Comprehensive Genome-Wide Analysis of the Catalase Enzyme Toolbox in Potato (*Solanum tuberosum* L.)

Rania Jbir Koubaa · Mariem Ayadi · Mohamed Najib Saidi · Safa Charfeddine · Radhia Gargouri-Bouzid · Oumèma Nouri-Ellouz

Received: 10 February 2022 / Accepted: 9 May 2022 / Published online: 9 July 2022 © The Author(s), under exclusive licence to European Association for Potato Research 2022

Abstract

As antioxidant enzymes, catalase (CAT) defends organisms from oxidative stress caused by excessive production of reactive oxygen species (ROS). These enzymes play important roles in miscellaneous biological processes. However, little is known about the CAT genes in *S. tuberosum* (StCAT) despite its essential economical rank in the world. So far, abiotic and biotic stresses severely hinder plant growth and development which affects the crop production and quality. To identify the possible roles of CAT genes especially under salt stress, a genome-wide analysis of CAT gene family has been performed in the potato plant. In this study, the StCAT gene’s structure, secondary and 3D protein structure, physicochemical properties, synteny analysis, phylogenetic tree and also expression profiling under various developmental and environmental cues were predicted using bioinformatics tools. The expression analysis by RT-PCR was performed upon a commercial potato cultivar. Three genes encoding StCAT that code for three proteins each of size 492 aa, interrupted by seven introns, have been identified in potatoes. StCAT proteins were found to be localized in the peroxisome which is judged as the main H₂O₂ cell production site during different processes. Many regulating cis-elements related to stress responses and plant hormones signaling were found in the promoter sequence of each gene. The analysis of motifs and phylogenetic trees showed that StCAT are closer to their homologous in *S. lycopersicum* and share a 41–95% identity with other plants’ CATs. Expression profiling revealed that StCAT1 is the constitutively expressive member; while StCAT2 and StCAT3 are the stress-responsive members.

Keywords Catalase · Expression profiling · Genome · Potato · Salt · Stress · Structure

Rania Jbir Koubaa and Mariem Ayadi contributed equally to this work.

Key Message

A genome-wide analysis of the catalase genes in *S. tuberosum* provides new informations that can help characterize the molecular mechanisms. It indicates that StCAT1 would be an interesting candidate for potato breeding technologies.
Introduction

The yield of a crop is influenced not only by genetic factors but also by environmental factors that could significantly affect crop growth by inducing morphological and physiological alterations in plants (Tuteja 2007). Abiotic and biotic stresses negatively influence survival, biomass production and crop yield (Hirayama and Shinozaki 2010).

In general, stress leads to the formation of radicals and to the induction of secondary oxidative stress (Iqbal et al. 2014). Reactive oxygen species (ROS) are produced during aerobic cellular processes (Kim et al. 2003). However, imbalance between antioxidant and proxidants increases free radicals in tissues (Apel and Hirt 2004; Vellosillo et al. 2010). In fact, ROS are continually produced by different metabolic pathways at different cellular compartments especially the chloroplasts, mitochondria, peroxisomes and the endoplasmic reticulum. About 1 to 2% of the oxygen consumed by the plant leads to the formation of ROS (Bhattacharjee 2005; Sharma et al. 2012; Bose et al. 2014).

ROS accumulation, at high concentrations, causes damage to cells, whereas at low concentrations, they essentially serve as second messengers in intracellular signaling cascades of stress responses (Karuppanapandian et al. 2011; Bhattacharjee 2012). Plants grown under optimal conditions can control ROS level via efficient antioxidant systems.

Under various stress conditions, this redox balance is upset by excessive levels of ROS or depletion of antioxidant defence systems or both, leading to the collapse and cell death of plants (Karuppanapandian et al. 2011). When the level of ROS exceeds the defence capacity, the resulting oxidative stress status can cause damage to biomolecules such as DNA, proteins and lipids (Sharma et al. 2012).

The activation of a variety of enzymatic and non-enzymatic antioxidant systems constitutes an important plant adaptation strategy to overcome oxidative stress (Parida and Das 2005; Noctor et al. 2012). Indeed, a wide range of enzymes can be induced to cope with the stress condition. These are superoxide dismutase (SOD), enzymes of the glutathione, ascorbate cycle and catalase (CAT).

The catalase action in plant and animal tissues was first observed in 1818 by Thenard, who noted that such tissues readily degraded hydrogen peroxide, a substance he had also discovered some years earlier (Aebi and Suter 1971). Catalase, as an antioxidant enzyme, is found in practically all aerobic organisms. It dissolves hydrogen peroxide (H_2O_2) into water and oxygen in peroxisomes (Shangari and O’Brien 2006). H_2O_2 symbolizes a two-electron reduction position of molecular oxygen and instigates primarily from the enzymatic dismutation catalyzed by SOD isoforms. Despite its small reactivity, H_2O_2 can simply spread across biological membranes and generate hydroxyl radicals ($\cdot\text{OH}$), which can reply with biomolecules and cause damage (Novo and Parola...
Catalases have been purified and structurally characterized from various microbial (Borges et al. 2014; Loewen et al. 2015) and animal (Gouet et al. 1995) sources. However, limited understanding of catalases’ function from rice (Alam and Ghosh 2018), wheat (Matsumura et al. 2002), rapeseed (Raza et al. 2021), cucumber (Hu et al. 2016), cotton (Wang et al. 2019b) and Phyllanthus emblica (Sharma and Hooda 2018) based on structural and functional data.

A number of studies reported that the overexpression of genes encoding catalase enzymes in plants improved their salt tolerance (M’Hamdi et al. 2009; Chaudhry et al. 2021), as well as their tolerance to other abiotic (Noctor et al. 2014; Sue et al. 2018; Alam and Ghosh 2018) and biotic (Morkunas et al. 2013; Sue et al. 2014) conditions.

Plant adaptation to abiotic stress might positively correlate with CAT transcriptional activation in maize (Scandalios et al. 2000; Zang et al. 2018), cucumber (Gao et al. 2009), olive (Cansev et al. 2011), broccoli (Lin et al. 2010), banana (Figueroa-Yáñez et al. 2011) and potato (Jbir-Koubaa et al. 2015, 2019).

Potato (Solanum tuberosum L.), originated from the Andean regions of Peru and Bolivia (Spooner et al. 2005), is actually grown worldwide as the third most consumed food crop plant after wheat and rice (FAO 2019). Potato is vulnerable to all kinds of biotic and abiotic stresses in its growth and development periods, often resulting in lower quality and yields of tubers (Handayani et al. 2019; Hill et al. 2020; Chourasia et al. 2021). Therefore, potato research involving mining and exploitation of its stress response genes has acquired a new urgency in enhancing production and breeding.

Considering the potential value of catalase in improving stress tolerance, we screened the annotation of Solanum tuberosum group phureja DM1-3 version 2.1.10 (http://potato.plantbiology.msu.edu/cgi-bin/gbrowse/potato/) and identified 3 CAT genes. Detailed analyses of catalase in potato including gene classification, multiple alignment, gene phylogeny, conserved motif composition and synteny analysis were performed based on sequence similarity with their Arabidopsis and tomato counterparts. Moreover, the structural properties and functional components of potato catalase were examined using computational tools. Finally, PCR expression analysis was carried out for the potato catalase genes under salt stresses.

Our results from the genome-wide survey of potato catalase family offer a useful basis for further and targeted molecular analysis and functional characterization of potential catalase candidate genes.

Material and Methods

1. Database search and identification of genes encoding catalase enzymes in potato

For the identification of putative genes encoding catalase enzymes in Solanum tuberosum, a BLASTp search was performed in the database of the potato genome (http://phytozome.jgi.doe.gov/pz/portal.html). The Arabidopsis thaliana proteins corresponding to these enzymes were used as queries collected from the database TAIR (https://www.arabidopsis.org/) to identify their counterparts in potato by BLAST keeping the sequence similarity cutoff of >70% and E-value cutoff of 0.001. To further verify the reliability of these candidate sequences, the Pfam database (http://...
pfam.sanger.ac.uk/search) was used to confirm the presence of conserved domains. All the confirmed potato antioxidant enzyme proteins were named as prefix “St” for Solanum tuberosum followed by sub-class identifiers (StCAT) and they were numbered progressively (StCAT1 to StCAT3).

2. Phylogenetic relationships and identification of conserved protein motifs

The protein sequences of catalase enzymes identified in potato (St) were aligned with those of Arabidopsis (At) and tomato (Sl) by using the ClustalW software (Larkin et al. 2007). Gene structure analysis was performed using Gene Structure Display Server GSDS 2.0 (http://gsds.cbi.pku.edu.cn/; Hu et al. 2015) by aligning the mRNA sequences with the corresponding genomic sequences. Phylogenetic and molecular evolutionary analyses of AtCAT, StCAT and SlCAT protein sequences were conducted by Jones-Taylor Thornton (JTT) and Neighbor-Joining (NJ) (bootstrap =1000). The evolutionary distance was counted using this method (Jones et al. 1992). To identify the structural divergence of CAT family, the conserved motifs in the encoded proteins were achieved with Multiple Expectation Maximization for Motif Elicitation (MEME version 4.10.2) (http://meme.sdsc.edu/meme/intro.html; Bailey et al. 2009). The evolutionary correlations between potato and other species of CAT proteins were studied through phylogenetic analyses using the NJ Tree method in MEGA6 and the JTT method (Tamura et al. 2013).

3. Chromosomal localization and synteny analysis of potato CATs

The information on the chromosomal localization of StCAT, AtCAT and SlCAT was retrieved from the Phytozome database. Syntenic blocks between potato, Arabidopsis and tomato genomes were downloaded from the Plant Genome Duplication Database (http://chibba.agtec.uga.edu/duplication/). Syntenic blocks were drawn using Circos Tool (Krzywinski et al. 2009).

4. In silico analysis of promoter sequences

The promoter sequences of each StCAT gene (1500 bp upstream of ATG start codon) were extracted from NCBI. The search for putative cis-regulatory elements in the putative promoter sequence of each StCAT genes was performed by the PLACE software (http://www.dna.affrc.go.jp/PLACE/signalscan.html; Higo et al. 1999). Prevalence of motif signal was visualized as a word cloud at R core (v4.0.4).

5. Structural features' characterization

The isoelectric point, the molecular weight and the composition of amino acids of potato CAT deduced proteins were calculated using the ProtParam tool (http://us.expasy.org/tools/protparam.html). The location of the subcellular compartment was performed using the TargetP software (http://www.psort.nibb.ac.jp/form.html). The identity and the similarity between these proteins were calculated with Sequence Identity And Similarity (SIAS) (http://imed.med.ucm.es/Tools/sias.html).
The secondary structure of the CAT proteins was predicted by NPS secondary structure prediction method (SOPMA, GORIV, HNN, MRLC) (Combet et al. 2000). The predicted 3D structures of StCATs were generated by using the PHYRE2 server (Protein Homology/analogY Recognition Engine Version 2.0) (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index; Kelley et al. 2015). The FASTA sequences of the query proteins were entered and the intensive mode was selected to attain 3D models. Molecular graphics and analyses were performed with the PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC.

6. Clustering analyses of transcriptomic data

For analysing the expression of potato catalase genes at different developmental stages, in varied organs and in response to biotic and abiotic stress conditions, expression values were retrieved from Spud DB: Potato Genomics Resource database (http://solanaceae.plantbiology.msu.edu/). Spud DB database provides the expression information of Locus ID’s from S. tuberosum group phureja DM1-3 genome browser. Then, the expression values, expressed in FPKM (Fragments Per Kilobase of transcript per Million fragments mapped), were modified in logarithmic manner. Finally, the heat map was generated through the hierarchical clustering with Euclidean correlation coefficient distance measurement method using the software Multiple Array Viewer MeV v4.4.1 (Saeed et al. 2006).

7. Plant materials and stress treatments

A commercial potato cultivar, Nicola was analyzed. Plants grown in vitro were propagated in tubes containing 15 ml solid MS basal medium (Murashige and Skoog 1962) using 8 g/l agar supplemented with vitamins (Morel and Wetmore 1951) and 30 g l⁻³ sucrose. Plants were cultivated in a growth chamber (12-h photoperiod, 24 °C and an irradiance of 62 μmol m⁻² s⁻¹). After 10 days of culture, six plantlets were transferred to MS medium supplemented with 0 and 100 mM NaCl.

8. Expression analyses by semi-quantitative RT-PCR

Total RNA was isolated from leaves as described by Verwoerd et al. (1989). The RNA concentration was determined by absorbance at 260 nm. The primers for semi-quantitative RT-PCR analyses (Additional file 1) were designed with melting temperatures of 60 °C using the Primer3 v.0.4.0 software. Semi-quantitative RT-PCR was carried out as described by Degenhardt et al. (2005).

Synthesis of the first strand cDNA was performed using the Access RT-PCR System kit (Promega) according to the supplier’s recommendations operating with 2 μg of total RNA and 3 μl of oligo dT (10 mM). The reaction mixture of a final volume of 15 μl was incubated at 75°C for 10 min and then placed immediately on ice. Then, 5 μl RT buffer (5x); 2 μl dNTPs 10 mM; 1 μl DTT 100 mM; 1 μl RNAs and 1 μl (200 U) AMV reverse transcriptase (Invitrogen) were added. A first incubation at 42°C was executed for 60 min followed by a second incubation at 70°C for 10 min to stop the reaction. The following PCR amplification was performed in a final volume of 25μl. The reaction mixture contains the reaction buffer 5x supplied with the enzyme; 2 mM MgCl₂; 10 mM dNTP;
10 mM of each primer; 1U Taq DNA polymerase (Invitrogen) and 1 μl of cDNA. The amplification is carried out in a thermocycler device 2700 (Applied Biosystems). The program used included initial denaturation of 5 min at 95 °C, followed by 35 cycles of amplification (30 s denaturation at 95 °C, 1 min 30 s annealing at 60 °C, 1 min elongation at 72 °C) and ends by an elongation 10 min at 72 °C.

Results

I. Genome-wide identification of catalase genes family in the potato

1. Identification of genes coding catalase enzymes in the potato

To identify the potato genes encoding catalase antioxidant enzymes, a BlastP of the potato genome database was conducted using catalase genes of *Arabidopsis thaliana* as queries. Then the Pfam and NCBI-CDD databases were used to verify the presence of conserved domains. Sequence homology revealed 3 putative non-redundant genes encoding the different CAT enzymes in potato (Table 1). All these genes consist of 8 exons. The full size of *StCAT* genes is ranging from 3471 to 5368bp, encoding proteins of 492 aa. Still, their CDS and mRNA size showed the same profile (Fig. 1).

2. Chromosomal localization and synteny analysis of catalase genes

Chromosomal positions of the different genes encoding catalase enzymes were determined from the database Phytozome. Their genes *StCAT* are distributed on three different potato chromosomes (Fig. 2). The *StCAT2*, *StCAT3* and *StCAT1* are localized to chromosomes II, IV and XII, respectively. They are phylogenetically distinct making it possible to conclude that they do not correspond to a duplicate.

To explore more the phylogenetic relationships within catalase gene family, a comparative synteny procedure was carried out wherein the physically mapped *StCATs* were compared with those of Arabidopsis and tomato on their respective chromosomes. A synteny block involving 3 potato, 3 Arabidopsis and 3 tomato CATs genes was generated (Fig. 2). Almost all potato *StCAT* orthologs displayed the same synteny location with Arabidopsis or tomato.

3. Cis-elements involved in transcriptional activity regulation

After having identified and selected a region of 1500 bp upstream the *StCATs* ATG for searching putative regulatory motif, several cis-acting regulatory elements associated with cellular growth, tissue-specific expression, transcription factors, hormonal and light regulation, abiotic and biotic stresses response elements were found (Table 2).

To explore, *in fine*, the dispersion of the cis-regulatory elements in the *StCATs* promoters, ‘Word cloud’ scheme was included (Fig. 3) accentuating the most frequent motifs such as DOFCOREZM, TATABOX and CAATBOX. Overall, five main motifs were checked counting the DOF transcription factor (DOFCOREZM), Consensus GT-1 binding site in many light-regulated genes (GT1CONSENSUS), CAAT promoter consensus sequence
Table 1 List of different genes encoding catalase antioxidant enzymes identified in *S. tuberosum*

Identifier	Accession (phytozome)	Gene size (bp)	Chromosome, position (bp) and sens (+/-)	Exon numbers	mRNA/CDS (bp)	Protein Size (aa)	MW (d)	PI	Predicted subcellular localization
StCAT1	PGSC0003DMG400029408	3471	ch12: 57454380…..57457850 (+)	8	1479/1479	492	44925.6	5.97	Peroxisomal
StCAT2	PGSC0003DMG400001570	3987	ch02: 38568112…..38572098 (+)	8	1479/1479	492	56935.2	6.73	Peroxisomal
StCAT3	PGSC0003DMG400009906	5368	ch04: 71630248…..71635615 (+)	8	1479/1479	492	56813.4	6.93	Peroxisomal
Fig. 1 Genomic organization and phylogenetic tree of catalase gene of potato (St) with those of Arabidopsis thaliana (At) and tomato (Sl). The tree was constructed using the neighbor-joining algorithm of MEGA 6 (Tamura et al. 2013). The bootstrap consensus tree was inferred from 1000 replicates. Scale bar corresponds to 0.1 nucleic acid substitution per residue. The diagrams of exon–intron structures were obtained using the database Gene Structure Display Server (GSDS). Exons and introns are presented by green boxes and black lines, untranslated regions (UTRs) are indicated by blue box, respectively.

Fig. 2: Syntenic relationships between StCAT, SlCAT and AtCAT genes. Comparative physical mapping by Circos software showing the degree of orthologous relationships of CAT gene located on chromosomes of Solanum tuberosum (St), Solanum lycopersicum (Sl) and Arabidopsis thaliana (Ath). The chromosomes of S. tuberosum, A. thaliana and S. lycopersicum are depicted as a circle. Coloured curves denote the details of syntenic regions between StCAT, SlCAT and AtCAT genes.
(CAAT Box), root expression motif (ROOTMOTIFTAPOX1) and regulatory elements responsible for pollen specific activation (POLLEN1LELAT52). We also identified GATABOX, ARR1AT (responsible for cytokinin expression), CACTFTPPCA1 (responsible for mesophyll expression) and EBOXBNNAPA (responsible for seed expression) (Fig. 3).

Various phytohormone-responsive elements were also found in the StCATs putative promoter sequence, including ABA and cytokinin. The latter, being the most abundant with 4 to 8 duplications in each catalase gene (Table 2), implies that StCAT expression might be strongly induced and regulated by cytokinin in potato plants. In particular, the DOF (DOFCOREZM) motif known for enhancing transcription activity was the most abundant in all StCAT gene promoters. The Dof proteins are a family of plant-specific

Function/responsive	Putative cis-element/consensus	Number of cis-elements
Tissue expression specific to the roots	OSE1ROOTNODULE	2 0 0
	OSE2ROOTNODULE	4 3 2
	ROOTMOTIFTAPOX1	14 9 3
Specific expression of pollen	POLLEN1LELAT52	8 7 8
	QELEMENTZMZM13	0 1 0
Specific expression of mesophyll	CACTFTPPCA1	0 14 4
Specific expression of leaf	CIACADIANLELHC	0 1 0
	GATABOX	9 8 5
Early responsive elements in dehydration	ABRELATERD1	1 1 0
	ACGTATERD1	6 4 0
Light-responsive elements	GT1CONSENSUS	18 9 9
	SORLIP1AT	1 0 0
	SORLIP2AT	0 0 1
	IBOX	5 0 5
	IBOXCORE	5 0 4
	IBOXCORENT	0 0 1
	INRNTPSADB	5 4 2
Heat-responsive element	CAATBOX1	10 17 6
	CCAATBOX1	0 2 2
Low temperature-responsive element	LTRCOREATCOR15	0 0 1
Pathogen- and salt-induced gene	GT1GMSCAM4	6 5 5
Responsible for cytokinin expression	ARR1AT	8 7 4
Transcription factor binding sites	DOFCOREZM	18 18 11
	MYBCORE	1 1 6
	MYBCOREATCYCB1	0 1 2
	WBOXPCWRKY1	1 3 0
	WBOXATNPR1	2 5 0
	WBOXHVISO1	1 4 1
	RAV1AAT	2 0 1
transcription factors that include Dof1, Dof2, Dof3, and PBF (Yanagisawa 2000). Maize Dof1 was suggested to be a regulator of the expression of the C4 photosynthetic phosphoenolpyruvate carboxylase (C4PEPC) gene (Yanagisawa 2004). Dof1 also enhances the transcription of the cytosolic orthophosphate di-kinase (cyPPDK) genes and the non-photosynthetic PEPC gene (Yanagisawa 2000).

The putative recognition site for MYC, functioning as transcriptional activator upon dehydration, was identified in most StCAT genes with 1 to 6 copies in each. Other stress regulator motifs, such as salt-responsive element (Park 2004), light-responsive elements (Terzaghi and Cashmore 2003), disease resistance response (Luo et al. 2005) and ABA responsive (Kaplan et al. 2006) were present as well in the StCAT promoters suggesting the probable implication of catalase family in response to these stresses in potato through ABA signaling pathway. However, no ABRE (ABA-responsive elements) was detected within the StCAT3 promoter, presuming other regulatory mechanisms than ABA responsiveness. Also, GATABOX is entailed for light-dependent and nitrate-dependent control of transcription in plants (Reyes et al. 2004). The GATA motif has been found in the promoter of the Cab22 gene that encodes the Petunia chlorophyll a/b binding protein; this motif is the specific binding site of activating sequence factor-2 (ASF-2; Lam and Chua 1989).

All of the herein mentioned putative cis-regulatory elements suggest that StCAT family members are implicated in varied cellular processes and they might reply to environmental stresses via different phytohormones’ signaling mediation.

II. Phylogenetic relationships and motif analysis of catalase potato enzymes

The analysis of phylogenetic tree elaborated from the catalase protein sequence from S. tuberosum, A. thaliana and S. lycopersicum (Fig. 4) shows that all the StCAT proteins are closer to their homologues in S. lycopersicum (SICAT) than to those of Arabidopsis.
Furthermore, in order to identify conserved motifs and consensus domains constituting the CAT proteins, the online MEME Suite (v4.8.2) program was used (Fig. 4a). The sequence details of each motif are shown in additional file 2. Analogous motifs

![Fig. 4 Phylogeny analysis of StCAT proteins. (a) Phylogeny and schematic representation of the 10 conserved motifs in catalase proteins of potato (St) with those of Arabidopsis thaliana (At) and tomato (Sl). The tree was constructed using the neighbor-joining algorithm of MEGA 6 (Tamura et al. 2013). The bootstrap consensus tree was inferred from 1000 replicates. Scale bar corresponds to 0.1 amino acid substitution per residue. Motif analysis was performed using Meme 4.0 software as described in the Methods. Different motifs, numbered 1–10, are displayed in different coloured boxes. A detailed motif introduction for NHXs proteins is shown in additional file 2. (b) Unrooted phylogenetic tree representing relationships among CAT of potato and other species. The phylogenetic tree was drawn with MEGA 6 for evolutionary analysis of xx protein sequences (Tamura et al. 2013). The amino acid sequences of all catalase proteins were obtained from Phytozome database. The abbreviations of CAT proteins are shown in additional file 3.](image-url)
were shared between the 3 members of StCAT, suggesting common conserved functions inside the catalase family.

In addition, a phylogenetic tree of 39 protein sequences including several CATs from different origins showed two main groups that seem to be associated according to their family, species, and systematic method (Fig. 4b).

III. Structural characterization of StCAT proteins

1. Primary structure

The identified StCAT proteins had the same size of 492 amino acids (aa), and their corresponding predicted molecular masses ranged from 44.9 to 59.9 kDa (Table 1). The computed PI of these proteins was ~6.54 on average, indicating that they are likely to precipitate in either acidic or basic buffers and can be maintained within a neutral buffer.

The amino acid sequence analyses showed that the protein sequences of CAT from S. tuberosum, A. thaliana and S. lycopersicum exhibit a high level of identity between each other (Additional file 4). Similarity percentages within members of the CAT family ranged between 82.55 and 100%, whereas the identity percentages varied from 75.25 to 99.39%. StCAT2 showed the highest similarity and identity levels (100 and 99.39% respectively) with SICAT2 of S. lycopersicum. The lowest similarity and identity percentages were observed between SICAT1 and AtCAT3, the values being 82.55 and 75.5% respectively.

The main represented amino acids (Fig. 5) of the StCAT members are proline (7.3%), arginine (7.1%), aspartate (6.9%), leucine (7.7%), valine (6.5%) and alanine (6.1%). Leucine, alanine and valine are hydrophobic, aliphatic and non-polar amino acids and are thus expected to be found inside the protein or within lipidic membranes. The least common amino acids’ residues were cysteine, methionine and tryptophan which accounted for ~1% of the protein’s primary structure. The low amounts of cysteine residues indicated that the chance of disulfide bond formation is low.

![Amino acid composition of StCATs proteins](image-url)
2. Secondary and tertiary structure

The secondary structure features as predicted by NPS secondary structure prediction method (SOPMA, GORIV, HNN, MRLC) (Combet et al. 2000) of StCATs show that random coils (50%) dominated among secondary structure elements followed by the alpha helix (25%) and extended strand (15%) (Table 3). The predominance of coils points to the fact that catalase from *S. tuberosum* might not be a very stable enzyme (Perticaroli et al. 2014).

The homology search of the tertiary structure of StCAT was predicted based on template-based modelling by PHYRE2 (Kelley et al. 2015). Six templates for each StCAT were chosen based on heuristics to maximize confidence, percentage identity and alignment coverage (Table 4). The threading templates were selected by the PHYRE2 server from the PDB database on the basis of normalized Z-score of >1.0.

Furthermore, Clustal Omega (1.2.4) was used for multiple sequence alignment and active site identification. An alignment of the translated CDS of *S. tuberosum* catalase with the selected template catalases is shown in additional file 4. Conserved residues of the catalase sequence involved in the H$_2$O$_2$ binding (V2, H3, V44, D56, N76, F81, F82, F89) were identified after a careful alignment study. The results were found to be consistent with the experimentally determined crystallographic structures of human erythrocyte catalase (1QQW) (Ko et al. 2000). However, few substitutions such as of isoleucine (I) by alanine (A), of methionine (M) by phenylalanine (F), of valine (V) by isoleucine (I) and of glutamine (Q) by leucine (L) were also observed in the proteins of StCAT (Additional file 4).

The quality of the 3D model was assessed on the basis of the confidence score. The validated model using various programs such as Ramachandran plot and energy plot confirmed the reliability of the model. All the validation parameters for validation were

Protein	Prediction	Alpha helix	Extended strand	Random coil	
StCAT1	GORIV	17.89	24.19	57.93	
	SOPMA	30.28	15.45	48.78	
	HNN	25.41	16.06	58.54	
	MRLC	26.83	14.02	59.15	
StCAT2	GORIV	17.48	20.53	61.99	
	SOPMA	27.64	15.65	50.41	
	HNN	20.73	19.31	59.96	
	MRLC	23.58	15.65	60.77	
StCAT3	GORIV	25.61	16.06	58.33	
	SOPMA	28.25	14.23	52.64	
	HNN	22.76	18.29	58.94	
	MRLC	25.81	16.67	57.52	
Description	Confidence	% Identity	Model (pdb code)	Species	
-------------	------------	------------	-----------------	---------	
StCAT1	PDB header: oxidoreductase	100%	43%	c1p81A_1p81A	E. coli
Chain: A PDB Molecule: catalase hpii					
Fold: Heme-dependent catalase-like	100%	43%	d1p80a2_1p80	E. coli	
Superfamily: Heme-dependent catalase-like					
PDB header: oxidoreductase	100%	40%	c3ej6D_3EJ6	Neurospora crassa	
Chain: D PDB Molecule: catalase-3					
Fold: Heme-dependent catalase-like	100%	47%	d1m7sa_1m7s	Pseudomonas syringae	
Superfamily: Heme-dependent catalase-like					
PDB header: oxidoreductase Chain: D:	100%	47%	c2j2mD	Exiguobacterium oxidotolerans	
PDB Molecule: catalase					
StCAT2	PDB header: oxidoreductase	100%	43%	c1p81A_1p81A	E. coli
Chain: A PDB Molecule: catalase hpii					
Fold: Heme-dependent catalase-like	100%	43%	d1p80a2_1p80	E. coli	
Superfamily: Heme-dependent catalase-like					
PDB header: oxidoreductase	100%	40%	c3ej6D_3EJ6	Neurospora crassa	
Chain: D PDB Molecule: catalase-3					
Fold: Heme-dependent catalase-like	100%	47%	d1m7sa_1m7s	Pseudomonas syringae	
Superfamily: Heme-dependent catalase-like					
PDB header: oxidoreductase Chain: D:	100%	47%	c4qoqC	Bacillus pumilus	
PDB Molecule: catalase					
StCAT3	PDB header: oxidoreductase	100%	43%	c1p81A_1p81A	E. coli
Chain: A PDB Molecule: catalase hpii					
Fold: Heme-dependent catalase-like	100%	43%	d1p80a2_1p80	E. coli	
Description	Confidence	% Identity	Model (pdb code)	Species	
-------------	------------	------------	------------------	---------	
Superfamily: Heme-dependent catalase-like	100%	41%	c3ej6D (3EJ6)	Neurospora crassa	
PDB header: oxidoreductase	100%	43%	c1sy7B (1SY7)	Neurospora crassa	
Chain: D; **PDB Molecule:** catalase-3;	100%	49%	c2j2mD (2J2M)	Exiguobacterium oxidotolerans	
Fold: Heme-dependent catalase-like	100%	51%	c4qq0C	Bacillus pumilus	
within the range showing the compatibility of the model with its sequence and depicting the excellent quality model (Fig. 6A).

Using the Pymol software, the residues involved in the hydrogen peroxide binding are conserved among the 3StCATs confirming the key role in hydrogen peroxide binding as identified by Prosite-ProRule annotation.

Figure 6B shows the ligand (H\textsubscript{2}O\textsubscript{2}) sits in the area lined by the predicted active site residues. Since, the catalytic site is actively involved in charge transfer reactions required for formation and degradation of bonds, so it is expected to have high electron density (Vivekanand and Balakrishnan 2009).

IV. In silico study of the expression profile of genes encoding catalase enzymes

1. Tissue-specific expression analysis of potato catalase genes

Fig. 6 Ribbon representation of the predicted model of StCAT proteins. (A) Ribbon representation of each \textit{S. tuberosum} catalase protein is modelled by Phyre2 software. \(\alpha\)-Helices, \(\beta\)-sheets and coils are coloured respectively in red, yellow and green. (B) 3D model of each StCAT shows the labeled residues for H\textsubscript{2}O\textsubscript{2}-binding (V2, H3, V44, D56, N76, F81, F82, F89). All molecular graphics were performed with the PyMOL Molecular Graphics System.

Fig. 7 Clustering analyses of transcriptomic data. Expression profiling of StCATs transcripts at various anatomical tissues such as root, shoot, leaf, petiole, flower, stamen, carpel, petal, sepal, tuber and fruit. Expression data was retrieved from Spud DB: Potato Genomics Resource database (http://solanaceae.plantbiology.msu.edu/) for \textit{S. tuberosum} group phureja DM1-3. The log2 transformed data was used to generate the heat map with hierarchical clustering of Euclidean distance correlation using MeV software package. A colour scale is provided along with the heat map to recognize the differential pattern of expression. Yellow colour indicates the high level of expression, black signifies medium and blue denotes the low level of expression.
To check the role of the different potato CAT family members, the gene expression was analyzed, first, within different organs and tissues at various developmental stages of the *S. tuberosum* phureja variety using microarray data available in Spud DB database (Fig. 7). The expression data of the 3 *StCAT* genes were available and retrieved for analysis. Fluorescence intensity values were analyzed to generate a clustered heat map based on the average Euclidian’s distance. As shown in Fig. 7, *StCAT* family members exhibited spatial variations in transcript abundance, with high levels of transcript abundance in one or some tissues and low level transcript abundance in others.

2. Expression analysis of *StCAT* genes under different abiotic stresses, biotic stress elicitors and hormonal treatments

The expression of *StCAT* genes was analyzed in response to a variety of stress agents, to check their specific functions. To evaluate the effect of stress on *StCAT* gene expression, various abiotic stresses such as salinity, drought, wounding and heat were evaluated on potato plants (Fig. 8a). *StCAT1* showed upregulation in all stress conditions, while *StCAT2* showed downregulation in response to salt and mannitol stresses. The *StCAT3* showed a completely opposite pattern of expression in comparison to *StCAT1*. Indeed, it was downregulated in response to almost all stresses.

Then, transcript abundance was analyzed in response to three biotic stress elicitors such as benzothiadiazole (BTH) and β-aminobutyric acid (BABA) and pathogen attack (Fig. 8b). The transcript abundance of all three *StCAT* was found to be modified in

Fig. 8 Analysis of *StCAT* genes expression against various abiotic stresses, biotic stress elicitors and hormonal treatments. Expression of the same *StCAT* was analyzed in response to various abiotic stress elicitors (a), biotic stresses (b) and hormone treatments (c). Expression data of *S. tuberosum* group phureja DM1-3 was retrieved for three biotic stress elicitors such as BABA, BTH and pathogen attack (a); four abiotic stresses such as salinity, drought, wound and heat (b) and four plant hormonal treatments such as 6-benzylaminopurine (BAP), indole-3-acetic acid (IAA), abscisic acid (ABA) and gibberellic acid (GA3) (c), along with their respective controls. The log transformed fold change in expression data was used to generate the heat maps with hierarchical clustering of Euclidean distance correlation using MeV software package. The colour scale provided at the bottom of figure represents expression variations. The stress-induced upregulation or down-regulation of *StCAT* transcripts is indicated by yellow or blue colour, respectively.
response to the pathogen infection. \textit{StCAT1} seems to be upregulated in response to all biotic stress and showed the highest activation levels in response to all hormonal treatments except for BAP. However, the \textit{StCAT2} was downregulated only in response to BABA elicitor and \textit{StCAT3} showed downregulation in response to almost all the applied stresses (Fig. 8c).

V. Functional study of genes encoding catalase in Nicola potato variety

The expression profile of the 3 \textit{StCAT} genes was investigated by semi-quantitative RT-PCR of RNA from the potato variety cultivar Nicola cultivated in the presence or absence of 100mM NaCl (Fig. 9). Oligonucleotides were identified and used as primers in RT-PCR reactions allowing the amplification of an internal region of each gene (Additional file 1). The RT-PCR profiles showed that salt stress caused activation of the expression of \textit{StCAT1} gene in potato leaves. However, the expression of \textit{StCAT2} and \textit{StCAT3} genes seems to be not affected by salt stress. In conclusion, the investigation of \textit{StCAT} gene expression in the leaves of Nicola potato plants was consistent with transcriptome data.

Discussion

An overload amount of ROS is engendered when plants are exposed to adverse environmental conditions (Kwak et al. 2006; Caverzan et al. 2016). To neutralize ROS excess, plants can activate several types of machinery. As one of the main antioxidant enzymes, the catalase (EC 1.11.1.6) serves as an efficient scavenger of ROS and can catalyze the dismutation of two molecules of hydrogen peroxide (H$_2$O$_2$) into oxygen (O$_2$) and water. Considering its significant role, a genome-wide analysis was performed in potato to identify and characterize the catalase gene family and to check their expression profile in response to various developmental and environmental clues using computational tools.

Previously, genome-wide studies have demonstrated that \textit{CAT} is encoded by a small gene family which has been studied extensively in different plant species (Mhamdi et al. 2012) including \textit{Nicotiana plumbaginifolia} (3 genes; Willekens et al. 1994); \textit{Hordeum vulgare} (2 genes; Skadsen et al. 1995), \textit{Zea mays} (3 genes; Polidoros and Scandalios 1999), \textit{Arabidopsis thaliana} (3 genes; Frugoli et al. 1998; Du et al. 2008), \textit{Solanum lycopersicum} (3 genes; Drory and Woodson 1992), \textit{Capsicum annuum} (3 genes; Lee and An 2005), \textit{Oryza sativa} (4 genes; Lin et al. 2012; Alam and Ghosh 2018), \textit{Saccharum officinarum} (2 genes; Liu et al. 2015) and \textit{Cucumis sativus} (2 genes; Hu et al. 2016). Up to now, very few works have been done on Solanaceae family members, in spite of covering the whole genome sequence.

The current study showed that potato plant contains three \textit{CAT} genes (\textit{StCAT1–StCAT3}). The analysis of corresponding protein revealed that both tomato and Arabidopsis possess a similar number of catalase proteins (three each) through alternative splicing (Table 1; Fig. 1). The presence of multiple \textit{catalase} genes suggested multiple functions for catalases in a variety of plant tissues at various developmental stages and under constantly changing environments from which plants cannot readily escape.
The potato catalase genes are located on three different chromosomes like those of tomato, while AtCAT1 and AtCAT3 reside in the same chromosome for Arabidopsis (Fig. 2). The orthologous gene pairs followed phylogenetic clustering in a similar class. Moreover, the synteny analysis suggests the conservation in loci of StCAT genes. In recent studies, the synteny and phylogeny analyses showed the conservation of CAT genes in bread wheat and cotton suggesting the role of polyploidy in the expansion of catalase gene family (Wang et al. 2019b; Tyagi et al. 2021).

The sequence data shows that each of the three StCAT genes is interrupted by seven introns. The numbers of introns of catalase genes, and their positions, were found to be extremely conserved among 13 monocot and dicot plants. This suggests that they come from an ancestral catalase gene common to monocots and dicots containing seven introns (Frugoli et al. 1998). Although AtCAT2 has seven introns, both AtCAT1 and AtCAT3 have six introns in positions conserved with their homologue, but each has lost a different intron (Fig. 1). The presence of large introns in StCAT transcripts could improve the recombination frequency as well as maintain the counterbalance of mutation bias (Alam and Ghosh 2018). The putative promoter regions of the three StCAT genes do not share any sequence identity, possibly explaining the differential regulation observed for each of these genes. The exploration of upstream promoter region of StCAT genes revealed the occurrence of numerous cis-acting elements which were broadly categorized into (i) light-responsive such as IBOX, GT1CONSENSUS and SORLIP1AT; (ii) stress-responsive such as ARE, LTRECOREATCOR, GT1GMSCAM4 and CAATBOX; (iii) hormone-responsive such as ARR1AT, ABRELATERD1 and ACGTATERD1; and (iv) transcription factor binding sites such as DOFCOREZM, MYBCORE and WBOXATNPR1 (Fig. 3). The existence of similar cis-acting elements has been accounted in CATs of other plant species such as A. thaliana and O. sativa (Alam and Ghosh 2018), as well as in other antioxidant gene family of S. tuberosum, for instance glutathione S transferase (StGST) (Islam et al. 2018).

The analysis of conserved motifs and phylogenetic tree elaborated from the catalase protein sequence of catalase of S. tuberosum, A. thaliana and S. lycopersicum (Fig. 4) shows that all the StCAT are closer to their homologues in S. lycopersicum (SlCAT) than to those of Arabidopsis. Also, they possess a sequence with significant homology to other known plant CATs (Zang et al. 2018). Previously, Sheoran and collaborators (2013) reported that most of the dicot and monocot catalases are closely related with each other. This clearly revealed the divergence between dicot and monocot of catalase genes during the process of evolution. Similarly, this pattern of evolution was shown in case of glutathione peroxidase proteins (Wang et al. 2019a).

Based on the subcellular localization, the StCAT are predicted in peroxisome. Considering the prominent role played by catalase in the H₂O₂ metabolism, peroxisomes are judged as the main cell production for the H₂O₂ during different processes (Mhamdi et al. 2012; Corpas et al. 2019). This tensed link between catalase and peroxisomes was, supported by the composition of the polypeptide C-terminus sequence and the diverse number of methods used to localize this enzyme within the cell leading the scientific community to consider catalase as the typical marker enzyme for these organelles (Palma et al. 2020).

The StCAT polypeptides showed the same size of 492 aa with an average MW of ~52 kDa. Also, an average pI of 6.54 was predicted for these polypeptides. The comparable physicochemical features of catalases were reported in other plant species,
for occurrence, a range of 377–492 aa and 44–56 kDa in A. thaliana, 285–493 aa and 32–56 kDa in O. sativa, 409–494 aa and 47–57 kDa in G. hirsutum, 459 to 601 aa and 53–67 kDa in G. barbadense, 458–744 aa and 53–82 kDa in Cucumis sativus L., etc. The length of 492 aa and the MW of 56.9 kDa are the most frequent (Hu et al. 2016; Alam and Ghosh 2018; Wang et al. 2019b).

Each of the potato catalase isozymes is structurally similar to those found in other organisms (Chandler and Dodds 1983). All the catalases have a conserved residue (catalase domain) involved in the H$_2$O$_2$ binding (Alam and Ghosh 2018; Wang et al. 2019a). Hence, the 3D model constitutes a perfect active site, which attracts the H$_2$O$_2$ ligand (Additional file 5; Fig. 6). Based on structural homology modelling, StCATs showed the common best PDB hit with the catalase from E. coli (c1p81A) and predicted ~13 α-helices (including both long and short helices) and two 4-stranded antiparallel β-sheets (Table 4; Fig. 6). These results were found to be consistent with the experimentally determined crystallographic structures of Deinococcus radiodurans catalase (4CAB) (Borges et al. 2014).

Assumed from the prediction tissue-specific expression, the StCAT genes are expressed in different organs and tissues such as leaves, roots and flowers. The strongest expression was observed for StCAT1 particularly in the tubers and leaves, whereas StCAT3 had the lowest expression in all tissues (Fig. 7). In the model plant Arabidopsis thaliana, AtCAT3 showed expression in both leaves and vascular tissues, while AtCAT1 demonstrated a spectacular change in its expression profile during floral organ and seed development and AtCAT2 is related with photosynthetic tissues and also roots (Mhamdi et al. 2012). Further, three catalase genes of maize illustrated diverse tissue specificity, while ZmCAT1 and ZmCAT3 proved kernel-specific expression and ZmCAT2 expressed after kernel development (Wadsworth and Scandalios 1989; Guan and Scandalios 1993; Guan et al. 1996).

Besides, the expression analysis of StCAT genes in different biotic and abiotic stresses of potato demonstrated that StCAT1 is the highly expressive member, followed by StCAT2 and StCAT3 suggesting that these genes are likely able to respond to several developmental stimuli. Consistent with the regulator motifs found in promoters of StCAT1 gene, the expression analyses based on transcriptome studies and semi-quantitative RT-PCR revealed constitutive and ubiquitous expression profile in response to abiotic, biotic and hormonal stimuli at different development stages meaning that this gene plays various roles in potato developmental stages, and adaptation behaviors. Previously, Jbir-Koubaa et al. (2019) have shown that StCAT1 and StCAT2 genes were the most upregulated in potato somatic hybrid lines under salt stress conditions. Similarly, the orthologue of StCAT1, AtCAT3, was the highly expressive member. Besides, AtCAT2 and AtCAT3 display opposite circadian profiles, while AtCAT1 scarcely varied under the circadian clock (Li et al. 2015, 2017; Su et al. 2018). Chen et al. (2012) concluded that the expression of sweet potato catalase SPcAT1 was coping with H$_2$O$_2$ homeostasis in natural conditions. ZmCAT was a member of the plant CAT family in Zostera marina and implicated in minimizing oxidative damage effects under temperature stress (Zang et al. 2018).

The overexpression of KatE gene for Escherichia coli in potato affects the multiplication rate of the in vitro plants, as well as vegetative and physiological growth parameters under salt stress conditions (M’Hamdi et al. 2009). Besides, the
overexpression of IbCAT2, encoding gene from sweet potato cv. Xushu 18, conferred salt and drought tolerance in *Escherichia coli* and *Saccharomyces cerevisiae* (Yong et al. 2017).

These results confirm the contribution of these enzymes in plant stress tolerance to salinity. Indeed, several studies have demonstrated that the overexpression of genes encoding antioxidant enzymes in plants improved their tolerance to salt (M’Hamdi et al. 2009; Su et al. 2014; Yong et al. 2017), abiotic (Rasoulnia et al. 2011; Zhang and Shi 2013; Noctor et al. 2014) and biotic (Morkunas et al. 2013) stresses.

Conclusion

In a gist, this study offers a genome-wide annotation and nomenclature of potato *CAT* gene family as well as gene structure, the secondary and the 3D protein structure, physicochemical properties and the phylogenetic tree. The expression profiling at different developmental stage-specific, abiotic and biotic stress-responsive and hormone-inducible *CAT* genes’ expression was studied. Furthermore, the expression analysis effectuated with a semi-quantitative RT-PCR was carried out. We concluded that StCAT1 is the constitutively expressive member, while StCAT2 and StCAT3 are the stress-responsive members. These results present a novel road and starting point to distinguish the functions of CAT family members in *S. tuberosum*. Successively, this study will not only develop our knowledge on the mechanisms of stress tolerance of plants, but also will help to raise transgenic crop plants with better yield potential and stress tolerance potential.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11540-022-09554-z.

Availability of Data The datasets supporting the conclusions of this article are included within the article and its additional files.

Author Contribution RJK, MA and MNS designed the study. RJK, MA, SC and RGB performed bioinformatics and data analyses. RJK, MNS and ONE performed the experiments. RJK, MA and RGB analysed the data and wrote the manuscript. All authors read and approved the final manuscript.

Declarations

Conflict of Interest The authors declare no competing interests.

References

Aebi H, Suter H (1971) Acatalasemia. Adv Hum Genet 2:143–199

Alam NB, Ghosh A (2018) Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses. Plant Physiol Biochem 123:54–64. https://doi.org/10.1016/j.plaphy.2017.11.018

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME Suite: tools for motif discovery and searching. Nucl Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants | Semantic Scholar. https://www.semanticscholar.org/paper/Reactive-oxygen-species-and-oxidative-burst%3A-Roles-Bhattacharjee/41ea79e49089c49d6d6b331f8ec4b88b430c410a4. Accessed 16 Sep 2020

Bhattacharjee S (2012) An inductive pulse of hydrogen peroxide pretreatment restores redox-homeostasis and oxidative membrane damage under extremes of temperature in two rice cultivars. Plant Growth Regul 68:395–410. https://doi.org/10.1007/s10725-012-9728-9

Borges PT, Frazão C, Miranda CS, Carrondo MA, Romão CV (2014) Structure of the monofunctional heme catalase DR1998 from Deinococcus radiodurans. The FEBS Journal 281:4138–4150. https://doi.org/10.1111/febs.12895

Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257. https://doi.org/10.1093/jxb/eru430

Cansev A, Gulen H, Eris A (2011) The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Hortic Environ Biotechnol 52:113–120. https://doi.org/10.1007/s13580-011-0126-4

Chaudhry UK, Gökçe ZNO, Gökçe AF (2021) Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia 76:3107–3121. https://doi.org/10.1515/biologia-2021-0060

Chen H-J, Wu S-D, Huang G-J, Shen CY, Afifyanti M, Li WJ, Lin YH (2012) Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol 169:86–97. https://doi.org/10.1016/j.jplph.2011.08.002

Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, Meena JK, Mangal V, Shelake RM, Kim YJ, Pramanik D (2021) Salinity stress in potato: understanding physiological and molecular responses. Life 11:545. https://doi.org/10.3390/life11060545

Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150

Corpas FJ, Del Río LA, Palma JM (2019) Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J Integr Plant Biol 61:803–816. https://doi.org/10.1111/jipb.12772

Degenhardt J, Al-Masri A, Kürkcüoglu S et al (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetics and Genomics: MGG:273. https://doi.org/10.1007/s00438-005-1136-7

Drory A, Woodson WR (1992) Molecular cloning and nucleotide sequence of a cDNA encoding catalase from Tomato 1. Plant Physiol 100:1605–1606

Du Y-Y, Wang P-C, Chen J, Song C-P (2008) Comprehensive Functional Analysis of the Catalase Gene Family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326. https://doi.org/10.1111/j.1744-7909.2008.00741.x

FAO (2019) FAOSTAT. In: http://www.fao.org/faostat/en/#data. http://www.fao.org/faostat/en/#data. Accessed 19 Mar 2021

Figueroa-Yáñez L, Cano-Sosa J, Castano E et al (2011) Phylogenetic relationships and expression in response to low temperature of a catalase gene in banana (Musa acuminata cv. “Grand Nain”) fruit. June Plant Cell Tissue and Organ Culture 109(3):429–438. https://doi.org/10.1007/s11240-011-0107-4

Freire ACG, Alves CL, Goes GR et al (2017) Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi. Parasitology 144:1498–1510. https://doi.org/10.1017/S0031182017001044

Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149:355–365

Gao J, Qin A, Yu X (2009) Effects of grafting on cucumber leaf SOD and CAT gene expression and activities under low temperature stress. Ying Yong Sheng Tai Xue Bao 20:213–217

Gouet P, Jouve H-M, Dideberg O (1995) Crystal structure of proteins mirabilisPR catalase with and without bound NADPH. J Mol Biol 249:933–954. https://doi.org/10.1006/jmbi.1995.0350
Guan L, Scandalios JG (1993) Characterization of the catalase antioxidant defense gene Cat1 of maize, and its developmentally regulated expression in transgenic tobacco. Plant J 3:527–536. https://doi.org/10.1046/j.1365-313X.1993.03040527.x

Guan L, Polidoros AN, Scandalios JG (1996) Isolation, characterization and expression of the maize Cat2 catalase gene. Plant Mol Biol 30:913–924. https://doi.org/10.1007/BF00020803

Handayani T, Gilani SA, Watanabe KN (2019) Climatic changes and potatoes: how can we cope with the abiotic stresses? Breed Sci 69:545–563. https://doi.org/10.1270/jsbsbs.19070

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res 27:297–300. https://doi.org/10.1093/nar/27.1.297

Hill D, Nelson D, Hammond J, Bell L (2020) Morphophysiology of potato (Solanum tuberosum) in response to drought stress: paving the way forward. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.597554

Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x

Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDB 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. https://doi.org/10.1093/bioinformatics/btu817

Hu L, Yang Y, Jiang L, Liu S (2016) The catalase gene family in cucumber: genome-wide identification and organization. Genet Mol Biol 39:408–415. https://doi.org/10.1590/1678-4685-GMB-2015-0192

Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and experimental botany 100:34–42. https://doi.org/10.1016/j.envexpbot.2013.12.006

Islam MS, Choudhury M, Majlish A-NK et al (2018) Comprehensive genome-wide analysis of Glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions. Gene 639:149–162. https://doi.org/10.1016/j.gene.2017.10.007

Jbir-Koubaa R, Charfeddine S, Ellouz W et al (2015) Investigation of the response to salinity and to oxidative stress of interspecific potato somatic hybrids grown in a greenhouse. Plant Cell Tiss Organ Cult 120:933–947. https://doi.org/10.1007/s11240-014-0648-4

Jbir-Koubaa R, Charfeddine S, BOUAZIZ D et al (2019) Enhanced antioxidant enzyme activities and respective gene expression in potato somatic hybrids under NaCl stress. Biol Plant 63:633–642. https://doi.org/10.32615/bp.2019.075

Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by Cytosolic Ca2+ transients reveal ABRE-Related sequences as Ca2+-responsive cis elements in arabidopsis. Plant Cell Online 18:2733–2748. https://doi.org/10.1105/tpc.106.042713

Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168–177. https://doi.org/10.1016/j.phytochemistry.2010.11.007

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol. 51(6):831–8. https://doi.org/10.1023/a:1023045218815

Ko TP, Martin K, Safo Faik N, Musayev ML, Di Salvo C, Wang SH, Wu D, Abraham J (2000) Structure of human erythrocyte catalase. Acta Crystallographica Section D Biological Crystallography 56(2):241–245 https://doi.org/10.1107/S0907444999015930

Krzywinski MI, Jacqueline E Schein, Inanc Birol et al (2009) Circos: An information aesthetic for comparative genomics. http://genome.cshlp.org/content/early/2009/06/15/gr.092759.109.abstract. Accessed 8 Sep 2016

Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329. https://doi.org/10.1104/pp.106.079004

Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1:1147–1156. https://doi.org/10.1105/tpc.1.12.1147

Larkin M, Blackshields G, Brown N et al (2007) Clustal X version 2.0. Bioinformatics (Oxford, England) 23:. https://doi.org/10.1093/bioinformatics/btm404

Lee S, An C (2005) Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Mol Cells 20
in response to multiple hormones and abiotic stress conditions. Int J Mol Sci 22:4281. https://doi.org/10.3390/ijms22084281
Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in arabidopsis and rice. Plant Physiol 134:1718–1732. https://doi.org/10.1104/pp.103.037788
Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Meth Enzymol 411:134–193. https://doi.org/10.1016/S0076-6879(06)11009-5
Scandalios J, Acevedo A, Ruzsa S (2000) Catalase gene expression in response to chronic high temperature stress in maize. Plant Science : an International Journal of Experimental Plant Biology 156. https://doi.org/10.1016/S0168-9452(00)00235-1
Shangari N, O’Brien PJ (2006) Catalase activity assays. Curr Protoc Toxicol 27:7.7.1–7.7.16. https://doi.org/10.1002/0471140856.tx070727
Sharma S, Hooda V (2018) Identification of coding sequence and its use for functional and structural characterization of catalase from Phyllanthus emblica. Bioinformation 14:008–014. https://doi.org/10.6026/97320630014008
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. In: Journal of Botany. https://www.hindawi.com/journals/jb/2012/217037/. Accessed 1 Oct 2020
Sheoran S, Pandey PS et al (2013) In silico comparative analysis and expression profile of antioxidant proteins in plants. Genetics and Molecular Research : GMR 12:537–551. https://doi.org/10.4238/2013.February.27.3
Skadsen RW, Schulze-Lefert P, Herbst JM (1995) Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Mol Biol 29:1005–1014. https://doi.org/10.1007/BF00014973
Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci 102:14694–14699. https://doi.org/10.1073/pnas.0507401012
Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS ONE 9:e84426. https://doi.org/10.1371/journal.pone.0084426
Su T, Wang P, Li H, Zhao Y, Lu Y, Dai P, Ren T, Wang X, Li X, Shao Q, Zhao D, Zhao Y, Ma C (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J Integr Plant Biol 60:591–607. https://doi.org/10.1111/jipb.12649
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197
Terzaghi WB, Cashmore AR (2003) Light-regulated transcription. In annual review of plant physiology and plant molecular biology 1995. 46(1):445–474. https://doi.org/10.1146/annurev.arplant.46.060195.002305
Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol 428:419–438. https://doi.org/10.1016/S0076-6879(07)28024-3
Tyagi S, Shumayla, Madhu et al (2021) Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). J Hazard Mater 403:123585. https://doi.org/10.1016/j.jhazmat.2020.123585
Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448. https://doi.org/10.1104/pp.110.161273
Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362
Vivekanand PA, Balakrishnan T (2009) Superior catalytic efficiency of a new multi-site phase transfer catalyst in the C-alkylation of dimedone – A kinetic study. Catal Commun 10:1371–1375. https://doi.org/10.1016/j.catcom.2009.02.022
Wadsworth GJ, Scandalios JG (1989) Differential expression of the maize catalase genes during kernel development: the role of steady-state mRNA levels. Dev Genet 10:304–310. https://doi.org/10.1002/dvg.1020100405
Wang R, Ma J, Zhang Q, Wu C, Zhao H, Wu Y, Yang G, He G (2019a) Genome-wide identification and expression profiling of glutathione transfehses gene family under multiple stresses and hormone treatments in wheat (Triticum aestivum L.). BMC Genomics 20:986. https://doi.org/10.1186/s12864-019-6374-x
Wang W, Cheng Y, Chen D, Liu D, Hu M, Dong J, Zhang X, Song L, Shen F (2019b) The catalase gene family in cotton: genome-wide characterization and bioinformatics analysis. Cells 8:86. https://doi.org/10.3390/cells8020086
Willekens H, Langebartels C, Tire C et al (1994) Differential expression of catalase genes in *Nicotiana plumbaginifolia* (L.). Proc Natl Acad Sci USA 91:10450–10454
Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288. https://doi.org/10.1046/j.1365-313x.2000.00685.x
Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–391. https://doi.org/10.1093/pcp/pch055
Yong B, Wang X, Xu P, et al (2017) Isolation and Abiotic Stress Resistance Analyses of a Catalase Gene from *Ipomoea batatas* (L.) Lam. In: BioMed Research International. https://www.hindawi.com/journals/bmri/2017/6847532/. Accessed 21 Oct 2020
Zang Y, Liu J, Tang XX, Zhou B (2018) Description of a *Zostera marina* catalase gene involved in responses to temperature stress. PeerJ 6. https://doi.org/10.7717/peerj.4532
Zhang J-L, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosyn Res 115:1–22. https://doi.org/10.1007/s11120-013-9813-6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Rania Jbir Koubaa¹ · Mariem Ayadi² · Mohamed Najib Saidi³ · Safa Charfeddine¹ · Radhia Gargouri-Bouzid¹ · Oumèma Nouri-Ellouz¹

Mariem Ayadi
mariem.ayedi@gmail.com

1 Plant Amelioration and Agri-resource Valorization Laboratory, National School of Engineers of Sfax (ENIS), Soukra Road Km 4, B.P 1173, 3038 Sfax, Tunisia

2 Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, 3018 Sfax, Tunisia

3 Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P “1177”, 3018 Sfax, Tunisia