Tiling and spectral properties of near-cubic domains

Mihail N. Kolountzakis and Izabella Laba

November 14, 2018

1 Introduction

Let E be a measurable set in \mathbb{R}^n such that $0 < |E| < \infty$. We will say that E tiles \mathbb{R}^n by translations if there is a discrete set $T \subset \mathbb{R}^n$ such that, up to sets of measure 0, the sets $E + t : t \in T$ are mutually disjoint and $\bigcup_{t \in T} (E + t) = \mathbb{R}^n$. We call any such T a translation set for E, and write $E + T = \mathbb{R}^n$. A tiling $E + T = \mathbb{R}^n$ is called periodic if it admits a period lattice of rank n; it is a lattice tiling if T itself is a lattice. Here and below, a lattice in \mathbb{R}^n will always be a set of the form $T\mathbb{Z}^n$, where T is a linear transformation of rank n.

It is known [19], [18] that if a convex set E tiles \mathbb{R}^n by translations, it also admits a lattice tiling. A natural question is whether a similar result holds if E is “sufficiently close” to being convex, e.g. if it is close enough (in an appropriate sense) to a n-dimensional cube. In this paper we prove that this is indeed so in dimensions 1 and 2; we also construct a counterexample in dimensions $n \geq 3$.

A major unresolved problem in the mathematical theory of tilings is the periodic tiling conjecture, which asserts that any E which tiles \mathbb{R}^n by translations must also admit a periodic tiling. (See [3] for an overview of this and other related questions.) The conjecture has been proved for all bounded measurable subsets of \mathbb{R} [14], [12] and for topological discs in \mathbb{R}^2 [2], [8]. Our Theorem 2 and Corollary 1 prove the conjecture for near-square domains in \mathbb{R}^2. We emphasize that no assumptions on the topology of E are needed; in particular, E is not required to be connected and may have infinitely many connected components.

Our work was also motivated in part by a conjecture of Fuglede [1]. We call a set E spectral if there is a discrete set $\Lambda \subset \mathbb{R}^n$, which we call a spectrum for E, such that $\{e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda\}$ is an orthogonal basis for $L^2(E)$. Fuglede conjectured that E is spectral if and only if it tiles \mathbb{R}^n by translations, and proved it under the assumption that either the translation set T or the spectrum Λ is a lattice. This problem was addressed in many recent papers (see e.g. [4], [7], [10], [13], [14], [15], [16], [17]), and in particular the conjecture has been proved for convex regions in \mathbb{R}^2 [3], [5], [3].

It follows from our Theorem 1 and from Fuglede’s theorem that the conjecture is true for $E \subset \mathbb{R}$ such that E is contained in an interval of length strictly less than $3|E|/2$. (This was proved in [15] in the special case when E is a union of finitely many intervals of equal length.) In dimension 2, we obtain the “tiling \Rightarrow spectrum” part of the conjecture for near-square domains. Namely, if $E \subset \mathbb{R}^2$ tiles \mathbb{R}^2 and satisfies the assumptions of Theorem 2 or Corollary 1, it also admits a lattice tiling, hence it is a spectral set by Fuglede’s theorem on the lattice case of his conjecture. We do not know how to prove the converse implication.

Our main results are the following.
Theorem 1 Suppose $E \subseteq [0, L]$ is measurable with measure 1 and $L = 3/2 - \epsilon$ for some $\epsilon > 0$. Let $\Lambda \subset \mathbb{R}$ be a discrete set containing 0. Then
(a) if $E + \Lambda = \mathbb{R}$ is a tiling, it follows that $\Lambda = \mathbb{Z}$.
(b) if Λ is a spectrum of E, it follows that $\Lambda = \mathbb{Z}$.

The upper bound $L < 3/2$ in Theorem 1 is optimal: the set $[0, 1/2] \cup [1, 3/2]$ is contained in an interval of length $3/2$, tiles \mathbb{Z} with the translation set $\{0, 1/2\} + 2\mathbb{Z}$, and has the spectrum $\{0, 1/2\} + 2\mathbb{Z}$, but does not have either a lattice translation set or a lattice spectrum. This example has been known to many authors; an explicit calculation of the spectrum is given e.g. in [14].

Theorem 2 Let $E \subset \mathbb{R}^2$ be a measurable set such that $[0, 1]^2 \subset E \subset [-\epsilon, 1 + \epsilon]^2$ for $\epsilon > 0$ small enough. Assume that E tiles \mathbb{R}^2 by translations. Then E also admits a tiling with a lattice $\Lambda \subset \mathbb{R}^2$ as the translation set.

Our proof works for $\epsilon < 1/33$; we do not know what is the optimal upper bound for ϵ.

![Figure 1: Examples of near-square regions which tile \mathbb{R}^2. Note that the second region also admits aperiodic (hence non-lattice) tilings.](image)

Corollary 1 Let $E \subset \mathbb{R}^2$ be a measurable set such that $|E| = 1$ and E is contained in a square of sidelength $1 + \epsilon$ for $\epsilon > 0$ small enough. If E tiles \mathbb{R}^2 by translations, then it also admits a lattice tiling.

Theorem 3 Let $n \geq 3$. Then for any $\epsilon > 0$ there is a set $E \subset \mathbb{R}^n$ with $[0, 1]^n \subset E \subset [-\epsilon, 1 + \epsilon]^n$ such that E tiles \mathbb{R}^n by translations, but does not admit a lattice tiling.

2 The one-dimensional case

In this section we prove Theorem 1. We shall need the following crucial lemma.

Lemma 1 Suppose that $E \subseteq [0, L]$ is measurable with measure 1 and that $L = 3/2 - \epsilon$ for some $\epsilon > 0$. Then

$$|E \cap (E + x)| > 0 \quad \text{whenever } 0 \leq x < 1.$$ \hfill (1)
Proof of Lemma 1. We distinguish the cases (i) $0 \leq x \leq 1/2$, (ii) $1/2 < x \leq 3/4$ and (iii) $3/4 < x < 1$.

(i) $0 \leq x \leq 1/2$

This is the easy case as $E \cup (E + x) \subseteq [0, L + 1/2] = [0, 2 - \epsilon]$. Since this interval has length less than 2, the sets E and $E + x$ must intersect in positive measure.

(ii) $1/2 < x \leq 3/4$

Let $x = 1/2 + \alpha$, $0 < \alpha \leq 1/4$. Suppose that $|E \cap (E + x)| = 0$. Then $1 + 2\alpha \leq 3/2$ and $|(E \cap [0, x]) \cup (E \cap [x, 2x])| \leq x$, as the second set does not intersect the first when shifted back by x. This implies that $|E| \leq x + (3/2 - \epsilon - 2x) = 3/2 - \epsilon - x = 1 - \epsilon - \alpha < 1$, a contradiction as $|E| = 1$.

(iii) $3/4 \leq x < 1$

Let $x = 3/4 + \alpha$, $0 < \alpha < 1/4$. Suppose that $|E \cap (E + x)| = 0$. Then $|(E \cap [0, 3/4 - \alpha - \epsilon]) \cup (E \cap [3/4 + \alpha, 3/2 - \epsilon])| \leq 3/4 - \alpha - \epsilon$, for the second set translated to the left by x does not intersect the first. This implies that $|E| \leq (3/4 - \alpha - \epsilon) + 2\alpha + \epsilon = 3/4 + \alpha < 1$, a contradiction.

We need to introduce some terminology. If f is a nonnegative integrable function on \mathbb{R}^d and Λ is a subset of \mathbb{R}^d, we say that $f + \Lambda$ is a packing if, almost everywhere,

$$\sum_{\lambda \in \Lambda} f(x - \lambda) \leq 1. \quad (2)$$

We say that $f + \Lambda$ is a tiling if equality holds almost everywhere. When $f = \chi_E$ is the indicator function of a measurable set, this definition coincides with the classical geometric notions of packing and tiling.

We shall need the following theorem from \[10\].

Theorem 4 If $f, g \geq 0$, $\int f(x)dx = \int g(x)dx = 1$ and both $f + \Lambda$ and $g + \Lambda$ are packings of \mathbb{R}^d, then $f + \Lambda$ is a tiling if and only if $g + \Lambda$ is a tiling.

Proof of Theorem 4. (a) Suppose $E + \Lambda$ is a tiling. From Lemma 1 it follows that any two elements of Λ differ by at least 1. This implies that $\chi_{[0,1]} + \Lambda$ is a packing, hence it is also a tiling by Theorem 1. Since $0 \in \Lambda$, we have $\Lambda = \mathbb{Z}$.

(b) Suppose that Λ is a spectrum of E. Write

$$\delta_\Lambda = \sum_{\lambda \in \Lambda} \delta_\lambda$$

3
for the measure of one unit mass at each point of \(\Lambda \). Our assumption that \(\Lambda \) is a spectrum for \(E \) implies that
\[
|\hat{\chi}_E|^2 + \Lambda = \mathbb{R}
\]
is a tiling (see, for example, [10]). This, in turn, implies that \(\text{dens } \Lambda = 1 \).

We now use the following result from [10]:

Theorem 5 Suppose that \(f \geq 0 \) is not identically 0, that \(f \in L^1(\mathbb{R}^d) \), \(\hat{f} \geq 0 \) has compact support and \(\Lambda \subset \mathbb{R}^d \). If \(f + \Lambda \) is a tiling then
\[
\text{supp } \hat{\delta}_\Lambda \subseteq \{ \hat{f} = 0 \} \cup \{0\}. \tag{3}
\]

Let us emphasize here that the object \(\hat{\delta}_\Lambda \), the Fourier Transform of the tempered measure \(\delta_\Lambda \), is in general a tempered distribution and need not be a measure.

For \(f = |\chi_E|^2 \) Theorem 5 implies
\[
\text{supp } \hat{\delta}_\Lambda \subseteq \{0\} \cup \{\chi_E * \hat{\chi}_E = 0\}, \tag{4}
\]
since \(\chi_E * \hat{\chi}_E \) is the Fourier transform of \(|\chi_E|^2 \) (where \(\hat{g}(x) = \overline{g(-x)} \)). But
\[
\{\chi_E * \hat{\chi}_E = 0\} = \{x : |E \cap (E + x)| = 0\}.
\]
This and Lemma [1] imply that
\[
\text{supp } \hat{\delta}_\Lambda \cap (-1,1) = \{0\}. \tag{5}
\]

Let
\[
K_\delta(x) = \max \{0, 1 - (1 + \delta)|x|\} = (1 + \delta)\chi_{I_\delta} * \hat{\chi}_{I_\delta}(x),
\]
where \(I_\delta = [0, \frac{1}{1+\delta}] \), be a Fejér kernel (we will later take \(\delta \to 0 \)). Then \(\hat{K}_\delta = (1 + \delta)|\chi_{I_\delta}|^2 \) is a non-negative continuous function and, after calculating \(\hat{\chi}_{I_\delta} \), it follows that
\[
\hat{K}_\delta(0) = \frac{1}{1 + \delta}
\]
and
\[
\{x : \hat{K}_\delta(x) = 0\} = (1 + \delta)(\mathbb{Z} \setminus \{0\}). \tag{5}
\]

Next, we use the following result from [11]:

Theorem 6 Suppose that \(\Lambda \in \mathbb{R}^d \) is a multiset with density \(\rho \), \(\delta_\Lambda = \sum_{\lambda \in \Lambda} \delta_\lambda \), and that \(\hat{\delta}_\Lambda \) is a measure in a neighborhood of 0. Then \(\hat{\delta}_\Lambda(\{0\}) = \rho \).

Remark. The proof of Theorem [11] shows that the assumption of \(\hat{\delta}_\Lambda \) being a measure in a neighborhood of zero is superfluous, if one knows a priori that \(\hat{\delta}_\Lambda \) is supported only at zero, in a neighborhood of zero. Indeed, what is shown in that proof is that, as \(t \to \infty \), the quantity \(\hat{\delta}_\Lambda(\phi(tx)) \) remains bounded, for any \(C_c^\infty \) test function \(\phi \). If \(\hat{\delta}_\Lambda \) were not a measure near 0 but had support only at 0, locally, this quantity would grow like a polynomial in \(t \) of degree equal to the degree of the distribution at 0.
Applying Theorem 3 and the remark following it we obtain that \(\hat{\delta}_A \) is equal to \(\delta_0 \) in a neighborhood of 0, since \(\Lambda \) has density 1.

Next, we claim that

\[\sum_{\lambda \in \Lambda} \hat{K}_\delta(x - \lambda) = 1, \quad \text{for a.e. } x. \]

Indeed, take \(\psi_\epsilon \) to be a smooth, positive-definite approximate identity, supported in \((-\epsilon, \epsilon) \), and take \(\epsilon = \epsilon(\delta) \) to be small enough so that \(\text{supp} \psi_\epsilon \ast K_\delta \subset (-1,1) \). We have then

\[
\begin{align*}
\sum_{\lambda \in \Lambda} \hat{K}_\delta(x - \lambda) &= \lim_{\epsilon \to 0} \sum_{\lambda \in \Lambda} \hat{\psi}_\epsilon(x - \lambda) \hat{K}_\delta(x - \lambda) \\
&= \lim_{\epsilon \to 0} \delta_\Lambda \left((\hat{\psi}_\epsilon \hat{K}_\delta)(x) \right) \\
&= \lim_{\epsilon \to 0} \hat{\delta}_\Lambda \left((\psi_\epsilon \ast K_\delta)(x) \right) \\
&= \lim_{\epsilon \to 0} \delta_0 \left((\psi_\epsilon \ast K_\delta)(x) \right) \quad \text{(for } \epsilon \text{ small enough)} \\
&= \lim_{\epsilon \to 0} \psi_\epsilon \ast K_\delta(0) \\
&= K_\delta(0) \\
&= 1,
\end{align*}
\]

which establishes the claim. Applying this for \(x \to 0 \) and isolating the term \(\lambda = 0 \) we get

\[
1 = \frac{1}{1 + \delta} + \sum_{0 \neq \lambda \in \Lambda} \hat{K}_\delta(-\lambda).
\]

Letting \(\delta \to 0 \) we obtain that \(\hat{K}_\delta(-\lambda) \to 0 \) for each \(\lambda \in \Lambda \setminus \{0\} \), which implies that each such \(\lambda \) is an integer, as \(\mathbb{Z} \setminus \{0\} \) is the limiting set of the zeros of \(\hat{K}_\delta \).

To get that \(\Lambda = \mathbb{Z} \) notice that \(\chi_{[0,1]} + \Lambda \) is a packing. By Theorem 3 again we get that \(\chi_{[0,1]} + \Lambda \) is in fact a tiling, hence \(\Lambda = \mathbb{Z} \).

\[\square \]

3 Planar regions

Proof of Theorem 2 We denote the coordinates in \(\mathbb{R}^2 \) by \((x_1, x_2) \). For \(0 \leq a \leq b \leq 1 \) we will denote

\[
\begin{align*}
E_1(a,b) &= (E \cap \{a \leq x_1 \leq b, \ x_2 \leq 0\}) \cup \{a \leq x_1 \leq b, \ x_2 \geq 0\}; \\
E_2(a,b) &= (E \cap \{a \leq x_1 \leq b, \ x_2 \geq 0\}) \cup \{a \leq x_1 \leq b, \ x_2 \leq 0\}; \\
F_1(a,b) &= (E \cap \{a \leq x_1 \leq b, \ x_1 \leq 0\}) \cup \{a \leq x_2 \leq b, \ x_1 \geq 0\}; \\
F_2(a,b) &= (E \cap \{a \leq x_2 \leq b, \ x_1 \geq 0\}) \cup \{a \leq x_2 \leq b, \ x_1 \leq 0\}.
\end{align*}
\]

We will also use \(S_{a,b} \) to denote the vertical strip \([a,b] \times \mathbb{R}\). Let \(v = (v_1, v_2) \in \mathbb{R}^2 \). We will say that \(E_2(a,b) \) complements \(E_1(a',b') + v \) if \(E_1(a',b') + v \) is positioned above \(E_2(a,b) \) so that (up to sets of measure 0) the two sets are disjoint and their union is \(S_{a,b} \). In particular, we must have \(a' + v_1 = a \) and \(b' + v_1 = b \). We will write \(\tilde{E}_1(a,b) = S_{a,b} \setminus E_1(a,b) \), and similarly for \(E_2 \). Finally, we write \(A \sim B \) if the sets \(A \) and \(B \) are equal up to sets of measure 0.
Lemma 2 Let $0 < s'' < s' < s < 2s''$. Suppose that $E_1(a, a + s) + v$, $E_1(a, a + s') + v'$, $E_1(a, a + s'') + v''$ complement $E_2(b - s, b)$, $E_2(b - s', b)$, $E_2(b - s'', b)$ respectively. Then the points v, v', v'' are collinear. Moreover, the absolute value of the slope of the line through v, v'' is bounded by $c(2s'' - s)^{-1}$.

Applying the lemma to the symmetric reflection of E about the line $x_2 = 1/2$, we find that the conclusions of the lemma also hold if we assume that $E_2(a, a + s) + v$, $E_2(a, a + s') + v'$, $E_2(a, a + s'') + v''$ complement $E_1(b - s, b)$, $E_1(b - s', b)$, $E_1(b - s'', b)$ respectively. Furthermore, we may interchange the x_1 and x_2 coordinates and obtain the analogue of the lemma with E_1, E_2 replaced by F_1, F_2.

Proof of Lemma 2. Let $v = (v_1, v_2)$, $v' = (v'_1, v'_2)$, $v'' = (v''_1, v''_2)$. We first observe that if $v_1 = v''_1$, it follows from the assumptions that $v = v''$ and there is nothing to prove. We may therefore assume that $v_1 = v''_1$. We do, however, allow $v' = v$ or $v' = v''$.

It follows from the assumptions that $E_2(b - s', b)$ complements each of $E_1(a, a + s'') + v''$, $E_1(a + s' - s'', a + s') + v'$, $E_1(a + s - s'', a + s) + v$. Hence

$$E_1(a + s' - s'', a + s') \sim E_1(a, a + s'') + (v'' - v'),$$

$$E_1(a + s - s'', a + s) \sim E_1(a, a + s'') + (v'' - v).$$

Let n be the unit vector perpendicular to $v - v''$ and such that $n_2 > 0$. For $t \in \mathbb{R}$, let $P_t = \{x : x \cdot n \leq t\}$. We define for $0 \leq c \leq c' \leq 1$:

$$\alpha_{c,c'} = \inf\{t \in \mathbb{R} : |E_1(c, c') \cap P_t| > 0\},$$

$$\beta_{c,c'} = \sup\{t \in \mathbb{R} : |\overline{E_1(c, c')} \setminus P_t| > 0\}.$$

We will say that x is a low point of $E_1(c, c')$ if $x \in S_{c,c'}$, $x \cdot n = \alpha_{c,c'}$, and for any open disc D centered at x we have

$$|D \cap E_1(c, c')| > 0.$$

Similarly, we call y a high point of $\overline{E_1(c, c')} \setminus P_t$ if $y \in S_{c,c'}$, $y \cdot n = \beta_{c,c'}$, and for any open disc D centered at y we have

$$|D \cap \overline{E_1(c, c')}| > 0.$$

It is easy to see that such points x, y actually exist. Indeed, by the definition of $\alpha_{c,c'}$ and an obvious covering argument, for any $\alpha > \alpha_{c,c'}$ there are points $x' \cdot n \leq \alpha$ and that holds for any disc D centered at x'. Thus the set of such points x' has at least one accumulation point x on the line $x \cdot n = \alpha_{c,c'}$. It follows that any such x is a low point of $E_1(c, c')$. The same argument works for y.

The low and high points need not be unique; however, all low points x of $E_1(c, c')$ lie on the same line $x \cdot n = \alpha_{c,c'}$ parallel to the vector $v - v''$, and similarly for high points. Furthermore, the low and high points of $E_1(c, c')$ do not change if $E_1(c, c')$ is modified by a set of measure 0.

Let now $A = E_1(a, a + s'')$, and let x be a low point of A. Since $s < 2s''$, we have

$$B := E_1(a, a + s) = E_1(a, a + s') \cup E_1(a + s - s'', a + s) \sim A \cup (A + v'' - v),$$

hence x is also a low point of B with respect to $v - v''$. Now note that

$$E_1(a + s' - s'', a + s') \sim A + (v'' - v')$$
intersects any open neighbourhood of \(x + (v'' - v') \) in positive measure. But on the other hand, \(E_1(a + s' - s'', a + s') \subset B \). By the extremality of \(x \) in \(B \), \(x + (v'' - v') \) lies on or above the line segment joining \(x \) and \(x + (v'' - v) \), hence \(v'' - v' \) lies on or above the line segment joining \(0 \) and \(v'' - v \).

Repeating the argument in the last paragraph with \(x \) replaced by a high point \(y \) of \(\tilde{E}_1(a, a + s'') \), we obtain that \(v'' - v' \) lies on or below the line segment joining \(0 \) and \(v'' - v \). Hence \(v, v', v'' \) are collinear.

Finally, we estimate the slope of the line through \(v, v'' \). We have to prove that
\[
\frac{2s'' - s}{s - s''} |v''_2 - v_2| \leq \epsilon
\]
(recall that \(v''_1 - v_1 = s - s'' \)). Define \(x \) as above, and let \(k \in \mathbb{Z} \). Iterating translations by \(v - v'' \) (in both directions), we find that \(x + k(v - v'') \) is a low point of \(B \) as long as it belongs to \(B \), i.e.
as long as
\[
a \leq x_1 + k(s - s'') \leq a + s.
\]
The number of such \(k \)'s is at least \(\frac{s}{s - s''} - 1 \). On the other hand, all low points of \(B \) lie in the rectangle \(a \leq x_1 \leq a + s, -\epsilon \leq x_2 \leq 0 \). Hence
\[
\left(\frac{s}{s - s''} - 2 \right) |v''_2 - v_2| \leq \epsilon,
\]
which is (8). □

We return to the proof of Theorem 3. Since \(E \) is almost a square, we know roughly how the translates of \(E \) can fit together. Locally, any tiling by \(E \) is essentially a tiling by a “solid” \(1 \times 1 \) square with “margins” of width between 0 and \(2\epsilon \) (see Fig. 2).

We first locate a “corner”. Namely, we may assume that the tiling contains \(E \) and its translates \(E + u, E + v \), where
\[
1 \leq u_1 \leq 1 + 2\epsilon, \quad -2\epsilon \leq u_2 \leq 2\epsilon, \quad (9)
\]
\[
0 \leq v_1 \leq \frac{1}{2} + \epsilon, \quad 1 \leq v_2 \leq 1 + 2\epsilon. \quad (10)
\]
This can always be achieved by translating the tiled plane and taking symmetric reflections of it if necessary.

Let \(E + w \) be the translate of \(E \) which fits into this corner:
\[
v_1 + 1 \leq w_1 \leq v_1 + 1 + 2\epsilon, \quad u_2 + 1 \leq w_2 \leq u_2 + 1 + 2\epsilon. \quad (11)
\]
We will prove that \(w = u + v \) (without the \(\epsilon \)-errors).

From (11), (9), (10) we have
\[
1 \leq w_1 \leq \frac{3}{2} + 3\epsilon, \quad -4\epsilon \leq w_2 - v_2 \leq 4\epsilon.
\]
Hence \(w \) satisfies both of the following.
Figure 2: A “corner” and a fourth near-square.

(A) $E_2(0, 1 - (w_1 - u_1))$ complements $E_1(w_1 - u_1, 1) + (w - u)$, and

$$1 - (w_1 - u_1) = 1 - w_1 + u_1 \geq 1 + 1 - \left(\frac{3}{2} + 3\epsilon\right) = \frac{1}{2} - 3\epsilon,$$

$$|(w_1 - u_1) - v_1| = |(w_1 - v_1) - u_1| \leq 2\epsilon.$$

(B) $-4\epsilon \leq w_2 - v_2 \leq 4\epsilon$, and $F_2(r, t)$ complements $F_1(r', t') + (w - v)$, where

$$r = \max(0, w_2 - v_2), \quad r' = \max(0, v_2 - w_2),$$

$$t = 1 - \max(0, v_2 - w_2), \quad t' = 1 - \max(0, w_2 - v_2).$$

If $w = u + v$, we have $w - u = v$, $w - v = u$, hence by considering the “corner” $E, E + u, E + v$ we see that both (A) and (B) hold. Assuming that ϵ is small enough, we shall prove that:

1. All points w satisfying (A) lie on a fixed straight line l_1 making an angle less than $\pi/4$ with the x_1 axis.

2. All points w satisfying (B) lie on a fixed straight line l_2 making an angle at most $\pi/4$ with the x_2 axis.

It follows that there can be at most one w which satisfies both (A) and (B), since l_1 and l_2 intersect only at one point. Consequently, if $E + w$ is the translate of E chosen as above, we must have $w = u + v$. Now it is easy to see that $E + \Lambda$ is a tiling, where Λ is the lattice $\{ku + mv : k, m \in \mathbb{Z}\}$.

We first prove 1. Suppose that w, w', w'', \ldots (not necessarily all distinct) satisfy (A). By the assumptions in (A), we may apply Lemma 2 with E_1 and E_2 interchanged and with $a = 0, b = 1, s = 1 - (w_1 - u_1), s' = 1 - (w'_1 - u_1), \ldots \geq \frac{1}{2} - 3\epsilon$. From the second inequality in (A) and the triangle inequality we also have $|s - s''| \leq 4\epsilon$. We find that all w satisfying (A) lie on a line l_1 with slope bounded by

$$\frac{\epsilon}{2s'' - s} \leq \frac{\epsilon}{s'' - |s'' - s|} \leq \frac{\epsilon}{1/2 - 7\epsilon},$$

which is less than 1 if $\epsilon < 1/16$.

To prove 2., we let \(w, w', w'' \) be three (not necessarily distinct) points satisfying (B) and such that \(w_2 \leq w_2' \leq w_2'' \). We then apply the obvious analogue of Lemma \(\text{\ref{lemma:property}} \) with \(E_1, E_2 \) replaced by \(F_1, F_2 \) and with \(a = \max(v_2 - w_2, 0) \leq 4\epsilon, b = 1 - \max(v_2 - w_2) \geq 1 - 4\epsilon \). From the estimates in (B) we have \(1 - 16\epsilon \leq s, s', s'' \leq 1, \) hence \(|2s'' - s| \geq 2 - 32\epsilon - 1 = 1 - 32\epsilon \). We conclude that all \(w \) satisfying (B) lie on a line \(l_2 \) such that the inverse of the absolute value of its slope is bounded by \(\frac{1}{1 - 32\epsilon} \). This is at most 1 if \(\epsilon \leq 1/33 \).

\[\Box \]

Proof of Corollary \(\text{\ref{corollary}} \). Let \(Q = [0,1] \times [0,1] \). By rescaling, it suffices to prove that for any \(\epsilon > 0 \) there is a \(\delta > 0 \) such that if \(E \subset Q, E \) tiles \(\mathbb{R}^2 \) by translations, and \(|E| \geq 1 - \delta, \) then \(E \) contains the square \(Q_\epsilon = [\epsilon, 1 - \epsilon] \times [\epsilon, 1 - \epsilon] \) (up to sets of measure 0). The result then follows from Theorem \(\text{\ref{theorem:main}} \).

Let \(E \) be as above, and suppose that \(Q_\epsilon \setminus E \) has positive measure. Since \(E \) tiles \(\mathbb{R}^2 \), there is a \(v \in \mathbb{R}^2 \) such that \(|E \cap (E + v)| = 0 \) and \(|Q_\epsilon \cap (E + v)| > 0 \). We then have

\[|E \cup (E + v)| = |E| + |E + v| \geq 2 - 2\delta, \]

but also

\[|E \cup (E + v)| \leq |Q \cup (Q + v)| \leq 2 - \epsilon^2, \]

since \(E \subset Q, E + v \subset Q + v, \) and \(Q_\epsilon \cap (Q + v) \neq \emptyset \) so that \(|Q \cap (Q + v)| \geq \epsilon^2 \). This is a contradiction if \(\delta \) is small enough.

\[\Box \]

4 A counterexample in higher dimensions

In this section we prove Theorem \(\text{\ref{theorem:counterexample}} \). It suffices to construct \(E \) for \(n = 3 \), since then \(E \times [0,1]^{n-3} \) is a subset of \(\mathbb{R}^n \) with the required properties.

Let \((x_1, x_2, x_3) \) denote the Cartesian coordinates in \(\mathbb{R}^3 \). It will be convenient to rescale \(E \) so that \([\epsilon, 1]^3 \subset E \subset [0,1 + \epsilon]^3 \).

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{P} \\
\text{Q}
\end{array}
\]

\[
\begin{array}{c}
\text{D} \\
\text{C} \\
\text{S} \\
\text{R}
\end{array}
\]

Figure 3: The construction of \(E \).

We construct \(E \) as follows. We let \(E \) be bounded from below and above by the planes \(x_3 = 0 \) and \(x_3 = 1 \) respectively. The planes \(x_1 = \epsilon, x_1 = 1, x_2 = \epsilon, x_2 = 1 \) divide the cube \([0,1 + \epsilon]^3\) into
9 parts (Figure 3). The middle part is entirely contained in \(E \). We label by \(A, B, C, D, P, Q, R, S \) the remaining 8 segments as shown in Figure 3. We then let

\[E \cap P = P \cap \left\{ 0 \leq x_3 \leq \frac{1}{8} \text{ or } \frac{1}{2} \leq x_3 \leq \frac{5}{8} \right\}, \]

\[E \cap R = R \cap \left\{ 0 \leq x_3 \leq \frac{1}{8} \text{ or } \frac{1}{2} \leq x_3 \leq \frac{5}{8} \right\}, \]

\[E \cap Q = Q \cap \left\{ 0 \leq x_3 \leq \frac{1}{4} \text{ or } \frac{3}{8} \leq x_3 \leq \frac{3}{4} \text{ or } \frac{7}{8} \leq x_3 \leq 1 \right\}, \]

\[E \cap S = S \cap \left\{ 0 \leq x_3 \leq \frac{1}{4} \text{ or } \frac{3}{8} \leq x_3 \leq \frac{3}{4} \text{ or } \frac{7}{8} \leq x_3 \leq 1 \right\}, \]

and

\[E \cap A = A \cap \left\{ 0 \leq x_3 \leq \frac{1}{16} \right\}, \]

\[E \cap C = A \cap \left\{ \frac{1}{2} \leq x_3 \leq \frac{9}{16} \right\}, \]

\[E \cap B = B \cap \left\{ \frac{5}{16} \leq x_3 \leq \frac{3}{4} \right\}, \]

\[E \cap D = D \cap \left\{ 0 \leq x_3 \leq \frac{1}{4} \text{ or } \frac{13}{16} \leq x_3 \leq 1 \right\}. \]

We also denote \(K = \bigcup_{j \in \mathbb{Z}} (E + (0, 0, j)) \).

Let \(E + T \) be a tiling of \(\mathbb{R}^3 \), and assume that \(0 \in T \). Suppose that \(E + v \) and \(E + w \) are neighbours in this tiling so that the vertical sides of \((E \cap P) + v\) and \((E \cap Q) + w\) meet in a set of non-zero two-dimensional measure. Then we must have \(v - w = (0, 1, (v - w)_3) \), where \((v - w)_3 \in \{ \pm \frac{1}{4}, \pm \frac{3}{4} \}\). A similar statement holds with \(P, Q \) replaced by \(R, S \) and with the \(x_1, x_2 \) coordinates interchanged. We deduce that the tiling consists of copies of \(E \) stacked into identical vertical “columns” \(K_{ij} = K + (i, j, t_{ij}) \), arranged in a rectangular grid in the \(x_1x_2 \) plane and shifted vertically so that \(t_{i+1,j} - t_{ij} \) and \(t_{i,j+1} - t_{ij} \) are always \(\pm \frac{1}{4} \). We will use matrices \((t_{ij})\) to encode such a tiling or portions thereof.

It is easy to see that \((t_{ij})\), where \(t_{ij} = 0 \) if \(i + j \) is even and \(\frac{1}{4} \) if \(i + j \) is odd, is indeed a tiling. It remains to show that \(E \) does not admit a lattice tiling. Indeed, the four possible choices of the generating vectors in any lattice \((t_{ij})\) with \(t_{ij} = \pm \frac{1}{4} \) produce the configurations

\[
\begin{pmatrix}
0 & t \\
2t & 0
\end{pmatrix}, \quad
\begin{pmatrix}
2t & t \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & t \\
-t & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & -t \\
t & 0
\end{pmatrix}.
\]

But it is easy to see that the corners \(A, B, C, D \) do not match if so translated.

References

[1] B. Fuglede: *Commuting self-adjoint partial differential operators and a group-theoretic problem*, J. Funct. Anal. 16 (1974), 101–121.

[2] D. Girault-Beauquier, M. Nivat: *Tiling the plane with one tile*, in: *Topology and Category Theory in Computer Science*, G.M. Reed, A.W. Roscoe, R.F. Wachter (eds.), Oxford Univ. Press 1989, 291–333.

[3] B. Grünbaum, G.C. Shepard: *Tilings and patterns*, New York: Freeman 1987.

[4] A. Iosevich, N. H. Katz, S. Pedersen: *Fourier bases and a distance problem of Erdős*, Math. Res. Letters 6 (1999), 251–255.
[5] A. Iosevich, N. H. Katz, T. Tao: *Convex bodies with a point of curvature do not have Fourier bases*, Amer. J. Math. 123 (2001), 115–120.

[6] A. Iosevich, N.H. Katz, T.Tao: *Fuglede conjecture holds for convex planar domains*, preprint, 2001.

[7] P. Jorgensen, S. Pedersen: *Spectral pairs in Cartesian coordinates*, J. Fourier Anal. Appl. 5 (1999), 285–302.

[8] R. Kenyon: *Rigidity of planar tilings*, Invent. Math. 107 (1992), 637–651.

[9] M. Kolountzakis: *Non-symmetric convex domains have no basis of exponentials*, Illinois J. Math. 44 (2000), 542–550.

[10] M.N. Kolountzakis: *Packing, Tiling, Orthogonality and Completeness*, Bull. L.M.S. 32 (2000), 5, 589–599.

[11] M.N. Kolountzakis: *On the structure of multiple translational tilings by polygonal regions*, Discrete Comput. Geom. 23 (2000), 4, 537–553.

[12] M.N. Kolountzakis, J.C. Lagarias: *Structure of tilings of the line by a function*, Duke Math. J. 82 (1996), 653–678.

[13] M.N. Kolountzakis, M. Papadimitrakis: *A class of non-convex polytopes that admit no orthonormal basis of exponentials*, preprint, 2001.

[14] I. Laba: *Fuglede’s conjecture for a union of two intervals*, Proc. AMS 121 (2001), 2965–2972.

[15] I. Laba: *The spectral set conjecture and multiplicative properties of roots of polynomials*, J. London Math. Soc., to appear.

[16] J. Lagarias, Y. Wang: *Tiling the line with translates of one tile*, Inv. Math. 124 (1996), 341–365.

[17] J. Lagarias, Y. Wang: *Spectral sets and factorization of finite abelian groups*, J. Funct. Anal. 73 (1997), 122–134.

[18] P. McMullen: *Convex bodies which tile the space by translation*, Mathematika 27 (1980), 113–121.

[19] B.A. Venkov: *On a class of Euclidean polyhedra*, Vestnik Leningrad Univ. Ser. Mat. Fiz. Him. 9 (1954), 11–31.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, KNOSSOS AVE., 714 09 IRAKLIO, GREECE. E-mail: mk@fourier.math.uoc.gr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B.C. V6T 1Z2, CANADA. E-mail: ilaba@math.ubc.ca