CANONICAL 3+1 DESCRIPTION
OF RELATIVISTIC MEMBRANES

JENS HOPPE

Yukawa Institute for Theoretical Physics
Kyoto University, Kyoto 606, Japan

ABSTRACT

M-dimensional extended objects Σ can be described by projecting a Diff Σ invariant
Hamiltonian of time-independent Hamiltonian density \mathcal{H} onto the Diff Σ- singlet sector,
which after Hamiltonian reduction, using \mathcal{H} itself for one of the gauge-fixing conditions,
results in a non-local description that may enable one to extend the non-local symmetries
for strings to higher dimensions and make contact with gravity at an early stage.

* Heisenberg Fellow
On leave of absence from the Institute for Theoretical Physics, Karlsruhe University.
Whereas the Hamiltonian light-cone description of relativistic membranes (cf.[1]) has widely been used [2], a corresponding $3 + 1$ formulation, that would e.g. provide a Hamiltonian structure for the 'generalized $su(\infty)$– Nahm-equations' (derived in [3]) as well as the steady state irrotational isentropic inviscid Kármán-Tsien gas (see [4]), appears to be missing. Filling this gap turns out to reveal a number of rather interesting features of membrane theory (more generally, the theory of massless extended objects of arbitrary dimension). The disappearance of one of the light-cone coordinates from the light-cone Hamiltonian, e.g., finds its correspondence in the time-independence of the Hamiltonian density(!) in the ‘$n + 1$’-formulation (which can then be used to partly fix the invariance under time-independent reparametrisations of the extended object). The Hamiltonian equations of motion can be shown to be implied by n infinite sets of conservation laws. Though the complete Hamiltonian reduction is difficult to perform explicitly, it is likely that a non-local description similar to the loop-representation in general relativity (see e.g. [5]) will result. As most of the considerations apply to general M-dimensional extended objects moving in $M + 1$ dimensional euclidean space ($M = 2$ for membranes), I will start by considering the relativistic minimal hypersurface- problem in arbitrary space-time dimensions D, i.e. embeddings of n-dimensional manifolds \mathcal{M} (of signature $(+, -, \cdots, -)$) into $n + 1$-dimensional Minkowski-space, for which the first variation of their volume S,

\[
S = \int_{\mathcal{M}} d^n \varphi \sqrt{G} \\
G = (-)^M \det \left(\frac{\partial x^\mu}{\partial \varphi^\alpha} \frac{\partial x^\nu}{\partial \varphi^\beta} \eta_{\mu\nu} \right)_{\alpha,\beta=0, \cdots, M=n-1} \\
\eta_{\mu\nu} = \text{diag}(1, -1, \cdots, -1),
\]

vanishes. In order to simplify the equations of motion,

\[
\frac{1}{\sqrt{G}} \partial_\alpha \sqrt{G} G^{\alpha\beta} \partial_\beta x^\mu = 0 \quad \mu = 0 \cdots n,
\]

one may choose φ^0 to be the time $t = x^0$ (leaving the time-dependent shape of Σ, $\tilde{x} = (x^1, \cdots, x^n) = \tilde{x}(t, \varphi^1, \cdots, \varphi^M)$ to be determined), and use the remaining invariance under time-dependent spatial reparametrisations, $\varphi^r \to \varphi^r(t, \varphi^1 \cdots \varphi^M)$ to
The demand

$$\dot{x} \partial_r x = 0 \ , \ r = 1, \ldots, M \ .$$

(3)

The special feature of a hypersurface is that the $\mu = i = 1, \ldots, n = M + 1$ part of (2) is automatically satisfied, provided (3), and the $\mu = 0$ part of (2),

$$\partial_t \left(\frac{g}{1 - x} \right)^{1/2} = 0$$

(4)

holds; g denotes the determinant of the $M \times M$ matrix formed by $g_{rs} := \partial_r x \partial_s x$. Minimal n dimensional hypersurfaces can therefore be described by the n first-order equations(4), once integrated, and (3). These may be put into Hamiltonian form by restricting the Diff Σ invariant Hamiltonian

$$H = \int_{\Sigma} d^M \varphi \sqrt{\dot{p}^2 + g}$$

(5)

to the 'singlet-sector',

$$C_r := \dot{p} \frac{\partial_r x}{\sqrt{\dot{p}^2 + g}} = 0$$

(6)

To check this, one first makes sure that, due to the canonical equations of motion,

$$\dot{x} = \frac{\dot{p}}{\sqrt{\dot{p}^2 + g}}, \quad \dot{p} = \partial_r \left(\frac{g g^{rs} \partial_s x}{\sqrt{\dot{p}^2 + g}} \right),$$

(7)

C_r is time-independent. Using (6), one then finds that the Hamiltonian density \mathcal{H} is also(!) conserved:

$$\partial_t \left(\sqrt{\dot{p}^2 + g} \right) = 0$$

(8)

As before, the second order equations for \dot{x} are then automatically satisfied:

$$\ddot{x} = \frac{1}{\mathcal{H}} \partial_r \left(\frac{g g^{rs} \partial_s x}{\mathcal{H}} \right) .$$

(9)

Note that (6) and (8) (hence (9)) is also consistent with the equations of motion derived by choosing as Hamiltonian density any non-linear function of \mathcal{H} (in these
cases, however, the equations of motion alone will not be sufficient to make \(p \cdot \partial_r \dot{x} \) proportional to some conserved quantity.

The Hamiltonian form (5)/(6) may be derived in a less ad hoc way, by the standard canonical procedure, just choosing \(\varphi^0 = x^0 \) (and \(-S\) instead of \(S\)), leaving

\[
G_{\alpha\beta} = \begin{pmatrix}
1 - \dot{x}^2 & -\dot{x} \partial_r \dot{x} \\
-\dot{x} \partial_r \dot{x} & -g_{rs}
\end{pmatrix},
\]

(10)

\[
\mathcal{L} = -\sqrt{G} = -\sqrt{g} \sqrt{1 - \dot{x}^2} + (\dot{x} \partial_r \dot{x}) g^{rs} (\dot{x} \partial_s \dot{x}) .
\]

(11)

Defining canonical momenta,

\[
p_i = \frac{\delta \mathcal{L}}{\delta \dot{x}_i} = \sqrt{\frac{g}{1 - \dot{x}^2} + (\dot{x} \partial_r \dot{x}) g^{rs} (\dot{x} \partial_s \dot{x})} \left(\dot{x}_i - \partial_r x_i g^{rs} (\dot{x} \partial_s \dot{x}) \right),
\]

(12)

it is easy to see that

\[
\mathcal{H} := \dot{x} \cdot \dot{p} - \mathcal{L} = \sqrt{p^2 + g}
\]

(13)

and

\[
\phi_r := \dot{p} \partial_r \dot{x} \equiv 0 \quad \text{for} \quad r = 1, \ldots, M
\]

(14)

(as a consequence of (12), i.e. without assuming (3)). The \(\phi_r \) are primary first class constraints (their Poissonbrackets among themselves, and with \(\mathcal{H} \) vanish on the constraint surface). According to Dirac [6], one should use

\[
H_T := \int_\Sigma \sqrt{p^2 + g} + \int_\Sigma u^r \phi_r ,
\]

(15)

leading to the equations of motion

\[
\begin{align*}
\dot{x} &= \frac{\dot{p}}{\sqrt{p^2 + g}} + u^r \partial_r \dot{x} \\
\dot{p} &= \partial_r \left(\frac{g g^{rs} \partial_s \dot{x}}{\sqrt{p^2 + g}} + u^r \dot{p} \right),
\end{align*}
\]

(16)
from which \(u^r \) can be determined as

\[
 u^r = g^{rs} \hat{x} \partial_s \hat{x} .
\]

(17)

(16)/(17) are equivalent to the Lagrangian equations of motion,

\[
 \partial_t \left(\frac{\delta L}{\delta \dot{x}^i} \right) + \partial_r \left(\frac{\delta L}{\delta (\partial_r x^i)} \right) = 0 .
\]

(18)

The effect of choosing the time-dependence of \(\varphi = (\varphi_1, \ldots, \varphi^M) \) such that \(\hat{x} \partial_r \hat{x} \equiv 0 \) is therefore not (6), but putting \(u^r = 0 \), in (15).

Note that (5) and (6) are therefore valid for arbitrary codimension (i.e. \(M \)-dimensional extended objects in \(D \)-dimensional Minkowski-space).

In any case, the question is how to proceed from (5)/(6). At first, one may hope that the existence of \(n \) time-independent, \(\varphi \) dependent functionals (of the \(n \) fields \(\hat{x} \) and their conjugate momenta, \(\hat{p} \)) will be sufficient to have some kind of 'infinite-dimensional Liouville integrability'. However, whereas \(H(\varphi) \) commutes (weakly) with itself,

\[
 \int \Sigma f(\varphi) H(\varphi), \quad \int \Sigma h(\tilde{\varphi}) H(\tilde{\varphi}) = \int \Sigma (f \partial_r h - h \partial_r f) g g^{rs} \frac{C_s}{H} ,
\]

(19)

it does not commute with \(C_r \):

\[
 \{ H(\varphi), \ C_r(\tilde{\varphi}) \} \approx \partial_r \delta^{(M)}(\varphi, \tilde{\varphi}) .
\]

(20)

One may try to subtract from \(C_r \) a term \(\partial_r Y \), \(Y \) conjugate to \(H \), or enlarge the phase-space by a pair of conjugate fields, or argue, that the (weak) commutativity of \(H \) with itself already provides a separation of variables for the extended object ('up to projecting onto \(C_r = 0' \)). However, if one performs the Hamiltonian reduction by choosing, e.g.,

\[
 \Pi^r := \varphi^r - x^r \equiv 0 , \quad r = 1, \ldots, M
\]

(21)

(strictly speaking, this way of gauge-fixing is globally possible only for certain infinitely
extended surfaces) one would have \(\{ C_r, \Pi^s \} = \partial_r x^s \approx \delta^s_r \), hence

\[
\{ F, G \}^* = \{ F, G \} - \int_\Sigma \{ F, C_r(\varphi) \} \{ \Pi^r(\varphi), G \} d^M \varphi
+ \int_\Sigma \{ G, C_r(\varphi) \} \{ \Pi^r(\varphi), F \} d^M \varphi
\]

(22)

for the Dirac-bracket on the reduced phase-space, and due to (20), \(H \) will no longer be conserved, as

\[
\mathcal{H} := \{ \mathcal{H}, H \}^* \approx \partial_r(p_a \partial_r x_a) \neq 0 \quad a = M + 1, \ldots, n .
\]

(23)

The left-over fields, however, remain conjugate in the reduced Hamiltonian,

\[
H = \int \sqrt{p_a p_a + p_a p_b \partial_r x_a \partial_r x_b + \det(\delta_{rs} + \partial_r x_a \partial_s x_a)}
\]

(24)

which for the hypersurface case simplifies \((z = x^n)\) to

\[
H = \int \sqrt{1 + p^2} \sqrt{1 + \partial_r z \partial_r z} ,
\]

(25)

and agrees, in the case of membranes, with the one derived, (in a rather different way) in [3]. A more interesting way to fix the gauge is to use \(H \) itself, by demanding e.g.

\[
\Pi := \mathcal{H} - \rho(\varphi) H \equiv 0 \quad \int_\Sigma \rho(\varphi) = 1 .
\]

(26)

When following the Dirac-procedure [6], it is probably best to split (6) into \(C = \partial_r C_r = 0 \), and the complement (the elimination of \(C \) and \(\Pi \) will then involve the Green’s function for the Laplacian on \(\Sigma \)) However, one may also work with the symplectic form \(\int_\Sigma d \vec{x}(\varphi) \wedge d \vec{p}(\varphi) \) in the following way: Restricting to the hyper-surface case, one first solves (6) by

\[
\vec{p} = p \cdot \hat{m}
\]

\[
M \cdot (\hat{m})_i = \epsilon_{i_1 \ldots i_M} \epsilon^{r_1 \ldots r_M} \partial_{r_1} x^{i_1} \cdots \partial_{r_M} x^{i_M}
\]

(27)
parameter class of canonical transformations,

\[
\left(\vec{x}, \vec{p} \right) \rightarrow \left(\vec{x}^\lambda := \vec{x}, \ vec{p}^\lambda := \vec{p} + \lambda \vec{m} \right),
\]

(28)
generated by

\[
Q_\lambda = \frac{1}{(M + 1)} \int_\Sigma x \cdot \vec{m}
\]

(29)
- which allows e.g. to express \(H \) as \(\frac{1}{\sqrt{2}} \int_\Sigma \sqrt{p^2 + p_-^2} \). In any case, upon (27) the symplectic form becomes

\[
- \int_\Sigma \epsilon^{ri_1 \ldots ri_M} (\partial_r x^{i_1} \ldots \partial_{r_M} x^{i_M} \frac{dp \wedge dx^i}{M} + \partial_{r_1} p \partial_{r_2} x^{i_2} \ldots \partial_{r_M} x^{i_M} dx^i \wedge dx^{i_1}).
\]

(30)

Changing variables from \((\vec{p}, \vec{x}) \) to \((\mathcal{H} = \sqrt{p^2 + 1} \sqrt{g}, \vec{x}) \), and then eliminating part of the degeneracy of (30) by using (26), (30) will be of the form

\[
\int_\Sigma w_i(\varphi) dE \wedge dx^i(\varphi) + \int_{\Sigma \times \Sigma} w_{ij}(\varphi, \tilde{\varphi}) dx^i(\varphi) \wedge dx^j(\tilde{\varphi})).
\]

(31)

After eliminating the remaining \(1 + (M - 1) \cdot \infty \) degenerate directions in (31), one must find \(Q \) and \(P \) (in terms of \(E \) and \(\vec{x} \)) such that, at least locally,

\[
w = dQ \wedge dP.
\]

(32)
The dynamics will then be given by

\[
E = E(Q, P).
\]

(33)
Even for the string case (closed strings in 3-dimensional flat Minkowski space) this point of view should be quite interesting (while it seems still difficult to find \(Q \) and \(P \), one knows that there must exist infinitely many conserved quantities for (33)). In this
case, \(\{ \Pi(\varphi), C(\tilde{\varphi}) \} \approx \delta'(\varphi - \tilde{\varphi}) =: \chi(\varphi, \tilde{\varphi}) \). Apart from having to take proper care of the zero eigenvalue of \(\chi \) the difference of the Dirac- and the original bracket will be

\[
\int_{\Sigma \times \Sigma} \{ \cdot, \mathcal{H}(\varphi) - H\rho(\varphi) \} \theta(\varphi, \tilde{\varphi}) \{ C(\tilde{\varphi}), \cdot \} =: \chi(\varphi, \tilde{\varphi}) \quad \text{(antisymmetrized)}.
\]

However, as both \(C \) and \(\mathcal{H} \) commute with \(H \), the time-evolution of \(x_1 \) and \(x_2 \) will be unaltered:

\[
\dot{x}_r = p_r = p_{rs}x'_s = \sqrt{\frac{1}{x} - \frac{1}{E^2\rho^2}} \epsilon_{rs}x'_s \quad \text{and} \quad \dot{t} = \frac{\partial}{\partial \varphi}.
\]

(35)

In the membrane-case one will get the generalized \(su(\infty) \) Nahm equations [3] this way. Somewhere in between (in complexity) are axially symmetric membranes (for which a zero-curvature-condition was given in [4], and derived to be equivalent to strings in a curved 3-dimensional space, in [7]), with equations of motion

\[
\dot{r} = \sqrt{\frac{1}{g} - \frac{1}{E^2\rho^2}} z' \cdot r
\]

\[
\dot{z} = -\sqrt{\frac{1}{g} - \frac{1}{E^2\rho^2}} r' \cdot r \quad (g = r^2 (r'^2 + z'^2)).
\]

(36)

Acknowledgement:

I benefited from conversations with many members and visitors at Yukawa Institute, the Research Institute for Mathematical Sciences, and Kyoto University. In particular, I would like to thank T.Inami and K.Takasaki, as well as Yukawa Institute for hospitality. I am very grateful to K. Hayashi for typing this paper, and to the Deutsche Forschungsgemeinschaft for financial support.
References:

[1] J.Hoppe; 'Quantum Theory of a Massless Relativistic Surface ...' MIT Ph.D.-thesis and Elem. Part. Res. J. (Kyoto) **80** (1989) 145.

[2] see e.g. 'Supermembranes and Physics in 2+1 Dimensions' Proceedings of the 1989 Trieste Conference, World Scientific 1990, Eds. M. Duff, C. Pope, E. Sezgin.

[3] M.Bordemann, J.Hoppe; Phys. Lett. **B 325** (1994) 359.

[4] J.Hoppe; 'Surface Motions and Fluid Dynamics' Phys. Lett. **B** (to appear).

[5] A.Ashtekar; 'Lectures on Non-Perturbative Canonical Gravity' World Scientific 1991.

[6] P.A.M.Dirac; 'Lectures on Quantum Mechanics' Academic Press 1967.

[7] J.Hoppe; Phys. Lett. **B 329** (1994) 10.