One-shot quantum state exchange

Yonghae Lee,¹,‡ Hayata Yamasaki,²,† Gerardo Adesso,³‡ and Soojoon Lee⁴,‡,§

¹Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea
²Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
³School of Mathematical Sciences and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, England, United Kingdom

(Received 31 May 2019; published 8 October 2019)

Quantum state exchange is a quantum communication task in which two users exchange their respective quantum information in the asymptotic setting. In this paper, we consider a one-shot version of the quantum state exchange task, in which the users hold a single copy of the initial state, and they exchange their parts of the initial state by means of entanglement-assisted local operations and classical communication. We first derive lower bounds on the least amount of entanglement required for carrying out this task, and provide conditions on the initial state such that the protocol succeeds with zero entanglement cost. Based on these results, we study how the users deal with their symmetric information in order to reduce the entanglement cost. Moreover, we show that it is possible for the users to gain extra shared entanglement after this task.

DOI: 10.1103/PhysRevA.100.042306

I. INTRODUCTION

In quantum information theory, quantum state exchange [1,2] is a quantum communication task in which two users, Alice and Bob, exchange their quantum information by means of local operations and classical communication (LOCC) assisted by shared entanglement. A main research aim in the study of the quantum state exchange is to evaluate the least amount of entanglement needed for the task, as in other quantum communication tasks, such as quantum state merging [3,4] and quantum state redistribution [5,6].

Most quantum communication tasks [3–8] including the quantum state exchange usually assume the asymptotic scenario, in which users can have an unbounded number of independent and identically distributed copies of an initial state, and they carry out their task with the copies. On the other hand, it is not easy in a realistic situation to prepare a sufficiently large number of state copies, and the amount of nonlocal resources available for the users is limited. To reflect these practical difficulties, quantum information research has focused more recently on the one-shot scenario [9–17].

Another reason for considering the one-shot scenario is that one-shot results can be applied to the asymptotic scenario. For example, in the original quantum state merging [3,4], the authors devised a one-shot merging protocol in order to evaluate the minimum amount of entanglement needed for asymptotic merging. Since the optimal entanglement costs for the asymptotic state exchange tasks are unknown [1,2], analysis of the one-shot scenario can be a good turning point in evaluating the entanglement cost.

In this paper, we introduce and study the one-shot quantum state exchange (OSQSE) task. This is not only a useful quantum communication task, but can also have a potential application in quantum computation. Let us consider a specific situation as follows. Alice and Bob want to carry out the SWAP gate [18], which plays an important role in universal quantum computation [19]. The problem is that they cannot directly apply the SWAP gate, because they are far apart. If Alice and Bob are sharing prior entanglement, then the OSQSE can be a method to nonlocally perform the SWAP gate, as both operationally provide the same result. Thus the OSQSE task can be useful for quantum computation.

This paper is organized as follows. In Sec. II, we formally define three different OSQSE protocols and their optimal entanglement costs. In Sec. III, we derive computable lower bounds on the latter, which in turn yield bounds for the asymptotic quantum state exchange [1,2]. In addition, we provide two useful conditions to decide whether a given initial state enables OSQSE with zero entanglement cost in Sec. IV. In Sec. V, we present two examples which lead to properties of the OSQSE. In Sec. VI, we investigate under what conditions the optimal entanglement cost cannot be negative. We summarize our results and comment on some open problems in Sec. VII.

II. ONE-SHOT QUANTUM STATE EXCHANGE

Consider two users, Alice and Bob, holding parts A and B of the initial state $|\psi\rangle = |\psi\rangle_{A_1B_1A_2B_2R}$ of systems $A = A_1A_2$ and $B = B_1B_2$, respectively, and R indicates the reference system on which neither Alice nor Bob can perform any operation. Their goal is either to exchange their parts A_1 and B_1 or to exchange their whole parts A and B.

Specifically, let ψ_{f_1} and ψ_{f_2} be the final states of the task:

$$\psi_{f_1} = (I_{A_1 \rightarrow A_1} \otimes I_{B_1 \rightarrow B_1} \otimes I_{A_2B_2R})(|\psi\rangle),$$

$$\psi_{f_2} = (I_{A \rightarrow A} \otimes I_{B \rightarrow B} \otimes I_{R})(|\psi\rangle).$$

(1)
where $\psi = |\psi\rangle \langle \psi|$, and B'_i and $B' (A'_i$ and $A')$ are Alice’s (Bob’s) systems of dimensions which are identical to those of systems B_1 and B (A_1 and A), respectively. Then three operations

$$
E_{\psi,K,L}^1 : A_1^{E_{\text{in}}^A} \otimes B_1^{E_{\text{in}}^B} \rightarrow B_1^{E_{\text{out}}^B} \otimes A_1^{E_{\text{out}}^A},
$$

$$
E_{\psi,K,L}^{1/2} : A_1^{E_{\text{in}}^A} \otimes B_1^{E_{\text{in}}^B} \rightarrow B_1^{E_{\text{out}}^B} \otimes A_1^{E_{\text{out}}^A},
$$

$$
E_{\psi,K,L}^{12} : A_1^{E_{\text{in}}^A} \otimes B_1^{E_{\text{in}}^B} \rightarrow B_1^{E_{\text{out}}^B} \otimes A_1^{E_{\text{out}}^A},
$$

are called the OSQSE protocols of $|\psi\rangle$, if they are performed by LOCC between Alice and Bob and satisfy

$$
\psi_{f_1} \otimes \Phi = (E_{\psi,K,L}^1 \otimes I_{A_2,B_2})(\psi \otimes \Psi),
$$

$$
\psi_{f_2} \otimes \Phi = (E_{\psi,K,L}^{1/2} \otimes I_{A_2})(\psi \otimes \Psi),
$$

where Ψ and Φ are pure maximally entangled states with Schmidt rank K and L on systems E_{in}^A and E_{in}^B, respectively. It is possible to generalize the above definitions by adding errors for approximation to Eq. (3), but it suffices to only consider error-free protocols to obtain our main results.

At this point, it is instructive to inform differences among the three protocols in Eq. (2) as follows: The first two protocols $E_{\psi,K,L}^1$ and $E_{\psi,K,L}^{1/2}$ indicate that only the parts A_1 and B_1 are exchanged, while the whole parts A_1A_2 and B_1B_2 are exchanged in the third protocol $E_{\psi,K,L}^{12}$. In addition, the parts A_2 and B_2 can be used for exchanging A_1 and B_1 in the protocol $E_{\psi,K,L}^{1/2}$, while A_2 and B_2 are untouched in the protocol $E_{\psi,K,L}^{12}$. These protocols are described in Fig. 1.

Depending on the types of OSQSE protocols, we define three optimal entanglement costs

$$
e_{A_1 \rightarrow B_1}(\psi) = \inf_{E_{\psi,K,L}^1} (\log K - \log L),
$$

$$
e_{A_1 \rightarrow B_1}^{A_2,B_2}(\psi) = \inf_{E_{\psi,K,L}^{1/2}} (\log K - \log L),
$$

$$
e_{A \rightarrow B}(\psi) = \inf_{E_{\psi,K,L}^{12}} (\log K - \log L),
$$

where logarithms are taken to base two throughout this paper, the quantity $\log K - \log L$ is called the entanglement cost of the OSQSE protocol, and the infimums are taken over all joint protocols $E_{\psi,K,L}^1, E_{\psi,K,L}^{1/2}$, and $E_{\psi,K,L}^{12}$, respectively.

By the definitions of the optimal entanglement costs, we obtain the following proposition.

Proposition 1. For any input state ψ, $e_{A_1 \rightarrow B_1}(\psi) \geq e_{A_1 \rightarrow B_1}^{A_2,B_2}(\psi)$.

III. CONVERSE BOUNDS

A real number r is called a converse bound of the optimal entanglement cost if it is upper bounded by the entanglement cost of any OSQSE protocol. In this section, we first derive theoretical converse bounds of the three optimal entanglement costs and also provide computable converse bounds of them.

Theorem 1. Let F be an additive and Schur concave function such that $F(\sigma^M) = \log M$ for any M, where σ^M is the maximally mixed state with rank M. Let N^r be a quantum channel from R to R_λ. Then for any initial state ψ,

$$
e_{A_1 \rightarrow B_1}(\psi) \geq \max\{l_1(\psi), l_2(\psi)\},
$$

$$
e_{A_1 \rightarrow B_1}^{A_2,B_2}(\psi) \geq l_1(\psi),
$$

$$
e_{A \rightarrow B}(\psi) \geq l_2(\psi),
$$

where $l_i(\psi)$ are defined as

$$l_1(\psi) = \sup_{F_{\lambda,N}} [F(N(\psi)_{B_1R_\lambda}) - F(N(\psi)_{A_1R_\lambda})],
$$

$$l_2(\psi) = \sup_{F_{\lambda,N}} [F(N(\psi)_{B_1A_2}) - F(N(\psi)_{A_1R_\lambda})],
$$

$$l_3(\psi) = \sup_{F_{\lambda,N}} [F(N(\psi)_{B_1A_2}) - F(N(\psi)_{A_1R_\lambda})].
$$

Proof. As in the asymptotic scenario [1,2], we consider a one-shot version of the R-assisted quantum state exchange task, in which the reference system R is divided into two systems R_λ and R_β, and then Alice and Bob receive the divided parts R_λ and R_β, respectively, so that the initial state $|\psi\rangle_{A_1B_1A_2B_2R_\lambda R_\beta}$ is divided into Alice’s parts AR_λ and Bob’s parts BR_β. This can be realized by using a quantum channel from R to R_λ. Then for any initial state ψ,

$$
e_{A_1 \rightarrow B_1}(\psi) \geq \max\{l_1(\psi), l_2(\psi)\},
$$

$$
e_{A_1 \rightarrow B_1}^{A_2,B_2}(\psi) \geq l_1(\psi),
$$

$$
e_{A \rightarrow B}(\psi) \geq l_2(\psi),
$$

where $l_i(\psi)$ are defined as

$$l_1(\psi) = \sup_{F_{\lambda,N}} [F(N(\psi)_{B_1R_\lambda}) - F(N(\psi)_{A_1R_\lambda})],
$$

$$l_2(\psi) = \sup_{F_{\lambda,N}} [F(N(\psi)_{B_1A_2}) - F(N(\psi)_{A_1R_\lambda})],
$$

$$l_3(\psi) = \sup_{F_{\lambda,N}} [F(N(\psi)_{B_1A_2}) - F(N(\psi)_{A_1R_\lambda})].
$$
channel \(\mathcal{N} : R \rightarrow R_A \) and its complementary channel \(\mathcal{N}^c : R \rightarrow R_B \) [20]. Let \(\mathcal{R}^{1}_{\psi,K,L}, \mathcal{R}^{12}_{\psi,K,L} \) and \(\mathcal{R}^{12}_{\psi,K,L} \) be \(R \)-assisted OSQE protocols of \(\psi \),

\[
\mathcal{R}^{1}_{\psi,K,L} : A_1 E_A^{|in} \otimes B_1 E_B^{|in} \rightarrow B_1' E_A^{|out} \otimes A_1' E_B^{|out},
\]

\[
\mathcal{R}^{12}_{\psi,K,L} : A E_A^{|in} \otimes B E_B^{|in} \rightarrow B_1' A_1' E_A^{|out} \otimes A' B_2 E_B^{|out},
\]

\[
\mathcal{R}^{12}_{\psi,K,L} : A E_A^{|in} \otimes B E_B^{|in} \rightarrow B_1' E_A^{|out} \otimes A' E_B^{|out},
\]

with the entanglement cost \(\log K - \log L \) such that

\[
\tilde{\psi}_{f_1} \otimes \Phi = \left(\mathcal{R}^{1}_{\psi,K,L} \otimes I_{A_1 B_1 R_1 R_2} \right) \left(\tilde{\psi} \otimes \psi \right),
\]

\[
\tilde{\psi}_{f_12} \otimes \Phi = \left(\mathcal{R}^{12}_{\psi,K,L} \otimes I_{R_1 R_2} \right) \left(\tilde{\psi} \otimes \psi \right),
\]

where

\[
\tilde{\psi}_{f_1} = \left(I_{A_1 R_1} \otimes I_{B_1} \otimes I_{R_1 R_2} \right) \left(\tilde{\psi} \right),
\]

\[
\tilde{\psi}_{f_12} = \left(I_{A_1 R_1} \otimes I_{B_1' R_1} \otimes I_{R_1 R_2} \right) \left(\tilde{\psi} \right),
\]

and \(B_1', B_2', A_1', A' \) are defined as in Eq. (1).

We first derive a converse bound of the entanglement cost \(e_{A_{1 \rightarrow B_1}}(\psi) \) as follows.

Note that the protocol \(\mathcal{R}^{1}_{\psi,K,L} \) is an LOCC protocol between Alice’s part \(A R_A E_A^{|in} \) and Bob’s part \(B R_B E_B^{|in} \). So, from the majorization condition for LOCC convertibility [21,22], the state \(\tilde{\rho}_{R_1 R_2} \otimes \sigma_{E_A^{|out}}^K \) majorizes the state \(\rho_{R_1 R_2} \otimes \sigma_{E_B^{|out}}^L \), which can be more succinctly represented by using the notation \(\prec \) as follows:

\[
\tilde{\rho}_{R_1 R_2} \otimes \sigma_{E_A^{|out}}^K \prec \rho_{R_1 R_2} \otimes \\sigma_{E_B^{|out}}^L.
\]

Then, from the Schur concavity of the function \(\log F \), the following inequality holds:

\[
F \left(\tilde{\rho}_{R_1 R_2} \otimes \sigma_{E_B^{|out}}^L \right) \leq F \left(\rho_{R_1 R_2} \otimes \sigma_{E_B^{|out}}^L \right).
\]

Since \(\tilde{\rho}_{R_1 R_2} \otimes \sigma_{E_B^{|out}}^L \) and \(F \) is additive, it follows that

\[
\log K - \log L \geq F \left(\rho_{R_1 R_2} \right) - F \left(\tilde{\rho}_{R_1 R_2} \right),
\]

\[
= F \left(N(\psi)_{R_1 R_2} \right) - F \left(\tilde{N}(\psi)_{R_1 R_2} \right).
\]

Let us now consider an \(R \)-assisted OSQE protocol \(\mathcal{R}^{1}_{\tilde{\psi}_{f_1 K,L}} \) exchanging \(B_1' \) and \(A_1' \) of the final state \(\tilde{\psi}_{f_1} \), which is defined by exchanging Alice’s role and Bob’s role in the protocol \(\mathcal{R}^{1}_{\psi,K,L} \). That is, \(\mathcal{R}^{1}_{\tilde{\psi}_{f_1 K,L}} \) is an LOCC protocol

\[
\mathcal{R}^{1}_{\tilde{\psi}_{f_1 K,L}} : B_1' E_A^{|in} \otimes A_1' E_B^{|in} \rightarrow A_1' E_A^{|out} \otimes B_1' E_B^{|out}
\]

of the state \(\tilde{\psi}_{f_1} \) satisfying

\[
\left(\mathcal{R}^{1}_{\tilde{\psi}_{f_1 K,L}} \otimes I_{A_1 B_1 R_1 R_2} \right) \left(\tilde{\psi}_{f_1} \otimes \Phi \right) = \tilde{\psi}_{f_1} \otimes \Phi,
\]

where \(\tilde{\psi}_{f_1} = \left(I_{A_1 R_1} \otimes I_{B_1' R_1} \otimes I_{A_1 B_1 R_1 R_2} \right) \left(\tilde{\psi}_{f_1} \right) \) and \(A_1' (B_1') \) is Alice’s (Bob’s) system the dimension of which equals \(A_1 (B_1) \). Then, by using the majorization condition for LOCC convertibility [21,22] again, we have \(\rho_{R_1 R_2} \otimes \sigma_{E_A^{|out}}^K \prec \tilde{\rho}_{R_1 R_2} \otimes \sigma_{E_B^{|out}}^L \), which implies that

\[
\log K - \log L \geq F \left(N(\psi)_{R_1 R_2} \right) - F \left(\tilde{N}(\psi)_{R_1 R_2} \right).
\]
function \(g^{(i)}(x) \) on the interval [0,1] defined as
\[
g^{(i)}(x) = \begin{cases}
 f^0_\psi(\infty) & \text{if } x = 0 \\
 f^{(1)}_\psi(\frac{1}{2}) & \text{otherwise},
\end{cases}
\]
then \(g^{(i)}(x) \) is continuous on [0,1]. By using the extreme value theorem again, there exists a number \(\alpha_0 \in [0,1] \) such that \(g^{(i)}(\alpha_0) \geq g^{(i)}(x) \) for all \(x \in [0,1] \). It follows that there exists a number \(\beta^{(i)} \in [1, \infty] \) such that \(f^0_\psi(\alpha_0) \geq f^{(i)}_\psi(\alpha) \) for all \(\alpha \in [1, \infty] \). By setting \(\alpha_0 = \max(\alpha^{(i)}_0, \beta^{(i)}) \), we obtain that
\[
\max_{\alpha \in [0, \infty]} f^0_\psi(\alpha) = f^0_\psi(\alpha_0) \geq f^{(i)}_\psi(\alpha),
\]
for all \(\alpha \in [0, \infty] \). Similarly, we know that, for each \(i \), there exists \(\beta^{(i)} \in [0, \infty] \) such that \(\max_{\alpha \in [0, \infty]} |f^{(i)}_\psi(\alpha)| = |f^{(i)}_\psi(\beta^{(i)})| \).

We also remark that in Theorem 1, if \(F \) is chosen as the von Neumann entropy \(\text{[20]} \), then the converse bound \(I \) recovers a theoretical converse bound in Ref. [2]. In addition, a computable converse bound therein is just \(I_{\text{old}}(\psi) = \max\{f^{(2)}_\psi(1), f^{(3)}_\psi(1)\} \) in Corollary 1. By virtue of the additivity of \(F \), it is clear that \(I_3 \) and \(I_{\text{new}} \) are also converse bounds of the optimal entanglement cost for the asymptotic quantum state exchange task. Hence, our converse bounds improve the existing bounds in Ref. [2]. For example, if the initial state \(|\psi_1\rangle \equiv |\psi_1\rangle_{A_1,B_1,A_2,B_2} \) has the specific form
\[
|\psi_1\rangle = \frac{1}{5} |00000\rangle + \frac{3}{50} |00010\rangle + \frac{3}{50} |01001\rangle + \frac{\sqrt{27}}{50} |11100\rangle,
\]
then we can find a value \(\alpha_0 \in [0, \infty] \) such that
\[
I_{\text{new}}(\psi_1) = \max\{f^{(2)}_\psi(\alpha_0), f^{(3)}_\psi(\alpha_0)\} > I_{\text{old}}(\psi_1),
\]
as depicted in Fig. 2. This example shows that our bound \(I_{\text{new}}(\psi) \) is tighter than the existing bound \(I_{\text{old}}(\psi) \).

IV. CONDITIONS FOR ZERO ENTANGLEMENT COST

We now present conditions for OSQSE at zero entanglement cost.

By the converse bounds in Corollary 1, it is obvious that if there exist Alice’s and Bob’s local isometries performing the OSQSE task, then the optimal entanglement cost is zero. We first characterize this type of strategy. Let \((X,Y) \) be a pair of two systems, which can be either \((A_1,B_1) \) or \((A,B) \), and consider a spectral decomposition of the reduced state \(\rho_{XY} \) for \(|\psi\rangle \), \(\rho_{XY} = \sum_{i=1}^{N} \lambda_i |\xi_i\rangle \langle \xi_i|_{XY} \), where \(\lambda_i > 0 \) with \(\sum_{i=1}^{N} \lambda_i = 1 \). For each \(i \), we define the matrix \(\Omega^{(i)}_{XY}(\psi) \) as
\[
\Omega^{(i)}_{XY}(\psi) = \sum_{j,k} (|j_X \otimes |k_Y\rangle \langle \xi_i|_{XY} |j_X \rangle \langle k_Y|),
\]
where \(\{|j\rangle \} \) and \(\{|k\rangle \} \) indicate the computational bases on Alice’s and Bob’s systems, respectively. Then we obtain the following sufficient condition.

Theorem 2. Let \((X,Y) \) be either \((A_1,B_1) \) or \((A,B) \). If there exist isometries \(U \) and \(V \) such that, for each \(i \),
\[
\Omega^{(i)}_{XY}(\psi) = U \Omega^{(i)}_{XY}(\psi)V,
\]
where \(W' \) is the transpose of the matrix \(W \), then \(e_{\text{direct}}(\psi) = 0 \).

Here, the isometries \(U \) and \(V \) indicate Alice’s and Bob’s local operations exchanging the parts \(X \) and \(Y \) without shared entanglement.

Proof of Theorem 2. For \(X = A \) and \(Y = B \), we consider the Schmidt decomposition, \(|\psi\rangle_{AB} = \sum_{i=1}^{\sqrt{\lambda_i}} \sqrt{\lambda_i} |\xi_i\rangle_{AB} \otimes |i\rangle_R \), where \(\lambda_i > 0 \) with \(\sum_{i=1}^{\sqrt{\lambda_i}} \lambda_i = 1 \). For the computational bases \(\{|j\rangle \} \) and \(\{|k\rangle \} \) on the systems \(A \) and \(B \), respectively, we have
\[
|\psi\rangle_{AB} = \sum_{i=1}^{N} \sum_{j,k} \Omega^{(i)}_{AB}(\psi)_{jk} |j\rangle_{A} \otimes |k\rangle_{B} \otimes |i\rangle_R, \tag{33}
\]
where \(\Omega^{(i)}_{AB}(\psi) = |\langle j_X | \langle k_Y| \xi_i\rangle_{AB}|. \) If the parts \(A \) and \(B \) are perfectly exchanged, then Alice and Bob hold the final state:
\[
|\psi\rangle_{BAR} = \sum_{i=1}^{\sqrt{\lambda_i}} \sum_{j,k} \Omega^{(i)}_{AB}(\psi)_{jk} |j\rangle_{B} \otimes |k\rangle_{A} \otimes |i\rangle_R. \tag{34}
\]
Assume that there exist isometries \(U \) and \(V \) such that
\[
[\Omega^{(i)}_{AB}(\psi)]^\dagger = U \Omega^{(i)}_{AB}(\psi)V \tag{35}
\]
for each \(i \). Then we have, for each \(i \),
\[
[\Omega^{(i)}_{AB}(\psi)]_{jk} = \sum_{l,m} \Omega^{(i)}_{AB}(\psi)_{lm} |j\rangle |U| \langle k| V^* |m\rangle. \tag{36}
\]
which implies that
\[
|\psi\rangle_{BAR} = \sum_{i=1}^{N} \sum_{j,m} \Omega^{(i)}_{AB}(\psi)_{jm} |j\rangle |U| \langle k| V^* |m\rangle \otimes |i\rangle_R
\]
\[
= \sum_{i=1}^{N} \sqrt{\lambda_i} \sum_{j,m} \Omega^{(i)}_{AB}(\psi)_{jm} U |i| \otimes V^* |m\rangle \otimes |i\rangle_R
\]
\[
= (U \otimes V^* \otimes I_R) |\psi\rangle_{AB}. \tag{37}
\]
Hence, $e_{A \leftrightarrow B}(\psi) = 0$. Similarly, for $X = A_1$ and $Y = B_1$, we show that $e_{A_1 \leftrightarrow B_1}(\psi) = 0$ by using isometries U' and V' such that, for each i, $(\Omega_{A_iB_i}(\psi))' = U'\Omega_{A_iB_i}(\psi)V'$.

From the converse bounds in Corollary 1, observe that if the spectrum of Alice’s state is different from that of Bob’s state, then the optimal entanglement cost cannot be zero. Based on this observation, we obtain the following theorem, the proof of which can be found in the Appendix.

Theorem 3. Let (X, Y) be either (A_1, B_1) or (A, B). If $e_{X \leftrightarrow Y}(\psi) = 0$, then there exists an isometry $U_{X \rightarrow Y}$ such that $\rho_f = U_{X \rightarrow Y}\rho_X U_{X \rightarrow Y}'$.

We remark that the converse of Theorem 3 is not true in general. Let us consider the following simple initial state:

$$|\psi_2\rangle_{A_1B_2A_2B_2} = \frac{1}{\sqrt{2}}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle),$$

then, from Corollary 1, we know that $e_{A_1 \leftrightarrow B_1}(\psi_2) \geq |f_{\phi_1}^{(3)}(\alpha)| = 2$ for any α. In addition, Alice and Bob can exchange A_1 and B_1, by using quantum teleportation [24]. In this case, the entanglement cost is two ebits. Thus we obtain that $e_{A_1 \leftrightarrow B_1}(\psi_2) = 2$. However, the state $|\psi_2\rangle$ satisfies the necessary condition in Theorem 3, since its reduced states ρ_{A_1} and ρ_{B_1} are identical.

V. EXAMPLES

In this section, we present two examples, which show properties of the OSQSE task.

A. Symmetric information

For the initial state $|\psi\rangle$, let us consider a scenario in which Alice and Bob exchange their whole information A and B. Assume that their parts A_2 and B_2 are symmetric, while the remaining parts A_1 and B_1 are not symmetric, i.e., the initial state $|\psi\rangle$ satisfies $(\text{SWAP}_{A_1 \leftrightarrow B_1})(|\psi\rangle) \neq |\psi\rangle$ and $(\text{SWAP}_{A_2 \leftrightarrow B_2})(|\psi\rangle) = |\psi\rangle$, where SWAP$_{A_1 \leftrightarrow B_1}$ is the operation swapping quantum states in systems X and Y.

In the OSQSE, the proper use of the symmetric parts A_2 and B_2 can more efficiently reduce the entanglement cost compared to exchanging only A_1 and B_1 without using A_2 and B_2. To be specific, there exists an initial state $|\psi\rangle$ such that the parts A_2 and B_2 are symmetric and $e_{A \leftrightarrow B}(\psi) = 0$ while the rest parts A_1 and B_1 are not symmetric. Consider the specific initial state

$$|\phi_1\rangle_{A_1B_1A_2B_2R} = \frac{1}{\sqrt{2}}(|0000\rangle + |0111\rangle),$$

where A_2 and B_2 are symmetric but A_1 and B_1 are not. Since $\Omega_{AB}^{(1)}(\phi_1) = |00\rangle \langle 00|$ and $\Omega_{AB}^{(2)}(\phi_1) = |11\rangle \langle 11|$, we can show that $\Omega_{AB}^{(1)}(\phi_1)$ and $\Omega_{AB}^{(2)}(\phi_1)$ satisfy the condition in Theorem 2, by setting

$$U = V = |00\rangle \langle 00| + |01\rangle \langle 11| + |10\rangle \langle 10| + |11\rangle \langle 11|.$$

Thus we obtain that $e_{A \leftrightarrow B}(\phi_1) = 0$, which means that A and B can be exchanged by means of LOCC without consuming any nonlocal resource.

The above example also shows that the use of the symmetric parts A_2 and B_2 can reduce the entanglement cost for exchanging A_1 and B_1. From the converse bound in Corollary 1, we obtain $e_{A_1 \leftrightarrow B_1}(\phi_1) \geq \frac{f_{\phi_1}^{(1)}(\alpha)}{2} = 1$ for any α. Using quantum teleportation [24], B_1 can be sent from Bob to Alice by consuming an ebit, and Bob can prepare the part A_1. This implies that $e_{A_1 \leftrightarrow B_1}(\phi_1) = 1$. Observe that the isometry $U(V)$ in Eq. (40) represents Alice’s (Bob’s) local operation CNOT$_A$ (CNOT$_B$) where the target and controlled systems are $A_1 (B_1)$ and $A_2 (B_2)$, respectively. This implies that Alice and Bob can exchange A_1 and B_1 by using local operations. It follows that $0 \geq e_{A_1 \leftrightarrow B_1}(\phi_1)$. In fact, $e_{A_1 \leftrightarrow B_1}(\phi_1) = 0$ from Corollary 1. Therefore, we obtain $e_{A_1 \leftrightarrow B_1}(\phi_1) > e_{A_2 \leftrightarrow B_2}(\phi_1)$.

When A_2 and B_2 are symmetric, we can show the following relation between the optimal entanglement costs by definition.

Proposition 2. $e_{A \leftrightarrow B}(\psi) = e_{A_2B_2}(\psi)$, if the parts A_2 and B_2 of $|\psi\rangle$ are symmetric.

From Proposition 2, we can see that, when Alice and Bob exchange systems A and B of $|\psi\rangle$ with symmetric parts A_2 and B_2, they can achieve the optimal entanglement cost by exchanging only A_1 and B_1, making the most of this symmetry.

B. Negative entanglement cost

As in the asymptotic quantum state exchange task [1,2], there exist initial states to show that the entanglement cost of the OSQSE task can be negative. Assume that Alice and Bob exchange the parts A_1 and B_1 of the initial state

$$|\phi_2\rangle_{A_1B_1A_2B_2} = \frac{1}{\sqrt{2}} \sum_{i,j=0}^{1} |i\rangle_{A_1} |j\rangle_{B_1} |j\rangle_{A_2} |i\rangle_{B_2},$$

where $|\phi_2\rangle$ consists of two ebits $|e\rangle_{A_1B_2}$ and $|e\rangle_{B_1A_2}$. To exchange A_1 and B_1, both Alice and Bob prepare an ebit, respectively, and they locally implement entanglement swapping [25] by performing two Bell measurements on A_2, B_2, and the parts of the ebits, as described in Fig. 3. Then they can exchange A_1 and B_1, and can share two ebits at the same time. In fact, we have $e_{A_1B_2}(\phi_2) = -2$ from Corollary 1. This means that the entanglement cost can be negative.
We note that, in Ref. [2], the negativity of the entanglement cost has been theoretically shown by using the merge-and-merge strategy, which is not optimal in general. On the other hand, our example in Eq. (41) elucidates the OSQSE strategy, in which Alice and Bob can exactly achieve the negative optimal entanglement cost. Moreover, this example tells us that it is worth using Alice’s and Bob’s parts \(A_2 \) and \(B_2 \) in order to reduce the entanglement cost. Assume that Alice and Bob do not apply any local operations on \(A_2 \) and \(B_2 \), then they can exchange \(A_1 \) and \(B_1 \) by using quantum teleportation [24] twice. From the converse bound in Corollary 1, \(e_{A_1 \leftrightarrow B_1}(\phi_2) \geq 2 \), and so we obtain that \(e_{A_1 \leftrightarrow B_1}(\phi_2) = 2 \) and the optimal OSQSE protocol for \(\phi_2 \) is just two quantum teleportation protocols for \(A_1 \) and \(B_1 \). This means that it is not always possible for Alice and Bob to reduce the amounts of entanglement and classical communication, even though they know the information about the initial state. On the other hand, in this case, if Alice and Bob use their parts \(A_2 \) and \(B_2 \), then the entanglement cost can be reduced as follows:

\[
e_{A_1 \leftrightarrow B_1}(\phi_2) = 2 > -2 = e_{A_2 \leftrightarrow B_2}(\phi_2). \tag{42}
\]

VI. NON-NEGATIVITY CONDITIONS FOR ENTANGLEMENT COST

From Proposition 2, we can know that if \(A_2 \) and \(B_2 \) are symmetric then \(e^{A_2B_2}_{B_2A_2}(\psi) \) cannot be negative, contrary to the example in Sec. V B. One may ask the question: Is there any condition that implies the non-negativity of the optimal entanglement cost \(e_{A_1 \leftrightarrow B_1}^{A_2B_2}(\psi) \)? To answer this question, we present the following inequalities.

Proposition 3.

\[
\begin{align*}
e^{A_2B_2}_{B_2A_2}(\psi) + e^{A_2B_2}_{A_2 \leftrightarrow B_1}(\psi_f) & \geq 0, \\
e^{A_2B_2}_{B_2A_2}(\psi) + e^{A_2B_2}_{A_1 \leftrightarrow B_2}(\psi_f) & \geq e_{A_2 \leftrightarrow B_2}(\psi),
\end{align*}
\]

where \(e^{A_2B_2}_{B_2A_2}(\psi_f) \) is the optimal entanglement cost for exchanging \(B_2 \) and \(A_1 \) when using \(A_2 \) and \(B_2 \), and \(e^{A_2B_2}_{A_1 \leftrightarrow B_2}(\psi_f) \) is the optimal entanglement cost for exchanging \(A_2 \) and \(B_2 \) when using \(B_1 \) and \(A_1 \).

In Proposition 3, the first inequality comes from the fact that Alice and Bob cannot increase the amount of entanglement between them by means of LOCC [26], while the second one is straightforward from the definitions of the optimal entanglement costs. From Proposition 3, we can see that if \(e^{A_2B_2}_{B_2A_2}(\psi_f) \) or \(e^{A_2B_2}_{A_2 \leftrightarrow B_1}(\psi_f) \) is nonpositive then \(e_{A_1 \leftrightarrow B_1}^{A_2B_2}(\psi) \) cannot be negative. Moreover, if the condition \(e_{A_1 \leftrightarrow B_1}^{B_2A_2}(\psi_f) \leq e_{A_2 \leftrightarrow B_2}(\psi) \) holds, then Proposition 3 implies \(e_{A_1 \leftrightarrow B_1}^{A_2B_2}(\psi) \geq 0 \).

In particular, let us assume that \(A_1 \) and \(B_1 \) are symmetric. Then it is obvious that \(0 \geq e_{A_1 \leftrightarrow B_1}(\psi) \), from Proposition 1. If \(0 > e_{A_1 \leftrightarrow B_1}(\psi) \) then it follows from Proposition 3 that \(e_{B_2A_2}^{A_2B_2}(\psi_f) > 0 \). However, since \(B_1 \) and \(A_1 \)’ are also symmetric, Proposition 1 implies \(e_{B_1 \leftrightarrow A_1}^{A_2B_2}(\psi_f) \leq 0 \), which leads to a contradiction. Therefore, we obtain the following corollary.

Corollary 2. If the parts \(A_1 \) and \(B_1 \) of \(|\psi\rangle \) are symmetric, then we have \(e_{A_1 \leftrightarrow B_1}^{A_2B_2}(\psi) = 0 \).

This tells us that, if \(A_1 \) and \(B_1 \) are symmetric, Alice and Bob cannot increase the amount of shared entanglement after the OSQSE task, even if they make use of the parts \(A_2 \) and \(B_2 \).

VII. CONCLUSION

In this paper, we have introduced a one-shot version of the original quantum state exchange task, formally defining the OSQSE task and its optimal entanglement costs. We have derived converse bounds on the optimal entanglement costs, and have presented conditions on the initial state to achieve zero entanglement cost. As a related open problem, we can ask the following question: If \(e_{A_1 \leftrightarrow B_1}(\psi) = 0 \), then is it possible to exchange the parts \(A \) and \(B \), without classical communication and entanglement, that is, are there local operations \(L_A \) and \(L_B \) such that \(\psi_{f_2} = (L_A \otimes L_B)(\psi) \)?

We have also provided two interesting properties of the OSQSE, by presenting specific examples. One of the properties tells us that it is worth using the symmetric parts in order to optimally perform the OSQSE. The other shows that the entanglement cost of the OSQSE can be negative. Moreover, we have found the conditions for non-negative optimal entanglement costs. By observing the aforementioned examples, we can provide another interesting open problem: If \(e_{A_1 \leftrightarrow B_1}(\psi) \leq 0 \), do there exist Alice’s and Bob’s local operations \(L_A \) and \(L_B \) such that \(\psi_{f_2} \otimes \psi \otimes \Phi = (L_A \otimes L_B)(\psi) \)?

Theoretically, the OSQSE is a powerful two-user quantum communication task, which includes quantum teleportation [24] and quantum state merging [3,4] as special cases. Practically, this task can be a fundamental building block for applications involving multiple users, such as distributed quantum computation [30,31] and quantum networks [32–35].

ACKNOWLEDGMENTS

We would like to thank Ryuji Takagi and Bartosz Regula for fruitful discussion. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant No. NRF-2019R1A2C1006337) and the Ministry of Science and ICT, Korea, under the Information Technology Research Center support program (Grant No. IITP-2019-001402) supervised by the Institute for Information and Communications Technology Promotion. H.Y. acknowledges a Grant-in-Aid for Research Fellow of Japan Society for the Promotion of Science (JSPS) (JSPS KAKENHI Grant No. 18J10192), Cross-ministerial Strategic Innovation Promotion Program (Council for Science, Technology and Innovation), and CREST (Japan Science and Technology Agency) (Grant No. JPMJCR1671). G.A. acknowledges support from the European Research Council Starting Grant GQCP (Grant No. 637352).
APPENDIX A: PROOF OF THEOREM 3

We use the following lemma in order to prove Theorem 3.

Lemma 1. Let Z and W be any discrete random variables on alphabets Z' and W' with $|Z'| = N$ and $|W'| = M$. Let $\{p_i\}_{i=1}^N$ and $\{q_i\}_{i=1}^M$ be probability distributions for Z and W, respectively. If the following equality holds for all $\alpha \in [0, \infty]$,

$$H_\alpha(Z) = H_\alpha(W),$$

where $H_\alpha(\cdot)$ is the Rényi entropy of classical random variables, then $|Z| = |W|$ and there exists a permutation $\sigma \in S_N$ such that $p_i = q_{\sigma(i)}$ for all $i \in [N]$, where S_N is the set of all permutations on $[N] = \{1, \ldots, N\}$.

Note that, for each $\alpha \in [0, \infty]$, $H_\alpha(Z) = \lim_{\alpha \to 0} H_\alpha(Z)$ and $H_\alpha(\rho_A) = \lim_{\alpha \to 0} S_i(\rho_A)$.

Proof of Lemma 1. Suppose that $H_\alpha(Z) = H_\alpha(W)$ for all $\alpha \in [0, \infty]$. Since $H_\alpha(Z) = H_\alpha(W)$, it holds that $|Z| = |W|$. For convenience, we assume that any probability distribution $\{p_i\}_{i=1}^N$ satisfies $p_i \geq q_i$ for all $i \in [N]$.

We now prove the statement by using mathematical induction on N.

(i) If $N = 2$, then $H_\alpha(Z) = H_\alpha(W)$ implies $p_1 = q_1$ and so $p_2 = 1 - p_1 = 1 - q_1 = q_2$. Thus the statement is true.

(ii) Suppose that the statement is true for $N = k - 1$. Let Z and W be discrete random variables on alphabets Z' and W' with $|Z'| = |W'| = k$. Let $\{p_i\}_{i=1}^k$ and $\{q_i\}_{i=1}^k$ be probability distributions for Z and W, respectively. Since $H_\alpha(Z) = H_\alpha(W)$, $p_k = q_k$. By setting $p_i = \frac{p_i}{p_k}$ and $q_i = \frac{q_i}{q_k}$ for each $i \in [k - 1]$, we can construct random variables Z'' and W'' on alphabets Z' and W' the probability distributions of which are $\{p_i\}_{i=1}^{k-1}$ and $\{q_i\}_{i=1}^{k-1}$, respectively. Obviously, $|Z''| = |W''| = k - 1$, and so $H_\alpha(Z') = H_\alpha(W')$. Observe that, for $\alpha \in (0, 1) \cup (1, \infty)$,

\[
H_\alpha(Z) = H_\alpha(W) \\
\Rightarrow \frac{1}{1 - \alpha} \log \left(\sum_{i=1}^k p_i^{\alpha} \right) = \frac{1}{1 - \alpha} \log \left(\sum_{i=1}^k q_i^{\alpha} \right) \\
\Rightarrow \sum_{i=2}^{k-1} \left(\frac{p_{i+1}}{1 - p_1} \right)^{\alpha} = \sum_{i=2}^{k-1} \left(\frac{q_{i+1}}{1 - q_1} \right)^{\alpha} \\
\Rightarrow \frac{1}{1 - \alpha} \log \left(\sum_{i=1}^{k-1} (p_i^\alpha) \right) = \frac{1}{1 - \alpha} \log \left(\sum_{i=1}^{k-1} (q_i^\alpha) \right) \\
\Rightarrow H_\alpha(Z) = H_\alpha(W). \tag{A2}
\]

In addition, if $\alpha = 1$, then

\[
H_1(Z) = H_1(W) \\
\Rightarrow \sum_{i=1}^k p_i \log \frac{1}{p_i} = \sum_{i=1}^k q_i \log \frac{1}{q_i} \\
\Rightarrow \left(1 - p_1 \right) \log (1 - p_1) + \sum_{i=2}^k p_i \log \frac{1}{p_i} \\
\Rightarrow \left(1 - p_1 \right) \log (1 - p_1) + \sum_{i=2}^k q_i \log \frac{1}{q_i} \\
\Rightarrow \sum_{i=2}^k \frac{p_i}{1 - p_1} \log \frac{1}{p_i} = \sum_{i=2}^k \frac{q_i}{1 - q_1} \log \frac{1}{q_i} \\
\Rightarrow H_1(Z) = H_1(W).
\]

Finally, we have

\[
H_\infty(Z) - H_\infty(W) = \lim_{\alpha \to \infty} H_{\infty}(Z') - \lim_{\alpha \to \infty} H_{\infty}(W'). \tag{A3}
\]

It follows that $H_\infty(Z') = H_\infty(W')$ for all $\alpha \in [0, \infty]$. By the induction hypothesis, there exists a permutation $\sigma' \in S_{k-1}$ such that $p_i' = q_{\sigma'(i)}$ for all $i \in [k - 1]$. Define $\sigma(1) = 1$ and $\sigma(i) = \sigma'(i - 1)$ with $i \neq 1$. Then $\sigma \in S_k$ and $p_i = q_{\sigma(i)}$ for all $i \in [k]$. Therefore, the statement is true for $N = k$.

In fact, we can prove Lemma 1 by assuming a weaker condition as follows. Let S be a subset of $[0, \infty]$ including zero, the extended real number ∞, and a sequence $\{n_k\}_{k=1}^\infty$ such that $\lim_{n \to \infty} n_k = \infty$. Then we can show that if $H_\alpha(Z) = H_\alpha(W)$ holds for all $\alpha \in S$ then Z and W have the same probability distribution.

The contrapositive of the following lemma proves Theorem 3.

Lemma 2 [Sufficient conditions on the initial state $|\psi\rangle$ with $e_{X-Y}(\psi) > 0$]. Let (X, Y) be the pair of two systems, which can be either (A_1, B_1) or (A, B). Let $\{\lambda_i\}_{i=1}^N$ and $\{\tau_i\}_{i=1}^M$ be nonzero eigenvalues for the reduced states ρ_X and ρ_Y of $|\psi\rangle$, respectively, which satisfy $\lambda_1 \geq \ldots \geq \lambda_N$, $\tau_1 \geq \ldots \geq \tau_M$, and $\sum_{i=1}^N \lambda_i = \sum_{i=1}^M \tau_i = 1$. Then $e_{X-Y} > 0$, if one of the following conditions holds.

(i) $N \neq M$.

(ii) $N = M$ and $\lambda_i \neq \tau_i$ for some $i' \in [N] = \{1, \ldots, N\}$. Proof. If $N \neq M$, then rank(ρ_X) \neq rank(ρ_Y), which means

\[
eq e_{X-Y}(\psi) \geq |S_0(\rho_X) - S_0(\rho_Y)| > 0, \tag{A5}\]

by the converse bounds in Corollary 1.

(ii) Suppose that $|\psi\rangle$ satisfies $N = M$ and $\lambda_i \neq \tau_i$ for some $i' \in [N]$. Let Z and W be discrete random variables on alphabets Z and W with $|Z| = |W| = N$, the probability distributions of which are $\{\lambda_i\}_{i=1}^N$ and $\{\tau_i\}_{i=1}^M$, respectively. Let us consider the set $A = \{i \in [N] \mid \lambda_i \neq \tau_i\}$, then A is a nonempty subset of $[N]$, since $i' \in A$. So we can choose the largest element in A, say j. Then $\lambda_j \neq \tau_j$ and $\lambda_i = \tau_i$ for all $i > j$ by the definition of the set A. If $\lambda_j > \tau_j$ (or $\lambda_j < \tau_j$) then $\lambda_i > \tau_i$ (or $\lambda_i < \tau_i$) for all $i \in [j]$. Thus $\lambda_i \neq \tau_j$ (or $\lambda_i \neq \tau_i$) for all $i \in [j]$, which shows that for each $\sigma \in S_j$ there exists $i \in [j]$ such that $\lambda_i \neq \tau_{\sigma(i)}$. It follows that for each $\sigma \in S_N$ there exists $i \in [N]$ such that $\lambda_i \neq \tau_{\sigma(i)}$. From the contrapositive of Lemma 1, there exists $\alpha' \in [0, \infty]$ such that $H_\alpha'(X) \neq H_\alpha'(Y)$, therefore, the converse bounds in Corollary 1, we obtain

\[
eq e_{X-Y}(\psi) \geq |S_\alpha(\rho_X) - S_\alpha(\rho_Y)| > 0. \tag{A7}\]

\[\]
[1] J. Oppenheim and A. Winter, arXiv:quant-ph/0511082.
[2] Y. Lee, R. Takagi, H. Yamasaki, G. Adesso, and S. Lee, Phys. Rev. Lett. 122, 010502 (2019).
[3] M. Horodecki, J. Oppenheim, and A. Winter, Nature (London) 436, 673 (2005).
[4] M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2006).
[5] J. T. Yard and I. Devetak, IEEE Trans. Inf. Theory 55, 5339 (2009).
[6] M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2006).
[7] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[8] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009).
[9] M. Berta, M. Christandl, and R. Renner, Commun. Math. Phys. 306, 579 (2011).
[10] J. M. Renes and R. Renner, IEEE Trans. Info. Theory 58, 1985 (2012).
[11] L. Datta and M.-H. Hsieh, IEEE Trans. Inf. Theory 59, 1929 (2013).
[12] M. Berta, M. Christandl, and D. Touchette, IEEE Trans. Inf. Theory 62, 1425 (2016).
[13] Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, and X. Ma, Phys. Rev. Lett. 120, 070403 (2018).
[14] A. Anshu, R. Jain, and N. A. Warsi, IEEE Trans. Inf. Theory 64, 1425 (2018).
[15] B. Regula, K. Fang, X. Wang, and G. Adesso, Phys. Rev. Lett. 121, 010401 (2018).
[16] H. Yamasaki and M. Murao, IEEE Trans. Inf. Theory 65, 3950 (2019).
[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, England, 2010).
[18] R. Jozsa and A. Miyake, Proc. R. Soc. A 464, 3089 (2008).
[19] M. M. Wilde, Quantum Information Theory (Cambridge University, Cambridge, England, 2013).
[20] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[21] A. Mari, V. Giovannetti, and A. S. Holevo, Nat. Commun. 5, 3826 (2014).
[22] W. van Dam and P. Hayden, arXiv:quant-ph/0204093.
[23] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[24] M. Żakowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).
[25] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
[26] D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999).
[27] J. Eisert and M. Wilkens, Phys. Rev. Lett. 85, 437 (2000).
[28] C. Majenz, M. Berta, F. Dupuis, R. Renner, and M. Christandl, Phys. Rev. Lett. 118, 080503 (2017).
[29] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, Phys. Rev. A 59, 4249 (1999).
[30] D. Bruß, G. M. D’Ariano, M. Lewenstein, C. Macchiavello, A. Sen(De), and U. Sen, Phys. Rev. Lett. 93, 210501 (2004).
[31] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997).
[32] K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016).
[33] A. Pirker, J. Wallnöfer, and W. Dür, New J. Phys. 20, 053054 (2018).
[34] S. Pirandola, Commun. Phys. 2, 51 (2019).