P-Regular Nearrings Characterized by Their Bi-ideals

Aphisit Muangma and Aiyared Iampan

Department of Mathematics, School of Science
University of Phayao, Phayao 56000, Thailand

Abstract

Using the idea of quasi-ideals of P-regular nearrings, the concept of bi-ideals of P-regular nearrings is generalized, which is an extension of the concept of quasi-ideals of P-regular nearrings and some interesting characterizations of bi-ideals are obtained. As a result, we prove that every element of a bi-ideal B of a P-regular nearring can be represented as the sum of two elements of P and Q. Moreover, every element of the finite intersection \(\bigcap_{i=1}^{n} B_i \) of bi-ideals of a P-regular distributive nearring \(N \) can be represented as the sum of two elements of \(P \) and \(B_1 NB_2 N \ldots NB_{n-1} NB_n \).

Mathematics Subject Classification: 16Y30, 16D25

Keywords: P-regular nearring, quasi-ideal, bi-ideal

1 Introduction and Preliminaries

The notion of nearrings is first defined by Pilz [8] in 1977 and that of bi-ideals by Chelvam and Ganesan [3] in 1987. As we know, nearrings are a generalization of rings, and bi-ideals are a generalization of quasi-ideals and ideals in nearrings. Many types of ideals on the algebraic structures were characterized by several authors such as: In 1983, Yakabe [10] introduced and characterized the notion of quasi-ideals of nearrings. In 1987, Chelvam and Ganesan [3] introduced and generalized the notion of quasi-ideals of nearrings which was introduced by [10] to bi-ideals. In 1989, Yakabe [11] characterized regular zero-symmetric nearrings without nonzero nilpotent elements in terms of quasi-ideals. In 1990, Andrunakievich [2] introduced P-regular rings. In 1991, Choi [4] extended the P-regularity of rings which was introduced by [2] to the P-regularity of nearrings. In 2005, Kim, Jun and Yon [7] introduced the notion of anti fuzzy ideals of near-rings and investigated some related properties. In 2008, Abbasi and Rizvi [1] studied prime ideals in near-rings. In 2009,
Zhan and B. Davvaz [12] introduced the concept of \((\xi, \xi \lor \eta)\)-fuzzy subnear-rings (ideals) of near-rings and obtain some of its related properties. In 2010, Choi [5] gave some characterizations of quasi-ideals of \(P\)-regular nearrings and proved that every element of a quasi-ideal \(Q\) of a \(P\)-regular nearring can be represented as the sum of two elements of \(P\) and \(Q\). In 2011, Dheena and Manivasan [6] gave some characterizations of quasi-ideals of \(P\)-regular nearrings in the same way as of Choi [5]. In 2012, Sharma [9] studied the properties of intuitionistic fuzzy ideals of nearring with the help of their \((\alpha, \beta)\)-cut sets. The concept of quasi-ideals play an important role in studying the structure of nearrings. Now, the notion of bi-ideals is an important and useful generalization of quasi-ideals of nearrings. Therefore, we will study bi-ideals of nearrings in the same way as of quasi-ideals of nearrings which was studied by Choi [5].

To present the main results we discuss some elementary definitions that we use later.

Definition 1.1. [8] A nearring is a system consisting of a nonempty set \(N\) together with two binary operations on \(N\) called addition and multiplication such that

1. \(N\) together with addition is a group,
2. \(N\) together with multiplication is a semigroup, and
3. \((a + b)c = ac + bc\) for all \(a, b, c \in N\).

For two nonempty subsets \(A\) and \(B\) of a nearring \(N\), let

\[A + B := \{a + b \mid a \in A \text{ and } b \in B\}\]

and

\[AB := \{ab \mid a \in A \text{ and } b \in B\}.

If \(A = \{a\}\), then we also write \(a + B\) as \(a + B\), and \(\{a\}B\) as \(aB\), and similarly if \(B = \{b\}\).

Definition 1.2. A nonempty subset \(S\) of a nearring \(N\) is called a left (right) \(N\)-subgroup of \(N\) if

1. \(S\) together with addition is a subgroup of \(N\), and
2. \(SN \subseteq S\) (\(SN \subseteq S\)).

Definition 1.3. A nonempty subset \(S\) of a nearring \(N\) is called an ideal of \(N\) if

1. \(S\) together with addition is a normal subgroup of \(N\),
2. \(SN \subseteq S\),
3. \(NS \subseteq S\), and
4. \(n_1(n_2 + s) - n_1n_2 \in S\) for all \(s \in S\) and \(n_1, n_2 \in N\).
Note that S is a left ideal of N if S satisfies (1), (3) and (4), and S is a right ideal of N if S satisfies (1) and (2).

Remark 1.4. By Definition 1.3, we have that

1. S is a left ideal of N if and only if S is a normal left N-subgroup of N and $n_1(n_2 + s) - n_1n_2 \subseteq S$ for all $s \in S$ and $n_1, n_2 \in N$.
2. S is a right ideal of N if and only if S is a normal right N-subgroup of N.

Definition 1.5. A nearring N is called a distributive nearring if $a(b + c) = ab + ac$ for all $a, b, c \in N$.

Definition 1.6. A nonempty subset Q of a nearring N is called a quasi-ideal of N if

1. Q together with addition is a subgroup of N, and
2. $QN \cap NQ \subseteq Q$.

Definition 1.7. A nonempty subset B of a nearring N is called a bi-ideal of N if

1. B together with addition is a subgroup of N, and
2. $BNB \subseteq B$.

Definition 1.8. A nearring N is called regular nearring if for each $x \in N$ there exists $y \in N$ such that $xyx = x$.

Definition 1.9. Let N be a nearring with unity and P an ideal of N. Then N is said to be P-regular nearring if for each $x \in N$ there exists $y \in N$ such that $xyx - x \in P$.

2 Lemmas

Before the characterizations of bi-ideals of nearrings for the main results, we give some auxiliary results which are necessary in what follows.

Lemma 2.1. [5] Let N be a nearring and $P = \{0\}$. If N is a P-regular nearring, then N is a regular nearring.

Lemma 2.2. Let \mathcal{B} be a nonempty family of bi-ideals of a nearring N. Then $\bigcap \mathcal{B}$ is a bi-ideal of N.

Proof. Clearly, $\bigcap \mathcal{B}$ together with addition is a subgroup of N. Now, for all $B \in \mathcal{B}$, we have

$$\bigcap BN \bigcap B \subseteq BNB \subseteq B.$$

Thus $\bigcap BN \bigcap B \subseteq \bigcap B$. Hence $\bigcap \mathcal{B}$ is a bi-ideal of N. \square

Corollary 2.3. Any finite intersection of bi-ideals of a nearring is a bi-ideal.

Lemma 2.4. Every quasi-ideal of a nearring is a bi-ideal.

Proof. Let Q be a quasi-ideal of a nearring N. Then Q together with addition is a subgroup of N. Thus $QNQ \subseteq QN$ and $QNQ \subseteq NQ$, so $QNQ \subseteq QN \cap NQ \subseteq Q$. Hence Q is a bi-ideal of N. \square
3 Main Results

In this section, give some characterizations of bi-ideals of nearrings. Finally, we prove that every element of a bi-ideal B of a P-regular nearring can be represented as the sum of two elements of P and Q. Moreover, every element of the finite intersection $\bigcap_{i=1}^{n} B_i$ of bi-ideals of a P-regular distributive nearring N can be represented as the sum of two elements of P and $B_1NB_2N \ldots NB_{n-1}NB_n$.

Theorem 3.1. Let N be a P-regular nearring. Then for each $n \in N$ there exists $n' \in N$ such that $n'n \in P$.

Theorem 3.2. Let N be a P-regular distributive nearring. Then for every right ideal R and every left ideal L of N,

$$(P + R) \cap (P + L) = P + RL.$$

Theorem 3.3. Let N be a P-regular nearring and B a bi-ideal of N. Then every $x \in B$ there exist $p' \in P$ and $b' \in B$ such that $x = p' + b'$.

Proof. Let $x \in B$. Since N is a P-regular nearring and $x \in B \subseteq N$, there exists $y \in N$ such that $xy - x = p$ for some $p \in P$. Thus $x = -p + xy$. Since B is a bi-ideal of N, we have $xy \in BNB \subseteq B$. Since $p \in P$ and P together with addition is a subgroup of N, we have $-p \in P$. Put $p' = -p$ and $b' = xy$. Thus

$$x = -p + xy = p' + b' \in P + B.$$

Theorem 3.4. Let N be a P-regular distributive nearring and B_1 and B_2 bi-ideals of N. If $b \in B_1 \cap B_2$ and $x \in N$, then the element b can be represented as

$$b = p + b_1x_1b_2 \text{ and } b_1x_1b_2xP \subseteq P$$

for some $p \in P, x_1 \in N, b_1 \in B_1$ and $b_2 \in B_2$.

Proof. Let $b \in B_1 \cap B_2$. Since N is a P-regular nearring, there exists $x_1 \in N$ such that $bx_1b - b \in P$. By Lemma 2.2, we have $B_1 \cap B_2$ is a bi-ideal of N. Since $b \in B_1 \cap B_2$, we have $b \in B_1$ and $b \in B_2$. By Theorem 8.3 we have $b = p_1 + b_1$ for some $p_1 \in P$ and $b_1 \in B_1$, and $b = p_2 + b_2$ for some $p_2 \in P$ and $b_2 \in B_2$. Since $bx_1b - b \in P$, we have $bx_1b - b = p_3$ for some $p_3 \in P$. Thus $b = p_3 + bx_1b$. Hence

$$b = p_3 + bx_1b$$

$$= p_3 + (p_1 + b_1)x_1(p_2 + b_2)$$

$$= p_3 + p_1x_1p_2 + p_1x_1b_2 + b_1x_1p_2 + b_1x_1b_2.$$

Since P is an ideal of N, we have $-p_3, p_1x_1p_2, p_1x_1b_2, b_1x_1p_2 \in P$. Then $-p_3 + p_1x_1p_2 + p_1x_1b_2 + b_1x_1p_2 = p_4$ for some $p_4 \in P$. Thus $b = p_4 + b_1x_1b_2$, so $b_1x_1b_2 = -p_4 + b$. Hence
\[b_1x_1b_2xP = (-p_4 + b)xP \subseteq -p_4xP + bxP \subseteq P + P \subseteq P. \]

\[\square \]

Theorem 3.5. Let \(N \) be a \(P \)-regular distributive nearring and \(\{ B_i \mid i \in \mathbb{Z} \text{ and } 1 \leq i \leq n \} \) a nonempty family of bi-ideals of \(N \). If \(b \in \bigcap_{i=1}^{n} B_i \) and \(x \in N \), then the element \(b \) can be represented as

\[b = p + b_1x_1b_2x_2 \ldots b_{n-1}x_{n-1}b_n \text{ and } b_1x_1b_2x_2 \ldots b_{n-1}x_{n-1}b_nP \subseteq P \]

for some \(p \in P, x_1, x_2, \ldots, x_{n-1} \in N \) and \(b_i \in B_i \) for all \(1 \leq i \leq n \).

Proof. If \(b \in B_1 \), then by Theorem 3.3 we have \(b = p + b_1 \) for some \(p \in P \) and \(b_1 \in B_1 \). Thus

\[b_1xP = (-p + b)xP \subseteq -pxP + bxP \subseteq P + P \subseteq P. \]

Assume that the theorem is true for integer \(n - 1 \). Let \(b \in \bigcap_{i=1}^{n} B_i \). Since \(\bigcap_{i=1}^{n-1} B_i \subseteq \bigcap_{i=1}^{n} B_i \) and \(\bigcap_{i=1}^{n} B_i \subseteq B_n \), we have \(b \in \bigcap_{i=1}^{n-1} B_i \) and \(b \in B_n \). By assumption, we have

\[b = p_1 + b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1} \]

and \(b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1}xP \subseteq P \) for some \(p_1 \in P, x_1, x_2, \ldots, x_{n-2} \in N \) and \(b_i \in B_i \) for all \(1 \leq i \leq n - 1 \). By Theorem 3.3 we have

\[b = p_2 + b_n \]

for some \(p_2 \in P \) and \(b_n \in B_n \). Since \(N \) is a \(P \)-regular nearring, there exists \(x_{n-1} \in N \) such that \(bx_{n-1}b - b \in P \). Thus \(bx_{n-1}b = p_3 \) for some \(p_3 \in P \), so \(b = -p_3 + bx_{n-1}b \).

By (3.1) and (3.2), we have

\[bx_{n-1}b = (p_1 + b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1})x_{n-1}(p_2 + b_n). \] (3.3)

By (3.3), we have

\[
\begin{align*}
 b &= -p_3 + bx_{n-1}b \\
 &= -p_3 + (p_1 + b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1})x_{n-1}(p_2 + b_n) \\
 &= -p_3 + p_1x_{n-1}p_2 + p_1x_{n-1}b_n + \\
 &\quad b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1}x_{n-1}p_2 + \\
 &\quad b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1}x_{n-1}b_n.
\end{align*}
\]

Put \(-p_3 + p_1x_{n-1}p_2 + p_1x_{n-1}b_n + b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1}x_{n-1}p_2 = p_4 \) for some \(p_4 \in P \). Thus

\[b = p_4 + b_1x_1b_2x_2 \ldots b_{n-2}x_{n-2}b_{n-1}x_{n-1}b_n. \]
That is $b_1 x_1 b_2 x_2 \ldots b_{n-2} x_{n-2} b_{n-1} x_{n-1} b_n = -p_4 + b$. Hence

$$b_1 x_1 b_2 x_2 \ldots b_{n-2} x_{n-2} b_{n-1} x_{n-1} b_n x P = (-p_4 + b)x P \subseteq -p_4 x P + b x P \subseteq P + P \subseteq P.$$ \hfill \Box

Theorem 3.6. Let N be a P-regular nearring and B a bi-ideal of N. Then

$$P + B = P + BN B.$$

Proof. Since B is a bi-ideal of N, we have $BN B \subseteq B$. Thus

$$P + BN B \subseteq P + B. \quad (3.4)$$

On the other hand, let $n \in P + B$. Then $n = p' + b'$ for some $p' \in P$ and $b' \in B$. Since N is a P-regular nearring, there exists $x \in N$ such that $b' x b' - b' \in P$. Thus $b' x b' - b' = p''$ for some $p'' \in P$, so $b' = -p'' + b' x b'$. Therefore

$$n = p' + b' = p' + (-p'' + b' x b') = (p' - p'') + b' x b' \in P + BN B.$$

Hence

$$P + B \subseteq P + BN B. \quad (3.5)$$

By (3.4) and (3.5), we have $P + B = P + BN B$. \hfill \Box

Theorem 3.7. Let N be a P-regular nearring, and B_1 and B_2 bi-ideals of N. Then

$$P + (B_1 \cap B_2) \subseteq P + (B_1 NB_2 \cap B_2 NB_1).$$

Proof. Let $b \in P + (B_1 \cap B_2)$. Then $b = p + b'$ for some $p \in P$ and $b' \in B_1 \cap B_2$. Thus $b' \in B_1$ and $b' \in B_2$. Since N is a P-regular nearring, there exists $x \in N$ such that $b' x b' - b' \in P$. Thus $b' x b' - b' = p'$ for some $p' \in P$, so $b' = -p' + b' x b'$. Hence

$$b = p + b' = p - p' + b' x b' = p'' + b' x b' \in P + (B_1 NB_2 \cap B_2 NB_1)$$

where $p'' = p - p'$. Therefore

$$P + (B_1 \cap B_2) \subseteq P + (B_1 NB_2 \cap B_2 NB_1). \quad (3.6)$$ \hfill \Box

Theorem 3.8. Let N be a P-regular nearring, and $\{B_i \mid i \in \mathbb{Z} \text{ and } 1 \leq i \leq n\}$ a nonempty family of bi-ideals of N. Then

$$P + (\bigcap_{i=1}^{n} B_i) \subseteq P + (B_1 NB_2 \cap B_2 NB_n \cap \ldots \cap B_{n-1} NB_n \cap B_n NB_1 \cap B_n NB_2 \cap \ldots \cap B_n NB_{n-1}).$$
Proof. By Theorem 3.6, we have $P + B_1 = P + B_1 NB_1$. That is $P + B_1 \subseteq P + B_1 NB_1$. Assume that the theorem is true for integer $n - 1$. By Theorem 3.7, we have

$$P + (\bigcap_{i=1}^{n} B_i) = P + \left(\bigcap_{i=1}^{n-1} \left(B_i \cap B_n \right) \right) \subseteq P + (\bigcap_{i=1}^{n-1} B_i)NB_n \cap B_n N(\bigcap_{i=1}^{n-1} B_i) \subseteq P + (B_1 NB_n \cap B_n N(B_1 \cap B_2 \cap \ldots \cap B_{n-1})) \subseteq P + (B_1 NB_n \cap B_2 NB_n \cap \ldots \cap B_{n-1} NB_n \cap B_n NB_1 \cap B_n NB_2 \cap \ldots \cap B_n NB_{n-1})$$

\[\square \]

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

[1] S. J. Abbasi and A. Z. Rizvi, *Study of prime ideals in near-ring*, Journal of Engineering and Sciences 2 (2008), 65–66.

[2] V. A. Andrunakievich, *Regularity of a ring with a respect to right ideals*, Doklady Akademii Nauk SSSR 310 (1990), 267–272.

[3] T. T. Chelvam and N. Ganesan, *On bi-ideals of near-rings*, Indian Journal of Pure and Applied Mathematics 18 (1987), 1002–1005.

[4] S. J. Choi, *P-regularity of a near-ring*, Master’s thesis, University of Dong-A, 1991.

[5] S. J. Choi, *Quasideal of a P-regular near-ring*, International Journal of Algebra 4 (2010), 501–506.

[6] P. Dheena and S. Manivasan, *Quasiideals of a P-regular near-rings*, International Journal of Algebra 5 (2011), 1005–1010.

[7] K. H. Kim, Y. B. Jun, and Y. H. Yon, *On anti fuzzy ideals in near-rings*, Iranian Journal of Fuzzy Systems 2 (2005), 71–80.

[8] G. Pilz, *Near-rings*, North-Holland Publishing Company, New York, 1977.

[9] P. K. Sharma, *Intuitionistic fuzzy ideals of near rings*, International Mathematical Forum 7 (2012), 769–776.
[10] I. Yakabe, *Quasi-ideals in near-rings*, Mathematical reports College of General Education Kyushu University 14 (1983), 41–46.

[11] I. Yakabe, *Regular near-rings without non-zero nilpotent elements*, Proceedings of the Japan Academy, Series A 65 (1989), 176–179.

[12] J. M. Zhan and B. Davvaz, *Generalized fuzzy ideals of near-rings*, Applied Mathematics-A Journal of Chinese Universities 24 (2009), 343–349.

Received: Monday 5th May, 2014