Data Article

Data on cytotoxic and antibacterial activity of synthesized Fe$_3$O$_4$ nanoparticles using *Malva sylvestris*

Seyyed Mojtaba Mousavi a,b, Seyyed Alireza Hashemi a,c,**, Maryam Zarei a, Sonia Bahrani a, Amir Savardashtaki d, Hossein Esmaeili e, Chin Wei Lai b, Sargol Mazraedoost a, Mohsen Abassi a, Bahman Ramavandi f,g,**

a Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

b Nanotechnology & Catalysis Research Center, University of Malaya, Malaysia

c Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore

d Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

e Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran

f Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran

g Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran

Article info

Article history:
Received 15 October 2019
Received in revised form 3 November 2019
Accepted 27 November 2019
Available online 9 December 2019

Keywords:
Malva sylvestris
Antibacterial
Fe$_3$O$_4$ nanoparticles
Anticancer
Cytotoxicity performance

Abstract

The biosynthesis of materials using medicinal plants can be a low-cost and eco-friendly approach due to their extraordinary properties. Herein, we reported a facile synthesis of Fe$_3$O$_4$ nanoparticles using *Malva sylvestris*. The surface morphology, functional groups, and elemental analysis were done to characterize the synthesized nanoparticles. The cytotoxicity performance of the synthesized nanoparticles was analyzed by exposing nanoparticles to MCF-7 and Hep-G2 cancer cell lines through MTT colorimetric assay and the IC$_{50}$ value was defined as 100 µg/mL and 200 µg/mL, respectively. The antibacterial performance of synthesized nanoparticles against four different bacterial strains including *Staphylococcus*
Staphylococcus aureus, *Corynebacterium*, *Pseudomonas aeruginosa*, and *Klebsiella pneumoniae* were assessed through microdilution broth method. The synthesized Fe$_3$O$_4$ nanoparticles using *Malva sylvestris* demonstrated higher antibacterial effects against Gram-positive strains with MIC values of 62.5 μg/mL and 125 μg/mL which increase the inhibitory percentage to more than 90%.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The experimental data on cytotoxic and antibacterial activity of synthesized Fe$_3$O$_4$ nanoparticles using *Malva sylvestris* are reported in this dataset. To validate the successful synthesis of Fe$_3$O$_4$ nanoparticles using *Malva sylvestris*, Fourier transform infrared spectroscopy (FTIR) was applied to determine the functional groups in the nanoparticles (Fig. 1a). The X-ray powder diffraction (XRD) analysis is depicted in Fig. 1b. SEM images and EDX analysis of Fe$_3$O$_4$ nanoparticles and Fe$_3$O$_4$/*Malva sylvestris* nanoparticles are presented in Fig. 2.

The cytotoxic effects of synthesized Fe$_3$O$_4$ nanoparticles using *Malva sylvestris* against Hep-G2 and MCF-7 cell lines have demonstrated in Fig. 3. The inhibitory effect of synthesized Fe$_3$O$_4$ nanoparticles...
using *Malva sylvestris* against four bacterial strains was analyzed through microdilution broth assay (see Fig. 4). The performance of nanoparticles against selected microorganisms is presented in Table 1. The raw data source for this dataset is available in the Supplementary section.

2. Experimental design, materials, and methods

2.1. Preparation of Fe₃O₄/Malva sylvestris nanoparticles

All of the materials utilized in this investigation like Ferrous(II) Sulfate Heptahydrate (FeSO₄·7H₂O), Iron(III) Chloride Six hydrate (FeCl₃·6H₂O) and Ammonia solution were purchased from Merck Co. (Germany). First, 4.75 g FeCl₃·6H₂O, 3.89 g FeSO₄·7H₂O, and 320 mL deionized water were poured into a round-bottom flask and stirred for 1 h while the temperature was set to 80 °C [1,2]. Then, 0.5 g *Malva sylvestris* was ultrasonically mixed in 120 mL of deionized water for 30 min and then poured into the previous suspension. The obtained suspension was stirred under 80 °C for about 2 h and after that 40 mL NH₃ was gradually added to the suspension [3]. After filtration, the suspension was washed and the pH scale was set on 7 and finally dried in an oven at 100 °C for 2 h.

2.2. Characterization of nanoparticles

The synthesized nanoparticles were characterized using Fourier-transform infrared spectroscopy (FTIR, Tensor II FT-IR spectroscopy Bruker, Germany) in the region of 400–4000 cm⁻¹, X-ray diffraction (XRD, Panalytical model XPert Pro), scanning electron microscope (SEM, Tescan model Mira III), and EDX (Tescan model S Max detector Mira III).
2.3. MTT assay

The cytotoxicity of the synthesized nanoparticles was evaluated on Hep-G2 and MCF-7 cell lines using MTT colorimetric assay. In this method, hydrogen peroxide was considered as the positive control and culture medium was the negative control. Briefly, a certain number of Hep-G2 and MCF-7 cells (10^6) were placed in each well of a sterile 96-well microplate and incubated in a humidified atmosphere of 5% CO₂, 95% air at 37°C to reach about 75–90% confluence. Then, 100 μL of the synthesized nanoparticles in a wide range of concentrations was replaced with previous media. Afterward, 25 μL of the MTT 3-(4,5 Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium stock solution (with 4 mg/mL concentration) was transferred into each well and incubated for 4 h in standard condition. The mitochondrial performance of viable cells led to formation of purple formazan crystals, where for dissolving these crystals we applied 100 μL dimethyl sulfoxide (DMSO). In the final step, the absorption of solution was recorded at 570 nm wavelength using a microplate reader (Model 50, Bio-Rad Corp, Hercules, California, USA).

2.4. Minimum inhibitory concentrations (MICs) assay

In MICs test, all of the procedures were carried out according to the standards of the Clinical and Laboratory Standards Institute (CLSI) for assessing the antibacterial susceptibility of the synthesized nanoparticles [4]. Briefly, 2-fold serial dilutions of the testing compounds (at a descending concentration from 1000 μg/ml to 7.8 μg/mL) and control groups were provided with Brain heart infusion (BHI) in 96-well microplates. Afterward, the microbial concentration was adapted to forming a turbidity
standard of 0.5 McFarland (OD600: 0.1–0.2) in a way that the concentration of the compounds was 1000 µg/mL in the first wells. The plates were incubated for 24 h at 37 °C. Later the optical density was measured at 600 nm by a microplate reader (BioTek, Power Wave XS2). This procedure was done in triplicate.

2.5. Minimum Bactericidal Concentrations (MBCs) assay

All the selected microorganisms were cultured overnight in BHI, and then stocks with the concentration of 10^5–10^6 CFU/mL were prepared for each one. The total of 90 µL of serially diluted concentrations of compounds (from 1000 µg/mL to 7.8 µg/mL) was added to a 96-well micro-plate consisting of 90 µg/mL BHI, then 10 µg/mL of bacteria were added to each cell. Micro-plates were incubated for 24 h at 37 °C. Then, 10 µL of each bacterial suspension was added to a newly prepared BHI and incubated for another 24 hours at 37 °C to exam bactericidal performance of each compound. The lowest concentration of compounds that leads no growth of bacteria was regarded as minimum bactericidal concentration (MBC). This procedure was also repeated three times.
Acknowledgments

The authors are thankful to the Shiraz University of Medical Sciences, Shiraz, Iran for funding this research (through Grant No.: SUMS-M-192).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104929.
References

[1] S.A. Hashemi, S.M. Mousavi, S. Ramakrishna, Effective removal of mercury, arsenic and lead from aqueous media using polyaniline-Fe₃O₄-silver diethylidithiocarbamate nanostructures, J. Clean. Prod. 239 (2019) 118023.

[2] S.M. Mousavi, S.A. Hashemi, H. Esmaeili, A.M. Amani, F. Mojoudi, Synthesis of Fe₃O₄ nanoparticles modified by oak shell for treatment of wastewater containing Ni (II), Acta Chim. Slov. 65 (2018) 750–756.

[3] S.M. Mousavi, M. Zarei, S.A. Hashemi, A. Babapoor, A.M. Amani, A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities, Artif. Cell Nanomed. B 47 (2019) 1132–1148.

[4] S.M. Mousavi, S.A. Hashemi, Y. Ghasemi, A. Atapour, A.M. Amani, A. Savar Dashtaki, A. Babapoor, O. Arjmand, Green synthesis of silver nanoparticles toward bio and medical applications: review study, Artif. Cell Nanomed. B 46 (2018) S855–S872.