Mechanical Injury during Postharvest Handling of ‘Solo’ Papaya Fruit

Maria Eloisa G. Quintana and Robert E. Paul
University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822

Abstract. ‘Solo’ papaya (Carica papaya L.) fruit removed at different points from a commercial packing house showed that skin injury due to mechanical damage increased as fruit moved through the handling system. The occurrence of “green islands”—areas of skin that remain green and sunken when the fruit was fully ripe—apparently were induced by mechanical injury. Skin injury was seen in fruit samples in contact with the sides of field bins, but not in fruit taken from the center of the bins. Bruise-free fruit at different stages of ripeness (5% to 50% yellow) were dropped from heights of 0 to 100 cm onto a smooth steel plate to simulate drops and injury incurred during commercial handling. No skin injury occurred, although riper fruit showed internal injury when dropped from higher than 75 cm. Fruit (10% to 15% yellow) dropped onto sandpaper from a height of 10 cm had skin injury symptoms similar to those seen on fruit from the commercial handling system. These results suggest that abrasion and puncture injury were more important than impact injury for papaya fruit. Heating fruit at 48°C for 6 hours or until fruit core temperature (FCT) reached 47.5°C aggravated the severity of skin injury. Delays in the application of heat treatment from dropping did not reduce the severity of skin injury significantly, except for fruit heated 24 hours after dropping. Waxing fruit alleviated the severity of skin injury, whether applied before or after the heat treatment. Skin injury to papaya was caused by abrasion and puncture damage—not impact—and increased during postharvest handling of the fruit. The injury was associated mainly with fruit hitting the walls of wooden bins-bin liners may reduce this injury.

Ripe papaya fruit frequently show sunken skin areas that fail to degreen. These unsightly blemishes are of concern to shippers and are referred to as “green islands.” This skin injury has been observed to be associated with broken skin; however, its occurrence does not seem to be aggravated by the presence of latex seeping from the wound. We do not know at what point in the postharvest handling system of papayas that this skin injury occurred. We hypothesized that the insect quarantine treatments the fruit undergo before shipment may have aggravated this skin injury. Except for the research of Wang and Chang (1970) on deformation of ‘Solo’ papaya fruit and of Kumar and Wang (1971) on the response of papaya fruit to dynamic loading, there have been no published works on mechanical injury in papaya to the best of our knowledge. This research was undertaken to determine where along the packing line injury occurred in a large commercial packing house and the conditions that would affect the injury in a laboratory.

Materials and Methods

‘Kapoho Solo’ and ‘Sunset Solo’ papaya fruit were obtained from Puna and Poamoho Experiment Farm (central Oahu), Hawaii, respectively. ‘Kapoho Solo’ fruit were used in the evaluation of a commercial packing house, while ‘Sunset Solo’ fruit were used in subsequent laboratory experiments. The stage of fruit ripeness used was selected according to the objectives of individual experiments. The fruits were obtained by partitioning a population at one time according to ripeness. In most experiments, 10 fruit were used for each treatment. Unless otherwise stated, after each treatment, fruit were dipped in 650 ppm a.i. thiabendazole (Mertect 340-F, Merck & Co., Rahway, N.J.) for 5 s to control fungal decay (Couey & Farias, 1979). Fruit were air-dried before ripening at 25°C. Dropping experiments were done by using an apparatus that held the fruit by vacuum at the desired equatorial orientation and height. No obvious injury was caused by this vacuum apparatus. Fruit were dropped onto a smooth steel plate and caught after one bounce.

Fruit evaluation. Observations depended on the objectives of individual experiments. Fruit were evaluated for the following...
characteristics: 1) initial and final skin colors were expressed as percent of yellow skin of the whole surface area; 2) flesh color was expressed as percentage of full-ripened color with normal color development (0% to 100%) and on a scale for overripe fruit (101% to 140%) with water-soaked flesh; 3) firmness was expressed in Newtons; measured with an AccuForce Cadet Force Gage (Ametek, Mansfield and Green Div., Largo, Fla.) registering the force required to push a 1.5-cm-diameter plunger 2 mm into the flesh, with skin intact; 4) shriveling was estimated subjectively on a scale of 0 = none, 1 = slight, 2 = moderate, and 3 = severe, and 5) skin injury was expressed as percent of fruit surface area affected-severity of injury was estimated subjectively on a scale from 0 = none, 1 = light green impact area, 2 = medium green, and 3 = dark green.

Fruit injury in a commercial postharvest handling system. Commercial processing of papaya in a packing house on the island of Hawaii was observed twice (Sept. 1989 and 1990) during operation. Fruit quality was evaluated on fruit removed at six points in the handling system: 1) at harvest-fruit were taken from the den using an instrumented sphere (IS) and showed that samples taken for this experiment recorded the highest impacts at the following transfer points in order of average impact force-at the culling point 3 (after culling) and point 6 (after packing), with skin injury severity significantly different (data not shown).

The greatest increase in skin injury was seen between point 3 (after culling) and point 6 (after packing), with skin injury severity increasing nearly four-fold (Table 1). Inoculating fruit within hours of removal from the handling system with *R. stolonifer* did not affect skin injury, disease incidence, and disease severity significantly (data not shown).

Sampling points in the handling system	Skin injury a
At harvest	8 a
Before culling	11 a
After culling	18 ab
Before waxing	33 bc
After waxing	30 bc
After packing	40 c

aExpressed as percent fruit surface area affected.

bData were analyzed using the Waller–Duncan K-ratio t-test. Means within a column followed by the same letter are not significantly different at $P \leq 0.05$ ($n = 10$).

Results and Discussion

Fruit injury during commercial handling. Mechanical injury to papaya fruit taken randomly from different points along the handling system and ripened at 25C was manifested as green sunken areas on the skin of yellow ripe fruit. Incidence of skin injury increased significantly as the fruit moved through the handling system (Table 1). Inoculating fruit within hours of removal from the handling system with *R. stolonifer* did not affect skin injury, disease incidence, and disease severity significantly (data not shown).
line: 1) roll conveyor after the culling station; 2) lowerator into bin; and on the packing line: 3) transfer belt; 4) belt to brusher; and 5) onto packing table. Transfer point 2 (lowerator into bin) corresponds to point 3 (after culling) in this study, where skin injury increased ≥50% from the previous step. At this point, fruit were lowered into the bin by holding the fruit between a pair of looped belts. Fruit-to-fruit impact was reduced by using a padded horizontal plate under the lowerator outlet. Fruit hitting the sides or bottom of the bin were probably the cause of the hard impacts measured at 60 to 70 ×g by Timm and Brown (1991). This increase could indicate that cumulative injury occurs with each impact or more that damage occurs at certain points in the handling chain. ‘Golden Delicious’ apples (Malus domestica Borkh.) sampled from packing lines showed impact bruise, cut, and puncture injury that was cumulative (Brown et al., 1989). Similarly, in a citrus packing line, injury detected by using a dilute solution of 2,3,5-triphenyl-tetrazolium chloride to outline each lesion in red, increased as fruits moved from one handling operation to another (Eaks, 1961).

Impact injury. Hard impacts in the range of 50 to 100 ×g were initially thought to cause the skin injury, as only low-level impacts are recorded between fruit (Timm and Brown, 1989). Impacts found in papaya fruit handled commercially was duplicated by dropping fruits onto a smooth steel plate. However, no definite trend was seen in skin injury of dropped fruit within each fruit ripeness stage (data not shown). The injury seen in fruit dropped from different heights onto a smooth steel plate was not similar to the skin injury on fruit taken off the commercial packing line. Skin injury due to impact on the smooth steel plate was minor (slight shriveling), with the fruit skin apparently remaining unbroken. At the full-ripe stage, internal injury was seen only in 40% to 50% yellow fruits dropped from 100 cm (data not shown). This injury was manifested as water-soaked tissue that subtended the point of impact, a typical symptom of an impact bruise seen in other fruit. Occasionally, a thin line of water-soaked flesh tissue was also seen on the opposite side of the fruit from the point of impact. This pattern suggested that mature green papaya fruits were very elastic and could withstand a drop from 100 cm until reaching the 40% to 50% yellow stage of ripeness. Because elasticity is the capacity of the material to withstand elastic or recoverable deformation, the results suggest that the resistance to impact bruising and injury declines as papaya fruit mature. This assumption agrees with the finding of a three-fold reduction in the modulus of elasticity in Malaysian papaya from the mature to the overripe stage (Zohadie, 1982). Similar results have been reported for ‘Babygold Five’ peaches (Prunus persica (L.) Batsch.), where the modulus of elasticity decreases with increasing fruit maturity (Genge et al., 1977). Further, more-mature ‘Red Globe’ peaches have greater susceptibility to bruising and have larger bruise volumes than the less-mature fruit (Hung and Prussia, 1989). Fruit ripening, measured as change in fruit firmness, was not affected significantly in dropped fruit (data not shown).

Abraision/puncture injury. Skin injury was seen in all fruits dropped onto all grades of sandpaper (220 to 36 mesh). This skin injury was similar to the symptoms seen in fruits sampled during commercial handling. The severity of skin injury in the impact area increased significantly (Table 2) as the sandpaper particle size decreased. Fruit dropped onto fine sandpaper would have more skin penetration per unit area compared with fruit dropped on coarse sandpaper; hence, the higher severity of skin injury. Fruits from the side of the commercial field bin had more skin injury than fruits taken from the center of the bin; this difference was significant at \(P \leq 0.10 \) (data not shown). Contact with the plywood bin wall apparently caused skin injury by abrasion and puncture rather than by impact. The plywood field bins are not always smooth and the sides and bottom become rougher with use due to fiber splitting and damage. Lemons (Citrus limon (L.) Burm.) taken off a packing line had surface lesions due to abrasion injury when fruits came in contact with rough surfaces of boxes and equipment (Eaks, 1961). This is in contrast with impact, vibration, and excessive conveyor speeds contributing to fruit damage in oranges (Citrus sinensis (L.) Osb.) (Eaks, 1961) and ‘Golden Delicious’ apples (Brown et al., 1989).

The severity of skin injury was significantly lower when fruit were dropped at the 40% to 50% yellow stage than at the 5% to 10% stage (Table 3). A maximal level of total chlorophylls (62.4 µg-cm\(^{-2}\)) occurs at the mature-green stage and declines as ripening progresses (Sanxter, 1989). Therefore, fruit with less chlorophyll in the peel or with active chlorophyll degradation at the time of dropping showed less skin injury development than green fruit.

Role of latex and skin injury. Generally, less latex exuded from the skin laticifers in riper fruit compared with greener fruit following injury (Becker, 1958). No latex was obtained from fully ripe fruit (Skelton, 1969). Latex exudation did not seem to be one of the factors affecting the severity of skin injury in this study, as wiping or washing the impact zone with tap water did not reduce the severity of skin injury (data not shown). However, latex released from ruptured laticifers under the epidermis could have played a role in the development of skin injury.

Duration between dropping and heating. Postharvest disinfestation for fruit flies requires heat treatment of the fruit at 48°C before grading and packing. These heat treatments lead occasionally to a failure of the mesocarp to soften without adversely affecting other changes that occur during ripening (Paull

| Table 2. Effect of dropping 10% to 15% yellow fruit from 10 cm onto various degrees of fineness of sandpaper on the severity of skin injury. Fruit were evaluated at full ripeness following storage at 25°C. |
|---|---|
| Fineness of sandpaper (mesh) | Severity of skin injury* |
| Control | 0 a |
| 220 (very fine) | 1.8 c |
| 150 | 2.0 c |
| 100 | 1.4 b |
| 50 | 1.4 b |
| 36 (very coarse) | 1.2 b |

Analysis of variance

***Significant at \(P \leq 0.001 \) level.

*Evaluated the color of the skin injury using the scale: 0 = none, 1 = light green, 2 = medium green, and 3 = dark green.

Table 3. Severity of skin injury in papaya fruit at different stages of fruit ripeness dropped from 10 cm onto a smooth steel plate covered with 150 mesh sandpaper. Fruit were evaluated at full ripeness following storage at 25°C.

Peel color (% yellow)	Severity of skin injury*
5–10	2.5 a
10–15	2.1 ab
25–30	1.8 ab
40–50	1.6 b

*Data were analyzed using the Waller–Duncan K-ratio t-test. Means followed by the same letter are not significantly different at \(P \leq 0.05 \) (\(n = 10 \)).

Evaluated the color of skin injury using the scale: 0 = none, 1 = light green, 2 = medium green, and 3 = dark green.
and Chen, 1990). Heating fruit immediately after dropping or several hours later, however, aggravated the severity of skin injury equally compared to unheated fruit (Table 4). It is possible that heating the fruits further suppressed the production of ethylene (Maxie et al., 1974) in the injured cells within the injured area. This injury might have inhibited chlorophyll breakdown in the injured area. However, the severity of skin injury was less in fruits heated 24 h after dropping than in fruit heated 36 and 48 h after being dropped (Table 4); this difference was observed in other similar trials. The reason for this difference is unknown, although significant changes in peel color started 24 h after dropping.

Fruit waxing. Waxing papaya fruits reduced weight loss by 14% to 40% (Paull and Chen, 1989). Waxing resulted in significantly firmer fruit, with lower weight loss, less shriveling, and less severe skin injury compared to the unwaxed controls dropped 10 cm onto a smooth steel plate covered with 150-mesh sandpaper (Table 5). Fruit waxed with FMC-819 had slightly less weight loss compared with fruit waxed with FMC-820; hence, FMC-819 was used in subsequent experiments. The alleviation of the severity of skin injury by fruit waxing was possibly due to reduced weight loss. Papaya fruit peel from an injured area had a lower percent fresh weight than skin from a noninjured area with the same surface area (data not shown). The relative humidity during heating was maintained between 50% to 60% in these tests. Under these conditions, no difference was found between waxing before or after the heat treatment (data not shown).

Respiration rate and ethylene production. Unlike in most fruits (Eaks, 1961; McGlasson and Pratt, 1964; Robitaille and Janick, 1973; MacLeod et al., 1976; Hoffman and Yang, 1982; Burton and Schulte-Pason, 1987), impact and abrasion injury in papaya fruits did not increase the respiration rate or ethylene production during ripening significantly (data not shown). Increasing the number of impact drops from one to eight onto a smooth steel plate or 150-mesh sandpaper also did not increase the respiration rate or ethylene production of fruits during subsequent ripening at 25°C significantly (data not shown). One possible explanation was that the increase in respiration rate and ethylene production by the injured area was too small to be measured relative to the overall fruit respiration rate and ethylene production. Also, cells in the abraded areas may have been ruptured by the abrasion and no longer capable of ethylene production. Another possible explanation was that the impact force was spread throughout the whole fruit and thus did not exceed cell burst strength as occurs in apples (Brusewitz and Bartsch, 1989; Roudot et al., 1991). No stimulation of ethylene evolution was reported by Wade and Bain (1980) following impact bruising of sweet cherry (*Prunus avium* (L.) L.) fruit.

In this study, mechanical skin injury was evaluated as skin injury that we believed to be what Cappellini et al. (1988) referred to as “bruise damage” and “sunken discoloration.” In the commercial postharvest handling system for ‘Solo’ papaya, fruit injury occurred at certain points in the handling system primarily associated with contact with the field bin walls. Skin injury was determined to be caused by abrasion/puncture injury and not by impact bruises. The heat treatments for fruit fly disinfestation aggravated the severity of skin injury; waxing either prior to or after heat treatment reduced the severity of skin injury. The physiological explanation for the abraded area remaining green is unknown. Further research should be directed at determining whether the cells in the abraded area are viable and capable of respiration and ethylene production. Plastic bin liners or plastic bins should be tested as to their effectiveness in reducing skin injury.

Wax	Shriveling	Firmness (N)	Severity of skin injury	Weight loss (%)
None	2.1 a	56 b	1.4 a	8.3 a
FMC-819	0.1 b	93 a	0.8 b	3.3 b
FMC-820	0.1 b	91 a	0.6 b	3.9 b
ANOVA	***	***	***	***

Fruit were heated at 48°C for 6 h or until FCT reached 47.5°C, after which fruit were cooled down quickly with a cold water shower until FCT was <30°C. Fruit were evaluated at full ripeness after storage at 25°C.

Table 4. Effect of delays in heat treatment on firmness, flesh color, and severity of skin injury of 10% to 15% yellow papaya fruit² heated after being dropped from 10 cm onto a smooth steel plate covered with 150-mesh sandpaper.

Delay (h)	Firmness (N)	Flesh color	Severity of skin injury
Control (dropped without heat)	33 a	98 b	1.3 a
0 (dropped, immediately heated)	146 d	86 a	2.2 b
6	84 bc	86 a	2.3 b
12	99 bc	91 ab	2.5 b
24	70 ab	86 a	1.6 a
36	114 cd	92 ab	2.5 b
48	111 cd	90 ab	2.2 b

²Fruit were heated at 48°C for 6 h or until FCT reached 47.5°C, after which fruit were cooled down quickly with a cold water shower until FCT was <30°C. Fruit were evaluated at full ripeness after storage at 25°C.

³Data were analyzed using the Waller–Duncan K-ratio t-test. Means within a column followed by the same letter are not significantly different at P ≤ 0.05 (n = 10).

⁴Evaluated the color of skin injury using the scale: 0 = none, 1 = light green, 2 = medium green, and 3 = dark green.

⁵Significant at P ≤ 0.05, 0.01, and 0.001, respectively.

Literature Cited

Alvarez, A.M. and W.T. Nishijima. 1987. Postharvest diseases of papaya. Plant Dis. 71:681-686.

Armstrong, J.W., J.D. Hansen, B.K.S. Hu, and S.A. Brown. 1989. High-temperature, forced air quarantine treatment for papaya infested with Tephritid fruit flies (Diptera:Tephritidae). J. Econ. Entomol. 82:1667-1674.

Bassi, P.K. and M.S. Spencer. 1985. Comparative evaluation of photoionization and flame ionization detectors for ethylene analysis. Plant, Cell & Environ. 8:161-165.

Becker, S. 1958. The production of papain-an agricultural industry for tropical America. Econ. Bot. 12:62-79.

Brown, G.K., C.L. Burton, S.A. Sargent, N.L. Schulte-Pason, E.J. Timm, and D.E. Marshall. 1989. Assessment of apple damage on packing lines. Applied Eng. Agr. 5:475-484.

Brusewitz, G.H. and J.A. Bartsch. 1989. Impact parameters related to postharvest bruising of apples. Trans. ASAE 32:953-957.

Burton, C.L. and N.L. Schulte-Pason. 1987. Carbon dioxide as an indicator of fruit impact damage. HortScience 22:281-282.

Cappellini, R.A., M.J. Ceponis, and G.W. Lightner. 1988. Disorders in skin injury by fruit waxing was possibly due to reduced weight loss. Papaya fruit peel from an injured area had a lower percent fresh weight than skin from a noninjured area with the same surface area (data not shown). The relative humidity during heating was maintained between 50% to 60% in these tests. Under these conditions, no difference was found between waxing before or after the heat treatment (data not shown).

Table 5. Effect of waxing on shriveling, severity of skin injury, and percent weight loss in papaya fruit² waxed and heated after being dropped from 10 cm onto a smooth steel plate covered with 150-mesh sandpaper.

J. Amer. Soc. Hort. Sci. 118(5):618-622. 1993.
April 1979. Control of postharvest decay of papaya. HortScience 14:719-721.

Eaks, I.L. 1961. Techniques to evaluate injury to citrus fruit from handling practices. Proc. Amer. Soc. Hort. Sci. 78:190-196.

Genge, R.A., W.K. Bilanski, and D.R. Menzies. 1977. The physical-biological properties of Babygold Five peaches as related to mechanical harvesting. Trans. ASAE 20:772-775.

Greenland, A.J. and D.H. Lewis. 1984. Amines in barley leaves infected by brown rust and their possible relevance to formation of ‘green islands’. New Phytol. 96:283-291.

Hoffman, N.E. and S.F. Yang. 1982. Enhancement of wound-induced ethylene synthesis by ethylene in preclimacteric cantaloupe. Plant Physiol. 69:317-322.

Hung, Y.-C. and S.E. Prussia. 1989. Effect of maturity and storage time on the bruise susceptibility of peaches (cv. Red Globe). Trans. ASAE 32:1377-1382.

Kumar, L. and J.-K. Wang. 1971. Response of papaya fruit to dynamic loading. Trans. ASAE 14:263-267, 272.

MacLeod, R.F., A.A. Kader, and L.L. Morris. 1976. Stimulation of ethylene and carbon dioxide production of mature-green tomatoes by impact bruising. HortScience 11:604-606.

Maxie, E.C., F.G. Mitchell, N.F. Sommer, R.G. Snyder, and H.L. Rae. 1974. Effect of elevated temperature on ripening of ‘Bartlett’ pear, Pyrus communis L. J. Amer. Soc. Hort. Sci. 99:344-349.

McGlasson, W.B. and H.K. Pratt. 1964. Effects of wounding on respiration and ethylene production by cantaloupe fruit tissue. Plant Physiol. 39:128-132.

Paull, R.E. and N.J. Chen. 1989. Waxing and plastic wraps influence water loss from papaya fruit during storage and ripening. J. Amer. Soc. Hort. Sci. 114:937-942.

Paull, R.E. and N.J. Chen. 1990. Heat shock response in field-grown, ripening papaya fruit. J. Amer. Soc. Hort. Sci. 115:623-631.

Robitaille, H.A. and J. Janick. 1973. Ethylene production and bruise injury in apples. J. Amer. Soc. Hort. Sci. 98:411-413.

Roudot, A.-C., F. Duprat, and C. Wenian. 1991. Modelling the response of apples to loads. J. Agr. Eng. Res. 48:249-259.

Sanxter, S.S. 1989. Ontogeny and senescence of photosynthetic activity in the exocarp of Carica papaya L. MS Thesis. Univ. of Hawaii, Honolulu.

Skelton, G.S. 1969. Development of proteolytic enzymes in growing papaya fruit. Phytochemistry 8:57-60.

Souza, R.A. 1991. Papaya: Production, marketing, income and industry review. Hawaii Papaya Industry Assn. 27th Annu. Conv., 28 June 1991, Hilo.

Timm, E.J. and G.K. Brown. 1989. Handling impact assessment for papaya. USDA/ARS and Agr. Eng. Dept., Michigan State Univ., East Lansing. in cooperation with the Univ. of Hawaii. 17-18 Sept. 1989. Internal rpt.

Timm, E.J. and G.K. Brown. 1991. Impacts recorded on avocado, papaya and pineapple packing lines. Amer. Soc. Agr. Eng., St. Joseph, Mich. ASAE Paper No. 90-6007.

Wade, N.L. and J.M. Bain. 1980. Physiological and anatomical studies of surface pitting of sweet cherry fruit in relation to bruising, chemical treatments and storage conditions. J. Hort. Sci. 55:375-384.

Wang, J.-K. and H.-S. Chang. 1970. Mechanical properties of papaya and their dependence on maturity. Trans. ASAE 13:369-371.

Zohadie, M. 1982. Elasticity of Malaysian papaya as a design criterion for prevention of damage during transportation. Pertanika 5:178-183.