A meta-analysis supports core needle biopsy by radiologists for better histological diagnosis in soft tissue and bone sarcomas

Tadahiko Kubo, MD, PhD*, Taisuke Furuta, MD, PhD, Muhammad P. Johan, MD, Tomohiko Sakuda, MD, Mitsuo Ochi, MD, PhD, Nobuo Adachi, MD, PhD

Abstract

Background: Although surgical biopsy has historically been considered to be the standard diagnostic biopsy for soft tissue and bone sarcomas, recent literature suggests that percutaneous core needle biopsy yields similar results. Therefore, an evaluation of the exact diagnostic accuracy and associated influential variables of core needle biopsy that is based on a large data set would be useful.

Methods: We searched MEDLINE, Web of Science, and EMBASE to identify core needle biopsy studies for predicting final histological subtypes of musculoskeletal lesions. The diagnostic accuracies of core needle biopsy and of surgical biopsy were assessed and compared by using random-effect meta-analyses. The factors relevant to diagnostic accuracy were evaluated by meta-regression and subgroup analyses.

Results: We selected 32 studies comprising 7209 musculoskeletal lesions. The pooled proportion estimate for the diagnostic accuracy of core needle biopsy was 0.84 (95% confidential interval, CI: 0.81–0.87), which indicated an approximate 84% concordance between core needle biopsy results and final histological diagnoses. The findings of meta-regression and subgroup analyses suggested that radiologists were better core needle biopsy operators than surgeons. An additional meta-analysis for direct comparison between core needle biopsy and surgical biopsy demonstrated that diagnostic accuracy was significantly lower for core needle biopsy than for surgical (pooled odds ratio: 0.39, 95% CI: 0.20–0.76).

Conclusion: Our results suggested that core needle biopsy should be performed by expert radiologists and that surgical biopsy should be performed if diagnosis following core needle biopsy does not match the clinical presentation and radiographic findings.

Abbreviations: CI = confidential interval, CNB = core needle biopsy, FNA = fine needle aspiration, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, QUADAS-2 = Quality Assessment of Diagnostic Accuracy Studies-2, SB = surgical biopsy, WHO = World Health Organization.

Keywords: bone sarcoma, core needle biopsy, meta-analysis, soft tissue sarcoma, surgical biopsy

1. Introduction

The current 2013 World Health Organization (WHO) Classification of Tumors of Soft Tissue and Bone incorporates much progress regarding the tumor classification and identification of new histological subtypes. The changes in classifying and recognizing the pathogeneses of soft tissue and bone tumors, predominantly based on newly identified genetic findings, have been particularly remarkable as compared with progress made in the pathologies of other cancers.1,2 Sarcomas are a heterogeneous type of rare malignant soft-tissue and bone tumors and account for only approximately 1% of all malignancies in adults and 15% to 20% of pediatric malignancies. More than 50 histological subtypes have been identified, and the differential diagnosis for sarcomas is fairly extensive. Different subtypes can vary in their clinical manifestations and response to treatment. Higher-grade sarcomas exhibit more aggressive behavior and tend to hematogenously metastasize to the lungs, which is the leading cause of disease-specific death. Histological tumor grade has been identified as one of the strongest predictors of metastatic risk and patient prognosis. Despite current intensive and multimodal treatment, including surgery, radiotherapy, and chemotherapy, prognosis has plateaued since the 1990s and remains suboptimal in many high-grade types.3-6 Therefore, prompt and precise diagnostic procedures for these heterogeneous and refractory sarcomas are challenging.

In the management of musculoskeletal lesions, biopsy is the most critical first step in determining treatment strategy and outcomes. Unplanned biopsies can compromise reconstructive procedures and sometimes require amputation to obtain adequate surgical margins. Biopsy is principally utilized to harvest representative and viable tissue specimens for accurate diagnosis. A variety of biopsy techniques, such as fine needle
aspiration (FNA), core needle biopsy (CNB), and incisional or excisional surgical biopsy (SB), are frequently used nowadays. SB has historically been the diagnostic standard; it provides large volumes of tissue sample, which facilitates accurate histological analyses and more precise estimates of patient prognoses. However, biopsy-associated complications involve hematoma, infection, and neurapraxia. A biopsy procedure can also spread tumor cells to surrounding tissue and, therefore, increase the risk of local recurrence. It is imperative that the biopsy tract be placed within the planned resection margins prior to future treatment planning involving surgical resection and radiation. On the contrary, needle biopsies are less invasive techniques, and are less time consuming, have lower costs, and have low morbidity. Because FNA only provides cytology, not true histology, it may be able to distinguish neoplasms from normal tissues, malignant from benign tumors, and high- from low-grade malignancies. CNB, which evolved as an alternative to FNA, improves the determination of the histological subtype and grade. Moreover, the advantages of CNB relative to those of SB include the low risk of contaminating adjacent tissue compartments and minimal invasiveness, which are because of the small biopsy tract and less bleeding.5,6

Although SB has long been considered to be the gold standard for cancer diagnosis, a recent review article suggests that percutaneous CNB yields similar results.6 Thus, an assessment of the exact diagnostic accuracy and relevant influential factors of CNB that is based on a large data set would be useful. The purpose of this review was to provide an up-to-date and unprecedented summary of CNB in soft tissue and bone sarcoma. We conducted a systematic review and meta-analysis for comparing the diagnostic accuracy of CNB. We conducted a systematic review and meta-analysis for comparing the diagnostic accuracy of CNB. We conducted a systematic review and meta-analysis for comparing the diagnostic accuracy of CNB. We conducted a systematic review and meta-analysis for comparing the diagnostic accuracy of CNB. The diagnostic accuracy of CNB was determined as the proportion of lesions that showed concordance between the CNB results and final histological subtypes in the total number of lesions that were tested for CNB; a variety of histological subtypes presented.

2. Materials and methods

This meta-analysis was reported according to the preferred reporting items for systematic reviews and meta-analyses guidelines. All analyses were based on previous published studies, thus no ethical approval and patient consent are required.

2.1. Search strategy and selection criteria

The literature search was performed in accordance with the guidelines present in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.7 The main research question was defined using the Target Population, Index Test, Comparator Test, Outcome, and Study Design (PICOS) strategy: target population, patients with soft tissue sarcoma, bone sarcoma, or both examined by CNB; index test, results of CNB; comparator test, results of SB; outcome, definitive histological subtypes; and study design, retrospective and prospective cohort studies. Data for this systematic review and meta-analyses were identified by searches of MEDLINE, Web of Science, and EMBASE using the search terms “core needle biopsy” and “sarcoma” on February 1, 2017 without a time search limitation or language restrictions.

We also hand-searched references from relevant articles. We excluded conference abstracts, clinical case series, and review articles.

The inclusion criteria were as follows: original studies reporting CNB conducted to predict final histological subtypes of musculoskeletal lesions and sufficient raw data to calculate the diagnostic accuracy of CNB. The diagnostic accuracy of CNB was calculated using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool.8 Risk of bias concerning 4 domains (patient selection, index test, reference standard, and flow and timing) and concerns regarding the applicability of three domains (patient selection, index test, and reference standard) were rated as “low,” “high,” or “unclear.”

2.2. Data analysis

The 2 orthopedic oncologists (TF and MPJ) independently screened and selected the articles. Discrepancies between the 2 reviewers were resolved by a third investigator (TK) via discussion until a consensus was reached. Articles were selected by title, by abstract, and subsequently by full text to fulfill the inclusion criteria. Next, the following information was extracted where available: author name, year of publication, study institutes, clinical characteristics of all participants and tumors, total number included in the meta-analyses, discordant rate of CNB results and the final histological diagnosis at the resection, discordant rate of results of SB and the final histological diagnosis, type of radiological guidance (ultrasound, computed tomography [CT], magnetic resonance imaging [MRI], or fluoroscope), gauge number of biopsy needle, core number of CNB specimens, type of anesthesia, and operator performing the CNB (radiologist or surgeon). The quality of study designs in the eligible articles was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool.8 Risk of bias concerning 4 domains (patient selection, index test, reference standard, and flow and timing) and concerns regarding the applicability of three domains (patient selection, index test, and reference standard) were rated as “low,” “high,” or “unclear.”

2.3. Statistical analysis

In the meta-analysis, a random-effects model was used to calculate a pooled proportion estimate with 95% confidence interval (CI) for the diagnostic accuracy of CNB.9 The inconsistency index I-square (I^2) test was used for assessing heterogeneity of the diagnostic accuracy of each study. Variables causing the heterogeneity were identified using the meta-regression method and subgroup analysis.

We also used a random-effect model to calculate the pooled odds ratio and 95% CI for the diagnostic accuracy between CNB and SB. All meta-analyses were conducted using Stata/SE version 14 statistical software (StataCorp LP, College Station, TX). $P < .05$ were considered statistically significant.

3. Results

3.1. Literature search and selection of studies

We used 3 search engines to identify 895 articles, excluding 209 because of duplication. Furthermore, 610 and 27 articles were excluded on the basis of the information in the title and abstract, respectively. We also added eight articles after reviewing references from relevant articles. Lastly, 25 articles were excluded after the review of the full text. A total of 32 studies met all the inclusion criteria for the meta-analysis regarding the diagnostic accuracy of CNB (Fig. 1).10–41 Additionally, 5 eligible articles were selected for directly comparing the diagnostic accuracy of CNB with that of SB.15,18,22,25,36
3.2. Study description and quality

The total human population in the combined studies was 8930 individuals, with an average age of 46.1 years. There were 7209 lesions presenting histological subtypes included in the meta-analyses. The primary characteristics of the 32 studies that were included in the meta-analysis are shown in Table 1.\[10–41\]

According to the QUADAS-2 tool for methodological quality, all studies were rated as having five or more “low” responses and no “high” response in the seven domains. Twenty-five authors did not describe the sampling methods or used inappropriate exclusions in the domain of patient selection, and 31 authors did not state blindness in the domain of reference standard (Table 2).\[10–41\]

3.3. Meta-analysis

Because of high heterogeneity between studies ($I^2 = 93.36\%$), we used a random-effects model for the diagnostic accuracy of CNB. Overall, the pooled proportion estimate for the diagnostic accuracy was 0.84 (95% CI: 0.81–0.87), which indicated an approximate 84% concordance between the CNB results and final histological diagnoses (Fig. 2). In the meta-regression analysis, the type of CNB operator was the only variable significantly associated with heterogeneity ($P = 0.033$). No other possible factors were significantly associated with the diagnostic accuracy (Table 3). Subgroup analysis results indicated that radiologists may be more qualified CNB examiners than surgeons for predicting the histological subtype (Fig. 3).

In addition, 5 articles consisting were eligible for directly comparing the diagnostic accuracy of CNB with that of SB. Because we observed medium heterogeneity between the studies ($I^2 = 68.4\%$), we used a random-effects model for the comparison and found that the diagnostic accuracy of CNB was significantly lower than that of SB (pooled odds ratio: 0.39, 95% CI: 0.20–0.76) (Fig. 4).
Table 1: Key characteristics of the studies included in the meta-analysis.

Study	Year	Country	Enrollment period	Tumor number	Tumor type
Trieu et al. [10]	2016	Australia	1996–2013	1131	Bone, Soft tissue
Coletti et al. [11]	2016	US	2009–2015	161	Soft tissue
Ferguson et al. [12]	2016	United Kingdom	2008–2013	350	Bone, Soft tissue
Conen et al. [13]	2015	Italy	2012–2014	27	Soft tissue
Noebauer et al. [14]	2014	Austria	ND	42	Soft tissue
Layfield et al. [15]	2014	US	ND	130	Bone, Soft tissue
Vauth et al. [16]	2014	Kuwait	2010–2012	35	Bone
Kiatisevi et al. [17]	2013	Thailand	2006–2010	112	Bone, Soft tissue
Joshi et al. [18]	2013	Nepal	ND	50	Bone
layfield et al. [19]	2013	Singapore	1999–2010	134	Bone, Soft tissue
Mitton et al. [20]	2012	Italy	2009–2013	371	Soft tissue
Coran et al. [21]	2015	Italy	ND	111	Soft tissue
Noebauer et al. [22]	2015	Austria	ND	185	Bone, Soft tissue
Layfield et al. [23]	2015	US	ND	116	Soft tissue
Marchi et al. [24]	2015	Italy	2007–2008	104	Soft tissue
Strauss et al. [25]	2015	United Kingdom	2004–2006	371	Soft tissue
Narvani et al. [26]	2015	United Kingdom	ND	141	Bone, Soft tissue
Mitsuyoshi et al. [27]	2015	Japan	1990–2004	163	Bone, Soft tissue
Lopez et al. [28]	2015	Spain	1999–2004	188	Bone, Soft tissue
Yang et al. [29]	2015	US	ND	50	Bone, Soft tissue
Liu et al. [30]	2015	China	ND	37	Soft tissue
Ray et al. [31]	2015	Israel	ND	103	Soft tissue
Issakou et al. [32]	2015	US	1998–2000	215	Bone, Soft tissue
Hao et al. [33]	2015	China	ND	258	Bone, Soft tissue
Tomlari et al. [34]	2015	Brazil	1999–2000	48	Bone, Soft tissue
Hoefer et al. [35]	2015	United Kingdom	1989–1998	257	Soft tissue
Willman et al. [36]	2015	US	ND	43	Soft tissue
Pramesh et al. [37]	2015	India	1999–2000	64	Bone
Yee et al. [38]	2015	US	ND	141	Bone, Soft tissue
Dupay et al. [39]	1999	Denmark	ND	186	Bone, Soft tissue
Kosicki et al. [40]	1997	US	1975–1996	196	Bone

Imaging guidance

Needle size, gauge	Sample number	Anesthesia	Operator	
CT, US, FS	14,18	2–5 cores	ND	ND
CT, US	18,20	ND	ND	radiologist
US, CUS	ND	ND	ND	ND
DCEMRI	14	3–4 cores	local	radiologist
ND	ND	ND	ND	ND
CT, US	ND	ND	ND	ND
CT	12–15,16,18	Ave. 6 cores	local, general	radiologist
CT	14	6–10 passes	local	radiologist, orthopedic
ND	ND	ND	ND	ND
CT, w/o	9,12,18	2–4 passes	local	Orthopedic surgeon
US	ND	ND	ND	ND
CEUS	16,18	3–5 cores	local	radiologist
w/o	ND	ND	ND	ND
ND	ND	ND	ND	ND
CT, US, FS	ND	3–5 passes	local	Orthopedic surgeon
NT, US, w/o	14	2–5 passes	local	radiologist, orthopedic
CT, w/o	ND	2–cores	local, general	ND
US	14,18	Ave. 4 cores	local	ND
US	ND	Ave. 6 cores	local	Orthopedic surgeon
CT, US	14,18,20	3–4 cores	local	ND
CT	14	4 cores	local	radiologist
CT	14	3–5 passes	local	radiologist
US	ND	ND	ND	ND
ND	ND	ND	ND	ND
FS, w/o	15,16,18	2–3 cores	local	ND
CT, US, FS, w/o	12,14,16,18	Multicores	local	radiologist
CT	ND	ND	ND	ND

Ave = average, CECT = contrast-enhanced computed tomography, CEUS = contrast-enhanced ultrasonography, DCEMRI = dynamic contrast-enhanced magnetic resonance imaging, FS = fluoroscopy, ND = not documented, US = ultrasonography, w/o = without guidance.
4. Discussion

Biopsies aim to facilitate definitive pathological diagnoses while minimizing complications, limiting potential tumor seeding, and avoiding interference with subsequent therapies. A diagnosis of sarcoma or benign tumor is generally not sufficient, and the specific histological subtype should be determined from the biopsy to guide therapeutic decision-making. However, to our knowledge, the optimal biopsy procedure for the diagnosis of soft tissue and bone sarcomas is not present in current literature. SB has historically been considered to achieve diagnostic outcomes superior to those of CNB, but the difference in diagnostic accuracy between them was reportedly not significant.

Evidence to recommend one biopsy procedure over another. Thus far, because of the low risk of morbidity and simplicity of the percutaneous procedure, CNB appears to be more suitable as the first choice. This lack of evidence prompted us to conduct a meta-analysis to derive more robust estimates of the diagnostic yield of CNB and to directly compare the diagnostic accuracies between CNB and SB. The present meta-analysis used a large sample of data on soft tissue and bone sarcomas and showed that there was an approximate 84% concordance between the CNB results and SB findings.

Certain anatomical locations and histological subtypes have been associated with the diagnostic difficulty of needle biopsies. Vertebral lesions and deep musculoskeletal tumors as well as myxoid and round-cell histologies have been associated with low-diagnostic accuracy. In addition, certain technical factors such as image-guided needle biopsy targeting representative and viable tumor regions improve the biopsy quality and diagnostic yield. Other recent studies using image-guided percutaneous biopsy provide superior spatial localization of the tumors. SB appears to be the most accurate technique, but there is not enough evidence to recommend one biopsy procedure over another. Thus far, because of the low risk of morbidity and simplicity of the percutaneous procedure, CNB appears to be more suitable as the first choice. This lack of evidence prompted us to conduct a meta-analysis to derive more robust estimates of the diagnostic yield of CNB and to directly compare the diagnostic accuracies between CNB and SB. The present meta-analysis used a large sample of data on soft tissue and bone sarcomas and showed that there was an approximate 84% concordance between the CNB results and SB findings.

Certain anatomical locations and histological subtypes have been associated with the diagnostic difficulty of needle biopsies. Vertebral lesions and deep musculoskeletal tumors as well as myxoid and round-cell histologies have been associated with low-diagnostic accuracy. In addition, certain technical factors such as image-guided needle biopsy targeting representative and viable tumor regions improve the biopsy quality and diagnostic yield. Other recent studies using image-guided percutaneous biopsy provide superior spatial localization of the tumors. SB appears to be the most accurate technique, but there is not enough evidence to recommend one biopsy procedure over another. Thus far, because of the low risk of morbidity and simplicity of the percutaneous procedure, CNB appears to be more suitable as the first choice. This lack of evidence prompted us to conduct a meta-analysis to derive more robust estimates of the diagnostic yield of CNB and to directly compare the diagnostic accuracies between CNB and SB. The present meta-analysis used a large sample of data on soft tissue and bone sarcomas and showed that there was an approximate 84% concordance between the CNB results and SB findings.

Study	Risk of bias	Applicability concerns					
Patient selection	Index test	Reference standard	Flow timing	Patient selection	Index test	Reference standard	
Trieu et al	unclear	low	unclear	low	low	low	low
Colletti et al	unclear	low	unclear	low	low	low	low
Ferguson et al	unclear	low	unclear	low	low	low	low
Coran et al	unclear	low	unclear	low	low	low	low
Noebauer et al	low	low	unclear	low	low	low	low
Layfield et al	unclear	low	unclear	low	low	low	low
Mittion et al	unclear	low	unclear	low	low	low	low
No et al	unclear	low	unclear	low	low	low	low
Kiatisevi et al	low	low	unclear	low	low	low	low
Josh et al	low	low	unclear	low	low	low	low
Seng et al	unclear	low	unclear	low	low	low	low
Rimondi et al	unclear	low	unclear	low	low	low	low
Verheijen et al	unclear	low	unclear	low	low	low	low
Manchi et al	unclear	low	unclear	low	low	low	low
Strauss et al	low	low	unclear	low	low	low	low
Kasraean et al	unclear	low	low	low	low	low	low
Sung et al	unclear	low	unclear	low	low	low	low
Narvani et al	low	low	unclear	low	low	low	low
Mitsuyoshi et al	unclear	low	unclear	low	low	low	low
Lopez et al	unclear	low	unclear	low	low	low	low
Yang et al	unclear	low	unclear	low	low	low	low
Liu et al	low	low	unclear	low	low	low	low
Ray et al	unclear	low	unclear	low	low	low	low
Issakov et al	unclear	low	unclear	low	low	low	low
Hau et al	unclear	low	unclear	low	low	low	low
Torrani et al	unclear	low	unclear	low	low	low	low
Hoeben et al	unclear	low	unclear	low	low	low	low
Willman et al	unclear	low	unclear	low	low	low	low
Pramesh et al	unclear	low	unclear	low	low	low	low
Yao et al	low	low	unclear	low	low	low	low
Dupuy et al	unclear	low	unclear	low	low	low	low
Koscick et al	unclear	low	unclear	low	low	low	low
Table 3. Our analyses did not show any significant influential factors other than the operator type (surgeon or radiologist). This finding indicates that radiologists are more skillful in performing CNB than surgeons when assessed on the ability to predict the final histological diagnosis. This could be because radiologists generally have more experience in some techniques of interventional radiology, such as radiofrequency ablation, embolization, and cryosurgery under radiological guidance. In general, biopsies are technically challenging, and if not performed at a high skill level, the biopsy results can compromise patient outcomes. Therefore, biopsies should only be performed by expert radiologists at referral sarcoma centers to improve diagnostic yield and minimize complications.

Although the present study was based on thorough literature searches and careful data extraction, some limitations should be...
considered. First, compared with the larger sample size used for the meta-analysis of CNB diagnostic accuracy, the sample sizes of the meta-regression analysis regarding operator and the comparison of the diagnostic accuracy between CNB and SB were small. Further studies using larger sample sizes are thus required. Second, the heterogeneity of pooled estimates of diagnostic accuracy and the odds ratio between CNB and SB were high and medium, respectively. I^2 represents the percentage of total variability in estimates generated from genuine between-study heterogeneity rather than by random sampling error. The observed heterogeneity may be attributable to numerous other influential factors including location, size, histological subtypes, and other technical procedures. We were unable to collect sufficient data to detect significant differences among the mentioned parameters. In addition, more studies are warranted to evaluate the differences in morbidities, cost, and procedure to determine the optimal biopsy procedure between CNB and SB. Third, bias could not be completely ruled out, although we attempted to judge as fairly as possible. The two reviewers performed this study in an independent blinded manner to minimize bias in the study selection and data extraction. Furthermore, according to the QUADAS-2 tool for methodological quality, all studies were rated as having 5 or more “low” responses and no “high” response in the 7 domains. Prospective randomized clinical trials comparing the diagnostic accuracies between CNB and SB in soft tissue and bone sarcomas would be the optimal method to completely exclude all potential biases, including selection, information, and publication bias.

5. Conclusion

In conclusion, the meta-analysis of this study indicated that the concordance rate between the CNB results and final histological diagnoses was approximate 84%, and suggested that biopsies performed by radiologists are more reliable than those performed by surgeons.

Acknowledgments

The authors would like to thank www.enago.com for the English language review.

Author contributions

TK, MO, and NA designed the analysis and had full access to the raw data. TK, FT, and MPJ collected the data and performed the statistical analysis. All authors had the opportunity to review the analysis plan and outcome, participated in writing the article, and provided final approval.
Figure 4. Forest plot of OR for diagnostic accuracy between core needle biopsy and surgical biopsy. The square size of individual studies represents the weight of the study. Error bars indicate 95% CIs of pooled OR. CIs = confidential intervals, OR = odds ratio.

Kubo et al. Medicine (2018) 97:29

Conceptualization: Tadahiko Kubo, Mitsuo Ochi, Nobuo Adachi.
Data curation: Taisuke Furuta, Muhammad P. Johan, Tomohiko Sakuta, Nobuo Adachi.
Formal analysis: Mitsuo Ochi.
Funding acquisition: Tadahiko Kubo.
Investigation: Taisuke Furuta, Muhammad P. Johan, Tomohiko Sakuta, Mitsuo Ochi, Nobuo Adachi.
Writing – original draft: Tadahiko Kubo.
Writing – review & editing: Muhammad P. Johan, Tomohiko Sakuta, Mitsuo Ochi, Nobuo Adachi.

References

[1] Fletcher CD, Hogendoorn P, Mertens F, et al. WHO Classification of Tumours of Soft Tissue and Bone. 4th ed. IARC Press, Lyon, France 2013.
[2] Doyle LA. Sarcoma classification: an update based on the 2013 World Health Organization Classification of Tumors of Soft Tissue and Bone. Cancer 2014;120:1763–74.
[3] Patel SR. Fifty years of advances in sarcoma treatment: moving the needle from conventional chemotherapy to targeted therapy. Am Soc Clin Oncol Educ Book 2014;259–62.
[4] Ray-Coquard I, Le Cesne A. A role for maintenance therapy in managing sarcoma. Cancer Treat Rev 2012;38:368–78.
[5] Trieu J, Sinnathamby M, Di Bella C, et al. Biopsy and the diagnostic evaluation of musculoskeletal tumours: crucial but often missed in the 21st century. ANZ J Surg 2016;86:131–8.
[6] Traina F, Errani C, Toscano A, et al. Current concepts in the biopsy of musculoskeletal tumors: AAOS exhibit selection. J Bone Joint Surg Am 2015;97:a77.
[7] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
[8] Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:329–36.
[9] Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health 2014;72:39.
[10] Trieu J, Schlacht SM, Choong PF. Diagnosing musculoskeletal tumours: how accurate is CT-guided core needle biopsy? Eur J Surg Oncol 2016;42:1049–56.
[11] Collett RM, Traness GA, Whetsell CR, et al. High diagnostic accuracy of core needle biopsy of soft tissue tumors: an institutional experience. Diag Cytopathol 2016;44:291–8.
[12] Ferguson KB, McGlyn J, Jane M, et al. Outcome of image-guided biopsies: retrospective review of the West of Scotland musculoskeletal oncology service. Surgeon 2016;14:87–90.
[13] Coran A, Di Maggio A, Rastrelli M, et al. Core needle biopsy of soft tissue tumors, CEUS vs US guided: a pilot study. J Ultrasound 2015;18:335–42.
[14] Noebauer-Huhmann IM, Amann G, Kressm M, et al. Use of diagnostic dynamic contrast-enhanced (DCE)-MRI for targeting of soft tissue tumour biopsies at 3T: preliminary results. Eur Radiol 2015;25:2041–8.
[15] Layfield LJ, Schmidt RL, Sangle N, et al. Diagnostic accuracy and clinical utility of biopsy in musculoskeletal lesions: a comparison of fine-needle aspiration, core, and open biopsy techniques. Diag Cytopathol 2014;42:476–86.
[16] Mitton B, Seeger LL, Eckardt MA, et al. Image-guided percutaneous core needle biopsy of musculoskeletal tumors in children. J Pediatr Hematol Oncol 2014;36:337–41.
[17] Nosh MR, Abu Shady HM. Initial CT-guided needle biopsy of extremity skeletal lesions: diagnostic performance and experience of a tertiary musculoskeletal center. Eur J Radiol 2014;83:360–5.
[18] Kiatsvei P, Thanakin V, Sukunthanak B, et al. Computed tomography-guided core needle biopsy versus incisional biopsy in diagnosing musculoskeletal lesions. J Orthop Surg (Hong Kong) 2013;21:204–8.
[19] Joshi A, Magar SR, Chaud P, et al. Tru-cut biopsy as the initial method of tissue diagnosis in bone tumors with soft tissue extension. Indian J Orthop 2013;47:195–9.
[20] Seng C, Png W, Tan MH. Accuracy of core needle biopsy for musculoskeletal tumours. J Orthop Surg (Hong Kong) 2013;21:92–5.
[21] Rimondi E, Rossi G, Bartalena T, et al. Percutaneous CT-guided biopsy of the musculoskeletal system: results of 2027 cases. Eur J Radiol 2011;77:34–42.
[22] Verbeijen P, Witjes H, van Gorp J, et al. Current pathology work-up of extremity soft tissue sarcomas, evaluation of the validity of different techniques. Eur J Surg Oncol 2010;36:95–9.
De Marchi A, Brach del Prever EM, Linari A, et al. Accuracy of core-needle biopsy after contrast-enhanced ultrasound in soft-tissue tumours. Eur Radiol 2010;20:2740–8.

Strauss DC, Qureshi YA, Hayes AJ, et al. The role of core needle biopsy in the diagnosis of suspected soft tissue tumours. J Surg Oncol 2010;102:523–9.

Kasraeian S, Allison DC, Ahlmann ER, et al. A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses. Clin Orthop Relat Res 2010;468:2992–3002.

Sung KS, Seo SW, Shon MS. The diagnostic value of needle biopsy for musculoskeletal lesions. Int Orthop 2009;33:1701–6.

Narvani AA, Tsiridis E, Sathuddin A, et al. Does image guidance improve accuracy of core needle biopsy in diagnosis of soft tissue tumours? Acta Orthop Belg 2009;75:239–44.

Mitsuyoshi G, Nasto N, Kawai A, et al. Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol 2006;94:21–7.

López JL, Del Cura JL, Zabala R, et al. Usefulness and limitations of ultrasound-guided core biopsy in the diagnosis of musculoskeletal tumours. APMS 2005;11:333–60.

Yang YJ, Damron TA. Comparison of needle core biopsy and fine-needle aspiration for diagnostic accuracy in musculoskeletal lesions. Arch Pathol Lab Med 2004;128:759–64.

Liu JQ, Chou HJ, Chen WM, et al. Sonographically guided core needle biopsy of soft tissue neoplasms. J Clin Ultrasound 2004;32:294–8.

Ray-Coquard I, Ranchère-Vince D, Thiesse P, et al. Evaluation of core needle biopsy as a substitute to open biopsy in the diagnosis of soft-tissue masses. Eur J Cancer 2003;39:2021–5.

Issakov J, Flusser G, Kollender Y, et al. Computed tomography-guided core needle biopsy for bone and soft tissue tumors. Isr Med Assoc J 2003;5:28–30.

Hau A, Kim I, Kattapuram S, et al. Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skeletal Radiol 2002;31:349–53.

Torriani M, Eichebehere M, Amstalden E. Sonographically guided core needle biopsy of bone and soft tissue tumors. J Ultrasound Med 2002;21:275–81.

Hoeber I, Spillane AJ, Fisher C, et al. Accuracy of biopsy techniques for limb and limb girdle soft tissue tumors. Ann Surg Oncol 2001;8:80–7.

Willman JH, White K, Coffin CM. Pediatric core needle biopsy: strengths and limitations in evaluation of masses. Pediatr Dev Pathol 2001;4:46–52.

Pramesh CS, Deshpande MS, Pardiwala DN, et al. Core needle biopsy for bone tumours. Eur J Surg Oncol 2001;27:668–71.

Yao L, Nelson SD, Seeger LL, et al. Primary musculoskeletal neoplasms: effectiveness of core-needle biopsy. Radiology 1999;212:682–6.

Koscick RL, Petersilge CA, Makley JT, et al. CT-guided fine needle aspiration and needle core biopsy of skeletal lesions. Complementary diagnostic techniques. Acta Cytol 1998;42:697–702.

Dupuy DE, Rosenberg AE, Panyaratabandhu T, et al. Accuracy of CT-guided needle biopsy of musculoskeletal neoplasms. AJR Am J Roentgenol 1998;171:759–62.

Pohlke F, Kirchhoff C, Lenze U, et al. Percutaneous core needle biopsy versus open biopsy in diagnostics of bone and soft tissue sarcoma: a retrospective study. Eur J Med Res 2012;17:29 doi: 10.1186/2047-783X-17-29.