Evaluation of the Free Swell and Physio-chemical Properties of Black Cotton Soil Treated with Bacillus Coagulans

A O Eberemu¹, A B Bassey¹* and K J Osinubi¹

¹ Department of Civil Engineering, Ahmadu Bello University, Zaria, Kaduna state, Nigeria.
* Corresponding Author: basseyaniekpeno@gmail.com

Abstract. The effect of Bacillus coagulans (B. coagulans) on the free swell and physio-chemical properties of black cotton soil (or expansive tropical black clay) was investigated using the Microbial Induced Calcite Precipitation (MICP) technique. Black cotton soil was treated with different mix ratios of B. coagulans suspension density (B) and cementation reagent (C) for the volume obtained as product of the liquid limit and a specific weight of soil sample. The mix ratios considered were 25B-75C, 50B-50C and 75B-25C for the treated specimens, while the control specimen was mixed with 100C only. The results obtained show that for treatment of soil with 25B-75C mix ratio, free swell value decreased with increased B. coagulans suspension density from 70.0 % and 50.0 % for the natural and control specimens, respectively, to minimum value of 40.0 % at B. coagulans suspension density of 2.4×10^9 cells/ml. The cation exchange capacity (CEC) value for the natural and control specimens were 49.7 and 29.6 Cmol/Kg, respectively, while for the treated specimens the values generally decreased a minimum value of 29.0 Cmol/Kg at B. coagulans suspension density of 2.4×10^9 cells/ml. The pH test results initially decreased from 7.4 for the control specimen to a minimum at of 7.37 at B. coagulans treatment suspension density of 1.5×10^8 cells/ml and thereafter gradually increased to 7.51 at peak B. coagulans suspension density of 2.4×10^9 cells/ml. Tests results indicate that treatment of black cotton soil with 25B-75C mix ratio at 2.4×10^9 cells/ml B. coagulans suspension density significantly reduced the free swell value and makes it useable for engineering application.

Keywords: Bacillus coagulans, Black cotton soil, Free swell, physio-chemical properties, cation exchange capacity, pH.

1. Introduction

Black cotton soils (BCS) are problem tropical clay deposits with high swelling and shrinkage potentials. Hence, they are generally unsuitable for use as construction materials. They are classified under the smectite group of clay minerals which are known to contain the highly expansive clay mineral, montmorillonite [1]. BCS are formed mainly in semi-arid tropics with pronounced varying dry and wet seasons [2]. They can be found, especially in the North Eastern region of Nigeria, and in other countries around the world like Australia, India, and Asia [3].

In Nigeria, BCS are formed through the disintegration of basaltic rocks and clayey and shaley sediments. The soil has excessive montmorillonite content with subsequent exhibition of expansive tendencies. In the North Eastern region of Nigeria where the soil is predominantly found, it spans an area of about 104,000 km2. Major roads connecting this region with bordering West African countries such as Chad Republic, Cameroun and Niger traverse through this soil [4].

The chemical composition of BCS varies depending on factors such as parent rock, generic characteristics of soil (transported or residual), degree of weathering, etc. However, BCS are generally
rich in silica, lime, iron, magnesia and alumina. In addition, it contains titanium oxide in small concentrations, which is responsible for the characteristic black color to the soil. The organic matter contents of black cotton soils are low [5].

Generally, BCS exhibits properties that make it a candidate for improvement before use in any engineering construction. Stabilization of soil becomes necessary when the soil does not have sufficient strength to support the designed structural load. Also, stabilization can also be used to improve or regulate the shrink-swell characteristics of the soil as well as decrease compressibility and permeability of a mass of soil in earth structures [6].

The use of chemical admixtures to enhance the properties of BCS is widespread however, the method is neither eco-friendly nor economical [7]. This prompted the search for novel soil improvement methods that resulted in the use of the Microbial Induced Calcite Precipitation (MICP) technique that entails biological processes, nutrients, microorganisms that are environmentally sustainable solution to soil improvement [8-10]. This research was conducted to evaluate the effect of B. coagulans - induced calcite precipitate on the free swell and physio-chemical properties of black cotton soil using MICP technique. The specific objective was to ascertain the changes in the free swell and physio-chemical properties of BCS when treated with stepped B. coagulans suspension density.

2. Materials and methods

2.1 Materials

2.1.1 Black cotton soil. The black cotton soil samples utilised in this work was acquired along Gombe-Biu road in Yamaltu Deba Local Government Area (latitude 10° 190N and longitude 11° 300E) in Gombe state, Nigeria.

2.1.2 Microorganism. The species of bacteria used as the soil improvement agent is B. coagulans. It is classified as ATCC 7050 in the American Type Culture Collection (ATCC). It is Gram-positive rod-shaped bacteria. Five different bacteria suspension densities on the McFarland turbidity scale, MFS (i.e., 0.5, 2.0, 4.0, 6.0 and 8.0 with equivalents 1.5×10^8 cells/ml, 6 × 10^8 cells/ml, 1.2 × 10^9 cells/ml, 1.8 × 10^9 cells/ml and 2.4 × 10^9 cells/ml, respectively) were used in this study. The control soil was referenced as 0 cells/ml (0 MFS).

2.1.3 Cementation reagent. Cementation reagent was used to activate the urea hydrolysis process. The constituents of the cementation reagent used in this study comprised of 2.8 g of calcium chloride (CaCl₂), 3g nutrient broth, 10 g ammonium chloride (NH₄Cl), 20 g of urea (CO (NH₂)₂) and 2.12 g sodium bicarbonate (NaHCO₃) per litre of de-ionized water [11-14].

2.2 Methods

2.2.1 Free swell. The test was conducted according to the methods outlined in the United States Bureau of Reclamation (USBR) [15]. About 10 g of soil passing BS No.40 sieve (425 μm aperture) was oven-dried and allowed to cool in a desiccator. The sample was slowly poured into a 100 cm³ measuring cylinder and the cylinder was then filled with water. Before the free swell; the initial volume of soil in the measuring cylinder was recorded. The cylinder was then agitated in order to obtain a homogenous mixture of water and soil after which it was left for 24 hours to settle, Free swell was calculated using:

\[
F(\%) = \frac{V_1 - V_2}{V_1} \times 100
\]

Where;
F = Free Swell (%)
V₁ = Initial Volume (cm³)
V₂ = Final Volume (cm³)

This procedure was repeated for the various bacteria suspension densities.
2.2.2 Cation exchange capacity.

This test was conducted in accordance to the procedures outlined by ISRIC [16]. 10 g of soil sample passing through BS Sieve No.10 (2.00 mm aperture) was poured inside a 100 cm3 beaker. 40ml of Ammonium acetate (1N pH7.0) was poured into the beaker. With the aid of a glass rod, the mixture was stirred and left for 24 hours. The soil was filtered with a light suction using a 55 mm Bucher funnel, the soil was leached so that it could fit in a funnel with Ammonium acetate of a volume of 250 cm3. The filtered product was tested to ascertain the absence of calcium. White turbidity or precipitate indicated calcium presence. With 150-200 ml of isopropyl alcohol, the electrolyte was washed out. With (0.1N AgNO$_3$), chloride content was tested in the leachate until the leachate became negligible. A volume of 250ml of the leached soil was acidified, after the soil was verified to drain thoroughly. 50ml of boric acid and mixed indicator, a few drops of it, was poured into a 250 ml conical flask. The acidified soil was turned inside a 500 ml flask, with the flask still connected to the steel, anti-bump and 10 ml of 1N NaOH was poured inside the flask. The content in the flask was then distilled over the boric acid and 150ml distilled sample was collected. A standard acid of 0.1N HCl was used to titrate the NH$_4$-borate. The CEC was calculated using:

$$\text{CEC (Cmol/kg) } = \frac{(\text{Titre} - \text{B}) \times \text{NA}}{\text{Weight of soil}} \times 100$$
(2)

Where:
B = Blank
NA = Normality of acid
This process was repeated for both the untreated and treated samples.

2.2.3 pH.

This test was conducted according to the procedures stated in BS 1377-3: 1990 [17] using electrometric method with a pH meter (PHS-25; Technel & Techmel, USA). A soil to water ratio of 1:2 (10 g of soil to 20 ml of distilled water) was adopted for this test. 10 g of air-dried soil sieved through BS Sieve No.10 (2 mm aperture) was poured into a 50 ml plastic beaker and distilled water of 20 ml volume was poured inside the beaker. The mix was stimulated repeatedly for about 30 minutes and was left undisturbed for another 30 minutes. Using pH buffer of 4, 7, and 9, the pH meter was regulated. An electrode was inserted into the soil but was not allowed to touch the bottom of the beaker and the pH read after 30 seconds. These steps were repeated using 0.01M CaCl$_2$ and 1N KCl solutions.

2.2.4 Soil sample preparation and treatment for test procedures.

400 g of Soil sample of passing through BS Sieve No.40 (425 μm aperture) was utilised for this process. For the control specimen, only cementation reagent which volume was obtained from the total volume stated in equation (3) was utilized for the mixing process of the soil sample. For the treated specimens, the soil was mixed with each B. coagulans suspension density and cementation reagent added to the soil. Three trial mixes were adopted for the calculation of the volume of each of the bacterial suspension density (1.5x108, 6 x 108, 1.2 × 109, 1.8 × 109 and 2.4 × 109 cells/ml) and cementation reagent added to the soil. The mixes are:

i. 25B-75C: In this mix, the soil was mixed with 25% bacterial suspension (25B) and 75% cementation reagent (75C) of the total volume of soil sample used which was obtained from the equations;

$$\text{Total Volume} = \frac{\text{Liquid Limit of Natural Sample}}{100} \times \text{Weight of Soil Sample}$$
(3)
\[\text{Volume of Bacteria} = \frac{25}{100} \times \text{Total Volume} \] (4)

\[\text{Volume of Cementation Reagent} = \frac{75}{100} \times \text{Total Volume} \] (5)

ii. 50B-50C: In this mix, the soil was mixed with 50% bacterial suspension (50B) and 50% cementation reagent (50C) of the total volume which was obtained from the equations;

\[\text{Volume of Bacteria} = \frac{50}{100} \times \text{Total Volume} \] (6)

\[\text{Volume of Cementation Reagent} = \frac{50}{100} \times \text{Total Volume} \] (7)

iii. 75B-25C: In this mix, the soil was mixed with 75% bacterial suspension (75B) and 25% cementation reagent (25C) of the total volume which was obtained from the equations;

\[\text{Volume of Bacteria} = \frac{75}{100} \times \text{Total Volume} \] (8)

\[\text{Volume of Cementation Reagent} = \frac{25}{100} \times \text{Total Volume} \] (9)

After mixing the soil sample with the three trial mixes for the various bacterial suspensions, the treated samples were left to air-dry before being pulverized and sieved with BS Sieve No. 40 (425 μm aperture) for free swell, CEC and pH test procedures. However, for the CEC and pH test procedures, only the most suitable mix ratio obtained from the free swell test for the various mix ratios was utilized.

3. Results and discussion

3.1 Natural soil

The natural black cotton soil had a high natural moisture content of 15.1 %. Its high moisture content was probably influenced by the period in which the samples were collected. The index properties of the natural soil are shown in Table 1, while its oxide composition is presented in Table 2. The sample is greyish-black in colour and has a free swell value of 70.0 %. Its liquid limit, plastic limit and plasticity index values are 53%, 26.7% and 26.3 % respectively. It has 78.7 % fines passing BS sieve No.200. The soil was classified as A-7-6(23) soil group according to American Association of State Highway and Transportation Officials [18] as well as medium and high plasticity clay (CH) according to the Unified Soil Classification System, USCS [19].
Table 1. Basic properties of the black cotton soil used in the study.

Properties	Quantity
Percentage passing 0.075mm sieve	78.7
Natural moisture content, %	15.1
Free Swell, %	70.0
Specific gravity	2.42
Liquid limit, %	53.0
Plastic limit %	26.7
Plasticity index, %	26.3
Linear shrinkage, %	11.5
AASHTO classification	A-7-6(23)
USCS	CH
Maximum dry density, Mg/m³	1.65
Optimum moisture content, %	17.5
Colour	Greyish - Black

Table 2. Oxide compositions of black cotton soil.

Oxide	Concentration (%)
Sodium Oxide (Na₂O)	0.064
Magnesium Oxide (MgO)	0.572
Alumina (Al₂O₃)	20.601
Silica (SiO₂)	63.208
Potassium oxide (P₂O₅)	0.141
Sulphur oxide (SO₃)	0.337
Chloride (Cl)	0.026
Potassium Oxide (K₂O)	2.63
Lime (CaO)	2.017
Titanium Dioxide (TiO₂)	1.736
Chromium (III) Oxide (Cr₂O₃)	0.011
Manganese Oxide (Mn₃O₅)	0.091
Iron oxide (Fe₂O₃)	8.522
Zinc oxide (ZnO)	0.009
Strontium Oxide (SrO)	0.034
Loss on Ignition (LOI)	0.001

3.2 Mechanism of microbial induced calcite precipitate (MICP) process

The concept of utilizing microbes in bio-geotechnical engineering purposes was first initiated in 1992 [20]. The concept involves the catalysis of microbes to generate deposits that can cement soil particles. This new technique, where calcite precipitate is induced is termed Microbial induced calcite precipitation (MICP).

MICP is a soil stabilization method, which involves hydrolyzing urea by using bacteria, to generate carbonate ions, that react with a solution rich in calcium (i.e., calcium chloride); to create calcium carbonate (calcite) which results in an improved soil strength and stiffness by increasing the bond between the particles of the soil [21,22]. The technique can be applied in diverse means such as permeability reduction, soil strength improvement, surface erosion control, and seismic remediation [11,8,23,24].
3.3 Influence of B. coagulans induced calcite precipitate on free swell and physio-chemical properties of black cotton soil

3.3.1 Free swell

The variation of free swell of black cotton soil with B. coagulans suspension density is presented in Figure 1.

![Figure 1. Variation of free swell of black cotton soil with B. coagulans suspension density.](image)

Generally, free swell (FS) decreased from 70 % for the natural BCS with increase in B. coagulans suspension density for the mixes considered, while the free swell value obtained for the control specimen was 50.0 %. The lowest FS values of 30.0 %, 40.0 % and 49.0 % were recorded for 25B – 75C, 50B – 50C and 75B – 25C mix ratios, respectively, at B. coagulans suspension density of 2.4×10^9 cells/ml.

The observed decrease in FS with increase in B. coagulans suspension density can be attributed to the reduction in the clay sized particles and increase in coarser fraction because of the precipitation of calcite from the reaction between B. coagulans and cementation reagent [25,26]. The decrease in the fines fraction was probably due to flocculation and agglomeration of the particles in the treated soil samples which resulted in the formation of larger-sized particles from the clay fractions [27]. In addition, it was observed from Figure 1 that the lowest FS values were obtained for 25B-75C mix when compared with 50B-50C and 75B-25C mixes. This could probably be due to the volume of cementation reagent being insufficient to activate the desired reaction with the microbe colony in each suspension density.

The amount of cementation reagent and B. coagulans suspension density are two of the numerous factors that influence the rate of calcite precipitation [25,26].

3.3.2 Cation exchange capacity (CEC)

Cation exchange capacity (CEC) can be utilized to ascertain a soil specimen’s mineral composition. A high CEC value is often indicative of a high expansiveness rate [28]. Some clay experience replacement of cation of one kind by another while retaining the same crystal structure in a process known as isomorphous substitution. This substitution, which occurs along with the dissociation of hydroxyl ions, often leads to a residual negative charge on the clay mineral’s particle surface. As a result, positively charged ions, known as cations, are adsorbed on the clay mineral’s surface. The bonds between the ions are weak and can be replaced by other ions present in water. This phenomenon is termed as cation exchange. The amount of exchangeable cation available in a soil is designated as the exchange capacity [29,30].

The variation of the CEC of black cotton soil with B. coagulans suspension density is presented in Figure 2. A general decrease of CEC with increase in B. coagulans suspension density was recorded.
The CEC value for the natural and control sample were 49.7 and 29.6 Cmol/Kg. For the treated samples, the CEC values initially increased from the value obtained for the control sample to a peak value of 31.4 Cmol/Kg at B. coagulans suspension density of 1.5×10^8 cells/ml and thereafter gradually decreased to a value of 29.0 Cmol/Kg at B. coagulans suspension density of 2.4×10^9 cells/ml. This decrease could be attributed to the changes in the soil’s granular matrix and mineralogical composition due to the flocculation of the treated soil’s particles resulting in decreased specific surface area and the clay sized fractions within the soil [31,27].

The changes in the soil’s granular matrix was due to the biogeochemical reaction between the carbonate ions from the urea hydrolysis process and the calcium ions present in the cementation reagent, which causes the formation of calcite within the soil mass [25].

3.3.3 pH.

Under proper conditions, urease positive bacteria are capable of hydrolyzing urea into carbonate ions and ammonium ions, forming an alkaline micro-environment around the microorganism cells and increasing the pH of the environment in the process. The carbonate ions in the presence of calcium ions react to produce calcium carbonate. The precipitated calcium carbonate bound soil grains together to enhance the strength and reduce the expansive characteristics of clayey soils [26,28].

The variation of pH of black cotton soil with B. coagulans suspension density is presented in Figure 3. The pH value for the control specimens initially decreased to a minimum before increasing with increase in B. coagulans suspension density.

Figure 2. Variation of cation exchange capacity of black cotton soil with B. coagulans suspension density.

Figure 3. Variation of pH of black cotton soil with B. coagulans suspension density.
The pH value for the control specimens of 7.4 decreased to a minimum value of 7.35 at 6.0 x 10^6 cells/ml and then gradually increased to a peak value of 7.51 at B. coagulans suspension density of 2.4 x 10^9 cells/ml. This trend correlates with the results obtained for the free swell values for the control and treated samples. The increase in pH was probably due to the breakdown of urea by the urease enzyme that formed ammonia as a by-product and eventually resulting in the precipitation of calcite [32]. Therefore, the gradual increase in pH is an indication that more urease activities occurred at higher bacteria suspensions leading to a larger amount of precipitated calcite at 2.4 x 10^9 cells/ml bacteria suspension density.

4. Conclusion

The black cotton soil classified as A–7–6 (23) and medium to high plasticity clay (CH) in AASHTO and USCS, respectively, was treated with stepped B. coagulans suspension density (B) of 0, 1.5 x 10^8, 6.0 x 10^8, 1.2 x 10^9, 1.8 x 10^9 and 2.4 x 10^9 cells/ml and cementation reagent (C). Three mix ratios 25B-75C, 50B-50C and 75B-25C were adopted for the study, while treatment with cementation reagent only was used as control specimen. Results indicated that the free swell improved with higher B. coagulans suspension density with the best results recorded for the 25B-75C mix ratio. Also, the pH and CEC test results indicate increase in urease activity and calcite formation with increase in B. coagulans suspension density. From the results obtained it can be concluded that B. coagulans can be effectively used to reduce the shrink-swell properties of black cotton soil in engineering construction.

5. References

[1] Osinubi K J, Soni E J and Ijimidiya T S 2010 Lime and slag admixture improvement of tropical black clay road foundation In: Transportation Research Board (TRB) 89th Annual Meeting CD-ROM Subject: Recycled Materials in Transportation Infrastructure, Session 243: AFP40 – Physico-chemical and Biological Processes in Soils Committee Paper # 10–0585 (Washington DC, USA) pp. 1–18
[2] Madedor A O and Lal N B 1985 Engineering Classification of Nigerian Black Cotton Soils for Pavement Design and Construction, Geotechnical Practice in Nigeria International Society of Soil Mechanics and Foundation Engineering, Nigerian Geotechnical Association, Nigerian Commemorative Edition, Nigeria. Pp 49-67.
[3] Oluyemi-Ayibiowu B D and Ola S A 2015 Stabilization of Black Cotton Soils from North-Eastern Nigeria with Sodium Silicate International Journal of Scientific Research and Innovative Technology 2(6) 189-203
[4] Ola S A 1983 The Geotechnical Properties of the Black cotton Soils of North – Eastern Nigeria Tropical Soils of Nigeria in Engineering Practice A A Balkema (Rotterdam: Netherlands) pp 85–101
[5] Gidigasu S S R and Gawu S K Y 2013 The Mode of Formation, Nature and Geotechnical Characteristics of Black Cotton Soils - A Review Standard Scientific Research and Essays 1(14) 377-90
[6] Afrin, H 2017 A Review on Different Types Soil Stabilization Techniques International Journal of Transportation Engineering and Technology 3(2) 19-24
[7] Tingle J and Santoni R 2003 Stabilization of Clay Soils with Non-traditional Additives Journal of the Transportation Research Board 2 72–84
[8] Dejong J T, Mortensen B M, Martinez B C and Nelson D C 2010 Bio-mediated Soil Improvement Ecological Engineering 36(2) 197 – 210
[9] Wath R B and Pusadkar S S 2016 Soil Improvement Using Microbial: A Review Indian Geotechnical Conference IGC2016 Vol 2, ed T Thyagaraj (Chennai, India: Indian Institute of Technology, Madras) pp 329-36
[10] Osinubi K J, Eberemu A O, Ijimdiya T S, Yakubu S E, Gadzama E W, Sani J E, Yohanna P 2020 Review of the Use of Microorganisms in Geotechnical Engineering SN Applied Sciences Springer Nature Journal 2 207

[11] Stocks-Fischer S, Galinat J K and Bang S S 1999 Microbiological precipitation of CaCO$_3$ Soil Biology and Biochemistry 31(11) 1563–71.

[12] Stoner, D L, Watson S M, Stedtfeld R D, Meakin P, Griffel L K, Tyler T L, Pegram L M, Barnes J M and Deason V A 2005 Application of Stereo Lithographic Custom Models for Studying the Impact of Biofilms and Mineral Precipitation on Fluid Flow Applied and Environmental Microbiology 71(12) 8721–28

[13] DeJong J T, Fritzges M B and Nüsslein K 2006 Microbial Induced Cementation to Control Sand Response to Undrained Shear Journal of Geotechnical Geoenvironmental Engineering 132(11) 1381-92

[14] Al Qabany A, Mortensen B, Martinez B, Soga K and DeJong J 2011 Microbial Carbonate Precipitation: Correlation of S-Wave Velocity with Calcite Precipitation Proc. ASCE GeoFrontiers 2011 Conf. (Reston VA, USA: ASCE) 3993-4001

[15] Holtz W G and Gibbs H J 1956 Engineering Properties of Expansive Soils Transactions of ASCE 121 641-79

[16] ISRIC 1998 World Soil Information International Soil and Reference Information Center.

[17] BS 1377-3: 1990 Method of Testing Soils for Civil Engineering Purpose (London: British Standard Institute BSI)

[18] AASHTO 1986 Standard Specifications for Transport Materials and Methods of Sampling and Testing 14th Ed (Washington DC: American Association of State Highway and Transport Officials AASHTO)

[19] American Society for Testing and Materials ASTM 1992 Annual Book of Standards Vol. 04.08 (Philadelphia, USA: ASTM)

[20] Ferris F G and Strehmeier L G 1992 Bacteriogenic Mineral Plugging Journal of Canadian Petroleum Technology 36(9)

[21] Cheng L, Shahin M A, Cord-Ruwisch R, Addis M, Hartanto T and Elms C 2014 Soil Stabilisation by Microbial-Induced Calcite Precipitation (MICP): Investigation into Some Physical and Environmental Aspects 7th International Congress on Environmental Geotechnics Conf. (Melbourne, Australia: Engineers Australia) pp 1105-12

[22] Osinubi K J, Eberemu A O, Ijimdiya S T, Yakubu S E and Sani J E 2017 Potential use of B. Pumilus in microbial induced calcite precipitation improvement of lateritic soil Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics CPEG2 Paper #64 (Leeds, United Kingdom) pp 1–6

[23] Kim G and Youn H 2016 Microbially Induced Calcite Precipitation Employing Environmental Isolates Materials 9(4) 468

[24] Zhang J, Zhou A, Liu Y, Zhao B, Luan Y, Wang S, Yiu X and Li Y 2017 Microbial Network of the Carbonate Precipitation Process Induced by Microbial Consortia and the Potential Application to Crack Healing in Concrete Science Reports 7 1-10

[25] Ng W, Lee M and Hii S 2012 An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering 6(2) 188-193

[26] Anbu P, Kang C, Shin Y and So J 2016 Formations of Calcium Carbonate Minerals by Bacteria and its Multiple Applications Springerplus Springer International Publishing 5(1) 250

[27] Yohanna P 2015 The Use of Iron Ore Tailing as Admixture in Cement Modification of Black Cotton Soil (MSc Thesis, Ahmadu Bello University, Zaria, Nigeria)

[28] Neupane S 2016 Evaluating the Suitability of Microbial Induced Calcite Precipitation Technique for Stabilizing Expansive Soils (MSc Thesis, Department of Civil Engineering, Boise State University, Idaho)
[29] Brady N C and Weil R 2002 *The Nature and Properties of Soils* 13th Ed. (New Jersey, USA: Prentice Hall Inc.) p 960

[30] Ovuarume U B 2011 *Effect of Locust Bean Waste Ash on Lime Modified Black Cotton Soil* (MSc Thesis, Ahmadu Bello University, Zaria, Nigeria)

[31] Salahedin M 2013 Effects of CEC on Atterberg limits and Plastic Index in Different Soil Textures *International Journal of Agronomy and Plant Production* 4(9) 2111-18.

[32] Kirk G J D, Versteegen A, Ritz K and Milodowski A E 2015 A Simple Reactive-Transport Model of Calcite Precipitation in Soils and other Porous Media *GeochimicaetCosmochimicaActa* 165 108–122