Physiological basis of interactive responses to temperature and salinity in coastal-marine invertebrate: implications for responses to warming
Torres, Gabriela; Chamantier, Guy; Wilcockson, David; Harzsch, Steffan; Gimenez Noya, Luis
Ecology and Evolution

DOI:
10.1002/ece3.7552

Published: 01/06/2021

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Torres, G., Chamantier, G., Wilcockson, D., Harzsch, S., & Gimenez Noya, L. (2021). Physiological basis of interactive responses to temperature and salinity in coastal-marine invertebrate: implications for responses to warming. Ecology and Evolution, 11(11), 7042-7056. https://doi.org/10.1002/ece3.7552

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Physiological basis of interactive responses to temperature and salinity in coastal-marine invertebrate: implications for responses to warming

Gabriela Torres¹*, Guy Charmantier ², David Wilcockson³, Steffen Harzsch⁴ and Luis Giménez¹,⁵

¹ Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Helgoland, Germany.
² Univ. Montpellier, CNRS, Ifremer, IRD, UM, Marbec, Montpellier, France.
³ Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.
⁴ Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
⁵ School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK.

*Corresponding author:
Dr. Gabriela Torres
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
Biologische Anstalt Helgoland
27498 Helgoland, Germany
Tel: +49 4725 8193141
Email: Gabriela.Torres@awi.de

Running head: Physiological basis of multiple stressor effects
ABSTRACT

Developing physiological-mechanistic models to predict species’ responses to climate-driven environmental variables remains a key endeavour in ecology. Such approaches are challenging, because they require linking physiological processes with fitness and contraction or expansion in species’ distributions. We explore those links for coastal marine species, occurring in regions of freshwater influence (ROFIs) and exposed to changes temperature and salinity. First, we evaluated the effect of temperature on haemolymph osmolality, and on the expression of genes relevant for osmoregulation in larvae of the shore crab *Carcinus maenas*. We then discuss and develop a hypothetical model linking osmoregulation, fitness, and species expansion/contraction towards or away from ROFIs. In *C. maenas*, high temperature led to a three-fold increase in the capacity to osmoregulate in the first and last larval stages (i.e. those more likely to experience low salinities). This result matched the known pattern of survival for larval stages where the negative effect of low salinity on survival is mitigated at high temperatures (abbreviated as TMLS). Because gene expression levels did not change at low salinity nor at high temperatures, we hypothesise that the increase in osmoregulatory capacity at high temperature should involve post translational processes. Further analysis of data suggested that TMLS occurs in *C. maenas* larvae due to the combination of increased osmoregulation (a physiological mechanism) and a reduced developmental period (a phenological mechanisms) when exposed to high temperatures. Based on information from the literature, we propose a model for *C. maenas* and other coastal species showing the contribution of osmoregulation and phenological mechanisms towards changes in range distribution under coastal warming. In species where the osmoregulatory capacity increases with temperature (e.g. *C. maenas* larvae), osmoregulation should contribute towards expansion if temperature increases; by contrast in those species where osmoregulation is weaker at high temperature, the contribution should be towards range contraction.
Keywords: *Carcinus maenas*, climate change, coastal zone, larva, mRNA expression, multiple stressors, osmoregulation, salinity, temperature.

INTRODUCTION

Climate change is driving multiple modifications in environmental conditions (e.g. temperature, humidity) of both terrestrial and aquatic organisms (Gattuso & Hanssen 2009, Helmuth et al. 2010, Gunderson et al. 2016, Boyd et al. 2018). Environmental change is multivariate and therefore organisms are exposed to the simultaneous action of several environmental drivers (Sokolova et al. 2012, Torres et al. 2019, 2020; previously referred as stressors: Folt et al. 1999, Crain et al. 2008, Piggott et al. 2015). Thus, environmental drivers can operate on biological systems (e.g. organisms) in an interactive mode and responses (e.g. survival) cannot be accurately predicted by evaluating the action of each driver in isolation (Crain et al. 2008, Kroeker et al. 2013, Piggott et al. 2015, Gunderson et al. 2016, Côté et al. 2016, Boyd et al. 2018). Interactive responses are classified in two general categories, synergistic or antagonistic. Relevant examples to climate change are for instance, synergistic effects of increased temperature combined with food limitation or elevated CO₂ (i.e. the combined effect of both stressors is larger than the sum of each separate effect: Giebelhausen & Lampert 2001, Schiffer et al. 2014, Przeslawski et al. 2015, Torres & Giménez 2020). By contrast, increased temperature and reduced salinity can operate antagonistically: i.e., warming appears to mitigate the negative effects of low salinity on the performance and fitness in some coastal marine organisms (Lange & Marshall 2017, Spitzner et al. 2019, Torres et al. 2020).

Currently there is a gap in our knowledge about the mechanisms that underlie organismal responses to multiple environmental drivers. The capacity to better understand and predict effects of climate change through multiple drivers requires knowledge of the mechanisms
driving such effects (Galic et al. 2018, De Laender 2018, Thompson et al. 2018, Orr et al. 2020). In particular, responses occurring at the individual, population or species levels are based on physiological mechanisms driving tolerance, in addition to biotic interactions (Pörtner 2010, Somero 2010, 2011, Sokolova et al. 2012, Baert et al. 2016, Ames et al. 2020). Hence, understanding physiological responses to multiple environmental drivers is the starting point towards better models of biotic responses to climate change.

Coastal organisms, occurring in estuaries or regions of freshwater influence (ROFIs: Simpson 1997), are frequently exposed to low salinity, which usually reduces organismal performance (Kinne 1971, Anger 2003). ROFIs are coastal areas influenced by freshwater runoff (associated with estuaries) and are widespread along the world coastal zones (e.g. North European Seas, East coast of the Americas and SE Asia, West coast of Africa). ROFIs are nursery areas for many economically important species. Predictions for changes in salinity at ROFIs varies regionally (IPCC 2013) and seasonally (Robins et al. 2016) but all share the same fate in one regard: temperature is expected to increase over the century. Thus, at the ROFIs, warming will create a new environment within which organisms face additional stressors such as reduced salinity. Hence, a key question is how such organisms will respond to reductions of salinity in the context of increased temperatures. At present, there is no testable mechanistic model predicting species’ responses under such scenarios. More in general, reviews on the combined effect of multiple drivers on performance and fitness bring contradictory results about whether responses to temperature and salinity are predominantly antagonistic (Crain et al. 2008) or synergistic (Przeslawski et al. 2015).

The aim of this paper is twofold: first, we explore the mechanistic basis of an antagonistic effect of temperature and salinity on a model species. Second, we use our results and information from the literature to propose a testable hypothetical model linking osmoregulation, interactive effects of temperature and salinity on organismal performance, and
future changes in species distributions across coastal estuarine gradients in response to warming. We first focus on the antagonistic effect called thermal mitigation of low salinity stress (TMLS: Spitzner et al. 2019) which is common in coastal estuarine organisms (Kinne 1971, Anger 1991, Janas & Spicer 2008, González-Ortegón & Giménez 2014). TMLS is defined as the mitigation of the negative effects of exposure to low salinity on performance or fitness (e.g. survival) by increased temperatures. The critical point is that in species exhibiting TMLS, moderate warming may mitigate the negative effect of low salinity on survival. We studied the mechanisms driving TMLS in the larval stages of the shore crab *Carcinus maenas*. The shore crab *C. maenas* is native to northern Europe and NW-Africa but is a successful invader worldwide (Roman & Palumbi 2004, deRivera et al. 2007, Compton et al. 2010, Leignel et al. 2014, Young & Elliot 2020). *Carcinus maenas* is also representative of a large number of marine organisms that develop through a pelagic larval phase (Anger 2006, Spitzner et al. 2018).

We focus on larval stages of *C. maenas* because we know that TMLS occurs in our study population (Spitzner et al. 2019), and the target stages are osmoregulators (Cieluch et al. 2004); yet, the effect of temperature on osmoregulation has never been studied in *C. maenas*. We are interested in larvae because they are more sensitive to environmental variation compared to the juvenile-adult stages (Pandori & Sorte 2019), and variation in survival controls recruitment (Palumbi 2003, Giménez 2004, Cowen & Spounagle 2009). For *C. maenas*, the first and last larval stages (zoea I and megalopa), as well as juveniles and adults, hyper-osmoregulate at low salinity (Siebers et al. 1972, Cieluch et al. 2004); all these stages occur in coastal or estuarine waters. In contrast, advanced zoeal stages (zoea II-IV) occur in open waters and do not hyper-regulate at low salinities. Spitzner et al. (2019) found that increased temperatures (21-24°C) experienced during the early larval stages can mitigate the effect of low salinity (20‰) on larval survival and developmental time, as compared to larvae reared at temperatures
experienced by the local population (<20°C; North Sea, German Bight, Wiltshire et al. 2010).

Within a population, the strength of TMLS can vary due to parental influences, but evidence for TMLS is found in populations of the Irish Sea (Nagaraj 1993, Torres et al. 2020) and in the Pacific coast of N. America where it is an invader (Hines et al. 2004).

Several mechanisms may drive TMLS in *C. maenas* larvae (and other organisms). For instance, more individuals may reach a given larval stage (or survive to maturity in other species) because high temperatures reduce the time of exposure to a stressor; we define this as “phenological mechanism” as it is based on a change in the timing of events in the life cycle (Post 2020). In addition, there should be adaptive physiological mechanisms explaining the response. Based on previous work on other species (Flügel 1963; Charmantier-Daures et al. 1988, Campbell & Jones 1989, Janas and Spicer 2008), we hypothesise that increased temperatures cause an enhancement in the capacity of individuals for extracellular osmoregulation. Extracellular osmoregulation (here referred to as “osmoregulation”) is defined as the active regulation of the concentration of osmotically active substances in the haemolymph or blood (Péqueux 1995, Charmantier 1998, Lucu & Towle 2003, Henry et al. 2012, McNamara & Faria 2012, Lignot & Charmantier 2015, Rahi et al. 2018). Osmoregulation is an adaptive mechanism keeping organisms at optimal functioning, maintaining for instance the acid-base balance (Whiteley 2011, Whiteley & Taylor 2015), sustaining growth (Torres et al. 2011), and perhaps contributing to tolerance to ocean acidification (Whiteley et al. 2018). Osmoregulation is achieved through the active uptake of ions from the surrounding “diluted” water by transport cells (ionocytes), located in the epithelium of specialised organs (gills in adults; branchiostegites in larval stages of crustaceans: Cieluch et al. 2004, 2007). Ion uptake occurs through the concerted action of several proteins including the enzyme Na\(^+\)-K\(^+\)-ATPase (Lucu & Towle 2003, Thuet et al. 1988, Mackie et al. 2005, Cieluch et al. 2007, Torres et al. 2007, Ituarte et al. 2016), and ion co-transporters (e.g. Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter). The action of
the above-mentioned proteins may involve several processes including the upregulation of gene expression of those enzymes and co-transporters (Luquet et al. 2005, Serrano & Henry 2008, Xu & Liu 2011, Ituarte et al. 2016, Faleiros et al. 2017).

We report on three experiments designed to determine the mechanisms driving the mitigation effect produced by elevated temperature in larvae of *C. maenas* exposed to moderately low salinities (TMLS). In the first and second experiments, we studied the effect of temperature and salinity on the osmoregulatory capacity of zoeae I and megalopae, respectively. In the third experiment, we evaluated the combined effects of salinity and temperature on the levels of mRNA expression of the genes coding for the Na\(^+\)-K\(^+\)-ATPase and the Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter in zoeae I. Then, we discuss and integrate our results into a wider framework and formulate a testable model showing the contribution of osmoregulation to range expansion and contraction of coastal-estuarine species towards or away from ROFiS.

METHODS

Experimental design and procedures

Experiments were carried out with larvae hatched from berried females and megalopae collected from the field at the island of Helgoland (North Sea, German Bight) during the reproductive period in spring-summer (Experiments 1 and 2: osmoregulatory capacity; Experiment 3: gene expression patterns). During embryogenesis, berried females were kept in separated 2L aquaria in oxygenated and filtered (0.2µm) natural seawater (32.5‰) in a temperature-controlled room at 18°C with a 12:12 h light:dark cycle. All experiments were run following standard methods of larval rearing (Torres et al. 2011, Spitzner et al. 2019, Torres & Giménez 2020) using filtered natural seawater, constantly aerated. Larvae were reared in temperature-controlled rooms (at 15, 18, 21, 24°C) and at two acclimation salinities (see Table S1 for experimental design). Salinity (expressed as salt content in “‰”) was manipulated by
diluting natural seawater (32.5‰) with appropriate amounts of tap water and adjusting values using a salinometer (see Table S2 for details on acclimation and test salinities and the corresponding values of osmotic pressure expressed in mOsm kg\(^{-1}\)). Water was changed daily: experimental glass bowls were rinsed and cleaned, larvae were fed freshly hatched *Artemia* sp. nauplii, and dead individuals were removed from the cultures.

Experiment 1: Osmoregulation in zoeae I

We evaluated how temperature modified the osmoregulatory capacity (OC) in larvae reared under different acclimation salinities and subsequently exposed to different tests salinities. OC is defined as the difference between the osmolalities of haemolymph and of the external medium at a given salinity under different conditions (Lignot et al. 2000). We therefore used a factorial design (see Table S1 for details) considering (1) Acclimation salinities, i.e. those experienced from hatching until initiation of the 24h exposure to the test salinities, (2) Test salinities, i.e. those experienced during 24h previous to the sampling of haemolymph, (3) Temperature experienced from hatching until time of sampling of haemolymph. The acclimation salinities and temperatures were chosen based on a previous study showing TMLS (Spitzner et al. 2019). The test salinities were those where larvae are known to significantly hyper-regulate while survival rates are high (>60%: Cieluch et al. 2004); larvae reared in seawater are near the osmotic equilibrium and thus OC \(\approx 0\) mOsm kg\(^{-1}\).

To avoid effects associated with developmental processes related to the moult cycle, osmoregulatory capacity was quantified after exposure to the test salinities in zoeae I at intermoult (i.e. more than 50% of the moult cycle: period between hatching of zoea I and moult to zoea II occurred at the acclimation salinities). Freshly hatched larvae were first assigned to replicate groups of different acclimation salinities and temperatures (see Table S1), group-reared in 500 ml glass bowls until the time of exposure to the test salinities at a density: 0.1
individual * ml⁻¹ (see Experiment 3 for rearing details). Because acclimation salinity and temperature affect developmental time (Table S3), we took special care to ensure that organisms were sampled at intermoult at the appropriate time (see Table S3). Zoeae I from each combination were assigned randomly to the two test salinities by placing individuals in petri dishes for 24h. Previous experiments had shown that an exposure time of less than 24h is sufficient for haemolymph osmolality to become stable in *C. maenas* larvae (Cieluch et al. 2004) and in other tested species (Charmantier 1998). The osmotic pressure of the test salinities was expressed as osmolality (3.4‰ ≈ 100 mOsm kg⁻¹, 29.4 mOsm kg⁻¹ ≈ 1‰, thus natural seawater at 966±1 mOsm kg⁻¹ = 32.5‰) which was determined with a micro-osmometer (Model 3MO, Advanced Instruments, Needham Heights, MA, USA) using 20µl of each salinity (Table S2).

Larvae used to quantify haemolymph osmolality were quickly rinsed in deionised water, gently dried on a filter paper and submersed in mineral oil to avoid evaporation and desiccation; the remaining water was then aspirated using a micropipette. A second micropipette was inserted into the heart in order to extract the haemolymph (sample volume ~ 30 nl). Haemolymph osmolality was then determined with reference to the medium osmolality (i.e. test salinities) using nanoosmometry (Kalber-Clifton nanoliter osmometer; Clifton Technical Physics, Hartford, NY, USA), following Charmantier et al. (1998, 2002), and Cieluch et al. (2004). The results were expressed as osmoregulatory capacity (OC), i.e. the difference between the osmolality of the haemolymph and the medium (i.e. test salinities).

Experiment 2: Osmoregulation in megalopae

Osmoregulation in megalopae was quantified in larvae collected in the intertidal of Helgoland in summer. We opted for field collections because the large number of larvae needed for the experiments (80 megalopae = 4 temperatures x 2 acclimation salinities x 1 test salinity...
x 10 megalopae) was difficult to obtain from cultures. Megalopae were taken from floating and benthic collectors deployed and collected daily, using standard techniques (Giménez et al. 2020). Collected megalopae were immediately transferred to the laboratory, assigned randomly to the different acclimation temperature and salinity treatments as in Experiment 1 (Table S1, Experiment 2), and reared following the same protocol as the zoeae I (see Experiment 1 for details) for 3 days, before exposure to the test salinities. At the appropriate time, megalopae (see Table S4 for n) were exposed to the test salinity for 24h and then used for quantification of osmoregulatory capacity following the same techniques as those used for zoeae I (see Experiment 1). Due to low availability of megalopae, we only used one test salinity (20‰).

Experiment 3: Expression of genes related to osmotic stress in zoeae I.

To assess the variation in the gene expression patterns caused by salinity changes in a warming environment, we selected two target genes encoding for the ion-transport enzyme Na\(^+\)-K\(^+\)-ATPase and the Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter (Towle & Weihrauch 2001), and used the elongation factor 1 and ubiquitin conjugating enzyme E2 L3 as reference genes (Oliphant et al. 2018). The gene expression was evaluated in zoeae I from four separate females collected from the intertidal of Helgoland. Each replicate for the determination of the expression of mRNA consisted of 125 pooled zoeae I after exposure to the acclimation salinities until intermoult as in Experiment 1 (see Table S3 for details). In order to obtain the appropriate number of larvae for ca. 10 replicates (n=10, as in the osmoregulation capacity measurements), the rearing of more than 10,000 larvae was required (n=10 implies rearing more than 10 x 125 = 1,250 individuals per treatment; 1,250 x 8 = 10,000 larvae). Since we were not able to rear such a large number of larvae simultaneously, we used larvae harvested from four different females and took 3 replicates per female per treatment (all females together: n=12 per treatment, 12,000 larvae were sampled). We are aware of the variation among females in the responses to
temperature, salinity and other stressors (Spitzner et al. 2019, Torres et al. 2020); therefore, we
maintained the factor “Female” as a random factor in our statistical analyses and present the
averaged values of all females as well as the data discriminated by female (see Results).

Upon hatching, larvae of each female were assigned at random to culture bowls for mass
rearing. The rearing conditions were chosen in the range of temperatures and salinities where
TMLS has been found (Spitzner et al. 2019), as for Experiment 1 (acclimation salinities: 25.0
& 32.5‰; temperatures: 15, 18, 21 & 24°C; see Tables S1 & S3 for details). Zoeae I were then
sampled from the mass cultures at intermoult (i.e. >50% of the moult cycle occurred under the
acclimation conditions) to avoid effects of the moult cycle (as for Experiment 1, see Table S3).

Three replicate samples (125 larvae each: see Tables S1 & S3 for details) were taken to
determine the mRNA level of genes related to ion-transport: Na\(^+\)-K\(^+\)-ATPase (CamaNaK) and
Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter (CamaCOT) using elongation factor 1 (CamaEL) and ubiquitin
conjugating enzyme E2 L3 (CamaUB) as reference genes (following Oliphant et al. 2018). In
a PCR-clean environment, larvae were quickly rinsed in distilled water, gently blotted dry with
filter paper, placed in 1ml of RNAlater® to stabilize the RNA and immediately frozen at -80ºC
for later analysis. In addition, three replicates (200 larvae each) of freshly hatched zoea from
each female were collected to use as control samples.

Samples were quickly rinsed in DEPC-water to eliminate the RNAlater® and placed in PCR-
clean microcentrifuge tubes (kept at 4°C) containing TRIzol® (Invitrogen, Carlsbad, CA). Total
RNA was extracted from each replicate of pooled larvae by homogenizing the tissue directly
in 500μl TRIzol® in a Qiagen TissueLyser LT (50 oscillations min\(^{-1}\)). Extractions were carried
out according to the manufacturer’s instructions, except that the washing steps in 75% ethanol
were repeated twice. Extracted-RNA was resuspended in 20μl RNAse-free water before
removal of contaminating gDNA with Turbo DNA-freeTM DNAase (Ambion, Austin, Texas)
following manufacturer’s instructions. Total RNA concentration (714±SE 18 ng/ml) was
determined spectrophotometrically with a NanoDrop ND2000™ (Thermo Scientific, UK). Three μl of RNA from each extraction were reverse-transcribed using High Capacity™ cDNA synthesis kit reagents (Applied Biosciences, Carlsbad, CA.) and random primers for 10 min at 25°C followed by 120 minutes at 37°C; the reaction was terminated by heating to 85°C for 5 minutes. The obtained cDNA was stored at -20°C until the quantitative-PCR was performed.

Standard curves or the quantitative-PCRs were developed for all genes (target: CamaNaK & CamaCOT; internal reference: CamaUB & CamaEL; sequences for all primers and probes in Table S5). Templates for standard curves were generated by reverse-transcription of RNA extracted from transport tissues (gills) from adult Carcinus maenas and appropriate dilution of the resulting cDNA. Two sets of multiplex Taqman PCRs were done in 96-well plates using the Bioline SensiFAST™ Probe Lo-ROX kit following manufacturer’s instructions. The qPCR mix (8μl) consisted of 5μl SensiFAST Probe Lo-ROX mix, 0.4μl of each primer (400nM), 0.1μl probe (100nm), 1.2μl DEPC-water and 2μl cDNA (either standards for the calibration curves or unknowns). Selection of different reporter-fluors allowed reactions to run in multiplex with the following combinations (NaK-F & NaK-R and COT-F & COT-R; UB-F & UB-R and EL-F & EL-R; see Table S5 for details). Quantitative-PCRs (in duplicate plates as technical replicates) were run on an Applied Biosystems StepOne Plus™ machine using the following cycling parameters: 95°C for 2 minutes followed by 40 cycles of 5s at 95°C and 30 secs at 60°C. PCR amplification factor and efficiency were determined using the qPCR Efficiency Calculator Thermofischer Scientific (See Table S6 for details) with slopes calculated (GraphPad software) from the calibration curves performed with cDNA from gill tissues; standards were accepted only when amplification efficiency was >90%. Relative expression of target genes (CamaNaK and CamaCOT) was determined against the values from freshly hatched larvae as control using the $2^{\Delta\Delta C_t}$ method (Livak & Schmittgen 2001, Pfaffl 2006) modified to consider different amplification efficiencies and multiple reference genes.
(Vandesompele et al. 2002, Hellemans et al. 2007). All data were normalized to the geometric mean of the reference genes elongation factor 1-alpha (CamaEL) and ubiquitin conjugating enzyme E2 L3 (CamaUB).

Statistical analyses

The OC data (Experiments 1 and 2) were analysed through 3-way factorial ANOVA (Underwood 1997) with temperature, acclimation salinity, and test salinity as factors. Preliminary tests showed that residuals approached normal distribution and variances were homogeneous (Cochran-test). For the mRNA expression data (Experiment 3), we used mixed modelling (Zuur et al. 2009) in order to control for the random variation associated with female of origin. In that case, analysis was based on generalised linear squares modelling using the lme function of the package nlme (Pinheiro et al. 2018), implemented in R (R Core Team 2013). Thus, for the mRNA expression data, female of origin was considered a random factor in addition to the acclimation temperature and salinity used as fixed factors in a factorial design. Hypotheses for the mRNA expression data were evaluated through backward model selection; selection of the best random model was carried out through restricted maximum likelihood fitting while selection of the fixed terms was carried out through maximum likelihood. The best model was chosen using the adjusted Akaike information criterion (AICc). For each variable, the model showing the smallest AICc score was selected unless the lowest scored model was more complex that the next scored model and the corresponding difference between those models was ΔAICc <3; in that case we tested the models using likelihood ratio tests. We also report p-values associated with those models (see Table S7, Supplementary material for details).
RESULTS

Osmoregulation in zoeae I

All larvae, irrespective of the acclimation salinity or temperature, survived the exposure to the test salinities (=100% survival). The osmoregulatory capacity of zoea I larvae responded to the interactive effect of temperature and acclimation salinity (Fig. 1, S1), and it was not significantly affected by the test (medium) salinity (15 or 20 ‰). There was a strong effect of temperature: the osmoregulatory capacity at the highest temperatures (21 and 24°C) was about two to three times higher than that shown by larvae kept at 15°C. Acclimation to low salinities enhanced the positive effect of high temperature on the osmoregulatory capacity. In larvae acclimated to seawater, the osmoregulatory capacity was significantly higher for those individuals reared in 18°C as compared to 15°C, but it reached a plateau in the range 18-24°C at ca. 40-45 mOsm kg⁻¹. By contrast, in larvae acclimated to 25‰, the osmoregulatory capacity increased with temperature up to a maximum of 57 mOsm kg⁻¹ at 24°C.
Figure 1. *Carcinus maenas*. Effect of temperature on the osmoregulatory capacity (OC) of zoeae I acclimated to 25.0‰ (blue symbols) and seawater (32.5‰, green symbols) during Experiment 1. OC was determined after exposure to the medium (test) salinities: 15.0‰ (diamonds in left panel) and 20.0‰ (circles in right panel). Values are shown as mean ± standard error (n=10). Different letters show significant differences among treatments.

Osmoregulation in megalopae

The osmoregulatory capacity (OC) of the megalopae increased with temperature, but was not significantly affected by the acclimation salinity (Fig. 2). OC increased almost linearly with temperature, from ~ 60 mOsm kg\(^{-1}\) at 15°C to 85 mOsm kg\(^{-1}\) at 24°C; i.e. temperature resulted in an increase of 40% in OC. By contrast, differences associated to acclimation salinity were not consistent across temperatures and resulted in a maximum of 12.5% increase from seawater to 25.0‰, occurring at 24°C.
Figure 2. *Carcinus maenas*. Effect of temperature on osmoregulatory capacity of megalopae acclimated to 25.0‰ (blue circles) and seawater (32.5‰, green circles) during Experiment 2. OC was determined after exposure to the medium (test) salinity: 20.0‰. Values are shown as mean ± standard error (n=5-8, see Table S4 for details). Different letters show significant differences among treatments.

Gene expression patterns in zoeae I

For the enzyme Na⁺-K⁺-ATPase (NaK), low acclimation salinity reduced the average gene expression by about 13% (Fig. 3). Best models retained acclimation salinity (but not temperature) as the main driver of gene expression. There was also important variation in the response associated with the female of origin (Fig. S2, left panel; Table S7). Plots of average gene expression by female did not show a consistent effect of temperatures although the prevailing pattern was a decreased gene expression at low salinity (Fig. 3, left panel).
On average, gene expression of the Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter (COT) peaked at 18°C and showed a decrease towards lower or higher temperatures with a minimum at 24°C (Fig. 3, right panel) where it achieved the largest decrease (ca. 26%). The best model retained temperature as the main driver of gene expression and also showed important variation in the response by female: plots by female of origin showed that gene expression peaked at 18°C (fem 1, 3, 4) or 21°C (fem 2) but decreased expression was found consistently at 15 and 24°C (Fig. S2, right panel).

Figure 3. *Carcinus maenas*. Effects of acclimation salinity and temperature (Experiment 3) on relative expression of mRNA of Na\(^+\)-K\(^+\)-ATP (left panel) and Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter (right panel) in zoeae I. Data are shown as average values ± SE (n=4 for all four females); acclimation to 25.0‰ is shown in blue and to natural seawater (32.5‰) in green. Data discriminated by female are shown in the Supplementary material (Fig. S2).
We found that increased temperatures enhanced the capacity to osmoregulate in the zoea I and megalopa (Experiments 1 & 2). We also found (in zoeae I) subtle changes in expression of Na\(^+\)-K\(^+\)-ATP and Na\(^+\)-K\(^+\)-2Cl\(^-\) symporter mRNA (NaK and COT, respectively) related to the acclimation salinity and temperature (Experiment 3). Because the results of the mRNA expression study were inconclusive, we still do not know which mechanisms operate at the cellular or molecular levels. However, the haemolymph osmolality appears to provide an integrative measure of the capacity to tolerate the combined effects of temperature and salinity. Information on osmoregulatory responses is important for the development of a predictive model for responses to warming and reduced salinity. However, such models require the establishment of links between physiology, performance, and species distribution (Ames et al. 2020). We divide the following discussion in four sections covering such links, for both the case of *C. maenas* and coastal estuarine species in general. We present a model showing the contribution of osmoregulation to fitness and species’ distribution in response to climate-driven changes in temperature and salinity.

Thermally driven osmoregulation

The positive relationship between osmoregulatory capacity and increased temperature in both zoea I and megalopa of *C. maenas* matched previous observations in adult stages of coastal crustaceans (e.g. Williams 1960, Charmantier 1975, Hagerman & Uglov 1983, Campbell & Jones 1989, Janas & Spicer 2008). The determinations of the OC (Experiments 1&2) showed an important and rapid response to salinity after exposure of larvae of *C. maenas* to the test salinities (15 and 20‰) for 24h. In addition, measurements of OC in zoeae I showed that previous acclimation to low salinity (25‰) contributed to further increase the osmoregulatory capacity. Hence, it appears that osmoregulation results from responses to salinity at different
time scales. We can ascribe the increase in osmoregulation to physiological plasticity because survival was >80% during the acclimation period (data not shown, see also Spitzner et al. 2019) and 100% during exposure to the test salinities (i.e. there was little opportunity for phenotypic selection). The two-threefold increase (ca. 20 mOsm*kg$^{-1}$ at 15 °C to ca. 50-60 mOsm*kg$^{-1}$ at 24 °C) in the osmoregulatory capacity found in *C. maenas* driven by temperature demonstrates a considerable amount of physiological plasticity. The increase is also important in the light of the existing information on interspecific variation in osmoregulatory capacity exhibited by crustacean larvae. Available data for decapod crustacean larvae show that the osmoregulatory capacity at comparable salinities (17‰) ranges between ~20 mOsm kg$^{-1}$, for coastal marine species (including *C. maenas*) to 140-200 mOsm kg$^{-1}$ found in larval (zoea I and megalopa) stages of the Jamaican crab *Armases miersii*, developing in supratidal pools characterised by strong variations in salinity (Charmantier et al. 1998). The values of 60-90 mOsm kg$^{-1}$ found in this study at 24°C (for zoea I and megalopae, respectively), shifts *C. maenas* towards the mid-range, characteristic of larvae of estuarine crabs which are released in (or return to) brackish waters (Charmantier et al. 2002, Cieluch et al. 2007). For example, the osmoregulatory capacity recorded for the first and last larval stages (zoea I and megalopa) of the estuarine crab *Neohelice granulata* is 130-150 mOsm kg$^{-1}$ at 17‰ (Charmantier et al. 2002). Thus, within the three patterns of ontogeny of osmoregulation described in crustaceans (Charmantier 1998), variations in haemolymph osmolality values seem possible due to physiological plasticity; testing this hypothesis in a strongly hyperosmoregulating species such as *Armases miersii* would be worthwhile.

We evaluated, for zoeae I, if increments in relative mRNA expression for NaK and COT would contribute to the mechanism underpinning the thermally driven osmoregulatory plasticity (Experiment 3). As this is the first report on mRNA expression of NaK and COT in larvae of *C. maenas*, we hypothesised that the response would be similar to that found in adult
gills (*C. maenas*: Jillette et al. 2011, Whiteley et al. 2018) and in other species (Serrano & Henry 2008, Havird et al. 2013). We did not find evidence of such up-regulation but instead mRNA levels were modestly down-regulated at low salinity, for both NaK and COT. In addition, COT was slightly down-regulated at the highest tested temperature. Down-regulation occurred at the same salinity (25‰) where we found significant increase in osmoregulatory capacity (in Experiment 1: acclimation to 25‰ significantly increased the osmoregulatory capacity at high temperatures as compared to acclimation in seawater) and where Whiteley et al. (2018) found up-regulation in adult *C. maenas*. We propose four explanations for these changes, although we think that only the last two explanations are likely to be correct. First, the increase in levels of mRNA expression that occur in osmoregulatory tissues may be masked when quantified using whole body samples. However, Lind et al. (2013) reported an increase in expression of variants of Na⁺-K⁺-ATPase in cyprids from the euryhaline barnacle *Amphibalanus improvisus* using samples of intact cyprids. Second, the time scale of the transcriptional response is much shorter than the time scale of exposure to low salinity in our experiment (3-5 days). If the transcriptional response in larvae is short, it is not consistent with that of adults, where up-regulation was still observed after >3 months of exposure to low salinity (Whiteley et al. 2018); in addition, it is not consistent with studies showing that the transcriptional response can occur on a longer time scale (Faleiros et al. 2017, 2018). Third, the signal may be too weak because zoeae I of *C. maenas* are poor osmoregulators when compared to adults; at the tested low acclimation salinity (25‰), the osmoregulatory capacity of juvenile/adult crabs is >10 times higher than that of larvae (Cieluch et al. 2004: 749 mOsm kg⁻¹ ~ 25‰ salinity). In addition, the tolerance to low salinity of *C. maenas* larvae is lower than that of *A. improvisus* (down to 5‰: Nasrolahi et al. 2012); *A. improvisus* may be a strong osmoregulator. Fourth, post-translational adjustments (enzyme kinetic behaviour: Corotto & Holliday 1996) can occur more rapidly than transcriptional responses (Faleiros et al. 2017,
2018) and may explain the differences between osmoregulatory capacity and transcriptional responses. Additional adjustments may also occur through neurohormonal control (Lucu & Towle 2003) and translocation of enzymes from intracellular vesicular stores to the membranes (McNamara & Torres 1999).

Temperature, osmoregulatory capacity, and tolerance to low salinity

The positive effect of temperature on osmoregulatory capacity in zoeae I and megalopae of *C. maenas* (Figs. 1, 2) was consistent with the thermal mitigation of low salinity effect found previously (Spitzner et al. 2019): larvae reared at the temperature range 21-24°C were more tolerant to low salinities than those reared at 15°C. There are two potential groups of mechanisms driving such responses. First, there is the effect of increased temperature that shortens the developmental time (“phenological mechanism”): if instantaneous mortality rates were constant, larval survival to a given stage (e.g. moulting to zoea II) should increase with temperature simply because such larvae took less time to moult. Second, there is the effect generated by adaptive responses to low salinity such as osmoregulation; such responses should reduce the instantaneous mortality rate (here called “physiological mechanism”). Those mechanisms are not mutually exclusive and they are likely operating simultaneously.

In order to check for evidence of a “physiological mechanism” we used data reported by Spitzner et al. (2019, their Fig. 3) to calculate the instantaneous mortality rates from hatching to moulting to zoea II. These data were produced with larvae from the same local population as this study; it thus can be compared to the osmoregulatory patterns observed in Fig. 1. Such calculations (Table S8) show that when TMLS occurred, the instantaneous mortality rates were two times lower in larvae reared at high temperature than those reared in low temperature. Hence, the “phenological mechanism” alone cannot explain TMLS and instead a “physiological mechanism” should also play a role. We argue in favour of osmoregulation as
a potential “physiological mechanism”, because the capacity to osmoregulate provides organisms a steady state of body fluids, which contributes to the maintenance of performance and fitness (Péqueux 1995, Charmantier 1998, Charmantier et al. 2009, Whiteley 2011).

An important question is whether there is evidence between changes in osmoregulation and TMLS. Our experiments do not provide a direct link because we had to measure osmoregulation (and hence kill the larvae) before the TMLS arises. Instead, we have indirect evidence in that TMLS occurs in the same population where we found the positive effect of temperature on osmoregulatory capacity. Additional evidence is provided by studies in temperate amphipods and shrimps (Kinne 1952, Williams 1960, Hagermann & Uglow 1983, Janas & Spicer 2008), showing decreased osmoregulatory capacity and survival under the combination of low salinity and low temperature. As stated by Kinne (1971) a disruption of active transport processes is expected below at low critical temperature.

More in general, evidence of a link between osmoregulation and tolerance to low salinity is widespread across adult crustaceans (Mantel & Farmer 1983, Péqueux 1995). Even small increases in osmoregulatory capacity, as 20 mOsm*kg$^{-1}$, result in enhanced salinity tolerance, particularly in weak osmoregulators. For example, in the copepod *Eurytemora affinis*, slight increases in osmoregulatory capacity result in dramatic evolutionary shifts in adaptability to low salinity media (Lee et al. 2012). Evidence for crustacean larvae is given for instance by studies on stage-dependent patterns of osmoregulation, showing that the increased osmoregulatory capacity is characteristic of species or stages that are able to survive over a wide range of salinities (Charmantier 1998, Charmantier et al. 1998, Anger & Charmantier 2000, Anger et al. 2008). Another piece of evidence is the positive relationship between osmoregulatory capacity and accumulation of reserves at low salinities existing in crustacean larvae (Torres et al. 2011). There is also evidence showing that the osmoregulatory capacity matches patterns of survival at the intraspecific level concerning the effect of salinity.
acclimation (Charmantier et al. 2002). Overall, we conclude that there is sufficient comparative

evidence to propose a link between the effect of temperature on osmoregulation and on
tolerance to low salinities.

Implications for climate change

If the effects of temperature on osmoregulatory capacity and phenology (timing of events
such as moult or metamorphosis) are relevant to fitness, they may also drive changes in species’
distributions. From the standpoint of osmoregulation, responses should be species-specific
because osmoregulation can increase (Kinne 1971, Janas & Spicer 2008, this study), decrease
(Burton 1986, Weber & Spaargaren 1970) or show little response to temperature (additional
examples in Burton 1986). From the standpoint of the phenological effects, survival should
increase with temperature but such effect may vary across species depending on the slope of
the development-temperature curve. Phenological effects of high temperature (e.g. increased
survival to metamorphosis) may counteract negative effects of temperature on osmoregulation
(decreased survival) and may enhance positive effect of temperature on osmoregulation.

Concerning osmoregulation, there is evidence suggesting a link between osmoregulatory
capacity and species distributions in crustaceans. For instance, Weber & Spaargaren (1970)
noted differences between the effects of temperature on osmoregulation of species distributing
towards cold vs. warm latitudes: the shrimp *Crangon septemspinosa* shows a direct positive
effect of temperature on osmoregulation (Haefner 1969) and distributes further south than *C.
crangon* with an inverse effect of temperature (Flügel 1963). Weber & Spaargaren (1970) also
discussed cases showing how thermally driven osmoregulation varied in “winter” and
“summer” acclimated organisms in order to match the prevailing temperature conditions.

Similar patterns have been found in more recent studies: for instance, Janas & Spicer (2008)
found that osmoregulation at high salinities was impaired at low temperatures in large
individuals of the shrimp *Palaemon elegans*, which perform winter migrations off the coast of
Great Britain, but similar temperatures did not impair osmoregulation in smaller individuals, which remained in intertidal pools.

There is additional evidence (provided by various sources), suggesting a link between invasion of estuaries and the capacity to osmoregulate (Freire et al. 2008, Lee et al. 2012).

Another source of evidence is the strong match between patterns of ontogenetic migration in marine crustaceans and concurrent ontogenetic changes in the capacity to osmoregulate (Anger & Charmantier 2000, 2011, Anger et al. 2008, Charmantier et al. 1998, 2002, Cieluch et al. 2004, 2007). Those studies show that larval stages occupying or crossing water masses characterised by low (and varying) salinity (estuaries, rivers and tidal pools) are osmoregulators while those occurring in the open sea (stable higher salinity) are osmoconformers. The same studies found that the match between the habitat and the osmoregulatory capacity is consistent along the full life cycle: while marine species are consistently osmoconformers or weak osmoregulators at all life phases, the patterns of osmoregulation vary between larval and juvenile-adult phases depending on habitat. In synthesis, thermally driven changes in osmoregulation and the ontogeny of osmoregulation appear to have evolved in order to match the conditions experienced at each particular life phase or developmental stage. As stated by Weber & Spaargaren (1970), the responses of osmoregulation abilities to temperature appear to be adaptive to the prevailing conditions of temperature and salinity.

Hence, given the above comparative evidence, we propose a hypothetical model showing the contribution of osmoregulation to responses to salinity and temperature in terms of fitness and species distributions of coastal marine species of temperate ROFIs (Fig. 4); our model also recognises the contribution of the phenological mechanism. Our predictions are that: (1) In species where elevated temperatures have a positive effect on osmoregulation (e.g. *C. maenas*), osmoregulation should contribute towards TMLS and range expansion towards brackish water habitats (e.g. ROFIs or estuaries) in a warming scenario. (2) The phenological mechanism
should also promote TMLS and range expansion towards brackish water habitats in a warming scenario. (3) In species where elevated temperature results in decreased osmoregulatory capacity, osmoregulation should promote a synergistic negative effect of increased temperature and reduced salinity on fitness (abbreviates a TELS for “thermal exacerbation of low salinity stress”). In those species, and in a warming scenario, osmoregulation should contribute towards range contraction (i.e. away from brackish water habitats, unless the phenological mechanism prevails). All those predictions are valid only in case of moderate warming, as extreme temperatures would result in a dominating effect of thermal stress in the responses.
Figure 4. Model describing the contribution of phenological and physiological mechanisms to the responses to effects to temperature and salinity in terms of fitness and species’ distributions. (a) Phenological mechanism: because increased temperature shortens the developmental time, individuals at high temperatures are exposed to low salinity for a shorter period; in consequence, survival-at-stage is higher and the overall response in (c) is antagonistic. (b) Physiological mechanism: when the osmoregulatory capacity (OC) increases with temperature, the fitness response to temperature and salinity in (c) should be antagonistic. When osmoregulatory capacity decreases with temperature, the fitness response in (c) should be synergistic and negative. (d) Contribution of fitness responses to changes in distribution changes in coastal-estuarine species: if temperature increases (and salinity remains constant), an antagonistic pattern should contribute towards expansion towards estuarine waters while the synergistic and negative responses should contribute towards range contraction. Both low
salinities and increased temperatures are assumed to be moderate (slightly sub-optimal), so as not to become dominant responses; otherwise, the trivial prediction is a dominating effect of either high temperature or low salinity, whichever is stronger.

Perspectives for model development

The proposed model needs to be tested and expanded, but it can be used as a framework to develop a more general model, considering factors other than osmoregulation. A possible expansion may consider the importance of intracellular regulation (Freire et al. 2008) and permeability to salts; the latter may change with temperature and impact performance, through effects on the amount of energy needed to invest in osmoregulation (Spaargaren 1975). An additional contributor is required to explain responses where the limiting factor is given at high temperatures: for instance, McLusky (1979) did not find evidence of temperature driving osmoregulation in mysids; yet those adapted to winter conditions had decreased survival in combination of low salinity and high temperatures. For those cases (not covered in our model nor in Fig. 4), low salinity and high temperature may impose limitations other than those associated to the uptake of osmotically active substances. The effect of osmoregulatory capacity on performance may be non-linear. For instance, in strong osmoregulators (e.g. amphipods) variations in the osmoregulatory capacity in response to temperature does not always correlate with survival in the laboratory (Dorgelo 1977), although such drops may impair performance in the field. Care should be taken into considering the “phenological mechanism” yet to be quantified.

In addition, by proposing the above-referred model, we do not intend to ignore the effects of additional factors on range contraction and expansion (Siren & Morelli, 2020); hence, we must emphasise that our model refers to contributions of osmoregulation and the proposed phenological mechanism. For instance, hypoxia and ocean acidification in coastal areas may become an important factor for performance of marine organisms and it may result from the
combined effect of warming and eutrophication (Vaquer-Sunyer & Duarte 2008, 2011, Glober & Baumann 2016). Oxygen limitation for instance may result in changes in the “Pejus temperature”, i.e. critical thermal thresholds set by limitations in the capacity of circulatory and respiratory systems to provide oxygen to tissues (Pörtner 2010). Limitations in oxygen availability are likely to reduce the energy available for osmoregulation, resulting in inhibition of enzymes responsible for ion transport (Lucu & Ziegler 2017). In consequence, under combined effects of low salinity at high temperatures, oxygen limitation may range from reductions in the strength of TMLS to the induction of TELS. The effect of ocean acidification and salinity may vary among species; those able to osmoregulate appear to withstand moderate levels of acidification (Whiteley et al. 2018). Biotic interactions such as competition between native and exotic species may drive range contractions in native species (Epifanio 2013). In the case of dispersive larvae, transport by currents play a central role in determining recruitment of individuals to a given population (Connolly & Roughgarden 1999) and in mediating effects of climate change on species distributions (Lo-Yat et al. 2011, Fuchs et al. 2020). Responses to temperature and salinity are likely to define components of performance that are relevant for e.g. competition and larval transport. For instance, competitive abilities can change according to the temperature where such competition occurs (Tomanek & Helmuth 2002, Watz et al. 2019); comparative studies should provide insights into how the outcome of competition is modulated by responses to combination of temperature and salinity. In addition, larval transport in many crustaceans depends on circatidal or diel migration behaviour, which should be driven by the capacity of larvae to accumulate and use energy for vertical swimming. We know that crustacean larvae respond to temperature and salinity as stimuli (Epifanio & Cohen 2016); however, swimming speed can be modified through physiological effects of both factors (Yu et al. 2010, Sorochan & Metaxas 2017, Landeira et al. 2020). Overall, physiological information provided by the model may be integrated for instance in metapopulation models.
The proposed model should also incorporate the importance of intraspecific variability in the responses to temperature and salinity, as driven by plasticity and selection (Charmantier et al. 2002, Lee et al. 2012). There is currently very little information about the magnitude of intraspecific variation in responses to temperature and salinity in coastal organisms. In *C. maenas*, two recent studies show that the magnitude of TMLS can vary among larvae originated from different females (Spitzner et al. 2019, Torres et al. 2020). In both *C. maenas* and other estuarine species, the tolerance to salinity is driven by the salinity conditions experienced by embryos (Laughlin & French 1989, Charmantier et al. 2002). Some of those responses appear to be adaptive: for instance in *N. granulata*, the “embryonic effect” produced by low salinity consists in an increased osmoregulatory capacity and increased survival of the first larval stage. However, in *C. maenas*, low salinity experienced during embryogenesis results in a pre-emption of TMLS (Torres et al. 2020). Hence, such type of intraspecific variation suggests that conditions existing in the benthic habitat can also affect the capacity of larvae to use estuarine waters. For *C. maenas*, moderately high temperature experienced during embryogenesis promotes TMLS (Torres et al. 2020); thus moderate increases in temperature both in the maternal and larval habitats may enable larvae the use of waters characterised by moderately low salinity.

Osmoregulatory responses will be relevant for crustaceans and most probably fish, i.e. those groups living in aquatic habitats that have evolved the capacity to osmoregulate (McCormick et al. 1997, Charmantier et al. 2009, Evans & Claiborne 2009). Research on the role of temperature in driving intracellular osmoregulation would be useful to formulate models for invertebrates that osmoconform at low salinities. Importantly, intraspecific variations in the capacity to osmoregulate in temperate species may also explain why we observe both
synergistic and antagonistic responses to temperature in marine species (Crain et al. 2008, Przeslawski et al. 2015), i.e. because species differ in the nature of the response of osmoregulation capacities to temperature (positive or negative response).

How osmoregulatory responses may drive survival in the field should depend on the covariation of temperature and salinity in regions of freshwater influence (ROFIs). For instance, in temperate ROFIs, spring-summer warming of the coastal zone causes shallow waters characterised by reduced salinity to warm up in summer (Gunderson et al. 2016), but cool-down in winter. In addition, climate change predictions for coastal areas vary regionally concerning salinity (IPCC 2013), depending on projections of future freshwater runoff from estuaries. Hence, how organisms respond to salinity and temperature will depend on the region, species’ phenology and ontogenetic patterns in osmoregulatory capacity. Usually, larval development takes place in spring-summer while the timing of occurrence of juvenile and adults depends on the species life-history and migration patterns. Across a sufficiently wide range of temperatures, one would expect a unimodal survival curve driven by thermal tolerance (Pörtner 2010), with location and spread varying depending on salinity. For instance, on the latitudinal scale, the distribution of *C. maenas* is driven by temperature (Compton et al. 2010), but the question here concerns the use of coastal waters of low salinity (e.g. estuarine plumes or areas such as the Baltic Sea), which may enhance recruitment at the local scale. In invasive species like *C. maenas* (Hines et al. 2004, deRivera et al. 2007), a moderate increase in temperature should be particularly important for expansion in recently invaded areas, to habitats characterised by low salinities.

CONCLUSIONS

In synthesis, we have found that increased temperature enhances the capacity to osmoregulate in the osmoregulatory larval stages of the shore crab *C. maenas*; correlations
between osmoregulatory capacity and survival suggest that low temperature may constraint the capacity of osmoregulatory mechanisms to work properly and sustain haemolymph osmolality at appropriate levels. The increase in osmoregulatory capacity works along the phenological effect (increased temperature reduces the time of exposure to low salinity) in mitigating the effects of low salinity on survival.

In addition, we propose a model, for coastal-estuarine organisms, showing the contribution of osmoregulation and phenological mechanisms into fitness responses to temperature and salinity, as well as responses to warming. Osmoregulatory capacity is a promising integrative measure for understanding the diversity of responses to temperature and salinity and for the prediction of responses of coastal-estuarine organisms to warming. Tests and expansion of the model are needed to orient research towards the prediction of effects of climate-driven changes in temperature and salinity on species’ distributions. Given the current status regarding climate change, the “plea for the study of temperature influence on osmotic regulation” done by Verwey (1957) is still valid after almost a century of research in osmoregulation, as it is the plea for the study of the role of temperature on performance at suboptimal salinities.
Acknowledgments: We are grateful to Uwe Nettelmann for help in preparing the media (test salinities). We thank Cecilia Laspoumaderes, Amaru Magnin, Siri Rohwer, and Zoran Šargač for their help during Experiment 3 (larval rearing). The Deutsche Forschungsgemeinschaft supported this study (Research Training Group 2010: RESPONSE).

Authors’ contributions: GT, LG, GC and SH conceived the experimental design. GT performed the larval experiments, sampling and mRNA expression measurements. GC performed the osmoregulatory capacity determinations. GT and DW analysed the mRNA expression data; GT, LG and GC analysed the osmoregulation data. GT and LG led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Conflict of Interest: The authors declare that they have no conflicts of interests. The funding body did not influence the design of the study, the collection, analysis, and interpretation of data nor the writing of the manuscript.

Data availability statement: The datasets used and/or analysed during the current study are available from the Dryad Digital Repository (doi:10.5061/dryad.4tmpg4f97).

Compliance with Ethical Standards: The research presented in this paper complies with the guidelines from the directives 2010/63/EU of the European parliament and of the Council of 22nd September 2010 on the protection of animals used for scientific purposes.

REFERENCES

Ames E.M., Gade M.R., Nieman C.L., Wright J.R., Tonra C.M., Marroquin C.M., Tutterow A.M. & Gray S.M. (2020). Striving for population-level conservation: integrating
physiology across the biological hierarchy. *Conservation Physiology*, 8(1). doi: [10.1093/conphys/coaa019](https://doi.org/10.1093/conphys/coaa019)

Anger K. (1991). Effects of temperature and salinity on the larval development of the Chinese mitten crab *Eriocheir sinensis* (Decapoda: Grapsidae). *Marine Ecology Progress Series*, 72, 103-110. doi: [10.1080/07924259.2006.9652207](https://doi.org/10.1080/07924259.2006.9652207)

Anger K. (2003). Salinity as a key parameter in the larval biology of decapod crustaceans. *Invertebrate Reproduction and Development*, 43, 29-45. doi: [10.1080/07924259.2003.9652520](https://doi.org/10.1080/07924259.2003.9652520)

Anger K. (2006). Contributions of larval biology to crustacean research: a review. *Invertebrate Reproduction and Development*, 49 (3), 175-205. doi: [10.1080/07924259.2006.9652207](https://doi.org/10.1080/07924259.2006.9652207)

Anger K. & Charmantier G. (2000). Ontogeny of osmoregulation and salinity tolerance in a mangrove crab, *Sesarma curacaoense* (Decapoda: Grapsidae). *Journal of Experimental Marine Biology and Ecology*, 251, 265-274. doi: [10.1016/s0022-0981(00)00223-9](https://doi.org/10.1016/s0022-0981(00)00223-9)

Anger K. & Charmantier G. (2011). Ontogeny of osmoregulatory patterns in the South American shrimp *Macrobrachium amazonicum*: Loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. *Journal of Experimental Marine Biology and Ecology*, 396, 89-98. doi: [10.1016/j.jembe.2010.10.013](https://doi.org/10.1016/j.jembe.2010.10.013)

Anger K., Torres G., Charmantier-Daures M. & Charmantier G. (2008). Adaptive diversity in congeneric coastal crabs: Ontogenetic patterns of osmoregulation match life-history strategies in *Armases* spp (Decapoda, Sesarmidae). *Journal of Experimental Marine Biology and Ecology*, 367, 28-36. doi: [10.1016/j.jembe.2008.08.009](https://doi.org/10.1016/j.jembe.2008.08.009)

Baert J.M, Janssen C.R, Sabbe K. & De Laender F. (2016). Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions. *Nature Communications*, 7, 12486. doi: [10.1038/ncomms12486](https://doi.org/10.1038/ncomms12486)
Boyd P.W., Collins S., Dupont S., Fabricius K., Gattuso J.-P., Havenhand J., Hutchins D.A.,
Riebesell U., Rintoul M.S., Vichi M., Biswas H., Ciotti A., Gao K., Gehlen M., Hurd C.L.,
Kurihara H., McGraw C.M., Navarro J.M., Nilsson G.E., Passow U. & Pörtner H.-O. (2018).
Experimental strategies to assess the biological ramifications of multiple drivers of global
ocean change – a review. *Global Change Biology* 24, 2239-2261. doi: 10.1111/gcb.14102

Burton R.F. (1986). Ionic regulation in crustacea: The influence of temperature on apparent set
points. *Comparative Biochemistry and Physiology Part A: Physiology, 84*(1), 135-139. doi:
10.1016/0300-9629(86)90055-1

Campbell P.J. & Jones M.B. (1989) Osmoregulation of the estuarine prawn *Palaemon longirostris* (Caridea: Palaemonidae). *Journal of the Marine Biological Association of the
United Kingdom, 69*(2), 261-272. doi: 10.1017/S0025315400029386

Cieluch U., Anger K., Aujoulat F., Buchholz F., Charmantier-Daures M. & Charmantier G.
(2004). Ontogeny of osmoregulatory structures and functions in the green crab *Carcinus maenas* (Crustacea, Decapoda). *Journal of Experimental Biology*, 207, 325-336. doi:
10.1242/jeb.00759

Cieluch U., Anger K., Charmantier-Daures M. & Charmantier G. (2007). Salinity tolerance,
osmoregulation, and immunolocalization of Na⁺/K⁺-ATPase in larval and early juvenile
stages of the Chinese mitten crab, *Eriocheir sinensis* (Decapod, Grapsoidea). Marine
Ecology-Progress Series 329, 169-178. doi: 10.3354/meps329169

Charmantier, G. (1975). Variations saisonnieres des capacites ionoregulatrices de *Sphaeroma Serratum* (Fabricius, 1787) (Crustacea, Isopoda, Flabellifera). *Comparative Biochemistry and Physiology Part A: Physiology, 50*(2), 339-345. doi: 10.1016/0300-9629(75)90023-7

Charmantier, G. (1998). Ontogeny of osmoregulation in crustaceans: a review. *Invertebr. Reprod. Dev.*, 33, 177. doi: 10.1080/07924259.1998.9652630
Charmantier G., Charmantier-Daures M. & Anger K. (1998). Ontogeny of osmoregulation in the grapsid crab *Armases miersii* (Crustacea, Decapoda). *Marine Ecology Progress Series*, 164, 285-292. doi: 10.3354/meps164285

Charmantier G., Charmantier-Daures M. & Towle D. (2009). Osmotic and ionic regulation in aquatic arthropods. In: Evans D H (Ed.), Osmotic and ionic regulation (pp 165-230). New York: CRC Press. doi: 10.1201/9780849380525-6

Charmantier G., Giménez L., Charmantier-Daures M. & Anger K. (2002) Ontogeny of osmoregulation, physiological plasticity, and export strategy in the grapsid crab *Chasmagnathus granulata* (Crustacea, Decapoda). *Marine Ecology Progress Series* 229, 185-194. doi: 10.3354/meps229185

Charmantier-Daures M., Thuet P., Charmantier G. & Trilles J.-P. (1988). Tolérance à la salinité et osmorégulation chez les post-larves de *Penaeus japonicus* et *P. chinensis*. Effet de la température. *Aquatic Living Resources* 1 (4) 267-276. doi: 10.1051/alr:1988026

Compton T.J., Leathwick J.R. & Inglis G.J. (2010). Thermogeography predicts the potential global range of the invasive European green crab (*Carcinus maenas*). *Diversity and Distributions*, 16, 243-255. doi: 10.1111/j.1472-4642.2010.00644.x

Connolly S.R. & Roughgarden J. (1999). Theory of Marine Communities: Competition, Predation, and Recruitment-Dependent Interaction Strength. *Ecological Monographs*, 69(3), 277-296. doi: 10.2307/2657158

Corotto F.S. & Holliday C.W. (1996). Branchial Na, K-ATPase and osmoregulation in the purple shore crab, *Hemigrapsus nudus* (Dana). *Comparative Biochemistry and Physiology Part A: Physiology*, 113, 361-368. doi: 10.1016/0300-9629(95)02076-4
Côté I.M., Darling E.S. & Brown C.J (2016). Interactions among ecosystem stressors and their importance in conservation. *Proceedings of the Royal Society B*, 283, 2015-2592. doi: [10.1098/rspb.2015.2592](https://doi.org/10.1098/rspb.2015.2592)

Cowen R.K. & Sponaugle S. (2009). Larval dispersal and marine population connectivity. *Annual Review of Marine Science*, 1 (1), 443-466. doi: [10.1146/annurev.marine.010908.163757](https://doi.org/10.1146/annurev.marine.010908.163757)

Crain C., Kroeker K. & Halpern B. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. *Ecology Letters*, 11, 1304-1315. doi: [10.1111/j.1461-0248.2008.01253.x](https://doi.org/10.1111/j.1461-0248.2008.01253.x)

De Laender F. (2018). Community-and ecosystem-level effects of multiple environmental change drivers: Beyond null model testing. *Global Change Biology*, 24, 5021-5030. doi: [10.1111/gcb.14382](https://doi.org/10.1111/gcb.14382)

deRivera C.E., Hitchcock N.G., Teck S.J., Stevens B.P., Hines A.H. & Ruiz G.M. (2007). Larval development rate predicts range expansion of an introduced crab. *Marine Biology*, 150, 1275−1288. doi: [10.1007/s00227-006-0451-9](https://doi.org/10.1007/s00227-006-0451-9)

Dorgelo J. (1977). Comparative ecophysiology of gammarids (crustacea: amphipoda) from marine, brackish- and fresh-water habitats exposed to the influence of salinity-temperature combinations. IV. Blood sodium regulation. *Netherlands Journal of Sea Research*, 11(2), 184-199. doi: [10.1016/0077-7579(77)90005-9](https://doi.org/10.1016/0077-7579(77)90005-9)

Epifanio C.E. (2013). Invasion biology of the Asian shore crab *Hemigrapsus sanguineus*: A review. *Journal of Experimental Marine Biology and Ecology*, 441, 33-49. doi: [10.1016/j.jembe.2013.01.010](https://doi.org/10.1016/j.jembe.2013.01.010)
Epifanio C.E. & Cohen J.H. (2016). Behavioral adaptations in larvae of brachyuran crabs: A review. *Journal of Experimental Marine Biology and Ecology*, 482, 85-105. doi: [10.1016/j.jembe.2016.05.006](https://doi.org/10.1016/j.jembe.2016.05.006)

Evans D.H. & Claiborne J.B. (2009). Osmotic and ionic regulation in fishes In: Evans D H (Ed.), Osmotic and ionic regulation (pp 295-366). New York: CRC Press.

Faleiros R.O., Furriel R.P.M. & McNamara J.C. (2017). Transcriptional, translational and systemic alterations during the time course of osmoregulatory acclimation in two palaemonid shrimps from distinct osmotic niches. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 212, 97-106. doi: [10.1016/j.cbpa.2017.07.014](https://doi.org/10.1016/j.cbpa.2017.07.014)

Faleiros R.O., Garcon D.P., Lucena M.N., McNamara J.C. & Leone F.A. (2018). Short- and long-term salinity challenge, osmoregulatory ability, and \((\text{Na}^+, \text{K}^+)\)-ATPase kinetics and alpha-subunit mRNA expression in the gills of the thin stripe hermit crab *Clibanarius symmetricus* (Anomura, Diogenidae). *Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology*, 225, 16-25. doi: [10.1016/j.cbpa.2018.06.016](https://doi.org/10.1016/j.cbpa.2018.06.016)

Flügel H. (1963). Elektrolytregulation und Temperatur bei *Crangon crangon* L. und *Carcinus maenas* L. *Kieler Meeresforschung*, 19, 189-195.

Folt C.L., Chen C.Y., Moore M.V. & Burnaford J. (1999). Synergism and antagonism among multiple stressors. *Limnology and Oceanography*, 44, 864-877. doi: [10.4319/lo.1999.44.3_part_2.0864](https://doi.org/10.4319/lo.1999.44.3_part_2.0864)

Fordham D.A., Mellin C., Russell B.D., Akçakaya R.H., Bradshaw C.J.A., Aiello-Lammens M.E., Brook B.W. (2013). Population dynamics can be more important than physiological limits for determining range shifts under climate change. *Global Change Biology*, 19(10), 3224-3237.
Freire C.A., Amado E.M., Souza L.R., Veiga M.P.T., Vitule J.R.S., Souza M.M. & Prodocimo V. (2008). Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. *Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology*, 149(4): 435-446.

Fuchs H.L., Chant R.J., Hunter E.J., Curchitser E.N., Gerbi G.P. & Chen E.Y. (2020). Wrong-way migrations of benthic species driven by ocean warming and larval transport. *Nature Climate Change*, 10(11), 1052-1056. doi:10.1038/s41558-020-0894-x

Galínc N., Sullivan L.L., Grimm V. & Forbes V.E. (2018). When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. *Ecology Letters*, 21(4):568–577. doi: 10.1111/ele.12923

Gattuso J.P. & Hansson L. (2009). Ocean Acidification. UK: Oxford University Press.

Giebelhausen B, Lampert W (2001) Temperature reaction norms of *Daphnia magna*: the effect of food concentration. *Freshwater Biology*, 46, 281-289. doi: 10.1046/j.1365-2427.2001.00630.x

Giménez L. (2004). Marine community ecology: importance of trait-mediated effects propagating through complex life cycles. *Marine Ecology Progress Series*, 283, 303-310. doi: 10.3354/meps283303

Giménez L., Exton M., Spitzner F., Meth R., Ecker U., Jungblut S., Harzsch S., Saborowski R. & Torres G. (2020). Exploring larval phenology as predictor for range expansion in an invasive species. *Ecography*. doi: 10.1111/ecog.04725

Gobler C.J. & Baumann H. (2016). Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. *Biology Letters*, 12(5), 20150976. doi: 10.1098/rsbl.2015.0976
González-Ortega E. & Giménez L. (2014). Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. *Marine Ecology Progress Series*, 502, 185-195. doi: 10.3354/meps10708

Gunderson A., Armstrong E. & Stillman J. (2016). Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. *Annual Review of Marine Science*, 8, 357-378. doi: 10.1146/annurev-marine-122414-033953

Haefner P.A, (1969). Temperature and salinity tolerance of the sand shrimp, *Crangon septemspinosa* Say. *Physiological Zoology* 42(4), 388-397.

Hagerman L. & Uglow R.F. (1983). The influence of temperature on the osmoregulation of the brackish-water shrimp *Palaemonetes varians* Leach. *Ophelia*, 22(2), 229-236. doi: 10.1080/00785326.1983.10426597

Havird J.C., Henry R.P. & Wilson A.E. (2013). Altered expression of Na+/K+-ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta-analysis of 59 quantitative PCR studies over 10 years. *Comparative Biochemistry and Physiology, Genomics Proteomics*, 8(2), 131-140. doi:10.1016/j.cbd.2013.01.003 D 8, 131–140

Hellemans J, Mortier G., De Paepe A., Speleman F. & Vandesompele J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome Biology*, 8(2), R19. doi: 10.1186/gb-2007-8-2-r19

Helmuth B., Mieszkowska N., Moore P. & Hawkins S.J. (2010). Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. *Annual Review of Ecology, Evolution, and Systematics*, 37, 423-431. doi: 10.1146/annurev.ecolsys.37.091305.110149
Henry R., Lucu C., Onken H. & Weihrauch D. (2012). Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. *Frontiers in Physiology*, 3 (431). doi: 10.3389/fphys.2012.00431

Hines A.H., Ruiz G.M., Hitchcock N.G. & deRivera C. (2004). Projecting range expansion of invasive European green crabs (*Carcinus maenas*) to Alaska: temperature and salinity tolerance of larvae. *Research Report to Prince William Sound Regional Citizens’ Advisory Council* https://core.ac.uk/reader/37767550

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P.M. (Eds.). UK: Cambridge University Press. doi:10.1017/CBO9781107415324

Ituarte R.B., Lignot J.-H., Charmantier G., Spivak E. & Lorin-Nebel C. (2016). Immunolocalization and expression of Na⁺/K⁺-ATPase in embryos, early larval stages and adults of the freshwater shrimp *Palaemonetes argentinus* (Decapoda, Caridea, Palaemonidae). *Cell and Tissue Research*, 364, 527-541. doi: 10.1007/s00441-015-2351-0

Janas U. & Spicer J. (2008). Does the effect of low temperature on osmoregulation by the prawn *Palaemon elegans* Rathke, 1837 explain winter migration offshore? *Marine Biology* 153, 937-943. doi: 10.1007/s00227-007-0865-z

Jillette N., Cammack L., Lowenstein M. & Henry R.P. (2011). Down-regulation of activity and expression of three transport-related proteins in the gills of the euryhaline green crab, *Carcinus maenas*, in response to high salinity acclimation. *Comparative Biochemistry and Physiology A. Molecular & Integrative Physiology*, 158(2), 189-193. doi: 10.1016/j.cbpa.2010.10.024
Kinne O. (1952). Zur Biologie und Physiologie von Gammarus duebeni Lillj. V: Untersuchungen über Blutkonzentration, Herzfrequenz und Atmung. Kieler Meeresforsch.

9, 134-150.

Kinne O. (1971). Salinity. In: Kinne O (Ed.), Marine ecology 1 (pp 685-1244). Chichester: Wiley.

Kroeker K.J., Kordas R.L., Crim R., Hendriks I.E., Ramajo L., Singh G.S., Duarte C.M., Gattuso J.-P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 19, 1884-1896. doi: 10.1111/gcb.12179

Landeira J.M., Liu B., Omura T., Akiba T. & Tanaka Y. (2020). Salinity effects on the first larval stage of the invasive crab Hemigrapsus takanoi: Survival and swimming patterns. Estuarine, Coastal and Shelf Science, 245, 106976. doi: 10.1016/j.ecss.2020.106976

Lange R. & Marshall D. (2017). Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Scientific Reports, 7, 6281. doi: 10.1038/s41598-017-06373-y

Laughlin R. & French W. (1989) Interactions between temperature and salinity during brooding on subsequent zoeal development of the mud crab Rhithropanopeus harrisii. Marine Biology 102, 377–386.

Lee C.E., Posavi M., Charmantier G. (2012). Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. Journal of Evolutionary Biology, 25(4), 625-633. doi: 10.1111/j.1420-9101.2012.02459.x

Leignel V., Stillman J.H., Baringou S., Thabet R. & Metais I. (2014). Overview on the European green crab Carcinus spp. (Portunidae, Decapoda), one of the most famous marine
invaders and ecotoxicological models. *Environmental Science and Pollution Research*, 21(15), 9129-9144. doi:10.1007/s11356-014-2979-4

Lignot J.H. & Charmantier G. (2015). Osmoregulation and excretion. In: E.S. Chang & M. Thiel (Eds.), The Natural History of Crustacea. Vol. 4: Physiology(pp 249-284). New York: Oxford University Press.

Lignot J.-H., Spanings-Pierrot C. & Charmantier G. (2000). Osmoregulatory capacity as a tool in monitoring the physiological condition and effect of stress in crustaceans. *Aquaculture*, 191, 209-245. doi: 10.1016/S0044-8486(00)00429-4

Lind U., Rosenblad M.A., Wrange A.L., Sundell K.S., Jonsson P.R., Andre C., Havenhand J. & Blomberg A. (2013). Molecular Characterization of the alpha-subunit of Na⁺/K⁺ ATPase from the euryhaline barnacle *Balanus improvisus* reveals multiple genes and differential expression of alternative splice variants. *Plos One*, 8(10). doi: 10.1371/journal.pone.0077069

Livak K.J. & Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2\(^{-\Delta\Delta C_T}\) Method. *Methods*, 25(4), 402-408. doi:10.1006/meth.2001.1262

Lo-Yat A., Simpson S.D., Meekan M., Lecchini D., Martínez E. & Galzin R. (2011). Extreme climatic events reduce ocean productivity and larval supply in a tropical reef ecosystem. *Global Change Biology*, 17(4), 1695-1702. doi: 10.1111/j.1365-2486.2010.02355.x

Lucu Č. & Towle D.W. (2003). Na⁺-K⁺-ATPase in gills of aquatic crustacea. *Comparative Biochemistry and Physiology A, Molecular & Integrative Physiology*, 135(2), 195-214. doi: 10.1016/S1095-6433(03)00064-3

Lucu Č. & Ziegler A. (2017). The effects of hypoxia on active ionic transport processes in the gill epithelium of hyperregulating crab, *Carcinus maenas*. *Comparative Biochemistry and
Luquet C.M., Weihrauch D., Senek M. & Towle D.W. (2005). Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab *Chasmagnathus granulatus*. *Journal of Experimental Biology*, 208(19), 3627-3636. doi: [10.1242/jeb.01820](https://doi.org/10.1242/jeb.01820)

Mackie P., Wright P.A., Glebe B.D. & Ballantyne J.S. (2005). Osmoregulation and gene expression of Na⁺/K⁺ ATPase in families of Atlantic salmon (*Salmo salar*) smolts. *Canadian Journal of Fisheries and Aquatic Sciences*, 62, 2661-2672. doi: [10.1139/f05-168](https://doi.org/10.1139/f05-168)

Mantel L.H. & Farmer L.L. (1983). Osmotic and ionic regulation. In: L.H. Mantel (Ed.), The biology of crustacea, Vol 5. Internal anatomy and physiological regulation (pp 53-161). New York: Academic Press.

McCormick S.D., Shrimpton J.M. & Zydlewski J.D. (1997). Temperature effects on osmoregulatory physiology of juvenile anadromous fish. In: C.M. Wood & D.G. McDonald (Eds.), Global warming: Implications for freshwater and marine fish (pp 279-302) Cambridge: Cambridge University Press. doi: [10.1017/CBO9780511983375.012](https://doi.org/10.1017/CBO9780511983375.012)

McLusky D.S. (1979). Some effects of salinity and temperature on the osmotic and ionic regulation of *Praunus flexuosus* (Crustacea, Mysidacea) from Isefjord. *Ophelia*, 18(2), 191-203. doi: [10.1080/00785326.1979.10425499](https://doi.org/10.1080/00785326.1979.10425499)

McNamara J.C. & Faria S.C. (2012). Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. *Journal of Comparative Physiology B*, 182, 997-1014. doi: [10.1007/s00360-012-0665-8](https://doi.org/10.1007/s00360-012-0665-8)

McNamara J.C. & Torres A.H. (1999). Ultracytochemical location of Na⁺/K⁺-ATPase activity and effect of high salinity acclimation in gill and renal epithelia of the freshwater shrimp
Macrobrachium olfersii (Crustacea, Decapoda). Journal of Experimental Zoology, 284, 617-628. doi:10.1002/(sici)1097-010x(19991101)284:6<617::aid-jez3>3.0.co;2-v

Nagaraj M. (1993). Combined effects of temperature and salinity on the zoeal development of the green crab, Carcinus maenas (Linnaeus, 1758) (Decapoda, Portunidae). Scientia Marina, 57, 1-8.

Nasrolahi A., Pansch C., Lenz M. & Wahl M. (2012). Being young in a changing world: how temperature and salinity changes interactively modify the performance of larval stages of the barnacle Amphibalanus improvisus. Marine Biology, 159: 331-340. doi:10.1007/s00227-011-1811-7

Oliphant A., Alexander J.L., Swain M.T., Webster S.G. & Wilcockson D.C. (2018). Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics, 19(1), 711. doi:10.1186/s12864-018-5057-3

Orr J.A., Vinebrooke R.D., Jackson M.C., Kroeker K.J., Kordas R.L., Mantyka-Pringle C., Van den Brink P.J, De Laender F., Stoks R., Holmstrup M., Matthaei C.D., Monk W.A., Penk M.R., Leuzinger S., Schäfer R.B., Piggott J.J. (2020). Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proceedings of the Royal Society B: Biological Sciences, 287, 20200421. doi: 10.1098/rspb.2020.0421

Palumbi S.R. (2003). Ecological subsidies alter the structure of marine communities. Proceedings of the National Academy of Sciences, 100(21), 11927-11928. doi:10.1073/pnas.2335832100

Pandori L.L.M. & Sorte C.J.B. (2019). The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos, 128:621-629. doi: 10.1111/oik.05886
Péqueux, A. (1995). Osmotic regulation in crustaceans. *Journal of Crustacean Biology*, 15, 1. doi:10.2307/1549010

Pfaffl M. (2006). Relative quantification. In: M.T. Dorak (Ed.), Real-time PCR (pp63-82). New York: Taylor & Francis Group.

Piggott J., Towsend C. & Matthaei C. (2015). Reconceptualising synergism and antagonism among multiple stressors. *Ecology and Evolution*, 5(7), 1538-1547. doi: 10.1002/ece3.1465

Pinheiro J., Bates D., DebRoy S., Sarkar D. & R Core Team (2018) *nlme: Linear and Nonlinear Mixed Effects Models*. R package version 3.1-137. https://CRAN.R-project.org/package=nlme

Post E. (2020). *Time in Ecology: A Theoretical Framework*. Princeton University Press.

Pörtner H.-O. (2010). Oxygen– and capacity–limitation of thermal tolerance: a matrix for integrating climate–related stressor effects in marine ecosystems. *Journal of Experimental Biology*, 213, 881-893. doi:10.1242/jeb.037523

Przeslawski R., Byrne M. & Mellin C. (2015). A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. *Global Change Biology*, 21, 2122-2140. doi: 10.1111/gcb.12833

R Core Team R (2013). *A Language and Environment for Statistical Computing; R Foundation for Statistical Computing*. http://www.R-project.org/

Rahi M.L., Moshtaghi A., Mather P.B. & Hurwood D.A. (2018). Osmoregulation in decapod crustaceans: physiological and genomic perspectives. *Hydrobiologia*, 825, 177-188. doi: 10.1007/s10750-018-3690-0

Robins P.E., Skov M.W., Lewis M.J., Giménez L., Davies A.G., Malham, S.K., Neill S.P., McDonald J.E., Whitton T.A., Jackson S.E. & Jago C.F. (2016). Impact of climate change
on UK estuaries: A review of past trends and potential projections. *Estuarine, Coastal and Shelf Science*, 169, 119-135. doi: 10.1016/j.ecss.2015.12.016

Roman J. & Palumbi S.R. (2004). A global invader at home: population structure of the green crab, *Carcinus maenas*, in Europe. *Molecular Ecology*, 13, 2891-2898. doi:10.1111/j.1365-294X.2004.02255.x

Schiffer M., Harms L., Pörtner H.O., Mark F.C. & Storch D. (2014). Pre-hatching seawater pCO2 affects development and survival of zoea stages of Arctic spider crab *Hyas araneus*. *Marine Ecology Progress Series*, 501, 127-139. doi:10.3354/meps10687

Serrano L. & Henry R.P. (2008). Differential expression and induction of two carbonic anhydrase isoforms in the gills of the euryhaline green crab, *Carcinus maenas*, in response to low salinity. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*, 3(2), 186-193. doi:10.1016/j.cbd.2008.02.003

Siebers D., Lucu C., Sperling K.R. & Eberlein K. (1972). Kinetics of osmoregulation in the crab *Carcinus maenas*. *Marine Biology*, 17, 291-303. doi: 10.1007/BF00366739

Simpson J. H. (1997). Physical processes in the ROFI regime. *Journal of Marine Systems*, 12, 3-15. doi: 10.1016/S0924-7963(96)00085-1

Sirén A.P.K. & Morelli T.L. (2020). Interactive range-limit theory (iRLT): An extension for predicting range shifts. *Journal of Animal Ecology*, 89(4), 940-954. doi:10.1111/1365-2656.13150

Sokolova I.M., Frederich M., Bagwe R., Lannig G. & Sukhotin A.A. (2012). Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. *Marine Environmental Research*, 79, 1-15. doi:10.1016/j.marenvres.2012.04.003
Somero G.N. (2010). The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. *Journal of Experimental Biology*, 213, 912-920. doi:10.1242/jeb.037473

Somero G.N. (2011). The Physiology of Global Change: Linking Patterns to Mechanisms. *Annual Review of Marine Science*, 4(1), 39-61. doi: 10.1146/annurev-marine-120710-100935

Sorochan K.A. & Metaxas A. (2017). The effect of temperature on motility of the nauplius and cypris stages of the acorn barnacle *Semibalanus balanoides*. *Marine Ecology Progress Series*, 579, 55-66.

Spaargaren D.H. (1975). Changes in permeability in the shore crab, *Carcinus maenas* (L.), as a response to salinity. *Comparative Biochemistry and Physiology Part A: Physiology*, 51(3), 549-552. doi: 10.1016/0300-9629(75)90340-0

Spitzner F., Giménez L., Meth R., Harzsch S. & Torres G. (2019). Unmasking intraspecific variation in offspring responses to multiple environmental drivers. *Marine Biology*, 166, 112. doi: 10.1007/s00227-019-3560-y

Spitzner F., Meth R., Krüger C., Nischik E., Eiler S., Torres G. & Harzsch S. (2018). An atlas of larval organogenesis in the European shore crab *Carcinus maenas* L. (Decapoda, Brachyura, Portunidae). *Frontiers in Zoology*, 15:27. doi: 10.1186/s12983-018-0271-z

Thompson P.L., MacLennan M.M. & Vinebrooke R.D. (2018). An improved null model for assessing the net effects of multiple stressors on communities. *Global Change Biology*, 24, 517-525. doi: 10.1111/gcb.13852

Thuet P., Charmantier-Daures M. & Charmantier G. (1988). Relation entre osmorégulation et activités d'ATPase Na⁺-K⁺ et d'anhydrase carbonique chez larves et postlarves de *Hmarus gammarus* (L.) (Crustacea: Decapoda). *Journal of Experimental Marine Biology and Ecology*, 115(3), 249-261.
Tomanek L. & Helmuth B. (2002). Physiological Ecology of Rocky Intertidal Organisms: A Synergy of Concepts. *Integrative and Comparative Biology*, 42(4), 771-775. doi:10.1093/icb/42.4.771

Torres G., Giménez L. (2020). Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. *Functional Ecology*, in press.

Torres G., Giménez L. & Anger K. (2011) Growth, tolerance to low salinity, and osmoregulation in decapod crustacean larvae. *Aquatic Biology*, 12, 249-260. doi: 10.3354/ab00341

Torres G., Charmantier-Daures M., Chifflet S. & Anger K. (2007). Effects of long-term exposure to different salinities on the location and activity of Na⁺-K⁺-ATPase in the gills of juvenile mitten crab, *Eriocheir sinensis*. *Comparative Biochemistry Physiology A*, 147, 460-465. doi: 10.1016/j.cbpa.2007.01.020

Torres G., Spitzner F, Harzsch S & Giménez L. (2019). Ecological developmental biology and global ocean change: brachyuran crustacean larvae as models. In: G. Fusco (Ed.), Perspectives in evolutionary and developmental biology (pp 283-306). Padova: Padova University Press.

Torres G., Thomas D.N., Whiteley N.M, Wilcockson D. & Giménez L. (2020). Maternal and cohort effects modulate offspring responses to multiple stressors. *Proceedings of the Royal Society B*, 287, 20200492. doi: 10.1098/rspb.2020.0492

Towle D.W & Weihrauch D. (2001). Osmoregulation by gills of euryhaline crabs: Molecular analysis of transporters. *American Zoologist*, 41(4), 770-780. doi: 10.1093/icb/41.4.770

Underwood A. (1997) Experiments in ecology. UK, Cambridge University Press.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A. & Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric
averaging of multiple internal control genes. Genome Biol. 3(7), research0034.1-0034.11. doi:10.1186/gb-2002-3-7-research0034

Vaquer-Sunyer R. & Duarte C.M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105(40), 15452-15457. doi:10.1073/pnas.0803833105

Vaquer-Sunyer R. & Duarte C.M. (2011). Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Global Change Biology, 17(5), 1788-1797.

Verwey J, 1957. A plea for the study of temperature influence on osmotic regulation. Année Biol. 33: 129–149.

Watz J., Otsuki Y., Nagatsuka K., Hasegawa K. & Koizumi I. (2019). Temperature-dependent competition between juvenile salmonids in small streams. Freshwater Biology, 64(8), 1534-1541. doi: 10.1111/fwb.13325

Weber R.E. & Spaargaren D.H. (1970). On the influence of temperature on the osmoregulation of Crangon crangon and its significance under estuarine conditions. Netherlands Journal of Sea Research, 5(1), 108-120. doi: 10.1016/0077-7579(70)90007-4.

Whiteley N.M. (2011). Physiological and ecological responses of crustaceans to ocean acidification. Marine Ecology Progress Series, 430, 257-271. doi: 10.3354/meps09185

Whiteley N.M., Taylor E.W. (2015). Responses to environmental stresses: oxygen, temperature, and pH. In: E.S. Chang & M. Thiel (Eds.). The natural history of Crustacea, Vol. 4. Physiology (pp 320-358). Oxford: Oxford University Press.

Whiteley N.M., Suckling C.C., Ciotti B.J., Brown J., McCarthy I.D., Giménez L.& Hauton C. (2018). Sensitivity to near-future CO2 conditions in marine crabs depends on their compensatory capacities for salinity change. Scientific Reports, 8(1), 15639. doi: 10.1038/s41598-018-34089-0
Williams A.B. (1960). The influence of temperature on osmotic regulation in two species of estuarine shrimps (*Penaeus*). *Biological Bulletin*, 115, 560-571. doi: [10.2307/1539268](https://doi.org/10.2307/1539268)

Wiltshire K.H., Kraberg A., Bartsch I., Boersma M., Franke H.-D., Freund J., Gebür C., Gerdts G., Stockmann K. & Wichels A. (2010). Helgoland roads, North Sea: 45 years of change. *Estuaries and Coasts* 33:295–310. doi: [10.1007/s12237-009-9228-y](https://doi.org/10.1007/s12237-009-9228-y)

Xu Q. & Liu Y. (2011). Gene expression profiles of the swimming crab *Portunus trituberculatus* exposed to salinity stress. *Marine Biology*, 158, 2161-2172. doi: [10.1007/s00227-011-1721-8](https://doi.org/10.1007/s00227-011-1721-8)

Young, A.M.; Elliott, J.A. Life History and Population Dynamics of Green Crabs (*Carcinus maenas*). Fishes 2020, 5, 4. doi: [10.3390/fishes5010004](https://doi.org/10.3390/fishes5010004)

Yu X., Zhang X., Duan Y., Zhang P. & Miao Z. (2010). Effects of temperature, salinity, body length, and starvation on the critical swimming speed of white leg shrimp, *Litopenaeus vannamei*. *Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology*, 157(4), 392-397.

Zuur A., Ieno E., Walker N., Savaliev A. & Smith G. (2009). Mixed effect models and extensions in ecology with R. USA: Springer.