KREIN'S FORMULA AND HEAT-KERNEL EXPANSION FOR SOME DIFFERENTIAL OPERATORS WITH A REGULAR SINGULARITY

H. FAŁOMIR AND P.A.G. PISANI

Abstract. We get a generalization of Krein's formula -which relates the resolvents of different selfadjoint extensions of a differential operator with regular coefficients- to the non-regular case

$A = -\partial_x^2 + (\nu^2 - 1/4)/x^2 + V(x)$,

where $0 < \nu < 1$ and $V(x)$ is an analytic function of $x \in \mathbb{R}^+$ bounded from below. We show that the trace of the heat-kernel e^{-tA} admits a non-standard small-t asymptotic expansion which contains, in general, integer powers of t^{ν}.

In particular, these powers are present for those selfadjoint extensions of A which are characterized by boundary conditions that break the local formal scale invariance at the singularity.

1. Introduction

In Quantum Field Theory the effective action, the free energy and other physical quantities related to the vacuum state are generically divergent and require a renormalization procedure. A powerful and elegant regularization scheme relies on the small-t asymptotic expansion of the trace of the heat-kernel e^{-tA} corresponding to an elliptic differential operator A determined by the Lagrangian of the theory (see, e.g., [1, 2, 3].)

It is well-known [4] that for an elliptic boundary value problem in an m-dimensional compact manifold with boundary, described by a differential operator A of order d, with smooth coefficients and defined on a domain of functions subject to local boundary conditions, the heat-kernel trace admits a small-t asymptotic expansion given by

$$\text{Tr}\{e^{-tA}\} \sim \sum_{n=0}^{\infty} a_n(A) t^{(n-m)/d},$$

where the coefficients $a_n(A)$ are integrals on the manifold and its boundary of geometrical invariants [5].

However, not much is known about the heat-kernel trace asymptotic expansion for the case of differential operators with singular coefficients (see chapter 6 of [3].)

In 1980 C.J. Callias and C.H. Taubes [6] have pointed out that for some differential operators with singular coefficients the heat-kernel trace asymptotic
expansion in terms of powers of the form $t^{(n-m)/d}$ is ill-defined and conjectured that more general powers of t, as well as $\log t$ terms, could appear.

In the present article we will study the small-t asymptotic expansion of the heat-kernel trace of the differential operator

$$A = -\partial_x^2 + \frac{\nu^2 - 1/4}{x^2} + V(x),$$

where $\nu \in (0, 1) \subset \mathbb{R}$ and $V(x)$ is an analytic function of $x \in \mathbb{R}^+$. The operator A defined on $D(A) := \mathcal{C}_0^\infty(\mathbb{R}^+)$, the set of smooth functions on \mathbb{R}^+ with compact support out of the origin, admits a one-parameter family of selfadjoint extensions, A^θ with $\theta \in \mathbb{R}$. These selfadjoint extensions are characterized by the boundary condition the functions in their domains satisfy at the singular point $x = 0$. They describe a different physical system, and its spectral properties depend on the different behavior of the functions at the singularity.

Since the heat-kernel e^{-tA^θ} corresponding to an arbitrary selfadjoint extension A^θ is not trace-class, we will study the trace of the difference $e^{-tA^\theta} - e^{-tA^\infty}$, where A^∞ denotes the Friedrichs extension. We will show in Section 4 that this trace admits an asymptotic expansion of the form

$$\text{Tr} \left\{ e^{-tA^\theta} - e^{-tA^\infty} \right\} \sim \sum_{n=0}^{\infty} a_n(\nu, V) t^n + \sum_{N,n=1}^{\infty} b_{N,n}(\nu, V) \theta^N t^{\nu N + \frac{3}{2} - \frac{1}{2}}.$$

The coefficients $a_n(\nu, V), b_{N,n}(\nu, V)$ can be recursively computed for each potential $V(x)$. Notice that the singular term in (1.2) not only contributes to the coefficients $a_n(\nu, V)$ of the standard terms but also leads to the presence of powers of t whose exponents are not half-integers but depend on the "external" parameter ν.

It is also remarkable that these terms are absent only for $\theta = 0$ and $\theta = \infty$, which correspond to the selfadjoint extensions characterized by scale invariant boundary conditions at the singular point $x = 0$. Indeed, the first two terms in the R.H.S. of eq. (1.2), which are dominant for $x \approx 0$, present the same scaling dimension. However, the behavior of the wave functions at the origin breaks, in general, this local scale invariance. Only for the selfadjoint extensions characterized by $\theta = 0$ or $\theta = \infty$ is the boundary condition also scale invariant (see eq. (2.1)).

There is a dimensional argument in favor of the plausibility of the result in (1.3). Notice that the parameter θ in (2.1) has dimensions $[\text{length}]^{-2\nu}$ and, due to the analyticity of $V(x)$, the dimensions of any other parameter in the problem is an integer power of the length. Since t has dimensions $[\text{length}]^2$, if the coefficients of the asymptotic expansion of the heat-kernel trace were to depend on the boundary conditions by means of a polynomial dependence on θ, then this expansion should contain integer powers of t^ν. Consequently, the only selfadjoint extensions for which these powers are to be absent are $\theta = 0$ and $\theta = \infty$.

As a matter of fact, the “functorial method” [7, 2, 3] which has been widely used to determine the coefficients of the heat-kernel expansion in the regular
KREIN’S FORMULA AND HEAT-KERNEL EXPANSION ...

The case can be also applied to operator \(1.2\) to determine some of the \(a_n(\nu, V)\) and \(b_{N,n}(\nu, V)\) in expression \(1.3\). The asymptotic expansion \(1.3\) generalizes the results in \([8, 9]\) where some singular Schrödinger and Dirac operators were considered.

There is a second new result in the present article which lead us to the derivation of the asymptotic expansion \(1.3\). By generalizing Krein’s formula \([10]\) (see also \([11]\)) we find a relation between the resolvents corresponding to different selfadjoint extensions of operator \(1.2\). Since there exist two selfadjoint extensions, namely \(A^0\) and \(A^\infty\), for which the \(\nu\) dependent exponents of \(t\) in \(1.3\) are absent, expansion \(1.3\) will come out as a consequence of this relation.

Schroedinger operators defined by a singular potential whose leading behavior near the singularity is given by \(1.2\) have been studied as models of conformal invariance in quantum mechanics \([12]\), in Calogero models \([13]\), in SUSY breaking in quantum mechanics \([9]\) and in cosmic strings \([14]\). Since the dynamics of quantum fields on black holes’ backgrounds is described by operators similar to \(1.2\), there exists a microscopic description of black holes in the vicinity of the horizon in terms of conformal models \([15]\). In this context, in which the operator \(1.2\) is relevant, particular attention to the most general boundary conditions has been given in \([16]\).

Differential operators with a singular coefficient given by \(1.2\) are also obtained from the Laplacian on manifolds with conical singularities where the parameter \(\nu\) is related to the deficiency angle. The asymptotic expansion of the heat-kernel of the Laplacian on manifolds with conical singularities has been considered, probably for the first time, in \([17]\). This problem has been also studied in \([18]\); however, the most general boundary conditions at the singularity where not considered there.

More recently, E. Mooers \([19]\) studied the selfadjoint extensions of the Laplacian acting on differential forms on a manifold with a conical singularity and showed that the asymptotic expansion of the heat-kernel trace contains powers of \(t\) whose exponents depend on the deficiency angle of the singularity \(^1\).

In Section 2 we describe the selfadjoint extensions of operator \(1.2\) and in Section 4 we generalize Krein’s formula to this type of singular operators. Finally, in Section 4 we use this generalization to establish expansion \(1.3\) that describes the small-\(t\) asymptotic expansion of the heat-kernel trace.

2. Self-adjoint Extensions

Let us consider the one-dimensional differential operator \(A\) given by \(1.2\) defined on \(D(A) := C_0^\infty(\mathbb{R}^+) \subset L_2(\mathbb{R}^+)\). First, notice that the first two terms in

\(^1\)Although this result is confirmed by our calculations we obtain a different value for the corresponding coefficient (see page 4 of \([19]\)).
H. FALOMIR AND P.A.G. PISANI

the R.H.S. of expression (1.2) have the same scaling properties at the singular point
\(x = 0 \). This fact will be essential in the following.

Next, we describe the behavior at the singular point \(x = 0 \) of the functions
in \(D(A^\dagger) \).

Theorem 2.1.

\[
(2.1) \quad \psi \in D(A^\dagger) \rightarrow \psi(x) = C[\psi] \left(x^{-\nu+1/2} + \theta_\psi x^{\nu+1/2} \right) + O(x^{3/2}),
\]

for \(x \rightarrow 0^+ \) and some constants \(C[\psi], \theta_\psi \in \mathbb{C} \).

Proof: See the Appendix.

\(\square \)

Corollary 2.2.

\[
(2.2) \quad \phi, \psi \in D(A^\dagger) \rightarrow (\phi, A^\dagger \psi) - (A^\dagger \phi, \psi) = C^*[\phi]C[\psi] \left(\theta^*_\phi - \theta_\psi \right).
\]

Remark: By choosing \(\psi = \phi \) we conclude that for all \(\psi \in D(A^\dagger) \) the parameter \(\theta_\psi \) defined by Theorem 2.1 is real.

Proof: Expression (2.2) follows from an integration by parts in its L.H.S. using Theorem 2.1.

\(\square \)

As a consequence of Corollary 2.2 the selfadjoint extensions \(A^\theta \) of the differential operator \(A \) are characterized by a real parameter \(\theta \), being their domains defined by

\[
(2.3) \quad D(A^\theta) := \{ \phi \in D(A^\dagger) : \theta_\phi = \theta \},
\]

where \(\theta_\phi \) is defined according to Theorem 2. The parameter \(\theta \) thus determine the boundary condition at the singularity.

There exists another selfadjoint extension (see the Appendix), which we denote by \(A^\infty \), whose domain is given by,

\[
(2.4) \quad D(A^\infty) = \left\{ \phi \in D(A^\dagger) : \phi(x) = C[\phi] x^{\nu+1/2} + O(x^{3/2}) , \text{ with } C[\phi] \in \mathbb{C} \right\}.
\]

3. Generalization of Krein’s formula.

The non-regular differential operator \(A \), given by expression (1.2), defined on \(D(A) := C_0^\infty(\mathbb{R}^+) \) admits an infinite family of selfadjoint extensions \(A^\theta \) characterized by a real parameter \(\theta \). As we have shown, this parameter describes the boundary condition at the singularity. The purpose of this Section is to establish a relation between the resolvents corresponding to these selfadjoint extensions. We will consequently obtain a generalization of Krein’s formula.
The kernel $G_\theta(x, x', \lambda)$ of the resolvent $(A^\theta - \lambda)^{-1}$ can be written as
\begin{equation}
G_\theta(x, x', \lambda) = -\frac{1}{W(\lambda)} \{ \Theta(x' - x)L_\theta(x, \lambda)R(x', \lambda) + \Theta(x - x')L_\theta(x', \lambda)R(x, \lambda) \},
\end{equation}
where $\Theta(x)$ is Heaviside function and $L_\theta(x, \lambda), R(x, \lambda) \in \text{Ker}(A^\dagger - \lambda)$. The latter is square integrable at $x \to \infty$ and the former satisfies the boundary condition
\begin{equation}
L_\theta(x, \lambda) = x^{-\nu + 1/2} + \theta x^\nu + O(x^{3/2}),
\end{equation}
at $x \to 0^+$. $W(\lambda)$ is their Wronskian, which is independent of x.

As a first step, we will find a relation between the resolvents corresponding to $\theta = \infty$ and $\theta = 0$. In order to do this, we consider the equation,
\begin{equation}
(A^\theta - \lambda)\phi^\theta(x, \lambda) = f(x)
\end{equation}
whose solutions for $\theta = 0$ and $\theta = \infty$ are given by
\begin{align}
\phi^\infty(x, \lambda) &= \int_0^\infty G_\infty(x, x', \lambda)f(x') \, dx' = \phi^\infty(\lambda) x^\nu + O(x^{3/2}), \\
\phi^0(x, \lambda) &= \int_0^\infty G_0(x, x', \lambda)f(x') \, dx' = \phi^0(\lambda) x^{-\nu + 1/2} + O(x^{3/2}).
\end{align}
Notice that
\begin{align}
\phi^\infty(\lambda) &= \int_0^\infty G_\infty(x', \lambda)f(x') \, dx', \\
\phi^0(\lambda) &= \int_0^\infty G_0(x', \lambda)f(x') \, dx',
\end{align}
where
\begin{align}
G_\infty(x', \lambda) := \lim_{x \to 0^+} x^{-\nu - 1/2} G_\infty(x, x', \lambda), \\
G_0(x', \lambda) := \lim_{x \to 0^+} x^\nu G_0(x, x', \lambda).
\end{align}

Lemma 3.1.
\begin{equation}
\phi^0(x, \lambda) = \phi^\infty(x, \lambda) + 2\nu G_\infty(x, \lambda) \phi^0(\lambda).
\end{equation}

Proof:
\begin{align}
\phi^0(x, \lambda) - \phi^\infty(x, \lambda) &= \int_0^\infty [G_0(x, x', \lambda) - G_\infty(x, x', \lambda)] (A^0 - \lambda)\phi^0(x', \lambda) \, dx' = \\
&= -\lim_{x \to 0^+} \left\{ [G_0(x, x', \lambda) - G_\infty(x, x', \lambda)] \partial_{x'} \phi^0(x', \lambda) - \partial_{x'} [G_0(x, x', \lambda) - G_\infty(x, x', \lambda)] \phi^0(x', \lambda) \right\} = 2\nu G_\infty(x, \lambda) \phi^0(\lambda).
\end{align}

Taking the limit $x \to 0^+$ in equation (3.8) we obtain
\begin{equation}
G_\infty(x, \lambda) = \frac{1}{2\nu} \left(x^{-\nu + 1/2} - K(\lambda)^{-1}x^\nu + O(x^{3/2}) \right),
\end{equation}
where
\begin{equation}
K(\lambda) := \frac{\phi^0(\lambda)}{\phi^\infty(\lambda)}.
\end{equation}
Notice that \(K(\lambda) \) can be computed by studying the behavior at the singularity of the kernel of the resolvent corresponding to the extension \(\theta = \infty \).

Replacing \(\phi^0(x, \lambda) \) from eq. (3.10) into eq. (3.8) one can express the solution \(\phi^0(x, \lambda) \) corresponding to \(\theta = 0 \) by means of data related to the selfadjoint extension corresponding to \(\theta = \infty \).

Next, we will establish a similar expression giving the resolvent for an arbitrary selfadjoint extension in terms of data related to the boundary conditions corresponding to \(\theta = \infty \).

Lemma 3.2.

\[
\phi^\theta(x, \lambda) = \phi^\infty(x, \lambda) + 2\nu K(\lambda) G^\infty(x, \lambda) \phi^\infty(\lambda).
\]

Proof: Eq. (3.8) shows that the difference between both sides of expression (3.12) belongs to \(\text{Ker}(\lambda - \lambda) \). Moreover, eqs. (3.4) and (3.9) show that both sides of (3.12) belong to \(D(A^\theta) \). The proof follows by virtue of the uniqueness of the solution of equation (3.3).

Finally, from eqs. (3.11) and (3.12) it is straightforward to obtain the following theorem:

Theorem 3.3 (Generalization of Krein’s formula).

\[
(A^\theta - \lambda)^{-1} - (A^\infty - \lambda)^{-1} = \frac{(A^0 - \lambda)^{-1} - (A^\infty - \lambda)^{-1}}{1 + \theta K(\lambda)}.
\]

In the next section we will show that the asymptotic expansion of \(K(\lambda) \) for large \(|\lambda| \) presents powers of \(\lambda \) whose exponents depend on the parameter \(\nu \). This leads, due to the relation between the resolvent and the heat-kernel, to the asymptotic series (1.3).

4. **ASYMPTOTIC EXPANSION OF THE RESOLVENT**

In this section we will show that \(K(\lambda) \) admits a large-\(|\lambda| \) asymptotic expansion in powers of \(\lambda \) with \(\nu \)-dependent exponents. Since we can consider \(\lambda \) in the negative real semi-axis of the complex plane, we will study the solutions \(\psi \) of equation

\[
(A + z)\psi(x, z) = 0,
\]

for large \(z \in \mathbb{R}^+ \). In particular, due to eqs. (3.9) and (3.13) we just need to consider solutions satisfying the boundary conditions corresponding to \(\theta = \infty \) and \(\theta = 0 \).

Taking into account the scaling properties of the first two terms in (1.2) it is convenient to define a new variable \(y := \sqrt{z} x \in \mathbb{R}^+ \). Equation (4.1) can then be
written as
\begin{equation}
\left(-\partial_y^2 + \frac{\nu^2}{y^2} - \frac{1}{4} + 1 + \frac{1}{z} V(y/\sqrt{z}) \right) \psi(y/\sqrt{z}, z) = 0.
\end{equation}

Assuming analyticity of \(V(x) \), this equation can be iteratively solved for large \(z \) and the solution which is square integrable at \(y \to \infty \) is given by
\begin{equation}
R(y, z) = \sqrt{y} K_\nu(y) + \sum_{n=0}^{\infty} \psi_n(y) z^{-1-n/2},
\end{equation}
where \(K_\nu(y) \) is the modified Bessel function and \(\psi_n(y) \) depend polynomially on \(V(x) \) and its derivatives. From this expression it can be easily seen that the behavior of \(R(y, z) \) for \(x \to 0^+ \) is given by
\begin{equation}
R(y, z) \simeq \frac{\Gamma(1 + \nu)}{\Gamma(1 - \nu)} z^{-\nu} H(z) y^{\nu+1/2} + O(y^{3/2})
\end{equation}
where \(H(z) \) admits a large-\(z \) asymptotic expansion in half-integer powers of \(z \).

From eq. (3.1) for the case \(\theta = \infty \) and eqs. (3.9) and (4.4) we obtain
\begin{equation}
K(z) = 4^\nu \frac{\Gamma(1 + \nu)}{\Gamma(1 - \nu)} z^{-\nu} H(z)^{-1}.
\end{equation}

Since \(H(z) \) admits an asymptotic series in half-integer powers of \(z \), the large-\(z \) asymptotic expansion of \(K(z) \) contains powers of \(z \) whose exponents depend on the parameter \(\nu \). Proceeding in a similar way one can prove, by means of expression (4.3), that \(\text{Tr} \{ (A_0 + z)^{-1} - (A_\infty + z)^{-1} \} \) admits an asymptotic expansion in half-integer powers of \(z \).

From Theorem 3.3 and due to the factor \(z^{-\nu} \) in eq. (4.3) we conclude that the large-\(|\lambda| \) asymptotic expansion of \(\text{Tr} \{ (A^\theta - \lambda)^{-1} - (A_\infty - \lambda)^{-1} \} \) contains integer powers of \(\lambda^{-\nu} \). Finally, it can be straightforwardly shown that its inverse Laplace transform, \(\text{Tr} \{ e^{-tA^\theta} - e^{-tA_\infty} \} \), admits the asymptotic expansion given by (1.3).

Acknowledgements: The authors thank R.T. Seeley for useful discussions, especially regarding the proof of Theorem 2.1. They also acknowledge support from Universidad Nacional de La Plata (grant 11/X381) and CONICET (PIP 6160), Argentina. P.A.G.P. would like to thank the participants of QFEXT’05, the organizing committee and, in particular, the warm hospitality of Emilio Elizalde.

Appendix A. Proof of Theorem 2.1

By virtue of Riesz representation lemma [20]
\begin{equation}
\psi \in \mathcal{D}(A^\dagger) \to \exists \tilde{\psi} \in L^2_2(\mathbb{R}^+) : (\psi, A\phi) = (\tilde{\psi}, \phi) \quad \forall \phi \in \mathcal{D}(A).
\end{equation}
Consequently,
\begin{equation}
A^\dagger \psi := \tilde{\psi}.
\end{equation}
Defining $\chi := x^{-\nu-1/2}\psi$ we obtain

(A.3) $\partial_x(x^{2\nu+1} \partial_x \chi) = -x^{\nu+1/2}(\ddot{\psi} - V(x)\psi) \in L_1(\mathbb{R}^+)$.

Therefore, there exists a constant $C_1 \in \mathbb{C}$ such that

(A.4) $\partial_x \chi = C_1 x^{-1-2\nu} - x^{-1-2\nu} \int_0^x y^{\nu+1/2} \left(-\partial_y^2 + \frac{\nu^2 - 1/4}{y^2}\right) \psi dy$.

Cauchy-Schwartz inequality implies

\[\left| x^{-1-2\nu} \int_0^x y^{\nu+1/2} \left(-\partial_y^2 + \frac{\nu^2 - 1/4}{y^2}\right) \psi dy \right| \leq C_2 \left\| \left(-\partial_y^2 + \frac{\nu^2 - 1/4}{y^2}\right) \psi \right\|_{0,x} x^{-\nu}, \]

for some $C_2 \in \mathbb{C}$. In consequence,

\[\left| \int_0^z x^{-1-2\nu} \int_0^z y^{\nu+1/2} \left(-\partial_x^2 + \frac{\nu^2 - 1/4}{x^2}\right) \psi dy dz \right| \leq C_3 + C_4 x^{1-\nu}, \]

where $C_3, C_4 \in \mathbb{C}$. Thus, there exist $C_5, C_6 \in \mathbb{C}$, such that

(A.7) $\psi = C_5 x^{-\nu+1/2} + C_6 x^{\nu+1/2} + O(x^{3/2})$,

for $x \to 0^+$.

□

References

[1] E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko and S. Zerbini, “Zeta Regularization Techniques with Applications”. World Scientific, Singapore (1994).
[2] K. Kirsten, “Spectral Functions in Mathematics and Physics”, Chapman & Hall/CRC, Boca Raton, FL (2001).
[3] D.V. Vassilevich, “Heat-kernel expansion: User’s manual”, Phys. Rept. 388, 279 (2003).
[4] R.T. Seeley, A. M. S. Proc. Symp. Pure Math. 10, 288 (1967); Am. Journ. Math. 91, 889 (1969); Am. Journ. Math. 91, 963 (1969).
[5] P.B. Gilkey, “Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem,” CRC Press (1995).
[6] C. Callias and C.H. Taubes, Commun. Math. Phys. 77, 229 (1980).
[7] P. Gilkey, J. Diff. Geom. 10, 601 (1975).
[8] H. Falomir, P.A.G. Pisani and A. Wipf, J. Phys. A.: Math. Gen. 35 5427 (2002). H. Falomir, M.A. Muschietti, P.A.G. Pisani and R. Seeley, J. Phys. A: Math. Gen. 36, 9991 (2003). H. Falomir, M.A. Muschietti and P.A.G. Pisani, J. of Math. Phys. 45 4560 (2004).
[9] H. Falomir and P.A.G. Pisani, J. Phys. A: Math. Gen. 38 4665 (2005).
[10] M.G. Krein, Dokl. Akad. Nauk. SSSR 43 339 (1944); Dokl. Akad. Nauk. SSSR 52 657 (1946). In Russian.
[11] N.I. Akhiezer and I.M. Glatzman, “Theory of Linear Operators in Hilbert Spaces. Vol. II,” Ungar Pub. Co., New York (1963). S. Albeverio and K. Pankrashkin, J. Phys. A: Math. Gen. 38 4859 (2005).
[12] V. De Alfaro, S. Fubini y G. Furlan, Nuovo Cim. A 34, 569 (1976).
[13] F. Calogero, Jour. Math. Phys. 10, 2191 (1969); Jour. Math. Phys. 10, 2197 (1969); Jour. Math. Phys. 12, 419 (1971).
KREIN’S FORMULA AND HEAT-KERNEL EXPANSION ...

[14] A. Vilenkin, Phys. Rept. **121**, 263 (1985).
[15] G.W. Gibbons y P.K. Townsend, Phys. Lett. B **454**, 187 (1999).
[16] D.Birmingham, K.S. Gupta y S. Sen, Phys. Lett. B **505**, 191 (2001). T.R. Govindarajan, V. Suneeta y S. Vaidya, Nucl. Phys. B **583**, 291 (2000). V. Moretti y N. Pinamonti, Nucl. Phys. B **647**, 131 (2002). M.Y. Kuchiev, Phys. Rev. D **69**, 124031 (2004); Europhys. Lett. **65**, 445 (2004). M.Y. Kuchiev y V.V. Flambaum, Phys. Rev. D **70**, 044022 (2004).
[17] H.S. Carslaw, Proc. Lond. Math. Soc. **20** 121 (1898). A. Sommerfeld, Math. Ann. 45, 263 (1894).
[18] J. Brüning y R Seeley, J. Func. Anal. 73, 369 (1987). G. Cognola, K. Kirsten y L. Vanzo, Phys. Rev. D **49**, 1029 (1994). F. Larsen y F. Wilczek, Nucl. Phys. B **458**, 249 (1996). D.V. Fursaev y G. Miele, Nucl. Phys. B **484**, 697 (1997). J.S. Dowker, J. Phys. A **10**, 115 (1977); J. Math. Phys. **35**, 4989 (1994). D.V. Fursaev, Class. Quant. Grav. **11**, 1431 (1994); Phys. Lett. B **334**, 53 (1994). D.V. Fursaev y S.N. Solodukhin, Phys. Rev. D **52**, 2133 (1995). M. Bordag, K. Kirsten y S. Dowker, Commun. Math. Phys. **182**, 371 (1996). L. De Nardo, D. V. Fursaev and G. Miele, Class. Quant. Grav. **14**, 1059 (1997). J.S. Dowker y K. Kirsten, J. Math. Phys. **42**, 434 (2001).
[19] E.A. Mooers, Journal d’Analyse Mathematique **78**, 1 (1999).
[20] M. Reed and B. Simon, “Methods of Modern Mathematical Physics, Vol. I,” Academic Press, New York (1980). Theorem II.4, page 43.

IFLP (CONICET) AND DEPARTAMENTO DE FÍSICA - FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD NACIONAL DE LA PLATA, C.C. 67 (1900) LA PLATA, ARGENTINA