The Incidence of Pars Interarticularis Defects in Athletes

Samuel Tawfik, MD1,2, Kevin Phan, MD, BSc(Adv), MSc, MPhil1,3, Ralph J. Mobbs, BSc, MB, BS, MS, FRACS3,4, and Prashanth J. Rao, MBBS, MS, DNB, FRACS, PhD3,5,6

Abstract

Study Design: Literature review.

Objective: To conduct a literature review of studies reporting the incidence of pars interarticularis defects in athletes of specific sports, in order to allow more targeted prevention and treatment strategies to be implemented for the groups at highest risk.

Methods: Electronic searches were performed using PubMed, Ovid Medline, EMBASE, Google Scholar, Cochrane Database of Systematic Reviews, and Cochrane Database of Controlled Trials from their dates of inception to September 2017, with the following keywords: “spondylolysis,” “sports,” “low back pain,” and “pars defects.”

Results: A total of 509 total articles were retrieved, of which 114 were used in the final review. The incidence of pars interarticularis defects was found to be highest in diving (35.38%), cricket (31.97%), baseball/softball (26.91%), rugby (22.22%), weightlifting (19.49%), sailing (17.18%), table tennis (15.63%), and wrestling (14.74%). Only 5 studies reported the management instituted for their participants, and these were all case reports. Of 74 players with spondylolysis in these studies, 70 (94.59%) underwent conservative treatment and 4 (5.41%) underwent surgical treatment. 61 (82.43%) returned to their previous level of play, 6 (8.11%) retired, and the disposition of the final 7 was not reported.

Conclusion: The current medical literature provides good evidence that the incidence of pars interarticularis defects is higher in the athletic population, with the highest incidence in diving. There remains no gold standard protocol for the management of pars interarticularis defects. Further research is required to compare conservative therapy to surgical therapy and to compare the various surgical techniques to each other.

Keywords
spondylolysis, incidence, athletes, sports, review, low back pain, prevalence

Introduction

Pars interarticularis defects relate to spondylolysis and/or spondylolisthesis of the spinal vertebra. The pars interarticularis is the segment of bone bounded by the lamina, pedicle, inferior articular process, and superior articular process of each vertebra (Figures 1 and 2). Pars interarticularis defects begin as stress reactions (pre-lytic stage), then progress to acute fractures (spondylolysis) and eventually chronic fractures. Complete fractures of the pars interarticularis may lead to anterolisthesis of the affected vertebra relative to the vertebra immediately inferior to it (spondylolisthesis), at which point neurological symptomatology may occur.

The patient with lumbar spondylolysis typically complains of progressive back pain in the lumbar region, exacerbated by extension or twisting of the spine. Radicular pain and urinary disturbances are uncommon unless nerve root compression has occurred as a result of spondylolisthesis. A social history indicates previous or current athletic activity in 93% of

1 University of New South Wales, Sydney, New South Wales, Australia
2 St George Hospital, Sydney, New South Wales, Australia
3 Neurospine Surgery Research Group, Sydney, New South Wales, Australia
4 Prince of Wales Private Hospital, Sydney, New South Wales, Australia
5 University of Sydney, Sydney, New South Wales, Australia
6 Westmead Hospital, Sydney, New South Wales, Australia

Corresponding Author:
Samuel Tawfik, St George Hospital, Sydney, New South Wales, Australia 2217.
Email: samuel_tawfik@hotmail.co.uk
spondylolysis patients. There may be a family history of spondylolysis, spondylolisthesis, or spina bifida occulta. On examination, there may be loss of lumbar lordosis, as well as restricted lumbar flexion and extension. Paraspinal muscle spasm and tenderness often occurs. The pathognomonic sign is the one-legged hyperextension test (stork test), but this test is not sensitive or specific enough to be relied on for assessment. If spondylolisthesis is present, hamstring tightness leads to shortened stride with hip and knee flexion. There may also be lumbar hyperlordosis leading to the appearance of excessive abdominal convexity. Neurological signs are rare, occurring only if nerve root compression has developed.

Spondylolysis is most commonly bilateral (Figure 3), possibly because unilateral spondylolysis increases stress on the contralateral pedicle. The majority of spondylolysis occurs in L5, followed by L4, then combined L4-L5 involvement (Table 1). Furthermore, the severity of spondylolysis varies with location. Sixty-three percent of L5 spondylolysis exhibits terminal-stage defects despite young skeletal age, while most L3/L4 spondylolysis exhibits early-stage defects.

The incidence of spondylolysis has been shown to be 6% in the general adult population. The incidence is significantly higher in the athletic population, with studies showing as many as 52% of athletes with low back pain suffering spondylolysis and 60% with low back pain suffering a pars interarticularis defect of any grade. Other studies show that spondylolysis and spondylolisthesis constitute 47% of low back pain in adolescent athletes. Athletic participation is indeed a well-known risk factor for the development of pars interarticularis defects, but studies on the incidence of pars interarticularis defects often have 1 of 3 limitations: (a) small sample sizes; (b) the athletes being studied are from the same sporting institutions, the sporting styles of which may independently contribute to pars interarticularis defects; or (c) the studies measure incidence in a small number of sports. As such, this article aims to systematically review the current literature on the incidence of pars interarticularis defects in athletes, with detailed knowledge about particularly high-risk sports allowing the development of more targeted and effective prevention and treatment strategies in the future.

Methods

Data Sources

The authors performed a comprehensive search of the published medical literature, using the following electronic databases from their dates of inception to September 2017: PubMed, Ovid Medline, EMBASE, Google Scholar, Cochrane Database of Systematic Reviews, and Cochrane Database of Controlled Trials. Searches were performed with the following terms as MeSH headings and keywords, with Boolean operations, including “AND” and “OR”: “spondylolysis,” “sports,” “low back pain,” and “pars defects.” Synonyms were used to identify the remainder of relevant studies. Citations and abstracts were retrieved. A hand search of the bibliographies was also performed to identify relevant articles missed by the electronic search. Two independent researchers performed the literature search.

Study Selection Criteria

Articles were included in the current review if their primary subject matter was the classification, epidemiology, risk factors, diagnosis, or management of pars interarticularis defects, or if they discussed pars interarticularis defects in athletic populations. Articles were excluded if the athletic population was not a significant focus of the article, or if they discussed the total incidence of spinal disorders without providing statistics specifically on pars interarticularis defects. Articles were also
excluded if they were not in English, unless the statistics from such articles were recounted in other English articles, in which case they were included in the current review. The articles were reviewed for inclusion or exclusion independently by 2 of the authors, and disputes were resolved by group consensus.

Results

A total of 502 articles were retrieved from database searches, and 115 were retrieved from the reference lists of articles (n = 617). There were 108 duplicate articles, 37 articles not in English, 77 irrelevant articles, 68 articles outside the scope of the current review, 1 commentary, and 1 opinion article (n = 325). Of the 325 remaining articles, 114 were required for the current review with quantitative data collected from 42 articles (Figure 4).

Epidemiology

The incidence of spondylolysis in neonates is zero,17,24 4.4% in 6-year-olds, and 6% in adults.17 The incidence in athletic populations is considerably higher (Table 2). Approximately 75% of spondylolysis will develop into spondylolisthesis.17

Hockey. The incidence of pars defects in hockey players has been reported as 2.83% to 44%,25,28 with spondylolisthesis occurring in 15.9% of this population.29 The majority of players affected are forwards, with a greater proportion of spondylolysis ipsilateral to their handedness.25 Defense players more commonly present with spondylolysis contralateral to their handedness.25 This difference may be accounted for by the different spinal motions required of players in different positions. Forward players are required to shoot the puck on the side of their handedness, leading to ipsilateral spondylolisthesis. Defense players are required to quickly twist and turn in both directions while defending against players of the opposing team, leading to contralateral spondylolisthesis.

Tennis. Pars defects are more common in elite tennis players than the nonathletic population,30 with spondylolysis occurring in 1.1% to 40%,26,27,31-37 of this population due to the excessive forces placed on the lumbar spine during the service game.28 The topspin serve puts players at a greater risk of lumbar injury than the flat or slice serves,38-40 since it involves a racquet head more posterior and more medial to the shoulder compared with the flat and slice serves.39

Diving. Pars defects in athletic divers have a reported incidence of 0% to 40.35%,26,27 with the incidence of 0% likely due to the small sample size studied (n = 8).27 Divers reach speeds of 51 km/h before entering the water, then decelerate to 33 km/h on impact with the water, exerting a strong physical force on their lumbar spines.3 Divers with low back pain have a larger trunk extension angle than those without low back pain. Trunk extension angle corresponds to the shoulder flexion angle, so having a flexible shoulder can decrease the trunk extension angle in divers, thereby decreasing the risk of low back pain.3 These results may apply to other sports involving compound movements such as gymnastics and throwing sports.

Volleyball. A total of 3.77% to 20.69% of beach volleyball players suffer from spondylolysis.12,26,27,31,37 This increased prevalence is due to the powerful overhead hitting motion that volleyball players employ during serve or smash movements, causing malalignment of the shoulders relative to the hips. When this is combined with repetitive lumbar hyperextension to increase the force exerted on the ball, spondylolisthesis occurs.12

Cricket. The incidence of spondylolysis in cricket players is 10.98% to 55%.34,41-46 L5 is the most commonly affected spinal level, with L4 and L3 less commonly affected.45,47 Defects tend to arise contralateral to the bowling arm, perhaps explaining why such defects are more common on the left than the right.32,47 Spondylolisthesis occurs commonly in bilateral pars defects of these athletes, but is rare in unilateral defects.48 This occurs primarily due to the bowling movement, which requires lumbar flexion, hyperextension, and lateral rotation. Also, reaction forces from the ground on the front foot and back foot, transmitted through the lumbar spine during delivery, are significantly higher than body weight.45,48 A mixed front-and-side bowling style provides a higher risk of spondylolysis than

![Figure 3. X-ray of the lumbar spine (axial view) showing bilateral spondylolytic defects. This radiograph is from one of the author’s patients.](image-url)

Table 1. Proportion of Spondylolysis Occurring at Specific Lumbar Levels.

Lumbar Level of Spondylolysis	Incidence (%)
L1	0-5
L2	0-5
L3	0-5
L4	5-23
L5	71-95

The majority of lumbar spondylolysis occurs at L5 (71%-95%) followed by L4 (5%-23%). Spondylolysis at L1-L3 is rare (0%-5% each).
front-only and side-only bowling styles, due to higher degrees of these lumbar movements.42,46,49,50

Rugby, American Football and Other Contact Sports. Spondylolysis occurs in 0% to 50% of American football players26,27,51-56 and 5% to 30.77% of rugby players.26,27,31,56 The lower limit of 0% for American football can be attributed to the small sample size studied (n = 13).27 These contact sports are different from noncontact sports such as gymnastics, because collision exerts an extra axial loading force on the spine that is not present in noncontact sports. Also, locking of the lumbosacral spine (which physiologically protects the spine) cannot adequately occur in contact sports since there are multiple concurrent forces on the athlete as they compete for possession of the ball.57 In rugby, lumbar spinal injuries occur most commonly in defensive players due to the axial loading forces during defensive tackles. The scrum and spear tackle also exert further axial and rotational forces which ultimately increase the incidence of pars defects in this athletic population.58

Classification

The currently accepted classification system for spondylolysis (Table 3) (type IIa spondylolisthesis) is based on the progression of pathological changes that occur in pars interarticularis defects. Radiological magnetic resonance imaging (MRI) changes are grouped in 5 grades (grades 0-4).1 Grade 0 is a normal pars interarticularis, with no evidence of stress reaction. Grade 1 refers to T2 signal abnormalities of the pars interarticularis but not of the adjacent pedicle or articular process, representing a bone marrow stress reaction (edema) without cortical disruption. Grade 2 refers to T2 signal abnormalities and thinning, fragmentation or irregularity of the pars interarticularis on T1 or T2 image, representing incomplete pars

Figure 4. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.23 A total of 504 original articles were retrieved. A total of 114 articles were used in the final review with quantitative data retrieved from 42 of these articles.
Table 2. Incidence of Pars Interarticularis Defects by Sport.

Sport	Sample Size	n	%
Archery			
Rossi et al²⁶	26	0	0
Soler et al²⁷	44	1	2.27
Total	70	1	1.43
Badminton			
Kobayashi et al³¹	3	2	66.66
Soler et al²⁷	38	2	5.26
Total	41	4	9.76
Baseball			
Rossi et al²⁶	21	1	4.76
Kobayashi et al³¹	60	37	61.67
Kobayashi et al³¹,³²	3	0	0
Kono et al³⁶	91	14	15.38
Akimoto et al³⁷	143	18	12.59
Hasegawa et al³⁹	95	22	23.16
Matsumoto et al⁴⁰	40	11	27.5
Wakitani et al⁴¹	71	38	53.52
Total	524	141	26.91
Basketball			
Kono et al³⁶	66	9	13.64
Rossi et al²⁶	174	17	9.77
Kobayashi et al³¹	30	15	50
Soler et al²⁷	288	19	6.6
Akimoto et al³⁷	96	11	11.46
Total	654	71	10.86
Baton twirling			
Kobayashi et al³¹	1	0	0
Bobsledding			
Rossi et al²⁶	36	5	13.88
Rossi et al²⁶,³²	25	2	8
Soler et al²⁷	15	3	20
Total	76	10	13.16
Boxing			
Rossi et al²⁶	27	3	11.11
Soler et al²⁷	21	3	14.29
Total	48	6	12.5
Canoeing			
Rossi et al²⁶	69	8	11.59
Soler et al²⁷	162	10	6.17
Total	231	18	7.79
Cricket (fast bowling)			
Crewe et al³⁴	46	15	32.61
Ranson et al³⁴	28	12	42.86
Hardcastle et al³²	22	12	54.54
Engstrom et al³³	51	18	35.29
Foster et al³⁴	82	9	10.98
Annear et al³⁵	20	9	45
Elliott et al³⁶	20	11	55
Total	269	86	31.97
Cycling			
Rossi et al²⁶	95	13	13.68
Soler et al²⁷	175	11	6.29
Total	270	24	8.89
Diving			
Rossi et al²⁶	57	23	40.35
Soler et al²⁷	8	0	0
Total	65	23	35.38

Table 2. (continued)

Sport	Sample Size	n	%
Equestrian			
Rossi et al²⁶	83	5	6.02
Soler et al²⁷	16	0	0
Total	99	5	5.05
Fencing			
Rossi et al²⁶	143	19	13.28
Soler et al²⁷	56	6	10.71
Total	199	25	12.56
Football (American)			
Jones et al⁵¹	104	5	4.81
Rossi et al²⁶	400	65	16.25
McCarroll et al⁵²	145	22	15.2
Soler et al²⁷	13	0	0
Semon et al⁵³	58	12	20.69
Iwamoto et al⁵⁴	742	77	10.38
Ferguson et al⁵⁵	12	6	50
Abe et al⁵⁶	210	42	20
Total	1720	229	13.32
Golf			
Rossi et al²⁶	38	2	5.26
Soler et al²⁷	52	1	1.92
Total	90	3	3.33
Gymnastics			
Rossi et al²⁶	673	112	16.64
Mohriak et al⁵²	18	1	5.56
Kobayashi et al³¹	5	2	40
Toueg et al¹¹	92	6	6.52
Sward et al³²	52	8	15.38
Toueg et al³³	93	6	6.45
Soler et al³⁷	235	33	14.04
Bennett et al³⁴	13	4	30.77
Kono et al³⁶	49	4	8.16
Akimoto et al³⁷	61	5	8.2
Jackson et al⁶⁵	100	11	11
Total	1391	192	13.80
Handball			
Rossi et al²⁶	42	3	7.14
Kobayashi et al³¹	1	0	0
Soler et al²⁷	67	5	7.46
Total	110	8	7.27
Hockey (ice and field)			
Rossi et al²⁶	170	13	7.64
Soler et al²⁷	106	3	2.83
Donaldson et al²⁵	25	11	44
Suzuki et al²⁸	63	10	15.87
Total	364	37	10.16
Javelin			
Schmitt et al⁶⁶	21	14	66.67
Martial arts			
Rossi et al²⁶	64	10	15.62
Kobayashi et al³¹	3	1	33.33
Kobayashi et al³¹	2	1	50
Soler et al²⁷	43	4	9.3
Kono et al³⁶	38	4	10.53
Akimoto et al³⁷,c	40	5	12.5
Akimoto et al³⁷,d	49	5	10.2

(continued)
Table 2. (continued)

Sport	Sample Size	n	%
Kuroki et al67	21	7	33.33
Total	260	37	14.23

Motorcycling

Rossi et al26 8 0 0

Mountaineering

Soler et al27 63 1 1.59

Paddleball

Soler et al27 20 2 10

Pole vaulting

Rebella et al68 135 4 2.96

Rowing

Maurer et al169 22 6 27.27

Rossi et al26 246 19 7.72

Soler et al27 77 13 16.88

Total 345 38 11.01

Rugby

Rossi et al26 65 7 10.76

Kobayashi et al31 5 1 20

Soler et al27 40 2 5

Abe et al156 169 52 30.77

Total 279 62 22.22

Sailing

Rossi et al26 128 22 17.18

Shooting

Rossi et al26 76 8 10.52

Soler et al27 81 4 4.94

Total 157 12 7.64

Skating (ice)

Rossi et al26 10 0

Kobayashi et al31 43 7 5

Kono et al36 25 3 12

Akimoto et al37 34 4 11.76

Total 64 10 15.63

Skating (roller)

Soler et al27 7 0 0

Skiing

Rossi et al26 154 25 16.23

Rossi et al26,16 18 2 11.11

Soler et al27 77 6 7.79

Total 249 33 13.25

Soccer

Kobayashi et al31 47 25 53.19

Sward et al32 31 2 6.45

Soler et al27 55 1 1.82

Murase et al170 160 14 8.75

Kono et al36 264 23 8.71

Akimoto et al37 320 28 8.75

Kyo et al171 37 18 48.65

Matsumoto et al160 60 19 31.67

Total 974 130 13.35

Sumo

Nakagawa72 37 5 13.51

Swimming

Rossi et al26,16 307 34 11.07

Kobayashi et al31 1 1 100

Engstrom et al43 20 4 20

Soler et al27 176 18 10.23

Soler et al27,16 11 1 9.09

Kono et al156 55 10 18.18

Akimoto et al37 117 12 10.26

Total 687 80 11.64

Table tennis

Rossi et al26 306 36 11.76

Kobayashi et al31 10 4 40

Sward et al32 30 3 10

Soler et al27 91 1 1.1

Maquirriain et al173 139 3 2.16

Alyas et al173 33 9 27.27

Rajeswaran et al15 98 29 29.59

Kono et al36 53 8 15.09

Akimoto et al37 67 9 13.43

Total 827 102 12.33

Track and field

Rossi et al26 353 61 17.28

Kobayashi et al31 54 11 20.37

Soler et al27 13 4 30.77

Total 687 80 11.64

Synchronized swimming

Engstrom et al43 20 4 20

Soler et al27 176 18 10.23

Soler et al27,1 11 1 9.09

Kono et al36 55 10 18.18

Total 687 80 11.64

Weight lifting

Rossi et al26 112 25 22.32

Kotani et al174 26 8 30.77

Soler et al27 85 11 12.94

Granhed et al175 13 2 15.38

Total 236 46 19.49

Wrestling

Rossi et al26 80 20 25

Soler et al27 143 16 11.19

Sward et al32 30 2 6.67

Granhed et al175 32 4 12.5

Total 285 42 14.74

a Softball.
b Luge, not bobsledding.
c Judo.
d Kendo.
e Water skiing.
f Synchronized swimming and water polo.
g Synchronized swimming.
h Pentathlon/triathlon.
i Pentathlon.
j Triathlon.
Table 3. Classification of Pars Interarticularis Defects (Type IIa Spondylolisthesis) by Radiological and Pathological Features.

Grade	Radiological Change	Pathological Change
0	Nil	Nil
1: Stress reaction	T2 signal abnormalities, with no pars defect on T1/T2 images	Bone marrow edema
2: Incomplete fracture	T2 signal abnormalities, with thinning, fragmentation, or irregularity of the pars interarticularis on T1 or T2 images	Bone marrow edema with pars defect (incomplete fracture), but spondylolysis (cortical disruption) has not yet occurred
3: Complete fracture	Cortical disruption on T1/T2 images, with T2 signal abnormalities present	Cortical disruption (spondylolysis) has occurred and bone marrow edema is present, but reunion is still possible
4: Chronic complete fracture	Cortical disruption on T1/T2 images, with no T2 signal abnormalities present	Complete pars interarticularis fracture that has never reunited, with no associated bone marrow edema

*Spondylolysis is characterized by cortical disruption (grade 3 and 4 defects). Grade 1 and 2 defects are prespondylolytic.

Table 4. Classification of Spondylolisthesis by Etiology.

Type	Etiology	Pathogenesis
I	Dysplastic	Congenital defect in the neural arch
II	Isthmic	Pars interarticularis defect
IIa	Stress fracture of the pars (spondylolysis)	
IIb	Repeated microtrauma and nonlinear forces cause elongation of the pars	
IIc	Acute traumatic fracture of the pars	
III	Degenerative	Degeneration of the facet joint complex (capsule, ligaments)
IV	Traumatic	Acute traumatic fracture of posterior column, but not the pars
V	Pathologic	Infection, neoplasm, endocrine disorder, or other pathology causes vertebral instability
VI	Postsurgical	Postsurgical lumbar instability

*a Pars interarticularis defects in athletes correspond to type IIa spondylolisthesis.

degeneration of the facet joint complex (eg, capsule, ligaments). Traumatic spondylolisthesis is caused by acute spinal trauma, which leads to a posterior column fracture, but not pars fracture. Pathologic spondylolisthesis occurs due to a pathologic process such as infection, malignancy, or endocrine disorder. Postsurgical spondylolisthesis occurs due to postsurgical lumbar instability. The focus of this review is pars interarticularis defects in athletes (type IIa spondylolisthesis).

Spondylolisthesis may also be classified into developmental and acquired causes. Developmental spondylolisthesis corresponds to the dysplastic and isthmic etiologies. Acquired spondylolisthesis corresponds to the traumatic, pathologic and postsurgical etiologies.

Risk Factors

Known risk factors for pars interarticularis defects include childhood/adolescence, male sex, race, particular sports, and other lifestyle choices that lead to repetitive hyperextension and rotation of the lumbar spine. Possible risk factors include family history and spina bifida occulta. Spondylolisthesis is more common in children since their bones are still in the growth stages, with weaker osteochondral junctions and thinner cortices. Children also participate more frequently in physical activity than adults, not allowing sufficient time for recovery from microtrauma. Another reason that children develop pars defects more commonly than adults is that children can develop injuries due to unaccustomed loads. In other words, a child who is an expert at soccer may be injured playing a sport they are not accustomed to (eg, tennis), even if tennis presents similar loading forces on the body. Contrastingly, adults do not often develop injuries from unaccustomed loads. Males develop spondylolisthesis more commonly than females with a ratio of 2:1, but females are more likely to develop severe spondylolisthesis. Eskimos have the highest
incidence, supporting a genetic predisposition to spondylolysis. Spondylolysis occurs more commonly in athletes due to repetitive hyperextension and twisting movements of the lumbar spine, as previously mentioned. Family history and spina bifida occulta (SBO) are possible risk factors for pars defects. Sixty-three percent of L5 spondylolysis exhibits terminal-stage defects despite young skeletal age, while most L3/L4 spondylolysis exhibits early-stage defects. This suggests that certain risk factors (possibly genetic) predispose to L5 spondylolysis, but not to spondylolysis at other lumbar levels. Another possibility could be the fact that L5 experiences more stress than other lumbar levels. Of the patients studied by Sakai et al, 93% of L5 spondylolysis patients suffered from SBO, while 0% of the L3/L4 spondylolysis patients suffered from SBO. This indicates a strong correlation between L5 spondylolysis and SBO, either due to a common genetic predisposition, with autosomal dominant inheritance or because SBO directly predisposes to spondylolysis. This is supported by Yamada et al, who studied 3 brothers—2 of whom were twins—who all developed lumbar spondylolysis and concomitant SBO. It is postulated that defective osteogenesis during the growth period leads to both SBO and spondylolysis.

Athletes have been shown to have larger sacrohorizontal angles (angle between the lumbar vertebra and upper endplate of the sacrum) than nonathletes, leading to increased lumbar lordosis. Increased lumbar lordosis increases the risk of pars interarticularis defects due to greater shear and compressive forces on the lumbar spine. Lumbar lordosis may also be increased during adolescence, when rapid bone growth causes tightness of the iliopsoas and thoracolumbar fascia. Additionally, specific sporting positions may be associated with a higher body mass index, such as defensive players in rugby, and higher body mass index is associated with increased lumbar lordosis.

Investigations

Imaging modalities are the mainstay of diagnosis in pars defects since clinical assessment is unreliable, but there is no universally agreed algorithm for the diagnostic workup. A trial of conservative management may be attempted before undertaking any imaging investigations, if the lower back pain is of recent onset and there is insufficient clinical suspicion for spondylolysis. Oblique and lateral X-rays of the lumbar spine may be performed as an initial investigation, with lucency of the pars interarticularis indicating a pars defect. The pathognomonic sign on oblique lumbar X-ray is the “Scotty dog collar” sign (the “Scotty dog” is the appearance of the normal spine, and the “collar” indicates the nondisplaced pars fracture). Computed tomography (CT), MRI, and single photon emission computed tomography (SPECT) are all more sensitive than X-ray and allow greater appreciation of the spinal anatomy, but their exact role in the diagnostic workup remains debated. Generally, early-stage disease is best detected by SPECT, but MRI has an increasingly positive role in this area. CT is excellent for assessing more progressive disease, determining fracture size and extent, and providing a baseline on which to assess adequacy of healing. In all cases, a high index of suspicion is required to detect less common types of pars defects, such as unilateral spondylolysis, spondylolysis of the upper lumbar vertebra (L1-L3), multilevel spondylolysis, and early stage lesions in which cortical disruption has not yet occurred.

Management

There is no gold standard protocol for the management of pars interarticularis defects. Further studies are required to compare conservative therapy to surgical therapy, and to compare Buck’s repair with Scott’s wiring technique, Morscher technique and other novel surgical techniques involved in these defects. The literature summatively suggests a mean return-to-play time of 3.7 months for conservative therapy, and 7.9 months for operative therapy.

Only 5 studies in this review reported the management instituted for their participants, and these were all case series (Table 5). Of 74 players with spondylolysis in these studies, 70 (94.59%) underwent conservative treatment and 4 (5.41%) underwent surgical treatment. Sixty-one (82.43%) returned to their previous level of play, 6 (8.11%) retired, and the disposition of the final 7 was not reported.

Conservative Therapy. Management of pars interarticularis defects typically begins with rest, orthosis, and physical therapy; transcutaneous electrical stimulation has also been

Studies in Which Treatment Modality and Return-to-Play Time Were Reported. a	No. of Athletes With Pars Defects	Conservative Therapy	Surgical Therapy	Returned to Previous Level of Play	Retired
Donaldson et al 25	11	11	0	10	1
Hardcastle et al 22	12	9	3	Not reported	5
Engstrom et al 43	18	18	0	18	0
McCarroll et al 52	22	21	1b	22	0
Jackson et al 65	11	11	0	11	0
Total	74	70	4	61	6

a Five studies reported treatment modality for participants found to have spondylolytic defects.
b Intervertebral disc surgery, not pars interarticularis surgery.
Comparison of surgical outcomes is difficult as surgeons use various intraoperative and postoperative regimens in treating pars defects. Most surgeons immobilize patients for 3 months postoperatively in a rigid lumbosacral orthosis, then allow graduated return to activity.104,113 Most surgeons allow resumption of sport after 6 months postoperatively in noncontact sports, and 12 months postoperatively in contact sports, although some surgeons advise patients to never recommence contact sports.104,113 Approximately 50% of surgeons advise patients never to recommence collision.113 In all cases, patients must be fully rehabilitated before returning to athletic activity. This involves no pain with sport-specific activity, as well as full strength and range of motion. Naturally, some athletic activities can never be recommenced using these criteria since they require extreme ranges of motion that cannot be recommenced after surgery, such as dancers who require lumbar hyperextension for their vocation.112,113 The main factors ultimately influencing return to athletic activity are symptomaticity and time from surgery; it is unclear whether radiographic appearance is one of the least important104,114 or most important factors112,114 influencing return to athletic activity.

Prevention
Prevention of pars defects by targeting modifiable risk factors may be an important adjunct against this disorder. For example, notifying cricketers of the increased risk using a mixed front-and-side action or tennis players of the increased risk using a topspin serve may lead to decreased incidence of pars defects. Coaches should also be trained in the provision of safe training routines, and high-risk maneuvers should be reserved for competitive play and not employed during training sessions.

Limitations
This study elucidated several areas of weakness in the current literature on pars interarticularis defects in athletes. Specifically, there were multiple differences in the study protocols of the 42 articles from which quantitative data was collected. The studies were always retrospective or prospective cohort studies; performing a randomized controlled trial for this clinical question would be unethical and practically impossible, since it would involve preventing certain individuals from performing physical activity for several years. Furthermore, there was considerable heterogeneity in the populations selected for testing with some studies only considering athletes of a particular sex, professional level or age. A number of studies only considered symptomatic patients whereas others studied all patients regardless of their symptomaticity. The imaging modalities used to detect pars interarticularis defects were also inconsistent, with some studies only using X-ray or CT imaging, which is inferior to MRI for detecting prelytic lesions. Finally, in athletes in whom more than one defect was detected, the defect of highest grade was counted, such that the present study does not differentiate between patients with single and multiple defects. Future studies on this topic would benefit from...
from prospectively using highly sensitive imaging (MRI) to detect all lesions in a symptomatic population of well-defined athletic experience so that better comparisons can be made between sports subtypes.

Conclusion

The current medical literature provides good evidence that the incidence of pars interarticularis defects is higher in the athletic population, with the highest incidence in diving, cricket, and baseball/softball. There remains no gold standard protocol for the management of pars interarticularis defects. Further studies are required to compare conservative therapy (rest, orthosis, physical therapy) to surgical therapy, and to compare Buck’s repair with Scott’s wiring technique, Morscher technique, and other novel surgical techniques involved in these defects.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. *Spine (Phila Pa 1976).* 2002;27:181-186. doi:10.1097/00007632-200201150-00012

2. Wiltse LL, Newman PH, Macnab I. Classification of spondylolysis and spondylolisthesis. *Clin Orthop Relat Res.* 1976;(117): 23-29. doi:10.1097/00002061-197606000-00003

3. Narita T, Kaneoka K. The prevention of low back disorders in divers. In: Kanasue K, Ogawa T, Fukano M, Fukubayashi T, eds. *Sports Injuries and Prevention.* Tokyo, Japan: Springer; 2015: 383-393

4. Sakai T, Goda Y, Tetzuka F, et al. Characteristics of lumbar spondylolysis in elementary school age children. *Eur Spine J.* 2016;25: 602-606. doi:10.1007/s00586-015-4029-4

5. Yamada A, Sairyo K, Shibuya I, Kato K, Dezeawa A, Sakai T. Lumbar spondylolysis in juveniles from the same family: a report of three cases and a review of the literature. *Case Rep Orthop.* 2013;2013:272514. doi:10.1155/2013/272514

6. Vernese LF, Chu SK. Spondylolysis: assessment and treatment in youth athletes. *Curr Phys Med Rehabil Rep.* 2017;5:75-82. doi:10.1007/s40141-017-0151-z

7. Sundell CG, Jonsson H, Adin L, Larsén KH. Clinical examination, spondylolysis and adolescent athletes. *Int J Sports Med.* 2013;34:263-267. doi:10.1055/s-0032-1321723

8. Masci L, Pike J, Malara F, Phillips B, Bennell K, Brukner P. Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis. *Br J Sports Med.* 2006;40:940-946. doi:10.1136/bjsm.2006.030023

9. Oren JH, Gallina JM. Pars injuries in athletes. *Bull Hosp Jt Dis* (2013). 2016;74:73-81

10. Samartzis D, Arnold PM. Spine in the Arts. The boxing boys of Akrotiri: early illustration of spondylolytic spondylolisthesis related to a sports injury. *Spine.* 2007;7:254-255. doi:10.1016/j.spinee.2006.06.392

11. Toueg CW, Mac-Thiong JM, Grimmer G, Poitras B, Parent S, Labelle H. Spondylolisthesis, sacro-pelvic morphology, and orientation in young gymnasts. *J Spinal Disord Tech.* 2015;28:E358-E364. doi:10.1097/BSD.0b013e3182956d62

12. Kulling FA, Florianz H, Reepschläger B, Gasser J, Jost B, Lajtai G. High prevalence of disc degeneration and spondylolisthesis in the lumbar spine of professional beach volleyball players. *Orthop J Sports Med.* 2014;2:23259671114528862. doi:10.1177/23259671114528862

13. Nakayama T, Ehara S. Spondylolytic spondylolisthesis: various imaging features and natural courses. *Jpn J Radiol.* 2014;33:3-12. doi:10.1007/s11604-014-0371-4

14. Sairyo K, Katoh S, Sasa T, et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis: a clinical and biomechanical study. *Am J Sports Med.* 2005;33:583-590. doi:10.1177/0363545604269035

15. Beatwj WL, Fredrickson BE, Murtland A, Sweeney CA, Grant WD, Baker D. The natural history of spondylolysis and spondylolisthesis: 45-year follow-up evaluation. *Spine (Phila Pa 1976).* 2003;28:1027-1035. doi:10.1097/01.BRS.0000061992.98108.A0

16. Standaert CJ, Herring SA. Spondylolisthesis: a critical review. *Br J Sports Med.* 2000;34:415-422. doi:10.1136/bjsm.34.6.415

17. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolisthesis and spondylolisthesis. *J Bone Joint Surg Am.* 1984;66:699-707.

18. Congeni J, McCulloch J, Swanson K. Lumbar spondylolysis. A study of natural progression in athletes. *Am J Sports Med.* 1997; 25:248-253. doi:10.1177/036354569702500220

19. McCleary MD, Congeni JA. Current concepts in the diagnosis and treatment of spondylolysis in young athletes. *Curr Sports Med Rep.* 2007;6:62-66. doi:10.1097/01.CSMR.0000306559.19088.6f

20. Iwamoto J, Takeda T, Wakano K. Returning athletes with severe low back pain and spondylolysis to original sporting activities with conservative treatment. *Scand J Med Sci Sports.* 2004;14: 346-351. doi:10.1111/j.1600-0838.2004.00379.x

21. Morita T, Ikata T, Katoh S, Miyake R. Lumbar spondylolysis in children and adolescents. *J Bone Joint Surg Br.* 1995;77:620-625. doi:10.1302/0301-6024.77b4.7615609

22. Micheli LJ, Wood R. Back pain in young athletes. Significant differences from adults in causes and patterns. *Arch Pediatr Adolesc Med.* 1995;149:15-18. doi:10.1001/archpedi.1995.02170130017004

23. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA Statement. *PLoS Med.* 2009;6: e1000097. doi:10.1371/journal.pmed.1000097

24. Roche MB, Rowe GG. The incidence of separate neural arch and coincident bone variations; a survey of 4200 skeletons. *Anat Rec.* 1951;109:233-252. doi:10.1002/ar.1091090207
25. Donaldson LD. Spondylolysis in elite junior-level ice hockey players. *Sports Health*. 2014;6:356-359. doi:10.1177/1941738113519958

26. Rossi F, Dragoni S. The prevalence of spondylolysis and spondylolisthesis in symptomatic elite athletes: radiographic findings. *Radiography*. 2001;7:37-42. doi:10.1053/radi.2000.0299

27. Soler T, Calderon C. The prevalence of spondylolysis in the Spanish elite athlete. *Am J Sports Med*. 2000;28:57-62. doi:10.1177/036354560002801210

28. Suzuki K. Medical check of lumbar spine in adolescent ice hockey players [in Japanese]. *Rinshou Sports Igaku (Clinical Sports Medicine)*. 2002;19:1425-1430.

29. Sakai T, Sairyo K, Kosaka H, Yasui N. Incidence and etiology of lumbar spondylolisthesis: review of the literature. *J Orthop Sci*. 2010;15:281-288. doi:10.1007/s00776-010-1454-4

30. Abrams GD, Renstrom PA, Safran MR. Epidemiology of musclekeletal injury in the tennis player. *Br J Sports Med*. 2012;46:492-498. doi:10.1136/bjsports-2012-091164

31. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolisthesis in young athletes by magnetic resonance imaging. *Am J Sports Med*. 2013;41:169-176. doi:10.1177/0363546512424946

32. Sward L, Hellstrom M, Jacobsson B, Peterson L. Spondylolysis and the sacro-horizontal angle in athletes. *Acta Radiol*. 1989;30:359-364. doi:10.3109/02841858909174697

33. Maquirriain J, Ghisi JP. The incidence and distribution of stress fractures in elite tennis players. *Br J Sports Med*. 2006;40:454-459. doi:10.1136/bjsm.2005.023465

34. Ranson CA, Burnett AF, Kerslake RW. Injuries to the lower back in elite fast bowlers: acute stress changes on MRI predict stress fracture. *J Bone Joint Surg Br*. 2010;92:1664-1668. doi:10.1302/0301-620X.92B12.24913

35. Rajeswaran G, Turner M, Gissane C, Healy JC. MRI findings in the lumbar spines of asymptomatic elite junior tennis players. *Skeletal Radiol*. 2014;43:925-932. doi:10.1007/s00256-014-1862-1

36. Kono S. A study on the etiology of spondylolysis with reference to athletic activities. *J Jpn Orthop Assoc*. 1975;49:125-133.

37. Akimoto T. The etiology of spondylolysis with reference to athletic activities during growing period. *Seikeigeka (Orthopaedics)*. 1979;30:638-646.

38. Mcanany S, Patterson D, Hecht AC. Spine injuries in tennis players. In: Colvin AC, Gladstone JN, eds. *The Young Tennis Player*. Basel, Switzerland: Springer; 2016:121-134.

39. Sheets AL, Abrams GD, Corazza S, Safran MR, Andriacchi TP. Kinematics differences between the flat, kick, and slice serves measured using a markerless motion capture method. *Ann Biomed Eng*. 2011;39:3011-3020. doi:10.1007/s10439-011-0418-y

40. Chow JW, Park SA, Tillman MD. Lower trunk kinematics and muscle activity during different types of tennis serves. *Sports Med Arthrosc Rehabil Ther Technol*. 2009;1:24. doi:10.1186/1758-2555-1-24

41. Crewe H, Elliott B, Couanis G, Campbell A, Alderson J. The lumbar spine of the young cricket fast bowler: an MRI study. *J Sci Med Sport*. 2012;15:190-194. doi:10.1016/j.jsams.2011.11.251

42. Hardcastle P, Annear P, Foster DH, et al. Spinal abnormalities in young fast bowlers. *J Bone Joint Surg Br*. 1992;74:421-425. doi:10.1302/0301-620X.74B3.158798

43. Engstrom CM, Walker DG. Pars interarticularis stress lesions in the lumbar spine of cricket fast bowlers. *Med Sci Sports Exerc*. 2007;39:28-33. doi:10.1249/01.mss.0000241642.82725.ac

44. Foster D, John D, Elliott B, Ackland T, Fitch K. Back injuries to fast bowlers in cricket: a prospective study. *Br J Sports Med*. 1989;23:150-154. doi:10.1136/bjsm.23.3.150

45. Annear PT, Chakera TM, Foster DH, Hardcastle PH. Pars interarticularis stress and disc degeneration in cricket’s poten strike force: the fast bowler. *Aust N Z J Surg*. 1992;62:768-773. doi:10.1111/j.1445-2197.1992.tb06915.x

46. Elliott BC, Hardcastle PH, Burnett AE, Foster DH. The influence of fast bowling and physical factors on radiologic features in high performance young fast bowlers. *Sports Med Train Rehabil*. 1992;3:113-130. doi:10.1080/1543862920517008

47. Gregory PL, Battr ME, Kerslake RW. Comparing spondylolysis in cricketers and soccer players. *Br J Sports Med*. 2004;38:737-742. doi:10.1136/bjsm.2003.008110

48. Ranawat VS, Dowell JK, Heywood-Waddington MB. Stress fractures of the lumbar pars interarticularis in athletes: a review based on long-term results of 18 professional cricketers. *Injury*. 2003;34:915-919. doi:10.1016/S0020-1383(03)00034-2

49. Elliott BC. Back injuries and the fast bowler in cricket. *J Sports Sci*. 2000;18:983-991. doi:10.1080/02640410044678

50. Burnett A, Elliott B, Foster D, et al. The back breaks before the wicket: the young fast bowler’s spine. *Sport Health*. 1991;9:11-15.

51. Jones DM, Tearse DS, El-Khoury KG, Cathol MH, Brandser EA. Radiographic abnormalities of the lumbar spine in college football players: a comparative analysis. *Am J Sports Med*. 1999;27:335-338. doi:10.1177/0363546599027003110

52. McCarroll JR, Miller JM, Ritter MA. Lumbar spondylolysis and spondylolisthesis in college football players. A prospective study. *Am J Sports Med*. 1986;14:404-406. doi:10.1177/036354658601400513

53. Semon RL, Spengler D. Significance of lumbar spondylolysis in fast bowling and physical factors on radiologic features in high performance young fast bowlers. *J Bone Joint Surg Br*. 1992;74:421-425. doi:10.1302/0301-620X.74B3.158798

54. Castinel BH, McMaster JK, Stanitski CL. Low back pain in college football players. *Aust N Z J Surg*. 1984;54:214-218. doi:10.1111/j.1445-2197.1984.tb07035.x

55. Ferguson RJ, McMaster JH, Stanitski CL. Low back pain in college football players. *Aust N Z J Surg*. 1990;9:109-114.

56. Abe H. Spondylolysis in rugby and American football players. *Br J Sports Med*. 2007;41:337-338. doi:10.1136/bjsm.2006.032789

57. Light DI, Kerr HA. Spine injuries in collision/heavy contact sports. In: Micheli L, Stein C, O’Brien M, d’Hemecourt P, eds. *Orthopedics*.
Spinal Injuries and Conditions in Young Athletes. New York, NY: Springer; 2014:75-87.

59. Hasegawa A. Medical check of lumbar spine in baseball players in the national high school baseball championship [in Japanese]. Rinshou Sports Igaku (Clinical Sports Medicine). 2002;19:1431-1436.

60. Matsumoto M. Conservative treatment of lumbar disorders [in Japanese]. Rinshou Sports Igaku (Clinical Sports Medicine). 2006;23:1301-1309.

61. Wakitani S, Ochi T, Hirooka J, Yoneda M, Ono K. The study about lumbar spondylolysis found in professional baseball players. Cent Jpn J Orthop Traumatol. 1988;31:538-540.

62. Mohri R, Silva PDV, Trandafilov M Jr, et al. Spondylolysis and spondylolisthesis in young gymnasts. Rev Bras Ortop. 2010;45:79-83. doi:10.1016/S2255-4971(15)30221-4

63. Toueg CW, Mac-Thiong JM, Grimard G, Parent S, Poitras B, Labelle H. Prevalence of spondylolisthesis in a population of gymnasts. Stud Health Technol Inform. 2010;158:132-137. doi:10.3233/978-1-60750-573-0-132

64. Bennett DL, Nassar L, DeLano MC. Lumbar spine MRI in the elite-level female gymnast with low back pain. Skeletal Radiol. 2006;35:503-509. doi:10.1007/s00256-006-0083-7

65. Jackson DW, Wittse LL, Cirincione RJ. Spondylolysis in the female gymnast. Clin Orthop Relat Res. 1976;(117):68-73. doi:10.1007/9003086-1976060000008

66. Schmitt H, Brocai DR, Carstens C. Long-term review of the lumbar spine in javelin throwers. J Bone Joint Surg Br. 2001;83:324-327. doi:10.1302/0301-620X.83B3.11386

67. Kuroki T. Lumbar disorders of judo players. Jpn J Orthop Sports Med. 1994;14:387-390.

68. Rebbel G. A prospective study of injury patterns in collegiate pole vaulters. Am J Sports Med. 2015;43:808-815. doi:10.1177/0363546514564542

69. Maurer M, Soder RB, Baldisserotto M. Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers. Am J Sports Med. 2011;39:392-397. doi:10.1177/0363546510381365

70. Murase M. Clinical and radiological surveys of lumbar spondylolysis in young soccer players [in Japanese]. Nihon Seikeigeka Gakkai Zasshi. 1989;63:1297-1305.

71. Kyö M. Medical check of professional soccer team. Seikeigeka (Orthopaedics). 1995;46:243-247

72. Nakagawa Y. Medical check of lumbar spine in college student sumo players [in Japanese]. Rinshou Sports Igaku (Clinical Sports Medicine). 2002;19:1445-1449.

73. Alyas F, Turner M, Connell D. MRI findings in the lumbar spines of asymptomatic, adolescent, elite tennis players. Br J Sports Med. 2007;41:836-841. doi:10.1136/bjsm.2007.037747

74. Kotani PT, Ichikawa N, Wakabayashi Y, Yoshii BS, Koshimune M. Studies of spondylolysis found among weightlifters. Br J Sports Med. 1971;6:4-8. doi:10.1136/bjsm.6.1.4

75. Granhed H, Morelli B. Low back pain among retired wrestlers and heavyweightweights. Am J Sports Med. 1988;16:530-533. doi:10.1177/036354658801600517

76. Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med. 1997;16:291-306. doi:10.1016/S0278-5919(05)70023-5

77. Losurocino G, Mazza O, Aulisa G, Pitta L, Pola E, Aulisa L. Spondylolysis and spondylolisthesis in the pediatric and adolescent population. Childs Nerv Syst. 2001;17:644-655. doi:10.1007/s003810040945

78. Marchetti PC, Bartolozzi P. Classification of spondylolisthesis as a guideline for treatment. In: Bridwell KH, DeWald RL, Hammerberg KW, et al, eds. The Textbook of Spinal Surgery. Philadelphia, PA: Lippincott-Raven; 1997:1211-1254.

79. Jaimes C, Jimenez M, Shabshin N, Laor T, Jaramillo D. Taking the stress out of evaluating stress injuries in children. Radiographics. 2012;32:537-555. doi:10.1148/rg.322115022

80. Sakai T, Sairyo K, Takao S, Nishitani H, Yasui N. Incidence of lumbar spondylolysis in the general population in Japan based on multidetector computed tomography scans from two thousand subjects. Spine (Phila Pa 1976). 2009;34:2346-2350. doi:10.1097/BRS.0b013e3181b4abbe

81. Simper LB. Spondylolysis in Eskimo skeletons. Acta Orthop Scand. 1986;57:78-80. doi:10.3109/1745367860993222

82. Huguenin L. Paediatric sports injuries. Aust Fam Physician. 2016;45:466-469.

83. Tallarico RA, Madom IA, Palumbo MA. Spondylolysis and spondylolisthesis in the athlete. Sports Med Arthrosc Rev. 2008;16:32-38. doi:10.1097/JSA.0b013e318163be50

84. Shahriaree H, Sadaji K, Roooholami SA. A family with spondylolysis and spondylolisthesis. J Bone Joint Surg Am. 1979;61:1256-1258. doi:10.1148/94.3.631

85. Haukipuro K, Keranen N, Koivisto E, Lindholm R, Norio R, Punto L. Familial occurrence of lumbar spondylolysis and spondylolisthesis. Clin Genet. 1978;13:471-476. doi:10.1111/j.1399-0004.1978.tb01200.x

86. Shurley JP, Newman JK. Spondylolysis in American football players: etiology, symptoms, and implications for strength and conditioning specialists. Strength Cond J. 2016;38:40-51. doi:10.1519/SSC.000000000000224

87. Alexander MJ. Biomechanical aspects of lumbar spine injuries in athletes: a review. Can J Appl Sport Sci. 1985;10:1-20.

88. d’Hemecourt PA, Gerbino PG 2nd, Micheli LJ. Back injuries in the young athlete. Clin Sports Med. 2000;19:663-679. doi:10.1016/S0278-5919(05)70231-3

89. Guo JM, Zhang GQ, Alimujiang. Effect of BMI and WHR on lumbar lordosis and sacrum slant angle in middle and elderly women [in Chinese]. Zhongguo Gu Shang. 2008;21:30-31.

90. Bundy J, Hernandez T, Zhou H, Chutkan N. The effect of body mass index on lumbar lordosis on the Mizuho OSI Jackson spinal table. Evid Based Spine Care J. 2010;1:35-40. doi:10.1055/s-0028-1100891

91. Duerson DH, Rodenberg RE, MacDonald J. Spondylolysis in the young athlete. Athletic Training Sports Health Care. 2016;8:5-7. doi:10.3928/19425864-20151119-05

92. Ralston S, Weir M. Suspecting lumbar spondylolysis in adolescent low back pain. Clin Pediatr (Phila). 1998;37:287-293. doi:10.1177/00992289803700502
93. Syrmou E, Tsitsopoulos PP, Marinopoulos D, Tsonidis C, Anastagno-
samientos I, Tsitsopoulos PD. Spondylolysis: a review and reappraisal. Hippokratia. 2010;14:17-21.
94. Viana SL, Viana MA, de Alencar EL. Atypical, unusual, and misleading imaging presentations of spondylolysis. Skeletal Radiol. 2015;44:1253-1262. doi:10.1007/s00256-015-2138-0
95. Cardozo E, Chang RG, Sneag DB, Wyss J. Atypical location of low-back pain in a high school basketball player. Am J Phys Med Rehabil. 2015;94:e94-e95. doi:10.1097/PHM.0000000000000331
96. Panteliadis P, Nagra NS, Edwards KL, Behrbalk E, Boszczyk B. Athletic population with spondylolysis: review of outcomes following surgical repair or conservative management. Global Spine J. 2016;6:498-504. doi:10.1016/j.gsqj.2015.06.015
97. Gillis CC, Eichholz K, Thoman WJ, Fessler RG. A minimally invasive approach to the defect in spondylolysis: a critical literature review. Spine. 2015;40(23):1916-1920. doi:10.1097/BRS.0000000000001513
98. Fellander-Tsai L, Micheli LJ. Treatment of spondylolysis with external electrical stimulation and bracing in adolescent athletes: a report of two cases. Clin J Sport Med. 1998;8:232-234.
99. Stasinopoulos D. Treatment of spondylolysis with external electrical stimulation in young athletes: a critical literature review. Br J Sports Med. 2004;38:352-354. doi:10.1136/bjsm.2003.010405
100. Kaneoka K. Low back disorders among athletes and its prevention. In: Kanosue K, Ogawa T, Fukano M, Fukubayashi T, eds. Sports Injuries and Prevention. Tokyo, Japan: Springer; 2015: 367-374
101. Sys J, Michielsen J, Bracke P, Martens M, Verstreken J. Non-operative treatment of active spondylolysis in elite athletes with normal X-ray findings: literature review and results of conservative treatment. Eur Spine J. 2001;10:498-504. doi:10.1007/s0058600100326
102. Miller SF, Congeni J, Swanson K. Long-term functional and anatomical follow-up of early detected spondylolysis in young athletes. Am J Sports Med. 2004;32:928-933. doi:10.1177/0363546503262194
103. Blanda J, Bethem D, Moats W, Lew M. Defects of pars interarticularis in athletes: a protocol for nonoperative treatment. J Spinal Disord. 1993;6:406-411. doi:10.1097/00002517-199306050-00007
104. Radcliff KE, Kalantar SB, Reitman CA. Surgical management of spondylolysis and spondylolisthesis in athletes: indications and return to play. Curr Sports Med Rep. 2009;8:35-40. doi:10.1249/JSR.0b013e318194f89e
105. Hardcastle PH. Repair of spondylolysis in young fast bowlers. J Bone Joint Surg Br. 1993;75:398-402. doi:10.1302/0301-620X.75B3.8496207
106. Buck JE. Direct repair of the defect in spondylolysis. Preliminary report. J Bone Joint Surg Br. 1970;52:432-437.
107. Nicol RO, Scott JH. Lytic spondylolysis. Repair by wiring. Spine (Phila Pa 1976). 1986;11:1027-1030.
108. Morscher E, Gerber B, Fasel J. Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a hook screw. Arch Orthop Trauma Surg. 1984;103:175-178. doi:10.1007/BF00435550
109. Sairyo K, Sakai T, Yasui N. Minimally invasive technique for direct repair of pars interarticularis defects in adults using a percutaneous pedicle screw and hook-rod system: technical note. J Neurosurg. 2009;10:492-495. doi:10.3171/2009.2.SPINE08594
110. Noggle JC, Scibba DM, Samdani AF, Anderson DG, Betz RR, Asghar J. Minimally invasive direct repair of lumbar spondylolysis with a pedicle screw and hook construct. Neurosurg Focus. 2008;25:E15. doi:10.3171/FOC/2008/25/8/E15
111. Brennan RP, Smucker PY, Horn EM. Minimally invasive image-guided direct repair of bilateral L-5 pars interarticularis defects. Neurosurg Focus. 2008;25:E13. doi:10.3171/FOC/2008/25/8/E13
112. Bouras T, Korovessis P. Management of spondylolysis and low-grade spondylolisthesis in fine athletes. A comprehensive review. Eur J Orthop Surg Traumatol. 2015;25(suppl 1):S167-S175. doi:10.1007/s00590-014-1560-7
113. Rubery PT, Bradford DS. Athletic activity after spine surgery in children and adolescents: results of a survey. Spine (Phila Pa 1976). 2002;27:423-427.
114. Sutton JH, Guin PD, Theiss SM. Acute lumbar spondylolysis in intercollegiate athletes. J Spinal Disord Tech. 2012;25:422-425. doi:10.1097/BSD.0b013e318236ba6c