INSECTICIDAL, ANTIBACTERIAL, AND ANTIRADICAL ACTIVITY OF NICOTIANA PLUMBAGINIFOLIA VIV. (SOLANACEAE)

PRASHITH KEKUDA TR1, RAGHAVENDRA HL*2, RAJESH MR1, AVINASH HC1

1Department of Microbiology, S.R.N.M College of Applied Sciences, N.E.S Campus, Shivamogga, Karnataka, India. 2Department of Biochemistry, School of Medicine, Wollega University, Nekemte, Ethiopia. Email: raghu.biogem@gmail.com

Received: 11 June 2017, Revised and Accepted: 21 July 2017

ABSTRACT

Objectives: Nicotiana plumbaginifoliaViv. belongs to the family Solanaceae. The present study was carried out to determine insecticidal, antibacterial, and antiradical activity of aerial parts of N. plumbaginifolia.

Methods: Extraction was carried out by maceration process using methanol. Insecticidal activity was assessed, in terms of larvicidal effect, against II and IV instar larvae of Aedes aegypti. Antibacterial activity was evaluated against a panel of 7 bacteria by agar well diffusion assay. Antiradical activity was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis 3-ethylbenzothiazoline 6-sulfonate (ABTS) free radical scavenging assays.

Results: The extract was found to cause dose-dependent mortality of larvae of A. aegypti. The lethal concentration 50 value of extract for II and IV instar larvae was found to be 0.41 and 0.99 mg/ml, respectively. Extract was effective in inhibiting all bacteria. Gram-positive bacteria displayed higher sensitivity than Gram-negative bacteria. Bacillus cereus and Escherichia coli were susceptible to highest and least extent, respectively. Extract scavenged both DPPH radicals and ABTS radicals dose dependently. Extract scavenged ABTS radicals more efficiently (inhibitory concentration [IC50] value 13.51 µg/ml) when compared to DPPH radicals [IC50 value 17.43 µg/ml].

Conclusions: The plant N. plumbaginifolia appears to be a promising resource for developing agents with insecticidal, antibacterial, and antiradical activity. The observed bioactivities could be attributed to the presence of phytochemicals which are to be isolated, characterized, and subjected for bioactivity determinations. The plant can be used to prevent arboviral diseases, infectious diseases, and oxidative damage.

Keywords: Nicotiana plumbaginifolia, Maceration, Larvicidal, Aedes aegypti, Agar well diffusion, Free radical, 1,1-Diphenyl-2-picrylhydrazyl, 2,2-Azinobis 3-ethylbenzothiazoline 6-sulfonate.

INTRODUCTION

Mosquito-borne diseases are prevalent in many countries across the world and are known to affect millions of people every year. Diseases such as malaria, dengue, yellow fever, and Japanese encephalitis are caused by pathogenic bacteria (due to suspected negative effects of synthetic antioxidants. Botanicals appear to have normal health. Interest in natural antioxidants is triggered by the discovery of microorganisms that cause diseases in humans and result in considerable morbidity and mortality. Discovery of antibiotics is considered as one of the most important milestones in the field of medicine. Therapy using antibiotics has saved plenty of people from death since discovery. However, the use of antibiotics suffers from several drawbacks among which the development of resistance in pathogenic bacteria seems to be most important one. Besides, high cost and possible side effects of antibiotics limit their use. This triggered much interest in scientific community to search alternative strategies for disease therapy. Natural products offer a promising alternative for treatment of infectious diseases. Plants, plant-based formulations, and purified compounds from plants have shown inhibitory activity against a variety of pathogenic bacteria including drug-resistant strains [9-17].

Molecular oxygen is very essential to generate energy and is relatively harmless. However, during aerobic metabolism and exposure to conditions such as drugs, radiations, and pollution, some reactive species are produced from oxygen. These species are termed as reactive oxygen species and include free radicals such as superoxide radicals and hydroxyl radicals and non-radical species such as hydrogen peroxide. Free radicals are chemical species having an unpaired electron in an atomic orbital and are known to be unstable and highly reactive. They are highly reactive and are known to damage proteins, lipids, and nucleic acids. Free radicals are known to cause oxidative damage which is implicated in cancer, aging, cardiovascular diseases, and neurodegenerative disorders. Cells have an antioxidant defense system which includes enzymatic and non-enzymatic systems. A balance should always exist between free radical generation and antioxidant defense to have normal health. Interest in natural antioxidants is triggered due to suspected negative effects of synthetic antioxidants. Botanicals are proven to be promising resources of agents with antioxidant potential [12,16,18-21].

Nicotiana plumbaginifolia Viv. (Solanaceae) is an erect, shallow-rooted, pubescent, annual, or perennial herb and is 1-3 m tall. It is commonly called Tex-Mex tobacco and wild tobacco. It grows in damp places near water. It is originated in West Indies and Mexico [22-25]. The plant
is used traditionally as an insecticide and to treat various ailments such as toothache, nausea, wounds, pain, itching, syphilis, and piles [8,23,26-30]. \(N.\) \(p\)lumbaginif\(o\)lia is shown to exhibit bioactivities such as antioxidant [24], antimicrobial [24,31], insecticidal [8], analgesic [23], neuropharmacological [23], and hepatoprotective [32] activities. The present study was carried out to investigate insecticidal, antibacterial, and free radical scavenging activity of aerial parts of \(N.\) \(p\)lumbaginif\(o\)lia.

METHODS

Collection and extraction of \(N.\) \(p\)lumbaginif\(o\)lia

The plant was collected near Mutturu, Shivamogga, Karnataka, during January 2017. The plant was identified by Prof. D. Rudrappa, Department of Botany, S.R.N.M.N College of Applied Sciences. The plant material (aerial parts) was washed to remove extraneous matter, dried under shade and powdered. Extraction of plant material was carried out by maceration process using methanol. In a stoppered container, the powdered material (10 g) was left in methanol (100 ml) for 48 hrs with occasional stirrings. The content was filtered and the filtrate was evaporated at room temperature, and crude extract was obtained [17,33].

Insecticidal activity of \(N.\) \(p\)lumbaginif\(o\)lia

We determined insecticidal activity of extract (in terms of larvicidal potential) against II and IV instar larvae of \(Aedes\) \(a\)egypti. In brief, 20 larvae (II and IV instar) were transferred into flasks containing 50 ml of water with different concentrations of extract 0.0-2.0 mg/ml. The flasks were incubated for 24 hrs. Later, the number of dead larvae in each of the flasks was counted, and the mortality rate was determined using the following formula:

\[
\text{Mortality of larvae (%)} = \left(\frac{\text{Number of dead larvae/total number of larvae}}{100} \right) \times 100.
\]

Lethal concentration 50 (LC\(_{50}\)) value was calculated using linear regression analysis. LC\(_{50}\) value indicates the concentration of extract which is required to cause 50% mortality [4,5].

Antibacterial activity of \(N.\) \(p\)lumbaginif\(o\)lia

Agar well diffusion method was carried out to investigate antibacterial potential of extract against four Gram-positive bacteria, namely, \(Staphylococcus\) \(a\)ureus NCIM 5345, \(Staphylococcus\) \(e\)pidemid\(i\)s NCIM 2493, \(Bacillus\) sub\(b\)lis NCIM 2063, and \(Bacillus\) \(c\)ereus NCIM 2016 and three Gram-negative bacteria, namely, \(Escherichia\) \(c\)oli NCIM 2065, \(Pseudomonas\) \(a\)erugin\(o\)sa NCIM 2200, and \(Salmonella\) \(t\)yphim\(u\)rium NCIM 2501. 24 hrs old nutrient broth (HiMedia, Mumbai) cultures of test bacteria were swab inoculated on sterile nutrient agar (HiMedia, Mumbai) plates. The plates were incubated for 24 hrs at 37°C, and the zones of inhibition were measured using a ruler [17,33].

Free radical scavenging activity of \(N.\) \(p\)lumbaginif\(o\)lia

1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity

Various concentrations of extract and ascorbic acid (6.25-200 µg/ml) were prepared in 1 ml of methanol in clean and dry tubes. To each of the tube, 3 ml of DPPH radical solution was added and the tubes were incubated in the dark for 30 minutes. The absorbance was measured spectrophotometrically at 520 nm. Methanol replacing extract served as control. Radical scavenging potential of extract was determined using the following formula:

\[
\text{DPPH radical scavenging potential (%) } = \left(\frac{\text{Ac-Ac/Ac}}{100} \right), \quad \text{where Ac and At denote the absorbance of DPPH control and absorbance of DPPH in the presence of extract/ascorbic acid, respectively. The inhibitory concentration (IC\(_{50}\)) value was calculated using linear regression analysis, and the value obtained indicates the concentration of extract/ascorbic acid required to scavenge 50% of free radicals [17,33].}

2,2-azinobis 3-ethylbenzothiazoline 6-sulfonate (ABTS) radical scavenging activity

ABTS radicals were generated by mixing ABTS stock (7 mM) with potassium persulfate (2.45 mM) and leaving the reaction mixture to stand for 16 hrs in dark. 3 ml of ABTS radical solution was transferred into each of the tubes containing various concentrations (6.25-200 µg/ml) of extract and ascorbic acid. The tubes were incubated for 30 minutes in the dark, and the absorbance of content of each tube was measured spectrophotometrically at 730 nm. Methanol replacing extract served as control. ABTS radical scavenging potential of extract was determined using the formula:

\[
\text{Scavenging potential (%) } = \left(\frac{\text{Ac-At/Ac}}{100} \right), \quad \text{where Ac and At denote the absorbance of ABTS control and absorbance of ABTS in the presence of extract/ascorbic acid, respectively. The IC\(_{50}\) value was calculated using linear regression analysis, and the value obtained indicates the concentration of extract/ascorbic acid required to scavenge 50% of free radicals [17,33].}

RESULTS AND DISCUSSION

Insecticidal activity of \(N.\) \(p\)lumbaginif\(o\)lia

Prevention of mosquito-borne diseases involves various strategies. One of the important methods of prevention is the killing of mosquito larvae in stagnant water. In the present study, we evaluated insecticidal potential of \(N.\) \(p\)lumbaginif\(o\)lia against larvae of \(A.\) \(a\)egypti and the result is shown in Fig. 1. The extract showed dose-dependent mortality of larvae. The extract caused >50% of mortality of II and IV instar larvae at concentration 0.5 mg/ml and higher and 1 mg/ml and higher, respectively. Extract was found to be more effective against II instar larvae when compared to IV instar larvae. The LC\(_{50}\) value of extract for II and IV instar larvae was found to be 0.41 mg/ml and 0.99 mg/ml, respectively. In an earlier study, Singh et al. [8] evaluated larvicidal potential of leaf extract of \(N.\) \(p\)lumbaginif\(o\)lia against \(A.\) \(a\)egypti and found dose-dependent larvicidal activity. It is clear from the result of present study that extract is more lethal to initial stages of larval development. Similar result was observed in the study of Singh et al. [8] in which the leaf extract of \(N.\) \(p\)lumbaginif\(o\)lia exhibited marked larvicidal effect against initial stages of larval development.

Antibacterial activity of \(N.\) \(p\)lumbaginif\(o\)lia

Higher plants are considered to be promising resources of agents with activity against pathogenic microbes including drug-resistant bacteria [17,34,35]. In the present study, we evaluated antibacterial potential of \(N.\) \(p\)lumbaginif\(o\)lia by agar well diffusion assay which is one of the most widely used in vitro assays to determine antibacterial potential of plant extracts. In this assay, the presence of an inhibition zone around the well is taken as positive result while the absence of inhibition zone is negative for antibacterial activity [17,36-38]. The extract of \(N.\) \(p\)lumbaginif\(o\)lia was found to exhibit inhibitory activity against all test bacteria with zone of inhibition ranging from 1.0 cm to 1.8 cm. The extract was more effective against Gram-positive bacteria when compared to Gram-negative bacteria. \(B.\) \(c\)ereus and \(E.\) \(c\)oli were inhibited by extract to highest and least extent, respectively. \(S.\) \(a\)ureus and \(S.\) \(e\)pidermid\(i\)s were inhibited to similar extent (zone of inhibition 1.4 cm). Inhibitory activity of extract against \(P.\) \(a\)erugin\(o\)sa and \(S.\) \(t\)yphim\(u\)rium was similar (zone of inhibition 1.2 cm). Reference antibiotic caused marked antibacterial activity when compared to extract while DMSO did not show inhibition of test bacteria (Table 1). In an earlier study, Singh et al. [22] showed antibacterial potential of aqueous extract obtained from leaves of \(N.\) \(p\)lumbaginif\(o\)lia against Gram-positive and Gram-negative bacteria. Recently, Ajaib et al. [24] observed potent antibacterial activity in leaf, stem, root, and fruit of \(N.\) \(p\)lumbaginif\(o\)lia.

DPPH radical scavenging activity of \(N.\) \(p\)lumbaginif\(o\)lia

The assay involving scavenging of DPPH radicals was developed by Blois. It is one of the most widely used in vitro assays for determining free radical scavenging nature of various kinds of samples including.
plant extracts. The assay is simple and cheaper and uses stable, organic, nitrogen-centered free radical which need not be generated as in case of ABTS assay. Substances having the potential of donating hydrogen will convert the purple-colored DPPH radical into a yellow-colored non-radical form DPPHH which can be monitored spectrophotometrically [16,17,21,33,39-42]. In the present study, we evaluated radical scavenging potential of extract of *N. plumbaginifolia* by DPPH assay, and the result is shown in Fig. 2. The extract exhibited concentration-dependent scavenging of DPPH radicals with an IC$_{50}$ value of 17.43 µg/ml. A scavenging activity of >50% was observed at extract concentration of 25 µg/ml and higher. When compared to extract, ascorbic acid scavenged DPPH radicals more efficiently with an IC$_{50}$ value of 3.06 µg/ml. The study of Ajaib *et al.* [24] showed concentration-dependent scavenging of DPPH radicals by different parts of *N. plumbaginifolia*. In the present study, the radical scavenging potential by *N. plumbaginifolia* was lesser than that of ascorbic acid; however, it is clear that the extract possesses hydrogen-donating property, and hence, it can act as a free radical scavenger.

ABTS radical scavenging activity of *N. plumbaginifolia*

The assay involving scavenging of ABTS radicals is another popular *in vitro* antiradical assays. Unlike DPPH assay, it requires the generation of ABTS radicals which can be done by reacting ABTS stock with an oxidizing agent such as potassium permanganate or potassium persulfate. Substances with the potential to donate electron will convert blue-green colored ABTS radical solution into a colorless neutral form. The ABTS scavenging activity is widely used to evaluate radical scavenging potential of various plants [17,33,41-47]. In the present study, we determined the antiradical activity of *N. plumbaginifolia* by ABTS assay, and the result is shown in Fig. 3. The extract was found to scavenge ABTS radicals in a dose-dependent manner with an IC$_{50}$ value of 13.51 µg/ml. The scavenging potential of ascorbic acid (IC$_{50}$ value 2.48 µg/ml) was higher than that of extract. Although the extract of *N. plumbaginifolia* exhibited lower scavenging potential when compared to ascorbic acid, it is clear from the result of this study that the extract possesses electron-donating potential, and hence, it can act as a free radical scavenger.

CONCLUSIONS

Plants have been widely used as a remedy against various ailments/disorders. In the present study, we observed antibacterial, insecticidal, and antiradical potential of *N. plumbaginifolia*. In a suitable form, the plant can be exploited for treating infectious diseases, oxidative damage caused by free radicals and for controlling insect vectors which transmit viral infections such as dengue and chickungunya. The observed bioactivities could be related to the phytochemicals present in the plant which are to be isolated, characterized, and tested for their potential as antibacterial, free radical scavenging, and insecticidal agents.

ACKNOWLEDGMENTS

Authors would like to thank Prof. D. Rudrappa for helping in collection and identification of plant material.

REFERENCES

1. Rose RI. Pesticides and public health: Integrated methods of mosquito management. Emerg Infect Dis 2001;7(1):17-23.
2. Shaalan EA, Canyon D, Yones MW, Abdel-Wahab H, Mansour AH. A review of botanical phytochemicals with mosquitocidal potential.
3. Poopathi S, Tyagi BK. The challenge of mosquito control strategies: From primordial to molecular approaches. Biotechnol Mol Biol Rev 2006;12(1):51-65.

4. Vinayaka KS, Swarnalatha SP, Preethi HR, Surabhi KS, Kekuda PT, Sudharshan SJ. Studies on in vitro antioxidant, antibacterial and insecticidal activity of methanolic extract of *Abrus pulchellus* Wall (Fabaceae). Afr J Basic Appl Sci 2009;5(5):110-6.

5. Kaushik R, Saini P. Screening of some semi-arid region plants for larvicidal activity against *Aedes aegypti* mosquitoes. J Vector Borne Dis 2009;46(3):244-6.

6. Samidurai K, Mathew N. Bioassay guided fractionation and GC-MS analysis of *Euphorbia lactea* extract. Int J Pharm Pharm Sci 2014;6(1):510-8.

7. Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res 2012;135(5):581-98.

8. Singh A, Bhattacharya K, Chandra G. Efficacy of *Nicotiana plumbaginifolia* (Solanaceae) leaf extracts as larvicide against malarial vector *Anopheles stephensi* Liston 1901. Int J Pharm Bio Sci 2015;6(1):860-1.

9. Mallikarjuna PB, Rajanna LN, Seetharam YN, Sharanabasappa GK. Phytochemical studies of *Strychnos potatorum* L.F.- A medicinal plant. J Chem Pharm Bio 2006;4(4):510-8.

10. Doughari JH, Humaidi IS, Bennade S, Ndakidemi PA. Phytochemicals as chemotherapeutic agents and antioxidants: Possible solution to the control of antibiotic resistant verocytotoxin producing bacteria. J Med Plants Res 2009;3(11):839-48.

11. Pandey AK, Kumar S. Perspective on plant products as antimicrobial agents: A review. Pharmacologia 2014;3(7):469-80.

12. Khan MS, Sayeed SH, Uddin MH, Akter L, Ullah MA, Jahan S, et al. Screening and evaluation of antioxidant, antimicrobial, cytotoxic, thrombolytic and membrane stabilizing properties of the methanolic extract and semi-solvent partitioning effect of *Vitis negundo* bark. Asian Pac J Trop Dis 2013;3(5):393-400.

13. Ahmad M, Wajid M. Plants as potential source of antimicrobial agents. J Pharm Altern Med 2013;2(3):18-25.

14. Srivastava J, Chandra H, Nautiyal AR, Kalra SJ. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAMS) as an alternative drug line to control infections. J Biotech 2014;4(5):451-60.

15. Hossain MA, Latif MA, Sarker BC, Jahan N. Importance of some Bangladesh ethnomedical plants: A review. Eur J Med Plants 2016;16(4):1-14.

16. Driis D, Kaoubaa M, Mansour RB, Kalfel F, Abdelmalek BE, Chaabouni SE. Antioxidant, antimutagenic and cytotoxic properties of essential oil from *Corchorus olitorius* L. Flowers and leaf. Free Radic Antioxid 2016;6(1):34-43.

17. Raghavendra HL, Kekuda PT, Akash S, Ranjitha MC, Ashwini HS. Phytochemical analysis, antimicrobial and antioxidant activities of different parts of *Pleocactus sessilis* (Nees) Bremek (*Acanthaceae*). Int J Green Pharm 2017;11(2):98-107.

18. Lobo V, Pathil A, Phatak A, Chandra G. In vitro antioxidant, antimicrobial and functional foods: Impact on human health. Pharmacogn Rev 2010;4(8):118-26.

19. Maruthappan V, Shree SK. A report on the antioxidant activity of the powder of the entire plant of *Phyllanthus reticulatus* poir. Int J Green Pharm 2010;4(4):265-9.

20. Pavithra GM, Siddiqua S, Naik AS, Kekuda PT, Vinayaka KS. Antioxidant and antimicrobial activity of flowers of *Wendlandia thyrsoides*, *Olea dioica* and *Lactea* of cabbage (*Brassica oleracea* Linn.). Int J Pharm Bio Sci 2015;6(2):176-81.

21. Krishna MS, Nair JA. Antibacterial, cytotoxic and antioxidant potential of different extracts from leaf, bark and wood of *Tectona grandis*. J Pharm Sci Drug Res 2010;2(2):155-8.

22. Chan C, Yu Y, Zhou H, Liu W, Tian S, Cao S. Antioxidant activity and free radical-scavenging capacity of *Gymura divaricata* leaf extracts at different temperatures. Pharmacogn Mag 2011;7(25):40-5.

23. Shalaby EA, Shanab SM. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of *Spirulina platensis*. Indian J Geo Mar Sci 2013;42(5):556-64.

24. Zhen J, Villani TS, Guo Y, Qi Y, Chin K, Pan MH, et al. Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of *Hibiscus sabdariffa* leaves. Food Chem 2016;190:673-80.

25. Fidrianny I, Rahmiyani I, Wirasutiana KR. Antioxidant capacities from guava fruit extracts. J Food Compost Anal 2010;26(2):211-9.

26. Rothe SP. Exotic medicinal plants from West Vidarbha region of Maharashtra - III. J Ecolbiotechnol 2011;3(9):11-3.

27. Sharma J, Gaur RD, Carola S, Painudi RM, Siddiqui TO. Traditional herbal medicines used for the treatment of skin disorders by the Gujjar tribe of Sub-Himalayan tract, Uttarakhand. Indian J Tradit Knowl 2013;12(4):736-46.

28. Singh TT, Sharma HM, Devi AR, Sharma HR. Plants used in the treatment of piles by the scheduled caste community of Andro village in Imphal East district, Manipur (India). J Plant Sci 2014;2(3):113-9.

29. Sharma DL, Devi SL, Singh BL, Singh CT. Medicinal plants found in Imphal Valley used in treatments of various ailments. Int J Res 2015;4(12):282-6.

30. Ansar A, Naresh I, Simon F. Effect of different plant extracts as antifungal agents against *Alternaria alternata* causing leaf blight disease of *Brassica oleracea*. Int J Pharm Bio Sci 2015;6(2):71-82.

31. Shah AS, Khan RA, Ahmed M, Muhammad N. Hepatoprotective role of *Nicotiana plumbaginifolia* Linn. Against carbon tetrachloride-induced injuries. Toxicol Ind Health 2016;32(2):292-8.

32. Kekuda PT, Siddiqua A, Pushpavathi D, Vinayaka KS, Raghavendra HL. Radical scavenging, cytotoxic and antimicrobial activity of *Flacourtia indica* (Burm. F.) Merr. Med Health Sci Res J 2017;1(1):76-82.

33. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12(4):564-82.

34. Fankam AG, Kuiate JR, Kuete V. Antimicrobial and antioxidant resistance modifying activity of the extracts from *Allanblackia gabonensis*, *Combretum molle* and *Gladiolus quitunianus* against gram-negative bacteria including multi-drug resistant phenotypes. BMC Complement Altern Med 2015;15:206.

35. Rios JL, Recio MC, Villar A. Screening methods for natural products with antimicrobial activity: A review of the literature. J Ethnopharmacol 1988;23(2-3):127-49.

36. Das K, Tiwari RK, Shrivastava DK. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J Med Plants Res 2010;4(2):104-11.

37. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6(2):71-9.

38. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199-200.

39. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songkranakarin J Sci Technol 2004;26(2):211-9.

40. Thaipong K, Boonprakob U, Crosby K, Cinseros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compost Anal 2006;19:669-75.

41. Krishna MS, Nair JA. Antibacterial, cytotoxic and antioxidant potential of different extracts from leaf, bark and wood of *Teotona grandis*. J Pharm Sci Drug Res 2010;2(2):155-8.

42. Indu H, Seenivasan R. *In vitro* antioxidant activity of selected seaweeds from southeast coast of India. Int J Pharm Pharm Sci 2015;3(2):88-94.