Use of Famotidine and Risk of Severe Course of Illness in Patients With COVID-19: A Meta-analysis

To The Editor: The article by Ghosh et al,1 in which they discuss the potential of famotidine to regulate innate and adaptive immune responses, provides a rationale to repurpose famotidine for the treatment of coronavirus disease 2019 (COVID-19). There have been few studies evaluating the use of famotidine in patients with COVID-19, and thus we performed a meta-analysis to summarize the overall effect of famotidine on the clinical outcomes in this patient population.

We searched PubMed, Google Scholar, and medRxiv (preprint repository) databases, up to March 31, 2021, for studies evaluating the risk of a severe course of illness among famotidine users with COVID-19 compared with nonusers, with the following keywords and their MeSH terms: COVID-19, famotidine, and histamine-2 receptor antagonist, without language restrictions. Studies were included if they were original, observational (prospective or retrospective) studies, included patients with COVID-19 with documented use of famotidine, and reported adjusted estimates for mortality and other severe clinical outcomes with the use of famotidine relative to nonuse of famotidine. Each included article was independently evaluated by 2 authors (C.S.K. and S.S.H.), who extracted the study characteristics and measures of effect. The quality of observational studies was evaluated using the Newcastle-Ottawa Scale.2 The outcome of interest was the development of a severe course of illness, characterized by death or other severe clinical outcomes.

Adjusted measures of association and the corresponding 95% confidence intervals (CIs) from each study were pooled using a random-effects model. Cochran’s Q heterogeneity test (Q test) and its related metric, the I2 statistics, were used to evaluate heterogeneity across studies. The meta-analysis was performed with Meta XL, version 5.3 (EpiGear International, Queensland, Australia).

Our literature search yielded 46 unique abstracts. After deduplication and application of the eligibility criteria, 6 relevant articles were shortlisted for inclusion through full-text examination. Of these, 2 studies were excluded, as they reported no mortality or other severe clinical outcomes in COVID-19. Study characteristics are depicted in the Table.3-7 All studies were retrospective and are deemed good quality with a Newcastle-Ottawa Scale ranging from 7 to 8 (Table). The meta-analysis of 3 studies3,5,7 (n=31,563), which provided adjusted hazard ratio (aHR), revealed a nonsignificant association between the use of famotidine and the hazard for a severe course of illness in patients with COVID-19, relative to nonuse of famotidine (Figure; pooled HR=0.83; 95% CI, 0.49 to 1.41). Similarly, a separate meta-analysis of 2 studies3,5 (n=1928), which provided adjusted odds ratio (aOR), revealed a nonsignificant association between the use of famotidine and the odds for a severe course of illness in patients with COVID-19, relative to nonuse of famotidine (Supplemental Figure, available online at http://www.mayoclinicproceedings.org; pooled OR=0.85; 95% CI, 0.27 to 2.63).

The finding of our meta-analysis suggests no significant benefits with the use of famotidine in terms of reducing the risk of a severe course of illness in patients with COVID-19. Since the suppression of gastric acid by famotidine may lead to impaired clearance of the novel coronavirus, the possibility that impaired viral clearance negates the potential benefits conferred by the use of famotidine in COVID-19 requires further evaluation. However, the studies included in our meta-analysis are of retrospective design, and thus generalizability of the findings may be limited. Prospective studies are required to substantiate our findings.

SUPPLEMENTAL ONLINE MATERIAL

Supplemental material can be found online at http://www.mayoclinicproceedings.org. Supplemental material attached to journal articles has not been edited, and the authors take responsibility for the accuracy of all data.

Chia Siang Kow, MPharm
School of Postgraduate Studies
International Medical University
Kuala Lumpur, Malaysia
School of Pharmacy
Monash University Malaysia
Jalan Lagoon Selatan, Bandar Sunway
Selangor, Malaysia

Ismail Abdul Sattar Burud, MBBS, MS (Gen Surg), FRCS
Department of Surgery
School of Medicine
International Medical University
Kuala Lumpur, Malaysia

Syed Shahzad Hasan, PhD
School of Applied Sciences
University of Huddersfield United Kingdom
School of Biomedical Sciences and Pharmacy
University of Newcastle
Callaghan, Australia

Potential Competing interests: The authors report no competing interests.

ORCID
Chia Siang Kow: https://orcid.org/0000-0002-8186-2926
Study	Country	Design	Total number of patients	Age (median/mean unless otherwise specified)	Severe course of illness^a	Famotidine users (n/N; %)	Nonusers of famotidine (n/N; %)	Adjusted estimate	Covariates adjustment	NOS
Zhou et al⁷	Hong Kong	Retrospective database review	3144	All patients: 44.8	Not reported	Not reported	OR: 1.34 (0.24-6.06)	Age, comorbidities, use of co-medications, neutrophil count, lymphocyte count, serum platelet level, serum urea level, serum creatinine level, serum albumin level, serum glucose level	7	
Yeramaneni et al³	United States	Retrospective, multenter review	1156	Famotidine users: 62.2	62/410 (15.1)	73/746 (9.8)	OR: 1.49 (0.80-2.79)	Age, sex, race, ethnicity, BMI, comorbidities	8	
Shoaibi et al⁴	United States	Retrospective database review	26,027	Famotidine users with ≥ 60 years: 55.2%	326/1623 (20.0)	5534/24404 (22.7)	HR: 1.00 (0.86-1.16)	Age, sex, index month, comorbidities	8	
Mather et al⁵	United States	Retrospective, single center	772	Famotidine users: 63.3	36/83 (43.3)	495/689 (71.8)	OR: 0.47 (0.23-0.97)	Age, sex, race, smoking status, BMI, comorbidities, National Early Warning Score	7	
Freedberg et al⁶	United States	Retrospective, single center	1620	Famotidine users with > 65 years: 47.6%	8/84 (9.5)	332/1536 (21.6)	HR: 0.42 (0.21-0.85)	Age, sex, race, BMI, comorbidities, initial oxygen requirements	8	

^aIn the study by Cheung et al⁷, the severe course of illness was defined as requirement for intensive care unit admission, intubation, or death. In the study by Yeramaneni et al³, the severe course of illness was defined as death within 30 days of hospitalization. In the study by Shoaibi et al⁴, the severe course of illness was defined as death and/or the requirement for mechanical ventilation, tracheostomy, or extracorporeal membrane oxygenation. In the study by Mather et al⁵, the severe course of illness was defined as a composite of death or requirement for ventilation. In the study by Freedberg et al⁶, the severe course of illness was defined as a composite of death or endotracheal intubation from day 2 to day 30 of hospitalization.

BMI, body mass index; HR, hazard ratio; NOS, Newcastle-Ottawa Scale; OR, odds ratio.
In Reply—Use of Famotidine and Risk of Severe Course of Illness in Patients With COVID-19: A Meta-analysis

To The Editor: Kow and colleagues’ interest in our recent letter to the editor regarding the potential for famotidine in COVID-19 infection was much appreciated. Obviously, their meta-analysis is small and probably not adequately powered but still suggested 37% and 7% reductions in severe disease in the general and adjusted analyses, respectively: obviously, with wide confidence intervals that were not close to statistical significance. A large-scale randomized study that was adequately powered, preferably with famotidine, started early in COVID-19, would be required to fully determine the full potential of the benefits of famotidine in COVID-19; this type of study is likely not coming in this pandemic. However, their meta-analysis does not provide much reason for concern regarding significant harms or risks with famotidine in COVID-19.

At present, many clinicians are recommending not only famotidine but several other nonprescription fairly harmless therapies including vitamins C and D, zinc, melatonin, and H1 antihistamine agents for outpatient therapy in COVID-19, all with various degrees of evidence. At present, an old generic prescription medication, colchicine, typically used for gout, but also for pericarditis, is now used with considerable evidence for coronary artery disease. Colchicine is now being considered in COVID-19, originally based on the Greek Study in the Effects of Colchicine in Covid-19 Complications Prevention (GREECO-19) study and now with considerably more evidence in the recently released Colchicine Coronavirus SARS-CoV2

FIGURE. Pooled hazard ratio of severe course of illness in patients with COVID-19 with the use of famotidine relative to nonuse of famotidine.