Characterization of the ‘pristinamycin supercluster’ of
Streptomyces pristinaespiralis

Yvonne Mast,1* Tilmann Weber,1 Melanie Gölz,1 Regina Ort-Winklbauer,1 Anne Gondran,2 Wolfgang Wohlleben1 and Eva Schinko1†
1Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Fakultät für Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
2Sanofi-Aventis, 174 Avenue de France, F-75635 Paris Cedex 13, France.

Summary
Pristinamycin, produced by Streptomyces pristinaespiralis Pr11, is a streptogramin antibiotic consisting of two chemically unrelated compounds, pristinamycin I and pristinamycin II. The semi-synthetic derivatives of these compounds are used in human medicine as therapeutic agents against methicillin-resistant Staphylococcus aureus strains. Only the partial sequence of the pristinamycin biosynthetic gene cluster has been previously reported. To complete the sequence, overlapping cosmids were isolated from a S. pristinaespiralis Pr11 gene library and sequenced. The boundaries of the cluster were deduced, limiting the cluster size to approximately 210 kb. In the central region of the cluster, previously unknown pristinamycin biosynthetic genes were identified. Combining the current and previously identified sequence information, we propose that all essential pristinamycin biosynthetic genes are included in the 210 kb region. A pristinamycin biosynthetic pathway was established. Furthermore, the pristinamycin gene cluster was found to be interspersed by a cryptic secondary metabolite cluster, which probably codes for a glycosylated aromatic polyketide. Gene inactivation experiments revealed that this cluster has no influence on pristinamycin production. Overall, this work provides new insights into pristinamycin biosynthesis and the unique genetic organization of the pristinamycin gene region, which is the largest antibiotic ‘supercluster’ known so far.

Introduction
Streptomyces pristinaespiralis produces the streptogramin-type antibiotic pristinamycin. Like other members of this family (also designated synergimycins), such as virginiamycin, mikamycin, vernamycin and others (Cocito, 1979), pristinamycin is a mixture of two different chemical classes of components, pristinamycin I (PI) and pristinamycin II (PII). PI is a branched cyclic hexa-depsipeptide of the B group of streptogramins, while pristinamycin PII has the structure of a polyunsaturated cyclo-peptidic macrolactone belonging to the A group of streptogramins (Figs 3A and 5). PI and PII are produced as different congeners. PI A is the major form of PI (usually 90–95%) containing a 4-N,N-dimethylamino-L-phenylalanine (DMAPA) residue instead of N-methyl-4-(methylamino)-L-phenylalanine (MMAPA) in the PIB minor form (5%) (Blanc et al., 1997). The PII component is synthesized mainly in two forms, PII A and PII B, which are present in an 80:20 ratio. The difference between PII A and PII B is the presence of a dehydroproline instead of a D-proline in the macrocycle respectively (Blanc et al., 1995).

Pristinamycin I and pristinamycin II are coproduced by S. pristinaespiralis in a ratio of 30:70. Each compound binds to the bacterial 50 S ribosomal subunit and inhibits the elongation process of the protein synthesis, thereby exhibiting only a moderate bacteriostatic activity. However, the combination of both substances acts synergistically and leads to a potent bactericidal activity that can reach up to 100 times that of the separate components (Rehm et al., 2001). Pristinamycin is very active against a broad range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, drug-resistant Streptococcus pneumoniae and vancomycin-resistant Enterococcus faecium as well as against some Gram-negative bacteria, such as Haemophilus spp. Due to its antimicrobial activities, pristinamycin is used as a therapeutic drug in human medicine, such as the semi-synthetic streptogramin Synercid, which is a mixture of the PI derivative quinupristin and the PII derivative dalfopristin (Barrière et al., 1994).

Pristinamycin I is synthesized by non-ribosomal peptide synthetases (NRPSs) that catalyse the stepwise condensation of seven amino acid precursors: 3-hydroxypicolinic acid, L-threonine, L-aminobutyric acid, L-lysine, L-alloisoleucine, L-phenylalanine and L-valine. These NRPSs form a large and complex enzyme complex, which has been named the ‘pristinamycin supercluster’ (Blanc et al., 1997). The pristinamycin supercluster consists of a total of 212 genes (154 open reading frames) and is located on a 210 kb DNA fragment (Blanc et al., 1997).

Received 25 June, 2010; accepted 15 August, 2010. *For correspondence. E-mail yvonne.mast@biotech.uni-tuebingen.de; Tel. (+49) 7071 2978865; Fax (+49) 7071 295979. †née Eva Heinzelmann.

© 2010 The Authors
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd
acid, L-proline, DMAPA, 4-oxo-L-pipecolic acid and L-phenylglycine (de Crécy-Lagard et al., 1997). PII is suggested to be synthesized from isobutyryl-CoA as a starter unit. Six malonyl-CoA extender units and the amino acids glycine, serine and proline are subsequently added by the action of hybrid PKS/NRPS enzymes (Thibaut et al., 1995).

Only partial sequence information of the pristinamycin biosynthetic gene cluster has been previously reported, and only a few of the biosynthetic genes have been characterized (Blanc et al., 1994; Bamas-Jacques et al., 1999). In previous studies, the cluster organization was elucidated by pulsed-field gel electrophoresis and was mapped to four non-overlapping chromosomal regions A, B, C and D (Bamas-Jacques et al., 1999). Region B, C and D together harbour some of the pristinamycin structural genes and thus represent the antibiotic biosynthetic gene cluster (Fig. 1). Thereby, the PI and PII structural genes exhibit a unique organization because they are not arranged in discrete clusters but are more or less mixed among each other. Region A encompasses a pristinamycin resistance gene ptr that is located outside the biosynthetic cluster (Bamas-Jacques et al., 1999). Due to its interspersed organization, we do not name this region a ‘cluster’ but rather the ‘pristinamycin biosynthetic gene region’.

So far, the overall organization of the pristinamycin biosynthetic gene region and its boundaries has not yet been described. Furthermore, the published sequence contains large gaps and several genes known to be essential for PI and PII biosynthesis have not been identified.

In this study, we report on the characterization of the complete pristinamycin biosynthetic gene region and the identification of a cryptic type II PKS gene cluster in S. pristinaespiralis Pr11. This provides information on the origin and the unique gene organization of the ‘pristinamycin supercluster’ and on pristinamycin biosynthesis.

Results and discussion

Isolation and characterization of DNA fragments covering the gaps and borders of the pristinamycin biosynthetic gene region

Thus far, only parts of the pristinamycin biosynthetic gene cluster have been isolated and characterized, and only 16 genes have been described to be involved in pristinamycin biosynthesis (Fig. 1) (Blanc et al., 1994; Bamas-Jacques et al., 1999). To complete the pristinamycin biosynthetic gene region, a S. pristinaespiralis Pr11 cosmid library was constructed and used in hybridization experiments to search for cosmids that overlap with published sequences. The cosmids were analysed by restriction analyses, polymerase chain reaction (PCR) and Southern blotting experiments to select overlapping cosmids (see Experimental procedures). After sequencing the cosmids, the obtained sequence data were assembled to contigs and were analysed in silico.

Small gaps (<10 kb) within regions B, C and D were closed by sequencing of PCR products spanning these gaps. To close the large gaps in between region B, C and D, DNA probes were derived from the inner cluster borders and used for screening approaches with the S. pristinaespiralis cosmid library (Fig. 1). Three cosmids were chosen to be sequenced covering the large gaps within the pristinamycin gene region: cosmid pYJM3 and pYJM4 span the gap between regions B and C, whereas pYJM5 covers the gap between regions C and D (Fig. 1). To find the boundaries of the pristinamycin biosynthetic
gene region, probes from the 5′ (left border) and 3′ (right border) ends of the known sequence were designed, where the genes \textit{samS} and \textit{snbR} are localized respectively. Cosmid pYJM1 and pYJM2 were identified and sequenced, which overlap with the left and right boundaries of the gene region respectively (Fig. 1).

The sequence data were assembled to contigs. Still existing gaps were closed using the \textit{S. pristinaespiralis} ATCC 25486 draft sequence data as a scaffold to align the \textit{S. pristinaespiralis} Pr11 sequence. The genome of \textit{S. pristinaespiralis} ATCC 25486 is sequenced in part (Accession No. ABJ10000000; M. Fischbach, P. Godfrey, D. Ward, S. Young, Q. Zeng, M. Koehrsen \textit{et al}, unpublished) and preliminary sequence data are accessible in GenBank. In this way it was possible to obtain one scaffold containing three contigs, of which 210 kb constitute the pristinamycin biosynthetic gene region (Fig. 2).

Taking the initial \textit{S. pristinaespiralis} genome size of 7500 kb as predicted by Bamas-Jacques and colleagues (1999), the cluster corresponds to 2.8% of the whole linear chromosome. Forty-five genes covering a region of ~120 kb were assigned as pristinamycin-specific genes involved in the biosynthesis, regulation and resistance of pristinamycin, and 32 genes covering a region of ~40 kb presumably code for the biosynthesis of a type II aromatic polyketide. The function of the remaining ~50 kb, mainly located within the ~90 kb interjacent sequence region, is unknown (see below; Figs 2 and 6, Tables 1 and 2). Altogether, this makes the pristinamycin biosynthetic gene region the largest antibiotic ‘supercluster’ that has been described so far.

\textbf{Definition of the gene cluster boundaries}

The left boundary of the pristinamycin gene cluster was previously defined by the gene \textit{samS}, which is localized adjacent to the PII biosynthetic gene \textit{snaB} (Fig. 1). \textit{samS} encodes a putative S-adenosylmethionine synthetase and was shown to be involved in PII but not in PII biosynthesis (Blanc \textit{et al.}, 1994; Huh \textit{et al.}, 2004).

The gene located directly downstream of \textit{samS} encodes a deduced protein that shows similarity to an adenosine kinase. Because there is no nucleoside residue present in the pristinamycins, this adenosine kinase is most likely not involved in antibiotic biosynthesis but probably needed for purine synthesis during primary metabolism. Other genes identified on this cosmid code for primary metabolic enzymes such as methionine synthase, 5,10-methylene-tetrahydrofolate reductase and S-adenosyl-L-homocysteine hydrolase, which are enzymes of the folate pathway. Similarities were also found with a gene encoding a predicted ATP-dependent DNA helicase (data not shown). Altogether, these similarities indicate that an involvement of the genes in the biosynthesis of pristinamycin is unlikely. Thus, we postulate that no further pristinamycin biosynthetic genes are located downstream of \textit{samS}, which therefore assigns the left border of the cluster.

The right boundary was previously defined by the gene \textit{snbR} that codes for a predicted ABC transporter protein probably involved in conferring resistance to pristinamycin (Blanc \textit{et al.}, 1994) (Fig. 1).

On cosmid pYJM2, five \textit{orf}s of unknown function and four regulatory genes, designated as \textit{papR3}, \textit{papR4}, \textit{papR5} and \textit{spbR}, were identified in the upstream region of \textit{snbR} (Fig. 2). The \textit{orf}s \textit{papR3} and \textit{papR5} both encode deduced proteins showing similarity to TetR repressor proteins, whereas the predicted gene product of \textit{papR4} revealed a high degree of similarity to \textit{Streptomyces} anti-biotic regulatory proteins (SARPs). The \textit{orf}s \textit{papR3}, \textit{papR4} and \textit{papR5} were already shown to be involved in the regulation of pristinamycin biosynthesis (Y. Mast, 2010).
ORF	Size (bp)	AA	Predicted function	ID/SM* (%)	Match/origin/literature	Reference	
sams	1208	402	S-adenosylmethionine synthetase		Blanc et al. (1994)	EDY68716	
snaB	1025	341	PIIA synthase subunit B		Thibaut et al. (1995)	AAB35225	
tsa	1205	401	IS200/IS605 family transposase	73/84	S. avermitilis		NP_821235
snaA	1268	422	PII synthase subunit A	Thibaut et al. (1995)	AAB35223		
snaD	7682	2561	PII peptide synthetase	Blanc et al. (1994)	CA02303		
pglE	1314	437	Hydroxyl/glycine amiontransferase				
mbtY	215	72	MbtH-like protein	59/78	Orf1, A. balhimycina	CAC48363	
pgI	854	284	Thioesterase type II	39/53	RifR, A. mediterranei	AAG5991	
pglC	1040	346	Pyruvate dehydrogenase E1	58/70	PdhB, M. avium	AAS04625	
pglB	1055	352	Pyruvate dehydrogenase E1	46/57	PdhA, M. avium	AAS04626	
pglA	1406	468	Hydroxacyl-dehydrogenase	47/62	DpgC, A. balhimycina	CAC48380	
snbDE	21712	7058	PI synthetase 3 and 4		de Crécy-Lagard et al. (1997)	CA72312	
snbC	1136	376	PI synthetase 2		de Crécy-Lagard et al. (1997)	CA72311	
papRE	749	249	Response regulator	52/65	VmsT, S. virgliae	BAF50712	

90 kb interjaecent region

snaQ	1082	360	Flavin-dependent oxidoreductase	69/80	VirN, S. virginiae	BAF50713
snaP	746	248	Thioesterase	59/70	VirL, S. virginiae	BAF50718
snaO	1145	381	Sarcosine oxidase	70/81	VirM, S. virginiae	BAF50714
rpaR	995	331	SARP-type regulator	56/68	TyfT, S. fradii	AAD40805
snaC	530	176	NADH:FAD oxidoreductase	Thibaut et al.	AAB35227	
snaN	848	282	4′-phosphopantetheinyl transferase	59/67	VirK, S. virginiae	BAF50717
snaM	875	291	Acytransferase	70/76	VirL, S. virginiae	BAF50719
snaE4	8060	2688	Hybrid NRPS/PKS (IV)	62/68	VirN, S. virginiae	BAF50720
snaE3	5978	1992	Hybrid NRPS/PKS (III)	62/68	VirG, S. virginiae	BAF50721
snal	635	212	Hypothetical protein			
snaK	773	258	Enoyl-CoA hydratase	73/83	VirE, S. virginiae	BAF50723
snaJ	770	257	Enoyl-CoA hydratase	63/71	VirD, S. virginiae	BAF50724
snaI	1250	416	HMG-CoA synthase-like protein	85/90	VirC, S. virginiae	BAF50725
snaH	1274	424	3-ketoacyl-ACP synthase	75/81	VirB, S. virginiae	BAF50726
snaG	251	83	Acyl carrier protein (ACP)	36/59	M. aurantiaca	EFA33610
snaE2	7547	2516	Hybrid PKS/NRPS (PKSI)	61/88	VirN, S. virginiae	BAF50727
snaE1	15521	5173	Hybrid PKS/NRPS (PKSI)	58/65	VirN, S. virgliae	BAF50727
snal	2030	676	Branched-chain α-keto acid decarboxylase	76/84	BkdA, S. virgliae	BAF48991
papRF	857	285	SARP-type regulator	72/80	TyfS, S. fradii	AAD40804
papM	878	292	N-methylase	Blanc et al. (1997)	AAC48689	
papB	389	129	Mutase	Blanc et al. (1997)	AAC48688	
papC	890	296	Dehydrogenase	Blanc et al. (1997)	AAC48687	
papA	2159	719	p-amino benzoate synthase	Blanc et al. (1997)	AAC48686	
snaF	1196	380	Cytochrome P450 monooxygenase	69/78	VisGa, S. virginiae	BAB83674
papA	1065	355	Lysine cyclodeaminase	69/78	VisGa, S. virginiae	BAB83673
snbA	1748	582	PI synthetase 1	de Crécy-Lagard et al. (1997)	CA67140	
hpA	1268	422	L-lysine 2-amino transferase	68/79	VisA, S. virgliae	BAB83671
snbT	185	61	4-oxaloconrate tautomerase	50/67	S. griseoflavus	ZP_05538094
snbR	1536	511	Protein of the Major Facilitator	75/83	VarS, S. virgliae	BAA78678
snbS	1583	527	Methylmalonyl-CoA decarboxylase	93/96	S. avermitilis	BAC70414
snbW	206	68	Hypothetical protein	50/59	S. ghanaensis	EFE72614
snaV	102	36	Hypothetical protein	40/81	S. rochei	BAC76516
papR	824	275	Tetr-type regulator	38/54	BarB, S. virginiae	BAA23612
papR	902	300	SARP-type regulator	73/82	TyfS, S. fradii	AAD40804
papR	662	220	Tetr-type regulator	56/84	TyQ, S. fradii	AAD40803
snaUb	13197	439	Cytochrome P450 monooxygenase	64/75	S. fradii	AAD40802
snpR	1050	228	Autoregulator receptor protein			

a. ID/SM, % identity/similarity of amino acid sequences.

b. Genes identified in this study.

Red, genes for PI biosynthesis; blue, genes for PII biosynthesis.

ORF, open reading frame; AA, amino acids; S. avermitilis, Streptomyces avermitilis MA-4680; A. balhimycina, Amycolatopsis balhimycina; A. mediterranei, Amycolatopsis mediterranei; M. avium, Mycobacterium avium sap, paratuberculosis K-10; S. virgliae, Streptomyces virgliae; S. fradii, Streptomyces fradii, M. aurantiaca, Microonospora aurantiaca ATCC 27029; S. griseoflavus, Streptomyces griseoflavus Tu4000; S. ghanaensis, Streptomyces ghanaensis ATCC 14672; S. rochei, Streptomyces rochei.

© 2010 The Authors
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 4, 192–206
Table 2. Schematic presentation of the *S. pristinaespiralis* Pr11 *cpp* cluster with a size of approximately 40 kb encoding the unknown substance.

ORF	Size (bp)	AA	Predicted function	ID/SM* (%)	Match/Origin	Reference
cpp32	1403	467	NDP-hexose 2,3-dehydratase	51/66	Gra-orf27, *S. violaceoruber*	CA09648
cpp31	1343	447	Esterase	44/59	*S. clavuligerus*	EDY51215
cpp30	821	273	Aromatase	32/49	Gra-orf4, *S. violaceoruber*	CA09656
cpp29	1238	412	Glycosyltransferase	64/77	LanGT4, *S. cyanogenus*	AAP13562
cpp28	989	329	Oxydoreductase	53/65	Gra-orf26, *S. violaceoruber*	CA09647
cpp27	1133	377	Glycosyltransferase	49/65	Gra-orf 14, *S. violaceoruber*	CA09635
cpp26	923	307	Hypothetical protein	42/59	SCO3313, *S. coelicolor*	CAB45347
cpp25	1007	335	dTDP-glucose 4,6-dehydratase	80/85	MtmE, *S. argillaceus*	CAK50775
cpp24	1067	355	dTDP-glucose synthase	79/89	MtmD, *S. argillaceus*	CAK50774
cpp23	1016	338	Conserved hypothetical protein	46/60	*S. sviceus*	EDY60232
cpp22	809	269	Ketoreductase	72/80	Gra-orf5, *S. violaceoruber*	CA09652
cpp21	743	247	Ketoreductase	77/85	Gra-orf6, *S. violaceoruber*	CA09651
cpp20	1031	343	FMN-dependent monoxygenase	62/72	Gra-orf29, *S. violaceoruber*	CA09650
cpp19	521	173	ACP	53/68	CosE, *S. olindensis*	ABC00730
cpp18	1283	427	Ketoacylsynthase, chain length factor	56/68	CosE, *S. olindensis*	ABC00733
cpp17	254	84	ACP	63/74	Gra-orf3, *S. violaceoruber*	CAAS4266
cpp16	1274	424	Ketoacylsynthase, chain length factor ?-subunit	69/80	Gra-orf1, *S. violaceoruber*	CA09653
cpp15	1208	402	Ketoacylsynthase, chain length factor β-subunit	59/69	Gra-orf2, *S. violaceoruber*	CA09654
cpp14	1253	417	Glycosyltransferase	29/44	Gra-orf14, *S. violaceoruber*	CA09635
cpp13	458	152	Aromatase	50/63	Gra-orf31, *S. violaceoruber*	CA09658
cpp12	947	315	Cyclase	62/74	Gra-orf33, *S. violaceoruber*	CA09660
cpp11	1145	381	Oxygenase/Hydroxylase	54/66	Gra-orf21, *S. violaceoruber*	CA09642
cpp10	233	77	Hypothetical protein	51/62	*S. ambofaciens*	CAI78105
cpp9	1307	436	Cytochrome P450 hydroxylase	46/63	LnmA, *S. atroolivaceus*	AAAS5514
cpp8	1235	411	O-acetyltransferase	31/46	Smr6, *S. ambifaciens*	CAM96572
cpp7	1285	421	Oxydoreductase	53/66	AcO, *S. galilaeus*	BAB2054
cpp6	1295	431	Oxygenase	61/71	MmOl, *S. argillaceus*	CAK50781
cpp5	260	87	Aroyl carrier protein	56/69	MmS, *S. argillaceus*	CAAS61991
cpp4	1283	427	Ketoacylsynthase, chain length factor β-subunit	54/66	Gra-orf2, *S. violaceoruber*	CA09654
tss	1205	401	IS200/IS605 family transposase	84/91	*S. avermitilis*	BAC67770
cpp3	1283	427	Ketoacylsynthase, chain length factor ?-subunit	71/80	Gra-orf1, *S. violaceoruber*	CA09653
cpp2	803	267	Thioredoxin reductase	49/60	MtmZ, *S. argillaceus*	CAK50771
cpp	821	273	SARP-type regulator	52/67	Gra-orf9, *S. violaceoruber*	CA09630

a. ID/SM, % identity/similarity of amino acid sequences.
b. Genes identified in this study.

Unpublished results). In addition, the gene *spbR* could be identified at the right border of the cluster. It encodes a γ-butyrolactone receptor protein, whose regulatory function was demonstrated previously but whose genetic location was so far unknown (Folcher *et al.*, 2001). *SpbR* acts as the global regulator of pristinamycin biosynthesis. The TetR repressor proteins PapR3 and PapR5 function as repressors of pristinamycin biosynthesis, whereas the SARP regulator PapR4, as well as PapR1 and PapR2 (Table 1), activates pristinamycin biosynthesis. All the regulators are part of a complex signalling cascade that is responsible for the fine-tuned regulation of pristinamycin production (Y. Mast, unpublished results). After assigning functions to all identified genes (see below), we propose that all essential pristinamycin biosynthetic genes are identified. Thus, instead of *snbR*, *spbR* probably marks the right border of the pristinamycin gene region. However, we cannot exclude that upstream of *spbR* pristinamycin-related genes are localized that may be involved in, but are not essential for pristinamycin biosynthesis.

© 2010 The Authors
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, *Microbial Biotechnology*, 4, 192–206
Pil biosynthetic genes

Between regions C and D, 16 orfs (snaF, snaE1, snaE2, snaG, snaH, snaI, snaJ, snaK, snaL, snaE3, snaE4, snaM, snaN, snaO, snaP and snaQ) were identified, whose predicted gene products span ~ 60–90% amino acid identity to gene products that are putatively involved in the virginiamycin M (VM) biosynthesis of Streptomyces virginiae, published by Pulsawat and colleagues (2007a) (Table 1). To date 75 kb of the S. virginiae gene cluster have been described harbouring 34 genes encoding PKS/NRPS and tailoring enzymes. In S. pristinaespiralis CoA, which serves as the primer for VM biosynthesis. In both strains. However, there are also several differences between both clusters. Below, we specify some of the predicted gene products of S. pristinaespiralis together with their corresponding as well as missing counterparts in S. virginiae and their predicted functions in streptogramin type A biosynthesis.

Genes for precursor supply. The newly identified Pil structural gene snaF is located downstream of the regulatory gene papR1 and encodes a predicted protein with similarity to the branched α-keto acid decarboxylase BkdA of S. virginiae. The gene bkdA was already shown to be essential for VM biosynthesis (Pulsawat et al., 2007b). It is part of the bkdAB operon, of which bkdB codes for a predicted dihydrolipoamide acyltransferase BkdB. BkdA and BkdB are suggested to convert valine into isobutyryl-CoA, which serves as the primer for VM biosynthesis. In S. pristinaespiralis, the respective dihydrolipoamide acyltransferase is not encoded by a discrete gene but by the first ~ 2 kb of the gene snaE1, which is located downstream of snaF. snaE1 codes for a hybrid PKS/NRPS, and through inactivation experiments, has been shown to be essential for Pil biosynthesis (Y.-F. Bizouerne, unpublished). SnaF and the dihydrolipoamide acyltransferase domain of SnaE1 together might constitute a branched-chain α-keto acid dehydrogenase complex, which is responsible for supplying the isobutyryl-CoA precursor for Pil biosynthesis (Fig. 3A).

Genes encoding PKS/NRPS and tailoring enzymes. Five genes (snaE1, snaE2, snaE3, snaE4 and snaD) encode multifunctional enzymes such as PKS, NRPS and hybrid PKS/NRPS. snaE1 codes for the deduced large hybrid PKS/NRPS complex SnaE1, which consists of the loading module, two PKS modules and one NRPS module. SnaE1 is probably responsible for attaching the isobutyryl-CoA starter unit to the first acyl carrier protein (ACP) loading domain followed by the addition of two malonyl-CoA molecules and a glycine residue. The snaE2 gene is located directly downstream of snaE1 and encodes the predicted PKS SnaE2 that contains two PKS modules that are responsible for the incorporation of two further malonyl-CoA molecules (Fig. 3A). SnaE1 and SnaE2 together show similarity to the predicted large PKS/NRPS complex VirA of S. virginiae, whose coding gene has been shown to be essential for VM biosynthesis (Pulsawat et al., 2007a). SnaE2 contains two ACP domains, and a third one is encoded by a discrete gene named snaG. This ACP tridomain is part of a 3-hydroxy-3-methylglutaryl (HMG) enzyme cassette as found in the curacin and the jaicamamide gene cluster of Lyngbya majuscula (Gu et al., 2009). Such HMG enzyme cassettes catalyse β-branching reactions in the growing polyketide. They normally consist of a tandem ACP tridomain, a ketosynthase and a HMG-CoA synthase, which is often followed by two enoyl-CoA hydratase enzymes. In S. pristinaespiralis, snaH, snaI, snaJ and snaK code for predicted monofunctional enzymes that are similar to the deduced ketosynthase-like carboxylase VirB, to HMG-CoA synthase-like protein VirC and the enoyl-CoA hydratases VirD and VirE of S. virginiae respectively. Due to the respective amino acid identities, the two SnaE2 ACP domains together with SnaG-I might constitute a HMG enzyme cassette, which is followed by the two enoyl-CoA hydratases SnaJ and K. We predict SnaH-K to insert a methyl group at the C12 position of Pil (SnaL) and to catalyse the subsequent dehydration (SnaJ) and decarboxylation (SnaK) to yield a C11-β-unsaturated thioester (Fig. 3B). snaE3 encodes a putative PKS consisting of two PKS modules that probably are needed for the addition of another two malonyl-CoA. The N-terminal part of SnaE3 is similar to the deduced PKS VirF, whereas the C-terminal part corresponds to the hybrid PKS/NRPS VirG. The snaE4 gene codes for a putative hybrid NRPS/PKS, which is similar to the deduced hybrid PKS/NRPS VirH of S. virginiae and which consists of an NRPS and a PKS domain. The SnaE4 NRPS is suggested to introduce a serine into the growing polyketide chain, whereas the PKS module is probably inactive because its ketosynthase domain is missing the conserved amino acid sequence pattern VDTACSSS, which is essential for activity (Long et al., 2002). Finally, snaD, which has already been shown to be essential for Pil biosynthesis (Blanc et al., 1994), codes for the NRPS SnaD, which introduces the final residue proline into the Pil precursor.

Accessory and tailoring genes. Twelve of the newly identified genes (snaF, snaG, snaH, snaJ, snaK, snaL, snaM, snaN, snaO, snaP and snaQ) within the pristinamycin gene region code for monofunctional polypeptides. The putative function of snaG-snaK during Pil biosynthesis is described above. Interestingly, in all Pil PKSs (SnaE1, SnaE2, SnaE3 and SnaE4) the internal acyltransferase (AT) domains are missing. Generally, the AT
domains of PKSs are responsible for the selection and loading of CoA-activated extender units onto the ACP domains; subsequently, the ketosynthase (KS) domains finally catalyse the condensation of each extender unit, resulting in the elongation of the polyketide chain. Downstream of \textit{snaE4}, we identified \textit{snaM} whose deduced gene product is similar to the discrete AT VirI of \textit{S. virginiae}. VirI is probably responsible for loading the several acyl units to the 'AT-less' VM PKSs as first experiments indicate (Pulsawat \textit{et al.}, 2007a). Due to the striking similarity between SnaM and VirI (Table 1), we suggest that SnaM acts accordingly as a malonyl-CoA specific iterative AT in loading the acyl precursors to the 'AT-less' \textit{S. pristinae spiralis} PKSs during PII biosynthesis.

Phylogenetic analyses of acyltransferase domains of \textit{cis} and \textit{trans}-AT PKS gene clusters demonstrate that SnaM is a member of a clade comprised exclusively of discrete ATs of \textit{trans}-AT-PKS biosynthetic gene clusters such as LnmG from leinamycin biosynthesis (Cheng \textit{et al.}, 2003) or KirCl from kirromycin biosynthesis (Weber \textit{et al.}, 2008) (Fig. 4). It is noteworthy that these enzymes are phylogenetically more closely related to ATs from fatty acid synthases than to the internal AT domains of \textit{cis}-AT PKSs.

\textit{snaL} is localized downstream of the enoyl-CoA hydratase gene \textit{snaK} that codes for a deduced protein with no similarity to any known protein. Furthermore, the gene \textit{snaN} was identified encoding a predicted 4'-phosphopantetheinyl transferase, which is similar to VirK.

\textbf{Exclusive PII-specific genes.} One of the striking differences between the pristinamycin and virginamycin gene
cluster is the presence of three PII-specific genes – snaA, snaB and snaC – within the pristinamycin biosynthetic gene region whose homologous counterparts are missing in the virginiamycin cluster. It has previously been shown that the monooxygenase subunits SnaA and SnaB, together with the FMN reductase SnaC, are responsible for the conversion of the precursor PII B to the final product PII A (Blanc et al., 1995) (Fig. 3A). Together, these three enzymes catalyse the oxidation of the D-proline residue in PII B that leads to the formation of the unique dehydroproline residue in PII A. Because no homologous snaA, snaB and snaC genes were yet iden-

Fig. 4. Consensus tree of alignment of acyltransferase core domains of cis- and trans-AT-type polyketide synthases. Outgroup is FabD from E. coli.

© 2010 The Authors
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 4, 192–206
tified in the virginiamycin producer, the genes virM and virN that code for a predicted sarcosine oxidase VirM and a flavin-dependent oxidoreductase VirN, respectively, were suggested to catalyse the analogous reaction in *S. virginiae*, whereby VM₂ is converted into VM₁ (Pulsawat et al., 2007a). However, homologues (snaO and snaQ) are also present in *S. pristinaespiralis*, suggesting that the sarcosine oxidases and flavin-dependent oxidoredutases have a different function during streptogramin biosynthesis that so far remains unknown.

A further discrepancy between both streptogramin producers is based on the gene snaD. In *S. pristinaespiralis*, snaD codes for the peptide synthetase SnaD, which introduces a proline residue into the PII framework (Fig. 3A). Proline is also a constituent of VM; however, no snaD homologous gene has been identified in *S. virginiae* so far. Sequence analysis revealed that SnaD contains a C-terminal type I thioesterase (TE) domain (Y.-F. Bizouerne, unpublished) that probably catalyses the release of the polyketide chain and the cyclization reaction resulting in the macrolactonic ring structure of PII. Since no snaD counterpart was found in *S. virginiae*, the final cyclization reaction was suggested to be catalysed by the predicted TE VirJ. However, also in *S. pristinaespiralis* a discrete gene, snaP, is present that encodes a predicted type II TE that is similar to VirJ. As type II TEs often have editing function during antibiotic biosyntheses (Heathcote et al., 2001; Schwarzer et al., 2002), we propose that SnaP has a corrective function during PII biosynthesis for instance by removing aberrant acyl residues from the PII PKSs and regenerating misprimed NRPS.

PI biosynthetic genes

The PI biosynthesis is catalysed by an NRPS system composed of three proteins, SnbA, SnbC and SnbDE. SnbA activates the starter molecule 3-hydroxypicolinic acid, SnbC incorporates L-threonine and L-aminobutyric acid, and SnbDE adds L-proline, DMAPA, 4-oxo-L-pipeolic acid and L-phenylglycine to the precursor molecule (Fig. 5) (Thibaut et al., 1997). The linear precursor is then cyclized to the final PI macrocycle under release from the synthetase.

Twelve genes are involved in the PI precursor supply: hpaA is required for 3-hydroxypicolinic acid formation (Blanc et al., 1996), pipA and snbF are involved in the biosynthesis of 4-oxo-L-pipeolic acid (Blanc et al., 1996), and the cluster of pap genes code for a DMAPA biosynthetic pathway starting from chorismic acid.

Fig. 5. Schematic presentation of the PI biosynthetic pathway in *S. pristinaespiralis*. Domain arrangement of the PI NRPSs SnbA, SnbC and SnbDE. Domains: A, adenylation; C, condensation; P, peptidyl carrier protein; M, methyltransferase; T, thioesterase. Amino acids: L-HPA, L-hydroxypicolinic acid; L-Thr, L-threonine; L-Aba, L-aminobutyric acid; L-Pro, L-proline; DMAPA, 4-N,N-dimethylamino-L-phenylalanine; L-Pip, 4-oxo-L-pipeolic acid; L-Phe, L-phenylglycine. \(R = \text{CH}_3 \) (PI₆), \(R = \text{H} \) (PI₇).
Genes with similarity to actinorhodin-like biosynthetic genes

Between regions B and C (Fig. 1), numerous orfs (cpp1-cpp23) were identified whose deduced gene products exhibit similarities to proteins involved in aromatic polyketide biosyntheses, such as the biosynthesis of granaticin (gra) of S. violaceoruber, actinorhodin (act) of S. coelicolor A3(2) and mithramycin (mtm) of S. argillaceus that belong to the class of benzoisochromanequinones (BIQs) (Table 2). The orfs were designated as cpp for ‘cryptic pristinamycins polyketide’.

The genes cpp19 cpp18, cpp17, cpp16 and cpp15 presumably encode a minimal type II PKS (AT, KS, chain length-determining factor and ACP) as their deduced gene products show similarity to minimal PKSs of the S. coelicolor A3(2) act and S. violaceoruber gra cluster. The genes cpp21, cpp22, cpp13 and cpp12 presumably code for early biosynthetic enzymes that are normally closely associated with the minimal PKS. Their deduced gene products are similar to early granaticin biosynthetic enzymes of S. violaceoruber. The predicted gene products of cpp21 and cpp22 show high amino acid identity to the ketoreductases (KR) Gra-orf6 (80%) and Gra-orf5 (85%) respectively, whereas cpp13 and cpp12 encode a deduced aromatase and a cyclase similar to Gra-orf4 and Gra-orf33 respectively. In the act mutant S. coelicolor CH999, the expression of an act gene set encoding for the minimal PKS, KR, aromatase (ARO) and cyclase (CYC) resulted in the formation of aloeasaponarin II, which is a three-ring aromatic aglycon (McDaniel et al., 1994). Thus, a similar compound might be the intermediate generated by the action of the homologous enzyme set in S. pristinaespiralis. This is also supported by the observation that the cyclases Cpp13 and Cpp12 belong to a family of cyclases involved in BIQ biosyntheses (Fritzsche et al., 2008). Furthermore, several orfs were identified, whose predicted proteins presumably are involved in tailoring reactions. For instance the deduced gene products of cpp25 and cpp24 show high amino acid identity to the dTMP-glucose 4,6-dehydratase MtM (85%) and the dTDP-glucose synthase MtM (89%) of S. argillaceus, respectively, and thus might be involved in the formation of 6-deoxyhexose (Lombó et al., 1999). The predicted gene products of cpp14, cpp27, cpp29 and cpp32 show similarity to several enzymes putatively involved in sugar synthesis and glycosyltransferase reactions during granaticin biosynthesis in S. violaceoruber. Therefore, we predict the unknown compound to have a granaticin/actinorhodin-like skeleton and to be modified several times by glycosylation. Furthermore, cpp1 was identified, which codes for a deduced gene similar to regulators belonging to the SARP family and thus might be responsible for regulating the biosynthesis of the unknown compound. Altogether, the cryptic PKS II gene cluster of S. pristinaespiralis Pr11 covers a region of approximately 40 kb (Table 2). However, no actinorhodin-like compound could be detected in S. pristinaespiralis cultures by high-performance liquid chromatography (HPLC), suggesting that the interjacent gene cluster is not expressed under typical pristinamycin production conditions.

To prove that the orfs are not required for pristinamycin biosynthesis, some representative genes (cpp27, cpp7, cpp12, cpp8 and cpp1) were inactivated by gene insertion mutagenesis using plasmids pJcpp27apr, pJcpp7apr, pJcpp12apr, pJcpp8apr and pJcpp1apr respectively (see Experimental procedures). The genotypes of the generated mutants Mcpp27, Mcpp7, Mcpp12, Mcpp8 and Mcpp1, respectively, were proven by Southern hybridization (data not shown), and antibiotic production of the mutants was analysed by HPLC. Inactivation of any of these genes had no effect on pristinamycin biosynthesis (Fig. 6), suggesting that the genes lying in the interjacent PKS cluster are not involved in pristinamycin production. However, it would be interesting to find out if there is a co-regulation between pristinamycin biosynthesis and the biosynthesis of the unknown substance maybe signalled via the SARP Cpp1, which could be a regulator interacting with the components of the pristinamycin signalling cascade.

Characteristics of the pristinamycin gene region

A characteristic feature of the pristinamycin biosynthetic gene region is that the P1 and PII biosynthetic genes that encode the synthesis of two chemically distinct components are not clustered individually but are scattered across the complete 210 kb sequence region. This special
genetic organization is suggested to be the result of evolutionary chromosomal rearrangement that could somehow be beneficial for the strain ensuring the production of both antibiotics in the synergistically active 70:30 ratio (Bamas-Jacques et al., 1999). However, so far there has been no indication of such an evolutionary rearrangement process.

In the course of the sequence analyses, we identified a transposase gene *trs2* between the PII monooxygenase subunit genes *snaA* and *snaB* as well as approximately 7 kb upstream of *samS* near the left border of the pristinamycin biosynthetic gene region (*trs1*; Fig. 2). A further transposase gene *trs3* is localized to the right site of the PKS II type biosynthetic cluster between *cpp3* and *cpp4* (Table 2). The presence of transposase genes within and nearby the pristinamycin biosynthetic gene region strongly suggests that the original individual clusters have been shuffled during genomic rearrangement processes.

By alignment of protein sequences, we found that the putative Trs2 and Trs3 proteins show 67% amino acid identity to each other, whereas Trs1 shows no similarity to any of the transposases found in the pristinamycin biosynthetic gene region. Thus, *trs3*, which is localized to the *cpp* gene cluster, might be a duplicate of *trs2*, encoding the transposase that might have been responsible for the insertion of the type II PKS gene cluster.

In contrast, no such transposase genes have been reported for the virginiamycin cluster. Thus, there is no hint of a horizontal gene transfer event of the streptogramin antibiotic cluster in *S. virginiae*. However, so far, the virginiamycin biosynthetic gene cluster only comprises 75 kb and as some essential virginiamycin biosynthetic genes have not been identified, it seems that the cluster is still incomplete. Thus, it might be possible that there are transposase genes present in the entire cluster, which have not yet been identified (Fig. 7). In this context, it would be interesting to find out how the streptogramin biosynthetic gene clusters evolved. The high amino acid identity between numerous pristinamycin and virginiamycin specific proteins indicates that both clusters may originate from a common ancestor. Probably, a primordial actinomycete originally produced only one type of antibiotic.
streptogramin antibiotic and the second cluster was acquired by horizontal gene transfer. To date, no strain is known that produces only one type of streptogramin. It would be interesting to identify such a strain to get more information about which cluster was acquired at first.

A unique feature of the pristinamycin biosynthetic gene region is that it is interrupted by a cryptic type II PKS gene cluster. Probably also this cluster has been acquired by horizontal gene transfer. In *S. pristinaespiralis*, the type II PKS gene cluster is localized between the response regulator gene *papR* and the gene *snaQ* encoding the putative flavin-dependent oxido-reductase. In the virginiamycin cluster, the homologous counterparts of these genes are present (*vmsT* and *virN* respectively); however, there is no further cluster inserted at this position. Thus, we suggest the pristinamycin biosynthetic gene region with its integrated *cpp* cluster is of later evolutionary origin than the virginiamycin biosynthetic gene region. To our knowledge, no other streptogramin antibiotic gene cluster contains such an intercalary secondary metabolite biosynthetic gene cluster. Altogether, this makes the pristinamycin biosynthetic gene region the largest antibiotic ‘supercluster’ with a size of ~210 kb harbouring genes for at least three different antibiotic biosynthesis pathways.

The advantage of such a supercluster organization could be to ensure the co-regulation and thus co-production of different small molecules, which could be beneficial for the producer strain as mentioned above. Evidence for the co-regulation of the different pristinamycins includes the fact that the *S. pristinaespiralis* global regulator SpbR and several other regulators influence the biosynthesis of both compounds: PI and PII. For example, deletion of *spbR* leads to no pristinamycin production at all (Folcher et al., 2001), whereas the overexpression of any of the pristinamycin SARPsregulator results in enhanced PI as well as PII biosynthesis (Y. Mast, unpublished). Further examples of co-regulation were reported for *S. virginiae*, of which a VM biosynthetic gene and a virginiamycin S resistance gene are under the control of the same regulator (Namwat et al., 2001). Also the lankamycin and lankacidin productions of *Streptomyces rochei* are influenced by the same regulator (Mochizuki et al., 2003). A well-understood system is the co-regulation of the production of the β-lactam antibiotic cephamycin and the β-lactamase inhibitor clavulanic acid in *Streptomyces clavuligerus*, where the biosynthetic genes are organized in a concatenate supercluster and are regulated by the same transcriptional activator protein CcaR (Santamarta et al., 2002). However, there are some reports that claim that co-regulation is not the driving force for clustering of secondary metabolite genes (Lawrence and Roth, 1996; Walton, 2000).

But then the question arises why those different antibiotic biosynthetic genes are all mixed up in one large cluster. In general, antibiotic genes tend to cluster in the genome of their microbial producers. These antibiotic gene clusters are ‘selfish genetic elements’ that evolve rapidly (Fischbach et al., 2007). The ‘selfish cluster’ hypothesis says that clustering, in the first place, does not have a selective advantage for the donor organism, but confers a new selective advantage to the unsophisticated recipient genome (Lawrence and Roth, 1996; Walton, 2000). In this context, the existence of clusters is beneficial because horizontal gene transfer requires the movement of contiguous DNA fragments, and clustering ensures that all essential genes needed for biosynthesis, regulation and resistance of the respective antibiotics can be transferred together to a recipient. The pristinamycin biosynthetic gene region would be one of the best examples for the ‘selfish cluster hypothesis’.

Experimental procedures

Bacterial strains, cosmids and plasmids

The bacterial strains, cosmids and plasmids used in this study are listed in Table S1.

Media and culture conditions

Escherichia coli XL1-Blue (Bullock et al., 1987) was used as the host for subcloning. *Escherichia coli* strains were grown in Luria–Bertani (LB) medium at 37°C (Sambrook et al., 1989) supplemented with kanamycin, apramycin or ampicillin (50, 100 or 150 μg ml⁻¹ respectively) when appropriate.

Streptomyces pristinaespiralis Pr11 (Aventis Pharma) was used throughout this study. This strain was isolated after spontaneous mutation of *S. pristinaespiralis* ATCC 25486. *Streptomyces pristinaespiralis* Pr11 was used for cosmid library construction and for the generation of gene insertion mutants. *Streptomyces pristinaespiralis* strains were grown on yeast malt agar or on MS agar for isolation of spores (Kieser et al., 2000). For isolation of genomic DNA *S. pristinaespiralis* strains were grown in 100 ml of S-medium (Kieser et al., 2000) in 500 ml Erlenmeyer flasks (with steel springs) on an orbital shaker (180 r.p.m.) at 30°C. Liquid cultures were supplemented with kanamycin or apramycin (50 or 100 μg ml⁻¹ respectively) when appropriate.

Cloning, restriction mapping and in vitro manipulation of DNA

The methods used for the isolation and manipulation of DNA from *S. pristinaespiralis* and *E. coli* were as described by Kieser and colleagues (2000) and Sambrook and colleagues (1989) respectively. Polymerase chain reactions were performed on a RoBoCycler Gradient 40 thermocycler from Stratagene (La Jolla, CA, USA) or on a Primus 96 plus (MWG Biotech) using Taq DNA polymerase (QIAGEN). Primers used for PCR are listed in Table S2. PCR fragments were isolated from 1% agarose gels and purified with GE Healthcare GFX columns. Isolation of *Streptomyces* genomic DNA...
was performed with the NucleoSpin Tissue Kit (Macherey-Nagel). Restriction endonucleases were obtained from various suppliers and were used according to their specifications. *Escherichia coli* was transformed by the CaCl₂ method (Sambrook *et al*., 1989). Plasmids were introduced into *Streptomyces* strains by polyethylene glycol-mediated protoplast transformation (Kieser *et al*., 2000).

Construction and screening of a cosmid library

A cosmid library of *S. pristinaespiralis* Pr11 DNA was constructed by Combinatore Biopharm AG using cosmid pOJ436 (Bierman *et al*., 1992). The cosmids were automatically spotted on a nylon membrane. This filter was used in hybridization experiments to identify cosmids that overlap with already published or patented sequences (Blanc *et al*., 1994; Bamas-Jacques *et al*., 1999). Southern hybridizations with the digoxigenin DNA labelling and detection kit from Roche were performed with the NucleoSpin Tissue Kit (Macherey-Nagel). Twenty-seven cosmids were isolated that hybridized with the left border of regions C and D respectively (Fig. 1). Southern hybridizations with the digoxigenin DNA labelling and detection kit from Roche Biochemicals were carried out as described previously (Pelzer *et al*., 1997).

DNasequencingand analysis

DNA sequencing of cosmids pYJM1-5 was performed by shotgun cloning followed by automated DNA sequencing carried out on double-stranded DNA templates to obtain at least fourfold coverage. Sequencing was done by GATC, MWG, or Göttingen Genomics Laboratory (G2L) respectively, and the obtained raw sequence data were assembled using phred/phrap/consed and analysed with CLUSEAN (Weber *et al*., 2009), BLAST (Altschul *et al*., 1990) and Artemis (Rutherford *et al*., 2000). The sequences were deposited in the EMBL data library under accession numbers FR681999, FR682000 and FR682001.

Phylogenetic analysis

Acyltransferase domains were identified using the Pfam 'Acyl_transf' HMM Profile, extracted and aligned using muscle (Edgar, 2004). Prior to tree reconstruction, the alignment was manually edited. Trees were calculated using SplitsTree 4.2 (Huson, 1998). Parameters were determined using Prottest (Abascal *et al*., 2005): WAG+I+G model; $P_{sub} = 0.02; \alpha = 1.32$. Tree reconstruction was performed using Neighbor Joining with 1000 bootstrap replicates. The majority consensus method was used to calculate the consensus tree in Dendroscope (Huson *et al*., 2007).

Geneinsertion mutagenesis of cpp genes

Internal fragments of the genes cpp27 (~0.9 kb), cpp7 (~0.8 kb), cpp12 (~0.8 kb) and cpp8 (~1.1 kb) were amplified by PCR using *S. pristinaespiralis* genomic DNA as a template and the primer pairs Pcpp27m1/m2, Pcpp7m1/m2, Pcpp12m1/m2 and Pcpp8m1/m2 respectively. The amplified fragments were designated cpp27*, cpp7*, cpp12* and cpp8* respectively. Fragments cpp27* and cpp8* were subcloned in EcoRV-restricted *E. coli* vector pJOE890 resulting in the constructs pJOE890/cpp27* and pJOE890/cpp8* respectively, whereas fragments cpp7* and cpp12* were subcloned in EcoRV-restricted *E. coli* vector pDrive, resulting in the constructs pDrive/cpp7* and pDrive/cpp12* respectively. Subsequently, a 1.5 kb aac(3)IV cassette was isolated as an EcoRV/Smal fragment from pEH13 and cloned into the singular Scal restriction site of pJOE890/cpp27* and pJOE890/cpp8*, respectively, resulting in the constructs pJOE890/cpp27*apr and pJOE890/cpp8*apr, as well as into the singular Scal restriction site of pDrive/cpp7* and pDrive/cpp12*, resulting in the constructs pDrive/cpp7*apr and pDrive/cpp12*apr. For the construction of Mcpp1, a ~2.5 kb fragment (cpp1*) was amplified by PCR, using *S. pristinaespiralis* genomic DNA as a template and the primer pairs Pcpp1m1/m2, which encompasses the entire cpp1 gene, 0.5 kb of the cpp1-upstream and 0.8 kb of the cpp1-downstream region. cpp1* was subcloned in EcoRV-restricted *E. coli* vector pJOE890 resulting in construct pJOE890/cpp1*. Subsequently, a 1.5 kb aac(3)IV cassette was isolated as an EcoRV/Smal fragment from pEH13 and cloned into the singular Stul restriction site within the cpp1 gene of pJOE890/cpp1*. The targeting plasmids pJOE890/cpp27*apr, pJOE890/cpp8*apr, pDrive/cpp7*apr, pDrive/cpp12*apr and pJOE890/cpp1*apr were transferred into *S. pristinaespiralis* Pr11 by protoplast transformation (Kieser *et al*., 2000). Apramycin-resistant, kanamycin-sensitive transformants were analysed with PCR and/or Southern hybridization experiments (data not shown) to identify those clones in which a double-cross-over event between the chromosomal copy of cpp27, cpp7,
and tap water. The pH was adjusted to 6.0 prior to CaCO₃ addition and sterilization. Cultures were incubated at 30°C in 100 ml of inoculum medium in 500 ml Erlenmeyer flasks (with steel springs) on an orbital shaker (180 r.p.m.). After 48–72 h, 17 ml of precultures was inoculated in 200 ml of production medium consisting of soybean flour (25 g l⁻¹), starch (7.5 g l⁻¹), glucose (22.5 g l⁻¹), yeast extract (3.5 g l⁻¹), ZnSO₄ • 7H₂O (0.5 g l⁻¹), CaCO₃ (6 g l⁻¹) and tap water. The pH was adjusted to 6.9 prior to CaCO₃ addition and sterilization. Cultures were incubated at 30°C in 1 ml Erlenmeyer flasks with steel springs on an orbital shaker (180 r.p.m.). After 48–72 h, 17 ml of precultures was inoculated in 200 ml of production medium consisting of soybean flour (25 g l⁻¹), starch (7.5 g l⁻¹), glucose (22.5 g l⁻¹), yeast extract (3.5 g l⁻¹), ZnSO₄ • 7H₂O (0.5 g l⁻¹), CaCO₃ (6 g l⁻¹) and tap water. The pH was adjusted to 6.0 prior to CaCO₃ addition and sterilization. Production cultures were cultivated for 3–4 days at 30°C in 1 l Erlenmeyer flasks with steel springs on an orbital shaker (180 r.p.m.). Five milliliters of S. pristinaespiralis cultures was extracted with 5 ml of ethyl acetate for 20 min and concentrated completely in vacuo. The extract was then redissolved in appropriate volumes of propan-2-ol (0.75 ml for 5 ml extraction volume), and samples were analysed by HPLC and diode-array detection (Fiedler, 1993). HPLC analyses were performed on an HP1090M/HP3392A/HP7994B system (Hewlett Packard) with Nucleosil C18 columns (5 μm, 125 mm × 4.6 mm) (Grom) with a flow rate of 2 ml min⁻¹. The following linear gradient for elution was applied using solvent PhoA (100% water with 0.1% phosphoric acid) and solvent AcCN (100% acetonitrile): at 0 min: 100% PhoA; at 15 min: 100% AcCN; at 16 min: PhoA, at 21 min: PhoA. Pristinamycin was detected at wavelength λ = 230 nm and compared with a purified substance (provided by Sanofi-Aventis) and to an HPLC-UV/Vis spectra library (Fiedler, 1993).

Acknowledgements

We wish to thank H.-P. Fiedler (University of Tübingen) for assistance in HPLC measurements. Y.M. is grateful for scholarships funded by the Landesgraduiertenförderungsgesetz des Landes Baden-Württemberg and the DFG (Graduiertenkolleg ‘Infektionsbiologie’). This work was financed in part by Sanofi-Aventis.

References

Abascal, F., Zardoya, R., and Posada, D. (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.

Bamas-Jacques, N., Lorenzon, S., Lacroix, P., de Swetschin, C., and Crouzet, J. (1999) Cluster organisation of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J Appl Microbiol 87: 939–948.

Barrière, J.C., Bouanchaud, D.H., Desnottes, J.F., and Paris, J.M. (1994) Streptogramin analogues. Expert Opin Investig Drugs 3: 115–131.

Bierman, M., Logan, R., O’Brien, K., Seno, E.T., Rao, R.N., and Schoner, B.E. (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43–49.

Blanc, V., Blanche, F., Crouzet, J., Jacques, N., Lacroix, P., Thibaut, D., et al. (1994) Polypeptides involved in streptogramin biosynthesis, nucleotide sequences coding for said polypeptides and use thereof. Patent Cooperation Treaty International Publication no. WO 94/08014. Derwent, London, England.

Blanc, V., Lagneaux, D., Didier, P., Gil, P., Lacroix, P., and Crouzet, J. (1995) Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin II₆ to pristinamycin II₅. (PILs): PILs, synthase and NADH:flavodoxin 5'-phosphate oxidoreductase. J Bacteriol 177: 5206–5214.

Blanc, V., Thibaut, D., Bamas-Jacques, N., Blanche, F., Crouzet, J., Barrière, J.-C., et al. (1996) New streptogramin derivatives useful as antibiotics – produced by new mutants of Streptomyces having altered genes for streptogramin B biosynthesis. Patent Cooperation Treaty International Publication no. WO 9601.901-A1. Derwent, London, England.

Blanc, V., Gil, P., Bamas-Jacques, N., Lorenzon, S., Zagorec, M., Schleuniger, J., et al. (1997) Identification and analysis of genes from S. pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol Microbiol 23: 191–202.

Bullock, W.O., Fernandez, J.M., and Short, J.M. (1987) Xl1-blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Focus 5: 376–378.

Cheng, Y.Q., Tang, G.L., and Shen, B. (2003) Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci USA 100: 3149–3154.

Cocito, C.G. (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergetic components. Microb Rev 43: 145–198.

de Crécy-Lagard, V., Saurin, W., Thibaut, D., Gil, P., Naudin, L., Crouzet, J., and Blanc, V. (1997) Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob Agents Chemother 41: 1904–1909.

Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.

Fiedler, H.P. (1993) Screening for secondary metabolite products by HPLC and UV-visible absorbance spectral libraries. Nat Prod Lett 2: 99–128.

Fischbach, M.A., Walsh, C.T., and Clardy, J. (2007) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci USA 105: 4601–4608.
Folcher, M., Gaillard, H., Nguyen, L.T., Nguyen, K.T., Lacroix, P., Bamas-Jacques, N., et al. (2001) Pleiotropic functions of a Streptomyces pristinaeaspirealis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276: 44297–44306.

Fritzschke, K., Ishida, K., and Hertweck, C. (2008) Orchestration of discoid polyketide cyclization in the resistomycin pathway. J Am Chem Soc 130: 8307–8316.

Gu, L., Wang, B., Geders, T.W., Grindberg, R.V., Kulkarni, A., and Long, P.F. (2006) Disruption/replacement system. Mol Microbiol 59: 731–735.

Heathcote, M.L., Staunton, J., and Leadlay, P.F. (2001) Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units. Chem Biol 8: 207–220.

Huh, J.H., Kim, D.J., Zhao, X.Q., Li, M., Jo, Y.Y., Yoon, T.M., et al. (2004) Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomyces. FEMS Microbiol Lett 238: 439–447.

Huson, D.H. (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73.

Huson, D.H., Richter, D.C., Rausch, C., Franz, M., and Rupp, R. (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460.

Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) Practical Streptomyces Genetics. Norwich, UK: The John Innes Foundation.

Lawrence, J.G., and Roth, J.R. (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetcs 143: 1843–1860.

Lombó, F., Braña, A.F., Méndez, C., and Salas, J.A. (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181: 642–647.

Long, P.F., Wilkinson, C.J., Bisang, C.P., Cortés, J., Dunster, N., Oliynyk, M., et al. (2002) Engineering specificity of starter unit selection by the erythromycin-producing polyketide synthase. Mol Microbiol 43: 1215–1225.

McDaniel, R., Ebert-Khosla, S., Fu, H., Hopwood, D.A., and Khosla, C. (1994) Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc Natl Acad Sci USA 91: 11542–11546.

Mochizuki, S., Hiratsu, K., Suwa, M., Ishii, T., Sugino, F., Yamada, K., and Kinashi, H. (2003) The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 48: 1501–1510.

Namwat, W., Lee, C.K., Kinoshita, H., Yamada, Y., and Nihira, T. (2001) Identification of the varR gene as a transcriptional regulator of virginiamycin S resistance in Streptomyces virginiensis. J Bacteriol 183: 2025–2031.

Pelzer, S., Reichert, W., Huppert, M., Heckmann, D., and Wohlieben, W. (1997) Cloning and analysis of a peptide synthetase gene of the bhalimycin producer Amycolatopsis mediterraneae DSM5908 and development of a gene disruption/replacement system. J Bacteriol 56: 115–128.

Pulsawat, N., Kitani, S., and Nihira, T. (2007a) Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiensis. Gene 393: 31–42.

Pulsawat, N., Kitani, S., Kinoshita, H., Lee, C.K., and Nihira, T. (2007b) Identification of the bkdAB gene cluster, a plausible source of the starter-unit for virginiamycin M production in Streptomyces virginiensis. Arch Microbiol 187: 459–466.

Rehm, S.J., Graham, D.R., Srihata, L., Prokocimer, P., Richard, M.P., and Talbot, G.H. (2001) Successful administration of quinupristin/dalfopristin in the outpatient setting. J Antimicrob Chemother 47: 639–645.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., and Barrell, B. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944–945.

Sambrook, J., Fritsch, T., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbour, NY, USA: Cold Spring Harbour Laboratory Press.

Santamarta, I., Rodriguez-Garcia, A., Pérez-Redondo, R., Martin, J.F., and Liras, P. (2002) CCAr is an autoregulatory protein that binds to the ccaR and cetD-cmcl promoters of the cephamycin C-clavulanic acid cluster in Streptomyces clavuligerus. J Bacteriol 184: 3106–3113.

Schwarzer, D., Mootz, H.D., Linne, U., and Marahiel, M.A. (2002) Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci USA 99: 4083–14088.

Thibaut, D., Ratet, N., Bisch, D., Faucher, D., Debussche, L., and Blanche, F. (1995) Purification of the two-enzyme system catalyzing the oxidation of the d-proline residue of pristinamycin Ila during the last step of pristinamycin Il biosynthesis. J Bacteriol 177: 5199–5205.

Thibaut, D., Bisch, D., Ratet, N., Maton, L., Couder, M., Debussche, L., and Blanche, F. (1997) Purification of peptide synthetases involved in pristinamycin I biosynthesis. J Bacteriol 179: 697–704.

Walton, J.D. (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30: 167–171.

Weber, T., Laiple, K.J., Pross, E.K., Textor, A., Grond, S., Welzel, K., et al. (2008) Molecular analysis of the kirromycin biosynthetic gene cluster revealed β-alanine as precursor of the pyridone moiety. Chem Biol 15: 175–188.

Weber, T., Rausch, C., Lopez, P., Hoof, I., Gaykova, V., Huson, D.H., and Wohlieben, W. (2009) CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol 140: 13–17.

Supporting information
Additional Supporting Information may be found in the online version of this article:
Table S1. Bacterial strains, plasmids and cosmids.
Table S2. Primer sequence and amplified fragments.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.