IntRoductIon

Endometrial cancer (EC) is the most common gynecological cancer in Europe. Lymph node evaluation is the key point in EC staging and prognosis. The International Federation of Gynecology and Obstetrics (FIGO) staging of ECs revised in 2009 to include the pelvic and para-aortic lymphadenectomy (PPLND) as one of the most important prognostic factors in ECs. There are no established data about lymphadenectomy during treatment of endometrial cancers (ECs) and to what extent lymphadenectomy should be performed. In addition, retroperitoneal lymphadenectomy increases the intraoperative and postoperative complications. Sentinel lymph node (SLN) mapping has the lowest costs and highest quality-adjusted survival. SLN is the most cost-effective strategy in the management of low-risk ECs. Women staged with SLN mapping were more likely to receive adjuvant treatment compared with women staged with systemic lymphadenectomy. This review article designed to evaluate the diagnostic accuracy and the methods of SLN detection in ECs.

Keywords: Cancer, endometrial, nodes, sentinel, update

Ibrahim A. Abdelazim1,2,*, Mohannad Abu-Faza1, Gulmira Zhurabekova3, Svetlana Shikanova4, Baky Karimova5, Mukhit Sarsembayev6, Tatjana Starchenko4, Gulmira Mukhambetalyeva6

1Department of Obstetrics and Gynecology, Ahmadi Hospital, Kuwait Oil Company, Ahmadi, Kuwait, 2Department of Obstetrics and Gynecology, Ain Shams University, Cairo, Egypt, Departments of 3Normal and Topographical Anatomy and 4Obstetrics and Gynecology №1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Abstract

There are no established data about lymphadenectomy during treatment of endometrial cancers (ECs) and to what extent lymphadenectomy should be performed. In addition, retroperitoneal lymphadenectomy increases the intraoperative and postoperative complications. Sentinel lymph node (SLN) mapping has the lowest costs and highest quality-adjusted survival. SLN is the most cost-effective strategy in the management of low-risk ECs. Women staged with SLN mapping were more likely to receive adjuvant treatment compared with women staged with systemic lymphadenectomy. This review article designed to evaluate the diagnostic accuracy and the methods of SLN detection in ECs.

Keywords: Cancer, endometrial, nodes, sentinel, update

Article History:
Received 10 January 2019
Received in revised form 16 May 2019
Accepted 20 May 2019
Available online 29 August 2019

Access this article online

Website:
www.e-gmit.com

DOI:
10.4103/GMIT.GMIT_130_18

Address for correspondence: Prof. Ibrahim A. Abdelazim,
Department of Obstetrics and Gynecology, Ahmadi Hospital, Kuwait Oil Company, P.O. Box: 9758, 61008 Ahmadi, Kuwait.
E-mail: dr.ibrahimanwar@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Abdelazim IA, Abu-Faza M, Zhurabekova G, Shikanova S, Karimova B, Sarsembayev M, et al. Sentinel lymph nodes in endometrial cancer update 2018. Gynecol Minim Invasive Ther 2019;8:94-100.
pathological status of SLN reflects the overall status of entire lymphatic basin.[10]

Women with negative SLN for metastasis may be managed by SLN biopsy instead of systemic lymphadenectomy.[10]

The Medical Research Council of ASTEC trial concluded that there was no benefit of systemic lymphadenectomy for early-stage EC on patients’ survival and/or prevention of recurrence.[11]

This review article designed to evaluate the diagnostic value and the methods of SLN detection in ECs.

METHODS OF THE REVIEW

Using the words; sentinel lymph node (SLN), endometrial cancer (EC) and year 2018 a PubMed search done and twenty-five articles retrieved; 20 studies and one systematic review [Table 1], 2 literature review, one case report and one article about the SLN mapping in cervical cancers.

DIAGNOSTIC VALUE OF SENTINEL LYMPH NODES IN ENDOMETRIAL CANCERS

Systemic lymphadenectomy is not necessary in ECs (Stage 1a-1c ECs) with low risk of lymph node involvement.[9] In addition, the noninvasive selective lymphadenectomy provides reliable data regarding the lymph node status and more beneficial than systemic lymphadenectomy in primary ECs.[9]

Schlappe et al. compared the outcome in the staging of deeply invasive endometrioid endometrial carcinoma using SLN algorithm versus PPLND (94 – PPLND and 82 – SLN).[12] They found that SLN patients had more lymphovascular space infiltration ($P < 0.001$). About 9.8% in the SLN and 29.8% in the PPLND cohorts, respectively, received no adjuvant therapy ($P < 0.001$).[12] Schlappe et al. concluded that the use of an SLN dissection in invasive EC does not impair the oncologic outcome.[12]

A retrospective study done by Buda et al. included 66 patients in the SLN mapping-algorithm (SLN-A) and 105 in the selective lymphadenectomy (SLND) to compare the impact of SLN-A to SLND on the staging of the high-risk EC.[13] Buda et al. found that the SLND strategy did not compromise the prognosis of patients with high risk of recurrence.[13]

Brugger et al. found that the detection rate (DR) of the SLN was 61% on both sides and 86% on at least one side, and they spared 26 PPLND using SLN dissection.[14] Brugger et al. concluded that the SLN reduced the radical lymphadenectomy by 50% in patients with “higher than low risk” EC.[14]

Touhami et al. concluded that the risk of lymph node involvement in patients with a preoperative diagnosis of “atypical hyperplasia-only” is null, and lymph node assessment in such patients could be omitted, while the risk is high in patients with preoperative diagnosis of “atypical hyperplasia-cannot rule out cancer;” the SLN mapping in such patients could be valuable.[15]

Suri and Arora found that only a few studies assessed the place of SLN biopsy in the management of ECs.[16] The Society of Gynecologic Oncology recommended SLN mapping into the surgical staging of ECs to reduce the morbidities associated with systemic lymphadenectomy.[17]

Tschernichovsky et al. concluded that SLN biopsy was more accurate alternative to comprehensive lymphadenectomy for determining the nodal spread in early-stage ECs.[18] Naoura et al. found that the SLN mapping and the lymphovascular infiltration (LVSI) status can select which high-risk patients with ECs would benefit from comprehensive systemic staging.[19]

The lymph node status is one of the most important features to determine the EC adjuvant treatment, and the SLN biopsy has emerged as an alternative to retroperitoneal lymphadenectomy in EC with the same diagnostic ability while minimizing morbidity.[20,21]

METHODS OF SENTINEL LYMPH NODE DETECTION IN ENDOMETRIAL CANCERS

Sentinel lymph node detection in endometrial cancers using indocyanine green tracer

Rajanbabu and Agarwal’s prospective study carried out with intracervical indocyanine green (ICG) injection for SLN detection in women with early-stage EC who underwent staging.[22] Rajanbabu and Agarwal found that it is essential that the steps mentioned in the SLN mapping algorithm are followed when doing SLN mapping and biopsy during EC staging as SLN mapping alone seems to have limitation in detecting positive nodes, especially in high-risk subtypes of EC.[23]

The SLN mapping may be considered an alternative standard of care in the staging Ecs, and the ICG cervical injection has the highest SLN DRs.[23,24] Shimada et al. found that the SLN mapping with the use of cervical tracer injection is highly feasible in Japanese women with early-stage EC.[25] Papadia et al. concluded that large dose of ICG associated with high number of retrieved SLNs but not with an increased bilateral DR.[26]
Table 1: Type, population, and the conclusion of the PubMed retrieved studies and systematic review

Authors	Type and population of the study	Conclusion
Schlappe et al.[32]	Multicenter study of 176 patients (94 - PPLND and 82 - SLN).	Use of an SLN algorithm in invasive EEC does not impair oncologic outcomes
Buda et al.[33]	Retrospective analysis of database of 171 women; 66 in SLN-A and 105 in SLND group	The SLN-A strategy did not seem to compromise the prognosis of patients’ HR of recurrence
Brugger et al.[14]	Retrospective study of SLN dissection in 109 patients of 154 consecutive patients according to NCCN guidelines	SLN dissection reduced the radical lymphadenectomy by 50% in patients with “higher than low risk” EC
Touhami et al.[15]	Retrospective study of 120 women with preoperative diagnosis of AH who underwent primary surgery with SLN mapping followed by pelvic lymphadenectomy	The risk of EC is high in patients with the diagnosis of “AH-cannot rule out cancer”
Rajanbabu and Agarwal[22]	Retrospective study of 60 patients with intracervical injection of ICG, for SLN identification and biopsy for women with early-stage EC	SLN mapping alone seems to have a limitation in detecting positive nodes, especially in HR EC
Shimada et al.[34]	Retrospective study of 57 patients with EC. Technetium colloid and/or ICG injected into the uterine cervix and a gamma-detecting probe used to locate hotspots during surgical staging	SLN mapping with the use of cervical tracer injection is highly feasible in Japanese women with early-stage EC.
Papadia et al.[26]	Retrospective analysis of 168 patients with two different injection protocols	ICG dose was the only factor associated with number of removed SLNs
Body et al.[37]	Retrospective analysis of 119 patients, detection rate, sensitivity, and negative predictive value calculated to evaluate factors associated with failed bilateral detection of SLNs	ICG is an excellent tracer for SLN mapping in EC
Papadia et al.[28]	Retrospective analysis of 42 patients with EC undergoing a laparoscopic NIR-ICG SLN mapping followed by a systematic lymphadenectomy	Advanced FIGO stage correlated with failed bilateral detection
Mendivil et al.[29]	Retrospective study of 87 women with clinical stage I-EC who underwent robotic-assisted surgery that incorporated mapping with ICG and SLN dissection	The laparoscopic NIR-ICG SLN mapping in high-risk EC patients has acceptable sensitivity, false-negative rate, and negative predictive value
Ruiz et al.[30]	Prospective study of 111 patients who underwent laparoscopic surgery for EC. SLN biopsy performed with dual cervical and fundal ICG injection	The minimally invasive SLN staging using ICG is potentially effective procedure at detecting metastases
Geppert et al.[32]	Prospective study of 188 patients with EC planned for robotic surgery ICG used to identify the SLNs	The SLN biopsy with both cervical and fundal ICG injections offers good overall detection rates and improved mapping of the aortic area
How et al.[33]	Systematic search for all studies published until October 31, 2017. Studies included for review if they contained at least 30 EC patients undergoing SLN mapping and reported detection rates	SLN mapping is feasible and accurate alternative to stage patients with EC
Zuo et al.[34]	Prospective study of 50 patients received fundal subserosal injections at 4 sites (fundal group), while 65 patients received cervical submucosal injections at 2 sites (cervical group)	ICG results in the highest SLN detection rates
Tanaka et al.[35]	Prospective study of 121 patients with EC who underwent FDG PET/CT before hysterectomy and received SNB followed by PLND	SLN mapping by CNPs in laparoscopic surgery for EC is safe and effective alternative with a higher detection rate and better accuracy in cervical injection than fundal injection
Fanfani et al.[36]	Retrospective study of 40 consecutive FIGO Stage I-EC patients and SLN mapping performed in all patients SLN was examined by OSNA and by frozen section analysis	The combined diagnosis of FDG PET/CT and SNB improves the sensitivity
El-Agwany and Meleiu[30]	Prospective study of 120 patients with early-stage EC and low risk for nodal metastasis who underwent surgical staging	The combination of OSNA procedure with the SLN mapping could represent an efficient intraoperative tool for the selection of early-stage EC patients to be submitted to systematic lymphadenectomy
Tanaka et al.[39]	Prospective study of 211 patients with EC who underwent SLN biopsy at hysterectomy using three kinds of tracers including 99m-technetium (99mTc), indigo carmine, and ICG	Hysteroscopic-guided blue dye injection was the best technique for SLN detection, and the SLN can be used in patients with low risk for lymph node metastasis
Euscher et al.[41]	Prospective study of the following histologic subtype: endometrioid, serous, carcinosarcoma, clear cell, and undifferentiated carcinomas. In all, 172 patients had ultra-staging: M1=65; M2=58	Patients who underwent laparoscopy with<50% myometrial invasion and low-grade ECs not only have higher detection rates but also have lower false-negative rates
Suidan et al.[42]	Prospective study comparing the three lymphadenectomy strategies: 1. Routine lymphadenectomy, 2. Selective lymphadenectomy, and 3. SLN mapping, to evaluate the cost-utility of three lymphadenectomy strategies in the management of low-risk EC	A more comprehensive ultra-staging protocol had no significant advantages over a single wide interval and immunohistochemistry

Contd...
A retrospective analysis of patients who underwent primary surgery for EC with SLN mapping using ICG, followed by pelvic lymphadenectomy, was conducted by Body et al., to determine the validity of SLN mapping with ICG in EC. Body et al. found that ICG is an excellent tracer for SLN mapping in EC, while advanced FIGO stage associated with failed bilateral detection (P = 0.01).

Another retrospective analysis by Papadia et al. conducted to evaluate the accuracy of the near infrared-ICG (NIR-ICG) SLN mapping in patients with poorly differentiated EC who have undergone a full lymphadenectomy. Papadia et al. found the NPV and the sensitivity of the NIR-ICG SLN mapping in high-risk EC patients were acceptable.

Mendivil et al. found that the minimally invasive SLN staging using ICG is an effective procedure for detection of metastases with decreased risk of surgical morbidity.

Ruiz et al. found that the SLN biopsy with both cervical and fundal ICG injections offers good overall DRs and improved mapping of the aortic lymph nodes.

In addition, Mangeshikar et al. concluded that with the advent of ICG, the morbidity and radicality associated with treating gynecological malignancy will be greatly reduced.

A prospective study was conducted by Geppert et al., evaluating the lymphatic complications in women with EC undergoing SLN biopsy versus full lymphadenectomy. Geppert et al. concluded that the absence of intraoperative complications and the low risk of lymphatic complications support implementing detection of SLN biopsy in low-risk EC patients.

A systematic search utilizing Medline, Web of Science, and EMBASE databases was conducted by How et al. and concluded that the SLN mapping is a feasible and accurate alternative to stage patients with EC.

Sentinel lymph node detection in endometrial cancers using tracers other than indocyanine green

Zuo et al. conducted a prospective consecutive study (Canadian Task Force classification II) to evaluate the DR and accuracy of SLN mapping using cervical and fundal injection of carbon nanoparticles (CNPs) during laparoscopic surgery for endometrioid EC. Zuo et al. found that the SLN mapping by CNPs in laparoscopic surgery for EC is a safe and effective alternative with higher DR and better accuracy in cervical injection than fundal injection.

Tanaka et al. concluded that the combined diagnosis of fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) and SLN biopsy improves the sensitivity; PET-positive nodes should be dissected regardless of SNL biopsy status, and hemipelvises in which SNL biopsy was not detected should be dissected systematically regardless of FDG PET/CT status.

Fanfani et al. found that the combination of one-step nucleic acid amplification (OSNA) procedure with the SLN mapping could represent an efficient intraoperative tool for the selection of early-stage EC patients to be submitted to systematic lymphadenectomy.

Nagai et al. found that the OSNA assay using cytokeratin-19 mRNA was applicable for detecting lymph node metastasis in ECs.

El-Agwany and Meleis concluded that the hysteroscopic-guided blue dye injection was the best technique for SLN detection, and the SLN can be used in patients with low risk for lymph node metastasis. In addition, they found the blue methylene dye good for SLN detection in low-resource countries.

Tanaka et al. concluded that patients who underwent laparoscopic staging with <50% myometrial invasion and low-grade ECs have high DRs and can avoid systemic lymphadenectomy according to the status of the SNL biopsy.

Kataoka et al. concluded that the SLN mapping for ECs using hysteroscopic subendometrial injection of 99m-technetium labeled phytate (Radio-isotope; RI method) and subserosal ICG injection in ECs revealed high DR with high sensitivity and negative predictive value.

Sentinel lymph node detection in endometrial cancers using ultra-staging and immunohistochemistry stain

Euscher et al. compared two ultra-staging protocols for negative SLN by routine processing in EC, and they concluded that a more comprehensive ultra-staging protocol
had no significant advantages over a single wide interval and immunohistochemistry.\cite{41}

Cost-Effectiveness of Sentinel Lymph Node Strategy in Endometrial Cancers

Suidan et al. compared three lymphadenectomy strategies in women undergoing minimally invasive surgery for low-risk EC, and they found that the selective lymphadenectomy was less costly and more effective than routine lymphadenectomy.\cite{42} In addition, they concluded that the SLN mapping has the highest quality-adjusted survival and lowest cost making it the most cost-effective strategy in the management of low-risk EC.\cite{42}

Acceptance of the Sentinel Lymph Node Strategy

Selective lymphadenectomy has been widely employed for staging of ECs because it provides reliable data regarding the lymph node status.\cite{9}

Gómez-Hidalgo et al. analyzed 54,039 women with EC in the National Cancer Database (from 2013 to 2014) including 38,453 (71.2%) who underwent lymphadenectomy and 1929 (3.6%) who underwent SLN mapping. SLN mapping increased from 2.8% to 4.3% in 2013 and 2014, respectively ($P < 0.001$).\cite{43}

Bogani et al. concluded that the SLN mapping represents an attractive mid-way between the omission of lymph node dissection and full lymphadenectomy.\cite{44}

In addition, they concluded that the SLN mapping can identify more cases of lymphatic disease than conventional lymphadenectomy and improve the adjuvant treatments in high-risk patients.\cite{44}

The SLN mapping algorithm for the surgical staging of EC has gained a significant acceptance and is now commonly applied in many practices.\cite{45}

A case report of a positive precaval SLN with negative pelvic SLN in a 45-year-old woman with Grade 2 endometrioid EC reported by Montero Macias et al., and they concluded that in this woman, the SLN biopsy improved risk-assessment and adjuvant treatment.\cite{46}

Sentinel Lymph Node Strategy in Gynecologic Cancers

SLNs mapping strategy has gained a significant acceptance in all gynecologic cancers not only the ECs.

Kim et al. concluded that SLN mapping with ICG in cervical cancer is feasible and has high DR with 100% sensitivity in early-stage tumors (<2 cm).\cite{47}

Cea García et al. used cervical injection of 99mTc-nanocolloid of albumin and methylene blue followed by imaging and SLN biopsy to assess the diagnostic value of SLN biopsy in initial cancer cervix stages.\cite{48} Cea García et al. concluded that their technique has a high detection, but the sensitivity is still. The intraoperative ultra-staging could increase the sensitivity of their technique and reduce the false negatives.\cite{48}

In addition, the National Comprehensive Cancer Network guidelines recommended SLN mapping strategy for lymphatic assessment not only for endometrial but also for cervical and vulvar cancers.\cite{49}

Recently, Tantitamit and Lee found that the SLN mapping in the natural orifice transluminal endoscopic surgery (NOTES) technique had overall DR, and bilateral DR was 100% (4/4). Tantitamit and Lee concluded that the SLN mapping in NOTES surgery appears to be feasible and can be considered as an alternative to radical lymphadenectomy.\cite{50}

Conclusion

This review article concluded that the SLNs mapping is an accurate alternative to systemic lymphadenectomy for determining the nodal spread in early-stage ECs and its cost-effective strategy in the management of low-risk EC. SLN mapping allows upstaging in low- or intermediate-risk ECs in whom adjuvant therapy could be omitted. Women with ECs staged with SLNs were more likely to receive adjuvant treatment compared with women staged with systemic lymphadenectomy. Decreased lymphatic complications and operative time strongly motivate the SLN biopsy concept in high-risk ECs. Although ICG cervical injection offers the highest SLN DRs, others concluded that this technique is controversial because the distribution of SLNs in ECs is different from distribution of SLNs in cervical cancers.

Ethical committee approval was not required because this review does not contain any research on human or animal subjects.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Cetinkaya K, Atalay F, Bacinoglu A. Risk factors of lymph node metastases with endometrial carcinoma. Asian Pac J Cancer Prev 2014;15:6353-6.
2. SGO Clinical Practice Endometrial Cancer Working Group, Burke WM, Orr J, Leitao M, Salom E, Gehrig P. Endometrial cancer: A review and current management strategies: Part I. Gynecol Oncol 2014;134:385-92.
3. Haltia UM, Blitow R, Lxminen A, Loukovaara M. FIGO 1988 versus 2009 staging for endometrial carcinoma: A comparative study on prediction of survival and stage distribution according to histologic
Abdelazim, et al.: Sentinel lymph nodes in endometrial cancer

subtype. J Gynecol Oncol 2014;25:30-9.

4. Ilker S, Nilufar C, Firat CZ, Bulent O, Hatice B, Tayfun G. Predicting lympho-vascular space invasion in endometrial cancers with mucinous carcinomatous components. Asian Pac J Cancer Prev 2015;16:4247-50.

5. Aksoy RT, Turan AT, Boran N, Tokmak A, Isikogan BZ, Tulunay HG, et al. Lack of relation of survivin gene expression with survival and surgical prognostic factors in endometrial carcinoma patients. Asian Pac J Cancer Prev 2014;15:6905-10.

6. Zikan M, Fischerova D, Pinkavova I, Slama J, Weinberger V, Dusek L, et al. A prospective study examining the incidence of asymptomatic and symptomatic lymphoceles following lymphadenectomy in patients with gynecological cancer. Gynecol Oncol 2015;137:291-8.

7. Ma X, Wang Y, Fan A, Dong M, Zhao X, Zhang X, et al. Risk factors, microbiology and management of infected lymphocyst after lymphadenectomy for gynecologic malignancies. Arch Gynecol Obstet 2018;298:1195-203.

8. KruSun S, Pesece M, Rasio W, Tangvoraphonchai V, Supaadirek C. Thamrongvannaskul K, et al. Survival rate of early stage endometrioid adenocarcinoma of endometrium treated at Sirinagarind hospital. Asian Pac J Cancer Prev 2014;15:2217-20.

9. Selman TJ, Mann CH, Zamora J, Khan KS. A systematic review of tests for lymph node status in primary endometrial cancer. BMC Womens Health 2008;8:8.

10. Farghali MM, Allam IS, Abdelazim IA, El-Kady OS, Rashed AR, el et al. Accuracy of sentinel node in detecting lymph node metastasis in primary endometrial carcinoma. Asian Pac J Cancer Prev 2015;16:6691-6.

11. ASTEC Study Group, Kitchener H, Swart AM, Qian Q, Amos C, Parmar MK, et al. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): A randomised study. Lancet 2009;373:125-36.

12. Schlappe BA, Weaver AL, Ducie JA, Eriksson AGZ, Dowdy SC, Cliby WA, et al. Multicenter study comparing oncologic outcomes between two nodal assessment methods in patients with deeply invasive endometrioid endometrial carcinoma: A sentinel lymph node algorithm versus a comprehensive pelvic and paraaortic lymphadenectomy. Gynecol Oncol 2018;151:235-42.

13. Buda A, Gasparri ML, Puppo A, Mereu L, De Ponti E, Di Martino G, et al. Lymph node evaluation in high-risk early stage endometrial cancer: A multi-institutional retrospective analysis comparing the sentinel lymph node (SLN) algorithm and SLN with selective lymphadenectomy. Gynecol Oncol 2018;150:261-6.

14. Brugger S, Hamann M, Mosner M, Beer M, Braun M, Pölcher M. Endometrial cancer-how many patients could benefit from sentinel lymph node dissection? World J Surg Oncol 2018;16:95.

15. Touhami O, Grégoire J, Renaud MC, Sebastianelli A, Grondin K, Plante M. The utility of sentinel lymph node mapping in the management of endometrial atypical hyperplasia. Gynecol Oncol 2018;148:485-90.

16. Suri V, Arora A. Management of endometrial cancer: A review. Rev Recent Clin Trials 2015;10:309-16.

17. Holloway RW, Abu-Rustum NR, Backes FJ, Boggess JF, Gotlieb WH, Jeffrey Lowery W, et al. Sentinel lymph node mapping and staging in endometrial cancer: A Society of gynecologic oncology literature review with consensus recommendations. Gynecol Oncol 2017;146:405-15.

18. Tschernichovsky R, Diver EJ, Schorge JO, Goodman A. The role of lymphadenectomy versus sentinel lymph node biopsy in early-stage endometrial cancer: A Review of the literature. Am J Clin Oncol 2016;39:516-21.

19. Naoura I, Canlorbe G, Bendifallah S, Ballester M, Danui E. Relevance of sentinel lymph node procedure for patients with high-risk endometrial cancer. Gynecol Oncol 2015;136:60-4.

20. FERRAIOLI D, CHOPIN N, BEURRIER F, CARRABIN N, BUENERD A, MATHEPV P. The incidence and clinical significance of the micrometastases in the sentinel lymph nodes during surgical staging for early endometrial cancer. Int J Gynecol Cancer 2015;25:673-80.

21. Sullivan SA, Rossi EC. Sentinel lymph node biopsy in endometrial cancer: A New standard of care? Curr Treat Options Oncol 2017;18:62.

22. Rajanbabu A, Agarwal R. A prospective evaluation of the sentinel node mapping algorithm in endometrial cancer and correlation of its performance against endometrial cancer risk subtypes. Eur J Obstet Gynecol Reprod Biol 2018;224:77-80.

23. Bodurtha Smith AJ, Fader AN, Tanner EJ. Sentinel lymph node assessment in endometrial cancer: A systematic review and meta-analysis. Am J Obstet Gynecol 2017;216:459-76.

24. Abdelazim A, Zhurabekova G. Cervical injection for sentinel lymph nodes detection in endometrial cancers is controversial. Clin Transl Imaging 2018;6:249.

25. Shimada C, Todo Y, Yamazaki H, Takeshita S, Okamoto K, Minobe S, et al. A feasibility study of sentinel lymph node mapping by cervical injection of a tracer in Japanese women with early stage endometrial cancer. Taiwan J Obstet Gynecol 2018;57:541-5.

26. Papadia A, Buda A, Gasparri ML, Di Martino G, Russo B, Verdi D, et al. The impact of different doses of indocyanine green on the sentinel lymph-node mapping in early stage endometrial cancer. J Cancer Res Clin Oncol 2018;144:2187-91.

27. Body N, Grégoire J, Renaud MC, Sebastianelli A, Grondin K, Plante M. Tips and tricks to improve sentinel lymph node mapping with indocyanin green in endometrial cancer. Gynecol Oncol 2018;150:267-73.

28. Papadia A, Gasparri ML, Radan AP, Stämpfli CAL, Rau TT, Mueller MD. Retrospective validation of the laparoscopic ICG SLN mapping in patients with grade 3 endometrial cancer. J Cancer Res Clin Oncol 2018;144:1385-93.

29. Mendivil AA, Abaid LN, Brown JY 3rd, Mori KM, Beck TL, Epstein HD, et al. The safety and feasibility of minimally invasive sentinel lymph node staging using indocyanine green in the management of endometrial cancer. Eur J Obstet Gynecol Reprod Biol 2018;224:29-32.

30. Ruiz R, Gorostidi M, Jaunarena I, Goiri C, Aguerre J, Lekuona E. Sentinel node biopsy in endometrial cancer with dual cervical and fundal indocyanine green injection. Int J Gynecol Cancer 2018;28:139-44.

31. Mangeshakar A, Huang KG, Lee CL. Laparoscopic sentinel node detection with indocyanine green in endometrial cancer. Gynecol Minim Invasive Ther 2017;6:139-40.

32. Geppert B, Lönnefors C, Bollino M, Persson J. Sentinel lymph node biopsy in endometrial cancer-feasibility, safety and lymphatic complications. Gynecol Oncol 2018;148:491-8.

33. How JA, O’Farrell P, Amajoud Z, Lau S, Salvador S, How E, et al. Sentinel lymph node mapping in endometrial cancer: A systematic review and meta-analysis. Minerva Ginecol 2018;70:194-214.

34. Zuo J, Wu LY, Cheng M, Bai P, Lei CZ, Li N, et al. Comparison study of laparoscopic sentinel lymph node mapping in endometrial carcinoma using carbon nanoparticles and lymphatic pathway verification. J Minim Invasive Gynecol 2018; pii:S1553-4650(18)31350-5.

35. Tanaka T, Terai Y, Yamamoto K, Yamada T, Ohmichi M. The diagnostic accuracy of fluorodeoxyglucose-positron emission tomography/ computed tomography and sentinel node biopsy in the prediction of pelvic lymph node metastasis in patients with endometrial cancer: A retrospective observational study. Medicine (Baltimore) 2018;97:e12522.

36. Fanfani F, Monterossi G, Ghizzoni V, Rossi ED, Dinoi G, Inzani F, et al. One-step nucleic acid amplification (OSNA): A fast molecular test based on CK19 mRNA concentration for assessment of lymph-nodes metastases in early stage endometrial cancer. PLoS One 2018;13:e0195877.

37. Nagai T, Niikura H, Okamoto S, Nakabayashi K, Matoda M, Utsumoniya H, et al. A new diagnostic method for rapid detection of lymph node metastases using a one-step nucleic acid amplification (OSNA) assay in endometrial cancer. Ann Surg Oncol 2015;22:980-6.

38. El-Agwany AS, Meleis MH. Value and best way for detection of sentinel lymph node in early stage endometrial cancer: Selective lymphadenectomy algorithm. Eur J Obstet Gynecol Reprod Biol 2018;225:35-9.

39. Tanaka T, Terai Y, Fujisawa S, Tanaka Y, Sasaki H, Tsunetoh S, et al. The detection of sentinel lymph nodes in laparoscopic surgery can eliminate systemic lymphadenectomy for patients with early stage endometrial cancer. Int J Clin Oncol 2018;23:305-13.

40. Kataoka F, Susumu N, Yamagami W, Kuwahata M, Takigawa A, Nomura H, et al. The importance of para-aortic lymph nodes in sentinel lymph node mapping for endometrial cancer by using hysteroscopic radio-isotope tracer injection combined with subserosal dye injection:
Prospective study. Gynecol Oncol 2016;140:400-4.

41. Eisicher E, Sui D, Soliman P, Westin S, Ramalingam P, Bassett R, et al. Ultrastaging of sentinel lymph nodes in endometrial carcinoma according to use of 2 different methods. Int J Gynecol Pathol 2018;37:242-51.

42. Suidan RS, Sun CC, Cantor SB, Mariani A, Soliman PT, Westin SN, et al. Three lymphadenectomy strategies in low-risk endometrial carcinoma: A cost-effectiveness analysis. Obstet Gynecol 2018;132:52-8.

43. Gómez-Hidalgo NR, Chen L, Hou JY, Tergas AI, St. Clair CM, Ananth CV, et al. Trends in sentinel lymph node mapping and adjuvant therapy in endometrial carcinoma. Cancer Invest 2018;36:190-8.

44. Bogani G, Raspagliesi F, Leone Roberti Maggiore U, Mariani A. Current landscape and future perspective of sentinel node mapping in endometrial cancer. J Gynecol Oncol 2018;29:e94.

45. Murali R, Delair DF, Bean SM, Abu-Rustum NR, Soslow RA. Evolving roles of histologic evaluation and molecular/genomic profiling in the management of endometrial cancer. J Natl Compr Canc Netw 2018;16:201-9.

46. Montero Macias R, Balaya V, Bonsang-Kitzis H, Deloménie M, Gosset M, Mimouni M, et al. Precaval positive sentinel lymph node with bilateral negative pelvic sentinel lymph node in low-risk endometrial cancer patient. J Gynecol Obstet Hum Reprod 2018. pii: S2468-7847(18)30429-X.

47. Kim JH, Kim DY, Suh DS, Kim JH, Kim YM, Kim YT, et al. The efficacy of sentinel lymph node mapping with indocyanine green in cervical cancer. World J Surg Oncol 2018;16:52.

48. Cea García J, de la Riva Pérez PA, Rodríguez Jiménez I, Márquez Maraver F, Polo Velasco A, Jiménez Gallardo J, et al. Selective biopsy of the sentinel node in cancer of cervix: Experience in validation phase. Rev Esp Med Nucl Imagen Mol 2018;37:359-65.

49. Reneé Franklin C, Tanner EJ 3rd. Where are we going with sentinel lymph node mapping in gynecologic cancers? Curr Oncol Rep 2018;20:96.

50. Tantitamit T, Lee CL. Application of sentinel lymph node technique to transvaginal natural orifices transluminal endoscopic surgery in endometrial cancer. J Minim Invasive Gynecol 2018. pii: S1553-4650(18)31288-3.