Study on Road Friction Database for Automated Driving
- Fundamental Consideration of Measuring Device for Road Friction Database -

Ichiro Kageyama 1,2, Yukiyo Kuriyagawa 2, Tetsunori Haraguchi 1,2,3,4, Tetsuya Kaneko 4, Motohiro Asai 5 and Gaku Matsumoto 5

1 Consortium on Advanced Road-Friction Database, 1-4-31 Hachimandai, Sakura, Chiba 285-0867, Japan; ichiro.kageyama@car-fd.or.jp
2 College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan; kuriyagawa.yukiyo@nihon-u.ac.jp
3 Nagoya University, Furocho, Chikusaku, Nagoya, Aichi 464-8603, Japan; haraguchi@nagoya-u.jp
4 Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530, Japan; kaneko@ge.osaka-sandai.ac.jp
5 Nihon Michelin Tire Co., Ltd., Shinjuku Park Tower 15F, 3-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-1073, Japan; motohiro.asai@michelin.com

* Correspondence: haraguchi@nagoya-u.jp

Featured Application: The magic formula (MF) is used to estimate the road friction characteristics.

Abstract: This research deals with the possibility for construction of the database on the braking friction coefficient for actual roads from the viewpoint of traffic safety especially for automated driving such as level 4 or higher. In an automated driving such levels, the controller needs to control the vehicle, but the road surface condition, especially the road friction coefficient on wet roads, snowy or icy roads, changes greatly, and in some cases, changes by almost one order. Therefore, it is necessary for the controller to constantly collect environment information such as the road friction coefficients and prepare for emergencies such as obstacle avoidance. However, at present, the measurement of the road friction coefficients is not systemically performed, and a method for accurately measuring has not been established. In order to improve this situation, this study examines a method for continuously measurement for the road friction characteristics such as \(\mu-s \) characteristics.

Keywords: Road Friction; Environmental Information; Measurement; Friction Estimation

1. **Introduction**

 According to data from the Ministry of Land, Infrastructure, Transport and Tourism, the pavement rate of Japanese road in 2019 is about 82.4% including simple pavement, and the pavement rate of general national roads is about 99.5%. The spread of pavement can be expected to improve riding comfort, fuel consumption, and noise and vibration performance. Especially on paved roads, the friction coefficient is relatively high, and relatively high braking performance and obstacle avoidance performance are expected as a viewpoint of road safety. However, even on such pavement roads, these coefficients of friction have been shown to be significantly affected by surface conditions such as wet, dry, snowy and icy conditions, as well as running speed. It is also known that the friction coefficient of the road surface is greatly affected by the pavement material, pavement method, and usage conditions even if the road surface condition is the same. According to the literature [1], it is shown that the road surface friction coefficient significantly decreases according to a vehicle speed as shown in Figure 1. From this Figure 1, it can be seen that the sliding friction coefficient at wet condition depends on the speed, and in particular, the reduction rate of the friction in the wet surface is extremely large. Furthermore, it was reported that the friction characteristics of the accident occurrence location were measured, and it was shown that the accident occurrence rate increases when the friction coefficient is 0.4 or less.
On actual roads, the coefficient of braking friction varies greatly depending on the state of wetness, running pattern of the vehicles, tire structure and surface material, and so on. According to researchers for pavement, pavement in recent years has taken safety into consideration, and the spread of permeable pavement, which is particularly widespread on highways in Japan, has led to a sharp decrease in the accident rate on highways. It is considered that this is largely due to the effect of improving visibility in rainy weather and suppressing a decrease in the friction coefficient in wet surfaces. In this way, the road surface friction characteristics are greatly related to the safety of the vehicle, and it seems that the safety has been secured considerably at present. In addition, these changes in friction characteristics are greatly affected by the dryness and wetness of the road surface, but a more dangerous condition is the effect of snowfall and freezing in winter, and in some cases the friction coefficient decreases by about an order of magnitude. A systematic measurement method of the braking friction coefficient on an actual road and its creation in a database will be very important issues from the viewpoint of contribution to traffic safety and construction of a new driving support system including automated driving. Therefore, it was pointed out that the importance of estimating the road surface in autonomous driving would increase in the future.

Therefore, in this study, we will provide information on how to consider the road friction coefficient in order to ensure the safety of the vehicle, especially the safety of the autopilot vehicle that will become widespread in the future, and how to provide such information.

Figure 1. Sliding friction coefficient and road surface condition [1].

2. Characteristics of Road Friction

Normally, two main methods have been used to measure the road friction coefficient on the actual road surface, one is a stationary measuring device such as Pendulum-type skid resistance tester (British Pendulum Skid Resistance Tester), DF tester (Dynamic Friction Tester), and so on, and the other is a moving state measuring device such as bus-based or trailer-based road slip resistance measurement vehicle such as Grip Tester, and so on [4,5]. The former is suitable mainly for measuring the dynamic friction coefficient at a local point, and the latter is suitable for measuring the friction characteristics of an actual tire while moving. The purpose of these devices is focused on measuring the maximum coefficient of friction on the road surface.

Important characteristics between tire and road in the development of new vehicles are not only to know about the maximum coefficient of friction, but also to know about the value of the slip ratio at which the maximum coefficient of friction occurs, the braking coefficient related to the braking effect, rolling resistance related to fuel consumption. Figure 2 shows typical road friction characteristics during braking measured at 65km/h.
This Figure 2 shows the results of measurements on dry and wet surface conditions using various road surfaces and tires, with the longitudinal axis representing the friction coefficient and the lateral axis representing the slip ratio. The slip ratio shown here is shown as a percentage and is defined below (Equation 1).

\[s = \frac{v - \omega r}{v} \]

here, \(s \): slip ratio, \(\omega \): angular velocity of tire, \(r \): tire radius, \(v \): vehicle speed.

Figure 2. Characteristics of road friction coefficient.

Figure 3. Difference in friction coefficient depending on road surface condition.

The sliding friction characteristics of the road at wet surface shown in Figure 1 showed decreased sharply with respect to the speed, but from this Figure 2, it is shown no significant difference in the characteristic shape in the region where the slip ratio was relatively small. In order to confirm the difference in these road surface conditions, the wet surface condition and the dry surface condition are classified, and the characteristic difference is shown in Figure 3. From this Figure 3, it can be seen that the road friction characteristics on wet surfaces are significantly reduced compared to dry roads as a whole, and the characteristics shown in Figure 1. Figure 4 shows the clear features and points of interest of these characteristics on road surface friction.

On wet roads, it seems that the peak \(\mu \) is also reduced, but not so big change to affect road traffic safety. The reason for this is that an adhesion region and a sliding region are
generated in the contact patch of the tire, and the reason why friction coefficients in the sliding region is reduced at wet surfaces. In order to clarify the relationship around this point, we focused on the relationship between peak μ and lock μ, and is shown in Figure 5.

![Figure 5. Ratio of lock μ to peak μ.](image)

In this Figure 5, the value of peak μ is on the lateral axis, and the degree of decrease in lock μ to the peak μ is shown with respect to this value. This data was measured at 65km / h with a trailer type tire testing machine. From this Figure 5, the decrease in lock μ on the wet road surface is clearly shown, and it is considered that the effect of the decrease in friction coefficient due to the velocity shown in Figure 1 is clearly shown. Currently, automobiles sold in Japan are obliged to install ABS, so when braking suddenly such as emergency breaking, it will be used near the peak μ. Therefore, in order to ensure a vehicle safety, it is necessary to know not only the lock μ but also the peak μ.

Another issue with road friction properties is how road position dependent these properties are. For this purpose, continuous friction characteristic measurement is required, but in the above-mentioned trailer type and other measuring instruments, the characteristic measurement is performed by changing the slip ratio during running, so this continuous data cannot be measured. The Grip Tester as shown in Figure 6 can be used as a device that can measure continuously, but with this device, the slip ratio is fixed. In the μ-s characteristics shown in Figure 2, the slip ratios at peak μ appear to be around 10%, therefore, the measurement result in which the slip ratio on Grip Tester is fixed at 10% is shown in Figure 7. Here, the measurement result when traveling 250m is shown. As it is clear from this Figure 7, the road surface friction characteristic with respect to the position of the road surface changes greatly depending on the environmental change and the condition of the traveling vehicle. From these results, it can be seen that continuous measurement of road friction characteristics on ordinary road surfaces is important. However, another problem is that the peak μ changes depending on the road surface and tires.
Figure 8 shows the relationship between the slip ratio s at peak μ and the peak μ value using the μ-s characteristic shown in Figure 3.

![Image of Grip Tester](image1.png)

Figure 6. Grip Tester using experiment.

![Image of friction measurement](image2.png)

Figure 7. Measurement result for road friction with Grip Tester.

![Image of slip ratio](image3.png)

Figure 8. Slip ratio at peak μ.

From this Figure 8, it can be seen that the slip ratio at which μ peaks are generally concentrated until 20% or less, and these values change within this range. Therefore, it is important to continuously measure the μ-s characteristics. Therefore, Figure 9 shows an image diagram of this continuous μ-s characteristic and the data measured by the device currently used for these measurements.

In this Figure 9, the y-axis shows the slip ratio, the z-axis shows the friction coefficient of the road, and the x-axis shows the running position. Here, since the Grip Tester uses a...
sprocket and a chain to realize a substantially constant slip ratio with respect to the main tire, continuous data can be measured, but the slip ratio is constant. In general, trailer-type and bus-type testers that measure \(\mu - s \) characteristics apply braking force to the measured tires to change the slip ratio, assuming that the friction during this length is constant, the measurement is performed with respect to the certain traveling distance as shown in the Figure 9. Therefore, it is impossible to measure continuous characteristics to travel distance. Furthermore, since the BP tester and the DF tester measure the lock \(\mu \), they can be used as reference data for vehicle safety, but not as effective information for the safety. Therefore, it is necessary to construct a method for measuring the \(\mu - s \) characteristics shown in Figure 9 with respect to the traveling direction of the road.

![Figure 9. Image of \(\mu - s \) characteristics on actual roads and of the various measurement system data [3].](image)

	Peak \(\mu \)	Lock \(\mu \)	\(\mu - s \) Characteristics	Continuity	Velocity \(\mu - s \) Characteristics	depends on \(s \)
Trailer tester	\(\bigcirc \)	\(\bigcirc \)	\(\bigcirc \)	\(\times \)	\(\times \)	\(\times \)
Bus tester						
Grip tester	\(\bigtriangleup \)	\(\times \)	\(\times \)	\(\bigcirc \)	\(\bigcirc \)	
BP tester	\(\times \)	\(\bigcirc \)	\(\times \)	\(\times \)	\(\times \)	
DF tester	\(\times \)	\(\bigcirc \)	\(\times \)	\(\times \)	\(\bigcirc \)	\(\bigcirc \)

Finally, Table 1 summarizes the characteristics of devices that generally measure road surface friction characteristics in the past.

From this result, it can be seen that none of the measuring devices currently in use satisfies all the road friction information proposed in this study. Since there is no device for directly measuring the new road surface friction characteristics proposed by this paper, therefore, we propose a new measurement system for estimating these characteristics in the following chapters.

3. Road friction estimation method

In order to continuously measure the road surface friction characteristics, it is necessary to continuously measure the characteristics with a fixed slip ratio. Furthermore, it is necessary to confirm the method for estimating the overall \(\mu - s \) characteristics from some combinations of \(\mu \) and \(s \) set. In this study, the magic formula (MF) proposed by Prof. Pacejka in Delft University of Technology [2] is used to estimate the road friction characteristics. This MF has been complicated and improved so that the detailed characteristics
of the tire can be expressed, but this basic concept is used in this paper. The basis of this equation is a combination of the sin function and the arctangent function (Equation 2), which is expressed here using three parameters as follows.

\[\mu = a \sin[b \tan^{-1}(c \ s)] \]

(2)

Here, \(a\), \(b\), and \(c\) are parameters for determining the characteristic shape, and \(s\) means slip ratio. Differentiating this MF with the slip ratio \(s\) gives the following Equation 3.

\[\frac{d\mu}{ds} = \frac{a \ b \ c \ \cos[b \tan^{-1}(c \ s)]}{c^2 \ s^2 + 1} \]

(3)

Here, since the differentiation of MF at \(s = 0\) represents \(K_B\), following Equation 4 is introduced.

\[K_B = \frac{\partial \mu(s)}{\partial s} \bigg|_{s=0} = a \ b \ c \]

(4)

Next, at the point where Equation 3 becomes 0, the value at which this value peaks is \(\mu\)-max, so the slip ratio at which peak \(\mu\) occurs using this is shown below (Equation 5).

\[s_p = \tan \left(\frac{\pi}{2b} \right) \]

(5)

Using this Equation 5, the peak \(\mu\) (\(\mu\)-max) is expressed by the following Equation 6.

\[\mu_{\text{max}} = a \sin \left[b \tan^{-1} \left\{ \tan \left(\frac{\pi}{2b} \right) \right\} \right] \]

(6)

Further, lock \(\mu\) is obtained by substituting \(s = 1\) for MF, and is shown in the following Equation 7.

\[\mu_L = a \sin(b \tan^{-1} c) \]

(7)

In order to express each characteristic shown here, it is necessary to identify the parameters \(a\), \(b\), and \(c\) in the MF shown in Equation 2, using the experimental data. We conduct here using the experimental results of three sets of \(\mu\) and \(s\). As an example, Figure 10 shows a comparison between the result identified using MF and the experimental result. From this result, it can be seen that although the value of lock \(\mu\) is slightly different, the \(\mu\)-s characteristics can be generally identified by using MF. The parameters at this identification result are as follows.

\[a=0.8232 \quad b=1.6450 \quad c=21.1680 \]

![Figure 10. Comparison between experiment and identification results [3].](image-url)
Therefore, the results of determining these three parameters \(a, b, c\) based on the obtained experimental data are shown in Figure 11. Since the parameter \(a\) represents the value of the peak \(\mu\), it is compared with this value. Here, since the identification is performed using the steepest descent method, the relationship with other parameters is also examined, but from the relationship in this Figure 11(a), the correlation coefficient between \(\mu_{\text{max}}\) and parameter \(a\) is about 0.994. It shows a very high correlation. The relationship between the remaining parameters \(b\) and \(c\) is shown in the Figure 11(b), and although there are large variations due to differences in shape, etc., the range that these parameters can take is clarified. MF is a transcendental function, and if it is calculated using data of three points in this paper, innumerable solutions that completely match these will occur, but it is impossible to describe actual \(\mu-s\) characteristics using such solution. So, the convergence calculation is performed by specifying the range that each parameter can take with reference to these values. Therefore, identification is performed by setting restrictions on each coefficient based on the shape of the actual \(\mu-s\) characteristic.

\[\begin{array}{c}
\text{(a) Relation between } \mu_{\text{max}} \text{ and parameter } a \\
\end{array}\]

\[\begin{array}{c}
\text{(b) Relation between parameter } b \text{ and } c \\
\end{array}\]

Figure 11. MF parameters identified from experimental data.

4. Identification result of road friction characteristics

In the Figure 8, the slip ratio \(s_f\) at which the peak \(\mu\) occurs is concentrated at about 5% to 10% on the wet surface conditions and around 8% to 18% on the dry surface conditions. Since most vehicles in Japan are equipped with an ABS system, the operating range when emergency braking is required is mainly near this peak \(\mu\). In order to improve the estimation accuracy of peak \(\mu\) as much as possible, it is necessary to concentrate around the slip ratio \(s_f\) for the identification. Therefore, the slip ratios for measurement are set to 3, 10, 17% for the equipment designed in this paper. Therefore, the results of estimating the \(\mu-s\) characteristics using the characteristics of these three points are shown for the characteristics of the three different characteristics as shown in Figure 12. This Figure 12 is the
result of identification in consideration of the above-mentioned parameter setting region, and the three points in this Figure 12 are the values used for identification, and the blue line shows the experimental results and the red line shows the identification results using MF. It can be seen that K_s, $\mu_{-\text{max}}$, s_P, etc. are well represented. Therefore, regarding the experimental results conducted in the past, the comparison between the results obtained by identification and the experimental results is shown in Figure 13. These characteristics of road friction are very important factors for traffic safety such as vehicle behavior and motion control, and so on. Focusing on these identification results, it can be seen that the correlation with the experimental results is very high and can be an important index for traffic safety. Therefore, next, we examine a system that simultaneously measures these three points.

![Graphs showing experimental and analytical results.](image)

Figure 12. Identification results of μ-s characteristics by three different points ($s=3,10,17\%$).
5. Consideration of measurement device

It is important to consider a mechanical connection to rotate the tire with a constant slip ratio. As a simple mechanism, it can be realized by arranging sprockets or toothed pulley having different numbers of tooth on the two tires shown in Figure 14, and connecting them with a chain or a timing belt. In this Figure 14, tire 1 is the main tire (driving tire), and tire 2 is the measurement tire. What may be a problem here is that the main tire may be greatly affected by the measurement tire and may not be able to rotate sufficiently. Since these tires are attached to a trailer or a vehicle, they have the same speed, but it is necessary to calculate the slip ratio of each tire in this case. Here, the same tires are used (assumption $R_1 = R_2$), the sprocket radii (r_1, r_2) are changed, and the slip ratios of each tire
are calculated as s_1 and s_2 from the vehicle speed v and the respective speeds ω_1 and ω_2. Here, it is assumed that the rolling resistance is small, and that the μ-s characteristics of each tire are the same. In this case, the slip ratio of the measured tire to the main tire is represented below (Equation 8) using the mechanical connection condition.

$$s_2 = 1 - \frac{r_1}{r_2}(1 - s_1) \tag{8}$$

In addition, the following Equation 9 can be obtained from the relationship between the torque balance of individual tires and the tension of the chain.

$$F_{B1} = -\frac{r_1}{r_2}F_{B2} = -\frac{r_1}{r_2}[a \sin(b \tan^{-1}(c s_2))]N_2 \tag{9}$$

Tire 1 becomes a drive tire, and the slip ratio can be kept small due to the sprocket ratio. Therefore, under the condition ($s_1 << 1$), the longitudinal force of the tire 1 can be approximated as follows.

$$F_{B1} \equiv a \, b \, c \, s_1 N_1 \tag{10}$$

Transforming the Equation 10 above, the slip ratio of the main tire is described as follows (Equation 11).

$$s_1 = -\frac{1}{b \, c \, N_1} \frac{r_1}{r_2} N_2 \sin(b \tan^{-1}(c s_2)) \tag{11}$$

Since the measurement tires constructed in this study have the configuration shown in Figure 15, it is necessary to extend these equations. It is assumed that each load N_s of sensing tire are the same.

$$s_1 = -\frac{r_1}{b \, c \, N_1} \frac{N_s}{r_2} \left[\sin(b \tan^{-1}(c s_2)) + \frac{\sin(b \tan^{-1}(c s_3))}{r_3} + \frac{\sin(b \tan^{-1}(c s_4))}{r_4} \right] \tag{12}$$

As an example, Figure 16 shows the results of calculation with tire loads of 500N, $b = 1.7$, and $c = 12$. In addition, since braking force is always applied to these measured tires, it is necessary to calculate the traction force FT, but when calculating the longitudinal forces of four tires from Equation 12, it is approximately 1.2kN. From this value, it is considered that the traction force is not a value that hinders normal running, and that this system functions sufficiently.
6. Conclusion Remarks

This study examined the construction of a device for continuously measuring the friction characteristics of actual roads, which are greatly related to the road safety. As a result of the analysis, the following conclusions are obtained.

(1) The equipment that measures road friction characteristics are examined, especially continuously measurement for μ-s characteristics, and it is shown that sufficient information cannot be obtained with the current equipment.

(2) As a result of analysis using MF to continuously measure μ-s characteristics, it is shown that sufficiently satisfactory results will be obtained.

(3) Finally, it is shown that the outline of the trailer type measuring device using the method.

We are currently constructing this measuring device, and we plan to show the results in the future research.

7. Acknowledgement

A part of this research was carried out as a research project of East Nippon Expressway Company Limited (NEXCO East Japan). We would like to thank all the people involved.

References

1. Onoda. Skid Resistance on Road Surfaces. Asphalt 2003, Vol. 46, No.214, pp.3-10.
2. Pacejka, H. B.; Bakker, E. The magic formula tire model. Supplement to Vehicle System Dynamics 1992, Vol.21, pp.1-18.
3. Kageyama et al. Study on Measurement for Friction Characteristics on Actual Road Surface. Transactions of JSAE 2020, Vol.51, No.5, pp.924-930
4. N B M Zaid, M R Hainin et.al. Evaluation of Skid Resistance Performance Using British Pendulum and Grip Tester. Earth and Environmental Science 220 2019, pp.1-7.
5. H.S.Lee, et.al. Measuring Friction of Patterned and Textured Pavements -A Comparative Study-, Transportation Research Record Journal of the Transportation Research Board 2155 2010, pp.91-98.