Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Objective: There is a coronavirus disease 2019 (COVID-19) pandemic. We aimed to describe the characteristics of patients transported by the Royal Flying Doctor Service (RFDS) for confirmed or suspected COVID-19 and to investigate the surge capacity of and operational implications for the RFDS in dealing with COVID-19.

Methods: This was a prospective cohort study. To determine the characteristics of patients transported for confirmed or suspected COVID-19, we included patient data from February 2, 2020, to May 6, 2020. To investigate the surge capacity and operational implications for the RFDS in dealing with COVID-19, we built and validated an interactive operations area-level discrete event simulation decision support model underpinned by RFDS air medical activity data from 2015 to 2019 (4 years). This model was subsequently used in a factorial in silico experiment to systematically investigate both the supply of RFDS air medical services and the increased rates of demand for these services for diseases of the respiratory system.

Results: The RFDS conducted 291 patient episodes of care for confirmed or suspected COVID-19. This included 288 separate patients, including 136 men and 119 women (sex missing = 33), with a median age of 62.0 years (interquartile range, 43.5-74.9 years). The simulation decision support model we developed is capable of providing dynamic and real-time support for RFDS decision makers in understanding the system's performance under uncertain COVID-19 demand. With increased COVID-19-related demand, the ability of the RFDS to cope will be driven by the number of aircraft available. The simulation model provided each aviation section with estimated numbers of aircraft required to meet a range of anticipated demands.

Conclusion: Despite the lack of certainty in the actual level of COVID-19-related demand for RFDS services, modeling demonstrates that the robustness of meeting such demand increases with the number of operational and medically staffed aircraft.

© 2020 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
The Royal Flying Doctor Service (RFDS) is 1 of the largest air medical services in the world, with 77 aircraft and 140 health care vehicles located across its 23 Australian bases. In 2018/2019, 370,706 patient contacts were made through RFDS clinics, air medical transports, and telehealth consultations. At the same time, there were 82,081 road transfers.

The RFDS deals with respiratory and infectious diseases routinely. However, COVID-19 presents challenges in terms of potential volumes of patients needing care and the impacts it has on organizational capacity. Since the identification of COVID-19 within Australia, the RFDS has been transporting patients with confirmed COVID-19 and those who have developed symptoms after being in a high-risk situation. This has included cases from the cruise ship The Diamond Princess and the transfer of patients for ongoing isolation and hospital care.

Despite the containment measures implemented in Australia, COVID-19 cases are expected to increase in the coming weeks. As a provider of air medical retrieval services and road transport services for a range of illnesses, it is important for the RFDS to understand the potential impact of COVID-19 on the populations it serves. Predicting what medical resources may need to be deployed to provide appropriate patient care ahead of time will assist the RFDS in being well prepared to provide this care. In addition to undertaking air medical retrievals for a variety of acute illnesses, the RFDS needed to understand its surge capacity and ability to rapidly deploy additional aircraft if the COVID-19 pandemic worsened.

The objectives of this study were to describe the characteristics of patients transported by either an air medical retrieval or road transport by the RFDS for confirmed or suspected COVID-19 and to investigate the surge capacity of and operational implications for the RFDS in dealing with air medical retrievals for COVID-19.

Methods

Setting

The RFDS traditionally provides air medical retrievals, road transports, and primary health care to rural and remote populations who are unable to access traditional services through the Medicare Benefits Schedule. However, with the COVID-19 pandemic, the RFDS has been called on to expand its scope of practice and provide services across all geographic areas, including inner regional and major city areas.

RFDS air medical retrievals include primary evacuations and interhospital transfers (IHTs). A primary evacuation describes the provision of emergency medical services to people affected by illness or accident who are in a serious or potentially life-threatening condition and are beyond the normal medical infrastructure. An IHT describes the transfer of patients between hospitals designated as normal medical centers to tertiary centers. The following 3-tiered priority classification: category 1, the patient is classified as high acuity/severity; category 2, the patient is classified as moderate acuity/severity; and category 3, the patient is classified as low acuity/severity.

We also divided patients into 2 categories based on whether their primary diagnosis was related to the respiratory system (which includes novel coronaviruses, such as COVID-19) or another disease so that the characteristics of the respiratory system disease patients could be used to subsequently model increased demand because of COVID-19.

The following outcomes of immediate interest for the DES were identified: 1) the percentage of time the RFDS does not have spare aircraft capacity to respond to the next call for service, 2) the median time from the first call to aircraft mobilization by priority category, and 3) the median time from the first call to aircraft arrival by priority category.

The conceptual model was validated with representatives (n = 20) of the individual RFDS operational area commands (including Western Operations, Central Operations [CO], the Queensland Section, the South Eastern Section, the Victorian Section, and the Tasmanian Section). After this, the computational DES models for individual RFDS operational areas were created and calibrated for the base case scenario using historic data on air medical retrievals for respiratory and nonrespiratory diseases. This included data on all patients who underwent an air medical retrieval for diseases of the respiratory system (coded in chapter 10 of the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification), and self-reported Indigenous status (Table 1) using either paper-based or electronic methods according to the usual practice of the specific RFDS section and operation. The computational DES model was subsequently iteratively validated using the base case scenario with the representatives of the individual RFDS operational area commands until all the stakeholders were satisfied with the

human infection with COVID-19 guidelines. A confirmed case was defined as those who have been confirmed as being positive for COVID-19 via a laboratory pathology test. Patient data were collected within flight, and road transport data were collected during transport using either paper-based or electronic methods according to the usual practice of the specific RFDS section and operation.
model's performance. The computational DES model was created using AnyLogic 8.5.1 (former XJ Technologies), Oakbrook Terrace, IL 60181 USA, simulation modeling software.

The designed and validated DES model was subsequently used in a full factorial in silico experiment to systematically investigate the system's performance under various scenarios, combining individual levels of supply of RFDS services and the potential COVID-19-related demand. The factors included in the experimental design were the number of aircraft available within the operational command area as well as the daily rates of potential additional COVID-19-related demand in patients with respiratory system disease for different priority categories.

Overall, 520 individual DES simulation runs were conducted, with every run including 1 month of "warm-up" simulated activity to achieve the steady state followed by a 6-month period of simulated activity to estimate the system's performance.

Results

RFDS COVID-19 Transfer Number and Results

The RFDS conducted 291 patient episodes of care for confirmed or suspected COVID-19. This included 288 separate patients, including 136 men and 119 women (sex missing = 33), with a median age of 62.0 years (interquartile range, 43.5-74.9 years). Episodes included 262 interhospital transfers, 25 primary evacuations, and 1 repatriation. All patients were either confirmed (n = 20) or strongly suspected (n = 268) of having COVID-19. Figure 1 demonstrates the RFDS COVID-19 activity since the 2 February 2020.

Interactive DES Decision Support Tool

To assist in planning the RFDS' air medical response related to a potential surge in COVID-19, we designed and validated an interactive surge capacity planning decision support tool. This tool is capable of providing dynamic and real-time support for RFDS decision makers in understanding the system's performance under uncertain COVID-19 demand through exploring various demand scenarios. Figure 2 demonstrates the interactive decision support tool interface.

Levels of RFDS Service Provision for a Range of Hypothetical Increases in COVID-19 Demand

The RFDS is able to meet demand on current activity; however, as the numbers of priority 1 and 2 cases increase because of COVID-19, the percentage of time when the RFDS is able to meet demand is driven by the number of aircraft available per section and operation.
For example, when CO, which provides services to South Australia and the Northern Territory, has 6 operational aircraft, it is able to meet demand 87.5% of the time at benchmark. However, if COVID-19 cases were to increase by 8 priority 1 and 4 priority 2 patients per day, CO would need to increase its serviceable aircraft to 8 to 15 to meet demand. This is consistent throughout the RFDS sections and operations (Fig. 3).

Figure 4 indicates that under most scenarios, priority 1 patient demand is met under 6 hours; however, this is at the expense of priority 2 to 3 patients (because they are prioritized after priority 1 patients). Note that the bottom right panel in this figure is blank; as in all tested scenarios, the time to mobilization for priority 3 patients is greater than 10 hours. The impact of COVID-19 on the ability to meet patient demand in a timely manner is reflected in the overall patient wait times (Fig. 5).

For all considered outcomes, the impact of COVID-19 demand on RFDS operations is mitigated by an increase in aircraft capacity. As the number of aircraft is increased, all of the outcomes improve in each tested demand scenario, resulting in shorter waiting times and a greater ability to respond to additional demand. Furthermore, the spread of outcomes between the largest and smallest levels of COVID-19 demand is reduced as aircraft capacity is improved.
indicating that despite the lack of certainty in the actual level of COVID-19–related demand, the degree of robustness in meeting such demand increases with resource availability.

Discussion

The RFDS has conducted 291 transfers for COVID-19, increasing from 3 on February 2, 2020, to 291 on May 7, 2020. These trends appear to be consistent with Australia data, with 12 confirmed cases on February 2, 2020, increasing to 6,849 as of 15:00 on May 7, 2020. The trajectory of the epidemic in Australia appears to be lagging behind many European and North American countries by several weeks, in part because of the travel bans introduced early in the epidemic. However, it is important to be prepared for a significant increase in COVID-19 cases, especially in rural and remote Australia.

In order to be prepared, the RFDS has identified likely barriers and enablers for the provision of adequate level of RFDS services under a range of different COVID-19 demand scenarios. Our modeling indicates that at most thresholds, we can provide air medical retrievals for increased COVID-19 activity. It appears that the availability of aircraft is unlikely to be a major barrier. However, the potential lack of workforce (ie, pilots/engineers/clinical staff) has been identified as the major barrier to getting aircraft into the air. Without the appropriately skilled and available workforce, the RFDS is unlikely to be able to transfer category 3 patients to the hospital, who would then require patient care within their communities.

Our modeling indicated that above a certain activity level, we would not be able to transfer mild COVID-19 patients within a reasonable time frame and that providing transportation is dependent on workforce being able to staff and provide maintenance on aircraft.
Rural and remote areas (especially remote areas) have significant workforce shortages. This includes limitations in recruiting and retaining general practitioners, nurses, and allied health professionals. During this pandemic, we have had volunteer pilots offer their services. However, our most significant barrier to providing additional services is a lack of engineers to maintain the aircraft and clinical staff to provide services. In the event of mass infection and current staff potentially becoming unwell, we will need more staff to provide coverage. This could include having nursing and medical students providing paid (covered by insurance) support to senior clinicians, as recently recommended. Alternatively, the Australian Defence Force could provide engineering and clinical support, as recently seen in the Australian bushfires.

In addition to constraints on RFDS air medical retrievals for priority 3 patients, it is likely that hospitals would be overwhelmed in the case of mass infection in rural and remote Australia, further necessitating the need for local solutions for the treatment of less severe cases.

Rural and remote areas also have significantly lower health care service provision than their major city counterparts, with the RFDS and Aboriginal Medical Services being the only service provider in many areas. It is of concern that our modeling predicted that at high activity levels, we would not be able to transport priority 3 patients. This is worrying because mild COVID-19 patients would need to be treated within their community until transfer is possible. Having patients remain within their community without adequate treatment could result in further community transmission.

Mass infection of COVID-19 has overwhelmed hospitals in Italy because of severe cases requiring intensive care unit (ICU) services, such as ventilators and a specialized workforce. Because of shortfalls in ICU beds, Italy has seen a spike in otherwise preventable deaths. Within Australia, we may not have enough ICU beds to match the potential demand. The current Australian government strategy is to mitigate transmission risk factors within the general public. However, it is unclear how a mass infection would affect rural and remote Australia because of the vast distances between communities. If mass infection occurred in rural and remote towns, it could have dire outcomes. This is due to rural and remote populations having higher rates of respiratory disease than their major city counterparts, as well as higher rates of other chronic diseases. Specifically, rural and remote populations are also more likely to suffer poorer outcomes of respiratory disease, including bronchiectasis. COVID-19 directly affects the lungs and patients’ ability to breathe, with severe cases requiring oxygen therapy via a respirator.

Furthermore, many remote communities have high proportions of indigenous Australians and higher levels of socioeconomic disadvantage. The life expectancy of indigenous Australians is significantly lower than nonindigenous Australians, with indigenous Australians more likely to suffer from many chronic diseases at a younger age, including type 2 diabetes, cardiovascular disease, and renal disease.

As such, in the event of mass infection, it is vitally important that we develop care strategies for mild COVID-19 patients in rural and remote areas, including dedicated COVID-19 clinics or in situ field hospitals (or similar). Another strategy would be to increase the use of RFDS telehealth platforms.

Conclusion
The RFDS has been conducting extensive air medical retrievals and road transports for patients with or suspected of having COVID-19 throughout Australia. Modeling indicates that as COVID-19 activity increases, the RFDS will need to use more aircraft in the transportation of patients to inner regional and major city hospitals. However, if COVID-19 activity was to increase to 10 patients per day per RFDS area of operations, many of the mild cases would need to remain within their communities for an extended period of time, potentially increasing the risk of community transfer. As such, it is important to ensure that the RFDS has adequate funding, workforce, and equipment to allow it to respond in the event of increased COVID-19 activity.

References
1. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsu P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epi- demic and the challenge. Int J Antimicrob Agents. 2020;55:105924.
2. World Health Organization. Global surveillance for human infection with corona- virus disease (COVID-19). Available at: https://www.who.int/publications-detail/ global-surveillance-for-human-infection-with-novel-coronavirus-2019-ncov.
3. Department of Health. Update from the Prime Minister on social distancing and other measures to combat coronavirus (COVID-19). Australian Government; Published 2020. Available at: https://www.health.gov.au/news/update-from-the-prime-minister-social-distancing-and-other-measures-to-combat-coronavirus-covid-19. Accessed March 24, 2020.
4. Department of Health. Coronavirus (COVID-19) current situation and case numbers. Australian Government; Published 2020. Available at: https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/coronavirus-covid-19-current-situation-and-case-numbers. Accessed March 25, 2020.
5. Margolis SA, Ypinazar VA. Aeromedical retrieval for critical clinical conditions: 12 years of experience with the Royal Flying Doctor Service, Queensland, Australia. J Emerg Med. 2005;36:58.
6. Le Cong M, Synthorpe B, Hunter E, Schuller P. Ketamine sedation for patients with acute agitation and psychiatric illness requiring aeromedical retrieval. Emer Med J. 2012;29:335.
7. Royal Flying Doctor Service Victoria. Annual report. Royal Flying Doctor Service Victoria. Available at: https://rfds-media.s3.amazonaws.com/documents/RFDS_Annual_Report_2018_VICTORIA_web_2.pdf?AWSAccessKeyId=AKIA57JbV557H5PJWJ6W2k&Expires=1583094769&Signature=sFlpHwM48scHcm2SBo1IKYyru8evo3JD. Published 2018. Accessed February 2020.
8. International Statistical Classification of Diseases and Related Health Problems. 10th Revision. Available at: https://icd.who.int/browse10/2016/en. Published 2016. Accessed July 1, 2019.
9. Gardiner FW, Bishop L, Cale L, et al. Poor access to kidney disease management services in susceptible patient populations in rural Australia is associated with increased aeromedical retrievals for acute renal care [epub ahead of print]. Intern Med J. doi: http://doi.org/10.1111/aimj.2020.03.001. Accessed.
10. Braithwaite S, Churilov L, Dangerfield B. Discrete-Event Simulation and System Dynamics for Management Decision Making. Hoboken, NJ: John Wiley & Sons; Ltd.; 2014.
11. Zhang X. Application of discrete event simulation in health care: a systematic review. BMC Health Serv Res. 2018;18:568.
12. Gardiner F, Cale L, Ranson A, Lavery M. Looking ahead: responding to the health needs of country Australians in 2028- the centenary year of the RFDS. The Royal Flying Doctor Service; Published 2018. Available at: https://rfds-media.s3.amazonaws.com/documents/RFN064_Looking_Ahead_Report_D3.pdf?Signature=s3Z50Tn32ZHiBw1idPc75hUeF41KNfAWSAccessKeyId-AUKABKZ23AP5USZK5FQ&Expires=1571113335. Accessed February 2020.
13. Wang J-H, Tan S, Raubenheimer K. Rethinking the role of senior medical students in the COVID-19 response [epub ahead of print]. Med J. Aust. doi:http://doi.org/10.5694/mja2.50601. Accessed April 1 2020.
14. Chang AB, Grimwood K, Maguire G, King PT, Morris PS, Torzillo PJ. Management of bronchiectasis and chronic suppurative lung disease in Indigenous children and adults from rural and remote Australian communities. Med J. Aust. 2008;189:386–393.
15. Australian Institute of Health and Welfare. Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Canberra, Australia: AIHW; 2017.
16. Cox GJ, Trauer JM, McBryde E. Modelling the impact of COVID-19 upon intensive care services in New South Wales [epub ahead of print]. Med J. Aust. doi:http://doi.org/10.5694/mja2.50606. Accessed April 3 2020.
17. Hunter P. The spread of the COVID-19 coronavirus: health agencies worldwide prepare for the seemingly inevitability of the COVID-19 coronavirus becoming endemic. EMBO Rep. 2020;21:e50334.
18. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25:278–280.
19. Australian Institute of Health and Welfare. Australia’s Health 2018. Canberra, Aus- tralia: AIHW; 2018.
20. Al-Yaman F. The Australian Burden of Disease Study: impact and causes of illness and death in Aboriginal and Torres Strait Islander people, 2011. Public Health Res Pract. 2017;27:27417.
21. Gardiner FW, Bishop L, Cale L, et al. Poor access to kidney disease management services in susceptible patient populations in rural Australia is associated with increased aeromedical retrievals for acute renal care [epub ahead of print]. Intern Med J. doi: http://doi.org/10.1111/imj.14716. Accessed April 3 2020.