The adipogenic transcriptional cofactor ZNF638 interacts with splicing regulators and influences alternative splicing

Chen Du, Xinran Ma, Sunita Meruvu, Lynne Hugendubler, and Elisabetta Mueller

Genetics of Development and Disease Branch of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892

Abstract Increasing evidence indicates that transcription and alternative splicing are coordinated processes; however, our knowledge of specific factors implicated in both functions during the process of adipocyte differentiation is limited. We have previously demonstrated that the zinc finger protein ZNF638 plays a role as a transcriptional coregulator of adipocyte differentiation via induction of PPARγ in cooperation with CCAAT/enhancer binding proteins (C/EBPs). Here we provide new evidence that ZNF638 is localized in nuclear bodies enriched with splicing factors, and through biochemical purification of ZNF638’s interacting proteins in adipocytes and mass spectrometry analysis, we show that ZNF638 interacts with splicing regulators. Functional analysis of the effects of ectopic zincfinger expression on a minigene reporter demonstrated that ZNF638 is sufficient to promote alternative splicing, a function enhanced through its recruitment to the minigene promoter at C/EBP responsive elements via C/EBP proteins. Structure-function analysis revealed that the arginine/serine-rich motif and the C-terminal zinc finger domain required for speckle localization are necessary for the adipocyte differentiation function of ZNF638 and for the regulation of the levels of alternatively spliced isoforms of lipin1 and nuclear receptor co-repressor 1. Overall, our data demonstrate that ZNF638 participates in splicing decisions and that it may control adipogenesis through regulation of the relative amounts of differentiation-specific isoforms.

Supplementary key words transcriptional coactivator • minigene reporter • nuclear speckles • adipocyte differentiation

The process of adipocyte differentiation is initiated and controlled by a number of transcription factors, including CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ, and by cofactors (1), such as the recently characterized zinc finger protein ZNF638, which regulates the expression of the master controller of adipogenesis, PPARγ, in conjunction with C/EBP proteins (2). The gene expression program occurring during differentiation includes the engagement and cooperation of these tissue-selective factors and cofactors with components of the RNA polymerase II machinery at active transcription sites, initiation of transcription followed by mRNA processing, through RNA capping, polyadenylation, and removal of noncoding intronic sequences, prior to protein translation (3). The process of splicing gives rise to the mature mRNA though the sequential succession of several complexes, starting from the precomplex in which sites of splicing are chosen, to the catalytic removal of introns executed by complex C components (4). During differentiation and development, tissue-specific enrichment of splicing factors ensures that alternative splicing is achieved to generate tissue-specific, temporally and developmentally regulated isoforms required to confer the specific phenotype (4–6). It has been shown that the relative abundance or activity of splicing regulators that have opposing effects determines the use of competing splice sites, ultimately controlling the exon composition of tissue-specific isoforms (4, 5). In adipocytes, alternatively spliced isoforms such as those of the insulin receptor (7), lipin (8), mitochondrial oxodicarboxylate carrier (9), nuclear receptor co-repressor 1 (NCoR) (10), preadipocyte factor 1 (11), and mechanistic target of rapamycin (12) have been shown to play a role in the differentiation process.

Abbreviations: AR, acidic repeat; C/EBP, CCAAT/enhancer binding protein; CTD, C-terminal domain; DBD, DNA binding domain; EI, exon inclusion; ES, exon skipping; GFP, green fluorescent protein; GST, Glutathione S-transferase; HNRNP, heterogeneous nuclear ribonucleoprotein; NCoR, nuclear receptor co-repressor 1; NONO, non-POU domain-containing octamer binding protein; PABP1, polyadenylate binding protein 1; PGC1α, PPAR gamma coactivator 1-alpha; RRM, RNA recognition motif; RS, arginine/serine rich; ASF/SF2, pre-mRNA-splicing factor 2/alternative splicing factor; SR, serine/arginine rich; ZF, zinc finger; ZNF638, zinc finger protein 638.

1To whom correspondence should be addressed.
e-mail: elisabetta@niddk.nih.gov

This research was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.

Manuscript received 29 January 2014 and in revised form 13 June 2014. Published, JLR Papers in Press, July 14, 2014. DOI 10.1194/jlr.M047555

This article is available online at http://www.jlr.org
Sérine/arginine-rich (SR) proteins are a major class of splicing regulators. These proteins contain RNA recognition motifs (RRMs) at the amino terminus and arginine/serine-rich (RS) repeats at the carboxy terminus (13). SR proteins reside in discrete subnuclear regions, which represent storage areas for splicing factors serving nearby active transcription sites (14, 15). Furthermore, SR proteins bind to exonic splicing enhancer sequences and recruit spliceosomal ribonucleoproteins (RNPs) and non-RNPs to the pre-mRNA (16), thereby affecting the selection of splice sites already during the process of transcription. In addition to SR proteins, heterogeneous nuclear ribonucleoproteins (HNRNPs) bind to pre-mRNA transcripts and influence alternative splicing (17–19). It has been shown that pre-mRNA splicing is coupled to transcription both by the function of the C-terminal domain (CTD) of RNA polymerase II (3) and by a number of cofactors involved in both processes (20–23), as demonstrated for the metabolic coactivator PPAR γ, a coactivator of PPAR γ, and its dotted nuclear localization pattern in adipocytes (2), led us to hypothesize that ZNF638 may also participate in alternative splicing, as previously demonstrated for the coactivator PGC1α (23). In this study, we tested this hypothesis using several experimental approaches, including confocal microscopy, mutagenesis, mass spectrometry analysis, and functional studies.

MATERIALS AND METHODS

Plasmids

Full-length murine ZNF638.pCR3.1 plasmid (2) was used as a template to generate eight deletion mutants by whole vector mutagenesis (Genewiz). ZNF638-ΔZF1 contains a deletion from amino acids 424 to 456, eliminating the N-terminal ZF motif. The ΔAR motif lacks amino acids 1,876 to 1,908, eliminating the C-terminal ZF domain. The ΔRS plasmid served as a template to generate the ΔRS/ZF2 mutant lacking both the RS and ZF2 motifs, with two deletions, one from amino acids 470 to 573 and one from 1,876 to 1,908. The primer sequences to generate the previous mutants are listed in Table 1. The empty vector backbone pCR3.1 served as control. Glutathione S-transferase (GST)-ZNF638ΔRRM1 and green fluorescent protein (GFP)-ZNF638ΔRRM2 constructs expressing only the carboxy-terminal region of ZNF638, from amino acids 1,773 to 1,926, containing the C-terminal ZF domain were previously described (2). The fibronectin minigene reporter 7iBi89 plasmid (26) was obtained from Addgene (14065). This minigene contains exons 24 through 28 of the rat fibronectin gene including introns 24-25 and 25-26 flanking the alternatively spliced exon 25. The gene cassette is under the control of a human β-actin promoter and contains a human growth hormone polyadenylation signal. To generate a fibronectin minigene reporter containing C/EBPα responsive elements, a 46 bp sequence of the PPARγ2 promoter containing C/EBPα responsive elements (5′-TTTTACTGCAATTTTAAAAAGCAATCAATATTGAACAATCTCT-GCT-3′) (27) was inserted between the β-actin promoter and the beginning of the fibronectin minigene cassette. The C/EBPα responsive element sequence was synthesized including XhoI and BstGI restriction sites and cloned into the minigene plasmid at those sites (Genewiz). C/EBPβ and C/EBPδ plasmids were obtained from Addgene, and the C/EBPα construct was a gift of Kai Ge (National Institutes of Health).

Antibodies

Rabbit anti-ZNF638 antibody (Bethyl, A301-548A) was used to detect ZNF638. Mouse anti-pre-mRNA-splicing factor 2 (SF2) and alternative splicing factor (ASF) antibody (Santa Cruz, sc-636), anti-mouse-HRP antibody (Santa Cruz, sc-636), anti-GFP antibody (Invitrogen, sc-136296), anti-polyadenylate binding protein 1 (PABP1) antibody (Abcam, ab31645), anti-HNRNPLL antibody (Cell Signaling, A-11122), anti-HNRNPA1 antibody (Abcam, ab35392), anti-HNRNPA2B1 antibody (Abcam, ab31736), anti-HNRNPL antibody (Santa Cruz, sc-132712), anti-non-POU domain-containing octamer binding protein (NONO) antibody (Santa Cruz, sc-156296), anti-polyadenylate binding protein 1 (PAPB1) antibody (Cell Signaling, 4992), anti-C/EBPα antibody (Santa Cruz, sc-2054), anti-C/EBPβ antibody (Santa Cruz, sc-9762), anti-C/EBPδ antibody (Santa Cruz, sc-636), anti-mouse-HRP antibody (Santa Cruz, sc-2055), anti-rabbit-HRP antibody (Santa Cruz, sc-2054), and anti-goat-HRP antibody (Santa Cruz, sc-2020) were used for Western blotting.

| Table 1. Primers used to generate ZNF638 deletion mutants |
|-----------------|-----------------|
| ZNF638 Mutants | Primer Sequences (5′ → 3′) |
| ΔZF1 | Forward: GAAATTATCCACAAATACCTCCATGTTTGGAG |
| ΔR | Forward: CTACCTGGATCCCTTTGACAAAGCTAGTCTC |
| ΔRRM1 | Forward: AAAAGGGCCAGAGAAAGAAAAGTTGGAG |
| ΔRRM2 | Forward: GAATGGAAGGAGATGAGGACAGCTTC |
| ΔRRM1-3 | Forward: CTTAAGGAAAGAGGACAGCTTC |
| ΔDBD | Forward: GAGGGGCGCCATACCAAGAGAGGACAGCTTC |
| ΔAR | Forward: GAATAGTTCCACAAATACCTCCATGTTTGGAG |
| ΔZF2 | Forward: GCCAAGCAAAAGAAGGAGGAAGGAG |

ZNF638’s role in alternative splicing 1887
Cell culture and transfections

The 3T3-L1, 10T1/2, U2OS, and HEK-293 cells (ATCC), were cultured in high-glucose DMEM medium (Invitrogen), supplemented with 10% fetal bovine serum (HyClone) and 1% penicillin/streptomycin (Mediatech) at 37°C and 5% CO2. The 3T3-L1 cells were cultured and differentiated as previously described (2). For minigene assays and transient transfections, cells were transfected with Xtreme Gene HP (Roche) and analyzed 24 h later.

Determination assays

The 10T1/2 cells were electroporated (Amaza) with either control, full-length ZNF638, or mutant plasmids, induced to differentiate in culture medium supplemented with 5 µg/ml insulin, 0.5 mM 3-isobutyl-1-methylxanthine (Sigma), and 10 µM troglitazone for 2 days and subsequently maintained in culture medium supplemented with 5 µg/ml insulin (28). Gene expression was assayed by real-time PCR 3 days after induction of differentiation, following RNA extraction (TRizol) and reverse transcription (Roche). The sequences of the primers used were the following: for 36B4, forward 5′-GGTCCCCCAGCCCCAGTCCTT-3′; for Pparβ, forward 5′-GGGCCCTGCCTCTTC-3′; for p53, forward 5′-ACACCGAGATTTGCTCAACTG-3′; for CD36, forward 5′-TTTTGAGTGGTATGAAAAAGGGC-3′; reverse 5′-TGACATCAGGGCATCATGATG-3′; for Ppary2, forward 5′-GATGCAATGCTGCTATGACCCTTC-3′; reverse 5′-AGAGGTCACAGACTGATTGTC-3′; for ZNF638, forward 5′-TCCAGTTGAGATGGAACC-3′, reverse 5′-TGATGAGATCCGCTCTTGTTG-3′; for Lipin1α, forward 5′-GGTCCCCACAGCCCCAGTCCT-3′, reverse 5′-GCGCGCTGTTGGCAATTCAG-3′; for Lipin1β, forward 5′-CAGGGTGGGATGCA-3′, reverse 5′-AGAGCCTGCAATTCAGA-3′; for NCoRα, forward 5′-CTGCCAAGGCTGCTACTACAGCAAG-3′, reverse 5′-AACTGCTGAGACTGTGCTAGC-3′; for NCoRβ, forward 5′-CTGTCCTGCTATTCTGCTGTCTACAG-3′, reverse 5′-CTGTCCTGATCAGGCTCTACAG-3′. To quantify the extent of lipid accumulation, cells were stained with Oil Red O at day 6 of differentiation, and the dye was extracted with isopropanol and absorbance measured at 520 nm, as described previously (29, 30).

Immunofluorescence

U2OS cells were plated on chamber slides (Labtek) and transfected with either vector, full-length ZNF638, or one of the eight ZNF638 deletion mutants. Twenty-four hours after transfection, cells were fixed in 4% paraformaldehyde, permeabilized with 0.1% (v/v) Triton X-100 in PBS, blocked with 1% nonfat dry milk, and incubated with primary antibody for 1 h at room temperature or overnight at 4°C and with secondary antibodies for 1 h at room temperature or overnight at 4°C and subsequently exposed to secondary HRP-conjugated antibodies for 1 h. Blots were incubated with ECL substrate (Pierce) and exposed to film (Kodak).

Minigene splicing assays

HEK-293 cells were plated on 12-well plates and transfected at 70–80% confluency with 1 µg of fibronectin minigene reporter plasmid and either 5 µg of ZNF638.pCR3.1 or pCR3.1 vector. For C/EBP coexpression studies, cells were cotransfected with 1 µg fibronectin minigene plasmid containing C/EBP responsive elements and with 1 µg of C/EBPα, C/EBPβ, or C/EBPδ plasmids or vector, and 3 µg of vector control or ZNF638. Twenty-four hours after transfection, cells were harvested, and the extracted mRNA (RNeasy, Qiagen) was reverse transcribed using anchored oligo dT primer (Transcriptor First Strand cDNA Synthesis Kit, Roche). Ratio of exon inclusion (EI) to exon skipping (ES) was assessed by real-time PCR. The EI primers specifically amplified the longer isoform including the alternatively spliced exon 25.

Biochemical purification of ZNF638 interacting proteins present in adipocytes and mass spectrometry analysis

Purification of the GST-ZNF638p2 fusion protein from BL21 bacterial cells and preparation of nuclear extracts from differentiating 3T3-L1 cells 2 days after induction with 0.5 mM 3-isobutyl-1-methylxanthine (Sigma), 1 µM dexamethasone (Fluka), and 5 µg/ml insulin (Sigma) were performed as previously described (2). ZNF638 interacting proteins purified from nuclear lysates obtained from differentiating 3T3-L1 adipocytes were separated by SDS-PAGE and stained with Coomassie blue. Prominent bands were excised and subjected to mass spectrometry analysis (Taplin Biological Mass Spectrometry Facility, Harvard Medical School, Boston, MA).

Immunoprecipitation assays

HEK-293 cells were transfected with GFP-ZNF638p2.pAcGFP or pAcGFP vector. Immunoprecipitation assays were performed using GFP-trap agarose beads (Chromotek, Allele), according to the manufacturer’s instructions. Protein lysates were resolved by SDS-PAGE and transferred to polyvinylidene difluoride membranes (Millipore). After blocking in TBS with Tween containing 2% nonfat dry milk, membranes were incubated with primary antibodies for 1 h at room temperature or overnight at 4°C and subsequently exposed to secondary HRP-conjugated antibodies for 1 h. Blots were incubated with ECL substrate (Pierce) and exposed to film (Kodak).

Fig. 1. ZNF638 colocalizes with the splicing factor ASF/SF2 in nuclear speckles. Subcellular localization of transiently expressed ZNF638 in U2OS cells detected by indirect immunofluorescence and by overlay with DAPI as nuclear counterstaining (A). Double immunofluorescence staining of transiently expressed ZNF638 and by overlay with endogenous ASF/SF2, a marker for nuclear speckles (B). A, B: Confocal imaging; scale bars: 10 µm.
and the ES primers amplified the short isoform, skipping exon 25, as previously described (31). The EI and ES primers utilized were the following: EI forward 5′-CCGTCATCCAGAGGTGCCC-3′, EI reverse 5′-GGAGGGACGGCCGTGGCTGTG-3′; and ES forward 5′-CCCCTATCTCTGATACCGTCATCCC-3′, ES reverse 5′-GTTCGTACACGCTGGAGACACTGAC-3′. The following real-time PCR conditions were used: 10 min 95°C, 35 cycles of 10 s at 95°C, 30 s at 67°C, and 30 s at 72°C. PCR products corresponding to EI or ES were further confirmed by sequencing (Genewiz).

Statistical analysis was performed by the two-sided Student’s t-test with unequal variance on three replicates as indicated. A P value < 0.05 was considered statistically significant.

RESULTS

The adipogenic cofactor ZNF638 localizes in nuclear bodies enriched in splicing factors

We previously identified ZNF638 as a transcriptional cofactor implicated in the regulation of PPARγ expression and adipocyte differentiation through interaction with the C/EBP family of transcription factors. In addition, we showed that ZNF638 is localized in the nucleus of differentiating 3T3-L1 cells in a punctate pattern (2). To better characterize the identity of the nuclear bodies in which ZNF638 resides, we performed immunofluorescence staining using antibodies against ZNF638 and the splicing factor ASF/SF2, which served as a marker for nuclear speckles (32). Confocal imaging analysis of U2OS cells transiently expressing ZNF638 revealed that ZNF638 colocalizes with endogenous ASF/SF2 in nuclear speckles (Fig. 1A, B).

The RS and the C-terminal ZF domains are required for ZNF638’s localization to nuclear speckles

To investigate the contribution of the domains present in ZNF638 to the speckled localization observed, we generated deletion mutants, as shown in the schematic representation in Fig. 2A. Indirect immunofluorescence staining of the ectopically expressed full-length ZNF638 and mutants followed by confocal imaging demonstrated that the ablation of either the RS domain (ZNF638-ΔRS) or the C-terminal ZF domain (ZNF638-ΔZF2), or of both domains (ZNF638-ΔRS/ZF2), abolished ZNF638’s localization to speckles (Fig. 2B). These findings indicate that the RS domain and the C-terminal ZF domain are required for ZNF638’s localization to nuclear speckles.

ZNF638 interacts with regulators of pre-mRNA splicing present in adipocytes

Given the punctate nuclear localization of ZNF638 and the evidence that speckles are nuclear bodies enriched in pre-mRNA splicing factors (14), we hypothesized that ZNF638 may complex with spliceosomal proteins. To assess this, we performed biochemical purification of ZNF638 interacting proteins from differentiating 3T3-L1 adipocytes using a GST fusion protein expressing the region containing the ZF domain present at the carboxy terminus (GST-ZNF638 ZF2) required for speckled localization. Mass spectrometry analysis identified 172 novel ZNF638 interactors (Fig. 3A), and their clustering according to function revealed that 38% of these interacting proteins have been previously shown to be either associated with constitutive and alternative splicing, reported in interchromatin granule clusters or present in early or late spliceosomal complexes (33–36) (Fig. 3A, Table 2). Mass spectrometry analysis also revealed that the novel ZNF638 interactors identified are involved in transcription, translation, nucleic acid binding, and metabolism, according to their annotation in the Uniprot database (Fig. 3A). Furthermore, we detected ZNF638 peptide sequences, which were not part of the ZNF638-GST fusion protein used for affinity purification (data not shown). To validate the results obtained via mass spectrometry analysis, we performed coimmunoprecipitation assays. As shown in Fig. 3B, ectopically expressed GFP-ZNF638 ZF2 was able to immunoprecipitate endogenous HNRNPA1, HNRNPA2B1, HNRNPLL, NONO, and PABP1. Taken together, our data
we assessed the effect of ZNF638 on splicing of the fibronectin minigene when a C/EBP responsive element cassette was introduced in the fibronectin minigene reporter (Fig. 4D). As shown in Fig. 4E, F, low amounts of ectopically expressed ZNF638 were able to increase the ratio of EI to ES only when C/EBPα, C/EBPB, or C/EBPβ were coexpressed, suggesting that loading of ZNF638 on promoters enhances its action on splicing. These data indicate that ZNF638 is able to influence alternative splicing of a minigene reporter and that this process is facilitated in the presence of C/EBP responsive elements and C/EBP proteins.

The RS motif and the C-terminal ZF domain are necessary for the proadipogenic function of ZNF638

Given our previous characterization of ZNF638 as a co-regulator of adipocyte differentiation, we assessed the requirement of each domain of ZNF638 for this process. We therefore ectopically expressed either vector, full-length ZNF638, or each deletion mutant in the mesenchymal cell line 10T1/2 and induced their differentiation. As shown in Fig. 5A, B, while 10T1/2 cells expressing full-length ZNF638 showed increased lipid accumulation and induced classic adipocyte markers, cells expressing ZNF638 mutants lacking either the RS, the C-terminal ZF, or both domains showed a decreased ability to induce adipocyte differentiation compared with full-length ZNF638, even though these mutants were expressed at the same levels as full-length ZNF638.

Given that alternatively spliced isoforms of lipin1 and NCoR have been previously shown to be differentially regulated during the adipogenic process (8, 10), we determined whether their levels were altered in 10T1/2 cells expressing ZNF638 or its deletion mutants. As shown in Fig. 5C, we observed an altered ratio of lipin1β/lipin1α and of NcoRα/NcoRβ in cells expressing the mutants lacking the RS or the C-terminal ZF domains compared with cells expressing full-length ZNF638. Overall, these data demonstrate that the RS and the C-terminal ZF domains are necessary for the proadipogenic function of ZNF638 and for the regulation of alternatively spliced isoforms present in adipocytes.

DISCUSSION

The ZF protein ZNF638 is a multidomain protein initially cloned in the mid-1990s whose function has remained unknown for more than a decade. We have recently characterized ZNF638 as a transcriptional cofactor involved in adipocyte differentiation acting in cooperation with C/EBPβ and C/EBPδ to regulate the expression of the nuclear receptor PPARγ in adipocytes (2). In the present study, we have provided novel evidence that ZNF638 localizes in nuclear regions enriched in splicing factors, that it interacts with splicing regulatory proteins present in adipocytes, and that it participates in the modulation of alternative splicing of a pre-mRNA transcript derived from a minigene reporter.
TABLE 2. ZNF638 interacting proteins implicated in pre-mRNA splicing identified by mass spectrometry analysis

Gene Symbol	Protein Name	Uniprot Accession Number	Number of Peptide Matches	References
Cpsf6	Cleavage and polyadenylation specificity factor subunit 6	Q6NVF9	1 (36)	
Ddx1	ATP-dependent RNA helicase DDX1	Q91VR5	30 (36)	
Ddx17	Probable ATP-dependent RNA helicase DDX17	Q501J6	10 (33, 36)	
Ddx5x	ATP-dependent RNA helicase DDX5x	Q62167	4 (33, 36)	
Ddx46	Probable ATP-dependent RNA helicase DDX46	Q56925	3 (33, 34, 36, 53)	
Ddx5	Probable ATP-dependent RNA helicase DDX5	Q61656	20 (33–36, 54)	
Ddx30	ATP-dependent RNA helicase DDX30	Q99MJ9	3 (36)	
Ddx15	Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DDX15	O32856	6 (33, 36, 55)	
Ddx30	Putative ATP-dependent RNA helicase DDX30	Q99PU8	4 (36)	
Ddx9	ATP-dependent RNA helicase A	O70133	5 (33, 34, 36)	
Elavl1	ELAV-like protein 1	P70372	2 (34, 36)	
Ewsr1	RNA binding protein EWS	Q16145	10 (33, 36)	
Fbl	RNA 2′-O-methyltransferase fibrillarin	P35550	2 (33)	
Fus	RNA binding protein FUS	P56959	18 (33, 36)	
Gpacth1	G patch domain-containing protein 1	Q9DBM1	1 (35)	
H1b1c	Histone H1.2	P18564	2 (33)	
Hnrnp0	Heterogeneous nuclear ribonucleoprotein A0	Q8CX86	1 (33, 36)	
Hnrnp1	Heterogeneous nuclear ribonucleoprotein A1	P49312	14 (33–38)	
Hnrnp2b1	Heterogeneous nuclear ribonucleoproteins A2/B1	Q8BG05	15 (33–36)	
Hnrnp3	Heterogeneous nuclear ribonucleoprotein A3	Q9AO200	8 (33–36)	
Hnrnp4d	Heterogeneous nuclear ribonucleoprotein D0	Q86D686	4 (33, 36)	
Hnrnp5l	Heterogeneous nuclear ribonucleoprotein L	Q8R081	6 (33, 35, 36, 56)	
Hnrnp6m	Heterogeneous nuclear ribonucleoprotein M	Q90DE01	4 (33, 35, 36, 57)	
Hnrnp10	Putative uncharacterized protein	Q5UZ01	10 (36)	
Hnrnp5u	Heterogeneous nuclear ribonucleoprotein U	Q8VEK3	49 (33–36)	
Hnrpfl	Heterogeneous nuclear ribonucleoprotein L-like	Q921F4	1 (41, 42)	
Hspa5	78 kDa glucose-regulated protein	P29029	19 (33)	
Hspa8	Heat shock cognate 71 kDa protein	P65017	3 (36)	
Igl2b3	Insulin-like growth factor 2 mRNA binding protein 3	Q9CPN8	10 (36)	
Iif3	Interleukin enhancer binding factor 3	Q9Z1 × 4	3 (33, 34)	
Matr3	Matrin-3	Q8K310	1 (33, 36)	
Ncbp1	Nuclear cap binding protein subunit 1	Q3U3Y9	1 (33–36, 58)	
Ncl	Nucleolin	P90405	23 (36)	
Nono	Non-POU domain-containing octamer binding protein	Q99K48	1 (33, 36, 57, 59, 60)	
Nop56	Nucleolar protein 56	Q9D6Z1	3 (33)	
Nop58	Nucleolar protein 58	Q6DFW4	1 (33)	
Npm1	Nucleophosmin	Q61957	2 (36)	
Nsf1	Nuclear RNA export factor 1	Q89JX7	1 (33, 36)	
Pabpc1	Polyadenylate binding protein, cytoplasmic 1	P29541	4 (35, 61)	
Pppl1ca	Serine/threonine-protein phosphatase PP1α catalytic subunit	P62137	2 (36)	
Ppp1r10	Serine/threonine-protein phosphatase 1 regulatory subunit 10	Q80W00	12 (33)	
Rbm15	Putative uncharacterized protein	Q3THK4	1 (36)	
Rbm39	RNA binding protein 39	Q8VH51	2 (21, 33, 34)	
Rmxa	Heterogeneous nuclear ribonucleoprotein G	Q35479	1 (33, 35, 36, 62)	
Rpl7a	60S ribosomal protein L	P12970	4 (33)	
Rpl8p	60S acidic ribosomal protein P0	P18600	4 (33)	
Rps2	40S ribosomal protein S2	P25444	2 (33)	
Rps3a	40S ribosomal protein S3a	Q97351	3 (33)	
Sa6b2	Scaffold attachment factor B2	Q80YR5	7 (36)	
Sf1	Splicing factor 1	Q64213	2 (33, 36, 63)	
Sf3b1	Splicing factor 3β subunit 1	Q99NB9	1 (33–36, 64)	
Sfnpq	Splicing factor, proline and glutamine rich	Q8VJ16	34 (33, 36, 65)	
Slm	SAFB-like transcription modulator	Q8CH25	1 (33)	
Srpk1	Serine/threonine-protein kinase SRPK1	O70551	1 (66)	
Srsf4	Serine/arginine-rich splicing factor 4	Q8VE97	1 (33, 36, 67)	
Srsf7	Serine/arginine-rich splicing factor 7	Q8BL97	1 (33, 34, 36, 68)	
Syncrip	Heterogeneous nuclear ribonucleoprotein Q	Q7TMK9	23 (35, 36, 69)	
Tafl5	TAF15 RNA polymerase II, TATA box binding protein-associated factor	Q8BQ46	3 (36)	
Tdrd3	Tudor domain-containing protein 3	Q91W18	2 (34)	
Timpo	Lamina-associated polypeptide 2, isoforms α/zeta	Q61053	1 (33)	
U2surp	U2 snRNP-associated SURF motif-containing protein	Q6NV83	1 (33, 34)	
Wbp11	WW domain binding protein 11	Q923D5	1 (36, 70)	
Xmn2	5′-3′ exorNase 2	Q9DBR1	2 (36)	
Zhr	Zinc finger RNA binding protein	O85352	6 (33, 36)	
Znf638	Zinc finger protein 638	Q91404	27 (33)	
Our systematic analysis of ZNF638 interactors in adipocytes revealed that ZNF638 complexes with 16 factors shown to be part of the early prespliceosomal complex, including U2SURP, SRSF7, TDRD3, SF3B1, FUS, DDX46, DDX5, DHX9, ELAVL1, ILF3, NCBP1, RBM39, and the HNRNP proteins A1, A2/B1, A3, and U (34). These interactions suggest an early association of ZNF638 with the splicing machinery and its participation in splice site selection during prespliceosomal assembly (4). Particularly noteworthy is the interaction of ZNF638 with HNRNPA1, HNRNPA2B1, and HNRNPPL1, which have been critically implicated in alternative splicing (37–42). Given that HNRNPA1 functions by antagonizing the splicing factor ASF/SF2 on splice site selection (37), it is possible that ZNF638 may affect the relative local abundance of HNRNPA1 through binding and sequestration, shifting the cellular balance in favor of the splicing factor SP2, as proposed in Fig. 6A.

Our mass spectrometry analysis has also revealed that the C-terminal portion of ZNF638 interacts with other ZNF638 proteins present in adipocytes, suggesting that either multiple ZNF638 molecules may be recruited to protein complexes formed by ZNF638 or that ZNF638 may be able to di- or multimerize. Direct verification of the functional significance of these findings in adipocyte differentiation will require further investigation.

The present data indicating that ZNF638 affects alternative splicing of a minigene containing C/EBP binding sites combined with the previous reported function of ZNF638 in transcription through interaction with C/EBP proteins at C/EBP responsive elements (2) suggest that ZNF638 may act as a dual function regulator. This double role is consistent with emerging evidence indicating that cofactors can participate in both transcription and splicing, as described for p52, RNA binding motif protein 39, RNA binding motif protein 14, and PGC1α (20–23). It is plausible that when loaded on a promoter through C/EBP responsive elements, ZNF638 could facilitate the recruitment of the splicing factor(s) required for splice choice to the CTD of the largest subunit of RNA polymerase II (3, 43) and to the proximity of the nascent pre-mRNA (Fig. 6B).
Fig. 5. Requirements of ZNF638 domains in adipocyte differentiation. Quantification of lipid accumulation in 10T1/2 cells expressing vector, full-length ZNF638, or deletion mutants at day 6 after induction of differentiation measured through quantification of Oil Red O extracted from stained cells (A). mRNA levels of adipocyte markers in 10T1/2 cells expressing either vector, full-length ZNF638, or deletion mutants, after 3 days of differentiation (B). Ratio of alternatively spliced isoforms during adipocyte differentiation in 10T1/2 cells expressing either vector, full-length ZNF638, or deletion mutants, after 3 days of induction of differentiation (C). A, B, C: Mean ± SEM. Full-length ZNF638 compared with vector control: # \(P < 0.05 \), ## \(P < 0.01 \). Mutants compared with full-length ZNF638: * \(P < 0.05 \), ** \(P < 0.01 \).

This model is supported by the identification through our mass spectrometry analysis of SRSF4, a splicing factor previously shown to be involved in alternative splice site selection during pre-mRNA processing (44, 45), as a novel ZNF638 interactor. This putative dual function of ZNF638 is reminiscent of the splicing role played by the coactivator PGC1α when loaded on the promoter of its target genes (23).
Through mutagenesis and confocal microscopy analysis, we showed that the RS domain and the C-terminal ZF motif are required for ZNF638’s localization in nuclear bodies enriched in splicing factors. While it has been previously recognized that RS domains can confer speckle targeting (46–48), our data indicate that also the U1/matrin-like ZF (C-X7–2–C-X12,16–H-X5–H) (49) present at the C terminus of ZNF638 is required for speckle localization. Interestingly, this type of ZF motif has been previously identified in other proteins present in nuclear speckles and shown to be required for their localization, as in the case of SF3A2 and SF3A3 (50). These observations suggest a possible contribution of matrin-like ZFs in targeting proteins to nuclear speckles.

Our structure-function analysis has revealed that the RS and the C-terminal ZF domains required for speckle localization are also necessary for the differentiation function of ZNF638. While it is well established that RS domains play a role in splicing (51), the requirement of SR domains in adipocyte differentiation has been only recently identified through the analysis of the RS domain in the function of the CDC-like kinase 1) kinase in adipocyte differentiation (52). Further studies will determine whether the RS and C-terminal ZF domains present in ZNF638 are necessary for the generation of adipocyte-specific isoforms through their function as splicing activation domains via interactions with spliceosomal components or whether their role in adipocyte differentiation is through the recruitment of cofactors involved in transcription.

The authors would like to thank Yun-Ping Wu for help with confocal imaging and Pasha Sarraf for reading the manuscript.

REFERENCES

1. Mueller, E. 2014. Understanding the variegation of fat: novel regulators of adipocyte differentiation and fat tissue biology. *Biochim. Biophys. Acta*. 1842: 352–357.
2. Menon, S., L. Hugendubler, and E. Mueller. 2011. Regulation of adipocyte differentiation by the zinc finger protein ZNF638. *J. Biol. Chem.* 286: 26516–26523.
3. Cramer, P., A. Srebrow, S. Kadener, S. Werbajh, M. de la Mata, G. Melen, G. Nogues, and A. R. Kornblihtt. 2001. Coordination between transcription and pre-mRNA processing. *FEBS Lett.* 498: 179–182.
4. Chen, M., and J. L. Manley. 2009. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. *Nat. Rev. Mol. Cell Biol.* 10: 741–754.
5. Laco, R. F., M. Allo, I. E. Schor, A. R. Kornblith, and T. Misteli. 2011. Epigenetics in alternative pre-mRNA splicing. *Cell*. 144: 16–26.
6. Cáceres, J. F., and A. R. Kornblith. 2002. Alternative splicing: multiple control mechanisms and involvement in human disease. *Trends Genet.* 18: 186–193.
7. Entingh, A. J., C. M. Taniguchi, and C. R. Kahn. 2003. Bi-directional regulation of brown fat adipogenesis by the insulin receptor. J. Biol. Chem. 278:33377–33383.

8. Péterfy, M., J. Phan, and K. Reue. 2005. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J. Biol. Chem. 280:32883–32889.

9. Niimi, M., L. Tao, S. H. Lin, J. Yin, X. Wu, H. Fukui, J. Kambayashi, J. Ye, and B. Sun. 2009. Involvement of an alternatively spliced mitochondrial oxido-carboxylate carrier in adipogenesis in 3T3-L1 cells. J. Biomed. Sci. 16:92.

10. Goodson, M. L., B. J. Megling, B. A. Jonas, and M. L. Privalsky. 2011. Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J. Biol. Chem. 286:44888–44900.

11. Mei, B., L. Zhao, L. Chen, and H. S. Sul. 2002. Only the large soluble form of p52, but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem. J. 364:137–144.

12. Huet, M. E., G. Vogel, A. Zabarauskas, C. T. Ngo, J. Coulombe-Huntington, J. Majewski, and S. Richard. 2012. The Sam68 STAR-RNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol. Cell. Biol. 46:187–199.

13. Bourgeois, C. F., F. Lejeune, and J. Stevenin. 2004. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-mRNA complexes suitable for three-dimensional structural analysis. RNA. 8:426–439.

14. Han, S. P., Y. H. Tang, and R. Smith. 2010. Functional diversity of the hnRNPs: past, present and perspectives. Curr. Opin. Cell Biol. 5:362–367.

15. Graveley, B. R. 2000. Sorting out the complexity of SR protein functions: past, present and perspectives. Mol. Cell. Biol. 20:379–389.

16. Graveley, B. R. 2003. Arginine/serine repeats are sufficient to constitute hnRNP A1 and splicing factor SF2: composition, structure, and function. Curr. Opin. Cell Biol. 11:363–371.

17. Du, K., Y. Peng, L. E. Greenbaum, B. A. Haber, and R. Taub. 1997. mRNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol. Cell. Biol. 17:429–439.

18. Inagaki, H., Y. Matsuhashi, K. Nakamura, M. Ohshima, T. Kadowaki, and Y. Kitagawa. 1996. A large DNA-binding nuclear protein with RNA recognition motif and serine/arginine-rich domain. J. Biol. Chem. 271:12525–12531.

19. Mansfield, Y., M. Ohshima, M. Sonoda, and Y. Kitagawa. 1996. A family of novel DNA-binding nuclear proteins having polypririmidine tract-binding motif and arginine-serine-rich motif. Biochem. Biophys. Res. Commun. 225:427–433.

20. Wang, Q. A., P. E. Scherer, and K. R. Gupta. 2014. Improved method-ologies for the study of adipose biology: insights gained and opportunities ahead. J. Lipid Res. 55:665–624.

21. Mehlem, C. E. Hagberg, L. Muhl, U. Eriksson, and A. Falkevall. 2013. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 8:1149–1154.

22. Younce, C. W., A. Azfer, and P. E. Kolattukudy. 2009. MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without pereoxisome proliferator-activated receptor gamma. J. Biol. Chem. 284:27620–27628.

23. Shi, K., Y. Peng, L. E. Greenbaum, B. A. Haber, and R. Taub. 1997. HRS/SRp40-mediated inclusion of the fibronectin EIIIB exon, a possible cause of increased EIIIB expression in proliferating liver. Mol. Cell. Biol. 17:4096–4104.

24. Spector, D. L. 2006. SnapShot: cellular bodies. Cell. 127:1071.

25. Saitoh, N., C. S. Spahr, S. D. Patterson, P. Bubulya, A. F. Neuwald, and D. L. Spector. 2004. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell. 15:3876–3890.

26. Matsushima, Y., M. Ohshima, M. Sonoda, and Y. Kitagawa. 1996. A large DNA-binding nuclear protein with RNA recognition motif and serine/arginine-rich domain. J. Biol. Chem. 271:12525–12531.

27. Zhu, Y., C. Qi, J. R. Korenberg, X. N. Chen, D. Noya, M. S. Rao, and J. K. Reddy. 1995. Structural organization of mouse pereoxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc. Natl. Acad. Sci. USA. 92:7921–7925.

28. Wang, Q. A., P. E. Scherer, and K. R. Gupta. 2014. Improved method-ologies for the study of adipose biology: insights gained and opportunities ahead. J. Lipid Res. 55:665–624.

29. Mehlem, C. E. Hagberg, L. Muhl, U. Eriksson, and A. Falkevall. 2013. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 8:1149–1154.
52. Li, P., G. Carter, J. Romero, K. M. Gower, J. Watson, N. A. Patel, and D. R. Cooper. 2013. Clk/STY (cdc2-like kinase 1) and Akt regulate alternative splicing and adipogenesis in 3T3-L1 pre-adipocytes. *PLoS ONE* 8: e53268.

53. Will, C. L., H. Urlaub, T. Achsel, M. Gentzel, M. Wilm, and R. Lahrmann. 2002. Characterization of novel SF3b and 17S U2 sn-RNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. *EMBO J.* 21: 4978–4988.

54. Kar, A., K. Fushimi, X. Zhou, P. Ray, C. Shi, X. Chen, Z. Liu, S. Chen, and J. Y. Wu. 2011. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. *Mol. Cell. Biol.* 31: 1812–1821.

55. Fouraux, M. A., M. J. Kolkman, A. Van der Heijden, A. S. De Jong, W. J. Van Vrooij, and G. J. Pruijn. 2002. The human La (SS-B) autoantigen interacts with DDX15/hPrp43, a putative DEAH-box RNA helicase. *RNA* 8: 1428–1443.

56. Jønson, L., J. Vikesaa, A. Krogh, L. K. Nielsen, T. Hansen, R. Borup, A. H. Johnsen, J. Christiansen, and F. C. Nielsen. 2007. Molecular composition of IMP1 ribonucleoprotein granules. *Mol. Cell. Proteomics* 6: 798–811.

57. Marko, M., M. Leichter, M. Patrinou-Georgoula, and A. Guialis. 2010. hnRNP M interacts with PSF and p54(nrb) and co-localizes within defined nuclear structures. *Exp. Cell Res.* 316: 390–400.

58. Szaurralde, E., J. Lewis, C. McGuigan, M. Jankowska, E. Darzynkiewicz, and L. W. Mattaj. 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. *Cell* 78: 657–668.

59. Peng, R., B. T. Dye, I. Perez, D. C. Barnard, A. B. Thompson, and J. G. Patton. 2002. PSF and p54nrb bind a conserved stem in U5 snRNA. *RNA* 8: 1334–1347.

60. Liu, L., N. Xie, P. Remnie, J. R. Challis, M. Gleave, S. J. Lye, and X. Dong. 2011. Consensus PP1 binding motifs regulate transcriptional corepression and alternative RNA splicing activities of the steroid receptor coregulators, p54nrb and PSF. *Mol. Endocrinol.* 25: 1197–1210.

61. Hosoda, N., F. Lejeune, and L. E. Maquat. 2006. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. *Mol. Cell. Biol.* 26: 3085–3097.

62. Wang, J., Q. S. Gao, Y. Wang, R. Lafferty, S. Stamm, and A. Andreadis. 2004. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. *J. Neurochem.* 88: 1078–1090.

63. Krämer, A. 1992. Purification of splicing factor SF1, a heat-stable protein that functions in the assembly of a presplicing complex. *Mol. Cell. Biol.* 12: 4545–4552.

64. Wang, C., K. Chiua, W. Seghezzi, E. Lees, O. Gozani, and R. Reed. 1998. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. *Genes Dev.* 12: 1409–1414.

65. Patton, J. G., E. B. Porro, J. Galceran, P. Tempst, and B. Nadal-Ginard. 1993. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. *Genes Dev.* 7: 393–406.

66. Gui, J. F., H. Tronchere, S. D. Chandler, and X. D. Fu. 1994. Purification and characterization of a kinase specific for the serine-and arginine-rich pre-mRNA splicing factors. *Proc. Natl. Acad. Sci. USA* 91: 10824–10828.

67. Zahler, A. M., K. M. Neugebauer, J. A. Stolk, and M. B. Roth. 1993. Human SR proteins and isolation of a cDNA encoding SRp75. *Mol. Cell. Biol.* 13: 4023–4028.

68. Cavaloc, Y., M. Popielarz, J. P. Fuchs, R. Gattoni, and J. Stevenin. 1994. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family. *EMBO J.* 13: 2639–2649.

69. Mourelatos, Z., L. Abel, J. Yong, N. Kataoka, and G. Dreyfuss. 2001. SMN interacts with a novel family of hnRNP and spliceosomal proteins. *EMBO J.* 20: 5445–5452.

70. Llorian, M., M. Beullens, I. Andres, J. M. Ortiz, and M. Bollen. 2004. SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1. *Biochem. J.* 378: 229–238.