LETTER

Modeling and evaluation of millimeter wave scattering from minimally rough surfaces on stones

Riku Yoshino¹, Tomohiko Kanaya¹, Shintaro Takada¹, Kunihisa Jitsuno¹, Keizo Inagaki², and Tetsuya Kawanishi³⁴)

Abstract In recent years, millimeter and terahertz waves have attracted significant attention owing to their potential applications in high-speed wireless communication. However, such waves are susceptible to being scattered from surfaces of surrounding objects because their wavelengths are short and sensitive to even minimal roughness. Therefore, using an electromagnetic wave scattering theory based on the stochastic integral, millimeter-wave scattering distributions from minimally rough surfaces such as stones were investigated in simulations and experiments. Finally, millimeter-wave scattering measurements were compared to experimental and simulation results.

key words: Millimeter-wave, Scattering, Stochastic function, Rough surface

Classification: Microwave and millimeter wave devices, circuits, and hardware

1. Introduction

The scattering phenomena have been researched for many years [1]. In general, we could neglect scattered component because the power of scattered wave is lower than direct or reflected wave. However, we should consider scattering component for millimeter and terahertz bands, which will be used for transmission in systems beyond the 5th and 6th generations. For such bands, the surfaces of macroscopically flat objects would not be flat because their wavelengths are below or of the order of a few millimeters. For example, if one-tenth of a wavelength causes scattering at 300 GHz, scattering can be caused by a small surface roughness of 100 µm. An example of such a surface is that of polished oak wood that has a surface roughness of approximately 80 µm [2]. Thus, minimally rough surfaces would scatter millimeter and terahertz waves, thereby degrading spectrum transmission of wireless communication. Moreover, specific scattering phenomena such as Brewster’s scattering angle [3, 4, 5], Yoneda peak [6, 7, 8, 9], and quasi-anomalous scattering [3, 10] have been reported theoretically and experimentally in light propagation.

To investigate the characteristics of millimeter and terahertz wave reflection and scattering from common objects (e.g., furniture, stones), we numerically calculated scattering distributions using a stochastic functional method. We also measured the scattering distribution of W-band (75–110 GHz) millimeter waves to verify the numerical calculation.

2. Theoretical formulation

Various studies on wave scattering from random surfaces of varying roughness have been investigated [11, 12]. The Kirchhoff approximation is a common method used to analyze wave scattering from a random surface [13]. However, it is intended for random surfaces with large roughness. Considering small surface roughness, we introduce a method using a stochastic function that describes the distributions of scattered waves using roughness parameters [14, 15]. Using this approach, random electromagnetic (EM) fields can be represented as a functional of Gaussian random surfaces [16]. In addition, we adopt theorems such as the probabilistic Floquet theorem, Hermite polynomial, and Wiener–Ito expansion. With these introductions, the distribution of EM wave scattering can be represented by Wiener kernels that describe a stochastic functional. In other words, EM wave scattering distributions can be obtained by finding the Wiener kernels instead of solving the complicated Maxwell equations.

Under the stochastic functional approach, we consider the scattering configuration as shown in Fig.1. A plane wave, the incident angle of which is θ₀, illuminates a random rough surface on a dielectric substrate. Owing to the roughness of the surface, a scattered wave as well as reflected wave is generated, where scattering distributions are described as functions of the azimuth angle (ϕ) and elevation angle (θ).

Although the detailed derivation is omitted, the scattered wave can be expressed by Eqs. (1)–(6), where n, σ, and l denote the refractive index, surface roughness, and correlation length, respectively [17]. Eq. (1) and Eq. (2) represent transverse-electric (TE)-polarized scattering, and Eq. (3) and Eq. (4) represent transverse-magnetic (TM)-polarized scattering. For simplicity, we only consider the

¹Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
²National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
³kawanishi@waseda.jp

DOI: 10.1587/elex.19.20220257
Accepted June 02, 2022
Published June 10, 2022
first order scattering that dominates the EM wave scattering induced by incidence on a random dielectric surface.

![Diagram of EM wave scattering](image)

$$p^H_1 = \frac{\Lambda_1 \cos^2 \varphi}{(\sqrt{n^2 - \sin^2 \theta} + \cos \theta)^2 (\sqrt{n^2 - \sin^2 \theta_0} + \cos \theta_0)^2}$$ \hspace{1cm} (1)

$$p^{HV}_1 = \frac{\Lambda_1 (n^2 - \sin^2 \theta_0) \varphi}{(\sqrt{n^2 - \sin^2 \theta} + \cos \theta)^2 (\sqrt{n^2 - \sin^2 \theta_0} + \cos \theta_0)^2}$$ \hspace{1cm} (2)

$$p^{VH}_1 = \frac{\Lambda_1 (n^2 - \sin^2 \theta) \varphi}{(n^2 \cos \theta + \sqrt{n^2 - \sin^2 \theta})^2 (\sqrt{n^2 - \sin^2 \theta_0} + \cos \theta_0)^2}$$ \hspace{1cm} (3)

$$p^{VV}_1 = \frac{\Lambda_1 (n^2 \sin \theta_0 \sin \theta - \sqrt{n^2 - \sin^2 \theta} \sqrt{n^2 - \sin^2 \theta_0} \cos \varphi}{(n^2 \cos \theta + \sqrt{n^2 - \sin^2 \theta})^2 (n^2 \cos \theta_0 + \sqrt{n^2 - \sin^2 \theta_0})^2}$$ \hspace{1cm} (4)

$$\Lambda = a^2 l^2 \pi \int \psi_{12} \left[(\sin \theta \cos \varphi - \sin \theta_0)^2 + (\sin \theta \sin \varphi)^2 \right]$$ \hspace{1cm} (5)

$$\tau = 4(n^2 - 1)^2 \cos^2 \theta \cos^2 \theta_0$$ \hspace{1cm} (6)

In this study, we obtained the surface roughness, correlation length, and refractive index for stone (granite) sample shown in Fig. 2. Surface roughness was measured using a digital microscope, KEYENCE VHX-8000. In addition, correlation length, which represents the horizontal distance in the direction in which the autocorrelation function decays fastest to 0.2 or less, was calculated and charted, as illustrated in Fig.3. MATLAB was used for this purpose after acquiring the surface height data using the KEYENCE microscope. Finally, refractive index was reported in the relevant literature [18, 19]. The resulting values are listed in Table. I, with surface roughness and correlation length being normalized by wavelength.

Table I. Constants for stone sample shown in Fig.2.
Refractive index, n
Surface roughness, h
Correlation length, l

Another method to analyze scattering from random surfaces with small roughness is the surface perturbation approach. It solves a scattered wave field using a power series expansion with roughness parameters [20, 21, 22, 23]. However, the solution obtained by this approach diverges when the rough surfaces hold EM wave propagation models; several methods have been proposed to overcome this limitation, such as the renormalization theory in quantum physics [24, 25, 26]. In contrast, the solution obtained by the adopted stochastic function approach does not diverge [27, 28]. Thus, the stochastic functional approach is applicable to a variety of cases.

3. Simulations results

Figures 4-9 show the simulation results for $\varphi = 0$, 30, and 75°, where the incident wave angle, θ, was set to 60°, and all physical quantities were normalized to have an incident power of 1.

Dips in the power range near $\theta = 78°$ in Fig. 5, $\theta = 60°$ in Fig. 7, and $\theta = 16°$ in Fig. 9 correspond to Brewster’s scattering angles, at which the scattering component becomes zero. When the incident angle matches the ordinary Brewster’s angle, Brewster’s scattering angle is equal to the ordinary Brewster’s angle. This is the reason the dip angles...
are named Brewster’s scattering angles. However, the characteristic of Brewster’s scattering angle is dependent on not only the refractive index but also incident angle, which is different from that of the ordinary Brewster’s angle [17]. The simulation results show that the scattering distribution of TM polarization incidence has a Brewster’s scattering angle, but that of TE polarization incidence does not. Furthermore, it must be noted that the power of the scattered wave ranges from −40 to −60 dB in the simulation results shown in Fig. 8 and 9.

4. Experiment results

We conducted scattering experiments for the stone sample shown in Fig. 2. Subsequently, the same experiment was conducted using the aluminum plate shown in Fig. 10. The second experiment was conducted to verify the scattering from the stone sample by contrasting it with the absence of scattering from flat surfaces such as the aluminum plate. Measurements from the aluminum plate experiment revealed the noise floor of the experimental system in addition to the reflection component as reference. The
 experimental setup (Fig. 11) maximized the use of wood and Styrofoam to prevent undesired reflection from the metal plate.

Table. II lists the parameters of our experiment. The wave frequencies were step-swept from 75 to 110 GHz, and 100 measurements were obtained per frequency. For the analysis, we averaged the power of the scattered wave for different frequencies at each elevation angle. This approach was adopted to compensate for the “speckle effect” caused by short wavelengths [29, 30].

Table II. Parameters of experiment

Incident angle θ₀ (°)	60
Azimuth ϕ (°)	0, 30, and 75
Elevation θ (°)	0, 20, 40, 50, 60, 70, and 90
Frequency (GHz)	75, 80, 85, 90, 95, 100, 105, and 110
Polarization	TE→TE, TE→TM, TM→TE, and TM→TM

The results of the scattering experiment are shown in Figs. 14-19. For the experiment, the incident wave power was −33.5 dBm and the result of scattered wave power was normalized by this value. Furthermore, to compare the result of the experiments using the stone sample and aluminum plate, the result of aluminum plate experiment is connected with a line, as a reference.

Figures. 14–17 show that the power level of the stone sample is lower than that of the aluminum plate for cross-polarized and co-polarized scattering at ϕ = 0° and 30°. This can be attributed to the fact that the scattered wave was drowned out by the higher-powered reflected wave that could not be set to zero in this experiment. Consequently, the presence of a scattering component could not be confirmed.

Figures 18 and 19 show that the power level of the stone sample is higher than that of the aluminum plate for cross-polarized and co-polarized scattering at ϕ = 75°. As scattering phenomena does not occur in the case of the aluminum plate, scattering from the stone sample can be confirmed at ϕ = 75°, where the reflected wave component is small.

As shown in Figs. 18 and 19, the power level of the scattered...
wave ranges from -35 to -55 dB, which is close to the range obtained from the simulations. The error in the range can be attributed to the fact that a plane wave perfectly incident on the sample was considered in the simulations. As incident waves are not perfect plane waves in experiments owing to the beam width of the transmitting and receiving antennas, the power range of the scattered wave in the experiment is different to that in the simulation.

5. Conclusion

We structured an experimental setup with FWG, which is flexible and has robust transmission loss that do not vary significantly, and conducted scattering simulations and experiments for millimeter waves. We confirmed the presence of a scattering component at $\varphi = 75^\circ$ both theoretically and experimentally and found the power levels of the scattered waves in the simulations and experiments to
be similar. In the simulations, Brewster’s scattering angles, which have been reported in light scattering, were confirmed in case of millimeter waves. In future work, simulations and experiments for terahertz waves will be conducted.

Acknowledgments

These research results were obtained from the commissioned research (No.00401) by National Institute of Information and Communications Technology (NICT), Japan. We appreciate Mr. Tadashi Watanabe/Olympus to provide specific material of FWG in timely manner.

References

[1] C. -., Bunge, R. Kruglov and H. Poisel, Rayleigh and Mie scattering in polymer optical fibers, Journal of Lightwave Technology, 24, 8, 3137-3146 (2006) (DOI:10.1109/JLT.2006.878077)

[2] E. Csanady, E. Magoss and L. Tolvaj, Surface Roughness of Wood. In: Quality of Machined Wood Surface, Springer, pp.183-236 (2015).

[3] T. Kawanishi, I. Iwata, M. Kitano, H. Ogura, Z. L. Wang and M. Izutsu, Brewster’s scattering angle and quasi-anomalous scattering in random scattering from dielectric interfaces, Journal of the optical society of America A16, 339-342 (1999) (DOI:10.1364/JOSAA.16.000339)

[4] T. Kawanishi, Shift on Brewster’s scattering angle, Optics Communications, 186, 251-258 (2000) (DOI:10.1016/S0030-4018(00)00107-0)

[5] T. Kawanishi, Brewster’s Scattering Angle in Scattered Waves from Slightly Rough Metal Surfaces, Physical Review Letters, 84, 2945 (2000) (DOI:10.1103/PhysRevLett.84.2845)

[6] Y. Yang, K. -S Chen and Z. -L Li, A Note on Brewster Effect for Lossy Inhomogeneous Rough Surfaces, IEEE Transactions on Geoscience and Remote Sensing, 58, 6722-6730 (2020) (DOI:10.1109/TGRS.2020.2979073)

[7] H. Alexander, M. B. Peter, Advanced grazing-incidence techniques for modern soft-matter materials analysis, IUCrJ, 2, 106-125 (2015) (DOI:10.1107/S2052252314042178)

[8] J. -P. Banon, Ø. S. Hetland, I. Simonsen, Physics of polarized light scattering from weakly rough dielectric surfaces: Yoneda and Brewster scattering phenomena, Physical Review A 99, 023834 (2019) (DOI:10.1103/PhysRevA.99.023834)

[9] Y. Yoneda, Anomalous surface reflection of X-Rays, Physical Review Journals Archive, 131, 2010 (1963) (DOI:10.1103/PhysRev131.2010)

[10] O. J. Guentert, Study of the anomalous surface reflection of X-Rays, Journal of Applied Physics, 36, 1361 (1965) (DOI:10.1063/1.1714309)

[11] M. Alissa, F. Sheikh, A. A. -h. Abbas and T. Kaiser, Wave Scattering from Non-Gaussian Rough Surfaces at Terahertz Frequencies, 2019 Second International Workshop on Mobile Terahertz Systems, 1-5 (2019) (DOI:10.1109/JWMTS.2019.8823778)

[12] J. Xue and Z. Wu, Analysis on the Distribution of Random Rough Surface Scattering by Monte-Carlo Method, 2018 12th International Symposium on Antennas, Propagation and EM Theory, 1-3 (2018) (DOI:10.1109/ISAPE.2018.8634173)

[13] F.G.Bass and L.M.Fuks, Wave Scattering from Statistically Rough Surface, Perugamon Press, Oxford (English translation 1979)

[14] Q. Chen and N. Wong, “A Stochastic Integral Equation Method for Resistance Extraction of Conductors with Random Rough Surfaces,” 2006 International Symposium on Intelligent Signal Processing and Communications, 411-414 (2006) (DOI:10.1109/ISPACS.2006.364916)

[15] M. A. Demir and J. T. Johnson, Fourth and higher order small perturbation solution for scattering from dielectric rough surfaces, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Science. Meeting (Cat. No.03CH37450), 3, 412-415 (2003) (DOI:10.1109/APS.2003.1219874)

[16] A. Q. Wang, M. Nan Zhu and Z. X. Huang, Electromagnetic Scattering from One-dimensional Gaussian Rough Surface Based on Stochastic Integral Equation, 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 1-4 (2020) (DOI:10.1109/NEMO40486.2020.9343414)

[17] T. Kawanishi, H. Ogura and Z. L. Wang, Scattering of electromagnetic wave from a slightly dielectric surface -Yoneda peak and Brewster angle incoherent scattering-, Waves in Random Media 7, 351 (1997) (DOI:10.1080/1366679790498085)

[18] D. Han, K. Lee, J. Lim, S. S. Hong, Y. K. Kim and J. Ahn, Terahertz lens made out of natural stone, Applied Optics 52, 8670-8675 (2013) (DOI:10.1364/ao.52.008670)

[19] D. Han, H. Jo and J. Ahn, Terahertz spectroscopy of natural stone materials, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves, 1-2 (2014) (DOI:10.1109/IRMMW-THz.2014.6956360)

[20] S. Afifi and R. Dusseaux, Scattering from a slightly rough chiral surface: analysis with the small perturbation method and the small slope approximation, Journal of the Optical Society of America A, 38, 253-263 (2021) (DOI:10.1109/IRMMW-THz.2014.6956360)

[21] I. Simonsen, Optics of surface disordered systems: A random walk through rough surface scattering phenomena, The European Physical Journal Special Topics, 181, 1-103 (2010) (DOI:10.1140/epjst/e2010-01221-4)

[22] A. Komiyama, Analysis of the TM plane wave scattering from a dielectric grating by the perturbation method, 2016 URSI International Symposium on Electromagnetic Theory, 27-29 (2016) (DOI:10.1109/URSI-EMTS.2016.7571302)

[23] S.O.Rice, Reflection of electromagnetic waves from slightly rough surfaces, Communications on Pure and Applied Mathematics, 4, 351-378 (1951) (DOI:10.1002/cpa.3160040206)

[24] A. R. MuGrum and A. A. Maradum, Localization effects in the scattering of light from a randomly rough grating, Physical Review B 31, 4886 (1985) (DOI:10.1103/PhysRevB.31.4886)

[25] S. Ito, Analysis of scalar wave scattering from slightly random surfaces: A multiple scattering theory, Radio Science 20, 1-2 (1985) (DOI:10.1002/jrs.197020010001)

[26] A. A. Maradudin and E. R. Mendez, Light scattering from randomly rough surfaces, Science Progress, 90, 161-221 (2007) (DOI:10.3184/003685007X228711)

[27] J. Nakayama, K. Mizutani and M. Tsumeoka, Scattering of electromagnetic waves from a perfectly conductive slightly random surface: Depolarization in backscattering. Journal of Mathematics Physics, 27, 1435 (1986) (DOI:10.1063/1.527387)

[28] J. Nakayama, H. Ogura and M. Sakata, A probabilistic of electromagnetic wave scattering from a slightly random surface: 1 Horizontal polarization, Radio Science, 16, 831-845 (1981) (DOI:10.1029/RS016i005p00831)

[29] D. Sun and Z. Zhou, Multiplication Model and Filtering of Speckle Image in Laser Imaging Radar System, 2021 Second International Conference on Electronics and Sustainable Communication Systems, 1195-1198 (2021) (DOI:10.1109/ICECS14221.2021.9532820)

[30] S. Wang, W. Zhang, N. Yang, Y. Mou and Y. Rao, Speckle-free Imaging Using a High-power Multimode Random Fiber Laser, 2021 IEEE 9th International Conference on Information, Communication and Networks, 586-589 (2021) (DOI:10.1109/ICICN52636.2021.9673848)