Hadi Zadeh-Haghighi and Christoph Simon

1Department of Physics and Astronomy, 2Institute for Quantum Science and Technology, and 3Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.

1. Introduction

Sensitivity to weak magnetic fields is abundant throughout biology, as discussed in numerous review articles [1–24]. Effects of either static or oscillating weak magnetic fields have been reported on the circadian clock, electron transfer in cryptochrome, stem cells, calcium concentration, the brain’s functions such as action potentials, reactive oxygen species (ROS), development, neuronal activities, DNA, memory, anxiety, analgesia, genetics and many other functions (see §2). Despite the wealth of observations, thus far, there is no clear explanation for the mechanism behind these phenomena. This is mainly due to the fact that the corresponding energies for such effects are far smaller than thermal energies.

However, there is a promising quantum physics (or spin chemistry) concept that can account for the effects of such weak fields, namely the radical pair mechanism [25,26]. This mechanism, which is an example of the emerging field of quantum biology [27–31], has been studied in significant detail in the comparatively narrow context of bird magnetoreception [32–39], where it is accepted as one of the leading potential explanations for how birds sense magnetic fields, and in particular the Earth’s magnetic field, for the purpose of navigation. It is known that birds and amphibians, and in all likelihood other vertebrates, have not one but two magnetoreception mechanisms, a magnetite-based detector that provides the high sensitivity necessary for sensing weak spatial gradients in the magnetic field [40,41] and a light-
dependent magnetic compass that underlies a magnetic map sense [42]. The latter is thought to be based on the radical pair mechanism [43,44].

The radical pair mechanism involves magnetically sensitive intermediate molecules, so-called radical pairs [25,43,45–49]. The key ingredient is the spin correlation between two unpaired electrons, one on the donor molecule and the other on the acceptor molecule. Depending on the initial spin configuration of the donor and acceptor molecules, this initial spin correlation of the radical pair will be either a singlet (S) or a triplet (T) state, which are, respectively, spin-0 and spin-1 states (see §3.1 for further discussion). Due to the spin interactions with its environment (in particular with external magnetic fields and with nearby nuclear spins), the state of the radical pair will oscillate between S and T states [26,50]. Each spin state, S and T, can lead to different reaction products, providing an example of spin chemistry [51,52]. The energies induced by the above-mentioned magnetic fields are hundreds of thousands of times smaller than thermal energies, $k_BT$ ($k_B$ is Boltzmann constant and $T$ is temperature), which are associated with motions, rotation and vibrations in biological environments. In thermal equilibrium, the energies required to alter the rate or yield of a chemical transformation should be at least comparable to $k_BT$. Due to this, the radical pair mechanism was originally ignored in the context of physiology. However, the situation differs in systems far from thermal equilibrium, which is the case for radical pairs [43]. Sensitivity to weak magnetic fields is one of the key properties of radical pair reactions. Nowadays, many research laboratories study the role of radical pairs in (bio)chemical reactions [26,52–56].

Recent studies have proposed roles for radical pairs beyond avian magnetoreception, in particular in xenon-induced anaesthesia [57], lithium effects on mania [58], magnetic field and lithium effects on the circadian clock [59], and hypomagnetic field effects on microtubule reorganization [60] and neurogenesis [61] (where hypomagnetic fields are fields much weaker than that of the Earth). Here, we suggest that the radical pair mechanism is in fact quite common in biology, and that it may provide an explanation for many of the weak magnetic field effects on physiological functions that have been observed.

This paper, which is part review and part perspective article, is organized as follows. Section 2 briefly surveys studies reporting effects of low-intensity magnetic fields on biological systems, including effects of static (§2.1), hypomagnetic (§2.2) and oscillating (§2.3) magnetic fields. We further survey studies on isotope effects in biology from a spin perspective. In §3, we discuss how the radical pair mechanism can account for static, hypomagnetic and oscillating magnetic field effects. Section 3.4 reviews possible candidate molecules for radical pair formation in biological systems. In §4, we review the above-mentioned recent studies on the possible biological roles of radical pairs beyond avian magnetoreception. Section 5 discusses important directions for further investigation.

2. Magneto-sensitivity in biology

There is a considerable amount of research investigating magnetic field effects on biological functions [22,62–70]. In the following, we review the effects of low-intensity magnetic fields on biology. We organize this section based on the type of magnetic fields, namely static magnetic fields, hypomagnetic fields and oscillating magnetic fields. Isotope effects in biology, which can be related to nuclear magnetic moments, are also discussed at the end of this section.

2.1. Static magnetic field

2.1.1. Cryptochrome

In the context of avian magnetoreception in animals, the canonical proteins are cryptochromes [43,48]. Maeda et al. demonstrated that photo-induced flavin–tryptophan radical pairs in cryptochrome are magnetically sensitive [71]. Moreover, Ahmad et al. observed that hypocotyl growth inhibition in higher plants are sensitive to the magnetic field, where such responses are linked to cryptochrome-dependent signalling pathways [72]. Sheppard et al. reported that magnetic fields of a few millitesla could influence photo-induced electron transfer reactions in Drosophila cryptochrome [73]. Further, Marley et al. showed that a static magnetic field of 100 mT substantially affected seizure response in Drosophila larvae in a cryptochrome-dependent manner [74]. In addition, using a transgenic approach, Foley et al. showed that human cryptochrome-2 has the molecular capability to function as a light-sensitive magnetosensor [75]. Applying a 0.5 mT magnetic field, Ahmad and co-workers reported that cryptochrome responses were enhanced by the magnetic field, including dark-state processes following the cryptochrome photoreduction step [76,77]. Further, there have been extensive studies on the radical pair mechanism for cryptochrome (§43,47). Table 1 summarizes static magnetic field effects on various biological functions.

2.1.2. Genetics

It is known that exposure to magnetic fields has genetic consequences [114]. Giorgi et al. showed that chronic exposure to magnetic fields (0.4–0.7 mT) increased the body size and induced lethal mutations in populations of Drosophila melanogaster [78]. Furthermore, a magnetic field of 35 mT decreased the wing size in Drosophila melanogaster [79] (table 1).

2.1.3. Circadian clock

It has been shown that magnetic fields can modulate the circadian clock [115–117]. Yoshii et al. [80] showed that the effects of static magnetic fields affected the circadian clock of Drosophila and reported that exposure to these fields slowed down the clock rhythms in the presence of blue light, with a maximal change at 300 μT, and reduced effects at both lower and slightly higher field strengths. We discuss this observation further from the perspective of the radical pair mechanism in §4.3 (table 1).

2.1.4. Stem cells

Static magnetic fields have been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance techniques. However, recent data have shed light on deeper mechanisms of static magnetic field action on physiological properties of different cell populations, including stem cells. It is known that static
Table 1. Static magnetic field effects on different biological functions.

| System                          | Magnetic Field | References |
|---------------------------------|----------------|------------|
| **Cryptochrome**                |                |            |
| Cryptochrome responses enhanced | 0.5 mT         | Pooam et al. [76] |
| Cryptochrome responses enhanced | 0.5 mT         | Hammad et al. [77] |
| Seizure response in **Drosophila** (cryptochrome-dependent) | further, 100 mT | Marley et al. [74] |
| Photo-induced electron transfer reactions in **Drosophila** cryptochrome | a few mT | Sheppard et al. [73] |
| Body size increase and in **Drosophila melanogaster** | 0.4–0.7 mT | Giorgi et al. [78] |
| Decrease in wing size in **Drosophila melanogaster** | 35 mT | Stamenkovi-Radak et al. [79] |
| **Circadian Clock**             |                |            |
| Circadian clock in **Drosophila melanogaster** | <0.5 mT | Yoshii et al. [80] |
| **Stem Cell**                   |                |            |
| Stem cell-mediated growth       | <1 mT          | Huizen et al. [81] |
| Proliferation/migration/differentiation in human dental pulp stem cells | 1/2/4 mT | Zheng et al. [82] |
| Bone stem cells *in vitro*      | 0.5–30 mT      | Abdolmaleki et al. [83–85] |
| **Calcium**                     |                |            |
| Ca²⁺ influx                     | 0.6 mT         | Fanelli et al. [86] |
| Myosin phosphorylation in a cell-free preparation (Ca²⁺-dependent) | 0.2 mT | Markow & Pilla [87] |
| Ca²⁺ concentration/morphology in cell lines | 6 mT | Tenuzzo et al. [88] |
| Ca²⁺ concentration in *in vitro* aged human lymphocytes | 6 mT | Tenuzzo et al. [89] |
| Cell shape, cell surface, sugar residues, cytoskeleton and apoptosis | 6 mT | Chionna et al. [90] |
| **Neurons and Brain**           |                |            |
| Blocked sensory neuron action potentials in the somata of adult mouse | 10 mT | McLean et al. [91] |
| Symptomatic diabetic neuropathy  | 50 mT          | Weintraub et al. [92] |
| **ROS**                         |                |            |
| Increased intercellular ROS in human neuroblastoma cells | 2.2 mT | Calabro et al. [93] |
| Increased intercellular ROS in human neuroblastoma cells | 31.7–232 mT | Vergallo et al. [94] |
| Increased H₂O₂ level in embryoid bodies | 1–10 mT | Bekhite et al. [95] |
| ROS increase in mouse cardiac progenitor cells | 0.2–5 mT | Bekhite et al. [96] |
| Elevated H₂O₂ in diploid embryonic lung fibroblast cell | 230–250 mT | Sullivan et al. [97] |
| Increase of H₂O₂ in the human fibrosarcoma cancer cell | 45–60 μT | Martino & Castello [98] |
| Increased H₂O₂ production of human peripheral blood neutrophils | 60 mT | Poidziezialek et al. [99] |
| ROS levels in cancer cells       | 10 mT          | Verdon [100] |
| Type 2 diabetes via regulating cellular ROS | 3 mT | Carter et al. [101,102] |
| ROS changes in stem cell-mediated growth | <1 mT | Huizen et al. [81] |
| Mitochondrial electron transport chain activity | 0–1.93 mT | Sheu et al. [103] |
| **Others**                      |                |            |
| Flavin adenine dinucleotide photochemistry | <20 mT | Antill et al. [104] |
| Enzymatic ATP production         | 80 mT          | Buchachenko et al. [105] |
| Chlorophyll fluorescence/nutrient content of *Hordeum vulgare* L. | 20/42/125/250 mT | Ercan et al. [106] |
| Antioxidant defense system of plant cells | 10/30 mT | Sahebjamei et al. [107] |
| Enhance the killing effect of Adriamycin on K562 cells | 8.8 mT | Hao et al. [108] |
| Regeneration and plant growth of shoot tips | 2.9–4.6 mT | Atak et al. [109] |
| Accelerated loss of integrity of plasma membrane during apoptosis | 6 mT | Teodori et al. [110] |
| Macrophagic differentiation in human pro-monocytic U937 cells | 6 mT | Pagliara et al. [111] |
| Cell proliferation and cell death balance | 0.5 mT | Buemi et al. [112] |
| Growth and sporulation of phytopathogenic microscopic fungi | 1 mT | Nagy et al. [113] |
magnetic fields can increase wound healing and bone regeneration [8]. Huizen et al. reported that weak magnetic fields (less than 1 mT) alter stem cell-mediated growth, where changes in ROS were implicated [81]. The authors suggested that the radical pair mechanism may be the potential explanation for their observations. Zheng et al. showed that a static magnetic field of 1, 2 or 4 mT regulated proliferation, migration, and differentiation of human dental pulp stem cells [82]. It is also known that applied static magnetic fields (0.5–30 mT) affect stem cells in vitro [83–85] (table 1).

2.1.5. Calcium

Fanelli et al. reported that magnetic fields allow the indefinite survival and replication of the cells hit by apoptogenic agents. The anti-apoptosis effect was found to be mediated by the ability of the fields to increase Ca2+ influx from the extracellular medium. In that experiment, the geomagnetic field was not shielded. They found 0.6 mT to be the minimal intensity required to detect an anti-apoptotic effect [86]. Moreover, it has been shown that weak static magnetic fields can influence myosin phosphorylation in a cell-free preparation in a Ca2+-dependent manner [87]. Tenuzzo and colleagues observed that exposure to a 6 mT static magnetic field influenced Ca2+ concentration and bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes [89]. Further, Chionna et al. showed that exposure to a static magnetic field of 6 mT of Hep G2 cells resulted in time-dependent modifications in cell shape, cell surface, sugar residues, cytoskeleton and apoptosis [90]. They reported that after 24 h exposure, the cells had a less flat shape due to partial detachment from the culture dishes. They further observed that microfilaments and microtubules were modified in a time-dependent manner. They also suggested that the induced apoptosis was likely due to the increment of Ca2+ during exposure. In another study, Tenuzzo and co-workers showed that cell viability, proliferation, and control and/or molecular damage.

2.1.6. Neurons and brain

Exposure to static magnetic fields can have impacts on various brain functions. McLean et al. reported that a static magnetic field in the 10 mT range blocked sensory neuron action potentials in the somata of adult mouse dorsal root ganglion neurons in monolayer dissociated cell culture [91]. It has also been shown that exposure to a transcranial static magnetic field over the supplementary motor area can modulate resting-state activity and motor behaviour associated with modulation of both local and distant functionally connected cortical circuits [118]. Static magnetic field exposure can also affect the production of melatonin [119–122], the pineal gland [123,124], and cause functional alterations in immature cultured rat hippocampal neurons [125]. Further, Dileo et al. observed that an applied transcranial static magnetic field can induce dopamine-dependent changes of cortical excitability in patients with Parkinson’s disease [126]. In addition, neuron firing frequency can also be affected by static magnetic field intensity [127,128]. There exist a considerable number of studies indicating the effects of applied magnetic field on pain sensitivity (nociception) and pain inhibition (analgesia) [129]. Additionally, it has been known that a static magnetic field (50 mT) can influence symptomatic diabetic neuropathy [92] (table 1).

2.1.7. Reactive oxygen species

ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H2O2), organic hydroperoxides (ROOH), singlet molecular oxygen (1O2), electronically excited carbonyl, ozone (O3), hypochlorous acid (HOCl), and hypobromous acid (HOBr). Free radical species are superoxide anion radical (O2−), hydroxyl radical (·OH), peroxide radical (ROO−) and alkoxyl radical (RO·) [130]. Any imbalance of ROS can lead to adverse effects. H2O2 and O2− are the main redox signalling agents. It is now well known that ROS are essential for physiology as functional signalling entities. H2O2 plays a crucial role in redox regulation of biological functions, where its intracellular concentration is under tight control. The cellular concentration of H2O2 is about 10−6 M, which is almost a thousand times more than that of O2−. Transmembrane NADPH oxidases (NOXs) [131,132] and the mitochondrial electron transport chain (ETC) [133,134] are the major sources of O2− and H2O2.

In a considerable number of studies, magnetic field effects in biology are accompanied with oxidative stress [15,135,136], which is an imbalance between oxidants and antioxidants in favour of the oxidants, leading to a disruption of redox signalling and/or molecular damage. [137–139]. Studies found that exposure to static magnetic fields of 2.2 mT [93] and 31.7–232 mT [94] increased the intercellular ROS in human neuroblastoma cells. Furthermore, De Nicola et al. observed that the intracellular ROS level in human monocyte tumour cells was raised when exposed to a static magnetic field [140]. Further, Bekhite et al. reported that static magnetic field exposure (1–10 mT) increased the H2O2 level in embryoid bodies [95]. Later, the same group found an induced increase of ROS in cardiac progenitor cells derived from mouse cells by a 0.2–5 mT static magnetic field, where ROS was suggested to be generated by NADPH oxidase [96]. Sullivan et al. reported that 230–250 mT of a magnetic field elevated H2O2 in diploid embryonic lung fibroblast cell [97]. Upon exposure to 45–60 μT, Martino and Castello observed an increase of H2O2 in the human fibrosarcoma cancer cell, which can be suppressed by reducing the geomagnetic field’s strength [98]. Further studies show that exposure to a 60 mT magnetic field increased H2O2 production of human peripheral blood neutrophils [99]. It has also been reported that the effects of an applied magnetic field of 10 mT on DOXO-induced toxicity and proliferation rate of cancer cells are correlated to ROS levels [100]. Furthermore, Carter et al. observed that a 3 mT static magnetic field can influence type 2 diabetes via regulating cellular ROS [101,102]. Pooam et al. showed that applying a low intensity static magnetic field modulated ROS generation in HEK293 cells. The authors suggested that the radical pair mechanism may explain that observation [141]. In a recent work, Sheu and co-workers reported that static low intensity magnetic fields can regulate mitochondrial ETC activity and thus enhance mitochondrial respiration [103]. They observed that exposure to magnetic fields of 0.1–1.93 mT of mitochondria isolated from adult rat hearts produced a bell-shape increase in the respiratory control ratio with a maximum at 0.50 mT and...
a return to baseline at 1.50 mT. It was further observed that the magnetic field affected only the activity of the complexes 2, 3 and 5 but not 1 of the mitochondrial ETC and several enzymes of the tricarboxylic acid cycle. The authors suggested that the low intensity magnetic field effects on the mitochondrial respiratory activity may be explained by the radical pair mechanism. Huizen and co-workers showed that weak magnetic fields (less than 1 mT) changed stem cell-mediated growth, where changes in ROS were implicated [81].

2.2. Hypomagnetic field

Earth’s geomagnetic field, ranging from approximately 24 to 66 μT depending on latitude [147], can have critical roles in numerous biological processes. Shielding the geomagnetic field, called hypomagnetic field, is known to cause biological effects [19,21,23,148–152].

It has also been suggested that the apparent cycle of mass extinction on Earth [153] may be related to the geomagnetic field fluctuation [154]. Decades ago, the first studies on the effects of hypomagnetic field on humans were conducted, motivated by the concerns around the health of astronauts in outer space [155–158]. These studies concluded that exposure to hypomagnetic fields had adverse effects on human health. Besides hypomagnetic field effects on animal and human cells and tissues, deprivation in geomagnetic field can influence the development of plants as well [151,152]. The geomagnetic field seems to play essential roles in living organisms, and diminishing or removing it could result in adverse consequences.

It was shown that exposure to hypomagnetic fields decreased the size and number of Staphylococcus aureus [159]. Exposure to hypomagnetic fields can also influence early developmental processes of newts (Cynops pyrrhogaster) [160], early embryogenesis [161,162], development of Xenopus [163], cryptochrome-related hypocotyl growth and flowering of Arabidopsis [164,165], development and reproduction of brown planthopper [166], mortality [167] and anhydrobiotic abilities [168] in tardigrades.

It was observed that the circadian clock in fiddler crabs and other organisms [169], including human [170] and birds [171] can be influenced by exposure to hypomagnetic fields.

Zhang et al. showed that long-term exposure to hypomagnetic fields adversely influenced adult hippocampal neurogenesis in mice [172]. They further observed that these effects were accompanied by reductions in ROS levels. Moreover, Wang et al. observed that exposure to hypomagnetic fields (10–100 nT) caused disorders in tubulin self-assembly [173]. They show that the absorbance for monitoring tubulin self-assembly was altered by exposure to hypomagnetic fields. We discuss both these observations from the perspective of the radical pair mechanism in the following (see §§4.4 and 4.5). Furthermore, Baek et al. reported that exposure to hypomagnetic fields influenced DNA methylation in vitro in mouse embryonic stem cell (ESC) culture [174]. Upon exposure to a hypomagnetic field ESC morphology remained undifferentiated while under exposure to the geomagnetic field, ESCs exhibited differentiation. Moreover, Ikenaga and co-workers reported that genetic mutation in Drosophila during space flight [175]. Further, Martino and co-workers reported that reducing the geomagnetic field to 6–13 μT resulted in significantly altered cell cycle rates for multiple cancer-derived cell lines [176]. Belyavskaya observed that hypomagnetic conditions included reduction of the meristem, disruption of protein synthesis and accumulation of lipids, reduction in organelle growth, the amount of phytoferritin in plastids and crista in mitochondria [177]. Further, the effects of zero magnetic field on human VH-10 fibroblasts and lymphocytes were observed by Belyaev et al. [178]. They concluded that exposure to hypomagnetic fields caused hypercondensation and decondensation of chromatin. Studies conducted by NASA revealed that exposure to hypomagnetic fields decreased enzyme activity in cells obtained from mice [179].

Yan et al. show that reducing the magnetic field to less than 0.5 μT significantly lengthened larval and pupal development.
durations, increased male longevity, and reduced pupal weight, female reproduction, and the relative expression level of the vitellogenin gene in *Mytilus separata* [180]. In addition, they observed that exposure to the hypomagnetic field had adverse effects on the mating ratio of *M. separata* adults. They further reported that moths in the hypomagnetic conditions had less flight activity late in the night compared to the control group. They suggest that the latter may be related to the circadian rhythm of *M. separata*.

Sarimov et al. reported that hypomagnetic conditions influence human cognitive processes [181]. They concluded that exposure to hypomagnetic fields resulted in an increased number of errors and extension of the time required to complete the tasks compared to normal conditions.

Wang and co-workers showed that exposure to hypomagnetic fields induced cell proliferation of SH-SY5Y cells in a glucose-dependent manner [182]. They suggested that lactate dehydrogenase was a direct response to cell proliferation under hypomagnetic conditions. The authors further proposed that the up-regulation of anaerobic glycolysis and repression of oxidative stress shifted cellular metabolism more towards the Warburg effect commonly observed in cancer metabolism. Table 2 summarizes hypomagnetic field effects observed on various physiological functions.

### 2.3. Oscillating magnetic field

#### 2.3.1. Low-frequency

The effects of oscillating magnetic fields on biological functions are abundant [207–215], and are often correlated with modulation of ROS levels [216–218]. In this section, we review several studies on extremely low-frequency (less than 3 kHz) magnetic fields on various biological functions.

Sherrard and co-workers showed that exposure of the cerebellum to low-intensity repetitive transcranial magnetic stimulation (Li-rTMS) (10 mT) modulated behaviour and Purkinje cell morphology [219,220]. Recently, the same group reported that Li-rTMS (2 mT) induced axon growth and synapse formation providing olivocerebellar reinnervation in the cerebellum [221]. The authors concluded that cryptochrome was required for the magnetosensitivity of the neurons, which was consistent with ROS production by activated cryptochrome [222]. In a recent study, the team showed that Li-rTMS (10 mT and 10 Hz) evoked neuronal firing during the stimulation period and induced durable attenuation of synaptic activity and spontaneous firing in cortical neurons of rats in *vivo* [223].

Contalbrigo et al. showed that magnetic fields (less than 1 mT, 50 Hz) influenced some haematochemical parameters of circadian rhythms in Sprague–Dawley rats [224]. Further, Fedele et al. reported that a 300 μT magnetic field (3–50 Hz) induced changes in two locomotor phenotypes, circadian period and activity levels via modulating cryptochrome in *Drosophila* [225]. Moreover, it has been shown that exposure to a magnetic field of an 0.1 mT and 50 Hz alters clock gene expressions [226].

Manikonda et al. applied magnetic fields (50 and 100 μT, 50 Hz) to the cerebellum, hippocampus and cortex of rat brains. They observed that H₂O₂ increased in the descending order of cerebellum, hippocampus and cortex. In that work, 100 μT induced more oxidative stress compared to 50 μT [227]. Furthermore, Özgün et al. reported that exposure to a magnetic field (1 mT, 50 Hz) *in vitro* induced human neuronal differentiation through *N*-methyl-D-aspartate (NMDA) receptor activation [228]. They observed that the magnetic field enhanced intracellular Ca²⁺ levels. The authors concluded that NMDA receptors (NMDARs) are essential for magnetosensitivity in such phenomena. It is also known that a combination of static (27–37 μT) and time varying (13/114 μT, 7/72 Hz) magnetic fields directly interact with the Ca²⁺ channel protein in the cell membrane [229]. It has also been reported that exposure to greater than 5 mT (50 Hz) magnetic fields may promote X-ray-induced mutations in hamster ovary K1 cells [230]. Koyama et al. showed that exposure to a magnetic field of 5 mT (60 Hz) promoted damage induced by H₂O₂, resulting in an increase in the number of mutations in plasmids in *E. coli* [231]. Studies of extremely low-frequency magnetic field effects (less than 1000 Hz) on various biological functions are shown in tables 3 and 4.

#### 2.3.2. Medium/high-frequency

In this section, we review several studies on medium/high-frequency (greater than 3 kHz) magnetic field effects on various physiological functions (table 5). Usselman et al. reported that oscillating magnetic fields at Zeeman resonance (1.4 MHz and 50 μT) influenced relative yields of cellular O₂⁻ and H₂O₂ products in human umbilical vein endothelial cells [340]. Considering a radical pair in [FADH₂·O₂⁻] form, the authors suggested that coherent electron spin dynamics may explain their observation. Moreover, Friedman et al. observed that a 875 MHz magnetic field increased ROS production, which was mediated by membrane-associated NOX in HeLa cells and rats [341]. Castello and colleagues showed that exposure of fibrosarcoma HT1080 cells to weak radio frequency (5/10 MHz) combined with a 45 μT static magnetic field modulated the number of cells and significantly increased H₂O₂ production [342]. Martino and Castello showed that exposure of cultured yeast and isolated mitochondria to magnetic fields (150 μT; 45 μT and a parallel 10 MHz RF; 45 μT and a perpendicular 10 MHz RF) modulated the production of extracellular, intracellular, and mitochondrial O₂⁻ and H₂O₂ [343]. They concluded that complex I of the ETC is involved in H₂O₂ production. Table 6 summarizes a few medium/high-frequency magnetic field effects observed in various experiments.

### 2.4. Isotope effects

Atomic nuclei contain protons and neutrons. The number of protons determines the element (e.g. carbon, oxygen etc.), and the number of neutrons determines the isotope of the desired element. Some isotopes are stable, i.e. they preserve the number of protons and neutrons during chemical reactions. It has been shown that using different isotopes of the desired element in certain chemical reactions results in different outcomes. Such observations have been seen in many chemical reactions [356–363] including biological processes [45,364–368]. Inheriting quantum properties, not only do different isotopes of an element have different masses, but they can also have different spins. For that reason, isotope effects in (bio)chemical reactions can be regarded from two distinct points of view: mass-dependency and spin-dependency.

Thiemens et al. observed mass-independent isotope effects
| system                                             | references                   |
|---------------------------------------------------|------------------------------|
| **development**                                   |                              |
| decrease in size and number of *Staphylococcus aureus* | Rosenbach [159]             |
| changes of tinctorial, morphological, cultural and biochemical properties in bacteria | Eerkin et al. [183]         |
| newt (*Cynops pyrrhogaster*)—early developmental processes | Asashima et al. [160]       |
| inhibition of early embryogenesis                  | Osipenko [161, 162]         |
| Xenopus embryos—development                        | Mo et al. [163]             |
| Arabidopsis—cryptochrome-related hypocotyl growth and flowering | Xu et al. [164, 165]        |
| brown planthopper—development and reproduction      | Wan et al. [166]            |
| increased mortality in tardigrades                 | Erdmann et al. [167]        |
| inhibition of anhydrobiotic abilities in tardigrades| Erdmann et al. [168]        |
| developmental and behavioural effects in moths     | Yan et al. [180]            |
| cell proliferation in SH-SYSY cells, ROS implicated | Wang et al. [182]           |
| **circadian system**                              |                              |
| fiddler crabs and other organisms—circadian clock  | Brown [169]                 |
| human—circadian rhythms                            | Waver et al. [170]          |
| bird—circadian clock                               | Bliss & Heppner [171]       |
| mice—circadian rhythm/increases algesia            | Mo et al. [184]             |
| **neurons and brain**                             |                              |
| inhibition of stress-induced analgesia in male mice | Seppia et al. [185]         |
| hamster—GABA in cerebellum and basilar nucleus     | Junfeng et al. [186]        |
| mice—amnesia                                       | Choleitis et al. [187]      |
| chick—long-term memory                             | Wang et al. [188]           |
| impairment in learning abilities and memory of adult male mice | Wang et al. [189]         |
| *Drosophila*—amnesia                              | Zhang et al. [190]          |
| mice—analgesia                                     | Prato et al. [191]          |
| golden hamster—noradrenergic activities in the brainstem | Zhang et al. [192]        |
| human cognitive processes                          | Sarimov et al. [181]       |
| purified tubulin from calf brain—assembly          | Wang et al. [173]           |
| chickens needed additional noradrenaline for memory consolidation | Xiao et al. [193]          |
| human—cognitive processes                          | Binihi & Sarimov [194]     |
| human neuroblastoma cell—proliferation             | Mo et al. [195]             |
| human neuroblastoma cells—actin assembly and inhibits cell motility | Mo et al. [196]             |
| human neuroblastoma cell—H$_2$O$_2$ production    | Zhang et al. [197]          |
| anxiety in adult male mice                         | Ding et al. [198]           |
| mouse—proliferation of mouse neural progenitor and stem cells | Fu et al. [199]            |
| **DNA**                                            |                              |
| genetic mutations in *Drosophila* during space flight | Ikenaga et al. [175]       |
| mouse ESCs culture—DNA methylation                 | Baek et al. [174]           |
| human bronchial epithelial cells—DNA repair process | Xue et al. [200]           |
| **others**                                         |                              |
| decreased enzyme activity in cells obtained from mice | Conley [179]               |
| Ca$^{2+}$ balance in meristem cell of pea roots     | Belyavskaya [177]           |
| ability to change colour in *Xenopus laevis*       | Leucht [201]                |
| chromatin hypercondensation/decondensation in human fibroblasts/lymphocytes | Belyaev et al. [178]       |
| increased protoplasts fusion                       | Nedukha et al. [202]       |
| decreasing certain elements in rats' hair          | Tombarkiewicz [203]        |

(Continued.)
as a deviation of isotopic distribution in reaction products [369–373]. Furthermore, in 1976 Buchachenko and colleagues by applying magnetic fields detected the first mass-independent isotope effect, which chemically discriminated isotopes by their nuclear spins and nuclear magnetic moments [374]. Since then, the term ‘magnetic isotope effect’ was dubbed for such phenomena as they are controlled by electron-nuclear hyperfine coupling in the paramagnetic species. Moreover, isotope effects have been observed for a great variety of chemical and biochemical reactions involving oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc and uranium [65,367,368,375–381]. In this review, we focus on isotope effects from a spin perspective, see table 7.

In 1986 Sechzer and co-workers reported that lithium administration results in different parenting behaviours and potentially delayed offspring development in rats [382]. Their findings were not quantitative; however, it was observed that different lithium isotopes exhibited different impacts. Moreover, in 2020, Ettenberg et al. [383] conducted an experiment demonstrating an isotope effect of lithium on rat hyperactivity. Lithium has two stable isotopes, $^6$Li and $^7$Li, possessing different nuclear spin angular momentum, $I_6=1$ and $I_7=3/2$, respectively. In that work, the mania phase was induced by sub-anesthetic doses of ketamine. The authors reported that $^6$Li produced a longer suppression of hyperactivity in an animal model of mania compared to $^7$Li. We further discuss this phenomenon from the point of view of the radical pair mechanism in §4.2.

Li and co-workers reported that xenon (Xe)-induced anaesthesia in mice is isotope-dependent. They used four different Xe isotopes, $^{129}$Xe, $^{131}$Xe, $^{132}$Xe and $^{134}$Xe with nuclear spins of 1/2, 3/2, 0 and 0, respectively [384]. The results fell into two groups, isotopes with spin and isotopes without spin, such that isotopes of xenon with non-zero nuclear spin had lower anaesthetic potency than isotopes with no nuclear spin. The results of this work are discussed from the perspective of the radical pair mechanism in §4.1.

Buchachenko et al. observed that magnesium-25 ($^{25}$Mg) controlled phosphoglycerate kinase (PGK) [385]. $^{25}$Mg has a nuclear spin of 5/2, while $^{24}$Mg is spin-less. The authors reported that ATP production was more than twofold in the presence of $^{25}$Mg compared to $^{24}$Mg. They suggested that the nuclear spin of Mg was the key factor for such an observation. In another study, the same group reported that $^{25}$Mg reduced enzymatic activity in DNA synthesis compared to $^{24}$Mg. They concluded that DNA synthesis is magnetic field-dependent [387,389]. In the same system, they further observed that if Mg$^{2+}$ ion is replaced by stable isotopes of calcium, $^{40}$Ca$^{2+}$ and $^{43}$Ca$^{2+}$ (with nuclear spins of 0, 7/2, respectively), the enzyme catalytic reactions will be isotope-dependent, such that $^{43}$Ca$^{2+}$-promoted enzyme hyper-suppression leading to a residual synthesis of shorted DNA fragments compared to $^{40}$Ca$^{2+}$ [388]. They repeated the same experiment but this time instead of Mg$^{2+}$ ion stable isotopes of zinc, $^{64}$Zn$^{2+}$ and $^{67}$Zn$^{2+}$ (with nuclear spins of 0, 5/2, respectively) were used. The authors reported that $^{67}$Zn$^{2+}$ suppressed DNA synthesis a few times more than $^{64}$Zn$^{2+}$ [386].

### 3. The radical pair mechanism

#### 3.1. Spin and radical pairs

Spin is an inherently quantum property that emerges from Dirac’s relativistic quantum mechanics [390,391], and is described by two numbers, $S$ and $m_s$, respectively, the spin quantum number and the spin projection quantum number. Electrons, protons and neutrons have spins of $S=1/2$. Having an angular momentum characteristic, spin can be coupled not only with external magnetic fields but also with other spin in its vicinity. For instance, coupling of two electrons spins, $S_A$ and $S_B$, results in a total spin of $S_T$ which has a quantum number of either $S=1$ or $S=0$. The latter case is called a singlet state, with $m_s=0$, and the former is called a triplet state, with $m_s=0, \pm 1$ [392].

$$|S\rangle = \frac{1}{\sqrt{2}} \left( |1\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |1\rangle_B \right),$$  \hspace{1cm} (3.1)

$$|T_+\rangle = |1\rangle_A \otimes |1\rangle_B,$$  \hspace{1cm} (3.2)

$$|T_0\rangle = \frac{1}{\sqrt{2}} \left( |1\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |1\rangle_B \right),$$  \hspace{1cm} (3.3)

and

$$|T_-\rangle = |1\rangle_A \otimes |1\rangle_B,$$  \hspace{1cm} (3.4)

where $\otimes$ is the tensor product.

Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules. It is important to note that in reactions of organic molecules, spin is usually a conserved quantity, which is essential for magnetic field effect in biochemical reactions. For example, a radical pair can be created if a bond between a pair of molecules $[A\cdots D]$ breaks or an electron is transferred from D to A, $[A^-\cdots D^+]$ (D and A denote donor and acceptor molecules). A radical pair may be in a superposition of singlet and triplet states, depending on the parent molecule’s spin configuration. Assuming that the initial state of the electron pairs before separation was a singlet (triplet), the recombination

| system                                      | references |
|---------------------------------------------|------------|
| cancer-derived cell lines—cell cycle rates  | Martino et al. [176] |
| human fibrosarcoma cancer cells—H$_2$O$_2$ production | Martino et al. [204] |
| mouse primary skeletal muscle cell—ROS levels | Fu et al. [205] |
| invertebrates and fish—calcium-dependent proteases | Kantserova et al. [206] |
Table 3. Extremely low-frequency (less than 3 kHz) magnetic field effects on memory, stress, pain, dopamine, serotonin, melatonin, genetics and calcium flux.

| system                                      | magnetic field and frequency | references          |
|---------------------------------------------|------------------------------|---------------------|
| memory                                      |                              |                     |
| rat— acquisition and maintenance of memory  | 2 mT, 50 Hz                  | Liu et al. [232]    |
| rat—memory and corticosterone level         | 0.2 mT, 50 Hz                | Mostafa et al. [233]|
| spatial recognition memory in mice          | 0.6/0.9/1.1/2 mT, 25/50 Hz   | Fu et al. [234]     |
| spatial memory disorder/hippocampal damage  | 400 μT, 50 Hz                | Liu et al. [235]    |
| Alzheimer's disease rat model                |                              |                     |
| recognition memory task/hippocampal spine   | 1 mT, 50 Hz                  | Zhao et al. [236]   |
| density in mice                             |                              |                     |
| human hippocampal slices—semantic memory    | 1 μT, 5 min on/5 min off     | Richards et al. [237]|
| stress                                      |                              |                     |
| behaviour/anxiety in rats                   | 520 μT, 50 Hz                | Balassa et al. [238]|
| benzodiazepine system in hyperalgesia in rats| 0.5/1/2 mT, 60 Hz            | Jeong et al. [239]  |
| anxiogenic effect in adult rats              | 2 mT, 50 Hz                  | Liu et al. [240]    |
| anxiety level and spatial memory of adult   | 2 mT, 50 Hz                  | He et al. [241]     |
| rats                                        |                              |                     |
| depression and corticosterone secretion in  | 10 mT, 50 Hz                 | Korpinar et al. [242]|
| mice                                        |                              |                     |
| anxiety, memory and electrophysiological    | 4 mT, <60 Hz                  | Rostami et al. [244]|
| properties of male rats                      |                              |                     |
| induction of anxiety via NMDA activation in  | 1 mT, 50 Hz                  | Salunke et al. [245]|
| mice                                        |                              |                     |
| pain                                         |                              |                     |
| mice—pain thresholds                        | 2 mT, 60 Hz                   | Jeong et al. [246]  |
| snail—analgesia                             | 141–414 μT, 30 & 60 Hz        | Prato et al. [247]  |
| human—analgesia/EEG                         | 200 μT, <500 Hz               | Cook et al. [248]   |
| attenuate chronic neuropathic pain in rats   | 1 mT, 1/10/20/40 Hz           | Meet et al. [249]   |
| mice— inhibition of morphine-induced        | 0.15–9 mT, 0.5 Hz             | Kavaliers & Osscnkopp [250] |
| analgesia                                   |                              |                     |
| dopamine/serotonin/melatonin                |                              |                     |
| rat frontal cortex—dopamine and serotonin   | 1.8–3.8 mT, 10 Hz             | Siero et al. [251]  |
| level                                        |                              |                     |
| rat brain—serotonin and dopamine receptors  | 0.5 mT, 50 Hz                 | Janac et al. [252]  |
| activity                                     |                              |                     |
| rat—central dopamine receptor               | 1.8–3.8 mT, 10 Hz             | Siero et al. [253]  |
| rat—plasma and pineal melatonin levels      | 1/5/250 μT, 50 Hz             | Kato et al. [254]   |
| human—melatonin concentration              | 2.9 mT, 40 Hz                 | Karasek et al. [255]|
| genetic                                      |                              |                     |
| rat brain cells—increases DNA strand breaks  | 0.5 mT, 60 Hz                 | Lai & Singh [256,257]|
| human HL-60 cells—steady state levels of     | 8 μT, 60 Hz                   | Karabakhtsian et al. [258]|
| some mRNAs                                  |                              |                     |
| hamster ovary K1 cells—promotion in         | >5 mT, 50 Hz                  | Miyakoshi et al. [230]|
| X-ray-induced mutations                     |                              | Zhou et al. [259]   |
| HL-60 cells—CREB DNA binding activation     | 0.1 mT, 50 Hz                 |                     |
| plasmids in E. coli—increase in the number   | 5 mT, 60 Hz                   | Komaya et al. [231] |
| of mutations                                |                              |                     |
| genetic analysis of circadian responses in   | 300 μT, 3–50 Hz               | Fedele et al. [225] |
| Drosophila                                  |                              |                     |
| epigenetic modulation of adult hippocampal  | 1 mT, 50 Hz                   | Leone et al. [260]  |
| neurogenesis in mice                         |                              |                     |
| circadian gene expression in human fibroblast cell | 0.1 mT, 50 Hz | Manzella et al. [226] |
| epigenetic modulation in human neuroblastoma cells | 1 mT, 50 Hz | Consales et al. [261] |
| calcium                                      |                              |                     |
| lymphocyte—calcium signal transduction      | 42.1 μT, 16 Hz                | Yost & Liburdy [262]|
| T cell—intracellular calcium oscillations    | 0.1 mT, 50 Hz                 | Lindström et al. [263]|
| rat pituitary cells—Ca²⁺ influx              | 50 μT, 50 Hz                  | Barbier et al. [264]|
| Ca²⁺ channel protein in the cell membrane   | 13/114 μT, 7/72 Hz            | Baurus Koch et al. [229]|
| human skin fibroblast populations—         | 8 mT, 20 Hz                   | Löschinger et al. [265]|
| intracellular calcium oscillations          |                              |                     |
| osteoblasts cells—intracellular calcium     | 0.8 mT, 50 Hz                 | Zhang et al. [266]  |
| levels                                      |                              |                     |
| C2C12 muscle cells—calcium handling and     | 1 mT, 50 Hz                   | Morabito et al. [267]|
| increasing H₂O₂                             |                              |                     |

(Continued.)
of unpaired electrons can only happen if they stayed in a singlet (triplet) [395].

If the radical pairs are formed in singlet (triplet) states, the initial spin density matrix reads as follows:

$$\hat{\rho}(0) = \frac{1}{M} \hat{P}^S,$$  \hspace{1cm} (3.5)

$$\hat{P}^S = |S\rangle \langle S| \otimes \hat{1}_M,$$  \hspace{1cm} (3.6)

$$\hat{P}^T = \{|T_+\rangle \otimes (|T_+\rangle + |T_0\rangle + |T_-\rangle) \otimes \hat{1}_M\},$$ \hspace{1cm} (3.7)

$$\hat{P}^S + \hat{P}^T = \hat{1}_M$$ \hspace{1cm} (3.8)

and

$$M = \sum_i (2I_i + 1),$$  \hspace{1cm} (3.9)

where $\hat{P}^S$ and $\hat{P}^T$ are the singlet and triplet projection operators, respectively, $M$ is the nuclear spin multiplicity, $I_i$ is the spin angular momentum of $i$th nucleus and $\hat{1}_M$ is the identity matrix. $S$ is entangled. The T projector is not entangled, even though $|T_0\rangle$ is an entangled state.

3.2. Interactions

3.2.1. Zeeman interaction

The interaction between the unpaired electron spins on each radical and the external magnetic field is essential for generating MFEs. This interaction is called the Zeeman effect [396]. The nuclear spins of radical molecules also experience applied magnetic fields; however, as nuclear magnetogyric ratios are much smaller than that of the electrons, these interactions are negligible. The Zeeman interaction is defined in the following form:

$$\hat{H}_Z = \mu_0 \hat{S} \cdot \mathbf{g} \cdot \mathbf{B},$$ \hspace{1cm} (3.10)

where $\mu_0$, $\hat{S}$, $\mathbf{g}$-tensor and $\mathbf{B}$ are the Bohr magneton, the spin operators of electron, the interaction coupling and applied magnetic field, respectively. Here, we focus on magnetic field interactions with relatively low field strengths. In such cases, it is possible to assume that the $\mathbf{g}$-tensor equals to $g_e$ of free electron, and hence,

$$\hat{H}_Z = g_e \mu_0 \hat{S} \cdot \mathbf{B} = -\gamma_e h \hat{S} \cdot \mathbf{B},$$ \hspace{1cm} (3.11)

where $\gamma_e$ and $h$ are the electron magnetogyric ratio and the Planck constant, respectively.

3.2.2. Hyperfine interaction

Similar to electron–electron spin coupling, electron spins can couple to the nuclear spins, called hyperfine interactions [397]. This interaction consists of two contributions, isotropic and anisotropic interactions. The former is also called Fermi contact term, which results from the magnetic interaction of the electron and nuclear spins when the electron is within the nucleus. The overall hyperfine interaction can be defined as follows:

$$\hat{H}_{\text{HHFI}} = \mathbf{S} \cdot \mathbf{a} \cdot \mathbf{I},$$ \hspace{1cm} (3.12)

where $\mathbf{a}$ and $\mathbf{I}$ are the hyperfine coupling tensor and nuclear spin of $i$th nucleus. The anisotropic components of the hyperfine interactions are only relevant when the radicals are immobilized and aligned [25]. Neglecting the anisotropic component of the hyperfine interaction, the hyperfine Hamiltonian has the following form:

$$\hat{H}_{\text{HHFI}} = a_i \hat{S} \cdot \mathbf{I},$$ \hspace{1cm} (3.13)

where $a_i$ is the isotropic hyperfine coupling constant and can be calculated as

$$a_i = \frac{2}{3} g_e \gamma_n \mu_0 |\Psi(0)|^2,$$ \hspace{1cm} (3.14)

$\mu_0$ is the vacuum permeability, $\gamma_n$ is the nuclear magnetogyric ratio and $|\Psi(0)|^2$ is the electron probability density at the nucleus [398].

3.2.3. Exchange interaction

The electrons on radicals are identical in quantum calculations. This indistinguishability of electrons on radical pairs can be introduced via the exchange interaction [399]. It is generally assumed to weaken exponentially with increasing radical pair separation. The exchange interaction can prevent singlet–triplet interconversion, as discussed later. However, recent studies show that this term is negligible [400] in the magnetic field effects on pigeon cryptochrome [401].

3.2.4. Dipolar interaction

As spins are magnetic moments, the radical pairs also influence each other by a dipolar interaction [402]. This interaction can suppress singlet–triplet interconversion in the radical pair dynamics. However, studies on avian magnetoreception suggest that under certain conditions exchange and dipolar interactions can be neglected [43,403–406].

3.2.5. Other contributions

It is thought that after a first re-encounter, radicals either react or diffuse apart forever [407]. In the context of birds’ magnetoreception, for this contribution, an exponential model is used [43,408].

High electron density on an atom of a radical can lead to have a higher anisotropic $g$-value compared to...
3.3. Spin dynamics of radical pairs

The sensitivity of certain reactions to weak magnetic fields relies on the oscillations between singlet and triplet states of radical pairs, also known as ‘quantum beats’ [26]. If the radicals are separated enough spatially, having the same energies, singlet and triplet will undergo a coherent...
### Table 5. Extremely low-frequency (less than 3 kHz) magnetic field effects on different biological functions.

| system                                      | magnetic field | references       |
|---------------------------------------------|----------------|------------------|
| **others**                                  |                |                  |
| neuroendocrine cell—proliferation and death | <1 mT, 50 Hz   | Grassi et al. [312] |
| cortices of mice—neuronal differentiation of neural stem/progenitor cells | 1 mT, 50 Hz   | Piacentini et al. [313] |
| hippocampal slices—excitability in hippocampal neurons | 15 mT, 0.16 Hz | Ahmed & Wieraszko [314] |
| human—EEG alpha activity                    | 200 μT, 300 Hz | Cook et al. [315,316] |
| rat—neuroprotective effects                 | 0.1/0.3/0.5 mT, 15 Hz | Yang et al. [317] |
| rat—neuroprotective effects on Huntington’s disease | 0.7 mT, 60 Hz | Tasset et al. [318] |
| synaptic efficacy in rat brain slices       | 0.5/3 mT, 50 Hz | Balassa et al. [319] |
| global cerebral ischaemia/pituitary ACTH and TSH cells in gerbils | 0.5 mT, 50 Hz | Balind et al. [320] |
| neurotrophic factor expression in rat dorsal root ganglion neurons | 1 mT, 50 Hz | Li et al. [321] |
| hippocampal long-term potentiation in rat   | ~10 mT, <10 Hz | Makowiecki et al. [322] |
| neuronal GABAA current in rat cerebellar granule neurons | 1 mT, 50 Hz |Yang et al. [324] |
| central nervous regeneration in planarian *Girardia sinensis* | 200 mT, 60 Hz | Chen et al. [325] |
| neuronal differentiation and neurite outgrowth in embryonic neural stem cells | 1 mT, 50 Hz | Ma et al. [326] |
| synaptic transmission and plasticity in mammalian central nervous synapse | 1 mT, 50 Hz | Sun et al. [327] |
| human—pineal gland function                | <1 μT, 60 Hz   | Wilson et al. [328] |
| rat—electrically kindled seizures           | 0.1 mT, 60 Hz  | Ossenkopp & Cain [329] |
| rat—central cholinergic systems             | 1 mT, 60 Hz    | Lai et al. [330] |
| deer mice—spatial learning                 | 0.1 mT, 60 Hz  | Kavaliers et al. [331] |
| T-cell receptor—signalling pathway          | 0.15 mT, 50 Hz | Lindström et al. [332] |
| enhances locomotor activity via activation of dopamine D1-like receptors in mouse | 0.3/2.4 mT, 60 Hz | Shin et al. [333] |
| rat pituitary ACTH cells                    | 0.5 mT, 50 Hz  | Balind et al. [334] |
| actin cytoskeleton reorganization in human amniotic cells | 0.4 mT, 50 Hz | Wu et al. [335] |
| reduces hypoxia and inflammation in damage microglial cells | 1.5 mT, 50 Hz | Vincenzi et al. [336] |
| pluripotency and neuronal differentiation in mesenchymal stem cells | 20 mT, 50 Hz | Haghshenat et al. [337] |
| proliferation and differentiation in osteoblast cells | 5 mT, 15 Hz | Tong et al. [338] |
| reduced hyper-inflammation triggered by COVID-19 in human | 10 mT, 300 Hz | Pooam et al. [339] |
| proliferation and regeneration in planarian *Schmidtea mediterranea* | 74 μT, 30 Hz | Ermakov et al. [339] |

### Table 6. Medium/High-frequency (greater than 3 kHz) magnetic field effects on biological functions.

| system                                      | magnetic field and frequency | references       |
|---------------------------------------------|-------------------------------|------------------|
| ROS production and DNA damage in human SH-SYSY neuroblastoma cells | 872 MHz | Luukkonen et al. [344] |
| ROS level in human ejaculated semen         | 870 MHz                       | Agarwal et al. [345] |
| ROS production and DNA damage in human spermatozoa | 1.8 GHz | Iuliis et al. [346] |
| ROS levels and DNA fragmentation in astrocytes | 900 MHz | Campisi et al. [347] |
| ROS formation and apoptosis in human peripheral blood mononuclear cell | 900 MHz | Lu et al. [348] |
| ROS elevation in *Drosophila*               | 1.88–1.90 GHz                | Manta et al. [349] |
| ROS modulation in rat pulmonary arterial smooth muscle cells | 7 MHz | Usselman et al. [350] |
| bioluminescence and oxidative response in HEX cells | 940 MHz | Seifdabkht et al. [351] |
| electrical network activity in brain tissue | <150 MHz                     | Gramowski-Voß et al. [352] |
| ROS production in human umbilical vein endothelial cells | 50 μT, 1.4 MHz | Usselman et al. [340] |
| insect circadian clock                      | 420 μT, RF                    | Bartos et al. [353] |
| tinnitus, migraine and non-specific in human | 100 KHz to 300 GHz | Röösli et al. [354] |
| magnetic compass orientation in night-migratory songbird | 75–85 MHz | Leberecht et al. [355] |
interconversion process, quantum beating. The interconversion is tuned by the magnetic fields experienced by the electrons, including Zeeman and hyperfine interactions. At low magnetic fields, the main drive for S–T interconversion is due to the hyperfine interactions. Owing to selection rules, the singlet and triplet yields will follow different chemical pathways, which depend on the timing of the coherent spin dynamics [413]. These quantum beats have just recently been observed directly [414].

The fractional singlet yield resulting from the radical pair mechanism throughout the reaction can be normally defined by using the Liouville–von Neumann equation [50]

$$\frac{d\hat{ρ}(t)}{dt} = -\frac{i}{\hbar}[\hat{H}, \hat{ρ}(t)],$$

where $\hat{ρ}(t)$ and $\hat{H}$ are the spin density and Hamiltonian operators, respectively. $[\cdot, \cdot]$ denotes the commutator.

For instance, the probability of finding the radical pairs in singlet states at some later time is determined by Hamiltonian using equation (3.15)

$$\langle \hat{S}^z(t) \rangle = \text{Tr}[\hat{S}^z \hat{ρ}(t)],$$

where $\text{Tr}$ is trace.

The probability $\langle \hat{B}^z \rangle(t)$ depends on other contributions, including kinetic reactions, spin relaxation, vibration and rotation of radical pairs, which can be introduced to equation (3.15).

### 3.3.1. Static magnetic field

Static magnetic field effects have been extensively studied in the context of birds’ magnetosensitivity [46,48]. However, the applications of these models can be extended to other magnetic field effects reviewed in §2.1. Assuming that the spin of the radicals pair starts off from a singlet state, equation (3.16) can be rewritten as

$$\langle \hat{B}^z(t) \rangle = \frac{1}{M} \sum_m \sum_n \langle m|\hat{B}^z|n\rangle^2 \cos (\omega_m - \omega_n)t,$$

where $|m \rangle$ and $|n \rangle$ are eigenstates of $\hat{H}$ with corresponding eigenenergies of $\omega_m$ and $\omega_n$, respectively.

Spin relaxation can be introduced phenomenologically [408,415] such that

$$\langle \hat{B}^z(t) \rangle \rightarrow \frac{1}{4} - \left(\frac{1}{4} - \langle \hat{B}^z(t) \rangle\right) e^{-rt},$$

where $r$ denotes the spin relaxation rate. Following the work of Timmel et al. [50], the chemical fate of the radical pair can be modelled separating spin-selective reactions of the singlet and triplet pairs, as shown in figure 1. For simplicity, it is assumed that $k = k_s = k_T$, where $k_s$ and $k_T$ are the singlet and triplet reaction rates, respectively. The final singlet yield, $\Phi_S$, for periods much greater than the radical pair lifetime reads as follows:

$$\Phi_S = k \int_0^\infty \langle \hat{B}^z(t) \rangle e^{-it} dt = \frac{1}{4} \frac{k}{4(k + r)}$$

$$+ \frac{1}{M} \sum_m \sum_n \langle m|\hat{B}^z|n\rangle^2 \frac{k(k + r)}{(k + r)^2 + (\omega_m - \omega_n)^2},$$

where the fractional triplet yield can be calculated as $\Phi_T = 1 - \Phi_S$.

In §4, we briefly review recent studies that suggest the radical pair mechanism may explain xenon-induced anaesthesia, lithium effects on hyperactivity, magnetic field and lithium effects on circadian clock, and hypomagnetic field effects on neurogenesis and microtubule reorganization. In these studies, for simplicity, only Zeeman and isotropic hyperfine interactions are considered. For a pair of radicals, the Hamiltonian reads

$$\hat{H} = \omega \hat{S}_A + \hat{S}_A \sum_i \omega_i \hat{I}_i A + \omega \hat{S}_D + \hat{S}_D \sum_i \omega_i \hat{I}_i D,$$

where $\hat{S}_A$ and $\hat{S}_D$ are the spin operators of radicals on $A^−$ and $D^−$, respectively, $\hat{I}_A$ and $\hat{I}_D$ are the nuclear spin operators on the acceptor and donor radical molecule, $\omega_A$ and $\omega_D$ are the isotropic hyperfine coupling constants, $N_A$ and $N_D$ are the number of nuclei coupled to electron $A$ and $D$, respectively, and $\omega$ is the Larmor precession frequency of the electrons due to the Zeeman effect.

### 3.3.2. Hypomagnetic field

Although hypomagnetic fields belong to the static magnetic field category, the effects due to extremely low magnetic field are often particularly significant compared to other magnetic field effects.

Using equation (3.19), it can be shown that for different relaxation and reactions rates, the hypomagnetic field effects are significant, as shown in figure 2.

### 3.3.3. Extremely low-frequency magnetic field

Given the short lifetime of radical pairs compared to the low frequency of the applied magnetic field, in general, the

| system | isotope | spin, $I$ | references |
|--------|---------|-----------|------------|
| parenting/offspring development in rat | $^6$Li, $^7$Li | 1, 3/2 | Sechzer et al. [382] |
| hyperactivity in rat | $^6$Li, $^7$Li | 1, 3/2 | Ettenberg et al. [383] |
| anaesthetic potency in mice | $^{129}$Xe, $^{131}$Xe, $^{132}$Xe, $^{134}$Xe | 0, 7/2 | Li et al. [384] |
| ATP production in purified pig skeletal muscle PGX | $^{24}$Mg, $^{25}$Mg, $^{26}$Mg | 0, 5/2, 0 | Buchachenko et al. [385] |
| DNA synthesis in HL-60 human myeloid leukaemia cells | $^{62}$Zn, $^{63}$Zn | 0, 5/2 | Buchachenko et al. [386] |
| DNA synthesis in HL-60 human myeloid leukaemia cells | $^{24}$Mg, $^{25}$Mg, $^{26}$Mg | 0, 5/2, 0 | Buchachenko et al. [387] |
| DNA synthesis in HL-60 human myeloid leukaemia cells | $^{40}$Ca, $^{41}$Ca | 0, 7/2 | Bukhvoostov et al. [388] |

Table 7. Spin-dependent isotope effects on different biological functions.
extremely low-frequency magnetic field can be treated as static during the lifetime of a radical pair [408,416]. Depending on the phase of oscillation, \( \alpha \in (0, \pi) \), each radical pair therefore experiences a different, effectively static, magnetic field whose field strength is \( B \). Assuming that \( B_0 \) and \( B_1(t) \) are parallel, the net effect of the oscillating field is an average over \( \alpha \), such that

\[
B(t) = B_0 + B_1(t) = B = B_0 + B_1 \cos \alpha
\]  

and

\[
\Phi_0(B_0, B_1) = \frac{1}{\pi} \int_0^\pi \Phi_0(B) \, d\alpha,
\]

where \( B_0 \) and \( B_1 \) indicate the static magnetic field and the amplitude of the oscillating magnetic field, respectively. Such theoretical model can be applied to the magnetic field effects reviewed in \( \S \)2.3.1.

3.4. Medium/high-frequency magnetic field

For the cases of medium/high-frequency magnetic fields, a general approach is to integrate equation (3.15), using, for example, a fourth-order Runge–Kutta scheme. It is shown that high-frequency magnetic effects can be accounted for by the radical pair mechanism [417–419]. For instance, if the magnetic field has the following form:

\[
B(t) = B_0 \hat{k} + B_1[\cos \omega t \hat{i} + \sin \omega t \hat{j}],
\]

the corresponding Hamiltonian can be transformed into a rotating reference frame where it becomes a time-independent Hamiltonian [420]. To do so, one could use a unitary transformation matrix

\[
T(t) = e^{i(\delta x_0 \hat{x}_0 + \delta y_0 \hat{y}_0 + \delta z_0 \hat{z}_0) \omega t},
\]

such that

\[
\hat{H} = i\hbar T(t)^{-1}(t) + T(t)H(t)T^{-1}(t),
\]

Where \( \hat{H} \) is the time-independent Hamiltonian and \( \dot{T}(t) \) is the time derivative of \( T(t) \). After some algebra, one can obtain

\[
\dot{H} = \mathcal{S}\mu \sum_{j=1}^{2}(B_0S_{j\mu} + B_1S_{j\mu} + q_j I_{j\mu}) - \omega \sum_{j=1}^{2}(S_{j\mu} + I_{j\mu}).
\]

3.4.1. Cryptochrome-based radical pairs

In the context of songbird avian magnetoreception, the cryptochrome proteins are the canonical magnetosensitive agent [48,424,425]. Cryptochromes are classified as flavoproteins. They play an important role in the circadian clock, where the circadian function can be either light-dependent or -independent. Kutta et al. showed that Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor [426]. The circadian clock regulates photoreceptor sensitivity in the compound eye of insects and retina of vertebrates, potentially including the sensitivity of specialized photo-magnetoreceptors. In flies, photo-magnetoreceptors are likely to be an unusual class of photoreceptors, i.e. retinula R7y cells [427]. It is thought that, in cryptochromes and photolyases, photoreduction of FAD is through three consecutive electron transfers along a conserved triad of tryptophan (Trp) residues to give FAD\(^-\) and TrpH\(^+\) approximately 2 nm distant from each other [428–431]. In cryptochrome-4a, sequentially four radical pair states are formed by the progressive transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In a recent study, Hore and co-workers suggest that, based on spin dynamics, while the third radical pair is mainly responsible for magnetic sensing, the fourth could enhance initiation of magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine (Tyr) [432]. They concluded that this arrangement may play an essential role in sensing and signalling functions of the protein. It is also suggested that Tyr can be the donor instead of the fourth Trp [429]. It is also found based on spin dynamics analysis that a radical pair in the form of [FAD\(^-\) and Tyr\(^+\)] can provide sensitivity to the direction of the magnetic field [433].

Alternative radical pairs to [FAD\(^-\)···TrpH\(^+\)] have been suggested. In 2009, Ritz and Schulten showed that exposure to low-intensity oscillating magnetic fields disoriented European robins [434]. Interestingly the frequency of the applied magnetic field in that experiment was equal to the Larmor frequency (approx. 1.4 MHz) of a free electron spin in the geomagnetic field. Magnetic fields with the same amplitude but different frequencies had much less impact on the birds’ magnetic compass. Theoretical analysis suggests that such phenomenon may be explained if one of the radicals were free from internal magnetic interactions [435–438], which implies that such an observation is not compatible with the
radical pair model based on $[\text{FAD}^– \cdots \text{Trp}^+H]$. Various authors have suggested that the superoxide radical is the most plausible radical under such circumstances [434,435,439–443]; this is also consistent with animal magnetoreception in the dark [444–446], as it was suggested that during the back-reaction, a radical pair is formed between flavin and an $O_2$ and that the radical pair reaction responds significantly to reorientation in the geomagnetic field [438,439,447–449]. Such a radical pair could be generated without further absorption of light in the form of $[\text{FAD} \cdots O_2]$. However, deciding the more realistic radical pair between $[\text{FAD} \cdots O_2]$ and $[\text{FAD}^– \cdots \text{Trp}^+H]$ to explain avian magnetoreception is still a matter of active debate [446,450–452]. The radical pair involving superoxide demands more reliable evidence.

3.4.2. Beyond cryptochrome-based radical pairs

Flavin-dependent enzymes are ubiquitous in biology. The isoalloxazine ring of the flavin cofactor (figure 3) can undergo thermally driven redox chemistry. The different redox states of flavin play essential roles in various electron transfer processes and consequently are crucial for a variety of important biological functions, including energy production, oxidation, DNA repair, RNA methylation, apoptosis, protein folding, cytoskeleton dynamics, detoxification, neural development, biosynthesis, the circadian clock, photosynthesis, light emission and biodegradation [422,454–465]. Different forms of transient radical pair intermediates can be created during reactions catalysed by flavin-dependent enzymes, including $[\text{FADH} \cdots O_2]$ [466–468].

Although cryptochrome is the main protein for avian magnetoreception, there exist many observational challenges for the canonical cryptochrome-centric radical pair mechanism. In a recent work, Bradlaugh and co-workers observed that the FAD binding domain and the Trp chain in cryptochrome are not required for magnetic field responses at the single neuron and organismal level in Drosophila. They further reported that an increase in FAD intracellular concentration enhanced neuronal sensitivity to blue light in the presence of a magnetic field. The authors concluded that the magnetosensitivity in cells may be well explained based on non-cryptochrome-dependent radical pair models [117]. However, the question whether fruit flies use a magnetic compass demands more experimental evidence.

It is known that near the tetrodotoxin binding site in Na$^+$ channels there are tryptophan residues. Similarly, in the pore-forming region of voltage-sensitive Na$^+$ channels, Tyr and tryptophan residues are located. It is suggested that gating these channel proteins may depend on the electron transfer between these residues, and hence formation of radicals [469]. This form of electron transfer is also proposed to play a key role in DNA photolysis [470].

Many physiological and pathological processes involve protein oxidation [471], including important residues such as Trp, Tyr, histidine (His) and proline (Pro). It is known that a radical pair in the form of $[\text{TyrO} \cdots O_2]$ can be created [472]. The superoxide radical may also be formed in a spin correlated manner with other partners, including tetrahydrobiopterin [473–475]. In addition, it was shown that an electron transfer process can occur between Trp and superoxide [476,477]. However, as discussed above, the radical pairs involving superoxide is a matter of debate. It was also suggested that in PKC phosphorylation a radical pair $[\text{RO} \cdots \text{Mg(H}_2\text{O})n^+]$ complex can be formed [385].

4. Studies of the potential role of radical pairs in the brain

In this section, we briefly review recent studies that suggest that the radical pair mechanism may explain isotope effects in xenon-induced anaesthesia, and lithium effects on hyperactivity, magnetic field and lithium effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule reorganization.

4.1. Xenon anaesthesia

Xenon is a well-known general anaesthetic used for several species, including Drosophila, mice and humans [478]. Despite
its simple structure (a single atom), the exact underlying mechanism by which it exerts its anaesthetic effects remains unclear. Turin et al. showed that when xenon acts anaesthetically on *Drosophila*, specific electron spin resonance (ESR) signals can be observed \[479\]. The same authors proposed that the anaesthetic action of xenon may involve some form of electron transfer. Moreover, Li et al. showed experimentally that isotopes of xenon with non-zero nuclear spin had reduced anaesthetic potency in mice compared with isotopes with no nuclear spin \[384\]. These findings are consistent with the hypothesis of radical pair creation in xenon-induced anaesthesia.

Franks and co-workers identified the NMDA subtype of glutamate receptor \[480\] as a target for xenon anaesthesia \[478,481\]. They further showed that xenon exerted its effects by inhibiting NMDARs by competing with the co-agonist glycine at the glycine-binding site on the GluN1 subunit \[482\]. Subsequently, the same group identified that xenon interacts with a small number of amino acids at the predicted binding site of the NMDAR \[483\]. Using grand canonical Monte Carlo method, they showed that xenon at the binding site can interact with tryptophan and phenylalanine, as shown in figure 4a. However, due to redox inactivity, it is highly unlikely that phenylalanine can be involved in the electron transfer process \[484,485\]. Meanwhile, tryptophan is redox active and hence can feasibly be involved in electron transfer and hence the formation of radical pairs, as seen in the context of cryptochrome magnetoreception \[43\]. In addition, it is known that tryptophan residues of the NMDAR play key roles in channel gating \[486,487\]. Moreover, exposure to low-intensity magnetic fields activates the NMDAR \[228,245,271\].

It is also known that ROS are implicated in the activation of the NMDARs \[482,488–492\]. Moreover, Turin and Skoulakis \[493\] reported that oxygen gas was necessary for observing spin changes during xenon-induced anaesthesia in *Drosophila*. Motivated by these observations, the authors \[57\] suggested that the electron transfer related to xenon’s anaesthetic action that is evidenced by Turin et al. \[479\] plays a role in the recombination dynamics of a naturally occurring [Trp⁺ · · · O₂] radical pair (see §3.4 for further discussion). Using equations (3.19) and (3.20), they showed that for isotopes of xenon with a non-zero nuclear spin, this nuclear spin couples with (at least one of) the electron spins of such a radical pair, affecting the reaction yields of the radical pair and hence xenon’s anaesthetic action. The radical pair was assumed to start off from a singlet state. Such a mechanism is consistent with the experimental results of Li et al. \[384\] that xenon isotopes with non-zero nuclear spin have reduced anaesthetic potency compared to isotopes with zero nuclear spin, as shown in figure 4b. The authors also provide an experimental test for the validity of their model (figure 4c). It predicts that under a static magnetic field the anaesthetic potency of xenon may be significantly different than that observed by Li et al. \[384\], as shown in figure 4c.

### 4.2. Lithium effects on hyperactivity

Lithium (Li) is the most well-known treatment for bipolar illness \[494–499\]. Despite its frequent clinical use, the mechanism by which Li exerts its effects remains elusive \[500\]. Ettenberg and co-workers \[383\] showed that Li effects on the manic phase in rats are isotope-dependent. They used sub-anaesthetic doses of ketamine to induce hyperactivity which was then treated with lithium. They observed that \(^{6}\)Li produced a longer suppression of mania compared to \(^{7}\)Li. Further, there is a considerable amount of evidence that

![Figure 3. Molecular structure and orbitals of the flavin radical. (a) Structure of flavin adenine dinucleotide (FAD). R denotes the adenosine diphosphate group and the rest of the ribityl chain. (b) Representations of the molecular orbitals that contain the unpaired electron in a flavin anion radical. Blue and purple indicate parts of the wave function with opposite signs. ORCA package used to calculate the HOMO using PBE0/def2-TZVP \[453\]. Image rendered using IboView [v20211019-RevA].](https://royalsocietypublishing.org/doi/10.1098/rsif.2022.0325.supp1)

![Figure 3. Molecular structure and orbitals of the flavin radical. (a) Structure of flavin adenine dinucleotide (FAD). R denotes the adenosine diphosphate group and the rest of the ribityl chain. (b) Representations of the molecular orbitals that contain the unpaired electron in a flavin anion radical. Blue and purple indicate parts of the wave function with opposite signs. ORCA package used to calculate the HOMO using PBE0/def2-TZVP \[453\]. Image rendered using IboView [v20211019-RevA].](https://royalsocietypublishing.org/doi/10.1098/rsif.2022.0325.supp1)
oxidative stress [130] is implicated in both bipolar disorder [501–509] and its Li treatment [510–513].

Bipolar disorder is also correlated with irregularities in circadian rhythms [514–517]. In addition, it is well known that Li influences the circadian rhythms that are disrupted in patients with bipolar disorders [518–531]. Further, Osland et al. reported that Li significantly enhanced the expression of Per2 and Cry1, while Per3, Cry2, Bmal1, E4BP4 and Rev-Erb-α expression was decreased [532]. However, the exact mechanisms and pathways behind this therapy are incompletely known. It has been shown that Li can exert its effects via a direct action on the suprachiasmatic nucleus (SCN), a circadian pacemaker in the brain [533–536].

Cryptochromes are key proteins for the circadian clock [537] and SCN’s intercellular networks development, which subserves coherent rhythm expression [538]. Furthermore, it is also shown that cryptochrome is associated with bipolar disorder disease [539–542]. In the context of animal magnetoreception, cryptochromes are the canonical magnetic sensing proteins (See §3.4) [43], with flavin radicals playing a key role. Moreover, it has been shown that circadian rhythms are susceptible to magnetic fields at low intensities [115–117,169–171,224,226,353], where cryptochromes [80,225] are implicated. It has also been observed that cryptochromes play key roles in alteration of ROS levels through exposure to magnetic fields [76,141,222,543]. Based on these facts, a new study suggests [39] that Li’s nuclear spin influences the recombination dynamics of S–T interconversion in the naturally occurring [FADH···O_{2}^{-}] radical pairs (figure 5b). These pairs are initially in singlet states, and due to the different nuclear spins, each isotope of Li alters these dynamics differently. Using equations (3.19) and (3.20), the authors showed that a radical pair model could provide results consistent with the experimental finding of Ettenberg and colleagues [383], as shown in figure 5b. In that work, it was assumed that the fractional triplet yield of the radical pairs is correlated with lithium potency. They further predict a magnetic field dependence of the effectiveness of lithium, which provides one potential experimental test of their hypothesis, as shown in figure 5c.

Furthermore, the authors suggested that the proposed mechanism for Li effects is also plausible via different pathways. Li may exert its effect via competing with magnesium in inhibiting glycogen synthase kinase-3 (GSK-3) [544–546], which is regulated by phosphorylation of inhibitory serine residues [547–549]. GSK-3 phosphorylates the clock components including PER2, CRY1, CLOCK, BMAL1 and REV-ERBe [550–557]. In such cases, the radical pairs could be formed in a [RO···Li(H_{2}O)n] complex (see §3.4), where RO is the protein oxy-anion, similar to [65,385,558,559].

4.3. Magnetic field and lithium effects on the circadian clock

The circadian clock is essential for the regulation of a variety of physiological and behavioural processes in nearly all
organisms, including *Neurospora* [560], *Arabidopsis* [561], *Drosophila* [562], mouse [563] and humans [564–566]. It is known that the disruption of the circadian clock can be detrimental for many physiological functions, including depression [567, 568], metabolic and cardiovascular diseases [569], and cancer [570, 571]. It is also known that the circadian clock controls physiological processes such as brain metabolism, ROS homeostasis, hormone secretion, autophagy and stem cell proliferation, which are correlated with ageing, memory formation, and neurodegenerative and sleep disorders [572–576]. In *Drosophila*, the circadian clock regulates the timing of eclosion, courtship, rest, activity and feeding; it also influences daytime colour [577] and temperature preference [578]. Regardless of the differences in the molecular components of the circadian clocks, their organization, features, and the molecular mechanism that give rise to rhythmicity are very alike across organisms [579].

Environmental zeitgebers such as light, food and temperature can influence the circadian clock’s rhythmicity [580]. The circadian clock is also susceptible to magnetic field exposures [23, 74, 171, 224–226, 353, 581, 582] (see also §2.1.3). Yoshii *et al.* reported the effects of static magnetic fields with different intensities, [0, 150, 300, 500] μT, on the period changes of *Drosophila’s* circadian clock under blue light illumination [583]. They showed that the period was altered significantly depending on the strength of the magnetic

![Chemical structure and diagrams](image_url)

**Figure 5.** Radical pair explanation for isotope effects in lithium treatment for hyperactivity. (a) Flavinsemiquinone (FADH) and lithium superoxide radical pair (Li⁺ · · · O₂⁻). (b) The dependence of the agreement between the total travelled distance ratio, $T_D$, and the triplet yield ratio, $T_Y$, of ⁷Li over ⁶Li on the radical pair reaction rate, $k$, and the radical pair spin-coherence relaxation rate, $r$. The green line indicates the ranges smaller than the experimental uncertainty. (c) The dependence of the triplet yield (red, ⁶Li; blue, ⁷Li) and triplet yield ratio ⁷Li/⁶Li (green) on an external magnetic field, calculated based on the radical pair model [58].
field, with a maximum change at 300 μT. In that work, the geomagnetic field was shielded, and arrhythmic flies were excluded from the analysis. As discussed in §4.2, the disruption of the circadian clock is associated with bipolar disorders, for which Li is the first-line treatment. Li’s effects on bipolar disorder are isotope-dependent. Dokucu et al. [584] reported that Li lengthened the period of Drosophila’s circadian clock. However, the exact mechanism behind these phenomena is still mostly unknown. Further, ROS homeostasis is correlated to the circadian rhythms [585–591].

A recent study suggests that a radical pair model based on [FADH···O$_2^-$] (figure 6b), similar to §4.2, may explain the magnetic field and lithium effects on Drosophila’s circadian clock [59]. Following the work of Tyson et al. [592], the authors used a simple mathematical model for Drosophila’s circadian clock, as shown in figure 6a (for more detailed models see [593]). Similar to the work of Player et al. [594], they introduced the effects of applied magnetic fields and hyperfine interactions on the circadian clock process by modifying the corresponding rate representing the role of cryptochrome’s light activation and, hence, proteolysis of protein. Based on these models and using equations (3.19) and (3.20), they reproduced the experimental findings of the magnetic field [583] and lithium effects [584] on Drosophila’s circadian clock, as shown in figure 6c,d. The proposed model in that work predicts that lithium influences the clock in an isotope-dependent manner and magnetic fields and hyperfine interactions modulate oxidative stress in the circadian clock.

### 4.4. Hypomagnetic field effects on microtubule reorganization

Single-cell organisms perform cognitive activities predominantly by cytoskeletal microtubules and are inhibited by anaesthetic gases even in the absence of synapses or networks [595]. Linganna and colleagues showed that modulation of microtubule stability is a mechanism of action for these anaesthetics [596]. Bernard reported that anaesthetics act directly on cytoplasm, depending on cytoskeletal proteins’ dynamics comprising actin filaments and microtubules [597]. Further, Eckenhoff and co-workers found that

---

**Figure 6.** Radical pair explanation for magnetic field and lithium effects on the circadian clock. (a) A simple model of the circadian clock feedback loop in Drosophila. CLOCK (CLK) and CYCLE (CYC) proteins promote the *tim* and *per* genes. PER and TIM proteins first accumulate in the cytoplasm and then enter into the nucleus to block their gene transcription. Upon light absorption CRY binds to TIM and this results in the degradation of TIM [59]. (b) Flavinsemiquinone (FADH) and superoxide radical pair (Li$^+$···O$_2^-$). The dependence of the period of Drosophila’s circadian clock calculated by the radical pair model on the static magnetic field strength $B$ with (c) and without (d) lithium effects. Higher magnetic field intensities shorten the period of the circadian clock. (c) The effects of Li [purple], $^6$Li [red], $^7$Li [blue] and zero Li [black]. The inset indicates the comparison between the effects of Li on the period of the clock calculated by the radical pair model [purple line] and the experimental findings [orange dots with error bars] of [584]. (d) The comparison between the dependence of the period on the applied magnetic field calculated by the radical pair model [black line in the inset of plot (d)] and the experimental findings [green dots with error-bars] of [583]. The results from the radical pair model fit the experimental data within the experimental uncertainty.
anaesthetics bind to actin and tubulin [598, 599]. In another study, they showed that microtubules play key roles in the action of anaesthetics on protein reaction networks involved in neuronal growth, proliferation, division and communication [600]. Despite the low binding affinity of anaesthetics to tubulin compared to membrane protein, the abundance of tubulin is much more than membrane protein sites. It thus seems plausible that our conscious state of mind is intertwined with microtubules and their dynamics.

In recent decades, it has been proposed that quantum physics may explain the mystery of consciousness. In particular, the holistic character of quantum entanglement might shed more light on the binding problem [601]. Penrose & Hameroff proposed that quantum computations in microtubules may be the basis for consciousness [602–604]. It was suggested that electron resonance transfer among tryptophan residues in tubulin in a quantum electronic process could play a role in consciousness [605]. Computational models show that anaesthetic molecules might bind in the same regions and hence result in loss of consciousness [606]. In a recent work, Zhang and co-workers observed a connection between electronic states and vibrational states in tubulin and microtubules [607]. However, quantum electronic coherence beyond ultrafast timescales has been recently challenged experimentally [30]. In contrast, the coherence of quantum spins can be preserved for much longer timescales [608]. Similarly, Fisher has proposed that phosphorus nuclear spins could be entangled in networks of Posner molecules which could form the basis of a quantum mechanism for neural processing in the brain [609]; however, this sort of spin-based model also demands more supporting evidence [610].

A considerable amount of evidence indicates that magnetic fields can influence microtubules [88, 611–617]. Wang and colleagues showed that shielding the geomagnetic field caused tubulin assembly disorder [173]. All these observations point to the magnetosensitivity of microtubules for wide ranges of magnetic field strengths. Further, studies suggest that oxidative stress plays important roles in regulating actin and microtubule dynamics [618]. Microtubules contain tryptophan, Tyr and phenylalanine residues which are susceptible to oxidation. Further, it is also known that the stability of polymerized microtubules is susceptible to changes in zinc ion concentration in neurons [619].

Magnetosensitivity of chemical reactions often involve radical molecules [46]. (See also §3.1.) Using equations (3.19) and (3.20) and a simple kinetic model [619] for dynamics of microtubules, a recent study [60] suggests that a radical pair model in the form of \( \text{Trp}^{+} \cdots \text{O}_2^{-} \), similar to (57) (see §4.1), may explain the hypomagnetic field effects on microtubule reorganization reported in [173]. They further predict that the effect of zinc on the microtubule density exhibits isotopic dependence, as shown in figure 7.

4.5. Hypomagnetic field effects on neurogenesis

In a recent work, Zhang and co-workers showed that shielding the geomagnetic field for a long period (several weeks) decreased neurogenesis in the hippocampal region in mice [172]. They observed that the neurogenesis impairment was through decreasing adult neuronal stem cell proliferation, altering cell lineages in critical development stages of neurogenesis, impeding dendritic development of newborn neurons in the adult hippocampus, and resulting in impaired cognition. Using transcriptome analysis and endogenous ROS in situ labelling via hydroethidine, they reported that the hypomagnetic fields reduced levels of ROS [130]. The authors further revealed that such a reduction in reactive oxygen species can be compensated by pharmacological inhibition of ROS removal via diethyldithiocarbamate, which rescued defective adult hippocampal neurogenesis in hypomagnetic field-exposed mice.

Moreover, it is known that the cellular production of ROS is susceptible to magnetic field exposure [136, 227, 620–637]. ROS play vital roles in biology. The mitochondrial ETC and an enzyme family termed NADPH oxidase are two main cellular sources of ROS [130]. The latter is a flavin-containing enzyme. NADPH oxidase enzymes transport electrons from NADPH, through flavin adenine dinucleotide, across the plasma membrane to \( \text{O}_2 \) to produce \( \text{O}_2^– \) [638].

Based on these findings, a recent study [61] suggests that a radical pair model may explain the modulation of ROS production and the attenuation of adult hippocampal neurogenesis in a hypomagnetic field, observed by Zhang and colleagues [172]. The authors proposed that the reduction of the geomagnetic field influences the spin dynamics of the naturally occurring radical pairs in the form of \( \text{FADH} \cdots \text{O}_2^– \), similar to other studies [58, 59, 446] (see also §§4.2 and 4.3). They further predict the effects of applied magnetic fields and oxygen isotopic substitution on hippocampal neurogenesis (figure 8).

5. Conclusion and outlook

The effects of weak magnetic fields in biology are abundant, including in plants, fungi, animals and humans. The corresponding energies for such effects are far below thermal energies. So far, there is no explanation for such phenomena. However, quantum biology provides a promising explanation for these effects, namely the radical pair mechanism. Here, we have reviewed numerous studies on the biological effects of weak magnetic fields (static and oscillating), as well as related isotope effects. We then reviewed the radical pair mechanism and proposed that it can provide a unified model for weak magnetic field and isotope effects on biology. We discussed candidate radical pairs that may be formed in biological environments. We reviewed recent studies that propose that the radical pair mechanism may explain xenon-induced anaesthesia, lithium effects on mania, magnetic field and lithium effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule reorganization. These recent studies provide avenues for testing the proposed models. For instance, it is proposed that, in xenon anaesthesia, applying magnetic fields over 1mT will increase the anaesthetic potency difference between \(^{129}\text{Xe}\) and \(^{131}\text{Xe}\) [57]. Similarly, it is predicted that for mania treatment by \(^{6}\text{Li}\) and \(^{7}\text{Li}\) [58] exposure to hypomagnetic and magnetic fields greater than 3 mT will magnify the difference in the potency of these two isotopes. Moreover, it is predicted that exposure of the circadian clock to magnetic fields >mT will shorten the period of the clock [59]. Another study suggests that exposure to magnetic fields greater than the geomagnetic field will reduce microtubule assembly [60]. Further, it is also predicted that hippocampal neurogenesis [61], the circadian clock [59] and microtubule reorganization...
Figure 7. Radical pair explanation for hypomagnetic field effects on microtubule organization. (a) Schematic presentation of tryptophan ring and superoxide radicals. (b) The dependence of microtubule density on the applied static magnetic field according to a radical pair model based on \([\text{TrpH}^+ \cdots \text{O}_2^-]\) complex. The hypomagnetic field causes a strong decrease in microtubule density. The maximum microtubule density occurs around the geomagnetic field. (c) The radical pair model prediction of the microtubule density ratio in the geomagnetic field compared to hypomagnetic field. (d) The predicted dependence of microtubule density on administration of Zn (with zero nuclear spin) [red] and \(^{67}\text{Zn}\) (with nuclear spin of \(I = \frac{1}{2}\)) [blue] as a function of applied magnetic field based on the RP complex of \([\text{TrpH}^+ \cdots \text{O}_2^-]\) [60].

[60] will be isotope-dependent using different isotopes of oxygen, lithium and zinc, respectively.

It should be noted that the radical pair models used in the studies that we reviewed in §4 are simplified, partly because the exact radical pair molecules involved in these systems are still unknown [117]. This is the case even in the context of avian magnetoreception, where the proposed radical pairs include flavin–tryptophan, flavin–tyrosin and flavin–superoxide among others [43,433]. More realistic models of the radical pairs may provide further insight into the underlying mechanism behind these phenomena. This might involve including multiple nuclei, dipolar, and exchange interactions in the models. It should also be pointed out that including these interactions can reduce the predicted effect size [61,440]. However, this may be balanced by potential amplification effects in the biological systems [59,594].

It has been pointed out that due to fast molecular rotation, free superoxide has a short spin relaxation lifetime on the order of 1 ns, which means a high spin relaxation rate \(r\) [440,446], which is consistent with the scarcity of observations of superoxide radicals by ESR spectroscopy. The required relaxation rates in the discussed projects in §4 are significantly lower than this expected value. However, it has also been argued that the spin relaxation of free superoxide can be reduced if the molecular symmetry is lowered and the angular momentum is quenched by the biological environment [440,446]. Such conditions might occur if the superoxide molecule is tightly bound [446]. It has also been suggested that the involvement of scavenger species around superoxide can reduce its spin relaxation rate [404–406]. These suggested mechanisms are more complex than the simple radical pair mechanism discussed in this review.

Going beyond these already published proposals, it would be of interest to investigate the roles of radical pairs to help explain magnetic field effects on a large variety of physiological functions, including NMDAR activation [228,245], DNA/RNA methylation [174], dopamine dynamics [251,252], flavin autofluorescence [142], epigenetics [260,261] and many others. As discussed earlier in this review, for each of these systems, there are naturally occurring radical pairs that can conceivably act as magnetosensitive agents. However, in all of the mentioned systems, it remains a major open challenge to definitively identify the magnetic sensitive radical pairs as well as the relevant chemical reactions and corresponding kinetic rates. This challenge will require multi-disciplinary collaborations including biologists, chemists and quantum physicists.

It should be noted that reproducibility of weak magnetic field effects in biology has been a challenge [3,31,408,639–641]. There are several studies reporting failed attempts at independent replications of magnetic field effects in biological systems [5,642–646]. However, this problem is not confined to this particular area of the life sciences. For example, a recent analysis of high-impact cancer studies concluded that only five out of 53 papers could be fully reproduced [647]. A lot of these issues are likely due to the complexity of biological systems [648]. Despite these challenges, it seems unlikely that all of the hundreds of magnetic field effects on biological
systems that have been reported are erroneous. One of our main goals in writing the present review was to make the scientific community aware of how many of such studies there are, and how far they go beyond the specific and much more well-known context of avian magnetoreception.

Low level (greater than 10 nT) radio frequencies from ambient anthropogenic sources present in and around laboratory settings have been observed to influence magnetic compass responses in animals as different a song-birds, murine rodents and amphipods [451,649,650]. Further, it is shown that changes in radio frequencies exposure, not just the presence or absence of an RF field, can alter responses to the static field [650,651]. This may also contribute to the reproducibility issues of magnetosensitivity in biology.

A considerable amount of evidence indicates that shielding the geomagnetic field has direct biological consequences, which in some cases could be detrimental. This could also be pertinent for the quest of life on other planets without a magnetic field, including Mars [652,653]. In a similar vein, nowadays almost all species are exposed to magnetic fields at different intensities and frequencies originated by manufactured devices [70,354,654–658]. The effects of magnetic fields on physiological functions are inevitable and could be detrimental. Thus this review and perspective is pertinent to the debate on the putative adverse health effects of environmental magnetic fields. Understanding the underlying mechanism should help to clarify many of these issues.

It would be of interest to further investigate the role of cryptochrome proteins in magnetic sensitivity in biology. However, it is equally important to search for candidate molecules other than cryptochromes that could be involved in magnetosensitivity involving a radical pair mechanism.

It is also of interest to explore other potential mechanisms for magnetosensitivity beyond the radical pair mechanism, such as magnetites. The high sensitivity necessary to detect spatial variation in the inclination (approx. 0.01° km⁻¹) or intensity (3–5 nT km⁻¹) may be relevant to the effects that are discussed in this review [41]. It is well established that migratory birds and sea turtles use a magnetic map for navigation. However, a recent study suggests that a short-range, high-resolution map may be used by vertebrates that move only a few kilometres (newts, deer mice) [659]; this may help explain claims over the years that temporal fluctuations in the magnetic field could provide a zeitgeber for the entrainment of circadian rhythms. The link between high sensitivity responses to the magnetic field and circadian rhythmicity might be relevant to some of the ‘non-specific’ effects discussed in this review. Another interesting avenue for magnetosensitivity is the involvement of scavenger species in the radical pair mechanism, which leads to radical triads [404–406,660].

From a quantum perspective, it would also be of interest to explore the relevance of quantum entanglement [661] in the radical pair models for various magnetic field effects on biological functions [662–664]. This could be particularly interesting in the context of neuroscience, where it has been suggested that the brain might use quantum effects such as entanglement for information processing purposes [605,609,665].

Studying magnetic field and isotope effects in biology is a rich and important interdisciplinary field. The potential essential involvement of quantum effects related to the radical pair mechanism provides an exciting new avenue for further investigation, with the promise of revealing a common underlying mechanism for many of these effects.

Data accessibility. This article has no additional data.

Authors’ contributions. H.Z.-H.: conceptualization, formal analysis, investigation, methodology, software, visualization, writing—original draft; C.S.: conceptualization, funding acquisition, resources, supervision, writing—review and editing. All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interest.

Funding. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Acknowledgements. The authors would like to thank Rishabh, D. Salahub, J. Phillips, W. Nicola, T. Craddock, A. Jones, M. Ahmad, D. Wallace, A. Lewis, W. Beane, R. Sherrard, M. Lohof, J. Mariani and D. Oblak for their input.
58. Zadeh-Haghighi H, Simon C. 2021 Entangled
59. Zadeh-Haghighi H, Simon C. 2022 Radical pairs may
60. Zadeh-Haghighi H, Simon C. 2022 Radical pairs can
61. Rishabh R, Zadeh-Haghighi H, Salahub D, Simon C. 2022 Radical pairs may explain reactive oxygen species-mediated effects of hydrogen magnetic field on neurogenesis. PLoS Comput. Biol. 18, e1010198.
62. Repacholi MH, Greenbaum B. 1999 Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20, 133–160. (doi:10.1002/(sici)1521-1826(1999)20:3<133::aid-bem1>3.0.co;2-e)
63. Galfand P, Pazar A. 2005 Magnetoreception in plants. J. Plant Res. 118, 371–389. (doi:10.1007/s10265-005-0246-y)
64. Pazar A, Schimek C, Galfand P. 2007 Magnetoreception in microorganisms and fungi. Open Life Sci. 2, 597–659. (doi:10.2478/osl-2011-0032-z)
65. Buchachenko AL. 2014 Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine. Russ. Chem. Rev. 83, 1–12. (doi:10.1524/rpcr.2014.08130181383555)
66. Lai H. 2019 Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagn. Biol. Med. 38, 231–248. (doi:10.1080/15368378.2019.1656645)
67. Guerra MF, Lacoste MG, Anzulovich AC, Makinistian L. 2019 Magnetic fields, cancer and circadian rhythms: hypotheses on the relevance of intermittent and cycling. Proc. Roy. Soc. B 286, 20192337. (doi:10.1098/rspb.2019.2337)
68. Binhi VN, Rubin AB. 2022 Theoretical concepts in magnetobiology after 40 years of research. Cells 11, 274. (doi:10.3390/cells11020274)
69. Berta CE, Narayana R, Agliassa G, Rodgers CT, Maffei ME. 2015 Geomagnetic field (Gmf) and plant evolution: investigating the effects of gmfr reversal on Arabidopsis thaliana development and gene expression. J. Vis. Exp. 105, e53286. (doi:10.3791/53286)
70. Maffei ME. 2022 Magnetic fields and cancer: epidemiology, cellular biology, and theranostics. Int. J. Mol. Sci. 23, 1339. (doi:10.3390/ijms23071339)
71. Maeda K et al. 2012 magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779. (doi:10.1073/pnas.1118959109)
72. Ahmad M, Galfand P, Ritz T, Wiltchko R, Wiltchko W. 2006 Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Plant Physiol. 141, 615–624. (doi:10.1104/pp.106.083104)
73. Sheppard DMW et al. 2017 Millitesila magnetic field effects on the photocycle of an animal cryptochrome. Sci. Rep. 7, 1–17. (doi:10.1038/srep42228)
74. Marley R, Gauchelo CN, Scrutton NS, Baines RA, Jones AR. 2014 Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Sci. Rep. 4, 1–14. (doi:10.1038/srep05799)
75. Foley LE, Geegar RJ, Reppert SM. 2011 Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 1–3. (doi:10.1038/ncomms1364)
76. Poosam M, Arthaud LD, Burdick D, Link J, Martino CF, Ahmad M. 2018 Magnetic sensitivity mediated by the arabiobis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249, 319–332. (doi:10.1007/s00218-018-3002-y)
77. Hammad M, Albaqami M, Pooam M, Kenneve E, Wilczak J, Ritz T, Martino C, Ahmad M. 2020 Cryptochrome-mediated magnetic sensitivity in arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 19, 341–352. (doi:10.1039/c9pp0469f)
78. Giorgi G, Guerra D, Pazzoli C, Cavicchi S, Bersani F. 1992 Genetic effects of static magnetic fields. body size increase and lethal mutations induced in populations of Drosophila melanogaster after chronic exposure. Genet. Sel. Evol. 24, 393. (doi:10.1186/1297-9686-24-3-393)
79. Stamenkovic-Radak M, Kitanović I, Prolić T, Tomšić I, Stojkovic B, Andjeljkovic M. 2001 Effect of a permanent magnetic field on wing size parameters in Drosophila melanogaster. Bioelectromagnetics 22, 365–369. (doi:10.1002/bem.63)
80. Yoshii T, Ahmad T, Hellrich-Fister C. 2009 Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086. (doi:10.1371/journal.pbio.1000086)
81. Huizen RA et al. 2019 Weak magnetic fields alter stem cell-mediated growth. Sci. Adv. 5, eaau201. (doi:10.1126/sciadv.aau201)
82. Zheng L, Zhang L, Chen L, Jiang J, Zhou X, Wang M, Fan Y. 2018 Static magnetic field regulates proliferation, migration, differentiation and YAP/TAZ activation of human dental pulp stem cells. J. Tissue Eng. Regen. Med. 12, 2029–2040. (doi:10.1002/term.2737)
83. Tavazzi Z, Abdolmaleki P, Movila SJ, Ghanati F, Sarvestani AS. 2009 Investigation of the effects of static magnetic field on apoptosis in bone marrow stem cells of rat. Environmentalist 29, 220–224. (doi:10.1007/s10669-008-9210-4)
84. Jouini FJ, Abdolmaleki P, Movahedin M. 2013 Investigation on the effect of static magnetic field up to 15 mT on the viability and proliferation rate of rat bone marrow stem cells. In Vitro Cell. Dev. Biol. Anim. 49, 212–219. (doi:10.1007/s11626-013-9580-x)
85. Jouini FJ, Abdolmaleki P, Behmanesh M, Movahedin M. 2014 An in vitro study of the impact of 4mT static magnetic field to modify the differentiation rate of rat bone marrow stem cells into primordial germ cells. Differentiation 87, 239–237. (doi:10.1016/j.dif.2014.06.001)
86. Fanelli C, Coppola S, Barone R, Colussi G, Guandalini G, Volpe P, Ghibelli L. 1999 Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 13, 95–102. (doi:10.1096/fasebj.13.1.95)
87. Markov M, Pilla A. 1997 Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence. Bioelectrochem. Bioenerg. 43, 233–238. (doi:10.1016/s0302-4598(06)02226-x)
88. Tenuzzo B, Chiouma A, Panzarini E, Lanubile R, Tarantino P, Jeso BD, Dvikat M, Dini L. 2006 Biological effects of 6 mT static magnetic fields: a comparative study in different cell types.
99. Poniedziałek B, Mirza E, Karzewska J, Jaroszyk F, Witkowicz K. 2012 Earth-strength magnetic field on electrical activity and motor behavior. *Commun. Biol.* 5, 1–13. (doi:10.1038/s42003-019-0643-8)

100. Verdon BH, Abdolmaleki P, Behmanesh M. 2018 The static magnetic field remotely boosts the efficiency of doxorubicin through modulating ROS behaviors. *Sci. Rep.* 8, 1–12. (doi:10.1038/s41598-018-19247-8)

101. Carter CS et al. 2020 Exposure to static magnetic and electric fields treats type 2 diabetes. *Cell Metab.* 32, 561–574.e7. (doi:10.1016/j.cmet.2020.09.012)

102. Yu B, Liu J, Cheng J, Zhang L, Song C, Tian X, Fan Y, Lv Y, Zhang X. 2021 A static magnetic field improves iron metabolism and prevents high-fat-diet/streptozocin-induced diabetes. *The Innovation* 2, 100077. (doi:10.1016/j.xini.2021.100077)

103. Sheu S-S, Beutner G, Yuh H-J, Goldenberg I, Moss A. 2022 Low intensity magnetic fields stimulate the electron transport chain in heart mitochondria. *Biophys. J.* 121, 508a. (doi:10.1016/j.bpj.2021.11.224)

104. Antilli LM, Woodward JR. 2018 Flavin adenine dinucleotide photochemistry is magnetic field sensitive at physiological pH. *J. Phys. Chem. Lett.* 9, 2691–2696. (doi:10.1021/acs.jpclett.8b01088)

105. Buchachenko AL, Kuznetsov DA. 2008 Magnetic field effect affects enzymatic ATP synthesis. *J. Am. Chem. Soc.* 130, 12866–12869. (doi:10.1021/ja084189k)

106. Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Barmbee M, Alshumrani R, Ozcelik S, Kayed TS. 2022 Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (*Hordeum vulgare* L.). *Plant Physiol. Biochem.* 170, 36–48. (doi:10.1016/j.plaphy.2021.11.033)

107. Sahebjamei H, Abdolmaleki P, Ghanati F. 2006 The genotoxic effect of inhomogeneous static magnetic field (31.7–232.0 mT) exposure on human aged human lymphocytes. *Arch. Phys. Med. Rehabil.* 87, 5779/000045925)

108. Hao Q, Wenfang C, Xia A, Qiang W, Ying L, Kun Z, 2022 Magnetic field effects on the antioxidant enzyme activities of suspension-cultured tobacco cells. *Bioelectromagnetics* 34, 42–47. (doi:10.1002/bem.221853)

109. Verma A, Kamal M, Mobasheri H, Dini L. 2014 Impact of inhomogeneous static magnetic field (31.7–232.0 mT) on human neuroblastoma SH-SYSY cells during cisplatin administration. *PLoS ONE* 9, e113530. (doi:10.1371/journal.pone.0113530)

110. Reiter RJ, Goldman I, Moss A. 2021 Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (*Hordeum vulgare* L.). *Plant Physiol. Biochem.* 170, 36–48. (doi:10.1016/j.plaphy.2021.11.033)

111. Reiter RJ. 1993 Static and extremely low frequency magnetic fields contribute to the temperature-robustness of circadian systems? *Hypothesis* 12, e3. (doi:10.5779/hypothesis.v12i1.360)

112. Reiter RJ. 1995 Magnetic field effects on pineal indoleamine metabolism and possible biological consequences. *FASEB J.* 6, 2283–2287. (doi:10.1096/fasebj.6.6.1544540)

113. Reiter RJ. 1993 Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. *J. Cell. Biochem.* 51, 394–403. (doi:10.1002/jcb.2400510403)

114. Reiter RJ. 1995 Reported biological consequences related to the suppression of melatonin by electric and magnetic field exposure. *Integr. Physiol. Behav. Sci.* 30, 314–330. (doi:10.1016/bf02691604)

115. Reiter RJ. 2000 Indoleamine metabolism and possible biological consequences. *FASEB J.* 6, 2283–2287. (doi:10.1096/fasebj.6.6.1544540)

116. Reiter RJ. 1993 Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. *J. Cell. Biochem.* 51, 394–403. (doi:10.1002/jcb.2400510403)

117. Reiter RJ. 1995 Reported biological consequences related to the suppression of melatonin by electric and magnetic field exposure. *Integr. Physiol. Behav. Sci.* 30, 314–330. (doi:10.1016/bf02691604)

118. Reiter RJ. 1993 Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. *J. Cell. Biochem.* 51, 394–403. (doi:10.1002/jcb.2400510403)
171. Bliss VL, Heppner FH. 1976 Circadian activity rhythm influenced by near zero magnetic field. Nature 261, 411–412. (doi:10.1038/261411a0)

172. Zhang B, Wang L, Zhan A, Wang M, Tian L, Guo W, Pan Y. 2021 Long-term exposure to a hypomorphic field attenuates adult hippocampal neurogenesis and cognition. Nat. Commun. 12, 1–17. (doi:10.1038/s41467-021-2468-x)

173. Wang DL, Wang XS, Xiao R, Liu Y, He RQ. 2008 Tubulin assembly is disordered in a hypomorphic magnetic field. Biochem. Biophys. Res. Commun. 376, 363–368. (doi:10.1016/j.brc.2008.08.156)

174. Baek S, Choi H, Park H, Cho B, Kim J. 2019 Effects of a hypomorphic field on DNA methylation during the differentiation of embryonic stem cells. Sci. Rep. 9, 1–10. (doi:10.1038/s41598-018-37372-2)

175. Inemaga M, Yoshikawa L, Kojo M, Ayaki T, Ryo H, Ishizaki K, Kato T, Yamamoto H, Hara R. 1997 Mutations induced in Drosophila during space flight. Biol. Sci. Space 11, 346–350. (doi:10.2187/bsi.11.346)

176. Martino CF, Portelli L, McCabe K, Hernandez M, Safonova T. 1976 The effects of weak magnetic fields on actin assembly and inhibits cell motility in human neuroblastoma cells. J. Cell. Mol. Biol. 3, 639–646.

177. Del Seppia C, Luschi P, Ghione S, Crosio E, Choleris E, Papi F. 2000 Exposure to a hypomagnetic field or to oscillating magnetic fields similarly reduce stress-induced analgesia in C57 male mice. Life Sci. 66, 1299–1306. (doi:10.1016/s0024-3205(00)00437-9)

178. Junfeng L, Ojiu W, Qian W, Jinjiang C, Haiqiang Y, Yunfang L. 2001 Effects of magnetic field free space field (MFFS) on gaba, glycine and taurine of cortex, cerebellum and basilar nucleus in hamster. Sheng wu hua xue yu Sheng wu wu li jin Zhan 28, 358–361.

179. Choleris E, Del Seppia C, Thomas AW, Luschi P, Ghione S, Mo WC, Fu JP, Ding HM, Liu Y, He RQ. 2016 Hypomorphic field alters circadian rhythm and increases algiesia in adult male mice. Proc. Biochem. Biophys. 42, 639–646.

180. Fang X, Xu M, Li B, Li CT. 2003 Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomorphic field space. Chin. Sci. Bull. 48, 2454–2457. (doi:10.1360/03wz0231)

181. Zhao X, Xu M, Li B, Li D, Jiang J. 2003 The taste of one-day-old chicks incubated in hypomorphic field avoids long-term memory impairment. Sci. Bull. 48, 2042–2045.

182. Zhang B, Lu H, Xi W, Zhou X, Xu S, Zhang K, Jiang J, Li Y, Guo W. 2004 Exposure to hypomorphic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci. Lett. 371, 190–195. (doi:10.1016/j.neulet.2004.08.072)

183. Prato FS, Robertson JA, Desjardins D, Hensel J, Thomas AW. 2005 Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics 26, 109–117. (doi:10.1002/bem.20056)

184. Zhang X, Li J-F, Wu Q-J, Li B, Jiang J-C. 2007 Effects of hypomorphic field on noradrenergic activities in the brainstem of golden hamster. Bioelectromagnetics 28, 155–158. (doi:10.1002/bem.20290)

185. Xiao Y, Wang Q, Xu M-L, Jiang J-C, Li B. 2009 Chicks incubated in hypomorphic field need more exogenous noradrenaline for memory consolidation. Adv. Space Res. 43, 226–232. (doi:10.1016/j.asr.2009.04.013)

186. Binhi VN, Mo WC, Liu Y, He RQ. 2016 Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomorphic field. Bioelectromagnetics 37, 212–222. (doi:10.1002/bem.21968)

187. Katsnerova NP, Krylov WV, Lysenko LA, Ushakova NV, Nemova NN. 2017 Effects of hypomorphic conditions and reversed geomagnetic field on calcium-dependent proteases of invertebrates and fish. Insight into literature from the last decade. Brain Sci. 11, 174. (doi:10.3390/brainsci11020174)

188. Fuster J, Mo WC, Liu Y, He RQ. 2018 Immunological effects of non-ionizing electromagnetic fields. Electromagn. Biol. Med. 40, 264–273. (doi:10.1080/15368387.2018.188666)

189. Spiridovas A, Kohler K, Katsnerova NP, Krylov WV, Lysenko LA, Ushakova NV, Nemova NN. 2017 Effects of hypomorphic conditions and reversed geomagnetic field on calcium-dependent proteases of invertebrates and fish. Insight into literature from the last decade. Brain Sci. 11, 174. (doi:10.3390/brainsci11020174)
211. Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Lima C, Santurtun A, Cifra M, Kourtidis K, Fdez-Amaya P. 2020 The role of magnetic fields in neurodegenerative diseases. Int. J. Biometeorol. 65, 107–117. (doi:10.1007/s00484-020-01896-y)

212. Chernyavsk IV, Chernyavsky AV, Sinitsyn DO, Piradov MA. 2015 Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. Hum. Neurosci. 9, 303. (doi:10.3389/fnhum.2015.00303)

213. Walleczek J. 1992 Electromagnetic field effects on cells of the immune system: the role of calcium signaling 1. FASEB J. 6, 3177–3185. (doi:10.1096/fasebj.6.13.1397839)

214. Funk RHW, Fahlte M. 2021 A short review on the influence of magnetic fields on neurological diseases. Front. Biosci.-Scholar 13, 181. (doi:10.25387/fbs.5561)

215. Moretti J, Rodger J. 2022 A little goes a long way: neurobiological effects of low intensity rTMS and implications for mechanisms of rTMS. Curr. Res. Neurobiol. 3, 100033. (doi:10.1016/j.curren.2022.100033)

216. Schuermann D, Mevissen M. 2021 Manmade effects and consequences for health. Int. J. Mol. Sci. 22, 3772. (doi:10.3390/ijms22073772)

217. Nazroo J, Tokat S, Demir S. 2012 Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J. Recept. Signal Transduction 32, 290–297. (doi:10.1016/j.rjst.2012.737002)

218. Simko M. 2007 Cell type specific redox status is influenced of magnetic fields on neurological diseases. Front. Biosci.-Scholar 13, 181. (doi:10.25387/fbs.5561)

219. Morellini N, Grelli S, Tang A, Rodger J, Mariani J, Lohof AM, Sherrard RM. 2014 What does low-intensity rTMS do to the cerebellum? Cerebellum 14, 23–26. (doi:10.1007/s12311-014-0617-9)

220. Dufor T et al. 2019 Neural circuit repair by low-intensity magnetic stimulation requires cellular magnetoreceptors and specific stimulation patterns. Sci. Adv. 5, eaaw9847. (doi:10.1126/sciadv.aaw9847)

221. Lohof AM, Dufor T, Sherrard RM. 2022 Neural circuit repair by low-intensity rTMS. Cerebellum, 1–5. (doi:10.1007/s12311-021-01354-4)

222. Sherrard RM et al. 2018 Low-intensity electromagnetic fields induce human chromochrome to modulate intracellular reactive oxygen species. Plast. Biol. 16, e2006229. (doi:10.1371/journal.pbio.2006229)

223. Boer T, Baudin P, Stengel C, Valero-Cabre A, Lohof AM, Charlier S, Sherrard RM, Mahon S. 2022 In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity. bioRxiv.

224. Ontalbrigo L, Stelletta C, Falcióni L, Casella S, Piccione G, Soffritti M, Morgante M. 2009 Effects of different electromagnetic fields on circadian rhythms of some haematomchemical parameters in rats. Biomed. Environ. Sci. 22, 348–353. (doi:10.1016/s0895-3988(09)66067-2)

225. Fedele G et al. 2014 Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804. (doi:10.1371/journal.pgen.1004804)

226. Manzella N et al. 2015 Circadian gene expression and extremely low-frequency magnetic fields: an in vitro study. Bioelectromagnetics 36, 294–301. (doi:10.1002/bem.21915)

227. Manikonda PK, Rajendra P, Devendranath D, Schparing S, Takahashi Y, Isozumi Y, Miyakoshi J. 2004 ELF magnetic field and light conditions. Bioelectromagnetics 13, 560–569. (doi:10.1002/bem.5)
efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics 38, 255–264. (doi:10.1002/bem.22038)

250. Kavaliere M, Osenkopp K-P. 1987 Calcium channel involvement in magnetic field inhibition of morphine-induced analgesia. Naunyn-Schmiedebergs Arch. Pharmacol. 336, 308–315. (doi:10.1007/bf0172683)

251. Sieno A et al. 2004 Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics 25, 426–430. (doi:10.1002/bem.20011)

252. Janal B, Tovilov G, Tomić M, Pročk Z, Radenović L. 2009 Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen. Physiol. Biophys. 28, 41–46.

253. Sieno A, Brus R, Szkilnik R, Plech A, Kubanski N, Cieslar G. 2001 Influence of alternating low frequency magnetic fields on reactivity of central dopamine receptors in neonatal 6-hydroxydopamine treated rats. Bioelectromagnetics 22, 479–486. (doi:10.1002/bem.76)

254. Kato M, Homma K-I, Ishigemoto T, Shiga Y. 1993 Effects of exposure to a circularly polarized 50 Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics 14, 97–106. (doi:10.1002/bem.2205042003)

255. Karasek M, Woldanska-Okonska M, Czernicki J, Kato M, Honma K-I, Shigemitsu T, Shiga Y. 1993 Intracellular calcium oscillations induced in a cell-line by a weak 50 Hz magnetic field. J. Cell. Physiol. 156, 395–398. (doi:10.1002/jcp.1415600223)

256. Barbier E, Veyet B, Dufty B. 1996 Stimulation of Ca2+ influx in rat pulritary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 17, 303–311. (doi:10.1002/jcp.1521-186x(1996)17:4<303::aid-bem3>3.0.co;2-7)

257. Lüscher M, Thumann S, Hämmeler H, Rodemann HP. 1999 Induction of intracellular calcium oscillations in human skin fibroblasts populations by sinusoidal extremely-low-frequency magnetic fields (20 Hz, 8 mT) is dependent on the differentiation state of the single cell. Radiat. Res. 151, 195. (doi:10.1615/003379770.20013)

258. Zhang X, Liu X, Pan L, Lee I. 2010 Magnetic fields at extremely low-frequency (50Hz, 0.8mT) can induce the uptake of intracellular calcium levels in osteoblasts. Bioelectromagnetics. Res. Commun. 396, 662–666. (doi:10.1002/jbrc.2010.04.154)

259. Morabito C, Guarmieri S, Fano G, Marigo Gi. 2010 Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell. Physiol. Biochem. 25, 947–958. (doi:10.1155/2010.24003)

260. Sert C, Söker S, Deniz M, Nergiz Y. 2011 Intracellular Ca2+ levels in rat ventricle cells exposed to extremely low frequency magnetic field. Electromagn. Biol. Med. 30, 14–20. (doi:10.3109/153883811.2011.566773)

261. Özgün A, Garipcan B. 2021 Magnetic field-induced Ca2+ intake by mesenchymal stem cells is mediated by intracellular Zn2+ and accompanied by a Zn2+ influx. Biophys. Biophys. Acta Mol. Cell Res. 1868, 119062. (doi:10.1016/j.bbamcr.2021.119062)

262. Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT. 1985 A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6, 327–337. (doi:10.1002/bem.220064002)

263. Manikonda PK, Rajendra P, Devendranath D, Gunasekaran B, Aradhya RSS, Sashidhar RB, Subramaniam C. 2007 Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci. Lett. 413, 145–149. (doi:10.1016/j.neulet.2006.11.048)

264. Luo FL, Yang N, He C, Li HL, Li CF, Chen F, Xiong JX, Hu ZA, Zhang J. 2014 Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons. Environ. Res. 135, 236–246. (doi:10.1016/j.envres.2014.09.023)

265. Selaković V, Balind SR, Radenović L, Pročk Z, Janač B. 2013 Age-dependent effects of ELF-MF on oxidative stress in the brain of Mongolian gerbils. Cell Biochem. Biophys. 66, 513–521. (doi:10.1007/s12013-012-9498-z)

266. Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G. 2013 The preventive effect of lotus seedpood procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure. Food Funt. 1, 1252. (doi:10.1186/s30011-013a-1)

267. Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S. 2013 Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem. Int. 62, 418–424. (doi:10.1016/j.neuint.2013.02.002)

268. Osera C, Amadio M, Falone S, Fassina L, Magnesi G, Amicarelli F, Ricevuti G, Govoni S, Pascale A. 2015 Preliminary study on electromagnetic field exposure. J. Biomed. Bioelectromagnet. 26, 219–232. (doi:10.1002/bem.21900)

269. Benassi B, Filomeni G, Montagna C, Merla C, Lopresto V, Pinto R, Marino C, Consales C. 2015 Extremely low frequency magnetic field (ELF-MF) exposure enhances SN56Y cells to the pro-Parkinsonian disease toxin MPP+. Mol. Neurobiol. 53, 4274–4260. (doi:10.1002/gene.2013.015-9354-4)

270. Roy S, Noda Y, Eckert V, Tabor MG, Mori A, Liburdy R, Parker L. 1995 The phorbol 12-myristate 13-aceta (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. Bioelectromagnetics. 376, 164–166. (doi:10.1016/j.bem.2013.04.003)

271. Tüxen J, Montilla P, Medina RJ, Drucker-Colin R. 2006 Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci. Res. 56, 91–95. (doi:10.1016/neures.2005.05.012)

272. Falone S, Marchesi N, Osera C, Fassina L, Comincini S, Amadio M, Pascale A. 2016 Pulsed electromagnetic field (PEMF) prevents proton-extruding defects of H2O2 in SK-n-BE(2) human neuroblastoma cells. Int. J. Radiat. Biol. 92, 281–286. (doi:10.1080/09553002.2016.1150619)

273. Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Setti S, Cadorri F, Borea PA, Varani K. 2016 Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. J. Cell. Physiol. 232, 1200–1208. (doi:10.1002/jcp.25060)

274. Lee B-C et al. 2004 Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J. Photochem. Photobiol., B 73, 43–48. (doi:10.1016/j.jphotobiol.2003.10.003)

275. Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabella A, Zimmitti V, Amicarelli F. 2009 Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in...
rat-cortical neurons. J. Cell. Physiol. 219, 334–343. (doi:10.1002/jcp.21674)

284. Lupke M, Rovell J, Simkó M. 2004 Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells. Free Radic. Res. 38, 985–993. (doi:10.1080/1071576040009686)

285. Wolf Fl, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Azzaro M, Grassi C, Azzena GB, Cittadini A. 2005 50 Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim. Biophys. Acta Mol. Cell. Res. 1743, 120–129. (doi:10.1016/j.bbamcr.2004.09.005)

286. Lupke M, Frahm J, Lantow M, Maercker C, Remondini D, Bersani F, Simkó M. 2006 Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim. Biophys. Acta Mol. Cell. Res. 1763, 402–412. (doi:10.1016/j.bbamcr.2006.03.003)

287. Koh EK, Ryu BK, Jeong DY, Bang IS, Nam MH, Chae KS. 2008 A 60-Hz sinusoidal magnetic field induces strand breaks in brain cells of the rat. Biochim. Biophys. Acta. 1771, 741–747. (doi:10.1016/j.bbapap.2007.10.008)

288. Ayeş I-G, Zafer A, Sule O, İşit I-T, Kalkan T. 2010 Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn. Biol. Med. 29, 122–130. (doi:10.3109/15368378.2010.520451)

289. Garip A, Akam Z. 2010 Effect of 50-Hz magnetic field exposure on superoxide radical anion formation and HSPh70 induction in human K562 cells. Radiat. Environ. Biophys. 49, 731–744. (doi:10.1007/s00411-010-0306-0)

290. Ayeş I-G, Zafer A, Sule O, İşit I-T, Kalkan T. 2010 Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn. Biol. Med. 29, 122–130. (doi:10.3109/15368378.2010.520451)

291. Garip A, Akam Z. 2010 Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP. Acta Biol. Hung. 61, 158–167. (doi:10.1556/Abiol.61.2010.2.4)

292. Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariaggi MA. 2010 Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radical Biol. Med. 48, 579–589. (doi:10.1016/j.freeradbiomed.2009.12.005)

293. Buldak RJ et al. 2012 Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma lines. Bioelectromagnetics 33, 641–651. (doi:10.1002/bem.21732)

294. Sadeghipour R, Ahmadian S, Bolouri B, Pazhang Y, Shafizadeh M. 2012 Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D). Electromagn. Biol. Med. 31, 425–435. (doi:10.3109/15368578.2012.683844)

295. Lai H, Singh NP. 2004 Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112, 687–694. (doi:10.1289/ehp.6335)

296. Ma S, Zhang Y, Yi F, Wang Y, Zhang X, Li X, Yuan Y, Cao F. 2013 Protective effects of low-frequency magnetic fields on cardiomyocytes from ischemia reperfusion injury via ROS and NO/cGMP. Oxid. Med. Cell. Longev. 2013, 1–9.

297. Luukkonen J, Liimatainen A, Juutilainen J, Naarala J. 2014 Induction of genomic instability, oxidative processes, and mitochondrial activity by 50 Hz magnetic fields in human SH-SYSY neuroblastoma cells. Mutat. Res./Fundam. Mol. Mechan. Mutagen. 760, 33–41. (doi:10.1016/j.mrfmmm.2013.12.002)

298. Reale M, Kamal MA, Patruno A, Costantini E, D’Angelo C, Pesce M, Greg NH. 2014 Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS ONE 9, e104973. (doi:10.1371/journal.pone.0104973)

299. Chen Y, Hong L, Zeng Y, Shen Y, Zeng Q. 2014 Power frequency magnetic fields induced reactive oxygen species-related autophagy in mouse embryonic fibroblasts. Int. J. Biochem. Cell. Biol. 57, 108–114. (doi:10.1016/j.biocel.2014.10.013)

300. Ferroni L, Bellini G, Emer V, Rizzuto R, Isola M, Gardin C, Zavan B. 2015 Treatment by therapeutic magnetic resonance (TMR) increases fibroblast activity and keratinocyte differentiation in an in vitro model of 3D artificial skin. J. Tissue Eng. Regen. Med. 11, 1332–1342. (doi:10.1002/tcrm.2031)

301. Yang M-I, Ye Z-M. 2015 Extremely low frequency electromagnetic field induces apoptosis of osteosarcoma cells via oxidative stress. J. Zhejiang University (Medical Science) 44, 323–328.

302. Patruno A, Tabrez S, Pesce M, Shakil S, Kamal MA, Reale M. 2015 Effects of extremely low frequency electromagnetic field (ELF-EMF) on catalase, cytochrome P450 and nitric oxide synthase in erythro-leukemic cells. Life Sci. 121, 117–123. (doi:10.1016/j.lfs.2014.12.003)

303. Kesari KK, Luukkonen J, Juutilainen J, Naarala J. 2017 Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity. Int. J. Radiat. Biol. 93, 646–652. (doi:10.1080/09553002.2017.1294275)

304. Song K, Kim SH, Yoon YJ, Kim HM, Lee HJ, Park GS. 2018 A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS ONE 13, e0199753. (doi:10.1371/journal.pone.0199753)

305. Helekara SA, Hambarde S, Ijare OB, Pichamuni K, Baskin DS, Sharpe MA. 2021 Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields. J. Cancer Res. Clin. Oncol. 147, 3577–3589. (doi:10.1007/s00432-021-03787-0)

306. Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB. 2004 Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35, 307–315. (doi:10.1016/j.ceca.2003.09.001)

307. Picentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. 2008 Extremely low-frequency electromagnetic fields promote in vitro neogenesis via upregulation of car1-channel activity. J. Cell. Physiol. 215, 129–139. (doi:10.1002/jcp.21293)

308. Ahmed Z, Wieraszko A. 2008 The mechanism of magnetic field-induced increase of excitability in hippocampal neurons. Brain Res. 1221, 30–40. (doi:10.1016/j.brainres.2008.05.007)

309. Cook C, Saucier D, Thomas A, Prato F. 2006 Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001–2005). Bioelectromagnetics 27, 613–627. (doi:10.1002/bem.20247)

310. Cook C, Saucier D, Thomas A, Prato F. 2009 Changes in human EEG alpha activity following exposure to two different pulsed magnetic field sequences. Bioelectromagnetics 30, 9–20. (doi:10.1002/bem.20434)
317. Yang Y, Li L, Wang YG, Fei Z, Zhong J, Wei LZ, Long QF, Liu WP. 2012 Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats. *Neurosci. Lett.* 516, 15–20. (doi:10.1016/j.neulet.2012.03.022)

318. Tassot I et al. 2012 Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. *Neuroscience* 209, 54–63. (doi:10.1016/j.neuroscience.2012.02.034)

319. Balassa T, Varró P, Elek S, Drozdovszky O, Szemerszky R, Világi I, Bárdos G. 2013 Changes in synaptic efficacy in rat brain slices following extremely low-frequency magnetic field exposure at embryonic and early postnatal age. *Int. J. Dev. Neurosci.* 31, 724–730. (doi:10.1016/j.jidnev.2013.08.004)

320. Raúz Balind S, Manojlovic-Stojanowski M, Šorić-Jurjević B, Selakovíc V, Mišićević V, Petković B. 2019 An extremely low frequency magnetic field and global cerebral ischemia affect pituitary ACTH and TSH cells in gerbils. *Bioelectromagnetics* 41, 91–103. (doi:10.1002/bem.22237)

321. Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J. 2014 Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. *Neurochem. Int.* 75, 96–104. (doi:10.1016/j.neuint.2014.06.004)

322. Makowiecki K, Harvey AR, Sherrard RM, Rodger J. 2014 Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. *J. Neurosci.* 34, 10 780–10 792. (doi:10.1523/JNEUROSCI.0723-14.2014)

323. Komaki A, Khalili A, Salehi I, Shahidi S, Sarihi A. 2015 Exposure to 50 Hz magnetic fields promotes central nervous system topography and upregulates BDNF in mice. *Bioelectromagnetics* 14, 5–15. (doi:10.1002/bem.22501)

324. Ossenkopp K-P, Cain DP. 1988 Inhibitory effects of acute exposure to low-intensity 60-Hz magnetic fields on electrically kindled seizures in rats. *Brain Res.* 442, 255–260. (doi:10.1016/0006-8993(89)81510-7)

325. Chen Q et al. 2019 Evidence for an effect of ELF electromagnetic fields on human pineal gland function. *J. Pineal Res.* 9, 259–269. (doi:10.1111/jp.1600-079X.1999.tb00901.x)

326. Iuliis GND, Newey RJ, Aitken RJ. 2009 Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. *Fertil. Steril.* 92, 1318–1325. (doi:10.1016/j.fertnstert.2008.08.022)

327. Wilson BW et al. 1990 Evidence for an effect of ELF electromagnetic fields on human pineal gland function. *J. Pineal Res.* 9, 259–269. (doi:10.1111/j.1600-079X.1999.tb00901.x)

328. Ossenkopp K-P, Cain DP. 1988 Inhibitory effects of acute exposure to low-intensity 60-Hz magnetic fields on electrically kindled seizures in rats. *Brain Res.* 442, 255–260. (doi:10.1016/0006-8993(89)81510-7)

329. Lai H, Carino MA, Horita A, Guy AW. 1993 Effects of a 60 Hz magnetic field on central cholinergic systems of the rat. *Bioelectromagnetics* 14, 5–15. (doi:10.1002/bem.22501)

330. Kavaliers M, Ossenkopp KP, Prato FS, Innes DGL, Galea LM, Kinsella DM, Perrot-Sinal T. 1996 Spatial learning in deer mice: sex differences and the effects of endogenous opioids and 60 Hz magnetic fields. *J. Comp. Physiol. A* 179, 715–724. (doi:10.1007/BF02016413)

331. Lu Y-S, Huang B-T, Huang Y-X. 2012 Reactive oxygen species levels and DNA damage in peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. *Oxid. Med. Cell. Pharmacol. Biol.* 559, 54–58. (doi:10.1016/j.mrfmmm.2008.12.005)

332. Agarwal A, Desai NR, Maikker K, Varghese A, Moudaid R, Sabanezh E, Sharma R. 2009 Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. *Fertil. Steril.* 92, 1318–1325. (doi:10.1016/j.fertnstert.2008.08.022)

333. Pooam M, Aguida B, Drahy S, Jourdan N, Ahmad M. 2022 Effect of weak alternating electromagnetic fields to reduce hyper-inflammation in a 60 Hz magnetic field on central cholinergic systems of the rat. *Bioelectromagnetics* 14, 5–15. (doi:10.1002/bem.22501)

334. Tong J, Sun L, Zhu B, Fan Y, Ma X, Yu L, Zhang J. 2016 Extremely low frequency magnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. *Sci. Rep.* 6, 1–11. (doi:10.1038/s41598-016-0001-8)

335. Mouradi R, Sabanegh E, Sharma R. 2009 Effects of mobile phone radiation induces reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872Mhz radiofrequency radiation. *Mutat. Res./ Fundam. Mol. Mechan. Mutagen.* 652, 54–58. (doi:10.1016/j.mrfmmm.2008.12.005)

336. Iuliis GND, Newey RJ, Aitken RJ. 2009 Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. *Fertil. Steril.* 92, 1318–1325. (doi:10.1016/j.fertnstert.2008.08.022)

337. Li Y, Ren Z, Mei Y-A. 2015 Exposure to 50 Hz magnetic field modulates GABA currents in cerebellar granule neurons through an EP receptor-mediated PKC pathway. *J. Cell. Mol. Med.* 19, 2431–2442. (doi:10.1111/jcmm.12626)

338. Yang G, Ren Z, Mei Y-A. 2015 Exposure to 50 Hz magnetic field modulates GABA currents in cerebellar granule neurons through an EP receptor-mediated PKC pathway. *J. Cell. Mol. Med.* 19, 2431–2442. (doi:10.1111/jcmm.12626)

339. Chen Q et al. 2016 Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian *Girardia sinensis*. *Bioelectromagnetics* 37, 244–255. (doi:10.1002/bem.21971)

340. Ma Q et al. 2016 Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating TRPC1. *PLoS ONE* 11, e0150923. (doi:10.1371/journal.pone.0150923)

341. Cheng Sun Z et al. 2016 Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. *Sci. Rep.* 6, 1–11. (doi:10.1038/s41598-016-0001-8)
fields. Plas Onl 9, e93065. (doi:10.1371/journal.pone.0093065)

351. Sefidbakht V et al. 2014 Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells. Photochem. Photobiol. Sci. 13, 1082–1092. (doi:10.1039/C3PP50451D)

352. Gramowski-Voss A, Schweiter HJ, Piepka AM, Schultz L, Steder A, Juegelt K, Axmann J, Pries W. 2015 Enhancement of cortical network activity in vitro and promotion of GABAergic neurogenesis by stimulation with an electromagnetic field with a 150 MHz carrier wave pulsed with an alternating 10 and 16 Hz modulation. Front. Neurol. 6, 158. (doi:10.3389/fneur.2015.00158)

353. Bartos P, Netsulis R, Slaby P, Dolezel D, Ritz T, Vacha M. 2019 Weak radiofrequency fields affect the insect circadian clock. J. R. Soc. Interface 16, 20190285. (doi:10.1098/rsif.2019.0285)

354. Roček M et al. 2021 The effects of radiofrequency electromagnetic fields exposure on tinnitus, migraine and non-specific symptoms in the general and working population: a protocol for a systematic review on human observational studies. Environ. Int. 157, 106852. (doi:10.1016/j.envint.2021.106852)

355. Leberecht B et al. 2022 Broadband 75–85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor. J. Comp. Physiol. A 208, 97–106. (doi:10.1007/s00359-021-01537-8)

356. Bigeleisen J. 1965 Chemistry of isotopes. New York, NY: Springer.

357. Thiemens MH. 1999 Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345. (doi:10.1126/science.219.4588.1073)

358. Thiemens MH. 2006 History and applications of mass-independent isotope effects. Annu. Rev. Earth and Planet. Sci. 34, 217–262. (doi:10.1146/annurev.earth.34.011405.125026)

359. Thiemens MH, Chakraborty S, Domínguez G. 2012 Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications. Acc. Chem. Res. 35, 645–652. (doi:10.1021/ar200224f)

360. Thiemens MH. 2006 Applications of mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63, 155–177. (doi:10.1146/annurev-physchem-021112-143657)

361. Buchachenko A, Galimov E, Enshov V, Nikiforov G, Pershin A. 1976 Isotopic enrichment induced by magnetic interactions in chemical reactions. Doklady Akademii Nauk SSSR 228, 379–381.

362. Buchachenko AL. 2013 Mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63, 155–177. (doi:10.1146/annurev-physchem-021112-143657)

363. Buchachenko AL. 2014 Magnetic control of nuclear spin catalysis in enzymatic ATP synthesis: an insight through the isotope window. Chem. Rev. 112, 2042–2058. (doi:10.1021/cr200142a)

364. Koltovker VK. 2021 Nuclear spin catalysis in biochemical physics. Russ. Chem. Bull. 70, 1633–1639. (doi:10.1016/s11172-021-3264-6)

365. Thiemens MH, Heidenreich JE. 1983 The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075. (doi:10.1126/science.219.4588.1073)

366. Buchachenko A. 2009 Magnetic isotope effects in planetary atmospheres and the early solar system. Science 321, 341–345. (doi:10.1126/science.1162359)

367. Thiemens MH. 2006 Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345. (doi:10.1126/science.1162359)

368. Koltovker VK. 2021 Nuclear spin catalysis in biochemical physics. Russ. Chem. Bull. 70, 1633–1639. (doi:10.1016/s11172-021-3264-6)

369. Thiemens MH, Heidenreich JE. 1983 The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075. (doi:10.1126/science.219.4588.1073)

370. Thiemens MH. 1999 Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345. (doi:10.1126/science.219.4588.1073)

371. Thiemens MH, Savarino J, Farquhar J, Bao H. 2001 Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications. Acc. Chem. Res. 34, 645–652. (doi:10.1021/ar010224f)

372. Thiemens MH. 2006 History and applications of mass-independent isotope effects. Annu. Rev. Earth and Planet. Sci. 34, 217–262. (doi:10.1146/annurev.earth.34.011405.125026)

373. Thiemens MH, Chakraborty S, Domínguez G. 2012 The physical chemistry of mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63, 155–177. (doi:10.1146/annurev-physchem-021112-143657)

374. Buchachenko A, Galimov E, Enshov V, Nikiforov G, Pershin A. 1976 Isotopic enrichment induced by magnetic interactions in chemical reactions. Doklady Akademii Nauk SSSR 228, 379–381.

375. Buchachenko AL. 2013 Mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63, 155–177. (doi:10.1021/jp308727w)

376. Buchachenko AL. 2014 Magnetic control of enzymatic phosphorylation. J. Phys. Chem. Biophys. 2, 000. (doi:10.4172/2161-0398.1000142)

377. Bukhvostov A, Napolov J, Buchachenko A, Kuznetsov DA. 2013 43Ca2+–paramagnetic impact on DNA polymerase beta function as it relates to a molecular pharmacology of leukemias. Der Pharmaeut. Lett. 5, 18–26.

378. Buchachenko AL, Orlov AP, Kuznetsov DA, Breslavskaya NN. 2013 Magnetic control of the DNA synthesis. Chem. Phys. Lett. 586, 138–142. (doi:10.1016/j.cplett.2013.07.056)

379. Bukhvostov AA, Shatalov OA, Buchachenko AL, Kuznetsov DA. 2013 “43Ca2+–”paramagnetic impact on DNA polymerase beta function as it relates to a molecular pharmacology of leukemias. Der Pharmaeut. Lett. 5, 18–26.

380. Buchachenko AL, Orlov AP, Kuznetsov DA, Breslavskaya NN. 2013 Magnetic isotope and magnetic field effects on the DNA synthesis. Nucleic Acids Res. 41, 8300–8307. (doi:10.1093/nar/gkt537)

381. Dirac PM. 1928 The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624. (doi:10.1098/rspa.1928.0023)

382. Ohanian HC. 1986 What is spin? Am. J. Phys. 54, 500–505. (doi:10.1191/1.14350)

383. Sakurai JJ, Commins ED. 1995 Modern quantum mechanics, revised edition. Am. J. Phys. 63, 93–95. (doi:10.1119/1.17781)

384. Salikhov KM, Molin YN, Sagdeev R, Buchachenko A. 1984 Spin polarization and magnetic effects in radical reactions. New York, NY: Elsevier.

385. Gerson F, Huber W. 2003 Electron spin resonance spectroscopy of organic radicals. New York, NY: Wiley.

386. Hayashi H. 2004 Introduction to dynamic spin chemistry. Singapore: World Scientific.

387. Wertz J. 2012 Electron spin resonance: elementary theory and practical applications. Berlin, Germany: Springer Science & Business Media.

388. Atkins PW, Friedman RS. 2011 Molecular quantum mechanics. Oxford, UK: Oxford University Press.

389. Impra C, Barone V. 2004 Interplay of electronic, environmental, and vibrational effects in determining the hyperfine coupling constants of organic free radicals. Chem. Rev. 104, 1231–1254. (doi:10.1021/cr90085f)

390. Illas F, Moreira IPR, de Graaf C, Barone V. 2000 Magnetic coupling in biradicals, binuclear complexes
and wide-gap insulators: a survey of ab initio wave function and density functional theory approaches. Theor. Chem. Accounts: Theory, Comput., Model. (Theoretica Chimica Acta) 104, 265–272. (doi:10.1007/s002140001135)

400. Noir D, Paulus B, Rodriguez R, Okafuji A, Bittl R, Schleicher E, Weber S. 2017 Determination of radical–radical distances in light-active proteins and their implication for biological magnetoreception. Angew. Chem. Int. Ed. 56, 8550–8554. (doi:10.1002/anie.20170389)

401. Hochsteiger T et al. 2017 The biological, molecular, and anatomical landscape of pigeon CRY2: a candidate light-based quantal magnetoreceptor. Sci. Adv. 6, eabb9110. (doi:10.1126/sciadv.aabb9110)

402. Ernst RR, Bodenhausen G, Wokaun A. 1987 Principles of nuclear magnetic resonance in one and two dimensions, vol. 14. Oxford, UK: Clarendon Press.

403. Efimova O, Hore P. 2008 Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. Biophys. J. 94, 1565–1574. (doi:10.1529/biophysj.107.119362)

404. Babcock NS, Kattnig DR. 2021 Radical scavenging could answer the challenge posed by electron–electron dipolar interactions in the cryptochrome compass model. JACS At. 1, 2033–2046. (doi:10.1021/jacsat.0c00332)

405. Kattnig DR, Hore PJ. 2017 The sensitivity of a radical pair compass magnetoreceptor can be significantly amplified by radical scavengers. Sci. Rep. 7, 1–12. (doi:10.1038/s41598-017-09914-7)

406. Kattnig DR. 2017 Radical-pair-based magnetoreception amplified by radical scavenging: resilience to spin relaxation. J. Phys. Chem. B 121, 10215–10227. (doi:10.1021/acs.jpcb.7b07672)

407. Brocklehurst B, Mc Claughlan KA. 1996 Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int. J. Radiat. Biol. 69, 3–24. (doi:10.1080/095530096164147)

408. Hore P. 2019 Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. eLife 8, e44179. (doi:10.7554/eLife.44179)

409. Hameka H. 1967 Part 1 spin-orbit coupling and electromagnetic fields. Russ. Chem. Rev. 36, 493–506. (doi:10.1070/rc1967v036n04abeh003715)

410. Bagryansky VA, Borovkov VI, Molin YM. 2007 Quantum beats in radical pairs. Russ. Chem. Rev. 76, 8550–8554. (doi:10.1002/chem.202105608)

411. Catalfani J, Belford R, Debrunner P, Schulten K. 1995 A perturbation treatment of oscillating magnetic fields in the radical pair mechanism using the liouville equation. Chem. Phys. 195, 59–69. (doi:10.1016/S0301-0104(99)00491-X)

412. Timmel C, Hore P. 1996 Oscillating magnetic field effects on the yields of radical pair reactions. J. Phys. Lett. 257, 401–408. (doi:10.1002/chem.2000926143066-6)

413. Hiscock HG, Kattnig DR, Manolopoulos DE, Hore PJ. 2016 Floquet theory of radical pairs in radiofrequency magnetic fields. J. Chem. Phys. 145, 124117. (doi:10.1063/1.4963793)

414. Catalfani J, Belford R, Debrunner P, Schulten K. 1994 A perturbation theory treatment of oscillating magnetic fields in the radical pair mechanism. Chem. Phys. 182, 1–18. (doi:10.1016/0301-0104(94)00442-x)

415. Meser CC, Page CC, Farid R, Dutton PL. 1995 Biological electron transfer. J. Biosci. Biomed. Chem. 27, 263–274. (doi:10.1046/jbf0211009)

416. Marcus R, Sutin N. 1985 Electron transfers in chemistry and biology. Biochim. Biophys. Acta Rev. Biogener. 811, 265–322. (doi:10.1016/0005-2728(86)90014-x)

417. Dodson CA, Hore P, Wallace MI. 2013 A radical sense for magnetoreception. Biophys. J. 105, 2217–2227. (doi:10.1016/j.bpj.2013.06.060)

418. Mouritsen H, Hore P. 2012 The magnetic retina: flavin electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyase. Russ. Chem. Rev. 81, 335–352. (doi:10.1070/cr2012v081n06abeh012980)

419. Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Schleicher E, Weber S. 2017 Determination of radical distances in light-active proteins and wide-gap insulators: a survey of ab initio wave function. Theor. Chem. Accounts: Theory, Comput., Model. 145, 236(85)90014-x

420. Scrutton NS. 2017 Vertebrate cryptochromes are blue-light photoreceptor. J. R. Soc. Interface 18, 20210601. (doi:10.1098/rsif.2021.0601)

421. Hong G, Pachtér R, Essen L-O, Ritz T. 2020 Electron transfer and spin dynamics of the radical-pair in the cryptochrome from Clamydomonas reinhardtii by computational analysis. J. Chem. Phys. 152, 065101. (doi:10.1063/1.5133019)

422. Ritz T, Adem S, Schulten K. 2000 A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718. (doi:10.1006/biij.1999.639559/7629-x)

423. Müller P, Ahmad M. 2011 Light-activated cryptochrome reacts with molecular oxygen to form a flavin–superoxide radical pair consistent with magnetoreception. J. Biol. Chem. 286, 21033–21040. (doi:10.1074/jbc.M111.228940)

424. Nießner C, Denzau S, Peichl L, Witschko W, Witschko R. 2014 Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle. J. Exp. Biol. 217, 4221–4224. (doi:10.1242/jeb.110965)

425. Nießner C, Denzau S, Stappert K, Ahmad M, Peichl L, Witschko W, Witschko R. 2013 Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds. J. R. Soc. Interface 10, 20130638. (doi:10.1098/rsif.2013.0638)

426. Ritz T, Witschko R, Hore PJ, Rodgers CT, Stappert K, Thalau P, Timmel CR, Witschko W. 2009 Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457. (doi:10.1016/j.bpj.2008.11.072)

427. Maeda K, Henbest KB, Cintolesi F, Kuprov I, Rodgers CT, Liddell PA, Gust D, Timmel CR, Hore PJ. 2008 Chemical compass model of avian magnetoreception. Nature 453, 387–390. (doi:10.1038/nature06834)

428. Hogben HJ, Efimova O, Wagner-Rundell N, Timmel CR, Hore PJ. 2009 Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem. Phys. Lett. 480, 118–122. (doi:10.1016/j.isci.2009.08.051)

429. Solov'yov IA, Schulten K. 2009 Magnetoreception through cryptochrome may involve superoxide. Biophys. J. 96, 4804–4813. (doi:10.1016/j.bpj.2009.03.048)

430. Lee AA, Lau JC, Hogben HJ, Biskup T, Kattnig DR, Hore PJ. 2014 Alternative radical pairs for...
cryptochrome-based magnetoreception. J. R. Soc. Interface 11, 20131063. (doi:10.1098/rsif.2013.1063)

443. van Wilderen LJ, Silkstone G, Mason M, van Thor JJ, Wilson MT. 2015 Kinetic studies on the oxidation of semiquinone and dihydroquinone forms of arabidopsis cryptochrome by molecular oxygen. FEBS Open Bio 5, 885–892. (doi:10.1002/fsp3.1007)

444. Netsušil R, Tomanova K, Chodáková L, Chvalová D, Doležel D, Ritz T, Vácha M. 2021 Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness. J. Exp. Biol. 224, 26. (e034200).

445. Hiscock HG, Hiscock TW, Kattnig DR, Scrivener T, Lewis AM, Manolopoulos DE, Hore PJ. 2019 Navigating at night: fundamental limits on the sensitivity of radial pair magnetoreception under dim light. Q Rev. Biophys. 52, e9. (doi:10.1017/0033583519000076)

446. Player TC, Hore PJ. 2019 Viability of superoxide-containing radial pairs as magnetoreceptors. J. Chem. Phys. 151, 225101. (doi:10.1063/1.5129608)

447. Solovyov IA, Chandler DE, Shulten K. 2008 Exploring the possibilities for radial pair effects in cryptochrome. Plant Signal. Behav. 3, 676–677. (doi:10.4161/pssb.3.9.5809)

448. Bouly J-P et al. 2007 Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J. Biol. Chem. 282, 9183–9191. (doi:10.1074/jbc.M609422200)

449. Prabhakar R, Siegbahn PEM, Minaev BF, Ågren H. 2007 Activation of triplet dioxygen by glucose analogues in acid-promoted hydride-transfer reactions: oxygen activation in flavoenzymes. J. Chem. Phys. 126, 123–169. (doi:10.1098/ijs046920)

450. Vitali T, Maffioli E, Tedeschi G, Vanoni MA. 2016 Properties and catalytic activities of MICAL1, the flavozyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains. Arch. Biochem. Biophys. 593, 24–37. (doi:10.1016/j.ab.2016.01.016)

451. Hamdane D, Grosjean H, Fontecave M. 2016 Flavin-dependent methylation of RNAs: complex chemistry for a simple modification. J. Mol. Biol. 428, 4867–4881. (doi:10.1016/j.jmb.2016.10.031)

452. Udhayabanu T, Manole A, Rajeshwari M, Erithacus rubecula. (doi:10.1039/c2np20069d)

453. Lee C-Y. 1992 A possible biological role of the photoreceptors are activated through electron reduction of a protonated p-quinone to a radical cation of an NADH analogue in two-electron reduction of a protonated p-quinone derivative by an NADH analogue. Acc. Chem. Res. 31, 312–313. (doi:10.1021/ar001371j)

454. Fuxuzumi S, Kotani H, Lee Y-M, Nam W. 2008 Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions. J. Am. Chem. Soc. 130, 15 134–15 142. (doi:10.1021/ja080969k)

455. Yusa A, Yamada S, Fuxuzumi S. 2008 Detection of a radical cation of an NADH analogue in two-electron reduction of a protonated p-quinone derivative by an NADH analogue. Angew. Chem. Int. Ed. 47, 1068–1071. (doi:10.1002/anie.200704136)

456. Lee C-Y. 1992 A possible biological role of the electron transfer between tyrosine and tryptophan in DNA photolyase from Anacyctis nidulans. Proc. Natl Acad. Sci. USA 96, 5423–5427. (doi:10.1073/pnas.96.10.5423)

457. Stadman ER, Levine RL. 2006 Protein oxidation. Ann. NY Acad. Sci. 899, 191–208. (doi:10.1111/j.1749-6632.2000.06187.x)

458. Houée-Lévêque C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. 2015 Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radic. Biol. Med. 49, 347–373. (doi:10.1016/j.freeradbiomed.2010.07968)

459. Eberlein G, Bruce TC, Lazarus RA, Henrie R, Benkovski SJ. 1984 The interconversion of the S, 6, 7, 8-tetrahydro-6, 7, 8-dihydropyridine and 6, 6, 7-tetramethyldihydroliproxynitin, a model for the biotin center of aromatic amino acid mixed function oxidases. J. Am. Chem. Soc. 106, 7916–7924. (doi:10.1021/ja00337a047)

460. Adams JD, Klaidman LK, Ribiero P. 1997 Tyrosine hydroxylase: mechanisms of oxygen radical formation. Redox Rep. 3, 273–279. (doi:10.1080/13510002.1997.11747123)

461. Roberts KM, Fitzpatrick PF. 2013 Mechanisms of tryptophan and tyrosine hydroxylase. IUBMB Life 65, 330–357. (doi:10.1002/iub.1144)

462. McCormick JP, Thomason T. 1978 Near-ultraviolet photooxidation of tryptophan. proof of formation of superoxide ion. J. Am. Chem. Soc. 100, 312–313. (doi:10.1021/ja00496a068)

463. Saito I, Matsuzara T, Inoue K. 1981 Formation of superoxide ion from singlet oxygen. Use of a water-soluble singlet oxygen source. J. Am. Chem. Soc. 103, 188–190. (doi:10.1021/ja00391a035)

464. Franks NP, Dickinson R, de Sousa SLM, Hall AC, WR. 1998 How does xenon produce anaesthesia? Nature 396, 324–324. (doi:10.1038/24525)

465. Turin L, Shokulov EMC, Horsfield AP. 2014 Electron spin changes during general anesthesia in Drosophila. Proc. Natl. Acad. Sci. USA 111, E3524–E3533. (doi:10.1073/pnas.1404387111)

466. Traylor SF et al. 2010 Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496. (doi:10.1124/pr.109.002451)

467. de Sousa SLM, Dickinson R, Lieb WR, Franks NP. 2000 Contrasting synaptic actions of the inhalational anesthetic agents at the N-methyl-D-aspartate receptor glycine-binding site that selectively prevent competitive inhibition by xenon. Anesthesiology 92, 1055–1066. (doi:10.1097/00000542-200004000-00024)

468. Dickinson R, Peterson BK, Banks P, Simillis C, Martin JCS, Valenzuela CA, Maze M, Franks NP. 2007 Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane. Anesthesiology 105, 756–767. (doi:10.1097/01.anes.0000287061.7764.71)

469. Armstrong SP et al. 2012 Identification of two mutations (F758W and F758Y) in the N-methyl-D-aspartate receptor glycine-binding site that selectively prevent competitive inhibition by xenon without affecting glycine binding. Anesthesiology 117, 38–47. (doi:10.1097/alan.0b013e31828dada2e)
enrichment in clinical response to lithium. Eur. Neuropsychopharmacol. 29, 5932. (doi:10.1016/j.euroneuro.2017.08.270)

527. Sawai Y, Okamoto T, Munakata Y, Nakamura R, Matsumura R, Node K, Akashi M. 2019 In vivo evaluation of the effect of lithium on peripheral circadian clock by real-time monitoring of clock gene expression in near-free moving mice. Sci. Rep. 9, 1–12. (doi:10.1038/s41598-019-47053-3)

528. Andnab M et al. 2019 Lithium acts to modulate abnormalities at behavioral, cellular, and molecular levels in sleep deprivation-induced mania-like behavior. Bipolar Disord. 22, 266–280. (doi:10.1111/bdi.12383)

529. Sangojani HR et al. 2020 Patient fibroblast circadian rhythms predict lithium sensitivity in bipolar disorder. Mol. Psychiatry 26, 5252–5265. (doi:10.1038/s41380-020-0769-6)

530. Xu N, Shinozaka K, Saunders KEA, Geddes JR, Andrabi M et al. 2010 Lithium acts to modulate intracellular reactive oxygen species. PLoS Biol. 16, e2006229. (doi:10.1371/journal.pbio.2006229)

531. Sherrard RM et al. 2018 Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLoS Biol. 16, e2009822(02)

532. Lavebratt C. 2010 Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLoS Biol. 16, e2006229. (doi:10.1371/journal.pbio.2006229)

533. LeSauter J, Silver R. 1993 Lithium lengthens the circadian period of cultured brain slices in area suprachiasmatic nucleus neurons. (doi:10.1016/0006-3223(93)90259-g)

534. Osland TM, Fernø J, Håvik B, Heuch I, Ruoff P, Federoff M et al. Lithium lengthens the circadian period of cultured area suprachiasmatic nucleus neurons. (doi:10.1016/0006-3223(93)90259-g)

535. Yoshikawa T, Honma S. 2016 Lithium lengthens the circadian period of cultured area suprachiasmatic nucleus neurons. (doi:10.1016/0006-3223(93)90259-g)

536. Xu N, Shinohara K, Saunders KEA, Geddes JR, Andrabi M et al. 2010 Lithium differentially associates circadian rhythm abnormalities is bipolar disorder. (doi:10.1111/bdi.13070)

537. van der Horst GTJ, Welsh DK, Takahashi JS, Kay SA. 2010 Mammalian Cry1 and Cry2 are essential for maintenance of circadian clocks by real-time monitoring of clock gene expression in near-freely moving mice. Curr. Biol. 19, 2281–2287. (doi:10.1011/jnjp.2009.06.0042)

538. Kasahara J, Fukunaga K, Hamada T, Shibata S. 2004 Mammalian Cry1 and Cry2 are essential for maintenance of circadian clocks by real-time monitoring of clock gene expression in near-freely moving mice. Curr. Biol. 14, 1118–1123. (doi:10.1016/j.cub.2004.03.022)

539. Fang X, Yu SX, Lu Y, Bast Jr RC, Woodgett JR, Mills GB. 2000 Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl Acad. Sci. USA 97, 11 960–11 965. (doi:10.1073/pnas.203043997)

540. Beurel E, Grieco SF, Joep RS. 2015 Glycogen synthase kinase 3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114–131. (doi:10.1016/j.pharmthera.2014.11.016)

541. Yin L, Wang J, Klein PS, Lazar MA. 2006 Nuclear receptor Rev-erba regulates circadian homeostasis in mammals. Proc. Natl Acad. Sci. USA 103, 7 164–7 169. (doi:10.1073/pnas.1005310107)

542. Sahar S, Zacchi L, Kinoshita C, Borelli E, Sassone-Corsi P. 2010 Regulation of Bmal1 protein stability and circadian function by Gsk3β-mediated phosphorylation. PLoS ONE 5, e8561. (doi:10.1371/journal.pone.0008561)

543. Spengler ML, Kuznetsova KK, Schumer M, Antoch M. 2009 A serum cluster mediates Bmal1-dependent CLOCK phosphorylation and degradation. Cell Cycle 8, 4138–4146. (doi:10.4161/cc.8.24, 10273)

544. Buddhism RL, Rogers CO, Paul JR, Hablitz ML, Johnson RL, McMahon LL, Gambling KL. 2017 GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus 27, 890–898. (doi:10.1002/hipo.22739)

545. Bret A, Miek L, Schredelseker J, Geibel M, Merrow M, Gudermann T. 2018 Insulin-like growth factor-1 acts as a zeitgeber on hypothalamic circadian clock gene expression via glycygen synthase kinase-3β signaling. J. Biol. Chem. 293, 17 278–17 290. (doi:10.1074/jbc.r118.004429)

546. Buechsenko A, Shchegoleva L, Breslavskaya N. 2009 Paramagnetic complexes of magnesum as mediators in enzymatic ATP synthesis: DFT calculations of magnetic parameters. Chem. Phys. Lett. 483, 77–80. (doi:10.1016/j.cplett.2009.10.044)

547. Buechsenko AL, Kuznetsov DA, Breslavskaya NN. 2010 Ion-radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control. J. Phys. Chem. B 114, 2287–2292. (doi:10.1021/jp1009992)

548. Loro JS, Denny SA, Dunlap JC. 1989 Molecular cloning of genes under control of the circadian clock in neuropsora. Science 243, 385–388. (doi:10.1126/science.2563175)

549. Hamer SM, Hogenesch JB, Strobe MA, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. 2000 Orchedized transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113. (doi:10.1126/science.290.5499.2110)

550. Beaver LM, Grakharia BD, Vollintine TS, Hege DM, Stanevsky R, Gibelutovich JM. 2002 Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 99, 2134–2139. (doi:10.1073/pnas.030246699)

551. Pek CB et al. 2013 Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417. (doi:10.1126/science.1243417)

552. Ashbrook LH, Krystal AD, Fu Y-H, Ptaczek LI. 2019 Genetics of the human circadian clock and sleep homeostasis. Neurophysiopharmacology 45, 45–54. (doi:10.1038/s41386-019-0476-7)

553. Roenneberg T, Merrow M. 2016 The circadian clock is a homeostat. J. Biol. Chem. 291, R432–R443. (doi:10.1074/jbc.r116.766410)

554. Roennenberg T, Merrow M. 2016 The circadian clock is a homeostat. J. Biol. Chem. 291, R432–R443. (doi:10.1074/jbc.r116.766410)

555. Takahashi JS. 2016 Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179. (doi:10.1038/norg.2016.150)
587. Roybal K et al. 2007 Mania-like behavior induced by disruption of CLOCK. Proc. Natl Acad. Sci. USA 104, 6406–6411. (doi:10.1073/pnas.0609625104)

588. Taillard J, Sagaphe P, Philip P, Boulic S. 2021 Sleep timing, chronotype and social jetlag: impact on cognitive abilities and psychiatric disorders. Biochem. Pharmacol. 0, 114438. (doi:10.1016/j.bjp.2021.114438)

589. Chen S, Pér BCD, Smijter JGP, Laake LWV. 2019 Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat. Rev. Cardiol. 16, 437–447. (doi:10.1038/s41569-019-0167-4)

590. Battaglin F et al. 2021 Clocking cancer: the circadian clock as a target in cancer therapy. Oncogene 40, 3187–3200. (doi:10.1038/s41388-020-01776-6)

591. Sancar A, Gelder RNV. 2021 Clocks, cancer, and aging. BioMed Res. Int. 2021, 67. (doi:10.1155/2021/1674667)

592. Tyson JJ, Hong CI, Thron CD, Novak B. 1999 A minimal model of eukaryotic cell cycle regulation. J. Theor. Biol. 201, 199–220. (doi:10.1006/jtbi.1999.0391)

593. Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. 2022 The role of the circadian clock and TRP channels. J. Mol. Endocrinol. 68, R130–R138. (doi:10.1530/jme-17-0196)

594. Yoshii T, Ahmad M, Helfrich-Förster C. 2009 Cryptochrome mediates light-dependent magnetoresponsivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000066. (doi:10.1371/journal.pbio.1000066)

595. Dokuca ME, Yu L, Taghert PH. 2005 Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropharmacology 43, 2216–2224. (doi:10.1016/j.nphar.2005.06.004)

596. Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP. 2012 CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl Acad. Sci. USA 109, 17129–17134. (doi:10.1073/pnas.1209148109)

597. Gyingjroisi N, Kåld K. 2014 Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neuraspis crassa. Antioxid. Redox Signal. 17, 1000–1022. (doi:10.1089/red.2012.0200)

598. Ndiaye MA, Nihal M, Wood GS, Ahmad N. 2014 Skin, reactive oxygen species, and circadian clocks. Antioxid. Redox Signal. 19, 2982–2996. (doi:10.1089/ars.2013.6455)

599. Manella G, Asher G. 2016 The circadian nature of mitochondrial biology. Front. Endocrinol. 7, 162. (doi:10.3389/fendo.2016.00162)

600. de Goede P, Wefers J, Brombacher EC, Schrauwen P, Schippers JH, Dijkwel PP. 2012 CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl Acad. Sci. USA 109, 17129–17134. (doi:10.1073/pnas.1209148109)

601. Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. 2022 Circadian control of mitochondria in ROS homeostasis. Antioxid. Redox Signal. 0, 0–0. (doi:10.1089/ars.2021.0274)

602. Tyson JJ, Hong CI, Thron CD, Novak B. 1999 A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J. 77, 2411–2417. (doi:10.1016/s0006-291X(99)75005-0)

603. Leopul N, Alberga N, Meier E, Beyer G, Helfrich-Förster C. 2009 Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14, 433–448. (doi:10.1177/07487309120090984)

604. Player TC, Baxter ED, Allatt S, Hore PJ. 2021 Amplification of weak magnetic field effects on oscillating reactions. Sci. Rep. 11, 1–9. (doi:10.1038/s41598-021-8871-8)

605. Caddick TJA, Hameroff SR, Ayoub AT, Klabukov M, Tuszynski JA. 2015 Anesthesia acts in quantum channels in brain microtubules to prevent conscious awareness. Curr. Top. Med. Chem. 8, 153–153. (doi:10.2174/1567201513666150223105453)

606. Linganna RE, Levy WJ, Dmochowski IJ, Eckenhoff RG, Speck RM. 2015 Taxane modulation of anesthetic sensitivity in surgery for nonmetastatic breast cancer. J. Clin. Anesth. 27, 481–485. (doi:10.1016/j.jclinane.2015.05.001)

607. Perouansky M. 2012 The quest for a unified model of anesthetic action. Anesthesiology 117, 465–474. (doi:10.1097/ALN.0b013e32826b44e2)

608. Xu J, Liu R, Asbury GR, Eckenhoff MF, Eckenhoff RG. 2004 Inhalational anesthetic-binding proteins in rat neuronal membranes. J. Biol. Chem. 279, 19626–19633. (doi:10.1074/jbc.M413186200)

609. Pan JZ, Xi J, Tobias JW, Eckenhoff MF, Eckenhoff RG. 2006 Halothane binding proteome in human brain cortex. J. Proteome Res. 6, 582–592. (doi:10.1021/pr060311u)

610. Pan JZ, Xi J, Eckenhoff MF, Eckenhoff RG. 2008 Inhaled anesthetics elicit species-specific changes in protein expression in mammalian brain. PROTEOMICS 8, 2983–2992. (doi:10.1002/pmic.200800057)

611. Simon C. 2019 Can quantum physics help solve the hard problem of consciousness? J. Conscious. Stud. 26, 204–218.

612. Hameroff SR, Caddick TJA, Tuszynski JA. 2014 Quantum effects in the understanding of consciousness. J. Integr. Neurosci. 13, 229–252. (doi:10.1142/s0218163314000093)

613. Stuart H. 1998 Quantum computation in brain microtubules? The Penrose–Hameroff ‘orch OR’ model of consciousness. Phil. Trans. R. Soc. Lond. Ser. A. 356, 1869–1896. (doi:10.1098/rsta.1998.0254)

614. Hagan S, Hameroff SR, Tuszynski JA. 2002 Quantum computation in brain microtubules: decoherence and biological feasibility. Phys. Rev. E 65, 061901. (doi:10.1103/physreve.65.061901)

615. Hameroff S, Hip A, Porter M, Tuszynski J. 2002 Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 64, 149–168. (doi:10.1016/s0303-6477(01)00183-6)

616. Caddick TJ, Freedman H, Banatkar KH, Damaraju S, Tuszynski JA. 2012 Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS ONE 7, e37251. (doi:10.1371/journal.pone.0037251)

617. Zang W, Caddick TJ, Li Y, Swartlander M, Alfano RR, Shi L. 2022 Fano resonance line shapes in the raman spectra of tubulin and microtubules reveal quantum effects. Biophys. Rep. 2, 100043. (doi:10.1016/j.physrep.2021.100043)

618. Hu H, Wu M. 2004 Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen. Med. Hypotheses 63, 633–646. (doi:10.1016/j.mehy.2004.04.002)

619. Fisher MP. 2015 Quantum cognition: the possibility of processing with nuclear spins in the brain. Ann. Phys. 362, 593–602. (doi:10.1016/j.aop.2015.08.020)

620. Chen R, Li N, Qian H, Zhao R-H, Zhang S-H. 2020 Experimental evidence refuting the assumption of phosphorus-31 nuclear-spin entanglement-mediated consciousness. J. Integr. Neurosci. 19, 595–600. (doi:10.1142/s1018398120200250)
613. Bras W, Diakun GP, Diaz JF, Maret G, Kramer H. 1982 Parallel arrays of microtubules formed in human cells. J. Cell Biol. 95, 35–47.

614. Wu X, Du J, Song W, Cao M, Chen S, Xia R. 2018 Regulation of cytoskeletal dynamics by redox signaling and X-ray fiber diffraction study. Biochem. J. 474, 1509–1521. (doi:10.1042/BCJ20180283)

615. Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, Che Y. 2012 Effects of extremely low frequency magnetic field on the association of MACF1 with actin and spindles in human cells. eLife 1, e02055. (doi:10.7554/eLife.02055)

616. Luo Y, Ji X, Liu J, Li Z, Wang W, Chen W, Wang J, Liu Q, Zhang X. 2016 Moderate intensity static magnetic fields affect mitotic spindles and increase the antimicrotubule efficacy of FUx-Tau. Bioelectrochemistry 109, 31–40. (doi:10.1016/j.bioelechem.2016.01.001)

617. Wu X, Du J, Song W, Cao M, Chen S, Xia R. 2018 Weak power frequency magnetic fields induce microtubule cytoskeleton reorganization depending on the epidermal growth factor receptor and the calcium related signaling. PLoS ONE 13, e0205569. (doi:10.1371/journal.pone.0205569)

618. Wilson C, González-Billault C. 2015 Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front. Cell. Neurosci. 9, 381. (doi:10.3389/fncel.2015.00381)

619. Crotty D, Silkstone G, Poddar S, Ranson R, Prinai MZ, Ditto D, Silkstone G, Poddar S, Ranson R, Prinai MZ. 2020 Pulsed magnetic field enhances oxidative stress in HeLa cell line. Int. J. Occup. Med. Environ. Health 23, 377. (doi:10.2478/v10010-019-0044-4)

620. Ghodbane S, Lahbib A, Ammar M, Molsen Sably HA. 2015 Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations. Gen. Physiol. Biophys. 34, 23–32. (doi:10.4149/gpb_2014027)

621. Ahn H, Shin K, Lee H. 2020 Effects of pulsed magnetic field on the hemolysis of erythrocytes exposed to oxidative stress. Adv. Exp. Med. Biol. 1223, 263–269. (doi:10.1007/978-3-030-34461-0_33)

622. Akgad MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taskin A. 2010 Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol. Trace Elem. Res. 138, 238–249. (doi:10.1007/s10621-010-8615-3)

623. Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sably M, Abdelmalek H. 2010 Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol. Ind. Health 26, 99–106. (doi:10.1177/07482370818877)

624. Cui Y, Ge Z, Rizak JD, Zhao Z, Zheng Z, Geng S, Che Y. 2012 Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS ONE 7, e32196. (doi:10.1371/journal.pone.0032196)

625. Chu LY et al. 2012 Extremely low frequency magnetic field induces oxidative stress in mouse cebellum. Gen. Physiol. Biophys. 30, 415–421. (doi:10.4149/gpb_2011_04_415)

626. Zielinski J, Duszay AO, Moeller AM, Murbach M, Kuster N, Meivissen M. 2020 Effects of pulse-modulated radiofrequency magnetic field (RF-EMF) exposure on apoptosis, autophagy, oxidative stress and electron carrier transport function in human neuroblastoma and murine microglial cells. Toxicol. In Vitro 68, 104963. (doi:10.1016/j.tiv.2020.104963)

627. Jones AR, Scrutton NS, Woodward JR. 2006 Magnetic field effects and radical pair mechanisms in enzymes: reappraisal of the horseradish peroxidase system. J. Am. Chem. Soc. 128, 8408–8409. (doi:10.1021/ja054633q)

628. Harris SR, Hay S, Woodward JR, Scrutton NS. 2007 Magnetic field effect studies indicate reduced geminate recombination of the radical pair in substrate-bound adenosylcobalamin-dependent ethanalone hydrogenation. J. Am. Chem. Soc. 129, 15718–15727. (doi:10.1021/ja077124v)

629. Hore PJ. 2012 Are biochemical reactions affected by weak magnetic fields? Proc. Natl Acad. Sci. USA 109, 1357–1358. (doi:10.1073/pnas.1205110

630. Crotton MJ. 2005 The bernal lecture 2004 are low-frequency electromagnetic fields a health hazard? Phil. Trans. R. Soc. B 360, 1223–1230. (doi:10.1098/rstb.2005.1663)

631. Lacy-hulbert A, Metcalf J, Hesketh R. 1998 Biological responses to electromagnetic fields. FASEB J. 12, 395–402. (doi:10.1096/fasebj.12.6.395)

632. Jones AR, Scrutton NS. 2007 Magnetic field effect studies indicate reduced geminate recombination of the radical pair in substrate-bound adenosylcobalamin-dependent ethanalone hydrogenation. J. Am. Chem. Soc. 129, 15718–15727. (doi:10.1021/ja077124v)

633. Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore PJ, Okamoto H. 2009 Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J. R. Soc. Interface 6, 1193–1205. (doi:10.1098/rsif.2008.0519)

634. Crotty D, Silkstone G, Poddar S, Ranson R, Prina-Mello A, Wilson MT, Geyer JMD. 2011 Reexamination of magnetic isotope and field effects on adenoxide triphosphate production by creatine kinase. Proc. Natl Acad. Sci. USA 109, 1437–1442. (doi:10.1073/pnas.1107840108)

635. Mattsson M-O, Simkó M. 2012 Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology 301, 1–12. (doi:10.1016/j.tox.2012.06.011)

636. Kaiser J. 2021 More than half of high-impact cancer lab studies could not be replicated in controversial
648. Buchachenko A. 2015 Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 37, 1–13. (doi:10.1002/bem.21947)

649. Tomanova K, Vacha M. 2016 The magnetic orientation of the antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields. J. Exp. Biol. 11, 1717–1724. (doi:10.1242/jeb.132878)

650. Phillips J et al. 2022 Why is it so difficult to study magnetic compass orientation in murine rodents? J. Comp. Physiol. A 208, 197–212. (doi:10.1007/s00359-021-01532-z)

651. Landler L, Painter MS, Youmans PW, Hopkins WA, Phillips JB. 2015 Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS ONE 10, e0124728. (doi:10.1371/journal.pone.0124728)

652. McKay DS et al. 1996 Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924–930. (doi:10.1126/science.273.5277.924)

653. Hyodo R, Usui T. 2021 Searching for life on Mars and its moons. Science 373, 742–742. (doi:10.1126/science.abj1512)

654. Khan MW, Juutilainen J, Naarala J, Ruivainen P. 2021 Residential extremely low frequency magnetic fields and skin cancer. Occup. Environ. Med. 79, 49–54. (doi:10.1136/oemed-2021-107776)

655. Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA. 1999 Reduced excretion of a metanol metabolite in workers exposed to 60 Hz magnetic fields. Am. J. Epidemiol. 150, 27–36. (doi:10.1093/oxfordjournals.aje.a009914)

656. Zastko L, Makinistian L, Tvarožná A, Ferreyra FL, Belyaev I. 2021 Mapping of static magnetic fields near the surface of mobile phones. Sci. Rep. 11, 1–10. (doi:10.1038/s41598-021-98083-9)

657. Adair RK. 2000 Static and low-frequency magnetic field effects: health risks and therapies. Rep. Prog. Phys. 63, 415. (doi:10.1088/0034-4885/63/3/204)

658. Touitou Y, Selmaoui B. 2012 The effects of extremely low-frequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system. Dialogues Clin. Neurosci. 14, 381–399. (doi:10.31887/dcn.2012.14.4/ytouitou)

659. Diego-Rasilla FJ, Phillips JB. 2021 Evidence for the use of a high-resolution magnetic map by a short-distance migrant, the alpine newt (Ichthyosaura alpestris). J. Exp. Biol. 224, jeb238345. (doi:10.1242/jeb.238345)

660. Ramsay J, Kattnig DR. 2022 Radical triads, not pairs, may explain effects of hypomagnetic fields on neurogenesis. arXiv. (doi:10.48550/ARXIV.2206.08192)

661. Wootters WK. 1998 Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248. (doi:10.1103/physrevlett.80.2245)

662. Gauger EM, Rieper E, Morton JI, Benjamin SC, Vedral V. 2011 Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503. (doi:10.1103/physrevlett.106.040503)

663. Pauls JA, Zhang Y, Berman GP, Kais S. 2013 Quantum coherence and entanglement in the avian compass. Phys. Rev. E 87, 062704. (doi:10.1103/physreve.87.062704)

664. Zhang Y, Berman GP, Kais S. 2014 Sensitivity and entanglement in the avian chemical compass. Phys. Rev. E 90, 042707. (doi:10.1103/physreve.90.042707)

665. Kumar S, Boone K, Tuszyński J, Barady P, Simon C. 2016 Possible existence of optical communication channels in the brain. Sci. Rep. 6, 1–3. (doi:10.1038/srep36508)