Cultivation and Nutritional Value of Prominent *Pleurotus* spp.: An Overview

Jegadeesh Raman\(^{a}\), Kab-Yeul Jang\(^{b}\), Youn-Lee Oh\(^{a}\), Minji Oh\(^{a}\), Ji-Hoon Im\(^{a}\), Hariprasath Lakshmanan\(^{b}\), and Vikineswary Sabaratnam\(^{c}\)

\(^{a}\)Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea; \(^{b}\)Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India;

\(^{c}\)Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia

ABSTRACT

Pleurotus species are commercially essential mushrooms and widely cultivated throughout the world. The production of *Pleurotus* mushrooms alone accounts for around 25% of that total cultivated mushrooms globally. In America and Europe, *Pleurotus* species are considered specialty mushrooms, whereas, in Korea, their cultivation is economically profitable, and it is one of the highly consumed species. *Pleurotus* species are predominantly found in tropical forests and often grow on fallen branches, dead and decaying tree stumps, and wet logs. Biographical studies have shown that the *Pleurotus* genus is among the more conspicuous fungi that induce wood decay in terrestrial ecosystems worldwide due to its formidable lignin-modifying enzymes, including laccase and versatile peroxidases. *Pleurotus* species can be grown easily due to their fast colonization nature on diversified agro-waste and their biological efficiency 100%. *Pleurotus* mushrooms are rich in proteins, dietary fiber, essential amino acids, carbohydrates, water-soluble vitamins, and minerals. These mushrooms are abundant in functional bioactive molecules, though to influence health. *Pleurotus* mushrooms are finding unique applications as flavoring, aroma, and excellent preservation quality. Apart from its unique applications, *Pleurotus* mushrooms have a unique status delicacy with high nutritional and medicinal values. The present review provides an insight into the cultivation of *Pleurotus* spp. using different agro-waste as growth substances paying attention to their effects on the growth and chemical composition.

1. Introduction

Pleurotus mushrooms are considered healthy because of richness in proteins, fiber, vitamins, and minerals [1]. *Pleurotus* mushrooms are consumed as a functional food as they attractive taste and aroma, nutritional and medicinal value. *Pleurotus* species (Oyster mushrooms) are commercially important edible mushrooms and cultivated globally [2]. The oyster mushroom basidiocarps are shell or oyster shaped with different colors like white, cream, gray, yellow, pink, or light brown [3]. *Pleurotus* consists of about 40 species distributed in a wide range of tropical and temperate regions [4]. Twenty-six species, including *Pleurotus eryngii* (PE), *Pleurotus citrinopileatus* (PC), *Pleurotus flabellatus* (PFL), *Pleurotus ostreatus* (PO), *Pleurotus djamor* var. roseus (PDR), and *Pleurotus florida* (PF), have been reported to be cultivated using different types of lignocellulosic wastes [3–11]. A large number of *Pleurotus* species were identified and commercialized. However, many of them are yet to be analyzed for their nutraceutical and medicinal potential. They secrete extracellular enzymes to digest the surrounding organic materials to obtain their nourishment. *Pleurotus* species are widely found growing on the damp wood trunk of trees and decomposing organic matters containing rich sources of lignin and phenol degrading enzymes. *Pleurotus* species are cultivated on a large scale using a wide range of agro-substance with simple and low-cost production techniques [12]. Globally, about 998 million tons of agro wastes are produced annually, which include paddy, wheat and cereal straws. *Pleurotus* mushrooms utilize these agro-wastes as substrates for their growth, and thus, the cultivation of them helps in recycling agro-wastes and alleviates the nutritional gap mainly prevalent among the population of China, India and Africa. Additionally, the spent substrates are used as fertilizer, animal feed, and biogas production [13].

Consumption of *Pleurotus* mushroom is increasing due to its high proteins and dietary fiber composition [3,6] as well as essential and non-essential...
amino acids, particularly lysine and leucine. The presence of high mineral content in *Pleurotus* species is considered an important source of meat, fish and vegetables [13,14]. *Pleurotus ostreatus* is cultivated on a large scale, however, their demand in the global market is lower than the button (*Agaricus bisporus*) and shiitake mushrooms (*Lentinula edodes*) [15], due to its shorter shelf-life [16]. They are highly perishable mushrooms with short self-life, drying, and other value-added commodities that may compete in the global market [16]. Extensive research on nutritional and medicinal attributes of *Pleurotus* species has been investigated by many researchers [4,17,18]. The presence of mevinolin, nicotinic acid, and a higher level of β-glucans compounds in *Pleurotus* species has been successfully proved to be a food supplement for cardiac patients to reduce the blood cholesterol level [19]. The current review article discusses ten commercially available *Pleurotus* species, their cultivation methods, and nutritional composition. The presented data will give academics and industrialists an innovative concept from translation *Pleurotus* species from food to medicine.

2. Diversity and taxonomy of *Pleurotus*

Pleurotus species belong to Agaricales and the family of Pleurotaceae (white spore oyster mushroom) and are distinguished with their color and habitat. Most of them are saprophytic and rarely parasitic. A previous publication by Bao et al. gives us valuable input on the number of *Pleurotus* species distributed in Asia [20]. The morphological characteristics of *Pleurotus* species are unstable due to varying agro-climatic conditions and different substrates used for cultivation [21]. The taxonomical and phylogenetic identification of *Pleurotus* species is quite complex, leading to its misidentification. The genus, species name, and anamorphic states of commercial important *Pleurotus* species were described by Guzman [22] (Table 1). Stajic et al. have reported that the geographical separation causes differences between the isolates genetically [33]. In recent decades, various biochemical and molecular techniques have been employed to investigate the phylogenetic relationships and the taxonomical hierarchy [34].

The DNA based molecular identification techniques such as internal transcribed spacer region identification, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and restriction fragment length polymorphism (RFLP) has been widely used to validate *Pleurotus* species [35–38]. Through these genetic diversity studies, the ambiguous taxonomy of *Pleurotus* species may be employed in clarifying the misidentified species and strains in the literature. Also, the molecular identification of the *Pleurotus* species a prerequisite for breeding programs and commercial mushroom production.

3. Cultivation of *Pleurotus* species

Pleurotus mushroom cultivation is an economically viable and eco-friendly process for converting various agro wastes into human food. *Pleurotus* mushrooms are cultivated on a large scale globally, accounting for 27% of its global production [39]. Africa has successfully developed cultivation methods for sustainable production as a valuable food source to defeat hunger [40]. In Asia, the *Pleurotus* mushroom industry has increased rapidly due to low production cost and high yielding capacity. The cultivation processes include substrates processing, casing, and temperature shocks [41]. Shukla and Biswas have stated that PF cultivation is gaining popularity in India due to low-cost technology and easily available substrates [42]. The mushroom can adopt to grow on a wide range of temperatures, at relatively high humidity and tolerate high CO2.

Valid taxa	Anamorphic states [22]	Common name	Optimum temperature range (°C)	References
P. ostreatus (PO)	P. Kumm. var. ostreatus	Black Oyster	Spawn running: 21–24	[23,24]
P. floridus (PFL)	P. floridus (Berk et Br) Sacc.	Strawberry Oyster	Basidiocarp production: 25–30	[8,18]
P. rubescens (PR)	P. rubescens var. rubescens	White Oyster	Basidiocarp production: 21–25	[23,25]
P. sajor-caju (PSC)	Lentinus sajor-caju	Gray Oyster	Basidiocarp production: 20–25	[24,26]
P. citrinopileatus (PC)	P. citrinopileatus var. citrinopileatus	Golden Oyster	Basidiocarp production: 18–29	[3,5]
P. eryngii (PE)	P. eryngii	King Oyster	Basidiocarp production: 10–35	[24,27]
P. pulmonarius (PP)	P. pulmonarius	Phoenix Oyster	Basidiocarp production: 20–24	[28,29]
P. djamor	P. eous (PEO)	Pink or red Oyster	Basidiocarp production: 30–35	[30,31]
P. djamor var. roseus (PDR)	P. djamor var. roseus Corner	Roseus mushroom	Basidiocarp production: 20–24	[10,12]
P. tuber-regium (PTR)	Lentinus tuber-regium (Fr) Fr.; Panus tuber-regium (Fr) Corner	King tuber	Basidiocarp production: 30	[32]
levels; hence, it does not require sophisticated and specific controlled environmental conditions. The genus *Pleurotus* are ubiquitous, found both in temperate and tropical parts of the world. They are a high delicacy and well-known edible mushrooms in different parts of the world [39]. Cultivation of these mushrooms is a major source of income for farmers and industrialists in South East Asia. Growing this mushroom is becoming more popular globally because of its ability to grow on diversified substrates and temperature tolerance [43]. Mushroom farming has become an essential cottage industrial activity in the integrated rural development program.

The cultivation of *Pleurotus* mushrooms through solid-state fermentation help in the recycling of agro wastes. Various agricultural by-products are used as substrates to cultivate oyster mushroom, for instance, banana leaves, peanut hull, and corn leaves, wheat and rice straw, mango fruits and seeds, sugarcane leaves (Table 2). The widely used substrate for cultivation in Asia is rice straw and cotton wastes [52]. Cotton wastes substrate is the cheapest and suitable substrate for *Pleurotus* mushroom cultivation, mostly generated from the cotton spinning industry. Cotton waste has attracted Korean farmers and has encouraged them in *Pleurotus* cultivation [41]. The biological efficacy among the *Pleurotus* species cultivated on non-compost and compost substrates ranged from 45.33 to 120.07% [12,30].

The most cultivated species of *Pleurotus* are *P. ostreatus* (PO), *P. sajor-caju* (PSC), PF and *P. eous* (PEO), and, particularly, *P. florida* (PF) and *P. sajor-caju* (PSC) are the most popular (Figure 1) [21,53,54]. Going back to history, the *Pleurotus* culture was introduced to China during World war 1 from the West, and the country has achieved approximately 25% of the world’s production in the year 2010 [39,55]. The total production of *Pleurotus* mushroom in Asia was about 825,600 tons in the year 2010 [39]. PO was cultivated in Japan early 1950s, and the bottle cultivation technique of PE (king oyster) was introduced in 1993. They adapted bottle cultivation techniques with either sawdust or corncob as a substrate for large-scale production [56]. The mushroom industry in South Korea is more extensive and diverse, reflecting domestic consumption and traditions. PO, PD, PC, PE, and PSC are cultivated in South Korea, among them, PE is dominating [41,57]. *Pleurotus* mushroom production in South Korea accounted for 52% of the total production [58]. PSC represents a group of strains of *P. pulmonarius* (PP) that are cultivated on a large scale in southern and eastern Asia [20]. *Pleurotus tuber-regium* (PTR) has been widely cultivated and is consumed by the African peoples and also gained popularity in China [59] (Table 3).

3.1. Substrate preparation and spawn run time

The selection of appropriate substrate and spawn run time is a challenge, despite its simplicity in large-scale cultivation. Broadleaf, hardwood, sawdust, and straw-based substrates with added supplements are more often used in commercial production. The artificial substrates must be pretreated in a clean environment, mainly to eliminate contaminants [9]. *Pleurotus* species can colonize and produce mushrooms on pretreated conifer (*Pinus* species) wood chips. However, the non-pretreated conifer wood chips substrate inhibits the mycelial colonization presence of inhibitory components [61]. *Pleurotus* species can also utilize wood waste or unused wood residues to promote economic growth and rescue the forest ecosystem. Spawn is a mushroom seed, used to propagate the mushroom

Organisms	Different substrate used for cultivation	References
PO	Paddy straw, cereals straw, wheat straw, barley straw, maize straw, sugarcane bagasse, maize stem residue, wheat stalk, cotton waste, corn husk, rice husk, banana leaves, elephant grass, bamboo leaves, soybean straw, *Triplochiton scleroxylon* sawdust, beech sawdust, flax shives	[11,21,23,44-46]
PFL	Sawdust of mango (*Mangifera indica*), jackfruit (*Artocarpus heterophyllus*), coconut (*Cocos nucifera*), Kadom (*Anstrocephalus sinensis*), Mahogany (*Swietenia macrophylla*), Shiits (*Albizia spp.*), Jam (*Syzygium spp.*), sisal decortication residue	[8,47]
PF	Paddy straw, wheat straw, barley straw, soybean straw, sorghum straw, maize stem residue, cotton waste, maize stems, maize cob shells, pseudo banana stems, oak sawdust	[23-25,30]
PSC	Paddy straw, wheat straw, wheat stalk, cotton waste, maize stems, maize cob shells, pseudo banana stems	[21,24,30]
PC	Paddy straw, *Brassica* straw, Radish leaves, cauliflower leaves, pea pod shell	[3]
PE	Paddy straw, wheat straw, soybean straw, sorghum straw, wheat stalk, cotton waste, cotton seed hull, cotton stalk, beech sawdust, flax shives, maize stems, maize cob shells, pseudo banana stems, beech sawdust, flax shives	[21,30,46,48,49]
PP	Rice straw, cotton waste, banana leaves, *Chrysoscodius lotuicaps* leaves, wood chippings,	[28,50]
PEO	Paddy straw, wheat straw, soybean straw, sorghum straw	[30]
PDR	Paddy straw, ragi straw, corn straw, coir pith, sugarcane bagasse	[10,12]
PTR	Paddy straw, wheat straw, corn straw, saw dust, oil palm fiber wastes, wild grass straw, poultry dropping, maize cob, cassava peelings, dry water hyacinth, millet stalk, groundnut shell, banana leaves, cocoa leaves, paper wastes	[32,51]
mycelia in the desired solid substrate during cultivation. The temperature of the spawn room was maintained between 25 and 30 °C. The spawn run period and primordial initiation were generally observed during 24–30 d [62,63]. The spawn running and basidiocarp production temperature also depends on the *Pleurotus* species that is being cultivated (Table 1). Light is not a prerequisite in the spawn running.
room. Spawning is done in the cleaned spawning area in the bulk chamber. The preparation of spawn needs to be standardized for different Pleurotus species.

For instance, one kg of healthy grains was washed thoroughly in tap water and boiled with 1.5 L of water for about 30 min until they become soft and soaked for about 12 h [64]. The grains were spread on a sterile surface to drain out the excess of water. To the drained grains, 15 g of calcium carbonate was mixed to make the grains free from clumps. Two hundred grams of grains were taken in polypropylene bags (18 cm × 12 cm) plugged with cotton and were sterilized at 121 °C for 20 min. After cooling at room temperature, the mycelium from a Pleurotus culture is placed onto sterile grain and incubated for mycelia growth. Sawdust can also be used as an alternative to seed grains, and both the substrates were mixed with rice/wheat bran-based materials. Recent, liquid spawn, stalk, and stick spawn are being used for Pleurotus mushroom cultivation (Figure 2) [65,66]. Spawning is done at a 2% spawn rate (2 g/100 g wet substrate). The seeded substrates, broth, stalk, and stick (mycelia bit/through spawning) are inoculated in the cultivation substrates (perforated polythene bags, polypropylene bottles, and trays). Different types of cultivated methods were employed in Pleurotus production, for instance, wall-frame, shelf, tray, jar, bag, bottle, and grid-frame methods [67]. The most practiced method includes shelf cultivation, a bag, and a bottle. The shelf (row/bed) cultivation method is considered as a low cost and high production technique. In the bag cultivation method, the spawn is tied on the top and is placed horizontally in rows. The advantages of plastic bottle cultivation are high yield and efficiency with limited land space [53]. Cultivation bags and bottles were placed vertically are horizontally for spawn running, and the spawn incubation chamber was maintained at 24–25 °C and 90% RH. The incubation time and temperature for spawn run varied among the species. PEO (30–35 °C) and PE (10–35 °C) are high temperature tolerant [27,31], while the optimum growth

Species	Korea	India	Japan	America	Europe	Africa	Australasia	China
PO	+	+	+	+	+	+	+	+
PPF	–	+	–	–	–	+	–	–
PF	+	–	+	–	+	+	–	–
PSC	+	–	+	+	–	+	–	–
PC	+	–	+	+	+	+	–	+
PE	+	–	+	+	+	+	–	+
PP	–	–	+	+	+	+	–	+
PEO	–	–	–	–	–	+	–	–
PDR	+	+	+	+	–	+	–	–
PTR	–	–	–	–	–	+	–	+

+ reported Pleurotus species; “-” species has not yet been reported.

Figure 2. Production of liquid, stalk, and stick spawn of Pleurotus species. (a) pilot scale liquid spawn production; (b) corn stalk chips in Pleurotus liquid broth; (c, d) mycelial growth on stalk chips before and after 3-(4,5-dimethylthiazol-yl) -2,5-diphenyltetratolium bromide (MTT) staining; (e, f) longitudinal sections of logs (stalk, stick) inoculated with different types of spawn [(b–f) adapted from Liu et al. 2018].
temperature for PTR was in a range between 30–35 °C [32], even though the optimum temperatures for oyster mushroom cultivation ranges between 21–25 °C (Table 1).

The Pleurotus species spawn run takes about 12–26 d at 24 ± 1 °C (Table 4). The maximum spawn run period of PP was observed on the 25th day [50]. The spawn inoculated bags/bottles are allowed to colonize (outside becoming white), and they are finally transferred into the cultivation chamber. The chamber was maintained at 15–23 °C, relative humidity was 85–95%, and the photoperiod was 12 h/day with a light density at 15–350 lux for commercial production [72]. Substrate supplementation with an external source of nitrogen is recommended for enhancing the oyster mushroom yield of Pleurotus species. According to Naraian et al., Pleurotus species have a very low nitrogen requirement in its initial substrate colonization [73]. PTR is a tuberous mushroom that produces sclerotium in underneath soil [51]. The species differs from other Pleurotus species cultivation, and it has required casing for high yield fruiting. PTR fruiting body (tuber) and sclerotium are considered a highly nutritional and cheap protein source in Africa [71]. Pleurotus species cultivation has been tested in different bagging systems [7]. Plastic bags were found to yield higher harvest than other methods like trays, racks, and cylindrical containers bagging systems [12,53]. The plastic bags hanged in rows would reduce the contamination level and allow good air circulation [7].

3.2. Primordial initiation and biological efficacy

The primordial initiation was generally observed from 16 to 27 d [12,74]. Generally, mature mushrooms are visible within 3–4 d after pinhead formation (Table 4). The mature mushrooms will then be harvested before spraying water. Second and third harvests are obtained after scraping the beds surface to 1–2 cm deep after the first harvest. The entire cropping would be completed in 50–55 d [12]. The biological efficiency of the specific substrates is an essential factor that decides on the suitability of the substrates to cultivate a particular species of mushroom. A total of 3 crops were harvested in the cultivation period about >42 d. The biological efficacy (BE) of Pleurotus species was much lower when it is cultivated on fresh sawdust substrates compared to composted sawdust and bran (rice/wheat) mixture [75]. Rodriguez and Royse reported that PE basidio-carp yields were significantly higher when cultivated using soybean substrates supplemented with basal cottonseed hull or sawdust [48]. The substrates can be processed either by composition or pasteurization, and further addition of supplement substrates can trigger the biological efficacy. A study has reported that the maximum yield of PSC was obtained when cultivated on chopped straw than the wheat straw substrate. Obodai et al. reported that paddy straw was a suitable substrate for PO cultivation [44]. In Pleurotus species, the optimum temperature for primordial initiation and fruiting development varied according to their substrate. PTR and PEO are high temperature tolerant and initiated their primordia at 28–35 °C [30,32]. The yield was reported to be in the range of 438.1–214.6 (g), with a BE of 121.5–51.3% [76] (Table 4).

3.3. Postharvest management and processing method

Fresh mushrooms are very perishable and can be preserved only if adequately processed. Postharvest browning of Pleurotus species is related to oxidation of phenolic compounds by polyphenol oxidase, which is the main reason for discoloration [77]. High degree moisture content in fresh mushrooms was a risk to microbial contamination and altered the physicochemical constituents. The best postharvest processing methods for mushrooms is the main reason for discoloration [77]. High degree moisture content in fresh mushrooms was a risk to microbial contamination and altered the physicochemical constituents. The best postharvest processing methods [78]. Dehydration is an effective method of preservation to prevent types of spoilage, except for lipid oxidation. Drying is the most traditional long time preservation technique, especially for mushrooms being used as ingredients for sauces and soups.
Cooling may alter the shelf-life but maybe a useful method in retarding the deterioration process. The instant cooling procedure reduced the field heat and possibly slowed down the metabolic rate [16]. The shelf-life of freshly harvested *Pleurotus* mushroom is reported as 8–11 d at 0 °C or 1–2 d at 20 °C [70]. The minimal processing is a natural and an alternative technique for extending mushrooms self-life (Controlled packing, chemical treatment, blanching, radiation, coating) and conventional processing (e.g., canning and drying) are other popular mushroom preservation techniques [28,78].

In recent years, the mushroom industry is looking forward to value-added products. They are commercially valuable and profitable than fresh mushrooms. Demand for processed mushrooms exists over the past years, and processed mushroom comes in the commercial market as canned, dried, or frozen forms. Other than these categories, the processed *Pleurotus* mushroom also includes instant snacks, pickled, powder, nuggets, and mushroom sauces (Figure 3). Dry mushroom powder forms of PO, PSC, PP, and PE are used as bakery products [79]. In peak production seasons, surplus fresh mushrooms can be processed/converted into value-added products, and this may resort to distress sale [16]. *Pleurotus* mushrooms are used as a health supplement and dietary food due to their health benefits and cholesterol-lowering property.

4. Nutritive values of *Pleurotus* species

Mushrooms are appreciated for their proximate composition and nutritional characteristics and are considered to have 28.6–15.4% of proteins, 84.1–61.3% of carbohydrates and 3–33.3% of dietary fiber [80]. Their protein content is higher compared to vegetables, but less compared to meat and milk. *Pleurotus* species are rich sources of proteins and minerals (Na, Ca, P, Fe, and K) and vitamins (Vitamin C and B complex) [81,82]. Additionally, the richness of umami-taste in *Pleurotus* mushrooms may increase food quality [83]. Considerable proportions of carbohydrates consist of dietary fibers, which are rich in fiber (6～28%), especially in the stipe [84] that cannot be easily digested by humans and function essentially as dietary fiber [84]. They contain all the essential amino acids, limiting the sulfur-containing amino acids, cysteine, and methionine [85]. Even though they also contain major lipids, including free fatty acids, mono, di and triglycerides, sterol esters, and phospholipids [86]. *Pleurotus* mushrooms are considered a functional food because of their higher food value, mainly due to high protein content and fat, carbohydrate, minerals, and vitamins [61–77]. Analytical reports on proximate composition showed significant variation from species to species. The active constituents found in *Pleurotus* mushrooms are polysaccharides, dietary fibers, oligosaccharides, triterpenoids, peptides, proteins, alcohols and phenols, and mineral elements such as zinc, copper, iodine, selenium and iron, vitamins, and amino acids [4,14]. These have been found to boost the immune system, have anticancerous properties, and act as anti-hypercholesterolaemic and hepato-protective properties. *Pleurotus* species are excellent food for the people suffering from hypertension and cardiovascular diseases due to high potassium and sodium content [87].

![Figure 3. Postharvest management and processing method of *Pleurotus* species.](image-url)
4.1. Proteins and amino acids

The genus *Pleurotus* can be considered as a good source of palatable proteins, especially for vegetarians. Non-protein nitrogen compounds are in the form of amino acids, chitin, and nucleic acids. The coefficient values most generally range from 3.45 to 4.38 is more appropriate, and the value converts total nitrogen to protein. The mushroom protein assimilability depends mainly on the species, ranging from 9.29 to 37.4 g/100 g of fruit bodies d.w [88]. Tolera and Abera found 28.85% of the protein in fresh PO mushrooms [69]. Protein content in mushrooms runs a wide range based on inherent and agro-climatic factors. Korean *Pleurotus* varieties protein content was around 28.57%, whereas the FAO report showed that the *Pleurotus* species protein was about 30.4% [82,89]. Kortei and Wiafe-kwagyan reported that the protein content of PEO was 24.10% [90]. The protein content level (Table 5). The selection of nitrogen-rich substrates with a supplemented nitrogen source may enhance protein contents [73]. The total amino acid composition in the food is a reliable indicator of quality food, including mushrooms. It is also known that few amino acids contribute to enhancing edible mushrooms taste, making them delicious [90]. The amino acids like tryptophan, cysteine, alanine, and glycine exhibited a synergistic effect with vitamin C and E toward their antioxidant activity. Atri et al. reported that the wild species of PP, PSC, PC, and PF contain rich amino acid profiles [96]. Indeed, the *Pleurotus* species are considered as a good source of protein and amino acid content. *Pleurotus* species also contain high amounts of γ-aminobutyric acid (GABA) and ornithine. GABA is a nonessential amino acid required for brain functioning and mental activity, additionally, the muscle proteins used in the treatment of wasting muscles after illness or post-operative care [83].

4.2. Carbohydrates

Carbohydrates in mushrooms are mainly involved in the structural composition except for sugar-free components, essential in maintaining the high osmotic concentration and serving for the energy release intact with the fast metabolism rate. The *Pleurotus* mushrooms contain large amounts of carbohydrates ranging between 24.95 and 75.88% [45,97]. The polysaccharides and chitin present in mushrooms constitute a major part of mushroom nutrients [88]. The higher amount of celluloid substances, including rich dietary fiber, leads mushrooms as a low-calorie diet with higher therapeutic value for diabetic patients to counteract alimentary ulcers and reduce obesity. In PF and PSC, the carbohydrates level is 42.83 and 39.82%, respectively [25,84]. The ferula (*Pleurotus ferulae*) and white-ling mushrooms (*P. nebrodensis*) contain fewer carbohydrates (47.8–46.2%, respectively) than red (*P.djamor*) (59.9%) and purple (*P.sapidus*) (57.1%) oyster mushrooms [68]. *PTR* contains a high percentage of carbohydrate and low lipid content than other *Pleurotus* species [71]. However, the carbohydrate percentage was all in the range between 34.0–63.3% (Table 5).

4.3. Dietary fiber

Mushrooms have edible dietary fiber and are good sources of essential food compounds that are valuable for human nutrition. The dietary fiber in mushrooms was primarily composed of chitin (a straight-chain (1→4)-β-linked polymer of N-acetyl-glucosamine) and polysaccharide ((1→3)-β-D-glucans and mannans) in their cell walls [98]. Dietary fiber is non-digestible by the human endogenous system, and they exhibit different nutritional and physiological benefits [99]. More specifically, the non-digestible cell wall carbohydrates subunit is considered as a source of dietary fibers. The edible mushrooms provide up to 25% of the dietary fiber recommended dietary intake [100]. The fiber content in pink oyster mushroom, *PDR* (14.60%), was comparable to other oyster mushroom species and

Strains	Moisture^a	Protein	Carbohydrate	Fat	Ash	Crude fiber	References
PO	88.5	32	50.9	3.1	6.1	6.2	[91–93]
PFL	91	21.6	57.4	1.8	10.7	11.9	[18,47]
PF	87.5	20.56	42.83	2.31	9.02	11.5	[25]
PSC	87.0	24.63	39.82	2.29	8.28	10.9	[84]
PC	88.9	30	42.5	3.9	7.65	20.78	[3,94]
PE	91	11.95	39.85	7.50	4.89	28.29	[46,49]
PP	78.8	20.3	34	2.62	7.33	9	[29]
PEO	86.81	24.10	45.59	4.73	9.84	15.91	[90,95]
PDR	79.52	35.5	44.75	1.72	5.90	14.60	[12]
PTR	87.13	22.10	63.03	1.06	2.97	10.86	[71]

^a% of fresh mushroom.

Table 5. Proximate composition of *Pleurotus* species strains.
winter mushrooms (Flammulina velutipes), which have a fiber content of 22.4 and 31.2%, respectively [12,101]. The fiber content in porcini mushroom, Pleurotus ferulae and Pleurotus nebrodensis (white-ling mushroom) ranged from 11.2 to 15.0% and were relatively low compared with PE (28.29%) and PC (20.78%) [3,49]. Overall, Pleurotus mushrooms which contain an abundant amount of fiber content are like PO (10.21%), PFL (11.9%), PF (29.9%), PSC (10.9%), PP (14.7%), PEO (15.91%), PDR (14.60%), and PTR (10.86%) as reported [12,47,71,86,95,102]. There is a significant variation in the dietary fiber content among the Pleurotus species shown in Table 5. The fruit bodies of PE and PDR contain significant amounts of dietary fibers, and a high variability can also be observed among ten Pleurotus species. So, they are considered a good source of dietary fiber and are associated with blood glucose and cholesterol-lowering activity [103]. PTR can produce a sclerotium with a compact mass of hardened fungal mycelium containing chitin and β-glucans [59]. The edible sclerotium is similar to a commercial source of dietary fiber from a conventional source as legumes [104]. Mushroom dietary fiber and including β-glucans, chitin, and polysaccharide–protein complexes show a wide range of health benefits to humans. Xu et al. demonstrated the cancer effect of polysaccharide–protein complexes derived from PP [105]. On the other hand, other studies demonstrated that β-glucans derived from PTR could induce apoptosis against cancer cells and enhance the immunomodulatory and anti-tumor activities [106]. The high-level intake of Pleurotus mushroom intake can decrease the risk of cancer and other diseases. However, the high variable of dietary fiber in the Pleurotus species is considered a novel food source.

4.4. Lipids

Lipids from mushrooms are highly suitable for humans to the least risk of plaque formation in blood vessels [19]. The crude fat of edible and medicinal mushrooms includes all lipids, free fatty acids, mono, di and triglycerides, sterols, sterol esters, and phospholipids. Fatty acid compositions differ from each fungi species and are an essential component of organelles comprising in fungi about 30–70%. Lavelli et al. made a generalized fat content survey in Pleurotus species reported to be around 0.9–7.5% [83]. The maximum (7.50%) and minimum (1.06%) fat contents were recorded in PE and PTR, respectively [49,71]. In contrast, the average fat content was recorded in PEO (4.73%) and PC (3.9%) (Table 5) [95,107]. The possible reason for this diversified variation in fat content may be the agro-waste used in the cultivation process. Pleurotus species contain low lipids, excellent sources of fatty acids like linoleic acid and oleic acid. The earlier research evidence that Pleurotus species are good candidates for anti-inflammation and hypocholesterolemia in the human diet [19,71,87]. Schneider et al. reported that the PO diet inhibited the accumulation of LDL and VLDL (Low-density lipoproteins and very-low-density lipoprotein) and significantly reduced the total cholesterol (TC) values in humans [108].

4.5. Vitamins and minerals

Pleurotus mushrooms are exceptionally high in folic acid (B9), also known as folic acid, which is nutrients that cannot be produced in the body and must be supplied by the diet. Patil et al. reported the cultivation of PO on the mixture substrates of soybean and wheat straw substrate showed maximum folic acid (0.052 ± 0.02 mg/100g.), thiamin, riboflavin, niacin, and vitamin C content [45]. According to WHO/FAO guidelines, folate is an essential supplement during ovulation, low folate intake during an earlier pregnancy can increase the risk of neural tube defects [109]. The folic acid content in Pleurotus species is described in Table 6. Thiamin and riboflavin content of PEO were 2.23 and 8.97 mg/100g, respectively, while niacin and ascorbic acid content of PFL were 73.3 and 144 mg/100g [110]. PP cultivated on some indigenous fruit trees barks showed a minimal level of B-complex vitamins [111].

Pleurotus mushroom contains most nutritionally essential minerals, such as high potassium, a remarkable level of phosphorus, and low sodium concentration [112]. About 90% of the

Table 6. Vitamins content in Pleurotus species strains.
Content g/100g dried mushroom
Strains
PO
PFL
PF
PSC
PC
PP
PEO

– Result not found.
bioavailability of iron (Fe) in the edible mushroom is easily absorbable. The macro element potassium helps maintain normal heart rhythm, fluid balance, blood pressure, nerve function, and blood cholesterol levels. Kikuchi et al. found that Zn content in edible mushroom species ranges between 4.22–7.70 μg/g [113]. The Pleurotus mushrooms are a good source of zinc, contributing to the cause of human nutrition. Iron content in Pleurotus species has been reported in the range of 5.5–13.4. PE contained a high percentage of Fe (0.062%) compared with other Pleurotus species. In PDR, PSC, PO and PF, the potassium and sodium contents were 2218.33; 67.12, 2146; 220, 1950; 270 and 1537; 686, mg/kg, respectively (Table 7). A balance between potassium and sodium will prevent high blood pressure [109,114]. The microelements approved limits for each metal in edible mushrooms were established in many countries. From the nutritional point of view, the trace element selenium is one of the potential sources of nutrients that worked as a cofactor in antioxidants. Bioavailability of selenium from PO, PF, PSC, and PE range between 0.011 and 0.512 mg/100 g [46,101]. The unclear evidence as suggested that selenium may reduce the incidence of cancer when taken in higher doses. Recently, many bioactive compounds were isolated from Pleurotus species, and their pharmacological effects were fully investigated [60]. The regular consumption of Pleurotus species may reduce the cholesterol level and improve immunity in humans.

5. Conclusion

Pleurotus mushroom cultivation is most suitable and profitable in all three climatic conditions like tropical, subtropical, and temperate regions. They may be grown on diversified agro substrates, according to easy availability in different regions of the world. It helps in recycling agricultural wastes and their conversion into protein-rich food. They play an intrinsic part in the forest ecosystem, which may restore and stabilize the forest communities. Mushroom farming is a labor-intensive activity that can improve income generation and provide livelihoods, especially in developing countries. Cultivation techniques for these ten prominent Pleurotus species are well developed and relatively simple, low-cost, and highly profitable than those commonly cultivated mushroom species. Those species contain high protein and low fat in addition to high dietary fiber, folic acid, and potassium might be considered a good source of food. Moreover, Pleurotus species are recognized as a good source of amino acids, which play an essential role as a flavoring agent. This review provides a platform for researchers aiming to develop novel strategies for the cultivation of Pleurotus spp.

Acknowledgment

The first author is thankful to the Mushroom Research Division, Genetics and Breeding lab (Project No. PJ01419640), NIHHS, Rural Development Administration, Republic of Korea, for the postdoctoral fellowship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Jegadeesh Raman http://orcid.org/0000-0001-8454-1530
Kab-Yeul Jang http://orcid.org/0000-0002-7090-705X
Youn-Lee Oh http://orcid.org/0000-0001-8633-1318
Minji Oh http://orcid.org/0000-0002-4785-0825
Ji-Hoon Im http://orcid.org/0000-0002-5181-662X
Hariprasath Lakshmanan http://orcid.org/0000-0001-7973-8347
Vikineswary Sabaratnam http://orcid.org/0000-0003-3966-3701

References

[1] Feeney MJ, Dwyer J, Hasler-Lewis CM, et al. Mushrooms and health summit proceedings. J Nutr. 2014;144(7):1128S–1136S.
[2] Knop D, Yarden O, Hadar Y. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications.
Appl Microbiol Biotechnol. 2015;99(3):1025–1038.

[3] Singh MP, Singh VK. Yield performance and nutritional analysis of *Pleurotus citrinopileatus* on different agro wastes and vegetable wastes. Paper presented at: The 7th International Conference on Mushroom Biology and Mushroom Products; 2011 October 4–7; Arcachon, France.

[4] Golak-Siwulska I, Kaluzewicz A, Spizewski T, et al. Bioactive compounds and medicinal properties of Oyster mushrooms (*Pleurotus* sp.). *Folia Hortic.* 2018;30(2):191–201.

[5] Stamets P. Growing gourmet and medicinal mushrooms. Berkeley (CA): Ten Speed Press; 2000.

[6] Bano Z, Srivastava HC. Studies on cultivation of *Pleurotus* sp. on paddy straw. *Food Sci.* 1962;11:363–365.

[7] Mandeel QA, Al-Laith AA, Mohamed SA. Cultivation of oyster mushrooms (*Pleurotus* spp.) on various lignocellulosic wastes. *World J Microbiol Biotechnol.* 2005;21(4):601–607.

[8] Islam MZ, Rahman MH, Hafiz F. Cultivation of oyster mushroom (*Pleurotus flabellatus*) on different substrates. *Int J Sustain Crop Prod.* 2009;4(1):45–48.

[9] Bernardi E, Minotto E, Do Nascimento JS. Evaluation of growth and production of *Pleurotus* sp. in sterilized substrates. *Arq Inst Biol.* 2013;80(3):318–324.

[10] Bumanlag CPB, Kalaw SP, Dulay RMR, et al. Optimum conditions for mycelia growth and basidiocarp production of *Pleurotus djamor* on corn based media. *Int J Biol Pharm Allied Sci.* 2018;7(4):558–575.

[11] Suguimoto HH, Barbosa AM, Dekker RF, et al. Veratrtyl alcohol stimulates fruiting body formation in the oyster mushroom, *Pleurotus ostreatus*. *FEMS Microbiol Lett.* 2001;194(2):235–238.

[12] Jegadeesh R, Lakshmanan H, Kab-Yeul J, et al. Cultivation of pink oyster mushroom (*Pleurotus djamor* var. *roseus*) on various agro-residues by low cost technique. *J Mycopathol.* 2018;56(3):213–220.

[13] Bakon AJ, Md Choudhury BK, Shusmita S. Mushroom is an ideal food supplement. *J Dhaka Natl Med Coll Hosp.* 2012;18(1):58–62.

[14] Ahmed M, Abdullah N, Nuruddin NN. Yield and nutritional composition of oyster mushrooms: an alternative nutritional source for rural people. *Sains Malays.* 2016;45(11):1609–1615.

[15] Indian Council of Agricultural Research. *Mushroom market size & industry analysis, by type (button mushroom, shiitake mushroom, oyster mushroom, and others), form (fresh mushroom, frozen mushroom, dried mushroom, and canned mushroom), and regional forecast 2019–2026*. Chambaghat: Indian Council of Agricultural Research; 2019. (Market Research Report).

[16] Wachhaure GC. Mushrooms-value added products. In: Singh M., Vijay B., Kamal S. and Wachhaure GC, editors. Mushrooms cultivation, marketing and consumption. Solan (India): Directorate of Mushroom Research; 2011. p. 235–238.

[17] Khatun S, Islam A, Cakilcioglu U, et al. Nutritional qualities and antioxidant activity of three edible oyster mushrooms (*Pleurotus* spp.). *NIAS-Wagen J Life Sci.* 2015;72:1–3.

[18] Khan MA, Tania M. Nutritional and medicinal importance of *Pleurotus* mushroom: an overview. *Food Review Int.* 2012;28(3):313–329.

[19] Raman J, Nanjian R, Lakshmanan H, et al. Hypolipidemic effect of *Pleurotus djamor* var. *roseus* in experimentally induced hypercholesteremic rats. *Res J Pharm Biol Chem Sci.* 2014;5(2):581–588.

[20] Bao D, Kinugasa S, Kitamoto Y. The biological species of oyster mushrooms (*Pleurotus* spp.) from Asia based on mating compatibility tests. *J Wood Sci.* 2004;50(2):162–168.

[21] Kong WS. Description of commercially important *Pleurotus* species. In: Choi KW, editor. Mushroom growers handbook. Seoul (South Korea): Oyster Mushroom Cultivation, Mush World; 2004. p. 54–61.

[22] Guzman G. Genus *Pleurotus* (Jacq.: Fr.) P. Kumm. (Agaricomycetidae): diversity, taxonomic problems, and cultural and traditional medicinal uses. *Int J Med Mushr.* 2000;2(2):129–123.

[23] Jafarpour M, Eghbalsaeed S. High protein complementation with high fiber substrates for oyster mushroom cultures. *Afri J Biotechnol.* 2012;11(14):3284–3292.

[24] Dhar BL, Shrivastava N, Himanshu A, et al. Cultivated edible specialty mushrooms - scope in India and EU countries. Paper presented at: The 7th International Conference on Mushroom Biology and Mushroom Products; 2011 October 4–7; Arcachon, France.

[25] Ahmed SA, Kadam JA, Mane VP, et al. Biological efficiency and nutritional contents of *Pleurotus florida* (Mont.) Singer cultivated on different agro-wastes. *Nature Sci.* 2009;7(1):44–48.

[26] Rajak S, Mahapatra SC, Basu M. Yield, fruit body diameter and cropping duration of oyster mushroom (*Pleurotus sajor-caju*) grown on different grasses and paddy straw as substrates. *Eur J Med Plants.* 2011;1(1):10–17.

[27] Oei P, Nieuwenhuijzen BV. Small-scale mushroom cultivation: oyster, shiitake and wood ear mushrooms. *Food Sci Res J.* 2010;1:60–71.

[28] Silva SO, da Costa SMG, Clemente E. Chemical composition of *Pleurotus pulmonarius* (Fr.) Quel., substrates and residue after cultivation. *Braz Arch Biol Technol.* 2002;45(4):531–535.

[29] Jatwa TK, Apet KT, Wagh SS, et al. Evaluation of various agro-wastes for production of *Pleurotus* spp. (*P. florida, P. sajor-caju* and *P. eous*). *J Pure Appl Microbiol.* 2016;10(4):2783–2792.

[30] Telang SM, Patil SS, Baig MMV. Comparative study on yield and nutritional aspect of *Pleurotus eous* mushroom cultivated on different substrate. *Food Sci Res J.* 2010;1:60–63.

[31] Isikhuemhen S, LeBauer DS. Mushroom grower’s handbook, oyster mushroom cultivation. 2004.
Chapter 11, Mushrooms for the tropics, growing *Pleurotus tuber-regium* (Part III). p. 271.

[33] Stajic M, Sikorski J, Wasser SP, et al. Genetic similarity and taxonomic relationships within the genus *Pleurotus* (higher Basidiomycetes) determined by RAPD analysis. Mycotoxin. 2005;93:247–255.

[34] Barh A, Sharma VP, Annepu SK, et al. Genetic improvement in *Pleurotus* (oyster mushroom): a review. 3 Biotech. 2019;9(9):322.

[35] He XL, Li Q, Peng WH, et al. Intra- and inter-isolate variation of ribosomal and protein-coding genes in *Pleurotus* implications for molecular identification and phylogeny on fungal groups. BMC Microbiol. 2017;17(1):139.

[36] Adeniyi M, Titilawo Y, Oluduro A, et al. Molecular identification of some wild Nigerian mushrooms using internal transcribed spacer: polymerase chain reaction. AMB Express. 2018;8(1):148.

[37] Gupta B, Reddy BPN, Kotasthane AS. Molecular characterization and mating type analysis of oyster mushroom (*Pleurotus* spp.) using single bari-diospores for strain improvement. World J Microbiol Biotechnol. 2011;27(1):1–9.

[38] Urbanelli S, Della Rosa V, Punelli F, et al. DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the *Pleurotus eryngii* complex. Appl Microbiol Biotechnol. 2007;74(3):592–600.

[39] Royse DJ. A global perspective on the high five: *Agaricus*, *Pleurotus*, *Lentinula*, *Auricularia* & *Flammulina*. Paper presented at: The 8th International Conference on Mushroom Biology and Mushroom Products; 2014 November 19–22; New Delhi, India.

[40] Wendiro D, Wacoo AP, Wise G. Identifying indigenous practices for cultivation of wild saprophytic mushrooms: responding to the need for sustainable utilization of natural resources. J Ethnobiol Ethnomed. 2019;15(1):64.

[41] Jang KY, Oh YI, Oh M, et al. Introduction of the representative mushroom cultivars and ground-breaking cultivation techniques in Korea. J Mushroom. 2016;14(4):136–141.

[42] Shukla CS, Biswas MK. Evaluation of different techniques for oyster mushroom cultivation. J Mycol Plant Pathol. 2000;30(3):431–435.

[43] Adebayo EA, Martinez-Carrera D. Oyster mushrooms (*Pleurotus*) are useful for utilizing lignocellulosic biomass. Afr J Biotechnol. 2015;14(1):52–67.

[44] Obodai M, Cleland-Okine J, Vowotor KA. Comparative study on the growth and yield of *Pleurotus ostreatus* mushroom on different lignocellulosic by-products. J Ind Microbiol Biotechnol. 2003;30(3):146–149.

[45] Patil SS, Ahmed SA, Telang SM, et al. The nutritional value of *Pleurotus ostreatus* (*jacq.fr.*) Kumm cultivated on different lignocellulose agrowastes. Innov Rom Food Biotechnol. 2010;7:66–76.

[46] Gąsęcka M, Mleczek M, Siwulski M, et al. Phenolic composition and antioxidant properties of *Pleurotus ostreatus* and *Pleurotus eryngii* enriched with selenium and zinc. Eur Food Res Technol. 2016;242(5):723–732.

[47] Mshandete AM, Cuff J. Cultivation of three types of indigenous wild edible mushrooms: *Coprinus cinereus*, *Pleurotus flabellatus* and *Volvariella volvocca* on composted sial decortications residue in Tanzania. Afr J Biotechnol. 2008;7(24):4551–4562.

[48] Rodriguez Estrada AE, Royse DJ. Yield, size and bacterial blotch resistance of *Pleurotus eryngii* grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioreasour Technol. 2007;98(10):1898–1906.

[49] Mehmet A, Sevda K. Effect of various agro-residues on nutritive value of *Pleurotus eryngii* (DC. ex Fr.) Quel. var. ferulae Lanz. J Agr Sci. 2010;16(2010):83–88.

[50] Akimunisire OO, Omomowo IO, Oguntuyo SIK. Cultivation performance of *Pleurotus Pulmonarius* in Maiduguri, north eastern Nigeria, using wood chippings and rice straw waste. Adv Environ Biol. 2011;5(8):2091–2094.

[51] Apetorgbor AK, Dzomeku M, Apetorgbor MM. Growth factors and cultivation of *Pleurotus tuber-regium* on selected plant wastes. Int Food Res J. 2013;20(6):3387–3393.

[52] Sardar H, Ali MA, Anjum MA, et al. Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (*Pleurotus eryngii*). Sci Hort. 2017;225:327–334.

[53] Directorate of Mushroom Research (ICAR). Mushrooms cultivation, marketing and consumption. Solan (India): Directorate of Mushroom Research (Indian Council of Agricultural Research); 2011.

[54] Zmitrovich IV, Wasser SP. Is widely cultivated "Pleurotus Sajor-Caju", especially in Asia, indeed an independent species? Int J Med Mushrooms. 2016;18(7):583–588.

[55] Sekan AS, Myronycheva OS, Karlsson O, et al. Green potential of *Pleurotus* spp. in biotechnology. PeerJ. 2019;7:e6664.

[56] Yamanaka K. Mushroom cultivation in Japan. WSBMP Bull. 2011;4:1–10.

[57] Berch SM, Ka KH, Park H, et al. Development and potential of the cultivated and wild-harvested mushroom industries in the Republic of Korea and British Columbia. BC J Ecosyst Manag. 2007;8(3):53–75.

[58] Soylu MK, Kang M. Mushroom cultivation in South Korea. Turkish JAF Scitech. 2016;4(3):225–229.

[59] Zhang M, Cheung PCK, Zhang L, et al. Carboxymethylated β-glucans from mushroom sclerotium of *Pleurotus tuber-regium* as novel water-soluble anti-tumor agent. Carbohydr Polym. 2004;57(3):319–325.

[60] Golak-Siwulska I, Kaluzewicz A, Spizewski T, et al. Energy crops on composted sisal decortications residue of indigenous wild edible mushrooms: implications for molecular identification and nutritional composition of wild mushroom *Pleurotus ostreatus* Volv. DC. ex Fr. J Agric Sci. 2010;16(2010):83–88.

[61] Croan SC. Conversion of conifer wastes into mushroom substrates. Innov Rom Food Biotechnol. 2010;7:592–600.

[62] Hoa HT, Wang CL. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (*Pleurotus ostreatus* and *Pleurotus eryngii*) in Pokhara, Nepal. J Agric Sci. 2010;16(2010):83–88.
and Pleurotus cystidiosus). Mycobiology. 2015; 43(1):14–23.

[63] Girmay Z, Gorems W, Birhanu G, et al. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express. 2016;6(1):87.

[64] Hsu CM, Hameed K, Cotter V, et al. Isolation of mother cultures and preparation of spawn for oyster mushroom cultivation. Univ IFAS Extension EDIS series. 2018;2018:SL499. https://edis.ifas.ufl.edu/pdffiles/SS/SS66300.pdf

[65] Lee SJ, Kim HH, Kim SH, et al. Culture conditions of liquid spores and the growth characteristics of Pleurotus ostreatus. J Mushrooms. 2018; 16(3):162–170.

[66] Zhang WR, Liu SR, Kuang YB, et al. Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology. 2019;47(1):97–104.

[67] Stamets P. Growing gourmet and medicinal mushrooms. Berkeley (CA): TenSpeed Press; 2000. p. 150.

[68] Guo L, Lin JY, Lin JF. Non-volatile components of several novel species of edible fungi in China. Food Chem. 2007;100(2):643–649.

[69] Tolera KD, Abera S. Nutritional quality of oyster mushroom growth characteristics of Pleurotus ostreatus. J Mushrooms. 2018; 16(3):162–170.

[70] Choi MH, Kim GH. Quality changes in Pleurotus ostreatus during modified atmosphere storage as affected by temperatures and packaging material. Acta Hort. 2003;628:357–362.

[71] Yang W, Guo F, Wan Z. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J Biol Sci. 2013;20(4):333–338.

[72] Xiao G, Zhang M, Shan L, et al. Extension of the shelf-life of fresh oyster mushrooms (Pleurotus ostreatus) by modified atmosphere packaging with chemical treatments. Afr J Bitechonol. 2011; 10(46):9509–9517.

[73] Choi JW, Yoon YJ, Lee JH, et al. Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii). J Mushroom. 2018;16(3):131–139.

[74] Salchi F. Characterization of different mushrooms powder and its application in bakery products: a review. Int J Food Prop. 2019;22(1):1375–1385.

[75] Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015; 2015:376387.

[76] Bano Z, Rajarathnam S. Pleurotus mushrooms. Part II. chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. CRC Cr Rev Food Sci. 1988;27(2):87–158.

[77] Lee K, Sim U, Choi Y, et al. Nutritional compositions and antioxidant activities of frequently consumed mushrooms in Korea. J Kor Food Nutr Assoc. 2018;47(11):1178–1184.

[78] Alam N, Amin R, Khan A, et al. Nutritional analysis of cultivated mushrooms in Bangladesh - Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology. 2008; 36(4):228–232.

[79] Dabbour IR, Takruri HR. Protein digestibility using corrected amino acid score method (PDCAAS) of four types of mushrooms grown in Jordan. Plant Foods Hum Nutr. 2002;57(1):13–24.

[80] Bano Z, Rajarathnam S, Pleurotus species. Agric Trop Subtrop. 2008;41(2):68–73.

[81] Naraian R, Sahu RK, Kumar S, et al. Influence of different nitrogen rich supplements during cultivation of Pleurotus flora and Mucor indicus. Mycobiology. 2008; 36(4):368–376.

[82] Ganesan K, Xu B. Anti-obesity effects of medicinal and edible mushrooms. Molecules. 2018; 23(11):2880.

[83] Ritota M, Manzi P. Nutritional and technological application. Sustainability. 2019;11(18):5049.

[84] Lee K, Sim U, Choi Y, et al. Nutritional composition of Pleurotus ostreatus as affected by osmotic pretreatments and drying methods. Food Sci Nutr. 2017;5(5):989–996.

[85] Kortei NK, Wiafe-Kwagyan M. Comparative survey contents of metals in edible mushrooms. J Adv Biol Biotechnol. 2015:376387.

[86] Alam N, Amin R, Khan A, et al. Nutritional analysis of cultivated mushrooms in Bangladesh - Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology. 2008; 36(4):228–232.

[87] Dabbour IR, Takruri HR. Protein digestibility using corrected amino acid score method (PDCAAS) of four types of mushrooms grown in Jordan. Plant Foods Hum Nutr. 2002;57(1):13–24.

[88] Smiderle FR, Olsen LM, Ruthes AC, et al. Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydr Hyd Plym. 2012; 87(1):360–367.
Gosh N, Chakravarty DK. Predictive analysis of the protein quality of Pleurotus citrinopileatus. J Food Sci Tech. 1990;27(4):236–238.

Bano ZS, Bhagya S, Srinivaran FS. Essential amino acid composition and proximate analysis of the mushrooms Pleurotus eous and Pleurotus florida. Mushroom Newsletter Tropics. 1981;3(1):6–10.

Atri NS, Sharma SK, Joshi R, et al. Amino acid composition of five wild Pleurotus species chosen from north west India. Eur J Biol Sci. 2012;4(1):31–34.

Koutrotsios G, Mountzouris KC, Chatzipavlidis I, et al. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi-Assessment of their effect on the final product and spent substrate properties. Food Chem. 2014;161:127–135.

Bartnicki-Garcia S. Cell wall composition and other biochemical markers in fungal phylogeny. In: Harborne JB, editor. Phytochemical phyl-ogeny; London: Academic Press; 1970. p. 81–103.

Guillon G, Champ M. Structural and physical properties of dietary fibers, and consequences of processing on human physiology. Food Res Int. 2000;33(3–4):233–245.

Cheung PCK. Mushroom and health. Nutr Bull. 2010;35(4):292–299.

Tang C, Hoo PC, Tan LT, et al. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol. 2016;7:474.

Salami AO, Bankole FA, Salako YA. Nutrient and mineral content of oyster mushroom (Pleurotus ostreatus) grown on selected lignocellulosic agro-waste substrates. J Adv Biol Biotechnol. 2017; 15(1):1–1081.

AACC. Report The definition of dietary fiber. Cereal Foods World. 2000;46:112–129.

Cheung PCK. Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Hum Well. 2013;2(3–4):162–166.

Xu W, Huang JJ, Cheung PCK. Extract of Pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS ONE. 2012;7(3):e34406.

Okolo KO, Siminialayi IM, Orisakwe OE. Protective effects of Pleurotus tuber-regium on carbon-tetrachloride induced testicular injury in Sprague Dawley rats. Front Pharmacol. 2016; 7(480):1–6.

Musieba F, Okoth S, Mibey RK, et al. Proximate composition, amino acids and vitamins profile of Pleurotus citrinopileatus Singer: an indigenous mushroom in Kenya. Am J Food Technol. 2013;8(3):200–206.

Schneider I, Kressel G, Meyer A, et al. Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. J Funct Foods. 2011;3(1):17–24.

WHO/FAO. Vitamin and mineral requirements in human nutrition, 2nd ed. Geneva: World Health Organization; 2004.

Bano Z, Rajarathnam V. Value of Pleurotus mushrooms. Plant Food Hum Nutr. 1986;36(1):11–15.

Okwulehie IC, Nosike EN. Phytochemicals and vitamin compositions of Pleurotus pulmonarius cultivated on barks of some indigenous fruit trees supplemented with agro-wastes. Asian J Plant Sci. 2015;5(2):1–7.

Karppanen H, Karppanen P, Mervaala E. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets? J Hum Hypertens. 2005;19(S3):S10–S19.

Dundar A, Acay H, Yildiz A. Yield performances and nutritional contents of three oyster mushroom species cultivated on wheat stalk. Afr J Biotechnol. 2008;7(19):3497–3501.

WHO. Guideline: sodium intake for adults and children. Geneva: World Health Organization; 2012.