Remote-sensing products have emerged as key tools in forest cover monitoring. Their quality vary spatially, local validations are recommended before using the data for inventory and management tasks. We conducted a validation based on a visual interpretation procedure using high-resolution optical imagery on Google Earth to map the uncertainties and inaccuracies of Global Forest Watch (GFW) Tree Cover 2000 in China. The article provides the reference dataset applied in Zhang et al. (2020). The reference data has a total amount of 96,364 sample pixels collected using spatially stratified random sampling method. The samples were labelled with land use classifications and can provide further usage for remote sensing products.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data description

This reference dataset sampled 96,364 pixels (30 m*30 m) in China for land use study. It was created to evaluate the classification accuracy of GFW Tree Cover 2000 in the range of China. The binary classifications are forest and non-forest. The definition of forest used in this dataset was tree stocked areas with a tree cover ≥20%, to be consistent with the definition we used in the GFW Tree Cover 2000.
2. Experimental design, materials, and methods

In sampling, we applied a spatially stratified random sampling strategy by dividing the sampling units into 1093 1° (altitude) × 1° (longitude) grid cells, and randomly selected 100 pixels from GFW Tree Cover 2000 in each grid. After dropped pixels fell out of the national boundary, the sample size of the dataset was 96,364 pixels.

In the labelling of reference samples, we employed visual interpretation of the high resolution images from GE to obtain reference classifications of forest and non-forest. The definition of forest in the reference data labelling was above 20% tree cover in each 30m*30m pixel. Images in the year 2000 were used as a priority, but for locations lacking images in 2000, we used the images from the nearest year in combination with the available time-series of images to assign the reference class.
the reference samples was the same as used in the GFW (>20% tree cover). We defined valid samples as pixels where the GE images have relatively high resolution and clear images that can allow reliable classification into forest versus non-forest. Images in the year 2000 were used as a priority, but for locations lacking images in 2000, we used the images from the nearest year in combination with the available time-series of images. Samples with resolution lower than 30 m or no reference images in GE were dropped from the dataset. This resulted in a number of 87,533 valid pixels in the dataset, and 70% (765 out of 1093) of the grid cells had more than 80 sample pixels.

In the classification labelling, the interpreters were asked to fill in the reference classifications while blinding the map category in the GFW to ensure independence. There were also sub-classifications of natural forest and plantation under the forest class, and sub-classifications of water, farmland, deserts, grassland and buildings, etc. under the non-forest class. We referenced the classification standard of the current status of land use in the People’s Republic of China (GBT21010-2007) as the labelling standards. The classification protocol and images with reference labels can be found in the supplementary material of Zhang et al. [1].

When we collected the reference dataset, we did a repetition test to measure the quality of the reference classification as well as interpreter variability. The difference of accuracy results generated from three interpreters were all within 10%. The ground validation based on 777 random sample sites also showed an overall accuracy above 85% of the reference dataset. We hence assume, that our reference data is qualified to provide a reliable assessment of the GFW Tree Cover 2000.

CRediT author statement

Di Zhang: Methodology, Data curation, Writing- Reviewing and Editing. Hao Wang: Conceptualization. Xu Wang: Data curation. Zhi Lü: Supervision.

Acknowledgments

This research was funded by Shan Shui Conservation Center and HSBC under the joint program of China Nature Watch. We thank Chunhong Liu, Rui Liao, Haimiao Lin, Feng Zhang, Nianxin Guo, Yifan Xu, Haiyan Zhao, Shen Lin, Songlun Jiang, Xingyu Liu and Meng Su for attending referencing data collection.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] D. Zhang, H. Wang, X. Wang, Z. Lü, Accuracy assessment of the global forest watch tree cover 2000 in China, Int. J. Appl. Earth Obs. Geoinf. 87 (2020) 102033.