversibly in a competitive manner with \textit{K}_i = 4.03 \pm 0.26 \textmu M and the binding of morin to tyrosinase-induced rearrangement and conformational changes of the enzyme254. Furthermore, it was reported that three flavonols including galangin235, kaempferol251 and quercetin inhibit the oxidation of L-DOPA catalysed by mushroom tyrosinase and presumably this inhibitory activity comes from their copper chelating ability. While their corresponding flavones, chrysins, apigenin and luteolin, are not identified as copper chelator, Kubo et al. believed that the chelation mechanism by flavonols may be attributed to the free 3-hydroxyl group253. Interestingly, quercetin behaves as a cofactor and does not inhibit monophenolase activity. In contrast, galangin inhibits monophenolase activity and does not act as a cofactor, and kaempferol neither acts as a cofactor nor inhibits monophenolase activity. However, inhibiting of diphenolase activity by chelating copper in the enzyme is the common feature of these three flavonols160.

Recently, 8-prenylkaempferol as a competitive tyrosinase inhibitor along with Kushenol A (noncompetitive) isolated from Sophora flavescens256, have been investigated with IC\textsubscript{50} values less than 10 \textmu M. Finally, based on the literature review, many flavonol inhibitors are usually competitive inhibitors due to the 3-hydroxy-4-keto moiety of the flavonol structure, which chelates the copper in the active site251. Also, among all these compounds, quercetin-4’-O-beta-d-glucoside with a IC\textsubscript{50} value of 1.9 \textmu M is revealed stronger tyrosinase inhibition than their positive control, kojic acid236. While the other flavonol inhibitors listed above are very weak inhibitors and have little potential as skin whitening or food antbrowning.

Isoflavones. Isoflavones such as daidzein, genistein, glycitein, forononetin, and their glycosides (e.g. genistin, daidzin) mostly are detected in the medicinal herbs209, Park et al. have investigated tyrosinase inhibition activities of some natural o-dihydroxyisoflavone derivatives with variable hydroxyl substituent at the aromatic ring of isoflavone isolated from five-year-old Korean fermented soybean paste. They have demonstrated that two derivatives 7,8,4’-trihydroxysoflavone and 7,3’,4’-trihydroxyisoflavone inhibit tyrosinase by IC\textsubscript{50} value of 11.21 ± 0.8 \textmu M and 5.23 ± 0.6 \textmu M, respectively, whereas very low inhibition activity was obtained for
6,7,4'-trihydroxyisoflavone, daidzein, glycitein and genistein. Also, 6,7,4'-trihydroxyisoflavone was identified as a potent competitive inhibitor of monophenolase activity of tyrosinase by Chang et al., with an IC₅₀ value of 9.2 μM, which is six times potent than kojic acid. But, its analogs, glycitein, daidzein, and genistein showed little anti-tyrosinase activity. Therefore, they have suggested that C-6 and C-7 hydroxyl groups of the isoflavone skeleton might play an important role in the tyrosinase inhibitory activity. Furthermore, two other isoflavone metabolites, 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone isolated from soygerm koji, were investigated by Chang et al. These compounds inhibited both monophenolase and diphenolase activities with an irreversible inhibition manner. Interestingly, by using HPLC analysis and kinetic studies, they have found that 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone are potent suicide substrates of mushroom tyrosinase. It may be concluded that the hydroxyl groups at both the C7 and C8 positions could completely change the inhibitory mechanism of the isoflavones from the reversible competitive to the irreversible suicide form.

Recently, a non-competitive inhibitor, glabridin (IC₅₀ = 0.43 μM), isolated from the root of Glycyrrhiza glabra Linn, has exhibited excellent inhibitory effects on tyrosinase. The quenching analysis of tyrosinase by glabridin showed a static mechanism. Notably, a drug delivery system by using glabridin micropore-loaded gel as a new approach for hyperpigmentation disorders have been proposed by Deshmukh et al. In another research, Jirawattanapong et al. have identified a synthetic glabridin, 3',4'-dihydroglabridin, with higher activity than glabridin (IC₅₀ = 11.40 μM) against tyrosinase. They have suggested the more effective interaction with the enzyme may be due to more conformational flexibility of this compound that has occurred by the 4-substituted resorcinol skeleton and the lacking of double bond between carbon atom 3' and 4' in its structure. Also, Nerya et al. have reported that another isoflavone, glabrene, in mirkoin (IC₅₀ = 0.5 ± 0.03 μM) from Maackia fauriei, has exhibited anti-tyrosinase activity. Furthermore, in another study, Chiari et al. have illustrated tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans. Also, Steppogenin is a natural flavanone with a strong tyrosinase inhibitory activity (IC₅₀ = 0.98 ± 0.01 μM), from Morus alba L. Recently, a new isoprenylated sanguenon-type flavanone, nigrasin K, along with some other analogs including sanguenon M, C and O, chalcomoracin, sorocerin H and kuwanon J isolated from the twigs of Morus nigra have been identified as potent tyrosinase inhibitors by Hu et al. Among these natural inhibitors, sanguenon D revealed stronger tyrosinase inhibition than the positive control, kojic acid or arbutin.

Flavanones and flavan-3,4-diols. Flavan-3-ols are the most complex subclass of flavonoids ranging from the simple monomers (+)-catechin and its isomer (−)-epicatechin to the oligomeric and polymeric proanthocyanidins, which are also known as condensed tannins. Flavanols, such as catechin, epicatechin, epi-gallocatechin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG) and proanthocyanidins are widespread in the medicinal herbs and higher plants. Alphitonia neocaledonica (Rhamnaceae) is an endemic tree of New Caledonia, which has been identified as an anti-tyrosinase source due to the presence of tannins and gallo catechin. Moreover, a catechin compound isolated from the ethanol extract of Distylium racemosum branches, with IC₅₀ value of 30.2 μg/mL, showed higher tyrosinase inhibition activity than arbutin as a positive control. Also, a proanthocyanidins from Clausena lansium demonstrated potent mushroom tyrosinase inhibition in a mixed competitive manner and illustrated strong inhibition of the melanogenic activity of B16 cells. The IC₅₀ values for the monophenolase and diphenolase activities were 23.6 ± 1.2 and 7.0 ± 0.2 μg/mL, respectively. Furthermore, from the inhibition mechanism of this compound, it can be concluded that a chelation between the hydroxyl group on the B ring of the proanthocyanidins and dicopper ions of the enzyme has been occurred.

Another investigation revealed that procyanidin-type proanthocyanidins, purified from cherimoya (Annona squamosa) pericarp could powerfully inhibit the activities of monophenolase and diphenolase of tyrosinase, competitively. In addition, Kim et al. have demonstrated that (+)-catechin-aldehyde polycondensates inhibit the l-tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. Recently, another tyrosinase inhibitor from this class, condensed tannins (mixtures of procyanidins, prodelphicinidins and their acyl derivatives (galloyl and p-hydroxybenzoate) from Longan Bark indicated the reversible and mixed (competitive is dominant) inhibition of tyrosinase.

Anthocyanidins. Anthocyanins, including anthocyanidins (e.g. cyanidin, delphinidin, malvidin, peonidin, pelargonidin, etc.) and their glycosides, are widely distributed in the medicinal herbs. It seems that there is a significant relationship between anthocyanin content with anti-human and anti-mushroom tyrosinase activities.

Curcuminoïds. Two phenolic compounds, namely curcumin and desmethoxycurcumin have been isolated from the methanolic extract of the heartwood of Arctocarpus altillis and showed more potent tyrosinase inhibitory activities than the positive control kojic acid. Also, a curcumin included in Chouji and Yakuchi extracts inhibited the enzyme competitively. In addition, some synthetic curcumin derivative compounds and its analogs possessing m-diphenols and o-diphenols have been...
investigated as potent inhibitors of mushroom tyrosinase. Based on the results, 4-hydroxyl groups in curcumin analogs containing 4-hydroxyl-substituted phenolic rings with C-2/C-4- or C-3/C-4-dihydroxyl-substituted diphenolic rings make them more active than kojic acid.

Coumarins. In search of tyrosinase inhibitors, the inhibitory effects of several coumarin derivatives (Figure 6) such as 3-aryl and 3-heteroaryl coumarins, esculetin, coumarinolignoid 8′-epi-cleomiscosin, umbelliferone and their analogs, phenylcoumarins, hydroxycoumarins, thiophosphonic acid diamides, diazaphosphinanes coumarin derivatives, cardolcoumarin derivatives, and coumarin-resveratrol hybrids, were evaluated on tyrosinase activity.

Interestingly, among hydroxycoumarins, the 3-hydroxycoumarin and 7-hydroxycoumarin showed potent activity for the tyrosinase inhibition, while the 4-hydroxycoumarin is not an inhibitor. Also, 2-(1-(coumarin-3-yl)-ethylidene)hydrazinocoumarin and 2-(1-(6-chloro-2-hydroxycoumarin-3-yl)ethyldiene)-hydrazinocoumarin demonstrated an irreversible inhibition of tyrosinase. Recently, in the screening of natural products for the development of cosmetic ingredients, two major compounds, trans-N-coumaroyltyramine (IC$_{50}$ = 40.6 μM) and cis-N-coumaroyltyramine (IC$_{50}$ = 36.4 μM) from Humulus japonicus showed potent tyrosinase inhibition.

Chalcones and dihydrochalcones. Chalcones (butein, phloretin, sappan-chalcone, carthamin, etc.), or 1,3-diphenyl-2-propen-1-ones, are one of the most important classes of flavonoids. Chalcone-containing plants have been used for a long time in traditional medicine. Based on the reports, some natural and synthetic chalcones and their derivatives are identified as new potent depigmentation agents and tyrosinase inhibitors (Figure 7). So far, natural chalcones isoliquiritigenin (2′,4′,4′-trihydroxychalcone) and glabrene from licorice roots, 2,4,2′,4′-hydroxychalcone and three of its analogs with 3′-substituted resorcinol moieties...
from *Morus australis* (Figure 6, 19–22)\(^{291,2,4}\), chalcones isolated from *Morus nigra*\(^{292}\), vulpinoideol B from *Carex vulpinoidea* seeds\(^{293}\), dihydrochalcones from *Flemingia philippinensis*\(^{210}\), 2,3-dihydro-1H-inden-1-one chalcone-like derivatives (17,18), Dihydrochalcones from *Flemingia philippinensis* (19–21), chalcone (22).

from *Morus australis* (Figure 6, 19–22)\(^{291,2,4}\), 2,4,2',4'-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone from *Morus nigra*\(^{292}\), vulpinoideol B from *Carex vulpinoidea* seeds\(^{293}\), dihydrochalcones from *Flemingia philippinensis*\(^{210}\), 2,4,2',4'-tetrahydroxylchalcone (IC\(_{50} = 0.07 \pm 0.02 \mu M\)) and morachalcone A (IC\(_{50} = 0.08 \pm 0.02 \mu M\)) from *Morus alba*\(^{249}\) and bavachinin from *Psoralea corylifolia*\(^{21}\) have been presented as tyrosinase inhibitors.

Also, tyrosinase inhibitory effects of several synthetic chalcones and their derivatives were evaluated by various researchers. Oxindole-based chalcones\(^{294}\), 1-(2-cyclohexylmethoxy-
6-hydroxy-phenyl)-3-(4-hydroxymethyl-phenyl) propenone derivative, 289, isoxazole chalcone derivatives, some azachalcones and their oximes, 2,4,2',4'-tetrahydroxychalcone and its two derivatives (1,3,5-tris-(2,4-dihydroxy-phenyl) pentane-1,5-dione and 7,2',4'-trihydroxyflavanone), 2', 2',4',6'-trihydroxychalcones, naphthyl chalcones and chalcone thiosemicarbazide derivatives, have been identified as a new class of tyrosinase inhibitors. Interestingly, the most important factors in the efficacy of a chalcone are the location of the hydroxyl groups on both aromatic rings and the number of these hydroxyls and the presence of a catechol moiety don’t correlate with increasing tyrosinase inhibition potency.

Aurones. Okombi et al. have identified Z-benzylidenbenzofuran-3(2H)-one and analogs as human tyrosinase inhibitors. However, they found that aurones are weak inhibitors, but their derivatives with two or three hydroxyl groups preferably at 4,6 and 4' positions make them significant tyrosinase inhibitors. For example, the most potent aurone, 4,6,4'-trihydroxyaurone induces 75% inhibition at 0.1 mM concentration and is highly effective compared to kojic acid. In addition to synthetic compounds, several natural compounds such as (2R)-2,3'-dihydroxy-2'(1-hydroxy-1-methylethyl)-2,6'-bibenzofuran-6,4'-diol and 2-arylbenezofuran isolated from Morus notabilis and Morus yunnanensis, benzofuran flavonoids such as mulberrofuran G (MG) and albanol B (AB) isolated from Morus sp and macourins E isolated from Morus macroura (IC_{50} = 0.39 μM) are potent tyrosinase inhibitors among aurones.

Phenolic acids
Phenolic acids are divided into hydroxybenzoates and hydroxycinnamates. The most common hydroxycinnamates are p-coumaric, caffeic and ferulic acids. So far, p-hydroxybenzoic acid, chlorogenic acid (the ester of caffeic acid), vanillic acid (4-hydroxy-3-methoxybenzoic acid) and protocatechuic acid (a dihydroxybenzoic acid) from Hypericum lanicifolium, Phellinus linteus, Phellinus linteus, and Pterostichus sinensis, benzoin propyl gallate, orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid) and orsellinates (2,4-dihydroxy-6-methylbenzoates), p-coumaric acid from ginseng leaves, m-coumaric acid, p-coumarate and its derivatives from leaves of Bremia officinalis, caffeic acid and its n-onyl ester, ferulic acid from Spirotheca sinensis, 4-Hydroxy cinnamic acid, synthetic hydroxycinnamoyl phenylalan/aryl hydroxamic acid derivatives and seven hydroxycinnamoyl hydroxamic acid derivatives from green coffee beans have been investigated for their tyrosinase inhibition activity. Among these, propyl gallate is a reversible and mixed-type inhibitor on diphenolase activity of tyrosinase with K_{D} = 2.135 mM and K_{i} = 0.661 mM. Furthermore, n-butyl, iso-propyl, sec-butyl, n-pentyl, n-hexyl and n-octyl orsellinates (uncompetitive, with an inhibition constant of 0.99 mM) behaved as inhibitors at 0.50 mM, whereas methyl, ethyl, n-propyl, tert-butyl, and n-cetyl orsellinates acted as tyrosinase activators. Thus, tyrosinase inhibition increased with chain elongation, suggesting that the enzyme site can accept an eight-carbon alkyl chain.

In addition to these compounds, 3-phenylbenzoic acid (3-PBA) was revealed to be the most potent inhibitor against monophenolase (uncompetitive, IC_{50} = 6.97 μM) and diphenolase (mixed type inhibition, IC_{50} = 36.3 μM) activity of mushroom tyrosinase. Also, Oyama et al. have found that some modification such as esterification can abrogate this inhibitory activity of tyrosinase.

Stillbenes
Resveratrol is the most common stilbene. Several stilbenes derivatives from natural and synthetic sources (Figure 8) have been investigated for their tyrosinase inhibition activity including: resveratrol from Morus alba, Pleurotus furlae, vitis viniferae caulis, Carigan grape juice, Artocarpus gomezianus and Streptomyces avermitilis MA4680 and also, its derivatives from Dipotercopaceae plants and synthetic sources, oxyresveratrol from Morus australis, Morus alba L (IC_{50} = 0.10 ± 0.01 μM) and Cudrania cochinchinensis (IC_{50} = 2.33 μM), azo-resveratrol and its derivatives such as (E)-2-(2,4-dihydroxyphenyl) diazenylphenyl 4 methylbenzenesulfonate and azo-oxyresveratrol, resveratrol from Streptomyces avermitilis MA4680, a resveratrol dimer named gnetin C, from melinjo (Gnetum gemon) and several hydroxystilbene compounds from synthetic and semisynthetic sources and from the extract of Veratrum patulum along with synthetic glycosides of resveratrol, pterostilbene, and pinostilbene, synthetic trans-stilbene derivatives, azastilbene analogs, a newly synthesised stilbene 5-(6-hydroxy-2-naphthyl)-1,2,3-benzenetriol, coumarin-resveratrol hybrids, synthetic polyphenolic deoxybenzoins, hydroxy substituted 2-phenyl-naphthalenes and 4-(6-hydroxy-2-naphthyl)-1,3-benzendiol have been studied for their inhibition activity against tyrosinase. However, based on the enzymatic assays, resveratrol did not inhibit the diphenolase activity of tyrosinase, but L-tyrosine oxidation by tyrosinase was suppressed in presence of 100 μM resveratrol. Interestingly, after the 30 min of preincubation of tyrosinase and resveratrol, both monophenolase and diphenolase activities of tyrosinase were significantly suppressed. Furthermore, this effect was reduced with the addition of β-cysteine, which indicated suicide inhibition mechanism of resveratrol. Also, oxyresveratrol is identified as a tyrosinase substrate like hydroquinone, arbutin, caffeic acid and some other inhibitors. In addition to these studies on resveratrol, Fachinetti et al., have demonstrated that the incorporation of resveratrol into nanostructured lipid carriers allowed an enhanced tyrosinase inhibitory activity.

Lignans
Lignans are complex and diverse structures, which are formed from three primary precursors. So far, lignans and lignan glycosides isolated from exocarp of Castanea henryi, Marrubium velutinum and Marrubium cylleneum, Pinellia ternata and Crataegus pinnatifida have been evaluated for their tyrosinase inhibitory potentials. However, these compounds mostly displayed a moderate mushroom tyrosinase inhibitory activity.

Terpenoid derivatives
Carvacrol is a monoterpenoid phenol. To date, some carvacrol derivatives from synthetic sources, bakuchiol, a terpene phenol from Psoralea corylifolia, iridoid glucosides (another type of monoterpenoids) from Wulffenia carinthiaca and also two new bis-iridoids, namely 7-O-cafeefolyl-sylvestrosides I and 7-O-(p-coumaroyl)-sylvestroside I isolated from Scabiosa stellata have been investigated for their anti-tyrosinase activities. Among these terpenoid derivatives, Cheng et al. have demonstrated that bakuchiol is a potent inhibitor by applying capillary electrophoresis with reliable online immobilised enzyme microreactor. Also, carvacrol derivatives such as 2-(2-methyl-5-(propan-2-yl)phenoxycarbonyl)-2-oxoethyl(2E)-3-(2,4-dihydroxyphenyl)prop-2-enoate showed...
excellent tyrosinase inhibitory activity by a noncompetitive manner with K_i value 0.05 μM and $IC_{50} = 0.0167 \mu$M.

Quinone derivatives

The quinones are a class of small molecules that are mostly derived from aromatic compounds such as benzene or naphthalene. Among these compounds, Aloin, an anthraquinone-C-glycoside from *Aloe vera* 349, anthraquinones from *Polygonum cuspidatum* 350 and tanshinone IIA (IC$_{50}$ = 1214 μM) have been verified as tyrosinase inhibitors 39.

Phenyl derivatives

Several biphenyl derivatives 351 (Figure 9) such as 4,4'-dihydroxybiphenyl 352, biphenyl ester derivatives 340, biphenyl construction from flavan-3-ol substrates 353, hydroxylated biphenyls 26, functionalised bis-biphenyl substituted thiazolidinones 36, phenylbenzoic acid derivatives 354, phenylethylamide and phenylmethylamide derivatives 355, hydroxy substituted 2-phenyl-naphthalenes 318, 4-hydroxyphenyl beta-D-oligoxylosides 356, benzenethiol or phenylthiol 357, 2-((1Z)-(2-(2,4-dinitrophenyl)hydrazin-1-ylidene)methyl) phenol 358 and 4-[(4-hydroxyphenyl)azo]-benzenesulphonamide 359, have been identified as tyrosinase inhibitors.

Pyridine, Piperidine, pyridinones and hydroxypyridinone derivatives

Some hydroxypyridinone derivatives 360, 3-hydroxypyridine-4-one derivatives 361 hydroxypyridinone-L-phenylalanine 362 and pyridinones 363 have been characterised for their antityrosinase activity (Figure 10). Among these inhibitors, one mixed-type inhibitor from hydroxypyridinone-L-phenylalanine conjugates named ((S)-(5-(benzyloxy)-1-octyl-4-oxo-1,4-dihydropyridin-2-yl) methyl 2-amino-3-phenylpropanoate) showed potent inhibitory effect with IC$_{50}$ values of 12.6 and 4.0 μM for monophenolase and diphenolase activities, respectively.

Thiosemicarbazones, Thiosemicarbazide and other Thio derivatives

Several kinds of thiosemicarbazone derivatives 38,34,364–376 has been investigated as possible tyrosinase inhibitors (Figure 11). Furthermore, some benzaldehyde derivatives of thiosemicarbazone such as chlorobenzaldehyde thiosemicarbazones 363, p-hydroxy and p-methoxy benzaldehyde thiosemicarbazones 362 along with p-methoxybenzaldehyde thiosemicarbazone and 4-dimethyaminobenzaldehyde-thiosemicarbazone and 4-dimethylaminobenzaldehyde-N-phenyl-thiosemicarbazone 377 were evaluated for their inhibitory activities on mushroom tyrosinase.

Based on the findings, the appropriate functionalisation of thiosemicarbazone may be improved the inhibitory activity of these inhibitors. Dong et al. believe that the sterically bulky group at the C-4 position of the thiophene ring contributes to this activity. For example, the 4-functionalisation thiophene-2-carbaldehyde thiosemicarbazone with a methoxyacetyl group 368 or introducing benzene ring to the 4-functionalised ester group 367 enhanced inhibitory activity of thiophene-2-carbaldehyde thiosemicarbazone. However, 5-functionalisation decreased its inhibitory activity. Also, Soares et al., have demonstrated thiosemicarbazones...
Thio-1, Thio-2, Thio-3 and Thio-4 substituted with oxygenate moieties, displayed better inhibitory activity (IC$_{50}$ 0.42, 0.35, 0.36 and 0.44 mM, respectively) than Thio-5, Thio-6, Thio-7 and Thio-8.

In addition to thiosemicarbazone derivatives, thiosemicarbazide and its derivatives, 5-benzylidene(thio)barbiturate-beta-D-glycosides, n-alkyl, p-phenylene-bis, phenyl, benzyl, p-xyline-bis and p-pyridine dithiocarbamate sodium salts, diethyldithiocarbamate, phenylthiourea and other thiourea derivatives (Figure 12) such as methimazole, thioracil, methylthioracil, propythioracil, amphibzone, and thioacetazone have been identified as tyrosinase inhibitors.

Azole and thiazolidine derivatives

So far, several azole derivatives (Figure 13) have been studied for their tyrosinase inhibitory activity. The discovered new types of inhibitors included DL-3(5-benzazolyl) alanines and alpha-methyl-dopa analogs, aryl pyrazoles, heterocyclic hybrids based on pyrazole and thiazolidinone scaffolds, 3,5-diaryl-4,5-dihydro-1H pyrazolo[4,3-e] [1,2,4]triazine sulfonamides and sildenafil, indole-spliced thiadiazole, benzimidazole-1,2,3-triazole hybrids, 1,2,3-triazole-linked coumarinopyrazole conjugates, isooxazole derivatives, 5(4H)-oxazolone derivative, imidazolium ionic liquids, thiazolyl resorcinols have demonstrated the inhibitory effect on tyrosinase. Furthermore, some thiazolidine derivatives have been evaluated for their tyrosinase inhibitory activity including azo-hydrazone tautomer dyes substituted by thiazolidinone moiety, (Z)-5-(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione, 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives, (2RS,4R)-2-(2,4-dihydroxyphenyl)thiazolidine-4-carboxylic acid, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one.

Kojic acid analogs

Kojic acid is a well-known tyrosinase inhibitor. When DL-DOPA, norepinephrine and dopamine are oxidised by tyrosinase, Kojic acid inhibits effectively the rate of formation of pigmented product(s) and of oxygen uptake. Furthermore, several of its derivatives have demonstrated a potent tyrosinase inhibitory activity. Noh et al. have modified kojic acid with amino acids and screened their tyrosinase inhibitory activity. Among them, kojic acid-phenylalanine amide showed a strong non-competitive inhibition. Interestingly, some kojic acid derivatives despite their depigmenting activities did not display tyrosinase inhibitory activity.

Recently, Xie et al. have reported a kojic acid analog namely 5-phenyl-3-[5-hydroxy-4-pyrene-2-yl-methylmercapto]-4-(2,4-dihydroxybenzylamino)-1,2,4-triazol as a potent competitive tyrosinase inhibitor with an IC$_{50}$ value of 1.35 ± 2.15 μM. Tyrosinase inhibitory activity of some kojic acid derivatives is shown in Figure 14.

Benzaldehyde derivatives

Benzaldehyde and its derivatives, hydroxy- or methoxy-substituted benzaldoximes and benzaldehyde-O-alkyloximes, piperonal or 4-(methylenedioxy) benzaldehyde mesoionic derivatives, 4-hydroxybenzaldehyde derivatives, anisaldehyde have been investigated for their inhibitory activities against tyrosinase (Figure 15). Among these derivatives, 3,4-dihydroxybenzaldehyde-O-ethylxime (IC$_{50}$ = 0.3 ± 0.1 μM) is of the same magnitude as one of the best tyrosinase known inhibitors tropolone (IC$_{50}$ = 0.13 ± 0.08 μM). However, in benzaldehyde derivatives, the presence of the aldehyde group and the terminal methoxy group in C4 was found to play an important role in its inhibitory effect. But, due to their lower activity levels or serious side effects, unfortunately, most 4-substituted benzaldehyde derivatives cannot be considered for practical use.
Inhibitory effects of some thiosemicarbazone derivatives on the tyrosinase monophenolase activity.

Compound	R	**IC_{50}** (μM)	L-Tyrosine	L-DOPA
1	![Image](image1.png)	113.34 ± 16.37	159.24 ± 18.65	
2	![Image](image2.png)	28.55 ± 0.75	110.95 ± 18.55	
3	![Image](image3.png)	28.85 ± 0.95	27.90 ± 0.99	
4	![Image](image4.png)	5.87 ± 1.59	39.58 ± 9.61	
5	![Image](image5.png)	13.98 ± 0.81	83 ± 6.54	

Inhibitory effects of some piperidine derivatives on mushroom tyrosinase activity.

4-(4-fluorobenzyl) piperidine derivatives (1–5) indole derivatives (6–13) amine (14) and N-ethyl (15).

Compound	**IC_{50}** (μM)	L-Tyrosine	L-DOPA
14	43.70 ± 2.61	286.83 ± 10.52	
15	32.17 ± 4.19	116.0 ± 17.69	

Inhibitory effects of some thiosemicarbazone derivatives on the tyrosinase monophenolase activity.

Compound	**IC_{50}** (μM)	L-Tyrosine	L-DOPA

Figure 10. Inhibitory effects of some piperidine derivatives on mushroom tyrosinase activity. 4-(4-fluorobenzyl) piperidine derivatives (1–5) indole derivatives (6–13) amine (14) and N-ethyl (15).

Figure 11. Inhibitory effects of some thiosemicarbazone derivatives on the tyrosinase monophenolase activity.
Carboxylic acids

Inhibitory effects of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butyric acid, and 2-oxo-octanoyl acid124, (S)- and (R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acids426 have been investigated on tyrosinase activity.

Based on the findings investigated by Gheibi et al., aliphatic carboxylic acids have dual effects on the monophenolase and diphenolase activities of mushroom tyrosinase. They have found that optimal diphenolase activity of tyrosinase takes place in the presence of \(n \)-alkyl acids (pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butyric acid, and 2-oxo-octanoyl acid). While, the monophenolase activity is inhibited by all types of \(n \)-alkyl acids. They have believed that there is a physical difference in the docking of monophenol and \(o \)-diphenols to the tyrosinase active site. On the other hand, the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. So these carboxylic acid compounds completely block the monophenolase reaction, by preventing monophenol binding to the oxyform of the enzyme124.

Xanthate derivative

The inhibitory effect of some synthesised xanthates including \(C_{12}H_{25}OC\textsubscript{5}Na \), \(C_{14}H_{31}OC\textsubscript{5}Na \), \(C_{16}H_{33}OC\textsubscript{5}Na \), \(C_{18}H_{35}OC\textsubscript{5}Na \), and \(C_{20}H_{41}OC\textsubscript{5}Na \) have been examined for inhibition of both monophenolase and diphenolase activities of mushroom tyrosinase.

Based on the reports, \(C_{12}H_{25}OC\textsubscript{5}Na \) and \(C_{14}H_{31}OC\textsubscript{5}Na \) showed a mixed inhibition pattern on monophenolase activity but \(C_{16}H_{33}OC\textsubscript{5}Na \) and \(C_{18}H_{35}OC\textsubscript{5}Na \) showed a competitive and \(C_{20}H_{41}OC\textsubscript{5}Na \) showed uncompetitive inhibition pattern. For diphenolase activity, \(C_{12}H_{25}OC\textsubscript{5}Na \) and \(C_{14}H_{31}OC\textsubscript{5}Na \) showed mixed
inhibition but C_{6}H_{4}OCS_{2}Na and C_{5}H_{11}OCS_{2}Na and C_{6}H_{13}OCS_{2}Na showed competitive inhibition. According to their results, it seems that the lengthening of the hydrophobic tail of the xanthates leads to a decrease of the K_{i} values for monophenolase inhibition and an increase of the K_{i} values for diphenolase inhibition.

Other tyrosinase inhibitors

Except the inhibitors listed above, other compounds have also been registered for their tyrosinase inhibitory activity by different researchers such as: two Keggin-type polyoxometalates containing...
glycine as potent inorganic reversible inhibitors with an IC\textsubscript{50} of 2.92 ± 0.16 mM48 and rifampicin with an IC\textsubscript{50} = 9.0 ± 1.8 mM431 as reversible and noncompetitive inhibitors, ammonium tetrathiotungstate430, amoxicillin (IC\textsubscript{50} = 9.0 ± 1.8 mM431), mallotophilippen A and B432, \(\alpha\)-naphthol and \(\beta\)-naphthol433, red koji extracts (IC\textsubscript{50} of 5.57 mg/mL434 and

![Figure 14. Some kojic acid analogs: hydroxybenzaldehyde-based kojic acid analogs (5-substituted-3-[5-hydroxy-4-pyrone-2-ylmethylmercapto]-4-arylmethyleneamino-1,2,4-triazole (1–10) and 5-substituted-3-[5-hydroxy-4-pyrone-2-yl-methylmercapto]-4-arylmethyleneamino-1,2,4-triazole (11–14).]

![Figure 15. Benzaldehyde derivatives: 4-substituted benzaldehyde (1–15).]

Compound	R\textsubscript{1}	R\textsubscript{2}	IC\textsubscript{50} (\(\mu\)M)	Mechanism
1	CH\textsubscript{3}	2,4-di-OH	5.80 ± 0.28	-----
2	CH\textsubscript{3}	2 OH	10.20 ± 0.56	-----
3	CH\textsubscript{3}	2 OH	7.60 ± 1.50	-----
4	H	2 OH	5.85 ± 0.60	-----
5	CH\textsubscript{3}	3-OH	12.5 ± 1.08	-----
6	Ph	2,4-di-OH	1.35 ± 2.15	competitive
7	4-CH\textsubscript{3}Ph	2 OH	3.80 ± 0.78	-----
8	3-C\textsubscript{3}Ph	2 OH	2.50 ± 0.89	-----
9	4-C\textsubscript{2}Ph	2 OH	1.71 ± 1.56	-----
10	Ph	2 OH	1.50 ± 1.25	-----

Compound	R\textsubscript{1}	R\textsubscript{2}	IC\textsubscript{50} (\(\mu\)M)	Mechanism
11	2-C\textsubscript{2}Ph	3,4-di-OH	5.20 ± 0.69	-----
12	H	4-OH	8.54 ± 2.38	-----
13	H	2,4-di-OH	9.60 ± 1.78	-----
14	H	3-CH\textsubscript{3}-OH	17.50 ± 2.75	-----
Kojic acid			20.00 ± 1.08	-----

![Figure 14. Some kojic acid analogs: hydroxybenzaldehyde-based kojic acid analogs (5-substituted-3-[5-hydroxy-4-pyrone-2-ylmethylmercapto]-4-arylmethyleneamino-1,2,4-triazole (1–10) and 5-substituted-3-[5-hydroxy-4-pyrone-2-yl-methylmercapto]-4-arylmethyleneamino-1,2,4-triazole (11–14).]

![Figure 15. Benzaldehyde derivatives: 4-substituted benzaldehyde (1–15).]
alpha-hydrazinophloretic acid as competitive inhibitors and rotterin as a mixed inhibitor. Furthermore, n-alkyl sulfates, sericin extracted from tasar silk fiber waste, 2-hydroxy-3-methylcyclopent-2-eneone (IC_{50} = 721.91 \mu g/mL) isolated from ribose-histidine Maillard reaction products, three natural compounds from safflower and mimosine and ethylenediamine are other kinds of tyrosinase inhibitors.

Synergistic effects of tyrosinase inhibitors

Synergistic strategy for tyrosinase inhibitors is a useful strategy for the improvement of their inhibitory activities. Based on the findings, the mixtures of glabridin:resveratrol, glabridin:oxyresveratrol, resveratrol:oxyresveratrol, phenylethylresorcinol:resveratrol, oxyresveratrol:dioscin, aloesinarbutin, 4-methyl catechol: catecho1, 3-(2,4-dihydroxyphenyl)propionic acid: l-ascorbic acid, dihydromyricetin: vitamin D3, linderanolide B combined with arbutin, 1-phenyl-2-thiourea or kojic acid, have shown synergistic effect on tyrosinase. These studies may provide a scientific strategy for screening effective tyrosinase inhibitors.

Conclusion

Due to the vital role of tyrosinase in the enzymatic browning of food and depigmentation disorders in humans, its inhibitors have been considered by researchers, extensively. As mentioned above, natural sources such as plants and microorganisms and their effective compounds have wonderful potential as organic anti-tyrosinase sources.

However, the majority of the compounds identified from natural sources were isolated from plants but, recently, microorganisms are considered as potential sources of tyrosinase inhibitors. It is interesting that despite the diversity of natural inhibitors, a large number of tyrosinase inhibitors are phenolic-based structures. Many researchers have designed appropriate scaffold inspired by the structure of natural compounds and developed novel synthetic inhibitors. In this paper, many natural, semi-synthetic and synthetic inhibitors have been summarised and the inhibitory effects of these compounds on the tyrosinase activity are discussed.

Based on the results, phenolic compounds (simple phenols and polyphenols) and their derivatives and several compounds including terpenoid, phenyl, pyridine, piperidine, pyridinone, hydroxypyridinone, thiosemicarbazide, azole, thiazolidine, kojic acid, benzaldehyde and xanthate derivatives were characterised as potent tyrosinase inhibitors. The approopriate functionalisation of these inhibitors such as C-6 and C-7 hydroxyl groups of the isoflavone skeleton, 4-functionalisation thiophene-2-carbaldehyde thiosemicarbazone with a methoxyacetyl group and the aldehyde group and methoxy group in C4 of benzaldehyde derivatives may be improved the inhibitory activity of these inhibitors. Furthermore, in cholinol derivatives, the location of the hydroxyl groups on both aromatic rings and the number of hydroxyls is an important factor in the efficacy of a chalcone. In contrast, some modifications such as the prenylation or the vinylation of some flavonoid molecules do not enhance their tyrosinase inhibitory activity while deglycosylation of some flavonoid glycosides by far-infrared irradiation can be improved tyrosinase inhibitory activity. Interestingly, among different inhibitors, some compounds, especially hydroquinone and its known derivatives (α and β-arbutin), are described as both a tyrosinase inhibitor and a substrate.

Actually, the main objective of this review is to provide a useful source of effective tyrosinase inhibitors. However, despite the existence of a wide range of tyrosinase inhibitors from natural and synthetic sources, only a few of them, in addition to being effective, are known as safe compounds. Therefore, it is recommended to examine the efficacy and safety of inhibitors by in vivo models, along with in vitro and docking experiments, especially for the application of such materials in food and medicinal products. Finally, we hope that the information provided in this study, which is the result of numerous researchers’ efforts, could serve as leads in the search for effective anti-tyrosinase agents from natural and synthetic sources with increased efficiency and safety in the food and cosmetics industries.

Disclosure statement

The authors report that they have no conflicts of interest.

Funding

This work was financially supported by Research Council of both University of Tehran and IAU Jahrom Branch.

References

1. Dembitsky VM, Kilimnik A. Anti-melanoma agents derived from fungal species. M J Pharma 2016;1:1–16.
2. Maghsoudi S, Adibi H, Hamzeh M, et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivatives. J Rep Pharma Sci 2013;2:156–64.
3. Halouli S, Asther M, Krues K, et al. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 2005;98:332–43.
4. Sahu RK, Roy A, Dwivedi J, Jha AK. Promotion and computation of inhibitory effect on tyrosinase activity of herbal cream by incorporating indigenous medicinal plants. Pak J Biol Sci 2014;17:146–50.
5. Jeon SH, Jong-Uk HK, Kwang-Hoon K. Inhibitory effects on L-dopa oxidation of tyrosinase by skin-whitening agents. Bull Korean Chem Soc 2005;26:1135–7.
6. Garcia-Molina F, Munoz JL, Varon R, et al. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. J Agric Food Chem 2007;55:9739–49.
7. Ravani Ananda R, Nagaraja P. Quantification of 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid mono sodium salt by oxidation with tyrosinase in the presence of 3-methyl-2-benzothiazolinone hydrazine. Chem Sci Rev Lett 2015;4:342–8.
8. Winder AJ. A stopped spectrophotometric assay for the dopa oxidase activity of tyrosinase. J Biochem Biophys Methods 1994;28:173–83.
9. Chai WM, Lin MZ, Song FJ, et al. Rifampicin as a novel tyrosinase inhibitor: inhibitory activity and mechanism. Int J Biol Macromol 2017;102:425–30.
10. Lee SY, Baek N, Nam TG. Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem 2016;31:1–13.
11. Zhou J, Tang Q, Wu T, Cheng Z. Improved TLC bioautographic assay for qualitative and quantitative
10. Garcia P, Ramallo IA, Furlan RLE. Reverse phase compatible TLC-bioautography for detection of tyrosinase inhibitors. Phytochem Anal 2017;28:115–24.

11. Garcia P, Furlan RL. Multiresponse optimisation applied to the development of a TLC autography for the detection of tyrosinase inhibitors. Phytochem Anal 2017;28:101–5.

12. Wangthong S, Tonsiriapakdee I, Monhaphol T, et al. Post TLC developing technique for tyrosinase inhibitor detection. Biomed Chromatogr 2007;21:94–100.

13. Taibon JAA, Schwaiger S, Magnenat C, et al. Prevention of false-positive results: development of an HPTLC autographic assay for the detection of natural tyrosinase inhibitors. Planta Med 2015;81:1198–204.

14. Misra BB, Dey S. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil. Nat Prod Commun 2013;8:253–6.

15. Kamagaju L, Morandini R, Bizuru E, et al. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J Ethnopharmacol 2013;146:824–34.

16. Liu DM, Yang JL, Ha W, et al. Kinetics and inhibition study of tyrosinase by pressure mediated microanalysis. Anal Biochem 2017;525:54–9.

17. Chen YM, Chavin W. Radiometric assay of tyrosinase and estimation of tyrosinase inhibitors in natural products. Phytochem Anal 2017;28:115–24.

18. Tang L, Zhang W, Zhao H, Chen Z. Tyrosinase inhibitor screening by capillary electrophoresis with immobilized enzyme microreactor for inhibitor screening in natural extracts by capillary electrophoresis. J Pharm Biomed Anal 2013;84:36–40.

19. Sun BB, Qi L, Mu XY, et al. A Chiral ligand exchange CE system for monitoring inhibitory effect of kojic acid on tyrosinase. Talanta 2013;116:1211–5.

20. Chen YM, Chavin W. Radiometric assay of tyrosinase and theoretical considerations of melanin formation. Anal Biochem 1965;13:234–58.

21. Vandeput M, Patris S, Silva H, et al. Application of a tyrosinase microreactor – detector in a flow injection configuration for the determination of affinity and dynamics of inhibitor binding. Sens Actuators B Chem 2017;248:385–94.

22. Ruzza P, Serra PA, Davide Fabbri D, et al. Hydroxylated biphenyls as tyrosinase inhibitor: a spectrophotometric and electrochemical study. Eur J Med Chem 2017;126:1034–8.

23. Liu J, Li M, Yu Y, Cao S. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT (pi). Int J Biol Macromol 2017;103:1096–106.

24. Chai WM, Lin MZ, Feng HL, et al. Proanthocyanidins purified from fruit pericarp of Clausena lanzium (Lour.) Skeels as efficient tyrosinase inhibitors: structure evaluation, inhibitory activity and molecular mechanism. Food Funct 2017;8:1043–51.

25. Kwong HC, Chidan Kumar CS, Mah SH, et al. Novel biphenyl ester derivatives as tyrosinase inhibitors: synthesis, crystallographic, spectral analysis and molecular docking studies. PLoS one 2017;12:e0170117.

26. Garcia-Jimenez A, Teruel-Puche JA, Ortiz-Ruiz CV, et al. Study of the inhibition of 3-/4-aminoacetophenones on tyrosinase. Int J Biol Macromol 2017;95:1289–95.

27. Cui Y, Hu YH, Yu F, et al. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase. Int J Biol Macromol 2017;100:1289–97.

28. Ferrero S, De Luca L, Germano MP, et al. Chemical exploration of 4-(4-fluorobenzyl)piperidine fragment for the development of new tyrosinase inhibitors. Eur J Med Chem 2017;125:992–1001.

29. Lall N, Mogapi E, de Canha MN, et al. Insights into tyrosinase inhibition by compounds isolated from Greyia radikofieri Szyszyl using biological activity, molecular docking and gene expression analysis. Bioorg Med Chem 2016;24:5953–9.

30. Bagherzadeh K, Shirmahi Talari F, Sharifi A, et al. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies. J Biomol Struct Dyn 2015;33:487–501.

31. Tang H, Cui F, Liu L, Li Y. Predictive models for tyrosinase inhibitors: challenges from heterogeneous activity data determined by different experimental protocols. Comput Biol Chem 2018;73:79–84.

32. Li Q, Yang H, Mo J, et al. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. Peer J 2018;6:e4206.
47. Wang R, Chai WM, Yang Q, et al. (4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: Synthesis, inhibitory activity, and mechanism. Bioorg Med Chem 2016;24:4620–5.

48. Yue LM, Lee J, Lü ZR, et al. Effect of Cd2+: on tyrosinase: integration of inhibition kinetics with computational simulation. Int J Biol Macromol 2017; 94:836–44.

49. Gao H. Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from traditional Chinese medicine database. Phytomedicine 2018;38:145–57.

50. Khan MT. Novel tyrosinase inhibitors from natural resources – their computational studies. Curr Med Chem 2012;19:2262–72.

51. Chan CF, Huang CC, Lee MY, Lin YS. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014; 19:13122–35.

52. Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci 2009;10:2440–75.

53. Chang TS. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012;5:1661–85.

54. Chen CY, Lin LC, Yang WF, et al. An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr Org Chem 2015;19:4–18.

55. Hassan Khan MT. Molecular design of tyrosinase inhibitors: a critical review of promising novel inhibitors from synthetic origins. Pure Appl Chem 2007;79:2277–95.

56. Likhitwitayawuid K. Stilbenes with tyrosinase inhibitory activity, and mechanism. Bioorg Med Chem 2017;25:1822–31.

57. Lin JW, Chiang HM, Lin YC, Wen KC. Natural products with skin – whitening effects. J Food Drug Anal 2008;16:1

58. Loizzo MR, Tundis R, Menichini F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr Rev Food Sci Food Saf 2012;11:378–98.

59. Parvez S, Kang M, Chung HS, Bae H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 2007;21:805–16.

60. Fernandes MS, Kerkar S. Microorganisms as a source of tyrosinase inhibitors: a review. Ann Microbiol 2017;67:343–58.

61. Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 2017;32:403–25.

62. Wu B. Tyrosinase inhibitors from terrestrial and marine resources. Curr Top Med Chem 2014;14:1425–49.

63. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol 2008;84:539–49.

64. Cestari TF, Dantas LP, Boza JC. Acquired hyperpigmentations. An Bras Dermatol 2014;89:11–25.

65. Nouveau S, Agrawal D, Kohli M, et al. Skin hyperpigmentation in Indian population: insights and best practice. Indian J Dermatol 2016;61:487–95.

66. Dorga S, Sarangal R. Pigmentary disorders: an insight. Pigment Int 2014;1:5–7.

67. Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, et al. Action of 2,2’,4,4’-tetrachloroxybenzophenone in the biosynthesis pathway of melanin. Int J Biol Macromol 2017; 98:622–9.

68. Bull AT, Carter BLA. The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. J Gen Microbiol 1973;75:61–73.

69. Silva S. C d, Wisniewski C, Luccas PO, Magalhães CSD. Enzyme from banana (Musa sp.) extraction procedures for sensitive adrenaline biosensor construction. Am J Analyt Chem 2013;04: 293–300.

70. Dolashki A, Voelter W, Gushterova A, et al. Isolation and characterization of novel tyrosinase from Laceyella sacchari. Protein Pept Lett 2012;19:538–43.

71. Haghbeen K, Rastegar J. F, Karkhanee AH, Shareefi Borjerdij SH. Purification of tyrosinase from edible mushroom. Iran J Biotechnol 2004;2:189–94.

72. Sambasiva Rao KRS, Tripathy NK, Srinivasa Rao D, Prakasham RS. Production, characterization, catalytic and inhibitory activities of tyrosinase. Res J Biotech 2013;8:187–99.

73. Vieira NCS, Ferreira RA, Valquiria da CR, et al. Self-assembled films containing crude extract of avocado as a source of tyrosinase for monophenol detection. Mater Sci Eng C 2013;33:3899–902.

74. Yamauchi K, Mitsunaga T, Batubara I. Isolation, identification and tyrosinase inhibitory activities of the extraxatives from Allamanda cathartica. Nat Res 2011;2:167–72.

75. Yuan H, Ke-wu L, Dong Y, et al. Some properties of potato tyrosinase, chemical research and application. J Chem Res App 2005;1:22–7.

76. Zh Y, Wu F. Catalytic properties of tyrosinase from potato and edible fungi. Biotechnology 2006;5:344–8.

77. Harir M, Bellahcene M, Baratto MC, et al. Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes. J Biotechnol 2018;265:54–64.

78. Vanitha M, Soundhari C. Isolation and characterisation of mushroom tyrosinase and screening of herbal extracts for anti-tyrosinase activity. Int J ChemTech Research 2017;10:1156–67.

79. Zekiri F, Molitor C, G.Mauracher SG, et al. Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry 2014;101:5–15.

80. Gasparetti C. Biochemical and structural characterisation of the copper containing oxidoreductases catechol oxidase, tyrosinase, and laccase from ascomycete fungi. Espoo: VTT Technical Research Centre of Finland; 2012.

81. Boekelheide K, Graham DG, Mize PD, Jeffs PW. The metabolic pathway catalyzed by the tyrosinase of Agaricus bisporus. J Biol Chem 1980;255:4766–71.

82. Ionță E, Stănicuć N, Aprodou I, et al. pH-induced structural changes of tyrosinase from Agaricus bisporus using fluorescence and in silico methods. J Sci Food Agric 2014;94:2338–44.

83. Ionță E, Aprodou I, Stănicuć N, et al. Advances in structure-function relationships of tyrosinase from Agaricus bisporus – investigation on heat-induced conformational changes. Food Chem 2014;156:129–36.

84. Khan IA, Ali R. Antigenicity, catalytic activity and conformation of Agaricus bisporus tyrosinase: interaction of conformation-directed antibodies with the native and irradiated enzyme. J Biochem 1986;99:445–52.

85. Zhou L, Liu W, Zou L, et al. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chem 2017;214:423–31.
86. Gheibi N, Saboury AA, Haghbeen K, Moosavi Movahedi AA. The effect of some osmolytes on the activity and stability of mushroom tyrosinase. J Biosci 2006;31:355–62.

87. Narin R, Cresswell W, J Narin J. Mushroom tyrosinase: a model system to combine experimental investigation of enzyme-catalyzed reactions, data handling using R, and enzyme-inhibitor structural studies. Biochem Mol Biol Educ 2015;43:370–6.

88. Della Longa S, Ascone I, Bianconi A, et al. The dinuclear copper site structure of Agaricus bisporus tyrosinase in solution probed by X-ray absorption spectroscopy. J Biol Chem 1996;271:21025–30.

89. Ismaya WT, Tandrasasmita OM, Sundari S, et al. The light subunit of mushroom Agaricus bisporus tyrosinase: its biological characteristics and implications. Int J Biol Macromol 2017;102:308–14.

90. Ismaya WT, Rozeboom HJ, Weijn A, et al. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011;50:5477–86.

91. Strothkamp KG, Jolley RL, Mason HS. Quaternary structure and suicide inactivation changes of mushroom tyrosinase. Biochim Biophys Acta 2004;1675:139–52.

92. Bourquelot E, Bertrand A. Le beluissement et le noircissement des champignons. Comp Rend Soc Biol 1895;2:582–9.

93. Ismaya WT, Tandrasasmita OM, Sundari S, et al. The light subunit of mushroom Agaricus bisporus tyrosinase: its biological characteristics and implications. Int J Biol Macromol 2017;102:308–14.

94. Lopez-Tejedor D, Palomo JM. Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expr Purif 2018;145:64–70.

95. Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1995;1247:1–11.

96. Ortiz-Ruiz CV, Maria-Solano MA, Garcia-Molina Mdel M, et al. Kinetic characterization of substrate-analogous inhibitors of tyrosinase. IUBMB Life 2015;67:757–67.

97. Dec J, Bollag JM. Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ Sci Technol 1995;29:657–63.

98. Munoz-Munoz JL, Garcia-Molina F, Varon R, et al. Suicide inactivation of the diphenolase and monophenolase inhibitors of tyrosinase. IUBMB Life 2015;67:757–67.

99. Land EJ, Ramsden CA, Riley PA. The mechanism of suicide inactivation of tyrosinase: a substrate structure investigation. Tohoku J Exp Med 2007;212:341–8.

100. Haghbeen K, Saboury AA, Karbassi F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim Biophys Acta 2004;1675:139–46.

101. Saboury AA, Karbassi F, Haghbeen K, et al. Stability, structural and suicide inactivation changes of mushroom tyrosinase after acetylation by n-acetylimidazole. Int J Biol Macromol 2004;34:257–62.

102. Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz PA, et al. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochem J 2008;416:431–40.

103. Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz PA, et al. Stereospecific inactivation of tyrosinase by L- and D-ascorbic acid. Biochim Biophys Acta 2009;1794:244–53.

104. Munoz-Munoz JL, Acosta-Motos JR, Garcia-Molina F, et al. Tyrosinase inactivation in its action on dopa. Biochim Biophys Acta 2010;1804:1467–75.

105. Munoz-Munoz JL, Garcia-Molina F, Berna J, et al. Kinetic characterisation of o-aminophenols and aromatic o-diamines as suicide substrates of tyrosinase. Biochim Biophys Acta 2012;1824:647–55.

106. Munoz-Munoz JL, Berna J, Garcia-Molina F, et al. Unravelling the suicide inactivation of tyrosinase: a discrimination between mechanisms. J Mol Catal B Enzym 2012;75:11–9.

107. Munoz-Munoz JL, Garcia-Molina Mdel M, Garcia-Molina F, et al. Indirect inactivation of tyrosinase in its action on 4-tert-butylphenol. J Enzyme Inhib Med Chem 2014;29:344–52.

108. Munoz-Munoz JL, Garcia-Molina F, Acosta-Motos JR, et al. Indirect inactivation of tyrosinase in its action on tyrosine. Acta Biochim Pol 2011;58:477–88.

109. del Mar Garcia-Molina M, Munoz-Munoz JL, Berna J, et al. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone. IUBMB Life 2014;66:122–7.

110. Munoz-Munoz JL, Garcia-Molina F, Arribas E, et al. Suicide inactivation of tyrosinase in its action on tetrahydropterines. J Enzyme Inhib Med Chem 2011;26:728–33.

111. Garcia-Molina F, Munoz-Munoz JL, Martinez-Ortiz F, et al. Tetrahydrofolic acid is a potent suicide substrate of mushroom tyrosinase. J Agric Food Chem 2011;59:1383–91.

112. Garcia-Molina F, Munoz-Munoz JL, Garcia-Molina M, et al. Melanogenesis inhibition due to NADH. Biosci Biotechnol Biochem 2010;74:1777–87.

113. Park J, Jung H, Kim K, et al. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity. Pigment Cell Melanoma Res 2018;31:374–83.

114. Hassani S, Gharechaei B, Nikfard S, et al. New insight into the allosteric effect of l-tyrosine on mushroom tyrosinase during l-dopa production. Int J Biol Macromol 2018;114:821–9.

115. Zhao DY, Zhang MX, Dong XW, et al. Design and synthesis of novel hydroxyypyridinone derivatives as potential tyrosinase inhibitors. Bioorg Med Chem Lett 2016;26:3103–8.

116. Yin SJ, Si YX, Qian GY. Inhibitory effect of phthalic acid on tyrosinase: the mixed-type inhibition and docking simulations. Enzyme Res 2011;2011:1. doi: 10.4061/2011/294724.

117. Yin SJ, Si YX, Chen YF, et al. Mixed-type inhibition of tyrosinase from Agaricus bisporus by terephthalic acid: computational simulations and kinetics. Protein J 2011;30:273–80.

118. Liu HJ, Ji S, Fan YQ, et al. The effect of D-(-)-arabinose on tyrosinase: an integrated study using computational simulation and inhibition kinetics. Enzyme Res 2012;2012:731427. doi: 10.1155/2012/731427.

119. Hridya H, Amrta A, Sankari M, et al. Inhibitory effect of brazilin on tyrosinase and melanin synthesis: kinetics and in silico approach. Int J Biol Macromol 2015;81:228–34.

120. Ashraf Z, Rafiq M, Seo SY, et al. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur J Med Chem 2015;98:203–11.

121. Karbassi F, Saboury AA, Khan MT, et al. Mushroom tyrosinase inhibition by two potent and competitive inhibitors. J Enzyme Inhib Med Chem 2004;19:349–53.

122. Seo B, Yun J, Lee S, et al. Barbarin as a new tyrosinase inhibitor from Barbarea orthoceras. Planta Med 1999;65:683–6.

123. Hu YH, Liu X, Jia YL, et al. Inhibitory kinetics of chlorocinamic acids on mushroom tyrosinase. J Biosci Bioeng 2014;117:142–6.
124. Gheibi N, Saboury AA, Haghbeen K, et al. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase. J Enzyme Inhib Med Chem 2009;24:1076–81.

125. Shiino M, Watanabe Y, Umezawa K. Synthesis and tyrosinase inhibitory activity of novel N-hydroxybenzyl-N-nitrosohydroxylamines. Bioorg Chem 2003;31:129–35.

126. Chen QX, Song KK, Wang Q, Huang H. Inhibitory effects on mushroom tyrosinase by some alkylenzaldehydes. J Enzyme Inhib Med Chem 2003;18:491–6.

127. Saeed A, Mahesar PA, Channar PA, et al. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Bioorg Chem 2017;74:187–96.

128. Mann T, Gerwat W, Batzer J, et al. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J Invest Dermatol 2018; 138:1601–8.

129. Hamed SH, Sriwiriyanont P, deLong MA, et al. Comparative efficacy and safety of deoxyarbutin, a new tyrosinase-inhibiting agent. J Cosmet Sci 2006;57:291–308.

130. Sugimoto K, Nishimura T, Nomura K, et al. Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chem Pharm Bull (Tokyo) 2003;51:798–801.

131. Di Petrollo A, Gonzalez-Paramas AM, Era B, et al. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med 2016;16:453.

132. Koyu H, Kazan A, Demir S, et al. Optimization of microwave assisted extraction of Morus nigra L. Fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 2018;248:183–91.

133. Lee SG, Karadeniz F, Seo Y, Kong CS. Anti-melanogenic effects of flavonoid glycosides from Limonium tetragonum (thunb.) bulb via inhibition of tyrosinase and tyrosinase-related proteins. Molecules 2017;22:1480–90.

134. Matsuo K, Kobayashi M, Takuno Y, et al. Anti-tyrosinase activity constituents of Arctostaphylos uva-ursi. Yakugaku Zasshi 1997;117:1028–32.

135. Alam N, Yoon KN, Lee JS, et al. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus eryngii. Saudi J Biol Sci 2012;19:111–18.

136. Kim NY, Kwon HS, Lee HY. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. J Cosmet Dermatol 2017;16:407–15.

137. Taherkhani M. Chemical constituents, total phenolic content, antimicrobial, antioxidant and radical scavenging properties, chelating ability, tyrosinase inhibition and in vitro cytotoxic effects of Artemisia acheri herbs. Pharm Chem J 2017;50:736–45.

138. Lee GY, Cho BO, Shin JY, et al. Tyrosinase inhibitory components from the seeds of Cassia tora. Arch Pharm Res 2018;41:490–6.

139. Senol FS, Orhan I, Yilmaz G, et al. Acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibition studies and antioxidant activities of 33 Scutellaria L. taxa from Turkey. Food Chem Toxicol 2010;48:781–8.

140. Ya W, Chun-Meng Z, Tao G, et al. Preliminary screening of 44 plant extracts for anti-tyrosinase and antioxidant activities. Pak J Pharm Sci 2015;28:1737–44.
on the inhibition of mushroom tyrosinase activity and scavenging of free radicals. Int J Cosmet Sci 2009;31:375–81.

159. Masuda T, Fujita N, Odaka Y, et al. Tyrosinase inhibitory activity of ethanol extracts from medicinal and edible plants cultivated in Okinawa and identification of a water-soluble inhibitor from the leaves of Nandina domestica. Biosci Biotechnol Biochem 2007;71:2316–20.

160. Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subsuliptica. Biosci Biotechnol Biochem 2005;69:197–201.

161. Baurin N, Arnoult E, Scior T, et al. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol 2002;82:155–8.

162. Kubo I, Yokokawa Y, Kinoshita I. Tyrosinase inhibitors from Bolivian medicinal plants. J Nat Prod 1995;58:739–43.

163. Bonesi M, Xiao J, Tundis R, et al. Advances in the tyrosinase inhibitors from plant source. Curr Med Chem 2018;25:1. doi:10.2174/0929867325666180522091311.

164. Vasantha KY, Murugesh CS, Sattur AP. A tyrosinase inhibitor from Aspergillus niger. J Food Sci Technol 2014;51:2877–80.

165. Tsuchiya T, Yamada K, Minoura K, et al. Purification and characterization of a tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biol Pharm Bull 2008;31:1618–20.

166. Lu R, Liu X, Gao S, et al. New tyrosinase inhibitors from Paecilomyces grunii. J Agric Food Chem 2014;62:11917–23.

167. Kang HS, Choi JH, Cho WK, et al. A spingolipoid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch Pharm Res 2004;27:742–50.

168. Morimura K, Yamazaki C, Hattori Y, et al. A tyrosinase inhibitor, daedalin a, from mycelial culture of Daedalea dickinsii. Biosci Biotechnol Biochem 2007;71:2837–40.

169. Sharma VK, Choi J, Sharma N, et al. In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furural isolated from Dictyophora indusiata. Phytother Res 2004;18:841–4.

170. Ishihara A, Ide Y, Bito T, et al. Novel tyrosinase inhibitors from liquid culture of Neolentinus lepideus. Biosci Biotechnol Biochem 2018;82:22–30.

171. Li X, Kim MK, Lee U, et al. Myrothecin A and B, cyclpentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium. Chem Pharm Bull (Tokyo) 2005;53:453–5.

172. Wu B, Wu X, Sun M, Li M. Two novel tyrosinase inhibitory sesquiterpenes induced by cuc2 from a marine-derived fungus Pestalotiopsis sp. Z233. Mar Drugs 2013;11:2713–21.

173. Chang TS, Tseng M, Ding HY, Shou-Ku Tai S. Isolation and characterization of Streptomyces hiroshimensis strain Ti-C3 with anti-tyrosinase activity. J Cosmet Sci 2008;59:33–40.

174. le Roes-Hill M, Prins A, Meyers PR. Streptomyces swartbergensis sp. Nov., a novel tyrosinase and antibiotic producing actinobacterium. Antonie Van Leeuwenhoek 2018;111:589–600.

175. Nakashima T, Anzai K, Kuwahara N, et al. Physicochemical characters of a tyrosinase inhibitor produced by Streptomyces roseollicinus NBRC 12815. Biol Pharm Bull 2009;32:832–6.

176. Deering RW, Chen J, Sun J, et al. N-acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J Nat Prod 2016;79:447–50.

177. Sano T, Kaya K. Oscillapeptin G, a tyrosinase inhibitor from toxic Oscillatoria agardhii. J Nat Prod 1996;59:90–2.
216. Garcia-Jimenez A, Teruel-Puche JA, Garcia-Molina F, et al. Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. Int J Biol Macromol 2018;119:548–54.

217. Garcia-Jimenez A, Teruel-Puche JA, Garcia-Molina F, et al. Tyrosinase-catalyzed hydroxylation of 4-hexylresorcinol, an antibrowning and depigmenting agent: A kinetic study. J Agric Food Chem 2015;63:7032–40.

218. Ortiz-Ruiz CV, Ballestra de Los Santos M, Berna J, et al. Kinetic characterization of oxyresveratrol as a tyrosinase substrate. IUBMB Life 2015;67:828–36.

219. Ortiz-Ruiz CV, Berna J, Garcia-Molina Mdel M, et al. Identification of p-hydroxybenzyl alcohol, tyrosol, phloretin and its derivate phloridzin as tyrosinase substrates. Bioorg Med Chem 2015;23:3738–46.

220. Ortiz-Ruiz CV, Berna J, Rodriguez-Lopez JN, et al. Tyrosinase-catalyzed hydroxylation of 4-hexylresorcinol, an antibrowning and depigmenting agent: A kinetic study. J Agric Food Chem 2015;63:7032–40.

221. Ortiz-Ruiz CV, Ballestra de Los Santos M, Berna J, et al. Characterization of the action of tyrosinase on resorcinols. Bioorg Med Chem 2016;24:4434–43.

222. Garcia-Jimenez A, Munoz-Munoz JL, Garcia-Molina F, et al. Spectrophotometric characterization of the action of tyrosinase on p-coumaric and caffeic acids: characteristics of o-caffequinone. J Agric Food Chem 2017;65:3378–86.

223. Garcia-Jimenez A, Garcia-Molina F, Teruel-Puche JA, et al. Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. Int J Biol Macromol 2018;119:548–54.

224. Garcia-Jimenez A, Teruel-Puche JA, Garcia-Molina F, et al. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase. PLoS One 2017;12:e0187845.

225. Ortiz-Ruiz CV, Garcia-Molina Mdel M, Serrano JT, et al. Discrimination between alternative substrates and inhibitors of tyrosinase. J Agric Food Chem 2015;63:2162–71.

226. Lin D, Xiao M, Zhao J, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016;21:1374. https://doi.org/10.3390/molecules21101374

227. Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 2010;62:1–20.

228. Wang Y, Curtis-Long MJ, Lee BW, et al. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg Med Chem 2014;22:1115–20.

229. Xue XL, Miyakawa T, Hayashi Y, et al. Isolation and tyrosinase inhibitory effects of polyphenols from the leaves of persimmon, Diospyros kaki. J Agric Food Chem 2011;59:6011–7.

230. Sirat HM, Rezali MF, Ujang Z. Isolation and identification of radical scavenging and tyrosinase inhibition of polyphenols from Tibouchina semidecandra L. J Agric Food Chem 2010;58:10404–9.

231. Yoon NY, Eom TK, Kim MM, Kim SK. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J Agric Food Chem 2009;57:4124–9.

232. Fujimoto A, Shingai Y, Nakamura M, et al. A novel ring-expanded product with enhanced tyrosinase inhibitory activity from classical Fe-catalyzed oxidation of rosmarinic acid, a potent antioxidant lamiaceae polyphenol. Bioorg Med Chem Lett 2010;20:7393–6.

233. Solimine J, Garo E, Wedler J, et al. Tyrosinase inhibitory constituents from a polyphenol-enriched fraction of rose oil distillation wastewater. Fitoterapia 2016;108:13–9.

234. Du ZY, Jiang YF, Tang ZK, et al. Antioxidation and tyrosinase inhibition of polyphenolic curcumin analogs. Biosci Biotechnol Biochem 2011;75:2351–8.

235. Yang J, Du Z, Xue G, et al. Synthesis and biological evaluation of unsymmetrical curcumin analogues as tyrosinase inhibitors. Molecules 2013;18:3948–61.

236. Ng LT, Ko HH, Lu TM. Potential antioxidants and tyrosinase inhibitors from synthetic polyphenolic deoxybenzonoids. Bioorg Med Chem 2009;17:4360–6.

237. Zheng ZP, Zhang YN, Zhang S, Chen J. One-pot green synthesis of 1,3,5-triarylpentane-1,5-dione and triarylmethane derivatives as a new class of tyrosinase inhibitors. Bioorg Med Chem Lett 2016;26:795–8.

238. Orhan IE, Khan MT. Flavonoid derivatives as potential tyrosinase inhibitors – a survey of recent findings between 2008–2013. Curr Top Med Chem 2014;14:1486–93.

239. Jegal J, Park SA, Chung K, et al. Tyrosinase inhibitory flavonoid from Juniperus communis fruits. Biosci Biotechnol Biochem 2016;80:2311–7.

240. Muhammad D, Hubert J, Lalun N, et al. Isolation of flavonoids and triterpenoids from the fruits of Alphitonia neocaledonica and evaluation of their anti-oxidant, anti-tyrosinase and cytotoxic activities. Phytochem Anal 2015;26:137–44.

241. Erdogan Orhan I, Senol FS, Asian Erdem S, et al. Tyrosinase and cholinesterase inhibitory potential and flavonoid characterization of Viola odorata L. (Sweet Violet). Phytother Res 2015;29:1304–10.

242. Liang CP, Chang CH, Liang CC, et al. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.). AMES Mol 2014;19:4681–93.

243. Badria FA, elGayyar MA. A new type of tyrosinase inhibitors from synthetic polyphenolic deoxybenzonoids. Bioorg Med Chem 2009;17:4360–6.

244. Demirkiran O, Sabudak T, Ozturk M, Topcu G. Antioxidant activity from classical Fe-catalyzed oxidation of rosmarinic acid, a potent antioxidant lamiaceae polyphenol. Bioorg Med Chem Lett 2010;20:7393–6.

245. Promden W, Viriyanancha W, Monthakanitrat O, et al. Correlation between the potency of flavonoids on mushroom tyrosinase inhibitory activity and melanin synthesis in melanocytes. Molecules 2018;23:1403. doi: 10.3390/molecules23061403.

246. Demirkiran O, Sabudak T, Ozurt M, Topcu G. Antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens L. Bioorg Med Chem 2013;61:12598–603.

247. Yao Y, Cheng X, Wang L, et al. Mushroom tyrosinase inhibitors from mung bean (Vigna radiatae L.) extracts. Int J Food Sci Nutr 2012;63:358–61.

248. Lou SN, Yu MW, Ho CT. Tyrosinase inhibitory components of immature calamondin peel. Food Chem 2012;135:1091–6.

249. Hu X, Wu JW, Wang M, et al. 2-Arylbenzofuran, flavonoid, and tyrosinase inhibitory constituents of Morus yunnanensis. J Nat Prod 2012;75:82–7.
231. Fawole OA, Makunga NP, Opara UL. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement Altern Med 2012;12:200.

232. Kim JM, Ko RK, Jung DS, et al. Tyrosinase inhibitory constituents from the stems of *Maackia fauriei*. Phytother Res 2010;24:70–5.

233. Alam N, Yoon KN, Lee KR, et al. Antioxidant activities and tyrosinase inhibitory effects of different extracts from *Pleurotus ostreatus* fruiting bodies. Mycobiology 2010;38:295–301.

234. Piao X, Tian Y, Mi X, Cui J. Tyrosinase inhibition of *Potentilla bifurca*. Zhongguo Zhong Yao Za Zhi 2009;34:1952–4.

235. Lu YH, Lin T, Wang ZT, et al. Mechanism and inhibitory effect of galangin and its flavonoid mixture from *Alpinia officinarum* on mushroom tyrosinase and B16 murine melanoma cells. J Enzyme Inhib Med Chem 2007;22:433–8.

236. Jeong SH, Ryu YB, Curtis-Long MJ, et al. Tyrosinase inhibitory polyphenols from roots of *Morus Ihou*. J Agric Food Chem 2009;57:1195–203.

237. Kishore N, Twilley D, Blom van Staden A, et al. Isolation of flavonoids and flavonoid glycosides from *Myrsine africana* and their inhibitory activities against mushroom tyrosinase. J Nat Prod 2018;81:49–56.

238. Lee HS. Tyrosinase inhibitors of *Pulsatilla cernua* root-derived materials. J Agric Food Chem 2002;50:1400–3.

239. Wang YL, Hu G, Zhang Q, et al. Screening and characterizing tyrosinase inhibitors from *Salvia miltiorrhiza* and *Carthamus tinctorius* by spectrum-effect relationship analysis and molecular docking. J Anal Methods Chem 2018;2018:1.

240. Azzuddin, Khan AM, Choudhary MI. Tyrosinase inhibitory potential of natural products isolated from various medicinal plants. Nat Prod Res 2011;25:750–3.

241. Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012;3:222.

242. Lee NK, Son KH, Chang HW, et al. Prenylated flavonoids as tyrosinase inhibitors. Arch Pharm Res 2004;27:1132–5.

243. Rho HS, Ahn SM, Lee BC, et al. Changes in flavonoid content and tyrosinase inhibitory activity in kenaf leaf extract after far-infrared treatment. Bioorg Med Chem Lett 2010;20:7534–6.

244. Manthey JA, Cesar TB, Jackson E, Mertens-Talcott S. Pharmacokinetic study of nobiletin and tangeretin in rat serum by high-performance liquid chromatography-electrospray ionization-mass spectrometry. J Agric Food Chem 2011;59:145–51.

245. Shang C, Zhang Y, You X, et al. The effect of 7,8,4-trihydroxyflavone on tyrosinase activity and conformation: spectroscopy and docking studies. Luminescence 2018;33:681–91.

246. Gao H, Nishida J, Saito S, Kawabata J. Inhibitory effects of 5,6,7-trihydroxyflavones on tyrosinase. Molecules 2007;12:86–97.

247. Mu Y, Li L, Hu SQ. Molecular inhibitory mechanism of tricin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 2013;107:235–40.

248. Guo N, Wang C, Shang C, et al. Integrated study of the mechanism of tyrosinase inhibition by baicalin using kinetic, multispectroscopic and computational simulation analyses. Int J Biol Macromol 2018;118:57–68.

249. Zhang L, Tao G, Chen J, Zheng ZP, Characterization of a new flavone and tyrosinase inhibition constituents from the Twigs of *Morus alba* L. Molecules 2016;21(9):1130. doi: 10.3390/molecules21091130

250. Ryu YB, Ha TJ, Curtis-Long MJ, et al. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of *Morus Ihou* (S.) Koidz. J Enzyme Inhib Med Chem 2008;23:922–30.

251. Kubo I, Koin-Kauri I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem 1999;47:4121–5.

252. Omar SH, Scott CJ, Hamlin AS, Obied HK. Biophenols: enzymes (β-secretase, cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (*Olea europaea* L.). Fitoterapia 2018;128:118–29.

253. Yang Z, Zhang Y, Sun L, et al. An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. Anal Chim Acta 2012;719:87–95.

254. Wang Y, Zhang G, Yan J, Gong D. Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chem 2014;163:226–33.

255. Zheng ZP, Zhu Q, Fan CL, et al. Phenolic tyrosinase inhibitors from the stems of *Cudraanica cochinchinensis*. Food Funct 2011;2:259–64.

256. Kim JH, Cho IS, So YK, et al. Kushenol a and 8-prenylkaempferol, tyrosinase inhibitors, derived from *Sophora flavescens*. J Enzyme Inhib Med Chem 2018;33:1048–54.

257. Park JS, Kim DH, Lee JK, et al. Natural ortho-dihydroxyisoflavone derivatives from aged Korean fermented soybean paste as potent tyrosinase and melanin formation inhibitors. Bioorg Med Chem Lett 2010;20:1162–4.

258. Chang TS, Ding HY, Lin HC. Identifying 6,7,4′-trihydroxyisoflavone as a potent tyrosinase inhibitor. Biosci Biotechnol Biochem 2005;69:1999–2001.

259. Chang TS. Two potent suicide substrates of mushroom tyrosinase: 7,8,4′-trihydroxyisoflavone and 5,7,8,4′-tetrahydroxyisoflavone. J Agric Food Chem 2003;51:1201–5.

260. Chen J, Yu X, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 2016;168:111–7.

261. Deshmukh K, Poddar SS. Tyrosinase inhibitor-loaded microsponge drug delivery system: new approach for hyperpigmentation disorders. J Microencapsul 2012;29:559–68.

262. Jirawattanapong W, Saifah E, Patarapanich C. Synthesis of glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Enzyme Inhib Med Chem 2008;23:922–30.

263. Deshmukh K, Poddar SS. Tyrosinase inhibitor-loaded microsponge drug delivery system: new approach for hyperpigmentation disorders. J Microencapsul 2012;29:559–68.

264. Nerya O, Vaya J, Musa R, et al. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Agric Food Chem 2003;51:1201–7.

265. Heo do Y, Kim YM, Lee J, et al. Desmodianone H and uncianinone B, potential tyrosinase inhibitors obtained from *Lespedeza maximowiczii* by using bioactivity-guided isolation. Biosci Biotechnol Biochem 2014;78:943–5.

266. Kim HJ, Seo SH, Lee BG, Lee YS. Identification of tyrosinase inhibitors from *Cudrania cochinchinensis*. Food Funct 2011;2:259–64.
267. Si YX, Wang ZJ, Park D, et al. Effect of hesperetin on tyrosinase: inhibition kinetics integrated computational simulation study. Int J Biol Macromol 2012;50:257–62.

268. Chiarle ME, Vera DM, Palacios SM, Carpinella MC. Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans. Bioorg Med Chem 2011;19:3474–82.

269. Hu X, Yu MH, Yan GR, et al. Isoprenylated phenolic compounds with tyrosinase inhibition from Morus nigra. J Asian Nat Prod Res 2018;20:488–93.

270. Ko RK, Kim GO, Hyun CG, et al. Compounds with tyrosinase inhibitory activity of the compounds isolated from Neolitsea aciculata (Blume) Koidz. J Enzyme Inhib Med Chem 2013;28:685–9.

271. Chai WM, Lin MZ, Wang YX, et al. Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: structural characterization, inhibitory activity and mechanism. Food Res Int 2017;100:731–9.

272. Ko RK, Kim GO, Hyun CG, et al. New tyrosinase inhibitors, (++)-catechin-aldehyde polycondensates. Biomacromolecules 2004;5:474–9.

273. Chai WM, Huang Q, Lin MZ, et al. Condensed tannins from longan bark as inhibitor of tyrosinase: structure, activity, and mechanism. J Agric Food Chem 2018;66:908–17.

274. Jhan JK, Chung YC, Chen GH, et al. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity. Int J Cosmet Sci 2016;38:319–24.

275. Bukhari SN, Jantan I, Unsal Tan O, et al. Biological activity and molecular docking studies of curcumin-related \(\alpha,\beta \)-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors. J Agric Food Chem 2014;62:5538–47.

276. Liu J, Wu F, Chen L, et al. Biological evaluation of coumarin derivatives as mushroom tyrosinase inhibitors. Food Chem 2012;135:2872–8.

277. Le-Thi-Thu H, Casanola-Martin GM, Marrero-Ponce Y, et al. Novel coumarin-based tyrosinase inhibitors discovered by OECD principles-validated QSAR approach from an enlarged, balanced database. Mol Divers 2011;15:507–20.

278. Hassan M, Ashraf Z, Abbas Q, et al. Exploration of novel human tyrosinase inhibitors by molecular modeling, docking and simulation studies. Interdiscip Sci 2018;10:68–80.

279. Pintus F, Matos MJ, Vilar S, et al. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: anti-melanogenesis and antioxidiant activities, and computational molecular modeling studies. Bioorg Med Chem 2017;25:1687–95.

280. Masamoto Y, Ando H, Murata Y, et al. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci Biotechnol Biochem 2003;67:631–4.

281. Ahmad VU, Ullah F, Hussain J, et al. Tyrosinase inhibitors from Rhododendron collettianum and their structure–activity relationship (SAR) studies. Chem Pharm Bull (Tokyo) 2004;52:1458–61.

282. Ashraf Z, Rafiq M, Seo SY, et al. Design, synthesis and bioevaluation of novel umbelliferone analogues as potential mushroom tyrosinase inhibitors. J Enzyme Inhib Med Chem 2015;30:874–83.

283. Niesen DB, Ma H, Yuan T, et al. Phenolic compositions of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.

284. Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.

285. Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.

286. Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.

287. Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.

288. Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.

289. Niesen DB, Ma H, Yuan T, et al. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat Prod Commun 2015;10:491–3.
300. Jun N, Hong G, Jun K. Synthesis and evaluation of 2',4',6'-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg Med Chem 2007;15:2396–402.

301. Radhakrishnan S, Shimmon R, Conn C, Baker A. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2015;25:4085–91.

302. Liu J, Chen C, Wu F, Zhao L. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives. Chem Biol Drug Des 2013;82:39–47.

303. Nerya O, Musa R, Khattib S, et al. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 2004;65:1389–95.

304. Okombi S, Rival D, Bonnet S, et al. Discovery of benzylide-nobenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes. J Med Chem 2006;49:329–33.

305. Zhu JJ, Yan GR, Xu ZJ, et al. Inhibitory effects of (2R)-2',3',5',6'-dihydroxy-2'-(1-hydroxy-1-methylethyl)-2',6'-bibenzofuran-6,4'-dion on mushroom tyrosinase and melanogenesis in B16-F10 melanoma cells. Phytother Res 2015;29:1040–5.

306. Hu X, Wang M, Yan GR, et al. 2-Arylbenzofuran and tyrosinase inhibitory constituents of Morus notabilis. J Asian Nat Prod Res 2012;14:1103–8.

307. Koirala P, Seong SH, Zhou Y, et al. Structure–activity relationship of the tyrosinase inhibitors kuwanon G, mulberrofuran G, and albannon B from Morus species: a kinetics and molecular docking study. Molecules 2018;23:1413. doi: 10.3390/molecules23061413.

308. Wang Y, Xu L, Gao W, et al. Isoprenylated phenolic compounds from Morus macroura as potent tyrosinase inhibitors. Planta Med 2018;84:336–43.

309. Lin YF, Hu YH, Lin HT, et al. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. J Agric Food Chem 2013;61:2889–95.

310. Lopes TIB, Coelho RG, Honda NK. Inhibition of mushroom tyrosinase activity by orsellinates. Chem Pharm Bull (Tokyo) 2018;66:61–4.

311. Lim JY, Ishiguro K, Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res 1999;13:371–5.

312. Cabanes J, Garcia-Carmona F, Garcia-Canovas F, et al. Kinetic study on the slow inhibition of epidermis tyrosinase by m-coumaric acid. Biochim Biophys Acta 1984;790:101–7.

313. An SM, Koh JS, Boo YC. p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res 2010;24:1175–80.

314. Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, et al. Action of tyrosinase on caffeic acid and its n-onyl ester. Catalysis and suicide inactivation. Int J Biol Macromol 2018;107:2650–9.

315. Hu YH, Chen QX, Cui Y, et al. 4-Hydroxy cinnamic acid as mushroom preservation: anti-tyrosinase activity kinetics and application. Int J Biol Macromol 2016;86:489–95.

316. Kwak SY, Yang JK, Choi HR, et al. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorg Med Chem Lett 2013;23:1136–42.

317. Iwai K, Kishimoto N, Kakino Y, et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem 2004;52:4893–8.

318. Oyama T, Takahashi S, Yoshimori A, et al. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors. Bioorg Med Chem 2016;24:4509–15.

319. Bernard P, Berthon JY. Resveratrol: an original mechanism on tyrosinase inhibition. Int J Cosmet Sci 2000;22:199–216.

320. Park J, Boo YC. Isolation of resveratrol from Vitis Viniferae caulis and its potent inhibition of human tyrosinase. Evid Based Complement Alternat Med 2013;2013:645257.

321. Gilly R, Mara D, Oded S, Zohar K. Resveratrol and a novel tyrosinase in carignan grape juice. J Agric Food Chem 2001;49:1479–85.

322. Likhitwitayawud K, Sritularak B, De-Eknamkul W. Tyrosinase inhibitors from Artocarpus gomezianus. Planta Med 2000;66:275–7.

323. Lee N, Kim EJ, Kim BG. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680. ACS Chem Biol 2012;7:1687–92.

324. Ohguchi K, Tanaka T, Ito T, et al. Inhibitory effects of resveratrol derivatives from dipterocarpaceae plants on tyrosinase activity. Biosci Biotechnol Biochem 2003;67:1587–9.

325. Franco DC, de Carvalho GS, Rocha PR, et al. Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules 2012;17:11816–25.

326. Shin NH, Ryu SY, Choi EJ, et al. Oxyresveratrol as the potent inhibitor on DOPA oxidase activity of mushroom tyrosinase. Biochem Biophys Res Comm 1998;243:801–3.

327. Zheng ZP, Tan HY, Wang M. Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia 2012;83:1008–13.

328. Bae SJ, Ha YM, Kim JA, et al. A novel synthesized tyrosinase inhibitor: (E)-2-((2,4-dihydroxyphenyl) diazenyl) phenyl furan G, and albanol B from Morus species: a kinetics and molecular docking study. Molecules 2018;23:1413. doi: 10.3390/molecules23061413.

329. Wang Y, Xu L, Gao W, et al. Isoprenylated phenolic compounds from Morus macroura as potent tyrosinase inhibitors. Planta Med 2018;84:336–43.

330. Lin YF, Hu YH, Lin HT, et al. Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. J Agric Food Chem 2013;61:2889–95.

331. An SM, Koh JS, Boo YC. p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res 2010;24:1175–80.

332. Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, et al. Action of tyrosinase on caffeic acid and its n-onyl ester. Catalysis and suicide inactivation. Int J Biol Macromol 2018;107:2650–9.

333. Hu YH, Chen QX, Cui Y, et al. 4-Hydroxy cinnamic acid as mushroom preservation: anti-tyrosinase activity kinetics and application. Int J Biol Macromol 2016;86:489–95.

334. Kwak SY, Yang JK, Choi HR, et al. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorg Med Chem Lett 2013;23:1136–42.

335. Iwai K, Kishimoto N, Kakino Y, et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem 2004;52:4893–8.
337. Choi J, Bae SJ, Ha YM, et al. A newly synthesized, potent tyrosinase inhibitor: 5-(6-hydroxy-2-naphthyl)-1,2,3-benzene-nitroil. Bioorg Med Chem Lett 2010;20:4882–4.

338. Song S, Lee H, Jin Y, et al. Syntheses of hydroxy substituted 2-phenyl-naphthalenes as inhibitors of tyrosinase. Bioorg Med Chem Lett 2007;17:461–4.

339. Ha YM, Chung SW, Song S, et al. 4-(6-Hydroxy-2-naphthyl)-1,3-benzodiox: a potent, new tyrosinase inhibitor. Biol Pharm Bull 2007;30:1711–5.

340. Satooka H, Kubo I. Resveratrol as a kcat type inhibitor for tyrosinase. Phytochemistry 2000;53:285–9.

341. Karioti A, Protopappa A, Megoulas N, Skaltsa H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorg Med Chem 2007;15:2708–14.

342. Wu YY, Huang XX, Wu J, et al. A new cyclolignan glycoside from the tubers of Pinellia ternata. J Asian Nat Prod Res 2015;17:1097–103.

343. Huang XX, Liu QB, Wu J, et al. Antioxidant and tyrosinase inhibitory activities from exocarp of Castanea henryi. Carbohydr Res 2012;355:45–9.

344. Wu B, Zhang X, Wu X. New lignan glucosides with tyrosinase inhibitory activities. Phytochemistry 2002;115:1859–63.

345. Huang XX, Liu QB, Wu J, et al. Antioxidant and tyrosinase inhibitory activities of kojic acid. Res Pharm Sci 2013;8:233–42.

346. Dong H, Liu J, Liu X, et al. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorg Chem 2017;75:106–17.

347. Song S, Chen Z, et al. Study on the design, synthesis and structure-activity relationships of new thiosemicarbazone compounds as tyrosinase inhibitors. Eur J Med Chem 2013;61:6597–603.

348. Hider RC, Lerch K. The inhibition of tyrosinase by pyridinones. Biochem J 1989;257:289–90.

349. Dong H, Liu J, Liu X, et al. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorg Chem 2017;75:106–17.

350. Song S, You A, Chen Z, et al. Study on the design, synthesis and structure-activity relationships of new thiosemicarbazone compounds as tyrosinase inhibitors. Eur J Med Chem 2013;61:6597–603.

351. Xie J, Dong H, Yu Y, Cao S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: insights from fluorescence, (1)H-NMR titration and molecular docking studies. Food Chem 2016;190:709–16.

352. Zhu TH, Cao SW, Wu YY. Synthesis, characterization and biological evaluation of paenol thiosemicarbazone analogues as mushroom tyrosinase inhibitors. Int J Biol Macromol 2013;62:589–95.

353. Xu J, Liu J, Zhu X, et al. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT. Food Chem 2017;221:1530–8.

354. Choi J, Choi KE, Park SJ, et al. Ensemble-based virtual screening led to the discovery of new classes of potent tyrosinase inhibitors. J Chem Inf Model 2016;56:354–67.

355. Yi W, Cao RH, Chen ZY, et al. Design, synthesis and evaluation of hydroxy- or methoxy-substituted phenylmethylenethiosemicarbazones as novel tyrosinase inhibitors. Chem Pharm Bull (Tokyo) 2010;58:752–4.

356. Chiku K, Dohi H, Saito A, et al. Enzymatic synthesis of 4-hydroxyphenyl beta-D-oligoxylsides and their notable tyrosinase inhibitory activity. Biosci Biotechnol Biochem 2009;73:1123–8.

357. Saboury AA, Zolghadri S, Haghbeen K, Moosavi-Movahedi AA. The inhibitory effect of benzenethiol on the catesolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem 2006;21:711–7.

358. Alijanizadeh M, Saboury AA, Ganjali MR, et al. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations. J Biomol Struct Dyn 2012;30:448–59.

359. Shareefi Borjordi S, Haghbeen K, Asghar Karkhane A, et al. Successful resonance Raman study of catesolase activity of mushroom tyrosinase. Biochem Biophys Res Commun 2004;314:925–30.

360. Shao LL, Wang XL, Chen K, et al. Novel hydroxypropyridinone derivatives containing an oxime ether moiety: synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chem 2018;242:174–81.

361. Ashraf Z, Rafiq M, Nadeem H, et al. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One 2017;12:e0178069.

362. Lehbili M, Alabdul Magid A, Hubert J, et al. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia 2018;125:41–8.

363. Mutschlechner B, Rainer B, Schwaiger S, Stuppner H. Carvacrol derivatives isolated from Wulfenia pinnatifida seeds. Planta Med 2014;80:1732–8.

364. Ashraf Z, Rafiq M, Nadeem H, et al. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One 2017;12:e0178069.

365. Mutschlechner B, Rainer B, Schweiger S, Stuppner H. Tyrosinase inhibitors from the aerial parts of Wulfenia carinthiaca Jacq. Chem Biodivers 2018;15:e1800014.
373. Li ZC, Chen LH, Yu XJ, et al. Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase. J Agric Food Chem 2010;58:12537–40.
374. El-Sadek MM, Hassan SY, Abdelwahab HE, Yacout GA. Synthesis of new 1,3,4-thiadiazole and 1,2,3,4-oxathiadiazole derivatives from carbohydrate precursors and study of their effect on tyrosinase enzyme. Molecules 2012;17:8378–96.
375. Yi W, Dubois C, Yahiaoui S, et al. Refinement of arylthioseminecarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur J Med Chem 2011;46:4330–5.
376. Buitrago E, Vuillamy A, Boumendjel A, et al. Exploring the interaction of n/s compounds with a dicopper center: tyrosinase inhibition and model studies. Inorg Chem 2014;53:12848–58.
377. Yang MH, Chen CM, Hu YH, et al. Inhibitory kinetics of action on tyrosinase: from potent activators to highly efficient inhibitors. Eur J Med Chem 2015;93:255–62.
378. Gheibi N, Saboury AA, Mansuri-Torshizi H, et al. The inhibition effect of some n-alkyl dithiocarbamates on activities of mushroom tyrosinase. Acta Biochim Pol 2010;57:277–83.
379. Gheibi N, Saboury AA, Mansuri-Torshizi H, et al. The inhibition effect of some n-alkyl dithiocarbamates on mushroom tyrosinase. J Enzyme Inhib Med Chem 2005;20:393–9.
380. Amin E, Saboury AA, Mansouri-Torshizi H, et al. Evaluation of p-phenylene-bis and phenyl dithiocarbamate sodium salts as inhibitors of mushroom tyrosinase. Bioorg Med Chem Lett 2009;19:4055–8.
381. Liu Ji, Yi W, Wan Y, et al. Synthesis of 1-(1-Arylethyridene) thiosemicarbazide derivatives: a new class of mushroom tyrosinase inhibitors. Bioorg Med Chem 2008;16:1096–102.
382. Yan Q, Cao R, Yi W, et al. Synthesis and evaluation of 5-benzylidene(thio)barbiturate-beta-d-glycosides as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:6157–60.
383. Amin E, Saboury AA, Mansouri-Torshizi H, et al. Synthesis of new heterocyclic hybrids based on pyrazole and thiazolidinone scaffolds as potent inhibitors of tyrosinase. Bioorg Med Chem 2013;21:2156–62.
384. Bandgar BP, Totre JV, Gawande SS, et al. Synthesis of novel 3,5-diallyl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg Med Chem 2010;18:6149–55.
385. Khan KM, Maharvi GM, Khan MT, et al. A facile and improved synthesis of sildenafil (viagra) analogs through solid support microwave irradiation possessing tyrosinase inhibitory potential, their conformational analysis and molecular dynamics simulation studies. Mol Divers 2005;9:15–26.
386. Mohjyz M, Dolashi A, Voelter W. Synthesis of pyrazolo[4,3-e][1,2,4]triazine sulfonamides, novel sildenafil analogs with tyrosinase inhibitory activity. J Enzyme Inhib Med Chem 2017;32:99–105.
387. Qamar R, Saeed A, Larik FA, et al. Novel 1,3-oxazinetetrazole hybrids as mushroom tyrosinase inhibitors and free radical scavengers: synthesis, kinetic mechanism and molecular docking studies. Chem Biol Drug Des 2018; doi: 10.1111/cbdd.13352.
388. Nikalje APG, Gawhane P, Tiwari S, et al. Ultrasound promoted green synthesis, docking study of indole spliced thiadiazole, alpha-amino phosphonates as anticancer agents and anti-tyrosinase agents. Anticancer Agents Med Chem 2018;18:1. doi: 10.2174/1715252618666180417163226.
389. Kim SJ, Yang J, Lee S, et al. The tyrosinase inhibitory effects of isoxazolone derivatives with a (z)-beta-phenyl-alpha, beta-unsaturated carbonyl scaffold. Bioorg Med Chem 2013;21:2088–92.
390. Channar PA, Saeed A, Larik FA, et al. Synthesis of aryl pyrazole via suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with kojic acid. Bioorg Chem 2018;79:293–300.
391. Gawande SS, Warangkar SC, Bandgar BP, Khobragade CN. Synthesis of new heterocyclic hybrids based on pyrazole and thiazolidinone scaffolds as potent inhibitors of tyrosinase. Bioorg Med Chem 2013;21:2772–7.
392. Zhou Z, Zhuo J, Yan S, Ma L. Design and synthesis of 3,5-diaryl-4,5-dihydro-1H-pyrazoles as new tyrosinase inhibitors. Bioorg Med Chem 2013;21:2156–62.
393. Amin E, Saboury AA, Mansouri-Torshizi H, et al. Synthesis of novel 3,5-diallyl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg Med Chem 2010;18:6149–55.
inhibitors of human tyrosinase. Int J Mol Sci 2018;19:690. doi: 10.3390/ijms19030690.

405. Rezaei M, Mohammadi HT, Mahdavi A, et al. Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors. Int J Biol Macromol 2018;108:205–13.

406. Kim SH, Ha YM, Moon KM, et al. Anti-melanogenic effect of (2S)-5-(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione, a novel tyrosinase inhibitor. Arch Pharm Res 2013;36:1189–97.

407. Ha YM, Park YJ, Kim JA, et al. Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors. Eur J Med Chem 2012;49:245–52.

408. Han YK, Park YJ, Ha YM, et al. Characterization of a novel tyrosinase inhibitor, (2R,4S)-2-(2,4-dihydroxyphenyl)thiazolidine-4-carboxylic acid (MHY384). Biochem Biophys Acta 2012;1820:542–9.

409. Ha YM, Park YJ, Lee JY, et al. Design, synthesis and biological evaluation of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. Biochimie 2012;94:533–40.

410. Jung HJ, Lee MJ, Park YJ, et al. A novel synthetic compound, (2S)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (mhy773) inhibits mushroom tyrosinase. Biosci Biotechnol Biochem 2018;82:759–67. doi: 10.1007/s10529-018-4455-18.

411. Kahn V. Effect of kojic acid on the oxidation of DL-dopa, norepinephrine, and dopamine by mushroom tyrosinase. Pigment Cell Res 1995;8:234–40.

412. Xie W, Zhang H, He J, et al. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorg Med Chem Lett 2017;27:530–2.

413. Chen MJ, Hung CC, Chen YR, et al. Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis. J Biosci Bioeng 2016;122:666–72.

414. Asadzadeh A, Sirous H, Pourfarzam M, et al. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme. Iran J Basic Med Sci 2016;19:132–44.

415. Xie W, Zhang J, Ma X, et al. Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors. Chem Biol Drug Des 2015;86:1087–92.

416. Lima CR, Silva JR, de Tassia Carvalho Cardoso E, et al. Combined kinetic studies and computational analysis on kojic acid analogues as tyrosinase inhibitors. Molecules 2014;19:9591–605.

417. Noh JM, Kwak SY, Seo HS, et al. Kojic acid-amino acid conjugates as tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:5586–9.

418. Lee YS, Park JH, Kim MH, et al. Synthesis of tyrosinase inhibitory kojic acid derivative. Arch Pharm (Weinheim) 2006;339:111–4.

419. Cho JC, Rho HS, Joo YH, et al. Depigmenting activities of kojic acid derivatives without tyrosinase inhibitory activities. Bioorg Med Chem Lett 2012;22:4159–62.

420. Nihei Ki, Kubo I. Substituent effect of benzaldehydes on tyrosinase inhibition. Plant Physiol Biochem 2017;112:278–82.

421. Rafiee M, Javaheri M. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using ab initio calculated NQCC parameters. Mol Biol Res Commun 2015;4:151–9.

422. Ley JP, Bertram HJ. Hydroxy- or methoxy-substituted benzaldoximes and benzaldehyde-o-alkyloximes as tyrosinase inhibitors. Bioorg Med Chem 2001;9:1879–85.

423. Lopes ND, Chaves OA, de Oliveira MCC, et al. Novel piperoxan 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: synthesis, tyrosinase inhibition evaluation and HSA binding study. Int J Biol Macromol 2018;112:1062–72.

424. Yi W, Cao R, Peng W, et al. Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. Eur J Med Chem 2010;45:639–46. Ha TJ, Tamura S, Kubo I. Effects of mushroom tyrosinase on anisaldehyde. J Agric Food Chem 2005;53:7024–8. Yu L. Inhibitory effects of (5S)- and (5R)-6-hydroxy-2,5,7,8-tetramethyloctahydronaphthalene-2-carboxylic acids on tyrosinase activity. J Agric Food Chem 2003;51:2344–7.

425. Alijanizadeh M, Saboury AA, Mansuri-Torshizi H, et al. The inhibitory effect of some new synthesized xanthenes on mushroom tyrosinase activities. J Enzyme Inhib Med Chem 2007;22:239–46. Saboury AA, Alijanizadeh M, Mansoori-Torshizi H. The role of alkyl chain length in the inhibitory effect n-alkyl xanthenes on mushroom tyrosinase activities. Acta Biochim Pol 2007;54:183–91. Xing R, Wang F, Zheng A, et al. Biological evaluation of two Keggin-type polyoxometalates containing glycine as mushroom tyrosinase inhibitors. Biotechnol Appl Biochem 2016;63:746–50.

426. Park KH, Lee JR, Hahn HS, et al. Inhibitory effect of ammonium tetrathiotungstate on tyrosinase and its kinetic mechanism. Chem Pharm Bull (Tokyo) 2006;54:1266–70. Chen XX, Zhang J, Chai WM, et al. Reversible and competitive inhibitory kinetics of amoxicillin on mushroom tyrosinase. Int J Biol Macromol 2013;62:726–33. Hemachandran H, Jain F, Mohan S, et al. Glandular hair constituents of Mallotus philippinensis muell. Fruit act as tyrosinase inhibitors: insights from enzyme kinetics and simulation study. Int J Biol Macromol 2018;107:1675–82. Lin YF, Hu YH, Jia YL, et al. Inhibitory effects of naphthalines on the activity of mushroom tyrosinase. Int J Biol Macromol 2012;51:32–6. Wu LC, Chen YC, Ho JA, Yang CS. Inhibitory effect of red koji extracts on mushroom tyrosinase. J Agric Food Chem 2003;51:4240–6. Fourche J, Jensen H, Neuzil E, Bellegarde B. [Alpha-hydrizinophloretic acid, competitive inhibitor of fungal tyrosinase]. CR Hebd Seances Acad Sci Ser D 1977;284:2163–6. Gheibi N, Saboury AA, Hakheen K, Moosavi-Movahedi AA. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates. Colloids Surf B Biointerfaces 2005;45:104–7. Jena K, Pandey JP, Kumari R, et al. tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int J Biol Macromol 2018;114:1102–8. Hwang SH, Wang Z, Suh HW, Lim SS. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine maillard reaction products on aldose reductase and tyrosinase. Food Funct 2018;9:1790–9. Huang XX, Yan ZY, Liu S, et al. Investigation of chemical constituents of safflower and their tyrosinase inhibitory activity. J Asian Nat Prod Res 2018; 1–9. doi: 10.1080/10286020.2018.1430775.
440. Alijanianzadeh M, Saboury AA, Ganjali MR, et al. The inhibitory effect of ethylenediamine on mushroom tyrosinase. Int J Biol Macromol 2012;50:573–7.

441. Wang Y, Hao MM, Sun Y, et al. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018;23:106. doi:10.3390/molecules23010106.

442. Liang C, Lim JH, Kim SH, Kim DS. Dioscin: a synergistic tyrosinase inhibitor from the roots of Smilax china. Food Chem 2012;134:1146–8.

443. Jin YH, Lee SJ, Chung MH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999;22:232–6.

Schved F, Kahn V. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-dopa oxidation by mushroom tyrosinase. Pigment Cell Res 1992;5:41–8.

444. Chen X, Haniu A, Kashiwagi T, et al. The evaluation of the synergistic effect of 3-(2,4-dihydroxyphenyl)propionic acid and L-ascorbic acid on tyrosinase inhibition. Z Naturforsch C 2017;72:119–21.

445. Hseu YC, Cheng KC, Lin YC, et al. Synergistic effects of linderanolide B combined with arbutin, PTU or kojic acid on tyrosinase inhibition. Curr Pharm Biotechnol 2015;16:1120–6.