Comparative analysis of right element mutant \textit{lox} sites on recombination efficiency in embryonic stem cells

Kimi Araki*, Yuka Okada, Masatake Araki and Ken-ichi Yamamura

Abstract

\textbf{Background:} Cre-mediated site-specific integrative recombination in mouse embryonic stem (ES) cells is a useful tool for genome engineering, allowing precise and repeated site-specific integration. To promote the integrative reaction, a left element/right element (LE/RE) mutant strategy using a pair of \textit{lox} sites with mutations in the LE or RE of the \textit{lox} sequence has previously been developed. Recombination between LE and RE mutant \textit{lox} produces a wild-type \textit{loxP} site as well as an LE+RE double mutant \textit{lox} site, which has mutations in both sides and less affinity to Cre, resulting in stable integration. We previously demonstrated successful integrative recombination using \textit{lox}71 (an LE mutant) and \textit{lox}66 (an RE mutant) in ES cells. Recently, other LE/RE mutant \textit{lox} sites showing higher recombination efficiency in \textit{Escherichia coli} have been reported. However, their recombination efficiency in mammalian cells remains to be analyzed.

\textbf{Results:} Using ES cells, we compared six RE mutant \textit{lox} sites, focusing on their recombination efficiency with \textit{lox}71. All of the RE mutant \textit{lox} sites showed similar recombination efficiency. We then analyzed the stability of the recombined product, i.e., the LE+RE double mutant \textit{lox} site, under continuous and strong Cre activity in ES cells. Two RE mutants, \textit{lox}JTZ17 and \textit{lox}KR3, produced more stable LE+RE double mutant \textit{lox} than did the \textit{lox}66/71 double mutant.

\textbf{Conclusion:} The two mutant RE \textit{lox} sites, \textit{lox}JTZ17 and \textit{lox}KR3, are more suitable than \textit{lox}66 for Cre-mediated integration or inversion in ES cells.

Background

The bacteriophage P1-derived Cre/\textit{lox} recombination system has been extensively used to engineer the genome of experimental animals [1,2]. Cre recombinase recognizes a 34-bp element, termed \textit{loxP}, which is composed of two 13-bp inverted repeats that serve as Cre binding sites, and an 8-bp spacer region that participates in strand exchange during recombination (Figure 1a) [3,4]. Depending on the relative orientation of the \textit{lox} sites with respect to one another, the recombination reaction can result in excision, inversion, or integration.

Integrative recombination is useful for the production of transgenic animals or cells because any DNA of interest can be introduced into a chromosomally located \textit{lox} site. However, integrative recombination between wild-type \textit{loxP} sites is inefficient due to re-excision through intramolecular recombination [5]. Studies of mutated \textit{loxP} sites have revealed that two classes of mutations can promote Cre-mediated insertion or replacement. One class consists of heterospecific \textit{lox} sites carrying mutation(s) in the central 8-bp spacer region [6-8]. Recombination does not occur between two \textit{lox} sites differing in the spacer region, whereas \textit{lox} sites with identical spacer regions can be recombined efficiently. Recombination using heterospecific \textit{lox} sites is termed "recombinase mediated cassette exchange (RMCE)" [9], in which one chromosomally preinserted DNA cassette flanked by two different heterospecific \textit{lox} sites is exchanged for another cassette on a targeting plasmid flanked by the same kind of heterospecific \textit{lox} sites. To date, \textit{lox}511 [10], \textit{lox}2272 [11], and \textit{lox}5171 [12] have been successfully used in embryonic stem (ES) cells.

The other class is the left element/right element (LE/RE) mutant strategy using LE mutant \textit{lox} carrying muta-
tions in the left-inverted repeat region and RE mutant lox carrying mutations in the right-inverted repeat region [13]. Recombination between an LE mutant lox and an RE mutant lox results in the generation of a double mutant lox site having mutations in both ends and a wild-type loxP site. The double mutant lox site is not an effective substrate for Cre recombinase; therefore, the recombination reaction tends toward integration. (c) Sequences of mutant lox sites used in this study. Lox71 carries 5 bp of mutation in the left element. The sequence of the right element of lox66 is complementary to the left element sequence of lox71. Mutated sequences are indicated by bold and are underlined.

Figure 1 LE/RE mutant lox system. (a) Wild-type loxP sequence. The loxP site is composed of an asymmetric 8-bp spacer flanked by 13-bp inverted repeats that the Cre recombinase recognizes and binds to. (b) Integrative recombination with LE/RE mutant lox sites. The asterisks represent the mutations. RE mutants have mutations in the right inverted repeat region, and LE mutants have mutations in the left inverted repeat region. Through recombination between LE and RE mutant lox sites, a wild-type loxP site and a double mutant lox site carrying mutations in both ends are produced. The double mutant lox site has a lower affinity for the Cre enzyme; therefore, recombination of the product rarely occurs, and the recombination reaction tends toward integration. (c) Sequences of mutant lox sites used in this study. Lox71 carries 5 bp of mutation in the left element. The sequence of the right element of lox66 is complementary to the left element sequence of lox71. Mutated sequences are indicated by bold and are underlined.

Figure 1 LE/RE mutant lox system. (a) Wild-type loxP sequence. The loxP site is composed of an asymmetric 8-bp spacer flanked by 13-bp inverted repeats that the Cre recombinase recognizes and binds to. (b) Integrative recombination with LE/RE mutant lox sites. The asterisks represent the mutations. RE mutants have mutations in the right inverted repeat region, and LE mutants have mutations in the left inverted repeat region. Through recombination between LE and RE mutant lox sites, a wild-type loxP site and a double mutant lox site carrying mutations in both ends are produced. The double mutant lox site has a lower affinity for the Cre enzyme; therefore, recombination of the product rarely occurs, and the recombination reaction tends toward integration. (c) Sequences of mutant lox sites used in this study. Lox71 carries 5 bp of mutation in the left element. The sequence of the right element of lox66 is complementary to the left element sequence of lox71. Mutated sequences are indicated by bold and are underlined.

Results and Discussion

Mutant RE lox sites

We synthesized four new RE lox sites (loxKR1-4) as well as loxTZ17 (Figure 1c). LoxKR1 had four nucleotide
mutations; of these, three mutated nucleotides were the same as the mutations in lox66, and one nucleotide was the same as the mutation in loxJTZ17. LoxKR2-4 were designed to have three mutations, as did loxJTZ17, but in different positions.

Assessment of integrative recombination efficiency
To test whether these RElox sites could promote recombination efficiency in ES cells, we used the same strategy as described previously [14] (Figure 2a). For the chromosomal target lox71 site, the CAG promoter-lox71-bsr-pA was introduced into ES cells. We isolated four ES clones—Bs1, Bs17, Bs19, and Bs21—that carried a single copy of the chromosomal target construct. Integration vectors comprised an RElox site on the 5′ side of the promoterless NLSlacZ gene and a selection marker gene, MC1-neo-pA. The ES clones were coelectroporated with the integration vector and the Cre-expression vector pCAGGS-Cre (in their circular forms) and then selected with G418. The cre gene was transiently expressed, mediating site-specific recombination between the chromosomal lox71 and the RElox on the integration plasmid; this resulted in site-specific integration. The neo cassette is active regardless of the integration site; therefore, both random integrants and site-specific recombinants become drug resistant. However, in the present study, only the colonies where site-specific integration had occurred were stained blue with 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal) because the NLSlacZ gene was inserted downstream of the CAG promoter through Cre-mediated recombination. As shown in Figure 2b and 2c, most of the blue colonies were uniformly blue, indicating that recombination occurred in the early stage of colony formation. The percentage of blue colonies represented the frequency of site-specific integration. When only the integration vector was electroporated, no blue colonies appeared (Figure 2d).

Site-specific integration frequencies
We constructed six integration vectors harboring different RE mutant lox and compared their recombination frequencies. Percentages of blue colonies, i.e., site-specific integration frequencies, in the four ES lines are shown in Table 1. The frequencies with the lox66-vector were 11–14%, and all other RElox sites showed similar or slightly higher frequencies than were observed with lox66. Site-specific integration rates relative to the frequency with lox66 are shown in Figure 3. The differences observed were within a factor of 2, and there were no statistically significant differences among the RElox sites (p = 0.37). Thus, the promoting effect of loxJTZ17 observed in E. coli was not clearly evident in ES cells. All new RElox sites showed similar recombination efficiencies to loxJTZ17 and lox66.
Assessment of stability of double mutant lox against Cre expression

Why did loxJTZ17 not increase the frequency of site-specific integration in ES cells? The major difference between the report by Thomson et al. [18] and the present study is the differing species of host cells: prokaryotic cells and eukaryotic cells, respectively. Prokaryotic cells are much smaller than eukaryotic cells. In addition, their genomic DNA is not separated by a nuclear membrane and has a more open structure than eukaryotic cells. Therefore, in prokaryotic cells, Cre proteins and lox sites should exist in much higher concentrations and meet and bind more frequently than in eukaryotic cells. The efficiency of integrative recombination in the LE/RE mutant lox system depends on the in-affinity of the LE+RE double mutant lox site to Cre protein. In this environment of prokaryotic cells, Cre proteins may be able to act on double mutant lox sites with incomplete levels of in-affinity for Cre protein. In our assay using ES cells and transient expression of the cre gene, the chance of a collision between Cre proteins and the lox site was much lower than in prokaryotic cells, and the double mutant lox site was exposed to Cre proteins for only a limited time. Therefore, Cre proteins may have disappeared before they could recombine loxP and LE+RE double mutant lox.

If the ineffectiveness of loxJTZ17 recombination in ES cells is due to the limited chance of a collision between Cre protein and lox sites, prolonged expression of Cre protein should affect the recognition and recombination of LE+RE double mutant lox sites. Therefore, we decided to examine the stability of LE+RE double mutant lox sites in ES cells under the continuous presence of Cre protein.

The strategy used to evaluate the stability of the double mutant lox is shown in Figure 4. We used a Transhyretine (Ttr) knockout ES line (Ttr-KO41) in which the lox71-Pgk-neo-loxP-Pa-lox2272 cassette was inserted into the first exon of the mouse Ttr gene. To produce LE+RE double mutant lox, six replacement vectors carrying the different RE mutant lox-LacZ-pA-Pgk-Pac-loxP were constructed, and the Ttr-KO41 line was coelectroporated with each replacement vector and a Cre-expressing plasmid. We expected that intramolecular recombination would initially occur, resulting in the removal of the Pgk-neo cassette from the genome and separation of the RE-mutant lox-LacZ-Pgk Pac cassette from the plasmid backbone. Cre would then mediate integrative recombination between chromosomal lox71 and the RE-mutant lox in the cassette. The Pac gene in the replacement vector does not have a pA signal; therefore, random integrants should be puromycin-sensitive, and cells should become drug-resistant only upon Cre-mediated targeted integration during which the Pac gene fuses to the pA signal. After coelectroporation, puromycin-resistant colonies were selected, and the integration pattern of the LacZ-pA-Pgk Pac cassette was analyzed by polymerase chain reaction (PCR), Southern blotting, and sequencing (data not shown). Six sub-clones (71/66-P, 71/JTZ-P, 71/KR1-P, 71/KR2-P, 71/KR3-P, and 71/KR4-P) carrying different double mutant lox comprising the LE mutation of lox71 and the RE mutation of each RE mutant lox were established.

We first examined the short-term stability of these double mutant lox. Linearized CAG-Cre-IRES-Hyg cassette (pCAGNintCreH) was introduced into each sub-clone, and Cre-expressing transformants were selected with hygromycin (hyg). Recombination between double mutant lox and loxP results in removal of the puromycin (puro) resistant genes; therefore, recombined cells become puro-sensitive. If recombination occurs soon after introduction of the CAG-Cre-IRES-Hyg cassette, hyg-resistant (hygR) colonies should be puro-sensitive (puroS). In the formation of entire hygR puroS colonies, recombination should occur before the first cell division, or, if formation occurs after the first cell division, recombination should occur in all of the daughter cells. Therefore, in this assay, it is possible to observe recombination within 24-48 h after exposure to Cre protein. To estimate the percentage of such hygR puroS colonies, electroporated cells were divided into two plates. After 5 days of hyg selection, one plate was selected with puro and the other plate was fed with normal medium to obtain the Table 1: Frequency of site-specific integration

Cell line	lox66	loxJTZ17	loxKR1	loxKR2	loxKR3	loxKR4
Bs2	13.4 ± 4.3	18.0 ± 5.4	13.9 ± 2.5	19.2 ± 6.9	18.0 ± 2.4	17.5 ± 1.2
Bs17	11.3 ± 0.6	17.2 ± 2.2	13.3 ± 1.5	22.7 ± 3.3	17.3 ± 2.4	17.5 ± 3.7
Bs19	14.2 ± 2.9	13.3 ± 3.1	10.5 ± 1.8	18.0 ± 5.7	11.9 ± 3.4	12.9 ± 1.1
Bs21	13.8 ± 1.3	15.8 ± 2.6	14.4 ± 2.3	18.9 ± 3.6	13.9 ± 4.5	16.9 ± 2.7

Twenty micrograms of the integration plasmid and 10 μg of the Cre-expressing vector were coelectroporated. After drug selection for 7 days, colonies were stained with X-gal, and the percentage of positive colonies was scored as the frequency of site-specific integration. The means ± SD of three independent electroporations are represented.
The ratio of hygR puroS colonies to hygR colonies represents the short-term stability of double mutant lox site.

As shown in Figure 5, all double mutant lox showed over 85% stability of inserted DNA, indicating that recombination between double mutant lox and loxP occurs only slightly over a short time period (24-48 h) in ES cells. Although the/ox71/KR3 double mutant showed higher stability than did the others, there was no significant difference among double-mutant lox sites (p = 0.12). These results are consistent with the observation that there was no difference in integrative recombination.

In this short-term assay, we could not detect whether recombination occurred later during colony formation in a limited population of the colony because such recombination generates countable, partly puro-resistant (puroR) colonies mixed with recombined puroS cells and unrecombined puroR cells. To establish the stability of double mutant lox sites against prolonged and strong Cre expression, we cloned and cultured Cre-expressing sub-lines, then examined the level of recombination by Southern blotting. Three double mutant lox lines, 71/66-P, 71/ JTZ-P, and 71/KR3-P, were selected for the analysis of long-term stability (Figure 4, right side panel). After introduction of the CAG-Cre-IRES-Hyg cassette and colony formation, six Cre-expressing sub-lines from each parental line were isolated and stocked. Cre expression levels in the sub-lines were analyzed by northern blotting (Figure 6a), and the two highest Cre-expressing lines were selected from each double mutant lox parental line, as indicated in Figure 6a. The selected lines were then passaged 9–11 times from the original cell stock, and genomic DNA was prepared after 1, 4, 7, 9, and 11 pas-
sages. In order to confirm that the expression level of the cre gene was maintained during passage, total RNAs after 1, 7, and 11 passages were also prepared and subjected to northern blotting. As shown in Figure 6b, the cre gene was expressed with similar intensity during the 11 passages. Then, recombination between double mutant lox and loxP sites at each stage was analyzed by Southern blotting, as shown in Figure 7. In 71/66-P-Cre clones, the band for the excised allele was detected clearly at passage one, and the intensity became stronger with increasing passage number (Figure 7a). On the other hand, the bands for the excised allele in 71/JTZ-P-Cre and 71/KR3-P-Cre clones were faint (Figure 7b and 7c), indicating that lox71/JTZ and lox71/KR3 double mutant lox sites were more stable than lox71/66.

To estimate the rate of allele excision, band intensities relative to the band derived from the endogenous Pgk gene were measured (Figure 7d, solid and hatched lines), and the percentages of excised alleles were calculated (Figure 7d, gray line). In 71/66-P-Cre clones, the rates of allele excision were 48% (clone No. 1) and 74% (clone No. 4), suggesting that the lox71/66 double mutant is not highly resistant to re-recombination with loxP under continuous exposure to Cre expression. In 71/JTZ-P-Cre and 71/KR3-P-Cre clones, the rates of allele excision were under 21%, meaning that about 80% of double mutant lox sites were not recombined, even under the strong Cre expression forced by the CAG promoter (Figure 7d, middle and below).

In order to compare Cre expression levels in these Cre sub-clones, the band intensities shown in Figure 6b were measured by densitometry, and Cre expression level relative to 71/JTZ-P-Cre 4 was calculated. Figure 8 shows a scatter plot of the rate of excision (y-axis) and Cre expression level (x-axis) in each sub-clone. In 71/JTZ-P-Cre and 71/KR3-P-Cre clones, excision rate and Cre expression levels seemed to have a linear relationship with a similar correlation coefficient, suggesting that lox71/JTZ17 and lox71/KR3 have an in-affinity (stability) level similar to Cre protein. On the other hand, 71/66-P-Cre clones showed 2-4 times higher excision levels than did 71/JTZ-P-Cre and 71/KR3-P-Cre clones.

Thus, lox71/JTZ17 and lox71/KR3 are highly resistant to the Cre protein, but lox71/66 can be recombined with loxP when the cre gene is expressed strongly and constitutively. Therefore, if we used stable transformants of the cre gene for site-directed integration experiments, lox66 should show a lower efficiency because of its higher rate of re-excision.

Conclusions

In this study, we screened for RE mutant lox sites showing higher recombination efficiency with lox71 using ES cells. Although we could not identify any RE mutant lox with a
significantly higher efficiency than lox66, we found that two RE mutant lox, loxJTZ17 and loxKR3, produced more stable (less inactive) double mutant lox with lox71 than did lox66/71. These two mutant RE lox sites would therefore be more suitable than lox66 for Cre-mediated integration or inversion in ES cells.

Methods

Plasmids

Plasmids pCAGGS-Cre, pCAGlox71bsr, and plox66NZneo have been described previously [17,20]. The loxJTZ17 and loxKR1, 2, 3 and 4 sequences (Figure 1c) were synthesized, and the lox66 sequence of

Figure 7 Excising recombination between double mutant lox and wild-type loxP in strongly Cre-expressing sub-lines. (a) Restriction endonuclease map of the targeted Ttr locus before (Ttr LacZ-KI allele) and after (Excised allele) Cre-mediated recombination. The pA signal of the mouse Pgk gene was used as a probe (indicated by the solid line). Fragment sizes are indicated. Bg, BglII; Sc, ScaI. (b) Southern blot analysis of Cre-expressing sub-lines. P represents the parental line before introducing the CAG-Cre-IRES-Hyg cassette. The numbers indicate passage numbers from the original cell stock. The positions of the bands from the nonexcised LacZ allele (LacZ), excised allele (Excised), and endogenous Pgk gene (Endo) are indicated by arrowheads. (c) Relative band intensities of the LacZ allele (hatched line) and excised allele (solid line) to the band intensities of the endogenous Pgk gene. The rate of excised band (ratio of excised band intensity to total [LacZ + excised] intensity) was calculated and is indicated by the gray line.
Knockout™ Serum Replacement (KSR; Gibco Invitrogen), HyClone, Thermo Fisher Scientific Inc., USA), 14% mM sodium pyruvate, 1% fetal bovine serum (FBS; Gibco Invitrogen, USA), 0.1 mM β-mercaptoethanol, 1× MEM nonessential amino acids of Glasgow Minimum Essential Medium (GMEM) ES cells were cultured in KSR-GMEM medium consisting of KSR-GMEM medium.

ES Cell cultures

plox66neo was replaced by these synthesized lox sequences to produce pJTZNZneo, pKR1NZneo, pKR2NZneo, pKR3NZneo, and pKR4NZneo (REloxN-Zneo plasmids). The p66NZPacP plasmid was constructed by replacing the splice acceptor-enhanced green fluorescent protein (EGFP) cassette of p6SEFPFP [19] into the LacZ gene fused with the nuclear localization signal (NLS) derived from the SV40 large T gene (NLS-LacZ). The pJTZNZPacP, pKR1NZPacP, pKR2NZPacP, pKR3NZPacP, and pKR4NZPacP (REloxNZPacP plasmids) were constructed by replacing thelox66 sequence with thelox71 sequence with thelox71bsr plasmid DNA. ES cells (3 × 10⁶ cells/0.8 ml in PBS) were electroporated using a Bio-Rad Gene Pulser (Bio-Rad, USA) set at 200 V and 960 μF and plated into two 10-cm plates. Blasticidin S selection was started after 48 h of electroporation at 4 μg/ml for 7 days, and colonies were picked, expanded, and stocked. Clones with a single copy integration were selected by Southern blotting analysis.

For Cre-mediated integration, ES cells were coelectroporated with 20 μg of REloxNZneo plasmid and 10 μg of pCAGGS-Cre at 400 V and 250 μF. G418 selection at 600 μg/ml for 7 days was started after 24 h of electroporation. The colonies were then stained with X-gal.

The ES cell line Ttr-KO-41, which carries alox71-Pgk promoter-neomycin phosphotransferase (neo) gene-loxP-pA cassette in the first exon of the Ttr gene (Ttr neo), has been described previously [24]. To obtain site-specific integrants of REloxNZPacP cassette into the Ttr neo allele, Ttr-KO-41 ES cells were coelectroporated with 20 μg of REloxNZPacP plasmid and 10 μg of pCAGGS-Cre at 400 V and 250 μF. Puromycin selection was started after 48 h at 2 μg/ml for 7 days. Colonies were picked and stocked. For electroporation of pCAGNNintCreIH, ES cells were electroporated with 20 μg of XhoI-digested pCAGNintCreIH at 400 V and 250 μF and were fed 150 μg/ml of hygromycin B-containing medium after 24 h of electroporation. Hygromycin B selection was maintained for 5 days; we then changed to puromycin selection at 2 μg/ml or to normal medium for 2 days.

Analyses of DNA and RNA

Cells were lysed with sodium dodecyl sulfate (SDS)/proteinase K, treated with 1:1 (vol/vol) phenol/chloroform, precipitated with ethanol, and dissolved in 10 mM Tris-HCl, pH 7.5/1 mM ethylenediaminetetraacetic acid (TE). Six micrograms of genomic DNA were digested with appropriate restriction enzymes, electrophoresed in a 0.9% agarose gel, and blotted onto a nylon membrane (Roche, Switzerland). Hybridization was performed using a DIG DNA Labeling Kit (Roche). The intensities of the obtained bands were determined using Printgraph AE-6920-MF (ATTO, Japan).

Total RNA was isolated from ES cells using Sepasol (Nakalai, Japan). Ten micrograms of total RNA were electrophoresed through 1.0% agarose-formaldehyde gels and transferred to a positively charged nylon membrane and 1100 U/ml leukemia inhibitory factor (LIF; ESGRO, Chemicon, USA). For neutralization of trypsin, FCS-GMEM in which the KSR in KSR-GMEM was replaced with FBS (final concentration, 15% FBS) was used.

ES cell lines (Bs2, Bs17, Bs19, and Bs21) carrying the targetlox71 site were established from CGR8 [23] (Gift from Dr. Niwa) by introducing 10 μg of SpeI-digested pCAGlox71bsr plasmid DNA. ES cells (3 × 10⁶ cells/0.8 ml in PBS) were electroporated using a Bio-Rad Gene Pulser (Bio-Rad, USA) set at 200 V and 960 μF and plated into two 10-cm plates. Blasticidin S selection was started after 48 h of electroporation at 4 μg/ml for 7 days, and colonies were picked, expanded, and stocked. Clones with a single copy integration were selected by Southern blotting analysis.

For Cre-mediated integration, ES cells were coelectroporated with 20 μg of REloxNZneo plasmid and 10 μg of pCAGGS-Cre at 400 V and 250 μF. G418 selection at 600 μg/ml for 7 days was started after 24 h of electroporation. The colonies were then stained with X-gal.

The ES cell line Ttr-KO-41, which carries alox71-Pgk promoter-neomycin phosphotransferase (neo) gene-loxP-pA cassette in the first exon of the Ttr gene (Ttr neo), has been described previously [24]. To obtain site-specific integrants of REloxNZPacP cassette into the Ttr neo allele, Ttr-KO-41 ES cells were coelectroporated with 20 μg of REloxNZPacP plasmid and 10 μg of pCAGGS-Cre at 400 V and 250 μF. Puromycin selection was started after 48 h at 2 μg/ml for 7 days. Colonies were picked and stocked. For electroporation of pCAGNNintCreIH, ES cells were electroporated with 20 μg of XhoI-digested pCAGNintCreIH at 400 V and 250 μF and were fed 150 μg/ml of hygromycin B-containing medium after 24 h of electroporation. Hygromycin B selection was maintained for 5 days; we then changed to puromycin selection at 2 μg/ml or to normal medium for 2 days.

Analyses of DNA and RNA

Cells were lysed with sodium dodecyl sulfate (SDS)/proteinase K, treated with 1:1 (vol/vol) phenol/chloroform, precipitated with ethanol, and dissolved in 10 mM Tris-HCl, pH 7.5/1 mM ethylenediaminetetraacetic acid (TE). Six micrograms of genomic DNA were digested with appropriate restriction enzymes, electrophoresed in a 0.9% agarose gel, and blotted onto a nylon membrane (Roche, Switzerland). Hybridization was performed using a DIG DNA Labeling Kit (Roche). The intensities of the obtained bands were determined using Printgraph AE-6920-MF (ATTO, Japan).

Total RNA was isolated from ES cells using Sepasol (Nakalai, Japan). Ten micrograms of total RNA were electrophoresed through 1.0% agarose-formaldehyde gels and transferred to a positively charged nylon membrane

Figure 8 Relation of excision and Cre expression level. The northern blot X-ray film of Figure 6b was subjected to densitometry; the average of band intensities of samples from the 1st, 7th, and 11th passages were calculated; and the relative band intensity to 71/JTX-P-Cre 4, which showed the lowest expression, was calculated and plotted on the x-axis. The highest value of the excised allele rate calculated in Figure 7c was plotted on the y-axis. In 71/66-P-Cre clones, the recombination rate was apparently higher than in other clones.
(Roche). Hybridization was performed using a DIG RNA Labeling and Detection Kit (Roche).

Statistical analyses
The recombination efficiencies and relative number of blue or white colonies were evaluated by nonrepeated measures analysis of variance (ANOVA). Where a significant difference (p < 0.05) was identified, the differences were analyzed further with Student-Newman-Keuls (SNK) tests for multiple comparisons.

Authors' contributions
KA contributed to the project conception and experimental design, carried out the experiments, and drafted the manuscript. YO participated in data production and analysis. MA participated in the experimental design and performed the statistical analysis. KY participated in coordination and helped with writing of the manuscript. All authors have read and approved the final manuscript.

Acknowledgements
We wish to thank Ms. Y. Tsuruta for her technical assistance. This work was supported by HAKENHI (Grant-in-Aid for Scientific Research) in Priority Area "Integrative Research Toward the Conquest of Cancer" (17012018 to K. Y.) from the Ministry of Education, Culture, Sports, Science and Technology.

Author Details
Institute of Resource Development and Analysis, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan

Received: 10 October 2009 Accepted: 31 March 2010 Published: 31 March 2010

References
1. Nagy A: Cre recombinase: the universal reagent for genome tailoring. _Genesis_ 2000, 26(2):99-109.
2. Brandt PS, Dymecki SM: Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. _Dev Cell_ 2004, 6(1):7-28.
3. Vaziriyanov Y, Pathania S, Jayaram M: A general model for site-specific recombination by the integrase family recombinases. _Nucleic Acids Res_ 1999, 27(4):930-941.
4. Hoeis RH, Ziese M, Sternberg N: P1 site-specific recombination: Nucleotide sequence of the recombining sites. _Proc Natl Acad Sci USA_ 1982, 79(11):3398-3402.
5. Fukushige S, Sauer B: Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. _Proc Natl Acad Sci USA_ 1992, 89(17):7905-7909.
6. Hoeis RH, Wierzbaicki A, Abremski K: The role of the loxP spacer region in P1 site-specific recombination. _Nucleic Acids Res_ 1986, 14(S1):2287-2300.
7. Lee G, Saito I: Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. _Gene_ 1998, 216(1):55-65.
8. Langer SJ, Ghafouri AP, Byrd M, Leinwand L: A genetic screen identifies novel non-compatible loxP sites. _Nucleic Acids Res_ 2002, 30(14):3067-3077.
9. Bouhassira EE, Westerman K, Leboulch P: Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. _Blood_ 1997, 90(9):3332-3344.
10. Bethke B, Sauer B: Segmental genomic replacement by Cre-mediated recombination: Genotoxic stress activation of the p53 promoter in single-copy transformants. _Nucleic Acids Res_ 1997, 25(14):2828-2834.
11. Kolb AF: Selection-marker-free modification of the murine beta-casein gene using a lox2272 [correction of lox2272] site. _Anal Biochem_ 2001, 290(2):266-271.
12. Osipovich AB, Singh A, Ruley HE: Post-entrapment genome engineering: First exon size does not affect the expression of fusion transcripts generated by gene entrapment. _Genome Res_ 2005, 15(3):428-435.
13. Albert H, Dale EC, Lee E, Ow DW: Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. _Plant J_ 1995, 7(4):549-559.
14. Araki K, Araki M, Yamamura K: Targeted integration of DNA using mutant lox sites in embryonic stem cells. _Nucleic Acids Res_ 1997, 25(4):868-872.
15. Zhang Z, Lutz B: Cre recombinase-mediated inversion using lox606 and lox71: method to introduce conditional point mutations into the CREB-binding protein. _Nucleic Acids Res_ 2002, 30(17)e90.
16. Oberdoerffer P, Otopoby KL, Murayama M, Rajewsky K: Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. _Nucleic Acids Res_ 2003, 31(22):e140.
17. Araki K, Araki M, Yamamura K: Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. _Nucleic Acids Res_ 2002, 30(19):e103.
18. Thomson JG, Rucker EB, Priedhorsky JA: Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. _Genes Cells_ 2003, 8(3):162-167.
19. Tanivaki T, Haruna K, Nakamura H, Sekimoto T, Oike Y, Imaizumi T, Saito F, Muta M, Soejima Y, Utoh A, et al.: Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette. _Dev Growth Differ_ 2005, 47(3):163-172.
20. Araki K, Imaizumi T, Okuyama K, Oike Y, Yamamura K: Efficiency of recombination by Cre transient expression in embryonic stem cells: Comparison of various promoters. _J Biochem (Tokyo)_ 1997, 122(5):977-982.
21. Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transfectants with a novel eukaryotic vector. _Gene_ 1991, 108(2):193-198.
22. Hashimoto D, Ohmura M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, et al.: Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. _J Cell Biol_ 2008, 181(7):1065-1072.
23. Mountford P, Zevnik B, Duvel A, Nichols J, Li M, Dans C, Robertson M, Chambers I, Smith A: Districtron targeting constructs: reporters and modifiers of mammalian gene expression. _Proc Natl Acad Sci USA_ 1994, 91(10):4303-4307.
24. Zhao G, Li Z, Araki K, Haruna K, Yamaguchi K, Araki M, Takeya M, Ando Y, Yamamura K: Inconsistency between hepatic expression and serum concentration of transthyretin in mice humanized at the transthyretin locus. _Gene Cells_ 2008, 13(12):1257-68.

Cite this article as: Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells _BMC Biotechnology_ 2010, 10:29.

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit