A NEW A_p-A_∞ ESTIMATE FOR CALDERÓN-ZYGMUND OPERATORS IN SPACES OF HOMOGENEOUS TYPE

KANGWEI LI

Abstract. In this note, we study the A_p-A_∞ estimate for Calderón-Zygmund operators in terms of the weak A_∞ characteristics in spaces of homogeneous type. The weak A_∞ class was introduced recently by Anderson, Hytönen and Tapiola. Our estimate is new even in the Euclidean space.

1. Introduction and Main Results

Let T be a Calderón-Zygmund operator and (w, σ) be a pair of weights. In the Euclidean setting, Hytönen and Lacey [9] proved that if

$$[w, \sigma]_{A_p} := \sup_{Q: \text{cubes in } \mathbb{R}^n} \frac{w(Q)}{|Q|} \left(\frac{\sigma(Q)}{|Q|} \right)^{p-1} < \infty$$

and $w, \sigma \in A_\infty$, then the following estimate holds

$$(1.1) \quad \|T(\cdot, \sigma)\|_{L^p(\sigma) \to L^p(w)} \leq C_{n,p,T}[w, \sigma]_{A_p}^{\frac{1}{p}} [(w)]_{A_\infty}^{\frac{1}{p}} + [\sigma]_{A_\infty}^{\frac{1}{p}}.$$

It is well known that (1.1) extends the A_2 theorem, which was first proved by Hytönen [6], see also in [12] for a simple proof by Lerner, and in [3], Anderson and Vagharshakyan also gave a proof in the spaces of homogeneous type. Our goal is to extend (1.1) with the weak A_∞ characteristics (which will be introduced below) to the spaces of homogeneous type.

Now let us recall some definitions. By a space of homogeneous type (SHT) we mean an ordered triple (X, ρ, μ), where X is a set, ρ is a quasimetric on X, i.e.,

- (1) $\rho(x, y) = 0$ if and only if $x = y$;
- (2) $\rho(x, y) = \rho(y, x)$ for all $x, y \in X$;
- (3) $\rho(x, z) \leq \kappa (\rho(x, y) + \rho(y, z))$ for some $\kappa \geq 1$ and all $x, y, z \in X$;

2010 Mathematics Subject Classification. 42B25.

Key words and phrases. Two weight inequalities, bump conditions, spaces of homogeneous type, sparse operators.

This work was partially supported by the National Natural Science Foundation of China(11371200), the Research Fund for the Doctoral Program of Higher Education (20120031110023) and the Ph.D. Candidate Research Innovation Fund of Nankai University.
and \(\mu \) is a nonnegative Borel measure on \(X \) which satisfies the following doubling condition
\[
\mu(B(x, 2r)) \leq D \mu(B(x, r)),
\]
where \(B(x, r) := \{ y \in X : \rho(x, y) < r \} \) and the dilation of a ball \(B := B(x, r) \) denoted by \(\lambda B \) will be understood as \(B(x, \lambda r) \). We point out that the doubling property implies that any ball \(B(x, r) \) can be covered by at most \(N := N_{D, \kappa} \) balls of radius \(r/2 \). Next let us introduce the weak \(A_\infty \) class, which was first introduced by Anderson, Hytönen and Tapiola in [2].

For every \(\delta > 1 \), we say \(w \) belongs to \(\delta \)-weak \(A_\infty \) class \(A_\infty^\delta \) if
\[
[w]_{A_\infty^\delta} := \sup_B \frac{1}{w(\delta B)} \int_B M(1_B w)(y) d\mu(y) < \infty,
\]
where the supremum is taken over all balls \(B \subset X \). We collect some properties of this weak \(A_\infty \) class and refer the readers to [2] for a proof.

Proposition 1.1.

1. \(A_\infty^\delta = A_\infty^{\delta'} \) for all \(\delta, \delta' > \kappa \). So hereafter, we denote by \(A_\infty^{weak} := A_\infty^{2\kappa} \) the weak \(A_\infty \) class;
2. For any \(w \in A_\infty^{weak} \), we have \([w]_{A_\infty^{weak}} \geq 1/(2 \kappa)^{\log_2 N} \);
3. Let \(w \in A_\infty^{weak} \). Then there exists a constant \(\alpha := \alpha(\kappa, D) \) such that for every \(0 < \epsilon \leq \frac{1}{\alpha [w]_{A_\infty^{weak}}} \),
\[
\left(\frac{\int_B w^{1+\epsilon} d\mu}{\int_{2\kappa B} w d\mu} \right)^{\frac{1}{1+\epsilon}} \lesssim \frac{1}{\epsilon} \int_{2\kappa B} w d\mu.
\]

Now we are ready to state the main result in this paper.

Theorem 1.2. Given \(p, 1 < p < \infty \) and an \(SHT(X, p, \mu) \). Let \(T \) be any Calderón-Zygmund operator and \((w, \sigma) \) be a pair of weights. Then we have
\[
\|T(\cdot, \sigma)\|_{L^p(\sigma) \rightarrow L^p(w)} \leq C[w, \sigma]_{A_p}^{\frac{1}{p}} ([w]_{A_\infty^{weak}}^\frac{1}{p} + [\sigma]_{A_\infty^{weak}}^\frac{1}{p}),
\]
where
\[
[w, \sigma]_{A_p} := \sup_{B \text{ balls in } X} \left(\int_B w d\mu \right) \left(\int_B \sigma d\mu \right)^{p-1}
\]
and the constant \(C \) is independent of the weights \((w, \sigma) \).

Remark 1.3. Note that the result is new already in the case that \(X = \mathbb{R}^n \) with Euclidean distance and Lebesgue measure, since the weak \(A_\infty \) class is strictly larger than classical \(A_\infty \) already in this setting.

2. **Proof of the Main result**

In this section, we will give a proof for Theorem [1.2]. First, we introduce the bump conditions. By a Young function \(\phi \), we mean that \(\phi : [0, \infty) \rightarrow [0, \infty) \) is continuous, convex and increasing satisfying \(\phi(0) = 0 \) and \(\phi(t)/t \rightarrow \infty \) as \(t \rightarrow \infty \). Recall that the complementary function of \(\phi \), denoted by \(\bar{\phi} \), is defined by
\[
\bar{\phi}(t) := \sup_{s > 0} \{ st - \phi(s) \}.
\]
Given two Young functions Φ, Ψ, define
\[[w, \sigma]_{\Phi,p} := \sup_B \left(\int_B w d\mu \right) \frac{1}{\| \sigma^{1/p} \|_{\Phi,B}} , \]
\[[\sigma, w]_{\Psi,p} := \sup_B \| w^{1/p} \|_{\Psi,B} \left(\int_B \sigma d\mu \right) \frac{1}{\| \sigma^{1/p'} \|_{\Psi,B}} , \]
where the supremum is taken over all balls in X and the Luxemburg norm is defined by
\[\| f \|_{\Phi,B} := \inf \{ \lambda > 0 : -\int_B \Phi(\lambda^{-1} f) d\mu \leq 1 \} . \]

There is a famous problem named the separated bump conjecture, which states that for any Calderón-Zygmund operator T, if
\[(2.1) [w, \sigma]_{\Phi,p} + [\sigma, w]_{\Psi,p} < \infty,\]
where $\Phi \in B_p$ and $\Psi \in B_{p'}$ (the B_p condition is recalled in (2.2) below), then $T(\sigma)$ is bounded from $L^p(\sigma)$ to $L^p(w)$. For the so-called log-bumps, namely, when
\[\Phi(t) = t^{p'} \log(e + t)^{p'-1+\delta} \quad \text{and} \quad \Psi(t) = t^p \log(e + t)^{p-1+\delta}, \]
this conjecture has been verified in [5] in the Euclidean setting and for the spaces of homogeneous type, see [1]. For more about the separated bump conjecture, see [10, 15] and the references therein. In the rest of this paper, by carefully calculating the constants, we will show the following quantitative estimate for the power bumps.

Theorem 2.1. Given $p, 1 < p < \infty$ and an $SHT(X, \rho, \mu)$. Let T be a Calderón-Zygmund operator and (w, σ) is a pair of weights satisfying (2.1) for $\Phi(t) = t^{p'}$ and $\Psi(t) = t^p$, where $1 < r, s < 1 + 2(2\kappa)^{\log_2 N / \alpha(\kappa, D)}$. Then we have
\[\| T(\sigma) \|_{L^p(\sigma) \rightarrow L^p(w)} \leq C_{T,p,D,\kappa} ([w, \sigma]_{\Phi,p} \| \Phi \|_{B_p}^{1/p} + [\sigma, w]_{\Psi,p} \| \Psi \|_{B_{p'}}^{1/p'}), \]
where recall that for a Young function $\phi \in B_p$,
\[(2.2) \| \phi \|_{B_p} := \int_{1/2}^{\infty} \frac{\phi(t) dt}{t^{p'}} . \]

Now with Theorem 2.1 we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. In fact, taking
\[r = 1 + \frac{1}{\alpha[\sigma]_{A_{\infty}}} . \]
By the reverse Hölder’s inequality (1.2), we have
\[[w, \sigma]_{B_p} = \sup_B \left(\int_B w d\mu \right) \frac{1}{\| \sigma^r \|_{B_p}} \left(\int_B \sigma^r d\mu \right) \frac{1}{\| \sigma^r \|_{B_p}} . \]
And by taking similar value of s, by definition, we know
\[\Phi(t) = t^{p'} \]

Hence
\[[\Phi]_{B_p} \approx_{p,k,D} \int_{1/2}^{\infty} \frac{t^{p'}}{t} dt = 2^{(r-1)p} p'^r - 1 \leq C_{p,k,D}[\sigma]_{A_{\infty}}. \]

And by taking similar value of s we can get the result as desired. \qed

In the rest of this paper, we will focus on the proof of Theorem 2.1. We will reduce the estimates for Calderón-Zygmund operators to the so-called sparse operators. So first let us introduce the following result, which can be found in [7], see also in [4]. Here we follow the version used in [2].

Theorem 2.2. Let $0 < \eta < 1$ satisfy $96k^6\eta \leq 1$. Then there exists countable sets of points $\{z_{\alpha}^{k,t} : \alpha \in \mathcal{A}_k\}$, $k \in \mathbb{Z}$, $t = 1, 2, \ldots, K = K(k, N, \eta)$, and a finite number of dyadic systems $\mathcal{D} = \{Q_{\alpha}^{k,t} : \alpha \in \mathcal{A}_k, k \in \mathbb{Z}\}$, such that

1. For every $t \in \{1, 2, \ldots, K\}$ we have
 a. $X = \bigcup_{\alpha \in \mathcal{A}_k} Q^{k,t}\left(z_{\alpha}^{k,t}\right)$ (disjoint union) for every $k \in \mathbb{Z}$;
 b. $Q, P \in \mathcal{D}$ implies $Q \cap P = \{\emptyset, Q, P\}$;
 c. $Q_{\alpha}^{k,t} \in \mathcal{D}$ implies $B(z_{\alpha}^{k,t}, c_1\eta^k) \subseteq Q_{\alpha}^{k,t} \subseteq B(z_{\alpha}^{k,t}, C_1\eta^k)$, where $c_1 := (12k^4)^{-1}$ and $C_1 := 4k^2$;

2. For every ball $B = B(x, r)$ there exists a cube $Q_B \in \bigcup_{t} \mathcal{D}^t$ such that $B \subseteq Q_B$ and $l(Q_B) = \eta^{1-k}$, where k is the unique integer such that $\eta^{k+1} < r \leq \eta^k$ and $l(Q_B) = \eta^{k-1}$ means that $Q_B = Q_{\alpha}^{k-1,t}$ for some indices α and t.

By the doubling property, we know that $\mu(B(x, r)) \approx \mu(Q_B)$. And if $Q_{\alpha}^{k,t} \subseteq Q_{\beta}^{k-1,t}$, by the doubling property we also know that there exists some constant $C_{k,D}$ such that
\[\mu(Q_{\beta}^{k-1,t}) \leq \mu(B(z_{\beta}^{k-1,t}, C_1\eta^{k-1})) \leq C_{k,D}[\mu(B(z_{\alpha}^{k,t}, c_1\eta^{k}))] \leq C_{k,D}[\mu(Q_{\alpha}^{k,t})]. \]

Theorem 2.2 characterizes the structure of dyadic system in spaces of homogeneous type. See also in [3] for an exact characterization of which kinds of sets can be dyadic cubes. Now with Theorem 2.2 we can get the following result, which was proved in [1].

Lemma 2.3. Given a pair of weights (w, σ), and Young functions Φ and Ψ,
\[[w, \sigma]_{\Phi,p} \approx \max_{t \in \{1, 2, \ldots, K\}} \left[w, \sigma\right]_{\Phi,p}^{\mathcal{D}_t}, \quad [\sigma, w]_{\Psi,p} \approx \max_{t \in \{1, 2, \ldots, K\}} \left[\sigma, w\right]_{\Psi,p}^{\mathcal{D}_t}. \]
A NEW A_p-A_{∞} ESTIMATE

where

$$[w, \sigma]_{\Phi,p}^\varphi := \sup_{Q \in \mathcal{D}^t} \left(\int_Q wd\mu \right)^{\frac{1}{p}} \|\sigma\|_{\Phi,Q}^\varphi,$$

and $[\sigma, w]_{\Phi,p}^\varphi$ is defined similarly.

Now for any fixed \mathcal{D}^t, $t \in \{1, 2, \cdots, K\}$, we call a family $\mathcal{S} \subset \mathcal{D}^t$ sparse if for any $Q \in \mathcal{S}$, $\mu(E(Q)) \geq \frac{1}{2} \mu(Q)$, where $E(Q) = Q \setminus \cup_{Q' \in S, Q' \subsetneq Q} Q'$.

Our purpose is to reduce the estimates for Calderón-Zygmund operators to the following so-called sparse operators,

$$T^S(f)(x) := \sum_{Q \in \mathcal{S}} \int_Q f(y) d\mu(y) 1_Q(x),$$

where $\mathcal{S} \subset \mathcal{D}$ is a sparse family in some dyadic system \mathcal{D}. In [12], Lerner gave a nice formula which reduces the norm of Calderón-Zygmund operators to such kind of sparse operators. (In the recent book by Lerner and Nazarov [14], it has been shown that Calderón-Zygmund operators can be dominated pointwise by the sparse operators.) In [1], the authors showed that Lerner's formula also holds in spaces of homogeneous type.

Lemma 2.4. Given an SHT (X, ρ, μ) and a Calderón-Zygmund operator T, then for any Banach function space Y,

$$\|T(f\sigma)\|_Y \leq C_{D,\kappa} \sup_{\mathcal{D}^t, \mathcal{S}} \|T^S(f\sigma)\|_Y,$$

where the supremum is taken over every dyadic system \mathcal{D}^t, $t = 1, 2, \cdots, K$ and every sparse family \mathcal{S} in \mathcal{D}^t.

In the rest of this paper, we only need to prove Theorem 2.1 for sparse operators. We follow the strategy of [5]. We further reduce the problem to estimate testing condition. To be precise, we have the following, see [11] for a proof.

Lemma 2.5. For fixed $t \in \{1, 2, \cdots, K\}$, suppose \mathcal{S} is a sparse family in \mathcal{D}^t. Then

$$\|T^S(\sigma)\|_{L^p(\sigma)} \rightarrow L^p(w) \leq \sup_R \frac{\|\sum_{Q \in R} \int_Q \sigma d\mu 1_Q(x)\|_{L^p(w)}}{\sigma(R)^{1/p}} \leq \sup_R \frac{\|\sum_{Q \in R} \int_Q \sigma d\mu w 1_Q(x)\|_{L^{p'}(\sigma)}}{w(R)^{1/p'}} + \sup_R \frac{\|\sum_{Q \in R} \int_Q \sigma d\mu 1_Q(x)\|_{L^{p'}(\sigma)}}{\sigma(R)^{1/p'}}.$$

Before we give further estimates, we introduce the following result. In the Euclidean case this is due to Pérez [16], and in spaces of homogeneous type, see Pérez and Wheeden [17] and Pradolini and Salinas [18]. We give the version used in [1].
Lemma 2.6. Given p, $1 < p < \infty$ and an SHT (X, ρ, μ) and a Young function Φ such that $\Phi \in B_p$, then

$$\|M_\Phi f\|_{L^p(\mu)} \leq C_{\kappa, D}[\Phi]_{B_p}^{1/p} \|f\|_{L^p(\mu)},$$

where \mathcal{D} is some dyadic system in X and

$$M_\Phi f(x) := \sup_{Q \ni x} \|f\|_{\Phi, Q}.$$

Then by Theorem 2.2 we immediately get

$$\tag{2.4} \|M_\Phi f\|_{L^p(\mu)} \leq C'_\kappa, D[\Phi]_{B_p}^{1/p} \|f\|_{L^p(\mu)}.$$

Now by symmetry we concentrate on the first term of (2.3). We follow the technique introduced in [9], see also in [5]. For convenience, set

$$\langle f \rangle_Q = -\int_Q f \, d\mu$$

and denote

$$S_a := \{Q : 2^a < \langle w \rangle_Q \langle \sigma \rangle_Q^{p-1} \leq 2^{a+1} \text{ and } Q \subset R\}.$$

Denote by \mathcal{P}_0^a the collection of maximal cubes in S_a. Now we define

$$\mathcal{P}_n^a := \{\text{maximal cubes } P' \subset P \in \mathcal{P}_{n-1}^a \text{ such that } P' \in S_a, \langle \sigma \rangle_{P'} > 2\langle \sigma \rangle_P\}.$$

Then denote $\mathcal{P}^a := \cup_n \mathcal{P}_n^a$. For any $P \in \mathcal{P}^a$, set

$$S_a(P) := \{Q \in S_a : \pi(Q) = P\},$$

where $\pi(Q)$ is the minimal cube in \mathcal{P}^a which contains Q. We have the following Lemma, which was proved in [9] (see also in [13]) in the Euclidean setting and it is still valid for the spaces of homogeneous type with no change of the proof.

Lemma 2.7. There exists a constant c such that

$$w\{x \in P : T^{S_a(P)}(\sigma) > t\langle \sigma \rangle_P\} \lesssim e^{-ct}w(P),$$

where

$$T^{S_a(P)}(f)(x) := \sum_{Q \in S_a(P)} \int_Q f(y) \, d\mu(y) 1_Q(x).$$

Now we are ready to estimate the first term on the right side of (2.3). We have

$$\left\| \sum_{Q \in S} \langle \sigma \rangle_Q 1_Q(x) \right\|_{L^p(w)} \leq \sum_a \left\| \sum_{Q \in S_a} \langle \sigma \rangle_Q 1_Q(x) \right\|_{L^p(w)} = \sum_a \left\| \sum_{P \in \mathcal{P}^a} T^{S_a(P)}(\sigma) \right\|_{L^p(w)}.$$

Set

$$L_j^a(P) := \left\{ x : T^{S_a(P)}(\sigma)(x) \in [j, j+1)\langle \sigma \rangle_P \right\}. $$
By Lemma 2.7 we have
\[
\left\| \sum_{P \in \mathcal{P}} T_{\sigma}(P)(\sigma) \right\|_{L^p(w)} \leq \sum_{j=0}^{\infty} (j + 1) \left\| \sum_{P \in \mathcal{P}} \langle \sigma \rangle_p \mathbf{1}_{L^p_j(P)}(x) \right\|_{L^p(w)}
\]
\[
\lesssim \sum_{j=0}^{\infty} (j + 1) \left(\sum_{P \in \mathcal{P}} \langle \sigma \rangle_p e^{-c_j w(P)} \right)^{\frac{1}{p}}
\]
\[
\lesssim \left(\sum_{P \in \mathcal{P}} \langle \sigma \rangle_p w(P) \right)^{\frac{1}{p}}.
\]

Therefore,
\[
\left\| \sum_{Q \subset R} \langle \sigma \rangle_{Q} \mathbf{1}_Q(x) \right\|_{L^p(w)} \lesssim \sum_{P \in \mathcal{P}} \left(\sum_{P \in \mathcal{P}} \langle \sigma \rangle_p w(P) \right)^{\frac{1}{p}}.
\]

We follow the idea of [5]. Define \(\Phi_0(t) = t^{-p(r+1)/2} \), set \(\gamma = \frac{1}{2(r+1)} \). Since \(r > 1 \) and it is dominated by some constant that depends only on the structure constant of \(X \), it is easy to check that
\[
[\Phi_0]_{B_p} = \int_{1/2}^{\infty} \Phi_0(t) \frac{dt}{t^p} \leq c_{p,D} \frac{p(r+1) - 2}{p(r-1)} \frac{p^{(r-1)p}}{2^{p(r-1)}},
\]
\[
\leq c_{p,D} \frac{p(r+1) - 2}{p(r-1)} \frac{2^{p(r-1)}}{2^{p(r-1)}} = c_{p,D} [\Phi]_{B_p}.
\]

Now notice that
\[
\frac{2^{r+1}}{r} + \frac{1}{4} = \frac{3}{4} + \frac{1}{4r} < 1.
\]

We have
\[
\int_Q \sigma^{\frac{r+1}{4}} \leq \left(\int_Q \sigma^{\frac{2^{r+1}}{r} - \frac{1}{4}} \right)^{\frac{2^{r+1}}{r}} \cdot \left(\int_Q \sigma^{\frac{1}{4}} \right)^{\frac{1}{4}}.
\]

It follows that
\[
\| \sigma \|_{\Phi_0,Q} \leq \| \sigma \|_{\Phi_0,P} \| \sigma \|_{\Phi_0,P}^{1-\gamma} \| \sigma \|_{\Phi_0,P}^{\gamma}.
\]

Therefore, by the sparseness and Lemma 2.3
\[
\sum_{P \in \mathcal{P}} \langle \sigma \rangle_p w(P) \leq \sum_{P \in \mathcal{P}} w(P) \| \sigma \|_{\Phi_0,P} \| \sigma \|_{\Phi_0,P}^{1-\gamma} \| \sigma \|_{\Phi_0,P}^{\gamma} \| \sigma \|_{\Phi_0,P}^{p} \| \Phi_0,P \|_{P} \mu(P)
\]
\[
\leq \sum_{P \in \mathcal{P}} \langle w \rangle \| \sigma \|_{\Phi_0,P}^{p} \| \sigma \|_{\Phi_0,P}^{1-\gamma} \| \sigma \|_{\Phi_0,P}^{\gamma} \| \sigma \|_{\Phi_0,P}^{p} \| \Phi_0,P \|_{P} \mu(P)
\]
\[
\leq \| w \| \| \sigma \|_{\Phi_0,P}^{p(1-\gamma)} \| \sigma \|_{\Phi_0,P}^{\gamma} \| \sigma \|_{\Phi_0,P}^{p} \| \Phi_0,P \|_{P} \mu(P)
\]
\[
\lesssim \| w \| \| \sigma \|_{\Phi_0,P}^{p(1-\gamma)} \| \sigma \|_{\Phi_0,P}^{\gamma} \int M_{\Phi_0}(1_R \sigma)(x)^p d\mu
\]
< [w, σ]_{p, \Phi, p}^{\gamma(1-\gamma)/2} 2^{(a+1)\gamma} [\Phi_0]_{B_p} \sigma(R)
\leq [w, σ]_{p, \Phi, p}^{\gamma(1-\gamma)/2} 2^{(a+1)\gamma} [\Phi]_{B_p} \sigma(R).

Consequently,

\| \sum_{Q \in S} \langle \sigma \rangle Q \mathbf{1}_Q(x) \|_{L_p(w)} \leq [w, σ]_{p, \Phi, p}^{\gamma(1-\gamma)/2} 2^{(a+1)\gamma/p} \sum_a \langle \Phi \rangle_{B_p} [w, σ]_{p, \Phi, p}^{\gamma/p} \leq C_{p, D, \kappa} [w, σ]_{p, \Phi, p}^{\gamma/p}.

This completes the proof.

Acknowledgements. This work was done while the author was visiting Department of Mathematics and Statistics, University of Helsinki. He thanks the Department of Mathematics and Statistics, University of Helsinki and Professor Tuomas P. Hytönen for hospitality and support. He thanks Olli Tapiola for the nice talk on the weak A_∞ class. Particular thanks go to Professor Tuomas P. Hytönen for carefully reading the paper and many helpful suggestions.

References

[1] T. Anderson, D. Cruz-Uribe and K. Moen, Logarithmic bump conditions for Calderón-Zygmund operators on spaces of homogeneous type, Publicacions Matemàtiques, to appear.
[2] T. Anderson, T. Hytönen and O. Tapiola, Weak A_∞ weights and weak Reverse Hölder property in a space of homogeneous type, http://arxiv.org/abs/1410.3608.
[3] T. Anderson and A. Vagharshakyan, A simple proof of the sharp weighted estimate for Calderón-Zygmund operators on homogeneous spaces, J. Geom. Anal., 24(2014), 1276–1297.
[4] M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628.
[5] D. Cruz-Uribe, A. Reznikov and A. Volberg, Logarithmic bump conditions and the two-weight boundedness of Calderón-Zygmund operators, Adv. Math., 255(2014) 706–729.
[6] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math., 175 (2012), 1473–1506.
[7] T. Hytönen and A. Kairema, Systems of dyadic cubes in a doubling metric space, Colloq. Math., 126(2012), 1–33.
[8] T. Hytönen and A. Kairema, What is a cube? Ann. Acad. Sci. Fenn., 38(2013), 405–412.
[9] T. Hytönen and M. Lacey, The A_p-A_∞ inequality for general Calderón-Zygmund operators, Indiana Univ. Math. J. 61 (2012), 2041–2052.
[10] M. Lacey, On the separated bumps conjecture for Calderon-Zygmund operators, to appear in Hokkaido Math. J., available at http://arxiv.org/abs/1310.3507.
[11] M. Lacey, E. Sawyer and I. Uriate-Tuero, Two weight inequalities for discrete positive operators, http://arxiv.org/abs/0911.3437.
[12] A. Lerner, A simple proof of the A_2 conjecture, Int. Math. Res. Not. 2012; doi: 10.1093/imrn/rms145.
[13] A. Lerner and K. Moen, Mixed A_p-A_∞ estimates with one supremum, Studia Math., 219 (2013), 247–267.
[14] A. Lerner and F. Nazarov, Intuitive dyadic calculus: the basics.
[15] F. Nazarov, A. Reznikov and A. Volberg, Bellman approach to the one-sided bumping for weighted estimates of Calderón-Zygmund operators, http://arxiv.org/abs/1306.2653.
[16] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L^p-spaces with different weights, Proc. Lond. Math. Soc., 71(1995), 135–157.
[17] C. Pérez and R. Wheeden, Uncertainty principle estimates for vector fields, J. Funct. Anal., 181(2001), 146–188.
[18] G. Pradolini and O. Salinas, Maximal operators on spaces of homogeneous type, Proc. Amer. Math. Soc., 132(2004), 435–441.

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
E-mail address: likangwei9@mail.nankai.edu.cn