Special Report for
3rd INTERNATIONAL CONFERENCE ON THE ABS ALGORITHMS
May 13-14/01, Beijing

VC++ ABSDLL V01 B

C++ CODES OF IMPLICIT LU ALGORITHMS
FOR ABSDL01

Xing Li, Ying Liu and Antonino Del Popolo

Centre for Optimization Research and Applications
Department of Applied Mathematics, Dalian University of Technology
C++ CODES OF IMPLICIT LU ALGORITHMS FOR ABSDLL01

Xing Li1, Ying Liu2 and Antonino Del Popolo3

Abstract: This report is devoted to some C++ codes implementing the implicit LU class algorithms for solving linear determined, and undetermined systems with \(n \) variables and \(m \) equations. A main program used in part of the numerical test is given in the last section.

Key words: ABS methods, Abaffian matrix, linearly system of equations, implicit LU algorithm, pivot, VC++, C++.

AMS Subject Classification (2000): 65F10, 68Q10, 90C30

1 Introduction

ABS methods were introduced by Abaffy, Broyden and Spedicato (1982/84) \cite{AbBS 82}, \cite{AbBS 84} originally for solving systems of linear equations. The basic ABS class was later generalized to the so-called scaled ABS class and, subsequently, applied to linear-squares, nonlinear equations and optimization problems, see for instance, Abaffy and Spedicato \cite{AbSp 89}, Spedicato \cite{Sped 97}, \cite{Sped 99}, Spedicato, Xia Z. and Zhang L. \cite{SpXZ 00} and Zhang L., Xia Z. and Feng E. \cite{ZhXF 99}. In this paper we first review the general scheme for solving linear determined or undetermined systems.

Let us consider the general linear systems, where rank(\(A \)) is arbitrary,

\[Ax = b, \quad A \in \mathbb{R}^{m \times n} \]

or

\[a_i^T x = b_i, \quad i = 1, \cdots, m \]

where

11CORA, Department of Applied Mathematics, Dalian University of Technology Dalian 116024, China, xingli@student.dlut.edu.cn
22Division of Software, Legend Computer Company, Beijing 100085, China, liuyinge@legend.com.cn.
33Department of Mathematics, University of Bergamo, Piazza Rosate 2, 24129 Bergamo, Italy
The steps of the unscaled ABS class of algorithms are defined as follows:

Basic (Unscaled) ABS Class of Algorithms: [AbBS 84], Algorithm 1 [AbSp 89]: pp. 21-22

Begin Algorithm

(A) Initialization.

Give an arbitrary vector \(x_1 \in \mathbb{R}^n \), and an arbitrarily nonsingular matrix \(H_1 \in \mathbb{R}^{n,n} \).

Set \(i = 1 \) and iflag=0.

(B) Computer two quantities.

Compute

\[
\begin{align*}
 s_i &= H_i a_i \\
 \tau_i &= \tau^T e_i = a_i^T x_i - b^T e_i
\end{align*}
\]

(C) Check the compatibility of the system of linear equations.

If \(s_i \neq 0 \) then goto (D).

If \(s_i = 0 \) and \(\tau_i = 0 \) then set

\[
\begin{align*}
 x_{i+1} &= x_i \\
 H_{i+1} &= H_i
\end{align*}
\]

and goto (F), the \(i \)-th equation is a linear combination of the previous equations.

Otherwise stop, the system has no solution.

(D) Computer the search vector \(p_i \in \mathbb{R}^n \) by

\[
p_i = H_i^T z_i \tag{1.1}
\]

where \(z_i \), the parameter of Broyden, is arbitrary save that

\[
z_i^T H_i a_i \neq 0 \tag{1.2}
\]

(E) Update the approximation of the solution \(x_i \) by

\[
x_{i+1} = x_i - \alpha_i p_i \tag{1.3}
\]
where the stepsize α_i is computed by

$$\alpha_i = \tau_i / a_i^T p_i$$ \hspace{1cm} (1.4)$$

If $i = m$ stop; x_{m+1} solves the system.

(F) Update the (Abaffian) matrix H_i. Compute

$$H_{i+1} = H_i - H_ia_iw_i^T H_i/w_i^T H_i a_i$$ \hspace{1cm} (1.5)$$

where $w_i \in \mathbb{R}^n$, the parameter of Abaffy, is arbitrary save for the condition

$$w_i^T H_i a_i = 1 \text{ or } \neq 0$$ \hspace{1cm} (1.6)$$

(G) Increment the index i by one and goto (B).

We define n by i matrices A_i, W_i and P_i by

$$A_i = (a_1, \cdots, a_i)^T, \quad W_i = (w_1, \cdots, w_i), \quad P_i = (p_1, \cdots, p_i)$$ \hspace{1cm} (1.7)$$

End Algorithm

Some properties of the above recursion, see for instance, Abaffy and Spedicato (1989), [AbSp 89], are listed below that are the basic formulae for use later on.

a. Implicit factorization property

$$A_i^T P_i = L_i$$ \hspace{1cm} (1.8)$$

with L_i nonsingular lower triangular.

b. Null space characterizations

$$\mathcal{N}(H_{i+1}) = \mathcal{R}(A_i^T), \quad \mathcal{N}(H_{i+1}^T) = \mathcal{R}(W_i),$$ \hspace{1cm} (1.9)$$

$$\mathcal{N}(A_i) = \mathcal{R}(H_{i+1}^T)$$

where $\mathcal{N}=\text{Null}$ and $\mathcal{R}=\text{Range}.$

c. The linear variety containing all solutions to $Ax = b$ consists of the vectors of the form

$$x = x_{t+1} + H_{t+1}^T q$$ \hspace{1cm} (1.10)$$

where $q \in \mathbb{R}^n$ is arbitrary.
Much progress on the computational aspect of ABS algorithms have been made since the ABS algorithms were found in the early 1980’s. In the last several years lots of work has been done on enlarging, improving and completing ABSPACK that is a package of ABS algorithms in FORTRAN codes due to Spedicato and his collaborators [Bodo 89], [Bodo 90a], [Bodo 00a], [Bodo 00b], [Bodo 01a], [BoLS 00a], [BPLS 00a], [BPLS 00b], [BPLS 01]. In the last two years we investigated possibility of establishing C++/VC++ ABS software, i.e. ABS software written in C++/VC++. Part of work in the subject is presented in this paper concerning the implicit LU algorithms.

In this report a text of some codes implementing the implicit LU algorithms for solving linear determined and undetermined systems with \(n \) variables and \(m \) equations is given. The codes are written in C++ language using Matrix class (with CMatrix as its class name) and Vector class (with CVector as its class name) that are made by ourselves for constructing the ABS software. The paper is organized based on the following three algorithms:

1. Function \(iLUA \): the implicit LU method, where \(A \) is regular (i.e. all principal submatrices are nonsingular), without pivoting for determined and undetermined systems.

2. Function \(iLUA_{\text{PivotC}} \): the implicit LU method with column pivoting and explicit column interchanges for linear determined and undetermined systems. Since the column pivot cause that the ordering of components of solution is changed, it is necessary to recover the ordering of components of solution and related codes are given.

3. Function \(iLUA_{\text{PivotR}} \): the implicit LU method with row pivoting and explicit row interchanges for determined and undetermined systems.

In the next section three schemes of implicit LU algorithms and some general properties are given. Codes implementing these algorithms are listed in section 3. Finally a main program to test algorithms is presented.

2 Implicit LU Algorithms

2.1 Schemes of implicit LU algorithms

We give a short description of three versions of the implicit LU algorithms below:

Implicit LU Algorithm Without Pivoting (iLUA): \([\text{AbBS 82}], [\text{AbBS 84}], [\text{Sped 01}]\)

(iLUA is abbreviation for implicit LU algorithm without pivoting, under the assumption
of A is regular

Set $x_1 = 0$, $H_1 = I$ and $i = 1$

For $i = 1$ to m do

Set $s_i = H_ia_i$

$\quad d_i = s_i^T e_i$

$\quad x_{i+1} = x_i - (a_i^T x_i - b_i)/d_i H_i^T e_i$

if $i \leq m$, then set

$\quad H_{i+1} = H_i - s_i e_i^T H_i/d_i$

endo

Implicit LU Algorithm With Column Pivoting (iLUaPivotC): [AbSp 89], [Bodo 00a]

(iLUaPivotC is the abbreviation of "implicit LU algorithm with column pivoting" and column interchanges, without the regularity of A. The ordering of components of solution is changed because of the column pivot)

Set $x_1 = 0$, $H_1 = I$ and $i = 1$

For $i = 1$ to m do

Set $s_i = H_ia_i$

(only $(i - 1)(n - i + 1)$ nonzero elements of H_i are used)

Determine $d_i = |s_i^T e_k|$, such that $|s_i^T e_k| = \max\{|s_i^T e_j| \mid j = i, \cdots, n\}$

(only $n - i + 1$ nonzero elements of s_i are used)

If $k_i \neq i$, then swap columns of A and elements of x_i and s_i with these indices

Set $x_{i+1} = x_i - ((a_i^T x_i - b_i)/d_i) H_i^T e_i$

(only i nonzero elements of x_i are updated)

if $i \leq m$, then set $H_{i+1} = H_i - s_i e_i^T H_i/d_i$

(only $i(n - i)$ nonzero elements of H_{i+1} are updated)

endo

Implicit LU Algorithm With Row Pivoting (iLUaPivotR):

(iLUaPivotR stands for implicit LU algorithm with row pivoting and explicit row interchanges, without the regularity of A and change of components of solution vector)

Set $x_1 = 0$, $H_1 = I$ and $i = 1$

For $i = 1$ to m do

Determine $d_i = |p_i^T a_k|$, such that $|p_i^T a_k| = \max\{|p_i^T a_j| \mid j = i, \cdots, n\}$

If $k_i \neq i$, then swap rows of A and elements of x_i and b with these indices

Set $s_i = H_ia_i$
(only $(i - 1)(n - i + 1)$ nonzero elements of H_i are used)
Set $x_{i+1} = x_i - ((a_i^T x_i - b_i)/d_i) H_i^T e_i$
(only i nonzero elements of x_i are updated)
if $i \leq m$, then set $H_{i+1} = H_i - s_i e_i^T H_i/d_i$
(only $i(n - i)$ nonzero elements of H_{i+1} are updated)
enddo

2.2 Properties of general implicit LU algorithms

The general implicit LU algorithm is obtained by the parameter choices $H_1 = I$, $z_i = e_i$, $w_i = e_i$. Some properties of this class of algorithms is listed as followings:

(a) The algorithm is well defined iff A is regular (i.e., all principal submatrices are nonsingular). Otherwise pivoting has to be performed.

(b) Since $W_i^T H_{i+1} = [I_i, 0]^T H_{i+1} = 0$, the first i rows of the Abaffian matrix H_{i+1} must be zero. More precisely, the Abaffian matrix has the following structure, with $K_i \in \mathbb{R}^{n-i,i}$

$$H_{i+1} = \begin{bmatrix} 0 & 0 \\ K_i & I_{n-i} \end{bmatrix}$$

(c) Only the first i components of p_i can be nonzero and the i-th is unity. Hence the matrix P_i is unit upper triangular, so that the implicit factorization $A = L P^{-1}$ is of the LU type, with unit on the diagonal.

(d) Only K_i has to be updated. The algorithm requires $nm^2 - 2m^3$ multiplications plus lower-order terms. Hence, for $m = n$ there are $n^3/3$ multiplications plus low-order terms, which is the same cost as for the classical LU factorization or Gaussian elimination (which are two essentially equivalent process).

3 Codes of Implicit LU Algorithms

3.1 iLUa code

```
function BOOL iLUa(CMatrix m_A, CVector v_b, CVector &v_x, double ep1, double ep2)
```
Under the condition of regularity of A, iLUa determines the solution of the linear systems $Ax = b$ (A with dimension $m \times n$, $m \leq n$), using implicit LU algorithm without pivoting. The type of return value of function is BOOL, true if system has a solution, otherwise the return value is false.

m_A = an object of CMatrix class, denote coefficient matrix
v_b = an object of CVector class, denote right hand-side vector
v_x = an object of CVector class, denote solution vector

(using reference operator to output the solution vector)

$ep1$ = a double type value of dependency control parameter
$ep2$ = a double type value of residual control parameter

{
 try
 {
 CVector v_x1;
 // declare an object of CVector class
 v_x1=v_x;

 CVector v_s;
 // declare an object of CVector class, denotes the vector $s_i = H_i a_i$
 CMatrix m_H(1.0,m_A.m_cols);
 // declare an object of CMatrix class, denotes the Abaffian matrix,
 // the initial matrix is unit matrix
 double ns;
 // declare a double precision number, denotes $||p||$, the norm of p
 double r;
 // declare a double precision number, $r_i = a_i^T x_i - b_i$
 int iflag=0;
 int i=1;

 // iteration
 while(i<=m_A.m_rows)
 {
 }
// compute $s_i = H_i a_i$
if (i == 1)
 v_s = m_A.GetRow(i).Trans();
else
{
 v_s[i-1] = 0.0;
 for (int i1 = i; i1 <= m_A.m_cols; i1++)
 {
 double sum1 = 0.0;
 for (int j1 = 1; j1 < i; j1++)
 sum1 = sum1 + m_H.GetValue(i1, j1) * m_A.GetValue(i, j1);
 v_s[i1] = sum1 + m_A.GetValue(i, i1);
 }
}

r = Dot(m_A.GetRow(i), v_x1) - v_b[i];
ns = v_s.Module();
if (ns <= ep1)
{
 if (fabs(r) <= ep2)
 // i-th row is linearly dependent with first $i-1$ rows
 {
 iflag = iflag + 1;
 i = i + 1;
 }
 else
 {
 // system is incompatible
 iflag = -i;
 AfxMessageBox("No Solution");
 break;
 }
}
else
{
}

// update solution x_i
double temp=0;
temp=r/v_s[i];
for(int i2=1;i2<=i;i2++)
 v_x1[i2]=v_x1[i2]-temp*m_H.GetValue(i,i2);

// update projection matrix H_i
if(i<m_A.m_cols)
{
 for(int i3=i+1;i3<=m_A.m_cols;i3++)
 {
 for(int j3=1;j3<=i;j3++)
 {
 double tt;
 tt=(v_s[i3]*m_H.GetValue(i,j3))/v_s[i];
 tt=m_H.GetValue(i3,j3)-tt;
 m_H.SetValue(i3,j3,tt);
 }
 }
 for(i3=1;i3<=i;i3++)
 m_H.SetValue(i,i3,0.0);
 i++;
}

if(iflag>=0)
{
 v_x=v_x1;
 return(true);
}
else
 return(false);

}
AfxMessageBox(e->GetErrorInfo());
e->Delete();
exit(1);}
}

3.2 iLUaPivotC code

function BOOL iLUaPivotC(CMatrix m_A, CVector v_b, CVector &v_x, double ep1,
 double ep2)

// iLUaPivotC determines the solution of the linear systems \(Ax = b \) (\(A \) with
// dimension \(m \times n \), \(m \leq n \)) using implicit LU algorithm with column pivoting
// and explicit column interchanges, and the order of components solution
// vector are changed
// the type of return value of function is BOOL, true if system has a solution
// otherwise the return value is false

// \(m_A \) = an object of CMatrix class, denote coefficient matrix
// \(v_b \) = an object of CVector class, denote right hand-side vector
// \(v_x \) = an object of CVector class, denote solution vector
// (using reference operator to output the solution vector)
// \(\text{ep1} \) = double type value of dependency control parameter
// \(\text{ep2} \) = double type value of residual control parameter

{
 try
 {
 CVector v_x1;
 // declare an object of CVector class
 v_x1=v_x;

 CVector v_s;
 // declare an object of CVector class, denotes the vector \(s_i = H_i a_i \)
 CMatrix m_H(1.0,m_A.m_cols);
 // declare an object of CMatrix class, denotes the Abaffian matrix,
// the initial matrix is unit matrix
int ki;
// declare an integer number, denotes the ordering of pivot
double r;
int iflag=0;
double d;

int* Index;
// declare a pointer to type integer
Index=new int[m_A.m_cols];
// use new operator to allocate a pointer to an array of integer with
// dimension m_A.m_cols
for(int ii=1;ii<=m_A.m_cols;ii++)
 Index[ii]=ii;
// initialize the array of integer
int i=1;

// iteration
while(i<=m_A.m_rows)
{
 // compute $s_i = H_i a_i$
 if(i==1)
 v_s=m_A.GetRow(i).Trans();
 else
 {
 v_s[i-1]=0.0;
 for(int i1=i;i1<=m_A.m_cols;i1++)
 {
 double sum1=0.0;
 for(int j1=1;j1<i;j1++)
 sum1=sum1+m_H.GetValue(i1,j1)*m_A.GetValue(i,j1);
 v_s[i1]=sum1+m_A.GetValue(i,i1);
 }
 }
}
// pivoting

d=-1;
for(int j2=i;j2<=m_A.m_cols;j2++)
{
 if(d<fabs(v_s[j2]))
 {
 d=fabs(v_s[j2]);
 ki=j2;
 }
}

if(ki!=i)
// swap i-th column and k_i-th column of A
// swap i-th component and k_i-th component of x_i and s_i
// save ordering of pivot in Index
{
 m_A=m_A.SwapCol(ki,i);
 v_x=v_x.SwapElement(ki,i);
 v_s=v_s.SwapElement(ki,i);
 int it;
 it=Index[i];
 Index[i]=Index[ki];
 Index[ki]=it;
}

r=Dot(m_A.GetRow(i),v_x1)-v_b[i];
if(fabs(v_s[i])<=ep1)
{
 if(fabs(r)<=ep2)
 // i-th row is linearly dependent with first i−1 rows
 {
 iflag=iflag+1;
 i=i+1;
 }
 else

// system is incompatible
{
 iflag=-i;
 AfxMessageBox("No Solution");
 break;
}
}
else
{
 // update solution x_i
 double temp=0;
 temp=r/v_s[i];
 for(int i2=1;i2<=i;i2++)
 v_x1[i2]=v_x1[i2]-temp*m_H.GetValue(i,i2);
 // update projection matrix H_i
 if(i<m_A.m_cols)
 {
 for(int i3=i+1;i3<=m_A.m_cols;i3++)
 {
 for(int j3=1;j3<=i;j3++)
 {
 double tt;
 tt=(v_s[i3]*m_H.GetValue(i,j3))/v_s[i];
 tt=m_H.GetValue(i3,j3)-tt;
 m_H.SetValue(i3,j3,tt);
 }
 for(i3=1;i3<=i;i3++)
 m_H.SetValue(i,i3,0.0);
 }
 i++;
 }
 if(iflag>=0)
// exchange components of solution to adapt the original system
{
 for(int i4=1;i4<=m_A.m_cols;i4++)
 {
 for(int j4=1;j4<=m_A.m_cols;j4++)
 {
 if(Index[j4]==i4)
 v_x[i4]=v_x1[j4];
 }
 }
 return(true);
}
else
 return(false);
}
catch(CErrorException *e)
{
 AfxMessageBox(e->GetErrorInfo());
 e->Delete();
 exit(1);
}

3.3 iLUaPivotR code

function BOOL iLUaPivotR(CMatrix &m_A, CVector &v_b, CVector &v_x, double ep1,
 double ep2)

 // iLUaPivotC determines the solution of the linear systems $Ax = b$ (A with
 // dimension $m \times n$, $m \leq n$) using implicit LU algorithm with column pivoting
 // and explicit column interchanges
 // the type of return value of function is BOOL true if system has a solution
 // otherwise the return value is false

 // m_A = an object of CMatrix class, denote coefficient matrix
// v_b = an object of CVector class, denote right hand-side vector
// v_x = an object of CVector class, denote solution vector (using reference operator to output the solution vector)
// ep1 = double type value of dependency control parameter
// ep2 = double type value of residual control parameter

{
 try
 {
 CVector v_x1;
 // declare an object of CVector class
 v_x1=v_x;

 CVector v_s;
 // declare an object of CVector class, denotes the vector s_i = H_i a_i
 double r;
 // declare a double precision number, r_i = a_i^T x_i - b_i

 CMatrix m_H(1.0,m_A.m_cols);
 // declare an object of CMatrix class, denotes the Abaffian matrix, the initial matrix is unit matrix
 int ki;
 // declare an integer number, denotes the ordering of pivot
 double d;
 int iflag=0;
 int i=1;

 // iteration
 while(i<=m_A.m_rows)
 {
 // pivoting
 double mpt=0
 d=-1;
 for(int j2=i;j2<=m_A.m_rows;j2++)
{
 mpt = Dot(m_H.GetRow(i), m_A.GetRow(j2));
 if (d < fabs(mpt))
 {
 d = fabs(mpt);
 ki = j2;
 }
}

if (ki != i)
 // swap i-th row and k_i-th row of A
 // swap i-th component and k_i-th component of x_i and s_i
 // save ordering of pivot in Index
{
 m_A = m_A.SwapRow(ki, i);
 v_x = v_x.SwapElement(ki, i);
 v_b = v_b.SwapElement(ki, i);
}

mpt = Dot(m_H.GetRow(i), m_A.GetRow(i));
// compute s_i = H_i a_i
if (i == 1)
 v_s = m_A.GetRow(i).Trans();
else
{
 v_s[i-1] = 0.0;
 for (int i1 = i; i1 <= m_A.m_cols; i1++)
 {
 double sum1 = 0.0;
 for (int j1 = 1; j1 < i; j1++)
 sum1 = sum1 + m_H.GetValue(i1, j1) * m_A.GetValue(i, j1);
 v_s[i1] = sum1 + m_A.GetValue(i, i1);
 }
}

r = Dot(m_A.GetRow(i), v_x1) - v_b[i];
if(fabs(mpt)<=ep1)
{
 if(fabs(r)<=ep2)
 // i-th row is linearly dependent with first \(i-1 \) rows
 {
 iflag=iflag+1;
 i=i+1;
 }
 else
 // system is incompatible
 {
 iflag=-i;
 AfxMessageBox("No Solution");
 break;
 }
}
else
{
 // update solution \(s_i \)
 double temp=0;
 temp=r/mpt;
 for(int i2=1;i2<=i;i2++)
 v_x1[i2]=v_x1[i2]-temp*m_H.GetValue(i,i2);
 // update projection matrix \(H_i \)
 if(i<m_A.m_cols)
 {
 for(int i3=i+1;i3<=m_A.m_cols;i3++)
 {
 for(int j3=1;j3<=i;j3++)
 {
 double tt;
 tt=(v_s[i3]*m_H.GetValue(i,j3))/mpt;
 tt=m_H.GetValue(i3,j3)-tt;
 }
4 A Main Program for LU Algorithm

To make ABS algorithms be used more widely, we encapsulate Matrix class, Vector class and the ABS algorithms modules into the library modules ABSDL1.dll. A main program for the use of module(function) iLUaPivotC that solves linear system $Ax = b$ (with Micchelli-Fiedler matrix as coefficient matrix) is as following:

```c
#include "stdafx.h"

m_H.SetValue(i3,j3,tt);
}
}
for(i3=1;i3<=i;i3++)
    m_H.SetValue(i,i3,0.0);
}
i++;
}

if(iflag>=0)
{
    v_x=v_x1;
    return(true);
}
else
    return(false);
}
catch(CErrorException *e)
{
    AfxMessageBox(e->GetErrorInfo());
    e->Delete();
    exit(1);
}
}

4 A Main Program for LU Algorithm

To make ABS algorithms be used more widely, we encapsulate Matrix class, Vector class and the ABS algorithms modules into the library modules ABSDL1.dll. A main program for the use of module(function) iLUaPivotC that solves linear system $Ax = b$ (with Micchelli-Fiedler matrix as coefficient matrix) is as following:

```c
#include "stdafx.h"

m_H.SetValue(i3,j3,tt);
}
}
for(i3=1;i3<=i;i3++)
 m_H.SetValue(i,i3,0.0);
}
i++;
}

if(iflag>=0)
{
 v_x=v_x1;
 return(true);
}
else
 return(false);
}
catch(CErrorException *e)
{
 AfxMessageBox(e->GetErrorInfo());
 e->Delete();
 exit(1);
}
```
#include "absalg.h"
#include "iostream.h"

void main()
{
    try
    {
        int m=1000;
        int n=1000;

        HINSTANCE hLib=AfxLoadLibrary("ABSDLL.dll");

        CMatrix a(m,n);
        CVector b(m);

        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                a.SetValue(i,j,abs(i-j));
            }
        }

        for(int k=1;k<=m;k++)
            b[k]=k;

        CVector xx(0.0,n);
        if(!iLUaPivotC(a,b,xx,1.0e-7,1.0e-7))
        {
            cout<<("Do you want a least-square solution?\endl");
            char c;
            cin>>c;
            if(c=='y'||c=='Y')
                // calling the modules for solving the least-squares problem
            else
exit(0);
}

else
{
    CVector r;
    r=a*xx-b;
    er=r.Module();
cout<<("errorbound=%f\n",er);

    AfxFreeLibrary(hLib);
}

}

catch(CErrorException *e)
{
    AfxMessageBox(e->GetErrorInfo());
    e->Delete();
}

 Remarks
As for numerical experiments, we have made some tests, for example, matrices with elements
\[ a_{ij} = |i - j|, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n \] (Micchelli-Fiedler matrix) and matrices with elements
\[ a_{ij} = |i - j|^2, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n. \] The results show that the algorithms are efficient. Further numerical experiments are in progress.

 References

[AbBS 82 ] Abaffy J., Broyden C.G. and Spedicato E. (1982), A class of direct methods for linear systems II: generalization, non-singular representation and other tales, Report SOFMAT 21/82, IAC, Rome.

[AbBS 84 ] Abaffy J., Broyden C.G. and Spedicato E. (1984), A class of direct methods for linear systems, Numerische Mathematik 45, 361-376.

[AbSp 85 ] Abaffy J. and Spedicato E. (1985), A generation of the ABS algorithms for linear systems, DMSIA 4/85, University of Bergamo.
[AbSp 89] Abaffy J. and Spedicato E. (1989), ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Algebraic Equations, Ellis Horwood, Chichester (Chinese translation published in 1991 by Beijing Polytechnical University Press, Beijing. Russian translation with update appendix published in 1996 by Mir, Moscow).

[BeSp 89a] Bertocchi M. and Spedicato E. (1989a), Performance of the implicit Gauss-Cholesky algorithm of the ABS class on the IBM 3090 VF, Proceedings of the 10-th Symposium on Algorithms, Strbske Pleso, 30-34.

[BeSp 89b] Bertocchi M. and Spedicato E. (1989b), Computational performance on the IBM 3090 VF of the modified Huang and the implicit Gauss-Cholesky algorithms versus the Gaussian solver in the ESSL library on ill-conditioned problems, Proceedings of the 10-th Symposium on Algorithms, Strbske Pleso, April 17-21, 1989, 22-29. Also as QDMSIA 14/88.

[BeSp 89c] Bertocchi M. and Spedicato E. (1989c), Vectorizing the implicit Gauss-Cholesky algorithm of the ABS class on the IBM 3090 VF, Report 1/37, IAC, Rome. Also as QDMSIA 22/88.

[BeSp 90] Bertocchi M. and Spedicato E. (1990), A vectorized FORTRAN code of the implicit Gauss-Cholesky algorithm of the ABS class, Manual 1/34, IAC, Rome.

[Bodo 89] Bodon E. (1989a), A code for linear full rank least squares problems based upon an implicit QR ABS algorithm, QDMSIA 14/89.

[Bodo 90a] Bodon E. (1990a), A code for solving determined or underdetermined full or deficient rank linear systems based upon the optimally conditioned ABS algorithm, Preprint, University of Bergamo.

[Bodo 93a] Bodon E. (1993a), Numerical experiments on the ABS algorithms for linear systems of equations, Report TR/PA/93/17, QDMSIA, University of Bergamo, 1993.

[Bodo 00a] Bodon E. (2000a), ABS codes of nonlinear Huang, modified Huang and implicit LU algorithms for nonlinear systems of equations, QDMSIA 23/00.

[Bodo 00b] Bodon E. (2000b), ABS codes for linear determined, underdetermined and overdetermined systems, QDMSIA 24/00.
[Bodo 00c] Bodon E. (2000c), ABS codes for linear KKT systems, QDMSIA 25/00.

[Bodo 01a] Bodon E. (2001a), ABS codes for banded linear systems, Preprint, 2001.

[Bodo 01b] Bodon E. (2001b), Numerical experiments on the block implicit LU algorithm for linear systems of equations, QDMSIA 5/01.

[BoLS 00a] Bodon E., Luksan L. and Spedicato E. (2000a), Computational Science, Academy of Sciences of Czech Republic.

[BoLS 00b] Bodon E., Luksan L. and Spedicato E. (2000b), Computational experiments with ABS algorithms for determined and underdetermined linear systems, QDMSIA 21/00.

[BPLS 00a] Bodon E., Del Popolo A., Luksan L. and Spedicato E. (2000a), Computational experiments with ABS algorithms for overdetermined linear systems, QDMSIA 19/00.

[BPLS 00b] Bodon E., Del Popolo A., Luksan L. and Spedicato E. (2000b), Computational experiments with ABS algorithms for KKT linear systems, QDMSIA 20/00.

[BPLS 01] Bodon E., Del Popolo A., Luksan L. and Spedicato E. (2001), Numerical performance of ABS codes for systems of nonlinear equations, QDMSIA 1/01.

[BoSp 90b] Bodon E. and Spedicato E. (1990b), Numerical evaluation of the implicit LU, LQ and QU algorithms in the ABS class, QDMSIA 28/90.

[Dixo 96] Dixon L.C.W. (1996), On the numerical stability of the implicit LU method and related methods, QDMSIA 18/97.

[Gala 93a] Galantai A. (1993a), Generalized implicit LU algorithms in the class of ABS methods for linear and nonlinear systems of algebraic equations, QDMSIA 5/93.

[NiSp 97] Nicolai S. and Spedicato E. (1997), A bibliography of the ABS methods, OMS 8, 171-183. Also as QDMSIA 3/96.

[Sped 93] Spedicato E. (1993), Ten years of ABS methods: a review of theoretical results and computational achievements, Surveys on Mathematics for Industry, 3, 217-232.

[Sped 95] Spedicato E. (1995), ABS algorithms from Luoyang to Beijing, QDMSIA 12/95.
[Sp 97] Spedicato. (1997), ABS algorithms from Luoyang to Beijing, OMS 8, 87-97.

[Sp 99] Spedicato E. (1999), ABS algorithms for linear equations and optimization: a review of main results, Proceedings ISC99, Beirut, March 1999 (I. Moghrabi and S. Kabbani editors), LAU University, 11-21.

[Sp 01] Spedicato E. (2001), Twenty years of ABS algorithms: A bibliography, QDMSIA 01/13, University of Bergamo

[SpAb 82] Spedicato E. and Abaffy J. (1982), A class of direct methods for linear system I: basic properties, Report 82/4, IAMI, Milan.

[SXBP 00] Spedicato E., Xia Z.-Q., Bodon and del Popolo A. (2000), ABS algorithms for linear equations and ABSPACK, Ann. Univ. Ferrara Sez. VI, XLV Suppl., 611-629.

[SpXZ 00] Spedicato E., Xia Z. and Zhang L. (2000), ABS algorithms for linear equations and optimization, J. of Computational and Applied Mathematics 124, 155-170.

[SpZh 94] Spedicato E. and Zhu M.-F. (1994), On the generalized implicit LU algorithm of the ABS class for linear systems, QDMSIA 3/94.

[SpZh 99] Spedicato E. and Zhu M.-F. (1999), A generalization implicit LU algorithm to an arbitrary initial matrix, Numerical Algorithms 20, 343-351.

[ZhXF 99] Zhang L., Xia Z. and Feng E. (1999), Introduction to ABS Methods in Optimization, Monograph, Dalian University of Technology Press