METTL3-mediated m^6^A modification of ZBTB4 mRNA is involved in the smoking-induced EMT in cancer of the lung

Cheng Cheng,1,2,4 Yan Wu,3,4 Tian Xiao,1,2 Junchao Xue,1,2 Jing Sun,1,2 Haibo Xia,1,2 Huimin Ma,1,2 Lu Lu,1,2 Junjie Li,1,2 Aimin Shi,1,2 Tao Bian,3 and Qizhan Liu1,2

1Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People’s Republic of China; 2China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People’s Republic of China; 3Department of Respiratory and Critical Care Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, People’s Republic of China

N6-methyladenosine (m^6^A) is an epigenetic modification associated with various tumors, but its role in tumorigenesis remains unexplored. Here, as confirmed by methylated RNA immunoprecipitation sequencing (meRIP-seq) and RNA sequencing (RNA-seq) analyses, exposure of human bronchial epithelial (HBE) cells to cigarette smoke extract (CSE) caused an m^6^A modification in the 3′ UTR of ZBTB4, a transcriptional repressor. For these cells, CSE also elevated methyltransferase-like 3 (METTL3) levels, which increased the m^6^A modification of ZBTB4. RIP-qPCR illustrated that ZBTB4 was the intent gene of YTHDF2 and that levels of ZBTB4 were decreased in an YTHDF2-dependent mechanism. The lower levels of ZBTB4 were associated with upregulation of EZH2, which enhanced H3K27me3 combining with E-cadherin promoter, causing lower E-cadherin levels and induction of the epithelial-mesenchymal transition (EMT). Further, in the lungs of mice, downregulation of METTL3 alleviated the cigarette smoke (CS)-induced EMT. At present, we found that CS caused the EMT and increased the expression of METTL3 in lung tissue of mice. We also investigated the function and regulation of the m^6^A mRNA modification in CSE-treated HBE cells. These results indicate that m^6^A modifications are a potential therapeutic target of lung damage induced by CS.

INTRODUCTION

Worldwide, lung cancer is a tumor, with a higher mortality rate relative to most malignant tumors.1 About 85% of lung cancer occurrences are related to smoking.2 With the increase in smoking, the risk of lung cancer has risen, and the risk for genetically low-risk heavy smokers is higher than that of genetically high-risk non-smokers.3 Although cigarette smoke (CS) is carcinogenic, its molecular mechanism of carcinogenesis remains to be determined.

Methyltransferase-like 3 (METTL3), METTL14, and WTAP are writers of N6-methyladenosine (m^6^A) methylation. FTO and ALKBH5 are the common eraser proteins in m^6^A methylation. YTH domain family proteins and IGF2BPs are common reading protein families.4 For RNAs, the modification of m^6^A is related to multiple biological processes, such as translation and RNA stability and decay.5–7 mRNAs, which are frequent regulatory modifications, are associated with various cancers, including those of the lung cancer, bladder cancer, and gastric cancer.8–11 In human lung cancer tissues, METTL3 is highly expressed, compared with normal tissues.12 METTL3 expression in non-tumor pancreatic tissues is higher in tissues of smokers than in tissues of non-smokers.13 Therefore, the difference in METTL3 expression may be related to CS exposure.

Zinc finger and BTB domain-containing 4 (ZBTB4), a transcriptional repressor, inhibits the development of breast cancer,14 prostate cancer,15 and neuroblastoma.16 In breast cancers, overexpression of ZBTB4 leads to low expression of EZH2.17 Previous studies have shown that cigarette smoke extract (CSE) treatment of human bronchial epithelial (HBE) cells causes the epithelial-mesenchymal transition (EMT) and elevates the level of EZH2 during malignant transformation.18,19 However, the relationship between ZBTB4 and smoking-induced EMT and carcinogenesis needs to be explored.

At present, we found that CS caused the EMT and increased the expression of METTL3 in lung tissue of mice. We also investigated the function and regulation of the m^6^A mRNA modification in CSE-treated HBE cells.
cells. For these cells, CSE also elevated METTL3 levels, which increased the m⁶A modification of ZBTB4 and decreased levels of ZBTB4 mRNA in a YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-dependent mechanism. Low expression of ZBTB4 enhanced the expression of EZH2, which elevated the degree of methylation in the promoter region of E-cadherin mRNA and induced the EMT. In addition, down-regulation of METTL3 alleviated the CS-induced EMT in mice. Further, the expression of METTL3 was high in the lung tissues of smokers and levels contrary to the expression of ZBTB4. Overall, these results demonstrate the importance of the CS-induced EMT and contribute to defining its mechanism of carcinogenesis.

RESULTS
CS induces the EMT and elevates the levels of m⁶A and METTL3 in HBE cells
The EMT is often a step in the process of tumor development. Further, m⁶A RNA methylation is associated with the progression of diseases, and various environmental factors influence this methylation. Our previous studies have found that CSE treatment of HBE cells leads to the EMT and malignant transformation. Since incubation of HBE cells with 2% CSE for 48 h promoted cell proliferation, we chose 2% as the chronic exposure concentration (Figure S1A). The CSE-treated HBE cell model is described in a summary diagram (Figure S1B). To determine if malignant changes occurred in HBE cells treated with CSE over an extended time, the colony-forming capacity of transformed HBE (T-HBE) cells was assessed. An alteration from EMT-like phenotype and elevated formation of colonies were evident after exposure to 2.0% CSE for 40 passages (Figures 1A–1C). After exposure of cells to CSE, their mRNA expressions of METTL3, METTL14, WATP, FTO, and ALKBH5 showed no appreciable difference (Figures 1D and 1H). After HBE cells were exposed to CSE, their levels of mRNA m⁶A were enhanced in a time- and concentration-dependent manner (Figures 1E and 1I). After exposure of cells to CSE, their protein expressions of METTL3, N-cadherin, and vimentin were enhanced;
the level of E-cadherin was lowered (Figures 1F and 1G). In HBE cells exposed to various concentrations of CSE, METTL3 levels increased after 48 h (Figures 1J and 1K).

Long-term exposure of mice to CS reduced expression of the epithelial marker, E-cadherin, and caused the EMT in lung tissue; this exposure increased expressions of vimentin and N-cadherin (Figures S2C–S2F). Compared with lung levels for mice in the control group, the levels of m6A and METTL3 exposed to CS were upregulated (Figures S2A–S2F). Our results show that CS exposure increases the extent of m6A and the levels of METTL3 and that it induces the EMT in HBE cells and in lungs of mice. Thus, METTL3 may be involved in the malignant transformation of HBE cells exposed to CSE.

METTL3 is vital for the EMT and malignancy of T-HBE cells

In cancer cells, METTL3 regulates m6A modification of mRNAs and affects the occurrence of the EMT. Colorimetric analysis of mRNA m6A levels from T-HBE cells with METTL3 small interfering RNA (siRNA) revealed that METTL3 depletion led to a decrease of m6A in mRNA (Figure 2A). Compared with T-HBE cells without METTL3 siRNA transfection, T-HBE cells after METTL3 knockdown showed decreased levels of N-cadherin and vimentin and reinforced levels of...
(Figure 3A). Similar to previous research results, m6A peaks were
HBE and CSE-treated HBE cells. Three independent biological repli-

...methylated m6A peaks and lower mRNA levels (Figure 3F). Also,

...mRNA, we assumed that ZBTB4 decay was mediated by

...m6A motifs with high affinity affects the expression of tumor-related genes.29 Our previous

...ZBTB4 regulation of EZH2 is associated with the EMT and the

...ZBTB4 by a METTL3-m6A-YTHDF2-dependent mechanism

...ZBTB4 was involved in the malignancy of HBE cells.

Methylated RNA immunoprecipitation sequencing (meRIP-seq) and RNA sequencing (RNA-seq) of HBE, CSE-HBE, and T-HBE cells

To investigate whether CSE affects the m6A methylation modification in the transcriptome, meRIP-seq and RNA-seq were conducted for HBE and CSE-treated HBE cells. Three independent biological replicates were included. The methods are described in a summary diagram (Figure 3A). Similar to previous research results, m6A peaks were enriched near the stop codon in the 3′ untranslated regions (UTRs) of mRNAs of these cells (Figure 3B). In addition, there was enrichment of different peaks near the stop codon in the 3′ UTRs (Figure 3C). Similar m6A patterns of the overall distribution of m6A were observed, showing that peaks were mainly enriched in the 3′ UTR regions (Figures S3A and S3B). In these cells, the consensus motif was enriched within m6A sites (Figure 3D), resembling the common m6A motif described in other studies.27,28 meRIP-seq analysis identified 33,739, 51,608, and 41,643 m6A peaks in HBE, CSE-HBE, and T-HBE cells, respectively. In the CSE-HBE group, there were 39,199 new m6A peaks, and 21,330 peaks disappeared. 12,409 peaks appeared simultaneously in HBE and CSE-HBE cells. In the T-HBE group, there were 30,828 new m6A peaks, and 22,924 peaks disappeared. 10,815 peaks appeared for both in HBE and T-HBE cells (Figure 3E).

The relationships between each peak and mRNA expression were analyzed through meRIP-seq and RNA-seq data; these described the gene situation for which the m6A level and the RNA level changed significantly. Compared with HBE cells, CSE-HBE cells had 77 hyper-
methylated m6A peaks and lower mRNA levels (Figure 3F). Also, compared with HBE cells, there were 244 peaks of hyper-methylated m6A in T-HBE cells, and the mRNA levels were lower (Figure 3G). The specific gene list is in Table S4. A comparison of these two sets of results revealed 11 peaks in 8 genes (Figure 3H). Through examination of GeneCards and UniProt databases, ZBTB4 was found to be associated with carcinogenesis mechanisms. Therefore, ZBTB4 was chosen for further research. In all, the results show that, for mRNAs, CSE has substantial effects on m6A modifications and that these modifications are present for ZBTB4.

Silencing of ZBTB4 by a METTL3-m6A-YTHDF2-dependent mechanism

To determine whether the decrease in ZBTB4 expression was affected by the m6A modification influenced by METTL3, we con-
ducted a meRIP-qPCR experiment to measure the level of ZBTB4 m6A methylation after METTL3 knockdown in CSE-HBE and T-HBE cells. After transfection of METTL3 siRNA into CSE-HBE and T-HBE cells, the m6A level of ZBTB4 mRNA was decreased (Figures 4A and 4B), the expression of METTL3 was decreased, and the expression of ZBTB4 was enhanced (Figures 4C and 4D). METTL3 overexpression was achieved by exposure of cells to pcDNA3.1-METTL3 (pcD METTL3) (Figures S4A and S4B), and dual-luciferase reporter assays were fulfilled to determine if m6A modifications reduced the expression of ZBTB4. Peaks indicated the relative abundance of m6A sites in ZBTB4 mRNA (Figure 4E). The wild-type (WT) ZBTB4 3′ UTR sequence containing m6A sites was cloned into a dual luciferase reporter construct pGL3 promoter vector, and three mutant ZBTB4 3′ UTR reporter vectors were generated (Figure 4F). The luciferase activity for the WT group was lower after transfection with pcD METTL3, that for the mutant group showed no obvious difference (Figure 4G). In short, we found the m6A site through the sequencing analysis and verified it through experiments.

Since YTHDF2 affects its stability by binding to m6A modification sites on mRNA, we assumed that ZBTB4 decay was mediated by YTHDF2. Then, we knocked down YTHDF2 in T-HBE cells and found increased levels of ZBTB4 protein (Figures 4H and 4I). RIP-qPCR illustrated that ZBTB4 is the intest gene of YTHDF2 (Figure 4J). Next, we examined the impact of YTHDF2 on the malignant properties of T-HBE cells. Compared with results for con siRNA, YTHDF2 knockdown reduced the capacity for invasion, migration, and colony formation of T-HBE cells (Figures S5A–S5C). In addition, after transfection with YTHDF2 siRNA, the luciferase activity of T-HBE cells increased in the WT group (Figure 4K). Thus, METTL3 is vital for the CSE-induced downregulation of ZBTB4 by a mechan-

ZBTB4 regulation of EZH2 is associated with the EMT and the malignancy of T-HBE cells

For ZBTB4, apparent regulation of methylated CpGs with high affinity affects the expression of tumor-related genes.29 Our previous research showed that EZH2 strengthens combining the E-cadherin promoter region with H3K27me3, leading to gene silencing associated with CSE-induced HBE cell transformation.19 For HBE cells, exposure to CSE downregulated ZBTB4 (Figures 5A–5D). Also, ZBTB4 protein expression was lower in the lung of mice exposed to CS relative to controls (Figures S6A and S6B). String co-expression analysis suggested a relationship between ZBTB4 and EZH2 (Figure 5E). In T-HBE cells transfected with pcDNA3.1-ZBTB4 (pcD ZBTB4), the expressions of vimentin, N-cadherin, EZH2, and H3K27me3 were lower; however, the expression of E-cadherin was higher (Figures 5F and 5G). Compared with the control group, T-HBE cells with overexpression of ZBTB4 showed reduced colony-forming capacity and reduced migration and invasion (Figures 5H–5J). Therefore, we propose that, during CSE-exposed HBE cells, low expression of ZBTB4 promotes the EMT via EZH2.
METTL3 regulation of ZBTB4 is involved in the EMT and in the malignancy of T-HBE cells

The regulatory mechanism for the METTL3-mediated EMT in the malignant changes of HBE cells was investigated. For this research, we chose the most efficient knockdown ZBTB4 siRNA (Figure S4C). Compared with METTL3 siRNA-transfected T-HBE cells, co-transfection of ZBTB4 siRNA and METTL3 siRNA reversed the increase in E-cadherin levels and the decreases in N-cadherin, vimentin, EZH2, and H3K27me3 caused by METTL3 siRNA transfection. (Figures 6A and 6B). To determine if METTL3 contributes to malignant changes in HBE cells, their ability of colony formation, invasion, and migration was measured. After the reduction of METTL3, T-HBE cell
migration and invasion levels were reduced; also, fewer colonies were formed. When these cells were co-transfected with METTL3 and ZBTB4 siRNAs, the effects on cell migration and invasion and on colony formation caused by METTL3 siRNA were reversed (Figures 6C–6E), showing that, for T-HBE cells, METTL3 affected the malignant properties of cells through ZBTB4. Thus, these results establish that METTL3 reduces the expression of ZBTB4 and facilitates the EMT via promoting the m6A modification of ZBTB4 mRNA.

Downregulation of METTL3 reverses CS-induced the EMT in lungs of mice
To verify of the effect of METTL3 in the CS-induced EMT in mice, Adeno-associated virus-METTL3 short hairpin RNA (AAV-ShMETTL3) and Adeno-associated virus-negative control short hairpin RNA (AAV-NC shRNA) were dosed by intranasal instillation after the mice were exposed to CS for 4 weeks (Figure S7). The extent of mRNA m6A in lungs were reduced by downregulated expression of METTL3 (Figure 7A). The levels of METTL3, vimentin, N-cadherin, EZH2, and H3K27me3 were lower in lungs of mice dosed with shMETTL3, whereas ZBTB4 and E-cadherin expressions were increased (Figures 7B and 7C). The same results were seen by immunohistochemistry (IHC) staining (Figures 7D and 7E).

Smokers have elevated METTL3 expression, while ZBTB4 levels are opposite
Smokers had higher levels of m6A in the lungs than non-smokers (Figure 8A). To explore the expressions of METTL3 and ZBTB4 in the development of CS-induced lung cancer at the population level, the protein levels of METTL3 and ZBTB4 in lung normal tissues of non-smokers, lung normal tissues of smokers, and lung tumor tissues...
of smokers were measured by western blots. Lung tumor tissues of smokers showed higher protein expression of METTL3 compared to lung normal tissues of non-smokers and lung normal tissues of smokers. Lung tumor tissues of smokers had lower expression of ZBTB4 protein (Figures 8B and 8C). Similar results were obtained with IHC staining (Figures 8D and 8E). Consistently, compared with those from non-smokers, the levels of METTL3 were higher, and the levels of ZBTB4 were lower in lung tissue of smokers, as determined by quantitative real-time PCR (Figures 8F and 8G). Moreover, METTL3 levels inversely correlated with ZBTB4 levels (Figure 8H).

To investigate METTL3 and ZBTB4 levels in lung cancer, we used the UALCAN portal (http://ualcan.path.uab.edu) to analyze their expression. Our analysis revealed that, for patients with lung adenocarcinoma (LUAD), the levels of METTL3 were higher and those for ZBTB4 were lower (n = 515) than in the normal group (n = 59) (Figures S8A and S8B). For patients with lung squamous cell carcinoma (LUSC) (n = 503), METTL3 expression was higher, and ZBTB4 expression was lower than in normal lung tissues (n = 52) (Figures S8C and S8D). These results suggest that METTL3 and ZBTB4 are related to the occurrence of CS-induced lung cancer.

DISCUSSION

Lung cancer has high morbidity and mortality. In countries with high smoking rates, up to 90% of lung cancers are attributable to smoking. Tobacco contains numerous compounds, including
Studies focusing on various molecular mechanisms of lung cancer caused by smoking have been performed, whereas the effect of m^6^A in regulation of gene levels after exposure to environmental chemicals is largely unclear. Exposure of normal epithelial cells to environmental carcinogens can lead to abnormal methylation of promoter DNA, histone modifications, and changes in non-coding RNA. These alterations are often associated with carcinogenesis. m^6^A regulation, which is related to cell apoptosis and proliferation, may lead to cancer-related effects. However, the role of m^6^A in gene expression regulation after exposure to environmental chemicals was largely uncertain.

In this study, we found that exposure of mice to CS caused the EMT and increased m^6^A levels in lung tissue. Additionally, the level of METTL3 was higher in the lungs of these mice. For HBE cells, exposure to CSE caused higher METTL3 expression, showing that this protein is related to the malignant changes induced by CSE and the formation of lung cancers. Knocking down METTL3 reduces the cellular proliferation of cancer cells, inhibits cell survival, and elevates apoptosis of cancer cells. Here, we demonstrated that, for T-HBE cells, knockdown of METTL3 caused elevated expression of E-cadherin. Compared with control T-HBE cells, knocking down METTL3 also led to diminished invasion and migration and reduced tumor size. Further, downregulation of METTL3 alleviated the CS-induced EMT in lungs of mice. These results indicate that METTL3 is related to the EMT and malignant changes of HBE cells caused by CSE.

To elucidate the molecular mechanism for modification of m^6^A RNA methylation in malignant changes of HBE cells caused through CSE exposure, we performed meRIP-seq and RNA-seq for HBE, CSE-HBE, and T-HBE cells. Exposure to CSE for a short period of time created more m^6^A peaks due to the transient response of short-term stimulation. The m^6^A modification changes formed by long-term exposure were stable. There were more changes in mRNA levels in the T-HBE group due to stable m^6^A changes. After acute and chronic exposure to CSE, the m^6^A levels of most genes increased, and the mRNA levels decreased. Therefore, we chose the hyper-down group for further selection. We established that, during CSE-induced malignant changes of cells, numerous genes undergo regulation through m^6^A modification, but we focused on ZBTB4, a tumor suppressor. Overexpression of ZBTB4 reduces cellular proliferation and migration capacity. In the current study, transfection of T-HBE cells with pCD ZBTB4 reduced the increase of EZH2 expression and the decrease of E-cadherin caused by CSE exposure. Further, compared to control T-HBE cells, overexpression of ZBTB4 resulted in reduced numbers of...
colonies and reduced invasion and migration capacity. These findings show that EZH2 is regulated by ZBTB4 and is associated with the EMT and with the tumorigenicity of T-HBE cells.

m6A modifications occur at multiple stages of RNA formation, including translation, modulation, nuclear export, and processing. From our meRIP-seq analysis, we identified three m6A sites in ZBTB4 mRNA and established the stability of these sites in regulating ZBTB4 mRNA by luciferase reporter gene and meRIP-qPCR analyses. For colorectal cancer cells, METTL3 decreases the stability of SOX2 mRNA transcripts via an m6A-dependent mechanism. YTHDF2 participates in the degradation of mRNA by selectively targeting the m6A modification site of ZBTB4 mRNA, resulting in decreased ZBTB4 expression. Further, for HBE cells, METTL3 is involved in this process and ZBTB4 is regulated by a METTL3-m6A-YTHDF2-dependent mechanism.

As shown by the present results, for various passages of CSE-exposed HBE cells, there was upregulation of METTL3, which increased the m6A modification of ZBTB4 and decreased ZBTB4 levels. ZBTB4 enhances the binding of the E-cadherin promoter to H3K27me3 by downregulating EZH2, leading to lower levels of E-cadherin. Therefore, ZBTB4 is a downstream target of METTL3, and it is related to the EMT and carcinogenesis caused by CSE exposure.

For T-HBE cells, CSE-induced expression of METTL3 enhanced their formation of clones and their invasion and migration capacities via ZBTB4. In the lung tissues of smokers, METTL3 was overexpressed, and ZBTB4 was under-expressed. Also, there was a negative correlation between METTL3 levels and ZBTB4 levels. In addition, analysis of RNA-seq data in The Cancer Genome Atlas (TCGA), using the UALCAN web portal, revealed that expression of METTL3 was elevated, and ZBTB4 was low in LUADs and LUSCs. This indicates that the upregulation of METTL3 and the downregulation of ZBTB4 are related to the carcinogenic effect of CS.

In sum, exposure of HBE cells to CSE increases the m6A levels of ZBTB4 mRNA via enhancing METTL3 levels, which results in lower protein levels of ZBTB4 via attenuating the mRNA stability of ZBTB4 in a YTHDF2-dependent manner. Low levels of ZBTB4 lead to high expression of EZH2, which elevates methylation of the promoter of E-cadherin, lowering its expression and leading to EMT and transformation of these cells (Figure 8I). Thus, our results reveal a previously unknown mechanism by which environmental chemicals cause cancer.

The mechanisms for m6A mRNA modifications in carcinogenesis induced by environmental chemicals are clinically relevant; by understanding the mechanisms of m6A modification, we will be able to discover therapeutic approaches that influence gene expression. Such
Figure 8. Smokers have elevated METTL3 expression, while ZBTB4 levels are opposite

(A) The levels of global mRNA m^6^A in lung tissues were determined by RNA m^6^A colorimetric analysis (mean ± SD, n = 6). (B) Western blots were performed for lung normal tissues of non-smokers, lung normal tissues of smokers, and lung tumor tissues of smokers, and (C) relative protein levels (mean ± SD, n = 3) of METTL3 and ZBTB4 were determined. (D) Representative immunostaining images and (E) the levels of METTL3 and ZBTB4 in lung tissues were determined by IRS (mean ± SD, n = 6). (F and G) (legend continued on next page)
findings can encourage the progress of new methods for diagnosis and treatment of various diseases, including lung cancer.

MATERIALS AND METHODS

Clinical specimens
Lung normal tissues of non-smokers (n = 15), lung normal tissues of smokers (n = 20), and lung tumor tissues of smokers (n = 20) were obtained from patients who underwent surgery in Wuxi People’s Hospital Affiliated to Nanjing Medical University. Collection of lung tissues for this study was approved by the Ethics Committee of Wuxi People’s Hospital Affiliated to Nanjing Medical University.

Cell culture
Primary HBE cells, originating from the Shanghai Institute of Cell Biology, Chinese Academy of Sciences (China) were grown in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) (Gibco, NY, USA), 100 μg/mL streptomycin, and 100 U/mL penicillin (Gibco, Gaithersburg, MD, USA). Cells were grown in a humidified incubator at 37°C with 5% CO₂. CSE was prepared as described previously. In brief, we used a vacuum pump to collect smoke from 3R4F research cigarettes into RPMI-1640 medium. The preparations were filtered, and the absorbance at 320 nm (A320) and 540 nm (A540) was determined for quality control. As in our previous investigations, HBE cells were seeded into a dish and exposed to 0% or 2% CSE for 24 h. The preparations were filtered, and the absorbance at 320 nm and 540 nm was used to determine the absorbance. Colonies containing over 50 cells were counted.

Exposure of mice to CS
Animal research was approved by the Animal Protection and Use Committee of Nanjing Medical University. Male BALB/c mice at 6–8 weeks of age were obtained from Shanghai SLRC Laboratory Animal (China) and were maintained in the animal facility of Nanjing Medical University. Mice were treated with smoke from 3R4F research cigarettes (University of Kentucky, KY, USA) as described previously. In brief, mice were placed in a CS (200 mg/m³ total particulate matter, TPM) environment through a whole-body exposure system (Beijing Huironghe Technology, China) for 60 min twice daily, 4 h apart, 5 days a week, for a total of 20 weeks. We set a constant oxygen content (about 20%) during the entire CS exposure. Male BALB/c mice were grouped into CS, CS+AAV-ShMETTL3, and CS+AAV-NC shRNA groups, n = 6 animals per group. Mice in the AAV-ShMETTL3 and AAV-NC shRNA (GeneChem, China) groups were dosed by intranasal instillation after CS exposure for 4 weeks.

Western blots
Equal amounts of proteins were separated by 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes (Millipore, USA). The membranes were blocked in 5% non-fat milk at room temperature for 1 h, then incubated overnight at 4°C with a primary antibody for Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:1,000, Beyotime), METTL3 (1:1,000, Abcam), ZBTB4, YTHDF2 (1:1,000, Santa Cruz Biotechnology), histone3 (H3) (1:5,000, Abcam), vimentin, E-cadherin, N-cadherin (1:1,000, Cell Signaling Technology), H3K27me3 (1:1,000, Millipore), or EZH2 (1:1,000, BD Biosciences). The next day, the membranes and a secondary antibody (1:1,000, Beyotime) were incubated in an indoor environment for 1 h. After washes, protein-antibody complexes were detected by enhanced chemiluminescence (ECL) (Bio-Rad). Densities of bands were quantified by ImageJ software. GAPDH levels, measured in parallel, served as controls.

Colonization assays
To determine their ability for colony formation, 1 x 10⁷ cells were placed in 6-well plates and incubated at 37°C for 10 days. The plates were stained with crystal violet. Colonies containing over 50 cells were counted.

RNA total m⁶A quantification
Total RNA was extracted by Trizol reagent (Invitrogen) following the manufacturer’s instructions, followed by the purification of polyadenylated mRNA employing Dynabeads mRNA purification kits (Invitrogen) according to the manufacturer’s instructions. m⁶A RNA methylation quantification kits (Colorimetric) (ab185912) were utilized to detect the levels of m⁶A in the lung tissues and cells. RNA (200 ng) was added to the wells. The capture antibody and the detection antibody were then added. The m⁶A levels were measured by reading the absorbance at 450 nm.

Transwell assays
Transwell chambers with 8-μm pores (Corning, USA) were used to assess cell invasion and migration capacities. After 24 h of transfection, 5 x 10⁴/100 μL cells were cultured in serum-free medium in the chambers, with or without Matrigel (BD Biosciences, USA). RPMI-1640 medium containing 10% FBS was added to the lower chambers. The non-migratory or non-invasive cells were removed after 24 h. Invading cells were fixed, stained, and counted.

Quantitative real-time PCR
Total RNA was isolated as before. The total RNA was reverse transcribed into cDNA with HiScript II QRT supermix (Vazyme Biotech, China). Quantitative real-time PCR was conducted with Power SYBR green master mix (Applied Biosystems, CA, USA) and a Roche LightCycler 96 machine. GAPDH (for mRNA expression) was regarded as an internal control. Fold changes in levels of each gene were calculated by a comparative threshold cycle (Ct) method applying the
All primers used in this study are listed in Tables S2 and S3.

RIP assays

RIP was performed with Magna RIP RNA-binding protein immunoprecipitation kits (Millipore). Antibodies against YTHDF2 (Santa Cruz Biotechnology) were used. Total RNA from cells was extracted and depleted of ribosomal RNA. An RNA fragmentation reagent (Ambion) was applied. Next, the RNA protein complexes were washed and mixed with proteinase K digestion buffer (10 μg/mL). RNAs were extracted with phenol-chloroform and evaluated by qPCR, which was normalized to input.

Cell transfection

METTL3 siRNA, YTHDF2 siRNA, and an siRNA control were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). pcDNA3.1-control (pcD con), pcD ZBTB4, and pcDNA3.1-control were synthesized by GeneChem (China), and an siRNA targeting human ZBTB4 mRNA was purchased from Ribobio. The siRNA sequences are shown in Table S1.

Luciferase reporter assay

PGL3 promoter vectors (GeneChem, China) cloned two types of the ZBTB4 3’ UTR (wt-ZBTB4 3’ UTR and mut-ZBTB4 3’ UTR). Luciferase activity was measured by the instructions supplied with the dual luciferase reporter kits (Promega).

meRIP-seq

Total RNA was isolated just as before. Over 200 μg of total RNA to obtain poly(A) mRNA (Invitrogen). The fragmentation reagent was added, and the mRNA was fragmented to lengths of about 100 nt. The fragmented RNA was sorted into two portions. To one, immunomagnetic beads with premixed m6A antibody were added to enrich the mRNA fragments containing m6A methylation. The other was used as a control to construct a conventional transcriptome sequencing library. Paired-end 2 × 150 bp sequencing was performed on the Illumina Novaseq 6000 platform of LC-BIO Bio-tech (Hangzhou, China). Mapped reads of immunoprecipitation (IP) and input libraries were provided for R package exomePeak, which identifies m6A peaks with a bed or bam format that can be adapted for visualization on the UCSC genome browser or IGV software. HOMER was used for de novo and known motif finding, followed by localization of the motif with respect to peak summit by Perl scripts. Then, StringTie was used to measure expression levels for all mRNAs from input libraries by calculating fragments per kilobase of transcript per million.

IHC

Tissues were fixed with 4% paraformaldehyde before being placed in paraffin. 5-μm sections were placed on the glass slide and stained for METTL3, E-cadherin, vimentin, or ZBTB4 (Solarbio Life Science, China) based on the manufacturer’s guidelines to detect the levels of METTL3, E-cadherin, vimentin, and ZBTB4. Quantitative IHC staining with the immunohistochemical score (IRS) system was as described previously.

meRIP-qPCR

A portion (10%) of RNA was obtained for use as an input sample. RNA was immunoprecipitated with anti-m6A antibody (Synaptic Systems) in immunoprecipitation buffer (Sigma, USA) at 4°C for 2 h and then incubated with Dynabeads protein A (Invitrogen, USA) at 4°C for 2 h. The bound RNA was eluted twice by competition with m6A 5’-monophosphate sodium salt at 4°C for 1 h. Following ethanol precipitation, the input RNA and immunoprecipitated m6A RNAs were determined by quantitative real-time PCR analysis as before.

Tumorigenicity in intact animals

All animal care and experiments were approved by the Nanjing Medical University Institutional Animal Care and Use Committee. Female BALB/c nude mice (4–6 weeks old) were purchased from the Animal Research Center of Nanjing Medical University (China). To assess tumorigenicity, cells (1 × 10⁶) were injected subcutaneously into the right armpits of nude mice (5 per group). Tumor volumes were monitored every 7 days. After 28 days, the tumor tissue was removed. The size of tumors was calculated with a formula: tumor volume (mm³) = 1/2(ab²), where a and b are the maximum horizontal and vertical diameters.

Statistical analyses

Experiments were performed three times independently. All data and error bars were expressed as means ± SD. The comparison of means between two groups was performed by t tests, and comparisons for multiple groups were performed by one-way analysis of variance (ANOVA); least significant difference (LSD) was used for comparisons between groups. The level of statistical significance was defined as p < 0.05. All statistical analyses were conducted with SPSS 20.0 software.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.omtn.2020.12.001.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundations of China (81973085, 81803276), the Natural Science Foundation of Wuxi (jzyx01), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (2019). The authors thank Donald L. Hill (University of Alabama at Birmingham, AL, USA), an experienced, English-speaking scientific editor for editing.

AUTHOR CONTRIBUTIONS

C.C., Y.W., T.B., and Q.L. conceived and designed this study; C.C., T.X., J.S., L.L., H.M., H.X., and J.L. performed all experiments; C.C. and Y.W. drafted the manuscript; T.X., J.X., A.S., T.B., and Q.L. revised the manuscript; Y.W., H.X., H.M., and J.L. collected tissue samples; C.C. and Y.W. conducted the statistical analysis.

DECLARATION OF INTERESTS

The authors declare no competing interests.
38. Lu, L., Xu, H., Yang, P., Xue, J., Chen, C., Sun, Q., Yang, Q., Lu, J., Shi, A., and Liu, Q. (2018). Involvement of HIF-1α-regulated miR-21, acting via the Akt/NF-κB pathway, in malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol. Lett. 289, 14–21.

39. Ji, W., Yang, L., Yu, L., Yuan, J., Hu, D., Zhang, W., Yang, J., Pang, Y., Li, W., Lu, J., et al. (2008). Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis 29, 1267–1275.

40. Xiao, T., Xue, J., Shi, M., Chen, C., Luo, F., Xu, H., Chen, X., Sun, B., Sun, Q., Yang, Q., et al. (2018). Circ008913, via miR-889 regulation of DAB2IP/ZEB1, is involved in the arsenite-induced acquisition of CSC-like properties by human keratinocytes in carcinogenesis. Metallomics 10, 1328–1338.

41. Li, M., Huo, X., Davuljigari, C.B., Dai, Q., and Xu, X. (2019). MicroRNAs and their role in environmental chemical carcinogenesis. Environ. Geochem. Health 41, 225–247.

42. Dai, D., Wang, H., Zhu, L., Jin, H., and Wang, X. (2018). N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9, 124.

43. Deng, X., Su, R., Feng, X., Wei, M., and Chen, J. (2018). Role of N6-methyladenosine modification in cancer. Curr. Opin. Genet. Dev. 48, 1–7.

44. Zhou, L., Yang, C., Zhang, N., Zhang, X., Zhao, T., and Yu, J. (2020). Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed. Pharmacother. 125, 109964.

45. Alarcón, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015). HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell 162, 1299–1308.

46. Li, T., Hu, P.S., Zuo, Z., Lin, J.F., Li, X., Wu, Q.N., Chen, Z.H., Zeng, Z.L., Wang, F., Zheng, J., et al. (2019). METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol. Cancer 18, 112.

47. Xu, H., Ling, M., Xue, J., Dai, X., Sun, Q., Chen, C., Liu, Y., Zhou, L., Liu, J., Luo, F., et al. (2018). Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics 8, 5419–5433.

48. Liu, Y., Luo, F., Wang, B., Li, H., Xu, Y., Liu, X., Shi, L., Lu, X., Xu, W., Lu, L., et al. (2016). STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370, 125–135.

49. Jobse, B.N., Rhem, R.G., Wang, I.Q., Counter, W.B., Stämpfli, M.R., and Labiris, N.R. (2013). Detection of lung dysfunction using ventilation and perfusion SPECT in a mouse model of chronic cigarette smoke exposure. J. Nucl. Med. 54, 616–623.

50. Xia, H., Xue, J., Xue, J., Xu, H., Lin, M., Shi, M., Sun, Q., Xiao, T., Dai, X., Wu, L., Li, J., et al. (2019). Andrographolide antagonizes the cigarette smoke-induced epithelial-mesenchymal transition and pulmonary dysfunction through anti-inflammatory inhibiting HOTAIR. Toxicology 422, 84–94.

51. Montelius, M., Ljungberg, M., Horn, M., and Forsnell-Aronsson, E. (2012). Tumour size measurement in a mouse model using high resolution MRI. BMC Med. Imaging 12, 12.
Supplemental Information

METTL3-mediated m^6^A modification of ZBTB4 mRNA is involved in the smoking-induced EMT in cancer of the lung

Cheng Cheng, Yan Wu, Tian Xiao, Junchao Xue, Jing Sun, Haibo Xia, Huimin Ma, Lu Lu, Junjie Li, Aimin Shi, Tao Bian, and Qizhan Liu
Figure S1. Cell exposure model. (A) Cell viability was measured by use of a Cell Counting Kit-8 assay after HBE cells were exposed to 0, 1, 2, 4, or 8% of CSE for 48 hours (mean ± SD, n = 3). * P < 0.05, different from cells not exposed to CSE. (B) Models for acute and chronic exposures of cells.

Figure S2. CS increases the levels of m^6^A and METTL3 and induces the EMT in lungs of mice.

Male BALB/c mice at 6-8 weeks of age were exposed to 200 mg/m^3^ TPM CS for 20 weeks. (A) The levels of global mRNA m^6^A in the lung tissues of mice were
determined by RNA m6A colorimetric analysis (mean ± SD, n = 6). (B) mRNA levels (means ± SD, n = 6) of the m6A regulatory genes (METTL3, METTL14, WTAP, FTO, and ALKBH5) in the lung tissues of mice were measured by qRT-PCR assay. (C) Western blots were performed, and (D) relative protein levels (mean ± SD, n = 3) of METTL3, E-cadherin, N-cadherin, and vimentin in the lung tissues of mice were determined. (E) Representative immunostaining images and (F) the levels (mean ± SD, n = 6) of METTL3, E-cadherin, and vimentin in the lung tissues of mice were determined by IRS. *P < 0.05, different from control group mice.

Figure S3. Density distribution of m6A peaks across mRNA transcripts.

(A) Proportion of m6A peak distribution in the 3’UTR, 5’UTR, 1st Exon, or other Exons across the entire set of mRNA transcripts for HBE, CSE-HBE, T-HBE. (B) Proportion of m6A diffpeak (CSE-HBE vs HBE, T-HBE vs HBE) distribution in the 3’UTR, 5’UTR, 1st Exon, or other Exons across the entire set of mRNA transcripts.
Figure S4. Validation of METTL3 overexpression and ZBTB4 knockdown.
T-HBE cells were exposed to pcD METTL3 or to pcD con for 24 h. (A) Western blots were performed, and (B) relative protein levels (mean ± SD, n = 3) of METTL3 were determined. T-HBE cells were exposed to control siRNA or to one of three ZBTB4 siRNAs for 24 h. (C) The relative mRNA levels of ZBTB4 were determined by quantitative RT-PCR (means ± SD, n = 3). #P <0.05, different from T-HBE cells in the absence of the pcD METTL3. *P <0.05, different from T-HBE cells in the absence of the ZBTB4 siRNA.

Figure S5. YTHDF2 is involved in the neoplastic capacity of T-HBE cells.
(A) T-HBE cells were exposed to YTHDF2 siRNA or to control siRNA for 24 h. Colony formation assays and Transwell assays (bars=100 μm) were performed, and
(B) relative colony numbers and (C) relative levels of cell invasion and migration were determined (means ± SD, n = 3). *P < 0.05, different from T-HBE cells in the absence of YTHDF2 siRNA.

Figure S6. The levels of ZBTB4 were lower after mice were exposed to CS. Male BALB/c mice at 6-8 weeks of age were exposed to 200 mg/m³ TPM CS for 20 weeks. (A) Western blots were performed, and (B) relative protein levels (mean ± SD, n = 3) of ZBTB4 in the lung tissues of mice were determined. *P < 0.05, different from control group mice.

Figure S7. A schematic diagram illustrating the experimental design.
Figure S8. METTL3 is up-regulated and ZBTB4 is down-regulated in lung cancer.

(A) and (B) Analysis of METTL3 and ZBTB4 expression in human normal lung and LUAD RNA-seq data in TCGA data accessed through the UALCAN web-portal. (C) and (D) Analysis of METTL3 and ZBTB4 expressions in human normal lung and LUSC RNA-seq data in TCGA data accessed through the UALCAN web-portal.
Table S1. Sequences of siRNA targeted human ZBTB4 mRNA

si ZBTB4 #1	GGGAGACCTTTTGTCACTTA
si ZBTB4 #2	CAAGCTGCCTCGGTTATCA
si ZBTB4 #3	TGTCCAGTCTGAAGAGAC

Table S2. Primers sequences for human cells

METTL3	F: 5'-AAGCTGCACCTTCAGACGAAT-3'
	R: 5'-GGAATCACCTCCGACACTC-3'
METTL14	F: 5'-AGTGCCGACAGCATTTGGTG-3'
	R: 5'-GGAGCAGAGGTATCATAGGAAGC-3'
WTAP	F: 5'-GGCGAAGTGTCAATGCT-3'
	R: 5'-CCACTGCTGGCTGCTTC3'
ALKBH5	F: 5'-CCAGCTATGCTTCAGATGCTTCAAGCTTGGATTTAAGGAA-3'
	R: 5'-GAGTGGTGATGAGGATTTGGTGTAATGCT-3'
FTO	F: 5'-CCAGAACCTGAGGAGAATGGG-3'
	R: 5'-CGATGTCTGTGAGGTCAAACGG-3'
ZBTB4	F: 5'-AGGAAGTACCCCTGCCGCT-3'
	R: 5'-TTGTAGCCTCCATTGGGTGT-3'
GAPDH	F: 5'-CGGATTGGCTCGATTGGG-3'
	R: 5'-CCTGGAAAGATGGTGGTGGATT-3'

Table S3. Primer sequences for mouse tissue

METTL3	F: 5'-CTGGGCACCTTGAGATTTAAGGAA-3'
	R: 5'-TGAAGGTTGCTAGCAACTT-3'
METTL14	F: 5'-CTGAGGATGCGGATAGCATTTAAGGAA-3'
R: 5'-GAGCAGATGTATCATAAGGACCT-3'

WTAP
F: 5'-ATGGCACGGGATGATGTTAATTC-3'
R: 5'-TTCCCTTAAACCAGTCACATCG-3'

ALKBH5
F: 5'-CGCCTGTCATCAACGACTACC-3'
R: 5'-ATGGGCTTGAACTGGAACTTG-3'

FTO
F: 5'-TTCATGCTGGATGACCTCAATG-3'
R: 5'-GCCAACTGACAGCGTCTAAG-3'

GAPDH
F: 5'-GTCTTCACTACCATGGAGAAGG-3'
R: 5'-TCATGGATGACCTTGCCAG-3'