High frequency dispersive estimates for the Schrödinger equation in high dimensions

FERNANDO CARDOSO, CLAUDIO CUEVAS AND GEORGI VODEV

Abstract. We prove optimal dispersive estimates at high frequency for the Schrödinger group for a class of real-valued potentials $V(x) = O(\langle x \rangle^{-\delta})$, $\delta > n - 1$, and $V \in C^k(\mathbb{R}^n)$, $k > k_n$, where $n \geq 4$ and $\frac{n-3}{2} \leq k_n < \frac{n}{2}$. We also give a sufficient condition in terms of $L^1 \to L^\infty$ bounds for the formal iterations of Duhamel’s formula, which might be satisfied for potentials of less regularity.

1 Introduction and statement of results

The purpose of this work is to study the question of finding as large as possible class of real-valued potentials $V \in L^\infty(\mathbb{R}^n)$, $n \geq 4$, for which the Schrödinger propagator $e^{itG} \chi_a(G)$ satisfies optimal (that is, without loss of derivatives) $L^1 \to L^\infty$ dispersive estimates, where G denotes the self-adjoint realization of the operator $-\Delta + V$ on $L^2(\mathbb{R}^n)$, and $\chi_a \in C^\infty(\mathbb{R})$, $\chi_a(\lambda) = 0$ for $\lambda \leq a$, $\chi_a(\lambda) = 1$ for $\lambda \geq a + 1$, $a \gg 1$. To state our results we need to introduce the class $C^k_\delta(\mathbb{R}^n)$, $\delta, k \geq 0$, of all functions $V \in C^k(\mathbb{R}^n)$ satisfying

$$
\|V\|_{C^k_\delta} := \sup_{x \in \mathbb{R}^n} \sum_{0 \leq |\alpha| \leq k_0} \langle x \rangle^\delta |\partial_x^\alpha V(x)| + \nu \sup_{x \in \mathbb{R}^n} \sum_{|\beta| = k_0} \langle x \rangle^\delta \sup_{x' \in \mathbb{R}^n: |x-x'| \leq 1} \left| \frac{\partial^2_x V(x) - \partial^2_x V(x')}{|x-x'|^\nu} \right| < +\infty,
$$

where $k_0 \geq 0$ is an integer and $\nu = k - k_0$ satisfies $0 \leq \nu < 1$.

Theorem 1.1 Given a $\delta > n - 1$, there exists a sequence $\{k_n\}_{n=4}^\infty$, $\frac{n-3}{2} \leq k_n < \frac{n}{2}$, so that if $V \in C^k_\delta(\mathbb{R}^n)$, $k > k_n$, is a real-valued potential, then we have the following high frequency dispersive estimate

$$
\|e^{itG} \chi_a(G)\|_{L^1 \to L^\infty} \leq C|t|^{-n/2}, \quad t \neq 0,
$$

(1.1)

where the constant $C = C(a) > 0$ is independent of t.

Remark. It follows from this theorem and the low frequency dispersive estimates proved in [11] that if in addition to the assumptions of Theorem 1.1 (or those of Theorem 1.2 below) we assume that zero is neither an eigenvalue nor a resonance of G, then we have the following dispersive estimate

$$
\|e^{itG} P_{ac}\|_{L^1 \to L^\infty} \leq C|t|^{-n/2}, \quad t \neq 0,
$$

*Corresponding author
where P_{ac} denotes the spectral projection onto the absolutely continuous spectrum of G.

Note that with $k_n = \frac{n}{2}$ the above result follows from [11] where the estimate (1.1) is proved for real-valued potentials $V \in L^\infty(\mathbb{R}^n)$ satisfying

$$|V(x)| \leq C(x)^{-\delta}, \quad \forall x \in \mathbb{R}^n,$$

with constants $C > 0$, $\delta > n - 1$, as well as the condition

$$\hat{V} \in L^1.$$ \hspace{1cm} (1.3)

Previously this has been proved in [9] for potentials satisfying (1.2) with $\delta > n$ and (1.3). Proving (1.1) in dimensions $n \geq 4$ without the condition (1.3), however, turns out to be a difficult problem. Note that the potentials in the above theorem do not satisfy (1.3). On the other hand, the counterexample of [8] shows that the above theorem cannot hold with $k_n < \frac{n}{2}$.

Therefore, it is natural to expect that Theorem 1.1 holds with $\delta > n$ if $n = 4, 5$. Indeed, (1.1) has been proved in [2] when $n = 4, 5$ for potentials $V \in C^k(\mathbb{R}^n)$, $k > \frac{n-3}{2}$, $\delta > 3$ if $n = 4$, $\delta > 5$ if $n = 5$. In [3] an analogue of (1.1) with a logarithmic loss of derivatives has been proved for potentials $V \in C^{\frac{n-3}{2}}(\mathbb{R}^n)$, $\delta > 3$ if $n = 5$, $\delta > 5$ if $n = 7$. It also follows from [5], [17] that (1.1) holds for potentials V satisfying (1.2) with $\delta > n + 2$ and $n = 7$. Note finally that in dimensions one, two and three no regularity of the potential is required in order that (1.1) holds true (see [7], [12], [10], [13], [14], [6]). The same conclusion remains true in dimensions $n \geq 4$ as far as the low and the intermediate frequencies are concerned (see [11], [15]).

To prove (1.1) we make use of the semi-classical expansion of the operator $e^{itG} \psi(h^2G)$ obtained in [1] for potentials satisfying (1.2) with $\delta > \frac{n+2}{2}$, where $\psi \in C^\infty_0((0, +\infty))$ and $0 < h \ll 1$. We thus reduce the problem to estimating uniformly in h the $L^1 \rightarrow L^\infty$ norm of a finite number of operators (denoted by $T_j(t, h)$ below) obtained by iterating the semi-classical Duhamel formula. The advantage is that these operators are defined in terms of the free propagator $e^{itG_0} \psi(h^2G_0)$, where G_0 denotes the self-adjoint realization of $-\Delta$ on $L^2(\mathbb{R}^n)$ (see Section 2).

In the present paper we also give a sufficient condition for (1.1) to hold in terms of properties of the formal iterations of Duhamel’s formula defined as follows (for $t > 0$):

$$F_0(t) = e^{itG_0}, \quad F_j(t) = i \int_0^t F_{j-1}(t-\tau)V F_0(\tau) d\tau, \quad j \geq 1.$$

We suppose that there exists a constant $\varepsilon > 0$ such that for all integers $m \geq 1$, $m_1, m_2 \geq 0$, we have the bounds

$$\|F_m(t)\|_{L^1 \rightarrow L^\infty} \leq C m t^{-n/2 + \varepsilon m}, \quad 0 < t \leq 1,$$

$$\left\|\int_{I(\gamma)} F_{m_1}(t-\tau)V F_{m_2}(\tau) d\tau\right\|_{L^1 \rightarrow L^\infty} \leq C m_1, m_2 \gamma^\varepsilon t^{-n/2}, \quad \forall t > 0,$$ \hspace{1cm} (1.4)

(1.5)

where $0 < \gamma \leq 1$, $I(\gamma) \subset [0, t]$ is an interval either of the form $[0, \gamma_1]$ or of the form $[t - \gamma_1, t]$, $\gamma_1 = t/2$ if $t \leq 2\gamma$, $\gamma_1 = \gamma$ if $t \geq 2\gamma$.

Theorem 1.2 Let V satisfy (1.2) with $\delta > n$ and suppose (1.4) and (1.5) fulfilled. Then, the dispersive estimate (1.1) holds true for all $t > 0$.

2
It is easy to see that if V satisfies (1.3), then (1.4) and (1.5) hold with $\varepsilon = 1$. However, it might happen that (1.4) and (1.5) hold true for potentials of less regularity. In fact, we expect that (1.4) and (1.5) hold for potentials $V \in C^k_b(\mathbb{R}^n)$ with $\delta > \frac{n+1}{2}, \ k > \frac{n-3}{2}$. Indeed, this has been proved in [2] for $m = 1, m_1 = m_2 = 0$. The problem, however, gets much harder for $m \geq 2, m_1, m_2 \geq 1$.

To prove Theorem 1.2 we take advantage of the analysis carried out in [15] under the only assumption that V satisfies (1.2) with $\delta > \frac{n+2}{2}$ (see Section 5).

2 Reduction to semi-classical dispersive estimates

Set

$$F(t) = i \int_0^t e^{i(t-\tau)G_0} V e^{i\tau G_0} d\tau, \quad t > 0.$$

It is easy to see that (1.1) is a consequence of the following

Theorem 2.1 Under the assumptions of Theorem 1.1, the following dispersive estimates hold true for all $0 < h \ll 1, t > 0$:

$$\|F(t)\|_{L^1 \to L^\infty} \leq Ct^{-n/2},$$

$$\|e^{it G_0} (h^2 G) - e^{it G_0} (h^2 G_0) - F(t) \psi (h^2 G_0)\|_{L^1 \to L^\infty} \leq Ch^\beta t^{-n/2},$$

with some constants $C, \beta > 0$ independent of t and h.

The estimate (2.1) is proved in [2] for potentials $V \in C^k_b(\mathbb{R}^n), \ \delta > n - 1, \ k > \frac{n-3}{2}$. In what follows we will derive (2.2) from the semi-classical expansion obtained in [1] and based on the following semi-classical version of Duhamel’s formula

$$e^{it G_0} (h^2 G) = Q(h) e^{it G_0} \psi_1 (h^2 G_0) \psi (h^2 G) + i \int_0^t Q(h) \psi_1 (h^2 G_0) e^{i(t-\tau)G_0} V e^{i \tau G_0} \psi (h^2 G) d\tau, \quad (2.3)$$

where $\psi_1 \in C^\infty_0((0, +\infty)), \ \psi_1 = 1$ on supp ψ, and

$$Q(h) = (1 + \psi_1 (h^2 G_0) - \psi_1 (h^2 G))^{-1}.$$

Iterating (2.3) m times we get

$$e^{it G_0} (h^2 G) = \sum_{j=0}^m T_j (t, h) + \int_0^t R_m(t-\tau, h) e^{i \tau G_0} \psi (h^2 G) d\tau, \quad (2.4)$$

where the operators R_j are defined as follows

$$R_0(t, h) = iQ(h) e^{iG_0} \psi_1 (h^2 G_0) V,$$

$$R_j(t, h) = \int_0^t R_{j-1}(t-\tau, h) R_0(\tau, h) d\tau, \quad j \geq 1.$$

The following dispersive estimates are proved in [1] (see Theorem 1.3) (it is easy to see that the ϵ there can be taken zero).
Proposition 2.2 Assume that V satisfies (1.2) with $\delta > \frac{n+2}{2}$. Then the following dispersive estimates hold true for all $t > 0$, $0 < h \ll 1$,

$$\|T_j(t, h)\|_{L^1 \to L^\infty} \leq C_j h^{j-n/2} t^{-n/2}, \quad j \geq 1,$$

$$\left\| e^{itG} \psi(h^2 G) - \sum_{j=0}^m T_j(t, h) \right\|_{L^1 \to L^\infty} \leq C_m h^{m+1-n/2} t^{-n/2}, \quad m \geq 1. \tag{2.6}$$

We have (e.g. see Lemma A.1 of [11])

$$\psi_1(h^2 G_0) - \psi_1(h^2 G) = O(h^2) : L^1 \to L^1,$$

so

$$Q(h) = Id + O(h^2) : L^1 \to L^1.$$

Therefore,

$$\left\| T_0(t, h) - e^{itG_0} \psi(h^2 G_0) \right\|_{L^1 \to L^\infty} \leq Ch^2 t^{-n/2}. \tag{2.7}$$

Clearly, the estimate (2.2) follows from combining Proposition 2.2, (2.7) and the following

Proposition 2.3 Given a $\delta > n - 1$, there exists a sequence $\{k_n\}_{n=1}^\infty$, $\frac{n-3}{2} \leq k_n < \frac{n}{2}$, so that if $V \in C^k_\delta (\mathbb{R}^n)$, $k > k_n$, then we have the estimates

$$\left\| T_1(t, h) - F(t) \psi(h^2 G_0) \right\|_{L^1 \to L^\infty} \leq Ch^\beta t^{-n/2}, \tag{2.8}$$

$$\| T_j(t, h) \|_{L^1 \to L^\infty} \leq Ch^\beta t^{-n/2}, \quad 2 \leq j \leq n/2, \tag{2.9}$$

with some constants $C, \beta > 0$ independent of h and t.

3 Proof of Proposition 2.3

Set

$$\tilde{T}_1(t, h) = T_1(t, h) - i \int_0^t e^{i(t-\tau)G_0} \psi_1(h^2 G_0) We_{irG_0} \psi(h^2 G_0) d\tau.$$

It is proved in [2] (see Proposition 2.6) that if $V \in C^k_\delta (\mathbb{R}^n)$ with $\delta > n - 1$, $k > (n-3)/2$, then

$$\left\| i \int_0^t e^{i(t-\tau)G_0} \psi_1(h^2 G_0) We_{irG_0} \psi(h^2 G_0) d\tau - F(t) \psi(h^2 G_0) \right\|_{L^1 \to L^\infty} \leq Ch^\beta t^{-n/2} \tag{3.1}$$

with constants $C, \beta > 0$ independent of h and t. Therefore, to prove (2.8) it suffices to show that the operator \tilde{T}_1 satisfies the estimate

$$\left\| \tilde{T}_1(t, h) \right\|_{L^1 \to L^\infty} \leq Ch^\beta t^{-n/2} \tag{3.2}$$

with constants $C, \beta > 0$ independent of h and t. It is easy also to see that the operators T_j, $j \geq 2$, are of the form $Q(h) T_j(t, h) \psi(h^2 G)$. Therefore, it suffices to prove (2.9) with T_j replaced by \tilde{T}_j.

4
Let \(\rho \in C^\infty_0(\mathbb{R}^n) \), \(\rho \geq 0 \), be a real-valued function such that \(\int \rho(x)dx = 1 \), and set \(\rho_\theta(x) = \theta^{-n}\rho(x/\theta) \), where \(0 < \theta \leq 1 \). Let \(V \in C^k_b(\mathbb{R}^n) \) with \(\delta > n - 1 \), where \(k \) will be fixed later on such that \(\frac{n-\delta}{2} < k < \frac{n}{2} \). Set \(\tilde{V}_\theta = V \ast \rho_\theta \). It is easy to see that we have the bounds

\[
|\tilde{V}_\theta(x)| \leq C\langle x \rangle^{-\delta}, \quad \forall x \in \mathbb{R}^n, \quad (3.3)
\]

\[
|\tilde{V}_\theta(x) - V(x)| \leq C\langle x \rangle^{-\delta}, \quad \forall x \in \mathbb{R}^n, \quad (3.4)
\]

\[
|\partial_x^\alpha \tilde{V}_\theta(x)| \leq C\langle x \rangle^{-\delta}, \quad \forall x \in \mathbb{R}^n, |\alpha| \leq k_0, \quad (3.5)
\]

\[
|\partial_x^\alpha \tilde{V}_\theta(x)| \leq C_\alpha \theta^{k-|\alpha|}\langle x \rangle^{-\delta}, \quad \forall x \in \mathbb{R}^n, |\alpha| \geq k_0 + 1, \quad (3.6)
\]

where \(k-1 < k_0 \leq k \) is an integer. Let us also see that

\[
\left\| \tilde{V}_\theta \right\|_{L^1} \leq C \theta^{k-n/2-\epsilon}, \quad \forall 0 < \epsilon \ll 1. \quad (3.7)
\]

Since \(C^k_b(\mathbb{R}^n) \subset H^{k-\epsilon/2}(\mathbb{R}^n) \), \(\forall 0 < \epsilon \ll 1 \), we have \(\langle \xi \rangle^{k-\epsilon/2}\tilde{V}(\xi) \in L^2(\mathbb{R}^n) \). Hence \(\tilde{V} \in L^p(\mathbb{R}^n) \), where \(\frac{1}{p} = \frac{1}{2} + \frac{k}{n+\epsilon} \). We have

\[
\left\| \tilde{V}_\theta \right\|_{L^1} = \left\| \tilde{V}_{\rho_\theta} \right\|_{L^1} \leq \left\| \tilde{V} \right\|_{L^p} \left\| \rho \right\|_{L^q} = C \theta^{-n/q},
\]

where \(\frac{1}{q} = \frac{1}{2} - \frac{k}{n+\epsilon} \), which clearly implies (3.7).

Let \(G_\theta \) denote the self-adjoint realization of \(-\Delta + V_\theta(x) \) on \(L^2(\mathbb{R}^n) \). Denote also by \(Q_\theta(h) \) the operator obtained by replacing in the definition of \(Q(h) \) the operator \(G \) by \(G_\theta \). Define the operators \(\tilde{T}_{j,\theta} \) by replacing \(Q(h) \) and \(V \) by \(Q_\theta(h) \) and \(V_\theta \), respectively, in the definition of \(\tilde{T}_j \). In the case of \(\tilde{T}_1 \) we replace only those \(V \) and \(Q(h) \) staying between the operators \(e^{i(t-\tau)G_0} \) and \(e^{i\tau G_0} \). Using (3.3) and (3.4) we will prove the following

Proposition 3.1 The following dispersive estimates hold for all \(t > 0, 0 < h \ll 1, 0 < \theta \leq 1 \),

\[
\left\| \tilde{T}_j(t,h) - \tilde{T}_{j,\theta}(t,h) \right\|_{L^1 \rightarrow L^\infty} \leq C \theta^{1/2} h^{j-\epsilon/2} t^{-n/2}, \quad 1 \leq j \leq n/2. \quad (3.8)
\]

Proof. We write

\[
\tilde{T}_1(t,h) - \tilde{T}_{1,\theta}(t,h)
\]

\[
= iQ(h) \int_0^t e^{i(t-\tau)G_0} \psi_1(h^2 G_0) (V Q(h) - V_\theta Q_\theta(h)) e^{i\tau G_0} \psi_1(h^2 G_0) d\tau \left(\psi(h^2 G) - \psi(h^2 G_0) \right)
\]

\[
+ i\left(Q(h) - 1 \right) \int_0^t e^{i(t-\tau)G_0} \psi_1(h^2 G_0) (V Q(h) - V_\theta Q_\theta(h)) e^{i\tau G_0} \psi(h^2 G_0) d\tau
\]

\[
+ i \int_0^t e^{i(t-\tau)G_0} \psi_1(h^2 G_0) (V (Q(h) - 1) - V_\theta (Q_\theta(h) - 1)) e^{i\tau G_0} \psi(h^2 G_0) d\tau
\]

\[
= : \sum_{j=1}^3 P_j(t,h). \quad (3.9)
\]

Define the operators \(F_j(t,h), F_{j,\theta}(t,h), j = 0, 1, \ldots \), by

\[
F_0(t,h) = F_{0,\theta}(t,h) = e^{it G_0} \psi_1(h^2 G_0),
\]

5
Therefore, (3.14) follows from combining (3.13), (3.15) and the bound

\[F_j(t, h) = i \int_0^t F_0(t - \tau, h) VQ(h) F_{j-1}(\tau, h) d\tau, \quad j \geq 1, \]

\[F_{j,\theta}(t, h) = i \int_0^t F_0(t - \tau, h) V\theta Q\theta(h) F_{j-1,\theta}(\tau, h) d\tau, \quad j \geq 1. \]

Clearly, \(\tilde{T}_j = F_j, \tilde{T}_{j,\theta} = F_{j,\theta} \) for \(j \geq 2 \). We write

\[F_j(t, h) - F_{j,\theta}(t, h) = i \int_0^t F_0(t - \tau, h) (VQ(h) - V\theta Q\theta(h)) F_{j-1,\theta}(\tau, h) d\tau \]

\[+ i \int_0^t F_0(t - \tau, h) VQ(h) (F_{j-1}(\tau, h) - F_{j-1,\theta}(\tau, h)) d\tau. \] (3.10)

Let us see that (3.8) follows from the following estimates

Proposition 3.2 For all \(t > 0, 0 < h \ll 1, 0 < \theta \leq 1, 1/2 - \epsilon/2 \leq s \leq (n-1)/2, 0 < \epsilon \ll 1, j \geq 0 \), we have the estimates

\[\| (x)^{-1/2-s-\epsilon} F_j(t, h) \|_{L^1 \to L^2} \leq C_j h^{j+s-(n-1)/2} t^{-s-1/2}, \] (3.11)

\[\| (\langle x \rangle)^{-1/2-s-\epsilon} (F_j(t, h) - F_{j,\theta}(t, h)) \|_{L^1 \to L^2} \leq C_j \theta^{1/2} h^{j+s-(n-1)/2} t^{-s-1/2}. \] (3.12)

Remark. The estimate (3.11) with \(j = 0 \) holds true for all \(t \neq 0 \). In other words, the adjoint of the operator

\[A = F_0(t, h)\langle x \rangle^{-1/2-s-\epsilon} : L^2 \to L^\infty \]

satisfies (3.11) with \(j = 0 \), and hence so does \(A \). This will be often used below.

We need the following

Lemma 3.3 For all \(0 < h \leq h_0, 0 < \theta \leq 1, 0 \leq s \leq \delta \), we have the bounds

\[\| (\langle x \rangle)^{-s} Q(h) \langle x \rangle^s \|_{L^2 \to L^2} \leq C, \] (3.13)

\[\| (\langle x \rangle)^{-s} (Q(h) - Q\theta(h)) \langle x \rangle^s \|_{L^2 \to L^2} \leq C\theta^{1/2}, \] (3.14)

with constants \(C, h_0 > 0 \) independent of \(h \) and \(\theta \).

Proof. Clearly, (3.13) follows from the bound

\[\| (\langle x \rangle)^{-s} \left(\psi_1(h^2 G) - \psi_1(h^2 G_0) \right) \langle x \rangle^s \|_{L^2 \to L^2} \leq C h^2, \] (3.15)

proved in [16] (see Lemma 2.3). To prove (3.14) we write

\[Q(h) - Q\theta(h) = \left(\psi_1(h^2 G_\theta) - \psi_1(h^2 G) \right) Q(h) + \left(\psi_1(h^2 G_\theta) - \psi_1(h^2 G_0) \right) \left(Q(h) - Q\theta(h) \right). \]

Therefore, (3.14) follows from combining (3.13), (3.15) and the bound

\[\| (\langle x \rangle)^{-s} \left(\psi_1(h^2 G) - \psi_1(h^2 G_\theta) \right) \langle x \rangle^s \|_{L^2 \to L^2} \leq C\theta^{1/2} h^2. \] (3.16)
To prove (3.16) we will use the Helffer-Sjöstrand formula
\[
\psi_1(h^2 G) = \frac{2}{\pi} \int_C \frac{\partial \tilde{\varphi}}{\partial \bar{z}}(z) (h^2 G - z^2)^{-1} z L(dz),
\] (3.17)
where \(L(dz) \) denotes the Lebesgue measure on \(C, \tilde{\varphi} \in \mathcal{C}_0^\infty(C) \) is an almost analytic continuation of \(\varphi(\lambda) = \psi_1(\lambda^2) \), supported in a small complex neighbourhood of \(\text{supp} \varphi \) and satisfying
\[
\left| \frac{\partial \tilde{\varphi}}{\partial \bar{z}}(z) \right| \leq C_N |\text{Im} z|^N, \quad \forall N \geq 1.
\]
In view of (3.17) we can write
\[
\psi_1(h^2 G) - \psi_1(h^2 G_\theta) = \frac{2h^2}{\pi} \int_C \frac{\partial \tilde{\varphi}}{\partial \bar{z}}(z) (h^2 G_\theta - z^2)^{-1} (V_\theta - V)(h^2 G - z^2)^{-1} z L(dz). \tag{3.18}
\]
It is shown in [16] (see the proof of Lemma 2.3) that the free resolvent satisfies the bound (for \(z \in \text{supp} \tilde{\varphi} \))
\[
\left\| \langle x \rangle^{-s} (h^2 G_0 - z^2)^{-1} \langle x \rangle^s \right\|_{L^2 \to L^2} \leq C_1 |\text{Im} z|^{-q}, \quad \text{Im} z \neq 0, \tag{3.19}
\]
with constants \(C_1, q > 0 \) independent of \(z \) and \(h \). By (3.19) and the identity
\[
(h^2 G - z^2)^{-1} = (h^2 G_\theta - z^2)^{-1} - \frac{h^2}{(h^2 G_\theta - z^2)^{-1}} V (h^2 G_\theta - z^2)^{-1},
\]
we obtain (for \(z \in \text{supp} \tilde{\varphi}, 0 \leq s \leq \delta \))
\[
\left\| \langle x \rangle^{-s} (h^2 G - z^2)^{-1} \langle x \rangle^s \right\|_{L^2 \to L^2} \leq \left\| \langle x \rangle^{-s} (h^2 G_0 - z^2)^{-1} \langle x \rangle^s \right\|_{L^2 \to L^2} + C h^2 \left\| (h^2 G - z^2)^{-1} \right\|_{L^2 \to L^2} \left\| \langle x \rangle^{-s} (h^2 G_0 - z^2)^{-1} \langle x \rangle^s \right\|_{L^2 \to L^2}
\leq C_2 |\text{Im} z|^{-q-1}, \quad \text{Im} z \neq 0. \tag{3.20}
\]
By (3.4), (3.18) and (3.20),
\[
\left\| \langle x \rangle^{-s} \left(\psi_1(h^2 G) - \psi_1(h^2 G_\theta) \right) \langle x \rangle^s \right\|_{L^2 \to L^2} \leq C \theta^{1/2} h^2 \int_C \left| \frac{\partial \tilde{\varphi}}{\partial \bar{z}}(z) \right| \left\| (h^2 G_\theta - z^2)^{-1} \right\|_{L^2 \to L^2} \left\| \langle x \rangle^{-s} (h^2 G - z^2)^{-1} \langle x \rangle^s \right\|_{L^2 \to L^2} \left(h d(z) \right)
\leq C \theta^{1/2} h^2 \int_C \left| \frac{\partial \tilde{\varphi}}{\partial \bar{z}}(z) \right| |\text{Im} z|^{-q-2} \left(h d(z) \right) \leq C \theta^{1/2} h^2. \tag{3.21}
\]
Using (3.3), (3.4), Lemma 3.3 and (3.11) with \(j = 0 \), we obtain
\[
\left\| \mathcal{P}_\theta^{(3)} (t, h) \right\|_{L^1 \to L^\infty} \leq C \theta^{1/2} \int_0^{t/2} \left\| e^{i(t-\tau)G_0} \psi_1(h^2 G_0) \langle x \rangle^{-n/2-\epsilon} \right\|_{L^2 \to L^\infty} \left\| \langle x \rangle^{-1-\epsilon} e^{i\tau G_0} \psi(h^2 G_0) \right\|_{L^1 \to L^2} d\tau + C \theta^{1/2} \int_{t/2}^t \left\| e^{i(t-\tau)G_0} \psi_1(h^2 G_0) \langle x \rangle^{-1-\epsilon} \right\|_{L^2 \to L^\infty} \left\| \langle x \rangle^{-n/2-\epsilon} e^{i\tau G_0} \psi(h^2 G_0) \right\|_{L^1 \to L^2} d\tau
\]
we have the estimate $C\theta^{1/2}t^{-n/2}h^{1-n/2-\epsilon/2} \int_0^h \tau^{-1+\epsilon/2}d\tau + C\theta^{1/2}t^{-n/2}h^{1-n/2+\epsilon/2} \int_h^\infty \tau^{-1-\epsilon/2}d\tau
leq C\theta^{1/2}t^{-n/2}h^{1-n/2}.

Clearly, the $L^1 \rightarrow L^\infty$ norm of the operators $\mathcal{P}_\theta^{(j)}$, $j = 1, 2$, can be bounded in the same way. Let now $j \geq 2$. Using (3.10), Proposition 3.2 and Lemma 3.3, we obtain

$$
\|F_j(t, h) - F_j,\theta(t, h)\|_{L^1 \rightarrow L^\infty}
\leq C\theta^{1/2} \int_0^{t/2} \left\| F_0(t - \tau, h)\langle x\rangle^{-n/2-\epsilon} \right\|_{L^2 \rightarrow L^\infty} \left\| \langle x\rangle^{-1-\epsilon} F_j(t, h) \right\|_{L^1 \rightarrow L^2} d\tau
+ C\theta^{1/2} \int_{t/2}^t \left\| F_0(t - \tau, h)\langle x\rangle^{-1-\epsilon} \right\|_{L^2 \rightarrow L^\infty} \left\| \langle x\rangle^{-n/2-\epsilon} F_j(t, h) \right\|_{L^1 \rightarrow L^2} d\tau
+ C \int_0^{t/2} \left\| F_0(t - \tau, h)\langle x\rangle^{-n/2-\epsilon} \right\|_{L^2 \rightarrow L^\infty} \left\| \langle x\rangle^{-1-\epsilon} (F_j(t, h) - F_j,\theta(t, h)) \right\|_{L^1 \rightarrow L^2} d\tau
+ C \int_{t/2}^t \left\| F_0(t - \tau, h)\langle x\rangle^{-1-\epsilon} \right\|_{L^2 \rightarrow L^\infty} \left\| \langle x\rangle^{-n/2-\epsilon} (F_j(t, h) - F_j,\theta(t, h)) \right\|_{L^1 \rightarrow L^2} d\tau
\leq C\theta^{1/2}t^{-n/2}h^j\langle x\rangle^{-n/2-\epsilon/2} \int_0^h \tau^{-1+\epsilon/2}d\tau + C\theta^{1/2}t^{-n/2}h^j\langle x\rangle^{-n/2+\epsilon/2} \int_h^\infty \tau^{-1-\epsilon/2}d\tau
\leq C\theta^{1/2}t^{-n/2}h^j\langle x\rangle^{-n/2}.
\]

\[\Box\]

Proof of Proposition 3.2. The estimate (3.11) with $j = 0$ is proved in [15] (see (2.1)). By induction in j, it is easy to see that (3.11) for any j follows from this and the following well-known estimate

$$
\left\| \langle x\rangle^{-s} e^{itG_0} \psi_1(h^2G_0)\langle x\rangle^{-s} \right\|_{L^2 \rightarrow L^2} \leq C(t/h)^{-s}, \quad s \geq 0. \tag{3.22}
$$

Similarly, using (3.10) together with Lemma 3.3, one can easily get (3.12). \[\Box\]

4 Study of the operators $\widetilde{T}_{j,\theta}$

We will first show that the estimates (2.9) and (3.2) follow from Proposition 3.1 and the following

Proposition 4.1 Let $V \in C^k_\delta(R^n)$ with $\delta > n - 1$, $\frac{n-3}{2} < k < \frac{n}{2}$. Then, there exist a constant $\varepsilon_0 > 0$ and a sequence $\{p_j\}_{j=1}^\infty$, $p_j > 0$, depending on δ but independent of k, so that for all $0 < h \ll 1$, $0 < \theta \leq 1$, $0 < \varepsilon \ll 1$, $t > 0$, $j \geq 1$, satisfying

$$
h^2 \theta^{k-n/2-\epsilon} \ll 1, \tag{4.1}
$$

we have the estimate

$$
\left\| \widetilde{T}_{j,\theta}(t, h) \right\|_{L^1 \rightarrow L^\infty} \leq C_j h^{\varepsilon_0} t^{-n/2} + C_{j,\epsilon} h^{p_j} \theta^{-j(n/2-k+\epsilon)} t^{-n/2}, \tag{4.2}
$$

where $C_j, C_{j,\epsilon} > 0$ are independent of t, h and θ.

8
Fix an integer $1 \leq j \leq n/2$. Take $\theta = h^{n+1-2j}$ and set
\[k_n^{(j)} = \frac{n}{2} - \min \left\{ \frac{3}{2}, \frac{p_j}{\beta} \right\} \frac{k}{n + 1 - 2j}. \]

It is easy to see that if $k_n^{(j)} < k < n/2$ and ϵ is taken small enough, we can arrange (4.1), and the estimates (3.8) and (4.2) imply
\[\| \tilde{T}_j(t, h) \|_{L^1 \to L^\infty} \leq C h^\beta t^{-n/2}, \tag{4.3} \]
with some $C, \beta > 0$. Thus, taking
\[k_n = \max_{1 \leq j \leq n/2} k_n^{(j)} \]
we get the desired result.

Proof of Proposition 4.1. We need the following

Lemma 4.2 For all $0 < \theta \leq 1$, $0 < \epsilon \ll 1$, $t \in \mathbb{R}$, we have the estimate
\[\left\| e^{-itG_0 V_\theta e^{itG_0}} \right\|_{L^1 \to L^1} \leq C \theta^{k-n/2-\epsilon}, \tag{4.4} \]
with a constant $C_\epsilon > 0$ independent of t and θ. Moreover, given any integer $m \geq 1$, the operator $Q_\theta(h)$ can be decomposed as $P_m^{(1)}(h, \theta) + P_m^{(2)}(h, \theta)$, where the operator $P_m^{(1)}$ satisfies the estimate
\[\left\| e^{-itG_0 P_m^{(1)}(h, \theta)e^{itG_0}} \right\|_{L^1 \to L^1} \leq 2, \tag{4.5} \]
for all $t \in \mathbb{R}$ and all $0 < h \ll 1$, $0 < \theta \leq 1$ such that (4.1) holds, while the operator $P_m^{(2)}$ satisfies the estimate
\[\left\| (x)^{-s} P_m^{(2)}(h, \theta)(x)^s \right\|_{L^2 \to L^2} \leq C_m h^{2m+2}, \quad 0 \leq s \leq \delta, \tag{4.6} \]
where $C_m > 0$ is independent of h and θ.

Proof. The estimate (4.4) follows from (3.7) and the following estimate proved in [9]:
\[\left\| e^{-itG_0 V_\theta e^{itG_0}} \right\|_{L^1 \to L^1} \leq \left\| \tilde{V}_\theta \right\|_{L^1}. \tag{4.7} \]
To decompose the operator $Q_\theta(h)$ we will use the formula (3.17) together with the resolvent identity
\[
\begin{align*}
(h^2 G_\theta - z^2)^{-1} - (h^2 G_0 - z^2)^{-1} &= \sum_{j=1}^{m} \left(h^2 G_0 - z^2 \right)^{-1} \left(-h^2 V_\theta \left(h^2 G_0 - z^2 \right)^{-1} \right)^j \\
+ (h^2 G_\theta - z^2)^{-1} \left(-h^2 V_\theta \left(h^2 G_0 - z^2 \right)^{-1} \right)^{m+1} := \sum_{\ell=1}^{2} M_m^{(\ell)}(z, h, \theta).
\end{align*}
\]

Set
\[M_m^{(\ell)}(h, \theta) = \frac{2}{\pi} \int_{C} \frac{\partial \tilde{\varphi}}{\partial z}(z) M_m^{(\ell)}(z, h, \theta) z L(dz), \]

9
\[P_m^{(1)}(h, \theta) = \left(1 - M_m^{(1)}(h, \theta)\right)^{-1}, \]
\[P_m^{(2)}(h, \theta) = \left(1 - M_m^{(1)}(h, \theta) - M_m^{(2)}(h, \theta)\right)^{-1} - \left(1 - M_m^{(1)}(h, \theta)\right)^{-1}. \]

By (3.7) and (4.9), we conclude
\[\left\| e^{-itG_0} M_m^{(1)}(z, h, \theta) e^{itG_0} \right\|_{L^1 \to L^1} \leq \sum_{j=1}^{m} C_j \left\| h^2 \tilde{V}_\theta \right\|_{L^1} \left(1 + \left\| h^2 \tilde{V}_\theta \right\|_{L^1}\right)^{m-1} \]
\[\leq C_m h^2 \theta^{k-n/2-\epsilon} \leq 1/2, \tag{4.10} \]
provided (4.1) is satisfied. Clearly, (4.5) follows from (4.10). On the other hand, it is easy to see that (4.6) follows from the estimates
\[\left\| \langle x \rangle^{-s} M_m^{(1)}(h, \theta) \langle x \rangle \right\|_{L^2 \to L^2} \leq C_m h^2, \tag{4.11} \]
\[\left\| \langle x \rangle^{-s} M_m^{(2)}(h, \theta) \langle x \rangle \right\|_{L^2 \to L^2} \leq C_m h^{2m+2}, \tag{4.12} \]
which in turn follow from (3.19) and (3.20) (which clearly holds with \(G \) replaced by \(G_\theta \)).

Define the operators \(\tilde{T}_{j,\theta} \) by replacing in the definition of \(\tilde{T}_{j,\theta} \) the operator \(Q_\theta(h) \) by \(P_m^{(1)}(h, \theta) \). In precisely the same way as in the proof of (3.8) above, using (4.6) instead of (3.14), we get
\[\left\| \tilde{T}_{j,\theta}(t, h) - \tilde{T}_{j,\theta}(t, h) \right\|_{L^1 \to L^\infty} \leq Ch^{2m+2j-n/2} t^{-n/2} \leq C h t^{-n/2}, \tag{4.13} \]
provided \(m \) is taken big enough. Therefore, it suffices to prove (4.2) with \(\tilde{T}_{j,\theta} \) replaced by \(\tilde{T}_{j,\theta} \). We will first do so for \(j = 1 \). Let \(0 < \gamma \ll 1 \) be a parameter to be fixed later on, depending on \(h \). For \(t \geq 2\gamma \), we have
\[\left\| \tilde{T}_{1,\theta}(t, h) \right\|_{L^1 \to L^1} \leq Ch^2 \left(\int_0^{\gamma} e^{i(t-\tau)G_0} \psi_1(h^2 G_0) V_\theta P_m^{(1)}(h, \theta) e^{i\tau G_0} \psi_1(h^2 G_0) d\tau \right) \]
\[+ C \left(\int_0^{\gamma} e^{i(t-\tau)G_0} \psi_1(h^2 G_0) V_\theta \left(P_m^{(1)}(h, \theta) - 1 \right) e^{i\tau G_0} \psi_1(h^2 G_0) d\tau \right) \]
\[\leq Ct^{-n/2} \left(\int_0^{\gamma} + \int_{t-\gamma}^{t} \right) \left(\left\| e^{-i\tau G_0} V_\theta P_m^{(1)}(h, \theta) e^{i\tau G_0} \right\|_{L^1 \to L^1} + \left\| e^{-i\tau G_0} V_\theta e^{i\tau G_0} \right\|_{L^1 \to L^1} \right) d\tau \]
where we have used Lemma 4.2 together with (4.11) and (3.11) (with $j = 0$). Clearly, (4.14) still holds for $0 < t \leq 2 \gamma$. Choosing γ such that $\gamma^{-n/2-2} = h^{-1/2}$, we deduce the desired estimate from (4.14).

Let now $j \geq 2$. Then $\mathcal{T}_{j,\theta}^2 = F_{j,\theta}^2$, where the operators $F_{j,\theta}^q$, $j = 0, 1, \ldots$, are defined as follows

$$F_{0,\theta}(t, h) = F_0(t, h) = e^{itG_0} \psi_1(h^2 G_0),$$

$$F_{j,\theta}(t, h) = i \int_0^t F_0(t - \tau, h) V_\theta P_m^{(1)}(h, \theta) F_{j-1,\theta}(\tau, h) d\tau, \quad j \geq 1.$$

Let $0 < \gamma \ll 1$ be a parameter to be fixed later on, depending on h. By Lemma 4.2, for $0 < t \leq 2j\gamma$, $j \geq 1$, we get

$$\left\| F_{j,\theta}^q(t, h) \right\|_{L^1 \rightarrow L^1} \leq C j^{q} \theta^{j(k-n/2-\epsilon)} t^{-n/2} \int_0^{2j \gamma} \left\| e^{-itG_0} F_{j-1,\theta}^q(\tau, h) \right\|_{L^1 \rightarrow L^1} d\tau. \quad (4.15)$$

By induction in j, it is easy to see that we have the bound

$$\left\| e^{-itG_0} F_{j,\theta}^q(t, h) \right\|_{L^1 \rightarrow L^1} \leq C j^{q} \theta^{j(k-n/2-\epsilon)}, \quad \forall j \geq 0. \quad (4.16)$$

Clearly, (4.16) is trivial for $j = 0$. Suppose that it holds for $j - 1$. By Lemma 4.2 we have

$$\left\| e^{-itG_0} F_{j,\theta}^q(t, h) \right\|_{L^1 \rightarrow L^1} \leq C j^{q} \theta^{j(k-n/2-\epsilon)} \int_0^t \left\| e^{-itG_0} F_{j-1,\theta}^q(\tau, h) \right\|_{L^1 \rightarrow L^1} d\tau$$

$$\leq C j^{q} \theta^{j(k-n/2-\epsilon)} \int_0^t \tau^{j-1} d\tau = C j^{q} \theta^{j(k-n/2-\epsilon)},$$

which proves (4.16) for j. By (4.15) and (4.16), we conclude

$$\left\| F_{j,\theta}^q(t, h) \right\|_{L^1 \rightarrow L^\infty} \leq C j \gamma^j \theta^{j(k-n/2-\epsilon)} t^{-n/2}, \quad 0 < t \leq 2j\gamma; \quad (4.17)$$

with a constant $C_j > 0$ independent of t, h, θ and γ. We would like to obtain a similar estimate when $t \geq 2j\gamma$. To this end, decompose $F_{j,\theta}^q$ as follows

$$F_{j,\theta}^q(t, h) = i \left(\int_0^\gamma + \int_{\gamma}^{t-\gamma} + \int_{t-\gamma}^t \right) F_0(t - \tau, h) V_\theta P_m^{(1)}(h, \theta) F_{j-1,\theta}^q(\tau, h) d\tau =: \sum_{\ell=1}^3 E_{j,\theta}^{(\ell)}(t, h, \gamma).$$

By Lemma 4.2 and (4.16),

$$\left\| E_{j,\theta}^{(1)}(t, h, \gamma) \right\|_{L^1 \rightarrow L^\infty} \leq C j \gamma^j \theta^{j(k-n/2-\epsilon)} t^{-n/2}. \quad (4.18)$$
Clearly, the estimate (3.11) holds with F_j replaced by $F^{\nu}_{j,\theta}$. Using this we obtain

$$
\| E^{(2)}_{j,\theta}(t, h, \gamma) \|_{L^1 \to L^\infty} \leq C \int_{\gamma}^{t/2} \| F_0(t - \tau, h) \langle x \rangle^{-n/2 - \epsilon'} \|_{L^2 \to L^\infty} \| \langle x \rangle^{-n/2 + 1 - \epsilon'} F^{\nu}_{j-1,\theta}(\tau, h) \|_{L^1 \to L^2} d\tau
$$

$$
+ C \int_{t/2}^{t-\gamma} \| F_0(t - \tau, h) \langle x \rangle^{-n/2 + 1 - \epsilon'} \|_{L^2 \to L^\infty} \| \langle x \rangle^{-n/2 + 1 - \epsilon'} F^{\nu}_{j-1,\theta}(\tau, h) \|_{L^1 \to L^2} d\tau
$$

$$
\leq Ch^{j-2+\epsilon'/2 \tau - n/2} \int_{\gamma}^{\infty} \tau^{-n/2 + 1 - \epsilon'} \| C_j \gamma^{-n/2 + 2 - \epsilon'} h^{j-2+\epsilon'/2 \tau - n/2},
$$

(4.19)

with constants $C_j, \epsilon' > 0$ independent of t, h, θ and γ (ϵ' depending only on δ). Similarly, using (3.22), we also get

$$
\| \langle x \rangle^{-n/2 - \epsilon'} E^{(2)}_{j,\theta}(t, h, \gamma) \|_{L^1 \to L^2} \leq C_j \gamma^{-n/2 + 2 - \epsilon'} h^{n/2 + j-2+\epsilon'/2 \tau - n/2}.
$$

(4.20)

In what follows we will show that the operator $E^{(3)}_{j,\theta}$ satisfies the estimate

$$
\| E^{(3)}_{j,\theta}(t, h, \gamma) \|_{L^1 \to L^\infty} \leq C_j \gamma^{-n/2 + 2 - \epsilon'} h^{j-2+\epsilon'/2 \tau - n/2} + C_j \gamma^{j} \| \theta \|^{(k-n/2-\epsilon')} \tau - n/2, \quad t \geq 2j\gamma.
$$

(4.21)

To this end, it suffices to show that modulo operators satisfying (4.19), the operator $E^{(3)}_{j,\theta}$ is a finite sum of operators of the form

$$
\int_{I_1} \int_{I_2} \ldots \int_{I_j} F_0(t - \tau_1, h) V_\theta P_m^{(1)}(h, \theta) F_0(\tau_1 - \tau_2, h) V_\theta P_m^{(1)}(h, \theta) \ldots V_\theta P_m^{(1)}(h, \theta) F_0(\tau_j, h) d\tau_1 d\tau_2 \ldots d\tau_j,
$$

(4.22)

where $I_\nu, \nu = 1, \ldots, j$, are intervals of length $|I_\nu| = O(\gamma)$. Indeed, by Lemma 4.2 an operator of form (4.22) satisfies (4.18). We will show that given any integer $1 \leq \nu \leq j - 1$, the operator $E^{(3)}_{j,\theta}$ can be written in the form

$$
\int_{\gamma}^{\infty} \ldots \int_{\gamma}^{\infty} F_0(\tau_1, h) V_\theta P_m^{(1)}(h, \theta) \ldots F_0(\tau_{\nu}, h) V_\theta P_m^{(1)}(h, \theta) E^{(3)}_{j-\nu,\theta}(t - \tau_1 - \ldots - \tau_{\nu}, h, \gamma) d\tau_1 \ldots d\tau_{\nu},
$$

(4.23)

modulo operators satisfying (4.19) and operators of the form (4.22). This would imply the desired result because the operator (4.23) with $\nu = j - 1$ is of the form (4.22). We will proceed by induction in ν. Let us see that the claim holds true for $\nu = 1$. We write

$$
E^{(3)}_{j,\theta}(t, h, \gamma) = \sum_{\ell=1}^{3} \int_{0}^{\gamma} F_0(\tau_1, h) V_\theta P_m^{(1)}(h, \theta) E^{(\ell)}_{j-1,\theta}(t - \tau_1, h) d\tau_1.
$$

(4.24)

Clearly, the first operator in the sum in the right-hand side of (4.24) is of the form (4.22), while the third one is of the form (4.23) with $\nu = 1$. On the other hand, using (3.11) with $j = 0$, $s = 1/2 - \epsilon/2$, together with (4.20), it is easy to see that the second one satisfies (4.19). Suppose now that the claim holds true for some $\nu, 1 \leq \nu \leq j - 2$. Then we decompose the operator in (4.23) as follows

$$
\sum_{\ell=1}^{3} \int_{0}^{\gamma} \ldots \int_{0}^{\gamma} F_0(\tau_1, h) V_\theta P_m^{(1)}(h, \theta) \ldots F_0(\tau_{\nu+1}, h) V_\theta P_m^{(1)}(h, \theta)
$$

12
Clearly, the first operator in the sum in (4.25) is of the form (4.22), while the third one is of
the form (4.23) with \(\nu + 1 \). Therefore, to prove the claim it suffices to show that the second one
satisfies (4.19). However, this follows easily from (4.20) and the following consequence of (3.11)
with \(j = 0 \), \(s = 1/2 - \epsilon/2 \), and (3.22):

\[
\left\| F_0(\tau'_1, h) V_\theta P_m^{(1)}(h, \theta) ... F_0(\tau'_{\nu+1}, h) \langle x \rangle^{-1-\epsilon} \right\|_{L^2 \rightarrow L^\infty} \\
\leq C_{\epsilon, \nu} h^{-n/2-\epsilon/2} (\tau'_1)^{-1+\epsilon/2} (\tau'_2/h)^{-1-\epsilon} ... (\tau'_{\nu+1}/h)^{-1-\epsilon},
\]

for every \(0 < \epsilon \ll 1 \).

By (4.17), (4.18), (4.19) and (4.21), we conclude that the operators \(F_{j, \theta} \), \(j \geq 2 \), satisfy the
estimate

\[
\left\| F_{j, \theta}^2(t, h) \right\|_{L^1 \rightarrow L^\infty} \leq C_j \gamma^{-n/2+2-\epsilon'} h^{-j+2+\epsilon'/2} t^{-n/2} + C_j \gamma^2 \beta^2 \gamma^2 (k-n/2-\epsilon) t^{-n/2}, \forall t > 0.
\]

Choosing \(\gamma \) such that

\[
\gamma^{-n/2+2-\epsilon'} = h^{-j+2-\epsilon'/4},
\]

we deduce the desired estimate from (4.27). \(\square \)

5 Proof of Theorem 1.2

It is easy to see that Theorem 1.2 follows from the following

Theorem 5.1 Under the assumptions of Theorem 1.2, there exist an integer \(m \) and constants
\(C, \beta > 0 \) such that the following dispersive estimates hold true for all \(0 < h \ll 1 \), \(t > 0 \):

\[
\| F_j(t) \|_{L^1 \rightarrow L^\infty} \leq C t^{-n/2}, \quad 1 \leq j \leq m,
\]

\[
\left\| e^{itG} \psi(h^2 G) - \sum_{j=0}^{m} F_j(t) \psi(h^2 G) \right\|_{L^1 \rightarrow L^\infty} \leq C h^\beta t^{-n/2}.
\]

Proof. Let us first see that (5.1) holds for all \(j \geq 0 \). It is trivial for \(j = 0 \), while when
\(0 < t \leq 2 \) it follows from (1.4). Let now \(t \geq 2 \). We will proceed by induction in \(j \). Suppose that
(5.1) holds for \(j - 1 \). This implies

\[
\left\| \int_1^{t-1} F_{j-1}(t-\tau) V F_0(\tau) d\tau \right\|_{L^1 \rightarrow L^\infty} \leq \| V \|_{L^1} \int_1^{t-1} \| F_{j-1}(t-\tau) \|_{L^1 \rightarrow L^\infty} \| F_0(\tau) \|_{L^1 \rightarrow L^\infty} d\tau
\]

\[
\leq C \int_1^{t-1} (t-\tau)^{-n/2} \tau^{-n/2} d\tau \leq C t^{-n/2}.
\]

Clearly, (5.1) for \(j \) follows from (5.3) and (1.5) applied with \(\gamma = 1 \), \(m_1 = j - 1 \), \(m_2 = 0 \).

Let \(0 < \gamma \leq 1 \) be a parameter to be fixed later on, depending on \(h \). Set \(\gamma_1 = \gamma \) if \(t \geq 2 \gamma \),
\(\gamma_1 = t/2 \) if \(t \leq 2 \gamma \). Iterating Duhamel’s formula we obtain the identity

\[
e^{itG} = \sum_{j=0}^{m_1} F_j(t) + i \int_0^t F_{m_1}(t-\tau) V \left(e^{i\gamma \tau} - e^{i\gamma_2 \tau} \right) d\tau
\]
\[= \sum_{j=0}^{m_1} \mathcal{F}_j(t) + i \int_{\gamma_1}^{t} \mathcal{F}_{m_1}(t - \tau) V \left(e^{i\tau G} - e^{i\tau G_0} \right) d\tau \]

\[+ i \sum_{\nu=1}^{m_2-1} \int_{0}^{\tau_1} \mathcal{F}_{m_1}(t - \tau)V\mathcal{F}_{\nu}(\tau)d\tau + i^2 \int_{0}^{\tau_1} \int_{0}^{\tau} \mathcal{F}_{m_1}(t - \tau)V\mathcal{F}_{m_2}(\tau - s)V e^{isG} dsd\tau, \quad (5.4)\]

for all integers \(m_1, m_2 \geq 2\). Hence

\[\left\| e^{itG} \psi(h^2 G) - \sum_{j=0}^{m} \mathcal{F}_j(t)\psi(h^2 G) \right\|_{L^1 \rightarrow L^\infty} \leq \int_{\gamma_1}^{t} \left\| \mathcal{F}_{m_1}(t - \tau) \right\|_{L^1 \rightarrow L^\infty} \left\| V \left(e^{i\tau G} - e^{i\tau G_0} \right) \psi(h^2 G) \right\|_{L^1 \rightarrow L^1} d\tau \]

\[+ C \sum_{\nu=1}^{m_2-1} \int_{0}^{\tau_1} \left\| \mathcal{F}_{m_1}(t - \tau)V\mathcal{F}_{\nu}(\tau)d\tau \right\|_{L^1 \rightarrow L^\infty} + \int_{0}^{\tau_1} \int_{0}^{\tau} \left\| \mathcal{F}_{m_1}(t - \tau)V\mathcal{F}_{m_2}(\tau - s) \right\|_{L^1 \rightarrow L^1} \left\| V e^{isG} \psi(h^2 G) \right\|_{L^1 \rightarrow L^1} d\tau \]

\[\leq C \int_{\gamma_1}^{t} \left\| \mathcal{F}_{m_1}(t - \tau) \right\|_{L^1 \rightarrow L^\infty} \left\| \langle x \rangle^{-n/2 - \epsilon'} \left(e^{i\tau G} - e^{i\tau G_0} \right) \psi(h^2 G) \right\|_{L^1 \rightarrow L^2} d\tau \]

\[+ C \sum_{\nu=1}^{m_2-1} \int_{0}^{\tau_1} \left\| \mathcal{F}_{m_1}(t - \tau)V\mathcal{F}_{\nu}(\tau)d\tau \right\|_{L^1 \rightarrow L^\infty} + C \int_{0}^{\tau_1} \int_{0}^{\tau} \left\| \mathcal{F}_{m_1}(t - \tau) \right\|_{L^1 \rightarrow L^\infty} \left\| \mathcal{F}_{m_2}(\tau - s) \right\|_{L^1 \rightarrow L^\infty} \left\| \langle x \rangle^{-n/2 - \epsilon'} e^{isG} \psi(h^2 G) \right\|_{L^1 \rightarrow L^2} d\tau. \quad (5.5)\]

On the other hand, it is proved in [15] (see Proposition 4.1) for potentials satisfying (1.2) with \(\delta > \frac{n+2}{2}\) that we have the estimate

\[\left\| \langle x \rangle^{-n/2 - \epsilon'} \left(e^{itG} \psi(h^2 G) - e^{itG_0} \psi(h^2 G_0) \right) \right\|_{L^1 \rightarrow L^2} \leq Ch^{1-\epsilon} t^{-n/2}. \quad (5.6)\]

Hence

\[\left\| \langle x \rangle^{-n/2 - \epsilon'} \left(e^{itG} \psi(h^2 G) - e^{itG_0} \psi(h^2 G_0) \right) \right\|_{L^1 \rightarrow L^2} \leq \left\| \langle x \rangle^{-n/2 - \epsilon'} \left(e^{itG} \psi(h^2 G) - e^{itG_0} \psi(h^2 G_0) \right) \right\|_{L^1 \rightarrow L^2} + C \left\| \psi(h^2 G) - \psi(h^2 G_0) \right\|_{L^1 \rightarrow L^1} \left\| e^{itG_0} \right\|_{L^{1} \rightarrow L^\infty} \leq Ch^{1-\epsilon} t^{-n/2} + Ch^2 t^{-n/2} \leq C'h^{1-\epsilon} t^{-n/2}. \quad (5.7)\]

Using (5.7) together with (1.4) and (5.1) we can bound the first integral in the right-hand side of (5.5) by

\[Ch^{1-\epsilon} \left(\int_{\gamma_1}^{t/2} + \int_{t/2}^{t} \right) \left\| \mathcal{F}_{m_1}(t - \tau) \right\|_{L^1 \rightarrow L^\infty} \tau^{-n/2} d\tau \]

\[\leq Ch^{1-\epsilon} t^{-n/2} \int_{\gamma_1}^{t/2} \tau^{-n/2} d\tau + Ch^{1-\epsilon} t^{-n/2} \int_{t/2}^{t} \left\| \mathcal{F}_{m_1}(t - \tau) \right\|_{L^1 \rightarrow L^\infty} d\tau \]
\[\leq C h^{1-\epsilon} t^{-n/2} \int_{\gamma}^{\infty} \tau^{-n/2} d\tau + C h^{1-\epsilon} t^{-n/2} \int_{0}^{\infty} \|F_{m}(\tau')\|_{L^{1} \to L^{\infty}} d\tau' \]

\[\leq C h^{1-\epsilon} \gamma^{-(n-2)/2} t^{-n/2} + C h^{1-\epsilon} t^{-n/2} \leq C' h^{1-\epsilon} \gamma^{-(n-2)/2} t^{-n/2}, \]

provided \(m_1 \) is taken big enough. Furthermore, in view of (1.5), each term in the sum in the right-hand side of (5.5) is bounded by \(C \gamma^{t^{-n/2}} \) for all \(t > 0 \). To bound the last integral we will use the following estimate proved in [15] (see Propositions 2.1 and 4.1)

\[\int_{0}^{\infty} \tau^{-n/2} d\tau \leq C h^{s-(n-1)/2} |t|^{-s-1/2} \quad (5.8) \]

for every \(0 < \epsilon \ll 1, 1/2 - \epsilon/4 \leq s \leq (n-1)/2, 0 < h \ll 1, \ t \neq 0 \). Using (5.8) together with (1.4) and (5.1) we bound the integral under question by

\[C h^{-(n-2)/2-\epsilon/4} t^{-n/2} \int_{0}^{\infty} \int_{0}^{t} (\tau - s)^{\epsilon m_2 - n/2} s^{-1+\epsilon/4} ds d\tau \]

\[\leq C h^{-(n-2)/2-\epsilon/4} t^{-n/2} \int_{0}^{\infty} \tau^{\epsilon m_2 - n/2} d\tau \leq C \gamma^{\epsilon m_2 - n/2} h^{-1} h^{-(n-2)/2} t^{-n/2} \]

provided \(m_2 \) is taken big enough. Summing up the above estimates, we conclude that the left-hand side of (5.5) is bounded by

\[C h^{1-\epsilon} \gamma^{-(n-2)/2} t^{-n/2} + C \gamma^{t^{-n/2}} + C \gamma^{\epsilon m_2 - n/2} h^{-1} h^{-(n-2)/2} t^{-n/2} \quad (5.9) \]

for all \(t > 0 \) and all \(0 < \gamma \leq 1 \). Take \(\gamma = h^{1/(n-2)} \) and fix \(m_2 \) so that

\[\gamma^{\epsilon m_2 - n/2} h^{-1} h^{-(n-2)/2} \leq h. \]

Hence (5.9) is \(O(h^{\beta}) t^{-n/2} \) with some \(\beta > 0 \), which is the desired result. \(\square \)

Acknowledgements. We would like to thank William Green for bringing to our attention the papers [4], [5], [17]. The first two authors have been partially supported by the CNPq-Brazil.

References

[1] F. Cardoso and G. Vodev, *Semi-classical dispersive estimates for the wave and Schrödinger equations with a potential in dimensions n ≥ 4*, Cubo Math. J. 10 (2008), 1-14.

[2] F. Cardoso, C. Cuevas and G. Vodev, *Dispersive estimates for the Schrödinger equation in dimensions four and five*, Asymptot. Anal. 62 (2009), 125-145.

[3] F. Cardoso, C. Cuevas and G. Vodev, *Dispersive estimates for the Schrödinger equation with potentials of critical regularity*, Cubo Math. J. 11 (2009), 57-70.

[4] M. B. Erdogan and W. R. Green, *Dispersive estimates for the Schrödinger equation for \(C^{\infty} \) potentials in odd dimensions*, preprint 2009.

[5] D. Finco and K. Yajima, *The \(L^p \) boundedness of wave operators for Schrödinger operators with threshold singularities II. Even dimensional case*, J. Math. Sci. Univ. Tokyo 13 (2006), 277-346.

15
[6] M. Goldberg, *Dispersive bounds for the three dimensional Schrödinger equation with almost critical potentials*, GAFA 16 (2006), 517-536.

[7] M. Goldberg and W. Schlag, *Dispersive estimates for Schrödinger operators in dimensions one and three*, Commun. Math. Phys. 251 (2004), 157-178.

[8] M. Goldberg and M. Visan, *A counterexample to dispersive estimates for Schrödinger operators in higher dimensions*, Commun. Math. Phys. 266 (2006), 211-238.

[9] J.-L. Journé, A. Soffer and C. Sogge, *Decay estimates for Schrödinger operators*, Commun. Pure Appl. Math. 44 (1991), 573-604.

[10] S. Moulin, *High frequency dispersive estimates in dimension two*, Ann. H. Poincaré 10 (2009), 415-428.

[11] S. Moulin and G. Vodev, *Low-frequency dispersive estimates for the Schrödinger group in higher dimensions*, Asymptot. Anal. 55 (2007), 49-71.

[12] W. Schlag, *Dispersive estimates for Schrödinger operators in two dimensions*, Commun. Math. Phys. 257 (2005), 87-117.

[13] I. Rodnianski and W. Schlag, *Time decay for solutions of Schrödinger equations with rough and time-dependent potentials*, Invent. Math. 155 (2004), 451-513.

[14] G. Vodev, *Dispersive estimates of solutions to the Schrödinger equation*, Ann. H. Poincaré 6 (2005), 1179-1196.

[15] G. Vodev, *Dispersive estimates of solutions to the Schrödinger equation in dimensions n ≥ 4*, Asymptot. Anal. 49 (2006), 61-86.

[16] G. Vodev, *Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4*, Commun. Partial Diff. Equations 31 (2006), 1709-1733.

[17] K. Yajima, *The Lp boundedness of wave operators for Schrödinger operators with threshold singularities I. The odd dimensional case*, J. Math. Sci. Univ. Tokyo 13 (2006), 43-94.

F. Cardoso
Universidade Federal de Pernambuco,
Departamento de Matemática,
CEP. 50540-740 Recife-Pe, Brazil,
e-mail: fernando@dmat.ufpe.br

C. Cuevas
Universidade Federal de Pernambuco,
Departamento de Matemática,
CEP. 50540-740 Recife-Pe, Brazil,
e-mail: cch@dmat.ufpe.br

G. Vodev
Université de Nantes,
Département de Mathématiques, UMR 6629 du CNRS,
2, rue de la Houssinière, BP 92208,
44332 Nantes Cedex 03, France,
e-mail: vodev@math.univ-nantes.fr