A LAGRANGIAN SPHERE WHICH IS NOT A VANISHING CYCLE

FRANÇOIS GREER

Abstract. We give examples of Calabi-Yau threefolds containing Lagrangian spheres which are not vanishing cycles of nodal degenerations, answering a question of Donaldson in the negative.

1. Introduction

The n-dimensional nodal singularity has a 1-parameter versal deformation

$$\left(\sum_{i=0}^{n} z_i^2 = t \right) \subset \mathbb{C}^{n+1} \times \mathbb{C}_t.$$

The nearby fiber over $t = \epsilon > 0$ retracts onto an n-sphere, the vanishing cycle:

$$S^n \simeq \left(\sum_{i=0}^{n} x_i^2 = \epsilon \right),$$

which is Lagrangian with respect to the standard symplectic form $\omega = \sum dx_i \wedge dy_i$ ($z_i = x_i + iy_i$). A natural question, first raised by Donaldson [4], is whether all Lagrangian spheres arise in this way.

Question 1. Let Z be a complex projective manifold, and $L \subset Z$ embedded sphere, Lagrangian with respect to a Kähler form on Z. Is L always the vanishing cycle of a nodal degeneration of Z?

The answer is positive for curves, and unknown for surfaces. For K3 surfaces, the answer is positive [7] modulo a technical difficulty (Fukaya isomorphism implies Hamiltonian isotopy). For Horikawa surfaces, a positive answer would distinguish two particular deformation types as smooth manifolds [1]. We show that the answer to Question 1 is negative in general:

Theorem 2. There exists a rigid projective Calabi-Yau threefold \hat{X} with a Lagrangian sphere $L \subset \hat{X}$ which is homologically non-trivial (essential).

Rigidity implies that any degeneration of \hat{X} is isotrivial. We prove further that such a degeneration must have monodromy of order ≤ 6 on $H_3(\hat{X})$. In particular, this rules out nodal degenerations with vanishing cycle L; their monodromy would be a Dehn twist by $[L] \in H_3(\hat{X})$, which has infinite order. It was known [8] that if an essential Lagrangian sphere existed on a rigid CY3, then it could not be the vanishing cycle of a nodal degeneration.

Acknowledgments. The author is grateful to Mark McLean for suggesting the problem. He has also benefitted from communications with Denis Auroux, Jonathan Evans, Ivan Smith, Richard Thomas, and Abigail Ward.
2. The Construction

The counterexamples are among the Calabi-Yau threefolds considered by Schoen [6]. Consider the following pencil of cubics in \(\mathbb{P}^2 \):

\[(x + y)(y + z)(z + x) + txyz = 0.\]

Viewed as a family of curves over \(\mathbb{P}^1 \), the relatively minimal smooth model \(\nu: S \to \mathbb{P}^1 \) has 4 singular Kodaira fibers of types \(I_6, I_3, I_2, \) and \(I_1 \) over \(t = \infty, 0, 1, \) and \(-8 \), respectively. This is one of six semistable elliptic families over \(\mathbb{P}^1 \) (all extremal) with the minimum number of singular fibers, as constructed by Beauville [2], and it is isomorphic to the universal family over the compactified modular curve \(X_1(6) \).

Let \(\phi \) be a non-trivial automorphism of \(\mathbb{P}^1 \) which permutes \(\{\infty, 0, 1\} \), and note that \(\phi(-8) \neq -8 \). We form the Cartesian product

\[
\begin{array}{ccc}
X & \longrightarrow & S \\
\downarrow & & \downarrow \phi \circ \nu \\
S & \longrightarrow & \mathbb{P}^1.
\end{array}
\]

The result is a singular projective threefold with \(K_X = 0 \), fibered over \(\mathbb{P}^1 \) by abelian surfaces which are products of non-isogenous elliptic curves. There are 5 critical values: \(\infty, 0, 1, -8 \), and \(\phi(-8) \). The total space \(X \) has \(n \) conifold singularities in the fibers over \(\{\infty, 0, 1\} \), located at the product of two nodes in the elliptic fibers. For the different choices of \(\phi \), we get \(n = 33, 36, 40, 48 \).

There exists a projective small resolution \(\epsilon: \hat{X} \to X \) obtained by successive blow ups of the \(n \) Weil divisors which are irreducible components of the singular fibers. The resolution is crepant, so \(\hat{X} \) is a smooth Calabi-Yau threefold.

Proposition 3. The Picard group of \(\hat{X} \) has rank \(n \).

Proof. The specialization of \(\pi: \hat{X} \to \mathbb{P}^1 \) to the generic point \(\eta \in \mathbb{P}^1 \) gives a split short exact sequence

\[0 \to A \to \text{Pic}(\hat{X}) \to \text{Pic}(X_\eta) \to 0,\]

where \(A \) is the span of the \(n \) divisor classes supported over \(\{\infty, 0, 1\} \). They satisfy 2 relations using the rational equivalence over \(\mathbb{P}^1 \). The generic fibers of \(\nu \) and \(\phi \circ \nu \) are non-isogenous elliptic curves, so

\[\text{Pic}(X_\eta) \simeq \text{Pic}(S_\eta) \oplus \text{Pic}(S_\eta).\]

The specialization of \(\nu: S \to \mathbb{P}^1 \) to \(\eta \) gives a split short exact sequence

\[0 \to B \to \text{Pic}(S) \to \text{Pic}(S_\eta) \to 0,\]

where \(B \) is the span of the 12 curves classes supported over \(\{\infty, 0, 1, -8\} \). They satisfy 3 relations using the rational equivalence over \(\mathbb{P}^1 \). Since \(\rho(S) = 10 \), we find that \(\text{Pic}(S_\eta) \) has rank 1. In fact, the torsion Mordell-Weil group of \(S_\eta \) is known [5]:

\[\text{Pic}(S_\eta) \simeq \mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.\]

\[\square\]
Proposition 4. The threefold \hat{X} is rigid in the sense that $H^1(T_{\hat{X}}) = 0$.

Proof. The cup product gives an isomorphism $H^1(T_{\hat{X}}) \cong H^1(\hat{X})^\vee$ since \hat{X} is Calabi-Yau. As X is fibered by tori, its topological Euler characteristic is determined by the singular fibers $I_b \times I_{b'}$. This gives
\[
\chi_{\text{top}}(X) = n
\]
\[
\chi_{\text{top}}(\hat{X}) = 2n,
\]
since the small resolution replaces each conifold point with a \mathbb{P}^1. On the other hand, the Calabi-Yau property gives
\[
\chi_{\text{top}}(\hat{X}) = 2(h^{1,1}(\hat{X}) - h^{1,2}(\hat{X}))
\]
and $H^{1,1}(\hat{X}) \cong \text{Pic}(\hat{X})$, so we are done by Proposition 3. \qed

There is a conifold transition relating \hat{X} to the more standard Schoen Calabi-Yau:
\[
Y := S \times_{\mathbb{P}^1} S'.
\]
Here, $S' \to \mathbb{P}^1$ is a generic rational elliptic surface. By deforming S', we see that Y degenerates to X. Schematically,
\[
\begin{array}{ccc}
\hat{X} & \rightarrow & Y \\
\downarrow & & \downarrow \\
Y & \sim & X
\end{array}
\]

The topological description of the conifold transition in terms of vanishing 3-spheres and exceptional 2-spheres allows us to compute the Betti numbers of X and \hat{X}. Using $\chi_{\text{top}}(Y) = 0$, it is not hard to check that $h^{1,1}(Y) = h^{1,2}(Y) = 19$. Let r be the homological rank of the vanishing 3-spheres in $H_3(Y)$. We have the following:
\[
\begin{align*}
b_2(Y) &= 19 & b_2(X) &= 19 & b_2(\hat{X}) &= 19 + (n - r) \\
b_3(Y) &= 40 & b_3(X) &= 40 - r & b_3(\hat{X}) &= 40 - 2r \\
b_4(Y) &= 19 & b_4(X) &= 19 + (n - r) & b_4(\hat{X}) &= 19 + (n - r).
\end{align*}
\]
Since $b_3(\hat{X}) = 2$, we deduce that $r = 19$.

Proposition 5. \hat{X} contains a 3-sphere L that is Lagrangian with respect to a Kähler form.

Proof. We adapt a construction from \cite{8}: let $\gamma : [0, 1] \to \mathbb{P}^1$ be a smooth path missing $\{\infty, 0, 1\}$ with $\gamma(0) = -8$ and $\gamma(1) = \phi(-8)$. Using the horizontal distribution symplectically orthogonal to the vertical tangent spaces, there is a symplectic parallel transport along γ. Choose a Kähler form which is a product form on the fibers $E \times E'$ over points $\gamma(s)$. Let $\ell_0 \subset \pi^{-1}(\gamma(\frac{1}{2}))$ be a vanishing loop in E for the flow toward 0, and $\ell_1 \subset \pi^{-1}(\gamma(\frac{1}{2}))$ a vanishing loop in E' for the flow toward 1. The parallel transport sweeps out a Lagrangian:
\[
L = \bigcup_{s \in [0,1]} (\ell_0)_s \times (\ell_1)_s,
\]
diffeomorphic to S^3 fibered by 2-tori, with S^1 caps on either side. It is smooth at the caps because it is locally the product of a Lefschetz thimble with S^1. \qed
3. Elliptic Modular Surfaces

The classical modular curves $X_1(N)$ are constructed by compactifying quotients of
the upper half plane \mathbb{H} by the congruence subgroups $\Gamma_1(N) \subset SL_2(\mathbb{Z})$:

$$X_1(N) := \mathbb{H}^*/\Gamma_1(N)$$
$$\mathbb{H}^* := \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q}).$$

The action of $\Gamma_1(N)$ on $\mathbb{P}^1(\mathbb{Q})$ has finitely many orbits, which become cusps in the
modular curve. The stabilizer of a point in $\mathbb{P}^1(\mathbb{Q})$ is a parabolic subgroup of $\Gamma_1(N)$
generated by a conjugate of

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix},$$

where $b \in \mathbb{N}$ is called the width of the corresponding cusp. There is a universal
family over $\mathbb{H}/\Gamma_1(N)$ whose fiber at τ is the elliptic curve $\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau)$. This family
admits a compactification over $X_1(N)$ by adding a Kodaira fiber of type I_6 over
each cusp. For $1 \leq N \leq 10$ and $N = 12$, the curve $X_1(N)$ has genus 0, and
the Hauptmodul $j_N : X_1(N) \to \mathbb{P}^1$ is an isomorphism defined over \mathbb{Q}. For our
application, we specialize to the case $N = 6$ where the elliptic modular surface is
isomorphic to our example $\nu : S \to \mathbb{P}^1$.

Toward our ultimate goal of describing the homology of the Calabi-Yau threefold
\hat{X}, we record the monodromy representation associated to $\nu : S \to \mathbb{P}^1$.

Proposition 6. For a chosen base point $* \in \mathbb{P}^1 - \{\infty, 0, 1, -8\}$, the monodromy

$$\mu : \pi_1(\mathbb{P}^1 - \{\infty, 0, 1, -8\}, *) \to SL(H_1(\nu^{-1}(\ast), \mathbb{Z})) \simeq SL_2(\mathbb{Z})$$

sends the simple loops γ_{-8}, γ_{10}, and γ_7 to

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -6 & 1 \end{pmatrix}, \begin{pmatrix} -5 & 2 \\ -18 & 7 \end{pmatrix}, \begin{pmatrix} -5 & 3 \\ -12 & 7 \end{pmatrix},$$

respectively. The loops are arranged so that $\gamma_{-8}\gamma_{10}\gamma_7\gamma_0 \sim 1$.

Proof. The action of $\Gamma_1(6)$ on \mathbb{H} has a fundamental domain with cusps at $\tau =
ix, \frac{1}{3}, \frac{1}{2}$. The stabilizer of each cusp is generated by the corresponding matrix
above. The isomorphism $j_6 : \mathbb{H}^*/\Gamma_1(6) \to \mathbb{P}^1$ allows us to identify the cusps with
critical values of the pencil via $j_6(\tau) = t$. From the widths of the cusps, we see that
$j_6(\infty) = -8$, $j_6(0) = \infty$, $j_6(\frac{1}{3}) = 1$, and $j_6(\frac{1}{2}) = 0$. \(\square \)

Proposition 7. For any path in \mathbb{P}^1 between two critical values of ν, the vanishing
loops are non-homologous.

Proof. The vanishing cycle class in $H_1(\nu^{-1}(\ast), \mathbb{Z})$ for a path from $*$ to a critical
value t is fixed by the associated monodromy matrix $\mu(\gamma_t)$. With the labels from
Proposition 6, the vanishing cycles are

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

These vectors represent elements of $(\mathbb{Z}/6\mathbb{Z})^2$ which lie in different orbits under
$\Gamma_1(6)$, so no two vanishing cycles are conjugate under the monodromy action. \(\square \)

Another way of stating Proposition 7 is that there are no matching cycles in the
pencil. This observation is used in the Mayer-Vietoris computations of Section 4.
Lemma 8. For two unequal subsets \(\{ \gamma, \gamma' \} \) and \(\{ \tilde{\gamma}, \tilde{\gamma}' \} \) of \(\{ \gamma_\infty, \gamma_0, \gamma_1 \} \), the matrices
\[\mu(\gamma)^{\pm 1} \mu(\gamma')^{\pm 1} \] and \(\mu(\tilde{\gamma})^{\pm 1} \mu(\tilde{\gamma}')^{\pm 1} \)
are hyperbolic and have no common eigenvalues.

Proof. This is a straightforward exercise using the matrices from Proposition 6. \(\square \)

4. Homology class of \(L \)

The goal of this section is to prove that \([L] \neq 0 \in H_3(\tilde{X}) \) by explicit computation. A key input is the monodromy representation for the elliptic fibration \(\nu : S \to \mathbb{P}^1 \). We will use Mayer-Vietoris (MV) sequences to understand the rational homology groups \(H_*(X, \mathbb{Q}) \) by gluing together neighborhoods of the critical values in \(\mathbb{P}^1 \).

Let \(U_1, U_2 \subset \mathbb{P}^1 \) be overlapping disks which contain \(-8\) and \(\phi(-8) \), respectively, and no other critical values. Set \(U = U_1 \cup U_2 \) and \(U_{12} = U_1 \cap U_2 \). Since \(\pi^{-1}(U_{12}) \) retracts to a product of elliptic curves, it is easy to compute the restriction morphisms
\[\alpha_i : H_i(\pi^{-1}(U_{12})) \simeq \wedge^i H_i(\pi^{-1}(U_{12})) \to H_i(\pi^{-1}(U_1)) \oplus H_i(\pi^{-1}(U_2)). \]

Lemma 9. The rational homology of \(X_U = \pi^{-1}(U) \) is given by
\[H_*(X_U, \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}^2, \mathbb{Q}^3, \mathbb{Q}^4, \mathbb{Q}). \]

Proof. Since \(\pi^{-1}(U_1) \) retracts onto the singular fiber, the Künneth formula gives
\[H_*(\pi^{-1}(U_1), \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}^3, \mathbb{Q}^4, \mathbb{Q}^3, \mathbb{Q}), \]
\[H_*(\pi^{-1}(U_{12}), \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}^4, \mathbb{Q}^6, \mathbb{Q}^4). \]
The MV sequence for \(X_U = \pi^{-1}(U_1) \cup \pi^{-1}(U_2) \) is short exact in degrees 0 and 4, and elsewhere \(H_*(X_U, \mathbb{Q}) \) is determined by the facts that \(\alpha_1 \) is injective, and \(\alpha_2 \) has 1-dimensional kernel. The class \([L] \neq 0 \in H_3(X_U)\) because \(\partial_3[L] \) spans the kernel of \(\alpha_2 \). A basis for \(H_3(X_U, \mathbb{Q}) \simeq \mathbb{Q}^3 \) is given by \([L], [T_1], [T_2]\), where \(T_i \) is the distinguished 3-torus in \(\pi^{-1}(U_i) \). \(\square \)

Let \(W_1, W_2 \subset \mathbb{P}^1 \) be overlapping disks, each containing one critical value in \(\{ \infty, 0, 1 \} \) denoted \(t \) and \(t' \). It is always possible to pick \(\{ t, t' \} \) such that \(\{ t, t' \} \neq \{ \phi(t), \phi(t') \} \).

Set \(W = W_1 \cup W_2 \) and \(W_{12} = W_1 \cap W_2 \). Since \(\pi^{-1}(W_{12}) \) retracts to a product of elliptic curves, one computes the restriction morphisms
\[\alpha_i : H_i(\pi^{-1}(W_{12})) \simeq \wedge^i H_i(\pi^{-1}(W_{12})) \to H_i(\pi^{-1}(W_1)) \oplus H_i(\pi^{-1}(W_2)) \]
using Proposition 7. To set notation, the central fiber of \(W_1 \) is of type \(I_0 \times I_0 \), and the central fiber of \(W_2 \) is of type \(I_0 \times I_0 \).

Lemma 10. The rational homology of \(X_W = \pi^{-1}(W) \) is given by
\[H_*(X_W, \mathbb{Q}) \simeq (\mathbb{Q}, 0, \mathbb{Q}^{b+\delta+\delta'}-2, \mathbb{Q}^{b+\delta+\delta'}-2, \mathbb{Q}^{b+\delta+\delta'}-2, \mathbb{Q}^{b+\delta+\delta'}-1). \]

Proof. Since \(\pi^{-1}(W_j) \) retracts onto the singular fiber, the Künneth formula gives
\[H_*(\pi^{-1}(W_1), \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}^2, \mathbb{Q}^{b+\delta+1}, \mathbb{Q}^{b+\delta}, \mathbb{Q}^{b\delta}) \]
\[H_*(\pi^{-1}(W_2), \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}^2, \mathbb{Q}^{b'+\delta'+1}, \mathbb{Q}^{b'+\delta'}, \mathbb{Q}^{b'\delta'}) \]
\[H_*(\pi^{-1}(W_{12}), \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}^4, \mathbb{Q}^6, \mathbb{Q}^4, \mathbb{Q}). \]
The MV sequence for $X_W = \pi^{-1}(W_1) \cup \pi^{-1}(W_2)$ is short exact in degrees 0 and 4, and elsewhere $H_\ast(X_W, \mathbb{Q})$ is determined by the facts that α_1 is injective, and α_2 has 2-dimensional kernel. □

The fibers of π over the boundary circle of $W \subset \mathbb{P}^1$ together form a closed 5-manifold M, a bundle of 4-tori over S^1. Lemma 8 forces its homology to be as small as possible:

Lemma 11. $H_\ast(M, \mathbb{Q}) \simeq (\mathbb{Q}, \mathbb{Q}, \mathbb{Q}^2, \mathbb{Q}^2, \mathbb{Q}, \mathbb{Q})$.

Proof. The homology of a fiber bundle over S^1 can be computed from the monodromy operator T on the homology of the fiber F, which in this case is a product of elliptic curves:

$$0 \to \text{coker} \, (T - 1)|_{H_4(F)} \to H_4(M) \to \ker \, (T - 1)|_{H_{i-1}(F)} \to 0.$$

Now $(T|_{H_4(F)})$ is a block matrix with $\mu(\gamma_l)^{\pm 1} \mu(\gamma_r)^{\pm 1}$ and $\mu(\gamma_l)^{\pm 1} \mu(\gamma_r)^{\pm 1}$ as the blocks, and $(T|_{H_4(F)}) = \wedge^i(T|_{H_1(F)})$. The claim now follows from Lemma 8 □

Let V be a disk containing the last remaining critical value t'' of type $I_{\nu''}$, overlapping with U. The critical value $\phi(t'')$ is of type $I_{\nu''}$.

Lemma 12. The rational homology of $X_{U \cup V} = \pi^{-1}(U \cup V)$ is given by

$$H_\ast(X_{U \cup V}, \mathbb{Q}) \simeq (\mathbb{Q}, 0, \mathbb{Q}^{b''+\tilde{b}'}, \mathbb{Q}^{b''+\tilde{b}' + 1}, \mathbb{Q}^{b''})$$

Proof. Once again, the Kunneth formula gives

$$H_\ast(\pi^{-1}(V), \mathbb{Q}) \simeq (\mathbb{Q}, 0, \mathbb{Q}^{b''+\tilde{b}'}, \mathbb{Q}^{b''+\tilde{b}' + 1}, \mathbb{Q}^{b''})$$

The MV sequence for $X_{U \cup V} = \pi^{-1}(U) \cup \pi^{-1}(V)$ is short exact in degree 0 and 4, and elsewhere $H_\ast(X_{U \cup V}, \mathbb{Q})$ is determined by the facts that α_1 is injective, and α_2 has 2-dimensional kernel. The class $[L] \neq 0 \in H_3(X_{U \cup V})$ because the image of α_3 does not contain $([L], 0)$. Indeed, the first component of the image of α_3 is supported on the singular fibers of $\pi^{-1}(U)$, spanned by $[T_1]$ and $[T_2]$. □

We are now prepared to understand the global topology of X in terms of the gluing $(U \cup V) \cup W = \mathbb{P}^1$. By the theory of conifold transitions, we already know that

$$H_\ast(X, \mathbb{Q}) = (\mathbb{Q}, 0, \mathbb{Q}^{19}, \mathbb{Q}^{21}, \mathbb{Q}^{n}, 0, \mathbb{Q}),$$

where $n = \tilde{b}b + b\tilde{b}' + b''\tilde{b}''$ is the number of conifolds.

Theorem 13. The class $[L] \neq 0 \in H_3(\hat{X})$.

Proof. In the MV sequence for $X = X_{U \cup V} \cup X_W$, we have already determined all the groups, so we deduce properties of the maps:

$$0 \longrightarrow H_4(M) \longrightarrow H_4(X_{U \cup V}) \oplus H_4(X_W) \longrightarrow H_4(X)$$

$$\longrightarrow H_3(M) \longrightarrow H_3(X_{U \cup V}) \oplus H_3(X_W) \longrightarrow H_3(X)$$

$$0 \longrightarrow H_2(M) \longrightarrow H_2(X_{U \cup V}) \oplus H_2(X_W) \longrightarrow H_2(X)$$

$$\longrightarrow H_1(M) \longrightarrow 0.$$
We see that $H_3(X) \simeq H_3(X_U \cup V) \oplus H_3(X_W)$, so $[L] \neq 0 \in H_3(X)$. By applying the pushforward $\epsilon_* : H_3(\hat{X}) \to H_3(X)$ to a cycle representing $L \subset \hat{X}$, we see that $[L] \neq 0 \in H_3(\hat{X})$ as well.

After the small resolution surgery, we have

$$H_3(\hat{X}_{\cup V}, \mathbb{Q}) \simeq H_3(\hat{X}, \mathbb{Q}) \simeq \mathbb{Q}^2.$$

We can produce a pair of Lagrangian spheres $L, L' \subset \hat{X}_{U \cup V}$ with nonzero intersection number in \hat{X}, which immediately proves Theorem 13. Construct L' as in Proposition 5, but using the other path γ' between -8 and $\phi(-8)$. The signed intersection of L with L' is a nonzero multiple of 6, using the monodromy matrices of Proposition 6. An example of $X_{U \cup V}$ is pictured below, with $b'' = 2$ and $\hat{b}'' = 6$.
5. Degenerations of \hat{X}

Suppose that \hat{X} admits a Kähler degeneration. That is, \hat{X} is isomorphic to a fiber of a proper holomorphic family over a curve:

$$f : \mathcal{X} \to B,$$

and $f^{-1}(0)$ is singular for some $0 \in B$. By Proposition 4, \hat{X} has no moduli so f is holomorphically locally trivial (isotrivial) away from its critical values, by the Fischer-Grauert theorem. If we choose a small complex disk Δ centered at 0, the fiber bundle

$$f^{-1}(\Delta^*) \to \Delta^*$$

has monodromy valued in $\text{Aut}(\hat{X})$. In other words,

$$\mathbb{Z} \cong \pi_1(\Delta^*) \to \text{Aut}(\hat{X}) \to \text{Sp}(H_3(\hat{X}, \mathbb{Z})) \cong SL_2(\mathbb{Z}).$$

To control potential isotrivial degenerations, we prove that $\text{Aut}(\hat{X})$ is finite.

Proposition 14. Every automorphism preserves the fibration $\pi : \hat{X} \to \mathbb{P}^1$.

Proof. Let $\varphi : \hat{X} \to \hat{X}$ be an automorphism, and let A be a general fiber of π. If φ does not preserve the fibration, then $\varphi(A)$ surjects onto \mathbb{P}^1. The image of $\varphi(A)$ in S cannot be all of S because complex tori only surject onto projective spaces and complex tori [3]. Thus, $\varphi(A)$ maps onto a curve C in S, and the generic fiber is an elliptic curve. There must be singular fibers because C surjects to \mathbb{P}^1, which contradicts the fact that $\chi_{\text{top}}(A) = 0$. □

The Mordell-Weil group of X_η is finite (it is $\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$), so $\text{Aut}(\hat{X})$ is finite. Therefore, the image of monodromy is a finite subgroup of $SL_2(\mathbb{Z})$, so it is abelian of order ≤ 6. In particular, L is not the vanishing cycle of a nodal degeneration.

References

[1] D. Auroux. The canonical pencils on Horikawa surfaces. *Geometry & Topology*, 10(4):2173–2217, 2006.

[2] A. Beauville. Les familles stables de courbes elliptiques sur \mathbb{P}^1 admettant quatre fibres singulières. *C.R. Acad. Sc. Paris*, 294(19):657–660, 1982.

[3] J.-P. Demailly, J.-M. Hwang, and T. Peternell. Compact manifolds covered by a torus. *Journal of Geometric Analysis*, 18(2):324–340, Apr 2008.

[4] S. Donaldson. Polynomials, vanishing cycles and Floer homology. In V. Arnold, M. Atiyah, P. Lax, and B. Mazur, editors, *Mathematics: Frontiers and Perspectives*, The American Mathematical Monthly, pages 55–64. American Mathematical Society, 2000.

[5] R. Miranda. *The basic theory of elliptic surfaces*. Dottorato di Ricerca in Matematica. ETS Editrice, Pisa, 1989.

[6] C. Schoen. On fiber products of rational elliptic surfaces with section. *Mathematische Zeitschrift*, 197(2):177–199, Jun 1988.

[7] N. Sheridan and I. Smith. Symplectic topology of K3 surfaces via mirror symmetry. math.AG, arXiv:1709.09439.

[8] I. Smith and R. Thomas. Symplectic surgeries from singularities. *Turkish J. Math.*, 27(1):231–250, 2003.

[9] I. Smith, R.P. Thomas, and S.-T. Yau. Symplectic conifold transitions. *J. Differential Geom.*, 62(2):209–242, 2002.