Resistive switching in rectifying interfaces of metal-semiconductor-metal structures

R. Zazpe, P. Stoliar, F. Golmar, R. Llopis, F. Casanova et al.

Citation: Appl. Phys. Lett. 103, 073114 (2013); doi: 10.1063/1.4818730
View online: http://dx.doi.org/10.1063/1.4818730
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v103/i7
Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
Resistive switching in rectifying interfaces of metal-semiconductor-metal structures

R. Zazpe, P. Stoliar, F. Golmar, R. Llopis, F. Casanova, and L. E. Hueso

1CIC nanoGUNE, 20018 Donostia-San Sebastián, Basque Country, Spain
2IMN, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, France
3ECyT, UNSAM, Martín de Irigoyen 3100, B1650JKA, San Martín, Bs As, Argentina
4I.N.T.I.–CONICET, Av. Gral. Paz 5445, Ed. 42, B1650JKA, San Martín, Bs As, Argentina
5IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country, Spain

(Received 8 July 2013; accepted 30 July 2013; published online 15 August 2013)

We study the electrical characteristics of metal-semiconductor-metal HfO2-x-based devices where both metal-semiconductor interfaces present bipolar resistive switching. The device exhibits an unusual current-voltage hysteresis loop that arises from the non-trivial interplay of the switching interfaces. We propose an experimental method to disentangle the individual characteristics of each interface based on hysteresis switching loops. A mathematical framework based on simple assumptions allows us to rationalize the whole behavior of the device and reproduce the experimental current-voltage curves of devices with different metallic contacts. We show that each interface complementarily switches between a nonlinear metal-semiconductor interface and an ohmic contact. © 2013 AIP Publishing LLC.

Resistive random-access memories (ReRAM) are emerging as one of the most promising alternatives for the next generation of non-volatile electronic memories. They are based on the resistive switching (RS) phenomena, which is the change of the resistance of a dielectric media by means of electric pulses. The standard ReRAM cell is a capacitor-like structure in which the active material is placed in between two metal electrodes. Depending on the specific materials and its configuration, the resistive switching can be an interfacial effect (i.e., occurring in the proximity of the electrodes) or a bulk effect. In general, when the RS is interfacial, the cell is designed to have only one switching interface. Nevertheless, configurations with two ReRAM cells in series or two switching interfaces are arising because they hold notable technological advantages when integrated in large crossbar-arrays.

In this work, we study metal-semiconductor-metal HfO2-x-based devices where both interfaces display bipolar resistive switching, i.e., the resistance of each metal-HfO2-x interface can be switched between a high-resistance state (HRS) and a low-resistance state (LRS) by applying electric pulses. The bipolar character of the RS means that the SET process (switch from HRS to LRS) and the RESET process (switch back from LRS to HRS) occur at opposite bias. In the literature, this configuration was reported as a "switchable rectifier", and in a more general context, it belongs to the family of devices that presents complementary resistive switching. Due to the non-linear character of the resistive switching phenomena, the configuration in series of two switching interfaces leads to nontrivial electrical characteristics; for example, hysteretic I–V (current-voltage) curves that differ from the typical self-crossing curves found in most of the RS devices. In some systems, it is possible to include extra electrodes in order to monitor the contribution of each interface separately, but when this alternative is not possible, the electrical characteristics are rationalized by comparing the behavior of a connection in series of two individual devices containing one switching interface, or by mathematically modeling the system. Here, we use an analysis method based on hysteresis switching loops (HSLs) that allows us to individuate the role of each interface and to model the switching mechanism. The understanding of the individual interfaces allows us to mathematically reproduce the behavior of the whole device and to understand the origin of the non-conventional I–V curves. Finally, we verify our procedure by changing the resistive switching character of only one of the interfaces.

We fabricated metal-semiconductor-metal HfO2-x-based devices on Si/SiO2 (150 nm) thermal oxide substrates on which the Ti bottom electrode (20 nm) was sputtered. The subsequent HfO2 layer (20 nm) was grown by means of atomic layer deposition (ALD) technique at 300 °C using H2O as oxidant and Tetrakis(dimethylamino)hafnium (TDMAH) as hafnium precursor. Finally, an array (16 x 5) of 35 nm-thick Co/Pd top electrodes (200 x 200 μm²) was produced by sputtering and photolithography. Electrical characterization was carried out at a probe station (room temperature) using a Keithley 2635A sourcemeter controlled by custom computer software.

In Figs. 1(a) and 1(b), we present a scheme of the experimental setup and a typical current (I)-voltage (V) curve obtained for a Ti/HfO2-x/Co device. This curve does not correspond to the typical hysteresis loop expected in RS devices. Figs. 1(c) and 1(d) sketch the conceptual difference between the I–V characteristic of our device and, as a typical example, the I–V loop of a bipolar RS device. The I–V loop of a bipolar RS device contains a comprehensive classification of I–V curves in RS devices. In our devices, the two branches of the hysteresis loop do not intersect at zero voltage. Moreover, the resistance state sensed turns from LRS to HRS when the voltage polarity is reversed. This kind of non-intersecting curve is generally observed in systems with complementary RS interfaces.

E-mail: pablo.stoliar@cnrs-imn.fr
In order to disentangle the contribution of each interface, HSLs at opposite bias voltages were conducted. HSL is a parametric plot that displays the evolution of the resistance of a RS device during the application of a train of electrical pulses. Throughout this work, HSL plots are defined as the sequence of points \((V_{\text{PULSE}}, R_{\text{REM}}(i, V_{\text{READ}}))\), being \(i\) the pulse index, \(V_{\text{PULSE}}\) the voltage of the \(i\)th pulse and \(R_{\text{REM}}\) is the remnant resistance after the \(i\)th pulse, which is sensed with the reading voltage \(V_{\text{READ}}\). Here, the polarity of this \(V_{\text{READ}}\) is crucial due to the rectifying character of the interfaces. At positive \(V_{\text{READ}}\), the current flowing through the device is mainly limited by the Ti/HfO\(_{2-x}\) interface and the HfO\(_{2-x}\) layer; the other interface is in direct bias so that it presents a negligible resistance. Assuming that the HfO\(_{2-x}\) bulk does not modify its resistance, any effect observed in the HSL that is acquired with positive reading voltage, is attributed to resistive switching in the Ti/HfO\(_{2-x}\) interface. Complementary, the HSL obtained with negative \(V_{\text{READ}}\) reveals RS in the Co/HfO\(_{2-x}\) interface.

The HSL of Fig. 2(a) was obtained with positive \(V_{\text{READ}} = 4\) V applying 20\(\mu\)s-width pulses with a sequence 0 V \(\rightarrow 15\) V \(\rightarrow -5\) V \(\rightarrow 0\) V in steps of 100 mV. The data clearly corroborates the bipolar character of the resistive switching. It also shows that for the Ti/HfO\(_{2-x}\) interface the minimum SET voltage is \(\sim 5\) V. Even if the RESET procedure starts at low voltages, pulses should overcome \(\sim 3\) V to ensure proper RESET. For negative \(V_{\text{READ}} = -4\) V, Fig. 2(b) evidences that the SET and RESET voltages of the Co/HfO\(_{2-x}\) interface are \(\sim -10\) V and \(\sim 3\) V, respectively. From these HSLs, it is also evident that the interfaces are complementary, for example, a positive voltage SETs the Ti/HfO\(_{2-x}\) interface but RESETs the Co/HfO\(_{2-x}\) interface.

The conceptual picture of these two complementary interfaces presenting bipolar resistive switching, confirmed by the HSLs, is schematized in Fig. 3. The device can be divided into (from left to right in Fig. 3(a)) a left contact \((C_L)\), an interface region \((I_L)\) modeled as a Schottky barrier, a bulk layer, and finally the interface region \((I_R)\) corresponding to the right contact \((C_R)\). The energy band diagram of the system in thermal equilibrium, assuming an n-type semiconductor, is presented in Fig. 3(b). The RS mechanism found in our devices is attributed to local changes in the oxygen vacancy density at the interfaces by means of electric field. These changes result in a modification of the injection barriers, which in turn produces a modulation of their effective resistance. This mechanism has been widely reported for several systems, as well as for HfO\(_{2-x}\). In fact, oxygen vacancies originate a sub-band at the HfO\(_{2-x}\) bandgap, turning the Schottky barrier into an ohmic junction. The SET process occurs when local electric fields increase the concentration of oxygen vacancies at the interfaces. The RESET process (at opposite polarity) removes the oxygen vacancies from the interfaces, restoring the original injection barrier. Typically, our device can display three different configurations, with only one of the interfaces in LRS (as in Figs. 3(c) and 3(d)) or with both interfaces in LRS (Fig. 3(e)). As we shall see later, a state with both interfaces in HRS is not recovered in normal operation.

We articulate the physical scenario described above into the following mathematical framework. The current flowing through the device, \(I\), is modulated by the two interfaces \((I_L\) and \(I_R\), modeled as Schottky barriers) and the semiconducting bulk. The bulk is modeled as a linear resistor with...
where E_0 is the anchoring energy of the oxygen vacancies to the HfO$_{2-x}$ matrix and W_R and W_L are the depletion layer widths of the interfaces. The application of voltage pulses generates electric fields V_f/W_x and V_p/W_R strong enough to overcome the anchoring energy of the ions (see Ref. 13), triggering a redistribution of vacancies between the bulk and the interfaces. Whether the electric field introduces or removes ions from the interfaces depends on the polarity.

By numerical integration of Eq. (3), we obtain the temporal evolution of vacancy distributions at the interfaces, n_L and n_R. The integration must be performed in self-consistency with Eqs. (1) and (2), obtaining also the evolution of the device current, I_d, and the voltage drop at each interface for any applied voltage waveform $V(t)$. In short, we can simulate the I–V characteristics and study the distribution V along the interfaces and the bulk. Fig. 4(a) shows the excellent agreement between experimental and simulated I–V curves for Ti/HfO$_{2-x}$/Co.

Here, we comment about the slight mismatch between the experimental data and the model. In the first place, both leak currents as well as the sensitivity of the SourceMeter prevent to measure currents below 1 pA, creating a mismatch between experimental data and simulation when the voltage approaches zero. The difference in the LRS is due to nonlinearities (see steps (3) and (6) in Fig. 4). The model considers that in the LRS the current is mainly limited by the linear bulk resistance. Instead, the experimental data presents a nonlinear behavior. This effect might rise from nonlinearities in the bulk I–V characteristics and/or from a non-negligible influence of the injection barriers. Finally, a key point is that the model is not considering the profile of the vacancies at the interface; instead the interface is represented with a concentrated parameter model. We think this might be the reason behind the differences between the simulated and experimental data during the SET processes (see steps (2) and (5) in Fig. 4).

The evolution of these simulated parameters is crucial for the interpretation of the I–V curve, which is described in Figs. 4(b)–4(d). The current in the first quadrant of the I–V loop (positive bias) is governed by the Ti/HfO$_{2-x}$ interface (I_L) and the bulk, whereas it is dictated by the HfO$_{2-x}$/Co interface (I_R) and the bulk in the third quadrant (negative bias). We can only infer the behavior of the “hidden” interfaces with the aid of the numerical simulations. The different states of the system are numbered in a sequence from (1) to (6) in both Figs. 4(a) and 4(d). We start our analysis with the Ti/HfO$_{2-x}$ interface in HRS (almost free of oxygen vacancies) and the HfO$_{2-x}$/Co interface in LRS (with a high concentration of vacancies), corresponding to (1). Initially, almost all the electrical potential drops in the Ti/HfO$_{2-x}$ interface, which is the main limitation for the current. When the voltage reaches the SET voltage of the Ti/HfO$_{2-x}$ interface (2), it switches to the LRS. This SET voltage can be observed in the HSL presented in Fig. 2(a). Subsequently, the applied voltage turns to drop mainly at the bulk, which is now the limiting factor for the current. Some electric field also develops at the HfO$_{2-x}$/Co interface that RESETs (3). Nevertheless, the RESET of this interface has no effect in the current as long as the device is biased with positive voltage (4). The interface can be observed in the HSL in
As predicted, positive bias (voltage is presented in panel (b)), the HfO2-Co interface do not limit the injection of carriers into the device, the current is governed by the Ti/HfO2-x interface and the bulk; for negative bias it is limited by the HfO2-x/Co interface and the bulk (see panel (c)).

The authors acknowledge P. Levy for useful discussions. This work was supported by the project MAT2009-08494 and MAT2012-37638 from the Spanish Ministry of Science, by the Basque Government through the Project No. PI2011-1 and by the Marie Curie Reintegration Grant (ITAMOSCINOM) from the European Commission. F.G. is a member of CONICET.
10. J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, MRS Bull. 37, 131–137 (2012).
11. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429–433 (2008).
12. A. Shih, W. Zhou, J. Qiu, H. J. Yang, S. Chen, Z. Mi, and I. Shih, Nanotechnology 21, 125201 (2010).
13. M. J. Rozenberg, M. J. Sanchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy, Phys. Rev. B 81, 115101 (2010).
14. D. S. Jeong, H. Schroeder, and R. Waser, Nanotechnology 20, 375201 (2009).
15. Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, Phys. Rev. Lett. 98, 146403 (2007).
16. M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, and L. E. Hueso, Adv. Mater. 24, 2496–2500 (2012).
17. F. Gomez-Marlasca, N. Ghenzi, M. J. Rozenberg, and P. Levy, Appl. Phys. Lett. 98, 042901 (2011).
18. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, New York, 2007).
19. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85, 4073–4075 (2004).
20. N. Ghenzi, M. J. Sanchez, F. Gomez-Marlasca, P. Levy, and M. J. Rozenberg, J. Appl. Phys. 107, 093719 (2010).
21. M. Y. Chan, T. Zhang, V. Ho, and P. S. Lee, Microelectron. Eng. 85, 2420–2424 (2008).

22. P. Gonon, M. Mougenot, C. Vallée, C. Jorel, V. Joussemaune, H. Grampeix, and F. El Kamel, J. Appl. Phys. 107, 074507 (2010).
23. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tseng, C. H. Lin, F. Chen, C. H. Lien, and M.-I. Tsai, in Electron Devices Meeting, 2008, IEDM, IEEE International (IEEE, 2008), pp. 1-4.
24. H. Y. Lee, Y. S. Chen, P. S. Chen, T. Y. Wu, F. Chen, C. C. Wang, P. J. Tseng, M. J. Tsai, and C. Lien, IEEE Electron Device Lett. 31, 44–46 (2010).
25. K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, Appl. Phys. Lett. 87, 183505 (2005).
26. X. Wu, D. B. Migas, X. Li, M. Bosman, N. Raghavan, V. E. Borisenko, and K. L. Pey, Appl. Phys. Lett. 96, 172901 (2010).
27. S. D. Ha and S. Ramanathan, J. Appl. Phys. 110, 071101 (2011).
28. See supplementary material at http://dx.doi.org/10.1063/1.4818730 for details on the numerical simulations.
29. We observe that both interfaces are in HRS in pristine devices, i.e., new devices (as fabricated) exhibit HRS independently of the voltage bias polarity. Our devices do not require a standard forming procedure, and hence the voltage required to trigger the first HRS to LRS transition is basically the same than all the subsequent SET voltages. For positive voltages the electric field mainly develops at the Ti/HfO₂/CoO interface, independently of the state of the other interface (than can be either in HRS or in LRS).
30. C. Vallée, P. Gonon, C. Jorel, and F. El Kamel, Appl. Phys. Lett. 96, 233504 (2010).