THE RANDOM DIVISION OF THE UNIT INTERVAL AND THE APPROXIMATE -1 EXPONENT IN THE MONKEY-AT-THE-TYPEWRITER MODEL OF ZIPF’S LAW

RICHARD PERLINE

Flexible Logic Analytics, 34-50 80th Street, Jackson Heights, NY 11372

Abstract. We show that the exponent in the inverse power law of word frequencies for the monkey-at-the-typewriter model of Zipf’s law will tend towards -1 under broad conditions as the alphabet size increases to infinity and the letter probabilities are specified as the values from a random division of the unit interval. This is proved utilizing a strong limit theorem for log-spacings due to Shao and Hahn.

1. Introduction

By the monkey-at-the-typewriter model we mean the random scheme generating words defined as a sequence of letters terminating with a space character. Using the simple case of $K \geq 2$ equal letter probabilities plus one space character and an independence assumption, G. A. Miller (1957; Miller and Chomsky, 1963) highlighted a somewhat hidden aspect of Mandelbrot’s (1953, 1954a, 1954b) work on Zipf’s law by showing how this scheme generates an inverse power law for word frequencies mimicking Zipf’s law for natural languages. Miller also observed empirically that the exponent of the power law in his model was close to -1 for his numeric example with $K = 26$ letters. An exponent value near -1 is especially interesting because it is an iconic feature of empirical word frequency data for most Western languages, as Zipf (1935, 1949) amply demonstrated. In other words, not only does Miller’s simple model generate an inverse power law, but by letting the alphabet size K be sufficiently large, it also approximates the same parameter value commonly seen with real word frequency data.

The power law behavior of the monkey model with unequal letter probabilities is substantially more complicated to analyze. Utilizing tools from analytic number theory, Conrad and Mitzenmacher (2004) have provided the first fully rigorous analysis of the monkey model power law in this general case. They did not comment about Miller’s remark concerning a power law exponent close to -1. Our main objective in this paper is to analyze the behavior of the exponent. We do this by specifying the letter probabilities as the spacings from a random division of the unit interval and then make use of a strong limit theorem for log-spacings due to Shao and Hahn (1995). This theorem will let us show that the approximate -1 exponent is an almost universal parameter that results from the asymptotics of log-spacings as $K \to \infty$ and where the spacings are generated from a broad class of distributions - for example, any distribution with a bounded density function on the unit interval will satisfy their theorem. Our idea for studying spacings in connection with the approximate -1 exponent was first given in Perline (1996, section 3), but the argument there should now be viewed as just a small step in the direction we follow here.

In Section 2 we demonstrate the power law behavior of the monkey model with arbitrary letter probabilities and obtain a formula for the exponent $-\beta$. The derivation of this in Conrad and Mitzenmacher is somewhat intricate, but they also provide an instructive Fibonacci example (Mitzenmacher, 2004, gives the same example) that motivated us down a simpler path. Our application of Csiszár’s (1969) approach below requires only elementary methods and also brings into focus Shannon’s (1948) ingenious difference equation logic as he used it originally to define the capacity of a noiseless communication channel. This combinatorial
scheme employs precisely the same line of thinking as in Conrad and Mitzenmacher’s Fibonacci example and as Mandelbrot used in his work on Zipf’s law. Bochkarev and Lerner (2012) have also provided an elementary analysis of the power law behavior using the Pascal pyramid.

Section 3 contains our main result showing conditions such that \(-\beta \approx -1\) for the monkey model using the Shao and Hahn (1995) asymptotics for log-spacings. Throughout this article, all logarithms use the natural base \(e\) unless the radix is explicitly indicated.

2. The Monkey Model and Its Power Law Exponent \(-\beta\)

2.1. Defining the Model. Consider a keyboard with an alphabet of \(K \geq 2\) letters \(\{L_1, \ldots, L_K\}\) and space character \(S\). Assume that the letter characters are labelled such that their corresponding non-zero probabilities are rank ordered as \(q_1 \geq q_2, \cdots \geq q_K\). The space character has probability \(s\), so that \(\sum_{i=1}^{K} q_i + s = 1\). A word is defined as any sequence of non-space letters terminating with a space. A word \(W\) of exactly \(n\) letters is a string such as \(W = L_{i_1}L_{i_2}\ldots L_{i_n}S\) and has a probability of the form
\[
P(W) = q_{i_1}q_{i_2}\ldots q_{i_n}s\text{ because letters are struck independently.}
\]

The space character with no preceding letter character will be considered a word of length zero.

Write the rank ordered sequence of ascending word probabilities in the ensemble of all possible words of finite length as \(P_1 = s > P_2 \geq \ldots \geq P_r \geq \ldots\) (\(P_1 = s\) is always the first and largest word probability.) Break ties for words with equal probabilities by alphabetical ordering, so that each word probability has a unique rank \(r\). In Miller’s (1957) version of the monkey model, all letter probabilities have the same value, \(q_1 = \cdots = q_K = (1 - s)/K\) and so words of the same length have the same probability.

It will be convenient to work with the word base values, \(B = P/s\), which are simply the product of the letter probabilities without the space probability. Write \(B_r\) for \(P_r/s\). Figure 1(a) shows a log-log plot of \(\log B_r\) vs. \(\log r\) for the particular example used by Miller (1957). In his example the space character was given the value \(s = .18\) (similar to what is seen for English text) and so the \(K = 26\) letters each are given the identical probability \((1 - .18)/26 \approx .0315\). Figure 1(a) plots all base values for words of 4 or fewer letters, i.e., \(\sum_{j=0}^{4} 26^j = \frac{2^{26} - 1}{25} = 475,255\) values. The horizontal lines show the steps in a power law for Miller’s model. These steps arise from the fact that there will be \(26^j\) words of length \(j\) letters, all with the same base value \(B = (s^{2}/26)^{j}\), but with \(26^j\) different (though consecutive) ranks. The other log-log plots in Figure 1 are based on using unequal letter probabilities chosen as the spacings of a uniform distribution (Figure 1(b)) and from the beta(3,2) distribution (Figure 1(c)) with density \(f(x) = x^{3-1}(1-x)^{2-1}/B(3, 2)\).

The reason we see an approximate \(-1\) slope for the graph in 1(a) will be explained in Section 2.2 and the explanation for the graphs of Figure 1(b) and Figure 1(c) will be given in Section 3.

2.2. The Special Case of Equal Letter Probabilities. The log-log linear appearance of the equal letter probability model in Figure 1(a) is easily explained, as Miller (1957) showed, and he also drew attention to the approximate \(-1\) log-log slope. We will put our discussion in the framework of Conrad and Mitzenmacher’s (2004) analysis of the monkey model where they carefully defined power law behavior for monkey word probabilities as the situation where the inequality
\[
A_1 r^{-\beta} \leq P_r \leq A_2 r^{-\beta},
\]
holds for sufficiently large rank \(r\) and constants \(0 < A_1 \leq A_2, \beta > 0\). It will also prove convenient to state this inequality in an equivalent form where the rank \(r\) is bounded in terms of \(P_r\):
\[
A_1 r^{1/\beta} P_r^{-1/\beta} \leq A_2 r^{-1/\beta} P_r^{-1/\beta} = A_2 P_r^{-1/\beta},
\]
or in the form that we use here in terms of base values \(B_r = P_r/s\),
\[
C_1 B_r^{1/\beta} \leq r \leq C_2 B_r^{-1/\beta}.
\]

In the equal letter probability model of Miller (1957) and Miller and Chomsky (1963), the base value \(B_r = q_1^j\) for some \(j\). Then there are \(K^j\) words with base values equal to \(B_r\) and \(\sum_{i=0}^{j-1} K^i\) words with base values strictly smaller than \(B_r\). Therefore the rank \(r\) of any base value equal to \(B_r\) satisfies the inequality
\[
\frac{1}{K} K^j < \sum_{i=0}^{j-1} K^i + 1 \leq r \leq \sum_{i=0}^{j} K^i < \frac{K}{K-1} K^j.
\]
Now
\[K^j = \left(q_1^{-\log q_1 K}\right)^j = \left(q_1^{-\log q_1 K} B_r^{-\log q_1 K}\right), \]
therefore, the outer bounds of the inequality in (2) can be written as
\[\frac{1}{K} B_r^{-\log q_1 K} < r < \frac{K}{K-1} B_r^{-\log q_1 K}. \]
This is in the form of the inequality (1) with constants \(C_1 = 1/K, \ C_2 = K(K-1)^{-1}, \) and \(-1/\beta = \log q_1 K\), demonstrating the power law behavior of Miller’s model.

It is worth pointing out that we can adopt a very simple view of things by working in log-log scales. Inequality (1) implies the weaker asymptotic conditions \(\log r \sim -\log B_r/\beta \) and \(\log B_r \sim -\beta \log r \) as \(r \to \infty \). We’ll refer to this as log-log linear behavior and note that with this view, \(\log C_1 \) and \(\log C_2 \) are asymptotically negligible so that only the parameter \(\beta \) becomes important. With Miller’s model, a plot of \(\log B_r \) by \(\log r \) produces a step-function approximation to a line with slope \(-\beta = 1/\log q_1 K\).

Miller then made the additional observation that with the parameters used to create Figure 1(a), his model gives \(-\beta \approx -1.06\), close to \(-1\). He did not go further than this, but it is easy to see that
\[-\beta = \frac{1}{\log q_1 K} \]
\[= \frac{\log q_1}{\log K} \]
\[= \frac{1}{\log K} \log \left(\frac{1-s}{K}\right) \]
\[= \frac{\log(1-s)}{\log K} \to -1, \]
as \(K \to \infty \). Consequently, for sufficiently large \(K \), the exponent in his model will be close to \(-1\) and so plots of \(\log B_r \) vs. \(\log r \) will exhibit log-log linear behavior with a slope in the vicinity of this value.

2.3. The General Case of Unequal Letter Probabilities. We begin by representing the \(K \) letter probabilities as powers of the maximum letter probability value \(q_1 \) so that \(q_1 = q_1^{\alpha_1} \geq q_2 = q_1^{\alpha_2} \cdots \geq q_K = q_1^{\alpha_K} \), where \(1 = \alpha_1 \leq \alpha_2 \cdots \leq \alpha_K \) are arbitrary real numbers. Then for every base value for a word of length \(n \geq 1 \), \(B = q_1^{\alpha_1 + \cdots + \alpha_n} \). The largest base value for the null word of length 0 consisting of the
space character alone has \(B_1 = 1 = q_1^0 \). Applying a radix-\(q_1 \) logarithm to any base value gives a sum \(\log_{q_1} B = \alpha_i + \cdots + \alpha_i \) for any word of \(n \geq 1 \) letters and 0 for the null word.

Now we introduce Csiszár’s formulation of Shannon’s recursive counting logic. For any real \(t \geq 0 \), define \(N(t) \) as the number of monkey words that have radix-\(q_1 \) log base values, \(\log_{q_1} B \), in the half open interval \((t - \alpha_1, t]\). By construction, \(\alpha_1 = 1 \), so this interval is \((t - 1, t]\). Any word of of \(n \geq 1 \) letters must begin with one of the letters \(L_1, L_2, \ldots, L_K \). Among the \(N(t) \) words with log base values in \((t - 1, t]\), the number of words beginning with \(L_i \) is \(N(t - \log_{q_1} q_i) = N(t - \alpha_i) \). Since this is true for \(i = 1, \ldots, K \), the recursion

\[
N(t) = \sum_{i=1}^{K} N(t - \alpha_i) \quad \text{for} \quad t \geq \alpha_1 = 1,
\]

holds with the additional conditions \(N(t) = 0 \) if \(t < 0 \) and \(N(t) = 1 \) if \(0 \leq t < 1 \). Csiszár (his Proposition 1.1) then proves:

Theorem 1. There is a positive constant \(0 < b < 1 \), such that \(N(t) \) has the bounds

\[
b R_0^t < N(t) \leq R_0^t \quad \text{for} \quad t \geq 0,
\]

where \(R_0 > 1 \) is the unique positive root of the equation

\[
\sum_{i=1}^{K} X^{-\alpha_i} = 1.
\]

Proof. Csiszár first establishes that (5) has a unique positive root \(R_0 > 1 \) and then gives this induction argument to confirm the bounds in (4). Recursively define a sequence of positive numbers \(b_i \) by:

\[
b_{i+1} = b_i \sum_{\alpha_j \leq i} R_0^{-\alpha_j}, \quad i = 1, 2, \ldots \text{ and } b_1 = R_0^{-\alpha_1} = R_0^{-1}.
\]

The inequality

\[
b_i R_0^t < N(t) \leq R_0^t \quad \text{if} \quad 0 \leq t < i
\]

holds for \(i = 1 \). Now assume it also holds for the integers \(1, 2, \ldots, i \). Then for \(i \leq t < i + 1 \),

\[
b_{i+1} R_0^t = (b_i \sum_{\alpha_j \leq i} R_0^{-\alpha_j}) R_0^t \leq \sum_{\alpha_j \leq t} b_i R_0^{t-\alpha_j} < \sum_{j=1}^{K} N(t - \alpha_j) \leq \sum_{j=1}^{K} R_0^{t-\alpha_j} = R_0^t,
\]

where we use the facts that \(t - \alpha_j < i \) and that \(\sum_{j=1}^{K} R_0^{-\alpha_j} = 1 \). Since \(\sum_{j=1}^{K} N(t - \alpha_j) = N(t) \) by (3), we have shown that if the inequality (6) holds for \(i \), it holds for \(i + 1 \), as well. Lastly, the \(b_i \) are non-increasing and since \(b_1 = 1/R_0 < 1 \), they converge after a finite number of steps to some \(0 < b < 1 \), completing the induction proof. \(\square \)

We can now find bounds on the rank \(r \) of a base value \(B_r \) by calculating a cumulative sum involving \(N(\log_{q_1} B_r) \). This is the basic idea Mandelbrot used in the context of his information-theoretic models, where instead of \(\log_{q_1} B_r \) he has a cost value \(C_r \). (Brillouin (1956) provides a helpful discussion.) Let \(n = [\log_{q_1} B_r] \geq 0 \) be the greatest integer contained in \(\log_{q_1} B_r \). Then the number of words with radix-\(q_1 \) log base values \(\leq \log_{q_1} B_r \) (equivalently, having base values \(\geq B_r \)) is given by

\[
N_{\text{cum}}(\log_{q_1} B_r) = N(\log_{q_1} B_r) + N(\log_{q_1} B_r - 1) + \cdots + N(\log_{q_1} B_r - n).
\]

This means that the rank \(r \) of any base value \(\geq B_r \) satisfies \(r \leq N_{\text{cum}}(\log_{q_1} B_r) \), so by Theorem 1,

\[
r \leq N_{\text{cum}}(\log_{q_1} B_r) \\
\leq R_0^{\log_{q_1} B_r} + R_0^{\log_{q_1} B_r - 1} + \cdots + R_0^{\log_{q_1} B_r - n} \\
< \left(\frac{R_0}{R_0 - 1} \right) R_0^{\log_{q_1} B_r}.
\]
On the other hand, since \(B_r < B_r/q_1 \), we must have \(r > N_{\text{cum}}(\log q_1, B_r - 1) \) and so Theorem 1 provides a lower bound on \(r \):

\[
\begin{align*}
 r &> N_{\text{cum}}(\log q_1, B_r - 1) \\
 &> N(\log q_1, B_r - 1) \\
 &> bR_0^{\log q_1} B_r \\
 &= \frac{b}{R_0} R_0^{\log q_1} B_r,
\end{align*}
\]

(8)

for some \(0 < b < 1 \). Combining (7) and (8),

\[
C_1 B_r^{\log q_1} R_0 = \frac{b}{R_0} R_0^{\log q_1} B_r < r < \left(\frac{R_0}{R_0 - 1} \right) R_0^{\log q_1} B_r = C_2 B_r^{\log q_1} R_0,
\]

which demonstrates power law behavior by the Conrad-Mitzenmacher inequality criterion in (1) with \(-1/\beta = \log q_1 / R_0 \). Hence a plot of \(\log B_r \) versus \(\log r \) will produce an asymptotically log-log linear graph with slope \(-\beta = 1/\log q_1 R_0 \). Note that \(-\beta \) can be written in several different ways: \(-\beta = 1/\log q_1 R_0 = \log q_1 / \log R_0 = \log R_0 / q_1 \). As Bochkarev and Lerner (2012) point out, \(\beta \) is also the solution to the equation

\[
q_1^{1/\beta} + q_2^{1/\beta} + \cdots + q_K^{1/\beta} = 1.
\]

In Miller’s case with \(q_1 = \cdots = q_K = (1 - s)/K \), we obtain \(R_0 = K \) as the solution to \(\sum_{i=1}^K X_i^{-1} = KX^{-1} = 1 \). Let us also record here that \(-\beta = 1/\log q_1 R_0 < 1 \). This is true because \(q_1 + q_1^{1/2} + \cdots + q_K^{1/\beta} = 1 - s < 1 = R_0^{-1} + R_0^{-\alpha} + \cdots + R_0^{-\alpha K} \), and it follows that \(q_1 < R_0^{-1} \) and that \(1/\log q_1 R_0 = \log q_1 / \log R_0 < 1 \).

We turn now to examine conditions where \(-\beta \) approaches \(-1 \) for the general case of unequal letter probabilities.

3. \(-\beta \approx -1 \) with LARGE \(K \) from the ASYMPTOTICS of LOG-SPACINGS

To produce the graph of Figure 1(b), 26 letter probabilities for the monkey typewriter keys were generated using the classic “broken stick” model. We drew a sample of \(K - 1 = 25 \) uniform random variables \(X_1, X_2, \ldots, X_{K-1} \) from \([0,1]\). Denote their order statistics as \(X_{1:K-1} \geq X_{2:K-1} \geq \cdots \geq X_{K-1:K-1} \). The interval was partitioned into \(K \) mutually exclusive and exhaustive segments by the \(K \) spacings \(D_i \) defined as the differences between successive uniform order statistics: \(D_1 = 1 - X_{1:K-1}, \ D_i = X_{i-1:K-1} - X_{i:K-1} \) for \(2 \leq i \leq K - 1 \), and \(D_K = X_{K-1:K-1} \). Then \(\sum_{i=1}^K D_i = 1 \). Write the order statistics of the spacings themselves as \(D_{1:K} \geq D_{2:K} \geq \cdots \geq D_{K:K} \). After obtaining a sample of \(25 \) uniform random variables from \([0,1]\) the letter probabilities were specified as \(q_s = .82D_{i:26} \). The factor .82 reflects the fact that .18 was used for the probability of the 27th typewriter key, the space character, matching the example of Miller (1957). These letter probabilities were then used to generate the base values of words, and we then graphed the 475,255 largest base values in Figure 1(b), corresponding to the 475,255 largest base values graphed in Figure 1(a), where Miller’s equal probability model was used. We mention that Good (1969, p. 577), Bell et al (1990, p. 92) and other researchers have noted that the distribution of letter frequencies in English is well approximated by the expected values of uniform spacings.

Figure 1(c) was generated by the same process except that the random variables \(X_1, \ldots, X_{25} \) were drawn from the beta distribution \(\beta(3,2) \) with pdf \(f(x) = x^{3-1}(1-x)^{2-1}/B(3,2) \). To understand why \(-\beta \approx -1 \) in Figures 1(b) and 1(c), we make use of a strong limit theorem for the logarithms of spacings due to Shao and Hahn (1995, Corollary 3.6; see also Ekström, 1997, Corollary 4). Almost sure convergence is denoted \(\Rightarrow \) and almost everywhere is abbreviated \(a.e. \).

Theorem 2. Let \(X_1, \ldots, X_{K-1} \) be \(K-1 \) i.i.d. random variables on \([0,1]\) with cumulative distribution function \(H(x) \). Define \(H^{-1}(y) = \inf \{ x : H(x) > y \} \). Assume \(f(x) = (d/dx)H^{-1}(x) \) exists a.e. If there is an \(\epsilon_0 > 0 \) such that \(f(x) \geq \epsilon_0 \) a.e., then

\[
\frac{1}{K} \sum_{i=1}^K \log(KD_i) \Rightarrow \int_0^1 \log f(x)dx - \lambda \quad \text{as} \quad K \to \infty,
\]

where \(\lambda = .577 \ldots \) is Euler’s constant.
Remark 3. Shao and Hahn call \[\int_0^1 \log f(x) dx \] the generalized entropy of \(H \). If \(H(x) \) has a density function \((d/dx)H(x) = h(x) \), then \(f(x) = (d/dx)H^{-1}(x) = 1/h(H^{-1}(x)) \) and a change of variable shows that \(\int_0^1 \log f(x) dx = -\int_0^1 h(x) \log h(x) dx \), which is the differential entropy of \(h(x) \). Note that when a density exists, the bound \(f(x) \geq \epsilon_0 > 0 \) implies that \(h(x) \leq 1/\epsilon_0 < \infty \), i.e., this theorem holds for random variables on \([0,1]\) with densities bounded away from infinity.

Corollary 4. With radix-\(K \) logarithms, Theorem 2 yields
\[
\frac{\sum_{i=1}^K \log K D_i}{K} \xrightarrow{a.s.} -1 \text{ as } K \to \infty.
\]

Proof. Rewriting the left side of the limit (9) as \(\log K + \sum_{i=1}^K \log D_i/K \) and dividing both sides by \(\log K \) gives
\[
\frac{\log K + \sum_{i=1}^K \log D_i}{\log K} \xrightarrow{a.s.} \int_0^1 \log f(x) dx \quad \text{as } K \to \infty.
\]
The terms on the right of the limit \(\to 0 \) as \(K \to \infty \). Expressing logarithms using radix-\(K \) and subtracting \(1 = \log K/\log K \) from both sides of the limit completes the proof. \(\square \)

Figures 1(b) and 1(c) were generated using spacings from the uniform and beta(3,2) distributions where we selected letter probabilities from the interval \([0,c]\) by specifying \(q_i = c \cdot D_{i,K} \) (\(0 < c < 1 \)). Our choice for this example was \(c = 0.82 \) corresponding to what Miller used. Defining \(\bar{\pi}_K = \sum_{i=1}^K \log q_i/K \), we therefore have
\[
\bar{\pi}_K = \log c + \sum_{i=1}^K \frac{\log D_{i,K} q_i}{K} \xrightarrow{a.s.} -1,
\]
since \(\log D_{i,K} q_i = \log c/\log K \to 0 \) as \(K \to \infty \). Consequently, \(c \in (0,1) \) is asymptotically negligible for our purposes.

It now remains to explain how \(\bar{\pi}_K \xrightarrow{a.s.} -1 \) relates to the log-log slope \(-\beta = 1/\log R_0 \), \(R_0 = \log R_0 q_1 \) obtained from the Shannon-Csiszár-Mandelbrot difference equation calculation of Section 2. Since we saw that \(-\beta < -1 \), if we can now show that \(\bar{\pi}_K \geq -\beta \), then for sufficiently large \(K \), \(-\beta \) will be forced close to \(-1\).

Proposition 5. \(\bar{\pi}_K \leq -\beta \).

Proof.
\[
\bar{\pi}_K = \sum_{i=1}^K \frac{\log q_i}{K} = \frac{(1 + \alpha_2 + \cdots + \alpha_K) \log q_1}{K} = \frac{(1 + \alpha_2 + \cdots + \alpha_K) \log R_0 q_1}{K} = \frac{(1 + \alpha_2 + \cdots + \alpha_K) \log R_0 K}{K} = \frac{1 + \alpha_2 + \cdots + \alpha_K}{K \log R_0 K} (-\beta).
\]

It is now clear that \(\bar{\pi}_K \leq -\beta \) will hold provided \(\left[\frac{1 + \alpha_2 + \cdots + \alpha_K}{K \log R_0 K} \right] \geq 1 \), and this is true because
\[
R_0^{(1 + \alpha_2 + \cdots + \alpha_K)}/K = \left(R_0^{\alpha_2} \cdots R_0^{\alpha_K} \right)^1/K = \frac{R_0^{\alpha_2} + \cdots + R_0^{\alpha_K}}{K} \leq R_0^{-1} + R_0^{-\alpha_2} + \cdots + R_0^{-\alpha_K} = K.
\]
where we use the geometric-harmonic mean inequality and then the fact that \(R_0^{-1} + R_0^{-\alpha_2} + \cdots + R_0^{-\alpha_K} = 1 \). Therefore, \(\frac{(1+\alpha_2+\cdots+\alpha_K)}{K\log R_0 K} \geq 1 \), and so \(\overline{\mu}_K \leq -\beta \). In the special case of Miller’s equiprobability model, exact equality holds: \(\overline{\mu}_K = -\beta \).

We will just remark here that our result can be looked at from a much more general perspective, as will be discussed elsewhere.

\begin{center}
References
\end{center}

Bell, Timothy C., Cleary, J.G., and Witten, I. H., 1990. Text Compression. Prentice-Hall, Englewood Cliffs, N.J.

Bochkarev, V.V. and Lerner, E. Yu., 2012. The Zipf law for random texts with unequal probabilities of occurrence of letters and the Pascal pyramid. Russian Math., 56, 25-27.

Brillouin, L., 1956. Science and Information Theory. Academic Press, NY, NY.

Conrad, B. and Mitzenmacher, M., 2004. Power laws for monkeys typing randomly: the case of unequal letter probabilities. IEEE Trans. Info. Theory, 50(7), 1403-1414.

Csiszar, I., 1969. Simple proofs of some theorems on noiseless channels. Information and Control, 14, 285-298.

Ekstrom, M., 1997. Strong limit theorems for sums of logarithms of \(m^{th} \) order spacing estimates. Research Report No. 8, Dept. of Mathematical Statistics, Umea University.

Good, I.J., 1969. Statistics of Language: Introduction. In: A.R. Meethan and R.A. Hudson, editors, Encyclopedia of Linguistics, Information and Control, Pergamon Press, Oxford, England, pp. 567-581.

Mandelbrot, B., 1953. Jeux de communication., Publ. Inst. Stat., Univ. Paris, 2, 1-124.

Mandelbrot, B., 1954a. On recurrent noise limiting coding. In: Proceedings of the Symposium on Information Networks, Microwave Research Institute, Polytechnic Institute of Brooklyn, 205-221.

Mandelbrot, B., 1954b. Simple games of strategy occurring in communication through natural languages. Trans. I.R.E., PGIT-3, 124-137.

Miller, G.A., 1957. Some effects of intermittent silence. Amer. J. Psych., 70(2), 311-314.

Miller, G.A. and Chomsky, N., 1963. Finitary Models of Language Users. In: R.D. Luce, R.R. Bush and E. Galanter, editors, Handbook of Mathematical Psychology, vol. 2, New York: Wiley, pp. 419-491.

Mitzenmacher, M., 2004. A brief history of generative models for power law and lognormal distributions. Internet Math., 1(2), 226-251.

Perline, R., 1996. Zipf’s law, the central limit theorem and the random division of the unit interval. Phy. Rev. E., 54(1), 220-223.

Shannon, C. E., 1948. A mathematical theory of communication. Bell System Tech. J., 27(3), 379-423.

Shao, Y. and Hahn, M., 1995. Limit theorems for the logarithms of sample spacings. Probability and Statistics Letters, 24, 121-132.

Zipf, G.K., 1935. The Psycho-Biology of Language. Houghton Mifflin, Boston, MA.

Zipf, G.K., 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, MA.

\textbf{Acknowledgments:} My thanks to PJ Mills, Chris Monroe and Ron Perline for their helpful comments on various parts of this manuscript. I also want to express my appreciation to Carol Hutchins and other staff members of the Courant Institute of Mathematical Sciences Library of New York University for their assistance.