This is a repository copy of Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/165613/

Version: Published Version

Article:
Harrison, C., Shao, H., Strutt, H. orcid.org/0000-0003-4365-2271 et al. (1 more author) (2020) Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochemical Society Transactions, 48 (4). pp. 1297-1308. ISSN 0300-5127

https://doi.org/10.1042/bst20190404

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core’ planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly *Drosophila melanogaster*, where the pathway is best characterised, an intercellular homo-dimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.

Introduction

Many cells require asymmetrical architecture — termed polarity — that allows structures to be compartmentalised within a cell in order to fulfil their function. Apicobasal polarity is common in many cell types such as neurons, where it enables unidirectional signal transduction, and epithelial cells, enabling unidirectional secretion. Cells can also be polarised in an orthogonal plane, which is termed planar polarity, also known as planar cell polarity (PCP). Planar polarity allows the placement of structures to be co-ordinated with the tissue axis and with neighbouring cells. Planar polarity is evolutionarily conserved [1] and has been reported in a range of tissues in both vertebrates and invertebrates, and is vital to proper tissue development and function. Examples of planar polarity enabled processes include cilia mediated convection currents in the oviduct, the arrangement of hair cells in the inner ear, and the overlapping nature of mammalian fur (reviewed in [2–4]). Planar polarity has been reported from as early as epiblast formation in zebrafish [5] and primitive endoderm formation in mouse [6]. Its loss is implicated in neural tube closure defects [7], spermatogenesis defects [8], deafness [9], and heart defects [10]. As such the underlying mechanisms are of broad interest.
At a molecular level, planar polarity principally involves the formation of intercellular complexes with heterologous components. Planar polarity can be genetically regulated by two well-characterised pathways: the Fat-Dachsous (Ft-Ds) pathway and the core planar polarity pathway (‘core pathway’, see Table 1). In the Ft-Ds pathway, the atypical cadherins Ft and Ds localise to opposite cell ends [11–13], where they interact intercellularly to form a heterophilic complex [14,15]. The Drosophila core pathway protein distribution consists of an intercellular homodimer of the atypical cadherin Flamingo (Fmi; also known as Starry Night [Stan]) [16] and asymmetric localisation of associated proteins (summarised in Figure 1A,C). The seven-pass transmembrane protein Frizzled (Fz) and the cytoplasmic proteins Dishevelled (Dsh) and Diego (Dgo) are found on one side of the Fmi homodimer [17–21], and on the other side are the four-pass transmembrane protein Strabismus (Stbm, also known as Van Gogh [Vang]) and the cytoplasmic protein Prickle (Pk) [22,23].

Due to simple husbandry, a small genome and fast reproductive cycle, the fruitfly Drosophila melanogaster has been at the forefront of genetic research for over a century. Readily accessible readouts of planar polarity in Drosophila include photoreceptor orientation within the eye (ommatidia), the organisation of surface bristles on the body, and wing hair (trichome) placement originating from distal cell edges (Figure 1A,D–F). Drosophila genetic tools allow for powerful and versatile experimental design. These include the rapid generation of transgenic animals, the ability to create mosaic mutants (Figure 1G,H) and the ability to express genes ectopically. These experimental paradigms have allowed for the robust assessment of the roles of particular gene products during development, including the elucidation of the genetic control of planar polarity. Here we primarily discuss mechanisms of planar polarity establishment in the developing Drosophila wing, which is a simple epithelial sheet, allowing easy imaging of fixed samples (Figure 1F–H), while also being accessible for live imaging.

Tissue level control of patterning in planar polarity

A pervading question within the planar polarity field regards the nature of a global cue to co-ordinate polarity with the tissue axis. Does it exist? And if so, what is it? Structures within epithelial sheets that are hundreds of cells wide are all co-ordinated to be planar polarised on parallel vectors. Global polarity of the Ft-Ds system appears to be based in part upon a vectorial gradient of Four-jointed (Fj) distribution, which is expressed in a graded fashion along the proximodistal axis of the developing wing [24,25]. Both Ft and Ds are phosphorylated by the kinase activity of Fj, with opposing effects on their heterophilic binding affinities. This results in phosphorylated Ft having an increased binding affinity for Ds, but phosphorylated Ds having a decreased affinity for binding Ft [26–28]. This leads to a local imbalance of Ft and Ds localisation within each cell, which in turn propagates to neighbouring cells. A 3% difference in Fj activity between neighbouring cells was found to be sufficient to generate Ft-Ds planar polarity in silico [28].

A global cue for the core pathway has been more elusive. Secreted Wnt ligands are known to bind to Fz receptors [29], and Wnts are expressed in gradients in the developing Drosophila wing [30–32]. Ectopic overexpression of Wnts can reorient trichomes in the wing [33]. However, an instructive role for Wnts in directing

Table 1 Planar polarity proteins in flies and vertebrates

Drosophila protein	Symbol	Vertebrate homologues
Ft-Ds pathway		
Fat	Ft	Fat
Dachsous	Ds	Dchs
Four-jointed	Fj	Fjx1
Core pathway		
Flamingo/Starry Night	Fmi/Stan	Celsr
Frizzled	Fz	Fz/Fzd
Strabismus/Van Gogh	Stbm/Vang	Vangl
Prickle	Pk	Pk
Dishevelled	Dsh	Dvl
Diego	Dgo	Diversin

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Figure 1. Principles of planar cell polarity.

(A) Schematic of localisation of core planar polarity pathway protein complexes in cells of the *Drosophila* pupal wing. Proximal localisation of Stbm (orange) and distal localisation of Fz (green) at apicolateral cell junctions leads to trichome (grey) emergence from distal cell edges. (B and C) Evolution of symmetry breaking cluster formation. (B) Fmi homodimers are stabilised by Fz localisation on one side of the complex at junctions between neighbouring cells. (C) Stbm localises to the apposing cell edge and the cytoplasmic proteins Pk, Dsh and Dgo localise proximally and distally in the complex as shown.
Figure 1. Principles of planar cell polarity.

(D) Image of dorsal surface of a wild-type Drosophila wing, showing uniform distal orientation of trichomes. Proximal is left, and anterior is up. (E) Image of dorsal surface of wing from a pok-r-sple13 mutant fly, showing a swirled trichome pattern. (F) Confocal microscope image of Drosophila pupal wing epithelium, immunolabelled for Fmi (green, localised preferentially to proximodistal cell boundaries) and showing actin-rich trichomes (red, emerging from distal cell edges). (G and H) Confocal microscope image of a Drosophila pupal wing epithelium genetically mosaic for dshflV26 mutant tissue, marked by loss of blue β-gal immunolabelling and outlined in white (G). Fmi (green) and Stbm (red, or white in H) are asymmetrically localised at proximodistal cell boundaries at the apicolateral cell junctions (left and right cell edges) in wild-type tissue, but lose this asymmetric localisation in mutant tissue. This shows that Dsh activity is required for planar polarisation of core pathway components such as Fmi and Stbm. (I–K) Molecurally asymmetric complexes (I) are sorted by feedback interactions (J) so that they all align in the same orientation (K). Complexes of opposite orientation are destabilised (red inhibitory symbols) and complexes of the same orientation are stabilised (black arrows).

trichome orientation has been difficult to demonstrate using loss-of-function mutations (reviewed in [34]). In addition, it has been proposed that the Ft-Ds system acts upstream of the core pathway, either by a direct interaction between the two pathways or by biasing microtubule orientation and Fz/Dsh transport distally within the cell (reviewed in [34]). Nevertheless, the Ft-Ds system only influences trichome orientation over part of the wing, suggesting that other factors must also contribute to generating the global cue for the core pathway. These have been suggested to include growth, morphogenesis and mechanical tension [4,34,35].

Molecular interactions of the core planar polarity pathway proteins

During pupal wing development, core pathway proteins are asymmetrically localised at the apico-lateral membrane, at the adherens zone. This polarisation is evident to some degree throughout development, but becomes more pronounced prior to trichome formation in the wing [36,37]. The establishment of core pathway planar polarity requires a first symmetry breaking step: the decision for Fz to accumulate distally and Stbm proximally around Fmi:Fmi homodimers at proximodistal cell boundaries (Figure 1C). In fmi mutant flies there is a reduction in Stbm and Pk at cell boundaries [22,23] and a loss of Fz, Dsh, and Dgo [17–20]. In fz mutant flies, Fmi is also mostly lost from the proximodistal cell boundaries and is observed at the apical cell membrane, suggesting that Fz is needed to stabilise Fmi homodimers [38]. Furthermore, Fmi appears to preferentially homodimerise when Fz is on only one side of the complex, suggesting that a Fz-Fmi:Fmi bridge is the backbone of the core pathway (Figure 1B) [38,39]. The cytosolic proteins and Stbm are required for the sorting of these asymmetric molecular bridges to a uniform orientation on proximodistal cell edges [17–20,22,23].

Beyond evidence that there is some polarised transport of Fz and Dsh distally on microtubule arrays [40,41], cellular mechanisms that sort the core proteins across the cell are not known. However, it has been reported that the core pathway proteins can self-organise. At cell boundaries in mosaic analysis experiments, fz mutant cells preferentially recruit Fz from their neighbours, whilst in the mutant cell Stbm localises to membranes opposing the wild-type neighbours, leading to a reversal of polarity on the distal side of the mosaic tissue [20,23,42,43]. This de novo planar polarity axis can extend across several cells suggesting an intracellular signal propagates away from the boundary cue [44].

Individual molecular interactions have been observed between many of the core pathway proteins. At least in vitro Stbm, Pk, Dsh, and Dgo can all interact with one another, while there also is evidence that Fmi may interact directly with Fz or Stbm, and Fz may interact with Stbm and Dsh (Table 2) [21–23,43,45–55]. Broadly speaking, these interactions are thought to underlie self-organisation, where complexes of the same orientation are stabilised, and complexes of opposite organisation are destabilised (Figure 11–K). Feedback mechanisms driven by selective stabilisation/destabilisation of intercellular complexes could serve to amplify any small polarity bias generated by a global cue, to generate robust polarity [56–59].

Some potential feedback mechanisms acting in core pathway self-organisation have been uncovered. Based on binding interactions, it was proposed that Dgo and Pk compete for binding to Dsh, with Dgo promoting Fz activity and Pk inhibiting it (Figure 2A) [22,49]. Consistent with this, more recent work has shown that Pk acts via Dsh to destabilise Fz in the same cell, and also acts to stabilise Fz via Stbm using trans-interactions in the neighbouring cell (Figure 2A, B) [60,61]. Furthermore, overexpression of Pk leads to the co-ordinated
internalisation of Pk, Stbm and Fmi, and if Fz is forced to accumulate on particular cell boundaries in genetic mosaics, Pk promotes exclusion of Stbm from these cell boundaries (Figure 2C) \[62\]. In addition, Dsh binding to the Fz-Fmi:Fmi-Stbm complex results in the stabilisation of Pk in the adjacent cell \[63\]: if Dsh is acutely depleted in one cell, free Pk in the adjacent cell then destabilises Dsh-Fz in this cell, and thus leads to a propagating wave of core complex destabilisation (Figure 2D) \[63\].

In the pupal wing, core pathway proteins are observed along the length of the proximodistal junctional membranes in uneven abundance, and these localised concentrations are termed ‘puncta’. Fluorescence recovery after photobleaching (FRAP) experiments on live in vivo wing junctions have shown that core proteins in these puncta are more stable than in the non-puncta regions \[64,65\]. The proteins within these puncta are also highly asymmetrically localised compared with neighbouring non-puncta regions \[62,64\]. These data support the idea of mutual exclusion of unsorted complexes: antiparallel complexes are excluded from uniformly oriented puncta, while sorted complexes are mutually stabilised (Figure 1J,K).

Strutt and Gamage \[65\] directly measured the stoichiometry of core pathway proteins in these puncta, by tagging each protein individually with EGFP and comparing intensity in live pupal wings. When compared with immunolabelled Fmi, signal intensity of all six core proteins increased linearly with puncta size. This supports the idea that all puncta have the same composition. The stoichiometry in puncta was determined to be two Fmi (trans-homodimer) with approximately two Dsh, one Fz, and one Dgo on the distal membrane, and six Stbm with one Pk on the proximal membrane of the adjoining cell (Figure 2G). Interestingly, this stoichiometry is consistent between stable puncta and unstable non-puncta regions within the same cell.

Notably, the stoichiometry of the cytoplasmic proteins in puncta is dependent on their expression levels \[65\]. For example, if Dsh was overexpressed, more was found within both stable puncta and unstable non-puncta regions. However, the other complex components maintained their normal ratios. Likewise, when Dsh levels were halved, the ratio within stable and unstable regions halved for only Dsh \[65\]. In contrast, halving

| Table 2 Physical interactions between the core planar polarity proteins |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
Protein 1	Protein 2	Method	References
Fmi	Fz	co-immunoprecipitation	[43]
Celsr1	Vangl2	co-immunoprecipitation	[52]
Fzd3	Vangl2	co-immunoprecipitation	[51]
Fzd5	Dvl1	PEPSCAN-based ELISA	[56]
Stbm	Stbm	co-immunoprecipitation, GST pulldown, yeast two-hybrid	[46,54]
Vangl2	Vangl1, Vangl2		
Stbm	Pk	co-immunoprecipitation, GST pulldown, mass spectrometry of immunoprecipitates	[23,46,63]
Vangl2	Pk1, Pk2		
Stbm	Dsh	co-immunoprecipitation, GST pulldown, yeast two-hybrid	[23,45,46,48]
Vangl3,4	Dvl3, Dvl4		
Vangl1, Vangl2	Dvl1, Dvl2, Dvl3		
Stbm	Dgo	GST pulldown	[21]
Pk	Pk	GST pulldown	[46]
Pk3	Dsh	GST pulldown	[22,47,49]
Pk	Dgo	GST pulldown	[21]
Dsh	Dgo	co-immunoprecipitation, GST pulldown, yeast two-hybrid	[49,50]
Dvl2	Diversin		

See Table 1 for fly and vertebrate homologues. Interactions were between fly molecules unless otherwise stated.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.1042/BST20190404
the expression of Fmi resulted in a halving of Fz recruitment into puncta, maintaining the 2:1 ratio of Fmi:Fz and supporting the asymmetric molecular bridge hypothesis (Figure 1B). This suggests that the cytosolic proteins form a dosage-dependent ‘cloud’ around a fixed Fz-Fmi:Fmi backbone. The conclusion of this work is that core protein complexes within both stable puncta and unstable non-puncta coalesce via multivalent protein–protein interactions between the different proteins. Overall, it was suggested that when locally ordered complexes reach a critical density they undergo a phase transition from an unstable, fluid state, to a more solid stable state in puncta (Figure 2H,I) [65].
The Ft and Ds proteins are also organised into puncta, with FRAP experiments showing a more stable population in puncta [28]. Analogous to the core pathway proteins, puncta formation is dependent on formation of intercellular heterodimers between Ft and Ds. Furthermore, puncta stability is dependent on trans-binding affinity [28].

Post-translational modifications influence protein–protein interactions and complex sorting

Post-translational modifications (PTMs) are ubiquitous in mediating feedback interactions in cell polarity, from symmetry breaking in yeast budding, to anteroposterior patterning of PAR proteins in *C. elegans* embryos and apical-basal polarity of epithelial cells [66–68]. The core pathway proteins have a complex network of PTMs that include ubiquitination and phosphorylation (Table 3). Ubiquitination of a protein can target it for proteasomal degradation, or can promote internalisation of transmembrane proteins that are then either recycled back to the plasma membrane or degraded in the lysosome [69]. Therefore, targeted ubiquitination of a core protein could promote destabilisation/removal of that protein from a complex and complex sorting. Phosphorylation can alter protein stability by priming proteins for ubiquitination, but it can also alter protein conformation and/or affinity for binding partners [70]; and thus could also regulate interactions between the core proteins and sorting of complexes. Interestingly, phosphorylation has been identified as a key modulator of phase transitions, and thus could regulate clustering of core protein complexes into puncta [71].

Table 3 Post-translational modifications of the core planar polarity proteins

Substrate	Enzyme	Candidate modification sites	References
Fmi¹	Fat facets (Fat) deubiquitinase	-	[73]
Celsr²	Polo-like kinase 1 (Plk1)²	14 S/T residues in the cytoplasmic domain of mouse Celsr1, including S2741, T2750, and S2752	[92]
Fz	atypical Protein Kinase C (aPKC)	S554, S560 of fly Fz	[95]
Stbm	Casein Kinase 1ε (CK1ε)	Two clusters of highly conserved S/T residues located in the N-terminal cytoplasmic domain (S5–17, ST113–122 of fly Fz; S5–17, ST76–84 of mouse Vangl2)	[61,88–91]
Vangl²	Casein Kinase 1θε (CK1θε)²	-	
Pk	Farnesyl-diphosphate farnesyl transferase (FNTA, FNTB)	C-terminal CaaX motif	[75]
Pk	Cullin1-SkpA-Slimb	-	[62,75,76]
Pk2²	Skp1-Cullin1-F-Box² ubiquitin ligase	-	
Pk1²	Smurf1², Smurf2² ubiquitin ligases	-	[77,78]
Pk	Nemo kinase	4 potential MAPK phosphorylation sites in the middle region	[98]
Pk1	Ste20 kinase Mink1	T370 of Xenopus Pk1	[53]
Dsh	Cullin3-Diablo/Kelch	-	[72,73]
Dv³	Cullin3-KLHL12³ ubiquitin ligase	-	
Dsh	Abelson tyrosine kinase (Abi)	Y473 of fly Dsh	[79,82]
Dsh	Nek2 kinase	multiple sites	[80,81]
Dsh	Casein Kinase 1θε (CK1θε)	S236 of fly Dsh	[61,83–87]
Dv²,³,⁴	Casein Kinase 1θε (CK1θε)²,³,⁴	-	

See Table 1 for fly and vertebrate homologues. Modifications were of fly molecules unless otherwise stated.

¹Deduced target, but no direct modification observed;
²Mouse;
³human;
⁴Xenopus.
Ubiquitination of *Drosophila* Dsh via a Cullin3-Diablo/Kelch ubiquitin ligase complex results in reduced Dsh at cell junctions and its targeting for degradation [72,73]. Dsh ubiquitination is antagonised by the phosphoinositide binding protein Kramer/PLEKHA4, which in vertebrates sequesters the Kelch homologue KLHL12 (Figure 2E) [74]. There is also evidence of ubiquitination promoting internalisation of Fmi, as the deubiquitinase Fat facets (Faf) promotes the recycling of internalised Fmi to the junctional membrane (Figure 2E) [73]. Furthermore, farnesylation of Pk promotes its recruitment into the proximal complex by Stbm [75], while Stbm also promotes degradation of excess Pk via a Cullin1–SkpA–Supernumerary limbs (Slimb) ubiquitin ligase complex (Figure 2E) [62,75,76]. In vertebrates, the HECT ubiquitin ligases Smurfl and Smurfl2 promote proteasomal degradation of Pk [77]. Interestingly, Smurfs also interact specifically with phosphorylated Dvl (the vertebrate Dsh homologue) [77], and Dvl promotes Smurf activity [78]. This leads to a model in which phosphorylated Dsh recruits Smurf, which then ubiquitinates Pk and destabilises complexes of the opposite orientation (Figure 2E).

The abundance of evidence for PTM control of planar polarity comes from assays of protein phosphorylation. In particular, Dsh hyperphosphorylation correlates with its recruitment to junctions by Fz [17,19], and analysis of putative phosphorylation sites in Dsh has revealed multiple redundant phosphorylation sites [79]. Phosphorylation of Dsh by the Abelson tyrosine kinase (Abl), Nek2 and Casein kinase Iε (CKIε, or Discs overgrown [Dco] in flies) has been implicated in regulation of planar polarity (Figure 2F). Nek2 phosphorylates Dsh at multiple sites [80] and loss of Nek2 leads to accumulation of Dsh in intracellular puncta, and reduced core protein asymmetry [81]. Abl phosphorylates Dsh in *vitro* at Tyr473, and loss of Abl disrupts photoreceptor specification and polarity [82]. Finally, CKIε promotes Dsh phosphorylation *in vitro* and *in vivo*, and loss of CKIε abolishes core protein asymmetry [61,83–88].

In addition to phosphorylating Dsh, CKIε also phosphorylates the N-terminus of Stbm, and mutation of the Stbm phosphorylation sites disrupts planar polarity in both flies and vertebrates [61,88–91]. Interestingly, in *Drosophila* mutation of the CKIε phosphorylation sites in Stbm leads to an increase in Stbm stability, while mutation of putative CKIε phosphorylation sites in Dsh decreases its stability (Figure 2F) [61]. This dual action of CKIε would therefore enhance removal of Stbm from complexes and stabilise Dsh in complexes, and thus promote sorting of proximal and distal complex components to opposite cell ends.

In vertebrate skin, the Fmi homologue Celsr1 is phosphorylated on a dileucine endocytic motif by Polo-like kinase 1 (Plk1) [92]. Interestingly, Plk1 is a mitotic kinase and thus promotes internalisation of Celsr1 specifically in mitosis (Figure 2F). Failure of this internalisation perturbs skin planar polarity [92,93]. Internalisation was suggested to allow core proteins to be redistributed equally between the two daughter cells, and also to protect mitotic cells against aberrant signalling while they are rounded up.

Three further kinases, atypical PKC (aPKC), Nemo and Misshapen (Msn) have also been implicated in regulating planar polarity in the *Drosophila* eye (Figure 2F) [94–96]. aPKC can phosphorylate the cytoplasmic tail of Fz, which is thought to inhibit Fz function. This activity of aPKC on Fz is antagonised by the apicobasal polarity protein Bazooka/Par-3 [95]. Bazooka also interacts with Fmi, raising interesting questions regarding cross-talk between apicobasal and planar polarity [97]. Nemo is thought to act in two ways in eye planar polarity: firstly, a direct effect via Pk [98] and secondly by regulating downstream effectors that regulate ommatidial cluster rotation [99]. Pk phosphorylation by Nemo is thought to promote the targeted proteasomal degradation of Pk from planar polarity complexes via Cullin1–SkpA–Slimb (see above) [98]. Finally, in vertebrates Pk phosphorylation by the Msn homologue Mink1 promotes Pk trafficking to the plasma membrane and clustering with the vertebrate Stbm homologue Vangl2 [53].

Future directions

It is interesting to note that despite the long list of known PTMs that affect core protein activity, only in the case of Smurf binding to phosphorylated Dsh has a specific regulatory mechanism been uncovered that implicates a PTM in driving core complex sorting within clusters. Nevertheless, it seems likely that spatiotemporal regulation of PTMs will be a critical mechanism in planar polarity establishment.

Integral to models of core protein sorting via feedback interactions is the idea that complexes in the same orientation are stabilised and those of the opposite orientation are destabilised (Figure 1). To understand stabilising/destabilising interactions it will be necessary to identify the role of specific PTMs: in particular, how each PTM affects the stability of core proteins at junctions. It will also be important to determine whether and how specific PTMs are regulated: for example if one core protein locally promotes the modification of another protein and this alters its stability then this would constitute evidence for a feedback mechanism.
Moreover, understanding the complex roles of multiple PTMs will require precise spatiotemporal manipulations of protein activity, in order to distinguish fast acting direct effects from more long term consequences. This will require the development of new methods for acutely activating or removing activity. Finally, we anticipate that advances in microscopy — for instance single molecule imaging — that allow more detailed visualisation of core protein clustering at cell junctions, will be key in understanding the effects of specific PTMs on core protein organisation and sorting. Such studies will be an important and exciting way forward in unravelling molecular mechanisms of core planar polarity pathway function.

Perspectives

- Planar polarity allows cells and groups of cells to exhibit polarised behaviours that are co-ordinated with their neighbours and the tissue axes. Such coordination of cell behaviours is vital for correct tissue morphogenesis and function.

- Co-ordinated planar polarisation involves the formation of heterophilic intercellular complexes that become asymmetrically localised to opposite cell edges. Self-organising processes involving stabilising and destabilising feedback interactions between intercellular complexes leads to clustering of complexes of the same orientation in puncta. PTMs most likely play a key role in controlling the spatiotemporal dynamics of planar polarity protein interactions.

- Further research is required to elucidate the cellular mechanisms that sort the core proteins across the cell, and how the feedback interactions between the core planar polarity proteins are regulated. The control of PTMs is important in core protein asymmetry, however, the mechanisms controlling PTM activity are poorly understood. Better methods for mapping PTMs and PTM enzyme activity in time and space will be essential for understanding pathway function.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
Work in the Strutt laboratory is funded by a Wellcome Trust Senior Fellowship in Basic Biomedical Science (210630/Z/18/Z) to D.S.

Author Contributions
Literature review, C.H., H.S., H.S. and D.S.; Writing — original draft preparation, C.H. and H.S.; Writing — review and editing, C.H., H.S. and D.S.; Figure preparation, C.H. and H.S.; Table preparation, Hongyu Shao.

Acknowledgements
We thank Alexandre Carayon and Samantha Warrington for helpful comments on the manuscript.

Abbreviations
FRAP, Fluorescence recovery after photobleaching; PCP, planar cell polarity; PTMs, Post-translational modifications.

References
1. Hale, R. and Strutt, D. (2015) Conservation of planar polarity pathway function across the animal kingdom. *Annu. Rev. Genet.* **49**, 529–551 https://doi.org/10.1146/annurev-genet-112414-055224
2. Goodrich, L.V. and Strutt, D. (2011) Principles of planar polarity in animal development. *Development* **138**, 1877–1892 https://doi.org/10.1242/dev.054080
3. Devenport, D. (2014) The cell biology of planar cell polarity. *J. Cell Biol.* **207**, 171–179 https://doi.org/10.1083/jcb.201408039
96 Paricio, N., Feiguin, F., Boutros, M., Eaton, S. and Mlodzik, M. (1999) The Drosophila STE20-like kinase misshapen is required downstream of the Wasserscheid, I., Thomas, U. and Knust, E. (2007) Isoform-specific phosphorylation through Ror2.

97 Strutt, H., Searle, E., Thomas-MacArthur, V., Brockfield, R. and Strutt, D. (2013) A Cul-3-BTB ubiquitin ligase pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development 140, 1693–1702. https://doi.org/10.1242/dev.0986656

98 Shah, A., Batrouni, A.G., Kim, D., Punyala, A., Cao, W., Han, C. et al. (2019) PLEKHA4/kramer attenuates dishevelled ubiquitination to modulate Wnt and planar cell polarity signaling. Cell Rep. 27, 2157–2170. https://doi.org/10.1016/j.celrep.2019.04.060

99 Strutt, H., Thomas-MacArthur, V. and Strutt, D. (2013) Strabismus promotes recruitment and degradation of farnesylated prickle in Drosophila melanogaster planar polarity specification. PLoS Genet. 9, e1003654. https://doi.org/10.1371/journal.pgen.1003654

100 Nagaoka, T., Furuse, M., Ohtsuka, T., Tsuchida, K. and Kishi, M. (2019) Yng2 interaction plays a role in the protosomal degradation of Prickle2. Sci. Rep. 9, 20122. https://doi.org/10.1038/s41598-019-39642-z

101 Narimatsu, M., Bose, R., Pye, M., Zhang, L., Miller, B., Ching, P. et al. (2009) Regulation of planar cell polarity by smurf ubiquitin ligases. Cell 137, 295–307. https://doi.org/10.1016/j.cell.2009.02.025

102 Bernatik, O., Pavlicova, P., Sri Gani, R. and Broja, V. (2020) Activity of Smurf2 ubiquitin ligase is regulated by the Wnt pathway protein dishevelled. Cells 9, 1147. https://doi.org/10.3390/cells9051147

103 Yanfeng, W.A., Berhane, H., Mola, M., Singh, J., Jenny, A. and Mlodzik, M. (2011) Functional dissection of phosphorylation of disheveled in drosophila. Dev. Biol. 360, 132–142. https://doi.org/10.1016/j.ydbio.2011.09.017

104 Schertel, C., Huang, D., Bjorklund, M., Bischof, J., Yin, D., Li, R. et al. (2013) Systematic screening of a Drosophila ORF library in vivo uncovers Wnts/Wg pathway components. Dev. Cell 25, 207–219. https://doi.org/10.1016/j.devcel.2012.02.019

105 Weber, U. and Mlodzik, M. (2017) A PCP (Ezrin/Radial) dependent regulation of planar cell polarity establishment via Nek2 kinase acting on dishevelled. Dev. Cell 40, 53–66. https://doi.org/10.1016/j.devcel.2016.12.006

106 Singh, J., Yanfeng, W.A., Grumolato, L., Aaronson, S.A. and Mlodzik, M. (2010) Abelson family kinases regulate Frizzled planar cell polarity signaling via Dsh phosphorylation. Genes Dev. 24, 2157–2168. https://doi.org/10.1101/gad.1961010

107 Peters, J.M., McKay, R.M., McKay, J.P. and Graff, J.M. (1999) Casein kinase I transduces Wnt signals. Nature 401, 345–350. https://doi.org/10.1038/43830

108 Sakanaoka, C., Leong, P., Xu, L., Harrison, S.D. and Williams, L.T. (1999) Casein kinase Iα in the Wnt pathway: Regulation of β-catenin function. Proc. Natl. Acad. Sci. U.S.A. 96, 12538–12552. https://doi.org/10.1073/pnas.96.22.12548

109 Cong, F., Schweizer, L. and Varmus, H. (2004) Casein kinase Iε modulates the signaling specificities of dishevelled. Mol. Cell. Biol. 24, 2000–2011. https://doi.org/10.1128/MCB.24.5.2000-2011.2004

110 Klein, T.J., Jenny, A., Djiane, A. and Mlodzik, M. (2006) CKIpsilon/disck overgrown promotes both Wnt-Fz-beta-catenin and Fz/PCP signaling in drosophila. Curr. Biol. 16, 1337–1343. https://doi.org/10.1016/j.cub.2006.06.030

111 Strutt, H., Price, M.A. and Strutt, D. (2006) Planar polarity is positively regulated by casein kinase I epsilon in drosophila. Curr. Biol. 16, 1329–1336. https://doi.org/10.1016/j.cub.2006.04.041

112 Kelly, L.K., Wu, J., Yanfeng, W.A. and Mlodzik, M. (2016) Frizzled-induced Van Gogh phosphorylation by CK1epsilon promotes asymmetric localization of core PCP factors in drosophila. Cell Rep. 16, 344–356. https://doi.org/10.1016/j.celrep.2016.06.010

113 Gao, B., Song, H., Bishop, K., Elliot, G., Garrett, L., English, M.A. et al. (2011) Wnt signaling gradients establish planar cell polarity by inducing Vang2 phosphorylation through Porc. Dev. Cell 20, 163–176 https://doi.org/10.1016/j.devcel.2011.01.021

114 Ossipova, O., Kim, K. and Sokol, S.Y. (2015) Planar polarization of Vang2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Dev. Biol. 40, 722–730. https://doi.org/10.1016/j.ydbio.2015.11676

115 Yang, W., Garrett, L., Feng, D., Elliot, G., Lu, X., Wang, N. et al. (2017) Wnt-induced Vang2 phosphorylation is dose-dependently required for planar cell polarity in mammalian development. Cell Res. 27, 1466–1484. https://doi.org/10.1038/cr.2017.127

116 Shrestha, R., Little, K.A., Tamayo, J.V., Li, W., Perlman, D.H. and Devenport, D. (2015) Mitotic control of planar cell polarity by Polo-like kinase 1. Dev. Cell 33, 522–534. https://doi.org/10.1016/j.devcel.2015.03.024

117 Devenport, D., Oristian, D., Keller, E. and Fuchs, E. (2011) Mitotic internalization of planar cell polarity proteins preserves tissue polarity. Nat. Cell Biol. 13, 893–902. https://doi.org/10.1038/ncb2284

118 Choi, K.W. and Benzer, S. (1994) Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78, 125–136. https://doi.org/10.1016/0092-8674(94)90579-7

119 Djiane, A. and Mlodzik M, S.Y. (2005) The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121, 621–631. https://doi.org/10.1016/j.cell.2005.03.014

120 Paricio, N., Feiguin, F., Boustros, M., Eaton, S. and Mlodzik, M. (1999) The Drosophila STE20-like kinase misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO J. 18, 4669–4678. https://doi.org/10.1093/emboj/18.17.4669

121 Wasserscheid, I., Thomas, U. and Krust, E. (2007) Isoform-specific interaction of Flamingo/Starry Night with excess Bazooka affects planar cell polarity in the Drosophila wing. Dev. Dyn. 236, 1064–1071. https://doi.org/10.1002/dvdy.21089

122 Colu, G.M., Jenny, A., Gaengel, K., Mirkovic, I., Chin, M.L., Weber, U. et al. (2016) Prickle is phosphorylated by Nemo and targeted for degradation to maintain Prickle/Spiny-legs isoform balance during planar polarity constraint. PLoS Genet. 14, e1007391. https://doi.org/10.1371/journal.pgen.1007391

123 Mirkovic, I., Gault, W.J., Rahama, M., Jenny, A., Gaengel, K., Bosssette, D. et al. (2011) Nemo kinase phosphorylates beta-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin-beta-catenin. Nat. Struct. Mol. Biol. 18, 665–672. https://doi.org/10.1038/nsmb.2049