Integrated analyses of rice dark response and leaf color control reveal links with porphyrin and chlorophyll metabolism

**CURRENT STATUS:** POSTED

Tianxingzi Wang  
Hebei Agricultural University

Yue Chen  
Hebei Agricultural University

Zheng Zhu  
Hebei Agricultural University

Yuqing Liu  
Hebei Agricultural University

Gaowei Yan  
Hebei Agricultural University

Shan Xu  
Hebei Agricultural University

Haiqing Xu  
Hebei Agricultural University

Ming Yang  
Hebei Agricultural University

Shijuan Dou  
Hebei Agricultural University

Liyun Li  
Hebei Agricultural University

Guozhen Liu  
Hebei Agricultural University

Email: gzhiu@hebau.edu.cn  
**Corresponding Author**

ORCID: https://orcid.org/0000-0002-7072-3357
DOI: 10.21203/rs.2.23764/v1

SUBJECT AREAS

*Plant Physiology and Morphology*  *Plant Molecular Biology and Genetics*

KEYWORDS

dark response, chlorophyll biosynthesis, integration analysis, leaf color control, rice, RNA-seq.
Abstract

Background: Light is a key regulatory signal for rice growth and development. Under dark stress, rice shows leaf yellowing. Whole genome transcriptomic analysis will identify differentially expressed genes (DEG) in dark-treated rice seedlings and DEG-enriched metabolic pathways. Rice leaf color is an essential agronomic trait. Traditional genetic experiments have reported over a hundred of leaf color control (LCC) genes and some of them were also regulated by light signal. Thus, an integrated analysis for the two set of data will be helpful for illustration of the mechanism for both dark-response and leaf color control.

Results: Transcriptome changes in response to dark treatment were surveyed by RNA-Seq analysis. About 13,115 differentially expressed genes (DEGs) were identified. One hundred and fifty rice LCC genes were collected. It was found that 102 LCC genes (68.0%) were also dark-response DEGs, which suggests an overlap between dark response and LCC networks. Fifty DEG overlapped LCC genes was associated with chloroplast development. KEGG analysis revealed enrichment of LCC genes in porphyrin and chlorophyll metabolism (PCM) (18/44, 40.9%). Of the 18 LCC genes in the PCM pathway, 15 were dark-response DEGs (83.3%). More interestingly, all of them are involved in a central PCM sub-pathway, chlorophyll biosynthesis.

Conclusions: Integrated analysis for dark stress-response and leaf color control identified the correlation between the two processes and mutually supported evidences were obtained. It was found that PCM pathway, particularly chlorophyll biosynthesis process, plays important roles in rice LCC and dark stress-response. This study provides important clues for understanding the mechanisms of dark response and leaf color control and identifying additional LCC genes.

Background

Light is the essential environmental factor for normal plant growth and development, both as an energy source processed via photosynthesis and as a signal for many biological processes. When cultivated in regular day-night cycles (diurnal cycle), rice grows with green leaves. In contrast, rice seedlings grown under dark treatment elongate more quickly and have yellow or pale colored leaves. Dark-stress is a severe stress, producing serious physiological damage that affects plant growth and
Through the course of evolution, plants have established efficient mechanisms for responding to light signals (Demarsy et al., 2017). Photoreceptors play essential roles, sensing light signals and initiating signal transduction. Three types of photoreceptors have been identified in Arabidopsis: five subtypes of red / far red light receptor phytochromes (PhyA–PhyE), blue light receptor cryptochromes (Cry1 and Cry2) and phototropins (Phot1 and Phot2) and UV-B specific photoreceptors (UVR8) (Demarsy et al., 2017; Yang et al., 2018). In light signal transduction pathways, dozens of elements that are downstream of photoreceptors, such as chromatin remodeling factors, histone modifying enzymes, transcription factors (such as PIF5, HYS and FHY3), splice factors, protein degradation factors (such as COP1, SPAs and LR8), factors interacting with exogenous environmental signals and endogenous hormones have been identified. These elements are coordinated to transmit light signals accurately and quantitatively, thereby regulating seed germination, photomorphogenesis, chloroplast development, shade response, stomatal opening and closing, flowering, biological rhythm and aging to ensure normal plant growth and development (Demarsy et al., 2017). On the basis of sequence similarity, homolog photoreceptor genes for Phy (Kay et al., 1989), Cry (Zhang et al., 2006b), Phot (Kanegae et al., 2000) and UVR8 (Fernández et al., 2016) have been identified in rice. However, limited information has been reported about regulatory elements downstream of these photoreceptors.

Rice is the world’s most important food crop and a model monocotyledon plant for basic research. In rice, leaf color mutations occur with high frequency and can be recognized easily. Further, they are a useful resource for genetic studies and breeding applications. So far, over one hundred leaf color mutants have been isolated in rice. They are classified by phenotypes: albino, yellow, temperature-sensitive, bright green, stay green, stripe, purple and turning green (Wu et al., 2015). Rice leaf color control genes (LCC) are mainly involved in chlorophyll metabolism and chloroplast development. The chlorophyll (Chl) synthesis pathway involves dozens of genes, and genes encoding Chl synthesis enzymes have been identified in higher plants (Nagata et al., 2005). Every Chl metabolic pathway gene mutation that has led to the inactivation or deletion of its encoded enzyme has changed the
proportion of chlorophyll contents and produced leaf color variation. In rice, dozens of genes identified as Chl biosynthesis enzymes have been cloned, including OsYGL18 (Wang et al., 2017c), OsChlH, OsChlD and OsChlI (Zhang et al., 2006a; Inagaki et al., 2015), OsPORa and OsPORb (Sakuraba et al., 2013), OsYGL1 (Wu et al., 2007), OsIspF (Huang et al., 2017), OsDVR (Wang et al., 2010), OsCAO1 and OsCAO2 (Lee et al., 2005; Yang et al., 2016b), OsCRD1 (Wang et al., 2017b), OsGluRS (Liu et al., 2007), OsIspE (Chen et al., 2018), OsV5B (Liu et al., 2016b) and OsMTS1 (Hong et al., 2018). Several genes associated with chlorophyll degradation, like OsNOL (Kusaba et al., 2007), OsNYC3 (Morita et al., 2009) and OsSGRL (Rong et al., 2013), have also been cloned. Chloroplast organelles are unique to higher plants and responsible for photosynthesis. Abnormal chloroplasts develop when genes associated with chloroplast development are mutated, influencing the amount and proportion of chlorophyll and other photosynthetic pigments. At present, cloned chloroplast development genes include OsLC7 (Chen et al., 2016b), OsZN (Li et al., 2010), OsTLP27 (Kang et al., 2015), OsCpn60α (Jiang et al., 2014b), OsGRY79 (Wan et al., 2015), OsYSS1 (Zhou et al., 2017), OsPGL12 (Chen et al., 2019), OsYS83 (Chen et al., 2016a), OsNTRC (Perez-Ruiz et al., 2006), OsVYL (Dong et al., 2013), OsSRP43 (Lv et al., 2015), OsSRP54 (Zhang et al., 2013a), Osetl1 and Osetl2 (Mao et al., 2011), Osetp5 (Tsugane et al., 2006), OsV5A (Zhou et al., 2013a), OsS6K (Sun et al., 2016), Oshad1 (Liu et al., 2018), OsHAP3A (Miyoshi et al., 2003), OsYGL8 (Zhu et al., 2016), OsDG2 (Jiang et al., 2014a), OsYLD1 (Deng et al., 2017), OsNOA1 (Yang et al., 2011), OsPAPST1 (Xu et al., 2013) and OsCSP41b (Mei et al., 2017). Mutation of key enzymes in the heme synthesis pathway resulted in significantly reduced chlorophyll biosynthesis in rice. Genes encoding heme oxygenases OsHO1 and OsHO2 have been cloned (Chen et al., 2013; Li et al., 2014). Carotenoid content is a determinant of leaf color. A number of essential carotenoid synthesis genes have been cloned, including OsPDS (encoding phytoene desaturase), OsZDS (encoding zeta-carotene desaturase), OsCRTISO (encoding carotenoid isomerase) and beta-OsLCY (encoding lycopene beta-cyclase) (Fang et al., 2008). Improved understanding of functions and cross-talk of genes involved in chlorophyll synthesis and degradation and chloroplast development would help clarify mechanisms controlling leaf color and facilitate improvements of photosynthesis efficiency.
Whole-genome transcriptome analysis, involving deep sequencing or DNA microarrays, is a method used to reveal differential gene transcription at varying locations and times or under various stresses. It is useful for identifying clues that enable subsequent investigations of molecular mechanisms. Using oligonucleotide arrays, transcriptional profiling was performed under four light treatments (blue, green, red and white), as well as dark treatment, in rice. The results showed that the expression of transcription factors, such as bHLH, MYB, C2H2, ERF, NAC and WRKY, changed significantly, and carbohydrate degradation decreased under dark treatment (Lakshmanan et al., 2015). It was also revealed that both Phy A and Phy C cooperatively regulate transient gene expression in red-light treated rice seedlings (Kiyota et al., 2012). It has been observed that middle mesocotyl elongation was almost completely inhibited when germinating seeds were exposed to low-intensity light. RNA-Seq analysis revealed that most of the differential expressed genes (DEGs) were associated with hormone changes that occur in response to light exposure (Feng et al., 2017). Comparative transcriptome profiling for low-light tolerant and sensitive rice varieties was carried out via RNA-Seq analysis, and DEGs induced by low-intensity light at the tillering stage were identified (Sekhar et al., 2019). Rice leaf color mutant accessions were analyzed by whole-genome resequencing and transcriptomic approaches, and the identified DEGs were classified into different categories, including genes related to macronutrient (e.g. magnesium and sulfur) transport and genes related to flavonoid biosynthesis (Kim et al., 2015).

In this study, transcriptomic analysis using an RNA-Seq approach was carried out for yellow leaves of dark-treated rice seedlings. DEGs were identified and DEG-enriched metabolic pathway analysis was performed with KEGG. Furthermore, data for previously reported LCC genes were collected for KEGG analysis, and metabolic pathways that include both LCCs and dark-response DEGs were identified. It was found that the transcript abundance of most LCC genes changed under dark treatment, suggesting an overlap between leaf color control and dark response. Therefore, integrated analyses were carried out, producing supporting, supplementary evidence for this hypothesis. This study provides important clues for improving mechanistic understanding of dark response and leaf color control and identifying additional LCC genes.
Materials And Methods

Plant materials, cultivation and dark treatment

Rice variety TP309 was used in this study. After being soaked in water for 3 days, seeds were surface sterilized and then germinated in soil (soil: vermiculite = 1:1). Rice seedlings were grown for 5 days in a 30°C growth chamber under a 12-h light/12-h dark cycle (60 µmol·m⁻²·s⁻¹). Then, seedlings were transferred to 24-h dark (constant dark, CD) conditions until sample collection.

Measurement of plant height and chlorophyll content

Phenotypic photos were taken at different time points during constant dark treatment. The plant height was measured for more than 10 randomly selected seedlings. The mean and standard derivation were calculated. Rice leaves were harvested, sliced and soaked in 80% acetone for 48 h in the dark. The optical density was recorded at 470 nm, 646 nm and 663 nm with an ultraviolet spectrophotometer. The chlorophyll a, chlorophyll b and carotenoids contents were calculated in accordance with Lichtener and Wellburn’s method (Lichtenthaler and Wellburn, 1983). Three replicates were measured.

Total RNA extraction from rice seedlings and RNA-Seq analysis

Rice seedlings under CD treatment for 0, 3 and 6 days were collected for total RNA extraction and library construction. Transcriptomic analysis was performed using Illumina Novaseq 6000 by Novegene Co., Ltd (Beijing, China).

Identification of differentially expressed genes (DEGs) and KEGG-enrichment analysis

Genes with log2 fold change (absolute value) >1 and P-value <0.05 were defined as differentially expressed genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.genome.jp/kegg/) pathway network was used to identify DEG-enriched metabolic pathways under dark treatment. The DEG-enriched KEGG analysis was performed by ClusterProfilerR software. Rich factor (RF), the number of DEGs normalized to the total number of genes in a specific metabolic pathway (#GMP), was calculated for all metabolic pathways. Bubble charts were drawn for the 20 pathways with the highest P-value.

Identification of transcription factors among DEGs
Transcription factors among DEGs were identified with PlantTFDB v5.0 (planttfdb.cbi.pku.edu.cn), and their relative expression levels were obtained from the RNA-Seq data.

**Collection of leaf color control (LCC) genes**

Rice LCC genes were collected by literature mining. The gene name, locus number, annotation and references for cloned LCC genes are summarized in Table 2. KEGG analysis of LCC genes was carried on the basis of DEG enrichment analysis. The number of LCC genes measured as a proportion of the #GMP is referred to as the mutant rich factor (mRF).

**Heat Map**

LCC genes were functionally classified by their protein’s annotated function, and different colors were assigned to indicate expression on the basis of log2 (fold change) values. Red and green colors depict up- and down-regulated genes, respectively. The LCC heat map was made with EXCEL software (Microsoft Corporation, USA).

**Metabolic pathway chart**

LCC gene locus numbers were input to obtain corresponding EC (Enzyme Commission) numbers from the KEGG database (https://www.genome.jp/kegg/pathway.html). KEGG Mapper software was used to assign a color to each gene on the basis of the transcript abundance, as determined by RNA-Seq analysis. On the basis of log2 (fold change) values, red lines represent up-regulated DEGs, green lines represent down-regulated DEGs, and yellow lines represent DEGs with discrepant up- and down-regulation at 3 d and 6 d under constant dark.

**Results**

**Phenotypic characterization and transcriptomic analysis of dark-treated rice seedlings**

Rice seedlings grown in normal light condition (12-h light/12-h dark) for 5 days were switched to dark treatment, and samples were collected at 0 (CK), 3 (CD_3d) and 6 days (CD_6d). The seedling height and chlorophyll a, chlorophyll b and carotenoid content were measured. Under CD stress, rice seedlings showed more leaf yellowing and taller plant height than CK (Fig. 1A). The plant height increased 19.2% and 11.5% at CD_3d and CD_6d, respectively, compared with control (Fig. 1B). The chlorophyll a, chlorophyll b and carotenoid contents under 6d of CD significantly decreased by 82.0%,
100.0% and 70.4%, respectively (Fig. 1C, 1D and 1E). Taken together, yellowed leaves, increased plant height and decreased chlorophyll content are typical characteristics of plant skotomorphogenesis, suggesting that CD stress resulted in deficient rice growth and development. RNA-Seq transcriptome analysis was carried out for CK, CD_3d and CD_6d rice seedlings. The results revealed 33,755 non-redundant transcripts, accounting for 59.2% of all predicted rice genes (about 57,023). A total of 13,115 DEGs were identified, which accounts for 38.9% of all non-redundant transcripts (Additional file: Table S1). Approximately 8,242 DEGs were detected between CK and CD_3d, of which 4,467 were up-regulated and 3,775 were down-regulated. Additionally, there were 8,266 DEGs between CK and CD_6d, of which 3,834 were up-regulated and 4,432 were down-regulated. There were more up-regulated DEGs than down-regulated DEGs for CD_3d, while there were fewer up-regulated DEGs than down-regulated DEGs for CD_6d (Fig. 2A). There were 4,849 CD_3d only and 4,873 CD_6d only DEGs. A total of 3,393 genes were DEGs in both CD_3d and CD_6d (Fig. 2B). It can be inferred that the early stages of dark treatment induced the transcription of many genes, while longer periods of dark treatment led to increased numbers of down-regulated genes. This switch from up-regulation to down-regulation is an indication that as the CD treatment is extended, rice seedling growth becomes more inhibited and the expression of additional genes is down regulated.

**DEG-enriched KEGG metabolic pathway analysis**

KEGG metabolic pathway analysis of dark-response DEGs was performed by ClusterProfiler R. DEG-enriched pathways and corresponding rich factors (RF) for CD_3d and CD_6d are listed in Additional file: Table S2. The 20 most significantly enriched pathways are shown in Fig. 3. In CD_3d, the term with the highest RF was cutin, suberine and wax biosynthesis. There were 11 up-regulated DEGs and 6 down-regulated DEGs. The second highest RF term was glyoxylate and dicarboxylate metabolism with 13 up-regulated DEGs and 22 down-regulated DEGs. The third highest RF term was amino sugar and nucleotide sugar metabolism with 49 up-regulated DEGs and 13 down-regulated DEGs. In CD_6d, the pathway with highest RF was photosynthesis-antenna proteins with 13 down-regulated DEGs, the second highest RF term was monobactam biosynthesis with 7 down-regulated DEGs, and the third
highest RF term was photosynthesis with 1 up-regulated DEG and 28 down-regulated DEGs. Comparison the terms from 3d and 6d, 7 out of 20 were overlapped, which supported the unique dark-stress response at different time points.

Next, the CD_3d and CD_6d DEGs were combined, and RF was recalculated for each pathway using non-redundant DEGs. The 20 pathways with the highest RF are shown in Fig. 4, and the highest RF pathways include photosynthesis-antenna proteins; carotenoid biosynthesis; cutin, suberine and wax biosynthesis; monobactam biosynthesis; porphyrin and chlorophyll metabolism (PCM); other glycan degradation; one carbon pool by folate; glyoxylate and dicarboxylate metabolism; and photosynthesis and biotin metabolism. Data for additional pathways are listed in Additional file: Table S3.

**Identification of transcription factors among dark-response DEGs**

Because transcription factors (TFs) play important roles in many biological processes, transcription factors among the dark-response DEGs were identified from matches with the *Oryza sativa subsp. japonica* transcription factor database in PlantTFDB (planttfdb.cbi.pku.edu.cn). Of the 8,242 DEGs in CD_3d, 449 (5.4%) were annotated as TFs belonging to 48 TF families, of which 296 were up-regulated and 153 were down-regulated. Of the 8,266 DEGs from CD_6d, 394 (4.8%) were annotated as TFs belonging to 47 families, of which 262 were up-regulated and 132 were down-regulated. Combined, 661 non-redundant TFs, representing 52 TF families, were identified as DEGs at the two dark treatment time points. Note, as shown in Table 1, the TF families that were most affected by CD were the bHLH, MYB, C2H2 and WRKY TF families. In particular, there were 47 bHLH among 449 TFs (10.5%) in CD_3d and 36 bHLH among 394 TFs (9.1%) in CD_6d. TF transcript levels were further analyzed. The most significant differentially expressed TFs under 3 d of dark treatment include AP2, B3, bHLH, G2-like, GeBP, HSF, LBD, M-type_MADS, MYB_related and SBP family members. Among them, the expression of a SBP (LOC_Os06g44860) increased by 754-fold, and the expression of a HSF (LOC_Os01g53220) decreased by 478-fold. The most significant differentially expressed TFs for 6 d dark treatments include ARR-B, B3, GRAS, LBD and MYB_related family members. Among them, the transcript abundance of an ARR-B (LOC_Os04g28160) increased by 625-fold, and the expression of a MYB_related (LOC_Os01g47370) decreased by 350-fold. Future functional investigations of TFs with
the largest expression changes should be of interest to dark-response research.

**Collection of rice leaf color control (LCC) genes**

Rice leaves showed green color under normal growth condition. Numerous leaf color mutants have been identified via traditional forward genetics and breeding programs in rice. Information on 150 LCC genes was collected from literature, and loc#, gene name and references are summarized in Table 2 and Additional file: Table S6. As shown in Table 2, the phenotypes of known LCC mutants are albino (26), yellow (52), temperature-sensitive (14), stay green (16), stripe (15), spot (9), purple (1) and turning green (17). On the basis of their annotation, LCC genes mainly participate in chlorophyll synthesis, chloroplast development and photosynthesis.

**Transcription analysis of LCC genes in dark-treated rice**

RNA-Seq measurements of CD stress transcript levels for 150 LCC genes were surveyed. This analysis revealed that 102 of 150 LCC genes (68.0%) were also dark-response DEGs, of which 18 were up-regulated at both 3d and 6d, 77 were down-regulated at both 3d and 6d, and 7 had opposing up- and down-regulation at the two time points (Additional file: Table S6). Thus, the transcript abundance of most LCC genes changed in response to dark stress. The 102 LCC DEGs were functionally classified on the basis of annotations. A heat map was drawn showing log2 (fold change) values under 3 d and 6 d dark treatments (Fig. 5). In Fig. 5, it can be seen that there are 50 chloroplast development related genes, including three that were up-regulated and 46 that were down-regulated at both time points. There were 15 chlorophyll synthesis-related LCC genes, including three that were up-regulated and eight that were down-regulated at both time points. There were 10 photosynthesis-related LCC genes and five chlorophyll degradation-related LCC genes.

These data support that chloroplast development, chlorophyll synthesis and photosynthesis LCC genes play important roles in leaf yellowing under CD treatment and, in particular, down-regulated genes in these pathways. Moreover, aging, active oxygen scavenging, light signal transduction and carotenoid synthesis are also involved in the yellowing of leaves. Significant down-regulated expression was observed for most LCC genes under constant dark treatment, which implies that these
LCC genes play a positive role in light signal responses.

**KEGG analysis of LCC genes**

Although hundreds of LCC genes have been cloned through traditional genetic approaches, larger-scale understanding of molecular mechanisms controlling leaf color remains poor. Thus, LCC genes were functionally classified and assigned to KEGG *Oryza sativa japonica* (Japanese rice) pathways. Similar to the calculation of rich factor in KEGG enrichment analysis, the number of LCC genes as a proportion of the total number of genes in a specific metabolic pathway (#GMP) was calculated as mutant rich factor (mRF). Fig. 6 shows pathway names and mRF values. The highest mRF pathway was PCM, accounting for 40.9% (18/44), followed by betalain biosynthesis (16.7%; 1/6) and photosynthesis-antenna proteins (6.7%; 1/15). The mRF for other metabolic pathways was less than 6% (Additional file: Table S7). Based on this result, it can be postulated that the PCM pathway plays important roles in regulating rice leaf color. KEGG analysis of the collection of LCC genes brought focus to specific metabolic pathways, providing a broader understanding of leaf color mechanisms and clues for identifying novel LCC genes.

**Integrated analysis of dark-response DEGs and LCC genes**

Among the 150 LCC genes, the transcript abundance of 102 genes changed under CD treatment, indicating an overlap between dark-response and leaf color control. Thus, it is reasonable and necessary to carry out integrated analysis of the two biological networks. Fig. 7 highlights pathways that include both dark-enriched DEGs and LCC genes, and the name or locus number of each gene is shown. A correlation between the two sets of data can be seen. As shown in Fig. 7, there was an overlap between dark-response DEGs and LCCs for a number of metabolic pathways. In the PCM pathway (Dosa00860), there are 27 dark response DEGs and 18 are LCC genes. Fifteen of these are both LCC genes and dark-response DEGs: *OsNYC1*, *OsGGR2*, *OsCRD1*, *OsHY2*, *OsLYL1*, *OsDVR*, *OsChlI*, *OsChlD*, *OsPORA*, *OsSGRL*, *OsYGL1*, *OsYGL18*, *OsSGR*, *OsRCCR1* and *OsPGL*. In other words, the number of LCC genes overlapped with dark-response DEGs normalized to the total number of dark-response DEGs is 55.6% (15/27) and it is 83.3% when normalized to total number of LCC genes (15/18), which provides strong evidence supporting a connection between PCM and both dark
response and LCC. Taken together, integrated analysis provided a tool for specific examination of genome-wide transcriptome data within the context of metabolic pathways established using traditional forward genetics data. The complementary sets of data mutually support one another.

**The chlorophyll biosynthesis process in the PCM pathway plays important roles in rice leaf color control**

To further examine the function of LCC genes and DEGs in PCM, a flow chart was drawn, on the basis of the KEGG data, to highlight the position and distribution of the 15 LCC dark-response DEGs (Fig. 8). Fig. 8 and Additional file: Table S8 shows that the LCC overlapped dark-response DEGs were neither evenly nor randomly distributed throughout the metabolic pathway. Instead, almost all of them were concentrated to chlorophyll biosynthesis, which is conserved in higher plants. Thus, it can be postulated that this process is the key part of the PCM pathway responsible for both LCC and dark response, and additional genes that participate in this process are potential LCC genes.

**Discussion**

To understand the effect of light on rice growth, RNA-Seq analysis was carried out for rice leaves treated with constant dark, and DEG-enriched KEGG pathways with high rich factors were identified. Meanwhile, a collection of rice LCC genes identified and cloned by traditional genetics were analyzed for mutant-enriched pathways with KEGG. It was found that 102 of 150 LCCs (68.0%) were DEGs under CD treatment, suggesting an overlap between dark response and leaf color control networks. An integrated analysis of the two sets of data found that 83.3% of the LCCs in PCM pathways were also dark-response DEGs. More importantly, most of the LCC genes participate in chlorophyll synthesis, which suggests that chlorophyll synthesis, as a central part of the PCM pathway, plays an important role in both leaf color control and dark response.

**The mechanisms of dark response in rice**

Darkness is a severe stress. Rice leaves become yellow and unhealthy. Results obtained in this study and reported literature have shown that chlorophyll a, chlorophyll b and carotenoid contents are significantly reduced under CD treatment.

RNA-Seq analysis of dark-treated leaves revealed down-regulation of several genes involved in
chlorophyll and carotenoid synthesis, including OsChlI, OsChlH and OsYGL1. Their transcript abundances decreased 13.3-, 5.5- and 5.30-fold, respectively. It has been reported that OsChlI and OsChlH encode the CHLI and CHLH subunits of Mg$^{2+}$-protoporphyrin IX chelatase (Mg$^{2+}$-chelatase) (Zhang et al., 2006a; Inagaki et al., 2015), and OsYGL1 encodes chlorophyll synthase (Wu et al., 2007). These are key enzymes for chlorophyll synthesis and leaf color control. In addition, the expression of $\beta$-OsLCY, encoding lycopene $\beta$-cyclase, decreased by 2.4-fold. The expression of OsPDS, encoding phytoene desaturase, decreased by 3.5-fold, and the expression of OsZDS, encoding $\zeta$-carotene desaturase, decreased by 2.9-fold. These three genes have been identified as key enzymes in carotenoid synthesis, with $\beta$-OsLCY also being a known LCC gene (Fang et al., 2008).

CD-enriched DEGs in photosynthesis-related pathways were detected by RNA-Seq analysis in this study. Four of the 10 most highly DEG-enriched metabolic pathways in dark response are associated with photosynthesis. For the photosynthesis-antenna proteins pathway, all 13 DEGs were down-regulated, including OsLhca4, which was down-regulated approximately 217-fold. It has been reported that this gene encodes a light-harvesting complex I (LHCI) subunit, and it is also an LCC gene (Yamatani et al., 2018). In PCM, 21 out of the 27 DEGs were down-regulated under dark treatment, among which, LOC_Os10g28370 was down-regulated 69-fold. In glyoxylate and dicarboxylate metabolism, OsRBCS4, which encodes a small subunit of rubisco, was down-regulated 3001-fold and is also an LCC gene (OGAWA et al., 2012). In the photosynthesis pathway, 30 out of 33 DEGs were down-regulated, among which, LOC_Os12g10570 was down-regulated 90-fold. RNA-Seq analysis has previously been carried out for different light treatments (white, red, blue and green). It was found that photosynthesis-related genes were significantly down-regulated and carbohydrate degradation was pronounced in darkness (Lakshmanan et al., 2015), consistent with the results obtained in this study.

**The mechanisms of leaf color control**

Leaf color is an important agronomic trait that is directly related to rice growth and grain yield. In this study, data on 150 LCC genes were consolidated from the literature. According to LCC gene transcription data, most LCC genes were down-regulated under constant dark treatment, which
demonstrates that light signals can play positive roles in regulating LCC gene expression. Light is the upstream initiator of signal transduction in plants. PIFs (phytochrome interacting factors) are a class of bHLH transcription factors that can interact with phytochrome (Phy). Light signals regulate PIFs protein stability; that is, the protein is stable in the dark and degrades in the light (Demarsy et al., 2017). In rice, six PIF genes have been identified and designated as OsPIL11 to OsPIL16 (Nakamura et al., 2007; Piao et al., 2015). It was reported that OsPIL13 is an LCC gene, with expression controlled by circadian rhythms (Nakamura et al., 2007). OsPIL13 binds to the promoters of two Chl biosynthetic genes, OsPORB and OsCAO1, and induces the transcription of downstream genes (Sakuraba et al., 2017). OsPIL15 is responsible for regulating rice tiller angle in response to light and gravity, and OsPIL15 expression is negatively regulated in etiolated seedlings exposed to light (Xie et al., 2019). In this study, up-regulated expression for OsPIL11, OsPIL13 and OsPIL16 was detected, and bHLH TFs were found to be CD-response DEGs at a higher percentage than any other TF family, suggesting that bHLH TFs play important roles to propagate light signal transduction in rice.

Darkness can lead to extensive stress responses, including loss of green leaf color. Direct correlations between light and leaf color mutation have been reported. For example, OsLYL1, encoding a geranylgeranyl reductase, was induced by light and suppressed by dark (Zhou et al., 2013b). OsYGL18 encodes a putative magnesium protoporphyrin IX methyltransferase (ChlM). When an OsYGL18 deletion mutant (ygl18) was transferred from dark to light, chlorophyll content increased and its expression was up-regulated (Wang et al., 2017c). OsZN encodes a thylakoid-bound protein of unknown function, and its mRNA level in constant light is higher than that in CD, indicating that OsZN transcription is controlled by light (Li et al., 2010). In addition, an OsOTP51 mutant, encoding a pentatricopeptide repeat protein, showed dramatic changes in PSI structure and function, which led to severe photoinhibition (Ye et al., 2012). In this study, it was found that expression of these genes was down-regulated after CD treatment, which suggests that light signals positively regulate LCC genes.

Although more than 100 LCC genes have been cloned by traditional genetic methods, it has been difficult to assess the role of specific LCC genes in the context of metabolic pathways. In this study, LCC genes were surveyed with KEGG metabolic pathway analysis. LCC gene-enriched pathways were...
identified by calculating the mutant rich factor (mRF). It was found that the mRF was highest for PCM, which suggested that PCM plays an important role in leaf color control, and additional genes from the PCM pathway may be LCC genes.

**The feasibility and importance of integrated analysis of transcriptome and genetic data**

Genome-wide transcriptome analysis can detect stress-related DEGs, and KEGG enrichment analysis can further identify DEG-enriched metabolic pathways. However, clues obtained by transcriptomic analysis require verification from genetic analyses and functional studies. Traditional forward genetics approaches can efficiently identify genes related to specific mutant phenotypes, but it is difficult to integrate a group of mutant-related genes into specific metabolic pathways. In this circumstance, it was possible to obtain mutual supporting, complementary evidence through integration of two sets of data. The integrated analysis can get focused view from transcriptomic data and a magnified view from genetic data.

In this study, RNA-Seq analysis of CD-treated rice seedlings was carried out and DEGs were identified. Data on 150 LCC genes previously cloned by traditional genetic means were collected, and 102 LCC genes were found to be dark-response DEGs, which suggests an overlap between dark response and leaf color control networks. Furthermore, KEGG analysis of LCC genes showed that the mRF of LCC genes was the highest for PCM, and most PCM LCC genes (83.3%) were dark-response DEGs. Meanwhile, the rich factor for PCM was among the highest revealed by RNA-Seq analysis of dark stress. Thus, it can be concluded that PCM plays an important role not only in dark response but also in leaf color control. RNA-Seq data provided understanding of leaf color mutations, and traditional genetic research provided complementary data towards clarifying the mechanism of dark-stress response.

Genome-wide analysis is aimed at investigating all genes. When facing different biological questions in the same organism, data from different sources can be integrated for coordinated analysis. With the rapid accumulation of transcriptome data, which can be combined with genetic data that has been collected over many years, integrated analysis can now be carried out to a greater extent, which will contribute to improved understanding of rice biology.
Dissection of the PCM pathway

DEGs can be allocated to specific metabolic pathways via KEGG analysis; however, a metabolic pathway may contain dozens or even hundreds of genes that are connected with multiple interrelated processes. Analysis of the location and distribution of DEGs is helpful for making functional associations with specific processes. In other words, more accurate and precise results can be obtained if metabolic pathways are dissected. In this study, DEGs derived from whole-genome transcriptomic analysis and LCC genes collected from traditional genetics literature were associated with the PCM pathway. Further, the DEGs and LCC genes were neither randomly nor evenly distributed throughout the pathway. Instead, they were concentrated in the chlorophyll biosynthesis part of the pathway (Nagata et al., 2005). On this basis, it can be postulated that chlorophyll biosynthesis is the key process for leaf color regulation. Analyzing dissected metabolic pathways is important because it helps narrow the range of target genes and leads to comprehensive understanding of gene functions.

Conclusions

In this study, transcriptomic analysis using an RNA-Seq approach was carried out for yellow leaves of dark-treated rice seedlings. DEGs and DEG-enriched metabolic pathways were analyzed. Data for reported LCC genes were collected. Metabolic pathways that included both LCCs and dark-response DEGs were identified. It was found that the transcript abundance of most LCC genes changed under dark treatment, suggesting an overlap between leaf color control and dark response. KEGG analysis revealed enrichment of LCC genes in porphyrin and chlorophyll metabolism (PCM). Interestingly, all of the overlapped LCC genes and DEGs were concentrated at chlorophyll biosynthesis in the central of PCM, indicating that PCM pathway, particularly chlorophyll biosynthesis process, plays important roles in rice LCC and dark stress-response. This study provides important clues for understanding mechanisms of dark response and leaf color control and identifying additional LCC genes.

Supplementary Information

The datasets supporting the conclusions of this article are included within the article and its additional file.
Additional file: Table S1. Transcriptional data for rice under constant dark stress. Table S2. DEG-enriched metabolic pathway analysis by KEGG. Table S3. List of metabolic pathways containing dark-response DEGs. Table S4. List of TFs among dark-response DEGs. Table S5. Transcript abundance of TFs that are dark-response DEGs. Table S6. List of rice leaf color control genes. Table S7. KEGG analysis of rice leaf color control genes. Table S8. Integrated analysis of dark response and leaf color control networks.

Abbreviations
CD: constant dark; Chl: chlorophyll; DEG: differentially expressed gene; GMP: genes in a specific metabolic pathway; KEGG: Kyoto encyclopedia of genes and genomes; LCC: leaf color control; mRF: mutant rich factor; PCM: porphyrin and chlorophyll metabolism; Phy: phytochrome; PIF: phytochrome interacting factor; PIL: rice phytochrome-interacting factor-like; RF: rich factor.

Declarations
Ethics approval and consent to participate

Not applicable.

Consent for publication

No applicable.

Availability of data and material

All data generated or analyzed during this study are included in this published article or its supplementary information files or are available from the corresponding authors on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by grant from the National Natural Science Foundation of China (No. 31171528).

Authors’ contributions

LG, LL, DS and YM designed the experiments; WT, CY, ZZ, LY, YG, XS and XH performed the
experiments; WT, CY and ZZ analyzed the data; LG, LL, CY and WT wrote and edited the manuscript.

Acknowledgements

We thank Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

Akhter D, Qin R, Nath UK, Eshag J, Jin X, Shi C (2019) A rice gene, OsPL, encoding a MYB Family Transcription Factor confers Anthocyanin synthesis, Heat Stress Response and Hormonal Signaling. Gene 699:62-72.

Ambavaram MMR, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A (2011) Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nature 5(2):93-93.

Chen F, Dong G, Wu L, Wang F, Yang X, Ma X, Wang H, Wu J, Zhang Y, Wang H, Qian Q, Yu Y (2016a) A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice. Sci Rep 6:32295.

Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X, Guo X, Wang J, Lei C, Wu F, Lin Q, Liu Y, Liu L, Jiang L (2013) A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep 32(12):1855-1867.

Chen H, Li C, Liu L, Zhao J, Cheng X, Jiang G, Zhai W (2016b) The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. Oryzae in rice. Sci Rep 6:26411.

Chen L, Huang L, Dai L, Gao Y, Zou W, Lu X, Wang C, Zhang G, Ren D, Hu J, Shen L, Dong G, Gao Z, Chen G, Xue D, Guo L, Xing Y, Qian Q, Zhu L, Zeng D (2019) PALE-GREEN LEAF12 Encodes a Novel Pentatricopeptide Repeat Protein Required for Chloroplast Development and 16S rRNA Processing in Rice. Plant Cell Physiol 60(3):587-598.

Chen N, Wang P, Li C, Wang Q, Pan J, Xiao F, Wang Y, Zhang K, Li C, Yang B, Sun C, Deng X (2018) A single nucleotide mutation of IspE gene participating in the MEP pathway for isoprenoid biosynthesis causes green-revertible yellow leaf phenotype in rice. Plant Cell Physiol 59(9):1905-1917.

Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C (2007) Physiological Character and Gene
Mapping in a New Green-revertible Albino Mutant in Rice. J Genet Genomics 34(4):331-338.

Chen X, Zhu L, Xin L, Du K, Ran X, Cui X, Xiang Q, Zhang H, Xu P, Wu X (2015) Rice stripe1-2 and stripe1-3 Mutants Encoding the Small Subunit of Ribonucleotide Reductase Are Temperature Sensitive and Are Required for Chlorophyll Biosynthesis. PLoS One 10(6):e0130172.

Chi YH, Moon JC, Park JH, Kim HS, Zulfugarov IS, Fanata WI, Jang HH, Lee JR, Lee YM, Kim ST, Chung YY, Lim CO, Kim JY, Yun DJ, Lee CH, Lee KO, Lee SY (2008) Abnormal chloroplast development and growth inhibition in rice thioredoxin m knock-down plants. Plant Physiol 148(2):808-817.

Demarsy E, Goldschmidt-Clermont M, Ulm R (2017) Coping with ‘Dark Sides of the Sun’ through Photoreceptor Signaling. Trends in Plant Science 23(3):260-271.

Deng L, Qin P, Liu Z, Wang G, Chen W, Tong J, Xiao L, Tu B, Sun Y, Yan W, He H, Tan J, Chen X, Wang Y, Li S, Ma B (2017) Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol Biochem 111:50-58.

Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM (2013) A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162(4):1867-1880.

Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, Chu C (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J 54(2):177-189.

Feng F, Mei H, Fan P, Li Y, Xu X, Wei H, Yan M, Luo L (2017) Dynamic transcriptome and phytohormone profiling along the time of light exposure in the mesocotyl of rice seedling. Sci Rep 7(1):11961.

Feng Z, Zhang L, Yang C, Wu T, Lv J, Chen Y, Liu X, Liu S, Jiang L, Wan J (2014) EF8 is involved in photoperiodic flowering pathway and chlorophyll biogenesis in rice. Plant Cell Rep 33(12):2003-2014.

Fernández M, Tossi V, Lamattina L, Cassia R (2016) A Comprehensive Phylogeny Reveals Functional Conservation of the UV-B Photoreceptor UVR8 from Green Algae to Higher Plants. Front Plant Sci 7:1698.
Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C (2012) Characterization of an Abc1 kinase family gene OsABC1 - 2 conferring enhanced tolerance to dark-induced stress in rice. Gene 498(2):155-163.

Giri MK, Gautam JK, Prasad VBR, Chattopadhyay S, Nandi AK (2017) Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling. J Biosci 42(3):501-508.

Gong X, Jiang Q, Xu J, Zhang J, Teng S, Lin D, Dong Y (2013) Disruption of the Rice Plastid Ribosomal Protein S20 Leads to Chloroplast Developmental Defects and Seedling Lethality. G3-Genes Genom Genet 3(10):1769-1777.

Gong X, Su Q, Lin D, Quan J, Xu J, Zhang J, Sheng T (2014) The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. J Integr Plant Biol 56(4):400-410.

Gothandam KM, Kim E-S, Cho H, Chung Y-Y (2005) OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol 58(3):421-433.

Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X (2015) Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiol 168(4):1762-1776.

Han SH, Sakuraba Y, Koh HJ, Paek NC (2012) Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-cis-lycopene and singlet oxygen. Mol Cells 33(1):87-97.

Hitoshi N, Atsunori T, Takanari T, Miki O, Shozo F, Hidemitsu N, Hiroaki I, Masaki M (2012) Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol 158(3):1208-1219.

Hong Y, Zhang Y, Sinumporn S, Yu N, Zhan X, Shen X, Chen D, Yu P, Wu W, Liu Q, Cao Z, Zhao C, Cheng S, Cao L (2018) Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice. Plant J 95(5):877-891.

Hu D, Li Y, Jin W, Gong H, He Q, Li Y (2017) Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice. Sci Rep 7:41355.

Hu L, Ye M, Li R, Zhang T, Zhou G, Wang Q, Lu J, Lou Y (2015) The Rice Transcription Factor WRKY53 Suppresses Herbivore-Induced Defenses by Acting as a Negative Feedback Modulator of Mitogen-
Activated Protein Kinase Activity. Plant Physiol 169(4):2907-2921.

Huang Q, Shi Y, Zhang X, Song L, Feng B, Wang H, Xu X, Li X, Guo D, Wu J (2016) Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol 58(1):12-28.

Huang R, Wang Y, Wang P, Li C, Xiao F, Chen N, Li N, Li C, Sun C, Li L, Chen R, Xu Z, Zhu J, Xu B (2017) A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice. Plant Mol Biol 96(5):1-12.

Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L, Chen X, Zhu T, Bi Y, Rothstein SJ (2013) Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiol 162(1):132-144.

Inagaki N, Kinoshita K, Kagawa T, Tanaka A, Ueno O, Shimada H, Takano M (2015) Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings. PLoS One 10(8):e0135408.

Ji SH, Gururani MA, Lee JW, Ahn BO, Chun SC (2013) Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis. Plant Biol 16(2):428-439.

Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52(2):197-209.

Jiang Q, Ma X, Gong X, Zhang J, Teng S, Xu J, Lin D, Dong Y (2014a) The rice OsDG2 encoding a glycine-rich protein is involved in the regulation of chloroplast development during early seedling stage. Plant Cell Rep 33(5):733-744.

Jiang Q, Mei J, Gong X, Xu J, Zhang J, Teng S, Lin D, Dong Y (2014b) Importance of the rice TCD9 encoding alpha subunit of chaperonin protein 60 (Cpn60alpha) for the chloroplast development during the early leaf stage. Plant Sci 215-216:172-179.

Jiao B, Wang J, Zhu X, Zeng L, Li Q, He Z (2012) A Novel Protein RLS1 with NB-ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice. Mol Plant 5(1):205-217.

Kamau PK, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W (2015) A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. Plant Cell Physiol
Kanegae H, Tahir M, Savazzini F, Yamamoto K, Yano M, Sasaki T, Kanegae T, Wada M, Takano M (2000) Rice NPH1 homologues, OsNPH1a and OsNPH1b, are differently photoregulated. Plant Cell Physiol 41(4):415-423.

Kang ZH, Huang JL, Zou HY, Zang GC, Wang GX (2015) Localization of OsTLP27 in thylakoid lumen is required for accumulation of photosynthetic proteins in rice. Mol Breed 35(7):153.

Kanjaniaphachoat P, Wei BY, Lo SF, Wang IW, Wang CS, Yu SM, Yen ML, Chiu SH, Lai CC, Chen LJ (2012) Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth. Plant Mol Biol 78(6):525-543.

Kay SA, Keith B, Shinozaki K, Chua NH (1989) The sequence of the rice phytochrome gene. Nucleic Acids Res 17(7):2865-2866.

Kim CK, Seol YJ, Shin Y, Lim HM, Lee GS, Kim AR, Lee TH, Lee JH, Park DS, Yoo S, Kim YH, Kim YK (2015) Whole-genome resequencing and transcriptomic analysis to identify genes involved in leaf-color diversity in ornamental rice plants. PLoS One 10(4):e0124071.

Kim S, Kwon C, Song G, Koh H, An G, Paek N (2018) The rice zebra3 (z3) mutation disrupts citrate distribution and produces transverse dark-green/green variegation in mature leaves. Rice 11(1):1.

Kim S, Yang J, An G (2014) OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL. Mol Cells 35(5):402-409.

Kimura E, Abe T, Murata K, Kimura T, Otoki Y, Yoshida T, Miyazawa T, Nakagawa K (2018) Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Sci Rep 8(1):1870.

Kiyota S, Xie X, Takano M (2012) Phytochromes A and C cooperatively regulate early and transient gene expression after red-light irradiation in rice seedlings. Plant Physiol Biochem 51:10-17.

Kong Z, Li M, Yang W, Xu W, Xue Y (2006) A Novel Nuclear-Localized CCCH-Type Zinc Finger Protein, OsDOS, Is Involved in Delaying Leaf Senescence in Rice. Plant Physiol 141(4):1376-1388.

Koumoto T, Shimada H, Kusano H, She K, Iwamoto M, Takano M (2013) Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-
bisphosphatase. Plant Biotechnol 30(1):47-56.

Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19(4):1362-1375.

Kusumi K, Iba K (2014) Establishment of the chloroplast genetic system in rice during early leaf development and at low temperatures. Front Plant Sci 5:386.

Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68(6):1039-1050.

Lakshmanan M, Lim SH, Mohanty B, Kim JK, Ha SH, Lee DY (2015) Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis. Plant Physiol 169(4):3002-3020.

Lee S, Kim J, Yoo E, Lee C, Hirochika H, An G (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57(6):805-818.

Lee S, Woo Y, Ryu S, Shin Y, Kim WT, Park KY, Lee I, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147(1):156-168.

Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P (2015) Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Sci 238:127-134.

Li H, Ji G, Wang Y, Qian Q, Xu J, Sodmergen, Liu G, Zhao X, Chen M, Zhai W, Li D, Zhu L (2018a) WHITE PANICLE3, a Novel Nucleus-Encoded Mitochondrial Protein, Is Essential for Proper Development and Maintenance of Chloroplasts and Mitochondria in Rice. Front Plant Sci 9:762.

Li J, Pandeya D, Nath K, Zulfugarov IS, Yoo SC, Zhang H, Yoo JH, Cho SH, Koh HJ, Kim DS, Seo HS, Kang BC, Lee CH, Paek NC (2010) ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant J 62(4):713-725.

Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, Lo C, Liu H (2014) Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrrole biosynthesis in rice. Planta
Li X, He Y, Yang J, Jia YH, Zeng HL (2018b) Gene mapping and transcriptome profiling of a practical photo-thermo-sensitive rice male sterile line with seedling-specific green-revertible albino leaf. Plant Sci 266:37-45.

Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci 11(27):10013-10018.

Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc T 11(5):591-592.

Lin D, Gong X, Quan J, Zheng K, Hua Z, Xu J, Sheng T, Dong Y (2015a) The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth. Rice 8(1):17.

Lin D, Jiang Q, Ma X, Zheng K, Gong X, Teng S, Xu J, Dong Y (2018a) Rice TSV3 Encoding Obg-Like GTPase Protein Is Essential for Chloroplast Development During the Early Leaf Stage Under Cold Stress. G3-Genes Genom Genet 8(1):253-263.

Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y (2015b) Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol 17(3):599-607.

Lin D, Zheng K, Liu Z, Li Z, Teng S, Xu J, Dong Y (2018b) Rice TCM1 Encoding a Component of the TAC Complex is Required for Chloroplast Development under Cold Stress. Plant Genome 11(1).

Liu C, Zhu H, Xing Y, Tan J, Chen X, Zhang J, Peng H, Xie Q, Zhang Z (2016a) Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice. J Exp Bot 67(18):5339-5347.

Liu H, Li Q, Yang F, Zhu F, Sun Y, Tao Y, Lo C (2016b) Differential Regulation of Protochlorophyllide Oxidoreductase Abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in Rice Seedlings. Plant Cell Physiol 57(11):2392-2402.

Liu J, Wang J, Yao X, Zhang Y, Li J, Wang X, Xu Z, Chen W (2015) Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). Breeding Sci 65(2):161-169.
Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z (2007) Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta 226(3):785-795.

Liu Z, Wang Z, Gu H, You J, Hu M, Zhang Y, Zhu Z, Wang Y, Liu S, Chen L, Liu X, Tian Y, Zhou S, Jiang L, Liu L, Wan J (2018) Identification and Phenotypic Characterization of ZEBRA LEAF16 Encoding a beta-Hydroxyacyl-ACP Dehydratase in Rice. Front Plant Sci 9:782.

Lu G, Casaretto JA, Ying S, Mahmood K, Liu F, Bi YM, Rothstein SJ (2017) Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Mol Biol 94(1):1-13.

Lv XG, Shi YF, Xu X, Wei YL, Wang HM, Zhang XB, Wu JL (2015) Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis. PLoS One 10(11):e0143249.

Lv Y, Shao G, Qiu J, Jiao G, Sheng Z, Xie L, Wu Y, Tang S, Wei X, Hu P (2017) White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. J Exp Bot 68(18):5147-5160.

Ma X, Zhang J, Han B, Tang J, Cui D, Han L (2019) FLA , which encodes a homolog of UBP, is required for chlorophyll accumulation and development of lemma and palea in rice. Plant Cell Rep 38(3):321-331.

Manosalva PM, Myron B, Leach JE (2011) Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. Plant J 68(5):777-787.

Mao D, Yu H, Liu T, Yang G, Xing Y (2011) Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet 122(2):373-383.

Mei J, Li F, Liu X, Hu G, Fu Y, Liu W (2017) Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. Plant Sci 256:39-45.

Miyoshi K, Ito Y, Serizawa A, Kurata N (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J 36(4):532-540.

Moon S, Giglione C, Lee D-Y, An S, Jeong D-H, Meinnel T, An G (2008) Rice peptide deformylase PDF1B is crucial for development of chloroplasts. Plant Cell Physiol 49(10):1536-1546.
Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M (2009) Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59(6):940-952.

Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17(1):233-240.

Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y, Hirochika H, Takano M, Ichikawa H (2009) Ectopic Overexpression of The Transcription Factor OsGLK1 Induces Chloroplast Development in Non-Green Rice Cells. Plant Cell Physiol 50(11):1933-1949.

Nakamura Y, Kato T, Yamashino T, Murakami M, Mizuno T (2007) Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Biosci Biotechnol Biochem 71(5):1183-1191.

OGAWA S, SUZUKI Y, YOSHIZAWA R, KANNO K, MAKINO A (2012) Effect of individual suppression of RBCS multigene family on Rubisco contents in rice leaves. Plant Cell Environ 35(3):546-553.

Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18(9):2356-2368.

Piao W, Kim E, Han S, Sakuraba Y, Paek N (2015) Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence. Plants 4(3):644-663.

Qiu Z, Chen D, He L, Zhang S, Yang Z, Zhang Y, Wang Z, Ren D, Qian Q, Guo L (2018a) The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice 11(1):39.

Qiu Z, Kang S, He L, Zhao J, Zhang S, Hu J, Zeng D, Zhang G, Dong G, Gao Z, Ren D, Chen G, Guo L, Qian Q, Zhu L (2018b) The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci 267:168-179.

Qiu Z, Zhu L, He L, Chen D, Zeng D, Chen G, Hu J, Zhang G, Ren D, Dong G, Gao Z, Shen L, Zhang Q, Guo L, Qian Q (2019) DNA damage and reactive oxygen species cause cell death in the rice local
lesions 1 mutant under high light and high temperature. New Phytol 222(1):349-365.

Ramamoorthy R, Vishal B, Ramachandran S, Kumar PP (2018) The OsPS1-F gene regulates growth and development in rice by modulating photosynthetic electron transport rate. Plant Cell Rep 37(2):377-385.

Rong H, Tang Y, Zhang H, Wu P, Chen Y, Li M, Wu G, Jiang H (2013) The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J Plant Physiol 170(15):1367-1373.

Sakuraba Y, Kim EY, Han SH, Piao W, An G, Todaka D, Yamaguchi-Shinozaki K, Paek NC (2017) Rice Phytochrome-Interacting Factor-Like1 (OsPIL1) is involved in the promotion of chlorophyll biosynthesis through feed-forward regulatory loops. J Exp Bot 68(15):4103-4114.

Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, An G, Paek NC (2015) Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle. Plant Cell Physiol 56(12):2325-2339.

Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC (2013) The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J 74(1):122-133.

Sekhar S, Panda D, Kumar J, Mohanty N, Biswal M, Baig MJ, Kumar A, Umakanta N, Samantaray S, Pradhan SK, Shaw BP, Swain P, Behera L (2019) Comparative transcriptome profiling of low light tolerant and sensitive rice varieties induced by low light stress at active tillering stage. Sci Rep 9(1):5753.

Sheng P, Tan J, Jin M, Wu F, Zhou K, Ma W, Heng Y, Wang J, Guo X, Zhang X, Cheng Z, Liu L, Wang C, Liu X, Wan J (2014) Albino midrib 1 , encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Rep 33(9):1581-1594.

Shi X, Chen S, Peng Y, Wang Y, Chen J, Hu Z, Wang B, Li A, Chao D, Li Y (2018) TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock. J Integr Plant Biol 60(2):112-129.

Song J, Wei X, Shao G, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S, Hu P (2014) The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol 84(3):301-314.
Su N, Hu M, Wu D, Wu F, Fei G, Lan Y, Chen X, Shu X, Zhang X, Guo X (2012) Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol 159(1):227-238.

Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C (2011) RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics 38(1):29-37.

Sun L, Yu Y, Hu W, Min Q, Kang H, Li Y, Hong Y, Wang X, Hong Y (2016) Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. Biochim Biophys Acta 1861(7):639-649.

Sun L, Yu Y, Hu W, Min Q, Kang H, Li Y, Hong Y, Wang X, Hong Y (2016) Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. Biochim Biophys Acta 1861(7):639-649.

Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X, Ren Y, Wang J, Guo X, Zhang X, Cheng Z, Jiang L, Liu X, Wang H, Wan J (2014) A Novel Chloroplast-Localized Pentatricopeptide Repeat Protein Involved in Splicing Affects Chloroplast Development and Abiotic Stress Response in Rice. Mol Plant 7(8):1329-1349.

Tang J, Zhang W, Wen K, Chen G, Sun J, Tian Y, Tang W, Yu J, An H, Wu T (2017) OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Mol Biol 95(4-5):345-357.

Tang Y, Li M, Chen Y, Wu P, Wu G, Jiang H (2011) Knockdown of Os PAO and Os RCCR1 cause different plant death phenotypes in rice. J Plant Physiol 168(16):1952-1959.

Toda T, Fuji S, Noguchi K, Kazama T, Toriyama K (2012) Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. Plant J 72(3):450-460.

Tominaga J, Mizutani H, Horikawa D, Nakahara Y, Takami T, Sakamoto W, Sakamoto A, Shimada H (2016) Rice CYO1, an ortholog of Arabidopsis thaliana cotyledon chloroplast biogenesis factor AtCYO1, is expressed in leaves and involved in photosynthetic performance. J Plant Physiol 207:78-83.

Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45(1):46-57.

Tsugane MH, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, Tsugane K, Maekawa M (2014) A mutable
albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. Plant Cell Physiol 55(1):3-15.

Wan C, Li C, Ma X, Wang Y, Sun C, Huang R, Zhong P, Gao Z, Chen D, Xu Z, Zhu J, Gao X, Wang P, Deng X (2015) GRY79 encoding a putative metallo-beta-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice. Plant Cell Rep 34(8):1353-1363.

Wang D, Liu H, Zhai G, Wang L, Shao J, Tao Y (2016a) OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development. J Genet Genomics 43(10):601-608.

Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z (2016b) WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Mol Biol 92(4-5):581-595.

Wang L, Xu J, Nian J, Shen N, Lai K, Hu J, Zeng D, Ge C, Fang Y, Zhu L, Qian Q, Zhang G (2016c) Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul 78(3):345-356.

Wang M, Zhang T, Peng H, Luo S, Tan J, Jiang K, Heng Y, Zhang X, Guo X, Zheng J (2018) Rice Premature Leaf Senescence 2, Encoding a Glycosyltransferase (GT), Is Involved in Leaf Senescence. Front Plant Sci 9:560.

Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, Sun X, Deng X (2010) Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol 153(3):994-1003.

Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, Dong YJ (2017a) The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. Plant Sci 259:1-11.

Wang X, Huang R, Quan R (2017b) Mutation in Mg-Protoporphyrin IX Monomethyl Ester Cyclase Decreases Photosynthesis Capacity in Rice. PLoS One 12(1):e0171118.

Wang X, Wang M, Ji Z, Chen Z, Liu W, Han Y, Yang C (2014) Functional Characterization of the Glycoside Hydrolase Encoding Gene OsBE1 during Chloroplast Development in Oryza sativa (In Chinese). Acta Agronomica Sinica 40(12):2090-2097.
Wang Y, Wang C, Zheng M, Lyu J, Xu Y, Li X, Niu M, Long W, Wang D, Wang H, Terzaghi W, Wang Y, Wan J (2016d) WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development. Plant Physiol 170(4):2110-2123.

Wang Y, Wang D, Gan T, Liu L, Long W, Wang Y, Niu M, Li X, Zheng M, Jiang L (2016e) CRL6, a member of the CHD protein family, is required for crown root development in rice. Plant Physiol Biochem 105:185-194.

Wang Y, Zhang J, Shi X, Peng Y, Li P, Lin D, Dong Y, Teng S (2016f) Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures. J Exp Bot 67(17):5187-5202.

Wang Y, Zhong P, Zhang X, Liu J, Zhang C, Yang X, Wang C, Liu C, Zhou H, Yang B, Sun C, Deng X, Wang P (2019) GRA78 encoding a putative S-sulfocysteine synthase is involved in chloroplast development at the early seedling stage of rice. Plant Sci 280:321-329.

Wang Z, Hong X, Hu K, Wang Y, Wang X, Du S, Li Y, Hu D, Cheng K, An B, Li Y (2017c) Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice. Front Plant Sci 8:1694.

Wang Z, Huang Y, Miao Z, Hu Z, Song X, Liu L (2013) Identification and characterization of BGL11(t), a novel gene regulating leaf-color mutation in rice. Genes Genom 35(4):491-499.

Wei X, Song X, Wei L, Tang S, Jing S, Hu P, Cao X (2017) An epiallele of rice AK1 affects photosynthetic capacity. J Integr Plant Biol 59(3):158-163.

Wu J, Zhang Z, Zhang Q, Han X, Gu X, Lu T (2015) The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Genet 6:226.

Wu L, Ren D, Hu S, Li G, Dong G, Jiang L, Hu X, Ye W, Cui Y, Zhu L (2016a) Down-Regulation of a Nicotinate Phosphoribosyltransferase Gene, OsNaPRT1, Leads to Withered Leaf Tips. Plant Physiol 171(2):1085-1098.

Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y (2016b) The Rice Pentatricopeptide Repeat Gene TCD10 is Needed for Chloroplast Development under Cold Stress. Rice 9(1):67.

Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J
(2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145(1):29-40.

Xie C, Zhang G, An L, Chen X, Fang R (2019) Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice. Planta 250(1):105-114.

Xu J, Yang J, Wu Z, Liu H, Huang F, Wu Y, Carrie C, Narsai R, Murcha M, Whelan J, Wu P (2013) Identification of a dual-targeted protein belonging to the mitochondrial carrier family that is required for early leaf development in rice. Plant Physiol 161(4):2036-2048.

Yamatani H, Kohzuma K, Nakano M, Takami T, Kato Y, Hayashi Y, Monden Y, Okumoto Y, Abe T, Kumamaru T (2018) Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. J Exp Bot 69(5):1027-1035.

Yang Q, He H, Li H, Tian H, Zhang J, Zhai L, Chen J, Wu H, Yi G, He ZH, Peng X (2011) NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and Rubisco formation in rice. PLoS One 6(5):e20015.

Yang SQ, Li WQ, Miao H, Gan PF, Qiao L, Chang YL, Shi CH, Chen KM (2016a) REL2, A Gene Encoding An Unknown Function Protein which Contains DUF630 and DUF632 Domains Controls Leaf Rolling in Rice. Rice 9(1):37.

Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H (2018) UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nature Plants 4(2):98-107.

Yang Y, Xu J, Huang L, Leng Y, Dai L, Rao Y, Chen L, Wang Y, Tu Z, Hu J, Ren D, Zhang G, Zhu L, Guo L, Qian Q, Zeng D (2016b) PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J Exp Bot 67(5):1297-1310.

Ye J, Gong Z, Chen C, Mi H, Chen G (2012) A Mutation of OSOTP 51 Leads to Impairment of Photosystem I Complex Assembly and Serious Photo-damage in Rice. J Integr Plant Biol 54(2):87-98.

Ye W, Hu S, Wu L, Ge C, Cui Y, Chen P, Wang X, Xu J, Ren D, Dong G (2016) White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Mol Breed 36(5):57.
Yokosho K, Yamaji N, Ueno D, Mitani N, Jian FM (2009) OsFRDL1 Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice. Plant Physiol 149(1):297-305.

Yoo J, Park J, Cho S, Yoo S, Li J, Zhang H, Kim K, Koh H, Paek N (2011) The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol 77(6):631-641.

Yoo S, Cho S, Sugimoto H, Li J, Kusumi K, Koh H, Iba K, Paek N (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150(1):388-401.

Yoshitake Y, Yokoo T, Saito H, Tsukiyama T, Quan X, Zikihara K, Katsura H, Tokutomi S, Aboshi T, Mori N, Inoue H, Nishida H, Kohchi T, Teraishi M, Okumoto Y, Tanisaka T (2015) The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Sci Rep 5:7709.

Yu Y, Zhou Z, Pu H, Wang B, Zhang Y, Yang B, Zhao T, Xu D (2019) OsSIG2A is required for chloroplast development in rice (Oryza sativa L.) at low temperature by regulating plastid genes expression. Funct Plant Biol 46(8):766-776.

Yue R, Wang X, Chen J, Ma X, Zhang H, Mao C, Wu P (2010) A rice stromal processing peptidase regulates chloroplast and root development. Plant Cell Physiol 51(3):475-485.

Zhang C, Shinwari KI, Luo L, Zheng L (2018a) OsYSL13 Is Involved in Iron Distribution in Rice. Int J Mol Sci 19(11):3537.

Zhang F, Luo X, Hu B, Wan Y, Xie J (2013a) YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Rice 6(1):7.

Zhang F, Zhang P, Zhang Y, Wang S, Qu L, Liu X, Luo J (2016a) Identification of a peroxisomal-targeted aldolase involved in chlorophyll biosynthesis and sugar metabolism in rice. Plant Sci 250:205-215.

Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009) SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development. Plant Cell 21(3):719-735.
Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006a) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62(3):325-337.

Zhang T, Feng P, Li Y, Yu P, Yu G, Sang X, Ling Y, Zeng X, Li Y, Huang J, Zhang T, Zhao F, Wang N, Zhang C, Yang Z, Wu R, He G (2018b) VIRESCENT-ALBINO LEAF 1 regulates leaf colour development and cell division in rice. J Exp Bot 69(20):4791-4804.

Zhang Y, Gong S, Li Q, Sang Y, Yang H (2006b) Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J 46(6):971-983.

Zhang Y, Liu Q, Zhang Y, Chen Y, Yu N, Cao Y, Zhan X, Cheng S, Cao L (2019) LMM24 Encodes Receptor-Like Cytoplasmic Kinase 109, Which Regulates Cell Death and Defense Responses in Rice. Int J Mol Sci 20(13):3243.

Zhang YY, Hao YY, Wang YH, Wang CM, Wang YL, Long WH, Wang D, Liu X, Jiang L, Wan JM (2017a) Lethal albinic seedling, encoding a threonyl-tRNA synthetase, is involved in development of plastid protein synthesis system in rice. Plant Cell Rep 36(7):1053-1064.

Zhang Z, Cui X, Wang Y, Wu J, Gu X, Lu T (2017b) The RNA Editing Factor WSP1 Is Essential for Chloroplast Development in Rice. Mol Plant 10(1):86-98.

Zhang Z, Tan J, Shi Z, Xie Q, Xing Y, Liu C, Chen Q, Zhu H, Wang J, Zhang J (2016b) Albino Leaf 1 that Encodes the Sole Octotricopeptide Repeat Protein Is Responsible for Chloroplast Development in Rice. Plant Physiol 171(2):1182-1191.

Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013b) Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One 8(2):e57472.

Zhao C, Liu C, Zhang Y, Cui Y, Hu H, Jahan N, Lv Y, Qian Q, Guo L (2019) A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. Rice 12(1):26.

Zheng H, Wang Z, Tian Y, Liu L, Lv F, Kong W, Bai W, Wang P, Wang C, Yu X, Liu X, Jiang L, Zhao Z, Wan J (2019) Rice albino 1, encoding a glycyrl-tRNA synthetase, is involved in chloroplast development and establishment of the plastidic ribosome system in rice. Plant Physiol Biochem 139:495-503.
Zheng K, Zhao J, Lin D, Chen J, Xu J, Zhou H, Teng S, Dong Y (2016) The Rice TCM5 Gene Encoding a Novel Deg Protease Protein is Essential for Chloroplast Development under High Temperatures. Rice 9(1):13.

Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 Is a Phloem-Localized Transporter of the Copper-Nicotianamine Complex That Is Responsible for Copper Distribution in Rice. Plant Cell 24(9):3767-3782.

Zhou K, Ren Y, Lv J, Wang Y, Liu F, Zhou F, Zhao S, Chen S, Peng C, Zhang X, Guo X, Cheng Z, Wang J, Wu F, Jiang L, Wan J (2013a) Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta 237(1):279-292.

Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J (2017) Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. Planta 245(1):45-60.

Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, Yuan F, Wu S, Wang Z, Yi C, Xu T, Ryom M, Gu M, Liang G (2013b) Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One 8(9):e75299.

Zhu X, Guo S, Wang Z, Du Q, Xing Y, Zhang T, Shen W, Sang X, Ling Y, He G (2016) Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). Plant Biol 16(1):134.

Tables
Table 1. Transcription factors identified among dark-response DEGs.
| TF_Family | Up-regulated | | | 3d | 6d | | | 3d | 6d |
|---|---|---|---|---|---|---|---|---|---|
| bHLH | 39 | 26 | | | | 8 | 10 | | |
| MYB | 21 | 16 | | | | 13 | 9 | | |
| C2H2 | 19 | 18 | | | | 8 | 5 | | |
| bZIP | 18 | 18 | | | | 9 | 9 | | |
| ERF | 14 | 23 | | | | 12 | 9 | | |
| NAC | 14 | 20 | | | | 13 | 11 | | |
| WRKY | 12 | 19 | | | | 19 | 10 | | |
| HD-ZIP | 10 | 5 | | | | 2 | 6 | | |
| GRAS | 9 | 5 | | | | 3 | 4 | | |
| MYB_related | 9 | 6 | | | | 9 | 6 | | |
| Dof | 8 | 3 | | | | 5 | 3 | | |
| G2-like | 8 | 5 | | | | 7 | 4 | | |
| HSF | 8 | 9 | | | | 3 | 1 | | |
| TCP | 8 | 1 | | | | | | | |
| B3 | 7 | 4 | | | | 2 | 3 | | |
| ZF-HD | 7 | 3 | | | | 1 | 2 | | |
| LBD | 6 | 9 | | | | 1 | 2 | | |
| SBP | 6 | 2 | | | | 1 | 2 | | |
| TALE | 6 | 2 | | | | 5 | 5 | | |
| CO-like | 5 | 4 | | | | 7 | 3 | | |

Transcription factors were identified with PlantTFDB v5.0 (planttfdb.cbi.pku.edu.cn). The list shows the number of TF genes identified as DEGs after 3 d and 6 d of dark treatment for 20 TF families. Data for other TF families are listed in additional file: Table S4 and S5.

Table 2. List of rice leaf color control genes.

| Gene Name | Reference | Gene Name | Reference | Gene Name | Reference |
|---|---|---|---|---|---|
| OsABC1-2 | (Gao et al., 2012) | OsHY2 | (Yoshitake et al., 2015) | OsSHMT1 | (Wu et al., 2015) |
| OsAK1 | (Wei et al., 2017) | OsHYR | (Ambavaram et al., 2011) | OsSIG2A | (Yu et al., 2019) |
| OsAL1 | (Zhang et al., 2016b) | OsLspE | (Chen et al., 2018) | OsSLL1 | (Zhang et al., 2009) |
| OsAL2 | (Liu et al., 2016a) | OsLspF | (Huang et al., 2017) | OsSPP | (Yue et al., 2010) |
| OsALD-Y | (Zhang et al., 2016a) | OsKS2 | (Ji et al., 2013) | OsSRP43 | (Lv et al., 2015) |
| OsALS3 | (Lin et al., 2015a) | OsLAS | (Zhang et al., 2017a) | OsSRP54 | (Zhang et al., 2013a) |
| OsAM1 | (Sheng et al., 2014) | OsLC7 | (Chen et al., 2016b) | OsSWL1 | (Tsugane et al., 2014) |
| OsAPX2 | (Zhang et al., 2013b) | OsLCC | (Fang et al., 2008) | OsTCD10 | (Wu et al., 2016b) |
| OsARVL4 | (Wang et al., 2016c) | OsLhca4 | (Yamatani et al., 2018) | OsTCD11 | (Wang et al., 2017a) |
| OsASL1 | (Gong et al., 2013) | OsLMM24 | (Zhang et al., 2019) | OsTCD5 | (Wang et al., 2016f) |
| OsASL2 | (Lin et al., 2015b) | OsLS1 | (Qiu et al., 2019) | OsTCM1 | (Lin et al., 2018b) |
| Gene   | References                      | Gene   | References                      | Gene   | References                      |
|--------|--------------------------------|--------|--------------------------------|--------|--------------------------------|
| OsBE1  | (Wang et al., 2014)            | OsLYL1 | (Zhou et al., 2013b)            | OsTCM5 | (Zheng et al., 2016)            |
| OsBGL11| (Wang et al., 2013)            | OsMADS26| (Lee et al., 2008)              | OsTDC3 | (Kanjanaphachoat et al., 2012)  |
| OsBT1-3| (Hu et al., 2017)              | OsMPR25| (Toda et al., 2012)             | OsTLP27| (Kang et al., 2015)             |
| OsCAO1 | (Lee et al., 2005)             | OsMTS1 | (Hong et al., 2018)             | OsTRX1 | (Chi et al., 2008)              |
| OsCDC48| (Huang et al., 2016)           | OsMYC2 | (Giri et al., 2017)             | OsTSC1 | (Shi et al., 2018)              |
| OsCGA1 | (Hudson et al., 2013)          | OsNAP  | (Liang et al., 2014)            | OsTSD1 | (Liu et al., 2015)              |
| OsChlD | (Zhang et al., 2006a)          | OsNaP  | (Lee et al., 2005)              | OsTSV3 | (Lin et al., 2018a)             |
| OsChlH | (Inagaki et al., 2015)         | OsNOA1 | (Yang et al., 2011)             | OsV1   | (Kusumi et al., 2011)           |
| OsChlI | (Zhang et al., 2006a)          | OsNOL  | (Kusaba et al., 2007)           | OsV2   | (Kusumi and Iba, 2014)          |
| OsClpP5| (Tsugane et al., 2006)         | OsNTRC | (Perez-Ruiz et al., 2006)       | OsV3   | (Yoo et al., 2009)              |
| OsCpn60a| (Jiang et al., 2014b)         | OsNYC1 | (Kusaba et al., 2007)           | OsV4   | (Gong et al., 2014)             |
| OsCpn60a1| (Kim et al., 2014)           | OsNYC3 | (Morita et al., 2009)           | OsV5A  | (Zhou et al., 2013a)            |
| OsCRD1 | (Wang et al., 2017b)           | OsONAC106| (Sakuraba et al., 2015)        | OsV5B  | (Liu et al., 2016b)             |
| OsCRL6 | (Wang et al., 2016e)           | OsOTP51| (Ye et al., 2012)               | OsVAL1 | (Zhang et al., 2018b)           |
| OsCYO1 | (Tominaga et al., 2016)        | OsPAPST1| (Xu et al., 2013)               | OsVYL  | (Dong et al., 2013)             |
| OsDG2  | (Jiang et al., 2014a)          | OsPDF1B| (Moon et al., 2008)             | OsW01S | (Li et al., 2018b)              |
| OsDOR  | (Kong et al., 2006)            | OsPGL12| (Chen et al., 2019)             | OsWGL2 | (Qiu et al., 2018a)             |
| OsDVR  | (Wang et al., 2010)            | OsPHR2 | (Guo et al., 2015)              | OsWLP1 | (Song et al., 2014)             |
| OsEF8  | (Feng et al., 2014)            | OsPhyB | (Piao et al., 2015)             | OsWLP2 | (Lv et al., 2017)               |
| OsEF8  | (Mao et al., 2011)             | OsPhyB | (Piao et al., 2015)             | OsWLP2 | (Lv et al., 2017)               |
| Oset1  |                               | OsPIL1 |                                  |        |                               |
| Oset2  | (Mao et al., 2011)             | OsPL   | (Akkerter et al., 2019)         | OsWP1  | (Wang et al., 2016d)            |
| OsFBP1 | (Koumoto et al., 2013)         | OsPLS2 | (Wang et al., 2018)             | OsWP3  | (Li et al., 2018a)              |
| OsFDC2 | (Li et al., 2015)              | OsPORA | (Sakuraba et al., 2013)         | OsWRKY53| (Hu et al., 2015)              |
| OsFLA  | (Ma et al., 2019)              | OsPOR8 | (Sakuraba et al., 2013)         | OsWSL  | (Tan et al., 2014)              |
| OsFLN2 | (Qiu et al., 2018b)            | OsPPR1 | (Gothandam et al., 2005)        | OsWSL12| (Ye et al., 2016)               |
| OsFRDL1| (Yokosho et al., 2009)         | OsPPR6 | (Tang et al., 2017)             | OsWSL3 | (Wang et al., 2016b)            |
| OsGATA12| (Lu et al., 2017)             | OsPS1-F| (Ramamoorthy et al., 2018)     | OsWSP1 | (Zhang et al., 2017b)           |
| OsGF14e| (Manosalva et al., 2011)      | OsPSTC2| (Wang et al., 2016a)            | OsYGL1 | (Wu et al., 2007)               |
| OsGGR2 | (Kimura et al., 2018)          | OsRAI  | (Zheng et al., 2019)            | OsYGL18| (Wang et al., 2017c)            |
| OsGIC  | (Kamau et al., 2015)           | OsRCCR1| (Tang et al., 2011)             | OsYGL8 | (Zhu et al., 2016)              |
| OsGLK1 | (Nakamura et al., 2009)        | OsREL2 | (Yang et al., 2016a)            | OsYLD1 | (Deng et al., 2017)             |
| OsGluRS| (Liu et al., 2007)             | OsRLIN1| (Sun et al., 2011)              | OsYS83 | (Chen et al., 2016a)            |
| OsGRA(t)| (Chen et al., 2007)           | OsRLS1 | (Jiao et al., 2012)             | OsYSA  | (Su et al., 2012)               |
| OsGRA78| (Wang et al., 2019)            | OsRNR51| (Chen et al., 2015)             | OsYSL3 | (Zhang et al., 2018a)           |
| OsGGRY79| (Wan et al., 2015)           | 0      | (Yoo et al., 2011)              | OsYS16 | (Zheng et al., 2012)            |
| OsHAD  | (Liu et al., 2018)             | OsS6K  | (Sun et al., 2016)              | OsYS11 | (Zhou et al., 2017)             |
| OsHAP3A| (Miyoshi et al., 2003)         | OsSGL1 | (Hitoshi et al., 2012)          | OsZ2   | (Han et al., 2012)              |
| OsHO1  | (Chen et al., 2013)            | OsSGR  | (Jiang et al., 2007)            | OsZ3   | (Kim et al., 2018)              |
| OsHO2  | (Li et al., 2014)              | OsSGRL | (Rong et al., 2013)             | OsZN   | (Li et al., 2010)               |

Detailed information is listed in additional file: Table S6.

Figures
Figure 1

Phenotype of rice seedlings under constant darkness treatment. Rice seedlings grown for 5 days under normal light condition were treated with constant dark. Photographs and measurements of plant height, as well as chlorophyll and carotenoid content, were collected at 0, 3 and 6 d. (A) Photographs of rice seedlings cultivated at constant dark for 0, 3d and
6d. (B) Plant height of rice seedling under dark treatment. (C) Chlorophyll a content in rice leaves under dark treatment. (D) Chlorophyll b content in rice leaves under dark treatment. (E) Carotenoids content in rice leaves under dark treatment. CK: Control; CD: Constant dark.

3d: Constant dark treatment for 3 days. 6d: Constant dark treatment for 6 days. Results were deemed significant at P<0.01. Column heights and bars represent the mean and standard deviation of triplicates.
Figure 2
Comparative analysis of differentially expressed genes (DEGs) in rice seedlings in response to dark treatment. (A) Number of up-regulated and down-regulated DEGs under constant dark for 3 and 6 days. (B) Venn diagram for DEGs under constant dark for 3 and 6 days.
Figure 3

DEG-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of dark treatment. (A) CD_3d vs CK. (B) CD_6d vs CK. CD_3d and CD_6d refer to 3 and 6 days after constant dark treatment.
Rich factors for DEG-enriched metabolic pathways identified by KEGG analysis of dark-treated rice. Twenty pathways with highest rich factor value were listed. More pathways were listed in additional file: Table S3.
The expression profile of LCC genes that are dark-response DEGs. 3d and 6d refer to 3 and 6 days under constant dark treatment, respectively. Red and green colors depict up- and down-regulation, respectively. The scale shows log2 (fold change) values.
Mutant rich factors (mRF) for metabolic pathways associated with rice leaf color control genes. #LCC: number of leaf color control genes in a specific metabolic pathway; #GMP: Total number of genes in a specific metabolic pathway. mRF: #LCC/#GMP. The 20 metabolic pathways with the highest mRF values are listed here. Additional pathways are listed in additional file: Table S7.
Figure 7

Integrated analysis of dark response and leaf color control. Gene names in red (italic) are LCC genes that were also dark-response DEGs. Dosa# indicated the number of pathways in KEGG database. The percentages at the bottom represent the number of LCC genes overlapped with dark-response DEGs normalized to the total number of dark-response DEGs. Ten pathways are listed here, and detailed information for additional pathways is listed in additional file: Table S8.
LCC genes that are also dark-response DEGs concentrate to the chlorophyll biosynthesis of the PCM. Enzyme EC number colored in red or green indicate induced or suppressed genes, respectively. Enzyme EC number in yellow indicate genes with opposing transcriptional regulation in 3 and 6 d samples.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
Supplementary Table-L2.xlsx
