Evidence for Mass-dependent Circumstellar Disk Evolution in the 5 Myr-old Upper Scorpius OB Association

John M. Carpenter¹
Eric E. Mamajek²
Lynne A. Hillenbrand¹
Michael R. Meyer³

ABSTRACT

We present 4.5, 8, and 16 µm photometry from the Spitzer Space Telescope for 204 stars in the Upper Scorpius OB Association. The data are used to investigate the frequency and properties of circumstellar disks around stars with masses between ∼0.1 and 20 M☉ at an age of ∼5 Myr. We identify 35 stars that have emission at 8 µm or 16 µm in excess of the stellar photosphere. The lower mass stars (∼0.1-1.2 M☉) appear surrounded by primordial optically thick disks based on the excess emission characteristics. Stars more massive than ∼1.8 M☉ have lower fractional excess luminosities suggesting that the inner ∼10 AU of the disk has been largely depleted of primordial material. None of the G and F stars (∼1.2-1.8 M☉) in our sample have an infrared excess at wavelengths ≤16 µm. These results indicate that the mechanisms for dispersing primordial optically thick disks operate less efficiently on average for low mass stars, and that longer time scales are available for the buildup of planetary systems in the terrestrial zone for stars with masses ≤1 M☉.

Subject headings: open clusters and associations: individual(Upper Scorpius OB1) — planetary systems:protoplanetary disks — stars:pre-main sequence

¹California Institute of Technology, Department of Astronomy, MC 105-24, Pasadena, CA 91125
²Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-42, Cambridge, MA 02138
³Steward Observatory, The University of Arizona, 933 North Cherry Ave., Tucson, AZ 85721
1. Introduction

Most young (\(\sim 1 \text{ Myr}\)) stars embedded within molecular clouds are surrounded by circumstellar accretion disks (Strom et al. 1989) that are potential sites of planet formation. The ubiquity of disks extends to all masses from as high as 10\(M_\odot\) down through brown dwarfs, and in all environments from isolated stars in Taurus to dense clusters in Orion (Lada et al. 2000; Bouy et al. 2006).

By an age of 10 Myr, the primordial disks so ubiquitous around young stars change dramatically. The inner disk (\(\lesssim 1 \text{ AU}\)) dissipates in >90% of stars (Mamajek et al. 2004), accretion rates drop by an order of magnitude (Muzerolle et al. 2000), and the mass contained in small dust grains declines by at least a factor of four (Liu et al. 2004; Carpenter et al. 2005). Results from the Spitzer Space Telescope (Werner et al. 2004) demonstrate an even more striking degree of evolution, as dust within a \(\sim 1 \text{ AU}\) orbital radius is found in only a few percent of \(\sim 10\) Myr stars (Silverstone et al. 2006). MIPS 24\(\mu\)m surveys have detected dust in 7–48% of 10–30 Myr stars (Young et al. 2004; Rieke et al. 2005; Chen et al. 2005), but with fractional dust luminosities orders of magnitude below that found in younger sources. Together these observations have established that circumstellar disks are at an advanced evolutionary stage by an age of \(\sim 10\) Myr.

Key to understanding the formation of planetary systems is examining the evolution of circumstellar disks after the main accretion phase has terminated. To measure the properties of disks during this epoch for stellar masses ranging from 0.1 to 20\(M_\odot\), we have conducted a photometric survey of 205 stars with spectral types between M5 and B0 in the 5 Myr-old Upper Scorpius OB association using the IRAC, IRS, and MIPS instruments on Spitzer. This Letter presents analysis of the IRAC and IRS photometry to probe for terrestrial-zone material across the stellar mass spectrum at a constant age.

2. Sample Selection

The parent sample for this program was selected from previous membership studies of the Upper Sco OB association. We compiled members identified based on (a) Hipparcos astrometry (B, A, F, and G stars; de Zeeuw et al. 1999), (b) optical color–magnitude diagrams and spectroscopic verification of lithium (G, K, and M stars; Preibisch & Zinnecker 1999; Preibisch et al. 2002), and (c) x–ray sources subsequently verified as lithium-rich, pre-main-sequence stars (G, K, & M stars; Walter et al. 1994; Martín 1998; Preibisch et al. 1998; Kunkel 1999; Köhler et al. 2000). Since these studies identified Upper Sco members based on stellar properties (proper motion, strong lithium, x–ray emission) rather then those linked
to circumstellar material (e.g. Hα emission, near-infrared excess), we believe that our sample is not biased for or against the presence of a circumstellar disk.

The parent sample was cross-matched with the Hipparcos (Perryman & ESA 1997), Tycho–2 (Høg et al. 2000), and UCAC2 (Zacharias et al. 2004) proper motion catalogs where possible. Using the Madsen (2002) kinematic model for Upper Sco, we computed the probability that a given star has a proper motion consistent with membership in the association (see e.g. Mamajek et al. 2002). Any star that deviated more than 2σ from the proper motion model was removed, as was any star with an inferred cluster parallax distance more than 45 pc from the mean Upper Sco distance (where the line-of-sight depth of the association is ∼30 pc; Preibisch & Zinnecker 1999). We also removed stars located in projection against the ρ Oph molecular cloud, which is near Upper Sco and contains stars with ages of <1 Myr. These criteria yielded 341 Upper Sco members with spectral type M5 and earlier.

The aim was to populate five quasi-logarithmically-spaced mass bins with 50 stars each. In paring the list, we (a) removed stars requiring > 20 cycles with MIPS to detect the photosphere at 24µm, (b) dropped sources where a nearby star compromised the 2MASS photometry, (c) removed stars with the highest 70µm background levels, and (d) avoided sources observed by other Spitzer programs. The final source list consists of 205 stars: 48 stars with masses between 0.1 and 0.2 M⊙ (corresponding to spectral types of ∼M3-M5), 50 between 0.2 and 0.4 M⊙ (M0.5-M3), 42 between 0.4 and 1.8 M⊙ (F0-M0.5), 50 between 1.8 and 3.0 M⊙ (B5-F0), and 15 more massive than 3 M⊙ (earlier than B5). The final source list does not constitute a complete sample of stars, but should be a representative population of Upper Sco.

Preibisch & Zinnecker (1999) estimated an age of 5 Myr for a x-ray-selected sample of stars in Upper Sco as inferred from D’Antona & Mazzitelli (1994) pre-main sequence evolutionary tracks after allowing for binaries. This age is consistent with the nuclear (5-6 Myr; de Geus et al. 1989) and dynamical (4.5 Myr; Blaauw 1991) age of the high mass stars. Moreover, Preibisch & Zinnecker (1999) find that the intrinsic age spread within the association is less than 2 Myr. We therefore adopt an age of 5 Myr for Upper Sco, but recognize that the age is uncertain by at least 1-2 Myr depending on the choice of model evolutionary tracks.

1One source, HIP 80112, was observed only with MIPS and is not further discussed.
3. Observations and Data Reduction

IRAC (4.5µm and 8µm, Fazio et al. 2004) observations for 204 stars and IRS peak-up-imaging (PUI; 16µm, Houck et al. 2004) data for 195 stars were obtained with the Spitzer Space Telescope. IRS PUI observations were not attempted for nine B-stars since the detector would have saturated on the stellar photosphere. Exposure times ranged from 0.02 to 12 seconds for IRAC and from 6 to 30 seconds for IRS PUI depending on the stellar brightness estimated from 2MASS photometry. At least nine dither positions were obtained per band, and the number was increased as needed to achieve a minimum signal to noise ratio on the stellar photosphere of 50 for IRAC and 20 for IRS PUI.

Data analysis was performed on the Basic Calibrated Data images produced by the S14 pipeline for IRAC and S13 for IRS PUI. Photometry was measured on individual frames using a modified version of IDLPHOT. For IRAC, we adopted an aperture radius of 3 pixels (1 pixel = 1.22") and a sky annulus between 10 and 20 pixels. For IRS PUI, we used an aperture radius of 2 pixels (1 pixel = 1.8") and a sky annulus between 5 and 8 pixels. A multiplicative aperture correction of 1.110, 1.200, and 1.316 was applied to the IRAC 4.5µm, IRAC 8µm, and IRS 16µm flux densities to place the photometry on the calibration scale described in the IRAC and IRS data handbooks. Photometric corrections at the few percent level were applied to the IRAC data to account for distortion and variations in the effective bandpass across the detector (Reach et al. 2005). Internal photometric uncertainties were computed as standard deviation of the mean of measurements made on individual frames. We adopted a minimum uncertainty of 1.22, 0.66, and 0.58% for 4.5µm, 8µm, and 16µm respectively based on repeatability achieved for bright stars.

We incorporate into the analysis 14 solar-type stars in Upper Sco from the FEPS Spitzer Legacy Program (Meyer et al. 2006) that were selected for that study based on criteria similar to those stated in §2. We exclude the FEPS source HD 143006 since this star was recognized as a Upper Sco member based on an IRAS excess (Odenwald 1986) and thus would bias the sample. The FEPS IRAC data were processed using the above procedures. FEPS did not obtain IRS PUI observations.

Table 1 lists the sources, spectral types, Spitzer fluxes, and internal uncertainties for the 218 stars analyzed here. The uncertainties do not include calibration uncertainties of 2% for IRAC (Reach et al. 2005) and 6% for IRS PUI as quoted in the IRS data handbook\(^2\). Five sources are flagged in Table 1 where the curve of growth at 16µm deviates from

\(^2\)The calibration factors adopted here are 0.1388 and 0.2021 MJy/sr per DN/s for IRAC 4.5µm and 8µm and 0.01375 MJy/sr per e\(^{-1}\)/sec for IRS 16µm PUI.
a point source by more than 4% for the adopted aperture radius, indicating that the flux measurement may include contributions from a second source.

4. Sources with Infrared Excesses

Color-color diagrams for the Upper Sco sources are presented in Figure 1. The top panel shows the 8\(\mu\)m to 4.5\(\mu\)m flux ratio (\(\equiv R_8\)) as a function of the \(J - H\) color, and the bottom panel shows the 16\(\mu\)m to 4.5\(\mu\)m flux ratio (\(\equiv R_{16}\)). In both panels, most sources lie along a tight locus that is assumed to represent emission dominated by reddened stellar photospheres. However, several sources have large values of \(R_8\) or \(R_{16}\) diagnostic of 8\(\mu\)m or 16\(\mu\)m emission in excess of the photosphere.

Since the scatter in the observed colors is likely dominated by factors not easily quantified on a star-by-star basis, we determined empirically a threshold to identify sources with intrinsic infrared excesses. A linear relation was fitted between \(\log R_{16}\) and \(J - H\). Any outliers more distant than four times the RMS of the fit residuals were removed, and the fit was repeated until no additional outliers were identified. A similar fit was performed between \(\log R_8\) and \(J - H\) after removing all \(R_{16}\) outliers.

The RMS residuals from the final linear fit were 1.9% and 5.7% for \(R_8\) and \(R_{16}\) respectively. A source was identified with an infrared excess if \(R_8\) or \(R_{16}\) exceeded the fitted relation by both four times the RMS of the fit residuals and four times the internal uncertainty in the flux ratio. We further required that a large value of \(R_8\) or \(R_{16}\) does not result from extinction as determined from \(B, V\) and 2MASS photometry, spectral types, and the Mathis (1990) extinction law.

Excesses were inferred toward 35 sources as indicated in Table 1: 29 at 8\(\mu\)m and 33 at 16\(\mu\)m. The 16\(\mu\)m excess sources include [PBB2002] USco J161420.2−190648, which saturated the IRS detector. HIP 78207 and [PZ99] J161411.0−230536 have 8\(\mu\)m excesses but were not observed at 16\(\mu\)m. An IRS spectrum of the latter source shows a clear excess at this wavelength (Carpenter et al. 2007), and HIP 78207 exhibits IRAS excesses at 12\(\mu\)m and 25\(\mu\)m (Oudmaijer et al. 1992).

5. Discussion

The excess properties of the Upper Sco sources are not uniform across spectral type as demonstrated in Figure 1. The 8\(\mu\)m excess fraction for K+M stars (24/127) is higher than for B+A stars (5/61) at the 92% confidence level and higher than for F+G stars (0/30)
at 99.2% confidence as determined from the two-tailed Fisher’s Exact Test. At 16\(\mu\)m, the K+M excess fraction (23/121) is similar to that for B+A stars (10/52), but higher than for F+G stars (0/22) at 97.5% confidence.

More telling differences between early and late spectral types are observed in the magnitude of the excesses. Nine B+A stars have a \(R_{16}\) color excess less than twice the stellar photosphere, while all K+M sources exceed this limit with excesses up to 27 times the photospheric level. Similarly, at 8\(\mu\)m, all but two B+A excess sources have a \(R_{8}\) excess less than 10% of the photosphere, while 23 of the 24 K+M excess sources have larger color excesses.

In Figure 2, we assess the evolutionary state of the circumstellar disks in Upper Sco by comparing normalized, dereddened spectral energy distributions (SEDs) for stars in Upper Sco with a sample of well known T Tauri (Hartmann et al. 2005) and Herbig Ae/Be (Hillenbrand et al. 1992) stars that have tabulated photometry. The Taurus and Herbig Ae/Be objects are expected to represent young stars surrounded by primordial, optically thick, circumstellar accretion disks.

As shown in Figure 2, the SEDs for B and A stars in Upper Sco differ substantially from most Herbig Ae/Be stars. Herbig Ae/Be stars typically have excesses at wavelengths as short as 2\(\mu\)m and have fractional excess luminosities that are 10-100 times the photosphere at 10-20\(\mu\)m. By comparison, only one B or A star in Upper Sco has a \(K\)-band excess (HIP 78207), and the fractional excess luminosity at 16\(\mu\)m is typically less than twice the photosphere.

Surprisingly, none of the F and G stars in our Upper Sco sample exhibit a detectable excess. While Chen et al. (2005) identified a 24\(\mu\)m excess around one of five F+G stars in Upper Sco, and the G6 V star HD 143006 is surrounded by an optically thick disk (Sylvester et al. 1996), overall infrared excesses at wavelengths \(\leq\) 16\(\mu\)m are relatively rare for this spectral type range at the age of Upper Sco.

The results for the B, A, F, and G stars imply that the reservoir of small dust grains in a primordial, optically thick, inner disk have been largely depleted by an age of 5 Myr for \(\sim\)1-20\(M_{\odot}\) stars. The inner-disk radius inferred by the weak (or lack-of) excess emission at 16\(\mu\)m is \(\sim\)4-10 AU for 6000-10,000 K photospheres assuming optically thin, blackbody dust emission (Jura 2003). These results are consistent with the low fraction of accreting B and A stars found in the 4 Myr-old Trumpler 37 cluster (Sicilia-Aguilar et al. 2006) and the 5 Myr-old Orion OB1b association (Hernández et al. 2006). However, Hernández et al. (2006) found that 7 of 11 F-stars in Orion OB1b contain 24\(\mu\)m excesses consistent with a debris disk, suggesting that the excess fraction for F and G-stars in Upper Sco may increase once our longer wavelength observations are obtained.
In contrast to the massive stars, the K and M stars in Upper Sco with infrared excesses have characteristics similar to optically thick primordial disks. As discussed above and demonstrated in Figure 2, the K+M stars have larger fractional excesses than the B+A stars, and the magnitude of the excesses overlaps with that observed toward Class II stars in Taurus. A further connection between the disks in Upper Sco and Taurus is found by considering evidence for disk accretion as traced by Hα emission. Of the 100 stars in our sample with measured Hα line strengths (see references in §2), nine have Hα equivalent widths consistent with accretion according to the criteria recommended by White & Basri (2003). Eight of these nine sources have an infrared excess and are therefore likely surrounded by accretion disks. We note however that the Hα equivalent widths for 14 K+M stars with excesses are consistent with active chromospheres. These similarities suggest that many of the K+M stars in Upper Sco remain surrounded by optically thick disks. Assuming optically thick blackbody emission, the 4.5µm and 8µm excesses may imply the presence of dust at radii as small as ~0.05 AU (Jura 2003).

Differences in the excess characteristics between the ~1-2 Myr-old Taurus and 5 Myr Upper Sco populations are notable since they may reflect temporal evolution in the disk properties. While the magnitude of the excesses overlaps between the two samples, the excesses are larger on average for Taurus as seen in Figure 2. Furthermore, about half of the stars in Taurus exhibit a K-band excess (Strom et al. 1989) compared to only two (1.5%) K+M stars in Upper Sco ([PBB2002] USco J161420.2−190648 and [PZ99] J160421.7−213028). Similarly, while 68% of the stars in Taurus exhibit a 3.6µm excess (Haisch et al. 2001), only 19±5% of K+M stars in Upper Sco have a 8µm excess. Therefore, not only are there fewer sources with disks in Upper Sco, but the disks that remain lack the hot dust found in younger stars. Sicilia-Aguilar et al. (2006) found similar tendencies for the low mass population in Trumpler 37 compared to Taurus. They attribute these differences to grain growth or dust settling in the inner disk, although further observations and modeling are needed to explore the relevance of these ideas to stars in Upper Sco.

To summarize, 19% of K0-M5 stars in Upper Sco possess infrared excesses similar to Class II sources in Taurus, indicating primordial disks last around an appreciable number of 0.1-1 M⊙ stars for at least 5 Myr. By contrast, only ~1% of the more massive stars in Upper Sco contain such disks within an orbital radius of ~4-10 AU. Similar results have been reported for the 4 Myr-old Trumpler 37 cluster (Sicilia-Aguilar et al. 2006), and the 2-3 Myr-old IC 348 cluster may also contain a higher fraction of disks around later type stars (Lada et al. 2006). Our observations of Upper Sco extend these conclusions to the full range of stellar masses down to the hydrogen burning limit at an age of ~5 Myr. These results establish that warm dust in the terrestrial zone persist for longer times around stars with masses < 1 M⊙.
JMC would like to thank the Spitzer Science Center staff for patiently answering numerous questions regarding Spitzer data. EEM is supported by a Clay Postdoctoral Fellowship through the Smithsonian Astrophysical Observatory. MRM acknowledges support by NASA through the NASA Astrobiology Institute under cooperative agreement CAN-02-OSS-02 issued through the Office of Space Science. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research made use of the SIMBAD database, operated at CDS, Strasbourg, France. This paper made use of data products from the Two Micron All Sky Survey, which is a joint project of the U. Massachusetts and the Infrared Processing and Analysis Center/Caltech, funded by NASA and the NSF.

REFERENCES

Blaauw, A. 1991, in The Physics of Star Formation and Early Stellar Evolution, C. J. Lada & N. D. Kylafis, (Dordrecht:Kluwer), 125

Bouy, H., Heêlama, N., Martín, E. L., Barrado y Navascués, D., Sterzik, M., & Pantin, E. 2006, A&A, in press

Carpenter, J. M., et al. 2007, in preparation

Carpenter, J. M., Wolf, S., Schreyer, K., Launhardt, R., & Henning, T. 2005, AJ, 129, 1049

Chen, C. H., Jura, M., Gordon, K. D., & Blaylock, M. 2005, ApJ, 623, 493

de Geus, E. J., de Zeeuw, P. T., & Lub, J. 1989, A&A, 216, 44

Fazio, G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10

D’Antona, F., & Mazzitelli, I. 1994, ApJS, 90, 467

Haisch, K. E., Jr., Lada, E. A., & Lada, C. J. 2001, ApJ, 553, L153

Hartmann, L., Megeath, S. T., Allen, L., Luhman, K., Calvet, N., D’Alessio, P., Franco-Hernandez, R., & Fazio, G. 2005, ApJ, 629, 881

Hernández, J., Briceño, C., Calvet, N., Hartmann, L., Muzerolle, J., & Quintero, A. 2006, astro-ph/0607562

Hillenbrand, L. A., Strom, S. E., Vrba, F. J., & Keene, J. 1992, ApJ, 397, 613
Høg, E., et al. 2000, A&A, 355, L27

Houck, J., Roellig, T., van Cleve, J., et al. 2004, ApJS, 154, 18

Houk, N. 1982, in Michigan Spectral Survey Volume 3 (Ann Arbor: Dept. Astron., Univ. Mich.)

Houk, N., & Smith-Moore, M. 1988, in Michigan Spectral Survey Volume 4 (Ann Arbor: Dept. Astron., Univ. Mich.)

Jura, M. 2003, ApJ, 584, L91

Köhler, Kunkel, M., Leinert, C., & Zinnecker, H. 2000, A&A, 356, 541

Kunkel M., 1999, Ph.D. Thesis, Julius–Maximilians–Universität Würzburg

Lada, C. J., Muench, A. A., Haisch, K. E., Lada, E. A., Alves, J. F., Tollestrup, E. V., & Willner, S. P. 2000, AJ, 120, 3162

Lada, C. J., et al. 2006, AJ, 131, 1574

Liu, M. C., Matthews, B. C., Williams, J. P., & Kalas, P. G. 2004, ApJ, 608, 526

Madsen, S., Dravins, D., & Lindegren, L. 2002, A&A, 381, 446

Mamajek, E. E., Meyer, M. R., & Liebert, J. 2002, AJ, 124, 1670

Mamajek, E. E., Meyer, M. R., Hinz, P. M., Hoffmann, W. F., Cohen, M., & Hora, J. L. 2004, ApJ, 612, 496

Martín, E. L. 1998, AJ, 115, 351

Mathis, J. S. 1990, ARA&A, 28, 37

Meyer, M. R., et al. 2006, PASP, submitted

Muzerolle, J., Calvet, N., Briceño, C., Hartmann, L., & Hillenbrand, L. 2000, ApJ, 535, L47

Odenwald, S. F. 1986, ApJ, 307, 711

Oudmaijer, R. D., van der Veen, W. E. C. J., Waters, L. B. F. M., Trams, N. R., Wailkens, C., Engelsman, E. 1992, A&AS, 96, 625

Perryman, M. A. C., & ESA 1997, The Hipparcos and Tycho catalogues. ESA SP Series Vol. 1200
Preibisch, T., Brown, A. G. A., Bridges, T., Guenther, E., & Zinnecker, H. 2002, AJ, 124, 404
Preibisch, T., Guenther, E., & Zinnecker, H. 2001, AJ, 121, 1040
Preibisch, T., & Zinnecker, H. 1999, AJ, 117, 2381
Preibisch, T., Guenther, E., Zinnecker, H., Sterzik, M., Frink, S., & Roeser, S. 1998, A&A, 333, 619
Reach, W. T., Megeath, S. T., Cohen, M., et al. 2005, PASP, 117, 978
Rieke, G. H., et al. 2005, ApJ, 620, 1010
Sicilia-Aguilar, A., et al. 2006, ApJ, 638, 897
Silverstone, M. D., et al. 2006, ApJ, 639, 1138
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451
Sylvester, R. J., Skinner, C. J., Barlow, M. J., & Mannings, V. 1996, MNRAS, 279, 915
Walter, F. M., Vrba, F. J., Mathieu, R. D., Brown, A., & Myers, P. C. 1994, AJ, 107, 692
Werner, M., Roellig, T., Low, F., et al. 2004, ApJS, 154, 1
White, R., & Basri, G. 2003, ApJ582, 1109
Young, E. T., et al. 2004, ApJS, 154, 428
Zacharias, N., Urban, S. E., Zacharias, M. I., Wycoff, G. L., Hall, D. M., Monet, D. G., & Rafferty, T. J. 2004, AJ, 127, 3043
de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., & Blaauw, A. 1999, AJ, 117, 354

This preprint was prepared with the AAS LATEX macros v5.2.
Fig. 1.— Color-color diagrams showing $J - H$ along the abscissa, tracing the stellar photosphere, and the 8μm to 4.5μm flux ratio (top panel) and 16μm to 4.5μm flux ratio (bottom) along the ordinate, diagnostic of circumstellar disks. Dashed lines indicate the thresholds adopted to identify sources with infrared excesses, corresponding to a color excess above the photosphere of 8% (top panel) and 25% (bottom). Black circles represent sources identified with a 8μm or 16μm excess, and gray circles are sources without a detectable excess. The open circle represents ScoPMS 17 for which the 16μm excess is questionable based on possible source confusion (see Table 1). The internal uncertainties in the Spitzer flux ratios are all smaller than the symbol size, and the median $J - H$ uncertainty is 0.036 mag. The source [PBB2002] USco J161420.2−190648, which has an excess at both 8μm and 16μm, is offscale on these plots. The reddening vector from Mathis (1990) is indicated.
Fig. 2.— Dereddened spectral energy distributions for B+A (top), F+G, K, and M (bottom) stars. Gray circles represent Upper Sco sources that do not have a detectable excess at wavelengths $\leq 16\mu$m, and open circles are sources with an excess in one or more bands. Plus-symbols represent Herbig Ae/Be stars (B, A, and F spectral types) and Class II sources in Taurus (G, K, and M spectral types) listed in Hillenbrand et al. (1992) and Hartmann et al. (2005). The SEDs have been normalized to J-band, and a random offset has been added to the wavelengths to illustrate the distribution of points.
Table 1. Observed IRAC and IRS Fluxes

Source	SpT	SpT Ref	IRAC 4.5µm^a	IRAC 8µm^b	IRS 16µm^{c,d}	Excess?				
			S_ν (mJy)	σ (mJy)	S_ν (mJy)	σ (mJy)	S_ν (mJy)	σ (mJy)	8µm	16µm
HD 142987	G4	MML	181.3	2.2	67.9	0.4	19.9	0.1	N	N
HD 147810	G1	MML	228.9	2.8	82.0	0.8	26.3	0.2	N	N
HD 149598	G0	MML	113.0	1.4	41.4	0.3	12.9	0.1	N	N
HIP 76071	B9V	H88	277.0	3.4	93.2	0.8	27.4	0.2	N	N
HIP 76310	A0V	H88	247.6	3.0	88.8	0.8	89.4	0.5	N	Y
HIP 76633	B9V	H88	179.4	2.2	63.2	0.4	19.9	0.1	N	N
HIP 77457	A7V	H82	224.4	2.7	77.0	0.9	23.0	0.1	N	N
HIP 77545	A2/3V	H88	130.0	1.6	46.8	0.3	16.1	0.1	N	N
HIP 77635	B1.5Vn	H88	2070.8	25.3	698.9	4.6	N	...
HIP 77815	A5V	H88	257.0	3.1	89.4	0.8	27.5	0.2	N	N
HIP 77840	B2.5Vn	H88	2055.2	25.1	691.2	4.6	N	...
HIP 77858	B5V	H88	1256.5	15.3	432.6	2.9	131.8	0.8	N	N
HIP 77859	B2V	H88	1403.0	17.1	605.2	4.0	259.0	1.5	Y	Y
HIP 77900	B7V	H82	519.9	6.3	174.8	1.2	51.1	0.3	N	N
HIP 77909	B8III/IV	H88	675.1	8.2	229.6	1.5	68.4	0.4	N	N
HIP 77911	B9V	H88	379.8	4.6	132.1	0.9	76.2	0.4	N	N
HIP 77960	A4IV/V	H88	209.6	2.6	70.3	0.8	21.6	0.1	N	N
HIP 78099	A0V	H88	254.5	3.1	86.5	0.8	28.7	0.2	N	N
HIP 78104	B2IV/V	H82	2790.4	34.0	938.7	6.2	N	...
HIP 78168	B3V	H88	898.8	11.0	302.9	2.0	89.3	0.5	N	N
HIP 78196	A0V	H88	268.0	3.3	91.0	0.8	26.5	0.2	N	N
HIP 78207	B8Ia/Iab	H88	4019.5	49.0	2268.5	15.0	Y	...
HIP 78233	F2/3IV/V	H88	153.3	1.9	54.7	0.4	16.2	0.1	N	N
HIP 78246	B5V	H88	932.4	11.4	315.5	2.1	91.6	0.5	N	N
HIP 78265	B1V+B2V	H88	7050.9	86.0	2327.1	15.4	N	...
HIP 78483	G0V	H82	185.3	2.3	67.5	0.4	19.4	0.1	N	N
HIP 78494	A2mA7-F2	H88	316.2	3.9	108.8	0.8	33.3	0.2	N	N
HIP 78530	B9V	H88	317.5	3.9	107.9	0.8	32.2	0.2	N	N
HIP 78549	B9.5V	H88	301.2	3.7	102.2	0.8	30.8	0.2	N	N
HIP 78702	B9V	H88	239.5	2.9	82.7	0.8	25.9	0.1	N	N
HIP 78809	B9V	H88	213.1	2.6	72.8	0.9	21.9	0.1	N	N
HIP 78820	B0.5V	H88	12417.1	151.5	4108.3	27.1	N	...
HIP 78847	A0V	H88	261.7	3.2	91.2	0.8	27.2	0.2	N	N

^a Upper Sco sources from this study

^b a, b, and c refer to the references.
Table 1—Continued

Source	SpT	SpT Ref	IRAC 4.5μm^a	IRAC 8μm^b	IRS 16μm^{c,d}	Excess?				
			S_ν (mJy)	σ (mJy)						
HIP 78877	B8V	H88	758.9	9.3	261.8	1.7	78.4	0.5	N	N
HIP 78933	B1V	H88	3990.0	48.7	1329.6	8.8	N	...
HIP 78956	B9.5V	H88	242.2	3.0	84.1	0.8	30.1	0.2	N	N
HIP 78963	A9V	H82	225.5	2.8	75.2	0.8	23.9	0.1	N	N
HIP 78968	B9V	H88	206.6	2.5	66.9	0.8	26.5	0.2	N	N
HIP 78996	A9V	H88	237.8	2.9	90.1	0.9	45.5	0.3	Y	Y
HIP 79083	F3V	H88	415.2	5.1	144.1	1.0	44.6	0.3	N	N
HIP 79097	F3V	H88	244.6	3.0	86.1	0.8	25.9	0.1	N	N
HIP 79124	A0V	H88	299.4	3.7	103.2	0.8	30.8	0.2	N	N
HIP 79156	A0V	H88	203.1	2.5	75.3	0.8	35.7	0.2	Y	Y
HIP 79250	A3III/IV	H88	233.2	2.8	79.9	0.9	27.0	0.2	N	N
HIP 79366	A3V	H88	234.9	2.9	78.7	0.9	24.0	0.1	N	N
HIP 79374	B2IV	H88	5570.8	70.2	1938.4	12.8	N	...
HIP 79392	A2IV	H88	181.2	2.2	63.9	0.4	18.7	0.1	N	N
HIP 79404	B2V	H88	1745.3	21.3	597.6	3.9	174.3	1.0	N	N
HIP 79410	B9V	H88	279.1	3.4	104.6	0.8	59.4	0.3	Y	Y
HIP 79439	B9V	H88	305.4	3.7	109.6	0.8	44.5	0.3	N	Y
HIP 79462	G2V	H88	232.0	2.8	84.4	1.0	29.5	0.2	N	N
HIP 79530	B6IV	H88	652.9	8.0	222.1	1.5	65.0	0.4	N	N
HIP 79606	F6	H88	286.3	3.5	101.9	0.8	29.8	0.2	N	N
HIP 79643	F2	H88	117.9	1.4	42.1	0.3	14.8	0.1	N	N
HIP 79644	F5	H88	76.5	0.9	27.1	0.2	8.12	0.07	N	N
HIP 79733	A1m9-F2	H82	126.9	1.5	44.3	0.3	12.9	0.1	N	N
HIP 79739	B8V	H88	291.4	3.6	99.3	0.8	29.0	0.2	N	N
HIP 79771	B9V	H88	277.8	3.4	96.0	0.9	27.9	0.2	N	N
HIP 79785	B9V	H88	443.9	5.4	153.6	1.0	45.7	0.3	N	N
HIP 79860	A0V	H82	127.6	1.6	44.7	0.3	12.9	0.1	N	N
HIP 79878	A0V	H82	268.9	3.3	93.7	0.8	45.2	0.3	N	Y
HIP 79897	B9V	H88	287.2	3.5	97.1	0.8	30.2	0.2	N	N
HIP 80024	B9IV/III	H88	368.2	4.5	126.1	0.8	61.6	0.4	N	Y
HIP 80059	A7III/IV	H88	191.3	2.3	70.9	0.5	20.6	0.1	N	N
HIP 80898	A9V	H88	143.5	1.8	53.1	0.3	23.4	0.1	N	Y
HIP 80130	A9V	H88	215.0	2.6	70.8	0.8	21.6	0.1	N	N
HIP 80311	A0V	H82	121.7	1.5	42.6	0.3	12.2	0.1	N	N
Source	SpT	SpT Ref	IRAC 4.5μm	IRAC 8μm	IRS 16μm	Excess?				
------------------------	-----------	---------	------------	----------	----------	---------				
HIP 80324	A0V+A0V	H82	282.6	98.7	31.1	N				
HIP 80338	B8I	H88	431.9	152.1	52.1	N				
HIP 80493	B9V	H82	285.2	97.8	29.2	N				
HIP 80896	F3V	H82	201.5	68.3	21.7	N				
HIP 81266	B0V	H82	6240.2	2090.3	13.8	N				
HIP 82319	F3V	H88	133.3	46.7	13.7	N				
HIP 82397	A3V	H82	220.5	75.9	27.8	N				
[PBB2002] USco J155624.8-222555	M4	P02	22.8	18.7	22.1	N				
[PBB2002] USco J155625.7-224027	M3	P02	16.4	6.11	2.00	N				
[PBB2002] USco J155629.5-225657	M3	P02	15.9	5.97	1.98	N				
[PBB2002] USco J155655.5-225839	M0	P02	36.5	13.9	4.25	N				
[PBB2002] USco J155706.4-220066	M4	P02	15.1	10.0	8.43	N				
[PBB2002] USco J155729.9-225843	M4	P02	11.4	6.65	6.52	N				
[PBB2002] USco J155746.6-222919	M3	P02	15.7	5.82	4.93	N				
[PBB2002] USco J155829.8-231007	M3	P02	17.6	14.1	22.8	N				
[PBB2002] USco J155918.4-221042	M4	P02	24.2	8.96	2.99	N				
[PBB2002] USco J160159.7-195219	M5	P01	6.77	2.62	0.85	N				
[PBB2002] USco J160210.9-200749	M5	P01	7.00	2.67	0.89	N				
[PBB2002] USco J160222.4-195653	M3	P01	13.5	4.94	1.54	N				
[PBB2002] USco J160226.2-200241	M5	P01	11.1	4.04	1.41	N				
[PBB2002] USco J160245.4-193037	M5	P01	9.72	3.65	1.19	N				
[PBB2002] USco J160329.9-195503	M5	P01	10.0	3.73	1.17	N				
[PBB2002] USco J160341.8-200557	M2	P01	35.0	13.0	4.16	N				
[PBB2002] USco J160343.3-201531	M2	P01	28.7	10.9	3.38	N				
[PBB2002] USco J160350.4-194121	M5	P01	13.7	5.06	1.62	N				
[PBB2002] USco J160357.9-194210	M2	P01	23.9	20.1	27.2	N				
[PBB2002] USco J160418.2-191055	M4	P01	13.0	4.84	1.51	N				
[PBB2002] USco J160428.4-190441	M3	P01	47.0	17.4	5.61	N				
[PBB2002] USco J160435.6-194830	M5	P01	9.46	3.57	1.12	N				
[PBB2002] USco J160439.1-194245	M4	P01	11.9	4.39	1.52	N				
[PBB2002] USco J160449.9-203835	M5	P01	11.2	4.22	1.47	N				
[PBB2002] USco J160456.4-194045	M4	P01	12.5	4.66	1.46	N				
[PBB2002] USco J160502.1-203507	M2	P01	40.5	15.3	4.93	N				
[PBB2002] USco J160508.3-201531	M4	P01	33.9	12.5	4.13	N				
Table 1—Continued

Source	SpT	SpT Ref	IRAC 4.5μma	IRAC 8μmb	IRS 16μmc,d	Excess?	8μm	16μm
[PBB2002] USco J160516.1-193830	M4	P01	6.90 0.08	2.56 0.02	0.86 0.03	N	N	
[PBB2002] USco J160517.9-202420	M3	P01	51.8 0.6	19.4 0.1	6.12 0.06	N	N	
[PBB2002] USco J160521.9-193602	M1	P01	19.7 0.2	7.38 0.10	2.38 0.03	N	N	
[PBB2002] USco J160525.5-203539	M5	P01	11.8 0.1	6.18 0.04	4.85 0.04	Y	Y	
[PBB2002] USco J160528.5-201037	M1	P01	20.6 0.3	7.66 0.07	2.50 0.05	N	N	
[PBB2002] USco J160531.3-192623	M5	P01	6.66 0.08	2.55 0.02	0.81 0.02	N	N	
[PBB2002] USco J160532.1-193315	M5	P01	12.7 0.2	8.94 0.06	7.33 0.04	Y	Y	
[PBB2002] USco J160545.4-202308	M2	P01	21.2 0.3	18.0 0.1	22.3 0.1	Y	Y	
[PBB2002] USco J160600.6-195711	M5	P01	21.9 0.3	11.2 0.1	12.0 0.1	Y	Y	
[PBB2002] USco J160611.9-193532	M5	P01	18.0 0.1	12.5 0.03	1.28 0.04	N	N	
[PBB2002] USco J160619.3-192332	M5	P01	7.04 0.09	2.62 0.02	0.87 0.03	N	N	
[PBB2002] USco J160622.8-201124	M5	P01	10.4 0.1	7.02 0.05	14.7 0.1	Y	Y	
[PBB2002] USco J160628.7-200357	M5	P01	16.8 0.2	6.28 0.04	1.96 0.04	N	N	
[PBB2002] USco J160643.8-190805	K6	P01	52.3 0.6	25.2 0.2	15.4 0.1	Y	Y	
[PBB2002] USco J160647.5-202232	M2	P01	24.7 0.3	9.09 0.07	2.97 0.04	N	N	
[PBB2002] USco J160702.1-201938	M5	P01	11.9 0.1	7.66 0.05	8.67 0.07	Y	Y	
[PBB2002] USco J160704.7-201555	M4	P01	6.68 0.08	2.49 0.02	0.77 0.02	N	N	
[PBB2002] USco J160707.7-192715	M2	P01	29.1 0.4	10.8 0.1	3.65 0.07	N	N	
[PBB2002] USco J160708.7-192733	M4	P01	8.48 0.10	3.14 0.02	0.90 0.06	N	N	
[PBB2002] USco J160719.7-202055	M3	P02	12.3 0.1	4.68 0.03	1.52 0.04	N	N	
[PBB2002] USco J160739.4-191747	M2	P01	27.3 0.3	10.2 0.1	3.89 0.07	N	N	
[PBB2002] USco J160801.4-202741	K8	P01	40.4 0.5	15.3 0.1	4.75 0.03	N	N	
[PBB2002] USco J160801.5-192757	M4	P02	31.6 0.4	11.6 0.1	3.75 0.05	N	N	
[PBB2002] USco J160802.4-202233	M5	P01	15.4 0.2	5.71 0.04	1.83 0.04	N	N	
[PBB2002] USco J160804.3-194712	M4	P01	11.0 0.1	4.33 0.03	1.35 0.05	N	N	
[PBB2002] USco J160815.3-203811	M3	P02	12.4 0.2	4.62 0.03	1.49 0.05	N	N	
[PBB2002] USco J160818.4-190059	M3	P02	19.9 0.2	7.53 0.06	2.39 0.06	N	N	
[PBB2002] USco J160823.2-193001	K9	P01	47.0 0.6	44.7 0.3	67.7 0.4	Y	Y	
[PBB2002] USco J160823.5-191131	M2	P01	23.2 0.3	8.71 0.06	2.77 0.07	N	N	
[PBB2002] USco J160828.3-193551	M1	P01	47.5 0.6	17.9 0.1	5.57 0.06	N	N	
[PBB2002] USco J160825.1-201224	M1	P01	24.2 0.3	9.10 0.06	2.97 0.06	N	N	
[PBB2002] USco J160827.5-194904	M5	P01	17.2 0.2	11.1 0.1	8.75 0.05	Y	Y	
[PBB2002] USco J160843.1-190051	M4	P01	20.3 0.2	7.62 0.06	2.55 0.04	N	N	
[PBB2002] USco J160854.0-203417	M4	P02	25.3 0.3	9.41 0.11	3.09 0.05	N	N	
Table 1—Continued

Source Ref	Source	SpT	SpT Ref	IRAC 4.5μm	IRAC 8μm	IRS 16μm	Excess?																	
[PBB2002]	USco J160900.0-190836	M5	P02	14.1	0.2	12.1	0.1	17.2	0.1	Y	Y													
[PBB2002]	USco J160900.7-190852	K9	P01	56.4	0.7	68.5	0.5	188.6	1.1	Y	Y													
[PBB2002]	USco J160903.9-193944	M4	P02	17.7	0.2	6.69	0.04	2.23	0.05	N	N													
[PBB2002]	USco J160904.0-193359	M4	P02	13.0	0.2	4.93	0.04	1.66	0.04	N	N													
[PBB2002]	USco J160913.4-194328	M3	P01	13.9	0.2	5.22	0.03	1.73	0.08	N	N													
[PBB2002]	USco J160915.8-193706	M5	P01	6.93	0.09	2.53	0.02	0.88	0.04	N	N													
[PBB2002]	USco J160933.8-190456	M2	P01	27.7	0.3	10.5	0.1	3.24	0.05	N	N													
[PBB2002]	USco J160946.4-193735	M1	P01	30.5	0.4	11.5	0.1	3.50	0.07	N	N													
[PBB2002]	USco J160953.6-175446	M3	P02	8.55	0.10	7.00	0.05	8.13	0.05	Y	Y													
[PBB2002]	USco J160954.4-190654	M1	P01	31.4	0.4	12.1	0.1	4.02	0.03	N	N													
[PBB2002]	USco J160959.4-180009	M4	P01	24.2	0.3	25.7	0.2	66.0	0.4	Y	Y													
[PBB2002]	USco J161010.4-194539	M3	P01	16.4	0.2	6.18	0.04	2.08	0.09	N	N													
[PBB2002]	USco J161011.8-194603	M5	P02	7.79	0.10	3.04	0.02	1.07	0.03	N	N													
[PBB2002]	USco J161014.7-191909	M3	P02	22.6	0.3	8.84	0.08	2.99	0.07	N	N													
[PBB2002]	USco J161021.5-194132	M3	P02	28.8	0.4	10.7	0.1	3.54	0.04	N	N													
[PBB2002]	USco J161024.7-191407	M3	P01	18.1	0.2	6.94	0.05	2.18	0.07	N	N													
[PBB2002]	USco J161026.4-193950	M4	P02	19.8	0.2	7.42	0.05	2.48	0.05	N	N													
[PBB2002]	USco J161031.9-191305	K7	P01	60.0	0.7	23.5	0.2	7.21	0.07	N	N													
[PBB2002]	USco J161052.4-193734	M3	P02	12.7	0.2	4.84	0.04	1.78	0.06	N	N													
[PBB2002]	USco J161115.3-175728	M4	P01	47.3	0.6	17.9	0.1	5.67	0.05	N	N													
[PBB2002]	USco J161142.0-190648	K5	P02	606.5	7.4	614.1	4.1	sat	sat	Y	Y													
PPM 732705		G6	MML	82.0	1.0	30.0	0.2	9.02	0.05	N	N													
PPM 747651		G3	MML	78.9	1.0	29.1	0.2	8.91	0.06	N	N													
PPM 747978		G3	MML	69.9	0.9	25.4	0.2	8.10	0.11	N	N													
[PZ99]	J153557.8-232405	K3	P98	33.4	0.4	12.5	0.1	3.94	0.05	N	N													
[PZ99]	J154413.4-252258	M1	P98	94.4	0.6	19.0	0.1	5.89	0.03	N	N													
[PZ99]	J155106.6-240218	M2	K99	26.8	0.3	10.0	0.1	3.32	0.05	N	N													
[PZ99]	J155716.6-252918	M0	K99	60.2	0.7	22.3	0.1	7.01	0.09	N	N													
[PZ99]	J155750.0-230508	M0	K99	40.2	0.5	15.2	0.1	4.80	0.06	N	N													
[PZ99]	J155812.7-232835	G2	K99	117.7	1.4	43.1	0.3	15.9	0.1	N	N													
[PZ99]	J160000.7-250941	G0	K99	56.7	0.7	20.3	0.1	6.63	0.04	N	N													
[PZ99]	J160013.3-218180	M0	K99	33.5	0.4	12.6	0.1	4.39	0.08	N	N													
[PZ99]	J160031.3-202705	M1	K99	64.0	0.8	24.1	0.2	7.76	0.04	N	N													
Source	SpT	SpT Ref	IRAC 4.5µm \(\nu \) (mJy)	IRAC 8µm \(\nu \) (mJy)	IRS 16µm \(\nu \) (mJy)	Excess?																		
-------------------	-----	---------	-----------------------------	-----------------------------	-----------------------------	--------																		
			\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)	\(S_\nu \) (mJy)	\(\sigma \) (mJy)
[PZ99] J160042.8-212737	K7	K99	53.6 0.7	20.3 0.1	6.29 0.05	N	N																	
[PZ99] J160108.0-211318	M0	K99	66.0 0.8	25.3 0.2	8.04 0.06	N	N																	
[PZ99] J160147.4-204945	M0	K99	82.3 1.0	31.4 0.2	10.0 0.1	N	N																	
[PZ99] J160200.3-222123	M1	K99	64.0 0.8	24.1 0.2	8.03 0.06	N	N																	
[PZ99] J160239.1-254208	K7	P98	46.3 0.6	17.4 0.1	5.52 0.08	N	N																	
[PZ99] J160251.2-240156	K4	K99	50.5 0.6	19.1 0.1	6.01 0.04	N	N																	
[PZ99] J160354.9-203137	M0	K99	76.6 0.9	28.7 0.2	9.27 0.06	N	N																	
[PZ99] J160357.6-203105	K5	K99	191.9 2.3	106.4 0.7	292.7 1.7	Y	Y																	
[PZ99] J160421.7-213028	K2	K99	62.7 0.8	26.3 0.2	26.8 0.2	Y	Y																	
[PZ99] J160539.1-215200	M1	K99	32.6 0.4	12.4 0.1	4.21 0.05	N	N																	
[PZ99] J160612.5-203647	K5	K99	61.9 0.8	24.2 0.2	7.12 0.05	N	N																	
[PZ99] J160654.4-241610	M3	P98	61.7 0.8	23.1 0.2	6.99 0.05	N	N																	
[PZ99] J160703.9-191132	M1	K99	47.5 0.6	17.9 0.1	5.72 0.06	N	N																	
[PZ99] J160831.4-180241	M0	P98	54.2 0.7	20.8 0.1	6.41 0.06	N	N																	
[PZ99] J160856.7-203346	K5	P98	73.5 0.9	28.1 0.2	9.68 0.05	N	N																	
[PZ99] J160930.3-20459	M0	P98	54.4 0.7	20.8 0.1	6.66 0.04	N	N																	
[PZ99] J161302.7-225744	K4	P98	84.4 1.0	31.5 0.2	10.0 0.2	N	N																	
[PZ99] J161933.9-222828	K0	P98	77.6 0.9	30.3 0.2	8.60 0.05	N	N																	
RX J1548.0-2908	G9	K99	66.2 0.8	24.4 0.2	7.30 0.06	N	N																	
RX J1550.0-2312	M2	K99	61.8 0.8	22.9 0.2	7.32 0.04	N	N																	
RX J1550.9-2534	F9	K99	127.9 1.6	45.9 0.3	13.7 0.1	N	N																	
RX J1554.0-2920	M0	K99	68.4 0.8	25.4 0.2	8.04 0.05	N	N																	
RX J1558.1-2405A	K4	K99	52.9 0.6	19.8 0.1	5.98 0.04	N	N																	
RX J1600.7-2343	M2	K99	21.7 0.3	7.84 0.05	2.48 0.04	N	N																	
RX J1602.8-2401A	K0	K99	155.1 1.9	59.7 0.4	18.0 0.1	N	N																	
RX J1603.6-2245	G9	MML	242.2 3.0	87.9 0.8	28.0 0.2	N	N																	
ScoPMS 13	M1.5V	W94	65.7 0.8	24.5 0.2	7.49 0.07	N	N																	
ScoPMS 17	M1V	W94	60.8 0.7	23.5 0.2	12.4 0.3	N	N																	
ScoPMS 23	K5IV	W94	118.1 1.4	43.7 0.3	13.7 0.1	N	N																	
ScoPMS 28	M1V	W94	31.9 0.4	12.1 0.1	3.61 0.06	N	N																	
ScoPMS 29	M2V	W94	49.3 0.6	18.5 0.1	5.91 0.06	N	N																	
ScoPMS 31	M0.5V	W94	133.7 1.6	64.6 0.4	153.3 0.9	Y	Y																	
ScoPMS 32	M3V	W94	21.3 0.3	7.92 0.07	2.57 0.05	N	N																	
Table 1—Continued

Source	SpT	SpT Ref	IRAC 4.5μm^a	IRAC 8μm^b	IRS 16μm^{c,d}	Excess?		
			S_ν (mJy)	σ (mJy)	S_ν (mJy)	σ (mJy)	S_ν (mJy)	σ (mJy)
ScoPMS 45	K5IV	W94	78.5	1.0	30.7	0.2	9.66	0.06
HD 142361	G3V	H88	292.7	3.6	107.7	0.8
HD 146516	G0IV	W94	129.3	1.6	46.8	0.3
[PZ99] J155847.8-175800	K3	P98	93.2	1.1	35.3	0.2
[PZ99] J160814.7-190833	K2	P98	84.7	1.0	31.7	0.2
[PZ99] J161318.6-221248	G9	P98	204.7	2.5	76.8	0.5
[PZ99] J161329.3-231106	K1	P98	87.8	1.1	33.4	0.2
[PZ99] J161402.1-230101	G4	P98	75.3	0.9	28.2	0.2
[PZ99] J161411.0-230536	K0	P98	401.9	4.9	363.5	2.4
[PZ99] J161459.2-275023	G5	P98	63.3	0.8	23.8	0.2
[PZ99] J161618.0-233947	G7	P98	106.5	1.3	40.1	0.3
RX J1541.1-2656	G7	P98	51.1	0.6	19.0	0.1
RX J1600.6-2159	G9	P98	85.2	1.0	31.4	0.2
ScoPMS 21	K1IV	P98	76.1	0.9	28.7	0.2
ScoPMS 27	K2IV	P98	116.9	1.4	43.9	0.3

^aIRAC 4.5μm photometry measured using a flux calibration factor of 0.1388 MJy/sr per DN/s.
^bIRAC 8μm photometry measured using a flux calibration factor of 0.2021 MJy/sr per DN/s.
^cIRS 16μm PUI photometry measured using a flux calibration factor of 0.01375 MJy/sr per e[−]/s.
^dSaturated sources are listed as “sat”
^eAperture curve of growth deviates from a point source by more than 4%.
^fSaturated sources are listed as “sat”
^gSaturated sources are listed as “sat”

References. — H82: Houk (1982); H88: Houk & Smith-Moore (1988); K99: Kunkel (1999); K00: Köhler et al. (2000); MML: Mamajek, Meyer, & Liebert, unpublished; P98: Preibisch et al. (1998); P01: Preibisch et al. (2001); P02: Preibisch et al. (2002); W94: Walter et al. (1994)