Filtration and canonical completeness for continuous modal μ-calculi

Jan Rooduijn

joint work with

Yde Venema

ILLC, University of Amsterdam

GandALF 2021, 21 September 2021
The modal μ-calculus
The modal μ-calculus

\[(\text{ML}) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \quad p \in P\]
The modal μ-calculus

\[(ML) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \ p \in P\]

Given a formula $\varphi \in ML$ and a variable $x \in P$, we may regard x as a free variable of φ. For every Kripke model $S = (S, R, V)$, this induces a function:

$$\varphi^S_x : \mathcal{P}(S) \rightarrow \mathcal{P}(S) \text{ given by } \varphi^S_x(A) := \llbracket \varphi \rrbracket^S_{x \mapsto A}$$
The modal μ-calculus

\[(ML) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \; p \in P\]

Given a formula $\varphi \in \text{ML}$ and a variable $x \in P$, we may regard x as a free variable of φ. For every Kripke model $S = (S, R, V)$, this induces a function:

$$\varphi^S_x : \mathcal{P}(S) \to \mathcal{P}(S) \text{ given by } \varphi^S_x (A) := \llbracket \varphi \rrbracket^S [x \mapsto A]$$

Observation

If x occurs only positively in φ, then φ^S_x is monotone and so, by the Knaster-Tarski theorem, it has both a least and a greatest fixpoint.
The modal μ-calculus

\[(ML) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi, \quad p \in P\]

Given a formula $\varphi \in ML$ and a variable $x \in P$, we may regard x as a free variable of φ. For every Kripke model $\mathcal{S} = (S, R, V)$, this induces a function:

\[\varphi^S_x : \mathcal{P}(S) \rightarrow \mathcal{P}(S) \text{ given by } \varphi^S_x(A) := \mathcal{L}[\varphi]^S[x \mapsto A]\]

Observation

If x occurs only positively in φ, then φ^S_x is monotone and so, by the Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

\[(\mu ML) \quad \varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \mu x \psi \mid \nu x \psi,\]

where $p \in P$ and x occurs only positively in ψ.
The modal μ-calculus

(ML) $\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \diamond \varphi \mid \Box \varphi, \ p \in P$

Given a formula $\varphi \in \text{ML}$ and a variable $x \in P$, we may regard x as a free variable of φ. For every Kripke model $S = (S, R, V)$, this induces a function:

$$\varphi^S_x : \mathcal{P}(S) \rightarrow \mathcal{P}(S)$$

given by

$$\varphi^S_x(A) := \llbracket \varphi \rrbracket^S_{x \mapsto A}$$

Observation

If x occurs only positively in φ, then φ^S_x is monotone and so, by the Knaster-Tarski theorem, it has both a least and a greatest fixpoint.

(\mu\text{ML}) $\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \diamond \varphi \mid \Box \varphi \mid \mu x \psi \mid \nu x \psi,$

where $p \in P$ and x occurs only positively in ψ.

$$\llbracket \mu x \varphi \rrbracket^S_x := \text{LFP}(\varphi^S_x) \quad \llbracket \nu x \varphi \rrbracket^S_x := \text{GFP}(\varphi^S_x)$$
Evaluation game

The evaluation game $E(\xi, S)$ takes positions in $S_f(\xi) \times S$ and has the following ownership function and admissible moves.

Position	Player	Admissible moves
$(\phi_1 \lor \phi_2, s)$ | $\exists \{ (\phi_1, s), (\phi_2, s) \}$ | $(\phi_1 \land \phi_2, s)$ | $\forall \{ (\phi_1, s), (\phi_2, s) \}$ | $(\Box \phi, s)$ | $\exists \{ (\phi, t) : s R t \}$ | $(\Box \phi, s)$ | $\forall \{ (\phi, t) : s R t \}$

$(\eta x. \delta x, s)$ with $x \in BV(\xi) - \{ (\delta x, s) \}$

(p, s) with $p \in FV(\xi)$ and $s \in V(p)$

$\forall \emptyset (\neg p, s)$ with $p \in FV(\xi)$ and $s \in V(p)$

$\exists \emptyset (p, s)$ with $p \in FV(\xi)$ and $s \in V(p)$

$\forall \emptyset (\neg p, s)$ with $p \in FV(\xi)$ and $s \in V(p)$

An infinite match is won by $\exists (\forall)$ if the 'most important' fixpoint variable reached infinitely often is a ν-variable (a μ-variable).

Example: $\mu x \Box x$ is true at a state s_0 iff there is no infinite path starting at s_0.

$(\mu x \Box x, s_0) \rightarrow (\Box x, s_0) \rightarrow (x, s_1) \rightarrow (\Box x, s_1) \rightarrow (x, s_2) \rightarrow \cdots$
Evaluation game

The evaluation game $E(\xi, S)$ takes positions in $Sf(\xi) \times S$ and has the following ownership function and admissible moves.

Position	Player	Admissible moves
$(\varphi_1 \lor \varphi_2, s)$	\exists	$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\varphi_1 \land \varphi_2, s)$	\forall	$\{(\varphi_1, s), (\varphi_2, s)\}$
$(\Diamond \varphi, s)$	\exists	$\{(\varphi, t) : sRt\}$
$(\Box \varphi, s)$	\forall	$\{(\varphi, t) : sRt\}$
$(\eta x . \delta x, s)$	\exists	$\{(\delta x, s)\}$
(x, s) with $x \in BV(\xi)$	\forall	\emptyset
(p, s) with $p \in FV(\xi)$ and $s \in V(p)$	\exists	\emptyset
$(-p, s)$ with $p \in FV(\xi)$ and $s \in V(p)$	\forall	\emptyset
(p, s) with $p \in FV(\xi)$ and $s \notin V(p)$	\exists	\emptyset
$(-p, s)$ with $p \in FV(\xi)$ and $s \notin V(p)$	\forall	\emptyset

An infinite match is won by $\exists (\forall)$ if the ‘most important’ fixpoint variable reached infinitely often is a ν-variable (a μ-variable).
The evaluation game $E(\xi, S)$ takes positions in $Sf(\xi) \times S$ and has the following ownership function and admissible moves.

Position	Player	Admissible moves
$(\varphi_1 \lor \varphi_2, s)$	\exists	$\{((\varphi_1, s), (\varphi_2, s))\}$
$(\varphi_1 \land \varphi_2, s)$	\forall	$\{((\varphi_1, s), (\varphi_2, s))\}$
$(\square \varphi, s)$	\exists	$\{((\varphi, t) : sRt)\}$
$(\square \varphi, s)$	\forall	$\{((\varphi, t) : sRt)\}$
$(\eta x. \delta_x, s)$	\exists	$\{(\delta_x, s)\}$
(x, s) with $x \in BV(\xi)$	\forall	\emptyset
(p, s) with $p \in FV(\xi)$ and $s \in V(p)$	\forall	\emptyset
$(\neg p, s)$ with $p \in FV(\xi)$ and $s \in V(p)$	\exists	\emptyset
(p, s) with $p \in FV(\xi)$ and $s \notin V(p)$	\exists	\emptyset
$(\neg p, s)$ with $p \in FV(\xi)$ and $s \notin V(p)$	\forall	\emptyset

An infinite match is won by $\exists (\forall)$ if the ‘most important’ fixpoint variable reached infinitely often is a ν-variable (a μ-variable).

Example: $\mu x \square x$ is true at a state s_0 iff there is no infinite path starting at s_0.

$$(\mu x \square x, s_0) \rightarrow (\square x, s_0) \rightarrow (x, s_1) \rightarrow (\square x, s_1) \rightarrow (x, s_2) \rightarrow \cdots$$
Motivation of the paper

The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.

However, two important methods fail: (i) filtration and (ii) canonical models.

Both of these methods are well-known to work for PDL.

Question

Can we do better? That is, is there a natural fragment of μML that subsumes PDL and to which the methods of filtration and canonical models can be applied?

Our answer (very roughly)

Yes, namely the continuous modal μ-calculus.
Motivation of the paper

- The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.
Motivation of the paper

* The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.

* However, two important methods fail: (i) filtration and (ii) canonical models.

Our answer (very roughly) Yes, namely the continuous modal μ-calculus.
Motivation of the paper

- The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.
- Both of these methods are well-known to work for PDL.

Question

- Can we do better? That is, is there a natural fragment of μML that subsumes PDL and to which the methods of filtration and canonical models can be applied?
- Our answer (very roughly) Yes, namely the continuous modal μ-calculus.
Motivation of the paper

- The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.
- Both of these methods are well-known to work for PDL.

Question
Can we do better?
Motivation of the paper

- The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.

- However, two important methods fail: (i) filtration and (ii) canonical models.

- Both of these methods are well-known to work for PDL.

Question

Can we do better? That is, is there a natural fragment of μML that subsumes PDL and to which the methods of filtration and canonical models can be applied?
Motivation of the paper

- The modal μ-calculus is highly expressive, yet retains many of the desirable properties of basic modal logic, e.g. bisimulation invariance and the finite model property.
- However, two important methods fail: (i) filtration and (ii) canonical models.
- Both of these methods are well-known to work for PDL.

Question
Can we do better? That is, is there a natural fragment of μML that subsumes PDL and to which the methods of filtration and canonical models can be applied?

Our answer (very roughly)
Yes, namely the continuous modal μ-calculus.
Filtration

Let $S = (S, R, V)$ be a Kripke model and let Σ be a finite and closed set of formulas. Let \sim_S^Σ be the equivalence relation given by:

$s \sim_S^\Sigma s' \iff s, s' \in \\left[[\phi] \right]_S \ \iff \ s' \sim_S^\Sigma t'$

for all $\phi \in \Sigma$. And define $S := S/\sim_S^\Sigma$.

Pick any relation $R \subseteq S \times S$ such that $R_{\min} \subseteq R \subseteq R_{\max}$, where

$R_{\min} := \{ (s, t) : \text{there are } s', t' \sim_S^\Sigma s, t \text{ such that } Rs' t' \} \ \quad \quad \quad R_{\max} := \{ (s, t) : \text{for all } \Box \phi \in \Sigma; \text{ if } s \models \Box \phi, \text{ then } t \models \phi \}.$

Finally, let $V(p) := \{ s : s \models p \}$ for every $p \in \Sigma \cap P$. Then the model $S := (S, R, V)$ is called a filtration of S through Σ.
Filtration

Let $\mathcal{S} = (S, R, V)$ be a Kripke model and let Σ be a finite and closed set of formulas.
Filtration

Let $\mathcal{S} = (S, R, V)$ be a Kripke model and let Σ be a finite and closed set of formulas.

Let $\sim_{\Sigma}^{\mathcal{S}}$ be the equivalence relation given by:

$$s \sim_{\Sigma}^{\mathcal{S}} s' \text{ if and only if } s \in [\varphi]^{\mathcal{S}} \iff s' \in [\varphi]^{\mathcal{S}} \text{ for all } \varphi \in \Sigma.$$

and define $\overline{\mathcal{S}} := \mathcal{S}/\sim_{\Sigma}^{\mathcal{S}}$.

Filtration

Let $S = (S, R, V)$ be a Kripke model and let Σ be a finite and closed set of formulas.

Let \sim^S_Σ be the equivalence relation given by:

$$s \sim^S_\Sigma s' \text{ if and only if } s \models [\varphi]^S \iff s' \models [\varphi]^S \text{ for all } \varphi \in \Sigma.$$

and define $\overline{S} := S/\sim^S_\Sigma$.

Pick any relation $\overline{R} \subseteq \overline{S} \times \overline{S}$ such that $R^\text{min} \subseteq \overline{R} \subseteq R^\text{max}$, where

$$R^\text{min} := \{(\overline{s}, \overline{t}) : \text{there are } s' \sim^S_\Sigma s \text{ and } t' \sim^S_\Sigma t \text{ such that } Rs't'}\},$$

$$R^\text{max} := \{(\overline{s}, \overline{t}) : \text{for all } \Box \varphi \in \Sigma; \text{ if } s \models \Box \varphi, \text{ then } t \models \varphi}\}.$$
Filtration

Let $S = (S, R, V)$ be a Kripke model and let Σ be a finite and closed set of formulas.

Let \sim^S_Σ be the equivalence relation given by:

$s \sim^S_\Sigma s'$ if and only if $s \in \llbracket \varphi \rrbracket^S \iff s' \in \llbracket \varphi \rrbracket^S$ for all $\varphi \in \Sigma$.

and define $\overline{S} := S/\sim^S_\Sigma$.

Pick any relation $\overline{R} \subseteq \overline{S} \times \overline{S}$ such that $R^{\text{min}} \subseteq \overline{R} \subseteq R^{\text{max}}$, where

$R^{\text{min}} := \{ (\overline{s}, \overline{t}) : \text{there are } s' \sim^S_\Sigma s \text{ and } t' \sim^S_\Sigma t \text{ such that } Rs't' \}$,

$R^{\text{max}} := \{ (\overline{s}, \overline{t}) : \text{for all } \Box \varphi \in \Sigma; \text{ if } s \models \Box \varphi, \text{ then } t \models \varphi \}$.

Finally, let $\overline{V}(p) := \{ \overline{s} : s \models p \}$ for every $p \in \Sigma \cap P$.
Filtration

Let $S = (S, R, V)$ be a Kripke model and let Σ be a finite and closed set of formulas.

Let \sim^S_Σ be the equivalence relation given by:

$$s \sim^S_\Sigma s' \text{ if and only if } s \in \downarrow \varphi \iff s' \in \downarrow \varphi \text{ for all } \varphi \in \Sigma.$$

and define $\overline{S} := S/\sim^S_\Sigma$.

Pick any relation $\overline{R} \subseteq \overline{S} \times \overline{S}$ such that $R^{\text{min}} \subseteq \overline{R} \subseteq R^{\text{max}}$, where

$$R^{\text{min}} := \{(\overline{s}, \overline{t}) : \text{there are } s' \sim^S_\Sigma s \text{ and } t' \sim^S_\Sigma t \text{ such that } R s' t'\},$$
$$R^{\text{max}} := \{(\overline{s}, \overline{t}) : \text{for all } \Box \varphi \in \Sigma; \text{ if } s \models \Box \varphi, \text{ then } t \models \varphi\}.$$

Finally, let $\overline{V}(p) := \{\overline{s} : s \models p\}$ for every $p \in \Sigma \cap P$.

Then the model $\overline{S} := (\overline{S}, \overline{R}, \overline{V})$ is called a filtration of S through Σ.
Filtration (ii)

The Filtration Theorem holds for a modal language \mathcal{D} if for any finite and closed set Σ of \mathcal{D}-formulas and any filtration S through Σ we have:

\[s \in [\[\phi \]\]_S \iff s \in [\[\phi \]\]_{S'} \]

for every $\phi \in \Sigma$.

The Filtration Theorem holds for ML, for PDL, but not for μ-ML:

Consider the formula $\phi := \mu x \Box x$ and the model $S := (N, <, V)$:

\[0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \]

with transitive arrows.
The Filtration Theorem holds for a modal language D if for any finite and closed set Σ of D-formulas and any filtration \bar{S} of S through Σ we have:

$$\bar{s} \in \llbracket \varphi \rrbracket^{\bar{S}} \iff s \in \llbracket \varphi \rrbracket^{S}$$

for every $\varphi \in \Sigma$.

Consider the formula $\varphi := \mu x. \Box x$ and the model $S := (N, <, V)$:

$0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow \cdots$
The Filtration Theorem holds for a modal language D if for any finite and closed set Σ of D-formulas and any filtration \bar{S} of S through Σ we have:

$$\bar{s} \in \llbracket \varphi \rrbracket^{\bar{S}} \iff s \in \llbracket \varphi \rrbracket^{S}$$

for every $\varphi \in \Sigma$.

The Filtration Theorem holds for ML, for PDL, but not for μML:
The Filtration Theorem holds for a modal language D if for any finite and closed set Σ of D-formulas and any filtration \bar{S} of S through Σ we have:

$$\bar{s} \in \llbracket \varphi \rrbracket^{\bar{S}} \iff s \in \llbracket \varphi \rrbracket^S$$

for every $\varphi \in \Sigma$.

The Filtration Theorem holds for ML, for PDL, but not for μML:

Consider the formula $\varphi := \mu x \Box x$ and the model $S := (\mathbb{N}, <, V)$:

$$0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow \cdots$$

$+$ transitive arrows
The continuous modal μ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are Scott continuous, rather than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

$\phi ::= x \mid \alpha \mid \phi \lor \phi \mid \phi \land \phi \mid \Box \phi \mid \mu y \phi'$

where $x \in X$, $y \in P$, $\alpha \in \mu_{\text{c}}_\text{ML} \text{X-free}$, and $\phi' \in \text{Con}_X \cup \{y\}$ (μ_{c}_ML).

Roughly: under a μ we disallow \Box and ν and, dually, under a ν we disallow \Box and μ.
The continuous modal μ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are **Scott continuous**, rather than merely **monotone**.
The continuous modal μ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are Scott continuous, rather than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

$$\varphi ::= x \mid \alpha \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \lozenge \varphi \mid \mu y \varphi'$$

where $x \in X$, $y \in P$, $\alpha \in \mu_c ML$ X-free, and $\varphi' \in \text{Con}_{X \cup \{y\}}(\mu_c ML)$.
The continuous modal μ-calculus

Idea: restrict the use of the least and greatest fixpoint operators to (formulas that induce) functions that are Scott continuous, rather than merely monotone.

Fontaine (2008) proves the following syntactic characterisation:

$$\varphi ::= x \mid \alpha \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Box \varphi \mid \mu y \varphi'$$

where $x \in X$, $y \in P$, $\alpha \in \mu_c \text{ML}$ X-free, and $\varphi' \in \text{Con}_{X \cup \{y\}}(\mu_c \text{ML})$.

Roughly: under a μ we disallow \Box and ν and, dually, under a ν we disallow \Diamond and μ.
Properties of \(\mu_c \text{ML} \)

Constructive: fixpoints are reached after at most \(\omega \) iterations.

Strictly more expressive than PDL.

Properties of the evaluation game played with \(\mu_c \text{ML} \)-formulas:

1. A match progresses at most finitely often from a position \((s, \eta x. \delta)\) to a position \((t, \eta y. \theta)\).

2. A match progresses at most finitely often from a position \((s, \mu x. \delta)\) to a position \((t, \Box \psi)\).
Properties of $\mu_{c}ML$

- Constructive: fixpoints are reached after at most ω iterations.
Properties of μ_cML

- Constructive: fixpoints are reached after at most ω iterations.
- Strictly more expressive than PDL.
Properties of μ_cML

- Constructive: fixpoints are reached after at most ω iterations.
- Strictly more expressive than PDL.

Properties of the evaluation game played with μ_cML-formulas:

1. A match progresses at most finitely often from a position $(s, \eta x. \delta)$ to a position $(t, \eta y. \theta)$.
Properties of μ_cML

- Constructive: fixpoints are reached after at most ω iterations.
- Strictly more expressive than PDL.

Properties of the evaluation game played with μ_cML-formulas:

1. A match progresses at most finitely often from a position $(s, \eta x.\delta)$ to a position $(t, \bar{\eta} y.\theta)$.
2. A match progresses at most finitely often from a position $(s, \mu x.\delta)$ to a position $(t, \Box \psi)$.
Theorem (Filtration Theorem for μ_cML)

For any finite and closed set Σ of μ_cML-formulas and any filtration \overline{S} of S through Σ it holds that:

$$\overline{s} \in \llbracket \varphi \rrbracket ^{\overline{S}} \iff s \in \llbracket \varphi \rrbracket ^{S}$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for G at (φ, s); we must show that she has a winning strategy for G at (φ, s). We play a shadow match, copying in G the moves suggested to \exists by the strategy f in G, and simulating in G the moves played by \forall in G. Note: at each position $(s, \Box \varphi)$ we must reset the shadow match. However, if the obtained strategy would be losing for \exists this reset could happen only finitely often, contradicting the assumption that f is winning.
Theorem (Filtration Theorem for μ_cML)

For any finite and closed set Σ of μ_cML-formulas and any filtration \overline{S} of S through Σ it holds that:

$$\bar{s} \in \overline{[\varphi]} \iff s \in [\varphi]^S$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for G at (φ, s); we must show that she has a winning strategy for \overline{G} at (φ, \bar{s}).
Theorem (Filtration Theorem for μ_cML)

For any finite and closed set Σ of μ_cML-formulas and any filtration \overline{S} of S through Σ it holds that:

$$\overline{s} \in [\varphi]^{\overline{S}} \iff s \in [\varphi]^S$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for G at (φ, s); we must show that she has a winning strategy for \overline{G} at (φ, \overline{s}). We play a shadow match, copying in \overline{G} the moves suggested to \exists by the strategy f in G, and simulating in G the moves played by \forall in \overline{G}. Note: at each position $(s, \Box \varphi)$ we must reset the shadow match. However, if the obtained strategy would be losing for \exists this reset could happen only finitely often, contradicting the assumption that f is winning.
Theorem (Filtration Theorem for μ_cML)

For any finite and closed set Σ of μ_cML-formulas and any filtration \overline{S} of S through Σ it holds that:

$$\overline{s} \in \left[\varphi \right]^{\overline{S}} \iff s \in \left[\varphi \right]^S$$

for every $\varphi \in \Sigma$.

Proof sketch.

Suppose \exists has a winning strategy f for \mathcal{G} at (φ, s); we must show that she has a winning strategy for $\overline{\mathcal{G}}$ at (φ, \overline{s}). We play a shadow match, copying in $\overline{\mathcal{G}}$ the moves suggested to \exists by the strategy f in \mathcal{G}, and simulating in \mathcal{G} the moves played by \forall in $\overline{\mathcal{G}}$. Note: at each position $(s, \Box \varphi)$ we must reset the shadow match.
Theorem (Filtration Theorem for μ_cML)

For any finite and closed set Σ of μ_cML-formulas and any filtration \overline{S} of S through Σ it holds that:

$$\overline{s} \in [\varphi]^{\overline{S}} \iff s \in [\varphi]^S$$

for every $\varphi \in \Sigma$.

Proof sketch.
Suppose \exists has a winning strategy f for G at (φ, s); we must show that she has a winning strategy for \overline{G} at (φ, \overline{s}). We play a shadow match, copying in \overline{G} the moves suggested to \exists by the strategy f in G, and simulating in G the moves played by \forall in \overline{G}. Note: at each position $(s, \square \varphi)$ we must reset the shadow match. However, if the obtained strategy would be losing for \exists this reset could happen only finitely often, contradicting the assumption that f is winning. \square
Other results

Definition
A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ, the class \mathcal{M} contains a filtration of S through Σ. A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.
Other results

Definition
A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ, the class \mathcal{M} contains a filtration of S through Σ. A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Lemma
For any logic L, the class $\text{Mod}(L)$ admits filtration wrt μ^cML iff it admits filtration wrt μ^cML.
Other results

Definition
A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model \mathcal{S} in \mathcal{M} and every finite closed set of D-formulas Σ, the class \mathcal{M} contains a filtration of \mathcal{S} through Σ. A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Lemma
For any logic L, the class $\text{Mod}(L)$ admits filtration wrt ML iff it admits filtration wrt $\mu_c\text{ML}$.

Corollary (Finite Model Property)
Let L be a logic such that $\text{Mod}(L)$ admits filtration with respect to ML, and let ϕ be a formula of the continuous μ-calculus. Then ϕ is valid in every L-model if and only if ϕ is valid in every finite L-model.
Other results

Definition
A class of models \mathcal{M} is said to admit filtration with respect to a language D if for every model S in \mathcal{M} and every finite closed set of D-formulas Σ, the class \mathcal{M} contains a filtration of S through Σ. A class of frames \mathcal{F} is said to admit filtration if the class of models $\{(S, R, V) : (S, R) \in \mathcal{F}\}$ does.

Lemma
For any logic L, the class $\text{Mod}(L)$ admits filtration wrt ML iff it admits filtration wrt μ_cML.

Corollary (Finite Model Property)
Let L be a logic such that $\text{Mod}(L)$ admits filtration with respect to ML, and let ϕ be a formula of the continuous μ-calculus. Then ϕ is valid in every L-model if and only if ϕ is valid in every finite L-model.

For example: μ_cML has the FMP over symmetric models.
Other results (ii)

Theorem

Let L be a canonical logic in the basic modal language such $Fr(L)$ admits filtration. Then μ_c-L is sound and complete with respect to $Fr(L)$.

For example: $L = KB, K4, S4, S5, \ldots$

The last two results generalise results for PDL in Kikot, Shapirovsky & Zolin (AiML 2020).
Other results (ii)

Theorem

Let \(L \) be a canonical logic in the basic modal language such \(\text{Fr}(L) \) admits filtration. Then \(\mu_c\text{-}L \) is sound and complete with respect to \(\text{Fr}(L) \).

For example: \(L = \text{KB}, \text{K4}, S4, S5, \ldots \)

The last two results generalise results for PDL in Kikot, Shapirovsky & Zolin (AiML 2020).
Other results (ii)

Theorem

Let L be a canonical logic in the basic modal language such $\text{Fr}(L)$ admits filtration. Then $\mu_c\text{-}L$ is sound and complete with respect to $\text{Fr}(L)$.

For example: $L = \text{KB}, \text{K}4, \text{S}4, \text{S}5, \ldots$
Other results (ii)

Theorem

Let L be a canonical logic in the basic modal language such $Fr(L)$ admits filtration. Then μ_c-L is sound and complete with respect to $Fr(L)$.

For example: $L = KB, K4, S4, S5, \ldots$

The last two results generalise results for PDL in Kikot, Shapirovsky & Zolin (AiML 2020).
Future work
Future work

▶ Relation to constructiveness.
Future work

- Relation to constructiveness.
- Is μ_cML somehow a maximal ‘natural’ fragment of μML to which filtration is applicable?
Future work

- Relation to constructiveness.
- Is $\mu_c\text{ML}$ somehow a maximal ‘natural’ fragment of μML to which filtration is applicable?
- Can the currently separate proofs of the Filtration Theorem and canonical completeness be unified by taking a filtration of some canonical model (as with PDL).
Thank you