Commentary: Mechanisms of kwashiorkor-associated immune suppression: Insights from human, mouse, and pig studies

Gerard Bryan Gonzales1*, Claire D. Bourke2,3, Jonathan P. Sturgeon2,3, James M. Njunge4,5, Ruairi C. Robertson2,3, Paul M. Kelly3,6 and James A. Berkley4,5,7

1Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands, 2Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe, 3Blizard Institute, Queen Mary University of London, London, United Kingdom, 4The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya, 5Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya, 6Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia, 7Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, United Kingdom

KEYWORDS
kwashiorkor, immune, severe malnutrition, marasmus, edematous malnutrition

Introduction

Derangement in functional immunity is a characteristic of children with severe malnutrition (SM). Deaths among children with SM are principally from infections, and understanding their pathophysiology to develop effective treatment strategies is essential to improving outcomes. Several reviews have discussed the state of knowledge of SM immunology (1–3). However, differences in immune function between kwashiorkor and wasting have not been adequately documented.
We were delighted to see a review of kwashiorkor-associated immune suppression, as there are very few reports that have studied kwashiorkor-specific immunological changes, especially in clinical settings. However, we believe that the review of Michael et al. (4) on kwashiorkor-associated immune function contains several oversimplifications and extrapolations of results given the recognized heterogeneity and power limitations of existing immunological assessments in SM (5). We believe that clarity in reporting results from clinical studies (also highlighted by literature reviews cited by Michael et al.) and in how they compare to experimental models is essential to add value to the wider field of malnutrition-related immunology. Therefore, while we applaud the authors for their work, we are concerned about several aspects of their recent review for reasons we discussed in this commentary.

Discussion

Firstly, the idea that reduced protein intake leads to hypoalbuminemia, which decreases oncotic pressure leading to edema in kwashiorkor, is widely believed, but this is an oversimplification which is not supported by strong evidence. In a recent study, we found that hypoalbuminemia is associated but alone was insufficient to explain edema in kwashiorkor (6). Other factors apart from hypoalbuminemia and low protein intake must develop kwashiorkor (7), such as extracellular matrix (ECM) degradation and lymphatic damage (6). Moreover, it was previously shown that edema in children with kwashiorkor resolved even when they were treated with a protein-deficient diet (8), and despite a small increase in serum albumin concentration among children whose edema resolved or improved, serum albumin concentrations remained far below clinically recognized norms in children (6, 9). It is important to emphasize that oversimplification of kwashiorkor etiology (presented in the review text and Figure 2 but unsupported by empirical evidence) can result in ineffective treatment strategies.

Secondly, some of the immune function effects stated in the review are not borne out by the cited references. It is tempting to suggest that kwashiorkor is characterized by a “profound impaired immune function,” as the authors claim. For instance, diseases with heightened inflammation are associated with ECM degradation, and the degradation of the ECM is linked to immune function (10). However, the papers cited did not study kwashiorkor specifically. For instance, the paper by Hughes et al. (11) involved both wasting and kwashiorkor. Half of these children also had HIV, and most likely had other infections, which resulted in their hospital admission. The analysis by Hughes et al. was controlled for edema; thus, no kwashiorkor-specific estimates were presented in the paper. The table given below lists statements about kwashiorkor-associated immunological characteristics in the review by Michael et al. that are not supported by the cited references.

Evaluation of claims regarding kwashiorkor-associated immunological changes.

Claim	Reference cited	What the referenced study did or observed
“Zambian children with kwashiorkor had normal numbers of white blood cells (WBCs), however, although the numbers of monocyte-derived DCs were reduced in their peripheral blood. The kwashiorkor-induced impairments were rescued following intervention using a protein-sufficient diet”	(11)	Study involved children with severe malnutrition, but no kwashiorkor-specific estimates were presented in the paper. N = 57 kwashiorkor; 24 marasmus; and 39 had HIV
“Fas (CD95/apoptosis antigen 1), a gene that signals to initiate apoptosis, is highly expressed in neutrophils, monocytes, and lymphocytes in kwashiorkor children indicative of impaired regulation of immunity and lymphoid homeostasis”	(12)	CD95 expression of neutrophil and lymphocyte was found higher in kwashiorkor than healthy controls without differences in monocyte CD95 gene expression. Neither apoptosis nor life-span of the cell types were assessed to support claims for differential life cycle of WBC by SM nor kwashiorkor specifically. There were no differences in CD95 expression in neutrophils, lymphocytes and monocytes between kwashiorkor and marasmus. This indicates that CD95 gene expression is generally affected by malnutrition, not specifically to kwashiorkor.
“Children with kwashiorkor and/or respiratory/gastrointestinal infections had increased apoptotic T cells, increased Fas (CD95) expression, and reduced levels of IL-7/IL-7 Rea and expressed inhibitory receptor-programmed death (PD-1) expression on T cells”	(13)	The study included children with severe malnutrition, but no kwashiorkor-specific estimates were presented in the paper. N = 10 kwashiorkor; 19 marasmus
“Decreased numbers of B lymphocytes in kwashiorkor children with gastrointestinal or respiratory infections compared with well-nourished children having similar infections”	(14)	The study involved children with severe malnutrition, but no kwashiorkor-specific estimates were presented in the paper. N = 3 kwashiorkor; 7 marasmus
“increased risk of Gram-negative bacteremia in hospitalized kwashiorkor children”	(15)	Our study involved all children under the age of 13 years who were admitted to a hospital. No kwashiorkor-specific

(Continued)
Continued

“Studies from Bangladeshi children revealed that the kwashiorkor-associated faecal microbiota was significantly less diverse (immature) compared with that of age-matched healthy children. However, this condition was reversible, and the microbiome composition has been restored to the diverse (mature) phenotype when these kwashiorkor children were given RUTF and treated with antibiotics” (16)

The cited studies involved patients with inflammatory bowel disease. No kwashiorkor-specific estimates were presented in the paper.

“Kwashiorkor children (6 to 59 months old) were treated for 7 days with cefdinir, amoxicillin, or placebo in combination with RUTF, showed that children that received RUTF and antibiotics had accelerated weight gain, decreased mortality rates, and increased recovery rates than those who received placebo” (17)

Study involved children with severe malnutrition, but no kwashiorkor-specific estimates were presented in the paper.

“Clinical studies in children have revealed a relationship between lower seroconversion rates associated with oral vaccines and kwashiorkor” (18, 19)

The review highlighted interesting immune features in children with severe malnutrition but did not specifically describe the immune function in kwashiorkor. Hence, the reported similarities between the immune function of children with kwashiorkor and gnotobiotic pig models cannot be used to establish the face validity of the porcine model.

Kwashiorkor-specific studies on immune function are still lacking, providing an opportunity for further translational research. Rather than viewing experimental models as the “only alternative to clinical studies,” we regard insights from clinical and translational immunology studies as essential to achieve the goal of the authors of carefully selecting appropriate, evidence-based mechanistic and pre-clinical models that can support therapeutic interventions for SM.

Author Contributions

GBG wrote the initial draft. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

CDB is supported by the joint Wellcome Trust and Royal Society Grant (206225/Z/17/Z). JPS (220566/Z/20/Z), JMN (222967/Z/21/Z), and RCR (206455/Z/17/Z) are supported by the Wellcome Trust. JAB is supported by MRC/DFID/Wellcome Trust Joint Global Health Trials scheme (MR/M007367/1) and the Bill and Melinda Gates Foundation (OPP1131320).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. *Trends Immunol* (2016) 37:386–98. doi: 10.1016/j.it.2016.04.003
2. Bourke CD, Jones KDJ, Prendergast AJ. Current understanding of innate immune cell dysfunction in childhood undernutrition. *Front Immunol* (2019) 10.1728. doi: 10.3389/fimmu.2019.01728
3. Rytter M, Kolte L, Bringd A, Friis H, Christensen VB. The immune system in children with malnutrition - a systematic review. *PLoS One* (2014) 9:e105017. doi: 10.1371/journal.pone.0105017
4. Michael H, Amimo JO, Raja sekara G, Sai L J, Vlasova AN. Mechanisms of kwashiorkor-associated immune suppression: Insights from human, mouse, and pig studies. *Front Immunol* (2022) 13.826268. doi: 10.3389/fimmu.2022.826268
5. Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of childhood malnutrition on host defense and infection. *Clin Microbiol Rev* (2015) 35:90. doi: 10.1016/CMR.00119-16
6. Gonzales GB, Njunge JM, Gichuki BM, Wen B, Ngari M, Potani I, et al. The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition. *elBioMedicine* (2022) 79:103991. doi: 10.1016/j.ebiom.2022.103991
7. Golden MH. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium - a response to Malcolm coulthard's hypothesis. *Pediatrics Int Child Health* (2015) 35:90–109. doi: 10.1179/2046905515.Y.0000000010
8. Golden MN. Protein deficiency, energy deficiency and the oedema of malnutrition. *Lancet* (1982) 319:1261–5. doi: 10.1016/S0140-6736(82)92839-2
9. Golden MN, Golden B, Jackson A. Albumin and nutritional oedema. *Lancet* (1980) 351:114–6. doi: 10.1016/0140-6736(80)90630-0
10. Tomlin H, Pccinami AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. *Immunology* (2018) 155:186–201. doi: 10.1111/imm.12972
11. Hughes SM, Amadi B, Miyra M, Nkambah H, Tomkins A, Goldblatt D. Dendritic cell anergy results from endotoxemia in severe malnutrition. *J Immunol* (2009) 183:2818–26. doi: 10.4049/jimmunol.0803518
12. Nassar MF, El-Batrawy SR, Nagy NM. CD95 expression in white blood cells of malnourished infants during hospitalization and catch-up growth. *East Mediterr Health J* (2009) 15:574–83. doi: 10.26719/2009.15.3.574
13. Badr G, Sayed D, Alhzara IM, Elsayh KI, Ahmed EA, Abwae SH. T lymphocytes from malnourished infants are short-lived and dysfunctional cells. *Immunobiology* (2011) 216:309–15. doi: 10.1016/j.imbio.2010.07.007
14. Najera O, Gonzalez C, Toledo G, Lopez L, Ortiz R. Flow cytometry study of lymphocyte subsets in malnourished and well-nourished children with bacterial infections. *Clin Diag Lab Immunol* (2004) 11:577–80. doi: 10.1128/CDLI11.3.577–580.2004
15. Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, Mwarumba S, et al. Bacteremia among children admitted to a rural hospital in Kenya. *N Engl J Med* (2005) 352:39–47. doi: 10.1056/NEJMoa040275
16. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. *Nature* (2014) 510:417. doi: 10.1038/nature13421
17. Trehan I, Goldbach HS, LaGronne LN, Mesul GI, Wang RL, Maleta KM, et al. Antibiotics as part of the management of severe acute malnutrition. *N Engl J Med* (2013) 368(5):425–35. doi: 10.1056/NEJMoa1202851
18. Hamilton AL, Kamn MA, Ng SC, Morrison M. Proteus Spp. as putative gastrointestinal pathogens. *Clin Microbiol Rev* (2018) 31(3):e00085–17. doi: 10.1128/CMR.00085-17
19. Presley LL, Ye J, Li X, Leblanc J, Zhang Z, Ruegger PM, et al. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. *Inflamm Bowel Dis* (2012) 18:409–17. doi: 10.1002/ibd.21793
20. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. *Science* (2013) 339:548–54. doi: 10.1126/science.1229000
21. Vlasova AN, Patm FC, Kandasamy S, Alhama MA, Fischer DD, Langel SN, et al. Protein malnutrition modifies innate immunity and gene expression by intestinal epithelial cells and human rotavirus infection in neonatal gnotobiotic pigs. *mSphere* (2017) 2.e00046–17. doi: 10.1128/mSphere.00046-17