On Strassen’s rank additivity for small three-way tensors

Jarosław Buczyński∗ Elisa Postinghel† Filip Rupniewski‡

Abstract

We address the problem of the additivity of the tensor rank. That is for two independent tensors we study if the rank of their direct sum is equal to the sum of their individual ranks. A positive answer to this problem was previously known as Strassen’s conjecture until recent counterexamples were proposed by Shitov. The latter are not very explicit, and they are only known to exist asymptotically for very large tensor spaces. In this article we prove that for some small three-way tensors the additivity holds. For instance, if the rank of one of the tensors is at most 6, then the additivity holds. Or, if one of the tensors lives in $\mathbb{C}^k \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ for any k, then the additivity also holds. More generally, if one of the tensors is concise and its rank is at most 2 more than the dimension of one of the linear spaces, then additivity holds. In addition we also treat some cases of the additivity of border rank of such tensors. In particular, we show that the additivity of the border rank holds if the direct sum tensor is contained in $\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$.

Keywords: tensor rank, additivity of tensor rank, Strassen’s conjecture, slices of tensor, secant variety, border rank.

AMS Mathematical Subject Classification 2010: Primary: 15A69, Secondary: 14M17, 68W30, 15A03.

1 Introduction

The matrix multiplication is a bilinear map $\mu_{a,b,c}: \mathcal{M}^{a \times b} \times \mathcal{M}^{b \times c} \to \mathcal{M}^{a \times c}$, where $\mathcal{M}^{i \times j} \simeq \mathbb{k}^{i \times j}$ is the linear space of $i \times j$ matrices with coefficients in a field \mathbb{k}. We can interpret it as a three-way tensor

$$
\mu_{a,b,c} \in (\mathcal{M}^{a \times b})^* \otimes (\mathcal{M}^{b \times c})^* \otimes \mathcal{M}^{a \times c}.
$$

Following the discoveries of Strassen [Str69], scientists started to wonder what is the minimal number of multiplications required to calculate the product of two matrices MN, for any $M \in \mathcal{M}^{a \times b}$ and $N \in \mathcal{M}^{b \times c}$. This is a question about the tensor rank of $\mu_{a,b,c}$.

Suppose A, B, and C are finite dimensional vector spaces over \mathbb{k}. A simple tensor is an element of the tensor space $A \otimes B \otimes C$ which can be written as $a \otimes b \otimes c$ for some $a \in A$, $b \in B$, $c \in C$. The rank of a tensor $p \in A \otimes B \otimes C$ is the minimal number $R(p)$ of simple tensors needed, such that p can be expressed as a linear combination of simple tensors. Thus $R(p) = 0$ if and only if $p = 0$, and $R(p) = 1$ if and only if p is a simple tensor. In general, the higher the rank is, the more complicated p “tends” to be. In particular, the minimal number of multiplications needed to calculate MN as above is equal to $R(\mu_{a,b,c})$. See for instance [Com02], [Lan12], [CGO14] and references therein for more details and further motivations to study tensor rank.

Our main interest in this article is in the additivity of the tensor rank. Going on with the main example, given arbitrary four matrices $M' \in \mathcal{M}^{a' \times b'}$, $N' \in \mathcal{M}^{b' \times c'}$, $M'' \in \mathcal{M}^{a'' \times b''}$, $N'' \in \mathcal{M}^{b'' \times c''}$, suppose we want to calculate both products $M'N'$ and $M''N''$ simultaneously. What is the minimal number of multiplications needed to obtain the result? Is it equal to the sum of the ranks $R(\mu_{a',b',c'}) + R(\mu_{a'',b'',c''})$? More generally, the same question can be asked for arbitrary tensors. If we

∗jabu@impan.edu.pl, Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland, and Faculty of Mathematics, Computer Science and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
†e.postinghel@lboro.ac.uk, Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, United Kingdom
‡f.rupniews@impan.pl, Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland

\n
\n
1
are given two tensors in independent vector spaces, is the rank of their sum equal to the sum of their ranks? A positive answer to this question was widely known as Strassen’s Conjecture \cite{Str73} p. 194, §4, Vermutung 3, \cite{Lan12} §5.7, until it was disproved by Shitov \cite{Shi17}.

Problem 1 (Strassen’s additivity problem). Suppose $A = A' \otimes A''$, $B = B' \otimes B''$, and $C = C' \otimes C''$, where all A, \ldots, C'' are finite dimensional vector spaces over a field \k. Pick $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$ and let $p = p' + p''$, which we will write as $p = p' \oplus p''$. Does the following equality hold

$$R(p) = R(p') + R(p'')? \quad (1.1)$$

In this article we address several cases of Problem 1 and its generalisations. It is known that if one of the vector spaces A', A'', B', B'', C', C'' is at most two dimensional, then the additivity of the tensor rank \[(1.1)\] holds: see \cite{JT86} for the original proof and Subsection 5.2 for a discussion of more recent approaches. One of our results included the next case, that is, if say $\dim B'' = \dim C'' = 3$, then \[(1.1)\] holds. The following theorem summarises our main results. Although most of our arguments are characteristic free, we partially rely on some earlier result which often are proven only over the field of complex numbers \mathbb{C}.

Theorem 1.2. Let \k be any algebraically closed base field and let A', A'', B', B'', C', C'' be vector spaces over \k. Assume $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$ and let

$$p = p' \oplus p'' \in (A' \oplus A'') \otimes (B' \oplus B'') \otimes (C' \oplus C'').$$

If at least one of the following conditions holds, then the additivity of the rank holds for p, that is $R(p) = R(p') + R(p'')$:

- $\k = \mathbb{C}$ and $\dim B'' \leq 3$ and $\dim C'' \leq 3$.
- $R(p'') \leq \dim A' + 2$ and p'' is not contained in $\tilde{A}' \otimes B'' \otimes C''$ for any linear subspace $\tilde{A}' \subseteq A''$.
- $\k = \mathbb{C}$ and $R(p'') \leq 6$.

Analogous statements hold if we exchange the roles of A, B, C and/or of $'$ and $''$.

The theorem summarises the content of Theorems 4.17–4.19 proven in Section 4.4.

Some other cases of additivity were shown in \cite{FW84}. Another variant of Problem 1 asks the same question in the setting of symmetric tensors and the symmetric tensor rank, or equivalently, for homogeneous polynomials and their Waring rank. No counterexamples to this version of the problem are yet known, while some partial positive results are described in \cite{CCO16, CCC15, CCC18, Ten15}, and \cite{CNM15}.

Next we turn our attention to the border rank. Roughly speaking, over the complex numbers, a tensor p has border rank at most r, if and only if it is a limit of tensors of rank at most r. The border rank of p is denoted by $\overline{R}(p)$. One can pose the analogue of Problem 1 for the border rank: for which tensors $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$ is the border rank additive, that is, $\overline{R}(p' \oplus p'') = \overline{R}(p') + \overline{R}(p'')$?

In general, the answer is negative; in fact there exist examples for which $\overline{R}(p' \oplus p'') < \overline{R}(p') + \overline{R}(p'')$: Schönage proposed a family of counterexamples amongst which the smallest is

$$\overline{R}(\mu_{2,1,3}) = 6, \quad \overline{R}(\mu_{1,2,1}) = 2, \quad \overline{R}(\mu_{2,1,3} \oplus \mu_{1,2,1}) = 7$$

\cite{Sch81}, see also \cite{Lan12} §11.2.2.

Nevertheless, one may be interested in special cases of the problem. We describe one instance suggested by J. Landsberg (private communication, also mentioned during his lectures at Berkeley in 2014).

Problem 2 (Landsberg). Suppose A', B', C' are vector spaces and $A'' \simeq B'' \simeq C'' \simeq \mathbb{C}$. Let $p' \in A' \otimes B' \otimes C'$ be any tensor and $p'' \in A'' \otimes B'' \otimes C''$ be a non-zero tensor. Is $\overline{R}(p' \oplus p'') > \overline{R}(p')$?
Another interesting question is what is the smallest counterexample to the additivity of the border rank? The example of Schönage lives in \(\mathbb{C}^{2+2} \otimes \mathbb{C}^{3+2} \otimes \mathbb{C}^{6+1} \), that is it requires using a seven dimesional vector space. Here we show that if all three spaces \(A, B, C \) have dimensions at most 4, then it is impossible to find a counterexample to the additivity of the border rank.

Theorem 1.3. Suppose \(A', A'', B', B'', C', C'' \) are vector spaces over \(\mathbb{C} \) and \(A = A' \oplus A'', B = B' \oplus B'', \) and \(C = C' \oplus C'' \). If \(\dim A, \dim B, \dim C \leq 4 \), then for any \(p' \in A' \otimes B' \otimes C' \) and \(p'' \in A'' \otimes B'' \otimes C'' \) the additivity of the border rank holds:

\[
R(p' \oplus p'') = R(p') + R(p'').
\]

We prove the theorem in Section 5 as Corollary 5.2, Propositions 5.14 and 5.13, which in fact cover a wider variety of cases.

1.1 Overview

In this article, for the sake of simplicity, we mostly restrict our presentation to the case of three-way tensors, even though some intermediate results hold more generally. In Section 2 we introduce the notation and review known methods about tensors in general. We review the translation of the rank and border rank of three-way tensors into statements about linear spaces of matrices. In Proposition 2.10 we explain that any decomposition that uses elements outside of the minimal tensor space containing a given tensor must be appropriately longer that the rank of that tensor. In Section 3 we present the notation related to the direct sum tensors and we prove the first results on the additivity of the tensor rank. In particular, we slightly generalise the proof of the additivity of the rank when one of the tensor spaces has dimension 2. In Section 4 we analyse rank one matrices contributing to the minimal decompositions of tensors, and we distinguish seven types of such matrices. Then we show that to prove the additivity of the tensor rank one can get rid of two of those types, that is we can produce a smaller example, which does not have these two types, but if the additivity holds for the smaller one, then it also holds for the original one. This is the core observation to prove the main result, Theorem 1.2. Finally, in Section 5 we analyse the additivity of the border rank for small tensor spaces. For most of the possible splittings of the triple \(A = \mathbb{C}^4 = A' \oplus A'', B = \mathbb{C}^4 = B' \oplus B'', C = \mathbb{C}^4 = C' \oplus C'' \), there is an easy observation (Corollary 5.2) proving the additivity of the border rank. The remaining two pairs of triples are treated by more advanced methods, involving in particular the Strassen type equations for secant varieties. We conclude the article with a brief discussion of the potential analogue of Theorem 1.3 for \(A = B = C = \mathbb{C}^5 \).

Acknowledgements

We are enormously grateful to Joseph Landsberg for introducing us to this topic and numerous discussions and explanations. We also thank Michael Forbes, Mateusz Michalek, Artie Prendergast-Smith, and Alan Thompson for reference suggestions and their valuable comments.

The research on this project was spread across a wide period of time. It commenced once E. Postinghel was a postdoc at IMPAN in Warsaw (Poland, 2012-2013) under the project “Secant varieties, computational complexity, and toric degenerations” realised within the Homing Plus programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

In addition, J. Buczyński is supported by the Polish National Science Center project “Algebraic Geometry: Varieties and Structures”, 2013/08/A/ST1/00804, the scholarship “START” of the Foundation for Polish Science and a scholarship of Polish Ministry of Science.

E. Postinghel was supported by a grant of the Research Foundation - Flanders (FWO) between 2013-2016 and is supported by the EPSRC grant no. EP/S004130/1 from 2018.

Also our collaboration in years 2014-2019 was possible during many meetings, in particular those that were related to special programmes, such as: the thematic semester “Algorithms and Complexity in Algebraic Geometry” at Simons Institute for the Theory of Computing (2014), the Polish Algebraic Geometry mini-Semester (miniPAGES, 2016), and the thematic semester Varieties: Arithmetic and
Transformations (2018). The latter two event were supported by the grant 346300 for IMPAN from the Simons Foundation and the matching 2015-2019 Polish MNiSW fund. We are grateful to the participants of these semesters for numerous inspiring discussions and to the sponsors for supporting our participations.

We are grateful to Loughborough University for hosting our collaboration in May 2017 and to Copenhagen University for hosting us in January 2019.

Finally, the paper is also a part of the activities of AGATES research group.

2 Ranks and slices

This section reviews the notions of rank, border rank, slices, conciseness. Readers that are familiar to these concepts may easily skip this section. The main things to remember from here are Notation 2.2 and Proposition 2.10.

Let A_1, A_2, \ldots, A_d, A, B, C, and V be finite dimensional vector spaces over an algebraically closed field k. Recall a tensor $s \in A_1 \otimes A_2 \otimes \cdots \otimes A_d$ is simple if and only if it can be written as $a_1 \otimes a_2 \otimes \cdots \otimes a_d$ with $a_i \in A_i$. Simple tensors will also be referred to as rank one tensors throughout this paper. If P is a subset of V, we denote by $\langle P \rangle$ its linear span. If $P = \{p_1, \ldots, p_r\}$ is a finite subset, we will write $\langle p_1, \ldots, p_r \rangle$ rather than $\{\{p_1, \ldots, p_r\}\}$ to simplify notation.

Definition 2.1. Suppose $W \subset A_1 \otimes A_2 \otimes \cdots \otimes A_d$ is a linear subspace of the tensor product space. We define $R(W)$, the rank of W, to be the minimal number r, such that there exist simple tensors s_1, \ldots, s_r with W contained in $\langle s_1, \ldots, s_r \rangle$. For $p \in A_1 \otimes \cdots \otimes A_d$, we write $R(p) := R(\langle p \rangle)$.

In the setting of the definition, if $d = 1$, then $R(W) = \dim W$. If $d = 2$ and $W = \langle p \rangle$ is 1-dimensional, then $R(W)$ is the rank of p viewed as a linear map $A_1^* \to A_2$. If $d = 3$ and $W = \langle p \rangle$ is 1-dimensional, then $R(W)$ is equal to $R(p)$ in the sense of Section 1. More generally, for arbitrary d, one can relate the rank $R(p)$ of d-way tensors with the rank $R(W)$ of certain linear subspaces in the space of $d - 1$-way tensors. This relation is based on the slice technique, which we are going to review in §2.4.

2.1 Variety of simple tensors

As it is clear from the definition, the rank of a tensor does not depend on the non-zero rescalings of p. Thus it is natural and customary to consider the rank as a function on the projective space $\mathbb{P}(A_1 \otimes A_2 \otimes \cdots \otimes A_d)$. There the set of simple tensors is naturally isomorphic to the cartesian product of projective spaces. Its embedding in the tensor space is also called the Segre variety:

$$\text{Seg} = \text{Seg}_{A_1,A_2,\ldots,A_d} := \mathbb{P}A_1 \times \mathbb{P}A_2 \times \cdots \times \mathbb{P}A_d \subset \mathbb{P}(A_1 \otimes A_2 \otimes \cdots \otimes A_d).$$

We will intersect linear subspaces of the tensor space with the Segre variety. Using the language of algebraic geometry, such intersection may have a non-trivial scheme structure. In this article we just ignore the scheme structure and all our intersections are set theoretic. Not to confuse algebraic geometers, we write $(\cdot)_{\text{red}}$ to underline this issue, while the reader not originating from algebraic geometry should ignore the symbol $(\cdot)_{\text{red}}$.

Notation 2.2. Given a linear subspace of a tensor space, $V \subset A_1 \otimes A_2 \otimes \cdots \otimes A_d$, we denote:

$$V_{\text{Seg}} := (\mathbb{P}V \cap \text{Seg})_{\text{red}}.$$

Thus V_{Seg} is (up to projectivisation) the set of rank one tensors in V.

In this setting, we have the following trivial rephrasing of the definition of rank:

Proposition 2.3. Suppose $W \subset A_1 \otimes A_2 \otimes \cdots \otimes A_d$ is a linear subspace. Then $R(W)$ is equal to the minimal number r, such that there exists a linear subspace $V \subset A_1 \otimes A_2 \otimes \cdots \otimes A_d$ of dimension r with $W \subset V$ and $\mathbb{P}V$ is linearly spanned by V_{Seg}. In particular,
(i) $R(W) = \dim W$ if and only if $\overline{W} = \langle W_{\text{Seg}} \rangle$.

(ii) Let U be the linear subspace such that $\overline{U} := \langle W_{\text{Seg}} \rangle$. Then $\dim U$ tensors from W can be used in the minimal decomposition of W, that is: there exist $s_1, \ldots, s_{\dim U} \in W_{\text{Seg}}$ such that $W \subset \langle s_1, \ldots, s_{R(W)} \rangle$ and s_i are simple tensors.

2.2 Secant varieties and border rank

For this subsection (and also in Section 5) we assume $\mathbb{k} = \mathbb{C}$. See Remark 2.6 for generalisations.

In general, the set of tensors of rank at most r is neither open nor closed. One of the very few exceptions is the case of matrices, that is tensors in $A \otimes B$. Instead, one defines the secant variety $\sigma_r(\text{Seg}_{A_1, \ldots, A_d}) \subset \mathbb{P}(A_1 \otimes \cdots \otimes A_d)$ as:

$$\sigma_r = \sigma_r(\text{Seg}_{A_1, \ldots, A_d}) := \{p \mid R(p) \leq r\}.$$ The overline $\overline{\cdot}$ denotes the closure in the Zariski topology. However in this definition, the resulting set coincides with the Euclidean closure. This is a classical studied algebraic variety [Pal06, Zak93, Adl87] and leads to a definition of border rank of a point.

Definition 2.4. For $p \in A_1 \otimes A_2 \otimes \cdots \otimes A_d$ define $R(p)$, the border rank of p, to be the minimal number r, such that $\langle p \rangle \subset \sigma_r(\text{Seg}_{A_1, \ldots, A_d})$, where $\langle p \rangle$ is the underlying point of p in the projective space. We follow the standard convention that $R(p) = 0$ if and only if $p = 0$.

Analogously we can give the same definitions for linear subspaces. Fix A_1, \ldots, A_d and an integer k. Denote by $\text{Gr}(k, A_1 \otimes \cdots \otimes A_d)$ the Grassmannian of k-dimensional linear subspaces of the vector space $A_1 \otimes \cdots \otimes A_d$. Let $\sigma_{r,k}(\text{Seg}) \subset \text{Gr}(k, A_1 \otimes \cdots \otimes A_d)$ be the Grassmann secant variety [CC01, CC08, BL13]:

$$\sigma_{r,k}(\text{Seg}) := \{W \mid R(W) \leq r\}.$$ Theorem 2.4. For $p \in A_1 \otimes A_2 \otimes \cdots \otimes A_d$, a linear subspace of dimension k, define $\overline{R}(p)$, the border rank of p, to be the minimal number r, such that $W \in \sigma_{r,k}(\text{Seg}_{A_1, \ldots, A_d})$.

In particular, if $k = 1$, then Definition 2.5 coincides with Definition 2.4 $\overline{R}(p) = R((p))$. An important consequence of the definitions of border rank of a point or of a linear space is that it is a semicontinuous function

$$\overline{R} : \text{Gr}(k, A_1 \otimes \cdots \otimes A_d) \to \mathbb{N}$$

for every k. Moreover, $\overline{R}(p) = 1$ if and only if $\langle p \rangle \in \text{Seg}$.

Remark 2.6. When treating the border rank and secant varieties we assume the base field is $\mathbb{k} = \mathbb{C}$. However, the results of [BL17, §6, Prop. 6.11] imply (roughly) that anything that we can say about a secant variety over \mathbb{C}, we can also say about the same secant variety over any field \mathbb{k} of characteristic 0. In particular, the same results for border rank over an algebraically closed field \mathbb{k} will be true. If \mathbb{k} is not algebraically closed, then the definition of border rank above might not generalise immediately, as there might be a difference between the closure in the Zariski topology or in some other topology, the latter being the Euclidean topology in the case $\mathbb{k} = \mathbb{R}$.

2.3 Independence of the rank of the ambient space

As defined above, the notions of rank and border rank of a vector subspace $W \subset A_1 \otimes A_2 \otimes \cdots \otimes A_d$, or of a tensor $p \in A_1 \otimes \cdots \otimes A_d$, might seem to depend on the ambient spaces A_i. However, it is well known that the rank is actually independent of the choice of the vector spaces. We first recall this result for tensors, then we apply the slice technique to show it in general.

Lemma 2.7. [Lan12, Prop. 3.1.3.1], or in [BL13, Cor. 2.2] Suppose $p \in A'_1 \otimes A'_2 \otimes \cdots \otimes A'_d$ for some linear subspaces $A'_i \subset A_i$. Then $R(p)$ (respectively, $\overline{R}(p)$) measured as the rank (respectively, the border rank) in $A'_1 \otimes \cdots \otimes A'_d$ is equal to the rank (respectively, the border rank) measured in $A_1 \otimes \cdots \otimes A_d$.

5
We also state a stronger fact about the rank from the same references: in the notation of Lemma 2.7 any minimal expression \(W \subseteq \langle s_1, \ldots, s_{r(W)} \rangle \), for simple tensors \(s_i \), must be contained in \(A_1^* \otimes \cdots \otimes A_d^* \). Here we show that the difference in the length of the decompositions must be at least the difference of the respective dimensions. For simplicity of notation, we restrict the presentation to the case \(d = 3 \). The reader will easily generalise the argument to any other numbers of factors.

Lemma 2.8. Suppose that \(p \in A' \otimes B \otimes C \), for a linear subspace \(A' \subseteq A \), and that we have an expression \(p \in \langle s_1, \ldots, s_r \rangle \), where \(s_i = a_i \otimes b_i \otimes c_i \) are simple tensors. Then:

\[
 r \geq R(p) + \dim \langle a_1, \ldots, a_r \rangle - \dim A'.
\]

Proof. For simplicity of notation, we assume that \(A' \subseteq \langle a_1, \ldots, a_r \rangle \) (by replacing \(A' \) with a smaller subspace if needed) and that \(A = \langle a_1, \ldots, a_r \rangle \) (by replacing \(A \) with a smaller subspace). Set \(k = \dim A - \dim A' \) and let us reorder the simple tensors \(s_i \) in such a way that the first \(k \) of the \(a_i \)'s are linearly independent and \(\langle A' \cup \{ a_1, \ldots, a_k \} \rangle = A \).

Let \(A'' = \langle a_{k+1}, \ldots, a_r \rangle \) so that \(A = A' \oplus A'' \) and consider the quotient map \(\pi: A \to A/A'' \). Then the composition \(A' \to A \xrightarrow{\pi} A/A'' \simeq A' \) is an isomorphism, denoted by \(\phi \). By a minor abuse of notation, let \(\pi \) and \(\phi \) also denote the induced maps \(\pi: A \otimes B \otimes C \to (A/A'') \otimes B \otimes C \) and \(\phi: A' \otimes B \otimes C \simeq A' \otimes B \otimes C \).

We have

\[
 \phi(p) = \pi(p) \in \pi(\langle a_1 \otimes b_1 \otimes c_1, \ldots, a_r \otimes b_r \otimes c_r \rangle)
 = \pi(\langle a_1 \rangle \otimes b_1 \otimes c_1, \ldots, \pi(\langle a_r \rangle \otimes b_r \otimes c_r)
 = \langle \pi(a_{k+1}) \rangle \otimes b_{k+1} \otimes c_{k+1}, \ldots, \pi(a_r) \otimes b_r \otimes c_r).
\]

Using the inverse of the isomorphism \(\phi \), we get a presentation of \(p \) as a linear combination of \((r-k)\) simple tensors, that is \(R(p) \leq r - k \) as claimed.

\[\square\]

2.4 Slice technique and conciseness

We define the notion of conciseness of tensors and we review a standard slice technique that replaces the calculation of rank of three way tensors with the calculation of rank of linear spaces of matrices.

A tensor \(p \in A_1 \otimes A_2 \otimes \cdots \otimes A_d \) determines a linear map \(p: A_1^* \to A_2 \otimes \cdots \otimes A_d \). Consider the image \(W = p(A_1^*) \subseteq A_2 \otimes \cdots \otimes A_d \). The elements of a basis of \(W \) (or the image of a basis of \(A_1^* \)) are called slices of \(p \). The point is that \(W \) essentially uniquely (up to an action of \(GL(A_1) \)) determines \(p \) (cfr. [BL13, Cor. 3.6]). Thus the subspace \(W \) captures the geometric information about \(p \), in particular its rank and border rank.

Lemma 2.9 ([BL13, Thm 2.5]). Suppose \(p \in A_1 \otimes A_2 \otimes \cdots \otimes A_d \) and \(W = p(A_1^*) \) as above. Then \(R(p) = R(W) \) and \(B(p) = B(W) \).

Clearly, we can also replace \(A_1 \) with any of the \(A_i \) to define slices as images \(p(A_i^*) \) and obtain the analogue of the lemma.

We can now prove the analogue of Lemmas 2.7 and 2.8 for higher dimensional subspaces of the tensor space. As before, to simplify the notation, we only consider the case \(d = 2 \), which is our main interest.

Proposition 2.10. Suppose \(W \subseteq B' \otimes C' \) for some linear subspaces \(B' \subseteq B \), \(C' \subseteq C \).

(i) The numbers \(R(W) \) and \(B(W) \) measured as the rank and border rank of \(W \) in \(B' \otimes C' \) are equal to its rank and border rank calculated in \(B \otimes C \).

(ii) Moreover, if we have an expression \(W \subseteq \langle s_1, \ldots, s_r \rangle \), where \(s_i = b_i \otimes c_i \) are simple tensors, then:

\[
 r \geq R(W) + \dim \langle b_1, \ldots, b_r \rangle - \dim B'.
\]

Proof. Reduce to Lemmas 2.7 and 2.8 using Lemma 2.9

\[\square\]

We conclude this section by recalling the following definition.
Definition 2.11. Let $p \in A_1 \otimes A_2 \otimes \cdots \otimes A_d$ be a tensor or let $W \subset A_1 \otimes A_2 \otimes \cdots \otimes A_d$ be a linear subspace. We say that p or W is A_i-concise if for all linear subspaces $V \subset A_i$, if $p \in V \otimes A_2 \otimes \cdots \otimes A_d$ (respectively, $W \subset V \otimes A_2 \otimes \cdots \otimes A_d$), then $V = A_1$. Analogously, we define A_i-concise tensors and spaces for $i = 2, \ldots, d$. We say p or W is concise if it is A_i-concise for all $i \in \{1, \ldots, n\}$.

Remark 2.12. Notice that $p \in A_1 \otimes A_2 \otimes \cdots \otimes A_d$ is A_1-concise if and only if p: $A_1^* \rightarrow A_2 \otimes \cdots \otimes A_d$ is injective.

3 Direct sum tensors and spaces of matrices

Again, for simplicity of notation we restrict the presentation to the case of tensors in $A \otimes B \otimes C$ or linear subspaces of $B \otimes C$.

We introduce the following notation that will be adopted throughout this manuscript.

Notation 3.1. Let A', A'', B', B'', C', C'' be vector spaces over k of dimensions, respectively, a', a'', b', b'', c', c''. Suppose $A = A' \oplus A''$, $B = B' \oplus B''$, $C = C' \oplus C''$ and $a = \dim A = a' + a''$, $b = \dim B = b' + b''$ and $c = \dim C = c' + c''$.

For the purpose of illustration, we will interpret the two-way tensors in $B \otimes C$ as matrices in $M^{b \times c}$. This requires choosing bases of B and C, but (whenever possible) we will refrain from naming the bases explicitly. We will refer to an element of the space of matrices $M^{b \times c} \simeq B \otimes C$ as a $(b' + b'', c' + c'')$ partitioned matrix. Every matrix $w \in M^{b \times c}$ is a block matrix with four blocks of size $b' \times c'$, $b' \times c''$, $b'' \times c'$ and $b'' \times c''$ respectively.

Notation 3.2. As in Section 2.4 a tensor $p \in A \otimes B \otimes C$ is a linear map $p: A^* \rightarrow B \otimes C$; we denote by $W := p(A^*)$ the image of A^* in the space of matrices $B \otimes C$. Similarly, if $p = p' + p'' \in (A' \otimes A'') \otimes (B' \otimes B'') \otimes (C' \otimes C'')$ is such that $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$, we set $W' := p'(A'^* \subset B' \otimes C'$ and $W'' := p''(A''^\ast \subset B'' \otimes C''$). In such situation, we will say that $p = p' \otimes p''$ is a direct sum tensor.

We have the following direct sum decomposition:

$$W = W' \oplus W'' \subset (B' \otimes C') \oplus (B'' \otimes C'')$$

and an induced matrix partition of type $(b' + b'', c' + c'')$ on every matrix in $w \in W$ such that

$$w = \begin{pmatrix} w' & 0 \\ 0 & w'' \end{pmatrix},$$

where $w' \in W'$ and $w'' \in W''$, and the two 0’s denote zero matrices of size $b' \times c''$ and $b'' \times c'$ respectively.

Proposition 3.3. Suppose that p, W, etc. are as in Notation 3.2. Then the additivity of the rank holds for p, that is $R(p) = R(p') + R(p'')$, if and only if the additivity of the rank holds for W, that is $R(W) = R(W') + R(W'')$.

Proof. It is an immediate consequence of Lemma 2.9.

3.1 Projections and decompositions

The situation we consider here again concerns the direct sums and their minimal decompositions. We fix $W' \subset B' \otimes C'$ and $W'' \subset B'' \otimes C''$ and we choose a minimal decomposition of $W' \oplus W''$, that is a linear subspace $V \subset B \otimes C$ such that $\dim V = R(W' \oplus W'')$, $\mathbb{P}V = (V_{\text{Seg}})$ and $V \supset W' \oplus W''$. Such linear spaces W', W'' and V will be fixed for the rest of Sections 3 and 4.

In addition to Notations 2.2, 3.1 and 3.2 we need the following.

Notation 3.4. Under Notation 3.1 let $\pi_{C'}$ denote the projection

$$\pi_{C'}: C \rightarrow C',$$ or
whose kernel is the space \(C' \). With slight abuse of notation, we shall denote by \(\pi_{C'} \) also the following projections

\[
\pi_{C'} : B \otimes C \to B \otimes C'', \quad \text{or} \quad \pi_{C'} : A \otimes B \otimes C \to A \otimes B \otimes C'',
\]

with kernels, respectively, \(B \otimes C' \) and \(A \otimes B \otimes C' \). The target of the projection is regarded as a subspace of \(C, B \otimes C, \) or \(A \otimes B \otimes C, \) so that it is possible to compose such projections, for instance:

\[
\pi_{C'} \circ \pi_{B'} : B \otimes C \to B' \otimes C'', \quad \text{or} \quad \pi_{C'} \circ \pi_{B'} : A \otimes B \otimes C \to A \otimes B' \otimes C''.
\]

We also let \(E' \subset B' \) (resp. \(E'' \subset B'' \)) be the minimal vector subspace such that \(\pi_{C'}(V) \) (resp. \(\pi_{C''}(V) \)) is contained in \((E' \oplus B'') \otimes C'' \) (resp. \((B' \oplus E'') \otimes C' \)).

By swapping the roles of \(B \) and \(C \), we define \(F' \subset C' \) and \(F'' \subset C'' \) analogously. By the lowercase letters \(e', e'', f', f'' \) we denote the dimensions of the subspaces \(E', E'', F', F'' \).

If the differences \(R(W') - \dim W' \) and \(R(W'') - \dim W'' \) (which we will informally call the gaps) are large, then the spaces \(E', E'', F', F'' \) could be large too, in particular they can coincide with \(B', B'', C', C'' \) respectively. In fact, these spaces measure “how far” a minimal decomposition \(V \) of a direct sum \(W = W' \oplus W'' \) is from being a direct sum of decompositions of \(W' \) and \(W'' \).

In particular, we will show in Proposition 4.17 that if \(E'' = \{0\} \) or if both \(E'' \) and \(F'' \) are sufficiently small, then \(R(W) = R(W') + R(W'') \). Then, as a consequence of Corollary 3.7 if one of the gaps is at most two (say, \(R(W'') = \dim W'' + 2 \)), then the additivity of the rank holds, see Theorem 4.17.

Lemma 3.5. In Notation 3.4 as above, with \(W = W' \oplus W'' \subset B \otimes C, \) the following inequalities hold.

\[
\begin{align*}
R(W') + e' & \leq R(W) - \dim W'' , \\
R(W') + f'' & \leq R(W) - \dim W', \\
R(W'') + e'' & \leq R(W) - \dim W', \\
R(W'') + f' & \leq R(W) - \dim W'' .
\end{align*}
\]

Proof. We prove only the first inequality \(R(W') + e'' \leq R(W) - \dim W'' \), the other follow in the same way by swapping \(B \) and \(C \) or \(' \) and \('' \). By Proposition 2.10(1) and (2) we may assume \(W' \) is concise: \(R(W') \) or \(R(W) \) are not affected by choosing the minimal subspace of \(B' \) by (1). Also the minimal decomposition \(V \) cannot involve anyone from outside of the minimal subspace by (2).

Since \(V \) is spanned by rank one matrices and the projection \(\pi_{C''} \) preserves the set of matrices of rank at most one, also the vector space \(\pi_{C''}(V) \) is spanned by rank one matrices, say

\[
\pi_{C''}(V) = \langle b_1 \otimes c_1, \ldots, b_r \otimes c_r \rangle
\]

with \(r = \dim \pi_{C''}(V) \). Moreover, \(\pi_{C''}(V) \) contains \(W' \). We claim that

\[
B' \oplus E'' = \langle b_1, \ldots, b_r \rangle.
\]

Indeed, the inclusion \(B' \subset \langle b_1, \ldots, b_r \rangle \) follows from the conciseness of \(W' \), as \(W' \subset V \cap B' \otimes C' \). Moreover, the inclusions \(E'' \subset \langle b_1, \ldots, b_r \rangle \) and \(B' \oplus E'' \subset \langle b_1, \ldots, b_r \rangle \) follow from the definition of \(E'' \), cf. Notation 3.3.

Thus Proposition 2.11(1) implies that

\[
\begin{equation}
\tag{3.6}
r = \dim \pi_{C''}(V) \geq R(W') + \dim \langle b_1, \ldots, b_r \rangle - b' + e'' = R(W') + e'' .
\end{equation}
\]

Since \(V \) contains \(W'' \) and \(\pi_{C''}(W'') = \{0\} \), we have

\[
r = \dim \pi_{C''}(V) \leq \dim V - \dim W'' = R(W) - \dim W''.
\]

The claim follows from the above inequality together with (3.6). \(\square \)

Rephrasing the inequalities of Lemma 3.5, we obtain the following.
Corollary 3.7. If $R(W) < R(W') + R(W'')$, then
\[
\begin{align*}
\mathbf{e}' &< R(W') - \dim W', \\
\mathbf{e}'' &< R(W'') - \dim W'', \\
\mathbf{f}' &< R(W') - \dim W', \\
\mathbf{f}'' &< R(W'') - \dim W''.
\end{align*}
\]

This immediately recovers the known case of additivity, when the gap is equal to 0, that is if $R(W) = \dim W'$, then $R(W) = R(W') + R(W'')$ (because $\mathbf{e}' \geq 0$). Moreover, it implies that if one of the gaps is equal to 1 (say $R(W') = \dim W' + 1$), then either the additivity holds or both E' and F' are trivial vector spaces. In fact, the latter case is only possible if the former case holds too.

Lemma 3.8. With Notation 3.4, suppose $E' = \{0\}$ and $F' = \{0\}$. Then the additivity of the rank holds $R(W) = R(W') + R(W'')$. In particular, if $R(W') \leq \dim W' + 1$, then the additivity holds.

Proof. Since $E' = \{0\}$ and $F' = \{0\}$, by the definition of E' and F' we must have the following inclusions:
\[
\pi_{E'}(V) \subset B' \otimes C' \quad \text{and} \quad \pi_{C'}(V) \subset B' \otimes C'.
\]
Therefore $V \subset B' \otimes C' \otimes B'' \otimes C''$ and V is obtained from the union of the decompositions of W' and W''.

The last statement follows from Corollary 3.7.

Later in Proposition 4.5 we will show a stronger version of the above lemma, namely that it is sufficient to assume that only one of E' or F' is zero. In Corollary 4.16 we prove a further generalisation based on the results in the following subsection.

3.2 “Hook”-shaped spaces

It is known since [JT86] that the additivity of the tensor rank holds for tensors with one of the factors of dimension 2, that is, using Notation 3.1 and 3.2 if $a' \leq 2$ then $R(p' + p'') = R(p') + R(p'')$. The same claim is recalled in [LM17] Sect. 4] after Theorem 4.1. The brief comment says that if rank of p' can be calculated by the AFT substitution method, then the additivity of the rank holds. Landsberg and Michalek implicitly suggest that if $a' \leq 2$, then the rank of p' can be calculated by the substitution method, [LM17] Items (1)–(6) after Prop. 3.1. This is indeed the case, although rather demanding to verify, at least in the version of the algorithm presented in the cited article. In particular, to show that the substitution method can calculate the rank of $p' \in k^2 \otimes B' \otimes C'$, one needs to use the normal forms of such tensors [Lan12] §10.3 and understand all the cases, and it is hard to agree that this method is so much simpler than the original approach of [JT86].

Instead, probably, the intention of the authors of [LM17] was slightly different, with a more direct application of [LM17] Prop. 3.1 (or Proposition 3.12 below). This has been carefully detailed and described in [Rup17] Prop. 3.2.12 and here we present this approach to show a stronger statement about small “hook”-shaped spaces (Proposition 3.14).

Definition 3.9. For non-negative integers e, f, we say that a linear subspace $W \subset B \otimes C$ is (e, f)-hook shaped, if $W \subset k^e \otimes C + B \otimes k^f$ for some choices of linear subspaces $k^e \subset B$ and $k^f \subset C$.

Example 3.10. A $(1, 2)$-hook shaped subspace of $k^4 \otimes k^4$ has only the following nonzero entries in some coordinates:
\[
\begin{pmatrix}
* & * & * & * \\
* & * & 0 & 0 \\
* & * & 0 & 0 \\
* & * & 0 & 0
\end{pmatrix}
\]

Lemma 3.11. Suppose $p \in A \otimes B \otimes k^2$. Then at least one of the following holds:

- there exists a rank one matrix in $p(A^*) \subset B \otimes k^2$, or
- for any $x \in B$ there exists a rank one matrix in $p(x^\perp) \subset A \otimes k^2$, where $x^\perp \subset B^*$ is the hyperplane defined by x.

The proof is a straightforward dimension count, see also [Rup17, Prop. 3.2.11].

The following elementary observation is presented in [LM17, Prop. 3.1]. Here we have phrased it in a coordinate free way.

Proposition 3.12. Let \(p \in A \otimes B \otimes C \), \(R(p) = r > 0 \), and pick \(\alpha \in A^* \) such that \(p(\alpha) \in B \otimes C \) is nonzero. Consider two hyperplanes in \(A \): the linear hyperplane \(\alpha^\perp = (\alpha = 0) \) and the affine hyperplane \(\alpha = 1 \). For any \(a \in (\alpha = 1) \), denote

\[
\tilde{p}_a := p - a \otimes p(\alpha) \in \alpha^\perp \otimes B \otimes C.
\]

Then:

(i) there exists a choice of \(a \in (\alpha = 1) \) such that \(R(\tilde{p}_a) \leq r - 1 \),

(ii) if in addition \(R(p(\alpha)) = 1 \), then for any choice of \(a \in (\alpha = 1) \) we have \(R(\tilde{p}_a) \geq r - 1 \).

See [LM17, Prop. 3.1] for the proof or, alternatively, using Lemma 2.9 translate it into the following straightforward statement on linear spaces of tensors:

Proposition 3.13. Suppose \(W \subset B \otimes C \) is a linear subspace, \(R(W) = r \) Assume \(w \in W \) is a non-zero element. Then:

(i) there exists a choice of a complementary subspace \(\tilde{W} \subset W \), such that \(\tilde{W} \oplus \langle w \rangle = W \) and \(R(\tilde{W}) \leq r - 1 \), and

(ii) if in addition \(R(w) = 1 \), then for any choice of the complementary subspace \(\tilde{W} \oplus \langle w \rangle = W \) we have \(R(\tilde{W}) \geq r - 1 \).

The next proposition reproves and slightly strengthens Theorem of JaJa-Takche (which can be thought of as a theorem about \((0, 2)\)-hook shaped spaces).

Proposition 3.14. Suppose \(W'' \subset B'' \otimes C'' \) is \((1, 2)\)-hook shaped and \(W' \subset B' \otimes C' \) is an arbitrary subspace. Then the additivity of the rank holds for \(W' \oplus W'' \).

Proof. Let \(r' = R(W') \) and \(r'' = R(W'') \). The idea is to produce a sequence of tensors \(p_0, p_1, p_2, \ldots, p_r \in A \otimes B \otimes C \) with the properties \([1],[4]\) listed below. For each \(i \), we write \(p_i = \pi_{A^i} \pi_{B^i} \pi_{C^i} (p_i) \) (that is, this is the “corner” of \(p_i \) corresponding to \(A', B' \) and \(C' \)). We define \(p''_i \) analogously. The properties we impose to the sequence of tensors are:

1. \(p_0 = p \) is such that \(p(A^*) = W = W' \oplus W'' \),
2. \(p_i = p_0 \) for every \(i \),
3. \(R(p''_i) \geq R(p''_{i-1}) - 1 \) for each \(i > 0 \),
4. \(R(p_i) \leq R(p_{i-1}) - 1 \) for each \(i > 0 \).

Once we find such a sequence, the claim follows as we have

\[
r' + r'' = R(p'_{r'}) + r'' \leq R(p_{r''}) + r'' \leq R(p_0) = R(W).
\]

To construct the sequence \(p_i \) we recursively apply Proposition 3.12 and we first “clean” the part of the hook of size 1, and then work with the remaining space of \(b'' \times 2 \) matrices. Unfortunately, cleaning \(p''_i \) will produce rubbish in the other parts of the tensor, and we have to be very careful to control the rubbish so that it does not affect \(p'_i \), see \([2]\).

In order to have the recursion running, we add even more conditions to \([1],[4]\) Fix \(k^1 \subset B'' \) and \(k^2 \subset C'' \), such that \(W'' \subset k^1 \otimes C'' + B'' \otimes k^2 \).

(5) \(p''_i((A'')^*) \) is \((1, 2)\)-hook shaped with the same choice of \(k^1 \subset B'' \) and \(k^2 \subset C'' \) as \(W'' \), that is:

\[
p''_i \in A'' \otimes k^1 \otimes C'' + A'' \otimes B'' \otimes k^2.
\]
(6) Each p_i in the corners corresponding to B'', C' has only entries in $k^1 \otimes C'$. Precisely:
$$\pi_{B'}\pi_{C''} (p_i) \in A \otimes k^1 \otimes C'.$$

(7) Each p_i has no non-zero entries in the corner corresponding to A'', B', C', that is
$$\pi_{A'}\pi_{B'}\pi_{C''} (p_i) = 0.$$

(8) For each i, either $p''_i \in A'' \otimes B'' \otimes k^2$ or p_i has no non-zero entries in the corners corresponding to B', C'':
$$\pi_{B''}\pi_{C''} (p_i) = 0.$$

Suppose p_0, \ldots, p_i are constructed for some $i \geq 0$ and they satisfy properties (1)–(8) above. Note that as long as $i < r''$ we must have $p''_i \neq 0$ by (1) and (3). We consider two cases.

In the first case p'_i is an honest hook, that is, it is not contained in $A'' \otimes B'' \otimes k^2$. Then there exists a hyperplane $\gamma^+ = (\gamma = 0) \subset C$ for some $\gamma \in (C'')^* \subset C^*$ such that $k^2 \subset \gamma^+$ but $p''_i \notin A'' \otimes B'' \otimes \gamma^+$. Equivalently, $p''_i (\gamma) \neq 0$ and $p''_i (\gamma) \subset A'' \otimes k^1$. In particular, $R(p''_i (\gamma)) = 1$ and $p_i (\gamma)
eq 0$. As in Proposition 3.12 for $c \in (\gamma = 1)$ set $(\bar{p}_i)_c = p_i - p(\gamma) \subset A \otimes B \otimes \gamma^+$. We will pick p_{i+1} among the $(\bar{p}_i)_c$. In fact by Proposition 3.12(ii) there exists a choice of c such that $p_i = (\bar{p}_i)_c$ has rank less than $R(p_i)$, that is (4) is satisfied. On the other hand, since γ is chosen in $(C'')^*$, we have $p''_{i+1} = (\bar{p}'_i)_c''$ (where $c = c' + c''$ with $c' \in C'$ and $c'' \in C''$) and by Proposition 3.12 also (3) is satisfied. Properties (2), (5), (8) are also satisfied since $p_i (\gamma) \in A \otimes k^1$ and analogously $p'_i (\gamma) \in A' \otimes k^1$.

Now consider the second case, when $p'_i \subset A' \otimes B'' \otimes k^2$. Note that this is not just the plain case of Strassen’s additivity in the case of $c'' = 2$ proven in [JT86] since p_i may have already nontrivial entries in another block, the one corresponding to $A'' \otimes B'' \otimes C'$. Set $x \in k^1 \subset B''$ to be any nonzero element of the fixed one dimensional subspace appearing in the definition of (1, 2)-hook shaped space. We use Lemma 3.11. Thus either there exists $\alpha \in (A'')^*$ such that $R(p''_i (\alpha)) = 1$, or there exists $\beta \in x^+ \subset (B'')^*$ such that $R(p''_i (\beta)) = 1$. For this presentation, suppose the latter case occurs (the former case is covered by simpler argument along the same lines). We apply Proposition 3.12 again: by its part (i) there exists $b \in (\beta = 1) \subset B$ such that $p_{i+1} = p_i - b \otimes p(\beta)$ has lower rank than p_i as required in (4). By Proposition 3.12(ii) we must also have (3). It is straightforward to verify that the remaining properties are satisfied. We stop after constructing $p_{r''}$ and thus the desired sequence exists and proves the claim.

4 Rank one matrices and additivity of the tensor rank

As hinted by the proof of Proposition 3.13 as long as we have a rank one matrix in the linear space W' or W'', we have a good starting point for an attempt to prove the additivity of the rank. Throughout this section we will make a formal statement out of this observation and prove that if there is a rank one matrix in the linear spaces, then either the additivity holds or there exists a “smaller” example of failure of the additivity. In Subsection 3.3 we employ several versions of this claim in order to prove Theorem 1.2.

Throughout this section we follow Notations 2.2 (denoting the rank one elements in a vector space by the subscript \cdot_{seg}), 3.1 (introducing the vector spaces A, \ldots, C'' and their dimensions a, \ldots, e''), 3.2 (defining a direct sum tensor $p = p' \oplus p''$ and the corresponding vector spaces W, W', W''), and also 3.3 (which explains the conventions for projections π and vector spaces E', \ldots, F'', which measure how much the fixed decomposition V of W sticks out from the direct sum $B' \otimes C' \oplus B'' \otimes C''$).

4.1 Combinatorial splitting of the decomposition

We carefully analyse the structure of the rank one matrices in V. We will distinguish seven types of such matrices.
Proof of Lemma 4.1. Consider the case \(b', b'', c', c'' = 3, e', e'', f', f'' = 1 \). After choosing
a basis of \(E' \) and a completion to a basis of \(B' \) and, similarly, bases for for \((E'', B''), (F', C'), (F'', C'') \),
we can represent the elements of \(V_{\text{Seg}} \subset B \otimes C \) as matrices in one of the following subspaces: Prime
(corresponding to the top-left green rectangle), Bis (bottom-right blue rectangle), VL (purple with entries \(v_{1,3}, \ldots, v_{1,4} \)), VR (purple with entries \(v_{3,4}, \ldots, v_{6,4} \)), HL (brown with entries \(v_{3,1}, \ldots, v_{4,3} \)), HR
(brown with entries \(v_{4,3}, \ldots, v_{4,6} \)), and Mix (middle orange square with entries \(v_{3,3}, \ldots, v_{4,4} \)).

Lemma 4.1. Every element of \(V_{\text{Seg}} \subset \mathbb{P}(B \otimes C) \) lies in the projectivisation of one of the following
subspaces of \(B \otimes C \):

1. \(B' \otimes C', B'' \otimes C'' \), \hspace{1cm} \text{(Prime, Bis)}
2. \(E' \otimes (C' + F''), E'' \otimes (F' + C'') \), \hspace{1cm} \text{(HL, HR)}
 \(B' \oplus E'' \otimes F', (E' \oplus B'') \otimes F'' \), \hspace{1cm} \text{(VL, VR)}
3. \(E' \oplus E'' \otimes (F' + F'') \). \hspace{1cm} \text{(Mix)}

The spaces in (i) are purely contained in the original direct summands, hence, in some sense, they are
the easiest to deal with (we will show how to get rid of them and construct a smaller example justifying
a potential lack of additivity). The spaces in (ii) stick out of the original summand, but only in one
direction, either horizontal (HL, HR), or vertical (VL, VR). The space in (iii) is mixed and it sticks out
in all directions. It is the most difficult to deal with and we expect that the typical counterexamples to
the additivity of the rank will have mostly (or only) such mixed matrices in their minimal decomposition.
The mutual configuration and layout of those spaces in the case \(b', b'', c', c'' = 3, e', e'', f', f'' = 1 \) is illustrated
in Figure 1.

Proof of Lemma 4.1. Let \(b \otimes c \in V_{\text{Seg}} \) be a matrix of rank one. Write \(b = b' + b'' \) and \(c = c' + c'' \), where
\(b' \in B', b'' \in B'', c' \in C' \) and \(c'' \in C'' \). We consider the image of \(b \otimes c \) via the four natural projections
introduced in Notation 3.4:

\[
\begin{align*}
\pi_B'(b \otimes c) &= b'' \otimes c \in B'' \otimes (F' \oplus C''), & (4.2a) \\
\pi_B''(b \otimes c) &= b' \otimes c \in B' \otimes (C' \oplus F''), & (4.2b) \\
\pi_C'(b \otimes c) &= b \otimes c'' \in (E' \oplus B'') \otimes C'', \text{ and} & (4.2c) \\
\pi_C''(b \otimes c) &= b \otimes c' \in (B' \oplus E'') \otimes C'. & (4.2d)
\end{align*}
\]

Notice that \(b' \) and \(b'' \) cannot be simultaneously zero, since \(b \neq 0 \). Analogously, \((c', c'') \neq (0, 0) \).

1 The word Bis comes from the Polish way of pronouncing the "i" symbol.
2 Here the letters "H, V, L, R" stand for "horizontal, vertical, left, right" respectively.
Equations (4.2a)–(4.2d) prove that the non-vanishing of one of \(b', b'', c', c'' \) induces a restriction on another one. For instance, if \(b' \neq 0 \), then by (4.2b) we must have \(c'' \in F'' \). Or, if \(b'' \neq 0 \), then (4.2a) forces \(c' \in F' \), and so on. Altogether we obtain the following cases:

1. If \(b', b'', c', c'' \neq 0 \), then \(b \otimes c \in (E' \oplus E'') \otimes (F' \oplus F'') \) (case Mix).
2. If \(b', b'' \neq 0 \) and \(c' = 0 \), then \(b \otimes c = b \otimes c'' \in (E' \oplus B'') \otimes F'' \) (case VR).
3. If \(b', b'' \neq 0 \) and \(c'' = 0 \), then \(b \otimes c = b \otimes c' \in (B' \oplus E'') \otimes F' \) (case VL).
4. If \(b' = 0 \), then either \(c' = 0 \) and therefore \(b \otimes c = b'' \otimes c'' \in B'' \otimes C'' \) (case Bis), or \(c' \neq 0 \) and \(b \otimes c = b' \otimes c \in E'' \otimes (F' \oplus C'') \) (case HR).
5. If \(b'' = 0 \), then either \(c'' = 0 \) and thus \(b \otimes c = b' \otimes c' \in B' \otimes C' \) (case Prime), or \(c'' \neq 0 \) and \(b \otimes c = b'' \otimes c \in E' \otimes (C' \oplus F'') \) (case HL).

This concludes the proof. \(\square \)

As in Lemma 4.1, every element of \(V_{\text{Seg}} \subset \mathcal{F}(B \otimes C) \) lies in one of seven subspaces of \(B \otimes C \). These subspaces may have nonempty intersection. We will now explain our convention with respect to choosing a basis of \(V \) consisting of elements of \(V_{\text{Seg}} \).

Notation 4.3. We choose a basis \(B \) of \(V \) in such a way that:

- \(B \) consist of rank one matrices only,
- \(B = \text{Prime} \sqcup \text{Bis} \sqcup \text{HL} \sqcup \text{HR} \sqcup \text{VL} \sqcup \text{VR} \sqcup \text{Mix} \), where each of Prime, Bis, HL, HR, VL, VR, and Mix is a finite set of rank one matrices of the respective type as in Lemma 4.1 (for instance, Prime \(\subset B' \otimes C' \), HL \(\subset E' \otimes (C' \oplus F'') \), etc.),
- \(B \) has as many elements of Prime and Bis as possible, subject to the first two conditions,
- \(B \) has as many elements of HL, HR, VL and VR as possible, subject to all the above conditions.

Let \(\text{prime} \) be the number of elements of Prime (equivalently, \(\text{prime} = \dim(\text{Prime}) \)) and analogously define \(\text{bis}, \text{hl}, \text{hr}, \text{vl}, \text{vr}, \text{and mix} \). The choice of \(B \) need not be unique, but we fix one for the rest of the article. Instead, the numbers \(\text{prime}, \text{bis}, \text{and mix} \) are uniquely determined by \(V \). (there may be some non-uniqueness in dividing between \(\text{hl}, \text{hr}, \text{vl}, \text{vr} \).

Thus to each decomposition we associated a sequence of seven non-negative integers \((\text{prime}, \ldots, \text{mix}) \). We now study the inequalities between these integers and exploit them to get theorems about the additivity of the rank.

Proposition 4.4. In Notations 3.4 and 4.3 the following inequalities hold:

1. \(\text{prime} + \text{hl} + \text{vl} + \min \left(\text{mix}, \text{e} f' \right) \geq R(W') \)
2. \(\text{bis} + \text{hr} + \text{vr} + \min \left(\text{mix}, \text{e}'' f'' \right) \geq R(W'') \)
3. \(\text{prime} + \text{hl} + \text{vl} + \min \left(\text{hr} + \text{mix}, \text{f}'(\text{e}' + \text{e}'') \right) \geq R(W') + \text{e}'' \)
4. \(\text{prime} + \text{hl} + \text{vl} + \min \left(\text{vr} + \text{mix}, \text{e}'(\text{f}' + \text{f}'') \right) \geq R(W') + \text{f}'' \)
5. \(\text{bis} + \text{hr} + \text{vr} + \min \left(\text{hl} + \text{mix}, \text{f}''(\text{e}' + \text{e}'') \right) \geq R(W'') + \text{e}' \)
6. \(\text{bis} + \text{hr} + \text{vr} + \min \left(\text{vl} + \text{mix}, \text{e}''(\text{f}' + \text{f}'') \right) \geq R(W'') + \text{f}' \)
Proof. To prove Inequality [(i)] we consider the composition of projections \(\pi_{B''} \pi_{C''} \). The linear space \(\pi_{B''} \pi_{C''}(V) \) is spanned by rank one matrices \(\pi_{B''} \pi_{C''}(B) \) (where \(B = \text{Prime} \sqcup \cdots \sqcup \text{Mix} \) as in Notation 4.3), and it contains \(W'' \). Thus \(\dim(\pi_{B''} \pi_{C''}(V)) \geq R(W'') \). But the only elements of the basis \(B \) that survive both projections (that is, they are not mapped to zero under the composition) are Prime, HL, VL, and Mix. Thus

\[
\text{prime} + \text{hl} + \text{vl} + \text{mix} \geq \dim(\pi_{B''} \pi_{C''}(V)) \geq R(W').
\]

On the other hand, \(\pi_{B''} \pi_{C''}(\text{Mix}) \subset E' \otimes F' \), thus among \(\pi_{B''} \pi_{C''}(\text{Mix}) \) we can choose at most \(e'f' \) linearly independent matrices. Thus

\[
\text{prime} + \text{hl} + \text{vl} + \text{e}'f' \geq \dim(\pi_{B''} \pi_{C''}(V)) \geq R(W').
\]

The two inequalities prove [(i)].

To show Inequality [(iii)] we may assume that \(W' \) is concise as in the proof of Lemma 3.5. Moreover, as in that same proof (more precisely, Inequality (3.6)) we show that \(\dim \pi_{C''}(V) \geq R(W'') + e'' \). But \(\pi_{C''} \) sends all matrices from Bis and VR to zero, thus

\[
\text{prime} + \text{hl} + \text{vl} + \text{hr} + \text{mix} \geq \dim \pi_{C''}(V) \geq R(W'') + e''.
\]

As in the proof of Part [(i)], we can also replace \(\text{hr} + \text{mix} \) by \(f'(e' + e'') \), since \(\pi_{C''}(HR \cup \text{Mix}) \subset (E' \oplus E'') \otimes F' \), concluding the proof of [(iii)].

The proofs of the remaining four inequalities are identical to one of the above, after swapping the roles of \(B \) and \(C \) or \(f' \) and \(f'' \) (or swapping both pairs).

\[\square \]

Proposition 4.5. With Notation 3.4, if one among \(E', E'', F', F'' \) is zero, then \(R(W) = R(W') + R(W'') \).

Proof. Let us assume without loss of generality that \(E' = \{0\} \). Using the definitions of sets Prime, Bis, VR, . . . as in Notation 4.3 we see that \(\text{HL} = \text{VR} = \text{Mix} = \emptyset \) due to the order of choosing the elements of the basis \(B \). For instance, a potential candidate to become a member of \(\text{HL} \), would be first elected to Prime, and similarly \(\text{VR} \) is consumed by Bis and Mix by HR. Thus:

\[
R(W) = \dim(V_{seg}) = \text{prime} + \text{bis} + \text{hr} + \text{vl}.
\]

Proposition 4.4[(i)] and [(ii)] implies

\[
R(W') + R(W'') \leq \text{prime} + \text{vl} + \text{bis} + \text{hr} = R(W),
\]

while \(R(W') + R(W'') \geq R(W) \) always holds. This shows the desired additivity. \[\square \]

Corollary 4.6. Assume that additivity fails for \(W' \) and \(W'' \), that is \(d = R(W') + R(W'') - R(W' \oplus W'') > 0 \). Then the following inequalities hold:

(a) \(\text{mix} \geq d \)

(b) \(\text{hl} + \text{hr} + \text{mix} \geq e' + e'' + d \)

(c) \(\text{vl} + \text{vr} + \text{mix} \geq f' + f'' + d \)

Proof. To prove [(a)] consider the inequalities [(i)] and [(ii)] from Proposition 4.4 and their sum:

\[
\text{prime} + \text{hl} + \text{vl} + \text{mix} \geq R(W'),
\]

\[
\text{bis} + \text{hr} + \text{vr} + \text{mix} \geq R(W''),
\]

\[
\text{prime} + \text{bis} + \text{hl} + \text{hr} + \text{vl} + \text{vr} + 2\text{mix} \geq R(W') + R(W'').
\]

The lefthand side of (4.7) is equal to \(R(W) + \text{mix} \), while its righthand side is \(R(W) + d \). Thus the desired claim.

Similarly, using inequalities [(iii)] and [(v)] of the same proposition we obtain [(b)] while [(iv)] and [(vi)] imply [(c)].
4.2 Replete pairs

As we hunger after inequalities involving integers prime, . . . , mix we distinguish a class of pairs W', W'' with particularly nice properties.

Definition 4.8. Consider a pair of linear spaces $W' \subset B' \otimes C'$ and $W'' \subset B'' \otimes C''$ with a fixed minimal decomposition $V = (V_{\text{Seg}}) \subset B \otimes C$ and Prime, . . . , Mix as in Notation 4.3. We say (W', W'') is replete, if $\text{Prime} \subset W'$ and $\text{Bis} \subset W''$.

Remark 4.9. Strictly speaking, the notion of replete pair depends also on the minimal decomposition V. But as always we consider a pair W' and W'' with a fixed decomposition $V = (V_{\text{Seg}}) \supset W' \oplus W''$, so we refrain from mentioning V in the notation.

The first important observation is that as long as we look for pairs that fail to satisfy the additivity, we are free to replenish any pair. That is, for any fixed W', W'' (and V) define the repletion of the pair, that is the pair $(\overline{\mathbb{R}}W', \overline{\mathbb{R}}W'')$:

$$\overline{\mathbb{R}}W' := W' + \langle \text{Prime} \rangle, \quad \overline{\mathbb{R}}W'' := W'' + \langle \text{Bis} \rangle, \quad \overline{\mathbb{R}}W := \overline{\mathbb{R}}W' \oplus \overline{\mathbb{R}}W''.$$ (4.10)

Proposition 4.11. For any (W', W''), with Notation 4.3 we have:

\[
\begin{align*}
R(W') &\leq R(\overline{\mathbb{R}}W') \leq R(W') + (\dim \overline{\mathbb{R}}W' - \dim W'), \\
R(W'') &\leq R(\overline{\mathbb{R}}W'') \leq R(W'') + (\dim \overline{\mathbb{R}}W'' - \dim W''), \\
R(\overline{\mathbb{R}}W) &= R(W).
\end{align*}
\]

In particular, if the additivity of the rank fails for (W', W''), then it also fails for $(\overline{\mathbb{R}}W', \overline{\mathbb{R}}W'')$. Moreover,

(i) V is a minimal decomposition of $\overline{\mathbb{R}}W$; in particular, the same distinguished basis Prime \sqcup Bis $\sqcup \cdots$ Mix works for both W and $\overline{\mathbb{R}}W$.

(ii) $(\overline{\mathbb{R}}W', \overline{\mathbb{R}}W'')$ is a replete pair.

(iii) The gaps $R(\overline{\mathbb{R}}W') - \dim(\overline{\mathbb{R}}W'), \ R(\overline{\mathbb{R}}W'') - \dim(\overline{\mathbb{R}}W'')$, and $R(\overline{\mathbb{R}}W) - \dim(\overline{\mathbb{R}}W)$, are at most (respectively) $R(W') - \dim(W'), \ R(W'') - \dim(W'')$, and $R(W) - \dim(W)$.

Proof. Since $W' \subset \overline{\mathbb{R}}W'$, the inequality $R(W') \leq R(\overline{\mathbb{R}}W')$ is clear. Moreover $\overline{\mathbb{R}}W'$ is spanned by W' and $(\dim \overline{\mathbb{R}}W' - \dim W')$ additional matrices, that can be chosen out of Prime --- in particular, these additional matrices are all of rank 1 and $R(\overline{\mathbb{R}}W') \leq R(W') + (\dim \overline{\mathbb{R}}W' - \dim W')$. The inequalities about $''$ and $R(W) \leq R(\overline{\mathbb{R}}W)$ follow similarly.

Further $\overline{\mathbb{R}}W \subset V$, thus V is a decomposition of $\overline{\mathbb{R}}W$. Therefore also $R(\overline{\mathbb{R}}W) \leq \dim V = R(W)$, showing $R(\overline{\mathbb{R}}W) = R(W)$ and [i]. Item [iii] follows from [i] while [iii] is a rephrasing of the initial inequalities.

Moreover, if one of the inequalities of Lemma 3.3 is an equality, then one of W' or W'' is not affected by the repletion.

Lemma 4.12. If, say, $R(W') + e'' = R(W) - \dim W''$, then $W'' = \overline{\mathbb{R}}W''$, and analogous statements hold for the other equalities coming from replacing \leq by $=$ in Lemma 3.3.

Proof. By Lemma 3.3 applied to $\overline{\mathbb{R}}W = \overline{\mathbb{R}}W' \oplus \overline{\mathbb{R}}W''$ and by Proposition 4.11 we have:

$$R(\overline{\mathbb{R}}W) - e'' \geq R(\overline{\mathbb{R}}W') + \dim(\overline{\mathbb{R}}W'') \geq R(W') + \dim W'' \stackrel{\text{assumptions of 4.12}}{=} R(W) - e'' R(\overline{\mathbb{R}}W) - e''.$$

Therefore all inequalities are in fact equalities. In particular, $\dim(\overline{\mathbb{R}}W'') = \dim W''$. The claim of the lemma follows from $W'' \subset \overline{\mathbb{R}}W''$.

4.3 Digestion

After a good meal the digestive process begins. For replete pairs it makes sense to consider the complement of (Prime) in \(W' \), and of (Bis) in \(W'' \).

Definition \(\text{4.13} \). With Notation \(\text{4.13} \) suppose \(S' \) denotes the linear space \(\langle \text{Bis} \cup \text{HL} \cup \text{HR} \cup \text{VL} \cup \text{VR} \cup \text{Mix} \rangle \cap W' \) (we omit Prime in the union) and \(S'' := \langle \text{Prime} \cup \text{HL} \cup \text{HR} \cup \text{VL} \cup \text{VR} \cup \text{Mix} \rangle \cap W'' \) (we omit Bis in the union). We call the pair \((S', S'') \) the **digested version** of \((W', W'') \).

Lemma 4.14. If \((W', W'') \) is replete, then \(W' = \langle \text{Prime} \rangle \oplus S' \) and \(W'' = \langle \text{Bis} \rangle \oplus S'' \).

Proof. Both \(\langle \text{Prime} \rangle \) and \(S' \) are contained in \(W' \). The intersection \(\langle \text{Prime} \rangle \cap S' \) is zero, since the seven sets Prime, Bis, HR, HL, VL, VR, Mix are disjoint and together they are linearly independent. Furthermore,

\[
\text{codim}(S' \subseteq W') \leq \text{codim}(\langle \text{Bis} \cup \text{HR} \cup \text{HL} \cup \text{VL} \cup \text{VR} \cup \text{Mix} \rangle \subseteq V) = \text{prime}
\]

Thus \(\dim S' + \text{prime} \geq \dim W' \), which concludes the proof of the first claim. The second claim is analogous.

These complements \((S', S'') \) might replace the original replete pair \((W', W'') \): as we will show, if the additivity of the rank fails for \((W', W'') \), it also fails for \((S', S'') \). Moreover, \((S', S'') \) is still replete, but it does not involve any Prime or Bis.

Lemma 4.15. Suppose \((W', W'') \) is replete, define \(S' \) and \(S'' \) as above and set \(S = S' \oplus S'' \). Then

1. \(R(S) = R(W) - \text{prime} - \text{bis} = \text{hl} + \text{hr} + \text{vl} + \text{vr} + \text{mix} \) and the space \(\langle \text{HL}, \text{HR}, \text{VL}, \text{VR}, \text{Mix} \rangle \) determines a minimal decomposition of \(S \). In particular, \((S', S'') \) is replete and both spaces \(S' \) and \(S'' \) contain no rank one matrices.

2. If the additivity of the rank \(R(S) = R(S') + R(S'') \) holds for \(S \), then it also holds for \(W \), that is \(R(W) = R(W') + R(W'') \).

Proof. Since \(W = S \oplus \langle \text{Prime}, \text{Bis} \rangle \), we must have \(R(W) \leq R(S) + \text{prime} + \text{bis} \). On the other hand, \(S \subseteq \langle \text{HL}, \text{HR}, \text{VL}, \text{VR}, \text{Mix} \rangle \), hence \(R(S) \leq \text{hl} + \text{hr} + \text{vl} + \text{vr} + \text{mix} \). These two claims show the equality for \(R(S) \) in \(\text{[1]} \) and that \(\langle \text{HL}, \text{HR}, \text{VL}, \text{VR}, \text{Mix} \rangle \) gives a minimal decomposition of \(S \). Since there is no tensor of type Prime or Bis in this minimal decomposition, it follows that the pair \((S', S'') \) is replete by definition. If, say, \(S' \) contained a rank one matrix, then by our choice of basis in Notation \(\text{4.13} \) it would be in the span of Prime, a contradiction.

Finally, if \(R(S) = R(S') + R(S'') \), then:

\[
R(W) = R(S) + \text{prime} + \text{bis} = R(S') + \text{prime} + R(S'') + \text{bis} \geq R(W') + R(W''),
\]

showing the statement \(\text{(ii)} \) for \(W \).

As a summary, in our search for examples of failure of the additivity of the rank, in the previous section we replaced a linear space \(W = W' \oplus W'' \) by its repletion \(\overline{W} = W' \oplus W'' \), that is possibly larger. Here in turn, we replace \(\overline{W} \) by a smaller linear space \(S = S' \oplus S'' \). In fact, \(\dim W' \geq \dim S' \) and \(\dim W'' \geq \dim S'' \), and also \(R(S) \leq R(W) \) and \(R(S') \leq R(W') \) etc. That is, changing \(W \) into \(S \) makes the corresponding tensors possibly “smaller”, but not larger. In addition, we gain more properties: \(S \) is replete and has no Prime’s or Bis’s in its minimal decomposition.

Corollary 4.16. Suppose that \(W = W' \oplus W'' \) is as in Notation \(\text{3.2} \) and that \(e'' \) and \(f'' \) are as in Notation \(\text{3.4} \). If \(e'' \leq 1 \) and \(f'' \leq 2 \), then the additivity of the rank \(R(W) = R(W') + R(W'') \) holds.

Proof. By Proposition \(\text{4.11} \) and Lemma \(\text{4.15} \) we can assume \(W \) is replete and equal to its digested version. But then (since Bis = \(\emptyset \)) we must have \(W'' \subset E'' \otimes C'' + B'' \otimes F'' \). In particular, \(W'' \) is a \((1,2)\)-hook shaped space. Then the claim follows from Proposition \(\text{3.14} \).
4.4 Additivity of the tensor rank for small tensors

We conclude our discussion of the additivity of the tensor rank with these summarising results.

Theorem 4.17. Assume \(p' \in A' \otimes B' \otimes C' \) is any tensor, while \(p'' \in A'' \otimes B'' \otimes C'' \) is concise and \(R(p'') \leq a'' + 2 \). Then the additivity of the rank holds:

\[
R(p' \oplus p'') = R(p') + R(p'').
\]

The analogous statements with the roles of \(A \) replaced by \(B \) or \(C \), or the roles of \(p' \) and \(p'' \) swapped, hold as well.

Proof. Since \(p'' \) is concise, the corresponding vector subspace \(W'' = p''((A'')^*) \) has dimension equal to \(a'' \). By Corollary 4.10 we may assume \(e'' \geq 2 \) or \(f'' \geq 2 \). Say, \(e'' \geq 2 \geq R(p'') - \dim W'' \), then by Corollary 3.7 the additivity must hold. \(\blacksquare \)

Theorem 4.18. Suppose the base field is \(k = \mathbb{C} \) and assume \(p' \in A' \otimes B' \otimes C' \) is any tensor, while \(p'' \in A'' \otimes C^3 \otimes C^3 \) for an arbitrary vector space \(A'' \). Then the additivity of the rank holds:

\[
R(p' \oplus p'') = R(p') + R(p'').
\]

Proof. By the classical Ja'Ja'-Takche Theorem [JT86] (also shown in Proposition 3.11), we can assume \(p'' \) is concise in \(A'' \otimes C^3 \otimes C^3 \). But then by [SMS10] Thm 5 and Thm 6] the rank of \(p'' \) is at most \(a'' + 2 \) and the result follows from Theorem 4.17 \(\blacksquare \)

Theorem 4.19. Suppose the base field is \(k = \mathbb{C} \) and \(R(p'') \leq 6 \). Then independently of \(p' \), the additivity of the rank holds:

\[
R(p' \oplus p'') = R(p') + R(p'').
\]

Proof. Without loss of generality, we may assume \(p'' \) is concise in \(A'' \otimes B'' \otimes C'' \). As in the previous proof, if any of the dimensions \(\dim A'' \), \(\dim B'' \), \(\dim C'' \) is at most 2, then the claim follows from [JT86]. On the other hand, if any of the dimensions \(a'' \), \(b'' \), \(c'' \) is at least 4, then the result follows from Theorem 4.17. The remaining case \(a'' = b'' = c'' = 3 \) is covered by Theorem 4.18 \(\blacksquare \)

One of the smallest cases not covered by the above theorems would be the case of \(p', p'' \in \mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^3 \). The generic rank (that is the rank of a general tensor) in \(\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^3 \) is 6, moreover [AS79, p. 6] claims the maximal rank is 7 (see also [SMS10, Prop. 2]).

Example 4.20. Suppose \(A' = A'' = \mathbb{C}^4 \) and either \(B' = B'' = \mathbb{C}^4 \) and \(C' = C'' = \mathbb{C}^3 \) or \(B' = B'' = \mathbb{C}^4 \) and \(B'' = C'' = \mathbb{C}^3 \). Suppose both \(p' \in A' \otimes B' \otimes C' \) and \(p'' \in A'' \otimes B'' \otimes C'' \) are tensors of rank 7 and that the additivity of the rank fails for \(p = p' \oplus p'' \). Let \(W' \) and \(W'' \) be as in Notation 3.2 and \(E', e', \) etc. be as in Notation 3.3. Then:

- \(R(p) = 13 \),
- \(e' = e'' = f' = f'' = 2 \),
- with Prime, \(\text{hl} \), etc., as in Notation 4.3 we have Prime = Bis = \(\emptyset \), and the following inequalities hold:

If \(b'' = 4, c'' = 3 \)	Or, if \(b'' = 3, c'' = 4 \)
\(2 \leq \text{hl} \leq 3 \)	\(2 \leq \text{hl} \leq 3 \)
\(2 \leq \text{hr} \leq 3 \)	\(3 \leq \text{hr} \leq 4 \)
\(3 \leq \text{vl} \leq 4 \)	\(3 \leq \text{vl} \leq 4 \)
\(3 \leq \text{vr} \leq 4 \)	\(2 \leq \text{vr} \leq 3 \)
\(1 \leq \text{mix} \leq 3 \)	\(1 \leq \text{mix} \leq 3 \)
\(\text{hl} + \text{vl} \leq 6 \)	\(\text{hl} + \text{vl} \leq 6 \)
\(\text{hr} + \text{vr} \leq 6 \)	\(\text{hr} + \text{vr} \leq 6 \).
5 Additivity of the tensor border rank

Throughout this section we will follow Notations 3.1 and 3.2.

We turn our attention to the additivity of the border rank. That is, we ask for which tensors $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$ the following equality holds:

$$R(p' \oplus p'') = R(p') + R(p'').$$

Since the known counterexamples to the additivity are much smaller than in the case of the additivity of the tensor rank, our methods are more restricted to very small cases. We commence with the following elementary observation.

Lemma 5.1. Consider concise tensors $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$ with $R(p') \leq a'$ and $R(p'') \leq a''$ (thus in fact $R(p') = a'$ and $R(p'') = a''$). Let $p = p' \oplus p''$. Then the additivity of the border rank holds $R(p) = R(p') + R(p'')$.

Proof. Since p' and p'' are concise, the linear maps $p': (A')^* \to (B')^* \otimes (C')^*$ and $p'': (A'')^* \to (B'')^* \otimes (C'')^*$ are injective. Then also the map $p: A^* \to B \otimes C$ is injective and

$$R(p) \geq \dim p(A^*) = \dim p'((A')^*) + \dim p''((A'')^*) = R(p') + R(p'').$$

The opposite inequality always holds. \qed

Corollary 5.2. Suppose both triples of integers (a', b', c') and (a'', b'', c'') fall into one of the following cases: $(a, b, 1)$, $(a, 1, c)$, $(a, b, 2)$ with $a \geq b \geq 2$, $(a, 2, c)$ with $a \geq c \geq 2$, (a, b, c) with $a \geq bc$. Then for any concise tensors $p' \in A' \otimes B' \otimes C'$ and $p'' \in A'' \otimes B'' \otimes C''$ the additivity of the border rank holds.

Note that the list of triples in the corollary is a bit exaggerated, as some of these triples have no concise tensors. However, this phrasing is convenient for further applications and search for unsolved pairs of triples.

Proof. After removing the triples that do not admit any concise tensor the list reduces to: $(a, a, 1)$, $(a, 1, a)$, $(a, b, 2)$ (for $2 \leq b \leq a \leq 2b$), $(a, 2, c)$ (for $2 \leq c \leq a \leq 2c$), (bc, b, c). We claim that in all these cases $R(p') = a'$ and $R(p'') = a''$. In fact:

- The claim is clear for $(a, 1, a)$, $(a, a, 1)$, and (bc, b, c).
- For $(a, a, 2)$ and $(a, 2, a)$ the claim follows from the classification of such tensors, see the argument in the first paragraph of [BHMT18 §5.3].
- For $(a, b, 2)$ (with $2 \leq b < a \leq 2b$), and $(a, 2, c)$ (with $2 \leq c < a \leq 2c$), the claim follows from the previous case: any such concise tensor T has border rank at least a. But T is at the same time a (non-concise) tensor in a larger tensor space $C^a \otimes C^a \otimes C^2$ or $C^a \otimes C^2 \otimes C^a$. Thus by Lemma 2.7 the border rank of T is at most the generic (border) rank in this larger space, which is equal to a by the previous item.

Therefore we conclude using Lemma 5.1. \qed

Theorem 1.3 claims that the additivity of border rank holds for $a, b, c \leq 4$. Most of the cases follow from Corollary 5.2, with the exception of $(3 + 1, 2 + 2, 2 + 2)$ and $(3 + 1, 3 + 1, 3 + 1)$, which are covered in Sections 5.2 and 5.3.

Definition 5.3. Assume $p, q \in A \otimes B \otimes C$ are two tensors. We say that p is more degenerate than q if $p \in GL(A) \times GL(B) \times GL(C) \cdot q$.

Example 5.4. Any concise tensor in $C^1 \otimes C^2 \otimes C^2$ is more degenerate than any concise tensor in $C^2 \otimes C^2 \otimes C^2$.

Example 5.5. Consider concise tensors in $\mathbb{C}^3 \times \mathbb{C}^2 \times \mathbb{C}^2$. According to [Lan12 Table 10.3.1], there are two orbits of the action of $GL_3 \times GL_2 \times GL_2$ of such tensors, both orbits of border rank 3. One orbit is “generic”, the other is the more degenerate. It is represented by:

$$p = a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_1 \otimes c_2 + a_3 \otimes b_2 \otimes c_1.$$

Lemma 5.6. Suppose $p' \in A' \otimes B' \otimes C'$ is an arbitrary tensor and $p'', q'' \in A'' \otimes B'' \otimes C''$ are such that $R(p'') = R(q'')$ and p'' is more degenerate than q''. If the additivity of the border rank holds for $p' \oplus p''$ then it also holds for $p' \oplus q''$.

Proof. Since p'' is more degenerate than q'' also $p' \oplus p''$ is more degenerate than $p' \oplus q''$. Thus

$$R(p' \oplus q'') \geq R(p' \oplus p'') = R(p') + R(p'') = R(p') + R(q'').$$

\square

5.1 Strassen’s equations of secant varieties

Often as a criterion to determine whether a tensor is or is not of a given border rank, we exploit defining equations of the corresponding secant varieties. We review here one type of equations that is most important for the small cases we consider in this article.

First assume $b = c$ and consider the space of square matrices $B \otimes C$. Let $f_b : (B \otimes C)^{\times 3} \to B \otimes C$ be the map of matrices defined as follows:

$$f_b(x, y, z) = x \text{adj}(y)z - z \text{adj}(y)x,$$

where $\text{adj}(y)$ denotes the adjoint matrix of y.

As in Section 2.4 write

$$p = \sum_{i=1}^a a_i \otimes w_i,$$

where $w_1, \ldots, w_a \in W := p(A^*) \subset B \otimes C$ are $b \times c$ matrices and $\{a_1, \ldots, a_a\}$ is a basis of A.

Proposition 5.8. Assume that $p \in A \otimes B \otimes C$.

(i) [Str88] Suppose $a = b = c = 3$. Then $R(p) \leq 3$ if and only if $f_3(x, y, z) = 0$ for every $x, y, z \in W$.

(ii) [LM08] Suppose $a = b = c$ and $R(p) \leq a$. Then $f_a(x, y, z) = 0$ for every $x, y, z \in W$.

See also [Fri13 Thm 3.2].

We also recall Ottaviani’s derivation of Strassen’s equations ([Ott07], see also [Lan12 Sect. 3.8.1]) for secant varieties of three factor Segre embeddings.

Given a tensor $p : B^* \to A \otimes C$, consider the contraction operator

$$p_A^\Lambda : A \otimes B^* \to \Lambda^2 A \otimes C,$$

obtained as composition of the map $\text{Id}_A \otimes p : A \otimes B^* \to A^{\otimes 2} \otimes C$ with the natural projection $A^{\otimes 2} \otimes C \to \Lambda^2 A \otimes C$.

Proposition 5.9 ([Ott07 Theorem 4.1]). Assume $3 \leq a \leq b, c$. If $R(p) \leq r$, then $\text{rk}(p_A^\Lambda) \leq r(a - 1)$.

If $a = 3$, we can slice p as follows (cf. Section 2.4): $p = \sum_{i=1}^3 a_i \otimes w_i \in A \otimes B \otimes C$, with $w_i \in B \otimes C$. Then the matrix representation of p_A^Λ in block matrices is the following $(b + b + b, c + c + c)$ partitioned matrix

$$M_3(w_1, w_2, w_3) := \begin{pmatrix}
0 & w_3 & -w_2 \\
-w_3 & 0 & w_1 \\
w_2 & -w_1 & 0
\end{pmatrix}. \tag{5.10}$$
Proposition 5.11 ([Lan12 Prop. 7.6.4.4]). If $a = b = c = 3$, the degree nine equation
\[\det(p_A^9) = 0 \]
defines the variety $\sigma_4(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C) \subset \mathbb{P}(A \otimes B \otimes C)$.

If $a = 4$ and $p = \sum_{i=1}^{4} a_i \otimes w_i \in A \otimes B \otimes C$, with $w_i \in B \otimes C$, then the matrix representation of p_A^9 in block matrices is the following $(4 \cdot b, 6 \cdot c)$ partitioned matrix
\[
M_4(w_1, w_2, w_3, w_4) := \begin{pmatrix}
\begin{array}{cccccc}
0 & w_3 & -w_2 & w_4 & 0 & 0 \\
-w_3 & 0 & w_1 & 0 & -w_4 & 0 \\
w_2 & -w_1 & 0 & 0 & 0 & -w_3 \\
0 & 0 & 0 & -w_1 & w_2 & w_3
\end{array}
\end{pmatrix}.
\tag{5.12}
\]

5.2 Case $(3 + 1, 2 + b'', 2 + c'')$

Assume $a' = 3$, $b' = c' = 2$ and $a'' = 1$.

Proposition 5.13. For any $p' \in \mathbb{C}^3 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ and $p'' \in \mathbb{C}^1 \otimes \mathbb{C}^{b''} \otimes \mathbb{C}^{c''}$ the additivity of the border rank holds.

Proof. We can assume p'' is concise, so that $R(p'') = b'' = c''$. Also if p' is not concise, then Corollary 5.2 shows the claim. So suppose p' is concise and thus $R(p') = 3$.

We can write $p' = a_1 \otimes w'_1 + a_2 \otimes w'_2 + a_3 \otimes w'_3$ and $p'' = a_4 \otimes w''_4$, where $w'_1 \ldots, w'_3$ are 2×2 matrices and w''_4 is an invertible $b'' \times b''$ matrix.

As for p', by Example 5.3 and Lemma 5.6 we can choose the more degenerate tensor, which has the following normal form:
\[w'_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad w'_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad w'_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \]

Write $p = \sum_{i=1}^{4} a_i \otimes w_i$, where w_i are the following $(2 + b'', 2 + b'')$ partitioned matrices
\[w_i = \begin{pmatrix} w'_i & 0 \\ 0 & 0 \end{pmatrix}, \quad i = 1, 2, 3, \quad w_4 = \begin{pmatrix} 0 & 0 \\ 0 & w''_4 \end{pmatrix}. \]

We use the same notation as in Section 5.1. We claim that the matrix representing the contraction operator p_A^9, denoted by $M_4(w_1, w_2, w_3, w_4)$ as in (5.12), has rank $7 + 3b''$. We conclude that $R(p) \geq 3 + b'' = R(p') + R(p'')$ by Proposition 5.9 showing the additivity.

In order to prove the claim, we observe that $M_4(w_1, w_2, w_3, w_4)$ can be transformed via permutations of rows and columns into the following $(6 + 3b'' + 2 + b'', 6 + 3b'' + 2 + 2 + 3b'')$-partitioned matrix
\[
\begin{pmatrix}
M_3(w'_1, w'_2, w'_3) & 0 & 0 & 0 & 0 & 0 \\
0 & N & 0 & 0 & 0 & 0 \\
0 & 0 & -w'_1 & w'_2 & w'_3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

where N is the following $3b'' \times 3b''$ matrix
\[
N = \begin{pmatrix} w''_4 & 0 & 0 \\ 0 & -w''_4 & 0 \\ 0 & 0 & w''_4 \end{pmatrix}.
\]

One can compute that the rank of $M_3(w'_1, w'_2, w'_3)$ equals 5. Moreover, since $\text{rk}(N) = 3b''$ and $\text{rk}((-w'_1, w'_2, -w'_3)) = 2$, we conclude the proof of the claim. □
5.3 Case \((3 + 1, 3 + b'', 3 + c'')\)

Recall our usual setting: \(p' \in A' \otimes B' \otimes C', p'' \in A'' \otimes B'' \otimes C'', a' := \dim A', \) etc. (Notation 3.2). In this subsection we are going to prove the following case of additivity of the border rank.

Proposition 5.14. The additivity of the border rank holds for \(p' \oplus p''\) if \(a' = b' = c' = 3,\) and \(p'\) is concise and \(a'' = 1.\)

Proof. By replacing \(B''\) and \(C''\) with smaller spaces we can assume \(p''\) is also concise and in particular \(b'' = c''.\) If \(R(p') = 3\) then Lemma 5.1 implies the claim. On the other hand, by Terracini’s Lemma, \(R(p') \leq 5.\) Thus it is sufficient to treat the cases \(R(p') = 4\) and \(R(p') = 5.\)

Let \(\{a_1, a_2, a_3\}\) be a basis of \(A'\) and let \(\{a_4\}\) be a basis of \(A'' \cong \mathbb{C}.\) Write

\[
p' = a_1 \otimes w'_1 + a_2 \otimes w'_2 + a_3 \otimes w'_3,\]

where \(w'_1, w'_2, w'_3 \in W' := p'((A')^*) \subset B' \otimes C'\) are \(3 \times 3\) matrices. Similarly, let

\[
p = a_1 \otimes w_1 + a_2 \otimes w_2 + a_3 \otimes w_3 + a_4 \otimes w_4,\]

where \(w_1, w_2, w_3, w_4 \in W := p(A^*) \subset B \otimes C\) are \((3 + b'', 3 + b'')\) partitioned matrices:

\[
w_i = \begin{pmatrix} u_i' & 0 \\ 0 & 0 \end{pmatrix}, \quad i = 1, 2, 3, \quad \text{and} \quad w_4 = \begin{pmatrix} 0 & 0 \\ 0 & w_4' \end{pmatrix}.
\]

(5.15)

We now analyse the two cases \(R(p') = 4\) and \(R(p') = 5\) separately.

The additivity holds if the border rank of \(p'\) is equal to four. Assume by contradiction that \(R(p) \leq b'' + 3 = R(p') + R(p'') - 1.\) By Proposition 5.13 we obtain the following equations:

\[
f_{b'' + 3}(x', y' + y'', z') = 0, \quad \text{for every} \quad x', y', z' \in W' = p'((A')^*) \quad \text{and} \quad 0 \neq y'' \in W'' = p''((A'')^*). \]

We can see that \(\text{adj}(y' + y'')\) is the following \((3 + b'', 3 + b'')\) partitioned matrix

\[
\text{adj}(y' + y'') = \begin{pmatrix} \det(y'') \text{adj}(y') & 0 \\ 0 & \det(y') \text{adj}(y'') \end{pmatrix}.
\]

Therefore we have

\[
x' \text{adj}(y' + y'')z' = \begin{pmatrix} \det(y'')x' \text{adj}(y')z' & 0 \\ 0 & 0 \end{pmatrix}.
\]

By the conciseness of \(p''\) \(\det(y'') \neq 0,\) thus from the vanishing of \(f_{b'' + 3}(x', y' + y'', z')\) we also obtain that \(f_3(x', y', z') = 0.\) Therefore \(R(p') \leq 3\) by Proposition 5.13 a contradiction.

The additivity holds if the border rank of \(p'\) is equal to five. Consider the projection \(\pi : A \otimes B \otimes C \to A' \otimes B \otimes C\) given by

\[
a_i \mapsto a_i, \quad i = 1, 2, 3, \\
a_4 \mapsto a_1 + a_2 + a_3.
\]

Consider \(\tilde{p} := \pi(p) \in A' \otimes B \otimes C\) and write \(\tilde{p} = a_1 \otimes \tilde{w}_1 + a_2 \otimes \tilde{w}_2 + a_3 \otimes \tilde{w}_3,\) where, for \(i = 1, 2, 3,\) \(\tilde{w}_i\) is the \((3 + b'', 3 + b'')\) partitioned matrix

\[
\tilde{w}_i = \begin{pmatrix} u_i' & 0 \\ 0 & w_i'' \end{pmatrix}.
\]

We claim that \(\text{rk}(\tilde{p}(\tilde{A})') = 9 + 2b''.\) Indeed, by swapping both rows and columns of \(M_3(\tilde{w}_1, \tilde{w}_2, \tilde{w}_3)\) (see Equation 5.10) we obtain the following \((9 + 3b'', 9 + 3b'')\) partitioned matrix

\[
\begin{pmatrix} p' \tilde{A}' & 0 \\ 0 & M_3(w'_4, w''_4, w'_4) \end{pmatrix}.
\]

Since \(R(p') = 5,\) the matrix \(p' \tilde{A}'\) has rank 9, by Proposition 5.11 Moreover \(M_3(w'_4, w''_4, w'_4)\) has rank \(2b''.\) Therefore, by Proposition 5.9 we obtain \(R(\tilde{p}) \geq 5 + b''.\) We conclude by observing that \(R(p) \geq R(\tilde{p}).\) \(\square\)
Table 1: The list of pairs of concise tensors and their border ranks that should be checked to determine the additivity of the border rank for $a, b, c \leq 5$. This list contains all pairs of concise tensors not covered by or Corollary 5.2 or Proposition 5.13 or Proposition 5.14 together with their possible border ranks, excluding the cases covered by Lemma 5.1. The maximal possible values of border ranks above have been obtained from [AOP09, Sect. 4].

#	(a', b', c')	(a'', b'', c'')	$R(p')$	$R(p'')$
1.	3, 2, 2	2, 3, 2	3	3
2.	3, 3, 2	2, 2, 3	3	3
3.	3, 3, 3	2, 2, 2	4, 5	2
4.	4, 2, 2	1, 2, 2	4	2
5.	4, 2, 2	1, 3, 3	4	3
6.	4, 3, 2	1, 2, 2	4	2
7.	4, 3, 3	1, 1, 1	5	1
8.	4, 3, 3	1, 2, 2	5	2
9.	4, 4, 3	1, 1, 1	5, 6	1
10.	4, 4, 4	1, 1, 1	5, 6, 7	1

This concludes the proof of Theorem 1.3 as all possible splittings $a = a' + a''$, $b = b' + b''$, $c = c' + c''$ with $a, b, c \leq 4$ are covered either by Corollary 5.2 or one of Propositions 5.13 or 5.14.

One could analyse the additivity for $a, b, c \leq 5$ (so for the bound one more than in Theorem 1.3) by checking all 10 possible cases listed in Table 1. We conclude the article by solving also Case 3 from the table.

Example 5.17. If $p' \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ and $p'' \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ are both concise, then the additivity of the border rank holds for $p' \oplus p''$. Indeed, by Example 5.4 there exists $q'' \in \mathbb{C}^1 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ more degenerate than p'', but of the same border rank. By Lemma 5.6 it is enough to prove the additivity for $p' \oplus q''$. This is provided by Proposition 5.14.

References

[Adl87] Bjørn Ådlandsvik. Joins and higher secant varieties. *Math. Scand.*, 61(2):213–222, 1987.

[AOP09] Hirotachi Abo, Giorgio Ottaviani, and Chris Peterson. Induction for secant varieties of Segre varieties. *Trans. Amer. Math. Soc.*, 361(2):767–792, 2009.

[AS79] M. D. Atkinson and N. M. Stephens. On the maximal multiplicative complexity of a family of bilinear forms. *Linear Algebra Appl.*, 27:1–8, 1979.

[BHMT18] Jarosław Buczyński, Kangjin Han, Massimiliano Mella, and Zach Teitler. On the locus of points of high rank. *Eur. J. Math.*, 4(1):113–136, 2018.

[BJ17] Jarosław Buczyński and Joachim Jelisiejew. Finite schemes and secant varieties over arbitrary characteristic. *Differential Geom. Appl.*, 55:13–67, 2017.

[BL13] Jarosław Buczyński and J.M. Landsberg. Ranks of tensors and a generalization of secant varieties. *Linear Algebra Appl.*, 438(2):668–689, 2013.

[CC01] Luca Chiantini and Marc Coppens. Grassmannians of secant varieties. *Forum Math.*, 13(5):615–628, 2001.

[CC08] Ciro Ciliberto and Filip Cools. On Grassmann secant extremal varieties. *Adv. Geom.*, 8(3):377–386, 2008.

[CCC15] Enrico Carlini, Maria Virginia Catalisano, and Luca Chiantini. Progress on the symmetric Strassen conjecture. *J. Pure Appl. Algebra*, 219(8):3149–3157, 2015.
Enrico Carlini, Maria Virginia Catalisano, Luca Chiantini, Anthony V. Geramita, and Youngho Woo. Symmetric tensors: rank, Strassen’s conjecture and e-computability. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 18(1):363–390, 2018.

Enrico Carlini, Maria Virginia Catalisano, and Alessandro Oneto. Waring loci and the Strassen conjecture. arXiv:1605.00384, 2016.

Enrico Carlini, Nathan Grieve, and Luke Oeding. Four lectures on secant varieties. In *Connections between algebra, combinatorics, and geometry*, volume 76 of *Springer Proc. Math. Stat.* pages 101–146. Springer, New York, 2014.

Alex Casarotti, Alex Massarenti, and Massimiliano Mella. On Comon’s and Strassen’s conjectures. arXiv:1810.09338, 2018.

Pierre Comon. Tensor decompositions: state of the art and applications. In *Mathematics in signal processing, V (Coventry, 2000)*, volume 71 of *Inst. Math. Appl. Conf. Ser. New Ser.*, pages 1–24. Oxford Univ. Press, Oxford, 2002.

Shmuel Friedland. On tensors of border rank \(l \) in \(\mathbb{C}^{m \times n \times l} \). *Linear Algebra Appl.*, 438(2):713–737, 2013.

Ephraim Feig and Shmuel Winograd. On the direct sum conjecture. *Linear Algebra Appl.*, 63:193–219, 1984.

Joseph Ja’Ja’ and Jean Takche. On the validity of the direct sum conjecture. *SIAM J. Comput.*, 15(4):1004–1020, 1986.

J. M. Landsberg. *Tensors: geometry and applications*, volume 128 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2012.

J. M. Landsberg and L. Manivel. Generalizations of Strassen’s equations for secant varieties of Segre varieties. *Comm. Algebra*, 36(2):405–422, 2008.

J. M. Landsberg and Mateusz Michałek. Abelian tensors. *J. Math. Pures Appl. (9)*, 108(3):333–371, 2017.

Giorgio Ottaviani. Symplectic bundles on the plane, secant varieties and Liøroth quartics revisited. In *Vector bundles and low codimensional subvarieties: state of the art and recent developments*, volume 21 of *Quad. Mat.*, pages 315–352. Dept. Math., Seconda Univ. Napoli, Caserta, 2007.

Francesco Palatini. Sulle superficie algebriche i cui \(s_h(h+1) \)-seganti non riempiono lo spazio ambiente. *Atti della R. Acc. delle Scienze di Torino*, 41:634–640, 1906.

Filip Rupniewski. Tensors of border rank 3 and Strassen’s additivity conjecture. Master’s thesis, Institute of Mathematics, Warsaw University, 2017. Supervisor: Jarosław Buczyński. Available at https://www.mimuw.edu.pl/~jabu.

A. Schönhage. Partial and total matrix multiplication. *SIAM J. Comput.*, 10(3):434–455, 1981.

Yaroslav Shitov. A counterexample to Strassen’s direct sum conjecture. arXiv:1712.08660, 2017.

Toshio Sumi, Mitsuhiro Miyazaki, and Toshio Sakata. About the maximal rank of 3-tensors over the real and the complex number field. *Ann. Inst. Statist. Math.*, 62(4):807–822, 2010.

Volker Strassen. Gaussian elimination is not optimal. *Numer. Math.*, 13:354–356, 1969.

Volker Strassen. Vermeidung von Divisionen. *J. Reine Angew. Math.*, 264:184–202, 1973.
[Str88] Volker Strassen. The asymptotic spectrum of tensors. *J. Reine Angew. Math.*, 384:102–152, 1988.

[Tei15] Zach Teitler. Sufficient conditions for Strassen’s additivity conjecture. *Illinois J. Math.*, 59(4):1071–1085, 2015.

[Zak93] F. L. Zak. *Tangents and secants of algebraic varieties*, volume 127 of *Translations of Mathematical Monographs*. American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author.