Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts

Angelique E. Ray1, Julian Zaugg2, Nicole Benaud1, Devan S. Chelliah1, Sean Bay3, Hon Lun Wong1,4, Pok Man Leung3, Mukan Ji5,6, Aleks Terauds7, Kate Montgomery1, Chris Greening3, Don A. Cowan8, Weidong Kong9, Timothy J. Williams1, Philip Hugenholtz69 and Belinda C. Ferrari1

© Crown 2022

INTRODUCTION

Microbial communities inhabiting cold desert soils thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydrotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.

The ISME Journal (2022) 16:2547–2560; https://doi.org/10.1038/s41396-022-01298-5

Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydrotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.

The ISME Journal (2022) 16:2547–2560; https://doi.org/10.1038/s41396-022-01298-5

Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydrotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.

The ISME Journal (2022) 16:2547–2560; https://doi.org/10.1038/s41396-022-01298-5

Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydrotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.

The ISME Journal (2022) 16:2547–2560; https://doi.org/10.1038/s41396-022-01298-5
abundance across oligotrophic deserts spanning the Antarctic, Arctic and Tibetan Plateau [12], yet activity studies confirming atmospheric chemosynthesis outside niche communities in eastern Antarctica are lacking. While 19 bacterial and six archaeal phyla contain trace gas oxidizers that use the energy derived from aerobic respiration to support persistence [22, 28], thus far only three phyla have been proposed to be capable of atmospheric chemosynthesis: **Actinobacteria**, **Candidatus Dormibacterota** and **Ca. Eremiobacterota** [11].

We hypothesize that atmospheric chemosynthesis is a globally-distributed phenomenon, occurring widely in cold edaphic niches where photosynthetic capabilities are limited and in a broad range of taxa common throughout these environments. We use metagenomics, phylogenetics and biochemical approaches to quantify the contribution of atmospheric chemosynthesis to primary production in soils from cold deserts that span the globe, including New Harbour (NH), Taylor Valley, Mitchell Peninsula (MP), Windmill Islands and The Ridge (TR), Vestfold Hills, in Antarctica; the Ngari Prefecture in the Qinghai-Tibet Plateau (TP) in China; and Spitsbergen, Svalbard (SS) and Alexandra Fjord Highlands (AFH) in the high Arctic. Physicochemical variation has been observed across all sites, capturing a range of conditions common amongst cold desert environments (average dry matter fraction = 0.763 at Alexandra Fjord Highlands—0.998 at TP, average pH = 5.41 at Mitchell Peninsula—8.87 at The Ridge, average total carbon (TC) (% w/w) = 0.08 at The Ridge—23.17 at TP (Supplementary 1) [12, 29–31]. Genome-resolved metagenomics was used to determine autotrophic capacities within our 18 soil metagenomes and 230 dereplicated MAGs, as well as 24,080 reference genomes from the Genome Taxonomy Database (GTDB) originating from a broad range of environments. We expand substantially upon the known diversity of the RuBisCO fraction = 0.763 at Alexandra Fjord Highlands—29.6%) (Supplementary 5), which exhibited a higher abundance across oligotrophic deserts spanning the Antarctic sites (Spitsbergen Svalbard 0.1–0.8% and Alexandra Fjord Highlands 1.3–2.3%) (Fig. 1 and Supplementary 5). Eukaryotic taxa were limited within all soil metagenomes (average < 0.012%) and were dominated by **Ascomycota** and **Basidiomycota** (Supplementary 7), suggesting a limited capacity for lichen formation. Photosynthetic eukaryotic phyla, specifically **Chlorophyta**, **Cryptophyta**, **Ochrophyta** and **Rhodophyta**, occurred at very low relative abundances (<0.0013%) (Supplementary 7).

Assembly and binning of all 18 metagenomes yielded 230 high or medium-quality (≥50% completeness and ≥10% contamination) MAGs after dereplication at the species level (≥95% ANI). Of these, 76 were estimated to be more than 90% complete and <5% contaminated (Supplementary 8). The MAGs encompassed 16 bacterial and 1 archeal phyla, with the obtained taxonomic assignments of the MAGs showing a broad range of phyla including **Ca. Eremiobacterota** (n = 23), **Proteobacteria** (n = 21), **Acidobacterota** (n = 20), **Bacteroidota** (n = 18), **Verrucomicrobiota** (n = 11) and **Gemmatimonadaota** (n = 10) being the most dominant (Supplementary 8).

TRACE GAS CHEMOSYNTHETIC PHYL A DOMINATE COLD DESERT SOIL MICROBIOMES

Abundant communities were detected across all sites (average 16S rRNA copy number = 3.54 × 10^5–1.13 × 10^7/g soil) (Supplementary 2). Shotgun sequencing produced ~8–10 Gb metagenomes from each of the 18 Antarctic, Arctic and Tibetan Plateau soil samples (Supplementary 3). Sequencing depth and coverage was assessed using a combination of rarefaction analysis and redundancy-based approaches (Supplementary 3). Antarctic soils have >70% coverage, whilst non-Antarctic samples have ~23% coverage. Analysis of prokaryotic marker genes in these metagenomes indicated that the bacterial and archaeal communities comprised 48 phyla and 127 classes (Supplementary 5). Consistent with previous studies, polar soils were dominated by **Actinobacteria**, **Proteobacteria**, **Chloroflexota** and **Acidobacterota**, with **Gemmatimonadaota**, **Bacteroidota** and **Verrucomicrobiota** also prevalent in the High Arctic and some Antarctic sites (Fig. 1 and Supplementary 5 and 6) [5, 24, 29, 32]. Phyla associated with atmospheric chemosynthesis, including **Actinobacteria** dominated the Antarctic and Tibetan Plateau soil samples, accounting for up to 83% of the microbial community in The Ridge, while **Ca. Dormibacterota** and **Ca. Eremiobacterota** were abundant in Mitchell Peninsula samples, accounting up to 12.3% and 5.6%, respectively according to analysis of the ripl marker protein (Fig. 1 and Supplementary 5). When analyzed against GTDB reference genomes, **Ca. Dormibacterota** abundances were far greater, ranging up to 49.1% of the communities at Mitchell Peninsula (Supplementary 6). By contrast, the photosynthetic **Cyanobacteria** were rare, accounting for an average relative abundance of <0.57% in soils from each Antarctic site and the Tibetan Plateau. Comparatively, **Actinobacterota** were less abundant in high Arctic soils (18.1–29.6%) (Supplementary 5), which exhibited a higher abundance of **Cyanobacteria** compared to the Antarctic sites (Spitsbergen Svalbard 0.1–0.8% and Alexandra Fjord Highlands 1.3–2.3%) (Fig. 1 and Supplementary 5). Eukaryotic taxa were limited within all soil metagenomes (average < 0.012%) and were dominated by **Ascomycota** and **Basidiomycota** (Supplementary 7), suggesting a limited capacity for lichen formation. Photosynthetic eukaryotic phyla, specifically **Chlorophyta**, **Cryptophyta**, **Ochrophyta** and **Rhodophyta**, occurred at very low relative abundances (<0.0013%) (Supplementary 7).

PHOTOAUTOTROPHIC AND GEOCHEMICAL-DRIVEN CHEMOAUTOTROPHIC CAPACITIES ARE LIMITED IN ARID AND HYPERARID POLAR SOIL MICROBIOMES

To understand the autotrophic strategies sustaining life in cold desert ecosystems, we explored the potential for carbon and nitrogen cycling within soil metagenomes and MAGs. Genetic markers of aerobic and anaerobic respiration were ubiquitous in samples from all six deserts and in the recovered MAGs (Figs. 2 and 3 and Supplementary 9 and 10). Genes required for lithoautotrophic processes driven by metabolizing edaphic materials were detected in a limited number of MAGs (Supplementary 10–12). Autotrophic genes detected included those associated with the oxidation of reduced inorganic sulfur compounds through the thiosulfate oxidation pathways (Sox) and the reverse dissimilatory sulfite reductase pathway (dsrC, dsrEFH) (Supplementary 11) [48, 49]. Together, this suggests that the MAGs recovered here have a low capacity to support microbial carbon fixation through the oxidation of geochemical substrates.

Genes associated with ammonia oxidation (amoA, hao) were uncommon and genes associated with nitrite-oxidation (nxrAB) were not detected in any MAGs (Supplementary 12). There was genomic evidence for biological nitrogen fixation across all six deserts. Consistent with the low **Cyanobacteria** abundances, the nitrogenase gene (nifH) was also low in abundance throughout the metagenomes (0.45–3.8%) (Supplementary 9). Ammonia monooxygenase (amoA), associated with nitrification, was
uncommon in all metagenomes (<1.3%) especially in the Antarctic (average 0.13%) (Supplementary 9) and were almost exclusively detected in the ammonia oxidizing archaea (Thermoproteota) MAGs (Supplementary 12), a common feature in environmentally constrained Antarctic soils [29, 50–53]. Denitrification capacities were widespread, with copper-containing nitrite reductase (nirK) generally more prevalent than nirS in both the metagenomes (Supplementary 9) and MAGs (Fig. 4 and Supplementary 12). Most MAGs encode for a wide range of carbohydrate-active enzymes (CAZys) that are predicted to hydrolyze starch, hemicellulose, chitin and oligosaccharides (Supplementary 7), suggesting a capacity for organotrophy and the use of sugar-containing biopolymers as carbon and energy sources. Notably, such organic substrates are limited in oligotrophic desert soils, especially in Antarctic regions where plant matter is generally limited to moss and lichens [54, 55], consistent with the very low eukaryotic signal in all metagenomes studied here (relative average abundance <0.012%) (Supplementary 7). However, the detection of these complex carbohydrate-degrading enzymes indicates a prevalence of taxa capable of both heterotrophy and autotrophy, consistent with previous studies of terrestrial desert microbiomes [11, 22, 56, 57].

Fig. 1 Community composition of the 18 global desert soils, classified using the universal single-copy ribosomal protein gene rplP retrieved from shotgun metagenomic reads. The relative abundance of major bacterial and archaeal phyla residing in triplicate desert soils from Alexandra Fjord Highlands (AFH), Spitsbergen Svalbard (SS), Tibetan Plateau (TP), Mitchell Peninsula (MP), New Harbour (NH) and The Ridge (TR) are displayed; phyla with <2% relative abundance in all soil samples were grouped to the “Other” phyla. Actinobacteriota dominate all sites, particularly The Ridge (average 77.9%), TP (average 62.9%) and Mitchell Peninsula (average 45.2%). Photosynthetic Cyanobacteria are extremely scarce within NH, TP and The Ridge samples (<0.07%), with greater average abundances observed at Mitchell Peninsula (0.6%), SS (0.4%) and Alexandra Fjord Highlands (2.0%). Ca. Eremiobacterota and Ca. Dormibacterota dominate Mitchell Peninsula microbiomes (average 7.8% and 3.6%, respectively) and are present at lower levels within SS and Alexandra Fjord Highlands. Archaea are minor members of these ecosystems (average relative abundances; <0.2% within The Ridge, Mitchell Peninsula, NH; 2.6% within TP; 0.5% within SS; 1.2% within Alexandra Fjord Highlands).
Photosynthetic markers (psaAB, psbBC, pscA and pufLMC) were detected at very low levels throughout the metagenomes (<0.93%) but occurred at higher abundances within the high Arctic site, Alexandra Fjord Highlands (<4.79%) (Supplementary 9). Genes associated with photosystem I (psaA-F, psaI-M, psaX) and II (psbA-F, psbH-M, psbOP, psbT-Z, psb27, psb28, psb28-2) were detected solely within the two Cyanobacteria MAGs found exclusively within Alexandra Fjord Highlands samples, whilst photosynthetic reaction center genes commonly associated with Chlorobi (pscA-D) were not detected (Supplementary 10). In comparison, anoxygenic photosynthesis genes (pufBA-LMC) were detected in 17 MAGs spanning the Acidobacteriota, Bacteroidota, Myxococcota and Proteobacteria (Supplementary 10). In addition to these reaction center genes, we investigated genes encoding light-harvesting complexes and antenna proteins, which play an important role in the absorption of light for photosynthesis. Phycobilisome genes were detected within a single Chloroflexota MAG present in Mitchell Peninsula soil (average 4.13%) and in both Cyanobacteria MAGs present in Alexandra Fjord Highlands at relative abundances <0.14% (Supplementary 8 and 10). Light-harvesting complex I (LHCA1-5) and II (LHCB1-7) and chlorophyll a/b binding light-harvesting proteins (pcbaH) were not detected in any of the MAGs (Supplementary 10). Genes for the protochlorophyllide complex subunits, bchN and bchB, were found in MAGs of the Rubrobacteraceae family of Actinobacteriota; but in members of Rubrobacteraceae these genes do not appear to be connected to bacteriochlorophyll-based phototrophy [58, 59]. MAGs assigned to the genus Amaricoccus (Rhodobacteraceae, Alphaproteobacteria) contained pufL, pufM and bchB genes although RuBisCO genes were undetected (Supplementary 8 and 10). Proteorhodopsin genes with DTE motifs in the 3rd transmembrane helix were identified in our Bacteroidota and Deinococcota MAGs, indicating the potential for photoheterotrophy.
Although photosynthetic markers are limited throughout the MAGs and metagenomes, suggesting a low capacity for photosynthesis, their presence could still result in significant expression and activity.

TRACE GAS OXIDATION SUPPORTS MAINTENANCE AND PRODUCTIVITY IN ARID AND HYPERARID ECOSYSTEMS ACROSS THE POLES

Functional gene analysis suggests that phototrophy and the oxidation of geochemical compounds have a limited capacity to support the electron transport chain and drive carbon fixation within the polar desert microbiomes studied here. Conversely, there was an extensive genetic capacity for trace gas oxidation, with high-affinity [NiFe]-hydrogenases from group 1h, 1l and 2a distributed across all 18 soil metagenomes (Fig. 2 and Supplementary 9), with either groups 1h or 1l detected in a third of all retrieved MAGs (≥50% completeness, ≤10% contamination) (Fig. 3 and Supplementary 15). Phylogenetic analysis revealed a novel clade of [NiFe]-hydrogenases (Supplementary 16), hereby referred to as group 1m. Like groups 1h and 1l [NiFe]-hydrogenase, group 1m was detected in all metagenomes (Supplementary 9) and a further 13 of the obtained MAGs, all of which are members of Actinobacteria (Supplementary 15). Group 1l [NiFe]-hydrogenase was identified in the phyla Deinococcota (order Deinococcales) (Bin#: 160, 161) with widespread presence of this novel hydrogenase also detected within Actinobacteria, Bacteroidota, Chloroflexota and Proteobacteria [24] (Supplementary 15). MAGs containing the well-established high-affinity group 1h [NiFe]-hydrogenases were widely distributed in seven previously established trace gas oxidizing phyla: Acidobacteriota, Actinobacteriota, Chloroflexota, Ca. Dornibacterota, Ca. Eremiobacterota, Proteobacteria and Verrucomicrobiota [11, 22, 61, 62] (Figs. 3 and 4 and Supplementary 15).
Analysis of the arrangement of genes within the 1m [NiFe]-hydrogenase gene cluster shows structural similarities to the well-characterized high-affinity 1h [NiFe]-hydrogenase, as well as the recently discovered high-affinity 1l [NiFe]-hydrogenase, implying that 1m [NiFe]-hydrogenases is also a high-affinity enzyme. Simultaneously, key differences that justify classification of these sequences into a novel grouping were consistently observed. For example, as found for the 1h [NiFe]-hydrogenase gene cluster, the small and large subunits of 1m [NiFe]-hydrogenase were encoded by adjacent genes. This contrasts with the form 1l [NiFe]-hydrogenase gene cluster which, consistent with a previous study [24], has five short predicted transmembrane proteins (HylTM1-5) interposing the large and small subunits. The group 1m [NiFe]-hydrogenase gene cluster typically also contained the following genes, most of which are unique to this novel group: HybD peptidase involved in processing of the hydrogenase large subunit [63]; an FeS cluster assembly protein; a Ni insertion ATPase/GTPase (CooC-type); tetratricopeptide repeat protein (in general involved in assembly of multiprotein complexes); a bifunctional ligase/repressor (BirA) homolog; a DUF1059 domain (of unknown function); and two small proteins (82–92 amino acids) with no identifiable domains that each contain a single transmembrane helix (Supplementary 17). The group 1h [NiFe]-hydrogenase from *Cupriavidus nectator* H16 (PDB ID = 5AA5) [64] was consistently identified as the best model for the 1m [NiFe]-hydrogenase amino acid sequences extracted from our MAGs (Phyre2 [65]; hhmL 87–89% residues modeled at >90% confidence, hhmS 68–79% residues modeled at >90% confidence; SWISS-MODEL [66] Global Model Quality Estimate = 0.67–0.72 for the whole tetramer). From this informatic analysis, we conclude that 1m [NiFe]-hydrogenase is an evolutionarily and structurally distinct group of high-affinity enzymes. Enzyme purification and characterization studies, including X-ray crystallography and nuclear magnetic resonance spectroscopy [67, 68], are needed to verify this identification biochemically.

In terms of CO oxidation, proteins annotated as the aerobic carbon monoxide dehydrogenase large subunit (coxL) were highly prevalent across the 230 dereplicated MAGs. However, as most of these protein sequences lacked the catalytic cluster of CODH [69], we infer that only 18 of the 230 MAGs contained genes for actual CODH. These included members of the *Actinobacteriota, Chloroflexota, Firmicutes, Verrucomicrobiota, Ca. Dormibacterota, Ca. Eremiobacterota, Acidobacteriota* and *Deinococcota* with multiple distinct clades observed. Most genomes containing Rubisco form IE also contained high-affinity group 1 [NiFe]-hydrogenase and/or aerobic carbon monoxide dehydrogenase.

Figure 4 Maximum likelihood phylogenetic tree of Rubisco gene sequences focusing on form IE, pruned from a larger tree containing binned cold desert metagenomic assembled genomes (MAGs) and over 3000 published genomes. Leaves are colored to represent phylum, while colored branches show Rubisco form. The cold desert site that each MAG was obtained from is shown in the outer ring. Genomes which additionally harbored high-affinity groups 1h [NiFe]-hydrogenase (hylL), 1m [NiFe]-hydrogenase (hhmL), 1l [NiFe]-hydrogenase (hylL) and/or aerobic carbon monoxide dehydrogenase (coxL) with an active-site loop are indicated by outer triangles, colored red, green, pink, and blue, respectively. Bootstrap values >90% are depicted as filled circles on branches. Medium and high-quality MAGs constructed in this study are marked with gray circles. Rubisco form IE is highly diverse, spanning 8 bacterial phyla (*Actinobacteriota, Chloroflexota, Firmicutes, Verrucomicrobiota, Ca. Dormibacterota, Ca. Eremiobacterota, Acidobacteriota* and *Deinococcota*) with multiple distinct clades observed. Most genomes containing Rubisco form IE also contained high-affinity group 1 [NiFe]-hydrogenase and/or aerobic carbon monoxide dehydrogenase.
Mitchell Peninsula, The Ridge and New Harbour (average relative abundances of 18%, 17% and 8.1%, respectively), and occurring in lower abundances in Tibetan Plateau, Spitsbergen Svalbard and Alexandra Fjord Highlands samples (3.1%, 1.9% and 1.4%, respectively; Fig. 2 and Supplementary 9). Although widely distributed, the photosynthetic Rubisco forms IA and IB were in low abundance throughout all metagenomes (average 1.1% and 0.2%, respectively), particularly in comparison to Rubisco form IE.

Rubisco form IE was encoded in 38 of the obtained MAGs, while Rubisco forms II, III, IA, IB, IC and ID were collectively limited to only five MAGs (Fig. 3 and Supplementary 15). Overall, 25 MAGs contained both a detectable Rubisco form IE and high-affinity hydrogenase genes (Fig. 4 and Supplementary 15). Of these, 18 belonged to the phylum Actinobacteria, three to the phylum Chloroflexi (family Ktedonobacteraceae including novel genera UBA11361 and CF-113) and two each to the proposed trace gas chemosynthetic phyla Ca. Dormibacterota and Ca. Eremiobacterota [33, 34]. Of these 25 MAGs, eight also encoded CODH with an active-site loop [69], the eight MAGs containing all three genes (rbcL1E, hly/L/hylL/hhmL and CODH) belong to the Actinobacteria (order Mycobacteriales including novel genus QHCD01, and order Solirubrobacterales including novel genus Palsa465), Chloroflexi (two novel genera in the family Ktedonobacteraceae; CF-113 and UBA11361) and Ca. Dormibacterota (genus Candidatus Dormibacter) (Fig. 4 and Supplementary 15). Therefore, these taxa potentially possess high metabolic flexibility, with the potential to use both H2 and CO for hydrogenotrophic and carboxydrotrophic growth, respectively (Fig. 4 and Supplementary 10 and 15).

Only a single MAG (classified as Actinobacterota; family Solirubrobacteraeaceae) encoded both CODH and Rubisco form IE but no detectable high-affinity hydrogenase gene (Supplementary 15). This suggests that in cold desert microorganisms, CO oxidation is rarely the sole driver of atmospheric chemosynthesis, occurring most frequently in conjunction with H2 oxidation.

ATMOSPHERIC CHEMOSYNTHESIS AND PHOTOSYNTHESIS CO-OCUR IN MICROBIAL COMMUNITIES TO SUPPORT PRIMARY PRODUCTION

Gas chromatography was used to confirm scavenging and oxidation of atmospheric H2 and CO in soil microcosms from all six global desert sites. Headspace H2 concentrations rapidly dropped to sub-atmospheric levels (Fig. 5A and Supplementary 18), with average atmospheric hydrogen oxidation rates ranging from 9.4 nmol/mol/h/g at The Ridge through to 421.4 nmol/mol/h/g at Mitchell Peninsula. Antarctic and Tibetan Plateau soil microcosms demonstrated the highest H2 oxidation rates, consistent with the higher abundances of Actinobacteria within these samples (Fig. 1 and Supplementary 5, 6 and 18). Mitchell Peninsula microcosms demonstrated extremely rapid H2 oxidation, likely reflecting the high abundances of the phyla Ca. Eremiobacterota and Ca. Dormibacterota (average 7.8% and 3.6%, respectively) that are proposed to be capable of atmospheric chemosynthesis (Fig. 1 and Supplementary 5, 6 and 18). The rapid H2 uptake rates reported here far exceed those previously calculated to be required to sustain the energy needs of similarly structured polar and temperate terrestrial microbiomes [11, 22, 24, 37, 70-72], such as those from Robinson Ridge (3.49 nmol/mol/h/g) and Adams Flat (5.54 nmol/mol/h/g) soils in Eastern Antarctica [11], as well as cultured bacterial isolates [19].

CO oxidation was also observed in soil microcosms from all desert sites except The Ridge (Fig. 5B). However, the rates observed were much slower than for H2 oxidation in the same microcosms, and high levels of variation in CO oxidation rates were observed between soils from the same site (Supplementary 18). These results, combined with the greater abundance of putative H2 oxidizing bacteria compared to putative CO oxidizers in the soil samples, suggests that atmospheric H2 oxidation is a more important and widespread energy acquisition process (cf. CO oxidation) in these polar soil microbiomes.

We also demonstrated that atmospheric chemosynthesis contributes to primary production in globally-distributed cold desert soils (Fig. 6). Whilst Ji et al. [11] investigated atmospheric chemosynthesis in two Eastern Antarctic sites, significant increases (p < 0.05) in carbon fixation under hydrogen stimulation were only observed in soils obtained from one of these sites, Adams Flat [11]. Furthermore, in this previous study, the average TC assimilation per sample across all conditions was 31.6 pmol at Adams Flat and 7.1 pmol at Robinson Ridge [11], which is comparable to the values reported here (Alexandra Fjord Highlands: 49.2 pmol, SS: 15.7 pmol, Mitchell Peninsula: 41.4 nmol/mol/h/g, NH: 42.6 nmol/mol/h/g, The Ridge 41.1 nmol/mol/h/g, TP 35.6 nmol/mol/h/g, Alexandra Fjord Highlands: 21.6 nmol/mol/h/g, SS 9.4 nmol/mol/h/g), particularly within the Mitchell Peninsula microcosms, each of which consumed hydrogen to sub-atmospheric levels within 6 h of incubation. Carbon monoxide consumption was observed however, compared to hydrogen consumption, these rates were slower and varied greatly between samples within each site.
markers for photosynthesis and atmospheric chemosynthesis were both low in MP1 (0.2% Ca. Eremiobacterota) and (0.3% Ca. Dormibacterota). With such great taxonomic variation between biological replicates, it is unsurprising that variable biochemical activity was also observed at this site (Supplementary 18).

RUBISCO FORM 1E PHYLOGENY SPANS EIGHT BACTERIAL PHYLA INHABITING ENVIRONMENTAL RESERVOIRS

To complement the diversity of atmospheric chemosynthesis genetic determinants uncovered in our MAGs, we extracted a further putative 4507 RuBiSCoCs, 1073 high-affinity hydrogenases and 1289 aerobic CODH based on sequence identity (>30% to representative sequences, 70% alignment) from 24,080 bacterial and archaeal representative genomes from release R04-R89 of the GTDB. Phylogenetic analyses confirmed the identity of the extracted RuBiSCo sequences (190 form IE, 291 form ID, 251 form IC, 194 form IB, 423 form IA, 348 form II, 275 form III and 1188 form IV) (Supplementary 19) and high-affinity hydrogenase groups (722 form 1h, 6 form 1m, 19 form 1l) (Supplementary 16). Consistent with analysis of our own MAGs, RuBiSCo form IE was widely distributed, found within *Actinobacteriota*, *Chloroflexota*, *Ca. Dormibacterota* and *Ca. Eremiobacterota* (Fig. 4 and Supplementary 15) and, in accordance with previous studies [11, 27], *Firmicutes* and *Verrucomicrobiota* (Fig. 4). High-affinity group 1h [NiFe]-hydrogenases co-occurred with RuBiSCo form IE within MAGs from each of these six trace gas oxidizing phyla detected, whilst CODH co-occurred with RuBiSCo form IE in all phyla except *Verrucomicrobiota* (Fig. 4 and Supplementary 15). Through this analysis, we also discovered RuBiSCo form IE within *Acidobacteriota* (n = 5) and *Deinococcota* (n = 14) genomes. Although the co-occurrence of high-affinity hydrogenases were not detected within these genomes, four of the *Deinococcota* genomes encoded CODH (Fig. 4), suggesting a capacity for atmospheric chemosynthesis using carboxydotrophy rather than hydrogenotrophy (Fig. 4). Therefore, in addition to *Actinobacteriota*, *Ca. Dormibacterota* and *Ca. Eremiobacterota*, the bacterial phyla *Chloroflexota*, *Deinococcota*, *Firmicutes* and *Verrucomicrobiota* are now implicated as being capable of atmospheric chemosynthesis through H2 and/or CO oxidation strategies.

Of the GTDB genomes that contained both RuBiSCo form IE and group 1h [NiFe]-hydrogenase genes, 80 were obtained from the analysis of pure cultured microorganisms, rather than MAGs. *Actinobacteriota* accounted for most of these isolates (n = 76) (orders *Myxococcales*, *Streptomycetales*, *Streptosporangiales* and *Solirubrobacterales*), with *Firmicutes* (Sulfobacillus thermosulfidooxidans), *Chloroflexota* (Nitrolancea hollandica) and *Verrucomicrobiota* (Methylacidiphilum kamchatkense) also represented. Of these, the *Firmicutes* and 35 of the 76 *Actinobacteriota* genomes also encoded CODH. In addition to the 80 isolates described, a further 12 of the genomes obtained from microbial isolates contained RuBiSCo form IE and CODH but did not have a detectable group 1 [NiFe]-hydrogenase gene. This provides further indication that a subset of taxa capable of atmospheric chemosynthesis are likely to utilize carboxydotrophic rather than hydrogenotrophic growth strategies. Like the isolates that demonstrated both carboxydrotrophic and hydrogenotrophic markers, these taxa also spanned both low in MP1 (0.2% Ca. Eremiobacterota) and (0.3% Ca. Dormibacterota). With such great taxonomic variation between biological replicates, it is unsurprising that variable biochemical activity was also observed at this site (Supplementary 18).
and desert environments, the majority from soil. Soil environments included agricultural fields [76, 77], karst caves [78, 79], plant matter [80, 81] and mining and ore deposits [82]. These putative trace gas chemosynthetic bacteria were also isolated from aqueous environments, including ocean [83], sediment [84–86], lakes [87], river and stream [88, 89], hot spring [90, 91] and groundwater samples [92]. Aqueous environments such as these generally have a lower capacity for oxygenation compared to terrestrial systems, highlighting the need to confirm activation of the chemosynthetic pathways in these organisms and characterize the underlying metabolic capacities. Ultimately, this diverse habitat range supports the hypothesis that high-affinity H₂ and CO oxidation is a globally pervasive mechanism of energy acquisition that supports microbial survival, and potentially cellular growth, in a wide array of microbial taxa.

CONCLUSION
Atmospheric chemosynthesis supplements photosynthetic primary production in cold desert soils across the globe, with trace gas oxidation providing the energy and/or carbon needs to sustain terrestrial ecosystems in the high Arctic, Antarctica and Tibetan Plateau. This observation expands the significance of soil microorganisms as key elements in the global carbon budget. We have informally identified a novel high-affinity hydrogenase, termed 1m (NiFe)-hydrogenase, and increased the list of potential trace gas chemosynthetic phyla to seven, with key enzymes co-occurring within MAGs from four previously unidentified bacterial phyla: Chloroflexi, Firmicutes, Deinococcota and Verrucomicrobia. The discovery of a suite of putative trace gas chemosynthetic bacteria from diverse habitats, and their previous isolation under nutrient-rich conditions, highlights their proposed metabolic flexibility—being capable of growth and persistence through a combination of heterotrophic, carboxydotrophic and hydrogenotrophic strategies. Finally, the isolation of presumptive trace gas chemotrophs from a range of environmental reservoirs provides new opportunities to experimentally demonstrate and confirm the underlying metabolic pathways of atmospheric chemosynthesis and to clarify the physiological importance of the energy generation and carbon fixation processes in bacterial survival.

MATERIALS AND METHODS
Soil sampling
Two Eastern Antarctic sites were chosen for inclusion in this study: Mitchell Peninsula (66°31’S, 110°59’E) from the Windmill Islands region and The Ridge (68°54’S, 78°07’E) from the Vestfold Hills region. New Harbour (NH) (77°34’S, 163°31’E), lower Taylor Valley (McMurdo Dry Valleys) was also investigated, as were two high Arctic sites; Alexandra Fjord Highlands (78°51’N, 75°54’W) in Canada and Spitsbergen Svalbard (SS) (78°14’N, 15°25’W) in Norway. Samples were also collected from the cold, high-altitude Qinghai-Tibet Plateau (TP) (32° 27’N, 80°4’E) in Western China. Sampling of Mitchell Peninsula, The Ridge, Alexandra Fjord Highlands and SS was conducted under auspices of the Australian Antarctic Program. NH was sampled by the Centre for Microbial Ecology and Genomics, University of Pretoria, and the TP soils were obtained from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. Mitchell Peninsula, Alexandra Fjord Highlands and SS were sampled between 2005 and 2008, The Ridge was sampled in 2012, TP was sampled in 2015 and NH was sampled in 2018. During sampling, three 50 x g soil samples were obtained from 0.25 m intervals along a spatially explicit transect that is 300 m long and 3 m wide (Siciliano et al. [93]). All soil samples were stored at ~80 °C until used in this study.

Physicochemical analysis
Physicochemical data describing the Mitchell Peninsula, The Ridge, SS, Alexandra Fjord Highlands and The Ridge soils was obtained from previous publications [12, 29–31]. For the Antarctic and Arctic sites, these values were originally derived from data obtained from the Biome of Australia Soil Environments repository (https://data.bioplatforms.com/organization/about/australian-microbiome) [95] and the Australian Antarctic Datacentre (https://doi.org/10.4225/15/S26F42ADA05B1). Physicochemical data describing the NH soils was conducted during this study. This data was obtained using standard procedures described previously [93, 96]. In brief, total carbon (TC) was measured using combustion and nondispersive infrared analysis, total organic carbon was measured using the Walkley-Black chromic acid wet oxidation method [97], and pH was measured using a 1:5 soil to distilled water suspension [98]. Dry matter fraction was measured by comparing the weight of ~10 g soil prior to and after drying in an oven at 105 °C for 5 h.

Community DNA extraction, sequencing and cell abundance estimations
DNA was extracted in triplicate from 0.25–0.30 g of each soil sample using the FastDNA SPIN kit for soil (Mitchell Peninsula Biomedicals, NSW, Australia) as per the manufacturer’s instructions. Metagenomic shotgun libraries were prepared from DNA extractions using the Nextera XT DNA Sample Preparation Kit (Illumina). Sequencing was performed on an NextSeq500 platform (Illumina) with 2 x 150 base pair high output run chemistry and 7 Gb coverage per sample. The cell abundance within each soil sample was estimated using quantitative polymerase chain reaction targeting the 16S rRNA gene, according to previously described methods [12].

Metagenome assembly and binning
Low quality reads were identified and removed with Trimmomatic [99] using a sliding window of 4 bases with an average quality of 21 (SLIDINGWINDOW:4:21), with those reads less than 50 bp in length discarded (MINLENGTH50). Quality controlled reads were then assembled using MEGAHIT (ver. 1.2.2-beta) [100] with default parameters. Contig statistics including assembly size, number of contigs, contig length distribution, and N50/90 values were calculated with BBMap (ver. 38.41) [101] and custom scripts. Quality controlled reads for each sample were mapped onto their respective assemblies with minimap2 as part of CoverM "make" (ver. 0.3.0, B. Woodcroft, unpublished, https://github.com/wwwood/CoverM). Low quality mappings were removed with CoverM "filter" (minimum identity 95% and minimum aligned length of 75 bp). To estimate the coverage of the metagenomes, Nonpareil [102] was run using the quality controlled reads, K-mer alignment method and default parameters. Assemblies for each sample were binned by providing the contigs for each sample and filtered BAM files as input to UniteM (ver. 0.0.15; D. parks, unpublished, https://github.com/dparks1134/UniteM) and using a minimum contig length of 1500 bp and Maxbin (ver. 2.2.4) [103, 104]. Maximum binning (ver. 2.12.1) [105] binning methods (max40, max107, mb2, mb very sensitive, mb sensitive, mb specific, mb versatile and mb superspecific). Bin completeness and contamination was evaluated using CheckM (ver. 1.0.12) [106] and the taxonomy assigned using the Genome Taxonomy Database Toolkit (GTDB-Tk; ver. 1.3.0; with reference to GTDB R05-RS95) [107]. Binning yielded 860 bins (17 archaeal and 811 bacterial), 282 of which were ≤50% complete with ≤10% contamination. A non-redundant set of bins were obtained by dereplicating with dRep (ver. 2.2.3, sa = 0.95) [108]. Following dereplication, 230 metagenome-assembled genome (MAG) bins (7 archaeal and 223 bacterial; ≥50% completeness, ≤10% contamination) were selected for further analysis. Of the 230 MAGs, 76 were estimated to be more than 90% complete and <5% contaminated (Supplementary 8).

Calculation of MAG abundances
To calculate the relative abundance of each MAG, reads from each sample were mapped to the set of MAGs using CoverM "make". Low quality mappings were removed with CoverM "filter" (minimum identity 95% and minimum aligned length of 75 bp). The mean coverage of each MAG was calculated with CoverM, with those with a fraction of coverage <5% reported as having zero coverage. The relative abundance of each MAG, among those obtained, was calculated as its coverage divided by the total sum of coverage of all MAGs. Abundance values were multiplied by the fraction of reads that mapped to all MAGs to produce the relative abundance of each MAG within the entire sample.

Custom database generation and metabolic annotation of metagenomic short reads
The abundance of 43 genes, including the different forms of RubisCO (IA, IB, IC, ID, IE, II, III and IV) and high-affinity (NiFe)-hydrogenase (1h, 1i, 1m

The ISME Journal (2022) 16:2547 – 2560

A.E. Ray et al.

2555

SPRINGER NATURE
Gene extraction and functional annotation of MAGs

MAGs were translated and functionally annotated using a combination of Prokka (ver. 1.14), Prodigal (ver. 2.6.3), the carbohydrate-active enzymes database (CAZY) [121], NCycDB [122] and EnrichM (ver. 0.4.15, J. Boyd, unpublished, https://github.com/geronimp/enrichM), the latter using annotation options –k ohm, –p fam, –bfgfam, –orthology, –clusters, –cutoff of 0.75. New, false query gene to be considered for annotation, the minimum fraction aligning to a reference, and vice versa, was set to 0.5, with a minimum percent identity of 30% also required. Sequences initially annotated as CODH large subunit (coxL) were manually inspected for the presence of the CODH active site loop [69] to determine if they were likely to be coxL; using this approach, the majority of coxL homologs were removed from further consideration. Rhodospin amino acid sequences were identified through annotation against the Pfam [109] database using InterProScan [123], and TMHMM [124] used to subsequently confirm the presence of seven transmembrane helices. Rhodospin sequences were then aligned with MAFFT (ver. 7.407) [125, 126] and visualized with Geneious Prime 2021.0.1 (https://www.geneious.com). Rhodospin motifs were identified in the 3rd transmembrane helix while the retinal binding motifs were identified in the 7th transmembrane helix.

Phylogenetic analysis of Rubisco and hydrogenase within MAGs and GTDB genomes

Potential Rubisco and high-affinity group 1 [NiFe]-hydrogenase large subunit sequences were identified in the 860 MAGs obtained in this study and 24,080 representative genomes from the GTDB R04-RS89 using BLAST+ (ver. 2.9.0, max_hsps 1) [110]. BLAST results were filtered to those hits where at least 30% sequence identity and 70% alignment of the representative sequence was achieved, and false positives manually removed. Phylogenetic analysis was conducted to identify the subtype of each Rubisco and hydrogenase sequence extracted (Fig. 4 and Supplementary 16 and 19). In total, 4,622 putative Rubisco sequences were obtained: 115 from our constructed MAGs and 4,507 from representative genomes from the GTDB. In addition, 1,377 putative hydrogenase sequences were obtained: 317 from our MAGs and 1,073 from representative genomes. Identical sequences were removed from further analysis.

Separate phylogenetic analyses were performed upon the extracted Rubisco and hydrogenase sequences. Multiple sequence alignment was performed using MAFFT (ver. 7.407), employing the L-INS-i iterative refinement method [125, 126]. The resulting alignments were then trimmed to remove poorly aligned regions using trimAl (ver. 1.4.1), with a gap threshold of 0.5 [127]. Sequences with more than 50% gaps after alignment were removed. Maximum likelihood phylogenetic trees were constructed using IQ-Tree (ver. 1.6.10) [128], applying 1,000 ultrafast bootstrap iterations, hill-climbing nearest neighbor interchange search and incorporating additional SH-like approximate likelihood ratio tests (SH-aLRT) [129]. ModelFinder was performed to determine the best phylogenetic model, which was the amino-acid exchange rate general matrix (LG) plus “FreeRate” model heterogeneity (–r9 for the Rubisco tree and –r10 for the hydrogenase tree) [128]. Sequences that failed the chi-square test during tree building were removed. The final consensus trees comprised 3255 Rubisco sequences and 2103 hydrogenase sequences and were both uploaded to iTOL [130] for visualization. Branches within the hydrogenase tree were color-coded according to the form of hydrogenase and bootstrap values 90–100 indicated by circles on the corresponding branches. Within the Rubisco tree, sequences were color-coded by phyla and branches color-coded by Rubisco form. MAGs were color-coded according to the cold-desert site where they were primarily detected. Representative genomes and MAGs harboring high-affinity hydrogenase and aerobic carbon monoxide dehydrogenase sequences were marked with triangles. A complete tree depicting all 3255 Rubisco sequences is provided (Supplementary 19), as is a pruned version focussing upon the entire Rubisco form IE clade, the 115 Rubisco sequences extracted from the cold desert MAGs and their closest corresponding references sequences within genomes from the GTDB (Fig. 4). Copy numbers obtained for the MAGs were converted to presence/absence, and the proportion of MAGs from each phyla containing the genes visualized as a heatmap using the R package ggplot2 [114] (Fig. 2).

Gene structural analysis and homology modeling of 1m [NiFe]-hydrogenase

Amino acid sequences encoding the 1m [NiFe]-hydrogenase small subunit (hhms) and large subunits (hhml), as well as the surrounding genes were

Community taxonomic profiling of the metagenomes

The taxonomic profile of each unassembled metagenome was determined through the classification of reads corresponding to the universal single-copy ribosomal marker protein L16/L10E rpIP [Fan et al., [117]] using the approach described by Ortiz et al. [24]. Briefly, rpIP sequences for representative bacterial and archaeal genomes in the GTDB R05-RS95 were downloaded (https://data.ace.uc.edu/public/gtdb/data/releases/release95/95.0/). GraMf (ver. 0.12.2) [118] was then used to create a gene family specific phylogenetic package, which was used to create a classification package for SingleM (ver. 0.13.2). An operational taxonomic unit (OTU) profile was then generated using SingleM ‘pipe’ on the paired reads for each sample. This taxonomic profile was visualized as a bar chart at the phyla-level using the R package ggplot2 [114] (Fig. 1). Rarefaction analysis was performed by sub-sampling the reads for all samples in increments of 1,000,000 read pairs, up to the lowest total read pair count among the samples (~27,000,000). SingleM was then run on each increment to generate a community profile based upon the coverage of OTUs. For the rpIP gene, the number of genera represented in each profile was plotted, excluding OTUs not classified to a genus level. To complement the marker gene profiling, metagenomes were also taxonomically profiled by mapping paired reads against the representative GTDB genomes with minimap2 [119] as part of CoverM “make” (ver. 0.4.0) (Supplementary 6). Low quality mappings were removed with CoverM “filter” (minimum identity 95% and minimum alignment length of 75%). Forward reads that remained unprocessed or were filtered by CoverM were profiled by Kajiu (ver. 1.7.3) using the nr + euk database [120]. All taxonomic profiles constructed are described at a class level (Supplementary 5–7).
extracted from four of the MAGs assembled in this study (bin #: 90, 63, 45, 35). All sequences were submitted to ExPASy BLAST (using the "UniProtKB/Swiss-Prot only" option) [131] and to InterProScan [132] to identify functional domains, and potential subcellular location (e.g., transmembrane helices). Amino acid sequences encoding the 1m [NiFe]-hydrogenase small and large subunits from all the 4 MAGs were also modeled through input into the Protein Homology/analogY Recognition Engine V 2.0 (Phyre2) using the intensive modeling mode [65]. The amino acid sequence of the group 1m [NiFe]-hydrogenase large and small subunits (hmsL) from each of the four MAGs were input into SWISS-Model [66], to visualize the structure of the group 1m [NiFe]-hydrogenase tetramer.

H₂ oxidation and ¹⁴CO₂ fixation assays
Gas chromatography was used to measure the activity of high-affinity hydrogenases and carbon monoxide dehydrogenases within microbial communities from each cold desert region. To determine whether the microbial communities within each soil sample were fixing carbon through atmospheric chemosynthesis, photosynthesis, a combination of both or neither, ¹⁴CO₂ assimilation assays were conducted. Both assays and the subsequent statistical analysis of the results were conducted according to previously described methods [11] (Supplementary 21).

DATA AVAILABILITY
Next generation sequencing data that supports the findings of this study have been deposited in GenBank with the accession code PRJNA6646410. All other data supporting the findings of this study are available in the article/Supplementary Information.

REFERENCES
1. Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW. Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol. 2014;5:154.
2. Kleineitjens H, Hildebrandt F, Bahram M, Voigt AY, Wood SA, Jungblut AD, et al. Pole-to-pole connections: similarities between Arctic and Antarctic microbiomes and their vulnerability to environmental change. Front Ecol Evol. 2017;5.
3. Neufeld JD, Mohn WW. Unexpectedly high bacterial diversity in arctic tundra soils relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol. 2005;71:5710–8.
4. Tindall BJ. Prokaryotic diversity in the Antarctic: the tip of the iceberg. Micro Ecol. 2004;47:271–83.
5. Leung PM, Bay SK, Meier DV, Chiril E, Cowan DA, Gillor O, et al. Energetic basis of microbial growth and persistence in desert ecosystems. mSystems. 2020;5:e00495–8.
6. Lambrechts S, Willems A, Tahon G. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Front Microbiol. 2019;10:242.
7. Pearce DA. Extremophiles in Antarctica: life at low temperatures. In: Stan-Lotter M, editor. Microbiology of life at low temperatures. 2002. p. 159–77.
8. Alspo T. Seasons. In: Oliver JE, editor. Encyclopedia of world climatology. Dorset, UK: Waverly Press; 1976. p. 710–28.
9. Fahey D, Newman PA, Pyle JA, Safari R, Chipperfield MP, Karoly D, et al. Scientific assessment of ozone depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58. World Meteorological Organization; 2018.
10. Bay S, Ferrari B, Greening C. Life without water: How do bacteria generate biomass in desert ecosystems? Microbiol Aust. 2018;39:28–32.
11. Jü M, Greener C, Vanvonderghem I, Caree CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.
12. Ray AE, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil microbiomes with the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37.
13. Zhao K, Kong W, Wang F, Long X-E, Guo C, Yue L, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO₂ fixation capacity than meadow soils. Soil Biol Biochem. 2018;127:230–8.
14. Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol. 2010;8:129–38.
15. Jü M, Williams TJ, Montgomery K, Wong HL, Zaugg J, Berengut JF, et al. Energetic basis of microbial growth and persistence in desert ecosystems. mSystems. 2020;5:e00495–8.
16. Sánchez-Osuna M, Barbé J, Erill I. Comparative genomics of the DNA damage-inducible network in the Patescibacteria. Environ Microbiol. 2017;19:3465–77.
17. Bay SK, Dong X, Bradley JA, Leung PM, Griner R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Front Microbiol. 2021;12:e00350–13.
18. Sánchez-Osuna M, Barbé J, Erill I. Comparative genomics of the DNA damage-inducible network in the Patescibacteria. Environ Microbiol. 2017;19:3465–77.
19. Bay SK, Dong X, Bradley JA, Leung PM, Griner R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Front Microbiol. 2021;12:e00350–13.
20. Li Q-M, Zhou Y-L, Wei Z-F, Wang Y. Phylogenetic insights into distribution and adaptation of Bdellovibrio in marine waters. bioRxiv. 2020. https://doi.org/10.1101/2020.11.30.44114.
21. Williams HN, Chen H. Environmental regulation of the distribution and ecology of Bdellovibrio and like organisms. Front Microbiol. 2020;11:545070.
22. Imhoff JF, Rahn T, Künzel S, Neulinger SC. Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufL protein center proteins. Front Microbiol. 2018;8:2679.
23. Ferrari BC, Bissett A, Snape I, von Dorch J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49.
24. Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.
25. Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, et al. Two chloroelxia classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.
26. Constant P, Poissant L, Villemur R. Isolation of Streptomycetes sp PCB7, the first microorganism demonstrating high-affinity uptake of trophospheric H-2. ISME J. 2008;2:1066–76.
2. Tank M, Bryant DA. Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol. 2015;6.

3. Zeng Y, Koblížek M. Photoprotective gemmimonomadetes: a new "Purple" branch on the bacterial tree of life. In: Hallenbeck PC, editor. Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Cham: Springer International Publishing; 2017. p. 163–92.

4. Zeng Y, Nupur, Wu N, Madsen AM, Chen X, Gardiner AT, et al. Gemmimonomadetes groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum gemmimonomadetes. Front Microbiol. 2021;11.

5. Zeng Y, Feng F, Medova H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmimonomadetes. Proc Natl Acad Sci USA. 2016;113:7171–5.

6. Ward LM, Li-Hau F, Kakegawa T, McGlynn SE. Complex history of aerobic respiration and phototrophy in the chloroflexocea class anaerolineae revealed by high-quality draft genome of Ca. Rosellinsea mizusawaensis AA3_104. Microbes Environ. 2021;36:ME21020.

7. Thiel V, Fukushima S-I, Kanno N, Hanada S. Chloroflexi. In: Schmidt TM, editor. Encyclopedia of microbiology. 4th ed. Oxford: Academic Press; 2019. p. 651–62.

8. Tourna M, Maclean P, Curshen K, O’Callaghan M, Wakelin SA. Links between sulphur oxidation and sulphur-oxidising bacteria and diversity in soil microcosms based on sox8 functional gene analysis. FEBS Microbiol Ecol. 2014;88:538–49.

9. Anantharaman K, Hausmann SP, Jungbluth SP, Kang JS, Sevier LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2016;10:3743–56.

10. Magalhães CM, Machado A, Frank-Fahle B, Lee CK, Cary SC. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Front Microbiol. 2014;5.

11. Richter I, Herbold CW, Lee CK, McDonald IR, Barrett JE, Cary SC. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol. 2014;89:347–59.

12. Ayton J, Aslabe J, Barker GM, Saul D, Turner S. Crenarchaeota af Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. The acidophilic methanotroph Methylacidimicrobium tartarophilax 4AC grows as autotroph on H2 under microoxic conditions. Front Microbiol. 2019;10.

13. Tamura T, Ishida Y, Hasegawa H, Otoguro M, Yamamura H, Hayakawa M, et al. Description of Actinomycetospora chibensis sp. nov., Actinomycetospora chlora sp. nov., Actinomycetospora cinnamomea sp. nov., Actinomycetospora corticcola sp. nov., Actinomycetospora lutea sp. nov., Actinomycetospora straminea sp. nov. and Actinomycetospora succinea sp. nov. and emended description. Int J Syst Evol Microbiol. 2011;61:1275–80.

14. Yamamura H, Tamura T, Sakayama Y, Harayama S. Nocardia amaniensis sp. nov., isolated from a sugar-cane field in Japan. Int J Syst Evol Microbiol. 2007;57:1599.

15. Fang BZ, Han MX, Zhang LY, Jiao J, Zhang XT, Zhang ZT, et al. Nocardia aurea sp. nov., a novel actinobacterium isolated from a karstic subterranean environment. Int J Syst Evol Microbiol. 2019;69:159–64.

16. Jurado V, Boiron P, Kroppesten H, Laurent F, Couble A, Laiz L, et al. Nocardia altamirenensis sp. nov., isolated from Altamira cave, Cantabria, Spain. Int J Syst Evol Microbiol. 2008;58:2210.

17. Demaree J, Smith N. Nocardia vaccini n.sp. causing galls on blueberry plants. Phytopathology. 1952;42:249–52.

18. Li X, Wang Z, Lu F, Zhang H, Tian J, He L, et al. Actinomycorallia populii sp. nov., an endophytic actinomycete isolated from a root of Populus albedom (Maxim.). Int J Syst Evol Microbiol. 2008;58:2210.

19. Golyshcheva R, Karavaiko G. Sulfacobaccus, a new genus of thermophilic sporulating bacteria. Mikrobiologiya. 1978;47:815–22.

20. Schorn MA, Alanjary MM, Aguinaldo K, Korobeynikov A, Podell S, Patin N, et al. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology. 2016;162:2075.

21. Klenk H-P, Lu M, Lucas S, Lapidus A, Copeland A, Piltuck S, et al. Genome sequence of the oceanic bacterium Sarcophomarina marina type strain (XMU151T). Stand Genom Sci. 2012;6:265.

22. Liu ZP, Wu JF, Liu ZH, Liu SJ. Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol. 2006;56:555–8.

23. Tian X-F, Zhang Y-Q, Li Q-X, Zhi X-Y, Tang S-K, Zhang S, et al. Streptomycetes nanshenis sp. nov., isolated from the Nanhsia Islands in the South China Sea. Int J Syst Evol Microbiol. 2009;59:745.

24. Maker A, Hemp J, Pace LA, Ward LM, Fischer WW. Draft genome sequence of Hydrogenibacillus schlegelii MA48, a deep-branching member of the Bacilli class of firmicutes. Genome Announc. 2017;5:e00380–16.

25. Niu M-M, Ming H, Cheng L-J, Zhao Z-L, Ji W-L, Li M, et al. Amycolatopsis nivea sp. nov., a new thermophilic species isolated from the Nansha Islands in the South China Sea. Int J Syst Evol Microbiol. 2009;59:745.

26. Chen J-MG. An X-ray crystallographic approach to enzyme structure and function. Can J Biochem. 1980;58:251–71.
isolated from groundwater of a bathing facility in Shizuoka, Japan. Genome Announc. 2017;5:e01309–17.

93. Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20.

94. Ji M, Kong W, Jia H, Delgado-Baquerizo M, Zhou T, Liu X, et al. Polar soils exhibit distinct patterns in microbial diversity and dominant phylotypes. Soil Biol Biochem. 2022;166:108550.

95. Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. GigaScience. 2016;5:21.

96. van Dorst J, Bissett A, Brown M, Snape J, Stark JS, et al. Community fingerprinting in a sequencing world. FEMS Microbiol Ecol. 2014;89:336–340.

97. Walkley A, Black IA. An examination of the deptjarrlef method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38.

98. Raymond GE, Lyons DJ. Soil chemical methods—Australasia. Melbourne: CSIRO Publishing; 2010.

99. Bolger AM, Lohse M, Usadel B. Trimomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114.

100. Li D, Liu CM, Luo R, Sadakane K, Lam T. MEGAHIT: an ultra-fast single-node genome assembler. ISMB 2015;3:e1165.

101. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein sequences. Bioinformatics. 2005;21:2620–2622.

102. Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. GigaScience. 2016;5:21.

103. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

104. Churches PT, Riemer K, Huson DH. GeneMark: a new method for gene finding in novel genomes. Nucleic Acids Res. 2003;31:3784–8.

105. Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method for reconstructing individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.

106. Letunic I, Bork P. Interactive tree of life (iTL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41396-022-01298-5.

Correspondence and requests for materials should be addressed to Belinda C. Ferrari.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.