Asymptotic structure of free product von Neumann algebras

BY CYRIL HOUDAYER†
Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS,
Université Paris-Saclay, 91405 Orsay, FRANCE.
e-mails: cyril.houdayer@math.u-psud.fr

AND YOSHIMICHI UEDA‡
Graduate School of Mathematics,
Kyushu University, Fukuoka, 810-8560, JAPAN.
e-mails: ueda@math.kyushu-u.ac.jp

(Received 9 July 2015; revised 6 April 2016)

Abstract
Let \((M, \varphi) = (M_1, \varphi_1) \ast (M_2, \varphi_2)\) be the free product of any \(\sigma\)-finite von Neumann algebras endowed with any faithful normal states. We show that whenever \(Q \subset M\) is a von Neumann subalgebra with separable predual such that both \(Q\) and \(Q' \cap M\) are the ranges of faithful normal conditional expectations and such that both the intersection \(Q \cap M_1\) and the central sequence algebra \(Q' \cap \mathcal{M}^\omega\) are diffuse (e.g. \(Q\) is amenable), then \(Q\) must sit inside \(M_1\). This result generalizes the previous results of the first named author in [Ho14] and moreover completely settles the questions of maximal amenability and maximal property Gamma of the inclusion \(M_1 \subset M\) in arbitrary free product von Neumann algebras.

1. Introduction and statement of the main results

The first class of concrete maximal amenable subalgebras in von Neumann algebras was discovered by Popa in his seminal article [Po83]. He showed that the generator maximal abelian subalgebra \(L(Z) = L(\langle a \rangle)\) is maximal amenable inside the free group factor \(L(F_2) = L(\langle a, b \rangle)\). Popa moreover introduced in [Po83] a powerful method, based on the study of central sequences in the ultraproduct framework, to prove that a given amenable von Neumann subalgebra in a finite von Neumann algebra is maximal amenable. This method will be referred to as Popa’s asymptotic orthogonality property in this paper. Popa’s maximal amenability result [Po83] for free group factors was recently extended by the first named author in [Ho14] to a large class of free product von Neumann algebras, possibly of type III. We refer to [Ho14] and the references therein for further results on maximal amenability in the framework of von Neumann algebras. We point out that Boutonnet-Carderi recently introduced in [BC14] a new method, based on the study of central states, to prove that a given amenable von Neumann subalgebra in a finite von Neumann algebra is maximal amenable.

† CH is supported by ANR grant NEUMANN and ERC Starting Grant GAN 637601.
‡ YU is supported by Grant-in-Aid for Scientific Research (C) 24540214.
Among other things, they obtained concrete examples of maximal amenable von Neumann subalgebras in type II$_1$ factors associated with higher rank lattices.

The aim of this paper is to further generalize the recent work of the first named author in [Ho14] and to completely settle the questions of maximal amenability and maximal property Gamma of the inclusion $M_1 \subset M$ arising from an arbitrary free product $(M, \varphi) = (M_1, \varphi_1) * (M_2, \varphi_2)$.

We will say that an inclusion of von Neumann algebras $Q \subset M$ is with expectation if there exists a faithful normal conditional expectation from M onto Q. Our first main result is the following optimal Gamma stability result inside arbitrary free product von Neumann algebras.

Theorem A. For each $i \in \{1, 2\}$, let (M_i, φ_i) be any σ-finite von Neumann algebra endowed with a faithful normal state. Denote by $(M, \varphi) = (M_1, \varphi_1) * (M_2, \varphi_2)$ the free product. Let $Q \subset M$ be any von Neumann subalgebra with separable predual and with expectation such that $Q \cap M_1$ is diffuse and with expectation, and furthermore that $Q' \cap M^\omega$ is diffuse. Then we have $Q \subset M_1$.

We refer to Theorem 4·3 below for a more general statement that extend [Ho14, theorem D] to arbitrary free product von Neumann algebras. As a corollary to Theorem A, we infer that amenable von Neumann subalgebras $Q \subset M$ with expectation such that the intersection $Q \cap M_1$ is diffuse and with expectation must in fact sit inside M_1. Namely, we obtain the following result.

Corollary B. Let $(M, \varphi) = (M_1, \varphi_1) * (M_2, \varphi_2)$ be as in Theorem A. Let $Q \subset M$ be any amenable von Neumann subalgebra with expectation such that $Q \cap M_1$ is diffuse and with expectation. Then we have $Q \subset M_1$.

We point out that the separability assumption on the predual of the amenable von Neumann subalgebra $Q \subset M$ is no longer needed in Corollary B. As we mentioned before, in the case when both M_1 and M_2 are tracial and both φ_1 and φ_2 are faithful normal tracial states, Corollary B is a consequence of [Ho14, theorem D]. Very recently, Ozawa gave in [Oz15] a short proof of the above Corollary B in the tracial case using an idea in [BC14]. However, that proof depends upon the assumption that given states are tracial. Moreover, we would like to emphasize that the tools and the techniques we will develop in order to achieve the goal of this paper have strong potential in future research, and indeed lead to our next work on general rigidity phenomenon for free product von Neumann algebras [HU15].

We also point out that [Ho14, theorem A and corollary B] hold true under the more general assumption that M_1 is diffuse, instead of the centralizer $(M_1)^{\varphi_1}$ being diffuse as in [Ho14]. In fact, we prove the optimal asymptotic orthogonality property result in arbitrary free product von Neumann algebras (see Theorem 3·1 below) to make those assertions hold under such a general assumption. Remark that this generalization of [Ho14, theorem A] does not follow from Theorem A, since it is applicable to any intermediate subalgebra $M_1 \subset Q \subset M$ without a priori assuming it to be with expectation.

We now briefly explain the strategy of the proof of Theorem A. To simplify the discussion, we will further assume that $Q \subset M$ is a subfactor. We refer to Section 4 for further details.

Assume that Q is amenable. In that case, we exploit the fact that Q is AFD with a Cartan subalgebra $A \subset Q$ and hence has lots of central sequences that sit inside the ultraprodut von Neumann subalgebra $A^\omega \subset Q^\omega$. This is a key observation when Q is of type III. Using our
Asymptotic structure of free product von Neumann algebras

491

generalization of the asymptotic orthogonality property in arbitrary free product von Neumann algebras (see Theorem 3.1 below) and exploiting the recent generalization of Popa’s intertwining techniques obtained in [HI15], we then show that any corner of A must embed with expectation into M_1 inside M. By exploiting the regularity property of the Cartan inclusion $A \subset Q$ and using a standard maximality argument, we deduce that $Q \subset M_1$.

We point out that our strategy, based on the study of central sequences in the ultraproduct framework via Popa’s asymptotic orthogonality property, works for arbitrary von Neumann algebras. Hence we are able to deal with amenable subfactors $Q \subset M$ in Theorem A and Corollary B that can possibly be of type III.

Assume that Q is nonamenable. In that case, we use Connes-Takesaki’s structure theory [Co72, Ta03] and Popa’s deformation/rigidity theory [Po01, Po03, Po06] inside the ultraproduct of the continuous core $(c_\varphi(M))^\omega$. One of the new features of our proof is to exploit a recent result of Masuda-Tomatsu [MT13] showing that the continuous core of the ultraproduct von Neumann algebra $c_\varphi(M_\omega)$ sits, as an intermediate von Neumann subalgebra with trace preserving conditional expectations, between $c_\varphi(M)$ and $(c_\varphi(M))^\omega$, that is,

$$c_\varphi(M) \subset c_\varphi(M_\omega) \subset (c_\varphi(M))^\omega.$$

Using Popa’s spectral gap rigidity principle and intertwining techniques, we then show that any finite corner of $c_\varphi(Q)$ must embed into $c_\varphi(M_1)$ inside the ambient continuous core $c_\varphi(M)$. By a standard maximality argument, we deduce that $c_\varphi(Q) \subset c_\varphi(M_1)$ and hence $Q \subset M_1$.

We point out that we do need to pass to the continuous core $c_\varphi(M)$ in order to make Popa’s spectral gap rigidity principle work since we ultimately use Connes’s characterization of amenability for finite von Neumann algebras [Co75].

We conclude this paper with an appendix in which we give a short proof of an unpublished result due to the second named author showing that Connes’s bicentralizer problem has a positive solution for all type III$_1$ factors arising as free products of von Neumann algebras.

2. Preliminaries

For any von Neumann algebra M, we will denote by $Z(M)$ the centre of M, by $U(M)$ the group of unitaries in M, by $\text{Ball}(M)$ the unit ball of M with respect to the uniform norm $\| \cdot \|_\infty$ and by $(M, L^2(M), J^M, \mathfrak{P}^M)$ the standard form of M. More generally, for any linear subspace $\mathcal{V} \subset M$, we will denote by $\text{Ball}(\mathcal{V})$ the unit ball of \mathcal{V} with respect to the uniform norm $\| \cdot \|_\infty$.

Background on σ-finite von Neumann algebras

Let M be any σ-finite von Neumann algebra with unique predual M_* and $\varphi \in M_*$ any faithful state. We will write $\|x\|_\varphi = \varphi(x^*x)^{1/2}$ for all $x \in M$. Recall that on $\text{Ball}(M)$, the topology given by $\| \cdot \|_\varphi$ coincides with the σ-strong topology. Denote by $\xi_\varphi \in \mathfrak{P}^M$ the unique canonical implementing vector of φ. The mapping $M \to L^2(M) : x \mapsto x\xi_\varphi$ defines an embedding with dense image such that $\|x\|_\varphi = \|x\xi_\varphi\|_{L^2(M)}$ for all $x \in M$.

We denote by σ^φ the modular automorphism group of the state φ. The centralizer M^φ of the state φ is by definition the fixed point algebra of (M, σ^φ). The continuous core of M with respect to φ, denoted by $c_\varphi(M)$, is the crossed product von Neumann algebra $M \rtimes_{\sigma^\varphi} \mathbb{R}$. The natural inclusion $\pi_\varphi : M \to c_\varphi(M)$ and the unitary representation $\lambda_\varphi : \mathbb{R} \to c_\varphi(M)$
satisfy the covariance relation
\[
\lambda_\varphi(t)\pi_\varphi(x)\lambda_\varphi(t)^* = \pi_\varphi(\sigma_\varphi^t(x)) \quad \text{for all } x \in M \text{ and all } t \in \mathbb{R}.
\]

Put \(L_\varphi(\mathbb{R}) = \lambda_\varphi(\mathbb{R})^{''} \). There is a unique faithful normal conditional expectation \(E_{L_\varphi}(\mathbb{R}) : c_\varphi(M) \to L_\varphi(\mathbb{R}) \) satisfying \(E_{L_\varphi}(\varphi)(\lambda_\varphi(t)) = \varphi(x)\lambda_\varphi(t) \). The faithful normal semifinite weight defined by \(f \mapsto \int_\mathbb{R} \exp(-s)f(s) \, ds \) on \(L^\infty(\mathbb{R}) \) gives rise to a faithful normal semifinite weight \(Tr_\varphi \) on \(L_\varphi(\mathbb{R}) \) via the Fourier transform. The formula \(Tr_\varphi = Tr_\varphi \circ E_{L_\varphi}(\mathbb{R}) \) extends it to a faithful normal semifinite trace on \(c_\varphi(M) \).

Because of Connes’s Radon–Nikodym cocycle theorem [Co72, théorème 1.2.1] (see also [Ta03, theorem VIII.3.3]), the semifinite von Neumann algebra \(c_\varphi(M) \) together with its trace \(Tr_\varphi \) does not depend on the choice of \(\varphi \) in the following precise sense. If \(\psi \) is another faithful normal state on \(M \), there is a canonical surjective \(*\)-isomorphism \(\Pi_{\varphi,\psi} : c_\varphi(M) \to c_\varphi(M) \) such that \(\Pi_{\varphi,\psi} \circ Tr_\psi = Tr_\varphi \) and \(\Pi_{\varphi,\psi} \circ \Pi_{\psi,\psi} = \Pi_{\varphi,\psi} \). Note however that \(\Pi_{\varphi,\psi} \) does not map the subalgebra \(L_\varphi(\mathbb{R}) \subset c_\varphi(M) \) onto the subalgebra \(L_\psi(\mathbb{R}) \subset c_\varphi(M) \) (and hence we use the symbol \(L_\psi(\mathbb{R}) \) instead of the usual \(L(\mathbb{R}) \)).

In order to prove the asymptotic orthogonality property inside arbitrary free product von Neumann algebras (see Theorem 3.1 below), we will use the following key simple lemma whose proof is similar to [MU12, proposition 2.8] using [HS90, theorem 11.1].

Lemma 2.1. Let \((M, \varphi) \) be any diffuse \(\sigma \)-finite von Neumann algebra endowed with a faithful normal state. For every \(\delta > 0 \), there exists a faithful normal state \(\psi \in M_* \) such that \(\| \varphi - \psi \| < \delta \) and such that the centralizer \(M^{\psi} \) is diffuse.

Proof. Write \(M = M_d \oplus M_c \), where \(M_d \) and \(M_c \) are of type I and \(M_c \) has no type I direct summand. The above decomposition gives \(\varphi = \varphi_d + \varphi_c \). By [HS90, theorem 11.1] (which dates back to Connes-Størmer’s transitivity theorem [CS78]), one can find a faithful normal positive linear functional \(\varphi'_c \in (M_c)_\varphi \) such that \(\| \varphi'_c \|_{(M_c)_\varphi} = \| \varphi_c \|_{(M_c)_\varphi} \). \(\| \varphi_c - \varphi'_c \|_{(M_c)_\varphi} < \delta \) and \((M_c)^{\psi'} \) is of type II.1. Put \(\psi' := \varphi_d + \varphi'_c \) and observe that \(\psi' \in M_* \) is a faithful normal state. Then we have \(\| \varphi - \psi' \|_{M_*} = \| \varphi_c - \varphi'_c \|_{(M_c)_\varphi} < \delta \) and \(\varphi \), \(M_d \oplus (M_c)^{\psi'} \subset M^{\psi} \). Therefore, the centralizer \(M^{\psi} \) is a diffuse von Neumann subalgebra (see e.g. [Bl06, theorem IV.2.2.3]).

Popa’s intertwining techniques

To fix notation, let \(M \) be any \(\sigma \)-finite von Neumann algebra, \(1_A \) and \(1_B \) any nonzero projections in \(M \), \(A \subset 1_AM^1A \) and \(B \subset 1_BM^1B \) any von Neumann subalgebras. Popa introduced his powerful intertwining-by-bimodules techniques in [Po01] in the case when \(M \) is finite and more generally in [Po03] in the case when \(M \) is endowed with an almost periodic faithful normal state \(\varphi \) for which \(1_A \in M^{\varphi} \), \(A \subset 1_AM^{\varphi}1_A \) and \(1_B \in M^{\varphi} \), \(B \subset 1_BM^{\varphi}1_B \). It was showed in [HV12, Ue12] that Popa’s intertwining techniques extend to the case when \(B \) is finite and with expectation in \(1_BM1_B \) and \(A \subset 1_AM1_A \) is any von Neumann subalgebra.

In this paper, we will need the following generalization of [Po01, theorem A.1] in the case when \(A \subset 1_AM1_A \) is any finite von Neumann subalgebra with expectation and \(B \subset 1_BM1_B \) is any von Neumann subalgebra with expectation.

Theorem 2.2 ([HI15, theorem 4.3]). Let \(M \) be any \(\sigma \)-finite von Neumann algebra, \(1_A \) and \(1_B \) any nonzero projections in \(M \), \(A \subset 1_AM1_A \) and \(B \subset 1_BM1_B \) any von Neumann subalgebras with faithful normal conditional expectations \(E_A : 1_AM1_A \to A \) and \(E_B : 1_BM1_B \to B \) respectively. Assume moreover that \(A \) is a finite von Neumann algebra.
Then the following conditions are equivalent:

(i) There exist projections $e \in A$ and $f \in B$, a nonzero partial isometry $v \in eMf$ and a unital normal $*$-homomorphism $\theta : eAe \rightarrow fBf$ such that the inclusion $\theta(eAe) \subset fBf$ is with expectation and $av = v\theta(a)$ for all $a \in eAe$.

(ii) There exist $n \geq 1$, a projection $q \in M_n(B)$, a nonzero partial isometry $v \in (1_AM \otimes M_{1,n}(C))q$ and a unital normal $*$-homomorphism $\pi : A \rightarrow qM_n(B)q$ such that the inclusion $\pi(A) \subset qM_n(B)q$ is with expectation and $av = v\pi(a)$ for all $a \in A$.

(iii) There exists no net $(w_i)_{i \in I}$ of unitaries in $\mathcal{U}(A)$ such that $E_B(b^*w_ia) \rightarrow 0$ σ-strongly as $i \rightarrow \infty$ for all $a, b \in 1_AM1_B$.

If one of the above conditions is satisfied, we will say that A embeds with expectation into B inside M and write $A \preceq_M B$.

Moreover, [HI15, theorem 4.3] asserts that when $B \subset 1BM1_B$ is a semifinite von Neumann subalgebra endowed with any fixed faithful normal semifinite trace Tr, then $A \preceq_M B$ if and only if there exist a projection $e \in A$, a Tr-finite projection $f \in B$, a nonzero partial isometry $v \in eMf$ and a unital normal $*$-homomorphism $\theta : eAe \rightarrow fBf$ such that $av = v\theta(a)$ for all $a \in eAe$. Hence, in that case, the notation $A \preceq_M B$ is consistent with [Ue12, proposition 3-1]. In particular, the projection $q \in M_n(B)$ in Theorem 2-2 (2) is chosen to be finite under the trace $\text{Tr} \otimes \text{tr}_n$, when B is semifinite with any fixed faithful normal semifinite trace Tr. We refer to [HI15, section 4] for further details.

We say that a σ-finite von Neumann algebra P is tracial if it is endowed with a faithful normal tracial state τ. Following [Jo82, PP84], a unital inclusion of tracial von Neumann algebras $A \subset (P, \tau)$ has finite Jones index if $\dim_A(L^2(P, \tau)_A) < +\infty$ with the Murray–von Neumann dimension function \dim_A determined by τ. Following [Va07, appendix A], a unital inclusion of tracial von Neumann algebras $A \subset (P, \tau)$ has essentially finite index if there exists a sequence of nonzero projections $(p_n)_n$ in $A' \cap P$ such that the unital inclusion of tracial von Neumann algebras $Ap_n \subset (p_nPn, \frac{\tau(p_n \cdotp p_n)}{\tau(p_n)})$ has finite Jones index for all $n \in \mathbb{N}$ and $p_n \rightarrow 1$ σ-strongly as $n \rightarrow \infty$.

We will need the following technical lemma about how the intertwining technique behaves with respect to taking subalgebras of essentially finite index.

Lemma 2.3 ([Va07, lemma 3-9]). Let M be any σ-finite von Neumann algebra, 1_P and 1_B any nonzero projections in M, $P \subset 1_PM1_P$ and $B \subset 1BM1_B$ any von Neumann subalgebras with expectation. Assume moreover that P is a finite von Neumann algebra and $A \subset P$ is a unital von Neumann subalgebra of essentially finite index. Then $A \preceq_M B$ implies $P \preceq_M B$.

Proof. This result is [Va07, lemma 3-9] when the ambient von Neumann algebra M is finite and its proof applies mutatis mutandis to our more general setting.

We will moreover need the following two technical lemmas about intertwining subalgebras inside continuous cores.

Lemma 2.4. Let (M, φ) be any σ-finite von Neumann algebra endowed with a faithful normal state. Let $q \in M^\varphi$ be any nonzero projection and $Q \subset qMq$ any von Neumann subalgebra that is globally invariant under the modular automorphism group σ^φ_q of $\varphi_q = \frac{\varphi(q \cdot q)}{\varphi(q)}$. Denote by E_Q the unique φ_q-preserving conditional expectation from qMq onto Q.

Then for every nonzero finite trace projection \(p \in c_\psi(M) \) and every net \((u_i)_{i \in I}\) in Ball(M) such that \(\lim_i E_Q(b^* u_i a) = 0 \) \(\sigma\)-strongly for all \(a, b \in M_q \), we have

\[
\lim_i \| E_{c_\psi(Q)}(y^* p \pi_\psi(u_i) p x) \|_2 = 0, \forall x, y \in p c_\psi(M) \pi_\psi(q).
\]

In particular, for any faithful normal state \(\psi \in M_\pi \), any nonzero projection \(r \in M_\psi \), any von Neumann subalgebra \(R \subset r M_\psi^r \) satisfying \(R \not\subset M \) \(Q \) and any finite trace projection \(s \in L_\psi(R) \), we have

\[
\Pi_{\psi, \psi}(\pi_\psi(R)s) \not\subset c_\psi(Q).
\]

Proof. The proof is essentially contained in [BHR12, proposition 2-10] (see also [HR10, proposition 5-3]). Simply denote by \(Tr = Tr_\psi \), the canonical trace on \(c_\psi(M) \) and by \(\| \cdot \|_2 \) the \(L^2 \)-norm with respect to \(Tr \). Let \(x, y \in Ball(p c_\psi(M) \pi_\psi(q)) \) be any elements. Fix an increasing sequence \((p_n)_n \) of finite trace projections in \(L_\psi(R) \) such that \(p_n \to 1 \) \(\sigma \)-strongly. Observe that \(p_m \pi_\psi(q) = \pi_\psi(q) p_m \) for all \(m \in N \), since \(q \in M_\psi \).

Let \(\varepsilon > 0 \). Since \(Tr(p) < +\infty \), we may choose \(m \in N \) large enough such that

\[
\| px - p x p_m \|_2 + \| y^* p - p_m y^* p \|_2 < \frac{\varepsilon}{2}.
\]

Using (2-1) and (2-2), for all \(i \in I \), we have

\[
\| E_{c_\psi(Q)}(y^* p \pi_\psi(u_i) p x) \|_2 \leq \| E_{c_\psi(Q)}(p_m y^* \pi_\psi(u_i) x_0 p_m) \|_2 + \varepsilon.
\]

Write \(x_0 = \sum_{j=1}^n \pi_\psi(a_j) \lambda_\psi(t_j) \) and \(y_0 = \sum_{k=1}^n \pi_\psi(b_k) \lambda_\psi(t'_j) \) for some \(a_j, b_k \in M_q \) and \(t_j, t'_k \in R \). Since

\[
E_{c_\psi(Q)}(p_m y_0^* \pi_\psi(u_i) x_0 p_m) = \sum_{j,k} p_m \lambda_\psi(t'_k) \lambda_\psi(t_j) p_m,
\]

and since \(\lim_i E_Q(b_k^* u_i a_j) = 0 \) \(\sigma \)-strongly for all \(j, k \) and since \(Tr(p_m) < +\infty \), we obtain

\[
\lim_i \| E_{c_\psi(Q)}(p_m y_0^* \pi_\psi(u_i) x_0 p_m) \|_2 = 0.
\]

Then (2-3) and (2-4) imply that \(\lim sup_i \| E_{c_\psi(Q)}(y^* p \pi_\psi(u_i) p x) \|_2 \leq \varepsilon \). Since \(\varepsilon > 0 \) is arbitrary, we finally obtain

\[
\lim_i \| E_{c_\psi(Q)}(y^* p \pi_\psi(u_i) p x) \|_2 = 0.
\]

Next, assume that \(\psi \in M_\pi \) is any faithful normal state, \(r \in M_\psi \) is any nonzero projection, \(R \subset r M_\psi^r \) is any von Neumann subalgebra such that \(R \not\subset M \) \(Q \) and \(s \in L_\psi(R) \) is any nonzero finite trace projection. By Theorem 2-2, there exists a net \((v_i)_{i \in J}\) in \(U(R) \) such that \(\lim_i E_Q(b^* v_i a) = 0 \) for all \(a, b \in M_q \). Recall that \(\Pi_{\psi, \psi} \circ \pi_\psi = \pi_\psi \) and \(Tr_\psi \circ \Pi_{\psi, \psi} = Tr_\psi \). Put \(p = \Pi_{\psi, \psi}(s) \). The first part of the proof implies that
Lemma 2.5. Let M be any σ-finite von Neumann algebra and $\varphi, \psi \in M_+$ any faithful states. Let $q \in M_\psi$ be any nonzero projection and $Q \subset qMq$ any diffuse von Neumann subalgebra that is globally invariant under the modular automorphism group σ_{ψ}^q of $\psi_q = \frac{\psi(q, \cdot)}{\psi(q)}$. Then for every nonzero finite trace projection $p \in L_\psi(\mathbb{R})$, we have $c_{\psi_q}(Q) \subset c_\psi(M)$ naturally and

$$\Pi_{\psi, \psi}(p c_{\psi_q}(Q)p) \not\subset c_{\psi_q}(L_\psi(\mathbb{R})).$$

Proof. Denote by $z \in Z(Q)$ the unique central projection such that Qz is of type I and Qz^\perp has no type I direct summand. Observe that $z \in M_\psi$, $\pi_\psi(z) \in Z(c_{\psi_q}(Q))$ and

$$pc_{\psi_q}(Q)p = pc_{\psi_q}(Q)p \pi_\psi(z) \oplus pc_{\psi_q}(Q)p \pi_\psi(z^\perp) = pc_{\psi_z}(Q)z p \oplus pc_{\psi_z}(Qz^\perp)p.$$

Since Qz^\perp has no type I direct summand, $pc_{\psi_z}(Qz^\perp)p$ has no type I direct summand either. This follows from the fact that continuous cores are independent of states or even weights (due to Connes’s Radon–Nykodym cocycle theorem [Co72, théorème 1.2-1]) as well as the fact that the continuous core of any type III von Neumann algebra must be of type II\(_\infty\) (see [Ta03, theorem XII.1-1]). Hence we have

$$\Pi_{\psi, \psi}(p c_{\psi_q}(Q)p \pi_\psi(z)) \not\subset c_{\psi_q}(L_\psi(\mathbb{R})).$$

Since Qz is of type I and diffuse, $Z(Qz) \subset Q^{\psi}z = (Qz)_\psi$; with $z_\psi := \frac{\psi(z, z)}{\psi(z)}$ is also diffuse and hence $Z(Qz) \not\subset M_\psi C$. Then Lemma 2.4 (with letting the Q there be the trivial algebra) implies that

$$\Pi_{\psi, \psi}(p c_{\psi_q}(Q)p \pi_\psi(z)) \not\subset c_{\psi_q}(L_\psi(\mathbb{R})).$$

Combining the above two facts, we finally obtain that $\Pi_{\psi, \psi}(p c_{\psi_q}(Q)p) \not\subset c_{\psi_q}(L_\psi(\mathbb{R}))$.

Amalgamated free product von Neumann algebras

For each $i \in \{1, 2\}$, let $B \subset M_i$ be any inclusion of σ-finite von Neumann algebras with faithful normal conditional expectation $E_i : M_i \to B$. The amalgamated free product $(M, E) = (M_1, E_1) *_B (M_2, E_2)$ is a pair of von Neumann algebra M generated by M_1 and M_2 and faithful normal conditional expectation $E : M \to B$ such that M_1, M_2 are freely independent with respect to E:

$$E(x_1 \cdots x_n) = 0 \text{ whenever } x_j \in M_{i_j}^\circ \text{ and } i_1 \mp \cdots \mp i_n.$$

Here and in what follows, we denote by $M_{i_j}^\circ = \ker(E_i)$. We refer to the product $x_1 \cdots x_n$ where $x_j \in M_{i_j}^\circ$ and $i_1 \mp \cdots \mp i_n$ as a reduced word in $M_{i_1}^\circ \cdots M_{i_n}^\circ$ of length $n \geq 1$. The linear span of B and of all the reduced words in $M_{i_1}^\circ \cdots M_{i_n}^\circ$ where $n \geq 1$ and $i_1 \mp \cdots \mp i_n$ forms a unital σ-strongly dense *-subalgebra of M. We call the resulting M the amalgamated free product von Neumann algebra of (M_1, E_1) and (M_2, E_2).

When $B = C$, $E_i = \varphi_i(\cdot)1$ for all $i \in \{1, 2\}$ and $E = \varphi(\cdot)1$, we will simply denote by $(M, \varphi) = (M_1, \varphi_1) * (M_2, \varphi_2)$ and call the resulting M the free product von Neumann algebra of (M_1, φ_1) and (M_2, φ_2).

When B is a semifinite von Neumann algebra with faithful normal semifinite trace Tr and the weight $Tr \circ E_i$ is tracial on M_i for every $i \in \{1, 2\}$, then the weight $Tr \circ E$ is tracial on M (see [Po90, proposition 3.1] for the finite case and [Ue98a, theorem 2.6] for the general
case). In particular, M is a semifinite von Neumann algebra. In that case, we will refer to $(M, E) = (M_1, E_1) *_B (M_2, E_2)$ as a semifinite amalgamated free product.

Let $\varphi \in B$, be any faithful normal state. Then for all $t \in \mathbb{R}$, we have $\sigma_t^{\varphi \circ E} = \sigma_t^{\varphi \circ E_1} * \sigma_t^{\varphi \circ E_2}$ (see [Ue98a, theorem 2.6]). By [Ta03, theorem IX-4.2], there exists a unique $\varphi \circ E$-preserving conditional expectation $E_{M_i} : M \rightarrow M_1$. Moreover, we have $E_{M_i}(x_1 \cdots x_n) = 0$ for all the reduced words $x_1 \cdots x_n$ that contain at least one letter from M_2^* (see e.g. [Ue10, lemma 2.1]). We will denote by $M \otimes M_1 = \ker(E_{M_i})$. For more on (amalgamated) free product von Neumann algebras, we refer the reader to [BHR12, Po90, Ue98a, Ue10, Ue12, Vo85, VDN92].

Lemma 2.6. For each $i \in \{1, 2\}$, let $B \subseteq M_i$ be any inclusion of σ-finite von Neumann algebras with faithful normal conditional expectations $E_i : M_i \rightarrow B$. Denote by $(M, E) = (M_1, E_1) *_B (M_2, E_2)$ the amalgamated free product.

Let $\psi \in M$, be any faithful normal state such that $\psi = \varphi \circ E_{M_i}$. Let $(u_j)_{j \in J}$ be any net in $\text{Ball}((M_1)\psi)$ such that $\lim_j E_1(b^*u_ja) = 0$ σ-strongly for all $a, b \in M_1$. Then for all $x, y \in M \otimes M_1$, we have $\lim_j E_{M_1}(y^*u_jx) = 0$ σ-strongly.

Proof. We first prove the σ-strong convergence when $x, y \in M_1M_2^* \cdots M_2^*M_1$ are words of the form $x = ax'c$ and $y = by'd$ with $a, b, c, d \in M_1$ and $x', y' \in M_2^* \cdots M_2^*$. By freeness with amalgamation over B, for all $n \in \mathbb{N}$, we have

$$E_{M_1}(y^*u_jx) = E_{M_1}(d^*y^*b^*u_ja x'c) = E_{M_1}(d^*y^*a E_1(b^*u_ja) x'c).$$

Since $\lim_j E_1(b^*u_ja) = 0$ σ-strongly, we have $\lim_j E_{M_1}(y^*u_jx) = 0$ σ-strongly.

Recall that $\psi = \varphi \circ E_{M_i}$. We next prove the σ-strong convergence when $x \in M \otimes M_1$ is any element and $y \in M_1M_2^* \cdots M_2^*M_1$ is any word as above. Indeed, we may choose a sequence $(x_k)_k$, where each x_k is a finite linear combination of words in $M_1M_2^* \cdots M_2^*M_1$, and such that $\lim_{k \rightarrow \infty} \|x - x_k\|_\psi = 0$. Then by triangle inequality, for all $j \in J$ and $k \in \mathbb{N}$, we have

$$\|E_{M_1}(y^*u_jx)\|_\psi \leq \|E_{M_1}(y^*u_jx_k)\|_\psi + \|E_{M_1}(y^*u_j(x - x_k))\|_\psi \leq \|E_{M_1}(y^*u_jx_k)\|_\psi + \|y^*u_n(x - x_k)\|_\psi \leq \|E_{M_1}(y^*u_jx_k)\|_\psi + \|y\|_\infty \|x - x_k\|_\psi.$$

The first part of the proof implies that $\lim sup_j \|E_{M_1}(y^*u_jx)\|_\psi \leq \|y\|_\infty \|x - x_k\|_\psi$ for all $k \in \mathbb{N}$ and hence $\lim_j \|E_{M_1}(y^*u_jx)\|_\psi = 0$.

Recall that $\psi = \varphi \circ E_{M_i}$ and hence $\sigma_t^\psi (M_1) = M_1$ for all $t \in \mathbb{R}$. We next prove the σ-strong convergence when $x \in M \otimes M_1$ is any analytic element with respect to the modular automorphism group σ^ψ and $y \in M \otimes M_1$ is any element. Indeed, we may choose a sequence $(y_k)_k$, where each y_k is a finite linear combination of words in $M_1M_2^* \cdots M_2^*M_1$, and such that $\lim_{k \rightarrow \infty} \|y^* - y_k^*\|_\psi = 0$. Then by triangle inequality, for all $j \in J$ and $k \in \mathbb{N}$, we have

$$\|E_{M_1}(y^*u_jx)\|_\psi \leq \|E_{M_1}(y_k^*u_jx)\|_\psi + \|E_{M_1}((y^* - y_k^*)u_n)x)\|_\psi \leq \|E_{M_1}(y_k^*u_jx)\|_\psi + \|(y^* - y_k^*)u_jx)\|_\psi = \|E_{M_1}(y_k^*u_jx)\|_\psi + \|J^M \sigma_{i/2}^\psi (x)^*u_j^*J^M (y^* - y_k^*)\|_\psi = \|E_{M_1}(y_k^*u_jx)\|_\psi + \|\sigma_{(i/2)^\psi} (x)\|_\infty \|y^* - y_k^*\|_\psi.$$

The second part of the proof implies that $\lim sup_j \|E_{M_1}(y^*u_jx)\|_\psi \leq \|\sigma_{(i/2)^\psi} (x)\|_\infty \|y^* - y_k^*\|_\psi$ for all $k \in \mathbb{N}$ and hence $\lim_j \|E_{M_1}(y^*u_jx)\|_\psi = 0$.
Asymptotic structure of free product von Neumann algebras

We finally prove the σ-strong convergence when $x, y \in M \ominus M_1$ are any elements. Indeed, we may choose a sequence $(x_k)_k$ in $M \ominus M_1$ of analytic elements with respect to the modular automorphism group σ^ψ such that $\lim_{k \to \infty} \|x - x_k\|_\psi = 0$. Then by triangle inequality, for all $j \in J$ and all $k \in \mathbb{N}$, we have

$$\|E_{M_i}(y^*u_j x)\|_\psi \leq \|E_{M_i}(y^*u_j x_k)\|_\psi + \|E_{M_i}(y^*u_j (x - x_k))\|_\psi$$

$$\leq \|E_{M_i}(y^*u_j x_k)\|_\psi + \|y^*u_j (x - x_k)\|_\psi$$

$$\leq \|E_{M_i}(y^*u_j x_k)\|_\psi + \|y\|_\infty \|x - x_k\|_\psi.$$

The third part of the proof implies that $\limsup_j \|E_{M_i}(y^*u_j x)\|_\psi \leq \|y\|_\infty \|x - x_k\|_\psi$ for all $k \in \mathbb{N}$ and hence $\lim_j \|E_{M_i}(y^*u_j x)\|_\psi = 0$. This finishes the proof of Lemma 2.6.

The next proposition about controlling the (quasi)-normalizer of diffuse subalgebras inside free product von Neumann algebras will be very useful in the proof of Theorem A. This is a variant of [IPP05, theorem 1.1] and [Ue12, proposition 3.3], but the proof uses an idea of [Va06, lemma D3] and the previous lemma crucially. We point out that the first assertion also generalizes [Ue10, corollary 3.2] (with $n = 1$, $\pi(x) = uxu^*$ and $v = u$ for $u \in \mathcal{U}(A' \cap M)$ or $\mathcal{N}_H(A)$). A more general, unified statement seems possible in the framework of amalgamated free products because the previous lemma is quite general, but the statements below fit the later use.

Proposition 2.7. For each $i \in \{1, 2\}$, let (M_i, φ_i) be any σ-finite von Neumann algebra endowed with a faithful normal state. Denote by $(M, \varphi) = (M_1, \varphi_1) \ast (M_2, \varphi_2)$ the free product.

(i) Let $1_Q \in M_1$ be any nonzero projection and $Q \subset 1_Q M_1 1_Q$ any diffuse von Neumann subalgebra with expectation. For every $n \geq 1$, every (not necessarily unital) normal $*$-homomorphism $\pi : Q \to M_n(M_1)$ and every nonzero partial isometry $v \in (1_Q M \otimes M_{1,n}(C))\pi(1_Q)$ such that $xv = v\pi(x)$ for all $x \in Q$, we have

$$v \in (1_Q M \otimes M_{1,n}(C))\pi(1_Q).$$

(ii) Let $1_A \in M$ be any nonzero projection and $A \subset 1_A M 1_A$ any diffuse von Neumann subalgebra with expectation. For every $n \geq 1$, every (not necessarily unital) normal $*$-homomorphism $\pi : A \to M_n(M_1)$ such that the inclusion $\pi(A) \subset \pi(1_A) M_\varphi(M_1)\pi(1_A)$ is with expectation and every nonzero partial isometry $v \in (1_A M \otimes M_{1,n}(C))\pi(1_A)$ such that $av = v\pi(a)$ for all $a \in A$, we have

$$v^*v \in \pi(1_A) M_n(M_1)\pi(1_A) \quad \text{and} \quad v^*N_{1_A M 1_A}(A)v \subset v^*v M_n(M_1)v^*v.$$

Proof.

(1) As in the proof of Lemma 2.1 and since $Q \subset 1_Q M 1_Q$ is with expectation, we may choose a faithful normal state $\psi \in M_\varphi$ such that $\psi = \psi \circ E_{M_1}, 1_Q \in (M_1)^\psi, Q \subset 1_Q M 1_Q$ is globally invariant under the modular automorphism group σ^ψ and $Q^\psi \subset 1_Q M 1_Q$ is diffuse where $\psi_Q := \psi(1_Q \cdot 1_Q)$.

Let n, π, v as in the statement. Denote by tr_n the canonical normalized trace on $M_n(C)$ and write $v = [v_1 \cdots v_n] \in (1_Q M \otimes M_{1,n}(C))\pi(1_Q)$. For all $x \in Q$, since $xv = v\pi(x)$, we have

$$xE_{M_n(M_1)}(v) = E_{M_n(M_1)}(xv) = E_{M_n(M_1)}(v\pi(x)) = E_{M_n(M_1)}(v)\pi(x)$$

and hence

$$x(v - E_{M_n(M_1)}(v)) = (v - E_{M_n(M_1)}(v))\pi(x). \quad (2.5)$$
Put $w := v - E_{M_n(M_1)}(v) \in (1_Q(M \otimes M_1) \otimes M_{1,n}(C))\pi(1_Q)$ and write $w = [w_1 \cdots w_n]$ with $w_1, \ldots, w_n \in 1_Q(M \otimes M_1)$. Fix a sequence of unitaries $(u_k)_k$ in $U(Q^\psi)$ such that $\lim_{k \to \infty} u_k = 0$ σ-weakly. By Lemma 2.6, we have

$$\lim_{k \to \infty} \|E_{M_n(M_1)}(w^* u_k w)\|^2_{\psi \otimes tr_n} = \lim_{k \to \infty} \sum_{i,j=1}^n \|E_{M_i}(w_i^* u_k w_j)\|^2_{\psi} = 0. \quad (2.6)$$

Using (2.5) and (2.6) and since $\pi(u_k) \in U(\pi(Q))$ and $w^* w \in \pi(Q)' \cap \pi(1_Q) M_n(M) \pi(1_Q)$, we have

$$\|E_{M_n(M_1)}(w^* w)\|_{\psi \otimes tr_n} = \lim_{k \to \infty} \|\pi(u_k) E_{M_n(M_1)}(w^* w)\|_{\psi \otimes tr_n} = \lim_{k \to \infty} \|E_{M_n(M_1)}(w^* u_k w)\|_{\psi \otimes tr_n} = \lim_{k \to \infty} \|E_{M_n(M_1)}(w^* u_k w)\|_{\psi \otimes tr_n} = 0.$$

This implies that $w^* w = 0$ and hence $w = 0$. Thus $v = E_{M_n(M_1)}(v) \in (1_Q M_1 \otimes M_{1,n}(C))\pi(1_Q)$.

(2) We will be working inside the amalgamated free product von Neumann algebra

$$M_n(M) = (M_n(M_1), \varphi_1 \otimes id_n) *_{M_n(C)} (M_n(M_2), \varphi_2 \otimes id_n),$$

and substitute formula (2.7) below for the assumption of item (1) that $xv = v\pi(x)$ for all $x \in Q$.

Since $\pi(A) \subset \pi(1_A) M_n(M_1) \pi(1_A)$ is a diffuse von Neumann subalgebra with expectation, we may choose, as in the proof of item (1), a faithful normal state $\psi \in M_{n}(M)_+$ such that $\psi = \psi \circ E_{M_n(M_1)}, \pi(1_A) \subset M_n(M_1)^\psi$ and $\pi(A) \cap \pi(1_A) M_n(M_1)^\psi \pi(1_A)$ is diffuse. Fix a sequence of unitaries $(u_k)_k$ in $\pi(A) \cap \pi(1_A) M_n(M_1)^\psi \pi(1_A)$ such that $\lim_{k \to \infty} u_k = 0$ σ-weakly. For each $k \in N$, we may write $u_k = \pi(a_k)$ with a unitary $a_k \in A$.

Let now $x \in \mathcal{N}_{\lambda} A$ be any normalizing unitary element. Then for all $a \in A$, we have

$$v^* xv \pi(a) = v^* xav = v^*(xax^*) xv = \pi(xax^*) v^* x v, \quad (2.7)$$

and hence, as in the proof of item (1), for every $k \in N$ we have

$$(v^* xv - E_{M_n(M_1)}(v^* x v)) u_k = \pi(xa_k x^*) (v^* x v - E_{M_n(M_1)}(v^* x v)). \quad (2.8)$$

Put $w := v^* x v - E_{M_n(M_1)}(v^* x v) \in \pi(1_A)(M_n(M) \otimes M_n(M_1))\pi(1_A)$. Using (2.8) and Lemma 2.6 and since $\pi(xa_k x^*) \in U(\pi(A))$, we obtain, as in the proof of item (1), that

$$\|E_{M_n(M_1)}(ww^*)\|_\psi = \lim_{k \to \infty} \|E_{M_n(M_1)}(uw^* w)\|_\psi = 0,$$

implying that $v^* x v = E_{M_n(M_1)}(v^* x v) \in M_n(M_1)$ and the desired assertion is immediate.

Ultraproduct von Neumann algebras

Let M be any σ-finite von Neumann algebra. Define

$$\mathcal{I}_o(M) = \{(x_n)_n \in \ell^\infty(N, M) : x_n \to 0 \text{ $*$-strongly as } n \to \omega\},$$

$$\mathcal{M}_o(M) = \{(x_n)_n \in \ell^\infty(N, M) : (x_n)_n \mathcal{I}_o(M) \subset \mathcal{I}_o(M) \text{ and } \mathcal{I}_o(M) (x_n)_n \subset \mathcal{I}_o(M)\}.$$
Asymptotic structure of free product von Neumann algebras

We have that the multiplier algebra $\mathcal{M}_0^{\omega}(M)$ is a C*-algebra and $\mathcal{I}_\omega(M) \subset \mathcal{M}_0^{\omega}(M)$ is a norm closed two-sided ideal. Following [Oc85], we define the ultraproduct von Neumann algebra M^{ω} by $M^{\omega} = \mathcal{M}_0^{\omega}(M)/\mathcal{I}_\omega(M)$. We denote the image of $(x_n)_n \in \mathcal{M}_0^{\omega}(M)$ by $(x_n)^{\omega}_n \in M^{\omega}$.

For all $x \in M$, the constant sequence $(x)_n$ lies in the multiplier algebra $\mathcal{M}_0^{\omega}(M)$. We will then identify M with $(M + \mathcal{I}_\omega(M))/\mathcal{I}_\omega(M)$ and regard $M \subset M^{\omega}$ as a von Neumann subalgebra. The map $E_\omega : M^{\omega} \to M : (x_n)^{\omega}_n \mapsto \sigma$-weak $\lim_{n \to \omega} x_n$ is a faithful normal conditional expectation. For every faithful normal state $\varphi \in M_\omega$, the formula $\varphi^{\omega}_n = \varphi \circ E_\omega$ defines a faithful normal state on M^{ω}. Observe that $\varphi^{\omega}_n((x_n)^{\omega}_n) = \lim_{n \to \omega} \varphi(x_n)$ for all $(x_n)^{\omega}_n \in M^{\omega}$.

Let $Q \subset M$ be any von Neumann subalgebra with faithful normal conditional expectation $E_Q : M \to Q$. Choose a faithful normal state $\varphi \in M_\omega$ such that $\varphi = \varphi \circ E_Q$. We have $\ell^\infty(N, Q) \subset \ell^\infty(N, M)$, $\mathcal{I}_\omega(Q) \subset \mathcal{I}_\omega(M)$ and $M^{\omega}(Q) \subset M^{\omega}(M)$. We will then identify $Q^{\omega} = M^{\omega}(Q)/\mathcal{I}_\omega(Q)$ with $(M^{\omega}(Q) + \mathcal{I}_\omega(M))/\mathcal{I}_\omega(M)$ and regard $Q^{\omega} \subset M^{\omega}$ as a von Neumann subalgebra. Observe that the norm $\| \cdot \|^{\omega}_Q$ on Q^{ω} is the restriction of the norm $\| \cdot \|^{\omega}_Q$ to Q^{ω}. Observe moreover that $(E_Q(x_n))_n \in \mathcal{I}_\omega(Q)$ for all $(x_n)_n \in \mathcal{I}_\omega(M)$ and $(E_Q(x_n))_n \in M^{\omega}(Q)$ for all $(x_n)_n \in M^{\omega}(M)$. Therefore, the mapping $E_Q^{\omega} : M^{\omega} \to Q^{\omega} : (x_n)^{\omega}_n \mapsto (E_Q(x_n))^{\omega}_n$ is a well-defined conditional expectation satisfying $\varphi^{\omega}_n \circ E_Q^{\omega} = \varphi^{\omega}_n$. Hence, $E_Q^{\omega} : M^{\omega} \to Q^{\omega}$ is a faithful normal conditional expectation.

Put $\mathcal{H} = L_2^\omega(M)$. The ultraproduct Hilbert space \mathcal{H}^{ω} is defined to be the quotient of $\ell^\infty(N, \mathcal{H})$ by the subspace consisting in sequences $(\xi_n)_n$ satisfying $\lim_{n \to \omega} \| \xi_n \|_{\mathcal{H}} = 0$. We denote the image of $(\xi_n)_n \in \ell^\infty(N, \mathcal{H})$ by ξ^{ω}_n in \mathcal{H}^{ω}. The inner product space structure on the Hilbert space \mathcal{H}^{ω} is defined by $(\langle \xi^{\omega}_n, (\eta^{\omega}_n) \rangle_\mathcal{H}^{\omega} = \lim_{n \to \omega} \langle \xi_n, \eta_n \rangle_{\mathcal{H}}$. The standard Hilbert space $L_2(M)$ can be embedded into \mathcal{H}^{ω} as a closed subspace via the mapping $L_2^M \to \mathcal{H}^{\omega} : (x_n)^{\omega}_n \mapsto (x_n)^{\omega}_n$. For more on ultraproduct von Neumann algebras, we refer the reader to [AH12, Oc85].

In Section 4, we will need the following well-known fact about ultraproducts of semifinite von Neumann algebras. Let (M, Tr) be any semifinite σ-finite von Neumann endowed with a faithful normal semifinite trace. Then the ultraproduct von Neumann algebra M^{ω} is semifinite and the weight $Tr \circ E_\omega$ is tracial on M^{ω} (see [AH12, lemma 4.26]).

In Appendix A, we will need the following result about the centralizer $(M^{\omega})^{\varphi^{\omega}_n}$ of the ultraproduct state φ^{ω}_n.

PROPOSITION 2.8. Let (M, φ) be any σ-finite von Neumann algebra endowed with a faithful normal state and $\omega \in \beta(N) \setminus N$ any nonprincipal ultrafilter.

(i) If $M \neq C1$, then $(M^{\omega})^{\varphi^{\omega}_n} \neq C1$.

(ii) If M is diffuse, then $(M^{\omega})^{\varphi^{\omega}_n}$ is diffuse.

Proof.

1. Assume that $M \neq C1$. If $M^\omega = C1$, then we also have $(M^{\omega})^{\varphi^{\omega}_n} \neq C1$ since $M^\omega \subset (M^{\omega})^{\varphi^{\omega}_n}$. If $M^\omega = C1$, then M is a type III$_1$ factor by [AH12, lemma 5.3]. By [AH12, theorem 4.20], $(M^{\omega})^{\varphi^{\omega}_n}$ is a type II$_1$ factor and hence $(M^{\omega})^{\varphi^{\omega}_n} \neq C1$.

2. Fix a sequence $(z_n)_n$ of central projections in $\mathcal{Z}(M)$ such that $\sum_n z_n = 1$, Mz_0 has a diffuse center and Mz_0 is a diffuse factor for every $n \geq 1$. Observe that $\mathcal{Z}(Mz_0) \subset M^\omega z_0$ and hence $M^\omega z_0$ is diffuse. Next, fix $n \geq 1$ such that $z_n \neq 0$ and put $\varphi^{\omega}_n = \frac{\varphi(z_n)}{\varphi(z_n)} \in (Mz_0)^\omega$. If Mz_n is a semifinite factor, then $M^\omega z_n = (Mz_n)^{\varphi^{\omega}_n}$ is diffuse. If Mz_n is a type III$_1$ factor, with $0 \leq \lambda < 1$, then $M^\omega z_n = (Mz_n)^{\varphi^{\omega}_n}$ is diffuse by [Co72, théorème 4.2.1 and théorème 5.2.1]. If Mz_n is a type III$_1$ factor, then $(M^{\omega})^{\varphi^{\omega}_n} z_n = ((Mz_n)^{\varphi^{\omega}_n})^{\varphi^{\omega}_n}$ is a type II$_1$ factor by
[AH12, theorem 4.20]. We finally obtain that \((M^\omega)\psi_n = ((Mz_n)^\omega)\psi_n\) is diffuse for all \(n\) and hence \((M^\omega)\psi^\omega_\omega\) is diffuse.

3. Asymptotic orthogonality property

The phenomenon of **asymptotic orthogonality property** inside free group factors was discovered by Popa in his seminal work [Po83, lemma 2.1]. The main result of this section is the following optimal asymptotic orthogonality property result inside arbitrary free product von Neumann algebras. To fix notation, for each \(i \in \{1, 2\}\), let \((M_i, \varphi_i)\) be any \(\sigma\)-finite von Neumann algebra endowed with a faithful normal state. Denote by \((M, \varphi) = (M_1, \varphi_1) \ast (M_2, \varphi_2)\) the free product. As usual, denote by \(E_{M_1} : M \to M_1\) the unique \(\varphi\)-preserving conditional expectation. Let \(Q \subset M_1\) be any diffuse von Neumann subalgebra with expectation. Fix a faithful state \(\psi \in M_\ast\) such that \(\sigma^\psi_t(Q) = Q\) and \(\sigma^\psi(M_1) = M_1\) for all \(t \in \mathbb{R}\). Observe that \(\psi = \psi \circ E_{M_1}\).

Theorem 3-1 below is a simultaneous generalization of [Ue10, proposition 3.5] (which only deals with \(y \in \ker(\varphi_2)\)) and [Ho14, theorem 3-1] (which requires the centralizer \((M_1)^\varphi\) to be diffuse).

Theorem 3-1. Keep the same notation as above. For all \(x \in Q' \cap M^\omega\) and all \(y, z \in M \ominus M_1\), the vectors

\[
y(x - E_{M^\omega_1}(x))\xi^\omega, (y E_{M^\omega_1}(x) - E_{M^\omega_1}(x)z)\xi^\omega \quad \text{and} \quad (E_{M^\omega_1}(x) - x)z\xi^\omega
\]

are mutually orthogonal in the standard Hilbert space \(L^2(M^\omega)\) where \(\xi^\omega \in \mathcal{P}^M_{\omega}\) is the canonical representing vector of the ultraproduct state \(\psi_{\omega}\).

Proof. The proof of Theorem 3-1 is a reconstruction of [Ho14, theorem 3-1] and the new input is the ‘state replacement’ procedure developed in [Ue10].

Let \((M_\omega, L^2(M_\omega), J^{M_\omega}, \mathcal{P}^{M_\omega})\) be the standard form of the ultraproduct von Neumann algebra \(M_\omega\), which is known to be obtained from the standard form \((M, L^2(M), J^M, \mathcal{P}^M)\) of the original von Neumann algebra \(M\) in a rather canonical fashion (see [AH12, corollary 3-27]). It suffices to prove, instead of the original assertion, that, for all \(z' \in M \ominus M_1\) with the given \(x, y\) in the original assertion, the vectors

\[
y(x - E_{M^\omega_1}(x))\xi^\omega, (y E_{M^\omega_1}(x) - J^{M_\omega} z' J^{M_\omega} E_{M^\omega_1}(x))\xi^\omega \quad \text{and} \quad J^{M_\omega} z' J^{M_\omega} (E_{M^\omega_1}(x) - x)\xi^\omega
\]

are mutually orthogonal in the standard Hilbert space \(L^2(M^\omega)\). In fact, by a standard approximation argument we may and do assume that the given \(z\) in the original assertion is analytic with respect to the modular automorphism group \(\sigma^\psi\). By [AH12, theorem 4-1] together with [Ta03, lemma VIII-3.18 (ii)], we have

\[
E_{M^\omega_1}(x)z\xi^\omega = J^{M_\omega} \sigma^\psi_{1/2}(z)^* J^{M_\omega} E_{M^\omega_1}(x)\xi^\omega,
\]

\[
(E_{M^\omega_1}(x) - x)z\xi^\omega = J^{M_\omega} \sigma^\psi_{1/2}(z)^* J^{M_\omega} (E_{M^\omega_1}(x) - x)\xi^\omega
\]

so that the above new assertion immediately gives the desired one.

For all \(i \in \{1, 2\}\), denote by \(A_i \subset M_i\) the \(\sigma\)-weakly dense unital \(*\)-subalgebra of all the analytic elements in \(M_i\) with respect to the modular automorphism group \(\sigma^\psi\) and write \(A_i^\circ := A_i \cap M_i\) with the standard notation \(M_i^\circ := \ker(\varphi_i)\). As in the proof of [Ho14, theorem 3-1], we may and will assume that the elements \(y\) and \(z'\) are analytic with respect to the modular automorphism group \(\sigma^\psi\) and \(y\) and \(\sigma^\psi_{1/2}(z')^*\) are finite sums of reduced words.
Choose an orthonormal basis e_1, \ldots, e_m of V with respect to the inner product $(a|b)_{\varphi_1} := \varphi_1(b^*a)$ on M_1. Denote by W the range of the mapping $a \in M_1 \mapsto a - \sum_{i=1}^{m}(a|e_i)_{\varphi_1} e_i \in M_1$. It follows that $M_1 = V + W$ is an orthogonal decomposition with respect to the inner product $(\cdot|\cdot)_{\varphi_1}$ defined on M_1 as above.

Let \mathcal{H} be the direct sum of all the alternating tensor products in $L^2(M_1)^o$ and $L^2(M_2)^o$ starting and ending with $L^2(M_2)^o$. Here $L^2(M_1)^o$ denotes the orthogonal complement of the canonical representing vector $\xi_{\varphi_1} \in \mathcal{H}^{M_1}$ of the given state φ_1. Thanks to $- \text{alg}(M_1, M_2) = M_1 + \text{span}(M_1 M_2^* \cdots M_2^* M_1)$ together with the formula of modular conjugation (see [Ue98a, proposition II-C]), the standard Hilbert space $L^2(M)$ is naturally identified with $L^2(M_1) \otimes L^2(M_2) \otimes \mathcal{H} \otimes L^2(M_1)$ as M_1M_1-bimodules. Decompose $L^2(M_1) \otimes \mathcal{H} \otimes L^2(M_1)$ into three subspaces $\mathcal{K}_1, \mathcal{K}_2, \mathcal{L}$ defined by

\[\mathcal{K}_1 := (V \xi_{\varphi_1}) \otimes \mathcal{H} \otimes L^2(M_1), \]
\[\mathcal{K}_2 := (W \xi_{\varphi_1}) \otimes \mathcal{H} \otimes (V \xi_{\varphi_1}), \]
\[\mathcal{L} := (W \xi_{\varphi_1}) \otimes \mathcal{H} \otimes (W \xi_{\varphi_1}). \]

It is clear that these subspaces are generated by

\[VM_2^o \cdots M_2^o M_1 \xi_{\varphi_1}, \]
\[WM_2^o \cdots M_2^o V \xi_{\varphi_1}, \]
\[WM_2^o \cdots M_2^o W \xi_{\varphi_1}, \]

respectively, in $L^2(M)$, where $\xi_{\varphi_1} \in \mathcal{H}^{M_1}$ is the canonical representing vector of the free product state φ_1. Remark that the direct summand $L^2(M_1)$ in $L^2(M)$ is given by $M_1 \xi_{\varphi_1} = M_1 \xi_{\psi}$ thanks to $\psi \circ E_M = \psi$ (see e.g. [Ko88, appendix I]).

Let $\delta > 0$ be arbitrarily chosen. By Lemma 2.1, choose a faithful state $\phi_1 \in \mathcal{Q}$, such that $\|\psi|Q - \phi_1\| < \delta$ and Q^{ϕ_1} is diffuse. Denote by $E_Q^{M_1} : M_1 \to Q$ the unique ψ-preserving conditional expectation and put $\phi := \phi_1 \circ E_Q^{M_1} \circ E_M$. Then we have $\psi = \phi \circ E_M$, Q^{ϕ} is diffuse and $\|\psi - \phi\| = \|\psi|Q - \phi_1\| < \delta$ so that the canonical representing vectors $\xi_{\psi}, \xi_{\phi} \in \mathcal{Q}^{M}$ of the states ψ, ϕ satisfy $\|\xi_{\psi} - \xi_{\phi}\|_{L^2(M)} < \delta^{1/2}$ by the Araki-Powers-Størmer inequality (see [Ta03, theorem IX-1.2 (iv)]). In what follows, we denote by P_X the orthogonal projection from $L^2(M)$ onto a (closed) subspace X.

Let $(x_n)_n \in \mathcal{M}^o(M)$ such that $x = (x_n)^m$ with $C := \sup_n \|x_n\|_{\infty}$. Then for all $n \in \mathbb{N}$ and all $i \in \{1, 2\}$, we have

\[\|P_{\mathcal{K}_i} x_n \xi_{\psi}\|_{L^2(M)} < C \delta^{1/2} + \|P_{\mathcal{K}_i} x_n \xi_{\phi}\|_{L^2(M)}. \]
For a while, we will be working with $\|P_{\mathcal{K}_i} x_n \xi_{\phi}\|_{L^2(M)}$ by the same method used in the proof of [Ho14, theorem 3-1]. Since Q^ϕ is diffuse, we can choose a unitary $u \in \mathcal{U}(Q^\phi)$ such that $\lim_{k \to \pm \infty} u^k = 0$ σ-weakly. Consider the unitary transformation $T : L^2(M) \to L^2(M) : \xi \mapsto u J^M u J^M \xi =: u \cdot \xi \cdot u^*$. Observe that since $u \in \mathcal{U}(M^\phi)$ and hence $[u, \xi_{\phi}] = 0$, for all $n \in \mathbb{N}$, all $i \in \{1, 2\}$ and all $k \in \mathbb{Z}$, we have

$$T^k P_{\mathcal{K}_i} x_n \xi_{\phi} = u^k \cdot (P_{\mathcal{K}_i} x_n \xi_{\phi}) \cdot u^{-k} = P_{T^{i \cdot k} \mathcal{K}_i} u x_n u^{-k} \xi_{\phi} = P_{\mathcal{T} T^k \mathcal{K}_i} u x_n u^{-k} \xi_{\phi}. \quad (3.2)$$

Here is a simple claim, which is just a reconstruction of Claim 1 of [Ho14, section 3].

Claim. For any $\varepsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that for all $i \in \{1, 2\}$, all $\xi, \eta \in \mathcal{K}_i$ and all $k \geq k_0$, we have $|\langle T^k \xi, \eta \rangle_{L^2(M)}| \leq \varepsilon \parallel \xi \parallel_{L^2(M)} \parallel \eta \parallel_{L^2(M)}$, that is, $T^k \mathcal{K}_i \perp \varepsilon \mathcal{K}_i$ in the sense of [Ho12a, definition 2.1].

Proof of the Claim. Denote by J^{M_i} the modular conjugation on $L^2(M_i)$. For $\xi = \sum_{i=1}^m (e_i \xi_{\psi_i}) \otimes \xi_i, \eta = \sum_{j=1}^m (e_j \xi_{\psi_j}) \otimes \eta_j \in \mathcal{K}_1$ inside $L^2(M_1) \otimes (\mathcal{H} \otimes L^2(M_1))$, we have

$$|\langle T^k \xi, \eta \rangle_{L^2(M)}| \leq \sum_{i,j=1}^m |\langle u^k e_i | e_j \rangle_{\psi_i} | \parallel \xi_i \parallel_{L^2(M)} \parallel \eta_j \parallel_{L^2(M)} \leq \max_{1 \leq i, j \leq m} |\langle u^k e_i | e_j \rangle_{\psi_i} | \times \parallel \xi \parallel_{L^2(M)} \parallel \eta \parallel_{L^2(M)}.$$

Similarly, for $\xi' = \sum_{i=1}^m (e_i \xi_{\psi_i})', \eta' = \sum_{j=1}^m (e_j \xi_{\psi_j})' \in \mathcal{K}_2$ inside $(L^2(M_1) \otimes \mathcal{H}) \otimes L^2(M_1)$, we have

$$|\langle T^k \xi', \eta' \rangle_{L^2(M)}| \leq \sum_{i,j=1}^m \parallel \xi_i' \parallel_{L^2(M)} \parallel \eta_j' \parallel_{L^2(M)} \parallel \langle u^{-k} J^{M_i} e_j \xi_{\psi_j}, J^{M_i} e_i \xi_{\psi_i} \rangle_{L^2(M)} \parallel \langle u^{-k} J^{M_i} e_j \xi_{\psi_j}, J^{M_i} e_i \xi_{\psi_i} \rangle_{L^2(M)} \parallel \leq \max_{1 \leq i, j \leq m} |\langle u^{-k} J^{M_i} e_j \xi_{\psi_j}, J^{M_i} e_i \xi_{\psi_i} \rangle_{L^2(M)} | \times \parallel \xi' \parallel_{L^2(M)} \parallel \eta' \parallel_{L^2(M)}.$$

These two facts together with $\lim_{k \to \pm \infty} u^k = 0$ σ-weakly imply the desired assertion.

Combining Equation (3.2) with the parallelogram law, for all $n \in \mathbb{N}$, all $i \in \{1, 2\}$ and all $k \in \mathbb{Z}$, we have

$$\parallel P_{\mathcal{K}_i} x_n \xi_{\phi} \parallel_{L^2(M)}^2 = \parallel T^k P_{\mathcal{K}_i} x_n \xi_{\phi} \parallel_{L^2(M)}^2 \leq 2 \parallel (u x_n u^{-k} - x_n) \xi_{\phi} \parallel_{L^2(M)}^2 + 2 \parallel P_{T^{i \cdot k} \mathcal{K}_i} u x_n u^{-k} \xi_{\phi} \parallel_{L^2(M)}^2.$$

Thanks to this and the above Claim and since $x \in Q' \cap M^\omega$, the ε-orthogonality technique from [Ho12a, proposition 2.3] works to show that $\lim_{n \to \omega} \parallel P_{\mathcal{K}_i} x_n \xi_{\phi} \parallel_{L^2(M)} = 0$ in the same way as in the proof of Claim 2 in [Ho14, section 3]. Consequently, we have $\lim_{n \to \omega} \parallel P_{\mathcal{K}_i} x_n \xi_{\phi} \parallel_{L^2(M)} \leq C \delta^{1/2}$. Since $\delta > 0$ can be arbitrarily small, we finally obtain

$$\lim_{n \to \omega} \parallel P_{\mathcal{K}_i} x_n \xi_{\phi} \parallel_{L^2(M)} = 0, \forall i \in \{1, 2\}. \quad (3.3)$$

It is standard, see [AH12, theorem 3-7], that $L^2(M^\omega)$ is embedded into the ultraproduct Hilbert space $L^2(M)^\omega$ by $(a_n)^\omega \xi_{\psi,\omega} \mapsto (a_n \xi_{\psi})_\omega$ for $(a_n)^\omega \in M^\omega$ with representing sequence $(a_n)_n \in M^\omega(M)$. Remark that the other mapping $(a_n)^\omega \xi_{\psi,\omega} \mapsto (a_n \xi_{\psi})_\omega$ gives exactly the same embedding since we already fix the choice (or realization) of standard forms. By (3.3)
Asymptotic structure of free product von Neumann algebras

503

together with [AH12, proposition 3.15, corollary 3.27, corollary 3.28], we obtain
\[y(x - E_{M_i}(x))\hat{\xi}_{\psi} = (yP_{\mathcal{L}x_n}\hat{\xi}_{\psi})_\omega, \]
\[(yE_{M_i}(x) - J^{M'}z'J^{M'}E_{M_i}(x))\hat{\xi}_{\psi} = ((yE_{M_i}(x_n) - J^{M'}z'J^{M}E_{M_i}(x_n))\hat{\xi}_{\psi})_\omega, \]
\[J^{M'}z'J^{M'}(E_{M_i}(x) - x)\hat{\xi}_{\psi} = (-J^{M'}z'J^{M}P_{\mathcal{L}x_n}\hat{\xi}_{\psi})_\omega. \]

inside \(L^2(M) \). Note that \(yP_{\mathcal{L}x_n}\hat{\xi}_{\psi} \) sits in the closed linear span of \(w_iWM_2 \cdots M_2W^i_3 \hat{\xi}_{\psi} \), \(1 \leq i \leq \ell \), and \(J^{M'}z'J^{M}P_{\mathcal{L}x_n}\hat{\xi}_{\psi} \) sits in the closed linear span of \(WM_2 \cdots M_2W^i_3 \hat{\xi}_{\psi} \), \(1 \leq j \leq \ell' \). Moreover, note that \((yE_{M_i}(x_n) - J^{M'}z'J^{M}E_{M_i}(x_n))\hat{\xi}_{\psi} = (y + J^{M'}z'J^{M})M_1\hat{\xi}_{\psi} = (y + J^{M'}z'J^{M})\hat{\xi}_{\psi} \) (n.b. \(\psi = \psi \circ E_{M_i} \)) as well as that \(J^{M'}z'J^{M}b\hat{\xi}_{\psi} = bc\hat{\xi}_{\psi} \) for every \(b \in M_1 \) by [Ta03, lemma VIII.3.18 (ii)]. This shows that \((yE_{M_i}(x_n) - J^{M'}z'J^{M}E_{M_i}(x_n))\hat{\xi}_{\psi} \) sits in the closed linear span of \((w_iM_1 + M_1w'_j)\xi_{\psi}, 1 \leq i \leq \ell \) and \(1 \leq j \leq \ell' \). This can easily be checked exactly in the same way as in Claim 3 of [Ho14, section 3] (which looks complicated but not difficult). Therefore, \(y(x - E_{M_i}(x))\hat{\xi}_{\psi}, \)
\[(yE_{M_i}(x) - J^{M'}z'J^{M'}E_{M_i}(x))\hat{\xi}_{\psi} \text{ and } J^{M'}z'J^{M'}(E_{M_i}(x) - x)\hat{\xi}_{\psi} \]
are mutually orthogonal in \(L^2(M) \). This finishes the proof of Theorem 3.1.

4. Proofs of Theorem A and Corollary B

A key deformation/rigidity result for semifinite von Neumann algebras

Theorem 4.1 below relies on Popa’s deformation/rigidity theory [Po01, Po03, Po06] and is an adaptation of Peterson’s \(L^2 \)-rigidity results [Pe06, theorems 4.3 and 4.5] for semifinite von Neumann algebras using Popa’s malleable deformations instead of Peterson’s \(L^2 \)-derivations.

Recall from [Po03, Po06] that for any inclusion \(\mathcal{M} \subset \tilde{\mathcal{M}} \) of semifinite von Neumann algebras with trace preserving conditional expectation, a trace preserving action \(\mathbb{R} \to \text{Aut}(\tilde{\mathcal{M}}) : t \mapsto \theta_t \) is called a \textit{malleable deformation} if there exists a period two trace preserving \(*\)-automorphism \(\beta \in \text{Aut}(\tilde{\mathcal{M}}) \) such that \(\beta \circ \theta_t = \theta_{-1} \circ \beta \) for all \(t \in \mathbb{R} \). Denote by \(E_{\mathcal{M}} : \tilde{\mathcal{M}} \to \mathcal{M} \) the unique trace preserving conditional expectation. We will simply denote by \(\| \cdot \| \) the \(L^2 \)-norm associated with the ambient faithful normal semifinite trace. By [Po06, lemma 2.1], any malleable deformation automatically satisfies the following \textit{transversality property}:
\[\| x - \theta_{2t}(x) \|_2 \leq 2\| \theta_t(x) - E_{\mathcal{M}}(\theta_t(x)) \|_2, \forall x \in \mathcal{M} \cap L^2(\mathcal{M}, \text{Tr}). \]

The main result of this subsection is the following uniform convergence theorem for malleable deformations.

Theorem 4.1. Let \(\mathcal{B} \subset \mathcal{M} \subset \tilde{\mathcal{M}} \) be an inclusion of semifinite von Neumann algebras with trace preserving conditional expectations. Let \(\mathbb{R} \to \text{Aut}(\tilde{\mathcal{M}}) : t \mapsto \theta_t \) be a trace preserving malleable deformation. Let \(p \in \mathcal{M} \) be any nonzero finite trace projection and \(\mathcal{Q} \subset p\mathcal{M}p \) any von Neumann subalgebra. Assume that the following conditions hold:

(i) The \(p\mathcal{M}p \cdot p\mathcal{M}p \)-bimodule \(L^2(p\mathcal{M}p) \otimes L^2(p\mathcal{M}p) \) is weakly contained in the coarse \(p\mathcal{M}p \cdot p\mathcal{M}p \)-bimodule \(L^2(p\mathcal{M}p) \otimes L^2(p\mathcal{M}p) \).

(ii) The von Neumann algebra \(\mathcal{Q} \) has no amenable direct summand.

(iii) There exists a nonprincipal ultrafilter \(\omega \in \beta(\mathbb{N}) \setminus \mathbb{N} \) such that \(\mathcal{Q}' \cap (p\mathcal{M}p)^\omega \not\prec_{\mathcal{M}} \mathcal{B}^\omega. \)
(iv) Denote by $E_{\mathcal{B}} : \mathcal{M} \to \mathcal{B}$ the unique trace preserving conditional expectation. For every net $(v_i)_{i \in I}$ of unitaries in $\mathcal{U}(pM\mathcal{P})$ satisfying $\lim_i \|E_{\mathcal{B}}(b^*v_ia)\|_2 = 0$ for all $a, b \in p\mathcal{M}$, we have $\lim_i \|E_{\mathcal{M}}(d^*v_ica)\|_2 = 0$ for all $c, d \in p(\tilde{\mathcal{M}} \ominus \mathcal{M})$.

Then the map $R \to \text{Aut}(\tilde{\mathcal{M}}) : t \mapsto \theta^t$ converges uniformly on $\text{Ball} (\mathcal{Q})$ in $\| \cdot \|_2$ as $t \to 0$.

Proof. Put $\mathcal{P} = \mathcal{Q} \cap (p\mathcal{M}\mathcal{P})^\omega$. For every $t \in \mathbb{R}$, define $\theta^t \in \text{Aut}(\tilde{\mathcal{M}}^\omega)$ by $\theta^t((x_n)^\omega) = (\theta_t(x_n))^\omega$. We note that the map $R \to \text{Aut}(\tilde{\mathcal{M}}^\omega) : t \mapsto \theta^t$ need not be continuous. However, exploiting Popa’s spectral gap argument [Po06], we can show the following uniform convergence result.

Claim. The map $R \to \text{Aut}(\tilde{\mathcal{M}}^\omega) : t \mapsto \theta^t$ converges uniformly on $\text{Ball}(\mathcal{P})$ in $\| \cdot \|_2$ as $t \to 0$.

Proof of Claim. For the Claim, we will only use Conditions (i),(ii). Assume by contradiction that the map $R \to \text{Aut}(\tilde{\mathcal{M}}^\omega) : t \mapsto \theta^t$ does not converge uniformly on $\text{Ball}(\mathcal{P})$ in $\| \cdot \|_2$ as $t \to 0$. Thus there exist $\varepsilon > 0$, a sequence $(i_k)_{k \in \mathbb{N}}$ of positive reals such that $\lim_{k \to \infty} t_k = 0$ and a sequence $(x_k)_{k \in \mathbb{N}}$ in $\text{Ball}(\mathcal{P})$ such that $\|X_k - \theta^t_k(X_k)\|_2 \geq 2 \varepsilon$ for all $k \in \mathbb{N}$. Write $X_k = (x_n^{(k)})_n$ with $x_n^{(k)} \in \text{Ball}(p\mathcal{M}\mathcal{P})$ satisfying $\lim_{n \to \infty} \|x_n^{(k)} - x_n\|_2 = 0$ and $2\varepsilon \leq \|X_k - \theta^t_k(X_k)\|_2 = \lim_{n \to \infty} \|x_n^{(k)} - \theta^t_k(x_n^{(k)})\|_2$ for all $k \in \mathbb{N}$ and $y \in \mathcal{Q}$.

Denote by I the directed set of all pairs $(\mathcal{F}, \varepsilon)$ with $\mathcal{F} \subset \text{Ball}(\mathcal{Q})$ finite subset and $\varepsilon > 0$. Let $i = (\mathcal{F}, \varepsilon) \in I$ and put $\delta = \min(\frac{\varepsilon}{2}, \frac{\varepsilon}{3})$. Choose $k \in \mathbb{N}$ large enough so that $\|p - \theta_i(p)\|_2 \leq \delta$ and $\|a - \theta_i(a)\|_2 \leq \varepsilon/6$ for all $a \in \mathcal{F}$. Then choose $n \in \mathbb{N}$ large enough so that $\|x_n^{(k)} - \theta^t_k(x_n^{(k)})\|_2 \leq \frac{\varepsilon}{6}$ and $\|ax_n^{(k)} - \theta^t_k(ax_n^{(k)})\|_2 \leq \frac{\varepsilon}{3}$ for all $a \in \mathcal{F}$.

Put $\xi_k = \theta_i(x_n^{(k)}) - E_{\mathcal{M}}(\theta_i(x_n^{(k)})) \in \mathbb{L}^2(\mathcal{M}) \otimes \mathbb{L}^2(\mathcal{M})$ and $\eta_i = p\xi_k \in \mathbb{L}^2(p\tilde{\mathcal{M}} \mathcal{P}) \otimes \mathbb{L}^2(p\mathcal{M}\mathcal{P})$. By the transversality property of the malleable deformation (θ_i), we have

$$\|\xi_i\|_2 \geq \frac{1}{2}\|x_n^{(k)} - \theta^t_k(x_n^{(k)})\|_2 \geq \frac{\varepsilon}{2}.$$ Observe that $\|p\theta_i(x_n^{(k)})p - \theta_i(x_n^{(k)})\|_2 \leq 2\|p - \theta_i(p)\|_2 \leq 2\delta$. Since $p \in \mathcal{M}$, by Pythagoras theorem, we moreover have

$$\|p\theta_i(x_n^{(k)})p - \theta_i(x_n^{(k)})\|_2^2 = \|E_{\mathcal{M}}(p\theta_i(x_n^{(k)})p - \theta_i(x_n^{(k)}))\|_2^2 + \|\eta_i - \xi_i\|_2^2$$

and hence $\|\eta_i - \xi_i\|_2 \leq \frac{\varepsilon}{2}$. This implies that

$$\|\eta_i\|_2 \geq \|\xi_i\|_2 - \|\eta_i - \xi_i\|_2 \geq \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = \frac{\varepsilon}{4}.$$

For all $x \in p\mathcal{M}\mathcal{P}$, we have

$$\|x\eta_i\|_2 \leq \|x - \theta_i(x)\|_2 \leq \|x\|_2.$$

By Popa’s spectral gap argument [Po06], for all $a \in \mathcal{F} \subset \text{Ball}(p\mathcal{M}\mathcal{P})$, we have

$$\|a\eta_i - \eta_i a\|_2 \leq \|(1 - E_{\mathcal{M}})(a\theta_i(x_n^{(k)})p - p\theta_i(x_n^{(k)}))a\|_2$$

$$\leq \|a\theta_i(x_n^{(k)})p - p\theta_i(x_n^{(k)})a\|_2$$

$$\leq 2\|a - \theta_i(a)\|_2 + \|p - \theta_i(p)\|_2 + \|ax_n^{(k)} - x_n^{(k)}a\|_2$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$ Hence $\eta_i \in \mathbb{L}^2(p\tilde{\mathcal{M}} \mathcal{P}) \otimes \mathbb{L}^2(p\mathcal{M}\mathcal{P})$ is a net of vectors satisfying $\lim \sup_i \|x\eta_i\|_2 \leq \|x\|_2$ for all $x \in p\mathcal{M}\mathcal{P}$, $\lim inf_i \|\eta_i\|_2 \geq \frac{\varepsilon}{4}$ and $\lim \|a\eta_i - \eta_i a\|_2 = 0$ for all $a \in \mathcal{Q}$. By Condition (i),
Asymptotic structure of free product von Neumann algebras

it follows that \(Q \subset pM_p \) has an amenable direct summand by Connes’s characterization of amenability [Co75] for finite von Neumann algebras (see also [Io12, lemma 2-3]). This is a contradiction to Condition (ii) and finishes the proof of the Claim.

Next, we use an idea due to Peterson [Pe06] in combination with the above Claim to bring down the uniform convergence to Ball(\(Q \)). In what follows, we will use Conditions (iii),(iv). Let \(\varepsilon > 0 \). By the above Claim, there exists \(t_0 > 0 \) such that \(\|v - \theta_v^i(v)\|_2 < \frac{\varepsilon^2}{16} \) for all \(v \in \mathcal{U}(P) \) (recall \(\mathcal{P} = Q' \cap (pM_p)^o \)) and all \(t \in [-t_0, t_0] \). Fix \(x \in \text{Ball}(Q) \) and \(t \in [-t_0, t_0] \). We will show that \(\|x - \theta_v^i(x)\|_2 \leq \varepsilon \).

Denote by \(I \) the directed set of all pairs \((\mathcal{F}, \delta)\) with \(\mathcal{F} \subset Ball(pM) \) finite subset and \(\delta > 0 \). Fix \(i = (\mathcal{F}, \delta) \in I \). By Condition (iii), we have that \(\mathcal{P} \not\subseteq M^\omega \). This implies, in particular, that there exists a unitary \(u \in \mathcal{U}(P) \) such that \(\|E_{\mathcal{B}^\omega}(b^*ua)\|_2 < \delta \) for all \(a, b \in \mathcal{F} \). Since \(pM_p \) is a finite von Neumann algebra, we may write \(u = (u_n)^o \in \mathcal{U}(P) \) for some \((u_n)_n \in \ell^\infty(N, pM_p) \) such that \(u_n \in \mathcal{U}(pM_p) \) for all \(n \in N \). Observe that \(\lim_{n \to \infty} \|u_n x - xu_n\|_2 = \|ux - xu\|_2 = 0 \), \(\|E_{\mathcal{B}^\omega}(b^*ua)\|_2 = \lim_{n \to \infty} \|E_{\mathcal{B}^\omega}(b^*u_n a)\|_2 < \delta \) for all \(a, b \in \mathcal{F} \) and \(\|u - \theta_v^i(u)\|_2 = \lim_{n \to \infty} \|u_n - \theta_v^i(u_n)\|_2 \). Thus, there exists \(n \in N \) large enough such that \(v_i := u_n \in \mathcal{U}(pM_p) \) satisfies the following properties:

- \(\|v_i x - xv_i\|_2 \leq \delta \),
- \(\|E_{\mathcal{B}^\omega}(b^*v_i a)\|_2 \leq \delta \) for all \(a, b \in \mathcal{F} \) and
- \(\|v_i - \theta_v^i(v_i)\|_2 \leq \|u - \theta_v^i(u)\|_2 + \frac{\varepsilon^2}{16} \leq \frac{\varepsilon^2}{8} \).

Put \(\delta_i(y) = \theta_v^i(y) - E_M(\theta_v^i(y)) \in \widetilde{M} \ominus M \) for all \(y \in pM_p \). For all \(i \in I \), we have

\[
\|\delta_i(x)\|_2 = \delta_i(x) \leq \|\delta_i(x)\|_2 \leq \|\delta_i(x)\|_2 + 2\|v_i - \theta_v^i(v_i)\|_2 = \|\delta_i(x)\|_2 + \frac{\varepsilon^2}{4} \leq \frac{\varepsilon^2}{4}.
\]

Since \(\lim_i \|E_{\mathcal{B}^\omega}(b^*v_i a)\|_2 = 0 \) for all \(a, b \in \mathcal{M} \), we have \(\lim_i \|E_M(d^*v_i c)\|_2 = 0 \) for all \(c, d \in p(\mathcal{M} \ominus \mathcal{M}) \) by Condition (iv). In particular, using Cauchy-Schwarz inequality in \(L^2(\widetilde{M}) \), we have

\[
\lim \sup_i \|\langle v_i \delta_i(x) v_i^*, \delta_i(x) \rangle\| = \lim \sup_i \|\langle v_i ^* v_i \delta_i(x), v_i \rangle\| = \lim \sup_i \|E_M(\langle v_i ^* v_i \delta_i(x), v_i \rangle)\|_2 \|v_i\|_2 = 0.
\]

Combining (4-1) and (4-2) with the first property of the net \((v_i)_{i \in I}\) and the transversality property of the malleable deformation \((\theta_v^i)\), we obtain

\[
\|x - \theta_v^i(x)\|_2 \leq \|\delta_i(x)\|_2 \leq \varepsilon.
\]

Since the above inequality holds for all \(x \in \text{Ball}(Q) \) and all \(t \in [-t_0, t_0] \), we have obtained that the map \(R \to \text{Aut}(\widetilde{M}) : t \mapsto \theta_t \) converges uniformly on \(\text{Ball}(Q) \) in \(\|\cdot\|_2 \) as \(t \to 0 \). This finishes the proof of Theorem 4-1.

As a corollary to Theorem 4-1, we obtain the following ‘location’ result for subalgebras in semifinite amalgamated free product von Neumann algebras. For each \(i \in \{1, 2\} \),
let $\mathcal{B} \subset M_i$ be an inclusion of σ-finite semifinite von Neumann algebras with expectation $E_i : M_i \to \mathcal{B}$. Let $Tr_{\mathcal{B}}$ be a faithful normal semifinite trace such that the weight $Tr_{\mathcal{B}} \circ E_i$ is tracial on M_i for all $i \in \{1, 2\}$. Then the amalgamated free product $(\mathcal{M}, E) = (M_1, E_1) \ast_{\mathcal{B}} (M_1, E_1)$ is semifinite and the weight $Tr = Tr_{\mathcal{B}} \circ E$ is tracial on \mathcal{M} as remarked in Section 2.

Corollary 4.2. Keep the same notation as above. Assume moreover that \mathcal{B} is amenable. Let $p \in \mathcal{M}$ be any nonzero finite trace projection and $Q \subset p\mathcal{M}p$ any von Neumann subalgebra with no amenable direct summand such that $Q' \cap (p\mathcal{M}p)'' \not\subset_{\omega} \mathcal{B}''$.

Then for every nonzero projection $z \in Q' \cap p\mathcal{M}p$, there exists $i \in \{1, 2\}$ such that $Qz \preceq_{\mathcal{M}} M_i$.

Proof. Put

$$\widehat{\mathcal{M}} = \mathcal{M} \ast_{\mathcal{B}} (B \ovt L(F_2))$$

and consider the trace preserving free malleable deformation (θ_t) from [IPP05, section 2] on $\widehat{\mathcal{M}}$ (see [BHR12, section 3] for further details).

We now check that we can apply Theorem 4-1 to our situation.

(i) Since \mathcal{B} is amenable, the $p\mathcal{M}p\mathcal{M}p$-bimodule $L^2(p\widetilde{\mathcal{M}}p) \otimes L^2(p\mathcal{M}p)$ is weakly contained in the coarse $p\mathcal{M}p\mathcal{M}p$-bimodule $L^2(p\mathcal{M}p) \otimes L^2(p\mathcal{M}p)$ (see e.g. the proof of [CH08, proposition 3.1]).

(ii) By assumption, the von Neumann algebra Q has no amenable direct summand.

(iii) By assumption, we have $Q' \cap (p\mathcal{M}p)'' \not\subset_{\omega} \mathcal{B}''$ for some nonprincipal ultrafilter $\omega \in \beta(\mathcal{N}) \setminus \mathcal{N}$.

(iv) Let $(u_i)_{i \in I}$ be any net of unitaries in $\mathcal{U}(p\mathcal{M}p)$ such that $\lim_i \|E_{p\mathcal{M}p}(b^* u_i a)\|_2 = 0$ for all $a, b \in p\mathcal{M}p$. Since $\widehat{\mathcal{M}} = \mathcal{M} \ast_{\mathcal{B}} (B \ovt L(F_2))$, the proof of [BHR12, theorem 2.5, claim] implies that $\lim_i \|E_{\mathcal{M}}(d^* u_i c)\|_2 = 0$ for all $c, d \in p(\widehat{\mathcal{M}} \ominus \mathcal{M})$.

Therefore, Theorem 4-1 implies that the map $R \to Aut(\widehat{\mathcal{M}}) : t \mapsto \theta_t$ converges uniformly on $Ball(Q)$ in $\| \cdot \|_2$ as $t \to 0$. Fix now any nonzero projection $z \in Q' \cap p\mathcal{M}p$. We still have that the map $R \to Aut(\widehat{\mathcal{M}}) : t \mapsto \theta_t$ converges uniformly on $Ball(Qz)$ in $\| \cdot \|_2$ as $t \to 0$.

Then, [BHR12, theorem 3.3] implies that there exists $i \in \{1, 2\}$ such that $Qz \preceq_{\mathcal{M}} M_i$.

Proof of Theorem A

Theorem A will be a consequence of the following optimal result that generalizes [Ho14, theorem D] to arbitrary free product von Neumann algebras.

Theorem 4.3. For each $i \in \{1, 2\}$, let (M_i, φ_i) be any σ-finite von Neumann algebra endowed with a faithful normal state. Denote by $(M, \varphi) = (M_1, \varphi_1) \ast (M_2, \varphi_2)$ the free product. Let $Q \subset M$ be any von Neumann subalgebra with separable predual and with expectation such that $Q \cap M_i$ is diffuse and with expectation. Let $\omega \in \beta(\mathcal{N}) \setminus \mathcal{N}$ be any nonprincipal ultrafilter on \mathcal{N}.

Denote by $z \in Z(Q' \cap M^\omega)$ the unique central projection such that $(Q' \cap M^\omega)z$ is diffuse and $(Q' \cap M^\omega)z^\perp$ is atomic. Then the following conditions hold:

- $z \in Z(Q' \cap M) = Z(Q' \cap M_1)$,
- $Qz \subset zM_1z$ and
- $(Q' \cap M^\omega)z^\perp = (Q' \cap M)z^\perp = (Q' \cap M_1)z^\perp$.

Throughout the rest of this section, let \((M, \varphi) = (M_1, \varphi_1) \ast (M_2, \varphi_2)\) be as in Theorem 4.3. Observe that \(M_1\) is diffuse by assumption. Proposition 2.7 (1) implies that \((M_1)' \cap M \subset M_1\). Therefore, there exists a unique faithful normal conditional expectation \(E_{M_1} : M \rightarrow M_1\) by [Co72, théorème 1.5.5]. We fix a nonprincipal ultrafilter \(\omega \in \beta(\mathbb{N}) \setminus \mathbb{N}\).

For Lemmas 4.4 and 4.5 below, we moreover fix a faithful state \(\psi \in M_*\) such that \(\psi = \psi \circ E_{M_1}\). Whenever \(q \in M^\psi\) is a nonzero projection, put \(\psi_q = \frac{\psi(q \cdot q)}{\psi(q)} \in (qMq)_*\).

Lemma 4.4. Let \(q \in (M_1)^\psi\) be any nonzero projection and \(Q \subset qMq\) any non type I subfactor with separable predual that is amenable and globally invariant under the modular automorphism group \(\sigma^{\psi_q}\) and such that \(Q \cap qM_1q\) is diffuse. Then \(Q \subset qM_1q\).

Proof. The proof of Lemma 4.4 is inspired by the one of [Ho12b, théorème 8.1]. We will consider successively the cases when \(Q\) is of type \(\Pi_1\), of type \(\Pi_\infty\) and of type \(\Pi_3\).

Case type \(\Pi_1\). Assume that \(q \in (M_1)^\psi\) is any nonzero projection and \(Q \subset qMq\) is any type \(\Pi_1\) subfactor with separable predual that is amenable and globally invariant under the modular automorphism group \(\sigma^{\psi_q}\) and such that \(Q \cap qM_1q\) is diffuse. Then we have \(Q \subset qM_1q\).

We start by showing the following claim.

Claim. For any nonzero projection \(z \in Z(Q' \cap qMq)\), we have \(Qz \leq M_1\).

Proof of the Claim. By contradiction, assume that there exists a nonzero projection \(z \in Z(Q' \cap qMq)\) such that \(z \not\subset M_1\). Since \(Q' \cap qMq \subset qM_1q\) by Proposition 2.7 (1) and \(Q' \cap qMq \subset qM_1q\) is globally invariant under the modular automorphism group \(\sigma^{\psi_q}\), we have \(z \in (M_1)^\psi\). Write \(Q = \bigvee_{n \in \mathbb{N}} Q_n\) where \((Q_n)_n\) is an increasing sequence of finite dimensional subfactors of \(Q\) of the form \(Q_n \cong M_2(C)\). Since the inclusion

\[
(Q_n' \cap Q)z \subset Qz \quad \cong \quad Q_n' \cap Q \subset Q
\]

(n.b. \(Q\) is a factor) has finite index, Lemma 2.3 implies that \((Q_n' \cap Q)z \not\subset M_1\) for all \(n \in \mathbb{N}\).

Then for every \(n \in \mathbb{N}\), choose a unitary \(u_n \in U((Q_n' \cap Q)z)\) such that \(\|E_{M_1}(u_n)\|_\psi \leq \frac{1}{n+1}\). Since \(Qz\) is finite with expectation, we have \(u_n.n \in M^\psi(zMz)\) and hence we may define \(u = (u_n)^\omega \in (zMz)^\omega = zM^\omega z \subset M^\omega\). We then have \(u \in (Qz)' \cap (Qz)^\omega\) and \(E_{M_1}(u) = 0\) since

\[
\|E_{M_1}(u)\|_{\psi^\omega} = \lim_{n \to \omega} \|E_{M_1}(u_n)\|_{\psi} = 0.
\]

Observe that \((Qz \cap zMz) \oplus z^\perp_1 M_1z^\perp_1 \subset M_1\) is a diffuse von Neumann subalgebra that is globally invariant under the modular automorphism group \(\sigma^\psi\). Since \(u \in (Qz)' \cap (Qz)^\omega\), we have \(u \in ((Qz \cap zMz) \oplus z^\perp_1 M_1z^\perp_1)' \cap M^\omega\). For all \(n \in \mathbb{N}\), since we moreover have \(u u_n = u_n u\) and \(u^* u = z\), Theorem 3.1 implies that

\[
\|E_{M_1}(u_n) - u E_{M_1}(u_n)\|_{\psi^\omega} = \|E_{M_1}(u_n) - u_n u + u(u_n - E_{M_1}(u_n))\|_{\psi^\omega} \geq \|u(u_n - E_{M_1}(u_n))\|_{\psi^\omega} (\text{use Theorem 3.1 here}) \geq \|z\|_{\psi} - \|E_{M_1}(u_n)\|_{\psi}.
\]

Observe that \(\lim_{n \to \infty} E_{M_1}(u_n) = 0\) \(\sigma\)-strongly. By taking the limit as \(n \to \infty\) in the above inequality, we obtain \(z = 0\), a contradiction. This finishes the proof of the Claim.

The set \(\Re\) of projections \(r \in Q' \cap qMq = Q' \cap qM_1q\) (by Proposition 2.7 (1)) such that \(Qr \subset rM_1r\) attains its maximum in a unique projection \(z\) that belongs to \(Z(Q' \cap qMq) =\)
\(\mathcal{Z}(Q' \cap qM_1q) \). (In fact, \(\mathcal{R} \) is invariant under the adjoint action of \(U(Q' \cap qM_1q) \), and
\[z := \bigvee_{r \in \mathbb{R}} r \in \mathcal{Z}(Q' \cap qM_1q) \] must satisfy
\[xz = E_{M_1}(x)z = zE_{M_1}(x)z \] for all \(x \in Q \).
Assume by contradiction that \(z \not\equiv q \). Put \(z^\perp := q - z \in \mathcal{Z}(Q' \cap qM_1q) \). By assumption, we have \(z^\perp \neq 0 \).

By the previous Claim, we have that \(Qz^\perp \leq_{M} M_1 \). Then there exist \(n \geq 1 \), a projection
\(p \in M_n(M_1) \), a nonzero partial isometry \(v \in (z^\perp M \otimes M_{1,n}(C))p \) and a unital normal \(* \)-homomorphism \(\pi : Qz^\perp \to pM_n(M_1)p \) such that the inclusion \(\pi(Qz^\perp) \subset pM_n(M_1)p \) is with expectation (see Theorem 2.2 due to the first named author and Isono [HI15] for this important property) and \(av = v\pi(a) \) for all \(a \in Qz^\perp \). By Proposition 2.7 (1), we obtain that
\[v \in (z^\perp M_1 \otimes M_{1,n}(C))p \] and hence \(vv^* \in z^\perp(Q' \cap qM_1q)z^\perp = z^\perp Qz^\perp \) and
\[Qz^\perp vv^* \subset vv^*z^\perp M_1z^\perp vv^* \]. Since \(vv^* \leq z^\perp, vv^* \neq 0 \) and \(Q(z + vv^*) \subset (z + vv^*)M_1(z + vv^*) \), this contradicts the maximality of \(z \in Q' \cap qM_1q \) and finishes the proof in the case
when \(Q \) is of type \(II_1 \).

Case type \(II_\infty \). Assume that \(q \in (M_1)^\psi \) is any nonzero projection and \(Q \subset qMq \) is any type \(II_\infty \) subfactor with separable predual that is amenable and globally invariant under
the modular automorphism group \(\sigma^\psi_q \) and such that \(Q \cap qM_1q \) is diffuse. Then we have
\(Q \subset qM_1q \).

Choose a faithful normal semifinite trace \(\text{Tr} \) on \(Q \) and write \(\psi_q = \text{Tr}(T \cdot) \) for some
positive nonsingular operator \(T \in \mathcal{L}^1(Q, \text{Tr})_+ \) (see e.g. [Ta03, corollary VIII-3.6, lemma IX-2.12]). Define the abelian von Neumann subalgebra \(B = \{ T^t : t \in \mathbb{R} \}^\prime \subset Q \). Since
\(\sigma^\psi_q = \text{Ad}(T^t) \) for all \(t \in \mathbb{R} \), we have \(Q^{\psi_q} = B' \cap Q \). Observe that since the inclusion
\(Q \cap qM_1q \subset Q \) is globally invariant under the modular automorphism group \(\sigma^\psi_q \), the
diffuse von Neumann subalgebra \(Q \cap qM_1q \subset Q \) is also semifinite and hence its centralizer
\((Q \cap qM_1q)^{\psi_q} \) is diffuse (see e.g. [Ue98b, lemma 11]). By Proposition 2.7 (1) and since \(B \) is abelian, we have
\[B \subset (Q^{\psi_q})' \cap q^{\psi_q} \subset ((Q \cap qM_1q)^{\psi_q})' \cap Q^{\psi_q} \subset Q^{\psi_q} \cap qM_1q = (Q \cap qM_1q)^{\psi_q}. \]

For every \(k \in \mathbb{N} \), we denote by \(q_k \) the spectral projection of \(T \) for the interval \(\left[\frac{1}{k}, +\infty \right) \). Then all \(q_k \) are \(\mathcal{R} \)-finite projections in \(B \) such that \(q_k \to q \), the unit of \(Q \), \(\sigma \)-strongly as
\(k \to \infty \). Since \(q_k \in (Q \cap qM_1q)^{\psi_q} \), the type \(II_1 \) subfactor \(q_kQ_kq_k \subset q_kM_kq_k \) is amenable
and globally invariant under the modular automorphism group \(\sigma^{\psi_k} \) and \(q_kQ_kq_k \cap q_kM_kq_k = q_k(Q \cap qM_1q)q_k \) is diffuse. We may then apply the result obtained in the first case to the \(II_1 \)
subfactor \(q_kQ_kq_k \subset q_kM_kq_k \) and we have that \(q_kQ_kq_k \subset q_kM_kq_k \) for all \(k \in \mathbb{N} \). Since \(q_k \to q \)
\(\sigma \)-strongly as \(k \to \infty \), we obtain \(Q \subset qM_1q \). This finishes the proof in the case when \(Q \) is
of type \(II_\infty \).

Case type \(III \). Assume that \(q \in (M_1)^\psi \) is any nonzero projection and \(Q \subset qMq \) is any
type \(III \) subfactor with separable predual that is amenable and globally invariant under
the modular automorphism group \(\sigma^\psi_q \) and such that \(Q \cap qM_1q \) is diffuse. Then we have \(Q \subset qM_1q \).

By combining results on the classification theory of amenable factors [Co72, Co75, Ha85] together with [FM75, Kr75], there exists a hyperfinite ergodic nonsingular equivalence relation \(\mathcal{R} \) defined on a standard probability space \((X, \mu) \) such that \(Q = L(\mathcal{R}) \). Put
\(A = L^\infty(X) \) and denote by \(E_A : Q \to A \) the unique faithful normal conditional expectation.
Asymptotic structure of free product von Neumann algebras

Denote by $E_Q : qMq \to Q$ the unique ψ_q-preserving conditional expectation. Choose any faithful state $\tau_A \in A_*$ and put $\phi = \tau_A \circ E_A \circ E_Q \in (qMq)_\phi$. Observe that $A \subset (qMq)_\phi$ and Q is globally invariant under the modular automorphism group σ^ϕ.

Let $(R_n)_{n \in \mathbb{N}}$ be an increasing sequence of finite subequivalence relations of \mathcal{R} such that $\mathcal{R} = \bigvee_{n \in \mathbb{N}} R_n$. Put $Q_n = L(R_n)$ for all $n \in \mathbb{N}$ so that $Q = \bigvee_{n \in \mathbb{N}} Q_n$. Note that $A \subset Q_n$ is still a Cartan subalgebra and Q_n is globally invariant under the modular automorphism group σ^ϕ for all $n \in \mathbb{N}$ because $\phi|_{Q_n} = \tau_A \circ E_A$. Observe that since \mathcal{R}_n is finite, that is, \mathcal{R}_n has finite orbits almost everywhere, Q_n is a countable direct sum of finite type I von Neumann algebras. Therefore using [Ka82, corollary 3.19], up to conjugating by a unitary in $\mathcal{U}(Q_n)$, the inclusion $A \subset Q_n$ is of the following form:

$$(A \subset Q_n) \cong \left(\bigoplus_{k \in \mathbb{N}} Z_n^{(k)} \otimes C^{\mathbb{N}} \subset \bigoplus_{k \in \mathbb{N}} Z_n^{(k)} \otimes M_k(C) \right), \quad (4.3)$$

where $Z_n^{(k)}$ is a diffuse abelian von Neumann algebra for all $n, k \in \mathbb{N}$.

Claim. For any nonzero projection $z \in \mathcal{Z}(Q' \cap qMq)$, we have $Az \le_M M_1$.

Proof of the Claim. By contradiction, assume that there exists a nonzero projection $z \in \mathcal{Z}(Q' \cap qMq)$ such that $Az \not\le_M M_1$. Observe that $z \in (qMq)_\phi \cap (M_1)_\psi$. Using the structure of the inclusion $A \subset Q_n$ as in (4.3), we see that the inclusion $Q_n' \cap A \subset A$ is of the form:

$$(Q_n' \cap A \subset A) \cong \left(\bigoplus_{k \in \mathbb{N}} Z_n^{(k)} \otimes C^1 \subset \bigoplus_{k \in \mathbb{N}} Z_n^{(k)} \otimes C^{\mathbb{N}} \right). \quad (4.4)$$

Using (4.4), it follows that the inclusion

$$(Q_n' \cap A)z \subset Az \cong Q_n' \cap A \subset A$$

has essentially finite index and Lemma 2.3 implies that $(Q_n' \cap A)z \not\le_M M_1$ for all $n \in \mathbb{N}$. (Remark that this can easily be confirmed directly, since $Q_n' \cap A \subset A$ are commutative.)

Then for every $n \in \mathbb{N}$, choose a unitary $u_n \in \mathcal{U}((Q_n' \cap A)z)$ such that $\|E_{M_1}(u_n)\|_{\psi} \leq \frac{1}{n+1}$. Since $u_n \in (zMz)^\phi$ for all $n \in \mathbb{N}$, we may define $u = (u_n)^\omega \in (zMz)^\omega = zM^\omega z \subset M^\omega$. We then have $u \in (Qz)' \cap (Az)^\omega$ and $E_{M_1}(u) = 0$. Observe that $u \in ((Qz \cap zM_1z) \oplus z^+M_1z^+) \cap M^\omega$. For all $n \in \mathbb{N}$, Theorem 3.1 implies, as in Case type II_1, that

$$\|E_{M_1}(u_n) - u E_{M_1}(u_n)\|_{\psi} \geq \|z\|_{\psi} - \|E_{M_1}(u_n)\|_{\psi}$$

and hence $z = 0$, a contradiction. This finishes the proof of the Claim.

The set of projections $r \in Q' \cap qMq = Q' \cap qM_1q$ (by Proposition 2.7 (1)) such that $Qr \subset rM_1r$ attains its maximum in a unique projection z that belongs to $\mathcal{Z}(Q' \cap qMq) = \mathcal{Z}(Q' \cap qM_1q)$ (see Case type II_1). Assume by contradiction that $z \not\phi q$. Put $z^\perp := q - z \in \mathcal{Z}(Q' \cap qMq)$. By assumption, we have $z^\perp \neq 0$ and moreover $z^\perp \in Q' \cap qMq \subset A' \cap qMq$.

By the previous Claim, we have that $Az^\perp \le_M M_1$. Then there exist $n \geq 1$, a projection $p \in M_n(M_1)$, a nonzero partial isometry $v \in (z^\perp M \otimes M_{1,n}(C))p$ and a unital normal \ast-homomorphism $\pi : A z^\perp \to pM_n(M_1)p$ such that the inclusion $\pi(A z^\perp) \subset pM_n(M_1)p$ is with expectation (see Theorem 2.2) and $av = v\pi(a)$ for all $a \in A z^\perp$. Since $z^\perp \in Q' \cap qMq \subset A' \cap qMq$, we may define the unital normal \ast-homomorphism $\iota : A \to A z^\perp : a \mapsto az^\perp$. Then $\pi \circ \iota : A \to pM_n(M_1)p$ is unital normal \ast-homomorphism such that the inclusion
Since the inclusion A of von Neumann algebras with trace preserving conditional expectations:

Theorem 1

Structure theory \[\text{Co72, theorem E}], relies on Connes-Takesaki’s structure theory \[\text{[Ta02, lemma V.2-29]} \] and so is $z^+ N z^+$. Since the inclusion $Q \subset N$ is with expectation (because so is $Q \subset q Mq$) and since Q is of type III, it follows that N is also of type III (see \[\text{[Ta02, lemma V.2-29]} \] and so is $z^+ N z^+$. If we denote by $r \in \mathcal{Z}(z^+ N z^+)$ the central support in $z^+ N z^+$ of the projection $vv^* \in z^+ N z^+$, we have $vv^* \sim r$ in $z^+ N z^+$. There exists a partial isometry $u \in z^+ N z^+$ such that $u^* u = vv^*$ and $uu^* = r$. We have $(uv)^* N (uv) \subset p M_n(M_1)p$. So, up to replacing v by uv, we may assume that $z^+ N z^+ \subset p M_n(M_1)p$, $vv^* \in Z(z^+ N z^+)$ and $p = vv^*$.

This implies that $z^+ N z^+ \subset p M_n(M_1)p$ and hence $Q z^+ v \subset p M_n(M_1)p$. This further implies that $(Q \cap q M_1 q) z^+ v \subset p M_n(M_1)p$. Since $p = vv^*$, $vv^* \in Z(z^+ N z^+)$ and $Q \subset N$, the mapping $\rho : (Q \cap q M_1 q) z^+ \rightarrow p M_n(M_1)p : x \mapsto v^* x v$ defines a unital normal \ast-homomorphism such that $x v = v \rho(x)$ for all $x \in (Q \cap q M_1 q) z^+$. Observe that $z \in M^{\psi}$ and hence $(Q \cap q M_1 q) z^+ \subset z^+ M z^+$ is with expectation. By Proposition 2.7 (1), we obtain that $v \in (z M_1 \otimes M_{1,n}(C))p$ and hence $vv^* \in z^+ (Q' \cap q Mq) z^+ = z^+ (Q' \cap q M_1 q) z^+ \subset Q z^+ v v^*$. Since $vv^* \leq z^+_1$, $vv^* \neq 0$ and $Q (z + vv^*) \subset (z + vv^*) M_1 (z + vv^*)$, this contradicts the maximality of $z \in Q' \cap q M_1 q$ and finishes the proof in the case when Q is of type III.

Since we have successively treated the cases when Q is of type II$_1$, of type II$_\infty$ and of type III, this finishes the proof of Lemma 4.4.

Lemma 4.5. Let $q \in (M_1)^\psi$ be any nonzero projection and $Q \subset q Mq$ any subfactor with separable predual that is not amenable and globally invariant under the modular automorphism group σ^{ψ} and such that $Q \cap q M_1 q$ and $Q' \cap (q Mq)^\omega$ are diffuse. Then $Q \subset q M_1 q$.

Proof. The proof, inspired by the one of \[\text{[Ho12b, theorem E]} \], relies on Connes-Takesaki’s structure theory \[\text{[Co72, Ta03]} \] and uses Corollary 4.2.

The novel aspect of the proof consists in combining \[\text{[AH12, theorem 4.1]} \] and \[\text{[MT13, theorem 1.10]} \] in order to obtain the following canonical inclusions of semifinite von Neumann algebras with trace preserving conditional expectations:

$$c_\phi(M) \subset c_{\phi^\omega} (M^\omega) \subset (c_\phi(M))^{\omega}$$

with $\phi = \varphi$ or $\phi = \psi$. More precisely, if we denote by $E^\omega_\phi : (c_\phi(M))^{\omega} \rightarrow c_\phi(M)$ the canonical faithful normal conditional expectation and by Tr_ϕ (resp. Tr_{ϕ^ω}) the canonical faithful normal semifinite trace on $c_\phi(M)$ (resp. $c_{\phi^\omega}(M^\omega)$), we have that $\text{Tr}_\phi \circ E^\omega_\phi$ is a faithful normal semifinite trace on $(c_\phi(M))^{\omega}$ and $(\text{Tr}_\phi \circ E^\omega_\phi)|_{c_\phi(M)^\omega} = \text{Tr}_{\phi^\omega}$. We will simply use the notation $\| \cdot \|_2$ for the L^2-norm associated with any of the faithful normal semifinite traces considered above. We will use throughout the proof the identification $L_\phi (R) = L_{\phi^\omega}(R) \subset c_{\phi^\omega}(M^\omega)$.

Since $q \in M^{\psi}$ and $Q \subset q Mq$ is globally invariant under the modular automorphism group σ^{ψ}, we may define $c_{\psi^\omega}(Q) = Q \rtimes_{\sigma^{\psi^\omega}} R$ and regard $c_{\psi^\omega}(Q) \subset \pi_\psi(q) c_{\psi}(M) \pi_\psi(q)$ naturally. Fix an arbitrary nonzero finite trace projection $r \in L_{\psi^\omega}(R)$ and put $M = c_\phi(M)$, $p = \Pi_{\psi^\omega}(r) \in M$, $Q = \Pi_{\psi^\omega}(rc_{\psi^\omega}(Q)r)$ and $P = Q' \cap (p \pi_\psi(q) M \pi_\psi(q) p)^\omega$. Observe
that

\[p\pi_\psi(q) = \Pi_{\psi,\psi}(r\pi_\psi(q)) = \Pi_{\psi,\psi}(\pi_\psi(q)r) = \pi_\psi(q)p \]

defines a nonzero projection in \(\mathcal{M} \) and is the unit of \(\mathcal{Q} \).

Claim. We have \(\mathcal{P} \not\leq_{\mathcal{M}^\omega} (L_\psi(\mathbb{R}))^\omega \).

Proof of the Claim. The proof uses an idea of [Io12, lemma 9.5]. By contradiction, assume that \(\mathcal{P} \leq_{\mathcal{M}^\omega} (L_\psi(\mathbb{R}))^\omega \). By [BHR12, lemma 2.3], there exist \(\delta > 0 \) and a finite subset \(\mathcal{F} \subset p\pi_\psi(q)\mathcal{M}^\omega \) such that

\[
\sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b^*ua)\|_2^2 > \delta, \forall u \in \mathcal{U}(\mathcal{P}). \tag{4.5}
\]

For each \(a \in \mathcal{F} \), write \(a = (a_n)^\omega \) with a fixed sequence \((a_n)_n \in p\pi_\psi(q)\mathcal{M}^\omega(\mathcal{M}) \).

We next show that there exists \(n \in \mathbb{N} \) such that

\[
\sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b_n^*u_n a_n)\|_2^2 \geq \delta, \forall u \in \mathcal{U}(\mathcal{P}). \tag{4.6}
\]

Assume by contradiction that this is not the case. Then for each \(n \in \mathbb{N} \), there exists \(u_n \in \mathcal{U}(\mathcal{P}) \) such that

\[
\sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b_n^*u_n a_n)\|_2^2 < \delta.
\]

Since \(p\pi_\psi(q)\mathcal{M}^\omega(\pi_\psi(q)p) \) is a finite von Neumann algebra, we may write \(u_n = (u_n^m)^\omega \) for some sequence \((u_n^m)_m \in \ell^\infty(\mathbb{N}, p\pi_\psi(q)\mathcal{M}^\omega(\pi_\psi(q)p)) \) such that \(u_n^m \in \mathcal{U}(p\pi_\psi(q)\mathcal{M}^\omega(\pi_\psi(q)p)) \) for all \(m \in \mathbb{N} \). Then we have

\[
\lim_{m \to \infty} \sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b_n^*u_n^m a_n)\|_2^2 < \delta.
\]

Fix a \(\| \cdot \|_2 \)-dense countable subset \(\{y_n : n \in \mathbb{N}\} \subset \mathcal{Q} \). Since \(\lim_{m \to \infty} \|y_j u_n^m - u_n^m y_j\|_2 = \|y_j u_n - u_n y_j\|_2 = 0 \) for all \(n \in \mathbb{N} \) and all \(0 \leq j \leq n \), we may choose \(m_n \in \mathbb{N} \) large enough so that \(y_n := u_n^m \in \mathcal{U}(p\pi_\psi(q)\mathcal{M}^\omega(\pi_\psi(q)p)) \) satisfies \(\|y_j v_n - v_n y_j\|_2 \leq \frac{1}{n+1} \) for all \(0 \leq j \leq n \) and \(\sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b_n^*v_n a_n)\|_2^2 \leq \delta \). Since \(p\pi_\psi(q)\mathcal{M}^\omega(\pi_\psi(q)p) \) is finite, we may define \(v := (v_n)^\omega \in (p\pi_\psi(q)\mathcal{M}^\omega(\pi_\psi(q)p))^\omega \). We moreover have \(v \in \mathcal{U}(\mathcal{P}) \) and

\[
\sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b_n^*v a_n)\|_2^2 = \lim_{m \to \infty} \sum_{a,b \in \mathcal{F}} \|E_{(L_\psi(\mathbb{R}))^\omega}(b_n^*v_n a_n)\|_2^2 \leq \delta. \tag{4.7}
\]

Equations (4.5) and (4.7) give a contradiction. This shows that Equation (4.6) holds. Therefore, up to replacing the finite subset \(\mathcal{F} \subset p\pi_\psi(q)\mathcal{M}^\omega \) by \(\{a_n : a \in \mathcal{F}\} \subset p\pi_\psi(q)\mathcal{M} \), we may assume that \(\mathcal{F} \subset p\pi_\psi(q)\mathcal{M} \) in Equation (4.5).

Since \(Q' \cap (qMq)^\omega \) is diffuse and \(Q \) is globally invariant under the modular automorphism group \(\sigma^\psi \), we know that \(Q' \cap ((qMq)^\omega)^\psi_s \) is diffuse by [HR14, theorem 2.3]. We may then choose a sequence \((u_n)_n \in \mathcal{M}^\omega(qMq) \) such that \((u_n^\omega)_n \in \mathcal{U}(Q' \cap ((qMq)^\omega)^\psi_s) \) and \(\lim_{n \to \infty} u_n = 0 \) \(\sigma \)-weakly (see the first and second paragraphs in the proof of [HR14,
This implies that \(P \) moreover have trace projection \(s \).

Since \(F \subset p\pi_q(q)M \), using Lemma 2-4 (with letting the \(Q \) there be the trivial algebra), we obtain \(\lim_{n \to \omega} \| E_{L_q(R)}(b^* p\pi_q(u_n) p a) \|_2 = 0 \) for all \(a, b \in F \). This implies that

\[
\sum_{a, b \in F} \| E_{L_q(R)}(b^* \pi_q((u_n)^o) p a) \|_2^2 = \lim_{n \to \omega} \sum_{a, b \in F} \| E_{L_q(R)}(b^* p\pi_q(u_n) p a) \|_2^2 = 0. \tag{4-8}
\]

Equation (4-5) with \(F \subset p\pi_q(q)M \) and Equation (4-8) give a contradiction. This finishes the proof of the Claim.

Next, for each \(i \in \{1, 2\} \), put \(M_i = c_\psi (M_i) \). We have \(M = M_1 *_{L_q(R)} M_2 \) (see [Ue98a, theorem 5.1]). Observe that since \(M_1 \) is globally invariant under \(\sigma_\psi \), we have \(\Pi_{\psi, \psi}(c_\psi (M_1)) = c_\psi (M_1) = M_1 \). Since \(r \in L_q(R) \subset c_\psi (M_1) \), we have \(p = \Pi_{\psi, \psi}(r) \in M_1 \). Since \(Q \cap qM_1 q \) is diffuse and globally invariant under \(\psi \), we have \(\Pi_{\psi, \psi}(rc_\psi(q \cap qM_1 q) r) \notin M \subset L_q(R) \) by Lemma 2.5. Then [BHR12, theorem 2.5] implies that \((\Pi_{\psi, \psi}(rc_\psi(q \cap qM_1 q) r')) \cap p\pi_q(q)M\pi_q(q) p \subset p\pi_q(q)M\pi_q(q) p \) and hence

\[
Q' \cap p\pi_q(q)M\pi_q(q) p = Q' \cap p\pi_q(q)M_1\pi_q(q) p.
\]

The set of projections \(s \in Q' \cap p\pi_q(q)M\pi_q(q) p \) such that \(Qs \subset sM_1 s \) attains its maximum in a unique projection \(z \) that belongs to \(Z(Q' \cap p\pi_q(q)M\pi_q(q) p) \). Assume by contradiction that \(z \neq p\pi_q(q) \). Put \(z^\perp := p\pi_q(q) - z \in Z(Q' \cap p\pi_q(q)M\pi_q(q) p) \). By assumption, we have \(z^\perp \neq 0 \).

Observe that since \(Q \subset qMq \) is a subfactor that is not amenable, \(Q = \Pi_{\psi, \psi}(rc_\psi(q) r) \) has no amenable direct summand by [BHR12, proposition 2.8]. By the previous Claim, we moreover have \(P \notin M \subset L_q(R) \). Then Corollary 4-2 implies that there exists \(i \in \{1, 2\} \) such that \(Qz^\perp \notin M \subset L_q(R) \). Hence, there exist \(n \geq 1 \), a finite trace projection \(f \in M_n(M_i) \) (with respect to the canonical trace \(Tr_{\psi} \otimes Tr_{\psi} \), a nonzero partial isometry \(v \in (z^\perp M \otimes M_{1,n}(C)) f \) and a unital normal *-homomorphism \(\pi : Qz^\perp \to fM_n(M_i) f \) such that \(xv = v\pi(x) \) for all \(x \in Qz^\perp \). In particular, we have \(\Pi_{\psi, \psi}(rc_\psi(q \cap qM_1 q) r) v \subset v fM_n(M_i) f \). Since \(\Pi_{\psi, \psi}(rc_\psi(q \cap qM_1 q) r) \notin M \subset L_q(R) \), [BHR12, theorem 2.5] and its Claim imply that \(i = 1 \) and \(v \in (z^\perp M \otimes M_{1,n}(C)) f \). Therefore we have \(vv^* \subset Q' \cap p\pi_q(q)M_1\pi_q(q) p \), \(vv^* \neq 0 \), \(vv^* \leq z^\perp \) and \(Q(z + vv^*) M_1(z + vv^*) \). This contradicts the maximality of the projection \(z \in Q' \cap p\pi_q(q)M_1\pi_q(q) p \).

Thus, we have \(z = p\pi_q(q) \) and hence

\[
\Pi_{\psi, \psi}(rc_\psi(q) r) = Q \subset p\pi_q(q)M_1\pi_q(q) p = \Pi_{\psi, \psi}(rc_\psi(qM_1 q) r).
\]

This implies that \(rc_\psi(qM_1 q) r \subset rc_\psi(qM_1 q) r \). Since this holds for every nonzero finite trace projection \(r \in L_q(R) \), we obtain \(c_\psi(q) \subset c_\psi(qM_1 q) \). Observe that \(\pi_\psi(q) \subset c_\psi(qMq) \) is the fixed point algebra by an action of \(R \), called the dual action of \(\psi \), (see [Ta03, theorem X-2.3 (i)]) and hence there exists a (non-normal) conditional expectation \(F : c_\psi(qMq) \to \pi_\psi(qMq) \) such that \(F(c_\psi(qM_1 q)) = \pi_\psi(qM_1 q) \). By applying the
conditional expectation F to $\pi_{\psi}(Q) \subset c_{\psi}(Q) \subset c_{\psi}(q M_1 q)$, we obtain $\pi_{\psi}(Q) \subset \pi_{\psi}(q M_1 q)$ and hence $Q \subset q M_1 q$. This finishes the proof of Lemma 4.5.

Proof of Theorem 4.3. Since both Q and $Q \cap M_1$ are with expectation in M, we may choose a faithful state $\psi \in M_*$ such that both Q and $Q \cap M_1$ are globally invariant under the modular automorphism group σ_ψ. Denote by $R \to U(M) : t \mapsto u_t = [D\psi : D\phi]$, the Connes Radon-Nikodym cocycle (see [Co72, théorème 1-2-1]) satisfying $\sigma_\psi = \text{Ad}(u_t) \circ \sigma_\psi$ for all $t \in R$.

Fix any $t \in R$. Define the unital normal $*$-isomorphism $\pi_t : Q \cap M_1 \to M : x \mapsto u_t^* x u_t$. Observe that

$$\pi_t(Q \cap M_1) = u_t^* Q \cap M_1 u_t = u_t^* \sigma_\psi(Q \cap M_1) u_t = \sigma_\psi(Q \cap M_1) \subset \sigma_\psi(M_1) = M_1$$

and $x u_t = u_t \pi_t(x)$ for all $x \in Q \cap M_1$. Since $Q \cap M_1 \subset M_1$ is diffuse and with expectation, Proposition 2.7 (1) implies that $u_t \in U(M_1)$. Since this holds for every $t \in R$, we obtain

$$\sigma_\psi(M_1) = u_t \sigma_\psi(M_1) u_t^* = u_t M_1 u_t^* = M_1.$$

This implies that $\psi = \psi \circ E_{M_1}$ where $E_{M_1} : M \to M_1$ is the unique faithful normal conditional expectation.

Since $Q \cap M_1 \subset M_1$ is diffuse and with expectation, we have $Q' \cap M \subset (Q \cap M_1)' \cap M = (Q \cap M_1)' \cap M_1$ by Proposition 2.7 (1) and hence $Q' \cap M = Q' \cap M_1$. Denote by $z \in Z(Q' \cap M')$ the unique central projection such that $(Q' \cap M') z$ is diffuse and $(Q' \cap M') \pi_\psi z$ is atomic. By [HR14, theorem 2.3], we have $z \in Z(Q' \cap M) = Z(Q' \cap M_1)$ and $(Q' \cap M') \pi_\psi z = (Q' \cap M) \pi_\psi z = (Q' \cap M_1) \pi_\psi z$. Observe that $z \in (M_1)^\psi$.

Denote by (z_n) a sequence of central projections in $Z(Q z)$ such that $\sum_n z_n = z$, $Q z_0$ has a diffuse center and $Q z_n$ is a diffuse factor for all $n \geq 1$. We have $Z(Q z) \subset (Q z) z \cap M^\psi$ and $z = z(Q' \cap M^\psi) z = z(Q' \cap (M_1)^\psi) z$. Moreover, since $Z(Q z) z_0 \subset z_0 M_1 z_0$ is diffuse and globally invariant under the modular automorphism group σ_ψ, we have $Q z_0 \subset Z(Q z) z_0' \cap z_0 M z_0 = (Z(Q z) z_0') \cap z_0 M_1 z_0$ by Proposition 2.7 (1). Finally, for all $n \geq 1$, since $Q z_n \subset z_n M z_n$ is a non type I subfactor that is globally invariant under the modular automorphism group σ_ψ, and such that $Q z_n \subset z_n M_1 z_n = (Q \cap M_1) z_n$ and $(Q z_n)' \cap (z_n M z_n') = q(Q' \cap M') z_n$ are diffuse, Lemma 4.4, in the case when $Q z_n$ is amenable, and Lemma 4.5, in the case when $Q z_n$ is nonamenable, imply that $Q z_n \subset z_n M_1 z_n$. Therefore, we have $Q z \subset z M_1 z$. This finishes the proof of Theorem 4.3.

We can finally deduce the main results of this paper.

Proof of Theorem A. By applying Theorem 4.3 to the case when the projection $z \in Z(Q' \cap M')$ satisfies $z = 1$, we obtain $Q \subset M_1$.

Proof of Corollary B. Since both Q and $Q \cap M_1$ are with expectation and $Q \cap M_1$ is diffuse, using Lemma 2.1, we may choose a faithful state $\psi \in M_*$ such that both Q and $Q \cap M_1$ are globally invariant under the modular automorphism group σ_ψ and the centralizer $(Q \cap M_1)^\psi$ is diffuse. Note that by the proof of Theorem 4.3, M_1 is also globally invariant under the modular automorphism group σ_ψ. Next, choose a diffuse abelian von Neumann subalgebra with separable predual $A \subset (Q \cap M_1)^\psi$.

Let $x \in Q$ be any element. Denote by $Q_0 \subset M$ the von Neumann subalgebra generated by the set $\{\sigma_\psi(t) : t \in R, y = x \text{ or } y \in A\}$. Observe that $Q_0 \subset M$ has separable predual and is globally invariant under the modular automorphism group σ_ψ. Since Q is amenable and $Q_0 \subset Q$ is with expectation, it follows that Q_0 is also amenable. (It is true even in the
non-separable case that amenability implies injectivity. See [Co76].) Since $A \subset (Q_0 \cap M_1)^\psi$ and since A is diffuse, $(Q_0 \cap M_1)^\psi$ is diffuse and so is $Q_0 \cap M_1$ (see e.g. [Bl06, theorem IV.2.2-3]).

Since Q_0 is diffuse, amenable and with separable predual, the central sequence algebra Q_0^{00} is diffuse (see e.g. [Ho14, proposition 2-6]). Since $Q_0 \subset M$ is with expectation, the inclusion $Q_0^{00} \subset Q_0^{00} \cap M^{o}$ is with expectation and hence $Q_0^{00} \cap M^{o}$ is diffuse. Since $Q_0 \cap M_1$ is moreover diffuse and with expectation, we obtain that $Q_0 \subset M_1$ by Theorem A and hence $x \in M_1$. Since this holds true for all $x \in Q$, we deduce $Q \subset M_1$.

Appendix A. Bicentralizer problem for free product von Neumann algebras

Let (M, φ) be any σ-finite von Neumann algebra endowed with a faithful normal state. Following [Ha85], the asymptotic centralizer of φ is defined by

$$AC(M, \varphi) = \left\{ (x_n)_n \in c^\infty (N, M) : \lim_{n \to \infty} ||x_n \varphi - \varphi x_n|| = 0 \right\}$$

and the bicentralizer of φ is defined by

$$B(M, \varphi) = \left\{ a \in M : \lim_{n \to \infty} ||ax_n - x_n a||_\varphi = 0, \forall (x_n)_n \in AC(M, \varphi) \right\}.$$

Haagerup showed in [Ha85] that any amenable type III$_1$ factor with separable predual has trivial bicentralizer. It is an open problem, known as Connes’s bicentralizer problem, to decide whether any type III$_1$ factor with separable predual has trivial bicentralizer.

It was recently showed in [HI15, proposition 3-3] that $B(M, \varphi) = ((M^{o})^{\omega_{o}})^{\prime} \cap M$ for every nonprincipal ultrafilter $\omega \in \beta(N) \setminus N$. Using this characterization, we give a short proof of an unpublished result due to the second named author showing that Connes’s bicentralizer problem has a positive solution for all type III$_1$ free product factors.

For each $i \in \{1, 2\}$, let (M_i, φ_i) be any nontrivial σ-finite von Neumann algebra endowed with a faithful normal state. Assume moreover that $\ker(\sigma^{\omega_i}) \cap \ker(\sigma^{\omega_2}) = \{0\}$. Denote by $(M, \varphi) = (M_1, \varphi_1) * (M_2, \varphi_2)$ the free product. By [Ue10, theorem 4-1], we have $M = M_c \oplus M_d$ where M_c is a type III$_1$ factor and $M_d = 0$ or M_d is a multimatrix algebra. Put $\varphi_c = \frac{1}{\varphi(1_{M_c})} \varphi |_{M_c}.$

THEOREM A.1. Keep the same notation as above. Then $B(M_c, \varphi_c) = C1_{M_c}.$

Proof. In the case when both M_1 and M_2 are atomic, φ_c is an almost periodic state such that $((M_c)^{\varphi_c}) \cap M^{o} = C1_{M_c}$, by [Ue11, theorem 2-2]. Then we have $B(M_c, \varphi_c) \subset ((M_c)^{\varphi_c})^{\prime} \cap M_c = C1_{M_c}$.

Next, we may assume that M_1 has a diffuse direct summand. Since M_c is of type III and using [Ue10, lemma 2-2], up to cutting down M by the central projection in M_1 that supports the diffuse direct summand of M_1, we may assume without loss of generality that M_1 is diffuse. In that case, we have $M = M_c.$ Observe that M_1^{o} and M_2^{o} are both globally invariant under the modular automorphism group σ^{ω} and are \ast-free inside M^{o} with respect to the state φ^{o} (see [Ue00, proposition 4]). Letting $P = M_1^{o} \vee M_2^{o}$, we have $(P, \varphi^{o}|_{P}) \cong (M_1^{o}, \varphi_1^{o}) * (M_2^{o}, \varphi_2^{o})$ and $M \subset P \subset M^{o}$.

Since M_1 is diffuse and $M_2 \not\subset C1$, we have that $(M_1^{o})^{\varphi_1^{o}}$ is diffuse and $(M_2^{o})^{\varphi_2^{o}} \not\subset C1$ by Proposition 2.8. Using [HI15, proposition 3-3] and Proposition 2.7 (1), we have

$$B(M, \varphi) = ((M^{o})^{\omega_{o}})^{\prime} \cap M \subset ((M_1^{o})^{\varphi_1^{o}})^{\prime} \cap P \cap M \subset ((M_1^{o})^{\varphi_1^{o}})^{\prime} \cap M_1.$$
Therefore \(\omega(w^*y^*y^*w) = \omega(w^*y^*wy) = 0 \).

Next, one can choose an invertible element \(w \in (M^\omega_\mathbb{C})^{\mathbb{C}} \) such that \(\varphi^\omega_0(w) = 0 \). For all \(y \in B(M, \varphi) \subset M_1 \) such that \(\varphi_1(y) = 0 \), using the freeness with respect to \(\varphi^\omega \) and since \(yw = wy \), we have

\[
\varphi^\omega_0(w^*y^*yw) = \varphi^\omega_0(w^*y^*wy) = 0.
\]

Therefore \(w^*y^*yw = 0 \) and hence \(y = 0 \) since \(w \) is invertible. It immediately follows that \(B(M, \varphi) = \mathbb{C}1 \). This finishes the proof of Theorem A·1.

REFERENCES

[AH12] H. ANDO and U. HAAGERUP. Ultraproducts of von Neumann algebras. J. Funct. Anal. 266 (2014), 6842–6913.

[BC14] R. BOUTONNET and A. CARDERI. Maximal amenable von Neumann subalgebras arising from maximal amenable subgroups. Geom. Funct. Anal. 25 (2015), 1688–1705.

[BHR12] R. BOUTONNET, C. HOUDAYER and S. RAUM. Amalgamated free product type III factors with at most one Cartan subalgebra. Compositio Math. 150 (2014), 143–174.

[Bli06] B. BLACKADAR. Operator Algebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-commutative Geometry 3. (Springer-Verlag, Berlin, 2006), xx+517 pp.

[CH08] I. CHIFAN and C. HOUDAYER. Bass–Serre rigidity results in von Neumann algebras. Duke Math. J. 153 (2010), 23–54.

[Co72] A. CONNES. Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. 6 (1973), 133–252.

[Co75] A. CONNES. Classification of injective factors. Cases II_1, II_\infty, III_\lambda, \lambda \neq 1. Ann. of Math. 74 (1976), 73–115.

[Co76] A. CONNES. On the cohomology of operator algebras. J. Funct. Anal. 28 (1978), 248–253.

[CS78] A. CONNES and E. STÖRMER. Homogeneity of the state space of factors of type III_1. J. Funct. Anal. 28 (1978), 187–196.

[FM75] J. FELDMAN and C.C. MOORE. Ergodic equivalence relations, cohomology and von Neumann algebras. I and II. Trans. Amer. Math. Soc. 234 (1977), 289–324, 325–359.

[Ha85] U. HAAGERUP. Connes’ bicentralizer problem and uniqueness of the injective factor of type III_1. Acta Math. 69 (1986), 95–148.

[HS90] U. HAAGERUP and E. STÖRMER. Equivalence of normal states on von Neumann algebras and the flow of weights. Adv. Math. 83 (1990), 180–262.

[Hou12a] C. HOUDAYER. A class of II_1 factors with an exotic abelian maximal amenable subalgebra. Trans. Amer. Math. Soc. 366 (2014), 3693–3707.

[Hou12b] C. HOUDAYER. Structure of II_1 factors arising from free Bogoljubov actions of arbitrary groups. Adv. Math. 260 (2014), 414–457.

[Ho14] C. HOUDAYER. Gamma stability in free product von Neumann algebras. Commun. Math. Phys. 336 (2015), 831–851.

[HI15] C. HOUDAYER and Y. ISONO. Unique prime factorization and bicentralizer problem for a class of type III factors. arXiv:1503.01388

[HR14] C. HOUDAYER and S. RAUM. Asymptotic structure of free Araki–Woods factors. Math. Ann. 363 (2015), 237–267.

[HR10] C. HOUDAYER and É. RICARD. Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors. Adv. Math. 228 (2011), 764–802.

[HU15] C. HOUDAYER and Y. UEDA. Rigidity of free product von Neumann algebra. To appear in Compositio Math. arXiv:1507.02157

[HV12] C. HOUDAYER and S. VAES. Type III factors with unique Cartan decomposition. J. Math. Pure Appl. 100 (2013), 564–590.

[Io12] A. IOANA. Cartan subalgebras of amalgamated free product II_1 factors. Ann. Sci. École Norm. Sup. 48 (2015), 71–130.

[IPP05] A. IOANA, J. PETERSON and S. POPA. Amalgamated free products of w-rigid factors and calculation of their symmetry groups. Acta Math. 200 (2008), 85–153.

[Jo82] V.F.R. JONES. Index for subfactors. Invent. Math. 72 (1983), 1–25.

[Ka82] R.V. KADISON. Diagonalizing matrices. Amer. J. Math. 106 (1984), 1451–1468.

[Ko88] H. KOSAKI. Characterization of crossed product (properly infinite case). Pacific J. Math. 137 (1989), 159–167.

[Kr75] W. KRIEGER. On ergodic flows and the isomorphism of factors. Math. Ann. 223 (1976), 19–70.
516

[MU12] M. Martín and Y. Ueda. On the geometry of von Neumann algebra preduals. *Positivity* 18 (2014), 519–530.

[MT13] T. Masuda and R. Tomatsu. Classification of actions of discrete Kac algebras on injective factors. To appear in *Mem. Amer. Math. Soc.* arXiv:1306.5046

[Oc85] A. Ocneanu. *Actions of discrete amenable groups on von Neumann algebras.* Lecture Notes in Mathematics, 1138 (Springer-Verlag, Berlin, 1985), iv+115 pp.

[Oz15] N. Ozawa. A remark on amenable von Neumann subalgebras in a tracial free product. *Proc. Japan Acad. Ser. A Math. Sci.* 91 (2015), 104.

[Pe06] J. Peterson. L^2-rigidity in von Neumann algebras. *Invent. Math.* 175 (2009), 417–433.

[PP84] M. Pimsner and S. Popa. Entropy and index for subfactors. *Ann. Sci. École Norm. Sup.* 19 (1986), 57–106.

[Po83] S. Popa. Maximal injective subalgebras in factors associated with free groups. *Adv. Math.* 50 (1983), 27–48.

[Po90] S. Popa. Markov traces on universal Jones algebras and subfactors of finite index. *Invent. Math.* 111 (1993), 375–405.

[Po01] S. Popa. On a class of type II$_1$ factors with Betti numbers invariants. *Ann. of Math.* 163 (2006), 809–899.

[Po03] S. Popa. Strong rigidity of II$_1$ factors arising from malleable actions of w-rigid groups I. *Invent. Math.* 165 (2006), 369–408.

[Po06] S. Popa. On the superrigidity of malleable actions with spectral gap. *J. Amer. Math. Soc.* 21 (2008), 981–1000.

[Ta02] M. Takesaki. *Theory of Operator Algebras.* I. Encyclopedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5 (Springer, Berlin, 2002), xx+415 pp.

[Ta03] M. Takesaki. *Theory of operator algebras.* II. Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6 (Springer-Verlag, Berlin, 2003), xxii+518 pp.

[Ue98a] Y. Ueda. Amalgamated free products over Cartan subalgebra. *Pacific J. Math.* 191 (1999), 359–392.

[Ue98b] Y. Ueda. Remarks on free products with respect to non-tracial states. *Math. Scand.* 88 (2001), 111–125.

[Ue00] Y. Ueda. Fullness, Connes’ χ-groups, and ultra-products of amalgamated free products over Cartan subalgebras. *Trans. Amer. Math. Soc.* 355 (2003), 349–371.

[Ue10] Y. Ueda. Factoriality, type classification and fullness for free product von Neumann algebras. *Adv. Math.* 228 (2011), 2647–2671.

[Ue11] Y. Ueda. On type III$_1$ factors arising as free products. *Math. Res. Lett.* 18 (2011), 909–920.

[Ue12] Y. Ueda. Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting. *J. London Math. Soc.* 88 (2013), 25–48.

[Va06] S. Vaes. Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa). *Astérisque* 311 (2007), 237–294.

[Va07] S. Vaes. Explicit computations of all finite index bimodules for a family of II$_1$ factors. *Ann. Sci. École Norm. Sup.* 41 (2008), 743–788.

[Vo85] D.-V. Voiculescu. *Symmetries of some reduced free product C*-algebras.* Operator algebras and their Connections with Topology and Ergodic Theory. Lecture Notes in Mathematics 1132 (Springer-Verlag, 1985), 556–588.

[VDN92] D.-V. Voiculescu, K.J. Dykema and A. Nica. *Free random variables.* CRM Monograph Series 1 (American Mathematical Society, Providence, RI, 1992).