Regulation of microRNA biosynthesis and expression in 2102Ep embryonal carcinoma stem cells is mirrored in ovarian serous adenocarcinoma patients

Michael F Gallagher*†1,2, Richard J Flavin†4, Salah A Elbaruni†1,2, Jamie K McInerney1,2, Paul C Smyth1, Yvonne M Salley1,2, Sebastian F Vencken1,2, Sharon A O'Toole3, Alexandros Laios3, Mathia YC Lee5, Karen Denning1, Jinghuan Li1, Sinead T Aherne1, Kai Q Lao6, Cara M Martin1,2, Orla M Sheils1 and John J O'Leary1,2

Address: 1Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland, 2Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland, 3Department of Obstetrics and Gynaecology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland, 4The Centre for Molecular Oncologic Pathology, The Dana Faber Cancer Institute, Boston, MA02115, USA, 5NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore and 6Applied Biosystems, 850 Lincoln Centre Dr, Foster City, CA 94404, USA

Email: Michael F Gallagher* - gallagmi@tcd.ie; Richard J Flavin - richard_flavin@dfci.harvard.edu; Salah A Elbaruni - elbaruns@tcd.ie; Jamie K McInerney - mcinerjk@tcd.ie; Paul C Smyth - pasmyth@tcd.ie; Yvonne M Salley - salleyy@tcd.ie; Sebastian F Vencken - venckens@tcd.ie; Sharon A O'Toole - shotoole@tcd.ie; Alexandros Laios - alldaio2000@yahoo.com; Mathia YC Lee - leecym@gis.a-star.edu.sg; Karen Denning - denningkg@tcd.ie; Jinghuan Li - jinghual@tcd.ie; Sinead T Aherne - ahernesi@tcd.ie; Kai Q Lao - kai.lao@lifetech.com; Cara M Martin - cmartin3@tcd.ie; Orla M Sheils - osheils@tcd.ie; John J O’Leary - olearyjj@tcd.ie

* Corresponding author †Equal contributors

Abstract

Background: Tumours with high proportions of differentiated cells are considered to be of a lower grade to those containing high proportions of undifferentiated cells. This property may be linked to the differentiation properties of stem cell-like populations within malignancies. We aim to identify molecular mechanism associated with the generation of tumours with differing grades from malignant stem cell populations with different differentiation potentials. In this study we assessed microRNA (miRNA) regulation in two populations of malignant Embryonal Carcinoma (EC) stem cell, which differentiate (NTera2) or remain undifferentiated (2102Ep) during tumourigenesis, and compared this to miRNA regulation in ovarian serous carcinoma (OSC) patient samples.

Methods: miRNA expression was assessed in NTera2 and 2102Ep cells in the undifferentiated and differentiated states and compared to that of OSC samples using miRNA qPCR.

Results: Our analysis reveals a substantial overlap between miRNA regulation in 2102Ep cells and OSC samples in terms of miRNA biosynthesis and expression of mature miRNAs, particularly those of the miR-17/92 family and clustering to chromosomes 14 and 19. In the undifferentiated state 2102Ep cells expressed mature miRNAs at up to 15,000 fold increased levels despite decreased expression of miRNA biosynthesis genes Drosha and Dicer. 2102Ep cells avoid differentiation, which we show is associated with consistent levels of expression of miRNA biosynthesis genes and mature miRNAs while expression of miRNAs clustering to chromosomes
ian serous adenocarcinoma [OSC] is the most common
tumour type worldwide diagnosed each year [16]. Strikingly, stem cell-
bearing populations from multiple different malignancies can self-renew, differentiate and regenerate malignant tumours [1-9]. When introduced into SCID mice, a single so-called Cancer Stem Cell (CSC) is often sufficient to form a tumour representative of the original malignancy [8,10]. The phenotype of the resultant tumour can vary dramatically between malignancies but almost all CSCs generate tumours with populations of undifferentiated and differentiated cells. Tumours containing high concentrations of undifferentiated stem cells are considered to be highly malignant and differentiated tumours less malignant. We postulate that the differentiation capacity of the stem cell population within a malignancy may ultimately determine tumour grade. We aim to elucidate why stem cells have different differentiation potentials and generate tumours with different grades. Addressing this, we have chosen the embryonal carcinoma (EC) model, the only human stem cell model containing both pluripotent and nullipotent cells [11,12]. Pluripotent NTera2 EC cells differentiate into teratocarcinomas, three germ layer tumours containing a small proportion of undifferentiated stem cells [13]. In contrast, nullipotent 2102Ep EC cells can avoid differentiation during tumourigenesis, generating pure embryonal carcinomas, tumours consisting almost entirely of undifferentiated stem cells [14]. Thus this model allows comparative analysis of stem cell populations that generate highly and less malignant tumours through differing differentiation potentials. We postulate that the mechanisms facilitating tumourigenesis without differentiation may represent an avenue for targeting.

MicroRNAs (miRNAs) are short, non-coding RNAs that influence the transcription or translation of target mRNAs [20,21]. Primary miRNA transcripts (pri-miRs) are processed through stem-looped pre-miRs to achieve mature miRNAs, a process that is facilitated by the Drosha, Dicer and eIF6 proteins. Mature miRNAs hybridize at multiple locations along their target mRNA, including the seed region of the 3' untranslated region (UTR) [22]. In most cases, hybridization suspends these targets within the cell, preventing their translation. This post-transcriptional mechanism influences the timing at which mRNAs are presented for translation. At least one miRNA (miR-373) binds to a site in the promoter of its mRNA targets (E-Cadherin and CSDC2), acting as a positive regulator of transcription [22]. Specific miRNA populations have been described in stem cells, CSCs and malignancy in general [20,23,24]. Additionally, miRNAs located in specific clusters on chromosomes are often simultaneously synthesized. Simultaneous expression of miRNAs located in clusters along chromosomes 14 and 19 has been linked to ovarian malignancy [25,26] while the oncogenic role of the miR-17/92 family is well defined [27-29]. Aberrant expression of cancer-specific 'onco-miRs' is associated with the targeting of oncogenes and tumour suppressors in several different malignancies [30]. Many of these miRNAs have been shown to be vital to cancer cells [30].

In this study, we used real time miRNA qPCR to individually, quantitatively analyze alterations in expression of all known miRNAs during early differentiation of NTera2 and 2102Ep EC cells. Using NTera2 cells as a model of a functionally differentiating EC cell, we aimed to identify miRNA mechanisms associated with the absence of differentiation associated with 2102Ep cells. Our data identifies
key differences in expression levels of miRNA biosynthesis genes and of mature miRNAs, particularly those associated with the miR-17/92 family and clustering to chromosomes 14 and 19. Interestingly, undifferentiated 2102Ep cells express mature miRNAs at increased levels despite a decreased level of expression of Drosha and Dicer. While the malignancy-associated miR-17/92 cluster is prominent in both undifferentiated cell types, 2102Ep-specificity was associated with clustering to malignancy-associated chromosomes 14 and 19. Expanding this analysis we have identified NTer2a- and 2102Ep-specific differentiation mechanisms that relate to miRNA biosynthesis and expression levels of mature miRNAs. Subsequently, we demonstrate that these mechanisms are similarly relevant to OSC patient samples. OSCs display up to 85% similarity with 2102Ep cells at the miRNA level. Our data reveals that miRNA regulation in 2102Ep EC cells is highly relevant to OSC samples.

Methods

Cell culture

Pluripotent NTer2a and nullipotent 2120Ep EC cells were a gift from Peter Andrews, University of Sheffield, and were maintained in the undifferentiated state in DMEM media supplemented with 10% FCS, 5% L-Glutamine and 5% PenStrep (Lonza, Basel, Switzerland). Differentiation was achieved by cell scraping (NTera2) or trypsinisation (2102Ep) and replating in the above cell culture media supplemented with 10 mM retinoic acid (RA) for 3 days.

Case selection and tumour sample preparation

The training set comprised of 6 fresh frozen serous tumours (classified according to the FIGO system: stage (II-IV) and grade (2-3)) and normal whole ovary. Briefly, all tumour samples were taken from the ovary, snap frozen within a hour of surgery and stored at -80°C. After tissue processing in a cryostat at -20°C, frozen sections were cut, mounted on slides, stained with H&E and reviewed by a histopathologist (RJF) to confirm the original diagnosis and the presence of >70% tumour. For validation purposes, 40 ovarian serous carcinoma, classified as above, were selected from archival formalin-fixed, paraffin-embedded (FFPE) tissue, between the years 1991-2006 from St. James’s Hospital, Dublin. H&E slides of all tumours were reviewed by a histopathologist (RJF) and original diagnoses confirmed. FFPE blocks were selected that contained over 90% tumour with contaminating stromal tissue estimated to be no more than 10%. Normal whole ovaries were used for normalisation.

Isolation of RNA and TaqMan® quantitative PCR (qPCR)

Total RNA was isolated from EC cells using the RNeasy kit (Qiagen, West Sussex, UK) and cDNA synthesised using the cDNA Archive Kit (Applied Biosystems {AB}, Foster City, CA), all per manufacturer’s instructions. Differentiation status was confirmed through TaqMan® qPCR analysis (AB) using pre-designed assays. Frozen tumour samples were placed in liquid nitrogen, ground thoroughly with a mortar and pestle and homogenized using a Qiashredder column (Qiagen). miRNA was isolated using the total RNA protocol, mirVANA™ microRNA isolation kit (Ambion, Austin, TX) as per manufacturer’s instructions. Total RNA was extracted from FFPE material using RecoverAll™ Total Nucleic Acid Extraction Kit (Ambion Ltd., Cambridgeshire, UK) following the manufacturer’s protocol. Quantitative miRNA real-time PCR analysis was carried out using the TaqMan® microRNA assay early-access panel (AB) as per manufacturer’s instructions. This panel included assays for each of the 330 human miRNAs known at the start of the study. The protocol detects mature miRNAs using looped-primer real time PCR involving three steps: reverse-transcription (RT), pre-PCR amplification and real-time PCR [31]. Each RT contained 10 ng total RNA. TaqMan® analysis was carried out in triplicate on three biological replicate samples, using let-7a and miR-16 as both internal and negative controls, on the 7900 real time PCR system (AB).

Data analysis, clustering and target gene prediction

miRNA data was generated using the ΔΔCT method [32]. Data was normalised through expression of let-7a. Hierarchical clustering was performed on the final miRNA expression lists using the Spotfire analysis® platform (AB). Clustering was performed using the Unweighted Pair Group Method with Arithmetic Mean (UPGM). miRNA clustering analysis was carried out using the Sanger Institute’s miRNA registry resource miRBase [33]. Data was normalised through expression of let-7a. Hierarchical clustering was performed on the final miRNA expression lists using the Spotfire analysis® platform (AB). Clustering was performed using the Unweighted Pair Group Method with Arithmetic Mean (UPGM). miRNA clustering analysis was carried out using the Sanger Institute’s miRNA registry resource miRBase [33].

Results

Undifferentiated 2102Ep EC cells display increased miRNA expression profiles, emphasizing high expression of chromosome 14 and 19 miRNAs

The expression of miRNAs was assessed both globally, via the expression of miRNA biosynthesis genes Drosha, Dicer and elf6, and individually, via quantitative miRNA qPCR analysis of a panel of 330 human miRNAs, which generates quantitative data for each mature miRNA as an individual assay. The relative expression of miRNA biosynthesis genes Dicer, Drosha and elf6 in both undifferentiated EC cell types is shown in Figure 1. While elf6 expression was almost identical, Dicer and Drosha were expressed at slightly and substantially lower levels in undifferentiated 2102Ep cells compared to undifferentiated NTer2a cells respectively. The same 203 miRNAs
were expressed and 127 miRNAs undetected in both undifferentiated cell types, indicating strong (93.5%) qualitative similarity (Additional file 1). Undifferentiated 2102Ep cells uniquely expressed 21 additional miRNAs, representing a mechanism that is independent of NTera2 mechanisms. 10 (NTera2) and 9 (2102Ep) of the top 10 highest expressed miRNAs have previous associations with other malignancies (Table 1). 4 (NTera2) and 3 (2102Ep) of these miRNAs are members of the miR-17/92 family (miRs-17-5p, -19a, -19b, -106b and -25), a cluster associated with many malignancies. The 21 2102Ep-specific miRNAs prominently cluster to regions of chromosomes 19 and 14 (Additional file 1).

Despite these qualitative similarities, a quantitative comparison identified substantial differences. Our analysis reveals that the qualitative similarities of undifferentiated NTera2 and 2102Ep cells are associated with the miR-17/92 family. In contrast substantial quantitative differences between the cells are associated with clustering to chromosomes 14 and 19. 134 of the 203 miRNAs were expressed at higher levels in 2102Ep cells compared to NTera2 cells while 18 were downregulated (Figure 2, Additional file 1). 17 miRNAs were particularly notable, displaying 1,000-15,000 fold higher expression in 2102Ep cells, while 18 miRNAs showed decreased expression of up to -53 fold (Figure 3). The majority of these 17 upregulated and 18 downregulated miRNAs have previous associations with malignancy (Additional file 2). Prominent clustering to chromosomes 14 and 19 was apparent (Additional file 1). Additionally, 7 of these miRNAs are members of the miR-17/92 cluster (miRs-17-5p, -17-3p, 18a*, -18b, -92, -106a and-363) and were up to 6,000 fold higher expressed in undifferentiated 2102Ep cells (Tables 1, 2).

Regulation of miRNA expression by differentiated NTera2 cells is absent in 2102Ep cells

We next treated both cell types with retinoic acid (RA) for 3 days to induce differentiation. Data is presented as the alteration of expression in differentiated cells compared to undifferentiated cells. This time point was chosen to assess miRNA expression in early differentiation. Differentiation status of RA-treated NTera2 cells was confirmed by decreased expression of pluripotency markers Oct4 and Nanog and increased expression of differentiation markers Ncam1, Eno3 and Afp (Figure 4). While eIF6 expression was unaltered, that of Drosha and Dicer was slightly decreased in differentiated NTera2 cells (Figure 5). 113 miRNAs displayed altered expression in differentiated NTera2 cells compared to undifferentiated cells (Figure 3, Additional file 3). Of these, 65 miRNAs were upregulated and 48 downregulated (Additional file 3). The majority of the top 10 upregulated and downregulated miRNAs in differentiated NTera2 cells have previous associations with other malignancies (Table 2). In contrast to undifferentiated cells, there is no overlap between top tens in each cell type and no prominence of miR-17/92 miRNAs is present (Additional file 3).

We next assessed the regulation of these 113 miRNAs in 2102Ep cells treated with RA. We reasoned that the response of 2102Ep cells to RA could reveal mechanisms associated with this cell line's ability to remain undifferentiated during tumourigenesis. Unaltered expression of pluripotency and differentiation markers confirmed nul-

Table 1: The top 10 highest expressed miRNAs in undifferentiated NTera2 and 2102Ep cells, their expression levels and associations with other malignancies.

miRNA	Expression NTera2 (-dCt)	Malignancy	miRNA	Expression 2102Ep (-dCt)	Malignancy	
miR-222	10.2	Prostate [50]	miR-191	12.7	Leukaemia [51]	
miR-19b	9.7	Leukaemia [51]	miR-302a	11.8	Lymphoma [52]	
miR-19a	9.6	Lymphoma [52]	miR-221	11.1	Prostate [50]	
miR-103	8.9	Lung [53]	miR-222	10.3	Breast [59]	
miR-17-5p	8.6	Oesophageal [54]	miR-17-3p	10.1	Leukaemia [51]	
miR-135b	8.4	Pancreas [55]	miR-103	10.0	Lymphoma [52]	
miR-25	7.8	Leukaemia [56]	miR-19b	9.7	Oesophageal [54]	
miR-130a	7.9	Colorectal [57]	miR-92	8.8	Colorectal [57]	
miR-30c	7.5	Prostate [50]	miR-320	8.6	Lymphoma [52]	
miR-106b	7.3	Colorectal [62]	miR-135b	8.6	Tumourigenesis	
		Cervix [61]				
		Prostate [60]				
lipotency of 2102Ep cells (Figure 4). The results demonstrate that high grade 2102Ep cells are associated with unaltered expression of most miRNAs that are altered during NTera2 differentiation. In contrast to NTera2 cells, levels of eIF6, Drosha and Dicer expression were not altered in differentiated 2102Ep cells (Figure 5). Based on their expression in 2102Ep cells, we have placed these 113 miRNAs into 4 Groups (Figures 6, 7, 8 and 9 & Additional file 3). Group 1 miRNAs are expressed similarly in each cell type. Group 2 miRNAs are altered by differentiation treatment in NTera2 cells but are unaltered in 2102Ep cells. Groups 3 and 4 miRNAs are described in the next section. There are 16 miRNAs in Group 1 and 84 miRNAs in Group 2. 3 and 4 Group 1 miRNAs cluster to chromosomes 14 and 19 respectively (Figure 6 & Additional file 3). 7 Group 2 miRNAs cluster to chromosome 14 and 16 to chromosome 19 (Figure 7 & Additional file 3). Thus, Group 1 miRNAs represent a common mechanism while Group2 miRNAs are NTera2-specific.

2102Ep cells respond independently to retinoic acid treatment

During our analysis we identified a third and fourth group of miRNAs that represent a 2102Ep-specific response to differentiation (Figures 8 and 9 & Additional file 3). Group 3 miRNAs are altered in both differentiated cell types but in an opposite fashion. Group 4 miRNAs are
altered in 2102Ep cells following RA treatment but not in NTera2 cells. These groups constitute a specific 2102Ep response to differentiation that is independent of NTera2 mechanisms. 12 Group 3 miRNAs are downregulated while only one, miR-137, is upregulated in 2102Ep cells. No Group 3 miRNAs cluster to regions of chromosomes 14 and 19. Group 4 contains 29 miRNAs. 17 Group 4 miRNAs are downregulated and 12 upregulated. Downregulated miRNAs range in expression to decreases of -633 fold. 3 miRNAs, miRs-433, -425 and -105, are only expressed in differentiated 2102Ep cells. 5 Group 4 miRNAs cluster to chromosome 14 and 3 to chromosome 19 (Additional file 3). Once again, the majority of Group 3 and 4 miRNAs have previous associations with malignancy (Additional file 4). While Group 2 miRNAs represent an absence of regulation in differentiated 2102Ep cells, Groups 3 and 4 represent specific responses by differentiated 2102Ep cells that are independent to the response of differentiated NTera2 cells. Finally, the previously discussed group of 21 miRNAs that were expressed in undifferentiated 2102Ep cells but not in NTera2 cells remain unaltered upon RA treatment of 2102Ep cells. These 21 miRNAs represent an independent miRNA mechanism employed by 2102Ep cells in both states. Their prominent clustering to regions of chromosomes 14 and 19, which are associated with ovarian cancer, is striking (Additional file 1).

miRNA expression in high-grade OSC samples
We have previously reported increased expression of Dicer and elf6 in high-grade OSC samples compared to normal [35]. Here, the expression of 330 miRNAs in high-grade OSC samples was assessed as above. 154 miRNAs (35 up- and 119 downregulated) were specifically expressed in OSCs compared to matched non-malignant (‘normal’) ovarian tissue samples (Additional file 5). Our tumour sample data shows 72% concordance with previously published ovarian tumour data (Figure 10[26,36-40]). A subset of miRNAs was further validated in a larger independent cohort of OSC samples (Figure 11). This indicated that our data is a good representative data set. The top 10 up- and downregulated tumour-specific miRNAs are illustrated in Figure 12. All but 2 of which have previous associations with malignancy (Table 3). 4 members of the miR-17/92 family are downregulated (miRs-17-3p, -18a*, -20a and -92) but only 1 upregulated (miR-18a) in OSC samples. Additionally, the prominence for clustering to chromosome 14 was maintained in OSC samples while that to chromosome 19 was decreased (Additional file 5). We initially compared our OSC miRNA data to that of undifferentiated EC cells. 106 of the 203 (52%) miRNAs commonly expressed by both undifferentiated EC cell types were OSC-specific (Additional file 5). Of this 52%, 86 miRNAs were upregulated and 19 downregulated, indicating a bias towards upregulation of EC-specific miRNAs in OSC samples. miR-17/92 family members

Figure 3
The comparative expression levels of 17 of the highest upregulated and 18 of the highest downregulated miRNAs in undifferentiated 2102Ep cells compared to undifferentiated NTera2 cells. The relative expression of the top mature miRNAs in undifferentiated 2102Ep cells compared to NTera2 cells is shown. These results demonstrate a substantial bias towards increased expression of mature miRNAs in 2102Ep cells. The miRNAs and levels of expression are listed in Additional file 1.
expressed in OSC samples are similarly expressed in EC cells. 10 of the 21 (48%) 2102Ep-specific miRNAs were similarly OSC-specific (Additional file 5). The prominence for clustering to chromosome 14 was maintained in OSC samples while that to chromosome 19 is lost.

Relevance of OSC-specific miRNAs to EC cells
OSC miRNA data was next compared to differentiated EC miRNA data. Hierarchical clustering indicated that OSC samples clustered with 2102Ep cells while NTera2 cells were more divergent (Figure 13). This is in concordance with the highly aggressive phenotype of 2102Ep EC cells but may also be related to lineage-specificity. Approximately 85% of OSC-specific miRNAs were expressed in 2102Ep cells (Additional file 5). The majority of tumour-specific miRNAs (whether up- or downregulated in tumours) were consistently expressed in 2102Ep cells. The next largest overlap was observed for tumour-specific miRNAs that were downregulated in 2102Ep cells. Comparatively few tumour-specific miRNAs were upregulated in 2102Ep cells. This indicates that tumour-specific miRNAs are tightly regulated in 2102Ep cells. We next asked whether the top 10 up- and downregulated OSC-specific miRNAs play a role in 2102Ep cells. All but 2 (miRs-202* and -216) top downregulated tumour-specific miRNAs were detected in 2102Ep cells. All of the top upregulated tumour-specific miRNAs were detected in 2102Ep cells.

We subsequently assessed the relevance of Group 1, 2, 3 and 4 miRNAs to OSC samples. Approximately half of Group 1 and 2 miRNAs were found to be OSC-specific, the majority of which were downregulated in OSC samples (Additional file 3). Prominent clustering to chromosome 14 is maintained in OSC samples but is substantially decreased for chromosome 19. 62% of Group 3 miRNAs and 38% of Group 4 miRNAs were OSC-specific, again showing a bias towards downregulation of miRNAs (Additional file 3). Clustering to chromosomes

Table 2: The top 10 highest expressed miRNAs in differentiated NTera2 and 2102Ep cells, their expression levels and associations with other malignancies.

miRNA	Relative Expression	Malignancy	miRNA	Relative Expression	Malignancy
miR-507	-100,000	Lung [64]	miR-518	-634.0	Lung [64]
miR-142-5p	-100,000		miR-153	-30.9	
miR-520b	-100,000		let-7g	-10.1	Colon [78]
miR-522	-100,000		miR-504	-9.9	
miR-122a	-100,000		miR-362	-8.1	
miR-515-5p	-100,000	Prostate [65]	miR-17-3p	-6.2	Lymphoma [52]
miR-182a	-100,000	Lung [66]	miR-511	-3.4	Liver [47]
miR-199a*	-100,000	Mesothelioma [67]	miR-193b	-3.2	Endometrial [72]
miR-7	-100,000	Lung & Breast [68]	miR-455	-2.8	
miR-206	-100,000	Breast [69]	miR-431	-2.7	
miR-140	6.1	Kaposi Sarcoma [70]	miR-199b	2.6	Medullablastoma [79]
miR-191*	6.7	Breast [30]	miR-199b	2.6	Lymphoma [80]
miR-188	8.3	Leukaemia [51]	miR-363	2.6	Gastric [81]
miR-99b	11.1	Endometrial [71]	miR-129	3.0	Tongue [78]
miR-509	18.3		miR-184	3.8	Neural [82]
miR-219	21.9	Tongue [72]	miR-519d	3.8	
miR-99a	22.5	Lung [73]	miR-10a	119.2	Breast [75]
miR-335	26.0	Ovary [35]	miR-433	100000	Leukaemia [83]
miR-10a	100000	Myeloma [74]	miR-425	100000	Glioblastoma [84]
let-7c	100000	Breast [75]	miR-105	100000	Multiple [85]
		Ovary [61]			
		Leukaemia [51]			
		Prostate [76]			
		Lung [52]			
14 and 19 was decreased for Group 4 miRNAs expressed in OSC samples. This identifies a substantial group of miRNAs that are regulated in both EC cells and OSC samples. Regulation of Group 3 miRNAs was particularly relevant to OSC samples.

Discussion
Compromising the ability of CSCs to remain in the undifferentiated state is a potential avenue for anti-cancer therapies. Before this can be achieved, we must identify mechanisms involved. 2102Ep cells are the stem cell population of ECs, malignant tumours that can arise in the ovary [11]. In vivo, these cells avoid differentiation to produce highly-aggressive, poorly-differentiated tumours [11]. In this study we report that miRNA regulation is associated with this phenotype. In undifferentiated cells, this involves decreased expression of miRNA biosynthesis genes, increased expression of mature miRNAs and expression of miRNAs clustering along chromosomes 14 and 19. When treated with RA, 2102Ep cells avoid differentiation and continue to proliferate. This is associated with consistent levels of expression of miRNA biosynthesis genes and mature miRNAs while expression of miRNAs clustering to chromosomes 14 and 19 is deemphasised. OSC samples displayed decreased expression of miRNA biosynthesis genes, decreased expression of mature miRNAs and prominent clustering to chromosomes 14 but not 19. This indicates that miRNA biosynthesis and levels of miRNA expression, particularly from chromosome 14, are tightly regulated both in progenitor cells and in tumour samples.
Comparison of the expression levels of miRNAs altered in differentiated NTera2 and 2102Ep cells: Group 2 miRNAs. miRNAs were grouped according to their expression patterns upon differentiation of NTera2 and 2102Ep cells. Group 2 miRNAs are altered in NTera2 cells but unaltered in 2102Ep cells. We propose that Group 2 miRNAs likely act downstream of any lesion in the 2102Ep differentiation mechanism. miRNAs in each group are listed in Additional file 3.

Comparison of the expression levels of miRNAs altered in differentiated NTera2 and 2102Ep cells: Group 3 miRNAs. miRNAs were grouped according to their expression patterns upon differentiation of NTera2 and 2102Ep cells. Groups 3 miRNAs are altered in an opposite fashion in each cell line. Group 3 miRNAs represent a 2102Ep-specific response to differentiation that is independent of NTera2 mechanisms. miRNAs in each group are listed in Additional file 3.
Mechanistically, our data indicates that undifferentiated 2102Ep EC cells can express more miRNAs at higher levels of expression than NTera2 cells despite their decreased expression of miRNA biosynthesis genes. We have previously described the association of decreased elf6 expression with high-grade OSC samples from patients with reduced disease-free survival [35]. In concordance with this, decreased Dicer and Drosha expression is linked to advanced stage ovarian cancer and increased expression to increased patient survival [41]. Interestingly, elf6 expression was unaltered in EC cells. This indicates the complexity of miRNA biosynthesis regulatory mechanisms in EC stem cells and tumours. This mechanism is clearly linked to higher grade malignancy and its elucidation will be the subject of ongoing analysis. The levels of expression of miRNAs were higher in undifferentiated 2102Ep cells than NTera2 cells. 2102Ep cells express 21 miRNAs in both states that are not expressed by NTera2 cells. Similarly, OSC samples showed biased upregulation of miRNAs compared to non-malignant samples. Thus levels of mature miRNA expression are tightly controlled both in progenitor cells and developed tumours. It is widely reported that specifically regulated miRNA groups commonly occur in clusters on specific chromosomes. Prominent clustering to three particular sites was observed in this study: the miR-17/92 cluster and chromosomes 14 and 19, which have been linked with numerous malignancies. miR-17/92 family clusters are associated with regulation of proliferation, angiogenesis and apoptosis in malignancy [27-29]. These miRNAs were highly expressed by both undifferentiated cell types and were not prominently 2102Ep specific. Previous associations of chromosome 19 with germ cell tumours and of chromosome 14 with ovarian cancer are particularly striking [26,42]. miRNAs with 2102Ep specificity prominently clustered to these chromosomes while Group 1 miRNAs did not.

Figure 9
Comparison of the expression levels of miRNAs altered in differentiated NTera2 and 2102Ep cells: Group 4 miRNAs. 29 Group 4 miRNAs are altered in RA-treated 2102Ep cells but unaltered in differentiated Ntera2 cells. Group 4 miRNAs represent a 2102Ep-specific response to differentiation that is independent of Ntera2 mechanisms. miRNAs in each group are listed in Additional file 3.
NAs in these regions may contribute to the 2102Ep phenotype and will be assessed by ongoing analysis.

2102Ep cells avoid differentiation through a mechanism that involves maintained expression of pluripotency master genes Oct4 and Nanog [11]. We have identified miRNA regulation mechanisms associated with this phenotype. Group 1 miRNAs behave similarly in each EC cell type and are thus likely to act upstream of the 2102Ep differentiation lesion. Group 2 miRNAs are altered upon differentiation of NTera2 cells but not in 2102Ep cells, suggesting that their role lies downstream of the 2102Ep differentiation lesion. It is possible that Group 1 miRNAs are involved with initiation of tumorigenesis from EC cells. For example, miR-10a targets HoxA1, a long estab-

Figure 10
Comparison of miRNA expression in OSC patient samples. The venn diagram shows the number of differentially expressed miRNAs identified in the current study and the number of miRNAs identified in six previous studies [26,36-40]. These overlap substantially.

Figure 11
Validation of OSC patient sample miRNA data. Validation of training set: Log10 RQ values for miR-429, mir-141 and let-7f in both the pilot study (RQp) and the larger independent FFPE cohort (RQv). There was modest correlation between both sets of results (r = 0.50).

Figure 12
Top 10 miRNAs up- and downregulated in OSC patient samples. Barchart of the mean logarithmic fold change (RQ) of the top ten up and downregulated miRNAs in OSC samples relative to normal ovary.
primitive epithelial cells, which may explain the similarity of Group 1 miRNAs with other malignancies. Table 3: The top 10 highest expressed miRNAs in OSC patient samples compared to normal ovary, their expression levels and associations with other malignancies.

miRNA	Relative Expression	Malignancy
Downregulated		
miR-383	-1000	Pancreas [88,89]
miR-216	-250	
miR-508	-142.9	
miR-204	-71.5	Leukaemia [55]
miR-509	-67.1	Pancreas [88]
miR-497	-47.6	Gastric [89]
miR-153	-33.3	Breast [90]
miR-202a*	-19.6	Leukaemia [91]
miR-188	-17.2	Liver [92]
miR-195	-16.9	Bladder [93]
Upregulated		
miR-429	2082	Ovary [37,94]
miR-200c	600	Metastasis [95]
miR-141	533	Pancreas [96]
miR-183	510	Metastasis [95]
miR-187	237	Gastric [97]
miR-200a	145	Lung [98]
miR-182	113	Colorectal [54]
miR-200b	103	Thyroid [99]
miR-200a*	67	Ovary [36,94]
miR-373	59	Prostate [83]

Table 3: The top 10 highest expressed miRNAs in OSC patient samples compared to normal ovary, their expression levels and associations with other malignancies.

miRNA	Relative Expression	Malignancy
Downregulated		
miR-383	-1000	Pancreas [88,89]
miR-216	-250	
miR-508	-142.9	
miR-204	-71.5	Leukaemia [55]
miR-509	-67.1	Pancreas [88]
miR-497	-47.6	Gastric [89]
miR-153	-33.3	Breast [90]
miR-202a*	-19.6	Leukaemia [91]
miR-188	-17.2	Liver [92]
miR-195	-16.9	Bladder [93]
Upregulated		
miR-429	2082	Ovary [37,94]
miR-200c	600	Metastasis [95]
miR-141	533	Pancreas [96]
miR-183	510	Metastasis [95]
miR-187	237	Gastric [97]
miR-200a	145	Lung [98]
miR-182	113	Colorectal [54]
miR-200b	103	Thyroid [99]
miR-200a*	67	Ovary [36,94]
miR-373	59	Prostate [83]

The substantial overlap between miRNAs expressed by EC cells and in OSC samples exists despite their different phenotypes. EC is of germ cell origin whilst OSC is of epithelial origin. However, morphologically, EC is composed of primitive epithelial cells, which may explain the similarities reported here. It may also be related to tissue-specific expression or reflect a temporal relationship in terms of degree of dedifferentiation Regulation of miRNA biosynthesis and mature miRNA expression in these diverse samples indicates the importance of these mechanisms to ovarian malignancy generally. More than 80% of tumour-specific miRNAs were expressed in 2102Ep cells. This clearly indicates that miRNA regulation in 2102Ep cells is highly relevant to tumour samples, more relevant than miRNA regulation in tumour samples is to 2102Ep cells. Many of these miRNAs have reported associations with malignancy. Stem cells represent a small proportion of a well-differentiated tumour. In contrast, 2102Ep cells generate a malignant tumour in vivo that is almost completely EC cells [11,14], while melanoma contains a high proportion of stem cells [46]. Thus it is not surprising that highly aggressive 2102Ep cells are more relevant to tumour samples than NTera2 cells.

In this study we have identified two 2102Ep-specific mechanisms. A group of 21 miRNAs are constantly expressed, half of which are OSC-specific. The functional significance of this overlap is suggested by their validated targets. For example, miR-224 targets apoptosis inhibitor 5 (Apil5) while miR-503 suppresses cyclinD1 [47,48]. 2102Ep cells respond to RA treatment via a second specific mechanism that is independent of NTera2 mechanisms and has not been previously demonstrated. Group 3 miRNAs are alternatively regulated in each differentiated cell type. This represents a 2102Ep mechanism that, in response to differentiation, acts in the exact opposite fashion to NTera2 cells. Approximately 62% of Group 3 miRNAs were OSC-specific, the largest overlap observed between EC cells and OSC samples. Group 3 miRNAs represent a key target group for future analysis. It is tempting to postulate that this mechanism may facilitate counteraction of differentiation to some extent, a possibility that will be assessed through ongoing analysis. miR-137 is an interesting example as it is expressed in only differentiated 2102Ep cells and in undifferentiated NTera2 cells and is associated with stemness and malignancy [49]. miR-137 is downregulated in OSC samples, indicating complex regulation. The identification of a fourth group of miRNAs is potentially highly relevant to our understanding of tumorigenesis from 2102Ep cells. Group 4 miRNAs are altered upon RA treatment of 2102Ep cells. In contrast, Group 4 miRNAs are not altered in NTera2 cells. This indicates that 2102Ep cells can regulate a specific miRNA response to this differentiation signal. Group 4 miRNAs displayed the lowest overlap with OSC samples. This suggests that Group 4 miRNAs are highly relevant to 2102Ep cells. It is possible that Group 4 miRNAs may act against differentiation to contribute to the high grade phenotype, a possibility that is being actively assessed.
Conclusion
The highly malignant phenotype of 2102Ep EC cells employs a three pronged mechanism of miRNA regulation involving miRNA biosynthesis, levels of mature miRNA expression and alternative expression of miRNAs in response to differentiation. This miRNA regulation is associated with the ability of 2102Ep cells to avoid differentiation to generate high-grade tumours and that is relevant to tumour samples. These miRNAs are either similarly or alternatively expressed during tumourigenesis. As the precise mechanisms of miRNA targeting are still being elucidated, it is possible that miRNAs expressed in 2102Ep cells may play similar or diverse roles in OSCs. Due to their association with high-grade progenitor cells and tumours, Group 3 and 4 miRNAs are of particular relevance to future analysis.

Abbreviations
Afp: Alpha fetal protein; CSC: Cancer stem cell; EC: Embryonal carcinoma; Eno3: Enolase 3; FFPE: Formalin-fixed paraffin-embedded; mRNA: Messenger RNA; miRNA: MicroRNA; Ncam1: Neural cell adhesion molecule 1; OSC: Ovarian serous adenocarcinoma; qPCR: Quantitative polymerase chain reaction; RA: Retinoic Acid RT: Reverse transcription; UPGM: Unweighted pair group method; UTR: Untranslated region.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MFG, RIF and SAE designed the experiment, analyzed and interpreted data and were the primary authors of the manuscript. SAE and RIF conducted the experiment and data analysis. RIF (pathology), MFG, YMS, SFV (cancer stem cell biology) and MFG, MYL (stem cell biology) contributed to data interpretation. JKM designed figures and contributed to the preparation of the manuscript. PCS contributed to data analysis and experimental design. SOT and AL conducted experimental work. KD, JL and STA aided experimental design and procedure. KL contributed to technical interpretation of the data. CMM (tumour biology) and OS (pathology) critically analyzed the manuscript. JOL directly supervised the study. All authors read and approved the final manuscript.
Additional material

Additional file 1

miRNAs in undifferentiated EC cells. miRNAs expressed in each undifferentiated cell type and their chromosomal clustering are listed. Additionally, the relative expression values of miRNAs in undifferentiated 2102Ep cells compared to undifferentiated NTera2 cells are detailed. Click here for file [http://www.biomedcentral.com/content/supplementary/1757-2215-2-19-S1.PDF]

Additional file 2

Top ten miRNAs in undifferentiated 2102Ep EC cells compared to undifferentiated NTera2 cells and their associations with malignancy. The top ten miRNAs up- and down-expressed in undifferentiated 2102Ep cells compared to undifferentiated NTera2 cells, their previous associations with malignancy and these references are detailed. Click here for file [http://www.biomedcentral.com/content/supplementary/1757-2215-2-19-S2.PDF]

Additional file 3

miRNAs in differentiated EC cells: Group 1-4. miRNAs expressed in differentiated cells were divided into four groups based on their expression patterns. The miRNAs expressed in each group and their chromosomal clustering is detailed. Click here for file [http://www.biomedcentral.com/content/supplementary/1757-2215-2-19-S3.PDF]

Additional file 4

The association of Group 3 and 4 miRNAs with malignancy. Group 3 and 4 miRNAs, their previous associations with malignancy and these references are detailed. Click here for file [http://www.biomedcentral.com/content/supplementary/1757-2215-2-19-S4.PDF]

Additional file 5

Comparison of miRNAs in EC cells and OSC patient samples. miRNAs expressed in OSC samples, their rankings, chromosomal clustering and overlap with EC cells are described. Click here for file [http://www.biomedcentral.com/content/supplementary/1757-2215-2-19-S5.PDF]

Acknowledgements

We thank Professor Peter Andrews, University of Sheffield, for the kind gift of EC cells. We acknowledge financial support from Applied Biosystems. SAE is supported by funding from the Cultural Affairs Dept. Libyan People's Bureau, London, UK. RJF is funded by a HRB Clinical Research Fellowship (Grant No: CRT/2006/010). The authors wish to acknowledge support from The Emer Casey Foundation and Cancer Research Ireland.

References

1. Li C, Heide DG, Dalera P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone M: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67(3):1030-1037.
2. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalera P, Weissman IL, Clarke MF, Allies LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. PNAS 2007, 104(3):973-978.
3. Szotek P, Piereetti-Vannarke M, Maslakos PT, Dinulos DM, Connolly D, Foster R, Dombkowski D, Preffier F, MacLaughlin DT, Donahoe PK: Ovarian cancer side population defines cells with stem-like characteristics and Mullerian Inhibiting Substance responsiveness. PNAS 2006, 103(20):1154-1159.
4. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of prostate cancer stem cells. Cancer Res 2005, 65(23):10946-10951.
5. Galli R, Binda E, Orfanelli U, Cipollone G, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimenico F, Vescovi A: Isolation and characterization of tumourigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004, 64:7017-7021.
6. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT: CD133, a novel marker for human prostatic epithelial cells. J Cell Sci 2004, 117(16):3539-3545.
7. Singh SK, Hawkins C, Clarke IJ, Squire JA, Bayani J, Hides T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.
8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumourigenic breast cancer cells. PNAS 2003, 100:3983-3988.
9. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from paediatric brain tumours. PNAS 2003, 100:15178-15183.
10. Kleinsmith LJ, Pierce GB: Multipotentiality of single embryonal carcinoma cells. Cancer Res 1964, 24:1544-1552.
11. Andrews PW, Martin MM, Bahrami AR, Damajio I, Gokhale P, Draper JS: Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 2005, 33(Pt 6):1526-30.
12. Andrews PW: From teratocarcinomas to embryonic stem cells. Phil Trans R Soc Lond, B 2002, 357:405-417.
13. Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, Fogh J: Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 1984, 50(2):147-162.
14. Andrews PW, Fendbender B, Hakomori S: Human embryonal carcinoma cells and their differentiation in culture. Int J Andrology 1987, 10(1):95-104.
15. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics. CA 2008, 58:71-96.
16. Fertlay JBF, Pisani P, Parkin DM: Cancer incidence, mortality and prevalence worldwide. IARC Press: Lyon, Globocan 2000.
17. Scully RE: Classification of human ovarian tumours. Environ Health Persp 1987, 73:15-24.
18. Berry NB, Bapat SA: Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype. J Ovarian Res 2008, 1:8.
19. Alvarez AB, Chen R, Fu H, Montagna M, Schwartz PE, Rutherford T, Silasi D, Steffenson KD, Waldstrom M, Visintin I, Mor G: Molecular phenotyping of ovarian cancer stem cells unravel the mechanisms for repair and chemoresistance. Cell Cycle 2009, 8(15):158-166.
20. Stadler BM, Ruohola-Baker H: Small miRNAs: keeping stem cells in line. Cell 2008, 132:563-566.
21. Tay Y, Zhang J, Thompson AM, Lim B, Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nat Nature 2008, 453(2174):124-8.
22. Place RF, Li L, Pookot D, Noonan EJ, Dahija R: MicroRNA-373 induces expression of genes with complementary promoter sequences. PNAS 2008, 105(5):1608-1613.
23. Croce CM, Vlodavsky I: OncomiRs: the discovery and progress of microRNAs in cancer. Mol Cancer 2007, 6:60.
24. Esquela-Kerscher A, Slack FJ: OncomiRs-microRNAs with a role in cancer. Nature Rev Cancer 2006, 6:259-69.
25. Micc F, Weimer J, Hagoum L, Skodtheim RJ, Grunewald R, Abeler VM, Silins I, Lothe RA, Trope CG, Sepher S, Heim S: Reverse painting of microdissected chromosomes 19 markers in ovarian carcinoma identifies a complex rearrangement map. Genes, Chrom Cancer 2009, 48(2):184-93.
26. Zhang L, Volinia S, Borneo T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS,
Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Lemenin A, Simossa V, Sandaltzopoulos R, Naomoto Y, Kasatros D, Gimmoty PA, DelMichele A, Hulin J, Butzow R, Rustgi A, Schmidt BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. *PNAS* 2008, 105(19):7004-9.

Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland M, Newman J, Brennan RT, Crowley J, Coster R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. *Cell* 2012, 150(5):875-86.

Dews M, Horamayouni A, Yu D, Murphy D, Sevignani C, Wenzel E, Furch EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A. Augmentation of tumour angiogenesis by a Myc-activated microRNA cluster. *Nature Genet* 2006, 38(9):1060-5.

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mudge J, Lowe SW, Hammond SM. A micro-RNA polycistron as a potential human oncogene. *Nature* 2005, 438:828-33.

Cali GA, Croce CM. MicroRNA signatures in cancer. *Nature Rev Cancer* 2006, 6:857-866.

Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Tacchi L, Angioni S, Martin C, Sheils OM, O'Leary JJ. MicroRNA signatures for low-grade cervical cancers derived exosomes as diagnostic biomarkers of ovarian cancer. *Cancer Res* 2009, 69(8):3356-63.

Nam EJ, Yoon H, Kim SW, Kim H, Kim YT. Systematic validation of predicted targets for cyclinD1. *BMC cancer* 2009, 9:194.

Taylor DD, Gercel-Taylor C. MicroRNAs: regulators of oncogenesis and stemness. *BMC Med* 2008, 6:15.

Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P. The role of microRNA-21 and microRNA-221 in androgen-independent prostate cancer. *Cancer Res* 2009, 69(8):3356-63.

Ju X, Li D, Shi Q, Hou H, Sun N, Shen B. Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia. *J Pediatr Hematol Oncol* 2009, 31(1):1-10.

Robertus JL, Harms G, Blokzijl T, Booman M, de Jong D, van Hiemoff G, Pati S, Schuuring E, Hof P, Beer A. van den Berg. Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. *Mod Path* 2009, 22(4):547-55.

Abad N, Navarrete MD, Vilañolas N, Quera A, Agustí C, Hauru A, Ramirez J, Torres A, Monzo M. Micro RNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. *Oncology* 2009, 76(3):162-9.

Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X, Li B, Meng X, Ma X, Luo M, Shao K, Li N, Qiu B, Mitchellon K, Cheng J, He J. Distinctive microRNA profiles relate to patient survival in esophageal squamous cell carcinoma. *Cancer Res* 2008, 68(1):26-33.

Lee KH, Lottermann C, Karikari C, Omura N, Feldmann G, Habbé G, Hoppe S, Mengel JT, Maira A. Epigenetic Silencing of MicroRNA miR-107 Regulates Cyclin-Dependent Kinase 6 Expression in Pancreatic Cancer. *Pancaratology* 2009, 9(3):293-301.

Moriyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Utaka H, Sugihara K, Mori M. Over- and under-expressed microRNAs in human colorectal cancer. *Intl J Oncol* 2009, 34(4):1069-75.

Mraz M, Pasupatlov S, Malinova K, Sabapathy I, Mouly J. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. *Leukemia* 2009, 23(3):506-9.

Jiang Y, Zhang L, Zhou Z, Shi S, Feng X, Li B, Meng X, Ma X, Luo M, Shao K, Li N, Qiu B, Mitchellon K, Cheng J, He J. Distinctive microRNA profiles relate to patient survival in esophageal squamous cell carcinoma. *Cancer Res* 2008, 68(1):26-33.

Lowry AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lembrez C, Benes V, Schmidt S, Drake J, Ball G, Kerin MJ. MicroRNA signatures predict estrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. *Breast Cancer Res* 2008, 10(5):R72.

Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee JH, Yang HK, Kim VN. Functional links between clustered microRNAs: significance of cell-cycle inhibitors by microRNA clusters in gastric cancer. *Nature Rev Cancer* 2009, 9(7):477-86.

Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells. *Gynecol Oncol* 2008, 111(3):478-86.

Xu Y, Formentini A, Chien M, Weir DB, Russo JI, Ju J, Kormann M, Ju P. Prognostic Values of microRNAs in Colorectal Cancer. BioMark Insights 2006, 2:1-1312.

Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA. MicroRNA expression alterations are linked to tumourigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. *Oncogene* 2007, 26(30):4442-52.

Liu X, Semperle LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH, Ma Y, Fiering S, Momoi V, Li H, Di Renzo J, Korc M, Cole CN, Bak M, Kauppinen S, Dmitrovsky E. Uncovering growth-suppressive MicroRNAs in lung cancer. *Clin Cancer Res* 2009, 15(4):1177-83.

Siva AC, Nelson LJ, Fleischer CL, Majessi M, Becker MM, Vessella RL, Reynolds MA. Molecular assays for the detection of microRNAs in prostate cancer. *Molec Cancer* 2009, 8:17.
66. Wong TS, Liu XB, Wong BY, Ng RWY, Yuen AP, Wei WT: Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 2008, 14(9):2989-92.

67. Mascaux C, Laas JF, Antoine G, Haller A, Ninane V, Burny A, Scullier JP: Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J 2009, 33(2):352-9.

68. Guled M, Lattu L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AOZ, Creutz AT, CDNRA, RNM: JUN are dysregulated among other genes by miRNAs in malignant mesothelioma A miRNA microarray analysis. Gene Chrom Cancer Res 2009, 48(7):615-23.

69. Webster RJ, Giles KM, Price KJ, Zhang PM, Matzik JS, Leedman PJ: Redistribution of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 2009, 284(9):5731-41.

70. Adams BD, Cowee DM, White BA: The Role of miR-206 in The Epidermal Growth Factor (EGF) Induced Repression of Eosinophilic Neutrophilic Granulocyte and Macrophage Differentiation in Human Macrophages. Cell Mol Life Sci 2009, 66(8):1215-30.

71. O'Hara AJ, Chugh P, Wang L, Netto EM, Luz E, Harrington WJ, Dezube BJ, Damania B, Dittrimer DP: Pre-microRNA signatures define candidate of endothelial cell transformation in kaposi sarcoma. PLoS Pathogens 2009, 5(4):e1000389.

72. Wu W, Lin Z, Zhang Z, Liang X: Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 2009, 18(1):30-35.

73. Yamasuda H, Yasawara H, Tokumaru S, Taguchi A, Nimura Y, Otsada H, Nagino M, Takahashi T: Detailed characterization of a homozygously deleted region corresponding to a candidate tumour suppressor locus at 21q11-21 in human lung cancer. Gene Chrom Cancer Res 2008, 47(9):810-8.

74. Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, Pizzimenti S, Ferracin M, Sabbioni S, Toaldo C, Pettazzoni P, Dianzani MU, Negriani M, Barrera G: MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic Biol Med 2008, 45(2):282-9.

75. Xu T, Zhi Y, Xiong Y, Ge YY, Yun JP, Zhuang SM: MicroRNA-195 suppresses tumourigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology 2009, 50(1):13-21.

76. Ichinose T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009, 125(2):3455-62.

77. Xiao L, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14(11):2348-60.

78. Piacentini S, Ferracin M, Sabbioni S, Tosaldi C, Pertazzoni P, Dianzani MU, Negriani M, Barrera G: MicroRNA expression profiling of thyroid tumours: biological significance of microRNA expression in thyroid tumours. J Pathol 2009, 219(1):102-9.

79. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD: Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumours. RNA 2008, 14(1):35-42.

80. Silber J, Lim DA, Petretici C, Persson AI, Maunakea AK, Yu M, Vandenbroucke Jr, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Boylla A, Hodgson JG: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumour stem cells. BMC Med 2008, 6:14.

81. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, Erickson PF, Shellman YG, Robinson WA: MicroRNA-137 targets pro-metastasis-associated transcription factor in melanoma cell lines. Cancer Res 2008, 68(5):3162-8.

82. Roldo C, Missiajla E, Hagan JP, Falcioni M, Capelli P, Bersani S, Calin GA, Volina S, Liu CG, Scarpas A, Croce CM: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumours are associated with distinctive pathologic features and clinical behaviour. J Pathol 2009, 217(2):189-200.

83. Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T, Si J: MicroRNA-29a in human chronic myeloid leukemia CD34+ cells increases USF2-expression by the let-7 microRNA family. Blood 2008, 112(23):5556-61.

84. Sun X, MacDonald DM, Huetten PC, Feng Z, El Naqa IM, Schwarz JK, Mutch DG, Grigsby PW, Powell SN, Wang X: A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009, 114(1):457-64.

85. Baffa R, Passan M, Volinia S, O’Hara B, Liu CG, Palazzo JP, Gardiman M, Bugge M, Gonnella LG, Croce CM, Rosenberg A: MicroRNA expression profiling of human metastatic carcinomas identifies cancer gene targets. J Pathol 2009, 11002:1-16.

86. Mees ST, Mardin WA, Wendeel C, Bauemer N, Willsche E, Schiller N, Schleicher C, Colombi-Benkmann M, Haier J: EP300 - a microRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer 2009, 99(999A):NA.

87. Du Y, Yu X, Ding L, Yao H, Yu H, Zhou T, Si J: Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 2009, 44(6):556-61.

88. Cho WC, Chow AS, Au JS: Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 2009, 45(12):2197-206.

89. Nikiforova MN, Tseng GC, Stewart D, D’Oriano D, Nikiforov YE: MicroRNA expression profiling of thyroid tumours: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008, 93(5):1600-8.

90. Lee KH, Gooan YG, Hsia M, Lee CH, Jian SH, Lin JT, Chen YL, Lu PJ: MicroRNA-373(miR-373) post-transcriptionally regulates a large tumour suppressor, homolog 2(LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res 2009, 315(15):2529-38.