GLUT4 gene rs5418 polymorphism is associated with increased coronary heart disease risk in a Uygur Chinese population

Fei Yu1,2, Fen Liu1,2, Xiao-Mei Li2, Qian Zhao1,2, Jun-Yi Luo1,2, Jin-Yu Zhang1,3 and Yi-Ning Yang1,2*

Abstract

Background: To explore possible associations between glucose transporter 4 (GLUT4) genetic polymorphisms in the patients with coronary heart disease (CHD) in Han and Uygur Chinese populations in Xinjiang, China.

Methods: Two GLUT4 polymorphisms (rs5418 and rs5435) were genotyped in 1262 Han (628 CHD patients and 634 healthy controls) and 896 Uyghur (397 CHD patients and 499 healthy controls) Chinese populations.

Results: In the Han Chinese population, there were no significant differences in allelic or genotypic distribution of rs5418 and rs5435 between the CHD and control groups (all $P > 0.05$). However, in the Uygur population, there were significant differences in genotype and allele distributions for rs5418 between CHD and the control group (all $P < 0.05$). Binary Logistic regression analysis showed that carriers with the rs5418 A allele had a higher risk of CHD compared to carriers of the rs5418 G allele ($OR = 1.33, 95\% CI: 1.069–1.649, P = 0.01$), after adjustment for gender, age, drinking and smoking behavior, hypertension and diabetes. Furthermore, haplotype association analysis of the two SNP loci of the GLUT4 gene showed that the AC haplotype was associated with CHD in the Uygur population ($P = 0.001598; OR = 1.36, 95\% CI = 1.1228–1.6406$).

Conclusions: rs5418 GLUT4 gene variants are associated with CHD in the Uygur Chinese population.

Keywords: Coronary heart disease, Glucose transporter 4 gene, Single nucleotide polymorphism, Susceptibility gene

Background

Coronary heart disease (CHD), also known as ischemic heart disease, is caused by myocardial ischemia and hypoxia due to changes in coronary circulation and represents the greatest mortality risk globally of all diseases. Prior reports suggest that ischemic heart disease causes 12.9 million deaths, accounting for one quarter of all global deaths annually, and is the main cause of death [1]. Many factors have been implicated in the development of coronary heart disease including smoking [2], obesity [3], sex [4], metabolic syndrome severity [5], glycerophosphocholine [6], dysglycemia and diabetes [7, 8], and sleep apnea syndrome [9, 10]. In addition to these environmental factors, several gene variants have been linked to the development and progression of CHD [11–13].

Glucose transporters (GLUT) are necessary for glucose uptake in cells of nearly all species [14]. Of the 14 known human GLUT genes, GLUT 1, 2, 3, and 4 have been implicated in human disease. In particular GLUT4 has been the subject of significant study as it is the main glucose transporter found in muscles and adipocytes [14]. This 12-transmembrane, 509-amino acid protein contains a large cytoplasmic loop between transmembrane helices 6 and 7 that is normally sequestered intracellularly in the basal state [15]. The cellular localization of
GLUT4 is regulated by insulin through a complex mechanism, the aberration of which contributes to obesity [14]. The GLUT4 gene (also known as the solute carrier family 2, member 4 (17p13.2; OMIM 138190) encodes the GLUT4 solute carrier [16]. Many studies across multiple ethnicities have suggested a relationship between GLUT4 polymorphisms and human disease including insulin resistance [17–19], type 2 diabetes, [20] and obstructive sleep apnea syndrome [21]. However, few studies have investigated the association between the GLUT4 gene and CHD [22]. Thus, we aimed to evaluate a possible relationship between GLUT4 gene polymorphisms and CHD risk in Han and Uygur populations in Xinjiang, China.

Methods

Subjects

In this case–control study, patients with coronary angiography were recruited from the cardiovascular department of the First Affiliated Hospital of Xinjiang Medical University. The inclusion criteria for CHD are as follows: (1) older than 18 years of age, (2) a diagnosis of CHD according to the World Health Organization (WHO) CHD diagnostic criteria set in 1979, and (3) single vessel stenosis of >70%, or multiple vessel stenosis of >50%. The controls consisted of a random sample of adult’s individuals above 18 years of age who were visiting the hospital for a routine checkup and had medical records. The inclusion criteria were being devoid from any type of cardiovascular diseases and having a normal coronary artery with no evidence of plaque or peripheral vascular disease as confirmed by angiography, medical profile, or previous medical history as documented in their medical records. Individuals were excluded if they had the following conditions: cancer, acute or chronic inflammatory disease, cardiomyopathy or heart valve disease, variant angina without fixed coronary stenosis, coronary artery dilatation, X syndrome, serious liver disease (ALT > 2X normal), serious kidney disease (blood CR > 2.5 mg/dl), blood disease and pregnancy.

Clinical data collection

Baseline characteristics of all patients, such as sex, age, and smoking status were collected and are summarized in Table 1. Height and body mass were measured by a unified standard method, and patients’ previous medical history such as hypertension, diabetes, abnormal blood lipid metabolism, and medications were recorded and used to diagnose related diseases in accordance with relevant Chinese or international standards [23, 24]. Habitual activities such as smoking and alcohol consumption behavior were collected from questionnaire.

Characteristic	CHD (n = 628)	Controls (n = 634)	P
Sex (M/F)	448/180	290/344	<0.001
Age, mean ± SD	58.91 ± 12.41	55.87 ± 10.19	<0.001
BMI, mean ± SD	25.29 ± 3.25	24.98 ± 3.25	0.249
Drinking			
0	408	473	<0.001
1	97	161	
2	123	0	
Smoking			
0	101	455	<0.001
1	245	178	
2	6	0	
3	276	1	
Hypertension			
No	320	364	0.024
Yes	308	270	
DM			
No	463	572	<0.001
Yes	165	62	

Table 1 Baseline characteristic of the Han population

SD standard deviation, BMI body mass index; Among the smokers, 0 means never smoking, 1 means occasional smoking, smoking cigarettes more than 4 times a week, but less than 1 cigarette per day on average, 2 means regular smoking, smoking cigarettes more than 1 cigarette per day, continuous or accumulative for 6 months. 3 represents heavy smoking, smoking more than 2 cigarettes a day for more than 6 months. Zero for non-drinking, 1 for occasional drinking, consuming about 10 g of alcohol per serving, and 2 for regular drinking, exceeding about 10 g of alcohol

Blood biochemical indexes and DNA extraction

Cubital venous blood was collected from subjects after fasting for > 12 h. Blood biochemical indexes were tested by the Medical Laboratory Center of the First Affiliated Hospital of Xinjiang Medical University using the Abbott C16000 biochemical immunity instrument (United States). The Whole Blood Genome Extraction Kit (Tiangen Biochemical Co., Ltd.) was used to extract DNA from whole blood samples. A Nanodrop ND-2000 Ultramicro Nucleic Acid Analyzer was used to detect the concentration and purity of DNA, which was then diluted to 20 ng/ul.

Genotyping

In this study, single nucleotide polymorphisms (SNPs) were typed using the TM Multiple SNP Typing Kit (Shanghai Genesky Biotechnology). The SNP allelic site was identified using a high specificity ligase reaction. Then, the ligated products of different lengths were obtained by introducing varied length non-specific sequences at the end of the ligase probe and using a ligase addition reaction. The ligated products were PCR
amplified using universal primers labeled with fluorescence, as shown in Supplementary material, and the amplified products were separated by fluorescence capillary electrophoresis. Finally, the genotypes of each SNP locus were obtained by analyzing the electrophoretic patterns.

Data analyses
SPSS 20.0 software was used for statistical analysis. Student t-test is applied for the continuous variables, while Pearson chi-square test is for categorical variables. Wilcoxon Rank-Sum test was applied for body mass index (BMI). The software program SHEsis or chi-square test (http://analysis.bio-x.cn) was used to assess Hardy-Weinberg equilibrium (HWE). PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) software was used to analyze the allelic and genotypic association with disease [25]. Linkage disequilibrium (LD) plot was generated from Haploview version 4.2 (Broad Institute, Cambridge, MA, United States) [26]. Haplotype association analyses were performed with PLINK. Binary logistic regression, with the adjustment of covariates was applied to calculate the odds ratios (ORs) and 95% confidence intervals (CIs). Three logistic regression models (additive, dominant, and recessive) were also used to analyze the SNPs. All tests were two-tailed, and the results were considered significant when \(P \leq 0.05 \).

Results
Baseline characteristics
The clinical characteristics of study subjects in the Han and Uygur populations are shown in Tables 1 and 2, respectively. Significant differences between both populations were noted in regard to gender \((P<0.001) \), age \((P<0.001) \), drinking and smoking behavior \((P<0.001) \), hypertension \((P<0.001) \) and diabetes \((P<0.001) \). Accordingly, these variants were used as the covariates in the following binary logistic regression analysis. No statistically significant difference in the BMI was found between CHD patients and controls.

Hardy–Weinberg analysis of the investigated SNPs
The Hardy–Weinberg analysis showed no deviations from Hardy–Weinberg Equilibrium for rs5418 and rs5435 in either the Han or Uygur populations.

Allelic and genotypic association with CHD
In the Han population, neither rs5418 nor rs5435 variants showed any significant differences in allelic frequencies and genotypic distribution between the CHD and control groups \((P>0.05) \). However, in the Uygur population, the allelic frequencies of A and G at the rs5418 locus were 46.22 and 53.78% in the CHD group, and 39.28 and 60.72% in the control group, respectively, representing a significant difference in allelic distribution \((P=0.003, 95\% CI=1.10–1.61) \). The risk of having CHD in patients with the A allele was 1.33 times greater than that of the controls. The frequencies of the T and C alleles at the rs5435 locus in the Uygur CHD group were 33.12 and 66.88%, respectively, compared to 37.37 and 62.63% in the control group, and 33.12 and 66.88% in the control group, respectively, representing no significant difference in the distribution of the alleles and genotypes between the two groups at the rs5435 locus \((P=0.06, OR=0.83, 95\% CI=0.68–1.01) \). We conducted further binary logistic regressions based on the additive, dominant and recessive model after controlling for the influence of gender, age, drinking and smoking behavior, hypertension and diabetes, which revealed a significant association between the rs5418 locus and the risk of CHD under all the genetic models. Compared with the G allele, the A allele increased the risk of coronary heart disease 1.33 times. These data are summaries in Tables 3, 4 and 5.

We explored the correlations between rs5418 and other risk factors. There are no association identified between

Table 2 Baseline characteristic of the Uygur population
Characteristic

Sex (M/F)
Age, mean ± SD
BMI, mean ± SD
Drinking
0
1
2
Smoking
0
1
2
3
Hypertension
No
Yes
DM
No
Yes

SD standard deviation, BMI body mass index; Among the smokers, 0 means never smoking, 1 means occasional smoking, smoking cigarettes more than 4 times a week, but less than 1 cigarette per day on average, 2 means regular smoking, smoking cigarettes more than 1 cigarette per day, continuous or accumulative for 6 months. 3 represents heavy smoking, smoking more than 2 cigarettes a day for more than 6 months. Zero for non-drinking, 1 for occasional drinking, consuming about 10 g of alcohol per serving, and 2 for regular drinking, exceeding about 10 g of alcohol.

rs5418 and most of the risk factors. In Uygur population, genotype of rs5418 was significantly correlated with smoking behavior (Additional file 1: Tables S1, S2).

Discussion

Previous studies have shown close relationships between the incidence of CHD and *LAP* (liver-enriched transcriptional activator protein), *(IL)-1* (interleukin 1), *(IL)-18* (interleukin 18), *ANGPTL4* (Angiopoietin-like 4), and

Table 3 Allelic association analysis between two SNPs and CHD

Population	SNP	Allele	Group	CHD group (%)	Control group (%)	χ²	P	S.E	OR (95%CI)
Han	rs5418	A		488 (38.85)	495 (39.04)	0.01	0.92	0.08	0.99 (0.85–1.16)
		G		768 (61.15)	773 (60.96)				
	rs5435	T		397 (31.61)	406 (32.02)	0.05	0.82	0.09	0.98 (0.83–1.16)
		C		859 (68.39)	862 (67.98)				
Uygur	rs5418	A		367 (46.22)	392 (39.28)	8.73	0.003	0.10	1.33 (1.10–1.61)
		G		427 (53.78)	606 (60.72)				

Table 4 Genotypic association analysis between two SNPs and CHD

Population	SNP	Genotype	CHD group (%)	Control group (%)	OR(95%CI)(P)	Dominant model	Additive model	Recessive model
Han	rs5418	AA	99 (15.76)	97 (15.30)	0.97 (0.77–1.21)	Ref	1.04 (0.76–1.41)	
		AG	290 (46.18)	301 (47.48)	1.06 (0.77–1.46)	0.76		
		GG	239 (38.06)	236 (37.22)	1.01 (0.72–1.41)	0.96		
	rs435	TT	59 (9.39)	63 (9.94)	0.99 (0.79–1.23)	Ref	0.94 (0.65–1.37)	
		TC	279 (44.43)	280 (44.16)	0.94 (0.64–1.39)	0.76		
		CC	290 (46.18)	291 (45.90)	0.94 (0.64–1.39)	0.76		
Uygur	rs5418	AA	82 (20.66)	67 (13.43)	1.36 (1.02–1.81)	Ref	1.68 (1.18–2.39)	
		AG	203 (51.13)	258 (51.70)	1.56 (1.07–2.26)	0.020		
		GG	112 (28.21)	174 (34.87)	1.90 (1.27–2.84)	0.0017		
	rs435	TT	43 (10.84)	66 (13.23)	0.78 (0.59–1.02)	Ref	0.80 (0.53–1.20)	
		TC	177 (44.58)	241 (48.30)	0.89 (0.58–1.36)	0.59		
		CC	177 (44.58)	192 (38.47)	0.71 (0.46–1.09)	0.12		

Table 5 Logistic regression analysis of GLUT4 polymorphisms and risk of coronary heart disease in the Uygur population

SNP	Allele	Test	OR (95% CI)	P
rs5418	A–G	Additive model	1.33 (1.07–1.65)	0.010
		Dominant model	1.36 (0.99–1.87)	0.053
		Recessive model	1.59 (1.07–2.36)	0.022
rs435	T–C	Additive model	0.83 (0.67–1.03)	0.089
		Dominant model	0.74 (0.55–0.99)	0.048
		Recessive model	0.89 (0.57–1.38)	0.590

Haplotypes associated with CHD

Additional file 2: Figure S1 was included to show the linkage disequilibrium for the two investigated SNPs. In the Han population, haploid frequency analysis of two GLUT4 SNP loci identified three haplotypes at the two loci, yet there was no significant difference in the distribution of these haplotypes in the Han population (*P* > 0.05). In the Uygur population, haploid frequency analysis of two GLUT4 SNP loci identified four haplotypes. In particular, AC haplotype distribution was significantly different between the CHD and control groups in the Uygur population (*P* < 0.05) and the risk of developing CHD increased 1.36 for the AC haplotype carriers (Table 6).
PIN1 (Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1) [27–31] but few studies have investigated the association between GLUT4 polymorphisms and CHD. We studied GLUT4 polymorphisms and potential associations with CHD in multiple ethnic groups within a Chinese population and identified a specific GLUT4 gene polymorphism that is significantly associated with the risk of developing CHD in the Uygur Chinese population.

GLUT4 is the primary glucose transporter in the human heart, which accounts for approximately 70% of all glucose transport [32]. In heart diseases like cardiac hypertrophy, heart failure, and myocardial ischemia different perturbations in expression of glucose transporters are observed, especially in GLUT1 and GLUT4, due to changes in heart glucose metabolism. GLUT4 is translocated to the cell surface in response to ischemia, insulin, and catecholamines, allowing it to increase glucose transport into cardiomyocytes. However, in the absence of stimulation, GLUT4 is trapped intracellularly [33]. Ischemia, as seen in CHD, results in increased myocardial glucose utilization derived from glycogen breakdown [34] and also leads to increased glucose transport activity [35]. The increase in glucose uptake is due to the transport of GLUT1 and GLUT4 from the intracellular vesicle to the sarcolemma. Many studies have reported GLUT4 gene polymorphisms in association with type 2 diabetes [20, 36–38], but there are few investigations of possible GLUT4 gene polymorphisms in CHD patients.

Of the known GLUT4 polymorphisms, rs5418 is located in the gene promoter region [39]. One prior study in a south India population found that the GLUT4 gene was detected in normal glucose tolerance and type 2 diabetes, and found differences in the ACGT haplotype of rs5418 [20]. Another study found that the rs5418 locus is associated with HBA1c levels in Japanese males [40]. The rs5418 locus has also been linked with obesity despite a similar allelic and genotypic distribution in extremely obese children and adolescents compared to normal and underweight patients, suggesting that these alleles are not involved in weight regulation [41]. The rs5435 locus was reported associated with risk of CHD in Han population in Guangdong province [22]. However, no significant association with CHD in Han and Uygur population in our study in allele and genotype distribution. The reason might be low sample size decreased the statistical power, since a significant trend was identified in logistic model under dominant model.

In this study, we found that the genotypic and allelic frequencies of rs5418 locus were not significantly different in either the CHD or the control group of a Han Chinese population. However, in the Uygur population, we found that the distribution frequencies of the three genotypes and alleles in the two groups were significantly different. Differences in findings between these populations are likely related to the races studied. As a multi-ethnic region, Xinjiang has 45 ethnic groups, in addition to the Han and Uygur populations. In addition to the different genetic backgrounds of these groups, there are a variety of cultural and lifestyle differences that may also play a contributing role. Our findings that the AA genotype and the A allele at the rs5418 site GLUT4 gene are associated with susceptibility to CHD in the Uygur Chinese population, it may be beneficial provide for future clinical diagnosis and treatment. This study was limited to only patients from two ethnic groups in Xinjiang, China. Future studies should include more ethnic groups from this area or study populations in other regions of China or worldwide. Further functional validation of increased susceptibility to CHD development is also needed to confirm a definitive role of rs5418 site mutations in the GLUT4 gene and elucidate the effects of these mutations on CHD pathogenesis or etiology.

Table 6 Association of haplotypes with CHD

Haplotype (Han)	CHD group n = 628	Control group n = 634	\(\chi^2 \)	P	OR (95% CI)	SNPs	
----------------	-------------------	-----------------------	----------		---	---	
GT	390	400	0.097	0.76	0.98 (0.83–1.16)	rs5418	rs5435
AC	481	490	0.03	0.86	0.99 (0.84–1.16)	rs5418	rs5435
GC	385	377	0.25	0.62	1.04 (0.88–1.24)	rs5418	rs5435

Haplotype (Uygur)	CHD group n = 397	Control group n = 499	\(\chi^2 \)	P	OR (95% CI)	SNPs	
-------------------	-------------------	-----------------------	----------		---	---	
AT	10	17	0.57	0.45	0.74 (0.34–1.62)	rs5418	rs5435
GT	253	356	2.87	0.090	0.84 (0.69–1.03)	rs5418	rs5435
AC	357	375	9.96	0.0016	1.36 (1.12–1.64)	rs5418	rs5435
GC	174	250	2.40	0.12	0.84 (0.67–1.05)	rs5418	rs5435
Conclusions

GLUT4 gene polymorphisms at the rs5418 site were associated with CHD susceptibility in the Uygur, but not Han, Chinese population of Xinjiang, China.

Abbreviations
CHD: Coronary heart disease; GLUT4: Glucose transporter 4 gene; SNPs: Single nucleotide polymorphisms; PCR: Polymerase chain reaction; HWE: Hardy–Weinberg equilibrium; OR: Odds ratio.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12872-022-02630-9.

Acknowledgements
In this study, the authors thank all the organizations, individuals, and participants who supported this project.

Author contributions
YNY and FL conceived and designed the experiment. JYZ, QZ, and JYL collected blood samples and extracted DNA. Study quality control and modification were performed by XML, YNY and FL. Data analyzing and paper writing were done by FY. In the final version of the manuscript, all authors approved.

Funding
This study was supported in part by grants from the National Natural Science Foundation of China (#8170020548 and #8177021253).

Availability of data and materials
The datasets of genotyping data in the current study are available as the PLINK binary format in the Github repository [https://github.com/2022yufei/genotyping].

Declarations

Additional file 1: Table S1. Baseline characteristic of the Han population according to the genotype of rs5418. Table S2. Baseline characteristic of the Uygur population according to the genotype of rs5418.

Additional file 2: Figure S1. Haploview analysis for D’ and r2 pairwise measures of LD between rs5418 and rs5435. D’ values and confidence levels (LOD) are represented as black for D’ = 1, LOD > 2; shades of pink for high D’, LOD < 2; white for D’ < 1, LOD < 2. r2 values are represented as black for r2 = 1, white for r2 = 0, with intermediate values for 0 < r2 < 1 indicated by shades of grey. The numbers within the squares represent the D’ or r2 scores for pairwise LD.

References
1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.
2. Khoramad F, Mahdavi-Azimi A, Karimi L, Rahimi-Bashar F, Amini H, Saeheki AJ. Association between passive smoking and cardiovascular disease: a systematic review and meta-analysis. JUBMB Life. 2020;72(4):677–86.
3. Chirinos O, Llabre M, Goldberg P, Gellman M, Mendez A, Cai J, et al. Defining abdominal obesity as a risk factor for coronary heart disease in the U.S.: results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes Care. 2020;43(8):1774–80.
4. Bancs M, Akhabue E, Rana J, Reis JP, Schreiner PJ, Yano Y, et al. Sex differences in cardiovascular risk factors before and after the development of type 2 diabetes and risk for incident cardiovascular disease. Diabetes Res Clin Pract. 2020;166:108334.
5. DeBoer M, Gurka M, Golden S, Musani SK, Sims M, Vishnu A, et al. Independent associations between metabolic syndrome severity and future coronary heart disease by sex and race. J Am Coll Cardiol. 2017;69(9):1204–5.
6. Syme C, Czajkowski S, Shin J, Abramowicz M, Leonard G, Perron M, et al. Glycoprotein hydroxylase metabolites and cardiovascular disease risk factors in adolescents: a cohort study. Circulation. 2016;134(21):1629–36.
7. Ross S, Gerstein H, Eikelboom J, Anand S, Yusuf S, Paré G. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. Eur Heart J. 2015;36(23):1454–62.
8. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293–302.
9. Lee C, Sethi R, Li R, Ho HH, Hein T, Jim MH, et al. Obstructive sleep apnea and cardiovascular events after percutaneous coronary intervention. Circulation. 2016;133(21):2008–17.
10. Gami A, Olson E, Shen W, Wright RS, Ballman KV, Hodge DO, et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol. 2013;62(7):610–6.
11. Kessler T, Schunkert H. coronary artery disease genetics enlightened by genome-wide association studies. JACC Basic Transl Sci. 2021;6(7):610–23.
12. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.
13. Matsunaga H, Ito K, Akiyama M, Takahashi A, Koyama S, Nomura S, et al. Transethnic meta-analysis of genome-wide association studies identifies three new loci and characterizes population-specific differences for coronary artery disease. Circ Genom Precis Med. 2020;13(3):e002670.
14. Sun L, Zeng X, Yan C, Sun X, Gong X, Yao R, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature. 2012;490(7420):361–6.
15. Mishra R, Wei C, Hresko R, Bajpai R, Heitmeier M, Matulis SM, et al. In silico modeling-based identification of glucose transporter 4 (GLUT4)-selective inhibitors for cancer therapy. J Biol Chem. 2015;290(23):14441–53.
16. Al-Lahham Y, Mendes A, Souza E, Alberton D, Rego F, Valdameri G, et al. Interleukin-18 (rs187238) and glucose transporter 4 (rs5435) polymorphisms in Euro-Brazilians with type 1 diabetes. Genet Mol Res. 2017;16(3).
17. Zisman A, Peroni O, Abel E, Michael MD, Mauvais-Jarvis F, Lovell BB, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med. 2000;6(8):924–8.
18. Abel E, Peroni O, Kim J, Kim YB, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729–33.
19. Jiang L, Yao L, Yang Y, Ke D, Batey R, Wang J, et al. Jiang Zhi Capsule improves fructose-induced insulin resistance in rats. Association with...
repair of the impaired sarcolemmal glucose transporter-4 recycling. J
Etnopharmacol. 2016;194:288–98.
20. Bodhini D, Radha V, Ghosh S, Majumder PP, Rao MR, Mohan V. GLUT4
gene polymorphisms and their association with type 2 diabetes in south
Indians. Diabetes Technol Ther. 2011;13(9):913–20.
21. Yin T, Li N, Ai L, Yao X, Hong J, Zhou L, et al. Association of glucose trans‑porter 4 gene polymorphism with hypoxia caused by obstructive sleep
apnea syndrome and with related inflammatory factors. Zhong guo Yi
Xue Ke Xue Yuan Xue Bao. 2014;36(4):400–9.
22. Xiang Z, Lu J, Yeda C, Meihua L, Jiheng Q, et al. Association of GLUT4 gene
polymorphisms with risk of coronary heart disease in Han population in
Guangdong province. Chin J Public Health. 2016;32(5):636.
23. Zhong M, Tan H, Gong H, Wang S, Zhang Y, Zhang W. Increased serum
visfatin in patients with metabolic syndrome and carotid atherosclerosis.
Clin Endocrinol (Oxf). 2008;69(6):878–84.
24. Johansson L, Johansson L, Riderstrale M. The visfatin (PBEF1) G‑948T
gene polymorphism is associated with increased high‑density lipopro‑tein cholesterol in obese subjects. Metabolism. 2008;57(11):1558–62.
25. Purcell S, Neale B, Todd‑Brown K, Thomas L, Ferreira MA, Bender D, et al.
PLINK: a tool set for whole‑genome association and population‑based
linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
26. Belfer I, Buzas B, Evans C, Hipp H, Phillips G, Taubman J, et al. Haplotype
structure of the beta adrenergic receptor genes in US Caucasians and
African Americans. Eur J Hum Genet. 2005;13(3):341–51.
27. Wei W, Li X, Feng Q, Kubo M, Kullo I, Peissig P, et al. LPA variants are
associated with residual cardiovascular risk in patients receiving statins.
Circulation. 2018;138(17):1839–49.
28. Tsimikas S, Duff G, Berger P, Rogus J, Huttner K, Clopton P, et al. Pro ‑
inflammatory interleukin‑1 genotypes potentiate the risk of coronary
artery disease and cardiovascular events mediated by oxidized phospho‑lipids and lipoprotein(a). J Am Coll Cardiol. 2014;63(17):1724–34.
29. Tiet L, Godefroy T, Lubos E, Nicaud V, Tregouet D, Barbaux S, et al. Genetic
analysis of the interleukin‑18 system highlights the role of the interleu‑
kin‑18 gene in cardiovascular disease. Circulation. 2005;112(S):643–50.
30. Sitzel N, Stirrupps K, Masca N, Erdmann J, Ferrario PG, König IR, et al. Cod‑
ing variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease.
N Engl J Med. 2016;374(12):1134–44.
31. Wang J, Du W, Bai J, Cheng S, Zhang YH. Association cdtojoNS: The asso‑
ciation of rs2233679 in the PIN1 gene promoter with the risk of Coronary
Artery Disease in Chinese female individuals. J Stroke Cerebrovasc Dis.
2020;29(8):104935.
32. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transport‑
ers. Mol Aspects Med. 2013;34:121–38.
33. Szablewski L. Glucose transporters in healthy heart and in cardiac disease.
Int J Cardiol. 2017;230:70–5.
34. Depé C, Rider M, Hue L. Mechanisms of control of heart glycolysis. Eur J
Biochem. 1998;258(2):277–90.
35. Young L, Coven D, Russell RR. Cellular and molecular regulation of cardiac
glucose transport. J Nucl Cardiol. 2000;7(3):267–76.
36. Al‑Lahham Y, Mendes A, Souza E, Alberton D, Rego F, Valdameri G, et al.
Genetic variants in promoters and coding regions of the muscle
GLUT1 and GLUT4 gene loci in type 1 diabetes. Genet Mol Res. 2017;16(3).
37. Pontiroli A, Capra F, Verglia F, Ferrari M, Xiang K, Bell G, et al. Genetic
contribution of polymorphism of the GLUT1 and GLUT4 genes to the
susceptibility to type 2 (non‑insulin‑dependent) diabetes mellitus in dif‑
ferent populations. Acta Diabetol. 1996;33(3):193–7.
38. Alcolado J, Baroni M. Restriction fragment length polymorphisms at the
GLUT4 gene: association studies pertaining to alleles of two poly‑morphisms in extremely obese children and adolescents and in normal
and underweight controls. Ann N Y Acad Sci. 2002;967:554–7.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑lished maps and institutional affiliations.