Stringy Hodge numbers and Virasoro algebra

Victor V. Batyrev
Mathematisches Institut, Universität Tübingen
Auf der Morgenstelle 10, 72076 Tübingen, Germany
e-mail: batyrev@bastau.mathematik.uni-tuebingen.de

Abstract

Let X be an arbitrary smooth n-dimensional projective variety. It was discovered by Libgober and Wood that the product of the Chern classes $c_1(X)c_{n-1}(X)$ depends only on the Hodge numbers of X. This result has been used by Eguchi, Jinzenji and Xiong in their approach to the quantum cohomology of X via a representation of the Virasoro algebra with the central charge $c_n(X)$.

In this paper we define for singular varieties X a rational number $c_{1,n-1}^{st}(X)$ which is a stringy version of the number c_1c_{n-1} for smooth n-folds. We show that the number $c_{1,n-1}^{st}(X)$ can be expressed in the same way using the stringy Hodge numbers of X. Our results provides an evidence for the existence of an approach to quantum cohomology of singular varieties X via a representation of the Virasoro algebra whose central charge is the rational number $e_{st}(X)$ which equals the stringy Euler number of X.
1 Introduction

Let X be an arbitrary smooth projective variety of dimension n. The E-polynomial of X is defined as

$$E(X; u, v) := \sum_{p,q} (-1)^{p+q} h^{p,q}(X) u^p v^q$$

where $h^{p,q}(X) = \dim H^q(X, \Omega^p_X)$ are Hodge numbers of X. Using the Hirzebruch-Riemann-Roch theorem, Libgober and Wood [10] has proved the following equality (see also the papers of Borisov [6] and Salamon [12]):

Theorem 1.1

$$\frac{d^2}{du^2} E_{st}(X; u, 1) |_{u=1} = \frac{3n^2 - 5n}{12} c_n(X) + \frac{c_1(X) c_{n-1}(X)}{6}.$$

By Poincaré duality for X, one immediately obtains [6, 12]:

Corollary 1.2 Let X be an arbitrary smooth n-dimensional projective variety. Then $c_1(X) c_{n-1}(X)$ can be expressed via the Hodge numbers of X using the following equality

$$\sum_{p,q} (-1)^{p+q} h^{p,q}(X) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} c_n(X) + \frac{1}{6} c_1(X) c_{n-1}(X),$$

where

$$c_n(X) = \sum_{p,q} (-1)^{p+q} h^{p,q}(X)$$

is the Euler number of X.

Corollary 1.3 Let X be an arbitrary smooth n-dimensional projective variety with $c_1(X) = 0$. Then the Hodge numbers of X satisfy the following equation

$$\sum_{p,q} (-1)^{p+q} h^{p,q}(X) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} \sum_{p,q} (-1)^{p+q} h^{p,q}(X),$$

In particular, for hyper-Kähler manifolds X this equation reduces to

$$2 \sum_{j=1}^{2n} (-1)^j (3j^2 - n) b_{2n-j}(X) = nb_{2n}(X),$$

where

$$b_i(X) = \sum_{p+q=i} h^{p,q}(X)$$

is i-th Betti number of X.
Remark 1.4 We that if X is a $K3$-surface, then the relation (1.3) is equivalent to the equality $c_2(X) = 24$. For smooth Calabi-Yau 4-folds X the relation (1.3) has been observed by Sethi, Vafa, and Witten [11] (it is equivalent to the equality $c_4(X) = \frac{1}{2}(8 - h^{1,1}(X) + h^{2,1}(X) - h^{3,1}(X))$).

if $h^{1,0}(X) = h^{2,0}(X) = h^{3,0}(X) = 0$).

There are a lot of examples of Calabi-Yau varieties X having at worst Gorenstein canonical singularities which are hypersurfaces and complete intersections in Gorenstein toric Fano varieties [1, 3]. It has been shown in [2] that for all these examples of singular Calabi-Yau varieties X one can define so called stringy Hodge numbers $h^{p,q}_{st}(X)$. Moreover, the stringy Hodge numbers of Calabi-Yau complete intersections in Gorenstein toric varieties agree with the topological mirror duality test [4]. It was a natural question posed in [5], whether one has the same identity for stringy Hodge numbers of singular Calabi-Yau varieties as for usual Hodge numbers of smooth Calabi-Yau manifolds, i.e.

$$
\sum_{p,q} (-1)^{p+q} h^{p,q}_{st}(X) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} \sum_{p,q} (-1)^{p+q} h^{p,q}_{st}(X) = \frac{n}{12} e_{st}(X). \tag{1}
$$

The purpose of this paper is to show that the formula (1) holds true. Moreover, one can define a rational number $e^{1,-1}_{st}(X)$ which is a stringy version $c_1(X)c_{n-1}(X)$ such that the stringy analog of (1) holds true provided the stringy Hodge numbers of X exist.

2 Stringy Hodge numbers

Recall our general approach to the notion of stringy Hodge numbers $h^{p,q}_{st}(X)$ for projective algebraic varieties X with canonical singularities (see [3]). Our main definition in [3] can be reformulated as follows:

Definition 2.1 Let X be an arbitrary n-dimensional projective variety with at worst log-terminal singularities, $\rho : Y \rightarrow X$ a resolution of singularities whose exceptional locus D is a divisors with normally crossing components D_1, \ldots, D_r. We set $I := \{1, \ldots, r\}$ and $D_J := \bigcap_{j \in J} D_j$ for all $J \subset I$. Define the stringy E-function of X to be

$$
E_{st}(X; u, v) := \sum_{J \subset I} E(D_J; u, v) \prod_{j \in J} \left(\frac{uv - 1}{(uv)^{a_j+1} - 1} - 1 \right),
$$

3
where the rational numbers \(a_1, \ldots, a_r\) are determined by the equality
\[
K_Y = \rho^* K_X + \sum_{i=1}^r a_i D_i.
\]

Then the **stringy Euler number** of \(X\) is defined as
\[
e_{\text{st}}(X) := \lim_{u,v \to 1} E_{\text{st}}(X; u, v) = \sum_{J \subset I} c_{n-|J|}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right),
\]
where \(c_{n-|J|}(D_J)\) is the Euler number of \(D_J\) (we set \(c_{n-|J|}(D_J) = 0\) if \(D_J\) is empty).

Definition 2.2 Let \(X\) be an arbitrary \(n\)-dimensional projective variety with at worst Gorenstein canonical singularities. We say that **stringy Hodge numbers of \(X\) exist**, if \(E_{\text{st}}(X; u, v)\) is a polynomial, i.e.,
\[
E_{\text{st}}(X; u, v) = \sum_{p,q} a_{p,q}(X) u^p v^q.
\]
Under the assumption that \(E_{\text{st}}(X; u, v)\) is a polynomial, we define the **stringy Hodge numbers** \(h_{\text{st}}^{p,q}(X)\) to be \((-1)^{p+q} a_{p,q}\).

Remark 2.3 In the above definitions, the condition that \(X\) has at worst log-terminal singularities means that \(a_i > -1\) for all \(i \in I\); the condition that \(X\) has at worst Gorenstein canonical singularities is equivalent for \(a_i\) to be nonnegative integers for all \(i \in I\) (see [9]).

The following statement has been proved in [3]:

Theorem 2.4 Let \(X\) be an arbitrary \(n\)-dimensional projective variety with at worst Gorenstein canonical singularities. Assume that stringy Hodge numbers of \(X\) exist. Then they have the following properties:
(i) \(h_{\text{st}}^{0,0}(X) = h_{\text{st}}^{n,n}(X) = 1\);
(ii) \(h_{\text{st}}^{p,q}(X) = h_{\text{st}}^{n-p,n-q}(X)\) and \(h_{\text{st}}^{p,q}(X) = h_{\text{st}}^{q,p}(X)\) \(\forall p, q\);
(iii) \(h_{\text{st}}^{p,q}(X) = 0\) \(\forall p, q > n\).

3 The number \(c_{\text{st}}^{1,n-1}(X)\)

Definition 3.1 Let \(X\) be an arbitrary \(n\)-dimensional projective variety \(X\) having at worst log-terminal singularities and \(\rho : Y \to X\) is a desingularization with normally crossing irreducible components \(D_1, \ldots, D_r\) of the exceptional locus. We define the number
\[
c_{\text{st}}^{1,n-1}(X) := \sum_{J \subset I} \rho^* c_1(X)c_{n-|J|-1}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right),
\]
where $\rho^* c_1(X)c_{n-\lvert J \rvert -1}(D_J)$ is considered as the intersection number of the 1-cycle $c_{n-\lvert J \rvert -1}(D_J) \in A_1(D_J)$ with the ρ-pullback of the class of the anticanonical \mathbb{Q}-divisor of X.

Remark 3.2 It is not clear a priori that the number $c_{\text{st}}^{1,n-1}(X)$ in the above the definition does not depend on the choice of a desingularization ρ. Later we shall see that it is the case.

Proposition 3.3 For any smooth n-dimensional projective variety V, one has

$$\frac{d}{du} E(V; u, 1)_{u=1} = \frac{n}{2} c_n(V).$$

Proof. By definition of E-polynomials, we have

$$\frac{d}{du} E(V; u, 1)_{u=1} = \sum_{p,q} p(-1)^{p+q} h^{p,q}(V).$$

The Poincaré duality $h^{p,q}(V) = h^{n-p,n-q}(V) \forall p, q$ implies that

$$\sum_{p,q} \left(p - \frac{n}{2} \right) (-1)^{p+q} h^{p,q}(V) = 0.$$

Hence,

$$\sum_{p,q} p(-1)^{p+q} h^{p,q}(V) = \frac{n}{2} \sum_{p,q} (-1)^{p+q} h^{p,q}(V) = \frac{n}{2} c_n(V).$$

\square

Proposition 3.4 For any n-dimensional projective variety X having at worst log-terminal singularities, one has

$$\frac{d}{du} E_{\text{st}}(X; u, 1)_{u=1} = \frac{n}{2} e_{\text{st}}(X).$$

Proof. By definition 2.1, we have

$$E_{\text{st}}(X; u, 1) = \sum_{J \subseteq I} E(D_J; u, 1) \prod_{j \in J} \left(\frac{u - 1}{u^{a_j+1} - 1} - 1 \right).$$

Applying 3.3 to every smooth submanifold $D_J \subset Y$, we obtain

$$\frac{d}{du} E_{\text{st}}(X; u, 1)_{u=1} = \sum_{J \subseteq I} \frac{n - \lvert J \rvert}{2} c_{n-\lvert J \rvert}(D_J) \prod_{j \in J} \left(-\frac{a_j}{a_j+1} \right) +$$

$$+ \sum_{J \subseteq I} \frac{\lvert J \rvert}{2} c_{n-\lvert J \rvert}(D_J) \prod_{j \in J} \left(-\frac{a_j}{a_j+1} \right) = \frac{n}{2} E_{\text{st}}(X).$$

\square
Proposition 3.5 Let V be a smooth projective algebraic variety of dimension n and $W \subset V$ a smooth irreducible divisor on V or empty divisor (the latter means that $\mathcal{O}_V(W) \cong \mathcal{O}_V$). Then
\[c_1(\mathcal{O}_V(W))c_{n-1}(V) = c_{n-1}(W) + c_1(\mathcal{O}_W(W))c_{n-2}(W), \]
where $c_{n-1}(W)$ is considered to be zero if $W = \emptyset$.

Proof. Consider the short exact sequence
\[0 \to T_W \to T_V|_W \to \mathcal{O}_W(W) \to 0, \]
where T_W and T_V are tangent sheaves on W and V. It gives the following the relation between Chern polynomials
\[(1 + c_1(\mathcal{O}_W(W)t)(1 + c_1(D)t + c_2(D)t^2 + \cdots + c_{n-1}(D)t^{n-1}) = \]
\[= 1 + c_1(T_V|_W)t + c_2(T_V|_W)t^2 + c_{n-1}(T_V|_W)t^{n-1}). \]
Comparing the coefficients by t^{n-1} and using $c_{n-1}(T_V|_W) = c_1(\mathcal{O}_V(W))c_{n-1}(V)$, we come to the required equality. \qed

Corollary 3.6 Let Y be a smooth projective variety, D_1, \ldots, D_r smooth irreducible divisors with normal crossings, $I := \{1, \ldots, r\}$. Then for all $J \subset I$ and for all $j \in J$ one has
\[c_1(\mathcal{O}_{D_{J\setminus\{j\}}}(D_j))c_{n-|J|}(D_{J\setminus\{j\}}) - c_{n-|J|}(D_j) = c_1(\mathcal{O}_{D_J}(D_j))c_{n-|J|-1}(D_J), \]
where D_J is the complete intersection $\bigcap_{j \in J} D_j$.

Proof. One sets in $X \setminus V := D_{J\setminus\{j\}}$ and $W := D_J$. \qed

Proposition 3.7 Let $\rho : Y \to X$ be a desingularization as in [3.1]. Then
\[\sum_{J \subset I} c_1(D_J)c_{n-|J|-1}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) = c_{1,n-1}^{\text{st}}(X) + \]
\[+ \sum_{J \subset I} \left(\sum_{j \in J} (a_j + 1)c_{n-|J|}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right). \]

Proof. Using the formula
\[c_1(Y) = \rho^*c_1(X) + \sum_{i \in I} -a_i c_1(\mathcal{O}_Y(D_i)) \]
and the adjunction formula for every complete intersection $D_J (J \subset I)$, we obtain
\[c_1(D_J) = \rho^*c_1(X)|_{D_J} + \sum_{j \in J} (-a_j - 1)c_1(\mathcal{O}_{D_J}(D_j)) + \sum_{j \in I \setminus J} (-a_j)c_1(\mathcal{O}_{D_J}(D_j)). \]
Therefore
\[
\sum_{J \subset I} c_1(D_J) c_{n-|J|-1}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) = c_{st}^{1,n-1}(X) +
\]
\[
+ \left(\sum_{j \in J} (-a_j - 1) c_1(O_{D_J}(D_j)) c_{n-|J|-1}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) +
\]
\[
+ \left(\sum_{j \in I \setminus J} (-a_j) c_1(O_{D_J}(D_j)) c_{n-|J|-1}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right).
\]

Using (3.6) we obtain
\[
\sum_{j \in J} (-a_j - 1) c_1(O_{D_J}(D_j)) c_{n-|J|-1}(D_J) =
\]
\[
= \sum_{j \in J} (-a_j - 1) \left(c_1(O_{D_{J \setminus \{j\}}}(D_j)) c_{n-|J|(D_{J \setminus \{j\}})} - c_{n-|J|(D_J)} \right).
\]

By substitution (3.6) to (3), we come to the required equality. \(\square\)

Theorem 3.8 Let \(X\) be an arbitrary \(n\)-dimensional projective variety with at worst log-terminal singularities. Then
\[
\frac{d^2}{du^2} E_{st}(X; u, 1)_{|u=1} = \frac{3n^2 - 5n}{12} e_{st}(X) + \frac{1}{6} c_{st}^{1,n}(X).
\]

Proof. Using the equalities
\[
\frac{d}{du} \left(\frac{u - 1}{u^{a+1} - 1} - 1 \right)_{|u=1} = \frac{-a}{2(a + 1)}, \quad \frac{d^2}{du^2} \left(\frac{u - 1}{u^{a+1} - 1} - 1 \right)_{|u=1} = \frac{a(a + 2)}{6(a + 1)}
\]

Together with the identities in (1.1) and (3.3) for every submanifold \(D_J \subset Y\), we obtain
\[
\frac{d^2}{du^2} E_{st}(X; u, 1)_{|u=1} = \sum_{J \subset I} c_1(D_J) c_{n-|J|-1}(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) +
\]
\[
+c_1(D_J) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) +
\]
\[
+ \sum_{J \subset I} \frac{(n - |J|)|J| c_{n-|J|}(D_J)}{2} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) +
\]
\[
+ \sum_{J \subset I} \frac{c_{n-|J|}(D_J)(|J| - 1)|J|}{4} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right) +
\]
\[
+ \sum_{J \subset I} \frac{c_{n-|J|}(D_J)(|J| - 1)|J|}{4} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right).
\]
\[+ \sum_{J \subset I} \frac{c_{n-|J|}(D_J)(-\sum_{j \in J}(a_j + 2))}{6} \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right). \]

By 3.7, the first term of the above equals
\[\frac{1}{6} c_{1,n-1} \left(X \right) + \frac{1}{6} \sum_{J \subset I} \left(\sum_{j \in J}(a_j + 1)c_{n-|J|}(D_J) \right) \prod_{j \in J} \left(\frac{-a_j}{a_j + 1} \right). \]

Now the required statement follows from the equality
\[\sum_{j \in J}(a_j + 1) \frac{6}{6} + \frac{3(n - |J|)^2 - 5(n - |J|)}{12} + \frac{(n - |J||J|}{2} + \]
\[+ \frac{|J| - 1)|J|}{4} + \frac{- \sum_{j \in J}(a_j + 2)}{6} = \frac{3n^2 - 5n}{12}. \]

\[\square \]

Corollary 3.9 The number \(c_{1,n} \left(X \right) \) does not depend on the choice of the desingularization \(\rho : Y \to X \).

Proof. By 3.4 and 3.8, \(c_{1,n} \left(X \right) \) can be computed in terms of derivatives of the stringy E-function of \(X \). But the stringy E-function does not depend on the choice of a desingularization \(\boxed{\rho} \).

Corollary 3.10 Let \(X \) be a projective variety with at worst Gorenstein canonical singularities. Assume that the stringy Hodge numbers of \(X \) exist. Then
\[\sum_{p,q} (-1)^{p+q} h_{p,q} \left(X \right) \left(p - \frac{n}{2} \right)^2 = \frac{n}{12} \epsilon_{st} \left(X \right) + \frac{1}{6} c_{1,n-1} \left(X \right). \]

Proof. The equality follows immediately from 3.8 using the properties of the stringy Hodge numbers \(\boxed{2.4} \).

Corollary 3.11 If the canonical class of \(X \) is numerically trivial, then \(c_{1,n} \left(X \right) = 0 \). In particular, for Calabi-Yau varieties with at worst Gorenstein canonical singularities we have
\[\frac{d^2}{du^2} E_{st} \left(X; u, 1 \right)\bigg|_{u=1} = \frac{3n^2 - 5n}{12} \epsilon_{st} \left(X \right), \]

and therefore stringy Hodge numbers of \(X \) satisfy the identity (\(\boxed{7} \)) provided these stringy numbers exist.
4 Virasoro Algebra

Recall that the Virasoro algebra with the central charge c consists of operators L_n ($m \in \mathbb{Z}$) satisfying the relations

$$[L_n, L_m] = (n - m)L_{n+m} + c\frac{n^3 - n}{12}\delta_{n+m,0} \quad n, m \in \mathbb{Z}.$$

For arbitrary compact Kähler manifold X, Eguchi et. al have proposed in [7, 8] a new approach to its quantum cohomology and to its Gromov-Witten invariants for all genera g using so called the Virasoro condition:

$$L_nZ = 0, \forall n \geq -1,$$

where

$$Z = \exp F = \exp \left(\sum_{g \geq 0} \lambda^{2g-2} F_g \right)$$

is the partition function of the topological σ-model with the target space X and F_g the free energy function corresponding to the genus g. In this approach, the central charge c acts as the multiplication by $c_n(X)$. Moreover, all Virasoro operators L_n can be explicitly written in terms of elements of a basis of the cohomology of X, their gravitational descendants and the action of $c_1(X)$ on the cohomology by the multiplication. In particular the commutator relation

$$[L_1, L_{-1}] = 2L_0$$

implies the precisely the identity of Libgober and Wood in the form

$$\sum_{p,q} (-1)^{p+q} h^{p,q}(X) \left(\frac{n+1}{2} - p \right) \left(p - \frac{n-1}{2} \right) = \frac{1}{6} \left(\frac{3-n}{2} c_n(X) - c_1(X)c_{n-1}(X) \right).$$

Now let X be a projective algebraic variety with at worst log-terminal singularities. We conjecture that there exists an analogous approach to the quantum cohomology as well as to the Gromov-Witten invariants of X for all genera using the Virasoro algebra in such a way that for any resolution of singularities $\rho : Y \rightarrow X$ the corresponding Virasoro operators can be explicitely computed via the numbers a_i appearing in the formula

$$K_X = \rho^* K_X + \sum_{i=1}^r a_i D_i$$

and bases in cohomology of all complete intersections D_J together with the multiplicative actions of $c_1(D_J)$ in them. We consider our main result [3,8] as an evidence in favor of this conjecture.
References

[1] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3 (1994), 493-535.

[2] V.V. Batyrev, D. Dais, Strong McKay Correspondence, String-Theoretic Hodge Numbers and Mirror Symmetry, Topology, 35 (1996), 901-929.

[3] V.V. Batyrev, L.A. Borisov, Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds, in Mirror Symmetry II, (eds. S.-T. Yau), pp.65-80 (1995).

[4] V.V. Batyrev, L.A. Borisov, Mirror Duality and String-Theoretic Hodge Numbers, Invent. Math., 126 (1996), 183-203.

[5] V.V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Preprint 1997, alg-geom/9711018.

[6] L.A. Borisov, On the Betti numbers and Chern classes of varieties with trivial odd cohomology groups, Preprint 1997, alg-geom/9703023.

[7] T. Eguchi, K. Hori and Ch.-Sh. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B402 (1997), 71-80.

[8] T. Eguchi, M. Jinzenji and Ch.-Sh. Xiong, Quantum Cohomology and Free Field Representation, hep-th/9709152.

[9] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the Minimal Model Program, Adv. Studies in Pure Math. 10 (1987), 283-360.

[10] A.S. Libgober and J.W. Wood, Uniqueness of the complex structure on Kahler manifolds of certain homotopy types, J. Diff. Geom. 32 no. 1, (1990) 139–154.

[11] S. Sethi, C. Vafa, and E. Witten, Constraints on Low-Dimensional String Compactifications, Nucl.Phys. B480 (1996), 213-224.

[12] S.M. Salamon, On the cohomology of Kahler and hyper-Kahler manifolds. Topology 35, no. 1 (1996), 137–155.