On factorized groups with permutable subgroups of factors

Victor S. Monakhov and Alexander A. Trofimuk
Department of Mathematics and Programming Technologies,
Francisk Skorina Gomel State University,
Gomel 246019, Belarus
e-mail: victor.monakhov@gmail.com
e-mail: alexander.trofimuk@gmail.com

To the 75th anniversary of Mohamed Asaad

Abstract. The subgroups A and B of a group G are called msp-permutable, if the following statements hold: AB is a subgroup of G; the subgroups P and Q are mutually permutable, where P is an arbitrary Sylow p-subgroup of A and Q is an arbitrary Sylow q-subgroup of B, $p \neq q$. In the present paper, we investigate groups that factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.

Keywords. mutually permutable subgroups, Sylow subgroups, msp-permutable subgroups, supersoluble groups.

Mathematics Subject Classification. 20D10, 20D20.

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of \cite{3}. The notation $Y \leq X$ means that Y is a subgroup of a group X.

The subgroups A and B of a group G are called mutually (totally) permutable, if $UB = BU$ and $AV = VA$ (respectively, $UV = VU$) for all $U \leq A$ and $V \leq B$.

The idea of totally and mutually permutable subgroups was first initiated by M. Asaad and A. Shaalan in \cite{1}. This direction have since been subject of an in-depth study of many authors. An exhaustive report on this matter appears in \cite{3} chapters 4–5.
It is quite natural to consider a factorized group $G = AB$ in which certain subgroups of the factors A and B are mutually (totally) permutable. In this direction, V.S. Monakhov [7] obtained the solubility of a group $G = AB$ under the assumption that the subgroups A and B are soluble and the Carter subgroups (Sylow subgroups) of A and of B are permutable.

We introduce the following

Definition. The subgroups A and B of a group G are called msp-permutable, if the following statements hold:

1. AB is a subgroup of G;
2. the subgroups P and Q are mutually permutable, where P is an arbitrary Sylow p-subgroup of A and Q is an arbitrary Sylow q-subgroup of B, $p \neq q$.

In the present paper, we investigate groups that factorized by two msp-permutable subgroups. In particular, the supersolubility of the product of two supersoluble msp-permutable subgroups is proved.

1 Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel. A group whose chief factors have prime orders is called **supersoluble**. Recall that a p-closed group is a group with a normal Sylow p-subgroup and a p-nilpotent group is a group with a normal Hall p'-subgroup.

Denote by G', $Z(G)$, $F(G)$ and $\Phi(G)$ the derived subgroup, centre, Fitting and Frattini subgroups of G, respectively; \mathbb{P} the set of all primes. We use E_{p^t} to denote an elementary abelian group of order p^t and Z_m to denote a cyclic group of order m. The semidirect product of a normal subgroup A and a subgroup B is written as follows: $A \rtimes B$.

The monographs [2], [5] contain the necessary information of the theory of formations. The formations of all nilpotent, p-groups and supersoluble groups are denoted by \mathfrak{N}, \mathfrak{N}_p and \mathfrak{U}, respectively. A formation \mathfrak{F} is said to be **saturated** if $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$. A **formation function** is a function f defined on \mathbb{P} such that $f(p)$ is a, possibly empty, formation. A formation \mathfrak{F} is said to be **local** if there exists a formation function f such that $\mathfrak{F} = \{G \mid G/F_p(G) \in f(p)\}$. Here $F_p(G)$ is the greatest normal p-nilpotent subgroup of G. We write $\mathfrak{F} = LF(f)$ and f is a local definition of \mathfrak{F}. By [5, Theorem IV.3.7], among all possible local definitions of a local formation \mathfrak{F} there exists a unique f such that f is integrated (i.e., $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$) and full (i.e., $f(p) = \mathfrak{N}_p f(p)$ for all $p \in \mathbb{P}$). Such local definition f is said to be **canonical local definition** of \mathfrak{F}. By [5, Theorem IV.4.6], a formation is saturated if and only if it is local.
A subgroup H of a group G is called \mathbb{P}-subnormal in G, see [12], if either $H = G$, or there is a chain subgroups

$$H = H_0 \leq H_1 \leq \ldots \leq H_n = G, \ |H_i : H_{i-1}| \in \mathbb{P}, \ \forall i.$$

A group G is called w-supersoluble (widely supersoluble), if every Sylow subgroup of G is \mathbb{P}-subnormal in G. Denote by \mathfrak{wU} the class of all w-supersoluble groups, see [12]. In [12] Theorem 2.7, Proposition 2.8 proved that \mathfrak{wU} is a subgroup-closed saturated formation and every group from \mathfrak{wU} has an ordered Sylow tower of supersoluble type. By [8 Theorem B], [9 Theorem 2.6], [12] Theorem 2.13], $G \in \mathfrak{wU}$ if and only if G has an ordered Sylow tower of supersoluble type and every metanilpotent (biprimary) subgroup of G is supersoluble.

Denote by \mathfrak{vU} the class of groups all of whose primary cyclic subgroups are \mathbb{P}-subnormal. In [8 Theorem B] proved that \mathfrak{vU} is a subgroup-closed saturated formation and $G \in \mathfrak{vU}$ if and only if G has an ordered Sylow tower of supersoluble type and every biprimary subgroup of G with a cyclic Sylow subgroup is supersoluble. It is easy to verify that $\mathfrak{U} \subseteq \mathfrak{wU} \subseteq \mathfrak{vU} \subseteq \mathcal{D}$.

Here \mathcal{D} is the formation of all groups which have an ordered Sylow tower of supersoluble type.

If H is a subgroup of G, then $H_G = \bigcap_{x \in G} H^x$ is called the core of H in G. If a group G contains a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator. A simple check proves the following lemma.

Lemma 1.1. Let \mathfrak{F} be a saturated formation and G be a group. Assume that $G \notin \mathfrak{F}$, but $G/N \in \mathfrak{F}$ for all non-trivial normal subgroups N of G. Then G is a primitive group.

Lemma 1.2. ([5 Theorem 15.6]) Let G be a soluble primitive group and M is a primitivator of G. Then the following statements hold:

1. $\Phi(G) = 1$;
2. $F(G) = C_G(F(G)) = O_p(G)$ and $F(G)$ is an elementary abelian subgroup of order p^n for some prime p and some positive integer n;
3. G contains a unique minimal normal subgroup N and moreover, $N = F(G)$;
4. $G = F(G) \rtimes M$ and $O_p(M) = 1$.

Lemma 1.3. ([10 Lemma 2.16]) Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and G be a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

Lemma 1.4. Let \mathfrak{F} be a formation, G group, A and B subgroups of G such that A and B belong to \mathfrak{F}. If $[A, B] = 1$, then $AB \in \mathfrak{F}$.
Proof. Since

\[[A, B] = \langle [a, b] \mid a \in A, b \in B \rangle = 1, \]

it follows that \(ab = ba \) for all \(a \in A, b \in B \). Let

\[A \times B = \{ (a, b) \mid a \in A, b \in B \}, \]

be the external direct product of groups \(A \) and \(B \). Since \(A \in \mathcal{F}, B \in \mathcal{F} \) and \(\mathcal{F} \) is a formation, we have \(A \times B \in \mathcal{F} \). Let \(\varphi : A \times B \to AB \) be a function with \(\varphi((a, b)) = ab \). It is clear that \(\varphi \) is a surjection. Because

\[\varphi((a_1, b_1)(a_2, b_2)) = \varphi((a_1a_2, b_1b_2)) = a_1a_2b_1b_2 = \]

\[= a_1b_1a_2b_2 = \varphi((a_1, b_1))\varphi((a_2, b_2)), \]

it follows that \(\varphi \) is an epimorphism. The core \(\text{Ker} \varphi \) contains all elements \((a, b)\) such that \(ab = 1 \). In this case \(a = b^{-1} \in A \cap B \leq Z(G) \). By the Fundamental Homomorphism Theorem,

\[A \times B / \text{Ker} \varphi \cong AB. \]

Since \(A \times B \in \mathcal{F} \) and \(\mathcal{F} \) is a formation, \(A \times B / \text{Ker} \varphi \in \mathcal{F} \). Hence \(AB \in \mathcal{F} \). \qed

Lemma 1.5. ([4]) Let a group \(G = HK \) be the product of subgroups \(H \) and \(K \). If \(L \) is normal in \(H \) and \(L \leq K \), then \(L \leq K_G \).

Lemma 1.6. Let \(G = P \rtimes M \) be a primitive soluble group, where \(M \) is a primitivator of \(G \) and \(P \) is a Sylow \(p \)-subgroup of \(G \). Let \(A \) and \(B \) be subgroups of \(M \) and \(M = AB \). If \(B \leq N_G(X) \) for every subgroup \(X \) of \(P \), then the following statements hold:

1. \(B \) is a cyclic group of order dividing \(p - 1 \);
2. \([A, B] = 1 \).

Proof. We fix an element \(b \in B \). If \(x \in P \), then \(x^b \in \langle x \rangle \), since \(B \leq N_G(\langle x \rangle) \) by hypothesis. Hence \(x^b = x^{m_x} \), where \(m_x \) is a positive integer and \(1 \leq m_x \leq p \). If \(y \in P \setminus \{ x \} \), then

\[(xy)^b = (xy)^{m_{xy}} = x^{m_xy}\ y^{m_{xy}}, \ (xy)^b = x^b\ y^b = x^{m_x}\ y^{m_y}, \]

\[x^{m_{xy}}\ y^{m_{xy}} = x^{m_{xy}}\ y^{m_{xy}}, \ x^{m_{xy}} = y^{m_{xy}} = 1, \ m_{xy} = m_x = m_y. \]

Therefore we can assume that \(x^b = x^{n_b} \) for all \(x \in P \), where \(1 \leq n_b \leq p \) and \(n_b \) is a positive integer.
Assume that there exist $d \in B$ and $y \in P \setminus \{1\}$ such that $y^d = y$. Then $n_d = 1$ and $x^d = x$ for all $x \in P$, i.e. $d \in C_G(P) = P$ and $d = 1$. Consequently B is a group automorphism of a group of order p. Hence B is cyclic of order dividing $p - 1$.

Show that $[A, B] = 1$. We fix an element $[b^{-1}, a^{-1}] \in [A, B]$. Since P is normal in G, it follows that $x^a \in P$ for any $a \in A$ and any $x \in P$. Hence

$$x^{[b^{-1}, a^{-1}]} = x^{bab^{-1}a^{-1}} = (x^b)^{a^{-1}} = (x^n)^{a^{-1}} = (x^a)^{b^{-1}a^{-1}} = (x^b)^{b^{-1}a^{-1}} = x.$$

Therefore $[b^{-1}, a^{-1}] \in C_G(P) = P$. Since $[A, B] \leq M$, we have $[b^{-1}, a^{-1}] \in M \cap P = 1$ and $[A, B] = 1$.

2 Properties of msp-permutable subgroups

We will say that a group G satisfies the property:

- E_π if G has at least one Hall π-subgroup;
- C_π if G satisfies E_π and any two Hall π-subgroups of G are conjugate in G;
- D_π if G satisfies C_π and every π-subgroup of G is contained in some Hall π-subgroup of G.

Such a group is also called an E_π-group, C_π-group, and D_π-group, respectively.

Lemma 2.1. Let A and B be msp-permutable subgroups of G and $G = AB$.

1. If N is a normal subgroup of G, then $G/N = (AN/N)(BN/N)$ is the msp-permutable product of subgroups AN/N and BN/N.

2. If $A \leq H \leq G$, then H is the msp-permutable product of subgroups A and $H \cap B$.

3. If $G \in D_\pi$, then there exist Hall π-subgroups G_π, A_π, and B_π of G, of A and, of B, respectively, such that $G_\pi = A_\pi B_\pi$ is the msp-permutable product of subgroups A_π and B_π.

Proof. 1. Let $p \in \pi(AN/N)$, X/N be a Sylow p-subgroup of AN/N and P be a Sylow p-subgroup of A. Then $PN/N = X/N$. Similarly, if $q \in \pi(BN/N)$ such that $q \neq p$, Y/N is a Sylow q-subgroup of BN/N and Q is a Sylow q-subgroup of B. Then $QN/N = Y/N$. By hypothesis, P and Q are mutually permutable. Hence X/N and Y/N are mutually permutable.

2. By Dedekind’s identity, $H = A(H \cap B)$. Let A_q be a Sylow q-subgroup of A, R be a Sylow r-subgroup of $H \cap B$, where $q \neq r$, and B_r be a Sylow
r-subgroup of B containing R. Since $(H \cap B_r)$ is a Sylow r-subgroup of $H \cap B$
and $R \leq H \cap B_r$, it follows that $R = H \cap B_r$.

Because A_q and B_r are mutually permutable, we have $A_q U \leq G$ for every
subgroup U of R.

Let V be an arbitrary subgroup of A_q. Since A_q and B_r are mutually
permutable,

$$V B_r \leq G, \quad H \cap V B_r = V (H \cap B_r) = VR \leq G.$$

Hence A_q and R are mutually permutable.

3. By [3] Theorem 1.1.19, there are Hall π-subgroups G_π, A_π and B_π of G,
of A, and of B, respectively, such that $G_\pi = A_\pi B_\pi$. Since A and B are msp-
permutable, it follows that obviously, A_π and B_π are msp-permutable.

\begin{lemma}
Let A and B be msp-permutable subgroups of G and $G = AB$.
Let $p, r \in \pi(G)$, p be the greatest prime in $\pi(G)$ and r be the smallest prime
in $\pi(G)$. Then the following statements hold:

1. if A and B are p-closed, then G is p-closed;
2. if A and B are r-nilpotent, then G is r-nilpotent;
3. if A and B have an ordered Sylow tower of supersoluble type, then G
has an ordered Sylow tower of supersoluble type.
\end{lemma}

\begin{proof}
1. By [3] Theorem 1.1.19, there are Sylow p-subgroups P, P_1 and P_2
of G, of A, and of B, respectively, such that $P = P_1 P_2$. By hypothesis, P_1
is normal in A and P_2 is normal in B. Let H_1 and H_2 be Hall p'-subgroups
of A and of B, respectively, and Q be a Sylow q-subgroup of H_1, where $q \in \pi(H_1)$. Choose a chain of subgroups

$$1 = Q_0 < Q_1 < \ldots < Q_t-1 < Q_t = Q, \quad |Q_{i+1} : Q_i| = q.$$

Since A and B are msp-permutable, we have $P_2 Q_i$ is a subgroup of G for
every i. Since $|P_2 Q_1 : P_2| = q$ and $p > q$, it follows that P_2 is normal in $P_2 Q_1$.
Then by induction, we have that P_2 is normal in $P_2 Q_i$. Because q is an
arbitrary prime in $\pi(H_1)$, it follows that P_2 is normal in $P_2 H_1$ and $\langle H_1, H_2 \rangle \leq
N_G(P_2)$. Similarly, $\langle H_1, H_2 \rangle \leq N_G(P_1)$. Hence $P = P_1 P_2$ is normal in G.

2. Let R, R_1 and R_2 are Sylow r-subgroups of G, of A, and of B, respect-
ively, such that $R = R_1 R_2$. Let K_1 and K_2 be Hall r'-subgroups of A and
of B. Let $q \in \pi(G) \setminus \{r\}$, Q, Q_1 and Q_2 be Sylow q-subgroups of G, of A,
and of B, respectively, such that $Q = Q_1 Q_2$. Choose a chain of subgroups

$$1 = V_0 < V_1 < \ldots < V_{i-1} < V_i = R_1, \quad |V_{i+1} : V_i| = r.$$

Since A and B are msp-permutable, $V_i Q_2$ is a subgroup of G for every i.
Since $|V_1 Q_2 : Q_2| = r$ and $q > r$, it follows that Q_2 is normal in $V_1 Q_2$. Then
by induction, we have that $R_1 \leq N_G(Q_2)$. By hypothesis, A is r-nilpotent, hence $R_1 \leq N_G(Q_1)$ and $R_1 \leq N_G(Q)$. Similarly, $R_2 \leq N_G(Q)$ and G has a r-nilpotent Hall $\{r, q\}$-subgroup RQ. Since q is an arbitrary prime in $\pi(G) \setminus \{r\}$, it follows that G is soluble and r-nilpotent by \cite{11} Corollary.

3. By (1), we have that a Sylow p-subgroup P is normal in G for the greatest $p \in \pi(G)$. By Lemma\cite{2,1}(1), G/P is the product of msp-permutable subgroups AN/N and BN/N. By induction, G/N has an ordered Sylow tower of supersoluble type, hence G has an ordered Sylow tower of supersoluble type.

\[\square \]

Theorem 2.1. Let A and B be msp-permutable subgroups of G and $G = AB$. If A and B are soluble, then G is soluble.

\[\text{Proof.} \text{ We use induction on the order of } G \text{ and the method of proof from } \cite{7} \text{ Theorem 2]. Let } N \neq 1 \text{ be a soluble normal subgroup of } G. \text{ By Lemma\cite{2,1}(1), } G/P \text{ is the product of soluble msp-permutable subgroups } AN/N \text{ and } BN/N. \text{ By induction, } G/N \text{ is soluble, hence } G \text{ is soluble. In what follows, we assume that } G \text{ contains no non-trivial soluble normal subgroups.}

Since A is soluble, $U = O_s(A) \neq 1$ for some $s \in \pi(A)$. If B is an s-subgroup of G, then $G = AG_s$, $U \leq G_s$ and $U^G \leq (G_s)_G$ by Lemma\cite{1,5} a contradiction. Hence B is not s-subgroup of G and let Q be an arbitrary Sylow q-subgroup of B, where $q \in \pi(B) \setminus \{s\}$. Since A and B are msp-permutable, $UQ = UQ^{ba} = U^a(Q^b)^a = (UQ^b)^a = (Q^bU)^a = QU$ for every $x = ba \in G$, where $b \in B$ and $a \in A$. By \cite{8} Theorem 7.2.5, $D = UQ \cap Q^U$ is subnormal in G. Since $UQ \leq UQ$ and UQ is soluble, it follows that D is a soluble subnormal subgroup of G and $D = 1$. Hence $[U, Q] \leq [UQ, Q^U] \leq D = 1$.

This is true for any Sylow q-subgroup of B, therefore $[U, Q^B] = 1$.

Let $H = N_G(U)$. By Dedekind’s identity, $H = A(H \cap B)$. By Lemma\cite{2,1}(2), H is the product of soluble msp-permutable subgroups A and $H \cap B$. By induction, H is soluble. Since $[U, Q^B] = 1$, we have $Q^B \leq N_G(U) = H$. Because $G = AB = HB$, Q^B is normal in B and $Q^B \leq H$, it follows that $Q^B \leq H_G = 1$ by Lemma\cite{1,5} a contradiction.

\[\square \]

Lemma 2.3. Let $G = G_1G_2$ be the product of msp-permutable subgroups G_1 and G_2. If a Sylow p-subgroup P of G is normal in G and abelian, then $P \cap G_i$ is normal in G for every $i \in \{1, 2\}$.

7
Proof. Assume that \(i, j \in \{1, 2\} \) and \(i \neq j \). It is clear that \(P \cap G_i \) is a Sylow \(p \)-subgroup of \(G_i \) and \(P \cap G_i = (G_i)_p \) is normal in \(G_i \). Hence \(G_i \) has a Hall \(p' \)-subgroup \((G_i)_{p'} \). Since \(G_i \) and \(G_j \) are msp-permutable, it follows that \((G_i)_p(G_j)_{p'} \) is a subgroup of \(G \) and \((G_j)_{p'} \leq N_G((G_i)_p) \), because every subgroup of \(G \) is \(p \)-closed. By hypothesis, \(P \) is abelian, therefore \((G_i)_p \) is normal in \(P \) and

\[
G_j = (G_j)_p(G_j)_{p'} = (P \cap G_j)(G_j)_{p'} \leq N_G((G_i)_p).
\]

Hence \((G_i)_p \) is normal in \(G = G_iG_j = G_1G_2 \) for every \(i \in \{1, 2\} \). \(\square \)

3 Proof of the main theorem

Theorem 3.1. Let \(\mathcal{F} \) be a subgroup-closed saturated formation such that \(U \subseteq \mathcal{F} \subseteq D \). Let \(G = G_1G_2 \) be the product of msp-permutable subgroups \(G_1 \) and \(G_2 \). If \(G_1, G_2 \in \mathcal{F} \), then \(G \in \mathcal{F} \).

Proof. By Lemma \(2.2 \)(3), \(G \) has an ordered Sylow tower of supersoluble type. Let \(P \) be a Sylow \(p \)-subgroup of \(G \), where \(p \) is the greatest prime in \(\pi(G) \). Then \(P \) is normal in \(G \).

Assume that \(G \notin \mathcal{F} \). Let \(N \) be a non-trivial normal subgroup of \(G \). Hence

\[
G/N = (G_1N/N)(G_2N/N),
\]

By Lemma \(2.3 \)(1), \(G_1N/N \) and \(G_2N/N \) are msp-permutable. Consequently, \(G/N \) satisfies the hypothesis of the theorem, and by induction, \(G/N \in \mathcal{F} \).

Since \(\mathcal{F} \) is saturated, \(G \) is primitive by Lemma \(1.1 \). Hence \(\Phi(G) = 1 \), \(G = N \rtimes M \), where \(N = C_G(N) = F(G) = O_p(G) = P \) is a unique minimal normal subgroup of \(G \) by Lemma \(1.2 \). Therefore \(M \) is a Hall \(p' \)-subgroup of \(G \) and \(M = (G_1)_{p'}(G_2)_{p'} \) for some Hall \(p' \)-subgroups \((G_1)_{p'} \) and \((G_2)_{p'} \) of \(G_1 \) and of \(G_2 \), respectively.

Suppose that \(p \) divides \(|G_1| \) and \(|G_2| \). By Lemma \(2.4 \), \(P \leq G_1 \cap G_2 \). Let \(P_1 \leq P \) and \(|P_1| = p \). Since \(P \leq G_1 \) and \(P \) permutes with \(P_1 \) for every Sylow subgroup \(Q \) of \(G_2 \), we have \(P_1(G_2)_{p'} \leq G \) and \((G_2)_{p'} \leq N_G(P_1) \). Similarly, since \(P \leq G_2 \) and \(P \) permutes with \(P_1 \) for every Sylow subgroup \(R \) of \((G_1)_{p'} \), it follows that \(P_1(G_1)_{p'} \leq G \) and \((G_1)_{p'} \leq N_G(P_1) \). Hence \(M = (G_1)_{p'}(G_2)_{p'} \leq N_G(P_1) \) and \(P_1 \) is normal in \(G \). By Lemma \(1.3 \), \(G \in \mathcal{F} \), a contradiction.

Thus \(P \leq G_1 \) and \(G_2 \) is a \(p' \)-subgroup of \(G \). By Lemma \(1.4 \)(1), \(G_2 \) is a cyclic group of order dividing \(p - 1 \). Hence \(G_2 \in g(p) \), where \(g \) is a
canonical local definition of a saturated formation \mathcal{U}. Since $\mathcal{U} \subseteq \mathcal{F}$, we have by Proposition IV.3.11, $g(p) \subseteq f(p)$, where f is a canonical local definition of a saturated formation \mathcal{F}. Hence $G_2 \in f(p)$. Since $P \leq G_1$, it follows that $G_1 = P \times (G_1)_{p'}$. Because $G_1 \in \mathcal{F}$ and $F_p(G_1) = P$, we have $G_1/F_p(G_1) = G_1/P \cong (G_1)_{p'} \in f(p)$. By Lemma 1.4, $[(G_1)_{p'}, (G_2)_{p'}] = 1$. Since $(G_1)_{p'} \in f(p)$, $(G_2)_{p'} \in f(p)$ and $f(p)$ is a formation, it follows that by Lemma 1.3, $G/P \cong M = (G_1)_{p'}(G_2)_{p'} \in f(p)$. Because $P \in \mathcal{N}_p$, we have $G \in \mathcal{F}$, a contradiction. The theorem is proved.

Corollary 3.1. Let $G = G_1G_2$ be the product of msp-permutable subgroups G_1 and G_2.

1. If $G_1, G_2 \in \mathcal{U}$, then $G \in \mathcal{U}$.
2. If $G_1, G_2 \in w\mathcal{U}$, then $G \in w\mathcal{U}$.
3. If $G_1, G_2 \in v\mathcal{U}$, then $G \in v\mathcal{U}$.

References

[1] Asaad, M., Shaalan, A.: On supersolvability of finite groups. Arch. Math. 53, 318–326 (1989).

[2] Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups. Springer, Dordrecht (2006).

[3] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. Walter de Gruyter, Berlin (2010).

[4] Chunihin, S.A.: Simplicite de groupe fini et les ordres de ses classes d’elements conjuguues. C. R. Acad. Sci. Paris. 191, 397–399 (1930).

[5] Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter De Gruyter, Berlin, New York (1992).

[6] Lennox, J.C., Stonehewer, S.E.: Subnormal subgroups of groups. Clarendon Press, Oxford (1987).

[7] Monakhov, V.S.: On the solvability of a group with permut able subgroups. Mathematical Notes. 93, 460–464 (2013).

[8] Monakhov, V.S., Kniahina, V.N.: Finite group with \mathcal{P}-subnormal subgroups. Ricerche Mat. 62 (2), 307–323 (2013).

[9] Monakhov, V.S.: Finite groups with abnormal and \mathcal{U}-subnormal subgroups. Siberian Math. J. 57 (2), 352–363 (2016).
[10] Skiba, A.N.: On weakly s-permutable subgroups of finite groups. J. Algebra. 315, 192–209 (2007).

[11] Tyutyanov, V.N., Kniahina, V.N.: Finite groups with biprimary Hall subgroups. J. Algebra. 443, 430–440 (2015).

[12] Vasil’ev, A.F., Vasil’eva, T.I., Tyutyanov, V.N.: On the finite groups of supersoluble type. Siberian Math. J. 51 (6), 1004–1012 (2010).