Dirac-type tensor equations on a parallelisable manyfolds

N.G. Marchuk

March 28, 2022

Abstract

The goal of this work is to extend Dirac-type tensor equations to a curved space. We take four 1-forms (a tetrad) as a unique structure, which determines a geometry of space-time.

PACS: 04.20Cv, 04.62, 11.15, 12.10

Steklov Mathematical Institute, Gubkina st. 8, Moscow 119991, Russia
nmarchuk@mi.ras.ru, www.orc.ru/~nmarchuk

In [2] we suggest to take the differential forms \(H, I, K\) (see item 14 of sect. 1 in [1]) as an additional structure on pseudo-Riemannian space. In the current paper, developing this idea, we take four 1-forms \(e^a\) (a tetrad) as a unique structure, which determines a geometry of space-time. A metric tensor is expressed via the tetrad. Hence we arrive at a geometry, which was considered by many authors (see, for example, Møller [3]) as a mathematical model of physical space-time and gravity (according to the Theory of General Relativity the gravity is identified with the metric tensor).

The goal of our work, begining at [1], [2], is to extend Dirac-type tensor equations (see [4]) to a curved space.

*Research supported by the Russian Foundation for Basic Research grants 00-01-00224, 00-15-96073.
1 A pseudo-Riemannian space

Let \mathcal{M} be a four dimensional differentiable manifold with local coordinates x^μ, $\mu = 0, 1, 2, 3$ and with a metric tensor $g_{\mu\nu} = g_{\nu\mu}$ such that $g_{00} > 0$, $g = \det|g_{\mu\nu}| < 0$ and the signature of matrix $|g_{\mu\nu}|$ is equal to -2. The full set of $\{\mathcal{M}, g_{\mu\nu}\}$ is called a pseudo-Riemannian space and is denoted by \mathcal{V}. The metric tensor defines the Levi-Civita connection, the curvature tensor, the Ricci tensor, and the scalar curvature

$$\Gamma_{\mu\nu}^\lambda = \frac{1}{2}g^{\lambda\kappa}(\partial_\mu g_{\nu\kappa} + \partial_\nu g_{\mu\kappa} - \partial_\kappa g_{\mu\nu}),$$

$$R_{\lambda\mu\nu}^\kappa = \partial_\mu \Gamma_{\nu\lambda}^\kappa - \partial_\nu \Gamma_{\mu\lambda}^\kappa + \Gamma_{\mu\eta}^\kappa \Gamma_{\nu\lambda}^\eta - \Gamma_{\nu\eta}^\kappa \Gamma_{\mu\lambda}^\eta,$$

$$R_{\nu\rho} = R_{\mu\nu\rho},$$

$$R = g^{\rho\nu}R_{\rho\nu}$$

with symmetries

$$\Gamma_{\mu\nu}^\lambda = \Gamma_{\nu\mu}^\lambda, \quad R_{\mu\nu\lambda\rho} = R_{\lambda\rho\mu\nu} = R_{[\mu\nu]\lambda\rho}, \quad R_{\mu[\nu\lambda\rho]} = 0, \quad R_{\nu\rho} = R_{\rho\nu}$$

Let \mathcal{T}_{q}^p be the set of all tensor fields of rank (q, p) on \mathcal{V}. The covariant derivatives $\nabla_\mu : \mathcal{T}_{q}^p \to \mathcal{T}_{q+1}^p$ are defined via the Levi-Civita connection by the following rules:

1. If $t = t(x), \ x \in \mathcal{V}$ is a scalar function, then

$$\nabla_\mu t = \partial_\mu t.$$

2. If $t^\nu \in \mathcal{T}_1^1$, then

$$\nabla_\mu t^\nu = t^\nu_{;\mu} = \partial_\mu t^\nu + \Gamma_{\mu\nu}^\lambda t^\lambda.$$

3. If $t_\nu \in \mathcal{T}_1^1$, then

$$\nabla_\mu t_\nu = t_{\nu;\mu} = \partial_\mu t_\nu - \Gamma_{\nu\mu}^\lambda t_\lambda.$$

4. If $u = u^\nu_{\lambda_1...\lambda_k} \in \mathcal{T}_k^1$, $v = v^\mu_{\rho_1...\rho_s} \in \mathcal{T}_s^1$, then

$$\nabla_\mu (u \otimes v) = (\nabla_\mu u) \otimes v + u \otimes \nabla_\mu v.$$
With the aid of these rules it is easy to calculate covariant derivatives of arbitrary rank tensor fields. Also we can check the formulas

\[\nabla_\mu g_{\alpha\beta} = 0, \quad \nabla_\mu g^{\alpha\beta} = 0, \quad \nabla_\mu \delta_\alpha^\beta = 0, \]
\[\nabla_\alpha (R^{\alpha\beta} - \frac{1}{2}R g^{\alpha\beta}) = 0, \]
\[(\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) a_\rho = R^\lambda_{\rho\mu\nu} a_\lambda, \]

for any \(a_\rho \in T_1. \)

2 A parallelisable manyfolds

An \(n \)-dimensional differentiable manifolds is called parallelisable if there exist \(n \) linear independent vector or covector fields on it. Let \(M \) be a four dimensional parallelisable manifolds with local coordinates \(x = (x^\mu) \) and

\[e_\mu^a = e_\mu^a(x), \quad a = 0, 1, 2, 3 \]

be four covector fields on \(M \). This set of four covectors are called a tetrad. The full set \(\{ M, e_\mu^a \} \) is denoted by \(W \). Here and in what follows we use greek indices as tensorial indices and latin indices as nontensorial (tetrad) indices, which enumerate covectors.

Let us take the Minkowski matrix

\[\eta_{ab} = \eta^{ab} = \text{diag}(1, -1, -1, -1). \]

Then we can define a metric tensor

\[g_{\mu\nu} = e_\mu^a e_\nu^b \eta_{ab}, \quad (5) \]

such that

\[g_{\mu\nu} = g_{\nu\mu}, \quad g_{00} > 0, \quad g = \text{det} \| g_{\mu\nu} \| < 0 \]

and the signature of the matrix \(\| g_{\mu\nu} \| \) is equal to \(-2\). The Levi-Civita connection \(\Gamma^{\lambda}_{\mu\nu} \), the curvature tensor \(R^{\mu}_{\nu\lambda\rho} \), the Ricci tensor \(R_{\nu\rho} \), the scalar curvature \(R \), and the covariant derivatives \(\nabla_\mu \) are defined via \(g_{\mu\nu} \) as in sect. 1. All constructions of \[\] (the Clifford product of differential forms, the Spin(1,3) group, Upsilon derivatives \(\Upsilon_\mu \), etc.) are valid in the parallelisable manyfolds \(W \).
We raise and lower latin indices with the aid of the matrix $\eta_{ab} = \eta^{ab}$ and greek indices with the aid of the metric tensor $g_{\mu\nu}$

$$e^{\nu a} = g^{\mu\nu} e_{\mu}^a, \quad e_{\mu a} = \eta_{ab} e_{\mu}^b.$$

If we take 1-forms $e^a, e_a \in \Lambda_1$

$$e^a = e_{\mu}^a dx^\mu, \quad e_a = \eta_{ab} e^b,$$

then we see that

$$e^a e^b + e^b e^a = 2 \eta^{ab}. \tag{6}$$

Indeed,

$$e^a e^b + e^b e^a = e_{\mu}^a dx^\mu e^b_{\nu} dx^\nu + e^b_{\nu} dx^\nu e_{\mu}^a dx^\mu =
= e_{\mu}^a e^b_{\nu} (dx^\mu dx^\nu + dx^\nu dx^\mu) = e_{\mu}^a e^b_{\nu} 2g^{\mu\nu} = 2 \eta^{ab}.$$

The transformation

$$e^a \rightarrow \tilde{e}^a = S^{-1} e^a S, \tag{7}$$

where $S \in \text{Spin}(1,3)$, is called a Lorentz rotation of the tetrad. Evidently, formula (6) is invariant under Lorentz rotations of the tetrad, i.e.,

$$e^a e^b + e^b e^a = 2 \eta^{ab} \iff \tilde{e}^a \tilde{e}^b + \tilde{e}^b \tilde{e}^a = 2 \eta^{ab}.$$

In the sequel we use the following lemma.

Lemma.

$$e^a U e_a = \begin{cases} 4U & \text{for } U \in \Lambda_0 T^p_q, \\ -2U & \text{for } U \in \Lambda_1 T^p_q, \\ 0 & \text{for } U \in \Lambda_2 T^p_q, \\ 2U & \text{for } U \in \Lambda_3 T^p_q, \\ -4U & \text{for } U \in \Lambda_4 T^p_q. \end{cases}$$

The proof is by direct calculation.

Let us take a tensor $B_\mu \in \Lambda_2 T^1_1$

$$B_\mu = -\frac{1}{4} e^a \wedge \Upsilon_{\mu} e_a. \tag{8}$$

Theorem. Under the Lorentz rotation of tetrad (7) the tensor B_μ transforms as

$$B_\mu \rightarrow \tilde{B}_\mu = S^{-1} B_\mu S - S^{-1} \Upsilon_{\mu} S.$$
Proof. We have \(B_\mu = -\frac{1}{4} e^a \wedge \Upsilon_\mu e_a = -\frac{1}{4} e^a \Upsilon_\mu e_a \). Therefore
\[
-\frac{4}{4} \hat{B}_\mu = e^a \Upsilon_\mu e_a = \hat{S}^{-1} e^a S \Upsilon_\mu (S^{-1} e^a S) = \hat{S}^{-1} e^a S (\Upsilon_\mu S^{-1}) e_a s + \hat{S}^{-1} e^a \Upsilon_\mu e_a S + S^{-1} e^a \Upsilon_\mu e_a S = -4 \hat{S}^{-1} B_\mu S + 4 \hat{S}^{-1} \Upsilon_\mu S + S^{-1} e^a S (\Upsilon_\mu S^{-1}) e_a S.
\]
Here we use the formula \(e^a e_a = 4 \) from the Lemma. It can be checked that \(S \Upsilon_\mu S^{-1} \in \Lambda_2 \setminus_1 \). Consequently from the Lemma we get that
\[
e^a S (\Upsilon_\mu S^{-1}) e_a = 0.
\]
These completes the proof.

Note that the set of 2-forms \(\Lambda_2 \) can be considered as the real Lie algebra of the Lie group \(\text{Spin}(1, 3) \). Hence \(B_\mu \) belong to this Lie algebra. \(B_\mu \) is a tensor with respect to changes of coordinates. But, according to the Th eorem, under Lorentz rotations of the tetrad \(B_\mu \) transforms as a connection.

Now we may define operators \(D_\mu = \Upsilon_\mu - [B_\mu, \cdot] \) acting on tensors from \(\Lambda_\top^p \) and such that
\[
D_\mu e^a = 0, \quad D_\mu e_a = 0, \quad D_\mu (UV) = (D_\mu U)V + U D_\mu V, \quad D_\mu D_\nu - D_\nu D_\mu = 0.
\]
Consider the tensor from \(\Lambda_2 \setminus_2 \)
\[
\frac{1}{2} C_{\mu\nu} = D_\mu B_\nu - D_\nu B_\mu + [B_\mu, B_\nu].
\]
It can be shown that
\[
C_{\mu\nu} = \frac{1}{2} R_{\mu\nu\alpha\beta} dx^\alpha \wedge dx^\beta.
\]
In [1] (see item 14) of sect.1) we define differential forms \(H \in \Lambda_1; I, K \in \Lambda_2; \ell \in \Lambda_4 \), which we call secondary generators of \(\Lambda \). These differential forms are connected with the tetrad \(e^a \) by the following formulas:
\[
H = e^0, \quad I = -e^1 e^2, \quad K = -e^1 e^3, \quad \ell = e^0 e^1 e^2 e^3,
\]
\[
e^0 = H, \quad e^1 = IK\ell H, \quad e^2 = K\ell H, \quad e^3 = -I\ell H.
\]
The formula for \(B_\mu \) from [2]
\[
B_\mu = -\frac{3}{8} H \Upsilon_\mu H + \frac{1}{4} (I \Upsilon_\mu I + K \Upsilon_\mu K)
\]
\[
+ \frac{1}{8} H (I \Upsilon_\mu I + K \Upsilon_\mu K) H - \frac{1}{4} IKH \Upsilon_\mu H K I - \frac{1}{8} (K I \Upsilon_\mu I K + I K \Upsilon_\mu K I)
\]
is equivalent to formula (8).
3 Lagrangians and main equations

Consider the invariant
\[L_2 = R + 4 \text{Tr}(\delta B), \]
where \(R \) is the scalar curvature, \(B = dx^\mu B_\mu \), and the codifferential \(\delta : \Lambda_k \to \Lambda_{k-1} \) was defined in [5]. It can be checked that the invariant \(L_2 \) doesn’t depend on second derivatives of tetrad components \(e_\mu^a \). Variating the Lagrangian \(L_2 \) with respect to the components of metric tensor \(g_{\mu\nu} \), we get the Einstein tensor
\[
\epsilon \sqrt{-g} (R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R) = \frac{\partial (\sqrt{-g} L_2)}{\partial g_{\mu\nu}} - \partial_\rho \frac{\partial (\sqrt{-g} L_2)}{\partial g_{\mu\nu,\rho}},
\]
where \(g_{\mu\nu,\rho} = \partial_\rho g_{\mu\nu} \), \(\epsilon = 1 \) for \(\mu = \nu \) and \(\epsilon = 2 \) for \(\mu \neq \nu \). Note that we can easily calculate the partial derivatives \(\frac{\partial e_\mu^a}{\partial g^{\alpha\beta}} \), \(\frac{\partial e_\mu^a}{\partial g_{\alpha\beta,\rho}} \) using formulas
\[
\begin{align*}
g_{\alpha\beta} &= e_\alpha^a e_\beta^b \eta_{ab}, \\
\frac{\partial g_{\alpha\beta}}{\partial e_\mu^a} &= \frac{\partial g_{\alpha\beta,\rho}}{\partial e_\mu^a} = \delta_\alpha^\mu e_\beta^a + \delta_\beta^\mu e_\alpha^a, \\
\frac{\partial e_\mu^a}{\partial g_{\alpha\beta}} &= \frac{\partial e_\mu^a}{\partial g_{\alpha\beta,\rho}} = \frac{1}{\delta_\alpha^\mu e_\beta^a + \delta_\beta^\mu e_\alpha^a},
\end{align*}
\]
where \(\rho = 0, 1, 2, 3 \). Finally, we can take the Lagrangian
\[
L = L_0 + L_1 + L_2
\]
\[
= 2 \text{Tr}(e^0(\Psi^* P + P^* \Psi)) + \frac{1}{4} \text{Tr}(F_{\mu\nu} F^{\mu\nu}) + (R + 4 \text{Tr}(\delta B)),
\]
where
\[
P = dx^\mu (\mathcal{D}_\mu \Psi + \Psi A_\mu + B_\mu \Psi) N - m \Psi E,
\]
\[
F_{\mu\nu} = \mathcal{D}_\mu A_\nu - \mathcal{D}_\nu A_\mu - [A_\mu, A_\nu].
\]
and the Lagrangians \(L_0, L_1 \) were defined in sect.6 of [1]. Variating the Lagrangian \(L \) with respect to components of \(\Psi, A_\mu \) and w.r.t. components of metric tensor, we arrive at the system of equations
\[
d x^\mu (\mathcal{D}_\mu \Psi + \Psi A_\mu + B_\mu \Psi) N - m \Psi E = 0,
\]
\[
\frac{1}{\sqrt{-g}} \mathcal{D}_\mu (\sqrt{-g} F^{\mu\nu}) - [A_\mu, F^{\mu\nu}] = J^\nu,
\]
\[
R^{\mu\nu} - \frac{1}{2} R g^{\mu\nu} = -T^{\mu\nu},
\]
where J^ν are defined in (27) of [1] and $T^{\mu\nu}$ is the energy-momentum tensor

$$\epsilon\sqrt{-g} T^{\mu\nu} = \frac{\partial(\sqrt{-g}(\mathcal{L}_0 + \mathcal{L}_1))}{\partial g_{\mu\nu}} - \partial_\rho \left. \frac{\partial(\sqrt{-g}(\mathcal{L}_0 + \mathcal{L}_1))}{\partial g_{\mu\nu,\rho}} \right|_{\rho = \mu}.$$

Let us remark that we may insert two constants into Lagrangian $L = L_0 + c_1 L_1 + c_2 L_2$ in (9) and into equations (10) respectively. Constants c_1, c_2 depend on physical units and on experimental data.

4 Comparing the Dirac equation with the Dirac-type tensor equation

It is well known that the Dirac equation for the electron has the following form in a curved space (see, for example, [2]):

$$\gamma^c \epsilon^\mu_c (\partial_\mu + ia_\mu - \omega_{\mu ab} \frac{1}{4}[\gamma^a, \gamma^b]) \psi + i m \psi = 0, \quad (11)$$

where γ^a are complex valued 4×4-matrices with the property $\gamma^a \gamma^b + \gamma^b \gamma^a = 2\eta^{ab} \mathbf{1}$, $\mathbf{1}$ is identity matrix, and $\omega_{\mu ab} = \omega_{\mu [ab]}$ is a Lorentz connection. Now we show that the Dirac type tensor equation

$$dx^\mu (D_\mu \Psi + a_\mu \Psi I + B_\mu \Psi) + m \Psi HI = 0 \quad (12)$$

can be written in the same form (11). A method of reduction of (12) to (11) was developed in [3] for the case of Minkowski space.

Let us take the idempotent differential form $t = t^2 \in \Lambda^C$

$$t = \frac{1}{4}(1 + H)(1 - iI)$$

and the left ideal

$$\mathcal{I}(t) = \{Ut : U \in \Lambda^C\} \subset \Lambda^C.$$

The exterior forms $t_1, \ldots, t_4 \in \mathcal{I}(t)$

$$t_1 = t, \quad t_2 = Kt, \quad t_3 = -I \ell t, \quad t_4 = -KI \ell t$$

are linear independent and they can be considered as basis elements of $\mathcal{I}(t)$. These differential forms t_k define a map $\gamma : \Lambda^q \rightarrow M(4, C)^q$ by the formula

$$U_{\mu_1 \ldots \mu_p}^{\nu_1 \ldots \nu_q} t_k = \gamma(U_{\mu_1 \ldots \mu_p})^{\nu_1 \ldots \nu_q}_{\mu_1 \ldots \mu_p} n_k.$$
where $M(4,\mathcal{C})\Gamma^p_q$ is the set of all rank (p, q) tensors with values in 4×4 complex matrices and $\gamma(U)^n_k$ is elements of the matrix $\gamma(U)$ (an upper index enumerates rows and a lower index enumerates columns). It is easily shown that

$$\gamma(UV) = \gamma(U)\gamma(V)$$

for $U \in \Lambda \Gamma^a_b$, $V \in \Lambda \Gamma^c_d$. If we take $dx^\mu = \delta^\mu_\nu dx^\nu \in \Lambda_1 T^1$, then we get

$$dx^\mu t_k = \gamma(dx^\nu)^k_n t_n.$$

Denoting $\gamma^\mu = \gamma(dx^\mu)$, we see that the equality $dx^\mu dx^\nu + dx^\nu dx^\mu = 2g^{\mu\nu}$ leads to the equality $\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^{\mu\nu}1$. Also we have

$$B_\mu t_p = \gamma(B_\mu)^k_p t_k.$$

Let us multiply (12) by t. Then

$$0 = (dx^\mu(D_\mu \Psi + a_\mu \Psi I + B_\mu \Psi) + m\Psi HI)t$$

$$= dx^\mu(D_\mu(\Psi t) + ia_\mu(\Psi t) + B_\mu(\Psi t)) + im(\Psi t)$$

$$= dx^\mu(D_\mu(\psi^k t_k) + ia_\mu(\psi^k t_k) + B_\mu(\psi^p t_p)) + im(\psi^m t_n)$$

$$= (dx^\mu t_k)(\partial_\mu \psi^k + ia_\mu \psi^k + \gamma(B_\mu)^k_p \psi^p) + im(\psi^m t_n)$$

$$= ((\gamma^\mu)^n_k(\partial_\mu \psi^k + ia_\mu \psi^k + \gamma(B_\mu)^k_p \psi^p) + im\psi^n) t_n.$$

As t_1, \ldots, t_4 are linear independent, we see that

$$(\gamma^\mu)^n_k(\partial_\mu \psi^k + ia_\mu \psi^k + \gamma(B_\mu)^k_p \psi^p) + im\psi^n = 0, \quad n = 1, \ldots, 4.$$

These four equations can be written as one equation

$$\gamma^\mu(\partial_\mu + ia_\mu + \gamma(B_\mu))\psi + im\psi = 0,$$

where $\psi = (\psi^1 \ldots \psi^4)^T$. We may write $B_\mu \in \Lambda_2 \Gamma_1$ as

$$B_\mu = \frac{1}{2} b_{\mu ab} e^a \wedge e^b = \frac{1}{4} b_{\mu ab}(e^a e^b - e^b e^a),$$

where $b_{\mu ab} = b_{\mu[ab]}$. This imply that

$$\gamma(B_\mu) = \frac{1}{4} b_{\mu ab}[\gamma^a, \gamma^b], \quad \gamma^a = \gamma(e^a), \quad \gamma^a \gamma^b + \gamma^b \gamma^a = 2\eta^{ab}1.$$

Note that $\gamma^\mu = \gamma^c e^\mu_c$ and the eq. (13) can be written in the form

$$\gamma^c e^\mu_c(\partial_\mu + ia_\mu + b_{\mu ab} \frac{1}{4}[\gamma^a, \gamma^b])\psi + im\psi = 0.$$

Consequently eqs. (11) and (14) are coincide iff a Lorentz connection is defined by the formula $\omega_{\mu ab} = -b_{\mu ab}$.

8
References

[1] Marchuk N.G., Nuovo Cimento, 117B, 01, (2002), pp.95-120.

[2] Marchuk N.G., Addendum to the paper ”Dirac-type tensor equations with non-Abelian gauge symmetries on pseudo-Riemannain space”, to appear in Nuovo Cimento B.

[3] Marchuk N.G., ”The Dirac equation vs. the Dirac-type tensor equaton”, to appear in Nuovo Cimento B.

[4] Marchuk N.G., Nuovo Cimento 116B, 10, (2001), p.1225.

[5] Marchuk N.G., Nuovo Cimento 115B, 11, (2000), p.1267.

[6] Møller C., Mat. Fys. Medd. Dan. Vid. Selsk. 39, 13, (1978).

[7] Weyl H., Phys. Rev. 77, 699, (1950)