Filling behaviour of wood plastic composites

I Duretek, T Lucyshyn, C Holzer
Department of Polymer Engineering and Science, Chair of Polymer Processing,
Montanuniversitaet Leoben, Leoben, Austria
E-mail: Ivica.Duretek@unileoben.ac.at

Abstract. Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth's resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes.

This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.

Keywords: wood plastic composites, injection moulding, simulation, process, mould

1. Introduction
Wood plastic composites (WPC) are highly filled thermoplastics; they are usually binary systems consisting of wood flour/spans/fibres and polymer matrix (Figure 1). These two main constituents are very different in origin, structure and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. The matrix polymers are typically low cost commodity polymers that flow easily. The polymers tend to shrink and expand with temperature. Wood itself contains polymers such as lignin, cellulose, and various hemicelluloses but has very different properties from the synthetic polymers with which it is most often combined. Wood is less expensive, stiffer, and stronger than these synthetic polymers, making it a useful filler or reinforcement. Though wood does not shrink and swell much with temperature, it readily absorbs moisture. As with most natural materials, the anatomy of wood is complex. Wood is porous, fibrous, and anisotropic [16].

WPC are a very young segment of the polymer industry with a great potential. Not only due to its flexible ratio of mixture and as a consequence, a flexible setting of mechanical properties, but also because of numerous benefits compared with pure wood. WPC have a higher biological, UV-radiation and weathering resistance and lower water absorption than conventional wood products and are less likely to be harmed by fungi, which results in lower maintenance costs. Furthermore the WPC can be processed by commonly used plastics processing methods (e.g. injection molding, extrusion) which give a tremendous freedom of form and geometry. This gives a broad variety of possibilities regarding...
the shape of the product. Another benefit is the flexibility in visual appearance of WPC products achieved by post-manufactured brushing, embossing or shaping. [3].

Wood fibre has lately attracted considerable attention as a filler to reinforce plastics, which has been driven by the continuous increase of oil prices and concerns of recycling. Wood fibre has advantages regarding density, cost, mechanical properties and biodegradability compared to other fibres. However, the density of wood fibre is still higher than plastics, such as polyethylene (PE) and polypropylene (PP).

The use of WPC in commercial products is limited today. The most frequent WPC products are to a large extent limited to extruded products. The use so far is a replacement of wood in outdoor railings and decking (see Figure 2) [1, 2]. In Europe WPC are used in a wide variety of applications, from decking and siding to sophisticated musical instruments, furniture, watches, pencils, tableware, toys, decoration and pallets [4].

Injection moulding is used more and more for the production of low-proportion natural fibre composites (NFC) – materials with up to 50% content of natural fibres by weight. A number of applications are currently undergoing commercial assessment, with the main focus on automotive applications (Figure 3), where WPC materials have to compete with the talcum and glass fibre-filled compounds currently in use, as well as compression-moulded NFC [4].
with 10% per year [2], the injection moulded WPC products are marginal. There is an unexploited potential for development [4].

Injection moulding is one of the major processing technologies of polymers. Injection moulding is widely used because of its economics to produce high volume of complex plastic articles [18]. It is a process where a plastic or composite is injected into a mould under very high pressure. This is done with an injection moulding machine that consists of two main parts, the injector and the clamping device. The filling behaviour and way the plastic flows into the mould are of paramount importance in determining the quality of the part [5].

The melt flow in the mould can be controlled by the design and manufacturing technology of the mould as well as by the processing conditions in order to obtain the moulded parts with expected morphology, properties, shape, dimensions and surface. The cavity in the injection mould should be filled totally during the injection phase and the way of filling should be laminar and with a wide flow front. The stream flow (jetting phenomenon) should be avoided. Furthermore, the rheological phenomena occurring during the melt flow in injection moulds must be known by the mould designers and controlled in the technological process [19].

Today's simulation tools allow the simulation of the filling, packing and cooling process and also a qualitative prediction of the part's shrinkage and warpage for semi-crystalline materials.

It helps to predict the problems that may occur due to wrong tool design or not optimized processing conditions [19]. According to literature [11, 12, 13, 17] the mould filling can be divided into fountain flow and solid flow.

The fountain flow (Figure 4) is typical for thermoplastic polymers and it is a result of wall contact by the melt and occurs due to the parabolic flow front [11]. The skin of the plastic in contact with the cool mould freezes rapidly, while the central core remains molten. When additional material is injected, it flows into this central core, displacing the material already there, which then forms a new flow front. The flow of this displaced material is a combination of forward flow and outward flow. The outward flow contacts the wall surface, and forms the next section of skin while the forward flow forms the new molten core. The frozen layer is formed by the flow front inflating, and so is subject to only a low shear stress and, therefore, to a very low level of molecular orientation. Initially, the frozen layer is very thin, so heat is lost very rapidly. This results in more plastic freezing and the frozen layer getting thicker, cutting down the heat flow. After a time, the frozen layer will reach a thickness such that the heat lost by conduction is equal to the heat input from plastic flow and frictional heating, i.e., an equilibrium condition is reached [5].

The solid flow is typical for highly filled polymer compounds and thermosets [7, 8, 11]. By this flow the melt slips on a layer of low viscosity resin. The flow front consists of less compacted melt followed by a compact melt zone. An orientation of reinforcing particles is not possible [11] (see Figure 5).

Figure 4. Various flow regimes vs. cross section of the wall thickness; fountain flow (top)
In this paper, the focus lies on the numerical simulation of the mould filling process in injection moulding of two WPC types with various compositions using commercial simulation software and the experimental visualisation with the help of a filling study.

2. Materials and methods

2.1. Materials

For the experimental work two different PP-based WPC were used. Figure 6 shows the picture of pellets and light microscopy (LiMi) images of the investigated materials WPC-01 (left) and WPC-02 (right). From the LiMi image the wood-matrix polymer interface can be seen.

WPC-01 has a wood fibre content of 50 wt. %. The viscosity of WPC-02 is approx. 10% higher than the viscosity of WPC-01 and the density is approx. 6% higher. A comparison of viscosity is shown in Figure 7 and of density in Figure 8.

![Figure 5](image1.png)

Figure 5. Flow characteristic of highly filled polymers (bottom) [acc. to 11]

![Figure 6](image2.png)

Figure 6. Pellets of the investigated WPC and LiMi images

![Figure 7](image3.png)

Figure 7. Viscosity

![Figure 8](image4.png)

Figure 8. Density

RETRACTED
2.2. Injection moulding experiments

For comparing the simulation results with real parts several test specimens were produced on an injection moulding machine Arburg ALLROUNDER 470A 1000-400.

The mould used in this study was a box-shaped test part (stacking-box). The cavity is shown in (Figure 9-left). The mould was equipped with a hot runner system and the gate position was at the centre of the box.

The process parameters for the injection moulding tests were selected according to the processing instructions from the material manufacturer. For the filling study the dosing volume was varied between 45 and 150 cm³ and the holding pressure was not applied. The other machine parameters are summarized in Table 1.

The materials were not pre-dried, they were stored in laboratory under normal storage conditions, at a temperature between 23°C and 25°C and a humidity between 40 to 45%. The residual moisture content of the materials was approx. 3.3%. The moisture content was measured with water content analyser HydroTracer FMX (aboni GmbH für Mess- und Automatisierungstechnik, Germany).

Table 1. The most important parameters of the injection moulding process
Barrel temperatures (°C), [Z0_Hopper-Z1-Z2-Z3-Z4]
Nozzle temperature (°C)
Mould temperature (°C)
Clamping force (kN)
Back pressure (bar)
Dosing speed (m/min)
Injection rate (cm³/s)
Cooling time (s)

2.3. Filling simulation

The filling of the injection mould was investigated with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The process parameters from the experiment (see Table 1) were used for the simulation. Simulations were performed with a 3D-mesh. The gating system for the mould was not modelled, but an injection point was directly set on the part. The model used for computation in AMI is presented in Figure 9-right.

Figure 9. Left: test part; right: model of the mould cavity with the superimposed finite element mesh
The viscosity of the materials was measured with a Göttfert high pressure capillary rheometer using the slit die with flush mounted pressure transducers at two temperatures (190°C, 200°C) in a shear rate range between approx. 10 – 7,000 s⁻¹. The viscosity model (Cross-WLF) was fitted from the corrected data (Weissenberg/Rabinowitsch) of these flow curves.

The viscosity measurements in the lower shear rate range (<10 s⁻¹) using the parallel plate rotational rheometer were unsuitable for generating viscosity data. Due to the wall slip between the smooth plates and the polymer the determination of rheological data was not possible.

3. Results and discussion
The results of the experimental filling studies with WPC-01 and WPC-02 are shown in Figure 10 and Figure 11. It can be clearly seen that for both investigated WPCs no classic fountain flow occurred (see Figure 4-top). The melt front has not the parabolic profile typical for thermoplastics. The flow front increasingly breaks up, is frayed and brittle.

Instead of the compact melt zone the less compacted melt is folded and only at the end of the flow path compacted.
Furthermore, several repeated injection moulding cycles showed bad reproducibility of the shape of the flow fronts (Figure 12). The flow length was similar, but the shape of the flow fronts was different. In this regard the various compositions of both WPC showed no obvious influence on mould filling.

In the case of pure PP as expected the fountain flow occurred in the cavity and finally the filling characteristics was uniform (Figure 13-left). For the unfilled PP the agreement between simulation and experimental measurement is excellent (Figure 13-right).

The simulation results of the filling behaviour for WPC-01 are shown in Figure 14-left. The presentation contains the frame-by-frame recordings. The predicted melt front advancement, as well as weld lines are not in good agreement with the advancement pattern observed in the short shots of the moulding. Unfortunately, the shape of the melt front could not be calculated satisfactorily.

The predicted melt-front advancement for the WPC-02 had a similar filling behaviour as the results of WPC-01 (see Figure 14-right).

The reasons for the bad agreement between experiment and simulation and the lack of fountain flow and further the occurrence of the irregular shape of the melt front may be attributed to the melt elasticity and the wall slip, which are not considered in the simulation model.
The high viscosity of WPC reduces the melt elasticity so that the fountain flow during the cavity filling often does not develop. The fountain flow effect occurs because the no-slip condition on the mould walls forces the material to flow from the centre to the outward mould walls [6].

Furthermore, Funke [6] shows that the wall slip effect can be intensified by particular process settings. Eg. low melt and mould temperatures increase the material’s wall slipping tendency.

As is well known, WPC tend to slip at the wall. In previous work [20, 22] the influence of moisture content on the rheological characteristics of WPC was investigated. With the dried PP-based WPC with lower relative moisture content (0.5%) shear flow occurred, whereas undried WPC with 3.8% relative moisture content showed existence of wall slip (plug flow). These results were obtained from by-pass extrusion rheometer and high pressure capillary rheometer at 200°C.

4. Conclusion and outlook
This paper presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC.

Due to low melt elasticity of highly filled WPC the classic fountain flow like for unfilled thermoplastics did not develop. Melt front break and so called finger effects occurred. The shape of the melt front was unpredictable and not reproducible.

The filling behaviour of WPC cannot yet be accurately predicted by using the 3D simulation software. In the case of highly filled thermoplastics like WPC the simulation of mould filling processes requires different adjustments compared to the use of conventional thermoplastics (e.g. an adequate rheological model for wall slipping).

To exactly describe the shape of the flow front, filling stage simulation should use equations for the material properties which take into account the elastic extensional behaviour of the melt.

Further investigations with WPC with different wood content will be done to identify possible effects (e.g. wall slip, moisture content) regarding flow and filling behaviour. Furthermore, the influence of the filler size, shape and aspect ratio on the flow behaviour will be investigated.

Acknowledgements
The authors would like to thank battenfeld-cincinnati Austria GmbH for supplying the material used in this work.

References
[1] Renard, C.: Injection molding WPC, bachelor thesis, KTH Industrial technology and management, Stockholm, 2011.
[2] Haider, A, Eder, A: Markets, Applications, and Processes for Wood Polymer Composites (WPC) in Europe, Presented at 1st International Conference on Processing Technologies for the Forest and Bio-based Products Industries (2010), http://conference.fh-
[3] Kahr, S.C.: Wood Plastic Composites - determination and comparison of the specific energy consumption for WPC compounding methods based on two state-of-the-art formulations, master thesis, Montanuniversität Leoben, 2010.

[4] Haider, A.: The market for injection moulded and extruded WPC products, URL: http://www.plastics.gl/consumer/the-right-mix/ [15. August 2015].

[5] Shoemaker, J.: Moldflow design guide, Moldflow Corporation, Framingham, 2006.

[6] Funke, C., Albring, E., Moritzer, E.: WPC has different filling behavior, Kunststoffe international 8 (2010), 53 - 56.

[7] Thienel, P., Hoster, B., Bayerl, H., Braun, U.: A mould with a window allows development of the filling pattern for thermosetting molding compound, Kunststoffe 80 (1990) 12, 1346-1350.

[8] Pfefferkorn, T.: Analyse der Verarbeitungs- und Materialeigenschaften elektrisch leitfähiger Kunststoffe auf Basis niedrig schmelzender Metalllegierungen, Dissertation, RWTH Aachen, 2009.

[9] Restrepo, J., López, I.D.: Implementation of highly efficient meshless method for the thermal analysis of fountain fluid flow during in injection molding, 4SPE ANTEC 2012, Orlando, 2012.

[10] JELU-WERK: WPC - Anwendungen und Produkte, JELU-WERK Josef Ehrler GmbH & Co KG Natural fibres, D-73494 Rosenberg, URL: www.jeluplast.com/wpc-anwendungen/#produktfotos [accessed 10. March 2011].

[11] Englich, S., Scheffler, T., Gehde, M.: Mold filling behavior of highly anorganic filled phenolic injection moulding compounds, 29th International Conference of the Polymer Processing Society (PPS 29), Nuremberg, 2013.

[12] Thienel, P., Hoster, B., Schröder, T., Schröder, K., Kretzschner, J., Ludwig, R.: Duroplast-Spritzgießen mit Gasinjektrionsprinzip, Kunststoffe 83 (1993), 91 - 95.

[13] Niemann, K., Schröder, K.: Spritzgießen von Duroplasten, Hüthig Verlag, Heidelberg, 1994.

[14] Chung, T.N.: Strömungsanalyse der Bindenahftformation beim Spritzgießen von thermoplastischen Kunststoffen, Dissertation, Technische Universität Chemnitz, 2001.

[15] Dietz, W., White, L.: Ein einfaches Modell zur Berechnung des Druckverlustes während des Werkzeugfüllvorganges und des eingefrorenen Orientierungs beim Spritzgießen amorper Kunststoffe, Rheologica Acta 17 (1978) 6, 676 - 692.

[16] Clemons M.: Raw materials for wood –polymer composites, in Wood-polymer composites, edited by K.O Niska and M.Sain, Woodhead Publishing Limited, Cambridge, 2008.

[17] Li, C.S., Hung, C.F., Shen, Y.K.: Computer simulation and analysis of fountain flow in filling process of injection molding, Journal of Polymer Research 1 (1994) 2, 163 -173.

[18] Gnaia, T., Tadmor, W.A.W.A., Rahmat, A.R., Teea, T.T., Beea, S.B., Yuua, L.C.: Computer aided injection moulding process analysis of polyvinyl alcohol–starch green biodegradable polymer composite, Journal of Manufacturing Processes 14 (2012), 8–19.

[19] Gnaia, E., Jaruga. T., Experimental investigation of polymer flow in injection mould, Archives of Materials Science and Engineering 28 (2007) 3, 165 - 172.

[20] Duretek, I., Friesenbichler, W., Holzer, C.: New insights into characterization of flow properties of PP based wood plastic composites, 26th International Conference of the Polymer Processing Society (PPS 26), Banff, 2010.

[21] Hristov, V., Takacs, E., Vlachopoulos, J.: Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/Wood flour composites, Polymer Engineering and Science, 46 (2006) 9, 1204 - 1214.

[22] Duretek, I., Selvasankar, R.K., Langecker, G.R., Holzer, C.: Rheology of wood plastic composites using by-pass extrusion rheometer on the twin screw extruder, 9th WPC - Natural Fibre and other innovative Composites Congress and Exhibition, Stuttgart, 19th – 20th June 2012.