Experimental Study on Recycling of Bituminous Aggregate in Cement Concrete: A Research

Manoj Kumar Mishra¹, Asst. Prof. Pardeep²
¹M-tech Student, ²Assistant professor, Dept. of Civil Engg., Sat Priya Group of Institution, Rotak, Haryana (India)

Abstract: Recycling of bituminous aggregates in cement concrete has been selected for the present study to determine suitability of recycled material in road construction. This will help in achieving economy in road construction as well as saving on environment degradation in terms of reduced mining and less pollution. Construction and maintenance of roads and highways involve millions of tonnes of aggregate. Considering the scarcity of fresh aggregate, replacement of part of the fresh aggregate with recycled aggregate is considered in the present study. Construction of the road is quite cost intensive. Material alone cost more than 60% of the total construction cost, out of which aggregate cost component, is approximately 30%. We can use recycled aggregate in place of fresh aggregate in construction of road and provide economy to the project. For making best use of recycled aggregates, it is essential to study the suitability of the same in various pavement components. In the present study recycled aggregate are used in Granular Sub Base (GSB) and Wet Mix Macadam (WMM).

I. INTRODUCTION

Concrete is a composite construction material composed primarily of aggregates, cement and water. In general, aggregate make up 60% to 75% of total concrete volume, so their selection is important, also they control concrete properties. Aggregate provide bulk, strength and wear resistance in these application. Hence, the selection and portioning of aggregate should be given careful attention. The aggregate is generally coarse gravel or crushed rocks such as limestone, granite along with a fine aggregate such as sand or stone dust. Bulk of pavement structure is formed by aggregate. The major function of pavement is to transfer wheel load to the sub-grade. In this load transfer mechanism aggregates have to bear stresses occurring due to wheel loads on the pavement and on the surface course, they also have to resist wear due to abrasive action of traffic. Therefore the properties of aggregate are of considerable significance to the highway engineers. The aggregates are categorized based on their size, shape, texture and gradation. The aggregate serves as reinforcement to add strength to the overall composite material. Aggregates are also used as base material under foundations, roads and rail roads.

Recycled asphalt pavement (RAP) is the removed and reprocessed pavement material containing asphalt and aggregate. The use of recycled asphalt aggregate has become a common practice in the construction of new and reconstruction of old, hot mix asphalt pavements. But little research has been done to examine the potential of incorporating RAP into cement concrete. In the present study, the physical and mechanical properties of cement concrete comprising of RAP, in different proportions, are investigated through laboratory experiments. Recycled asphalt pavements used in the present study is obtained from the debris of dismantled asphalt road

A. Importance of Research Topic

The topic "EXPERIMENTAL STUDY ON RECYCLING OF BITUMINOUS AGGREGATE IN CEMENT CONCRETE" has been selected for the present study to examine the physical and the mechanical properties of RAP incorporated in cement concrete. The aim of this project is to determine the strength characteristic of RAP for application in high strength concrete, which will give a better understanding on the properties of concrete with RAP as an alternative material to fresh coarse aggregate in concrete. This will help in achieving economy in road construction as well as saving environmental degradation in terms of reduced mining and less pollution. Use of RAP will also conserve resources, landfill space and will generate profit for the recyclers.

B. Scope of the Study

In this project, the mix design of M30 grade of cement concrete is developed at water cement ratio 0.45 using virgin coarse aggregate (CA). In order to study the potential of RAP in the mix design of M30 grade cement concrete, different percentage of RAP aggregate are used in mix with coarse aggregate and their corresponding compressive and flexural strength are studied. A total of five batches are considered in which the percentage of RAP and fresh coarse aggregate are as follows:
1) 0% RAP and 100% CA
2) 25% RAP and 75% CA
3) 50% RAP and 50% CA
4) 75% RAP and 25% CA
5) 100% and 0% C

Water cement ratio in total of five batches of concrete mix has kept constant as 0.45.

C. Objective of the Study
The primary goal of this project is to develop and characterize an environment friendly concrete suitable for transportation-related applications. The objectives of the study include:
1) Collection of study material.
2) To study the various properties of selected material like specific gravity, water absorption, crushing value, impact value and gradation to determine the suitability for high strength concrete.
3) Mix Design of M30 grade cement concrete based on IS code and IRC: 44-2008.
4) Check for compressive strength as well as flexural strength.

II. LITERATURE REVIEW

A. Introduction
Recycled asphalt pavement has been widely used in the United States since the 1970s and is a major benefit to the paving industry. According to Kelly (1998) about 100 million ton worn out asphalt pavement is recovered annually and about 80% of recovered material is currently recycled and the remaining 20% is used in landfills. Two thirds of recycled is used as aggregate for road base and remaining one third of recycled material is reused as aggregate for new asphalt hot mixes.

B. Historical Background
Recycled asphalt pavement is being used more widely throughout the world in various applications. Most of the RAP is put back into the roadways as a base or surface material. The use of recycled material in Portland cement concrete has become more and more popular in recent year.

Murshed Delwar et al. (1997) investigated the use of combinations of coarse and fine RAP aggregate in normal concrete mixes and compared the results of compressive strength to conventional mixes with 0.4 and 0.5 water cement ratios. Compressive strength values were found to decrease with the increase in RAP content.

Baoshan Huang, et al (2005) found that RAP could be incorporated into Portland cement concrete without any modification to the conventional equipment or procedures. Without any treatment, there was a systematic reduction in compressive and split tensile strength with the incorporation RAP in concrete.

Salim Al-oraimi, et al. (2007), used RAP as a coarse aggregate, substitute in two different normal concrete mixes having 28 days cube compressive strengths of 33 and 50 MPa. RAP was used with 25, 50, 75, 100% replacement of coarse aggregate. According to test result, the slump decreased with the increase in RAP content. The compressive and flexural strength decreased with the increase in RAP content. The surface absorption was not significantly affected by the addition of RAP. The results indicated the viability of RAP as an aggregate in non-structural concrete applications.

The percentage of RAP should be limited according to the application. Low slump should also be considered when utilizing RAP in the mixes.

Fidelis o.okafor (2010) found that the strength of concrete made from RAP is dependent on the bond strength of the "asphalt-mortar" (asphalt binder-sand-filler matrix) coatings on the aggregates and may not produce concrete with compressive strength above 25 MPa. He prepared six concrete mixes of widely differing water/cement ratios and mix proportions were made using RAP as coarse aggregate. The properties tested include the physical properties of the RAP aggregate, the compressive and flexural strengths of the concrete. These properties were compared with those of similar concretes made with fresh aggregate. However, for middle and low strength concrete, the RAP material was found to be comparable with natural gravel aggregate.

In the present study virgin coarse aggregate is replaced by RAP in different proportions i.e. 0, 25, 50, 75 and 100. Proportion of aggregate is modified accordingly to meet the required gradation and their corresponding compressive and flexural strength were studied. Water cement ratio in all batches is kept constant as 0.45.
C. Obtaining Recycled Asphalt Pavement

Asphalt pavement is generally removed either by milling or full-depth removal. Milling involves the removal of the pavement surface using a milling machine, which can remove up to 2 inch (50 mm) thickness in a single pass. Full-depth removal involves ripping and breaking the pavement using a rhino horn on a bulldozer and/or pneumatic pavement breakers. In most instances, the broken material is picked up by front-end loaders and loaded into haul trucks. The material is then hauled to a central facility for processing. At this facility, the RAP is processed using a series of operations, including crushing, screening, conveying, and stacking. Two processes which are essential for carrying out recycling of existing asphalt pavements are:
1) Cold milling of existing road and
2) Hot mix asphalt plant.
3) Above two are discussed briefly given following section.

III. MATERIALS USED AND METHODOLOGY OF THE STUDY

Methodology of the study for the present research work describe the procurement of the material and to carry out different test as per IS codes and ASTM 2172.

A. Material Used
The materials used in the test program
1) Portland pozzolonic cement (ultratech cement).
2) Natural coarse aggregate.
3) Recycled asphalt pavement aggregate.
4) Sand and water.
a) Cement: Portland pozzolonic cement conforming to IS 1489(Part 2):1991 is used in test program which specific gravity is: 3.15 (ultratech cement).
b) Water: Tap water, potable freefrom salts or chemical is used in test program.
c) Natural Aggregate: Two grades of coarse aggregate i.e. 20mm and 10 mm are used in the present study. Aggregates procured are from Yamuna Nagar quarries.
d) Fine aggregate (Sand): Yamuna river bed sand, used in the study, is obtained from local Kurukshetra market.
e) Recycled Asphalt Pavement (RAP): Recycled asphalt pavement is reclaimed and processed pavement material containing asphalt and aggregate. RAP is a waste material and is economical available as compare to fresh aggregate. Size of recycled asphalt pavement used in testing program lies between 20mm to 4.75mm. RAP was obtained from recycling asphalt plant situated in Ambala city.

B. Test on Fresh Coarse Aggregate
1) Gradation
2) Specific gravity
3) Water absorption
4) Aggregate crushing value
5) Aggregate impact value

C. Test on Recycled Asphalt Pavement
1) Gradation
2) Specific gravity
3) Water absorption
4) Aggregate crushing value
5) Aggregate impact value
6) Bitumen content

D. Test on Fine Aggregate
1) Gradation
2) Specific gravity
3) Water absorption
IV. RESULT AND CALCULATION

Test results of compressive strength of beam and flexural tensile strength of beam

A. Compressive Strength Test

Compressive strength of concrete is important for resistance to compressive stresses. Cubical specimens of size 150mm were cast for conducting compressive strength test for each mix (A to E). The compressive strength test is carried out by using compressive strength testing machine as shown in Figure 6.1. The cubical specimen of size 150 mm is placed in compression testing machine and the load is applied without shock and increased continuously at a rate of approximately 16 N/mm² per minute until the resistance of the specimen to the increasing load breaks down.

The maximum compressive load that a specimen bears before crushing is known as the compression strength for that specimen. The test is carried at the end of 7 days and 28 days of curing. Average of three cubes, in all the mixes, is taken as the compressive strength of a particular mix.

Results of Compressive Strength Test on Concrete Cube after 7 Days of Curing:

Serial no	Mix design (RAP)	Weight of concrete cube (kg)	Compressive strength after 7 days (N/mm²)	Percentage variation with respect to mix design Mix A	Remark
1	Mix A (0%)	8.294	28.35	26.95	-
2	Mix A (0% RAP)	8.147	26.89		
3	Mix A (0% RAP)	8.188	25.61		
4	Mix B (25%)	8.088	25.22	24.14	10.43%
5	Mix B (25% RAP)	8.070	23.00		
6	Mix B (25% RAP)	7.935	24.21		
7	Mix C (50%)	7.991	14.62	17.03	36.81%
8	Mix C (50% RAP)	7.843	17.53		
9	Mix C (50% RAP)	8.137	18.93		
10	Mix D (75%)	7.997	13.34	16.60	38.40%
11	Mix D (75% RAP)	7.771	18.67		
12	Mix D (75% RAP)	8.068	17.78		
13	Mix E (100%)	8.083	17.78	16.30	39.51%
14	Mix E (100% RAP)	7.946	14.23		
15	Mix E (100% RAP)	8.095	16.90		

In general it can be concluded that mixing of RAP reduces the rate of gain of compressive strength as compared to virgin aggregate.
Summary of Compressive Strength of Different Mixes after 7 And 28 Days

Sr. no	Mix design	Compressive Strength and 28 days	Percentage variation with respect to average compressive strength after 28 days curing	Average compressive strength after 7 days (N/mm²)	Average compressive strength after 28 days curing (N/mm²)
1	Mix A (0% RAP)	26.95	70.25%	38.36	38.36
2	Mix B (P)25% RA	24.14	67.62%	35.70	35.70
3	Mix C (50% RAP)	17.03	54.20%	31.42	31.42
4	Mix D (75% RAP)	16.60	56.89%	29.19	29.19
5	Mix E (100% RAP)	16.30	63.23%	25.78	25.78

Results of Compressive Strength Test on Concrete Cube after 28 Days of Curing

Sr. no	Mix design	Weight of concrete cube (kg)	Compressive strength after 28 days (N/mm²)	Percentage variation with respect to mix design Mix A	Remark	
1	Mix A (0% RAP)	8.338	39.42	38.36		
2	Mix B (P)25% RA	8.418	38.30	-		
3	Mix C (50% RAP)	8.166	37.53	-		
4	Mix D (75% RAP)	7.868	36.00	35.70	6.93%	
5	Mix E (100% RAP)	7.971	35.55	31.42	18.09%	Decrease
6		8.095	35.55	-		
7	Mix F (100% RAP)	7.924	30.23	29.19	23.91%	
8		8.145	33.78	-		
9		7.845	28.89	25.78	32.80%	

There is a wide variation in gaining strength between the average compressive strength of 7 days and 28 days curing.
V. CONCLUSIONS

The research work on the topic "Recycling of Bituminous Aggregate in Cement Concrete - An Experimental Study" has been selected for the present study to examine the physical and the mechanical properties of RAP used as coarse aggregate in cement concrete. In this project, various tests on aggregates (both virgin and RAP) are carried out in laboratory to determine the physical and mechanical properties of aggregates. Compressive strength and flexural tensile strength tests are carried out on the concrete mixes, made up of virgin and RAP aggregates in different proportion (mix A to E). Based on the test results, the following conclusions are drawn:

A. Based on the Properties of Aggregates

Presently RAP aggregate is treated as waste material is economical then fresh aggregate therefore concrete made up of RAP aggregate will naturally be economical.

1) From table 4.6, it is observed that specific gravity of fresh aggregate is in the range of 2.69 to 2.68 and that of RAP is 2.49, which is less than 8.5% than fresh aggregate.

2) From table 4.6, it is observed that the water absorption of fresh aggregate is 0.5% and that of RAP is 1.3%. This indicates that the workability of concrete mix will reduce at same Water cement ratio, as the percentage of RAP aggregate in cement concrete increases.

3) From table 4.9, it is observed that the gradation of recycled asphalt pavement aggregate satisfied the desired gradation requirement specified by IS code: 383-1970.

4) This means that fresh coarse aggregate of size 20mm and 10mm can be partially/fully replaced by recycled asphalt pavement aggregate.

5) From table 4.6, it is observed that the crushing value of RAP and fresh aggregates are 17.36% and 17.09% respectively. Indicating in no significant difference between the two.

6) From table 4.6, it is observed that the value of all the properties of RAP aggregate except bitumen content, does not exceed to the permissible limits for Mix designs specified by IS code: 383-1970. Thus the recycled asphalt pavement aggregate used in present study is suitable for concrete mix design.

B. Based On Compressive Strength Of Concrete

1) From table 6.1 it is observed that the compressive strength of the recycled asphalt pavement concrete mixes i.e Mix B, Mix C, Mix D and Mix E as compared to fresh concrete Mix M30 (Mix A), after 7 days, is lesser by 10.46%, 36.8%, 38.4% and 39.5% respectively. This indicates that there is a gradually reduction in the compressive strength of concrete mix (M30) (after 7 days) as percentage of RAP content increases. It is also found that the minimum compressive strength of concrete mix (M30) made up of Rap aggregate after 7 days is approximately 60% to that of the fresh aggregate concrete Mix (M30).

2) From table 6.2, it is observed that the compressive strength of recycled asphalt pavement concrete mixes i.e Mix B, Mix C, mix and Mix E as compared to fresh concrete mix M30 (Mix A), after 28 days is lesser by 6.9%, 18.1%, 23.9% and 32.8% respectively. This indicates that there is a gradually reduction in the compressive strength of concrete mix (M30) (after 28 days) as percentage of RAP content increases. It is also found that the minimum compressive strength of the concrete mix (M30) made up of Rap aggregate after 28 days is approximately 67% to that of the fresh concrete mix (M30).

From table 9.3, it is observed that mixing of RAP reduces the rate of gain of compressive strength as compared to fresh aggregate.

C. Based On Flexural Strength Of Concrete

1) From table 6.4, it is observed that the flexural tensile strength of recycled asphalt pavement concrete mixes i.e Mix B, Mix C, Mix D and Mix E as compared to fresh concrete mix M30 (Mix A), after 28 days is lesser by 4.1%, 8.2%, 19.0% and 29.1% respectively. This indicates that there is a gradually reduction in the flexural tensile strength concrete mix (M30) (after 28 days) as percentage of RAP content increases. It is also found that the minimum flexural tensile strength of concrete mix (M30) made up of RAP aggregate after 28 days is approximately 70% to that of fresh concrete mix (M30).

2) From the result, it is observed that inclusion of RAP affects the compressive strength more than the flexural strength.

Hence, at location where low strength of concrete is required, the recycled asphalt pavement aggregate may be a used as alternative material for fresh coarse aggregate.
VI. THE SCOPE FOR THE FURTHER STUDY

The study can be extended on cement concrete mixes with RAP in following directions.

Effect of water cement ratio
Effect of admixtures
Post 28 days strength characteristics can also be studied.

REFERENCES

[1] IS : 383-1970, specification for coarse and fine aggregate from natural sources for concrete
[2] IS : 2386 (part 3)-1963, for specific gravity and water absorption
[3] IS : 2386 (part 4)-1963, for crushing strength and impact test
[4] IRC : 44-2008, for mix design
[5] ASTM 2172, for determining the bitumen content
[6] IS: 516-1959, for testing strength of concrete
[7] MORTH specification, for checking gradation of aggregate
[8] Mursheddelwar, F. Mostafa and R Taha (1997), “Use of reclaimed asphalt pavement as an aggregate in Portland cement concrete”, ACI material journal, vol94(3) 251-256
[9] Baoshanhuang,XiangShu, Guoqiang Li (2005), "Laboratory investigation of Portland cement concrete containing RAP", cement and concrete research,58(5):313-320
[10] Salim al-oraimin, Hossam F. Hassan and AbdulwahidHago (2007), "Recycling of reclaimed asphalt pavement in Portland cement concrete", the journal of engineering research,vol 6 no-1 (2009) 37-45
[11] Fidelis o.okafor (2010), "Performance of recycled asphalt pavement as coarse aggregate in concrete".Leonardo electronic journal of practice and technologies ISSN 1583-1078, p 47-58.
[12] Kelly,T.D (1998), the substitution of crushed cement concrete for construction aggregate : us geological survey circular 1177,15p. http://greenworld.cr.usgs.gov/pub/circular/c1177
[13] Concrete book by M. L. Gambir
[14] Building Innovation & Construction Technology (1999), "Recycling hits new high in urban infrastructure first". http://www.cmit.csiro.au/innovation/1999-02/recyclestreet.htm
[15] http://Wikipedia .com
