Immuninformatics-Peptide Driven Vaccine and In silico Modeling for Duvenhage Rabies Virus Glycoprotein G

Sahar Obi Abd Albagi1*, Omar Hashim Ahmed2, Manal Abdalla Gumaa1, Khoubieb Ali Abd_elrahman4, Ahmed Hamdi Abu-Haraz1 and Mohammed A. Hassan1

1Africa City of Technology, Sudan
2Department of Pharmacology, Faculty of Pharmacy, International University of Africa, Khartoum, Sudan
3Medical Microbiology, Khartoum University, Sudan
4University of Medical Science and Technology, Sudan

Abstract

Background: Duvenhage rabies virus belongs to Lyssavirus genus family Rhabdoviridae causing fatal infection with no effective treatment available and no licensed DNA or peptide vaccine up to date. The aim of present study was to predict peptide vaccine for Duvenhage rabies virus.

Methods and materials: The sequences of Duvenhage virus was optioned from NCBI, and then it was subjected to many B cell and T cell tests from IEDB to realize the most promising peptides that could act as driven-peptide vaccine. Population coverage analysis was performed for selected peptides using IEDB and finally homology modeling and molecular docking studies were done to visualize the interaction with MHC1 molecules.

Result and conclusion: Among the tested peptides for T cell-test, this study projected an interesting epitope of T cell (YFLIGVSAV) that exhibit all-consuming of binding affinity as strong indicator to MHC-One and MHC-two alleles together, besides the binding to eighteen alleles through the population coverage 99.36% in the world. These results were further supported by molecular docking studies that show excellent interaction with MHC homo spins molecule with the lowest binding energy among tested peptides.

Only three B cell epitopes (AHYK, YTIPDKL and SLHNPYPDSH) were found to overlap all performed B cell tests by being linear, on the surface of glycoprotein G and being antigenic.

Keywords: Immunoinformatic; Duvenhage rabies virus; Glycoprotein G; Lyssavirus; Peptide vaccine; Epitope

Introduction

Lyssavirus are representing a serious public health problem, especially in developing countries by causing lethal encephalitis in animals and humans. There is very few information on the way that lyssa viruses in general and Duvenhage virus caused disease [1]. This virus family has shape appear as a bullet, virion was envelop with a sense negatively RNA genome single strand which encodes for five proteins of viral: nucleoprotein, protein for matrix, phosphoprotein, glycoprotein and RNA- dependent RNA polymerase [2,3]. The incubation time is different, and the death is commonly occurred within six and eleven days after paralytic sign's forms, which limit treatment options [4]. Details of the lyssa virus’s cycles like Duvenhage, Lagos bat, and Mokola viruses are unspecific [5,6]. The Lyssavirus genus of the family Rhabdoviridae consists of eleven additional virus species have been recognized within the genus Lyssavirus, which replicate in vertebrates, and mainly carried by bats except Mokola virus, and are restricted in special areas around the world [7]. African lyssa viruses include Mokola virus (MOKV), Lagos bat virus (LBV), and DUVV. European bat lyssa viruses 1 and 2 (EBLV 1 and 2 respectively), Irkt (IRKV), Aravan (ARAV), Khujant (KHUV) and West Caucasian bat virus (WCBV) cause cases in Europe and Asia. Australian bat Lyssavirus (ABLQ) is restricted to Australia [8,9]. RABV (genotype 1) only bats isolated in South and North America, but rabies associated viruses have been bats isolated from another place. In Africa-countries, DUVV and LBV are bats associated with it, but Mokola virus is related with rodents and shrews [10]. Many susceptible vertebrates, sometimes have been found to be infected by rarely identified lyssaviruses, a human with Duvenhage virus [11,12]. The discovered of Duvenhage virus in South Africa in 1970 when the rabies was caused fatal like disease for a bitten person by a bat [13]. After that, they suggest that the virus isolated was a Miniopterus schreibersi for the reason that wide genus distribution in exposure area. The bat species previously identified as M. schreibersi in Africa is now known as Miniopterusnatalensis and then in 1986 the virus was isolated from an insectivorin bat, Nycteristhebaica in Zimbabwe. After 36 years later, DUVV was identified in human: in South Africa 2006 and subsequently in Kenya in 2007 [9]. Although most of the rabies infections are thought to be zoonotic, clinical cases have also been caused by Duvenhage virus, EBLV, EBLV, and Australian bat Lyssavirus, Mokola virus and Irkt virus. Humans are likely to be susceptible to other rabies-related lyssa viruses [14]. Very few laboratories in African countries can diagnose species of rabies infection [9]. Some studies done to control measures and monitoring the spreading of lyssa viruses found that mongoose-related rabies in South Africa are different from classic rabies of dog [10]. Up to date no effective treatment is available for rabies infection. According to phylogeny, serological cross-reactivity and pathogenicity, lyssa viruses have been categorized to three phylogenetic groups. Phylogroup I which consists of RABV, DUVV, EBLV1, EBLV2, ABLV, Aravan, Khujand and Irkt. Phylogroup II consists of MOKV and LBV, and Phylogroup III is WCBV [4]. All previous studies suggested that commercial vaccines...
protected against only the Phylogroup I lyssa viruses. Similarity in glycoprotein antigenic sites leads to cross protection between some Lyssavirus species by neutralizing antibodies [9]. Even with the presence of vaccines in effective form, rabies infection stays to kill as a minimum 55,000 of people every year, and many of the animal fatal infections. The highly mortality rate is reported in India with more than 16,000 deaths in just 2010 year 15. So, studies of new vaccines is important to produce an effective and low cost one instead of egg-based or cell-culture derived vaccines [15,16]. Vaccinating animals limited human cases, which transferring through dogs, bats and raccoons, in many countries [17,18]. Initial vaccines virus of rabies were formed in living tissue then substituted by vaccines produced in embryonated eggs and tissue culture. Vaccines of viral vector or DNA have been used successfully with greatly protection volume against the infection of rabies [19,20]. However, no one of these vaccines is lead to produce a licensed for personal used until now 4. Furthermore, the immunization with P-G gene of rabies virus did not protect against viruses from genotypes 3 and 21-23.

Post-exposure prophylaxis consists of immediate cleansing of the wound after a minor animal injury [24,25], then taking of human rabies immunoglobulin and human rabies vaccine. If the people vaccinated before, fewer vaccine doses and no rabies immunoglobulin are given. If the patient is immunocompetent or immuno-suppressed or unvaccinated. Post-exposure prophylaxis is highly effective if it is begun soon after exposure. When rabies symptoms develop there is no ideal treatment is recommended, some treatments with aggressive therapy have a very high risk of failure, like vaccines, antiviral agents, antibodies to rabies virus, ketamine and the induction of a therapeutic coma are ineffective [14]. The replication cycle is depended on the Conservancy of the genome [26,27]. And due to the significance of the envelope matrix-protein M and glycoprotein G in virus infection and virus release [28]. G protein has the major role in the pathogenicity of genotype one lyssa viruses [29,30]. The outer membrane of glycoprotein G is only protein which is related in virus entry besides negative effects [34,35]. Our goal is to project a vaccine for Duvenhage virus using peptide of its envelop glycoprotein G as an immunogenic part to encourage protective immunity.

Materials and Methods

Sequence of protein recovery

A total of 26 Africa strains of rabies Duvenhage virus strains' glycoprotein was retrieved from the NCBI database (https://www.ncbi.nlm.nih.gov/protein) in November 2016. These 12 strains sequences were recovered from many parts in the world (consist of 11 were isolated from South Africa, Zimbabwe and one from Holland-Netherlands). Glycoprotein strains were Retrieved and area of isolated or collection and their accession numbers are listed in Table 1.

Determinant of conserve regions

The aligned of retrieved sequences was done to obtain conserved regions using multiple-sequence alignment (MSA). Sequences aligned were supported by Clustal-W as Applier in the BioEdit-software, version 7.0.9.1 (Hall, 1999) to find the conserved regions in all 12 retrieved in Rabies spike glycoprotein G sequences Figure 1. At the same time; then modeling of epitopes protein remains would help in manufacture of peptide vaccine, which is highly immunogenic and with low allergic effects [34,35].
analyzed these candidates epitopes by various prediction tools from Immune Epitope Database 'IEDB' examination resource (http://www.iedb.org/) [36,37].

Prediction of B-cell epitopes

The B-cell epitope is the part of any immunogenic, which determine with B- lymphocytes. B-cell epitope was categorized by hydrophilic reachable and in a turn of beta region. Thus, the classical susceptibility scale methods and hidden programmed for Markov model software’s from IEDB as resource of analysis were utilized for the sequential tests [37,38] (Figures 2-3).

Linear Prediction of B-cell epitopes

BepiPred-test from immune epitope database (http://tools.iedb.org/bcell/result/) [39] it has been done as linear prediction of B-cell epitopes when selected from conserved region with a default threshold value of 0.148.

Surface accessibility prediction

via prediction of Emini surface accessibility tool of IEDB (http://tools.iedb.org/bcell/result/) [40]. Epitopes of the surface accessible were predicted from the region they were conserved and the default threshold holding value was 1.0.

Antigenicity prediction of epitopes sites

The antigenicity method of kolaskar and tongaonker was proposed to determine the sites of antigenic epitopes with a default threshold value of 1.042, (http://tools.iedb.org/bcell/result/) [41].

Binding predictions of MHC class I

The peptide binding Analysis to Major Histocompatibility complex class I molecules was evaluated by the IEDB MHC-I estimated tool at (http://tools.iedb.org/mhci/), MHC-I peptide molecules presentation to T lymphocytes submit to a number of steps. The linking of fragment peptides to MHC molecules step was proposed its reached by Artificial neural network (ANN) method [42,43]. Previous to prediction, all lengths of epitope was set as 9 mers, all internationally conserved epitopes that binding to alleles at score less than or equal to 500 half-maximal inhibitory concentration (IC50) was obtained for additional analysis [43].

Binding predictions MHC class II

Binding analysis of peptide to Major Histocompatibility complex class II molecules was evaluated by the IEDB MHC-II estimated tool at (http://tools.iedb.org/mhcii/) [44,45]. In this step, references of human allele were used. In MHC class II groove has the capability to binding

Figure 2: Bepipred Linear Epitope Prediction, Yellow areas above threshold (red line) are proposed to be a part of B cell epitopes and the green areas are not.

Figure 3: Emini surface accessibility prediction, Yellow areas above threshold (red line) is proposed to be a part of B cell epitopes and the green areas are not.
to peptides with various lengths. This binding variability makes difficult prediction as fewer accurate [46]. IEDB take a five methods of prediction for MHC II as tool of prediction, we used the artificial neural networks method ‘NN- align’ that allows for simultaneously identifying binding core epitopes of the MHC class II and affinity to binding. Method of the consensus uses the medium ranking of the three methodologies as the final score of prediction [47]. All epitopes were preserved as conserves that binding to various alleles at equal score or less than 1000 half-maximal inhibitory concentration (IC50) it was selected for additional analysis (Figures 4-6).

Population coverage calculation

All probable binders of MHC I and MHC II from rabies virus of Africa duvenhage strain Glycoprotein was evaluated the coverage of population compared to the whole world and Africa population with a selection of MHC-I and MHC-II related alleles by calculation.
of the IEDB population coverage tool at http://tools.iedb.org/tools/population/iedb_input [48].

Homology modeling

The modeling has been done by Raptor X structure prediction server. Which is submitted the reference sequence of Duvenhage strain on 2016-12-21. The files result is received at 2016-12-22, which containing the predicted 3D model and image are attached noreply@raptorx.uchicago.edu.

Then we used visualized tool of UCSF Chimera (version 1.8) to get a 3D-structures of protein, this tool was presently available within the Chimera package and accessible from the chimera web site (http://www.cgl.ucsf.edu/cimera) [49].

Docking

MHCI alleles Epitopes was predicted to get bind with fewer average of percentile-rank were designated as the ligands, PEP- FOLD as online tool of peptide modeling it has been used to given epitopes structure [50]. The MHCI allele's 3D structure was achieved from PatchDock algorithm stimulated by object recognition and segmentation techniques of image used in Computer Visualization. It tries to match two parts by selection one part and search for the matching one as complementary [51]. The FireDock server statements used for problem of refinement in protein-protein docking resolutions; The method at the same time targets the flexibility problem and scoring of solutions was produced by docking algorithms as fast rigid-body [52-54].

Results

Prediction of B-cell epitope

The Duvenhage rabies glycoprotein (GP) reference sequence was examined by Bepipred linear epitope prediction, Kolaskar and Tongaonkar antigenicity and Emini surface accessibility methods in IEDB, to confine the epitope linearity, which is surface rise and the immunogenicity respectively supported test (Figures 7-9).

![Figure 7: Structural Position of the three most promising conserved epitopes at glycoprotein G of Duvenhage rabies virus that interact with MHC I alleles.](image1)

![Figure 8: Molecular position of the most promising three epitopes of Duvenhage rabies virus that binds MHC II alleles.](image2)

![Figure 9: Molecular position of the most promising epitope for population coverage that binds both MHC1 and MHC11 alleles.](image3)
Cytotoxic T-lymphocyte epitopes Prediction and interaction with MHC-1

The duvenhage rabies virus reference sequence of glycoprotein G was examined using IEDB MHC-1 tool of binding prediction to predict T cell epitopes to given interact proposed with types of different MHC I alleles built on ANN- align by (IC50) ≤ 500, the list of epitopes were a conserved and their MHC-1 alleles corresponding are shown in (Tables 2-4).

T helper cell epitopes Prediction and interaction with MHC II alleles

The Duvenhage rabies virus reference sequence of glycoprotein G was examined using IEDB MHC II tool of binding prediction based on NN-align by half-maximal inhibitory concentration (IC50) ≤ 1000; In supplementary- Table I were shown the list all epitopes and their correspondent binding MHC II alleles while the list most promising epitopes that had Required to binding affinity with MHC II alleles along with their positions in the glycoprotein G Duvenhage rabies virus were presented in (Table 5).

Population Coverage Analysis

The test of Population coverage was done to observe the all epitopes world coverage binds to MHC1 alleles and MHC11 alleles also to joined

Table 2: List of conserved peptides with their surface accessibility score and antigenicity score.

Peptide	Start	End	Length	Emini Score	Antigenicity Score
YTPDKLGPWSP	24	36	13	0.614	1.03
YTPDKL	24	30	7	1.156	1.047
LVVEDEGCTTL	47	57	11	0.131	1.085
VVTEAEYTY	83	91	9	0.813	1.047
FRPVSNSCRDA	106	116	11	0.631	0.998
NWKAGDPYREELSHNPYDSSWLSL	118	141	24	4.164	0.996
SLHNPYPDSSH	130	139	10	2.229	1.024
VADMDAYDIIK	158	167	10	1.768	0.996
ISPGS	181	185	5	0.553	1.023
PFCPTNEYTY	186	195	10	1.109	1.034
WMPESPNGIS	197	207	11	0.733	0.958
MGK4ATK	215	221	7	1.955	0.923
EWCSFDQOL	269	276	8	0.637	1.045
VW3LPQVN	259	267	9	0.458	1.061
PGFGK	328	332	5	0.753	0.967
AHYK	346	349	4	1.599	1.065
EIIP	356	359	4	0.488	1.055
GCLKAGGRCYPH	362	373	12	0.148	1.074
LGPGG	384	388	5	0.355	0.987
HPLADPSVFKNDAEA	416	432	17	2.27	1.001
HLDPDQNKQSG	438	448	11	1.372	0.996
KSP	488	491	4	3.076	0.984
PVELT	493	497	5	0.679	1.091

Table 3: List of conserved peptide that passes Bepipred, Emini surface and Koalaskar tests with their length and scores.

Epitope	Start	End	Length	Surface accessibility score	Antigenicity score
AHYK	346	349	4	1.599	1.065
SLHNPYPDSSH	130	139	10	2.229	1.042
YTPDKL	24	30	7	1.156	1.047
A*11:01	HLA-A11	35.29	0.4		
A*30:01	HLA-A30	420.59	0.6		
A*31:01	HLA-A31				
TSIVSGFT	71	79	HLA-A11	146.56	1.1
KVSIFCTG	74	82	HLA-A11	219.97	0.5
A*32:01	HLA-A32	244	0.8		
A*30:01	HLA-A30				
TEAETYTNF	85	93	HLA-A11	32.55	0.1
B*18:01	HLA-B18	77.9	0.2		
B*40:01	HLA-B40	467	0.4		
TEAETYTNF	85	93	HLA-A11	156.19	0.1
B*44:02	HLA-B44	467	0.4		
B*40:01	HLA-B40				
EAETYTNF	86	94	HLA-A11	33.82	0.6
A*68:02	HLA-A68	325.47	0.4		
C*12:03	HLA-C12				
AETYTNFV	86	94	HLA-A11	65.11	0.1
A*25:01	HLA-A25	405.23	0.3		
A*01:01	HLA-A01	74.1	0.1		
A*26:01	HLA-A26	47.88	0.6		
A*68:01	HLA-A68	94.31	0.2		
A*29:02	HLA-A29	144.33	1.1		
A*68:02	HLA-A68	289.84	0.8		
A*30:02	HLA-A30				
TYTNFVGY	89	97	HLA-A11	110.78	0.7
A*68:02	HLA-A68	96.3	0.3		
C*14:02	HLA-C14				
YTNFVGY	90	98	HLA-A11	159.65	1.1
A*68:02	HLA-A68	477.54	0.5		
C*15:02	HLA-C15				
FGYVTTF	93	101	HLA-A11	337.71	0.4
A*23:01	HLA-A23	115.41	0.3		
A*32:01	HLA-A32	18.33	0.2		
B*35:01	HLA-B35	99.41	0.2		
B*15:01	HLA-B15	206.88	0.7		
B*53:01	HLA-B53	247.75	1		
C*03:03	HLA-C03	494.71	0.5		
B*58:01	HLA-B58	87.09	0.2		
C*12:03	HLA-C12				

HLA-A	251.83	0.7			
C*05:01					
VGYVTTF	94	102	HLA-A	28.73	0.4
A*31:01					
HLA-A	265.97	1.4			
A*68:01					
GYVTTF	95	103	HLA-A	45.64	0.4
A*31:01					
YVTTF	96	104	HLA-A	53.03	0.6
A*68:01					
HLA-A	107.18	0.5			
A*31:01					
TTFRRHF	99	107	HLA-A	15.23	0.3
A*11:01					
HLA-A	150.56	0.3			
A*03:01					
HLA-A	2.97	0.1			
A*31:01					
HLA-A	4.34	0.1			
A*68:01					
HLA-A	137.46	0.8			
A*30:01					
FRRHRPS	101	109	HLA-A	71.14	0.2
B*08:01					
HRRHRPSV	102	110	HLA-A	28.06	0.4
A*30:01					
HLA-A	147.32	0.5			
B*27:05					
HFRPSVNSC	105	113	HLA-A	113.41	0.7
A*30:01					
SVNCRDAY	109	117	HLA-A	60.55	0.2
A*30:02					
HLA-A	335.2	0.5			
A*29:02					
HLA-A	47.04	0.3			
B*35:01					
HLA-A	307.58	0.8			
B*15:01					
NSCRDAYW	111	119	HLA-A	41.25	0.3
B*58:01					
HLA-A	251.39	0.3			
B*57:01					
SCRDAYNK	112	120	HLA-A	39.7	0.4
A*30:01					
CRDAYNK	113	121	HLA-A	243.88	0.5
B*27:05					
WKAIDPRY	119	127	HLA-A	165.13	0.4
A*29:02					
HLA-A	316.37	0.8			
B*35:01					
YEESLHPY	127	135	HLA-A	397.61	0.5
A*29:02					
HLA-A	4.96	0.1			
B*18:01					
HLA-A	188.53	0.8			
B*35:01					
HLA-A	433.38	0.3			
B*15:02					
HLA-A	348.49	0.5			
C*12:03					
NPYPDSHWL	133	141	HLA-A	277.75	0.8
B*35:01					
HLA-A	288.16	0.5			
HLA-	B*07:02	248.57	0.7
B*39:01	96.73	0.4	
B*53:01	213.91	1	
C*03:03			
YPDSHWLRT	135	358.65	0.8
B*35:01			
DSHWLRTVK	137	127.98	0.9
A*68:01			
A*03:01			
KTKESSLII	145	225.79	0.8
A*30:01			
PSSVADMDAY	156	480.82	0.9
A*30:02			
MDAYDVKLY	161	263.3	0.5
A*29:02			
PFCPTNHEY	186	79.07	0.2
A*29:02			
MPRESSNP	198	430.37	0.9
B*35:01			
NPISCDIF	203	407.55	0.9
B*35:01			
GISCDFTR	205	348.3	0.4
A*11:01			
RSMGKKATK	213	45.49	0.4
A*11:01			
RLVPGFGK	324	186.86	0.5
B*27:05			
KLVPFGKA	325	47.95	0.7
A*02:06			
LVPFGKAY	326	460.89	0.7
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
VLMEAEAHY	340	107.76	0.2
A*29:02			
LMEAEAHYK	A*11:01		
------------	---------		
HLA-	400.58		
A*03:01	0.5		
EIIPSKGCL	356		
HLA-	187.52		
A*68:02	1.2		
HLA-	255.04		
C*03:03	1		
IIPSKGCLK	357		
HLA-	235.98		
A*03:01	0.4		
HLA-	359.4		
A*11:01	0.4		
CLKAGGRCY	363		
HLA-	30.31		
B*15:02	0.1		
HLA-	111.18		
B*15:01	0.3		
RCYPHNGI	369		
HLA-	80.76		
A*32:01	0.5		
HLA-	340.81		
C*03:03	1		
C*12:03	0.3		
HLA-	212.84		
C*15:02	0.4		
CYPHHNGIF	370		
HLA-	440.64		
C*07:02	0.3		
YPHHNGIFF	371		
HLA-	6.45		
B*35:01	0.1		
HLA-	51.13		
B*07:02	0.2		
HLA-	20.72		
B*53:01	0.1		
HLA-	166.81		
C*03:03	0.9		
C*12:03	0.2		
HLA-	59.23		
C*14:02	0.7		
C*14:02	0.5		
392	171.15		
IPEMOSALL	396		
B*07:02	0.5		
QSALLQHQI	404		
HLA-	191.67		
B*58:01	0.5		
ALLOQHIEL	398		
HLA-	68.57		
A*02:01	0.5		
HLA-	193.81		
A*02:06	1.3		
LLQQHIELL	399		
HLA-	199.84		
A*02:01	0.7		
HLA-	352.77		
A*02:06	1.5		
IELLESSVV	404		
HLA-	86.85		
B*40:02	0.2		
LLESSVPL	406		
HLA-	87.01		
A*02:01	0.5		
HLA-	271.05		
A*02:06	1.4		
HPLADPSTV	416		
HLA-	150.55		
C*35:01	0.8		

Table 4: List of conserved epitopes and their corresponding MHC-1 alleles along with their position in glycoprotein, IC50 and percentile rank.
Core Sequence	Start	End	Peptide Sequence	Allele	IC50	Rank
YTIPDKLGP	24	32	FPIYTIPDKLGPWSP	HLA-DRB1*11:01	157	17.83
LGPWSPIDI	30	38	DKLGPWSPIDIHHL	HLA-DRB1*08:04	744.2	41.77
WSPIDIHHL	33	41	KLGPWSPIDIHHLSC	HLA-DRB1*08:01	157	17.83
DIHHLSCPNN	37	45	GPWSIDIHHLSCPNN	HLA-DRB1*11:04	248.5	22.63
IHLSCPNNL	39	47	PIDIHLSCPNNLVV	HLA-DRB1*08:04	36.5	3.77
HLSCPNNLV	40	48	PIDIHLSCPNNLVE	HLA-DRB1*12:01	383.1	25.25
LSCPNNLVV	41	49	PIDIHLSCPNNLVE	HLA-DRB1*13:02	307.3	12.93

Table 5: the most epitopes list that had binding affinity with MHC II alleles along with their positions in the glycoprotein G Duvenhage rabies virus, sequence of peptide binding alleles, IC50 and rank.
MHC 1 and MHC11 as well as a selection of the best promise epitopes for each test.

Population coverage for MHC1

All epitopes in population coverage results binding to MHC1 alleles of Duvenhage rabies virus was shown in supplementary-Table (II) and the results of population coverage for the most candidates promising three peptides was shown on (Table 6).

Population coverage for MHC11

All peptides in population coverage results binding to MHC11 alleles with total HLA hits and their coverage were shown in supplementary-Table (II) and the results of candidates three epitopes promising were presented on (Table 6).

Population coverage for both MHC1 and MHC11 alleles

The performed of this test to candidate most one promising epitope (YFLIGVSAV) and it was establishing to bind 12 alleles with the world coverage of 99.36% (Figures 10-12).

Docking

Many servers used as the complementary tool to give final resolute by achieved two input options for ligand and receptor of (2 PDB) files with each docking solution, The output is a list of ranked in all the input

MHC-1 peptides	MHC-11 Peptides	The Coverage	The Coverage
FLIGVSAVA	LLESSVPL	47.38%	99.12%
FVDERGLYK	LLOQHIELL	53.45%	99.20%
FVGYVTTTF	YFLIGVSAV	47.28%	99.36%
Epitope set		56.71%	99.68%

Table 6: Most promising 3 epitopes in population coverage binds to MHC1 alleles & MHC11 alleles of Duvenhage rabies virus along with their population coverage in the world. The epitope coverage set is 99.99% for class1 and 11 together.

![Figure 10: Interaction of FLIGVSAVA epitope with MHC homo sapiens. Left: Binding interaction of ligand shown as stick and balls structure while the receptor shown as lines. Right: stick contacts with receptor which shown as surface.](image1.png)

![Figure 11: Interaction of FVGYVTTTF epitope with MHC homo sapiens. Left: Binding interaction of ligand shown as stick and balls structure while the receptor shown as lines. Right: stick contacts with receptor which shown as surface.](image2.png)

![Figure 12: Interaction of FVDERGLYK epitope with MHC homo sapiens. Left: Binding interaction of ligand shown as stick and balls structure while the receptor shown as lines. Right: stick contacts with receptor which shown as surface.](image3.png)
resolutions. All epitopes were docked Epitomized a Molecular Structural Shape, which have good affinity with binding with lowered binding global energy, the method we are used at the same time targets to problem of flexibility and recording of solutions created by fast rigid body docking algorithms. This gave a set of up to 15 possible docking candidates of three promising peptides bind with MHC1 Homo sapiens. In Table 7 selected three best result with lowest binding of global-energy score necessary for all epitopes besides the attractive and Repulsive softened van der Waals interactions VdW.

In this study we used, the immunoinformatics tools to predicate the candidate conserved peptides to give a good binding and faster recognized by immune system, especially in B and T lymphocytes in adaptive immune response to produce specific antibodies against Duvenhage virus. All protein’s sequences of glycoprotein G were selected from NCBI website were aligned to get a conserved region that representative Duvenhage Lyssavirus isolates is shown in Figure 1. Then used reference sequence of target strain “Duvenhage rabies virus glycoprotein.

G’ to be subjected in Bepipred linear epitope prediction test, Kolaskar and Tongaonkar antigenicity test and Emini surface accessibility test using IEDB, to define binding affinity to B cell, presence in the surface and to examine the immunogenicity.

In Bepipred test, were presented of 23 conserved epitopes that have the affinity of binding to B cell while there are 17 epitopes surface predicted that according to Emini test for surface accessibility and 18 epitopes presence antigenic when detected by Kolaskar-Tongaonkar antigenicity test but only three epitopes established as overlap all epitopes presence antigenic when detected by Kolaskar-Tongaonkar antigenicity test and Emini surface accessibility test and Tongaonkar antigenicity test and Emini surface accessibility test.

Furthermore, the reference Duvenhage rabies sequence of glycoprotein G was tested by IEDB-MHC 1 of bind predicted tool to obtain the predict result T cell epitope was proposed to interact with various types of MHC1 alleles were subjected on Artificial neural network (ANN) through the half-maximal inhibitory concentration (IC50) ≤ 500; 23 conserved peptides were predicted interact with various MHC-1 proposed alleles. The peptide FVGYVTTTF from 93 into 101 had greater affinity to interact with 9 alleles (HLA-A*23:01, HLA-A*32:01, HLA-B*35:01, HLA-B*15:01, HLA-B*53:01, HLA-C*03:03, HLA-B*58:01, HLA-C*12:03, HLA-C*05:01), followed by EYTNYFVGY From 88 to 96 that binds seven alleles (HLA-A*25:01, HLA-A*01:01, HLA-A*26:01, HLA-A*68:01, HLA-A*29:02, HLA-A*68:02, HLA-A*30:02). These two peptides can be supposed about as a promising peptide vaccine for Duvenhage rabies virus that’s assured after performed for the population coverage database.

The analyzed for reference glycoprotein G strain was performed via IEDB MHC II prediction of binding tool established with half-maximal inhibitory concentration (IC50) on NN-align ≤ 1000; around 39 conserved epitopes remained predicted found to interact with alleles of MHC-II, The peptides LLESSVPL, LLQKHIELL and YFLIGVSAV required the affinity to bind the maximum number to these alleles of MHC11.

The Results in World population coverage for total binding epitopes to MHC1 alleles were 99.51% and the peptides have most promising were FVGYVTTTF, FVDERGLYK and FLIGVSAV with population coverage in the world 56.71% and total HLA hits 9, 5 and 4 respectively.

World population coverage result for totally epitopes that take binding affinity to MHC11 alleles was 99.99% while population coverage in world of the best promising three epitopes LLESSVPL, LLQKHIELL and YFLIGVSAV was 99.68% with HLA hits 16, 18 and 18 respectively. The peptide YFLIGVSAV shows excellent population coverage outcomes for MHC1 and MHC11 alleles together of (99.36%) with total HLA hits 18 different alleles.

Table 7: Selected three best result with lowest binding of global-energy score necessary for all epitopes besides the attractive and Repulsive softened van der Waals interactions VdW.

Epitopes	Attractive VdWc	Repulsive VdWb	Global Energy
FLIGVSAVA	-24.34	7.51	-22.98
FVDERGLYK	-18.89	14.17	-34.28
FVGYVTTTF	-23.14	Repulsive VdWb	-20.44

Discussion

The importance of selecting Duvenhage strain ‘genus Lyssavirus’ in the present study was based on many contributed including high mortality rate and the used of traditional method to produce rabies vaccine without deeply testing studies on the immune system response can be selected a conserve peptide to give a universal covering of population and who have made a strong binding between MHC homo spins with these peptides. Some study that supports previous studies indicating all African Lyssavirus species that can be lethal when inoculated via the i. m. route and that the pathogenicity of a Lyssavirus species should not be concluded based on a single isolate [53].

In this study we used, the immunoinformatics tools to predicate the candidate conserved peptides to give a good binding and faster recognized by immune system, especially in B and T lymphocytes in adaptive immune response to produce specific antibodies against Duvenhage virus. All protein’s sequences of glycoprotein G were selected from NCBI website were aligned to get a conserved region that representative Duvenhage Lyssavirus isolates is shown in Figure 1. Then used reference sequence of target stain “Duvenhage rabies virus glycoprotein.

G’ to be subjected in Bepipred linear epitope prediction test, Kolaskar and Tongaonkar antigenicity test and Emini surface accessibility test using IEDB, to define binding affinity to B cell, presence in the surface and to examine the immunogenicity.

In Bepipred test, were presented of 23 conserved epitopes that have the affinity of binding to B cell while there are 17 epitopes surface predicted that according to Emini test for surface accessibility and 18 epitopes presence antigenic when detected by Kolaskar-Tongaonkar antigenicity test but only three epitopes established as overlap all performed B Cell tests (AHYK, YTIPDKL and SLHNYPYPD). Furthermore, the reference Duvenhage rabies sequence of glycoprotein G was tested by IEDB-MHC 1 of bind predicted tool to obtain the predict result T cell epitope was proposed to interact with various types of MHC1 alleles were subjected on Artificial neural network (ANN) through the half-maximal inhibitory concentration (IC50) ≤ 500; 23 conserved peptides were predicted interact with various MHC-1 proposed alleles. The peptide FVGYVTTTF from 93 into 101 had greater affinity to interact with 9 alleles (HLA-A*23:01, HLA-A*32:01, HLA-B*35:01, HLA-B*15:01, HLA-B*53:01, HLA-C*03:03, HLA-B*58:01, HLA-C*12:03, HLA-C*05:01), followed by EYTNYFVGY From 88 to 96 that binds seven alleles (HLA-A*25:01, HLA-A*01:01, HLA-A*26:01, HLA-A*68:01, HLA-A*29:02, HLA-A*68:02, HLA-A*30:02). These two peptides can be supposed about as a promising peptide vaccine for Duvenhage rabies virus that’s assured after performed for the population coverage database.

The analyzed for reference glycoprotein G strain was performed via IEDB MHC II prediction of binding tool established with half-maximal inhibitory concentration (IC50) on NN-align ≤ 1000; around 39 conserved epitopes remained predicted found to interact with alleles of MHC-II, The peptides LLESSVPL, LLQKHIELL and YFLIGVSAV required the affinity to bind the maximum number to these alleles of MHC11.

The Results in World population coverage for total binding epitopes to MHC1 alleles were 99.51% and the peptides have most promising were FVGYVTTTF, FVDERGLYK and FLIGVSAV with population coverage in the world 56.71% and total HLA hits 9, 5 and 4 respectively.

World population coverage result for totally epitopes that take binding affinity to MHC11 alleles was 99.99% while population coverage in world of the best promising three epitopes LLESSVPL, LLQKHIELL and YFLIGVSAV was 99.68% with HLA hits 16, 18 and 18 respectively. The peptide YFLIGVSAV shows excellent population coverage outcomes for MHC1 and MHC11 alleles together of (99.36%) with total HLA hits 18 different alleles.

Recommendations and Conclusions

In the current study, we achieve that to our information this was the first one study to suggest peptide vaccine through previous steps for Duvenhage rabies virus up to now.

Furthermore, the immuno-informatics methods representing a smart in silico tools, it’s gives a highly supported outputting epitope-driven vaccines for communicable pathogens could be extended to efficacy trials stage in humans, after demonstration a several effective result in animal models must be doing as the next step in our vision. In the summary, we are in the procedure to developing a vaccine of epitope-based through the present study to get a trial promising epitopes vaccine; in this article designates our in silico progress through many pathway to reach our goal. We trust that our rabies vaccine of immunoinformatics-driven peptides development approach could have been many good expected over other approaches: (1) rapidity to response, (2) safety and low adverse allergic significant, (3) broadimmunogenicity (delivery of conserve multiple epitopes, derived a specific protein, faster in recognition when predicated on B cell, MHC1, MHC11 tools) and (4) world coverage with good docking to MHC homo spins properties.

So among the different test for peptides to both B cell and T cell this study planned an interesting T-cell epitope (YFLIGVSAV) that has a strong bind affinity to MHC1 and MHC11 alleles together, and it can be binding with 18 distinctive alleles with population coverage of the world (99.36%), indeed this candidate epitope-based vaccines are adept to inducing more potent reactions than vaccines of the whole.
Immunoinformatics-Peptide Driven Vaccine and In silico Modeling for Duvenhage Rabies Virus Glycoprotein G. J Clin Cell Immunol 8: 517. doi: 10.4172/2155-9899.1000517

protein. We also trusted that the methods defined here, which will lead to development of a multi-epitopes Duvenhage vaccine, could be a step in the right direction over the development of a kind of safer, good effective bio defense with this promising candidate epitope vaccines. We recommend to doing further studies to propose a peptide driven vaccine for the other strains of Rabies Lyssavirus, here will be a possible to find public conserved candidates epitopes for multiple strains. In addition, we recommend applying these peptides to evaluate the in vitro and in vivo methods.

Competing Interests

The authors declare that they have no financial or personal relationship(s) that may have inappropriately influenced them in writing this article.

References

1. Benmansour A, Leblois H, Coulon P, Tuffereau C, Gaudin Y, et al. (1991) Antigenicity of rabies virus glycoprotein. J Virol 65: 4198-4203.
2. Hemachudha T, Ugolini G, Wacharapluesadee S, Sungrakart W, Shuangshoti S, et al. (2013) Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurology 12: 498-513.
3. Pathak S, Horton DL, Lucas S, Brown D, Quaderi S, et al. (2014) Diagnosis, management and postmortem findings of a human case of rabies imported into the United Kingdom from India: a case report. Virolology J 7: 1.63.
4. Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, et al. (2016) An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs. PLoS Negl Trop Dis 10: e0004746.
5. Nel LH, Rupprecht CE (2007) Emergence of lyssaviruses in the Old World: the case of Africa. Curr Top Microbiol Immunol 315: 161-193.
6. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006). Bats: Important Reservoir Hosts of Emerging Viruses. Curr Top Microbiol Immunol 19: 531-545.
7. Hayman DTS, Fooks AR, Marston DA, Garcia-R JC (2016) The Global Phylogeography of Lyssaviruses - Challenging the ‘Out of Africa’ Hypothesis. PLOS Neglected Tropical Diseases 10: e0005266.
8. Korka P, Martina BE, Roose JM, van Thiël PP, van Amerongen G, et al. (2012) In vitro and in vivo isolation and characterization of Duvenhage virus. PLoS Pathog 8: e1002682.
9. Van Eeden C, Markotter W, Nel LH (2011) Molecular phylogeny of Duvenhage virus. South African J Sci 107.
10. Pawskea JT, Blumberg LH, Liebenberg C (2006) Fatal Human Infection with Rabies-related Duvenhage Virus, South Africa. Emerg Infect Dis 12: 1965-1967.
11. Meredith CD, Prossouw AP, Koch H (1971) An unusual case of human rabies thought to be of chiropteran origin. S Afr Med J 45: 767-769.
12. Swanepoel R, Barnard BJ, Meredith CD, Bishop GC, Brückner GK, et al. (1993). Rabies in southern Africa. Underfootster J Vet Res 60: 325-346.
13. Pawskea JT, Blumberg LH, Liebenberg C (2006) Fatal Human Infection with Rabies-related Duvenhage Virus, South Africa. Emerg Infect Dis 12: 1965-1967.
14. Centers for Disease Control and Prevention. (2004). Rabies infection and animals. CDC; http://www.cdc.gov/healthypets/diseases/rabies.htm.
15. World Health O (2013) WHO Expert Consultation on Rabies. Second report. World Health Organization Technical Report Series: 1–139.
16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program Afor Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98.
17. Vita R, Overton JA, Greenbaum JA, Pomarencen J, Clark JD, et al. (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43: D405-412.
18. Hascan MA, Hossein M, Alam MJ (2013) A computational assay to design an epitope-based Peptide vaccine against sault louis encephalitis virus. Bioinform Biol Insights 7: 347-355.
19. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2: 2.
42. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, et al. (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12: 1007-1017.

43. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, et al. (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12: 1007-1017.

44. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, et al. (2012) Immune epitope database analysis resource. Nucleic Acids Res 40: W525-530.

45. Wang P, Sidney J, Dow C, Mothé B, Sette A, et al. (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4: e1000048.

46. Wang P, Sidney J, Kim Y, Sette A, Lund O, et al. (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11: 568.

47. Srivastava PN, Jain R, Dubey SD, Bhatnagar S, Ahmad N (2016) Prediction of Epitope-Based Peptides for Vaccine Development from Coat Proteins GP2 and VP24 of Ebola Virus Using Immunoinformatics, Int J Peptide Research and Therapeutics 22: 119-133.

48. Zhang Q, Wang P, Kim Y, Hasle-Andersen P, Beaver J, et al. (2008). Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36: W513–W518.

49. Bui HH, Sidney J, Dinuh K, Southwood S, Newman MJ, et al. (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7: 153.

50. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612.

51. Shen Y, Maupetit J, Derreumaux P, Tuffery P. Improved PEPFOLD Approach for Peptide and Miniprotein Structure Prediction. J Chem Theory Comput. 10: 4745-4758.

52. http://bioinfo3d.cs.tau.ac.il/PatchDock/patchdock.html

53. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69: 139-159.

54. Kgaladi J, Nel LH, Markotter W (2013) Comparison of pathogenic domains of rabies and African rabies-related lyssaviruses and pathogenicity observed in mice. Onderstepoort J Vet Res 80: 511.