On dually flat \((\alpha, \beta)\)-metrics

Changtao Yu*

Abstract

The dual flatness for Riemannian metrics in information geometry has been extended to Finsler metrics. The aim of this paper is to study the dual flatness of the so-called \((\alpha, \beta)\)-metrics in Finsler geometry. By doing some special deformations, we will show that the dual flatness of an \((\alpha, \beta)\)-metric always arises from that of some Riemannian metric in dimensional \(n \geq 3\).

1 Introduction

Dual flatness is a basic notion in information geometry. It was first proposed by S.-I. Amari and H. Nagaoka when they study the information geometry on Riemannian spaces\[2\]. Information geometry has emerged from investigating the geometrical structure of a family of probability distributions, and has been applied successfully to various areas including statistical inference, control system theory and multiterminal information theory\[1, 2\].

In 2007, Z. Shen extended the dual flatness in Finsler geometry\[11\]. A Finsler metric \(F\) on a manifold \(M\) is said to be locally dually flat if at any point there is a local coordinate system \((x^i)\) in which \(F = F(x, y)\) satisfies the following PDEs

\[
[F^2]_{x^i y^j y^k} - 2[F^2]_{x^i} = 0.
\]

Such a coordinate system is said to be adapted.

For a Riemannian metric \(\alpha = \sqrt{a_{ij}(x) y^i y^j}\), it is known that \(\alpha\) is locally dually flat if and only if in an adapted coordinate system, the fundamental tensor of \(\alpha\) is the Hessian of some local smooth function \(\psi(x)\)\[1, 2\], i.e.,

\[
a_{ij}(x) = \frac{\partial^2 \psi}{\partial x^i \partial x^j}(x).
\]

The dual flatness of a Riemannian metric can also be described by its spray\[15\]: \(\alpha\) is locally dually flat if and only if its spray coefficients could be expressed in an adapted coordinate system as

\[
G^i_\alpha = 2\theta y^i + \alpha^2 \theta^i
\]

*supported by a NSFC grant(No.11026097)
for some 1-form $\xi := \xi_i(x)y^i$.

The first example of non-Riemannian dually flat Finsler metrics is the co-call *Funk metric*

$$F = \sqrt{\frac{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2}{1 - |x|^2}} + \frac{\langle x, y \rangle}{1 - |x|^2}$$
on the unit ball $\mathbb{B}^n(1)$, which belongs to a special class of Finsler metrics named *Randers metrics*. Randers metrics are expressed as the sum of a Riemannian metric $\alpha = \sqrt{a_{ij}(x)y^i y^j}$ and an 1-form $\beta = b_i(x)y^i$ with the norm $b := \|\beta\|_\alpha < 1$.

Based on the characterization result for locally dually flat Randers metrics given by X. Cheng et al.\cite{6}, the author provide a more direct characterization and prove that the dual flatness of a Randers metric always arises from that of some Riemannian metric\cite{15}: A Randers metric $F = \alpha + \beta$ is locally dually flat if and only if the Riemannian metric $\bar{\alpha} = \sqrt{1 - b^2\sqrt{\alpha^2 - \beta^2}}$ is locally dually flat and the 1-form $\bar{\beta} = -(1 - b^2)\beta$ is dually related with respect to $\bar{\alpha}$. In this case, F can be reexpressed as

$$F = \sqrt{\frac{(1 - b^2)\bar{\alpha}^2 + \bar{\beta}^2}{1 - b^2}} - \frac{\bar{\beta}}{1 - b^2}. \quad (1.2)$$

Recall that an 1-form β is said to be *dually related* to a locally dually flat Riemannian metric α if in an adopted coordinate system the spray coefficients of α are in the form (1.1) and the covariant derivation of β with respect to α are given by

$$b_{ij} = 2\theta_i b_j + c(x)a_{ij} \quad (1.3)$$

for some scalar function $c(x)$. This concept was first introduced by the author in\cite{15}. In particular, we prove that the Riemannian metrics

$$\bar{\alpha} = \sqrt{\frac{(1 + \mu|x|^2)|y|^2 - \mu\langle x, y \rangle^2}{(1 + \mu|x|^2)^{\frac{1}{2}}}} \quad (1.4)$$

are dually flat on the ball $\mathbb{B}^n(r_\mu)$ and the 1-forms

$$\bar{\beta} = \frac{\lambda\langle x, y \rangle}{(1 + \mu|x|^2)^{\frac{3}{4}}} \quad (1.5)$$

are dually related to $\bar{\alpha}$ for any constant number μ and λ, where the the radius r_μ is given by $r_\mu = \frac{1}{\sqrt{-\mu}}$ if $\mu < 0$ and $r_\mu = +\infty$ if $\mu \geq 0$.

As a result, we construct many non-trivial dually flat Randers metrics as following:

$$F(x, y) = \sqrt{\frac{1 + (\mu + \lambda^2)|x|^2}{1 + \mu|x|^2}} \sqrt{\frac{(1 + \mu|x|^2)|y|^2 - \mu\langle x, y \rangle^2}{(1 + \mu|x|^2)^{\frac{1}{2}}} + \frac{\lambda\langle x, y \rangle}{(1 + \mu|x|^2)^{\frac{1}{4}}} \sqrt{1 + (\mu + \lambda^2)|x|^2}}. \quad (1.6)$$

It is just the Funk metric when $\mu = -1$ and $\lambda = 1$.

(1.2) is just the *navigation expression* for Randers metrics, which play a key role in the research of Randers metrics. For example, D. Bao et al. classified Randers metrics with
constant flag curvature \[5\]: \(F = \alpha + \beta \) is of constant flag curvature if and only if \(\tilde{\alpha} \) in \((1,2)\) is of constant sectional curvature and \(\tilde{\beta} \) is homothetic to \(\tilde{\alpha} \), i.e.,

\[
\frac{1}{2} (\tilde{b}_{ij} + \tilde{b}_{ji}) = c\tilde{a}_{ij}
\]

for some constant \(c \). Similarly, D. Bao et al. gave a characterization for Einstein metric of Randers type\[4\]: \(F = \alpha + \beta \) is Einsteinian if and only if \(\tilde{\alpha} \) is Einsteinian and \(\tilde{\beta} \) is homothetic to \(\tilde{\alpha} \). It seems that most of the properties of Randers metrics become simple and clear if they are described with the navigation form\[8\].

Except for Randers metrics, there is another important class of Finsler metrics defined also by a Riemannian metric and an 1-form and given in the form

\[
F = \alpha \phi(\frac{\beta}{\alpha})
\]

where \(\phi(s) \) is a smooth function. Such kinds of Finsler metrics are called \((\alpha,\beta)\)-metrics. It was proposed by M. Matsumoto in 1972 as a direct generalization of Randers metrics. \((\alpha,\beta)\)-metrics form a special class of Finsler metrics partly because of its computability\[3\]. Recently, many encouraging results about \((\alpha,\beta)\)-metrics, including flag curvature property\[9,12\] and projective property\[10,14\] etc., have been achieved.

2011, Q. Xia give a local characterization of locally dually flat \((\alpha,\beta)\)-metrics on a manifold with dimension \(n \geq 3 \):

Theorem 1.1.\[13\] Let \(F = \alpha \phi(\frac{\beta}{\alpha}) \) be a Finsler metric on an open subset \(U \subseteq \mathbb{R}^n \) with \(n \geq 3 \). Suppose \(F \) is not of Riemannian type and \(\phi(0) \neq 0 \). Then \(F \) is dually flat on \(U \) if and only if the following conditions hold:

\[
G^i_\alpha = [2\theta + (3k_1 - 2)\tau \beta]y^i + \alpha^2(\theta^i - \tau b^i) + \frac{3}{2}k_3\tau \beta^2 b^i,
\]

\[
r_{00} = 2\theta \beta + (3\tau + 2\tau b^2 - 2b^k\theta^k)\alpha^2 + (3k_2 - 2 - 3k_3\beta^2)\tau \beta^2,
\]

\[
s_{i0} = \beta \theta_i - \theta b_i,
\]

\[
\tau \left\{ s(k_2 - k_3 s^2)(\phi \phi' - s \phi'^2 - s \phi''') - (\phi'^2 + \phi \phi'') + k_1 \phi (\phi - s \phi') \right\} = 0,
\]

where \(\theta \) is an 1-form, \(\tau \) is a scalar function, and \(k_1, k_2, k_3 \) are constants.

The meaning of some notations here can be found in Section 2.

When \(\tau = 0 \), \((1.6)\) becomes \(G^i_\alpha = 2\theta y^i + \alpha^2 \theta^i \), which implies \(\alpha \) is dually flat. Moreover, \((1.7)\) and \((1.8)\) are equivalent to \(b_{ij} = 2b_i b_j - 2b_i \theta^k a_{ij} \), i.e., \(\beta \) is dually related to \(\alpha \) with \(c(x) + 2b_i \theta^k = 0 \). In fact, this is a trivial case. Because in this case, \(F = \alpha \phi(\frac{\beta}{\alpha}) \) will be always dually flat for any suitable function \(\phi(s) \) by Theorem\[11\]. In this paper, we will focus on the non-trivial case. Thereby, the function \(\phi(s) \) must satisfy a 3-parameters equation

\[
s(k_2 - k_3 s^2)(\phi \phi' - s \phi'^2 - s \phi''') - (\phi'^2 + \phi \phi'') + k_1 \phi (\phi - s \phi') = 0.
\]

It is clear that the geometry meaning of the original data \(\alpha \) and \(\beta \) for the dually flat \((\alpha,\beta)\)-metrics is very obscure. The main aim of this paper is to provide a luminous description for a non-trivial dually flat \((\alpha,\beta)\)-metric. By using a special class of metric deformations called \(\beta \)-deformations, we prove that the dual flatness of an \((\alpha,\beta)\)-metrics always arises from that of some Riemannian metric, just as Randers metrics.
Theorem 1.2. Let $F = \alpha \phi(\frac{\beta}{\alpha})$ be a Finsler metric on an open subset $U \subseteq \mathbb{R}^n$ with $n \geq 3$, where $\phi(s)$ satisfies (1.10). Suppose F is not of Riemannian type and $\phi'(0) \neq 0$. Then F is dually flat if and only if α and β can be expressed as

$$
\alpha = \eta(\bar{b}^2) \sqrt{\bar{\alpha}^2 - \frac{(k_2 - k_3 \bar{b})}{1 + k_2 \bar{b}^2 - k_3 \bar{b}^4} \bar{\beta}^2}, \quad \beta = -\frac{\eta(\bar{b}^2)}{(1 + k_2 \bar{b}^2 - k_3 \bar{b}^4)^{1/2}} \bar{\beta},
$$

where $\bar{\alpha}$ is a dually flat Riemannian metric on U, $\bar{\beta}$ is dually related to $\bar{\alpha}$, $\bar{b} := \|\bar{\beta}\|_{\bar{\alpha}}$. The deformation factor $\eta(\bar{b}^2)$ is determined by the coefficients k_1, k_2, k_3 and given in the following five cases,

1. When $k_3 = 0$, $k_2 = 0$,
 $$\eta(\bar{b}^2) = \exp \left\{ \frac{k_1 \bar{b}^2}{4} \right\};$$

2. When $k_3 = 0$, $k_2 \neq 0$,
 $$\eta(\bar{b}^2) = \left\{ 1 + k_2 \bar{b}^2 \right\}^{\frac{k_1}{k_2}};$$

3. When $k_3 \neq 0$, $\Delta_1 > 0$,
 $$\eta(\bar{b}^2) = \left\{ \frac{\sqrt{\Delta_1 + k_2}}{\sqrt{\Delta_1 - k_2}}, \frac{\sqrt{\Delta_1 - k_2 + 2k_3 \bar{b}^2}}{\sqrt{\Delta_1 + k_2 - 2k_3 \bar{b}^2}} \right\}^{\frac{2k_1 - k_3}{\sqrt{\Delta_1}}};$$

4. When $k_3 \neq 0$, $\Delta_1 = 0$,
 $$\eta(\bar{b}^2) = \sqrt{2} \exp \left\{ \frac{k_3 - 2k_1}{2k_2} \left[\frac{1}{2 + k_2 \bar{b}^2} - \frac{1}{2} \right] \right\};$$

5. When $k_3 \neq 0$, $\Delta_1 < 0$,
 $$\eta(\bar{b}^2) = \frac{\exp \left\{ \frac{2k_1 - k_2}{4\sqrt{-\Delta_1}} \left(\arctan \frac{k_3 - 2k_3 \bar{b}^2}{\sqrt{-\Delta_1}} - \arctan \frac{k_3}{\sqrt{-\Delta_1}} \right) \right\}}{\sqrt{1 + k_2 \bar{b}^2 - k_3 \bar{b}^4}},$$

where $\Delta_1 := k_2^2 + 4k_3$.

β-deformations, which play a key role in the proof of Theorem 1.2, are a new method in Riemann-Finsler geometry developed by the author in the research of projectively flat (α, β)-metrics[14]. Roughly speaking, the method of β-deformations is aim to make clear the latent light. For an analogy, α and β just like two ropes tangles together, and it is possible to unhitch them using β-deformations. The navigation expression for Randers metrics is a representative example. In fact, it is just a specific kind of β-deformations. In other words, β-deformations can be regarded as a natural generalization of the navigation expression for Randers metrics. See also [12] for more applications.

The argument in this paper is similar to that in [15], but we don’t show the original ideas here. One can obtain a more deep analysis in the latter.
In Section 4, we will use a skillful method to solve the basic equation (1.10). As a result, we can construct infinity many non-trivial dually flat \((\alpha, \beta)\)-metrics combining with (1.4) and (1.5). In particular, the following metrics
\[
F = \sqrt{\alpha^2 + 2\varepsilon\alpha\beta + \kappa\beta^2}
\]
is locally dually flat if and only if
\[
\alpha = (1 - \kappa\bar{b}^2)^{-1}\sqrt{(1 - \kappa\bar{b}^2)\bar{\alpha}^2 + \kappa\bar{\beta}^2}, \quad \beta = -(1 - \kappa\bar{b}^2)^{-1}\bar{\beta},
\]
where \(\bar{\alpha}\) is locally dually flat and \(\bar{\beta}\) is dually related to \(\bar{\alpha}\).

Taking \(\kappa = 1\) and \(\varepsilon = 1\), one can see that (1.11) is just the Randers metrics
\[
F = \alpha + \beta.
\]
Taking \(\kappa = 0\) and \(\varepsilon = \frac{1}{2}\), then we can obtain a very simple kind of dually flat \((\alpha, \beta)\)-metrics given in the form
\[
F = \sqrt{\alpha(\alpha + \beta)}.
\]

2 Preliminaries

Let \(M\) be a smooth \(n\)-dimensional manifold. A Finsler metric \(F\) on \(M\) is a continuous function \(F : TM \to [0, +\infty)\) with the following properties:

(i) Regularity: \(F\) is \(C^\infty\) on the entire slit tangent bundle \(TM \setminus \{0\}\);

(ii) Positive homogeneity: \(F(x, \lambda y) = \lambda F(x, y)\) for all \(\lambda > 0\);

(iii) Strong convexity: the fundamental tensor \(g_{ij} := \frac{1}{2}F^2_{x^i y^j} y^k y^l - \frac{1}{2}F^2_{x^k y^l} y^i x^j\) is positive definite for all \((x, y) \in TM \setminus \{0\}\).

Here \(x = (x^i)\) denotes the coordinates of the point in \(M\) and \(y = (y^i)\) denotes the coordinates of the vector in \(T_x M\).

For a Finsler metric, the geodesics are characterized by the geodesic equation
\[
\ddot{c}^i(t) + 2G^i(c(t), \dot{c}(t)) = 0,
\]
where
\[
G^i(x, y) := \frac{1}{4}g^{ij}\left\{[F^2]_{x^k y^j} y^k - [F^2]_{x^j y^i}\right\}
\]
are called the spray coefficients of \(F\). Here \((g^{ij}) := (g_{ij})^{-1}\). For a Riemannian metric \(\alpha\), the spray coefficients are given by
\[
G^i_\alpha(x, y) = \frac{1}{2}\Gamma^i_{jk}(x)y^j y^k
\]
in terms of the Christoffel symbols of \(\alpha\).

By definition, an \((\alpha, \beta)\)-metric is a Finsler metric in the form \(F = \alpha\phi(\frac{\beta}{\alpha})\), where \(\alpha = \sqrt{a_{ij}(x)y^i y^j}\) is a Riemannian metric, \(\beta = b_i(x)y^i\) is an 1-form and \(\phi(s)\) is a positive smooth function on some symmetric open interval \((-b_o, b_o)\).
On the other hand, the so-called β-deformations are a triple of metric deformations in terms of α and β listed below:

\[\tilde{\alpha} = \sqrt{\alpha^2 - \kappa(b^2)\beta^2}, \quad \tilde{\beta} = \beta; \]
\[\hat{\alpha} = e^{\rho(b^2)}\tilde{\alpha}, \quad \hat{\beta} = \tilde{\beta}; \]
\[\bar{\alpha} = \hat{\alpha}, \quad \bar{\beta} = \nu(b^2)\hat{\beta}. \]

Some basic formulas for β-deformations are listed below. Be attention that the notation ‘\tilde{b}_{ij}’ always means the covariant derivative of the 1-form ‘$\tilde{\beta}$’ with respect to the corresponding Riemannian metric ‘$\tilde{\alpha}$’, where the symbol ‘\cdot’ can be nothing, ‘$\tilde{}$’, ‘$\hat{}$’ or ‘$\bar{}$’ in this paper. Moreover, we need the following abbreviations,

\[r_{00} := r_{ij}y^iy^j, \quad r_i := r_{ij}y^j, \quad r_0 := r_iy^i, \quad r := r_ib^i, \]
\[s_{i0} := s_{ij}y^j, \quad s^i_0 := a^ij\bar{s}_{j0}, \quad s_i := s_{ij}y^j, \quad s_0 := s_0b^i, \]
where r_{ij} and s_{ij} are the symmetrization and antisymmetrization of b_{ij} respectively, i.e.,

\[r_{ij} := \frac{1}{2}(b_{ij} + b_{ji}), \quad s_{ij} := \frac{1}{2}(b_{ij} - b_{ji}). \]

Roughly speaking, indices are raised and lowered by a_{ij}, vanished by contracted with b^i and changed to be ‘0’ by contracted with y^i. Since $b_{ij} - b_{ji} = \frac{\partial b_i}{\partial x} - \frac{\partial b_j}{\partial x}$, $s_{ij} = 0$ implies β is closed, and vice versa.

Lemma 2.1. [14] Let $\tilde{\alpha} = \sqrt{\alpha^2 - \kappa(b^2)\beta^2}, \tilde{\beta} = \beta$. Then
\[
\tilde{G}^i_{\alpha} = G^i_{\alpha} - \frac{\kappa}{2(1 - \kappa b^2)}\{2(1 - \kappa b^2)\beta s^i_0 + r_{00}b^i + 2\kappa s_0\beta b^i\} \\
\quad + \frac{\kappa'}{2(1 - \kappa b^2)}\{(1 - \kappa b^2)\beta^2(r^i + s^i) + \kappa r\beta^2b^i - 2(r_0 + s_0)\beta b^i\}; \\
\tilde{b}_{ij} = b_{ij} + \frac{\kappa}{1 - \kappa b^2}\{b^2r_{ij} + b_is_j + b_js_i\} \\
\quad - \frac{\kappa'}{1 - \kappa b^2}\{rb_ib_j - b^2b_i(r_j + s_j) - b^2b_j(r_i + s_i)\}.
\]

Lemma 2.2. [14] Let $\hat{\alpha} = e^{\rho(b^2)}\tilde{\alpha}, \hat{\beta} = \tilde{\beta}$. Then
\[
\hat{G}^i_{\alpha} = \tilde{G}^i_{\beta} + \rho'\left\{2(r_0 + s_0)y^i - (\alpha^2 - \kappa\beta^2)\left(r^i + s^i + \frac{\kappa}{1 - \kappa b^2}r\beta b^i\right)\right\}, \\
\tilde{b}_{ij} = \tilde{b}_{ij} - 2\rho'\left\{b_i(r_j + s_j) + b_j(r_i + s_i) - \frac{1}{1 - \kappa b^2}r(a_{ij} - \kappa b_ib_j)\right\}.
\]

Lemma 2.3. [14] Let $\tilde{\alpha} = \hat{\alpha}, \tilde{\beta} = \nu(b^2)\hat{\beta}$. Then
\[
\tilde{G}^i_{\alpha} = \hat{G}^i_{\alpha}, \\
\tilde{b}_{ij} = \nu\tilde{b}_{ij} + 2\nu b_i(r_j + s_j).
\]
3 Proof of Theorem 1.2

Suppose that \(F = \alpha \phi(\frac{\beta}{\alpha}) \) is a non-trivial dually flat \((\alpha, \beta)\)-metric on \(U \). According to Theorem 1.1 it is easy to obtain the following simple facts:

\[
\begin{align*}
 r_{ij} &= \theta_i b_j + \theta_j b_i + (3\tau + 2\tau b^2 - 2b_k \theta^k)a_{ij} + \tau (3k_2 - 2 - 3k_3 b^2)b_i b_j, \\
 s^i_0 &= \beta \theta^i - \theta b_i, \\
 s_0 &= b_k \theta^k \beta - b^2 \theta, \\
 r_i + s_i &= 3\tau (1 + k_2 b^2 - k_3 b^4) b_i, \\
 b_i s_j + b_j s_i &= 2b_k \theta^k b_i b_j - b^2 (\theta_i b_j + \theta_j b_i), \\
 r &= 3\tau (1 + k_2 b^2 - k_3 b^4) b^2.
\end{align*}
\]

Lemma 3.1. Take \(\kappa(b^2) = -k_2 + k_3 b^2 \), then

\[
\tilde{G}^i_\alpha = [2\theta + \tau \beta (3k_1 - 2)] y^i + \tilde{\alpha}^2 \theta^i + \frac{\tau (3k_2 - 2 - 3k_3 b^2) - 2(k_2 - k_3 b^2) b_k \theta^k}{2(1 + k_2 b^2 - k_3 b^4)} \tilde{\alpha}^2 b^i.
\]

Proof. By (1.0), (3.1)-(3.6) and Lemma 2.1 we have

\[
\begin{align*}
 \tilde{G}^i_\alpha &= [2\theta + (3k_1 - 2) \tau \beta] y^i + \alpha^2 (\theta^i - \tau b^i) + \frac{3}{2} k_3 \tau \beta^2 b^i \\
 &\quad - \frac{\kappa}{2(1 - \kappa b^2)} \left\{ 2(1 - \kappa b^2) \beta (\theta^i - \theta b^i) + 2\theta \beta b^i + (3\tau + 2\tau b^2 - b_k \theta^k) \alpha^2 b^i \\
 &\quad + \tau (3k_2 - 2 - 3k_3 b^2) \beta^2 b^i + 2\kappa (b_k \theta^k \beta - b^2 \theta) \beta b^i \right\} \\
 &\quad + \frac{\kappa'}{2(1 - \kappa b^2)} \left\{ 3\tau (1 - \kappa b^2) (1 + k_2 b^2 - k_3 b^4) \beta^2 b^i \\
 &\quad + 3\tau \kappa (1 + k_2 b^2 - k_3 b^4) b^2 \beta b^i - 6\tau (1 + k_2 b^2 - k_3 b^4) \beta^2 b^i \right\} \\
 &= [2\theta + (3k_1 - 2) \tau \beta] y^i + \tilde{\alpha}^2 \theta^i - \frac{1}{2(1 - k b^2)} \left\{ (3\tau \kappa + 2\tau - 2\kappa b_k \theta^k) \alpha^2 \\
 &\quad + [2\kappa^2 b_k \theta^k - 3\tau k_3 (1 - k b^2) + \tau \kappa (3k_2 - 2 - 3k_3 b^2) + 3\tau \kappa' (1 - k_2 b^2 + k_3 b^4)] \beta^2 \right\} b^i.
\end{align*}
\]

When \(\kappa = -k_2 + k_3 b^2 \), it is easy to verify that

\[
\kappa^2 + k_2 \kappa - k_3 = -\kappa' (1 + k_2 b^2 - k_3 b^4),
\]

and hence \(\tilde{G}^i_\alpha \) is given in the following form,

\[
\tilde{G}^i_\alpha = [2\theta + \tau \beta (3k_1 - 2)] y^i + \tilde{\alpha}^2 \theta^i - \frac{3\tau \kappa + 2\tau - 2\kappa b_k \theta^k}{2(1 - k b^2)} \tilde{\alpha}^2 b^i.
\]

Lemma 3.2. Take \(\rho(b^2) = -\frac{1}{4} \int \frac{k_1 - k_2 + k_3 b^2}{1 + k_2 b^2 - k_3 b^4} \, db^2 \), then

\[
\tilde{G}^i_\alpha = 2\hat{\theta} y^i + \hat{\alpha}^2 \hat{\theta}^i,
\]

where \(\hat{\theta} = \theta - \frac{1}{4} \tau [4 - 3(k_1 + k_2 - k_3 b^2)] \beta. \) In particular, \(\hat{\alpha} \) is dually flat on \(U \).
Proof. by (3.4), (3.6), (3.7) and Lemma 2.2 we have

\[
\hat{G}_\alpha^i = \hat{C}_\alpha^i + \rho' \left\{ 6\tau(1 + k_2b^2 - k_3b^4)\beta y^i - \hat{\alpha}^2 \left(3\tau(1 + k_2b^2 - k_3b^4)b^i \\
+ \frac{\kappa}{1 - k_2b^2} \cdot 3\tau(1 + k_2b^2 - k_3b^4)b^2b^i \right) \right\}
\]

\[
= \left\{ 2\tau + \tau[3k_1 - 2 + 6\rho'(1 + k_2b^2 - k_3b^4)]\beta \right\} y^i + \hat{\alpha}^2\theta^i
\]

\[- \frac{1}{2(1 - k_2b^2)} \left\{ 3\tau\kappa + 2\tau + 6\tau\rho'(1 + k_2b^2 - k_3b^4) - 2\kappa b_k\theta^k \right\} \hat{\alpha}^2 b^i.
\]

Let

\[
\hat{\theta} := \theta + \frac{1}{2}\tau[3k_1 - 2 + 6\rho'(1 + k_2b^2 - k_3b^4)]\beta.
\]

It is easy to verify that the inverse of \((\hat{a}_{ij})\) is given by

\[
\hat{a}^{ij} = e^{-2\rho} \left(a^{ij} + \frac{\kappa}{1 - k_2b^2}b^i b^j \right),
\]

so \(\hat{\theta}^i := \hat{a}^{ij}\hat{\theta}_j\) are given by

\[
\hat{\theta}^i = e^{-2\rho} \left\{ \theta^i + \frac{1}{2(1 - k_2b^2)} \left[2\kappa b_k\theta^k + \tau(3k_1 - 2) + 6\tau\rho'(1 + k_2b^2 - k_3b^4) \right] b^i \right\}.
\]

Hence \(\hat{G}^i_\alpha\) can be reexpressed as

\[
\hat{G}^i_\alpha = 2\hat{\theta} y^i + \hat{\alpha}^2\hat{\theta}^i - \frac{3\tau e^{-2\rho}}{2(1 - k_2b^2)} \left\{ k_1 + \kappa + 4\rho'(1 + k_2b^2 - k_3b^4) \right\} \hat{\alpha}^2 b^i.
\]

Obviously, the deformation factor given in the Lemma satisfies

\[
\rho' = -\frac{k_1 + \kappa}{4(1 + k_2b^2 - k_3b^4)},
\]

thus \(\hat{G}^i_\alpha = 2\hat{\theta} y^i + \hat{\alpha}^2\hat{\theta}^i\).

\[\Box\]

Lemma 3.3. Take \(\nu(b^2) = -\sqrt{1 + k_2b^2 - k_3b^4}e^{\rho(b^2)}\), then

\[
\hat{G}_\alpha^i = 2\hat{\theta} y^i + \hat{\alpha}^2\hat{\theta}^i,
\]

\[
\bar{b}_{ij} = 2\hat{\theta}_i \hat{\theta}_j + \bar{c}(x)\hat{a}_{ij},
\]

where \(\bar{c}(x)\) is a scalar function. In particular, \(\bar{\beta}\) is dually related to \(\hat{\alpha}\).

Proof. Under the deformations used above, combining with (3.1), (3.4), (3.5) and Lemma 2.2 we can see that

\[
\bar{r}_{ij} = \frac{1}{1 - k_2b^2} \left\{ r_{ij} + 2\kappa b_k\theta^k b_i b_j - k_2b^2(\theta_i b_j + \theta_j b_i) + 3\tau\kappa'(1 + k_2b^2 - k_3b^4)b^2b_i b_j \right\}
\]

\[
= \theta_i b_j + \theta_j b_i + \frac{1}{1 - k_2b^2} \left\{ (3\tau + 2\tau b^2 - 2b_k\theta^k) a_{ij} \\
+ \tau(3k_2 - 2 - 3k_3b^2) + 2\kappa b_k\theta^k + 3\tau\kappa'(1 + k_2b^2 - k_3b^4)b^2b_i b_j \right\}
\]

\[
= \theta_i b_j + \theta_j b_i + \frac{1}{1 - k_2b^2} \left(3\tau + 2\tau b^2 - 2b_k\theta^k\right) \bar{a}_{ij} + \tau(3\kappa + 3k_2 - 2)b_i b_j,
\]

\[
\bar{s}_{ij} = s_{ij} = \theta_i b_j - \theta_j b_i.
\]
Similarly, by (3.4), (3.9) and Lemma 2.2 we get
\[
\hat{r}_{ij} = \tilde{r}_{ij} + \frac{k_1 + \kappa}{2(1 + k_2 b^2 - k_3 b^4)} \left\{ 6\tau(1 + k_2 b^2 - k_3 b^4)b_ib_j - \frac{1}{1 - \kappa b^2} \cdot 3\tau(1 + k_2 b^2 - k_3 b^4)b^2\tilde{a}_{ij} \right\}
\]
\[
= \theta_i b_j + \theta_j b_i + \frac{e^{-2\nu}}{2(1 - \kappa b^2)} \left\{ 6\tau + (4 - 3k_1)\tau b^2 - 3\tau k b^2 - 4b_k \theta^k \right\} \tilde{a}_{ij} + \tau(6\kappa + 3k_1 + 3k_2 - 2)b_i b_j,
\]
\[\hat{s}_{ij} = s_{ij} = \theta_i b_j - \theta_j b_i.\]

If we use \(\hat{\theta}\) instead of \(\theta\) to express \(\hat{r}_{ij}\) and \(\hat{s}_{ij}\), then
\[
\hat{r}_{ij} = \hat{\theta}_i \hat{b}_j + \hat{\theta}_j \hat{b}_i + \frac{e^{-2\nu}}{2(1 - \kappa b^2)} \left\{ 6\tau + \tau b^2 - 3\tau k b^2 - 4b_k \theta^k \right\} \hat{a}_{ij}
\]
\[
+ \frac{3}{2} \tau(5\kappa + k_1 + 2k_2) \hat{b}_i b_j,
\]
\[\hat{s}_{ij} = \hat{\theta}_i \hat{b}_j - \hat{\theta}_j \hat{b}_i,
\]
where \(\hat{b}_i = b_i\) according to the definition of \(\beta\)-deformations.

Finally, by (3.11) and Lemma 2.3 we have
\[
\tilde{r}_{ij} = \nu \tilde{r}_{ij} + 6\tau \nu/(1 + k_2 b^2 - k_3 b^4)b_i b_j,
\]
\[
= \tilde{\theta}_i \tilde{b}_j + \tilde{\theta}_j \tilde{b}_i + \frac{e^{-2\nu}}{2(1 - \kappa b^2)} \left\{ 6\tau + \tau b^2 - 3\tau k b^2 - 4b_k \theta^k \right\} \tilde{a}_{ij}
\]
\[
+ \frac{3}{2} \tau \left\{ (5\kappa + k_1 + 2k_2)\nu + 4(1 + k_2 b^2 - k_3 b^4)\nu' \right\} \tilde{b}_i \tilde{b}_j,
\]
\[\tilde{s}_{ij} = \nu s_{ij} = \nu(\tilde{\theta}_i \tilde{b}_j - \tilde{\theta}_j \tilde{b}_i) = \tilde{\theta}_i \tilde{b}_j - \tilde{\theta}_j \tilde{b}_i,
\]
where \(\tilde{\theta} := \hat{\theta}\). It is easy to verify that the deformation factor in the Lemma satisfies
\[
(5\kappa + k_1 + 2k_2)\nu + 4(1 + k_2 b^2 - k_3 b^4)\nu' = 0,
\]
(3.10)

So
\[
\tilde{r}_{ij} = \tilde{\theta}_i \tilde{b}_j + \tilde{\theta}_j \tilde{b}_i + \tilde{c}(x)\tilde{a}_{ij}
\]
where \(\tilde{c}(x)\) is a scalar function and can be reexpressed as
\[
\tilde{c}(x) = -2\tilde{b}_k \tilde{\theta}^k + \frac{3\tau e^{-2\nu} \nu}{2(1 - \kappa b^2)} \left\{ 2(1 - \kappa b^2) + (k_1 - 1)b^2 \right\}.
\]
(3.11)

Combining with \(\tilde{s}_{ij}\), we have \(\tilde{b}_{ij} = 2\tilde{\theta}_i \tilde{b}_j + \tilde{c}(x)\tilde{a}_{ij}\).

From the equality (3.11) we can see that \(\tilde{c}(x) \neq -2\tilde{b}_k \tilde{\theta}^k\) unless \(\tau = 0\). In other words, when \(\tau \neq 0\), \(\tilde{\beta}\) is non-trivial (see the statements below Theorem 1.1 for the reason).

Proof of Theorem 1.2

Due to the above Lemmas, we have show that if \(F = \alpha \phi(\hat{\rho})\) is a non-trivial dually flat Finsler metric with dimension \(n \geq 3\), then the output Riemannian metric \(\hat{\alpha}\) is dually flat and the output 1-form \(\hat{\beta}\) is dually related to \(\hat{\alpha}\).

Conversely, by (3.8) we can see that the norm of \(\tilde{b}\) is related to \(b\) as
\[
\tilde{b}^2 = \nu b_i \nu b_j e^{-2\nu} \left(a^{ij} + \frac{\kappa}{1 - \kappa b^2} b^i b^j \right) = b^2,
\]
which implies that the \(\beta \)-deformations given above are reversible. More specifically, we have

\[
\beta = \nu^{-1}(\bar{\beta}^2) = -\frac{e^{-\rho(\bar{\beta}^2)}}{\sqrt{1 + k_2 b^2 - k_3 b^4}} \bar{\beta}
\]

and

\[
\alpha = \sqrt{e^{-2\rho(\bar{\beta}^2)}\bar{\alpha}^2 + \kappa(\bar{\beta}^2)\bar{\beta}^2} = e^{-\rho(\bar{\beta}^2)} \sqrt{\bar{\alpha}^2 - \frac{(k_2 - k_3 \bar{\beta}^2)}{1 + k_2 b^2 - k_3 b^4}} \bar{\beta}^2.
\]

Denote \(\eta(\bar{\beta}^2) := e^{-\rho(\bar{\beta}^2)} \). By (3.9), \(\eta \) can be chose as

\[
\eta(\bar{\beta}^2) = \exp \left\{ \frac{1}{4} \int_0^{\bar{\beta}^2} \frac{k_1 - k_2 + k_3 t}{1 + k_2 t - k_3 t^2} dt \right\}.
\]

Combining with the discussions in the proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3, it is not hard to see that if \(\bar{\alpha} \) is dually flat and \(\bar{\beta} \) is dually related to \(\bar{\alpha} \), then the output data \(\alpha \) and \(\beta \) of the reverse \(\beta \)-deformations satisfy (1.10) and hence \(F = \alpha \phi(\frac{\beta}{\alpha}) \) is dually flat. \(\square \)

4 Symmetry and solutions of equation (1.10)

In this section, we will solve the basic equation (1.10) in a nonconventional way. Firstly, let us introduce two special transformations for the function \(\phi \):

\[
g_u(\phi(s)) := \sqrt{1 + us^2} \phi \left(\frac{s}{\sqrt{1 + us^2}} \right), \quad h_v(\phi(s)) := \phi(vs),
\]

where \(u \) and \(v \) are constants with \(v \neq 0 \). The motivation of above transformations can be found in [14], here we just need to know that such transformations satisfy

\[
g_u \circ g_{u_2} = g_{u_1 + u_2}, \quad h_v \circ h_{v_2} = h_{v_1 + v_2}, \quad h_v \circ g_u = g_{v^2} \circ h_v,
\]

and hence generate a transformation group \(G \) under the above generation relationship, which is isomorphism to \([\mathbb{R} \times \mathbb{R} \setminus \{0\}, \cdot]\) under the map \(\pi(g_u \circ h_v) = (u, v) \). For the later, the operation is given by \((u_1, v_1) \cdot (u_2, v_2) = (u_1 + v_1^2 u_2, v_1 v_2)\). In particular,

\[
g_u^{-1} = g_{-u}, \quad h_v^{-1} = h_{v^{-1}}.
\]

The importance of the transformation group \(G \) for our question is that the solution space of the 3-parameters equation (1.10) is invariant under the action of \(G \) as below. The computations are elementary and hence omitted here.

Lemma 4.1. If \(\phi(s) \) satisfies (1.10), then the function \(\psi(s) := g_u(\phi) \) satisfies the same kind of equation

\[
s(k_2' - k_3's^2)(\psi\psi' - sv^2 - s\psi\psi''') - (\psi'^2 + \psi'''^2 + k_1'\psi(\psi - sv')) = 0,
\]

where

\[
k_1' = k_1 + u, \quad k_2' = k_2 + 2u, \quad k_3' = k_3 - k_2u - u^2.
\]

Moreover, \(\phi(0) = \psi(0) \) and \(\phi'(0) = \psi'(0) \).
Lemma 4.2. If \(\phi(s) \) satisfies (1.10), then the function \(\varphi(s) := h_v(\phi) \) satisfies the same kind of equation

\[
s(k''_2 - k''_3 s^2)(\varphi \varphi' - s \varphi'^2 - s \varphi\varphi'') - (\varphi'^2 + \varphi''') + k''_1(\varphi - s \varphi') = 0,
\]

where

\[
k''_1 = v^2 k_1, \quad k''_2 = v^2 k_2, \quad k''_3 = v^4 k_3.
\]

Moreover, \(\phi(0) = \varphi(0) \) and \(\phi'(0) = v \varphi'(0) \).

Furthermore, there are some invariants. Denote

\[
\Delta_1 = k_2^2 + 4 k_3, \quad \Delta_2 = k_2 - 2 k_1, \quad \Delta_3 = k_1^2 - k_1 k_2 - k_3.
\]

Then we have

Lemma 4.3. \(\text{Sgn}(\Delta_i) \) \((i = 1, 2, 3) \) are all invariants under the action of \(G \).

Proof. It’s only need to show that \(\text{Sgn}(\Delta_i) \) are invariant for \(g_\alpha(\phi) \) and \(h_v(\phi) \). It is obvious, because by Lemma 4.1 and Lemma 4.2 we have \(\Delta_1' = \Delta_1, \Delta_2' = \Delta_2, \Delta_3' = \Delta_3 \) and \(\Delta_1'' = v^4 \Delta_1, \Delta_2'' = v^2 \Delta_2, \Delta_3'' = v^4 \Delta_3 \).

Further more, \(\Delta_i \) satisfy \(\Delta_2^2 - 4 \Delta_3 = \Delta_1 \). They will play a basic role for the further research.

Next, we will solve the equation (1.10) with the initial conditions

\[
\phi(0) = 1, \quad \phi'(0) = \varepsilon
\]

combining with the transformation group \(G \). Note that for \((\alpha, \beta)\)-metrics \(F = \alpha \phi(\frac{\beta}{\alpha}) \), the function \(\phi(s) \) must be positive near \(s = 0 \) and hence we can always assume \(\phi(0) = 1 \) after necessary scaling. On the other hand, \(\varepsilon \neq 0 \) by the assumption of Theorem 1.1.

Let \(\psi(s) = g_{-k_1}(\phi) \). According to Lemma 4.1, the function \(\psi(s) \) will satisfies the following equation

\[
\{1 + \Delta_2 s^2 + \Delta_3 s^4\} \psi'' = s \{\Delta_2 + \Delta_3 s^2\} \psi'
\]

with the initial conditions

\[
\psi(0) = 1, \quad \psi'(0) = \varepsilon.
\]

Let \(u(s) = \psi^2(s) \). It is easy to see that (1.1) becomes

\[
\{1 + \Delta_2 s^2 + \Delta_3 s^4\} u'' = s \{\Delta_2 + \Delta_3 s^2\} u'
\]

with the initial conditions

\[
u(0) = 1, \quad u'(0) = 2 \varepsilon.
\]

Hence, \(u'(s) \) is given by

\[
u'(s) = \exp \left\{ \frac{1}{2} \int \frac{\Delta_2 + \Delta_3 s^2}{1 + \Delta_2 s^2 + \Delta_3 s^4} ds^2 \right\} := 2 \varepsilon f(s),
\]

where \(f(s) \) satisfying \(f(0) = 1 \) can be expressed as elementary functions. So we have
Lemma 4.4. The solutions of equation (4.2) with the initial conditions \(u(0) = 1, \ u'(0) = 2\epsilon \) are given by

\[
u(s) = 1 + 2\epsilon \int_0^s f(\sigma) \, d\sigma,
\]

where \(f(s) \) satisfying \(f(0) = 1 \) are given in the following:

1. when \(\Delta_3 = 0, \Delta_1 = 0 \),
 \[f(s) = 1;\]

2. when \(\Delta_3 = 0, \Delta_1 \neq 0 \),
 \[f(s) = \sqrt{1 + \Delta_2 s^2};\]

3. when \(\Delta_3 \neq 0, \Delta_1 > 0 \),
 \[f(s) = \sqrt{1 + \Delta_2 s^2 + \Delta_3 s^4} \left\{ \frac{2 + \Delta_2 + \sqrt{\Delta_1} s^2}{2 + \Delta_2 - \sqrt{\Delta_1} s^2} \right\}^{\frac{\Delta_2}{4\sqrt{\Delta_1}}};\]

4. when \(\Delta_3 \neq 0, \Delta_1 = 0 \),
 \[f(s) = \sqrt{1 + \frac{\Delta_2}{2} s^2} \exp \left\{ \frac{1}{2 + \Delta_2 s^2} - \frac{1}{2} \right\};\]

5. when \(\Delta_3 \neq 0, \Delta_1 < 0 \),
 \[f(s) = \sqrt{1 + \Delta_2 s^2 + \Delta_3 s^4} \exp \left\{ \frac{\Delta_2}{2\sqrt{-\Delta_1}} \left[\arctan \frac{\Delta_2 + 2\Delta_3 s^2}{\sqrt{-\Delta_1}} - \arctan \frac{\Delta_2}{\sqrt{-\Delta_1}} \right] \right\}.\]

Theorem 4.5. The solutions of equation (1.10) with the initial conditions \(\phi(0) = 1, \phi'(0) = \epsilon \) are given by

\[
\phi(s) = \sqrt{(1 + k_1 s^2) \left\{ 1 + 2\epsilon \int_0^s (1 + k_1 \sigma^2)^{-\frac{3}{2}} f\left(\frac{\sigma}{\sqrt{1 + k_1 \sigma^2}} \right) \, d\sigma \right\}}.
\]

Proof. By assumption,

\[
\psi(s) = \sqrt{u} = \sqrt{1 + 2\epsilon \int_0^s f(\sigma) \, d\sigma},
\]

so

\[
\phi(s) = g_{k_1}(\psi)
= \sqrt{1 + k_1 s^2 \psi\left(\frac{s}{\sqrt{1 + k_1 s^2}} \right)}
= \sqrt{(1 + k_1 s^2) \left(1 + 2\epsilon \int_0^s (1 + k_1 \sigma^2)^{-\frac{3}{2}} f(\sigma) \, d\sigma \right)},
\]

which can also be expressed as the form given in the Theorem.
Most of the solutions of (1.10) are non-elementary. Some elementary solutions are listed below (except for the last two items). Notice that there is no sum of formula when the sum index \(n = 1 \), and we rule \(m!! = 1 \) when \(m \leq 0 \).

- When \(k_1 = 0, k_2 = 0, k_3 = 0 \),
 \[
 \phi(s) = \sqrt{1 + 2\epsilon s};
 \]

- When \(k_1 = 0, k_2 < 0, k_3 = 0 \),
 \[
 \phi(s) = \sqrt{1 + \epsilon \left(s \sqrt{1 + k_2 s^2} + \frac{1}{\sqrt{-k_2}} \arcsin \sqrt{-k_2 s} \right)};
 \]

- When \(k_1 = 0, k_2 > 0, k_3 = 0 \),
 \[
 \phi(s) = \sqrt{1 + \epsilon \left(s \sqrt{1 + k_2 s^2} + \frac{1}{\sqrt{k_2}} \arcsinh \sqrt{k_2 s} \right)};
 \]

- When \(k_3 = 0, k_1 + k_2 = 0 \),
 \[
 \phi(s) = \sqrt{1 + 2\epsilon s + k_1 s^2};
 \]

- When \(k_1 \neq 0, k_2 = \frac{1}{2n} k_1 \ (n = 1, 2, 3, \ldots), k_3 = 0 \),
 \[
 \phi(s) = \sqrt{1 + k_1 s^2 + \epsilon s \sqrt{1 + k_2 s^2} \left[\frac{(2n)!!}{(2n - 1)!!} - \sum_{k=1}^{n-1} \frac{2(n-k)(2n-2-k)!!(2k-3)!!}{(2n-1)!!(2k)!!} (1 + k_2 s^2)^{-k} \right]};
 \]

- When \(k_1 > 0, k_2 = \frac{1}{2n+1} k_1 \ (n = 1, 2, 3, \ldots), k_3 = 0 \),
 \[
 \phi(s) = \left\{ (1 + k_1 s^2) \left[1 + \frac{(2n-1)!!}{(2n)!!} \frac{\epsilon}{\sqrt{k_2}} \arctan \sqrt{k_2 s} \right] + \sqrt{\frac{2(n+1)!!}{(2n)!!} - \sum_{k=1}^{n-1} \frac{2(n-k)(2n-1-k)!!(2k-2)!!}{(2n)!!(2k+1)!!} (1 + k_2 s^2)^{-k}} \right\}^{\frac{1}{n}};
 \]

- When \(k_1 < 0, k_2 = \frac{1}{2n+1} k_1 \ (n = 1, 2, 3, \ldots), k_3 = 0 \),
 \[
 \phi(s) = \left\{ (1 + k_1 s^2) \left[1 + \frac{(2n-1)!!}{(2n)!!} \frac{\epsilon}{\sqrt{-k_2}} \arctanh \sqrt{-k_2 s} \right] + \sqrt{\frac{2(n+1)!!}{(2n)!!} - \sum_{k=1}^{n-1} \frac{2(n-k)(2n-1-k)!!(2k-2)!!}{(2n)!!(2k+1)!!} (1 + k_2 s^2)^{-k}} \right\}^{\frac{1}{n}};
 \]

- When \(k_1 \neq 0, k_2 = -\frac{1}{2n+1} k_1 \ (n = 1, 2, 3, \ldots), k_3 = 0 \),
 \[
 \phi(s) = \sqrt{1 + k_1 s^2 + \epsilon s \left[\frac{(2n+2)!!}{(2n+1)!!} - \sum_{k=1}^{n} \frac{2(n-k+1)(2n)!!(2k-3)!!}{(2n+1)!!(2k)!!} (1 + k_2 s^2)^{k} \right]};
 \]
• When $k_1 > 0, k_2 = -\frac{1}{2n} k_1$ ($n = 1, 2, 3, \ldots$), $k_3 = 0$,

\[
\phi(s) = \left\{ (1 + k_1 s^2) \left[1 + \frac{(2n - 1)!!}{(2n)!!} \frac{\epsilon}{\sqrt{-k_2}} \arcsin \sqrt{-k_2 s} \right] + \epsilon s \sqrt{1 + k_2 s^2} \left[\frac{(2n + 1)!!}{(2n)!!} - \sum_{k=1}^{n-1} \frac{2(n-k)(2n-1)!!(2k-2)!!}{(2n)!!(2k+1)!!} (1 + k_2 s^2)^k \right] \right\}^{\frac{1}{2}};
\]

• When $k_1 < 0, k_2 = -\frac{1}{2n} k_1$ ($n = 1, 2, 3, \ldots$), $k_3 = 0$,

\[
\phi(s) = \left\{ (1 + k_1 s^2) \left[1 + \frac{(2n - 1)!!}{(2n)!!} \frac{\epsilon}{\sqrt{k_2}} \arcsinh \sqrt{k_2 s} \right] + \epsilon s \sqrt{1 + k_2 s^2} \left[\frac{(2n + 1)!!}{(2n)!!} - \sum_{k=1}^{n-1} \frac{2(n-k)(2n-1)!!(2k-2)!!}{(2n)!!(2k+1)!!} (1 + k_2 s^2)^k \right] \right\}^{\frac{1}{2}};
\]

• When $k_1 = 0, k_2 = 0, k_3 \neq 0$,

\[
\phi(s) = \sqrt{1 + 2\epsilon \int_0^s \sqrt{1 - k_3 \sigma^2} \, d\sigma};
\]

• When $k_1 \neq 0, k_2 = 0, k_3 = 0$,

\[
\phi(s) = \sqrt{1 + 2\epsilon \int_0^s \frac{\sqrt{\lambda \langle x, y \rangle}}{(1 + \mu |x|^2)^{\frac{1}{2}} (1 + \mu |x|^2)^{\frac{1}{2}}} \, d\sigma}.
\]

5 Some explicit examples

We can construct some typical examples below.

Example 5.1. Take $k_1 = k_2 = k_3 = 0$ and $\epsilon = 1/2$, then $\phi(s) = \sqrt{1 + s}$ satisfies (1.10). By Theorem 1.2, the Finsler metric

\[
F = \sqrt{\alpha (\alpha + \beta)}
\]

is locally dually flat if and only if α is locally dually flat and β is dually related to α. In particular, the following metrics

\[
F = \sqrt{\frac{(1 + \mu |x|^2)|y|^2 - \mu \langle x, y \rangle^2}{(1 + \mu |x|^2)^{\frac{1}{2}} (1 + \mu |x|^2)^{\frac{1}{2}}} \left(\frac{(1 + \mu |x|^2)|y|^2 - \mu \langle x, y \rangle^2}{(1 + \mu |x|^2)^{\frac{1}{2}} (1 + \mu |x|^2)^{\frac{1}{2}}} + \frac{\lambda \langle x, y \rangle}{(1 + \mu |x|^2)^{\frac{1}{2}} (1 + \mu |x|^2)^{\frac{1}{2}}} \right)}
\]

are dually flat.

Example 5.2. Take $k_1 = -k_2 = \kappa$, $k_3 = 0$, then $\phi(s) = \sqrt{1 + 2\epsilon s + \kappa s^2}$ satisfies (1.10). By Theorem 1.2, the Finsler metric

\[
F = \sqrt{\alpha^2 + 2\epsilon \alpha \beta + \kappa \beta^2}
\]
is locally dually flat if and only if
\[\alpha = (1 - \kappa b^2)^{-1} \sqrt{(1 - \kappa b^2) \bar{\alpha}^2 + \kappa \bar{\beta}^2}, \quad \beta = -(1 - \kappa b^2)^{-1} \bar{\beta}, \]
where \(\bar{\alpha} \) is locally dually flat and \(\bar{\beta} \) is dually related to \(\bar{\alpha} \).

Example 5.3. Take \(k_1 = k_3 = 0, k_2 = -1 \) and \(\varepsilon = 1 \), then \(\phi(s) = \sqrt{1 + s \sqrt{1 - s^2} + \arcsin s} \) satisfies (1.10). By Theorem 1.2, the Finsler metric
\[F = \sqrt{\alpha^2 + \sqrt{\alpha^2 - \beta^2} \beta + \alpha^2 \arcsin \frac{\beta}{\alpha}} \]
is locally dually flat if and only if
\[\alpha = (1 - \bar{\beta})^{-\frac{3}{4}} \sqrt{(1 - \bar{\beta}) \bar{\alpha}^2 + \bar{\beta}^2}, \quad \beta = -(1 - \bar{\beta})^{-\frac{3}{4}} \bar{\beta}, \]
where \(\bar{\alpha} \) is locally dually flat and \(\bar{\beta} \) is dually related to \(\bar{\alpha} \).

Example 5.4. Take \(k_1 = k_3 = 0, k_2 = 1 \) and \(\varepsilon = 1 \), then \(\phi(s) = \sqrt{1 + s \sqrt{1 + s^2} + \arcsinh s} \) satisfies (1.10). By Theorem 1.2, the Finsler metric
\[F = \sqrt{\alpha^2 + \sqrt{\alpha^2 + \beta^2} \beta + \alpha^2 \arcsinh \frac{\beta}{\alpha}} \]
is locally dually flat if and only if
\[\alpha = (1 + \bar{\beta})^{-\frac{3}{4}} \sqrt{(1 + \bar{\beta}) \bar{\alpha}^2 - \bar{\beta}^2}, \quad \beta = -(1 + \bar{\beta})^{-\frac{3}{4}} \bar{\beta}, \]
where \(\bar{\alpha} \) is locally dually flat and \(\bar{\beta} \) is dually related to \(\bar{\alpha} \).

Example 5.5. Take \(k_1 = k_2 = 0, k_3 = \pm 1 \) and \(\varepsilon = \frac{1}{2} \), then \(\phi(s) = \sqrt{1 + \int_0^s \sqrt{1 \pm \sigma^2} \, d\sigma} \) satisfies (1.10). By Theorem 1.2, the Finsler metric
\[F = \sqrt{1 + \int_0^s \sqrt{1 \pm \sigma^4} \, d\sigma} \]
is locally dually flat if and only if
\[\alpha = (1 \mp \bar{b}^4)^{-\frac{3}{4}} \sqrt{(1 \mp \bar{b}^4) \bar{\alpha}^2 \pm \bar{b}^2 \bar{\beta}^2}, \quad \beta = -(1 \mp \bar{b}^4)^{-\frac{3}{4}} \bar{\beta}, \]
where \(\bar{\alpha} \) is locally dually flat and \(\bar{\beta} \) is dually related to \(\bar{\alpha} \).

Example 5.6. Take \(k_2 = k_3 = 0, k_1 = \pm 1 \) and \(\varepsilon = \frac{1}{2} \), then \(\phi(s) = \sqrt{(1 \pm s^2)(1 + \int_0^s \frac{e^{\pm s^2}}{(1 \pm \sigma^2)^2} \, d\sigma)} \) satisfies (1.10). By Theorem 1.2, the Finsler metric
\[F = \sqrt{(\alpha^2 \pm \beta^2) \left(1 + \int_0^s \frac{\beta}{\alpha} \frac{e^{\pm s^2}}{(1 \pm \sigma^2)^2} \, d\sigma \right)} \]
is locally dually flat if and only if
\[\alpha = e^{\pm s^2} \bar{\alpha}, \quad \beta = -e^{\pm s^2} \bar{\beta}, \]
where \(\bar{\alpha} \) is locally dually flat and \(\bar{\beta} \) is dually related to \(\bar{\alpha} \).
References

[1] S.-I. Amari, *Differential-Geometrical methods in Statistics*, Springer Lecture Notes in Statistics, 28, Springer-Verlag, 1985.

[2] S.-I. Amari and H. Nagaoka, *Methods of information geometry*, AMS Translation of Math. Monographs, 191, Oxford University Press, 2000.

[3] S. Bácsá, X. Cheng and Z. Shen, *Curvature properties of (α,β)-metrics*, In “Finsler Geometry, Sapporo 2005-In Memory of Makoto Matsumoto”, ed. S. Sabau and H. Shimada, Advanced Studies in Pure Mathematics 48, Mathematical Society of Japan, 2007, 73-110.

[4] D. Bao and C. Robles, *On Ricci curvature and flag curvature in Finsler geometry*, in ” *A Sampler of Finsler Geometry*” MSRI series, Cambridge University Press, 2004.

[5] D. Bao, C. Robles and Z. Shen, *Zermelo navigation on Riemannian manifolds*, J. Diff. Geom. 66 (2004), 391-449.

[6] X. Cheng, Z. Shen and Y. Zhou, *On locally dually flat Randers metrics*, Intern. Math., 21 (2010), 1531-1543.

[7] X. Cheng, Z. Shen and Y. Tian, *Einstein (α, β)-metrics*, Israel J. Math. to appear.

[8] X. Mo and L. Huang, *On curvature decreasing property of a class of navigation problems*, Publ. Math. Debrecen 71, (2007), 141-163.

[9] B. Li and Z. Shen, *On a class of projectively flat Finsler metrics with constant flag curvature*, Int. J. Math. 18 (2007), 1-12.

[10] Z. Shen, *On projectively flat (α, β)-metrics*, Can. Math. Bull. 52 (2009), 132-144.

[11] Z. Shen, *Riemann-Finsler geometry with applications to information geometry*, Chinese Ann. Math. Ser. B, 27(1) (2006), 73-94.

[12] Z. Shen and C. Yu, *On Einstein square metrics*, preprint. http://arxiv.org/abs/1209.3876

[13] Q. Xia, *On locally dually flat (α, β)-metrics*, Diff. Geom. Appl., 29, (2011), 233-243.

[14] C. Yu, *Deformations and Hilbert’s Fourth Problem*, preprint. http://arxiv.org/abs/1209.0845

[15] C. Yu, *On dually flat Randers metrics*, preprint. http://arxiv.org/abs/1209.1150

[16] L. Zhou, *A local classification of a class of (α, β)-metrics with constant flag curvature*, Diff. Geom. Appl. 28 (2010), 170-193.

Changtao Yu
School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P.R. China
aizhenli@gmail.com