Can Common Clinical Parameters Be Used to Identify Patients Who Will Need Insulin Treatment in Gestational Diabetes Mellitus?

TANIA PERTOT, BSC1
LYNDA MOLYNEAUX, RN2
KRIS TAN, MSC3

GLYNIS P. ROSS, MD2,3
DENNIS K. YUE, MD, PHD1,2,3
JENCIA WONG, MD, PHD1,2,3

OBJECTIVE—To identify patients with gestational diabetes mellitus (GDM) who will need antenatal insulin treatment (AIT) by using a risk-prediction tool based on maternal clinical and biochemical characteristics at diagnosis.

RESEARCH DESIGN AND METHODS—Data from 3,009 women attending the Royal Prince Alfred Hospital GDM Clinic, Australia, between 1995 and 2010 were studied. A risk engine was developed from significant factors identified for AIT using a logistic regression model.

RESULTS—A total of 51% of GDM patients required AIT. Ethnicity, gestation at diagnosis, HbA1c, fasting and 60-min glucose at oral glucose tolerance test, BMI, and diabetes family history were significant independent determinants of AIT. Notably, only 9% of the attributable risk for AIT can be explained by the clinical factors studied. A modeled risk-scoring system was therefore a poor predictor of AIT.

CONCLUSIONS—Baseline maternal characteristics including HbA1c alone cannot predict the need for AIT in GDM. Lifestyle, compliance, or as yet unmeasured influences play a greater role in determining AIT.

Diabetes Care 34:2214–2216, 2011

The treatment of gestational diabetes mellitus (GDM) is important to lower the risk of perinatal complications (1) and, to achieve this, a proportion of women require intensive antenatal insulin treatment (AIT). The rising incidence of GDM (2), coupled with the recent revision of GDM diagnostic criteria (3), is predicted to conservatively increase the incidence of GDM by 30%, with significant implications for the numbers requiring AIT and clinical workload (4).

With this looming spectre, it has been suggested that improved efficiency of health care delivery in GDM relies on improved risk stratification that would allow for triage to low- or higher-risk clinics (4).

Consequently, there is interest in the ability to predict GDM in early pregnancy (5), and because AIT is the most resource-intensive management component in GDM, a risk-prediction tool that identifies patients likely to need AIT would have theoretical utility. Thus, the aim of this large cohort study was to determine if, using commonly available maternal clinical and biochemical characteristics at the time of GDM diagnosis, it was possible to develop an effective and easily implemented AIT prediction tool.

RESEARCH DESIGN AND METHODS—Women (n = 3,009) attending the Royal Prince Alfred Hospital antenatal diabetes clinic between 1995 and 2010 were studied. GDM was defined by the Australasian Diabetes in Pregnancy Society criteria (6). Baseline maternal clinical and biochemical data taken at the time of GDM diagnosis were collected prospectively in a standardized manner (7). Ethics committee approval and informed consent was obtained. AIT was commenced on the basis of the pattern of home blood glucose monitoring and response to dietary treatment. Blood glucose thresholds above which insulin was commenced were 5 mmol/L at fasting and 7.2 mmol/L at 1 h and are standard practice at Royal Prince Alfred Hospital in keeping with previous studies (8,9). Univariate analysis was performed on maternal historical and antenatal risk factors to determine the associations with AIT. Significant factors were included in a stepwise logistic regression model (risk engine) to calculate the probability of requiring AIT. Receiver operating curve analysis was also used to evaluate the predictive ability of the risk engine.

RESULTS—A total of 51% (n = 1,535) of women required AIT (see Supplementary Tables for demographic details). Univariate analysis identified significant associations between AIT and gestation at diagnosis, ethnicity, GDM diagnosed at 25/40 gestational weeks, prepregnancy weight, BMI, diabetes family history, oral glucose tolerance test (OGTT) area under the curve glucose, fasting glucose, OGTT 60-min glucose, HbA1c (all P < 0.0001), and age (P = 0.02). In the logistic regression model, HbA1c (odds ratio [OR] 2.2), family history of diabetes (OR 1.4), fasting glucose (OR 1.3), OGTT 60-min glucose (OR 1.06), and BMI (OR 1.04) were identified to be statistically significant contributors to the requirement for AIT. Diagnosis of GDM after 25 weeks was identified as a significant protective factor for the need for AIT (OR 0.5). Asian (OR 0.7) and Arabic (OR 0.6) ethnicity were protective compared with Europeans. Using a cutoff value of 50% probability of AIT, the
receiver operating curve only has a sensitivity of 66% and 1 − specificity of 37%. Notably, only 9% (R² = 0.09) of the attributable risk for AIT can be explained by the clinical factors studied. For example, as shown in Table 1, despite ~50% of the cohort requiring AIT, only 1.3% had a predicted probability of insulin usage of 90.1–100%, and many groups with a low calculated risk had a relatively high rate (20–30%) of insulin use. We also performed similar receiver operating curve analysis using HbA1c alone. An HbA1c threshold of ≥7% provides 99% specificity for requiring AIT but would only identify 17 such patients. At the other end of the spectrum, using an HbA1c cutoff of ≤4%, 84 patients would still require AIT and only 174 patients could be correctly triaged to a “low-risk clinic.” Thus, the numbers of patients who could be correctly identified by this approach are so low that there is little practical impact on workflow.

CONCLUSIONS—We identified a number of significant independent risk factors for AIT, particularly measures of glycemia, time of diagnosis, and family history of diabetes. These factors are intuitive, given that they represent severity of and propensity for hyperglycemia. The surprising finding was the lack of predictive power encompassed by these risk factors, with only 9% of the risk for AIT being attributable. The few previous studies have been limited by the small number of subjects and confined to the predictive value of glycemia alone (10,11). Nevertheless, although the performance of this risk tool based on many commonly available clinical and biochemical factors is disappointing, the results are informative on a number of fronts.

First, it is clear from our data that a risk-stratification approach based on baseline measures of glycemia alone would not have predictive utility. The inference is that individuals with measurements in the lower glucose ranges at diagnosis do not necessarily track in the lower ranges during the rest of the pregnancy and, conversely, some individuals in the higher glucose ranges at diagnosis are able to modify their levels of glycemia to avoid insulin treatment. This putative lack of glycemic stability over time may embody some of the risk in the lower glucose ranges seen in the Hypoglycemia and Adverse Pregnancy Outcome (HAPO) study (12). Our data suggest that additional factors have a more significant impact on the need for insulin, over and above irreversible factors such as family history, prior GDM, or baseline glycemia at diagnosis. One such possibility is that dietary compliance has the greatest impact on the need for insulin; however, this was not assessed. Also, unmeasured fetal or placental factors that influence insulin resistance may have a greater impact on AIT. The fact that a prior history of GDM was not an independent significant factor for insulin use supports both these possibilities.

The strengths of our study include the large cohort with prospectively collected standardized data in a multiethnic Australian population and the use of commonly available clinical and biochemical measures. Our data suggest that baseline maternal characteristics including glycemia alone cannot predict AIT and suggest the primacy of lifestyle or as yet unmeasured influences in determining this higher-risk cohort.

Acknowledgments—No potential conflicts of interest relevant to this article were reported.

T.P. researched data, contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript. L.M. and K.T. researched data and reviewed and edited the manuscript. G.P.R. and D.K.Y. contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript. J.W. researched data, contributed to discussion, wrote the manuscript, and reviewed and edited the manuscript.

References

1. Landon MB, Spong CY, Thom E, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009;361:1339–1348
2. Hunt KJ, Schuller KL. The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am 2007;34:173–199
3. Metzger BE, Gabbe SG, Persson B, et al. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010;33:676–682
4. Flack JR, Ross GP, Ho S, McElduff A. Recommended changes to diagnostic criteria for gestational diabetes: impact on workload. Aust N Z J Obstet Gynaecol 2010;50:439–443
5. Savvidou M, Nelson SM, Malgoba M, Messow C-M, Sattar N, Nicolaides K. First-trimester prediction of gestational diabetes mellitus: examining the potential of combining maternal characteristics and laboratory measures. Diabetes 2010;59:3017–3022
6. Hoffman L, Nolan C, Wilson JD, Oats JJ, Simmons D; The Australasian Diabetes in Pregnancy Society. Gestational diabetes
Prediction of insulin use in GDM

7. Yue DK, Molyneaux LM, Ross GP, Constantino MI, Child AG, Turtle JR. Why does ethnicity affect prevalence of gestational diabetes? The underwater volcano theory. Diabet Med 1996;13:748–752

8. González-Quintero VH, Istwan NB, Rhea DJ, et al. The impact of glycemic control on neonatal outcome in singleton pregnancies complicated by gestational diabetes. Diabetes Care 2007;30:467–470

9. Rowan JA, Gao W, Hague WM, McIntyre HD. Glycemia and its relationship to outcomes in the Metformin in Gestational Diabetes trial. Diabetes Care 2010;33:9–16

10. Akinci B, Celtik A, Yener S, Yesil S. Is fasting glucose level during oral glucose tolerance test an indicator of the insulin need in gestational diabetes? Diabetes Res Clin Pract 2008;82:219–225

11. Tranquilli AL, Pizzichini L, Cingolani F, Garbati E, Ciotti G, Garzetti G. Prediction of the need for insulin therapy in pregnant women with impaired gestational glucose tolerance (IGGT). Clin Exp Obstet Gynecol 1996;23:79–82

12. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;358:1991–2002