Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context

Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.

Keywords: Polyextremophiles, Limits of life, Astrobiology, Habitability and astrobiology, extremophiles/extremophily, Search for life

1. (Poly)extremophiles help us predict the boundaries of life
Since the first non-spore-forming extremophile, *Thermus aquaticus*, was isolated 50 years ago in 1969 (Brock and Freeze, 1969), the boundary conditions under which life can thrive have been pushed in every possible direction, encompassing broader swaths of temperature, pH, pressure, radiation, salinity, energy, and nutrient limitation. Microorganisms do not only thrive under such a broad spectrum of parameters on Earth, but can also survive the harsh conditions of space, an environment with extreme radiation, vacuum pressure, extremely variable temperature, and microgravity (Horneck et al., 2010; Yamagishi et al., 2018). The definition of “extreme conditions” has strong anthropocentric criteria, rather than microbial criteria, and can be the cause of confusion (Rothschild and Mancinelli, 2001). When considering extremophilic (as opposed to extremotolerant)
organisms, it is important to keep in mind that these are highly adapted organisms for the conditions considered and that the “extreme” condition constitutes the norm under which the organism is able to metabolically and biochemically operate. Moreover, there are myriad environments on our planet’s surface — and especially subsurface — that exhibit extremes in one or more physical or chemical condition. Therefore, extremophiles and, in particular, polyextremophiles (Capece et al., 2013) might be the most abundant lifeforms on our planet. In addition, if we consider that the current planetary surface conditions on Earth (such as mean temperature, redox state and oxygenic atmosphere) have only occurred for a short period of time compared to the existence of life (Knoll, 2015), we might conclude that the extremophilic way of life has actually dominated the evolutionary history of life on our planet.

Over the past several decades, the isolation of culturable (poly)extremophiles and the identification of extreme microbial communities through various culture-independent approaches have provided key insights into the boundaries of life. Research on (poly)extremophiles has led to numerous advances in molecular biology and medicine (Babu et al., 2015; Coker, 2016; Durvasula and Rao, 2018), while simultaneously reshaping our understanding of the origins and evolution of life (Bertrand et al., 2015) and the potential for life on other planetary bodies (Schulze-Makuch, 2013). Several reviews have defined extremophiles (Table 1) (e.g., Capece et al., 2013; Fang et al., 2010; Rothschild and Mancinelli, 2001; Seckbach et al., 2013) and discussed the physiology and genetics of (poly)extremophiles in detail (e.g., chapters within Polyextremophiles: Life Under Multiple Forms of Stress, edited by Seckbach and collaborators (2013)). To build upon these discussions, this paper will review the parameters that limit life, providing ranges under which life has been detected. In addition, we will map the currently known boundary conditions of life on Earth to the theoretical space that life could occupy on Earth (defined here as the parameter space of possible conditions present on the planet) and explore the prospect of using this information for the search of life on other planetary bodies.

2. Parameters that limit life

Our knowledge of life is based on the observable and measurable phenomena that occur on Earth, and is therefore limited to this instance of life. However, the laws of chemistry and physics have universal principles which enable us to extrapolate to the conditions under which life could survive elsewhere. These principles suggest that life requires a liquid solvent, an energy source, and building blocks (Schwieterman et al., 2018).

While the bulk abundance of (inorganic) building blocks appears not to be a factor limiting the distribution of life on Earth (with subsurface environments as a possible exception, e.g., Hoehler and Jørgensen, 2013) and, potentially, other planetary bodies, the availability of a solvent is considered to be a key factor. While the potential for other liquid solvents to sustain extraterrestrial life is discussed in detail elsewhere (Schwieterman et al., 2018 and references therein), water is considered the most likely liquid solvent because of its cosmic abundance and physicochemical properties (Michiels et al., 2008; Schwieterman et al., 2018). Water, especially the availability of liquid water, appears to be the main factor controlling the dimensions of the biospace for life on Earth (i.e., the parameter space occupied by life). Liquid water acts both as a solvent and a reactant/product in biochemical reactions, and its numerous unique physicochemical properties have profoundly shaped the emergence and evolution of life on our planet. As discussed in this review below, water activity appears to be the single key parameter controlling the biospace of Earth’s life, and numerous other parameters limiting life (e.g., temperature and salinity) are, in fact, acting on the availability of water. At the ecosystem level, water can indirectly influence the variation of key physicochemical conditions, which in turn controls microbial community...
composition and diversity, profoundly influencing geobiogeochemical cycling (sensu Shock and Boyd, 2015).

Life also needs a source of energy to power chemical reactions, and redox chemistry appears to be universal (Jelen et al., 2016). Physicochemical gradients create non-equilibrium redox conditions that have played an important role in the origins, evolution, and diversity of life. Redox and proton gradients were likely the two main mechanisms involved in the origins of life, initiating the necessary energy flux to drive metabolism and growth (Lane et al., 2010; Lane and Martin, 2012). Therefore, the current search for life’s limits have been extended beyond temperature, pH, pressure, salinity, and radiation gradients (each parameter discussed in their respective sections) and also includes the possible energetic and nutrient limits of life (discussed in Hoehler and Jørgensen, 2013, Jones et al., 2018, and LaRowe and Amend, 2015).

The parameters discussed herein (temperature, pH, pressure, salinity, and radiation) correlate with each other and can influence the availability of nutrients and energy sources. Depending on the environment, certain parameters can more strongly influence microbial diversity over others, such as temperature in geothermal waters (Sharp et al., 2014), pH in soil communities (Rousk et al., 2010), salinity in saline lakes (Yang et al., 2016), and water content in dry climates (Dose et al., 2001). On the nano- and micro-scale level, the two most important factors are likely water activity and pH, which influence the chemiosmotic, energy-generating gradient at the cell level (Lane et al., 2010; Lane and Martin, 2012). In contrast, parameters that influence the macro-scale level vary with the ecosystem. For example, temperature plays a significant role in geothermal environments and influences such processes as water-rock interactions and degassing (Cole et al., 2013; Fouke, 2011; Nordstrom et al., 2005; Price and Giovannelli, 2017). Water-rock interactions can then impact microorganisms by limiting the availability of trace elements and electron donors/acceptors.

Microorganisms have been detected in a variety of extreme environments (Figure 1), virtually in any location where liquid water is available for life to use. This demonstrates that life can adapt to a wide range of parameters (Figure 2). It is therefore imperative to determine the minima and maxima for each parameter (temperature, pH, pressure, and salinity, and radiation), and even more importantly, to understand their combined effects, in order to evaluate the limits of Earth’s life and advance our understanding of the potential for life elsewhere.

2a. Acidity and alkalinity

Extremely low and high pH environments have been observed for different ecosystems on Earth (Table 2). Extreme pH values were observed for ecosystems contaminated by mining waste, with current extremes reported from Iron Mountain (Shasta County, CA, USA) (pH -3.6) (Nordstrom et al., 2000) and Gorka Lake (Chrzanow region, Poland) (pH 13.3; Czop et al., 2011). While there has yet to be any microbial community studies or isolation attempts for Gorka Lake, to the best of our knowledge, microbial communities have been explored at Iron Mountain (Baker and Banfield, 2003), with several microorganisms isolated (e.g., Thermoplasmales (Edwards et al., 2000), Acidithiobacillus ferrooxidans (Kelly and Wood, 2000; Schrenk et al., 1998), and Leptospirillum ferrooxidans (Schrenk et al., 1998)). Despite this, there are currently no cultured or isolated microorganisms which can be grown at either of the listed extremes. Currently, the most extreme acidophile and alkaliphile can survive at pH 0 and pH 12.5, respectively (pH_{opt} 0.7 and 11) (Table 3). The lowest pH_{min} -0.06 was observed for two hyperacidophilic Archaea known as Picrophilus oshimae and P. torridus (pH_{opt} 0.7), isolated from a solfataric hot spring in Noboribetsu (Hokkaido, Japan) (Schleper et al., 1996). These heterotrophic and aerobic polyextremophiles can also withstand temperatures of up to 65°C (T_{opt} = 60°C, T_{min} = 47°C), potentially through increased...
cyclization of their tetaether membrane lipids as a generalized response to pH, temperature, and nutrient stress (Feyhl-Buska et al., 2016). In comparison to extreme acidophily, the highest \(pH_{\text{max}}\) of 12.5 was observed for an alkaliphilic, aerobic, mesophilic bacterium known as *Serpentinomonas* sp. B1 (\(pH_{\text{opt}}\) 11), isolated from a terrestrial serpentinizing system, The Cedars (CA, USA) (Suzuki et al., 2014). Although there is a report of the highest \(pH_{\text{max}}\) 13 held by *Plectonema nostocorum* (Kingsbury, 1954) this has not been further confirmed. The largest pH range, as compared to other isolated microorganisms, was observed for *Halomonas campisalis* (\(pH_{\text{range}}\) 6–12), a haloalkaliphilic bacterium isolated from a soda lake (Soap Lake, WA, USA) (Aston and Peyton, 2007; Mormile et al., 1999) *(Table 4)*.

The pH has a significant effect on microorganisms and microbial consortia, ranging from the nano- to macro-scale level. All microorganisms must maintain a near neutral cytoplasmic pH to enable cellular functions for survival and metabolism (Jin and Kirk, 2018; Kruilwch et al., 2011). The cytoplasmic pH of acidophilic bacteria is \(~6.0\) while alkaliphilic bacteria have a cytoplasmic pH around 7.2–8.7 (Kruilwch et al., 2011). For more information on the molecular mechanisms behind pH homeostasis, Kruilwch and colleagues provide a detailed review (Kruilwch et al., 2011). The homeostasis of protons (and other ions) through various transporters, including the ion-utilizing ATP synthase, was likely one of the first functions to develop within the earliest cells (Lane and Martin, 2012). Indeed, chemiosmosis is a property of both archaeal and bacterial cells (Lane et al., 2010). In addition to intracellular pH, microorganisms can excrete organic metabolites, such as lactic acid or acetic acid, thereby changing the immediate, surrounding pH (Zhang et al., 2016). Many acidophiles also have organic acid degradation pathways to prevent proton uncoupling by organic acids (Baker-Austin and Dopson, 2007). It has been demonstrated both in natural settings and laboratory cultures that microorganisms can significantly alter their environmental pH as a result of metabolic reactions. For example, sulfide thiosulfate, and elemental sulfur oxidizers secrete sulfate and protons as by-products, significantly acidifying their environment. This ability is used industrially for the bio-leaching of sulfide ore deposit (Olson et al., 2003; Rohwerder et al., 2003) and it is largely responsible for the low pH of acid mine drainage fluids and other acidic environments. Recent work by Colman et al. (2018) suggests that thermoacidophilic archaea and the acidity of their habitats co-evolved after the evolution of oxygenic photosynthesis (since oxygen is used as primary electron acceptor in the metabolisms), showing a significant example of niche engineering and geosphere-biosphere coevolution. All together, these findings suggest that pH can be metabolically controlled either at the intracellular or local level, as compared to temperature, radiation, salinity, and pressure.

On the macro-scale level, pH can dominate as the main parameter affecting microbial community composition and abundances. Several studies demonstrate that pH affects microbial community diversity more than any other parameter tested (e.g., Kuang et al., 2013; Lauber et al., 2009; Rousk et al., 2010; Xiong et al., 2012; Zhahlnina et al., 2014) For example, distinct microbial communities were observed with changes in pH (\(pH_{\text{range}}\) 1.9–4.1), in which the genus *Ferrovum* dominated at higher pH while the phyla *Alphaproteobacteria*, *Gammaproteobacteria*, *Nitrospira*, and *Euryarchaeota* were present at lower pHs (Kuang et al., 2013) Similarly, bacterial community composition changed with increasing pH in alkaline sediments of a Tibetan plateau (\(pH_{\text{range}}\) 6.88–10.37) (Xiong et al., 2012). Changes in community composition are likely derived from the range in which microorganisms can survive (Fernández-Calviño and Bååth, 2010). Most cultured microbes live within a narrow pH range of 3–4 units (Rosso et al., 1995), although some exceptions occur (e.g., fungal isolates can grow over 5–9 pH units (Nevarez et al., 2009; Wheeler et al., 1991)). Moreover, it has been suggested that archaecal (Kuang et al., 2013) and

Table 4

Organism	pH Range	Location
Serpentinomonas sp. B1	6–11	Soap Lake, WA, USA
Halomonas campisalis	6–12	Soda Lake, WA, USA
Plectonema nostocorum	13	*pH* max for highest reported

Limits of Life in Planetary Context

...
fungal communities (Rousk et al., 2010) may be less affected by changes in pH compared to bacteria.

2b. Salinity and water activity

Salinity has a significant impact on microbial community composition (Lozupone and Knight, 2007; Swan et al., 2010). Saline environments comprise a large portion of the Earth and range from the marine environment (~3–4% salinity), hot springs (up to 10.5% salinity), and to soda lakes (up to 37.1% salinity), and even salt inclusions (up to 49.7% salinity (Scambelluri et al., 1997)) (Figure 2, Table 2). Salinity can also vary significantly on smaller scales, for example, in tidal pools (Morris and Taylor, 1983), or on salt mineral grains due to water deliquescence (Davila et al., 2008). A wide range of different ions, including Na\(^+\), Cl\(^-\), SO\(_4\)\(^{2-}\), Ca\(^{2+}\), and Mg\(^{2+}\) (Oren, 2013) can contribute to total salinity in the environment. The ionic composition can significantly influence water activities, especially in the presence of high concentrations chaotropic salts, like in the athalassic deep-sea hypersaline anoxic basins of the Mediterranean Sea (Yakimov et al., 2015). In addition, water availability in terrestrial saline environments is further influenced by precipitation rates relative to evaporation, resulting in increasing concentration of salts (Finlayson et al., 2018).

The salinity range and optimum for cultivable and isolated microorganisms is between 0–35%. The current highest salinity record holder is *Halarsenatibacter silvermanii* strain SLAS-1\(^T\), isolated from the alkaline hypersaline Searles Lake (California, USA) (salinity\(_\text{opt} \approx 35\%\) NaCl) (Blum et al., 2009). Halophiles are found in all three domains of life (DasSarma and DasSarma, 2017). Current hyperhalophiles in culture include bacteria and archaea which can grow over a salinity of ~15% NaCl. There are also polyextremophiles, for example, the bacterium *Halomonas campisalis* (Table 4), isolated from a soda lake (Soap Lake, USA) is a moderate halophile and alkaliphile (salinity\(_\text{opt} = 8.8\%\), pH\(_\text{opt} = 9.5\)) and can tolerate extreme pH up to 12 and salinities up to 26.3% (Aston and Peyton, 2007; Mormile et al., 1999).

Halophiles achieve the necessary osmotic balance by one of two strategies: (1) accumulating K\(^+\) in the cytoplasm as a ‘salt-in’ strategy or (2) excluding salts by synthesizing compatible organic solutes, such as polyols, amino acids, sugars, and betaines. The ‘salt-in’ strategy has been identified only in a few halophiles (e.g., *Salinibacter* and *Halanaerobiales*) which require KCl to have functional proteins. In contrast, many microorganisms that utilize the salt exclusion strategy can tolerate a wider range of salt concentrations due to the production of organic solutes to counter the concentration of salts (Oren, 2011). The necessary energy needed to maintain osmosis, and the thermodynamics of surviving under saline conditions has been thoroughly discussed by Oren (2011).

Many microorganisms in saline environments must also adapt to low water activity (the mole fraction of water) and increased radiation (discussed in section “2e. Radiation”). Although salts can lower the freezing point of water, saturated salt solutions have low water activity. Water activity is the only other parameter, aside from pH and salinity, that some microorganisms can regulate through the production of metabolites capable of storing or attracting water (e.g., proteins and polysaccharides from EPS) (Frösler et al., 2017). The theoretical water activity minima for halophilic archaea and bacteria is 0.611 \(a_w\) while it is 0.632 \(a_w\) for fungi (Stevenson et al., 2015). In comparison, the water activity of NaCl saturated solutions is estimated to be 0.755 \(a_w\) while pure water is 1 \(a_w\) (Hallsworth et al., 2007; Stevenson et al., 2015).

The theoretical water activity limit has been surpassed by microbial life. When there are high concentrations of the chaotropic MgCl\(_2\) or CaCl\(_2\), the water activity is lowered even more (e.g., 0.3 \(a_w\) for a saturated MgCl\(_2\) solution). For example, environmental surveys reported microbial communities in the brines of two athalassic deep-
sea hypersaline anoxic basin (DHAB), Discovery (MgCl$_2$ ≥ 5 M, T = 14.5ºC) (Van Der Wielen et al., 2005) and Kryos Basin (saturated MgCl$_2$, ~0.4 a$_w$, T = 16.5ºC) (Alcaide et al., 2015; Steinle et al., 2018), both located in the Mediterranean Sea. The Kryos Basin microbial community, located in the brine, consisted of active sulfate-reducers, with sulfate reduction reaching up to 460 µmol/kg-day (Steinle et al., 2018). In contrast to the DHABs, microbial life has yet to be shown to exist in a CaCl$_2$-dominated brine with up to 474 g/L total dissolved salts (Don Juan Pond, Antarctica) (Oren, 2013). This is likely due to both extreme temperature and salinity conditions, as Don Juan Pond is an unfrozen lake (pH 4.6) with an average depth of 11 cm and temperatures reaching below -36ºC (T$_{max}$ ~ 20ºC) (Dickson et al., 2013; Samarkin et al., 2010; Torii et al., 1981). The estimated water activity in Don Juan Pond is likely below 0.45 a$_w$ (Oren, 2013) but could be between 0.28 a$_w$ (25ºC) to 0.61 a$_w$ (~50ºC), as estimated for a CaCl$_2$-dominated brine with antarcticite (CaCl$_2$·6H$_2$O) precipitation (Toner et al., 2017).

2c. Temperature

The temperature on Earth’s surface ranges from -98.6–495ºC (ultra-cold locations in East Antarctica (Scambos et al., 2018) and extremely hot deep-sea hydrothermal vents (McDermott et al., 2018)), with much higher temperatures possible in magma influenced subsurface environments (Table 2). Fluid temperatures above 100ºC are possible whenever the combination of hydrothermal or magmatic activity is present together with high pressure, for example, in the deep subsurface near volcanoes or at deep-sea hydrothermal vents. In the absence of geothermal influence, the highest surface temperature reported on Earth is ~71ºC, in the Lut Desert (Iran) (Mildrexler et al., 2011). The current temperature extreme that microbial life can survive extends from -25ºC (T$_{min}$, Deinococcus geothermalis DSM 11300) (Frösler et al., 2017) to 130ºC (T$_{max}$ “Geogemma barossii” 121) (Kashefi and Lovley, 2003) (Table 4). Around -26ºC to -10ºC, microbial cells will likely become vitrified (without intracellular freezing), enabling cells to survive low temperatures (Clarke et al., 2013). The temperature range in which microorganisms are reported to be metabolically active is currently between -20ºC (an enrichment culture from the Siberian permafrost soil) (Rivkina et al., 2000) and 122ºC (Methanopyrus kandleri 116; Takai et al., 2008). In comparison, the lowest temperature in which a pure culture isolate is capable of growing is -15ºC with 18% salinity (Planococcus halocryophilus Or1; Mykytczuk et al., 2012, 2013).

The upper temperature of life has been raised several times in the past 50 years of research (Brock and Freeze, 1969; Ferrera and Reysenbach, 2007), and current environmental and theoretical studies suggest that the upper limit of life might lay near ~150ºC, due primarily to the instability of macromolecules above this temperature. Similarly, thermodynamic considerations suggest that life might be impossible below -40ºC (Price and Sowers, 2004), thus the current theoretical boundaries for life are -40ºC to 150ºC. It is still possible however that the boundary conditions of life might extend past these limits, and the surpassing of previous historical theoretical limits suggest that future studies might unveil unexpected adaptation strategies.

Extreme temperature adaptations by psychrophiles and thermophiles generally involve either high saline or pressure conditions. High saline, cold environments enable the growth of halopsychrophiles (Deming, 2007). Liquid inclusions in sea ice are due to the high concentrations of salts, which lower the freezing point of water, and this liquid fraction can still be observed at -40ºC (theoretical seawater eutectic temperature is -55ºC) (Deming, 2007). Microbial consortia are likely to inhabit subzero brine veins, especially those surrounding soil particles, where salts and organic materials (e.g., the microbially-produced extracellular polymeric substances or EPS) are concentrated. Indeed, the majority of active bacteria and archaean observed in Arctic
wintertime sea-ice cores at -20°C were all particle-associated (Junge et al., 2004). In contrast to halopsychrophiles, there are very few halothermophiles, with a combined temperature range of 17–70°C ($T_{opt} = 50–65°C$) and salinity range 2.9–29.2% (salinity$_{opt} = 11.7–26.3%$ NaCl) (Mesbah and Wiegel, 2005). Several hyperthermophiles (growth at >80°C) must grow at high pressure conditions because high pressure allows water to remain liquid at higher temperatures, with an upper theoretical limit of 407°C at 29.8 MPa pressure (Koschinsky et al., 2008; McDermott et al., 2018).

Hyperthermopiezophilic microorganisms, such as Methanopyrus kandleri strain 116 (Takai et al., 2008) and “Geogemma barossii” strain 121 (Kashefi and Lovley, 2003) (Table 4), are able to maintain cell structural integrity due to the contrasting effects of high temperature and high pressure.

Macro-scale temperature gradients demonstrate the influence of temperature on microbial community composition within an ecosystem (Cole et al., 2013; Everroad et al., 2012; Miller et al., 2009; Purcell et al., 2007; Sharp et al., 2014). In this regard, the effect of increasing temperature gradients, especially in geothermal-influenced environments, have been studied to greater extent compared to decreasing temperature gradients. In general, the community complexity decreases with increasing temperatures on the scale of centimeters to meters. For example, the soil microbial community of Tengchong Geothermal Field (China) shifted towards lower diversity with increasing temperatures (50–90.2°C and 32–36 MPa) and became dominated by Archaea (Li et al., 2015). Similar patterns have been also reported for deep-sea and shallow-water hydrothermal vents (Flores et al., 2012; Giovannelli et al., 2013). Temperature gradients likely have more influence on the microbial community of geothermal environments (Sharp et al., 2014), as compared to other environments (e.g., soil), where pH and salinity have been shown to be the dominant factor (see sections “2a. Acidity and Alkalinity” and “2b. Salinity and Water Activity”).

2d. Pressure

As mentioned above, pressure influences microbial growth, especially under extreme temperatures. On Earth’s surface, pressure ranges from 0.1–112 MPa (Table 2), with higher pressures observed at subduction zones (e.g., 900 MPa at the top of a subducting plate, Mariana Forearc; Mottl et al., 2004) and subsurface environments (e.g., Miettinen et al., 2015). It is estimated that microbial life could be supported at subduction zone forearcs with pressures ~340 MPa (Plümper et al., 2017). Several piezophiles and piezotolerant microorganisms have been isolated from deep-sea locations (Table 3), and the current record holder is Thermococcus piezophilus, a thermophilic archaean able to survive up to 125 MPa ($P_{opt} = 50$ MPa, $P_{growth range} = 0.1–125$ MPa) (Dalmasso et al., 2016). Piezophiles have lower generation times at higher pressure than at atmospheric pressure (Bartlett et al., 2007), and considering the average depth of the ocean is 3,800 m (average pressure 38 MPa), with bottom temperatures between 0–3°C, there is likely a vast number of uncultured piezophiles across a range of temperatures, including a vast majority of psychopiezophiles (Alazard et al., 2003; Fang et al., 2010). Despite the small number of strict piezophiles currently in culture, environmental studies suggest that life can easily accommodate high pressures, and studies on piezotolerant strains have demonstrated that life can survive brief exposures up to 2,000 MPa (Sharma et al., 2002; Vanlint et al., 2011). Under these extreme conditions, cells have been shown to be metabolically active in fluid inclusions found in ice-VI crystals within diamond anvil cells (Sharma et al., 2002).

(Hyper)piezophiles have adapted to extreme pressures through various strategies. In particular, the cell membrane is packed with more unsaturated fatty acids to increase membrane fluidity at high pressures. Other adaptations could include upregulation chaperone-encoding genes, modification of the respiratory chain, expression
of different porins, and production of osmolytes (Jebbar et al., 2015; Oger and Jebbar, 2010). Several detailed reviews on piezophile adaptation strategies are available, including Fang and colleagues (2010), Picard and Daniel, (2013), Jebbar and colleagues (2015), and Oger and Jebbar (2010).

In contrast to high pressure environments, the low pressure found at high altitude in mountain formations (0.0033 MPa at the summit of Mount Everest) is unlikely to affect microbial survival per se, and the lowest pressure is found in space vacuum or low Earth orbit (10^{-13} to 10^{-10} MPa) (Horneck et al., 2010). Despite this, several prokaryotes, fungi, and lichen can survive exposure for several months to years under space conditions (De Vera et al., 2012; Horneck et al., 2010; Onofri et al., 2018; Yamagishi et al., 2018), due to sporulation or formation of biofilms (Frösler et al., 2017). It is possible that the top layer of a biofilm protects the lower layers, enabling the survival of microorganisms under space conditions. For example, *Deinococcus aetherius ST* survived a one-year exposure to space conditions only when ≥ 500 µm cell layer was utilized (Yamagishi et al., 2018). However, longer exposure to space vacuum can cause detrimental effects, such as dehydration and DNA denaturation, and likely requires pre-dried microbial spores or biofilm within a protective substance (e.g., sugars or buffer salts). For more information, Horneck and colleagues have written a detailed review on space condition effects on microorganisms (Horneck et al., 2010).

The effects of pressure on microbial community composition can be observed most obviously in deep-sea environments. However, it is likely that other parameters dominate as the major contributors to community composition and abundances, such as salinity, temperature, oxygen concentrations, and UV radiation (Amend and Shock, 2001; Phoenix et al., 2006; Walsh et al., 2016), rather than pressure. In contrast to deep-sea environments, there have been few studies examining the microbial community diversity with increasing elevation, where surface air pressure decreases with altitude. However, it is still likely that other parameters affect microorganisms, as suggested by the change in bacterial diversity with elevation at Mount Fuji (Japan) (Singh et al., 2012). The highest bacterial diversity was observed at 2,500 m, along the tree line, and declined towards ~3,700 m (near the summit), where extreme temperatures, UV radiation, and a lack of nutrients likely affected the microbial community more significantly than pressure changes. In addition, the Earth’s atmosphere is a unique ecosystem that enables the distribution of microorganisms (~10^2–10^5 cells/mL in cloud or fog) through aerosolization (DasSarma and DasSarma, 2018; Delort et al., 2010). In the atmosphere, microorganisms have to contend with multiple hazards, including UV-C and cosmic radiation, low temperatures, desiccation, and oxidants (DasSarma and DasSarma, 2018), and it is unlikely that decreasing pressure plays the most significant role in microbial community diversity (Amato et al., 2007). Under these conditions, sporulation, resting stages, and biofilm formation are strategies used to withstand the multiple extremes (Delort et al., 2010). It is possible that the top layer of a biofilm protects the lower layers, enabling the survival of microorganisms under space conditions. For example, *Deinococcus aetherius ST* survived a one-year exposure to space conditions only when ≥ 500 µm cell layer was utilized (Yamagishi et al., 2018). However, longer exposure to space vacuum can cause detrimental effects, such as dehydration and DNA denaturation, and likely requires pre-dried microbial spores or biofilm within a protective substance (e.g., sugars or buffer salts). For more information on space condition effects on microorganisms, see Horneck and co-workers for a detailed review (Horneck et al., 2010).

2d. Radiation

Radiation sources include UV radiation, X-rays, gamma rays and more generally, cosmic rays. These different types of ionizing radiation, in particular UV and gamma rays, can impact microbial cells via direct and indirect (e.g., the
formulation of reactive oxygen species) mechanisms. The reactive oxygen species can then damage DNA, proteins, lipids, and RNA, in addition to initiating Fenton-type reactions within the cell due to the release of Fe$^{2+}$ from Fe-S clusters (Webb and DiRuggiero, 2013). Radiation-resistant microorganisms have been shown to resist up to 30 kGy of γ-radiation, in the case of a thermophilic bacterium Thermococcus gammatolerans EJ3 (Jolivet et al., 2003) and a mesophilic bacterium Deinococcus hohokamensis (Rainey et al., 2005) aand 100--1000 J/m² of UV254, in a xerotolerant bacterium Psychrobacter pacificensis L0S3S-03b (La Duc et al., 2007). Additionally, these microorganisms are often polyextremophiles (Table 4; Fredrickson et al., 2008; Webb and DiRuggiero, 2013). Many ecosystems on Earth are affected by some type of radiation, with the most extreme radiation emanating from man-made radioactive-contaminated sites. These range from 0.5 Bq/kg at the Great Lakes, USA (Trapeznikov, 1983) to 10⁹ Bq/kg at Hanford Site in Richland, Washington, USA (Fredrickson et al., 2004). Radiation can additionally be found in subsurface environments, due to the radioactive decay of radiogenic isotopes (e.g. ²³⁸U, ²³²Th and ⁴⁰K), which could also be responsible for radiolytic hydrogen production (Dzaugis et al., 2016) potentially supporting in situ microbial productivity. Indeed, a hyperthermophilic and radiation-tolerant Archaeon was isolated (Thermococcus gammatolerans EJ3) from a deep-sea hydrothermal environment located at the East Pacific Rise, where natural radioactivity occurs (²¹⁰Pb, ²¹⁰Po, ²²⁰Rn) (Jolivet et al., 2003). Microbial adaptation to radiation include more genome copies for genome redundancy (Anitori, 2012, chapter 2), changes in DNA repair functions (Byrne et al., 2014), a condensed nucleoid (Anitori, 2012, chapter 2), utilization of smaller amino acids (Sghaier et al., 2013), accumulation of Mn(II) (Daly et al., 2004), production of pigments (Mojib et al., 2013), and more, as described elsewhere (Anitori, 2012; Confalonieri and Sommer, 2011; Krisko and Radman, 2013).

3. Potential expanded ranges for life

Earth’s ecosystems often have wider ranges for each of the environmental parameters considered in this review compared to the current known limits for life (Figure 2). As described in the previous sections, the physical and chemical conditions of Earth’s environments exhibit a wide range, much of which, but not all, has been shown to be exploited by microbial life. Since the first extremophile discoveries in the 1969, each
decade of exploration has broadened our view of the boundaries of microbial environmental habitability. Therefore, it is likely that the true limits of life have yet to be found. For example, observed limits for temperature are -20–130°C, the theoretical temperature limit is considered to be between -40–150°C due to decreasing metabolic rates at -40°C (~100 million years to turn over all of the cellular carbon; Price and Sowers, 2004) and the denaturation of cellular components at 150°C (Schulze-Makuch et al., 2017 and references therein). The ability of life to adapt and thrive under extreme conditions can be further supported by the analysis of the communities adapted to pH changes caused by human activity, including the dumping of mine drainage and steel slag. Earth’s natural ecosystems have a pH range of 0.02–12.5, but contaminated sites extend the range to pH -3.6–13.3 and have observable microbial communities (Mendez-Garcia et al., 2015) (Table 2). Similar to pH, the current pressure range of microbial life (P\text{range} 0.1–125 MPa) extends beyond that of Earth’s surface ecosystems (P\text{range} 0.1–112 MPa), demonstrating life can resist more extreme values of both low and high pressure (see “section 2d. Pressure”). Similarly, microorganisms living in extreme salinity (salinity\text{life} = 0–35%, salinity\text{Earth} = 0–50%) also need to contend with water activity. As mentioned previously, the lowest a_w for life is currently estimated ~0.611 a_w (Stevenson et al., 2015), but microbial life surpassed this water activity limit in DHABs (~0.4 a_w) (see section “2b. Salinity and Water Activity”).

Although there are many (poly)extremophiles currently in culture (see Table 4 for some examples of notable polyeextremophiles), data concerning the ability to withstand multiple stressors are extremely limited (Harrison et al., 2013). Moreover, the number of cultured microorganisms is tiny if compared to the diversity of uncultured clades (Hug et al., 2016). The number of uncultured microorganisms at the genus level has been recently estimated to be on average 7.3x10^{29}, with ~81% of microbial cells in environments such as the terrestrial subsurface, hypersaline environments, marine sediment, hot springs, and hydrothermal vents (Lloyd et al., 2018). These uncultivated microorganisms are very likely to include (poly)extremophiles and will aid in expanding our understanding of the boundary conditions of life.

4. Can life originate, evolve, or survive on other planetary bodies?

Different classification schemes have been published to describe planetary bodies based on their ‘habitability’ (e.g., Lammer et al., 2009; Noack et al., 2016; Schulze-Makuch et al., 2017). Several studies have also demonstrated the growth of microorganisms under lab-simulated planetary conditions, including Mars-like (Fajardo-Cavazos et al., 2018; Nicholson et al., 2013; Schuerger and Nicholson, 2016) and Enceladus-like (Taubner et al., 2018) conditions. In this context, defining the boundary limits of life on Earth is a crucial step in identifying the conditions likely to originate or support life on other planetary bodies. Therefore, studies on the limits of life are important to understand four areas: (1) the potential for panspermia, (2) forward contamination due to human exploration ventures, (3) planetary colonization by humans, and (4) the exploration of extinct and extant life. In this review, we outline the physical and chemical boundary conditions of Earth’s environments and those of life on Earth and compare them to the conditions observed on other planetary bodies in order to discuss whether life could originate, evolve, or survive elsewhere in our solar system and beyond.

Similar to Earth, other planetary bodies might have different environments with varying ranges for each parameter. Since our knowledge of individual niches or habitats is extremely limited for other planetary bodies, we considered the range of each parameter (temperature, salinity, pH, and pressure) across three planetary layers: 1) atmosphere, 2) surface, and 3) subsurface (Table 5). Many planetary bodies studied thus far have the potential for extinct or extant life, based on our knowledge of life on Earth. Depending on the planetary body, different
(poly)extremophiles could persist. For example, halopsychrophiles might be able to persist on Titan, Ceres, and Europa, which likely have saline subsurface oceans (Grindrod et al., 2008; Neveu and Desch, 2015; Zolotov and Kargel, 2009), and also on Mars which could have Cl-rich subsurface brines (Clifford et al., 2010; Jones et al., 2011). These lifeforms would also need to withstand high pressures. For example, the hydrostatic pressure of the subsurface ocean at Titan ranges from 140–800 MPa (Sohl et al., 2014). While such pressures are beyond the range of the most extreme cultured piezophile on Earth (Thermococcus piezophilus, $P_{\text{max}} = 125$ MPa) (Dalmasso et al., 2016), microorganisms have successfully been exposed to pressures up to 2,000 MPa and found to be metabolically active in fluid inclusions within type-IV ice (Vanlint et al., 2011). Based on these observations it is possible that other planetary bodies may be within reach for Earth-based life (Table 5), including Enceladus ($P_{\text{max}} = 50$ MPa; Hsu et al., 2015) and Europa ($P_{\text{max}} = 30$ MPa; Muñoz-Iglesias et al., 2013).

The atmospheres of some planetary bodies could potentially harbor life as well. In particular, the upper-to-middle cloud layers of Venus (0–60°C; pH~0) might be suitable for thermo- or psychro-acidophilic microorganisms (Table 4). Titan also has a dense atmosphere, but it is extremely cold (-183 – -78°C) and life on Earth can only metabolize at temperatures greater than -20°C (Rivkina et al., 2000). Other planetary bodies presented in Table 5 have transient or tenuous atmospheres that have extremely low pressures and likely cannot support life. In comparison, on Earth, microorganisms have been observed and cultured from the upper atmosphere, although stresses such as UV-C radiation, low temperatures, and oxidants make it difficult to survive (DasSarma and DasSarma, 2018). Microorganisms, in particular psychrophiles, with the capability of biofilm formation, clumping, and repair systems are more likely to tolerate Earth’s atmospheric conditions (DasSarma and DasSarma, 2018). Similar strategies may be needed on other planetary bodies.

The surface of other planetary bodies, such as Ceres, Europa, and Mars, experience high levels of radiation, and thus, may be unsuitable to support life. UV radiation is damaging for Earth-based life, and several studies have shown that there is a 99% loss in viability for microorganisms placed under Mars-like surface conditions, with UV-C as the most harmful source (Schuerger et al., 2003). However, shielding from UV-C radiation increases the chance of survival and includes shielding by atmospheric dust or burial (Barbier et al., 1998; Cockell et al., 2002, 2005; Hansen et al., 2009; Johnson et al., 2011; Mancinelli and Klovstad, 2000; Schuerger et al., 2003). Shielding is also necessary against charged particle radiation and can be achieved by burial at only centimeter depths below the surface. Indeed, the harsh radiation exposed to Europa’s surface inside the Jovian magnetosphere is predicted to only penetrate about 1–20 cm below the surface of Europa, as modeled by Nordheim and colleagues (2018).

This suggests the subsurface is one of the most important locations in the search for extinct and extant extraterrestrial life (Jones et al., 2018). On Earth alone, the subsurface is estimated to house 50 to 87% of the Earth’s microorganisms (Kallmeyer et al., 2012; Magnabosco et al., 2018). The subsurface of other planetary bodies is potentially warmer than the surface and atmosphere (Table 5), influenced by geothermal processes (e.g., on Mars (Jones et al., 2011), thermal convection (e.g., on Enceladus and Titan (Mitri and Showman, 2008)) and radiolysis (e.g., on Mars (Dzaugis et al., 2018)). Several planetary bodies (Enceladus, Titan, Ceres, and Europa) likely have subsurface oceans, and Mars could potentially have a limited supply of groundwater (Clifford et al., 2010). Potential communities in these extraterrestrial subsurface environments are unlikely to be supported by surface exports of organic carbon like on our planet (Kallmeyer et al., 2012), but rather by in situ production fueled...
Limits of Life in Planetary Context

by H₂ and abiotic CH₄. The abiotic production of H₂ can occur through a variety of mechanisms, including the radiolysis of water (Dzaugis et al., 2018; Lin et al., 2005) and serpentinization at both high and low temperatures (McCollom, 2016; Neubeck et al., 2011).

Serpentinization consists of water-rock interactions involving the hydration of Fe²⁺-rich minerals (primarily olivines), resulting in alkaline pH, production of H₂ and potentially low-molecular weight organic carbon (e.g., formate, methane and a wide variety of other organic compounds) (Schrenk et al., 2013). Thus, serpentinization may have played a role in the origins of life on Earth (Russell et al., 2010) and perhaps on icy worlds as well (Russell et al., 2014, 2017). Several planetary bodies could have ongoing serpentinization in a subsurface ocean, including Enceladus, Titan, Ceres, and Europa (Table 5), and serpentinization reactions could be widespread in the cosmos (Holm et al., 2015). Mars might also have serpentinization occurring in the subsurface or had serpentinization occurring millions of years ago, as indicated by the observation of hydrated minerals, such as serpentine phases, on the surface of Mars (Ehlmann et al., 2010). Serpentinite-hosted sites on planetary bodies could likely support chemoautotrophic life, such as methanogens (McCollom, 1999). For example, the piezotolerant thermophile Methanothermococcus okinawensis was capable of growing under Enceladus-like conditions up to 5 MPa (Taubner et al., 2018), and the thermophilic methanogen, Methanothermobacter wolfeii, could survive subsurface Mars-like conditions across pH 5–9, pressure 0.1–122 MPa, and temperature at 55°C (Sinha et al., 2017). The 55°C temperature corresponds to a Martian depth of 1–30 km and 10–304 MPa (Sinha et al., 2017).

In contrast to serpentinization, radiolysis consists of radionuclides decay, such as uranium, thorium, and radioactive potassium, decomposing water molecules into oxidizing radicals that then react with oxidizable substrates, such as pyrite, generating the necessary chemical energy for life to survive. For example, the sulfate-reducing bacterium Candidatus Desulfurudis audaxviator is the only species observed in fracture fluids at depths >1.5 km (Mponeng mine, Johannesburg, South Africa) and is likely influenced by the radiolytic production of such chemical species as H₂ and sulfate (Chivian et al., 2008). It is possible that radiolysis could support such life on other planetary bodies, including the Eurpban ocean (Altair et al., 2018) and the martian subsurface (Michalski et al., 2018).

It is important to note that the presence of liquid water (or other liquid solvent) is the main indicator to consider the possibility of extinct or extant life on a planetary body. Planetary bodies with low water activity (aw <0.6, see section 2b) may not have the capability to harbor life. In places with low water activity, desiccation-tolerance could become an important factor in determining the survivability of organisms, coupled with the transient availability of water over time (either by precipitation, moisture, fog, or atmospheric humidity). For example, desiccation tolerant organisms may be able to survive under Mars-like surface conditions (Johnson et al., 2011).

While it is possible to use our knowledge of the boundary conditions of Earth’s life to map possible habitable environments on other planetary bodies, the discussion regarding the potential for life to originate elsewhere remains more elusive. Given the limited understanding of the processes that have led to life on our planet, discussions regarding the conditions under which life might originate on other planets remains rather speculative (McKay, 2014). As suggested previously (McKay, 2014), we might assume only planets possessing boundary conditions encompassing Earth’s biospace (Figure 2) and/or having all fundamental life requirements (e.g., energy source, solvent and building blocks) might be generative for life. An additional point to keep in mind while discussing the origin—and long-term persistence—of life on a planetary body is the necessity of elemental cycling on planetary scales (Jelen et al., 2016), a role often
accomplished on our planet by a combination of geological and biological processes on our planet linked by a complex set of feedback processes over time (Chopra and Lineweaver, 2016; Moore et al., 2017).

5. Future directions and outlook

Extremophiles have pushed our understanding of the boundaries of life in all directions since they were first discovered. As already highlighted by Harrison et al. (2013) and by the data presented in Table 3 and 4, an analysis of cultured extremophiles highlights that the majority of organisms in culture are in fact polyextremophiles. Despite this, there is a fundamental lack of studies addressing the tolerance of microorganisms to multiple extremes (Harrison et al., 2013; Rothschild and Mancinelli, 2001), potentially hindering our understanding of the limits of life. In the past 50 years of extremophile research it has become apparent that the limit of life varies when organisms face co-occurring multiple extremes. For example, the upper limit of life has been raised beyond 100°C when high pressure was also present (Stetter, 1982). Future research will need to focus more on the interaction factor between multiple parameters.

While considering the basic requirements of life discussed in the introduction (namely, energy, solvent, and building blocks), it is possible that the true limits of life are actually controlled by practical implications of these requirements. For example, the current theoretical limits of life regarding temperature, pressure, and salinity are directly linked to the water activity or the stability of biological molecules under such conditions (Price and Sowers, 2004). In the search of life’s true limits, it is therefore important to consider the effect (and combined effects) of any parameters directly controlling the availability of water, both at the community and subcellular level, and the stability of macromolecules.

The comparative and historical analysis of the limits of Earth’s life provides insight into the epistemology of life’s boundary research. Despite ongoing scientific investigations of our planet for most of recorded human history, we still find life in unexpected places, and given the number of Earth ecosystems that still need to be explored in detail, we expect the current boundary of life to be pushed even further. Comparing Earth’s parameter space with the biospace of Earth’s life (Figure 2), one can hypothesize that life might, indeed, have adapted to occupy nearly all available planetary niches, even transiently. Taken together, these observations suggest that the true shape of the terrestrial biosphere remains undefined. Moreover, the astonishing diversity of planetary bodies and exoplanets (Seager, 2013) will most likely expand the combinatorial space of environmental conditions, allowing us to speculate wildly about possible extraterrestrial lifeforms.

While considering the possibility for life to originate and exist on other planetary bodies, it is important to consider the variability of Earth local conditions when compared to the planetary mean (Table 2 and 5). The majority of parameters considered in this review are unlikely to be extreme over an entire planet, and local or transient conditions might still support life. An outstanding example are communities present in microbialites in the Atacama Desert, where seasonal water deliquescence on salt grains was sufficient to sustain a productive and diverse community (Davila et al., 2008). Similarly, Recurring Slope Lineae on the surface of Mars (McEwen et al., 2011) are an extraterrestrial example of a transient condition in which the presence of hydrated salts (Ojha et al., 2015) and seasonality suggests a role for water, albeit limited (Dundas et al., 2017). Therefore, it is unlikely that time-limited, coarse-grained observation of any extraterrestrial environment will be enough to definitely rule out the existence of life or conditions within the boundary space of Earth life, at least transiently.

Whether or not other planetary bodies such as Mars, Enceladus, or Europa could or did support life, the search for Earth’s life true limits
will inform our exploration of space and could provide insight into processes that have led to the origin of life on our planet.

Acknowledgements

We thank Karla Abuyen for insightful discussions on the limitations of life. We thank Patricia Barcala Dominguez for assistance with figure illustration. The authors acknowledge the support of the Deep Carbon Observatory and C-DEBI (Center for Dark Energy Biosphere Investigations).

Funding

NM was supported by NASA Grant NNA13AA92A and by Air Force Office of Scientific Research Grant FA9550-14-1-0114. This work was in part supported by NSF grant MCB 15-17567 and by the “Biology Meets Subduction” grant from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to DG. DG and NM were also partially supported by an ELSI Origins Network (EON) research fellowship, which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. DG was also partially supported a Deep Life Modeling and Visualization Fellowship, which is supported by the Deep Carbon Observatory. HSA and JFB were supported by NSF Graduate Research Fellowships. HSA, DB, and JFB were supported by the Center for Dark Energy Biosphere Investigations NSF Award #0939564 and the NASA Astrobiology Institute Award #NNA13AA92A. This is C-DEBI Contribution ### and NAI Contribution ###

Author Contributions

NM conducted literature search, created figures, and wrote the paper. HSA, DB, JFB, SZ, and MW conducted literature search and wrote the paper. DG devised the topic, supervised paper structure and data collection, conducted literature search, created figures and wrote the paper.

Conflict of Interest Statement

The authors declare no competing interests in relation to this work.

References

Airey, M. W., Mather, T. A., Pyle, D. M., and Ghail, R. C. (2017). The distribution of volcanism in the Beta-Atla-Themis region of Venus: Its relationship to rifting and implications for global tectonic regimes. J. Geophys. Res. Planets 122, 1626–1649. doi:10.1002/2016JE005205.

Aislabie, J. M., Chhour, K. L., Saul, D. J., Miyauchi, S., Ayton, J., Paetzold, R. F., et al. (2006). Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3041–3056. doi:10.1016/j.soilbio.2006.02.018.

Alazard, D., Dukan, S., Urih, A., Verhé, F., Bouabida, N., Morel, F., et al. (2003). Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int. J. Syst. Evol. Microbiol. 53, 173–178. doi:10.1099/ijs.0.02323-0.

Alcaide, M., Stogios, P. J., Lafraia, A., Tchigvintsev, A., Flick, R., Bargiela, R., et al. (2015). Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats. Environ. Microbiol. 17, 332–345. doi:10.1111/1462-2920.12660.

Altair, T., De Avellar, M. G. B., Rodrigues, F., and Galante, D. (2018). Microbial habitability of Europa sustained by radioactive sources. Sci. Rep. 8, 1–8. doi:10.1038/s41598-017-18470-z.

Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A. M. (2007). Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: Major groups and growth abilities at low temperatures. in FEMS Microbiology Ecology (Oxford University Press), 242–254. doi:10.1111/j.1574-6941.2006.00199.x.

Amend, J. P., and Shock, E. L. (2001). Energetics of overall metabolic reaction of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microb. Revs. 25, 175–243.

Anitori, R. P. (2012). Extremophiles : microbiology and biotechnology. Caister Academic Press Available at: https://www.caister.com/extremophiles [Accessed January 6, 2019].

Arney, G., Domagal-Goldman, S. D., Meadows, V. S., Wolf, E. T., Schwieterman, E., Charnay, B., et al. (2016). The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. Astrobiology 16, 873–899. doi:10.1089/ast.2015.1422.

Aston, J. E., and Peyton, B. M. (2007). Response of
Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. *FEMS Microbiol. Lett.* 274, 196–203. doi:10.1111/j.1574-6968.2007.00851.x.

Babu, P., Chandel, A. K., and Singh, O. V. (2015). *Extremophiles and Their Applications in Medical Processes*. doi:10.1107/978-3-319-12808-5.

Baker-Austin, C., and Dopson, M. (2007). Life in acid: pH homeostasis in acidophiles. *Trends Microbiol.* 15, 165–171. doi:10.1016/j.tim.2007.02.005.

Baker, B. J., and Banfield, J. F. (2003). Microbial communities in acid mine drainage. *FEMS Microbiol. Ecol.* 44, 139–152.

Baland, R. M., Tobie, G., Lefèvre, A., and Van Hoolst, T. (2014). Titan’s internal structure inferred from its gravity field, shape, and rotation state. *Icarus* 237, 29–41. doi:10.1016/j.icarus.2014.04.007.

Barbier, B., Chabin, A., Chaput, D., and Brack, A. (1998). Photochemical processing of amino acids in Earth orbit. *Planet. Space Sci.* 46, 391–398. doi:10.1016/S0032-0633(97)00150-5.

Bartlett, D. H., Eloe, E. A., and Lauro, F. M. (2007). “Microbial Adaptation to High Pressure,” in *Physiology and Biochemistry of Extremophiles* (American Society of Microbiology), 333–348. doi:10.1128/9781555815813.ch25.

Basilevsky, A. T., and Head, J. W. (2003). The surface of Venus. *Reports Prog. Phys.* 66, 1699–1734. doi:10.1088/0034-4885/66/10/R04.

Becker, K., Langseth, M. G., and Hyndman, R. D. (1984). “5. Temperature measurements in Hole 395A, Leg 78B,” in *Initial Reports of the Deep Sea Drilling Project*, 689–698. doi:10.2973/dspd.proc.78b.105.1984.

Bertrand, J. C., Brochier-Armanet, C., Gouy, M., and Westall, F. (2015). “For three billion years, microorganisms were the only inhabitants of the earth,” in *Environmental Microbiology: Fundamentals and Applications* (Dordrecht: Springer Netherlands), 25–71. doi:10.1007/978-94-017-9118-2_4.

Blum, J. S., Han, S., Lanoil, B., Saltikov, C., Witte, B., Tabita, F. R., et al. (2009). Ecophysiology of “Halarsenatibacter silvermanii” strain SLAS-1 T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. *Appl. Environ. Microbiol.* 75, 1950–1960. doi:10.1128/AEM.02614-08.

Brassé, C., Buch, A., Coll, P., and Raaulin, F. (2017). Low-Temperature Alkaline pH Hydrolysis of Oxygen-Free Titan Tholins: Carbonates’ Impact. *Astrobiology* 17, 8–26. doi:10.1089/ast.2016.1524.

Brock, T. D., and Freeze, H. (1969). Thermus aquaticus gen. nov. and sp. nov., a non-sporulating extreme thermophile. *J. Bacteriol.* 98, 289–97. Available at: http://jb.asm.org/content/98/1/289.short [Accessed November 9, 2018].

Byrne, R. T., Klingele, A. J., Cabot, E. L., Schackwitz, W. S., Martin, J. A., Martin, J., et al. (2014). Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair. *Elife* 2014, 1322. doi:10.7554/eLife.01322.

Caldecott, M. M., Teramura, A. H., and Tevini, M. (1989). The changing solar ultraviolet climate and the ecological consequences for higher plants. *Trends Ecol. Evol.* 4, 363–367. doi:10.1016/0169-5347(89)90100-6.

Capece, M. C., Clark, E., Saleh, J. K., Halford, D., Heinl, N., Hoskins, S., et al. (2013). “Polypeptidophiles and the Constraints for Terrestrial Habitability,” in 3–59. doi:10.1007/978-94-007-6488-0_1.

Cassidy, T. A., Paranicas, C. P., Shirley, J. H., Dalton, J. B., Teolis, B. D., Johnson, R. E., et al. (2013). Magnetospheric ion sputtering and water ice grain size at Europa. *Planet. Space Sci.* 77, 64–73. doi:10.1016/j.pss.2012.07.008.

Castillo-Rogez, J., Neveu, M., McSween, H. Y., Fu, R. R., Toplis, M. J., and Prettyman, T. (2018). Insights into Ceres’s evolution from surface composition. *Meteorit. Planet. Sci.* 53, 1820–1843. doi:10.1111/maps.13181.

Cavalazzi, B., and Westall, F. (2018). *Biosignatures for Astrobiology*. Springer, Cham doi:https://doi.org/10.1007/978-3-319-96175-0.

Chan, C. S., Chan, K. G., Ee, R., Hong, K. W., Urbia, M. S., Donati, E. R., et al. (2017). Effects of physiochemical factors on prokaryotic biodiversity in Malaysian circumneutral hot
springs. *Front. Microbiol.* 8, 1252. doi:10.3389/fmicb.2017.01252.

Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal, P. S., DeSantis, T. Z., et al. (2008). Environmental genomics reveals a single-species ecosystem deep within earth. *Science* 322, 275–278. doi:10.1126/science.1155495.

Chopra, A., and Lineweaver, C. H. (2016). The Case for a Gaian Bottleneck: The Biology of Habitability. *Astrobiology* 16, 7–22. doi:10.1089/ast.2015.1387.

Chyba, C. F., and Phillips, C. B. (2001). Possible ecosystems and the search for life on Europa. *Proc. Natl. Acad. Sci.* 98, 801–804. doi:10.1073/pnas.98.3.801.

Clarke, A., Morris, G. J., Fonseca, F., Murray, B. J., Acton, E., and Price, H. C. (2013). A Low Temperature Limit for Life on Earth. *PLoS One* 8, e66207. doi:10.1371/journal.pone.0066207.

Clifford, S. M., Lasue, J., Heggy, E., Boisson, J., McGovern, P., and Max, M. D. (2010). Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. *J. Geophys. Res.* 115, E07001. doi:10.1029/2009JE003462.

Cnossen, I., Sanz-Forcada, J., Favata, F., Witasse, O., Zegers, T., and Arnold, N. F. (2007). Habitat of early life: Solar X-ray and UV radiation at Earth's surface 4–3.5 billion years ago. *J. Geophys. Res.* 112, E02008. doi:10.1029/2006JE002784.

Cockell, C. S. (1999). Life on Venus. *Planet. Space Sci.* 47, 1487–1501. doi:10.1016/S0032-0633(99)00036-7.

Cockell, C. S., Lee, P., Osinski, G., Horneck, G., and Broady, P. (2002). Impact-induced microbial endolithic habitats. *Meteorit. Planet. Sci.* 37, 1287–1298. doi:10.1111/j.1945-5100.2002.tb01029.x.

Cockell, C. S., and Raven, J. A. (2007). Ozone and life on the Archaeaean Earth. *Philos. Trans. A. Math. Phys. Eng. Sci.* 365, 1899–901. doi:10.1098/rsta.2007.2049.

Cockell, C. S., Schuerger, A. C., Billi, D., Friedmann, E. I., and Panitz, C. (2005). Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis. *Astrobiology* 5, 127–140. doi:10.1089/ast.2005.5.127.

Coker, J. A. (2016). Extremophiles and biotechnology: current uses and prospects. *F1000Research* 5, 396. doi:10.12688/f1000research.7432.1.

Cole, J. K., Peacock, J. P., Dodsworth, J. A., Williams, A. J., Thompson, D. B., Dong, H., et al. (2013). Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. *ISME J.* 7, 718–729. doi:10.1038/ismej.2012.157.

Colman, D. R., Poudel, S., Hamilton, T. L., Havig, J. R., Selensky, M. J., Shock, E. L., et al. (2018). Geobiological feedbacks and the evolution of thermoacidophiles. *ISME J.* 12, 225–236. doi:10.1038/ismej.2017.162.

Confalonieri, F., and Sommer, S. (2011). Bacterial and archaeal resistance to ionizing radiation. in *Journal of Physics: Conference Series* (IOP Publishing), 012005. doi:10.1088/1742-6596/261/1/012005.

Cordier, D., García-Sánchez, F., Justo-García, D. N., and Liger-Belair, G. (2017). Bubble streams in Titan’s seas as a product of liquid N2 + CH4 + C2H6 cryogenic mixture. *Nat. Astron.* 1, 0102. doi:10.1038/s41550-017-0102.

Czop, M., Motyka, J., Sracek, O., and Szuwarzyński, M. (2011). Geochemistry of the hyperalkaline Gorka pit lake (pH > 13) in the Chrzanow region, southern Poland. *Water. Air. Soil Pollut.* 214, 423–434. doi:10.1007/s11270-010-0433-x.

Dalmasso, C., Oger, P., Selva, G., Courtine, D., L’Haridon, S., Garlaschelli, A., et al. (2016). Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. *Syst. Appl. Microbiol.* 39, 440–444. doi:10.1016/j.syapm.2016.08.003.

Daly, M. J., Gaidamakov, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Venkateswaran, A., et al. (2004). Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. *Science* 306, 1025–1028. doi:10.1126/science.1103185.

Danovaro, R., Company, J. B., Corinaldesi, C., D’Onghia, G., Galil, B., Gambi, C., et al. (2010). Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. *PLoS One* 5, e11832. doi:10.1371/journal.pone.0011832.

DasSarma, P., and DasSarma, S. (2018). Survival of microbes in Earth’s stratosphere. *Curr. Opin. Microbiol.* 43, 24–30. doi:10.1016/j.mib.2017.11.002.
DasSarma, S., and DasSarma, P. (2017). “Halophiles,” in eLS (Chichester, UK: John Wiley & Sons, Ltd), 1–13. doi:10.1002/9780470015902.a0000394.pub4.

Davila, A. F., Gómez-Silva, B., de los Rios, A., Ascaso, C., Olivares, H., McKay, C. P., et al. (2008). Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. *J. Geophys. Res. Biogeosciences* 113, n/a-n/a. doi:10.1029/2007JG000561.

Davila, A. F., Gómez-Silva, B., de los Rios, A., Ascaso, C., Olivares, H., McKay, C. P., et al. (2008). Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. *J. Geophys. Res. Biogeosciences* 113, n/a-n/a. doi:10.1029/2007JG000561.

De Vera, J. P., Boettger, U., Noetzel, R. de la T., Sánchez, F. J., Grunow, D., Schmitz, N., et al. (2012). Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. in *Planetary and Space Science* (Pergamon), 103–110. doi:10.1016/j.pss.2012.06.010.

Delmelle, P., and Bernard, A. (1994). Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. *Geochim. Cosmochim. Acta* 58, 2445–2460. doi:10.1016/0016-7037(94)90023-X.

Delort, A. M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M., Mailhot, G., et al. (2010). A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. *Atmos. Res.* 98, 249–260. doi:10.1016/j.atmosres.2010.07.004.

Deming, J. W. (2007). “Life in Ice Formations at Very Cold Temperatures,” in *Physiology and Biochemistry of Extremophiles* (American Society of Microbiology), 133–144. doi:10.1289/0016-7037(94)90023-X.

Dickson, J. L., Head, J. W., Levy, J. S., and Marchant, D. R. (2013). Don Juan Pond, Antarctica: Near-surface CaCl₂-brine feeding Earth’s most saline lake and implications for Mars. *Sci. Rep.* 3, 1166. doi:10.1038/srep01166.

Dion, P., Nautiyal, C. S., and Dion, P. (2008). *Microbiology of Extreme Soils*. Springer doi:10.1007/978-3-540-74231-9.

Dose, K., Bieger-Dose, A., Ernst, B., Feister, U., Gómez-Silva, B., Klein, A., et al. (2001). Survival of microorganisms under the extreme conditions of the Atacama desert. *Orig. Life Evol. Biosph.* 31, 287–303. doi:10.1023/A:101078829265.

Dundas, C. M., McEwen, A. S., Chojnacki, M., Milazzo, M. P., Byrne, S., McElwaine, J. N., et al. (2017). Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. *Nat. Geosci.* 10, 903–907. doi:10.1038/s41561-017-0012-5.

Durasula, R., and Rao, D. V. S. (2018). “Extremophiles: from Biology to Biotechnology,” in *Extremophiles* (Boca Raton: Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, the academic division of T&F Informa plc, 2018.: CRC Press), 1–18. doi:10.1201/9781315154695-1.

Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., Murray, R. W., and D’Hondt, S. (2016). Radiolytic hydrogen production in the subseafloor basaltic aquifer. *Front. Microbiol.* 7, 76. doi:10.3389/fmicb.2016.00076.

Dzaugis, M., Spivack, A. J., and D’Hondt, S. (2018). Radiolytic H2 Production in Martian Environments. *Astrobiology* 18, 1137–1146. doi:10.1089/ast.2017.1654.

Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F. (2000). An Archaeal iron-oxidizing extreme acidophile important in acid mine drainage. *Science* 287, 1796–1799. doi:10.1126/science.287.5459.1796.

Ehlmann, B. L., Mustard, J. F., and Murchie, S. L. (2010). Geologic setting of serpentine deposits on Mars. *Geophys. Res. Lett.* 37, 1–5. doi:10.1029/2010GL042596.

El-Demerdash, M. A., Hegazy, A. K., and Zilay, A. M. (1995). Vegetation-soil relationships in Tihama coastal plains of Jazan region, Saudi Arabia. *J. Arid Environ.* 30, 161–174. doi:10.1016/S0140-1963(05)80067-9.

Emeis, K. C., Robertson, A. H. F., and Richter, D. (1996). Reports of the Ocean Drilling Program.

Everroad, R. C., Otaki, H., Matsuura, K., and Haruta, S. (2012). Diversification of Bacterial Community Composition along a Temperature Gradient at a Thermal Spring. *Microbes Environ.* 27, 374–381. doi:10.1264/jsme2.ME11350.

Fairén, A. G., Davila, A. F., Gago-Duport, L., Amils, R., and McKay, C. P. (2009). Stability against freezing of aqueous solutions on early Mars.
Limits of Life in Planetary Context

Nature 459, 401–404. doi:10.1038/nature07978.
Fairén, A. G., Fernández-Remolar, D., Dohm, J. M., Baker, V. R., and Amils, R. (2004). Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426. doi:10.1038/nature07978.

Fajardo-Cavazos, P., Morrison, M. D., Miller, K. M., Schuerger, A. C., and Nicholson, W. L. (2018). Transcriptomic responses of Serratia liquefaciens cells grown under simulated Martian conditions of low temperature, low pressure, and CO2-enriched anoxic atmosphere. Sci. Rep. 8, 14938. doi:10.1038/s41598-018-33404-4.

Fanale, F. P., and Salvail, J. R. (1989). The water regime of asteroid (1) Ceres. Icarus 82, 97–110. doi:10.1016/0019-1035(89)90026-2.

Fang, J., Zhang, L., and Bazylinski, D. A. (2010). Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 18, 413–422. doi:10.1016/j.tim.2010.06.006.

Fanale, F. P., and Salvail, J. R. (1989). The water regime of asteroid (1) Ceres. Icarus 82, 97–110. doi:10.1016/0019-1035(89)90026-2.

Fernández-Calviño, D., and Bååth, E. (2010). Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol. Ecol. 73, 149–156. doi:10.1111/j.1574-6941.2010.00873.x.

Ferrera, I., and Reysenbach, A.-L. (2007). “Thermophiles,” in Encyclopedia of Life Sciences (Chichester, UK: John Wiley & Sons, Ltd). doi:10.1002/9780470015902.a0000406.

Feyhl-Buska, J., Chen, Y., Jia, C., Wang, J. X., Zhang, C. L., and Boyd, E. S. (2016). Influence of growth phase, pH, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Front. Microbiol. 7, 1323. doi:10.3389/fmicb.2016.01323.

Finlayson, C. M., Milton, R., Prentice, C., and Davidson, N. C. (2018). The Wetland Book II, Distribution, Description, and Conservation. , eds. C. M. Finlayson, R. Milton, C. Prentice, and N. C. Davidson Springer.

Flores, G. E., Shakya, M., Meneghin, J., Yang, Z. K., Seewald, J. S., Geoff Wheat, C., et al. (2012). Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin. Geobiology 10, 333–346. doi:10.1111/j.1472-4669.2012.00325.x.

Fouke, B. W. (2011). Hot-spring Systems Geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 58, 170–219. doi:10.1111/j.1365-3091.2010.01209.x.

Frank, Y. A., Kadinikov, V. V., Gavrilov, S. N., Banks, D., Gerasimchuk, A. L., Podosokorskaya, O. A., et al. (2016). Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study. Front. Microbiol. 7, 2101. doi:10.3389/fmicb.2016.02101.

Fredrickson, J. K., Li, S. M. W., Gaidamakova, E. K., Matrosova, V. Y., Zhai, M., Sulloway, H. M., et al. (2008). Protein oxidation: Key to bacterial desiccation resistance? ISME J. 2, 393–403. doi:10.1038/ismej.2007.116.

Fredrickson, J. K., Zachara, J. M., Balkwill, D. L., Kennedy, D., Li, S. M. W., Kostandarithes, H. M., et al. (2004). Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington State. Appl. Environ. Microbiol. 70, 4230–4241. doi:10.1128/AEM.70.7.4230-4241.2004.

Frössler, J., Panitz, C., Wingender, J., Fleming, H.-C., and Retting, P. (2017). Survival of Deinococcus geothermophilis in Biofilms under Desiccation and Simulated Space and Martian Conditions. Astrobiology 17, 431–447. doi:10.1089/ast.2015.1431.

Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., Bar-Nun, A., Barucci, M. A., et al. (2005). In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 785–791. doi:10.1038/nature04314.

Giova, G., Chakraborty, P., Marshak, S., and Kieffer, S. W. (2007). Unified model of tectonics and heat transport in a frigid Enceladus. Proc. Natl. Acad. Sci. 104, 13578–13581. doi:10.1073/pnas.0706018104.

Giovannelli, D., D’Errico, G., Manini, E., Yakimov, M., and Vetriani, C. (2013). Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece). Front. Microbiol. 4, 184. doi:10.3389/fmicb.2013.00184.

Glein, C. R., Baross, J. A., and Waite, J. H. (2015). The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219. doi:10.1016/j.gca.2015.04.017.

Grindrod, P. M., Fortes, A. D., Nimmo, F., Feltham, D. L., Brodholt, J. P., and Vočadlo, L. (2008).
The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan. *Icarus* 197, 137–151. doi:10.1016/j.icarus.2008.04.006.

Hallsworth, J. E., Yakimov, M. M., Golyshin, P. N., Gillion, J. L. M., D’Auria, G., De Lima Alves, F., et al. (2007). Limits of life in MgCl2-containing environments: Chaotropicity defines the window. *Environ. Microbiol.* 9, 801–813. doi:10.1111/j.1462-2920.2006.01212.x.

Hand, K. P., and Carlson, R. W. (2015). Europa’s surface color suggests an ocean rich with sodium chloride. *Geophys. Res. Lett.* 42, 3174–3178. doi:10.1002/2015GL063559.

Hans Wedepohl, K. (1995). The composition of the continental crust. *Geochim. Cosmochim. Acta* 59, 1217–1232. doi:10.1016/0016-7037(95)00038-2.

Hansen, A. A., Jensen, L. L., Kristoffersen, T., Mikkelsen, K., Merrison, J., Finster, K. W., et al. (2009). Effects of Long-Term Simulated Martian Conditions on a Freeze-Dried and Homogenized Bacterial Permafrost Community. *Astrobiology* 9, 229–240. doi:10.1089/ast.2008.0244.

Harrison, J. P., Gheeraert, N., Tsigelnitskiy, D., and Cockell, C. S. (2013). The limits for life under multiple extremes. *Trends Microbiol.* 21, 204–212. doi:10.1016/j.tim.2013.01.006.

Hayne, P. O., and Aharonson, O. (2015). Thermal stability of ice on Ceres with rough topography. *J. Geophys. Res. E Planets* 120, 1567–1584. doi:10.1002/2015JE004887.

Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., et al. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the phoenix lander site. *Science*. 325, 64–67. doi:10.1126/science.1172466.

Hendrix, A. R., Vilas, F., and Li, J. Y. (2016). Ceres: Sulfur deposits and graphitized carbon. *Geophys. Res. Lett.* 43, 8920–8927. doi:10.1002/2016GL070240.

Hoeher, T. M., and Jørgensen, B. B. (2013). Microbial life under extreme energy limitation. *Nat. Rev. Microbiol.* 11, 83–94. doi:10.1038/nrmicro2939.

Holm, D. A., Owen, L., and Ochsenwald, W. L. (2017). Arabian Desert. *Encycl. Br.* Available at: https://www.britannica.com/place/Arabian-Desert [Accessed January 7, 2019].

Holm, N. G., Oze, C., Mousis, O., Waite, J. H., and Guilbert-Lepoutre, A. (2015). Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets). *Astrobiology* 15, 587–600. doi:10.1089/ast.2014.1188.

Horneck, G., Klaus, D. M., and Mancinelli, R. L. (2010). Space Microbiology. *Microbiol. Mol. Biol. Rev.* 74, 121–156. doi:10.1128/MMBR.00016-09.

Hsu, H. W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., et al. (2015). Ongoing hydrothermal activities within Enceladus. *Nature* 519, 207–210. doi:10.1038/nature14262.

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., et al. (2016). A new view of the tree of life. *Nat. Microbiol.* 1, 1–6. doi:10.1038/nmicrobiol.2016.48.

Jaakkola, S. T., Ravantti, J. J., Oksanen, H. M., and Bamford, D. H. (2016). Buried Alive: Microbes from Ancient Halite. *Trends Microbiol.* 24, 148–160. doi:10.1016/j.tim.2015.12.002.

James, J. J., Tillier, R. L., and Richards, J. H. (2005). Multiple resources limit plant growth and function in a saline-alkaline desert community. *J. Ecol.* 93, 113–126. doi:10.1111/j.0022-0477.2004.00948.x.

Javor, B. (1984). Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. *Appl. Environ. Microbiol.* 48, 352–60. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16346609 [Accessed December 19, 2018].

Jebbar, M., Franzetti, B., Girard, E., and Oger, P. (2015). Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. *Extremophiles* 19, 721–740. doi:10.1007/s00792-015-0760-3.

Jelen, B. I., Giovannelli, D., and Falkowski, P. G. (2016). The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. *Annu. Rev. Microbiol.* 70, 45–62. doi:10.1146/annurev-micro-102215-095521.

Jennings, D. E., Cottini, V., Nixon, C. A., Achterberg, R. K., Flasar, F. M., Kunde, V. G., et al. (2016). Surface temperatures on Titan during northern winter and spring. *Astrophys. J.* 816, L17. doi:10.3847/2041-8205/816/1/L17.

Jin, Q., and Kirk, M. F. (2018). pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. *Front. Environ. Sci.* 6, 21. doi:10.3389/fenvs.2018.00021.

Johnson, A. P., Pratt, L. M., Vishnivetskaya, T., Pfiffner, S., Bryan, R. A., Dadachova, E., et al.
Extended survival of several organisms and amino acids under simulated martian surface conditions. *Icarus* 211, 1162–1178. doi:10.1016/j.icarus.2010.11.011.

Jolivet, E., L’Haridon, S., Corre, E., Forterre, P., and Prieur, D. (2003). Thermococcus gammatolerans sp. nov., a hyperthermophilic archcean from a deep-sea hydrothermal vent that resists ionizing radiation. *Int. J. Syst. Evol. Microbiol.* 53, 847–851. doi:10.1099/ijs.0.02503-0.

Jones, B. F., Eugster, H. P., and Rettig, S. L. (1977). Hydrochemistry of the Lake Magadi basin, Kenya. *Geochim. Cosmochim. Acta* 41, 53–72. doi:10.1016/0016-7037(77)90186-7.

Jones, E. G., Lineweaver, C. H., and Clarke, J. D. (2011). An Extensive Phase Space for the Potential Martian Biosphere. *Astrobiology* 11, 1017–1033. doi:10.1089/ast.2011.0660.

Jones, R. M., Goordial, J. M., and Orcutt, B. N. (2018). Low Energy Subsurface Environments as Extraterrestrial Analogs. *Front. Microbiol.* 9, 1–18. doi:10.3389/fmicb.2018.01605.

Junge, K., Eicken, H., and Deming, J. W. (2004). Bacterial Activity at -2 to -20°C in Arctic Wintertime Sea Ice. *Appl. Environ. Microbiol.* 70, 550–557. doi:10.1128/AEM.70.1.550-557.2004.

Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., and D’Hondt, S. (2012). Global distribution of microbial abundance and biomass in subseafloor sediment. *Proc. Natl. Acad. Sci.* 109, 16213–16216. doi:10.1073/pnas.1203849109.

Karbe, L. (1986). “Hot Brines and the Deep Sea Environment,” in *Red Sea*, eds. A. J. Edwards and S. M. Head (Pergamon Press).

Kargel, J. S., Kaye, J. Z., Head, J. W., Marion, G. M., Sassen, R., Crowley, J. K., et al. (2000). Europa’s Crust and Ocean: Origin, Composition, and the Prospects for Life. *Icarus* 148, 226–265. doi:10.1006/icar.2000.6471.

Kashefi, K., Holmes, D. E., Reysenbach, A. L., and Lovley, D. R. (2002). Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: Isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. *Appl. Environ. Microbiol.* 68, 1735–1742. doi:10.1128/AEM.68.4.1735-1742.2002.

Kashefi, K., and Lovley, D. R. (2003). Extending the upper temperature limit for life. *Science* . 301, 934. doi:10.1126/science.1086823.

Kattenhorn, S. A., and Prockter, L. M. (2014). Evidence for subduction in the ice shell of Europa. *Nat. Geosci.* 7, 762–767. doi:10.1038/NGEO2245.

Kavak, M. T., and Karadogan, S. (2012). Investigation of sea surface temperature variation of Lake Van using AVHRR. Available at: https://www.researchgate.net/publication/256512293_INVESTIGATION_SEA_SURFACE_TEMPERATURE_VARIATION_OF_LAKE_VAN_USING_AVHRR [Accessed January 7, 2019].

Kelly, D. P., and Wood, A. P. (2000). Reclassification of some species of Thiobacillus Acidithiobacillus gen. nov., Halothiobacillus. *Int. J. Syst. Evol. Microbiol.* 50, 511–516. doi:10.1099/00207713-50-2-511.

Kimura, J., and Kitadai, N. (2015). Polymerization of Building Blocks of Life on Europa and Other Icy Moons. *Astrobiology* 15, 430–441. doi:10.1089/ast.2015.1306.

Kingsbury, J. M. (1954). On the isolation, physiology, and development of a minute, hardy, bluegreen alga. *Dr. Diss. Harvard Univ.*

Knoll, A. H. (2015). *Life on a Young Planet: The First Three Billion Years of Evolution on Earth.* Princeton University Press doi:10.1515/9781400866045.

Konn, C., Charlou, J. L., Donval, J. P., Holm, N. G., Dehairs, F., and Bouillon, S. (2009). Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. *Chem. Geol.* 258, 299–314. doi:10.1016/J.CHEMGEO.2008.10.034.

Koschinsky, A., Garbe-Schönberg, D., Sander, S., Schmidt, K., Gennrich, H. H., and Strauss, H. (2008). Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. *Geology* 36, 615–618. doi:10.1130/G24726A.1.

Kottemann, M., Kish, A., Iloanusi, C., Bjork, S., and DiRuggiero, J. (2005). Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. *Extremophiles* 9, 219–227. doi:10.1007/s00792-005-0437-4.

Krisko, A., and Radman, M. (2013). Biology of extreme radiation resistance: The way of Deinococcus radiodurans. *Cold Spring Harb. Perspect. Biol.* 5, a012765–a012765.
Limits of Life in Planetary Context

doi:10.1101/cshperspect.a012765.

Kruhlitch, T. A., Sachs, G., and Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343. doi:10.1038/nrmicro2549.

Kuang, J.-L., Huang, L.-N., Chen, L.-X., Hua, Z.-S., Li, S.-J., Hu, M., et al. (2013). Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050. doi:10.1038/ismej.2012.139.

Küppers, M., O'Rourke, L., Bockelée-Morvan, D., Zakharov, V., Lee, S., Von Allmen, P., et al. (2014). Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527. doi:10.1038/nature12918.

La Duc, M. T., Benardini, J. N., Kempf, M. J., Newcombe, D. A., Lubarsky, M., and Venkateswaran, K. (2007). Microbial Diversity of Indian Ocean Hydrothermal Vent Plumes: Microbes Tolerant of Desiccation, Peroxide Exposure, and Ultraviolet and γ -Irradiation. Astrobiology 7, 416–431. doi:10.1089/ast.2006.0060.

Lammer, H., Bredehöft, J. H., Coustenis, A., Khodachenko, M. L., Kaltenegger, L., Grasset, O., et al. (2009). What makes a planet habitable? Astron. Astrophys. Rev. 17, 181–249. doi:10.1007/s00159-009-0019-z.

Lane, N., Allen, J. F., and Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life - Lane - 2010 - BioEssays - Wiley Online Library. BioEssays. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.200900131 [Accessed October 12, 2018].

Langmuir, D. (1971). The geochemistry of some carbonate ground waters in central Pennsylvania. Geochim. Cosmochim. Acta 35, 1023–1045. doi:10.1016/0016-7037(71)90019-6.

LaRowe, D. E., and Amend, J. P. (2015). Power limits for microbial life. Front. Microbiol. 6, 718. doi:10.3389/fmicb.2015.00718.

Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. doi:10.1128/AEM.00335-09.

Lechmann, S. M., Schmalholz, S. M., Hetényi, G., May, D. A., and Kaus, B. J. P. (2014). Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models. J. Geophys. Res. Solid Earth 119, 616–644. doi:10.1002/2012JB009748.

Li, H., Yang, Q., Li, J., Gao, H., Li, P., and Zhou, H. (2015). The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Sci. Rep. 5. doi:10.1038/srep17056.

Lin, L. H., Hall, J., Lippmann-Pipke, J., Ward, J. A., Lollar, B. S., DeFlaun, M., et al. (2005). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophys. Geosystems 6, n/a-n/a. doi:10.1029/2004GC000907.

Lozupone, C. A., and Knight, R. (2007). Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. 104, 11436–11440. doi:10.1073/pnas.0611525104.

Magnabosco, C., Lin, L. H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter, H., et al. (2018). The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717. doi:10.1038/s41561-018-0221-6.

Mancinelli, R. L., and Klovstad, M. (2000). Martian soil and UV radiation: Microbial viability assessment on spacecraft surfaces. Planet. Space Sci. 48, 1093–1097. doi:10.1016/S0032-0633(00)00083-0.

Mantyla, A. W., and Reid, J. L. (1983). Abyssal characteristics of the World Ocean waters. Deep Sea Res. Part A, Oceanogr. Res. Pap. 30, 805–
Limits of Life in Planetary Context

McEwen, A. S., Ojha, L., Dundas, C. M., Matson, S. S., Byrne, S., Wray, J. J., et al. (2011). Seasonal flows on warm Martian slopes. Science. 333, 740–743. doi:10.1126/science.1204816.

McGrath, M. A., Hansen, C. J., and Hendrix, A. R. (2009). “Observations of Europa’s Tenuous Atmosphere,” in Europa, 485–506. Available at: http://www.igpp.ucla.edu/public/mkivelso/refs/PUBLICATIONS/McGrath et al submitted.pdf [Accessed December 21, 2018].

McKay, C. P. (2014). Requirements and limits for life in the context of exoplanets. Proc. Natl. Acad. Sci. 111, 12628–12633. doi:10.1073/pnas.1304212111.

McKay, C. P. (2016). Titan as the Abode of Life. Life 6, 8. doi:10.3390/life6010008.

Meklat, A., Bouras, N., Zitouni, A., Mathieu, F., Lebriri, A., Schumann, P., et al. (2013). Actinopolyspora mzabensis sp. nov., a halophilic actinomycete isolated from an Algerian Saharan soil. Int. J. Syst. Evol. Microbiol. 63, 3787–3792. doi:10.1099/ijs.0.046649-0.

Mendez-Garcia, C., Pelaez, A. I., Mesa, V., Sanchez, J., Golyshina, O. V., and Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 6, 475. doi:10.3389/fmicb.2015.00475.

Merlino, G., Barozzi, A., Michoud, G., Ngugi, D. K., and Daffonchio, D. (2018). Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbial. Ecol. 94. doi:10.1093/femsec/fiy085.

Mesbah, N., and Wiegel, J. (2005). Halophilic thermophiles: a novel group of extremophiles. Microb. Divers. Curr. Perspect. … 2605, 1–38. Available at: https://books.google.com/books?hl=en&lr=&id=4MoZ2vM1d0MC&oi=fnd&pg=PA91&dq=halothermophiles&ots=eFKpWdv0Wq&sig=ukXMygURctb6QzT34LFL37hL2hQ#v=onepage&q=halothermophiles&f=false [Accessed January 5, 2019].

Michalski, J. R., Cuadros, J., Niles, P. B., Parnell, J., Deanne Rogers, A., and Wright, S. P. (2013). Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138. doi:10.1038/ngeo1706.

Michalski, J. R., Onstott, T. C., Mojszis, S. J., Mustard, J., Chan, Q. H. S., Niles, P. B., et al. (2018). The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26. doi:10.1038/s41561-017-0015-2.
Limits of Life in Planetary Context

Michiels, C., Bartlett, D. H., and Aersten, A. (2008). *High-Pressure Microbiology*, eds. Michiels, Bartlett, and Aersten American Society of Microbiology doi:10.1128/9781555815646.

Miettinen, H., Kietäväinen, R., Sohling, E., Numminen, M., Ahonen, L., and Itävaara, M. (2015). Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland. *Front. Microbiol.* 6, 1203. doi:10.3389/fmicb.2015.01203.

Mildrexler, D. J., Zhao, M., and Running, S. W. (2011). Satellite finds highest land skin temperatures on Earth. *Bull. Am. Meteorol. Soc.* 92, 855–860. doi:10.1175/2011BAMS3067.1.

Miller, S. R., Strong, A. L., Jones, K. L., and Ungerer, M. C. (2009). Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. *Appl. Environ. Microbiol.* 75, 4565–4572. doi:10.1128/AEM.02792-08.

Millero, F. J., and Rabindra, N. R. (1997). A chemical equilibrium model for the carbonate system in natural waters. *Croat. Chem. Acta* 70, 1–38. Available at: https://hrcak.srce.hr/134777 [Accessed January 7, 2019].

Mitchell, J. L., and Lora, J. M. (2016). The Climate of Titan. *Annu. Rev. Earth Planet. Sci.* 44, 353–380. doi:10.1146/annurev-earth-060115-012428.

Mitri, G., Meriggiola, R., Hayes, A., Lefevre, A., Tobie, G., Genova, A., et al. (2014). Shape, topography, gravity anomalies and tidal deformation of Titan. *Icarus* 236, 169–177. doi:10.1016/j.icarus.2014.03.018.

Mitri, G., and Showman, A. P. (2008). Thermal convection in ice-I shells of Titan and Enceladus. *Icarus* 193, 387–396. doi:10.1016/j.icarus.2007.07.016.

Mojib, N., Farhoomand, A., Andersen, D. T., and Bej, A. K. (2013). UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2. *Extremophiles* 17, 367–378. doi:10.1007/s00792-013-0525-9.

Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H., and Falkowski, P. G. (2017). Metal availability and the expanding network of microbial metabolisms in the Archaean eon. *Nat. Geosci.* 10, 629–636. doi:10.1038/ngeo3006.

Mormile, M. R., Romine, M. F., Garcia, M. T., Ventosa, A., Bailey, T. J., and Peyton, B. M. (1999). Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. *Syst. Appl. Microbiol.* 22, 551–558. doi:10.1016/S0723-2020(99)80008-3.

Morris, S., and Taylor, A. C. (1983). Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools. *Estuar. Coast. Shelf Sci.* 17, 339–355. doi:10.1016/0272-7714(83)90026-4.

Mott, M. J., Komor, S. C., Fryer, P., and Moyer, C. L. (2003). Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean drilling program leg 195. *Geochemistry, Geophys. Geosystems* 4, 9009. doi:10.1029/2003GC000588.

Mott, M. J., Wheat, C. G., Fryer, P., Gharib, J., and Martin, J. B. (2004). Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. *Geochim. Cosmochim. Acta* 68, 4915–4933. doi:10.1016/j.gca.2004.05.037.

Muñoz-Iglesias, V., Bonales, L. J., and Prieto-Ballesteros, O. (2013). pH and Salinity Evolution of Europa’s Brines: Raman Spectroscopy Study of Fractional Precipitation at 1 and 300 Bar. *Astrobiology* 13, 693–702. doi:10.1089/ast.2012.0900.

Mykytczuk, N. C. S., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., and Whyte, L. G. (2013). Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Ori1. *JSME J.* 7, 1211–1226. doi:10.1038/jsmej.2013.8.

Mykytczuk, N. C. S., Wilhelm, R. C., and Whyte, L. G. (2012). Planococcus halocryophilus sp. nov., an extreme sub-zero species from high arctic permafrost. *Int. J. Syst. Evol. Microbiol.* 62, 1937–1944. doi:10.1099/ijsem.0.035782-0.

Namsaraev, Z. B., Gorlenko, V. M., Namsaraev, B. B., Buryukhaev, S. P., and Yurkov, V. V. (2003). The structure and biogeochemical activity of the phototrophic communities from the bol’sherechenskii alkaline hot spring. *Microbiology* 72, 193–202. doi:10.1023/A:1023272131859.

NASA Mars Fact Sheet. Available at: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html [Accessed December 21, 2018].

Neubeck, A., Duc, N. T., Bastviken, D., Crill, P., and Holm, N. G. (2011). Formation of H2 and CH4 by weathering of olivine at temperatures
between 30 and 70°C. *Geochem. Trans.* 12, 6. doi:10.1186/1467-4866-12-6.

Nevarez, L., Vasseur, V., Le Madec, A., Le Bras, M. A., Coroller, L., Leguérinel, I., et al. (2009). Physiological traits of *Penicillium glabrum* strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water. *Int. J. Food Microbiol.* 130, 166–171. doi:10.1016/j.ijfoodmicro.2009.01.013.

Neveu, M., and Desch, S. J. (2015). Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. *Geophys. Res. Lett.* 42, 10197–10206. doi:10.1002/2015GL066375.

Nicholson, W. L., Krivushin, K., Gilichinsky, D., and Schuerger, A. C. (2013). Growth of *Carnobacterium* spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. *Proc. Natl. Acad. Sci.* 110, 666–671. doi:10.1073/pnas.1209793110.

Nicholson, W. L., and Schuerger, A. C. (2005). *Bacillus subtilis* Spore Survival and Expression of Germination-Induced Bioluminescence After Prolonged Incubation Under Simulated Mars Atmospheric Pressure and Composition: Implications for Planetary Protection and Lithopanspermia. *Astrobiology* 5, 536–544. doi:10.1089/ast.2005.5.536.

Noack, L., Höning, D., Rivoldini, A., Heistracher, C., Zimov, N., Journaux, B., et al. (2016). Water-rich planets: How habitable is a water layer deeper than on Earth? *Icarus* 277, 215–236. doi:10.1016/j.icarus.2016.05.009.

Noell, A. C., Ely, T., Bolser, D. K., Darrach, H., Hodys, R., Johnson, P. V., et al. (2015). Spectroscopy and Viability of Bacillus subtilis Spores after Ultraviolet Irradiation: Implications for the Detection of Potential Bacterial Life on Europa. *Astrobiology* 15, 20–31. doi:10.1089/ast.2014.1169.

Nogi, Y., Hosoya, S., Kato, C., and Horikoshi, K. (2004). *Colwellia piezophila* sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. *Int. J. Syst. Evol. Microbiol.* 54, 1627–1631. doi:10.1099/ijs.0.03049-0.

Nordheim, T. A., Hand, K. P., and Paranicas, C. (2018). Preservation of potential biosignatures in the shallow subsurface of Europa. *Nat. Astron.* 2, 673–679. doi:10.1038/s41550-018-0499-8.

Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., and Blowes, D. W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California. *Environ. Sci. Technol.* 34, 254–258. doi:10.1021/es990646v.

Nordstrom, D. K., Ball, J. W., and Mccluskey, R. B. (2005). Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. *Chem. Therm. Outflows*, 73–94.

Norman, L. H. (2011). Is there life on … Titan? *Astron. Geophys.* 52, 1.39-1.42. doi:10.1111/j.1468-4004.2011.52139.x.

Oger, P. M., and Jebbar, M. (2010). The many ways of coping with pressure. *Res. Microbiol.* 161, 799–809. doi:10.1016/j.resmic.2010.09.017.

Ojha, L., Wilhelm, M. B., Murchie, S. L., McEwen, A. S., Wray, J. J., Hanley, J., et al. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. *Nat. Geosci.* 8, 829–832. doi:10.1038/ngeo2546.

Olson, G. J., Brierley, J. A., and Brierley, C. L. (2003). Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. *Appl. Microbiol. Biotechnol.* 63, 249–257. doi:10.1007/s00253-003-1404-6.

Onofri, S., Selbmann, L., Pacelli, C., de Vera, J., Horneck, G., Hallsworth, J., et al. (2018). Integrity of the DNA and Cellular Ultrastructure of Cryptoendolithic Fungi in Space or Mars Conditions: A 1.5-Year Study at the International Space Station. *Life* 8, 23. doi:10.3390/life8020023.

Oremland, R., Kulp, T., Blum, J., Hoeft, S., Baesman, S., Miller, L., et al. (2005). A microbial arsenic cycle in a salt-saturated, extreme environment. *Science* 308, 1305–1308.

Oren, A. (2011). Thermodynamic limits to microbial life at high salt concentrations. *Environ. Microbiol.* 13, 1908–1923. doi:10.1111/j.1462-2920.2010.02365.x.

Oren, A. (2013). “Life In Magnesium- And Calcium-Rich Hypersaline Environments: Salt Stress By Chaotropic Ions,” in *Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology* (Springer, Dordrecht), 215–232. doi:10.1007/978-94-007-6488-0.

Pandit, A. S., Joshi, M. N., Bhargava, P., Shaikh, I., Ayachit, G. N., Raj, S. R., et al. (2015). A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. *Extremophiles* 19, 973–987. doi:10.1007/s00792-015-0772-z.
Pankova, E. I., and Konyushkova, M. V. (2013). Climate and soil salinity in the deserts of Central Asia. Eurasian Soil Sci. 46, 721–727. doi:10.1134/S1064229313070065.

Pasek, M. A., and Greenberg, R. (2012). Acidification of Europa’s Subsurface Ocean as a Consequence of Oxidant Delivery. Astrobiology 12, 151–159. doi:10.1089/ast.2011.0666.

Pavlov, A., Cheptsov, V., Tsurkov, D., Lomasov, V., Frolov, D., Vasiliev, G., et al. (2018). Survival of Radioresistant Bacteria on Europa’s Surface after Pulse Ejection of Subsurface Ocean Water. Geosciences 9, 9. doi:10.3390/geosciences9010009.

Phoenix, V. R., Bennett, P. C., Engel, A. S., Tyler, S. W., and Ferris, F. G. (2006). Chilean high-altitude hot-spring sinters: A model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 4, 15–28. doi:10.1111/j.1472-4669.2006.00063.x.

Picard, A., and Daniel, I. (2013). Pressure as an environmental parameter for microbial life - A review. Biophys. Chem. 183, 30–41. doi:10.1016/j.bpc.2013.06.019.

Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., et al. (2000). Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkalophilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int. J. Syst. Evol. Microbiol. 50, 2109–2117. doi:10.1099/00207713-50-6-2109.

Plümper, O., King, H. E., Geisler, T., Liu, Y., Pabst, S., Savov, I. P., et al. (2017). Subduction zone forearc serpentinites as incubators for deep microbial life. Proc. Natl. Acad. Sci. 114, 4324–4329. doi:10.1073/pnas.1612147114.

Pontefract, A., Zhu, T. F., Walker, V. K., Hepburn, H., Lui, C., Zuber, M. T., et al. (2017). Microbial diversity in a hypersaline sulfate lake: A terrestrial analog of ancient mars. Front. Microbiol. 8, 1819. doi:10.3389/fmicb.2017.01819.

Postberg, F., Kempf, S., Schmidt, J., Brilliantov, N., Beinsen, A., Abel, B., et al. (2009). Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101. doi:10.1038/nature08046.

Postberg, F., Khawaja, N., Abel, B., Choblet, G., Glein, C. R., Gudivapati, M. S., et al. (2018). Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568. doi:10.1038/s41586-018-0246-4.

Price, P. B., and Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. 101, 4631–4636. doi:10.1073/pnas.0400522101.

Price, R. E., and Giovannelli, D. (2017). A Review of the Geochemistry and Microbiology of Marine Shallow-Water Hydrothermal Vents. Ref. Modul. Earth Syst. Environ. Sci. doi:10.1016/B978-0-12-409548-9.09523-3.

Prieto, G. A., Froment, B., Yu, C., Poli, P., and Abercrombie, R. (2017). Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle. Sci. Adv. e1602642. doi:10.1126/sciadv.1602642.

Purcell, D., Sompong, U., Yin, L. C., Barraclough, T. G., Peerapornpisal, Y., and Pointing, S. B. (2007). The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol. Ecol. 60, 456–466. doi:10.1111/j.1574-6941.2007.00302.x.

Qi, J., Xu, M., An, C., Wu, M., Zhang, Y., Li, X., et al. (2017). Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys. Earth Planet. Inter. 263, 12–22. doi:10.1016/j.pepi.2017.01.001.

Rainey, F. A., Ray, K., Ferreira, M., Gatz, B. Z., Nobre, M. F., Bagaley, D., et al. (2005). Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl. Environ. Microbiol. 71, 5225–5235. doi:10.1128/AEM.71.9.5225-5235.2005.

Resing, J. A., Baker, E. T., Lupton, J. E., Embley, R. W., Massoth, G. J., Chadwick, J. W., et al. (2007). Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Econ. Geol. 102, 1047–1061. doi:10.2113/gsecongeo.102.6.1047.

Rivkina, E. M., Friedmann, E. I., McKay, C. P., and Gilichinsky, D. A. (2000). Metabolic activity of Permafrost Bacteria below the freezing point. Appl. Environ. Microbiol. 66, 3230–3233. doi:10.1128/AEM.66.8.3230-3233.2000.

Roadcap, G. S., Sanford, R. A., Jin, Q., Pardinas, J. R., and Bethke, C. M. (2006). Extremely alkaline
(pH > 12) ground water hosts diverse microbial community. *Ground Water* 44, 511–517. doi:10.1111/j.1745-6584.2006.00199.x.

Rohwerder, T., Gehlke, T., Kinzler, K., and Sand, W. (2003). Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. *Appl. Microbiol. Biotechnol.* 63, 239–248. doi:10.1007/s00253-003-1448-7.

Rosso, L., Lobry, J. R., Bajard, S., and Flandrois, J. P. (1995). Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth. *Appl. Environ. Microbiol.* 61, 610–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16534932 [Accessed October 12, 2018].

Rothschild, L. J., and Mancinelli, R. L. (2001). Life in extreme environments. *Nature* 409, 1092–1101. doi:10.1038/35059215.

Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. *ISME J.* 4, 1340–1351. doi:10.1038/ismej.2010.58.

Rubin, A. E., and Swindle, T. D. (2011). Flattened chondrules in the LAP 04581 LL5 chondrite: Evidence for an oblique impact into LL3 material and subsequent collisional heating. *Meteorit. Planet. Sci.* 46, 587–600. doi:10.1111/j.1945-5100.2011.01176.x.

Russell, M. J., Barge, L. M., Bhartia, R., Bocanegra, D., Bracher, P. J., Branscomb, E., et al. (2014). The Drive to Life on Wet and Icy Worlds. *Astrobiology* 14, 308–343. doi:10.1089/ast.2013.1110.

Russell, M. J., Hall, A. J., and Martin, W. (2010). Serpentinization as a source of energy at the origin of life. *Geobiology* 8, 355–371. doi:10.1111/j.1472-4669.2010.00249.x.

Russell, M. J., Murray, A. E., and Hand, K. P. (2017). The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa. *Astrobiology* 17, ast.2016.1600. doi:10.1089/ast.2016.1600.

Samarkin, V. A., Madigan, M. T., Bowles, M. W., Casciotti, K. L., Priscu, J. C., McKay, C. P., et al. (2010). Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. *Nat. Geosci.* 3, 341–344. doi:10.1038/ngeo847.

Scambelluri, M., Piccardo, G., Philippot, P., Robbiano, A., and Negretti, L. (1997). High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. *Earth Planet. Sci. Lett.* 148, 485–499. doi:10.1016/S0012-821X(97)00043-5.

Scambos, T. A., Campbell, G. G., Pope, A., Haran, T., Muto, A., Lazzara, M., et al. (2018). Ultralow Surface Temperatures in East Antarctica From Satellite Thermal Infrared Mapping: The Coldest Places on Earth. *Geophys. Res. Lett.* 45, 6124–6133. doi:10.1029/2018GL078133.

Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janevovic, D., Santarius, U., et al. (1995). *Picrophilus* gen. nov., fam. nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. *J. Bacteriol.* 177, 7050–7059. doi:10.1128/jb.177.24.7050-7059.1995.

Schleper, C., Puhler, G., Klenk, H.-P., and Zillig, W. (1996). *Picrophilus* oshimae and *Picrophilus* torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. *Int. J.* 46, 814–816. doi:10.1099/00207713-46-3-814.

Schrenk, M. O., Brazelton, W. J., and Lang, S. Q. (2013). Serpentinization, Carbon, and Deep Life. *Rev. Mineral. Geochemistry* 75, 575–606. doi:10.2138/rmg.2013.75.15.

Schrenk, M. O., Edwards, K. J., Goodman, R. M., Hamers, R. J., and Banfield, J. F. (1998). Distribution of *Thiobacillus* ferrooxidans and *Leptospirillum* ferrooxidans: Implications for generation of acid mine drainage. *Science*. 279, 1519–1522. doi:10.1126/science.279.5356.1519.

Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J., and McKay, C. P. (2003). Survival of endospores of *Bacillus subtilis* on spacecraft surfaces under simulated martian environments: Implications for the forward contamination of Mars. *Icarus* 165, 253–276. doi:10.1016/S0019-1035(03)00200-8.

Schuerger, A. C., and Nicholson, W. L. (2016). Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa. *Astrobiology* 16, 964–976. doi:10.1089/ast.2016.1587.

Schulze-Makuch, D. (2013). “Extremophiles on Alien Worlds: What Types of Organismic Adaptations are Feasible on Other Planetary Bodies,” in *Habitability of Other Planets and Satellites*, eds.
J.-P. de Vera and J. Seckbach, 253–265. doi:10.1007/978-94-007-6546-7_14.
Schulze-Makuch, D., Airo, A., and Schirmack, J. (2017). The adaptability of life on earth and the diversity of planetary habitats. Front. Microbiol. 8, 2011. doi:10.3389/fmicb.2017.02011.
Schulze-Makuch, D., Airo, A., and Schirmack, J. (2017). The adaptability of life on earth and the diversity of planetary habitats. Front. Microbiol. 8, 2011. doi:10.3389/fmicb.2017.02011.
Schulze-Makuch, D., Grinspoon, D. H., Abbas, O., Irwin, L. N., and Bullock, M. A. (2004). A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere. Astrobiology 4, 11–18. doi:10.1089/153110704773600203.
Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Harman, C. E., DasSarma, S., Fisher, T. M., et al. (2018). Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 18, 663–708. doi:10.1089/ast.2017.1729.
Seager, S. (2013). Exoplanet Habitability. Science 340, 577–581. doi:10.1126/science.1232226.
Seckbach, J., Oren, A., and Stan-Lotter, H. (2013). Polyextremophiles. , eds. J. Seckbach, A. Oren, and H. Stan-Lotter Dordrecht: Springer Netherlands doi:10.1007/978-94-007-6488-0.
Segerer, A., Neuner, A., Kristjansson, J. K., and Stetter, K. O. (1986). Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaeabacteria. Int. J. Syst. Bacteriol. 36, 559–564. doi:10.1099/00207713-36-4-559.
Singh, D., Takahashi, K., Kim, M., Chun, J., and Adams, J. M. (2012). A Hump-Backed Trend in Bacterial Diversity with Elevation on Mount Fuji, Japan. Microb. Ecol. 63, 429–437. doi:10.1007/s00248-011-9900-1.
Sinha, N., Nepal, S., Kral, T., and Kumar, P. (2017). Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars. Planet. Space Sci. 136, 15–24. doi:10.1016/j.pss.2016.11.012.
Smith, D. J., Schuerger, A. C., Davidson, M. M., Pacala, S. W., Bakermans, C., and Onstott, T. C. (2009). Survivability of Psychrobacter cryoaloholentis K5 Under Simulated Martian Surface Conditions. Astrobiology 9, 221–228. doi:10.1089/ast.2007.0231.
Soderlund, K. M., Schmidt, B. E., Wicht, J., and Blankenship, D. D. (2014). Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci. 7, 16–19. doi:10.1038/ngeo2021.
Sohl, F., Solomonidou, A., Wagner, F. W., Coustenis, A., Hussmann, H., and Schulze-Makuch, D. (2014). Structural and tidal models of Titan and inferences on cryovolcanism. J. Geophys. Res. Planets 119, 1013–1036. doi:10.1002/2013JE004512.
Spencer, J. R., Tamppari, L. K., Martin, T. Z., and Travis, L. D. (1999). Temperatures on Europa from Galileo Photopolarimeter-Radiometer: Nighttime Thermal Anomalies. Science 284, 1514–1516. doi:10.1126/science.284.5419.1514.
Steinle, L., Knittel, K., Felber, N., Casalino, C., De Lange, G., Tessaro, L. et al. (2018). Life on the edge: Active microbial communities in the Kryos MgCl2-brine basin at very low water activity. ISME J. 12, 1414–1426. doi:10.1038/s41396-018-0107-z.
Stetter, K. O. (1982). Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature 300, 258–260. doi:10.1038/300258a0.
Steenson, A., Cray, J. A., Williams, J. P., Santos, R., Sahay, R., Neuenkirchen, N., et al. (2015). Is there a common water-activity limit for the three domains of life. ISME J. 9, 1333–1351.

Limits of Life in Planetary Context
Suzuki, S., Ishii, S., Wu, A., Cheung, A., Tenney, A., Wanger, G., et al. (2013). Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. *Proc. Natl. Acad. Sci.* 110, 15336–15341. doi:10.1073/pnas.1302426110.

Suzuki, S., Kuenen, J. G., Schipper, K., Van Der Velde, S., Ishii, S., Wu, A., et al. (2014). Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. *Nat. Commun.* 5. doi:10.1038/ncomms4900.

Swan, B. K., Ehrhardt, C. J., Reifel, K. M., Moreno, L. I., and Valentine, D. L. (2010). Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a california hypersaline lake, the Salton Sea. *Appl. Environ. Microbiol.* 76, 757–768. doi:10.1128/AEM.02409-09.

Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., et al. (2008). Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. *Proc. Natl. Acad. Sci.* 105, 10949–10954. doi:10.1073/pnas.0712334105.

Tambekar, D. H., Pawar, A. L., and Dudhane, M. N. (2010). Lonar Lake Water: Past and Present. *Nat. Environ. Pollut. Tech.* 9, 217–221. Available at: https://www.researchgate.net/publication/287518200_Lonar_lake_water_Past_and_present [Accessed January 7, 2019].

Taran, Y. A. (2009). Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka-Kurile subduction zone. *Geochim. Cosmochim. Acta* 73, 1067–1094. doi:10.1016/j.gca.2008.11.020.

Taubner, R. S., Pappenreiter, P., Zwicker, J., Smrzka, D., Pruckner, C., Kolar, P., et al. (2018). Biological methane production under putative Enceladus-like conditions. *Nat. Commun.* 9, 1–11. doi:10.1038/s41467-018-02876-y.

Teolis, B. D., Wyrick, D. Y., Bouquet, A., Magee, B. A., and Waite, J. H. (2017). Plume and surface feature structure and compositional effects on Europa’s global exosphere: Preliminary Europa mission predictions. *Icarus* 284, 18–29. doi:10.1016/j.icarus.2016.10.027.

Toner, J. D., Catling, D. C., and Sletten, R. S. (2017). The geochemistry of Don Juan Pond: Evidence for a deep groundwater flow system in Wright Valley, Antarctica. *Earth Planet. Sci. Lett.* 474, 190–197. doi:10.1016/j.epsl.2017.06.039.

Torii, T., Murata, S., and Yamagata, N. (1981). Geochemistry of the Dry Valley lakes. *J. R. Soc. New Zeal.* 11, 387–399. doi:10.1080/03036758.1981.10423329.

Trapeznikov, A. (1983). Radioactivity in the Canadian Environment. *Nat. Res. Counc. Canada* 19250, 292.

Travis, B. J., Palguta, J., and Schubert, G. (2012). A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport. *Icarus* 218, 1006–1019. doi:10.1016/j.icarus.2012.02.008.

Van Der Wielen, P. W. J. J., Bolhuis, H., Borin, S., Daffonchio, D., Corselli, C., Giuliano, L., et al. (2005). The enigma of prokaryotic life in deep hypersaline anoxic basins. *Science* 307, 121–123. doi:10.1126/science.1103569.

Van Dover, C. L., Humphris, S. E., Fornari, D., Cavanaugh, C. M., Collier, R., Goffredi, S. K., et al. (2001). Biogeography and ecological setting of Indian Ocean hydrothermal vents. *Science* 294, 818–823. doi:10.1126/science.1064574.

Vance, S. D., Hand, K. P., and Pappalardo, R. T. (2016). Geophysical controls of chemical disequilibria in Europa. *Geophys. Res. Lett.* 43, 4871–4879. doi:10.1002/2016GL068547.

Vanlint, D., Mitchell, R., Bailey, E., Meersman, F., McMillan, P. F., Michiels, C. W., et al. (2011). Rapid acquisition of gigapascal-high-pressure resistance by Escherichia coli. *MBio* 2, e00130-10. doi:10.1128/mBio.00130-10.

Varnes, E. S., Jakosky, B. M., and McCollom, T. M. (2003). Biological potential of Martian hydrothermal systems. *Astrobiology* 3, 407–414. doi:10.1089/153110703769016479.

Villarreal, M. N., Russell, C. T., Luhmann, J. G., Thompson, W. T., Prettyman, T. H., A'Hearn, M. F., et al. (2017). The Dependence of the Cereal Exosphere on Solar Energetic Particle
Limits of Life in Planetary Context

Vu, T. H., Hodys, R., Johnson, P. V., and Choukroun, M. (2017). Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines – Implications for Ceres’ bright spots. *Planet. Space Sci.* 141, 73–77. doi:10.1016/j.pss.2017.04.014.

Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., et al. (2009). Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. *Nature* 460, 487–490. doi:10.1038/nature08153.

Waldron, P. J., Petsch, S. T., Martini, A. M., and Nüselein, K. (2007). Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter. *Appl. Environ. Microbiol.* 73, 4171–4179. doi:10.1128/AEM.02810-06.

Wayne, R. P. (2000). *Chemistry of Atmospheres, 3rd edition*. Oxford, UK: Clarendon Press.

Webb, K. M., and DiRuggiero, J. (2013). “Radiation Resistance in Extremophiles: Fending Off Multiple Attacks,” in *Polyextremophiles: Life under multiple forms of stress*, eds. J. Seckbach, A. Oren, and H. Stan-Lotter (Springer, Dordrecht), 249–267. doi:10.1007/978-94-007-6488-0_10.

Wheeler, K. A., Hurdman, B. F., and Pitt, J. I. (1991). Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. *Int. J. Food Microbiol.* 12, 141–149. doi:10.1016/0168-1605(91)90063-U.

Wordsworth, R. (2016). The Climate of Early Mars. *Annu. Rev. Earth Planet. Sci.* is online earth.annualreviews.org 44, 381–408. doi:10.1146/annurev-earth-060115-012355.

Xiao, X., Wang, P., Zeng, X., Bartlett, D. H., and Wang, F. (2007). Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. *Int. J. Syst. Evol. Microbiol.* 57, 60–65. doi:10.1099/ijs.0.64500-0.

Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., et al. (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. *Environ. Microbiol.* 14, 2457–2466. doi:10.1111/j.1462-2920.2012.02799.x.

Yakimov, M. M., La Cono, V., Slepak, V. Z., La Spada, G., Arcadi, E., Messina, E., et al. (2013). Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. *Sci. Rep.* 3, 3554. doi:10.1038/srep0301-0104(89)87026-0.

Yakimov, M. M., La Cono, V., Spada, G. L., Bortoluzzi, G., Messina, E., Smedile, F., et al. (2015). Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. *Environ. Microbiol.* 17, 364–382. doi:10.1111/1462-2920.12587.

Yang, J., Ma, L., Jiang, H., Wu, G., and Dong, H. (2016). Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. *Sci. Rep.* 6, 25078. doi:10.1038/srep25078.

Yayanos, A. A., Dietz, A. S., and Van Boxtel, R. (1981). Obligately barophilic bacterium from the Mariana trench. *Proc. Natl. Acad. Sci.* 78, 5212–5215. doi:10.1073/pnas.78.8.5212.

Zhalnina, K., Dias, R., de Quadros, P. D., Davis-Richardson, A., Camargo, F. A. O., Clark, I. M., et al. (2014). Soil pH Determines Microbial Diversity and Composition in the Park Grass Experiment. *Microb. Ecol.* 69, 395–406. doi:10.1007/s00248-014-0530-2.

Zhang, L., Su, F., Kong, X., Lee, F., Day, K., Gao, W., et al. (2016). Ratiometric fluorescent pH-sensitive polymers for high-throughput monitoring of extracellular pH. *RSC Adv.* 6, 46134–46142. doi:10.1039/c6ra06468j.

Zhou, Z., Jiang, F., Wang, S., Peng, F., Dai, J., Li, W., et al. (2012). Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter
glucosidilyticus and Pedobacter lentus. *Int. J. Syst. Evol. Microbiol.* 62, 1963–1969. doi:10.1099/ijs.0.031104-0.

Zhu, P., Manucharyan, G. E., Thompson, A. F., Goodman, J. C., and Vance, S. D. (2017). The influence of meridional ice transport on Europa’s ocean stratification and heat content. *Geophys. Res. Lett.* 44, 5969–5977. doi:10.1002/2017GL072996.

Zolotov, M. Y. (2009). On the composition and differentiation of Ceres. *Icarus* 204, 183–193. doi:10.1016/j.icarus.2009.06.011.

Zolotov, M. Y. (2017). Aqueous origins of bright salt deposits on Ceres. *Icarus* 296, 289–304. doi:10.1016/j.icarus.2017.06.018.

Zolotov, M. Y., and Kargel, J. S. (2009). “On the chemical composition of Europa’s icy shell, ocean, and underlying rocks,” in *Europa*, eds. R. T. Pappalardo, W. B. McKinnon, and K. Khurana, 431.

Zolotov, M. Y., Tobie, G., Postberg, F., Magee, B., Waite, J. H., and Esposito, L. (2011). Chemical and phase composition of Enceladus: Insights from Cassini data. in *EPSC Abstracts* doi:10.1029/2011GL047415.

Table 1. Extremophiles nomenclature and ranges.

Parameter	Low → High*			
pH				
Hyperacidophile (pH < 3)	Acidophile (pH 3–5)	Neutrophile (pH 5–9)	Alkaliphile (pH > 9)	Hyperalkaliphile (pH > 11)
Temperature				
Psychrophile (< 20°C)	Mesophile (20–45°C)	Thermophile (45–80°C)	Hyperthermophile (> 80°C)	
Salinity				
Non-halophile (< 1.2%)	Halotolerant (1.2–2.9%; tolerate 14.6%)	Halophile (> 8.8%)	Extreme halophile (> 14.6%, cannot grow < 8.8%)	
Pressure				
Piezotolerant or Barotolerant (0.1–10 MPa)	Piezophile or Barophile (10–50 MPa)	Hyperpiezophile or Hyperbarophile (> 50 MPa)		
Water activity				
Xerophile (a_w < 0.7)				

Polyextremophile

Tolerance or preference for multiple parameters combined

a – The distinction between an extremotolerant microbe and an extremophile is based on the location of the optimum along the specific parameter range. See main text for discussion.

b – Salinity expressed as percent of NaCl (w/v). Specific resistance to more chaotropic salts has been tested for some strains, for instance in the presence of MgCl₂.

30
Table 2. Environmental boundary conditions for different Earth ecosystems.

Biome	Temperature (°C)	pH	Pressure (MPa)	Salinity (% NaCl)	References
Soda lakes	-0.5 – 83	6.9 – 11.2^a	nr	0.64 – 37.1	Jones et al., 1977; Kavak and Karadogan, 2012; Pontefract et al., 2017; Tambekar et al., 2010
Terrestrial hot springs/geothermal waters	15 – 270	0.02 – 9.8	0.1 – 7.2^b	0.0002 – saturation	Chan et al., 2017; Delmelle and Bernard, 1994; Namaraev et al., 2003; Qi et al., 2017; Taran, 2009
Polar environments	-98.6 – 24.3	4.6 – 9.6	0.1 – 35.5^c	0 – 40.2	Aislalbie et al., 2006; Dickson et al., 2013; Samarkin et al., 2010; Scambos et al., 2018; Siegert et al., 2001
Deep-sea floor and trenches	-1.9 – 13.8^d	7.3 – 8.1	2.1 – 112	3.4 – 3.9	Danovaro et al., 2010; Emeis et al., 1996; Mantyla and Reid, 1983
Deep-sea hydrothermal vents	< 1° – 464	4 – 11	2.1 – 50.7	0.1 – 8	Konn et al., 2009; Koschinsky et al., 2008; McDermott et al., 2018
Deep hypersaline anoxic basins	10 – 65	5.4 – 8.6	2.1 – 40.5	4 – 50^f	Karbe, 1986; Mapelli et al., 2017; Merlino et al., 2018; Yakimov et al., 2013, 2015
Subsurface ecosystems	3.25 – < 400ⁱ	~1 – 12.8	< 800ⁱ	0.05 – saturation^l	Becker et al., 1984; Frank et al., 2016; Lechmann et al., 2014; Prieto et al., 2017; Roadcap et al., 2006; Waldron et al., 2007
Deserts^j	-19.4 – 70	6.8 – 10	nr	0.02 – 30.8	Dion et al., 2008; El-Demerdash et al., 1995; Holm et al., 2017; James et al., 2005; Pandit et al., 2015; Pankova and Konysheva, 2013
Serpentinite-hosted systems^k	10 – 365	2.8 – 12.6	< 900^o	0.03 – 49.68ⁿ	Motl et al., 2003, 2004; Scambelluri et al., 1997; Schrenk et al., 2013; Suzuki et al., 2013; Van Dover et al., 2001
Mine drainage	1° – 47	-3.6 – 13.3	6 – 14^t	0.008 – 7.6	Czop et al., 2011; Miettinen et al., 2015; Nordstrom et al., 2000; Tutu et al., 2008

nr – not reported

^a Highest pH from brine in a causeway on Lake Magadi (Jones et al., 1977).

^b Pressure of geothermal spring along Moxi fault (Western Sichuan plateau, China) (Qi et al., 2017).

^c The highest reported pressure is for Lake Vostok, Antarctica, covered by 4 km of ice (Siegert et al., 2001).
d – Highest deep-sea temperature is from the Mediterranean Sea (Danovaro et al., 2010). Geothermal influenced deep-sea sediments are not considered here.

e – pH of venting fluids from the deep-sea arc volcano NW Rota-1, Mariana Arc (Resing et al., 2007).

f – Includes both thalassic (NaCl dominated) and athalassic (MgCl₂ dominated) anoxic basins.

g – Low temperature of 3.25°C is an uncertain lower bound of in situ temperatures at Hole 395B (North Pond, Mid-Atlantic Ridge) (Becker et al., 1984); High temperature of 400°C is theoretical upper temperature of the crust-mantle boundary.

h – Estimated highest pressure at the India Asia collisional system (Lechmann et al., 2014).

i – Saturation observed in halite deposits (Jaakkola et al., 2016).

j – Does not include polar region deserts.

k – Includes both marine and terrestrial serpentinization sites.

l – Subduction zone at Conical Seamount (Mariana Forearc) (Mottl et al., 2004).

m – Highest salinity occurred in salt inclusions of Erro-Tobbio, Italian Western Alps (Scambelluri et al., 1997).

n – Low temperature reported for the Gorka Pit Lake, Poland (Czop et al., 2011).

o – Hydrostatic pressure of fluid fracture network in Pyhäsalmi mine, Finland (Miettinen et al., 2015).
Table 3. Limits of life as identified by (poly)extremophilic organisms in pure cultures

Strain	Domain	Extremophile Type	Isolation Ecosystem	Temperature (°C)	pH	Pressure (Mpa)	Salinity (%)	Water activity (aₜ)	References
Picrophilus oshimae KAW 2/2	Archaea	Hypercidophile	Hot Springs, Solfataras	47 – 65 (60)	-0.06 – 1.8 (0.7)	nr	0-20	nr	Schleper et al., 1995, 1996
Serpentinomonas sp. B1	Bacteria	Alkaliphile	Serpentinizing system (water)	18 – 37 (30)	9 – 12.5 (11)	nr	0 – 0.5 (0)	nr	Suzuki et al., 2014
Methanopyrus kandleri 116	Archaea	Hyperthermophile	Deep-Sea Hydrothermal vent	90 – 122 (105)	(6.3 – 6.6)	0.4-40	0.5 – 4.5 (3.0)	nr	Takai et al., 2008
Planococcus halocryophilus Or1	Bacteria	Halopsychrophile	Sea ice core	-18 – 37 (25)	nr (7 – 8)	nr	0 – 19 (2)	nr	Mykytczuk et al., 2012, 2013
Hal arsenatibacter silvermani SLAS-1	Bacteria	Haloalkaliphile	Soda Lake	28 – 55 (44)	8.7 – 9.8 (9.4)	nr	20 – 35 (35)	nr	Oremland et al., 2005
Thermococcus piezophilus CDGS	Archaea	Piezothermophile	Deep-Sea Hydrothermal vent	60 – 95 (75)	5.5 – 9 (6)	0.1 – 125 (50)	2 – 6 (3)	nr	Dalmasso et al., 2016
Haloarchaeal strains GN-2 and GN-5	Archaea	Xerophile	Solar salterns (brine)	nr	nr	nr	nr	0.635	Javor, 1984

a – Data presented as range (optimum) for each parameter.

nr – not reported in the original publication.
Table 4. Examples of notable Polyextremophiles and their physiological requirements.

Strain	Domain	Extremophile type	Isolation Ecosystem	Temperatur (°C)	pH	Pressure (MPa)	Salinity (%)	References
Acidiums infernum So4a	Archaea	Acidothermophile	Solfatara Crater	65 – 96 (90)	1 – 5.5 (2)	na	0.2 (na)	Segerer et al., 1986
Colwellia piezophila ATCC BAA-637	Bacteria	Piezopsychophile	Deep-sea	4 – 15 (10)	7 (na)	40 – 80 (60)	na (3)	Nogi et al., 2004
Halomonas campisalis MCM B-365	Bacteria	Hyperalkaliphile	Soda Lake	4 – 50 (30)	6 – 12 (9.5)	na	1.1 – 26.3 (8.9)	Aston and Peyton, 2007
Oceanobacillus iheyensis HTE831	Bacteria	Alkaliphile, Piezotolerant and Halotolerant	Deep-sea (mud)	15 – 42 (30)	6.5 – 10 (7 – 9.5)	0.1 – 30	0 – 21 (3)	Lu et al., 2001
Anoxybacillus pushchinensis K1	Bacteria	Alkalithermophile	Manure	37 – 66 (62)	8 – 10.5 (9.5)	na	< 3 (na)	Pikuta et al., 2000
Actinopolyspora righensis H23	Bacteria	Halophile	Saline soil	20 – 40 (28 – 32)	5 – 8 (6 – 7)	na	10 – 30 (15 – 25)	Meklat et al., 2013
“Geothermobacterium ferrireducens” FW-1a	Bacteria	Hyperthermophile	Obsidian Pool, Yellowstone National Park	65 – 100 (85)	na	na	0 (na)	Kashfei et al., 2002
Shewanella piezotolerans WF3	Bacteria	Piezophile	Deep-sea	0 – 28 (15 – 20)	6 – 8 (7)	0.1 – 50 (20)	1 – 7.2 (3 – 4)	Xiao et al., 2007
Colwellia sp. MT-41	Bacteria	Piezopsychophile	Deep-sea	2 (na)	6.8 (na)	51.8 – 103.5 (69)	na	Yayanos et al., 1981
Pedobacter arcticus A12	Bacteria	Psychrophile	Tundra (soil)	4 – 25 (18)	6 – 9 (7)	na	0 – 2 (0)	Zhou et al., 2012
Thermococcus gammatolerans EJ3	Archaea	Thermophile and Radiation-tolerant	Hydrothermal Vent (chimney)	55 – 95 (88)	na (5.5 – 6.5)	na	(20)	Jolivet et al., 2003
Deinococcus radiodurans R1	Bacteria	Vacuum- and Radiation-tolerant	Spoiled canned meat	Mars-like conditions, Vacuum, UV & Space Radiation	De Vera et al., 2012			
Cryomyces antarcticus MA5682	Fungi	Vacuum- and Radiation-tolerant	Antarctica	Mars-like conditions, Vacuum, UV & Space Radiation	De Vera et al., 2012			
Deinococcus geothermalis DSM 11300	Bacteria	Xerotolerant	Hot Spring	30 – 55 (47)	5 – B (6.5)	na	na	Frisler et al., 2017
Halobacterium salinarum NRC-1	Archaea	Xerotolerant, Vacuum- and Radiation-tolerant	Bore core from a salt mine	42 (na)	na	na	25	Kottemann et al., 2005
Table 5. Boundary conditions for different planetary bodies of astrobiological interest (compared to Earth), split into atmosphere, surface, and subsurface layers. The observed or putative geochemistry as well as other potential influences are also listed.

Planetary Body	Type	Layer	Temperature (°C)	pH	Pressure (MPa)	Salinity (% NaCl)	Geochemistry	References	
Earth	planet	Atmosphere	-100 – 40	Neutral, local acidic conditions possible due to volcanism and human activities	0.0001 – 0.1	0	8.1% N₂, 21% O₂, 9340 ppm Ar, 400 ppm CO₂	Soils and sediments of varying lithologies, silicic crust, ranging from mafic to felsic composition. Extensive ocean (70% planet surface), with 4000 m average depth, 4°C and 2.5% average temperature and salinity respectively	Wedepohl, 1995; McDonough and Sun, 1995; Wayne, 2000
		Surface	-98.6 – 464	-3.6 – 13.3	0.003 – 112	0 – saturation			
		Subsurface	3.25 – <400	-1 – 12.8	<0.0	0.05 – saturation	Soils and sediments of varying lithologies, silicic crust, ranging from mafic to felsic composition, ultramafic mantle		
Venus	planet	Atmosphere	-40 – 482°	0°	0.1 – 9.3°	nr	98.5% CO₂, 3.5% N₂; small quantities of CO₂, SO₂, HCl, HF, HDO, and H₂O; H₂SO₄ condensates	Arey et al., 2017; Basilevsky and Head, 2003; Bertaux et al., 2007; Cocks, 1999; Lang and Hansen, 2006; Schule-Makuch et al., 2004	
		Surface	377 – 482	nr	4.5 – 9.3°	nr	Rocks are similar to the silicate and alkaline basaltic; no liquid water		
		Subsurface	nr	nr	nr	nr	Fluid channels; volcanism		
Mars	planet	Atmosphere	-138 – 35°	nr	0.0001 – 0.0009	nr	95.3% CO₂, 2.7% N₂, 1.6% Ar, 0.13% O₂, 0.08% CO; trace amounts of H₂O, NO, Ne, Xe, Kr, Xe	Fairen et al., 2004; Hecht et al., 2009; Johnson et al., 2011; Jones et al., 2011; Longguang, 2014; Michalski et al., 2013; NASA; Nicholson and Schaeffer, 2005; Siuda et al., 2017; Smith et al., 2009; Varnes et al., 2003	
		Surface	-138 – 30	7.1	0.0004 – 0.0009	5.2 – 5.8	Basaltic, Fe-Mg-rich phyllosilicates, perchlorate salts, Al-rich clays, sulphates, chlorides, calcite, and silica; potential cryosphere		
		Subsurface	55°	4.96 – 9.13°	10 – 30°	Cl-rich brines	Potential groundwater; basalt crust; possible serpentinization	Wordsworth, 2016	
Enceladus	icy moon	Plane jets	0	-4.5 – 9	High velocity jets	> 0.5	90.09% H₂O, 0.61 – 4.27% N₂, 0.3 – 5.3% CO₂, 0.1 – 1.68% CH₄, 0.4 – 0.9% NH₃, 0.4 – 3% H₂O, trace amounts of hydrocarbons; high mass organic cations, silicates, sulphates, potassium, carbonates	Gioia et al., 2007; Glein et al., 2013; Holm et al., 2015; Hsu et al., 2013; Postberg et al., 2009, 2011; Tauber et al., 2018; Waite et al., 2009; Zolotov et al., 2011	
		Icy shell (~10 km thick)	-233 – 23	nr	nr	May have ammonia brine pools	May have tectonics		
		Subsurface global ocean (~0–170 km depth)	<90	8.5 – 12.2°	1 – 8	0.45 – ≤ 4	Possible serpentinization		
Titan	icy moon	Atmosphere	-183 – 77°	nr	> 0.01 – 0.15	nr	98.4% N₂, 1.4% CH₄, 0.2% H₂O trace hydrocarbons and organics; 95% N₂, 5% CH₄, 0.1% H₂O; ~5 ppm CO; ~15 ppb CO₂, CH₃CN, Cl; clouds	Baland et al., 2014; Brasé et al., 2017; Cordier et al., 2017; de Kok et al., 2005; Jennings et al., 2016; Mastrogiacomo et al., 2014; McKay, 2016; Mitchell and Lora, 2016; Mitti et al., 2014	
		Surface	-183 – 179°	nr	0.15 – 0.3°	nr	Lakes and seas have CH₃, C₂H₆ and dissolved nitrogen; dunes of solid organic material; low-latitude deserts and high-latitude moist climates		
		Subsurface	-18	11.8°	50–300°	Likely dense subsurface ocean (~1,350 kg m⁻³) suggesting high salinity	CH₄ and C₂H₆	Norman, 2011; Sohl et al., 2014	
Ceres	dwarf planet	Atmosphere	nr	nr	nr	nr	Transient atmosphere with possible water vapor	Castillo-Rogé et al., 2018; Fanale and Salvail, 1989; Hayne and Aharonson, 2013; Hendrix et al., 2016; Kippes et al., 2014;	
		Surface	(~157 – 30)°	9.7 – 11.3°	nr	<10°	Surface clays; (Mg, Ca)-carbonates; (Mg, Ni)-phyllosilicates; Fe-rich clays; salt		
Limits of Life in Planetary Context

- Deposits: chloride salts; water-rock interactions; brucite and magnetite; sulfur species and graphitized carbon; localized Na-carbonates (e.g., Na₂CO₃), NH₄Cl, NH₄HCO₃.
- Active water/ice-driven subsurface processes.
- Ion sputtering of the surface; potential water plumes; O₂; trace amounts of sodium and potassium.
- Subsurface liquid: Na₂CO₃, NH₄Cl, NH₄HCO₃.
- Subsurface ocean: Mg²⁺, SO₄²⁻, Na⁺, Cl⁻; oxidants and simple organics.
- Surface ocean (icy shell): H₂O, H₂SO₄, CO₂; salts concentrated in cracks; oxidants and simple organics; potentially MgSO₄, Na₂SO₄, Na₂CO₃; may have gas inclusions; may have tectonics.
- Atmosphere: Tenuous gas.
- Subsurface -143 – -93°C; Likely alkaline <140 – 200°C.
- Surface (icy shell) -187 – -141°C; Likely contains Mg²⁺, SO₄²⁻, Na⁺, Cl⁻; oxidants and simple organics.

Table: Europa icy moon

Subsurface ocean	Daily inundation of seawater at T= -4 – 0°C	Potential for wide range	<35°C	Likely contains Mg²⁺, SO₄²⁻, Na⁺, Cl⁻; oxidants and simple organics	
Atmosphere (tenuous)	nr	nr	0.1¹ – 1²	nr	Ion sputtering of the surface; potential water plumes; O₂; trace amounts of sodium and potassium
Surface (icy shell)	-187 – -141°C	nr	0.1²	May be saline, as delivered to the surface from a salty ocean, may have brine or salt inclusions	

- Atmosphere: Tenuous gas.
- Subsurface -143 – -93°C; Likely alkaline <140 – 200°C.
- Surface (icy shell) -187 – -141°C; Likely contains Mg²⁺, SO₄²⁻, Na⁺, Cl⁻; oxidants and simple organics.
- Atmosphere (tenuous) nr nr 0.1¹ – 1²
- Ion sputtering of the surface; potential water plumes; O₂; trace amounts of sodium and potassium.

The table details the conditions and possible compositions of Europa’s icy moon, focusing on the subsurface ocean and atmosphere conditions, as well as the potential for active water/ice-driven subsurface processes. The text references numerous studies indicating the potential for life-supporting conditions beneath the ice-covered surface of Europa.
Figures

Figure 1. Representative idealized cross section of Earth’s crust showing the diversity of extreme environments and their approximate location.
Figure 2. The temperature, pressure, pH, and salinity boundaries observed for life on Earth compared to the phase space observed on planetary bodies discussed in the main text. Polygon charts are designed to represent ranges in multidimensional space. Each edge represents the range for the specific variables Single values (e.g., when min = max) are represented by a single vertex on an axis, while missing values (e.g., NA or NR) are represented by the absence of the corresponding polygon edge on the corresponding axis.