Thermomechanical properties of graphene: valence force field model approach

A Lajevardipour¹, M Neek-Amal² and F M Peeters³

¹ Department of Physics, Eastern Mediterranean University, G Magusa, North Cyprus, Mersin 10, Turkey
² Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16785-136, Iran
³ Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

Received 28 November 2011, in final form 1 February 2012
Published 5 April 2012
Online at stacks.iop.org/JPhysCM/24/175303

Abstract

Using the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (|ε| ≤ 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against π−π misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching–compressing simulations we calculated the Young’s modulus at room temperature 350 ± 3.15 N m⁻¹, which is in good agreement with experimental results (340 ± 50 N m⁻¹) and with ab initio results (322–353) N m⁻¹; (v) molar heat capacity is estimated to be 24.64 J mol⁻¹ K⁻¹ which is comparable with the Dulong–Petit value, i.e. 24.94 J mol⁻¹ K⁻¹, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height–height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Grüneisen parameter is estimated to be 0.64.

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the discovery in 2004 of graphene, which is an almost two-dimensional crystalline material, its exceptional mechanical properties have been studied [1–6]. Tensional strain in monolayer graphene affects its electronic structure. For example strains larger than 15% change graphene’s band structure and lead to the opening of an electronic gap [7]. In recent experiments the buckling strain of a graphene sheet that was positioned on top of a substrate was found to be six orders of magnitude larger (i.e. 0.5–0.6%) than for graphene suspended in air [5]. Furthermore, some experiments showed that a compressed rectangular monolayer of graphene on a plastic beam with size 30 × 100 μm² is buckled at about 0.7% strain [8].

Elasticity theory for a thin continuum plate and the empirical interatomic potentials (EP) are two main theoretical approaches that have been used to study various mechanical properties measured in compressing and stretching experiments [4, 9, 10]. Continuum elasticity theory does not give the atomistic features of graphene while the EPs, such as the Brenner potential (REBO) [11, 12] and the LCBOPII potential [13], can properly account for the mechanical properties of graphene. Despite the several benefits of these EPs, some special atomistic features of graphene subjected to compressive or tensile strains could not be explained. The different energy contributions in these potentials are mixed. For example, in REBO all the many body effects are put in the bond order term and the different important energy contributions are not separable.
It still remains unclear how large are the contributions of the different energy terms in strained graphene. Using the recently introduced valence force field (VFF) model by Perebeinos and Tersoff [14] we show how the contribution of the different energy modes in strained graphene can be separated and we calculate their dependence on the value of strain.

The bending modulus of graphene at zero temperature was estimated using several interatomic potentials, e.g. the first version of the Brenner potential [11] yields 0.83 eV, the second generation of the Brenner potential [12] estimated it to be 0.69 eV, adding the third nearest neighbors (the dihedral angle effect) in the Brenner potential enhances it to 1.4 eV [15], using the LCBOPPI potential and continuum membrane theory the bending rigidity was found to be 0.82 eV [4, 13]. Tersoff’s VFF model estimated it to be 2.1 eV, and from ab initio energy calculations it was found to be 1.5 eV [16] (note that ‘bending rigidity’ (‘bending modulus’) is used for a membrane stiffness (an atomistic sheet)). Despite these studies the temperature dependence of the bending modulus is poorly known. An increasing behavior of the different energy modes in strained graphene can be separated and we calculate their dependence on the value of temperature.

In this study we employ VFF and carry out standard Monte Carlo simulations with the LCBOPPI potential and membrane theory concepts. In contrast, Liu et al [17] found a decreasing bending rigidity with temperature using the REBO. Here we show that the VFF model predicts a temperature independent bending modulus.

This paper is organized as follows. Section 2 contains the essentials of the VFF model for graphene. The simulation method for strained graphene will be presented in section 3. Different energy modes of strained graphene are studied in section 4. In section 5 the molar heat capacity for non-strained suspended graphene is calculated. Temperature effects of the bending modulus of graphene with periodic boundary conditions are presented in section 6 and the scaling properties of graphene at finite temperature are investigated in section 7. We will conclude the paper in section 8.

2. Elastic energy of graphene

There are two main classical approaches for the investigation of the elastic energy of graphene: (1) the continuum approach based on elasticity theory and (2) the atomistic description using accurate interatomic potentials.

The total energy of a deformed membrane consists of two important terms: stretching and bending. For almost flat and continuum membrane using Monge representation, the surface area element dA can be approximated by a flat sheet area element in the x–y-plane, i.e. dA ≈ dx dy and the bending energy is written as \(E_b = \frac{1}{2} \int dA \kappa (\nabla^2 h)^2 \) where \(\kappa \) is the bending rigidity and \(h \) is the out-of-plane deformation of the membrane at point \((x, y)\). The stretching term for an isotropic continuum material in the linear regime includes two independent parameters: the shear modulus \(\mu \) and the Lamé coefficient \(\lambda \) and is written as \(\frac{1}{2} \int dA [2\mu u_{\alpha\beta}^2 + \lambda u_{\alpha\alpha}^2] \). Here \(u_{\alpha\beta} = \frac{1}{2} [\partial_\alpha u_\beta + \partial_\beta u_\alpha + \partial_\alpha \partial_\beta h] \) is the second rank symmetric tensor with \(\alpha, \beta = 1, 2 \) and \(u_\alpha(x, y) \) is the \(\alpha \)th component of the displacement vector. Neglecting the last term in the strain tensor makes the stretching term linear and decouples the bending and stretching energy. Therefore for an isotropic and continuum material for small deformations and with the assumption of a nearly flat membrane \((|\nabla h|^2 \ll 1)\) the strain energy (\(U_T \)) can be written as [18]

\[
U_T = \frac{1}{2} \int dA \{ \kappa (\nabla^2 h)^2 + 2\mu u_{\alpha\beta}^2 + \lambda u_{\alpha\alpha}^2 \}. \tag{1}
\]

The integral is taken over the projected area of the membrane into the x–y-plane. For isotropic materials and in the linear approximation the mentioned parameters are related to the Young’s modulus \(Y \) and Poisson’s ratio \(\nu \) as \(\mu = Y/(2(1 + \nu)) \) and \(\lambda = 2\mu \nu/(1 - 2\nu) \). Equation (1) can be rewritten in terms of the Fourier components of \(h \) and yields the scaling properties of the sheet. Despite these benefits, this continuum model does not include self-avoidance, the natural condition of true physical systems, and does not show atomistic details of the membrane under different boundary conditions. All these deficiencies originate from the continuity assumption. Assuming graphene as a continuum plate limits the study to only bending and stretching modes.

Due to the hexagonal symmetry of the flat monolayer graphene lattice, it is elastically isotropic, which implies that the bending modulus is independent of the direction at least within the linear elastic regime [15]. However, the graphene monolayer can exhibit anisotropic behavior in the nonlinear regime where distortions are no longer infinitesimal; the larger the stretches, the stronger anisotropy and nonlinearity effects. Cadelano et al found that monolayer graphene is isotropic in the linear regime, while it is anisotropic when nonlinear features are taken into account [19].

The recently introduced VFF model in [14] is expected to be able to describe both compression and stretching experiments by separating the contribution of the various energy modes. This model includes explicitly the various relevant energy terms which describe the change in the bond lengths, bond angles, and torsional effects. The total energy density is written as

\[
E_T = \frac{1}{N_{\text{at}}} (E_{\text{el}} + E_{\text{be}} + E_{\text{out}} + E_{\text{bo}} + E_p + E_{\text{co}}), \tag{2}
\]
where \(N \) is the number of atoms and \(S_0 = \frac{\sqrt{3}}{4} a_0^2 \) is the surface area of the unit cell of the honeycomb lattice. In the following we will discuss the different terms in equation (2). Note that the energy reference is set to zero. Assuming \(a_0 = 1.42 \, \text{Å} \) as the unit of length, the ‘stretching’ and ‘bending’ (bending of the bond angle) terms are

\[
E_{\text{st}} = \frac{1}{2} K_s \sum_{ij} (\delta r_{ij})^2
\]

(3)

\[
E_{\text{be}} = K_{\text{be}} \sum_{ij<k} (\cos(\theta_{ijk}) - \cos(\theta_0))^2
\]

(4)

where \(\delta r_{ij} = r_{ij} - 1 \) and \(\theta_0 = 2\pi/3 \). In equations (3) and (4) \(r_{ij} \) is the bond length between atom ‘\(i \)’ and ‘\(j \)’, \(\theta_{ijk} \) is the angle between the nearest neighbor atoms ‘\(i' \), ‘\(j' \)’ and ‘\(k \)’, and \(\theta_0 \) is the equilibrium angle between three nearest neighbor atoms. \(E_{\text{st}} \) is the two-body stretching term responsible for bond stretching. \(E_{\text{be}} \) is the bending energy due to the bond angles. Here, all bond angles will be considered. The above two terms result in a quasi-harmonic model [13]. Later, we will find that these two terms become constant as a function of strain when beyond the buckling point in a compression experiment.

The stiffness against ‘out-of-plane’ vibration is provided by

\[
E_{\text{out}} = \frac{K_{\text{out}}}{a_0^2} \sum_{i<j<k<l} \left(\frac{3 \mathbf{r}_{ij} \cdot \mathbf{r}_{ik} \times \mathbf{r}_{il}}{r_{ij} r_{ik} + r_{ij} r_{il} + r_{ik} r_{il}} \right)^2
\]

(5)

where the summation is taken over the first neighbors of atoms ‘\(i \)’ and ‘\(l \)’. In equation (5) \(\mathbf{r}_{ij} \) is the distance vector between atom ‘\(i \)’ and ‘\(j \)’. Hence there are three different terms for each atom. Correlations between bond lengths are provided by the ‘bond order’ term

\[
E_{\text{bo}} = K_{\text{bo}} \sum_{i<j<k} \delta r_{ij} \delta r_{ik}
\]

(6)

where for each bond length with central atom ‘\(i \)’ three different terms are considered.

The misalignment of the neighboring \(\pi \) orbital is given by the ‘\(\pi-\pi \)’ term

\[
E_{\pi} = \frac{1}{2a_0^2} K_{\pi} \sum_{i<j} |\mathbf{r}_i \times \mathbf{r}_j|^2
\]

(7)

where

\[
\mathbf{r}_{ij} = \frac{3 \mathbf{m}_{ijk} + \mathbf{m}_{ikl} + \mathbf{m}_{lji}}{r_{ij} r_{ik} + r_{ij} r_{il} + r_{ik} r_{il}}.
\]

(8)

\(\mathbf{m}_{ijk} = \mathbf{r}_{ij} \times \mathbf{r}_{ik} \) is a vector normal to the plane passing through the vectors \(\mathbf{r}_{ij} \) and \(\mathbf{r}_{ik} \). This kind of interaction plays an important role in the interlayer interaction in graphitic structures. Note that the simple two-body interaction gives only 2% of the local density of state (LDA) result for the energy difference between AA and AB stacked graphite [20].

The last term takes into account the coupling between bond stretching and bond angle bending (bond length–bond angle cross coupling), i.e. the ‘correlation’ term

\[
E_{\text{cor}} = K_{\text{cor}} \sum_{i<j<k} \delta r_{ij}(\cos(\theta_{ijk}) - \cos(\theta_0)).
\]

(9)

The coefficients in the above equations (\(K_s, K_{\text{be}} \) and so on) were recently parameterized by Perebeinos and Tersoff [14] such that the phonon dispersion of graphene was accurately described. These parameters are listed in table 1.

Table 1. Parameters of the energy model (equation (2)) are taken from [14]. Units are in eV.

\(K_s \)	\(K_{\text{be}} \)	\(K_{\text{out}} \)	\(K_{\text{bo}} \)	\(K_{\pi} \)	\(K_{\text{cor}} \)
0.37	10.87	1.13	3.04	0.016	4.581

3. Simulation method: strained graphene

In order to compress (stretch) graphene nanoribbons, we have carried out several standard Monte Carlo simulations [4] of a suspended graphene sheet at finite temperature. Equation (2) is used to calculate the total energy of the system. Our sample is a rectangular graphene sheet with \(L_x \times L_y \) dimensions in \(x \)- and \(y \)-directions, respectively, containing \(N_0 = 1600 \) atoms. The sheet is strained along the armchair or the zig-zag direction. Strain is always applied along \(x \). When graphene is strained along the armchair direction we named it armchair graphene (AC, \(L_x = 85.2 \, \text{Å}, L_y = 49.19 \, \text{Å} \) and strained graphene along zig-zag direction is named zig-zag graphene.
The system can relax. For example, a strain (applied in the lateral direction, i.e. the zig-zag direction in AC graphene and along the armchair direction for ZZ graphene) can relax. Our simulation starts with a flat sheet and we allow the system to thermally equilibrate such that the total energy no longer changes. Temperature is typically taken as $T = 300$ K, except when otherwise indicated. Figure 1(a) shows a snapshot of the relaxed unstrained ZZ graphene at $T = 300$ K (note that the supported ends are fixed). We found that the graphene sheet is corrugated after relaxation, which gives the intrinsic thermal ripples in graphene. Thus the used VFF is able to display true structural properties. These ripples are vital in order to make suspended graphene stable and are therefore crucial for the stability of a flat 2D crystal at finite temperature [4].

To simulate a suspended sheet we fixed two atomic rows at both longitudinal ends. These boundary atoms are not included in the summations when calculating the different energy contributions (in equations (2)–(9)), i.e. $N = N_0 - 40$. We compress/stretch the system at a slow rate, i.e. in every million Monte Carlo steps the longitudinal ends are reduced/elongated with about $\epsilon = 0.02$ Å such that the system stays in thermal equilibrium. After obtaining the total desired strain ϵ, we wait for an extra four million steps during which the system can relax. For example, a strain (applied in the x-direction) of $\epsilon = 1.2\%$ is achieved after 29×10^6 Monte Carlo steps.

4. Different energy modes for strained graphene

Figures 1(b) and (c) show two snap shots of compressed ZZ and AC graphene, respectively when $\epsilon = -2\%$. It is interesting that the rippled structure is different in the two cases. This is due to the different out-of-plane and $\pi-\pi$ interaction terms around and beyond the buckling transition points, i.e. $\epsilon \lessapprox -2.5\%$.

The variation of height, $\Delta h = \sqrt{(h^2) - (h^2)}$, in figure 1(a) after 10 million MC steps fluctuates around 0.2 Å which is comparable with those found when using REBO [21]. In figures 1(b) and (c) for compressed nanoribbons of about $\epsilon = -2.0\%$ the result is 0.5 Å after 54 million MC steps. The larger compressive strain yields a larger height variance.

Figure 2(a) shows the variation of the total energy (equation (2)) with applied strain at $T = 300$ K. The vertical dashed line separates compressive (left) and tensile strain (right). Square (circular) symbols refer to AC (ZZ) graphene. Notice that AC and ZZ strained graphene result in the same energy, although their ripple structure (see figures 1(b) and (c)) can be rather different. Note that the energy curve is no longer symmetric around $\epsilon = 0$ beyond the colored rectangle where $|\epsilon| \gtrsim 0.02$. Inside this region the deformation is symmetric and the harmonic approximation to the total energy works well, as shown by the full black (parabolic) curve in figure 2(a). The solid curve is a quadratic fit according to $E_T = E_0 + \frac{1}{2}Y_0\epsilon^2$ for only positive strains, where the fitting parameter Y_0 is Young’s modulus and E_0 is the energy of the graphene sheet in the absence of strain. We found $E_0 = 0.232 \pm 0.002$ N m$^{-1}$ and $Y_0 = 350.42 \pm 3.15$ N m$^{-1}$ for room temperature. The calculated error bars are derived from the fitting procedure of our numerical data. The best fit yielded the smallest deviation from the harmonic behavior. Our result for the room temperature Young’s modulus is close to the experimental value (340 ± 50 N m$^{-1}$), is within the ab initio results (335–353 N m$^{-1}$), and is in agreement with those obtained from other classical force fields such as LCBOPII [10], Tersoff–Brenner [22], and tight-binding [19].

To test the VFF potential, Perebeinos and Tersoff estimated Y at zero temperature and found 1.024 N m$^{-2}$ (343.04 N m$^{-1}$) [14]. Here we calculated Y at room temperature via stretching–compression simulations. Different force fields are parameterized such that they describe a set of chosen experimental data of particular experimental effects. For example, the VFF model cannot be used to study hydrogenation, melting and defect formation in either graphene or carbon nanotubes sheets, while the REBO has been set up such that it can be used in those cases. The property that the energy can be separated into different energy modes and the simplicity of coding the VFF potential are two important advantages of this model.

Notice that the total energy for AC (square symbols in figure 2(a)) and ZZ (circular symbols in figure 2(a)) graphene are almost the same, which is in agreement with the results of [19]. Graphene acts isotropically in the linear elastic limit. Beyond the harmonic regime there is a small
local maximum in the energy for compression which is related to the buckling of graphene. Notice that in this regime there are small differences between ZZ and AC sheets. The buckling threshold is about \(\varepsilon_b \approx -2.5\% \). The buckling strain is smaller than those found by using REBO \([9]\), i.e. \(-0.86\%\). Notice that both the boundary conditions and the employed interatomic potentials are responsible for the difference in the buckling thresholds. The main difference is due to the different potential. The VFF model is not a bond order potential (REBO). As we mentioned in section 1 the bending modulus predicted by REBO is about 0.69–0.83 eV which is smaller than the one predicted by the VFF model (2.1 eV). Therefore, we expect a larger buckling transition using REBO and a smaller one using the VFF model (considering the negative sign for compressive strains). Another important reason for the different result is the calculation method. Here we used Monte Carlo (time is meaningless) and in \([9]\) we used molecular dynamics simulations.

Figure 2(b) shows the contribution of the two important energy terms, i.e. stretching and bending as given by equations (3) and (4), respectively, for strained AC graphene. Notice that the stretching energy is larger than the bending and that the rate of increase for stretching is different. In the compression part (i.e. the region to the left of the vertical dashed line), after the buckling points these energies are almost constant. Thus increasing compression beyond the buckling point does not change the bending and stretching energies. Figure 3 shows the contribution of the different energy terms (scaled by \(E_T \)) for three values of the strain for both AC and ZZ graphene (e.g. the first set of bars to the left refer to 100\(E_{el}/E_T \) for each particular strain shown in the legends). From figure 3, we conclude that the contribution of the energy terms (equations (4) and (7)) which are not determinable in the continuum elasticity energy approach (equation (1)) are substantial and should be retained when describing strained graphene at the atomistic scales.

Figure 2(c) shows the variation of the other terms in the energy, equations (5)–(9), with strain. The energy for \(\pi-\pi \) repulsion and out-of-plane increase (decrease) with compression (stretching) and they behave opposite to the other terms. In compression experiments the sheets become strongly corrugated and neighbor \(\pi \) orbitals become more misaligned. In other words the normals to the adjacent surfaces, e.g. \(-n_{ik}\) and \(-n_{jl}\) become more misaligned, which results in an increase of the total energy. Notice also that the bond order term is smaller and negative in the compression part with respect to the stretching part. The correlation between the bond lengths is always negative for the compression part. We found that the relative contribution of the different energy modes for stretching and compression of AC and ZZ graphene are almost the same, compare figures 3(a) and (b). However, as we see from figures 1(b) and (c) the structure of the ripples depends on the direction of the applied strain. In the case of AC the ripples are regular (sinusoidal shape) while they exhibit an irregular pattern in ZZ graphene. Note that the buckling in plates is generally known to depend on the plate geometric parameters \([9, 27]\). Notice that the dependence of the ripple structure of the graphene sheets on the sheet geometry has been demonstrated experimentally in \([5]\).

5. Molar heat capacity

Next, we simulated graphene at different temperatures. Figure 4(a) shows the temperature dependence of the average total energy and of the six energy terms for \(\varepsilon = 0 \). Notice that all energy terms vary linearly with \(T \). The quantity \(C_V = \frac{dE}{dT} \) gives the potential energy contribution to the molar heat capacity of the system at constant volume, where \(N_A \) is Avogadro's constant. Note that we first relaxed the volume of the system by performing a constant pressure–temperature (NPT) Monte Carlo simulation (which removes possible

![Table 2. Young’s modulus of graphene in units of N m⁻¹.](image)

Reference	Experimental	Classical \((T = 300\, K)\)	Ab initio \((T = 0\, K)\)	Tight-binding
	340 ± 50	350 ± 3.15	355 ± 21	384
	Present\(^a\)	[10]\(^b\)	[22]\(^c\)	[16]
	345 ± 6.9	336	352,54	351.75
		[23]	[24]	[25]
		[26]	[19]	

\(^a\) VFF model \([14]\).

\(^b\) LCBOPPI potential.

\(^c\) Tersoff–Brenner potential.

![Figure 3. Contribution of the different energy terms to the total energy for three typical values of the strain in AC (top) and ZZ (bottom) graphene.](image)
The Gr"uneisen parameter is defined as
\[\gamma = \frac{1}{\alpha V} \]
for the Grüneisen parameter than the one found in [14], i.e. -0.2, and is closer to the experimental result, i.e. 2.0 [31].

6. Temperature effect of the bending modulus

A common method for calculating the bending modulus of graphene is by performing several simulations as a function of the radius (R) of the curved tubes and extrapolating the results to $R \to \infty$ (see figure 5(b)). Hence, one can calculate the elastic energy of carbon nanotubes as a function of the inverse square of the radius, $E = \frac{1}{2} \kappa R^{-2}$. The coefficient κ in the elastic energy gives the bending modulus of graphene. In order to study the effect of temperature on the bending modulus of graphene we have carried out several NPT Monte Carlo simulations (constant pressure with periodic boundary conditions) at different temperatures. For each particular temperature we have eight different tubes. In
this part of the paper, our systems are different armchair carbon nanotubes with radius $R = 3m^2a_0/2\pi$ and initial length 10 nm. We used eight armchair carbon nanotubes with index (m, m) for $m = 5, 10, 15, 20, 25, 30, 35, 40$. For each particular nanotube with index m, we carried out several NPT Monte Carlo simulations with periodic boundary conditions along the nanotube axis and varying temperatures in the range 10–1000 K. Calculating E_T by using equation (2) for all nanotubes at temperature T, we fitted $\frac{1}{2}kR^{-2}$ to the data and found the bending modulus (stiffness), κ, at T. From figure 5(a) we notice that κ is practically temperature independent and is about 2.02 eV. Thus the present VFF model results in a temperature independent bending modulus. Using membrane theory to calculate the bending rigidity of graphene shows that different potentials lead to conflicting temperature dependence for the bending rigidity, e.g. LCBOP II [4] yields an increase of the bending rigidity with temperature while REBO predicts a decreasing dependence [17].

7. Scaling properties

In the harmonic regime the power spectrum of the graphene solid membrane can be obtained by calculating $\langle |h_q|^2 \rangle$ where h_q is the Fourier transform of the height of the atoms (h) and q is the norm of the wavevector $q = (q_x, q_y) = 2\pi (\frac{n_x}{l_x}, \frac{n_y}{l_y})$ with integers n_x and n_y where l_x and l_y are the longitudinal and lateral size of the graphene sample. It is important to note that in this section we simulated a graphene sheet with initial size $l_x = 230.04$ Å and $l_y = 221.35$ Å ($N = 19440$) using standard NPT Monte Carlo simulations with periodic boundary conditions in both directions (the method is similar to that reported in [4, 10]). We estimated the spectral modes h_q by fitting $\langle |h_q|^2 \rangle$ to a q^2 function, from which we extract the power law α. Figure 6 shows the variation of $\langle |h_q|^2 \rangle$ (averaged over 500 Monte Carlo realizations where five neighboring points were accumulated and averaged to a single point in order to make the curves smoother) versus q for graphene at two temperatures 200 and 700 K. The dashed lines are power law fits. Notice that $\alpha \neq -4$ which clearly indicates that anharmonic effects are present in the used VFF potential. Moreover we see that α decreases with decreasing temperature ($\alpha = -3.0$ for $T = 700$ K and $\alpha = -3.557$ for $T = 200$ K) which hints that a more harmonic behavior is found at low temperature when using the VFF potential. The latter temperature dependence is in agreement with the REBO predictions [21]. Notice that the REBO is a bond order interatomic potential. Note that the peaks in figure 6 are related to the first Bragg-peak, $4\pi/3a_0 = 2.94$ Å due to the discreteness of the graphene lattice. Notice that the modulation amplitude in figure 6 for $T = 200$ K is about 0.5 Å and for $T = 700$ K is about 0.7 Å which are temperature and size dependent quantities, the larger the size the larger the amplitudes (here graphene has dimension 221×230 Å2).

Here, we did not study the effect of size and refer the reader to [4, 10] where such a study can be found.

8. Conclusions

In this study, we showed that the recently proposed valence force field model (VFF) [14] for graphene enables us to compare the contribution of the different energy terms when straining graphene. In a stretching experiment the main energy contributions are due to stretching and bending terms while for compressive strains also other terms such as out-of-plane and $\pi-\pi$ interaction terms play an important role. We found that using such a classical approach gives accurate values for the Young’s modulus at room temperature which are found to be as accurate as those using ab initio methods. The calculated Young’s modulus is close to the experimental result. The total energy is quadratic in ε for strains smaller than 2%. The current VFF model predicts a temperature independence bending modulus. The temperature dependence of the total strain energy yields an acceptable value for the molar heat capacity of graphene which is to a large extent independent of the applied strain. The Grüneisen parameter is found to be positive and about 0.64.

Acknowledgments

We acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP).

References

[1] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[2] Booth T J, Blake P, Nair R R, Jiang D, Hill E W, Bangert U, Bleloch A, Gass M I, Novoselov K S, Katsnelson M I and Geim A K 2008 Nano Lett. 8 2442
[3] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J and Roth S 2007 Nature 446 60
[4] Fasolino A, Los J H and Katsnelson M I 2007 Nature Mater. 6 858
[5] Frank O, Tsoukleri G, Parthenios J, Papageoris K, Riaz I, Jalil R, Novoselov K S and Galiotis C 2010 ACS Nano 4 3131
[6] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Ning Lau C 2009 Nature Nanotechnol. 4 562
[7] Guinea F, Katsnelson M I and Geim A K 2009 Nature Phys. 6 30
[8] Tsoukleri G, Parthenios J, Papageoris K, Jalil R, Ferrari A C, Geim A K, Novoselov K S and Galiotis C 2009 Small 5 2397
[9] Neek-Amal M and Peeters F M 2010 Phys. Rev. B 82 085432
[10] Zakharchenko K V, Katsnelson M I and Fasolino A 2009 Phys. Rev. Lett. 102 046808
[11] Brenner D W 1990 Phys. Rev. B 42 9458
[12] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[13] Los J H, Ghiringhelli L M, Meijer E J and Fasolino A 2005 Phys. Rev. B 72 214102
[14] Perebeinos V and Tersoff J 2009 Phys. Rev. B 79 241409(R)
[15] Lu Q, Arroyo M and Huang R 2009 J. Phys. D: Appl. Phys. 42 102002
[16] Kudin K N, Scuseria E and Yakobson B I 2001 Phys. Rev. B 64 235406
[17] Liu P and Zhang Y W 2009 Appl. Phys. Lett. 94 231912
[18] Zakharchenko K 2011 Temperature effects on graphene: from flat crystal to 3D liquid PhD Thesis Radboud University Nijmegen, The Netherlands
[19] Cadelano E, Palla P L, Giordano S and Colombo L 2009 Phys. Rev. Lett. 102 235502
[20] Kolmogorov A N and Crespi V H 2005 Phys. Rev. B 71 235415
[21] Chang X, Ge Y and Donga J M 2010 Eur. Phys. J. B 78 103
[22] Michel K H and Verberck B 2008 Phys. Status Solidi b 245 2177
[23] Leenaerts O, Peelaers H, Hernandez-Nieves A D, Partoens B and Peeters F M 2010 Phys. Rev. B 82 195436
[24] Munoz E, Singh A K, Ribas M A, Penev E S and Yakobson B I 2010 Diamond Relat. Mater. 19 351
[25] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120
[26] Faccio R, Denis P A, Pardo H, Goyenola C, Ivaro A and Mombru W 2009 J. Phys.: Condens. Matter 21 285304
[27] Jones R M 2006 Buckling of Bars, Plates, and Shells (Bull Ridge, VA)
[28] Neek-Amal M and Peeters F M 2011 Phys. Rev. B 83 235437
[29] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[30] http://lammps.sandia.gov
[31] Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K and Ferrari A C 2009 Phys. Rev. B 79 205433