Spectrometry of molecular interactions in clusters

E K Nepomnyashchaya

1Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St.Petersburg, Russia, 195251

e-mail: elina.nep@gmail.com

Abstract. Molecular interactions in clusters have always been an important problem as to theoretical and experimental studies. In this paper, we describe a combination of spectrometric techniques for experimental analysis of molecular interactions and dynamics in clusters. We study different types of biological molecules (for instance, well-known albumin molecule) and metallic nanoparticles (for instance, Fe$_3$O$_4$) while their binding in solutions with help of laser correlation and absorption spectrometric techniques. Results of spectrometry of biomolecules interacting with metals show different degrees of association between different molecules and nanoparticles. This paper offers original data on spectrometry of such processes, which is useful both for medical and bioelectronics problems.

1. Introduction

The study of nanoparticles binding is extremely important for understanding the processes occurring in various molecular and biomolecular problems [1]. At the same time, methods that allow investigation of binding processes are mostly optical. In modern laboratories, the binding of nanoparticles is investigated by dynamic light scattering (laser correlation spectrometry), Fourier spectroscopy, Raman spectroscopy [2], etc. [3-5]. The methods of electron and atomic force microscopy used for similar tasks, as well as mass spectrometry, require complex sample preparation, are expensive to use, and do not allow observing the binding processes in dynamics [6].

In this paper, we paid attention to the study of possibilities of combining laser correlation spectrometry and absorption spectrometry to study the processes of particles binding into molecular clusters [7]. The use of these two techniques allows obtaining complex information about molecular interactions, the attraction and repulsion of particles in clusters and the dynamics of cluster formation under conditions of various external influences (such as applying a magnetic field to a solution of ferromagnetic Fe$_3$O$_4$ nanoparticles) [8].

Detection of the processes of molecular aggregation by determining their size makes it possible to investigate the interaction of molecules with nanoparticles and other biomolecules in complex biological solutions, such as blood serum [9]. The use of absorption spectrometry makes it possible to determine the conformation of biomolecules and to make assumptions about the molecular binding sites functionality, especially for carrier molecules, such as human serum albumin.
2. Materials and methods

2.1. Laser Correlation Spectrometry
Laser correlation spectrometry, also known as dynamic light scattering, is used to analyze the size and shape of nanoparticles [10], as well as zeta potentials (charges, in general, characterizing electrostatic interaction) of nanoparticles in solutions [11].

The modification of the laser correlation spectrometer and the method of processing [12] the experimental data, proposed by us for the analysis of multicomponent solutions, is described in [13, 14]. Figure 1 shows the general scheme of the laser correlation spectrometry experiment. We use a semiconductor laser with 650 nm wavelength, the absorption in the given wavelength range of the investigated solutions is minimal, as evidenced by the spectra obtained.

![Figure 1. Scheme of a laser correlation spectrometer.](image)

Figure 1. Scheme of a laser correlation spectrometer. 1 – semiconductor laser $\lambda = 650$ nm., 2 – a collecting lens, 3 – a cell with a sample (1 ml volume), 4 – a system of diaphragms, 5 – photomultiplier tube (Hamamatsu H10723-20), 6 – analog-digital board (L-Card E14-440), 7 – computer.

2.2. Absorption spectrometry
Absorption spectrometry in general makes it possible to determine the chemical composition of the solutions studied, but this method can also be used to assess the dynamics of the formation of aggregates in nanoparticle solutions.

![Figure 2. Scheme for measuring the absorption spectra of solutions.](image)

Figure 2. Scheme for measuring the absorption spectra of solutions. 1 – UV-VIS radiation source (deuterium + halogen lamps), 2 – broadband light guide, 3 – aperture system, 4 – cuvette with sample (1 ml volume), 5 – spectrum analyzer (Hamamatsu C10082SAN).

The absorption spectrometry in our work is implemented with Hamamatsu C10082SAN optical spectrum analyzer and UV-VIS illuminator Hamamatsu L10290 (deuterium + halogen lamps). The range of the spectra obtained is 300–850 nm, which makes it possible to estimate the absorption parameters of the solution in a wide frequency range from near ultraviolet to near infrared radiations.
3. Results and discussion
The absorption spectra and the size distribution of nanoparticles in solutions of biomolecules and metal nanoparticles, as well as their mixtures, were obtained. Figures 3–4 show the spectrum and size distribution of the human serum albumin molecules in a solution. As size in all measurements we calculated the hydrodynamic radii. The radii of the albumin molecule, according to literature, is around 6 nm [15]. That is in accordance to our calculations. The concentration of albumin in normal saline was 40 mg/ml, which is close to physical concentration [16].

A change in the size of the aggregates and absorption spectra can be observed with a change in the pH of the test solution or its temperature [17]. As is known, at the isoelectric point of albumin pH ~ 4.2, albumin molecules change their surface charge and tend to form agglomerates [18]. The dependence of the absorption spectra and the size of the resulting agglomerates on the pH of the solution can also be investigated with the help of two presented experimental facilities.

![Figure 3. Size distribution of human serum albumin molecules in a solution.](image)

![Figure 4. Absorbance spectrum for human serum albumin solution.](image)

Figures 5–6 show the spectrum and size distribution in a solution of a ferromagnetic fluid (Fe₃O₄ nanoparticles with concentration 1 mg/ml in water). The radius of single nanoparticles according to electron microscopy was around 5 nm, as can be seen from figure 5. Aggregation of nanoparticles in ferromagnetic fluids is observed when a magnetic field is applied to a sample [19–21]. Also particles
stick together with time. Depending on the concentration of magnetic nanoparticles and the used surfactant, the size and shape of the aggregates can vary significantly [22].

![Figure 5. Size distribution of magnetic fluid nanoparticles.](image)

Aggregation is also traced by changes in the characteristic absorption spectra and size distributions. Absorption peaks location depends not only on the size, but also on the shape of the formed aggregates and can be determined by the influence of the magnetic field on the nanoparticles [23, 24].

Comparing the absorbance spectra for albumin and magnetic fluid solutions one can notice, that albumin, as a biological molecule, has high absorbance in UV spectral region. Magnetic fluids in their turn have high absorbance in near infrared region. Around 560–710 nm spectral region both studied liquids have low absorbance. That determines our choice of laser light source for laser correlation spectrometry measurements.

![Figure 6. Absorbance spectrum for magnetic fluid solution.](image)

In the next series of measurements we mixed albumin and magnetic fluid solutions to detect aggregation processes. We prepared mixture with the following concentrations: 40 mg/ml albumin and 1 mg/ml magnetite nanoparticles in normal saline. From the figure 7 one can notice that sizes of aggregates in the mixture increased in comparison with pure magnetic fluid solution. That can stands for binding of albumin molecules and magnetic nanoparticles. Albumin molecule is a typical carrier in human body, so it has high binding ability to metal particles [25], which we have detected in laser correlation spectroscopy experiments. In the mixture we can still notice a small amount of non-aggregated nanoparticles.
Figure 7. Size distribution of human serum albumin molecules aggregated with magnetic fluid nanoparticles.

Figure 8. Absorbance spectrum for human serum albumin solution mixed with magnetic fluid.

If we analyze absorbance spectra for this mixture (figure 8), we can notice lower absorbance of albumin-magnetic nanoparticles aggregates in the region of 300–350 nm. It can be explained by blocking of tryptophan absorbance in albumin molecule by magnetic fluid nanoparticles, interacting with albumin binding sites. It is known that tryptophan is a fluorescence amino acid that absorb light in UV range of spectra.

4. Conclusions

In this paper, we compared the results of absorption spectrometry and laser correlation spectrometry of albumin and magnetic nanoparticles solutions. It has been shown that the combination of these methods provides more complete information on the nature of the interaction of nanoparticles in solutions, mainly on the types of clusters formed.

The spectra and size compositions of nanoparticles in solutions of albumin molecules and ferromagnetic nanoparticles are demonstrated. When the experimental conditions change, which suggests changes in the size pattern in the studied solutions, the absorption spectra also changed in a characteristic way.

We demonstrated binding of albumin molecules and magnetic fluid nanoparticles resulted in changes of UV light absorption. Apparently it can be caused by blocking the tryptophan absorbance of albumin molecule. Thus, it can be concluded that the binding of albumin and magnetic nanoparticles
violates the functionality of the molecule, blocking its binding center, which results in a decrease in absorption.

At the same time, the spectral picture depended not only on the size, but also on the shape of the formed clusters, which makes it possible to judge the nature of the interaction of particles within the clusters. The form of clusters also can be studied by presented methods and will be discussed in future works.

5. References
[1] Baranov M A, Velichko E N, Aksenov E T and Rozov S V 2018 Self-assembled biomacromolecular films as a basis for nonlinear optical devices International Conference Laser Optics (ICLO) 356
[2] Privalov V E, Shemanin V G 2018 The Sounding of Hydrogen Sulfide Molecules by the Raman Light Scattering Lidar Installed on a Flying Platform Optics and Spectroscopy 125(4) 590-593
[3] Lacombe C, Untereiner V, Gobinet C, Zater M, Sockalingum G D and Garnotel R 2015 Rapid screening of classic galactosemia patients: a proof-of-concept study using high-throughput FTIR analysis of plasma Analyst 140 2280-2286
[4] Grebenikova N M, Smirnov K J, Artemiev V V, Davydov V V and Kruzhalov S V 2018 The universal optical method for condition control of flowing medium Journal of Physics: Conference Series 1038 012089
[5] Grebenikova N M, Smirnov K J, Davydov V V, Rud V Y and Artemiev V V 2018 Features of monitoring the state of the liquid medium by refractometer Journal of Physics: Conference Series 1135 012055
[6] Shalaev P V, Kopicin D S, Kurilova U E and Dolgushin S A 2017 The study of the geometric parameters and zeta potential of gold nanorods and nanostars based on light scattering methods Progress in Biomedical Optics and Imaging - Proceedings of SPIE 104170A
[7] Baranov M A, Klimchitskaya G L, Mostepanenko V M and Velichko E N 2019 Fluctuation-induced free energy of thin peptide films Physical Review E 99(2) 022410
[8] Prokof'ev A V, Pleshakov I V, Bibik E E and Kuz'min Y I 2017 An optical investigation of the geometric characteristics of aggregates formed by particles of magnetic fluid Technical Physics Letters 43 194-196
[9] Nepomnyashchaya E, Velichko E, Aksenov E and Bogomaz T 2018 Laser correlation spectroscopy as a powerful tool to study immune responses Proceedings of SPIE - The International Society for Optical Engineering 10685
[10] Stetefeld J, McKenna S A and Patel T R 2016 Dynamic light scattering: a practical guide and applications in biophysical sciences Biophys Rev 8 409-427
[11] Tereshchenko S A, Shalaev P V, Masloboev Y P, Dolgushin S A, Deshabo V A and Yudin I K 2017 Electrokinetic potential of nanorods and cells in liquid dispersions Biomedical Engineering 50 333-338
[12] Makarov S B, Ovsyannikova A S, Lavrenyuk I I, Zavalov S V and Volvenko S V 2018 Distributions of probability of power values for random sequences of optimal FTN signals International Symposium on Consumer Technologies 57-59
[13] Nepomnyashchaya E, Zabalueva Z, Velichko E and Aksenov E 2017 Modifications of laser correlation spectrometer for investigation of biological fluids EPJ Web Conf. 161 02017
[14] Nepomnyashchaya E, Savchenko E, Velichko E and Aksenov E 2017 Interaction of fullerenol with metals: the research by laser correlation spectroscopy Progress in Biomedical Optics and Imaging - Proceedings of SPIE Optical Technologies in Biophysics and Medicine XVIII 103360H
[15] Gibizova V V, Sapozhnikov V A, Fedorova K V and Petrova G P 2016 Serum albumin molecular mobility in water solutions, containing iron chloride III Journal of Biomedical Photonics & Engineering 2 40304
[16] Savchenko E A, Velichko E N, Aksenov E T and Rozov S V 2018 Light scattering in albumin solution under the influence of electric field in the regime of total internal reflection Journal of Physics: Conference Series 1068 1
[17] Vonti A O, Il’inskii A V, Kapralova V M and Shadrin E B 2018 The Complex Nature of Thermal Phase Transitions in Albumin Solutions Technical Physics 63(6) 908-915

[18] Baranov A N, Vlasova I M and Saletskiy A M 2004 Investigation of serum-albumin aggregation Journal of applied spectroscopy 71 222-226

[19] Nepomnyashchaya E K, Prokofiev A V, Velichko E N, Pleshakov I V and Kuzmin Y I 2017 Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques Journal of Magnetism and Magnetic Materials 431 24-26

[20] Nozdriukhin D V, Filatov N A and Bukatin A S 2018 Formation and manipulation of polyacrylamide spheroids doped with magnetic nanoparticles in microfluidic chip Journal of Physics: Conference Series 1124(3)

[21] Prokofiev A, Nepomnyashchaya E, Pleshakov I, Kuzmin Y, Velichko E and Aksenov E 2016 Study of specific features of laser radiation scattering by aggregates of nanoparticles in ferrofluids used for optoelectronic communication systems Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9870 LNCS 680-689

[22] Dolgushin S A, Shalaev P V, Tereshchenko S A, Yudin I K and Deshabo V K 2016 Depolarization of light scattered in water dispersions of nanoparticles of different shapes Biomedical Engineering 49 394-397

[23] Petrov A A, Grebenikova N M, Lukashev N A, Davydov V V, Ivanova N V, Rodygina N S and Moroz A V 2018 Features of magnetic field stabilization in caesium atomic clock for satellite navigation system Journal of Physics: Conference Series 1038 012032

[24] Logunov S E, Davydov V V and Yalunina T R 2018 Control of structure of magnetic field by laser radiation Proceedings International Conference Laser Optics 49

[25] Velichko E, Nepomnyashchaya E, Dudina A, Pleshakov I and Aksenov E 2018 Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering Proceedings of SPIE Progress in Biomedical Optics and Imaging 10716

Acknowledgments
The research was partially supported by FASIE (No 13463GU/2018 from 20.07.2018).