Application of Chiral 2-Isoxazoline for the Synthesis of syn-1,3-Diol Analogues

Juanjuan Feng, Tianyu Li, Jiaxin Zhang and Peng Jiao

Letter

SI.pdf; 6.6 MB

Peng Jiao - https://orcid.org/0000-0003-4039-8300
Application of Chiral 2-Isoxazoline for the Synthesis of syn-1,3-Diol Analogues

Juanjuan Feng,[a] Tianyu Li,[a] Jiaxin Zhang*[a], and Peng Jiao*[a]

Address: Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China.

Email: Peng Jiao - pjiao@bnu.edu.cn, Jiaxin Zhang - zhangjiaxin@bnu.edu.cn

* Corresponding author

Abstract

Asymmetric cycloaddition of TIPS nitronate catalyzed by “Cu(II)-bisoxazoline” gave the 2-isoxazoline product in 85% yield, which was converted into t-butyl (3S,5R)-6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate in 11 steps via a β-hydroxy ketone.

Keywords
cycloaddition; silyl nitronate; isoxazoline; β-hydroxy ketone; 1,3-diol

Introduction

Chiral 1,3-diol structure is common in a broad spectrum of natural products.1,2 (3R)-β-Hydroxy-δ-lactone or its open-ring equivalent (3R)-syn-3,5-dihydroxypentanoic acid, is a common structure in naturally occurring mevastatin (or compactin), lovastatin or closely related statins, and synthetic statins. Either syn- or anti- 1,3-diol could be prepared from enantiomerically pure β-hydroxy ketone via β-hydroxy directed carbonyl reduction in Evans’3 or Prasad’s4-11 method. Narasaka–Prasad reduction of the δ-hydroxy-β-keto-ester derived from a β-hydroxy ester12-23 is widely used to prepare t-butyl (3R)-3,5-O-isopropylidene-3,5-dihydroxyhexanoate (Scheme 1a)24-37,
which is a building block for synthetic statins, though enzymatic synthesis of chiral β-hydroxy-δ-lactone moiety or its equivalents, pioneered by Wong, is equally competitive. Here, we report the preparations of t-butyl (3S,5R)-6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate and related syn-1,3-diol analogues from a chiral 2-isoxazoline (Scheme 1b). This work is a continuous part of our effort in the asymmetric synthesis and applications of chiral 2-isoxazolines.

Scheme 1: Access to t-butyl 3,5-O-isopropylidene-3,5-dihydroxyhexanoates: (a) Previous methods using Claisen condensation. (b) Our new method using cycloaddition.

Results and Discussion

Our syntheses commenced with a chiral 3,5-disubstituted-2-isoxazoline 3 or 4, which was prepared from silyl nitronate via asymmetric 1,3-dipolar cycloaddition developed in our lab (Scheme 2). 3-Nitropropionic acid methyl ester was first tried to prepare the corresponding triisopropylsilyl nitronate but no desired product was observed. 3-Nitropropanol, protected as the THP ether, was used to prepare the triisopropylsilyl nitronate. Catalytic asymmetric cycloaddition gave the 2-isoxazolidine cycloadduct 1 in a high yield. In the light of our previous ligand screening results, two bisoxazolines with an isopropyl or t-butyl group were tested. Optimization of the conditions established that 26 mol% ligand B together with 20 mol% Cu(OTf)_2
anhydrous CH$_2$Cl$_2$ catalyzed the cycloaddition between N-acryloyl-1,3-oxazolidin-2-one and the silyl nitronate at −50 °C to give 1 in 95% isolated yield, which subsequently generated 4 in 80% ee. Decreasing the amount of the chiral Lewis acid catalyst led to the decrease of both the ee and the yield. Desilylation of the 2-isoxazolidine 1 was effected in CHCl$_3$ using catalytic amount of p-toluenesulfonic acid (PTSA). Though the yield of the in situ generated 2-isoxazoline 2 bearing the 1,3-oxazolidin-2-one auxiliary was perfect, purification of 2 by silica gel chromatography was problematic due to decomposition. No pure product was isolated from crude 2 by chromatography on silica gel. Decomposition happened to a compound similar to 2, in which the 3-substituent was CH$_2$OH.49 To overcome this problem, the crude reaction mixture containing 2 and PTSA was concentrated before excess Et$_3$N was added followed by CH$_3$OH as the solvent. These operations removed the 1,3-oxazolidin-2-one auxiliary while preserving the THP group, and obtained the corresponding methyl ester 3 (Scheme 2), which was stable and could be subjected to silica gel chromatography. Compound 4 was used to determine the stereoselectivity of the cycloaddition step as well as for oxidation.

Entry	Ligand	x mol% Cu	T (°C)	Yield (%)	ee (%)
1	A	10	−50	25	18
2	A	20	−50	75	72
Scheme 2: Optimization of the conditions for the asymmetric cycloaddition.

Oxidation of the 2-isoxazoline 4 with Jones’ reagent gave a complicated mixture, in which the desired carboxylic acid was not observed (Scheme 3). Stepwise oxidation of the free hydroxy group to carboxy via intermediary of the aldehyde was then examined. Swern or pyridinium chlorochromate (PCC) oxidation of 4 also gave a complicated mixture without the desired aldehyde detected. These failed reactions indicated that the 2-isoxazoline moiety could not survive under oxidation conditions. Based on this assumption, the corresponding silyl nitronate from 3-nitropropanal or its acetal was not tried for cycloaddition.

Scheme 3: Attempted oxidations of 4.
We then set to liberate the β-hydroxy ketone synthon by ring-opening of the isoxazoline 3 (Scheme 4). Raney Ni catalyzed hydrogenolysis in the presence of boronic acid had been widely utilized to disconnect the N–O bond as well as to hydrolyze the resulting imine into a ketone. We applied this method to 3. However, the desired β-hydroxy ketone was never obtained. In one instance, the methyl ketone from retro-aldol reaction of the desired β-hydroxy ketone was observed. In our experience, hydrogenolysis of 2-isoxazoline having a 5-ester group was troublesome. Thus, the 5-ester group was reduced with NaBH$_4$ to give 5. The hydroxy was subsequently protected with benzoyl (Scheme 4), which also worked as a chromophore facilitating HPLC analysis. Here, we tried oxidations once again. After removal of THP from 6, the resulting compound 6' was subjected to oxidation with various reagents (Scheme 5). The expected carboxylic acid or aldehyde was not observed, which further verified the intolerance exemplified in Scheme 4. These results prompted us to try the oxidation in a later stage.
Scheme 4: Preparations of 16 and related syn-1,3-diol compounds.

Scheme 5: Attempted oxidations of 6′.
When 6 was subjected to Raney Ni catalyzed hydrogenolysis, the desired β-hydroxy ketone 7 was obtained in 85% yield (Scheme 4). Under the weak acidic conditions, the THP group survived. Next, Narasaka–Prasad reduction4–11 of 7 using Et2BOMe and NaBH4 at −78 °C gave stable ethylboronate 8 in 96% yield. Several ethylboronate compounds have been reported.9–11, 56–62 From 8 to 9, no H2O2 treatment was necessary. Rotary evaporation of 8 with CH3OH at ca. 40 °C easily removed the ethylborane group. Removal of THP in 9 delivered a 1,3,5-trihydroxy compound 10. In another way, 10 could be prepared by treating 8 with PTSA in CH3OH at rt. NMR spectra of 8–10 exhibited only one set of signals corresponding to the syn-dihydroxy products, indicating an extra high diastereoselectivity (syn:anti > 99:1) during the reduction. To unambiguously determine the diastereo ratio, the anti-1,3-diol corresponding to 10 was prepared from 7 by RuCl3-PPh3 catalyzed hydrogenation.63,64 However, the two diastereomers had completely same proton NMR spectra.

The terminal hydroxy group of 10 was protected with TBS65–69 and the syn-hydroxy groups subjected to acetonization using PTSA and dimethoxypropane (DMP) to give 12 in 86% total yield.70 Treatment of 12 with TBAF again liberated the terminal hydroxy group for further oxidation. RuCl3 catalyzed oxidation of 13 with NaIO4 yielded the carboxylic acid 14 in 86% yield,70 which was reacted with Boc2O to get the tert-butyl ester 15.26,43,71 The ee of 15 was determined as 74%. The racemic sample of 15 was prepared from racemic diethyl malate in known methods.26,27 Finally, K2CO3 catalyzed methanolysis gave 16 in 87% yield.26,27 The absolute stereochemistry of 16 was confirmed by the crystal structure72 and the specific rotation28 of 17. Centimeter-long prismatic single crystals of 17 were obtained by slowly evaporating the solvent of a petroleum solution.
Starting from 9, we tested several reactions in order to selectively protect the internal hydroxy groups (Scheme 6). Though not fruitful, these results deserve some comments. PTSA catalyzed acetonization of 9 using 2.0 equiv DMP gave the acetonide 18 in a quantitative yield. Treating 18 with catalytic amount of PTSA in methanol gave 10, with the protection groups removed except benzoyl. PTSA catalyzed acetonization of 10 using 2.0 equiv DMP gave a mixture of two acetonides 19 and 13, which are separable over silica gel chromatography (Scheme 6a). In another trial (Scheme 6b), acylation of the two hydroxy groups in 9 yielded 20 in a quantitative yield. PTSA catalyzed removal of THP in 20 in methanol did occur. However, concomitant monodeacylation as well as further acyl-transfer reaction also took place, resulting in a mixture. These results indicated THP, isopropylidene or Ac protection to primary or secondary hydroxy group did not well tolerate PTSA catalyzed methanolysis.
Scheme 6: Attempted selective protections of internal 1,3-hydroxy groups: (a) Acetonizations of 1,3-diols; (b) Removal of co-existing Ac and THP on hydroxy groups.

Conclusion

In conclusion, we synthesized t-butyl (3S,5R)-6-hydroxy-3,5-O-isopropylidene-3,5-dihydroxyhexanoate (16), which is enantiomeric to a key intermediate for atorvastatin, from a chiral 2-isoxazoline (3). The β-hydroxy ketone 7 obtained from 3 could be easily converted into several syn-1,3-diol analogues, demonstrating the usefulness of chiral 2-isoxazoline.

Experimental

1: To a dry Schlenk tube were added Cu(OTf)$_2$ (144 mg, 0.4 mmol), chiral bisoxazoline B (139 mg, 0.52 mmol) and anhydrous CH$_2$Cl$_2$ (4 mL) under N$_2$. After stirring at room temperature for 2 h, a clear solution was formed, which was cooled to −50 °C and N-acryloyl-1,3-oxazolidin-2-one (282 mg, 2 mmol) was added. After stirring for 30 min, a solution of the silyl nitronate (3.0 mmol) in anhydrous CH$_2$Cl$_2$ (6 mL) was added. The mixture was stirred for 8 h at −50 °C and monitored by TLC. After the reaction was completed, the product was purified by silica gel chromatography.

Yellow oil (923 mg, 95 % yield), R$_f$ = 0.40 (1:1 hexanes/AcOEt). 1H NMR (400 MHz, CDCl$_3$) δ: 5.77–5.74 (m, 1H, CH$_2$CHO), 4.53 (s, 1H, OCHO), 4.44 (t, J = 8.0 Hz, 2H, CH$_2$O), 4.03–3.99 (m, 2H, CH$_2$O), 3.79–3.74 (m, 2H, OCH$_2$CH$_2$), 3.47–3.37 (m, 3H, NCH and NCH$_2$), 2.75–2.66 (m, 1H, CHCH$_2$CH), 2.31–2.27 (m, 1H, CHCH$_2$CH), 2.17–2.12 (m, 1H, CH$_2$CH$_2$), 1.84–1.79 (m, 2H, CH$_2$CH$_2$ and CH$_2$CH$_2$CH$_2$), 1.68–1.49 (m, 6H, CH$_2$CH$_2$CH$_2$), 1.24–1.15 (m, 3H, SiCH), 1.07–1.01 (m, 18H, SiCH(CH$_3$)$_2$);
\[^{13}\text{C}\{^1\text{H}\}\] NMR (100 MHz, CDCl\(_3\)) \(\delta\): 170.8, 153.1, 98.9, 98.9, 77.4, 77.2, 69.9, 69.8, 65.2, 62.8, 62.5, 62.3, 42.6, 35.6, 35.5, 30.7, 30.6, 29.9, 29.8, 25.5, 19.6, 19.5, 18.1, 18.0, 12.2; IR (cm\(^{-1}\))): 3544, 2942, 2867, 2725, 2249, 1780, 1704, 1464, 1386, 1275, 1133, 1035, 883, 806, 677; MS (ESI): calculated for C\(_{23}\)H\(_{42}\)N\(_2\)O\(_7\)Si [M+Na\(^+\)] 509.2659, found 509.2659.

3: To a solution of 1 (0.86 g, 1.78 mmol) in CHCl\(_3\) (15 mL) was added PTSA (31 mg, 0.178 mmol) at 0 °C. The mixture was allowed to warm to room temperature and stirred until complete consumption of the starting material (0.5 h). Vacuum was applied to remove the solvent before Et\(_3\)N (5 mL) was added. After stirring for 5 min, methanol (30 mL) was added and the mixture stirred overnight at room temperature. The crude product was purified by column chromatography.

Yellow oil (0.41 g, 89% yield), \(R_f = 0.42\) (1:1 hexanes/ AcOEt). \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\): 4.92–4.87 (m, 1H, OCH\(_2\)CO), 4.51–4.50 (m, 1H, OCHO), 3.88–3.82 (m, 1H, CH\(_2\)O), 3.75–3.71 (m, 1H, CH\(_2\)O), 3.68 (s, 3H, CH\(_3\)), 3.56–3.50 (m, 1H, CH\(_2\)O), 3.42–3.39 (m, 1H, CH\(_2\)O), 3.24–3.31 (m, 1H, CH\(_2\)CH\(_3\)), 2.62–2.54 (m, 1H, CH\(_2\)CH\(_2\)CH\(_2\)), 1.74–1.44 (m, 6H, CH\(_2\)CH\(_2\)CH\(_2\)); \(^{13}\text{C}\{^1\text{H}\}\) NMR (100 MHz, CDCl\(_3\)) \(\delta\): 171.0, 156.9, 99.0, 98.9, 64.4, 64.3, 62.5, 62.4, 52.6, 41.6, 30.6, 27.9, 25.4, 19.6, 19.5; IR (cm\(^{-1}\))): 3481, 2950, 2873, 2852, 2657, 1756, 1738, 1734, 1628, 1456, 1436, 1367, 1354, 1201, 1134, 1034, 869, 814, 752, 740; MS (ESI): calculated for C\(_{12}\)H\(_{19}\)NO\(_5\) [M+H\(^+\)] 258.1341, found 258.1340.

Supporting Information

Electronic supplementary information (ESI) available: Complete experimental procedures and some of the spectroscopic techniques.

Acknowledgements
Financial supports from Beijing Normal University and the National Natural Science Foundation of China are acknowledged.

References

1. Nicolaou, K. C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc. 1988, 110, 4696.
2. Rychnovsky, S. D.; Griesegrabe, G.; Kim, J. J. Am. Chem. Soc. 1994, 116, 2621, and references therein.
3. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
4. Narasaka, K.; Pai, H.-C. Chem. Lett. 1980, 1415–1418;
5. Narasaka, K.; Pai, H.-C. Tetrahedron. 1984, 40, 2233.
6. Kathawala, F. G.; Prager, B.; Prasad, K.; Repic, O.; Shapiro, M. J.; Stabler, R. S.; Widler, L. Helv. Chim. Acta. 1986, 69, 803.
7. Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.
8. Chen, K.-M.; Gunderson, K. G.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Chem. Lett. 1987, 1923–1926;
9. Burova, S. A.; McDonald, F. E. J. Am. Chem. Soc. 2002, 124, 8188.
10. Walleser, P.; Brückner, R. Eur. J. Org. Chem. 2010, 4802.
11. Becerril-Jiménez, F.; Ward, D. E. Org. Lett. 2012, 14, 1648.
12. Saito, S.; Hasegawa, T.; Inaba, M.; Nishida, R.; Fujii, T.; Nomizu, S.; Moriwake, T. Chem. Lett. 1984, 1389.
13. Saito, S.; Nagao, Y.; Miyazaki, M.; Inaba, M.; Moriwake, T. Tetrahedron Lett. 1986, 27, 5249.
14. Saito, S.; Ishikawa, T.; Kuroda, A.; Koga, K.; Moriwake, T. *Tetrahedron*. 1992, 48, 4067.

15. Hamada, Y.; Yokokawa, F.; Kabeya, M.; Hatano, K.; Kurono, Y.; Shioiri, T. *Tetrahedron*. 1996, 52, 8297.

16. Sauret-Cladière, Jeminet, S.; G. *Tetrahedron: Asymmetry*. 1997, 8, 417.

17. Nakatani, S.; Ikura, M. Yamamoto, S.; Nishita, Y.; Itadani, S.; Habashita, H.; Sugiyama, T.; Ogawa, K.; Ohno, H.; Takahashi, K.; Nakai, H.; Toda, M. *Bioorg. Med. Chem*. 2006, 14, 5402.

18. Bode, M. L.; Gates, P. J.; Gebretnsae, S. Y.; Vleggaar, R. *Tetrahedron*. 2010, 66, 2026–2036;

19. Li, D.; Zhao, Y.; Ye, L.; Chen, C.; Zhang, J. *Synthesis*. 2010, 19, 3325.

20. Kitamura, M.; Ohkuma, T.; Takaya, H.; Noyori, R. *Tetrahedron Lett*. 1988, 29, 1555.

21. Shao, L.; Kawano, H.; Saburi, M.; Uchida, Y. *Tetrahedron*. 1993, 49, 1997.

22. Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. *Angew. Chem., Int. Ed*. 2004, 43, 320.

23. Qiu, L.; Wu, J.; Chan, S.; Au-Yeung, T.; Ji, T.-L.; Guo, J. R.; Pai, C.-C.; Zhou, Z.; Li, X.; Fan, Q.-H.; Chan, A. S. C. *Proc. Natl. Acad. Sci. USA*. 2004, 101, 5815.

24. Beck, G.; Jendralla, H.; Kesseler, K. *Synthesis*. 1995, 1014.

25. Nishiyama, A.; Horikawa, M.; Yasohara, Y.; Ueyama, N.; Inoue, K. *PCT Int. Appl*. 2001, WO 2001094337 A1.

26. Szpilman, A. M.; Cereghetti, D. M.; Wurtz, N. R.; Manthorpe, J. M.; Carreira, E. M. *Angew. Chem., Int. Ed*. 2008, 47, 4335.
27. Szpilman, A. M.; Cereghetti, D. M.; Manthorpe, J. M.; Wurtz, N. R.;
 Carreira, E. M. *Chem. Eur. J.* **2009**, *15*, 7117.
28. Fan, W.; Li, W.; Ma, X.; Tao, X.; Li, X.; Yao, Y.; Xie, X.; Zhang, Z. *J. Org.
 Chem.* **2011**, *76*, 9444.
29. Solladié, G.; Bauder, C.; Rossi, L. *J. Org. Chem.* **1995**, *60*, 7774.
30. Ghosh, A. K.; Lei, H. *J. Org. Chem.* **2000**, *65*, 4779.
31. Hubbs, J. L.; Heathcock, C. H. *J. Am. Chem. Soc.* **2003**, *125*, 12836.
32. Xu, S. *Chin. New Drugs J.* **2006**, *15*, 1913.
33. George, S.; Sudalai, A. *Tetrahedron Lett.* **2007**, *48*, 8544.
34. Bonini, C.; Campaniello, M.; Chiummiento, L.; Videtta, V. *Tetrahedron*
 2008, *64*, 8766.
35. Su, Y.; Xu, Y.; Han, J.; Zheng, J.; Qi, J.; Jiang, T.; Pan, X.; She, X. *J. Org.
 Chem.* **2009**, *74*, 2743.
36. Sawant, P.; Maier, M. E. *Tetrahedron* **2010**, *66*, 9738.
37. Xiong, F.; Li, J.; Chen, X.; Chen, W.; Chen, F. *Tetrahedron: Asymmetry*
 2014, *25*, 1205.
38. Brewer, P. L.; Butler, D. E.; Deering, C. F.; Le, T. V.; Millar, A.; Nanninga,
 T. N.; Roth, B. D. *Tetrahedron Lett.* **1992**, *33*, 2279.
39. Rádl, S. *Synth. Commun.* **2003**, *33*, 2275.
40. Wess, G.; Kesseler, K.; Baader, E.; Bartmann, W.; Beck, G.; Bergmann,
 A.; Jendralla, H.; Bock, K.; Holzstein, G.; Kleine, H.; Schnierer, M.
 Tetrahedron Lett. **1990**, *31*, 2545.
41. Reddy, M. S. N.; Reddy, B. K.; Reddy, C. K.; Kumar, M. K.; Rajan, S. T.;
 Reddy, M. S. *Orient. J. Chem.* **2008**, *24*, 167.
42. Gijsen, H. J. M.; Wong, C.-H. *J. Am. Chem. Soc.* **1994**, *116*, 8422.
43. Liu, J.; Hsu, C.-C.; Wong, C.-H. *Tetrahedron Lett.* **2004**, *45*, 2439.
44. Öhrlein, R.; Baisch, G. *Adv. Synth. Catal.* **2003**, *345*, 713.
45. Greenberg, W. A.; Varvak, A.; Hanson, S. R.; Wong, K.; Huang, H.; Chen, P.; Burk, M. J. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, *101*, 5788.
46. Müller, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 362.
47. Guo, Z.; Chen, Y.; Goswami, A.; Hanson, R. L.; Patel, R. N. *Tetrahedron: Asymmetry* **2006**, *17*, 1589.
48. Sun, F.; Xu, G.; Wu, J.; Yang, L. *Tetrahedron: Asymmetry* **2007**, *18*, 2454.
49. Dong, Li.; Geng, C.; Jiao, P. *J. Org. Chem.* **2015**, *80*, 10992.
50. Han, X.; Dong, L.; Geng, C.; Jiao, P. *Org. Lett.* **2015**, *17*, 3194.
51. Jiang, M.; Feng, L.; Feng, J.; Jiao, P. *Org. Lett.* **2017**, *19*, 2210.
52. Curran, D. P. *J. Am. Chem. Soc.* **1983**, *105*, 5826.
53. Song, Z.; Zhao, M.; Desmond, R.; Devine, P.; Tschaen, D. M.; Tillyer, R.; Frey, L.; Heid, R.; Xu, F.; Foster, B.; Li, J.; Reamer, R.; Volante, Grabowski, R.; U. H.; Dolling, E. J. J.; Reider, P. J.; Okada, S.; Kato, Y.; Mano, E. *J. Org. Chem.* **1999**, *64*, 9658.
54. Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. *J. Org. Chem.* **1999**, *64*, 2564.
55. Jiang, X.; Zhang, J.; Ma, S. *J. Am. Chem. Soc.*, **2016**, *138*, 8344–8347.
56. Kim, J.-I.; Lee, S.-K.; Jahng, Y. *Arch. Pharm. Res.* **1994**, *17*, 161.4
57. Hagiwara, H.; Kon-no, M.; Nakano, T.; Uda, H. *J. Chem. Soc. Perkin Trans.* **1994**, *1*, 2417.
58. Jefferies, P. R.; Gengo, P. J.; Watson, M. J.; Casida, J. E. *J. Med. Chem.* **1996**, *39*, 2339.
59. Karisalmi, K.; Koskinen, A. M. P. *Synthesis* **2004**, *1331*.
60. Tarur, V. R.; Sathe, D. G.; Rao, N. M.; Bhopalkar, R.; Mahajan, U. S. *PCT Int. Appl.* **2007**, WO 2007023503 A1.
61. Renata, H.; Zhou, Q.; Baran, P. S. *Science* **2013**, *339*, 59.

62. Renata, H.; Zhou, Q.; Dünstl, G.; Felding, J.; Merchant, R. R.; Yeh, C.-H.; Baran, P. S. *J. Am. Chem. Soc.* **2015**, *137*, 1330.

63. Labeeuw, O.; Roche, C.; Phansavath, P.; Genêt, J.-P. *Org. Lett.* **2007**, *9*, 105.

64. Roche, C.; Labeeuw, O.; Haddad, M.; Ayad, T.; Genêt, J.-P.; Ratovelomanana-Vidal, V.; Phansavath, P. *Eur. J. Org. Chem.* **2009**, *3977*.

65. Besse, P.; Ciblat, S.; Canet, J.-L.; Troin, Y.; Veschambre, H. *Tetrahedron: Asymmetry* **1999**, *10*, 2213.

66. Koide, K.; Finkelstein, J. M.; Ball, Z.; Verdine, G. L. *J. Am. Chem. Soc.* **2001**, *123*, 398.

67. Goswami, D.; Koli, M. R.; Chatterjee, S.; Chattopadhyay, S.; Sharma, A. *Org. Biomol. Chem.* **2017**, *15*, 3756.

68. Ma, X.; Diane, M.; Ralph, G.; Chen, C.; Biscoe, M. R. *Angew. Chem., Int. Ed.* **2017**, *56*, 12663.

69. Ganganna, B.; Srihari, P.; Yadav, J. S. *Tetrahedron Lett.* **2017**, *58*, 2685.

70. Ghosh, A. K.; Lei, H. *J. Org. Chem.* **2002**, *67*, 8783.

71. Das, S.; Goswami, R. K. *J. Org. Chem.* **2014**, *79*, 9778.

72. CCDC: 1826709.