Privacy and data protection in mobile cloud computing: A systematic mapping study

Hussain Mutlaq Alnajrani1,2, Azah Anir Norman1*, Babiker Hussien Ahmed1

1 Faculty of Computing Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia,
2 Faculty of Computer Science and Information Technology, Alba University, Alba, Saudi Arabia

* azahnorman@um.edu.my

Abstract

As a result of a shift in the world of technology, the combination of ubiquitous mobile networks and cloud computing produced the mobile cloud computing (MCC) domain. As a consequence of a major concern of cloud users, privacy and data protection are getting substantial attention in the field. Currently, a considerable number of papers have been published on MCC with a growing interest in privacy and data protection. Along with this advance in MCC, however, no specific investigation highlights the results of the existing studies in privacy and data protection. In addition, there are no particular exploration highlights trends and open issues in the domain. Accordingly, the objective of this paper is to highlight the results of existing primary studies published in privacy and data protection in MCC to identify current trends and open issues. In this investigation, a systematic mapping study was conducted with a set of six research questions. A total of 1711 studies published from 2009 to 2019 were obtained. Following a filtering process, a collection of 74 primary studies were selected. As a result, the present data privacy threats, attacks, and solutions were identified. Also, the ongoing trends of data privacy exercise were observed. Moreover, the most utilized measures, research type, and contribution type facets were emphasized. Additionally, the current open research issues in privacy and data protection in MCC were highlighted. Furthermore, the results demonstrate the current state-of-the-art of privacy and data protection in MCC, and the conclusion will help to identify research trends and open issues in MCC for researchers and offer useful information in MCC for practitioners.

1. Introduction

In recent years, mobile cloud computing (MCC) is playing a crucial role in connectivity and accessibility to services and applications [1]. MCC is a major area of interest evolving out of mobile devices and cloud computing [1–3]. It is an approach that aims to enable mobile terminals to access robust and reliable cloud-based computing that facilitates the optimal utilization of resources.

As an effect of a major concern of cloud users, the issue of privacy and data protection has received considerable attention in the field. A number of researchers have reported that privacy in the definition adopted by the organization for Economic Cooperation and
Development [4] is “any information relating to a recognized or identifiable individual (data subject).” In fact, the concept of privacy has a different perspective, depending on countries, cultures, or jurisdictions.

Recently, researchers have shown an increased interest in MCC. Currently, a considerable number of papers have been published on MCC with a growing interest in privacy and data protection. Along with this advance in MCC, the results of the existing studies in privacy and data protection are not highlighted. Also, no particular research demonstrates the ongoing trends, measures to assess current solutions, and open research issues, including future research directions for privacy and data protection in MCC.

In this study, a systematic mapping study (SMS) was conducted to analyses the existing research literature that addresses privacy and data protection in MCC [3]. In fact, SMS is a clear and precise method of identifying, evaluating, and explaining all obtainable research relevant to a specific research question, thematic area, or phenomenon of importance [3]. Furthermore, the purpose of SMS is to present an adjustable, impartial, and reliable assessment of a particular research topic [3].

The study presented in this paper aims to highlight the results of existing primary studies published in privacy and data protection in MCC to identify current trends and open issues in the domain. In this examination, a systematic mapping study (SMS) was conducted with a set of six research questions. A total of 1711 studies published from 2009 to 2019 were obtained. Following a filtering process, a collection of 74 primary studies were selected. As a result, the contribution of this study is declared as follows:

- Demonstrate existing threats and attacks on data privacy and solutions to serve personal data.
- Outline metrics and measures that are used to assess the current solutions for privacy in MCC.
- Illustrate the current state-of-the-art of data privacy exercises utilized in MCC and highlight the types of research and contribution areas that are used in mobile cloud computing.
- Highlight open research issues of privacy and data protection in MCC.

This article is constructed as follows: Section 2 presents background and motivation for the study. Section 3 presents the related work. Section 4 describes the research method. Section 5 presents conducting the study. Section 6 shows and discusses the results. Section 7 illustrates the key findings. Section 8 clarifies the thread to the validity. Section 9 presents the conclusion of this study.

2. Background and motivation

This section presents a general background of mobile cloud computing, privacy and data protection, and the needs for a systemic mapping study.

2.1. Mobile cloud computing

Today, mobile devices such as smartphones provide users with greater connectivity and accessibility to services and applications [1]. Even though mobile technology continues to expand, modern mobile terminals suffer limitations associated with poor computational resources, low memory size, and small disk capacity [1]. Cloud computing provides a robust approach to the delivery of services by incorporating existing computing technologies. In cloud computing, three service delivery models appear to account for most deployments: Infrastructure-as-a-service (IaaS), Software-as-a-Service (SaaS), and Platform-as-a-Service (PaaS) [5].
The concept of Mobile Cloud Computing (MCC) has emerged out of mobile technology and cloud computing [1–3]. It is an approach that aims to enable mobile terminals to access robust and reliable cloud-based computing that facilitates the optimal utilization of resources. Moreover, MCC presents opportunities for improving the portability and scalability of services [1].

2.2. Privacy and data protection
Several researchers have reported that privacy in the definition adopted by the organization for Economic Cooperation and Development [4] is “any information relating to a recognized or identifiable individual (data subject).” In fact, the concept of privacy is vast and has a different perspective depending on countries, cultures, or jurisdictions.

To be more precise, privacy is not just about hiding information, but it is a legitimate control over personal data since no one may get personal information without the consent of the owner unless there are laws that allow access to such information [6], for example, income information that the tax authorities can get from employers [6].

The issue of privacy in MCC is getting nowadays more attention; however, numerous existing privacy laws and regulations are needed to impose the standards for the collection, maintenance, use, and disclosure of personal information that must be satisfied even by cloud providers [7]. In addition, a number of studies reported that there is always increasing the privacy risk in hosting your data in someone else’s hands [7].

2.3. The need for a systematic mapping study
Currently, a considerable number of papers have been published on MCC with a growing interest in privacy and data protection. Along with this advance in MCC, our research group has found the following:

- The results of the existing studies in privacy and data protection were not highlighted.
- The ongoing trends in privacy and data protection were not determined.
- The metrics used to assess current solutions were not aggregated.
- The research type facets and the contribution type facets used in MCC were not aggregated.
- The current open research issues with future research directions were not demonstrated.

The aim of this investigation is to highlight the results of the existing studies in privacy and data protection in MCC through a systematic mapping study (SMS). The purpose of a systematic mapping study is to present an adjustable, impartial, and reliable assessment of a particular research topic [3]. Also, SMS is used to highlight the current state-of-the-art and to determine the trends of the research domain.

3. Related works
In recent years, a number of reviews and surveys have been published to analyze MCC in secondary studies [8–11] and are considered as related to this study. David et al. [8] focused on the various encryption techniques (and their variants) that are presently being utilized, and on possible future works that could improve privacy-oriented encryption techniques and security. Moreover, the authors tried to provide the audience with a conception about the difficulty of the algorithm being utilized in each of the studied encryption techniques. However, they did not cover other solutions or discuss current attacks and threats related to MCC.

Also, Kulkarni et al. [9] concentrated on the existing frameworks of MCC, although they did not mention other solutions. In addition, Bhatia and Verma [10] presented a state-of-the-
art organization of cryptographic techniques and data security schemes in an innovative
delimitation on chronological order. However, the survey only focused on threats and attacks
related to the mobile cloud. Moreover, Rahimi et al. [11], investigated various security frame-
works for the MCC environment, whereby most of them offload processor-heavy jobs to the
cloud. The study [11] suggested some of the challenges that service providers need to address
to achieve security and privacy in the MCC environment [11]. Finally, even though several
reviews and surveys have been reported, two limitations remain:

- There is a need for a more systematic way of summarizing the current knowledge in MCC. It is
 known that the popularity of these studies is as informal literature surveys, which do not include
 specific research questions, search process, or defined data analysis processor data extractions.
- A few secondary studies focused on privacy and data protection in MCC, while applications
 based on these platforms continue to multiply.

4. Research method

A systematic mapping study (SMS) is a secondary study that provides a structure of the type of
research papers and aggregates the results that have been declared in the domain. Also, SMS is
a method for categorizing the published studies, often gives a visual summary, and map the
results to highlight the current state-of-the-art and to determine the trends [12].

In this paper, we have derived the formal guidelines of SMS from Petersen et al. [12]. As in
the directive of SMS [12], SMS is performed in five steps where the outcome from each step
provides the input for the next step. Fig 1 shows the SMS method, as demonstrated in Petersen
et al. [12]. As shown in Fig 1, SMS is implemented as follows [12]:

Step 1: Define research questions and objectives to provide a general scope for the study.

Step 2: Define the search strategy to find the published studies from the available digital libraries.

Step 3: Screening process using inclusion and exclusion criteria to choose the relevant studies.

Step 4: Keywording to enable classification and data extraction.

Step 5: Data extraction and mapping process.

4.1. Research aim questions and objectives

The study aims to highlight the results of existing primary studies published in privacy and
data protection in MCC to identify current trends and open issues in the domain. Table 1
shows our research questions and the objective of each research question.

![Fig 1. The process steps of systematic mapping [12].](https://doi.org/10.1371/journal.pone.0234312.g001)
4.2. Search strategy

As in the SMS guideline [13], the primary studies are identified by using a search string [13] derived from the research questions. An excellent way to create the search string is to structure them in terms of population, intervention, comparison, and outcome (PICO) [13]. Based on our research questions in Table 1, PICO is implemented as follows:

- **Population**: Published studies.
- **Intervention**: Privacy, data protection, mobile cloud computing, and MCC.
- **Comparison**: Not applicable.
- **Outcome**: Published studies in privacy and data protection in mobile cloud computing.

Based on PICO, we constructed our search string as presented in Fig 2. In this SMS, the search string in Fig 2 is handled to search for studies in the available digital libraries.

4.3. Inclusion-exclusion criteria

Based on SMS guidelines [13], applying inclusion and exclusion criteria is crucial to filter the results [13]. Inclusion and exclusion criteria aim to obtain relevant primary studies to answer the defined research questions [13]. Table 2 illustrates our inclusion and exclusion criteria.

4.4 Keywording and classification for data extraction

For the SMS data extraction and classification, the SMS method [14] declared the following:

- **Classification scheme**: is a process of reading the abstracts, look for keywords and concepts that reflect the contribution of the primary study [13]. The classification scheme aims to:

 - (“Privacy” OR “data protection”) AND (“mobile cloud computing” OR “MCC”).

Table 1. Research question and objectives.

#	Research question	Objective
RQ1	What are the current data privacy exercises in MCC?	To investigate the current data privacy exercises in MCC.
RQ2	What are the existing data privacy threats and attacks in MCC?	To identify the existing privacy threats and attacks in MCC.
RQ3	What are the privacy solutions proposed to serve personal data protection in MCC?	To identify the existing solutions that are used to preserve privacy and personal data protection in MCC.
RQ4	What are the metrics and measures that are used to assess the current solutions for privacy and data protection in MCC?	To investigate the metrics and measures that are used in assessing the current solutions for privacy in MCC.
RQ5	What research type facets and contribution type facets are used in MCC?	To classify the research type facets and the contribution type facets that are used in MCC.
RQ6	What are the current open research issues of privacy and protection in MCC?	To identify the current open research issues of privacy and protection in MCC.

https://doi.org/10.1371/journal.pone.0234312.t001
➢ Ensure that the desired results were covered in the SMS [14].

➢ Aid in introducing a set of categories that represent the underlying population for the study [14].

➢ Develop a high-level understanding of the nature and contribution of the selected primary studies [13].

• **Keywording:** is utilized to implement the classification scheme in SMS as follows:

 ➢ First, read the abstracts and searched for keywords [14].

 ➢ Second, identify the context related to the objective of the study and the scheme will be updated [14].

• **Scheme:** When having the classification scheme in place, the relevant articles are sorted into the scheme, i.e., the actual data extraction takes place [13].

As presented in Fig 3, the classification scheme is implemented as follows:

1. **Keywording:** is the process of reading the abstract and searching for keywords to identify the context related to the objective of the SMS [14].

2. **Sort Article into scheme:** is the process of sorting the scheme after adding an article into scheme [14].

Table 2. Inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria
1) The primary study must be related to MCC and published from 2009 to 2019.	1) The primary study is written in a language other than English.
2) The primary study must present a contribution with validation or verification related to privacy or data protection in MCC.	2) The primary study is presenting a summary of a keynote, a workshop introduction, or only an abstract.
3) Peer-reviewed primary studies.	3) Studies about other issues other than privacy or data protection in MCC.
4) The primary studies that were written in the English language.	

https://doi.org/10.1371/journal.pone.0234312.t002
3. **Update scheme**: is the process of modifying the scheme after adding a primary study context to the scheme [14].

4.5 Data extraction and mapping process

As demonstrated in the SMS method [13], in this study, we use a data extraction form to gather the SMS data. In addition, when having the classification scheme in place, the actual data extraction of the relevant articles in this study is sorted into the scheme as follows:

- Excel tables were utilized to document the data extraction process [13].
- The frequencies of publications in each category were analyzed from the final table [13].

To investigate the trends, as in the SMS method [13], we focused on the frequencies of publications for each category to identify which categories have been emphasized in past research and thus to identify gaps and possibilities for future research. Also, different ways of presenting and analyzing the results were utilized as follows:

- The summary of the statistics is illustrated in the form of tables, showing the frequencies of publications in each category [13].
- A bubble plot is illustrated to report the frequencies [13]. Bubble plot is basically two x-y scatterplots with bubbles in category intersections. The size of a bubble is proportional to the number of articles that are in the pair of categories corresponding to the bubble coordinates [13].

5. Conducting SMS

In this section, we present the systematic mapping study that we have conducted using the SMS method presented in Section 4.

5.1. Selecting and filtering relevant studies

In this study, we applied PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [15] as an evidence-based for reporting the outcome of the search results to clarify the eligible, included or excluded primary studies in this investigation. **Fig 4** demonstrates the resulting articles from each database and the screened primary studies for this study using the PRISMA guideline.

As **Fig 4**, in this investigation, five digital databases we selected to search for relevant studies, including IEEE Xplore, Science Direct, Springer Link, ACM Digital Library, and Scopus. Then, we utilized our search string, as presented in **Fig 2**, to search for studies in the selected databases. As a result, 1711 studies were obtained and screened as follows:

- **By article type**: only the studies presented in conferences, magazines, and journals venues initially selected.
- **By subject**: only the studies related to privacy, data protection, mobile cloud computing, and MCC initially nominated.
- **By title**: only the studies related to mobile cloud computing initially nominated.

Finally, after screening by year, article type, subject, and title, a total of 215 studies were initially selected and presented in **Table 3**.

In filtering the retrieved studies, a total of 87 studies were excluded based on our inclusion and exclusion criteria (**Table 2**). Also, 39 duplicated studies were eliminated. In addition, we read a sum of 89 studies in a comprehensive analysis. The comprehensive analysis is a process
of reading the whole primary study and decide to include or exclude it after a complete investiga-
tion on the actual contribution on exactly and only on the privacy and data protection in
mobile cloud computing. Finally, a total of 74 primary studies were selected for SMS. Table 4
shows the results of filtering the retrieved studies.

5.3. Analysis and classification
In this study, we carried out a classification scheme through keywording as declared in Section
4.4. First, we read the abstracts of the 74 selected primary studies and searched for keywords.

Table 3. The results of the search for relevant studies.

Database	Results	Search result	Screen by the last ten years	Screen by Article type	Screen by subject	Screen by title
Science Direct	806	693	461	264	78	
Springer link	283	231	93	93	16	
IEEE xplore	238	232	227	200	47	
ACM	33	23	23	23	9	
Scopus	351	351	290	252	65	
Total	1711	1530	1094	832	215	

https://doi.org/10.1371/journal.pone.0234312.t003
In addition, we read the introduction and conclusion sections of each of the selected primary studies to produce the classification scheme. As an outcome, Fig 5 shows our classification scheme.

As presented in Fig 5, seven main aspects were defined as follows:

- **Data privacy exercises**: It denotes the methods of controlling and implementing privacy solutions in mobile cloud computing [16]. Also, it concerns the demonstration of practice policies of data access using different mechanisms [17] that governed by the policies of MCC service providers, state regulations and roles.

- **Threats and attacks**:

 ➢ **Threat**: Potential for infringement of security, which exists when there is a situation, capacity, activity, or occasion that could violate security and cause harm. That is, a risk is a possible peril that may misuse a vulnerability [18].

 ➢ **Attack**: A violation of system security that derives from an intelligent threat. This intelligent work is a purposed attempt (especially in the concept of a technique or method) to avoid the security policy of a system and security services [18].

- **Privacy Solutions**: These are computational methods serving issues related to authentication, authorization, encryption, access control, and trust.

- **Metrics**: Privacy metrics are the privacy parameters that are required in measuring the level of privacy in MCC or the privacy service provided by a given solution to MCC [19].

- **Research type**: We adopted an existing classification (Wieringa, Maiden, Mead, & Rolland, 2006), which is divided into six classifications: Validation Research, Solution Proposal, Evaluation Research, Philosophical Paper, Opinion Paper, and Experience Paper [20]. S1 Appendix of Appendix A shows the types of research with the definitions [20] used in our mapping study.

- **Contribution type**: For the contribution type facets, we have used the categories from Petersen et al., (2008): Model, Formal Study, Method, System, and Experience [20]. S1 Appendix of Appendix B shows the definitions of the contribution type facets used in our mapping study.

- **Open research issues**: is a new challenge noted by the researchers in the existing studies in the area.

6. Results and discussion

In this section, we present and discuss the answers to the research questions of this study.

Database	Search result	Remaining after inclusion and exclusion	Remaining after remove duplicated studies	Remaining after comprehensive analysis	Final selection
Science Direct	78	37	31	31	31
Springer link	16	13	7	3	3
IEEE Xplore	47	27	23	20	20
ACM	9	5	4	4	4
Scopus	65	46	24	16	16
Total	215	128	89	74	74

https://doi.org/10.1371/journal.pone.0234312.t004
6.1. RQ1: What are the current data privacy exercises in MCC?

In this study, we have identified eight data privacy exercises; these eight exercises have been highlighted in the selected primary studies for implementing privacy solutions in MCC. Table 5 illustrates the identified data privacy exercises in the selected primary studies.

In addition, more details are necessary to understand those exercises presented in Table 5; those data privacy exercises are defined as follows:

- **Setup**: is concerning the adaptation of the initial public parameters of system, account, and algorithm for privacy and data protection in MCC [26, 27].

- **Cryptography**: is defined as the method of preserving information by using codes, such that it can only be read and interpreted by those for whom the information is targeted [18].

- **Authentication**: it denotes the assurance that the communicating entity is the one that it claims to be [18].

- **Accounts creation**: It represents the registration of a mobile device or user to a cloud server is an onetime process wherein the user information (ID, password) are Setup, and some encrypted files are exchanged [70].

- **Verification**: is utilized to illustrate the information that corroborates the binding between the entity and the identifier [18].

- **Access control**: is the prevention of unauthorized use of a resource [18].

- **Steganography**: is used for hiding plaintext messages by concealing the existence of the message [18].

- **Reputation**: is one of the components of trustworthiness measures. The reputation establishes based on the recommendations from the MCC users [78].

Table 5. Data privacy exercises.

#	Data privacy exercise	Primary studies
1	Setup (system, initial, account, algorithm)	[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]
2	Cryptography	[21, 55, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 39, 41, 56, 57, 58, 59, 44, 45, 46, 47, 60, 50, 51, 52, 53, 54, 61, 62]
3	Authentication	[21, 22, 63, 64, 65, 28, 29, 32, 66, 33, 67, 68, 69, 36, 35, 37, 70, 39, 41, 57, 43, 71, 72, 45, 48, 49, 51, 73]
4	Accounts creation	[22, 63, 30, 66, 33, 35, 70, 39, 41, 56, 42, 57, 74, 43, 71, 75, 48, 49, 73]
5	Verification	[21, 64, 26, 28, 29, 66, 34, 67, 37, 40, 42, 43, 71, 59]
6	Access control	[23, 30, 39, 74]
7	Steganography	[76, 55, 25]
8	Reputation	[77, 23, 42]

https://doi.org/10.1371/journal.pone.0234312.t005
Fig 6 shows the percentage of studies related to data privacy exercises based on the number of studies. As presented in Fig 6, the results show that the selected primary studies focused on setup, cryptography, authentication, account creation, and verification in 25%, 22%, 21%, 14%, and 11% of studies, respectively. On the other hand, access control, steganography, and reputation have scored the lowest percentage with less than 5% each.

Moreover, Fig 7 is a bubble plot of data privacy exercises in the selected primary studies; the X-axis represents the years, and the Y-axis represents the data privacy exercises. As illustrated
in Fig 7, the number of research rises towards the setup, cryptography, authentication, and accounts creation. Conversely, the number of research decreased towards verification, access control, steganography, and reputation.

6.2. RQ 2: What are the existing data privacy threats and attacks in MCC?

In this investigation, we have identified 17 data privacy threats and attacks in MCC. Table 6 shows the identified threats and attacks in the selected primary studies.

Fig 8 displays the percentage of primary studies related to threats and attacks based on the number of studies. As demonstrated in Fig 8, the most common threats and attacks are unauthorized threats and attacks including users, persons, and access with 18% (34), data privacy with 15% (29), leakage of user privacy 13% (24), data misuse (21) and untrusted service provider (21) represented 11% each. On the other hand, disclosing information or data (11) represented 6%, man-in-the-middle attacks (9) represented 5%, and the rest of the threats got 21%, respectively.

Furthermore, Fig 9 is a bubble plot of threats and attacks, the X-axis represents the years, and the Y-axis represents the threats and attacks. The results show that unauthorized, data privacy, leakage of user privacy, and phishing attacks are relatively dominant in the field. In contrast, eavesdropping attacks, internal attacks, improper security policies and practices in some locations, internal multi-layer attacks, inference attacks on user privacy, and data breach threats are losing momentum.

6.3. RQ3: What are the privacy solutions proposed to serve personal data protection in MCC?

As shown in Table 7, four solutions used to preserve the privacy in MCC in the selected primary studies. The solutions include encryption, authentication, access control, and trust.
Fig 10 displays the percentage of studies related to privacy solutions based on the number of studies. The outcome shows that the research focused on encryption, authentication, and access control solutions in 50%, 28%, and 19% of studies, respectively. We observed that researchers have started to propose trust as a solution in this domain since we found two studies presented the trust solutions.

Moreover, Fig 11 is a bubble plot of privacy solutions with the X-axis representing the years and the Y-axis representing data privacy solutions. The result in Fig 11 determines that the
amount of research is increasing towards the encryption and the authentication data privacy solutions. On the other hand, research into trust data privacy solutions is abating.

6.4. RQ4: What are the metrics and measures that are used to assess the current solutions of privacy and data protection in MCC?

As shown in Table 8, we divided the answer into two parts as follows:

- The first part of Table 8 presents the resources usage metrics, where we found that the highest utilized metric is time consumption, which is represented in 32 studies, followed by communication overhead in 26 studies. The results display that energy consumption, memory consumption on mobile devices, and turnaround-time resources usage metrics received the least attention in the selected primary studies.

- The second part of Table 8 shows the contained solution robustness metrics. The results show two studies for each of the effective recommendation rate, accuracy, authentication request, and authentication response. Also, the results show one study for each of the data randomization, a malicious node detection and management performance (MDP), the addition of new users, operations required, authorities, and privacy and reliability factors.

As illustrated in Fig 12, the time consumption is the most used metric resulted in 43%. Followed by communication overhead metrics with 35%. Finally, energy consumption, memory consumption, and turnaround time are presented in 15%, 4%, and 3%, respectively.

As expounded in Fig 13, the effective recommendation rate, accuracy, authentication response, and authentication request are the most used metrics with 15%, 15%, 14%, and 14%, respectively. One the other hand, the result shows that most of the solution robustness metrics were employed in less than 8% of the selected primary studies.

#	Solutions	Primary study
1	Encryption	[21, 76, 55, 25, 26, 65, 28, 29, 30, 31, 66, 34, 7, 79, 90, 40, 91, 42, 74, 59, 44, 45, 46, 47, 60, 87, 50, 51, 81, 52, 53, 93, 83, 54, 61]
2	Authentication	[22, 63, 64, 32, 33, 67, 68, 69, 35, 70, 41, 57, 43, 71, 72, 75, 48, 49, 73, 94]
3	Access control	[23, 24, 27, 84, 36, 37, 39, 85, 86, 56, 58, 80, 62]
4	Trust	[77, 89]
For recognizing metrics and measures trends in MCC, we present the trends in a bubble plot in Fig 14, the X-axis represents the years, and the Y-axis represents metrics and measures. The outcome indicates that the amount of research in the selected primary studies is increasing towards time consumption, overhead communication, and energy consumption metrics. On the other hand, the number of studies in memory consumption and turnaround time is receiving less attention.

6.5. RQ 5: What research type facets and contribution type facets are used in MCC?

To answer the first part of this question, we studied the proportion of papers by research type, as shown in Table 9 and Fig 15. Our studies found the solution proposals are the most

Types	Metrics and measures	Primary studies
Resources Usage metrics	Time consumption	[21, 55, 22, 24, 63, 26, 27, 29, 31, 66, 33, 34, 67, 68, 37, 7, 38, 39, 40, 41, 42, 57, 71, 58, 75, 44, 47, 48, 49, 51, 88]
	Communication overhead	[24, 64, 65, 32, 66, 33, 67, 68, 36, 7, 91, 85, 86, 41, 56, 42, 57, 71, 58, 75, 49, 50, 52, 53, 93, 83]
	Energy consumption	[21, 25, 65, 7, 38, 41, 45, 46, 60, 53, 93]
	Memory consumption on mobile	[21, 55, 36, 7]
	Turnaround time	[21, 46]
Solution robustness metrics	Effective recommendation rate	[77, 23]
	Accuracy	[23, 31]
	Authentication request	[70, 73]
	Authentication response	[70, 73]
	Data randomisation	[55]
	Malicious node detection and management performance (MDP)	[77]
	Addition of new user	[24]
	Operations required	[63]
	Authorities	[29]
	Privacy and reliability factors	[38]

https://doi.org/10.1371/journal.pone.0234312.t008
published studies with 31 papers (42%), followed by the evaluation research with 23 papers (31%). In contrast, there are 11 philosophical papers (14%), five validation research (6%), and four opinion papers (5%).

To answer the second part of the question, we studied the proportion of papers by research type, as shown in Table 9 and Fig 16. Our studies found the most popular contribution type is the model with 33 papers (45%), followed by the method with 22 papers (30%). In contrast, there are only ten system contributions (13%), and nine Formal studies (12%).

To discover the research type facets in MCC trends, we illustrate the trends in a bubble plot (Fig 17), the X-axis represents the years, and the Y-axis represents the research type. As demonstrated in Fig 17, the amount of research in the selected primary studies is increasing towards the solution proposal and the evaluation research. On the other hand, the number of validation research and opinion paper research type facets are decreasing.

To discover the contribution type facets in MCC, we illustrate the trends in a bubble plot (Fig 18), the X-axis represents the years, and the Y-axis represents the contribution type. The outcome shows that the models and the methods are relatively dominant in the field, and the systems and the formal studies are losing momentum in the domain.
6.6. RQ 6: What are the currently open research issues of privacy and data protection in MCC?

In this study, we have identified nine main open research issues with 23 examples of future research directions suggested by the authors in privacy and data protection in MCC. Table 10 shows the identified open research issues in the selected primary studies. Furthermore, Fig 19 displays the open research issues in privacy and data protection based on the number of studies. As illustrated in Fig 19, security, authentication, privacy, and encryption were getting momentum in 31%, 13%, 13%, and 13%, respectively. On the other hand, energy consumption, trust, various attacks, architectures, and testing addressed in less than 10% of the selected primary studies for each of them.

7. Key findings

In this study, a systematic mapping study was conducted with a set of six research questions. A total of 1711 studies published from 2009 to 2019 were obtained. Following a filtering process, a set of 74 primary studies were selected. In this section, we summaries the key findings of this study as follows:

Table 9. Research type facets and contribution type facets.

#	Research type facets	Contribution type facets	Primary study
1	Solution Proposal	Model	[21, 77, 24, 36, 90, 72, 60]
		Method	[76, 55, 25, 28, 31, 68, 37, 92, 71, 59, 75, 47, 49, 87]
		System	[63, 26, 29, 39, 61]
		Formal Study	[79, 57, 46, 53, 54]
2	Evaluation Research	Model	[64, 30, 34, 38, 85, 56, 58, 44, 88, 83]
		Method	[32, 69, 70, 41, 43, 81]
		System	[40, 45, 80]
		Formal Study	[86, 73, 89, 93]
3	Validation Research	Model	[65, 66, 7, 48, 62]
4	Philosophical Papers	Model	[22, 33, 67, 35, 91, 42, 74, 50, 51, 52]
		Method	[27]
5	Opinion Papers	Model	[23]
		Method	[84]
		System	[82, 94]

https://doi.org/10.1371/journal.pone.0234312.t009
• **The current data privacy exercise in MCC**: This study shows that the exercises of cryptography, authentication, account creation, and verification were getting significant attention in 93% of the selected primary studies. In contrast, access control, steganography, and reputation with less attention in less than 8% of the selected primary studies. Also, our results show that the amount of research is increasing in the setup, cryptography, authentication, and accounts creation. Conversely, the outcome shows that the research in verification, access control, steganography, and reputation are losing momentum.

• **The data privacy threats and attacks in MCC**: The results of this SMS show that the issues of unauthorized, data privacy, leakage of user privacy, data misuse, and untrusted service provider were receiving the most consideration in 68% of the selected primary studies. On the other hand, internal attacks, improper security policies and practices in some locations, internal multi-layer attacks, inference attacks on user privacy, and data breach threats were received less consideration with fewer than 6% of the selected primary studies. Also, our results show that unauthorized, data privacy, leakage of user privacy, and phishing attacks are relatively dominant. Conversely, the outcome indicates that the research in eavesdropping attacks, internal attacks, improper security policies and practices in some locations, internal multi-layer attacks, inference attacks on user privacy, and data breach threats have the lowest studies in the domain.

• **The privacy solutions proposed to serve personal data protection in MCC**: The results of this SMS show that the encryption, authentication, and access control of the solutions in MCC were getting the highest attention in 97% of the selected primary studies. Trust solutions had the lowest concern in the field with less than 4%. Furthermore, the amount of
research is increasing in encryption and the authentication of data privacy solutions in MCC. Contrary to expectations, the outcome shows that the research in the trust solutions in MCC is less likely than expected with only 3% of the selected primary studies.

- The metrics and measures that are used to assess the current solutions of privacy and data protection in MCC:

 ➢ It is interesting to note that this study identified five resources usage metrics and ten solution robustness metrics. In resource usage metrics, around 78% of primary studies assess the time consumption and the communication overhead. In solution robustness metrics, an effective recommendation rate and accuracy were gotten 30% of primary studies.

 ➢ In resource usage metrics, the amount of research is increasing in time consumption and communication overhead metrics and measures. In contrast, energy consumption, memory consumption, and turnaround time are utilized in less than 23% of the selected papers. Furthermore, less than 4% of the primary studies used turnaround time metrics, which indicated that the turnaround time measures are less popular in the domain.

 ➢ In solution robustness metrics, the recognized data randomization, a malicious node detection and the management performance, the addition of new users, operations required, authorities, privacy and reliability factors, authentication requests, and authentication, were gotten less than 8% of the selected papers. On the other hand, the amount of research is increasing in accuracy and effective recommendation of metrics and measures in MCC. Conversely, the outcome shows that the research on privacy and reliability is not dominant in the area.
Fig 17. Bubble plot of the research type facets.
https://doi.org/10.1371/journal.pone.0234312.g017

Fig 18. Bubble plot of the contribution type facets.
https://doi.org/10.1371/journal.pone.0234312.g018
The research type facets in MCC:
The results show that the solution proposals and evaluation research got considerable attention in 73% of the selected primary studies. The validation research and the opinion papers with the lowest examinations with less than 13% of the selected primary studies. The amount of research is increasing in the solution proposal and evaluation research type. Conversely, the outcome shows that the research in the validation research and opinion paper is losing momentum.

The Contribution type facets in MCC:
The results of this SMS show that the models and the methods got the highest attention in 75% of the selected primary studies. Also, systems and formal studies had gotten the lowest studies in the field with less than 26% of the selected primary studies. In addition, our results show that the amount of research is increasing in the

Table 10. Open research issues.
Open issue
Security [23, 7, 71, 44, 45, 61]
Authentication [65, 42, 43]
Privacy [23, 83, 61]
Encryption [21, 79, 69]
Energy consumption [47, 60]
Trust [24, 49]
Architectures [91]
V2arious attacks [37]
Testing [79]

https://doi.org/10.1371/journal.pone.0234312.t010
models and the methods of the contribution type facets. Surprisingly, the research in the systems and formal studies are decreased in the selected primary studies.

Open research issues: In this study, we identified the new challenges in privacy and data protection in MCC, which were noted by the researchers in the selected primary studies. As presented in the previous SMS [95], the issues that emerged ten years ago are still considered open issues [95]. Our exploration shows that there are open research issues in encryption, authentication, security, trust, signature-based privacy, architectures, various attacks, testing, and energy consumption. In this SMS, as illustrated in Table 10, 23 examples of future research directions suggested by the authors are useful for research activities in the future.

8. Threats to validity

The process of SMS is not infallible as with any secondary research method. There are many risks to consider for ensuring the validity of this SMS study. In this part, we describe and relieve the risks to the validity of this study to mitigate the potential risks. The risks include the search criteria, digital databases, and inclusion and exclusion criteria [96].

8.1. Search criteria

In this examination, the highest attention paid for choosing the most useful search strings. In particular, the construction of the search string is a threat to the validity of this study [96]. To mitigate this threat, our search string is derived based on PICO criteria [13]. PICO criteria are popular and widely used in the SMS, and this would enable us to retrieve the wanted studies in the search result and mitigate the threat.

8.2. Digital databases

For this study, the selection of databases, including IEEE Xplore, Science Direct, Springer Link, ACM Digital Library, and Scopus is a threat to the validity of the study since related studies would not be included in those databases. To mitigate this threat, as presented in Kitchenham et al. [97], and pointed out by Dyba et al. [98], the selection of IEEE, ACM, and any two databases are enough to save time and effort for general rather than searching multiple publishers’ digital databases [97, 98]. Accordingly, in this examination, we selected five databases, including IEEE and ACM, which will mitigate the threat.
8.3. Inclusion and exclusion criteria
In this exploration, the rules and conditions of our inclusion and exclusion criteria are defined to be ranged with the scope of the study. The criteria stemmed from discussions within the research team. However, producing rules to recognize the initial literature to review; means that there is a threat that relevant research may be ignored if it employs various terms to that of the criteria. However, primary search terms of the study’s, namely Privacy, data protection in mobile cloud computing (MCC), are traditional, well-defined and accepted terms, which should decrease the number of ignored studies. Moreover, as the study is focused on identifying the main research in privacy and data protection in the mobile cloud computing, there is not as much of a concern with capturing research that is loosely related to the domain.

9. Conclusion
Mobile cloud computing (MCC) is a significant area of research emerging out of mobile devices and cloud computing [3]. In recent years, a significant number of studies have been published with a growing interest in privacy and data protection. Along with this advance in MCC, however, no specific research identified the current trends and open issues in privacy and data protection in MCC. This study highlighted current trends and open issues in privacy and data protection in MCC using the results of existing primary studies published from 2009 to 2019.

In this study, a systematic mapping study (SMS) was conducted with a set of six research questions. A total of 1711 studies published from 2009 to 2019 were obtained. Following a filtering process, a set of 74 primary studies were selected. As a result, the existing threats and attacks on data privacy and solutions to serve personal data were demonstrated. Also, the metrics and measures that are used to assess the current solutions for privacy in mobile cloud computing were aggregated. In addition, the current state-of-the-art of data privacy exercises used in the domain was identified. Moreover, the research type’s facets and the contribution type facets that are used in MCC were highlighted. Furthermore, the open research issues of privacy and data protection in MCC were demonstrated.

This result of this study shows that, for the current data privacy exercise in MCC, the number of investigations is increasing regarding the setup, cryptography, authentication, and accounts creation of data privacy exercise. Also, for data privacy threats and attacks in MCC, the results of this study show the need for research in eavesdropping attacks, internal attacks, improper security policies and practices in some locations, internal multi-layer attacks, inference attacks on user privacy, and data breach threats. In addition, our exploration shows that there are open research issues in encryption, authentication, security, trust, privacy, architectures, various attacks, energy consumption, and testing. Overall, this SMS highlighted the current state-of-the-art, and demonstrated open research issues which in turn allows us to understand the required research into privacy and data protection in MCC.

Finally, this study provides for researchers and practitioners the current state of research in the privacy and data protection in MCC, to help in implementing privacy and data protection in their applications or their investigations. In future work, we plan to conduct a survey to assess possible solutions for preserving privacy and protection in MCC.

Supporting information
S1 Appendix. The contribution type facets definitions for Systematic Mapping Study (SMS) [20].

(DOCX)
Author Contributions

Conceptualization: Hussain Mutlaq Alnajrani, Azah Anir Norman.
Investigation: Hussain Mutlaq Alnajrani.
Methodology: Hussain Mutlaq Alnajrani, Azah Anir Norman, Babiker Hussien Ahmed.
Project administration: Azah Anir Norman.
Resources: Azah Anir Norman.
Software: Hussain Mutlaq Alnajrani, Azah Anir Norman.
Supervision: Azah Anir Norman.
Validation: Hussain Mutlaq Alnajrani.
Visualization: Hussain Mutlaq Alnajrani.
Writing – original draft: Hussain Mutlaq Alnajrani, Babiker Hussien Ahmed.
Writing – review & editing: Hussain Mutlaq Alnajrani, Azah Anir Norman, Babiker Hussien Ahmed.

References

1. Ferreira J. A. L. and da Silva A. R. (2014). Mobile cloud computing. Open journal of Mobile Computing and Cloud Computing, 1(2), 59–77.
2. Al-Janabi S., Al-Shourbaji I., Shojafar M., & Abdelhag M. (2017). Mobile cloud computing: challenges and future research directions. In 2017 10th International Conference on Developments in eSystems Engineering (DeSE) (pp. 62–67). IEEE.
3. Juárez D. X. J., & Cedillo P. (2017). Security of mobile cloud computing: A systematic mapping study. In Ecuador Technical Chapters Meeting (ETCM), 2017 IEEE (pp. 1–6). IEEE.
4. Organisation for Economic Co-operation and Development. (2002). OECD guidelines on the protection of privacy and transborder flows of personal data. OECD Publishing.
5. Kumar P. R., Raj P. H., & Jelciana P. (2018). Exploring data security issues and solutions in cloud computing. Procedia Computer Science, 125, 691–697.
6. Angin P., Bhargava B., Ranchal R., Singh N., Linderman M., Othmane L. B., & Lilien Let al. (2010). An entity-centric approach for privacy and identity management in cloud computing. In 2010 29th IEEE symposium on reliable distributed systems (pp. 177–183). IEEE.
7. Gellman R. (2012). Privacy in the clouds: risks to privacy and confidentiality from cloud computing. In Proceedings of the World privacy forum.
8. David S., Xavier B., & Kathrine J. W. (2017). A panoramic overview on fast encryption techniques for outsourced data in mobile cloud computing environment. In Inventive Computing and Informatics (ICICI), International Conference on (pp. 476–480). IEEE.
9. Kulkarni P., Khanai R., & Bindagi G. (2016). Security frameworks for mobile cloud computing: A survey. In Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on (pp. 2507–2511). IEEE.
10. Bhatia T., & Verma A. K. (2017). Data security in mobile cloud computing paradigm: a survey, taxonomy and open research issues. The Journal of Supercomputing, 73(6), 2538–2631.
11. Rahimi M. R., Ren J., Liu C. H., Vasilakos A. V., & Venkatasubramanian N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.
12. WITTI M., & KONSTANTAS D. (2018). IOT and Security-Privacy Concerns: A Systematic Mapping Study. International Journal of Network Security & Its Applications, 10(6), 25–33.

13. Petersen K., Feldt R., Mujtaba S., & Mattsson M. (2008). Systematic mapping studies in software engineering. In Ease (Vol. 8, pp. 68–77).

14. Fatima A., & Colomo-Palacios R. (2018). Security aspects in healthcare information systems: A systematic mapping. Procedia computer science, 138, 12–19.

15. Felix E. A., & Lee S. P. (2019). Systematic literature review of preprocessing techniques for imbalanced data. IET Software, 13(6), 479–496.

16. Ahn G. J. (2014). U.S. Patent No. 8,799,984. Washington, DC: U.S. Patent and Trademark Office.

17. Blume P. (2010). Data Protection and Privacy—Basic Concepts in a Changing World. Scandinavian Studies in Law. ICT Legal Issues, 56, 151–164.

18. Stallings, W. (2006). Cryptography and Network Security, 4/E. Pearson Education India.

19. Wagner I., & Eckhoff D. (2018). Technical privacy metrics: a systematic survey. ACM Computing Surveys (CSUR), 51(3), 57.

20. Zhao L., Zhang L. J., & Liu T. X. RESEARCH GAPs AND TRENDs IN CLOUD COMPUTING: A SYS-TEMATIC MAPPING STUDY. Call for Articles, 1.

21. Khan A. N., Ali M., Khan A. ur R., Khan F. G., Khan I. A., et al. (2017). A comparative study and work-load distribution model for re-encryption schemes in a mobile cloud computing environment. International Journal of Communication Systems, 30(16).

22. Tsai J. L., & Lo N. W. (2015). A Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services. IEEE Systems Journal, 9(3), 805–815.

23. Lin H., Xu L., Huang X., Wu W., & Huang Y. (2015). A trustworthy access control model for mobile cloud computing based on reputation and mechanism design. Ad Hoc Networks, 35, 51–64.

24. Ragini, Mehrotra P., & Venkatesan S. (2014). An efficient model for privacy and security in Mobile Cloud Computing. In 2014 International Conference on Recent Trends in Information Technology, ICR-TIT 2014. Institute of Electrical and Electronics Engineers Inc.

25. Bahrami M., Khan A., & Singhal M. (2016). An energy efficient data privacy scheme for IoT devices in mobile cloud computing. In Proceedings—2016 IEEE International Conference on Mobile Services, MS 2016(pp. 190–195). Institute of Electrical and Electronics Engineers Inc.

26. Yao C., Xu L., & Huang X. (2015). Batch public auditing for distributed mobile cloud computing. International Journal of High Performance Computing and Networking, 8(2).

27. Li F., Rahulamathavan Y., Conti M., & Rajarajan M. (2015). Robust access control framework for mobile cloud computing network. Computer Communications, 68, 61–72.

28. Nasirae H., & Ashouri-Talouki M. (2018). Dependable and Robust Attribute-Based Encryption in Mobile Cloud Computing. In Electrical Engineering (ICEE), Iranian Conference on (pp. 1536–1541). IEEE.

29. Lyu M., Li X., & Li H. (2017). Efficient, Verifiable and Privacy Preserving Decentralized Attribute-Based Encryption for Mobile Cloud Computing. In Data Science in Cyberspace (DSC), 2017 IEEE Second International Conference on (pp. 195–204). IEEE.

30. Zhang Y., Wu A., & Zheng D. (2018). Efficient and privacy-aware attribute-based data sharing in mobile cloud computing. Journal of Ambient Intelligence and Humanized Computing, 9(4), 1039–1048.

31. Zou Q., Wang J., Ye J., Chen X., & Chen X. (2017). Efficient and secure encrypted image search in mobile cloud computing. Soft Computing, 21(11), 2959–2969.

32. Yang X., Huang X., & Liu J. K. (2016). Efficient handover authentication with user anonymity and untraceability for mobile cloud computing. Future Generation Computer Systems, 62, 190–195.

33. He D., Kumar N., Khan M. K., Wang L., & Shen J. (2018). Efficient privacy-aware authentication scheme for mobile cloud computing services. IEEE Systems Journal, 12(2), 1621–1631.

34. Han J., Liu Y., Sun X., & Song L. (2016). Enhancing data and privacy security in mobile cloud computing through quantum cryptography. In Software Engineering and Service Science (ICSESS), 2016 7th IEEE International Conference on (pp. 398–401). IEEE.

35. Almudarra F., & Qureshi B. (2015). Issues in adopting agile development principles for mobile cloud computing applications. Procedia Computer Science, 52, 1133–1140.

36. Zhang J., Zhang Z., & Guo H. (2017). Towards secure data distribution systems in mobile cloud computing. IEEE Trans. Mob. Comput, 16(11), 3222–3235.

37. Tang F., Li J., You I., & Guo M. (2016). Long-term location privacy protection for location-based services in mobile cloud computing. Soft Computing, 20(5), 1735–1747.
38. Wu H., & Huang D. (2014). Modeling multi-factor multi-site risk-based offloading for mobile cloud computing. In Network and Service Management (CNSM), 2014 10th International Conference on (pp. 230–235). IEEE.

39. Zhang Y., Chen X., Li J., Wong D. S., Li H., & You I. (2017). Ensuring attribute privacy protection and fast decryption for outsourced data security in mobile cloud computing. Information Sciences, 379, 42–61.

40. Suguna M., & Shalinie S. M. (2017). Privacy preserving data auditing protocol for secure storage in mobile cloud computing. In Wireless Communications, Signal Processing and Networking (WiSPNET), 2017 International Conference on (pp. 2725–2729). IEEE.

41. Odelu V., Das A. K., Kumari S., Huang X., & Wazid M. (2017). Provably secure authenticated key agreement scheme for distributed mobile cloud computing services. Future Generation Computer Systems, 68, 74–88.

42. Ahmad W., Wang S., Ullah A., & Mahmood Z. (2018). Reputation-Aware Trust and Privacy-Preservation for Mobile Cloud Computing. IEEE Access, 6, 46363–46381.

43. Jiang Q., Ma J., & Wei F. (2018). On the security of a privacy-aware authentication scheme for distributed mobile cloud computing services. IEEE Systems Journal, 12(2), 2039–2042.

44. Inani A., Verma C., & Jain S. (2019). A Machine Learning Algorithm TsF K-NN Based on Automated Data Classification for Securing Mobile Cloud Computing Model. In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS) (pp. 9–13). IEEE.

45. Khan A. N., Kiah M. M., Khan S. U., Madani S. A., & Khan A. R. (2013). A study of incremental cryptography for security schemes in mobile cloud computing environments. In 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA) (pp. 62–67). IEEE. https://doi.org/10.1109/tbcas.2013.2257955 PMID: 24020062

46. Zhang H., Yu N., & Wen Y. (2015). Mobile cloud computing based privacy protection in location-based information survey applications. Security and Communication Networks, 8(6), 1006–1025.
59. Xu Z., Lin Y., Sandor V. K. A., Huang Z., & Liu X. (2019). A lightweight privacy and integrity preserving range query scheme for mobile cloud computing. Computers & Security, 84, 318–333.

60. Joyee De S., Saha S., & Pal A. K. (2013). Achieving energy efficiency and security in mobile Cloud computing. In CLOSER 2013—Proceedings of the 3rd International Conference on Cloud Computing and Services Science (pp. 469–474).

61. Huang D., Zhou Z., Xu L., Xing T., & Zhong Y. (2011). Secure data processing framework for mobile cloud computing. In 2011 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2011 (pp. 614–618).

62. Masthan K., & Venkatesh Sharma K. (2019). Secured information sharing in mobile cloud computing using access controls. International Journal of Innovative Technology and Exploring Engineering, 8 (12), 1559–1564.

63. Jannati H., & Baharak B. (2017). An improved authentication protocol for distributed mobile cloud computing services. International Journal of Critical Infrastructure Protection, 19, 59–67.

64. Suguna M., Anusia R., Shalinie S. M., & Deepthi S. (2017). Secure identity management in mobile cloud computing. In Nextgen Electronic Technologies: Silicon to Software (ICNETS2), 2017 International Conference on (pp. 42–45). IEEE.

65. Khalil I., Khreishah A., & Azeem M. (2014). Consolidated Identity Management System for secure mobile cloud computing. Computer Networks, 65, 99–110.

66. Han Z., Yang L., Wang S., Mu S., & Liu Q. (2018). Efficient Multifactor Two-Server Authenticated Scheme under Mobile Cloud Computing. Wireless Communications and Mobile Computing, 2018.

67. Li D., Li M., & Liu J. (2018). Evolutionary trust scheme of certificate game in mobile cloud computing. Soft Computing, 22(7), 2245–2255.

68. Neog P., Deb Nath H., Shan J., Paiker N. R., Gehani N., Curtmola R. et al. (2016). FaceDate: A mobile cloud computing app for people matching. In Proceedings of the 11th EAI, International Conference on Body Area Networks (pp. 184–190). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

69. Alizadeh M., Hassan W. H., & Khodadadi T. (2014). Feasibility of Implementing Multi-factor Authentication Schemes in Mobile Cloud Computing. In Intelligent Systems, Modelling and Simulation (ISMS), 2014 5th International Conference on (pp. 615–618). IEEE.

70. Dey S., Sampalli S., & Ye Q. (2016). MDA: message digest-based authentication for mobile cloud computing. Journal of Cloud Computing, 5(1), 18.

71. Han Z., Yang L., & Liu Q. (2017). A Novel Multifactor Two-Server Authentication Scheme under the Mobile Cloud Computing. In 2017 International Conference on Networking and Network Applications (NaNA) (pp. 341–346). IEEE.

72. Abdo J. B., Demerjian J., Chaouchi H., Atechian T., & Bassil C. (2015). Privacy using mobile cloud computing. In Digital Information and Communication Technology and its Applications (DICTAP), 2015 Fifth International Conference on (pp. 178–182). IEEE.

73. Dey S., Sampalli S., & Ye Q. (2013). Message digest as authentication entity for mobile cloud computing. In 2013 IEEE 32nd International Performance Computing and Communications Conference (IPCCC) (pp. 1–6). IEEE.

74. Goyal D., & Krishna M. B. (2015). Secure framework for data access using Location based service in Mobile Cloud Computing. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6). IEEE.

75. Abuarqoub A. (2019). A Lightweight Two-Factor Authentication Scheme for Mobile Cloud Computing. In Proceedings of the 3rd International Conference on Future Networks and Distributed Systems (p. 29). ACM.

76. Bahrami M., & Singhal M. (2015). A light-weight permutation based method for data privacy in mobile cloud computing. In Proceedings—2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud 2015 (pp. 189–196). Institute of Electrical and Electronics Engineers Inc.

77. Sugimura W. Y., Sprugel D. G., Brubaker L. B., & Higuera P. E. (2008). Millennial-scale changes in local vegetation and fire regimes on Mount Constitution, Orcas Island, Washington, USA, using small hollow sediments. Canadian Journal of Forest Research, 38(3), 539–552.

78. Ahmed A. I. A., Ab Hamid S. H., Gani A., & Khan M. K. (2019). Trust and reputation for Internet of Things: Fundamentals, taxonomy, and open Research Challenges. Journal of Network and Computer Applications, 102409.

79. Arfan M. (2016). Mobile cloud computing security using cryptographic hash function algorithm. In Information Technology, Computer, and Electrical Engineering (ICITACEE), 2016 3rd International Conference on (pp. 1–5). IEEE.
80. Carchiolo V., Longheu A., Malgeri M., Iannelli S., Marroccia M., & Randazzo A. (2019). Authentication and authorization issues in mobile cloud computing: A case study. In CLOSER 2019—Proceedings of the 9th International Conference on Cloud Computing and Services Science (pp. 249–256). SciTePress.

81. Zhao K., Jin H., Zou D., Chen G., & Dai W. (2013). Feasibility of deploying biometric encryption in mobile cloud computing. In Proceedings—2013 8th Annual ChinaGrid Conference, ChinaGrid 2013 (pp. 28–33).

82. Kumar R., & Rajalakshmi S. (2013). Mobile cloud computing: Standard approach to protecting and securing of mobile cloud ecosystems. In 2013 International Conference on Computer Sciences and Applications (pp. 663–669). IEEE.

83. Zhang H., Wen Y., Yu N., & Zhang X. (2013). Privacy-preserving computation for location-based information survey via mobile cloud computing. In 2013 IEEE/CIC International Conference on Communications in China, ICC 2013 (pp. 100–105).

84. Bou Abdo J., Bourgeau T., Demerjian J., & Chaouchi H. (2016). Extended privacy in crowdsourced location-based services using mobile cloud computing. Mobile Information Systems, 2016.

85. Khaledi M., Khaledi M., & Kasera S. K. (2016). Profitable task allocation in mobile cloud computing. In Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks (pp. 9–17).

86. Gong Y., Zhang C., Fang Y., & Sun J. (2018). Protecting location privacy for task allocation in ad hoc mobile cloud computing. IEEE Transactions on Emerging Topics in Computing, 6(1), 110–121.

87. Ma L., Sun J., & Li Y. (2012). Comparing general paradigms on data secrecy protection for outsourced files in mobile cloud computing. Journal of Networks, 7(9), 1449–1455.

88. Xing T., Liang H., Huang D., & Cai L. X. (2012). Geographic-based service request scheduling model for mobile cloud computing. In Proc. of the 11th IEEE Int. Conference on Trust, Security and Privacy in Computing and Communications, TrustCom-2012 - 11th IEEE Int. Conference on Ubiquitous Computing and Communications, IUC-2012 (pp. 1446–1453).

89. Eom H., Juste P. S., Figueiredo R., Tickoo O., Illikkal R., & Iyer R. (2013). OpenCL-based remote off-loading framework for trusted mobile cloud computing. In Proceedings of the International Conference on Parallel and Distributed Systems—ICPADS (pp. 240–248). IEEE Computer Society.

90. Kang J., Yu R., Huang X., Maharjan S., & Zhang Y. (2016). On-demand Pseudonym Systems in Geo-Distributed Mobile Cloud Computing. In Cyber Security and Cloud Computing (CSCloud), 2016 IEEE 3rd International Conference on (pp. 136–141). IEEE.

91. Yan Y., Han D., & Shu T. (2017). Privacy Preserving Optimization of Participatory Sensing in Mobile Cloud Computing. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Conference on (pp. 1084–1093). IEEE.

92. Kulkarni G., Shelke R., Palwe R., Solanke V., Belsare S., & Mohite S. (2014). Mobile cloud computing—bring your own device. In Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on (pp. 565–568). IEEE.

93. Owens R., & Wang W. (2013). Preserving data query privacy in mobile mashups through mobile cloud computing. In Proceedings—International Conference on Computer Communications and Networks, ICCCN.

94. Xu L., Li L., Nagarajan V., Huang D., & Tsai W. T. (2013). Secure web referral services for mobile cloud computing. In Proceedings—2013 IEEE 7th International Symposium on Service-Oriented System Engineering, SOSE 2013 (pp. 584–593).

95. Neto P. A. D. M. S., do Carmo Machado I., McGregor J. D., De Almeida E. S., & de Lemos Meira S. R. (2011). A systematic mapping study of software product lines testing. Information and Software Technology, 53(5), 407–423.

96. O’Donovan P., Leahy K., Bruton K., & O’Sullivan D. T. (2015). Big data in manufacturing: a systematic mapping study. Journal of Big Data, 2(1), 20.

97. Kitchenham B., & Brereton P. (2013). A systematic review of systematic review process research in software engineering. Information and software technology, 55(12), 2049–2075.

98. Dyba T., Dingsoyr T., & Hanssen G. K. (2007). Applying systematic reviews to diverse study types: An experience report. In First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007) (pp. 225–234). IEEE.