Heart failure in chemotherapy-related cardiomyopathy: Can exercise make a difference?

Nandini Nair, Enrique Gongora

PII: S2214-6474(16)30028-9
DOI: doi: 10.1016/j.bbacli.2016.06.001
Reference: BBACLI 118

To appear in: BBA Clinical

Received date: 28 March 2016
Revised date: 9 June 2016
Accepted date: 9 June 2016

Please cite this article as: Nandini Nair, Enrique Gongora, Heart failure in chemotherapy-related cardiomyopathy: Can exercise make a difference?, BBA Clinical (2016), doi: 10.1016/j.bbacli.2016.06.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Heart Failure in Chemotherapy – Related Cardiomyopathy: Can exercise make a difference?

Nandini Nair*1, Enrique Gongora2

1Division of Cardiology, Texas Tech Health Sciences Center, Lubbock, TX 79382, 2Memorial Cardiac and Vascular Institute, Hollywood, FL 33021.

*Corresponding author

Key words: Cardiotoxicity-related cardiomyopathy; chemotherapy; aerobic exercise; cardioprotection

Introduction

The impressive development of medical therapies in oncology have resulted in better survival and consequently in a large population of survivors who are at risk of early and late cardiac complications secondary to chemotherapy. Chemotherapy-related cardiomyopathy (CRC) can manifest decades after treatment with a threefold higher mortality rate as compared to idiopathic dilated cardiomyopathy (1). The 5-year survival rate for all cancers in the US has increased from 50% in 1975–1977 to 68% in 1999–2005. The leading cause of death in cancer survivors seems to be cardiac (1-4). This review focuses on the possible role of exercise in preventing onset and progression of heart failure in CRC patients and attempts to highlight the need for more detailed studies required to arrive at defined exercise prescriptions for patients treated with different chemotherapeutic agents.

Chemotherapy-related Cardiotoxicity versus Cardiac Hypersensitivity

Cardiotoxicity can be defined as a direct effect of chemotherapy resulting in cardiac dysfunction which may lead to reversible/irreversible heart failure. From a retrospective review of trastuzumab clinical trials CRC has been defined as one or more of the following; a) reduction of LVEF (global or specific to the interventricular septum); b) symptoms or signs of heart failure.
(HF); c) decrease in LVEF from baseline ≤ to 5% to <55% in the presence of signs or symptoms of HF, or a reduction in LVEF ≥10% to <55% without signs or symptoms of HF (5).

Cardiotoxicity related cardiac dysfunction (CRCD) is divided into 2 types. Type I consists of cardiac disease secondary to anthracycline. Increased production of oxygen free radicals and oxidative stress with abnormalities in mitochondrial metabolism as well as lysosomal structure and function has been attributed to be the etiology of cardiotoxicity (6). Anthracyclines are also noted to impair iron metabolism and therefore cause iron accumulation in the cardiac myocytes (7). Many factors including cumulative dosage of anthracycline as well as concomitant use of other drugs, age and female gender have been implicated in the toxicity noted (8,9). Type II is induced by trastuzumab. Trastuzumab is a monoclonal, humanized antibody. It is FDA approved for treatment of HER2 positive breast cancers. Cardiotoxicity secondary to trastuzumab has been noted to be reversible status post discontinuation of the drug and well-tolerated on repeat dosing. Patients show reduced ejection fraction but are asymptomatic with no overt heart failure (10-12). However when dosed with anthracyclines it is known to worsen the cardiotoxicity.

Cardiac hypersensitivity reactions should be distinguished from cardiotoxicity produced by chemotherapeutic agents. The cardiovascular system acts both as a source as well as a target for mediators of allergic reactions. Mast cells reside largely around the adventitia of large coronary arteries in close apposition with the small intramural vessels. Cardiac mast cells respond to IgE-mediated stimuli (13,14), and can also be activated by other stimuli such as anaphylatoxins (C3a and C5a), substance P and eosinophilic cationic proteins (14). With increase in use of chemotherapeutic agents there is a concomitant increase in incidence of hypersensitivity reactions. Premedication, skin testing, and desensitization protocols may be useful in abating these reactions especially in patients with a history of hypersensitivity (15,16).
Role of cardiovascular imaging in defining cardiotoxicity

A number of chemotherapeutic agents have been linked to heart failure with reduced ejection fraction (HFrEF) with one of the topmost offenders being the anthracyclines (17). Left ventricular ejection fraction (LVEF) is usually assessed at baseline and following every cycle but no definite universal guidelines exist for the frequency of these examinations in different chemotherapeutic regimens. In the 2012 guidelines by the European Society of Medical Oncology (ESMO) the frequency of echocardiographic surveillance has been discussed essentially for patients undergoing treatment with anthracycline regimens (18). Different modalities ranging from 2 D echocardiography to cardiac magnetic resonance are used in different institutions to assess left ventricular function making it highly non-uniform and variable. Stress echocardiography may detect cardiomyopathy at the subclinical level, so that early treatment could be initiated before heart failure progresses to an irreversible stage (19). Strain rate imaging is a new modality using echocardiographic techniques to assess early subclinical disease (20-22). Tissue Doppler imaging is the most widely used technique for assessing diastolic dysfunction currently. Cardiac troponin I (cTnI) and brain natriuretic peptide (BNP) and also be used for risk stratification and prognostication (23-24). Early identification of patients who are susceptible to cardiotoxicity may prevent morbidity and mortality (25-27).

Table 1 lists selected studies using different cardiovascular imaging techniques for predicting clinical outcomes in patients experiencing cancer therapy related cardiotoxicity (2, 28-43). Mutigated acquisition (MUGA), 2D and 3D echocardiography have been shown to be useful to varying degrees. Cardiac magnetic resonance (CMRI) still remains the gold standard. CMRI is
limited due to the high cost of installation and operation as well as technical difficulties in patients with metallic prosthesis and devices. The pros and cons of each of the techniques are listed in table 1. Noninvasive imaging continues to be used for assessing LVEF for risk stratification, diagnosis and prognosis. Many more investigations will be needed in the area of noninvasive imaging techniques for risk stratification and prognostication in this population.

Three-dimensional echocardiography-derived LVEF appears to be reliable in patients receiving chemotherapy(43). Global longitudinal strain(GLS) and strain rate detect subclinical changes during chemotherapy, radiation and trastuzumab treatment before changes in LVEF are detectable (44). In an athletic healthy population, cardiac strain changes are noted in response to exercise training (45). GLS has been used in the oncology population to predict early subclinical changes (21). GLS has been shown to be predictive of all-cause mortality in the heart failure population (46-49) but this remains to be demonstrated in cancer survivors.

Endothelial function and cardiac biomarkers can be used to predict and identify cardiotoxicity (50-52). However both endothelial function and biomarkers need further testing and validation in the cancer population.

Clinical studies assessing benefits of exercise

Early detection and intervention may prevent progression of heart failure to Stage D requiring surgical therapies such as placement of a ventricular assist device or cardiac transplantation. However high level evidence is still lacking in clinical decision making regarding early detection and management of chemotherapy related cardiotoxicity (43). Identification of subclinical disease prior to appearance of symptoms would be the key factor to prevent cardiovascular injury and enhance survival as well as quality of life. Additionally such a strategy would also
help in initiating standard heart failure therapies ahead of time before the patient becomes symptomatic.

Studies including randomized clinical trials appear to be conducted in small groups of patients undergoing treatment for cancer notably of the breast. The highlights of these exercise studies point to increased VO2 max, decreased heart rate and decreases in systolic and diastolic blood pressure (53-58). Interestingly, exercise therapy does not seem to prevent ventricular remodeling secondary to trastuzumab when used as adjuvant therapy (59) suggesting that combinations of chemotherapeutic agents may affect multiple molecular targets all of which may not be modulated by exercise. In a study of 123 women assigned to supervised, self-directed or standard care the best benefit in patients who underwent chemotherapy was in the self-directed exercise group. Supervised exercise was of benefit only in cancer patients not receiving any chemotherapy. No significant differences were noted between the groups in their quality of life assessment (60). In a home-based walking study in stages 1-3 breast cancer patients who were starting first line adjuvant therapy significant benefits were observed. The exercise regimen was home-based and consisted of aerobic exercise and walking for 30 minutes 3 times a week. The patients appeared to benefit in terms of significant increase in VO2 max as well as 6 minute walk test (61). The studies on patients in the post treatment period also seem to benefit from supervised as well as home based exercise regimen (62-65). In a study of 113 women role of exercise during and after treatment was assessed. It was interesting that the group that had maximal benefit consisted of the women who underwent a prescriptive exercise program. These individuals showed improvement in the cardiopulmonary parameters as well as their fatigue levels suggesting that exercise intervention earlier could be beneficial (66). Table 2 lists some of the recent randomized human studies defining the use of exercise regimens in heart failure secondary to cardiotoxicity.
Possible cellular and molecular basis of exercise induced changes in CRC

Anthraclines in general cause severe cardiotoxicity via up regulation of the reactive oxygen species. It has been thought this can happen as a two-pronged process because of the semi-quinone group generated via interactions with endothelial nitric oxide synthase inducing excessive free radical production (67). Additionally it disrupts topoisomerase 2B activity which in turn can cause breaks in double-stranded DNA leading to activation of p53 tumor suppressor gene, increased reactive oxygen species (ROS) production, increased mitochondrial dysfunction and consequent cell dysfunction and death. ROS produced can independently increase protein, nucleic acid, lipid peroxidation increasing apoptosis and cell death. These effects are attenuated by aerobic exercise. Exercise causes upregulation of antioxidant and anti-apoptotic capacity.

At the molecular level the cardiac muscle is said to be protected by activation of pathways that use gp130 cytokines and neuregulin. Neuregulin-1 (NRG-1) is a paracrine factor produced by endothelial cells of the microvasculature and is up regulated in heart failure. Circulating levels of NRG-1β were assayed in heart failure patients and found to have significant prognostic value. It was found to be independently associated with increased risk of mortality or need for cardiac transplantation and demonstrated significant correlations with NYHA class and disease severity (68). In another small study of chronic HF patients HER2 up regulated in chronic heart failure correlated significantly with New York Heart Association class (69). The decreased NRG1/ErbB signaling and increases in angiotensin II and adrenergic agonists were combated by exercise by increasing mechanical stress and depression of the neurohormonal system. Additionally exercise appears to cause increases in myocardial AKT thereby decreasing pathological LV remodeling and hypertrophy (70-73).

When trastuzumab is dosed with anthracycline, it inhibits the ErbB2 receptor, resulting in loss of
the neuregulin-dependent pathways and consequent death of cardiac myocytes. Another
important aspect of trastuzumab toxicity stems from the fact that it down regulates AKT (74).
Exercise increases myocardial AKT and possibly counteracts the pathological effects.
Cancer therapies that target vascular endothelial growth factor (VEGF) as well as the use of
other molecularly targeted therapies such as tyrosine kinase inhibitors cause anti-angiogenesis
which in turn affects cardiac function. Tyrosine kinase inhibitors affect a variety of enzymes
resulting in mitochondrial dysfunction (75). It has been hypothesized that exercise results in up
regulation of VEGF and endothelial progenitor cells (EPCs) by activation of stat 3 which in turn
causes erythropoietin mediated differentiation of cardiac progenitor cells into endothelial cells
(73). Figure 1 shows a simplified view of the complex molecular mechanisms possibly
underlying cardiotoxicity and the counteracting effects of exercise in this population.

Exercise Prescription

Figure 2 shows a suggested algorithm in cardiotoxicity induced by chemotherapeutic agents.
The current practice of depending on ejection fraction for diagnosis of heart failure is suboptimal
to detect subclinical disease. It is also important to diagnose and treat early diastolic dysfunction
as this tends to lead to heart failure with preserved ejection fraction. This algorithm is based on
utilizing strain rate and tissue doppler imaging modalities to detect subclinical systolic and
diastolic dysfunction and the use of exercise as tolerated.

Conclusions

Based on the existing literature it is imperative that further research is warranted in terms of
defining exercise prescriptions in this population. Human studies with multicenter participation in
randomized controlled trials should be done to elucidate the intricacies of aerobic exercise
intervention in cardiotoxicity dependent heart failure. In the molecularly targeted therapies the
use of aerobic exercise intervention is still debated. It is possible that the existing studies are
small and not randomized and hence may not reflect the true benefit. This is an area that
definitely calls for large randomized controlled trials to define exercise prescription. In addition, a better understanding of molecular mechanisms operating in aerobic exercise is needed. This will pave the way for larger studies which have adequate power to investigate the role of exercise in the patient populations in whom several different combinations of chemotherapeutic agents are used. Therefore a multidisciplinary approach involving other relevant specialties including exercise physiologists and physical medicine specialists would be beneficial in arriving at the right exercise prescriptions.

Future perspectives

Role of physical exercise for prevention of cardiovascular toxicity in the clinical setting still requires rigorous investigations. Most investigations have been done in breast cancer in the context of doxorubicin. Future investigations are warranted to assess exercise as a definite method for the reduction of cardiovascular morbidity and mortality in cancer survivors in general. Translation of preclinical experiments to the human system requires definition of sensitive diagnostic and outcome measures as well as an optimal exercise prescription.

The definition of an exercise prescription remains ambiguous. Though, moderate intensity exercise 3 times weekly was found to improve systolic function in heart failure patients (72), derivation of an optimal exercise prescription in the chemotherapy population needs further investigations as it is currently more challenging to balance exercise tolerance with defined improvements in protection of cardiac function. Existing studies use high intensity aerobic exercise regimens in animal models treated with chemotherapeutic agents as well as in the non-cancer heart failure populations(76,77) Such regimens may not be tolerated in patients undergoing cancer chemotherapy because of fatigue and deconditioning. Use of exercise in the current literature is driven by improvements and functionality. Existing studies essentially focus on doxorubicin toxicity (78) hence it is imperative that future studies
are needed to investigate toxicities of other drugs and combinations of chemotherapeutic agents. The dosage of these agents and duration of therapy also needs to be investigated in the context of low, moderate and high intensity exercise regimens. Studies are lacking at this time also with respect to relevant improvements in cardiac function at the molecular and biochemical levels.

In animal models systems several studies exist to support exercise prevention (79-86). Future clinical investigations in patients are needed to prescribe appropriate intensity, frequency, duration, and timing of exercise for primary and secondary prevention of cardiotoxicity resulting from the several different chemotherapeutic regimens that are currently available.

Disclosures: Drs. Nandini Nair and Enrique Gongora have no disclosures relevant to this work.

Acknowledgments

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

1. M.T Nolan, R.M Lowenthal, A. Venn, T.H Marwick. Chemotherapy-related cardiomyopathy: a neglected aspect of cancer survivorship Intern Med J. 44 (2014) 939-950. doi: 10.1111/imj.12532.

2. H.R. Villarraga, J. Herrmann, V.T. Nkomo. Cardio-oncology: role of echocardiography Prog Cardiovasc Dis. 57 (2014)10-18. doi: 10.1016/j.pcad.2014.05.002.

3. R.G. Schwartz, D.Jain, E. Storozynsky. Traditional and novel methods to assess and
prevent chemotherapy-related cardiac dysfunction noninvasively J Nucl Cardiol. 20 (2013) 443-464. doi: 10.1007/s12350-013-9707-1.

4. J. Herrmann, A. Lerman, N.P. Sandhu, H.R. Villarraga, S.L. Mulvagh, M. Kohli. Evaluation and management of patients with heart disease and cancer: cardio-oncology Mayo Clin Proc. 89 (2014) 1287-1306 doi: 10.1016/j.mayocp.2014.05.013.

5. M. Florescu, M. Cinteza, D. Vinereanu. Chemotherapy-induced Cardiotoxicity. Maedica (Buchar). 8 (2013) 59-67.

6. P.K. Singal, C.M. Deally, L.E. Weinberg. Subcellular effects of adriamycin in the heart a concise review. J Mol Cell Cardiol. 19 (1987) 817–828.

7. J.C. Kwok, D.R. Richardson. Anthracyclines induce accumulation of iron in ferritin in myocardial and neoplastic cells inhibition of the ferritin iron mobilization pathway. Mol pharmacol 63 (2003) 849–856.

8. K. Shan, A.M. Lincoff, J.B. Young. Anthracycline-induced cardiotoxicity. Ann Intern Med 125 (1996) 47–58.

9. E. Yeh, C. Bickford. Cardiovascular Complications of Cancer Therapy Incidence Pathogenesis Diagnosis and Management. J. Amer. Coll Cardiol. 53 (2009) 2231–2247. doi: 10.1016/j.jacc.2009.02.050.

10. M. Ewer, S. Lippman. Type II Chemotherapy-Related Cardiac Dysfunction Time to Recognize a New Entity. J. Clin. Oncol. 23 (2005) 2900–2902.
11. T. Force, D.S. Krause, R.A. Van Etten. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibitors. Nat. Rev. Cancer 7(2007) 332–344.

12. M.S. Ewer, M.T.Vool etich, J.B.Durand, M.L.Woods, J.R. Davis, V.Valero, D.J. Lenihan. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J. Clin. Oncol. 23 (2005) 7820–7826

13. G. Marone, V. Patella, G. de Crescenzo, A. Genovese, M. Adt. Human heart mast cells in anaphylaxis and cardiovascular disease. Int Arch Allergy Immunol. 107 (1995)72–75.

14. V. Patella, I. Marino, B. Lamparter, E. Arbustini, M. Adt, G. Marone. Human heart mast cells. Isolation, purification, ultrastructure, and immunologic characterization. J Immunol. 154 (1995) 2855–2856

15. S. Cortijo-Cascajares, M.J. Jiménez-Cerezo, A. Herreros de Tejada. Review of hypersensitivity reactions to antineoplastic agents. Farm Hosp. 36 (2012) 148-158. doi: 10.1016/j.farma.2011.02.004

16. J. Boulanger, J.N. Boursiquot, G. Cournoyer, J. Lemieux, M.S. Masse, K. Almanric, M.P.Guay, Comité de l’évolution des pratiques en oncologie. Management of hypersensitivity to platinum- and taxane-based chemotherapy: review and clinical recommendations Curr Oncol. 21 (2014) e630–e641. doi: 10.3747/co.21.1966.

17. A. Saidi, R. Alharethi Management of Chemotherapy Induced Cardiomyopathy Curr Cardiol Rev. 7 (2011) 245–249.
18. G. Curigliano, D. Cardinale, T. Suter, G. Plataniotis, E. de Azambuja, M.T. Sandri, C. Criscitiello, A. Goldhirsch, C. Cipolla, F. Roila, ESMO Guidelines Working Group. ESMO Guidelines Working Group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 23 Suppl 7 (2012) vii155-166.

19. E. Yeh, A. Tong, D. Lenihan, S.W. Yusuf, J. Swafford, C. Champion, J.B. Durand, H. Gibbs, A.A. Zafarmand, M.S. Ewer. Cardiovascular Complications of Cancer Therapy Diagnosis Pathogenesis and Management. Circulation. 109 (2004) 3122–3131.

20. B.C. Drafts, K.M. Twomley, R. D’Agostino, J. Lawrence, N. Avis, L.R. Ellis, V. Thohan, J. Jordan, S.A. Melin, F.M. Torti, W.C. Little, C.A. Hamilton, W.G. Hundley. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 6 (2013) 877-885. doi: 10.1016/j.jcmg.2012.11.017.

21. N. Fallah-Rad, J. R. Walker, A. Wassef, M. Lytwyn, S. Bohonis, T. Fang, G. Tian, I.D. Kirkpatrick, P.K. Singal, M. Krahn, D. Grenier, D.S. Jassal "The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy J. Amer. Coll Cardiol. 57 (2011) 2263–2270. doi: 10.1016/j.jacc.2010.11.063.

22. K. Negishi, T. Negishi, B.A. Haluska, J.L. Hare, J.C. Plana, T.H. Marwick. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging. 15 (2014) 324-331. doi: 10.1093/ehjci/jet159
23. D. Cardinale, M.T. Sandri, A. Martinoni, E. Borghini, M. Civelli, G. Lamantia, S. Cinieri, G. Martinelli, C. Fiorentini, C.M. Cipolla. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 13 (2002) 710–715.

24. T. Nousiainen, E. Vanninen, E. Jantunen, J. Puustinen, J. Remes, A. Rantala, O. Vuolteenaho, J. Hartikainen. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 251 (2002) 228–234.

25. van Dalen EC, Caron HN, Dickinson HO et al Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. (2008) CD003917 doi: 10.1002/14651858.CD003917.pub3.

26. B.V. Jensen, T. Skovsgaard, S.L. Nielsen. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 13 (2002) 699–709.

27. J.A. Tallaj, V. Franco, B.K. Rayburn, L. Pinderski, R.L. Benza, S. Pamboukian, B. Foley, R.C. Bourge. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 24 (2005) 2196–2201.

28. L.F. de Geus-Oei, A.M. Mavinkurve-Groothuis, L. Bellersen, M. Gotthardt, W.J. Oyen, L. Kapusta, H.W. van Laarhoven. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity J Nucl Med. 52 (2011) 560-571 doi: 10.2967/jnumed.110.082784.

29. R. Altena, P.J. Perik, D.J. van Veldhuisen, E.G. de Vries, J.A. Gietema. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 10 (2009) 391–399. doi: 10.1016/S1470-2045(09)70042-70047.
30. J. Walker, N. Bhullar, N. Fallah-Rad, M. Lytwyn, M. Golian, T. Fang, A.R. Summers, P.K., I. Barac, I.D. Kirkpatrick, D.S. Jassal. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 28 (2010) 3429–3436 doi: 10.1200/JCO.2009.26.7294.

31. Y. Xu, J. Hermann, P.A. Pellikka, S.M. Ansell, S. Cha, H.R. Villarraga. Can early changes in 2-dimensional speckle tracking echocardiography predict a future decrease in left ventricular ejection fraction in lymphoma patients undergoing anthracycline chemotherapy? J Am Soc Echocardiogr 26 (2013) B52.

32. N. Sandhu, J. Spoon, J. Herrmann, P.A. Pellikka, H. Villarraga. Two dimensional speckle tracking echocardiography predicts preclinical cardiotoxicity in breast cancer patients J Am Coll Cardiol, 2014;63, A199

33. J.T. Poterucha, S. Kutty, R.K. Lindquist, L. Li, B.W. Eidem. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction J Am Soc Echocardiogr. 25 (2012) 733–740. doi: 10.1016/j.echo.2012.04.007

34. T.C. Tan, S. Bouras, H. Sawaya, I.A. Sebag, V. Cohen, M.H. Picard, J. Passeri, I. Kuter, M. Scherrer-Crosbie. Time Trends of Left Ventricular Ejection Fraction and Myocardial Deformation Indices in a Cohort of Women with Breast Cancer Treated with Anthracyclines, Taxanes, and Trastuzumab. J Am Soc Echocardiogr. 28 (2015) 509-514. doi: 10.1016/j.echo.2015.02.001
35. H. Sawaya, I.A. Sebag, J.C. Plana, J.L. Januzzi, B. Ky, V. Cohen, S. Gosavi, J.R. Carver, S.E. Wiegers, R.P. Martin, M.H. Picard, R.E. Gerszten, E.F. Halpern, J. Passeri, I. Kuter, M. Scherrer-Crosbie. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol 107 (2011) 1375–1380. doi: 10.1016/j.amjcard.2011.01.006.

36. H.W. Fei, M.T. Ali, T.C. Tan, K.H. Cheng, L. Salama, L. Hua, X. Zeng, E.F. Halpern, A. Taghian, S.M. MacDonald, M. Scherrer-Crosbie. Left Ventricular Global Longitudinal Strain in HER-2 + Breast Cancer Patients Treated with Anthracyclines and Trastuzumab Who Develop Cardiotoxicity Is Associated with Subsequent Recovery of Left Ventricular Ejection Fraction. Echocardiography. 33 (2016) 519-526. doi: 10.1111/echo.13168

37. S. Kongbundansuk, W.G. Hundley. Noninvasive imaging of cardiovascular injury related to the treatment of cancer. JACC Cardiovasc Imaging. 7 (2014) 824-838. doi: 10.1016/j.jcmg.2014.06.007.

38. R.S. Jiji, C.M. Kramer, M. Salerno. Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol. 19 (2012) 377-388. doi: 10.1007/s12350-012-9512-2.

39. F. Bonner, M. Neizel, S. Gruenig, C. Jacoby, M. Kelm, B. Sievers. T2 mapping in different cardiomyopathies: First clinical experience. Journal of Cardiovascular Magnetic Resonance. 15 (2013) P53

40. R. Wassmuth, S. Lentzsch, U. Ernbruegger, J. Schulz-Menger, B. Doerken, R. Dietz, M.G. Friedrich. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-a pilot study. Am Heart J. 141 (2001) 1007-1013.
41. E. B. Tham, M. Haykowsky, K. Chow, M. Spavor, S. Kaneko, N.S. Khoo, J.J. Pagano, A.S. Mackie, R. Thompson. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. Journal of Cardiovascular Magnetic Resonance. 15 (2013) 48. doi: 10.1186/1532-429X-15-48.

42. C.D. Wiginton, B. Kelly, A. Oto, M. Jesse, P. Aristimuno, R. Ernst, G. Chaljub. Gadolinium-based contrast exposure, nephrogenic systemic fibrosis, and gadolinium detection in tissue. AJR Am J Roentgenol. 190 (2008) 1060–1068. doi: 10.2214/AJR.07.2822.

43. P. Thavendiranathan, A.D. Grant, T. Negishi T, J. C. Plana, Z. B. Popović, T. H. Marwick. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J. Amer. Coll Cardiol. vol. 61 (2013) 77–84. doi: 10.1016/j.jacc.2012.09.035

44. P. Thavendiranathan, F. Poulin, K.-D. Lim, J. C. Plana, A. Woo, and T. H. Marwick, Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review, J. Amer. Coll Cardiol. 63 (2014) 2751–2768. doi: 10.1016/j.jacc.2014.01.073

45. A.L. Baggish, K. Yared, F. Wang, R.B. Weiner, A.M. Hutter Jr, M.L. Picard, M.J. Wood. The impact of endurance exercise training on left ventricular systolic mechanics. Am J Physiol Heart Circ Physiol. 295 (2008) H1109-H1116. doi: 10.1152/ajpheart.00395

46. G.-Y. Cho, T. H. Marwick, H.-S. Kim, M.-K. Kim, K.-S. Hong, and D.-J. Oh, “Global 2-dimensional strain as a new prognosticator in patients with heart failure,” J. Amer. Coll. Cardiol 54 (2009) 618–624. doi: 10.1016/j.jacc.2009.04.061.

47. M. Bertini, A. C. T. Ng, M. L. Antoni, G. Nucifora, S. H. Ewe, D. Auger, N. A. Marsan, M. J. Schalij, J. J. Bax, V. Delgado. “Global longitudinal strain predicts long-term survival in patients with
chronic ischemic cardiomyopathy," Circ Cardiovasc. Imaging. (2012) 5383–5391. doi: 10.1161/CIRCIMAGING.111.970434.

48. M. Iacoviello, A. Puzzovivo, P. Guida, C Forleo, F. Monitillo, R. Catanzaro, M.S. Lattarulo, V. Antoncecchi, S. Favale. “Independent role of left ventricular global longitudinal strain in predicting prognosis of chronic heart failure patients,” Echocardiography (2013) 803–811. doi: 10.1111/echo.12142.

49. T. Stanton, R. Leano, and T. H. Marwick, “Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring,” Circ Cardiovasc Imaging, (2009) 2,356–364. doi: 10.1161/CIRCIMAGING.109.862334.

50. J. Lekakis, P. Abraham, A. Balbarini, A.Blann, C.M Boulanger, J. Cockcroft, F. Cosentino, J. Deanfield, A. Gallino, I. Ikonomidis, D. Kremastinos, U. Landmesser, A. Protogerou, C. Stefanadis, D. Tousoulis, G. Vassali, H. Vink, N. Werner, I. Wilkinson, C. Vlachopoulos. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil. 18 (2011) 775-789. doi: 10.1177/1741826711398179

51. A. Dolci, R. Dominici, D. Cardinale, M. T. Sandri, and M. Panteghini, “Biochemical markers for prediction of chemotherapy-induced cardiotoxicity systematic review of the literature and recommendations for use,” Am J Clin Pathol. 130 2008 688-695. doi: 10.1309/AJCPB66LRIIVMQLDR.

52. M.Putt, V.S.Hahn, J.L. Januzzi, H.Sawaya, I.A.Sebag, J.C.Plan, M.H.Picard, J.R.Carver, E.F. Halpern, I. Kuter, J. Passeri, V. Cohen, J. Banchs, R.P.Martin, R.E.Gerszten, M. Scherrer-Crosbie, B. Ky. Longitudinal Changes in Multiple Biomarkers Are Associated with
Cardiotoxicity in Breast Cancer Patients Treated with Doxorubicin, Taxanes, and Trastuzumab. Clin Chem. 61 (2015) 1164-1172. doi: 10.1373/clinchem.2015.241232.

53. K.S Courneya, R.J. Segal RJ, J.R. Mackey , K.Gelmon , R.D. Reid ,C.M. Friedenreich ,A.B. Ladha, C. Proulx , J.K. Vallance, K. Lane , Y.Yasui , D.C. McKenzie Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 2007;25:4396–4404

54. K.S.Courneya, D.C.McKenzie , J.R.Mackey, K.Gelmon , C.M. Friedenreich ,Y. Yasui , R.D. Reid, D. Cook , D. Jespersen , C. Proulx, L.B. Dolan, C.C. Forbes , E. Wooding, L. Trinh , R.J. Segal. Effects of exercise dose and type during breast cancer chemotherapy: multicenter randomized trial. J Natl Cancer Inst.2013;105:1821–1832

55. K.S. Courneya, R.J. Segal, D.C. McKenzie, H. Dong, K. Gelmon, C.M. Friedenreich, Y. Yasui, R.D. Reid, J.J. Crawford, J.R. Mackey Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med Sci Sports Exerc. 46 (2014)1744-1751. doi: 10.1249/MSS.0000000000000297

56. W.E. Hornsby, P.S. Douglas, M.J. West, A.A. Kenjale, A.R. Lane, E.R. Schwitzer K.A., Ray, J.E. Herndon 2nd, A. Coan, A. Gutierrez, K.P. Hornsby, E. Hamilton, L.G. Wilke, G.G. Kimmick, J.M. Peppercorn, L.W. Jones. Safety and efficacy of aerobic training inoperable breast cancer patients receiving neoadjuvant chemotherapy: a phase II randomized trial. Acta Oncol. 2014;53:65–74

57. C.J. Kim, D.H. Kang, B.A. Smith, K.A. Landers Cardiopulmonary responses and adherence to exercise in women newly diagnosed with breast cancer undergoing adjuvant therapy. Cancer Nurs. 2006;29:156–165

58. M.G. MacVicar, M.L. Winningham, J.L. Nickel. Effects of aerobic interval training on cancer patients’ functional capacity. Nurs Res. 1989;38:348–351
59. M.J. Haykowsky, J.R. Mackey, R.B. Thompson, L.W. Jones, D.L. Paterson. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res. 2009;15:4963–4967.

60. R. Segal, W. Evans, D. Johnson, J. Smith, S. Colletta, J. Gayton, S. Woodard, G. Wells, R. Reid. Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial. J Clin Oncol. 2001;19:657–665.

61. F. Vincent, J.L. Labourey, S. Leobon, M.T. Antonini, S. Lavau-Denes, N. Tubiana-Mathieu. Effects of a home-based walking training program on cardiorespiratory fitness in breast cancer patients receiving adjuvant chemotherapy: a pilot study. European journal of physical and rehabilitation medicine. 2013;49:319–329.

62. N.A Hutnick, N.I. Williams, W.J. Kraemer, E. Orsega-Smith, R.H. Dixon, A.D. Bleznak, A.M. Mastro. Exercise and lymphocyte activation following chemotherapy for breast cancer. Med Sci Sports Exerc. 2005;37:1827–1835.

63. K.S. Courneya, J.R. Mackey, G.J. Bell, L.W. Jones, C.J. Field, A.S. Fairey. Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol. 2003;21:1660–1668.

64. A.J. Daley, H. Crank, J.M. Saxton, N. Mutrie, R. Coleman, A. Roalfe. Randomized trial of exercise therapy in women treated for breast cancer. J Clin Oncol. 2007;25:1713–21.

65. B.M. Pinto, G.M. Frierson, C. Rabin C, J.J. Trunzo, B.H. Marcus. Home-based physical activity intervention for breast cancer patients. J Clin Oncol. 2005;23:3577–3587.

66. C.M. Schneider, C.C. Hsieh, L.K. Sprod, S.D. Carter, R. Hayward. Effects of supervised exercise training on cardiopulmonary function and fatigue in breast cancer survivors during and after treatment. Cancer. 2007;110:918–925.

67. Y. Octavia, C.G. Tocchetti, K.L. Gabrielson, S. Janssens, H.J. Crijns, A.L. Moens. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52:1213-1225. doi: 10.1016/j.yjmcc.2012.03.006.
68. B. Ky, S.E. Kimmel, R.N. Safa, M.E. Putt, N.K. Sweitzer, J.C. Fang, D.B. Sawyer, T.P. Cappola. Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure. Circulation. 2009;120:310–317. doi: 10.1161/CIRCULATIONAHA.109.856310.

69. P.J. Perik, E.G. de Vries, J.A. Gietema, W.T. van der Graaf, T.D. Smilde, D.T. Sleijfer, D.J. van Veldhuisen. Serum HER2 levels are increased in patients with chronic heart failure. Eur J Heart Fail 2007;9:173–177.

70. Chien KR. Stress pathways and heart failure. Cell 1999;98:555-558

71. S.A. Crone, Y.Y. Zhao, L. Fan, Y.Gu, S.Minamisawa, Y.Liu, K.L. Peterson, J. Chen, R.Kahn, G.Condorelli, J.Ross Jr, K.R. Chien, K.F. Lee. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002;8:459-465

72. M.J. Haykowsky, Y. Liang, D. Pechter, L.W. Jones, F.A. McAlister, A.M. Clark. A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: The benefit depends on the type of training performed. J Am Coll Cardiol. 2007;49:2329–2336

73. J.M. Scott, S. Lakoski, J.R. Mackey, P.S. Douglas, M.J, Haykowsky, L.W. Jones. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics. Oncologist. 2013;18:221-223 doi: 10.1634/theoncologist.2012-0226

74. Wonders KY, Reigle BS. Trastuzumab and doxorubicin-related cardiotoxicity and the cardioprotective role of exercise. Integr Cancer Ther. 2009;8:17-21 doi: 10.1177/1534735408330717

75. Lenneman CG, Sawyer DB Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment Circ Res. 2016;118:1008-1020. doi:10.1161/CIRCRESAHA.115.303633.

76. U. Wisløff, Ø. Ellingsen, and O. J. Kemi, “High-intensity interval training to maximize cardiac benefits of exercise training?” Exercise and Sport Sciences Reviews 37 (2009) 139–146 doi: 10.1097/JES.0b013e3181aa65fc.

77. U. Wisløff, A. Støylen, J. P. Loennechen, M.Bruvold, O. Rognmo, P.M.Haram, A.E.Tjønna, J. Helgerud, S.A.Slørdahl, S.J.Lee, V. Videm, A. Bye, G.L.Smith, S.M.Najjar, O. Ellingsen, T.
Skjaerpe “Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study,” Circulation (2007) 115 3086–3094.

78. D.S Hydock, C.YLien, C.M Schneider, R. Hayward Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exerc. 40 (2008) 808–817. doi: 10.1249/MSS.0b013e318163744a.

79. K.M. Sturgeon, B. Ky, J.R. Libonati, K.H. Schmitz. The effects of exercise on cardiovascular outcomes before, during, and after treatment for breast cancer. Breast Cancer Res Treat. 143 (2014) 219-226. doi: 10.1007/s10549-013-2808-3.

80. J.M. Scott, A. Khakoo, J.R. Mackey, M.J. Haykowsky, P.S. Douglas, L.W. Jones. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 124 (2011) 642-650. doi: 10.1161/CIRCULATIONAHA.111.021774.

81. A. Ascensao, J. Lumini-Oliveira, N.G. Machado, R.M. Ferreira, I.O. Gonçalves, A.C. Moreira, F. Marques, V.A. Sardão, P.J. Oliveira, J. Magalhães. Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats. Clin Sci.(Lond) 120 (2011) 37–49. doi: 10.1042/CS201000254.

82. A. Ascensão, J. Magalhães, J.M. Soares, R. Ferreira, M.J. Neuparth, F. Marques, P.J. Oliveira, J.A. Duarte. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis Am J Physiol Heart Circ Physiol. 289 (2005) H722-731.

83. A.N. Kavazis, A.J. Smuder, K. Min, N. Tümer, S.K. Powers. Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72 Am J Physiol Heart Circ Physiol. 299 (2010) H1515-1524. doi:10.1152/ajpheart.00585.2010.

84. A. Ascensão, J. Magalhães, J. Soares, R. Ferreira, M. Neuparth, F. Marques, J. Oliveira, J. Duarte. Endurance training attenuates doxorubicin-induced cardiac oxidative damage in mice Int J Cardiol. (100) 2005 451-460
85. A.J. Chicco, C.M. Schneider, R. Hayward Voluntary exercise protects against acute
doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp
Physiol. 2005;289:R424-R431.

86. K.Y. Wonders, D.S. Hydock, C.M. Schneider, R. Hayward. Acute exercise protects against
doxorubicin cardiotoxicity Integr Cancer Ther. 7 (2008) 147-154. doi:
10.1177/1534735408322848.
Figure 1 Possible molecular mechanisms in exercise-induced changes in CRC

- Anthracycline
 - Upregulation of ROS, mitochondrial dysfunction, cell death/apoptosis

- HER2 based therapy
 - Decreased NRG1/ErbB signaling
 - Increased anti-apoptosis/anti-oxidative stress
 - Up regulation of VEGF, EPCs and angiogenesis

- Molecular Target Therapies
 - Antioxiogenes
 - Increased Mechanical Stress and suppression of neurohormonal up regulation
 - Upregulation of myocardial AKT and decreased pathological ventricular hypertrophy and remodeling

- Exercise

Figure 1
Figure 2 Suggested Exercise Prescription in CRC

Evaluate Baseline Function by 2D echocardiography

- Normal EF with normal Global Longitudinal Strain and or Tissue Doppler Imaging
 - Proceed with aerobic exercise regimen based on functionality by Cardiopulmonary stress test
- Abnormal EF (EF<40%)
 - Proceed with aerobic exercise regimen starting with low impact aerobic 3x weekly and upgrade as tolerated using cardiopulmonary stress test

Repeat echocardiography and Cardiopulmonary stress test after each cycle of chemotherapy to assess clinical status and upgrade exercise regimen appropriately and as tolerated

Figure 2
Table 1 Comparison of cardiovascular imaging techniques in defining Cardio toxicity

Imaging	Parameter of cardiotoxicity	Pros	Cons	References
MUGA	LVEF	Reproducible calculation	Gives no information on DD	28
		Low operator variability	Involves radiation use	
		Serial testing is possible	Cannot detect subclinical disease	
		Comparable to CMR which is the gold standard		
2DE	LVEF	Assesses systolic and diastolic function	High operator variability	29,30
		Tissue doppler techniques assess diastolic function	Preload dependence	
		Non-invasive	Cannot detect subclinical disease	
		No radiation involved		
		Serial testing is possible		
RT3DE	LVEF	Assesses systolic and diastolic		29,30,43
Function	Low operator variability	Preload dependence		
------------------------	--------------------------	--------------------		
Serial testing is possible	Cannot detect subclinical disease			
More powerful than 2DE	Comparable to CMR which is the gold standard			

SRI
- GLS, LS
- Detects subclinical disease and useful in prognostication
- Vendor variability:
 - 2, 31-36, 44
- Used in combination with 2DE

CCT
- Coronary Calcium, LVEF, Atherosclerosis
- Assesses coronary atherosclerosis
- No definite studies:
 - 37
- Contrast nephropathy

MRI
- LVEF, high resolution of structure and function
- Non-invasive
- High cost:
 - 38-42
- No radiation involved
- Unavailable in all hospitals
| Serial testing is possible | Requirement of advanced technology |
|----------------------------|-----------------------------------|
| Best correlation of structure and function | and skilled personnel |
| Gold standard for LVEF determination | Contrainindicated with metal implants |
| Characterization of myocardial tissue | Gadolinium induced retroperitoneal fibrosis |
| | with renal insufficiency |
Table 2 Effect of Exercise in Chemotherapy Patients

Author	Study Type	Type of Chemotherapeutic Agent	Subjects (n)	Type of exercise regimen	Conclusions
Corneya KS et al	Randomized Trial (RT)	Herceptin/Taxane	301	Standard*, Higher volume**, and Combination of resistance and aerobic exercise	Positive motivational outcome in the higher volume group
Corneya KS et al	RT subgroup analysis	Herceptin/Taxane	301	Standard*, Higher volume**, and Combination of resistance and aerobic exercise	Younger and healthier premenopausally women benefited from the higher volume exercise regimen
Corneya KS et al (START)	RT	Adjuvant chemotherapy	242	Usual care, supervised aerobic and resistance training during chemotherapy	Exercise may improve outcomes (no statistical significance)
Corneya KS et al	RT	Herceptin/Taxane	301	higher volume exercise regimen or combined is better than standard	
Hornsby et al	RT	Doxorubicin/cyclophosphamide	20	Aerobic training	Aerobic training Improved the Vo2 max
Haykowsky et al	Observational	Trastuzumab adjuvant therapy	17	aerobic exercise before and after treatment	No effect of aerobic exercise in left ventricular remodeling
Vincent et al	Observational	First line adjuvant therapy per protocol	39	Home based walking therapy	Significant improvement of VO2 max
This review attempts to highlight the following:

- The need for exercise prescription to prevent cardiotoxicity in chemotherapy patients
- The molecular basis of exercise as an intervention
- Summary of existing evidence
- Need for further studies on the role of exercise in different chemotherapeutic regimens