Photochromic YOxHy thin films examined by in situ positron annihilation spectroscopy

Eijt, S. W. H.; De Krom, T. W. H.; Chaykinab, D.; Schut, H.; Colombi, G.; Cornelius, S.; Egger, W.; Dickmann, M.; Dam, B.

DOI
10.12693/APhysPolA.137.205

Publication date
2020

Document Version
Final published version

Published in
Acta Physica Polonica A

Citation (APA)
Eijt, S. W. H., De Krom, T. W. H., Chaykinab, D., Schut, H., Colombi, G., Cornelius, S., Egger, W., Dickmann, M., & Dam, B. (2020). Photochromic YOxHy thin films examined by in situ positron annihilation spectroscopy. Acta Physica Polonica A, 137(2), 205-208. https://doi.org/10.12693/APhysPolA.137.205

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Photochromic \(\text{YO}_x\text{H}_y \) Thin Films Examined by \textit{in situ} Positron Annihilation Spectroscopy

S.W.H. Eijta,∗, T.W.H. de Kromb,∗, D. Chaykinab,∗, H. Schuta, G. Colombib, S. Corneliusb, W. Eggerc, M. Dickmannc, C. Hugenschmidtd and B. Damb

aDepartment of Radiation Science and Technology, TU Delft, Mekelweg 15, NL-2629 JB Delft, The Netherlands
bDepartment of Chemical Engineering, TU Delft, Van der Maasweg 9, NL-2629 HZ Delft, The Netherlands
cInstitut für Angewandte Physik und Messtechnik, Bundeswehr Universität München,
Werner-Heisenberg-Weg 39, D-85579 Neubiberg, Germany
dPhysics Department and Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München,
Lichtenbergstr. 1, D-85748 Garching, Germany

Doppler broadening positron annihilation spectroscopy depth profiles were collected on photochromic \(\text{YO}_x\text{H}_y \) thin films. \textit{In situ} UV illumination of photochromic semiconductor \(\text{YO}_x\text{H}_y \) films leads to an increase in \(S \)-parameter and a large reduction in \(W \)-parameter, possibly caused by a change in the charge state of vacancies or the growth of hydrogen-rich metallic \(\text{YO}_x\text{H}_y \) clusters, albeit that vacancy formation or changes in positronium formation during illumination might also play a role. Intriguingly, both the \(S \) and \(W \)-parameters increase during thermal bleaching, indicating that another process takes place. The Doppler parameters do not return to their initial values after complete thermal bleaching, suggesting that persistent local rearrangements of vacancies and possibly hydride ions have occurred during the full photodarkening–thermal bleaching cycle. Positron annihilation lifetime spectroscopy shows that a small fraction of positronium is formed in as-deposited \(\text{YO}_x\text{H}_y \) films, indicating that the films contain some nanopores.

DOI: 10.12693/APhysPolA.137.205
PACS/topics: 78.70.Bj, 61.80.Ba, 78.66.Li, 61.66.Fn, 61.72.jd, 73.43.Fj

1. Introduction

Positron annihilation spectroscopy (PAS) methods based on low-energy positron beams are sensitive probes for thin film energy materials. The depth range accessible to low-energy positron beams, typically up to a few \(\mu \text{m} \) below the surface sample, is very suitable to probe current and emerging thin film solar cells and optical hydrogen sensors. PAS detects electronic structure properties associated with the annihilation electrons, and is highly sensitive to the presence of neutral and negatively charged vacancies. Recently, we investigated various types of functional layers for thin film solar cells, including CdSe quantum dot (QD) layers for QD-based solar cells [1], demonstrating that the high sensitivity of positrons to detect surface properties of the QDs stems from the presence of a positron surface state. The degradation of \(\text{ZnO}/\text{Cu(In,Ga)Se}_2 \) [2] and of methyl ammonium lead iodide (MAPbI\(_3\)) perovskite solar cells [3] was linked to the in-diffusion of water molecules and to the interplay of the subsequently occurring chemical reactions and vacancies in the \(\text{ZnO} \) and MAPbI\(_3\) layers. Finally, PAS is very useful for the investigation of hydrogen energy materials, such as Mg\(_{1−y}\)Ti\(_y\)H\(_2\) thin films [4].

The \(\text{YO}_x\text{H}_y \) materials investigated in this study are derived from the yttrium hydride family. In 2011, Mongstad et al. [5] discovered that semiconducting yttrium oxyhydride films exhibit a unique photochromic effect. The photochromic effect is characterized by a reduction of the optical transmittance upon exposure of \(\text{YO}_x\text{H}_y \) films to UV illumination with photon energies above the band gap. The transmittance is reduced over a broad range of photon wavelengths including the visible and near IR spectral range [5, 6]. Under ambient conditions, photodarkened films reversibly bleach back thermally towards the initial transparent state when the UV excitation is removed, indicating that \(\text{YO}_x\text{H}_y \) and other rare-earth oxyhydrides are promising for application in smart windows [6]. A recent extensive study by Cornelius et al. [7] reports on the detailed structural and compositional evolution of \(\text{Y/YH}_x/\text{YO}_y\text{H}_z\text{–}2z/\text{Y}_z\text{O}_3 \) films upon varying the oxygen-to-hydrogen ratio in the Y–H–O ternary phase diagram [7]. Our previous study showed that the trends in the positron Doppler \(S \)– and \(W \)-parameter of \(\text{Y/YH}_x/\text{YO}_y\text{H}_z\text{–}2z/\text{Y}_z\text{O}_3 \) thin films strongly correlate with the variation in their electronic structure, ranging from metallic and semiconducting nature to a wide-bandgap insulator with increased O:H ratio [8]. Here, we report PAS measurements during an \textit{in situ} UV illumination experiment on a photochromic \(\text{YO}_x\text{H}_y \) thin film.

*corresponding author; e-mail: s.w.h.eijt@tudelft.nl

(205)
2. Experimental

YO$_x$H$_y$ thin films on fused silica (f-SiO$_2$) substrates were prepared by reactive DC magnetron sputtering of metallic Y targets at 200 W in an Ar/H$_2$ mixture with 12.5 vol.% of H$_2$ in an AJA International ATC 2400 magnetron sputtering system at Ar deposition pressures of 0.5 Pa [5, 6, 9]. The oxyhydride phase of the YO$_x$H$_y$ films results from post-oxidation of the YH$_{2–x}$ films in ambient air. The results reported here were obtained on two YO$_x$H$_y$ films with a thickness of 330 nm and of 385 nm, and an optical band gap of ≈ 2.6 eV.

The Doppler broadening positron annihilation lifetime spectroscopy (DB-PAS) [10] measurements were performed using the variable energy positron (VEP) facility of the Reactor Institute Delft. Depth-profiles were collected using positron implantation energies in the range of 0.1–25 keV. A liquid-nitrogen-cooled high-purity Ge (HPGe) detector with an energy resolution of 1.3 keV was used to determine the energy of the emitted annihilation γ-rays. The momentum windows used to deduce the S parameter and W parameter are $p_L < 0.41$ a.u. (1 a.u. = 7.2974 x 10^{-4}m$_0$c2) and 1.12 a.u. < p_L < 3.21 a.u., respectively, with longitudinal momentum $p_L = 2\Delta E/c$ and ΔE the Doppler shift in energy of the detected annihilation γ-ray. The S parameter is a measure of positron annihilation with valence electrons, which provides sensitivity to the electronic structure and the presence of open volume defects such as vacancies or vacancy clusters. The W parameter is a measure of annihilation with (semi-)core electrons which provides chemical sensitivity to the positron trapping site. For in situ experiments, a 385 nm LED (M385LP1, Thorlabs GmbH) was fitted with a Köhler lens system and mounted to a UV transparent viewport (T=95% at 385 nm) at the VEP setup for illumination of the YO$_x$H$_y$ samples through the UV transparent fused silica substrate (T=92%). The typical UV irradiance at the sample position was 31 mW/cm2 as measured with a calibrated USB-2000+ spectrometer (Ocean Optics B.V.). The same UV excitation parameters were used during separate transmittance measurements in order to characterize the photochromic contrast and thermal bleaching speed of the samples prior to DB-PAS investigations. The optical transmittance measurements were performed using an Ocean Optics DH-2000-BAL deuterium-halogen UV-vis-NIR light source (230–2500 nm) and an Ocean Optics HR4000 energy-dispersive detector (190–1100 nm).

Additional ex situ positron annihilation lifetime spectroscopy (PALS) [10] experiments on similar as-deposited samples were performed without UV illumination at selected positron energies between 1 to 18 keV using the pulsed low-energy positron lifetime spectrometer (PLEPS) instrument of the neutron induced positron source (NEPOMUC) facility at the Heinz Maier–Leibnitz Zentrum (MLZ) research reactor in Garching.

In Fig. 1a we compare the optical transmittance spectra of the YO$_x$H$_y$ sample with a thickness of 385 nm in the as-deposited state, after photodarkening for 2 h under 31 mW/cm2 UV illumination and after subsequent bleaching for 4 h and 17 h. Time-dependent measurements showed that thermal bleaching occurs on a time scale of the order of ≈ 20 h ($\tau_{\text{bleach}} \approx 4$ h). Indeed, transmittance spectra collected on the 330 nm sample studied in the in situ PAS measurements demonstrate that the 3 days of bleaching in vacuum during the PAS measurement is sufficient to reach a nearly full recovery of the initial transmittance, indicating reversibility of the optical properties (Fig. 1b).

Fig. 1. (a) Optical transmittance spectrum of an YO$_x$H$_y$ sample with a thickness of 385 nm deposited at 0.5 Pa in (i) the as-deposited virgin state and (ii) the state after 2 h of UV-illumination and (iii) after bleaching for 4 h and 17 h. The peak at 385 nm under UV illumination is caused by stray light of the LED light source. (b) Optical transmittance spectrum of the YO$_x$H$_y$ sample with a thickness of 330 nm deposited at 0.5 Pa in (i) the as-deposited virgin state (black line) and (ii) the state after 2 h of UV-illumination and 3 days of bleaching in vacuum in situ during the PAS experiment (red line).
Photochromic YO_xH_y Thin Films Examined by in situ Positron Annihilation Spectroscopy

In Fig. 2, the positron Doppler S-parameter depth-profile of the as-deposited 330 nm YO_xH_y sample is compared to the corresponding depth-profiles after 2 h UV-illumination and subsequent bleaching for 3 days during the in situ PAS measurements. In contrast to the transmittance spectra, that show nearly full reversible behavior of the photochromic effect on a timescale of the order of ≈ 20 h, the depth profiles show pronounced (semi-)permanent changes after 3 days of bleaching. The S-parameter of the YO_xH_y film, as deduced from VEPFIT analysis, has increased by $\Delta S |_{\text{final}} = +3.0 \pm 0.5\%$, whereas the W-parameter shows a modest decrease of $\Delta W |_{\text{final}} = -5 \pm 1\%$.

In order to understand the significance of these changes, we examined the state of as-deposited YO_xH_y films prepared in the same manner by PALS measurements using the PLEPS spectrometer at the MLZ Garching research reactor. The PALS spectra on a 0.5 Pa YO_xH_y film with a thickness of ≈ 290 nm indicate the presence of a fast component with an average lifetime of around 270 ps, that most likely stems from annihilation in defect-free YO_xH_y regions and in yttrium cation monovacancies (V_{Y}). Furthermore, positronium was observed with a lifetime of ≈ 1.7 ns and an intensity at 4 keV of $\approx 4\%$, indicating that the films contain nanopores with a diameter of ≈ 0.5 nm, assuming a spherical shape.

The apparently irreversible changes in S and in W after full optical bleaching therefore most likely stem either from additional formation of V_{Y} cation vacancies, or, alternatively, of small vacancy clusters involving anions, such as $V_{\text{Y}}-V_{\text{H}}$. H^- hydride ions in similar types of rare-earth oxyhydrides are (locally) rather mobile [11, 12] and therefore, H^- ions might have irreversibly moved to hydrogen trapping sites in e.g., the nanopores during the illumination. Clearly, in situ illumination studies using PALS may aid to reveal which type(s) of open volume defects in the YO_xH_y films are generated in an apparently irreversible way during a full photodarkening–bleaching cycle.

Fig. 2. Positron Doppler broadening S- and W-parameter depth-profile of the 330 nm YO_xH_y sample in (i) the as-deposited virgin state (black circles) and (ii) the state after 2 h of UV-illumination and 3 days of bleaching during the in situ PAS measurements (red triangles).

Fig. 3. Time-dependence of the Doppler S- and W-parameter collected at a positron implantation energy of 5 keV. The orange-shaded area denotes the time interval of 2 h of in situ UV optical illumination of the 330 nm YO_xH_y sample, after which the LED ($\lambda = 385$ nm) is turned off and the sample bleaches in dark conditions.
Figure 3 presents the time-dependence of the S- and W-parameter collected at a fixed positron implantation energy of 5 keV, corresponding to a mean positron implantation depth in the center of the $\text{YO}_x \text{H}_y$ film, during 2 h of photodarkening (orange area) and subsequent bleaching for 70 h, in comparison with the S- and W-parameter in the initial state. The Doppler parameters show clear changes during illumination that are quite different from those observed after full optical bleaching. A relatively small change in S-parameter of only $\Delta \Delta S_{\text{ill}} = +1.4 \pm 0.3\%$ is observed after 2 h of illumination, while the W-parameter shows a strong decrease of $\Delta \Delta W_{\text{ill}} = -12 \pm 2\%$, i.e., about twice larger than the observed (semi-)permanent change in W.

The remarkable changes in the Doppler parameters during UV illumination may stem from either of the following possible causes, including (i) charging of positively charged vacancy levels by photo-excitation of vacancy $\frac{1}{2} \text{e}^+$. The formation of hydrogen-rich metallic YH_2 or $\text{YO}_x \text{H}_y$ ($x > 0.5$) clusters [7], perhaps caused by photo-induced local transport of H^- and local phase segregation, (iii) changes in the formation of positronium due to the presence of photo-excited charge carriers in the photochromic state. Also, formation of vacancies by the UV illumination cannot be excluded. In situ PALS studies and $ab\ initio$ modeling [10] of positron lifetimes and positron-electron momentum distributions may provide the necessary additional information to identify the positron annihilation site. This would enable to discriminate between the indicated possible atomic-scale transformations, providing quantitative insights into the local transformations that accompany the photochromic darkening and that possibly contribute to its mechanism.

4. Conclusions

In situ optical illumination of photochromic $\text{YO}_x \text{H}_y$ films above the band gap leads to significant changes in the positron Doppler S- and W-parameters, that might point to a change in the charge state of vacancies or to local segregation of metallic nanoclusters due to hydrogen migration, albeit that formation of vacancies can also occur. Intriguingly, during thermal bleaching both the S- and W-parameters are seen to increase, and thus do not return to their initial values after a full photodarkening–thermal bleaching cycle. The overall change in S and W compared to the as-deposited state suggests persistent local rearrangements of vacancies and possibly of hydride ions. PALS shows that a small fraction of positronium is formed in as-deposited $\text{YO}_x \text{H}_y$ films, pointing to the presence of nanopores. (In situ) PALS studies and $ab\ initio$ calculations may aid to discriminate between the proposed atomic-scale transformations, that could play a fundamental role in the remarkable photochromic properties of the $\text{YO}_x \text{H}_y$ films.

Acknowledgments

This research is financially supported by the Materials for Sustainability programme (Grant No. 680.M4SF.034) of the Netherlands Organisation for Scientific Research (NWO). We thank M. de Boer and H. Schreuders for technical assistance. The PALS measurements were performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

References

[1] W. Shi, V. Callewaert, B. Barbiellini, et al., Phys. Rev. Lett. 121, 057401 (2018).
[2] W. Shi, M. Theelen, A. Iliberi, et al., Phys. Rev. Mater. 2, 105403 (2018).
[3] D. Koushik, F. Naziris, J. Melskens, A. Nusteling, V. Zardetto, H. Schut, W.M.M. Kessels, S.W.H. Eijt, M.A. Creatore, J. Mater. Chem. C 7, 5275 (2019).
[4] H. Leegwater, H. Schut, W. Egger, A. Baldi, B. Dam, S.W.H. Eijt, Appl. Phys. Lett. 96, 121902 (2010).
[5] T. Mongstad, C. Platzer-Björkman, J.-P. Maehlen, L.P.A. Mooij, Y. Pivak, B. Dam, E.S. Marstein, B.C. Hauback, S.Zh. Karazhanov, Sol. Energy Mater. Sol. Cells 95, 3596 (2011).
[6] F. Nafezarefi, H. Schreuders, B. Dam, S. Cornelius, Appl. Phys. Lett. 111, 103903 (2017).
[7] S. Cornelius, G. Colombo, F. Nafezarefi, H. Schreuders, R. Heller, F. Munnik, B. Dam, J. Phys. Chem. Lett. 10, 1342 (2019).
[8] M.P. Plokker, S.W.H. Eijt, F. Naziris, H. Schut, F. Nafezarefi, H. Schreuders, S. Cornelius, B. Dam, Sol. Energy Mater. Sol. Cells 177, 97 (2018).
[9] T.W.H. de Krom, M.Sc. Thesis, Delft University of Technology, 2019.
[10] F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013).
[11] C. Vinod Chadran, H. Schreuders, B. Dam, J.W.G. Janssen, J. Bart, A.P.M.Kentgens, P.J.M. van Bentum, J. Phys. Chem. C 118, 22955 (2018).
[12] K. Fukui, S. Iimura, T. Tada, S. Fujitsu, M. Sasase, H. Tamatsuki, T. Honda, K. Ikeda, T. Otomo, H. Hosono, Nature Commun. 10, 2578 (2019).