Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody

V. Hird1,2,3, A. Maraveyas1,3, D. Snook1, B. Dhokia1, W.P. Soutter4, C. Meares5, J.S.W. Stewart1, P. Mason6, H.E. Lambert7 and A.A. Epenetos1,3

1Imperial Cancer Research Fund Oncology Group, Department of Clinical Oncology, Royal Postgraduate Medical School, Hammersmith Hospital, London; 2Department of Obstetrics and Gynaecology, St Mary's Hospital, London; 3Department of Clinical Oncology, Royal Postgraduate Medical School, Hammersmith Hospital, London; 4Department of Obstetrics and Gynaecology, Royal Postgraduate Medical School, Hammersmith Hospital, London; 5Department of Obstetrics and Gynaecology, Hammersmith Hospital, London, UK; 6Department of Chemistry, University of California at Davies, USA.

Summary Fifty-two patients with epithelial ovarian cancer were treated with yttrium-90-labelled monoclonal antibody HMF61 administered intraperitoneally following conventional surgery and chemotherapy as part of an extended phase I–II trial. The treatment was well tolerated and the only significant toxicity observed was reversible myelosuppression as previously described. Following conventional surgery and chemotherapy, 21 out of the 52 patients had no evidence of residual disease and were regarded as receiving treatment in an adjuvant setting. To date, two of these patients have died of their disease (follow-up 3–62 months, median follow-up 35 months).

This extended phase I–II study suggests that patients with advanced ovarian cancer who achieve a complete remission following conventional therapy may benefit from further treatment with intraperitoneal radioactive monoclonal antibody.

Cancer of the ovary ranks sixth as a fatal form of cancer in women (Young et al., 1982). Its incidence is approximately 20 per 100,000 with 4,500 new cases and 3,700 deaths per annum in the United Kingdom (Department of Health 1987). At diagnosis most patients have tumour outside the pelvis and this probably accounts for the poor prognosis (FIGO news report 1971). Advances in cytoreductive surgery and postoperative chemotherapy in the last decade have produced response rates of 65–80% but only a small improvement in overall survival (Neijt et al., 1984). Unfortunately, most patients relapse and die of their disease indicating that benefits from surgery and chemotherapy, whether these may be new drugs or new combination of old drugs have reached a plateau (Marsoni et al., 1990).

More than 90% of epithelial ovarian tumours express high levels of many antigens (Bast et al., 1991), including one in particular, known as polymorphic epithelial mucin (PEM) (Gendler et al., 1987). PEM can be described as a 'tumour associated antigen' because although expressed extensively by many epithelial cancers it can also be found at low levels on many normal tissues (Arkile et al., 1981). Several monoclonal antibodies to this antigen and its various epitopes have been made and used for in vitro and in vivo diagnosis of many cancers including ovarian cancer (Epenetos et al., 1982; Pateisky et al., 1985; Colcher et al., 1983). Since 1983, we have been investigating the possibility of tumour targeting and therapy by the intraperitoneal administration of radiolabelled monoclonal antibodies in patients with ovarian cancer (Epenetos et al., 1984).

We have previously described extensively the pharmacokinetics, biodistribution and toxicity of iodine-131 and yttrium-90-labelled monoclonal antibodies for the treatment of ovarian cancer (Epenetos et al., 1987; Stewart et al., 1989, 1990; Maraveyas et al., 1993). In this report we present the first comprehensive survival data of patients treated in this way from October 1987 to December 1992. Based on our results we propose that this novel modality should now be considered further as a form of adjuvant in patients with cancer of the ovary.

Patients, materials and methods

Patients
Fifty-two patients with known epithelial cancer received intraperitoneal radioimmunotherapy with yttrium-90-labelled monoclonal antibody HMF61. Patients' ages ranged from 29–76 years. All had performance status above WHO Grade 2. All patients had previously undergone cytoreductive surgery, and all but one were subsequently treated with cisplatin or carboplatin based chemotherapy. One patient (Stage Ic) did not receive chemotherapy. Table I shows the stage and disease status at presentation of all treated patients and Table Ib shows the histology and stage of patients treated as adjuvant, as assessed at second look laparoscopy. It can be seen that there are 22 patients who had no evidence of disease at the time of laparoscopy. One (Stage Ia) was disease free following chemotherapy for relapse and the remaining 21 were regarded as receiving treatment in an adjuvant setting.

Monoclonal antibody
The monoclonal antibody used in this study was Human Milk Fat Globule 1 (HMF61) (ICRF, London and Unipath (UK) Ltd, Bedford). HMF61 is a mouse IgG1 monoclonal antibody that binds to the PEM molecule found on more than 90% of epithelial ovarian carcinomas (Arkile et al., 1981). Patients received 25 mg of antibody.

Antibody labelling
Yttrium-90 (AERE Harwell, UK) was chelated to the antibody-DTPA, CITC-DTPA or DOTA conjugate as previously described (Stewart et al., 1990; Meares et al., 1990). Free radioisotope was removed by sephadex G50 gel filtration using phosphate buffered saline as elution buffer. Specific activity of radiolabelled antibody was <5 Ci mg⁻¹. The final dose of administered antibody was made up to 25 mg of total IgG by adding unlabelled HMF61 IgG to the radiolabelled fraction. Antibody immunoreactivity was tested in an enzyme-linked immunosorbant assay (ELISA method) before and after radiolabelling and was compared with undervatised antibody using micro titre plates coated with purified antigen. No obvious reduction in immunoreactivity was seen. The administered dose of radioactivity was measured in a SIEL isotope calibration chamber that had been calibrated with an yttrium-90 source (Stewart et al., 1990).

Correspondence: A.A. Epenetos, ICRF Oncology Group, Department of Clinical Oncology, Royal Postgraduate Medical School, Hammersmith Hospital, London W12 OHS, UK.
Received 2 November 1992; and in revised form 1 April 1993.
Table 1a Patient’s number, FIGO stage and extent of disease at antibody treatment

Patient no.	FIGO stage at presentation	Disease stage at antibody therapy
1	1a	No evidence of disease following relapse
2	1a	Bulky* disease + ascites
3	1c	No evidence of disease
4	1c	No evidence of disease
5	1c	Positive peritoneal washings
6	1c	No evidence of disease
7	2a	Unassessable adhesions
8	2b	No evidence of disease
9	2b	No evidence of disease
10	2c	No evidence of disease
11	2c	No evidence of disease
12	3	No evidence of disease
13	3	No evidence of disease
14	3	Unassessable adhesions
15	3	Bulky disease
16	3	Bulky disease
17	3	Bulky disease
18	3	Bulky disease
19	3	Minimal* disease
20	3	Minimal disease
21	3	Bulky disease
22	3	Bulky disease
23	3	Bulky disease
24	3	No evidence of disease
25	3	Bulky disease
26	3	Minimal disease
27	3	Unassessable adhesions
28	3	Bulky disease
29	3	No evidence of disease
30	3	No evidence of disease
31	4	No evidence of disease
32	4	No evidence of disease
33	4	Extra peritoneal disease
34	4	No evidence of disease
35	4	Bulky disease
36	4	Bulky disease
37	4	Minimal disease
38	4	Bulky disease
39	4	Minimal disease
40	4	Bulky disease
41	4	Minimal disease
42	4	Minimal disease
43	4	No evidence of disease
44	4	No evidence of disease
45	4	No evidence of disease
46	4	Unassessable
47	4	No evidence of disease
48	4	Unassessable
49	4	Bulky disease
50	4	Bulky disease
51	4	No evidence of disease
52	4	No evidence of disease

* Bulky disease = > 2 cm. Minimal disease = < 2 cm.

Table 1b FIGO stage and histology of patients treated in an adjuvant setting

No.	Stage at presentation	Histology
1	Ic	Endometrioid
2	Ic	Endometrioid
3	Ic	Serous
4	IIb	Undifferentiated
5	IIb	Serous
6	IIc	Undifferentiated
7	IIc	Endometrioid
8	III	Endometrioid
9	III	Endometrioid
10	III	Undifferentiated
11	III	Endometrioid
12	IV	Undifferentiated
13	IV	Serous
14	IV	Serous cystadenocarcinoma
15	IIa	Clear cell
16	Ic	Serous cystadenocarcinoma
17	IIc	Well differentiated
18	III	Serous
19	III	Undifferentiated
20	III	Serous
21	III	Endometrioid

Pharmacokinetics

Pharmacokinetics, toxicity and dosimetry have been previously reported (Epenot et al., 1987; Stewart et al., 1989, 1990; Maraveyas et al., 1993). Approximately 30% of the intraperitoneally injected immunoconjugate was absorbed into the systemic circulation by 48 h after administration (Stewart et al., 1989, 1990; Maraveyas et al., 1993).

Results

Toxicity

The treatment was well tolerated by all patients. Reversible myelosuppression was observed at high doses (>15 mCi of HMFG1-DTPA-90Y). This toxicity was reduced considerably by the subsequent use of more stable chelating agents known as DOTA and CITC-DTPA (Moi et al., 1990). No significant myelotoxicity was observed even at higher doses of up to 20 mCi of HMFG1-DOTA-90Y (Kosmas et al., 1992) and 34 mCi of HMFG1-CITC-DTPA-90Y. A correlation between body surface and CITC-DTPA-90Y dose was found (Maraveyas et al., 1993). DOTA is potentially immunogenic in patients (Kosmas et al., 1992) as three out of six patients treated with HMG1-DOTA-90Y conjugate developed serum sickness reactions manifested as superficial and self-limiting skin rashes 10–12 days after treatment. It was also found that treated patients developed anti-DOTA (Kosmas et al., 1990) and anti-CITC-DTPA antibodies. All patients developed human antimouse antibodies as previously reported (Epenot et al., 1987; Stewart et al., 1989). The difference in toxicity and immunogenicity between DTPA and DOTA linkage between antibody and radionuclide as well as the HAMA levels are reported elsewhere (Kosmas et al., 1992; Maraveyas et al., 1993).

Survival

Figure 1 shows the survival data of the subgroup of 15 patients treated regarded as receiving adjuvant treatment and compares it with a similar group (70 patients) from the same centre (North Thames Ovarian Group). This group comprises of patients who presented with Stage IIb disease or worse and had no evidence of residual disease at laparoscopy following conventional treatment with surgery and chemotherapy. These data show a remarkable difference in survival between the group treated as adjuvant with antibody and the historical control from the North Thames Ovarian Group (Lambert et al., 1993). However, this is not the result.
of a randomised trial, and the patient numbers are small. Survival after antibody therapy of patients with bulky disease treated with radiolabelled antibody is: median survival of 11 months (range 2–31 months), with four patients still alive.

Discussion

The application of radiolabelled antibodies as specific cytotoxic drugs against cancer has many attractions including selectivity against tumour cells, irradiation of adjacent tumour cells, lack of major side effects and simplicity of radiolabelling and administration. Although tested extensively over the last decade, radiolabelled and other immunoconjugates have had only limited success as anticancer agents.

For the first time, this study demonstrates that radiolabelled antibodies used in an adjuvant setting may reduce the rate of recurrence from ovarian cancer and improve the long term survival. Although survival data from this study appear superior to previously reported studies (Neijt et al., 1984; Marsoni et al., 1990), the patient numbers are small and need to be substantiated by larger phase III randomised studies. Furthermore, because this was a phase I–II study, our cases included a mixture of stages from Ic-IV.

The mechanisms for the action of antibody therapy are not clear from this trial. The calculated doses of radiation delivered by the radioactive antibody are thought to be insufficient for a cytotoxic effect based on calculations using conventional dosimetry tables (Snyder et al., 1978) although more recent studies suggest that higher doses can be delivered (Larson et al., 1991). Unfortunately, there are no comprehensive data on the therapeutic efficacy of radioactive yttrium colloid alone given intraperitoneally after chemotherapy. An alternative possibility is that HMFG1 murine monoclonal antibody when administered intraperitoneally into humans, can cause a cascade of immunological reactions leading to humoral (Courtenay-Luck et al., 1988; Herlyn et al., 1991) and cellular (Kosmas et al., 1991) activation of the immune system with resultant antitumour effects. If this is the case of the observed prolongation of survival in patients with ovarian cancer in this study, then, ironically, the use of murine monoclonal antibodies may be more effective than the recently described chimeric (LoBuglio et al., 1989), humanised (Reichmann et al., 1988) or completely human (Borrebaeck et al., 1988) monoclonal antibodies.

In summary, this study provides encouragement to the concept of adjuvant therapy with monoclonal antibodies in patients with epithelial ovarian cancer who have no evidence of residual disease after initial surgery and chemotherapy.

We are grateful to the following: D. Allen, R. Biruls, C. Coulter, R. Chandler and J. Taylor-Papadimitriou.

References

ARKLIE, J., TAYLOR-PAPADIMITRIOU, J., BODMER, W.F., EGAN, M. & MILLIS, R. (1981). Differentiation antigens expressed by epithelial cells in the lactating breast are also detectable in breast cancers. Int. J. Cancer, 28, 23–27.

BAST, R.C. Jr, KNAUF, S., EPENETOS, A., DHOKIA, B., DALY, L., TANNER, M., SOPER, I., CREAMAN, N., GALL, S., KNAFF, R.C., ZURAWSKI, V.R. Jr, SCHLOM, J., KUFE, D.W. & RITTS, R.E. Jr (1991). Coordinate elevation of serum markers in ovarian cancer but not in benign disease. Cancer, 68, 1758–1763.

BORREBAECK, C.A.K., DANIELSSON, K. & MOLLER, S. (1988). Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc. Natl Acad. Sci. USA, 85, 3995–3999.

COLCHER, D., ZALUTSKY, M., KAPLAN, W., KUFE, D., AUSTIN, F. & SCHLOM, J. (1983). Radiolocalization of human mammary tumours in athymic mice by a monoclonal antibody. Cancer Res., 43, 736–742.
COURTENAY-LUCK, N.S., EPENETOS, A.A., SIVOLAPENKO, G.B., LARCHE, M., BARKAS, J.R. & RITTER, M.A. (1988). Development of anti-idiotypic antibodies against tumour antigens and autoantigens in ovarian cancer patients treated intraperitoneally with mouse monoclonal antibodies. Lancet ii, 894–897.

DEPARTMENT OF HEALTH AND SOCIAL SECURITY. The State of the Public Health for the Year 1986. London: HMSO Publications, 1987.

FIGO news report presented by the Cancer Committee to the General Assembly of FIGO, New York. Int. J. Gynaecol. Obstet. 1971, 9, 172–180.

EPENETOS, A.A., BRITTON, K.E., MATHER, S., SHEREDER, J., GRAINNOSY, M., TAYLOR-PAPADIMITRIOU, J., NIMMON, C.C., DURBIN, H., HAWKINS, I.R., MALPS, J.S. & BODMER, W.F. (1982). Targeting of 111In-labelled tumour associated monoclonal antibodies to ovarian, breast and gastrointestinal tumours. Lancet, 11, 999–1003.

EPENETOS, A.A., COURTENAY-LUCK, N., HALNAN, K.E., Hooker, G., Hughes, J.M.B., Krausz, T., LAMBERT, J., LAVENDER, J.P., MACGREGOR, W.G., MCKENZIE, C.J., MUNRO, A., MYERS, M.J., ORR, J.S., PEARSE, E.E., SNOOK, D. & WEBB, B. (1984). Hammarssmith Oncology Group and Imperial Cancer Research Fund. Antibody guided irradiation of malignant lesions: three cases illustrating a new method of treatment. Lancet, 1, 1441–1443.

EPENETOS, A.A., MUNRO, A.J., STEWART, S., RAMPLING, R., LAMBERT, H.E., MCKENZIE, C.G., SOUTTER, P., RAHEMTULLA, A., Hooker, G., SIVOLAPENKO, G.B., SNOOK, D., COURTENAY-LUCK, N., DHOKIA, B., Krausz, T., TAYLOR-PAPADIMITRIOU, J., DURBIN, H. & BODMER, W.F. (1987). Antibody-guided irradiation of advanced ovarian cancer with intraperitoneally administered radio-labelled monoclonal antibodies. J. Clin. Oncol., 5, 1869–1889.

GENDLER, S.J., BURCHELL, J.M., DUHIG, T., LAMPORT, D., WHITE, R., PARKER, M. & TAYLOR-PAPADIMITRIOU, J. (1987). Cloning the cDNA coding for the differentiation and tumour associated mucin glycoproteins expressed by human mammary epithelium. J. Natl. Cancer Inst. USA, 84, 6060–6063.

HERLYN, D., CATON, A. & KOPROWSKI, H. (1991). Anti-idiotypes in cancer immunotherapy. pp. 283–290. In Monoclonal Antibodies. Applications in Clinical Oncology. A.A. Epenetos, (ed.). Publ. Chapman and Hall Medical.

KOSMAS, C., EPENETOS, A.A. & COURTENAY-LUCK, N.S. (1991). Patients receiving murine monoclonal antibody therapy for malignancy develop T cells that proliferate in vitro in response to these antibodies as antigens. Br. J. Cancer, 64, 494–500.

KOSMAS, C., SNOOK, D., GOODEN, C.S., COURTENAY-LUCK, N.S., MCCALL, R.M., MEARES, C.F. & EPENETOS, A.A. (1992). Development of humoral immune responses against a macrocytic cycling agent (DOTA) in cancer patients receiving radioimmunoconjugates for imaging and therapy. Cancer Res., 52, 904–911.

LAMBERT, H.E., RUSTIN, G.J.S., GREGORY, W.M. & NELSTROP, A.E. (1993). A randomised trial comparing single agent for advanced ovarian cancer. J. Clin. Oncol. (in press).

LARSON, S.M., CARRASQUILLO, J.A., COLCHER, D.C., YOKAHAMA, K., REYNOLDS, J.C., BACHARACH, S.A., RAUBITCHEK, A., PACE, L., FINN, R.D., ROITMAN, M., STABIN, M., NEUMANN, R.D., SUGARBAKER, P. & SCHLOM, J. (1991). Estimates of radiation absorbed dose for intraperitoneally administered Iodine-131 radiolabelled B72.3 monoclonal antibody in patients with peritoneal carcinomatosis. J. Nucl. Med., 32, 1661–1667.

LOBUGLIO, A.F., WHEELER, R.H., TRANG, J., HAYNES, A., ROGERS, K., HARREY, E.B., SUN, L., GRAYER, J. & KHAZAELI, M.B. (1989). Mouse/human chimeric monoclonal antibody: kinetics and immune response. Proc. Natl. Acad. Sci. USA, 86, 4220–4224.

MARAVEYAS, A., SNOOK, D., HIRD, V., KOSMAS, C., MEARES, C., LAMBERT, H.E. & EPENETOS, A.A. (1993). Pharmacokinetics and toxicity of an yttrium-90-DTPA-DTMAO radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. Cancer (in press).

MARSONI, S., TORRI, V., VALSECCHI, M.G., BELLONI, C., BIANCHI, V., BOLIS, G., BONAZZI, C., COLOMBO, N., EPI, E., FARALLI, G., GAMBINO, A., LANDONI, F., MAGGI, R., PECORELLI, S., PRESTI, S., VASENA, L., ZANABONI, F., MANGONI, C. (1990). Prognostic factors in advanced epithelial ovarian cancer. Br. J. Cancer, 62, 444–450.

MEARES, C.F., MOI, M.K., DIRIL, H., KUKIS, D.L., MCCALL, M.S., DESHPANDE, S.V., SNOOK, D. & EPENETOS, A.A. (1990). Macrocyclic chelates of radiometals for diagnosis and therapy. Br. J. Cancer, 62, 21–26.

MOI, M.K., DENARDO, S.J. & MEARES, C.F. (1990). Stable bifunctional chelates of metals used in radiotherapy. Cancer Res., 50, 789–793.

NEIJT, J.P., TEN BOKKEL HUINK, W.W., VAN DER BURG, M.E.L., VAN OOSTEROM, A.T., VRIESDENDORP, R., KOOGYAN, C.D., VAN LINDERT, A.C.M., HAMERLYNE, J.V.T.H., VAN HOUWELINGEN, J.C. & PINZON, R.M. (1984). Randomised trial comparing two combination chemotherapy regimes (Hexa-CAF vs CHAP-5) in advanced ovarian carcinoma. Lancet, 2, 594–600.

PATEISKY, N., PHILIP, P., SKODDER, W.D., CZERWENKA, K., HAMILTON, G. & BURCHELL, J. (1985). Radioimmunodetection in patients with suspected ovarian cancer. J. Nucl. Med., 26, 1369–1376.

REICHMANN, L., CLARK, M., WALDMANN, H., WINTER, G. (1988). Reshaping human antibodies for therapy. Nature, 332, 323–327.

SNYDER, W.S., FORD, M.R. & WARNER, G.G. (1978). Estimates of specific absorbed dose fractions for photon sources uniformly absorbed in various organs of the heterogeneous phantom. In Medical Internal Radiation Dose (MIRD). New York: Society of Nuclear Medicine, 5, 50–67.

STEWART, J.S.W., HIRD, V., SNOOK, D., SULLIVAN, M., HOOKER, G., COURTENAY-LUCK, N., SIVOLAPENKO, G., GRIFFITHS, M., MYERS, M.J., LAMBERT, H.E., MUNRO, A.J. & EPENETOS, A.A. (1989). Intraperitoneal radioimmunotherapy for ovarian cancer: pharmacokinetics, toxicity, and efficacy of 1-131 labelled monoclonal antibodies. Int. J. Radiation Oncol. Biol. Phys., 16, 405–413.

STEWART, J.S.W., HIRD, V., SNOOK, D., DHOKIA, B., SIVOLAPENKO, G., HOOKER, G., TAYLOR-PAPADIMITRIOU, J., ROWLINSON, G., SULLIVAN, M., LAMBERT, H.E., COULTER, C., MASON, W.P., SOUTTER, W.P. & EPENETOS, A.A. (1990). Intraperitoneal Yttrium-90-labelled monoclonal antibody in ovarian cancer. J. Clin. Onc., 8, 1941–1950.

YOUNG, R.C., KNAPP, R.C., PEREZ, C.A. (1982). Cancer of the ovary. DeVita, V.T. Jr, Hellman, S. & Rosenberg, S.A. (eds). Cancer: Principles and Practice of Oncology. Philadelphia, Lippincott, 884–913.