AMOEBA FINITE BASIS DOES NOT EXIST IN GENERAL

MOUNIR NISSE

Abstract. We show that the amoeba of a generic complex algebraic variety of codimension $1 < r < n$ do not have a finite basis. In other words, it is not the intersection of finitely many hypersurface amoebas. Moreover we give a geometric characterization of the topological boundary of hypersurface amoebas refining an earlier result of F. Schroeter and T. de Wolff [SW-13].

1. Introduction

Tropical geometry combines aspects of algebraic geometry, discrete geometry, computer algebra, mirror symmetry and symplectic geometry. This geometry can be seen as a limiting regime of algebraic geometry, where some of its interesting varieties are the limit of the so-called amoebas. Amoebas of algebraic (or analytic) varieties are their image under the logarithm with base a real number t. In many cases, a tropical variety is the limit of these amoebas as t goes to infinity (e.g., the case of tropical hypersurfaces). In other words, tropical objects are some how, the image of a classical objects under the logarithm with base infinity, they are called non-Archimedean amoebas (this last naming comes from another view of tropical geometry, which coincides with the limiting view in the case of hypersurfaces, see for example [IMS-07]).

Given an algebraically closed field K endowed with a non-trivial real valuation $\nu : K \to \mathbb{R} \cup \{\infty\}$, the tropical variety $\text{Trop}(I)$ of an ideal $I \subset K[x_1, \ldots, x_n]$ is defined as the topological closure of the set

$$\nu(V(I)) := \{(\nu(x_1), \ldots, \nu(x_n)) \mid (x_1, \ldots, x_n) \in V(I)\} \subset \mathbb{R}^n,$$

where $V(I)$ denotes the zero set of I in $(K^*)^n$ (see for example [MS-09]). A tropical basis for I is a generating set $\mathcal{B} = \{g_1, \ldots, g_l\}$ of I such that

$$\text{Trop}(I) = \bigcap_{j=1}^l \text{Trop}(I_{g_j}),$$

where I_{g_j} denotes the principal ideal generated by the polynomial g_j. Bogart, Jensen, Speyer, Sturmfels, and Thomas initiated the computational investigation of tropical bases [BGSS-07] by providing Gröbner bases techniques for computing tropical bases as well as by lower bounds on the size of such bases.

1991 Mathematics Subject Classification. 14T05, 32A60.

Key words and phrases. Amoebas, coamoebas, and critical points of the logarithmic map.

This research is partially supported by NSF MPS grant DMS-1001615, and Max Planck Institute for Mathematics, Bonn, Germany.
bases when \(K \) is the field of Puiseux series \(\mathbb{C}((t)) \) and the ideal \(\mathcal{I} \) is linear with constant coefficients. Dropping the assumption on the degree of the polynomials, Hept and Theobald showed that there always exists a small tropical basis for a prime ideal \(\mathcal{I} \) (see [HT-09]).

We will use logarithm with base \(e \), so that the Archimedean amoeba of a subvariety of the complex torus \(\mathbb{C}^* \) is its image under the coordinate-wise logarithm map. Amoebas were introduced by Gelfand, Kapranov, and Zelevinsky in 1994 [GKZ-94]. The coamoeba of a subvariety of \(\mathbb{C}^* \) is its image under the coordinate-wise argument map to the real torus \(S^1 \). Coamoebas were introduced by Passare in a talk in 2004 (see e.g., [NS-11] for more details about coamoebas).

A variety \(V \subset \mathbb{C}^* \) of codimension \(r \) is generic if it contains a point \(p \) such that the Jacobian of the logarithmic map restricted to \(V \) at the point \(p \) has maximal rank i.e., equal to \(\min\{n, 2(n - r)\} \). If the defining ideal \(\mathcal{I}(V) \) of \(V \) is generated by the set of polynomials \(\{g_i\}_{i=1}^l \) with the following properties:

(i) \(\mathcal{A}(V) = \bigcap_{i=1}^l \mathcal{A}(V_{g_i}) \);
(ii) \(\mathcal{A}(V) \subseteq \bigcap_{i \in \{1, \ldots, l\} \setminus s} \mathcal{A}(V_{g_i}) \) for every \(1 \leq s \leq l \),

then we said that \(\{g_i\}_{i=1}^l \) is an amoeba basis of \(\mathcal{A}(V) \).

The aim of this paper is to show that the main result of Hept and Theobald in [HT-09] does not have an analogue for Archimedean amoebas of generic complex varieties of positive dimension and not hypersurfaces.

Theorem 1.1. If \(V \) is a generic complex algebraic variety of codimension \(r \) with \(1 < r < n \), then its amoeba cannot have a finite basis.

This paper is organized as follows. In Section 2, we prove our main Theorem 1.1; in Section 3 we describe the example of a generic line in the space. In Section 4, we give a geometric characterization of the topological boundary of hypersurface amoebas and prove Theorem 4.1 which refines the main theorem of F. Schroeter and T. de Wolff in [SW-13].

2. Non existence of finite amoeba basis in general

Let \(V \subset \mathbb{C}^* \) be an algebraic variety of codimension \(r \) with defining ideal \(\mathcal{I}(V) \) and amoeba \(\mathcal{A}(V) \). It was shown by Purbhoo [P-08] (a short proof for both amoebas and coamoebas can be found in [NP-11]) that the amoeba \(\mathcal{A}(V) \) of \(V \) is equal to the intersection of all hypersurface amoebas with defining polynomial in the ideal \(\mathcal{I}(V) \), i.e.,

\[
\mathcal{A}(V) = \bigcap_{f \in \mathcal{I}(V)} \mathcal{A}(V_f),
\]

where \(V_f \) is the hypersurface with defining polynomial \(f \). One naturally ask: Is the amoeba \(\mathcal{A}(V) \) the intersection of a finite number of hypersurface amoebas? In [P-08], Purbhoo expects a negative answer to this question in general, but he does not give a formal proof. We give a negative answer to this question when the codimension of our variety is different than 1 and \(n \).
In [SW-13], Schroeter and de Wolff give a positive answer to this question when \(V \) is the zero-dimensional solution set of a generic linear system of \(n \) equations.

Let us fix some notation and definitions. Let \(V \subset (\mathbb{C}^*)^n \) be an algebraic variety of codimension \(1 < r < n \) with defining ideal \(\mathcal{I}(V) \) and amoeba \(\mathcal{A}(V) \). To prove Theorem 1.1 we will deal with two cases, the one where \(\min\{n, 2(n-r)\} = n \) and the other case where \(\min\{n, 2(n-r)\} = 2(n-r) \). Namely, the cases where the dimension of the ambient space is less or equal to twice the dimension of \(V \), and the case where the dimension of the ambient space is strictly greater than twice the dimension of \(V \). In the first case, the amoeba \(\mathcal{A}(V) \) has dimension \(n \), and then it necessarily has a boundary. In the second case, it may be without boundary, as we will see in some examples.

Let \(V \subset (\mathbb{C}^*)^n \) be a generic algebraic variety of codimension \(r \) such that \(n \leq 2(n-r) \). Moreover, assume that the set of polynomials \(\{g_i\}_{i=1}^l \) is an amoeba basis of \(\mathcal{A}(V) \).

Claim A: With the above hypotheses, let \(x \) be a point in \(\partial \mathcal{A}(V) \). Then there exists a vector direction \(v \) such that \((x + \varepsilon v) \notin \mathcal{A}(V) \) for all small positive real numbers \(\varepsilon \).

Proof of Claim A: First of all, the set of vector direction around \(x \) can be identified to the \((n-1)\)-dimensional sphere. Assume on the contrary that for all vector direction \(v \) and any \(\eta > 0 \) there exists \(\varepsilon \) with \(0 < \varepsilon \leq \eta \) and \((x + \varepsilon v) \in \mathcal{A}(V) \). This means that \(x \in \mathcal{A}(V_{g_i}) \) for all \(1 \leq i \leq l \), where \(\mathcal{A}(V_{g_i}) \) denotes the interior of the hypersurface amoeba \(\mathcal{A}(V_{g_i}) \). In fact, if there exists \(s \) with \(1 \leq s \leq l \) such that \(x \in \partial \mathcal{A}(V_{g_i}) \), then by the convexity of the complement components of the hypersurface amoeba \(\mathcal{A}(V_{g_i}) \), we can find a vector direction \(w \) such that \((x + \nu w) \) is outside \(\mathcal{A}(V_{g_i}) \) for all small positive numbers \(\nu \). Hence, \((x + \nu w) \) is outside \(\mathcal{A}(V) \) for all small positive number \(\nu \). This is in contradiction with our hypotheses. Let \(d_i \) be the distance between \(x \) and the boundary of \(\mathcal{A}(V_{g_i}) \), and \(\rho = \min\{d_i\}_{i=1}^l \). It is claire that the ball of center \(x \) and radius \(\rho \) is contained in the amoeba \(\mathcal{A}(V) \) (because it is contained in all the hypersurface amoebas \(\mathcal{A}(V_{g_i}) \)). This contradict the fact that \(x \) is in the boundary of the amoeba \(\mathcal{A}(V) \). Hence, there exists a vector direction \(v \) such that \((x + \varepsilon v) \notin \mathcal{A}(V) \) for all small positive real numbers \(\varepsilon \).

We can remark that for any point \(x \in \partial \mathcal{A}(V) \) there exists an open subset of unit vector directions for which the property of Claim A is true. Indeed, if there exists a vector direction \(v \) such that \((x + \varepsilon v) \notin \mathcal{A}(V) \) for all small positive real numbers \(\varepsilon \), and as our amoeba is the intersection of a finite number of hypersurface amoeba, then there exists \(s \) with \(1 \leq s \leq l \) such that \(x \in \partial \mathcal{A}(V_{g_i}) \). Since any complement component of the complement of \(\mathcal{A}(V_{g_i}) \) is convex, then there exists an open neighborhood \(V_{\varepsilon} \) of unit vector directions of \(v \) such that \((x + \varepsilon V_{\varepsilon}) \cap \mathcal{A}(V_{g_i}) \) is empty for all small positive real number \(\varepsilon \). Hence, \((x + \varepsilon V_{\varepsilon}) \cap \mathcal{A}(V) \) is empty for all small positive real numbers \(\varepsilon \).

We will use the following definitions:
Definition 2.1. An analytic subset \mathcal{I} in \mathbb{R}^n of codimension 1 is said to be locally convex if and only if for any point $x \in \mathcal{I}$ there exists an open n-dimensional ball $B(x, \rho) \subset \mathbb{R}^n$ of radius ρ and center x and a connected component of $B(x, \rho) \setminus \mathcal{I}$ which is convex. As the convexity is a local property, this means that \mathcal{I} is the boundary of a convex subset in \mathbb{R}^n.

Recall that an n-dimensional subset $\mathcal{V} \subset \mathbb{R}^n$ is said to be locally convex if for any point $x \in \mathcal{V}$ there exists an n-dimensional ball $B(x, \mu)$ of center x and radius μ contained in \mathcal{V}.

A subset X of \mathbb{R}^n is convex if for any affine line π in \mathbb{R}^n, the intersection $X \cap \pi$ has at most one connected component. In other words, the intersection $X \cap \pi$ contains all intervals with boundary in $X \cap \pi$. If the points of X are viewed as 0-cycles, then the convexity of X means that if a and b are two 0-cycles homologous in X, then they are also homologous in $X \cap \pi$ where π is the line containing a and b. Write $\tilde{H}_s(X, \mathbb{Z})$ for the reduced integral homology of a space X with integral coefficients. This is the kernel of the map $\deg: \tilde{H}_s(X, \mathbb{Z}) \to \tilde{H}_s(pt, \mathbb{Z})$ induced by the map $X \to pt$ to a point.

Definition 2.2. A subset X of a vector space V is k-convex if for any affine $(k+1)$-plane π, the maps $\tilde{H}_k(\pi \cap X, \mathbb{Z}) \to \tilde{H}_k(X, \mathbb{Z})$ induced by the inclusions are injective.

This global statement generalizing convexity was found by André Henriques [H-03]. Moreover, Henriques showed that the complement of the amoeba of a codimension r variety is weakly $(r-1)$-convex. Namely, a non-negative $(r-1)$-cycle non homologue to zero in the intersection of a r-plane with the complement of the amoeba is also an $(r-1)$-cycle non homologue to zero in the complement of the amoeba itself (see Theorem 4.1 [H-03]).

Lemma 2.1. Let $V \subset (\mathbb{C}^*)^n$ be a generic algebraic variety of codimension r such that $n \leq 2(n-r)$. Assume there exists a finite number of polynomials $\{g_i\}_{i=1}^l$ such that $\mathcal{A}(V) = \bigcap_{i=1}^l \mathcal{A}(V_{g_i})$. Then, for any point $x \in \partial \mathcal{A}(V)$, there exist a connected open neighborhood $U_x \subset \partial \mathcal{A}(V)$ of x, g_s with $1 \leq s \leq l$, and a connected component \mathcal{C} of $\partial \mathcal{A}(V_{g_s})$ such that $U_x \subset \mathcal{C}$.

Proof. As the variety V is generic and its codimension r satisfies the inequality $n \geq 2r$, then $\mathcal{A}(V)$ necessarily has a boundary of dimension $n-1$, which is the same dimension as the boundaries of all the hypersurface amoebas $\mathcal{A}(V_{g_i})$. As the point x is in the boundary $\partial \mathcal{A}(V)$, by Claim A, we know that there is a vector direction (which we can assume unit) such that $(x+\varepsilon v) \cap \mathcal{A}(V)$ is empty for all small positive real numbers ε. By the remark made in the same claim, there exists s with $1 \leq s \leq l$ such that $x \in \partial \mathcal{A}(V_{g_s})$. We claim that there exists an open neighborhood $U_x \subset \partial \mathcal{A}(V)$ of x such that U_x is also contained in the boundary of $\mathcal{A}(V_{g_s})$. Assume on the contrary that for any open neighborhood U_x of x in $\partial \mathcal{A}(V)$, the set U_x is not contained in $\partial \mathcal{A}(V_{g_s})$ (i.e., U_x intersect the interior of $\mathcal{A}(V_{g_s})$). Then for any point y close to x and contained in $\mathcal{A}(V_{g_s}) \cap \partial \mathcal{A}(V)$, there exists an
open n-dimensional ball $B(y, \rho_y) \subset \mathbb{R}^n$ with center y such that

$$B(y, \rho_y) \cap \mathcal{A}(V) = B(y, \rho_y) \cap \left(\bigcap_{i \in \{1, \ldots, l\} \setminus s} \mathcal{A}(V_{g_i}) \right).$$

Namely, the set $\{g_1, \ldots, g_s, \ldots, g_l\}$ is a local basis of $\mathcal{A}(V)$ at y. Now, by the same reasoning as in Claim A, there exists u with $1 \leq u \leq l$ and $u \neq s$ such that $y \in \partial \mathcal{A}(V_{g_u})$. Using induction on l (more precisely, induction on the number of hypersurface amoebas), we can assume that for any point $y \in \partial \mathcal{A}(V)$ close to x there exists an open neighborhood U_y of y in $\partial \mathcal{A}(V)$ with $U_y \subset \partial \mathcal{A}(V_{g_u})$ for some $u \leq l$ and $u \neq s$. Indeed, if this property is not satisfied for some y, by the same reasoning done for the point x we can drop the number of local basis functions by one until we arrive to a hypersurface amoeba. It means that there exists an open neighborhood W_x of x in $\partial \mathcal{A}(V)$ (may be smaller than U_x) such that $W_x \setminus \{x\}$ is covered by at most l open subsets where each of them is contained in a hypersurface amoeba (their number cannot exceed l because of the convexity of a hypersurface amoeba complement). As $\partial \mathcal{A}(V_{g_u})$ are convex in the sense of Definition 2.1 and l is finite, there exists an open n-dimensional ball $B(x, \nu) \subset \mathbb{R}^n$ with center x and a hyperplane \mathcal{H}_x containing x such that $B(x, \nu) \cap \mathcal{A}(V)$ is contained in only one side of \mathcal{H}_x. This contradict the fact that the complement of the amoeba $\mathcal{A}(V)$ is $(r - 1)$-convex. Hence, there exists an open neighborhood $U_x \subset \partial \mathcal{A}(V)$ of x such that U_x is also contained in the boundary of $\mathcal{A}(V_{g_u})$ for some s.

\[\square \]

Proof of Theorem 1.1 for $n \geq 2r$. With the same notation as above, assume that $r > 1$. Then $\partial \mathcal{A}(V)$ has only one noncompact connected component $\mathcal{C}(V)$ (i.e., unbounded connected component). Indeed, by Bergman [B-71] (see also Bieri and Groves [BG-84]) the logarithmic limit set of an algebraic variety of codimension r is $(n - r - 1)$-dimensional (i.e., its dimension is strictly less than $n - 2$). So, the complement of the amoeba $\mathcal{A}(V)$ in \mathbb{R}^n has only one noncompact connected component. Assume x is contained in the noncompact connected component $\mathcal{C}(V)$ of the boundary of $\mathcal{A}(V)$. Lemma 2.1 shows that $\mathcal{C}(V)$ is locally convex viewed as the graph of a function (this is a fact of the convexity of the complement components of hypersurface amoebas). As the convexity is a local property, i.e., a subset of a vector space is globally convex if and only if it is locally convex, this implies that $\mathcal{C}(V)$ is globally convex. This contradict the fact that the logarithmic limit set of an algebraic variety of codimension r is $(n - r - 1)$-dimensional. Also, this contradict the higher convexity of the complement components of the amoeba $\mathcal{A}(V)$. In fact, if a subset of \mathbb{R}^n is k-convex with nontrivial k-homology, then it can never be convex. Namely, we know that the homology of degree $(r - 1)$ of the unbounded complement of the amoeba $\mathcal{A}(V)$ is nontrivial. This is a consequence of the injection of the $(r - 1)$-homology of the complement of its logarithmic set in the sphere S^{n-1} into the $(r - 1)$-homology of the complement of the amoeba.
Lemma 2.2. Let \(V \subset (\mathbb{C}^*)^n \) be a generic algebraic variety of codimension \(r \) such that \(n > 2(n - r) \). Assume there exists a finite number of polynomials \(\{g_i\}_{i=1}^{l} \) such that \(\mathcal{A}(V) = \bigcap_{i=1}^{l} \mathcal{A}(V_{g_i}) \). Then, the complement of the amoeba \(\mathcal{A}(V) \) contains a component which is not \((r - 1)\)-convex.

Proof. In this case, the amoeba \(\mathcal{A}(V) \) may have or may not have a boundary. The variety \(V \) is generic, and its codimension \(r \) satisfies the inequality \(n < 2r \), means that \(\mathcal{A}(V) \) is \(2(n - r) \)-dimensional i.e., its dimension is strictly less than the dimension of the ambient space \(\mathbb{R}^n \). Let \(x \) be a point in \(\mathcal{A}(V) \), and for simplicity assume that \(x \) is a smooth point of the amoeba. The amoeba \(\mathcal{A}(V) \) is \(2(n - r) \)-dimensional, and \(2(n - r) < n \) implies that for a small open neighborhood \(U_x \) of \(x \) in \(\mathcal{A}(V) \) there exists a unit vector direction \(v \) not in the tangent space of \(\mathcal{A}(V) \) at \(x \) such that \((U_x + \varepsilon v) \cap \mathcal{A}(V) \) is empty for all small positive numbers \(\varepsilon \). The same reasoning as in Lemma 2.1 shows that there exists \(s \) with \(1 \leq s \leq l \) such that \((U_x + \varepsilon v) \cap \mathcal{A}(V_{g_s}) \) is empty for all small positive numbers \(\varepsilon \). Hence, \(U_x \) is contained in the boundary of the hypersurface amoeba \(\mathcal{A}(V_{g_s}) \). As the \(\partial \mathcal{A}(V_{g_s}) \) is locally convex in the sense of Definition 2.1, then there exists a hyperplane \(H_x \subset \mathbb{R}^n \) passing throughout the point \(x \) such that for a small ball \(B(x, \rho) \subset \mathbb{R}^n \) the set \(\partial \mathcal{A}(V_{g_s}) \cap B(x, \rho) \) is contained in only one side of \(H_x \). Let \(L_x \subset H_x \) be an \(r \)-dimensional plane containing \(x \). Let \(\mathcal{A}^c(V) := \mathbb{R}^n \setminus \mathcal{A}(V) \) i.e., the complement of the amoeba in \(\mathbb{R}^n \). Now it is claire that there exists an \((r - 1)\)-cycle \(\gamma \) in \(L_x \) (which we can assume positive in the sense of Henriques’s Definition 3.3 in [H-03] non homologue to zero in \(L_x \cap \mathcal{A}^c(V) \). In fact, take a small \((r - 1)\)-dimensional sphere in \(L_x \) centered at \(x \). As \(r < n \) (i.e., \(V \) is not a set of points), the cycle \(\gamma \) bounds an \(r \)-chain in \(\mathcal{A}^c(V) \) (because a small neighborhood of \(x \) in the amoeba \(\mathcal{A}(V) \) is contained in only one side of the hyperplane \(H_x \)). This means that the homology class of \(\gamma \) in \(H_{r-1}(\mathcal{A}^c(V)) \) is trivial. This contradict the higher convexity of the complement of the amoeba \(\mathcal{A}(V) \) (see [H-03]).

\(\square \)

If the codimension \(r \) of the variety \(V \) satisfies \(n > 2(n - r) \), then Theorem 1.1 is a consequence of Lemma 2.2.

Remark 2.1.

(a) Let \(\{g_j\}_{j=1}^{r} \) be a generator set of the defining ideal \(\mathcal{I}(V) \) of an algebraic variety \(V \). As a consequence of the proof of Theorem 1.1 in [NP-11], the degree of the polynomials \(f \in \mathcal{I}(V) \) such that \(\mathcal{A}(V) = \bigcap_{f \in \mathcal{I}(V)} \mathcal{A}(V_f) \) can always be bounded by \(2\max_{j=1}^{r} \{\deg(g_j)\} \).

(b) Using the higher convexity of coamoeba complements proved by Sottile and I in [NS-13], the statement of Theorem 1.1 is valid if we replace amoebas by coamoebas.

3. Example of a generic affine line in \((\mathbb{C}^*)^3\)

The amoeba of a generic line \(L \) in \((\mathbb{C}^*)^3\) is a surface with Figure 1 or without boundary Figure 2 (it depends if it is real or not real, see [NP-11] for more details). By Lemma 2.2 if the amoeba \(\mathcal{A}(L) \) of \(L \) is the intersection of a finite number of hypersurface amoeba, then it is locally a convex surface.
because it is locally contained in the boundary of a hypersurface amoeba \(A(V_{g_s}) \). Namely, if \(x \) is a point in \(A(L) \), then there exists \(1 \leq s \leq l \) and an open neighborhood \(U_x \) of \(x \) in \(A(L) \) which is contained in \(\partial A(V_{g_s}) \). Hence, the convexity of the complement of the hypersurface amoeba \(A(V_{g_s}) \) implies that there exists a 1-cycle \(\gamma \subset \mathcal{H}_x \) such that the class of \(\gamma \) in \(H_1(A(L)^c \cap \mathcal{H}_x, \mathbb{Z}) \) is different than zero, where \(\mathcal{H}_x \) is a hyperplane in \(\mathbb{R}^3 \) which separate locally at \(x \) the boundary \(\partial A(V_{g_s}) \) of the amoeba \(A(V_{g_s}) \) (i.e., locally in a small neighborhood of \(x \), the boundary \(\partial A(V_{g_s}) \) is situated in only one side of \(\mathcal{H}_x \)). But \(\gamma \) bounds a topological disk in \(A(L)^c \). This contradict the 1-convexity of \(A(L)^c \) in \(\mathbb{R}^3 \). Hence, the amoeba of a generic line in the space can never be the intersection of a finite number of hypersurface amoebas.

\[
\text{Figure 1.} \quad \text{The amoeba of the real line in } (\mathbb{C}^*)^3 \text{ given by the parametrization } \rho(z) = (z, z + \frac{1}{2}, z - \frac{3}{2}). \quad \text{In this case, the amoeba is topologically the closed disk without four points of its boundary.}
\]

\[
\text{Figure 2.} \quad \text{The amoeba of non real line in } (\mathbb{C}^*)^3 \text{ given by the parametrization } \rho(z) = (z, z + 1, z - 2i). \quad \text{In this case, the amoeba is topologically the Riemann sphere without four points.}
\]
4. Characterization of hypersurface amoeba boundaries

Given a smooth algebraic hypersurface $V \subset (\mathbb{C}^*)^n$, F. Schroeter and T. de Wolff give a characterization of the boundary of hypersurface amoeba $\mathcal{A}(V)$ up to singular points of the set of critical values of the logarithmic map restricted to V (see Theorem 1.3 in [SW-13]). In this section, we will refine their theorem and give a very short proof of it. Let us start by giving some definitions and notation.

Let us denote by Log the coordinatewise logarithmic map, i.e., the map from the complex algebraic torus into \mathbb{R}^n defined as follows:

$$
\text{Log} : (\mathbb{C}^*)^n \rightarrow \mathbb{R}^n \quad (z_1, \ldots, z_n) \mapsto (\log |z_1|, \ldots, \log |z_n|).
$$

We denote by $\text{Crit}_p(\text{Log}|_V)$ (resp. $\text{Crit}_v(\text{Log}|_V)$) the set of critical points (resp. critical values) of the logarithmic map restricted to V.

Let $V \subset (\mathbb{C}^*)^n$ be a complex algebraic hypersurface defined by a polynomial f and nowhere singular. The logarithmic Gauss map of the hypersurface V is a rational map from all $V \setminus \text{Crit}_v(\text{Log}|_V)$ to \mathbb{P}^{n-1} defined as follows:

$$
\gamma : V \setminus \text{Crit}_v(\text{Log}|_V) \rightarrow \mathbb{P}^{n-1} \\
z \mapsto \gamma(z) = [z_1 \frac{\partial f}{\partial z_1}(z) : \cdots : z_n \frac{\partial f}{\partial z_n}(z)].
$$

We have the following commutative diagram:

$$
\begin{array}{ccc}
V & \xrightarrow{\gamma} & \mathbb{P}^{n-1} \\
\cup & \uparrow & \uparrow \\
\text{Crit}_p(\text{Log}|_V) & \xrightarrow{\gamma_c} & \mathbb{R}^{n-1} \\
\text{Log} & \downarrow & \downarrow \\
\text{Crit}_v(\text{Log}|_V), & \xrightarrow{g} & \\
\end{array}
$$

where \cup denotes the natural inclusion, g is the usual Gauss map defined on the smooth part of $\text{Crit}_v(\text{Log}|_V)$, and $\gamma_c = \gamma|_{\text{Crit}_p(\text{Log}|_V)}$ (i.e., the restriction of γ to the set of critical points $\text{Crit}_p(\text{Log}|_V)$ of the logarithmic map).

Definition 4.1. A point x in $\text{Crit}_v(\text{Log}|_V)$ is called regular if and only if $\text{Log}^{-1}(x) \cap V$ is contained in the set of regular points of the restriction of the logarithmic Gauss map to $\text{Crit}_p(\text{Log}|_V)$ (i.e., $\text{Log}^{-1}(x) \cap V$ contains no critical point of γ).

Remark 4.1.

(i) A singular point of $\text{Crit}_v(\text{Log}|_V)$ can be a regular point in the sense of Definition 4.1. Moreover, a non regular point in the sense of Definition 4.1 is necessarily a singular point of $\text{Crit}_v(\text{Log}|_V)$;

(ii) The degree of the extension of γ to the compactification \overline{V} of V in the projective space $\mathbb{C}P^n$ is equal to $n!\text{Vol}(\Delta_f)$, i.e., the cardinality
of $\gamma^{-1}(y)$ for a generic point y is finite and equal to $n! \text{Vol}(\Delta_f)$ (see [M-00]);

(iii) The inverse image of a regular point $x \in \text{Crit} V$ by the logarithmic map is a finite number of points. But the inverse image by the logarithmic map of a non regular point can be of positive dimension (see the example of the hyperbola in Section 5).

(iv) In the case of plane curves, the logarithmic Gauss map $\nabla V \to \mathbb{C}P^1$ is a branched covering where the branching points are the points of logarithmic inflection (in other words, inflection after taking the holomorphic logarithm); see [M-00].

Let $x \in \text{Crit} V$ be a regular point contained in the image by the logarithmic map of the local holomorphic branches $B_1(x), \ldots, B_s(x)$, and we denote by $C_1(x), \ldots, C_s(x)$ their corresponding real branches of critical values passing through x. Recall that the $C_i(x)$’s are the image of the critical points inside the corresponding holomorphic branches and $C_i(x)$ can be empty if the local branch $B_i(x)$ is regular (i.e., does not intersect $\text{Crit} \log |V|$). In general, if V is not smooth, it can happen that a critical value branch $C_i(x)$ has dimension strictly less than $(n-1)$ and then x is necessarily contained in the interior of the amoeba. So, throughout this section, we assume that the dimension of $C_i(x)$ is equal to $(n-1)$ for all i (i.e., we can assume V singular but we consider only the set of smooth points of V). We denote by $v_i(x)$ the normal vector to $C_i(x)$ (if it is nonempty) pointed inside the local amoeba $\mathcal{A}(B_i(x))$ of $B_i(x)$ (the existence of $v_i(x)$ is assured by the regularity of x). We have the following:

Lemma 4.1. Let V be a complex algebraic hypersurface. Let x be a point in the boundary of the amoeba $\partial \mathcal{A}(V)$. Then the set $(\log^{-1}(x) \cap V)$ is contained in $\text{Crit} \log |V|$.

Proof. Assume there exists a component C_x of $\log^{-1}(x) \cap V$ which is not critical. This means that there exists $z \in V$ such that $\log(z) = x$ and z is a regular point of the logarithmic map (i.e., the Jacobian $\text{Jac}(\log |V|)_z$ of the logarithm map restricted to V at the point z has maximal rank). The fact that the set of regular points of the logarithmic map is an open subset of V, implies that there exists an open subset U_z in V containing z, such that $\log |V|_z$ is a submersion. Hence, the point x must be in the interior of the amoeba and not in its boundary. This contradict our hypothesis on x. □

Lemma 4.2. Let V be a complex algebraic hypersurface. Let x be a regular point of $\text{Crit} V$. Then with the above notation, the following statements are equivalent:

(i) The point x is in $\partial \mathcal{A}(V)$;

(ii) The convex hull of the vectors $\{v_i(x)\}_{i=1}^s$ does not contain the origin and the intersection of each holomorphic branch $B_i(x)$ with $\log^{-1}(x)$ is contained in $\text{Crit} \log |V|$.

Proof. (i) \implies (ii). As $x \in \partial \mathcal{A}(V)$, then there exists a vector direction v such that $(x + \varepsilon v) \notin \mathcal{A}(V)$ for all small strictly positive numbers ε (see Claim A). This is equivalent to the fact that there exists η such that for
any strictly positive number $\varepsilon \leq \eta$ the vector $(x + \varepsilon v)$ is outside the convex hull of $\{x, (x + v_i(x))_{i=1}^s\}$. Indeed, if there exists a sequence ε_m such that $(x + \varepsilon_m v)$ is contained in the convex hull of $\{x, (x + v_i(x))_{i=1}^s\}$, then the fact that the number of branches is finite (because V is algebraic), implies that for a small ε, the vector $(x + \varepsilon v)$ is contained in the local amoeba of some local holomorphic branch $B_i(x)$, and then $(x + \varepsilon v)$ is contained in the amoeba itself. This contradict the choice of v, and then x must be a vertex of the convex hull of $\{x, (x + v_i(x))_{i=1}^s\}$. This means that the convex hull of the vectors $\{v_i(x)\}_{i=1}^s$ does not contain the origin. Finally, the fact that all the local holomorphic branches $B_i(x)$ intersect $\text{Crit}(\log |V|)$ with $x \in \mathcal{C}_i(x)$ is a consequence of Lemma \ref{lem:amoeba}.

$(ii) \implies (i)$. All the local holomorphic branches $B_i(x)$ intersect $\text{Crit}(\log |V|)$ with $x \in \mathcal{C}_i(x)$ and the convex hull of the vectors $\{v_i(x)\}_{i=1}^s$ does not contain the origin means that x is not in the convex hull of the vectors $\{(x + v_i(x))\}_{i=1}^s$. This implies that there exists a vector direction v not in the convex hull of $\{v_i(x)\}_{i=1}^s$ such that $(x + \varepsilon v) \notin \mathcal{A}(V)$ for any positive number ε. In fact, if for any vector direction v, the vector $(x + \varepsilon v)$ is contained in $\mathcal{A}(V)$ means that for any v there exists a local holomorphic branch $B_i(x)$ such that $(x + \varepsilon v)$ is contained in the local amoeba of $B_i(x)$ for any small strictly positive number ε. As the number of local holomorphic branches is finite, then the point x must be in the interior of the convex hull of $\{(x + v_i(x))\}_{i=1}^s$. This contradict our hypothesis and then the point x is in the boundary of the amoeba of V.

\begin{flushright}
\Box
\end{flushright}

Theorem 4.1. Let V be a complex algebraic hypersurface and x be a regular point in $\text{Crit}(\log |V|)$ with $(\log^{-1}(x) \cap V) \subset \text{Crit}(\log |V|)$. Then the convex hull of the vectors $\{v_i(x)\}_{i=1}^s$ does not contain the origin if and only if $x \in \partial \mathcal{A}(V)$. In other words, the convex hull of the vectors $\{v_i(x)\}_{i=1}^s$ contains the origin if and only if the point x is contained in the interior of the amoeba.

\begin{flushright}
\Box
\end{flushright}

Proof. Let x be a point of $\text{Crit}(\log |V|)$ such that the set $(\log^{-1}(x) \cap V) \subset \text{Crit}(\log |V|)$ and suppose the convex hull of $\{(x + v_i(x))\}_{i=1}^s$ contains x. This means that for any unit vector direction v and for all small positive numbers ε we have $(x + \varepsilon v) \in \mathcal{A}(V)$, which is equivalent to the fact that x is contained in the interior of the amoeba $\mathcal{A}(V)$. If the convex hull of the vectors $\{v_i(x)\}_{i=1}^s$ does not contain the origin, by Lemma \ref{lem:amoeba} and the hypothesis of our theorem, the point x is in the boundary of the amoeba $\partial \mathcal{A}(V)$.

\begin{flushright}
\Box
\end{flushright}

5. Example of a non regular point in $\text{Crit}(\log |V|)$

Let \mathcal{H} be the real algebraic plane curve (hyperbola) parametrized as follows:

$$
\rho : \mathbb{C}^* \setminus \{-1, -\frac{1}{6}\} \longrightarrow (\mathbb{C}^*)^2
$$

$$
z \longmapsto \rho(z) = -\frac{z + \frac{1}{6}}{z + 1}.
$$

\begin{flushright}
\Box
\end{flushright}
Its amoeba has a non regular critical value x_0, called a pinching point by Mikhalkin (Remark 10, [M-00]). The inverse image of the point $x_0 = (-\log \frac{3}{2}, \log |\sqrt{\frac{3}{8}}|)$ by the logarithmic map in \mathcal{H} is a non geodesic circle (i.e., $\mathcal{H} \cap \text{Log}^{-1}(x_0)$ is a circle but not geodesic in the flat torus $(S^1)^2 = \text{Log}^{-1}(x_0)$). As the set of critical points of the logarithmic map and the argument maps coincides (see [M-00]), we can check the fact that $\mathcal{H} \cap \text{Log}^{-1}(x_0)$ is a circle by looking to the coamoeba of \mathcal{H}. The set of critical values of the argument map is a non geodesic circle \mathcal{C} which has two different real points (i.e., intersect the finite real subgroup $(\mathbb{Z}_2)^2$ of the hall real torus in two points) union the isolated point (π, π). The circle \mathcal{C} is also critical for the logarithmic Gauss map γ_c. More precisely, there are two real branches \mathcal{B}_1 and \mathcal{B}_2 of critical points intersecting \mathcal{C} in two different real points contained in two different quadrants of $(\mathbb{R}^*)^2$, namely the quadrants $(+, -)$ and $(-, +)$. The image of each branch by the logarithmic map has an inflection point at x_0.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{amoeba.png}
\caption{the amoeba and the coamoeba of the real hyperbola in $(\mathbb{C}^*)^2$ with defining polynomial $f(z, w) = \frac{1}{6} + z + w + zw$.}
\end{figure}

References

[B-71] G. M. Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157, (1971), 459-469.

[BG-84] R. Bieri and J.R.J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347, (1984), 168-195.

[BGSS-07] T. Bogart, A.N. Jensen, D. Speyer, B. Sturmfels, and R.R. Thomas, Computing tropical varieties, J. Symb. Comp. 42, (2007), no. 1-2, 54-73.

[GKZ-94] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinski, Discriminants, resultants and multidimensional determinants, Birkhäuser Boston 1994.

[HT-09] K. Hept and T. Theobald, Tropical bases by regular projections. Proc. Amer. Math. Soc., 137(7), 2233-2241, 2009.

[IMS-07] I. Itenberg, G Mikhalkin, and E. Shustin, Tropical Algebraic Geometry, volume 35 of Oberwolfach Seminars Series. Birkhäuser, 2007.

[H-03] A. Henriques, An analogue of convexity for complements of amoebas of varieties of higher codimensions, Advances in Geometry, Adv. Geom. 4, (2003), 61-73.

[MS-09] D. Maclagan and B. Sturmfels, Introduction to tropical geometry. Book in progress, available in Bernd Sturmfels Homepage.
[M-00] G. Mikhalkin, *Real algebraic curves, moment map and amoebas*, Ann.of Math. **151** (2000), 309-326.

[NP-11] M. Nisse and M. Passare, *(Co)Amoebas of linear spaces*, Preprint, arXiv: 1205.2808.

[NS-11] M. Nisse and F. Sottile, *The phase limit set of a variety*, Algebra & Number Theory, **7**, (2013), 339–352.

[NS-13] M. Nisse and F. Sottile, *Higher convexity of coamoeba complements and higher solidity of amoebas*, preprint.

[P-08] K. Purbhoo, *A Nullstellensatz for amoebas*, Duke Math. J. **141**, (2008) no. 3, 407-445.

[SW-13] F. Schroeter and T. de Wolff, *The boundary of amoebas*, preprint, arXiv: 1310.7363.

School of Mathematics KIAS, 87 Hoegiro Dongdaemun-gu, Seoul 130-722, South Korea.

E-mail address: mounir.nisse@gmail.com