Fast sparse fractal image compression

Jianji Wang1,2*, Pei Chen1,2, Bao Xi3, Jianyi Liu1,2, Yi Zhang4, Shujian Yu5

1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, Shaanxi, China, 2 National Engineering Laboratory for Visual Information Processing and Applications, Xi’an Jiaotong University, Xi’an, Shaanxi, China, 3 Institute of Automation, Chinese Academy of Science, Beijing, China, 4 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China, 5 Computational NeuroEngineering Laboratory, University of Florida, Gainesville, Florida, United States of America

* wangjianji@xjtu.edu.cn

Abstract

As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase of FIC is time-consuming. Second, the quality of the reconstructed images for some images which have low structure-similarity is usually unacceptable. Based on the absolute value of Pearson’s correlation coefficient (APCC), we had proposed an accelerating method to significantly speed up the encoding of FIC. In this paper, we make use of the sparse searching strategy to greatly improve the quality of the reconstructed images in FIC. We call it the sparse fractal image compression (SFIC). Furthermore, we combine both the APCC-based accelerating method and the sparse searching strategy to propose the fast sparse fractal image compression (FSFIC), which can effectively improve the two main bottlenecks of FIC. The experimental results show that the proposed algorithm greatly improves both the efficiency and effectiveness of FIC.

Introduction

Fractal image compression (FIC) is an image coding technology based on the local affine similarity of image structure. Since the original fractal image compression scheme was proposed by Barnsley and Jacquin [1, 2], FIC technology had demonstrated rapid development. Aside from the application as an image compression technology, FIC has been widely used in some other fields, such as image denoising [3, 4], image encryption [5, 6], image sharpening [7], and facial image recognition [8]. To date, FIC is still one of the research hotspots in image processing.

Although great progress had been made, FIC suffered from two important bottlenecks in the past two decades. One bottleneck is the overlong encoding time, and the other is that the image quality of the reconstructed images for some images with low structural similarity is usually unacceptable.

The overlong encoding time is an important problem of FIC, and most of the publications about FIC are focused on this topic [9–13]. Based on the fact that the affine similarity in FIC is
equivalent to Pearson’s absolute correlation [14, 15], we proposed the absolute value of Pearson’s correlation coefficient (APCC) -based accelerating algorithms [16], which significantly speed up the encoding phase of FIC while preserving the reconstructed image quality well. For example, the APCC-based method only takes 0.0766 seconds to encode a 512 × 512 image on a home computer with CPU I3–2100 and windows XP OS, and the peak signal to noise ratio (PSNR) of the reconstructed image only degrades about 0.3 to 0.4 dB than that of the baseline fractal image compression (BFIC).

The other main bottleneck FIC technology facing is the image quality problem. For some images which have less structure-similarity, the reconstructed image quality of FIC is usually unacceptable. Many researchers also made their efforts to improve the reconstructed image quality of FIC [17–20]. One natural method to improve image quality is to reduce the size of range blocks [17]. For example, when the size of the range blocks is partitioned as 4 × 4, the reconstructed image quality is better than that of the range size 8 × 8. Decreasing the step-length between two adjoining domain blocks is another method [2], which improves the reconstructed image quality by enlarging the domain pool. Besides, Tong and Pi proposed a hybrid fractal image compression scheme with linear predictive coding in 2003 [18], which yielded better compression quality at the same compression ratio. By integrating partitioned iterated function system and linear transforms, Nappi et al enhanced both subjective and objective image quality in 2007 [19]. Wang et al proposed a SSIM-based scheme in 2011 [20], in which the reconstructed image quality is more appropriate for human visual system (HVS).

Though many methods were proposed to improve the reconstructed image quality of FIC, there were still a lot of works left. For example, when the range size is getting smaller, the convergence of decoding becomes weak. Moreover, most of the schemes improve the image quality very little. Currently, the widely used method to improve the reconstructed image quality is the quadtree-based adaptive partitioned scheme [17]. The key idea of the quadtree FIC scheme is still to reduce the size of range blocks. Firstly, the original image is partitioned into some range blocks with larger size. If one range block can be well approximated by the iterated function systems (IFS), the encoding for the range block is implemented with the current size. If one range block cannot be well approximated, the range block will be partitioned into four smaller blocks, and the encoding phase goes on for these small blocks. An error-threshold needs to be set to judge whether a range block is well approximated.

The quadtree-based FIC scheme, though, can partly improve the reconstructed image quality, it has some fatal shortcomings. Firstly, the original image needs to be partitioned into some range blocks with different sizes in the quadtree scheme, which means that we also need to construct several domain pools with different sizes. Therefore, the quadtree scheme further increase the encoding time of FIC. Secondly, if the number of layers in quadtree scheme is k, the side length of the range blocks in the first layer must be divided exactly by 2^{k−1}. Hence, the adaptability of partition in quadtree scheme is weak. Thirdly, because it is the key idea of quadtree scheme to reduce the block size, the convergence problem is still existed in the quadtree-based FIC scheme.

In this paper, we apply the thinking of sparse coding [21, 22] into FIC technology to propose a sparse fractal image compression (SFIC) scheme, in which the matching process between the range blocks and the domain blocks is performed by the idea of sparse coding instead of the idea of vector quantization. The proposed SFIC scheme can greatly improve the reconstructed image quality of FIC, and it also can effectively overcome the three main shortcomings of the quadtree scheme. Furthermore, because the domain blocks in SFIC are all kept the same size, the proposed SFIC scheme can be perfectly combined with the APCC-based FIC accelerating scheme. The combined scheme is an efficient and effective FIC scheme, and we call it the fast sparse fractal image compression (FSFIC).
The rest of the paper is structured as following. In Section II, we briefly introduce sparse coding and the APCC-based FIC scheme. We analyze the main cause of the low reconstructed image quality in FIC and present the sparse fractal image compression scheme in Section III. The fast sparse fractal image compression scheme is proposed in Section IV. The experiment results and experiment analysis are given in Section V. Finally, we draw the conclusions in Section VI.

Sparse coding and APCC-based FIC

In this paper, we will apply the thinking of sparse coding into FIC, then combine the sparse fractal image compression scheme and the APCC-based FIC scheme to improve both the efficiency and the reconstructed image quality of FIC.

Sparse coding

Sparse coding (SC) is an important tool in various fields such as pattern recognition [23, 24] and classification [25–29]. It is a bionic image compression method proposed by Olshausen and Field, which mainly simulates the visual processing of the simple cells in mammalian visual cortex. In SC, the image blocks which are used to encode other blocks are called the “basis”. Many dictionary learning technologies had been proposed to train the basis set for different questions [27–30]. Suppose we have an overcomplete basis set \(V = \{v_1, v_2, \ldots, v_n\} \) in which each \(v_i \) is an image block with size \(B \times B \), \(i = 1, 2, \ldots, n \). The word “overcomplete” means that the number of bases in the basis set is much larger than \(m = B \times B \). If all the bases in the overcomplete basis set are zero-meaned, then for an image block \(R \) with the same size, the sparse coding approximates \(R \) by a linear combination of the bases as following:

\[
R \approx \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n + \mu_R 1
\]

where \(\mu_R \) is the mean of \(R \), \(\lambda_i \) is the affine parameter of \(v_i \) for \(R \), \(i = 1, 2, \ldots, n \), and \(1 \) is the block with all ones. In SC, only a few of the affine parameters \(\lambda_i \) are non-zero.

When the basis set is given, it is the most important to find these bases with non-zero affine parameters for a block \(R \) to be encoded. Matching pursuit (MP) [31] and orthogonal matching pursuit (OMP) [32] are two commonly used solutions.

Generally, an error threshold is set in MP. For a zero-meaned block \(R \), MP firstly searches a basis \(v_i \) from the basis set to minimize the mean square error (MSE) between the target block \(R \) and \(\lambda_i v_i \), in which \(\lambda_i \) is the affine parameter computed by the least square method. If the value of MSE\((R - \lambda_i v_i)\) is smaller than the error threshold, \(R \approx \lambda_i v_i \). If not, MP takes the residual \(R - \lambda_i v_i \) as the new target block and go on. Finally, when the l-2 norm of the residual is smaller than the given threshold, MP stops and the block \(R \) is approximated by the addition of all the linear parts. If block \(R \) is not zero-meaned, it needs only add \(\mu_R 1 \) in the linear parts.

OMP is a modified MP algorithm. In each step of OMP, the residual is maintained full orthogonality with the former linear parts. Therefore, OMP has better convergence than MP.

APCC-based FIC scheme

According to the fact that the self-similarity in fractal image compression is Pearson’s absolute correlation, we proposed an APCC-based FIC scheme in 2013 [16].

The first step of the APCC-based scheme is the 3-class method proposed by Fisher [33], which we have proved to be an APCC-based classification method.

In Fisher’s 3-class method, a square block \(D \) is partitioned into four square sub-blocks, the upper-left square block, the upper-right square block, the lower-left square block, and the lower-right square block. For eight transformations [34]
T_0: Identity
T_1: Orthogonal reflection about mid-vertical axis
T_2: Orthogonal reflection about mid-horizontal axis
T_3: Orthogonal reflection about first diagonal
T_4: Orthogonal reflection about second diagonal
T_5: Rotation around center of block, through $+90^\circ$
T_6: Rotation around center of block, through $+180^\circ$
T_7: Rotation around center of block, through $+270^\circ$.

If the luminance sums of the four square sub-blocks vary each other, then there is only one block in $T_0(D)$, $T_1(D)$, $T_2(D)$, $T_3(D)$ belonging to one of the following three classes:

Class1: \[a_1 \geq a_2 \geq a_3 \geq a_4 \]
Class2: \[a_1 \geq a_2 \geq a_4 \geq a_3 \] \hspace{1cm} (2)
Class3: \[a_1 \geq a_4 \geq a_2 \geq a_3 \]

where a_1, a_2, a_3, and a_4 are the luminance sums of the four square sub-blocks in this transformed block, respectively.

According to Fisher’s 3-class method, the range blocks and the domain blocks are classified into 3 classes, then the matching blocks can be searched in the same class.

In the second step of APCC-based FIC scheme, the domain blocks in each class are sorted by the absolute values of Pearson’s correlation coefficients between these domain blocks and an offline-trained block B. For a range block R, if the absolute value of Pearson’s correlation coefficient between R and B is $|r_{RB}|$, we can then search the matching domain block for R in a small domain block set in which the absolute values of Pearson’s correlation coefficients between these domain blocks and B is close to $|r_{RB}|$.

In BFIC, the eight transformed blocks from one partitioned domain block by the eight transformations T_0, T_1, \cdots, T_7 are all included in the domain pool. However, in the APCC-based scheme, only one transformed block is included. Therefore, the number of domain blocks in the APCC-based scheme is only one eighth of that in BFIC. Block classification and block sorting also greatly reduces the encoding time. As a whole, the APCC-based FIC scheme significantly speeds up encoding in FIC.

Sparse fractal image compression

Low quality of the reconstructed images is one of the main bottlenecks in FIC. In this section, we try to find a solution for this question.

Problem analysis

In FIC, the range blocks are taken as the blocks to be encoded, and the domain blocks are taken as the codewords. The matching process between the range blocks and domain blocks is, in fact, the searching strategy in vector quantization. For each range block, the matching domain block is searched in all the domain blocks. Then a question appears that if the domain blocks of an image cannot approximate the range blocks well, the quality of the reconstructed image is hard to meet the requirements.

The methods, such as enlarging the domain pooling by decreasing the step-length between two adjoining domain blocks, only improve little of the reconstructed image quality. They are not the essential solution of this question.
By further analysis of the FIC technology, we find that the key point of the image quality problem in FIC is the “dimension”. Suppose the size of the range block is $B \times B$, then the dimension of the range block is $m = B \times B$. In FIC, if the matching domain block for the range block R is D, R is then approximated by $sD + o1$, where s and o are the affine scalar parameters computed by the least square method, and 1 is the block with all ones.

Clearly, each m-dimensional range block is only expressed by the two vectors D and 1 in FIC. It is known that m linearly independent vectors can losslessly express one m-dimensional target vector. Hence, the dimension is the key factor to improve the reconstructed image quality. From the view of dimension, there are two main methods. It is the first method to reduce the dimension of range block because a vector with lower dimension can be expressed better by two vectors. This method can be accomplished by reducing the partitioned size of range blocks. Actually, the quadtree scheme is one of its concrete models. It is the second method to approximate a range blocks with more domain blocks. Here, we will take the second method into consideration.

The method

In the baseline fractal image compression, the searching strategy takes use of the idea of vector quantization. Vector quantization approximates a vector by only one codeword and a luminance offset. To approximate a vector with more than one codeword, we need use the searching strategy of sparse coding instead of vector quantization.

As a virtual codebook, the domain pool of FIC usually includes a large number of domain blocks, which can be taken as an overcomplete basis set in sparse coding. Then the matching process between the range blocks and the domain blocks is to search the corresponding basis or bases in domain pool for each range block. Hence, the searching strategy of sparse coding can be directly applied in FIC. We call the novel fractal image compression scheme with the searching strategy of sparse coding the sparse fractal image compression (SFIC). Compared with BFIC, SFIC can code a range block with more than one domain block.

In SFIC, the partition of the original image is kept the same as BFIC. Suppose the size of the range blocks is $B \times B$, the size of the original domain blocks is $2B \times 2B$. Then all the range blocks are constructed the range pool. Subsequently, all the original domain blocks are contracted into size $B \times B$ to keep the same size as the range blocks, and the eight transformations T_0, T_1, \cdots, T_7 are applied to the domain blocks with size $B \times B$ to construct the domain pool. In SFIC, we take the domain pool as the overcomplete basis set in sparse coding, which is only used during encoding but not during the decoding process.

After the range pool and the domain pool are constructed, we find some blocks D_i in the domain pool by the means of MP or OMP for each range block. Suppose k blocks D_i in the domain pool are chosen for each range block, $i = 1, 2, \cdots, k$, and the linear coefficients for each domain block are s_1, s_2, \cdots, s_k, respectively. Because the range block R and the domain blocks D_i are not zero-meaned, we need use the block 1 to eliminate these means. Then we have

\[
R \approx s_1D_1 + s_2D_2 + \cdots + s_kD_k + o1
\]

\[
o = \mu_R - (s_1\mu_{D_1} + s_2\mu_{D_2} + \cdots + s_k\mu_{D_k}),
\]

where μ_R and μ_{D_i} are the means of R and D_i, respectively, $i = 1, 2, \cdots, k$.

Bilinear sparse fractal image compression (BSFIC) with $k = 2$ in Eq (3) is one of the simplest forms of SFIC. In BSFIC, each range block is approximated by two domain blocks, and the coefficients of the domain blocks can be computed by the bilinear vector quantization [35]. The reconstructed images of 512×512 Lena with range size 8×8 are shown in Fig 1 for BFIC.
scheme and BSFIC scheme, respectively. More comparisons of the reconstructed image quality between BFIC scheme and BSFIC scheme are given in Table 1, from which we can see the BSFIC scheme improves the quality of the reconstructed images with 2.38 dB in average. The 13 test images with size 512 × 512 are aerial, baboon, boat, bridge, couple, F16, goldhill, house, Lena, man, milkdrop, pepper, and sailboat, respectively.

The storage of SFIC is similar as the storage of BFIC. For the block \(R \), the storage of the structure expressed in Eq (3) should include the indexes of the blocks \(D_i \) in the domain pool and their linear coefficients. For example,

\[
(s_1, \text{index}(D_1), s_2, \text{index}(D_2), \ldots, s_k, \text{index}(D_k), o),
\]

where \(\text{index}(D_i) \) is the index of \(D_i \) in the domain pool.

![Fig 1. The reconstructed images of 512 × 512 Lena with range size 8 × 8 for BFIC scheme and BSFIC scheme, respectively.](https://doi.org/10.1371/journal.pone.0184408.g001)

Table 1. PSNR/dB of the reconstructed images in BFIC scheme and BSFIC scheme.

Images	BFIC	BSFIC	Images	BFIC	BSFIC
aerial	24.21	27.05	house	27.53	30.27
baboon	22.39	24.07	Lena	32.20	35.43
boat	27.85	30.52	man	28.95	31.60
bridge	24.60	26.68	milkdrop	36.79	40.28
couple	27.92	29.39	pepper	31.78	33.83
F16	28.04	29.22	sailboat	27.14	29.33
goldhill	30.06	32.73			

Average: 28.42 dB 30.80 dB

https://doi.org/10.1371/journal.pone.0184408.t001
In SFIC, the storage of each range block \(R \) includes \(k \) affine coefficients \(s_1, s_2, \ldots, s_k \), \(k \) indexes and an offset \(o \). If the space occupied by each affine coefficient is \(p \), the space occupied by each index is \(q \), the space occupied by the offset is \(t \), and the space occupied by each pixel in the original image is \(l \), then the compression ratio of SFIC is

\[
r = \frac{B^2l}{k(p + q) + t}.
\]

The compression ratio of BFIC is the case of \(k = 1 \) in Eq (4).

Adaptive sparse fractal image compression

In quadtree FIC scheme, it can be adaptively decided whether a range block needs to be further partitioned by the error threshold. If a range block has been approximate well with the current size, it does not need the further partition. If the error is still larger than the error threshold, the range block needs to be partitioned into the smaller size.

In SFIC, we can also set a threshold \(e \) to determine how many domain blocks are needed to approximate a range block. For the range block \(R \), we firstly find the matching domain block \(D_1 \) and the corresponding linear transformation \(s_1D_1 + o_1 \). Let \(E_1 = R - (s_1D_1 + o_1) \), if \(\|E_1\|_2 \leq e \) where \(\|\cdot\|_2 \) is the two-norm, we approximate \(R \) by only one domain block. If \(\|E_1\|_2 > e \), we encode \(R \) by more domain blocks until there is one \(E_k = R - (s_1D_1 + s_2D_2 + \cdots + s_kD_k + o_k) \) so that \(\|E_k\|_2 \leq e \). In practice, we also set a maximum value \(k_1 \) for \(k \). When \(k > k_1 \), the encoding process stops.

There is a little difference of the storage between the adaptive sparse fractal image compression (ASFIC) and SFIC. In ASFIC, we need to store the number of domain blocks for each range block as following:

\[
(k, s_1, \text{index}(D_1), s_2, \text{index}(D_2), \ldots, s_k, \text{index}(D_k), o)
\]

Here \(k \leq k_1 \). The value of \(k \) may be different for different range blocks in ASFIC.

If the space occupied by storing the number of domain blocks is \(a \), and the others are kept the same as that in SFIC, then the compression rate for the range block \(R \) in ASFIC is

\[
r = \frac{B^2l}{k(p + q) + t + a}.
\]

The compression ratio of a range block in SFIC is a little higher than ASFIC when the value of \(k \) is kept the same according to Eqs (4) and (5). However, the average number of domain blocks to approximate each range blocks in ASFIC is usually much smaller than the fixed value of \(k \) in SFIC. Hence, the compression rate of ASFIC for an image is usually much higher than that of SFIC. Generally, we choose ASFIC to encode an image rather than SFIC. Therefore, we still call the adaptive sparse fractal image compression (ASFIC) as the sparse fractal image compression (SFIC) for short.

Fast sparse fractal image compression

Another important problem in fractal image compression is the over-long encoding time. In SFIC, we use the idea of sparse coding instead of the idea of vector quantization to approximate the range blocks, which further increases the encoding time of FIC. In this section, we will propose a fast sparse fractal image compression (FSFIC) scheme by combining the APCC-based FIC scheme and the SFIC scheme. The relation between BFIC, APCC-based FIC, SFIC/ASFIC, and FSFIC is shown in Fig 2.
The method

Even if one range block is approximated by only one domain block in FIC, the encoding process still suffers from high time complexity. In SFIC, one range block is approximated by more domain blocks, which further decreases the encoding efficiency. Hence, if we have no an effective accelerating method, SFIC will be meaningless.

By analyzing the APCC-based FIC scheme and the sparse fractal image compression scheme, we find that the APCC-based FIC scheme is really a customized method for SFIC. The key steps in the APCC-based FIC scheme is to classify the domain pool according to Fisher’s 3-class method and sort the domain blocks according to the absolute value of Pearson’s correlation coefficients. In SFIC, once the domain pool is constructed, the domain blocks in the domain pool will be totally determined, and the domain blocks are all kept the same size. Hence, the domain pool in SFIC needs to be classified and sorted only once. Then the classified and sorted domain blocks can be directly used to speed up encoding. Hence, we have the steps of the fast sparse fractal image compression (FSFIC) as follows:

a. Partition. The original image is partitioned with size $B \times B$ to generate the range blocks, and is partitioned with size $2B \times 2B$ to generate the original domain blocks. Then the original domain blocks are shrunk to kept the same size as the range blocks by averaging four pixels to one pixel.

b. Classification. By Fisher’s 3-class method, all the shrunk domain blocks are classified into 3 domain classes. For each shrunk domain block D, the transformation T_D which transforms D into the current class is also saved.

c. Sorting. For each domain class, the domain blocks are sorted by the absolute value of correlation coefficients between these domain blocks and an offline-trained preset block B for this class. Then we obtain three sorted domain classes.

d. Searching. For each range block R, we find the class of R and $-R$, and find the transformations T_R and T_{-R} which transform R and $-R$ into the same class, respectively. Then two absolute value of Pearson’s correlation coefficients $|r_{T_R(R)}B|$ and $|r_{T_{-R}(-R)}B|$ are computed, which are the APCC between $T_R(R)$ and B, and the APCC between $T_{-R}(-R)$ and B, respectively. Subsequently, a small domain set in the domain class is chosen with k_2 domain blocks in which the APCCs between the domain blocks and the preset block B are close to $|r_{T_R(R)}B|$. Then the matching block D_R for $T_R(R)$ is searched from this small domain set. By the same method, the matching domain block D_{-R} for $T_{-R}(-R)$ is also obtained. Then $|r_{T_R(R)}D_R|$ and $|r_{T_{-R}(-R)}D_{-R}|$ are computed. The larger of them is corresponding to the matching domain block for the range block R in this class. Without loss of generality, we suppose that $T_R(R)$ and D_R are the range block and the domain block corresponding to the best matching pair in this class, and D is the untransformed shrunk domain block of D_R. Then the final matching domain block for the range block R is $T_R^{-1}T_D(D)$. By the least square method two parameters
s and o can be computed so that the 2-norm of the residual \(E = R - (s T^{-1}_R T_D(D) + o1) \) gets the minimum value.

c. **MP or OMP process.** If \(\|E\|_2 \leq e \) or the number of the domain blocks reaches the maximum value \(k_1 \), the encoding of \(R \) is completed. If not, we take \(E \) as \(R \) and repeat the step \(d \). In OMP, the residual needs to be maintained full orthogonality with the former linear parts. Hence, the linear coefficients of the former linear parts needs to be updated in OMP.

f. **Representation.** The linear combination of all the linear parts are used to approximate the block \(R \), in which the affine coefficients for each domain block is the coefficient \(s \) computed in step \(d \) for MP method or updated in step \(e \) for OMP method, and the offset \(o \) can be computed according to Eq (3).

The storage

The storage of SFIC includes the linear coefficients and the indexes of the domain blocks. According to the steps \(d-f \) of the FSFIC scheme, a range block \(R \) can be finally approximated as following:

\[
R \approx s_1 T^{-1}_{R_1} T_{D_1}(D_1) + s_2 T^{-1}_{R_2} T_{D_2}(D_2) + \cdots + s_k T^{-1}_{R_k} T_{D_k}(D_k) + o1
\]

where \(R_i \) is the residual of the \(i \)th iteration in the MP or OMP process, \(R_1 = R \), and \(T_R \) and \(T_D \) are the transformations which transform \(R_i \) and \(D_i \) into their classes, respectively, \(i = 1, 2, \cdots, k \).

According to Eq (6), the storage of FSFIC includes not only the linear coefficients and the indexes of the domain blocks, but also these transformations. We have known that \(T_R, T_D \in \{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}\} \). According to APCC-based FIC scheme, \(T^{j-1}_{j} T_{k} \in \{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}\}, j = 0, 1, \cdots, 7, k = 0, 1, \cdots, 7 \). Hence, all the 64 cases of \(T^{j-1}_{j} T_{k} \) can be offline computed. When we store \(T^{-1}_{R} T_{D} \), we only need to store the corresponding transformation in \(\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}\} \).

In practise, if the domain pool in decoding only includes these untransformed shrunk domain blocks, we need to store both the transformation and index for each domain block. If the domain pool includes all the domain blocks transformed by the eight transformations as that in BFIC, we need only store the corresponding index in the domain pool for each domain block, which can be derived from the transformation and the index of the untransformed shrunk domain block.

Actually, for the above two different domain pool, although their methods of storage are different, the space occupied by storing the information for each domain block is kept the same. The space occupied by storing a transformation is only 3 bits because there are eight transformations. Suppose the number of the domain blocks in the untransformed domain pool is \(m \), then the number of the domain blocks in the transformed domain pool is \(8m \). Obviously, the space to store the transformation and the index of the untransformed domain block is the same as the space to store the index of the transformed domain block.

Experiment results and analysis

Some experiments are performed in this section to show the performance of the proposed FSFIC scheme. The demos are all implemented in the VC++6.0 environment, and the experimental data are collected from the computer with CPU i3-2100 and windows XP operating system. OMP method is used for the searching of FSFIC.
We use 13 bins to store each affine parameter s, and 15 bins to store each offset o in Eq (6). If 2^q is not less than the number of domain blocks and 2^{q-1} is less than the number of domain blocks, q bins is then used to store each index of domain blocks.

Parameter analysis in FSFIC

In FSFIC, the main parameters include the maximum number k_1 of the domain blocks to encode a range block, the number k_2 of the domain blocks in the selected small domain set in the searching step, and the error threshold e to determine how many domain blocks are needed for a range block.

Firstly, we discuss the impact of $k_1, k_2,$ and e on the reconstructed image quality, the compression ratio, and the encoding time, respectively.

a. Parameter k_1. In SFIC, k_1 is the key parameter to show the thinking of sparse coding. SFIC with $k_1 = 1$ is just the baseline FIC.

The actual number of domain blocks to encode a range block is decided not only by the maximum domain block number k_1, but also by the error threshold e. There are two conditions to stop the encoding process. One is that the l_2-norm of the residual is less than e, and the other is that the number of domain blocks in the linear combination to approximate the range block reaches k_1.

The impact of k_1 on the reconstructed image quality, the compression ratio, and the encoding time is shown in Fig 3 for three 512×512 images Lena, baboon, and pepper, respectively. The range size is 8×8, the parameter k_2 is set as the number of domain blocks in the domain pool, and the error threshold $e = 25$ so that the average pixel-based square error is less than 25.

We can see from Fig 3a that the values of PSNR of the reconstructed images for each image increase when the value of k_1 increases, which is one of the main reasons why we apply the thinking of sparse coding into the baseline FIC. It is also can be seen from Fig 3a that the incremental of PSNR value is gradually decreased when the value of k_1 increases. In practice, if the value of k_1 is too small, the image quality may not meet the requirements. However, too large value is also a bad choice because the marginal effect of the maximum value k_1 is gradually decreased. Hence, the value of k_1 should be properly set according to the actual demands.

![Fig 3. The relations of different values of k_1 with the reconstructed image quality, the compression ratio, and the encoding time for 512 × 512 images Lena, baboon, and pepper, respectively. The range size is 8×8, k_2 is the number of all the domain blocks in the domain pool, and the average pixel-based square error $e = 25$.](https://doi.org/10.1371/journal.pone.0184408.g003)
The curves of the compression ratio of images against k_1 are shown in Fig 3b for images Lena, baboon, and pepper, respectively. The compression ratio is also decreased when k_1 increases. Hence, when we encode an image in SFIC, we should find a balance in the reconstructed image quality and the compression rate.

In Fig 3c, the encoding time curves are given for three images Lena, baboon, and pepper with different values of k_1. Although here we set k_2 the number of domain blocks in the domain pool, the encoding speed is still much faster than the baseline FIC. We can also see that there is an approximate linear relation between the encoding time and k_1.

From Fig 3a–3c, k_1 has a big impact on the reconstructed image quality, the compression ratio, and the encoding time. Thus, k_1 is a key parameter in SFIC. We should pay more attention to carefully choose the value of k_1 to meet different requirements.

b. Parameter k_2. In the APCC-based FIC scheme, k_2 is the number of domain blocks in the selected domain set to encoding the corresponding range block. The main function to select the domain set is to speed up the encoding process. A small k_2 can significantly accelerate the encoding of FIC while preserving the reconstructed image quality well. In SFIC, k_2 also has its impact on the reconstructed image quality, the compression ratio, and the encoding time, as shown in Fig 4, in which $k_1 = 4$ and the error threshold $e = 25$ so that the average pixel-based square error is less than 25.

The relations between k_2 and the reconstructed image quality for images Lena, baboon, and pepper are shown in Fig 4a, respectively. When the value of k_2 is selected below 100, the PSNR values of the reconstructed images get a big change. When the value of k_2 is over 300, the PSNR values of the reconstructed images almost keep invariable. Therefore, we can choose k_2 in the interval $[100, 300]$ to speed up the encoding while preserving the reconstructed image quality well.

The shape of the curves of the compression ratio against k_2 given in Fig 4b is similar as the curves of the reconstructed image quality against k_2. In the interval $[0, 100]$ of the value of k_2, the compression ratio changes largely. In the interval $[300, +\infty]$ of k_2, the compression ratio keep almost invariable. As we can see from Fig 4a and 4b, both the compression ratio and the reconstructed image quality increase when the value of k_2 increases.

Fig 4. The relations of different values of k_2 with the reconstructed image quality, the compression ratio, and the encoding time for 512×512 images Lena, baboon, and pepper, respectively. The range size is 8×8, $k_1 = 4$, and the average pixel-based square error $e = 25$.

https://doi.org/10.1371/journal.pone.0184408.g004
Like the relation between the encoding time and k_1, the encoding time and k_2 also keep an approximate linear relation, as shown in Fig 4c.

According to these discussions about k_2, we should choose k_2 properly to reach an optimum result. For example, the interval $[100, 300]$ is a good choice for k_2 to encode a 512×512 image. The encoding time in Fig 4c is less than 0.2 seconds with $k_1 = 4$ and $k_2 = 100$, and is about 0.2 to 0.4 seconds with $k_1 = 4$ and $k_2 = 300$.

c. Parameter e. The error threshold e is used to decide the actual number of domain blocks to approximate one range block. If the l_2 norm of the residual is less than e for one range block, the encoding stops.

The impact of e on the reconstructed image quality, the compression ratio, and the encoding time is shown in Fig 5, respectively, with $k_1 = 4$ and k_2 the number of all the domain blocks in the domain pool.

A small e can improve the reconstructed image quality according to Fig 5a. However, small e greatly increases the encoding time and decreases the compression ratio according to Fig 5b and 5c. Hence, we have to choose the value of e to make an acceptable compromise in the reconstructed image quality, the compression ratio, and the encoding time. For example, we set the average pixel-based square error as 25 in Figs 3 and 4.

d. Parameters k_1 and e. Here we fix k_2 as the number of all the domain blocks in the domain pool to construct the optimum combinations of the reconstructed image quality and the compression ratios for 512×512 images Lena, baboon, and pepper with range size 8×8, as shown in Fig 6.

In Fig 6a, the optimum curves of PSNR against the compression ratio are given for images Lena, baboon, and pepper, respectively. When the compression ratio is 10, the values of PSNR of the reconstructed images Lena, baboon, and pepper are 33.97 dB, 22.83 dB, and 33.20 dB, respectively. When the compression ratio is 5, the values of PSNR of the reconstructed images Lena, baboon, and pepper are 37.03 dB, 25.13 dB, and 35.16 dB, respectively.

Compared with Fig 6a and Table 1, we can see that the bilinear sparse fractal image compression (BSFIC) and FSFIC have their own advantages in the reconstructed image quality. In
the BSFIC scheme, the compression ratio is always 7.6418 when these parameters are occupied the same space as we introduced in the front of this section. The values of PSNR in BSFIC are 35.43 dB, 24.07 dB, and 33.83 dB for three 512×512 images Lena, baboon, and pepper, respectively. When the compression ratio is also 7.6418 in the proposed FSFIC schemes, the corresponding values of PSNR in the FSFIC scheme are 35.40 dB, 23.59 dB, and 34.18 dB, respectively. However, the encoding time in the BSFIC scheme is far more than the encoding time in the FSFIC scheme because each pair of domain blocks must be considered for each range block. In our experiment environment, the time to encode one 512×512 images with range size 8×8 in the BSFIC is over 3 minutes.

According to Fig 6b, in the optimum cases of the combinations of the reconstructed image quality and the compression ratio, \(k_1 \) gradually decreases when the compression ratio increases, which is well fit with our intuition. For other images, Fig 6b also offers a reference for how to properly choose the corresponding values of \(k_1 \) with different compression ratios.

Efficiency analysis of FSFIC

Efficient encoding method plays an important role in the SFIC scheme. The fast SFIC scheme proposed in this paper takes use of the APCC-based classification and sorting method to accelerate the encoding process of SFIC. We had shown that the APCC-based classification and sorting method can significantly speed up FIC [16]. Here we discuss the performance of the APCC-based classification and sorting method on SFIC.

We implemented several existing accelerating methods with c++ in the SFIC scheme, including the hog feature-based method [36], the polar angle and the normalized root mean square error (NRMS)-based method [37], and the APCC-based only sorting method [16]. The comparisons among these SFIC schemes with different accelerating technologies are given in Fig 7.

From Fig 7 we can see that when the encoding time is about 0.75s, the PSNR values of the decoded images are about 35.5dB in the only-sorting scheme and the Kovacs’s scheme.
However, in the proposed FSFIC scheme, it only spend about 0.3s to achieve the decoded images whose PSNR value is about 35.5dB. Some other methods, such as the hog feature-based method, even cannot encode the 512×512 image Lena with sparse number 4 within 1.5s. Therefore, the proposed FSFIC scheme is an efficient SFIC technology.

Quadtree-based scheme and FSFIC scheme

From the above experiments we can see that the proposed FSFIC scheme can greatly improve the reconstructed image quality compared with the BFIC scheme. Moreover, the proposed scheme is much more efficient than the BFIC scheme. Next we compare the proposed FSFIC scheme with the quadtree-based FIC scheme.

Both the quadtree-based FIC scheme and the proposed FSFIC scheme can improve the reconstructed image quality in FIC. The former improves the reconstructed image quality by decreasing the range size, and the later improves the reconstructed image quality by increasing the number of domain blocks to encode a range block. However, three important limitations exist in the quadtree-based FIC scheme. They are the overlong time in encoding, the limitation of the side length of the range blocks, and the low convergence of decoding. Below we will discussion these shortcomings of the quadtree-based FIC scheme and show the performance of the proposed FSFIC scheme when it faces the same problems.

Encoding time. In the quadtree-based FIC scheme, we have to construct several domain pools with different sizes to encode the range blocks with different sizes. Furthermore, in the encoding process of the quadtree-based FIC scheme, if a range block is finally encoded by a
domain pool with a small size, the range block has definitely been encoded by all the domain pools with larger sizes, and all the works for this range block performed on these domain pools with larger sizes are discarded. Hence, the quadtree-based FIC scheme usually takes much more time than the baseline FIC to encode an image. In our experimental environment, it spends 18.3 seconds to encode the 512×512 image Lena with the largest range size 16×16, the smallest range size 4×4, and the average pixel-based square error threshold 25.

The proposed FSFIC scheme can encode an image with high efficiency because the APCC-based speedup strategy is used, which can significantly accelerate the encoding process while preserving the reconstructed image quality well. Moreover, the MP or OMP-based method can be perfectly combined with the APCC-based strategy. The actual encoding time has been provided in Figs 3c, 4c and 5c for 512×512 images Lena, baboon, and pepper, respectively, with the range size 8×8 in the proposed FSFIC scheme, which is much less than that in the quadtree-based FIC scheme.

If the number of layers in the quadtree scheme is k, the side length of the range blocks in the first layer must be divided exactly by 2^{k-1} and the side length of the domain blocks in the first layer must be divided exactly by 2^k. However, in the proposed SFIC scheme, the side length of the range blocks can be set as any positive even numbers. The positive odd numbers cannot be used as the range size because each range block needs to be partitioned into four small square blocks in the Fisher’s 3-class method. Hence, from the views of range size, SFIC is more adaptable than the quadtree-based FIC scheme.

Convergence. Although we can set the absolute value of the affine coefficients less than 1 to guarantee the convergence of the iterated function systems (IFS), it may seriously degrade the quality of the reconstructed images by intervening the value of the affine coefficients. Hence, the convergence of the reconstructed images without setting the absolute value of each affine coefficient less than 1 is a very important feature in FIC.

In BFIC, the convergence of IFS weakens with decreasing the range size. When the range size is set as 16×16, almost all the IFSs for different images are convergent. However, the convergence of IFSs for lots of images becomes weaker when the size of the range blocks is 4×4 or 2×2. The same problem appears in the quadtree-based FIC scheme because the quadtree FIC is, in fact, an adaptive BFIC method. If the minimum range size is 4×4 or 2×2 in the quadtree-based FIC scheme, the reconstructed images for lots of images are not well convergent.

Several examples are provided in Fig 8 in which the reconstructed images in the quadtree-based FIC scheme have some convergence problems but they are all well convergent in the proposed SFIC scheme. The experiments show that the proposed SFIC scheme can greatly improve the convergence of the reconstructed images. More experiments show that the convergent reconstructed images in the quadtree-based FIC scheme are also convergent in the proposed SFIC scheme.

Adaptability of partition. If the number of layers in the quadtree scheme is k, the side length of the range blocks in the first layer must be divided exactly by 2^{k-1} and the side length of the domain blocks in the first layer must be divided exactly by 2^k. However, in the proposed SFIC scheme, the side length of the range blocks can be set as any positive even numbers. The positive odd numbers cannot be used as the range size because each range block needs to be partitioned into four small square blocks in the Fisher’s 3-class method. Hence, from the views of block size, SFIC is more adaptable than the quadtree-based FIC scheme.

According to these discussions, the proposed FSFIC scheme can effectively overcome three main disadvantages existed in the quadtree-based scheme.
Conclusion

The two main problems facing fractal image compression (FIC) technology are the over-long encoding time and the poor reconstructed image quality for some images with low affine similarity. Based on the affine similarity in FIC is equivalent to Pearson’s absolute correlation, we proposed the APCC-based FIC scheme in 2013, which significantly speed up encoding in FIC while preserving the reconstructed image quality of BFIC well. In this paper, we proposed a sparse fractal image compression (SFIC) scheme to approximate each range block by more domain blocks, which can greatly improve the reconstructed images quality in FIC and greatly enhance the convergence of the iterated function system. Moreover, the APCC-based FIC scheme can be perfectly combined into the SFIC scheme. Finally, the fast sparse fractal image compression (FSFIC) scheme was proposed. The experimental results shows that the proposed SFIC scheme can not only significantly speed up encoding, but also greatly improve the reconstructed images quality in FIC.
Author Contributions

Conceptualization: Jianji Wang.
Funding acquisition: Jianji Wang.
Investigation: Jianji Wang, Jianyi Liu.
Methodology: Jianji Wang.
Project administration: Jianji Wang, Jianyi Liu.
Software: Jianji Wang, Pei Chen, Bao Xi, Yi Zhang, Shujian Yu.
Writing – original draft: Jianji Wang, Yi Zhang, Shujian Yu.
Writing – review & editing: Jianji Wang, Pei Chen.

References

1. Barnsley MF, Jacquin AE. Application of recurrent iterated function systems to images. Proc SPIE. 1988 Oct; 1001:122–131. https://doi.org/10.1117/12.968945
2. Jacquin AE. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans Image Process. 1992 Jan; 1(1):18–30. https://doi.org/10.1109/83.128028 PMID: 18296137
3. Ghazel M, Freeman GH, Vrscay ER. Fractal image denoising. IEEE Trans Image Process. 2003 Dec; 12(12):1560–1578. https://doi.org/10.1109/TIP.2003.818038 PMID: 18244711
4. Ghazel M, Freeman GH, Vrscay ER. Fractal-wavelet image denoising revisited. IEEE Trans Image Process. 2006 Sep; 15(9):2669–2675. https://doi.org/10.1109/TIP.2006.877377 PMID: 16948311
5. Lin KT, Yeh SL. Encrypting image by assembling the fractal-image addition method and the binary encoding method. Optics Commun. 2012 May; 285(9):2335–2342. https://doi.org/10.1016/j.optcom.2012.01.028
6. Sun Y, Xu R, Chen L, Hu X. Image compression and encryption scheme using fractal dictionary and Julia set. IET Image Process. 2015 Mar; 9(3):173–183. https://doi.org/10.1049/iet-ipr.2014.0224
7. Wang J, Zheng N, Liu Y, Zhou G. Parameter analysis of fractal image compression and its applications in image sharpening and smoothing. Signal Process: Image Commun. 2013 Jul; 28(6):681–687.
8. Tang X, Qu C. Facial image recognition based on fractal image encoding. Bell Labs Technical Journal. 2010 Jun; 15(1):209–214. https://doi.org/10.1002/bltj.20433
9. Wohlbeg B, de Jager G. A review of the fractal image coding literature. IEEE Trans. Image Process. 1999 Dec; 8(12):1716–1729. https://doi.org/10.1109/83.806618 PMID: 18267449
10. Lu J, Ye Z, Zou Y. Huber fractal image coding based on a fitting plane. IEEE Trans. Image Process. 2013 Jan; 22(1):134–145. https://doi.org/10.1109/TIP.2012.2215619 PMID: 22949061
11. Sun Y, Xu R, Chen L, Kong R, Hu X. A novel fractal coding method based on MJ sets. PloS one. 2014 July; 9(7):e101697. https://doi.org/10.1371/journal.pone.0101697 PMID: 25010686
12. Nodehi A, Sulong G, Al-Rodhaan M, Al-Dhelaan A, Rehman A, Saba T. Intelligent fuzzy approach for fast fractal image compression. EURASIP J Advances Signal Process. 2014 Dec; 1:1–9.
13. Du S, Yan Y, Ma Y. Quantum-accelerated fractal image compression: an interdisciplinary approach. IEEE Signal Process Letters. 2015 Apr; 22(4):499–503. https://doi.org/10.1109/LSP.2014.2363689
14. Wang J, Lan X, Liu Y, Zheng N. Fractal image encoding with flexible classification sets. Chinese Sci Bull. 2014; 59(14):1597–1606. https://doi.org/10.1007/s11434-014-0226-5
15. He C, Xu X, Li G. Improvement of fast algorithm based on correlation coefficients for fractal image encoding. Computer Simulation. 2005; 12(4):60–63.
16. Wang J, Zheng N. A novel fractal image compression scheme with block classification and sorting based on Pearson’s correlation coefficient. IEEE Trans Image Process. 2013; 22(9):3690–3702. https://doi.org/10.1109/TIP.2013.2268977 PMID: 23797251
17. Fisher Y. Fractal image compression with quadtrees. Springer New York; 1995.
18. Tong CS, Pi M. Analysis of a hybrid fractal-predictive-coding compression scheme. Signal Process: Image Commun. 2003; 18(6):483–495.
19. Nappi M, Riccio D, Ricciardi S. TIFS: a hybrid scheme integrating partitioned iterated function system and linear transforms. IET Image Process. 2007 Dec; 1(4):363–372. https://doi.org/10.1049/iet-ipr:20070071
20. Wang J, Liu Y, Wei P, Tian Z, Li Y, Zheng N. Fractal image coding using SSIM. Proc ICIP. 2011 Sep;245–248.

21. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996 Jun; 381(6583):607–609. https://doi.org/10.1038/381607a0 PMID: 8637596

22. Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision research. 1997 Dec; 37(23):3311–3325. https://doi.org/10.1016/S0042-6989(97)00169-7 PMID: 9425546

23. Wang J, Lu C, Wang M, Li P, Yan S, Hu X. Robust face recognition via adaptive sparse representation. IEEE Trans Cybern. 2014 Dec; 44(12):2368–2378. https://doi.org/10.1109/TCYB.2014.2307067 PMID: 25415943

24. Zhang Z, Liu CL, Zhao MB. A sparse projection and low-rank recovery framework for handwriting representation and salient stroke feature extraction. ACM Trans Intell Syst Technol. 2015 Mar 11; 6(1):9. https://doi.org/10.1145/2601408

25. Ni B, Moulin P, Yan S. Order preserving sparse coding. IEEE Trans Pattern Anal. 2015 Aug; 37 (8):1615–1628. https://doi.org/10.1109/TPAMI.2014.2362935

26. Zhang Z, Li F, Zhao M, Zhang L, Yan S. Joint low-rank and sparse principal feature coding for enhanced robust representation and visual classification. IEEE Trans Image Process. 2016 Jun; 25(6):2429–2443. https://doi.org/10.1109/TIP.2016.2547180 PMID: 27046875

27. Zhang Z, Li F, Chow TW, Zhang L, Yan S. Sparse Codes Auto-Extractor for Classification: A Joint Embedding and Dictionary Learning Framework for Representation. IEEE Trans Signal Process. 2016 Jul; 64(14):3790–3805. https://doi.org/10.1109/TSP.2016.2550016

28. Jiang W, Zhang Z, Li F, Zhang L, Zhao M, Jin X. Joint label consistent dictionary learning and adaptive label prediction for semisupervised machine fault classification. IEEE Trans Indus Inform. 2016 Feb; 12(1):248–256. https://doi.org/10.1109/TII.2015.2496272

29. Li L, Li S, Fu Y. Learning low-rank and discriminative dictionary for image classification. Image Vision Comput. 2014 Oct 31; 32(10):814–823. https://doi.org/10.1016/j.imavis.2014.02.007

30. Li S, Shao M, Fu Y. Cross-View Projective Dictionary Learning for Person Re-Identification. In Proceed IJCAI. 2015 Jul 25(pp. 2155–2161).

31. Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process. 1993 Dec; 41(12):3397–3415. https://doi.org/10.1109/78.258082

32. Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. Proc IEEE asilomar Conf Signals System Computers. 1993;40–44.

33. Fisher Y, Jacobs EW, Boss RD. Fractal image compression using iterated transforms. Image and text compression. 1992; 176:35–61. https://doi.org/10.1007/978-1-4615-3596-6_2

34. Jacquin AE. Fractal Image Coding: A Review. Proceedings of the IEEE. 1993 Oct; 81(10):1451–1465. https://doi.org/10.1109/5.241507

35. Zhang Q, Li Z, Wang J. Bilinear vector quantization. Proc IEEE DSP/SPE. 2013;1–6.

36. Schwartz WR, Pedrini H. Improved fractal image compression based on robust feature descriptors. Int J Image Graph. 2011; 11(4):571–587. https://doi.org/10.1142/S0219467811004251

37. Kovács T. A fast classification based method for fractal image encoding. Image Vision Comput. 2008; 26(8):1129–1136. https://doi.org/10.1016/j.imavis.2007.12.008