Test of the universality of τ and μ lepton couplings in W-boson decays with the ATLAS detector

ATLAS Collaboration*

The standard model of particle physics encapsulates our best current understanding of physics at the smallest scales. A fundamental axiom of this theory is the universality of the couplings of the different generations of leptons to the electroweak gauge bosons. The measurement of the ratio of the decay rate of W bosons to τ leptons and muons, $R(\tau/\mu)$, constitutes an important test of this axiom. Using 139 fb^{-1} of proton–proton (pp) collisions recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV, we report a measurement of this quantity from di-leptonic $t\bar{t}$ events where the top quarks decay into a W boson and a bottom quark. We can distinguish muons originating from W bosons and those originating from an intermediate τ lepton through the muon transverse impact parameter and differences in the muon transverse momentum spectra. The measured value of $R(\tau/\mu)$ is 0.992 ± 0.013 (stat) ± 0.011 (syst) and is in agreement with the hypothesis of universal lepton couplings as postulated in the standard model. This is the only such measurement from the Large Hadron Collider, so far, and obtains twice the precision of previous measurements.

A list of authors and their affiliations appears online.
the accepted event rate to 1 kHz, on average, depending on the data-taking conditions.

The analysed pp collision data were recorded with the ATLAS detector from 2015 to 2018 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. Owing to the conditions required to achieve high instantaneous luminosity, in these data there are additional collisions in the same and neighbouring LHC proton bunch crossings (pile-up). This resulted in an average of 34 collisions per bunch crossing.

Events in this measurement were selected by single-lepton triggers$^{26-31}$ requiring a single high-p_T isolated electron or muon. After the application of data-quality requirements32, the data sample corresponds to an integrated luminosity of 139 fb$^{-1}$ with an uncertainty of 1.7%33, obtained using the LUCID-2 detector34 for the primary luminosity measurements.

Samples of simulated events were produced using Monte Carlo techniques to model the different SM processes. After event generation of the process of interest for each sample, the detector response was modelled using a simulation based on GEANT435. The data and Monte Carlo simulated events were passed through the same reconstruction and analysis procedures. Samples were simulated for the signal processes, the production of $t\bar{t}$ and single top quarks in association with a W boson (Wt), as well as the different backgrounds. Precise details of the theoretical predictions and event generators used to create the simulated events are provided in the Methods.

Selecting a pure and unbiased sample of W bosons

Collisions are selected to obtain a high-purity sample of $t\bar{t}$ events in which the top quarks decay into a W boson and a b quark, and the two W bosons then decay to leptons. This is referred to as di-leptonic $t\bar{t}$. The two leptonic W-boson decays are exploited in a tag and probe approach: in each event, tag leptons (electrons or muons) are used to select the event, after which a test is performed to determine, in an unbiased way, whether the probe muon was directly produced by a W boson, $W \rightarrow \mu \nu$, or via an intermediate τ lepton, $W \rightarrow \tau \nu, \rightarrow \mu \nu$. Events are categorized into signal regions, used to extract $R(\tau/\mu)$, and additional control regions, used to constrain the normalization of the major backgrounds.

The selections rely on reconstructed muons, electrons and hadronic jets. Details of the physics object reconstruction definitions used are provided in the Methods. Events entering the signal region are required to contain either one electron and one muon of opposite electric charge (e-μ channel) or two muons of opposite electric charge (μ-μ channel). In the e-μ channel, the electron is required to pass the trigger, and in the μ-μ channel, the tag muon is required to pass the trigger. This ensures that the probe muons have no trigger bias. If both leptons in the μ-μ channel satisfy the tag and probe criteria, both muons in turn are used as probes. Events with more than two leptons are rejected. In addition, events must have at least two reconstructed hadronic jets that are identified as containing a b hadron. Finally, to reduce the backgrounds from Z bosons and hadron decays, events where the invariant mass of the two muons, $m_{\mu\mu}$, satisfies $85 < m_{\mu\mu} < 95$ GeV are excluded in the μ-μ channel, and events with di-lepton mass $m_{\ell\ell} < 15$ GeV are excluded in both channels.

This selection results in a sample of approximately half a million collision events, with a di-leptonic $t\bar{t}$ purity of over 95% in the e-μ channel and 85% in the μ-μ channel. This sample is used to test the origin of the probe muons and extract the measurement of $R(\tau/\mu)$. This is extracted from the ratio of the number of events in which the probe muon originates from the process $W \rightarrow \tau \nu, \rightarrow \mu \nu$, referred to as μ_{prompt}, to those that come from the process $W \rightarrow \nu$, referred to as $\mu_{\text{non-prompt}}$. A fit is performed that exploits the difference in shape between these two components and the backgrounds of the distributions of the probe muon’s transverse impact parameter $|d^\mu_T|$ and its transverse momentum p^μ_T.

Muon transverse impact parameter distribution calibration

The muon’s transverse impact parameter $|d^\mu_T|$ has particular importance for this analysis and requires careful treatment. It is measured in the x-y plane as the closest distance of approach of the track to the beamline. The shape of the $|d^\mu_T|$ distribution of prompt muons is determined using a $Z \rightarrow \mu\mu$ calibration region to create templates that are used to predict the distribution in the signal region.

The calibration region is defined by requiring that two muons satisfying the same kinematic criteria as in the signal region, but with the di-muon mass requirement changed to $85 < m_{\mu\mu} < 100$ GeV. No requirements on hadronic jets are applied. This gives a sample of ~95 million prompt muons with a purity of >99.9%.

Templates of the shape of the $|d^\mu_T|$ distribution are then taken from this data sample after subtracting the expected contributions from the simulation of processes with significant muon parent lifetimes, primarily $Z \rightarrow \tau\tau$. These $|d^\mu_T|$ templates are extracted in 33 bins in p^μ_T and $|p^\tau_T|$ to capture the dependence of the distribution on these variables. Separate templates are used for 2015+2016, 2017 and 2018 data to account for differences in the beam conditions and in the alignment of the inner detector.
Fig. 2 | μ_{had} background normalization. A region enriched in μ_{had} events is defined by selecting events with two same-sign muons. This control region is used to extract normalization factors to correct the μ_{had} prediction to match the data. The probe muon transverse impact parameter (left, $|d_0^\mu|$) and transverse momentum (right, p_T^μ) distributions in this region are shown. The data are shown by black markers and the different components contributing to this region, taken from simulation, are shown by stacked histograms. The different contributions are the primary process of interest, μ_{had} (hadron decay)), along with the main backgrounds from events involving a top quark pair produced in association with a W or Z boson ($t\bar{t} + V$ processes), a pair of W and/or Z bosons (Di-boson processes) and the grouping of all remaining SM processes (Other SM processes). The y-axis label includes the value that defines the scaling of the variable bin width histogram. The extracted normalization factor is applied to the μ_{had} prediction, along with the effect of any constraints and pulls on the systematic uncertainties from the fit to the signal region data. The bottom panels show the ratio of the data to the predicted expectation after the fit. The uncertainties on the data are the Poisson errors due to the limited size of the data sample. Blue bands indicate the systematic uncertainties on the prediction with the constraints from the analysis fit applied. The open blue arrowheads in the ratio panel indicate points where the ratio values lie outside the y-axis range shown.

Additionally, using this calibration region, the Gaussian part of the $|d_0^\mu|$ resolution is estimated in data and simulation by fitting the $|d_0^\mu|$ distribution in the range $|d_0^\mu| < 0.02$ mm. For $p_T^\mu = 20$ GeV, the resolution is ~14μm. Corrections to account for differences in the resolution of the detector between the data and simulation are applied to the muons from τ decays and hadron decays. For the range of $|d_0^\mu|$ values considered in this analysis, $|d_0^\mu| < 0.5$ mm, the resolution measured from prompt muons is applicable to those with significant displacement.

Background normalization estimation

The two largest backgrounds are $Z(\rightarrow \mu\mu)$ + jets and events in which the probe muon does not originate from a W-boson decay. Three dedicated control regions are used to extract the normalization of these backgrounds.

The $Z(\rightarrow \mu\mu)$ + jets background is important at small values of $|d_0^\mu|$. The normalization of the $Z(\rightarrow \mu\mu)$ + jets background in the μ–μ channel is extracted from the data in a control region where the same event selection is applied, including the hadronic jet requirements, but without the $m_{\mu\mu}$ criterion, and is then extrapolated to the signal region using simulation. In the control region, the peak of the invariant mass distribution of the di-muon system is fitted over the range $50 < m_{\mu\mu} < 140$ GeV. A Voigt profilea is used for the $Z \rightarrow \mu\mu$ resonance and a third-order Chebychev polynomial for all non-resonant processes, which provides a good description of the data. Other functions were tested to provide a systematic uncertainty, which is combined with the statistical uncertainties. The normalization factor required to scale the simulated sample to data is found to be 1.36 ± 0.01. The di-muon invariant mass in the control region is shown in Fig. 1 after this normalization is applied.

This normalization factor is also applied to the small $Z(\rightarrow \tau\tau)$ + jets background.

The most important background at large values of $|d_0^\mu|$ is from events in which the probe muon originates from the decay of b or c hadrons, or more rarely from in-flight decays of π^0 and K^0. This occurs primarily in $t\bar{t}$ events where one W boson decays leptonically and the other hadronically, referred to as semi-leptonic $t\bar{t}$. These muons are referred to as μ_{had}. A data-driven method is used to determine the normalization of this background from two control regions, one each for the e–μ and μ–μ channels. The control regions have the same event selection as the signal regions, but the two leptons are required to have same-sign electric charge. This results in a sample with a high purity of this μ_{had} background. The largest source of μ_{had} is from decays of b hadrons, and this contributes equally to same-sign and opposite-sign selections, while the other substantial source, c hadrons, has a component in both selections, but they are not equal. The extrapolation from same-sign control region to opposite-sign signal region is estimated from simulation. In the same-sign control region there are two backgrounds to μ_{had} at high p_T^μ: $t\bar{t} + V$, and $t\bar{t}$, which occurs through electron charge misidentification in the e–μ channel. A normalization correction factor is applied to these processes based on the number of events observed with a probe muon with $p_T^\mu > 30$ GeV. This is done before extracting the normalization of the μ_{had} background. The normalization factors to scale the simulation to data for the μ_{had} background are found to be 1.39 and 1.37 in the e–μ and μ–μ, channels, respectively. Figure 2 shows that the simulation and data are consistent within uncertainties in the μ–μ channel same-sign control region, providing confidence that the differential distributions of p_T^μ and $|d_0^\mu|$ are well-modelled.
The chi-squared statistic values range from 3.5 to 10.2 for eight degrees of freedom for the distributions. The signal region used to extract $\tau(\mu)$ is enriched in di-lepton $t\bar{t}$ events. The $|d_0|_{\text{mm}}$ distributions for each signal region (left, $e\mu$ channel; right, $\mu\mu$ channel) and probe muon p_T bin (top, $5 < p_T < 10$ GeV; middle, $10 < p_T < 20$ GeV; bottom, $20 < p_T < 250$ GeV) used in the analysis are shown. The data are represented by black markers and the different components contributing to this region, taken from simulation, are shown by stacked histograms. The different contributions are the two primary processes of interest ($Z \rightarrow \mu\mu$) and the grouping of all remaining SM processes (Other SM processes). Distributions are shown after the fit has been performed. The y-axis label includes the value that defines the scaling of the variable bin width histogram. The bottom panels show the ratio of the data to the predicted expectation after the fit. The uncertainties on the data are the Poisson errors due to the limited size of the data sample. Blue bands indicate the ±1σ systematic uncertainties on the prediction with the constraints from the analysis fit applied. The contribution from ‘Other SM processes’ is dominated by di-boson and $t\bar{t} + V$ production. The chi-squared statistic values range from 3.5 to 10.2 for eight degrees of freedom for the distributions.
on the measured value of $R(\tau/\mu)$ are shown. The size of the impact each uncertainty has on $R(\tau/\mu)$ is assessed by fixing the relevant fit parameters for a given uncertainty and refitting to data. The reduction in the total uncertainty in this modified fit gives the quoted impact. Different individual components used in the fit are combined into categories.

Fit configuration and systematic uncertainties

A two-dimensional profile likelihood fit is performed in the $|d_\eta^0|$ and p_T^μ distributions. The bin boundaries were chosen to provide the best separation between the different μ_{prompt} and μ_{nond} processes given the available data. This resulted in three bins in p_T^μ (boundaries of 5, 10, 20 and 250 GeV) and eight bins in the transverse impact parameter $|d_\eta^0|$ (boundaries of 0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15 and 0.5 mm), of the probe muon for both the $e-\mu$ and $\mu-\mu$ channels, making 48 bins in total.

The ratio of the number of μ_{nond} events to the number μ_{prompt} is fitted by minimizing the negative log-likelihood, to measure $R(\tau/\mu)$. More than 100 (nuisance) parameter values representing the statistical and systematic uncertainties, which can be modified by the fit, are included. The relative uncertainty of 0.23% in the $\tau \rightarrow \mu \mu \tau$ branching ratio is also included in the measured value of $R(\tau/\mu)$ and is a subdominant component of the overall uncertainty. As both the W and $t\bar{t}$ processes contain two W bosons, both are treated as signal. Two fit parameters are allowed to float freely: $R(\tau/\mu)$ and $k(t\bar{t})$. The $k(t\bar{t})$ parameter is a constant scaling factor applied to the normalization of both the μ_{prompt} and μ_{nond} components of the signal, whereas $R(\tau/\mu)$ only affects the μ_{nond} components. Both are applied across all bins and in both channels. $R(\tau/\mu)$ is the parameter of interest and is not affected by the overall normalization scaling factors of the $t\bar{t}$ and Wt processes. The fit is performed after applying the normalization scaling factors derived in the control regions. Other processes are normalized to their theoretical cross-sections, taking into account the uncertainty in these predictions.

Because many systematic uncertainties are correlated between the μ_{prompt} and μ_{nond} templates, they cancel out in the $R(\tau/\mu)$ ratio, minimizing their impact on the precision of the result. These include uncertainties related to jet reconstruction, flavour tagging and trigger efficiencies. The remaining dominant uncertainties are the uncertainties in the data-driven methods, the theoretical modelling uncertainties and the reconstruction uncertainties; these are described in the following and further details are provided in the Methods.

An uncertainty associated with the data-driven templates for the $|d_\eta^0|$ distribution of μ_{prompt} is derived to account for the differences between the $Z \rightarrow \mu\mu$ calibration region where they were derived and the signal region.

Uncertainties in the data-driven normalization of the μ_{nond} background due to the size of the same-sign dataset, the choice of Monte Carlo generators used and the uncertainty in the subtraction of the other processes in the same-sign control region are included in the fit. The uncertainties associated with the $Z +$jets normalizations derived from data are also applied. Uncertainties on the cross-section calculations and the integrated luminosity are applied to all other backgrounds estimated from simulation, but have a minor impact on the result.

Uncertainties in the shape of the μ_{prompt} and μ_{nond} distributions due to the modelling of the simulated $t\bar{t}$ samples are derived. The combined yield of the μ_{prompt} and μ_{nond} templates is allowed to float in the fit, but changes in generator configuration choices can result in modifications to the muon p_T^μ and subsequently the $|d_\eta^0|$ distribution, such that there can be relative changes in the μ_{prompt} and μ_{nond} template yields in each bin, leading to an uncertainty in $R(\tau/\mu)$. For the μ_{nond} background, in addition to the uncertainties in the normalization, there can be changes to the muon p_T^μ modelling and the relative fractions of muons from different sources, both of which can change the shape of the $|d_\eta^0|$ distribution. The most important of these variations is in the parton shower and hadronization model.

The muon reconstruction and isolation efficiencies are determined in di-muon ($Z \rightarrow \mu\mu$ and $t\bar{t} \rightarrow W\mu$) data and simulation using a tag and probe method. Corrections are applied to the simulated samples to account for the differences between data and simulation, and the uncertainties on these correction factors are included in the analysis. Additionally, an uncertainty due to the modelling of pile-up is obtained by reweighting the simulated events.

Extraction of $R(\tau/\mu)$

Figure 3 shows the differential distributions of $|d_\eta^0|$ in the six signal regions for the data and the expectation after the fit to data. Good agreement is observed between the corrected simulation samples and the data. The global goodness of fit when fitting the expectation from simulation, defined as twice the change in negative
log-likelihood relative to a fit performed assuming the pre-fit expectation per degree of freedom, has a value of 1.11 (P value of 0.29).

The separation between the μ_{prompt} and μ_{had} processes can be seen clearly. The μ_{prompt} processes dominate at low d_{η}^{0}, whereas μ_{had} dominates at high d_{η}^{0}. The μ_{had} background is also important at high d_{η}^{0} but contributes most significantly at low p_{T}^{τ}.

The analysis was finalised before looking at the value of $R(\tau/\mu)$ in the data to minimize any bias. It was also checked that the result is consistent with respect to different channels, kinematic bins, data-taking periods and the charge of the probe lepton.

The total systematic uncertainty is 0.011, including the uncertainty in the $\tau \rightarrow \mu \nu \bar{\nu}$, branching ratio, and the statistical uncertainty is 0.007. Table 1 lists the different contributions of systematic uncertainty grouped into categories. The leading contributions come from the imperfect knowledge of the tail of the d_{η}^{0} distribution, the parton shower and hadronization model uncertainty, and the muon selection uncertainties.

The measured value of $R(\tau/\mu)$ is

$$R(\tau/\mu) = 0.992 \pm 0.013 ([\pm 0.007 \text{ (stat)} \pm 0.011 \text{ (syst)}])$$

exceeding the precision from LEP which measured 1.070 ± 0.026. The result is shown in Fig. 4 alongside the combination of LEP measurements. The present result agrees with the SM expectation of equal couplings for different lepton flavours and the hypothesis of lepton-flavour universality.

This result surpasses the precision of the previous LEP result and resolves the tension they observed with the SM prediction of lepton-flavour universality. This precise measurement of $R(\tau/\mu)$ achieved so far, this is an example of the ability of the ATLAS experiment to perform high-precision measurements.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41567-021-01236-w.

Received: 28 July 2020; Accepted: 30 March 2021; Published online: 5 July 2021

References

1. Feldman, G. J. et al. Measurement of the τ lifetime. Phys. Rev. Lett. 48, 66–69 (1982).
2. Belle Collaboration Measurement of the τ-lepton lifetime at Belle. Phys. Rev. Lett. 112, 031801 (2014).
3. LEP Electroweak Working Group Electroweak measurements in electron–positron collisions at $\sqrt{s} = 1.8$ TeV. Phys. Lett. B, 339–3402 (1992).
4. UA2 Collaboration A search for charged Higgs from top quark decay at the CERN $p$$p$ collider. Phys. Lett. B 280, 137–145 (1992).
5. D0 Collaboration Measurement of the $W \rightarrow \tau
\nu$ production cross section at $\sqrt{s} = 1.8$ TeV. Phys. Rev. Lett. 84, 5710–5715 (2000).
6. CMS Collaboration Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in $p$$p$ collisions at $\sqrt{s} = 7$ TeV. J. High Energy Phys. 02, 191 (2020).
7. LHCB Collaboration Measurement of forward $W \rightarrow e\nu$ production in $p$$p$ collisions at $\sqrt{s} = 8$ TeV. J. High Energy Phys. 10, 030 (2016).
8. ATLAS Collaboration Precision measurement and interpretation of inclusive W, Z and $Z'\nu\bar{\nu}$ production cross sections with the ATLAS detector. Eur. Phys. J. C 77, 367 (2017).
9. CMS Collaboration Measurement of the ratio of the $B^0 \rightarrow D^-\tau^+\nu$, $B^0 \rightarrow D^0\tau^+\nu$, $B^0 \rightarrow D^0\tau^-\nu$, $B^0 \rightarrow D^-\tau^-\nu$, $B^0 \rightarrow D^+\tau^-\nu$, $B^0 \rightarrow D^-\tau^-\nu$ branching fractions using three-prong τ-lepton decays. Phys. Rev. Lett. 120, 171802 (2018).
10. LHCb Collaboration Test of lepton flavor universality by the measurement of $B^0 \rightarrow D^-\tau^-\nu$, branching fraction using three-prong τ decays. Phys. Rev. D 97, 072013 (2018).
11. LHCb Collaboration Measurement of CP-averaged observables in the $B^0 \rightarrow \tau\nu$ decay. Phys. Rev. Lett. 118, 211801 (2017).
12. LHCb Collaboration Angular analysis of the $B^0 \rightarrow K^{*}\mu^+\mu^-$ decay using 5 fb$^{-1}$ of integrated luminosity. J. High Energy Phys. 02, 104 (2016).
13. Belle Collaboration Measurement of the τ lepton polarization and $R(D')$ in the decay $\bar{D} \rightarrow D^*\pi^-\tau^-$. Phys. Lett. B 118, 211801 (2017).
14. Belle Collaboration Measurement of the τ lepton polarization and $R(D')$ in the decay $\bar{D} \rightarrow D^*\pi^-\tau^{-}$ with one-prong hadronic τ decays at Belle. Phys. Rev. D 97, 012004 (2018).
15. Belle Collaboration Measurement of $R(D)$ and $R(D^*)$ with a semileptonic tagging method. Preprint at https://arxiv.org/pdf/1904.08794.pdf (2019).
16. ATLAS Collaboration Luminosity measurement: constraints on the τ lifetime. Eur. Phys. J. C 77, 41–85 (2014).
17. ATLAS Collaboration Performance of the ATLAS muon triggers in run 2. J. Instrum. 13, T05008 (2018).
18. ATLAS Collaboration Performance of the ATLAS trigger system in 2015. J. Instrum. 10, 1284 (2015).
19. ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008).
20. ATLAS Collaboration ATLAS Insertable B-Layer Technical Design Report CERN-LHCC-2010-013, ATLAS-TDR-19 (CERN, 2010); https://cds.cern.ch/record/1291633.
21. Abbott, B. et al. Production and integration of the ATLAS insertable B-layer. J. Instrum. 13, T05008 (2018).
22. ATLAS Collaboration Performance of the ATLAS trigger system in 2015. Eur. Phys. J. C 77, 317 (2017).
23. ATLAS Collaboration Measurement of electron and photon triggers in ATLAS during LHC run 2. Eur. Phys. J. C 80, 47 (2020).
24. ATLAS Collaboration Performance of the ATLAS muon triggers in run 2. J. Instrum. 15, P09015 (2020).
25. ATLAS Collaboration ATLAS data quality operations and performance for 2015–2018 data-taking. J. Instrum. 15, P04003 (2020).
26. ATLAS Collaboration Luminosity Determination in $p$$p$ Collisions at $\sqrt{s} = 13$ TeV using the ATLAS Detector at the LHC (CERN, 2019); https://cds.cern.ch/record/2677054.
27. Avoni, G. et al. The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS. J. Instrum. 13, P07017 (2018).
28. Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003).
29. Vogt, W. Über das Gesetz der Intensitätsverteilung Innerhalb der Linien Sitzungsberichte, 250–303 (1912).
30. Cowan, G. et al. Asymptotic formulaire for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1534 (2011); erratum 73, 2510 (2013).
31. ATLAS Collaboration Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s} = 13$ TeV. Eur. Phys. J. C 76, 292 (2016).
32. ATLAS Collaboration The Pythia 8.23 Tune Description of ATLAS Minimum Bias and Inelastic Measurements Incorporating the Dornach–Landshoff Diffractive Model (CERN, 2016); https://cds.cern.ch/record/2206965.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Methods
ATLAS coordinate system and nomenclature. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z axis along the beam pipe. The x axis points from the IP to the centre of the LHC ring, and the y axis points upwards.

Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). Angular distance is measured in units of ΔR = √(Δφ)² + (Δη)².

The beamline is the central (x−y) axis of the luminous region. The transverse impact parameter, |d_{xy}|, is measured in the x−y plane as the closest distance of approach of the track to the beamline. It is defined relative to the beamline rather than the primary vertex so that the resolution of |d_{xy}| is independent of the vertex (x−y) resolution, which depends on the physics process.

Monte Carlo simulation and theoretical predictions. The top−pair and single−top quark events, including Wt−, t− and s− channel production, were generated using the POWHEGBOX generator interfaced to the PYTHIA8 particle shower and hadronization model (more details are available in ref. 41). The decays of bottom and charm hadrons are important for backgrounds in the analysis and were modelled using the EVTGEN program. The R and single−top processes were normalized to the inclusive cross−section calculation of the highest available precision and R events additionally have a differential reweighting applied to match the next−to−next−to−leading order (NNLO) in quantum chromodynamics (QCD) top quark pt calculation. For single−top quark production in the W channel, the diagram−removal scheme was used to remove overlap with ttt events. The R and single−top processes were normalized to the inclusive cross−section calculation of the highest available precision and R events additionally have a differential reweighting applied to match the next−to−next−to−leading order (NNLO) in quantum chromodynamics (QCD) top quark pt calculation. For single−top quark production in the W channel, the diagram−removal scheme was used to remove overlap with ttt events.

The ATLAS software is available at the following link: https://gitlab.cern.ch/ATLAS/HEPData with the identifier https://www.hepdata.net/record/100232.

Data availability
The experimental data that support the findings of this study are available in HEPData with the identifier https://www.hepdata.net/record/100232.

Code availability
The ATLAS software is available at the following link: https://gitlab.cern.ch/atlasis/athena.

References
40. Frixione, S., Nason, P. & Ridolfi, G. A positive−weight next−to−next−to−leading Monte Carlo for heavy flavour hadroproduction. J. High Energy Phys. 09, 126 (2007).
41. Nason, P. A New method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 11, 040 (2004).
42. Frixione, S., Nason, P. & Oleari, C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 11, 070 (2007).
43. Alioli, S. et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys. 06, 043 (2010).
44. Ball, R. D. et al. Parton distributions for the LHC run II. J. High Energy Phys. 04, 040 (2015).
45. Sjöstrand, T. et al. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159−177 (2015).
46. ATLAS Collaboration ATLAS Pythia 8 Tunes to 7−TeV Data (CERN, 2014); https://cds.cern.chrecord/1966419.
47. Ball, R. D. et al. Parton distributions with LHC data. Nucl. Phys. B 867, 244−289 (2013).
48. ATLAS Collaboration Studies on Top−Quark Monte Carlo Modelling for Top−2016 (CERN, 2016); https://cds.cern.chrecord/2216168.
49. Lange, D. J. The 49 particle decay simulation package. Nucl. Instrum. Methods A 626, 152−155 (2011).
50. Beneke, M. et al. Hadronic top−quark pair production with NNLL threshold resummation. Nucl. Phys. B 855, 695−741 (2012).
51. Cacciari, M. et al. Top−pair production at hadron colliders with next−to−next−to−leading logarithmic soft−gluon resummation. Phys. Lett. B 720, 532−542 (2012).
52. Bärnreuther, P., Czakon, M. & Mitov, A. Percent−level−precision physics at the ttt: next−to−next−to−leading order QCD corrections to ttt−X. Phys. Rev. Lett. 109, 132001 (2012).
53. Czakon, M. & Mitov, A. NNLO corrections to top−pair production at hadron colliders: the all−fermionic scattering channels. J. High Energy Phys. 12, 054 (2012).
54. Czakon, M. & Mitov, A. NNLO corrections to top pair production at hadron colliders: the quark–gluon reaction. *J. High Energy Phys.* **01**, 080 (2013).

55. Czakon, M., Fiedler, P. & Mitov, A. Total top-quark pair-production cross section at hadron colliders through $O(a_s^3)$. *Phys. Rev. Lett.* **110**, 252004 (2013).

56. Czakon, M. & Mitov, A. Top++: a program for the calculation of the top–pair cross-section at hadron colliders. *Comput. Phys. Commun.* **185**, 2930–2938 (2014).

57. Aliev, M. et al. HATHOR: hadronic top and heavy quarks cross section calculator. *Comput. Phys. Commun.* **182**, 1034–1046 (2011).

58. Kant, P. et al. HATHOR for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. *Comput. Phys. Commun.* **191**, 74–89 (2015).

59. Czakon, M. et al. Top-pair production at the LHC through NNLO QCD and NLO EW. *J. High Energy Phys.* **10**, 186 (2017).

60. Fixion, S. et al. Single-top hadroproduction in association with a W boson. *J. High Energy Phys.* **07**, 029 (2008).

61. Alwall, J. et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. *J. High Energy Phys.* **07**, 079 (2014).

62. Gleisberg, T. et al. Event generation with SHERPA 1.1. *J. High Energy Phys.* **02**, 007 (2009).

63. Bothmann, E. et al. Event generation with Sherpa 2.2. *SciPost Phys.* **7**, 034 (2019).

64. Gleisberg, T. & Höche, S. Comix, a new matrix element generator. *J. High Energy Phys.* **12**, 039 (2008).

65. Cascioli, F., Maierhofer, P. & Pozzorini, S. Scattering amplitudes with open loops. *Phys. Rev. Lett.* **108**, 111601 (2012).

66. Denner, A., Dittmaier, S. & Hofer, L. Collier: a fortran-based complex one-loop library in extended regularizations. *Comput. Phys. Commun.* **212**, 220–238 (2017).

67. Schumann, U. & Krauss, F. A parton shower algorithm based on Catani–Seymour dipole factorisation. *J. High Energy Phys.* **03**, 038 (2008).

68. Höche, S. et al. A critical appraisal of NLO+PS matching methods. *J. High Energy Phys.* **09**, 049 (2012).

69. Höche, S. et al. QCD matrix elements+parton showers: the NLO case. *J. High Energy Phys.* **04**, 027 (2013).

70. Catani, S. et al. QCD matrix elements+parton showers. *J. High Energy Phys.* **11**, 063 (2001).

71. Höche, S. et al. QCD matrix elements and truncated showers. *J. High Energy Phys.* **05**, 053 (2009).

72. ATLAS Collaboration *ATLAS Simulation of Boson Plus Jets Processes in Run 2* (CERN, 2017); https://cds.cern.ch/record/2261937

73. ATLAS Collaboration *Multi-Boson Simulation for 13-TeV ATLAS Analyses* (CERN, 2017); https://cds.cern.ch/record/2261933

74. Anastasiou, C. et al. High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. *Phys. Rev. D* **69**, 094008 (2004).

75. de Florian, D. et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector CERN-2017-002-M. Preprint at https://arxiv.org/pdf/1610.07922.pdf (2016).

76. ATLAS Collaboration *Performance of the ATLAS track reconstruction algorithms in dense environments in LHC run 2* (CERN, 2017). *Eur. Phys. J.* **C77**, 673 (2017).

77. ATLAS Collaboration *Early Inner Detector Tracking Performance in the 2015 Data at $\sqrt{s} = 13$ TeV* (CERN, 2015); https://cds.cern.ch/record/2110140

78. ATLAS Collaboration *Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data.* *J. Instrum.* **14**, P12006 (2019).

79. ATLAS Collaboration *Topological cell clustering in the ATLAS calorimeters and its performance in LHC run 1.* *Eur. Phys. J.* **C77**, 490 (2017).

80. Cacciari, M., Salam, G. P. & Soyez, G. The anti-kt jet clustering algorithm. *J. High Energy Phys.* **04**, 063 (2008).

81. ATLAS Collaboration *Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector.* *Phys. Rev.* **D96**, 072002 (2017).

82. ATLAS Collaboration *Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector.* *Eur. Phys. J.* **C76**, 581 (2016).

83. ATLAS Collaboration *Measurements of b-jet tagging efficiency with the ATLAS detector using f events at $\sqrt{s} = 8$ TeV.* *J. High Energy Phys.* **08**, 089 (2018).

84. ATLAS Collaboration *ATLAS b-jet identification performance and efficiency measurement with f events in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector.* *J. High Energy Phys.* **07**, 124 (2020).

85. Aad, G. et al. Observation of the associated production of a top quark and a Z boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. *J. High Energy Phys.* **07**, 124 (2020).

86. Bühr, M. et al. *Herwig++* physics and manual. *Eur. Phys. J.* **C58**, 639–707 (2008).

87. Bellm, J. et al. *Herwig 7.0*/*Herwig++* 3.0 release note. *Eur. Phys. J.* **C76**, 196 (2016).

88. Harland-Lang, L. et al. Parton distributions in the LHC era: MMHT 2014 PDFs. *Eur. Phys. J.* **C75**, 204 (2015).

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STScI, Belgium; CNPq and FAPESP, Brazil; NSERC, NRC and CPI, Canada; CERN, ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MOST, MPO CR and VSC, CR, Czech Republic; DNRF and DNBC, Denmark; IN2P3-CNRS and CEA-DRF/IFRF, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; BCC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR, MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wullenberg Foundation, Sweden; SERI, SNF and cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC; ERDF Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSF; Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Giron Gutasfons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom) and BNL (United States), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed at https://cds.cern.ch/record/217821.

Author contributions

All authors have contributed to the publication, being variously involved in the design and the construction of the detectors, in writing software, calibrating subsystems, operating the detectors and acquiring data, and finally analysing the processed data. The ATLAS Collaboration members discussed and approved the scientific results. The manuscript was prepared by a subgroup of authors appointed by the collaboration and subject to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to G.A.

Peer review information *Nature Physics* thanks Thomas Kuhr and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
ATLAS Collaboration

G. Aad1,2, B. Abbott3, D. C. Abbott3, A. Abed Abd4, K. Abeling5, D. K. Abhayasinghe6, S. H. Abidi7, O. S. AbouZeid8, N. L. Abraham9, H. Abramowicz10, H. Abreu11, Y. Abulaiti12, B. S. Acharya13,14, B. Achkar5, L. Adam15, C. Adam Bourdarios16, L. Adamczyk17, L. Adamek7, J. Adelman18, M. Adersberger19, A. Adiguzel20, S. Adorni21, T. Adye22, A. A. Affolder23, Y. Afik11, C. Agapopoulou24, M. N. Agaras25, A. Aggarwal26, C. Agheorghiesi27, J. A. Aguilar-Saavedra28,29, A. Ahmad4, F. Ahmadov30, W. S. Ahmed31, X. Ai32, G. A. Aielli33,34, S. Akatsuka35, M. Akbiyik15, T. P. Åkesson36, E. Akilli21, A. V. Akimov37, K. Al Khoury24, G. L. Alberghi38,39, J. Albert40, M. J. Alconada Verzini10, S. Alderweireldt4, M. Aleksa4, i. N. Aleksandrov30, C. Alexa41, T. Alexopoulos42, A. Alfonsi43, F. Alons38,39, M. Alhroob2, B. Ali44, S. Ali45, M. Aliev46, G. Alimonti47, C. Allaire4, B. M. M. Allbrooke9, B. W. Allen48, P. P. Allport49, A. Aloisio50,51, F. Alonso52, C. Alpigiani53, E. Alunno Camelia33,34, M. Alvarez Estevez54, M. G. Alviggi50,51, Y. Amaral Coutinho55, A. Ambler31, L. Ambroz56, C. Amelung57, D. Amidei58, S. P. Amor Dos Santos28, S. Amoroso59, C. S. Amrouche21, F. An60, C. Anastopoulos61, N. Andari62, T. Andeen63, J. K. Anders64, S. Y. Andrian65,66, A. Andreazza47,67, V. Andrei68, C. R. Anelli40, S. Angelidakis69, A. Angerami70, A. V. Anisenkov71,72, A. Anov73, C. Antel73, M. T. Anthony61, E. Antipov74, M. Antonelli75, D. J. A. Antrim76, F. Anulli77, M. Aoki78, J. A. Aparisi Pozo79, M. A. Aparo9, L. Aperio Bella59, N. Aranzabal4, V. Araujo Ferraz80, R. Araujo Pereira55, C. Arcangeletti75, A. T. H. Arce81, F. A. Arduh52, J.-F. Arquin82, S. Argyropoulos83, J.-H. Arling59, A. J. Armbruster4, A. Armstrong60, O. Arnazez7, H. Arnold43, Z. P. Arrubarrena Tame19, G. Artoni86, H. Asada84, K. Asai85, S. Asai86, T. Asawatavanich97, N. Asabah88, E. M. Asimakopoulou89, L. Asquith9, J. Assahsah90, K. Assamagan91, R. Astalos92, R. J. Atkin93, M. Atkinson94, N. B. Atlay95, H. Atmani124, K. Augsten44, V. A. Austrup96, G. Avolio4, M. K. Ayoub97, G. Azuelos82, H. Bachacou62, K. Bachas98, F. Backman65,66, P. Bagnaia77,99, M. Bahmani100, H. Bahraremani101, A. J. Bailey79, V. R. Bailey94, J. T. Baines22, C. Bakalis42, O. K. Baker102, P. J. Bakker43, E. Bakos103, D. Bakshi Gupta104, S. Balaji105, R. Balasubramanian43, E. M. Baldin72,71, P. Balek106, F. Balli62, W. K. Balunas56, J. Balz65, E. Banas100, M. Bandieramonte107, A. Bandypadhyay108, Sw. Banerjee109, L. Barak10, W. M. Barbe25, E. L. Barberio110, D. Barberis111,112, M. Barbero1, G. Barbour113, T. Barillari114, M.-S. Barisits4, J. Barklow115, R. Barnea11, B. M. Barnett22, P. J. Barnett23, Z. Barnovska-Blenessy116, A. Barone91, A. J. Barr56, L. Barranco Navarro65,66, F. Barreiro54, J. Barreiro Guimarães da Costa97, U. Barron10, S. Barsov117, F. Bartels68, R. Bartoldus115, G. Bartolini1, A. E. Barton118, P. Bartos92, A. Basalaev59, A. Basan15, A. Bassalat24, M. J. Basso7, R. L. Bates119, S. Batlamos120, J. R. Batley121, B. Batool122, M. Battaglia23, M. Bauge77,99, F. Bauer62,273, P. Bauer108, H. S. Bawa123, A. Bayirli20, J. B. Beacham81, T. Beau124, P. H. Beauchemin125, F. Becherer83, P. Bechtle108, H. C. Beck5, H. P. Beck54,39, K. Becker126, C. Becot59, A. Beddall127, A. J. Beddall128, V. A. Bednyakov30, M. Bedognetti43, C. P. Bee129, T. A. Beermann96, M. Begall55, M. Beck129, J. K. Beh49, F. Beisiegel108, M. Belfkir16, A. S. Bell113, G. Bella10, L. Bellagamba39, A. Bellerive30, P. Belgas69, K. Beloborodov27,71, K. Belotskiy131, N. L. Belyaev131, D. Benckheuron132, N. Benekos42, Y. Benhammou10, D. P. Benjamin12, M. Benoit91, J. R. Bensinger57, S. Bentvelsen43, L. Beresford56, M. Beretta75, D. Berge95, E. Bergheas Kuutmann89, N. Berger16, B. Bergmann44, L. J. Bergsten57, J. Beringer22, S. Berlendis133, G. Bernard124, C. Bernius115, F. U. Bernlochner108, T. Berry6, P. Berta15, A. Berthold134, I. A. Bertram118, O. Bessidskaia Bylund96, N. Besson62, A. Bethani135, S. Bethke114, A. Betti136, A. J. Bevan137, J. Beyer114, D. S. Bhattacharya138, P. Bhattarai57, V. S. Bhopatkar12, R. Bi107, R. M. Bianchi107, O. Bieber9, D. Biedermann95, R. Bielski4,
