Load Curtailment Estimation in Response to Extreme Events

Rozhin Eskandarpour & Amin Khodaei
University of Denver
USA

Ali Arab
Protiviti Inc.
USA
Introduction

• Hurricanes:
 • Cause significant economic, social, and physical disruptions
 • Result in considerable inconvenience for residents living in disaster areas
 • One of the most recurring events in the United States

• Power System Resilience:
 • Rate and speed of a system in bouncing back to its normal operating condition after an external shock.

• Prediction of Power System Component Outages:
 • An exact prediction of power component outages plays a significant role in restoration, recovery, and improving power system resilience.
Hurricane Irma
Proposed Model

• The problem is solved in three consecutive stages:
 a) Forecasting:
 • The category and the path of an upcoming hurricane
 b) Component Outage Prediction:
 • Using Machine Learning method
 c) Load Curtailment Estimation:
 • Optimization using mixed integer programming

(a) Forecasting (b) Component Outage Prediction (c) Load Curtailment Estimation
Machine Learning

• Machine learning is an application of artificial intelligence (AI):
 • Includes data-driven decision-making techniques
 • Explores algorithms that are able to learn from, describe, and make predictions on data.

• Machine learning algorithms are often categorized as:
 • **Supervised machine learning:** algorithms can apply what has been learned in the past to new data using labeled examples to predict future events.
 • **Unsupervised machine learning:** algorithms are used when the information used to train is neither classified nor labeled.
Support Vector Machine

• Support Vector Machines (SVM)
 • Supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

• Linear Classifier:
 • The goal is a dimensional hyperplane.

• Best Hyperplane:
 • Represents the largest margin, between the two classes
 • If such a hyperplane exists,
 • It is known as the maximum-margin hyperplane
Component Outage Prediction

• An SVM method is used and trained to determine the decision boundary;
 • Subsequently, power grid component outages in response to upcoming hurricanes can be effectively predicted.

• Classify the components into two states of:
 • Damaged (cross)
 • Operational (circle)

• Based on:
 • Distance
 • Wind speed

• Separated by:
 • A decision boundary
Evaluation

• To evaluate the performance of the classifier, usually a subset of historical data is reserved as the validation/test set.

• The F_1-Score is a common and reliable measure of classification performance:

\[
P = \frac{\text{number of correctly predicted outages}}{\text{total number of predicted outages}}
\]

\[
R = \frac{\text{number of correctly predicted outages}}{\text{total number of actual outages}}
\]
The objective of the minimum load curtailment problem is defined as the value-weighted cost of load curtailment in the system:

- Includes the generation cost, and the cost of unserved energy during contingency scenarios.

Subject to:
- Operational constraints
- Load balance
- Generation unit output capacity
- Network line capacity and power flow constraints, Min on/off time limits, etc.
Case Study

- Historical data for the past extreme events at component level are limited
- We generated 300 samples of each component state
 - Following a normal distribution function with a small Gaussian noise.
- The samples belong to two classes of components
 1. High probability of failure
 2. Components that can survive the extreme event.
- The features are normalized to [0, 1] based on the maximum considered values of wind speed and distance.
Role of Hyper-parameters and Kernel Shape

• Table 1 shows the accuracy of SVM with aforementioned combinations of penalty parameters and kernels.
• The polynomial kernel SVM with c=1 outperforms other models in terms of classification accuracy.
• The margin size of the SVM with polynomial kernel is 0.1131, and the average ε (regularization weight) is 0.4558.

Table 1. Accuracy (%) of SVM with various penalty-parameters and kernels

Kernel	c=0.1	c=1	c=10
Linear	91.0	91.4	91.2
Quadratic	91.3	91.2	91.2
Polynomial	92.3	92.8	92.7
Gaussian	91.3	91.2	91.8
Visualizing the Decision Boundary

• This Figure shows the decision boundary of the polynomial kernel with penalty parameter $c=1$, separating outage from operational components based on wind speed and distance from the center of the hurricane.

• The instances are not linearly separable

• A nonlinear kernel is necessary to better classify the components.

Decision boundary of the polynomial kernel with penalty parameter $c=1$
SVM Performance

• Table 2 shows the confusion matrix of this classification.
• The proposed method can effectively classify the components into outage and operational classes.

Table 2. Confusion Matrix of classifying system components

Actual	Predicted	
	Normal	Outage
Normal	91.7%	8.3%
Outage	6.0%	94.0%
Load Curtailment Estimation

- Table 3 shows the load curtailment of each contingency scenario based on the predicted outages.

Table 3. Load Curtailment of Bus Outages along three Hurricane Paths

Bus number	Total Load (MW)	LC Scenario 1 (MW)	LC Scenario 2 (MW)	LC Scenario 3 (MW)
2	423.08	0	0	0
3	46.79	44.95	0	1.62
15	159.87	0	0	0.37
18	62.39	0	59.94	2.10
19	185.22	0	177.95	0
20	42.89	0	41.21	0
23	62.39	0	0	9.92
24	169.62	0	0	162.97
29	46.79	0	0	0.31
Conclusion

• An SVM model was trained to predict the outage state of power grid components due to an imminent hurricane strike.

• A minimum load curtailment problem was formulated to estimate the amount of load curtailment considering the predicted outage states from a Support Vector Machine method.

• This model provides a practical forward-looking framework for utilities, local governments, and policy makers for a risk-informed operations management, emergency response planning, humanitarian logistics, and restoration of the life-line power grid infrastructure in both strategic level and real-time basis.
Thank you
rozhin.eskandarpour@du.edu