The orbifold fundamental group of Persson-Noether-Horikawa surfaces.

Fabrizio Catanese and Sandro Manfredini

This article is dedicated to the memory of Boris Moishezon.

1 Introduction.

Among the minimal surfaces of general type, the Noether surfaces are those for which the Noether inequality $K^2 \geq 2p_g - 4$ is an equality (K^2 is the self intersection of a canonical divisor, p_g is the dimension of the space of holomorphic 2-forms).

These surfaces were described by Noether ([No]) and more recently by Horikawa ([Ho]) who proved that if $8 \mid K^2$ then there are two distinct deformation types, namely the Noether-Horikawa surfaces of connected type (for short, N-H surfaces of type C), and those of non connected type (for short, of type N). This notation refers to the fact that, the canonical map being a double covering of a rational ruled surface, for type C the branch locus is connected, whereas for type N it is not connected.

In particular Horikawa proved that the intersection forms are both of the same parity (in fact, both odd) if and only if $16 \mid K^2$.

From M. Freedman’s theorem ([Fr]) follows that if $16 \mid K^2$ type N and type C provide two orientedly homeomorphic compact 4-manifolds.

Horikawa posed the question whether type N and type C provide two orientedly diffeomorphic compact 4-manifolds.

It looked like a natural problem to try to see whether the two differentiable structures could be distinguished by means of the invariants introduced by S. Donaldson in [Do].

In the case of type C we have been able ([Ca]) to calculate the constant Donaldson invariants (corresponding to zero-dimensional moduli spaces) using some singular canonical models of these surfaces with very many singularities, and an approach introduced by P. Kronheimer ([Kr]) for the case of the Kummer surfaces. The number we obtained, namely 2^{2k} when $K^2 = 8k$, is the leading term of the Donaldson series (see [K-M]), which was later fully calculated by Fintushel and Stern in the case of N-H surfaces of type C via the technique of
rational blow-downs ($[\mathbb{P}^2\mathbb{S}]$).
The Donaldson series for N-H surfaces of type N has not yet, to our knowledge, been calculated; although, after the Seiberg-Witten theory ($[W]$) has been introduced, and after Pidstrigach and Tyurin ($[P-T]$) have announced the equality between Kronheimer-Mrowka and Seiberg-Witten classes, the two series should be equal.

Our original aim was to extend the application of the Kronheimer theory to the case of N-H surfaces of type N using a very singular model constructed by Ulf Persson ($[\text{Per}]$), describing its orbifold fundamental group, its representations into $SO(3)$, and then trying to see which of those have virtual dimension zero. In this article we consider the singular N-H surfaces of type N with maximal Picard number constructed by Persson, henceforth called Persson-Noether-Horikawa surfaces (P-N-H for short), and we determine their orbifold fundamental group.

This is our main result:

Theorem. The orbifold fundamental group of the P-N-H surfaces is

$$\mathbb{Z}_4 \oplus \mathbb{Z}_2$$

if $16 \mid K^2$,

$$\mathbb{Z}_4 \oplus \mathbb{Z}_4$$

in the other case where $8 \mid K^2$ but 16 does not divide K^2.

It follows immediately that we have, for $16 \mid K^2$, only six nontrivial classes of orbifold $SO(3)$-representations, and a result which we do not prove here is that we do not get anyone of virtual dimension zero.

This is not surprising in view of ($[P-T]$), since if Kronheimer’s approach would have worked, we would have had only a finite number of constant Donaldson invariants.

On the other hand, the algebro-geometric technique of studying canonical models with many rational double points produces on the smooth model configurations of (-2)-projective lines (spheres) whose tubular neighborhood has a unique holomorphic structure and, in particular, a unique compatible C^∞ structure. In this way one produces a decomposition of the 4-manifold in geometric pieces, one of which is the nonsingular part of the singular canonical model.

From this point of view, the calculation of the orbifold fundamental group leads to a better understanding of the differentiable structures of the smooth model. Since our proof is rather involved technically we would like to give a brief geometrical “explanation” of our result.

Persson’s construction starts with a plane nodal cubic C meeting a conic Q at only one point P. Moreover, C and Q have two common tangents L_{-1} and L_1 which meet in a point O collinear with P and the node of C.

Blowing up O we get a \mathbb{P}^1-bundle $f': \mathbb{P}F_1 \to \mathbb{P}^1$ with a section Σ_∞, a bisection Q' and a 3-section C' ($'$ denoting the proper transform under the blow up). A cyclic cover of order $2k+2$ branched on L'_{-1} and L'_1 yields a new \mathbb{P}^1-bundle
f'' : \mathbb{P}^{2k+2} \rightarrow \mathbb{P}^1 \text{ with a section } \Sigma'' \text{ disjoint from a 3-section } C'' \text{ and two sections } Q''_1, Q''_2 \text{ (the inverse image } Q'' \text{ splits into two components).}

The curve \(B = C'' \cup Q''_1 \cup Q''_2 \cup \Sigma'' \) has many singular points, and our canonical model \(X_{2k+2} \) is the double cover of \(\mathbb{P}^{2k+2} \) branched on \(B \). By construction \(X_{2k+2} \) has a genus 2 fibration onto \(\mathbb{P}^1 \), whence the orbifold fundamental group \(\pi_1(X_{2k+2}) \), \(X_{2k+2} \) being the nonsingular part of \(X_{2k+2} \), is a quotient of \(\pi_1(F) \), where \(F \) is a fixed genus 2 fibre.

\(F \) being a double cover of \(\mathbb{P}^1 \) branched in six points \(P_0 = \mathbb{P}^1 \cap \Sigma'' \), \(P_1 = \mathbb{P}^1 \cap Q''_1 \), \(P_2 = \mathbb{P}^1 \cap Q''_2 \), \(\{ P_3, P_4, P_5 \} = \mathbb{P}^1 \cap C'' \), \(\pi_1(F) \) is the subgroup of a free product \(\mathcal{F}_5(2) \) of five copies of \(\mathbb{Z}_2 \), given by words of even length.

\(\mathcal{F}_5(2) \) is generated by elements \(\varepsilon_1, \ldots, \varepsilon_6 \) such that \(\varepsilon_1 \cdots \varepsilon_6 = 1 \) (\(\varepsilon_i \) corresponds to a loop in \(\mathbb{P}^1 \) around the point \(P_{i-1} \)).

The first main point (we must be rather vague here, else we must give the full proof) is that, since curve \(C'' \) is irreducible, when the fibre \(F \) moves around, \(\varepsilon_1, \varepsilon_5, \varepsilon_6 \) become identified.

Thus we only have \(\varepsilon_1, \ldots, \varepsilon_4 \) with \(\varepsilon_1 \cdots \varepsilon_4 = 1 \), and therefore we have "proved" that our group is abelian, being a quotient of the fundamental group \(\Gamma \) of a curve of genus 1 obtained as the double cover of \(\mathbb{P}^1 \) branched in four points. More precisely, \(\Gamma \) is an abelian group with generators \(\varepsilon_1 \varepsilon_2, \varepsilon_1 \varepsilon_3 \).

We must still take into account the fact that, when the fibre \(F \) moves towards a singular point (corresponding to points of intersection \(C'' \cap Q''_1, C'' \cap Q''_2, Q''_1 \cap Q''_2 \)), further relations are introduced. These relations are hard to control globally but if we look locally around these points of intersection, and accordingly take a new basis \(\varepsilon'_1, \ldots, \varepsilon'_4 \), the situation becomes simpler.

In fact, the local equation of the double cover is \(z^2 = y^2 - x^{2c} \), where \(c = 6 \) or \(c = k + 1 \), and \(x \) is the pullback of a local coordinate on \(\mathbb{P}^1 \), so that the corresponding local braid yields the relation \((\varepsilon'_j \varepsilon'_i)^c = (\varepsilon'_i \varepsilon'_j)^c \). In turn, using \((\varepsilon'_i)^2 = 1 \), we obtain the relation \((\varepsilon'_i \varepsilon'_j)^{2c} = 1 \).

That's how one shows that the two generators of the abelian group have period 2 or 4.

The paper is organized as follows:

In section two we take up Persson's construction using explicit equations showing that the surface is defined over a real quadratic field.

In the third section we describe the five steps leading to a presentation of our fundamental group in terms of the braid monodromy of the plane curve \(D = C \cup Q \).

Finally, in section four we apply combinatorial group theory arguments in order to give the main result concerning the orbifold fundamental group.

Acknowledgements: Both authors acknowledge support from the AGE Project H.C.M. contract ERBCHRXCT 940557 and from 40% M.U.R.S.T..

The first author would like to express his gratitude to the Max-Planck Institut in Bonn where this research was initiated (in 1993), and to the Accademia dei Lincei where he is currently Professore Distaccato.
2 Persson’s configuration.

In this section we will provide explicit equations for the configuration constructed by Ulf Persson in [Per]. This is the configuration formed by a smooth conic \(Q \) and a nodal cubic \(C \) intersecting in only one point \(P \) which is smooth for \(C \). Moreover \(Q \) and \(C \) have two common tangents \(L_1 \) and \(L_{-1} \) meeting in a point \(O \) lying on the line joining \(P \) and the node of \(C \).

Let \(Q \subset \mathbb{C} \mathbb{P}^2 \) be the conic \(\{ (x, y, z) \in \mathbb{C} \mathbb{P}^2 \mid x^2 + 2zy + z^2 = 0 \} \).

Since
\[
 x^2 + 2zy + z^2 = (x+z)^2 + 2z(y-x) = (x-z)^2 + 2z(y+x)
\]
\(Q \) is tangent to the lines \(L_1 = \{ x-y=0 \} \) and \(L_{-1} = \{ x+y=0 \} \).

The tangency points are:
\[
x-y=x+z=0 \Rightarrow (1, 1, -1)
\]
\[
x+y=-x+z=0 \Rightarrow (1, -1, 1).
\]

Note that \(Q \) is also tangent to the line \(z=0 \) at the point \((0, 1, 0) = P \).

We want to find an irreducible nodal cubic \(C \) such that \(C \cdot Q = 6P \) and such that \(C \) is tangent to the lines \(x= \pm y \) in points different from those of \(Q \).

Let \(C \) be a cubic s.t. \(P \in C \) and \(C \cdot Q = 6P \). Note that if \(C \) were reducible, then the previous condition would imply that \(z=0 \) is a component of \(C \).

We then have \(\text{div}(C) = \text{div}(z^3) \mod Q \), so \(C = z^3 + Q L \) with \(L \) a linear form, and thus
\[
 C = z^3 + (x^2 + 2zy + z^2)(ax + by + cz).
\]

Since we want \(C \) to be tangent to the two lines \(L_1 \) and \(L_{-1} \) we obtain that the following homogeneous polynomials in \((x, z) \)
\[
z^3 + (x+z)^2((a+b)(x+z) + z(c-a-b)) \quad (2.1)
\]
\[
z^3 + (x-z)^2((a-b)(x-z) + z(c+a-b)) \quad (2.2)
\]

must have a double root.

Set \(\zeta = (\frac{1}{x+z}) \) and \(\hat{\zeta} = (\frac{1}{x-z}) \) and rewrite \(2.1 \) \(2.2 \) as:
\[
 \zeta^3 + \zeta(c-a-b) + (a+b) = 0 \quad \hat{\zeta}^3 + \hat{\zeta}(c+a-b) + (a-b) = 0.
\]

We recall that if \(\zeta \) is a double root of \(z^3 + pz + q = 0 \) then
\[
 3\zeta^2 + p = 0 \quad \text{whence} \quad \frac{2}{3} \zeta + q = 0
\]
and this implies that
\[
 \zeta = -\frac{3p}{2q} \quad \text{thus} \quad 27q^2 + 4p^3 = 0.
\]
Therefore we have a double root of ζ if and only if

$$\exists A : \zeta = A, \ q = 2A^3, \ p = -3A^2, \ \text{i.e.} \ \begin{cases} a+b = 2A^3 \\ c-(a+b) = -3A^2. \end{cases}$$

Similarly if we set $\hat{\zeta} = -B$ we have

$$\begin{cases} a-b = -2B^3 \\ c-(b-a) = -3B^2 \end{cases}$$

and so

$$\begin{align*}
a &= A^3 - B^3 \\
b &= A^3 + B^3 \\
c &= 2A^3 - 3A^2 = 2B^3 - 3B^2.
\end{align*}$$

Then A and B must satisfy $2(A^3 - B^3) = 3(A^2 - B^2)$. Recall that (we make no distinction between a curve and its equation)

$$C = z^3 + (x^2 + 2zy + z^2)((A^3 - B^3)x + (A^3 + B^3)y + (2A^3 - 3A^2)z)$$

while $x-y=0$ is tangent to C at the point where

$$\zeta = \frac{z}{x+z} = A.$$

Therefore the tangency point is $(1-A, 1-A, A)$.

Similarly $x+y=0$ is tangent to C at the point $(B-1, 1-B, B)$.

Let us now search for a cubic C with a singular point on the line $x=0$, as in Persson’s construction. Since $\frac{\partial C}{\partial x}$ on the line $x=0$ equals aQ and the singular point is different from P it follows that $a=0$. Whence $A^3 - B^3 = A^2 - B^2 = 0$ and so $A = B$.

If $A = B$ then C contains only the monomial x^2 as a polynomial in x, so the involution $x \mapsto -x$ leaves the curve C invariant. From this we deduce that a singular point of C must have its x coordinate equal to 0 and C has then a singularity on the line $x=0$ if and only if

$$z^3 + (z^2 + 2zy + z^2)((A^3 - B^3)x + (A^3 + B^3)y + (2A^3 - 3A^2)z)$$

has a double root.

Remembering that it can’t be $A = B = 0$, the double root cannot be $z=0$ and we can write the above as

$$z(z^2 + (z+2y)(2A^3y + (2A^3 - 3A^2)z)).$$

So we must check that

$$z^2(1+2A^3 - 3A^2) + 2zy(A^3 + 2A^3 - 3A^2) + 4A^3y^2 = 0$$

$$= z^2(1+2A^3 - 3A^2) + 2zy3A^2(A-1) + 4A^3y^2.$$
has a double root. This is the case when

$$9A^4(A-1)^2=4A^3(1+2A^3-3A^2)$$ \text{i.e.}

$$9A^6-18A^5+9A^4=4A^3+8A^6-12A^5.$$

Upon dividing by $A^3\neq 0$ we get

$$A^3-6A^2+9A-4=0.$$

Observe that 1 is a root of this equation, but if $A=1$ then the singular point is $(0,0,1)$ and coincides with the point of tangency of $x+y=0$ so this root has to be discarded. Since

$$A^3-6A^2+9A-4=(A-1)(A^2-5A+4)=(A-1)^2(A-4)$$

the other possible root is then $A=4$, and in this case we have $B=A=4$, $a=0$, $b=8\cdot4^2$, $c=5\cdot4^2$. Then

$$C = z^3+4^2(x^2+2yz+z^2)(8y+5z)$$

The tangency points are $(-3,-3,4)$ and $(3,-3,4)$, while for the singular point we have $x=0$ and a double root of

$$z^2+4^2(2y+z)(8y+5z)=0 \iff 81z^2+4^218zy+4^4y=0 \iff 9z+4^2y=0$$

so the singular point is $(0,9,-16)$. With this choice of A and B, C is irreducible (since $z=0$ is not a component of C).

We want to find the lines through $(0,0,1)$ and tangent to C. Let $A=B=\lambda$ and consider more generally the 1-parameter family of curves:

$$C_\lambda = z^3+(x^2+2yz+z^2)(2\lambda^3y+(2\lambda^3-3\lambda^2)z)=0.$$

The tangency points on the two fixed lines $x+y=0$, $x-y=0$ are, as we know, $(1-\lambda,1-\lambda,\lambda)$ and $(\lambda-1,1-\lambda,\lambda)$. Rewriting the last equation in powers of z we obtain:

$$z^3(1+2\lambda^3-3\lambda^2)+z^26y\lambda(\lambda-1)+z\lambda^2(4\lambda y^2+(2\lambda-3)x^2)+2\lambda^3x^2y=0.$$

Since we know what happens for $\lambda=0$, we can divide by λ^3, set $w=\frac{x}{\lambda}$ and obtain:

$$w^3(1+2\lambda^3-3\lambda^2)+w^26y\lambda(\lambda-1)+w(4\lambda y^2+(2\lambda-3)x^2)+2x^2y=0.$$

We let now Δ be the discriminant of C_λ with respect to the variable w, and using a standard formula for Δ, we find a degree 6 equation in x and y which
is divisible by \(x^2(x^2-y^2) \).

Remembering that the discriminant of \(a_0 x^3 + a_1 x^2 + a_2 x + a_3 \) is:

\[
\Delta = a_1^2 a_2^2 - 4 a_0 a_2^3 - 4 a_1^3 a_3 - 27 a_0^2 a_3^2 + 18 a_0 a_1 a_2 a_3
\]

and applying this formula for simplicity when \(\lambda = 4 \), we obtain:

\[
y^2 z^6 3^4 (16 y^2 + 5 x^2)^2 - 2^2 3^4 (16 y^2 + 5 x^2)^3 - \\
-2^{12} 3^6 x^2 y^4 - 2^2 3^{11} x^4 y^2 + 2^5 3^8 (16 y^2 + 5 x^2) x^2 y^2
\]

and factoring this binary form we get:

\[
x^2 (x^2 - y^2) 2^2 3^4 (27 y^2 - 5 x^2).
\]

So we have that the tangent lines to \(C \) passing through \((0,0,1)\) are \(x = \pm y \), \(x = \pm \sqrt{\frac{128}{125}} y \) while \(x = 0 \) passes through the node of \(C \). We denote by \(L_0 \) the line \(x = 0 \) and by \(L_+, L_- \) the two lines \(x = \sqrt{\frac{128}{125}} y \), \(x = -\sqrt{\frac{128}{125}} y \) respectively.

In order to find the tangency point on the lines \(L_+, L_- \) we by symmetry may restrict to the line \(L_+ \). Writing \(x = 2^{3/2} a \), \(y = 5 \sqrt{5} a \) we have that

\[
z^3 + 2^4 (27 a^2 + 10 \sqrt{5} a z + z^2) (40 \sqrt{5} a + 5 z) = 0
\]

(2.3)

has a double root. Since for its derivative we have

\[
3 z^2 + 2^4 (10 \sqrt{5} a + 2 z) (40 \sqrt{5} a + 5 z) + 2^4 5 (27 a^2 + 10 \sqrt{5} a z + z^2) = 0
\]

\[
(15 + \frac{3}{16}) z^2 + 180 \sqrt{5} a z + 2640 a^2 = 0
\]

\[
a = \frac{-90 \sqrt{5} \pm \sqrt{90^2 5 - 2640 (15 + \frac{3}{16})}}{2640} = \sqrt{5} \frac{-30 \pm 3}{880}.
\]

Thus \(\frac{z}{x} = \frac{-25(30+3)}{880}, \frac{z}{x} = \frac{-8 \sqrt{10}(30+3)}{880} \) and the point of tangency is one of the points \((-33 \cdot 8 \sqrt{10}, -25 \cdot 33, 880), (-27 \cdot 8 \sqrt{10}, -25 \cdot 27, 880)\).

Upon substituting these values in the polynomial \(2.3 \) we find that the correct choice is \((-24 \sqrt{10}, -75, 80)\).

By symmetry the point \((24 \sqrt{10}, -75, 80)\) is the tangency point of the line \(L_- \). Let us write

\[
C = 4^2 (8 y + 5 z) x^2 + z (16 y + 9 z)^2 = 0
\]

and let us set \(u = 16 y + 9 z \). We have:

\[
C = z u^2 + 8 x^2 (u + z) = 0
\]
In these coordinates the singular point of C is $(0, 0, 1)$, so the tangents at the singular point are given by:

$$8x^2 + u^2 = 0$$

whence they are complex and we have an isolated point.

In order to draw C, let’s compute its flexes. Using the coordinates x, u, and z the Hessian matrix is:

$$
\begin{pmatrix}
16(u + z) & 16x & 16x \\
16x & 2z & 2u \\
16x & 2u & 0
\end{pmatrix}
$$

The Hessian curve is then given by the determinant of

$$
\begin{pmatrix}
(u + z) & 0 & x \\
0 & z - 2u & u \\
8x & u & 0
\end{pmatrix}
$$

which equals

$$-(u + z)u^2 - 8x^2(z - 2u) = 0.$$

Eliminating $8x^2$ from the two equations we get

$$(u + z)^2u^2 - zu^2(z - 2u) = 0$$

so either $u = 0$, and this implies either $x = 0$ (the singular point) or $z = 0$ that gives the point $(1, 0, 0)$, or

$$(u + z)^2 - z(z - 2u) = u^2 + 4uz = 0$$

that gives ($u \neq 0$) $u = -4z$, that is $z = -1$, $u = 4$, $y = \frac{13}{10}$, $x = \pm \sqrt{2/3}$.

For these points $\frac{x}{y} = \pm \sqrt{2/3 \frac{16}{13}}$.

8
3 Fundamental groups.

In this section we are going to describe the five steps leading to the determination of the orbifold fundamental group of the Persson’s surfaces.

Step 1.
Let \(I F_1 \) be the blow up of \(\mathbb{P}^2 \) at the point \((0, 0, 1)\) and let \(\Sigma_\infty \) be the exceptional divisor.

We consider the fibre bundle \(I F_1 \rightarrow \mathbb{P}^1 \) and its restriction \(f \)

\[
\mathbb{P}^1 \setminus (C \cup Q \cup \Sigma_\infty \cup L_1 \cup L_{-1} \cup L_+ \cup L_- \cup L_0) = \tilde{I}F_1
\]

\[
f \downarrow
\]

\[
\mathbb{P}^1 \setminus \{P_1, P_{-1}, P_+, P-, P_0\} = \mathbb{P}^1 \setminus \{5 \text{ pts.}\}.
\]

\(f \) is again a fibre bundle and we have a corresponding homotopy exact sequence of fundamental groups

\[
1 \rightarrow \mathcal{F}_5 \rightarrow \tilde{\Pi} \rightarrow \mathcal{F}_4 \rightarrow 1
\]

where \(\mathcal{F}_k \) denotes the free group with \(k \) generators and \(\tilde{\Pi} = \pi_1(\tilde{I}F_1) \).

Here we choose a small positive real number \(\varepsilon \) and \(x=\varepsilon, y=1 \) as base point on \(\mathbb{P}^1 \setminus \{5 \text{ pts.}\} \) and \(x=-\varepsilon, y=1, z=-4\sqrt{-1} \) as base point on \(I F_1 \).

We let \(\delta_1, \ldots, \delta_5 \) be a natural geometric basis of the free group

\[
\mathcal{F}_5 = \pi_1(f^{-1}(\text{base pt.})) = \pi_1(L_\varepsilon \setminus (C \cup Q \cup \Sigma_\infty))
\]

where the five points \(L_\varepsilon \cap C, L_\varepsilon \cap Q \) are ordered by lexicographic order on \(\text{Re(} \frac{z}{y} \text{)}, \text{Im(} \frac{z}{y} \text{)} \).
\(\mathcal{F}_5 \) is generated by the five geometric paths \(\gamma_i' \) around the five critical values described in figure \(\square \) and whose product is the identity. For these elements we choose lifts to \(\mathbb{F}_1 \) using a \(C^\infty \) section of a tubular neighborhood of \(\Sigma_\infty \) meeting \(\Sigma_\infty \) just in the point \(\infty (y=0) \) with intersection number equal to \(-1\). Therefore such lifts give paths \(\gamma_i \) such that

\[
\prod \gamma_i = \prod \delta_i
\]

and more specifically

\[
\gamma_{+1}\gamma_{0}\gamma_{-1} = \delta_1 \cdots \delta_5 = \gamma_{-1}\gamma_{1}\gamma_{-}.\]

We have that, indeed, \(\tilde{\Pi} \) occurs as a semidirect product described by the relations

\[
\gamma_{-1}^{-1}\delta_i \gamma_j = (\delta_i)\beta_j
\]

where the \(\beta_j \)'s are suitable braids in

\[
\mathfrak{B}_5 = \langle \sigma_1, \ldots, \sigma_4 | \sigma_i \sigma_j = \sigma_j \sigma_i \forall 1 \leq i < j \leq 5 \rangle
\]

\[
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \forall 1 \leq i < 4 \rangle
\]

the braid group on 5 strings which acts on the right on the free group \(\mathcal{F}_5 \) by the formulae

\[
(\delta_h)\sigma_k = \delta_h \text{ if } h \neq k, k+1
\]

\[
(\delta_k)\sigma_k = \delta_{k+1}
\]

\[
(\delta_{k+1})\sigma_k = \delta_{k+1}^{-1}\delta_k \delta_{k+1}.
\]

The braids \(\beta_j \) are constructed by following the motion of the five points of the intersection of \(f'^{-1}(P) \) with \(C \cup Q \) while \(P \) goes along \(\gamma_j' \). With our choice of the \(\gamma' \)'s we have, as the reader can easily verify,

\[
\beta_0 = \sigma_4^2 \sigma_2^2
\]

\[
\beta_1 = \sigma_1^{-1} \sigma_2 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_1
\]

\[
\beta_{-1} = \sigma_4^{-6} \sigma_2^{-1} \beta_1 \sigma_2^6
\]

\[
\beta_+ = \sigma_1^{-2} \sigma_2 \sigma_3 \sigma_4 \sigma_3^{-1} \sigma_2^{-1} \sigma_1^2
\]

\[
\beta_- = \sigma_4^{-6} \sigma_2^{-1} \beta_+ \sigma_2 \sigma_4^6.
\]

Step 2.

By taking \(\sqrt{\frac{x-y}{x+y}} \) we have a new fibre bundle \(\mathbb{F}_2 \xrightarrow{g'} \mathbb{P}^1 \) obtained by base change. Under this base change the inverse image \(Q' \) of the conic \(Q \) splits into two sections of \(g' \) which we will denote by \(Q'_1 \) and \(Q'_2 \). Again, by restriction we have a fibre bundle \(g \)

\[
\hat{\mathbb{F}}_2 = \mathbb{F}_2 \setminus (C' \cup Q'_1 \cup Q'_2 \cup \Sigma'_\infty \cup \{8 \text{ fibres}\}) \xrightarrow{g} \mathbb{P}^1 \setminus \{8 \text{ pts.}\}.
\]
Correspondingly we get an exact sequence

\[1 \rightarrow \mathcal{F}_3 = <\delta_1, \ldots, \delta_5> \rightarrow \hat{\Pi} \rightarrow \mathcal{F}_7 = <\gamma_0, \gamma_-, \gamma_0, \gamma_+, \gamma_1^2> \rightarrow 1 \]

where \(\bar{\gamma}_i = \gamma_i^1 = \gamma_1 \gamma_i \gamma_1^{-1} \) and \(\hat{\Pi} = \pi_1(\hat{\mathcal{F}}_2) \).

The fact that \(\mathcal{F}_7 \) has seven generators as above follows since the double cover of \(\mathbb{P}^1 \setminus \{5 \text{ pts.} \} \) corresponds to the homomorphism \(\mathcal{F}_4 \rightarrow \mathbb{Z}_2 \) sending \(\gamma'_1, \gamma'_- \rightarrow 1 \), and \(\gamma_0, \gamma', \gamma'_- \rightarrow 0 \).

If we want to keep track of the eight critical values, we can also use \((\gamma_2^-)_1 \gamma_1 \) as a generator. In fact

\[(\delta_1 \cdots \delta_5)^2 = (\gamma + \gamma_1 \gamma_0 \gamma^-_1)(\gamma^1 + \gamma_1 \gamma_0 \gamma^-) \]

thus

\[\gamma + \gamma_0^2 \gamma_1^2 = (\gamma_1^2 \gamma_0 \gamma^-_0) \]

The geometric meaning of the above formula is related to the fact that \((\Sigma_\infty^{'})^2 = -2 \), and more precisely to the fact that the new generators of \(\mathcal{F}_7 \) lie in a \(C^\infty \) section meeting \(\Sigma_\infty' \) in one point with intersection number \((-2) \), and not meeting the other curves.

A presentation of \(\hat{\Pi} \) is thus given by

\[<\delta_1, \ldots, \delta_5, \gamma_0, \gamma_-, \gamma_0, \gamma_+, \bar{\gamma}_0, \bar{\gamma}_-, \bar{\gamma}^+_+ | \gamma_0^{-1} \delta_i \gamma_0 = (\delta_i) \beta_0 \]

\[\vdots \]

\[\bar{\gamma}_0^{-1} \delta_i \bar{\gamma}_0 = (\delta_i) \beta_1 \beta_0 \beta_1^{-1} \]

\[\vdots \]

\[\Gamma \delta_i \Gamma^{-1} = (\delta_i) \beta_1^2 \]

Step 3.

The fundamental group

\[\Pi' = \pi_1(\mathbb{F}_2 \setminus (C' \cup Q_1' \cup Q_2' \cup \Sigma_\infty' \cup L_1' \cup L_2')) \]

is a quotient of \(\hat{\Pi} \). The presentation of \(\Pi' \) is readily accomplished simply by introducing in the above presentation the further relations

\[\gamma_0 = \gamma_- = \gamma_+ = \bar{\gamma}_0 = \bar{\gamma}_- = \bar{\gamma}_+ = 1. \]

Then \(\Pi' \) is presented as

\[<\delta_1, \ldots, \delta_5, \Gamma | \delta_i = (\delta_i) \beta_0 \quad \delta_1 = (\delta_i) \beta_0 \quad \delta_i = (\delta_i) \beta_1 \]

\[\delta_i = (\delta_i) \beta_1 \beta_0 \beta_1^{-1} \quad \delta_i = (\delta_i) \beta_1 \beta_0 \beta_1^{-1} \]

11
\[\delta_i = (\delta_i)\beta_1\beta_2^{-1} \quad \Gamma\delta_i\Gamma^{-1} = (\delta_i)\beta_2^{-1} \]

Remark: with the new relations we get, setting \(\Gamma_{-1} = (\gamma_{-1}^{2})^{71}, \)

\[\Gamma_{-1}\Gamma = (\delta_1 \cdots \delta_5)^2 \]

Step 4’.

We denote by \(X^#_2 \) the non singular part of the double cover \(X_2 \) of \(\mathbb{F}_2 \) (branched over \(C' \cup Q'_1 \cup Q'_2 \cup \Sigma'_\infty \)) and by \(Z^#_2 \) the complement in \(X^#_2 \) of \(L'_1, L'_0, \) the respective inverse images of \(L'_1, L'_0. \)

We finally let \(Y^#_2 \) be the double cover of \(\mathbb{F}_2 \setminus (C' \cup Q'_1 \cup Q'_2 \cup \Sigma'_\infty \cup L'_1 \cup L'_{-1}). \)

Thus \(Y^#_2 \subset Z^#_2 \subset X^#_2. \)

Clearly \(\pi_1(Y^#_2) = \ker(\Pi' \longrightarrow \mathbb{Z}/2), \) where \(\delta, \rightarrow \overline{1} \) and \(\Gamma, \rightarrow \overline{0}, \) is generated by \(\Gamma, \sigma = \delta_1\Gamma\delta_1^{-1}, A_i = \delta_i\delta_1 \) (\(i=1, \ldots, 5 \)) and \(B_j = \delta_1\delta_1^{-1} \) (\(j=2, \ldots, 5, \)).

To find the relations we apply the Reidemeister-Shreier rewriting process to the relations \(R_\alpha, \) of \(\Pi' \) and to the relations \(\delta_1 R_\alpha\delta_1^{-1}. \)

Step 4”.

Clearly, \(\pi_1(Y^#_2) \) maps onto \(\pi_1(Z^#_2) \) surjectively with kernel normally generated by \(\delta_1^{i_2} = B_iA_i \) (\(i=2, \ldots, 5 \)), and \(\delta_1 \cdots \delta_5 \), thus \(\pi_1(Z^#_2) \) is generated by \(A_2, \ldots, A_5, \Gamma \) and has for relations the relations coming from the rewriting of \(R_\alpha, \delta_1 R_\alpha\delta_1^{-1}, \) and the rewriting of \(\delta_1 \cdots \delta_5 \) \(\Gamma = 1, \) i.e. \(A_2A_5^{-1}A_4A_5^{-1}A_2^{-1}A_3A_4^{-1}A_5 = 1. \)

Remark: This relation says that the four generators \(A_2, \ldots, A_5 \) are the generators of \(\pi_1(\text{fibre}) = \pi_1(\text{genus 2 curve}). \)

Step 5.

Let \(m=k+1 \) and consider \(X^#_{2m} \), the non singular part of the \(m \)-fold cyclic cover of \(X_2 \) totally branched over \(L'_1 \) and \(L'_2. \)

To find a presentation of \(X^#_{2m} \) we first need a presentation of the kernel of the map \(\pi_1(Z^#_2) \longrightarrow \mathbb{Z}/m \) such that \(A_i \longrightarrow 0 \) and \(\Gamma, \sigma \longrightarrow 1, \) and then we add the relations \(\Gamma^m = \sigma^m = 1. \)

Applying the Reidemeister-Shreier method, we find that the kernel is generated by \(\Gamma^m, \Gamma A_j\Gamma^{-1} \) for \(i=1, \ldots, m-1 \) and \(j=2, \ldots, 5, \) by \(\Gamma^i\sigma\Gamma^{-i} \) for \(i=1, \ldots, m-2 \) and \(\Gamma^{m-1}\sigma; \) it has for relations the rewriting in the new generators of the relations \(R'_\alpha, \) of \(\pi_1(Z^#_2) \) and the rewriting of \(\Gamma^i R'_\alpha \Gamma^{-i} \) for \(i=1, \ldots, m-1. \)

4 Calculations.

Step 3.

We have

\[
\begin{align*}
\beta_0 &= \sigma_1^2\sigma_2^2 \\
\beta_1 &= \sigma_1^{-1}\sigma_2\sigma_3\sigma_1\sigma_2^{-1}\sigma_1 \\
\beta_{-1} &= \sigma_4^{-1}\sigma_2^{-1}\beta_1\sigma_2\sigma_4
\end{align*}
\]
Thus, the relations $\delta_i=(\delta_i)\beta_0$ are equivalent to the two relations

\[
(\delta_4\delta_5)^6 = (\delta_5\delta_4)^6
\]
(4.1)

\[
\delta_2\delta_3 = \delta_3\delta_2.
\]
(4.2)

The relations $\delta_i=(\delta_i)\beta_+$ amount to

\[
\delta_5 = \delta_2^{-1}\delta_1^{-1}\delta_2\delta_1\delta_2.
\]
(4.3)

In fact, here and in the sequel, we use the following argument: β_+ is a conjugate $\sigma\sigma_4\sigma^{-1}$ of the braid σ_4 and the braid σ_4 yields the relation $\delta_4=\delta_5$. Therefore, if we set $\delta'_4=(\delta_4)\sigma^{-1}$, $\delta'_5=(\delta_5)\sigma^{-1}$, we get the relation $\delta'_4=\delta'_5$. By our particular choice of σ

\[
\begin{align*}
\delta_5' &= \delta_5 \\
\delta_4' &= (\delta_4)\sigma_3^{-1}\sigma_2^{-1}\sigma_1 \\
&= (\delta_3)\sigma_2^{-1}\sigma_1 \\
&= (\delta_2)\sigma_2^2 \\
&= (\delta_2^{-1}\delta_1\delta_2)\sigma_1 \\
&= \delta_2^{-1}\delta_1\delta_2\delta_1\delta_2
\end{align*}
\]

Similarly, the relations $\delta_i=(\delta_i)\beta_-$ are equivalent to the relation

\[
\delta_3^{-1}\delta_1^{-1}\delta_3\delta_1\delta_3 = (\delta_4\delta_5)^{-3}\delta_5(\delta_4\delta_5)^3.
\]
(4.4)

We write down, for convenience of the reader, the action of the braid β_1^{-1}, since the new relations $\delta_i=(\delta_i)\beta_1\beta_j\beta_1^{-1}$ will be obtained from the relations equivalent to $\delta_i=(\delta_i)\beta_j$ simply by applying the automorphism β_1^{-1}.

\[
\begin{align*}
(\delta_1)\beta_1^{-1} &= \delta_1\delta_2\delta_3\delta_2^{-1}\delta_1^{-1}\delta_2^{-1}\delta_1\delta_2\delta_4\delta_2^{-1}\delta_1^{-1}\delta_2\delta_1\delta_2\delta_3^{-1}\delta_2^{-1}\delta_1^{-1} \\
(\delta_2)\beta_1^{-1} &= \delta_1\delta_2\delta_3\delta_2^{-1}\delta_1^{-1} \\
(\delta_3)\beta_1^{-1} &= \delta_2^{-1}\delta_1\delta_2\delta_4^{-1}\delta_2^{-1}\delta_1^{-1}\delta_2\delta_1\delta_2\delta_4\delta_2^{-1}\delta_1^{-1}\delta_2 \\
(\delta_4)\beta_1^{-1} &= \delta_2^{-1}\delta_1\delta_2 \\
(\delta_5)\beta_1^{-1} &= \delta_5
\end{align*}
\]

Thus, the relations $\delta_i=(\delta_i)\beta_1\beta_0\beta_1^{-1}$ are equivalent to the relations

\[
(\delta_1\delta_2)^6 = (\delta_2\delta_1)^6
\]
(4.5)

\[
\delta_5\delta_3\delta_5^{-1}\delta_4^{-1}\delta_5\delta_4 = \delta_4^{-1}\delta_3\delta_4\delta_5\delta_3\delta_5^{-1}
\]
(4.6)
We take as Shreier set for the left cosets of the kernel the set

\[S_0 = 1, S_1 = \delta_1, \]

Finally we have to write the relations \(\Gamma \delta_1 \Gamma^{-1} = (\delta_1) \beta_1^2 \), i.e.

\[
\begin{align*}
\Gamma \delta_1 \Gamma^{-1} &= \Gamma \delta_2 \Gamma^{-1} \delta_2^{-1} \delta_1 \delta_2 \delta_4 \Gamma \delta_2^{-1} \Gamma^{-1} \\
\Gamma \delta_4 \Gamma^{-1} &= \delta_4^{-1} \delta_2 \delta_3 \delta_5 \delta_3^{-1} \delta_2^{-1} \Gamma^{-1} \\
\Gamma \delta_4 \Gamma^{-1} &= \delta_4^{-1} \delta_2 \delta_3 \delta_5 \delta_3^{-1} \delta_2^{-1} \Gamma^{-1} \\
\Gamma \delta_5 \Gamma^{-1} &= \delta_5
\end{align*}
\]

\textbf{Step 4.}

We take as Shreier set for the left cosets of the kernel the set \(\{ S_0 = 1, S_1 = \delta_1 \} \), so applying the Reidemeister-Shreier method we get the generators \(\Delta = \delta_1^2, \Gamma, \sigma = \delta_1 \delta_1^{-1}, A_i = \delta_i \delta_1 \) and \(B_i = \delta_i \delta_1^{-1} \) for \(i = 2, 3, 4, 5 \). For the relations we must
rewrite the relations 4.1,...,4.13 and their conjugate by δ_1 in terms of the new generators. The rewriting process goes as follows (cf. [MKS], pages 86-98):

$$S_0\delta_1 = S_1$$
$$S_0\delta_i = B_iS_1$$
$$S_0\Gamma = \Gamma S_0$$

for $i=2,3,4,5$

We want to show that it suffices to rewrite only the relations 4.1,...,4.13.

Observe that all our relations can be written in the form $W \delta_i W^{-1} = \delta_k$ for a suitable word W. Assume that Γ doesn’t appear in the relation and do the rewriting after moding out by the relations

$$\Delta = B_iA_i = 1. \quad (4.14)$$

Since $S_0\delta_i = A_i^{-1}S_1$ and also $S_0\delta_i^{-1} = A_i^{-1}S_1$, if we write $W = \prod_{\lambda=1}^{h} \delta_{j_\lambda}^{\pm 1}$, the rewriting of $W\delta_i W^{-1} \delta_k^{-1}$ is given by

$$A_{j_1}^{-1} A_{j_2} \cdots A_{i}^{\pm 1} \cdots A_{j_1}^{-1} A_k$$

(note that $A_1=1$). The rewriting of the same relation conjugated by δ_1 yields instead

$$A_{j_1} A_{j_2}^{-1} \cdots A_{i}^{\mp 1} \cdots A_{j_1} A_k^{-1}.$$

We get thus two relations of respective form $UA_k = 1$, $U^{-1}A_k^{-1} = 1$, which are obviously equivalent.

If instead Γ appears in the relation, we have one of the 4.9,...,4.13 which are of the form $\Gamma \delta_i \Gamma^{-1} = W\delta_i W^{-1}$ where we can in fact assume that Γ doesn’t appear in the word W.

The rewriting of $\Gamma \delta_i \Gamma^{-1} W\delta_i^{-1} W^{-1}$ yields, again a relation of the form

$$\Gamma A_i^{-1} \sigma^{-1} U^{-1} = 1,$$

whereas the rewriting of the conjugate by δ_1 gives a relation

$$\sigma A_i \Gamma^{-1} U = 1,$$

which is an equivalent relation.

For convenience of notation we shall keep the generators $B_i = A_i^{-1}$.

To calculate $\pi_1(Z_2^\#)$ we must add the rewriting of $(\prod_{i=1}^{5} \delta_i)^2 = 1$ which gives

$$A_2B_3A_4B_5B_2A_3B_4A_5 = 1.$$

We have thus that $\pi_1(Z_2^\#)$ is generated by A_2, A_3, A_4, A_5, Γ and σ and has the following set of relations

$$(B_4A_5)^6 = (B_3A_4)^3 \quad (4.15)$$
\[
B_3 A_2 = B_2 A_3 \quad (4.16) \\
B_5 = B_2^3 \quad (4.17) \\
B_3^3 = (B_5 A_4)^3 B_5 \quad (4.18) \\
A_2^{12} = 1 \quad (4.19) \\
B_5 A_3 B_3 A_4 B_5 A_4 = B_4 A_5 B_4 A_5 B_3 A_5 \quad (4.20) \\
B_5 = B_2^2 A_4 B_5 A_3 B_5 A_4 B_2^2 \quad (4.21) \\
B_3 B_2 B_3 = (B_5 A_4)^4 B_5 \quad (4.22) \\
\sigma A_2^2 \Gamma^{-1} = A_4 B_2^2 A_4 \quad (4.23) \\
\Gamma B_2 \sigma^{-1} = B_2^2 A_3 B_5 A_3 B_2^2 \quad (4.24) \\
\Gamma B_3 \sigma^{-1} = B_4 A_2^2 B_4 A_2^2 B_3 A_5 B_3 A_5 B_3 A_2^2 B_4 A_2^2 B_4 \quad (4.25) \\
\Gamma B_4 \sigma^{-1} = B_4 A_2^2 B_4 A_2^2 B_4 \quad (4.26) \\
\Gamma B_5 \sigma^{-1} = B_5 \quad (4.27) \\
A_2 B_3 A_4 B_5 B_2 A_3 B_4 A_5 = 1 \quad (4.28)
\]

where \(B_i = A_i^{-1}. \)

Let’s reduce this presentation. Using \ref{4.17} relation \ref{4.21} becomes

\[
B_4 A_2 B_4 = B_5 A_3 B_5 \quad (4.29)
\]

and with this \ref{4.20} becomes

\[
B_2^3 = 1 \quad (4.29)
\]

which implies \ref{4.19} and changes \ref{4.17} into

\[
B_5 = A_2. \quad (4.29)
\]

Moreover, using \ref{4.22} and the last equation, relation \ref{4.18} gives

\[
(A_2 A_4)^2 = A_3 A_2 B_3^2 \quad (4.29)
\]

and with this, using also \ref{4.16} \ref{4.22} becomes

\[
B_3 B_2 = A_2 A_3 \quad (4.30)
\]

thus transforming \ref{4.29} into

\[
B_3 = B_4 A_2 B_4 \quad (4.30)
\]

which allows us to delete the generator \(A_3. \) Upon substituting the expressions of \(A_5 \) and \(A_3 \) into \ref{4.28} and \ref{4.30} we have

\[
A_2 A_4 = A_4 A_2 \quad (4.30)
\]
\[A_4^4 = 1. \]

We can then see that the relations 4.16,...,4.28 are equivalent to the following

\[A_5 = A_2^{-1} \quad A_3 = A_2^{-1}A_4^2 \]
\[A_2^4 = A_4^1 = 1 \quad A_2A_4 = A_4A_2 \]
\[\sigma A_2^2\Gamma^{-1} = A_2^2A_4^2 \]
\[\Gamma A_2^{-1} = A_2^{-1}\sigma \]
\[\Gamma A_4^2 = A_2A_4^3\sigma \]
\[\Gamma A_4^{-1} = A_4\sigma \]
\[\Gamma A_2^1 = A_2\sigma. \]

Step 5.

We take as Shreier set for the left cosets of the kernel the set

\[\{R_i=\Gamma^i \mid i=0,1,\ldots,m-1\} \]

and we apply the Reidemeister-Shreier method.

The generators are \(\hat{\Gamma} = \Gamma^m, A_{2,i} = \Gamma^i A_2 \Gamma^{-i}, A_{4,i} = \Gamma^i A_4 \Gamma^{-i} \) for \(i=0,\ldots,m-1 \)
\(\sigma_i = \Gamma^i \sigma \Gamma^{-(i+1)} \) for \(i=0,\ldots,m-2 \) and \(\sigma_{m-1} = \Gamma^{m-1}\sigma \).

For the rewriting process we have

\[R_iA_j = A_{j,i}R_i \quad \text{for } j=2,4 \text{ } i=0,\ldots,m-1 \]
\[R_i\Gamma = R_{i+1} \quad \text{for } i=0,\ldots,m-2 \]
\[R_{m-1}\Gamma = \hat{\Gamma}R_0 \]
\[R_i\sigma = \sigma_iR_{i+1} \quad \text{for } i=0,\ldots,m-2 \]
\[R_{m-1}\sigma = \sigma_{m-1}R_0. \]

Thus, taking indices \(i \text{ (mod } m) \) and adding (as we must) the relation \(\hat{\Gamma} = 1 \), we obtain the relations

\[A_{2,i}^2 = A_{4,i}^2 = 1 \]
\[A_{2,i}A_{4,i} = A_{4,i}A_{2,i} \]
\[\sigma_i A_{2,i+1}^2 = A_{2,i}^2A_{4,i}^2 \]
\[A_{2,i+1}^{-1} = A_{2,i}^{-1}\sigma_i \]
\[A_{2,i+1}A_{4,i+1}^2 = A_{2,i}A_{4,i}^2\sigma_i \]
\[A_{4,i+1} = A_{4,i}\sigma_i \]
\[A_{2,i+1} = A_{2,i}\sigma_i. \]
To simplify this presentation we write

\[\sigma_i = A_{2,i}^2 A_{4,i}^2 A_{2,i+1}^2 = A_{2,i} A_{2,i+1}^{-1} = A_{4,i}^2 A_{2,i+1} A_{4,i+1}^2 = A_{4,i} A_{4,i+1}^{-1} = A_{2,i} A_{2,i+1} \]

From the last and the second equations we get

\[A_{2,i}^2 = A_{2,i+1}^2 = A_{2,0}^2 \]

and from the first one, remembering that \(A_{2,i} \) commutes with \(A_{4,i} \) and that \(A_{2,0} = 1 \),

\[\sigma_i = A_{2,i}^2. \]

The fourth equation then gives

\[A_{4,i} = A_{4,i+1} = A_{4,0} \]

which makes the last and the third relations equivalent. These two cancellation relations enable us to delete all the generators \(\sigma_j \) and \(A_{4,i} \) for \(i = 1, \ldots, m - 1 \).

We may rewrite the five relations above as

\[
\begin{align*}
\sigma_i &= A_{1,0}^2 \\
A_{4,i} &= A_{4,0} \\
A_{2,0}^2 &= A_{2,i}^{-1} A_{2,i+1} \\
A_{4,0}^2 &= A_{2,i} A_{2,i+1}^{-1}.
\end{align*}
\]

Clearly the last two equations are equivalent and give

\[A_{2,2i} = A_{2,0} \quad A_{2,2i+1} = A_{2,0} A_{4,0}. \quad (4.31) \]

Moreover, if we add the relation \(\sigma^m = 1 \), that in the generators of \(\pi_1(X_{2m}^\#) \) reads out as \(\sigma_0 \sigma_1 \cdots \sigma_{m-1} = 1 \), we get \(A_{2,0}^2 = 1 \), i.e., if \(m \) is odd, \(A_{2,0}^2 = 1 \), while if \(m \) is even we have no new relations. Observe that this is in accordance with the fact that in \([3.3]\) the index is cyclic \(\text{mod}(m) \).

Summing up, we have a commutative group with only two generators, namely \(a = A_{2,0} \) and \(b = A_{4,0} \), such that \(a^4 = 1 \) and \(b^4 = 1 \) if \(m \) is even, \(b^2 = 1 \) if \(m \) is odd, i.e.

\[\pi_1(X_{2k+2}^\#) = \mathbb{Z}_4 \times \mathbb{Z}_4 \]

if \(k \) is odd and

\[\pi_1(X_{2k+2}^\#) = \mathbb{Z}_4 \times \mathbb{Z}_2 \]

if \(k \) is even.
References

[Ca] Catanese, F., “Generalized Kummer surfaces and differentiable structures on Noether-Horikawa surfaces, part I”, Proceedings of the Conference for Calabi’s 70th birthday, Symposia Mathematica, Cambridge University Press (1996).

[Do] Donaldson, S., “Polynomial invariants for smooth four manifolds”, Topology 29 (1990), pp. 257–315.

[F-S] Fintushel, R. and Stern R., “Rational blowdowns of smooth 4-manifolds”, preprint.

[Fr] Freedman, M., “The topology of four dimensional manifolds”, J. Diff. Geom. 17 (1982), pp. 357–454.

[Ho] Horikawa, E., “Algebraic surfaces of general type with small c_1^2, I”, Ann. of Math. 104 (1976) pp. 357–387.

[Kr] Kronheimer, P. B., “Instantons invariants and flat connections on the Kummer surfaces”, Duke Math. J. 64 (1991) pp. 229–241.

[K-M] Kronheimer, P. B. and Mrowka, T., “Embedded surfaces and the structure of Donaldson’s polynomial invariants”, J. Diff. Geom. 41 (1995) pp. 573–734.

[MKS] Magnus, Karrass, Solitar, “Combinatorial Group Theory”, Interscience, John Wiley and Sons (1966).

[No] Noether, M., “Zur theorie des eindeutigen Entsprechens algebraischer Gebilde”, part 2, Math. Ann. Bd 8 (1875), pp. 495–533.

[Per] Persson, U., “Horikawa surfaces with large Picard numbers”, Math. Ann. 259 (1982), pp. 287–312.

[P-T] Pidstrigach, V. and Tyurin, A., “Localization of the Donaldson invariants along the Seiberg-Witten classes”, to appear in Izvestija of Russian Acad. of Science.

[W] Witten, E., “Monopoles and four-manifolds”, Math. Res. Lett. 1 (1994), pp. 769–796.