Evaluating the Effects of HIV Self-testing used Professional Rapid Test Kits among MSM in Some Areas of China.

Xiaoxia He (✉ 15848045573@163.com)
× National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention

Yanan Ren
× Fangshan District Center for Disease Control and Prevention

Zhonghui Ma
× National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention

Wenhui Guo
× National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention

Cong Jin
× National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention

Wenge Xing
× National HIV/HCV Reference Laboratory, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention

Research Article

Keywords: HIV self-testing (HIVST), urine, oral mucosal transudate (OMT), finger blood rapid HIV testing kits

Posted Date: November 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1019127/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

With rapid expanding of HIV self-testing (HIVST) among unprofessional people has many unknown hidden dangers. This research for the first to survey the feasibility of urine, oral mucosal transudate (OMT) and finger blood rapid HIV testing kits were used for HIVST by non-professionals MSM in China. Total 274 valid questionnaires were received from 313 MSM participants, including 263 completed urine HIVST, 61 completed OMT HIVST and 17 completed blood HIVST. The average age of participants was under 30, about 80% were unmarried, more than 80% with an education level above Grade 9 but more than 50% people had never heard of the rapid HIV test. There were significant differences in the key information understanding accuracy between HIVST. The accuracy rates were 18.0–80.6%. When the HIVST result was positive, more than 80% chose to seek confirmation. When the test was negative, 60.5% (159/263) participants of urine self-test and 32.8% (20/61) of OMT self-test chose regular retesting. When the test was ineffective, more than 80% chose to retest. In addition, 54.1% of the 146 voluntary participants to accept blood HIVST, followed by 15.8% accept blood and urine HIVST and 14.4% accept only urine HIVST. The main reason for choosing blood HIVST was "accuracy", while the main reason for choosing urine HIVST was "convenience". This findings lays a scientific theoretical basis for further carrying out HIVST in China.

Introduction

Since WHO issued guidelines on HIV self-testing (HIVST) in 2016[1], implemented HIVST countries increased from 13 in 2017 to 28 in 2018, and 18 of them are middle and upper income countries. The countries with HIVST support policies increased from 16 in 2016 to 59 in 2018. In China, the state Council issued the “Thirteenth Five-Year Plan (2017–2022)” for HIV prevention and control in 2017, indicated that China will “explore strategies to promote HIVST through selling HIVST kits in pharmacies and online” [2].

Until July 2019, the first and the only one authority HIVST kit was approved by Chinese State Food and Drug Administration, which was HIV-1 urine antibody (colloidal gold assay) test kit [3]. The National Health Commission issued the “Implementation Plan for the Prevention of the Spread of HIV/AIDS (2019-2022), which proposed "health and drug regulatory departments should formulate the guidline for the HIV/AIDS self-testing and relevant policies supervision, carry out online appointment testing consultation services to promote HIVST in September 2019 [4]." And the Chinese center for disease control and prevention STD and AIDS prevention and control Association issued "AIDS self-testing guide manual" to provide technical guidance in October 2019[5].

However, each hour of 2017, about 220 rapid HIV test kits were sold to do HIVST by a single online pharmaceutical store in China, without monitoring and the majority were blood-based rapid testing kits for clinical professionals [6]. This rapid expanding of HIVST among unprofessional people has many unknown hidden dangers. Therefore, it is the first survey and research the feasibility of urine, Oral mucosal transudate (OMT) and finger blood rapid HIV testing kits were used for HIVST by non-professionals MSM in China, from November 2018 to March 2019. In accordance with the “Technical
specifications for WHO prequalification of Human Immunodeficiency Virus (HIV) rapid diagnostic tests for professional use and/or self-testing” [7], we evaluated the understanding ability of key information in manual, the interpretation ability of simulation results, and the operation ability of HIVST. At the same time, we also evaluated the preference of the people for urine, blood and OMT. In order to lays a scientific theoretical basis for further carrying out HIVST in China.

Results

Participants characteristics

Total 274 valid questionnaires were received from 313 MSM participants, including 263 participants completed urine HIVST, 61 participants completed OMT HIVST and 17 participants completed blood HIVST. Among the participants who completed urine HIVST with an average age of 28.8 years (the oldest was 58 and the youngest was 17), 85.9% (226/263) were unmarried, 77.2% (203/263) were Han nationality, 89.7% (236/263) had an education level above junior middle school, but 59.70% (157/263) had never heard of the rapid urine HIV test. In addition, 61 participants who completed OMT HIVST with an average age of 29.3 years (the oldest was 54 and the youngest was 19), 77.1% (47/61) were unmarried, 75.4% (46/61) were Han nationality, 82.0% (50/61) had an education level above Grade 9, 32.8% (20/61) had heard of the rapid OMT HIV test but don't understand (Table 1).

Key information understanding evaluation

There were significant differences in the key information understanding accuracy between urine and OMT HIVST. The accuracy rates were 31.6% (83/263) to 80.6% (212/263) and 18.0% (11/61) to 77.1% (47/61), respectively. The most confusing of urine HIVST were "unsuitable for antiviral treatment people" and "use within 30 minutes after unpacking", and the comprehension correct rates were 31.6% (83/263) and 32.7% (86/263). In OMT HIVST, the most incomprehensible were "After one sample, wait 30 minutes for a second sample" and "After adding the sample for 30 minutes, the result is not accurate", with the comprehension correct rate of (18.0% (11/61) and 32.8% (20/61) (Table 2).

Additionally, the comprehension correct rates of urine, OMT and blood rapid test results were 62.4%~79.5%, 57.4%~88.5% and 17.7%~88.2%, respectively. The most accurate understand was "if there is no C line and no test line, it is invalid ", while the inaccurate understand were "if there is no C line, it is invalid" and "if there is no C line and the test line appear, it is invalid". Especially for the interpretation of "HIV infection cannot be excluded when the test is negative" and "HIV infection cannot be confirmed when the test is positive", the comprehension correct rate both less than 50% (Table 2).

When the HIVST result was positive, more than 80% chose to seek confirmation from medical institutions (urine 84.4% (222/263) and OMT 80.32% (49/61)). When the test was negative, 60.5% (159/263) of participants in the urine self-test chose regular retesting, but only 32.8% (20/61) of participants in the
OMT self-test chose regular retesting. When the test was ineffective, more than 80% chose to retest (urine 83.7% (220/263) and OMT 83.60% (51/61)).

Results analog pictures discriminant evaluation

The participants had good interpretation accuracy (86.9%~98.1%) with the results analog pictures of strong reactivity, non-reactivity and invalid (no quality control line, no test line), but had low accuracy (32.7%~68.9%) with the simulation pictures of weak reactivity and invalid (no quality control line, no test line) results.

HIVST operation evaluation

The urine HIVST performance with the highest accuracy during the self-detection evalution. 82.1% (216/263) participants could perform all the urine HIVST steps correctly, 11.0% (29/263) had an operation error of one step and 6.9% (18/263) had multi-step operation error. The "add 3 drops urine to the sample area in the test card" with lowest correct rate was 88.2% (232/263) (Table 3).

The operating accuracy of OMT and blood HIVST were 11.5% (7/61) and 23.5% (4/17), respectively. Especially with the low operate accury in "slightly gargling with warm water before collection" and "two wiping time 5-6s" of OMT HIVST, "add 1 drop of whole blood to the add sample hole" and "read the result after 30 minutes" of blood HIVST (Table 3).

Self-test method acceptance

54.1% (79/146) of the 146 voluntary participants to accept blood HIVST, followed by 15.8% (23/146) to accept blood and urine HIVST, 14.4%(21/146) to accept only urine HIVST. Among them, the main reason for choosing blood HIVST was "accuracy" (57/146), while the main reason for choosing urine HIVST was "convenience" (39/146).

Discussion

Non-professionals using professional rapid HIV testing reagents for HIVST may have problems. The stages of sample collection, testing and result interpretation[8-10] may affect the test accuracy. In this study, MSM participants were asked to do HIVST using rapid HIV testing kits without any assistance or guidance. The results showed that MSM can better complete urine HIVST with the operation accuracy rate is 82.1%, which is consistent with the research of Roger B. Peck et al[11]. However, the operating errors were common in OMT and blood HIVST, the operating accuracy rate were only 11.5% and 23.5%, respectively. Studies have shown that the high error rate in OMT HIVST is due to the complex OMT collection and test process, the too numerous descriptions in the instructions to users’ failure to read or understand carefully[12]. And the most common error in blood HIVST was "reading results after 30
minutes", perhaps due to participants were anxious to know their infection status and immediately interpreted the results when the test strip display. This is different from the study of Mohammed Majam and Smith P[13,14], which operational errors mainly occurred in the blood collection and sampling process. In addition, during the urine HIVST, the most mistakes were "adding 3 drops of urine to the sample area of the test card", which may be due to some participants did not read the instructions carefully. Therefore, this study suggest that the clear, understandable and interesting instructions should be used to improve the feasibility of non-professionals HIVST[11].

Results analog picture discriminant evaluation showed that the strong reactive and non-reactive results with the highest interpretation accuracy, while the weakly reactive results with low interpretation accuracy, which was consistent with the relevant research results[9,11,12,15]. Especially, the more complex invalid results of "no quality control line /T line, with test line /C line" is far lower than the invalid results of "no quality control line /T line, no test line /C line". In this regard, relevant studies have shown that use different symbols for test lines and control lines could increase the results interpretation accuracy[11]. Therefore, it is suggested that clear, simple and easy to distinguish symbols can improve the results interpretation accuracy.

According to the evaluation results of participants’ understanding the cautions, operation processes and results interpretation in the reagent instructions, more than half questions with less than 70% comprehension accuracy rate, which was consistent with the relevant domestic studies[12]. However, the study of Gresenguet[15] showed most people could correctly understand the instruction information. It may be the reagent instructions used in this study were full of words and contained technical terms, which led to participants' inability to accurately identify and effectively understand while simple and understandable colloquial descriptions of instructions were used in Gresenguet's study. More important, the low understanding accuracy of "HIV infection cannot be ruled out if the test result is negative, and HIV infection cannot be confirmed if the test result is positive" will affect the users' subsequent solutions choice. Remind us again, using easy to understand instructions is more conducive to non-professional users to accurately understand the key information.

This study found when the HIVST results were reactive more than 80% people choose to confirm by medical institution, when the results were nonreactive most people choose to regular retest, and when the results were invalid more than 80% people choose to test again. It is suggested that HIVST can help to find more HIV infected people, to some extent[12,16].

If provided some help to HIV self-testers such as simple instructions and video tutorials, the HIVST results can be highly consistent with professional medical and health workers [17]. Studies showed the OMT HIVST accuracy is 97.0%[18], 92.5% [12], and 83.3% [19]. In this study, the HIVST accuracy of urine, OMT, and blood were 96.9% (255/263), 91.8% (56/61) and 100% (17/17). There was no factors affecting the HIVST accuracy by evaluation results analysis, the possible reasons were the HIV antibody content different between urine, OMT, and blood which due to the interfering substances of urine and OMT, and also may be because of the small sample size in this study.
Studies have shown that the urine of HIV-1 infections is unlikely contain infectious HIV-1, the risk of transmission of HIV-1 by urine is low to nonexistent[20]. And the urine sampling is non-invasive and painless which can improve testers to choose and acceptance. In this study, we found if HIVST was conducted again, 54.1% MSM tended to choose blood test reagents, 15.8% to choose blood and urine test reagents, 14.4% choose urine test reagents, and the reasons were people believes blood test is more accurate but urine test is more convenient. It is consistent with the study results of Witzel et al. [21] and Lippman et al. [22], which also showed that HIV blood test in MSM was more acceptable because of MSM believe it more accurate. However, the research of Marley et al. [81] showed 72.8% MSMS accepted OMT test because convenience, painless, easy to collect samples and test [23], while only 15.1% MSMS considered choosing OMT test in this study because the urine test also has the characteristics of above and and HIV antibodies in urine samples is very stable, can directly test [24]. So the MSMs be inclined to choose more convenient urine and more accurate blood.

In conclusion, this study for the first time to evaluated the understanding ability of key information in manual, the interpretation ability of simulation results, and the operation ability of HIVST, and the preference for urine, blood and OMT, when unprofessional MSMs used professional rapid test kits for HIVST lays a scientific theoretical basis for further carrying out HIVST in China.

Methods

Ethical requirement

The research was reviewed and approved by the ethics review committee of the center for STD and AIDS prevention and control of Chinese center for disease control and prevention (Project No. X171103483). All methods were performed in accordance with the relevant guidelines and regulations. All the documents during study are strictly confidential, and the identities of the participants in study were strictly confidential and free to opt out at all stages of the investigation.

Setting and population

This study was conducted in three HIV testing sites of MSM community organizations in Guiyang of Guizhou Province and Nanning of Guangxi Zhuang Autonomous Region. There are independent testing and consulting rooms to provide a private space for participants. Inclusion criterias for study participants were no mental illness or consciousness disorder, voluntary and willing to signed informed consent. Exclusion criterias were unwilling to sign informed consent, have been diagnosed with HIV or AIDS.

Investigators are experienced peer education volunteers and have received rapid test training.Investigators understood the purpose and significance of the study, familiar with the investigation process and questionnaire, mastered the process and operation of urine, OMT and blood HIV tests.
Questionnaire design and key information understanding evaluation

Questionnaires were designed in accordance with the instructions of rapid HIV detection reagents used in this study. Questionnaire including basic information of participants (age, nationality, marital status, educational level, residence, etc.) and the understanding of key information in instruction (important steps, results interpretation, considerations and limitations, in the face of different self-test results may take actions).

Participants fill their own basic information in the first part, after viewing the instructions to answer and fill the questions about the key information in the second part. After completed the questionnaire, the investigators to check the questionnaire in time. If there are missing items or obvious errors in the questionnaire, the participants would be reminded to supplement and improve.

Results simulation pictures preparation and discriminant evaluation

Simulation pictures of test results such as weak reactivity, non-reactivity, and ineffectiveness (neither test line nor quality control line and only test line) were prepared in advance. The investigators showed the results simulation pictures to participants and asked them to interpret each simulation result, and recorded the interpretation results in the corresponding position.

Operation record table design and operation evaluation

Selected 15 participants who had never received HIV test were divided into urine test group, OMT test group and blood test group, with 5 people in each group. Each group of every participants was given a correspond rapid HIV testing service package and completed HIV testing. From the moment of participants open the package, researchers begin to record in detail the all operation errors in preparation, sampling, testing, results interpretation, waste disposal and so on, without any help or guidance during the whole evaluation process. After the evaluation, asked participants in detail about their problems and confusion during the whole test process. Finally, according to the results of operation and communication to design the operation records including key steps in urine, OMT and blood HIVST.

After signed the informed consent, investigators first provided the a urine testing service package (including a urine testing kit, instruction manual, disposable urine cup, disposable dropper, etc.). Under the premise of no guidance, all participants completed the urine HIV rapid testing by themselves. Afterwards, provided the OMT service package (including a OMT test kit, instruction manual, disposable oral swab, etc.) and blood testing service package (including a test kit, instruction manual, disposable blood needle, etc.) to some volunteer participants, and completed the HIV tests without any guidance. Investigators
carefully observed the operation of each specific step and filled in the operation record form, and filled the final results interpretation by participants in the "Self-Test Results" section. At the same time, investigators filled their own results interpretation in the "Professional Results" section.

Data analysis

Removing the questionnaires with missing key information or non-conforming, used EpiData 3.1 and double entry method to establish the database, and used SAS 9.4 conducted data consistency tests. In this study, frequency and constituent ratio were used to represent enumeration data, while mean and standard deviation were used to represent measurement data. Univariate analysis was performed by chi-square test or Fisher's test, multivariate analysis was performed by Logistic regression, the test level $\alpha = 0.05$.

Declarations

Acknowledgments

This study was supported by the China-US Cooperation Global AIDS Program and the 13th Five-Year Plan of the China Key Science & Technology Program (2018ZX10732101-001-010). The funder had no role in the study design, data collection and analysis, decision to publish, and preparation of the manuscript.

Disclosure statement

Informed consent was obtained from all the study participants. No potential conflict of interest was reported by the authors.

References

1. WHO. Guidelines on HIV Self-Testing and Partner Notification [Z]. 2016.
2. General Office of the State Council of China. China's 13th Five-Year Plan of Action for the Prevention and Control of AIDS. 2017.
3. http://app1.sfda.gov.cn/datasearch/face3/base.
4. National Health Commission of China. Implementation Plan to Curb the Spread of AIDS (2019-2022) [J]. Chinese Journal of Viral Diseases, 2020, 10(1): 1-4.
5. Chinese CDC. AIDS self-testing guide manual (The first edition) [Z]. 2019.
6. Weiming Tang, Dan Wu. Opportunities and challenges for HIV self-testing in China. Lancet HIV. 2018, 5(11): e611–e612. doi:10.1016/S2352-3018(18)30244-3.
7. WHO. Technical specifications for WHO prequalification of Human Immunodeficiency Virus (HIV) rapid diagnostic tests for professional use and/or self-testing [Z]. 2016.
8. Wei C, Yan L, Li J, et al. Which user errors matter during HIV self-testing? A qualitative participant observation study of men who have sex with men (MSM) in China[J]. BMC PUBLIC HEALTH, 2018, 18(1).

9. Bwana P, Ochieng' L, Mwau M. Performance and usability evaluation of the INSTI HIV self-test in Kenya for qualitative detection of antibodies to HIV[J]. PLoS One, 2018, 13(9): e202491.

10. Tonen-Wolyec S, Batina-Agasa S, Longo J D D, et al. Insufficient education is a key factor of incorrect interpretation of HIV self-test results by female sex workers in Democratic Republic of the Congo [J]. MEDICINE, 2019, 98(6): e14218.

11. Peck R B, Lim J M, Rooyen H, et al. What Should the Ideal HIV Self-Test Look Like? A Usability Study of Test Prototypes in Unsupervised HIV Self-Testing in Kenya, Malawi, and South Africa[J]. AIDS AND BEHAVIOR, 2014, 18(S4): 422-432.

12. Zhonghui Ma. The methodology evaluation of HIV rapid diagnostic tests in oral mucosal transudate for self-testing[D]. Chinese Center for Disease Control and prevention, 2018.

13. Majam M, Mazzola L, Rhagnath N, et al. Usability assessment of seven HIV self-test devices conducted with lay-users in Johannesburg, South Africa[J]. PLoS One, 2020, 15(1): e227198.

14. Smith P, Wallace M, Bekker L G. Adolescents' experience of a rapid HIV self-testing device in youth-friendly clinic settings in Cape Town South Africa: a cross-sectional community based usability study[J]. Journal of the International AIDS Society, 2016, 19(1): 21111.

15. Gresenguet G, Longo J D, Tonen-Wolyec S, et al. Acceptability and Usability Evaluation of Finger-Stick Whole Blood HIV Self-Test as An HIV Screening Tool Adapted to The General Public in The Central African Republic[J]. Open AIDS J, 2017, 11: 101-118.

16. Ibitoye M, Ibitoye M, Frasca T, et al. Home Testing Past, Present and Future: Lessons Learned and Implications for HIV Home Tests[J]. AIDS AND BEHAVIOR, 2014, 18(5): 933-949.

17. Figueroa C, Johnson C, Ford N, et al. Reliability of HIV rapid diagnostic tests for self-testing compared with testing by health-care workers: a systematic review and meta-analysis[J]. Lancet HIV, 2018, 5(6): e277-e290.

18. Marley G, Kang D, Wilson E C, et al. Introducing rapid oral-fluid HIV testing among high risk populations in Shandong, China: feasibility and challenges[J]. BMC PUBLIC HEALTH, 2014, 14(1): 422.

19. Ng O T, Chow A L, Lee V J, et al. Accuracy and user-acceptability of HIV self-testing using an oral fluid-based HIV rapid test[J]. PLoS One, 2012, 7(9): e45168.

20. Skolnik P R, Kosloff B R, Bechtel L J, et al. Absence of infectious HIV-1 in the urine of seropositive viremic subjects[J]. JOURNAL OF INFECTIOUS DISEASES, 1989, 160(6): 1056-1060.

21. Witzel T C, Rodger A J, Burns F M, et al. HIV Self-Testing among Men Who Have Sex with Men (MSM) in the UK: A Qualitative Study of Barriers and Facilitators, Intervention Preferences and Perceived Impacts[J]. PLoS One, 2016, 11(9): e162713.

22. Lippman S A, Gilmore H J, Lane T, et al. Ability to use oral fluid and fingerstick HIV self-testing (HIVST) among South African MSM[J]. PLoS One, 2018, 13(11): e206849.
23. Ritchwood T D, Selin A, Pettifor A, et al. HIV self-testing: South African young adults' recommendations for ease of use, test kit contents, accessibility, and supportive resources. BMC PUBLIC HEALTH, 2019, 19(1):123.

24. FENG Xia, WANG Jibao, TIAN Yu, et al. Clinical evaluation of urine HIV-1 antibody test. Chin J AIDS STD, 2016, 4(22): 241-243.

Tables

Table 1

Basic information of MSM participants for HIVST	Urine	OMT	Blood	
	N=263	N=61	N=17	
Age (years)				
≤25	106	29	6	35.3
26~35	105	17	8	47.1
36~45	39	12	2	11.7
≥45	13	3	1	5.9
Marital status				
Unmarried	226	47	14	82.3
Married	28	8	2	11.8
Divorced or widowed	9	6	1	5.9
Nationality				
Han	203	46	11	64.7
Zhuang	32	12	6	35.3
Others	28	3	0	0.0
Education				
Grade 1-9	27	11	3	17.7
Grade 10-12	71	11	4	23.5
College or above	165	39	10	58.8
Know about rapid HIV test				
Very familiar	5	3	2	17.6
Know a little	35	30	13	76.5
Just heard of	66	20	1	5.9
Never heard of	157	8	0	0.0

Table 2
Key information understanding evaluation
Operation cautions	Understanding accuracy	
Urine (N=263)		
Unsuitable for antiviral treatment people	83	31.6
Use within 30 minutes after unpacking	86	32.7
Read the results 15 minutes after adding samples	176	66.9
Within the specified time, no matter the color is strong or weak, judged as the color	184	70.0
Read the result within the specified time	205	78.0
Do not read the results in dim light	193	73.4
The test card should not be tilted	212	80.6
HIV infection cannot be excluded when the test is negative	122	46.4
HIV infection cannot be confirmed when the test is positive	132	50.2
OMT (N=61)		
Do not sample immediately after eating, brushing, smoking and gargling	39	63.9
After one sample, wait 30 minutes for a second sample	11	18.0
Samples were collected from the upper and lower gingival lines	47	77.1
Read the results 15 minutes after adding samples	43	70.5
After adding the sample for 30 minutes, the result is not accurate	20	32.8
HIV infection cannot be confirmed when the test is positive	25	41.0
Blood (N=17)		
Diluent should be added after whole blood dripping	16	94.1
Remove from packaging at room temperature and use within 30 minutes	2	11.8
Read the results 30 minutes after adding samples	0	0.0
Do not read the results in dim light	16	94.1
The test card should not be tilted	17	100.0
HIV infection cannot be excluded when the test is negative	4	23.5
HIV infection cannot be confirmed when the test is positive	5	29.4

Results interpretation

Operation cautions	Understanding accuracy		
Urine			
Both C line and T line appear, it is positive	164	62.4	
Test Type	Condition	Count	Percentage
-----------	-----------	-------	------------
(N=263)	Only C line appear and no T line, it is negative	164	62.4
	If there is no C line, it is invalid	185	70.3
	If there is no C line and no T line, it is valid	209	79.5
OMT (N=61)	Only the red C line appear, it is negative	54	88.5
	Both the red C line and T line appear, it is positive	48	78.7
	If there is no red C line, it is invalid	35	57.4
Blood (N=17)	Both C line and T line appear, it is positive	5	29.4
	Only C line appear and no T line, it is negative	3	17.7
	If there is no C line and the test line appear, it is invalid	6	35.3
	If there is no C line and no T line, it is valid	15	88.2
Table 3

HIVST operation evaluation

HIVST steps	Operation accuracy	n	%
Urine (N=263)			
1. Collected urine and placed in cup for test	263	100.0	
2. Place the test card flat on the table	263	100.0	
3. Use disposable dropper to absorb urine	257	97.7	
4. Add 3 drops urine to the sample well in test card	232	88.2	
5. Wait patiently for 15 minutes	248	94.3	
6. Read result according to the appear line	257	97.7	
7. Place all materials used in the trash can after testing	243	92.4	
OMT (N=61)			
1. Gargle with warm water before collection	15	24.6	
2. Hold the oral sampler handle one end without touching the sampling end	54	88.5	
3. Used sampling end wiped from one corner to the other along the upper gum line	51	83.6	
4. Wipe along the upper gum line back to beginning	54	88.5	
5. Wipe time is about 5-6s	41	67.2	
6. Flip the oral sampler	47	77.1	
7. Used sampling end other side swabbed from one corner to the other along the lower gingival line	48	78.7	
8. Wipe along the lower gum line back to the start	55	90.2	
9. Wipe time is about 5-6s	42	68.9	
10. Insert the oral sampler into the sample processing solution tube	58	95.1	
11. Place the swab close to the tube wall and scrape up and down 6-8 times	44	72.1	
12. Add 4 drops sample solution to the sample well	44	72.1	
13. Read the results after 15 minutes	59	96.7	

Blood
(N=17)

Step	Action Description	Rank	Accuracy %
1	Disinfect the local finger tip with alcohol cotton	14	82.3
2	Wait until the alcohol has evaporated completely	15	88.2
3	Pierced the fingertip skin with blood needle	16	94.1
4	Draw blood from fingertip with a straw	14	82.3
5	Add 1 drop blood to the sample well of test card	13	76.5
6	Add 1-2 drops sample diluent	15	88.2
7	Record the adding samples time	15	88.2
8	Read the results after 30 minutes	7	41.2