Supplementary Materials for

Synergistic binding sites in a hybrid ultramicroporous material for one-step ethylene purification from ternary C$_2$ hydrocarbon mixtures

Peixin Zhang et al.

Corresponding author: Jun Wang, jwang7@ncu.edu.cn

Sci. Adv. 8, eabn9231 (2022)
DOI: 10.1126/sciadv.abn9231

This PDF file includes:

Figs. S1 to S32
Tables S1 to S7
References
Table S1. EXAFS fitting parameters at the Cu K-edge for CuTiF₆-TPPY samples
($\xi^2=0.75, 0.86$)

Sample	Shell	N^a	$R(\text{Å})^b$	$\sigma^2 \times 10^3 (\text{Å}^2)$	$\Delta E_0 (\text{eV})^d$	R factor
Cu foil	Cu-Cu	12*	2.54±0.01	8.9±0.3	4.5±0.5	0.002
	Cu-N	4.2±1.1	1.95±0.02	4.4±2.4	8.3±2.9	
	Cu-C	4.3±1.4	2.94±0.03	7.2±5.2	7.0±4.4	0.009
CuPc	Cu-F	3.8±1.4	1.91±0.01	2.8±0.8	2.6±1.6	0.012
CuF₂	Cu-F	3.8±1.4	1.91±0.01	2.8±0.8	2.6±1.6	0.012
Cu1	Cu-N	5.8±0.8	1.97±0.01	4.5±1.3	-4.0±6.6	0.003
Cu2	Cu-N	4*	1.92±0.04	18.1±5.0	-5.6±10.5	0.017
	Cu-F	2*	1.92±0.04	2.2±1.0	-6.5±12.5	

aN: coordination numbers; bR: bond distance; $^c\sigma^2$: Debye-Waller factors; $^d\Delta E_0$: the inner potential correction. R factor: goodness of fit.

In EXAFS fitting, the adjacent coordination elements in the periodic table are difficult to be precisely distinguished, as well as the Cu-N and Cu-F paths. For this reason, Cu is firstly only considered as one M-N shell, and the obtained results showed that the coordination number is close to 6. On this basis, Cu-F was introduced to limit the coordination number, the result of Cu2 and expected Cu-N₄F₂ was fitted. As shown in Table S1, the fitting parameters for the Cu-N₄F₂ coordination environment are reasonable.
Fig. S1. The wavelet transform (WT) plots. The WT plots for (a) Cu foil, (b) CuPc, (c) CuF₂, and (d) CuTiF₆-TPPY.
Structure simulation

The structure model of CuTiF$_6$-TPPY was generated, based on the coordination mode by XAS data, using the Materials Studio suite of programs. The unit cell structures (e.g., cell parameters and atomic positions) of CuTiF$_6$-TPPY were calculated using the Forcite and Castep module. The Rietveld refinement, a software package for crystal determination from the XRD pattern, was performed to optimize the lattice parameters iteratively until the wRp value converges. The pseudo-Voigt profile function was used for whole profile fitting and Berrar–Baldinozzi function was used for asymmetry correction during the refinement processes. Line broadening from crystallite size and lattice strain were both considered.

![PXRD Rietveld refinement](image)

Fig. S2. PXRD Rietveld refinement. Rietveld refinement plot for CuTiF$_6$-TPPY.
Fig. S3. PXRD patterns. PXRD patterns of simulated, as-synthesized, and activated CuTiF$_6$-TPPY.

Fig. S4. PXRD patterns after treatments. PXRD patterns of CuTiF$_6$-TPPY after treatment in different solvents for one week.
Fig. S5. Sample synthesis with different Cu salts and their C$_2$H$_2$ adsorption isotherms. (a) XRD patterns and (b) C$_2$H$_2$ isotherms at 298 K of CuTiF$_6$-TPPY using different Cu salts.

Fig. S6. XPS wide survey. XPS wide spectra of CuTiF$_6$-TPPY.
Table S2. Lattice parameters of the modeled structure of CuTiF$_6$TPPY.

Unit cell parameters	CuTiF$_6$TPPY
Formula	C$_{40}$H$_{26}$N$_8$F$_6$TiCu
Formula weight	843.42
Crystal system	Orthorhombic
Space group	P222
a (Å)	13.85785
b (Å)	13.78813
c (Å)	8.23169
α (°)	90
β (°)	90
γ (°)	90
V (Å3)	1572.86
Z	1
D$_{calc}$ (g cm$^{-3}$)	0.8912
Rp a	0.0213
R$_{wp}$ b	0.0326
GOF	1.06

$^a R_p = \frac{\sum |cY_{\text{Sim}}(2\theta) - I_{\text{exp}}(2\theta) + Y_{\text{back}}(2\theta))/|I_{\text{exp}}(2\theta)|.}$

$^b R_{wp} = \left\{ \frac{w_p[cY_{\text{Sim}}(2\theta) - I_{\text{exp}}(2\theta) + Y_{\text{back}}(2\theta)]^2/\sum w_p[I_{\text{exp}}(2\theta)]^2 \right\}^{1/2},$ and $w_p = 1/I_{\text{exp}}(2\theta).$

Table S3. The elemental analysis for CuTiF$_6$-TPPY

CuTiF$_6$-TPPY	Cu	Ti	Si	F	C	N	H	
Theoretical value	7.64	5.73	/	13.5	56.9	13.3	3.08	
ICP-OES (wt%)	9.07	7.06	/	/	/	/	/	
Element analysis (wt%)	/	/	/	/	/	53.9	11.3	3.95
XPS	3.02	2.00	/	8.61	73.59	12.78	/	
Table S4. Fractional atomic coordinates for the unit cell of CuTiF$_6$-TPPY (P222 model obtained from the Rietveld refinement, $R_p = 0.0213$ $R_{wp} = 0.0326$).

	a= 13.85785	b = 13.78813	c = 8.23169
	alpha = 90.000	beta = 90.000	gamma = 90.000
C	0.4511	0.8092	0.4986
C	0.4213	0.7081	0.5001
C	0.3239	0.6783	0.4991
C	0.2479	0.7541	0.4992
C	0.2417	0.8223	0.6270
C	0.1695	0.8921	0.6241
N	0.1040	0.8960	0.5005
C	0.1087	0.8309	0.3763
C	0.1794	0.7596	0.3721
H	0.4034	0.8716	0.4954
H	0.2924	0.8206	0.7299
H	0.1613	0.9450	0.7231
H	0.0556	0.8386	0.2777
H	0.1815	0.7092	0.2687
F	-0.0963	0.9033	0.9998
C	0.1934	0.5496	0.5006
C	0.2914	0.5819	0.4989
H	0.1313	0.5971	0.5027
N	0.5000	0.6476	0.5000
N	0.3482	0.5000	0.5000
H	0.4223	0.5000	0.5000
Cu	0.0000	1.0000	0.5000
Ti	0.0000	1.0000	1.0000
F	0.0000	1.0000	0.7662
Fig. S7. Crystal coordination mode. The coordination mode of Cu, TiF$_6^{2-}$, and TPPY.

Fig. S8. The interactions and rotations of TPPY. (a) The hydrogen bond formed between TiF$_6^{2-}$ pillars and pyridine rings, (b) the rotation angle of pyridine rings in CuTiF$_6$-TPPY.
Fig. S9. Pore structures of CuTiF$_6$-TPPY. (a) 3D structures showing uniform one-dimensional channels and (b) the pore aperture sectional drawing in the x, y plane of CuTiF$_6$-TPPY.

Fig. S10. Pore structures of SIFSIX-1-Cu. (a) 3D structures showing uniform one-dimensional channels and (b) the pore aperture sectional drawing in the x, y plane of SIFSIX-1-Cu.
Fig. S11. TGA curves. TGA curve of the as-synthesized CuTiF₆-TPPY.

Fig. S12. BET calculation plot. BET calculation plot for CuTiF₆-TPPY based on its corresponding N₂ adsorption isotherm at 77 K.
Fig. S13. N$_2$ adsorption isotherms at 77 K. N$_2$ adsorption isotherms of CuTiF$_6$-TPPY at 77 K after treating in different conditions.
Isotherm fitting

The pure-component isotherms of C_2H_2, C_2H_4 and C_2H_6 were fitted using single-site Langmuir-Freundlich model for full range of pressure (0~1 bar).

$$q = q_{sat} \frac{bp^v}{1 + bp^v}$$

Here, p is the pressure of the bulk gas at equilibrium with the adsorbed phase (bar), q is the adsorbed amount per mass of adsorbent (mmol g$^{-1}$), q_{sat} is the saturation capacities (mmol g$^{-1}$), b is the affinity coefficient (bar$^{-1}$), and v represent the deviation from an ideal homogeneous surface.

Table S5. Single-site Langmuir-Freundlich parameters of different gases on CuTiF$_6$-TPPY.

Gas	T	q_{sat}	b	v
	K	mol kg$^{-1}$	bar$^{-1}$	dimensionless
C_2H_2	273	4.63989	8.23274	0.70065
	288	4.16236	9.63506	0.85908
	298	3.98252	7.03971	0.85311
	273	3.61553	5.28016	0.82235
C_2H_4	288	3.43124	4.44434	0.92472
	298	3.27381	2.73929	0.86244
	273	4.06598	8.00487	0.7914
C_2H_6	288	4.13356	4.05425	0.74243
	298	3.58502	3.49011	0.77377
Fig. S14. C2 adsorption isotherms for CuTiF$_6$-TPPY at 273 and 288 K. The C$_2$H$_2$, C$_2$H$_4$, and C$_2$H$_6$ adsorption isotherms on CuTiF$_6$-TPPY at (a) 273 K and (b) 288 K.

Fig. S15. C2 adsorption isotherms and IAST plot for SIFSIX-1-Cu. (a) C$_2$H$_2$, C$_2$H$_4$, and C$_2$H$_6$ adsorption isotherms on SIFSIX-1-Cu at 298 K, and (b) IAST selectivity of SIFSIX-1-Cu at different binary mixture compositions at 298 K.
Fig. S16. Breakthrough curves for SIFSIX-1-Cu. The breakthrough curve of (a) C_2H_2/C_2H_6/C_2H_4 (1/9/90, v/v/v) and (b) C_2H_6/C_2H_4 (10/90, v/v) for SIFSIX-1-Cu (0.8 g) with a flow rate of 2.5 mL/min at 298 K.

Fig. S17. The Langmuir-Freundlich fittings of C2 isotherms. The corresponding Langmuir-Freundlich fittings of C_2H_2, C_2H_4, and C_2H_6 adsorption isotherms on CuTiF_6-TPPY at different temperatures.
IAST calculations

The selectivity of the preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2 can be formally defined as:

\[S = \frac{x_1 / y_1}{x_2 / y_2} \]

In the above equation, \(x_1 \) and \(y_1 \) (\(x_2 \) and \(y_2 \)) are the molar fractions of component 1 (component 2) in the adsorbed and bulk phases, respectively. We calculated the values of \(x_1 \) and \(x_2 \) using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

Fig. S18. IAST selectivity plots. IAST selectivity of CuTiF\(_6\)-TPPY at different binary mixture compositions and temperatures.
Isosteric heat of adsorption

The isosteric heat of C$_2$H$_2$, C$_2$H$_4$, and C$_2$H$_6$ adsorption, Q_{st}, defined as

$$Q_{st} = RT^2 \left(\frac{\partial \ln P}{\partial T} \right)_q$$

determined using the pure component isotherm fits using the Clausius-Clapeyron equation. Where Q_{st} (kJ/mol) is the isosteric heat of adsorption, T (K) is the temperature, P (bar) is the pressure, R is the gas constant, and q (mmol/g) is the adsorbed amount.

![Graph showing isosteric adsorption heats](image)

Fig. S19. C2 adsorption heats. C$_2$H$_2$, C$_2$H$_4$, and C$_2$H$_6$ isosteric adsorption heats on CuTiF$_6$-TPPY.
Fig. S20. Breakthrough apparatus. Representation of the column breakthrough experiment.

Fig. S21. Breakthrough curve for CuTiF₆-TPPP. The breakthrough curve of C₂H₂/C₂H₆/C₂H₄ (1/9/90, v/v/v) for CuTiF₆-TPPP with the flow rates of 5.0 mL/min at 298 K.
Fig. S22. Breakthrough curve for CuTiF$_6$-TPPY. The breakthrough curve of C$_2$H$_6$/C$_2$H$_4$ (50/50, v/v) for CuTiF$_6$-TPPY at the flow rate of 8.0 mL/min at 298 K.

Fig. S23. Desorption curves for CuTiF$_6$-TPPY. The signals of desorbed C$_2$H$_6$ and C$_2$H$_4$ for CuTiF$_6$-TPPY (1.8 g) during the regeneration process under a He flow rate of 20 mL/min at 298 K.
Fig. S24. Desorption curves for CuTiF₆-TPPY. The signals of desorbed C₂H₆ and C₂H₄ during the regeneration process from the adsorption column of CuTiF₆-TPPY (1.3 g).

Fig. S25. Adsorption and desorption kinetics of C₂H₄ and C₂H₆. (a) Time-dependent gas uptake profiles of CuTiF₆-TPPY at pressures up to 1000 mbar with a raising rate of 100 mbar min⁻¹ and kept for 60 min to reach full adsorption equilibriums and (b) desorption rate profiles for C₂H₄ and C₂H₆ on CuTiF₆-TPPY (from 100 to 0 mbar) at 298 K.
Fig. S26. Distribution density and binding sites for C_2H_4. (a) Computational simulations for the density distribution of C_2H_4 on CuTiF$_6$-TPPY at 100 kPa and 298 K, (b) (c) C_2H_4 binding sites in CuTiF$_6$-TPPY. The closest contacts between framework atoms and the gas molecules are defined by the distances (in Å) and the distances include the van der Waals radius. (Framework: C, grey-80%; H, white; N, blue; F, cyan; Cu, pink; Ti, silvery, Gas: C, orange; H, white).

Fig. S27. C2 distribution densities. Computational simulations for the distribution density of (a) C_2H_2, (b) C_2H_6, and (c) C_2H_4 on CuTiF$_6$-TPPY at 100 kPa and 298 K.
Fig. S28. In-situ IR spectrum. In-situ IR spectrum of activated CuTiF$_6$-TPPY sample exposed to C$_2$H$_2$, C$_2$H$_4$, or C$_2$H$_6$.

The three characteristic bands of ν(−CH), β-(CH), and δ(−CH) for C$_2$ gases were detected, indicating the adsorption of all C$_2$ gases in CuTiF$_6$-TPPY. The interactions between C$_2$ gases and TiF$_6^{2−}$ anion in CuTiF$_6$-TPPY cannot be directly characterized by IR spectroscopy because the vibrations of TiF$_6^{2−}$ occur below 650 cm$^{-1}$ that beyond the detection range of the infrared MCT-A detector. Nevertheless, some evidence for the interactions between gas molecules and TiF$_6^{2−}$ anions were observed, because TiF$_6^{2−}$ anions have strong electronegativity and can form strong hydrogen bonding with C$_2$ hydrocarbons.

As for C$_2$H$_2$ adsorption, the stretching band ν(−CH) of adsorbed C$_2$H$_2$ appeared at a lower frequency of ~2950 cm$^{-1}$ besides the frequency at ~3260 cm$^{-1}$, which was induced by the formation of hydrogen bonding between C$_2$H$_2$ and TiF$_6^{2−}$ anions. The asymmetrical C≡C stretching band appears at a lower frequency of ~1950 cm$^{-1}$ rather than 2100~2140 cm$^{-1}$ also confirmed the formation of hydrogen bonding between C$_2$H$_2$ and TiF$_6^{2−}$ anions (56). For C$_2$H$_6$ adsorption, the stretching band ν(−CH) of adsorbed C$_2$H$_6$ appeared at the lower frequency of 2800~3075 cm$^{-1}$ implies the interactions between C$_2$H$_6$ and TiF$_6^{2−}$ anions. The stretching bands of β-(CH) and δ(−CH) of adsorbed C$_2$H$_6$ were detected without frequency shifts, indicating that C$_2$H$_6$ also interacted with the aromatic skeleton of CuTiF$_6$-TPPY. As for C$_2$H$_4$, the δ(−CH) bending vibration bands appeared at ~1010 cm$^{-1}$ and ~950 cm$^{-1}$ belong to the absorption of...
peak of RCH=CH$_2$ (57,58), no other interaction can be observed.

Fig. S29. Time-dependent In-situ IR spectra. In-situ IR spectra showing adsorbed (a) C$_2$H$_2$, (b) C$_2$H$_6$, and (c) C$_2$H$_4$ in CuTiF$_6$-TPPY with different exposure times.

To check the dependence of these spectral changes on the loading amount of guest molecules inside MOFs, time-dependent in-situ IR spectra with C2 gas-loadings were conducted. As shown in Fig. S29, the characteristic absorption peaks of C$_2$H$_2$ (ν(-CH) and asymmetrical C≡C stretching) and C$_2$H$_6$ (ν(-CH)) appeared at 3 min. In contrast, the stretching bands of adsorbed C$_2$H$_4$ were detected at 10 min. These results indicated that C$_2$H$_2$ and C$_2$H$_6$ can be adsorbed in a stronger and faster manner than C$_2$H$_4$ by CuTiF$_6$-TPPY.
Fig. S30. Reproducibility of synthesis process. Images of different batches and blended mixtures of CuTiF$_6$-TPPY samples.

To verify the reproducibility of CuTiF$_6$-TPPY and its separation performances, we have parallelly synthesized ten batches of CuTiF$_6$-TPPY and measured their adsorptive separation performances. Due to the extremely time-consuming process for evaluating individual adsorption isotherms of 10-batch samples, we have blended samples 1-3 as labeled as “Mixture-1”, samples 4-6 as “Mixture-2”, and samples 7-10 as “Mixture-3” (Fig. S30).
Fig. S31. Structure and adsorption properties of blended samples. (a) XRD patterns and adsorption isotherms of (b) C$_2$H$_2$, (c) C$_2$H$_4$, and (d) C$_2$H$_6$ on blended samples.

Fig. S32. Breakthrough curves for blended samples. The breakthrough curves of (a) C$_2$H$_2$/C$_2$H$_6$/C$_2$H$_4$ (1/9/90, v/v/v) and (b) C$_2$H$_6$/C$_2$H$_4$ (10/90, v/v) for CuTiF$_6$-TPPY (1.3 g) with a flow rate of 5.0 mL/min.
Table S6. Comparison of the equilibrium adsorption capacity and selectivity of the selected C$_2$H$_6$-selective MOFs at 298 K and 1 bar.

Adsorbents	Adsorption uptake (mmol/g)	Q_a (kJ/mol) at zero coverage	IAST Selectivity	Reference		
	C_2H_6	C_2H_4	C_2H_6	C_2H_4		
UiO-66-ADC	1.7	1.8	36.0	36.0	1.8	(43)
MAF-49	1.7	1.7	56.7	45.5	2.7	(42)
ZIF-7	1.9	1.9	27.4	24.6	1.8	(44)
Cu(Qc)$_2$	1.9	0.8	28.1	25.2	3.5	(35)
ZIF-69	2.2	1.8	25.5	22.9	1.7	(45)
PAF-302	3.1	2.2	33.9	33.9	1.4	(46)
ZIF-8	3.2	2.0	21.5	16.0	2.0	(47)
PCN-245	3.3	2.4	23.0	20.5	1.8	(48)
Fe$_2$(O$_2$)(dobdc)	3.3	2.7	66.8	37.6	4.4	(33)
MIL-142A	3.8	2.9	27.3	26.1	1.5	(49)
In-soc-MOF-1	4.0	3.7	28.4	25.2	1.4	(50)
IRMOF-8	4.1	3.1	52.7	49.8	1.8	(51)
MUF-15	4.7	4.2	29.2	28.2	2.0	(34)
Ni2-a	4.8	4.6	33.5	31.7	1.4	(32)
Ni(bdc)(ted)$_{0.5}$	5.0	3.4	21.5	18.4	2.0	(53)
PCN-250	5.2	4.2	23.6	21.1	1.9	(54)
Ni1-a	6.6	6.0	33.6	32.2	1.5	(52)
Zn-atz-IPA	1.76	1.75	45.8	40	2.0	(55)
CuTiF$_6$-TPPY	2.82	2.42	34.2	29.6	2.12	This work
Table S7. Comparison of the equilibrium adsorption capacity of the selected C$_2$H$_2$ and C$_2$H$_6$ simultaneous adsorption MOFs at 298 K and 1 bar.

Adsorbents	Adsorption uptake (mmol/g)	Uptake ratio (298 K 1 bar)	IAST Selectivity	Reference				
	C$_2$H$_2$	C$_2$H$_6$	C$_2$H$_4$	C$_2$H$_2$/C$_2$H$_4$	C$_2$H$_2$/C$_2$H$_6$ (50/50)	C$_2$H$_6$/C$_2$H$_4$ (50/50)		
ZJNU-7	5.04	4.13	3.80	1.33	1.09	1.68	1.56	(25)
ZJNU-115	4.73	4.20	3.75	1.26	1.12	2.05	1.56	(24)
NPU-1	5.10	4.50	4.20	1.21	1.07	1.4	1.32	(20)
NPU-2	3.99	4.42	3.42	1.17	1.29	1.25	1.52	(20)
NPU-3	2.19	3.33	2.19	1.0	1.52	1.32	3.21	(20)
TJT-100	4.46	3.70	3.44	1.3	1.08	1.8	1.2	(5)
Azole-Th-1	3.51	4.42	3.56	0.99	1.24	1.09	1.46	(21)
NUM-9a (313 K)	1.98	2.06	1.79	1.11	1.15	1.50	1.62	(23)
MOF-525	2.65	2.71	2.11	1.26	1.28	1.45	1.22	(22)
MOF-525(Co)	2.62	2.22	1.92	1.36	1.16	1.95	1.1	(22)
UPC-612	3.01	3.57	2.79	1.08	1.28	1.08	1.4	(22)
UPC-613	2.83	2.55	2.30	1.23	1.11	1.39	1.48	(22)
MIL-125	7.05	4.83	3.98	1.77	1.21	2.32	1.21	(27)
NH$_2$-MIL-125	7.82	4.69	4.41	1.78	1.06	3.75	1.18	(27)
ZSTU-2	3.11	2.73	2.35	1.32	1.16	2.36	1.62	(27)
CuTiF$_6$-TPPY	3.62	2.82	2.42	1.50	1.17	5.47	2.12	This work
REFERENCES AND NOTES

1. D. S. Sholl, R. P. Lively, Seven chemical separations to change the world. *Nature* **532**, 435–437 (2016).

2. J. Y. Lin, Molecular sieves for gas separation. *Science* **353**, 121–122 (2016).

3. I. Amghizlar, L. A. Vandewalle, K. M. Van Geem, G. B. Marin, New trends in olefin production. *Engineering* **3**, 171–178 (2017).

4. T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. *Energy* **31**, 425–451 (2006).

5. H. G. Hao, Y. F. Zhao, D. M. Chen, J. M. Yu, K. Tan, S. Ma, Y. Chabal, Z. M. Zhang, J. M. Dou, Z. H. Xiao. Simultaneous trapping of C$_2$H$_2$ and C$_2$H$_6$ from a ternary mixture of C$_2$H$_2$/C_2H$_4$/C_2H$_6$ in a robust metal–Organic framework for the purification of C$_2$H$_4$. *Angew. Chem. Int. Ed.* **130**, 16299–16303 (2018).

6. F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sørensen, C. H. Christensen, J. K. Nørskov, Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. *Science* **320**, 1320–1322 (2008).

7. A. Cadiau, K. Adil, P. Bhatt, Y. Belmabkhout, M. Eddaoudi, A metal-organic framework–based splitter for separating propylene from propane. *Science* **353**, 137–140 (2016).

8. H. Li, L. Li, R.-B. Lin, W. Zhou, Z. Zhang, S. Xiang, B. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges. *EnergyChem* **1**, 100006 (2019).

9. Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. *Nat. Chem.* **13**, 933–939 (2021).

10. O. M. Yaghi, M. J. Kalmutzki, C. S. Diercks, *Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks* (Wiley, 2019).
11. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. *Nature* **423**, 705–714 (2003).

12. L. Yang, S. Qian, X. Wang, X. Cui, B. Chen, H. Xing, Energy-efficient separation alternatives: Metal–organic frameworks and membranes for hydrocarbon separation. *Chem. Soc. Rev.* **49**, 5359–5406 (2020).

13. R.-B. Lin, Z. Zhang, B. Chen, Achieving high performance metal-organic framework materials through pore engineering. *Acc. Chem. Res.* **54**, 3362–3376 (2021).

14. L. Yang, X. Cui, Q. Yang, S. Qian, H. Wu, Z. Bao, Z. Zhang, Q. Ren, W. Zhou, B. Chen, A single-molecule propyne trap: Highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. *Adv. Mater.* **30**, 1705374 (2018).

15. L. Li, H. M. Wen, C. He, R. B. Lin, R. Krishna, H. Wu, W. Zhou, J. Li, B. Li, B. Chen, A metal-organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. *Angew. Chem. Int. Ed.* **130**, 15403–15408 (2018).

16. L. Yang, A. Jin, L. Ge, X. Cui, H. Xing, A novel interpenetrated anion-pillared porous material with high water tolerance afforded efficient C$_2$H$_2$/C$_2$H$_4$ separation. *Chem. Comm.* **55**, 5001–5004 (2019).

17. M. Jiang, X. Cui, L. Yang, Q. Yang, Z. Zhang, Y. Yang, H. Xing, A thermostable anion-pillared metal-organic framework for C$_2$H$_2$/C$_2$H$_4$ and C$_2$H$_2$/CO$_2$ separations. *Chem. Eng. J.* **352**, 803–810 (2018).

18. Z. Zhang, Q. Ding, X. Cui, X.-M. Jiang, H. Xing, Fine-tuning and selective-binding within an anion-functionalized ultramicroporous metal-organic framework for efficient olefin/paraffin separation. *ACS Appl. Mater. Interfaces* **12**, 40229–40235 (2020).

19. J.-R. Li, R. J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. *Chem. Soc. Rev.* **38**, 1477–1504 (2009).
20. B. Zhu, J.-W. Cao, S. Mukherjee, T. Pham, T. Zhang, T. Wang, X. Jiang, K. A. Forrest, M. J. Zaworotko, K.-J. Chen, Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. *J. Am. Chem. Soc.* **143**, 1485–1492 (2021).

21. Z. Xu, X. Xiong, J. Xiong, R. Krishna, L. Li, Y. Fan, F. Luo, B. Chen, A robust Th-azole framework for highly efficient purification of C\textsubscript{2}H\textsubscript{4} from a C\textsubscript{2}H\textsubscript{4}/C\textsubscript{2}H\textsubscript{2}/C\textsubscript{2}H\textsubscript{6} mixture. *Nat. Commun.* **11**, 1–9 (2020).

22. Y. Wang, C. Hao, W. Fan, M. Fu, X. Wang, Z. Wang, L. Zhu, Y. Li, X. Lu, F. Dai, Z. Kang, R. Wang, W. Guo, S. Hu, D. Sun, One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal–organic frameworks. *Angew. Chem. Int. Ed.* **60**, 11350–11358 (2021).

23. S.-Q. Yang, F.-Z. Sun, P. Liu, L. Li, R. Krishna, Y.-H. Zhang, Q. Li, L. Zhou, T.-L. Hu, Efficient purification of ethylene from C\textsubscript{2} hydrocarbons with an C\textsubscript{2}H\textsubscript{6}/C\textsubscript{2}H\textsubscript{2}-selective metal–organic framework. *ACS Appl. Mater. Interfaces* **13**, 962–969 (2020).

24. L. Fan, P. Zhou, X. Wang, L. Yue, L. Li, Y. He, Rational construction and performance regulation of an In(III)-tetraisophthalate framework for one-step adsorption-phase purification of C\textsubscript{2}H\textsubscript{4} from C\textsubscript{2} hydrocarbons. *Inorg. Chem.* **60**, 10819–10829 (2021).

25. Z. Jiang, L. Fan, P. Zhou, T. Xu, S. Hu, J. Chen, D.-L. Chen, Y. He, An aromatic-rich cage-based MOF with inorganic chloride ions decorating the pore surface displaying the preferential adsorption of C\textsubscript{2}H\textsubscript{2} and C\textsubscript{2}H\textsubscript{6} over C\textsubscript{2}H\textsubscript{4}. *Inorg. Chem. Front.* **8**, 1243–1252 (2021).

26. R. E. Sikma, N. Katyal, S.-K. Lee, J. W. Fryer, C. G. Romero, S. K. Emslie, E. L. Taylor, V. M. Lynch, J.-S. Chang, G. Henkelman, Low-valent metal ions as MOF pillars: A new route toward stable and multifunctional MOFs. *J. Am. Chem. Soc.* **143**, 13710–13720 (2021).

27. P. Liu, Y. Wang, Y. Chen, J. Yang, X. Wang, L. Li, J. Li, Construction of saturated coordination titanium-based metal–organic framework for one-step C\textsubscript{2}H\textsubscript{2}/C\textsubscript{2}H\textsubscript{6}/C\textsubscript{2}H\textsubscript{4} separation. *Sep. Purif. Technol.* **276**, 119284 (2021).
28. X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. *Science* **353**, 141–144 (2016).

29. J. Wang, Y. Zhang, P. Zhang, J. Hu, R.-B. Lin, Q. Deng, Z. Zeng, H. Xing, S. Deng, B. Chen, Optimizing pore space for flexible-robust metal-organic framework to boost trace acetylene removal. *J. Am. Chem. Soc.* **142**, 9744–9751 (2020).

30. R.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou, B. Chen, Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. *J. Am. Chem. Soc.* **139**, 8022–8028 (2017).

31. J. Shen, X. He, T. Ke, R. Krishna, J. M. van Baten, R. Chen, Z. Bao, H. Xing, M. Dincă, Z. Zhang, Simultaneous interlayer and intralayer space control in two-dimensional metal-organic frameworks for acetylene/ethylene separation. *Nat. Commun.* **11**, 6259 (2020).

32. E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. *Science* **335**, 1606–1610 (2012).

33. L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. *Science* **362**, 443–446 (2018).

34. O. T. Qazvini, R. Babarao, Z.-L. Shi, Y.-B. Zhang, S. G. Telfer, A robust ethane-trapping metal-organic framework with a high capacity for ethylene purification. *J. Am. Chem. Soc.* **141**, 5014–5020 (2019).

35. R.-B. Lin, H. Wu, L. Li, X.-L. Tang, Z. Li, J. Gao, H. Cui, W. Zhou, B. Chen, Boosting ethane/ethylene separation within isoreticular ultramicroporous metal–organic frameworks. *J. Am. Chem. Soc.* **140**, 12940–12946 (2018).

36. S. Chen, Y. Li, Z. Bu, F. Yang, J. Luo, Q. An, Z. Zeng, J. Wang, S. Deng, Boosting CO$_2$-to-CO$_2$ conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. *J. Mater. Chem. A* **9**, 1705–1712 (2021).
37. J. D. Yi, D. H. Si, R. Xie, Q. Yin, M. D. Zhang, Q. Wu, G. L. Chai, Y. B. Huang, R. Cao, Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO₂. *Angew. Chem. Int. Ed.* **133**, 17245–17251 (2021).

38. Q.-L. Qian, X.-W. Gu, J. Pei, H.-M. Wen, H. Wu, W. Zhou, B. Li, G. Qian, A novel anion-pillared metal–organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. *J. Mater. Chem. A* **9**, 9248–9255 (2021).

39. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure Appl. Chem.* **87**, 1051–1069 (2015).

40. P. Zhang, Y. Zhong, J. Ding, J. Wang, M. Xu, Q. Deng, Z. Zeng, S. Deng, A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO₂ capture. *Chem. Eng. J.* **355**, 963–973 (2019).

41. P. Zhang, J. Wang, W. Fan, Y. Zhong, Y. Zhang, Q. Deng, Z. Zeng, S. Deng, Ultramicroporous carbons with extremely narrow pore size distribution via in-situ ionic activation for efficient gas-mixture separation. *Chem. Eng. J.* **375**, 121931 (2019).

42. P.-Q. Liao, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Efficient purification of ethene by an ethane-trapping metal-organic framework. *Nat. Commun.* **6**, 8697 (2015).

43. Y. X. Wang, S. Yuan, Z. G. Hu, T. Kundu, J. Zhang, S. B. Peh, Y. D. Cheng, J. Q. Dong, D. Q. Yuan, H. C. Zhou, D. Zhao, Pore size reduction in zirconium metal-organic frameworks for ethylene/ethane separation. *ACS Sustain. Chem. Eng.* **7**, 7118–7126 (2019).

44. C. Gucuyener, J. van den Bergh, J. Gascon, F. Kapteijn, Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. *J. Am. Chem. Soc.* **132**, 17704–17706 (2010).

45. W. Yuan, X. Zhang, L. Li, Synthesis of zeolitic imidazolate framework-69 for adsorption separation of ethane and ethylene. *J. Solid State Chem.* **251**, 198–203 (2017).
46. L. Huang, D. P. Cao, Selective adsorption of olefin-paraffin on diamond-like frameworks: Diamondyne and PAF-302, *J. Mater. Chem. A* 1, 9433–9439 (2013).

47. U. Böhme, B. Barth, C. Paula, A. Kuhnt, W. Schwieger, A. Mundstock, J. Caro, M. Hartmann, Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal–organic framework adsorbents CPO-27 and ZIF-8. *Langmuir* 29, 8592–8600 (2013).

48. D. Lv, R. Shi, Y. Chen, Y. Wu, H. Wu, H. Xi, Q. Xia, Z. Li, Selective adsorption of ethane over ethylene in PCN-245: Impacts of interpenetrated adsorbent. *ACS Appl. Mater. Interfaces* 10, 8366–8373 (2018).

49. Y. Chen, H. Wu, D. Lv, R. Shi, Y. Chen, Q. Xia, Z. Li, Highly adsorptive separation of ethane/ethylene by an ethane-selective MOF MIL-142A. *Ind. Eng. Chem. Res.* 57, 4063–4069 (2018).

50. H. Wu, Y. Chen, D. Lv, R. Shi, Y. Chen, Z. Li, Q. Xia, An indium-based ethane-trapping MOF for efficient selective separation of C\textsubscript{2}H\textsubscript{6}/C\textsubscript{2}H\textsubscript{4} mixture. *Sep. Purif. Technol.* 212, 51–56 (2019).

51. J. Pires, M. L. Pinto, V. K. Saini, Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption. *ACS Appl. Mater. Interfaces* 6, 12093–12099 (2014).

52. H. Xiang, Y. Shao, A. Ameen, H. Chen, W. Yang, P. Gorojo, F. Siperstein, X. Fan, Q. Pan, Adsorptive separation of C\textsubscript{2}H\textsubscript{6}/C\textsubscript{2}H\textsubscript{4} on metal-organic frameworks (MOFs) with pillared-layer structures. *Sep. Purif. Technol.* 242, 116819 (2020).

53. W. Liang, F. Xu, X. Zhou, J. Xiao, Q. Xia, Y. Li, Z. Li, Ethane selective adsorbent Ni(bdc)(ted)\textsubscript{0.5} with high uptake and its significance in adsorption separation of ethane and ethylene. *Chem. Eng. Sci.* 148, 275–281 (2016).

54. Y. Chen, Z. Qiao, H. Wu, D. Lv, R. Shi, Q. Xia, J. Zhou, Z. Li, An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene. *Chem. Eng. Sci.* 175, 110–117 (2018).
55. K.-J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q.-Y. Zhang, M. J. Zaworotko. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. *Science* **366**, 241–246 (2019).

56. S. Mukherjee, N. Kumar, A. A. Bezrukov, K. Tan, T. Pham, K. A. Forrest, K. A. Oyekan, O. T. Qazvini, D. G. Madden, B. Space, M. J. Zaworotko, Amino-functionalised hybrid ultramicroporous materials that enable single-step ethylene purification from a ternary mixture. *Angew. Chem. Int. Ed.* **60**, 10902–10909 (2021).

57. B. C. Smith, in *Fundamentals of Fourier Transform Infrared Spectroscopy* (CRC Press, ed. 2, 2011), p. 207.

58. A. Dutta, Fourier transform infrared spectroscopy, in *Spectroscopic Methods for Nanomaterials Characterization* (Maharashtra Institute of Technology, 2017) pp. 73–93.