Comment on "Pentadiamond: A Hard Carbon Allotrope of a Pentagonal Network of sp² and sp³ C Atoms"

Santanu Saha, Wolfgang von der Linden, and Lilìa Boeri

1 Graz University of Technology, NAWI Graz, 8010 Graz, Austria
2 Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy

(Dated: July 21, 2020)

In a recent Letter, Fujii et. al. [1] predicted a new carbon allotrope, pentadiamond (PD), with remarkable mechanical properties: elastic moduli comparable or larger than diamond, and negative Poisson’s ratio $\mu = -0.241$. The estimated Vicker’s hardness (V_H) is 422 GPa, ~ 4.6 times higher than in diamond (~ 92 GPa [2]), the hardest material known to date. PD, however was not investigated.

In the study of Avery et al. [2] on hardness of different carbon allotropes (i) V_H is lower than in diamond in all cases, (ii) the hardest allotropes are dominated by diamond and/or lonsdaleite motifs. PD, with its record hardness and only $\sim 45.5\%$ sp³ bonds, would be an exceptional outlier in this picture. What, as claimed in Ref. [1], causes its extreme hardness?

Motivated by this question, we tried to reproduce the results of Ref. [1], recomputing the elastic properties of PD with different approximations based on Density Functional Theory (DFT). Surprisingly, although we correctly reproduced the structural data, electronic band structure and phonon dispersion of Ref. [1], we consistently obtained very different results for the elastic properties [3].

A summary of our results is reported in Table I.

Table I. Calculated independent elastic constants C_{11}, C_{12} and C_{44}, Bulk modulus B_0, Young’s modulus E, Shear modulus G_0, Vicker’s hardness V_H in GPa and dimensionless Poisson’s ratio μ.

Method	C_{11}	C_{12}	C_{44}	B_0	E	G_0	V_H	μ	
Pentadiamond	S-S	509	94	142	23	404	166	23	0.21
	E-S	541	109	142	253	412	168	22	0.23
	Dir-PBE	538	108	142	252	411	167	22	0.23
	Dir-LDA	568	121	143	270	424	171	21	0.24
	E-S (QE)	541	107	142	252	414	169	22	0.21
	Ref. [1]	1715 -283	1187	381	1691	1113	422	-0.24	
Diamond	S-S	1026	107	563	416	1098	518	97	0.06
	E-S	1052	133	565	439	1118	520	91	0.08
	Dir-PBE	1049	121	567	430	1117	523	95	0.07
	Dir-LDA	1113	154	601	474	1188	549	92	0.08
	Ref. [4]	1051	128	561	435	1114	519	92	0.07
	Ref. [1]	468	1273	608	112	112	0.05		

Unless otherwise specified, we employed the Vienna Ab-initio Simulation Package (VASP) [3, 8], with Projected Augmented Wave(PAW) pseudopotentials [7] for the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [8].

The three independent cubic elastic constants C_{11}, C_{12} and C_{44} were estimated both from the linear stress-strain (S-S) and quadratic energy-strain relations (E-S). We created strains in the unit cell along appropriate directions and calculated the total energy and the stress tensor after relaxation of the internal atomic coordinates.

From the elastic constants, we obtained the bulk modulus B_0, Young’s modulus E, shear modulus G_0, V_H, and μ based on the Voigt-Reuss-Hill approximation [10]. The same quantities were also evaluated using the built-in implementation of VASP for the calculation of elastic constants from stress-strain relations, based on Ref. [11] (Dir). As an independent check of our setup, the same calculations were repeated for diamond.

The elastic constants computed in the three approaches are consistent with each other to within 5% and, for diamond, with literature results. On the other hand, a strong discrepancy exists between our results for PD and Ref. [1]: our elastic constants are 3-10 times smaller, and C_{12} even exhibits another sign. As a result, our estimated V_H (22 GPa) is twenty times smaller than in Ref. [1], and a factor four smaller than in diamond, while the Poisson’s ratio (μ) is positive. We also did test runs for other hard carbon allotropes (positive Poisson’s ratio) and they match with the literature results.

Ref [1] did not provide sufficient computational details to reproduce the results. In order to rule out other possible sources of discrepancy, we repeated our calculations for PD using VASP-PAW pseudopotentials in the Local Density Approximation [12] (LDA) (Dir-LDA), and PBE norm-conserving pseudopotentials [13, 14] in Quantum Espresso, version 6.4.1 [15] (E-S (QE)). Again, the same strong discrepancy is found.

The most plausible conclusion of our tests is that the elastic constants and elastic moduli of PD reported in Ref [1] are incorrect, and pentadiamond should be considered a non-auxetic soft carbon allotrope.

Computational Details: For VASP calculations, we employed a kinetic energy cutoff of 800 eV, and a Γ-centered mesh of resolution of $2\pi \times 0.15$ Å⁻¹ for reciprocal space integration, with a Gaussian smearing of width 0.10 eV. For QE-6.4.1, an energy cut-off of 80 Ry with Gaussian smearing of 0.02 Ry and $8 \times 8 \times 8$ mesh on the reciprocal (k) space was used. This ensured a convergence of 0.4 GPa on the components of the stress.
tensor. The primitive cell of both the PD and diamond was used for all the calculations.

S.S. and W.v.d.L. acknowledge computational resources from the dCluster of the Graz University of Technology and the VSC3 of the Vienna University of Technology, and support through the FWF, Austrian Science Fund, Project P 30269- N36 (Superhydra). L.B. acknowledges support from Fondo Ateneo Sapienza 2017-18 and computational Resources from CINECA, proj. Hi-TSEPH.

santanu.saha@tugraz.at

[1] Y. Fujii, M. Maruyama, N. T. Cuong, and S. Okada, Phys. Rev. Lett. 125, 016001 (2020).

[2] P. Avery, X. Wang, C. Oses, E. Gossett, D. M. Proserpio, C. Toher, S. Curtarolo, and E. Zurek, npj Computational Materials 5, 1 (2019).

[3] Pentadiamond with spacegroup Fm3m has a 22 atoms primitive unit cell; with optimized lattice parameter of 9.198 Å and three inequivalent Wyckoff positions 8c (0.250, 0.250, 0.250), 32f (-0.152, -0.152, -0.152) and 48h (0.000, -0.302, -0.302). In Ref. [3], the lattice parameter was 9.195 Å and the three inequivalent Wyckoff positions were 8c (0.250, 0.250, 0.250), 32f (0.152, 0.152, 0.152) and 48h (0.198, 0.198, 0.000).

[4] Z. Li, F. Gao, and Z. Xu, Physical Review B 85, 144115 (2012).

[5] G. Kresse and J. Furthmüller, Physical review B 54, 11169 (1996).

[6] G. Kresse and F. J., Comput. Mat. Sci. 6, 15 (1996).

[7] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[8] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[9] The Vicker’s hardness was based on the empirical Chen’s model [7], \(V_H = 2 \left(\frac{c_0}{a_0} \right)^{0.585} - 3 \).

[10] R. Hill, Proceedings of the Physical Society. Section A 65, 349 (1952).

[11] Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).

[12] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[13] M. Van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, Computer Physics Communications 226, 39 (2018).

[14] D. Hamann, Physical Review B 88, 085117 (2013).

[15] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., Journal of Physics: Condensed Matter 29, 465901 (2017).