Changing prevalence of wheeze, rhinitis and allergic sensitisation in late childhood: findings from 2 Isle of Wight birth cohorts 12 years apart

V. K. Patil1,2, R. J. Kurukulaaratchy1, C. Venter1,3, J. Grundy1, G. Roberts1,4,5, T. Dean1,3 and S. H. Arshad1,4,5

1The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport Isle of Wight, 2MSc Allergy Student, Faculty of Medicine, University of Southampton, UK, 3School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, 4NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK, and 5Clinical and Experimental Medicine, Faculty of Medicine, University of Southampton, UK.

Summary

Background While the prevalence of asthma in children is decreasing or remaining the same, time trends in the prevalence of rhinitis in children are not known. Understanding sensitisation trends may help inform about trends in asthma and rhinitis prevalence.

Objective To assess time trends of wheeze, rhinitis and aero-allergen sensitisation prevalence at 10 years of age, we compared two birth cohorts established 12 years apart. To gain insight into differences in disease prevalence, we assessed association of family history, early life exposures and sensitisation with wheeze and rhinitis in each cohort.

Methods The IoW (Isle of Wight) and FAIR (Food Allergy and Intolerance Research) unselected birth cohorts were established in 1989 and 2001 respectively in IoW. Identical ISAAC questionnaire and skin prick test data were collected and compared at 10 years of age.

Results Over the 12-year period from 2001 to 2012, prevalence of lifetime wheeze, current wheeze and those ever treated for asthma decreased by 15.9% (45.5 vs. 29.6, \(P < 0.001\)), 3.9% (18.9 vs. 15, \(P = 0.020\)) and 8.2% (31.7 vs. 23.5, \(P = 0.001\)), respectively. Conversely, current rhinitis and lifetime rhinitis prevalence increased by 5.5% (22.6 vs. 28.1, \(P = 0.004\)) and 13% (18.6 vs. 31.7, \(P < 0.001\)), respectively. Atopic status remained stable; however, house dust mite (HDM) sensitisation decreased by 5.6% (19.2 vs. 13.6, \(P = 0.004\)) and grass sensitisation increased by 3.5% (12.9 vs. 16.4, \(P = 0.054\)). Male sex, parental history of asthma and HDM sensitisation were significantly associated with lifetime wheeze in both cohorts, while maternal smoking during pregnancy was a significant risk factor only in the earlier IoW cohort. Parental history of rhinitis and grass sensitisation was significantly associated with lifetime rhinitis in both cohorts, while HDM sensitisation was significant only for the IoW cohort.

Conclusion Contrasting changes were noted with falling wheeze and HDM sensitisation but rising rhinitis and grass sensitisation prevalence. Changing prevalence of aero-allergen sensitisations may explain the different time trends observed in these cohorts.

Keywords allergic rhinitis, asthma prevalence, hayfever prevalence, sensitisation prevalence, time trends in UK

Submitted 4 June 2014; revised 26 January 2015; accepted 17 February 2015

Introduction

Asthma is the most common chronic disease affecting children [1], and rhinitis remains a significant health problem affecting quality of life [2]. There is global variation in asthma prevalence, with the point prevalence being higher in more affluent regions compared to less affluent regions [3, 4]. Globally asthma and rhinitis prevalence increased in the latter part of the 20th century [5]. However, global time trend studies in the last decade showed that while childhood asthma prevalence continued to increase in less affluent regions with a low point prevalence, it was reaching a plateau in more affluent regions with higher point
prevalence [6]. The United Kingdom (UK) has one of the highest asthma prevalence globally [4]. In UK, asthma and rhinitis prevalence increased from the 1970s to mid-1990s [5, 7]. However, time trends in asthma prevalence during the first decade of the 21st century are unclear, with some studies showing increase and others showing plateauing or decrease in asthma prevalence in schoolchildren [7–11].

It has been challenging to identify mechanisms driving changes in prevalence of allergic airway disease [12]. Asthma is a complex disease where interaction of genetics and environment play an important role [13]. The temporal changes in asthma prevalence are too quick to be explained by naturally occurring genetic alterations in populations [6]. Allergic sensitisation to aero-allergens plays an important role; house dust mite (HDM) sensitisation is strongly associated with asthma [14–16]. Recent European studies of time trends in asthma prevalence have found that similar to asthma prevalence, aero-allergen sensitisation has remained stable from 1991 to 2001–02 in schoolchildren [17, 18]. Similarly, allergic sensitisation is a strong risk factor for rhinitis [19], and it is known that grass pollen sensitisation is associated with rhinitis in the UK [20].

Meaningful analyses of time trends in changing prevalence of allergic disease require studies employing the same methodology and in the same geographical location over time. Arshad et al. have shown that HDM sensitisation is an important risk factor for asthma with an odds ratio of 8.07 (4.60–14.14) and sensitisation to grass was found to be an important risk factor for rhinitis with an odds ratio of 5.02 (2.21–11.41). We have previously reviewed the prevalence of current wheeze in the Isle of Wight (IoW) birth cohort at 10 years as 18.9% in 1999–2000 with associations to allergic sensitisation and sex [16]. We hypothesise that (i) the prevalence of wheeze and rhinitis will increase over a 12-year period and (ii) the increase in wheeze and rhinitis will be associated with a change in the same direction for house dust mite and grass pollen sensitisation, respectively. Trends in prevalence of wheeze and rhinitis in UK have been reported till 2005; this study looks at the continued trends till 2012 and also looks at time trends of aero-allergen sensitisations which have not been reported before in UK population. To investigate this, we compared current wheeze, lifetime wheeze, ever treated for asthma, current rhinitis symptoms, lifetime rhinitis and prevalence of allergic sensitisation to common aero-allergens at 10 years of age in two unselected population-based birth cohorts established 12 years apart in the same county, the Isle of Wight, United Kingdom. Results in this study are based on data of follow-ups at 10 years of age of the IoW birth cohort [21] (1999–2000) and Food Allergy and Intolerance Research (FAIR) birth cohort [22] (2011–12).

Methods

Study population/birth cohorts

This is a repeat cross-sectional study performed in two separate cohorts of children aged 10 years, resident in the same locality and separated by 12 years. The Isle of Wight birth cohort (IoW cohort) is a population-based birth cohort established in 1989/90 for prospective study of asthma and allergic diseases. Children born between January 1989 and February 1990 on the Isle of Wight were recruited at birth (N = 1536). Children have been reviewed at 1, 2, 4, 10 and 18 years [23]. The ten-year follow-up was carried out between 1999 and 2000. Food Allergy and Intolerance Research (FAIR) is another population-based birth cohort (N = 969) established on the Isle of Wight in 2001/02 for prospective study of allergic diseases [22]. Children were seen at 1, 2, 3 [24] and 10 year. The 10-year follow-up was completed between 2011 and 2012. Table 1 gives a general description of both cohorts at their 10-year follow-ups. Ethics approval was obtained at each follow-ups for both cohorts by local research ethics committees (FAIR: 10/H0504/11, IoW: No. 18/98), and informed consent was obtained from parents and assent from participants.

Questionnaires

ISAAC (International Study of Asthma and Allergies in Childhood) and study-specific questionnaires were used in both studies. Prevalence rates are based on parental responses to ISAAC questionnaires [25] used at 10-year follow-ups in both cohorts. Lifetime wheeze symptoms were based on response to ‘Has your child ever had wheezing or whistling in the chest at any time in the

| Table 1. Descriptions of IoW and FAIR cohorts and 10-year follow-up rates |
|-----------------------------|-----------------------------|-----------------------------|
| | IoW cohort | FAIR cohort |
| Birth year | 1989–1990 | 2001–2002 |
| Recruited at birth | 1456 | 969 |
| Male: Female | 53%: 47% | 51%: 49% |
| Period of 10-year FU | 1999–2000 | 2011–2012 |
| Questionnaire completed at 10 year | 1373 (94%) | 827 (85%) |
| SPT performed at 10 year | 1036 (71%) | 588 (61%) |

FU, follow-up; SPT, skin prick test; IoW, Isle of Wight; FAIR, Food Allergy and Intolerance Research.
past?’ and current wheeze was based on ‘Has your child had wheezing or whistling in the chest in the last 12 months?’ and ever treated for asthma was based on ‘Has your child been treated for asthma?’ Current rhinitis symptoms and lifetime rhinitis were derived from the responses to ‘In the past 12 months, has your child had a problem with sneezing, or a runny or blocked nose when he/she did not have a cold or the flu?’ and ‘Has your child ever had hayfever?’ respectively. Risk factors such as family history of asthma or rhinitis, prenatal smoking and pet exposures were prospectively collected.

Sensitisation

Allergic sensitisation was defined by positive skin prick test (SPT) indicated by a wheal size of 3 mm or more than the negative control (saline). Sensitisation to aero-allergens that were tested in both studies was compared; HDM (Dermatophagoides pteronyssinus), cat (Felis domesticus) and grass (mixed grasses) pollen. SPT was performed using standardised allergen reagents and methodology (ALK-Abell_o, Hørsholm, Denmark) [16, 22] and by the same research team.

Statistical analysis

The prevalence of wheeze, rhinitis and allergen sensitisation is given in proportions with 95% confidence intervals (95% CI). The significance of difference in prevalence between the two cohorts was tested using chi-square tests. Logistic regression analyses (univariate and multivariate) were used to test the association of sex, family history, prenatal exposures and aero-allergen sensitisation with prevalence of wheeze and rhinitis. Backward stepwise model was used for multivariate regression analysis. Analyses were carried out using SPSS version 19 (IBM, Chicago, IL, USA). CIA (Confidence Interval Analysis software) was used for 95% CI for proportions and the difference in prevalence. *P* value of < 0.05 was considered significant.

Results

Study population

Of the 1456 children available for follow-up in the IoW cohort, 1373 (94%) provided questionnaire-based information and 1036 (71%) underwent SPT at 10 years of age in 1999–2000. In the FAIR follow-up at 10 years of age in 2011–12, 827 (85%) of 969 available children responded to the questionnaire-based information and 588 (61%) underwent SPT. Characteristics of the cohorts are displayed in Table 1. The subsets who underwent SPT in both cohorts were representative of the respective cohorts (Table S1).

Trend in prevalence of wheeze, rhinitis and sensitisation

Prevalence of lifetime wheeze, current wheeze and ever treated asthma all decreased significantly from 1999–2000 to 2011–12. Conversely, current rhinitis symptoms and lifetime rhinitis both increased significantly between these two time points (Table 2). Changes in prevalence for individual aero-allergen sensitisation varied according to allergen (Table 3). HDM

Characteristic	IoW 1999–2000	FAIR 2011–12	Difference % (95% CI)	P value
Lifetime Wheeze				
% (95% CI)				
45.5% (42.9 to 48.2)	29.6% (26.6 to 32.8)	-15.9 (-19.9 to -11.8)	< 0.001	
625/1373	245/828			
Current Wheeze				
% (95% CI)				
18.9% (16.9 to 21.0)	15% (12.7 to 17.6)	-3.9 (-7 to -0.6)	0.020	
259/1373	124/827			
Ever treated for asthma				
% (95% CI)				
31.7% (29.2 to 34.3)	23.5% (20.1 to 27.4)	-8.2 (-12.5 to -3.6)	0.001	
402/1267	120/510			
Current rhinitis				
% (95% CI)				
22.6% (20.5 to 24.9)	28.1% (25.1 to 31.2)	5.5 (1.7 to 9.3)	0.004	
308/1362	232/826			
Lifetime rhinitis				
% (95% CI)				
18.6% (16.7 to 20.8)	31.7% (26.9 to 36.8)	13.0 (7.8 to 18.5)	< 0.001	
256/1373	107/338			

n, proportion with feature; N, total number with responses to question.
sensitisation decreased significantly, while grass pollen sensitisation increased (not significant) and cat sensiti-

There was no difference in time trends of wheeze and rhinitis prevalence between IoW and FAIR cohorts when stratified by sex (Table S2). The only difference noticed was in the increase in grass sensitisation from IoW to FAIR cohort which was higher in girls compared to boys. Interactions of sex by cohorts were not significant for both lifetime wheeze and rhinitis (Table S3).

Family history and prenatal risk factors

Overall, parental history of asthma was significantly higher in the FAIR cohort compared to the IoW cohort by 5.2% \((P = 0.012) \), which was significant for maternal (4.6%, \(P = 0.009 \)) but not for paternal (2.5%, \(P = 0.118 \)) history. However, sibling history of asthma significantly decreased by 5.1% \((P = 0.017) \). Parental history of rhinitis significantly increased by 14.1% \((P < 0.001) \), which was significant for both maternal and paternal history of rhinitis. Sibling history of rhinitis showed non-significant increase of 1.7% \((P = 0.349) \). Maternal smoking during pregnancy showed a drop by 2.8% comparing the two time points, but this was not significant, and there was no difference in prenatal pet exposure in the two cohorts (Table 4).

Association of sex, family history and prenatal factors and aero-allergen sensitisation to wheeze and rhinitis

Lifetime prevalence of wheeze. Male sex, parental history, sibling history, prenatal smoke exposure, HDM, grass and cat sensitisation were associated with wheeze in both cohorts in univariate analysis. Using backward stepwise multivariate logistic regression, male sex \((P = 0.038) \), parental history \((P < 0.001) \), sibling history \((P = 0.008) \), maternal smoking during pregnancy \((P = 0.018) \) and HDM sensitisation \((P < 0.001) \) remained independently significant in the IoW cohort, while sex \((P = 0.007) \), parental history \((P < 0.001) \) and HDM sensitisation \((P = 0.004) \) remained independently significant in the FAIR cohort (Table 5). Therefore, sex, parental history and HDM sensitisation were the common factors significantly associated with lifetime wheeze in both cohorts.

Lifetime prevalence of rhinitis. Parental history and sensitisations to HDM, cat and grass were associated with lifetime rhinitis in both cohorts. Sibling history and prenatal maternal smoking in IoW and prenatal pet exposure in the FAIR cohort were also associated with lifetime rhinitis using a univariate regression analysis. Using a multivariate regression with backward stepwise analysis, parental history \((P < 0.001) \), HDM \((P < 0.001) \) and grass \((P < 0.001) \) sensitisation remained significant in the IoW cohort, whereas only parental history of rhinitis \((P < 0.001) \) and grass sensitisation \((P < 0.001) \) remained significant in the FAIR cohort (Table 6). Thus, parental history of rhinitis and sensitisation to grass were common factors significantly associated with lifetime rhinitis in both cohorts.

Risk factors such as HDM sensitisation and parental history of asthma for lifetime wheeze and grass sensitisation and parental history of rhinitis for lifetime rhinitis were tested for interaction with cohorts. Only cohort and parental history of asthma were significant \((P = 0.045) \) and all other interaction terms were not significant as summarised in Table S4.

Table 3. Time trends in prevalence of aero-allergen sensitisation

Aero-allergens	IoW 1999–2000	FAIR 2011–2012	Difference % [95% CI]	\(P \) value
HDM	19.2 [16.9 to 21.7]	13.6 [11.1 to 16.6]	\(-5.6 [-9.2 to -1.8]\)	0.004
Cat	7.9 [6.4 to 9.7]	7.7 [5.8 to 10.1]	\(-0.2 [-2.9 to 2.6]\)	0.861
Grass	12.9 [11.0 to 15.1]	16.4 [13.6 to 19.6]	\(3.5 [-0.1 to 7.2]\)	0.054
Any aero-allergen	25.7 [23.1 to 28.4]	24.1 [20.8 to 27.7]	\(-1.6 [-5.9 to 2.8]\)	0.512

\(n \), number of positive SPT to the allergen; \(N \), total number tested for the allergen.

© 2015 John Wiley & Sons Ltd, Clinical & Experimental Allergy, 45 : 1430–1438
Discussion

This study comparing upper and lower allergic airway disease symptom prevalence at 10 years of age in two population-based birth cohorts 12 years apart in the same location has shown falling prevalence of current and lifetime wheeze plus ever being treated for asthma, associated with HDM sensitisation which decreased during the same period. By contrast in the same period from 1999–2000 to 2011–12, there was an increase in current and lifetime rhinitis prevalence, which was associated with grass sensitisation which increased during the same period. Male sex, parental history of asthma and HDM sensitisation for wheeze and parental history of rhinitis and grass sensitisation remained significant risk factors in both cohorts for asthma and rhinitis, respectively.

Maternal smoking in pregnancy was significantly associated with lifetime wheeze only in the earlier IOW cohort. Time trend analysis can be challenging due to a number of factors including lack of uniformity in methodology and definitions of outcomes. We used identical validated questions (ISAAC) and the same methodology [25] which makes prevalence in our 2 cohorts comparable. Moreover, both cohorts in this study are population based, from the same geographical location and assessed by the same research team, thus restricting the plausible biases and the influence of environmental differences when comparing the prevalence from wider geographical regions. Both cohorts have shown high follow-up rates, and the risk of significant bias is relatively low. Other important aero-allergens such as tree pollen and common moulds are missing in this study which can be one of the limitations of this paper, but the three aero-allergens studied usually explain major-ity of the atopic status [26]. Another potential limitation is the generalisability of the prevalence rates estimated on the IoW. Although it remains a theoretical possibility, the population on the IoW is neither socially, nor geographically, isolated. The prevalence rates for allergic diseases we have reported previously

Table 4. Prevalence of family history and prenatal exposures in both cohorts (irrespective of asthma or rhinitis in children)

Factor	IoW 1999–2000 % (95% CI)	FAIR 2011–12 % (95% CI)	Difference % (95% CI)	P value
	n/N	n/N		
Mother Hx of asthma	17.7 (15.7 to 19.8)	22.3 (19.6 to 25.3)	+4.6 (1.2 to 8.2)	0.009
	233/1317	184/825		
Father Hx of asthma	13.9 (12.1 to 15.9)	16.4 (14.0 to 19.1)	+2.5 (–0.6 to 5.7)	0.118
	183/1317	132/806		
Parental Hx of asthma	30.4 (28.0 to 33.0)	35.7 (32.5 to 39.0)	+5.3 (1.1 to 9.4)	0.012
	401/1317	289/810		
Sibling Hx of asthma	31.4 (29.0 to 34.0)	26.4 (23.3 to 29.7)	−5.0 (–9.1 to −0.9)	0.017
	414/1318	190/721		
Mother Hx of rhinitis	24.3 (22.0 to 26.7)	33.9 (30.8 to 37.2)	+9.6 (5.7 to 13.6)	< 0.001
	320/1318	280/825		
Father Hx of rhinitis	16.4 (14.5 to 18.5)	25.1 (22.2 to 28.2)	+8.7 (5.2 to 12.4)	< 0.001
	216/1316	202/804		
Parental Hx of rhinitis	37.1 (34.5 to 39.7)	51.2 (47.7 to 54.6)	+14.1 (9.7 to 18.4)	< 0.001
	489/1318	415/811		
Sibling Hx of rhinitis	19.3 (17.3 to 21.6)	21.1 (18.3 to 24.2)	+1.8 (–1.9 to 5.5)	0.349
	255/1318	152/721		
Mother smoked during pregnancy	25.2 (23.1 to 27.5)	22.4 (19.9 to 25.2)	−2.8 (–6.2 to 0.7)	0.111
	384/1521	210/937		
Any pet during pregnancy	50.4 (47.9 to 52.9)	50.4 (47.2 to 53.5)	0 (–4.1 to 4.0)	0.974
	765/1517	488/969		

Hx; history, n; number with factor, N total number
are very similar to the developed world in general and United Kingdom in particular [16]. Therefore, the time trends seen in our cohorts should be broadly generalisable. Also results from other islands have been comparable to the reference region on the mainland [27].

Anderson et al. looked at ISAAC study results from UK centres from 1995 to 2002 in 12- to 14-year-old UK children and reported an increase in ‘lifetime asthma’ (from 20.6% to 25.9%), but decrease in current wheeze (from 33.9% to 27.5%) [9]. In the Aberdeen schools asthma survey of 9 to 12 year-old children, Malik et al. assessed the time trends at three time points (1999, 2004 and 2009). Current wheeze (in the past 3 years) steadily decreased from 1999 to 2009 (27.9% in 1999, 25.2% in 2004, 22.2% in 2009), while ‘lifetime asthma’ prevalence showed temporal increase (from 24.3% to 28.4%) between 1999 and 2004 and then decreased from 2004 to 2009 (22.1%) [28]. Our results in similar age children (10 years old) confirm the continued decrease in prevalence of wheeze in the United Kingdom till 2012. The decrease in current and lifetime wheeze prevalence in our study is further substantiated by a concurrent fall in the prevalence of ever treated for asthma. In contrast to wheeze prevalence, we observed a significant rise in the prevalence of current rhinitis symptoms and lifetime rhinitis. Similar increasing trends for rhinitis have been reported in the United Kingdom looking at the primary care data sets from 2001 to 2005 [29]; however, the Aberdeen schools asthma survey also showed a temporal increase in prevalence of ‘lifetime rhinitis’ from 1999 to 2004 (15.4% to 26.5%) but not much change between 2004 and 2009 (25.7%) [11].

As reported by Zollner et al. in Germany and Braun-Fahrlander et al. in Switzerland, we also found stable overall aero-allergen sensitisation on the Isle of Wight. However, both studies reported mixed inhalant screen and differences in individual aero-allergen sensitisation were not investigated [17, 18]. We report a significant decrease in HDM sensitisation by 5.6% and a non-significant increase in grass sensitisation by 3.5%. In the Isle of Wight prevention study (different cohort from the 2 cohorts compared in this paper), reduction in the level of HDM was associated with reduced level of allergic sensitisation to HDM [30]. Based on this finding, it might be that falling HDM exposure levels may have contributed to the falling HDM sensitisation observed in our study. However, without HDM exposure information at two time points, this remains purely speculative but an important area for future research.

Allergic conditions are complex diseases where multiple environmental exposures, hereditary factors and gene–environment interactions play important roles [13]. One of the criticisms for this paper would be not looking at all the plausible factors such as decreasing birth rate, changes in family sizes, changes in living conditions and respiratory viral infections [12, 31]. Parental history is a known risk factor for developing allergic airway diseases [32, 33], and prenatal smoke exposure is associated with

Table 5. Logistic regression analyses for association of sex, aero-allergen sensitisations, heredity and prenatal exposures with lifetime wheeze

%	n/N	Univariate OR (95% CI)	P	Multivariate OR (95% CI)	P						
Lifetime wheeze	Male sex	50.2 350/697	1.47	< 0.001	1.32	0.038	32.9 140/425	1.39	0.030	1.81	0.007
	HDM Sensitisation	67.8 135/199	2.76	< 0.001	2.28	< 0.001	56.3 45/80	3.84	< 0.001	2.61	0.004
	Grass Sensitisation	63.4 85/134	2.06	< 0.001	1.93	NS	41.7 40/95	1.95	0.004	2.10	NS
	Cat Sensitisation	68.3 56/82	2.50	< 0.001	1.93	0.026	50.0 22/44	2.631	0.002	2.10	NS
	Parental History	59.1 237/401	2.21	< 0.001	2.00	< 0.001	45.8 132/288	3.31	< 0.001	2.82	< 0.001
	Sibling history	54.1 224/414	1.66	< 0.001	1.47	0.008	41.1 78/190	2.08	< 0.001	1.83	NS
	Pet during pregnancy	45.5 317/697	1.01	0.944	–	NS	28.1 121/430	0.87	0.342	NS	
	Maternal smoking*	52.7 168/319	1.46	0.003	1.47	0.018	35.7 60/168	1.44	0.049	NS	

Multivariate; backward stepwise model. % = proportion of the characteristic with wheeze (n/N), OR, odds ratio; 95% CI, 95% confidence interval; HDM, house dust mite.

*Mother smoking during pregnancy.
	IoW Cohort (1999–2000)	Multivariate	FAIR Cohort (2011–2012)	Univariate	Multivariate
	%	OR (95% CI)	P	%	OR (95% CI)
Male Sex	18.8 131/697	1.020 0.78–1.34	0.885 –	34.8 64/184	1.38 0.87–2.19
HDM Sensitisation	44.2 88/199	4.55 3.25–6.39	< 0.001 2.17 1.42–3.32	60.6 40/66	4.83 2.74–8.51
Grass Sensitisation	64.9 87/134	11.51 7.70–17.20	< 0.001 7.66 4.79–12.26	77.6 66/85	18.79 10.17–34.73
Cat Sensitisation	56.1 46/82	6.06 3.80–9.67	< 0.001 7.66 4.79–12.26	75.7 28/37	8.93 4.03–19.76
Parental History	26.8 131/489	2.32 1.75–3.07	< 0.001 1.91 1.34–2.73	44.0 85/193	4.72 2.72–8.20
Sibling history	25.5 65/255	1.69 1.22–2.34	0.002 –	45.9 28/61	1.26 0.71–2.23
Pet during pregnancy	17.5 122/697	0.86 0.66–1.13	0.290 –	26.2 45/172	0.59 0.37–0.94
Maternal smoking*	14.1 45/319	1.52 1.07–2.15	0.020 –	28.1 18/64	0.81 0.45–1.49

Univariate and Multivariate logistic regression analysis for association of sex, aero-allergen sensitisation, heredity and prenatal exposures with lifetime rhinitis.

Table 6. Logistic regression analysis for association of sex, aero-allergen sensitisation, heredity and prenatal exposures with lifetime rhinitis.

Acknowledgements

We would like to thank all the research nurses and study coordinators involved in both cohorts. Authors thank all the research nurses and study coordinators involved in both cohorts.

Statement of Contribution

V.K. Patil contributed in conceiving the idea for the paper, contributed to study design and interpreting the data. VKP contributed to study design and interpreting the data. JK carried out the data collection and the analysis and interpretation of data for the study. Pernille Vinggaard Andersen carried out the data collection and the analysis and interpretation of data for the study. Song Li carried out the data collection and the analysis and interpretation of data for the study.

Corresponding Author

V.K. Patil

© 2015 John Wiley & Sons Ltd, Clinical & Experimental Allergy 45 : 1430–1438
design and conduct, wrote data analysis and wrote the first draft of the manuscript. RJK contributed to study conduct, design and preparation of manuscript. CV contributed to study conduct and in manuscript preparation. JG contributed to study conduct; GR contributed to study design and manuscript preparation; TD contributed to the study design and manuscript preparation; SHA contributed in conceiving the idea for the paper, contributed to study design and manuscript preparation.

Funding: The FAIR Follow-up was funded by NIHR Postdoctoral Fellowship Award Ref. NIHR/PDF/01/055. The IoW 10-year follow-up was funded by National Asthma Campaign, UK (Grant No 364, PI: S. Hasan Arshad).

Conflict of interest
The authors declare no conflict of interest.

References
1. WHO. Asthma. 2012. Available from: http://www.who.int/mediacentre/factsheets/fs307/en/index.html. (Last accessed 12 October 2012)
2. Canonica GW, Bousquet J, Mullol J, Scadding GK, Virchow JC. A survey of the burden of allergic rhinitis in Europe. Allergy 2007; 62(Suppl. 85):17–25.
3. Lai CK, Beasley R, Crane J et al. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2009; 64:476–83.
4. ISAAC Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 1998; 351:1225–32.
5. Burr ML, Butland BK, King S, Vaughan-Williams E. Changes in asthma prevalence: two surveys 15 years apart. Arch Dis Child 1989; 64:1452–6.
6. Asher MI, Montefort S, Björkstén B et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006; 368:733–43.
7. Gupta R, Sheikh A, Strachan DP, Anderson HR. Time trends in allergic disorders in the UK. Thorax 2007; 62:91–6.
8. Burr ML, Wat D, Evans C, Dunstan FD, Doull JJ. British thoracic society research C. Asthma prevalence in 1973, 1988 and 2003. Thorax 2006; 61:296–9.
9. Anderson HR, Ruggles R, Strachan DP et al. Trends in prevalence of symptoms of asthma, hay fever, and eczema in 12–14 year olds in the British Isles, 1995–2002: questionnaire survey. BMJ 2004; 328:1052–3.
10. Shamssain M. Trends in the prevalence and severity of asthma, rhinitis and atopic eczema in 6– to 7- and 13- to 14-year-old children from the north-east of England. Pediatr Allergy Immunol 2007; 18:149–53.
11. Malik G, Tagiyeva N, Aucott L, McNeil G, Turner SW. Changing trends in asthma in 9–12 year olds between 1964 and 2009. Arch Dis Child 2011; 96:227–31.
12. Butland BK, Strachan DP, Lewis S, Byynner J, Butler N, Britton J. Investigation into the increase in hay fever and eczema at age 16 observed between the 1958 and 1970 British birth cohorts. BMJ 1997; 315:717–21.
13. Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach. PLoS ONE 2012; 7:e30694.
14. Lau S, Illi S, Sommerfeld C et al. Early exposure to house-dust mite and cat allergens and development of childhood asthma: a cohort study. Lancet 2000; 356:1392–7.
15. Arshad SH, Tariq SM, Matthews S, Hakim E. Sensitization to common allergens and its association with allergic disorders at age 4 years: a whole population birth cohort study. Pediatrics 2001; 108:art. no. -e33.
16. Kurukulaarachty RJ, Forn M, Twiselton R, Matthews S, Arshad SH. The prevalence of asthma and wheezing illnesses amongst 10-year-old schoolchildren. Respir Med 2002; 96:163–9.
17. Zoller IK, Weiland SK, Piechotowski I et al. No increase in the prevalence of asthma, allergies, and atopic sensitisation among children in Germany: 1992–2001. Thorax 2005; 60:545–8.
infancy reduces asthma during childhood with the effect persisting until age 18 years. *Thorax* 2012; 67:1046–51.

31 Urquhart DS, Anderson AK, McKenzie SA. Fewer colds, less asthma? A hypothesis to explain the fall in childhood asthma in the UK. *J Epidemiol Community Health* 2008; 62:921–5.

32 Arshad SH, Karmaus W, Raza A et al. The effect of parental allergy on childhood allergic diseases depends on the sex of the child. *J Allergy Clin Immunol* 2012; 130:427–34 e6.

33 Kurukulaaratchy RJ, Matthews S, Waterhouse L, Arshad SH. Factors influencing symptom expression in children with bronchial hyperresponsiveness at 10 years of age. *J Allergy Clin Immunol* 2003; 112:311–6.

34 Li J, Wang H, Chen Y, Zheng J, Wong GWK, Zhong N. House dust mite sensitization is the main risk factor for the increase in prevalence of wheeze in 13- to 14-year-old schoolchildren in Guangzhou city, China. *Clin Exp Allergy* 2013; 43:1171–9.

35 Lajunen TK, Jaakkola JJ, Jaakkola MS. The synergistic effect of heredity and exposure to second-hand smoke on adult-onset asthma. *Am J Respir Crit Care Med* 2013; 188:776–82.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Description of the subset with SPT and the whole cohorts

Table S2. Prevalence of wheeze, rhinitis and sensitisation by sex

Table S3. Sex by cohort interaction effects on lifetime wheeze and rhinitis

Table S4. Interactions of risk factors and cohorts for lifetime wheeze and rhinitis.