Research Article

Mathematical Modeling and Analysis of Wear Behavior of AlTiN Coating on Titanium Alloy (Ti-6Al-4V)

P. Sivaprakasam, A. Kirubel, G. Elias, P. Maheandera Prabu, and P. Balasubramani

1Department of Mechanical Engineering, College of Electrical and Mechanical Engineering, Center of Excellence-Nano Technology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
2Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
3Department of Mechanical Engineering, Sona College of Technology, Salem, India

Correspondence should be addressed to P. Sivaprakasam; shiva@aastu.edu.et

Received 29 May 2021; Revised 12 June 2021; Accepted 22 June 2021; Published 30 June 2021

Academic Editor: Samson Jerold Samuel Chelladurai

Copyright © 2021 P. Sivaprakasam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, the wear behavior of a physical vapor deposition (PVD) AlTiN coated on the titanium alloy was investigated. Response surface methodology (RSM) was used to analyze input factors, such as load (A), sliding speed (B), and sliding distance (C), while wear mass loss (WML) and coefficient of friction (COF) were considered as the response parameters. The statistical analysis shows that main factors, that is, interaction of AC and pure quadratic terms B^2 and C^2, have maximum influences on WML. However, COF was highly affected by load, sliding speed, and interaction of AB and quadratic term A^2. The present work attempts to carry out empirical modeling to predict output response on WML and COF. Desirability-based optimization technique was employed to obtain minimum WML and COF. Microscopy images of the wear tracks reveal visible grooves and scratches that confirm abrasive wear to be the primary wear mechanism accompanied by adhesive wear. The investigation concluded that AlTiN has better wear resistance properties and can be used to coat titanium implants for biomedical application. The result shows that the minimum WML and COF have been found at applied load 15 N, sliding speed at 0.5 m/s, and sliding distance 500 m.

1. Introduction

Surface engineering is enabling technology that meets the expectations of modern science, energy, material properties, and environmental friendliness. The technology allows for the altering of materials surfaces to have enhanced properties [1]. PVD technique is a vaporization coating method that involves transforming the coating material into the gaseous phase by using resistive heating, electron beam, etc., to deposit on the surface of the substrate [2, 3]. Many studies have considered different coating techniques for clinical purposes. PVD, CVD, sol-gel coating, and self-assembly are some of the deposition methods for biomedical applications [2–5]. However, PVD has become widely used on various medical devices, including surgical tools, orthopedic implants, pacemakers, and orthodontic appliances, to deposit wear-resistant single or multilayer coatings. PVD’s importance is focused on its ability to change a device’s surface features unaffected the underlying material’s properties or biomechanical functionality. Chen and Thouas [6] highlighted that lower modulus and high corrosion resistance characteristics of Ti-alloy make the material have superior biocompatibility property than stainless steel cobalt alloys. The advantage in elemental composition similarity is taken between Ti-6Al-4V substrate and TiN coating, where diffusion or adhesion property is expected to occur between materials to yield improved sliding wear resistance [7]. AlTiN films are suitable as ideal wear-resistant coatings because of their higher strength, low coefficient of friction, and chemical inertness [8]. Szala et al. [9] investigated the
sliding wear mechanism of AlTiN (PVD) coated stainless steel substrate (grade AISI 304). The results showed that AlTiN-coated samples exhibited 24 times sliding wear resistance and two times decrease in friction coefficient than the uncoated substrates. Furthermore, it was observed that grooving, microscratching, microplowing, and smearing were the main types of sliding wear mechanisms.

In the aircraft sector, titanium alloys are utilized for landing systems, fasteners, engine components, airframes, and other applications. The Ti-6Al-4V alloy stands out among these alloys because of its high strength-to-weight ratio, corrosion resistance, and low density [10]. Ti and Ti alloys are lightweight and have improved biocompatibility and corrosion resistance, making them popular in medical and dental applications [11]. Protecting Ti-6Al-4V substrates with PVD coatings has been shown to improve mechanical characteristics, biocompatibility, osseointegration, wear, and corrosion resistance [12].

Biomedical areas use metallic biomaterials such as stainless steels (SS 316L), cobalt-based alloys, commercially pure titanium and its alloy, Sn alloys, and Au-based materials for different purposes [4]. Titanium alloys are the most attractive biomedical metallic material under static conditions; it is more corrosion-resistant. These materials are subject to intrinsic limitations when dynamic conditions such as fretting, wear, fatigue, and chemical corrosion [7]. Generally, these alloys have a reputation for poor tribological characteristics, and they are restricted for further uses in their tribological applications. In general, as stated in the literature mentioned above, the significance of an AlTiN coating on titanium alloys is rarely mentioned. The applied force, temperature, and oxidation, all associated with the sliding contact mechanism, regulate coated surfaces’ friction and wear behavior. Particularly, load, sliding velocity, and distance have a significant impact on wear behavior. Therefore, the research concentrated on the wear properties of titanium alloys coated with AlTiN.

2. Materials and Methods

2.1. Materials. Titanium alloy (Ti-6Al-4V) is used for this investigation. The cylindrical bar is cut into 20 specimens using WEDM. The specimens were mechanically grained and polished according to required standards (Ø 50 mm and 10 mm thickness). AlTiN is deposited using an arc evaporation technique (Oerlikon Balzers coating system, India) with an approximate deposition thickness of 2 μm. The EN31 steel pin (6 mm diameter and length 35 mm) materials were used against the AlTiN-coated titanium alloy disc.

2.2. Response Surface Methodology (RSM). RSM is the most popular method for designing an experiment for engineering problems and predicting and optimizing a given model on surface roughness [13, 14]. RSM [15] is the best tool for analyzing the impact of factors and their interaction on the response. Table 1 shows the input variables with levels taken into account for wear studies. The input factors and levels selected based on the tribometer range and relevant literature [14]. The wear tests were carried out using face center cubic design (RSM) at random fashion as shown in Table 2.

2.3. Sliding Wear Test. For the sliding wear test, an American Society for Testing Materials (ASTM) G99 guideline is followed. A pin on disc (DUCOM) tribometer is used to test the coated substrate material’s sliding wear and friction behavior (Figure 1). The experiment is conducted at ambient temperature and humidity under dry sliding conditions. The pin on the disc tribometer consists of a stationary pin prepared of EN31 steel, which is harder than the coating material, held vertically and pressed with a specific load against a rotary sample. Figures 2(a)–2(c) show the test samples for uncoated, coated with AlTiN and wear test, respectively. The test was performed based on the design of experiments using RSM. The wear mass loss was calculated by analytical balance (0.0001 g least count) before and after wear tests. Acetone is used for cleaning the surface of the disc and pin. COF is calculated by frictional force/applied force.

3. Results and Discussion

3.1. Statistical Analysis. The statistical analysis is applied to analyzing the responses as per input factor combinations, coefficients estimation, and model adequacy checking and predicting the responses [14]. The factors considered for the study were load, sliding speed, and sliding distance. The WML and COF were taken as response parameters. The face-centered cubic design was employed using Design Expert software. The experimental results of the wear test coated on titanium alloy were presented in Table 2.

3.1.1. Mathematical Models for WML and COF. The input trials developed the mathematical models for WML and COF. Wear mass loss (Y_{WML}) and COF (Y_{COF}) are represented using quadratic equations, as shown in (1) and (2), respectively. WML and COF predictions are based on the mathematical models with a coding unit as given in equation [1, 2].

Model equation of WML:

\[Y_{WML} = 49.11 + 18.90 \times A + 3.10 \times B + 17.50 \times C + 12.37 \times AC + 7.44 \times B^2 - 7.56 \times C^2. \]

Model equation of COF:
\[Y_{COF} = 0.41 - 0.011 \times A + 0.014 \times B - 0.087 \times AB - 0.086 \times A^2. \]

3.1.2. Model Adequacy Testing. The following graphical analysis was used to validate the adequacy of the model. Figures 3 and 4 show the residual plot for WML and COF. The residuals fall in a straight line in the normal probability plot for the WML and COF (Figures 3(a) and 4(a)), which clearly shows the errors are normally distributed, and no outliers are presented. The residuals are dispersed, suggesting that they are independent, as shown in Figures 3(b) and 4(b). There is no peculiar structure in Figures 3(c) and 4(c), indicating that the model is correct. The model adequacy test results confirm that the experimental and predicted values well fit each other. The \(R^2 \) and \(R^2 \) (adj) values for WML are 0.9836 and 0.9761 and those for COF are 0.9829 and 0.9783, respectively. The \(R^2 \) values agree with \(R^2 \) (adj) values, indicating that model data fit with experimental values. In both models, both \(R^2 \) and \(R^2 \) (adj) values are above 95%, which allows the model to fit the prediction of the solution.

3.2. Analysis of Wear Mass Loss. ANOVA analysis is used to evaluate input factors on WML. The ANOVA for WML simplified model is shown in Table 3. The \(P \) values indicate the confidence level, which is less than 0.05. It shows that the model has more than a 95% confidence interval. The coefficient of determination (\(R^2 \)) value of the WML model is 0.9836. Hence, the developed model is acceptable, and the predicted values fit the measured results. Insignificant factors are eliminated from the full quadratic model by the backward elimination process. Minimum mass loss is desirable since it indicates less wear amount. The minimum WML was found at 15 N, 0.5 m/sec, and 500 m.

The applied load (\(A \)), sliding speed (\(B \)), sliding distance (\(C \)), the interaction of \(A \) and \(C \), and pure quadratic terms \(B^2 \) and \(C^2 \) have the greatest influence on WML; according to the quadratic equation for WML (equation (1)), applied load (\(A \)), sliding speed (\(B \)), the interaction of \(A \) and \(C \), and pure quadratic term \(A^2 \) have foremost influences on COF (equation (2)).

Factors	Levels	Levels	Levels
A: load (N)	Level 1	Level 2	Level 3
15	30	45	
B: sliding speed (m/s)	0.5	1	1.5
500	1000	1500	
C: sliding distance (m)	500	1000	1500

Table 1: Wear test factors and their levels.

Table 2: Experimental results of wear test.

S. No.	Load N	Sliding speed m/s	Sliding distance m	WML mg	COF
1	30	1	1000	55	0.4041
2	15	0.5	500	24	0.2247
3	30	1	1500	56	0.3925
4	30	0.5	1000	49	0.4198
5	45	0.5	500	35	0.3864
6	45	1.5	1500	100	0.2523
7	30	1.5	1000	63	0.4223
8	30	1	1000	49	0.4205
9	15	1.5	1500	40	0.4414
10	30	1	1000	46	0.4131
11	45	1	1000	68	0.3205
12	45	0.5	1500	96	0.3879
13	15	0.5	1500	33	0.2483
14	30	1	1000	52	0.4239
15	45	1.5	500	39	0.2463
16	15	1	1000	26	0.3304
17	15	1.5	500	26	0.449
18	30	1	1000	48	0.4212
19	30	1	500	26	0.4132
20	30	1	1000	50	0.4115
distance increase, the abrasive wear increases, resulting in greater wear mass loss. Asperities compress between the sliding surfaces, resulting in a blunt surface and increased contact area, leads to higher wear mass loss as the sliding distance increases.

The sliding speed has less influence on wear mass loss. The experimental observation shows that the maximum wear mass loss recorded was 100 mg. Fan et al. [16] can also support these results, where the adhesive strength of PVD (arc ion implant) coated AlTiN was found to be 39.7 N, which is lower than the load applied in this study. This clearly explains the significant effect of the applied load on WML. Figures 5 and 6 show the interactive effect of load and sliding distance on WML. From the figures, when applied load increases, mass loss tends to increase. Similarly, mass loss also increases as sliding distance increases.

3.3. Analysis of Coefficient of Friction. ANOVA Table 4 for COF shows that load and sliding speed and its interaction influence the response. It is evident that an increase in sliding speed results in a linear increase in COF, while an increase in applied load results in a parabolic (progressive) increment in COF (Figures 7 and 8). This phenomenon was also observed by Yousfi [17], where it was assumed that it is the cause of COF instability. In addition, a recent study by Bahi et al. [12] showed that the COF for TiN/TiO2 multilayer coating of Ti-6Al-4V substrate to be unstable COF as sliding distance increases. From Figure 7, it can be understood that there is a tendency for COF to decrease as load increases. The COF decreases as load increases, and related findings were observed by Dejun et al. [18]. Slight variation in COF was observed, which attributes to the galling effect [17] and an increase in the sliding distance [12]. This also confirms that AlTiN was an excellent choice of material for a substrate subjected to increased load under dry conditions.

The coefficient of friction is expected to increase as load increases between sliding surfaces, particularly between materials of high hardness. Lattice constraint is minimized due to the solid solution hardening of aluminum which attributes to the property of improved hardness of AlTiN coatings [3]. Adhesion strength is the energy required to separate a coating from its substrate. The addition of Al in TiN hard-facing improved resistance to elastic deformation. Furthermore, according to the literature [19, 20], the hardness to elastic modulus (H/E) values are also used to indicate wear initiation. Resistance to abrasion and higher hardness and resistance to elastic deformation are exhibited when H/E values are high. With a higher load, the rate of forming the tribo-layer will be faster as the temperature in the contact area rises, causing plastic deformation on the surface; thus, the coefficient of friction will decrease [21, 22].
Figure 3: Residual plot for WML. (a) Normal probability plot. (b) Residuals versus run number. (c) Residuals versus predicted values.

Figure 4: Continued.
The main wear mechanism of AlTiN coating for abrasion wear is seen when microscopy pictures have been analyzed. Abrasive and adhesive wear mechanisms were observed in Figure 9, based on the direction of wear. It might be inferred that the primary wear mechanism of AlTiN coating is abrasive wear accompanied by adhesive wear. Also, the wear track contains more grooves and scratches.

The desirability-based optimization technique was employed for finding the optimal combination for the wear test [14]. The objective function for the wear test is minimum wear mass loss and minimum COF. The optimal conditions for the wear test were load at 15 N, sliding speed at 0.5 m/s, and sliding distance at 500 m.

The test results are validated based on the optimal processing parameters through a confirmation test. With a desirability value of 0.971, the optimal combinations for lower wear mass loss and COF are 15 N applied load, 0.5 m/s sliding speed, and 500 m sliding distance (Table 5).

Table 3: ANOVA for WML.

Source	Sum of square	Degree of freedom	Mean square	F value	p value prob > F
Model	8180.888	6	1363.481	130.2729	<0.0001 Significant
A	3572.1	1	3572.1	341.2939	<0.0001
B	96.1	1	96.1	9.18181	0.0097
C	3062.5	1	3062.5	292.6045	<0.0001
AC	1225.125	1	1225.125	117.0537	<0.0001
B²	177.0125	1	177.0125	16.91254	0.0012
C²	183.0125	1	183.0125	17.48581	0.0011
Residual	136.0625	13	10.46635		
Lack of fit	86.0625	8	10.75781	1.075781	0.4905
Pure error	50	5	10		
Cor total	8316.95	19			

Figure 5: 3D surface plot of WML.
Table 4: ANOVA for COF.

Source	Sum of square	Degree of freedom	Mean square	F value	p value prob > F
Model	0.100749	4	0.025187	215.370	<0.0001 Significant
A	0.001219	1	0.001219	10.4217	0.0056
B	0.002079	1	0.002079	17.7801	0.0007
AB	0.060048	1	0.060048	513.4588	<0.0001
A²	0.037403	1	0.037403	319.82	<0.0001
Residual	0.001754	15	0.000117		
Lack of fit	0.001475	10	0.000147	2.6382	0.1479
Pure error	0.000279	5	5.59 × 10⁻⁵		
Cor total	0.102503	19			
shows that, at 95% confidence intervals, the predicted and test values are in good agreement.

4. Conclusion

The tribological behavior of AlTiN-coated titanium alloy against EN-31 was examined under room temperature and dry sliding conditions. The scientific results are summarized as follows.

ANOVA was performed to determine the significance of AlTiN-coated titanium alloy tribology behavior. The statistical analysis shows that applied load (A), sliding speed (B), sliding distance (C), the interaction of A and C, and pure quadratic terms B^2 and C^2 have maximum influences on WML.

Applied load (A), sliding speed (B), the interaction of A and B, and pure quadratic term A^2 have maximum influences on COF.

The higher wear mass loss 100 g could be found at 45 N applied load, 1.5 m/s sliding speed, and 1500 m sliding distance.

Desirability-based optimization techniques were employed for the sliding wear behavior of AlTiN-coated titanium alloy. The result shows that the minimum WML and COF have been found at applied load 15 N, sliding speed at 0.5 m/s, and sliding distance 500 m.

Table 5: Optimum conditions for sliding parameter of AlTiN-coated titanium alloy.

Response	Goal	Desirability	A	B	C	Predicted value	Experimental value
WML	Minimum	0.971	15	0.5	500	21.934	23.00
COF	Minimum	0.971	15	0.5	500	0.2377	0.2320

Figure 8: Contour plot of COF.

Figure 9: Microscope images of wear tracks.

Table 5: Optimum conditions for sliding parameter of AlTiN-coated titanium alloy.
Data Availability
The data used to support the findings of this study are included within the article.

Conflicts of Interest
The authors declare that they have no conflicts of interest regarding the publication of this paper.

Acknowledgments
It was performed as a part of the employment of Addis Ababa Science and Technology University.

References
[1] I. Saravanan, A. Elaya Perunal, S. C. Vettivel, N. Selvakumar, and A. Baradewaran, “Optimizing wear behavior of TiN coated SS 316L against Ti alloy using response surface methodology,” Materials & Design, vol. 67, pp. 469–482, 2015.
[2] O. Yilmaz and A. Yorgancioglu, “Chapter 8–nanocoatings: preparation, Properties, and Biomedical Applications,” in Polymeric Nanomaterials In Nanotherapeutics, C. Vasile, Ed., Elsevier, Amsterdam, Netherlands, pp. 299–331, 2019.
[3] R. A. Caruso and M. Antonietti, “Sol–Gel nanocoating: an approach to the preparation of structured materials,” Chemistry of Materials, vol. 13, no. 10, pp. 3272–3282, 2001.
[4] R. Abdel-Karim and A. Waheed, Nanocoatings, Modern Surface Engineering Treatments, Intech Open, London, UK, 2013.
[5] O.-N. Ciocoiu, G. Staikos, and C. Vasile, “Thermoresponsive behavior of sodium alginate grafted with poly (N-isopropylacrylamide) in aqueous media,” Carbohydrate Polymers, vol. 184, pp. 118–126, 2018.
[6] Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering: R: Reports, vol. 87, pp. 1–57, 2015.
[7] M. Łępicka, M. Grądza-Dahlke, D. Pieniak, K. Pasierbiewicz, K. Krysińska, and A. Niewczas, “Tribological performance of titanium nitride coatings: a comparative study on TiN-coated stainless steel and titanium alloy,” Wear, vol. 422-423, pp. 68–80, 2019.
[8] X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering: R: Reports, vol. 47, no. 3-4, pp. 49–121, 2004.
[9] M. Szala, M. Walczak, K. Pasierbiewicz, and M. Kamiński, “Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate,” Coatings, vol. 9, no. 5, pp. 1–16, 2019.
[10] B. Y. Peng, X. Nie, and Y. Chen, “Effects of surface coating preparation and sliding modes on titanium oxide coated titanium alloy for aerospace applications,” International Journal of Aerospace Engineering, vol. 2014, Article ID 640364, 10 pages, 2014.
[11] M. A. Hussein, N. K. Ankh, A. M. Kumar et al., “Mechanical, biocorrosion, and antibacterial properties of nanocrystalline TiN coating for orthopedic applications,” Ceramics International, vol. 46, no. 11, pp. 18573–18583, 2020.
[12] R. Bahi, C. Nouveau, N. E. Beliardouh, C. E. Ramoul, S. Meddah, and O. Ghellouli, “Surface performances of Ti-6Al-4V substrates coated PVD multilayered films in biological environments,” Surface and Coatings Technology, vol. 385, Article ID 125412, 2020.
[13] P. Sivaprakasam, J. Udaya Prakash, and P. Harirahan, “Enhancement of material removal rate in magnetic field-assisted micro electric discharge machining of Aluminium Matrix Composites,” International Journal of Ambient Energy, 2019.
[14] P. Sivaprakasam, G. Elias, P. Maheandera Prabu, and P. Balasubramani, “Experimental investigations on wear properties of AlTiN coated 316LVM stainless steel,” Materials Today, vol. 33, 2020.
[15] P. Sivaprakasam and P. Harirahan, “Optimization of process parameters of micro-WEDM process on inconel super alloy through response surface methodology,” International Journal of Mechanical and Production Engineering Research and Development, vol. 8, no. 6, pp. 1001–1012, 2018.
[16] Q.-X. Fan, T.-G. Wang, Y.-M. Liu et al., “Microstructure and corrosion resistance of the AlTiN coating deposited by arc ion plating,” Acta Metallurgica Sinica, vol. 29, no. 12, pp. 1119–1126, 2016.
[17] M. A. Yousfi, Influence of Surface Roughness Lay and Surface Coatings on Galling during Hot Forming of Al-Si Coated High Strength Steel, Luleå University of Technology, Luleå, Sweden, 2011.
[18] K. Dejun, G. Haoyuan, and W. Wenchang, “Effects of loadings on friction and wear behaviors of cathodic arc ion plating aln coating at high temperature,” Tribology Transactions, vol. 59, no. 4, pp. 604–612, 2016.
[19] M. Walczak, K. Pasierbiewicz, and M. Szala, “Adhesion and mechanical properties of tantal and aln magnetron sputtered coatings deposited on the dmsl titanium alloy substrate,” Acta Physica Polonica A, vol. 136, no. 2, pp. 294–298, 2019.
[20] F. Yıldız, A. Alsaran, A. Çelik, and İ. Efeoğlu, “Multipass scratch test behaviour of TiAlN thin film deposited on 316L stainless steel and Ti6AlV alloy with dc biased and pulsed magnetron sputtering,” Surface Engineering, vol. 26, no. 8, pp. 578–583, 2010.
[21] A. Nouri and C. Wen, “Introduction to surface coating and modification for metallic biomaterials,” Surface Coating and Modification of Metallic Biomaterials, Elsevier BV, Amsterdam, Netherlands, pp. 3–60, 2015.
[22] R. A. Antunes, M. C. L. de Oliveira, and L. De Oliveira, “Corrosion processes of physical vapor deposition-coated metallic implants,” Critical Reviews in Biomedical Engineering, vol. 37, no. 6, pp. 425–460, 2009.