Some Unusual Small-Subunit Ribosomal RNA Sequences of Metazoans

GONZALO GIRIBET¹ AND WARD C. WHEELER²

ABSTRACT

The SSU rRNA gene is one of the most widely utilized loci for phylogenetic inference among eukaryotic organisms. Although they have an average length of 1800 to 1900 bp, several unusually large 18S rDNA sequences have been reported. After examining GenBank sequences and 180 new 18S rRNA sequences from several metazoan groups, we report many other extraordinary sequences ranging between ca. 1350 bp (in symphylan myriapods) to ca. 3300 bp (in some strepsipteran insects). Myriapods are particularly interesting, having independently evolved extraordinary sequences in the four classes (Chilopoda, Diplopoda, Symphyla, and Pauropoda). An insertion event of ca. 300 bp has been detected in all but the most basal family of geophilomorphan centipedes. Other major insertions are also found in other arthropod groups, in onychophorans, molluscs, chaetognaths, echinoderms, and parasitic platyhelminths. The use of information derived from secondary structure predictions combined with a new method to analyze DNA sequence data without multiple sequence alignments is proposed as a solution for analyzing sequence data that possess alternatively conservative and variable regions, such as ribosomal genes.

INTRODUCTION

The small-subunit ribosomal RNA gene is one of the most widely utilized loci in phylogenetic inference among eukaryotic organisms (e.g., van de Peer and De Wachter, 1997) especially for the examination of phylogenetic relationships among metazoans. Ribosomal genes play a fundamental role in the synthesis of proteins in eukaryotic and prokaryotic cells. The SSU rRNA locus (in particular the 18S rRNA gene) has been widely used to infer phylogenetic relationships for

¹ Assistant Professor and Assistant Curator, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA, e-mail: ggiribet@oeb.harvard.edu
² Curator, Division of Invertebrate Zoology, American Museum of Natural History. e-mail: wheeler@amnh.org
reasons that have been elaborated elsewhere (e.g., Sogin, 1991; Adoutte and Philippe, 1993). The main rationale is (1) that this gene is long enough to provide phylogenetic information, (2) it is among the slowest evolving sequences found in all living organisms, and (3) different regions of the molecule evolve at different rates. For these reasons the 18S rRNA gene allows the inference of phylogenetic history across a broad taxonomic range. Moreover, the presence of many copies per genome and their homogenization through concerted evolution (Dover, 1982; Hillis and Dixon, 1991) greatly reduce intraspecific variation and facilitate DNA amplification via PCR.

The SSU rRNA gene of most organisms is between 1800 and 1900 bp in total length. However, exceptional cases of long SSU rRNA genes are not uncommon (see Crease and Colbourne, 1998 for some examples), with certain regions being particularly prone to sequence variability (both in nucleotide substitutions and in sequence length).

In some cases, the SSU rRNA gene contains type I introns that are spliced out of the mature rRNA molecule (e.g., De Wachter et al., 1992; Wilcox et al., 1992; Bhattacharya et al., 1994). However, there are many long SSU rRNA genes that do not contain introns (e.g., Hinkle et al., 1994). Some of these long SSU rRNA genes have been reported for metazoans: *Acyrthosiphon pisum* 2469 bp (Kwon et al., 1991); *Xenos vespuratorum* 3316 bp (Chalwatzis et al., 1995); *Daphnia pulex* 2293 bp (Crease and Colbourne, 1998); *Eu peripatoides leuckarti* 2206 bp (Aguinaldo et al., 1997); *Echinococcus granulosus* 2394 bp (Picón et al., 1996). To our knowledge, type I introns have not been found in any metazoan taxon.

Other unusual phenomena have been reported for some organisms. The presence of more than one type of SSU rRNA gene has been found in the protozoan *Plasmodium* (Gunderson et al., 1987; Waters et al., 1989; Qari et al., 1994). Two types of 18S rRNA genes have also been reported in a group of metazoans, the freshwater and terrestrial planarians of the family Dugesiidae (Carranza et al., 1996, 1998a, 1998b).

Because alternate conserved and nonconserved regions are present in the SSU rRNA, sequence alignments are challenging. Some authors have based alignments on information derived from secondary structure models (see Kjer, 1995). However, different models (i.e., Gutell et al., 1985; Hendriks et al., 1988a, 1988b; Neefs and De Wachter, 1990; Van de Peer et al., 1998) can lead to different phylogenetic results (Winnepenninckx and Backeljau, 1996). Moreover, the variable regions cannot be aligned reliably and thus used as phylogenetic information, even if secondary structure predicts that a certain string of nucleotides is homologous (e.g., a variable loop, situated between a conserved stem).

The existence of different models can be attributed to problems in inferring secondary (and tertiary and quaternary) structures via direct observation. This was pointed out by Gutell and collaborators, who acknowledged that “any rigorous search for a secondary structure model for 16-S rRNA would necessitate use of the comparative method” (Gutell et al., 1985: 156). These authors also mentioned that the direct approach of X-ray crystallography remains only a remote possibility, because of the difficult procedure for preparing high-quality crystals of ribosomes or their subunits, together with the added problem that tertiary structure may be directed and/or stabilized by quaternary interactions (Gutell et al., 1985).

Where direct approaches have failed to infer the secondary structure of the SSU rRNA gene, some indirect approaches have succeeded. The comparative method has been successful to the point of building a database of hundreds of secondary structures of SSU rRNA. This database, the SSU ribosomal subunit RNA database (http://rrna.uia.ac.be/rrna/ssu [Van de Peer et al., 1998]) is maintained and updated constantly, and incorporates probably the largest comparative molecular data set.

In the present study, we report some extraordinary examples showing enormous variation in length among 18S rRNA sequences of different metazoan taxa. We also comment on the regions of the molecule that concentrate the largest variation. Finally we explore a novel method that facilitates the use of variable regions of the molecule, which cannot
be accommodated into standard phylogenetic analyses using sequence alignments.

MATERIALS AND METHODS

Genomic DNA samples were obtained from fresh, frozen, or ethanol-preserved tissues in a solution of Guanidinium thiocyanate homogenization buffer following a modified protocol for RNA extraction (Chirgwin et al., 1979). The 18S rDNA locus was PCR-amplified in two or three overlapping fragments of about 950, 900, and 850 bp each, using primer pairs 1F–5R, 3F–18Sbi, and 5F–9R, respectively. Primers used in amplification and sequencing were described in Giribet et al. (1996, 1999). Amplification was carried out in a 50 μL volume reaction, with 1.25 units of AmpliTaq DNA Polymerase (Perkin Elmer), 200 μM of dNTPs, and 1 μM of each primer. The PCR program consisted of a initial denaturing step at 94°C for 60 seconds, 35 amplification cycles (94°C for 15 sec, 49°C for 15 sec, 72°C for 15 sec), and a final step at 72°C for 6 minutes in a GeneAmp PCR System 9700 (Perkin Elmer).

PCR samples were purified with the GENECLEAN III kit (BIO 101 Inc.) and directly sequenced using an automated ABI Prism 377 DNA sequencer. Cycle-sequencing with AmpliTaq DNA Polymerase, FS (Perkin-Elmer) using dye-labeled terminators (ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit) was performed in a GeneAmp PCR System 9700 (Perkin Elmer). Amplification was carried out in a 10 μL volume reaction: 4 μL of Terminator Ready Reaction Mix, 10–30 ng/mL of PCR product, 5 pmoles of primer and dH₂O to 10 μL. The cycle-sequencing program consisted of a step at 94°C for 3 minutes, 25 sequencing cycles (94°C for 10 sec, 50°C for 5 sec, 60°C for 4 min) and a rapid thermal ramp to 4°C and hold. The BigDye-labeled PCR products were isopropanol-precipitated following manufacturer protocol.

Some PCR products that could not be sequenced directly were purified and ligated into pUC 18 Smal I/BAP dephosphorylated vector using the SureClone Ligation Kit (Pharmacia P-L Biochemicals) as described in Giribet et al. (1996). Sequencing was then performed by the dideoxy termination method (Sanger et al., 1977) using T7 DNA polymerase (Sequencing Kit from Pharmacia Biotech).

All sequences have been deposited in GenBank (see taxonomy, sequence length, and accession codes in table 1). The new sequences have been compared to other published sequences available from GenBank. The terminology used for the secondary structure topology follows the nomenclature of Van de Peer et al. (1998).

RESULTS AND DISCUSSION

Extraordinary 18S rRNA Sequences of Metazoans

After studying the 18S rRNA gene of about 400 metazoan taxa (180 of these sequences collected by the authors; table 1), we have observed that several animal taxa possess large insertions at different regions of the molecule. This variation is shown in figure 1 and table 1. For example, within the phylum Mollusca, the cephalopods *Loligo pealei* (squid), *Sepia elegans* (cuttlefish), and *Nautilus scrobiculatus* present large insertions in regions V2, V4, V7, and V9. Other groups of molluscs such as the anomalodesmatan bivalves present large insertions in region V7, and some Archaeogastropoda have insertions in regions V2 and V4. But insertions are not restricted to the phylum Mollusca. Sea cucumbers (Echinodermata, Holothuroidea) and arrow-worms (Chaetognatha) present insertions in region V4; some leeches (Annelida, Hirudinea) present insertions in region V7; some parasitic planarians (Platyhelminthes) present insertions both in regions V4 and V7; and velvet worms (Onychophora) present insertions in regions V2, 11, E23–7, V7, and V9. Within the arthropods, there are many extraordinary cases among insects (see the reported strepsipteran sequences by Chalwatzis et al., 1995; 1996; Whiting et al., 1997) and certain crustacean groups. But the most bizarre case within arthropods (and perhaps for the entire Metazoa) are myriapods.

The 18S rRNA Gene of the Myriapods

Myriapods comprise four groups of terrestrial arthropods. Centipedes (class Chilopo-
TABLE 1

List of the 180 Species of 18S rRNA Sequences Generated by the Authors
(with GenBank accession codes and sequence length [excluding a total of 46 bp from the external primers 1F and 9R]; asterisks refer to noncomplete sequences, and thus the length is not reported)

Order	Species Name	GenBank Accession	Length (bp)	Order	Species Name	GenBank Accession	Length (bp)
Annelida (Polychaeta) (3 sp.)	Evanice torquata	AFI213304	1768	Phylum Sipuncula (3 sp.)	Aspidosiphon misakiensis	AFI190090	1766
	Discophilus gyroclitius	AFI19074	1784		Themiste alataea	AFI19075	1757
	Myeostoma sp.	AFI123305	1770		Phascolopsis gouldii	AFI123306	1765
Phylum Echiura (2 sp.)	Bonellia viridis	AFI213307	1787	Phylum Mollusca (61 sp.)	Prostoma elhardi	U29494	1790
	Urechis sp.	AFI19076	1772		Ampiphorina sp.	AFI19077	1778
Phylum Nemertea (2 sp.)	Ostrea lima	AFI20533	1771		Limaria hians	AFI20534	1767
	Limaria hians	AFI20534	1767		Anomia ephippium	AFI20535	1763
	Prillanio littoralis	AFI20536	1766		Lampsis cardium	AFI20537	1765
	Neotrigonia beduali	AFI20538	1765		Pandora sp.	AFI20539	2143
	Lyonia hyalina	AFI20540	1986		Cuspidaria casipidata	AFI20541-2*	
	Cardiomya costellata	AFI20543	1804		Myonera sp.	AFI20544	1884
	Chaoma gryphoides	AFI20545*			Galeommata turrioni	AFI20547	1775
	Codakia cfr. orbiculata	AFI20546*			Lasaeae sp.	AFI20548	1774
	Cardia calyculata	AFI20549	1727		Cardites antiquata	AFI20550	1775
	Ariatia castanea	AFI20551	1775		Dreissena polymorpha	AFI20552	1782
	Parvicardium exiguum	AFI20553*			Abra sp.	AFI20554*	
	Ensis ensis	AFI20555	1770		Calypogena magnifica	AFI20556	1777
	Corbicula fluminea	AFI20557	1777		Sphaerium striatium	AFI20558	1781
	Mercenaria mercenaria	AFI20559	1779		Mya arenaria	AFI20560	1783
	Mya arenaria	AFI20560	1783		Varicorubula dissimilis	AFI20561	1795
	Gastrochaena dubia	AFI20562	1777		Hiaticula arctica	AFI20563	1774
	Bankia carinata	AFI20564	1791		Phylum Brachiopoda (1 sp.)	AFI19078	1762
	Argyrotheca cordata	AFI19078	1762		Phylum Phoronida (2 sp.)	AFI19079	1767
	Phoronis australis	AFI19308	1765		Phoronopsis viridis	AFI19308	1765
	Phylum Bryozoa (3 sp.)	AFI19080	1785		Lichenopora sp.	AFI19080	1785
	Membranipora sp.	AFI19081	1761		Caberea boryi	AFI19082	1772
	Nemertodermatida (1 sp.)	AFI19085	1768		Meara stichopi	AFI19085	1768
	Phylum Priapula (1 sp.)	AFI19086	1768		Tubiluchus corallicola	AFI19086	1768
	Phylum Onychophora (2 sp.)	AFI19087	2174		Epiperipatopsis capensis	AFI19087	2174
	Peripatopsis capensis	AFI19087	2174		Epiperipatus biolleyi	APXXXXX**	
	Phylum Tardigrada (1 sp.)	X81442	1762		Microbiota hafelandi	X81442	1762
GenBank	bp	GenBank	bp				
---------	----	---------	----				
2001 5GIRIBET AND WHEELER: METAZOAN RNA SEQUENCES							

TABLE 1—(Continued)

Phylum Arthropoda
Chelicerata (49 sp.)
Achelia echinata
Callipallenae sp.
Ehdeis laevi
Coelossedeis sp.
Limulus polyphemus
Carcinoscorpius rotundicaudatus
Belistarius xambeui
Pseudocellus pearsei
Ricinioidea
Glavia dorsalis
Euxinomia wunderlichii
Chelanria regalis
Stenochirus portoricicensis
Trity cleus pentapephelis
Masticoprocessus giganter
Paraphrynes
Amblypygidae
Liphisias bicoloripes
Nectes celatum
Roncus cfr. paguax
Americhernes
Opilioneus tarsus
Siro rubins
Paraistro coliflucti
Stylocellus n.sp.
Dalquestia formosa
Oediellus trogloideus
Opilio parietinus
Astrobusus grallator
Netima sylatica
Leiothearum sp.
Hadrabius cfr. maccus
Caddo agilis
Ischyropsalis lateipes
Hesperennestoma modestum
Sabacoon cavicolens
Dioranulasma soerenensi
Cenotessotox obshion
Nemastoma himaculatum
Equitias dorai
Trianaenobamus sp.
Zuma acuta
Oncopus cfr. alticaps
Scotoleen islesi
Majorzet randoi
Bishopella lacintosa
Gnida holtneri
Pachyloides thorelli
Hoploboasus sp.

Hexapoda (11 sp.)
Podura aquatica
Acerentiana traeghardi
Campodea tilliureli
Campodeidae
Catajipa
Dilta littoralis
Machiliodes sp.
Lepisma sp.
Tricholepidion gertschi
*Myriapoda (28 sp.)
Cylindrodes punctatus
Polydesmus cornicatus
Scutigerella sp1
Scutigerella sp2
Hanseniella sp.
Paurostomodea
Scutiga coleoptrata
Theoepopoda claufera
Allotherea maculata
Lithobius variegatus
Australobius scabrior
Paralampyctes n.sp.
Lamycetes emarginatus
Henticus maculatus
Amphisuda
Cremaster tusmanianus
Sclopandra cingulata
Cormocephalus monstei
Ethmostigmus rubripes
Alipes sp.
Physida nuda
Cryptops trisculus
Theopos erythrocephala
Scloporectopus nigridus
Mecistoocephalus sp.
Pseudohimanturum mediterraneum
Hemisl (Chaetechelyne)
vesuviana
Pectinotruncus argentineri
Schnellitops panamensis
Ballophilus australasi
Climopodes cfr. poseidonis
Tasmanophis sp.
Tuaora sydneyensis
Zelania antipodis
Zelania sp.
Rhitaeus n. sp.
Aphidon weberi
Strigamia marinia

Phylum Entoprocta (1 sp.)

| Glossobalanus minnus | AF19089 | 1776 |
Fig. 1. Schematic representation of the 18S rRNA locus. The gray squares represent the variable regions V2, V4, V7, and V9 with insertions (V2: Onychophora, Geophilomorpha, Cephalopoda, Archaeogastropoda; V4: Hexapoda, Crustacea, Pauropoda, Holothuroidea, Chaetognatha, Platyhelminthes, Cephalopoda; V7: Onychophora, Hexapoda, Crustacea, Pauropoda, Chilopoda, Platyhelminthes, Hirudinea, Cephalopoda, Gastropoda; V9: Onychophora; Crustacea, Cephalopoda). The black arrowheads represent particular insertions (10: Pauropoda; 11: Onychophora; E23–7: Onychophora and Pauropoda; E23–8: Pauropoda; 29: Pauropoda; 46: Protura). The black bar represents the 500 bp deletion of the Symphyla.

da) and millipedes (class Diplopoda) are the two principal classes of myriapods. The two other classes of myriapods lack common names: Symphyla and Pauropoda. Prior to the analysis of Edgecombe et al. (1999), the only complete 18S rRNA sequence data for myriapods available at GenBank were eight centipedes and two millipedes (Giribet et al., 1996, 1999; Giribet and Ribera, 1998). Two centipede species of the order Geophilomorpha (Clinopodes poseidonis and Pseudohi- mantarium mediterraneum) present an insertion of about 300 bp at region V7, whereas all the other available sequences are fairly conserved in terms of primary sequence. However, a wider ongoing study on the 18S rRNA gene of myriapods suggests that they constitute one of the most interesting cases of 18S rRNA variation in any metazoan group.

Within the centipedes, the members of the order Geophilomorpha (15 species studied belonging to 9 families), excluding two species of the most basal family Mecistocephalidae (Edgecombe et al., 1999), exhibit insertions of about 300 bp in the region V7. This is an unusual example that shows exactly when the insertion occurred during the phylogenetic process, and illustrates the putative information of such insertions (fig. 2).

Within the millipedes, members of the family Polyzonidae display sequences longer than 2700 bp. Data for one species of Pauropoda show that the 18S rRNA is ca. 2200 bp, with several small insertions (Giribet, 1997; Giribet and Ribera, 2000). But perhaps the most unusual case among metazoan 18S rRNA sequences is the Class Symphyla. Amplification of the 18S rRNA loci of three species belonging to two genera (two species of Scutigerella from northeastern Spain and the Canary Islands, respectively, and one species of Hanseniella from Australia) yielded a product band size of about 1350 bp. Sequencing this fragment suggests a deletion of about 500 bp in the central region of the molecule.

Although it might be conjectured that in this case a nonfunctional pseudogene has been sequenced, as occurred with the 18S rRNA locus of the platyhelminth Dugesia mediterranea (Carranza et al., 1996) and other dugesiids (Carranza et al., 1998a, 1998b), this seems improbable for several reasons. First, this sequence has been obtained from three different species and in two independent laboratories. Second, none of the highly conserved primers from the “deleted” region (forward primers 4F, 18Sa0.7, 18Sa0.79, 18Sa1.0; reverse primers 4R, 18Sb5.0, 18Sb3.9, 18Sb3.0 [Giribet et al., 1996; Whiting et al., 1997]) amplified any DNA fragment when combined with primers from other regions. If the 1350 bp fragment was a
pseudogene, we would expect to amplify fragments of the original gene when using the conserved primers located within the “deleted” region. Third, phylogenetic analyses including the symphylan sequences show that symphyans are arthropods related to other myriapods (Giribet, 1997; fig. 3). Fourth, amplification of DNA from an RNA source, as described by Carranza et al. (1998a), yielded a product band size of approximately 1350 bp, as expected. These facts demonstrate that a deletion of ca. 500 bp occurred in the common ancestor of these three symphylan species.

18S rRNA Variation in Metazoans

It seems that large insertions and deletions are not as constrained as was previously thought (e.g., Crease and Colbourne, 1998). These events occur in many metazoan taxa, and are commonly in regions V2, V4, V7, and V9. Other parts of region 23 (that includes the region V4) are also variable. In a phylogenetic study of about 150 arthropod 18S rRNA sequences (Giribet and Ribera, 2000), insertions at region E23–7 were observed in Onychophora and in Pauropoda while insertions at region E23–8 were observed in the pauropod species. Other insertions observed in particular taxa occur at sites 8 (in the millipede Polyzonium), 11 (in Onychophora), 29 (in Pauropoda), and 46 (in the proturan Acerentulus traeghardi). However, we only obtained sequences from one pauropod and one proturan, hence these results cannot be generalized to other members of such groups.

Certain taxa present insertions in variable regions whereas in the remaining regions the primary sequence may be conserved. For example, certain geophilomorph centipedes exhibit a small insertion at region V2 (between 10 and 80 bp compared to other centipedes) and a large insertion (about 300 bp) at region V7, whereas the remaining positions are conserved with respect to other centipedes. Other taxa not only present insertions in the variable regions, but also in the primary sequence. This is the case in the cephalopods, which have insertions in regions V2, V4, V7, and V9, and differ considerably from other molluscs in the primary sequence of the remaining regions.

Although several metazoans present insertions in the 18S rRNA, reduction of the 18S rRNA gene appears to be a rare event in evolution. To our knowledge, there are no other reported cases of 18S rDNA sequences with
Fig. 3. Phylogenetic tree based on 18S rRNA sequence data indicating the position of two symphylans (box) with respect to other myriapods (underlined taxa) in a phylogenetic analysis of arthropods (from Giribet, 1997). The two symphylans appear related to other myriapods.
a deletion of the magnitude of that observed in the symphylans (ca. 500 bp). The deletion corresponds to the central region of the molecule (approximately from region 14 to E23–9). The remaining primary sequence is fairly conserved, which we assume may be functional. However reconstruction of a global secondary structure cannot be conducted using the comparative method. Another case of sequence length reduction in the 18S rRNA locus occurs in the Dicyemid mesozoans (three species of the genus *Dicyema*), with a total gene sequence of about 1670 bp that presents two major deletions at the variable sites V2 and V9.

The geophilomorphan centipedes that present the insertion of about 300 bp at region V7 (13 species) also display a large insertion (about 300 bp) at the D3 expansion fragment of the large subunit rRNA locus (28S rRNA). Neither of the insertions at region V7 of the 18S rRNA or at the D3 expansion fragment of the 28S rRNA locus have been found in the putative most basal geophilomorph family Mecistocephalidae (Giribet et al., 1999; Edgecombe et al., 1999). This apparent correlation between the insertions at region V7 of the 18S rRNA locus and at the D3 expansion fragment of the 28S rRNA locus (also observed in the cephalopod *Loligo*) could suggest a possible interaction between these subunits in the ribosome.

18S rRNA Variable Sites and Phylogenetic Analyses

The presence of certain variable sites in the 18S rRNA molecule can hinder phylogenetic analyses at the alignment step, a fact that is promoted by several researchers who avoid the use of ribosomal genes for drawing inferences (e.g., Ayala et al., 1998). In general, researchers using ribosomal genes exclude the variable regions from their phylogenetic inference step because of uncertainties in alignments (e.g., Giribet et al., 1996, 1999). But since data removal from phylogenetic analyses is also problematic (see Gatesy et al., 1993), and automatic alignments are explicit, other researchers prefer the use of automatic alignments exploring different cost matrices (e.g., Wheeler, 1995). Regardless of which of these options is the best (philosophically, computationally, or practically), the extreme length variation of some of the SSU rRNA helices may constitute a serious problem in the phylogenetic analysis of certain data sets.

A clear example is illustrated in figure 4, where we show the variable region V7 of 17 centipede taxa (see table 2 for the taxonomy). The fragment as a whole can be considered homologous because it is located between two conserved regions that constitute a stem. The most common sequence length for the V7 region in centipedes ranges between 65 and 70 bp (character state present in the five recognized orders of centipedes). However three taxa (*Scolopendra, Ethmostigmus*, and *Alipes*; family Scolopendridae) display sequences between 93 and 94 bp, and four taxa (*Pseudohimantarium, Henia, Clionopodes*, and *Zelanion*; belonging to four families of Geophilomorpha) exhibit sequences between 354 and 384 bp. These two clades are well defined morphologically and could also be characterized in terms of sequence length or perhaps secondary structure topology. However, a standard phylogenetic analysis of this fragment cannot be conducted successfully when base-to-base homology is required, as is the case with multiple sequence alignments. This situation is frustrating since the sequence data clearly display historical information that cannot be used phylogenetically.

A new method to analyze DNA sequence data that does not require base-to-base correspondences was recently developed by Wheeler (1999) and is discussed in greater detail there. Briefly, the method, named “fixed character states”, optimizes DNA sequence data without employing multiple sequence alignments by treating entire homologous stretches of sequence data as characters. The set of specific sequences exhibited by the terminal taxa constitutes the character states. Thus the number of states is equal to the number of unique sequences (or homologous fragments) exhibited by the data. In the example illustrated here, there is one character (region V7) with 17 states (as many as different taxa). Other situations could arise where the number of states would be smaller than the number of taxa if two or more were to share identical sequences. The salient fea-
Fig. 4. Variable region (V7) of the 18S rRNA locus of 17 species of centipedes.

A matrix of transformation costs is created to relate the states to one another. The cells of this matrix are defined as the minimum transformation cost required between each pair of states based on insertion-deletion and base substitution costs (as in the calculation of an alignment score). The next operation
uses this transformation matrix to diagnose a specific phylogenetic topology by means of existing dynamic programming techniques (Sankoff and Rousseau, 1975) with the number of states greatly expanded. This method has been implemented in the computer program POY (Gladstein and Wheeler, 1997) specifying the option -fixedstates (available via anonymous ftp at the site ftp.amnh.org / pub/molecular/poy/).

To illustrate how the method works empirically, we have analyzed the 17 sequences presented in figure 4 (and table 2) using the fixed character states method. The tree obtained (fig. 5) shows some lack of resolution, but also shows certain clades highly consistent with the current morphology of the group, as well as with the molecular analyses of Giribet et al. (1999) and Edgecombe et al. (1999). Scolopendromorpha is recognized as a clade that in turn includes a monophyletic clade, the family Scolopendridae, presenting an insertion of about 25 bp. Another clade is defined by the insertion of about 300 bp that groups all geophilomorph species except the mectistocephalids (Mecistocephalus and Nodocephalus, the most basal group that lacks the insertion). This is encouraging considering that this topology corresponds to the analysis of just a few bases from the variable region V7. Thus, this method facilitates use of all the information (variable and conserved) from ribosomal genes.

CONCLUSIONS

Long SSU rRNA appears to be more common than claimed by some authors (e.g., Crease and Colbourne, 1998) based on its occurrence in at least seven metazoan phyla: Platyhelminthes, Mollusca, Onychophora, Arthropoda, Chaetognatha, Echinodermata, and Mesozoa. However, large deletions appear to be rare, having so far only been found in one group of arthropods (Symphyla) and in mesozoans. Probably more taxon dis-
play extraordinary 18S rRNA genes, but this will not be discovered until sampling within each phylum increases. Nonetheless, the existence of variable regions should not discourage the use of ribosomal genes in phylogenetic analyses, especially when secondary structure predictions are combined with novel methods of DNA sequence data analysis. In this sense, the characterization of secondary structural features by means of the comparative method, and the use of these features (homologous regions) as characters with multiple states provides a powerful approach for the analysis of such data using the fixed character states method. Maybe it is at such levels that secondary structure information can best contribute to phylogenetic analyses.

ACKNOWLEDGMENTS

We thank Jerry Harasewych for discussion and Lorenzo Prendini and Michael Whiting for many helpful suggestions. G. G. was supported by a Lerner Gray research fellowship from the AMNH.

REFERENCES

Adoutte, A., and H. Philippe 1993. The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis. In Y. Pichon (ed.), Comparative molecular neurobiology: 1–30. Basel: Birkhäuser Verlag.

Aguinaldo, A. M. A., J. M. Turbeville, L. S. Lindford, M. C. Rivera, J. R. Garey, R. A. Raff, and J. A. Lake 1997. Evidence for a clade of nematodes, arthropods and other molting animals. Nature 387: 489–493.

Ayala, F. J., A. Rzhetsky, and F. J. Ayala 1998. Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates. Proc. Natl. Acad. Sci. USA 95: 606–611.

Bhattacharya, D. B., B. Surek, M. Rüsing, S. Damberger, and M. Melkonian 1994. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygmematales (Charophyceae). Proc. Natl. Acad. Sci. USA 91: 9916–9920.

Carranza, S., G. Giribet, C. Ribera, J. Baguñà, and M. Riutort 1996. Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol. Biol. Evol. 13: 824–832.

Carranza, S., D. T. J. Littlewood, K. A. Clough, I. Ruiz-Trillo, J. Baguñà, and M. Riutort 1998a. A robust molecular phylogeny of the Tricladida (Platyhelminthes, Seriata) with a discussion on morphological synapomorphies. Proc. R. Soc. London B 265: 631–640.

Carranza, S., I. Ruiz-Trillo, D. T. J. Littlewood, M. Riutort, and J. Baguñà 1998b. A reappraisal of the phylogenetic and taxonomic position of land planarians (Platyhelminthes, Turbellaria, Tricladi- da) inferred from 18S rDNA sequences. Pedobiologia 42: 433–440.

Chalwatzis, N., A. Baur, E. Stetzer, R. Kinzelbach, and F. K. Zimmermann 1995. Strongly expanded 18S rRNA genes correlated with a peculiar morphology in the insect order of Strepsiptera. Zoology 98: 115–126.

Chalwatzis, N., J. Haufl, Y. Van de Peer, R. Kinzelbach, and F. K. Zimmermann 1996. 18S ribosomal RNA genes of insects: Primary structure of the genes and molecular phylogeny of the Holometabola. Ann. Entomol. Soc. Am. 89: 788–803.

Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter 1979. Isolation of biologically active ribonuclease acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

Crease, T. J., and J. K. Colbourne 1998. The unusually long small-subunit ribosomal RNA of the crustacean, Daphnia pulex: sequence and predicted secondary structure. J. Mol. Evol. 46: 307–313.

De Wachter, R., J. M. Neefs, A. Goris, and Y. Van de Peer 1992. The gene coding for small ribosomal subunit RNA in the basidiomycete Us- tilago maydis contains a group I intron. Nucleic Acids Res. 20: 1251–1257.

Dover, G. A. 1982. Molecular drive: a cohesive model of species evolution. Nature 299: 111–117.

Edgecombe, G. D., G. Giribet, and W. C. Wheeler 1999. Phylogeny of Chilopoda: Combining 18S and 28S rRNA sequences and morphology. Boletin S.E.A. 26: 293–331.
Gatesy, J., R. DeSalle, and W. C. Wheeler
1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogenet. Evol. 2: 152–157.

Giribet, G.
1997. Filogenia molecular de Artrópodos basada en la secuencia de genes ribosomales. Ph.D. thesis, Universitat de Barcelona, Barcelona, 221 pp.

Giribet, G., and C. Ribera
1998. The position of arthropods in the animal kingdom: a search of a reliable outgroup for internal arthropod phylogeny. Mol. Phylogenet. Evol. 9: 481–488.

2000. A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16: 204–231.

Giribet, G., S. Carranza, J. Baguñà, M. Riutort, and C. Ribera
1996. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol. Biol. Evol. 13: 76–84.

Giribet, G., S. Carranza, M. Riutort, J. Baguñà, and C. Ribera
1999. Internal phylogeny of the Chilopoda (Arthropoda, ‘Myriapoda’): a combined approach using complete 18S rDNA and partial 28S rDNA sequences. Phil. Trans. R. Soc. London B 354: 215–222.

Gladstein, D. S., and W. C. Wheeler
1997. POY: the Optimization of Alignment Characters. New York: American Museum of Natural History.

Gunderson, J. H., M. L. Sogin, G. Wollett, M. Hollingdale, V. F. de la Cruz, A. P. Waters, and T. F. McCutchan
1987. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238: 933–937.

Gutell, R. R., B. Weiser, C. R. Woese, and H. F. Noller
1985. Comparative anatomy of 16S-like ribosomal RNA. Progr. Nucl. Acids. Res. Mol. Biol. 32: 155–216.

Hendriks, L., R. De Baere, C. van Broeckhoven, and R. De Wachter
1988a. Primary and secondary structure of the 18S ribosomal RNA of the insect species Tenebrio molitor. FEBS Lett. 232: 115–120.

Hendriks, L., C. van Broeckhoven, A. Vandenberghe, Y. Van de Peer, and R. De Wachter
1988b. Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelta californica and evolutionary relationships among eukaryotic phyla. Eur. J. Biochem. 177: 15–20.

Hillis, D. M., and M. T. Dixon
1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66: 411–453.

Hinkle, G., D. D. Leipe, T. A. Nerad, and M. L. Sogin
1994. The unusually long small subunit ribosomal RNA of Phreatamoeba balmuthi. Nucleic Acids Res. 22: 465–469.

Kjer, K. M.
1995. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: An example of alignment and data presentation from the frogs. Mol. Phylogenet. Evol. 4: 314–330.

Kwon, O. Y., K. Ogino, and H. Ishikawa
1991. The longest 18S ribosomal RNA ever known. Nucleotide sequence and presumed secondary structure of the 18S rRNA of the pea aphid, Acyrthosiphon pisum. Eur. J. Biochem. 202: 827–833.

Neefs, J. M., and R. De Wachter
1990. A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic Acids Res. 18: 5695–5704.

Picon, M., R. R. Gutell, R. Ehrlich, and A. Zaha
1996. Characterization of a flatworm ribosomal RNA-encoding gene: promoter sequence and small subunit RNA secondary structure. Gene 171: 215–220.

Qari, S. H., I. F. Goldman, N. J. Pieniazek, W. E. Collins, and A. A. Lal
1994. Blood and sporozoite stage-specific small subunit ribosomal RNA-encoding genes of the human malaria parasite Plasmodium vivax. Gene 150: 43–49.

Sanger, F., S. Nicklen, and A. R. Coulsen
1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5468.

Sankoff, D., and P. Rousseau
1975. Locating the vertices of a Steiner tree in arbitrary space. Math. Prog. 9: 240–246.

Sogin, M. L.
1991. Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1: 457–463.

Van de Peer, Y., and R. De Wachter
1997. Evolutionary relationships among the eukaryotic crown taxa taking into ac-
count site-to-site rate variation in 18S rRNA. J. Mol. Evol. 45: 619–630.
Van de Peer, Y., A. Caers, P. De Rijk, and R. De Wachter 1998. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 26: 181–185.
Waters, A. P., C. Syin, and T. F. McCutchan 1989. Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature 342: 438–440.
Wheeler, W. C. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44: 321–331.
1999. Fixed character states and the optimization of molecular sequence data. Cladistics 15: 379–385
Whiting, M. F., J. M. Carpenter, Q. D. Wheeler, and W. C. Wheeler 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst. Biol. 46: 1–68.
Wilcox, L. W., L. A. Lewis, P. A. Fuerst, and G. L. Floyd 1992. Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Mol. Biol. Evol. 9: 1103–1118.
Winnepenninkx, B., and T. Backeljau 1996. 18S rRNA alignments derived from different secondary structure models can produce alternative phylogenies. J. Zool. Syst. Evol. Res. 34: 135–143.
