Introduction

Anaemia during pregnancy is a public health problem, especially in developing countries and is associated with adverse outcomes.

Background: Anaemia is an important cause of maternal morbidity and mortality in India. According to National Family Health Survey-4, the prevalence of anaemia among pregnant women in Tripura was 54.4%, but the proportion of anaemic women attending antenatal clinics is not known. Objectives: To find out the proportion of anaemia and associated factors among pregnant women attending antenatal clinic at Agartala Government Medical College. Materials and Method: This hospital-based cross-sectional study was conducted among 200 pregnant women attending the antenatal clinic of Agartala Government Medical College from 14th July to 7th August 2019 chosen by consecutive sampling. Results: Majority (69.5%) of the women were aged either ≤ 25 years, 94.5% were Hindu, 37% belonged to scheduled caste community, 58.5% from a rural area, 28% belonged to BG Prasad’s class II socioeconomic status and 52.5% had only primary education. The proportion of anaemia was found to be 60%. It was 63.3% among ≤ 25 years age group and 62.9% among those who studied up to primary level. Mean (SD) Hb level was 9.9 ± 0.6 g%. Among the anaemic, 57.5% were primigravida and 45% were carrying the third trimester of pregnancy. Only 1% of the study women reportedly consumed either 200 or more number of iron tablets. Age < 25 years, (OR = 1.824, 95% CI = 1.231–2.108, \(P = 0.003 \)), holding BPL or similar ration cards (OR = 3.482, 95% CI = 1.201–5.371, \(P = 0.031 \)) and getting at <18 years (OR = 4.482, 95% CI = 2.317–6.451, \(P = 0.003 \)) were identified as the significant predictors of anaemia during pregnancy. Conclusion: The proportion of anaemia among attendees of the antenatal clinic was higher than the state prevalence of anaemia among pregnant women. Lower literacy, lower socioeconomic status, rural residence, etc., had significant associations with anaemia in this population.

Keywords: Anaemia, antenatal clinic, northeast India, pregnant women

Proportion of anaemia and factors associated with it among the attendees of the antenatal clinic in a teaching institute of northeast India

Arpita Debnath1, Asish Debbarma2, Saru Kumar Debbarma3, Himadri Bhattacharjya1

1Departments of Community Medicine, 2Biochemistry and 3Medicine, Agartala Government Medical College, Agartala, Tripura, India

Abstract

Background: Anaemia is an important cause of maternal morbidity and mortality in India. According to National Family Health Survey-4, the prevalence of anaemia among pregnant women in Tripura was 54.4%, but the proportion of anaemic women attending antenatal clinics is not known. Objectives: To find out the proportion of anaemia and associated factors among pregnant women attending antenatal clinic at Agartala Government Medical College. Materials and Method: This hospital-based cross-sectional study was conducted among 200 pregnant women attending the antenatal clinic of Agartala Government Medical College from 14th July to 7th August 2019 chosen by consecutive sampling. Results: Majority (69.5%) of the women were aged either ≤ 25 years, 94.5% were Hindu, 37% belonged to scheduled caste community, 58.5% from a rural area, 28% belonged to BG Prasad’s class II socioeconomic status and 52.5% had only primary education. The proportion of anaemia was found to be 60%. It was 63.3% among ≤ 25 years age group and 62.9% among those who studied up to primary level. Mean (SD) Hb level was 9.9 ± 0.6 g%. Among the anaemic, 57.5% were primigravida and 45% were carrying the third trimester of pregnancy. Only 1% of the study women reportedly consumed either 200 or more number of iron tablets. Age < 25 years, (OR = 1.824, 95% CI = 1.231–2.108, \(P = 0.003 \)), holding BPL or similar ration cards (OR = 3.482, 95% CI = 1.201–5.371, \(P = 0.031 \)) and getting at <18 years (OR = 4.482, 95% CI = 2.317–6.451, \(P = 0.003 \)) were identified as the significant predictors of anaemia during pregnancy. Conclusion: The proportion of anaemia among attendees of the antenatal clinic was higher than the state prevalence of anaemia among pregnant women. Lower literacy, lower socioeconomic status, rural residence, etc., had significant associations with anaemia in this population.

Keywords: Anaemia, antenatal clinic, northeast India, pregnant women

Introduction

Anaemia during pregnancy is a public health problem, especially in developing countries and is associated with adverse outcomes.
pregnancy and is the home to the largest number of anaemic pregnant women in the world.[6]

Although dietary deficiency, parasitic infestations and chronic diseases are well-known risk factors, the physician needs to understand the ecological or structural risk factors that could be of regional interest. These include sociodemographic characteristics, obstetric factors, mental health and nutritional status reflected by the body mass index. Studies have evaluated the association of various attributing factors to maternal mortality and various models of antenatal care (ANC) in the population of western as well as low- and middle-income countries.[6, 7]

Being involved with two-thirds of the total pregnant population of low- and middle-income countries, anaemia has been given paramount importance in maternal health. It is a universal fact that ANC plays an instrumental role in maternal and child safety. But unfavourable sociodemographic factors are the major barriers to the efforts put in place for the prevention of anaemia during pregnancy. Knowledge of the sociodemographic factors associated with anaemia in pregnancy can be used to formulate a multipronged strategy to tackle this important public health problem. Studies have considered data from antenatal clinics as a source of information for estimating the prevalence of various risk factors for anaemia during pregnancy.[6]

Different studies have reported the prevalence of anaemia in pregnancy in different settings including the community level in the state of Tripura. However, the prevalence of anaemia at the national level and the state level cannot be generalised. Limited data are available regarding the proportion of anaemia among the attendees of antenatal clinics both at the national and regional levels. Moreover, the proportion of anaemic women attending antenatal clinics may differ across different levels of the healthcare delivery system.

People of northeast India differ from the rest of the nation regarding ethnicity, general health conditions, culture, literacy, social customs, food habits, access to healthcare delivery system, etc., and all these factors may be associated with a haemoglobin (Hb) level of the pregnant women. Hence, the present study was designed to find out the proportion of anaemia and its associations with selected clinical and sociodemographic factors of the pregnant women attending the antenatal clinic of a teaching institute of northeast India.

Materials and Method

This hospital-based cross-sectional study was conducted from 14th July to 7th August 2019 among 200 pregnant women attending Antenatal Clinic of Agartala Government Medical College, chosen by consecutive sampling with the objectives to find out the proportion of anaemia and its associations with clinical and sociodemographic factors among them.

The minimum sample size requirement for this study was calculated by using the formula for calculating sample size for prevalence studies using proportion, i.e., $N = \left(Z_{\alpha/2} \times p \times (1-p) \right) / \pi^2.$[7] N is the sample size; $Z_{\alpha/2}^2$ is the standard normal deviate and its value is 1.96 at 95% confidence interval (CI). p is the proportion

Table 1: Haemoglobin status by sociodemographic factors of the study subjects

Variables	Subgroups	Anaemic, n (%)	Non-anaemic, n (%)	P
Sociodemographic factors				
Age group	<=25 year	88 (63.3%)	51 (36.7%)	0.248
	26-30 year	20 (48.8%)	21 (51.2%)	
	>30 year	12 (60.0%)	08 (40.0%)	
Residence	Urban	46 (55.4%)	37 (44.6%)	
	Rural	74 (63.2%)	43 (36.8%)	0.266
Religion	Hindu	114 (60.3%)	75 (39.7%)	
	Muslim	05 (50.0%)	05 (50.0%)	0.579
	Christian	01 (100%)	00 (0.0%)	
Literacy	Primary educated	66 (62.9%)	39 (37.1%)	
	Secondary educated	37 (38.7%)	26 (41.3%)	0.598
	Graduate ad above	17 (53.1%)	15 (46.9%)	
Socioeconomic status	Upper class	19 (54.3%)	16 (45.7%)	
	Upper middle class	35 (62.5%)	21 (37.5%)	0.948
	Middle class	33 (61.1%)	21 (38.9%)	
	Lower middle class	26 (59.09%)	18 (40.9%)	
	Lower class	07 (63.6%)	4 (36.4%)	
Category of Ration card	APL	51 (50.0%)	51 (50.0%)	0.026
	BPL	59 (72.0%)	23 (28.0%)	
	Ad-hoc-BPL	06 (60.0%)	04 (40.0%)	
	Antodaya	02 (33.3%)	04 (66.7%)	

Table 1 shows that a higher proportion of women (63.3%) aged 25 years or less, women belonging to rural areas (63.2%), Hindu (60.3%) by religion, those who studied up to primary level (62.9%), women belonging to the lower class as per BG Prasad’s socioeconomic classification (63.6%) were found to be anaemic, but statistically, these were not significant ($P>0.05$). On the other hand, a significantly higher proportion of women (72%) holding BPL category ration cards were found to be anaemic ($P<0.05$)
Debnath, et al.: Anaemia and associated factors among the attendees of an antenatal clinic

Variables	Subgroups	Haemoglobin status	P
	Anaemic, n (%)	Non-anaemic, n (%)	
Purity	Primi Gravida		
	69 (60.5%)	49 (39.5%)	0.921
	Second Gravida		
	41 (60.3%)	27 (39.7%)	
	Third Gravida		
	10 (55.6%)	08 (44.4%)	
Duration of pregnancy	1st Trimester		
	11 (55.0%)	09 (45.0%)	0.842
	2nd Trimester		
	55 (61.8%)	34 (38.2%)	
	3rd Trimester		
	54 (59.3%)	37 (40.7%)	
Age at marriage	<18 year		
	28 (60.9%)	18 (39.1%)	
	18-25 year		
	57 (38.3%)	92 (61.7%)	0.021
	>25 year		
	0 (0.0%)	05 (100%)	
Age at first pregnancy	≤18 year		
	29 (70.7%)	12 (29.3%)	
	19-25 year		
	75 (58.6%)	53 (41.4%)	0.225
	>25 year		
	16 (51.6%)	15 (48.4%)	

Table 2 shows that a significantly higher proportion of women (60.9%) aged either 18 years or less were found to be anaemic (P<0.05). A higher proportion of anaemia was also observed among women who came for advanced antenatal checkups (≥2 trimester of pregnancy (61.8%) and women, who had first pregnancy at either 18 years or less (70.7%). But statistically, these were not significant (P>0.05).

Variables	Dietary habit	Haemoglobin status	P
	Anaemic, n (%)	Non-anaemic, n (%)	
Dietary habit	Vegetarian		
	76 (57.5%)	34 (42.5%)	0.005
	Nonvegetarian		
	44 (42.5%)	46 (57.5%)	
Antenatal visit	1st visit		
	09 (39.1%)	14 (60.9%)	0.059
	2nd visit		
	30 (66.7%)	15 (33.3%)	
	3rd visit		
	20 (51.3%)	19 (48.7%)	
	4th visit or more		
	61 (65.6%)	32 (34.4%)	
Intake of IFA	<100		
	88 (59.1%)	61 (40.9%)	0.669
	100-200		
	31 (62.0%)	19 (38.0%)	
	>200		
	01 (100%)	00 (0%)	
TT immunization	1st dose		
	24 (68.6%)	11 (31.4%)	0.299
	Booster dose		
	86 (57.0%)	65 (43.0%)	
	None		
	10 (71.4%)	04 (28.6%)	

Table 3 shows that the proportion of anaemia was significantly higher (57.5%) among vegetarian women (P<0.05). A higher proportion of anaemia was also observed among women who came for advanced antenatal checkups (2nd to 4th visit), women who consumed <200 number of IFA tablets during pregnancy and those who did not receive any dose of tetanus toxoid (TT) immunization, but these were not significant (P>0.05).

Variables	Obstetric factors	Haemoglobin status	P	
	Subgroups	Anaemic, n (%)	Non-anaemic, n (%)	
	Primi Gravida	69 (60.5%)	49 (39.5%)	
	Second Gravida	41 (60.3%)	27 (39.7%)	
	Third Gravida	10 (55.6%)	08 (44.4%)	
	1st Trimester	11 (55.0%)	09 (45.0%)	
	2nd Trimester	55 (61.8%)	34 (38.2%)	
	3rd Trimester	54 (59.3%)	37 (40.7%)	
	<18 year	28 (60.9%)	18 (39.1%)	
	18-25 year	57 (38.3%)	92 (61.7%)	
	>25 year	0 (0.0%)	05 (100%)	
	≤18 year	29 (70.7%)	12 (29.3%)	
	19-25 year	75 (58.6%)	53 (41.4%)	
	>25 year	16 (51.6%)	15 (48.4%)	

Variables	Age at marriage	Haemoglobin status	P
	<18 year		
	28 (60.9%)	18 (39.1%)	
	18-25 year		
	57 (38.3%)	92 (61.7%)	
	>25 year		
	0 (0.0%)	05 (100%)	

Variables	Age at first pregnancy	Haemoglobin status	P
	≤18 year		
	29 (70.7%)	12 (29.3%)	
	19-25 year		
	75 (58.6%)	53 (41.4%)	
	>25 year		
	16 (51.6%)	15 (48.4%)	

Thus the sample size was determined to be 277.

Being accompanied by the Medical Social Workers of Community Medicine Department, Antenatal Clinic was visited by the research team. Women coming out after consulting the doctor at the Antenatal Clinic were approached consecutively for participation in this study and written informed consent for participation in this study was solicited from them. However, among these pregnant women, 25 had severe bleeding p/v, 20 had pain abdomen, two were considered mentally unfit to make any valid statement, five had preeclampsia, 10 were in labour, ten refused to participate in this study and five women were on a repeat visit. Thus 77 women met the exclusion criteria and finally, 200 pregnant women got enrolled in this study. A group of sixth-semester medical students having clinical posting in the Department of Community Medicine was trained in research methodology and they also helped in data collection.

Eligible consenting women were interviewed using a pretested structured interview schedule maintaining confidentiality. Women having no formal schooling were considered as illiterate, schooling of any level up to standard V as primary educated, between standard VI to XII as secondary and literacy of any level beyond standard XII were considered as graduate and above. Women from the municipal area were considered as urban and those from village panchayat areas as rural subjects. BG Prasad's socioeconomic status classification for the year 2018[9] was used for classifying the socioeconomic status of the study subjects. Participant's prescriptions and laboratory reports etc., were also examined. The information thus collected was recorded in the interview schedule and later on, data entry and analysis were performed on a computer using Statistical Package for the Social Sciences (SPSS-25).

For summarising the qualitative data: frequency and percentages and for quantitative data, mean and SD were used. Chi-square statistic was applied to test associations of anaemia with different sociodemographic and clinical parameters and also to see their significance. P value < 0.05 was considered statistically significant. The competent authority of Agartala Government Medical College permitted to conduct this study.
Table 4: Result of binary logistic regression analysis showing odds of having anaemia by the predictor variables

Variables	Odds ratio (95% C.I)	P
Age		
>25 year	1	
≤25 year	1.824 (1.231-2.108)	0.003
Residence		
Urban	1	
Rural	1.796 (0.154-3.123)	0.521
Literacy		
Above the primary level	1	
Up to primary level	0.509 (0.163-2.573)	1
Socioeconomic status		
Middle class and above	1	
Below middle class	7.381 (0.830-11.406)	0.192
Type of ration card		
APL	1	
BPL or similar	3.482 (1.201-5.371)	0.003
Age at marriage		
≥18 year	1	
<18 year	4.482 (2.317-6.451)	0.003
Age at first pregnancy		
<18 year	1	
≥18 year	3.119 (0.317-4.217)	0.192
Parity		
Primipara	1	
Multipara	3.211 (0.517-6.821)	0.742
Dietary habit		
Nonvegetarian	1	
Vegetarian	1.975 (1.017-3.417)	0.003
Consumption of IFA tablets		
≥200 tablets	1	
<200 tablets	2.531 (1.017-7.846)	0.312

Table 4 shows that women aged 35 years or less had an 82.4% higher chance of developing anaemia during pregnancy (95% CI=1.231–2.108, P=0.003). Similarly, women holding either BPL or similar ration cards had a 3.482 times higher chance (95% CI=1.201–5.371, P=0.003) and women who got married before 18 years of age also had a 4.482 times higher chance of developing anaemia during pregnancy (95% CI=2.317–6.451, P=0.003), whereas the rest did not attain the level of statistical significance.

Result

The response rate in this study was 72.2%. Majorities i.e., 69.5% of the pregnant women were aged less than 25 years, followed by 20.5% between 26 to 30 years and only 10% were aged either 30 years or more. Among the study women, 94.5% were Hindu, 5% were Muslim and 0.5% were Christian by religion. Regarding community, 37% belonged to the scheduled caste community, 22% to general caste, 5% to scheduled tribes and 36% to other backward communities. The residence of 58.5% of women was rural and the rest was urban. Out of all, 28% belonged to the upper-middle class, followed by 27% to the middle class, 22% to the lower middle class, 17.5% to the upper class and 5.5% belonged to the lower class as per BG Prasad’s socioeconomic classification. Regarding literacy, 52.5% of women studied up to primary level, 31.5% up to secondary and 16% up to graduate level or above. Regarding occupation, 93.5% were homemakers, 4% were service holders and 2.5% were self-employed. Among the study subjects, 51% possessed above poverty line (APL) category ration cards, 41% possessed below poverty line (BPL) category, 5% possessed the ad-hoc BPL category and 3% possessed Antodaya category ration cards. Associations between haemoglobin status and socio-economic parameters are shown in [Table 1].

The proportion of anaemia among the women attending Antenatal Clinic was found to be 60%. Among these anaemic women, 39.5% had mild, 18.9% had moderate and 1.6% had severe anaemia. Mean (SD) Hb level was 9.9 ± 0.6 gm%. Among the women, 17.5% had short stature, 8% were hypertensive, 8.5% were hyperglycaemic and 80% received some services from the Accredited Social Health Activist (ASHA) using home visits. Associations between selected obstetric factors and haemoglobin level is shown in [Table 2]. Out of the total, 37.5% of the pregnant women got registered under Janani Suraksha Yojana (JSY). Associations between practices of the study women and haemoglobin level is shown in [Table 3]. Logistic regression analysis has shown that women aged less than 25 years (OR = 1.824, 95% CI = 1.231–2.108, P = 0.003), women holding BPL or similar ration cards (OR = 3.482, 95% CI = 1.201–5.371, P = 0.003) and those who got married before 18 years of age (OR = 4.482, 95% CI = 2.317–6.451, P = 0.003) had significantly higher chance of developing anaemia during pregnancy [Table 4].

Discussion

In the present study proportion of anaemia among pregnant women attending the antenatal clinic was found to be 60%. However, Rajaratnam et al. found it to be 69.3%. Vanamala et al. found it to be 52% and Mishra et al. found it to be 54.8%. These observed differences may be since settings of these studies were different and the determinants like literacy rate, socioeconomic status, nutritional status, parity, consumption of prophylactic iron therapy, etc., of these study populations were also different and all these factors had determined their Hb status.

An unusually high prevalence of anaemia (98%) in rural Haryana was found in a study conducted by Mangla which was much higher than the present study. This may be due to the patriarchal nature of that society and discrimination against women’s rights since birth in the form of equal availability of food and education. Very high prevalence was also observed by Vivek et al., Totega et al., Agarwal et al. and Gautam et al. (82.9%, 84.9%, 84% and 96.5%, respectively).

A study conducted by Shreedevi in Telangana has detected the prevalence of anaemia in pregnancy as 20%, Mahamoud et al. in their study also observed that the prevalence of anaemia in pregnancy was 25.8%. These findings were far less than the present study. Chandrayan and his colleagues in their study also revealed that 31.31% of the pregnant women had manifestations of anaemia. The present study revealed that 1.6% of pregnant women had severe anaemia. Similar results were found by Kumar et al., Baruah et al. and Kumari et al.

In the present study mean (SD) Hb level was found to be 9.9 ± 0.6 gm%. Bansal et al. reported mean Hb concentration as 9.06 g/dL among the anaemic, which was at par with the present study. Mahamoud et al. reported a mean Hb level as 7.9 g/dL which is lower than the present study. The mean age of the respondents in the present study was 23.77 ± 4.72 year, which is comparable with the study conducted by Kumar et al. where the mean age of the study participants was 24.67 ± 3.31 year. Omote et al. reported it to be 30.65 ± 5.52 years, which was
The proportion of anaemia among pregnant women attending antenatal clinic in a teaching institute of Tripura is found to be 60%, which is higher than the state prevalence of anaemia among pregnant women. It may be since the present settings being a tertiary one, more complicated cases are coming here. Low literacy, early marriage, lower socioeconomic status, rural residence, etc., were found to be associated with anaemia in this population. The majority of the anaemic women were either mild or moderate type. Primary care physicians being the first point of encounter for these women, besides taking all possible measures, must counsel the women regarding food and nutrition during pregnancy including adherence to the consumption of iron tablets during ANC.

Acknowledgements
The authors acknowledge the cooperation and kind participation of pregnant women in this study.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Black RE, Victoria CG, Walker SP. Maternal and child under nutrition and overweight in low-income and middle-income countries. Lancet 2013;382:427–51.
2. Benoist BD, McLean E, Egli I, Cogswell M. Worldwide prevalence of anaemia 1993–2005. WHO Global Database on Anaemia 2008. Available from: https://apps.who.int/iris/bitstream/handle/10665/43894/9789241596657_eng.pdf?ua=1. [Last accessed on 2019 Apr 06].
3. World Health Organization. The global prevalence of anaemia in 2011. Geneva, 2015. Available from: https://apps.who.int/iris/bitstream/handle/10665/177094/9789241546960.pdf?sequence=1. [Last accessed on 2019 Apr 05].
4. Amo-Adjei J, Aduo-Adjei K, Opoku-Nyamaah C, Izugbara C. Analysis of socioeconomic differences in the quality of antenatal services in low and middle-income countries (LMICs). PLoS One 2018;13:e0197203.
5. Abir T, Ogbo FA, Stevens GJ, Page AN, Milton AH, Agbo KE. The impact of antenatal care, iron folic acid supplementation and tetanus toxoid vaccination during pregnancy on child mortality in Bangladesh. PLoS One 2017;12:e0187090.
6. Getahun W, Belachew T, Wolde AD. Burden and associated factors of anaemia among pregnant women attending antenatal care in southern Ethiopia: Cross-sectional study. BMC Res Notes 2017;10:276.
7. Dixit JV. Principles and Practice of Biostatistics. 5th ed.. Bhanot Publication; 2005. Jabalpur. Chapter V, P 77.
8. International Institute for Population Sciences Mumbai. Ministry of Health and Family Welfare, Government of India. District Fact Sheet, West Tripura. District Level Household
and Facility Survey 4. Available from: https://nrhm-mis.nic.in/DLHS4/State%20and%20District%20Factsheets/Tripura/District%20Factsheets/West%20Tripura.pdf. [Last accessed on 2019 Jul 01].

9. Pandey VK, Aggarwal P, Kakkar R. Modified BG Prasad's socio-economic classification-2018: The need of an update in the present scenario. Indian J Comm Health 2018;30:82-4.

10. Rajaratnam J, Abel R, Ganes C, Aseelan S. Maternal anaemia: A persistent problem in rural Tamil Nadu. National Med J India 2000;13:242-5.

11. Vanamala VG. Incidence and outcome of anaemia in pregnant women: A study in a tertiary care centre. Int J Reprod Contracept Obstet Gynecol 2018;7:462-6.

12. Mishra S, Chaturvedi R. A study of prevalence of anaemia among pregnant women in rural area of Jabalpur JMSCR 2018;6:207-11.

13. Mangla M, Singla D. Prevalence of anaemia among pregnant women in rural India: A longitudinal observational study. Int J Reprod Contracept Obstet Gynecol 2016;5:3500-5.

14. Viveki RG, Halappanavar AM, Viveki PR, Halki SB, Maled VS. Prevalence of anaemia and its epidemiological determinants in pregnant women. AI Ameen J Med Sci 2012;5:216-23.

15. Totega GS. Prevalence of anaemia among pregnant women and adolescent girls in 16 districts of India. Food Nut Bull 2006;27:311-5.

16. Agarwal KN, Agarwal DK, Sharma A, Sharma K, Prasad K, Kalita MC, et al. Prevalence of anaemia in pregnant & lactating women in India. Indian J Med Res 2006;124:173-84.

17. Gautam VP, Bansal Y, Taneja DK, Saha R, Shah B, Marg Z, et al. Prevalence of anaemia amongst pregnant women and its socio-demographic associates in a rural area of Delhi. Indian J Community Med 2002;27:157-60.

18. Shridevi. Study of prevalence of anaemia among pregnant women attending antenatal checkup in a rural teaching hospital in Telangana, India. Int J Reprod Contracept Obstet Gynecol 2018;7:2612-6.

19. Mahamoud NK, Mwambi B, Oyey C, Seguju J, Webbo F, Okiria J, et al. Prevalence of anaemia and its associated socio-demographic factors among pregnant women attending an antenatal care clinic at Kisugu health center IV, Makindye division, Kampala, Uganda. J Blood Med 2020;11:13-8.

20. Chandrakant P, Shah V, Pandit N, Varghese R. High risk profile of antenatal mother with special focus on Anemia: A hospital based cross sectional study. Indian J Obstet Gynecol Res 2019;6:603-7.

21. Kumar V, Jain M, Shukla U, SwarnkarM, Gupta P, Saini P. Prevalence of anaemia and its determinants among pregnant women in a rural community of Jhalarwar, Rajasthan. Natl J Community Med 2019;10:207-11.

22. Barua B, Boruah B. Utilization of antenatal care services and correlates of anaemia among pregnant women attending a tertiary care hospital in Assam, India. Int J Community Med Public Health 2016;3:2142-9.

23. Kumari S, Bharati DR, Jayaswal AK, Pal R, Sinha S, Kumari A. Prevalence of anaemia and associated risk factors among pregnant women attending antenatal care clinic at Kathihar Medical College & Hospital, Bihar. Natl J Community Med 2017;8:583-7.

24. Bansal R, Bedi M, Kaur J, Kaur K, Shergill HK, Khaira HK. Prevalence and factors associated with anaemia among pregnant women attending antenatal clinic. Adesh Univ Med Sci Res 2020;2:42-8.

25. Omote V, Ukwamedu HA, Bini N, Kashibu E, Ubandoma JR, Ranyang A. Prevalence, severity, and correlates of anaemia in pregnancy among antenatal attendees in Warri, South-Southern Nigeria: A cross-sectional and hospital-based study. Anemia 2020, Article ID 1915231, 7 pages. Available from: https://www.hindawi.com/journals/anemia/2020/1915231/. [Last accessed on 2020 Sep 25].

26. Kaur S, Deshmukh R, Garg B. Epidemiological correlates of nutritional anaemia in adolescent girls of rural Wardha. Indian J Community Med 2006;31:255-8.

27. Raghuram V, Manjula A, Jayaram S. Prevalence of anaemia amongst women in the reproductive age group in a rural area in south India. Int J Biol Med Res 2012;3:1482-4.

28. Suryanarayana R, Chandrappa M, Santhuram AN, Prathima S, Sheela SR. Prospective study on prevalence of anaemia of pregnant women and its outcome: A community based study. J Family Med Prim Care 2017;6:739-43.

29. Chowdhury HA, Ahmed KR, Jebunessa F, Akter J, Hossain S, Shahjahan M. Factors associated with maternal anaemia among pregnant women in Dhaka city. BMC Women Health 2015;15:77.

30. Khan MS, Srivastav A, Dixit AK. The Burden of anaemia amongst antenatal women in the rural population of Northern India*. Int J Sci Study 2014;1:40-2.

31. Ahmed N, Kalakoti P. Prevalence of anaemia & associated factor in pregnant women. Australas Med J 2010;3:276-80.

32. Kundap RP, Dadewar A, Singru S, Fernandez K. A comparative study of prevalence of iron deficiency anaemia in antenatal women from urban and rural area of Pune, India. NII J Community Med 2016;7:351-4.

33. Rajput S, Singh MK. Iron deficiency anaemia and its predisposing causes among women undergoing antenatal checkup at a tertiary care hospital in Allahabad. NII J Community Med 2016;7:480-4.

34. Sarala V, Gopalan U. A study on prevalence of anaemia in pregnancy in South India. Int J Reprod Contracept Obstet Gynecol 2020;9:34-7.

35. Biswas M, Baruah R. Maternal anaemia and pregnancy outcome: A descriptive study in rural areas of Kamrup district, Assam. Int J Preg Chi Birth 2020;6:55-8.