MANNNHEIM B-CURVE COUPLES IN MINKOWSKI 3-SPACE

KAZIM İLARSLAN, ALI UÇUM, EMILIJA NEŠOVIĆ AND NIHAL KILIÇ ASLAN

Abstract. In this paper, we define null Cartan Mannheim and pseudo null Mannheim curves in Minkowski 3-space according to their Bishop frames. We obtain the necessary and the sufficient conditions for pseudo null curves to be Mannheim B-curves in terms of their Bishop curvatures. We prove that there are no null Cartan curves in Minkowski 3-space which are Mannheim B-curves, by considering the cases when their Mannheim B-mate curves are spacelike, timelike, null Cartan and pseudo null curves. Finally, we give some examples of pseudo null Mannheim B-curve pairs.

1. Introduction

The Bishop frame or relatively parallel adapted frame \(\{T, N_1, N_2\} \) of a regular curve in Euclidean 3-space is introduced by R.L. Bishop in [1]. It contains the tangential vector field \(T \) and two relatively normal vector fields \(N_1 \) and \(N_2 \) whose derivatives \(N'_1 \) and \(N'_2 \) with respect to the arc-length parameter \(s \) of the curve are collinear with the tangential vector field \(T \). The Bishop frame is also known as the frame with minimal rotation property, since \(N'_1 \) and \(N'_2 \) make minimal rotations in the planes \(N_1^\perp \) and \(N_2^\perp \) respectively. A new version of the Bishop frame, type-2 Bishop frame in \(\mathbb{E}^3 \), is introduced in [18]. In Minkowski space-time \(\mathbb{E}^4 \) and Euclidean space \(\mathbb{E}^4 \), the Bishop frame is studied in [6] and [8]. In Minkowski 3-space \(\mathbb{E}^3_1 \), the Bishop frame (parallel frame) of the timelike curve and the spacelike curve with non-null principal normal is obtained in [16]. Recently, the Bishop frames of pseudo null curves and null Cartan curves in \(\mathbb{E}^3_1 \) are derived in [11] and the Bishop frame of a null Cartan curve in \(\mathbb{E}^4_1 \) is introduced in [12].

It is well known that in the Euclidean space \(\mathbb{E}^3 \), there are many associated curves (Bertrand mates, Mannheim mates, spherical images, evolutes, the principal-direction curves, etc.) whose Frenet’s frame vectors satisfy some extra conditions. Mannheim curves in \(\mathbb{E}^3 \) are defined by the property that their principal normal lines coincide with the binormal lines of their mate...
curves at the corresponding points \([5, 13]\). Mannheim curves and their partner curves in 3-dimensional space forms are studied in \([3]\). In the Euclidean 4-space and Minkowski spacetime \(E^4_1\), the notion of Mannheim curves is generalized in \([7, 10, 14]\). It is proved in \([9]\) that the only pseudo null Mannheim curves according to Frenet frame in Minkowski 3-space are the pseudo null circles whose mate curves are pseudo null straight lines. It is also proved in \([9]\) that there are no null Cartan curves in Minkowski 3-space which are Mannheim curves according to their Cartan frame.

In this paper, we define null Cartan Mannheim and pseudo null Mannheim curves according to their Bishop frames in Minkowski 3-space. We call them \(\textit{null Cartan Mannheim B-curves}\) and \(\textit{pseudo null Mannheim B-curves}\). We obtain the necessary and the sufficient conditions for pseudo null curves to be Mannheim B-curves in terms of their Bishop curvatures. In the related examples, we show that there are infinity many pairs of pseudo null Mannheim B-curves. We prove that mate curves of pseudo null Mannheim B-curves can not be spacelike, timelike, or null Cartan curves. We also prove that there are no null Cartan curves which are Mannheim B-curves, by considering the cases when their mate curves are the spacelike, the timelike, the null Cartan and the pseudo null curves.

2. Preliminaries

Minkowski space \(E^3_1\) is the real vector space \(E^3\) equipped with the standard indefinite flat metric \(\langle \cdot, \cdot \rangle\) given by

\[
\langle x, y \rangle = -x_1 y_1 + x_2 y_2 + x_3 y_3,
\]

for any two vectors \(x = (x_1, x_2, x_3)\) and \(y = (y_1, y_2, y_3)\) in \(E^3_1\). Since \(\langle \cdot, \cdot \rangle\) is an indefinite metric, an arbitrary vector \(x \in E^3_1\) can have one of three causal characters: it can be a \textit{spacelike}, a \textit{timelike}, or a \textit{null (lightlike)}, if \(\langle x, x \rangle > 0, \langle x, x \rangle < 0,\) or \(\langle x, x \rangle = 0\) and \(x \neq 0\) respectively. In particular, the vector \(x = 0\) is said to be spacelike. The \textit{norm} (length) of vector \(x \in E^3_1\) is given by \(\|x\| = \sqrt{\langle x, x \rangle}\). If \(\|x\| = 1\), the vector \(x\) is called a \textit{unit}. An arbitrary curve \(\alpha : I \rightarrow E^3_1\) can be the \textit{spacelike}, the \textit{timelike} or the \textit{null (lightlike)}, if all of its velocity vectors \(\alpha'\) are the spacelike, the timelike or the null (\([15]\)).

A spacelike curve \(\alpha : I \rightarrow E^3\) is called a \textit{pseudo null curve}, if its principal normal vector field \(N\) and binormal vector filed \(B\) are null vector fields satisfying the condition \(\langle N, B \rangle = 1\). The Frenet formulae of a non-geodesic pseudo null curve \(\alpha\) have the form (\([17]\))

\[
\begin{bmatrix}
T' \\
N' \\
B'
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa & 0 \\
0 & \tau & 0 \\
-\kappa & 0 & -\tau
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix},
\]

(2.1)

where the curvature \(\kappa(s) = 1\) and the torsion \(\tau(s)\) is an arbitrary function in arc-length parameter \(s\) of \(\alpha\).
A curve $\beta : I \to \mathbb{E}_1^3$ is called a null curve, if its tangent vector $\beta' = T$ is a null vector. A null curve β is called a null Cartan curve, if it is parameterized by the pseudo-arc function s defined by ([2])

$$s(t) = \int_0^t \sqrt{||\beta''(u)||} \, du.$$ \hspace{1cm} (2.2)

There exists a unique Cartan frame $\{T, N, B\}$ along a non-geodesic null Cartan curve β satisfying the Cartan equations ([4])

$$
\begin{bmatrix}
T' \\
N' \\
B'
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa & 0 \\
-\tau & 0 & \kappa \\
0 & -\tau & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}, \hspace{1cm} (2.3)
$$

where the curvature $\kappa(s) = 1$ and the torsion $\tau(s)$ is an arbitrary function in pseudo-arc parameter s.

The Frenet equations of a timelike curve, or a spacelike curve with non-null principal normal in \mathbb{E}_1^3 according to Bishop frame (parallel transport frame) $\{T_1, N_1, N_2\}$ have the form ([16])

$$
\begin{bmatrix}
T_1' \\
N_1' \\
N_2'
\end{bmatrix} =
\begin{bmatrix}
0 & -\varepsilon_1 k_1 & -\varepsilon_2 k_2 \\
\varepsilon_0 k_1 & 0 & 0 \\
\varepsilon_0 k_2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix}, \hspace{1cm} (2.4)
$$

where T_1, N_1, N_2 are mutually orthogonal vectors satisfying the conditions $\langle T_1, T_1 \rangle = \varepsilon_0$, $\langle N_1, N_1 \rangle = \varepsilon_1$, $\langle N_2, N_2 \rangle = \varepsilon_2$ and $\varepsilon_0, \varepsilon_1, \varepsilon_2 \in \{-1, 1\}$. In particular, it holds $\varepsilon_0 \varepsilon_1 \varepsilon_2 = -1$. The functions $k_1(s)$ and $k_2(s)$ are called the first and the second Bishop curvature of the curve, respectively.

The Bishop frames of pseudo null and null Cartan curves are obtained in [11]. If $\{T_1, N_1, N_2\}$ is the Bishop frame of a pseudo null curve, then it satisfies the conditions

$$
\begin{align*}
\langle T_1, T_1 \rangle &= 1, \\
\langle N_1, N_1 \rangle &= \langle N_2, N_2 \rangle = 0, \\
\langle T_1, N_1 \rangle &= \langle T_1, N_2 \rangle = 0, \\
\langle N_1, N_2 \rangle &= 1.
\end{align*} \hspace{1cm} (2.5)
$$

Analogously, if $\{T_1, N_1, N_2\}$ is the Bishop frame of null Cartan curve, then it satisfies the conditions ([11])

$$
\begin{align*}
\langle T_1, T_1 \rangle &= \langle N_2, N_2 \rangle = 0, \\
\langle N_1, N_1 \rangle &= 1, \\
\langle T_1, N_2 \rangle &= -1, \\
\langle T_1, N_1 \rangle &= \langle N_1, N_2 \rangle = 0.
\end{align*} \hspace{1cm} (2.6)
$$

Also, the next two theorems are proved in [11].

Theorem 1. Let α be a pseudo null curve in \mathbb{E}_1^3 parameterized by arc-length parameter s with the curvature $\kappa(s) = 1$ and the torsion $\tau(s)$. Then the Bishop frame $\{T_1, N_1, N_2\}$ and the Frenet frame $\{T, N, B\}$ of α are related by:
(i)

\[
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & \frac{1}{k_2} & 0 \\
0 & 0 & k_2
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}
\tag{2.7}
\]

and the Frenet equations of \(\alpha \) according to the Bishop frame read

\[
\begin{bmatrix}
T_1' \\
N_1' \\
N_2'
\end{bmatrix} =
\begin{bmatrix}
0 & k_2 & k_1 \\
-k_1 & 0 & 0 \\
-k_2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix}
\tag{2.8}
\]

where \(k_1(s) = 0 \) and \(k_2(s) = c_0 e^\int \tau(s) ds \), \(c_0 \in \mathbb{R}^+ \) are the first and the second Bishop curvature;

(ii)

\[
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & -k_1 \\
0 & -\frac{1}{k_1} & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}
\tag{2.9}
\]

and the Frenet equations of \(\alpha \) according to the Bishop frame read

\[
\begin{bmatrix}
T_1' \\
N_1' \\
N_2'
\end{bmatrix} =
\begin{bmatrix}
0 & k_2 & k_1 \\
-k_1 & 0 & 0 \\
-k_2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix}
\tag{2.10}
\]

where \(k_1(s) = c_0 e^\int \tau(s) ds \), \(c_0 \in \mathbb{R}^- \) and \(k_2(s) = 0 \) are the first and the second Bishop curvature.

Theorem 2. Let \(\alpha \) be a null Cartan curve in \(\mathbb{R}^3 \) parametrized by pseudo-arc \(s \) with the curvature \(\kappa(s) = 1 \) and the torsion \(\tau(s) \). Then the Bishop frame \(\{T_1, N_1, N_2\} \) and the Cartan frame \(\{T, N, B\} \) of \(\alpha \) are related by:

\[
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
-k_2 & 1 & 0 \\
\frac{k_1^2}{k_2} & -k_2 & 1
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}
\tag{2.11}
\]

and the Cartan equations of \(\alpha \) according to the Bishop frame read

\[
\begin{bmatrix}
T_1' \\
N_1' \\
N_2'
\end{bmatrix} =
\begin{bmatrix}
k_2 & k_1 & 0 \\
0 & 0 & k_1 \\
0 & 0 & -k_2
\end{bmatrix}
\begin{bmatrix}
T_1 \\
N_1 \\
N_2
\end{bmatrix}
\tag{2.12}
\]

where the first Bishop curvature \(k_1(s) = 1 \) and and the second Bishop curvature satisfies Riccati differential equation \(k_2'(s) = -\frac{1}{2} k_2^2(s) - \tau(s) \).
3. Null Cartan and pseudo null Mannheim B-curves

In this section we define null Cartan Mannheim and pseudo null Mannheim curves according to their Bishop frames in Minkowski 3-space and call them Mannheim B-curves. We obtain the necessary and sufficient conditions for pseudo null curves to be Mannheim B-curves and provide the related examples. We prove that mate curves of pseudo null Mannheim B-curves can not be spacelike, timelike or null Cartan curves. We also prove that there are no null Cartan curves which are Mannheim B-curves, by considering the cases when their Mannheim B-mate curves are the spacelike, timelike, null Cartan and pseudo null curves.

Definition 1. Let β be a pseudo null curve or a null Cartan curve in E_3^2 with the Bishop frame $\{T_1, N_1, N_2\}$ and β^* an arbitrary curve with the Bishop frame $\{T_1^*, N_1^*, N_2^*\}$. If the Bishop vector N_1 is collinear with the Bishop vector N_2^* at the corresponding points of the curves β and β^*, then β is called the Mannheim B-curve, β^* is called Mannheim B-mate curve of β and (β, β^*) curve couple is called Mannheim B-pair.

In the first theorem, we give the necessary and the sufficient conditions for pseudo null curve couple (β, β^*) to be Mannheim B-pair of curves with non-zero Bishop curvatures κ_2 and κ_2^*.

Theorem 3. Let β and β^* be two pseudo null curves in E_3^2 parameterized by arc-length parameters s and s^* respectively with the Bishop curvatures $\kappa_1 = \kappa_2^* = 0$, κ_2 and κ_2^*. Then (β, β^*) curve couple is a Mannheim B-pair if and only if

$$\kappa_2 + \lambda'' = c\kappa_1^*,$$

where $\lambda \neq 0$ is an arbitrary differentiable function and $c \in \mathbb{R}_0$.

Proof. Assume that (β, β^*) is Mannheim B-pair of curves. Then we can write the curve β^* as

$$\beta^*(s^*) = \beta^*(f(s)) = \beta(s) + \lambda(s)N_1(s),$$

where $\lambda(s) \neq 0$ is some differentiable function. Differentiating (3.1) with respect to s, we find

$$T^*f' = T + \lambda'N_1 + \lambda N_1'.$$

By using (2.7), (2.8) and (2.9), the previous relation becomes

$$-T_1^*f' = T_1 + \lambda'N_1.$$

By taking the scalar product of (3.2) with $-T_1^*f'$ and using (2.5), we obtain

$$\langle T_1^*f', T_1^*f' \rangle = f'^2 = 1.$$
Let us take $f' = 1$. Then we have

$$T_1^* = -T_1 - \lambda' N_1. \quad (3.4)$$

Differentiating (3.4) with respect to s and using (2.8) and (2.10), we get

$$\kappa_1^* N_2^* = -(\kappa_2 + \lambda'') N_1 \quad (3.5)$$

which implies

$$N_2^* = -\frac{\kappa_2 + \lambda''}{\kappa_1^*} N_1.$$

Differentiating the last equation with respect to s and using (2.8) and (2.10), we find

$$\kappa_2 + \lambda'' = c \kappa_1^*,$$

where $c \in \mathbb{R}_0$.

Conversely, assume that $\kappa_2 + \lambda'' = c \kappa_1^*$, where $\lambda \neq 0$ is an arbitrary differentiable function and $c \in \mathbb{R}_0$. Define the curve β^* by

$$\beta^*(s) = \beta(s) + \lambda(s) N_1(s). \quad (3.6)$$

Differentiating (3.6) with respect to s and using (2.7) and (2.8), we find

$$\frac{d \beta^*}{ds} = T_1 + \lambda' N_1, \quad (3.7)$$

which together with relation (2.5) leads to

$$\langle \frac{d \beta^*}{ds}, \frac{d \beta^*}{ds} \rangle = 1.$$

Therefore, the curve β^* is parameterized by arc-length parameter s. Then from (2.9) and (3.7) we have

$$T^* = -T_1^* = T_1 + \lambda' N_1. \quad (3.8)$$

Differentiating (3.8) with respect to s and using (2.8) and (2.10), we obtain

$$-\frac{dT_1^*}{ds} = -\kappa_1^* N_2^* = (\kappa_2 + \lambda'') N_1 \quad (3.9)$$

By using the assumption, we get

$$N_2^* = -\frac{\kappa_2 + \lambda''}{\kappa_1^*} = -c N_1.$$

Hence (β, β^*) is Mannheim B-pair of curves. \hfill \square
Example 1. Let us consider a pseudo null curve β in \mathbb{E}^3 with parameter equation

$$\beta(s) = \left(\frac{s^3}{3} + \frac{s^2}{2}, \frac{s^3}{3} + \frac{s^2}{2}, s\right)$$

and the Frenet frame

$$T(s) = \left(s^2 + s, s^2 + s, 1\right),$$

$$N(s) = \left(2s + 1\right)\left(1, 1, 0\right),$$

$$B(s) = \left(-\frac{(s^2 + s)^2 + 1}{2(2s + 1)}, \frac{1 - (s^2 + s)^2}{2(2s + 1)}, -\frac{s^2 + s}{2s + 1}\right).$$

A straightforward calculation shows that Frenet curvatures of β read $\kappa(s) = 1$, $\tau(s) = \frac{2}{2s+1}$. According to statement (i) of Theorem 1, the Bishop curvatures of β are given by $\kappa_1(s) = 0$ and $\kappa_2(s) = c_0(2s + 1)$, $c_0 \in \mathbb{R}^+$. In particular, the Bishop frame of β has the form

$$T_1(s) = \left(s^2 + s, s^2 + s, 1\right),$$

$$N_1(s) = \frac{1}{c_0}\left(1, 1, 0\right),$$

$$N_2(s) = c_0\left(-\frac{(s^2 + s)^2 + 1}{2}, \frac{1 - (s^2 + s)^2}{2}, -s^2 - s\right).$$

Let us take $\lambda(s) = -\frac{c_0s^3}{3}$. Define the curve β^* by

$$\beta^*(s) = \beta(s) + \lambda(s)N_1(s) = \left(\frac{s^2}{2}, \frac{s^2}{2}, s\right).$$

Therefore, β^* is pseudo null circle with Frenet curvatures $\kappa^*(s) = 1$, $\tau^*(s) = 0$. By using statement (ii) of Theorem 1, the Bishop curvatures of β^* are given by

$$\kappa_1^*(s) = c_1, \quad \kappa_2^*(s) = 0,$$

and the Bishop frame of β^* reads

$$T_1^*(s) = -\left(s, s, 1\right),$$

$$N_1^*(s) = -c_1\left(-\frac{1 - s^2}{2}, \frac{1 - s^2}{2}, -s\right),$$

$$N_2^*(s) = -\frac{1}{c_1}\left(1, 1, 0\right),$$

where $c_1 \in \mathbb{R}^+$. Since N_1 and N_2^* are collinear, (β, β^*) is Mannheim B-pair of curves (Figure 1). It can be easily verified that the equation $\kappa_2 + \lambda'' = \frac{c_0}{c_1}\kappa_1^*$ holds.
In the next theorem, we give the necessary and the sufficient conditions for pseudo null curve couple (β, β^*) to be Mannheim B-pair of curves with non-zero Bishop curvatures κ_1 and κ_2^*.

Theorem 4. Let β and β^* be two pseudo null curves in \mathbb{E}^3_1 parameterized by arc-length parameters s and s^* respectively with the Bishop curvatures κ_1, κ_2^* and $\kappa_2 = \kappa_1^* = 0$. Then (β, β^*) curve couple is a Mannheim B-pair if and only if

$$\kappa_2^* = -\frac{\kappa_1 (\lambda')^2}{c(1 + \lambda \kappa_1)^3}$$

(3.10)

where c is a non-zero real number and $\lambda(s)$ is differentiable function satisfying differential equation

$$\lambda'(s) \int \kappa_1(s) ds + 2(1 + \lambda(s) \kappa_1(s)) = 0.$$

(3.11)

Proof. Assume that (β, β^*) is Mannheim B-pair of curves. Then we can write the curve β^* as

$$\beta^*(s^*) = \beta^*(f(s)) = \beta(s) + \lambda(s) N_1(s),$$

(3.12)

where $\lambda(s)$ is some differentiable function. Differentiating (3.12) with respect to s and using (2.7), (2.8) and (2.9), we get

$$T_1^* f' = (-1 - \lambda \kappa_1) T_1 + \lambda' N_1.$$

(3.13)

By taking the scalar product of (3.13) with $T_1^* f'$ and using (2.5), we obtain

$$f'^2 = (1 + \lambda \kappa_1)^2.$$

(3.14)
Let us take $f' = 1 + \lambda \kappa_1$. Then $1 + \lambda \kappa_1 \neq 0$. Putting $a = \lambda' / f'$ in (3.13), we find

$$T_1^+ = - T_1 + a N_1.$$ \hfill (3.15)

Differentiating (3.15) with respect to s and using (2.8) and (2.10), we obtain

$$\kappa_2^* f'^* N_1^* = - a \kappa_1 T_1 + a' N_1 - \kappa_1 N_2.$$ \hfill (3.16)

Since N_1^* is a null vector, relations (2.5) and (3.16) imply

$$-2 a' \kappa_1 + a^2 \kappa_1^2 = 0.$$

Integrating the previous equation, we obtain

$$a(s) = -\frac{2}{\int \kappa_1(s) ds}.$$

Substituting $a = \lambda' / f'$ in the last equation, it follows that λ satisfies differential equation (3.11).

By taking the scalar product of (3.16) with $N_1 = \mu N_2^*$, where $\mu(s) \neq 0$ is some differentiable function and using (2.5), we find

$$\mu \kappa_2^* f' = - \kappa_1.$$ \hfill (3.17)

Substituting (3.17) in (3.16), we get

$$N_1^* = a \mu T_1 - \frac{\mu a'}{\kappa_1} N_1 + \mu N_2.$$ \hfill (3.18)

Differentiating (3.18) with respect to s and using (2.8) and (2.10), we find

$$\left(a \mu' + 2a' \right) T_1 - \left(\frac{\mu a'}{\kappa_1} \right)' N_1 + \left(\mu' + a \mu \kappa_1 \right) N_2 = 0,$$

which implies that

$$a \mu' + 2a' = 0, \quad \frac{\mu a'}{\kappa_1} = \text{constant}, \quad \mu' + a \mu \kappa_1 = 0.$$ \hfill (3.19)

From the first equation of (3.19) we find

$$\mu = \frac{c}{a'^2},$$ \hfill (3.20)

where $c \in \mathbb{R} \setminus \{0\}$. The other two equations of (3.19) hold automatically. Substituting relations $f'' = 1 + \lambda \kappa_1$ and (3.20) in (3.17), we get that Bishop curvature κ_2^* satisfies (3.10).

Conversely, assume relation (3.10) holds and that λ satisfies differential equation (3.11). Define a curve β^* by

$$\beta^*(s^*) = \beta^*(f(s)) = \beta(s) + \lambda N_1(s).$$ \hfill (3.21)
Differentiating (3.21) with respect to s and using (2.7), (2.8) and (2.9), we obtain

$$T_1^* f' = (-1 - \lambda \kappa_1) T_1 + \lambda' N_1.$$

(3.22)

By taking the scalar product of (3.22) with $T_1^* f'$ and using (2.5), we find $f'' = (1 + \lambda \kappa_1)^2$. Thus we may take $f' = 1 + \lambda \kappa_1$. Then from (3.22) we have

$$T_1^* = -T_1 + a N_1,$$

(3.23)

where $a = \lambda' / f'$. Differentiating (3.23) with respect to s and using (2.8) and (2.10), we find

$$\kappa_2^* f' N_1^* = -a \kappa_1 T_1 + a' N_1 - \kappa_1 N_2.$$

(3.24)

Therefore,

$$N_1^* = -\frac{c}{a} T_1 + \frac{c a'}{a^2 \kappa_1} N_1 + \frac{c}{a^2} N_2.$$

(3.25)

By using the conditions $\langle N_2^*, N_2^* \rangle = \langle N_2^*, T_1^* \rangle = 0$, $\langle N_1^*, N_2^* \rangle = 1$ and relations (3.23) and (3.25), we find

$$N_2^* = \frac{a^2}{c} N_1 = \frac{1}{\mu} N_1.$$

Hence (β, β^*) is Mannheim B-pair of curves. □

Example 2. Consider a unit speed pseudo null curve in \mathbb{E}^3_1 with parameter equation

$$\beta(s) = (s^3, s^3, s).$$

The Frenet frame of β reads

$$T(s) = (3s^2, 3s^2, 1),$$

$$N(s) = 6s(1, 1, 0),$$

$$B(s) = \left(-\frac{9s^4 + 1}{12s}, \frac{1 - 9s^4}{12s}, -\frac{s}{2}\right),$$

and the Frenet curvatures of β are given by $\kappa(s) = 1$, $\tau(s) = \frac{1}{s}$. According to statement (ii) of Theorem 1, the Bishop curvatures of β read

$$\kappa_1(s) = c_0 s, \quad \kappa_2(s) = 0, \quad c_0 \in \mathbb{R}_0^-.$$

Hence the Bishop frame of β has the form

$$T_1(s) = -(3s^2, 3s^2, 1),$$

$$N_1(s) = c_0 \left(\frac{1 + 9s^4}{12}, \frac{9s^4 - 1}{12}, \frac{s^2}{2}\right),$$

where $a = \lambda' / f'$. Differentiating (3.23) with respect to s and using (2.8) and (2.10), we find

$$\kappa_2^* f' N_1^* = -a \kappa_1 T_1 + a' N_1 - \kappa_1 N_2.$$

(3.24)

Therefore,

$$N_1^* = -\frac{c}{a} T_1 + \frac{c a'}{a^2 \kappa_1} N_1 + \frac{c}{a^2} N_2.$$

(3.25)

By using the conditions $\langle N_2^*, N_2^* \rangle = \langle N_2^*, T_1^* \rangle = 0$, $\langle N_1^*, N_2^* \rangle = 1$ and relations (3.23) and (3.25), we find

$$N_2^* = \frac{a^2}{c} N_1 = \frac{1}{\mu} N_1.$$

Hence (β, β^*) is Mannheim B-pair of curves. □

Example 2. Consider a unit speed pseudo null curve in \mathbb{E}^3_1 with parameter equation

$$\beta(s) = (s^3, s^3, s).$$

The Frenet frame of β reads

$$T(s) = (3s^2, 3s^2, 1),$$

$$N(s) = 6s(1, 1, 0),$$

$$B(s) = \left(-\frac{9s^4 + 1}{12s}, \frac{1 - 9s^4}{12s}, -\frac{s}{2}\right),$$

and the Frenet curvatures of β are given by $\kappa(s) = 1$, $\tau(s) = \frac{1}{s}$. According to statement (ii) of Theorem 1, the Bishop curvatures of β read

$$\kappa_1(s) = c_0 s, \quad \kappa_2(s) = 0, \quad c_0 \in \mathbb{R}_0^-.$$

Hence the Bishop frame of β has the form

$$T_1(s) = -(3s^2, 3s^2, 1),$$

$$N_1(s) = c_0 \left(\frac{1 + 9s^4}{12}, \frac{9s^4 - 1}{12}, \frac{s^2}{2}\right),$$

where $a = \lambda' / f'$. Differentiating (3.23) with respect to s and using (2.8) and (2.10), we find

$$\kappa_2^* f' N_1^* = -a \kappa_1 T_1 + a' N_1 - \kappa_1 N_2.$$

(3.24)

Therefore,

$$N_1^* = -\frac{c}{a} T_1 + \frac{c a'}{a^2 \kappa_1} N_1 + \frac{c}{a^2} N_2.$$

(3.25)

By using the conditions $\langle N_2^*, N_2^* \rangle = \langle N_2^*, T_1^* \rangle = 0$, $\langle N_1^*, N_2^* \rangle = 1$ and relations (3.23) and (3.25), we find

$$N_2^* = \frac{a^2}{c} N_1 = \frac{1}{\mu} N_1.$$

Hence (β, β^*) is Mannheim B-pair of curves. □
\[N_2(s) = \frac{-6}{c_0} (1, 1, 0). \]

Substituting \(\kappa_1(s) = c_0 s \) in (3.11), we get
\[\lambda(s) = -\frac{4}{3c_0 s}. \]

Let us define pseudo null curve \(\beta^* \) by
\[\beta^*(s) = \beta(s) + \lambda(s) N_1(s). \]

Then \(\beta^* \) has parameter equation
\[\beta^*(s) = \left(-\frac{1}{9s}, \frac{1}{9s}, \frac{s}{3}\right). \]

In particular, the arc-length parameter of \(\beta^* \) is given by \(s^* = \frac{s}{3} \). Therefore, the Frenet frame of \(\beta^* \) reads
\[
T^*(s) = \left(\frac{1}{27s^*^2}, -\frac{1}{27s^*^2}, 1\right),
N^*(s) = \left(-\frac{2}{27s^*^3}, \frac{2}{27s^*^3}, 0\right),
B^*(s) = \left(\frac{27}{4s^*^3} + \frac{1}{108s^*^4}, \frac{27}{4s^*^3} - \frac{1}{108s^*^4}, \frac{s^*}{2}\right),
\]
and Frenet curvatures of \(\beta^* \) have the form \(\kappa^*(s) = 1, \tau^*(s) = -\frac{3}{s^*} \). Hence statement (i) of Theorem 1 implies that the Bishop curvatures of \(\beta^* \) read
\[\kappa_1^*(s) = 0, \quad \kappa_2^*(s) = \frac{c_1}{s^*^3}, \quad c_1 \in \mathbb{R}^+_0. \]

Also, according to statement (i) of Theorem 1, the Bishop frame of \(\beta^* \) reads
\[
T_1^*(s) = T^*,
N_1^*(s) = \frac{s^*^3}{c_1} \left(-\frac{2}{27s^*^3}, \frac{2}{27s^*^3}, 0\right),
N_2^*(s) = \frac{c_1}{s^*^3} \left(\frac{27}{4s^*^3} + \frac{1}{108s^*^4}, \frac{27}{4s^*^3} - \frac{1}{108s^*^4}, \frac{s^*}{2}\right).
\]

It can be easily verified that
\[N_1 = \frac{9c_0 s^*^4}{c_1} N_2^*. \]

Consequently, \((\beta, \beta^*)\) is Mannheim B-pair of curves (Figure 2).

Moreover, it can be easily checked that the equation (3.10) is satisfied.
Remark 1. Note that to any pseudo null curve in E_3^1 with Bishop curvatures $k_1 \neq 0$ and $k_2 = 0$, we may assign function λ as the solution of differential equation (3.11). The function λ determines Mannheim mate B-curve $\beta^* = \beta + \lambda N_1$ of β. This means that there are infinity many pseudo null Mannheim B-curve couples.

The next theorem can be proved analogously, so we omit its proof.

Theorem 5. There are no Mannheim B-pair of curves (β, β^*) in E_3^1, where β and β^* are pseudo null curves with Bishop curvatures $\kappa_1 = \kappa_1^*$ and $\kappa_2 = \kappa_2^*$.

Theorem 6. There are no Mannheim B-pair of curves (β, β^*) in E_3^1, where β is a pseudo null curve and β^* is a null Cartan curve.

Proof. Let β be a pseudo null Mannheim B-curve parametrized by arc-length s with the Bishop curvatures κ_1 and κ_2 and Bishop frame $\{T_1, N_1, N_2\}$. Assume that there exists Mannheim B-pair of curves (β, β^*), where β^* is a null Cartan curve with Bishop frame $\{T^*_1, N^*_1, N^*_2\}$. Then we can write the curve β^* as

$$\beta^*(s^*) = \beta^*(f(s)) = \beta(s) + \lambda(s)N_1(s), \quad (3.26)$$

where $\lambda(s)$ is some differentiable function. Now we may distinguish two possibilities: (i) $\kappa_1 = 0, \kappa_2 \neq 0$ and (ii) $\kappa_1 \neq 0, \kappa_2 = 0$.

(i) If $\kappa_1 = 0$ and $\kappa_2 \neq 0$, differentiating (3.26) with respect to s and using (2.7), (2.8) and (2.11), we get

$$T^*_1 f' = T_1 + \lambda' N_1. \quad (3.27)$$

By taking the scalar product of (3.27) with $T^*_1 f'$ and using (2.5) and (2.6), we obtain a contradiction.
(ii) If $\kappa_1 \neq 0$ and $\kappa_2 = 0$, differentiating (3.26) with respect to s and using (2.9), (2.10) and (2.11), we obtain

$$T_1^* f' = (-1 - \lambda \kappa_1) T_1 + \lambda' N_1. \quad (3.28)$$

By taking the scalar product of (3.28) with $N_1 = \mu N_2^*$ where $\mu(s) \neq 0$ is some differentiable function and using (2.5) and (2.6), we get $f' \mu = 0$ which is a contradiction again.

The proof of the following theorem follows from the fact that a null Bishop vector N_1 of β can be collinear with non-null Bishop vector N_2^* of β^*.

Theorem 7. There are no Mannheim B-pair of curves (β, β^*) in E^3_1, where β is a pseudo null curve and β^* is a timelike or spacelike curve with non-null Bishop vector N_2^*.

Theorem 8. There are no Mannheim B-pair of curves (β, β^*) in E^3_1, where β is a null Cartan curve and β^* is a timelike curve, or a spacelike curve with a non-null Bishop vector N_2^*.

Proof. Assume that there exists Mannheim B-pair of curves (β, β^*). Denote by s and s^* pseudo-arc and arc-length of β and β^* respectively and by $\{T_1, N_1, N_2\}$ and $\{T_1^*, N_1^*, N_2^*\}$ their Bishop frames. It is sufficient to assume that N_2^* is a spacelike vector. Otherwise, we easily get a contradiction. We can write the curve β as

$$\beta(s) = \beta(f(s^*)) = \beta^*(s^*) + \lambda(s^*) N_2^*(s^*), \quad (3.29)$$

where $\lambda(s^*)$ is some differentiable function. Differentiating the relation (3.29) with respect to s^* and using relations (2.4) and (2.11), we obtain

$$T_1 f' = T_1^* + \lambda' N_2^* + \epsilon_0 \lambda \kappa_2^* T_1^*. \quad (3.28)$$

By taking the scalar product of the previous equation with $N_1 = \mu N_2^*$ where $\mu \neq 0$ is some differentiable function and using (2.6) and the conditions $\langle T_1^*, N_2^* \rangle = 0$, $\langle N_2^*, N_2^* \rangle = 1$, we get $\lambda' = 0$. Hence

$$T_1 f' = (1 + \epsilon_0 \lambda \kappa_2^*) T_1^*. \quad (3.28)$$

This means that a null vector T_1 is collinear with a non-null vector T_1^*, which is a contradiction.

The proof of the last theorem follows from the fact that a spacelike Bishop vector N_1 of β can not be collinear with a null Bishop vector N_2^* of β^*.

Theorem 9. There are no Mannheim B-pair of curves (β, β^*) in E^3_1, where β is null Cartan curve and β^* is Cartan null or pseudo null curve.
References

[1] L.R. Bishop, *There is more than one way to frame a curve*, Amer. Math. Monthly 82(3) (1975), 246-251.
[2] W. B. Bonnor, *Null curves in a Minkowski space-time*, Tensor, 20 (1969), 229–242.
[3] J. H. Choi, T. H. Kang and Y. H. Kim, *Mannheim curves in 3-dimensional space forms*, Bull. Korean Math. Soc., 50 (2013), No.4, 1099–1108.
[4] K. L. Duggal and D. H. Jin, *Null Curves and Hypersurfaces of Semi Riemann Manifolds*, World Scientific, Singapore, 2007.
[5] L. P. Eisenhart, *A Treatise on the Differential Geometry of Curves and Surfaces*. Dover Edition. Dover Publication, New York, 1960.
[6] M. Erdoğan, *Parallel frame of non-lightlike curves in Minkowski space-time*, Int. J. Geom. Methods Mod. Phys., 12 (2015), 16 pages.
[7] S. Ersoy, M. Tosun and H. Matsuda, *Generalized Mannheim curves in Minkowski space-time E^4_1*, Hokkaido Math. J., 41 (2012), No.3, 441–461.
[8] F. Gökçelik, Z. Bozkurt, I. Gök, F. N. Ekmekчи and Y. Yaylı, *Parallel transport frame in 4-dimensional Euclidean space E^4_1*, Caspian J. Math. Sci., 3 (2014), 91–103.
[9] M. Grbović, K. İlarslan and E. Nešović, *On null and pseudo null Mannheim curves in Minkowski 3-space*, J. Geom., 105 (2014), 177–183.
[10] M. Grbović, K. İlarslan and E. Nešović, *On generalized null Mannheim curves in Minkowski space-time*, Publ. Inst. Math. (Belgrade), 99 (2016), No.113, 77–98.
[11] M. Grbović and E. Nešović, *On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space*, J. Math. Anal. Appl., 461 (2018), 219–233.
[12] K. İlarslan and E. Nešović, *On Bishop frame of a null Cartan curve in Minkowski space-time*, Int. J. Geom. Meth. Mod. Phys., 15 (2018), No.8, 1850142 (16 pages).
[13] H. Liu and F. Wang, *Mannheim partner curves in 3-space*, J. Geom., 88 (2008), 120–126.
[14] H. Matsuda and S. Yorozu, *On generalized Mannheim curves in Euclidean 4-space*, Nihonkai Math. J., 20 (2009), 33–56.
[15] B. O’Neill, *Semi Riemannian Geometry with Applications to Relativity*, Academic Press, New York, 1983.
[16] M. Özdemir and A. A. Ergin, *Parallel frame of non-lightlike curves*, Missouri J. Math. Sci., 20 (2008), No.2, 127–137.
[17] J. Warave, Curves and surfaces in Minkowski space, Ph.D. Thesis, Leuven University, 1995.
[18] S. Yılmaz and M. Turgut, *A new version of Bishop frame and an application to spherical images*, J. Math. Anal. Appl., 371 (2010), 764–776.