Phylogeny of rock-inhabiting fungi related to Dothideomycetes

C. Ruibal1*, C. Gueidan3, L. Selbmann3, A.A. Gorbushina4, P.W. Crous2, J.Z. Groenewald2, L. Muggia5, M. Grube5, D. Isola3, C.L. Schoch6, J.T. Staley5, F. Lutzoni8, G.S. de Hoog2

1Departamento de Ingeniería y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; 2CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, Netherlands; 3DECOS, Università degli Studi della Tuscia, Largo dell'Università, Viterbo, Italy; 4Free University of Berlin and Federal Institute for Materials Research and Testing (BAM), Department IV "Materials and Environment", Unter den Eichen 87, 12205 Berlin, Germany; 5Institute für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, Holzgasse 6, A-8010 Graz, Austria; 6NCBI/NLM/NIH, 45 Center Drive, Bethesda MD 20892, U.S.A.; 7Department of Microbiology, University of Washington, Box 357242, Seattle WA 98195, U.S.A.; 8Department of Biology, Duke University, Box 90338, Durham NC 27708, U.S.A.

*Correspondence: Constantino Ruibal, tonruibal@yahoo.com

Abstract: The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerate surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of major groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Mynangiiales, as well as some uncharacterised groups with affinities to Dothideales. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation.

Key words: Arthoniomycetes, Capnodiales, Dothideomycetes, evolution, extremotolerance, multigene phylogeny, rock-inhabiting fungi.

INTRODUCTION

The Dothideomycetes constitute the largest class of ascomycetes with approximately 19 000 species, which are currently classified in 11 orders and 90 families (Kirk et al. 2008). This class is ecologically diverse, with many pathogens or saprobes on plants, some coprophilous species, and a few lichen-forming fungi (Schoch et al. 2009b; this volume). Early studies have shown that a large part of the non-lichenised, slow-growing melanised fungi isolated from rock surfaces (here referred to as rock-inhabiting fungi) also belong to this class (Sterflinger et al. 1997, 1999). Subsequent sampling efforts revealed a higher diversity of species than expected for these rock-inhabiting fungi (Ruibal 2004, Ruibal et al. 2005, 2008, Selbmann et al. 2005, 2008).

Rock-inhabiting fungi (RIF) are peculiar organisms that apparently lack sexual reproductive structures and form compact, melanised colonies on bare rock surfaces (Fig. 1). Although very common, RIF have often been overlooked due to their small size, their slow growth and the lack of diagnostic features. First discovered in hot and cold deserts (Krumbein & Jens 1981, Friedmann 1982, Staley et al. 1982), RIF are now known to be ubiquitous on hard surfaces, in extreme as well as in temperate climates (Urzi et al. 1995, Sterflinger & Prillinger 2001, Gorbushina 2007, Gorbushina & Broughton 2009). RIF are well adapted to nutrient-poor and dry habitats where they are particularly successful colonisers due to restricted competition with other fungi (Gorbushina 2007) and their extremotolerance.

Extremotolerance comprises some specific universally present adaptations that enable these fungi to tolerate surprisingly wide ranges of temperatures, irradiation and osmotic stresses (Palmer et al. 1990, Sterflinger 1998, Gorbushina et al. 2003, Ruibal 2004, Onofri et al. 2007, Gorbushina et al. 2008). Melanisation protects cells against UV radiations (Dadachova & Casadevall 2008), whereas the typical isodiametrical (meristematic) growth form ensures an optimal volume : surface ratio and, therefore, allows them to survive extreme temperatures and desiccation (Wollenzen & al. 1995). These oligotrophic organisms are able to rely only on sparse, airborne nutrients available on rock surfaces. Their growth on these substrates is limited, and, for some of them, the production of internal asexual spores further allows to save energy. All adaptations contribute to the amazing survival capabilities of RIF in hostile habitats. The environmental tolerance of these fungi, and, in some cases, their capacity to penetrate minerals, make them an attractive subject for studies in microbial ecophysiology and applied research, such as biodeterioration of monuments and exobiology (Gorbushina et al. 1993, Diakumaku et al. 1995, Wollenzen et al. 1997, Gorbushina et al. 2002, Gorbushina 2003, Onofri et al. 2008).

Sterflinger et al. (1997) provided the first molecular evidence of RIF phylogenetic affiliations, and they are known to belong to two groups of ascomycetes, namely Dothideomycetes and Eurotiomycetes (de Hoog et al. 1999, Sterflinger et al. 1999, Ruibal 2004, Ruibal et al. 2005, 2008, Sert et al. 2007a). In Eurotiomycetes, multigene phylogenetic analyses have shown that...
Fig 1. Rock-inhabiting fungi related to Dothideomycetes. A–C: sampling localities (photos C. Ruibal and L. Selbmann). A. Metamorphic black slate from Atazar, Central Mountain System, Spain. B. Limestone from Cala Sant Vicenç, Serra de Tramuntana, Mallorca, Spain. C. Sandstone from Alatna Valley, McMurdo Dry Valleys, Antarctica. D–G: Coniosporium apollinis, a rock-inhabiting species from the Mediterranean region (CBS 100213, photos C. Gueidan). D. Colony on MEA. E. Melanised torulose hyphae. F. Hypha disarticulating into bi- to multi-cellular clumps; G. Meristematic growth. H–J: Antarctic rock-inhabiting fungi (photos L. Selbmann). H. RIF growing on a crystal of sandstone. I. Melanised hypha of Friedmanniomyces endolithicus. J. Meristematic growth of Cryomyces antarcticus. K–L: Cystocoleus ebeneus, a lichenised species assigned to Capnodiales (photos L. Muggia). K. Microfilamentous thallus. L. Melanised hyphae of the mycobiont forming a furrow around the filamentous algae. Scale bars: D = 2 mm, E–G and I–J = 10 µm, H = 0.5 mm, K–L = 20 µm.
RIF cluster in early diverging lineages of Chaetothyriales, whereas two species seem to be more closely related to the lichenised order Verrucariales, the sister group of Chaetothyriales (Gueidan et al. 2008). Gueidan et al. (2008) also demonstrated that the most recent common ancestor of both lichenised Verrucariales and pathogenic-rich Chaetothyriales was probably a rock-inhabiting fungus. It was hypothesised that adaptations to life in extreme conditions might have been a prerequisite for the evolution of human pathogenicity (de Hoog 1993, Haase et al. 1999, Gueidan et al. 2008) and lichenisation in this class (Gueidan et al. 2008). In contrast, despite the high diversity of RIF within Dothideomycetes, only very few human pathogens are known from this class of Ascomycota (de Hoog et al. 2000). Alternatively, associations with plants and in particular plant pathogenicity are very common (Schoch et al. 2006, Arzanlou et al. 2007, Crous et al. 2007a–c, 2009; this volume).

Additionally, lichenised species also appeared to be nested within Dothideomycetes (Lutzoni et al. 2004, James et al. 2006, Del Prado et al. 2006, Muggia et al. 2008, Nelsen et al. 2009). Presently no strong phylogenetic hypothesis is available to assess the placement of RIF within Dothideomycetes. Moreover, no studies have investigated phylogenetic relationships among RIF, lichen-forming fungi and plant-associated fungi within Dothideomycetes. Our main goal was to infer phylogenetic relationships of RIF within Dothideomycota, a lineage including Dothideomycetes and Arthoniomycetes, to explore more specifically their diversity, origins and evolution.

MATERIAL AND METHODS

Taxon and gene sampling

Representative taxa of most of the main orders and families of Dothideomycota (Dothideomycetes and Arthoniomycetes) were sampled. Two separate sets of data matrices were assembled. The first set (three-gene analysis; Table 1 - see online Supplementary Information) is composed of 182 taxa (including 102 rock-inhabiting strains) for which DNA sequences of three ribosomal genes have been obtained: the large and small subunits of the mitochondrial ribosomal RNA gene (mtSSU). Because this first set of data matrices included only rDNA genes, low phylogenetic confidence was expected (nssu131c, NS24d nssu1088, nssu1088R, nssu897R, nssu634c, SR11Re, NS23, NS22d, SR7R, SR7, SR10Rf).

DNA isolation and sequencing

Different laboratories contributed data using various protocols, but most DNA sequence information was produced as follows: genomic DNA was isolated from cultures grown on MEA. Fungal biomass was transferred to a tube with 500 μL of TES buffer and ground with a micro-pestle for 1–2 min, with or without silica-mix (2/3 silica-gel, 1/3 Celite® 545). A volume of 140 μL of 5 M NaCl was then added, followed by 65 μL of 10 % (w/v) CTAB (cetyltrimethylammoniumbromid). After an incubation of 30 min at 65 °C, 700 μL of (24:1) chloroform/isoamylalcohol was added, the tubes were mixed carefully by hand, stored on icy water for 30 min, and centrifuged for 10 min at 4 °C (10 000 x g). The supernatant was recovered and the genomic DNA precipitated using isopropanol. After washing the pellets with 70 % ethanol, they were dried in a vacuum centrifuge and re-suspended in 60 μL of TE buffer (protocol modified from Möller et al. 1992).

Six regions covering five genes were amplified: nucLSU, nucSSU, RPB1 region A–D, RPB2 region 5–7, and RPB2 region 7–11 (see Table 2 for primers used). Genomic DNA (1 μL of a 1/10 or 1/100 dilution) was added to a PCR mix comprising 2.5 μL of PCR buffer (buffer IV with 15 mM MgCl2, Abgene, Epsom, U.K.), 2.5 μL of dNTPs (2 mM), 2.5 μL of BSA (10 mg/mL), 2.0 μL of primers (10 μM), 0.15 μL Taq polymerase (5 U/μL, Denville, Metuchen NJ, U.S.A.), and water for a total volume of 25 μL. Amplification cycles for nucLSU, nucSSU and RPB1 (same conditions applied for RPB2) are described in Gueidan et al. (2007), and in Zoller et al. (1999) for mtSSU. The PCR products were purified using Microcon PCR cleaning kits (Millipore, Billerica MA, U.S.A.). Sequencing was carried out using Big Dye Terminator Cycle sequencing Kits (ABI PRISM version 3.1, Perkin-Elmer, Applied Biosystems) on ABI 3730xl DNA Analyzers (Applied Biosystems, Foster City CA, U.S.A.) from the Duke Center for Evolutionary Genomics (Durham NC, U.S.A.) and the Hubrecht Institute (Utrecht, Netherlands).

Table 2. List of primers for the five genes used in this study (RPB2 was amplified in two regions).

Gene regions	PCR primers	Additional primers used for sequencing
nucLSU	LR0R\(^a\), LR7\(^b\)	LR3, LR3R, LR5, LR5R, LR6, LR6R\(^c\)
nucSSU	nssu131\(^d\), NS24\(^e\)	nssu1088, nssu1088R, nssu897R, nssu634\(^f\), SR11R\(^g\), NS23, NS22\(^h\), SR7R, SR7, SR10R\(^i\)
mtSSU	mtSSU1, mtSSU3\(^i\)	mtSSU2, mtSSU2\(\text{-}i\)
RPB1 region A–D	RPB1-4P\(^j\), RPB1-6R1asc	–
RPB2 region 5–7	RPB2-5F, RPB2-7cR	–
RPB2 region 7–11	RPB2-7cF, RPB2-11aR	–

\(^{a}\)Rehner & Samuels (1994); \(^{b}\)Vilgalys & Hester (1990); \(^{c}\)Kauff & Lutzoni (2002); \(^{d}\)Gargas & Taylor (1992); \(^{e}\)Spatafora et al. (1995); \(^{f}\)Vilgalys (unpubl.; www.biology.duke.edu/fungi/mycolab/primer.htm); \(^{g}\)Zoller et al. (1999); \(^{h}\)Hall (unpubl.; http://faculty.washington.edu/benhall/); \(^{i}\)Hofsteder et al. (2007); \(^{j}\)Liu et al. (1999).
Alignments and phylogenetic analyses

Sequences were assembled and edited using Sequencher (Gene Codes Corporation, Ann Arbor MI, U.S.A.). Manual alignments were performed using MacClade v. 4.08 (Maddison & Maddison 2003). Ambiguous regions (sensu Lutzoni et al. 2000) and introns were delimited manually and excluded from the alignments. Congruence was tested using a 70 % reciprocal bootstrap criterion (Mason-Gamer & Kellogg 1996, Reeb et al. 2004). For the three-gene dataset, the test was performed using Compat (Kauff & Lutzoni 2002) on all possible gene pairs (mtSSU vs. nucSSU, mtSSU vs. nucLSU, and nucLSU vs. nucSSU) and based on bootstrap consensus trees. Bootstrap trees were obtained using Neighbor-Joining bootstrap analyses with Maximum Likelihood distances in PAUP v. 4.0b10 (Swofford 2003). Models of molecular evolution were estimated using the Akaike Information Criterion implemented in Modeltest v. 3.7 (Posada & Crandall 1998). For the five-gene dataset, congruence was also tested using a 70 % reciprocal bootstrap criterion, but the comparison was done manually based on trees obtained with 500 bootstrap replicates using RAxML VI-HPC (Stamatakis et al. 2005, 2008) on the Cipres Web Portal (www.phylo.org/sub_sections/portal/). Taxa or sequences responsible for incongruence were removed from the dataset, and the markers were combined. Final phylogenetic analyses of the three-gene and five-gene datasets were performed using RAxML on the Cipres Web Portal. The ML search followed a GTRMIX model of molecular evolution applied to the following nine partitions: RPB1 first, second and third codon positions, RPB2 first, second and third codon positions, nucLSU, nucSSU and mtSSU. Support values were obtained with bootstrap analyses of 1 000 pseudoreplicates using RAxML.

RESULTS

DNA sequence alignments

Not all markers were recovered or available for all taxa. For the three-gene dataset, 20 nucLSU, 11 nucSSU and 54 mtSSU sequences were missing. Among the 182 taxa, 119 had sequences for three genes, 61 for two genes, and 12 for one gene (Table 1 in Supplementary Information). After exclusion of ambiguous regions and introns, the combined dataset included 3 274 characters (1 106 for nucLSU, 1 616 for nucSSU and 552 for mtSSU). Among these, 2 063 were constant while 931 were parsimony-informative. For the five-gene dataset, missing data comprised 5 nucLSU, 8 nucSSU, 30 mtSSU, 48 RPB1 and 30 RPB2 sequences. Among the 113 taxa, 32 had sequences for five genes, 46 for four genes, 30 for 3 genes, and 5 for 2 genes (Table 1 in Supplementary Information). After exclusion of ambiguous regions and introns, the combined dataset included 6 045 characters (1 133 for nucLSU, 1 607 for nucSSU, 593 for mtSSU, 1 011 for RPB1 and 1 701 for RPB2). Among these, 2 912 were constant while 2 693 were parsimony-informative.

Phylogenetic inference

For the three-gene analysis (Figs 2–3), results show that, within the two classes Dothideomycetes and Arthoniomycetes, rock-inhabiting fungi belong to 13 groups, either well-known orders or families, or lineages that have not previously been characterised. Among the rock-inhabiting fungi clustering with well-known groups of Dothideomycetes, two strains are found in the order Dothideales, four in the order Pleosporales, one in Myriangiales, 12 forming a monophyletic group sister to the remaining members of Davidiellaceae, and one in the family Capnodiales. The family Teratosphaeriaceae is not monophyletic in this analysis (also see Crous et al. 2009; this volume). In a first group including the generic type Teratosphaeria fibrillosa (Teratosphaeriaceae 1, Fig. 3), many rock-inhabiting strains are present, including taxa from the three genera Friedmanniomycetes, Elastomyces and Recurvomycetes. The second group (Teratosphaeriaceae 2, Fig. 3), including the three leaf-colonising species Devriesia strelitziae, Mycosphaerella eurypotami and Tripospermum myrti, an unknown species of Capnodiales, the lichen species Cystocoleus ebenus as well as 20 undescribed rock inhabiting strains, is supported as sister to the family Mycosphaerellaceae (91 % bootstrap). The two rock-inhabiting species Coniosporium uncinatum and C. apollinis are well supported (100 % bootstrap), but their sister relationship is not. Neither these two species of Coniosporium nor the Antarctic genus Cryomyces can be assigned to any known family or order sampled here. Amongst the unknown lineages, one does not seem to be part of Dothideomycetes (lineage 1, Fig. 2), and appears as sister to Arthoniomycetes (98 % bootstrap). Due to the lack of support for many deep internodes, it is not possible to determine if lineages 2 and 3 can be accommodated by the expansion of known groups of Dothideomycetes, or if the recognition of new taxonomical entities are needed. Finally, the rock isolates A6, AN13, TRN 437 and CCFEE 5413 do not significantly cluster with any other taxa.

With the five-gene analysis (Fig. 4), the inferred deep branching pattern within Dothideomycota is still poorly supported, but additional well-supported nodes are recovered (e.g., Capnodiales as sister to the lineage including Mucosphaerellaceae and Teratosphaeriaceae, and the monophyly of Teratosphaeriaceae 1). As in the three-gene analysis, the sister relationship between lineage 1 and Arthoniomycetes obtains high support (100 % bootstrap), even though the two rock-inhabiting strains included do not seem to form a monophyletic group. The placement of the lichen family Tryptetheliaceae as sister to Arthoniomycetes (70 % bootstrap) might be an artifact, as this relationship was not recovered in any other studies (Del Prado et al. 2006, Spatafora et al. 2006, Nelsen et al. 2009). Within Dothideomycetes, the orders Dothideales and Myriangiales form a sister group (100 % bootstrap), and are sister to the well-supported Capnodiales (100 % bootstrap), which includes most of the rock-inhabiting strains. Within Capnodiales, the second group of Teratosphaeriaceae (Teratosphaeriaceae 2, Fig. 4) is still supported as sister to Mucosphaerellaceae (89 % bootstrap). Other lineages comprising exclusively RIF (Cryomyces, Coniosporium uncinatum, and C. apollinis) do not significantly cluster with any known group of Dothideomycetes.
Fig. 2. Phylogenetic placement of 102 rock-inhabiting strains within Dothideomycota (Dothideomycetes and Arthoniomycetes). The tree is based on a Maximum Likelihood analysis of the combined nucLSU, nucSSU and mtSSU (three-gene analysis). A black oval on a branch indicates a bootstrap support value of 100 %. Other bootstrap values ≥ 50 % are shown below or above branches. RIF are highlighted in red and lichens in green. Geographical origins are also labeled for RIF (Alp = Alps, And = Andes, Ant = Antarctica, Ari = Arizona desert, Cri = Crimea, Fra = France, Med = Mediterranean region, including Greece, Israel, Italy, Slovenia, Spain and Turkey). Phylogenetic relationships within Capnodiales are detailed in Fig. 3.
Fig. 3. Phylogenetic placement of RIF within the order Capnodiales. The tree is based on a Maximum Likelihood analysis of the combined nucLSU, nucSSU and mtSSU (three-gene analysis). A black oval on a branch indicates a bootstrap support value of 100 %. Other bootstrap values ≥ 50 % are shown below or above branches. RIF are highlighted in red and lichens in green. Geographical origins are also labeled for RIF (Alp = Alps, And = Andes, Ant = Antarctica, Ari = Arizona desert, Cri = Crimea, Fra = France, Med = Mediterranean region, including Greece, Israel, Italy, Slovenia, Spain and Turkey).
Fig. 4. Phylogenetic relationships of rock-inhabiting lineages with known groups of Dothideomycetes based on a Maximum Likelihood analysis of the combined nucLSU, nucSSU, mtSSU, RPB1 and RPB2 (five-gene analysis). A black dot on a branch indicates a bootstrap support value of 100%. Other bootstrap values ≥ 50% are shown below or above the branches. RIF are highlighted in red and lichens in green.
DISCUSSION

Species diversity in Dothideomycetes

The Dothideomycetes are very diverse in terms of species, some of which are well known for their pathogenicity on crops (e.g., *Mycosphaerella fijiensis*, the agent of the leaf spot disease of banana, or *Leptosphaeria maculans*, the agent of the blackleg disease of cabbage). Whilst many species are associated with plants (either as pathogens or as epiphytes), saprobic, coprophilous, lichen-forming and rock-inhabiting fungi are also present in this class. The importance of RIF in terms of species richness is still under-investigated. A thorough sampling of dothideomycetous RIF from few localities in Mallorca and Central Spain formed the basis of the analyses described here (Ruibal 2004, Ruibal et al. 2005, 2008). RIF from Antarctica, the Alps and the Andes (Selbmann et al. 2005, 2008), as well as the Arizona and Negev deserts (Staley et al. 1982, A.A. Gorbushina, unpubl. data) extended the geographical range of the sampled taxa. Finally, isolates from monuments in the Mediterranean area supplemented the sampling (Gorbushina et al. 1996, Sterflinger et al. 1997, Volkman & Gorbushina 2006). In comparison to known RIF habitats (Gorbushina 2007), our sampling was very restricted and does not permit a realistic overview of fungal diversity on rock surfaces. Nevertheless, an impressive number of rock-inhabiting species is already evident. Our data show that rock-inhabiting fungi are not only present in well-known orders, such as *Capnodiales* or *Pleosporales*, but also in novel lineages (e.g., lineage 1, Fig. 2). Moreover, very few species with overlapping distribution were recovered from neighbouring geographical localities in Mallorca and Central Spain (Ruibal et al. 2005, 2008). Therefore, we can hypothesise that species richness within *Dothideomycetes* remains woefully underestimated, and that many more species will need to be described within this class in the future, especially for fungi colonising rocky substrates.

Classification of rock fungi related to Dothideomycetes

Although very diverse within *Dothideomycetes*, RIF have not been included in recent phylogenetic studies of this class (Lumbsch et al. 2001, Schoch et al. 2006). Only very few of these rock-inhabiting species have been taxonomically described (Sterflinger et al. 1997, Bills et al. 2005, Sert et al. 2007b), and the molecular marker available for most of these species (ITS) does not allow their inclusion in large-scale phylogenetic analyses. The few attempts to produce phylogenies involving RIF have shown that they belong to two diverse classes of *Ascomycota*, namely *Eurotiomycetes* (particularly the order *Chaetothyriales*) and *Dothideomycetes* (preponderantly the orders *Capnodiales*, *Dothideales* and *Pleosporales*) (Sterflinger et al. 1999, Ruibal 2004, Ruibal et al. 2005, 2008).

Our results confirm the placement of RIF in the same orders of *Dothideomycetes*, although some lineages are shown to belong to additional groups. Based on our results, many RIF should be classified within *Dothideales*, *Pleosporales* and *Capnodiales*, the latter order holding the largest number in rock-colonising species. The genera *Elasticomyces* and *Recurvomyces*, as well as the Antarctic genus *Friedmanniomyces*, were previously attributed to *Capnodiales* based on nuCSSU data (Selbmann et al. 2008). Our multigene analyses confirm this placement, and show that these three genera belong to *Teratosphaeriaceae* s. str., the family currently showing the highest diversity in RIF (Fig. 3). We also showed that one RIF (TRN 235) previously thought to be related to *Dothideales* (Ruibal et al. 2008) actually belongs to *Myriangiales*, along with *Sarcinomyces crustaceus*, a species similarly melanised and meristematic, but isolated from plant material (Sigler et al. 1981).

Several well-supported groups of RIF could not be attributed to any known families and orders according to our data. As a consequence, *Cryomyces* should still be considered as *Dothideomycetes incertae sedis*, as no close relationship was recovered for this enigmatic Antarctic genus (Selbmann et al. 2005).

The positions of RIF-rich genera *Coniosporium* and *Sarcinomyces* are also problematic. Previous studies placed them either in *Dothideales* or *Chaetothyriales* based on ITS or nuCSSU data (de Leo et al. 1999, Sterflinger et al. 1999, Sert et al. 2007a). Yet, the limited taxon and gene sampling on which these analyses were based was probably insufficient to demonstrate clear phylogenetic relationships. Our results show that *Coniosporium apolinis* (including the type strain CBS 352.97), *C. uncinatum* (including the type strain CBS 100219) and *Sarcinomyces crustaceus* belong to *Dothideomyceta* (Fig. 4). However, a previous multigene analysis showed that two other species, *Coniosporium perforans* and *Sarcinomyces petricola*, belong to *Chaetothyriales* (Gueidan et al. 2008). These anamorphic genera are therefore not monophyletic, and additional research is required to clarify their status.

Among lineages lacking known reference taxa, two groups seem to belong to *Dothideomycetes* (unknown group 2, a lineage comprising RIF from the Alps, and unknown group 3, a lineage including strains isolated in Arizona; Fig. 2). Another unknown group (lineage 1) clusters outside *Dothideomycetes*, sister to the *Arthoniales* (Figs 2, 4). A previous study had noted the problematic placement of this latter group (Ruibal et al. 2008). Many lineages including RIF still need to be named. In the past, several melanised meristematic species and genera have been described such as *Lichenothelia* (Hawksworth 1981; see also Henssen 1987), which could potentially correspond to some of these RIF lineages. However, little is known about these formerly named taxa, and no molecular data or cultures are available for many of them. Naming RIF will therefore require an extensive study of both rock-inhabiting species and formerly described melanised meristematic species, whether they grow on rock or not.

Rock surfaces: “terroirs” for ancient lineages or reservoirs for plant-associated fungi?

Despite the prevailing extreme conditions, rock surfaces host a large variety of specialised fungi. Fungal colonisation of subaerial rocks can be explained by two non-exclusive hypotheses. Firstly, atmosphere-exposed rock substrates could constitute “terroirs” for ancient fungal lineages. Rock surfaces were among the first terrestrial substrates available for living organisms on earth (Gorbushina & Broughton 2009). It is therefore likely that, early on, some species became adapted to colonise rock surfaces. RIF are persistent to different types of physical stress, but are poor competitors and surrender to more combative organisms (Gorbushina et al. 2008). Increasing competition with other rock-inhabiting organisms living under more permissive conditions may have restricted some of these ancient, morphologically reduced, slow-growing, fungal relics to extreme habitats. The presence of lineages comprising exclusively RIF that diverged early in the evolution of *Dothideomyceta* (e.g., *Cryomyces* and lineage 1, Fig. 2) supports this hypothesis of rock surfaces as substrates for ancient fungal lineages.
Secondly, rock surfaces could form reservoirs for plant-associated or saprobic fungi. Through spore or propagule dispersal, some species of various unrelated groups of plant pathogens, epiphytes or saprobes can reach rock substrates. Their ability to survive in these environments will depend on some key features, namely oligotrophy, melanisation and pleiomorphism (or diversity of growth forms, amongst which meristematic growth). Under extreme conditions prevailing on rock surfaces, fungi possessing these key features can survive due to their slow, meristematic, clumpy growth and thick-walled, heavily melanised cells. These key features seem to have evolved several times in *Dothideomycetes*, allowing different lineages to colonise rock substrates. In *Dothidea*, phyllosphere fungi such as *Aureobasidium pullulans* and relatives, which have a filamentous or yeast-like growth under moist conditions, but convert to a meristematic form when colonising inert substrates, have also been isolated from rock surfaces (Ruibal et al. 2008). The family *Teratosphaeriaceae* s. l. is another example of a group in which some leaf-colonising species can also grow meristematically and form dark, thick-walled cells. According to our results, this family (as traditionally delimited; i.e., including *Teratosphaeriaceae* 1 and 2) is also extremely diverse in RIF (Fig. 3). Rocks supporting growth of subaerial biofilms (Gorbushina & Broughton, 2009) may be viewed as a reservoir for all types of melanised meristematic fungi, from where other habitats can be re-colonised. Survival of new comers is probably additionally facilitated by the existing microbial community on rocks (Gorbushina & Broughton 2009) in a fashion known for immigrant bacteria on leaf surfaces (Monier & Lindow 2005).

Alternatively, rock-colonising lichens may supply buffered environments and refugia for RIF or organisms otherwise occupying other niches (Selbmann et al. 2010). Recent studies have shown that lichens harbour an amazing diversity of ascomycetous endophyte-like (endolichenic) fungi (Arnold et al. 2009), and phylogenetic relatedness was found between some endolichenic fungi isolated from saxicolous lichens and RIF (Harutyunyan et al. 2008). If in most cases, species from rock surfaces can still go back to their primary habitats, in some cases, these fungi keep specialising and get trapped in these extreme habitats. This may be the case for groups with no close relationships with plant-associated fungi, such as the genus *Friedmanniomycetes* (Fig. 3).

Geographical distribution of rock-inhabiting fungi

The large majority of rock-inhabiting strains isolated thus far originated from rocks in the Mediterranean region or Antarctica (Sterflinger et al. 1999, Ruibal 2004, Ruibal et al. 2005, 2008 Selbmann et al. 2005, 2008). In Antarctica, RIF tend to grow within rocks, together with the cryptoendolithic lichen communities, finding shelter from extreme conditions prevailing on rock surfaces. In the Mediterranean area, RIF tend to grow on the rock surface or in cracks, causing damages to the substrate (e.g., biopitting of marble). Despite differences in temperature, they share similar morphological and physiological adaptations, such as melanisation, meristematic growth and oligotrophism.

Similarly to previous studies (Selbmann et al. 2005, Ruibal et al. 2008), our results show that Antarctic RIF often share an evolutionary history with RIF from semi-arid areas. In our study, RIF sampled in geographically disjoint localities (Antarctica versus Mediterranean region) cluster together in *Davidiellaceae*, the two groups of *Teratosphaeriaceae*, and unknown lineage 1 (Figs 2–3). In some cases, Antarctic and Mediterranean strains are even phylogenetically very closely related, showing a recent common evolutionary history (e.g., in *Teratosphaeriaceae* 2, the Mediterranean rock isolates TRN 124 and A73 with the Antarctic strain CCFEE 5489). Likewise, some strains of *Recurvomycytes mirabilis* and *Elasmostomycetes* *elasticus* have been recorded in the Antarctic as well as in high peaks of the Alps and Andes (Selbmann et al. 2008). Therefore, it seems that an efficient mechanism of dispersal, most probably wind-mediated (Gorbushina et al. 2007, Gorbushina & Broughton 2009), have led to a colonisation spanning different continents.

Rock-dwelling habit and evolution of lichenisation

Most of the diversity in lichen-forming fungi is found in *Lecanoromycetes*, a large and diverse class of ascomycetes including approximately 14 000 species (Miadlikowska et al. 2006, Kirk et al. 2008). Yet, the classes *Lichinomycetes* (with the single order *Lichinales*), *Eurotiomycetes* (with the orders *Pyrenulales* and *Verrucariales*), *Arthoniomycetes* (with the single order *Arthoniales*), and *Dothideomycetes* also include lichens. Although *Lichinales*, *Pyrenulales*, *Verrucariales* and *Arthoniales* are monophyletic lineages containing mostly lichenised species, lichens in *Dothideomycetes* seem to encompass a broader phylogenetic spectrum: the *Trypetheliaceae*, a family of mostly tropical bark-colonising lichens, forms a monophyletic group within *Dothideomycetes* (Del Prado et al. 2006, Nelsen et al. 2009, Schoch et al. 2008a). *Arthopyrenia salicis*, a corticolous, temperate lichen species nests within the order *Pleosporales* (Del Prado et al. 2006, Nelsen et al. 2009). Two melanised micro-filamentous lichens, *Cystoleucus ebenus* and *Racodium rupestre*, were assigned to the order *Capnodiales* (Muggia et al. 2008, Nelsen et al. 2009). Finally, the two lichen families *Strigulaceae* (mostly leaf-colonising tropical species) and *Monoblastiaceae* (temperate and tropical species) are now shown to belong to *Dothideomycetes* (Nelsen et al. 2009; this volume).

Whether these lichen lineages, that are unrelated to *Lecanoromycetes*, originated from independent gains of lichenisation is not clear (Lutzoni et al. 2001, James et al. 2006, Gueidan et al. 2008, Arnold et al. 2009, Schoch et al. 2009a, b). Within *Eurotiomycetes*, phylogenetic data suggest that the lineage including *Pyrenulales* and *Verrucariales* possibly results from an independent gain of lichenisation (Gueidan et al. 2008, Schoch et al. 2009a). Phylogenetic data suggest that lichens in *Verrucariales* may have evolved from rock-inhabiting fungi (Gueidan et al. 2008), a result in agreement with experimental data demonstrating that some RIF and one melanised lichen-colonising fungus could form associations with lichen-associated algae (Gorbushina et al. 2005, Brunauer et al. 2007). This rock-inhabiting ancestor may have evolved associations with epithelial microalgae in order to get a more constant supply in nutrients. If the evolution of fungal-algal associations occurred in *Eurotiomycetes*, it most likely also occurred in different fungal groups. It is therefore interesting to see if in *Dothideomycetes*, where rock fungi are so diverse, similar transitions in lifestyles can be suggested.

Although many lichenised species in *Dothideomycetes* are either corticolous or only secondarily or occasionally saxicolous, *Cystoleucus ebenus* and *Racodium rupestre* are true rock inhabitants. Amongst lichens in *Dothideomycetes*, these two species are the most likely to have evolved from a rock-inhabiting ancestor. They share substrate preference and some morphological features, such as their melanised hyphae, with RIF. Strikingly, in our result, *Cystoleucus ebenus* is nested within a lineage comprising almost exclusively RIF (*Teratosphaeriaceae* 2, Fig. 3).
Racodium rupestre is also related to a RIF, but this relationship is not supported (Fig. 3). This result agrees with a rock-inhabiting ancestor for these two lichenised species, but further data will however be necessary to test this hypothesis. Also of interest is the close phylogenetic relationship between the lichen order Arthoniales and the lineage 1 of RIF (Figs 2, 4). Although mostly corticolous or follicolous, Arthoniales also comprises saxicolous species (Ertz et al. 2009). Further data is needed to explore the relationships between saxicolous species of Arthoniales and RIF. In conclusion, these preliminary results suggest that there might be a link between rock-dwelling habit and lichenisation. However, additional taxon and gene sampling are needed to confirm the phylogenetic placements of some of the lichenised taxa and to clarify their relationships to RIF. Only then the hypothesis of RIF as ancestors of lichenised lineages can be adequately tested.

ACKNOWLEDGEMENTS

Work performed by C.R. at Duke University was supported by a NSF AToL grant (AFTOL, DEB-0228725) to F.L. Work performed by C.L.S. after 2008 was supported in part by the Intramural Research Program of the National Institutes of Health (National Library of Medicine), and until 2008 by a grant from NSF (DEB-0717476). Work performed by A.A.G. was funded by grants from the National Swiss Foundation (31003A-122515) and the Deutsche Forschungsgemeinschaft (DFG Go 897/3). Work performed by L.S. at the CBS was funded by a Synthesys grant. The authors would like to acknowledge the Italian National Program for Antarctic Research (PNRA) for supporting the collection of samples, the Italian National Antarctic Museum “Felice Ippolito” for supporting the Culture Collection of Fungi and to William Broughton for his editorial help and to the technical staff of the CBS for their assistance with the cultures.

REFERENCES

Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Guigger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Systematic Biology 58: 283–297.

Arzate-Molina M, Groenewald JZ, Gams W, Braun U, Shin H-D, Groenewald JZ (2007). Delimiting generic delineation and character evolution in Ascomycota. Studies in Mycology 58: 57–93.

Bills GF, Collado J, Ruibal C, Peláez F, Platas G (2005). Black fungi in marble and limestones – an aesthetical, chemical and physical problem for the conservation of monuments. Mycological Research 109: 1288–1296.

Broughton WJ, Favet J (2007). Life in Darwin’s dust: inter-continental transport and survival of microbes in the nineteenth century. Environmental Microbiology 9: 2911–2922.

Crous PW, Braun U, Groenewald JZ (2007). Lichenicolous fungi forms lichenoid structures when co-cultured with various coccoid algae. Symbiosis 44: 127–136.

Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is polyphyletic. Studies in Mycology 58: 1–32.

Crous PW, Braun U, Schubert K, Groenewald JZ (2007b). Delimiting Cladosporium from morphologically similar genera. Studies in Mycology 58: 33–56.

Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, Hoog GS de, Groenewald JZ (2009). Phylogenetic lineages in the Herpotrichiellaceae. Studies in Mycology 64: 17–47.

Crous PW, Schubert K, Braun U, Hoog GS de, Hocking AD, Shin H-D, Groenewald JZ (2007). Opportunistic, human-pathogenic species in the Dothideomycetes: are lichens cradles of symbiotrophic fungal diversification? Mycological Research 111: 141–153.

Daddaeva E, Casadeba P (2008). Isolating radiation: how fungi cope, adapt, and exploit with the help of melanin. Current Opinion in Microbiology 11: 525–531.

Del Prado R, Schmidt I, Kautz S, Palicza Z, Lücking R, Lumbsch HT (2006). Molecular data place Tryptetheliaceae in Dothideomycetes. Mycological Research 110: 511–520.

Diakumaka E, Gorbushina AA, Krumben WE, Panina L, Soukharevskij S (1995). Black fungi in marble and limestones – an aesthetic, chemical and physical problem for the conservation of monuments. The Science of the Total Environment 167: 295–304.

Ertz D, Miadlikowska J, Lutzoni F, Dessein S, Raspé O, Vigneron N, Hofstetter V, Diederich P (2009). Towards a new classification of the Arthoniales (Ascomycota) based on a three-gene phylogeny focusing on the genus Opegrapha. Mycological Research 113: 141–152.

Friedmann E (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–1053.

Gargas A, Taylor JW (1992). Polymerase chain reaction (PCR) primers for amplifying and sequencing 18S rDNA from lichenified fungi. Mycologia 84: 585–592.

Gorbushina AA (2001). Methodologies and techniques for detecting extraterrestrial (microbial) life. Microcolonal fungi: survival potential of terrestrial vegetative structures. Astrobiology 3: 543–554.

Gorbushina AA (2007). Life on the rocks. Environmental Microbiology 9: 1613–1631.

Gorbushina AA, Beck A, Schulte A (2005). Microcolonal rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycological Research 109: 1288–1296.

Gorbushina AA, Broughton WJ (2009). Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annual Review of Microbiology 63: 431–450.

Gorbushina AA, Kort R, Schulte A, Lazarus D, Schneter B, Bruinsack HJ, Broughton WJ, Favet J (2007). Life in Darwin’s dust: inter-continental transport and survival of microbes in the nineteenth century. Environmental Microbiology 9: 2911–2922.

Harutyunyan S, Muggia L, Grube M (2008). Black fungi in lichens from seasonally arid habitats. Studies in Mycology 61: 83–90.

Hawkesworth DL (1981). Lichenothelia, a new genus for the Microthelia aterrima group. Lichenologist 13: 141–153.

Hessens A (1987). Lichenothelia, a genus of microfungi on rocks. In: Progress and problems in lichenology in the eighties (Peveling E, ed.), Bibliotheca Lichenologica 25: 257–293.

Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F (2007). Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoraceae (Ascomycota). Molecular Phylogenetics and Evolution 44: 412–426.

Hoog GS de (1993). Evolution of black yeasts: possible adaptation to the human host. Antonie van Leeuwenhoek 63: 105–109.

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas of clinical fungi. 2nd edition. CBS, Utrecht.

Hoog GS de, Zalar P, Leo F de, Erland NA, Starfetter K (1999). Relationships of dothideaceous black yeasts and meinsteinumfungi based on 5.8S and ITS2 rDNA sequence comparison. Studies in Mycology 43: 31–37.

James TY, Kauff F, Schoch C, Matheny PB, Hofstetter V, Cox C, Celio G, Guedan C, et al. (2006). Reconstructing the early evolution of the fungi using a six-gene phylogeny. Nature 443: 818–822.

Kauff F, Lutzoni F (2002). Phylogeny of the Gyalectales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138–156.

Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). The dictionary of the Fungi. 10th edition. CAB International, Wallingford, UK.

Krumben WE, Jens K (1981). Biogenic rock varnishes of the Negev desert (Israel), an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50: 25–38.

Lai F de, Ursuli C, Hoog GS de (1999). Two Coniosporium species from rock surfaces. Studies in Mycology 43: 70–79.

Liu YY, Wheelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808.
Lumbsch HT, Lindemuth R (2001). Major lineages of Dothideomycetidae (Ascomycota) inferred from SSU and LSU rDNA sequences. Mycological Research 105: 901–908.

Lutzeni F, Kauff F, Cox C, McLaughlin D, Celio G, et al. (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 1446–1480.

Lutzoni F, Pagan M, Reeb V (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature 41: 937–940.

Lutzoni F, Wagner P, Reeb V, Zoller S (2000). Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628–651.

Maddison WP, Maddison DR (2003). MacClade: analysis of phylogeny and character evolution. v. 4.06. Sinauer, Sunderland, Massachusetts.

Mason-Gamer R, Kellogg E (1996). Testing for phylogenetic conflict among molecular datasets in the tribe Tricteae (Graminae). Systematic Biology 45: 524–545.

Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, et al. (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Mycological Research 98: 1088–1103.

Müller EM, Bahnweg G, Sandermann H, Geiger HH (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research 20: 6115–6116.

Monier JM, Lindow SE (2005). Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microbial Ecology 49: 343–352.

Morgulis A, Haffner L, Wirtz N, Hawkesworth DL, Grube M (2006). The sterile microfilamentous lichenized fungi Cystococcaceae and Racocarpaceae are relatives of plant pathogens and clinically important dothidealean fungi. Mycological Research 112: 50–56.

Nelson MP, Lücking R, Grube M, Mbatouch JS, Muggia L, Rivas Plata E, Lumbsch HT (2009). Unravelling the phylogenetic relationships of lichenised fungi in Dothideomycota. Studies in Mycology 64: 135–144.

Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Homeck G, Vera JPP de, Halton J, Zucconi L (2008). Resistance of Antarctic black fungi and cryptoenolithic communities to simulated space and Mars conditions. Studies in Mycology 61: 99–109.

Onofri S, Selbmann L, Hoog GS de, Grube M, Rabbow E, Zucconi L (2007). Evolution and adaptation of fungi at the boundaries of life. Advances in Space Research 40: 1657–1664.

Palmer FE, Staley JT, Adams JB (1982). Microcolonial fungi: common inhabitants on and in rock. Mycological Progress 4: 23–38.

Posada D, Crandall KA (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

Reeb V, Roux C, Lutzeni F (2004). Contribution of RB2 to multilocus phylogenetic studies of the eucaryotes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Ascomycetes and evolution of polypany. Molecular Phylogenetics and Evolution 32: 1036–1060.

Rehner SA, Samuels GJ (1994). Taxonomy and phylogeny of Lecanoromycetes. Mycologia 86: 1322–1326.

Ruibal C (2004). Isolation and characterization of melanized, slow-growing fungi from semiarid rock surfaces of central Spain and Mallorca. Journal of Applied Microbiology 97: 984–991.

Ruibal C, Leo F de, Urzì C, Onofri S (2005). Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Mycological Research 109: 628–651.

Selbmann L, Hoog GS de, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, Leo F de, Urzì C, Onofri S (2008). Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Studies in Mycology 61: 1–20.

Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinali M, Onofri S (2010). Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biology 33: 71–83.

Serr HB, Sümüll H, Sterflinger K (2007a). Microcolonial fungi from antique marbles in Perga/Side/Terrassos (Antalya/Turkey). Antonie van Leeuwenhoek 91: 217–227.

Serr HB, Sümüll H, Sterflinger K (2007b). Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Botanical Journal of the Linnean Society 154: 373–380.

Siegler L, Tsuenda A, Carmichael JW (1981). Phaeotheca and Phaeosclarea, two new genera of dematiaceous hyphomycetes and redescription of Sarcinomyces Lindner. Mycotaxon 12: 449–467.

Spataporia JW, Mitchell TG, Vilgalys R (1995). Analysis of genes coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens. Journal of Clinical Microbiology 33: 1322–1326.

Selbmann L, Hoog GS de, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, Leo F de, Urzì C, Onofri S (2008). Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Mycological Research 109: 628–651.
Table 1. Taxon and gene sampling for the three- and five-gene analyses. Geographical origins are also mentioned for RIF. A dash indicates missing sequences. Newly produced sequences are shown in bold. A column also indicates if taxa were included in the three-gene (3) or in both three- and five-gene analyses (3 & 5).

Taxon	Collection #	Additional information	Order	LSU	SSU	mtSSU	RPB2	RPB1	Analysis
Hyphozyma lignicola	CBS 325.93	Outgroup	www.studiesinmycology.org	AF353595	AJ496239	–	3		
Symbiotaphrina buchneri	CBS 6902	Outgroup, AFTOL 1836	www.studiesinmycology.org	FJ176887	FJ176831	–	FJ238370	FJ238442	3 & 5
Symbiotaphrina kochii	CBS 250.77	Outgroup	www.studiesinmycology.org	AY227719	FJ176833	–	GU397369	FJ238443	3 & 5
Arthoniomycetes									
Arthonia caesia	–	AFTOL 775	www.studiesinmycology.org	FJ469668	FJ469671	FJ469670	FJ772241	3 & 5	
Dendrographa leucophaea	–	AFTOL 308	www.studiesinmycology.org	AY548810	AY548803	AY548811	EU704017	3 & 5	
Lecanactis abietina	–	AFTOL 305	www.studiesinmycology.org	AY548812	AY548805	AY548813	AY013900	GU561850	3 & 5
Opegrapha dolomitica	–	AFTOL 993	www.studiesinmycology.org	AY584654	AY584678	EU704082	DQ782866	3 & 5	
Roccelfa fuciformis	–	AFTOL 126	www.studiesinmycology.org	AY584654	AY584678	EU704082	DQ782866	3 & 5	
Schismatoma decolorans	–	AFTOL 307	www.studiesinmycology.org	AY548815	AY548809	AY548816	DQ883715	3 & 5	
Simonyella variegata	–	AFTOL 80	www.studiesinmycology.org	AY584699	AY584631	DQ782861	DQ782819	3 & 5	
Dothideomycetes									
Botryosphaeria dothidea	CBS 115476	AFTOL 946	www.studiesinmycology.org	DQ678051	DQ677998	FJ190612	DQ677944	EU186063	3 & 5
Guignardia bidwellii	CBS 237.48	AFTOL 1618	www.studiesinmycology.org	DQ678085	DQ678034	DQ677983	–	3 & 5	
Macrophomina phaseolina	CBS 227.33	AFTOL 1783	www.studiesinmycology.org	DQ678088	DQ678037	FJ190645	DQ677986	–	3 & 5
Neofusicoccum rubis	CBS 115475	AFTOL 1232	www.studiesinmycology.org	DQ678053	DQ678000	DQ677947	–	3 & 5	
Capnodium coelae	CBS 147.52	AFTOL 939	www.studiesinmycology.org	DQ247800	DQ247808	FJ190609	DQ247788	DQ471162	3 & 5
Capnodium salicinum	CBS 131.34	AFTOL 937	www.studiesinmycology.org	DQ678050	DQ677997	–	3		
Microxyphium citri	CBS 451.66	AFTOL 966	www.studiesinmycology.org	GU301848	GU296177	GU357750	–	3 & 5	
Scorias spongiosa	CBS 325.33	AFTOL 1594	www.studiesinmycology.org	GU301848	GU296177	GU357750	–	3 & 5	
Cladosporium claroideae	CBS 170.54	AFTOL 1289	www.studiesinmycology.org	DQ678075	DQ678024	FJ190643	DQ677973	–	3 & 5
Cladosporium sp.	CBS 180.53	AFTOL 1035	www.studiesinmycology.org	DQ678057	DQ678004	FJ190628	DQ677952	EU186064	3 & 5
Davidiella tassiana	CBS 399.80	AFTOL 1591	www.studiesinmycology.org	DQ678074	DQ678022	DQ677971	–	3 & 5	
Oxycospora telecomonii	CBS 1164.56	AFTOL 1788	www.studiesinmycology.org	DQ678091	DQ678039	FJ190647	–	3	
Mycosphaerella filipini	OSC 100622	AFTOL 2021	www.studiesinmycology.org	DQ678098	DQ677652	FJ190666	DQ677933	–	3 & 5
Mycosphaerella graminicola	CBS 292.38	AFTOL 1615	www.studiesinmycology.org	DQ678094	DQ678033	DQ677982	DQ677982	–	3 & 5
Mycosphaerella punctiformis	CBS 131265	AFTOL 942	www.studiesinmycology.org	DQ470688	DQ471017	FJ190611	DQ470920	DQ471165	3 & 5
Dothideomycetes	**Collection #**	**Additional Information**	**Order**	**LSU**	**SSU**	**mtSSU**	**RPB2**	**RPB1**	**Analysis**
---------------------	-----------------	---------------------------	-----------	---------	---------	-----------	----------	----------	-------------
Capnobotryella renispora	CBS 214.90		Capnodiales, Terasphaeriaceae	EU019248	Y18698	–	–	–	3 & 5
Catenulostroma abietis	CBS 459.93	AFTOL 2210	Capnodiales, Terasphaeriaceae	DQ678092	DQ678040	FJ190648	–	GU357797	3 & 5
Catenulostroma microsporum	CBS 110860; CPC 1832		Capnodiales, Terasphaeriaceae	EU019255	–	–	–	3 & 5	
Hortaea werneckii	CBS 107.67	mtSSU from CBS 703.76	Capnodiales, Terasphaeriaceae	EU019270	Y18693	GU561844	–	–	3
Terasphaeria associata	CBS 112224 ex Terasphaeria fibrillosa		Capnodiales, Terasphaeriaceae	GU214702	GU214702	–	–	–	3 & 5
Terasphaeria destructans	CBS 111370		Capnodiales, Terasphaeriaceae	GU214702	GU214702	–	–	–	3
Terasphaeria juvenalis	CBS 110906		Capnodiales, Terasphaeriaceae	AY720715	FJ493217	–	–	–	3
Capnodiales sp. 1	CBS 101364	ex Anisomeridium consobrinum	Capnodiales, incertae sedis	GU323215	GU561840	–	–	GU561853	3 & 5
Devriesia strelitziae	CBS 122379		Capnodiales, incertae sedis	GU296146	GU301810	GU561845	GU371738	–	3 & 5
Mycosphaerella eurypotami	JK 5568J		Capnodiales, incertae sedis	GU301852	GU479761	–	–	GU371722	3 & 5
Tripospermum myrti	CBS 437.68		Capnodiales, incertae sedis	GU323216	–	–	–	GU561846	3 & 5
Columnosphaeria fagi 1	CBS 171.93	AFTOL 1582	Dothideales	AY016359	AY016342	–	DQ677966	–	3 & 5
Columnosphaeria fagi 2	CBS 584.75	AFTOL 1912	Dothideales	DQ470977	DQ471029	–	DQ677951	DQ677157	3 & 5
Delphinella strobiligena	CBS 735.71	AFTOL 1257	Dothideales	DQ470984	DQ479933	DQ470936	DQ671182	–	3 & 5
Dothidea insculpta	CBS 189.58	AFTOL 1257	Dothideales	DQ470977	DQ471029	–	DQ677951	DQ677157	3 & 5
Myriangium duriaei	CBS 260.36	AFTOL 1304	Myriangiales	DQ678039	DQ678041	FJ190651	–	–	3 & 5
Phaeosclera dematoides	CBS 157.81		Myriangiales	GU301858	GU296184	–	–	GU357764	3 & 5
Lophium mytilinum	CBS 269.34	AFTOL 1609	Myriangiales	DQ678081	DQ678030	GU645342	DQ677979	–	3 & 5
Mytilinidion resinicola	CBS 304.34		Myriangiales	FJ661185	FJ661145	–	–	GF661107	3 & 5
Hysteropatella clavispora	CBS 247.34	AFTOL 1305	Patellariales	AY541493	DQ678006	AY571388	DQ677955	–	3 & 5
Hysteropatella elliptica	CBS 935.97	AFTOL 1790	Patellariales	DQ767657	EF695114	FJ190649	DQ767647	–	3 & 5
Patellaria atrata	CBS 958.97		Patellariales	GU301855	GU296181	–	DQ767647	GU357749	3 & 5
Arthopyrenia salicis	CBS 368.94	mtSSU from GenBank	Pleosporales	AY538339	AY538333	AY538345	–	FJ941893	3 & 5
Dothideomycetes	Collection #	Additional Information	Order	LSU	SSU	mtSSU	RPB2	RPB1	Analysis
-------------------------------------	--------------	------------------------	---------------------------	--------------	--------------	--------------	-------------	-------------	----------
Bimuria novae–zelandiae	CBS 107.79	AFTOL 931	Pleosporales	AY016336	AY016338	FJ190605	DQ470917	DQ471159	3 & 5
Dendryphiella arenata	CBS 181.58	AFTOL 995	Pleosporales	DQ470971	DQ471022	FJ190617	DQ470924	DQ472036	3 & 5
Leptosphaeria macularis	DAOM 229267	AFTOL 277	Pleosporales	DQ470946	DQ470993	–	DQ470894	DQ471136	3 & 5
Pleospora herbarum	CBS 541.72	AFTOL 940	Pleosporales	DQ247804	DQ247812	FJ190610	DQ247794	DQ471163	3 & 5
Preussia terricola	DAOM 230091	AFTOL 282	Pleosporales	AYS44766	AYS44726	AYS44754	DQ470895	DQ471137	3 & 5
Siodemium olivaceum	CBS 395.59		Pleosporales	GU250894	GU250915	GU250904	GU250947	GU250958	3 & 5
Westerdykella cylindrica	CBS 454.72	AFTOL 1037	Pleosporales	Y004343	AY016355	AF346430	DQ470925	DQ471168	3 & 5
Pleosporales sp. 1	CBS 101277	ex Thelenella luridella	Pleosporales	–	GU456309	–	GU456361	–	3 & 5
Pleosporales sp. 2	AFTOL 101	ex Anisomeridium polyori	Pleosporales	–	DQ782877	–	DQ782864	DQ782822	3 & 5
Astrothelium cinnamomeum	AFTOL 110	ex Trypetheliaceae	Trypetheliaceae	A584652	A584676	A584632	A584690	DQ782824	3 & 5
Laurera megasperma	AFTOL 2094		Trypetheliaceae	FJ017702	GU561841	GU561847	GU561855	–	3 & 5
Trypethelium nitidiusculum	AFTOL 2099		Trypetheliaceae	FJ017701	GU561842	GU561848	GU561856	–	3 & 5
Helicomyces roseus	CBS 235.51	AFTOL 1613	Tubefiaceae	DQ678038	DQ678032	–	DQ677981	–	3 & 5
Tubeufia cerea	CBS 254.75	AFTOL 1316	Tubefiaceae	DQ470982	DQ471034	FJ190634	DQ470934	DQ471180	3 & 5
Tubeufia paludosa	CBS 245.49	AFTOL 1580	Tubefiaceae	DQ767654	DQ767649	–	DQ767643	–	3 & 5
Cystocoleus ebeneus	L348	RPB2 from L344; RPB1 from L343	Dothideomycetes, incertae sedis	EU048580	EU048573	EU048568	GU214293	GU214204	3 & 5
Farthiella carmichaelina	CBS 206.36	AFTOL 1787	Dothideomycetes, incertae sedis	AYS44142	AYS44142	–	DQ677989	–	3 & 5
Kirschsteiniothelia aethiops 1	CBS 109.53	AFTOL 925	Dothideomycetes, incertae sedis	AYS16361	AYS16344	FJ190604	DQ470914	DQ471157	3 & 5
Kirschsteiniothelia aethiops 2	DAOM 231155	AFTOL 273	Dothideomycetes, incertae sedis	DQ678046	DQ677966	FJ190690	DQ677940	–	3 & 5
Phaeotrichum benjaminii	CBS 541.72	AFTOL 1184	Dothideomycetes, incertae sedis	AYS04340	AYS16348	–	DQ677946	–	3 & 5
Racodium rupestre	L424	RPB1 from L341	Dothideomycetes, incertae sedis	EU048582	EU048577	EU048569	–	GU214205	3 & 5
Sarcinomyces crustaceus	CBS 156.89		Dothideomycetes, incertae sedis	GU250893	–	GU250905	GU250948	GU250959	3 & 5
Tyrannosorus pinicola	CBS 124.88	AFTOL 1235	Dothideomycetes, incertae sedis	DQ470974	DQ471025	FJ190620	DQ470928	DQ471171	3 & 5

Rock–inhabiting fungi	LSU	SSU	mtSSU	RPB2	RPB1	Analysis				
Coniosporium apollinis	CBS 352.97	ex-type strain	Dothideomycetes, incertae sedis	GU250895	GU250916	GU250906	GU250949	–	3 & 5	Greece
Coniosporium apollinis	CBS 100213		Dothideomycetes, incertae sedis	GU250896	GU250917	GU250907	GU250950	GU250960	3 & 5	Greece
Coniosporium apollinis	CBS 100214		Dothideomycetes, incertae sedis	GU250897	GU250918	GU250908	GU250951	–	3 & 5	Greece
Coniosporium apollinis	CBS 100218		Dothideomycetes, incertae sedis	GU250898	GU250919	GU250909	GU250952	GU250961	3 & 5	Greece
Coniosporium apollinis	CBS 109860		Dothideomycetes, incertae sedis	GU250899	GU250920	GU250910	GU250953	GU250962	3 & 5	Spain
Rock-inhabiting fungi	Collection #	Additional Information	Order	LSU	SSU	mtSSU	RPB2	RPB1	Analysis	Locality
----------------------------	--------------	--	--------------------------------	--------	---------	---------	--------	--------	----------	----------------
Coniosporium apollinis	CBS 109865	Dot/ideomycetes, incertae sedis	Dothideomycetes, incertae sedis	GU250900	GU250921	GU250911	GU250954	GU250963	3 & 5	Greece
Coniosporium apollinis	CBS 109867	Dot/ideomycetes, incertae sedis	Dothideomycetes, incertae sedis	GU250901	–	GU250912	GU250955	GU250964	3 & 5	Greece
Coniosporium uncinnatum	CBS 102212	Dot/ideomycetes, incertae sedis	Dothideomycetes, incertae sedis	GU250902	GU250922	GU250913	GU250956	–	3 & 5	Italy
Coniosporium uncinnatum	CBS 102219	ex-type strain	Dot/ideomycetes, incertae sedis	GU250903	GU250923	GU250914	GU250957	GU250965	3 & 5	France, Paris
rock isolate TRN 5	CBS 118762	Ruibal et al. (2008)	Capnodiales, Teratosphaeriaceae	GU323956	GU323988	GU324017	–	GU324051	3 & 5	Central Spain
rock isolate TRN 11	CBS 118281	Ruibal et al. (2008)	Dothideales	GU323957	–	GU324018	–	GU324052	3 & 5	Central Spain
rock isolate TRN 42	CBS 117958	Ruibal et al. (2008)	Capnodiales, Davidiellaceae	GU323958	–	GU324019	–	GU324053	3 & 5	Central Spain
rock isolate TRN 43	CBS 117960	Ruibal et al. (2008)	Capnodiales, Davidiellaceae	GU323959	GU323989	GU324020	–	–	3	Central Spain
rock isolate TRN 44	CBS 118324	Ruibal et al. (2008)	Capnodiales, Davidiellaceae	GU323960	GU323990	GU324021	–	–	3	Central Spain
rock isolate TRN 49	–	Rubial et al. (2008)	Pleosporales	–	–	–	–	–	–	Central Spain
rock isolate TRN 62	CBS 118305	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323961	GU323991	GU324022	–	GU324054	3 & 5	Mallorca
rock isolate TRN 66	CBS 118306	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323962	GU323992	GU324023	–	GU324055	3 & 5	Mallorca
rock isolate TRN 77	CBS 118207	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323963	GU323993	GU324024	GU324066	GU324057	3 & 5	Mallorca
rock isolate TRN 79	CBS 117930	Ruibal et al. (2005)	Capnodiales, Teratosphaeriaceae	GU323964	GU323994	GU324025	–	–	3	Mallorca
rock isolate TRN 80	CBS 118286	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323965	GU323995	GU324026	–	GU324056	3 & 5	Mallorca
rock isolate TRN 87	CBS 118290	Ruibal et al. (2005)	Capnodiales, Capnodiales	GU323966	GU323996	GU324027	–	GU324058	3 & 5	Mallorca
rock isolate TRN 111	CBS 118294	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323967	GU323997	GU324028	–	GU324059	3 & 5	Mallorca
rock isolate TRN 119	CBS 118295	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323968	–	GU324029	–	–	3	Mallorca
rock isolate TRN 122	CBS 117931	Ruibal et al. (2005)	Capnodiales, Teratosphaeriaceae	GU323969	GU323998	GU324030	–	–	3	Mallorca
rock isolate TRN 123	CBS 117932	Ruibal et al. (2005)	Capnodiales, Teratosphaeriaceae	GU323970	GU323999	GU324031	GU324067	GU324060	3 & 5	Mallorca
rock isolate TRN 124	CBS 118283	Ruibal et al. (2005)	Capnodiales, Teratosphaeriaceae	GU323971	GU324000	GU324032	–	GU324061	3 & 5	Mallorca
rock isolate TRN 129	CBS 117933	Ruibal et al. (2005)	Capnodiales, Teratosphaeriaceae	GU323972	GU324001	GU324033	–	–	3	Mallorca
rock isolate TRN 137	CBS 118300	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323973	GU324002	GU324034	–	GU324062	3 & 5	Mallorca
rock isolate TRN 138	CBS 118301	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323974	GU324003	GU324035	GU324068	GU324063	3 & 5	Mallorca
rock isolate TRN 142	CBS 118302	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323975	GU324004	GU324036	GU324069	–	3 & 5	Mallorca
rock isolate TRN 152	CBS 118346	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323976	GU324005	GU324037	–	–	3	Mallorca
Rock–inhabiting fungi	Collection #	Additional Information	Order	LSU	SSU	mtSSU	RPB2	RPB1	Analysis	Locality
-----------------------	--------------	------------------------	-------	-----	-----	-------	------	------	----------	----------
rock isolate TRN 153	CBS 118330	Ruibal et al. (2005)	Capnodiales, incertae sedis	GU323977	GU324006	GU324038	GU324070	–	3 & 5	Mallorca
rock isolate TRN 211	CBS 117937	Ruibal et al. (2008)	Capnodiales, Teratosphaeriaceae	GU323978	GU324007	GU324039	–	3	Central Spain	
rock isolate TRN 213	–	Ruibal et al. (2008)	related to Arthoniales	–	GU324008	GU324040	–	3	Central Spain	
rock isolate TRN 221	–	Ruibal et al. (2008)	Pleosporales	–	AY943241	–	–	3	Central Spain	
rock isolate TRN 235	CBS 118605	Ruibal et al. (2008)	Myriangiales	GU323979	–	GU324041	GU324071	–	3 & 5	Central Spain
rock isolate TRN 245	CBS 117940	Ruibal et al. (2008)	Capnodiales, Teratosphaeriaceae	GU323980	GU324009	GU324042	–	3	Central Spain	
rock isolate TRN 267	CBS 118769	Ruibal et al. (2008)	Dothideomycetes, incertae sedis	–	GU324010	GU324043	GU324072	–	3 & 5	Central Spain
rock isolate TRN 268	CBS 119305	Ruibal et al. (2008)	Dothideales	GU323981	–	GU324044	–	–	3 & 5	Central Spain
rock isolate TRN 279	CBS 117943	Ruibal et al. (2008)	Capnodiales, Teratosphaeriaceae	GU323983	GU324012	GU324046	–	3	Central Spain	
rock isolate TRN 437	CBS 118327	Ruibal et al. (2008)	Dothideomycetes, incertae sedis	GU323984	GU324013	GU324047	–	3	Central Spain	
rock isolate TRN 452	CBS 119305	Ruibal et al. (2008)	related to Arthoniales	GU323985	GU324014	GU324048	–	3	Central Spain	
rock isolate TRN 456	–	Ruibal et al. (2008)	related to Arthoniales	GU323986	GU324015	GU324049	GU324065	–	3 & 5	Central Spain
rock isolate TRN 499	–	Ruibal et al. (2008)	Pleosporales	–	AY943278	–	–	3	Central Spain	
rock isolate TRN 529	–	Ruibal et al. (2008)	related to Arthoniales	GU323987	GU324016	GU324050	–	3 & 5	Central Spain	
rock isolate A6	–	Gorbushina (unpublished)	Dothideomycetes, incertae sedis	GU250924	GU250932	–	GU250939	–	3 & 5	Turkey
rock isolate A35	CBS 123158	Gorbushina (unpublished)	Coniosporium uncinatum	GU250925	GU250933	–	–	GU250943	3 & 5	Crimea
rock isolate A73	–	Gorbushina (unpublished)	Capnodiales, incertae sedis	GU250926	GU250934	–	GU250940	GU250944	3 & 5	Greece
rock isolate AN1	–	Gorbushina (unpublished)	Capnodiales, Davideliaceae	GU250927	GU250935	–	GU250941	–	3 & 5	Israel, Negev
rock isolate AN13	CBS 125207	Gorbushina (unpublished)	Dothideomycetes, incertae sedis	GU250928	GU250936	–	GU250942	GU250945	3 & 5	Israel, Negev
rock isolate S2	–	Gorbushina (unpublished)	Capnodiales, incertae sedis	GU250931	–	–	–	GU250946	3 & 5	Slovenia
rock isolate DVA4	–	Staley et al. (1982)	Dothideomycetes, incertae sedis	GU250929	GU250937	–	–	–	3	U.S.A., Arizona
rock isolate DVA7	–	Staley et al. (1982)	Dothideomycetes, incertae sedis	GU250930	GU250938	–	–	–	3	U.S.A., Arizona
rock isolate CCFEE 451	–	Selbmann et al. (2005, 2008)	Capnodiales, incertae sedis	GU250960	GU2509314	GU2509403	–	3	Antarctica	
rock isolate CCFEE 453	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	GU250961	GU2509315	GU2509404	–	3	Antarctica	
rock isolate CCFEE 456	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	–	GU2509316	GU2509405	–	3	Antarctica	
Table 1. (Continued).

Rock-inhabiting fungi	Collection #	Additional Information	Order	LSU	SSU	mtSSU	RPB2	RPB1	Analysis	Locality
rock isolate CCFEE 502	–	Selbmann et al. (2005, 2008)	Capnodiales, Teratosphaeriaceae	GU250363	GU250318	GU250406	3	Antarctica		
rock isolate CCFEE 514	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	–	GU250319	GU250407	3	Antarctica		
rock isolate CCFEE 515	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	–	GU250320	GU250408	3	Antarctica		
rock isolate CCFEE 524	–	Selbmann et al. (2005, 2008)	Friedmanniomyces endolithicus	GU250364	DQ066715	GU250409	–	–	3 & 5	Antarctica
rock isolate CCFEE 534	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	–	DQ066713	GU250410	3	Antarctica		
rock isolate CCFEE 536	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	GU250365	GU250321	GU250411	–	–	3 & 5	Antarctica
rock isolate CCFEE 670	–	Selbmann et al. (2005, 2008)	Friedmanniomyces endolithicus	GU250366	GU250322	GU250412	3	Antarctica		
rock isolate CCFEE 690	–	Selbmann et al. (2005, 2008)	Cryomyces antarcticus	–	GU250323	GU250413	3	Antarctica		
rock isolate CCFEE 5176	–	Selbmann et al. (2005, 2008)	Capnodiales, Davidiellaceae	–	GU250324	GU250414	3	Antarctica		
rock isolate CCFEE 5180	–	Selbmann et al. (2005, 2008)	Friedmanniomyces endolithicus	GU250367	GU250326	GU250415	3	Antarctica		
rock isolate CCFEE 5184	–	Selbmann et al. (2005, 2008)	Friedmanniomyces simplex	GU250368	DQ066716	GU250416	3	Antarctica		
rock isolate CCFEE 5187	CBS 116302	Selbmann et al. (2005, 2008)	Cryomyces minteri	GU250369	DQ066714	GU250417	–	–	3 & 5	Antarctica
rock isolate CCFEE 5205	–	Selbmann et al. (2005, 2008)	Capnodiales, incertae sedis	GU250370	GU250327	GU250418	3	Antarctica		
rock isolate CCFEE 5211	–	Selbmann et al. (2005, 2008)	Capnodiales, Davidiellaceae	GU250371	GU250328	GU250419	–	–	3 & 5	Antarctica
rock isolate CCFEE 5264	–	Selbmann et al. (2008)	Recurvomycyces mirellis	GU250372	GU250329	–	3	Antarctica		
rock isolate CCFEE 5284	–	Selbmann (unpublished)	related to Arthoniales	GU250373	GU250330	–	3	Antarctica		
rock isolate CCFEE 5299	–	Selbmann (unpublished)	Capnodiales, Davidiellaceae	GU250374	–	–	3	Antarctic Peninsula		
rock isolate CCFEE 5303	–	Selbmann (unpublished)	related to Arthoniales	–	GU250331	–	3	Antarctica		
rock isolate CCFEE 5319	–	Selbmann et al. (2008)	Elasticomyces elasticus	GU250375	GU250332	–	3	Antarctica on lichens		
rock isolate CCFEE 5320	CBS 122540	Selbmann et al. (2008)	Elasticomyces elasticus	GU250376	GU250333	GU250420	–	–	3 & 5	Antarctica on lichens
rock isolate CCFEE 5322	–	Selbmann (unpublished)	Capnodiales, incertae sedis	GU250377	GU250334	–	3	Antarctica on lichens		
rock isolate CCFEE 5388	–	Selbmann (unpublished)	Capnodiales, Davidiellaceae	GU250380	GU250337	GU250422	3	Alps		
rock isolate CCFEE 5389	–	Selbmann (unpublished)	Capnodiales, incertae sedis	GU250381	GU250338	GU250423	3	Alps		
rock isolate CCFEE 5398	–	Selbmann (unpublished)	Capnodiales, Davidiellaceae	GU250382	GU250339	–	3	Alps		
Rock–inhabiting fungi	Collection #	Additional Information	Order	LSU	SSU	mtSSU	RPB2	RPB1	Analysis	Locality
-----------------------	--------------	------------------------	-------	-----	-----	-------	------	------	----------	----------
rock isolate CCFEE 5410	–	Selbmann (unpublished)	Capnodiales, incertae sedis	GU250384	GU250341	GU250425				Andes
rock isolate CCFEE 5413	–	Selbmann (unpublished)	Dothideomycetes, incertae sedis	GU250385	GU250342	GU250426				Alps
rock isolate CCFEE 5414	–	Selbmann (unpublished)	Capnodiales, Davidiellaceae	GU250386	GU250343					Alps
rock isolate CCFEE 5416	–	Selbmann (unpublished)	Dothideomycetes, incertae sedis	GU250387	GU250344	GU250427				Alps
rock isolate CCFEE 5456	–	Selbmann (unpublished)	Capnodiales, Davidiellaceae	GU250388	GU250345	GU250428				Alps
rock isolate CCFEE 5457	–	Selbmann (unpublished)	Capnodiales, Teratosphaeriaceae	GU250389	GU250346	GU250429				Alps
rock isolate CCFEE 5458	–	Selbmann (unpublished)	Capnodiales, Davidiellaceae	–	GU250347	GU250430				Alps
rock isolate CCFEE 5459	–	Selbmann (unpublished)	Capnodiales, incertae sedis	GU250390	GU250348	GU250431				Alps
rock isolate CCFEE 5460	–	Selbmann (unpublished)	Dothideomycetes, incertae sedis	GU250391	GU250349	GU250432				Alps
rock isolate CCFEE 5466	–	Selbmann (unpublished)	Dothideomycetes, incertae sedis	GU250392	GU250350	GU250433				Alps
rock isolate CCFEE 5467	–	Selbmann (unpublished)	Capnodiales, Teratosphaeriaceae	GU250393	GU250351					Alps
rock isolate CCFEE 5476	–	Selbmann (unpublished)	close to Cryomyces	GU250394	GU250352	GU250434				Alps
rock isolate CCFEE 5495	–	Selbmann (unpublished)	Capnodiales, incertae sedis	GU250395	–	GU250435				Antarctica
rock isolate CCFEE 5490	–	Selbmann (unpublished)	Elasticomyces elasticus	–	GU250353					Antarctica
rock isolate CCFEE 5499	–	Selbmann (unpublished)	Capnodiales, Teratosphaeriaceae	GU250398	GU250355	GU250436				Alps
rock isolate CCFEE 5501	–	Selbmann (unpublished)	Capnodiales, Teratosphaeriaceae	GU250399	GU250356	GU250437				Aconcagua, Andes
rock isolate CCFEE 5502	–	Selbmann (unpublished)	Capnodiales, incertae sedis	GU250400	GU250357	GU250438				Aconcagua, Andes
rock isolate CCFEE 5508	–	Selbmann (unpublished)	Capnodiales, Teratosphaeriaceae	GU250401	GU250358					Aconcagua, Andes
rock isolate D007 09	–	Selbmann (unpublished)	related to Arthoniales	GU250402	GU250359					Antarctica