When taxonomy and biological control researchers unite: Species delimitation of Eadya parasitoids (Braconidae) and consequences for classical biological control of invasive paropsine pests of Eucalyptus

Leanne Peixoto¹,², Geoff R. Allen³, Ryan D. Ridenbaugh¹, Stephen R. Quarrell¹, Toni M. Withers⁴, Barbara J. Sharanowski¹*

¹ University of Central Florida, Department of Biology, Orlando, FL, United States of America, ² Aarhus University, Department of Agroecology, Aarhus, Denmark, ³ Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia, ⁴ Scion, Rotorua, New Zealand

* barb.sharanowski@ucf.edu

Abstract

The invasive eucalyptus tortoise beetle, Paropsis charybdis, defoliates plantations of Eucalyptus nitens in New Zealand. Recent efforts to identify host specific biological control agents (parasitoids) from Tasmania, Australia, have focused on the larval parasitoid wasp, Eadya paropsidis (Braconidae), first described in 1978. In Tasmania, Eadya has been reared from Paropsisterna agricola (genus abbreviated Pst), a smaller paropsine that feeds as a larva on juvenile rather than adult foliage of Eucalyptus nitens. To determine which of the many paropsine beetle hosts native to Tasmania are utilized by E. paropsidis, and to rule out the presence of cryptic species, a molecular phylogenetic approach was combined with host data from rearing experiments from multiple locations across six years. Sampling included 188 wasps and 94 beetles for molecular data alone. Two mitochondrial genes (COI and Cytb) and one nuclear gene (28S) were analyzed to assess the species limits in the parasitoid wasps. The mitochondrial genes were congruent in delimiting four separate phylogenetic species, all supported by morphological examinations of Eadya specimens collected throughout Tasmania. Eadya paropsidis was true to the type description, and was almost exclusively associated with P. tasmanica. A new cryptic species similar to E. paropsidis, Eadya sp. 3, was readily reared from Pst. agricola and P. charybdis from all sites and all years. Eadya sp. 3 represents the best candidate for biological control of P. charybdis and was determined as the species undergoing host range testing in New Zealand for its potential as a biological control agent. Another new species, Eadya sp. 1, was morphologically distinctive and attacked multiple hosts. The most common host was Pst. variicollis, but was also reared from Pst. nobilitata and Pst. selmani. Eadya sp. 1 may have potential for control against Pst. variicollis, a new incursion in New Zealand, and possibly Pst. selmani in Ireland. Our molecular data suggests that Pst. variicollis is in need of taxonomic revision and the geographic source of the beetle in New Zealand may not be Tasmania. Eadya sp. 2 was rarely collected and attacked P. aegrota elliotti and P. charybdis. Most species of Eadya...
Introduction

Classical biological control of insects, involving the importation of a specialist parasitoid or predatory organism (agents) from the area of origin to control a pest (target), has proven to be an effective alternative to insecticide use for the control of numerous invasive species [1–3]. Classical biological control is now only considered when environmental safety concerns can be empirically evaluated. Success of classical biological control programs depends on ensuring: (1) an agent is sufficiently host specific to the pest to avoid significant non-target impacts; (2) a phenological match between the target and agent to facilitate efficient control and also prevent non-target impacts; and (3) the agent can survive and reproduce in the novel environment [4, 2, 5–7].

Cryptic species present another challenge for successful biological control [8–11]. Cryptic species complexes are typically comprised of a set of related species that are morphologically indistinguishable or difficult to diagnose based on morphology alone. As the majority of taxonomic works have been based on only morphological characters, cryptic species complexes typically include a set of undescribed species [12]. Molecular taxonomy has revealed numerous cryptic species complexes, particularly within insects [13–18]. If a prospective biological control agent is a part of a cryptic species complex, multiple species may end up being released causing non-target effects, or if the wrong species is released, control of the target pest may not occur [11, 7, 19]. Thus, it is critical to test for the presence of cryptic species by sampling specimens from a wide range of localities from the agent’s origin.

Eucalyptus plantations are an important wood and pulp fiber resource for the forestry industry in many countries in the world; however, the survival and expansion of these plantations in New Zealand and elsewhere are under threat due to the presence of insect defoliators, including several species of chrysomelid beetles across several continents [20–22]. Of invasive pests in New Zealand, the most serious is the Eucalyptus Tortoise Beetle, *Paropsis charybdis* Stål 1860 (Coleoptera: Chrysomelidae: Chrysomelinae: Paropsini) [23, 24, 21]. *P. charybdis* has two generations per year in New Zealand, with the first generation adults emerging in August and September after overwintering within the leaf litter and under bark (spring generation) [23, 24] (Fig 1). There are four larval instars feeding on both expanding and adult leaves. Pupation of the spring generation occurs from November to December, and after approximately one month the second generation of beetles emerge (summer generation) [23, 24]. The summer generation appears the most damaging. Beetles are present until autumn, and thus a third generation has been proposed but not yet proven [25]. Although native to Australia, *P. charybdis* is now found virtually throughout New Zealand following its initial invasion to a localized region in 1916 [24]. The extensive damage caused by *P. charybdis* is likely the result of high female fecundity, wide host range, and a lack of natural enemies attacking the spring generation [26, 27].

Since the 1930s, classical biological control of *P. charybdis* in New Zealand has been attempted repeatedly through the importation and release of larval parasitoids (Tachinidae),
egg parasitoids (Pteromalidae), and ladybird beetle predators (Coccinellidae) from Australia [28]. The majority of these agents failed to establish in New Zealand upon release [28]. The
most successful biological control agent thus far was the pteromalid egg parasitoid, *Enoggera nassaui* (Girault, 1926) [28, 21]. This parasitoid was easily reared, had high rates of parasitism within the laboratory, and became established in a number of release locations that initially led to a substantial decline of *P. charybdis* populations. However, parasitism of the first generation of *P. charybdis* by *E. nassaui* was consistently low [26]. This was likely due to a phenological mismatch between parasitoid and host as the egg parasitoid was active too late in the spring (approximately 30 days following the appearance of *P. charybdis* eggs) [29]. To rectify the phenological mismatch, wasps from a cooler region of Australia were introduced [26, 27]. Unfortunately, this agent has since been affected by an invasive obligate hyperparasitoid, *Baeoanusia albifuncile* Girault, (Hymenoptera: Encyrtidae), which reduced the success of the biological control program [30].

To date, biological control agents alone have not been able to control *P. charybdis* consistently. Insecticides are the only alternative for control [31, 32]. Alpha-cypermethrin, a broad-spectrum, synthetic pyrethroid can be used to control *P. charybdis* via aerial spraying. However, alpha-cypermethrin negatively impacts non-target fauna and thus, the Forest Stewardship Council (FSC), under which numerous *Eucalyptus* plantations in New Zealand are managed, has restricted the use of these chemicals [33, 32]. Research is now aimed at introducing a successful biological agent that is effective in the cooler climates of New Zealand and active during the first generation of *P. charybdis* [27, 34].

A new potential candidate is the solitary larval parasitoid, *Eadya paropsidis* Huddleston and Short 1978 (Hymenoptera: Braconidae: Euphorinae) [35, 36]. This wasp is univoltine and attacks the first generation of paropsine beetles feeding on *Eucalyptus* in Australia (Fig 1). *Eadya paropsidis* was described along with *E. falcata*, as the only two known species in the newly erected, Australian endemic genus [37]. The two species are widely separated geographically, with *E. paropsidis* known from the Australian Capital Territory, New South Wales, Victoria and Tasmania, and *E. falcata* known from Western Australia [37–39]. The biology of *E. falcata* is unknown, but *E. paropsidis* has been reared in the field from *Paropsis atomaria* Olivier 1807 (synonym *P. reticulata*) on mainland Australia [37, 39] and from *Paropsisterna bimaculata* (Olivier 1807) [38], *Paropsisterna agricola* (Chapuis 1987) [35], and *P. charybdis* in Tasmania (Allen, unpublished data). Although *Eadya* has been moved to Helconinae based on its placement in a one gene dataset [40], its biology and morphology and biology are consistent with its original placement in Euphorinae [41–43], including: attacking exposed chrysomelid beetles; forewing vein 2cu-a absent; forewing vein 3RS curved creating a small marginal cell; and metasomal tergum 1 petiolate [43]. In addition to these characters, species of *Eadya* can be identified by the presence of an inter-antennal carina and a closed second submarginal cell [43]. Rearing *Eadya* from field collections from a number of locations in Tasmania revealed two color morphs of the silk used to spin the wasp cocoon (Allen, unpublished data), suggesting the possibility of cryptic species of *Eadya*. However, due to a ten month obligate pupal diapause when much laboratory mortality happens, this species is frequently difficult to rear to an adult for morphological identification [36]. Hence using molecular phylogenetic approaches combined with host data from field collected paropsine beetle larvae, we set out to determine if *E. paropsidis* in Tasmania is: (1) one species or a group of cryptic species; (2) host-specific to *P. charybdis* and closely related Paropsini; and if so, (3) potentially suitable as an agent for biological control of *P. charybdis* in New Zealand. Wasps were collected from numerous localities across Tasmania over multiple years and reared to determine accurate associations with their paropsine beetle hosts. We utilized three molecular markers and morphology and present one of the most comprehensive datasets to investigate possible cryptic species and host specificity of a prospective classical biological control agent.
Materials and methods

Taxon sampling

Eadya wasps and larval beetle hosts were collected from multiple field locations ranging from near sea level to sub-alpine (1000 m) in Tasmania, Australia across six years (2011–2016) from November to January (Fig 2). Specimens were collected by hand, sweep net, or malaise trap in the field. Wasps were reared to adulthood (n = 28), collected on the wing (n = 63) or dissected as larvae or pupae (n = 97) from collected paropsine beetle larvae (Table 1). Maps of beetle
Table 1. Data collection table for *Eadya* from Tasmania, Australia.

Wasp Voucher #	Stage	Sex	Host	Location (Tasmania, Australia)	Year	Host Beetle Voucher #	Gene Amplified	Species Clade	Morpho-species	Phylo-species
BJS196	A	F	*P. charybdis*	Moina	2012	x x x	A	E. sp.1	E. sp.1	
BJS214	L	?	*Pst. nobilitata*	Karanja	2013	x x	A	E. sp.1	E. sp.1	
BJS215	L	?	*Pst. nobilitata*	Karanja	2013	x	A	E. sp.1	E. sp.1	
BJS216	L	?	*Pst. variicollis*	Runnymede#2	2013	BJS509	x x x	A	E. sp.1	
BJS217	L	?	*Pst. variicollis*	Runnymede#2	2013	BJS510	x x x	A	E. sp.1	
BJS218	L	?	*Pst. variicollis*	Runnymede#2	2013	x x x	A	E. sp.1	E. sp.1	
BJS219	L	?	*Pst. variicollis*	Runnymede#2	2013	x x x	A	E. sp.1	E. sp.1	
BJS220	L	?	*Pst. variicollis*	Runnymede#2	2013	BJS512	x x x	A	E. sp.1	
BJS221	L	?	*Pst. variicollis*	Runnymede#2	2013	x x x	A	E. sp.1	E. sp.1	
BJS226	L	?	*P. charybdis*	Moina	2013	x	A	E. sp.1	E. sp.1	
BJS377	P	?	*Pst. variicollis*	The Lea	2014	x x x	A	E. sp.1	E. sp.1	
BJS378	P	?	*Pst. variicollis*	The Lea	2014	x x x	A	E. sp.1	E. sp.1	
BJS379	P	?	*Pst. variicollis*	The Lea	2014	x x	A	E. sp.1	E. sp.1	
BJS380	P	?	*Pst. variicollis*	The Lea	2014	BJS465	x x x	A	E. sp.1	
BJS381	P	?	*Pst. variicollis*	The Lea	2014	x x x	A	E. sp.1	E. sp.1	
BJS382	P	?	*Pst. variicollis*	The Lea	2014	x	A	E. sp.1	E. sp.1	
BJS383	P	?	*Pst. variicollis*	The Lea	2014	x	A	E. sp.1	E. sp.1	
BJS384	P	?	*Pst. variicollis*	The Lea	2014	x x x	A	E. sp.1	E. sp.1	
BJS385	L	?	*Pst. variicollis*	The Lea	2014	x x x	A	E. sp.1	E. sp.1	
BJS386	L	?	*Pst. variicollis*	The Lea	2014	BJS471	x x x	A	E. sp.1	
BJS387	P	?	*Pst. variicollis*	The Lea	2014	x x x	A	E. sp.1	E. sp.1	
BJS388	L	?	*Pst. variicollis*	Runnymede#1	2014	x x x	A	E. sp.1	E. sp.1	
BJS403	L	?	*Pst. selmani*	Moina	2011	x x x	A	E. sp.1	E. sp.1	
BJS404	L	?	*Pst. selmani*	Moina	2011	x x x	A	E. sp.1	E. sp.1	
BJS405	L	?	*Pst. selmani*	Moina	2011	x	A	E. sp.1	E. sp.1	
BJS406	L	?	*Pst. selmani*	Moina	2011	x x x	A	E. sp.1	E. sp.1	
BJS407	L	?	*Pst. selmani*	Moina	2011	x x x	A	E. sp.1	E. sp.1	
BJS408	L	?	*Pst. selmani*	Moina	2011	x x x	A	E. sp.1	E. sp.1	
BJS409	L	?	*P. charybdis*	Moina	2011	x x x	A	E. sp.1	E. sp.1	
BJS501	A	M	*Pst. variicollis*	The Lea	2014	x	A	E. sp.1	E. sp.1	
BJS564	P	?	*Pst. variicollis*	Runnymede#1	2015	BJS565	x x x	A	E. sp.1	
BJS566	P	?	*Pst. variicollis*	Runnymede#1	2015	x x	A	E. sp.1	E. sp.1	
BJS199	A	F	*P. charybdis*	The Lea	2012	BJS200	x x B		E. sp.2	E. sp.2
BJS553	L	?	*P. aegrota elliotti*	Runnymede#2	2013	BJS559	x x x	B	n/a	E. sp.2
BJS204	A	F	*P. tasmanica*	Runnymede#1	2012	x x	C	E. paropsidis	E. paropsidis	
BJS205	A	F	*P. tasmanica*	Runnymede#1	2012	x x x	C	E. paropsidis	E. paropsidis	
BJS206	P	?	*P. charybdis*	Runnymede#1	2012	x x	C	E. paropsidis	E. paropsidis	
BJS239	A	F	*P. tasmanica*	Runnymede#1	2012	x x x	C	E. paropsidis	E. paropsidis	
BJS240	L	?	*P. tasmanica*	Runnymede#1	2013	x x x	C	E. paropsidis	E. paropsidis	
BJS241	A	F	*P. tasmanica*	Runnymede#1	2012	x x x	C	E. paropsidis	E. paropsidis	
BJS243	L	?	*P. tasmanica*	Runnymede#1	2012	x x x	C	E. paropsidis	E. paropsidis	
BJS389	A	F	*P. tasmanica*	Runnymede#1	2012	x x x	C	E. paropsidis	E. paropsidis	
BJS397	L	?	*P. tasmanica*	Runnymede#1	2013	x x x	C	E. paropsidis	E. paropsidis	
BJS399	L	?	*P. tasmanica*	Runnymede#1	2013	x	C	E. paropsidis	E. paropsidis	
BJS554	L	?	*P. tasmanica*	The Lea	2015	x x x	C	E. paropsidis	E. paropsidis	

(Continued)
Wasp Voucher #	Stage	Sex	Host	Location (Tasmania, Australia)	Year	Host Beetle Voucher #	Gene Amplified	Species Clade	Morpho-species	Phylo-species
BJS562	P	?	P. tasmanica	Runnymede#1	2015	BJS562	CO1 Cytb 28S COI Cytb	x x x D D	E. paropsidis	E. sp.3
BJS175	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS177	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS179	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS180	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS182	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS183	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS184	L	?	P. charybdis	Ellendale	2012	BJS503	x x x D D	E. sp.3		
BJS186	A	F	P. charybdis	Ellendale	2012	BJS504	x x x D D	E. sp.3		
BJS188	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS189	L	?	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS191	A	M	Pst. agricola	Moina	2012	x x x D D	E. sp.3			
BJS192	L	?	P. charybdis	Ellendale	2012	x x x D D	E. sp.3			
BJS194	L	?	Pst. agricola	Ellendale	2012	x x x D D	E. sp.3			
BJS202	A	F	unknown	Moina	2012	x x x D D	E. sp.3			
BJS203	A	M	unknown	Moina	2012	x x x D D	E. sp.3			
BJS213	L	?	Pst. nobilitata	Karanja	2013	x x x D D	E. sp.3			
BJS223	L	?	P. charybdis	Ellendale	2013	BJS515	x x x D D	E. sp.3		
BJS224	L	?	P. charybdis	Ellendale	2013	BJS516	x x x D D	E. sp.3		
BJS225	L	?	P. charybdis	Ellendale	2013	BJS517	x x x D D	E. sp.3		
BJS227	L	?	Pst. agricola	Moina	2013	x x x D D	E. sp.3			
BJS228	L	?	Pst. agricola	Moina	2013	BJS520	x x x D D	E. sp.3		
BJS229	L	?	Pst. agricola	Moina	2013	BJS521	x x x D D	E. sp.3		
BJS230	L	?	Pst. agricola	Moina	2013	BJS522	x x x D D	E. sp.3		
BJS231	L	?	Pst. agricola	Moina	2013	x x x D D	E. sp.3			
BJS232	L	?	Pst. agricola	Moina	2013	BJS524	x x x D D	E. sp.3		
BJS233	L	?	Pst. agricola	Runnymede#2	2013	x x D	E. sp.3			
BJS234	L	?	Pst. agricola	Runnymede#2	2013	BJS526	x x x D D	E. sp.3		
BJS235	L	?	Pst. agricola	Runnymede#2	2013	x x x D D	E. sp.3			
BJS236	L	?	Pst. agricola	Runnymede#2	2013	BJS527	x x x D D	E. sp.3		
BJS237	L	?	Pst. agricola	Runnymede#2	2013	BJS528	x x x D D	E. sp.3		
BJS238	L	?	Pst. agricola	Runnymede#2	2013	BJS529	x x x D D	E. sp.3		
BJS245	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS246	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS247	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS248	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS249	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS251	A	F	unknown	Moina	2013	x x D	E. sp.3			
BJS252	A	F	unknown	Moina	2013	x x D	E. sp.3			
BJS253	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS254	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS255	A	F	unknown	Moina	2013	x x x D D	E. sp.3			
BJS256	A	M	unknown	Moina	2013	x x x D D	E. sp.3			
BJS257	A	M	unknown	Moina	2013	x x x D D	E. sp.3			

(Continued)
Wasp Voucher #	Stage	Sex	Host	Location (Tasmania, Australia)	Year	Host Beetle Voucher #	Gene Amplified Species	Clade	Morphospecies	Phylospecies
BJS258	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS259	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS260	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS261	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS262	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS263	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS264	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS265	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS266	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS267	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS268	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS269	A	M	unknown	Moina	2013	x	D	D	E. sp.3	E. sp.3
BJS287	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS288	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS289	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS290	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS291	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS292	A	F	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS293	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS294	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS295	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS296	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS297	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS298	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS299	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS300	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS301	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS302	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS303	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS304	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS305	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS306	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS307	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS308	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS309	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS310	A	M	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS312	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS313	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS314	A	F	unknown	Runnymede#1	2014	x	D	D	E. sp.3	E. sp.3
BJS315	A	F	unknown	Ellendale	2014	x	D	D	E. sp.3	E. sp.3
BJS316	A	F	unknown	Ellendale	2014	x	D	D	E. sp.3	E. sp.3
BJS317	A	F	unknown	Ellendale	2014	x	D	D	E. sp.3	E. sp.3
BJS318	A	F	unknown	Ellendale	2014	x	D	D	E. sp.3	E. sp.3
BJS319	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3
BJS320	A	M	unknown	Moina	2014	x	D	D	E. sp.3	E. sp.3

(Continued)
Table 1. (Continued)

Wasp Voucher #	Stage	Sex	Host	Location (Tasmania, Australia)	Year	Host Beetle Voucher #	Gene Amplified	Species Clade	Morpho-species	Phylo-species
BJS321	A	M	unknown	Moina	2014	BJS321	x x x	D D	E. sp.3	E. sp.3
BJS322	A	M	unknown	Moina	2014	BJS322	x x x	D D	E. sp.3	E. sp.3
BJS323	A	M	unknown	Moina	2014	BJS323	x x x	D D	E. sp.3	E. sp.3
BJS324	A	F	Pst. agricola	Ellendale	2014	BJS324	x x x	D D	E. sp.3	E. sp.3
BJS325	A	F	Pst. agricola	Ellendale	2014	BJS325	x x x	D D	E. sp.3	E. sp.3
BJS326	A	F	Pst. agricola	Ellendale	2014	BJS326	x x x	D D	E. sp.3	E. sp.3
BJS327	A	F	Pst. agricola	Ellendale	2014	BJS327	x x x	D D	E. sp.3	E. sp.3
BJS328	A	F	Pst. agricola	Ellendale	2014	BJS328	x x x	D D	E. sp.3	E. sp.3
BJS329	A	F	Pst. agricola	Ellendale	2014	BJS329	x x x	D D	E. sp.3	E. sp.3
BJS332	A	F	Pst. agricola	Ellendale	2014	BJS332	x x x	D D	E. sp.3	E. sp.3
BJS333	A	M	Pst. agricola	Ellendale	2014	BJS333	x x x	D D	E. sp.3	E. sp.3
BJS334	A	M	Pst. agricola	Ellendale	2014	BJS334	x x x	D D	E. sp.3	E. sp.3
BJS335	A	M	Pst. agricola	Moina	2014	BJS335	x x x	D D	E. sp.3	E. sp.3
BJS336	A	F	Pst. agricola	Moina	2014	BJS336	x x x	D D	E. sp.3	E. sp.3
BJS337	A	F	Pst. agricola	Runnymede#1	2014	BJS337	x x x	D D	E. sp.3	E. sp.3
BJS338	A	F	Pst. agricola	Runnymede#1	2014	BJS338	x x x	D D	E. sp.3	E. sp.3
BJS339	A	F	Pst. agricola	Runnymede#1	2014	BJS339	x x x	D D	E. sp.3	E. sp.3
BJS341	L	?	Pst. agricola	Runnymede#1	2014	BJS341	x x x	D D	E. sp.3	E. sp.3
BJS342	L	?	Pst. agricola	Runnymede#1	2014	BJS342	x x x	D D	E. sp.3	E. sp.3
BJS343	L	?	Pst. agricola	Runnymede#1	2014	BJS343	x x x	D D	E. sp.3	E. sp.3
BJS344	L	?	Pst. agricola	Runnymede#1	2014	BJS344	x x x	D D	E. sp.3	E. sp.3
BJS345	L	?	Pst. agricola	Runnymede#1	2014	BJS345	x x x	D D	E. sp.3	E. sp.3
BJS346	L	?	Pst. agricola	Runnymede#1	2014	BJS346	x x x	D D	E. sp.3	E. sp.3
BJS347	L	?	Pst. agricola	Runnymede#1	2014	BJS347	x x x	D D	E. sp.3	E. sp.3
BJS348	L	?	Pst. agricola	Runnymede#1	2014	BJS348	x x x	D D	E. sp.3	E. sp.3
BJS349	L	?	Pst. agricola	Runnymede#1	2014	BJS349	x x x	D D	E. sp.3	E. sp.3
BJS350	L	?	Pst. agricola	Ellendale	2014	BJS350	x x x	D D	E. sp.3	E. sp.3
BJS351	L	?	Pst. agricola	Ellendale	2014	BJS351	x x x	D D	E. sp.3	E. sp.3
BJS352	L	?	Pst. agricola	Ellendale	2014	BJS352	x x x	D D	E. sp.3	E. sp.3
BJS353	L	?	Pst. agricola	Ellendale	2014	BJS353	x x x	D D	E. sp.3	E. sp.3
BJS354	L	?	Pst. agricola	Ellendale	2014	BJS354	x x x	D D	E. sp.3	E. sp.3
BJS355	L	?	Pst. agricola	Ellendale	2014	BJS355	x x x	D D	E. sp.3	E. sp.3
BJS359	L	?	Pst. agricola	Moina	2014	BJS359	x x x	D D	E. sp.3	E. sp.3
BJS361	L	?	Pst. agricola	Moina	2014	BJS361	x x x	D D	E. sp.3	E. sp.3
BJS362	L	?	Pst. agricola	Moina	2014	BJS362	x x x	D D	E. sp.3	E. sp.3
BJS363	L	?	Pst. agricola	Moina	2014	BJS363	x x x	D D	E. sp.3	E. sp.3
BJS364	L	?	Pst. agricola	Moina	2014	BJS364	x x x	D D	E. sp.3	E. sp.3
BJS366	L	?	Pst. agricola	Moina	2014	BJS366	x x x	D D	E. sp.3	E. sp.3
BJS367	L	?	Pst. agricola	Moina	2014	BJS367	x x x	D D	E. sp.3	E. sp.3
BJS368	L	?	Pst. agricola	Moina	2014	BJS368	x x x	D D	E. sp.3	E. sp.3
BJS369	P	?	Pst. agricola	Moina	2014	BJS369	x x x	D D	E. sp.3	E. sp.3
BJS370	P	?	Pst. agricola	Moina	2014	BJS370	x x x	D D	E. sp.3	E. sp.3
BJS371	L	?	Pst. agricola	Runnymede#1	2015	BJS371	x x x	D D	E. sp.3	E. sp.3

(Continued)
distributions by species are depicted in Supporting Information S1 Fig and the distribution of *Pst. selmani* Reid and de Little, 2013 across Tasmania can be found in Reid and de Little [44]. All Tasmanian collections were made from public land and roadsides not requiring permission with the exceptions of sampling and/or sentinel trials undertaken in plantations at Moina, Ellendale and Frankford, with permission obtained from Forestry Tasmania (Tim Wardlaw). Permission to collect at sites at Runnymede were obtained from Ifarm (Nick Martyn), and from 2016 onward from PF Olsen Australia (Robin Dickson). Comparative samples for beetles were obtained in New Zealand. Collections of *P. charybdis* were made with permission of the land manager at Poronui Station–Mr. Steve Smith, Westervelt Company, Taupo, New Zealand. New Zealand collections of *Pst. variicollis* were made under New Zealand Environmental Protection Authority permission for Scion to collect this species and breed it as a new organism in containment, approval number: NOC100191. Sampling at all locations did not involve endangered or protected species.

Additional *Eadya* specimens were obtained through sentinel larval trials. These trials involved placing laboratory-reared, parasitoid free, 2nd instar paropsine larvae on *E. nitens* branches in the field to assess levels of parasitism by species of *Eadya*. On each *E. nitens* tree, sentinel larvae were placed on foliage of a branch of approximately 1 cm diameter that was tied down firmly to a stake in the ground to prevent contact with other branches, and hence loss of sentinel larvae to neighboring branches. The stake and the branch leading to the main stem were smothered in Tanglefoot™ (The Scotts Company, Ohio, USA) to reduce predation and larval wandering. Branch foliage was then clipped back to approximately 0.33 m². All insects and spiders that were located on that foliage were carefully removed. When confident that the foliage was free of arthropods, laboratory-reared beetle larvae were released onto each branch. Larvae were left for 72 hours before those remaining were carefully removed from each branch, into separate plastic aerated containers, one for each replicate, and returned to the laboratory for rearing to pupation or wasp emergence within a Contherm™ chamber set at 20 ± 1°C and 16:8 L:D cycle. Emerged parasitoids were preserved in ethanol for molecular analysis.

Table 1. (Continued)

Wasp Voucher #	Stage	Sex	Host	Location (Tasmania, Australia)	Year	Host Beetle Voucher #	Gene Amplified	Species Clade	Morpho-species	Phylo-species
BJS372	L	?	*P. charybdis*	Runnymede#1	2014	BJS457	x x x	D D	E. sp.3	E. sp.3
BJS373	L	?	*Pst. bimaculata*	Ellendale	2014		x		E. sp.3	E. sp.3
BJS374	A	M	*Pst. agricola*	Moina	2014	BJS459	x x x	D D	E. sp.3	E. sp.3
BJS376	P	?	*Pst. bimaculata*	Moina	2014	BJS461	x x D	D D	E. sp.3	E. sp.3
BJS391	A	F	*Pst. agricola*	Moina	2013		x x D	D D	E. sp.3	E. sp.3
BJS393	L	?	*Pst. agricola*	Ellendale	2012	BJS477	x x D	D D	E. sp.3	E. sp.3
BJS394	L	?	*Pst. agricola*	Ellendale	2012		x D		E. sp.3	E. sp.3
BJS410	L	?	*Pst. agricola*	Moina	2012		x x D	D D	E. sp.3	E. sp.3

Voucher numbers are referenced in Genbank Accession Numbers. Stage: A = Adult, L = Larva. Sex is only known for adult wasps. For host, *P. = Paropsis, Pst. = Paropsisterna; Pst. variicollis* refers to the *Pst. variicollis* complex whose taxonomic status across southern Australia is unresolved and hence was undeterminable to an exact phylospecies. If the wasp was reared from a beetle that was extracted for DNA, the beetle voucher number is listed. Successful amplification of genes is listed with an “x” under the appropriate gene. For species clades and phylospecies, refer to the phylogenetic analyses (see results).

https://doi.org/10.1371/journal.pone.0201276.t001
Three different paropsine beetles were reared in the laboratory for the sentinel trials: *P. charybdis*, *Pst. agriculta*, and *Pst. selmani*. *Paropsis charybdis* larvae were obtained from colonies initiated each season from adults collected from Hobart, Tasmania off *Eucalyptus ovata* and *E. viminalis*. Pairs were maintained in cages at the University of Tasmania with *E. viminalis* branches at room temperature. Larvae of *Pst. agriculta* and *Pst. selmani* were obtained as eggs laid on juvenile foliage of *E. nitens* from Moina (41˚32’27”S 146˚04’38”E), Northern Tasmania and maintained in the laboratory on cut juvenile leaves of *E. nitens*. A preliminary sentinel trial was conducted in an *E. nitens* plantation in Moina in December 2011 to establish appropriate methodology. For each replicate (tree), 25 larvae were placed per branch, with 6 replicates of *Pst. agriculta* and *Pst. selmani*, and 4 replicates of *P. charybdis*. The sentinel trials were repeated between the 5th and 18th of December 2012 using just *P. charybdis* (n = 767) and *Pst. agriculta* (n = 394) with higher numbers of larvae per tree (either 50 or 100) at the following sites: Ellendale (42˚38’07.24”S 146˚45’04.24”E) (4 replicates per species), Moina (3 replicates per species), Runnymede (42˚38’08.9”S 147˚33’57.9”E) (3 replicates of *P. charybdis*), Mount Nelson (45˚55’42”S 147˚18’25”E) (4 replicates of *P. charybdis*), and The Lea (45˚56’43”S 147˚18’50”E) (2 replicates of *P. charybdis*), with the latter two sites being native vegetation rather than plantation sites.

Wherever possible, since paropsine beetles typically lay eggs in batches, reared *Eadya* specimens for molecular determination were taken from differing host larval groupings to maximize the chance that each *Eadya* were from different mothers. Beetle hosts included eight species from two different genera (*Paropsis* (abbreviated *P.*) and *Paropsisterna* (abbreviated as *Pst.*): *Pst. agriculta*, *Pst. bimaculata*, *Pst. nobilitata* (Erichson 1842), *Pst. selmani* (only recovered from sentinel trials), *Pst. variicollis* (Chapuis 1877), *P. aegrota elliotti* Selman, 1983, *P. charybdis*, and *P. tasmanica* (Tables 1 and 2). The taxonomic status of *Pst. variicollis* is not clear, particularly with respect to two other names in use, *Pst. obovata* (Chapuis, 1877) and *Pst. cloelia* (Stål, 1860) (Chris Reid, Australian Museum, personal communication). This binomial could be valid or it may be a synonym of *Pst. cloelia*, and thus we refer to this taxon as *Pst. variicollis* for the remainder of the paper to prevent further confusion. Further, an urgent revision is needed due to the recent invasion of New Zealand of *Pst. variicollis*. Adult beetle voucher specimens were also sampled to have an accurately identified reference library to compare with DNA extracted from putatively identified beetle larvae (Table 2). This is important for field collected hosts, as larval paropsine beetle identifications can be challenging. Finally, several specimens of *P. charybdis*, *Pst. variicollis* and one specimen of *Pst. beata* (Newman 1842) collected from New Zealand were also sampled (Table 2). All wasp and beetle voucher specimens are maintained at the University of Central Florida Collection of Arthropods or the Australian National Insect Collection (Tables 1 and 2 and S1 Table).

Genetic sampling

A total of 188 wasps and 94 beetles were extracted for DNA and molecular analysis. Three gene regions were amplified, including two mitochondrial genes (Cytochrome oxidase I [COI] and Cytochrome b [Cytb]) and one nuclear gene (28S rDNA regions D1-D3 [28S]). COI has long been the standard for species delimitation in insects [45, 16, 46, 18, 47] including Braconidae [48, 49, 17, 19]. Cytb is generally more conserved but can help provide an independent test to prevent overestimations of species [50]. Additionally, 28S has several variable regions (i.e., regions of ambiguous alignment) [51, 52] that could potentially provide useful characters for species delimitation and thus was selected for amplification.

DNA was extracted and genes amplified from wasps (Table 1) and a subset of their beetle hosts (Table 2). Genomic DNA extraction of the wasps and beetle hosts was done using the
Table 2. Data collection table for paropsine beetles.

Beetle Voucher #	Stage	Method (F = Field, S = Sentinel)	Identified as	Location	Year	Wasp Voucher #	Phylospecies
BJS200	L	F	*P. charybdis*	The Lea	2012	BJS199	*P. charybdis*
BJS201	L	S	*P. charybdis*	The Lea	2012	n/a	*P. charybdis*
BJS270	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS271	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS273	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS274	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS277	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS278	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS280	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS281	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS282	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS283	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS284	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS285	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS286	A	F	*P. charybdis*	Upper Hutt, NZL	2014	n/a	*P. charybdis*
BJS414	L	F	*Pst. agricola*	Ellendale	2014	BJS327	*Pst. agricola*
BJS415	L	F	*Pst. agricola*	Ellendale	2014	BJS328	*Pst. agricola*
BJS416	L	F	*Pst. agricola*	Ellendale	2014	BJS329	*Pst. agricola*
BJS418	L	F	*Pst. agricola*	Ellendale	2014	BJS331	*Pst. agricola*
BJS420	L	F	*Pst. agricola*	Ellendale	2014	BJS333	*Pst. agricola*
BJS423	L	F	*Pst. agricola*	Moina	2014	BJS336	*Pst. agricola*
BJS424	L	F	*Pst. agricola*	Runnymede#1	2014	BJS337	*Pst. agricola*
BJS425	L	F	*Pst. agricola*	Runnymede#1	2014	BJS338	*Pst. agricola*
BJS426	L	F	*Pst. agricola*	Runnymede#1	2014	BJS339	*Pst. agricola*
BJS428	L	F	*Pst. agricola*	Runnymede#1	2014	BJS341	*Pst. agricola*
BJS429	L	F	*Pst. agricola*	Runnymede#1	2014	n/a	*Pst. agricola*
BJS430	L	F	*Pst. agricola*	Runnymede#1	2014	n/a	*Pst. agricola*
BJS431	L	F	*Pst. agricola*	Runnymede#1	2014	BJS344	*Pst. agricola*
BJS432	L	F	*Pst. agricola*	Runnymede#1	2014	BJS345	*Pst. agricola*
BJS434	L	F	*Pst. agricola*	Runnymede#1	2014	BJS347	*Pst. agricola*
BJS435	L	F	*Pst. agricola*	Runnymede#1	2014	BJS348	*Pst. agricola*
BJS436	L	F	*Pst. agricola*	Runnymede#1	2014	BJS349	*Pst. agricola*
BJS437	L	F	*Pst. agricola*	Ellendale	2014	BJS350	*Pst. agricola*
BJS438	L	F	*Pst. agricola*	Ellendale	2014	BJS351	*Pst. agricola*
BJS441	L	F	*Pst. agricola*	Ellendale	2014	BJS354	*Pst. agricola*
BJS442	L	F	*Pst. agricola*	Ellendale	2014	BJS355	*Pst. agricola*
BJS443	L	F	*Pst. agricola*	Ellendale	2014	n/a	*Pst. agricola*
BJS447	L	F	*Pst. agricola*	Moina	2014	BJS361	*Pst. agricola*
BJS448	L	F	*Pst. agricola*	Moina	2014	n/a	*Pst. agricola*
BJS449	L	F	*Pst. agricola*	Moina	2014	BJS363	*Pst. agricola*
BJS451	L	F	*Pst. agricola*	Moina	2014	BJS366	*Pst. agricola*
BJS452	L	F	*Pst. agricola*	Moina	2014	BJS367	*Pst. agricola*
BJS453	L	F	*Pst. agricola*	Moina	2014	BJS368	*Pst. agricola*
BJS454	L	F	*Pst. agricola*	Moina	2014	BJS369	*Pst. agricola*
BJS457	L	F	*P. charybdis*	Runnymede#1	2014	BJS372	*P. charybdis*

(Continued)
Table 2. (Continued)

Beetle Voucher #	Stage	Method (F = Field, S = Sentinel)	Identified as	Location	Year	Wasp Voucher #	Phylospecies
BJS459	L	F	*Pst. agriculta*	Moina	2014	BJS374	*Pst. agriculta*
BJS460	L	F	*Pst. agriculta*	Moina	2014	n/a	*Pst. agriculta*
BJS461	L	F	*Pst. bimaculata*	Moina	2014	BJS376	*Pst. bimaculata*
BJS465	L	F	*Pst. variicollis*	The Lea	2014	BJS380	*Pst. variicollis*
BJS471	L	F	*Pst. variicollis*	The Lea	2014	BJS386	*Pst. variicollis*
BJS477	L	F	*Pst. agriculta*	Ellendale	2012	BJS393	*Pst. agriculta*
BJS503	L	S	*P. charybdis*	Ellendale	2012	BJS184	*P. charybdis*
BJS504	L	S	*P. charybdis*	Ellendale	2012	BJS186	*P. charybdis*
BJS506	L	S	*P. charybdis*	Runnymede1	2012	n/a	*P. charybdis*
BJS509	L	F	*Pst. variicollis*	Runnymede2	2013	BJS216	*Pst. variicollis*
BJS510	L	F	*Pst. variicollis*	Runnymede2	2013	BJS217	*Pst. variicollis*
BJS512	L	F	*Pst. variicollis*	Runnymede2	2013	BJS220	*Pst. variicollis*
BJS515	L	F	*P. charybdis*	Ellendale	2013	BJS223	*P. charybdis*
BJS516	L	F	*P. charybdis*	Ellendale	2013	BJS224	*P. charybdis*
BJS517	L	F	*P. charybdis*	Ellendale	2013	BJS225	*P. charybdis*
BJS518	L	F	*P. charybdis*	Ellendale	2013	n/a	*P. charybdis*
BJS520	L	F	*Pst. agriculta*	Moina	2013	BJS228	*Pst. agriculta*
BJS521	L	F	*Pst. agriculta*	Moina	2013	BJS229	*Pst. agriculta*
BJS522	L	F	*Pst. agriculta*	Moina	2013	BJS230	*Pst. agriculta*
BJS524	L	F	*Pst. agriculta*	Moina	2013	BJS232	*Pst. agriculta*
BJS526	L	F	*Pst. agriculta*	Runnymede2	2013	BJS234	*Pst. agriculta*
BJS527	L	F	*Pst. agriculta*	Runnymede2	2013	BJS236	*Pst. agriculta*
BJS528	L	F	*Pst. agriculta*	Runnymede2	2013	BJS237	*Pst. agriculta*
BJS529	L	F	*Pst. agriculta*	Runnymede2	2013	BJS238	*Pst. agriculta*
BJS531	A	F	*P. charybdis*	Olinda Grove	2014	n/a	*P. charybdis*
BJS532	A	F	*Pst. decolorata*	Olinda Grove	2014	n/a	*Pst. decolorata*
BJS533	A	F	*P. tasmanica*	Olinda Grove	2014	n/a	*P. tasmanica*
BJS535	A	F	*P. charybdis*	Runnymede1	2014	n/a	*P. charybdis*
BJS537	A	F	*Pst. agriculta*	Runnymede1	2014	n/a	*Pst. agriculta*
BJS539	A	F	*Pst. bimaculata*	Ellendale	2014	n/a	*Pst. bimaculata*
BJS543	A	F	*P. aegrota elliotti*	Moina	2014	n/a	*P. aegrota elliotti*
BJS545	A	F	*Pst. variicollis*	Seven Miles Beach	2014	n/a	*Pst. variicollis*
BJS547	A	F	*Pst. decolorata*	Runnymede1	2014	n/a	*Pst. decolorata*
BJS557	L	F	*P. tasmanica*	The Lea	2015	n/a	*P. tasmanica*
BJS558	L	F	*P. aegrota elliotti*	Runnymede2	2013	n/a	*Pst. variicollis*
BJS559	L	F	*P. aegrota elliotti*	Runnymede2	2013	BJS553	*P. aegrota elliotti*
BJS561	L	F	*P. tasmanica*	Runnymede2	2015	n/a	*P. tasmanica*
BJS565	L	F	*Pst. variicollis*	Runnymede1	2015	BJS564	*Pst. variicollis*
BJS568	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
BJS569	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
BJS570	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
BJS572	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
BJS573	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
BJS574	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
BJS575	A	F	*Pst. variicollis*	Hawkes Bay, NZL	2016	n/a	*Pst. variicollis*
T12-4654A	A	F	*Pst. beata*	Upper Hutt, NZL	2012	n/a	*Pst. beata*

(Continued)
DNEasy Mini Kit (Qiagen). The metasoma was separated from the adult and dissected pupal wasps to increase DNA concentration and ensure a voucher specimen was available post-extraction for morphological examination. Larval wasps that had emerged from their host (prior to pupation) were ground with a sterilized pestle prior to extraction. Similarly, the associated beetle larvae from which the wasp emerged was also pulverized prior to extraction to ensure adequate DNA recovery as most beetle hosts were in poor condition after parasitization. DNA was also extracted from beetles collected as adults and vouchers retained and only COI was amplified as a tool to provide barcode confirmations on larval identifications. All PCR reactions were performed using 0.2–1 μg DNA extract, 1 X Standard Taq Buffer (New England Biolabs (NEB), U.S.A.) (10 mm Tris-HCl, 50 mm KCl, 1.5 mm MgCl2), 200 μm dNTP (NEB), 4 mm MgSO4, 400 nm of each primer, 1 unit of Taq DNA polymerase (NEB) and purified water to a final volume of 25 μL. All primers and associated thermal cycling conditions are listed in S2 Table. Reaction products were cleaned with Agencourt CleanSEQ magnetic beads and sequenced in both directions using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems, U.S.A.) and the Applied Biosystems 3730xl DNA Analyzer at the University of Kentucky, Advanced Genetic Technologies Center (UK-AGTC). Contigs were assembled and sequences edited for quality using Geneious v. 8.1.8 [53]. Sequences were deposited in GenBank under accession numbers KX989891-KX990220, KY031346-KY031518 and MH107809-MH107817 for Eadya and MH237732-MH237825 for beetles.

Phylogenetic analyses

Gene alignments were completed for COI and Cytb by hand using the reading frame as a guide with Bioedit v.7.1.3 [54]. There were no indels present in either gene and thus the alignments were unambiguous. A modified [52] secondary structure model [51] was used to align 28S. Regions of ambiguous alignment (RAAs), and regions of expansion and contraction (RECs) were not excluded from the data set as we assumed most informative characters for this gene would be contained within these regions that can be hyper variable across genera. For each gene, the best fitting model of DNA sequence evolution for nucleotide analyses were determined using jModelTest v.0.1.1 [55] under the Bayesian Information Criterion (BIC). The model with the lowest calculated BIC score was considered the best-fitting model for each gene. Depending on the gene, either one or two species from other braconid subfamilies were used as outgroups Afrocampsis sp. (Acampsohelconinae) and Eumacrocentrus americanus (Cresson 1873) (Helconinae) to ensure the ingroup was monophyletic.

For individual and concatenated data sets, Bayesian inference with two independent runs each with four chains and default priors was run in MrBayes v.3.2.6 [56]. An independent molecular model was applied to each partition in the concatenated data set (partitioned by gene) and different parameters of the model were unlinked to allow each partition to have its own set of estimations for parameters. The rate parameter was set to vary across different...
partitions to incorporate rate heterogeneity across partitions. Data sets for all gene alignments were deposited in Figshare (https://figshare.com/): 10.6084/m9.figshare.6149219.

All analyses were performed for 5,000,000 generations sampling every 1000th generation and the results from the two independent runs were summarized in a majority rule consensus tree after discarding the initial 25% of the trees for burn-in. Stationarity and appropriate mixing of the two independent runs were determined when the average standard deviation of split frequencies approached 0.01, the Potential Scale Reduction Factor (PSRF) for each parameter of the model was close to 1, and the overlay plots of both runs showed the number of generations versus the log probability of the data were heteroscedastic. Average intraclade and interclade genetic distances were calculated using Kimura’s two-parameter model [57] using MEGA v.7.0.14 [58].

Morphological examination

We examined all adult specimens of Eadya collected for the purposes of this study (Table 1, adults), plus additional specimens collected in malaise traps, the paratype of E. paropsidis, the holotype and paratype of E. falcata, and some museum specimens (see additional material examined in S1 Table). We initially sorted specimens into morphotypes and observed four distinct morphospecies. One perfectly matched the description and paratype of E. paropsidis. Based on examination of all material, Eadya sp. 1 and sp. 2 were morphologically distinct with observable differences in several morphological characters from E. paropsidis or E. falcata. For example, Eadya sp. 1 and 2 do not possess a transverse carinae on the propodeum as in E. paropsidis, and have more impressed notauli than E. falcata. Further, Eadya sp. 1 lack median tubercles on the clypeus. However, the fourth morphospecies was very similar to E. paropsidis but was distinctly smaller in size. Parasitoids can vary in size due to the size of their host and nutritional factors during larval development. However, in their original description of Eadya, Huddleston and Short (37) noted variation across E. paropsidis, particularly a series of eight specimens that were smaller in size and had a less concave occiput. Although they chose not to describe these variants as a new species, we chose to separate the smaller specimens (as Eadya sp. 3) to test whether or not it was indeed a distinct species. Although we discuss the molecular results in context with the morphological examinations of morphospecies, descriptions of the new species are fully described in a separate paper as Eadya annleckiae Ridenbaugh 2018 (sp. 1); Eadya spitzer Ridenbaugh 2018 (sp. 2), and Eadya daenerys Ridenbaugh 2018 (sp. 3) [43].

Results

Parasitism rates of paropsine beetles

A total of 2924 field collected paropsine beetle larvae across 10 beetle species, comprising over 135 independent collections (groups of larvae from same egg batch) were reared over six years (Table 3). Four beetle species had substantially higher (>18%) parasitism rates: P. tasmanica, P. variicollis*, P. charybdis and Pst. agricola, whereas no Eadya were reared from three beetle species. For the sentinel trials, the number of larvae recovered (n = 616) and the percent parasitized by Eadya or unidentified Tachinidae is presented in Table 4 for the preliminary trial at Moina in 2011 and the more substantial trials at five locations in 2012. The lack of parasitism of Pst. agricola by Eadya at Moina in 2011 was unexpected, but the timing of the trial was very late in the flight season for the species of Eadya that parasitizes this host. In the 2012 trials, species of Eadya parasitized beetle larvae at four of the five sites (Table 4). At two of the plantation sites in 2012, there were high levels of parasitism by tachinid flies.
Species delimitation in *Eadya*

For COI, a total of 672 characters and 177 taxa were included in the analysis, including one outgroup. Four distinct clades were recovered and well supported (pp = 1.0) (Figs 3A and S2) and assigned as putative species based on a phylogenetic species concept (monophyly with high support) [59, 60] and a distinct barcoding gap (greater interclade distance than intraclide distance) [61]. Of the delineated morphospecies, *Eadya* sp. 1 corresponded to Clade A, *Eadya* sp. 2 to Clade B, *E. paropsidis* to Clade C and *Eadya* sp. 3 to Clade D (Fig 3A). Clade D had some interclade structure, labeled Clade D1 and D2 (S2 Fig). We consider both of these clades to correspond to *Eadya* sp. 3 because: (1) there are no amino acid differences between sequences of the members of these two clades; (2) the genetic distance between the two clades was only 1.1%; and (3) the two clades were not well supported. Thus, our four delineated morphospecies correspond perfectly to the four phylogenetic species delineated with COI. The average interclade genetic distances between all putative phyllospecies of *Eadya* (Clades A-D) ranged from 8.7% to 31.2% (Table 5A), well above typical DNA barcoding thresholds (~2–3%) for species delimitation [62, 14], including in Braconidae [49, 19]. There was also very low average intraclade variation, with most clades exhibiting less than 1% genetic distance across all taxa, even though specimens within clades were sampled from different hosts, localities, and across different years (Table 1 and Table 5A).

Table 3. Summary of field collected beetle larvae collected across various locations and years across Tasmania and the overall parasitism rate by *Eadya*.

Beetle Species	No. Collected	No. Independent Collections	No. Locations	No. Years	Parasitism Rate (%)
Paropsis agrota elliotti Selman, 1983	89	17	11	3	2.2
Paropsis charybdis Stål, 1860	65	13	9	4	18.0
Paropsis delittie Selman 1983	92	6	3	2	0
Paropsis tasmanica Baly, 1866	151	16	8	5	21.9
Paropsisisteria agricola (Chapuis, 1877)	1279	23*	11	4	27.0
Paropsisisteria bimaculata (Olivier, 1807)	281	10*	5	3	0.7
Paropsisisteria decolorata (Chapuis, 1877)	83	12	8	1	0
Paropsisisteria morio (Fabricius, 1787)	6	1	1	1	0
Paropsisisteria nobilitata (Erichson, 1842)	98	11	7	3	2.0
Paropsisisteria variicollis (Chapuis 1877)	780	26	12	4	30.1

Since paropsine beetles lay eggs in batches, number of independent collections refers to the number of differing larval groupings collected to maximize the chance of finding *Eadya* parasitism.

* Indicates a minimum as some independent collections were pooled.

https://doi.org/10.1371/journal.pone.0201276.t003

Table 4. Data from sentinel trials, including parasitism rates of recovered sentinels by *Eadya* and Tachiniidae following 72 hours in the field.

Location, Year	Sentinel Beetle Host	% Parasitized by *Eadya*	% Parasitized by Tachiniidae	Total larvae recovered
Moina, 2011	*P. charybdis*	3.3	0	30
	Pst. agricola	0	2.8	72
	Pst. selmani	11.8	7.9	76
Ellendale, 2012	*P. charybdis*	5.0	4.1	121
	Pst. agricola	6.0	9.6	83
Moina, 2012	*P. charybdis*	3.1	29.0	174
	Pst. agricola	12.9	20.9	158
Runnymede, 2012	*P. charybdis*	6.0	0	50
Mount Nelson, 2012	*P. charybdis*	6.3	0	94
The Lea, 2012	*P. charybdis*	0	0	66

https://doi.org/10.1371/journal.pone.0201276.t004
For **Cytb**, a total of 429 characters and 173 taxa were included in the analysis, including outgroups. The same four major clades corresponding to the four hypothesized morphospecies were recovered (Fig 3B and S3 Fig) and were well supported (pp ≥ 0.97). Unfortunately, only one taxon from Clade B was amplified for this gene (BJS553 – dissected larval specimen), but this taxon (**Eadya** sp. 2) was still recovered as sister to **E. paropsidis**. For **28S**, a total of 893 characters and 162 taxa were included in the analysis and only two well supported clades (pp = 1) were recovered (Fig 3C and S4 Fig). Clade A (**Eadya** sp. 1) was congruent across all genes but all other taxa from **COI** and **Cytb** were recovered in a single clade. As this large Clade contains **Eadya** sp. 2, **E. paropsidis**, and **Eadya** sp. 3 (Clades B, C, and D, respectively), **28S** appears to be too conserved for species delimitation in this group. There were limited substitutions across identified morphospecies within the large clade, even within hypervariable regions (RECs, RAAs, and RSCs) that may vary across closely related species [52]. A concatenated dataset was
also analyzed with all three genes. The same major clades recovered across COI and Cytb were also recovered here albeit some with less support, but again supporting four distinct species of Eadya, including E. paropsidis (Fig 4). All taxa are clearly identifiable by morphology, although E. paropsidis and Eadya sp. 3 are very similar morphologically, with E. paropsidis having a more concave occiput, an emarginate occipital carina, and being larger in size.

Beetle species identification

COI was amplified from beetle remains regardless if the wasp was reared or dissected from the host. Due to degradation of host material, DNA extraction was successful for only 48 parasitized beetles: 35 Pst. agricola, one Pst. bimaculata, one P. aegrota elliotti, seven P. charybdis, and six specimens identified as Pst. varicollis+ (Table 2). All putatively identified larval material was recovered in well supported monophyletic clades with the correct adult reference voucher (Fig 5), indicating that larval identifications were accurate. All Pst. varicollis+ samples were recovered in a strongly supported monophyletic clade. However, there was clade structure with respect to location, such that all Pst. varicollis+ (from Tasmania) were recovered in a well-supported subclade, indicating distinct differences between samples from New Zealand and Tasmania. There was an average 1.6% genetic distance between the Tasmanian and New Zealand Pst. varicollis+ (1.6%, Table 5B). Thus, these samples are either from the same species and the different clades are representative of population level differences between New Zealand and Tasmania samples, or they may represent different, but very closely related species. Regardless, the results highlight the need for a revision of Pst. varicollis+, which is particularly important as this species was discovered in New Zealand in 2016, representing another potential serious pest to the forest industry [63]. Samples of P. charybdis from New Zealand were

Table 5. Average interspecific and intraspecific genetic distances for COI for: A, Eadya species; B, beetle species.

A	E. paropsidis	E. sp. 1	E. sp. 2	E. sp. 3
E. paropsidis	0.0%			
E. sp. 1	31.2%	0.5%		
E. sp. 2	8.7%	30.5%	1.1%	
E. sp. 3	10.0%	31.1%	10.3%	0.2%

B	P. aegrota elliotti	P. charybdis	P. tasmanica	Pst. agricola	Pst. beata	Pst. bimaculata	Pst. decolorata	Pst. varicollis+ (TAS)	Pst. varicollis+ (NZL)	Pst. varicollis+ complex
P. aegrota elliotti	0.3%									
P. charybdis	18.8%	0.0%								
P. tasmanica	19.7%	19.0%	0.6%							
Pst. agricola	18.7%	17.2%	16.8%	n/a						
Pst. beata	18.3%	20.1%	11.1%	17.8%	0.2%					
Pst. bimaculata	18.0%	20.4%	10.9%	18.6%	10.2%	0.5%				
Pst. decolorata	20.2%	20.1%	10.1%	19.0%	9.2%	11.7%	0.4%			
Pst. varicollis+ (TAS)	19.2%	17.2%	9.0%	15.9%	9.5%	10.9%	1.6%	0.0%		
Pst. varicollis+ (NZL)	19.7%	18.7%	9.5%	17.5%	9.3%	11.3%	n/a	n/a	0.9%	

Intraspecific distances are highlighted in grey. For beetles, Pst. obovata and Pst. varicollis are listed separately and together, as the validity of these taxa as separate species was not confirmed.

https://doi.org/10.1371/journal.pone.0201276.t005

Taxonomy and biocontrol unite for control of invasive paropsine pests of *Eucalyptus*
recovered with samples from Tasmania, Australia in a well-supported clade, demonstrating no
distinct population level differences between beetles from the two different countries. The
average genetic distance among all *P. charybdis* was low at 0.3% (Table 5B).

Discussion

Eadya paropsidis is a complex of species

Based on morphological examination, molecular data from three genes, and host-association
data, *Eadya paropsidis* is not a single species, but rather a complex of species. Two of these spe-
cies are cryptic, with limited morphological characters separating them: *E. paropsidis* and
Eadya sp. 3. Interestingly, these two taxa were suspected to be different species in the original
description of *Eadya* by Huddleston and Short (37). They state, “there is a series of eight speci-
mens in ANIC [Australian National Insect Collection] which agree well with *E. paropsidis*
except that the occiput is less concave, the propodeum is less abruptly divided and the insect
smaller. More material is needed to decide if these specimens are succinctly distinct to be
described as a new species or merely variants of *E. paropsidis* (p. 319).” Our morphological
examinations along with molecular analyses confirm that the smaller variant is indeed a new
species (*Eadya* sp. 3), and corresponds to Clade D in COI, Cytb, and the concatenated analysis
(Figs 3A, 3B and 5). Although COI and Cytb were congruent, the D2-D3 region of 28S was a
poor marker for species delimitation, as only two species were delimited from the 28S phylog-
eny (Fig 3C). Substitutions in the 28S regions of ambiguity, where high rates of nucleotide vari-
ation are typically found [51] were minimal, ranging from no variation to a few single
nucleotide polymorphisms. Genetic distances between species of *Eadya* for COI were high,
ranging from 8.7 to 31.2%. In particular, *Eadya* sp. 1 had numerous genetic (over 30%) and
morphological differences when compared to other species. Pupal cocoon color varied within
species with *Eadya* sp. 1 (mostly white), *Eadya* sp. 3 (mostly brown) and *Eadya paropsidis*
(mostly white) and was not therefore a reliable aid to species identification. Descriptions of all
new species and a key to all species of *Eadya* can be found in Ridenbaugh et al. [43].

Eadya host plasticity

A list of all known host records for all four *Eadya* species is listed in Table 6. All species of
Eadya can utilize multiple hosts, although some wasps have stronger associations with specific
taxa. Two host records were only from sentinels, *E. paropsidis* from *Pst. charybdis* and *Eadya*
sp. 1 from *Pst. selmani* (Table 6). *Eadya* sp. 2 was rarely found and not reared successfully to
adulthood in the laboratory. All species of *Eadya* were reared from the target pest, *P. charybdis.*
Eadya paropsidis was largely specific to *P. tasmanica* in Tasmania. However, from the original
description [37], *E. paropsidis* was reared from *P. atomaria* in mainland Australia, and several
subsequent studies list additional hosts for this species [38, 39]. Considering our findings and
by examining morphology of specimens, all *Pst. agricola* host records are actually *Eadya* sp. 3
and not *E. paropsidis*. This may also be the case for those records for *Pst. bimaculata*, though
there are no specimens from these earlier records to confirm this.

Eadya sp. 1 and 3 were recovered from multiple hosts. However, *Eadya* sp. 1 was most com-
monly associated with *Pst. variicollis* or *Pst. selmani* and never from *Pst. agricola* or *Pst.
bimaculata, while Eadya sp. 3 was never reared from Pst. variicollis or Pst. selmani, demonstrating strong species level differences in host usage despite some cross over in host taxa. Eadya sp. 3 almost exclusively used either Pst. agricola or P. charybdis, although Pst. bimaculata and Pst. nobilitata were rare hosts (Fig 5). Although the majority of Eadya sp. 3 collected were from Pst. agricola hosts, this reflects the relative abundance or availability of this host in our chosen field sites. Pst. agricola is far more abundant in the plantation locations sampled, whereas P. charybdis is rare and hard to collect at any location. Reasons for the relative rarity of P. charybdis in Tasmania are unknown, but we cannot rule out that this species suffers under high natural enemy loadings in Tasmania; P. charybdis is known to be a host to three species of phoretic mite in Tasmania [64] in addition to egg and larval parasitoids and ladybird predators. Practical difficulties in sampling P. charybdis also arise due to both adult and larval feeding preferences for flush adult foliage high in the crown (rather than waxy juvenile leaves) of Eucalypts in the subgenus Symphyomyrtus. First instar larvae of P. charybdis tend to scatter and feed singly on outermost branches often high in the crown; whereas, Pst. agricola feed gregariously on the waxy juvenile foliage within easier reach for sampling. Thus, our sampling may have been influenced by the biology of the beetles.

Host-plasticity is likely beneficial for reproductive success of the wasp. The ability to utilize multiple hosts increases the likelihood of successful parasitism due to the greater availability of resources across habitats [65]. This in turn decreases energy expenditure associated with host seeking. Although beneficial to the wasp, host-plasticity does have some implications for the suitability of these species as classical biological control agents.

Implications for biological control of P. charybdis, Pst. variicollis, and other invasive paropsines

Although species of Eadya display host plasticity, they appear to be restricted to Paropsine beetles (Chrysomelinae) in two closely related and recently revised [66] genera. These beetles are similar across several biological features, including an overlap of spatial range, similar larval

Table 6. Known host relationships for the four species of Eadya based on reared beetle records.

Eadya paropsidis	Eadya sp. 1	Eadya sp. 2	Eadya sp. 3
P. atomaria¹	-	P. agricola	-
P. charybdis²	P. charybdis	P. charybdis	P. charybdis
P. tasmania	-	-	-
-	-	-	Pst. bimaculata
-	Pst. nobilitata	-	Pst. nobilitata
-	Pst. selmani²	-	-
-	Pst. varicollis²	-	-

¹Australian mainland only from Huddleston $ Short, 1978.
²From sentinel trial only.

https://doi.org/10.1371/journal.pone.0201276.t006
phenology (temporal overlap), and related host plants (externally feeding on foliage of *Eucalyptus* species [67–69, 44]. Additionally, relationships within paropsine beetles are closely linked to host plant usage on eucalypts [70]. Thus, species of *Eadya* are restricted to parasitizing a set of very closely related beetles, both phylogenetically and biologically, despite the ability to successfully parasitize multiple species.

There are no native *Eucalyptus* in New Zealand and all paropsine beetles are invasive pests in that country [34]. Another new paropsine incursion was discovered in 2016, The eucalyptus variegated beetle (*Pst. variicollis*), which has further increased interest in species of *Eadya* as potential biological control agents [63]. Although there are no records of *Eadya* on beetles in any other genera, host specificity testing has not yet been completed. However, if *Eadya* is found to be host specific to beetles within these two genera, as expected from our results, then *P. charybdis* makes an excellent candidate for classical biological control. Withers, Allen [34] already selected a list of candidate species to test *Eadya* for potential non-target effects based on rigorous biological and phylogenetic criteria of native beetles and beneficial weed biological control beetles present in New Zealand.

Based on our data, all recent research [34–36, 71] within this system has been conducted on *Eadya* sp. 3, as opposed to *E. paropsidis*. This is a promising as *Eadya* sp. 3 had the most records of parasitism from *P. charybdis*, relative to other species. Although there were more records from *Pst. agricola*, our sampling biases may have influenced part of this result. As *Pst. agricola* is not in New Zealand, there would be no additional resources for *Eadya* sp. 3 to utilize if released in that country, which should promote a successful biological control program. Thus, *Eadya* sp. 3 is the best candidate for importation for control of *P. charybdis*. This species was commonly collected across most localities, particularly on the wing, demonstrating a wide geographic range for this species.

Eadya sp. 1 could be a suitable candidate for classical biological control of the newly invaded *Pst. variicollis* in New Zealand. As *Eadya* sp. 1 can attack both *P. charybdis* and *Pst. variicollis*, which could provide an added benefit in the control of both pest species. However, negative impacts due to host competition on *P. charybdis* would need to be investigated if both *Eadya* sp. 1 and 3 were to be released. Results from this study indicate a careful population/species level study of the *Pst. variicollis* complex is necessary to determine the limits of this species.

Eadya sp. 1 was also recorded from *Pst. selmani*, a Tasmanian paropsine that invaded Ireland in 2007 [72] and is a significant pest of *Eucalyptus* (plantations and cut foliage trade). Now that the *Eadya* species complex has been delimited, the next stage for any of these biological control programs will need to be thorough host specificity testing of the most appropriate *Eadya* species. In the case of *P. charybdis* biological control, as was the focus of this study, research will investigate *Eadya* sp. 3 against less closely related non-target beetles present in New Zealand [34].

Conclusions

For a successful biological control program the biological agent must be correctly identified, particularly in the context of potentially cryptic species complexes. This is essential to ensure an adequate assessment of the biological agent of choice as the host range, biological features, behavior, and potential for control may vary between species within these complexes [e.g. 7, 34]. Prior to this study, it was assumed *E. paropsidis* was a single species due to limited taxonomic study on *Eadya*. However, based on our molecular and morphologic data, we now know *E. paropsidis* is not just one species, but a complex of species attacking *Eucalyptus*-feeding paropsine beetles in Tasmania. This research has important implications for the forest industry as species of *Eucalyptus* have been imported to numerous countries around the world for their pulp and fiber, and ornamental and oil producing properties.
Eadya sp. 3 (formally called *Eadya daenerys* Ridenbaugh 2018) [43] is the most suitable candidate for release in New Zealand to control the eucalyptus tortoise beetle, *P. charybdis*. *Eadya* sp. 1 (formally called *Eadya annleckiae* Ridenbaugh 2018) [43] should be examined in future research for potential to control *Pst. variicollis* in New Zealand and *Pst. selmani* in Ireland. However, a comprehensive molecular and morphological review of the taxonomic status of the *Pst. variicollis* complex is needed. This study represents one of the most comprehensive biological control studies to delimit cryptic species and resolve host relationships through mass rearing, and analysis of morphological and molecular data in relation to hosts of a potential parasitoid biological control agent. It also represents a very successful case of biological control researchers collaborating with taxonomists early in the research pipeline, which is the best way to prevent unintended effects of natural enemy introductions to control pests. Finally, this study also provides the necessary data to create a model system to test theories on biological control and multitrophic community dynamics in invasion biology with respect to paropsine pests, their host *Eucalyptus* plants, and the suite of primary parasitoids that may regulate their populations.

Supporting information

S1 Fig. Map of collection locations in Tasmania, Australia for the recorded *Eadya* host species of paropsine beetles. Maps were constructed from the authors’ own records as well as those of de Little [22], the Atlas of Living Australia (http://www.ala.org.au) and from the Sustainable Timber Tasmania (Forestry Tasmania) insect collection. For a map of *Pst. selmani* distribution see Figure 15 in Reid and de Little [40].

(SPDF)

S2 Fig. Bayesian analysis of COI without clades collapsed. Posterior probabilities are listed near the relevant nodes for major clades. Clades and corresponding putative species are labeled. Taxon names include voucher numbers, stage of wasp, beetle host name from which the wasps were reared, locality collected, and year of collection, as listed in Table 1. Scale bar refers to number of substitutions for tree branches.

(SPDF)

S3 Fig. Bayesian analysis of Cytb without clades collapsed. Posterior probabilities are listed near the relevant nodes for major clades. Clades and corresponding putative species are labeled. Taxon names include voucher numbers, stage of wasp, beetle host name from which the wasps were reared, locality collected, and year of collection, as listed in Table 1. Scale bar refers to number of substitutions for tree branches.

(SPDF)

S4 Fig. Bayesian analysis of 28S without clades collapsed. Posterior probabilities are listed near the relevant nodes for major clades. Clades and corresponding putative species are labeled. Taxon names include voucher numbers, stage of wasp, beetle host name from which the wasps were reared, locality collected, and year of collection, as listed in Table 1. Scale bar refers to number of substitutions for tree branches.

(SPDF)

S1 Table. All material examined for this study, including specimens for morphology and type material.

(SPDF)

S2 Table. Primer sequences used in this study and references for sequences and cycling conditions.

(SPDF)
Acknowledgments
We would like to acknowledge the technical assistance provided in Tasmania by Dean Satchell, Vin Patel, Gemma Bilac, Ray Ali, Allanna Russell, Meng Lim, Rebekah Smart and Andre Garcia. In the Sharanowski lab, we would like to gratefully thank those who provided technical assistance with molecular research (Phil Snarr, Derek Eyer, and Ana Dal Molin at the University of Manitoba (UM) and Alexa Trujillo and Shiala Morales (University of Central Florida (UCF)) and morphological analysis (Erin Barbeau at UCF). We are grateful for pinned specimens previously collected by Anthony Rice and helpful comments on the taxonomy of the beetles from Chris Reid and David De Little. Thanks to landowners, including Forestry Tasmania, iFarm, and PF Olsen for allowing us access to field sites for collecting.

Author Contributions
Conceptualization: Geoff R. Allen, Toni M. Withers, Barbara J. Sharanowski.
Data curation: Leanne Peixoto, Geoff R. Allen, Ryan D. Ridenbaugh, Stephen R. Quarrell, Toni M. Withers, Barbara J. Sharanowski.
Formal analysis: Leanne Peixoto, Geoff R. Allen, Ryan D. Ridenbaugh, Toni M. Withers, Barbara J. Sharanowski.
Funding acquisition: Toni M. Withers, Barbara J. Sharanowski.
Investigation: Toni M. Withers, Barbara J. Sharanowski.
Methodology: Leanne Peixoto, Geoff R. Allen, Toni M. Withers, Barbara J. Sharanowski.
Project administration: Barbara J. Sharanowski.
Supervision: Geoff R. Allen, Barbara J. Sharanowski.
Writing – original draft: Leanne Peixoto, Geoff R. Allen, Toni M. Withers, Barbara J. Sharanowski.
Writing – review & editing: Leanne Peixoto, Geoff R. Allen, Ryan D. Ridenbaugh, Stephen R. Quarrell, Toni M. Withers, Barbara J. Sharanowski.

References
1. Croft BA. Arthropod biological control agents and pesticides: John Wiley and Sons Inc.; 1990.
2. DeBach P, Rosen D. Biological Control by Natural Enemies. 2nd ed. London: Cambridge University Press; 1991. 440 p.
3. Bale JS, van Lenteren JC, Bigler F. Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008; 363(1492):761–76.
4. Waage JK, Hassell MP. Parasitoids as biological control agents—a fundamental approach. Parasitology. 1982; 84(04):241–68. https://doi.org/10.1017/S003118200005366X
5. Simberloff D, Stiling P. Risks of species introduced for biological control. Biological Conservation. 1996; 78(1):185–92.
6. Van Lenteren J, Bale J, Bigler F, Hokkanen H, Loomans A. Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology. 2006; 51:609–34. https://doi.org/10.1146/annurev.ento.51.110104.151129 PMID: 16332225
7. Hajek AE, Hurley BP, Kenis M, Garnas JR, Bush SJ, Wingfield MJ. et al. Exotic biological control agents: A solution or contribution to arthropod invasions? Biological Invasions. 2016; 18(4):953–69.
8. Rosen D, DeBach P. Systematics, morphology and biological control. Entomophaga 1973; 18(3):215–22.
9. Rosen D. The importance of cryptic species and specific identifications as related to biological control. 1978; Beltsville, Maryland: Allanheld, Osmun & Co. Inc.
10. Rosen D. The role of taxonomy in effective biological control programs. Agriculture, Ecosystems & Environment. 1986; 15(2):121–9.

11. Schauf M, LaSalle J, editors. The relevance of systematics to biological control: protecting the investment in research. Pest Management-Future Challenges Proceedings of the Sixth Australasian Applied Entomological Research Conference; 1998; Brisbane.

12. Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution. 2007; 22(3):148–55.

13. Campbell BC, Steffen-Campbell JD, Werren JH. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol Biol. 1993; 2:225–37. PMID: 9087560

14. Hebert PD, Pujol EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences. 2004; 101(41):14812–7.

15. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Perersen ED. DNA barcodes reveal cryptic host specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences. 2006; 103:3657–62.

16. Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou J-M, Chacon I, et al. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Resources. 2009; 9:1–26.

17. Quicke DLJ, Smith AM, Janzen DH, Hallwachs W, Fernandez-Triana J, Laurenten NM, et al. Utility of the DNA barcoding gene fragment for parasitic wasp phylogeny (Hymenoptera: Ichneumonoidea): data release and new measure of taxonomic congruence. Molecular Ecology Resources. 2012; 12:676–85. https://doi.org/10.1111/j.1755-0998.2012.03143.x PMID: 22487608

18. Namin HH, Irannpour M, Sharanowski BJ. Phylogenetics and molecular identification of the Ochlerotatus communis complex (Diptera: Culicidae) using DNA barcoding and polymerase chain reaction-restriction fragment length polymorphism. The Canadian Entomologist. 2014; 146(1):26–35.

19. Zhang MY, Ridenbaugh RD, Sharanowski BJ. Integrative taxonomy improves understanding of native beneficial fauna: revision of the Nearctic Peristenus pallipes complex (Hymenoptera: Braconidae) and implications for release of exotic biocontrol agents. Systematic Entomology. 2017; 42(3):596–608.

20. de Little DW. Taxonomic and ecological studies of the Tasmanian Eucalyptus-defoliating paropsids. Ph. D. Thesis: University of Tasmania; 1979.

21. Kay M. Success with biological control of the eucalyptus tortoise beetle, Paropsis charybdis. What’s New in Forest Research No 184. Rotorua: New Zealand Forest Research Institute; 1990. p. 4.

22. Paine TD, Steinbauer MJ, Lawson SA. Native and exotic pests of Eucalyptus: a worldwide perspective. Annual Review of Entomology. 2011; 56:181–201. https://doi.org/10.1146/annurev-ento-120709-144817 PMID: 20809803

23. Styles JH. Notes on the biology of Paropsis charybdis Stål (Coleoptera: Chrysomelidae). New Zealand Entomologist. 1970; 4(3):103–11.

24. White TCR. The establishment, spread and host range of Paropsis charybdis Stål (Chrysomelidae) in New Zealand. Pacific insects. 1973; 15(1):59–66.

25. Murphy B. Biological control of Paropsis charybdis Stål (Coleoptera: Chrysomelidae) and the paropsine threat to Eucalyptus in New Zealand. Ph.D. Thesis: University of Canterbury; 2006.

26. Murphy BD, Kay MK. Paropsis charybdis defoliation of Eucalyptus stands in New Zealand’s central North Island. New Zealand Plant Protection. 2000; 53:334–8.

27. Murray TJ, Withers TM, Mansfield S, Bain J. Distribution and current status of natural enemies of Paropsis charybdis in New Zealand. New Zealand Plant Protection. 2008; 61:185–90.

28. Bain J, Kay MK. Paropsis charybdis Stål, Eucalyptus Tortoise Beetle (Coleoptera: Chrysomelidae). In: Cameron PJ, Hill RL, Bain J, Thomas WP, editors. A Review of Biological Control of Invertebrate Pests and Weeds in New Zealand 1874–1987. Wallingford, Oxon, U.K: CAB International Publishers; 1989. p. 281–7.

29. Mansfield S, Murray TJ, Withers TM. Will the accidental introduction of Neopolycy stus insectifurax improve biological control of the eucalyptus tortoise beetle, Paropsis charybdis, in New Zealand? Biological Control. 2011; 56(1):30–6.

30. Murray T, Mansfield S. Reproductive characteristics of invasive hyperparasitoid Baeoanusia albifunicle have implications for the biological control of eucalypt pest Paropsis charybdis. Biological Control. 2015; 91:82–7.

31. Elek J, Wardlaw T. Options for managing chrysomelid leaf beetles in Australian eucalypt plantations: reducing the chemical footprint. Agricultural and Forest Entomology. 2013; 15(4):351–65.
32. Withers TM, Watson MC, Watt MS, Nelson TL, Harper LA, Hurst MRH. Laboratory bioassays of new synthetic and microbial insecticides to control Eucalyptus tortoise beetle Paropsis charybdis. New Zealand Plant Protection. 2013; 66:138–47.

33. Forest Stewardship Council. FSC Pesticide Policy: Guidance on Implementation. www.fsc.org [Accessed April 8, 2014] Bonn, Germany: Forest Stewardship Council (FSC); 2007.

34. Withers TM, Allen GR, Reid CAM. Selecting potential non-target species for host range testing of Eadya paropsidis. New Zealand Plant Protection. 2015; 68:179–86.

35. Rice AD. The parasitoid guild of larvae of Chrysophtharta agricola Chapuis (Coleoptera: Chrysomelidae) in Tasmania, with notes on biology and a description of a new genus and species of tachinid fly. Australian Journal of Entomology. 2005; 44(4):400–8.

36. Rice AD, Allen GR. Temperature and developmental interactions in a multitrophic parasitoid guild. Australian Journal of Entomology. 2009; 48(4):282–6.

37. Huddleston T, Short JRT. A new genus of Euphorinae (Hymenoptera: Braconidae) from Australia with a description of the final instar larva of one species. Journal of the Australian Entomological Society. 1978; 17:317–21.

38. de Little DW. Field parasitization of larval populations of the 'Eucalyptus'-defoliating leaf beetle, Chrysophtharta bimaculata (Olivier) (Coleoptera: Chrysomelidae). General and Applied Entomology: The Journal of the Entomological Society of New South Wales. 1982; 14:3–6.

39. Tanton MT, Epila JSO. Parasitization of Larvae of Paropsis atomaria (Coleoptera: Chrysomelidae) in the Australian Capital Territory. Aust J Zool. 1984; 32(2):251–9.

40. Belshaw R, Quicke DLJ. Robustness of ancestral state estimates: evolution of life history strategy in Ichneumonoid parasitoids. Syst Biol. 2002; 51(3):450–77. https://doi.org/10.1080/1063515290069896 PMID: 12079644

41. Shaw SR. A phylogenetic study of the subfamilies Meteorinae and Euphorinae (Hymenoptera: Braconidae). Entomography. 1985; 3:277–370.

42. Shaw SR. Subfamily Euphorinae. In: Wharton RA, Marsh PM, Sharkey MJ, editors. Manual of the New World Genera of the Family Braconidae. Washington, D.C.: The International Society of Hymenopterists; 1997. p. 235–54.

43. Ridenbaugh RD, Barbeau E, Sharanowski BJ. Description of four new species of Eadya (Hymenoptera: Braconidae), parasitoids of the Eucalyptus Tortoise Beetle (Paropsis charybdis) and other Eucalyptus defoliating leaf beetles. Journal of Hymenopteran Research. 2018; 64:141–75.

44. Reid CA, de Little DW. A new species of Paropsis matsuokai (Hymenoptera: Ichneumonidae) parasitizing larvae of Stenopterus sp. (Lepidoptera: Gelechiidae) in the Australian Capital Territory. Aust J Entomol. 1984; 23(1):18–22.

45. Smith MA, Fisher BL, Hebert PDN. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005; 360(1462):1825–34.

46. Grossi AA, Sharanowski BJ, Galloway TD. Anatoecus species (Phthiraptera: Phthirapteridae) from Anseriformes in North America and taxonomic. The Canadian Entomologist. 2014; 146:598–608.

47. Chen R, Jiang L-Y, Chen J, Qiao G-X. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China. Scientific Reports. 2016; 6(20123).

48. Fernández-Triana J. Eight new species and an annotated checklist of Microgastrinae (Hymenoptera, Braconidae) from Canada and Alaska. Zootaxa. 2010; 3681(4):395–404.

49. Smith MA, Fisher BL, Hebert PDN. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China. Scientific Reports. 2016; 6(20123).

50. Boring CAB, Sharanowski BJ, Sharkey MJ. Maxfischerinae: a new braconid subfamily (Hymenoptera) with highly specialized egg morphology. Systematic Entomology. 2011; 36:529–48.

51. Smith MA, Fisher BL, Hebert PDN. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China. Scientific Reports. 2016; 6(20123).

52. Sharanowski BJ, Dowling APG, Sharkey MJ. Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea) based on multiple nuclear genes, and its implications for classification. Systematic Entomology. 2011; 36:549–72.

53. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199 PMID: 22543367
54. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999; 41:95–8.
55. Posada D. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution. 2008; 25(7):1253–6. https://doi.org/10.1093/molbev/msn083 PMID: 18397919
56. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012; 61(3):539–42. https://doi.org/10.1093/sysbio/sys029 PMID: 22357727
57. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 1980; 16:111–20. PMID: 7463489
58. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016; ms054.
59. Cracraft J. Species concepts and speciation analysis. In: Johnston RF, editor. Current Ornithology. 1. New York, NY: Plenum Press; 1983. p. 159–87.
60. Baum D. Phylogenetic species concepts. Trends in Ecology & Evolution. 1992; 7(1):1–2.
61. Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology. 2005; 3:e422. https://doi.org/10.1371/journal.pbio.0030422 PMID: 16336051
62. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences. 2003; 270(1512):313–21. https://doi.org/10.1098/rspb.2002.2218 PMID: 12614582
63. The New Zealand Forest Owners Association. Eucalyptus variegated beetle (Paropsisterna variicollis). HRSS Fact Sheet. https://www.nzfoa.org.nz/resources/file-libraries-resources/forest-health/pinenet/589-eucalyptus-variegated-beetle-paropsisterna-variicollis/file 2016.
64. Seeman OD, Nahrung HF. Two new species of Chrysolomelia Regenfuss, 1968 (Acari: Acariformes: Podapolipidae) from Paropsis charybdis Stål (Coleoptera: Chrysomelidae). Systematic Parasitology. 2013; 86(3):257–70. https://doi.org/10.1007/s11230-013-9447-2 PMID: 24163026
65. Shea K, Chesson P. Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution. 2002; 17(4):170–6.
66. Reid CA. A taxonomic revision of the Australian Chrysomelinae, with a key to the genera (Coleoptera: Chrysomelidae). Zootaxa. 2006; 1292:1–119.
67. Howlett B, Clarke A, Madden J. The influence of leaf age on the oviposition preference of Chrysophtharta bimaculata (Olivier) and the establishment of neonates. Agricultural and Forest Entomology. 2001; 3(2):121–7.
68. Nahrung HF, Allen GR, Patel VS. Day-degree development and phenology modelling of the immature stages of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae), a pest of eucalypt plantations. Australian Journal of Entomology. 2004; 43(2):177–83.
69. Nahrung HF, Schütze MK, Clarke AR, Duffy MP, Dunlop EA, Lawson SA. Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. Forest Ecology and Management. 2008; 255(8):3515–23.
70. Jurado-Rivera JA, Vogler AP, Reid CA, Petitpierre E, Gómez-Zurita J. DNA barcoding insect–host plant associations. Proceedings of the Royal Society of London B: Biological Sciences. 2009; 276(1657):639–48.
71. Withers TM, Allen GR, Patel VS, Satchell D, Manley G. Investigating the potential of Eadya paropsidis (Bracconidae) from Tasmania as a biocontrol agent for Paropsis charybdis in New Zealand. New Zealand Plant Protection. 2012; 65:292.
72. Fanning PD, Baars JR. Biology of the Eucalyptus leaf beetle Paropsisterna selmani (Chrysomelidae: Paropsini): a new pest of Eucalyptus species (Myrtaceae) in Ireland. Agricultural and Forest Entomology. 2014; 16(1):45–53.