Correlation Between Enhancement Intensity in Contrast Enhancement Spectral Mammography and Types of Kinetic Curves in Magnetic Resonance Imaging

Wojciech Rudnicki
Sylwia Heinze
Tomasz Piegza
Marta Pawlak
Zbigniew Kojs
Elżbieta Łuczyńska

Background: Due to the decreased sensitivity of mammography in glandular breasts, new diagnostic modalities, like contrast-enhanced spectral mammography (CESM) and digital breast tomosynthesis (DBT) have been developed. The aim of this study was to compare qualitative enhancement levels on CESM with type of kinetic enhancement curves on MRI examination.

Material/Methods: Patients qualified for the CESM examination presented some diagnostic doubts – suspected multifocality, multicentricity, or having dense glandular breast tissue. The enhancement level on CESM was described as weak, medium, or strong. Enhancement on achieved MR images was assessed on the basis of enhancement kinetic curves. The level of enhancement on CESM was associated with enhancement curves type on MRI. All lesions detected on CESM and MRI were histopathologically verified.

Results: The study involved 107 lesions diagnosed in 94 patients: 71 lesions (66%) appeared to be infiltrating on histopathological examination, 9 lesions (8%) were non-infiltrating cancers, and 27 lesions (25%) were benign. Data analysis revealed that lesions with wash-out curve on MRI most often presented strong enhancement on CESM, while in lesions with progressive enhancement curve, strong enhancement on CESM was the rarest. The relationship between enhancement level on CESM and curve type on contrast-enhanced MRI depends on the nature of the lesion. The type of MRI curve was found to be associated with enhancement level on CESM. The results showed that the level of enhancement on CESM and type of kinetic curves on MRI depends on the lesion type.

Conclusions: We compared subjective assessments of contrast enhancement on CESM with enhancement kinetic curves on MRI. The results showed that the level of enhancement on CESM and type of kinetic curves on MRI depends on the lesion type.

MeSH Keywords: Breast Neoplasms • Magnetic Resonance Imaging • Mammography

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/920742
Background

Breast cancer is the most common malignant disease among women. Mammography is a basic method used in breast cancer diagnostics. However, the sensitivity and specificity of mammography depend on breast anatomy.

The utility of MRI in breast cancer diagnostics has been documented in many publications. It is considered to be a very reliable diagnostic method, particularly useful in evaluation of young women with dense, glandular breast anatomy. However, the sensitivity and specificity of mammography depend on breast anatomy.

Material and Methods

CESM examinations (routinely used in our department) were performed with the GE Senographe Essential full-field digital mammography system. Patients qualified for the examination presented some diagnostic doubts, meaning that multifocality or multicentricity was suspected on mammography or ultrasound examination, or the patient had a dense glandular breast anatomy or glandular-fatty heterogeneous breast anatomy. The examination was performed using the following protocol [7]: 2 min after administration of lopromide (1.5 ml/kg of body weight), mammography acquisitions started on the breast without suspected pathology, followed by the breast with pathology suspected in preliminary mammography or ultrasound examination. Enhancement level on CESM was described as weak, medium, or strong (Figure 1).

Since the assessment of the enhancement level is subjective, 2 independent radiologists (with 5 and 7 years of experience with CESM) were involved in the task. For contrast-enhanced MRI sequences, patients were administered Gadovist at 0.1 ml/kg of body weight by automatic contrast injector. Enhancement on MRI was assessed on the basis of enhancement curves, which were automatically drawn by the apparatus and analyzed by radiologists. Following the method described in the literature [8,9], MRI enhancement curves were described as continuously increasing – progressive enhancement pattern (typical for benign lesions), plateau (can be present for benign and malignant lesions), and wash-out type (for malignant lesions) (Figure 2). The level of enhancement on CESM was associated with enhancement curves type on MRI.

Statistical methods

The chi-square test of independence was used to assess the relationship between the studied variables. The type of lesions, type of MRI curve, and type of CESM enhancement were analyzed. A significance level α=0.05 was accepted for all tests.

Histopathological examination

All lesions detected on CESM and MRI were histopathologically verified. After performing imaging examinations, lesions underwent core biopsy or vacuum-assisted core biopsy. The verification method depended on lesion size and its availability on imaging examination. Most biopsies were performed under ultrasonography guidance. In case of enhancing resonance imaging examination. Increasing our knowledge of those patterns may help radiologist to categorize difficult-to-assess lesions in a more effective way and thus reduce the number of unnecessary biopsies performed.
microcalcifications on CESM or MRI, the biopsy was guided on mammography. All lesions that appeared to be cancers were subjected to surgery. Specimens obtained with core biopsy or vacuum-assisted core biopsy were fixed in formalin and then embedded in paraffin blocks. After being cut into 4–5-µm slices, the standard hematoxylin and eosin staining procedure was performed. If cancer cells were present, additional immunohistochemical staining was performed to determine the subtype of cancer better (such as ER, PR, and HER expression and Ki-67 index).

Results

The study sample included 107 lesions diagnosed in 94 patients: 71 lesions (66%) appeared to be infiltrating on histopathological
examination, 9 lesions (8%) were non-infiltrating cancers, and 27 lesions (25%) were benign.

Level of enhancement on CESM

The level of enhancement depended on the nature of the lesion ($p=0.007$ for the first reader, $p=0.015$ for the second reader, and $p=0.0002$ for cumulated readings). In case of benign lesions, the level of enhancement on CESM was most frequently weak or medium, and rarely strong. However, for malignant lesions, the level of enhancement was most often strong on CESM, and less frequently medium or low (Figure 3).

The agreement between the 2 readers on levels of enhancement was 76.7%. Differences in assessment of enhancement on CESM between the 2 readers are presented in the diagram below (Table 1).

MRI enhancement curves assessment.

Data analysis revealed that the type of curve on MRI is correlated with lesion type. In case of malignant lesions, the wash-out type curve was the most frequent (72.5%), followed by plateau (18.8%). The progressive enhancement pattern was most common in benign lesions (70.4%), while wash-out type was rarely observed. Within the examined group of patients, the progressive enhancement pattern was characteristic for benign lesions (70.4%) ($p<0.001$).

Comparisons between lesion type and enhancement curve on MRI are presented in Table 2.

Data analysis revealed that lesions with wash-out curve on MRI most often presented strong enhancement on CESM (53.3% for the first reader, 61% for the second reader, and 57.5% for cumulated readings), while in case of lesions with progressive enhancement curve, strong enhancement on CESM was rarely observed.

Table 1. Differences in assessment of enhancement on CESM between the 2 readers.

Type of lesion	CESM – level of enhancement	Total		
	Weak	Medium	Strong	
Benign	R1=9 (33.3%)	R1=14 (51.9%)	R1=4 (14.8%)	27
	R2=8 (29.6%)	R2=13 (48.2%)	R2=6 (22.2%)	
	Cumulated readings=31.5%	Cumulated readings=50.0%	Cumulated readings=18.5%	
Cancer	R1=18 (22.5%)	R1=23 (28.8%)	R1=39 (48.7%)	80
	R2=12 (15.0%)	R2=25 (31.3%)	R2=43 (53.7%)	
	Cumulated readings=18.7%	Cumulated readings=30.0%	Cumulated readings=51.3%	
Total	R1=27	R1=37	R1=43	107
	R2=20	R2=38	R2=49	

Table 2. Comparison between lesion type and enhancement curve on MRI.

Type of lesion	Type I – persistent	Type II – plateau	Type III – wash-out	Total
Benign	19 (70.4%)	6 (22.2%)	2 (7.4%)	27
Cancer	7 (8.8%)	15 (18.8%)	58 (72.5%)	80
Total	26	21	60	107
Our study compared a subjective assessment of contrast enhancement on CESM with enhancement kinetic curves on MRI. The results showed that level of enhancement on CESM depends on lesion type (p<0.001 for the first reader and p=0.015 for the second reader). In case of benign lesions, the level of enhancement on CESM was most frequently weak or medium, and rarely strong. On the contrary, for malignant lesions, the level of enhancement was most often strong on CESM, and more rarely medium and low.

Type of kinetic curves on MRI image depends on lesion type. In case of breast cancer, the wash-out type curve was the most frequent (72.5%) and followed by plateau (18.8%). Progressive enhancement pattern was most commonly seen in case of benign lesions (70.4%) (p<0.001).

Having compared enhancement curves on MRI with CESM for lesions with wash-out curve type, we most often see strong enhancement on CESM (53.3%), while for lesions with progressive curve, strong CESM enhancement was the rarest (11.5%). Analysis revealed that curve type on MRI is associated with enhancement level on CESM (p=0.04).

In previous publications, CESM and MRI were compared only in reference to their sensitivity and specificity. In terms of effectiveness in dense glandular breasts imagining, MRI sensitivity ranges from 81% to 97.8% and specificity is around 61% [2,10,11]. CESM sensitivity varies from up to 90.5% specificity to around 76.1% [1].

Our study has certain limitations than should be considered, First, it lacked quantitative assessment on spectral mammography. Qualitative assessment is subjective and may not reflect the actual level of enhancement on CESM, which can be reliably determined in quantitative assessment. The differences in the evaluation were discussed by the interobservers and they both agreed that the main factor of these results was based on subjective view of certain lesion and the overall clinical...
experience of each individual, since no histopathological factor of the tumor was involved when making the evaluation.

The second limiting factor is the lack of BPE assessment from the breast MRI studies. However, the correlation between the BPE and the enhancement intensity, as well as the assessment of BPE in CESM, are the topic of currently on-going studies. Tools like radiomics or Artificial Intelligence would help in unifying the results and should be taken under consideration. Other limitations include the small number of lesions analyzed on both imaging methods, and the lack of a control group.

References:

1. Sorin V, Yagil Y, Yosepovich A et al: Contrast-enhanced spectral mammography in women with intermediate breast cancer risk and dense breasts. Am J Roentgenol, 2018; 211: W267–74
2. Sardanelli F, Giuseppetti GM, Panizza P et al: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. Am J Roentgenol, 2004; 183: 1149–57
3. Liu AD, Ma Y, Yin L et al: [Comparison of the diagnostic efficiency in breast malignancy between cone beam breast CT and mammography in dense breast]. Zhonghua Zhong Liu Za Zhi, 2018; 40: 604–9 [in Chinese]
4. Łuczyńska E, Heinze-Paluchowska S, Hendrick E et al: Comparison between breast MRI and contrast-enhanced spectral mammography. Med Sci Monit, 2015; 21: 1358–67
5. Shimauchi A, Abe H, Schacht DV et al: Evaluation of Kinetic Entropy of Breast Masses Initially Found on MRI using Whole-lesion Curve Distribution Data: Comparison with the Standard Kinetic Analysis. Eur Radiol, 2015; 25: 2470–78
6. Luczyńska E, Heinze-Paluchowska S, Hendrick E et al: Comparison between breast MRI and contrast-enhanced spectral mammography. Med Sci Monit, 2015; 21: 1358–67
7. Łuczyńska E, Heinze-Paluchowska S, Hendrick E et al: Comparison between breast MRI and contrast-enhanced spectral mammography. Med Sci Monit, 2015; 21: 1358–67
8. Liu AD, Ma Y, Yin L et al: [Comparison of the diagnostic efficiency in breast malignancy between cone beam breast CT and mammography in dense breast]. Zhonghua Zhong Liu Za Zhi, 2018; 40: 604–9 [in Chinese]
9. Luczyńska E, Heinze-Paluchowska S, Hendrick E et al: Comparison between breast MRI and contrast-enhanced spectral mammography. Med Sci Monit, 2015; 21: 1358–67
10. Förnvik D, Kataoka M, Iima M et al: The role of breast tomosynthesis in a predominantly dense breast population at a tertiary breast centre: Breast density assessment and diagnostic performance in comparison with MRI. Eur Radiol, 2018; 28: 3194–203
11. Wienbeck S, Fischer U, Luftner-Nagel S et al: Contrast-enhanced cone-beam breast-CT (CBBCT): clinical performance compared to mammography and MRI. Eur Radiol, 2018; 28: 3731–41

Conclusions

Our study showed that a relationship exists between characteristic features of MRI and CESM (kinetic contrast curves and enhancement level, respectively), and each is related to the nature of the lesion. Our results bring these 2 imaging methods even closer to being regarded as the optimal reference modalities for use in breast cancer diagnosis.