EIGENVALUE COINCIDENCES AND K-ORBITS, I

MARK COLARUSSO AND SAM EVENS

ABSTRACT. We study the variety $g(l)$ consisting of matrices $x \in gl(n, \mathbb{C})$ such that x and its $n-1$ by $n-1$ cutoff x_{n-1} share exactly l eigenvalues, counted with multiplicity. We determine the irreducible components of $g(l)$ by using the orbits of $GL(n-1, \mathbb{C})$ on the flag variety \mathcal{B} of $gl(n, \mathbb{C})$. More precisely, let $b \in \mathcal{B}$ be a Borel subalgebra such that the orbit $GL(n-1, \mathbb{C}) \cdot b$ in \mathcal{B} has codimension l. Then we show that the set $Y_b := \{ Ad(g)(x) : x \in b \cap g(l), g \in GL(n-1, \mathbb{C}) \}$ is an irreducible component of $g(l)$, and every irreducible component of $g(l)$ is of the form Y_b, where b lies in a $GL(n-1, \mathbb{C})$-orbit of codimension l. An important ingredient in our proof is the flatness of a variant of a morphism considered by Kostant and Wallach, and we prove this flatness assertion using ideas from symplectic geometry.

1. INTRODUCTION

Let $g := gl(n, \mathbb{C})$ be the Lie algebra of $n \times n$ complex matrices. For $x \in g$, let $x_{n-1} \in gl(n-1, \mathbb{C})$ be the upper left-hand $n-1$ by $n-1$ corner of the matrix x. For $0 \leq l \leq n-1$, we consider the subset $g(l)$ consisting of elements $x \in g$ such that x and x_{n-1} share exactly l eigenvalues, counted with multiplicity. In this paper, we study the algebraic geometry of the set $g(l)$ using the orbits of $GL(n-1, \mathbb{C}) \times GL(1, \mathbb{C})$ on the flag variety \mathcal{B} of Borel subalgebras of g. In particular, we determine the irreducible components of $g(l)$ and use this to describe elements of $g(l)$ up to $GL(n-1, \mathbb{C}) \times GL(1, \mathbb{C})$-conjugacy.

In more detail, let $G = GL(n, \mathbb{C})$ and let $\theta : G \to G$ be the involution $\theta(x) = d x d^{-1}$, where $d = \text{diag}[1, \ldots, 1, -1]$. Let $K := G^\theta = GL(n-1, \mathbb{C}) \times GL(1, \mathbb{C})$. It is well-known that K has exactly n closed orbits on the flag variety \mathcal{B}, and each of these closed orbits is isomorphic to the flag variety \mathcal{B}_{n-1} of Borel subalgebras of $gl(n-1, \mathbb{C})$. Further, there are finitely many K-orbits on \mathcal{B}, and for each of these K-orbits Q, we consider its length $l(Q) = \dim(Q) - \dim(\mathcal{B}_{n-1})$. It is elementary to verify that $0 \leq l(Q) \leq n-1$. For $Q = K \cdot b_Q$, we consider the K-saturation $Y_Q := Ad(K)b_Q$ of b_Q, which is independent of the choice of $b_Q \in Q$.

Theorem 1.1. The irreducible component decomposition of $g(l)$ is

$$g(l) = \bigcup_{l(Q) = n-1-l} Y_Q \cap g(l).$$

The proof uses several ingredients. The first is the flatness of a variant of a morphism studied by Kostant and Wallach [KW06], which implies that $g(l)$ is equidimensional. We
prove the flatness assertion using dimension estimates derived from symplectic geometry, but it also follows from results of Ovsienko and Futorny [Ovs03], [FO05]. The remaining ingredient is an explicit description of the $l + 1$ K-orbits Q on B with $l(Q) = n - 1 - l$, and the closely related study of K-orbits on generalized flag varieties G/P. Our theorem has the following consequence. Let b_+ denote the Borel subalgebra consisting of upper triangular matrices. For $i = 1, \ldots, n$, let $(i\, n)$ be the permutation matrix corresponding to the transposition interchanging i and n, and let $b_i := \text{Ad}(i) b_+$.

Corollary 1.2. If $x \in \mathfrak{g}(l)$, then x is K-conjugate to an element in one of $l + 1$ explicitly determined θ-stable parabolic subalgebras. In particular, if $x \in \mathfrak{g}(n - 1)$, then x is K-conjugate to an element of b_i, where $i = 1, \ldots, n$.

This paper is part of a series of papers on K-orbits on B and the Gelfand-Zeitlin system. In [CE12], we used K-orbits to determine the so-called strongly regular elements in the nilfiber of the moment map of the Gelfand-Zeitlin system. These are matrices $x \in \mathfrak{g}$ such that x_i is nilpotent for all $i = 1, \ldots, n$ with the added condition that the differentials of the Gelfand-Zeitlin functions are linearly independent at x. The strongly regular elements were first studied extensively in [KW06]. In later work, we will refine Corollary 1.2 to provide a standard form for all elements of $\mathfrak{g}(l)$. This uses K-orbits and a finer study of the algebraic geometry of the varieties $\mathfrak{g}(l)$. In particular, we will give a more conceptual proof of the main result from [Col11] and use K-orbits to describe the geometry of arbitrary fibers of the moment map for the Gelfand-Zeitlin system.

The work by the second author was partially supported by NSA grant H98230-11-1-0151. We would like to thank Adam Boocher and Claudia Polini for useful discussions.

2. Preliminaries

We show flatness of the partial Kostant-Wallach morphism and recall needed results concerning K-orbits on B.

2.1. The partial Kostant-Wallach map. For $x \in \mathfrak{g}$ and $i = 1, \ldots, n$, let $x_i \in \mathfrak{gl}(i, \mathbb{C})$ denote the upper left $i \times i$ corner of the matrix x. For any $y \in \mathfrak{gl}(i, \mathbb{C})$, let $tr(y)$ denote the trace of y. For $j = 1, \ldots, i$, let $f_{i,j}(x) = tr((x_i)^j)$, which is a homogeneous function of degree j on \mathfrak{g}. The Gelfand-Zeitlin collection of functions is the set $J_{GZ} = \{f_{i,j}(x) : i = 1, \ldots, n, j = 1, \ldots, i\}$. The restriction of these functions to any regular adjoint orbit in \mathfrak{g} produces an integrable system on the orbit $\mathfrak{g}(l)$ [KW06]. Let $\chi_{i,j} : \mathfrak{gl}(i, \mathbb{C}) \to \mathbb{C}$ be the function $\chi_{i,j}(y) = tr(y^j)$, so that $f_{i,j}(x) = \chi_{i,j}(x_i)$ and $\chi_i := (\chi_{i,1}, \ldots, \chi_{i,i})$ is the adjoint quotient for $\mathfrak{gl}(i, \mathbb{C})$. The Kostant-Wallach map is the morphism given by

$$
\Phi : \mathfrak{g} \to \mathbb{C}^1 \times \mathbb{C}^2 \times \cdots \times \mathbb{C}^n; \Phi(x) = (\chi_1(x_1), \ldots, \chi_n(x)).
$$

We will also consider the partial Kostant-Wallach map given by the morphism

$$
\Phi_n : \mathfrak{g} \to \mathbb{C}^{n-1} \times \mathbb{C}^n; \Phi_n(x) = (\chi_{n-1}(x_{n-1}), \chi_n(x)).
$$
Note that
\begin{equation}
\Phi_n = pr \circ \Phi,
\end{equation}
where \(pr : \mathbb{C}^1 \times \mathbb{C}^2 \times \cdots \times \mathbb{C}^n \to \mathbb{C}^{n-1} \times \mathbb{C}^n \) is projection on the last two factors.

Remark 2.1. By Theorem 0.1 of [KW06], the map \(\Phi \) is surjective, and it follows easily that \(\Phi_n \) is surjective.

We let \(I_n = \langle \{ f_{ij} \}_{i=n-1, n; j=1, \ldots, i} \rangle \) denote the ideal generated by the functions \(J_{GZ,n} := \{ f_{i,j} : i = n - 1, n; j = 1, \ldots, i \} \). We call the vanishing set \(V(I_n) \) the variety of partially strongly nilpotent matrices and denote it by \(SN_n \). Thus,
\begin{equation}
SN_n := \{ x \in g : x, x_{n-1} \text{ are nilpotent} \}.
\end{equation}

We let \(\Gamma_n := \mathbb{C}[\{ f_{ij} \}_{i=n-1, n; j=1, \ldots, i}] \) be the subring of regular functions on \(g \) generated by \(J_{GZ,n} \).

Recall that if \(Y \subset \mathbb{C}^m \) is a closed equidimensional subvariety of dimension \(m - d \), then \(Y \) is called a complete intersection if \(Y = V(f_1, \ldots, f_d) \) is the vanishing set of \(d \) functions.

Theorem 2.2. The variety of partially strongly nilpotent matrices \(SN_n \) is a complete intersection of dimension
\begin{equation}
d_n := n^2 - 2n + 1.
\end{equation}

Before proving Theorem 2.2 we show how it implies the flatness of the partial Kostant-Wallach map \(\Phi_n \).

Proposition 2.3.
\begin{enumerate}
\item For all \(c \in \mathbb{C}^{n-1} \times \mathbb{C}^n \), \(\dim(\Phi_n^{-1}(c)) = n^2 - 2n + 1 \). Thus, \(\Phi_n^{-1}(c) \) is a complete intersection.
\item The partial Kostant-Wallach map \(\Phi_n : g \to \mathbb{C}^{2n-1} \) is a flat morphism. Thus, \(\mathbb{C}[g] \) is flat over \(\Gamma_n \).
\end{enumerate}

Proof. For \(x \in g \), we let \(d_x \) be the maximum of the dimensions of irreducible components of \(\Phi_n^{-1}(\Phi_n(x)) \). For \(c \in \mathbb{C}^{n-1} \times \mathbb{C}^n \), each irreducible component of \(\Phi_n^{-1}(c) \) has dimension at least \(d_n \) since \(\Phi_n^{-1}(c) \) is defined by \(2n - 1 \) equations in \(g \). Hence, \(d_x \geq d_n \). Since the functions \(f_{i,j} \) are homogeneous, it follows that scalar multiplication by \(\lambda \in \mathbb{C}^x \) induces an isomorphism \(\Phi_n^{-1}(\Phi_n(x)) \to \Phi_n^{-1}(\Phi_n(\lambda x)) \). It follows that \(d_x = d_{\lambda x} \). By upper semi-continuity of dimension (see for example, Proposition 4.4 of [Hum75]), the set of \(y \in g \) such that \(d_y \geq d \) is closed for each integer \(d \). It follows that \(d_0 \geq d_x \). By Theorem 2.2 \(d_0 = d_n \). The first assertion follows easily. The second assertion now follows by the corollary to Theorem 23.1 of [Mat86].

Q.E.D.

Remark 2.4. We note that Proposition 2.3 implies that \(\mathbb{C}[g] \) is free over \(\Gamma_n \). This follows from a result in commutative algebra. Let \(A = \oplus_{n \geq 0} A_n \) be a graded ring with \(A_0 = k \) a field and let \(M = \oplus_{n \geq 0} M_n \) be a graded \(A \)-module. The needed result asserts that \(M \) is flat over \(A \) if and only if \(M \) is free over \(A \). One direction of this assertion is obvious, and the
other direction may be proved using the same argument as in the proof of Proposition 20 on page 73 of [Ser00], which is the analogous assertion for finitely generated modules over local rings. In this context, the assumption that \(M \) is finitely generated over \(A \) is needed only to apply Nakayama’s lemma, but in our graded setting, Nakayama’s lemma (with ideal \(I = \oplus_{n \geq 0} A_n \)) does not require the module \(M \) to be finitely generated.

Remark 2.5. Let \(I = (J_{GZ}) \) be the ideal in \(\mathbb{C}[g] \) generated by the Gelfand-Zeitlin collection of functions \(J_{GZ} \), and let \(SN = V(I) \) be the strongly nilpotent matrices, i.e., \(SN = \{ x \in g : x_i \text{ is nilpotent for } i = 1, \ldots, n \} \). Ovsienko proves in \([Ovs03]\) that \(SN \) is a complete intersection, and results of Futorny and Ovsienko from \([FO05]\) show that Ovsienko’s theorem implies that \(C_{\text{SN}} \) is flat over \(\Gamma := \mathbb{C}[\{f_{ij}\}_{i=1,\ldots,n;j=1,\ldots,n}] \). It then follows easily that \(\mathbb{C}[g] \) is flat over \(\Gamma_n \), and hence that \(\Phi_n \) is flat. Although we could have simply cited the results of Futorny and Ovsienko to prove flatness of \(\Phi_n \), we prefer our approach, which we regard as more conceptual.

Proof of Theorem 2.2. Let \(\mathfrak{X} \) be an irreducible component of \(SN_n \). We observed in the proof of Proposition 2.3 that \(\dim \mathfrak{X} \geq d_n \). To show \(\dim \mathfrak{X} \leq d_n \), we consider a generalization of the Steinberg variety (see Section 3.3 of \([CG97]\)). We first recall a few facts about the cotangent bundle to the flag variety.

For the purposes of this proof, we denote the flag variety of \(\mathfrak{gl}(n, \mathbb{C}) \) by \(B_n \). We consider the form \(\langle \langle \cdot, \cdot \rangle \rangle \) on \(g \) given by \(\langle \langle x, y \rangle \rangle = \text{tr}(xy) \) for \(x, y \in g \). If \(b \in B_n \), the annihilator \(b^\perp \) of \(b \) with respect to the form \(\langle \langle \cdot, \cdot \rangle \rangle \) is \(n = [b, b] \). We can then identify \(T^*(B_n) \) with the closed subset of \(g \times B_n \) given by:

\[
T^*(B_n) = \{(x, b) : b \in B_n, x \in n\}.
\]

We let \(g_{n-1} = \mathfrak{gl}(n-1, \mathbb{C}) \) and view \(g_{n-1} \) as a subalgebra of \(g \) by embedding \(g_{n-1} \) in the top left-hand corner of \(g \). Since \(g \) is the direct sum \(g = g_{n-1} \oplus g_{n-1} \), the restriction of \(\langle \langle \cdot, \cdot \rangle \rangle \) to \(g_{n-1} \) is non-degenerate. For a Borel subalgebra \(b' \in B_{n-1} \), we let \(n' = [b', b'] \). We consider a closed subvariety \(Z \subset g \times B_n \times B_{n-1} \) defined as follows:

\[
(2.6) \quad Z = \{(x, b, b') : b \in B_n, b' \in B_{n-1} \text{ and } x \in n, x_{n-1} \in n'\}.
\]

Consider the morphism \(\mu : Z \to g \), where \(\mu(x, b, b') = x \). Since the varieties \(B_n \) and \(B_{n-1} \) are projective, the morphism \(\mu \) is proper.

We consider the closed embedding \(Z \hookrightarrow T^*(B_n) \times T^*(B_{n-1}) \cong T^*(B_n \times B_{n-1}) \) given by \((x, b, b') \mapsto (x, -x_{n-1}, b, b') \). We denote the image of \(Z \) under this embedding by \(\tilde{Z} \subset T^*(B_n \times B_{n-1}) \). Let \(G_{n-1} \) be the closed subgroup of \(GL(n, \mathbb{C}) \) corresponding to \(g_{n-1} \). Then \(G_{n-1} \) acts diagonally on \(B_n \times B_{n-1} \) via \(k \cdot (b, b') = (k \cdot b, k \cdot b') \) for \(k \in G_{n-1} \). We claim \(\tilde{Z} \subset T^*(B_n \times B_{n-1}) \) is the union of conormal bundles to the \(G_{n-1} \)-diagonal orbits in \(B_n \times B_{n-1} \). Indeed, let \((b, b') \in B_n \times B_{n-1} \), and let \(Q \) be its \(G_{n-1} \)-orbit. Then

\[
T_{(b,b')}^*(Q) = \text{span}\{(Y \mod b, Y \mod b') : Y \in g_{n-1}\}.
\]
Now let \((\lambda_1, \lambda_2) \in (n, n') \) with \((\lambda_1, \lambda_2) \in (T_Q^* (U_n \times U_{n-1})(b,b')) \), the fiber of the conormal bundle to \(Q \) in \(U_n \times U_{n-1} \) at the point \((b,b') \). Then
\[
<< \lambda_1, Y >> + << \lambda_2, Y >> = 0 \text{ for all } Y \in g_{n-1}.
\]
Thus, \(\lambda_1 + \lambda_2 \in g_{n-1} \). But since \(\lambda_2 \in n' \subset g_{n-1} \), it follows that \(\lambda_2 = -(\lambda_1)_{n-1} \). Thus,
\[
T_Q^* (U_n \times U_{n-1}) = \{(\mu_1, b_1, -(\mu_1)_{n-1}, b_2), \mu_1 \in n_1, (\mu_1)_{n-1} \in n_2, \text{ where } (b_1, b_2) \in Q \}.
\]
We recall the well-known fact that there are only finitely many \(G_{n-1} \)-diagonal orbits in \(U_n \times U_{n-1} \), which follows from \([\text{VK78}], [\text{Bri87}], \) or in a more explicit form is proved in \([\text{Has04}]\). Therefore, the irreducible component decomposition of \(\tilde{Z} \) is:
\[
\tilde{Z} = \bigcup_i T_Q^* (U_n \times U_{n-1}) \subset T^* (U_n \times U_{n-1}),
\]
where \(i \) runs over the distinct \(G_{n-1} \)-diagonal orbits in \(U_n \times U_{n-1} \). Thus, \(\tilde{Z} \cong Z \) is a closed, equidimensional subvariety of dimension \(\dim Z = \frac{1}{2} (\dim T^* (U_n \times U_{n-1})) = d_n \).

Note that \(\mu : Z \to SN_n \) is surjective. Since \(\mu \) is proper, for every irreducible component \(X \subset SN_n \) of \(SN_n \), we see that
\[
(2.7) \quad X = \mu(Z_i)
\]
for some irreducible component \(Z_i \subset Z \). Since \(\dim Z_i = d_n \) and \(\dim X \geq d_n \), we conclude that \(\dim X = d_n \).

\[\text{Q.E.D.}\]

In Proposition 3.10, we will determine the irreducible components of \(SN_n \) explicitly.

2.2. \(K \)-orbits. We recall some basic facts about \(K \)-orbits on generalized flag varieties \(G/P \) (see \([\text{Mat79}], [\text{RS90}], [\text{MO90}], [\text{Yam97}], [\text{CE}]\) for more details).

By the general theory of orbits of symmetric subgroups on generalized flag varieties, \(K \) has finitely many orbits on \(U \). For this paper, it is useful to parametrize the orbits. To do this, we let \(B_+ \) be the upper triangular Borel subgroup of \(G \), and identify \(B \cong G/B_+ \) with the variety of flags in \(\mathbb{C}^n \). We use the following notation for flags in \(\mathbb{C}^n \). Let \(F = (V_0 = \{0\} \subset V_1 \subset \cdots \subset V_i \subset \cdots \subset V_n = \mathbb{C}^n) \), be a flag in \(\mathbb{C}^n \), with \(\dim V_i = i \) and \(V_i = \text{span}\{v_1, \ldots, v_i\} \), with each \(v_j \in \mathbb{C}^n \). We will denote the flag \(F \) as follows:
\[
v_1 \subset v_2 \subset \cdots \subset v_i \subset v_{i+1} \subset \cdots \subset v_n.
\]
We denote the standard ordered basis of \(\mathbb{C}^n \) by \(\{e_1, \ldots, e_n\} \), and let \(E_{i,j} \in g \) be the matrix with 1 in the \((i,j)\)-entry and 0 elsewhere.
There are n closed K-orbits on \mathcal{B} (see Example 4.16 of [CE]), $Q_{i,i} = K \cdot b_{i,i}$ for $i = 1, \ldots, n$, where the Borel subalgebra $b_{i,i}$ is the stabilizer of the following flag in \mathbb{C}^n:

\begin{equation}
F_{i,i} = (e_1 \subset \cdots \subset e_{i-1} \subset e_i \subset \cdots \subset e_{n-1}).
\end{equation}

(2.8)

Note that if $i = n$, then the flag $F_{i,i}$ is the standard flag F_+:

\begin{equation}
F_+ = (e_1 \subset \cdots \subset e_n),
\end{equation}

(2.9)

and $b_{n,n} = b_+$ is the standard Borel subalgebra of $n \times n$ upper triangular matrices. It is not difficult to check that $K \cdot b_{i,i} = K \cdot \text{Ad}(i\,n)b_+$. If $i = 1$, then $K \cdot b_{1,1} = K \cdot b_-$, where b_- is the Borel subalgebra of lower triangular matrices in \mathfrak{g}.

The non-closed K-orbits in \mathcal{B} are the orbits $Q_{i,j} = K \cdot b_{i,j}$ for $1 \leq i < j \leq n$, where $b_{i,j}$ is the stabilizer of the flag in \mathbb{C}^n:

\begin{equation}
F_{i,j} = (e_1 \subset \cdots \subset e_i + e_n \subset e_{i+1} \subset \cdots \subset e_{j-1} \subset e_i \subset e_j \subset \cdots \subset e_{n-1}).
\end{equation}

(2.10)

There are $\binom{n}{2}$ such orbits (see Notation 4.23 and Example 4.31 of [CE]).

Let w and σ be the permutation matrices corresponding respectively to the cycles $(n\,n-1\,\cdots\,i)$ and $(i+1\,i+2\,\ldots\,j)$, and let u_{α_i} be the Cayley transform matrix such that

\begin{align*}
u_{\alpha_i}(e_i) &= e_i + e_{i+1}, \\
u_{\alpha_i}(e_{i+1}) &= -e_i + e_{i+1}, \\
u_{\alpha_i}(e_k) &= e_k, \quad k \neq i, i+1.
\end{align*}

For $1 \leq i \leq j \leq n$, we define:

\begin{equation}
v_{i,j} := \begin{cases} w & \text{if } i = j \\
w u_{\alpha_i} \sigma & \text{if } i \neq j
\end{cases}
\end{equation}

(2.11)

It is easy to verify that $v_{i,j}(F_+) = F_{i,j}$, and thus $\text{Ad}(v_{i,j})b_+ = b_{i,j}$ (see Example 4.30 of [CE]).

Remark 2.6. The length of the K-orbit $Q_{i,j}$ is $l(Q_{i,j}) = j - i$ for any $1 \leq i \leq j \leq n$ (see Example 4.30 of [CE]). For example, a K-orbit $Q_{i,j}$ is closed if and only if $Q = Q_{i,i}$ for some i. The $n-l$ orbits of length l are $Q_{i,i+l}$, $i = 1, \ldots, n-l$.

For a parabolic subgroup P of G with Lie algebra \mathfrak{p}, we consider the generalized flag variety G/P, which we identify with parabolic subalgebras of type \mathfrak{p} and with partial flags of type \mathfrak{p}. We will make use of the following notation for partial flags. Let

\[\mathcal{P} = (V_0 = \{0\} \subset V_1 \subset \cdots \subset V_i \subset \cdots \subset V_k = \mathbb{C}^n) \]

denote a k-step partial flag with $\dim V_j = i_j$ and $V_j = \text{span}\{v_1, \ldots, v_{i_j}\}$ for $j = 1, \ldots, k$.

Then we denote \mathcal{P} as

\[v_{i_1}, \ldots, v_{i_i} \subset v_{i_1+1}, \ldots, v_{i_2} \subset \cdots \subset v_{i_{k-1}+1}, \ldots, v_{i_k}. \]

In particular for $i \leq j$, we let $r_{i,j} \subset \mathfrak{g}$ denote the parabolic subalgebra which is the stabilizer of the $n-(j-i)$-step partial flag in \mathbb{C}^n

\begin{equation}
R_{i,j} = (e_1 \subset e_2 \subset \cdots \subset e_{i-1} \subset e_i, \ldots, e_j \subset e_{j+1} \subset \cdots \subset e_n).
\end{equation}

(2.12)
It is easy to see that \(\mathfrak{r}_{i,j} \) is the standard parabolic subalgebra generated by the Borel subalgebra \(\mathfrak{b}_+ \) and the negative simple root spaces \(\mathfrak{g}_{-\alpha_i}, \mathfrak{g}_{-\alpha_{i+1}}, \ldots, \mathfrak{g}_{-\alpha_{j-1}} \). We note that \(\mathfrak{r}_{i,j} \) has Levi decomposition \(\mathfrak{r}_{i,j} = \mathfrak{m} + \mathfrak{n} \), with \(\mathfrak{m} \) consisting of block diagonal matrices of the form

\[
(2.13) \quad \mathfrak{m} = \mathfrak{gl}(1, \mathbb{C}) \oplus \cdots \oplus \mathfrak{gl}(1, \mathbb{C}) \oplus \mathfrak{gl}(j + 1 - i, \mathbb{C}) \oplus \mathfrak{gl}(1, \mathbb{C}) \oplus \cdots \oplus \mathfrak{gl}(1, \mathbb{C}).
\]

Let \(R_{i,j} \) be the parabolic subgroup of \(G \) with Lie algebra \(\mathfrak{r}_{i,j} \). Let \(\mathfrak{p}_{i,j} := \text{Ad}(v_{i,j})\mathfrak{r}_{i,j} \in G/R_{i,j} \), where \(v_{i,j} \) is defined in (2.11). Then \(\mathfrak{p}_{i,j} \) is the stabilizer of the partial flag

\[
(2.14) \quad \mathcal{P}_{i,j} = (e_1 \subset e_2 \subset \cdots \subset e_{i-1} \subset e_i, \ldots, e_{j-1}, e_j \subset e_j \subset \cdots \subset e_{n-1}),
\]

and \(\mathfrak{p}_{i,j} \in G/R_{i,j} \) is a \(\theta \)-stable parabolic subalgebra of \(\mathfrak{g} \). Indeed, recall that \(\theta \) is given by conjugation by the diagonal matrix \(d = \text{diag}[1, \ldots, 1, -1] \). Clearly \(d(\mathcal{P}_{i,j}) = \mathcal{P}_{i,j} \), whence \(\mathfrak{p}_{i,j} \) is \(\theta \)-stable. Moreover, the parabolic subalgebra \(\mathfrak{p}_{i,j} \) has Levi decomposition \(\mathfrak{p}_{i,j} = \mathfrak{l} \oplus \mathfrak{u} \) where both \(\mathfrak{l} \) and \(\mathfrak{u} \) are \(\theta \)-stable and \(\mathfrak{l} \) is isomorphic to the Levi subalgebra in Equation (2.13). Since \(\mathfrak{p}_{i,j} \) is \(\theta \)-stable, it follows from Theorem 2 of [BH00] that the \(K \)-orbit \(Q_{\mathfrak{p}_{i,j}} = K \cdot \mathfrak{p}_{i,j} \) is closed in \(G/R_{i,j} \).

For a parabolic subgroup \(P \subset G \) with Lie algebra \(\mathfrak{p} \subset \mathfrak{g} \), consider the partial Grothendieck resolution \(\mathfrak{g}^P = \{ (x, \mathfrak{r}) \in \mathfrak{g} \times G/P \mid x \in \mathfrak{r} \} \), as well as the morphisms \(\mu : \mathfrak{g}^P \to \mathfrak{g}, \mu(x, \mathfrak{r}) = x \), and \(\pi : \mathfrak{g}^P \to G/P, \pi(x, \mathfrak{r}) = \mathfrak{r} \). Then \(\pi \) is a smooth morphism of relative dimension \(\dim \mathfrak{p} \) (for \(G/B \), see Section 3.1 of [CG97] and Proposition III.10.4 of [Har77], and the general case of \(G/P \) follows by the same argument). For \(\mathfrak{r} \in G/P \), let \(Q_\mathfrak{r} = K \cdot \mathfrak{r} \subset G/P \). Then \(\pi^{-1}(Q_\mathfrak{r}) \) has dimension \(\dim(Q_\mathfrak{r}) + \dim(\mathfrak{r}) \). It is well-known that \(\mu \) is proper and its restriction to \(\pi^{-1}(Q_\mathfrak{r}) \) generically has finite fibers (Proposition 3.1.34 and Example 3.1.35 of [CG97] for the case of \(G/B \), and again the general case has a similar proof).

Notation 2.7. For a parabolic subalgebra \(\mathfrak{r} \) with \(K \)-orbit \(Q_\mathfrak{r} \in G/P \), we consider the irreducible subset

\[
(2.15) \quad Y_\mathfrak{r} := \mu(\pi^{-1}(Q_\mathfrak{r})) = \text{Ad}(K)\mathfrak{r}.
\]

To emphasize the orbit \(Q_\mathfrak{r} \), we will also denote this set as

\[
(2.16) \quad Y_{Q_\mathfrak{r}} := Y_\mathfrak{r}.
\]

It follows from generic finiteness of \(\mu \) that \(Y_{Q_\mathfrak{r}} \) contains an open subset of dimension

\[
(2.17) \quad \dim(Y_{Q_\mathfrak{r}}) := \dim \pi^{-1}(Q_\mathfrak{r}) = \dim \mathfrak{r} + \dim(Q_\mathfrak{r}) = \dim \mathfrak{r} + \dim(\mathfrak{f}/\mathfrak{f} \cap \mathfrak{r}),
\]

where \(\mathfrak{f} = \text{Lie}(K) = \mathfrak{gl}(n-1, \mathbb{C}) \oplus \mathfrak{gl}(1, \mathbb{C}) \).

Remark 2.8. Since \(\mu \) is proper, when \(Q_\mathfrak{r} = K \cdot \mathfrak{r} \) is closed in \(G/P \), then \(Y_{Q_\mathfrak{r}} \) is closed.

Remark 2.9. Note that

\[
\mathfrak{g} = \bigcup_{Q \subset G/P} Y_Q,
\]

is a partition of \(\mathfrak{g} \), where the union is taken over the finitely many \(K \)-orbits in \(G/P \).
Lemma 2.10. Let $Q \subset G/P$ be a K-orbit. Then

$$Y_Q = \bigcup_{Q' \subset Q} Y_{Q'}.$$ \hspace{3cm} (2.18)

Proof. Since π is a smooth morphism, it is flat by Theorem III.10.2 of \textbf{Har77}. Thus, by Theorem VIII.4.1 of \textbf{Gro03}, $\pi^{-1}(Q) = \pi^{-1}(\overline{Q})$. The result follows since μ is proper.

Q.E.D.

2.3. Comparison of $K \cdot b_{i,j}$ and $K \cdot p_{i,j}$. We prove a technical result that will be needed to prove our main theorem.

Remark 2.11. Note that $b_{i,j} \subset p_{i,j}$ and when $i = j$, $p_{i,i}$ is the Borel subalgebra $b_{i,i}$. To check the first assertion, note that $b_{i,j} \subset r_{i,j}$ so that $b_{i,j} = \text{Ad}(v_{i,j})b_{i,j} \subset \text{Ad}(v_{i,j})r_{i,j} = p_{i,j}$. The second assertion is verified by noting that when $i = j$, the partial flag $P_{i,j}$ is the full flag $F_{i,i}$.

Proposition 2.12. Consider the K-orbits $Q_{i,j} = K \cdot b_{i,j} \subset B$ and $Q_{p_{i,j}} = K \cdot p_{i,j} \subset G/P_{i,j}$, with $1 \leq i \leq j \leq n$. Then $\dim(Y_{b_{i,j}}) = \dim(Y_{p_{i,j}})$ and $\overline{Y_{b_{i,j}}} = Y_{p_{i,j}}$.

Proof. By definitions and Remark 2.11, $Y_{b_{i,j}}$ is a constructible subset of $Y_{p_{i,j}}$. Since $Y_{p_{i,j}}$ is closed by Remark 2.8 and irreducible by construction, it suffices to show that $\dim(Y_{b_{i,j}}) = \dim(Y_{p_{i,j}})$.

We compute the dimension of $Y_{b_{i,j}}$ using Equation (2.17). Since $l(Q_{i,j}) = j - i$, it follows that $\dim Q_{i,j} = \dim B_{n-1} + j - i$. Since $\dim(B_{n-1}) = \binom{n-1}{2}$, Equation (2.17) then implies:

$$\dim Y_{b_{i,j}} = \dim b_{i,j} + \dim B_{n-1} + l(Q_{i,j}) = \binom{n+1}{2} + \binom{n-1}{2} + l(Q_{i,j})$$
$$= n^2 - n + 1 + j - i. \hspace{3cm} (2.19)$$

We now compute the dimension of $Y_{p_{i,j}}$. By Equation (2.17), it follows that

$$\dim Y_{p_{i,j}} = \dim p_{i,j} + \dim \mathfrak{k} - \dim(\mathfrak{k} \cap p_{i,j}). \hspace{3cm} (2.20)$$

Since both \mathfrak{l} and \mathfrak{u} are θ-stable, it follows that $\dim \mathfrak{k} \cap p_{i,j} = \dim \mathfrak{k} \cap \mathfrak{l} + \dim \mathfrak{k} \cap \mathfrak{u}$. To compute these dimensions, it is convenient to use the following explicit matrix description of the parabolic subalgebra $p_{i,j}$, which follows from Equation (2.14).
Thus, we see that \(u \) (see Equation (2.13)). Thus, Equation (2.20) implies that

\[
\dim \mathfrak{k} = \dim Y_{x,\pi} = \dim \mathfrak{l} + (j - i + 1)^2 + n - j + i - 1 + \dim \mathfrak{u}.
\]

(see Equation (2.13)). Thus, Equation (2.20) implies that

\[
\dim Y_{x,\pi} = \dim \mathfrak{l} + (j - i + 1)^2 + n - j + i - 1 - (j - i)^2 - 1 = n^2 - n + 1 + j - i,
\]

which agrees with (2.19), and hence completes the proof.

Q.E.D.

Remark 2.13. It follows from Equation (2.21) that \((\mathfrak{p}_{i,j})_{n-1} := \pi_{n-1,\mathfrak{n}}(\mathfrak{p}_{i,j})\) is a parabolic subalgebra, where \(\pi_{n,n-1} : \mathfrak{g} \to \mathfrak{gl}(n-1, \mathbb{C})\) is the projection \(x \mapsto x_{n-1}\). Further, with \(l = j - i\), \((\mathfrak{p}_{i,j})_{n-1}\) has Levi decomposition \((\mathfrak{p}_{i,j})_{n-1} = \mathfrak{l}_{n-1} \oplus \mathfrak{u}_{n-1}\) with \(\mathfrak{l}_{n-1} = \mathfrak{gl}(1, \mathbb{C})^{n-1-l} \oplus \mathfrak{gl}(l, \mathbb{C})\).

3. The varieties \(\mathfrak{g}(l)\)

In this section, we prove our main results.

For \(x \in \mathfrak{g}\), let \(\sigma(x) = \{\lambda_1, \ldots, \lambda_n\}\) denote its eigenvalues, where an eigenvalue \(\lambda\) is listed \(k\) times if it appears with multiplicity \(k\). Similarly, let \(\sigma(x_{n-1}) = \{\mu_1, \ldots, \mu_{n-1}\}\) be the eigenvalues of \(x_{n-1} \in \mathfrak{gl}(n - 1, \mathbb{C})\), again listed with multiplicity. For \(i = n - 1, \ldots, 1\), let \(\mathfrak{h}_i \subset \mathfrak{g}_i := \mathfrak{gl}(i, \mathbb{C})\) be the standard Cartan subalgebra of diagonal matrices. We denote
elements of $\mathfrak{h}_{n-1} \times \mathfrak{h}_n$ by (x, y), with $x = (x_1, \ldots, x_{n-1}) \in \mathbb{C}^{n-1}$ and $y = (y_1, \ldots, y_n) \in \mathbb{C}^n$ the diagonal coordinates of x and y. For $l = 0, \ldots, n-1$, we define

$$(\mathfrak{h}_{n-1} \times \mathfrak{h}_n)(\geq l) = \{(x, y) : \exists 1 \leq i_1 < \cdots < i_l \leq n-1 \text{ with } x_{i_j} = y_{k_j} \text{ for some } 1 \leq k_1, \ldots, k_l \leq n \text{ with } k_j \neq k_m\}.$$

Thus, \((\mathfrak{h}_{n-1} \times \mathfrak{h}_n)(\geq l)\) consists of elements of $\mathfrak{h}_{n-1} \times \mathfrak{h}_n$ with at least l coincidences in the spectrum of x and y counting repetitions. Note that $(\mathfrak{h}_{n-1} \times \mathfrak{h}_n)(\geq l)$ is a closed subvariety of $\mathfrak{h}_{n-1} \times \mathfrak{h}_n$ and is equidimensional of codimension l.

Let $W_i = W_i(\mathfrak{g}_i, \mathfrak{h}_i)$ be the Weyl group of \mathfrak{g}_i. Then $W_{n-1} \times W_n$ acts on $(\mathfrak{h}_{n-1} \times \mathfrak{h}_n)(\geq l)$. Consider the finite morphism $p : \mathfrak{h}_{n-1} \times \mathfrak{h}_n \to (\mathfrak{h}_{n-1} \times \mathfrak{h}_n)/(W_{n-1} \times W_n)$. Let $F_i : \mathfrak{h}_i/W_i \to \mathbb{C}^l$ be the Chevalley isomorphism, and let

$$V^{n-1,n} := \mathbb{C}^{n-1} \times \mathbb{C}^n,$$

so that $F_{n-1} \times F_n : (\mathfrak{h}_{n-1} \times \mathfrak{h}_n)/(W_{n-1} \times W_n) \to V^{n-1,n}$ is an isomorphism. The following varieties play a major role in our study of eigenvalue coincidences.

Definition-Notation 3.1. For $l = 0, \ldots, n-1$, we let

$$(3.1) \quad V^{n-1,n}(\geq l) := (F_{n-1} \times F_n)((\mathfrak{h}_{n-1} \times \mathfrak{h}_n)(\geq l)/(W_{n-1} \times W_n)), $$

$$(3.2) \quad V^{n-1,n}(l) := V^{n-1,n}(\geq l) \setminus V^{n-1,n}(\geq l+1).$$

For convenience, we let $V^{n-1,n}(n) = \emptyset$.

Lemma 3.2. The set $V^{n-1,n}(\geq l)$ is an irreducible closed subvariety of $V^{n-1,n}$ of dimension $2n - 1 - l$. Further, $V^{n-1,n}(l)$ is open and dense in $V^{n-1,n}(\geq l)$.

Proof. Indeed, the set $Y := \{(x, y) \in \mathfrak{h}_{n-1} \times \mathfrak{h}_n : x_i = y_i \text{ for } i = 1, \ldots, l\}$ is closed and irreducible of dimension $2n - 1 - l$. The first assertion follows since $(F_{n-1} \times F_n) \circ p$ is a finite morphism and $(F_{n-1} \times F_n) \circ p(Y) = V^{n-1,n}(\geq l)$. The last assertion of the lemma now follows from Equation (3.2).

Q.E.D.

Definition 3.3. We let

$$\mathfrak{g}(\geq l) := \Phi_n^{-1}(V^{n-1,n}(\geq l)).$$

Remark 3.4. Recall that the quotient morphism $p_i : \mathfrak{g}_i \to \mathfrak{g}_i/GL(i, \mathbb{C}) \cong \mathfrak{h}_i/W_i$ associates to $y \in \mathfrak{g}_i$ its spectrum $\sigma(y)$, and $(F_{n-1} \times F_n) \circ (p_{n-1} \times p_n) = \Phi_n$. It follows that $\mathfrak{g}(\geq l)$ consists of elements of x with at least l coincidences in the spectrum of x and x_{n-1}, counted with multiplicity.

It is routine to check that

$$(3.3) \quad \mathfrak{g}(l) := \mathfrak{g}(\geq l) \setminus \mathfrak{g}(\geq l+1) = \Phi_n^{-1}(V^{n-1,n}(l))$$

consists of elements of \mathfrak{g} with exactly l coincidences in the spectrum of x and x_{n-1}, counted with multiplicity.
Proposition 3.5.
(1) The variety $\mathfrak{g}(\geq l)$ is equidimensional of dimension $n^2 - l$.
(2) $\mathfrak{g}(\geq l) = \mathfrak{g}(l) = \bigcup_{k \geq l} \mathfrak{g}(k)$.

Proof. By Proposition 2.3, the morphism Φ_n is flat. By Proposition III.9.5 and Corollary III.9.6 of [Har77], the variety $\mathfrak{g}(\geq l)$ is equidimensional of dimension $\dim(V^{n-1,n}(\geq l)) + (n - 1)^2$, which gives the first assertion by Lemma 3.2. For the second assertion, by the flatness of Φ_n, Theorem VIII.4.1 of [Gro03], and Lemma 3.2.

The remaining equality follows from definitions.

Q.E.D.

We now relate the partitions $\mathfrak{g} = \bigcup \mathfrak{g}(l)$ and $\mathfrak{g} = \bigcup_{Q \subseteq B} Y_Q$ (see Remark 2.9).

Theorem 3.6.
(1) Consider the closed subvarieties $Y_{\mathfrak{p}_{i,j}}$ for $1 \leq i \leq j \leq n$, and let $l = j - i$. Then $Y_{\mathfrak{p}_{i,j}} \subseteq \mathfrak{g}(\geq n - 1 - l)$.

(2) In particular, if $Q \subseteq B$ is a K-orbit with $l(Q) = l$, then $Y_Q \subseteq \mathfrak{g}(\geq n - 1 - l)$.

Proof. The second statement of the theorem follows from the first statement using Remark 2.6 and Proposition 2.12.

We recall that $\Phi_n(x) = (\chi_{n-1}(x_{n-1}), \chi_n(x))$ where $\chi_i : \mathfrak{gl}(i, \mathbb{C}) \rightarrow \mathbb{C}^i$ is the adjoint quotient for $i = n - 1, n$. For $x \in \mathfrak{p}_{i,j}$, let x_{l} be the projection of x onto l off of u. It is well-known that $\chi_n(x) = \chi_n(x_1)$. Using the identification $l \cong \mathfrak{gl}(1, \mathbb{C})^{n-1-l} \oplus \mathfrak{gl}(l+1, \mathbb{C})$, we decompose x_1 as $x_1 = x_{\mathfrak{gl}(1)^n-1-l} + x_{\mathfrak{gl}(l+1)}$, where $x_{\mathfrak{gl}(1)^n-1-l} \in \mathfrak{gl}(1, \mathbb{C})^{n-1-l}$ and $x_{\mathfrak{gl}(l+1)} \in \mathfrak{gl}(l+1, \mathbb{C})$. It follows that the coordinates of $x_{\mathfrak{gl}(1)^n-1-l}$ are in the spectrum of x (see (2.71)).

Recall the projection $\pi_{n,n-1} : \mathfrak{g} \rightarrow \mathfrak{g}_{n-1}$, $\pi_{n,n-1}(x) = x_{n-1}$. Recall the Levi decomposition $(\mathfrak{p}_{i,j})_{n-1} = \mathfrak{l}_{n-1} \oplus \mathfrak{u}_{n-1}$ of the parabolic subalgebra $(\mathfrak{p}_{i,j})_{n-1}$ of $\mathfrak{gl}(n - 1, \mathbb{C})$ from Remark 2.13, and recall that $\mathfrak{l}_{n-1} = \mathfrak{gl}(1, \mathbb{C})^{n-1-l} \oplus \mathfrak{gl}(l, \mathbb{C})$. Thus, $\chi_{n-1}(x_{n-1}) = \chi_{n-1}(x_{n-1})$. We use the decomposition $(x_{n-1})_{\mathfrak{l}_{n-1}} = x_{\mathfrak{gl}(1)^n-1-l} + \pi_{l+1,l}(x_{\mathfrak{gl}(l+1)})$, where $\pi_{l+1,l} : \mathfrak{gl}(l+1, \mathbb{C}) \rightarrow \mathfrak{gl}(l, \mathbb{C})$ is the usual projection. It now follows easily from Remark 3.4 that $\Phi_n(x) \in V^{n-1,n}(\geq n - 1 - l)$, since the coordinates of $x_{\mathfrak{gl}(1)^n-1-l}$ are eigenvalues both for x and x_{n-1}.

Q.E.D.

We now recall and prove our main theorem.
Theorem 3.7. Consider the locally closed subvariety \(g(n - 1 - l) \) for \(l = 0, \ldots, n - 1 \). Then the decomposition

\[
(3.5) \quad g(n - 1 - l) = \bigcup_{l(Q) = l} Y_Q \cap g(n - 1 - l),
\]

is the irreducible component decomposition of the variety \(g(n - 1 - l) \), where the union is taken over all \(K \)-orbits \(Q \) of length \(l \) in \(\mathcal{B} \). (cf. Theorem (1.1)).

In fact, for \(1 \leq i \leq j \leq n \) with \(j - i = l \), we have

\[
Y_{b_{i,j}} \cap g(n - 1 - l) = Y_{p_{i,j}} \cap g(n - 1 - l),
\]

so that

\[
(3.6) \quad g(n - 1 - l) = \bigcup_{j-i=l} Y_{p_{i,j}} \cap g(n - 1 - l).
\]

Proof. We first claim that if \(l(Q) = l \), then \(Y_Q \cap g(n - 1 - l) \) is non-empty. By Theorem 3.6 \(Y_Q \subset g(\geq n - 1 - l) \). Thus, if \(Y_Q \cap g(n - 1 - l) \) were empty, then \(Y_Q \subset g(\geq n - l) \). Hence, by part (1) of Proposition 3.5, \(\dim(Y_Q) \leq n^2 - n + l \). By Equation (2.19), \(\dim(Y_Q) = n^2 - n + l + 1 \). This contradiction verifies the claim.

It follows from Equation (3.3) that \(g(n - 1 - l) \) is open in \(g(\geq n - 1 - l) \). Thus, \(Y_Q \cap g(n - 1 - l) \) is a non-empty Zariski open subset of \(Y_Q \), which is irreducible since \(Y_Q \) is irreducible.

Now we claim that

\[
(3.7) \quad Y_Q \cap g(n - 1 - l) = \overline{Y_Q} \cap g(n - 1 - l),
\]

so that \(Y_Q \cap g(n - 1 - l) \) is closed in \(g(n - 1 - l) \). By Lemma (2.10) \(\overline{Y_Q} = \bigcup_{Q' \subset Q} Y_{Q'} \). Hence, if (3.7) were not an equality, there would be \(Q' \) with \(l(Q') < l(Q) \) and \(Y_{Q'} \cap g(n - 1 - l) \) nonempty. This contradicts Theorem 3.6 which asserts that \(Y_{Q'} \subset g(\geq n - l) \), and hence verifies the claim. It follows that \(Y_Q \cap g(n - 1 - l) \) is an irreducible, closed subvariety of \(g(n - 1 - l) \) of dimension \(\dim Y_Q = \dim g(n - 1 - l) \). Thus, \(Y_Q \cap g(n - 1 - l) \) is an irreducible component of \(g(n - 1 - l) \).

Since \(l(Q) = l \), Remark (2.6) implies that \(Q = Q_{i,j} \) for some \(i \leq j \) with \(j - i = l \). Then by Proposition (2.12) and Equation (3.7),

\[
(3.8) \quad Y_{b_{i,j}} \cap g(n - 1 - l) = Y_{p_{i,j}} \cap g(n - 1 - l).
\]

Let \(Z \) be an irreducible component of \(g(n - 1 - l) \). The proof will be complete once we show that \(Z = Y_{p_{i,j}} \cap g(n - 1 - l) \) for some \(i, j \) with \(j - i = l \). To do this, consider the nonempty open set

\[
U := \{ x \in g : x_{n-1} \text{ is regular semisimple} \}.
\]

Let \(\tilde{U}(n - 1 - l) := g(n - 1 - l) \cap U \).
Since $\Phi_n : g \to V^{n-1,n}$ is surjective (by Remark 2.1), it follows that $\widetilde{U}(n - 1 - l)$ is a nonempty Zariski open set of $g(n - 1 - l)$. By part (2) of Proposition 2.3 and Exercise III.9.1 of Har77, $\Phi_n(U) \subset V^{n-1,n}$ is open. Thus, $V^{n-1,n}(n - 1 - l) \setminus \Phi_n(U)$ is a proper, closed subvariety of $V^{n-1,n}(n - 1 - l)$ and therefore has positive codimension by Lemma 3.2. It follows by part (2) of Proposition 2.3 and Corollary III.9.6 of Har77 that $g(n - 1 - l) \setminus \widetilde{U}(n - 1 - l) = \Phi_n^{-1}(V^{n-1,n}(n - 1 - l) \setminus \Phi_n(U))$ is a proper, closed subvariety of $g(n - 1 - l)$ of positive codimension. Since $g(n - 1 - l)$ is equidimensional, it follows that $Z \cap \widetilde{U}(n - 1 - l)$ is nonempty. Thus, it suffices to show that

$$\widetilde{U}(n - 1 - l) \subset \bigcup_{j - i = l} Y_{p_{i,j}} \cap g(n - 1 - l). \quad (3.9)$$

To prove Equation (3.9), we consider the following subvariety of $\widetilde{U}(n - 1 - l)$:

$$\Xi = \{ x \in \widetilde{U}(n-1-l) : x_{n-1} = \text{diag}[h_1, \ldots, h_{n-1}], \text{ and } \sigma(x_{n-1}) \cap \sigma(x) = \{h_1, \ldots, h_{n-1-l}\}\} \quad (3.10)$$

It is easy to check that any element of $\widetilde{U}(n - 1 - l)$ is K-conjugate to an element in Ξ. By a linear algebra calculation from Proposition 5.9 of Col11, elements of Ξ are matrices of the form

$$\begin{bmatrix}
h_1 & 0 & \cdots & 0 & y_1 \\
0 & h_2 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & \cdots & h_{n-1} & y_{n-1} \\
z_1 & \cdots & \cdots & z_{n-1} & w
\end{bmatrix}, \quad (3.11)$$

with $h_i \neq h_j$ for $i \neq j$ and satisfying the equations:

$$z_i y_i = 0 \text{ for } 1 \leq i \leq n - 1 - l$$

$$z_i y_i \in \mathbb{C}^\times \text{ for } n - l \leq i \leq n - 1. \quad (3.12)$$

Since the varieties $Y_{p_{i,j}} \cap g(n - 1 - l)$ are K-stable, it suffices to prove

$$\Xi \subset \bigcup_{j - i = l} Y_{p_{i,j}} \cap g(n - 1 - l). \quad (3.13)$$

To prove (3.13), we need to understand the irreducible components of Ξ. For $i = 1, \ldots, n - 1 - l$, we define an index j_i which takes on two values $j_i = U$ (U for upper) or $j_i = L$ (L for lower). Consider the subvariety $\Xi_{j_1, \ldots, j_{n-1-l}} \subset \Xi$ defined by:

$$\Xi_{j_1, \ldots, j_{n-1-l}} := \{ x \in \Xi : z_i = 0 \text{ if } j_i = U, y_i = 0 \text{ if } j_i = L \}. \quad (3.14)$$
Then
\begin{equation}
(3.15) \quad \Xi = \bigcup_{j_i=U,L} \Xi_{j_1,\ldots,j_{n-1-l}}.
\end{equation}
is the irreducible component decomposition of \(\Xi\).

We now consider the irreducible variety \(\Xi_{j_1,\ldots,j_{n-1-l}}\). Suppose that for the subsequence \(1 \leq i_1 < \cdots < i_{k-1} \leq n-1-l\) we have \(j_{i_1} = j_{i_2} = \cdots = j_{i_{k-1}} = U\) and that for the complementary subsequence \(i_k < \cdots < i_{n-1-l}\) we have \(j_{i_k} = j_{i_{k+1}} = \cdots = j_{i_{n-1-l}} = L\). Then a simple computation with flags shows that elements of the variety \(\Xi_{j_1,\ldots,j_{n-1-l}}\) stabilize the \(n-l\)-step partial flag in \(\mathbb{C}^n\)
\begin{equation}
(3.16) \quad e_{i_1} \subset e_{i_2} \subset \cdots \subset e_{i_{k-1}} \subset e_{n-l}, \ldots, e_{n-1}, e_n \subset e_{i_k} \subset e_{i_{k+1}} \subset \cdots \subset e_{i_{n-1-l}}.
\end{equation}

(If \(l = 0\) the partial flag in \((3.16)\) is a full flag with \(e_n\) in the \(k\)-th position.) It is easy to see that there is an element of \(K\) that maps the partial flag in Equation \((3.16)\) to the partial flag \(P_{k,k+l}\) in Equation \((2.14)\):
\begin{equation}
(3.17) \quad P_{k,k+l} = (e_1 \subset e_2 \subset \cdots \subset e_{k-1} \subset e_{k+1}, \ldots, e_{k+l-1}, e_n \subset e_{k+l} \subset \cdots \subset e_{n-1}).
\end{equation}

(If \(l = 0\) the partial flag \(P_{k,k+l}\) is the full flag \(F_{k,k}\) (see Equation \((2.8)\)).) Thus, \(\Xi_{j_1,\ldots,j_{n-1-l}} \subset Y_{P_{k,k+l}} \cap g(n-1-l)\). Equation \((3.15)\) then implies that \(\Xi \subset \bigcup_{j-i=l} Y_{P_{i,j}} \cap g(n-1-l)\).

Q.E.D.

Using Theorem 3.7 we can obtain the irreducible component decomposition of the variety \(g(\geq n-1-l)\) for any \(l = 0, \ldots, n-1\).

Corollary 3.8. The irreducible component decomposition of the variety \(g(\geq n-1-l)\) is
\begin{equation}
(3.18) \quad g(\geq n-1-l) = \bigcup_{j-i=l} Y_{P_{i,j}} = \bigcup_{l(Q)=l} Y_{Q}.
\end{equation}

Proof. Taking Zariski closures in Equation \((3.16)\), we obtain
\begin{equation}
(3.19) \quad \overline{g(n-1-l)} = \bigcup_{j-i=l} Y_{P_{i,j}} \cap g(n-1-l)
\end{equation}
is the irreducible component decomposition of the variety \(\overline{g(n-1-l)}\). By Proposition 3.3 \(\overline{g(n-1-l)} = g(\geq n-1-l)\), and by Theorem 3.6 \(Y_{P_{i,j}} \subset g(\geq n-1-l)\). Hence \(Y_{P_{i,j}} \cap g(n-1-l)\) is Zariski open in the irreducible variety \(Y_{P_{i,j}}\), and is nonempty by Theorem 3.7. Therefore \(Y_{P_{i,j}} \cap g(n-1-l) = Y_{P_{i,j}}\). Equation \((3.18)\) now follows from Equation \((3.19)\) and Proposition 2.12.

Q.E.D.
Theorem 3.7 says something of particular interest to linear algebraists in the case where \(l = 0 \). It states that the variety \(\mathfrak{g}(n-1) \) consisting of elements \(x \in \mathfrak{g} \) where the number of coincidences in the spectrum between \(x_{n-1} \) and \(x \) is maximal can be described in terms of closed \(K \)-orbits on \(\mathfrak{b} \), which are the \(K \)-orbits \(Q \) with \(l(Q) = 0 \). It thus connects the most degenerate case of spectral coincidences to the simplest \(K \)-orbits on \(\mathfrak{b} \). More precisely, we have:

Corollary 3.9. The irreducible component decomposition of the variety \(\mathfrak{g}(n-1) \) is

\[
\mathfrak{g}(n-1) = \bigcup_{l(Q)=0} Y_Q.
\]

Using Corollary 3.9 and Theorem 2.2, we obtain a precise description of the irreducible components of the variety \(SN_n \) introduced in Equation (2.4).

Proposition 3.10. Let \(\mathfrak{b}_{i,i} \) be the Borel subalgebra of \(\mathfrak{g} \) which stabilizes the flag \(F_{i,i} \) in Equation (2.3) and let \(\mathfrak{n}_{i,i} = [\mathfrak{b}_{i,i}, \mathfrak{b}_{i,i}] \). The irreducible component decomposition of \(SN_n \) is given by:

\[
SN_n = \bigcup_{i=1}^{n} \operatorname{Ad}(K)\mathfrak{n}_{i,i},
\]

where \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \subset \mathfrak{g} \) denotes the \(K \)-saturation of \(\mathfrak{n}_{i,i} \) in \(\mathfrak{g} \).

Proof. We first show that \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \) is an irreducible component of \(SN_n \) for \(i = 1, \ldots, n \). A simple computation using the flag \(F_{i,i} \) in Equation (2.3) shows that \(\mathfrak{n}_{i,i} \subset SN_n \). Since \(SN_n \) is \(K \)-stable, it follows that \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \subset SN_n \).

Recall the Grothendieck resolution \(\tilde{\mathfrak{g}} = \{(x, b) : x \in b\} \subset \mathfrak{g} \times \mathfrak{b} \) and the morphisms \(\pi : \tilde{\mathfrak{g}} \to \mathfrak{b} \), \(\pi(x, b) = b \) and \(\mu : \tilde{\mathfrak{g}} \to \mathfrak{g} \), \(\mu(x, b) = x \). Let \(Q_{i,i} = K \cdot \mathfrak{b}_{i,i} \subset \mathfrak{b} \) be the \(K \)-orbit through \(b_{i,i} \). Corollary 3.1.33 of [CG97] gives a \(G \)-equivariant isomorphism \(\tilde{\mathfrak{g}} \cong G \times_{\mathfrak{b}_{i,i}} \mathfrak{b}_{i,i} \). Under this isomorphism \(\pi^{-1}(Q_{i,i}) \) is identified with the closed subvariety \(K \times_{K\cap\mathfrak{b}_{i,i}} \mathfrak{n}_{i,i} \subset G \times_{\mathfrak{b}_{i,i}} \mathfrak{b}_{i,i} \). The closed subvariety \(K \times_{K\cap\mathfrak{b}_{i,i}} \mathfrak{n}_{i,i} \subset K \times_{K\cap\mathfrak{b}_{i,i}} \mathfrak{b}_{i,i} \) maps surjectively under \(\mu \) to \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \). Since \(\mu \) is proper, \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \) is closed and irreducible. We also note that the restriction of \(\mu \) to \(K \times_{K\cap\mathfrak{b}_{i,i}} \mathfrak{n}_{i,i} \) generically has finite fibers (Proposition 3.2.14 of [CG97]). Thus, the same reasoning that we used in Equation (2.19) shows that

\[
\dim \operatorname{Ad}(K)\mathfrak{n}_{i,i} = \dim K \times_{K\cap\mathfrak{b}_{i,i}} \mathfrak{n}_{i,i} = \dim (Y_{Q_{i,i}}) - \operatorname{rk}(\mathfrak{g}) = d_n,
\]

where \(\operatorname{rk}(\mathfrak{g}) \) denotes the rank of \(\mathfrak{g} \). Thus, by Theorem 2.2 \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \) is an irreducible component of \(SN_n \).

We now show that every irreducible component of \(SN_n \) is of the form \(\operatorname{Ad}(K)\mathfrak{n}_{i,i} \) for some \(i = 1, \ldots, n \). It follows from definitions that \(SN_n \subset \mathfrak{g}(n-1) \cap \mathcal{N} \), where \(\mathcal{N} \subset \mathfrak{g} \) is the nilpotent cone in \(\mathfrak{g} \). Thus, if \(\mathfrak{X} \) is an irreducible component of \(SN_n \), then \(\mathfrak{X} \subset \operatorname{Ad}(K)\mathfrak{n}_{i,i} \) by Corollary 3.9. But then \(\mathfrak{X} = \operatorname{Ad}(K)\mathfrak{n}_{i,i} \) by Equation (3.21) and Theorem 2.2.

Q.E.D.
We say that an element \(x \in g \) is \(n \)-strongly regular if the set
\[
dJZ_n(x) := \{ df_{i,j}(x) : i = n - 1, n; j = 1, \ldots, i \}
\]
is linearly independent in the cotangent space \(T^*_x(g) \) of \(g \) at \(x \). We view \(g_{n-1} \) as the top lefthand corner of \(g \). It follows from a well-known result of Kostant (Theorem 9 of [Kos63]) that \(x_i \in g_i \) is regular if and only if the set \(\{ df_{i,j}(x) : j = 1, \ldots, i \} \) is linearly independent. If \(x_i \in g_i \) is regular, and we identify \(T^*_x(g) = g^* \) with \(g \) using the trace form \(\langle x, y \rangle = tr(xy) \), then
\[
\text{span} \{ df_{i,j}(x) : j = 1, \ldots, i \} = zg_i(x_i),
\]
where \(zg_i(x_i) \) denotes the centralizer of \(x_i \) in \(g_i \). Thus, it follows that \(x \in g \) is \(n \)-strongly regular if and only if \(x \) satisfies the following two conditions:
\[
(1) \ x \in g \text{ and } x_{n-1} \in g_{n-1} \text{ are regular; and}
\]
\[
(2) \ zg_{n-1}(x_{n-1}) \cap zg(x) = 0.
\]

Remark 3.11. We claim that the ideal \(I_n \) is radical if and only if \(n \leq 2 \). The assertion is clear for \(n = 1 \), and we assume \(n \geq 2 \) in the sequel. Indeed, by Theorem 18.15(a) of [Eis95], the ideal \(I_n \) is radical if and only if the set \(dJZ_n \) is linearly independent on a dense open set of each irreducible component of \(SN_n = V(I_n) \). It follows that \(I_n \) is radical if and only if each irreducible component of \(SN_n \) contains \(n \)-strongly regular elements. Let \(n_+ = [b_+, b_+] \) and \(n_- = [b_-, b_-] \) be the strictly upper and lower triangular matrices, respectively. By Proposition 3.10 above, \(SN_n \) has exactly \(n \) irreducible components. It follows from the discussion after Equation (2.8) that two of them are \(K \cdot n_+ \) and \(K \cdot n_- \). By Proposition 3.10 of [CE12], the only irreducible components of \(SN_n \) which contain \(n \)-strongly regular elements are \(K \cdot n_+ \) and \(K \cdot n_- \). The claim now follows. See Remark 1.1 of [Ovs03] for a related observation, which follows also from the analysis proving our claim.

References

[BH00] Michel Brion and Aloysius G. Helminck, *On orbit closures of symmetric subgroups in flag varieties*, Canad. J. Math. 52 (2000), no. 2, 265–292.

[Bri87] M. Brion, *Classification des espaces homogènes sphériques*, Compositio Math. 63 (1987), no. 2, 189–208.

[CE] Mark Colarusso and Sam Evens, *The Gelfand-Zeitlin integrable system and K-orbits on the flag variety*, to appear in: “Symmetry: Representation Theory and its Applications: In Honor of Nolan R. Wallach,” Progr. Math. Birkhauser, Boston.

[CE12] Mark Colarusso and Sam Evens, *K-orbits on the flag variety and strongly regular nilpotent matrices*, Selecta Math. (N.S.) 18 (2012), no. 1, 159–177.

[CG97] Neil Chriss and Victor Ginzburg, *Representation theory and complex geometry*, Birkhäuser Boston Inc., Boston, MA, 1997.

[Col11] Mark Colarusso, *The orbit structure of the Gelfand-Zeitlin group on n \times n matrices*, Pacific J. Math. 250 (2011), no. 1, 109–138.

[Eis95] David Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995, With a view toward algebraic geometry.
[FO05] Vyacheslav Futorny and Serge Ovsienko, *Kostant’s theorem for special filtered algebras*, Bull. London Math. Soc. **37** (2005), no. 2, 187–199.

[Gro03] Alexander Grothendieck, *Revêtements Étales et groupe fondamental (SGA 1)*, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003, Séminaire de Géométrie Algébrique du Bois Marie, 1960-1961, Augmenté de deux exposés de Michèle Raynaud. [With two exposés by Michèle Raynaud].

[Har77] Robin Hartshorne, *Algebraic geometry*, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.

[Has04] Takashi Hashimoto, *Bn−1-orbits on the flag variety GLn/Bn*, Geom. Dedicata **105** (2004), 13–27.

[Hum75] James E. Humphreys, *Linear algebraic groups*, Springer-Verlag, New York, 1975, Graduate Texts in Mathematics, No. 21.

[Kos63] Bertram Kostant, *Lie group representations on polynomial rings*, Amer. J. Math. **85** (1963), 327–404.

[KW06] Bertram Kostant and Nolan Wallach, *Gelfand-Zeitlin theory from the perspective of classical mechanics. I*, Studies in Lie theory, Progr. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 319–364.

[Mat79] Toshihiko Matsuki, *The orbits of affine symmetric spaces under the action of minimal parabolic subgroups*, J. Math. Soc. Japan **31** (1979), no. 2, 331–357.

[Mat86] Hideyuki Matsumura, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid.

[MÖ90] Toshihiko Matsuki and Toshio Oshima, *Embeddings of discrete series into principal series*, The orbit method in representation theory (Copenhagen, 1988), Progr. Math., vol. 82, Birkhäuser Boston, Boston, MA, 1990, pp. 147–175.

[Ovs03] Serge Ovsienko, *Strongly nilpotent matrices and Gelfand-Zetlin modules*, Linear Algebra Appl. **365** (2003), 349–367, Special issue on linear algebra methods in representation theory.

[RS90] R. W. Richardson and T. A. Springer, *The Bruhat order on symmetric varieties*, Geom. Dedicata **35** (1990), no. 1-3, 389–436.

[Ser00] Jean-Pierre Serre, *Local algebra*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000, Translated from the French by CheeWhye Chin and revised by the author.

[VK78] É. A. Vinberg and B. N. Kimel’fel’d, *Homogeneous domains on flag manifolds and spherical subsets of semisimple Lie groups*, Funktsional. Anal. i Prilozhen. **12** (1978), no. 3, 12–19, 96.

[Yam97] Atsuko Yamamoto, *Orbits in the flag variety and images of the moment map for classical groups. I*, Represent. Theory **1** (1997), 329–404 (electronic).

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201

E-mail address: colaruss@uwm.edu

Department of Mathematics, University of Notre Dame, Notre Dame, IN, 46556

E-mail address: sevens@nd.edu