Pre-earthquake non-epidemic Vibrio cholerae in Haiti

Jie Liu¹, Christopher Winstead-Derlega¹, Eric Houpt¹, Rebecca Heidkamp²,³, Jean Pape³,⁴, and Rebecca Dillingham¹

¹Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
²Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
³Groupe Haïtien d’Etude du Sarcome de Kaposi et des Infections Opportunistes, Port-au-Prince, Haiti
⁴Center for Global Health, Weill Cornell Medical College, New York, NY, USA

Abstract

Introduction—To our knowledge, there was no record of Vibrio cholerae in Haiti until the 2010 post earthquake outbreak.

Methodology—This study describes the analysis of 301 stool samples from 117 infants in Port-au-Prince, Haiti, who participated in a pediatric nutrition study between July 2008 and October 2009.

Results—Nine samples were identified positive with both SYBR Green and Taqman-MGB probe based molecular assays targeting V. cholerae hlyA and toxR, respectively (Ct = 33 – 40), but none were O1 or O139.

Conclusions—Our results from multiple molecular assays demonstrate the presence of non-O1/O139 V. cholerae DNA in stools collected from nine asymptomatic Haitian infants two years prior to the 2010 earthquake.

Keywords

Haiti; microbiology; V. cholerae; epidemic

Introduction

Despite the presence of epidemic cholera in the Caribbean throughout the 1800 and 1900s, Haiti was unaffected by cholera from 1960 until several months after the devastating January 12th 2010 earthquake. The cholera epidemic has killed thousands of people, and
extensive efforts have focused on the etiology of this outbreak [1,2]. A recent article showed that two distinct populations of *V. cholerae* were detected in Haiti early in the epidemic and proposed that non-O1/O139 strains likely existed prior to the earthquake based on comparative genomic analysis [3]. However, all the samples tested were collected after the earthquake. Direct evidence of presence of *V. cholerae* in clinical or environmental samples prior to the earthquake would be valuable.

Methodology

Specimens

As part of a pediatric nutrition study presented elsewhere, we preserved 301 stool samples from 117 infants in Port-au-Prince, Haiti from July 2008 to October 2009 [4]. Surveillance stool samples were collected from study participants at 6, 9, 12, and 18 months of life. Samples were also collected from a post-intervention control group at nine months of life only. Samples were not specifically sought during episodes of diarrheal illness. Samples were aliquoted, stored at −20°C, and shipped to the University of Virginia.

Nucleic acid extraction and amplification

DNA was extracted using the QIAamp DNA stool Mini Kit (Qiagen Inc., Valencia, USA). The protocol was modified to include bead beating with 0.15 mm garnet beads (MO-BIO Laboratories, Inc, Carlsbad, USA) for 2 minutes followed by boiling for 5 minutes before extraction. The samples were tested with PCR assays listed in Table 1.

Results and discussion

We first screened the samples with SYBR Green and Taqman-MGB probe based molecular assays targeting *Vibrio cholerae* hlyA and toxR, respectively (Table 1), two widely used gene targets for detection of *Vibrio cholerae*. A stringent definition of positivity, i.e. positive for both targets was applied to rule out potential non-specific amplification with fecal samples and stochastic detection at lower limit of detection.

Among 301 stool samples, nine were identified as positive (hlyA Ct = 35.6 ± 2.4; toxR Ct = 36.8 ± 2.2). This finding was confirmed by amplicon sequencing. Two samples each were from stools collected at ages 6, 9, and 18 months, and three samples were from stools collected at 12 months.

We were unable to culture *V. cholerae* on Thiosulfate-citrate-bile salts-sucrose agar directly or after enrichment in alkaline peptone water, most likely due to the age of the samples, storage conditions, multiple freeze-thaw cycles, etc. Therefore further characterization was continued with DNA directly extracted from stool using the published assays in Table 1, to differentiate O1, O139 and non O1/O139, or to determine the Variable-Number Tandem Repeat (VNTR), or to test for various virulent genes. None of the samples were identified as O1 or O139 with the published assays [7]. Similar to reported genotypic data describing non O1/O139 strains [3], virulence factors, including ctxA, ctxB, zot, rtxA, rtxC, were not detectable in our samples. We further attempted to determine the multilocus Variable-Number Tandem Repeat (VNTR), a useful tool for tracking the origin of *V. cholerae*
Five loci (VC0147, VC0436/437, VC1650, VCA0171, VCA0283) were amplified and sequenced, however only one (VC0147) yielded interpretable sequence data for two samples (5 and 6 repeats, respectively) which would likely lead to their categorization as environmental non O1/O139 [3].

Amplicon contamination was ruled out, as we confirmed positivity with a separate toxR assay. In addition, *Vibrio cholerae* strains that had been handled in the laboratory were all ctxB-positive.

Due to the incapability of generating isolates from these samples and potential non-specific amplification with complex nucleic acid from stool samples, full characterization may require metagenomic sequencing. However, our results from multiple molecular assays clearly demonstrated the presence of non-O1/O139 *V. cholerae* DNA in stools collected from nine asymptomatic Haitian infants two years prior to the earthquake.

Acknowledgments

This research was supported by grant: K23AI077339

References

1. Ali A, Chen Y, Johnson JA, Redden E, Mayette Y, Rashid MH, Stine OC, Morris JG Jr. Recent clonal origin of cholera in Haiti. Emerg Infect Dis. 2011; 17:699–701. [PubMed: 21470464]
2. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamauchi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. The origin of the Haitian cholera outbreak strain. N Engl J Med. 2011; 364:33–42. [PubMed: 21142692]
3. Hasan NA, Choi SY, Eppinger M, Clark PW, Chen A, Alam M, Haley BJ, Taviani E, Hine E, Su Q, Tallon LJ, Prosper JB, Furth K, Hoq MM, Li H, Fraser-Liggett CM, Cravioto A, Huq A, Ravel J, Cebula TA, Colwell RR. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci U S A. 2012; 109:E2010–E2017. [PubMed: 22711841]
4. Heidkamp RA, Stoltzfus RJ, Fitzgerald DW, Pape JW. Growth in late infancy among HIV-exposed children in urban Haiti is associated with participation in a clinic-based infant feeding support intervention. J Nutr. 2012; 142:774–780. [PubMed: 22378328]
5. Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque R, Haverstick DM, Houp E. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol. 2013; 51:472–480. [PubMed: 23175269]
6. Lyon WJ. TaqMan PCR for detection of Vibrio cholerae O1, O139, non-O1, and non-O139 in pure cultures, raw oysters, and synthetic seawater. Appl Environ Microbiol. 2001; 67:4685–4693. [PubMed: 11571173]
7. Rivera IN, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR. Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic *Vibrio cholerae* O1 and O139 from aquatic ecosystems. Environ Microbiol. 2003; 5:599–606. [PubMed: 12823192]
8. Singh DV, Isac SR, Colwell RR. Development of a hexaplex PCR assay for rapid detection of virulence and regulatory genes in *Vibrio cholerae* and *Vibrio mimicus*. J Clin Microbiol. 2002; 40:4321–4324. [PubMed: 12409420]
9. Alam M, Nusrin S, Islam A, Bhuiyan NA, Rahim N, Delgado G, Morales R, Mendez JL, Navarro A, Gil AI, Watanabe H, Morita M, Nair GB, Cravioto A. Cholera between 1991 and 1997 in Mexico was associated with infection by classical, El Tor, and El Tor variants of *Vibrio cholerae*. J Clin Microbiol. 2010; 48:3666–3674. [PubMed: 20668130]
10. Chow KH, Ng TK, Yuen KY, Yam WC. Detection of RTX toxin gene in *Vibrio cholerae* by PCR. J Clin Microbiol. 2001; 39:2594–2597. [PubMed: 11427575]
11. Ghosh R, Nair GB, Tang L, Morris JG, Sharma NC, Ballal M, Garg P, Ramamurthy T, Stine OC. Epidemiological study of *Vibrio cholerae* using variable number of tandem repeats. FEMS Microbiol Lett. 2008; 288:196–201. [PubMed: 18811655]

12. Mohamed AA, Oundo J, Kariuki SM, Boga HI, Sharif SK, Akhwale W, Omolo J, Amwayi AS, Mutonga D, Kareko D, Njeru M, Li S, Breiman RF, Stine OC. Molecular epidemiology of geographically dispersed *Vibrio cholerae*, Kenya, January 2009–May 2010. Emerg Infect Dis. 2012; 18:925–931. [PubMed: 22607971]
Table 1

Nucleotide sequences of PCR assays.

Target	Sequence (5′ - 3′) *	Detection	Reference
toxR	F: GTTGGCCGAGAGCAAGGTTC	TaqMan Probe	[5]
	R: TCTCTCTCTAACGTTTCA		
	P: CGCAGACTGAAATGGCTTGG		
hlyA	F: ATCGTCAGTTGGGAGCCAGT	SYBR Green with melting curve	[6]
	R: TCGATCGTTAAACACGAAG		
O1-specific	F: CAACAGAATAGACTCAAGAAG	SYBR Green with melting curve	[7]
	R: TATCTCTCATATCTTCTTAC		
O139-specific	F: TTACCACTACATGCCTGG	SYBR Green with melting curve	[7]
	R: CGTCTCTGGTAGTTTTCTGG		
ctxA	F: CGGCCAGATTCTAGCTCTCTTG	SYBR Green with melting curve	[8]
	R: CGATGATCTGAGCCTTCCAC		
ctxB	F: ACTATCTCGCATATGCACATGG	SYBR Green with melting curve	[9]
	R_{classic}: CCTGTTACTTCTACTTGAACG		
	R_{El tor}: CCTGTTACTTCTACTTGAACA		
zot	F: TCGCTTAACGATGCCCGTTT	SYBR Green with melting curve	[8]
	R: AACCCTGTTTACGTTACCCA		
rtxA	F: CTGAATATAGGATGGTGACTTACG	SYBR Green with melting curve	[10]
	R: GTGATATGGTGATGGCCTGACG		
rtxC	F: CGACGAGATCGATTGACGC	SYBR Green with melting curve	[10]
	R: CATGCTGTTATGCGTTGC		

* F: forward primer; R: reverse primer; P: probe.