Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes

Michael R. Warner1, Lijun Qiu2, Michael J. Holmes2,3, Alexander S. Mikheyev2,4 & Timothy A. Linksvayer1

Eusociality has convergently evolved multiple times, but the genomic basis of caste-based division of labor and degree to which independent origins of eusociality have utilized common genes remain largely unknown. Here we characterize caste-specific transcriptomic profiles across development and adult body segments from pharaoh ants (Monomorium pharaonis) and honey bees (Apis mellifera), representing two independent origins of eusociality. We identify a substantial shared core of genes upregulated in the abdomens of queen ants and honey bees that also tends to be upregulated in mated female flies, suggesting that these genes are part of a conserved insect reproductive groundplan. Outside of this shared groundplan, few genes are differentially expressed in common. Instead, the majority of the thousands of caste-associated genes are plastically expressed, rapidly evolving, and relatively evolutionarily young. These results emphasize that the recruitment of both highly conserved and lineage-specific genes underlie the convergent evolution of novel traits such as eusociality.
The degree to which convergent phenotypic evolution involves the same sets of genes or pathways is a major unanswered question. Comparative genomics studies indicate that parallel adaptive changes in the protein-coding sequences of the same genes are frequently associated with the evolution of convergent phenotypes in closely related populations and species. Decades of research in evolutionary developmental biology also emphasize that changes in the expression of a relatively small toolkit of deeply conserved genes are often associated with convergently evolved phenotypes in distantly related species. Alternatively, convergent phenotypic evolution between lineages could involve distinct subsets of genes in each lineage, including taxonomically restricted genes, genes which have no detectable orthology outside of a given lineage. Taxonomically restricted genes have been shown to be important for lineage-specific evolutionary novelties, but their relative contribution to the evolution of convergent phenotypes is unknown.

The evolution of eusociality in several insect lineages (e.g., ants, honey bees, vespid wasps, and termites) provides a striking example of convergent phenotypic innovation. Eusocial insect societies are founded upon a novel caste polyphenism, in which reproductive queen and non-reproductive worker female castes develop from the same genome, depending mainly on social regulation of nutritional inputs. Within the worker caste, further specialization often occurs as individuals age and progress through a series of tasks, including nursing and foraging.

Polyphenic traits are often thought to evolve from pre-existing developmental plasticity. Leading hypotheses for the evolution of caste-based division of labor in social insects also stress the use and modification of highly conserved developmental and physiological mechanisms. For example, the reproductive and non-reproductive phases of ancestral solitary insects are thought to have been decoupled to produce reproductive and non-reproductive castes, and worker division of labor is similarly thought to be derived from the decoupling of the ancestral reproductive cycle. Along the same lines, it has been suggested that the convergent evolution of novel social behavior involves changes to the regulation of a core toolkit of genes underlying highly conserved physiological processes, such as metabolism.

Studies focused on candidate genes underlying the genetic basis of caste-based division of labor within individual eusocial species have often found support for the importance of highly conserved genes and pathways associated with reproduction and metabolism. For example, worker division of labor in honey bees is regulated by interactions between juvenile hormone, vitellogenin, and insulin/insulin signaling pathways. Similar pathways also play key roles in regulating division of labor between queen and worker castes in both ants and honey bees, though the mechanistic details vary. While comparative genomic and transcriptomic studies have often similarly emphasized common general functions, such as metabolism, such studies have thus far only identified very small sets of specific genes associated with the convergent evolution of caste, worker behavior, or eusociality in independent lineages. Alternatively, many transcriptomic studies have argued for the importance of taxonomically restricted genes for the evolution of caste-based division of labor. It is unclear if the lack of common specific genes is due to biological differences between the species or methodological details, because studies in each species were not designed, conducted, or analyzed in parallel.

Previous work has mainly focused on identifying whether there is significant overlap of genes or gene pathways associated with caste-based division of labor between independent lineages, but there has been little effort to quantify the relative importance of shared versus unshared genes to the convergent evolution of caste-based division of labor. Most of these studies have either focused on the brain or whole-body samples, although expression bias between queens and workers has been shown to be dependent upon developmental stage and tissue type. Finally, the transcriptomic signatures of reproductive physiology are strongest in the abdomen, the location of reproductive organs, but no past study has explicitly compared caste bias in abdominal tissues in species from lineages representing independent origins of eusociality.

Here, we present a comprehensive developmental transcriptomic data set investigating gene expression associated with reproductive caste and age-based worker division of labor in the pharaoh ant and the honey bee. We focus on these two study species because they represent two independent origins of eusociality in the ant and bee lineages as well as two independent elaborations of eusociality, each characterized by strong queen-worker dimorphism and age-based worker division of labor. We perform all sampling, sequencing, and analysis for the two species in parallel to maximize compatibility between the data sets. We leverage this extensive data set to quantify in an unbiased manner the relative contribution of differential expression of shared versus distinct genes at each life stage and tissue to the convergent evolution of caste-based division of labor. We identify a large group of genes which are associated with queen abdomens in both eusocial species and tend to be female biased in . Outside of this shared core, few genes are differentially expressed in both species in the same tissue or developmental stage, and genes with high degrees of caste-biased expression tend to be weakly constrained in terms of expression profile and sequence evolution.

Results

Study design. We constructed two large, parallel transcriptomic data sets in honey bees and pharaoh ants spanning caste development as well as adult tissues separated by reproductive caste (queens versus workers), behavior (nurse workers versus forager workers), and sex (queens and workers versus males). In total, we constructed 177 mRNA-sequencing libraries across 28 distinct sample types for each species (Supplementary Table 1).

Differential expression between queens and workers. To identify genes associated with caste development and adult caste dimorphism, we performed differential expression analysis between queens and workers at each developmental stage and adult tissue, separately for each species. The number of differentially expressed genes (DEGs) between queens and workers increased throughout development, peaking in the adult abdomen (Fig. 1a). In all tissues and stages, the majority of caste-associated DEGs in one species were either not differentially expressed or did not have an ortholog in the other species (Fig. 1a; Supplementary Fig. 1a; Supplementary Table 2). The magnitude of gene-wise caste bias (as measured by log fold change between queen and worker samples) was weakly positively correlated between ant and honey bee orthologs in all three adult tissues, with the strongest correlation in the abdomen, but uncorrelated or negatively correlated in all larval and pupal stages (Supplementary Fig. 2; Pearson correlation; head = 0.089; thorax = 0.161; abdomen = 0.275; N = 7460 1:1 orthologs; P < 0.001 in all cases). The top enriched Gene Ontology (GO) terms for caste-associated DEGs in each species were dominated by metabolism, signaling, and developmental processes (Supplementary Tables 3, 4).
Differential expression between nurses and foragers. Both honey bees and pharaoh ants exhibit age-based worker division of labor, in which younger individuals tend to specialize on nursing and other within-nest activities and older individuals specialize on foraging. To identify genes associated with age-based worker division of labor, we performed differential expression analysis between nurses and foragers in each adult tissue, separately for each species. In general, there were very few behaviorally DEGs shared between the two species (Fig. 1b; Supplementary Fig. 1b; Supplementary Table 5). Gene-wise log2 fold change between nurses and foragers was significantly but weakly correlated across ant and honey bee orthologs (Supplementary Fig. 3; Pearson correlation; rhead = 0.070, Phead < 0.001; rthorax = 0.031, Pthorax = 0.008; rabdomen = 0.051, Pabdomen < 0.001; N = 7460).
1:1 orthologs). The top enriched GO terms for behavioral DEGs in each species were dominated by metabolism and developmental processes (Supplementary Tables 6, 7).

Shared abdominal caste bias in ancient genes. For the most part, our results indicate distinct genes are associated with caste and worker division of labor in honey bees and ants. However, approximately one-third of the abdominal caste-associated DEGs were common to both species (Fig. 1a; 1545 shared DEGs, comprising 35% [1545/4395] of ant DEGs, and 29% [1545/5352] of honey bee DEGs). Most shared abdominal differential expression was the result of shared queen bias: 56% (858/1545 genes) of shared abdominal caste-associated DEGs were upregulated in queen abdomens in both species, compared with 22% (338/1545) that were worker-upregulated in both species and 23% (349/1545) that reversed direction (i.e., were queen biased in one species and worker biased in the other). Shared abdominal caste-associated DEGs were more likely to be identified as evolutionarily ancient in comparison with worker-biased genes (Fig. 1c Supplementary Fig. 1c, Fisher Test; F = 3.41, P < 0.001). Furthermore, abdominal DEGs with shared queen bias were more likely to be identified as ancient than DEGs with shared worker bias (Fig. 1c; Fisher Test; F = 2.51, P < 0.001). In general, the evolutionary age of genes was associated with expression bias between castes, though the direction of the effect was not consistent across all tissues and stages (Supplementary Fig. 4).

To identify which of the thousands of abdominal DEGs found in each species are particularly important for queen abdominal expression (and presumably function), we performed gene co-expression analysis, separately for each species. We focused on expression (and presumably function), we performed gene co-expression analysis, separately for each species. We focused on expression bias in queen abdomens (Supplementary Table 10), genes which were present in the queen abdominal expression module (Fig. 2c, d). Ed hub genes in each module were more highly connected within the queen abdominal module than genes not associated with oogenesis (Supplementary Fig. 6) for honey bees (Wilcoxon test; N = 649; P < 0.001), though not for ants (N = 542; P = 0.114). Finally, we identified 181 genes which were present in the queen abdominal module of both species. These genes tended to be queen biased (78.5% [142/181] upregulated in queens of both species) and were more centrally located within modules than genes found in only one species-specific module (Fig. 2c, d).

Caste bias is in part derived from ancestral sex bias. Given that our co-expression analysis indicated that many important queen-upregulated genes are associated with oogenesis and overall female reproduction, we reasoned that caste-biased expression would be linked to sex-biased expression (i.e., expression differences between reproductive females and males). Indeed, there was a positive correlation between gene-wise log2 fold change between queen and worker abdomens and gene-wise log2 fold change between queen and male abdomens in both honey bees and pharaoh ants (Fig. 3a, b). In addition, sex bias itself was correlated between species (Fig. 3c). The correlation of caste bias and sex bias was not restricted to the abdomen, as there were similar highly significant effects when comparing transcriptomic profiles in the head and thoracic tissues, albeit with weaker effect sizes (Supplementary Fig. 7).

Given the association between shared caste bias and sex bias within pharaoh ants and honey bees, we hypothesized that these shared caste-biased genes were derived from conserved pathways that also underlie sexual dimorphism for reproductive physiology in distant relatives. To test this hypothesis, we estimated sex-biased expression of orthologs in the fruit fly D. melanogaster using available data from male and mated female whole bodies. Shared queen-biased abdominal DEGs tended to be upregulated in females in D. melanogaster (Fig. 3d; one-sided binomial test for likelihood of shared queen-biased DEGs having log2 fold change > 0; P < 0.001; N = 566 shared queen DEGs), while shared worker-biased abdominal DEGs tended to be upregulated in males (binomial test; P < 0.001; N = 160 shared worker DEGs), indicative of shared queen (social insects) and female (fly) downregulation. Though we detected few shared caste-associated DEGs in the head and thorax (N = 38 and N = 64, respectively), these DEGs showed the same pattern, where orthologs of queen-biased DEGs were significantly more female biased in D. melanogaster than orthologs of worker-biased DEGs (Supplementary Fig. 8).

Expression plasticity is correlated between species. While we have emphasized the conservation of abdominal differential expression between queens and workers in pharaoh ants and honey bees, differential expression based on either reproductive caste or worker division of labor was largely not shared between species (Fig. 1). Furthermore, genes were often differentially expressed across many stages and tissues, sometimes in opposite directions (Supplementary Fig. 9; e.g., upregulated in queen heads, but downregulated in queen abdomens). To quantify the degree to which genes exhibited biased expression according to reproductive caste across all developmental stages and tissues, we calculated gene-wise overall caste bias in each species, where we defined overall caste bias as the Euclidean distance of log2 fold change across all queen/worker comparisons. Similarly, we defined overall behavior bias as the Euclidean distance of log2 fold change across all nurse/forager comparisons, separately for each species.

Across 1:1 orthologs, overall caste bias measured in ants was correlated to overall caste bias measured in honey bees (Supplementary Fig. 10a; Spearman correlation; rho = 0.454, P < 0.001), and overall behavior bias was similarly correlated between species (Supplementary Fig. 10b; Spearman correlation; rho = 0.221, P < 0.001). Within species, overall caste and behavior bias were also correlated to each other (Supplementary Fig. 11; Spearman correlation; ants: rho = 0.549, P < 0.001; honey bees: rho = 0.642, P < 0.001). This indicates that plasticity in gene expression is correlated across contexts (caste versus behavior) and species. GO terms associated with high overall caste bias were largely linked to metabolism, while those associated with high
Characteristics of genes associated with caste and behavior. We compared overall caste bias and overall behavior bias to gene age, evolutionary rate, network connectivity, and tissue specificity to understand the general features of genes commonly associated with caste (queen versus worker) or behavior (nursing versus foraging). Genes with younger estimated evolutionary ages tended to exhibit higher overall caste bias (Fig. 4a, b) and behavior bias (Supplementary Fig. 12a, b) compared to ancient genes (gamma GLM; ant caste bias: $\chi^2 = 900.19$, honey bee caste bias: $\chi^2 = 1412.80$, P < 0.001 for all cases; N = 10520 in ant, N = 10011 in honey bees). Genes that were loosely connected (representing peripheral network elements) in co-expression networks constructed across all samples tended to exhibit more caste and behavior bias in comparison with highly connected genes (Fig. 4c, d; Supplementary Fig. 12c, d). Similarly, genes with high tissue specificity across 12 honey bee tissues tended to exhibit higher values of caste and behavior bias in honey bees compared to more pleiotropic, ubiquitously expressed genes (Supplementary Fig. 13), where tissue specificity was calculated using available data. Finally, genes that were rapidly evolving (as estimated by dN/dS) tended to exhibit higher levels of caste and behavior bias (Fig. 4e, f; Supplementary Fig. 12e, f). Importantly, while expression is correlated to overall caste and behavior bias, these results remain highly significant when expression level is controlled for in partial correlation analyses (Supplementary Table 11).

Discussion

Caste-based division of labor within social insect colonies is hypothesized to be derived from conserved pathways regulating reproduction. In this study, we identified a large set (~1500) of genes with shared caste-biased abdominal expression in pharaoh ants and honey bees (Fig. 1a), including many annotated genes with known roles in reproduction, such as the vitellogenin receptor and ovo. Our results are consistent with the notion that caste-biased genes are derived from ancient plasticity expressed genes underlying female reproduction, as genes upregulated in queen abdomens of both ants and honey bees tended to be female biased in the distant insect relative Drosophila melanogaster (Fig. 3d). Previous studies had failed to find large sets of genes repeatedly used for eusocial evolution, but no previous comparative study investigated caste-biased expression in the abdomen.
shared ancestry and the deep conservation of developmental mechanisms44,51. The similar level of overlap for caste-associated genes points to the large-scale recruitment of pre-existing developmental and physiological machinery during the independent evolution of caste-based division of labor in ant and honey bee lineages. In addition, the association between sex bias in \textit{D. melanogaster} and shared caste bias in social insects extended to the head and thorax (Supplementary Fig. 8), and caste- and sex bias were correlated within species (Supplementary Fig. 7). This indicates that although the strongest signature of overlap in caste-biased expression occurred in the abdomen, the association of caste- and sex bias is not simply driven by the presence of ovaries but rather due to shared female reproductive physiology that is largely conserved across insects.

While reproductive caste in complex eusocial societies such as ants and honey bees is typically fixed in adulthood, the tasks performed by workers (specifically, nursing versus foraging) change over the course of the worker’s adult lifetime18,33. This plastic behavioral change is known to be accompanied by a wide range of physiological changes and is regulated at least in part by conserved physiological pathways, for example, those involving insulin signaling, juvenile hormone, and vitellogenin18,21. However, we identified few genes that were commonly differentially expressed between nurses and foragers in honey bees and pharaoh ants (Fig. 1b), and the proportion of shared genes was much lower in comparison with genes underlying abdominal differences between queens and workers. This could reflect a combination of different roles of nurses and foragers between lineages7 as well as differences in the precise molecular relationships between these conserved pathways20,52,53. Nonetheless, we did identify a number of enriched Gene Ontology categories associated with development and metabolism in each species (Supplementary Tables 6, 7), which is consistent with the notion that the transition from nurse to forager is essentially a developmental process, and that common molecular pathways may provide the raw genetic material for social evolution14,26,27.

Conserved factors or pathways clearly play important roles in aspects of caste development and function as well as the transition from nursing to foraging, but our results and other studies indicate that the majority of the full transcriptomic architecture associated with caste and age polyethism is not shared between species26,29,33,36,37. This lineage-specific architecture comprises large groups of both orthologous genes with different expression patterns and taxonomically restricted genes (Fig. 1a, b). In contrast to the low amount of context-specific overlap in differential expression, the overall degree of caste-associated plastic expression across stages and tissues (overall caste bias) was correlated

Fig. 3 Caste bias is linked to sex bias. Abdominal caste bias (queen vs. worker log\textsubscript{2} fold change) is correlated to abdominal sex bias (queen vs male log\textsubscript{2} fold change) in a) \textit{M. pharaonis} (Spearman correlation; \(\rho = 0.715, P < 0.001\)) and b) \textit{A. mellifera} (Spearman correlation; \(\rho = 0.774, P < 0.001\)) and abdominal sex bias is correlated between the two species (Spearman correlation; \(\rho = 0.280, P < 0.001\)) (c). Red indicates shared queen-biased abdominal DEGs, while blue indicates shared worker-biased abdominal DEGs. Gray indicates genes that did not exhibit shared expression patterns or were not differentially expressed. Lines in a-c indicate the trendline of a linear model. d) Shared queen-biased abdominal DEGs tend to be female biased in \textit{D. melanogaster}, while shared worker-biased abdominal DEGs tend to be male biased in \textit{D. melanogaster} (likely reflecting downregulation in females). Middle line represents median values, outer edges of boxplot represent upper and lower quartiles, and whiskers represent a deviation of 1.5*IQR (interquartile range) from the upper and lower quartiles. Source data are provided as a Source Data file.

The large overlap for abdominal caste-associated genes is notable because honey bees and ants last shared a common ancestor ∼160 million years ago30, and this overlap is nearly as much as we see for genes that were differentially expressed across developmental stages (Supplementary Fig. 5). Shared developmental molecular mechanisms are presumably simply due to
between species (Supplementary Fig. 10a, b), and expression plasticity between queens and workers was correlated to expression plasticity between nurses and foragers (Supplementary Fig. 11). Genes with high levels of caste or behavior bias tended to exhibit a suite of network and evolutionary features including being loosely connected in regulatory networks, evolutionarily young, and rapidly evolving (Fig. 4; Supplementary Fig. 12), as well as displaying tissue-specific expression profiles (Supplementary Fig. 10) in comparison with more ubiquitously expressed genes.

Overall caste bias combines queen/worker log2 fold-change values across all development stages and adult body segments. Connectivity is calculated using all samples and genes and scaled proportionally to the highest value. In a and b, middle line represents median values, outer edges of boxplot represent upper and lower quartiles, and whiskers represent a deviation of 1.5*(interquartile range) from the upper and lower quartiles. Source data are provided as a Source Data file. Photos were taken by Luigi Pontieri (pharaoh ant) and Alex Wild (honey bee).

These network and evolutionary characteristics have commonly been implicated for genes underlying eusocial evolution36,54–56, particularly in association with the worker caste28–33. While factors such as evolutionary age and rate to some degree cannot be reliably disentangled57, these characteristics together reflect relaxed selection on genes’ coding sequences and expression profile. This may indicate that caste bias evolves from pre-existing expression plasticity54. This could occur when genes that were previously tightly regulated in another context acquire biased expression58, which is possibly reflected in our

Fig. 4 Evolutionary and network features of caste-biased genes. Genes that exhibit more caste bias across tissues and developmental stages have younger estimated evolutionary ages (a, b) and tend to be loosely connected (c, d; Spearman correlation; ant: rho = −0.159, P < 0.001; honey bee: rho = −0.090, P < 0.001) and rapidly evolving (e, f; Spearman correlation; ant: rho = 0.157, P < 0.001; honey bee: rho = 0.240, P < 0.001). Overall caste bias combines queen/worker log2 fold-change values across all development stages and adult body segments. Connectivity is calculated using all samples and genes and scaled proportionally to the highest value. In a and b, middle line represents median values, outer edges of boxplot represent upper and lower quartiles, and whiskers represent a deviation of 1.5*(interquartile range) from the upper and lower quartiles. Source data are provided as a Source Data file. Photos were taken by Luigi Pontieri (pharaoh ant) and Alex Wild (honey bee).
results by the association between tissue specificity and caste/behavior bias in honey bees (Supplementary Fig. 10). Alternatively, caste-biased expression could evolve neutrally, in which genes with loosely regulated expression patterns acquire caste-biased expression randomly, through neutral or slightly deleterious substitutions in regulatory sequences85,86. Our results are consistent with both mechanisms for the evolution of caste bias: a large part of abdominal caste bias seems to evolve through the novel regulation of genes with sex-specific expression plasticity, while the bulk of the genes underlying caste-based division of labor exhibit characteristics generally reflective of genes which are weakly constrained.

Our study shows that the recruitment of a large core of conserved reproductive-associated genes, which can be described as a reproductive groundplan, is fundamental to the convergent evolution of caste-based division of labor in ants and honey bees. However, our study also reveals that the bulk of the full genetic architecture underlying the expression of social insect caste-based division of labor varies between lineages. This is reflected by the general biology of social insects, in which independently evolved societies share reproductive division of labor, the defining feature of eusociality, but also display a wide diversity of lineage-specific adaptations7. Future studies including more species will be necessary to determine the generality of the patterns (e.g., the precise numbers of shared and lineage-specific genes) we found. It is likely that a relatively small number of core conserved genes exist as upstream hubs in regulatory networks, and layered downstream of this core is a myriad of taxonomically restricted genes as well as conserved genes with lineage-specific expression patterns6,32,33,60. This is consistent with models for the evolution of hierarchical developmental gene-regulatory networks, whereby a relatively small number of highly conserved genes act upstream to initiate gene cascades (e.g., to set up body patterning), while batteries of downstream genes are evolutionarily labile and largely responsible for lineage-specific features61. Recent studies have made progress elucidating the function of several core genes and pathways for caste19,21,22,62. Large-scale transcriptomic studies such as ours serve a complimentary, indispensable role of identifying the full suite of genes underlying caste-based division of labor in multiple independent lineages.

Methods

Study design. We collected parallel time series RNA-seq data of caste development in the pharaoh ant Monomorium pharaonis and the honey bee Apis mellifera, including seven developmental stages (egg, five larval stages, one pupal stage) plus each of three adult body segments (head, thorax, abdomen) in both species (Supplementary Table 1). We separated adults into the three main body segments (head, mesosoma, and metasoma) upon sample collection and sequenced pools of each body segment separately. For convenience, we refer to these segments as head, thorax, and abdominal tissues throughout. We sequenced whole embryos and whole bodies of larvae and pupae. We collected three biological replicates of each specific sample type. Each biological replicate contained a pool of individuals (N = 10 for ants, N = 5 for honey bees) from the same colony, such that each biological replicate corresponds to a colony. The only exception to this was mature honey bee queens, which were sampled from separate unrelated colonies. In collecting these samples, we complied with all relevant ethical regulations for animal testing and research.

Ant collection. To collect samples of M. pharaonis across development, we created 27 replicate colonies of ~400 workers and ~400 total larvae from a large mixed genetic source. We removed queens from each colony, which stimulates the production of new queens and males from existing eggs and L1 larvae in M. pharaonis63,64. We pre-assigned each colony to one of nine sample types, ordered for developmental timing (egg, L1–L5 larvae, pupae, virgin queens/males, nurses/forgers). We allowed the 27 colonies to grow for 4 weeks, and collected samples progressively when the youngest individuals left in the colonies represented the assigned developmental stage (note that M. pharaonis workers, lacking ovaries65, do not begin to lay eggs, so the brood progressively ages as no replacement eggs are available). We identified larval stage and caste as previously described, by hair and morphologies66. To synchronize pupal developmental collection, we exclusively sampled pupae whose eyes had darkened. We sampled males as soon as they had eclosed as adults from the pupal stage. While M. pharaonis does exhibit age polymorphism with respect to analysis alloforaging67, the precise dynamics with regard to age are not well studied in comparison with honey bees. Therefore, we distinguished between nurses and foragers based on behavioral observation. Specifically, we observed nurses feeding larvae and we observed foragers collecting food. We sampled egg-laying mature queens (3–4 months old) from the group of queens we initially removed to stimulate reproduction to ensure that queens and workers came from the same genetic background.

Honey bee collection. To collect samples of A. mellifera across development, we established experimental colonies, in which queens were allowed to lay directly onto empty comb for 24 h to ensure control of larval age and that larvae of a given replicate were from the same queen. We collected eggs after this period directly from the comb. After 3 days, we allowed a subset of hatched females to emerge in queenless portions of the hive. Starting at that day, we sampled the five stages of larvae (L1–L5) on each consecutive day. We sampled pupae once their eyes had darkened to synchronize developmental timing. We sampled males by placing hair roller cages on top of cells during pupation and waiting for individuals to emerge from pupation. We sampled egg-laying mature queens from separate, unrelated colonies and pooled them into replicate samples. We paint-marked worker individuals upon emergence from the pupal stage and sampled nurses that were less than 7 days old and foragers that were greater than 21 days old.

RNA extraction, sequencing, aligning to genomes. We isolated RNA using TRIzol reagents. We performed cDNA synthesis and library preparation using a previously described protocol68, with the only alteration being that the input RNA was 50 ng and the cycle number of cDNA amplification was increased to 16. To compare sample quality across the experiment and test our ability to detect lowly expressed genes, we added ERCC92 (Thermo Fisher Scientific Inc.) spike-in mixes to the total RNA prior to amplification. We pooled libraries with an equal amount of cDNA and sequenced single-end for 50 cycles in Illumina HiSeq 2500. We aligned reads to reference genomes using Bowtie269. All reads were aligned to NCBI gene models (A. mellifera genome version 4.3, M. pharaonis genome version 2.0, and D. melanogaster assembly release “6 plus ISO”). We estimated read count and transcripts per million (TPM) using RSEM70.

Differential expression analysis. To identify caste-associated differentially expressed genes (DEGs), we performed differential expression analysis between queens and workers at each developmental stage and tissue, separately for each species. We removed lowly expressed genes that did not meet one of two criteria: (1) counts per million (CPM) greater than one in at least half the samples, or (2) CPM > 1 in all samples of a given tissue/stage/caste combination (to ensure tissue-specific genes were retained). We removed 2350 lowly expressed genes in ants, leaving 10,804 genes for further analysis, and we removed 2036 genes in bees, leaving 11,775 genes for further analysis. We constructed GLM-like models, including replicate and caste, and identified genes associated with caste at each stage or tissue using EdgeR71. Similarly, to identify behavioral DEGs, we performed differential expression analyses between nurses and foragers for each tissue. To identify developmental DEGs in each species, we constructed models with all larval and egg samples and identified genes differentially expressed between any developmental stage, controlling for overall caste differences. To estimate gene-wise sex bias, we downloaded available whole-body RNA-seq data44, consisting of one 5-day-old and one 30-day-old fly of each sex, and performed differential expression analysis as above.

Identification of orthologs. To identify orthologs between A. mellifera and M. pharaonis, we started with a curated orthology map of aculeata species from OrthoDB92. We downloaded amino acid sequences for each species from ReSeq2. We associated transcripts with OrthoDB9 protein names using BLASTp (E-value 10−10) and identified the aculeata ortho group matched by each gene based on the identified BLASTp hits. In this way, we identified 1:1, one-to-many, and many-to-many orthologous groups between A. mellifera and M. pharaonis. For direct comparison of the species, we restricted our analysis to 1:1 orthologs (i.e., genes for which only one gene from each species matches the given OrthoDB9 ortholog group). We identified three-way 1:1:1 orthologs between A. mellifera, M. pharaonis, and Drosophila melanogaster using a similar procedure based on endoperygoty ortho groups from OrthoDB9.

Gene co-expression analysis. In contrast to many network methods which assess gene–gene relationships across all samples, biclustering seeks to identify a group of genes which are co-expressed across a subset of samples types. Given that our data contained a large number of sample types, we reasoned that we could employ biclustering to identify groups of genes particularly associated with a given sample type. While our level of biological replication (N = 3 for each tissue/castestage combination) is low, including all samples in our biclustering analysis allows a high resolution of gene–gene co-expression relationships, and biclustering allows for specificity of gene–sample relationships. We performed plain clustering, one of the top performing
biclustering algorithms in a recent survey, using the R package biclust. Plaid clustering models expression level for each gene as a function of bicluster weights, where only biclusters containing the gene contribute to predicted expression level. The algorithm iteratively constructs layers containing samples and genes and retains layers that improve the model fit, where layers represent biclusters.

Plaid clustering is non-deterministic, and individual biclusters are not found in every iteration of clustering. To define a reasonable ensemble of biclusters, we performed clustering 1000 times separately for each species, using inverse hyperbolic sine transformed TPM (transcripts per million). While a large number of interesting bicluster definitions are possible, we decided to identify biclusters that consistently contained all queen-abdomen samples to focus our investigation on the tissue that exhibited the strongest caste bias. Specifically, we extracted biclusters containing all three mature queen-abdomen samples and no more than three other sample totals. Honey bee queen-abdomen samples clustered with egg samples, while pharaoh ant queen samples did not cluster with egg samples. It is possible that this difference is a result of a difference in age of the eggs at time of collection: honey bee eggs were 24 h old and likely still contained maternal RNA, while pharaoh ant eggs were 7 days old.

Because the same genes were not always present in such a bicluster, we tabulated the number of queen-abdomen biclusters each gene was found in and retained genes present in a higher proportion of biclusters than a given cutoff, determined by inspection of frequency distributions of bicluster presence. In pharaoh ants, we found a large set of genes present in greater than 90% of queen-abdomen biclusters, and we retained these genes for further analysis (N = 1006 genes; Supplementary Fig. 14a, i.e., the same set of genes was repeatedly found). In contrast, honey bee queen-abdomen biclusters tended to contain one of two groups of genes, as the frequency of presence in the bicluster peaks at 60 and 30% (Supplementary Fig. 14b). Out of 1174 genes present in greater than 60% of the identified biclusters, 877 were differentially expressed and upregulated in queen abdomens relative to worker abdomens (also note that this set of genes exhibited much higher expression in eggs than the latter set). In contrast, out of 1057 genes present in 25–35% of biclusters, 611 out of were differentially expressed and upregulated in worker abdomens, compared with 47 upregulated in queen abdomens. Therefore, it is clear that the more common bicluster represents genes associated with queen abdomens, so we retained this set of genes for further analysis (N = 1174 genes).

We proceeded with our analysis using these identified sets of genes, which we term modules associated with queen abdominal expression. We calculated connectivity in the module (i.e., intramodule connectivity) as the sum of pairwise Pearson correlations, where correlation values are raised to the sixth power, the standard value for unsigned weighted gene co-expression networks. The algorithm iteratively constructs layers containing samples and genes and retains layers that improve the model fit, where layers represent biclusters.

Phylostratigraphy. We estimated the evolutionary age of each gene using phylostratigraphy. Phylostratigraphy groups genes into hierarchical age categories based on an identifiable orthology (using BLASTp). For example, genes found in ants and honey bees but not in non-aculeate hymenopterans would be labeled "aculeata" genes, while genes shared between vertebrates and insects would be labeled "bilateria." For our purposes, we decided to focus on the difference between "ancient" genes, which we defined as displaying orthology with non-insect animals, and a number of hierarchical younger categories: insect, hymenopteran, aculeate, ant, bee, and novel (where "ant" refers to genes found in M. pharaonis and other ants but not in any other species, "bee" refers to genes found in A. mellifera and other bees but not in other species, and "novel" refers to a gene found only in A. mellifera or M. pharaonis).

A key component of phylostratigraphy is the creation of a BLAST database in which to identify orthology. We largely planned to focus on younger age categories, we constructed a protein database containing all annotated hymenopteran genomes (48 total). We added to this group ten non-hymenopteran insect genomes and ten non-arthropod genomes (see Supplementary Table 12 for a full list of included genomes). Therefore, a gene labeled as "ancient" displayed a significant BLASTp hit to one of the ten non-arthropod genomes. While phylostratigraphy typically employs an extremely large database containing all available representative taxa, we reasoned that for our study resolution between categories, such as bilateria and eukaryota was unnecessary. Furthermore, adding extraneous genomes effectively dilutes the database, such that more similarity is needed to pass an E-value threshold. Because we included only a sample of non-hymenopteran genomes, we were therefore able to stringently identify orthology (E-value 10−10 in comparison with a typical value of 10−5) and accurately place them along the hymenopteran phylogeny.

Estimation of tissue specificity. We downloaded available RNA-sequencing data on 12 tissues in A. mellifera worker nurses and foragers. To classify genes by their tissue specificity, we calculated , a commonly used metric of expression specificity. , ranges from 0 to 1, where 0 indicates that genes are ubiquitously expressed and 1 indicates that genes are exclusively expressed in one tissue.

Estimation of evolutionary rate. We estimated evolutionary rate using dN/dS, the ratio of non-synonymous to synonymous nucleotide changes. We estimated pairwise dN/dS between each focal species and a second closely related species with an available genome (A. mellifera, A. cerana, M. pharaonis, S. invicta). For each 1:1 ortholog pair, we selected the longest transcript associated with the gene for each pair of species. We aligned orthologous protein sequences using ClustalW, derived nucleotide alignments from protein alignments using pa2nal, and estimated pairwise dN/dS of nucleotide alignments using PAML, package codeml.

Partial correlation analysis. We performed partial Spearman correlations between overall bias and evolutionary/network characteristics, controlling for the effect of expression.

Gene ontology analysis. We performed Gene Set Enrichment Analysis (GSEA) using the R package topGO. We utilized the well-curved D. melanogaster gene ontology database, downloaded from FlyBase. We performed GSEA analysis on genes with 1:1 orthologs, associating the D. melanogaster Gene Ontology (GO) terms to A. mellifera and M. pharaonis orthologs. We identified GO terms associated with caste- or behavior biased differentially expressed genes using the P-value of differential expression between queens and workers or nurses and foragers. We identified GO terms associated with overall caste or behavior bias using the Euclidean distance of log, fold change between queens and workers or nurses and foragers at each stage. We identified enriched terms with P-value < 0.05.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

References

1. Stern, D. L. The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764 (2013).
2. Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. Biol. Sci. 279, 5039–5047 (2012).
3. Zhao, L. & Begun, D. J. Genomics of parallel adaptation at two timescales in Drosophila. PLoS Genet. 13, e1007016 (2017).
4. Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).
5. Wilson, G. A. et al. Orphans as taxonomically restricted and ecologically important genes. Microbiology 151, 2499–2501 (2005).
6. Johnson, B. R. Taxonomically restricted genes are fundamental to biology and evolution. Front. Genet. 9, 407 (2018).
7. Wilson, E. O. The Insect Societies (Harvard University Press, Cambridge, Mass., 1971).
8. Wheeler, D. E. Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am. Nat. 128, 13–34 (1986).
9. Park, H. S., Kwon, Y. H., Kang, S., Neumann, T. W., Kwon, S. H., Jo, H. & Kuk, J. Genetic parallelism and convergence in natural populations. Nat. Genet. 36, 989–994 (2004).
10. Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).
11. West-Eberhard, M. J. in Animal Societies: Theories and Facts (eds Ito, Y., Brown, J. L. & Kikkawa, S.) 177–183 (KDDI, Tokyo, 1987).
12. Linksvayer, T. A. & Wade, M. J. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. Q. Rev. Biol. 80, 317–336 (2005).
16. West-Eberhard, M. J. in 14. Toth, A. L. & Robinson, G. E. Evo-devo and the evolution of social behavior. Nat. Commun. 10, 2651 (2019).
10. Nature Communications | https://doi.org/10.1038/s41467-019-10546-w | www.nature.com/naturecommunications

28. Johnson, B. R. & Tsutsui, N. D. Taxonomically restricted genes are associated with behavior across social insect lineages. Proc. Natl Acad. Sci. USA 101, 11350–11355 (2004).
22. Chandra, V. et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Proc. Natl Acad. Sci. USA 108, 7472–7477 (2011).
19. Mutti, N. S. et al. IRS and TOR nutrient-signaling pathways act via juvenile hormone to dynamically regulate reproductive allocation based on colony demography. Arch. Insect Biochem. Physiol. 75, 496–4965 (2006).
25. Woodard, S. H., Bloch, G. M., Band, M. R. & Robinson, G. E. Molecular and Evolutionary Genomics Laboratory. Mol. Biol. Evol. 29, 151–161 (2014).
21. Gospocić, J. et al. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 170, 748–759, e12 (2017).
23. Chandra, V. et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Science 361, 398–402 (2018).
20. Libbrecht, R. et al. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl Acad. Sci. USA 110, 11050–11055 (2013).
24. Woodard, S. H. et al. Genes involved in convergent evolution of eusociality in bees. Proc. Natl Acad. Sci. USA 108, 7472–7477 (2011).
27. Kapheim, K. M. et al. Genomic signatures of evolutionary transitions from solitary to group living. Science 348, 1139–1143 (2015).
26. Berens, A. J., Hunt, J. H. & Toth, A. L. Comparative transcriptions of convergent evolution: different genes but conserved pathways underlie caste specification in social insects. Mol. Biol. Evol. 29, 690–703 (2012).
29. Johnson, B. R. & Tsutsui, N. D. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genom. 12, 164 (2011).
30. Feldmeyer, B., Elsner, D. & Foitzik, S. Gene expression patterns associated with behaviour across social insect lineages. Proc. Biol. Sci. 277, 2319–2321 (2010).
23. Woodard, S. H., Bloch, G. M., Band, M. R. & Robinson, G. E. Molecular and Evolutionary Genomics Laboratory. Mol. Biol. Evol. 29, 151–161 (2014).
20. Libbrecht, R. et al. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl Acad. Sci. USA 110, 11050–11055 (2013).
24. Woodard, S. H. et al. Genes involved in convergent evolution of eusociality in bees. Proc. Natl Acad. Sci. USA 108, 7472–7477 (2011).
27. Kapheim, K. M. et al. Genomic signatures of evolutionary transitions from solitary to group living. Science 348, 1139–1143 (2015).
26. Berens, A. J., Hunt, J. H. & Toth, A. L. Comparative transcriptions of convergent evolution: different genes but conserved pathways underlie caste specification in social insects. Mol. Biol. Evol. 29, 690–703 (2012).
29. Johnson, B. R. & Tsutsui, N. D. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genom. 12, 164 (2011).
30. Feldmeyer, B., Elsner, D. & Foitzik, S. Gene expression patterns associated with behaviour across social insect lineages. Proc. Biol. Sci. 277, 2319–2321 (2010).
23. Woodard, S. H., Bloch, G. M., Band, M. R. & Robinson, G. E. Molecular and Evolutionary Genomics Laboratory. Mol. Biol. Evol. 29, 151–161 (2014).
20. Libbrecht, R. et al. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl Acad. Sci. USA 110, 11050–11055 (2013).
24. Woodard, S. H. et al. Genes involved in convergent evolution of eusociality in bees. Proc. Natl Acad. Sci. USA 108, 7472–7477 (2011).
27. Kapheim, K. M. et al. Genomic signatures of evolutionary transitions from solitary to group living. Science 348, 1139–1143 (2015).
26. Berens, A. J., Hunt, J. H. & Toth, A. L. Comparative transcriptions of convergent evolution: different genes but conserved pathways underlie caste specification in social insects. Mol. Biol. Evol. 29, 690–703 (2012).
29. Johnson, B. R. & Tsutsui, N. D. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genom. 12, 164 (2011).
30. Feldmeyer, B., Elsner, D. & Foitzik, S. Gene expression patterns associated with behaviour across social insect lineages. Proc. Biol. Sci. 277, 2319–2321 (2010).
23. Woodard, S. H., Bloch, G. M., Band, M. R. & Robinson, G. E. Molecular and Evolutionary Genomics Laboratory. Mol. Biol. Evol. 29, 151–161 (2014).
20. Libbrecht, R. et al. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl Acad. Sci. USA 110, 11050–11055 (2013).
Acknowledgements

We would like to thank the following: Luigi Pontieri for photographs of pharaoh ants, Alex Wild for photographs of honey bees, Chao Tong for compiling hymenopteran genomes for use in phylostratigraphy and for comments on the manuscript, Rohini Singh for comments on the manuscript, and Junhyong Kim, Mia Levine, and Justin Walsh for helpful comments and discussion. This work was funded by the National Science Foundation (grant number IOS-1452520 to TAL) and United States Department of Agriculture National Institute of Food and Agriculture (grant number 2014-67013-21725 to TAL), and subsidy funding from Okinawa Institute of Technology to ASM. The National Science Foundation also funded MBW (DGE-1321851).

Author contributions

M.R.W., T.A.L. and A.S.M. designed the study. M.R.W. and M.J.H. collected samples. L.Q. performed all RNA extractions, library preparation, and sequencing. A.S.M. performed all bioinformatic analyses to process, filter, and align A. mellifera and M. pharaonis RNA-sequencing reads to genomes. M.R.W. performed all other transcriptomic, comparative genomic and subsequent analyses, with input from T.A.L. and A.S.M. M.R.W. and T.A.L. wrote the paper, with input from A.S.M.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10546-w.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.