INTRODUCTION

Carbon dioxide (CO₂) and methane (CH₄) are major greenhouse gases (Moss et al., 2000). Methane is found in various places in the environment, and its release from agricultural sources was estimated to 205 to 245 million tons per year (Duxbury and Mosier, 1993). At a global scale, livestock farming may contribute 18% of total greenhouse gas emissions (FAOSTAT, 2006). Though methane’s contribution is less than 2% of all the factors leading to global warming, it plays an important role because it is 21 times more effective than carbon dioxide (Johnson and Johnson, 1995). Methane’s contribution is less than 2% of all the factors leading to global warming (Johnson and Johnson, 1995), it plays an important role because it is 21 times more effective than carbon dioxide (Johnson et al., 1996).

Methane emission is a direct result of the fermentation process performed by ruminal microorganisms and, in particular, the archael methanogens. Reducing methane emission would benefit both ruminant production and the environment. Methane generation can be reduced by electron-sink metabolic pathways to dispose of the reducing moieties. An alternative way for methane control in the rumen is to apply inhibitors against methanogens. Generating methane from manure has considerable merit because it appears to offer at least a partial solution to two pressing problems: environmental crisis and energy shortage. An obvious benefit from methane production is the energy value of the gas itself. Control of methane emission by rumen microbes in Korea has mainly been focused on application of various chemicals, such as BES and PMDI, that inhibit the growth and activity of methanogens in the rumen. Alternatives were to apply long-chain polyunsaturated fatty acids and oils with or without organic acids (malate and fumarate). The results for trials with methane reducing agents and the situation of biogas production industries and a typical biogas plant in Korea will be introduced here. (Key Words: Methane, Methanogens, Ruminants, Biogas, Livestock Manure)

* This paper was presented at 2010 AAAP Animal Nutrition Forum of the 14th AAAP Animal Science Congress held in Pingtung, Taiwan during August 23-29, 2010.
** Corresponding Author: Man K. Song. Tel: +82-43-261-2545, Fax: +82-43-273-2240, E-mail: mksong@cbnu.ac.kr
1 Department of Animal Science, Yanbian University, Yanji, China.
2 National Institute of Animal Science, Korea.
3 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Korea.
4 Easy Bio System Co., Korea.

Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea*

Man K. Song**, Xiang Z. Li¹, Young K. Oh², Chang-kyu Lee³ and Y. Hyun⁴
Department of Animal Science, Chungbuk National University, 361-763, Korea

ABSTRACT: Methane is known to be one of the major greenhouse gases. On a global scale, livestock farming may contribute 18% of total greenhouse gas emissions. Though methane contribution is less than 2% of all the factors leading to global warming, it plays an important role because it is 21 times more effective than carbon dioxide. Methane emission is a direct result of the fermentation process performed by ruminal microorganisms and, in particular, the archael methanogens. Reducing methane emission would benefit both ruminant production and the environment. Methane generation can be reduced by electron-sink metabolic pathways to dispose of the reducing moieties. An alternative way for methane control in the rumen is to apply inhibitors against methanogens. Generating methane from manure has considerable merit because it appears to offer at least a partial solution to two pressing problems: environmental crisis and energy shortage. An obvious benefit from methane production is the energy value of the gas itself. Control of methane emission by rumen microbes in Korea has mainly been focused on application of various chemicals, such as BES and PMDI, that inhibit the growth and activity of methanogens in the rumen. Alternatives were to apply long-chain polyunsaturated fatty acids and oils with or without organic acids (malate and fumarate). The results for trials with methane reducing agents and the situation of biogas production industries and a typical biogas plant in Korea will be introduced here. (Key Words: Methane, Methanogens, Ruminants, Biogas, Livestock Manure)
this overview, therefore, will be put on aspects of methane
control and trends to develop the bio-methane from
livestock manure in Korea.

CONTROL OF METHANE PRODUCTION
IN THE RUMEN

Control of methane emission by rumen microbes has
mainly been focused to apply the various chemicals that
inhibit the growth and activity of methanogens in the rumen.
They are direct inhibition of methane generation using
halogenated methane analogues (Van Nevel and Demeyer,
1995), chlorinated CH4 analogues (Van Nevel and Demeyer,
1996) and chemical complex of bromo-chloromethane and
cyclodextrin (McCrabb et al., 1997). Bromo-
ethanesulphonate (BES), structural analogue of the cofactor
mercaptoethanesulfonic acid (coenzyme M) used by
methanogenic bacteria also is a potent inhibitor of methane
emission (Mathison et al., 1998). Lee et al. (2009) observed
a reduced in vitro methane production by supplementing the
various level (0, 1 and 5 mM) of BES to the culture solution
containing timothy or mixed (40% timothy and 60%
substrate in a dose dependent manner (Table 1).

The quantification of total methanogen supported the results
of methane production.

Propionate enhancers are also one of the effective
alternatives in methane control. Fumarate and malate are
four carbon intermediates (dicarboxylic acid) in the
propionate pathway in which they are reduced to succinate.
In this reaction, hydrogen ion (H+) is needed and therefore,
reduction of the dicarboxylic acids may provide an
alternative electron sink for H2. Addition of fumarate or
malate in acid form up to 24 mM each to culture solution
containing concentrate (70%) and ground alfalfa hay (30%,
DM) reduced in vitro methane generation by 65.6% and
47.5%, respectively for 12 h incubation compared to control
(Li et al., 2009a, Table 2). Thus the organic acid such as
malate and fumarate may be put to practical use for
ruminant diets since it has the dual benefit of decreasing
CH4 production and increasing net energy retention.

It was also found that the addition of up to 500 umol of
sodium fumarate in vitro decreased CH4 production by 6%
after 48 h incubation (Lopez et al., 1999). Asanuma et al.
(1999) also showed that the addition of 20 mM of fumarate
to cultures that were fermenting hay powder and
concentrate incubated for 6 h significantly decreased CH4
production by 5% while with the addition of 30 mM
fumarate, CH4 declined by 11% compared to the control.

The unsaturated fatty acids (UFAs) in the added fat
were widely identified to reduce CH4 emission through
hydrogenation of them (Johnson and Johnson, 1995;
Dohme et al., 2000; Li et al., 2010). Li et al. (2010)
conducted an in vitro experiment with 60mg linoleic acid
(LA, C18:2) in associated with organic acids, and found that
24 mM of C18:2 alone decreased methane generation
compared to control, and malate (24 mM) with C18:2 (M-

Table 1. Effects of 2-bromoethanesulfonic acid (BES) on in vitro methane production and quantification of total methanogen

Items	Timothy (mM)	Mixed feed (mM)	Significance
Methane (ml)	0 1 5	0 1 5	
24 h	5.7 2.1 0.3	8.7 2.4 0.2	** ** NS
48 h	7.5 3.8 0.3	11.2 4.3 0.4	** ** *
72 h	9.3 5.3 0.4	11.5 4.8 0.2	** ** **
Total methanogen			
24 h	1.38 1.37 1.04	1.47 1.49 0.98	NS ** NS
48 h	1.57 0.92 0.42	1.92 0.92 0.46	NS ** NS
72 h	1.11 0.60 0.27	1.17 0.52 0.31	NS ** NS

1 Within timothy and mixed (40% timothy+60% concentrates) substrate, BES was treated at the final concentration of 0, 1 and 5 mM.
* ** Significant at p<0.05 and p<0.01, respectively; NS = Not significant.

Table 2. Methane production (μmol) as influenced by addition of fumarate or malate in acid form for 12 h incubation

Items	Fumarate (mM)	Malate (mM)	Effects
	0 8 16 24	0 8 16 24	
Total gas (ml)	125ab 149bc 153bc 171a	125ab 154ab 184a 181a	Source Level S×L
CH4 (μmol)	328a 187b 148c 112d	328a 266b 182c 172c	NS ** NS *** *** **

1 Means in the row with different letters differ.
2 Source, fumarate vs malate; level, addition level of organic acid; S×L, interaction between fumarate and malate.
* p<0.05; ** p<0.01; *** p<0.001; NS = Not significant.
LA) reduced methane emission by 38% and fumarate (24 mM) with C\textsubscript{18:2} (F-LA) by 47% compared with addition of C\textsubscript{18:2} alone for 12 h (Figure 1). Incubation of 60 mg linolenic acid (LNA, C\textsubscript{18:3}) in associated with 24 mM malate or fumarate each in culture solution supplemented with 2 g feed also reduced \textit{in vitro} methane production compared to control, and malate with C\textsubscript{18:3} (M-LNA) decreased methane production by 34.12% and fumarate with C\textsubscript{18:3} (F-LNA) by 63.09% compared to C\textsubscript{18:3} alone (Li et al., 2009b, Figure 2). Reductions in CH\textsubscript{4} emissions in the rumen have been widely reported when a variety of plant oil was added to the diet (Ciesłak, 2003; Jordan et al., 2004), and the level of methane emission in ruminants is directly proportional to bio-hydrogenation of unsaturated fatty acid (UFA, Plascencia et al., 1999).

Linseed oil and fish oil as oil rich in UFAs, and the bio-hydrogenation of UFAs may provide an alternative hydrogen sink to compete with methanogens for the available H\textsubscript{2} (Czerkawski et al., 1972). Li et al. (not published) observed the decreased \textit{in vitro} methane production by rumen microbes when incubated with C\textsubscript{18:3} rich linseed oil (LO) and fish oil (FO) in association with fumarate (FA, Figure 3).

Added oils greatly decreased mRNA expression of methanogens.
archaeal 16S rDNA relating to methanogens and fumarate decreased it further (Figure 3). Incubation of $\text{C}_{18:2}$ rich-safflower seed oil (SO) and fish oil (FO) with fumarate (FA) also reduced methane production in vitro and methane reduction was supported by clearly reduced mRNA expression of archaeal 16S rDNA (Li et al., not published, Figure 4).

Fievez et al. (2003) conducted in vitro experiments with two types of fish oil and they found that CH$_4$ inhibition seems proportional to the relative amount of polyunsaturated fatty acids and their rate of lipolysis. Fish oil was reported to increase concentration of propionate (Keady and Mayne, 1999; Wachira et al., 2000) which also requires H$_2$ in the rumen, and thus could depress the CH$_4$ emission (Fievez et al., 2003).

Meanwhile, Choi et al. (2004) conducted in vitro trial with various methane reducing agents (30 umol BES, 10 ppm PMDI, 10 mM fumarate or malate, 5% $\text{C}_{18:2}$ or $\text{C}_{18:3}$) and they found that all the agents reduced methane emission compared to control, and effect in methane reduction was greater for BES and pyromellitic diimide (PMDI) as halogenated compound than for UFAs ($\text{C}_{18:2}$ and $\text{C}_{18:3}$) and organic acids (malate and fumarate, Figure 5).

Many other in vitro studies with methane reducing agents have been conducted in Korea. One of them was cyclodextrin (CD) complex of fatty acids, and it decreased methane production at 8 h and 12 h incubation compared to control and CD alone (National Institute of Animal Science, Korea, not published). Addition of Resveratrol and iodo propane-CD complex also reduced in vitro methane emission by up to 64% and 50%, respectively, compared to control (Oh et al., National Institute of Animal Science, Korea, not published).

Methane emission in the ruminant animals, in general, is closely related with feed but dietary manipulation itself has been limited in reducing it. Direct application of the

Figure 4. Methane production (μmol) and mRNA expression of methanogens as influenced by safflower seed oil (SO) and fish oil (FO) in association with fumarate (FA).

Figure 5. Comparison of the effect of methane reducing agents in vitro. LA, linoleic acid; LNA, linolenic acid; F, fumarate, M, malate; BES, bromoethanesulfonic acid; PMDI, pyromellitic diimide.
materials that were found to be effective in in vitro methane reduction to the ruminants has not been fully successful in consistent effect, mainly due to the microbial adaptation to those materials. Li et al. (2009c) conducted metabolism study with milking goats to examine the effect of soybean oil (5% of DM intake) in association with sodium bicarbonate (0.5%) and/or monensin (30 ppm) on methane production, and they found the clearly decreased methane production as calculated based on VFA concentration at all sampling times of rumen fluid after morning feeding (Figure 6).

BIOGAS PRODUCTION FROM LIVESTOCK MANURE

Generating methane from manure has considerable merit because it appears to offer at least a partial solution to two processing problems-environmental crisis and the energy shortage (Fulhage et al., 1993). Livestock manure contains portion of organic solids such as proteins, carbohydrates and fats that are available as food and energy for growth of anaerobic bacteria. Obvious benefit from methane production is the energy value of the gas itself. But the gas production from manure depends mainly upon the efficiency of operating system for it. Gas yield can be a certain amount of gas produced per unit of solids degraded by the anaerobic bacteria (Fulhage et al., 1993). They estimated the average potential methane production from the livestock manure, and found the production of 692, 946, 125 and 6.4 cm3 daily from dairy cattle (545 kg), beef cattle (450 kg), swine (68 kg) and poultry (1.8 kg), respectively. Thus, their energy production rates (kcal/h/animal) were 143, 195, 30 and 1.3, respectively. They further speculated that the number of animal heads which require energy for the use of kitchen range for 2h daily from livestock manure will be 14, 11, 77 and 1,547, respectively.

Song (2010, not published) made some in vitro trials for the estimation of methane production from cattle manure. Four cattle were fed 8 kg feeds (6 kg concentrate and 2 kg ryegrass hay, DM basis) daily. The chemical composition of the diet was 13.2, 3.8 and 45.1% (DM) for CP, EE and NDF, respectively, and its whole tract digestibility of DM was

![Figure 6. Effect of soybean oil with buffer and/or monensin on estimated methane emission at various sampling times of rumen fluid. CON, control; SO, soybean oil supplementation; SO-B, supplementation of soybean oil with buffer; SO-BM, supplementation of soybean oil with buffer and monensin.](image)

![Figure 7. In vitro gas production for 48 h from cattle feces.](image)
65.3%. Cattle feces contained 15.5% CP, 2.8%, EE and 61.5% NDF (DM). In vitro degradation of cattle feces for 48 h was 48.4, 61.4 and 36.1% for DM, CP and NDF, respectively. Gas production for 48h was 29.2 and 13.7 ml for CO₂ and methane, respectively (Figure 7). Annual manure production from livestock in Korea has been approx. 40 to 42 million tons on a fresh basis for the past 6 years since 2003 (NIAS, 2008). Thus, overall estimation of methane production from manure for each animal would be possible indirectly when in vitro method is applied.

The Korean government announced low carbon green growth as a new dynamic growth engine, and Tokyo Protocol will be expected to apply in Korea for reducing greenhouse gases from 2013. The livestock manure and food leftover, therefore, should be developed to either fertilizer or biogas energy source. Especially, eco-friendly energy production from manure will give a solution for reducing greenhouse gas emission. For this purpose, both the Korean government and private sectors need to cooperate together to lead the biogas project as an enterprise for public utility.

In Korea the biogas project has been developed since 1979 but most of 13 biogas plants have small capacity (10 to 20 tons per plant). They had low capacity of electricity production and are closed or shut down due to low economic value and lack of operating skill. The government supported the plants for construction but not for technology development. Electricity production from renewable energy was only 1% of total power in Korea. There are not many biogas plants which are commercially operated. Korean government and local industries are getting more interested in this project (Hyun, 2010). Pilot plants being supported by government funds will be resulted in increased biogas production from manure. Low economic value from manure, however, still exists mainly due to less incentive price for electricity from biogas energy compared to other energy.

One of the typical biogas plants in Korea is located in Chang Nyung as established in 2008 and has been operated by Easy Bio System, a private company (Figure 8).

The operation of biogas plant has been consulted by NIRAS, Denmark. Production of electricity from manure and food leftover began from October 2008. Daily electricity production was planned to 9,600 kWh from 4,800 cm³ biogas per day (Table 3). Total 785,970 kWh was produced by February 2009 and the company has sold the electricity to the KEPCO, Korea total US$ 98,582 during the period.

Daily gas emission was evaluated by the company, and it was found that methane concentration in the biogas produced was approx. 60 to 70% which is considered to be highly efficient (Figure 9). Despite the successful

Yield	Unit	Day	Month	Year
Biogas	M3	4,800	144,000	1,728,000
Electricity produced	kWh	9,600	288,000	3,504,000

Adapted from Easy Bio System, Korea, 2010

Figure 8. Chang Nyung biogas plant (Easy Bio System) in Korea.

Figure 9. Normal analysis of data of methane fermentation (Easy Bio System, Korea, 2010).
management of biogas plant in a few industries in Korea, technical limitations and lack of operating skill still exist. As well, wrong preconception on manure handling facility including biogas plants also exists mainly due to odor problem. Positive understanding for the facility of biogas production and cooperative relationship between government and industry, therefore, are necessary to satisfy the needs to reduce the greenhouse gas and energy production from livestock manure.

REFERENCES

Asanuma, N., M. Iwamoto and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganism in vitro. J. Dairy Sci. 82:780-787.

Choi, N. J., S. Y. Lee, S. C. Lee and J. K. Ha. 2004. Effects of halogenated compounds, organic acids and unsaturated fatty acids on in vitro methane production and fermentation characteristics. Asian-Aust. J. Anim. Sci. 17:1255-1259.

Cieslak, A. 2003. Impact on rumen fermentation when feeding diets supplemented with rapeseed and linseed oil. Proc. Soc. Nutr. Physiol. 12:102.

Czerlawski, J. W. 1972. Fate of metabolic hydrogen in the rumen. Proc. Nutr. Soc. 141-146.

Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSTITEC. Can. J. Anim. Sci. 80:473-482.

Duxbury, J. M. and A. R. Mosier. 1993. Status and issues concerning agricultural emissions of greenhouse gases. In: Agricultural Dimensions of Global Climate Change (Ed. H. M. Kaiser and T. W. Drennen), St. Lucie Press, Delray Beach, FL. 229-258.

FAOSTAT. 2006. Animal production online database. Food and Agriculture Organisation of the United Nations (FAO). http://faostat.fao.org/default.aspx

Fievez, V., F. Dohme, M. Danneels, K. Raes and D. Demeyer. 2003. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim. Feed Sci. Technol. 104:41-58.

Fullhage, C. D., D. Sievers and J. R. Fisher. 1993. Generating methane gas from manure. http://extension.missouri.edu/publications/DisplayPub.aspx?P=GI881

Hyun, Y. 2010. Biogas lant operation for sustainable and eco-friendly livestock farming. Korean J. Anim. Sci. Proceedings.

Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.

Johnson, D. E., G. M. Ward and J. J. Ramsey. 1996. Livestock methane: Current emissions and mitigation potential. In: Nutrient management of food animals to enhance and protect the environment (Ed. E. T. Kornegay). Lewis Publishers, New York, NY. 219-234.

Jordan, E., D., K. Lovett, M. Hawkins and F. P. O’Marra. 2004. The effect of varying levels of coconut oil on methane output from continental cross beef heifers. Int. Conf. Greenhouse gas emissions. Agric. Mit. Opt. Strat., Leipzig, Germany. 124-130.

Kealy, T. W. J. and C. S. Mayne. 1999. The effects of level of fish oil inclusion in the diet on rumen digestion and fermentation parameters in cattle offered grass silage based diets. Anim. Feed Sci. Technol. 81:57-68.

Lee, S. Y., S. H. Yang, W. S. Lee, H. S. Kim, D. E. Shin and Jong K. Ha. 2009. Effect of 2-bromoethanesulfonic acid on in vitro fermentation characteristics and methanogen population. Asian-Aust. J. Anim. Sci. 22:42-48.

Li, X. Z., C. G. Yan, S. H. Choi, R. J. Long, G. L. Jin and M. K. Song. 2009a. Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian-Aust. J. Anim. Sci. 22:82-89.

Li, X. Z., S. H. Choi, G. L. Jin, R. J. Long, C. G. Yan and M. K. Song. 2009b. Linolenic acid in association with malate or fumarate increased CLA production and reduced methane generation by rumen microbes. Asian-Aust. J. Anim. Sci. 22:819-826.

Li, X. Z., C. G. Yan, R. J. Long, G. L. Jin, J. Shin, B. J. Ji, S. H. Choi, H. G. Lee and M. K. Song. 2009c. Conjugated linoleic acid in rumen fluid and milk fat, and methane emission of lactating goats fed a soybean oil based diet supplemented with sodium bicarbonate and monensin. Asian-Aust. J. Anim. Sci. 22:1521-1530.

Li, X. Z., R. J. Long, C. G. Yan, S. H. Choi, G. L. Jin and M. K. Song. 2010. Rumen microbial responses in fermentation characteristics and production of CLA and methane to linoleic acid in association with malate or fumarate. Anim. Feed Sci. Technol. 155:132-139.

López, S., C. Valdés, C. J. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64.

Mathison, G. W., E. K. Okine, T. A. McAllister, Y. Dong, J. Galbraith and O. I. N. Dmytruk. 1998. Reducing methane emissions from ruminant animals. J. Appl. Anim. Res. 14:1-28.

McCrabb, G. J., K. T. Berger, T. Magner, C. May and R. A. Hunter. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a new compound and the effects of growth. Aust. J. Agric. Res. 48:323-329.

Moss, A. R., J. P. Journay and J. Newbold. 2000. Methane production by ruminants:its contribution to global warming. Ann. Zootech. 49:231-253.

NIAS. 2008. Annual production of livestock manure. Adapted from report of National Institute of Animal Science. Korea.

Plascencia, A., M. Estrada and R. A. Zinn. 1999. Influence of free fatty acids content on the feeding value of yellow grease in finishing diets for feedlot cattle. J. Anim. Sci. 77:2603-2609.

Ungerfeld, E. M., S. R. Rust and R. Burnett. 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43:189-202.

Van Nevel, C. J. and D. I. Demeyer. 1995. Feed additives and other interventions for decreasing methane emissions. In: Biotechnology in Animal Feeds and Animal Feeding, VCH, Weinheim (Ed. R. J. Wallace and A. Chesson), 329-349.

Van Nevel, C. J. and D. I. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assess. 42:73-97.

Wachira, A. M., L. A. Sinclair, R. G. Wilkinson, K. Hallett, M. Ensor and J. D. Wood. 2000. Rumen bihydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. J. Agric. Sci. 135:419-428.