Transit Peptide Cleavage Sites of Integral
Thylakoid Membrane Proteins*

Stephen M. Gómez‡§, Karl Y. Bil¶, Rodrigo Aguilera‡, John N. Nishio||, Kym F. Faull‡, and Julian P. Whitelegge‡**

A set of 58 nuclearly encoded thylakoid-integral membrane proteins from four plant species was identified, and their amino termini were assigned unequivocally based upon mass spectrometry of intact proteins and peptide fragments. The dataset was used to challenge the Web tools ChloroP, TargetP, SignalP, PSORT, Predotar, and MitoProt II for predicting organellar targeting and transit peptide proteolysis sites. ChloroP and TargetP reliably predicted chloroplast targeting but only reliably predicted transit peptide cleavage sites for soluble proteins targeted to the stroma. SignalP (eukaryote settings) accurately predicted the transit peptide cleavage site for soluble proteins targeted to the lumen. SignalP (Gram-negative bacteria settings) reliably predicted transit peptide cleavage of integral thylakoid proteins inserted into the membrane via the “spontaneous” pathway. The processing sites of more common thylakoid-integral proteins inserted by the signal recognition peptide-dependent pathway were not well predicted by any of the programs. The results suggest the presence of a second thylakoid processing protease that recognizes the transit peptide of integral proteins inserted via the spontaneous mechanism and that this mechanism may be related to the secretory mechanism of Gram-negative bacteria. Molecular & Cellular Proteomics 2:1068–1085, 2003.

Advances in genome sequencing (1–3) have provided a huge resource that is driving the field of bioinformatics. Besides providing a readout that approximates the primary structure of a particular gene product, there are many facets of expression, such as organellar targeting, that can be addressed via computational analysis of genomic data. Post-translational modification sites, including signal peptide cleavage sites, may be predicted, although the accuracy of such predictive algorithms is often rooted in the knowledge base used for their development.

Proteomics, the systematic study of large sets of proteins expressed by a particular cell type or tissue, is largely possible because of recent technological and computational advances. Contemporary proteomics is based on the following three components: analytical separation of proteins from complex starting material, identification of the proteins, and subsequent sorting and classification of the datasets using bioinformatics software tools. The availability of complete genome sequences, improvements in techniques for protein separation and displays (4–6), and new developments in mass spectrometry (MS)1 for protein identification (7–10) have arguably outpaced developments in bioinformatics. Using the complete mitochondrial, plastid, and nuclear Arabidopsis thaliana genomes (2, 11, 12) and results from recent proteomics experiments (13–16), it is possible to test the performance of algorithms that are commonly used to predict organellar targeting of nuclear gene products and transit peptide cleavage sites. Thus, it is timely to reevaluate the various tools at our disposal.

The chloroplast is a fascinating organelle not only because of its vital photosynthetic function but also because its development requires the coordinated expression and interaction of all three genomes. Chloroplasts have three membrane systems, the outer and inner envelopes and the thylakoids, which form the boundaries of three separate soluble compartments, the interenvelope space, stroma, and thylakoid lumen. Chloroplast proteins, encoded by nuclear genes, have amino-terminal transit sequences that aid in targeting the polypeptides to the correct chloroplast membrane or compartment (17–22). After translation in the cytosol, the transit peptide of the preprotein is phosphorylated by a cytosolic Ser/Thr kinase before import into the chloroplast (23). The phosphorylated preproteins are bound by the Toc complex (translocon of the outer chloroplast envelope) (24), transported across the outer envelope membrane, dephosphorylated in the interenvelope space, and then transported across the inner envelope by the Tic complex (20). Homologs for the Toc and Tic complexes have been found in the genome of Synechocystis sp. PCC.
6803 (20), which supports the model that chloroplasts are reduced cyanobacterial endosymbionts (25–28). Once in the stroma the transit peptide is cleaved by a stromal processing protease (SPP).

Proteins targeted to the thylakoid lumen have bipartite transit peptides. The stromal targeting information is in the amino-proximal portion of the transit peptide, and the carboxyl-proximal portion, similar to signal peptides of secreted proteins in bacteria, contains the information for targeting to the lumen. Two different pathways for targeting to the lumen have been characterized. The first is a Sec-dependent pathway related to the SecYEG export mechanism in bacteria (29, 30). The second is a ΔpH-dependent mechanism characterized by two conserved sequential arginines in the transit peptide, the Tat (twin arginine translocase) pathway (31–33). Proteins targeted to the lumen via the Sec pathway are generally translocated in an unfolded state, whereas proteins imported via the Tat pathway are translocated in a folded state (22). Proteins imported into the lumen by either pathway are processed by a thylakoid processing protease that removes the carboxyl-proximal portion of the transit peptide.

Integral membrane proteins (IMPs) destined for the thylakoid membrane are targeted by one of two additional translocation mechanisms. It is thought that most thylakoid-bound proteins are targeted by information contained within the mature protein sequence. This insertion mechanism, which orients the amino terminus of the protein into the stroma, requires a signal recognition particle and a putative unidentified thylakoid-bound translocation complex (34–37). A few integral thylakoid proteins have bipartite transit peptides that are cleaved first in the stroma and again after membrane insertion. These proteins are inserted via a novel signal recognition particle-independent mechanism that appears to require no protein or nucleotide co-factors (the spontaneous pathway) and has the unique characteristic of leaving the amino terminus of the mature protein oriented into the lumen (38–42). Chloroplast thylakoids have been used as a model system for membrane proteomics because of the size of the proteome, the limited number of post-translational modifications (16), the ease of collecting large amounts of membranes, and the ability to easily subfractionate detergent-resistant domains (43).

Proteomics studies using two-dimensional (2D) gel electrophoresis have provided useful insights for soluble proteins of the lumen and stroma as well as peripheral thylakoid proteins (13, 44–47) and integral thylakoid proteins (48), but these methods do not allow convenient determination of the amino terminus where blocked, as is common in the chloroplast. In this work, a dataset of 35 nuclear encoded integral thylakoid membrane proteins from A. thaliana, where the sites of secondary amino-terminal processing were explicitly determined by MS, was used to challenge several bioinformatics tools. After initial trials the dataset was expanded to include photo-system (PS) II thylakoid-associated proteins from pea and spinach published previously (16, 49) and a small number of tobacco IMPs, providing a total of 58 nuclear encoded integral thylakoid membrane proteins, each with an experimentally determined amino terminus. The results demonstrate that although some programs (ChloroP, TargetP) reliably predict trafficking to the chloroplast, they variably predict the processing sites of the transit peptides. The results highlight inadequacies of currently available bioinformatics tools for prediction of secondary amino-terminal processing of transit peptides of integral thylakoid proteins and demonstrate the need for improvements in the datasets used to train the algorithms.

MATERIALS AND METHODS

Plant Growth Conditions—A. thaliana var. Columbia seeds were soaked in water (4 °C) for 1–2 d before sowing. Seeds were sown in trays, and seedlings were transferred to 144 cm² × 12 cm high pots (~5 plants/pot) containing Scotts Pro-Gro professional potting mix (The Scotts Company, Marysville, OH) approximately 1 week after germination. Plants were grown in a growth chamber maintained at 23 ± 2 °C in the light and 16 ± 2 °C in the dark. The plants were illuminated with a 12-h light period and constant relative humidity of 70%. Fluorescent lamps (Sylvania F72T12/CW/VHO, 160 watts) supplemented with Sylvania 100-W incandescent bulbs were used as the light source. Quantum (400–700 nm) flux density was 700–800 μmol of photons m⁻² s⁻¹ at the level of the leaves. Plants were watered as necessary and supplemented once per week with 0.25% Hoagland’s solution (50).

Leaves were harvested from 5-week-old A. thaliana plants, placed in square glass beakers, covered with grinding buffer (51), and ground with a chilled Polytron homogenizer (Brinkmann Instruments/Kinematica). The homogenate was filtered over 8 layers of diaper liners (Gerber), and the green filtrate was layered over 40% Percoll gradients in 1.6-ml microfuge tubes (52). Thylakoids were collected from the Percoll pads, diluted in grinding buffer, and pelleted at full speed in a tabletop centrifuge. The green membrane pellets were resuspended to ~1.1 mg/ml chlorophyll in extraction buffer (51) and frozen in liquid nitrogen. This procedure typically required 10–15 min, and all manipulations were performed on ice or in a 4 °C refrigerator under low light. Tobacco PS II thylakoid proteins were isolated as described previously (16).

LCMS—A. thaliana thylakoid protein samples (~66 μg of chlorophyll) were prepared by acetone precipitation prior to dissolution in 60% acetic acid. Reverse-phase chromatography was performed as described previously (5, 49) using a poly(styrene-divinylbenzene) co-polymer (Polymer Labs PLRP/S, 5 μm × 300 Å, 2.1 × 300 mm) stationary-phase column equilibrated in aqueous 0.1% trifluoroacetic acid containing 5% acetonitrile and eluted (100 μl/min at 40 °C) with a stepped increasing concentration of acetonitrile (min/% acetonitrile: 0/5, 5/5, 10/25, 130/75, and 150/100) initiated at the moment of sample injection (100 μl/injection). The absorption of the effluent from the column was recorded at 280 nm. The effluent was split, and a portion was sent to a fraction collector (typically about 75%, 2-min fractions); the remainder was directed straight into the MS ion source (LCMS+). Tobacco protein samples were measured by LCMS as described previously (16).

Mass spectra were recorded on a PerkinElmer Life Sciences Sciex API III triple-quadrupole mass spectrometer with an Ionspray™ source as described by Whitelegge et al. (5). The instrument was scanned from m/z 600–2300 (0.3 step size, 1-ms dwell time, 6-s scan speed, orifice at 65 V). Manufacturer-supplied software was used for the computations of measured protein molecular weight (MacSpec...
TABLE I

A. thaliana translated gene sequences (indicated by chromosome locus) were compared to the following experimentally verified amino-terminal sequences

A. thaliana locus	Gene product	Species	Reference
At4g04640	AtpC	spinach	55, 56
		tobacco (Nicotiana tabacum)	57
At4g09650	AtpD	pea	58
		spinach	59
At4g03280	PetC	spinach	60
At4g02770	PsaD	pea	61
		tobacco	62
At4g28750/At2g20260	PsaE	tobacco	62
		N. sylvestris	65
		barley	66
		pea	61
		cucumber	67
At3g16140/At1g52230	PsaH	cucumber	63
		barley	68
		pea	61
		tobacco	62
At3g61470	Lhca2	pea	69
		spinach	69
At3g47470	Lhca4	pea	69
		spinach	69
		barley	70, 71
At3g50820/At5g66570	PsbO	spinach	49, 73, 74
At1g06680	PsbP	spinach	75
		Pinus pinaster	76
		tobacco	77
		A. thaliana	49
		pea	75
At4g21280/At4g05180	PsbQ	spinach	49, 75, 78-80
At1g79040	PsbR	spinach	81
At2g30570	PsbW	spinach	82
		wheat	83
At3g21055	PsbX	spinach	83
		wheat	83
At2g06520	PsbX₁	spinach	83
At5g54270	Lhcb3	A. thaliana	85
		wheat	86
		spinach	87
At1g15820	Lhcb6	barley	88
		spinach	87
At4g03280	PetC	spinach	18
At2g26500	PetM	spinach	51
At4g02770	PsaD	spinach	18
		pea	18
At4g28750/At2g20260	PsaE	spinach	18
At3g16140/At1g52230	PsaH	spinach	18

Amino terminus determined by mass spectrometry
...and zero-charge molecular weight reconstructions (BioMultiView 1.3.1). Calculated average molecular weights were generated from translated gene sequences using PeptideMass (expasy.csb.nrc.ca/tools/peptide-mass.html) after manually removing the transit peptide. Protein Identification—Thirty-three intact mass tags (IMTs) from the A. thaliana LCMS experiments were correlated with the predicted masses calculated by modifying the entries at The Institute for Genomic Research A. thaliana database (www.tigr.org/tdb/e2k1/ath1) with experimentally verified amino termini of orthologs (Table I).

Cyanogen Bromide Cleavage—Aliquots of fractions (10 μl) collected during LCMS+ were treated with saturated cyanogen bromide (CNBr) (1 μl, 1 g/ml) for 4 h at room temperature in the dark. The reaction mixture was either spotted directly (0.3 μl plus 0.5 μl of matrix solution) or dried by centrifugal evaporation (SpeedVac). Dried reaction mixtures were redissolved in 5 μl of 70% acetic acid and analyzed (0.2 μl plus 0.5 μl of matrix) by matrix-assisted laser desorption ionization (MALDI) coupled to delayed extraction time-of-flight (MALDI-DE-TOF) mass spectrometry (50-CE-5, New Objective) at 3.3 kV for ionization without nebulizer gas. The mass spectrometer was operated in triple-play mode with data-dependent acquisition (LCQ-DECA, ThermoFinnigan, San Jose, CA) after dissolution in 5 μl of 70% acetic acid (v/v). A reverse-phase column (200 μm × 10 cm, PLRP/S 5 μm, 300 Å; Michrom Biosciences, San Jose, CA) was equilibrated for 10 min at 1.5 μl/min with 95% A, 5% B (A, 0.1% formic acid in water; B, 0.1% formic acid in acetonitrile) prior to sample injection. A linear gradient was initiated 10 min after sample injection ramping to 60% A, 40% B after 50 min and 20% A, 80% B after 65 min. Column eluent was directed to a cooled glass electrospray emitter (TaperTip, TT1150-50-50-CE-5, New Objective) at 3.3 kV for ionization without nebulizer gas. The mass spectrometer was operated in “triple-play” mode with a survey scan (400–1500 m/z), data-dependent zoom scan, and MSMS. Individual sequencing experiments were matched to a custom A. thaliana sequence database using Sequest software (ThermoFinnigan). “No enzyme” was set such that Sequest considered all possible peptide sequence permutations rather than just tryptic ones. To identify N-acetylated peptides, a static modification of +42 Da was set for “amino terminus peptides.”

Data Analysis—ChloroP, version 1.1 (www.cbs.dtu.dk/services/ChloroP) (91), is a neural network method for identifying probable chloroplast transit peptide sequences and predicting the proteolytic cleavage site of each transit peptide. ChloroP presents its prediction of chloroplast targeting as a “Y” or “N” output based upon the predicted presence of a chloroplast transit peptide. TargetP, version 1.01 (www.cbs.dtu.dk/services/TargetP) (92), is a layered neural network method for predicting subcellular targeting based upon the type of targeting/transit peptide predicted to be at the amino terminus of each protein. TargetP predicts whether the protein in question is trafficked to the chloroplast, mitochondria, secretory pathway, or...
Thylakoid Membrane Transit Peptide Cleavage Sites

Table II

Experimental mass measurements of nuclear encoded thylakoid-associated proteins from *A. thaliana*

Protein^a	*A. thaliana* locus	Retention time	Intact mass tag^b	Calculated intact mass^c	Amino-terminal CNBr or MSMS tag^d	Calculated amino-terminal CNBr tag^e	Internal CNBr tag^f
PsbXIII	At3g21055	20.6	334.7 Da	3345.94 Da	N/D		
PsaEIII	At2g02600	26.4	10546.4 Da	10546.93 X	X		
PsaEIV	At4g28750	29.3	10469.8 Da	10469.76 X	X		
PsaNIII	At5g64040	38.1	9702.7 Da	9705.03 X	X		
PsoGIV	At3g36082	Fraction 44	26571.71 Da	2082.01 Y	2082.05 Y		
PsAOV	At4g02770	45.1	17847.8 Da	17847.39 Y			
PspBVI	At1g06680	47.1	20212.7 Da	20212.41	6892.25	6890.38 Y	
PsoGIV	At4g21280	48.7	16310.2 Da	16309.57 X	X		
PsoGIVv	At4g05180	50.6	16349.2 Da	16349.51	X		
PsaHIII	At3g16140	57.6	10355.0 Da	10355.82 X	X		
PsaHIV	At1g52230	57.6	10355.0 Da	10354.79 X	X		
PsoGIV	At4g03280	58.8	19000.9 Da	19000.65	1210.65	1210.61 Y	
AtpDIV	At4g09650	72.4	20573.7 Da	20570.59 X			
PsBRI	At1g79040	72.9	10340.9 Da	10341.64	1859.00	1859.04 Y	
AtpCIV	At4g04640	73.8	35709.3 Da	35709.19	2626.38	2626.43 Y	
Lhca4III	At3g47470	76.6	22256.0 Da	22255.36			
Lhcb1tIV	At1g29930	77.0	24906.9 Da	24905.18			
Lhcb1tIV	At1g29920	77.0	24906.9 Da	24905.18			
Lhcb1tIV	At1g29910	77.0	24906.9 Da	24905.18			
Lhcb2tII	At2g05100	79.1	24935.0 Da	24930.18	7890.6	7890.72 Y	
Lhcb2tII	At3g27690	79.1	24935.0 Da	24932.26	7890.6	7890.72 Y	
Lhca2II	At3g61470	80.3	23201.8 Da	23200.47	6250.4	6247.98 Y	
Lhcb6tII	At1g15820	80.8	23107.8 Da	23106.32			
Lhcb3tIII	At5g54270	83.1	24280.6 Da	24280.65	6845.8	6845.57 Y	
Lhcb3tIII	At2g05070	83.6	24945.0 Da	24944.25	7890.6	7890.72 Y	
Lhcb3tIII	At4g10340	83.8	26449.0 Da	26447.35	9630.8	9632.84 Y	
Lhcb4tIV	At5g01530	83.9	28212.7 Da	28212.07	acVFGFGK		
PsbXc	At2g06520	84.4	4183.7 Da	4183.94	4182.36	4182.39 Y	
PefMt	At2g26500	98.7	4188.6 Da	4188.89			
PsbSII	At1g44575	100.6	22457.6 Da	22457.23	4900.75	4900.75 Y	
PsbWII	At2g30570	124.7	6004.0 Da	6007.76	N/D		

^a *A. thaliana* protein annotation using the standard gene names. Superscript roman numerals indicate the chromosome where the gene is located. For paralogs on the same chromosome, Arabic numerals indicate the long arm of the chromosome with 1 closest to the centromere, and lowercase Greek letters indicate the short arm of the chromosome with a closest to the centromere. See footnote 2 in the text concerning confusion about the use of *psbX* as a gene name.

^b Intact mass tag of zero charge average mass determined by LCMS.

^c Average zero charge mass predicted from translations of the indicated gene sequences using PeptideMass (us.expasy.org/tools/peptide-mass.html).

^d Amino-terminal CNBr mass tags. All masses are monoisotopic unless underlined to indicate average mass. X indicates proteins that have no internal Met or have no CNBr peptides smaller than 10,000 Da. N/D, not detected. Amino termini confirmed by MSMS sequence data are listed.

^e Predicted CNBr peptide mass calculated using MS-Digest program in ProteinProspector (prospector.ucsf.edu/ucsfhtml4.0/msdigest.htm). All masses are monoisotopic unless underlined to indicate average mass.

^f Intact mass tags confirmed by internal CNBr mass tags other than or in addition to the amino-terminal CNBr mass tag.

“other” subcellular location. PSORT (World Wide Web version, Oct 8, 1999, psort.ims.u-tokyo.ac.jp/) (93) is an expert system using a knowledge-base setup as an “if-then” cascade. PSORT predicts subcellular localization with much finer resolution than any of the other programs examined. The four subcellular/suborganellar localizations with highest scores are ranked in order. The output of PSORT is listed in the footnotes to Table IV. PSORT includes a hydrophobic moment analysis for chloroplast proteins as one of its expert analysis programs. The usefulness of this calculation is based on the assumption that all chloroplast proteins have a similar stromal targeting domain in the amino-terminal targeting peptide. The hydrophobic moment analysis in PSORT distinguishes chloroplast protein status as negative, positive, or undetermined. Predotar, version 0.5 (www.inra.fr/predotar/), is a program still under development designed to be a Web-based method for distinguishing chloroplast- from mitochondria-targeting sequences. Predotar predicts localization to the chloroplast.
mitochondria, both organelles, or neither organelle. MitoProt II, version 1.0.4 (www.mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofter) (94), is a computational method for predicting mitochondrial targeting sequences and for predicting the proteolytic cleavage sites of the targeting peptides. MitoProt predicts targeting based upon a calculated probability score that the protein being examined is localized to the mitochondria. SignalP (www.cbs.dtu.dk/services/SignalP/) (95) allows discrimination between eukaryotic, Gram-positive bacterial and Gram-negative bacterial signal peptides. All three cases were tested with the dataset. Four parameters are calculated for a yes/no prediction of the presence of a signal peptide. Each organism group tested gave a predicted cleavage site.

Our dataset was used to test each of the programs listed above. Default settings were used for ChloroP, MitoProt, and Predotar. User-defined settings for TargetP were selected as follows: origin of sequence, plant, perform cleavage site predictions, no cutoff, and winner-takes-all. PSORT was set to plant source of input sequence.

RESULTS

Assembly of the Dataset

A dataset was assembled from 58 nuclear encoded thylakoid-associated proteins, each with experimentally verified amino termini. The dataset includes 18 proteins from pea and spinach that have been described already (16, 49), 35 proteins from A. thaliana (Table II), and five proteins from tobacco (Table III). The majority are integral membrane proteins isolated from thylakoids. For comparative purposes the set includes a small number of peripheral proteins localized to the stromal or luminal surface.

Assignment of Proteins and Post-translational Modifications

The 35 nuclear encoded proteins from A. thaliana thylakoids were defined by IMTs, and the identities were confirmed by CNBr peptide mass tags and/or MSMS sequencing of tryptic fragments (Table II). IMTs for chloroplast-encoded proteins targeted to the thylakoid will be presented independently. The results show that the amino termini of the Lhcb4 (LHClIa/CP29) and Lhcb5 (LHCIIc/CP26) chlorophyll a/b-binding light-harvesting proteins are N-acetylleucine at position 33 (initiating Met is residue 1) and N-acetylleucine at position 38, respectively. The amino terminus of Lhcb4 was confirmed by MSMS sequencing of the amino-terminal tryptic peptide (acetyl-38VFGFGK) from a fraction collected during LCMS fractionation of measured and calculated mass (Table II) in confirmation of the previous identification of a 22,457.6-Da IMT as Lhcb4 (96). Thus in A. thaliana the amino-terminal residue of PsbS providing full agreement between measured and calculated mass (within measurement error, 0.01% or 2.8 Da) has been achieved.

CNBr peptide mass tags (Fig. 2A) show that the amino-terminal amino acid of processed Lhcb5 is (N-acetyl) Leu38 rather than Lys41, which was predicted previously (96). The assignment of Lhcb5 was confirmed by MSMS sequence of tryptic fragments in the appropriate liquid chromatography fraction (Fig. 2B). The peptide at m/z 4900.7 (Fig. 3) is assigned as the acetylated amino terminus of A. thaliana PsbS providing full agreement of measured and calculated mass (Table II) in confirmation of the previous identification of a 22,457.6-Da IMT as PsbS in spinach (16). Thus in A. thaliana the amino-terminal residue of PsbS is N-acetylleucine at position 53 (Fig. 3) rather than Ala50 (Swiss-Prot accession number Q9XF91) or Ala61 (96).

Three proteins (Lhcb111, Lhcb112, and PsbO1b) were identified by CNBr peptide mass tags but not detected as IMTs during LCMS. Each of these proteins is encoded by one copy

Table III

Protein	GenBank/EBI accession numbers	Intact mass tag	Calculated intact mass
PsbR	X70088	10319.8	10319.63
Lhcb1-21	X52743	24749.6	24749.15
Lhcb1-7	X58229	24949.4	24950.38
Lhcb1-10	X52744	24913.2	24912.38
Lhcb1-50	X52742	24987.2	24988.43

* Tobacco protein annotation using the standard gene names.
* Intact mass tag of zero charge average mass determined by LCMS as described in Table II.
* Average zero charge mass predicted as described in Table II.

![Fig. 1. MSMS spectrum of the tryptic peptide sequence tag of the amino terminus of Lhcb4.](Image) The complete b- and y-ion series are indicated on the spectrum, but only the observed ions are shown in the inset. The peptide sequence acVFGFGKc (ac, acetyl amino terminus) was assigned with an Xcorr value of (2.108) when the database was modified to include the correct Lhcb4 amino terminus and static modification of the amino terminus was set to +42 Da (acytelylation). Identities of the b- and y-ion series are indicated below the spectra for ease of alignment. The presence of Lhcb4 in the sample was confirmed by the presence of several additional internal peptides (86–103, 3.779; 104–113, 3.317; 121–135, 3.815; 222–234, 3.482; and 235–244, 3.078 (peptides numbered from Met1, Xcorr score)).
of a highly conserved multigene family and is present in low abundance compared with its respective paralog. The paralogs exhibit similar masses and similar retention times due to their high level of sequence conservation and therefore high conservation of biochemical/biophysical properties. Hence, the low abundance paralogs were “masked” by their higher abundance paralog(s) using LCMS (Fig. 4A). However, unique CNBr mass tags from each paralog could be detected in fractions collected during LCMS+. As an example, in A. thaliana the largest subunit of the oxygen-evolving enzyme (OEE1 or PsbO) is encoded on two paralogous genes on chromosomes III and V. The mature proteins encoded by these genes co-elute and differ by only 0.02% or 6 Da (26,571.7 Da (PsbOV) versus 26,565.7 Da (PsbOII)). Molecular mass spectra of PsbO show a mass peak at 26,566.7 Da that corresponds to PsbOII and a possible shoulder at 26,570 Da that may correspond to PsbOIII (Fig. 4A). When the LCMS+ data was analyzed unique internal CNBr fragments enabled discrimination between the two paralogs (Fig. 4B). Assuming similar ionization efficiency, it is estimated that PsbOIV is present in y-ion series are indicated on the spectrum, but only the observed ions are shown in the inset. The peptide sequence HLSDFGNNLTVIAGDTER was assigned with an Xcorr value of (5.382). Identities of the b- and y-ion series are indicated below the spectra for ease of alignment.

Fig. 2. Assignment of proteolytic fragments from LCMS fraction 77 (77–78 min). A, MALDI-TOF spectrum of CNBr fragments. To accommodate the mass range of interest the spectrum was collected in the linear mode; thus the 13C isotopes of the peptide are not resolved, and average instead of monoisotopic masses were recorded. Identified peaks are labeled with letters, and unassigned peaks are labeled with their respective mass. The sample was spiked with an insulin standard for internal calibration. Underlined peak labels indicate carboxy-terminal peptides, and boxed labels indicate amino-terminal peptides. The identified peaks are as follows: Peak A (measured mass (calc. mass) = 3885.7 Da, assignment = Lhca2III peptide 222–257 (peptides numbered from Met i)), Peak B (measured mass = 3946.5 Da, calc. mass = 3945.4 Da, assignment = Peak L2), Peak C (measured mass = 4161.7 Da, calc. mass = 4158.7 Da, assignment = Lhcb4IV peptide 251–258), Peak D (measured mass = 4186.1 Da, calc. mass = 4185.0 Da, assignment = PsbXII peptide 75–106) Peak E (measured mass = 4390.5 Da, calc. mass = 4390.0 Da, assignment = LhcblIII peptide 227–267), Peak F (measured mass = 4442.0 Da, calc. mass = 4441.0 Da, assignment = Lhcb2IV peptide 225–260), Peak G (measured mass = 4555.2 Da, calc. mass = 4551.1 Da, assignment = Lhcb2IV peptide 225–265), Peak H (measured mass = 4646.1 Da, calc. mass = 4644.3 Da, assignment = Lhcb5V peptide 227–260), Peak I (measured mass = 4818.9 Da, calc. mass = 4816.4 Da, assignment = Peak M6), Peak J (measured mass = 5573.2 Da, calc. mass = 5573.3 Da, assignment = Lhcb5IV peptide 169–221), Peak K (measured mass = 6251.0 Da, calc. mass = 6248.0 Da, assignment = Lhca3III peptide 46–102), Peak L (measured mass = 7888.6 Da, calc. mass = 7890.7 Da, assignment = Lhcb2IV peptide 38–106), and Peak M (measured mass = 9628.6 Da, calc. mass = 9623.9 Da, assignment = Lhcb5V + acetyl peptide 38–122). B, MSMS spectrum of a trypptic peptide sequence tag of Lhcb5. The trypptic fragment corresponds to an internal peptide in Peak H above. The complete b- and y-ion series are indicated on the spectrum, but only the observed ions are shown in the inset. The peptide sequence HLSDFGNNLTVIAGDTER was assigned with an Xcorr value of (5.382). Identities of the b- and y-ion series are indicated below the spectra for ease of alignment.
steady-state amounts about 5× that of PsbO III under the described growth conditions.

In addition, five membrane proteins from tobacco (Nicotiana tabacum) PS II membrane preparations were identified by their corresponding IMTs (Table III). The lack of sequence data from the nuclear genome complicates assignment of tobacco IMTs. Tentative identifications of these IMTs were based upon coincidence of measured and predicted mass after removal of the transit peptide (plus possible aminoterminal acetylation), and confidence in the assignments came from similarity between their liquid chromatography retention times and the retention times of orthologs from other plants (16).

Tests of Web-based Protein Analysis Programs

Chloroplast Targeting—The targeting predictions of five publicly available software packages listed on the ExPasy proteomic tools Web page (ca.expasy.org/tools/; ChloroP, TargetP, PSORT, Predotar, and MitoProt II) were tested with the 58-protein dataset (Table IV). ChloroP and TargetP correctly predicted chloroplast targeting in 57 and 56 instances, respectively. Previous proteomic surveys of soluble chloroplast proteins using 2D gel separation followed by tryptic digestion and assignment of the peptide fragments by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS are in agreement with these results. ChloroP predicted that 31 of 34 (13) and TargetP predicted that 74 of 75 (46) chloroplast proteins identified by internal mass or sequence tags are targeted to the chloroplast. However, without an equivalent dataset of non-chloroplast proteins with explicitly determined amino termini, it is not possible to test for false positives using the same predictive criteria. A recent study of 80 proteins identified from the A. thaliana mitochondria proteome by 2D gel separation/MALDI-MS showed that TargetP predicted 54 to be targeted to the mitochondria. The remaining 16 (20%) proteins were predicted to be chloroplast-targeted, including mitochondrial proteins such as succinyl-CoA ligase, cytochrome c oxidase, and the mitochondrial elongation factor Tu (14).

Predotar predicted that 40 (69%) of the proteins in our dataset are targeted to the chloroplast, 2 are targeted to the mitochondria, 1 is targeted to both organelles, and 15 are targeted to neither. Predotar had similar success in predicting plastid targeting (58/75, 77%) when analyzing soluble chloroplast proteins identified by 2D gel/MALDI-MS (46). From our dataset, each protein predicted by Predotar not to be targeted to either organelle had a closely related paralog or ortholog (except for PsaH) predicted to be plastid-targeted. The proteins in this “neither” category appear to have no species bias. It is of interest that A. thaliana Lhcb1α and Lhcb1β were not predicted to be targeted to the same location despite having identical amino acid sequences except at position 20 in the transit peptide (Lys20 in Lhcb1α and Asn20 in Lhcb1β). In this case an additional positive charge (3 versus 2) in the transit peptide is apparently sufficient to predict an alternate location for the chloroplast protein.

PSORT attempts a more ambitious prediction of protein localization by assigning a suborganellar destination for nuclear encoded proteins. PSORT does not make a single prediction but ranks the four suborganellar compartments with the highest scores. One of the expert programs of PSORT is a hydrophobic moment analysis for predicting chloroplast proteins. The PSORT results can be interpreted in several
Thylakoid Membrane Transit Peptide Cleavage Sites

TABLE IV

Predicted organelle targeting by Web-based programs

Protein\(^b\)	Species\(^a\)	Localization\(^a\)	ChloroP	TargetP	PSORT\(^d\)	Predotar	MitoProt
PsaE\(_{IV}\)	At	S	Y	C	O:V:W:E/+	P	0.95
PsaE\(_{II}\)	At	S	Y	C	W:E:O:X/+	P	0.95
PsaE	So	S	Y	C	S:M:T:V/+	M	0.80
PsaD\(_{IV}\)	At	S	Y	C	N:M:S:X/+	P	0.96
PsaD	So	S	Y	C	N:S:M:T/+	P	0.94
Lhcb1	So	T+	N	C	X:S:M:T/+	N	0.45
PetC	Ps	T+	Y	C	P:T:S:L/+	P	0.36
Lhcb1\(_{14}\)	Ps	T+	Y	C	S:X:T:L/+	P	0.01
Lhcb1\(_{2}\)	Ps	T+	Y	C	S:T:L:X/+	N	0.81
Lhcb4\(_{IV}\)	At	T+	Y	C	I:X:S:M/+	P	0.99
Lhcb5\(_{IV}\)	At	T+	Y	C	T:P:Y/+	P	0.68
PsbS\(_{I}\)	At	T+	Y	C	T:P:G:L/+	N	0.92
Lhca3\(_{I}\)	At	T+	Y	C	S:M:T:X/+	N	0.96
Lhcb1–7	Nt	T+	Y	C	S:M:T:X/+	N	0.86
Lhcb1–40	Nt	T+	Y	C	S:T:L:X/+	P	0.70
Lhcb1\(_{12}\)	At	T+	Y	C	S:X:T:L/+	N	0.85
Lhcb1–21	Nt	T+	Y	C	S:X:T:M/+	N	0.86
Lhcb2\(_{III}\)	At	T+	Y	C	T:X:S:L/+	P	0.86
Lhca4\(_{III}\)	At	T+	Y	C	X:S:M:T/+	P	0.97
AtpD\(_{IV}\)	At	T+	Y	C	S:T:L:M/+	P	0.88
PsbR	So	T+	Y	C	T:P:Y/+	P	0.64
Lhcb2\(_{III}\)	At	T+	Y	C	X:O:W:E/+	P	0.98
Lhcb6	At	T+	Y	M	X:O:W:E/+	P	0.99
Lhcb6	So	T+	Y	C	S:X:T:L/+	P	0.97
PetM\(_{I}\)	So	T+	Y	C	I:T:P:M/+	P	0.01
Lhcb2	Ps	T+	Y	C	P:G:W:E/+	P	0.60
Lhcb3\(_{III}\)	At	T+	Y	C	S:X:T:M/+	M	0.84
Lhcb2\(_{III}\)	At	T+	Y	C	S:X:T:M/+	N	0.93
Lhcb1\(_{IV}\)	At	T+	Y	C	N:X:T:S/+	N	0.93
PsaD\(_{III}\)	At	T+	Y	C	S:X:T:L/+	M	0.84
Lhcb1\(_{III}\)	At	T+	Y	C	S:X:T:M/+	N	0.84
Lhcb1\(_{III}\)	At	T+	Y	C	S:X:T:M/+	N	0.84
Lhcb1\(_{IV}\)	At	T+	Y	C	S:X:T:L/+	P	0.97
Lhcb1\(_{III}\)	At	T+	Y	C	S:X:T:M/+	N	0.81
Lhcb3\(_{IV}\)	At	T+	Y	C	T:X:S/+	P	0.32
Lhcb1\(_{II}\)	At	T+	Y	C	I:T:P:M/+	P	0.04
PsaD\(_{III}\)	At	T+	Y	C	I:T:P:M/+	P	0.66
Lhcb1–50	Nt	T+	Y	C	S:T:L:M/+	N	0.81
Lhcb3\(_{V}\)	At	T+	Y	C	T:X:S/+	P	0.32
PsaO\(_{III}\)	Ps	T–	Y	M	L:R:S:M/+	N	0.45
PsaO\(_{IV}\)	Ps	T–	Y	C	L:R:S:T/+	P	0.85
PsaO\(_{IV}\)	Ps	T–	Y	C	L:S:R:T/+	P	0.30
PsaA\(_{III}\)	At	L+	Y	C	P:W:G:E/+	P	0.29
PsaO\(_{IV}\)	Ps	L+	Y	C	L:R:S:T/+	N	0.54
PsaO\(_{IV}\)	Ps	L+	Y	C	L:R:S:M/+	P	0.18
PsaO\(_{IV}\)	Ps	L+	Y	C	R:R:Q/+	P	0.45
PsaP\(_{III}\)	At	L+	Y	C	L:S:T:N/+	N	0.39
PsaP\(_{IV}\)	At	L+	Y	C	L:S:R:T/+	P	0.63
PsbP	Ps	L+	Y	C	R:C:M:T/+	N	0.44
ways depending upon the criteria used for determining a “hit.” Under the strictest conditions, namely that the highest score must match the actual suborganellar destination and that the hydrophobic moment must predict that it is a chloroplast protein, PSORT does poorly, predicting 0/5 in the stroma, 6/42 in the thylakoid, and 6/11 in the lumen. If the requirement is that only one of the four highest scores matches the correct destination, then PSORT does much better (stroma, 3/5; thylakoid, 37/42; and lumen, 8/11). If the criteria for PSORT are similar to ChloroP and Predotar (chloroplast targeting or not), then the results are comparable with Predotar. PSORT correctly predicts 49/58 if at least one of the four highest scores is a chloroplast domain, 39/58 if at least two of the four high scoring results are to the chloroplast, and 25/58 if at least three of the four are in the chloroplast. PSORT was used previously to test a smaller set of soluble chloroplast proteins identified by mass and sequence tags. In this study PSORT predicted 13/34 proteins target to the chloroplast if only one of the four predicted destinations is in the chloroplast, 10/34 if two of the four are chloroplast domains, and 1/34 if three of the four predicted targets are chloroplast domains (13). Less strict interpretations are reliable if the suborganellar destination of the protein being examined is already known. It is therefore suggested that assignment of an unknown/hypothetical protein as a chloroplast protein should only be considered when three of the four PSORT suborganellar predictions are to chloroplast compartments. Furthermore, the tentative assignment should be confirmed by further experimentation.

MitoProt was initially used as a negative control, but surprisingly it predicted that a large number of stromal proteins and thylakoid IMPs (16/47, cutoff >0.90; 32/47, cutoff >0.80) would be targeted to the mitochondria (Table IV). MitoProt predicted that proteins targeted to the lumen would not go to the mitochondria. Although the size of the datasets for stromal and luminal proteins is small, the trend is striking. MitoProt identified 53 of 80 (14) and 39 of 48 (15) confirmed mitochondrial proteins as being trafficked to the mitochondria using a cutoff of >0.85. The presence of chloroplast proteins in tests of MitoProt reduced the reliability of the predictions (94). Here it is demonstrated that for certain chloroplast proteins the probability of MitoProt incorrectly predicting a mitochondrial destination is high, and thus one recommendation that emerged from these tests is that MitoProt results from plastid-containing eukaryotes be screened against ChloroP/TargetP to help reduce false positive predictions.

Transit Peptide Cleavage Prediction — The transit peptide is cleaved by SPP after translocation across the chloroplast envelope into the stroma. Proteins destined for the lumen have a bipartite transit peptide that is removed by TPP (22). ChloroP, TargetP, and MitoProt each contain transit peptide cleavage predictions. TargetP uses the ChloroP cleavage assignment if it predicts the protein is chloroplast-targeted. Only two of the test proteins were predicted by TargetP to go to the mitochondria, therefore only the ChloroP results are presented (Table V). SignalP was tested because the two targeting pathways to the lumen, Sec-dependent and ΔpH-dependent, have analogous systems in eukaryotic, Gram-positive (Gm+), and Gram-negative (Gm−) bacterial secretory pathways (22, 46).

The original test results suggested that 60% of the nuclear encoded chloroplast proteins tested by ChloroP have a predicted cleavage site within 2 amino acid residues of the actual cleavage site (91). We used this 2-amino acid threshold to determine whether a peptide cleavage prediction was “correct” or not (boxes in Table V). Using this cutoff and separating the proteins into stroma, thylakoid, and lumen domains, the successes of predicting the cleavage sites of stromal proteins were as follows: ChloroP, 5/5 (100%); MitoProt, 2/5 (40%); SignalP (Gm+, 1/5 (20%); and SignalP (eukaryotic/Gm−), 0/5 (0%). Predictions of the cleavage sites for luminal proteins were as follows: SignalP (eukaryotic/Gm+), 11/11 (100%); Signal P (Gm−), 9/11 (82%); and ChloroP and MitoProt, 0/11 (0%). The following are predictions for the thylakoid IMPs: MitoProt, 18/42 (43%); ChloroP, 9/42 (21%); SignalP (Gm−), 3/42 (7%); SignalP (Gm+), 1/42 (2%); and SignalP (eukaryotic), 0/42 (0%). The data for stromal and luminal proteins suggest that ChloroP is best for predicting the cleavage site of the transit peptide by SPP, whereas the eukaryotic settings of SignalP are best for predicting the processing site by thylakoid processing protease.

None of the programs adequately predict the transit peptide processing site of the membrane-spanning proteins inserted into the thylakoid via the signal recognition particle-dependent pathway. ChloroP correctly predicted the transit peptide cleavage site for one thylakoid IMP (A. thaliana Pet-C1V, the cytochrome b6/f complex Rieske Fe-S protein), but

*At A. thaliana and tobacco protein annotations as described in Tables II and III. Pea and spinach annotations using standard genes.

*At A. thaliana; Ps, Pisum sativum; So, Spinacia oleracea, Nt, N. tabacum.

*Chloroplast localization, S, stroma; T+, thylakoid membrane via the signal recognition particle-dependent pathway; T−, thylakoid membrane via the spontaneous pathway; Ls, lumen via the Sec pathway; Lt, lumen via the Tat pathway.

*Prediction of protein targeting using PSORT. E, endoplasmic reticulum lumen; W, endoplasmic reticulum membrane; X, peroxisome; P, plasma membrane; N, nucleus; Q, mitochondria outer membrane; I, mitochondria inner membrane; R, mitochondria intermembrane space; M, mitochondria lumen; S, chloroplast stroma; T, chloroplast thylakoid membrane; L, chloroplast lumen; O, secreted; V, vacuole; C, cytosol; G, Golgi body. The correct localizations are in bold. The PSORT hydrophobic moment analysis for chloroplast proteins output is indicated by positive (+), negative (−), or unknown (?).
for the spinach and pea orthologs it predicted a cleavage site 7 amino acids carboxyl-proximal and 10 amino acids amino-proximal, respectively (Table V). The majority of the correct predictions for MitoProt are for the Lhcb1 and Lhcb2 proteins. If MitoProt predicted the presence of a mitochondrial transit peptide, then it consistently predicted a cleavage site 2 amino acids carboxyl-proximal from the actual site in the Lhcb1 and Lhcb2 proteins. ChloroP predictions ranged from 11 amino acids carboxyl-proximal to 20 amino acids amino-proximal.

Table V

Protein	Species	Location	ChloroP Δ^‡	SignalP Δ^‡	MitoProt Δ^‡	N-term by MS		
PsAE	At	S	0	23	22	-90	3	nA45
PsAI	At	S	0	25	-1	-31	0	nA47
PsAE	So	S	0	19	-7	-7	3	nA35
PsAD	At	S	0	46	-9	46	12	nE46
PsAD	So	S	0	50	-4	31	-1	nA50
Lhcb1	So	T+	-11	-140	-198	21	36	acR36
PetC	Ps	T+	-10	-32	-119	-55	51	nA41
Lhcb1Δ1	Ps	T+	-9	-140	-198	21	37	acR37
Lhcb1Δ2	Ps	T+	-9	-140	-198	20	-2	acR38
Lhcb1Δ3	At	T+	-8	-230	-230	-228	2	acV33
Lhcb5Δ4	At	T-	-7	-210	-10	4	15	acL38
PsBS	At	T-	-7	-98	-8	-98	7	acL53
Lhca2	At	T-	-7	-205	42	23	13	acA42
Lhcb1Δ7	Nt	T+	-6	-96	-198	21	-2	acR36
Lhcb1Δ10	Nt	T+	-6	-86	-198	21	-2	acR36
Lhcb1Δ11	At	T+	-4	-139	-198	19	-2	acR34
Lhcb1Δ21	Nt	T+	-4	-138	-196	21	-2	acR36
Lhcb2Δ18	At	T+	-4	-156	-194	-194	-2	acR38
Lhca2Δ1	At	T+	-3	-65	-173	9	11	acK3
AtpD	At	T+	-1	48	48	-11	0	nS48
PsBH	At	T+	-1	-88	-88	-88	17	nS42
PetCΔ7	At	T+	-7	-47	-152	-152	51	nA51
PsBH	At	T+	-1	-98	-98	-98	0	nS42
Lhca2Δ7	Nt	T+	1	-98	-98	-98	2	nS38
Lhcb1Δ6	At	T+	1	-201	-73	3	3	nA52
Lhcb6	At	T+	1	-39	-37	86	-30	nN86
PetM	At	T+	3	-97	-8	8	63	acL63
Lhcb2	At	T+	3	-136	-194	-194	-2	acR38
PsAlΔ7	At	T+	6	-70	-70	-66	5	nK51
PsAH	At	T+	6	-70	-70	-66	5	nK51
PsAlΔ5	At	T+	6	-70	-70	-66	5	nK51
Lhcb2Δ18	At	T+	7	-136	-194	-194	-2	acR38
PetCΔ7	So	T+	7	-47	-118	48	8	nA69
AtpCΔ7	At	T+	8	51	7	32	7	nA51
Lhcb3	Ps	T+	9	-130	-189	-189	11	nG43
Lhcb2Δ8	At	T+	10	-39	-194	-194	-2	acR39
Lhcb1Δ8	At	T+	12	-139	-198	21	-2	acR36
Lhcb1Δ9	At	T+	12	-139	-198	21	-2	acR36
Lhcb1Δ10	At	T+	12	-139	-198	21	-2	acR36
Lhcb1Δ11	At	T+	12	-138	-197	-197	-2	acR36
Lhcb1Δ50	At	T+	12	-86	-198	21	-2	acR36
Lhcb3Δ7	At	T+	20	-130	-189	-189	11	nG43
PsBW	Nt	T-	14	-41	-41	0	42	nl14
PsBX	At	T-	16	-35	-35	0	31	nA75
PsBW	At	T+	16	-35	-35	0	80	nl180
acids amino-proximal to 12 amino acids carboxyl-proximal to the actual site for the same set of proteins (Table V). The appearance that MitoProt does better at predicting the transit peptide cleavage site of thylakoid IMPs is more likely due to its consistency at predicting the same cleavage site for orthologous proteins than due to recognition of some specific thylakoid-localizing domain. It is somewhat surprising that the MitoProt algorithm, which was not designed to work with chloroplast-targeted proteins, is much more consistent in its predictions of where a putative cleavage site is located than ChloroP, which was specifically created to analyze chloroplast proteins.

PsbW and PsbX2 are the only thylakoid-bound proteins in the dataset that have amino termini oriented into the thylakoid lumen (39, 41). They are also the only proteins in the dataset that are targeted to the thylakoid by the spontaneous insertion pathway (42). The Gram-negative SignalP program correctly predicted the transit peptide processing sites for the two PsbW and single PsbX\textsubscript{c} examples in the study. We also tested the two other membrane proteins, PsbY and AtpG, which are inserted into the thylakoid via the spontaneous mechanism (42). Two PsbY proteins (spinach and \textit{A. thaliana}, Swiss-Prot accession numbers P80470 and O49347, respectively) and two AtpG proteins (subunit II of the CF\textsubscript{0} ATPase; spinach, Swiss-Prot accession number P31853; and \textit{A. thaliana}, Swiss-Prot accession number Q42139) are listed in the Swiss Protein/TrEMBL databases in addition to the single PsbX\textsubscript{c} and two PsbW proteins in the dataset. Bacterial signal peptides are cleaved according to the \((\text{H}/\text{H}/\text{H})\) rule where the \(\text{H}\) positions before the cleavage site are small neutral amino acids (usually Ala) (95, 97). Eukaryotic and Gm signal peptide consensus sequences generally have hydrophobic amino acids in the region between \(\text{H}/\text{H}\) and \(\text{H}/\text{H}\), whereas Gm signal peptides are more likely to have hydrophilic or positively charged amino acids in this region, like the transit peptides of thylakoid proteins imported via the spontaneous path. The Gm SignalP program correctly predicted the processing site of all seven proteins that are imported into the thylakoid membrane by this mechanism (data not shown). This unexpected observation suggests that the spontaneous thylakoid import mechanism may be related to the secretory mechanism of Gram-negative bacteria.

DISCUSSION

There is clearly a need for reliable bioinformatics software for predicting protein destinations and processing sites in large proteomics datasets. However, the requirement for ex-
experimentally verified amino and carboxyl termini of the mature proteins is rarely met because of the typically incomplete protein coverage obtained in standard peptide mass or sequence tag protein identification experiments. Thus, the LCMS+ approach is indispensable because it provides intact protein mass information as well as eliminating peptide losses associated with recovery of peptides from gels. The intact mass usually yields the amino-terminal cleavage site, although incorrect assignment of the carboxyl terminus could potentially confound assignments based upon the intact mass alone. Finding the amino-terminal peptide in digested LCMS+ fractions using standard software packages remains challenging because protein masses are generally calculated from translated mRNA and include the transit peptide in the mass calculation. By not specifying a particular digest it is possible to detect non-tryptic peptides potentially representing the amino terminus unless they are acetylated at the amino terminus. There were 15 entries where no experimentally verified amino and carboxyl termini of the mature proteins was predicted from an ortholog that had an experimentally verified amino terminus. There were 9 entries where the amino terminus was not experimentally determined because the amino terminus indicated in the entry was not acetylated or in agreement with the measured intact mass. The current state of the art does not permit rapid prediction of the mass of putative chloroplast proteins after transit peptide cleavage, and there is no method for predicting the acetylation of the amino terminus that is common for thylakoid-bound proteins.

All the programs that were tested were deficient in one or more of their predictive algorithms, and none adequately predict the transit peptide processing site of the membrane-spanning proteins in the thylakoid. The training dataset used for the neural networks of ChloroP is the only one readily available for examination (www.cbs.dtu.dk/services/ChloroP/pages/datasets.html). This dataset was created by extracting from Swiss-Prot release 35 all entries with an FT line containing the key word “TRANSIT” and description word “CHLOROPLAST.” Entries with a chloroplast transit peptide marked “BY SIMILARITY,” “PROBABLE,” or “POTENTIAL” were removed. The removal of a few mistargeted proteins (91). The removal of thylakoid- and lumen-targeted proteins essentially makes ChloroP a stroma-targeting and processing prediction algorithm (Table VI). Because the thylakoid- and lumen-localized proteins must pass through the chloroplast envelope to the stroma the chloroplast-targeting predictions are correct, but the transit peptide cleavage predictions of ChloroP are only for proteins cleaved by SPP. Thus the ChloroP Web page is somewhat misleading in presenting results of the transit peptide cleavage prediction as the amino terminus for all chloroplast-targeted proteins rather than just the stromal ones.

Our re-examination of the ChloroP dataset (Table VI) shows several problems that are probably common to all such training/testing datasets. Of the 75 proteins in the dataset only 43 (57%) had explicitly determined transit peptide cleavage sites. Nine of the remaining sequences had a cleavage site that should have been labeled in the Swiss-Prot entry “BY SIMILARITY” because the amino terminus indicated in the entry was predicted from an ortholog that had an experimentally verified amino terminus. There were 15 entries where no experimental evidence confirming the cleavage site had been obtained from any plant or algae and where the annotation “POTENTIAL” or “PROBABLE” was omitted. Five more entries that should have had the transit peptide labeled “PROBABLY” have been shown previously by experimental peptide sequence data to be cleaved at a site different from the annotation in the Swiss Protein Database (accession numbers

| TABLE VI |
| Analysis of the teaching dataset used by ChloroP (www.cbs.dtu.dk/services/ChloroP/pages/datasets.html) |

Examination of the ChloroP training dataset
Amino terminus explicitly determined for the Swiss-Prot entry
Amino terminus determined in orthologous protein, “By Similarity” annotation omitted in Swiss-Prot
Amino terminus not experimentally determined, “Probable” or “Potential” omitted in Swiss-Prot
Amino terminus annotation is incorrect in Swiss-Prot when compared to the literature
Amino terminus from translation products imported into heterologous plastids or from transformed E. coli
Total

ChloroP training dataset is biased to proteins targeted to the stroma

Stroma	62
Thylakoid	12
Envelope	1
Lumen	0

ChloroP training dataset is biased towards two species and has a significant number of algal sequences

Streptophyta	62
Spinach	18
Pea	15
Chlorophyta	12
Chlamydomonas reinhardtii	8
Rhodophyta	1
P11893, P17067, P09195, P12360, and P07370). Three of the
five entries listed above had experimental confirmation of the
amino terminus from orthologous proteins published several
years prior to Swiss-Prot release 35 and are still incorrectly
annotated (70, 87, 99). Of the three remaining entries, two
were cleavage sites determined from proteins made in cell-
free extracts and imported into chloroplasts of heterologous
species (Swiss-Prot accession numbers P15102 and
P00873), and one was based on the amino terminus found
after recovery of protein expressed in transgenic Escherichia
coli (Swiss-Prot accession number P12629).

Examples of misannotations include the entries for the
tomato chloroplast biosynthetic threonine dehydratase (Swiss-
Prot accession number P25306), the barley chloroplast pho-
tosystem I reaction center subunit XI (PsaL) (Swiss-Prot
accession number P23993), and the safflower chloroplast
acyl-[acyl-carrier protein] desaturase (Swiss-Prot accession
number P22243). The tomato threonine dehydratase has
Lys104 annotated as the experimentally confirmed amino ter-
minus of the processed preprotein. The work referenced for
this annotation did not include protein sequencing, and the
10-amino acid sequence annotated as the amino-terminal
protein sequence in the Swiss Protein Database was from a
figure where a 10-amino acid sequence was underlined to
indicate the proposed region for the transit peptide cleavage
site (100). The barley PsaL protein is blocked at the amino
terminus of the processed protein, and the annotated amino
acid (Ala34) is from two overlapping peptide sequences at the
amino-proximal end of a peptide map that begins with the
same amino acid. This transit peptide should have been an-
notated as “PROBABLE.” It is not surprising that the gannan-
tuan task of annotating the Swiss Protein Database results in
frequent unclear or misannotated entries. A suggested im-
provement in the Swiss Protein Database would be to link the
“BY SIMILARITY” annotation to the entry to which it is refer-
ing. Although this would not solve the problems encountered
when the annotation is missing, it would greatly speed up the
ability to cross-reference predicted modifications and func-
tional groups. The current situation requires time-consuming,
careful, and diligent confirmation of the annotation of each
entry before attempting to correlate intact protein mass tags
with translated genomic sequence information, especially for
proteins that have amino-terminal trafficking peptides. The
same sort of diligence should also be utilized when creating
software training/testing datasets, thereby minimizing ambi-
guities or errors that decrease confidence in the bioinformat-
ics tools trained/tested with these datasets.

The range of species used in the ChloroP training set is
narrow due to the lack of experimental verification of post-
translational modifications for most proteins (see Table I), and
the dataset is skewed toward proteins from pea and spinach.
The training set also has a significant number of algal se-
quences (Table VI), but algal transit peptides are 32 amino
acids shorter, on average, than those from vascular plants
(103). Where direct comparisons between orthologous pro-
teins are possible, the transit peptide cleavage sites are not
conserved between the algae and vascular plants. It is rea-
sonable that separate training datasets are needed for vas-
cular plants and green algae, as is done in SignalP for the
eukaryotes, Gram-positive bacteria, and Gram-negative bac-
teria. Additionally, it seems reasonable to use separate train-
ingsets for each suborganelar compartment or training sets
for each characterized translocation mechanism. In this way
the training sets would narrow the focus of the neural net-
programs and help to avoid the confusion created by attempt-
ing to find a generalized transit peptide cleavage motif that
may not be universally applicable for all photosynthetic
organisms.

The results in Table V suggest that there may be at least
four proteases in the chloroplast involved in removing transit
peptides: a stromal processing protease, for which the cleav-
age site can be predicted by ChloroP for proteins targeted to
the stroma; a lumen processing protease, for which the cleav-
age site can be predicted by SignalP (eukaryotic) for proteins
imported into the lumen via the Sec or Tat mechanisms; a
thylakoid processing protease, for which the cleavage site is
predicted by SignalP (Grm−) for proteins inserted into the
membrane via the spontaneous mechanism; and a thylakoid
protease, for which no reliable cleavage prediction program
exists for proteins inserted into the membrane via a signal
recognition particle-dependent mechanism. Attempts to iden-
tify common features of either transit peptides or mature
proteins that might be useful for such predictions have thus
far been unfruitful.

Previous proteomic studies of A. thaliana organelles that
tested the trafficking predictions of various predictive pro-
grams (13, 14) are in general agreement with the results we
observe for trafficking. However, because the earlier studies
identified proteins based upon internal sequence or peptide
mass tags, they were unable to assess the cleavage predic-
tion routines. Subsequent studies of luminal proteins in A.
thaliana analyzed the cleavage prediction routines of TargetP
and SignalP (46, 47). Ten proteins overlap between these
studies and ours: six lumen (PsbQVII, PsbQVI+, PsbP, PsaNY,
PsbQV, and PsbQIII with The Institute for Genomic Research
(TIGR) chromosomes locus numbers 14g21280, At4g05180,
At1g06680, At5g64040, At5g66570, and At3g50820, respec-
tively), two stroma (PsaDIV and PsaE IV with TIGR chromo-
sons), two thylakoid-integral (AtpCIV and AtpDIV with TIGR
chromosomes), and one thylakoid-lumen (PsbOIV with TIGR
chromosomes).
chromosome locus numbers At4g04640 and At4g09650, respectively. SignalP was better at predicting the amino terminus of luminal proteins than TargetP (46), which is in agreement with our observations; however, only three (PsbP, PsbO, and PsbO9) of the luminal proteins that overlapped with our study used the correct amino terminus when testing the programs. In contrast, our results agree completely with the experimentally determined amino termini for the oxygen-evolving enzyme proteins in the second study (47).

Integral membrane proteins are predicted to account for at least one third of the open reading frames in the A. thaliana genome (104). The 2D methods currently in use are biased against low abundance proteins (105, 106) and IMPs. However, IMPs with masses up to and exceeding 100,000 Da and containing up to 15 membrane-spanning α-helices have now been successfully characterized by LCMS using intact mass tags (5, 16, 49, 88, 107–111).3 LCMS+ allows us to subject fractions to off-line digestion to generate peptide fragments for mass tag (112–115) and sequence tag (116, 117) experiments to confirm the IMT data (49, 118, 119). Characterizing a protein based upon its intact mass tag allows us to simultaneously determine secondary post-translational modifications for several proteins. LCMS+ is the only method currently available to rapidly determine such modifications for a large number of proteins. Consequently, LCMS+ should be the method of choice for obtaining datasets to train/test predictive bioinformatics tools for trafficking and post-translational processing.

REFERENCES

1. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018
2. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815
3. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921
4. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680–685
5. Whitelegge, J. P., Gundersen, C. B., and Faull, K. F. (1998) Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Protein Sci. 7, 1423–1430
6. Washburn, M. P., Wolters, D., and Yates, J. R., III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247
7. Whitehouse, C. M., Dreyer, R. N., Yamishita, M., and Fenn, J. B. (1985) Electrospray interface for liquid chromatographic and mass spectrometers. Anal. Chem. 57, 675–679
8. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T. (1988) Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153
9. Karas, M., and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301
10. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71
11. Janzen, D. H., and Brown, T. A. (1997) The genome of C. elegans. Science 275, 43–46
12. Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., and Tabata, S. (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6, 283–290
13. Pettler, J.-B., Friso, G., Kalume, D. E., Roepstorff, P., Nilsson, F., Adamska, I., and van Wijk, K. J. (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of luminal and peripheral thylakoid proteins. Plant Cell 12, 319–341
14. Millar, A. H., Sweetlove, L. J., Geige, P., and Leaver, C. J. (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 127, 1711–1727
15. Kufft, V., Eubel, H., Jänsch, L., Werhahn, W., and Braun, H.-P. (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Biol. 127, 1694–1710
16. Gómez, S. M., Nishio, J. N., Faull, K. F., and Whitelegge, J. P. (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol. Cell. Proteomics 1, 46–59
17. Cline, K., and Henry, R. (1996) Import and routing of nucleus-encoded chloroplast proteins. Annu. Rev. Cell Dev. Biol. 12, 1–26
18. Fuku, B., and Schnell, D. J. (1997) Mechanism of protein transport across the chloroplast envelope. Plant Physiol. 114, 405–410
19. Lübeck, J., Heins, L., and Soll, J. (1997) Protein import into chloroplasts. Physiol. Plant. 100, 53–64
20. Heins, L., Collinson, I., and Soll, J. (1998) The proteome of the chloroplast envelope. Trends Plant Sci. 3, 56–61
21. Dalbey, R. E., and Robinson, C. (1999) Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem. Sci. 24, 17–22
22. Robinson, C. Thompson, S. J., and Woolhead, C. (2001) Multiple pathways used for the targeting of thylakoid proteins in chloroplasts. Traffic 2, 245–251
23. Wägeman, K., and Soll, J. (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J. Biol. Chem. 271, 6545–6554
24. Schnell, D. J., Blobel, G., Keggstra, K., Kessler, F., Ko, K., and Soll, J. (1997) A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol. 7, 303–304
25. Mereschkowsky, C. (1910) Theorie der zweiplasamaren als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol. Zentralbl. 30, 278–303, 321–347, 353–367
26. Gooskay, J. (1967) Evolution of eukaryotic cells. Nature 211, 1161
27. Margulis, L. (1970) Origin of Eukaryotic Cells, pp. 276–293, Yale University Press, New Haven, CT
28. Flavell, R. (1972) Mitochondria and chloroplasts as descendants of prokaryotes. Biochem. Genet. 6, 275–291
29. Yuan, J., Henry, R., McCaffery, M., and Cline, K. (1994) SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science 266, 796–798
30. Schuenemann, D., Amin, P., Hartmann, E., and Hoffman, N. E. (1999) Chloroplast SecY is complexed to SecE and involved in the translocation of the 33-kDa, but not the 23-kDa subunit of the oxygen-evolving

3 J. P. Whitelegge and S. J. Karlish, unpublished data.
complex. J. Biol. Chem. 274, 12177–12182
31. Mould, R. M., and Robinson, C. (1991) A proton gradient is required for the transport of two luminal oxygen-evolving proteins across the thylakoid membrane. J. Biol. Chem. 266, 12189–12193
32. Clene, K., Ettinger, W. F., and Tegh, S. (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two luminal proteins are transported in the absence of ATP. J. Biol. Chem. 267, 2688–2696
33. Brink, S., Boscg, E. G., Edwards, W. R., Hynds, P. J., and Robinson, C. (1998) Targeting of thylakoid proteins by the ΔpH-driven twin-arginine translocation pathway requires a specific signal in the hydrophilic domain in conjunction with the twin-arginine motif. FEBS Lett. 434, 425–430
34. Lampma, G. K. (1988) The chlorophyll a/b-binding protein inserts into the thylakoids independent of its cognate transit peptide. J. Biol. Chem. 263, 14996–14999
35. Li, X., Henry, R., Yuan, J., Cline, K., and Hoffman, N. E. (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the post-translational integration of a protein into thylakoid membranes. Proc. Natl. Acad. Sci. U.S.A. 92, 3789–3793
36. Tu, C. J., Schuenemann, D., and Hoffmann, N. E. (1999) Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into the thylakoid membrane. J. Biol. Chem. 274, 27219–27224
37. Kogata, N., Nishio, K., Hirohashi, T., Kikuchi, S., and Nakai, M. (1999) Involvement of a chloroplast homologue of the signal recognition particle receptor protein, FtsY, in protein targeting to thylakoids. FEBS Lett. 429, 329–333
38. Michl, D., Robinson, C., Shackleton, J. B., Herrmann, R. G., and Kösgen, R. B. (1994) Targeting of proteins to the thylakoids by bipartite presequences: CF₁,II is imported by a novel, third pathway. EMBO J. 13, 1310–1317
39. Lorkovic, Z. J., Schröder, W. P., Pakrasi, H. B., Irgang, K.-D., Herrmann, R. G., and Oelmüller, R. (1995) Molecular characterisation of PSII-W, the only nuclear-encoded component of the photosystem II reaction centre. Proc. Natl. Acad. Sci. U.S.A. 92, 8930–8934
40. Robinson, D., Karnaphans, I., Herrmann, R. G., Kösgen, R. B., and Robinson, C. (1996) Protease-sensitive thylakoidial import machinery for the Sec-, ΔpH-, and signal recognition particle-dependent protein targeting pathways, but not for CF₁,II integration. Plant J. 10, 149–155
41. Kim, S. J., Robinson, C., and Mant, A. (1998) Sec/SP-independent insertion of two thylakoid membrane proteins bearing cleavable signal peptides. FEBS Lett. 424, 105–108
42. Tissier, C., Woolhead, C. A., and Robinson, C. (2002) Unique structural determinants in the signal peptides of “spontaneously” inserting thylakoid membrane proteins. Eur. J. Biochem. 269, 3131–3141
43. Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234
44. Kieselbach, T., Hagman, Å., Andersson, B., and Schröder, W. P. (1998) The thylakoid lumen of chloroplasts. J. Biol. Chem. 273, 6710–6716
45. Kieselbach, T., Bystedt, M., Hynds, P., Robinson, C., and Schröder, W. P. (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis thylakoid lumen. FEBS Lett. 480, 271–276
46. Peltier, J.-B., Emanuelsen, O., Kalume, D. E., Ytterberg, J., Frigo, G., Rudella, A., Liberis, D. A., Süderberg, L., Roos, P., von Heijne, G., and Irgang, K.-D. (2002) Central functions of the luminal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14, 211–236
47. Schubert, M., Petersson, U. A., Haas, B. J., Funk, C., Schröder, W. P., and Kieselbach, T. (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J. Biol. Chem. 277, 8354–8363
48. Hippler, M., Klein, J., Fink, A., Allinger, T., and Hoerth, P. (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J. 28, 595–606
49. Whitelegge, J. P., Zhang, H., Aguila, R., Taylor, R. M., and Cramer, W. A. (2002) Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS) of an oligomeric membrane protein: cytochrome b6f complex from spinach and the cyanobacterium M. laminius. Mol. Cell. Proteomics 1, 816–827
50. Hoagland, D. R., and Arnon, D. I. (1950) The water culture method for growing plants without soil. California Agriculture Experiment Station Circular 347, University of California, Berkeley, CA
51. Peter, G. F., and Thornber, J. P. (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J. Biol. Chem. 266, 16745–16754
52. Nishio, J. N., and Whitmarsh, J. (1991) Dissipation of the proton electrochemical potential in intact and lysed chloroplasts. I. The electric potential. Plant Physiol. 95, 522–528
53. Hamas, B., and Glaser, E. (1992) Plant mitochondrial FOF1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase. Eur. J. Biochem. 205, 409–416
54. Hightower, K. E., and McCarty, R. E. (1996) Proteolytic cleavage within a regulatory region of the gamma subunit of chloroplast coupling factor 1. Biochemistry 35, 4846–4851
55. Larsson, K. H., Napier, J. A., and Gray, J. C. (1992) Import and processing of the precursor form of the gamma subunit of the chloroplast ATP synthase from tobacco. Plant Mol. Biol. 19, 343–349
56. Nellesche, J. A., and Bertzborn, R. J. (1990) Cloning and sequencing of a cDNA for the delta-subunit of photosynthetic ATP-synthase (EC 3.6.3.14) from pea (Pisum sativum). Biochim. Biophys. Acta 1171, 201–204
57. Bertzborn, R. J., Finke, W., Otto, J., and Meyer, H. E. (1987) Protein sequence and structure of N-terminal amino acids of subunit delta of spinach photosynthetic ATP-synthase CF₁. Z. Naturforsch. 42, 1231–1238
58. Pfefferkorn, B., and Meyer, H. E. (1986) N-terminal amino acid sequence of the Rieske iron-sulfur protein from the cytochrome b6f-complex of spinach thylakoids. FEBS Lett. 206, 233–237
59. Dunn, P. P. J., Packman, L. C., Pappin, D., and Gray, J. C. (1988) N-terminal amino acid sequence analysis of the subunits of pea photosystem I. FEBS Lett. 228, 157–161
60. Obokata, J., Mikami, K., Hayashida, N., Nakamura, M., and Sugimura, M. (1993) Molecular heterogeneity of photosystem I. psaD, psaE, psaF, psaH and psaL are all present in isoforms in Nicotiana spp. Plant Physiol. 102, 1259–1267
61. Iwasaki, Y., Sasaki, T., and Takabe, T. (1990) Sequencing and expression of the gene that encodes a 20-kDa polypeptide of the PS I complex from cucumber cotyledon. Plant Cell Physiol. 31, 871–879
62. Scheller, H. V., Hoej, P. B., Svendsen, I., and Moeller, B. L. (1988) Partial amino acid sequence of two nuclear-encoded photosystem I polypeptides from barley. Biochim. Biophys. Acta 933, 501–505
63. Obokata, J., Mikami, K., Yamamoto, Y., and Hayashida, N. (1994) Microheterogeneity of PSI-E subunit of photosystem I in Nicotiana sylvestris. Plant Cell Physiol. 35, 203–209
64. Anandan, S., Vainstein, A., and Thornber, J. P. (1989) Correlation of some published amino acid sequences for photosystem I polypeptides to a 17 kDa LHCl pigment-protein and to subunits III and IV of the core complex. FEBS Lett. 256, 150–154
65. Iwasaki, Y., Ishikawa, H., Hibiino, T., and Takabe, T. (1991) Characterization of genes that encode subunits of cucumber PS I complex by N-terminal sequencing. Biochim. Biophys. Acta 1039, 141–148
66. Oikkelä, J. S., Scheller, H. V., Jepsen, L. B., and Moeller, B. L. (1989) A cDNA clone encoding the precursor for a 10.2 kDa photosystem I polypeptide of barley. FEBS Lett. 250, 575–579
67. Ikeuchi, M., Hirano, A., and Inoue, Y. (1991) Correspondence or appropi-
Thylakoid Membrane Transplant Peptide Cleavage Sites

development in barley (Hordeum vulgare). Studies using cDNA clones of the 21- and 20-kilodalton LHC I apoproteins. Plant Physiol. 101, 227–236

71. Yamamoto, Y., Hermodson, M. A., and Kroghmann, D. W. (1986) Improved purification and N-terminal sequence of the 33-kDa protein in spinach PS II. FEBS Lett. 195, 155–158

72. Oh-Oka, H., Tanaka, S., Wada, K., Kuvabara, T., and Murata, N. (1986) Complete amino acid sequence of 33 kDa protein isolated from spinach photosystem II particles. FEBS Lett. 197, 63–66

73. Murata, N., Kajiura, H., Fujimura, Y., Miyao, M., Murata, T., Watanabe, A., and Shinozaki, K. (1987) In Progress in Photosynthesis Research (Bolhuis, J. M. ed) Vol. 1, pp. 701–704, Martinus Nijhoff Publishers, Dordrecht, The Netherlands

74. Costa, P., Pionneau, C., Bauw, G., Dubos, C., Bahman, N., Kremer, A., Frigerio, J.-M., and Plomion, C. (1999) Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis 20, 1098–1108

75. Takahashi, H., Ehara, Y., and Hirano, H. (1991) A protein in the oxygen-evolving complex in the chloroplast membrane with symptom expression on tobacco leaves infected with cucumber mosaic virus strain Y. Plant Mol. Biol. 16, 689–698

76. Kuvabara, T., Murata, T., Miyao, M., and Murata, N. (1986) Partial degradation of the 18-kDa protein of the photosynthetic oxygen-evolving complex: a study of a binding site. Biochim. Biophys. Acta 850, 146–155

77. Schröder, W. P., Hennysson, T., and Akerlund, H.-E. (1988) Characterization of low molecular mass proteins of photosystem II by N-terminal sequencing. FEBS Lett. 235, 289–292

78. Soncini, F. C., and Vallejos, R. H. (1989) The chloroplast reductase-binding protein is identical to the 16.5-kDa polypeptide described as a component of the oxygen-evolving complex. J. Biol. Chem. 264, 21112–21115

79. Lautner, A., Klein, R., Ljungberg, U., Reilaender, H., Bartling, D., Andersson, B., Reinke, H., Beyreuther, K., and Herrmann, R. G. (1988) Nucleotide sequence of cDNA clones encoding the complete precursor for the “10-kDa” polypeptide of photosystem II from spinach. J. Biol. Chem. 263, 10077–10081

80. Webber, A. N., Packman, L. C., and Gray, J. C. (1989) A 10 kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal non-cleavable thylakoid transfer domain. FEBS Lett. 242, 435–438

81. Ikeuchi, M., Takio, K., and Inoue, Y. (1989) N-terminal sequencing of photosystem II low-molecular-mass proteins. S and 4.1 kDa components of the O2-evolving complex from higher plants. FEBS Lett. 242, 263–269

82. Zheleva, D., Sharma, J., Panico, M., Morris, H. R., and Barber, J. (1998) Identification of spinach photosystem II light-harvesting components. Photosynth. Res. 59, 159–173

83. Clauser, K. R., Baker, P. R., and Burlingame, A. L. (1999) Role of accurate mass measurement (10–10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882

84. Zolla, L., Timperio, A.-M., and Zolla, L. (2001) Isolamemtation of spinach chloroplast photosystem II antenna proteins using high accuracy mass spectrometry. Biochim. Biophys. Acta 1541, 236–242

85. Claros, M. G., and Vincens, P. (1996) Computational method to predict mitochondrial imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786

86. Webber, A. N., Packman, L. C., and Gray, J. C. (1989) Detection of calcium binding by the 21- and 20-kilodalton LHC I apoproteins. Progress in Photosynthesis Research – EVOLVING COMPLEX IN THE CHLOROPLAST IS ASSOCIATED WITH SYMPTOM EXPRESSION ON TOBACCO LEAVES INFECTED WITH CUCUMBER MOSAIC VIRUS STRAIN Y. PLANT MOLEC. CELL PROTEOMICS 2.10

87. Soncini, F. C., and Vallejos, R. H. (1989) The chloroplast reductase-binding protein is identical to the 16.5-kDa polypeptide described as a component of the oxygen-evolving complex. J. Biol. Chem. 264, 21112–21115

88. Huber, C. G., Timperio, A.-M., and Zolla, L. (2001) Isolamemtation of spinach chloroplast photosystem II antenna proteins in different plant species revealed by liquid chromatography-electrospray ionization mass spectrometry. J. Biol. Chem. 276, 45755–45761

89. Ouellette, A. J. A., and Barry, B. A. (2002) Tandem mass spectrometric identification of spinach photosystem II light-harvesting components. Photosynth. Res. 72, 159–173

90. Clauser, K. R., Baker, P. R., and Burlingame, A. L. (1999) Role of accurate mass measurement (10–10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882

91. Emanuelli, O., Nielsen, H., and van Heijne, G. (1999) ChloR®: a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984

92. Zolla, L., Timperio, A.-M., and Zolla, L. (2001) Isolamemtation of spinach chloroplast photosystem II antenna proteins using high accuracy mass spectrometry. Biochim. Biophys. Acta 1541, 236–242

93. Turk, E., Kim, O., Le Coutre, J., Whitelegge, J. P., Gross, A., Turk, E., Wright, E. M., Kakabcak, H. R., and Faull, K. F. (2000) Proteomics on full-length membrane proteins using mass spectrometry. Biochimica et Biophysica Acta 1457, 4237–4242

94. Turk, E., Kim, O., Le Coutre, J., Whitelegge, J. P., Eskandari, S., Lam, J. T., Kreman, K., Zampiglia, G., Faull, K. F., and Wright, E. M. (2000) Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J. Biol. Chem. 275, 25711–25716

95. Coradini, D., Huber, C. G., Timperio, A.-M., and Zolla, L. (2005) Resolution and identification of the protein components of the photosystem II antenna system of higher plants by reversed-phase liquid chromatography with electrospray-mass spectrometric detection. J. Chromatogr. A 1086, 111–121
111. Zolla, L., and Timperio, A. M. (2000) High performance liquid chromatography-electrospray mass spectrometry for the simultaneous resolution and identification of intrinsic thylakoid membrane proteins. *Proteins* **41**, 398–406

112. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. *Proc. Natl. Acad. Sci. U. S. A.* **90**, 5011–5015

113. James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1993) Protein identification by mass profile fingerprinting. *Biochem. Biophys. Res. Commun.* **195**, 58–64

114. Mann, M., Hojrup, P., and Roepstorff, P. (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. *Biol. Mass Spectrom.* **22**, 338–345

115. Yates, J. R., III, Speicher, S., Griffin, P. R., and Hunkapiller, T. (1993) Peptide mass maps: a highly informative approach to protein identification. *Anal. Chem.* **214**, 397–408

116. Yates, J. R., III, Eng, J. K., and McCormack, A. L. (1995) Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. *Anal. Chem.* **67**, 3202–3210

117. Dongre, A. R., Eng, J. K., and Yates, J. R., III (1997) Emerging tandem-mass-spectrometry techniques for the rapid identification of proteins. *Trends Biotechnol.* **15**, 418–425

118. Zhang, H., Whitelegge, J. P., and Cramer, W. A. (2001) Ferredoxin:NADP⁺ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. *J. Biol. Chem.* **276**, 38159–38165

119. Whitelegge, J. P., Gómez, S. M., Aguilera, R., Roberson, R. W., Vermaas, V. F., Crother, T. R., Champion, C. I., Nally, J. E., Blanco, D. R., Lovett, M. A., Miller, J. N., and Faull, K. F. (2002) Identification of proteins and intact mass measurements in proteomics. *Appl. Genomics Proteomics* **1**, 13–22