ON FUNCTORS THAT DETECT S_n

TONY J. PUTHENPURAKAL

Abstract. Let A be a Noetherian ring. For each k where $0 \leq k \leq \dim A$ we construct left exact functors D_k on $\text{Mod}(A)$. Let D_k^i be the ith-right derived functor of D_k. Let M be a finitely generated A-module. Under mild conditions on A and M we prove that vanishing of some finitely many $D_k^i(M)$ is equivalent to M satisfying S_n.

1. INTRODUCTION

Let A be a Noetherian ring and let M be a finitely generated A-module. Let $n \geq 0$ be a non-negative integer. Recall that M satisfies S_n if

$$\text{depth } M_p \geq \min\{n, \dim M_p\}$$

for all primes p in A.

Note that by convention the zero module has depth $+\infty$ and dimension -1. In this paper we construct functors which (under mild conditions) detect whether M satisfies S_n.

Let E be a not-necessarily finitely generated A-module. By $\dim E$ we mean dimension of the support of E considered as a subspace of $\text{Spec } A$. Let $k \geq 0$ be an integer. Set

$$D_k(E) = \sum_{\substack{N \text{ submodule of } E \\dim N \leq k}} N$$

Clearly $D_k(E)$ is a submodule of E. Also if $\phi: E \to F$ is A-linear then it is easy to verify that $\phi(D_k(E)) \subseteq D_k(F)$. Set $D_k(\phi): D_k(E) \to D_k(F)$ to be the restriction of ϕ on $D_k(E)$. Clearly we have an additive functor D_k on $\text{Mod}(A)$. It can be shown that D_k is left exact; see section 2. Let D_k^i be the ith-right derived functor of D_k.

To prove our results we need to assume that the ring A satisfies certain conditions.

1.1. We assume that A satisfies the following properties:

(1) $\dim A$ is finite.
(2) A is catenary.
(3) A is equi-dimensional, i.e., $\dim A/p = \dim A$ for all minimal primes p of A.
(4) If m is a maximal ideal in A and p is a minimal prime of A then $\text{height}(m/p) = \dim A$.

We now give examples of rings which satisfy the hypotheses in 1.1.

(i) $A = R/I$ where $R = K[X_1, \ldots, X_n]$ and I is an equi-dimensional ideal in R, i.e., $\text{height } p = \text{height } I$ for all minimal primes p of I.

Date: August 5, 2014.
1991 Mathematics Subject Classification. 13C14, 13D02, 13F20.
Key words and phrases. S_n-property, equidimensional modules.
(ii) $A = R/I$ where $R = \mathcal{O}[X_1, \ldots, X_n]$; \mathcal{O} is the ring of integers in a number field (i.e., a finite extension of \mathbb{Q}) and I is an unmixed ideal of R.

(iii) $A = R/I$ where R is a Cohen-Macaulay local ring and I is an equi-dimensional ideal.

(iv) A is a catenary local domain.

Recall a finitely generated A-module M is said to be equi-dimensional if $\dim M$ is finite and $\dim A/p = \dim M$ for all minimal primes of M. Our main result is

Theorem 1.2. Let A be a Noetherian ring satisfying the hypotheses in (1.1) and let M be a finitely generated equi-dimensional A-module of dimension ≥ 1. Let n be an integer between 1 and $\dim M$. Then the following conditions are equivalent:

(i) M satisfies S_n.

(ii) $D_i^k(M) = 0$ for $i = 0, 1, \ldots, n-1$ and $0 \leq k < \dim M - i$.

Here is an overview of the contents of the paper. In section two we define our functors D_k and prove a few basic properties. In section three we prove a crucial result regarding localization of our functors D_k. Finally in section four we prove Theorem 1.2.

2. The functors D_k

In this section we define the functors D_k and prove some of its basic properties. Throughout A is a Noetherian ring. The A-modules considered in this section need not be finitely generated.

2.1. Let E be a A-module. Let $\text{Supp } E$ denote the support of E. Set $\dim E = \dim \text{Supp } E$. The following result is well-known

Proposition 2.2. Let $0 \to E_1 \to E_2 \to E_3 \to 0$ be an exact sequence of A-modules. Then

(a) $\text{Supp } E_2 = \text{Supp } E_1 \cup \text{Supp } E_3$.

(b) $\dim E_2 = \max\{\dim E_1, \dim E_3\}$.

2.3. We now define our functors D_k. Let $k \geq 0$ be an integer. Let E be an A-module. Set

$$D_{k,A}(E) = \sum_{\text{N submodule of } E}^{\dim N \leq k} N.$$

We suppress A in $D_{k,A}(E)$ if it is clear from the context. Clearly $D_k(E)$ is a submodule of E. The following Lemma is useful.

Lemma 2.4. Let $\xi \in D_k(E)$. Then there exists a finitely generated A-submodule M of E with $\xi \in M$ and $\dim M \leq k$.

Proof. There exists A-submodules N_1, \cdots, N_s of E with $\dim N_i \leq k$ and $\xi = n_1 + n_2 + \cdots + n_s$ where $n_i \in N_i$.

Set $N = N_1 + N_2 + \cdots + N_s$. There is a natural surjective map $\bigoplus_{i=1}^s N_i \to N$. By 2.2 it follows that $\dim N \leq k$. Also $\xi \in N$.

Set $M = A\xi \subseteq N$. By 2.2 it follows that $\dim M \leq k$. Also $\xi \in M$. \qed

Proposition 2.5. Let $\phi : E \to F$ be A-linear. Then $\phi(D_k(E)) \subseteq D_k(F)$.

Proof. Let $\xi \in D_k(E)$. Then by Lemma 2.4 there exists a finitely generated A-submodule N of E with $\dim N \leq k$ and $\xi \in N$. Then $\phi(\xi) \in \phi(N)$. Clearly $\phi(N)$ is an A-submodule of F. Furthermore ϕ induces a surjective map $N \to \phi(N)$. By 2.2 we get that $\dim \phi(N) \leq k$. Thus $\phi(\xi) \in D_k(F)$. □

2.6. Set $D_k(\phi): D_k(E) \to D_k(F)$ to be the restriction of ϕ on $D_k(E)$. Clearly we have an additive functor D_k on $\text{Mod}(A)$. We show

Proposition 2.7. D_k is left exact.

Proof. Let $0 \to E \xrightarrow{\alpha} F \xrightarrow{\beta} G$ be an exact sequence. We want to prove that the sequence

$$0 \to D_k(E) \xrightarrow{D_k(\alpha)} D_k(F) \xrightarrow{D_k(\beta)} D_k(G),$$

is exact.

Clearly $D_k(\alpha)$ is injective. Also

$$D_k(\beta) \circ D_k(\alpha) = D_k(\beta \circ \alpha) = D_k(0) = 0,$$

as D_k is an additive functor. Therefore image $D_k(\alpha) \subseteq \ker D_k(\beta)$.

Let $\xi \in \ker D_k(\beta)$. In particular $\xi \in \ker \beta$. So there exists $e \in E$ with $\alpha(e) = \xi$. As $\xi \in D_k(F)$, by Lemma 2.4 there exists a finitely generated A-submodule N of F with $\dim N \leq k$ and $\xi \in N$. Note that α induces an exact sequence

$$0 \to \alpha^{-1}(N) \to N.$$

By 2.2 we get that $\dim \alpha^{-1}(N) \leq k$. Also $e \in \alpha^{-1}(N)$. It follows that $e \in D_k(E)$. Thus D_k is left exact. □

We need the following two properties of D_k.

Proposition 2.8. (a) Let E be an A-module and let L be an A-submodule of E. Then $D_k(L) = D_k(E) \cap L$.

(b) Let E_α be a family of A-modules with $\alpha \in \Gamma$. Then

$$D_k \left(\bigoplus_{\alpha \in \Gamma} E_\alpha \right) = \bigoplus_{\alpha \in \Gamma} D_k(E_\alpha).$$

Proof. (a) Clearly $D_k(L) \subseteq D_k(E) \cap L$. Let $\xi \in D_k(E) \cap L$. By 2.4 there exists a finitely generated A-submodule N of E with $\dim N \leq k$ and $\xi \in N$. So $\xi \in N \cap L$. By 2.2 $\dim N \cap L \leq \dim N \leq k$. So $\xi \in D_k(L)$.

(b) As D_k is an additive functor the result holds if Γ is a finite set.

It is clear that

$$\bigoplus_{\alpha \in \Gamma} D_k(E_\alpha) \subseteq D_k \left(\bigoplus_{\alpha \in \Gamma} E_\alpha \right).$$

Let $\xi \in D_k \left(\bigoplus_{\alpha \in \Gamma} E_\alpha \right)$. By 2.4 there exists a finitely generated A-submodule N of $\bigoplus_{\alpha \in \Gamma} E_\alpha$ with $\dim N \leq k$ and $\xi \in N$. Say

$$\xi = \sum_{i=1}^{s} \xi_{\alpha_i} \text{ with } \xi_{\alpha_i} \in M_{\alpha_i}.$$

Then $\xi \in N'$ where $N' = N \cap (\bigoplus_{i=1}^{s} M_{\alpha_i})$. By 2.2 $\dim N' \leq k$. So

$$\xi \in D_k \left(\bigoplus_{i=1}^{s} M_{\alpha_i} \right) = \bigoplus_{i=1}^{s} D_k(M_{\alpha_i}) \subseteq \bigoplus_{\alpha \in \Gamma} D_k(E_\alpha).$$
We will also need the following computation.

Lemma 2.9. Assume dim A is finite. Let q be a prime ideal in A and let $E(A/q)$ is the injective hull of A/q. Then

$$D_k(E(A/q)) = \begin{cases} E(A/q), & \text{if } \dim A/q \leq k \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Let N be a non-zero finitely generated A-submodule of $E(A/q)$. Let p be a minimal prime of N with $\dim A/p = \dim N$. Note $p \in \Ass N \subseteq \Ass E(A/q) = \{ q \}$. So $p = q$. It follows that $\dim N = \dim A/q$. As a consequence we have that $D_k(E(A/q)) = 0$ if $\dim A/q > k$.

Now assume $\dim A/q \leq k$. Let $\xi \in E(A/q)$ be non-zero. Set $N = A\xi$. Then $\dim N = \dim A/q \leq k$. So $\xi \in D_k(E(A/q))$. It follows that $D_k(E(A/q)) = E(A/q)$ if $\dim A/q \leq k$. \hfill \Box

3. Localization

In this section we assume that A satisfies our assumptions \[1.1\]. The goal of this section is to prove the following:

Theorem 3.1. Assume A satisfies \[1.1\]. Let M be an A-module and let p be a prime ideal in A. Set $r = \dim A/p$. Then for all $k \geq 0$ we have

$$D^i_{k+r,A}(M)_p \cong D^i_{k,A_p}(M_p) \quad \text{for all } i \geq 0.$$

To prove Theorem 3.1 we need several preparatory results. We first prove:

Lemma 3.2. Assume A satisfies \[1.1\]. Let p,q be prime ideals in A with $q \subseteq p$. Then

$$\dim A/q = \height(p/q) + \dim A/p = \dim A_p/qA_p + \dim A/p.$$

Proof. It is easy to see that if m is a maximal ideal of A then A_m satisfies the conditions of \[1.1\]. We also get

$$\dim A/p + \height p = \dim A.$$

We first note the following: if $p_0 \subseteq p_1 \subseteq \cdots \subseteq p_r = p$ is a saturated chain of prime ideals with p_0 a minimal prime then $r = \height p$. To see this extend it to a maximal chain $p_0 \subseteq p_1 \subseteq \cdots \subseteq p_s = m$ where m is a maximal ideal in A. Then by assumption on A we get $s = \dim A$. Localize at m. Then by \[1.1\] Lemma 2, p. 250 we get that $\height m = \height p_m + \height(m/p)$. Note $\height p_m = \height p \geq r$ and $\height(m/p) \geq s - r$. As $\height m = \dim A = s$ we get that $r = \height p$ and $s - r = \height(m/p)$. It is now elementary to see that $\height(p/q) = \height p - \height q$.

Note that by \(\dag\) we get $\dim A/q - \dim A/p = \height p - \height q$. The result follows. \hfill \Box

Lemma 3.3. Assume A satisfies \[1.1\]. Let p be a prime ideal in A. Set $r = \dim A/p$. Let q be a prime ideal in A with $q \subseteq p$. Let $k \geq 0$. Then

$$D_{k+r,A}(E_A(A/q)) \cong D_{k+r,A}(E(A/q))_p \cong D_{k,A_p}(E_A(A_p/qA_p)).$$
ON FUNCTORS THAT DETECT S_n

Proof. As A satisfies 1.1 by 3.2 we get

\[(*) \quad \dim A/q = \text{height}(p/q) + \dim A/p = \dim A_p/qA_p + r.\]

To prove our result we consider two cases.

Case 1: $\dim A/q \leq k + r$.

By $(*)$ this holds if and only if $\dim A_p/qA_p \leq k$. By Lemma 2.9 we have

$$D_{k+r,A}(E_A(A/q)) = E_A(A/q)$$

and $D_{k,A_p}(E_{A_p}(A_p/qA_p)) = E_{A_p}(A_p/qA_p)$.

The result follows since $E_A(A/q) \sim E_A(A/q)_p \sim E_{A_p}(A_p/qA_p)$.

Case 2: $\dim A/q > k + r$.

By $(*)$ this holds if and only if $\dim A_p/qA_p > k$. By Lemma 2.9 we have

$$D_{k+r,A}(E_A(A/q)) = 0 \text{ and } D_{k,A_p}(E_{A_p}(A_p/qA_p)) = 0.$$

The result follows.

We now show:

Proposition 3.4. Assume A satisfies 1.1. Let p be a prime ideal in A. Set $r = \dim A/p$. Let M be an A-module. Let $k \geq 0$. Then

$$D_{k+r,A}(M)_p \cong D_{k,A_p}(M_p).$$

Proof. We consider two cases.

Case 1: M is an injective A-module. By Matlis theory, cf. [1, 18.5]

$$M = \bigoplus_{q \in \text{Spec } A} E_A(A/q)^{\mu_q}.$$

Notice $\mu_q = \dim_{\kappa(q)} \text{Hom}_{A_q}(\kappa(q), M_q)$ (here $\kappa(q)$ is the residue field of A_q). By Proposition 2.8 we have

$$D_{k+r,A}(M) = \bigoplus_{q \in \text{Spec } A} D_{k+r,A}(E_A(A/q))^{\mu_q}.$$

Now note that

$$M_p = \bigoplus_{q \subseteq p} E_{A_p}(A_p/qA_p)^{\mu_q}.$$

Therefore by Proposition 2.8 we get that

$$D_{k,A_p}(M_p) = \bigoplus_{q \subseteq p} D_{k,A_p}(E_{A_p}(A_p/qA_p))^{\mu_q}.$$

The result now follows from Proposition 3.3.

Case 2: M is an arbitrary A-module.

Embed M into an injective A-module I. Then note that M_p is a submodule of I_p.

By Proposition 2.8 we get $D_{k+r,A}(M) = D_{k+r,A}(I) \cap M$. So we get

$$D_{k+r,A}(M)_p = (D_{k+r,A}(I) \cap M)_p,$$

$$\cong D_{k+r,A}(I)_p \cap M_p; \quad \text{by [1] 7.4(i)},$$

$$\cong D_{k,A_p}(I_p) \cap M_p; \quad \text{by Case 1},$$

$$= D_{k,A_p}(M_p); \quad \text{by Proposition 2.8}.$$

We now give
Proof of Theorem 4.1. Let I be a minimal injective resolution of M. Then note that I_p is a minimal injective resolution of M_p. [1] Lemma 6, p. 149. Consider the complex $D = D_{k+r,A}(I)$. By [2,4] we get that $D_p = D_{k,A_p}(I_p)$. As D is a complex of injectives, the map $D \rightarrow D_p$ is a surjective map of complexes. So we have an exact sequence of complexes $0 \rightarrow K \rightarrow D \rightarrow D_p \rightarrow 0$. Observe that by 2.4

$$K^i = \bigoplus_{q \notin p} E_A(A/q)^{i(M,A)}_{\dim A/q \leq r+k}$$

It follows that $K_p = 0$.

The short exact sequence of complexes $0 \rightarrow K \rightarrow D \rightarrow D_p \rightarrow 0$ yields a long exact sequence

$$\cdots \rightarrow H^i(K) \rightarrow H^i(D) \rightarrow H^i(D_p) \rightarrow H^{i+1}(K) \cdots$$

As $K_p = 0$ we get that $H^i(K)_p = 0$ for all i. Thus $H^i(D)_p \cong H^i(D_p)_p = H^i(D_p)$. The result follows. □

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2 by induction on n. We prove the base case $n = 1$ separately.

Proposition 4.1. Assume A satisfies 1.1. Let M be a finitely generated equidi-

mensional A-module of dimension ≥ 1. The following conditions are equivalent:

(i) M satisfies S_1.
(ii) $D_k(M) = 0$ for all $k < \dim M$.

Proof. We first assume M satisfies S_1. Then $\dim M_p \geq 1$ if and only if $p \notin \text{Ass } M$. Suppose $\xi \in D_k(M)$ is non-zero. Then by 2.3 there exists a finitely generated submodule N of M with $\dim N \leq k$ and $\xi \in N$. Let $p \in \text{Ass } N$ be such that $\dim A/p = \dim N$. Note $p \in \text{Ass } M$. It follows that $p \in \text{Min } M$. So $\dim N = \dim M$. It follows that $k \geq \dim M$. Thus $D_k(M) = 0$ for $k < \dim M$.

Conversely assume that $D_k(M) = 0$ for all $k < \dim M$. Suppose if possible M does not satisfy S_1. Then there exists p with $\dim M_p \geq 1$ and depth $M_p = 0$. Thus $p \in \text{Ass } M$. So we have an injection $A/p \rightarrow M$. Notice $c = \dim A/p < \dim M$. Thus $D_c(M) \neq 0$, a contradiction. □

We now give

Proof of Theorem 1.2. We prove the result by induction on n. We have proved the result for $n = 1$, see 1.1. We assume the result for $n - 1 \geq 1$ and prove it for n.

We first assume that M satisfies S_n-property. As M also satisfies S_{n-1} we get by induction hypothesis that $D^j_{k}(M) = 0$ for $k < \dim M - j$ and $j = 0, 1, \cdots, n - 2$ Let I be a minimal injective resolution for M. As M satisfies S_n we get that for $i \leq n - 1$,

$$I^i = \bigoplus_{\dim M_p \leq i} E(A/p)^{i(M)}_{\dim M_p}.$$

Suppose $\xi \in D_k(I^{n-1})$ is non-zero. Then by 2.4 there exists a finitely generated A-submodule N of I^{n-1} with $\dim N \leq k$ and $\xi \in N$. Let p be a minimal prime of
ON FUNCTORS THAT DETECT S_n

N with $\dim A/p = \dim N \leq k$. Then $p \in \text{Ass}^n$. So $\dim M_p \leq n - 1$. Let q be a minimal prime of M contained in p. Then by 3.2 we get

$\dim M = \dim A/q = \dim A_p/q_A_p + \dim A/p \leq \dim M_p + \dim N \leq n - 1 + \dim N$.

So $\dim N \geq \dim M - n + 1$. It follows that $D_{k}(\mathbb{Z}^{n-1}) = 0$ for $k < \dim M - n + 1$. Thus $D_{r}^{n-1}(M) = 0$ for $k < \dim M - n + 1$.

We now assume that $D_{i}^{n-1}(M) = 0$ for $i = 0, 1, \ldots, n - 1$ and $0 \leq k < \dim M - i$. By induction hypotheses it follows that M satisfies S_{n-1}. Suppose if possible M does not satisfy S_n. Then there exists a prime ideal p with $\dim M_p \geq n$ and $\text{depth } M_p = n - 1$. We localize at p. We get that $D_{0, A_p}^{n-1}(M_p) \neq 0$. By Theorem 3.1 it follows that $D_{r}^{n-1}(M) \neq 0$ where $r = \dim A/p$.

Claim: $\dim M = \dim M_p + r$.

Assume the claim for the moment. Then $r = \dim M - \dim M_p \leq \dim M - n < \dim M - n + 1$. Also $D_{r}^{n-1}(M) \neq 0$. This contradicts our assumption.

Proof of claim. Let q be a minimal prime of M contained in p and let m be an arbitrary maximal ideal of A containing p. By 3.2 we get that $\dim M = \dim A/q = \text{height}(m/q)$. As A is catenary we get that $\text{height}(m/q) = \text{height}(m/p) + \text{height}(p/q)$. We take q with $\text{height}(p/q) = \dim M_p$. Also note that again by 3.2 $\text{height}(m/p) = \dim A/p = r$.

References

[1] H. Matsumura, *Commutative ring theory*, Translated from the Japanese by M. Reid. Second edition. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1989.

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400 076, INDIA

E-mail address: tputhen@math.iitb.ac.in