Implementation of Low Power High Speed Adder’s using GDI Logic

Addanki Purna Ramesh

Abstract—Addition is a vital arithmetic operation and is the base of other arithmetic operations such as multiplication, subtraction and division. Adder is a digital circuit that does addition of binary numbers. The 1-bit full adder is the basic block of an arithmetic unit. In VLSI, there are many efficient techniques to design digital circuits. Some of the techniques are Pass Transistor logic (PTL), Complementary metal oxide semiconductor (CMOS) and Transmitter gate (TG). There are several adder designs implemented to reduce the power. However, each design undergoes from precise disadvantage. The adder design with good driving capability requires more power and the design with more delay consumes less power. In this paper 8-bit Carry Increment Adder (CIA), Carry Bypass Adder (CBA), Carry Skip Adder (CSKA), Carry Look Ahead Adder (CLA), Kogge Stone Adder (KSA), Han Carlson Adder (HCA), and Brent Kung Adder (BKA) are implemented using Gate Diffusion Input (GDI) logic. These designs are simulated and implemented using Tanner tool. The result shows that CBA, CLA, and KSA designs using GDI logic are more efficient compared to CMOS logic in view of power consumption, delay, and area (transistors count) respectively.

Keywords—Adder, Addition, GDI, CMOS, Power consumption

I. INTRODUCTION

In VLSI, adders are the elementary building blocks of the arithmetic operations. Adders are commonly used in ALU, CPU, and floating point units. The half and full adders are the basic adders. Generally these circuits are implemented using CMOS logic, it has an important characteristic i.e., high noise immunity. The speed and complexity of the circuits increases the power consumption. The demand for movable apparatus like laptops and mobile phones is increasing rapidly, so low power and area efficient circuit designs are required with high speed, high reliability, small in size, longer battery life. Power and area is the regulating factor in both high performance and portable systems.

II. LITERATURE SURVEY

Gate Diffusion Input (GDI) logic replaced the CMOS Logic for low power applications. This GDI logic reducing delay, area, and power consumption of digital circuits with low complexity of logic. CMOS circuits are built in such a way that PMOS transistors must have either a PMOS transistor or input from the voltage source. Similarly, NMOS transistors must have either an NMOS transistor or input from ground. Whereas GDI logic contains 3 inputs’ G, P and N Several logic utilities implemented using GDI logic (only two transistors) is shown in table 1.

In this work implementing 8-bit CIA, CBA, CSKA, CSA, CLA, KSA, HCA, and BKA are implemented using GDI logic using Tanner tool.

III. PROPOSED WORK

A. Carry Increment Adder

The block diagram of CIA is shown in figure 2. The 8-bit CIA contains two 4-bit Ripple Carry Adders (RCA). The 1st RCA adds a required number of 1st 4-bit inputs producing sum and carry. Now the carry out of the 1st RCA is applied to Cin of the conditional increment block. Thus the 1st 4-bit sum is straightly taken from the ripple carry output. The 2nd RCA makes the addition operation irrespective of the 1st RCA output and will give out results which are fed to the conditional increment block. The input Cin to the 1st RCA is at all times low value. The conditional increment block comprises of half adders. Based on the value of Cin the 1st RCA , the increment operation will take place. The increment process carried by the half adder in carry increment block. The 2nd RCA output i.e. sum is taken through the carry increment block.

Table 1: Several logic utilities of GDI Logic Configurations for Input

N	P	G	Out	Function
Y	B	A	AB	F1
B	T	A	A+B	F2
B	Y	A	AB	OR
C	B	A	A+B+AC	MUX
Y	T	A	A-B	NOT

Figure 1: Schematic Diagram of GDI Logic
Implementation of Low Power High Speed Adder’s using GDI Logic

B. Carry Bypass Adder

The block diagram of CBA is shown in figure 3. In RCA, each full adder waits for the incoming carry to generate an outgoing carry. This need can be removed by presenting an extra bypass to speed up the action of the adder. An incoming carry \(C_{i-1} = 1 \) transmits through whole adder chain and causes an outgoing carry \(C_{i} = 1 \) below the conditions that all transmission signals are 1. The operation of the adder can be speed up using this data. When \(P_0P_1P_2P_3P_4P_5P_6 = 1 \), the incoming carry is sent to the next block through the bypass and if it is not the case, the carry is obtained via the normal route. If \((P_0P_1P_2P_3P_4P_5P_6 = 1) \) then \(C_{i-1} = C_{i}0 \) else either generate or delete happened. In CBA, full adders are separated into groups, each of them is “bypassed” by a mux, when all the full adders are in propagating.

C. Carry Skip Adder

The block diagram of CSA is shown in figure 4. A CSA consists of a RCA with a skip chain used to speed up the carry chain. This chain explains the sharing of ripple carry blocks, which comprise the skip adder. The worst case for a RCA occurs, when the transmit state is true for each pair \((a_i,b_i) \). For each operand input bit pair \((a_i,b_i) \), the transmit conditions are determined using an XOR gate. When all transmit conditions are true, then the carry-in bit determines the carry-out bit. The n-bit CSA consists of mux, AND gate with n-inputs and n-bit carry ripple chain. The carry ripple chain provides transmit bit, which is connected to the AND gate. The mux uses the resultant bit as a select bit that changes either the carry-in to the carry-out signal or last carry bit.

D. Carry Look Ahead Adder

The figure 5 shows the block diagram of CLA. The CLA computes carry bits before the sum, which decreases the wait time to compute the result of the higher bit value. In CLA to make addition much faster, propagate and generate logics are able to generate carries before the sum is produced. Full adder circuit develops two logics carry generate \((G_i = A_i \text{ AND } B_i) \), and carry propagate \((P_i = A_i \text{ XOR } B_i) \). The output can be conveyed as sum \((S_i = P_i \text{ XOR } C_i) \) and carry \((C_{i+1} = G_i + P_iC_i) \). \(G_i=\text{carry generate} \) and \(P_i=\text{carry propagate} \), because it is term associated with the propagation of the carry from \(C_i \) to \(C_{i+1} \). The carry output of each stage is \(C_2 = G_1+P_1C_1, C_3 = G_2+P_2C_2 = G_2+P_2(G_1+P_1C_1) = G_2+P_2G_1+P_2P_1C_1, C_4 = G_3+P_3C_3 \). C4, C3 and C2 are transmitted at the same time. Each output carry are expressed in sum of product form.

E. Kogge Stone Adder

Parallel prefix adders are constructed based on the use of generate and propagate signals. Parallel prefix adders consists three stages. The block diagram of three stages is shown in figure 6.
Figure 6: Block Diagram of Parallel Prefix Adders

The pre-processing stage is used to estimate generate and propagate bit. The carry computation stage is used to compute the carry bit and the post processing stage to calculate the sum bit. The most used parallel prefix adders are KSA, HCA and BKA. KSA is a parallel prefix form of CLA. It produces carry in zero time. The pre-processing stage in KSA Generate (pi, gi) from (Ai, Bi). $pi = Ai \ XOR \ Bi$, $gi = Ai \ AND \ Bi$. The logic equations in carry computation stage are $Pi:j = Pi:k+1$ and $Gi:j = Gi:k+1$ or $(Pi:k+1 \ AND \ Gi:k:j)$. $Ci = Gi:0$ or $(Cin \ AND \ Pi:0)$. The logic equations in post processing stage is $Si = P_i \ XOR \ C_{i-1}$.

The HCA and BKA are ALSO parallel prefix adders having the same procedure of KSA but with different architecture.

IV. RESULTS

The schematic diagrams of AND, NOR, OR, and EXOR gates, basic modules of half adder and full adder, 8-bit CIA, CBA, CSKA, CLA, KSA, HCA, and BKA are shown in figures 7 to 23 respectively using Tanner. In the architecture of CMOS adders, the CMOS basic modules like AND, NOR, OR, and EXOR gates, half and full adders are used. The architecture of GDI adders is same as CMOS adders but CMOS basic modules are replaced with GDI basic modules.
Implementation of Low Power High Speed Adder’s using GDI Logic

Figure 11: OR Gate using GDI

Figure 12: EXOR Gate using CMOS

Figure 13: EXOR Gate using GDI

Figure 14: Half Adder using CMOS

Figure 15: Half Adder using GDI

Figure 16: Full Adder using CMOS and GDI
Figure 17: CIA using CMOS and GDI

Figure 18: Schematic Diagram of CBA using CMOS and GDI

Figure 19: Schematic Diagram of CSKA using CMOS and GDI
Implementation of Low Power High Speed Adder’s using GDI Logic

Figure 20: Schematic Diagram of CLA using CMOS and GDI

Figure 21: Schematic Diagram of KSA using CMOS and GDI

Figure 22: Schematic Diagram HCA using CMOS and GDI
The transistors count, delay, and power consumption of logic gates, basic modules and low power adders using CMOS and GDI logic are shown in tables 2 to 4 respectively.

Table 2: Transistors Count for Logic Gates, Basic Modules & Low Power Adders using CMOS and GDI Logic

Logic Gates, Basic Modules and Low Power Adders	CMOS Logic (Number of Transistors)	GDI Logic (Number of Transistors)
AND	6	2
OR	6	2
XOR	14	4
Half Adder	14	6
Full Adder	34	14
8 Bit CIA	358	138
8 Bit CBA	426	158
8 Bit CSKA	564	296
8 Bit CLA	368	112
8 Bit KSA	602	190
8 Bit HCA	446	138
8 Bit BKA	422	130

Table 3: Delay for Logic Gates, Basic Modules & Low Power Adders using CMOS and GDI Logic

Logic Gates, Basic Modules and Low Power Adders	CMOS Logic (Sec)	GDI Logic (Sec)
AND	2.47	2.06
OR	2.69	2.34
XOR	2.92	2.34
Half Adder	3.23	2.46
8 Bit CIA	5.48	2.49
8 Bit CBA	6.38	2.58
8 Bit CSKA	5.33	2.78
8 Bit CLA	7.86	3.94
8 Bit KSA	6.95	3.29
8 Bit HCA	9.53	4.08
8 Bit BKA	7.92	4.56

Figure 23: Schematic Diagram of BKA using CMOS and GDI
Implementation of Low Power High Speed Adder’s using GDI Logic

Table 4: Power Consumption of Logic Gates, Basic Modules & Low Power Adders using CMOS and GDI Logic

Logic Gates and Basic Modules	CMOS Logic (m watts)	GDI Logic (n watts)
AND	67.6	0.09
OR	173.7	0.09
XOR	188.3	76.3
Half Adder	188.3	76.4

Low Power Adders	CMOS Logic (m watts)	GDI Logic (n watts)
8 Bit CIA	6.77	5.79
8 Bit CBA	0.15	0.11
8 Bit CSKA	5.10	3.04
8 Bit CLA	5.89	3.74
8 Bit KSA	9.61	7.06
8 Bit HCA	4.21	2.44
8 Bit BKA	4.14	1.85

IV. CONCLUSION

In this work 8-bit CIA, CBA, CSKA, CLA, KSA, HCA, and BKA are implemented in CMOS and GDI logic using Tanner. Analyzing the results CLA, KSA, and CBA designs using GDI logic are more efficient compared to CMOS logic in terms of area (transistors count), delay, and power consumption respectively. Whereas CIA, CBA, CSKA, CLA, KSA, HCA, and BKA adders using GDI logic requires 61.45%, 62.91%, 62.96%, 69.56%, 68.43%, 69.05%, and 69.19% less number of transistors compared to CMOS logic respectively. The delay of CIA, CBA, CSKA CLA, KSA, HCA, and BKA adders using GDI logic requires 54.56%, 52.44%, 47.84%, 56.34%, 57.19%, 52.53%, 49.88% less compared to CMOS logic respectively. The CIA, CBA, CSKA, CLA, KSA, HCA, and BKA adders using GDI logic consumes 14.47%, 26.67%, 40.39%, 36.51%, 26.54%, 42.05%, and 55.32% less power compared to CMOS logic respectively. In respect of number of transistors, delay, and power consumption out of seven adders CLA, KSA, and BKA adders requires 69.56%, 57.19%, and 55.32% less compared to other adders. So CLA, KSA, and BKA adders are best in area, delay, and power efficient adders compared to other adders.

REFERENCES

1. S Bharathi “Area Efficient Self Timed Adders for Low Power Applications in VLSI”, I. J. of innovative Research in Science, Engg and Technology, Vol. 4, Issue 2, Feb 2015.
2. Jashanpreet Kaur, et.al. “A Review on GDI”, I. J of Advance Research in Electronics, Electrical & Computer Science Applications of Engg & Technology, Vol. 2, Issue 4, July 2014.
3. P Chaitanya Kumari, “Design of 32 bit Parallel Prefix Adders”, IOSR Journal of Electronics and Communication Engg, Vol.6, Issue 1, May 2013.
4. Adilakshmi siliveru, “Design of KSA and BKA using Degenerate PTL”, IJ. of Emerging Science and Engg, Vol. 1(4), 2013, pp.2319–6378.
5. Arun Prakash Singh, “Implementation of 1-Bit Full Adder using GDI Cell”, IJ.of Electronics and Computer Science Engineering, Vol.1, Issue 2, pp.333-342, 2012.
6. Madhu Thakur, “ Design of Braun Multiplier with KS A & its Implementation on FPGA”, I. J. of Scientific & Engg Research, Vol.3, Issue 10, Oct-2012.
7. S. Veeramachaneni, “Efficient Design of 32-Bit Comparator using CLA Logic,” in Proceedings of the IEEE NEWCAS ’07, August 2007, pp.867–870.

AUTHORS PROFILE

Addanki Purna Ramesh has more than 21 years of teaching and research experience. He obtained his Master’s degree from INTU, Hyderabad and Ph.D. from JNTUK, Kaknada. He is Member of Fellow of IETE, ACEEE, Fellow of Institute of Engineers (India). His areas of interest are VLSI, DIP, and Embedded Systems. He has 30 publications in various International and National Journals and conferences.