Water quality assessment of main rivers and canals in Ben Tre Province, Mekong Delta Vietnam

T L C Nguyen¹, L K N Phan¹ and A D Pham¹±²
¹Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
E-mail: phamanhduc@tdt.edu.vn

Abstract. Ben Tre, a Mekong Delta Province has dense canal networks with about 6,000km in total extension. There are more than 60 canals having over 50m of width. The river system plays the important role of Ben Tre Province, providing water for agriculture, drainage, navigation, fisheries and restoration in local area. Data for 44 sites from the main rivers and canals of Ben Tre were collected in April and October from 2015 to 2016 to analyze for pH, total suspended solid (TSS), dissolved oxygen (DO), biochemical oxygen demand (BOD₅), chemical oxygen demand (COD), amoni (NH₄⁺), phosphate (PO₄³⁻), and coliform. Then data were used for calculation and mapping. The ArcGIS 9.3 software, Inverse Distance Weighting (IDW) interpolation, and hydrologic variables in April and October from 2015 to 2016 were applied to build the maps of water quality for the Ben Tre. This result indicated that the water quality of many sites from the main rivers and canals of Ben Tre in April and October from 2015 to 2016 were polluted with TSS values at 75–304 mg/L, BOD₅ from 7.0–25.0 mg/L; and coliform from 1.1x10³ to 2.3x10⁵ MPN/100 mL. Additionally, the results classified water quality of Ben Tre at 5 classes, as described by The Vietnam Environmental Protection Agency, good quality for water supply (1); use for water supply required appropriate treatment (2); usage for water use for irrigation (3); water use for navigation (4); and, heavy pollution (5). Last but not least, the wastewater control solutions for Ben Tre are also suggested. There were some the prior projects for environmental pollution control these have been implemented to improve the water quality for main river and canals in Ben Tre Province.

1. Introduction
Ben Tre Province is nestled between two main branches of the Mekong’s largest tributary, which divergences to create a fertile agricultural region and beautiful coastline (figure 1) [1]. Ben Tre Province has dense canal networks with about 6,000 km in total extension. There are more than 60 canals having over 50 m of width. The river system plays the important role of Ben Tre Province, providing water for agriculture, drainage, navigation, fisheries and restoration in local area [1].

The surface water pollution in Ben Tre has reached alarming levels in many inland canals and rivers these run through townships. The analytical results of water quality in Ben Tre showed that TSS, BOD₅, Oil and Coliform parameters were found as exceed the National Technical Regulation for Surface Water Quality of levels A1 and A2 [2,3]. The process of socio-economic development and the promotion of industrialization and modernization in addition to bringing about certain socio-economic achievements were also gradually changing the quality of the environment in Ben Tre. Water pollution in Ben Tre Province has been more complicated and caused serious environmental problems in residential areas and public places such as BOD: 10 – 21 mg/L, COD: 18 – 36 mg/L, DO: 2.73 – 3.79 mg/L.
mg/L [2].

Figure 1. Map of sampling sites.

In order to improve the water quality assessment for the rivers and canals of Ben Tre, the water quality parameters of pH, TSS, DO, BOD₅, COD, NH₄⁺, PO₄³⁻, and coliform was described. Moreover, the ArcGIS 9.3 software, Inverse Distance Weighting (IDW) interpolation, and hydrologic variables in April and September of 2015 and 2016 were applied to build the maps of water quality assessment for Ben Tre Province. The objectives of this research were to: (1) Evaluate the properties of water quality for the main rivers and canals in Ben Tre; and, (2) Apply the GIS system for building the maps of water quality for Ben Tre.

2. Methods

2.1. Study sites and sample collection

Based on the characteristics of natural conditions and socio-economic development, 44 sampling sites for Ben Tre were suggested and representative for a sampling program (figure 1). The samples were collected according to methods presented in the Operational Guide (3rd Ed.), UN Environment Programme [4]. The water samples of various physiochemical parameters were taken in April and October from 2015 to 2016. Locations at each site were sampled in the middle of the canals with depth layer at 30-40 cm from water surface. Water samples were collected using 2 liter plastic containers and preserved at 2°C [4].

2.2. Physical and chemical analysis

The water samples were analyzed for aquatic environmental parameters (pH, total suspended solid – TSS, dissolve oxygen – DO, biological oxygen demand – BOD₅, chemical oxygen demand – COD, ammonia – NH₄⁺, phosphate – PO₄³⁻, and coliform) using standard methods recommended APHA-AWWA-WEF, 1998 [5].
2.3. Calculation of water quality index (WQI)

The WQI for building the forecast maps was calculated from Vietnam Environment Administration [6]. The WQI was based on 6 parameters pH, TSS, DO, BOD$_5$, COD, NH$_4^+$, PO$_4^{3-}$, and coliform. The classification of water quality for usage purposes was presented in Table 1.

No.	Ranking WQI	Usage Purposes	Color Indicators
1	91 – 100	Good quality for water supply	Blue
2	76 – 90	Use for water supply required appropriate treatment	Green
3	51 – 75	Water use for irrigation	Yellow
4	26 – 50	Water use for navigation	Orange
5	0 – 25	Heavy pollution	Red

2.4. Mapping building procedures

IDW interpolation function was used the measured values surrounding the prediction location in belows [7]:

$$\lambda_i = \frac{\sum_{j=1}^{G} \lambda_j / D_{ij}^p}{\sum_{j=1}^{G} 1 / D_{ij}}$$

Where λ_i was the property at location i; λ_j was the property at location j; D_{ij} was the distance from i to j; G was the number of sampled locations; and p was the inverse-distance weighting power.

Weights were proportional to the inverse distance raised to the power value p [8]. The characteristics of the interpolated surface can also be controlled by limiting the input points used in the calculation of each output cell. Limiting the number of input points considered can improve processing speeds [9,10].

3. Results and discussion

3.1. Characteristics of water quality

The results of water quality analysis for the main river and canals of Ben Tre were presented Table 2. The analyzed results in many sites exceeded the National Technical Regulation for Surface Water Quality of levels A1 (good quality for water supply) and A2 (good quality for protection of aquatic communities), especially values of TSS, BOD$_5$, COD and coliform [11].

Sites	pH	TSS (mg/L)	DO (mg/L)	BOD$_5$ (mg/L)	COD (mg/L)	NH$_4^+$ (mg/L)	PO$_4^{3-}$ (mg/L)	Coliform (MPN/100mL)
NM01	6.7-7.6	53–127	5.0-6.4	5.0-9.0	7.0-9.0	0.02-0.10	0.03-0.05	1100-2400
NM02	7.0-7.6	63–115	4.6-6.4	3.0-5.0	7.0-8.0	0.02-0.06	0.01-0.05	1200-4300
NM03	6.1-7.8	59-163	5.8-6.6	4.0-6.0	9.0-12.0	0.02-0.18	0.01-0.06	900-2100
NM04	7.0-7.6	45-141	2.7-6.2	4.0-11.0	9.0-19.0	0.12-0.23	0.01-0.10	1500-4600
NM05	6.8-7.4	77-109	4.9-5.8	5.0-6.0	11.0-12.0	0.04-0.78	0.04-0.07	1000-9300
NM06	6.9-7.6	42-152	4.4-5.8	5.0-6.0	11.0-12.0	0.04-0.78	0.01-0.07	1600-9300
NM07	7.0-7.7	107-269	5.1-6.1	3.0-7.0	5.0-13.0	0.02-0.14	0.03-0.08	1200-7000
NM08	7.0-7.9	112-304	5.1-7.1	4.0-7.0	7.0-12.0	0.00-0.10	0.01-0.08	700-6000
Generally, the results of aquatic environmental variables at 44 sites sampled from 2015 to 2016 showed that the water quality from many sites was polluted highly. The analysed results showed that the water quality at towns and industrial parks were heavily polluted usually [12].

3.2. Water quality index (WQI) and mapping

The values of WQI calculation at 44 sites for main rivers and canals at Ben Tre Province were presented in table 3. The results classified water quality at 5 classes, as described by The Vietnam Environmental Protection Agency, good quality for water supply (1); use for water supply required appropriate treatment (2); usage for water use for irrigation (3); water use for navigation (4); and, heavy pollution (5).
Table 3. Classification of water quality based on WQI values for main rivers and canals at Ben Tre Province in April and October, 2015 – 2016.

Sites	April 2015	Usage Purposes	October 2015	Usage Purposes	April 2016	Usage Purposes	October 2016	Usage Purposes
NM01	99	Good quality for water supply	99	Good quality for water supply	97	Good quality for water supply	97	Good quality for water supply
NM02	91	Good quality for water supply	99	Good quality for water supply	96	Good quality for water supply	96	Good quality for water supply
NM03	95	Good quality for water supply	98	Good quality for water supply	97	Good quality for water supply	97	Good quality for water supply
NM04	100	Good quality for water supply	77	Good quality for water supply	79	Good quality for water supply	79	Good quality for water supply
NM05	93	Good quality for water supply	95	Good quality for water supply	93	Good quality for water supply	95	Good quality for water supply
NM06	51	Water use for irrigation	94	Good quality for water supply	93	Good quality for water supply	92	Good quality for water supply
NM07	100	Good quality for water supply	96	Good quality for water supply	93	Good quality for water supply	73	Water use for irrigation
NM08	98	Good quality for water supply	97	Good quality for water supply	92	Good quality for water supply	77	Water supply required appropriate treatment
NM09	97	Good quality for water supply	96	Good quality for water supply	96	Good quality for water supply	97	Good quality for water supply
NM10	98	Good quality for water supply	92	Good quality for water supply	85	Water supply required appropriate treatment	90	Good quality for water supply
NM11	94	Good quality for water supply	98	Good quality for water supply	93	Good quality for water supply	91	Good quality for water supply
NM12	98	Good quality for water supply	95	Good quality for water supply	95	Good quality for water supply	97	Good quality for water supply
NM13	100	Good quality for water supply	91	Good quality for water supply	91	Good quality for water supply	95	Good quality for water supply
NM14	86	Water supply required appropriate treatment	93	Good quality for water supply	85	Good quality for water supply	82	Good quality for water supply
NM15	99	Good quality for water supply	94	Good quality for water supply	92	Good quality for water supply	54	Water use for irrigation
NM16	96	Good quality for water supply	90	Water supply required appropriate treatment	87	Water supply required appropriate treatment	81	Water supply required appropriate treatment
NM17	97	Good quality for water supply	96	Good quality for water supply	89	Good quality for water supply	53	Water use for irrigation
NM18	60	Water use for irrigation	78	Water supply required appropriate treatment	93	Good quality for water supply	86	Water supply required appropriate treatment
NM19	90	Water supply required appropriate treatment	59	Water use for irrigation	70	Water use for irrigation	8	Heavy pollution
NM20	9	Heavy pollution	9	Heavy pollution	9	Heavy pollution	9	Heavy pollution
NM21	95	Good quality for water supply	9	Heavy pollution	9	Heavy pollution	9	Heavy pollution
Code	Rating	Quality	Pollutants	Treatment	Use			
-------	--------	---	------------	-----------	----------------------			
NM22	93	Good quality for water supply	9	Heavy	9			
NM23	94	Good quality for water supply	9	Heavy	8			
NM24	81	Water supply required appropriate treatment	8	Heavy	5			
NM25	87	Water supply required appropriate treatment	8	Heavy	8			
NM26	95	Good quality for water supply	9	Heavy	63			
NM27	93	Good quality for water supply	92	Good	72			
NM28	91	Good quality for water supply	89	Water	88			
NM29	91	Good quality for water supply	9	Heavy	86			
NM30	94	Good quality for water supply	78	Water	87			
NM31	93	Good quality for water supply	98	Good	9			
NM32	95	Good quality for water supply	95	Good	94			
NM33	96	Good quality for water supply	8	Heavy	7			
NM34	47	Water use for navigation	46	Water	46			
NM35	46	Water use for navigation	8	Heavy	46			
NM36	82	Water supply required appropriate treatment	9	Heavy	9			
NM44	97	Good quality for water supply	87	Water	8			
NM45	92	Good quality for water supply	92	Water	84			
NM46	98	Good quality for water supply	89	Water	87			
NM47	90	Water use for irrigation	74	Water	66			
NM48	91	Good quality for water supply	80	Water	86			

The ratings range from 0 to 99. A rating of 90 or above indicates good quality for water supply, while a rating below 50 indicates heavy pollution. The use of water includes water supply, irrigation, and navigation.
The maps of water quality of the main rivers and canals in Ben Tre at April and October from 2015 to 2016 were presented in figure 2. These results were suitable with the characteristics of socio-economic development in the Ben Tre Province. The wastewater from industrial parks and urban areas of Ben Tre Province is causing pollution in many areas [12].
Figure 2. Maps of water quality of the main rivers and canals in Ben Tre. April 2015 (a), October 2015 (b), April 2016 (c), and October 2016 (d).

3.3. Approaches for water quality improvement

Among the many solutions to control water quality for Ben Tre Province, three main approaches were suggested in below:

- Control the nine industrial enterprises which caused the serious environmental pollution;
- Improve the three landfills in three districts: Phu Hung, Binh Dai, and Thanh Phu;
- Develop the automatic water quality monitoring system for Ben Tre Province;
- Build the new drainage and sewage systems for Ben Tre City and main towns;
- Build the more hygienic toilets for the rural areas.

4. Conclusion

The results indicated that the water quality of many sites from the main rivers and canals of Ben Tre in April and October from 2015 to 2016 many were polluted with TSS values at 75 – 304 mg/L, BOD₅ from 7.0 – 25.0 mg/L; and coliform from 1.1x10³ to 2.3x10⁵ MPN/100 mL. Additionally, the WQI based on the parameters pH, TSS, DO, BOD₅, COD, NH₄⁺, PO₄³⁻, and coliform in combination with GIS system were calculated. The results classified water quality of Ben Tre at 5 classes, as described by the Vietnam Environmental Protection Agency, good quality for water supply (1); use for water supply required appropriate treatment (2); usage for water use for irrigation (3); water use for navigation (4); and, heavy pollution (5). The main cause of water pollution in the main rivers and canals of Ben Tre was the discharge of untreated wastewater directly into surrounding canals by various residential areas and industrial enterprises. This research could be a scientific reference to suggest effective approaches for water quality improvement in Ben Tre Province. There were some the prior projects for environmental pollution control these have been implemented to improve the water quality for main river and canals in Ben Tre Province.
References
[1] Japan International Cooperation Agency 2016 Final Report on The Preparatory Survey for Ben Tre Water Management Project (Ben Tre: JACA) p 159
[2] Ben Tre EPA 2016 Report on Ben Tre Environmental Monitoring Ben Tre Environmental Protection Agency (Ben Tre)
[3] JICA 2016 EIA Report on Ben Tre Water Management Project (Ben Tre: Ben Tre Provincial People’s Committee)
[4] UNWP. – GEMS/Water 1992 Operational Guide ed. 3rd (Burlington: UN Environment Programme) p 121
[5] APHA-AWWA-WEF 1998 Standard Methods for Examination of Water and Wastewater ed. 20th (Washington, D.C.: American Public Health Association) p 541
[6] Environmental Monitoring Center 2010 Method for WQI Calculation (Hanoi: Vietnam Environment Administration)
[7] Lam N S 1983 Spatial interpolation methods review The American Cartographer 10 129-49
[8] McCoy K J 2001 Using ArcGIS Spatial Analyst (New York: ESRI)
[9] Philip G M and Watson D F 1982 A precise method for determining contoured surfaces Australian Petroleum Exploration Association Journal 22 205-12
[10] Watson D F and Philip G M 1985 A refinement of inverse distance weighted interpolation Geoprocessing 2 315-27
[11] Vietnam Environmental Protection Agency 2015 National Technical Regulation for Surface Water Quality – QCVN 08: 2015/BTNMT (Hanoi: Vietnam Ministry of Natural Resources and Environment)
[12] MONRE 2017 The Water Quality Pollution at Residential Areas in Ben Tre Province (Hanoi: Ministry of Natural Resources and Environment)