Personal Email Networks: An Effective Anti-Spam Tool

P. Oscar Boykin and Vwani Roychowdhury

Department of Electrical Engineering, University of California, Los Angeles, CA 90095
(Dated: February 3, 2004)

We provide an automated graph theoretic method for identifying individual users’ trusted networks of friends in cyberspace. We routinely use our social networks to judge the trustworthiness of outsiders, i.e., to decide where to buy our next car, or to find a good mechanic for it. In this work, we show that an email user may similarly use his email network, constructed solely from sender and recipient information available in the email headers, to distinguish between unsolicited commercial emails, commonly called “spam”, and emails associated with his circles of friends. We exploit the properties of social networks to construct an automated anti-spam tool which processes an individual user’s personal email network to simultaneously identify the user’s core trusted networks of friends, as well as subnetworks generated by spams. In our empirical studies of individual mail boxes, our algorithm classified approximately 53% of all emails as spam or non-spam, with 100% accuracy. Some of the emails are left unclassified by this network analysis tool. However, one can exploit two of the following useful features. First, it requires no user intervention or supervised training; second, it results in no false negatives i.e., spam being misclassified as non-spam, or vice versa. We demonstrate that these two features suggest that our algorithm may be used as a platform for a comprehensive solution to the spam problem when used in concert with more sophisticated, but more cumbersome, content-based filters.

I. INTRODUCTION

The amount of unsolicited commercial email (spam), and more importantly, the fraction of email which is spam, has risen dramatically in the last few years. Recently, a study has shown that 52% of email users say spam has made them less trusting of email, and 25% say that the volume of spam has reduced their usage of email[3]. This crisis has prompted proposals for a broad spectrum of potential solutions, ranging from the design of more efficient anti-spam software tools to calls for anti-spam laws at both the federal and state levels. While the jury is still out on how widely such anti-spam laws will be enacted and how effective they will be in stemming the flow, the objective of the various legal and technical solutions are the same: to make it unprofitable to send spam and thereby destroy the spammers’ underlying business model.

Any measure that stops spam from reaching users’ inboxes with probability p and is deployed by users with probability q increases the average cost of sending spam by $1/(1 - pq)$. For instance, if a filter has 90% accuracy and is used by 90% of users, the the cost of sending spam will increase by more than 500%. However, even if a filter is 99.9% accurate, but only 1% of users actually use it, then spammers’ costs will only increase by 1%. Thus, the need is for anti-spam techniques that work accurately enough and, more importantly, are user friendly and computationally efficient so that they can be widely deployed and used. In evaluating the accuracy of the anti-spam tool, it is especially important that the algorithm should generate virtually no false negatives, since each non-spam message that gets thrown in the spam folder undermines the confidence of the user, and decreases the likelihood that anti-spam filters will be used universally. In evaluating the ease of use of the anti-spam tool, there should be a strong preference for automated algorithms, which require little or no direct input from individual users.

We report a surprisingly effective technique that can simultaneously achieve the two above-mentioned requirements of accuracy and automation. This technique is predicated upon the unique characteristics inherent to social networks and the proven wisdom of using such trust networks to make the right choices. Almost all our contractual decisions (e.g., from the schools we choose for our kids, to the people we trust with our money) depend heavily on information provided by our networks of friends. The reliability of the decisions we make, then, depends strongly on the trustworthiness of our underlying social networks. Thus, we seem to have evolutionarily developed a number of interaction strategies that can generate a trustworthy network, and a commonly espoused rule suggests that trust is to be built based not only on how well you know a person, but also on how well that person is known to the other people in your network. This interaction dynamic results in “close-knit” communities; that is, communities where, if Alice knows Bob and Charlotte, then it is highly likely that Bob and Charlotte also know each other. In this paper, we show that this natural instinct to form close-knit social networks is operative in the cyberspace as well, and can be exploited to provide an effective and automated spam filtering algorithm.

First, we show that if one constructs personal email networks, then one can identify distinct close-knit or clustered subnetworks of email-addresses that communicate with each other via the user, and that the emails originating from such addresses are trustworthy or non-spam.

*Electronic address: boykin,vwani@ee.ucla.edu.
In Sections II - III we discuss the construction of personal email networks and the structure of social subnetworks. In Section IV we show that there also exist large connected subnetworks of email addresses that are not close-knit, and that the emails related to these addresses are overwhelmingly spams. Further analysis shows that we accurately classified approximately 44% of all the non-spam emails, and 54% of all spam emails, while 47% of all email is not classified, because they are related to subnetworks that are too small in size to allow reliable determination of statistics. Thus, the automated network-only-based algorithm does not make any mistakes, but leaves a subset of the messages unclassified. Clearly, one needs to use more sophisticated content-based filters to classify these. However, these complex filters achieve their advertised high accuracies only when trained with a sufficient number of messages received by individual users. This in turn necessitates manual and intentional user intervention, a potential bottleneck to a widespread deployment of accurate filters. Since the proposed network-based algorithm automatically generates large samples of both non-spam and spam messages, it can considerably alleviate the training problem. Section IV is devoted to showing how the personal email networks provide a platform for a comprehensive solution to the spam problem, by combining the flexibility of sophisticated, content-based filters with the ease of use of an automated filter.

II. PERSONAL EMAIL NETWORKS

In previous works, email graphs have been constructed based on email address books or complete email logs of sets of users. In this work, we build our network based on the information available to only one user of an email system, specifically, the headers of all the email messages in that user’s inbox. Each email header contains the email address of one sender, stored in the “From:” field, and a list of recipient addresses, stored in the “To:” and “Cc:” fields. We construct a personal email network by first creating nodes representing all the addresses that appear in all the email headers in the user’s inbox. Edges are added between pairs of addresses that appear in the same header, i.e., that have communicated via the user. For example, suppose Bob sends a message “To:” Alice and Charlotte, with a “Cc:” to David and Eve, then we can represent this email interaction via a star subnetwork, as illustrated in Fig. 1.

Finally, all nodes representing the user’s own email addresses are removed, since we are interested only in the connections among email addresses who communicate via the user. Fig. 2 shows a personal email network for one of the authors of the paper. Interestingly, and perhaps contrary to intuition, the largest connected component in this particular network corresponds to spam-related emails. This raises the question: how does one determine which subnetworks correspond to trusted email addresses and which ones correspond to spam-related ones?

III. SOCIAL NETWORKS AND WHITELISTS

A number of recent studies have identified quantitative measures of the closeness of a community, and have shown that, indeed, these measures can be used to distinguish empirically observed social networks from more anonymous and non-social networks. The most distinctive property of social networks is their tendency to cluster. For example, if Alice knows Bob and Eve, i.e., Bob and Eve are connected through Alice, then, in a social network, the likelihood of Bob knowing Eve is considerably higher than in, for example, a random network with very similar degree distribution. A qualitative expression for the clustering coefficient of a network is defined as follows: we count all pairs of nodes that are part of a wedge, i.e., each node in the pair has a direct edge to a third node. According to the intuitive notion of clustering mentioned above, we expect that in a graph with high clustering coefficient, many of these pairs will also be connected via an edge, i.e., many of the wedges also form triangles. Hence, the clustering coefficient (sometimes called transitivity), C, of a graph can be expressed as:

$$C = \frac{3 \times \text{number of triangles in the graph}}{\text{number of wedges}}$$

This expression gives the reader a feel for the physical meaning of the clustering coefficient in social networks. The quantitative definition of the clustering coefficient that we will use for the rest of this work involves counting the fraction of neighbors of a node which are also neighbors to each other. Specifically, if a node has degree k_i, then it has k_i neighbors. Each of those k_i neighbors potentially are connected to each other. There are a total of $k_i(k_i - 1)/2$ possible connections between the neighbors. By counting the number of connections that exist, E_i, and dividing by $k_i(k_i - 1)/2$, we get the clustering coefficient for the node. If a node has degree 1, this quantity falls...
FIG. 2: One author’s complete email network, formed by 5,486 messages. The largest component (component 1, at center) is enlarged to show structure. The second largest, component 2, is boxed at upper left. An enlarged view of component 2 is shown in Fig. 3.

FIG. 3: The second largest component (called component 2) in one author’s email graph for a six week period.

FIG. 4: A subgraph of a spam component. See two spammers and their many recipients. These two spammers share many co-recipients, as seen in the middle of the graph. In this subgraph, no node shares a neighbor with any of its neighbors.

FIG. 5: A subgraph of a non-spam component. Note the high incidence of triangle structures, as compared with the spam subgraph shown in Fig. 4.
is undefined, thus we only count nodes of degree greater than 1. The clustering coefficient for the entire graph is the average of the clustering coefficient for each node (of degree greater than 1):

$$C = \frac{1}{N_2} \sum_i \frac{2E_i}{k_i(k_i - 1)}$$

where N_2 is the total number of nodes in the network with degree 2 or greater. This metric has been applied to email graphs previously and has been found to be more than 10 times larger than one would expect from a random graph with the same degree distribution.

As an example of how clustering coefficient may be used to distinguish between spam and non-spam emails, consider the connected components 1 and 2, shown in Fig. 2 and 3, respectively. Some properties of these and other components are listed in Table I. Component number 1 has a clustering coefficient of 0; exactly zero nodes share neighbors with any of their neighbors. On the other hand, component 2, which is smaller in size, has a clustering coefficient of 0.67, or, on average, 67% of each node’s neighbors are connected to each other. Figures 4 and 5 show subgraphs from components 1 and 2, respectively. The relative incidence of the triangle structures that characterize close-knit communities can be clearly seen in these subgraphs. Recognizing that social networks have high clustering coefficients, we can be confident that the email addresses in component 2 are a part of the user’s social network in the cyberspace. Thus, any email with one of the nodes from the second component in the header can be classified as a non-spam. The email addresses associated with these nodes comprise the user’s whitelist.

Table I: Statistics on largest components of complete email network shown in Fig. 2

Component	N	C	k_{max}	$k_{max}+1$
1	3560	0	542	0.153
2	266	0.673	112	0.425
3	174	0	98	0.569
4	49	0	48	1
5	34	0	17	0.529
6	22	0	21	1

We have already discussed the reasons why we should expect our networks of friends to have a high clustering coefficient, but we have yet to understand why a large subnetwork with low clustering coefficient should necessarily be spam-induced. A careful analysis of component 1 reveals that it has been created by a common form of spamming technique called the dictionary attack, where spammers send messages to co-recipients sorted according to email address. For example, if one has an email address “adam@mail.com”, one will tend to see co-recipients with alphabetically similar email addresses, such as “arthur@mail.com”, “alex@mail.com”, “avid@mail.com”, etc. Due to sorted recipient lists, it is not at all uncommon to have co-recipients repeated in different spam email messages, causing the disconnected spam components to merge into larger and larger components. One can view the spam messages as forming a bi-partite graph, with two types of nodes representing spammers and spam recipients. Since the spammers don’t spam one another, and the co-recipients of spam messages don’t know one another, this graph will always have a clustering coefficient of 0.

An obvious question is: how quickly do we expect the spammer components to merge? To answer this, we need to examine the probability that two different spammers send messages to the same co-recipient. In figure 6 we see the complementary cumulative distribution function (CCDF) of the number of co-recipients per spam message. In this data, the average number of recipients of a spam message is 3.87. As a model, we assume that each spammer uses a “From:” address only once, and sends the spam to l recipients chosen at random. Based on our data, we choose $l \approx 3.87$. The model assumes that there are k email addresses near to the user’s address in the sorted address space.

We can solve for the size of the largest connected component in the following way. Define S_i to be the size of the largest connected component after i messages. The probability that each recipient is already in the largest component is $S_i/k = q$. The probability that m of the recipients are in the largest component is $p_m = \binom{l}{m}(1-q)^{l-m}q^m$. Putting this together in a rate equation, we find:

$$S_{i+1} = \sum_{m=0}^{l} p_m(S_i + (l-m)) - p_0 l$$
$$= S_i + (1-p_0)l - ql$$
$$= S_i - \frac{l}{k}S_i + (1 - (1-q)^l)l$$

$$\frac{dS_i}{di} \approx (1 - (1-q)^l)l - \frac{l}{k}S_i$$

We can approximate the above in two regimes, namely, unsaturated ($q \ll 1$) and saturated ($q \approx 1$) to get two
different solutions. In the unsaturated regime,
\[
\frac{dS_i}{di} \approx (1 - (1 - q)^l) - \frac{l}{k} S_i \\
\approx 1^2 q - \frac{l}{k} S_i \\
= \frac{l(l - 1)}{k} S_i \\
\Rightarrow S_i = le^{-\frac{l-1}{2}i}
\]
In the saturated regime,
\[
\frac{dS_i}{di} \approx (1 - (1 - q)^l) - \frac{l}{k} S_i \\
\approx l - \frac{l}{k} S_i \\
\Rightarrow S_i = k(1 - e^{-\frac{k}{2}i}) + le^{-\frac{l}{2}i}
\]
Clearly, after $O(k/l^2)$ messages, the spam components should start to join. This analysis underestimates the joining rate because it always assumes that a message only joins with the largest component, and never adds more than one component together, which clearly only increases the rate that the spam components grow in size. Additionally, we have ignored the fact that the nearer the address by alphabetical measure, the more likely they are to be co-recipients of an email message. Instead we have approximated that there are k nearby addresses, and they are all selected at random.

Spammers, of course, will try to defeat any and all anti-spam tools. There are a few countermeasures that spammers could take to attempt to foil the proposed algorithm. The most obvious countermeasure is to never use multiple recipients in the To: or Cc: headers of a spam message. In that way, spam components would be isolated nodes in our graph, and would be disregarded for the purposes of constructing the blacklist. However, this would not impact the ability of users to automatically generate whitelists, which are extremely valuable in improving the accuracy of content-based filtering systems. The spammer could also attempt to make the algorithm misclassify them as a non-spammer. For instance, spammers could try to learn email addresses for friends of each user by means of email viruses, proximity of email addresses on web pages, or other means. The spammer could then include the user’s friends as co-recipients of a spam message, thus posing as a member of the user’s social network. However, if spammers can impersonate members of your whitelist they can damage the effectiveness of any whitelisting scheme, not just our algorithm.

V. GREYLISTS: THE ALGORITHM AND ITS EFFICACY

We have described an algorithm that divides a single user’s personal email network into disconnected components and attempts to identify each component as spam or non-spam based only on the value of the clustering coefficient. We’ve discussed this metric for two large subnetworks of one author’s email graph, but now we must ask: is it possible to classify all components using this scheme? For each component, we note the size, the maximum degree k_{max}, and the clustering coefficient. We expect that there is a minimum number of nodes for which the clustering coefficient of a component can be reliably measured. Components smaller than this cutoff size, S_{min}, then, must be excluded from our classification scheme. We also know that, for power-law graphs with exponents greater than or equal to -2.0, we can expect the maximum degree to be on order of the size of the graph. Previous works \cite{8}, as well as this one (see Fig. 4), find degree distributions with exponents greater than -2.0. We use this fact to introduce another cut-off parameter. All components with clustering coefficient equal to 0 and $(k_{max} + 1)/size$ greater than K_{frac}, are also disregarded, in order to limit the impact a single node can have on the statistics. Remaining components with clustering coefficient less than some critical value, C_{min}, are assumed to be spam components, and all nodes in these components are written to the blacklist. If a component has clustering coefficient greater than C_{max}, then we write all nodes to the whitelist. The rare case in which a component which was not disregarded has a clustering coefficient between C_{min} and C_{max} is addressed later in this section.

The criteria for choosing the cutoff parameters S_{min}, K_{frac}, C_{min}, and C_{max} are as follows:

- **Choice of S_{min} and K_{frac}:** Single messages can make isolated components which it is not clear how to classify a priori, since every message with k co-recipients can create a component with clustering coefficient equal to 0.0 and size k. Setting K_{frac} less than 1.0 ($0.6 - 0.8$ works well in practice) ensures that a component from a single message will
not be considered. A more direct route (but one that can’t be realized using purely graph theoretic methods) is to only consider components formed by N or more messages. The size cutoff should come from the number of recipients a message is expected to have. Setting this far above the mean also insures that several messages are required for each component. For the data we examined, a cutoff size of $10 - 20$ seemed to work well.

- **Choice of C_{min} and C_{max}:*** As we saw in section IV, we expect spam components to have $C = 0$. On the other hand, in our data, as in previous studies, the clustering coefficient of the social graphs is found to be an order of magnitude larger than one would expect for a random graph with the same degree distribution. In this work, $C_{\text{min}} = 0.01$, and $C_{\text{max}} = 0.1$ produce excellent results.

The methods for choosing the various parameters could be improved with further research on more personal email networks to better understand the statistical properties of these networks over a larger set of users.

We have already discussed how email addresses associated with components larger than S_{min} and with clustering coefficients less than C_{min} or greater than C_{max} are sorted into whitelists and blacklists. We now resolve how to deal with large components that have an intermediate value of the clustering coefficient.

In general, we assume that spammers don’t know who the user’s friends are, so it is very unlikely for a spammer to email the user and a friend of the user in the same message. This presumably happens purely by chance, and is also presumably very rare, since we can imagine that each co-recipient on a spam message is a friend with some very small probability. Hence, spam components usually stay disconnected from friend components. There is always the possibility, however, that a spam message will have a co-recipient in common with a non-spam message. The cross-component connections are most likely to happen in spam components with a large number of co-recipients; this means that chance connections will result in a non-spam component joined with a large spam component via a small number of edges (the chance co-recipient connections). From a graph theoretic perspective, this situation will correspond to two connected “communities” which have very few edges between them, and which also have very different clustering coefficients. We may identify these cases when we find large components with intermediate clustering coefficients. For instance, if the component size is large, but the clustering coefficient is less than C_{max}, we may assume that it is a joined spam component.

A metric called edge betweenness has been suggested as a tool to identify edges that go between communities. The betweenness of an edge within a network is a measure of how many of the shortest paths between all the pairs of nodes in the network include that edge. Since all paths linking the many nodes in the spam community to nodes in the non-spam community in a joined component will include one of the very few edges that correspond to the chance connections between the two communities, these edges will clearly have a much higher betweenness than the edges that connect members within the same community. Therefore, in our approach, we split joined components into two communities by removing the edges with the highest betweenness until there are two distinct components, recalculating the betweenness after each edge removal. This step is the same as the algorithm given by Newman and Girvan; however, we do not execute this step on components with high clustering coefficient (in fact, Newman and Girvan’s community-finding algorithm tends to cut these email graphs into many communities, whereas we are interested only in finding the split between spammers and non-spammers).

When considering a data set from one author of all the saved email messages over a period of 3 years, we found only one example where an edge arose between a spam and non-spam community. This edge was indeed removed by the above separation technique. Therefore, we expect that this separation technique will rarely be needed, but we also expect that it is a robust method for separating joined components, as long as spammers do not have access to the user’s whitelist.

Data	blacklist	whitelist	greylist	total
spam 1	1,664	0	2,841	4,505
non-spam 1	0	331	282	613
spam 2	2,981	0	1,113	4,114
non-spam 2	0	68	220	297

TABLE II: Results of the algorithm on two datasets. Data set 1 is from a 6 week period, set 2 is from a 5 week period. The data sets are from two different users.

In Table II we see the results of the algorithm on two data sets covering 5 and 6 weeks for two different users. Averaging over both sets, 44% of the nonspam is on the whitelist, 54% of the spam is on the blacklist, and 47% of the messages are on the greylist. In summary, about half the time, the message is correctly identified, and the other half, the algorithm cannot classify the message. Over the test data, not one message is misclassified.

It is interesting to note that our algorithm may be improved by adding more graph theoretic parameters to our classification scheme. Figure 7 shows the CCDF of the largest non-spam component. The degree distribution for the tail of this CCDF is $p_k \propto k^{-1.52}$. The nodes with degrees 1 and 2 do not fit the power-law of the tail. It is interesting to note that this approach of taking a user’s view to make a subgraph of the entire email network gives a degree distribution consistent with previous works, which were based on the email of multiple users. These previous studies found degree distributions following power laws with exponents from -1.3 to -1.8. In our datasets, the spam components had power-laws with exponents between -1.8 and -2.0. Thus, since
spam components seem to have unusually high power law exponents, it may be possible to use the degree distribution of a component to improve the distinguishing power, or reduce the likelihood of error.

VI. HOW TO USE THE ALGORITHM?

As already discussed, our email-network-based spam filtering algorithm automatically constructs whitelists with 44% success rate, constructs blacklists with 54% success rate with no false classifications, and leaves 47% of the email unclassified. These hit rates are achieved without any user intervention. Since the only information necessary is available in the user’s email headers, the algorithm can be easily implemented at various points in the filtering process. Since whitelists and blacklists are the foundation of many anti-spam approaches, our technique, based purely on graph theoretic methods, can be easily integrated with existing methods. For instance, our algorithm may be used by mail administrators of large email servers, such as corporate email servers, or Internet service providers, since they can generate a personal email network for each of their users as the mail is being delivered to their mail servers. The ability to generate whitelists and blacklists for all their users will greatly improve the ability of central mail servers to reduce the number of spam messages which reach end users.

Another major advantage of the algorithm is that it is virtually immune to false negatives (e.g., non-spam being identified as spam), which suggests that our method can also significantly increase the ease of use of content-based anti-spam tools, which classify emails as spam or non-spam based on the content of the email, rather than the sender’s address. The best content-based filters achieve approximately 99.9% accuracy, but require users to provide a training set of spam and non-spam messages. These algorithms examine the content of the sets of messages labeled as spam or non-spam to identify common characteristics of the two types of mail, often using Bayesian inference. The performance of content-based algorithms is usually greatly improved if the training set comes from emails sent to the user who will run the algorithm, which is to say, these algorithms work better when tuned to specific email inboxes. Our method can automatically generate an accurate training set, tailored to the individual user’s inbox, so that the end user can be less involved in the training process. This could dramatically impact the ease of widely deploying content-based anti-spam tools, which have been heretofore inconvenient for end users to train effectively. Future research could produce more sophisticated schemes to better combine our method with content-based learning methods.

VII. CONCLUDING REMARKS

We have proposed an algorithm based on the properties of social networks to classify senders as spammers or non-spammers. The algorithm has not misclassified any senders in the email data sets we have tried. Using this algorithm, it would be possible to generate training sets for learning algorithms which may be content-based. This is extremely important in achieving accurate, automated spam filtering.

There are many areas for further improvement of the algorithm. Most obviously, more parameters of components should be considered. In this paper, we classify components based only on size and clustering coefficient, but there are many more metrics which may provide for statistical distinguishability between spam and non-spam. An algorithm which incorporates more parameters of the graph may be able to reduce the probability of misclassification even further. Unfortunately, significantly decreasing the size of the greylist does not appear very promising since the greylist components are very small in size, and thus live in a small parameter space, and hence, strong distinguishability between greylisted components appears to be beyond the power of purely graph-based techniques. As long as spammers continue to adapt their strategies for defeating anti-spam tools, improving these tools is a subject that will warrant further study.

In the long run, there is clearly a solution to the spam problem: use cryptographic whitelists, where a user only accepts messages that are cryptographically signed by authenticated keys. The problem, of course, is that the lack of infrastructure that is needed to make this scheme accessible to the majority of end users makes the immediate potential for widespread use of such a scheme highly questionable. Until this infrastructure is in place, end users must rely on less perfect solutions, and will benefit from any effort that makes these solutions more user-friendly, and easier for mail servers and ISPs to broadly distribute.

Moreover, even if the spam problem is solved, the email network tool introduced here will become increasingly useful. In particular, the personal email network has
the potential to enable users to capture the community structure in cyberspace. It is possible that better email message management can be achieved if email clients are aware of the various social groups of which the user is a member, and our scheme for generating personal email networks may give such information without any changes to Internet email protocols.

The authors would like to thank Jesse Bridgewater for use of his email, and Joseph Kong and Kamen Lozev for their comments. The authors particularly thank Julie Walters for her many helpful comments and suggestions.

[1] Guido Caldarelli, Fabrizio Cocetti, and Paolo De Los Rios. Preferential exchange: Strengthening connections in complex networks. 2003. http://xxx.lanl.gov/abs/cond-mat/0312236.
[2] Holger Ebel, Lutz-Ingo Mielsch, and Stefan Bornholdt. Scale-free topology of e-mail networks. Phys. Rev. E, 66(035103), 2002. http://xxx.lanl.gov/abs/cond-mat/0201476.
[3] Deborah Fallows. Spam: How it is hurting email and degrading life on the internet. Technical report, Pew Internet and American Life Project, Oct 2003.
[4] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89(208701), 2002.
[5] M. E. J. Newman. Fast algorithm for detecting community structure in networks. 2003. http://xxx.lanl.gov/abs/cond-mat/0309508.
[6] M. E. J. Newman, Stephanie Forrest, and Justin Balthrop. Email networks and the spread of computer viruses. Phys. Rev. E, 66(035101), 2002.
[7] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. 2003. http://xxx.lanl.gov/abs/cond-mat/0308217.
[8] M. E. J. Newman and Juyong Park. Why social networks are different from other types of networks. Phys. Rev. E., 2003. in press.
[9] Joshua R. Tyler, Dennis M. Wilkinson, and Bernardo A. Huberman. Email as spectroscopy: Automated discovery of community structure within organizations. preprint: http://xxx.lanl.gov/abs/cond-mat/0303264.
[10] William S. Yerazunis. Sparse binary polynomial hashing and the crm114 discriminator. Jan 2003. MIT Spam Conference, MIT, Cambridge, Massachusetts.
[11] assuming spammers do not do surveillance to learn the structure of social networks
[12] Existing whitelist systems use a list of email addresses or mail servers to accept mail from, and all senders not on the whitelist are assumed to be spam. Similarly, existing blacklist systems have a list of email addresses or mail servers to block mail from, and all senders not on the list are assumed to be non-spam. These lists are currently created in an ad-hoc manner, based on global prior knowledge and/or user feedback.
Nodes with degree $\geq k$

Spam graph

Non-spam graph
