Anti-inflammatory Effect of Bumblebee Alcohol Extracts in CFA-Induced Rat Edema

Mi Young Ahn, Jea Woong Han, Hyung Joo Yoon, Jae Sam Hwang and Yun Eun Young
Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon, Korea

(Received August 30, 2012; Revised October 18, 2012; Accepted November 26, 2012)

In this study, we prepared alcohol extracts of the larva, pupa, queen, and cocoon (clony) of B. ignitus, B. terrestris, and B. h. sapporoensis, and tested the anti-inflammatory activity of the extracts by using a rat model of adjuvant-induced edema. The extracts derived from the queen of B. ignitus, the queen of B. terrestris, and the cocoon of B. ignitus decreased hind paw edema after 1 day of i.p. administration. These extracts also induced vasorelaxation and NO production in calf pulmonary artery endothelial cells. These results suggest that bumblebee alcohol extracts has anti-inflammatory and vasorelaxant properties.

Key words: Edema, Bumblebee alcohol extract

INTRODUCTION

Inflammation is natural immune reaction of the body that results from an infection, injury, or illness. Inflammation has been shown to be one of the causes of coronary artery disease (Hansson, 2005) and arthritis. Nitric oxide has many functions in the body as a vasodilator and neurotransmitter (Nussler and Billiar, 1993), and is an important biomarker of the inflammatory response (Hussain et al., 2008). Also, phospholipase A₂, the enzyme that cleaves membrane phospholipids, was found to be increased through inflammation and in the presence of various inflammatory diseases (Schoenberg et al., 1997). The medicinal and nutritional uses of honeybee and other hive products including honeybee larva, are well known (Meda et al., 2004). Bumblebees (e.g. B. igitus, B. terrestris and B. h. sapporoensis) are mass-produced worldwide for use as pollinators. We endeavored to make a safe and effective bumblebee alcohol extracts, and tested its anti-inflammation activity by determining NO production in endothelial cells and phospholipase A₂ activity, furthermore, various bumblebee extracts were applied to the animal inflammation model-paw edema experiment.

MATERIALS AND METHODS

Materials. The dried larvae (500 g) of B. ignitus (BIL) were soaked and extracted three times with ethanol by ultrasound for 30 min. The extracts obtained were dried using a rotary evaporation and were freeze-dried as alcohol extracts of B. ignitus. Also, B. ignitus pupae (BIP), clony shell of B. ignitus (BIC), clony of B. h. sapporoensis (BHSPL), BTQ (Queen of B. terrestris), and Queen of B. ignitus (BIQ) were soaked and extracted according to the method above, respectively. The extracts were obtained using a rotary evaporation and were freeze-dried as alcohol extracts of each bumblebee products.

Test preparation of bumblebee product extracts. Dried alcohol extracts of bumblebee product were homogenized in a blender to a powder, stored at 4°C, dissolved in phosphate buffered saline from Sigma-Aldrich (St. Louis, MO, USA), and were then orally administered to SD rats at doses of 10 mg/kg daily, over 8 days.

Analysis of mineral content and amino acid composition. Mineral contents were analyzed by atomic absorption spectroscopy and phosphorus contents were determined by colorimetric method, which utilizes ammonium molybdate, hydroquinone, and sodium sulfate (Kim et al., 2001). Amino acid compositional analysis was carried out by derivatization of the first N-terminal amino acids with phenylisothiocyanate (PITC) followed by RP-HPLC (Williams et al., 1988).

Correspondence to: Mi Young Ahn, Department of Agricultural Biology, National Academy of Agricultural Science, 61 Seodundong, Kwonsung-gu, Suwon 441-100, Korea
E-mail: amy@rda.go.kr

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Animals. Specific pathogen free SD rats (6 weeks old, weighing 204.6 ± 2.1 g, male), purchased from Samtako Co. Ltd. (Osan, Korea), were housed in an environmentally-controlled room with 23 ± 1°C, relative humidity of 55 ± 10%, air ventilation of 10–18 air changes/hr, a 12-hr light/dark cycle of 150–300 lux, and feed and water were available ad libitum. Rats were kept for one week under normal conditions above and were fed with a standard diet (Samtako Co. Ltd., Osan, Korea), before repeated-dose anti-inflammatory study testing began.

Anti-inflammatory rat experiment. Complete Freund’s adjuvant (CFA, Sigma Co., USA) was used to induce rat paw edema at 1st day (pre-treatment) except control group in a chronic arthritis experimental model, and the anti-edema effect of individual solvent extracts (post-treatment) was compared.

Rats were divided into 9 groups (n = 7 per group): control group, CFA (100 mM) only treated group (negative control), indomethacin (5 mg/kg at 1st day, 1 mg/kg at 2–8th day) as a positive control, sample groups [bumblebee ethanol extracts (each ethanol extract of BIL, BIP, BIC, BHSPL, BTQ, and BIQ)] daily treated intraperitoneal, over 8 days. Paw size was measured 1, 3, 5 hr and thereafter every day for 14 days using a digital caliper (digimatic, Mitutoyo, Co., Japan).

Seven male rats in each group were weighed and were administered with bumblebee alcohol extracts at a dose of 10 mg/kg or its vehicle a consecutive dose, over a 8 days. The test parameters were paw edema, cytokine interleukin 6 production level, secretory phospholipase A2 activity and histopathological findings of dorsal root ganglia, articular cartilage and bone of paw edema rats.

Table 1. Yield and chemical composition of various bumblebee extracts used in this study

Sample	BIC	BHSPL	BTQ	BIQ
Yield (%)	3.8	17.6	2.4	7.5
Fat (%)	14.19	4.05	4.80	14.19
Protein (%)	12.61	10.78	17.23	7.05
Ca (%)	0.02	0.03	0.03	0.05
P (%)	0.42	0.42	1.37	1.65
K (%)	0.65	0.65	1.60	2.15
Na (%)	0.1	0.1	0.16	0.24
Mg (%)	0.05	0.05	0.03	0.04
Fe (ppm)	31.40	31.40	88.88	171.17
Mn (ppm)	2.19	2.19	2.98	8.87
Zn (ppm)	33.20	33.20	51.34	53.31
Cu (ppm)	9.35	9.35	12.30	1.045

Amino acid composition (%)

Cys	0.094	0.063	0.094	0.120
Met	0.032	0.098	0.232	0.427
Asp	0.273	0.339	0.329	1.523
Thr	0.123	0.207	0.230	0.868
Ser	0.155	0.226	0.247	0.761
Glu	0.478	0.960	1.469	3.479
Gly	0.261	0.378	0.451	1.335
Ala	0.195	0.387	0.704	1.456
Val	0.189	0.360	0.316	1.045
Ile	0.141	0.221	0.250	0.935
Leu	0.198	0.383	0.414	1.690
Tyr	0.055	0.211	0.064	0.359
Phe	0.069	0.177	0.137	0.616
Lys	0.103	0.213	0.380	1.505
His	0.052	0.143	0.161	0.317
Arg	0.058	0.141	0.408	0.726
Pro	0.629	0.900	0.562	1.422

BIC: clony shell of *B. ignitus* extract; **BHSPL**: clony of *B. h. sapporoensis* extract; **BTQ**: Queen of *B. ignitus* extract; **BIQ**: Queen of *B. terrestris* extract.

Nitrite assay. The production of NO was measured as the nitrites that accumulated in the culture medium after colorimetric reaction with Griess reagent according to the manufacturer’s manual (Cayman Chemicals, Ann Arbor, MI, USA). In brief, samples (200 mg/ml, 20 µl, dilution factor 10) were collected 24 hr after treatment with cultured bovine vascular endothelial (CPAE) cells.

The absorbance at 540 nm was measured with a VERSA-max microplate reader (Molecular Devices, Menlo Park, CA, USA). The cytotoxicities of the purified fractions were tested against the CPAE cell line using XTT (sodium 3’-[1-
(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene sulfonic acid hydrate} kit solution (Boehringer Mannheim), as described previously (Ahn et al., 2009).

Secretory phospholipase A$_2$ measurements in CPAE cells. Phospholipase A$_2$ cleaves membrane phospholipids to release arachidonic acid, and is the precursor to a large family of pro-inflammatory eicosanoids (Reid, 2005). The secretory phospholipase A$_2$ (sPLA$_2$) levels in these 24 hr-incubated bumblebee extracts were measured by ELISA using a sPLA$_2$ assay kit purchased from Cayman Chemicals (Ann Arbor, MI, USA).

Histopathology. The lumbar V (LV) dorsal root ganglion, including articular cartilage and near leg bones, were dissected from the rats and were fixed in phosphate-buffered formalin. The spinal cords of the rats, including the bone and articular cartilage, were also excised and fixed. After paraffin embedding, they were stained with hematoxylin and eosin, and were analyzed with microscopy.

Statistical analysis. Mean and standard errors of all parameters were determined for each of the 8 rats. The Stu-

![Fig. 2. Histopathological data of dorsal root ganglion treated with bumblebee extracts.](image)

Table 2. Histopathological finding of the LV dorsal root ganglion (DRG) including articular cartilage treated various bumblebee extracts (10 mg/kg) on 14th day

Group	Pathologic finding
1	Con
2	CFA Induced injury without treatment
3	CFA Induced injury with treatment
4	CFA Induced injury with treatment
5	CFA Induced injury with treatment
6	CFA Induced injury with treatment
7	CFA Induced injury with treatment
8	CFA Induced injury with treatment
9	CFA Induced injury with treatment

B. ignitus pupae extract (BIP), clony shell of *B. ignitus* extract (BIC), clony of *B. h. sapporoensis* extract (BHSPL), Queen of *B. terrestris* extract (BTQ), and Queen of *B. ignitus* extract (BIQ).
dent’s t-test was used to establish the significances of differences between the control and treatment groups. \(p < 0.05 \) was considered statistically significant.

RESULTS

Anti-inflammation. We showed that bumblebee alcohol extracts have potential efficacies in treating inflammation in SD rats, as they significantly reduced paw edema levels as the following order: BIQ > BIC > BTQ > BIL, and repaired damaged dorsal root ganglias of CFA adjuvant arthritis.

Six total alcohol extracts, of BIL, BIP, BIQ, BTQ, BHSPL, and BIC, were treated to the peritoneum (10 mg/kg) of paw edema induced rats, and the effect of individual extracts was in the following order: BIQ > BIC > BTQ > BIL (Fig. 1). The mean changes in paw edema size (mm) from 1 hr to 14 days for each group were as follows: control (7.54 ± 0.21), CFA (9.86 ± 0.23), BIL (9.11 ± 0.18), BIP (8.81 ± 0.91), BIQ (8.53 ± 0.43), BTQ (8.87 ± 0.13), IND (8.19 ± 0.70), BHSPL (7.96 ± 0.67), BIC (7.95 ± 0.67).

Articular cartilage destruction repair by bumblebee extracts. In the histopathological analysis, bumblebee extracts treatment repaired the LV dorsal root ganglion linked to the edematous paw, including the articular cartilage, against CFA induced cartilage destruction, respectively. This was in contrast to the effects observed in the CFA treated group, where the articular cartilage was destroyed by erosion (Fig. 2 and Table 2). In the histopathological finding of pathological spinal cord, the bumblebee extract groups, especially BIQ (Queen of *B. ignitus*) extract group, showed anti-edema effects compared to the CFA only treated group (Table 3).

Pro-inflammatory cytokines (secretory PLA2 and NO). Furthermore, these extracts also had multiple actions such as remarkable NO production in endothelial cells related to vasorelaxation and secretory phospholipase A2 activity (Fig. 4). The productions of nitric oxide in the treated groups

Table 3. Histopathologic finding of the spinal cord, including articular cartilage and bones, treated with various bumblebee extracts in CFA-induced arthritis rat model on 14th day

Group	Pathologic finding
1. Control	Normal
2. CFA	Induced injury without treatment Repair incomplete with residual damaged area Partial destruction of articular cartilage
3. BIL	Induced injury with treatment Repair Partial destruction of articular cartilage
4. BIP	Induced injury with treatment Repair, incomplete with residual damaged area Mildly damaged articular cartilage, focal
5. BIQ	Induced injury with treatment Repair, incomplete with residual damaged area Mildly damaged articular cartilage, focal
6. BTQ	Induced injury with treatment Repair No significant alteration
7. Indomethacin	Treatment Repair Destruction of articular cartilage
8. BHSPL	Induced injury with treatment Repair, incomplete with residual damaged area Partial destruction of articular cartilage
9. BIC	Induced injury with treatment Repair Partial destruction of articular cartilage

*Bumblebee ethanol extracts (10 mg/kg), *Treat: the paw portion with induction of inflammation and sample treatment; Control: the paw portion without induction of inflammation (opposite paw).

Fig. 3. Effects of the various bumblebee extract on nitric oxide production activity in CPAE cells.
were also inhibited according to vasorelaxation of blood vessel in the alcohol extract of BTQ, BIC, BIL and BIQ (Fig. 3). There was also no cytotoxicity observed for the bumblebee extracts in XTT assay (data not shown).

DISCUSSION

In order to identify the best bumblebee extracts for the control of inflammation reaction, we made alcohol extracts of the larva, pupa, queen and cocoon of *B. ignitus* and *B. terrestris*, and *B. h. sapporoensis*, and tested their medicinal activities. The anti-inflammatory activity of Hymenoptera, bumblebee alcohol extract was examined by using adjuvant-induced edema and arthritis in rats. In the previous report, *B. ignitus* alcohol extracts did not show acute toxicity at 0.04, 0.2, 1 or 5 g/kg (Ahn et al., 2009). Each alcohol extract from *B. ignites* queens, *B. terrestris* queens and *B. ignites* cocoons, decreased the hind paw edema after 1 day of *ip* administration. Also, the extracts contributed to vasorelaxation on NO production increases in CPAE cells. These results suggest that bumblebee alcohol extract has potential as a crude ant-inflammatory drug and vasorelaxation agent. As commercial bee venom, the secretary phospholipase A₂ levels of queen of *B. ignitus* extract was higher than those of other bumblebee extracts, and had anti-inflammatory activity and articular cartilage destruction repair, this is deemed to be the most effective agent for this purpose.

ACKNOWLEDGMENTS

This work was supported by the Rural Development Administration, Basic research project no. PJ006642 (2009-2012).

REFERENCES

Ahn, M.Y., Han, J.W., Yoon, H.J., Park, H.C. and Chung, W.T. (2009). Single oral dose toxicity study of an alcohol extract of bumblebee, *Bombus ignitus* larvae in rats. *Toxicol. Res.*, 25, 107-111.

Hansson, G.K. (2005). Inflammation, atherosclerosis, and coronary artery disease. *N. Engl. J. Med.*, 352, 1685-1695.

Hussain, S.P., He, P., Subleski, J., Hofseth, L.J., Trivers, G.E., Mechanic, L., Hofseth, A.B., Bernard, M., Schwank, J., Nguyen, G., Mathe, E., Djurickovic, D., Haines, D., Weiss, J., Back, T., Gruys, E., Laubach, V.E., Wiltrout, R.H. and Harris, C.C. (2008). Nitric oxide is a key component in inflammation-accelerated tumorigenesis. *Cancer Res.*, 68, 7130-7136.

Kim, I., Lee, H.S., Kim, J.W., Yang, B.K., Ahn, M.Y., Kim, D.H. and Ryu, K.S. (2001). Variation of mineral compositions in the regional, varietal, and seasonal mulberry leaves. *Int. J. Indust. Entomol.*, 2, 27-35.

Meda, A., Lamien, C.E., Milogo, J., Romoto, M. and Nacoulma, O.G. (2004). Therapeutic uses of honey and honey bee larvae in central Burkian Faso. *J. Ethanopharmacol.*, 95, 103-107.

Nussler, A.K. and Billiar, T.R. (1993). Inflammation, immunoregulation, and inducible nitric oxide synthase. *J. Leukocyte Biol.*, 54, 171-178.

Reid, R.C. (2005). Inhibitors of secretory phospholipase A₉ group IIA. *Curr. Med. Chem.*, 12, 3011-3026.

Schoenberg, M.H., Mayer, J.M. and Beger, H.G. (1997). [Phospholipase A₂—from basic research to clinical reality]. *Chirurg*, 68, 1112-1118.

Williams, K.R., Neice, R.L., Aterton, D., Fowler, A.V., Kuny, R. and Smith, A.J. (1988). The size, operation and technical capabilities of protein and nucleic acid core facilities. *FASEB J.*, 2, 3124-3130.