RETRACTED: Meta-analysis of Randomized Trials of Ivermectin to Treat SARS-CoV-2 Infection

Andrew Hill,1 Anna Garratt,2 Jacob Levi,3 Jonathan Falconer,4 Leah Ellis,5 Kaitlyn McCann,5 Victoria Pilkington,6 Ambar Gavi,5 Junzheng Wang,5 and Hannah Wentzel7

1Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK, 2Department of Infectious Diseases, University Health Board, Cardiff, UK, 3Department of Intensive Care, University Hospital of Wales, Cardiff, UK, 4Department of Infectious Diseases, University Hospital of Wales, Cardiff, UK, 5Department of Infectious Diseases, Chelsea and Westminster Hospital, Imperial NHS Trust, London, UK, and 6Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK

Ivermectin is an antiparasitic drug being investigated for repurposing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ivermectin showed in vitro activity against SARS-COV-2, but only at high concentrations. This meta-analysis investigated ivermectin in 23 randomized clinical trials (3349 patients) identified through systematic searches of PUBMED, EMBASE, MedRxiv, and trial registries. The primary meta-analysis was carried out by excluding studies at a high risk of bias. Ivermectin did not show a statistically significant effect on survival (risk ratio [RR], 0.90; 95% CI, 0.57 to 1.42; P = .36) or hospitalizations (RR, 0.63; 95% CI, 0.36 to 1.11; P = .11). Ivermectin displayed a borderline significant effect on duration of hospitalization in comparison with standard of care (mean difference, –1.14 days; 95% CI, –2.27 to –0.00; P = .05). There was no significant effect of ivermectin on time to clinical recovery (mean difference, –0.57 days; 95% CI, –1.31 to 0.17; P = .13) or binary clinical recovery (RR, 1.19; 95% CI, 0.94 to 1.50; P = .15). Currently, the World Health Organization recommends the use of ivermectin only outside clinical trials. A network of large clinical trials is in progress to validate the results seen to date.

Keywords. COVID-19; ivermectin; repurposed; SARS-CoV-2.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to grow, with >550,000 new infections and >9000 deaths recorded worldwide daily in July 2021 [1]. Protective vaccines have been developed, but current supplies are too low to cover global demand in the coming months [2]. Researchers worldwide are urgently looking for interventions to prevent new infections, prevent disease progression, and lessen disease severity for those already infected.

While research on new therapeutic agents for coronavirus disease 2019 (COVID-19) is key, there is also great interest in evaluating the potential of already existing medicines against COVID-19, and many clinical trials are in progress to “repurpose” drugs normally indicated for other diseases. The known safety profiles, shortened development timelines, and well-established markets (with low price points and higher capacity to deliver at scale) for most of the already existing compounds proposed for COVID-19 are particularly advantageous compared with new drug discovery in a pandemic situation. Three repurposed anti-inflammatory drugs have shown significant survival benefits to date: the corticosteroid dexamethasone in the UK RECOVERY trial [3] and the interleukin-6 (IL-6) receptor antagonist drugs tocilizumab and sarilumab in the REMAP-CAP trial and the RECOVERY trial [4, 5]. Other repurposed treatments such as hydroxychloroquine, lopinavir/ritonavir, remdesivir, and interferon-beta have shown no significant survival benefit in large randomized trials [3, 6] despite initial reports of efficacy, underscoring the need for caution when interpreting early clinical trial data.

Dexamethasone is recommended for use by the World Health Organization (WHO) and has proven survival benefits for oxygen-dependent patients with COVID-19, while tocilizumab and sarilumab improve survival for patients in intensive care [3, 4]. Preliminary data suggest that nitazoxanide and budesonide may have a role in mild infection [7, 8]. However, there are no approved treatments for patients with mild SARS-CoV-2 infection, either to prevent disease progression or reduce viral transmission. Treatments increasing the viral clearance rate may reduce the risk of onward transmission, but this requires empirical demonstration.

Ivermectin is a well-established antiparasitic drug used worldwide for a broad number of parasites and also for topical use against rosacea. The antiviral activity of ivermectin has been demonstrated recently for SARS-CoV-2 in Vero/hSLAM cells [9]. However, the concentrations required to inhibit viral
replication in vitro (EC$_{50}$: 2.2–2.8 μM; EC$_{90}$: 4.4 μM) are not achieved systemically after oral administration of the drug to humans at clinically approved doses [9, 10].

While ivermectin is estimated to accumulate in lung tissues (2.67 times more than plasma) [11], this is also unlikely to be sufficient to maintain target concentrations for pulmonary antiviral activity [10, 12]. Notwithstanding, ivermectin is usually present as a mixture of 2 agents and, although mainly excreted unchanged in humans, has 2 major metabolites [13]. Current data are insufficient to determine whether the minor form or a circulating metabolite has higher direct potency against SARS-CoV-2, but it seems likely that ivermectin would need to be profoundly more potent than the reported values.

Ivermectin has also demonstrated immunomodulatory and anti-inflammatory mechanisms of action in preclinical models of several other diseases. In-vitro studies have demonstrated that ivermectin suppresses production of the inflammatory mediators nitric oxide and prostaglandin E2 [14]. Furthermore, avermectin (from which ivermectin is derived) significantly impairs pro-inflammatory cytokine secretion (IL-1β and tumor necrosis factor [TNF]–α) and increases secretion of the immunoregulatory cytokine IL-10 [15]. Ivermectin also reduced TNF-α, IL-1, and IL-6 and improved survival in mice given a lethal dose of lipopolysaccharide [16]. Preclinical evidence to support these immunomodulatory and anti-inflammatory mechanisms of action have also been generated in other murine models [17, 18]. Finally, in Syrian golden hamsters infected with SARS-CoV-2, subcutaneous ivermectin demonstrated a reduction in the IL-6/IL-10 ratio in lung tissues and prevented pathological deterioration [19]. Ultimately, various potential mechanisms of action for ivermectin against COVID-19 exist and are undergoing further investigation, as recently summarized in a review article [20].

At standard doses of 0.2–0.4 mg/kg for 1–2 days, ivermectin has a good safety profile and has been distributed to billions of patients worldwide in mass drug administration programs. A recent meta-analysis found no significant difference in adverse events in those given higher doses of ivermectin, of up to 2 mg/kg, and those receiving longer courses, of up to 4 days, compared with those receiving standard doses [21]. Ivermectin is not licensed for pregnant or breast-feeding women or children <15 kg. The WHO Guidelines Group found that in 16 randomized controlled trials (RCTs) with 2407 participants ivermectin improved mortality outcomes compared with control but rated the quality of available evidence as low or very low [22]. Currently, the WHO does not recommend the use of ivermectin outside clinical trials.

The objective of this systematic review and meta-analysis was to combine available results from new published or unpublished randomized trials of ivermectin in SARS-CoV-2 infection to inform current guidelines.

METHODS

This systematic review and meta-analysis was conducted according to PRISMA guidelines. A systematic search of PUBMED and EMBASE was conducted to identify RCTs evaluating treatment with ivermectin for SARS-CoV-2-infected patients. Clinical trials with no control arm or those evaluating prevention of infection were excluded, alongside nonrandomized trials and case–control studies. Key data extracted included baseline characteristics (age, sex, weight, oxygen saturation, stage of infection), changes in inflammatory markers, viral suppression after treatment, clinical recovery, hospitalization, and survival. Data were extracted and cross-checked by 2 independent reviewers (H.W. and L.E.).

Search Strategy and Selection Criteria

RCTs were eligible for inclusion if they compared an ivermectin-based regimen with a comparator or standard of care (SOC) for the treatment of SARS-CoV-2 infection. The PRISMA checklist, PRISMA flow diagram, the search terms, and inclusion/exclusion criteria used are detailed in Supplementary Figure 1 and Supplementary Tables 1, 2, and 3.

Registry databases were searched through July 20, 2021. ClinicalTrials.gov [23] was searched using the keywords

Study	Country	Sample Size	Daily Dose	Duration	Patients	Ivermectin Arm	Comparator Arm
Mahmud et al. [26]a	Bangladesh	363	12 mg	1 d (DB)	Mild/mode	Ivermectin + doxycycline + SOC	Placebo + SOC
Mohan et al. [29]a	India	125	0.2–0.4 mg/kg (elixir)	1 d (DB)	Mild/mode	Ivermectin + SOC	Placebo
SAINT [30]a	Spain	24	0.4 mg/kg	1 d (DB)	Mild/mode	Ivermectin	Placebo
Gonzalez [31]a	Mexico	106	12 mg	1 d (DB)	Severe	Ivermectin	Placebo
Rezai et al. [32]a	Iran	69	0.2 mg/kg	1 d (DB)	Moderate/severe	Ivermectin + SOC	SOC
Poddar et al. [33]a	Bangladesh	62	0.2 mg/kg	1 d (OL)	Mild	Ivermectin + SOC	SOC
Asghar et al. [34]a	Pakistan	86	12 mg	1 d (OL)	Mild/mode	Ivermectin + SOC	SOC
Chowdhury [35]b	Bangladesh	116	0.2 mg/kg	1 d (OL)	PCR positive	Ivermectin + doxycycline	HCO + azithromycin

Abbreviations: DB, double-blind; HCQ, hydroxychloroquine; OL, open-label; PCR, polymerase chain reaction; SB, single-blind; SOC, standard of care.

Studies were evaluated as having fair or good overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.
“COVID,” “SARS-CoV-2,” and “ivermectin” to identify studies. The WHO International Clinical Trials Registry Platform (ICTRP) was accessed via the COVID-NMA Initiative’s mapping tool [24] and Stanford University’s Coronavirus Antiviral Research Database (CoV-RDB) [25] to identify additional trials listed on other national and international registries. Literature searches via PubMed, Embase, and the preprint servers medRxiv and ResearchSquare were conducted to identify published studies. Duplicate registrations, nonrandomized studies, and prevention studies were excluded following discussion between the authors.

Additionally, the research teams conducting unpublished clinical trials were contacted and requested to join regular international team meetings from December 2020 to July 2021. All results available from eligible unpublished studies were also included in this systematic review.

All of the clinical trials included in this meta-analysis were approved by local ethics committees, and all patients gave informed consent.

The primary outcome was all-cause mortality from randomization to the end of follow-up. Secondary outcomes included time to viral clearance, polymerase chain reaction (PCR) negativity at day 7, clinical recovery, time to clinical recovery, mechanical ventilation, duration of hospitalization, and number of hospitalizations. Changes in inflammatory markers, viral suppression, clinical recovery, and hospitalization were also summarized for individual trials where end points could not be combined.

We did include studies that were preprints (not yet published in peer-reviewed journals) after completing a risk of bias assessment and discussions with the investigators. However, 2 studies that were initially included were later removed due to concerns about the quality of data.

Data Analysis

Statistical analyses for all primary outcomes, time to viral clearance, and clinical recovery were conducted using published data summaries. For the mortality outcome, clinical trials with at least 1 death reported were included in this analysis. Furthermore, any hospitalization within 12 hours of randomization was excluded. Treatment effects were expressed as risk ratios (RRs) for binary outcomes and mean differences (MDs) for continuous outcomes. For each outcome, we pooled the individual trial statistics using the random-effects inverse variance model; a continuity correction of 0.5 was applied to treatment arms with no deaths. Heterogeneity was evaluated by I^2. The significance threshold was set at 5% (2-sided), and all analyses were conducted using Revman 5.3.

All studies included in this analysis were assessed for risk of bias using the Cochrane Collaboration Risk of Bias standardized assessment tool [26]. The outcome of this assessment is given in Supplementary Table 3. The results from this assessment were compared with the risk of bias evaluation from

Table 2. Trial Summaries. Ivermectin Trials With Multiday Dosing

Study	Country	Sample Size	Comparator Arm	Duration	Ivermectin Arm	Placebo	Placebo + LPV/r (SOC)
Zoni et al. [36]	Argentina	501	12–24 mg	2 d (DB)	600	14 mg	2 d (DB)
Lopez-Medina et al. [37]	Argentina	398	0.6 mg/kg	5 d (QL)	398	14 mg	5 d (QL)
Krolewics et al. [38]	Argentina	45	0.6 mg/kg	2 wk (QL)	45	14 mg	3 d (QL)
Babalola et al. [39]	Nigeria	60	0.1–0.2 mg/kg	3 d (QL)	60	14 mg	3 d (QL)
Foresta et al. [40]	Brazil	168	0.1 mg/kg	3 d (QL)	168	14 mg	3 d (QL)
Kirti et al. [41]	Egypt	112	0.4 mg/kg	3 d (QL)	112	12 mg	3 d (QL)
Abd Elsalam et al. [42]	Egypt	100	12 mg	3 d (QL)	100	0.4 mg/kg	3 d (QL)
Schwartz et al. [43]	Bulgaria	100	0.6 mg/kg	3 d (QL)	100	14 mg	3 d (QL)
Ahmed et al. [44]	Pakistan	100	0.2 mg/kg	3 d (QL)	100	0.4 mg/kg	3 d (QL)
Chahla et al. [45]	Iran	250	0.2 mg/kg	3 d (QL)	250	1 mg	3 d (QL)
Charlton et al. [46]	Bangladesh	250	0.2 mg/kg	3 d (QL)	250	1 mg	3 d (QL)
Hashim et al. [47]	Bangladesh	250	0.2 mg/kg	3 d (QL)	250	1 mg	3 d (QL)
Chachar et al. [48]	Bangladesh	250	0.2 mg/kg	3 d (QL)	250	1 mg	3 d (QL)
Niaee et al. [49]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Niaee et al. [50]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Schwartz et al. [51]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Ahmed et al. [52]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Niaee et al. [53]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Schwartz et al. [54]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Ahmed et al. [55]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Niaee et al. [56]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Schwartz et al. [57]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Ahmed et al. [58]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Niaee et al. [59]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Schwartz et al. [60]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Ahmed et al. [61]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Niaee et al. [62]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Schwartz et al. [63]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Ahmed et al. [64]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Niaee et al. [65]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)
Schwartz et al. [66]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Ahmed et al. [67]	Bangladesh	100	0.2 mg/kg	3 d (QL)	100	1 mg	3 d (QL)
Niaee et al. [68]	Pakistan	180	0.2 mg/kg	3 d (QL)	180	1 mg	3 d (QL)

Abbreviations: DB, double-blind; FAVI/HQ/AZI, favipiravir/hydroxychloroquine/azithromycin; LPV/r, lopinavir/ritonavir; OL, open-label; PCR, polymerase chain reaction; SB, single-blind; SOC, standard of care.

Studies were evaluated as having fair or good overall quality of evidence using the Cochrane Collaboration Risk of Bias Tool. See Supplementary Table 3 for further details.
other meta-analyses. Each study was assessed for risk of bias for the primary endpoint, viral load, and survival outcomes. The primary endpoint in the trials tended to be clinical recovery, which is more subjective and likely to be influenced by knowledge of treatment arms. An assessment was also carried out on more objective endpoints including survival and viral load, which are less likely to be influenced by this bias. The baseline characteristics of participants were evaluated with chi-square tests to check for imbalances between the treatment arms due to ineffective randomization. Where information was not available in published papers, clinical trial investigators were proactively contacted to inform the risk of bias analysis. The primary meta-analysis was performed by excluding studies at a high risk of bias, consistent with methods used in other similar meta-analyses. Eight high-risk studies were excluded, for example, the Niaee et al. [27] study, which had significant imbalances in baseline characteristics between treatment arms. A supplementary analysis including studies at high risk of bias is provided in the Supplementary Data (Supplementary Figure 2A–H).

RESULTS

Twenty-three RCTs involving a total of 3349 participants were included in this meta-analysis. The sample sizes of each trial ranged from 24 to 501 participants. Of the 23 included studies, 14 were published papers, 8 were available as preprints, and 1 included in this meta-analysis. The sample sizes of each trial were reported results via a clinical trial report.

Overall, 9 trials investigated ivermectin as a single dose (Table 1) [28–35], 15 trials investigated multidose dosing up to 7 days (Table 2) [27, 36–49], of which 4 trials were dose-ranging [27, 36, 39, 44]. In the included trials, ivermectin was largely investigated in mild/moderate participants. Overall, 16 trials were either single or double-blinded and 7 were open-label.

Evaluation of Studies

An evaluation of the quality of the studies included in this meta-analysis was conducted according to the Cochrane Collaboration tool to assess the risk of bias across the following outcomes: primary endpoint, viral load, and survival. For the primary outcome assessment, 8/23 (34.8%) studies were assessed as high risk of bias (Supplementary Table 3A). However, in assessments of more objective outcomes, including viral load and mortality, the number of high-risk studies was lower. In the PCR assessment, 4/14 (28.6%) of the studies were assessed as high risk (Supplementary Table 3B). In the survival assessment, 3/11 (27.3%) of the studies were assessed as high risk of bias (Supplementary Table 3C).

A study in Egypt [50] reported significant improvement in clinical recovery and mortality following treatment with ivermectin and has been cited in multiple meta-analyses. However, on July 15, 2021, the Elgazzar et al. paper was retracted from the preprint server ResearchSquare due to “ethical concerns.” There was evidence reported showing that instances of plagiarism and serious data inconsistencies were discovered in their paper. The most significant flaw detected was that the data for ~79 participants were nearly identical to the data of other participants. These concerns resulted in the exclusion of the Elgazzar paper from this meta-analysis. Similarly, a published study conducted in Lebanon by Raad et al [51], which reported significant effects of ivermectin on hospitalisation and mortality, is currently being investigated. An analysis of their raw database suggested that data for multiple participants were duplicates. As a result of these inconsistencies, the Raad study was also excluded from this meta-analysis.

Effects on Inflammatory Markers

Three trials provided results of the effect of ivermectin on inflammatory markers including C-reactive protein (CRP), ferritin, and D-dimer (Table 3). Two of these trials demonstrated significant reductions in CRP compared with control. However, the significant changes in inflammatory markers were mainly seen in studies at high risk of bias.

Effects on Viral Clearance

Three different endpoints were used to analyze viral clearance: the percentage of patients undetectable on a set day (Table 4), the number of days from randomization to negativity (Table 5), and other measures such as cycle time (Ct) values and dose–response correlations (Table 6). The Kirti [43] and Okumus [47] trials included viral load analysis only in a subset of patients. The effect of ivermectin on viral clearance was most pronounced in the randomized trials evaluating doses of up to 5 days of ivermectin using doses of 0.4 mg/kg. Several studies showed no statistically significant effect of ivermectin on viral clearance [29, 34, 36]. There were inconsistent conclusions on viral clearance.

In a meta-analysis of viral clearance with subgroups of dose duration, there were significant differences in time to viral clearance in favor of ivermectin (mean difference, −1.98 days; 95% CI, −3.41 to −0.55; P = .007) (Figure 1A). In an overall analysis including studies at high risk of bias, similar effects of ivermectin on time to viral clearance were seen (Supplementary Figure 2A). However, in another analysis, ivermectin did not have a statistically significant effect on viral clearance at day 3 (RR, 0.99; 95% CI, 0.84 to 1.15; P = .86) (Figure 1B), day 7 (RR, 1.19; 95% CI, 0.93 to 1.51; P = .16) (Figure 1C), or day 10 (RR, 1.23; 95% CI, 0.89 to 1.70; P = .21) (Figure 1D). On including studies at a high risk of bias, ivermectin had a borderline significant effect on viral clearance at day 7 (RR, 1.33; 95% CI, 1.01 to 1.74; P = .04) (Supplementary Figure 2C), but not at days 3 and 10 (Supplementary Figures 2B and 2D).
Table 3. Changes in Inflammatory Markers

	CRP mg/L		Ferritin, μg/L		D-dimer, mg/L				
	Ivermectin	Control	P Value	Ivermectin	Control	P Value	Ivermectin	Control	P Value
Okumus, Turkey (n = 60)									
Baseline	340.3	215.0	<.01	683	747	1.3	1.3		
Day 5	51.8	194.3	<.01	875	1028	0.12	5.9	3.6	0.22
Day 10	36.1	92.4	<.05	495	1207	<.01	0.7	1.5	<.05
Chaccour, Spain (n = 24)									
Baseline	3.5	3.0		165	156	0.3	0.3		
Day 7	1.0	1.1	n.s.	125	199	0.3	0.3	n.s.	
Day 14	0.8	0.6	n.s.	152	145	0.3	0.3	n.s.	
Ahmed, Bangladesh (n = 45, ivermectin 5 d)									
Baseline	22.0	29.0		269	222	-	-		
Day 7	3.0	14.0	<.05*	211	218	0.3	0.3	n.s.	
Ahmed, Bangladesh (n = 46, ivermectin 1 d)									
Baseline	26.0	29.0		259	222	-	-		
Day 7	11.0	14.0	0.07*	213	218	0.17	0.17		

Normal ranges: CRP (<10 mg/L), ferritin (11–336 μg/L), d-dimer (<0.5 mg/L).
Abbreviation: CRP C-reactive protein.
*P value compares within-group changes from baseline to end point of ivermectin group.
**P value shows significance of total changes from baseline. All other P values compare ivermectin vs control.
*Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.
*Median presented; all other data mean.
*“n.s.” was used when no statistically significant difference was found but the actual P value was reported by the individual authors and could not be calculated by the current authors.

Effects on Clinical Recovery and Duration of Hospitalization
Definitions of clinical recovery varied across trials, as shown in Table 7, 8 and 9. In Table 7, 3 of the 6 trials showed significantly faster time to clinical recovery on ivermectin compared with control. In 3 trials, ivermectin showed significantly shorter duration of hospitalization compared with control (Table 8).

In a meta-analysis of clinical recovery with subgroups of dose duration, ivermectin had no significant effect on time to clinical recovery (mean difference, –0.57; 95% CI, –1.31 to 0.21; P = .13) (Figure 1E). Additionally, there was no significant difference in binary clinical recovery in an analysis with subgroups of dose duration (RR, 1.19; 95% CI, 0.94 to 1.50; P = .15) (Figure 1F). However, in the supplementary analysis including studies at a high risk of bias, ivermectin showed a significant improvement in time to clinical recovery (mean difference, –1.58; 95% CI, –2.80 to –0.35; P = .01) (Supplementary Figure 2E) and binary clinical recovery (RR, 1.14; 95% CI, 1.04 to 1.25; P = .006) (Supplementary Figure 2F).

Ivermectin demonstrated a borderline significant effect on duration of hospitalization, in comparison with control (mean difference, –1.14 days; 95% CI, –2.27 to –0.00; P = .05) (Figure 1G). Ivermectin did not have a statistically significant effect on risk of hospitalization compared to control (RR, 0.63; 95% 0.25).

Table 4. Effects of Ivermectin on Viral Clearance

Study	Country, No.	Daily Dose	Duration	Viral Load End Point	Result IVM vs Control, %	P Value
No. detectable or undetectable (%)						
Mahmoud et al.	Bangladesh, n = 363	12 mg	1 d (DB)	Undetectable day 14	92 vs 80	<.001
Mohan et al.	India, n = 125	0.2 mg/kg Elixir	1 d	Undetectable day 5	35 vs 31	.3
Mohan et al.	India, n = 125	0.4 mg/kg Elixir	1 d	Undetectable day 5	48 vs 31	.3
Kirti et al.	India, n = 112	12 mg	2 d	Undetectable day 6	24 vs 32	.35
Schwartz et al.	Israel, n = 100	12–15 mg	3 d (DB)	Day 10 PCR neg Ct >30	85 vs 69	.02
Zoni et al. (IVERCOR)	Argentina, n = 501	12–24 mg	2 d (DB)	Day 3 (±1) PCR neg	47.08 vs 49.79	.55
Zoni et al. (IVERCOR)	Argentina, n = 501	12–24 mg	2 d (DB)	Day 12 (±2) PCR neg	89.08 vs 92.47	.29
Podder et al.*	Bangladesh, n = 62	0.2 mg/kg	1 d (OL)	Day 10 PCR neg	90 vs 95	>.05
Asghar et al.*	Pakistan, n = 86	0.2 mg/kg	1 d	Undetectable day 7	90 vs 44	<.001

Abbreviations: Ct, cycle threshold; DB, double-blind; IVM, ivermectin; OL, open-label; PCR, polymerase chain reaction.
*Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.
CI, 0.36 to 1.11; \(P = .11 \), Figure 1H). However, this analysis involved only 3 trials in 993 participants. On including studies at a high risk of bias, ivermectin did not have a significant effect on hospitalizations (RR, 0.60; 95% CI, 0.34 to 1.05; \(P = .08 \), Supplementary Figure 2G). A leave-1-out sensitivity analysis was performed, and no single study had a substantial impact on the overall effect size (Supplementary Table 5). In a sensitivity analysis including any hospitalization within 12 hours of randomization, there were significantly fewer hospitalizations in the ivermectin group compared to control (RR, 0.57; 95% CI, 0.33 to 0.98; \(P = .04 \), Supplementary Figure 3). However, this significant effect was dependent on the inclusion of 1 study at a low risk of bias (Supplementary Table 6).

Effects on Survival

Eleven randomized trials reported that at least 1 person had died postrandomization, and 8 of these trials which were not at a high risk of bias were included in the primary analysis (Table 10). Across these 8 trials in 1848 patients, there were 25/894 (2.8%) deaths in the ivermectin arms, vs 36/954 (4.8%) deaths in the control arms. In a combined analysis using inverse variance weighting, ivermectin did not show a significant effect on mortality (RR, 0.90; 95% CI, 0.57 to 1.42; \(P = .66 \)) (Figure 1I). Heterogeneity was absent \((I^2 = 0\%) \). There was no significant effect on survival in both subgroups of mild/moderate participants (RR, 0.70; 95% CI, 0.29 to 1.65; \(P = .41 \)) and severe participants (RR, 0.99; 95% CI, 0.59 to 1.69; \(P = .98 \)). However, this analysis was small and based on 71 deaths. In the supplementary analysis, including studies at a high risk of bias, a borderline significant effect on survival was observed (RR, 0.62; 95% CI, 0.39 to 0.99; \(P = .05 \)) (Supplementary Figure 2H). In this analysis, a significant improvement in survival was observed for patients with mild/moderate disease (RR, 0.42; 95% CI, 0.21 to 0.83; \(P = .01 \), Supplementary Figure 2H) in comparison with those with severe disease (RR, 0.90; 95% CI, 0.57 to 1.42; \(P = .64 \)) (Supplementary Figure 2H). However, this was dependent on the inclusion of 1 study (Niaee et al. [27]) at a high risk of bias.

Additional subgroup analysis of the mortality outcome with trials separated by dose duration, blinding, and control group showed consistent absence of survival benefit, and no significant subgroup differences were found (Supplementary Figures 4, 5, and 6). A leave-1-out sensitivity analysis was performed, including studies at high risk of bias. By excluding the Niaee et al. [27] study, which is at a high risk of bias, the effect of ivermectin on survival becomes nonsignificant (Supplementary Table 4).

Ivermectin was not associated with lower risk of mechanical ventilation (RR, 1.04; 95% CI, 0.63 to 1.71; \(P = .87 \)) (Figure 1J). However, this estimate was based on 6 studies in 1059 participants including only 59 events.

DISCUSSION

This systematic review and meta-analysis evaluated ivermectin for the treatment of SARS-CoV-2 infection in 23 RCTs (\(n = 3349 \)). The primary analysis was carried out by excluding studies at a high risk of bias, consistent with other similar meta-analyses. Ivermectin did not show a statistically significant effect on survival (RR, 0.90; 95% CI, 0.57 to 1.42; \(P = .66 \)) (Figure 1I) or hospitalizations (RR, 0.63; 95% CI, 0.36 to 1.11; \(P = .11 \)) (Figure 1H). Ivermectin displayed a borderline significant effect on the duration of hospitalization in comparison with SOC (mean difference,
A

Study or subgroup	Ivermectin	Control	Mean difference	IV, Random, 95% CI		
8.2.1 Single-day dosing						
Ahmed et al. IVM+Doxy	11.5 1.5	24	12.7 3.6	24	21.6%	-1.20 [-3.41, 1.01]
Subtotal (95% CI)	24	24	21.6%	-1.20 [-3.41, 1.01]		
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.06 (P = .29)						

B

Study or subgroup	Ivermectin	Control	Mean difference	IV, Random, 95% CI		
8.2.2 Multi-day dosing						
Ahmed et al. IVM 5 day	9.7 3.2	24	12.7 3.6	24	19.2%	-3.00 [-5.46, -0.54]
Bahalala et al. 12 mg	9.7 3.2	21	9.2 2.7	20	12.0%	-3.50 [8.02, 0.98]
Bahalala et al. 6 mg	6.3 1.6	21	9.2 2.7	20	12.2%	-3.20 [6.69, 0.29]
Bulgaria Petkov et al.	4.5 1.6	50	3.1 0.9	50	0.9%	-0.06 [1.72, 0.52]
Subtotal (95% CI)	116	116	28.4%	-2.39 [-4.34, -0.44]		
Heterogeneity: Tau² = 2.28; Chi² = 7.59, df = 5 (P = .74); I² = 0%						
Test for overall effect: Z = 0.28 (P = .74); I² = 0%						

C

Study or subgroup	Ivermectin	Control	Mean difference	IV, Random, 95% CI		
8.3.1 Single-day dosing						
Ahmed et al. IVM+Doxy	11.5 4.2	11	12.7 3.6	11	19.6%	-1.20 [-3.41, 1.01]
Subtotal (95% CI)	24	24	21.6%	-1.20 [-3.41, 1.01]		
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.06 (P = .29)						

D

Study or subgroup	Ivermectin	Control	Mean difference	IV, Random, 95% CI		
8.3.2 Multi-day dosing						
Ahmed et al. IVM 5 day	11.5 3.2	11	12.7 3.6	11	19.6%	-1.20 [-3.41, 1.01]
Subtotal (95% CI)	24	24	21.6%	-1.20 [-3.41, 1.01]		
Heterogeneity: Not applicable						
Test for overall effect: Z = 1.06 (P = .29)						

Figure 1. A, Forest plot of time to viral clearance by dose duration, excluding high risk of bias studies. B, Forest plot of PCR negativity at day 3, excluding high risk of bias studies. C, Forest plot of PCR negativity at day 7 (Kirti et al. and Schwartz et al. measured at day 6, excluding high risk of bias studies). D, Forest plot of PCR negativity at day 10, excluding high risk of bias studies. E, Forest plot of time to clinical recovery by dose duration, excluding high risk of bias studies. F, Forest plot of clinical recovery (binary) by dose duration, excluding high risk of bias studies. G, Forest plot of duration of hospitalization by dose, excluding high risk of bias studies. H, Forest plot of new hospitalizations in trials on outpatients, excluding high risk of bias studies. I, Forest plot of survival by severity, excluding high risk of bias studies. J, Forest plot of mechanical ventilation, excluding high risk of bias studies. Abbreviation: PCR, polymerase chain reaction.

8.4.1 Single-day dosing

Study or subgroup	Mean difference	SE	Weight
India Mohan et al. 0.2 mg/kg	0.2	0.58	28.3%
India Mohan et al. 0.4 mg/kg	-0.3	0.61	26.5%
Iran Rezaei et al.	-1.1	0.44	39.4%

Subtotal (95% CI): 94.3% [-0.48 -1.27, 0.32]

Test for overall effect: Z = 1.18 (P = .24)

8.4.2 Multiday dosing

Study or subgroup	Mean difference	SE	Weight
Colombia Lopez-Medina et al.	-2	1.53	5.7%

Subtotal (95% CI): 100.0% -2.00 [-5.00, 1.00]

Heterogeneity: Not applicable

Test for overall effect: Z = 1.31 (P = .19)

Total (95% CI): 100.0% -0.57 [-1.31, 0.17]

Heterogeneity: Tau^2 = 0.17; Chi^2 = 4.27, df = 3 (P = .23); I^2 = 30%

Test for overall effect: Z = 1.51 (P = .13)

Test for subgroup differences: Chi^2 = 0.92, df = 1 (P = .34); I^2 = 0%

8.5.1 Multiday dosing

Study or subgroup	Events	Total	Events	Total	Weight
Bulgaria Petkov et al.	10	50	7	50	6.3%
Colombia Lopez-Medina et al.	164	200	156	198	52.9%

Subtotal (95% CI): 250

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.49, df = 1 (P = .48); I^2 = 0%

Test for overall effect: Z = 0.89 (P = .37)

8.5.2 Single-day dosing

Study or subgroup	Events	Total	Events	Total	Weight
Bangladesh Mahmud et al.	111	183	80	180	40.8%

Subtotal (95% CI): 183

Heterogeneity: Not applicable

Test for overall effect: Z = 3.04 (P = .002)

Total (95% CI): 433

Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.13, df = 2 (P = .57); I^2 = 0%

Test for overall effect: Z = 1.61 (P = .11)

Test for subgroup differences: Chi^2 = 5.53, df = 1 (P = .02); I^2 = 81.9%

8.6.1 Single-day dosing

Study or subgroup	Mean difference	SE	Weight
Ahmed et al. IVM+Doxy	10.1	4	24
Iran Rezaei et al.	6.9	3.1	35

Subtotal (95% CI): 58

Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.87, df = 1 (P = .17); I^2 = 47%

Test for overall effect: Z = 0.80 (P = .42)

8.6.2 Multiday dosing

Study or subgroup	Mean difference	SE	Weight
Ahmed et al. IVM 5 days	9.6	3.2	24
Egypt Abd-Elahad et al.	5.9	2.4	82

Subtotal (95% CI): 106

Heterogeneity: Tau^2 = 0.00; Chi^2 = 1.08, df = 1 (P = .34); I^2 = 47%

Test for overall effect: Z = 0.46 (P = .64)

Total (95% CI): 164

Heterogeneity: Tau^2 = 0.41; Chi^2 = 4.34, df = 3 (P = .23); I^2 = 31%

Test for overall effect: Z = 1.97 (P = .05)

Test for subgroup differences: Chi^2 = 0.35, df = 1 (P = .56); I^2 = 0%

Figure 1. Continued.
-1.14 days; 95% CI, −2.27 to −0.00; P = .05) (Figure 1G). There was no significant effect on time to clinical recovery (mean difference, −0.57 days; 95% CI, −1.0 to 0.1; P = .41) (Figure 1E). Ivermectin showed a significant effect in achieving viral clearance more quickly compared with SOC. However, no significant effect was observed on PCR negativity at days 3, 7, and 10. Ivermectin did not have a significant effect on the risk of mechanical ventilation. A supplementary analysis was performed by including studies at a high risk of bias. Ivermectin displayed a borderline significant effect on survival. Time to clinical recovery and binary clinical recovery showed significant improvement with ivermectin in comparison with SOC. Furthermore, ivermectin had a borderline significant effect on viral clearance at day 7, but not days 3 and 10. Ivermectin had a significant effect on reducing inflammatory markers, mainly seen in studies at a high risk of bias. However, these results need to be treated with caution.

Table 7. Effects on Ivermectin on Clinical Recovery and Hospitalization. Time to Clinical Recovery

Study or subgroup	Ivermectin	Control	Weight	Risk ratio IV, Random, 95% CI	Risk ratio IV, Random, 95% CI
8.1.1 Mild/moderate					
Argentina Zoni et al.	4	250	3	251	9.2%
Bangladesh Mahamud et al.	0	183	3	180	2.3%
Colombia Lopez-Medina et al.	0	200	1	198	2.0%
Egypt Abd-Elsalam et al.	3	82	4	82	9.5%
India Kirti et al.	0	55	4	57	2.4%
Iran Rezaei et al.	1	35	0	34	2.0%
Subtotal (95% CI)	8	805	1	802	27.5%
Total events	8	15			
Heterogeneity: Tau^2 = 0.00; Chi^2 = 4.36, df = 5 (P = .50); I² = 0%					
Test for overall effect: Z = 0.16 (P = .87)					

Study or subgroup	Ivermectin	Control	Weight	Risk ratio IV, Random, 95% CI	Risk ratio IV, Random, 95% CI
8.1.2 Severe					
Brazil Fonseca et al.	12	53	25	115	55.4%
Mexico Gonzalez et al.	3	36	6	37	17.0%
Subtotal (95% CI)	89	152	1	72.0%	0.99 (0.59, 1.69)
Total events	17	31			
Heterogeneity: Tau^2 = 0.00; Chi^2 = 4.92, df = 7 (P = .50); I² = 0%					
Test for overall effect: Z = 0.45 (P = .66)					
Total (95% CI)	894	954	100.0%	0.90 (0.57, 1.42)	
Heterogeneity: Tau^2 = 0.00; Chi^2 = 2.70, df = 5 (P = .76); I² = 0%					
Test for subgroup differences: Chi^2 = 0.47, df = 1 (P = .49); I² = 0%					

Figure 1. Continued.
The results from this meta-analysis had to be revised after 2 of the original trials (Elgazzar, Egypt [50] and Raad, Lebanon [51]) were found to be unreliable, based on analysis of the raw database. Other trials at high risk of bias have also been removed from the primary analysis. There have also been suggestions that several clinical trials of other repurposed trials are unreliable and cannot be included in the evidence base. A previous study of hydroxychloroquine for COVID-19 was retracted from The Lancet [52], leading to changes in procedures for publication in The Lancet [53]. Furthermore, there have been concerns that a recent randomized trial of the anti-androgen drug proxalutamide, reporting a 77% survival benefit, cannot be verified [54]. In addition, results from nonrandomized studies can be overinterpreted. For example, a case–control study of remdesivir in hospitalized patients suggested a 30% survival benefit, which was widely reported [55]. This apparent benefit was not confirmed when the large randomized SOLIDARITY trial results were reported. This series of example underscores the need for large prospective randomized trials to confirm any preliminary benefits claimed for new treatments for COVID-19. Review of the data by stringent regulatory authorities will be needed to determine whether clinical trial results are valid and could support approval or rollout.

The results from this meta-analysis have emerged from the International Ivermectin Project Team meetings between December 2020 and July 2021. Independent research teams were conducting the trials across 16 countries and agreed to share their data, which were often unpublished, to accelerate the speed of reporting and to ensure their fragmented research, widespread across the world, could contribute to global learning. Viral clearance was evaluated by PCR assays in all the studies. We have only included randomized clinical trials in this meta-analysis; the 23 RCTs included were designed and conducted independently, with results combined in September 2021. However, each individual trial was small, and a wide range of population types were included. Clinical recovery definitions differed between trials, and there were no significant differences in terms of survival.

Mechanism of Action

At the time of writing, knowledge gaps prevent a robust conclusion about the potential mechanisms of action of ivermectin. Ivermectin’s broad-spectrum antiviral effects have been proposed to be related to its impact on the NF-κB pathway and via binding to the host cell importin α/β1 heterodimer, nuclear transport proteins responsible for nuclear entry of cargoes, and these effects in turn may prevent viral replication. The current in-vitro EC₅₀ estimates (2.2 µ, 2.4 µM, and 2.8 µM depending on gene assay analyzed by reverse transcription quantitative PCR) are still 35X higher than plasma concentrations following normal oral dosing. Even doses 8.5X the FDA-recommended 200 µg/kg of 1.7 mg/kg only reach plasma concentrations of 0.28 µM [56]. The increased bioavailability in the fed state and higher concentrations seen in lung tissue compared with plasma are still below the current published EC₅₀ results.

Table 8. Effects on of Ivermectin on Clinical Recovery and Hospitalization. Effect of Ivermectin on Duration of Hospitalization

Study	Country	Daily Dose	Duration	End Point	Results IVM vs Control	P Value
Rezaei et al.	Iran, n = 69	0.2 mg/kg	1 d (OL)	Days in hospital	6.9 vs 8.4 d	.01
Ahmed et al.	Bangladesh, n = 72	0.2 mg/kg	5 d (DB)	Days in hospital	9.6 vs 9.7 d	.93
Ahmed et al.	Bangladesh, n = 72	0.2 mg/kg	1 d (DB)	Days in hospital	10.1 vs 9.7 d	.93
Abd El-Salam et al.	Egypt, n = 164	12 mg	3 d	Days in hospital	8.82 vs 10.97 d	.09
Gonzalez et al.	Mexico, n = 106	12 mg	1 d	Days in hospital	6 vs 5 d	.45
Niaee et al.	Iran, n = 165	0.2–0.4 mg/kg	1–3 d (DB)	Days in hospital	6.5 vs 7.5 d	.006

Abbreviations: DB, double-blind; IVM, ivermectin; OL, open-label.

*Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

Table 9. Effects on of Ivermectin on Clinical Recovery and Hospitalization. Number of Participants With Clinical Recovery by Days 7 to 10 Postrandomization

Study	Country	Daily Dose	Duration	End Point	Results IVM vs Control	P Value
Petkov et al.	Bulgaria, n = 100	0.4 mg/kg	3 d	Day 7 clinical recovery	20 vs 14	n/a
Mahmud et al.	Bangladesh, n = 363	12 mg	1 d (DB)	Day 7 clinical recovery	61 vs 44	<.03
Okumus et al.*	Turkey, n = 60	0.2 mg/kg	5 d (DB)	Day 10 clinical improvement	73 vs 53	.10
Chahla et al.*	Argentina, n = 254	24 mg	1 wk for 4 wk (OL)	Clinical improvement	98 vs 87	.0007
Chachar et al.*	Pakistan, n = 50	0.2 mg/kg	2 d (OL)	Day 7 clinical recovery	64 vs 60	.5

Abbreviations: DB, double-blind; IVM, ivermectin; OL, open-label.

*Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.
Table 10. Effects of Ivermectin on Survival

Trial	Country	Dosing	Ivermectin	Control
Mahmud et al.	Bangladesh	0.2 mg/kg, 1 d	0/183	3/180
Lopez-Medina	Colombia	0.3 mg/kg 5 d	0/200	1/198
Zoni et al.	Argentina	12–24 mg, 2 d	4/250	3/251
Fonseca	Brazil	14 mg 3 d	12/53	25/115
Kirti et al.	India	12 mg, 5 d	0/55	4/57
Rezai et al.	Iran	0.2 mg/kg, 1 d	1/35	0/34
Abd-Elsaam	Egypt	0.2 mg/kg, 3 d	3/82	4/82
Gonzalez	Mexico	0.2 mg/kg, 1 d	5/36	6/37
Niaee et al.	Iran	0.2 mg/kg 1–3 d	6/46	11/60
Hashim et al.	Iraq	0.2–0.4 mg/kg 2–3 d	2/70	6/70
Okumus et al.	Turkey	0.2 mg/kg, 5 d	6/30	9/30
Total			37/1114 (3.3%)	72/1114 (6.5%)

*Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

Limitations

A key limitation to this meta-analysis is the comparability of the data, with studies differing in dosage, treatment duration, and inclusion criteria. Furthermore, the standard of care used in the control arm differed between trials. In this meta-analysis, trials that used active controls such as hydroxychloroquine or lopinavir/ritonavir were combined with those that used placebo or standard care. However, lopinavir/ritonavir and hydroxychloroquine have shown no overall benefit or harm in large randomized trials and meta-analyses (57–59). Furthermore, additional analyses in this paper separating trials by subgroups of standard care/placebo and active control showed no significant difference between groups.

Another limitation is that ivermectin was given in combination with doxycycline in 3 trials. Individual trials may not have power to detect treatment effects on rare end points such as survival. Outcome measures were not standardized, viral clearance was measured in most trials at different time points and with different PCR cycle thresholds. The reliability of PCR tests for quantification purposes has been the subject of substantive debate. Most studies were conducted in populations with only mild/moderate infection, and some trials excluded patients with multiple comorbidities.

These RCTs have been conducted in a wide range of countries, often in low-resource conditions and overburdened health care systems. Larger RCTs are currently underway in Spain, South America, Africa, and North America, with results from an additional 5000 participants expected in Summer 2021 (Supplementary Table 7).

Several other repurposed medications have shown promise in early smaller trials, for example, sofosbuvir/daclatasvir, colchicine, and remdesivir, but the benefit was not seen later in larger trials. This meta-analysis of 23 RCTs in 3349 patients showed that ivermectin had a significant effect on faster viral clearance and a borderline significant effect on duration of hospitalization. In the primary analysis, excluding studies at a high risk of bias, there was no significant effect on ivermectin on survival or hospitalisations. Recently, the preliminary results from the TOGETHER trial were presented. In this randomised, placebo-controlled study of ivermectin in over 1200 outpatients, there was no significant effect of ivermectin on hospitalisation or survival [60]. These results need to be validated in larger confirmatory trials.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

We would like to thank all the clinical staff, the research teams, and the patients who participated in these studies. We would also like to thank Manya Mirchandani for help with the analysis.

Financial support. This work was supported by the Rainwater Charitable Foundation.

Potential conflicts of interest. All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Patient consent. All of the clinical trials included in this meta-analysis were approved by local ethics committees, and all patients signed informed consent.

References

1. WHO. WHO coronavirus disease (COVID-19) dashboard. 2021. Available at: https://covid19.who.int/. Accessed 25 August 2021.
2. Stolberg SG, LaFraniere S. Warning of shortages, researchers look to stretch vaccine supply. 2021. https://www.nytimes.com/2021/01/05/us/politics/coronavirus-vaccine-supply.html. Accessed 25 August 2021.
3. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med 2021; 384:693-704.
4. The REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically ill patients with Covid-19—preliminary report. N Engl J Med 2021; 384:1491–502.
5. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021; 397:1637–45.
6. WHO Solidarity Trial Consortium. Repurposed antiviral drugs for Covid-19—interim WHO solidarity trial results. N Engl J Med 2021; 384:497–511.
7. Mahase E. Covid-19: budesonide shortens recovery time in patients not admitted to hospital, study finds. BMJ 2021; 373:n957.
Romark, Romark announces initial results of phase 3 clinical trial of nt-300 tablets for the treatment of covid-19. 2021. Available at: https://www.romark.com/romark-announces-initial-results-of-phase-3-clinical-trial-of-nt-300-tablets-for-the-treatment-of-covid-19/. Accessed 25 August 2021.

Calv I, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 188:104778.

Arshad U, Pertinez H, Box H, et al. Prioritization of anti-SARS-CoV-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics. Clin Pharmacol Ther 2020; 108:775–90.

Schmich V, Lohmner ZJ. The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19. Clin Pharmacol Ther. 2020; 108:762–75.

Jermian B, Hanafin PO, Cao Y, et al. Development of a minimal physiologically-based pharmacokinetic model to simulate lung exposure in humans following oral administration of ivermectin for COVID-19 drug repurposing. J Pharm Sci 2020; 109:3574–84.

Koelle Ganga A, Sahagun Prieto AM, Diaz Liébana MJ, et al. The pharmacokinetics and interactions of ivermectin in humans—a mini-review. AAPS J 2008; 10:4–22.

Zhang X, Song Y, Xiong H, et al. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol 2009; 9:354–9.

Ci X, Li H, Yu Q, et al. Ivermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa b and mitogen-activated protein kinase activation pathway. Fundam Clin Pharmacol 2009; 23:449–55.

Zhang X, Song Y, Ci X, et al. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res 2008; 57:524–9.

Ventre E, Rozieres A, Lenier V, et al. Topical ivermectin improves allergic skin inflammation. Allergy 2017; 72:1212–21.

Yan S, Ci X, Chen L, et al. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res 2011; 60:589–96.

de Melo GD, Lazarini F, Larrousse F, et al. Anti-COVID-19 efficacy of ivermectin in the golden hamster. EMBO Mol Med 2021. doi: 10.1016/j.emom.2021.11.292639.

Zaidi AK, Dehari-Mobaraki C, et al. The mechanisms of action of ivermectin against SARS-CoV-2: an evidence-based clinical review journal. Antimicrob Agents Chemother 2021; 65(11):e01745-20. doi: 10.1128/AAC.01745-20.

Navarro M, Campriu D, Requena-Mender A, et al. Safety of high doses of ivermectin: a systematic review and meta-analysis. J Antimicrob Chemother 2020; 75:27–34.

WHO. Therapeutics and COVID-19: living guideline. 2021. Available at: www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.2. Accessed 25 August 2021.

National Institutes of Health. ClinicalTrials.gov. 2021. Available at: https://clinicaltrials.gov/. Accessed 25 August 2021.

Nguyen TV, Ferrand G, Cohen-Boulakia S, et al. for the COVID-NMA consortium. RCT studies on preventive measures and treatments for COVID-19 [data set]. 2021. Available at: https://zenodo.org/record/4266529#.YRBS7IhKhPY. Accessed 25 August 2021.

Trow PL, Tao K, Nouhin J, et al. Coronavirus antiviral search database (CoV-RDB): an online database designed to facilitate comparisons between candidate anti-coronavirus compounds. Viruses 2020; 12:10.

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions (5th edition). Chichester, UK: John Wiley & Sons, 2019.

Shakhsii Niaee M, Namdar P, et al. Ivermectin as an adjunct treatment for COVID-19: a randomized placebo-controlled trial. J Med Virol 2021; 93:581–6.

Kirti R, Roy S, Mittal C, et al. Ivermectin as a potential treatment for mild to moderate COVID-19: a pilot randomised, controlled open-label, multicentre trial. Eclinicalmedicine 2021; 37:100959.

Babalola OE, Bode CO, Ajayi AA, et al. Ivermectin shows clinical benefits in mild to moderate COVID-19; a randomised controlled double-blind, dose-response study in Lagos, QJM Int Med 2021. doi: 10.1093/qjmed/hcab035.

Galan LER, Santos NMD, Satto MS. Phase 2 randomized study on chloroquine, hydroxychloroquine or ivermectin in hospitalized patients with severe manifestations of SARS-CoV-2 infection. J Glob Health 2021; 11:235–42.

Abd El-Salam S, Noor R, Badr EA, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: a randomized controlled study. J Med Virol 2021; 93:581–6.

Ahmed K, Karim M, Ross A, et al. A five day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2021; 103:214–6.

Okumus N, Demiräk Ü, Çetinkaya R, et al. Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infect Dis 2021; 21:411.

Hashim H, Maoood M, Rashde A, et al. Controlled randomized clinical trial on using ivermectin with doxycycline for COVID-19 patients in Baghdad, Iraq. 2020. doi: 10.1038/s41396-021-00935-3.

Zeeshan Khan Chachar A, Ahmad Khan K, Asif M, et al. Effectiveness of ivermectin in SARS-CoV-2/Covid-19 patients. Int J Sci 2020; 09(31):35–39.

Chahla R, Ruiz I, Mena T, et al. Cluster randomised trials - ivermectin repurposing For COVID-19 treatment of outpatients with mild disease in primary health care centers. 2021. doi: 10.21062/rs.3.r.495945/v1.

Elgazzar A, Hany B, Youssef S, et al. Efficacy and safety of ivermectin for treatment and prophylaxis of COVID-19 pandemic. 2020. doi: 10.21062/rs-3-109956/v3.

Samaha A, Mouawia H, Fawzy M, et al. Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon. Viruses 2021; 13:989.

Mehra MR, Ruschitzka F, Patel AN. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020; 395:1820.

The Editors of the Lancet Group. Learning from a retraction. Lancet 2020; 396:1056.

Service R. ‘Too good to be true’: Doubts swirl around trial that saw 77% reduction in COVID-19 mortality. 2021. Available at: https://www.sciencemag.org/news/2021/07/too-good-be-truly-too-good-swall-around-trial-sew-77-reducation-covid-19-mortality. Accessed 25 August 2021.

Day M. Covid-19: experts criticise claim that remdesivir cuts death rates. BMJ 2020; 370:m2389.

Wang K, Gao W, Dou Q, et al. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer. Autophagy 2016; 12:2948–9.

Glazy RM, Almaghraby A, Shaaban R, et al. A systematic review and meta-analysis on chloroquine and hydroxychloroquine as monotherapy or combined with azithromycin in COVID-19 treatment. Sci Rep 2020; 10:22139.

Alhumaid S, Mutair AA, Alawi ZA, et al. Efficacy and safety of lopinavir/ritonavir for treatment of COVID-19: a systematic review and meta-analysis. Trop Med Infect Dis 2020; 5:180.

RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020; 396:1345–52.

Mills E. Early Treatment of COVID-19 with Repurposed Therapies: The TOGETHER Adaptive Platform Trial. 2021. Available from: https://rethinkingclinicaltrials.org/news/2020-06-08-early-treatment-of-covid-19-with-repurposed-therapies-the-together-adaptive-platform-trial-edward-mills-pegasus/. Accessed 25 August 2021.