Is the use of IL28B genotype justified in the era of interferon-free treatments for hepatitis C?

Tatsuo Kanda, Shingo Nakamoto, Osamu Yokosuka

Tatsuo Kanda, Shingo Nakamoto, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8677, Japan

Author contributions: Kanda T, Nakamoto S and Yokosuka O solely contributed to this paper.

Conflict-of-interest statement: Tatsuo Kanda reports receiving lecture fees from Chugai Pharmaceutical, MSD, Tanabe-Mitsubishi, Ajinomoto, Bristol-Myers Squibb, Daichi-Sankyo, Janssen Pharmaceutical and GlaxoSmithKline; Osamu Yokosuka reports receiving grant support from Chugai Pharmaceutical, Bayer, MSD, Daiichi-Sankyo, Tanabe-Mitsubishi, Bristol-Myers Squibb, Gilead Sciences and Taisho Pharmaceutical; the other authors have no conflict of interest statement.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Tatsuo Kanda, MD, PhD, Associate Professor, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. kandat-cib@umin.ac.jp
Telephone: +81-43-2262086
Fax: +81-43-2262088

Received: April 25, 2015
Peer-review started: April 28, 2015
First decision: June 18, 2015
Revised: June 25, 2015
Accepted: July 21, 2015
Article in press: July 23, 2015
Published online: August 12, 2015

Abstract
In 2009, several groups reported that interleukin-28B (IL28B) genotypes are associated with the response to peginterferon plus ribavirin therapy for chronic hepatitis C virus (HCV) infection in a genome-wide association study, although the mechanism of this association is not yet well understood. However, in recent years, tremendous progress has been made in the treatment of HCV infection. In Japan, some patients infected with HCV have the IL28B major genotype, which may indicate a favorable response to interferon-including regimens; however, certain patients within this group are also interferon-intolerant or ineligible. In Japan, interferon-free 24-wk regimens of asunaprevir and daclatasvir are now available for HCV genotype 1b-infected patients who are interferon-intolerant or ineligible or previous treatment null-responders. The treatment response to interferon-free regimens appears better, regardless of IL28B genotype. Maybe other interferon-free regimens will widely be available soon. In conclusion, although some HCV-infected individuals have IL28B favorable alleles, importance of IL28B will be reduced with availability of oral interferon free regimen.

Key words: Hepatitis C virus; Interleukin-28B; Interferon; Japan; Sustained virologic response

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Genome-wide association studies have revealed that interleukin-28B (IL28B) genotypes are associated with the response to interferon therapy for chronic hepatitis C. The mechanism of this association is not yet clear. Although many hepatitis C virus (HCV)-infected individuals have IL28B favorable alleles, in the near future, HCV-infected patients in Japan may be treated with interferon-free regimens, which avoid the adverse events caused by interferon plus ribavirin therapy.
INTRODUCTION

Chronic hepatitis C virus (HCV) infection is a major cause of end-stage liver diseases and hepatocellular carcinoma (HCC) in Japan and the United States. Chronic hepatitis C is an important health problem worldwide. The eradication of HCV by interferon-including treatment could lead to the following benefits: (1) fibrotic regression; (2) reduction of HCC occurrence and recurrence; (3) reduction of other complications, including liver failure, liver-related death and liver-unrelated death; and (4) improved quality of life. A sustained virologic response (SVR), which is defined as HCV RNA negativity 24 wk after completion of antiviral therapy, could have beneficial effects in HCV-infected patients. In the era of direct-acting antivirals (DAA) against HCV, regimens including interferon remain important treatments for HCV eradication, although interferon-free regimens should be available worldwide soon.

In this review, we focused the distribution of interleukin-28B (IL28B) status in Japanese patients currently infected with HCV, and their treatment.

INTERLEUKIN-28B GENOTYPES

In 2009, several groups reported that a genetic polymorphism near the IL28B gene, which encodes interferon-lambda-3 (IL28B genotypes), was associated with the response to peginterferon plus ribavirin therapy for chronic hepatitis C in a genome-wide association study. The IL28B minor genotype plays a crucial role in interferon resistance. The host genetic polymorphism may be useful for predicting drug response. IL28B major or minor genotype, respectively, could predict better or poor response to interferon therapy in patients infected with HCV. An association between inosine triphosphatase (ITPA) genetic variants and treatment-induced anemia has been reported in HCV-infected patients treated with peginterferon plus ribavirin. ITPA major genotype could predict profound anemia induced by peginterferon plus ribavirin treatment in HCV-infected patients. A genetic polymorphism of interferon-lambda-4 has also been associated with the treatment response to interferon-including regimens for chronic hepatitis C infection. Similar to IL28B genotypes, interferon-lambda-4 major or minor genotype, respectively, could predict better or poor response to interferon therapy in HCV-infected patients.

Mechanism of the association between the IL28B genotype and treatment response

Recently, Aoki et al. reported that serum IL28B levels are increased in patients with chronic hepatitis C, regardless of the IL28B genotype. They also suggested that serum IL28B is a biomarker of the activity and fibrosis of liver disease; however serum IL28B is not correlated with the responsiveness to peginterferon plus ribavirin therapy. The same group reported that IL28B genotype affects IL28B production but that the outcome of peginterferon plus ribavirin treatment depends on the amount of IL28B protein.

Hepatic interferon-stimulated genes (ISGs) have been significantly associated with the IL28B polymorphism, and expression level of hepatic ISG was significantly higher in patients with the minor genotype than those with the major genotype. Lagging et al. found that the favorable IL28B variants were associated with lower baseline plasma interferon-gamma-inducible protein-10 (IP-10), although high baseline levels of IP-10 predicted a slower first phase decline in HCV RNA and poor outcome following interferon plus ribavirin therapy in patients with chronic hepatitis C. We also reported that IL28B genotypes and hepatic STAT1-nuclear translocation are independent predictors of treatment response. IL28B overexpression in HepG2 cells induces ISGs that have been associated with the progression of HCV-related pathogenesis and antiviral activities against HCV.

Sugiyama et al. reported that the A (TA) dinucleotide repeat rs72258881 is associated with the transcriptional activity of IL28B. A functional polymorphism (rs4803217) in the 3’ untranslated region (UTR) of IL28B has been shown to influence the AU-rich element (ARE)-mediated decay (AMD) of IL28B mRNA and binding of HCV-induced microRNAs during infection. At the present, we do not know the precise mechanisms between IL28B variants and treatment response to interferon. Additional studies investigating these mechanisms are needed.

DISTRIBUTION OF IL28B GENOTYPES IN JAPANESE PATIENTS INFECTED WITH HCV

Kobayashi et al. analyzed IL28B genotypes in 1518 Japanese patients infected with HCV and reported that TT at rs8099917 and CC at rs12979860 as IL28B major genotypes were detected in 77.7% and 76.8% of patients, respectively, and that TG/GG at rs8099917 as IL28B minor genotypes were detected in 22.3% and 23.2% of patients, respectively, and that TG/GG at rs8099917 and CT/TT at rs12979860 as IL28B minor genotypes were detected in 22.3% and 23.2% of patients, respectively. Although there are some discrepancies between these two sets of genotypes, the linkage disequilibrium between two IL28B polymorphisms at rs8099917 and rs12979860 is strong in Japanese HCV patients. In 2010, Akkarathamrongsin et al. found that genotyping by both rs8103142 and rs11881222 indicated that 77.9% and 22.1% of the patients had the major and minor genotypes, respectively. In 2011, we also reported that TT and TG/GG at rs8099917 as IL28B major and minor genotypes, respectively, were detected in 65.6% and 34.4% of HCV-infected patients, respectively. Kurosaki et al. reported that TT and TG/GG at rs8099917 as IL28B major and minor genotypes, respectively, were detected in 65.6% and 34.4% of HCV-infected patients, respectively.
GG at rs8099917 as IL28B major and minor genotypes, respectively, were detected in 69.6% and 30.4% of HCV genotype 1-infected patients, respectively.

Thomas et al.\(^{[61]}\) reported that HCV clearance was observed much more frequently than expected (53%) in the CC IL28B genotypes at rs12979860, although the proportion of individuals with CT/TT IL28B genotypes at rs12979860 who cleared the virus (28%) was similar to a general population expectation, because HCV clearance occurs in approximately 30% of HCV-infected patients. Approximately 65%-70% of Japanese patients infected with HCV had the IL28B major genotype. In 2011, telaprevir, a first-generation HCV NS3/4A protease inhibitor with peginterferon plus ribavirin was introduced as treatment for HCV genotype 1 infection in Japan\(^{[22,45]}\), and in 2013, simprevir, a second-generation HCV NS3/4A protease inhibitor with peginterferon plus ribavirin was also made available in Japan\(^{[27,62]}\). We next examined the current status of IL28B genotypes in Japanese patients infected with HCV.

CURRENT DISTRIBUTION OF IL28B GENOTYPTES IN JAPANESE PATIENTS INFECTED WITH HCV

The IL28B genotype is a strong predictor of treatment response in HCV-infected patients treated with interferon-including regimens. We examined the current status of the IL28B genotype rs8099917 distribution of the outpatients infected with HCV. Blood samples were obtained from 432 HCV-infected outpatients (mean age: 59.9 years, male/female: 224/208, HCV genotypes 1/2/3/unknown: 314/102/1/15) in our hospital. The IL28B genotype at rs8099917 was determined by TaqMan SNP genotyping assay using the Step One real-time PCR system (Applied Biosystems, Foster City, CA, United States). Clinical backgrounds, including the present status of HCV RNA positivity, were also examined. Written informed consent was obtained from all patients, and the study protocol was approved by the Ethics Committee of Chiba University, School of Medicine (number 508). Some patients had been included in previous studies\(^{[38,42,54,63-66]}\). Of the 432 patients, 301 and 131 had the IL28B major and minor genotypes, respectively (Figure 1A), and 87.7% were treated at least once with an interferon-including regimen, resulting in 184 SVR, 184 non-SVR, and 64 untreated/others, respectively. Of the 314 patients with HCV genotype 1, 218 and 96 had the IL28B major and minor genotypes, respectively (Figure 1B), and 122, 143, and 49 patients had SVR, non-SVR/untreated, or other, respectively. Of the 314 patients with HCV genotype 1, 218 and 96 had the IL28B major and minor genotypes, respectively (Figure 1B), and 122, 143, and 49 patients had SVR, non-SVR/untreated, or other, respectively. Of the 314 patients with HCV genotype 1, 218 and 96 had the IL28B major and minor genotypes, respectively (Figure 1B), and 122, 143, and 49 patients had SVR, non-SVR/untreated, or other, respectively. Of the 143 patients with HCV genotype 1 and the IL28B major type are now interferon-intolerant or ineligible. Of the 118 patients with HCV genotype non-1, 83 and 35 had the IL28B major and minor genotypes, respectively, and 62, 41, and 14 patients had SVR, non-SVR/untreated, or other, respectively. In the 41 patients with HCV genotype non-1, who had IL28B major genotypes in 40.6% (58/143) and 34.1% (14/41), respectively, should be treated. Further, some patients who had the IL28B major genotype are interferon-intolerant or ineligible. Regarding the current status of IL28B genotype rs8099917 distribution, we re-confirmed that the HCV-infected population in Japan should be treated with interferon-free regimens.
although interferon-including regimens may be effective in certain patients. The rs8099917 TT genotype may be significantly independently predictive of rapid virologic response, which is the single best predictor of SVR, in Asian HCV genotype patients[67].

CONCLUSION

In Japan, interferon-free 24-wk regimens of asunaprevir, a HCV NS3/4A inhibitor, and daclatasvir, a HCV NS5A inhibitor, can now be used for HCV genotype 1b-infected patients who are interferon-intolerant or ineligible, or previous-treatment non-responders[65-70]. In the near-future, interferon-free 12-wk regimens of sofosbuvir plus ribavirin for HCV genotype 2-infected patients will be available[71]. Interferon-free 12-wk regimens of sofosbuvir, a HCV NS5B nucleotide polymerase inhibitor, and ledipasvir, a HCV NS5A inhibitor, for HCV genotype 1-infected patients will also be available[72]. The response to the treatment with interferon-free regimens appears to have no association with IL28B genotypes. In conclusion, although some HCV-infected individuals have IL28B favorable alleles, importance of IL28B will be reduced with rapid virologic response, which is the single best predictor of SVR, in Asian HCV genotype patients.

REFERENCES

1. Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S, Watanabe Y, Koi S, Onji M, Ohta Y. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. *Proc Natl Acad Sci USA* 1990; 87: 6547-6549 [PMID: 2168552]
2. Akamatsu N, Sugawara Y, Kokudo N, Eguchi S, Fujiiwa T, Ohdan N, Nagano H, Takekomi A, Katgawa Y, Shimada M, Ku Y, Yanaga K, Shirabe K, Igekami T, Mizokami M, Takeuchi M, Maehara Y. Outcomes of living donor liver transplantation for hepatitis C virus-positive recipients in Japan: results of a nationwide survey. *Transplant Int* 2014; 27: 767-774 [PMID: 24684710 DOI: 10.1111/tri.12329]
3. Di Bisceglie AM. Hepatitis C and hepatocellular carcinoma. *Hepatology* 1997; 26: 348-385 [PMID: 9305661]
4. Kim WR, Terrault NA, Pedersen RA, Therneau TM, Edwards E, Hindman AA, Borsgrot CL. Trends in waiting list registration for liver transplantation for viral hepatitis in the United States. *Gastroenterology* 2009; 137: 1680-1686 [PMID: 19632234 DOI: 10.1053/j.gastro.2009.07.047]
5. Kanda T, Imazeki F, Yokosuka O. New antiviral therapies for chronic hepatitis C. *Hepatol Int* 2010; 4: 548-561 [PMID: 21063477 DOI: 10.1007/s12072-010-9193-3]
6. Ometa M, Kanda T, Yu ML, Yokosuka O, Lim SG, Jafari W, Tateishi H, R Hamid S, Chuang WL, Chuang WL, Liu Y, Sollano J, Srin SK, Kao JH, McLaughlin GW. APASL consensus statements and management algorithms for hepatitis C virus infection. *Hepatol Int* 2012; 6: 409-435 [DOI: 10.1007/s12072-012-9342-y]
7. Shiratori Y, Imazeki F, Moriyama M, Yano M, Arakawa Y, Yokosuka O, Kuroki T, Nishiguchi S, Sata M, Yamada G, Fujiyama S, Yoshida H, Omata M. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon or interferon/ribavirin reduces hepatocellular carcinoma and improves survival in chronic hepatitis C: a nationwide, multicentre study in Taiwan. *Antivir Ther* 2006; 11: 985-994 [PMID: 17302368]
8. Deuffic-Burban S, Delente P, Louvet A, Canva Y, Dharancy, S, Hollebecque A, Boitard J, Henrion J, Zanzadpanah Y, Mathurin P. Viral eradication on mortality related to hepatitis C: a modeling approach in France. *J Hepatol* 2008; 49: 175-183 [PMID: 18538441 DOI: 10.1016/j.jhep.2008.04.012]
9. Yoshida H, Arakawa Y, Sata M, Nishiguchi S, Yano M, Fujiyama S, Yamada G, Yokosuka O, Shiratori Y, Omata M. Interferon therapy prolonged life expectancy among chronic hepatitis C patients. *Gastroenterology* 2002; 123: 483-491 [PMID: 12145802 DOI: 10.1053/gast.2002.34785]
10. McHutchison JG, Everson GT, Gordon SC, Jacobson IM, Sulkowski M, Kaufman R, McNair L, Alam J, Muir AJ. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. *N Engl J Med* 2009; 360: 1827-1838 [PMID: 19403902 DOI: 10.1056/NEJMoa0806104]
11. Hézode C, Forestier N, Dusheiko G, Ferenci P, Pol S, Goets S, Bronowicki JP, Bourlière M, Gharkhahian S, Bengtsos L, McNair L, George S, Kieffter T, Kwong A, Kaufmann RS, Alam J, Pawlotsky JM, Zeuzem S. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. *N Engl J Med* 2009; 360: 1839-1850 [PMID: 19403903 DOI: 10.1056/NEJMoa0807650]
12. McHutchison JG, Manis MP, Muir AJ, Terrault NA, Jacobson JM, Adhia NH, Heathcote EJ, Zeuzem S, Reesink HW, Garg J, Bsharat M, George S, Kaufman RS, Adda N, Di Bisceglie AM. Telaprevir for previously treated chronic HCV infection. *N Engl J Med* 2010; 362: 1292-1303 [PMID: 20375406 DOI: 10.1056/NEJMoa0901041]
13. Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, Bzowej NH, Marcellin P, Muir AJ, Ferenci P, Flisak R, George J, Rizzetto M, Shouval D, Sola R, Terg RA, Yoshida EM, Adda N, Bengtsson L, Sankoh AJ, Kieffer TL, George S, Kaufman RS, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. *N Engl J Med* 2011; 364: 2405-2416 [PMID: 21696307 DOI: 10.1056/NEJMoa1012912]
14. Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Mullhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Baum B. Telaprevir for retreatment of HCV infection. *N Engl J Med* 2011; 364: 2417-2424 [PMID: 21696308 DOI: 10.1056/
Kanda T et al. IL28B genotypes in the era of interferon-free treatments

21 Sherman KE, Flamm SL, Afdhal NH, Nelson DR, Sulkowski MS, Everson GT, Fried MW, Adler M, Reesink HW, Martin M, Sankoh AJ, Adda N, Kaufmann RS, George S, Wright CI, Poordad F. Response-guided telaprevir combination treatment for hepatitis C virus infection. N Engl J Med 2011; 365: 1014-1024 [PMID: 21916639 DOI: 10.1056/NEJMoa1014663]

22 Kumada H, Toyota J, Okanoue T, Chayama K, Tsuchibuchi H, Hayashi N. Telaprevir with peginterferon and ribavirin for treatment-naive patients chronically infected with HCV of genotype 1 in Japan. J Hepatol 2012; 56: 78-84 [PMID: 21827730 DOI: 10.1016/j.jhep.2011.07.016]

23 Poordad F, McConcile J, Bacon BR, Bruno S, Manns MP, Sulkowski MS, Jacobson IM, Reddy KR, Goodman ZD, Boparai N, DiNubile MJ, Sniukiene V, Brass CA, Albrecht JK, Bronowicki JP. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 2011; 364: 1195-1206 [PMID: 21449783 DOI: 10.1056/NEJMoa1004944]

24 Bacon BR, Gordon SC, Lawitz E, Marcellin P, Vierling JM, Zeuzem S, Poordad F, Goodman ZD, Stins HL, Boparai N, Burroughs M, Brass CA, Albrecht JK, Esteban R. Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med 2011; 364: 1207-1217 [PMID: 21449784 DOI: 10.1056/NEJMoa1009482]

25 Manns M, Marcellin P, Poordad F, de Araujo ES, Buti M, Horsmans Y, Jansewiczowa E, Villamini F, Scott J, Peeters M, Lenz O, Ouwerkerk-Mahadevan S, de La Rosa G, Kalmeijer R, Scott J, Peeters M, Lenz O, Ouwerkerk-Mahadevan S, de La Rosa G, Kalmeijer R, Scott J, Sinha R, Beumont-Maulvi M. Simeprevir with pegylated interferon alfa 2a or 2b plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-2): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2013; 384: 414-426 [PMID: 24907224 DOI: 10.1016/S0140-6736(14)60538-9]

26 Jacobson IM, Dore GJ, Foster GR, Fried MW, Radu M, Rafalsky VV, Moroz L, Craxi A, Peeters M, Lenz O, Ouwerkerk-Mahadevan S, de La Rosa G, Kalmeijer R, Scott J, Sinha R, Beumont-Maulvi M. Simeprevir with pegylated interferon alfa 2a plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-1): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2014; 384: 403-413 [PMID: 24907225 DOI: 10.1016/S0140-6736(14)60494-3]

27 Hayashi N, Izumi N, Kumada H, Okanoue T, Tsuchibuchi H, Yatsushiro H, Kato M, Ki R, Komada Y, Seto C, Goto S. Simeprevir for treatment-naive patients chronically infected with HCV of genotype 1 infection and cirrhosis. Clin Gastroenterol Hepatol 2014; 12: 1029-37.e5 [PMID: 24120953 DOI: 10.1016/j.cgh.2013.09.067]

28 Feroni P, Asselah T, Foster GR, Zeuzem S, Sarrazin C, Moreno C, Ouzan D, Maevskaya M, Calinas F, Morano LE, Crespo J, Dufour JF, Bourlière M, Agarwal K, Forton D, Schuchmann M, Zehnter E, Nishiguchi S, Omata M, KukogJ, Datsenko Y, Garcia M, Scherer J, Ouwehand AM, Sten J. STARTVersel: A randomized trial of faldaprevir plus pegylated interferon/ribavirin for chronic HCV genotype 1 infection. J Hepatol 2015; 62: 1246-1255 [PMID: 25559324 DOI: 10.1016/j.jhep.2014.12.024]

29 Rodriguez-Torres M, Steeoh A, Gane EJ, Serfatty L, Lawitz E, Zhou A, Bourque M, Bhanja S, Strizki J, Barnard RJ, Hwang PM, DiNubile MJ, Mobashery N. Combination of vaniprevir with peginterferon and ribavirin significantly increases the rate of SVR in treatment-experienced patients with chronic HCV genotype 1 infection and cirrhosis. Clin Gastroenterol Hepatol 2014; 12: 1029-37.e5 [PMID: 24120953 DOI: 10.1016/j.cgh.2013.09.067]

30 Kanda T, Yokosuka O, Omata M. Treatment of hepatitis C virus infection in the future. Clin Transl Med 2013; 2: 9 [PMID: 23577631 DOI: 10.1186/2001-3126-2-9]

31 Tanaka Y, Nishida N, Sugiyama M, Kuroskii M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga H, Hig K, Hig S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Haya S, Nishiguchi S, Koike A, Sakaia I, Inamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami N. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009; 41: 1105-1109 [PMID: 19749757 DOI: 10.1038/ng.449]

32 Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinezen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchinson JG, Goldstein DB. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009; 461: 399-401 [PMID: 19684573 DOI: 10.1038/nature08309]

33 Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman A, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, Riordan S, Sheridan D, Smedile A, Frangouli M, Müller T, Bahlho M, Stewart GJ, Booth DR, George J. IL28B is associated with response to chronic hepatitis C treatment-alpha and ribavirin therapy. Nat Genet 2009; 41: 1100-1104 [PMID: 19749759 DOI: 10.1038/ng.447]

34 Nakamoto S, Kanda T, Imazeki F, Wu S, Arai M, Fujiwara K, Yokosuka O. Simple assay based on restriction fragment length polymorphism associated with IL28B in chronic hepatitis C patients. Scand J Gastroenterol 2011; 46: 955-961 [PMID: 21259139 DOI: 10.1080/00365521.2011.574731]

35 Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487-491 [PMID: 10521338]

36 Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV, Little LD, Qiu P, Bertelsen AH, Watson M, Warner A, Muir AJ, Brass C, Albrecht J, Sulkowski M, McHutchinson JG, Goldstein DB. ITPA gene variants protect against anemia in patients treated for chronic hepatitis C. Nature 2010; 464: 405-408 [PMID: 20173735 DOI: 10.1038/nature08825]

37 Thompson AJ, Fellay J, Patel K, Tillmann HL, Naggie S, Ge D, Urban TJ, Shianna KV, Muir AJ, Fried MW, Afdhal NH, Goldstein DB, McHutchinson JG. Variants in the ITPA gene protect against ribavirin-induced hemolytic anemia and decrease the need for ribavirin dose reduction. Gastroenterology 2010; 139: 1181-1189 [PMID: 20547162 DOI: 10.1053/j.gastro.2010.06.016]

38 Miyamura T, Kanda T, Nakamoto S, Wu S, Jiang X, Arai M, Fujiwara K, Imazeki F, Yokosuka O. Roles of ITPA and IL28B genotypes in chronic hepatitis C patients treated with peginterferon plus ribavirin. Viruses 2012; 4: 1264-1278 [PMID: 22301264 DOI: 10.3390/v40821264]

39 Prokunina-Ölsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Munny A, Khoaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonskowski HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O’Brien TR. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 2013; 45: 164-171 [PMID: 23291588 DOI: 10.1038/ng.2521]
Kanda T et al. IL28B genotypes in the era of interferon-free treatments

Bibert S, Roger T, Calandra T, Bochud M, Cerny A, Semmo N, Duong FH, Gerlach T, Malinverni R, Moradpour D, Negro F, Mullhaupt B, Bochud PY. IL28B expression depends on a novel TT-G polymorphism which improves HCV clearance prediction. J Exp Med 2013; 210: 1109-1116 [PMID: 23712427 DOI: 10.1084/jem.201300012]

Miyamura T, Kanda T, Nakamoto S, Arai M, Nakamura M, Wu S, Jiang X, Sasaki R, Haga Y, Yasui S, Osaka Y, Chiba T, Imazeki F, Mikami S, Yokosuka O. IFNL4 sa469415590 Variant Is Associated With Treatment Response in Japanese HCV Genotype 1 Infected Individuals Treated With IFN-Including Regimens. Int J Hepatol 2014; 2014: 723688 [PMID: 25154368 DOI: 10.1155/2014/723688]

Aoki Y, Sugiyama M, Murata K, Yoshio K, Kurosaki M, Hashimoto S, Yatsushiro H, Nomura H, Kang JH, Takada T, Naito S, Kimura T, Yamagiwa Y, Korenaga M, Imamura M, Masaki N, Izumi N, Kage M, Mizokami M, Kanto T. Association of serum IFN-3-3 with inflammatory and fibrosis markers in patients with chronic hepatitis C virus infection. J Gastroenterol 2014; Epub ahead of print [PMID: 25501286]

Murata K, Sugiyama M, Kimura T, Yoshio S, Kanto T, Kirikae I, Saito H, Aoki Y, Hiramine S, Matsui I, Ito K, Korenaga M, Imamura M, Masaki N, Mizokami M. Ex vivo induction of IFN-3-3 by a TLR7 agonist determines response to Peg-IFN/ribavirin therapy in chronic hepatitis C patients. J Gastroenterol 2014; 49: 126-137 [PMID: 23591768 DOI: 10.1007/s00535-013-0814-1]

Honda M, Sakai A, Yamashita T, Nakamoto Y, Mizukoshi E, Sakai Y, Yamashita T, Nakamura M, Shirasaki T, Horimoto K, Tanaka Y, Tokunaga K, Mizokami M, Kaneko S. Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology 2010; 139: 499-509 [PMID: 20434452 DOI: 10.1053/j.gastro.2010.04.049]

Urban TJ, Thompson AJ, Bradrick SS, Fellay J, Schuppert D, Cronin KD, Hong L, McKenzie A, Patel K, Shianna KV, McHutchison JG, Goldstein DB, Alfdahl N. IL28B genotype is associated with differential expression of interferon-stimulated genes in patients with chronic hepatitis C. Hepatology 2010; 52: 1888-1896 [PMID: 20901559 DOI: 10.1002/hep.23912]

Lagging M, Askariach G, Negro F, Bibert S, Söderholm J, Westin J, Lindh M, Romero A, Missale G, Ferrari C, Neumann AU, Pawlotsky JM, Haagmans BL, Zeuzem S, Bochud PY, Hellstrand K. Response prediction in chronic hepatitis C by assessment of IFN-3-3 and IL28B-related single nucleotide polymorphisms. PLoS One 2011; 6: e17232 [PMID: 21390311 DOI: 10.1371/journal.pone.0017232]

Romero AI, Lagging M, Westin J, Dhillion AP, Dustin LB, Pawlotsky JM, Neumann AU, Ferrari C, Haagmans BL, Schalm SW, Zeuzem S, Negro F, Verheij-Hart E, Hellstrand K. Interferon (IFN)-gamma-inducible protein-10 kDa predicts the first-phase decline in hepatitis C virus RNA and overall virological response to therapy in chronic hepatitis C. Hepatology 2010; 51: 1525-1530 [PMID: 20186843 DOI: 10.1002/hep.23590]

Miyamura T, Kanda T, Nakamoto S, Wu S, Fujiiwa K, Imazeki F, Yokosuka O. Hepatic STAT1-nuclear translocation and interleukin 28B polymorphisms predict treatment outcomes in hepatitis C virus genotype 1-infected patients. PLoS One 2011; 6: e22617 [PMID: 22174866 DOI: 10.1371/journal.pone.0028617]

Kanda T, Jiang X, Nakamoto S, Nakamura M, Miyamura T, Wu S, Yokosuka O. Different effects of three interferons L on Toll-like receptor-related gene expression in HepG2 cells. Cytokine 2013; 64: 577-583 [PMID: 24041672 DOI: 10.1016/j.cytos.2013.08.010]
C virus genotype 1b-infected null responders. Hepatology 2012; 55: 742-748 [PMID: 21987462 DOI: 10.1002/hep.24724]

69 Lok AS, Gardiner DF, Lawitz E, Martorell C, Everson GT, Ghalib R, Reindollar R, Rustgi V, McPhee F, Wind-Rotolo M, Persson A, Zhu K, Dimitrova DI, Eley T, Guo T, Grasela DM, Pasquinelli C. Preliminary study of two antiviral agents for hepatitis C genotype 1. N Engl J Med 2012; 366: 216-224 [PMID: 22256805 DOI: 10.1056/NEJMoa1104430]

70 Kumada H, Suzuki Y, Ikeda K, Toyota J, Karino Y, Chayama K, Kawakami Y, Ido A, Yamamoto K, Takaguchi K, Izumi N, Koike K, Takehara T, Kawada N, Sata M, Miyagoshi H, Eley T, McPhee F, Damokosh A, Ishikawa H, Hughes E. Daclatasvir plus asunaprevir for chronic HCV genotype 1b infection. Hepatology 2014; 59: 2083-2091 [PMID: 24604476 DOI: 10.1002/hep.27113]

71 Omata M, Nishiguchi S, Ueno Y, Mochizuki H, Izumi N, Ikeda F, Toyoda H, Yokosuka O, Nirei K, Genda T, Umemura T, Takehara T, Sakamoto N, Nishigaki Y, Nakane K, Toda N, Ide T, Yanase M, Hino K, Gao B, Garrison KL, Dvory-Sobol H, Ishizaki A, Omote M, Brainard D, Knox S, Symonds WT, McHutchison JG, Yatsuhashi H, Mizokami M. Sofosbuvir plus ribavirin in Japanese patients with chronic genotype 2 HCV infection: an open-label, phase 3 trial. J Viral Hepat 2014; 21: 762-768 [PMID: 25196837 DOI: 10.1111/jvh.12312]

72 Mizokami M, Yokosuka O, Takehara T, Sakamoto N, Korenaga M, Mochizuki H, Nakane K, Enomoto H, Ikeda F, Yanase M, Toyoda H, Genda T, Umemura T, Yatsuhashi H, Ide T, Toda N, Nirei K, Ueno Y, Nishigaki Y, Betular J, Gao B, Ishizaki A, Omote M, Mo H, Garrison K, Pang PS, Knox SJ, Symonds WT, McHutchison JG, Izumi N, Omata M. Ledipasvir and sofosbuvir fixed-dose combination with and without ribavirin for 12 weeks in treatment-naive and previously treated Japanese patients with genotype 1 hepatitis C: an open-label, randomised, phase 3 trial. Lancet Infect Dis 2015; 15: 645-653 [PMID: 25863559 DOI: 10.1016/S1473-3099(15)70099-X]

P- Reviewer: Frider B, Quarleri J, Tetsuya T S- Editor: Ji FF L- Editor: A E- Editor: Yan JL
