Review

Bench-to-bedside review: Endotoxin tolerance as a model of leukocyte reprogramming in sepsis

Jean-Marc Cavaillon and Minou Adib-Conquy

Cytokines and Inflammation Unit, Institut Pasteur, rue Dr Roux, 75015 Paris, France

Corresponding author: Jean-Marc Cavaillon, jmcavail@pasteur.fr

Abstract

Endotoxin tolerance is defined as a reduced responsiveness to a lipopolysaccharide (LPS) challenge following a first encounter with endotoxin. Endotoxin tolerance protects against a lethal challenge of LPS and prevents infection and ischemia-reperfusion damage. Endotoxin tolerance is paralleled by a dramatic reduction of tumor necrosis factor (TNF) production and some other cytokines in response to LPS. Endotoxin tolerance involves the participation of macrophages and mediators, such as glucocorticoids, prostanoids, IL-10, and transforming growth factor-β. Endotoxin tolerance is accompanied by the up-regulation of inhibitory molecules that down-regulate the Toll-like receptor (TLR)-dependent signaling pathway. Cross-tolerance between LPS and other TLR specific ligands, as well as IL-1 and TNF, has been regularly reported. A similar loss of LPS reactivity has been repeatedly reported in circulating leukocytes of septic patients and in patients with non-infectious systemic inflammation response syndrome (SIRS). Studies on cellular signaling within leukocytes from septic and SIRS patients reveal numerous alterations reminiscent of those observed in endotoxin tolerant cells. However, altered responsiveness to LPS of leukocytes from sepsis and SIRS patients is not synonymous with a global down-regulation of cellular reactivity. The term ‘cellular reprogramming’, which has been proposed to qualify the process of endotoxin tolerance, defines well the immune status of circulating leukocytes in septic and SIRS patients.

In vivo endotoxin tolerance

Paul Beeson first reported endotoxin tolerance in 1946 [1] as the abolition of the fever response of rabbits undergoing repeated daily injection of the same dose of typhoid vaccine. Later, it was shown that plasma of a tolerant rabbit could passively transfer tolerance to pyrogenicity of bacterial endotoxin to another animal [2]. In human volunteers, it was shown that inoculation of live Salmonella typhosa led to a reduced fever in response to endotoxin or killed bacteria compared to before infection [3]. Interestingly, a similar observation was reported with volunteers inoculated with Plasmodium cynomolgi by mosquito bites [4], suggesting that cross-tolerance between different stimuli could occur. In addition to human volunteers, reduced fever to endotoxin or killed bacteria was reported in different infections, such as in patients with peyelonephritis [5], in patients convalescent from typhoid and paratyphoid fever [6], and in patients recovering from malaria [7]. Not only can a pretreatment with endotoxin reduce subsequent lipopolysaccharide (LPS)-induced fever in rabbits, it also prevents LPS-induced lethality [8]. In mice, even when LPS-induced lethality was dramatically enhanced by galactosamine treatment, LPS tolerization could prevent mortality [9]. By specific cell transfer from LPS-resistant to LPS-sensitive mice, Freudenberg and Galanos [9] elegantly demonstrated the role of macrophages in the induction of endotoxin tolerance in vivo.

Endotoxin tolerance and cytokine production

Tumor necrosis factor (TNF) is most probably the best marker of endotoxin tolerance as assessed by its dramatically reduced production following an LPS challenge in tolerated animals, in contrast to its sharp and fast peak in response to a first injection of LPS [10]. Interestingly, not all cytokines behave similarly. In mouse models of endotoxin tolerance, IL-6 and IFN-γ released in the circulation following an LPS challenge are also dramatically blunted, whereas this is not the case for IL-12p70, and the chemokines KC and MCP-1, the circulating levels of which were reduced but not as much as TNF and the previously mentioned cytokines [11]. In contrast, levels of IL-1β and IL-18 were maintained independently of the tolerization process. In humans, induction of tolerance by monophosphoryl lipid A led to a reduction of circulating TNF, IL-6 and IL-8 in response to a subsequent LPS challenge [12].

IFN = interferon; IL = interleukin; IRAK = IL-1 receptor associated kinase; LPS = lipopolysaccharide; MyD = myeloid differentiation; NF-κB = nuclear factor-kappa B; PBMC = peripheral blood mononuclear cell; RCA = resuscitated after cardiac arrest; SIGIRR = single immunoglobulin IL-1R-related molecule; SIRS = systemic inflammation response syndrome; SOCS = suppressor of cytokine signaling; TGF = transforming growth factor; TLR = Toll-like receptor; TNF = tumor necrosis factor; Tollip = Toll interacting protein; TRAF = TNF receptor associated factor.
In vitro pre-treatment of macrophage cell lines with LPS, as well as freshly isolated macrophages and monocytes, rendered the cells hyporeactive to a second LPS stimulus, particularly in terms of cytokine production. In vitro tolerization of human monocytes could be partially mimicked by IL-1, IL-10 or TGFβ pre-treatment [13], and the use of anti-IL-10 or anti-TGFβ antibodies during the step of tolerization could prevent the phenomenon [14]. Although IL-10 contributes to endotoxin tolerance, its presence is dispensable as in vivo tolerization could be achieved in IL-10 deficient mice [15].

Endotoxin tolerance and resistance to inflammatory process or infection

It is worth recalling that endotoxin tolerance has been associated with increased resistance and protection against tissue injuries and even mortality in models such as infected thermal injury [16], hepatic ischemia/reperfusion [17], renal ischemia/reperfusion [18], coronary occlusion [19], or hemorrhagic shock [20]. All these increased resistances to stressful situations further illustrate that endotoxin tolerance is far more than a single altered inflammatory responsiveness to LPS.

In contrast, some studies suggested that the induction of endotoxin tolerance might impair resistance to infectious processes. For example, a reduced level of IFN was reported in animals pretreated with LPS and further challenged with Newcastle disease virus [21]. Moreover, a reduced leukemicidal activity was observed after pre-exposure of macrophages to LPS [22], and an impaired lung clearance of Pseudomonas aeruginosa was shown after LPS exposure [23]. Recent investigation with other infectious models using either Cryptococcus neoformans [24] or Salmonella enteritica [25] established that LPS tolerant mice had an increased resistance to fungal or bacterial infection, associated with a reduced burden of pathogens within the tissues. Based upon experiments combining pentoxifylline and LPS pretreatment [24], one can postulate that the boost of TNF, among other cytokines, during the first stimulation by LPS, later increased the resistance of the animals to the infectious process. This is in agreement with the protective role of inflammatory cytokines regularly reported since the 1980s. Accordingly, it is difficult to assume that endotoxin tolerance per se is directly linked to the increased susceptibility of systemic inflammation response syndrome (SIRS) patients to nosocomial infections. Indeed, leukocytes from sepsis and SIRS patients also display altered antigen presentation, direct microbicidal activity, and oxidative burst.

Leukocyte reprogramming in sepsis and systemic inflammatory response syndrome

An altered responsiveness of circulating human monocytes has been regularly reported in sepsis patients. IL-1α, IL-1β, IL-6, and TNF production upon ex vivo activation of patients' monocytes were significantly reduced in response to LPS [26]. Normal reactivity was never restored in non-surviving patients in contrast to those who recovered. This altered ex vivo cytokine production was reproduced in human volunteers receiving an injection of LPS [27].

Altered ex vivo cytokine production is not a generalized phenomenon

The reduction of the capacity of circulating leukocytes to produce cytokine depends on several parameters. The change of monocyte reactivity is a reflection of subtle modifications that differ depending upon the nature of the stress. For example, in patients undergoing major surgery, two days post-surgery, the ex vivo production of TNF in response to LPS was never reported to be reduced [28]. In contrast, trauma patients displayed a long lasting hyporeactivity several days after their admission [29]. It is possible that the use of anesthetic drugs during surgery may limit the cell reprogramming following surgical injury, in contrast to what happens in patients after trauma or burn. If so, it would imply that neuromediators contribute to control cellular reprogramming.

Many experiments assessing leukocyte hyporeactivity were performed in whole blood assays, and are difficult to interpret. First, some cytokines can be produced both by mononuclear and by polymorphonuclear cells present in whole blood samples (for example, IL-1ra), and the responsiveness of each individual population may be differently affected by the insult. This may explain why, in sepsis, the analysis of LPS-induced IL-1ra performed in whole blood displayed an enhanced release compared to healthy controls [30] while that produced by isolated neutrophils was reduced [31]. Second, the presence of immunosuppressive factors within the plasma may play an inhibitory role during the ex vivo culture and may mask or influence the individual behavior of leukocytes, once isolated [32,33]. For example, in sepsis, ex vivo induction of TNF, IL-6 and IL-10 by heat-killed Escherichia coli was shown to be reduced in whole blood compared to healthy controls, whereas no difference was noticed with isolated monocytes [34,35]. Despite this possibility, it is worth mentioning that, in trauma patients, numerous whole blood cultures revealed an enhanced release of cytokines in response to different agonists.

Monocytes from septic patients have a diminished capacity to release TNFα, IL-1α, IL-1β, IL-6, and IL-12 [30,36], whereas this is not the case for IL-1ra [30], granulocyte colony stimulating factor [37] and macrophage migration inhibitory factor [38]. We recently observed an enhanced production of IL-10 by monocytes from septic patients in response to both LPS and Pam3CysSK4 [35]. An enhanced or unchanged IL-10 production was observed with circulating leukocytes of patients after surgery [39], trauma [29], and in resuscitated patients after cardiac arrest (RCA) [40]. In sepsis there are controversial reports [41,42]. The fact that, after LPS-triggering, monocytes can display a reduced production of TNF and an unaltered or even enhanced production of IL-10, illustrates that monocytes can still sense LPS, but that the
intracellular signaling has been modified to limit the production of pro-inflammatory cytokines and to maintain or to favor that of anti-inflammatory ones.

There are still few studies that have investigated the responsiveness of circulating leukocytes of SIRS patients to agonists other than LPS. Recently, we showed in sepsis a significantly reduced reactivity of monocytes to Pam3CysSK4, a specific synthetic Toll-like receptor (TLR2) agonist, compared to healthy controls. In contrast, the production of TNF induced by a TLR2 ligand was similar to that of healthy controls in RCA and trauma patients [35]. There are still too few studies with specific TLR9 ligands, and with IL-1 and TNF as stimulating agents [29] to conceive a general idea of the nature of the responsiveness to these specific activators.

Cross-tolerance has been regularly reported in experimental models of endotoxin tolerance between LPS and other TLR ligands. However, recent investigations suggest that the specificity of TLR agonists may influence the observation of cross-tolerance, since highly purified LPS (TLR4 ligand) did not tolerize macrophages to Pam3CysSK4 (TLR2 ligand) [43]. Revisiting the concept of cross-tolerance with Gram-positive bacteria in a mouse model of endotoxin tolerance, we showed that the phenomenon was only transient, especially in the blood compartment [44]. Although the use of highly specific TLR agonists is useful to further understand the alteration of specific signaling pathways within cells from SIRS patients, the response to whole bacteria may represent a more relevant and physiological approach to monitor the immune status. Many reports showed that leukocytes from SIRS and sepsis patients remained responsive to whole bacteria. Cells from SIRS patients normally responded to heat-killed Staphylococcus aureus and Streptococcus pyogenes [29]. These observations are in agreement with previous reports in sepsis performed with P. aeruginosa [41] and Salmonella typhimurium [45], and others in non-infectious SIRS with S. aureus [29,40,46]; they differ from other observations that showed in sepsis a reduced TNF production in response to S. aureus and E. coli [34,47].

Mechanisms of leukocyte reprogramming
Desensitizing agents in plasma

The presence of deactivating or immunosuppressive agents within the blood stream may contribute to the hyporeactivity of circulating leukocytes. In the late 1970s, it was reported that sera of burn patients were able to suppress the proliferative response of normal cells [48]. Prins and colleagues [49] showed that sera from septic patients had the capacity to down-regulate the TNF production by activated monocytes from healthy donors, The fact that ‘septic plasma’ behaves as an immunosuppressive milieu [32] is illustrated in human volunteers by the capacity of endotoxin to induce plasma inhibitors [50]. Most interestingly, in septic patients, this suppressive effect was significantly reduced after passage of plasma through a resin and after incubation with anti-IL-10 antibodies [51]. IL-10 was identified as a major functional deactivator of monocytes in human septic shock plasma [52]. However, we demonstrated that IL-10 was not sufficient to explain the observed dysregulation that occurs in septic patients [53] and IL-10 knock out mice can still be tolerized to endotoxin [15]. TGFβ was also shown in animal models of hemorrhagic shock or sepsis to be the causative agent of the depressed splenocyte responsiveness [54]. Monocytes from immunocompromized trauma patients seem to be a source of TGFβ [55], and TGFβ released by apoptotic T cells contributes to this immunosuppressive milieu [56]. In addition, there is accumulating evidence for a strong interaction between components of the nervous and the immune systems. Numerous neuromediators have been shown to behave as immunosuppressors. Catecholamines, found to be at higher concentrations in stressful situations [57], suppress the activity of immuno-competent cells, inhibit TNF production and favor IL-10 release. Alpha-melanocyte-stimulating hormone also contributes to immunosuppression by inducing IL-10 production by human monocytes [58]. In addition, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide directly inhibit endotoxin induced pro-inflammatory cytokine secretion [59]. SIRS is also associated with an activation of the hypothalamus-pituitary-adrenal axis, which leads to the release of glucocorticoids, well known for their potent ability to limit cytokine production [60]. Prostaglandins are produced during sepsis and can also contribute to the down regulation of cytokine production [61]. Finally, the levels of circulating heat shock proteins are elevated in SIRS and sepsis patients [62]. Since it has been shown that over-expression of heat shock proteins can inhibit LPS induced production of cytokines [63], one can postulate that they may play a role in desensitizing circulating cells.

Endotoxin neutralizing molecules in plasma

When the cells from healthy controls were incubated with plasma from non-infectious SIRS patients, a strong inhibition of LPS-induced TNF production was observed, suggesting that patients’ plasma contains inhibitory mediators [64]. In contrast, SIRS plasma did not significantly affect the heat-killed S. aureus-induced TNF production. SIRS plasma, which contains high levels of sCD14 [65] and high levels of LPS-binding protein [66], may be particularly inhibitory towards the LPS-induced activation because of the presence of these molecules, high concentrations of which are known to specifically inhibit LPS. In addition, plasma lipoproteins are also known to neutralize endotoxins [67], and Warren and colleagues [68] have shown that LPS bound much more rapidly to lipoprotein fractions in tolerant serum than in normal serum. More recently, enhanced levels of ubiquitin, an 8.6 kDa protein involved in intracellular function, have been found in serum of sepsis and trauma patients and shown to specifically inhibit TNF induction by LPS [69]. Altogether, these observations may partially explain why LPS responsiveness is specifically reduced in SIRS compared to other activators.
Nuclear factor-kappa B inhibition

Nuclear factor-kappa B (NF-κB) is critical for maximal expression of many cytokines involved in the pathogenesis of inflammation. Activation and regulation of NF-κB are tightly controlled by a group of inhibitory proteins (IκB), which maintain NF-κB in the cytoplasm of effector cells. Blackwell and co-workers [70] investigated the role of NF-κB in the mechanism of endotoxin tolerance in a rat alveolar macrophage cell line. Tolerance, monitored by cytokine production, was associated with an impaired activation of NF-κB and a depletion of both p65 and p50 forms. This study suggested that endotoxin tolerance may be mediated by limiting the amount of NF-κB available for activation and, thus, inhibiting transcription of NF-κB-dependent genes. On the other hand, Ziegler-Heitbrock and colleagues [71] demonstrated that endotoxin tolerance in a monocytic cell line was associated with an increase of the inactive p50 homodimer of NF-κB and a decrease of the p50p65 active heterodimer. We undertook a study on NF-κB expression in mononuclear cells of patients with severe sepsis or major trauma. Subsequent to an in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with LPS, the expression of both p65p50 and p50p50 was low in survivors of sepsis, while non-survivors of sepsis showed a predominance of the inactive homodimer and a low p65p50/p50p50 ratio when compared to controls [72]. In the latter group of patients there was a reverse correlation between plasma IL-10 levels and the p65p50/p50p50 ratio after in vitro LPS stimulation. The reduced expression of nuclear NF-κB was not due to its inhibition by IκBα since very low expression of IκBα and low levels of p65 and p50 were found in the cytoplasm of PBMCs from sepsis patients when compared to controls. These results demonstrate that, upon LPS activation, PBMCs of SIRS patients show patterns of NF-κB expression that resemble those reported during LPS tolerance: a global down-regulation of NF-κB in survivors of sepsis, or the presence of large amounts of the inactive homodimer in the non-survivors. In trauma patients, we observed a long-term reduction of both p65/p50 heterodimers and p50/p50 homodimers and a reduced p65p50/p50p50 ratio after LPS stimulation in vitro [73].

Down regulation of TLR-associated signaling pathways

Still very few studies have addressed in humans the link between the altered responsiveness to LPS of monocytes of sepsis and SIRS patients and the modification of the TLR4 signaling pathways. In the past few years, numerous intracellular molecules that negatively regulate LPS-activated signaling pathways have been discovered (Figure 1). IL-1 receptor associated kinase (IRAK)-M prevents the dissociation of IRAK-1 and IRAK-4 from myeloid differentiation (MyD)88 and the formation of IRAK-TNF receptor associated factor (TRAF)6 complexes, and is a negative regulator of TLR signaling. Interestingly, endotoxin tolerance is significantly reduced in IRAK-M deficient mice [74]. It has been recently reported that monocytes from septic patients, when stimulated with LPS ex vivo, express IRAK-M mRNA more rapidly than cells from healthy donors [75]. Phosphatidylinositol 3-kinase behaves as an early inhibitor of TLR signaling [76]. Learn and colleagues [77] reported in septic patients that the repressed production of IL-1β and the selective elevation of the secreted form of IL-1Ra in response to LPS were linked to a probably altered IRAK-dependent signaling pathway and a maintained efficient phosphatidylinositol 3-kinase-dependent signaling pathway. Toll-interacting protein (Tollip), an adapter protein found to associate with the cytoplasmic TIR domain of IL-1R, TLR2 and TLR4, potently suppresses the activity of IRAK after TLR activation [78]. A splice variant of MyD88, termed MyD88 short (MyD88s), induced upon LPS activation, is defective in its ability to induce IRAK phosphorylation and behaves as dominant-negative inhibitor [79]. Single immunoglobulin IL-1R-related molecule (SIGIRR), a member of the TLR/IL-1R superfamily, is a negative regulator of the signaling induced by IL-1 or TLR4 ligands in other cells than macrophages [80]. Suppressor of cytokine signaling (SOCS)-1, promptly induced in macrophages upon LPS stimulation, is a negative regulator molecule of the JAK-STAT signal cascade. Interestingly, endotoxin tolerance cannot be observed in mice deficient for SOCS-1 [81]. We recently investigated the Tollip, SOCS1, MyD88s and SIGIRR regulators in sepsis and RCA patients. In monocytes of sepsis patients, we found that the mRNA expression of Tollip and SOCS1 was unchanged, while that of MyD88s and SIGIRR was significantly enhanced compared to healthy controls [35]. Other molecules involved in down-regulating the TLR4-induced MyD88-dependent signaling pathway would be worth investigating. In addition to SIGIRR, two other surface receptors are known to down regulate TLR4-signaling, namely RP105, which prevents TLR4/MD2 activation [82], and ST2, which interacts with and inhibits MyD88 and Mal/TIRAP [83]. Intracellular inhibitory molecules include: Triad3A, which favors ubiquitination of TLR4 and promotes its degradation via the proteosome [84]; Flightless I homolog, which interacts with MyD88 and interferes with the formation of the TLR4-MyD88 complex [85]; Monarch-1, which associates with IRAK-1, resulting in the blockage of IRAK-1 hyperphosphorylation [86]; A20, which removes ubiquitin moieties from the signaling molecule TRAF6 [87]; SHIP, which is produced in response to TGFβ and exerts its inhibitory effects, primarily through the hydrolysis of the phosphatidylinositol 3-kinase [88]; TRAF4, which interacts and counteracts TRAF6 and TRIF molecules [89]; FLN29, which contains a TRAF-6-related zinc finger motif suppressing NF-κB and mitogen-activated protein kinase activation downstream of TRAF6 [90]; ABIN-3, which inhibits NF-κB activation, downstream of TRAF6, but upstream of IKK (Wullaert et al., personal communication); Dok-1 and Dok-2, which are negative regulators of the Ras-Erk signaling pathway [91]; DUSP1 [92] and MKP-1 [93], which control p38 MAP kinase activation; RanGTPase, which reduces NF-κB accumulation in the nucleus [94]; and Bcl-3, which is induced by IL-10 and inhibits NF-κB binding onto its promotor sites [95] (see Figure 1).
Alteration of immune status or physiological adaptation?

Sepsis and non-infectious SIRS are associated with an exacerbated production of cytokines, as assessed by their presence in biological fluids [96]. The enhanced levels of cytokines within the bloodstream reflect the presence of activated or primed leukocytes within the different tissue compartments [97]. The local enhanced inflammatory response is a prerequisite to prevent infectious development in tissues, but failure to properly down-regulate the inflammatory process may lead to organ failure. The diminished capacity of circulating monocytes to produce cytokine upon \textit{in vitro} activation displays similarities with the endotoxin tolerance phenomenon. This may represent a protective response against an overwhelming dysregulation of the pro-inflammatory process [98]. In contrast to endotoxin tolerance, which has been shown to enhance resistance to infection, the observation of an altered immune status in patients may favor an increased risk of subsequent nosocomial infections. Other defects have been reported for T cells, dendritic cells, as well as apoptosis that mainly affects immune cells. However, monocyte hyporeactivity is not a global phenomenon and some signaling pathways are unaltered and allow the cells to respond normally to certain stimuli. The terms anergy, immunodepression, or immunoparalysis are often used to qualify the immune status of sepsis patients. However, the term ‘cellular reprogramming’, previously proposed by Zhang and Morisson [99] to characterize endotoxin tolerance, appears to be the most appropriate one to define the events occurring among circulating leukocytes during critical illness.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors are deeply grateful to their colleagues in Intensive Care Units, who, through the years, allowed their investigations, particularly Dr Christophe Adrie, Prof. Djillali Annane, Dr Jean Carlet, Prof. Jean-François Dhainaut, Dr Benoit Misset, Dr Pierre Moine, and Prof. Didier Payen. We thank Prof. Michael Pinsky for his invitation to write this review.
References

1. Beeson PB: Development of tolerance to typhoid bacterial pyrogen and its abolition by reticulo-endothelial blockade. Proc Soc Exp Biol Med 1946, 61:248-250.

2. Freeman HH: Passive transfer of tolerance to pyrogenicity of bacterial endotoxin. J Exp Med 1960, 111:453-463.

3. Greisman SE, Hornick RB, Wagner RN Jr, Woodward WE, Woodward TE: The role of endotoxin during typhoid fever and typhlariaemia in man. J Clin Invest 1969, 48:613-620.

4. Rubenstein M, Mulholland JH, Jeffery GM, Wolf SM: Malaria induced endotoxin tolerance. Proc Soc Exp Biol Med 1965, 118:283-287.

5. McCabe WR: Endotoxin tolerance. II Its occurrence in patientstweet development. J Clin Immunol 1963, 42:618-626.

6. Neva FA, Morgan HR: Tolerance to the action of endotoxin of enteric bacilli in patients convalescent from typhoid and paratyphoid fevers. J Lab Clin Med 1950, 35:91-922.

7. Heyman A, Beeson PB: Influence of various disease states upon the endotoxin response. J Endotoxin Res 1995, 5:118-1118.

8. Watson DW, Kim YB: Development of tolerance to typhoid bacterial endotoxins. I. Specificity of pyrogenic tolerance and the role of hypersensitivity in pyrogenicity, lethality and skin reaction. J Exp Med 1963, 118:47-56.

9. Freudenberg MA, Galanos C: Induction of tolerance to lipopolysaccharide (LPS) -D-galactosamine lethality by pretreatment with LPS is mediated by macrophages. Infect Immun 1980, 25:1325-1337.

10. Mathison JC, Vinca GD, Wolfson E, Tobias PS, Glaser K, Ulevitch RJ: Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages. J Clin Invest 1990, 85:1108-1118.

11. Rayhane N, Fitting C, Cavaillon J-M: Dissociation of INFg from IL-12 and IL-8 during endotoxin tolerance. J Endotol Res 1999, 5:319-324.

12. Astiz ME, Rackow EC, Still JG, Howell ST, Cato A, Von Eschen MA, Lutz J, Philipp T: Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica sorvay tymphiumum response in-vitro. Infect Immun 2001, 69:463-471.

13. Rigato O, Salomao R: LPS-specific phenomenon: partial mimicry with IL-1, IL-10 and TGFb. Interleukin-10 is a central regulator of adaptive immune responses to bacterial lipopolysaccharide suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol 1993, 151:1637-1645.

14. Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer WJ, Kühn R, Rajewsky K, Müller W, Menon S, Davidson N, Heyman A, Beeson PB: Impaired production of interferon-gamma stimulated as a “sepsis like” syndrome. J Infect Dis 2001, 181:21-29.

15. Rigato O, Salomao R: Lipopolysaccharide inhibits the induction of nitric oxide synthesis and reduces leishmanicidal activity. Eur J Immunol 1993, 23:1711-1714.

16. Hensler T, Ittner J, Bierl JP, Caillau JM: Administration of endotoxin associated with lipopolysaccharide-tolerance protects mice against fungal infection. Infect Immun 2000, 68:3748-3753.

17. Huang W, Fong Y, Marano MA, Gershenwald JE, Yurt RW, Moldawer LL, Lowry SF: Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica sorvay tymphiumum response in-vitro. Infect Immun 2001, 69:463-471.

18. Heemann U, Szabo A, Hamar P, Müller V, Witzke O, Lutz J, Philipp T: Intradrenal endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol 1993, 151:1637-1645.

19. TGFb. The role of endotoxin during typhoid fever and typhlariaemia in man. J Clin Invest 1969, 48:613-620.

20. Cabié A, Fitting C, Farkas J-C, Laurian C, Cormier J-M, Caillau JM: Dissociation of LPS-induced monocytic cytokine production from the course of meningococcal infections. J Infect Dis 1994, 169:157-161.

21. Hensler T, Ittner J, Bierl JP, Caillau JM: IL-1 receptor antagonist production during infectious and noninfectious systemic inflammatory response syndrome. Crit Care Med 2000, 28:2277-2283.

22. Hu W, Fong Y, Marano MA, Gershenwald JE, Yurt RW, Moldawer LL, Lowry SF: Tolerance to endotoxin prevents mortality in infected thermal injury: association with attenuated cytokine responses. J Infect Dis 1992, 165:859-864.

23. Adib-Conquy M, Moine P, Asehnoune K, Edouard A, Espevik T, Miyake K, Werts C, JM Cavallou: Toll-like receptor-mediated tumor necrosis factor and interleukin-10 production differ during systemic inflammation. Am J Resp Crit Care Med 2003, 168:158-164.

24. Van Deuren M, Van Der Ven-Jongekrijg H, Demacker PN, Bacter-Link, AKN, Van Dalen R, Sauerwein RW, Gallati H, Vannice J, Van Der Meer JW: Differential expression of proinflammatory cytokines and their inhibitors during the course of meningococcal infections. J Infect Dis 1994, 169:157-161.

25. Marie C, Muret J, Fitting C, Payen D, Caillau JM: In-vivo cytokine production during infectious and noninfectious systemic inflammatory response syndrome. Crit Care Med 2000, 28:2277-2283.

26. Cabié A, Fitting C, Farkas J-C, Laurian C, Cormier J-M, Caillau JM: "Septic Plasma": an immunosuppressive milieu. Am J Resp Crit Care Med 2002, 166:1417-1418.

27. Cabié A, Fitting C, Caillau JM, Adib-Conquy M, Orbay CE, Schneier EM, Geor-Prevention in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon: a review. J Endotoxin Res 2001, 7:85-93.

28. Haupts, W, Zimbogl H, Riese J, Stehr A, Linde HJ, Hohenberger W: Dissociation of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 production: a reaction to the initial systemic hyperactivation in septic shock. J Invest Surg 1997, 10:349-355.

29. Adib-Conquy M, Adrie C, Fitting C, Gattoliat O, Baeysten H, Caillau JM: Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 2006, 34:2377-2385.

30. Haupts, W, Zimbogl H, Riese J, Stehr A, Linde HJ, Hohenberger W: Dissociation of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 production: a reaction to the initial systemic hyperactivation in septic shock. J Invest Surg 1997, 10:349-355.

31. Adib-Conquy M, Adrie C, Fitting C, Gattoliat O, Baeysten H, Caillau JM: Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 2006, 34:2377-2385.

32. Haupts, W, Zimbogl H, Riese J, Stehr A, Linde HJ, Hohenberger W: Dissociation of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 production: a reaction to the initial systemic hyperactivation in septic shock. J Invest Surg 1997, 10:349-355.

33. Adib-Conquy M, Adrie C, Fitting C, Gattoliat O, Baeysten H, Caillau JM: Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 2006, 34:2377-2385.

34. Haupts, W, Zimbogl H, Riese J, Stehr A, Linde HJ, Hohenberger W: Dissociation of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 production: a reaction to the initial systemic hyperactivation in septic shock. J Invest Surg 1997, 10:349-355.

35. Adib-Conquy M, Adrie C, Fitting C, Gattoliat O, Baeysten H, Caillau JM: Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 2006, 34:2377-2385.
42. Marchant A, Alegre M, Hakim A, Piéard G, Marécaux G, Friedman G, De Groot D, Kahn R, Vincent J, Goldman M: Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. J Clin Immunol 1995, 15:265-272.

43. Dobrovoltskaia MA, Medvichev AE, Thomas KE, Cuesta N, Toshchakov V, Ren T, Cody MJ, Michalek SM, Rice NR, Vogel SN: Induction of in vitro reprogramming by Toll-like receptor (TLR2 and TLR4 agonists in murine macrophages: effects of TLR4 for “homeostasis” versus “heterotolerance” on NF-κB signaling pathway components. J Immunol 2003, 170:508-519.

44. Fitting C, Dhawan S, Cavallion JM: Compartmentalisation of endotoxin tolerance. J Infect Dis 2004, 189:1295-1303.

45. Mitov IG, Kropec A, Benzing A, Just H, Garotta G, Galanos C, Reis e Sousa C: Interleukin-10 production in cytokine stimulated whole blood cultures from intensive care patients with bacterial infections. Infection 1997, 25:206-212.

46. Muret J, Marie C, Fitting C, Payen D, Cavallion JM: Ex vivo T-lymphocyte derived cytokine production in SIRS patients is evaluated by experimental procedures. Shock 2000, 13:169-174.

47. Wilhelm W, Grundmann U, Rensing H, Werth M, Langemeyer J, Stracke C, Dhirga D, Bauer M: Monocyte deactivation in severe human sepsis or following cardiopulmonary bypass. Shock 2003, 19:234-240.

48. Constantin M: Association of sepsis with an immunosuppressive polypeptide in the serum of burn patients. Ann Surg 1978, 188:209-215.

49. Prins JM, Kuijper EJ, Mevissen ML, Speelman P, van Deventer SJ: Endotoxin tolerance depletes nuclear factor-kB and suppresses its reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR4 for “homeostasis” versus “heterotolerance” on NF-κB signaling pathway components. J Immunol 2003, 170:508-519.

50. Spinas G, Bloesch D, Kaufmann M, Keller U, Dayer JM: Role of interleukin 6 and transforming growth factor-beta in sepsis. Immunity 1991, 3:254-262.

51. Ronco C, Brendolan A, Lonnemann G, Galanos C, Reis e Sousa C: Interleukin-10 production in cytokine stimulated whole blood cultures from intensive care patients with bacterial infections. Infection 1997, 25:206-212.

52. Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP: Induction of plasma inhibitors of interleukin 1 and TNF-alpha activity by endotoxin administration to normal humans. Am J Physiol 1990, 259:R993-R997.

53. Marie C, Fitting C, Muret J, Payen D, Cavallion JM: Interleukin-10 production in whole blood assays: is interleukin-10 responsible for the downregulation observed in sepsis? Cytokine 2000, 12:55-61.

54. Ronco C, Brendolan A, Lonnemann G, Bellomo R, Piccinni P, Dogliani A, Dar M, Intra M, La Greca G, Inguglietto P, et al.: A pilot study of coupled plasma filtration with adsorption in septic shock. Crit Care Med 2002, 30:1250-1255.

55. Brandtzæg P, Osnes L, Øvsteboe R, Joe GB, Westvik AB, Kierulf P: Net inflammatory capacity of human septic shock plasma is evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J Exp Med 1996, 184:51-60.

56. Miller-Graziano CL, Szabo G, Griffey K, Mehta B, Kodys K, Catanesi P, Gorelik E, Kuchroo VK, Wherry EJ, Oldstone MA, Lenczowski S, Banerjee S, Persaud T, Khan M, Nelson KE, et al.: Rapid up-regulation of IRAK-M expression following a second endotoxin challenge in human monocytes and in monocytes isolated from septic patients. Biochem Biophys Res Commun 2003, 311:465-472.

57. Jones SB, Westfall MW, Sayeed MM: Plasma catecholamines during e. coli bacteremia in conscious rats. Am J Physiol 1998, 275:H440-H447.

58. Luger TA, Kalden DH, Scholzen TE, Brzoska T: The phosphatidylinositol 3 kinase pathway selectively controls s1l-1ra not interleukin-1b production in the septic leukocytes. J Biol Chem 2001, 276:20234-20239.

59. Zhang G, Ghosh S: Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 2002, 277:7059-7065.

60. Janssens S, Burns K, Tschopp J, Beyaert R: Regulation of interleukin-1- and lipopolysaccharide-induced NF-κappaB activation by alternative splicing of MyD88. Curr Biol 2002, 12:467-471.

61. Choudhry MA, Ahmad S, Ahmed Z, Sayeed MM: Prostaglandin E2 down-regulation of T cell IL-2 production is independent of IL-10 during Gram negative sepsis. Immunol Lett 1999, 67:129-130.
82. Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, et al.: Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. J Endotoxin Res 2005, 11:383-386.

83. Brint EK, Xu D, Liu H, Dunne A, McKenzie ANJ, O'Neill LAJ, Liew FY: ST2 is an inhibitor of interleukin 1 receptor and toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol 2004, 5:373-379.

84. Chuang TH, Ulevitch RJ: Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 2004, 5:495-502.

85. Wang T, Chuang TH, Ronni T, Gu S, Du YC, Cai H, Sun HQ, Yin HL, Chen X: Flightless I homolog negatively modulates the TLR pathway. J Immunol 2006, 177:1675-1682.

86. Rauh MJ, Sly LM, Kalesnikoff J, Hughes MR, Cao LP, Lam V, Krystal G: The role of SHIP1 in macrophase programming and activation. Biochem Soc Trans 2004, 32:785-788.

87. Takeshita F, Ishii KJ, Kojima Y, Coban C, Sasaki S, Ishii N, Kinman DM, Okuda K, Akira S, et al.: TRAF6 and TRIF. Eur J Immunol 2005, 35:2477-2485.

88. Shinozawa H, Yamada T, Sanada T, Kobayashi T, Aki D, Minoda Y, Takaki H, Ishii KJ, Kobiyama K, Kojima Y, Cordova C, et al.: The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. J Biol Chem 2005, 270:41289-41297.

89. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

90. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

91. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

92. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

93. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

94. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

95. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.

96. Shinozawa H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto H, et al.: Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Biol Chem 2006, 281:333-339.