Fast and Sample-Efficient Federated Low Rank Matrix Recovery From Column-Wise Linear and Quadratic Projections

Seyedehsara Nayer and Namrata Vaswani, Fellow, IEEE

Abstract—We study the following lesser-known low rank (LR) recovery problem: recover an \(n \times q \) rank-\(r \) matrix, \(X^* = [x_1^*, x_2^*, \ldots, x_q^*] \), with \(r \ll \min(n, q) \), from \(m \) independent linear projections of each of its \(q \) columns, i.e., \(y_k = A_k x_k^*, k \in [q] \), where \(y_k \) is an \(m \)-length vector with \(m \ll n \). The matrices \(A_k \) are known and mutually independent for different \(k \). We introduce a novel gradient descent (GD) based solution called AltGD-Min. We show that, if the \(A_k \)'s are i.i.d. with i.i.d. Gaussian entries, and if the right singular vectors of \(X^* \) satisfy the incoherence assumption, then \(\epsilon \)-accurate recovery of \(X^* \) is possible with order \((n+q)r^2 \log(1/\epsilon) \) total samples and order \(mnq/r \) time. Compared with existing work, this is the fastest solution. For \(\epsilon < r^{1/4} \), it also has the best sample complexity. A simple extension of AltGD-Min also provably solves LR Phase Retrieval, which is a magnitude-only generalization of the above problem. AltGD-Min factorizes the unknown \(X \) as \(X = UB \) where \(U \) and \(B \) are matrices with \(r \) columns and rows respectively. It alternates between a (projected) GD step for updating \(U \), and a minimization step for updating \(B \). Its each iteration is as fast as that of regular projected GD because the minimization over \(B \) decouples column-wise. At the same time, we can prove exponential error decay for it, which we are unable to for projected GD. Finally, it can also be efficiently federated with a communication cost of only \(nr \) per node, instead of \(nq \) for projected GD.

Index Terms—Low rank (LR), matrix factorization, compressive sensing, federated learning.

I. INTRODUCTION

This work develops a sample-efficient, fast, and communication-efficient gradient descent (GD) solution, called AltGD-Min, for provably recovering a low-rank (LR) matrix from a set of mutually independent linear projections of each of its columns. The communication-efficiency considers a federated setting. This problem, which we henceforth refer to as “Low Rank column-wise Compressive Sensing (LRcCS)”, is precisely defined below. Unlike the other well-studied LR problems – multivariate regression (MVR) [1], LR matrix sensing [2] and LR matrix completion (LRMC) [2], [3] – LRcCS has received little attention so far in terms of approaches with provable guarantees. There are only two existing provably correct solutions. (1) Its generalization LR phase retrieval (LRPR), was studied in our recent work [4], [5], [6] where we developed a provably correct alternating minimization (AltMin) solution. Since LRPR is a generalization, the algorithm also solves LRcCS. (2) In parallel work, [7] developed and analyzed a convex relaxation (mixed-norm minimization) for LRcCS. Both solutions are much slower than GD-based methods, and, in most practical settings, also have worse sample complexity.

LRcCS occurs in accelerated LR dynamic MRI [8], [9], [10], and in distributed/federated sketching [7], [11], [12]. We explain these in Sec. I-D. We show the speed and performance advantage of AltGD-Min for dynamic MRI in [13].

A. Problem Setting, Notation, and Assumption

Problem Definition: The goal is to recover an \(n \times q \) rank-\(r \) matrix \(X^* = [x_1^*, x_2^*, \ldots, x_q^*] \) from \(m \) linear projections (sketches) of each of its \(q \) columns, i.e. from

\[
y_k = A_k x_k^*, \quad k \in [q] \quad (1)
\]

where each \(y_k \) is an \(m \)-length vector, \([q] := \{1, 2, \ldots, q\} \), and the measurement/sketching matrices \(A_k \) are mutually independent and known. The setting of interest is low-rank (LR), \(r \ll \min(n, q) \), and undersampled measurements, \(m < n \). Our guarantees assume that each \(A_k \) is random-Gaussian: each entry of it is independent and identically distributed (i.i.d.) standard Gaussian.

We also study the magnitude-only measurements’ setting, LRPR [4], [5], [6]. This involves recovering \(X^* \) from

\[
y_{(mag)}_k := |A_k x_k^*|, \quad k \in [q].
\]

Here \(|z| \) takes the entry-wise absolute value of entries of the vector \(z \).

Notation: Everywhere, \(\| \cdot \|_F \) denotes the Frobenius norm, \(\| \cdot \|_2 \) without a subscript denotes the (induced) \(L_2 \) norm (often called the operator norm or spectral norm), \(\| M \|_{\text{max}} \) is the maximum magnitude entry of the matrix \(M \), \(\top \) denotes matrix or vector transpose, and \(|z| \) for a vector \(z \) denotes element-wise absolute values. \(I_n \) (or sometimes just \(I \)) denotes the \(n \times n \) identity matrix. We use \(e_k \) to denote the \(k \)-th canonical basis vector, i.e., the \(k \)-th column of \(I \). For any matrix \(Z \), \(Z_{kk} \) denotes its \(k \)-th column.
We say U is a basis matrix if it contains orthonormal columns. For basis matrices U_1, U_2, we use
\[\text{SD}(U_1, U_2) := \|(I - U_1 U_1^T)U_2\|_F \]
as the Subspace Distance (SD) measure. For two r-dimensional subspaces, this is the l_2 norm of the sines of the r principal angles between $\text{span}(U_1)$ and $\text{span}(U_2)$. SD(U_1, U_2) is symmetric when U_1, U_2 are both $n \times r$ basis matrices. Notice here we are using the Frobenius SD, unlike many recent works including our older work [5] that use the induced 2-norm one. This is done because it enables us to prove the desired guarantees easily. We reuse the letters c, C to denote different numerical constants in each use with the convention that $c < 1$ and $C \geq 1$. The notation $a \in \Omega(b)$ means $a \geq Cb$ while $a \in O(b)$ means $a \leq Cb$. We use Ω statement to denote an indicator function that takes the value 1 if statement is true and zero otherwise.

For a vector w, we sometimes use $w(k)$ to denote the k-th entry of w. For a vector w and a scalar α, $\mathbb{I}(w \leq \alpha)$ returns a vector of 1's and 0's of the same length as w, with 1's where $(w(k) \leq \alpha)$ and zero everywhere else. We use \circ to denote the Hadamard product. Thus $z := w \circ \mathbb{I}(w \leq \alpha)$ zeroes out entries of w larger than α, while keeping the smaller ones as is.

For X^* which is a rank-r matrix, we let
\[X^* \overset{\text{SVD}}{=} U^* \Sigma^* V^* =: U^* B^* \]
denote its reduced (rank r) SVD, i.e., U^* and V^* are matrices with orthonormal columns (basis matrices), U^* is $n \times r$ and V^* is $r \times q$, and Σ^* is an $r \times r$ diagonal matrix with non-negative entries. We use $\kappa := \sigma_{\text{max}} / \sigma_{\text{min}}$ to denote the condition number of Σ^*. This is not the condition number of X^* (whose minimum singular value is zero). We let $B^* := \Sigma^* V^*$ and we use b^*_k to denote its k-th column.

We use the phrase ϵ-accurate recovery to refer to SD($U, U^*) \leq \epsilon$ or $\|X - X^*\|_F \leq \epsilon \|X^*\|_F$ or both.

Assumption: Another way to understand (1) is as follows: each scalar measurement y_{ki} (i-th entry of Y_k) satisfies
\[y_{ki} := \langle a_{ki}, x^*_k \rangle, \quad i \in [m], \quad k \in [q] \]
with $a_{ki} \top$ being the i-th row of A_k. Observe that the measurements are not global, i.e., no y_{ki} is a function of the entire matrix X^*. They are global for each column (y_{ki} is a function of column x^*_k) but not across the different columns. We thus need an assumption that enables correct interpolation across the different columns. The following assumption, which is a slightly weaker version of incoherence (w.r.t. the canonical basis) of right singular vectors suffices for this purpose.

Assumption 1.1 ((Weakened) Right Singular Vectors’ Incoherence): Assume that
\[\max_k \|b^*_k\| \leq \sigma_{\text{max}} \kappa \sqrt{r/q}. \]
for a constant $\mu \geq 1$ (μ does not grow with n, q, r). Since $\|x^*_k\| = \|b^*_k\|$, this implies that $\max_k \|x^*_k\| \leq \sigma_{\text{max}} \kappa \sqrt{r/q}$.

Also, since $\sigma_{\text{min}} \sqrt{r} \leq \|X^*\|_F$, this also implies that $\max_k \|x^*_k\| \leq \kappa \mu \|X^*\|_F / \sqrt{q}$.

Right singular vectors incoherence is the assumption $\max_k \|v^*_k\| \leq \mu \sqrt{r/q}$. Since $b^*_k = \Sigma^* v^*_k$, this implies that the above holds. Incoherence of both left and right singular vectors was introduced for guaranteeing correct “interpolation” for the LRcCS problem [2], [3].

B. Existing Work

Existing Solutions for LRcCS and LRPR: Since it is always possible to obtain magnitude-only measurements $y_{(mag)k}$ from linear ones y_k as $y_{(mag)k} = |y_k|$, a solution to LRPR also automatically solves LRcCS under the same assumptions. Hence the AltMin algorithm for LRPR from [4], [5] is the first provably correct solution for LRcCS. Of course, since LRcCS is an easier problem than LRPR, we expect a direct solution to LRcCS to need weaker assumptions. As we show in this paper, this is indeed true. A more recent work [7] studied the noisy version of LRcCS and developed a convex relaxation (mixed norm minimization) to provably solve it. Its time complexity is not discussed in the paper, however, it is well known that solvers for convex programs are much slower when compared to direct iterative algorithms: they either require number of iterations proportional to $1/\sqrt{r}$ or the per-iteration cost has cubic dependence on the problem size here $(n + q)r^3$ [2]. Thus, if $q \leq n$, its time complexity $O(n qr \cdot \min(1/\sqrt{r}, n^3r^3))$. In [6], we provided the best possible guarantee for the AltMin algorithm for solving LRPR, and hence LRcCS. We discuss these results in detail in Sec. II-D and summarize them in Table I.

Other Well-Studied LR Recovery Problems: The multivariate regression (MVR) problem, studied in [1], is our problem with $A_k = A$. However this is a very different setting than ours because, with $A_k = A$, the different y_{jk}’s are no longer mutually independent. As a result, one cannot exploit law of large numbers’ arguments over all mq scalar measurements y_{ki}. Consequently, the required value of m can never be less than n. The result of [1] shows that m of order $(n + q) r$ is both necessary and sufficient. LRMS involves recovering X^* from $y_i = \langle A_i, X^* \rangle$, $i = 1, 2, \ldots, mq$ with A_i being dense matrices, typically i.i.d. Gaussian [2]. Thus all measurements are i.i.d. and global: each contains information about the entire quantity-of-interest, here X^*. Because of this, for LRMS, one can prove a LR Restricted Isometry Property (RIP) that simplifies the rest of the analysis. This is what makes it very different from, and easier than, our problem.

LRMC: which involves recovering X^* from a subset of its observed entries, is the most closely related problem to ours since it also involves recovery from non-global measurements. The typical model assumed is that each matrix entry is observed with probability p independent of others [2], [3]. Setting unobserved entries to zero, this can be written as $y_{jk} = \delta_{jk} X^*_{jk}$ with $\delta_{jk} \overset{\text{iid}}{\sim} Bernoulli(p)$. LRMC measurements are both row-wise and column-wise local. To allow correct interpolation across both rows and columns, it needs the incoherence assumption on both its left and right singular vectors. For our problem, the measurements are global for each column, but not across the different columns. For this reason, only right singular vectors’ incoherence is needed.
In fact, because of the nature of our measurements, even if left incoherence were assumed, it would not help. This asymmetry in our measurement model and the fact that our measurements are unbounded (each y_k is a Gaussian r.v.) are two key differences between LRMC and LRcCS that prevent us from borrowing LRMC proof techniques for our work. Here symmetric means: if we replace X^* by its transpose, the probability distribution of the set of measurements does not change. Bounded means that the measurements' magnitude has a uniform bound. This bound is $\|X^*\|_{\max}$ for LRMC measurements.

Non-convex (iterative, not convex relaxation based) LRMC algorithms with the best sample complexity are GD-based. There are two common approaches for designing GD algorithms in the LR recovery literature, and in particular for LRMC. The first is to use standard projected GD on X (projGD-X), also referred to as Iterative Hard Thresholding: at each iteration, perform one step of GD for minimizing the squared loss cost function, $f(X)$, w.r.t. X, followed by projecting the resulting matrix onto the space of rank r matrices (by SVD). This was studied in [14] and [15] for solving LRMC. This is shown to converge geometrically with a constant GD step size, while needing only $\Omega((n + q)r^2 \log^2 n \log^2 (1/\epsilon))$ samples on average.

The second is to let $X = UB$ where U is $n \times r$ and B is $r \times q$ and perform alternating GD for the cost function $f(U, B) := f(UB)$, i.e., update B with one step of GD for minimizing $f(U, B)$ while keeping U fixed at its previous value, and then do the same for U with B fixed, and repeat. Since the $X = UB$ factorization is not unique, i.e., $X = UR^{-1}RB$ for any invertible $r \times r$ matrix R, this approach can result in the norm of one of U or B growing in an unbounded fashion, while that of the other decreases at the same rate, causing numerical problems. A typical approach to resolve this issue, and one that was used for LRMC [16], [17], is to change the cost function to minimize to $f(U, B) + \lambda f_2(U, B)$ where $f_2(U, B) := \|U^T (U - BB^T)\|_F$ is the "norm-balancing term" (helps ensure that norms of U and B remain similar). We henceforth refer to this approach as altGDnormalb. The sample complexity bound for this approach is similar to that for projGD-X. But, it needs a GD step size of order $1/r$ or smaller [16], [17]: making it r-times slower than projGD-X.

Contributions and Novelty

Contribution to Solving LRcCS and LRPR:

(1) This work develops a novel GD-based solution to LRcCS, called AltGD-Min, that is fast and communication-efficient. We show that, with high probability (w.h.p.), AltGD-Min obtains an ϵ-accurate estimate in order $\kappa^2 \log(1/\epsilon)$ iterations, as long as Assumption I-A holds, the matrices A_k are i.i.d., with each containing i.i.d. standard Gaussian entries, $mq \in \Omega(\kappa^6 \mu^2 (n + q) r^2 \log^2 (1/\epsilon))$, and $m \in \Omega(\max(\log q, \log n) \log(1/\epsilon))$. Its time complexity is $O(mnr \cdot \kappa^2 \log(1/\epsilon))$ and its communication complexity per node is $O(nr \cdot \kappa^2 \log(1/\epsilon))$. We provide a comparison of our guarantee with those of other works in Table I. This table also summarizes the guarantees for the two most sample-efficient LRMC solutions: projGD-X and altGDnormalb. The former is also the fastest LRMC solution, while the latter is the most communication-efficient. As mentioned earlier, LRMC is the most similar problem to ours that has been extensively studied. Notice that, our sample complexity matches that of the best results for LRMC algorithms that do solve a convex relaxation. (2) We show that a simple extension of AltGD-Min also provides the fastest provable solution to LRPR, as long as the above assumptions hold and $mq \in \Omega(\kappa^6 \mu^2 nr^2 (r + \log(1/\epsilon)))$. Its time complexity is the same too.

Contributions / Novelty of Algorithm Design and Proof Techniques: As explained earlier, there are three commonly used provably correct iterative algorithms for LR recovery problems – AltMin, projGD-X, and altGD (altGDnormalb to be precise). AltMin is slower than GD-based methods because, for updating both U and B, it requires solving a minimization problem keeping the other variable fixed. For our specific asymmetric problem, the min step for U is the slow one. ProjGD-X and altGDnormalb are faster, but it is not clear how to analyze them for LRcCS under the desired sample complexity. Our novel altGD-min approach however resolves both issues: it is fast as projGD-X and it can be analyzed. Moreover, its communication complexity for a federated implementation (and its memory complexity) is only nr per node per iteration, instead of mq for projGD-X. As can be seen from Table I, treating κ, μ as numerical constants, it has the best sample-, time-, and communication/memory-complexity among all approaches for LRcCS and all fast (iterative) approaches for LRMC as well. Because of this, an AltGD-Min type algorithm may also be of interest for solving LRMC in a fast, sample-efficient and communication-efficient fashion. In fact, it can be also be useful for other bilinear inverse problems such as blind deconvolution.

AltGDMin Algorithm: The main idea is as follows. Express X as $X = UB$ and alternatively update U and B as follows: (a) keeping B fixed at its previous value, update U by a GD step for it for the cost function $f(U, B)$ followed by projecting the output onto the space of matrices with orthonormal columns; and (b) keeping U fixed at its previous value, update B by minimizing $f(U, B)$ over it. Because of the column-wise decoupled form of our measurement model, step (b) is as fast as the GD step and thus the per-iteration time complexity of AltGD-Min is equal to that of any other GD method such as projGD-X or altGDnormalb. This decoupling (which means that, given U, b_k only depends on x_k^*, and not on the other columns of X^*) also allows us to get the desired tight-enough bound on $\max_k \|b_k - U^T x_k^*\|$ and hence on $\max_k \|x_k - x_k^*\|$. This, and the fact that we use the gradient

1In order to show that a GD-based algorithm converges, one needs to be able to bound the norm of the gradient and show that it goes to zero with iterations. When studying both projGD-X and altGDnormalb, for different reasons, the estimates of the different columns are coupled. Consequently, it is not possible to get a tight enough bound on $\max_k \|x_k - x_k^*\|$. But, due to the form of the LRcCS measurement model, such a bound is needed to get a tight enough bound on the 2-norm of the gradient of the cost function, and show that it decreases sufficiently at each iteration, under the desired sample complexity. Moreover, in case of projGD-X, even if one could somehow get the desired bound, it would not suffice because the summands will still be too heavy tailed. This point is explained in detail in Appendix A.
TABLE I

EXISTING WORK VERSUS OUR WORK. FOR BREVITY, THIS TABLE ASSUMES \(q \leq n \) AND TREATS \(\kappa, \mu \) AS NUMERICAL CONSTANTS. ALL APPROACHES ALSO NEED \(m \geq \max(r, \log q, \log n) \) . COLUMN-WISE ERROR BOUND EXISTS MEANS \(\max_k \|x_k^* - x_k\|/\|x_k^*\| \leq \epsilon \) HOLDS IN ADDITION TO A SIMILAR BOUND ON MATRIX FROBENIUS NORM ERROR. LINEAR-TIME IS THE TIME NEEDED TO READ ALL ALGORITHM INPUTS. FOR LRCS, THIS IS \(y_k, A_k \) FOR ALL \(k \in \{q\} \) AND THIS LINEAR-TIME IS ORDER \(mnq \). FOR LRMC, THIS IS THE SET OF OBSERVED ENTRIES AND THEIR LOCATIONS AND THIS LINEAR-TIME IS ORDER \(mq \). NONE OF THE OTHER ALGORITHMS HAVE BEEN STUDIED IN THE FEDERATED CONTEXT AND HENCE THE COMMUNICATION COMPLEXITY (COMM. COMP.) LISTED IN THE FOURTH COLUMN IS BASED ON OUR UNDERSTANDING OF HOW ONE WOULD FEDERATE THE ALGORITHM. NOTICE THAT ALTGD-MIN HAS THE BEST TIME AND COMMUNICATION COMPLEXITIES, AND FOR \(r^4 < r \), IT ALSO HAS THE BEST SAMPLE COMPLEXITY.

	Sample Comp	Time Comp	Communic. Comp.	Holds for all \(X^* \)?	Column-wise error bound?
Convex [7]	\(n^2 \frac{1}{r} \)	linear-time \cdot \min \left(\frac{1}{\sqrt{r}}, n^3 r^3 \right)	not clear	yes	no
AltMin [4], [5]	\(n^2 r \log(\frac{r}{2}) \)	linear-time \cdot r \log^2(\frac{r}{2})	\(n r \log(\frac{r}{2}) \cdot r \log^2(\frac{r}{2}) \)	no	
AltMin [6]	\(n^2 (r + \log(\frac{r}{2})) \)	linear-time \cdot r \log^2(\frac{r}{2})	\(n r \log(\frac{r}{2}) \cdot r \log^2(\frac{r}{2}) \)	no	
altGD-Min (proposed)	\(n^2 \log(\frac{r}{2}) \)	linear-time \cdot r \log(\frac{r}{2})	\(n r \cdot r \log(\frac{r}{2}) \)	no	

Best sample LRMC algorithms among those that do not solve a convex relaxation

- ProjGD-X [15] \(\max(n, q) r^2 \log^2 n \log^2(\frac{r}{2}) \) | linear-time \cdot r \log(\frac{r}{2}) | \(nq \) ** |
- AltGDnormalbal [16] \(\max(n, q) r^2 \log n \) | linear-time \cdot r^2 \log(\frac{r}{2}) | \(\max(n, q) r \) |

**The communication complexity of ProjGD-X would be \(nq \) because the gradient \(w.r.t. X \) computed at each node will need to be transmitted by the nodes to the center. The gradient \(w.r.t. X \) is not low rank (LR), and hence one cannot transmit just its rank \(r \) SVD.

w.r.t. \(U \) in our algorithm, means that the summands in the gradient, and in other error bound terms, are nice-enough sub-exponential random variables (r.v.s); sub-exponential r.v.s whose maximum sub-exponential norm is small enough (is proportional to \((r/q) \)), so that the summation can be bounded w.h.p. under the desired sample complexity.

AltGDmin Analysis: When we analyzed the AltMin approach for LRPR [5], [6], we could directly modify proof techniques from AltMin for LRMC [2] for getting a bound on SD(\(U, U^* \)) in terms of the bound on this distance from the previous iteration. We cannot do this for AltGD-Min because the algorithm itself is different from the two GD approaches studied for solving LRMC. We instead analyze AltGD-Min by a novel use of the fundamental theorem of calculus [18] that, along with other linear algebra tricks, helps us get a bound on SD(\(U, U^* \)) which has the desired property: the terms in it are sums of nice-enough sub-exponentials. See Lemma 3.4 and its proof. The use of this result is motivated by its use in [19], and many earlier works, where it is used in a standard way: to bound the Euclidean distance, \(\|x - x^*\| \), for standard GD to solve the PR problem for recovering a single vector \(x^* \). Thus, at the true solution \(x = x^* \), the gradient of the cost function was zero. In our case, there are two differences: (i) we need to bound the subspace distance error, and (ii) our algorithm is not standard GD, and this means that \(\nabla U f(U^* U^T U, B) \neq 0 \). We explain our approach in Sec. III-B.

AltGDmin Initialization: The standard LR spectral initialization approach cannot be used because its summands are sub-exponential r.v.s that are not nice-enough. We give a detailed explanation in Appendix A. We address this issue by borrowing the truncation idea from the PR literature [5], [20], [21]. But, in our case, truncation is applied to a non-symmetric matrix. Thus the sandwiching arguments developed for symmetric matrices in [20], and modified in [21] and [5], cannot be borrowed. We need a different argument which is used for proving Lemma B.2 and is briefly explained in Sec. III-D.

D. Applications

The LRCS and LRPR problems occur in projection imaging applications involving sets of images, e.g., dynamic MRI [8], [9], [10], federated LR sketching [7], [11], and dynamic Fourier ptychography (LRPR) [22]. In MRI, Fourier projections of the region of interest, e.g., a cross-section of the brain or the heart, are acquired one coefficient at a time, making the scanning (data acquisition) quite slow. Hence, reduced sample complexity enables accelerated scanning. Since medical image sequences are usually slow changing, the LR model is a valid assumption for a time sequence [8], [9], [10]. In our notation, \(x_k^* \) is the vectorized version of the \(k \)-th image of the sequence and there are a total of \(q \) images. The matrices \(A_k \) are random Fourier, i.e., \(A_k = H_k F \) where \(F \) is the \(n \times n \) matrix that models computation of the 2D discrete Fourier transform as a matrix-vector operation, and \(H_k \) is an \(m \times n \) random sampling “mask” matrix that models the frequency
selection. In [13], we have shown the power of AltGD-Min for fast undersampled dynamic MRI of medical image sequences. It is both much faster, and in most cases, also provides better reconstructions, than many existing solutions from the MRI literature.

Large scale usage of smartphones results in large amounts of geographically distributed data, e.g., images. There is a need to compress/sketch this data before storing it. Sketch refers to a compression approach where the compression end is low complexity, usually simple linear projections [7], [11]. Consider the setting where different subsets of columns of X^* (each column corresponds to one vectorized image) are available at each of the $p \leq q$ nodes. The goal is to sketch them so that they can be correctly recovered using a federated (AltGD-Min) approach for the squared loss function, we decompose X^* into m-dimensional Least Squares (LS) problems, in addition to also first computing the matrices, A_kU. Computing the matrices needs time of order mnr, and solving one LS problem needs time of order mr^2. Thus, the LS step needs time $O(q \max(mnr, mr^2)) = O(mnr)$ since $r \leq n$. This is equal to the time needed to compute the gradient w.r.t. U; and thus, the per-iteration cost of AltGD-Min is only $O(mnr)$. The QR decomposition of an $n \times r$ matrix takes time only nr^2.

Since $f(U, B)$ is not a convex function of the unknowns $[U, B]$, a careful initialization is needed. Borrowing the spectral initialization idea from LRMC and LRMS solutions, we should initialize U_0 by computing the top r singular vectors of $X_{0, full} = \frac{1}{m} \left([A_1^T y_1], [A_2^T y_2], \ldots, [A_k^T y_k], \ldots [A_q^T y_q] \right)$

Clearly the expected value of the k-th column of this matrix equals x_k^* and thus $E[X_{0, full}] = X^*$. But, as we explain next, it is not clear how to prove that this matrix concentrates around X^*. Observe that it can also be written as

$$X_{0, full} = \frac{1}{m} \sum_{k=1}^m \sum_{i=1}^q a_{ki} y_{ki} e_k \top I_{\|y_{ki}\| \leq \alpha}$$

Its summands are independent sub-Gaussian random variables with maximum sub-exponential norm $\max_k \|x_k^*\| \leq \mu \sqrt{r/q} \sigma_{max}$. This is too large and does not allow us to bound $\|X_{0, full} - X^*\|$ under the desired sample complexity; see Appendix A. To resolve this issue, we borrow the truncation idea from earlier work on PR [5], [20] and initialize U_0 as the top r left singular vectors of

$$X_0 := \frac{1}{m} \sum_{k=1}^m \sum_{i=1}^q a_{ki} y_{ki} e_k \top I_{\|y_{ki}\| \leq \alpha}$$

where $\alpha := \tilde{C} \frac{\sum_k \|y_k\|^2}{mq}$ and $y_{ki, \text{trunc}(\alpha)} := y_{ki} I_{\|y_{ki}\| \leq \sqrt{\alpha}}$. We set \tilde{C} in our main result. Observe that we are summing over only those i, k for which y_{ki}^2 is not too large (is not much larger than its empirically computed average value). This truncation filters out the too large (outlier-like) measurements and sums over the rest. Theoretically, this converts the summands into sub-Gaussian random variables which have lighter tails than the un-truncated ones. This allows us to prove the desired concentration bound. Different from the above setting, in [20] and [5], truncation was applied to symmetric positive definite matrices and was used to convert summands that were heavier-tailed than sub-exponential to sub-exponential.

We summarize the complete algorithm in Algorithm 1. This uses sample-splitting which is a commonly used approach in the LR recovery literature [2], [14], [15] as well as in other compressive sensing settings. It helps ensure that the measurement matrices in each iteration for updating U and B are independent of all previous iterates. This allows one to use concentration bounds for sums of independent random variables. We provide a detailed discussion in Sec. VI-A.
Algorithm 1 The AltGD-Min Algorithm. Let $M^T := (\tilde{M}^\top \tilde{M})^{-1}\tilde{M}^\top$

1: Input: $y_k, A_k, k \in [q]$
2: Parameters: Multiplier in specifying α for init step, \tilde{C};
GD step size, η; Number of iterations, T
3: Sample-split: Partition the measurements and measurement matrices into $2T + 1$ equal-sized disjoint sets: one set for initialization and $2T$ sets for the iterations. Denote these by $y_k^{(T)}$, $A_k^{(T)}$, $\tau = 0, 1, \ldots, 2T$.
4: Initialization:
5: Using $y_k \equiv y_k^{(0)}$, $A_k \equiv A_k^{(0)}$, set
6: $\alpha = \tilde{C} \frac{1}{m^2} \sum_{k \in [q]} |y_{ki}|^2$;
7: $y_{k,\text{trunc}}(\alpha) := y_k \odot \mathbb{1}\{|y_k| \leq \sqrt{\alpha}\}$
8: $X_0 := (1/m) \sum_{k \in [q]} A_k y_{k,\text{trunc}}(\alpha) e_k^\top$
9: Set $U_0 \leftarrow \text{top-r-singular-vectors of } X_0$
10: GDmin iterations:
11: for $t = 1$ to T do
12: \quad Let $U \leftarrow U_{t-1}$.
13: \quad Update b_k, x_k: For each $k \in [q]$, set $(b_k)_{t} \leftarrow (A_t^{(t)} U)^\top y_{t}^{(t)}$ and set $(x_k)_{t} \leftarrow U_{t}(b_k)_{t}$
14: \quad Gradient w.r.t. U: With $y_k \equiv y_k^{(T+t)}$, $A_k \equiv A_k^{(T+t)}$, compute $\nabla_U f(U, B_t) = \sum_k A_k (A_k U (b_k)_{t} - y_k) (b_k)_{t}^\top$
15: \quad GD step: Set $U_t^+ \leftarrow U - (\eta/m) \nabla_U f(U, B_t)$
16: \quad Projection step: Compute $U_t^+ \text{Q}_k U_t^+ R^\top$.
17: \quad Set $U_t \leftarrow U_t^+$.
18: end for

1) Practical Algorithm and Setting Algorithm Parameters:
First, when we implement the algorithm, we use Algorithm 1 with using the full set of measurements for all the steps (no sample-splitting). The algorithm has 4 parameters: η, T, C and the rank r. According to the theorem below, we should set $\eta = c/\sigma_{\text{max}}^2$ with $c < 0.5$. But σ_{max} is not known. The initial matrix X_0 provides an approximation to X^* and hence we can set $\eta = c/\|X_0\|^2$. Consider \tilde{C}. The theorem requires setting $\tilde{C} = 9\kappa^2/\mu^2$, however κ, μ are functions of X^* which is unknown. Using the definition of μ from Assumption I-A, we can replace κ^2/μ^2 by an estimate of its lower bound: $\eta = \max_k \frac{\|x_k\|^2}{\|X^*\|^2_F}$ with $\|x_k\|^2 = (1/m) \sum_k y_{ki}^2$ and $\|X^*\|^2_F = (1/m) \sum_k \|y_k\|^2$. To set the total number of algorithm iterations T, we can use a large maximum value along with breaking the loop if a stopping criterion is satisfied. A common stopping criterion for GD is to stop when the iterates do not change much. One way to do this is to stop when $\text{SD}(U_k, U_{k-1}) \leq 0.01 \sqrt{T}$ for last few iterations.

As explained in [13], we can use the following constraints to set the rank. We need our rank of choice, \hat{r}, to be sufficiently small compared to $\min(n, q)$ for the algorithm to take advantage of the LR assumption. Moreover, for the LS step for updating b_k’s (which are r-length vectors) to work well (for its error to be small), we also need it to also be small compared with m. One approach that is used often is to use the “$b\%$ energy threshold” on singular values. Thus, one good heuristic that respects the above constraints is to compute the “$b\%$ energy threshold” of the first $\min(n, q, m)/10$ singular values, i.e. compute \hat{r} as the smallest value of r for which

$$\sum_{j=1}^r \sigma_j(X_0)^2 \geq (b/100) \cdot \sum_{j=1}^{\min(n, q, m)/10} \sigma_j(X_0)^2$$

for $a \leq 100$. In our MRI experiments in [13], we used $b = 85$. We also realized from the experiments that the algorithm is not very sensitive to this value as long as $\hat{r} \ll \min(n, q, m)$.

2) Federating the Algorithm: Suppose that our sketches y_k are geographically distributed across a set of L nodes. Each node ℓ stores a subset, denoted S_ℓ, of the y_ks with $|S_\ell| = q_t$. These subsets are mutually disjoint so that $\sum \ell q_t = q$. Typically $L \ll q$. Privacy constraints dictate that we cannot share the y_ks with the central server; although summaries computed using the y_ks can be shared at each algorithm iteration. This will be done as follows. Consider the GDmin steps of Algorithm 1 first. Line 13 (Update b_ks, x_ks) is done locally at the node that stores the corresponding y_k. For line 14 (Gradient w.r.t U), the partial sums over $k \in S_\ell$ are computed at node ℓ and transmitted to the center which adds all the partial sums to obtain $\nabla_U f(U, B_t)$. Line 15 (GD step) and line 16 (projection via QR) are done at the center. The updated U is then broadcast to all the nodes for use in the next iteration. The per node time complexity of this algorithm is thus $\text{mnr}\ell t$ at each iteration. The center only performs additions and a QR decomposition (an order nr^2 operation) in each iteration. Thus, the time complexity of the federated solution is only $\text{mnr}(\text{max}_t q_t)T$ per node.

The initialization step can be federated by using the Power Method (PM) [24], [25] to compute the top r eigenvectors of $X_0 X_0^\top$. Any PM guarantee helps ensure that its output is close in subspace distance to the span of the top r eigenvectors of $X_0 X_0^\top$ after a sufficient number of iterations.

The communication complexity of the federated implementation is thus just nr per node per iteration (need to share the partial gradient sums). Observe also that the information shared with the center is not sufficient to recover X^* centrally. It is only sufficient to recover span(U^*). The recovery of the columns of B, b^*_k, is entirely done locally at the node where the corresponding y_k is stored, thus ensuring privacy.

B. Main Result

We can prove the following result.

Theorem 2.1: Consider Algorithm 1. Let m_t denote the number of samples used in iteration t. Set $\tilde{C} = 9n^2\mu^2$, $\eta = c/\sigma_{\text{max}}^2$ with $c \leq 0.5$, and $T = C\kappa^2 \log(1/\epsilon)$. Assume that Assumption I-A holds and that the A_ks are i.i.d. and each contains i.i.d. standard Gaussian entries. If

$$m_0 q \geq Cn^6 \mu^2 (n + q)^2,$$

and m_t for $t \geq 1$ satisfies

$$m_t q \geq C\kappa^2 (n + q)^2 \log \kappa$$

then, with probability (w.p.) at least $1 -\frac{t}{m_0} 10^{-10}$, for all $t \geq 0$,

$$\text{SD}(U_t, U^*) \leq \left(1 - \frac{(\sigma_{\text{max}}^*)^2}{\kappa^2} \right)^{0.4} \delta_0.$$
with $\delta_0 = 0.09/\kappa^2$. Thus, with $T = C\kappa^2 \log(1/\epsilon)$ and $\eta = 0.5/\sigma_{\max}^2$, w.p. at least $1 - (T + 1)n^{-10}$,

$$SD(U_T, U^*) \leq \epsilon, \|x_k - x_k^*\| \leq \epsilon\|x_k^*\|, \text{ for all } k \in [q], \|X_T - X^*\|_F \leq 1.4\epsilon\|X^*\|.$$

Sample complexity The sample complexity (total number of samples needed to achieve ϵ-accurate recovery) is $m_{\text{tot}} = \sum_{T=0}^{m_{\text{r}}} m_{T} \geq m_{0} + T \min_{T} m_{T}$. From the above result, this needs to satisfy $m_{\text{tot}}q \geq C\kappa^2 \mu^2(n + q)r^2 \log(1/\epsilon) \log(\kappa)$ and $m_{\text{tot}} > C\kappa^2 \max(r, \log q, \log n) \log(1/\epsilon)$.

Time complexity Let $m = m_{\text{r}}$. The initialization step needs time $mqnr$ for computing X_0; and time of order nqr times the number of iterations used in the r-SVD step. Since we only need a δ_0-accurate initial estimate of span(U^*), with $\delta_0 = c/\kappa^2$, order (log) number of iterations suffice for this SVD step. Thus the complexity is $O(mq(n + r) \cdot \log(k)) = O(mqnr \cdot \log(k))$ since $m \geq r$. One gradient computation needs time $O(mqnr)$. The QR decomposition needs time of order nr^2. The update of columns of B by LS also needs time $O(mqnr)$ (explained earlier). As we prove above, we need to repeat these steps $T = O(\kappa^2 \log(1/\epsilon))$ times. Thus the total time complexity is $O(mqnr \log(k) + \max(mqnr, nr^2, mqnr) \cdot T) = O(mqnr \log(k) \log(k))$.

Communication complexity The communication complexity per node per iteration for a federated implementation is just order nr. Thus, the total is $O(nr \cdot \kappa^2 \log(1/\epsilon))$.

Thus, we have the following corollary.

Corollary 2.2 (AltGD-Min): In the setting of Theorem 2.1, if Assumption I-A holds, and if

$$m_{\text{tot}}q \geq C\kappa^6 \mu^2(n + q)r^2 \log(1/\epsilon) \log(\kappa)$$

and $m_{\text{tot}} \geq C\kappa^2 \max(r, \log q, \log n) \log(1/\epsilon)$, then, w.p. at least $1 - (C\kappa^2 \log(1/\epsilon))n^{-10}$, $\|X - X^*\|_F \leq 1.4\epsilon\|X^*\|$ and $\|x_k - x_k^*\| \leq \epsilon\|x_k^*\|$ for all $k \in [q]$. The time complexity is $C\kappa^2 mqnr \log(1/\epsilon) \log(\kappa)$ and the communication complexity is $O(nr \cdot \kappa^2 \log(1/\epsilon))$.

Observe that the above results show that after $T = C\kappa^2 \log(1/\epsilon)$ iterations, SD(U_T, U^*) $\leq \epsilon$, $\|x_k - x_k^*\| \leq \epsilon\|x_k^*\|$, and $\|X_T - X^*\|_F \leq 1.4\epsilon\|X^*\|$. The RHS in the third bound does indeed contain $\|X^*\|$ (the induced 2-norm).

This is correct because, SD(\cdot, \cdot) is a Frobenius norm subspace distance. We explain this in Sec. III-B.

C. Discussion and Comparison With the Best LRMC Results

An algorithm is called linear time if its time complexity is the same order as the time needed to load all input data. In our case, this is $O(mqnr)$. Treating κ as a constant, the AltGD-Min complexity is worse than linear-time by a factor of only $r \log(1/\epsilon)$. As can be seen from Table I, the same is also true for the fastest LRMC solution, projGD-X [15]. For LRMC, linear time is $O(mq)$. To our best knowledge, this is the case for the fastest algorithms for all LR problems.

Consider the sample complexity. The degrees of freedom (number of unknowns) of a rank-r $n \times q$ matrix are $(n + q)r$. A sample complexity of $\Omega((n + q)r)$ samples (or, sometimes this times log factors) is called “optimal”. Thus, ignoring the log factors, our sample complexity of $m_{\text{tot}}q \geq (n + q)r^2$ is sub-optimal only by a factor of r. As can also be seen from Table I, this suboptimality matches that of the best results for LRMC solutions that are not convex relaxation based [15], [16], [17]. The need for exploiting incoherence while obtaining the high probability bounds on the recovery error terms is what introduces the extra factor of r for both LRMC and LRcGS.

LRMC has been extensively studied for over a decade and there does not seem to be a way to obtain an (order-) optimal sample complexity guarantee for it except when studying convex relaxation solutions (which are much slower).

In addition, we also need $m \geq \max(r, \log q, \log n)$. This is redundant except for very large q, n. This is needed because, the recovery of each column of B^* is a decoupled r-dimensional LS problem. We analyze this step in Lemma 3.3; notice that the bound on the recovery error of column k holds w.p. at least $1 - \exp(r - cm)$. By union bound, it holds for all q columns w.p. at least $1 - \exp(-10 \log n) = m \geq \max(r, \log q, \log n)$.

D. Detailed Comparison With Existing LRcGS Results

There are two existing solutions for LRcGS – AltMin [4], [5], [6] and the convex relaxation (mixed norm minimization) [7]. Mixed norm is defined as $\|X\|_{\text{mixed}} := \inf_{U, V : UV = X} \|U\|_{\text{F}} \max_{k \in [q]} \|\nu_k\|$, where U is $n \times r$ and $V := [v_1, v_2, ..., v_q]$ is an $r \times q$ matrix. In our notation, for the noise-free case ($\sigma = 0$), their main result states the following.

Proposition 2.3 (Convex Relaxation (Mixed Norm Min) in the $\sigma = 0$ (Noise-Free) Setting) [7]: Consider a matrix $X^* \in \{X^* : \max_k \|x_k^*\|^2 \leq \alpha^2, \|X^*\|_{\text{mixed}} \leq R \leq \alpha \sqrt{r}\}$. Then, w.p. $1 - \exp(-cnR^2/\alpha^2)$, $\|X^* - X^*\|_F \leq c\|X^*\|_F$.

Then, under our Assumption I-A, $\max_k \|x_k^*\|^2 \leq \alpha^2$, $\|X^*\|_{\text{mixed}} \leq \alpha \sqrt{r}$. Thus, the above result can also be stated as:

For all matrices X^* that satisfy Assumption I-A and for which $\|X^*\|_{\text{mixed}} \leq \sqrt{r} \cdot \kappa \mu \|X^*\|_F / \sqrt{q}$, if

$$m_{\text{tot}}q \geq C\kappa^4 \mu^4(n + q)r^2 \log n \cdot \frac{1}{\epsilon^4},$$

then, w.p. at least $1 - \exp(-cn)\|X^*\|_F \leq \epsilon\|X^*\|_F$. The time complexity is $Cmqnr \min(\sqrt{q}, n\sqrt{r})$ (explained earlier in Sec. I-B).

Notice that both the sample and the time complexity of the convex solution depends on powers of $1/\sqrt{r}$: the sample complexity grows as $1/r^4$ while the time complexity grows as $1/\sqrt{r}$. However, its sample complexity has an order-optimal dependence on r. For AltGD-Min, both sample and time complexities depend only logarithmically on ϵ only as $\log(1/\epsilon)$. But its sample complexity depends sub-optimally on r; it grows as r^2. In summary, the time complexity of the convex solution is always much worse, its sample complexity is worse than a solution with accuracy level $\epsilon < 1/r^{1/4}$ is needed. A second point to mention is that our result for AltGD-Min provides a column-wise error bound (bounds $\|x_k^* - x_k\|/\|x_k^*\|$). The convex result only provides a bound on
the Frobenius norm of the entire matrix. Thus it is possible that some columns have much larger recovery error than others. This can be problematic in applications such as dynamic MRI where each column corresponds to one signal/image of a time sequence and where the goal is to ensure accurate-enough recovery of all columns. On the other hand, the advantage of the convex result is that it holds w.h.p. for all matrices X^* in the specified set, where as our result only holds w.h.p. for a matrix X^* satisfying Assumption I-A. The reason for these last two points and the reason that we cannot avoid using sample-splitting is the same: the update of B is a column-wise LS problem. We explain the reasoning carefully in Sec. VI-A where we discuss the limitations of our approach. A second advantage of the convex result is that it directly studies the noisy version of the LRCsCS problem. This should be possible for AltGD-Min too, we postpone it to future work.

The best result for AltMin is from [6], it states the following.

Proposition 2.4 (AltMin [6]): Under Assumption I-A, if $m_{tot}q \geq C\kappa^5\mu^2n^2(r + \log(1/\epsilon))$ and $m_{tot} > \max(\sigma, log(q, log(n))$, then, w.p. at least $1 - (log(1/\epsilon))/\delta^2$, $\|X - X^*\| \leq \epsilon\|X^*\|$.

Since δ_t decays exponentially with t, the same is also true for the gradient norm at iteration t, $\|\nabla_U f(U_t, B_{t+1})\|_F$.

Proof: See Sec. III-C. Proof outline is given in Sec. III-B.

Proof of Theorem 2.1 The SD(.) bound is an immediate consequence of Theorems 3.1 and 3.2. To apply Theorem 3.2, we need $\delta_0 = c/\kappa^2$. By Theorem 3.1, if $m_q \geq C\kappa^5\mu^2(n + q)^2/\delta_0$, w.p. at least $1 - n^{-10}$, $\|\Delta U^* - U_0\|_F \leq \delta_0 = c/\kappa^2$. With this, if, at each iteration, $m_q \geq C\kappa^5\mu^2(n + q)^2/\delta_0$, then by Theorem 3.2, w.p. at least $1 - (t + 1)n^{-10}$, the stated bound on $\|\Delta U^* - U_{t+1}\|$ holds. By setting $T = C\kappa^5\log(1/\epsilon)$ in this, we can guarantee $(1 - \delta_0^2)^T \leq \epsilon$. This proves the SD($U^*, U^{*\dagger}$) bound. The bounds on $\|x_k - x^*_k\|$ and $\|X - X^*\|_F$ follow by Lemma 3.3 given in Sec. III-C.

B. Proof Outline (and Novelty) for Theorem 3.2

For proving exponential error decay, we need to show this: at iteration t, if $\|\Delta U^* - \delta_t\|_F \leq \delta_t$ with $\delta_t < \delta_0 = c/\kappa^2$. Then, $\|\Delta U^* - U^{*\dagger}\|_F \leq c\delta_t$ for a $c < 1$. We explain how to do this next. Suppose that, at iteration t, $\|\Delta U^* - \delta_t\|_F \leq \delta_t < \delta_0 = 0.1/\kappa^2$.

Analyzing the Minimization Step for Updating B (Lemma 3.3): Recall from Algorithm 1 that $b_k = (A_k U) y_k$, $x_k = U b_k$, and $x_k^* = U^* b_k^*$. Using standard results from [26], we can show that the estimates b_k satisfy $\|b_k - x_k\|_2 \leq 0.4\|I - UU^T\|\|U^* b_k^*\|_2$. Then this implies that (i) b_k's are incoherent, i.e., $\|b_k\|_2 \leq 0.1\sigma_{max}/\sqrt{q}$, and (ii) $\|x_k - x_k^*\|_2 \leq 0.4\|I - UU^T\|\|U^* b_k^*\|_2 \leq 1.4\delta_t \sigma_{max}/\|x_k\|_2$, i.e., we can get the desired column-wise error bound. Also (iii) $\|X - X^*\|_F \leq 1.4\delta_t \sigma_{max}^2$ (notice this bound does not contain r). We get this as follows:

$$\|X - X^*\|_F = \sqrt{\sum_k \|x_k - x_k^*\|_2^2}$$

Similarly, $\|B - U^T X^*\|_F \leq 0.4\delta_t \sigma_{max}^2$. (iv) Using Weyl's inequality and $\delta_t < 0.1/\kappa^2$, this then implies that $\sigma_{max}(B) \leq 1.1\sigma_{max}^2$ and $\sigma_{min}(B) \geq 0.9\sigma_{min}$.

Bounding SD($U^*, U^{*\dagger}$) by a Novel Use of Fundamental Theorem of Calculus (Lemma 3.4): Recall from Algorithm 1 that $U^+ = U - (\eta/\mu)\nabla_U f(U, B)$ and $U^+ = QR U^{*\dagger}$. We bound $\|SD(U^*, U^{*\dagger})\|_F$ using the fundamental theorem of calculus [18, Chapter XIII, Theorem 4.2], [19], summarized in Theorem IV-A. The use of this result is motivated by its use in [19], and many earlier works, where it is used in a standard way: to bound the Euclidean norm error $\|x - x^*\|$ for standard GD to solve the PR problem for recovering a single vector x^*. Thus, at the true solution $x = x^*$, the gradient of the cost function was zero. In our case, there are two differences: (i) we need to bound the subspace distance error, and (ii) our
algorithm is not standard GD; in particular, this means that
∇_U f(U^*U^T + B) ≠ 0.

To deal with (i) and (ii), we proceed as follows. We first bound \(\| (I - U^*U^T)^{\dagger} U^{\dagger} \|_F \). To do this, we apply Theorem IV-A on vectorized \(\nabla_U f(U, B) \) with the pivot being vectorized \(\nabla_U f(U^*U^T + B, U) \), and use this in the equation for \(\hat{U} \). Next, we project both sides of this expression orthogonal to \(U^* \) followed by some careful linear algebra. Notice here that \(\nabla_U f(U^*U^T + B, U) \neq 0 \), because \(B \neq B^* \). Because of this, we get an extra term, Term2 := \((I - U^*U^T)^{\dagger} \nabla_U f(U^*U^T + B, U) \), in our bound other than the usual term containing the Hessian. We are able to bound it by \(\epsilon \delta^2 \sigma_{\text{max}}^2 \) for any constant small enough \(\epsilon \), by realizing that \(\mathbb{E} \{ \text{Term2} \} = 0 \) (conditioned on past measurements), and that its summands are nice-enough subexponentials. Next, we bound \(\text{SD}(U^*, \hat{U}^*) \) by using

\[
\text{SD}(U^*, \hat{U}^*) \leq \| (I - U^*U^T)^{\dagger} U^{\dagger} \|_F \| R \|^{-1}
\]

and \(\sigma_{\text{min}}(\hat{U}^*) = \sigma_{\text{min}}(U - (\eta/m) \nabla_U f(U, B)) \geq 1 - (\eta/m) \| \nabla_U f(U, B) \|_F \).

Bounding the terms in the \(\text{SD}(U^*, \hat{U}^*) \) (Lemma 3.5): Consider \(\| \nabla_U f(U, B) \|_F \). Using Lemma 3.3, it can be shown that, for unit vectors \(w, z \), the maximum sub-exponential norm of any summand of \(w^T \nabla_U f(U, B) z \) is bounded by \(\| w_k - x_k^* \| \cdot \| b_k \| \leq 2 \mu \sigma_{\text{max}}^2 \delta_2 \).

Observe that we get this (sufficiently small) bound because of the extra \(b_k \) term in the summands of \(\nabla_U f(U, B) \) compared to those in \(\nabla_U f(X) \). This, along with using the sub-exponential Bernstein inequality [26] followed by a standard epsilon-net argument, and bounding \(\| \nabla_U f \|_F \) using \(\| \nabla_U f \|_F \) = \(m(X - X^*)B \| \leq m \delta \sigma_{\text{max}}^2 \) for any constant small enough \(\epsilon \), helps guarantee that \(\| \nabla_U f \|_F \leq 2 m \delta \sigma_{\text{max}}^2 \) w.h.p. as long as \(m \delta \sigma_{\text{max}}^2 \geq (\eta/m)^2 \). We bound \(\| \text{Term2} \|_F \) using similar ideas and the key fact that \(\mathbb{E} \{ \text{Term2} \} = 0 \). This is true because of sample-splitting. We upper and lower bound the eigenvalues of the Hessian, \(\text{Hess} \), using similar ideas and the following: for a unit vector \(w \) of length \(nr \) and its rearranged unit Frobenius norm matrix \(W_{n \times r} \), \(\mathbb{E}[w^T \text{Hess} w] = \sum_{k} \langle a_{ki}^T, Wb_k \rangle \| W \|_F^2 \). Using the bounds on \(\sigma_i(B) \) from Lemma 3.3, this can be upper and lower bounded.

C. Lemmas for Proving GD Descent Theorem 3.2 and Its Proof

Let \(U \equiv U_t \), \(B \equiv B_{t+1} \). The proof follows using the following 3 lemmas.

Lemma 3.3 (Error bound on \(B \) and its implications): Let \(U \equiv U_t \), \(B \equiv B_{t+1} \), and

\[g_k := U^T x_k^* \]

Assume that \(\text{SD}(U^*, U_t) \leq \delta_t \) with \(\delta_t < \delta_0 = c/\kappa^2 \) (this bound on \(\delta_t \) is needed for the second part of this lemma). Then, w.p. \(1 - q \exp(r - cm) \),

1) \[\| g_k - b_k \| \leq 0.4 \| (I_n - UU^T) U^* b_k^* \| \quad (3) \]

2) This in turn implies all of the following.
 a) \[\| x_k - x_k^* \| \leq 1.4 \| (I_n - UU^T) U^* b_k^* \| \]
 b) \[\| G - B \|_F \leq 0.4 \delta t \sigma_{\text{max}}^2 \] and \(\| X^* - X \|_F \leq \sqrt{1.16} \delta t \sigma_{\text{max}}^2 \)
 c) \[\| g_k - b_k \| \leq 0.4 \delta t \sigma_{\text{max}}^2 \]
 d) \[\| U^* b_k - b_k \| \leq 2.4 \delta t \sigma_{\text{max}}^2 \]
 e) \[\| b_k \| \leq 1.1 \mu \sigma_{\text{max}}^2 \sqrt{r/q} \]
 f) \[\sigma_{\text{min}}(B) \geq 0.9 \sigma_{\text{min}}^* \text{ and } \sigma_{\text{max}}(B) \leq 1.1 \sigma_{\text{max}}^* \]

Proof: See Sec. IV-D.

Lemma 3.4: Let \(U \equiv U_t \), \(B \equiv B_{t+1} \). Let \(\otimes \) denote the Kronecker product. We have

\[\text{SD}(U_{t+1}, U^*) \leq \| I_{nr} - (\eta/m) \text{Hess} \cdot \text{SD}(U^*, U) + (\eta/m) \| \text{Term2} \|_F \]

and \[\text{GradU} := \nabla_U f(U, B) = \sum_{k} (y_{ki} - a_{ki}^T b_k) a_{ki} b_k \]

\[\text{Term2} := (I - U^*U^T)^{\dagger} \nabla_U f(U^*U^T + B) \]

\[= (I - U^*U^T)^{\dagger} \nabla_U f(U^*U^T + B) a_{ki} b_k \]

\[\text{Hess} := \sum_{k} (a_{ki} \otimes b_k) (a_{ki} \otimes b_k)^T \]

Proof: See Sec. IV-B

Lemma 3.5: Assume \(\text{SD}(U^*, U) \leq \delta_t < \delta_0 = c/\kappa^2 \). Then, w.p. at least \(1 - \exp((n + r - cmq_2^2)/r) - \exp(\log q + r - cm) \),

\[\| \text{GradU} \| \leq 1.5(1 + \epsilon_1) m \delta \sigma_{\text{max}}^*^2 \]

w.p. at least \(1 - \exp((nr - cmq_2^2)/r \mu^2) - \exp(\log q + r - cm) \),

\[\| \text{Term2} \|_F \leq 1.1 m \epsilon_2 \sigma_{\text{max}}^*^2 \]

w.p. at least \(1 - \exp((nr^2 \log \kappa - cmq_2^2)/r \mu^2) - \exp(\log q + r - cm) \),

\[m(0.65 - 1.2 \epsilon_3) \sigma_{\text{min}}^* \leq \lambda_{\text{min}}(\text{Hess}) \]

\[\leq \lambda_{\text{max}}(\text{Hess}) \leq m(1 + \epsilon_3) \sigma_{\text{max}}^* \]

Proof: See Sec. IV-C.

Proof of Theorem 3.2: The proof follows by induction. Base case for \(t = 0 \) is true by assumption. Induction assumption: Assume that, w.p. at least \(1 - tn^{-1} \), \(\text{SD}(U^*, U_t) \leq \delta_t \) with \(\delta_t \leq \delta_0 = c/\kappa^2 \).

Set \(\epsilon_1 = 0.1 \), \(\epsilon_3 = 0.01 \), \(\epsilon_2 = 0.01/1.1^2 \) and, \(\epsilon_0 = 0.1/1.5(1.1 + 0.1) \).

The upper bound on \(\lambda_{\text{max}}(\text{Hess}) \) and using \(\eta \leq 0.5/\sigma_{\text{max}}^2 \) implies that \(\lambda_{\text{min}}(I_{nr} - (\eta/m) \text{Hess}) \geq 1 - (\eta/m) \lambda_{\text{max}}(\text{Hess}) \geq 1 - (\eta/m)^2 \sigma_{\text{max}}^2 \)

\[> 1 - 0.555 > 0 \text{ i.e. } I_{nr} - (\eta/m) \text{Hess} \text{ is positive definite. Thus,} \]

\[\| I_{nr} - (\eta/m) \text{Hess} \|_F \leq \lambda_{\text{max}}(I_{nr} - (\eta/m) \text{Hess}) = 1 - (\eta/m) \lambda_{\text{min}}(\text{Hess}) \leq 1 - (\eta/m) m(0.65 - 1.2 \epsilon_3) \sigma_{\text{min}}^* \leq 1 - (\eta/m)^2 0.63/\kappa^2. \]
By Lemma 3.4, Lemma 3.5, and the above, w.p. at least $1 - tn^{-10} - \exp((n+q) - cnq/r^2\mu^2) - \exp(nr - cnq/r\mu^2) - \exp(nr\log - cnq/r\mu^2) - \exp(\log q + r - cnq)$,

$$
\text{SD}(U^*, U_{t+1})
\leq (1 - (\eta\sigma_{\max}^2)^2)0.63/\kappa^2 \cdot \delta_t + (\eta/m)1.1 me_2\sigma_{\max}^2 \cdot \delta_t
\leq (1 - (\eta\sigma_{\max}^2)^2)0.63/\kappa^2 + (\eta\sigma_{\max}^2)^2 \cdot \frac{0.01}{\kappa^2} \cdot \delta_t
\leq (1 - (\eta\sigma_{\max}^2)^2)0.42/\kappa^2 \cdot \delta_t
$$

The second inequality substituted the values of ϵ_j’s and used $\delta_t < \delta_0 = 0.1/(1.5(1.1 + 0.1)\kappa^2)$ for its denominator term. The third inequality used $(1 - (\eta\sigma_{\max}^2)^2)0.1/\kappa^2$ for $(0 < x < 1, 1/(1-x) = 1 + 2x)$.

By plugging in the epsilon values in the probability, the above holds w.p. $\geq 1 - tn^{-10} - 0.2\exp((n+q) - cnq/r^2\mu^2) - 0.2\exp(nr - cnq/r\mu^2\kappa^2) - 0.2\exp(nr\log - cnq/r\mu^2\kappa^2) - \exp(\log q + r - cnq)$ for all $n > 5$. Bounding the latter is simple. Bounding $\|X + X_0\|$ requires bounding $w^T(X + X_0)z$ for unit vectors w, z and this is not straightforward because its summands are not mutually independent. To deal with this, we first bound each summand by its absolute value, and then bound the indicator function term to get a new one that is non-random so that the summands of this new term are mutually independent. But, its summands are no longer zero mean (because of taking the absolute values), and hence more work is needed to get the desired small enough bound on the expected value of this term.

E. Simpler Proof of Theorem 3.1 That Assumes Independent Measurements Used for Computing α

For the simpler proof given here, assume that we use a different independent set of measurements for computing α than those used for the rest of X_0, i.e., let

$$
\alpha = C\sum_{k=1}^m (y_{ki}^{\text{normX}})^2/mq
$$

with y_{ki}^{normX} independent of $\{A_k^{(0)}; y_k^{(0)}\}$ with this change, it is possible to compute $E[X_0\alpha]$ easily. But, it does not affect the sample complexity order and so it does not change our theorem statement. The proof follows by combining the two lemmas and facts given next.

Lemma 3.6: Conditioned on α, we have the following conclusions.

1) Let ζ be a scalar standard Gaussian r.v., Define

$$
\beta_k(\alpha) := E[\zeta^21_{\{||z_k^*||^2\zeta^2 \leq \alpha\}}]
$$

Then,

$$
E[X_0\alpha] = X^*D(\alpha),
$$

where $D(\alpha) := \text{diagonal}(\beta_k(\alpha), k \in [q])$ (4)

i.e. $D(\alpha)$ is a diagonal matrix of size $q \times q$ with diagonal entries β_k defined above.

2) Let $E[X_0\alpha] = X^*D(\alpha) \overset{\text{SVD}}{=} U^*\Sigma^*V$ be its r-SVD. Then,

$$
\text{SD}(U_0, U^*) \leq \text{max} (\|(X_0 - E[X_0\alpha])^T U^*\|_F, \|(X_0 - E[X_0\alpha])V\|_F)/\sigma_{\min} \text{min}_k \beta_k(\alpha) - \|X_0 - E[X_0\alpha]\|
$$

(5)

as long as the denominator is non-negative.

Proof: See Sec. IV-F

Define the set E as follows

$$
E := \left\{ C(1 - \epsilon_1)|X^*|^2/q \leq \alpha \leq C(1 + \epsilon_1)|X^*|^2/q \right\}
$$

(6)

The following fact is an immediate consequence of sub-exponential Bernstein inequality for bounding $|\alpha - |X^*|^2||_F/q$.

Fact 3.7: $Pr(\alpha \in E) \geq 1 - \exp(-\tilde{c}mq^2) := 1 - p_c$. Here $\tilde{c} = c/C = c/k^2\mu^2$.
The next lemma bounds the terms of Lemma 3.6.

Lemma 3.8: Fix $0 < \epsilon_1 < 1$. Then,

1. w.p. at least $1 - \exp\left[\frac{n}{2} + q - c\epsilon_1^2 mq/\mu^2 \kappa^2\right]$ conditioned on α, for $\alpha \in E$,
 \[
 \|X_0 - E[X_0]\| \leq 1.1\epsilon_1\|X^*\|_F.
 \]
2. w.p. at least $1 - \exp\left[\frac{\epsilon q_0}{2} - c\epsilon_1^2 mq/\mu^2 \kappa^2\right]$, conditioned on α, for $\alpha \in E$,
 \[
 \|X_0 - E[X_0]\| \leq 1.1\epsilon_1\|X^*\|_F.
 \]
3. w.p. at least $1 - \exp\left[\frac{nq}{2} - c\epsilon_1^2 mq/\mu^2 \kappa^2\right]$, conditioned on α, for $\alpha \in E$,
 \[
 \|X_0 - E[X_0]\| \leq 1.1\epsilon_1\|X^*\|_F.
 \]

Proof: See Sec. IV-G.

We also need to the following fact.

Fact 3.9: We also need to the following fact.

Theorem 4.1: Theorem for Frobenius Norm Subspace Distance [27], [28][Theorem 2.3.1]: For two $n \times r$ matrices M^*, M, let U^*, U denote the matrices containing their top r singular vectors and let V^*, V be the matrices of their right singular vectors (recall from problem definition that we defined SVD with the right matrix transposed). Let σ_{r+1}^*, σ_{r+1} denote the r-th and $(r+1)$-th singular values of M^*. If $\|M - M^*\| \leq \sigma_{r}^* - \sigma_{r+1}$, then

\[
\text{SD}(U, U^*) \leq \frac{\sqrt{\text{max}(\|M - M^*\|)} \|U^*\|_F, \|M - M^*\| \|V^*\|_F)}{\sigma_{r}^* - \sigma_{r+1}}.
\]

Theorem 4.2 (Fundamental Theorem of Calculus [18][Chapter XIII, Theorem 4.2], [19]): For two vectors $z_0, z^* \in \mathbb{R}^d$, and a differentiable vector function $g(z) \in \mathbb{R}^d$,

\[
g(z_0) - g(z^*) = \left(\int_{\tau=0}^{1} \nabla g(z(\tau)) d\tau\right) (z_0 - z^*),
\]

where $z(\tau) = z^* + \tau(z_0 - z^*)$.

Observe that $\nabla z g(z)$ is a $d \times d$ matrix.

Definition 4.3: For any $n \times r$ matrix Z, let Z_{vec} denote the nr length vector formed by arranging all r columns of Z one below the other. Thus, for n-length and r-length vectors a and b,

- $(a^T)_{vec} = a \otimes b$ with \otimes being the Kronecker product;
- $a^T B = \text{trace}(a^T B) = \text{trace}(ba^T)$.

Definition 4.4: At various places, $\nabla f(U, B)$ is short for $\nabla f(U, B) = \sum_{k_i}(a_{ki} \otimes b_k)U_{vec} - y_{ki}$ and similarly $\nabla f(U, B)$ is short for $\nabla f(U, B) = \sum_{k_i}(a_{ki} \otimes b_k)U_{vec} - y_{ki}$.

Definition 4.5: For any vector w, we use $w(k)$ to denote its k-th entry.

Definition 4.6: Everywhere we use S_{net} to denote both the set of matrices $\{W \in \mathbb{R}^{n \times r} : \|W\|_F = 1\}$ and the set of these matrices vectorized $\{w \in \mathbb{R}^{nr} : \|w\| = 1\}$. We also switch between the two sometimes. In the entire writing below, $w = W_{vec}$.

All the high probability bounds for initialization use sub-Gaussian Hoeffding inequality, while those for GD lemmas use the sub-exponential Bernstein inequality, both are from [26]. In addition, these lemmas also use the following results to “epsilon-net” extend a bound holding for a fixed unit norm W (or u) to all unit norm Ws (or us).

Proposition 4.7 (Epsilon-netting for bounding max$_{M \in \mathbb{S}_n}$: For an $n \times r$ matrix M and fixed vectors w, z with $w \in S_n$ and $z \in S_r$, suppose that $\|w^T M\| \leq \delta_0$ w.p. at least $1 - \delta_0$. Consider an ϵ_{net} net covering S_n and S_r, \mathbb{S}_n, \mathbb{S}_r. Then w.p. at least $1 - (1 + 2/\epsilon_{net})\delta_0$,

- max$_{w \in \mathbb{S}_n}$ $\mathbb{S}_n, z \in S_r$, $\|w^T M\| \leq \delta_0$ and
- max$_{w \in \mathbb{S}_n}$ $\mathbb{S}_n, z \in S_r$, $\|w^T M\| \leq \frac{1}{1 - 2\epsilon_{net} - \epsilon_{net}^2}\delta_0$.

Using $\epsilon_{net} = 1/8$, this implies the following simpler conclusion:
W.p. at least \(1 - 17^{n^r}p_0 = 1 - \exp((\log 17)(n + r)) \cdot p_0\), \(\max_{\text{w.p. } z \in S_r} |w^T M z| \leq 1.4 \cdot b_0\).

Proof: The proof follows that of Lemma 4.4.1 of [26].

Proposition 4.8 (Epsilon-Netting for Bounding)

For an \(n \times r\) matrix \(M\) and a fixed \(n \times r\) matrix \(W \in S_{nr}\) (unit Frobenius norm matrix), suppose that \(\langle M, W \rangle \leq b_0\) w.p. at least 1. Then, consider an \(\epsilon_{net}\) net covering \(S_{nr}, \tilde{S}_{nr}\). Then w.p. at least \(1 - (1 + 2/\epsilon_{net})^{nr}p_0\),

- \(\max_{\text{w.p. } z \in S_r} |M_0^T W| \leq b_0\),
- \(\max_{\text{w.p. } z \in S_r} |M_{net}^T W| \leq 1 - \epsilon_{net}p_0\).

Using \(\epsilon_{net} = 1/8\), this implies the following simpler conclusion:

w.p. at least \(1 - 17^{nr}p_0 = 1 - \exp((\log 17)(nr)) \cdot p_0\),
\(\max_{\text{w.p. } z \in S_r} |M_0^T W| \leq b_0\) and \(\max_{\text{w.p. } z \in S_r} |M_{net}^T W| \leq 1 - \epsilon_{net}p_0\).

The proof follows that of Lemma 4.4.1 of [26].

Proposition 4.9 (Epsilon-Netting for Upper and Lower Bounding)

\(\sum_{ki} |M_{ki}^T W|\) for all \(W \in S_{nr}\): For an \(n \times r\) matrix \(M\) and a fixed \(W \in S_{nr}\), suppose that \(\langle M_{ki}, W \rangle \leq b_0\) w.p. at least 1. Consider an \(\epsilon_{net}\) net covering \(S_{nr}, \tilde{S}_{nr}\). Then w.p. at least \(1 - (1 + 2/\epsilon_{net})^{nr}p_0\),

\[
\beta^* = \min_{\text{w.p. } z \in \tilde{S}_{nr}} |M_{ki}^T W|^2.
\]

Proceeding as above, we have

\[
\beta^* = b_1 - 2 \sqrt{\gamma^* \cdot 2 \epsilon_{net} \gamma^*} = b_1 - 2 \epsilon_{net} \gamma^*.
\]

This is an \(nr \times nr\) matrix. Because the cost function is quadratic, the Hessian is constant w.r.t. \(\tau\). Henceforth, we refer to it as \(\text{Hess}\). With this, the above simplifies to

\[
\nabla f(U_{vec}, B) - \nabla f((U^{*}U^{*^T}U)^{vec}, B) = \text{Hess}(U_{vec} - (U^{*}U^{*^T}U)^{vec}) = \text{Hess}(PU)^{vec}
\]

(11)

B. Proving GD Iterations’ Lemmas: Proof of Lemma 3.4 (Algebraic Lemma)

Recall that \(U_{vec}\) denotes the vectorized \(U\). We use this so that we can apply the simple vector version of the fundamental theorem of calculus [18, Chapter XIII, Theorem 4.2], [19, Lemma 2 proof] (given in Theorem IV-A) on the \(nr\) length vector \(\nabla f(U_{vec}, B)\), and so that the Hessian can be expressed as an \(nr \times nr\) matrix.

We apply Theorem IV-A with \(z_0 \equiv U_{vec}, z^{*} \equiv (U^{*}U^{*^T}U)^{vec}\), and \(g(z) = \nabla f(z, B)\). Thus \(d = d_2 = nr\) and \(\nabla g(z)\) is the Hessian of \(f(z, B)\) computed at \(z\). Let \(U(\tau) := U^{*}U^{*^T}U + \tau(U - U^{*}U^{*^T}U)\). Applying the theorem,

\[
\nabla f(U_{vec}, B) - \nabla f((U^{*}U^{*^T}U)^{vec}, B) = \nabla f([U(\tau)_{vec} - \text{vec}(PU_{vec})^{vec}]
\]

where

\[
(10)
\]

\(P := I - U^{*}U^{*^T}\)

denoting the \(n \times n\) projection matrix to project orthogonal to \(U^{*}\). This proof is motivated by a similar approach used in [19, Lemma 2 proof] to analyze GD for standard PR. However, there the application was much simpler because \(f(.)\) was a function of one variable and at the true solution the gradient was zero, i.e., \(\nabla f(x^{*}) = 0\). In our case \(\nabla f(U^{*}U^{*^T}U, B) = 0\) because \(B = B^{*}\). But we can show that \(E[(I - U^{*}U^{*^T})\nabla f(U^{*}U^{*^T}U, B)] = 0\) and this helps us get the final desired result.

From Algorithm 1, recall that \(U^{*} = U - (\eta/m)\nabla f(U, B)\). Vectoring this equation, and using (11), we get

\[
(U^{*})_{vec} = U_{vec} - (\eta/m)\nabla f(U_{vec}, B) = U_{vec} - (\eta/m)\text{Hess}(PU)^{vec}(U - U^{*}U^{*^T}U, B) = 0
\]

(12)

We can prove our final result by using (8) and the following simple facts:

1. For an \(n \times n\) matrix \(M\), let \(\text{big}(M) := I_r \otimes M\). be an \(nr \times nr\) block diagonal matrix with \(M\) in the diagonal blocks.

For any \(n \times r\) matrix \(Z\),

\[
\text{big}(M)Z_{vec} = (MZ)_{vec}
\]
2) Since P is idempotent, $P = P^2$. Also, because of its block-diagonal structure, $\bigl(\det(M^2) = (\det(M))^2\bigr)$. Thus,

$$\bigl|\bigl. \det(P) \bigr| = (\bigl|\bigl. \det(P) \bigr|)^2 = \det(P) \bigl|\bigl. \det(P) \bigr| = \det(P) I_{nr}(\det(P))$$

(14)

Left multiplying both sides of (12) by $\bigl|\bigl. \det(P) \bigr|$ and using (13), (14), and (8),

$$\bigl|\bigl. \det(P) \bigr| (U^+)^{\text{vec}} = \bigl|\bigl. \det(P) \bigr| U_{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \text{Hess}(PU)^{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \nabla f((U^* U^\top) U_{\text{vec}}, B)$$

$$= \bigl|\bigl. \det(P) \bigr| I_{nr} \bigl|\bigl. \det(P) \bigr| \text{Hess}(PU)^{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \nabla f((U^* U^\top) U_{\text{vec}}, B)$$

$$= \bigl|\bigl. \det(P) \bigr| (I_{nr} \ominus (\eta/m) \text{Hess}(PU)^{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \nabla f((U^* U^\top) U_{\text{vec}}, B)$$

Thus, using $\bigl|\bigl. \det(P) \bigr| = 1$, (13), and (8),

$$\bigl|\bigl. \det(P) \bigr| (U^+)^{\text{vec}} \leq \bigl|\bigl. \det(P) \bigr| \text{Hess}(PU)^{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \nabla f((U^* U^\top) U_{\text{vec}}, B)$$

(15)

Converting the vectors to matrices, using $\bigl|\bigl. \det(M) \bigr| = \bigl|\bigl. \det(M) \bigr|$, and substituting for P,

$$\bigl(1 - U^* U^\top\bigr)^{\text{vec}} \leq \bigl|\bigl. \det(P) \bigr| \text{Hess}(PU)^{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \nabla f((U^* U^\top) U_{\text{vec}}, B)$$

Since $\bigl|\bigl. \det(P) \bigr| = 1$ and $\bigl|\bigl. \det(P) \bigr| = \bigl|\bigl. \det(P) \bigr|$, this means that

$$\bigl(1 - U^* U^\top\bigr)^{\text{vec}} \leq \bigl|\bigl. \det(P) \bigr| \text{Hess}(PU)^{\text{vec}} \ominus (\eta/m)\bigl|\bigl. \det(P) \bigr| \nabla f((U^* U^\top) U_{\text{vec}}, B)$$

Since $\bigl(1 - U^* U^\top\bigr)^{\text{vec}} = 1/\sigma_{\min}(R^+) = 1/\sigma_{\min}(U^+)$, using $U^+ = U - (\eta/m)\nabla f(U, B)$,

$$\bigl(1 - U^* U^\top\bigr)^{\text{vec}} = \frac{1}{\sigma_{\min}(U - (\eta/m)\nabla f(U, B))}$$

(16)

where we used $\sigma_{\min}(U - (\eta/m)\nabla f(U, B)) \geq \sigma_{\min}(U) - (\eta/m)\|\nabla f(U, B)\| = 1 - (\eta/m)\|\nabla f(U, B)\|$ for the last inequality. Combining the last three equations above proves our lemma.

C. Proof of GD Iterations’ Lemmas: Proof of Lemma 3.5

1) Upper and Lower Bounding the Hessian Eigenvalues and Hence HessTerm: First assume the event that implies that the conclusions of Lemma 3.3 hold.

Recall from (10) that $\text{Hess} = \nabla^2 f(U_{\text{vec}}, B) = \sum_{ki}(a_ki \otimes b_k)(a_ki \otimes b_k)^\top$. Since Hess is a positive semi-definite matrix, $\lambda_{\min}(\text{Hess}) = \min_{\text{vec} \in S_{nr}}w^\top \text{Hess} w$ and $\lambda_{\max}(\text{Hess}) = \max_{\text{vec} \in S_{nr}}w^\top \text{Hess} w$.

For a fixed $w \in S_{nr}$,

$$w^\top \text{Hess} w = \sum_{ki}(a_ki \otimes b_k)^2$$

where W is an $n \times r$ matrix with $\|W\|_F = 1$. Clearly $(a_ki \otimes b_k)^2$ are mutually independent sub-exponential random variables (r.v.) with sub-exponential norm.

To extend these bounds to all $W \in S_{nr}$, we apply Proposition 4.9 with $b_1 \equiv m(0.9 - \epsilon_3)\sigma_{\min}^2$ and $b_2 \equiv m(1 + \epsilon_3/\kappa^2)\sigma_{\max}^2$. Applying it we can conclude that, given the event that the claims of Lemma 3.3 holds, w.p. at least $1 - \exp(nr \log \kappa - \text{cnmq}(3/\kappa^2 \epsilon_3)^4)$,

$$m(0.7 - 1.2\epsilon_3)\sigma_{\min}^2 \leq \lambda_{\min}(\text{Hess}) \leq \lambda_{\max}(\text{Hess}) \leq m(1 + \epsilon_3)\sigma_{\max}^2$$

Using the probability from Lemma 3.3, the above bound holds w.p. at least $1 - \exp(nr \log \kappa - \text{cnmq}(3/\kappa^2 \epsilon_3)^4) - \exp(q + r - cm)$.

We set $t = \epsilon^3 m\sigma_{\min}^2$. By Lemma 3.3, $\|b_k\|^2 \leq 1.1\mu^2\sigma_{\max}^2(r/q)$. Thus,

$$\frac{t^2}{\max_{ki}K_{ki}} \geq \frac{\frac{\epsilon^3 m\sigma_{\min}^2}{\mu^2\sigma_{\max}^2(r/q)} \lambda_{\max}^2(\text{Hess})}{\lambda_{\min}(\text{Hess})} \geq \frac{\epsilon^3 m\sigma_{\min}^2}{\mu^2\sigma_{\max}^2(r/q)} \lambda_{\max}(\text{Hess})$$

Here we used $\sum_{ki}W_{\text{vec}} = \|W\|_F \leq \|W\|_F \leq \|W\|_F \leq \|B\|_F$ from Lemma 3.3. Also,

$$\frac{\|B\|_F}{\max_{ki}K_{ki}} \geq \frac{\epsilon^3 m\sigma_{\min}^2}{\mu^2\sigma_{\max}^2(r/q)} \lambda_{\max}(\text{Hess})$$

Therefore, for a fixed $W \in S_{nr}$, w.p. $1 - \exp(-\epsilon^3 m\sigma_{\min}^2/\mu^2\sigma_{\max}^2(r/q))$ we have

$$\sum_{ki}(a_ki \otimes b_k)^2 \leq m\|W\|_F^2 \leq \epsilon^3 m\sigma_{\min}^2$$

and hence, by Lemma 3.3, w.p. $1 - \exp(-\epsilon^3 m\sigma_{\min}^2/\mu^2\sigma_{\max}^2(r/q))$,

$$\sum_{ki}(a_ki \otimes b_k)^2 \leq m\|W\|_F^2 + \epsilon^3 m\sigma_{\min}^2$$

$$\leq m\|B\|_F^2 + \epsilon^3 m\sigma_{\min}^2 \leq m(1 + \epsilon_3/\kappa^2)\sigma_{\max}^2$$

(17)

and

$$\sum_{ki}(a_ki \otimes b_k)^2 \geq m\|W\|_F^2 - \epsilon^3 m\sigma_{\min}^2$$

$$\geq 0.9 m\sigma_{\min}^2 + \epsilon^3 m\sigma_{\min}^2 \geq m(0.9 - \epsilon_3)\sigma_{\min}^2$$

(18)
2) Bounding the Grad U Term: We have $\|\nabla f(U, B)\| = \max_{z \in S_n, w \in S_r} z^\top \nabla f(U, B) w$. For a fixed $z \in S_n$, $w \in S_r$ we have

$$z^\top (\nabla f(U, B) - E[\nabla f(U, B)]) w = \sum_{k_i} [(a_{k_i} - U b_k) - y_{k_i}], (a_{k_i} - z) (w^\top b_k) - E[.].$$

where $E[.]$ is the expected value of the first term. Clearly, the summands are independent sub-exponential r.v.s with $K_{k_1} \leq C \|x_k - x_k^\star\| \|b_k\|$. We apply the sub-exponential Bernstein inequality, Theorem 2.8.1 of [26], with $t = \epsilon_1 \delta_1 \sigma_{max}^2$. To apply this, we use bounds on $\|b_k\|$, $\|X^* - X\|_F$ and $\|x_k - x_k^\star\|$ from Lemma 3.3 to show that

$$\sum_{k_i} \delta_1^2 \sigma_{max}^4 \leq c \max_{k_i} \sum_{k_i} \frac{\|x_k - x_k^\star\|^2}{\|b_k\|^2} \delta_1^2 \sigma_{max}^4 \leq C \mu^2 \sigma_{max}^2 \|X - X^\star\|^2_F$$

and

$$\delta_1 \sigma_{max}^2 \leq C \mu^2 \sigma_{max}^2 r \mu^2 \leq C \mu^2 \sigma_{max}^2.$$

Therefore, for a fixed $z \in S_n$, $w \in S_r$, w.p. 1 - exp($-c_1 \mu^2 \sigma_{max}^2$),

$$z^\top (\nabla f(U, B) - E[\nabla f(U, B)]) w \leq \epsilon_1 \delta_1 \sigma_{max}^2$$

Since $\nabla f(U, B) = \sum_k a_{k_i} a_{k_i}^\top (x_k - x_k^\star) b_k^\top$, $E[\nabla f(U, B)] = m \sum_k (x_k - x_k^\star) b_k^\top.$ Using the bounds on $\|X^* - X\|_F$ and $\|B\|$ from Lemma 3.3,

$$\|E[\nabla f(U, B)]\| = m \|X^* - X\|_F \leq m \|X - X^\star\|_F \leq m \|X - X^\star\|_F \|B\| \leq m \delta \sigma_{max}^2$$

Hence, for a fixed $z \in S_n$, $w \in S_r$, w.p. 1 - exp($-c_2 \mu^2 \sigma_{max}^2$), we have

$$z^\top \nabla f(U, B) w \leq (1.1 + \epsilon_1) m \delta \sigma_{max}^2.$$

Applying Proposition IV-A, this implies that, w.p. 1 - exp((n + r) (log 17) - $c_2 \mu^2 \delta \sigma_{max}^2$), $\max_{z \in S_n, w \in S_r} z^\top \nabla f(U, B) w \leq 1.4(1.1 + \epsilon_1) \delta \sigma_{max}^2$.

3) Bounding Term2: First, since $\nabla f(U, B) = (I - U^* U^\top) \sum_k (a_{k_i} - U^* b_k) b_k^\top$, and $E[a_{k_i} a_{k_i}^\top] = I$, $E[Term2] = 0$.

We have

$$\|I - U^* U^\top\| \leq \max_{W \in S_{nr}} \|I - U^* U^\top\| \|W\| \|U\|^2 \leq \frac{1}{2} \delta \sigma_{max}^2.$$

For a fixed $n \times r$ matrix W with unit Frobenius norm,

$$\langle(I - U^* U^\top) \nabla f((U^* U^\top U), B), W \rangle = \sum_{k} \langle a_{k_i}^\top (U^* U^\top U b_k - b_k^\star) (a_{k_i}^\top (I - U^* U^\top) W b_k)\rangle$$

Observe that the summands are independent, zero mean, sub-exponential r.v.s with sub-exponential norm $K_{k_i} \leq C \|U^* U b_k - b_k^\star\| \|I - U^* U^\top\| \|W b_k\| \leq C \|U^* U b_k - b_k^\star\| \|W b_k\|$. We can now apply the sub-exponential Bernstein inequality Theorem 2.8.1 of [26]. Let $t = \epsilon_2 \delta_2 \mu^2 \sigma_{max}^2$. Using the bound on $\|U^* U b_k - b_k^\star\|$ from Lemma 3.3 followed by Assumption I-A (right incoherence), and also the bound on $\|B\|$ from Lemma 3.3,

$$\sum_{k} \delta_2 \mu^2 \mu^2 \sigma_{max}^2 \leq C \delta_2 \mu^2 \mu^2 \sigma_{max}^2 \leq \epsilon_2 \mu^2 \sigma_{max}^2$$

and

$$\frac{t}{\max_{k_i} \delta_2 \mu^2 \mu^2 \sigma_{max}^2} \geq \frac{\epsilon_2 \mu^2 \sigma_{max}^2}{C \delta_2 \mu^2 \mu^2 \sigma_{max}^2} \geq \frac{\epsilon_2 \mu^2 \sigma_{max}^2}{C \delta_2 \mu^2 \mu^2 \sigma_{max}^2} \geq \frac{\epsilon_2 \mu^2 \sigma_{max}^2}{C \delta_2 \mu^2 \mu^2 \sigma_{max}^2} \geq \epsilon_2 \mu^2 \sigma_{max}^2.$$

Thus, by the sub-exponential Bernstein inequality, for a fixed $W \in S_{nr}$, w.p. 1 - exp($-c_2 \mu^2 \sigma_{max}^2$),

$$\langle(I - U^* U^\top) \nabla f((U^* U^\top U), B), W \rangle \leq \epsilon_2 \delta_2 \mu^2 \sigma_{max}^2.$$

Applying Proposition 4.8, w.p. at least 1 - exp($(n - \epsilon_2 \mu^2 \sigma_{max}^2)$), $\max_{w \in S_{nr}} \langle(I - U^* U^\top) \nabla f((U^* U^\top U), B), W \rangle \leq 1.2 \epsilon_2 \delta_2 \mu^2 \sigma_{max}^2$.

D. Proof of GD Iterations’ Lemmas: Proof of Lemma 3.3, All Parts Other Than The First Part

Recall that $g_k = U^\top x_k^\star = U^* U^\top b_k^\star$, and $G = U^* U^\top B^\star$. Using the SD bound and the first part, $\|g_k - b_k\| \leq 0.4 \delta \|b_k\|$. Since $x_k^\star - x_k = U g_k + (I - U^* U^\top) x_k^\star - U b_k = U (g_k - b_k) + (I - U^* U^\top) x_k^\star$, using (3),

$$\|x_k^\star - x_k\| \leq \|g_k - b_k\| + \|U^* U^\top U b_k - U^ star\| \leq 1.4 \delta \|b_k\|.$$

Bounding $\|G - B\|_F$ and $\|X^* - X\|_F$: Since $\sum k \|M b_k\|^2 \leq \|M\|_F^2 \|B\|^2 \leq \|M\|_F^2 \|B\|$, we can use the first bound from (3) to conclude that

$$\|G - B\|_F^2 \leq \sum_k \|g_k - b_k\|^2 \leq 0.4^2 \sum_k \|U^* U^\top U^* b_k\|^2$$

$$= 0.4^2 \|I - U^* U^\top U^* B^\star\|^2 \leq 0.4^2 \delta_2 \mu^2 \sigma_{max}^2$$

and, similarly,

$$\|X^* - X\|_F^2 \leq \sum_k \|g_k - b_k\|^2 + \sum_k \|I - U^* U^\top U^* b_k\|^2$$

$$\leq (0.4^2 + 1^2) \delta_2 \mu^2 \sigma_{max}^2.$$
Incoherence of b_k's: Using the bound on $\|b_k - g_k\|$, and using $\|g_k\| \leq \|b_k\|$ and the right incoherence assumption,

$$\|b_k\| = \|(b_k - g_k + g_k)\| \leq (1 + 0.4\delta_0)\|b_k\| \leq 1.04\sigma_{\max} \sqrt{r/q}.$$

Lower and Upper Bounds on $\sigma_j(B)$: Using the bound on $\|G - B\|_F$ and using $\text{SD}(U, U^*) \leq \delta_t < c/\kappa$,

$$\sigma_{\min}(B) \geq \sigma_{\min}(G) - \|G - B\|_F \geq \sigma_{\min}(U^* U) \sigma_{\min}(B^*) - \|G - B\|_F \geq \sqrt{1 - \|U^* U\|^2} \sigma_{\min}^* - 0.4\delta_t \sigma_{\max}^* \geq \sqrt{1 - \delta_t^2} \sigma_{\min}^* - 0.4\delta_t \sigma_{\max}^* \geq 0.9 \sigma_{\min}^*$$

since we assumed $\delta_t \leq \delta_0 < 0.1/\kappa$. Similarly,

$$\|B\| = \sigma_{\max}(B) \leq \sigma_{\max}(U^* U) \sigma_{\max}(B^*) + \|G - B\|_F \leq \sigma_{\max}^* + 0.4\delta_t \sigma_{\max}^* \leq 1.1 \sigma_{\max}^*$$

E. Proof of GD Iterations’ Lemmas: Proof of Lemma 3.3, First Part

We bound $\|g_k - b_k\|$ here. Recall that $g_k = U^* x_k^*$. Since $y_k = A_k x_k^* = A_k UU^* x_k^* + A_k (I - UU^*) x_k^*$, therefore

$$b_k = (U^* A_k^* A_k U)^{-1} (U^* A_k^* A_k U U^* x_k^* + U^* A_k (I - UU^*) x_k^*),$$

$$= (U^* A_k^* A_k U)^{-1} (U^* A_k^* A_k U U^* x_k^*) + (U^* A_k^* A_k U)^{-1} (U^* A_k^* A_k U) x_k^*,$$

$$= g_k + (U^* A_k^* A_k U)^{-1} (U^* A_k^* A_k U) x_k^*.$$

Thus,

$$\|b_k - g_k\| \leq \| (U^* A_k^* A_k U)^{-1} \| \| (U^* A_k^* A_k U) x_k^* \|.$$

Using standard results from [26], one can show the following:

1) W.p. $\geq 1 - q \exp(r - cm)$, for all $k \in [q]$,

$$\min_{w \in \mathcal{S}_r} \sum_i |a_{ki}^* U w|^2 \geq 0.7 m$$

and so

$$\| (U^* A_k^* A_k U)^{-1} \| = \frac{1}{\sigma_{\min}(U^* A_k^* A_k U)} \leq \frac{1}{\sigma_{\min}(U^* A_k^* A_k U)} \geq \frac{1}{\min_{w \in \mathcal{S}_r} \sum_i |a_{ki}^* U w|^2} \leq \frac{1}{0.7 m}.$$

2) W.p. at least $1 - q \exp(r - cm)$, for all $k \in [q]$,

$$\|U^* A_k^* A_k (I - UU^*) x_k^*\| \leq 0.15 m \|(I - UU^*) x_k^*\|.$$

Combining the above two bounds and (19), w.p. at least $1 - 2 \exp(\log q + r - cm)$, for all $k \in [q]$,

$$\|g_k - b_k\| \leq 0.4 \| (I_n - UU^*) U^* b_k^* \|.$$

This completes the proof. We explain next how to get the above two bounds.

The first bound above follows by a restatement of Theorem 4.6.1 of [26]. Or, it follows more directly by using

$$E(\sum_i |a_{ki}^* U w|^2) = m_0$$

applying the sub-exponential Bernstein inequality [29, Theorem 2.8.1] to bound the deviation from this mean, and then applying Proposition IV-A with $n \equiv 1, r \equiv r$ (epsilon net argument).

The second bound is obtained as follows. Notice that

$$\|U^* A_k^* A_k (I - UU^*) x_k^*\| = \max_{w \in \mathcal{S}_r} \|U^* A_k^* A_k (I - UU^*) x_k^*\| = \max_{w \in \mathcal{S}_r} \sum_i (a_{ki}^* U w) (a_{ki}^* (I - UU^*) x_k^*).$$

Clearly $E[U^* A_k^* A_k (I - UU^*) x_k^*] = U^* (I - UU^*) x_k^* = 0$. Moreover, the summands are products of sub-Gaussian r.v.s and are thus sub-exponential. Also, the different summands are mutually independent and zero mean. Applying sub-exponential Bernstein with $t = \epsilon_0 m \|(I - UU^*) x_k^*\|$, for a fixed $w \in \mathcal{S}_r$,

$$\left| \sum_i (a_{ki}^* U w) (a_{ki}^* (I - UU^*) x_k^*) \right| \leq \epsilon_0 m \|(I - UU^*) x_k^*\| \text{ w.p. at least } 1 - \exp(-c\epsilon_0^2 m).$$

Setting $\epsilon_0 = 0.1$, this implies that the above is bounded by $0.1 m \|(I - UU^*) x_k^*\|$ w.p. at least $1 - \exp(-cm)$. By Proposition IV-A with $n \equiv 1, r \equiv r$, the above is bounded by $0.12 m \|(I - UU^*) x_k^*\|$ for all $w \in \mathcal{S}_r$ w.p. at least $1 - \exp(-cm)$. Using a union bound over all q columns, the bound holds for all q columns w.p. at least $1 - q \exp(r - cm)$.

F. Proof of Initialization Lemmas/Facts: Proof of Lemma 3.6

To see why (4) holds, it suffices to show that $E[(X_0)[\alpha]] = x_{k(1)} b_0(\alpha)$ for each k. The easiest way to see this is to express $x_{k(1)} = [x_k^*]_{e_1}$ where Q_k is an $n \times n$ unitary matrix with first column $x_k^*/\|x_k^*\|$; and to use the fact that $a_{k(i)} = Q_k a_k$ has the same distribution as $a_{k(i)}$, both are $\mathcal{N}(0, I_n)$. Using $Q_k Q_k^* = I$, $(X_0)[\alpha] = (1/m) \sum_i Q_k a_k a_{k(i)}^* x_{k(i)}^*/\|x_{k(i)}\|$, $Q_k [Q_k a_k a_{k(i)}^* x_{k(i)}^*/\|x_{k(i)}\|]_{e_1} \leq \sqrt{\sigma}/\|x_{k(i)}\|$. Thus

$$E[|X_0[\alpha]|] = (1/m) m Q_k \|x_k^* a_k[1]_{e_1}^* e_1 \| \leq \sqrt{\sigma} \|x_k^* [a_k[1]_{e_1}^*]_{e_1 \leq \sqrt{\sigma}/\|x_{k(i)}\|}.$$

This follows because $E[a_1 e_1(\alpha)]_{e_1} = e_1 E[a_1 e_1(\alpha)]_{e_1}$. Recall that $C = 9 \kappa^2 \mu^2$ and $\tilde{C} = C/\tilde{C}$ for a $c < 1$. Recall also that $X^* = SU^* \Sigma^* V^*$ and $E[X_0[\alpha]] = SU^* \Sigma^* V$. Thus, using (4), $\Sigma^* = \Sigma^* V^* D V^T$. Hence,

$$\sigma_{r}(E[X_0[\alpha]]) = \sigma_{\min}(\Sigma^*)$$

$$\geq \sigma_{\min}(\Sigma^*) \sigma_{\min}(D) \sigma_{\min}(V^T)$$

$$= \sigma_{\max}^* \cdot 1 \cdot (\min_k \beta_k(\alpha)) \cdot 1.$$

Also, $\sigma_{r+1}(E[X_0]) = 0$ since it is a rank r matrix. Thus, using Wedin’s sin Θ theorem for the Frobenius norm subspace distance SD [27], [28][Theorem 2.3.1, second row] (specified in Theorem IV-A above) applied with $M = X_0$, $M' = E[X_0]$ we get (5).
G. Proof of Initialization Lemmas and Facts: Proof of Lemma 3.8

Proof of First Part of Lemma 3.8: The proof involves an application of the sub-Gaussian Hoeffding inequality, Theorem 2.6.2 of [26], followed by an epsilon-net argument. The application of sub-Gaussian Hoeffding uses conditioning on \(\alpha \) for \(\alpha \in \mathcal{E} \). For \(\alpha \in \mathcal{E} \), \(\alpha \leq \sqrt{C(1+\epsilon_1)}\|X^*\|_F^2/\sqrt{q} \) and this helps get a simple probability bound. Since \(\alpha \) is independent of all \(\alpha_{ki}, y_{ki} \)'s used in defining \(X_0 \), the conditioning does not change anything else in our proof. For example, the different summands are mutually independent even conditioned on it.

We have,

\[
\|X_0 - \mathbb{E}[X_0|\alpha]\| = \max_{z \in S_{\alpha}, w \in S_q} \langle X_0 - \mathbb{E}[X_0|\alpha], zw^\top \rangle.
\]

For a fixed \(z \in S_{\alpha}, w \in S_q \), we have

\[
\langle X_0 - \mathbb{E}[X_0|\alpha], zw^\top \rangle = \frac{1}{m} \sum_{ki} w(k) y_{ki} (a_{ki}\top z) \mathbb{1}_{\{y_{ki}^2 \leq \alpha\}} - \mathbb{E} \left[w(k) y_{ki} (a_{ki}\top z) \mathbb{1}_{\{y_{ki}^2 \leq \alpha\}} \right].
\]

The summands are mutually independent, zero mean sub-Gaussian r.v.s with sub-Gaussian norm \(K_{\alpha} \leq C\|w(k)\|/\sqrt{\alpha}/m. \) For \(\alpha \in \mathcal{E} \), \(\alpha \leq \sqrt{C(1+\epsilon_1)}\|X^*\|_F/m\sqrt{q} \).

Let \(t = \epsilon_1\|X^*\|_F \). Then, for any \(\alpha \in \mathcal{E} \),

\[
\frac{t^2}{\sum_{ki} K_{\alpha,ki}^2} \geq \frac{\epsilon_1^2\|X^*\|_F^2}{\sum_{ki} C(1+\epsilon_1)w(k)^2\|X^*\|_F^2/m^2q} \geq \frac{\epsilon_1^2m^2q}{C\mu^2k^2}
\]

since \(\sum_{ki} w(k)^2 = \|w\|^2 = 1 \). Thus, for a fixed \(z \in S_{\alpha}, w \in S_q \), by sub-Gaussian Hoeffding, we conclude that, conditioned on \(\alpha \), for any \(\alpha \in \mathcal{E} \), w.p. at least 1 - \(\exp\left(-C\epsilon_1\mu^2k^2\right) \),

\[
\langle X_0 - \mathbb{E}[X_0|\alpha], zw^\top \rangle \leq C\epsilon_1\|X^*\|_F.
\]

The rest of the proof follows by a standard epsilon net argument summarized in Proposition IV-A. Applying it, conditioned on \(\alpha \), for any \(\alpha \in \mathcal{E} \), w.p. at least 1 - \(\exp\left([n + q - C\epsilon_1\mu^2k^2]\right) \), \(\max_{z \in S_{\alpha}, w \in S_q} \langle X_0 - \mathbb{E}[X_0|\alpha], zw^\top \rangle \leq C\epsilon_1\|X^*\|_F. \)

Proof of Second Part of Lemma 3.8: We have

\[
\|X_0 - \mathbb{E}[X_0|\alpha]\|_F \leq \max_{W \in S_{\alpha,r}} \langle W, (X_0 - \mathbb{E}[X_0|\alpha])^\top U^* \rangle.
\]

For a fixed \(W \in S_{\alpha,r} \),

\[
\langle W, (X_0 - \mathbb{E}[X_0|\alpha])^\top U^* \rangle = \text{trace}(W^\top (X_0 - \mathbb{E}[X_0|\alpha])^\top U^*) = \frac{1}{m} \sum_{ki} (y_{ki}(a_{ki}\top U^* w_{ki}) \mathbb{1}_{\{y_{ki}^2 \leq \alpha\}} - \mathbb{E}[\|.)
\]

Conditioned on \(\alpha \), for an \(\alpha \in \mathcal{E} \), the summands are independent zero mean sub-Gaussian r.v.s with sub-Gaussian norm \(K_{ki} \leq \sqrt{\alpha}\|w_{ki}\|/m \leq \sqrt{\tilde{C}(1+\epsilon_1)}\|X^*\|_F\|w_{ki}\|/m\sqrt{q} \). Thus,

\[
\sum_{ki} K_{ki}^2 \leq m\tilde{C}(1+\epsilon_1)\|W\|_F^2\|X^*\|_F^2/m^2q = \tilde{C}\|X^*\|_F^2/\tilde{m}.
\]

Applying the sub-Gaussian Hoeffding inequality Theorem 2.6.2 of [26], for a fixed \(W \in S_{\alpha,r} \), conditioned on \(\alpha \), for an \(\alpha \in \mathcal{E} \), w.p. \(1 - \exp\left(-C\epsilon_1\mu^2k^2\right) \),

\[
\text{trace}(W^\top (X_0 - \mathbb{E}[X_0|\alpha])^\top U^*) \leq C\epsilon_1\|X^*\|_F.
\]

The rest of the proof follows by a standard epsilon net argument summarized in Proposition IV-A. Applying Proposition IV-A, conditioned on \(\alpha \), for an \(\alpha \in \mathcal{E} \), w.p. at least 1 - \(\exp\left[nr - C\epsilon_1\mu^2k^2\right] \), \(\max_{W \in S_{\alpha,r}} \langle (X_0 - \mathbb{E}[X_0|\alpha])^\top W, W \rangle \leq 1.2 C\epsilon_1\|X^*\|_F \).

H. Proof of Initialization Lemmas and Facts: Proof of Facts

Proof of Fact 3.7: Apply sub-exponential Bernstein.

Proof of Fact 3.9: Let \(\gamma_k = \sqrt{\tilde{C}(1-\epsilon_1)}\|X^*\|_F^2/q \). Since \(\tilde{C} = 9\mu^2k^2 \) and \(\|x_k^2\| \leq \mu^2k^2\|X^*\|_F^2/m^2q \) (Assumption I-A) thus \(\gamma_k \geq 3 \).

Now,

\[
\mathbb{E}[\|x_k\|^2] = 1 - \mathbb{E}[\|x_k\|^2] \geq 1 - \frac{2}{\sqrt{2\pi}} \int_{-3}^{\infty} z^2 \exp(-z^2/2)dz
\]

\[
\geq 1 - \frac{2e^{-1/2}}{\sqrt{2\pi}} \int_{-3}^{\infty} z \exp(-z^2/4)dz
\]

\[
= 1 - \frac{2e^{-1/4}}{\sqrt{\pi}} \geq 0.92.
\]
Algorithm 2 The AltGD-Min-LRPR Algorithm

1: **Input:** $y_{(mag)k}, A_k, k \in [g]$
2: **Parameters:** GD step size, η; Number of iterations, T
3: **Sample-split:** Partition the measurements and measurement matrices into $2T + 1$ equal-sized disjoint sets: one set for initialization and $2T$ sets for the iterations. Denote these by $y_{(mag)k}^{(t)}, A_k^{(t)}, \tau = 0, 1, \ldots, 2T$.
4: **Initialization:**
5: Compute U_0 as the top r singular vectors of $Y_U := \frac{1}{mq} \sum_k \{y_{(mag)k}^{(t)}\}^2 a_k a_k^\top \{y_{(mag)k}^{(t)}\}^2 \leq C \sum_k \{y_{(mag)k}^{(t)}\}^2$.
 with $y_{(mag)k}^{(0)} = y_{(mag)k}^{(0)}$, $a_k \equiv a_k^{(0)}$.
6: **GDmin Iterations:**
7: for $t = 1$ to T
8: let $U \leftarrow U_{t-1}$.
9: Update b_k, x_k: For each $k \in [g]$, set $(b_k)_t \leftarrow \text{RWf}(y_{(mag)k}^{(t)}, (U^\top A_k^{(t)}), T_{RWf,t})$. Set $(x_k)_t \leftarrow U(b_k)_t$.
10: Estimate gradient w.r.t. U: With $y_{(mag)k}^{(t)} \equiv y_{(mag)k}^{(t)}, a_k \equiv a_k^{(t)}$,
 - compute $\hat{y}_{ki} := y_{(mag)k}^{(t)} b_{ki}$ with $c_{ki} = \text{phase}(a_k^\top x_k)$
 - compute $\text{Grad}U = \sum_k (y_{ki} - a_k b_{ki} x_k) a_k (b_k)_t^\top$
11: Set $U^{+} \leftarrow U - (\eta/m) \text{Grad}U$
12: Orthonormalize to get new U: Compute $U^{+QR} U^{+R^\top}$. Set $U_t \leftarrow U^{+}$. end for

The first inequality used $\gamma_k \geq 3$. The second used the fact that $z \exp(-z^2/4) \leq ze$ for all $z \in \mathbb{R}$.

In all the proofs above, notice that the only thing we used about V is the fact that its rows contain singular vectors and thus $V V^\top = I$ and so $\sigma_1(V) = \sigma_1(V) = 1$. We never required incoherence for it.

V. EXTENSION TO LOW RANK PHASE RETRIEVAL (LRPR)

In LRPR, recall, that we measure $y_{(mag)k} = |A_k x_k^\top|$. This problem commonly occurs in dynamic phaseless imaging applications such as Fourier ptychography. Because of the magnitude-only measurements, we can recover each column only up to a global phase uncertainty. We use $\text{dist}(x^*, x) := \min_{\phi \in [-\pi, \pi]} \|x^* - e^{-i\phi} x\|$ to quantify this phase invariant distance [21], [30]. Also, for a complex number, z, we use \bar{z} to denote its conjugate and we use $\text{phase}(z) := \arg(z/|z|)$.

A. AltGD-Min-LRPR Algorithm

With three simple changes that we explain next, the AltGD-Min approach also solves LRPR and provides the fastest existing solution for it. First, observe that because of the magnitude-only measurements, we cannot use X_0 with y_{ki} replaced by $y_{(mag)k}$ for initialization. The reason is $\mathbb{E}[a_k b_{ki} y_{(mag)k}] = 0$ and so $\mathbb{E}[a_k b_{ki} y_{(mag)k}] \not\equiv 0$ too. In fact, because of this, it is not even possible to define a different matrix X whose expected value can be shown to be close to X^\ast. Instead, we have to use the initialization approach of [5]. This is given in line 5 of Algorithm 2. The matrix Y_U is such that its expected value is close to $X^\ast X^\ast + cI$. This fact is used to argue that its top r singular vectors span a subspace that is close to that spanned by columns of U^\ast.

Next, consider the GDmin iterations. We use the following idea to deal with the magnitude-only measurements: $y_{(mag)k} := |y_{ki}|$. Let $c_{ki} := \text{phase}(a_k^\top x_k)$. Then, clearly,

$$y_{ki} = c_{ki} y_{(mag)k}$$

and $y_{(mag)k} = \bar{c}_{ki} y_{ki}$. We do not observe c_{ki}, but we can estimate it using x_k which is an estimate of x_k^\ast. Using the estimated phase, we can get an estimate \hat{y}_{ki} of y_{ki}. We replace $\nabla f(U, B)$ by its estimate which uses $\hat{y}_{ki} = y_{(mag)k} \bar{c}_{ki}$, with $\bar{c}_{ki} = \text{phase}(a_k^\top x_k)$, to replace y_{ki}. See line 10 of Algorithm 2.

Lastly, because of the magnitude-only measurements, the update step for updating b_δs is no longer an LS problem. We now need to solve an r-dimensional standard PR problem: $\min_{\|y_{(mag)k} - |A_k U B|\|^2}$. This can be solved using any of the order-optimal algorithms for standard PR, e.g., Truncated Wirtinger Flow (TWF) [20] or Reshaped WF (RWF) [21]. For concreteness, we assume that RWF is used. We should point out here that we only need to run $T_{RWf,t}$ iterations of RWF at outer loop iteration t, with $T_{RWf,t}$ set below in our theorem (we set this to ensure that the error level of this step is of order δ_1). The entire algorithm, AltGD-Min-LRPR, is summarized in Algorithm 2.

B. Main Result

We can prove the following result with simple changes to the proof of Theorem 2.1.

Theorem 5.1: Consider Algorithm 2. Set $\eta = c/\sigma_{max}^2$, $\bar{C} = 9c^2 \mu^2$, $T = Cc^2 \log(1/e)$, and $T_{RWf,t} = C(t + c \log r)$. Assume that Assumption I-A holds. If

$$mq \geq C \kappa^6 \mu^2 (n + q)r^2 (r + \log(1/e) \log k)$$

and $m \geq C \max(\log q, \log n) \log(1/e)$, then, w.p. $1 - n^{-10}$,

$$\text{SD}(U^\ast, U_T) \leq \epsilon, \text{dist}((x_k^\ast)_T, x_k^\ast) \leq \epsilon \|x_k^\ast\| \text{ for all } k \in [g]$$

and $\sum_k \text{dist}^2((x_k)_T, x_k^\ast) \leq \epsilon^2 \sigma_{max}^2$.

We prove this result in Sec. V-C. Notice the log(1/e) in the sample complexity of Theorem 2.1 is now replaced by $(r + \log(1/e))$. The reason is because of the different initialization approach which needs nr^3 samples instead of nr^2. This is needed because PR is a more difficult problem: we cannot define a matrix X_0 for it for which $\mathbb{E}[X_0]$ is close to X^\ast.

Observe that AltGD-Min-LRPR has the same sample complexity as that for the AltMin solution from [6]. But its time complexity is better by a factor of $\log(1/e)$ making it the fastest solution for LRPR. Also, we should mention here that, for solutions to the two related problems – sparse PR (phaseless but global measurements) and LRMC (linear but non-global measurements) – that have been extensively studied for nearly a decade, the best sample complexity guarantees for iterative (and hence fast) algorithms are sub-optimal. The best sparse PR guarantee [31] requires m to be of order s^2 for the initialization step. Here s is the sparsity level. LRPR has both phaseless and non-global measurements. This is why its initialization step needs two extra factors of r compared to the optimal. Once initialized close enough to the true solution, it is well known that a PR problem behaves like a linear one. This is true for AltGD-Min-LRPR too.
Consider a comparison with use of a standard PR approach to recover each column of X^* individually. If TWF [20] or RWF [21] were used for this, this would require $m \gtrsim n$. In comparison, ignoring log factors, our solution for LRPR needs $m \gtrsim (n/q)r^3$. Thus, the use of altGD-min is a better idea when the rank, r, of the matrix X^* is small enough so that $q \gtrsim r^3$.

C. Proof of Theorem 5.1

For the initialization, we use the bound from [5].

Lemma 5.2 [5]: Let $SD(U_0, U^*) = \|(I - UU^*)U_0\|$. Pick a $\delta_{\text{init}} < 0.1$. Then, w.p. at least $1 - 2\exp\left(n(\log 17) - c\frac{m^3}{k^r\sigma^2}\right) - 2\exp\left(-c\frac{m^3}{k^r\sigma^2}\right)$,
\[
SD(U_0, U^*) \leq \delta_{\text{init}} \quad \text{and so} \quad SD(U_0, U^*) \leq \sqrt{\delta_{\text{init}}}.
\]

For the iterations, without loss of generality, as also done in past works on PR, e.g., [6], [20], [21], [30], to make things simpler, we assume that, for each k, x_k^* is replaced by $z x_k^*$ where $z = \text{phase}(x_k^*, x_k)$. With this, $\text{dist}(x_k^*, x_k) = ||x_k^* - x_k||$.

We modify Lemma 3.4 using the following idea. Let $U = U_t$ and $B = B_t$. For LRPR, the GD step uses an approximate gradient w.r.t. the old cost function $f(U, B)$. Let
\[
\text{Err} := \text{Grad}_U - \text{Grad}_U.
\]
Here $\text{Grad}_U = \sum_{k_i}(y_{k_i} - a_{k_i}x_{k_i})a_{k_i}b_{k_i}^\top$ and $\text{Grad}_U = \nabla_U f(U, B) = \sum_{k_i}(y_{k_i} - a_{k_i}^\top x_{k_i})a_{k_i}b_{k_i}^\top$ is the same as earlier. Thus,
\[
\text{Err} = \sum_{k_i}(\tilde{y}_{k_i} - y_{k_i})a_{k_i}b_{k_i}^\top = \sum_{k_i}(\tilde{c}_{k_i} - c_{k_i})|a_{k_i}^\top x_{k_i}|a_{k_i}b_{k_i}^\top = \sum_{k_i}(\tilde{c}_{k_i}\bar{c}_{k_i} - 1)(a_{k_i}^\top x_{k_i})a_{k_i}b_{k_i}^\top
\]
\[
\text{Proceding as in the proof of Lemma 3.4, and using } \|(I - UU^*)U_0\| \leq \|(I - UU^*)\|_F \quad \text{and } \|\text{Err}\| \leq \|\text{Err}\|_F, \text{we can conclude the following}
\]
\[
SD(U^*, U^*) \leq \frac{\|\text{Err}\|_F}{\|\text{Err}\|_F} \leq \frac{\|\text{Err}\|_F}{\|\text{Err}\|_F - \|\text{Err}\|_F}.
\]

where the expressions for Grad_U, Term2, Hess are the same as before with one change: b_k is now obtained by solving a noisy r-dimensional PR problem (instead of a LS problem) using RWF [21]. Thus, to complete the proof, (i) we need to bound
\[
\|\text{Err}\|_F = \max_{W \in \mathcal{S}_n} \sum_{k_i}(\tilde{c}_{k_i}\bar{c}_{k_i} - 1)(a_{k_i}^\top x_{k_i})(a_{k_i}^\top Wb_k)
\]
and (ii) we need bounds on the three other terms that were also bounded earlier for the linear case.

The term $\|\text{Err}\|_F$, is bounded in Lemma 4 of [6]. We repeat the lemma below.

Lemma 5.3: Assume that $SD(U_t, U_t^*) \leq \delta_t$ with $\delta_t < c/k^2$. Then, w.p. at least $1 - 2\exp\left(nr \log(17) - c\frac{m^3}{k^r\sigma^2}\right) - \exp(\log q + r/cm)$,
\[
||\text{Err}\|_F \leq Cm(\epsilon_2 + \sqrt{\delta_t})\sigma_{\text{max}}^2
\]

Consider the other three terms: GradU, Term2, Hess. These were bounded in Lemma 3.5 for the linear case. The statement and proof of this lemma remain the same as earlier because of the following reason. Its proof uses the bounds on b_k, x_k from Lemma 3.3. The statement of this lemma also remains the same with one change: we replace $||x^* - x||$ by $\text{dist}(x^*, x)$ and $||x^* - X||^2_F$ by $\sum_{k=1}^q \text{dist}^2(x_k^*, x_k)$, and the same for b_k, g_k. The first part of Lemma 3.3 now follows by the first part of [6, Lemma 3.3]. All the subparts of the second part of Lemma 3.3 follow exactly as given in its proof in Sec. IV-D.

VI. LIMITATIONS OF OUR RESULTS

Our results have three limitations: (i) the algorithm that is analyzed needs sample-splitting, even though, in numerical experiments this is not needed; (ii) our bound holds w.h.p. for a single matrix X^* satisfying Assumption I-A (and not for all such matrices); and (iii) for obtaining exactly zero error, we need an infinite number of samples. We explain here the reasons why we are unable to address these issues. We should mention here that, since all computers are finite precision, (iii) is entirely a theoretical curiosity. Also, many other results in the LR recovery literature, e.g., [2], [14], [15], also have all these limitations.

A. Need for Sample-Splitting

In Algorithm 1, sample-splitting (line 3) helps ensure that the measurement matrices in each iteration for updating each of U and B are independent of all previous iterates: we split our sample set into $2T + 1$ subsets, we use one subset for initialization of U and one subset each for T iterations of updating B and updating U. This helps prove the desired error decay bound by applying the sub-exponential Bernstein inequality [26] which requires the summands to be mutually independent. This becomes true in our case because, conditioned on past measurement matrices, the current set of a_{k_i}‘s are independent of the last updated values of U, B; and the a_{k_i}‘s for different (i, k) are mutually independent by definition. Thus, under the conditioning, the summands are mutually independent. Since we prove convergence in order $\log(1/\epsilon)$ iterations, this only adds a multiplicative factor of $\log(1/\epsilon)$ in the sample complexity. Sample-splitting and the above overall idea is a standard approach used in many older works; in fact it is assumed for most of the LRMC guarantees for solutions that do not solve a convex relaxation (are iterative algorithms) [2], [14], [15]. An exception is [16].

There are a few commonly used approaches to avoid sample splitting. (1) One is using the leave-one-out strategy as done in [19]. But this means that the sample complexity dependence on r worsens: the LRMC sample complexity with this approach is $(n + q)r^3$ times log factors. Also, it is
not clear how to develop this approach for alternating U, B updates. (2) The second is to try to prove error decay for all matrices that are close enough to the true X^* and that satisfy the other assumptions of the guarantee. There are at least two different approaches to doing this. (2a) The first, which was used in [16], works for LRMC since its measurements are bounded and symmetric: the authors are able to utilize i.i.d. Bernoulli sampling and left and right singular vectors’ incoherence to prove key probabilistic bounds for all matrices of the form UV with U, V both being incoherent. This does not work in our case because our measurements are asymmetric and unbounded (which means for example that y_{ki} times its estimate is heavier-tailed than y_{ki}).

(2b) An alternative approach is the following overall idea, which has been successfully used for analyzing standard PR algorithms, e.g., see [20], [21], but does not always work for other problems. In our setting, this means the following: At iteration $t + 1$, suppose that the previous estimate U_t satisfies $SD(U_t, U^*) \leq \delta_t$. We need to try to show that, for all U that are a subspace distance δ_t away from the true subspace, the next iterate (which is a function of U and of the current A_k, y_k for all k) is a distance $c\delta_t$ away with a $c < 1$. To be precise, for all $U \in T := \{U : U^T U = I$ and $SD(U, U^*) \leq \delta_t\}$, we need $U^{t+1}(U) = \text{orth}(U - \eta
abla_U f(U, B))$ to satisfy $SD(U^{t+1}, U^*) \leq c\delta_t$ for a $c < 1$. Here $\text{orth}(M)$ is a matrix with orthonormal columns spanning the same subspace as those of M. Also recall that the columns of B are $b_k := (A_k U)^t y_k$ for all $k \in [g]$. One can show this for all $U \in T$ by covering T by a net containing a finite number of points that are such that any point in T is with a subspace distance $0.25\delta_t$ of some point in the net, and first proving that this bound holds for all U in the net. The first step for proving such a bound is to bound the error in the estimates b_k for all U in this net. Because of the decoupled column-wise recovery of the b_k’s, for one U in this net, the bound on $|b_k(U) - U^T x_k^*|$ holds w.p. \(\geq 1 - q \exp(r - cm)\). This is proved in Lemma 3.3. If we want this bound to hold for all U’s in the covering T, we will need a union bound over all points in the net. The smallest sized net to cover T with accuracy $\epsilon_{\text{net}} = 0.25\delta_t$ has size upper bounded by C^{nr} [26]. With using this, the probability lower bound becomes $1 - \epsilon_{\text{net}}(nr + \log q + r - cm)$. For this to even just be non-negative, we need $m > C^{\text{nr}}$ which is too large and makes our guarantee useless.

B. Why We Cannot Prove Our Result for All X^*

The inability to obtain a useful union bound over a net of size C^{nr} explained above is also why we cannot do this.

C. Why Sample Complexity Depends on the Desired Final Accuracy ϵ

Observe from our result that the number of samples required to achieve a certain accuracy ϵ grows as $\log(1/\epsilon)$. This means that, for the algorithm to achieve zero error, we need an infinite number of samples. We should mention that this problem is not unique to our result. It is often seen for results that use sample-splitting, e.g., [2], [15]. An exception is [14] for LRMC, where the following basic idea is used: one tries to show that after enough iterations, e.g., when the recovery error is $\epsilon_0 = 1/n$ or smaller, one can start using the same samples and still prove error decay. This is also the idea used in [19]. Briefly, the reason we are unable to circumvent this problem using a similar idea to that of [14] is that our algorithm is not a regular GD or projected GD method.

To use a similar idea in our setting, we would need to proceed as follows. We use independent samples until the error is below an ϵ_0 that is small enough. Pick $\epsilon_0 = 1/(\kappa^2 n^2)$. This happens after $T(\epsilon_0) = C\kappa^2 \log(n) \log(\kappa)$ iterations. Consider $t = T + 1$. At this time, $\delta_t = \epsilon_0 = 1/(\kappa^2 n^2)$. Thus, by Lemma 3.3, $\|b_k - U^T x_k^*\| \lesssim (1/(\kappa^2 n^2)) \|x_k^*\|$ and all the other bounds also hold with δ_t replaced by ϵ_0. We try to show error decay by applying Lemma 3.4. For this to work, we need to be able to show all of the following without using independence between U, B and the A_k: (i) upper and lower bound the eigenvalues of $\text{Hess}(U_k \otimes b_k)$ as those proved earlier, (ii) bound $\|\nabla_U f(U, B)\|/m$ by $\epsilon_0 \sigma_{\text{min}}^2$ for a small constant $\epsilon_0 < 1$ (in fact even in our main proof, such a bound is sufficient since this term only appears in the denominator), and (iii) bound $\|\text{Term}\|/\mu/m$ by $(c_2/\kappa^2) (2d/\kappa) \gamma_{\text{max}}^2$ with c_2 sufficiently less than one.

As we explain next, (i) and (ii) can be obtained easily, but (iii) cannot. We can obtain (i) by showing that Hess is close to $Hess^* = \sum_k (a_k \otimes (U^* U)^T) / \gamma_{\text{min}}^2$; and Hess* can be bounded almost exactly as done in our proof earlier since A_k’s are independent of x_k’s. The U in the expression for Hess* does not matter because $U^* U^*$ is an $r \times r$ rotation matrix and one can take a maximum over all rotation matrices. Using the loose bounds $|a_k| \leq \sqrt{\gamma_{\text{min}}}$ w.h.p., one can show that $\|\text{Hess} - \text{Hess}^*\| \leq \sqrt{\gamma_{\text{min}}} |a_k| \sum_{k \neq r} W g_k \delta_{\text{max}} W |a_k| (W g_k - b_k) \| \lesssim \sqrt{\gamma_{\text{min}}} \sqrt{r/\gamma_{\text{max}}^2} \mu \lambda_{\text{max}} \lambda_{\text{min}}^2$. Similarly, for (ii), $\sum_k |b_k| (x_k^* - x_k^*) b_k^* \| \leq \sqrt{\gamma_{\text{min}}} \sqrt{r/\gamma_{\text{max}}^2} \mu \lambda_{\text{max}} \lambda_{\text{min}}^2$. Using $\mu \gamma_{\text{max}} \lambda_{\text{min}} \lesssim 1$, claims (i) and (ii) follow. However, proving (iii) seems to be impossible without using the fact that $E[\text{Term}] = 0$. But this expected value is zero only when A_k’s are independent of U, B.

Possible Ways to Prove (iii): For bounding Term2 for times $t > T(\epsilon_0)$, we can try one of the following ideas. (1) Try to use Cauchy-Schwarz in a way that the projection orthogonal to U^* is used. There does not seem to be a way to make this work. (2) Try to use the leave-one-out strategy of [19] only for $t > T(\epsilon_0)$.

VII. NUMERICAL EXPERIMENTS

Our first experiment compares AltGD-Min with the mixed norm minimization solution from [7] (mixed-norm-min) and with the AltMin algorithm [4], [5], [6] modified for the linear LRCS problem (replace the PR step for updating b_k’s by a simple LS step). We implement this with using two possible initializations: the initialization developed in [4], [5], and [6] for LRPR (AltMinLin-LRPRinit), and with the initialization approach developed in this work (AltMinLin-LRCSinit). For mixed norm min, we used the code downloaded from https://www.dropbox.com/sh/lywtzc0y9awpvgz/AABjuiuL
LRPR experiment, we used for solving LRcCS. We simulated the data as \(y_k = A_k^* U \) 4 \(b_k \), for all \(k \). At each iteration, \(\eta = 0.4 / \| \mathbf{X}_0 \|_2^2 \) and \(\tilde{C} = 9 \). Also, we used one set of measurements for all its iterations.

For chosen values of \(n, q, r, m \), we simulated \(U^* \) by orthogonalizing an \(n \times r \) standard Gaussian matrix; and \(b^*_k \) s were generated i.i.d. from \(N(0, I_r) \). These were generated once. For each of 100 Monte Carlo runs, the measurement matrices \(A_k \) contained i.i.d. standard Gaussian entries. We obtained \(\mathbf{y}_k = A_k U^* \mathbf{b}_k^* \). For the LRPR experiment, we used \(\mathbf{y}_{(\text{mag})} = |\mathbf{y}_k| \) as the measurements. We plot the empirical average of \(\| X - X^* \|_F / \| X^* \|_F \) at each iteration \(t \) on the y-axis (labeled “Error-X” in the plots) and the time taken by the algorithm until iteration \(t \) on the x-axis.

For our first experiment, shown in Fig. 1a, we used \(n = 600, q = 600, r = 4 \) and \(m = 80 \). In this case, mixed-norm-min error decays to about 2-5% but does not reduce any further. But, for our algorithm, AltGD-Min, and for both versions of AltMin, the error decays to \(10^{-15} \). Notice also that AltGD-Min is much faster than all the other approaches. Fig. 1b reduced \(m \) to \(m = 50 \). Here a similar trend is observed, except that the error decays to only around \(10^{-13} \) for AltGD-Min and \(10^{-11} \) for the two AltMin approaches. Finally, for Fig. 1c, we reduced \(m \) to \(m = 30 \). In this case, only AltGDmin and AltMin-LRCSinit work, while mixed-norm-min and AltMin-LRPRinit errors do not decrease at all. The reason is both these need a higher sample complexity (see Table I). Finally, we also tried an experiment with very large \(m \): \(n = 100, q = 120, r = 2 \) and \(m = 0.9n = 90 \), see Fig. 1d. Even for such a large value of \(m \) (compared to \(n \)), observe that the mixed-norm-min error saturates at around 1-2%. The likely reason for this is, in the guarantee for mixed-norm-min [7] (summarized for the noiseless case in Proposition 2.3 given earlier), even for \(m = n \), the error is bounded by a multiplier (more than 1) times \(\sqrt{r/q} \).

For the comparisons for the LRPR problem shown in Fig. 2, we need a much larger \(q \) and \(m \) since LRPR requires \(mq \) to scale as \(nr^3 \) both for initialization and for the GDmin iterations and the multiplying constants are also much larger for LRPR. We used \(n = 600, q = 1000, r = 4 \) and \(m = 250 \). Notice that altGD-Min-LRPR is faster than AltMin-LRPR. We implemented altGD-Min-LRPR with \(\eta = 0.9 / \| \mathbf{X}_0 \|_2^2 \), \(\tilde{C} = 9 \), and \(T_{\text{RWF}} \) for the two AltMin approaches. Finally, for Fig. 1c, we reduced \(m \) to \(m = 30 \). In this case, only AltGDmin and AltMin-LRCSinit work, while mixed-norm-min and AltMin-LRPRinit errors do not decrease at all. The reason is both these need a higher sample complexity (see Table I). Finally, we also tried an experiment with very large \(m \): \(n = 100, q = 120, r = 2 \) and \(m = 0.9n = 90 \), see Fig. 1d. Even for such a large value of \(m \) (compared to \(n \)), observe that the mixed-norm-min error saturates at around 1-2%. The likely reason for this is, in the guarantee for mixed-norm-min [7] (summarized for the noiseless case in Proposition 2.3 given earlier), even for \(m = n \), the error is bounded by a multiplier (more than 1) times \(\sqrt{r/q} \).

For the comparisons for the LRPR problem shown in Fig. 2, we need a much larger \(q \) and \(m \) since LRPR requires \(mq \) to scale as \(nr^3 \) both for initialization and for the GDmin iterations and the multiplying constants are also much larger for LRPR. We used \(n = 600, q = 1000, r = 4 \) and \(m = 250 \). Notice that altGD-Min-LRPR is faster than AltMin-LRPR. We implemented altGD-Min-LRPR with \(\eta = 0.9 / \| \mathbf{X}_0 \|_2^2 \), \(\tilde{C} = 9 \), and \(T_{\text{RWF}} \) for the two AltMin approaches. Finally, for Fig. 1c, we reduced \(m \) to \(m = 30 \). In this case, only AltGDmin and AltMin-LRCSinit work, while mixed-norm-min and AltMin-LRPRinit errors do not decrease at all. The reason is both these need a higher sample complexity (see Table I). Finally, we also tried an experiment with very large \(m \): \(n = 100, q = 120, r = 2 \) and \(m = 0.9n = 90 \), see Fig. 1d. Even for such a large value of \(m \) (compared to \(n \)), observe that the mixed-norm-min error saturates at around 1-2%. The likely reason for this is, in the guarantee for mixed-norm-min [7] (summarized for the noiseless case in Proposition 2.3 given earlier), even for \(m = n \), the error is bounded by a multiplier (more than 1) times \(\sqrt{r/q} \).
APPENDIX A
Understanding Why LRMC-Style GD Approaches Cannot Be Easily Analyzed for LRcCS

A. Gradient Descent

The iterates of a gradient descent (GD) algorithm converge when the gradient approaches zero. Thus, in order to show its convergence, one needs to be able to bound the norm of the gradient and show that it goes to zero with iterations. In order to show fast enough convergence (reach ε error in order \(\log(1/\epsilon)\) iterations), one further needs to show that this bound on the gradient norm decreases sufficiently with each iteration. Consider projGD-X which was studied in [15] for solving LRMC. ProjGD-X iterations involve computing \(X^+ = P_r(X - \nabla f(X))\), here \(P_r(M)\) projects its argument onto the space of rank-\(r\) matrices. To bound \(\nabla f(X)\), we need to bound \(|w^T \nabla f(X)z|\) for any unit norm vectors \(w,z\). We show the cost function \(f(X)\) and its gradient for both LRMC and LRcCS in Table II. Observe that, for LRcCS, \(w^T \nabla f(X)z\) is a sum of sub-exponential r.v.s with sub-exponential norms bounded by \(K_e = \max_k \|w\| \cdot \|x_k^* - x_k\| \cdot |z_k| \leq \max_k \|x_k^* - x_k\|\). Thus, in order to get a small enough bound on \(|w^T \nabla f(X)z|\) we apply the sub-exponential Bernstein inequality [26], we need a small enough bound on \(\max_k \|x_k^* - x_k\|\) (column-wise error bound).

It is not clear how to get this because the projection step introduces coupling between the different columns of the estimated matrix \(X^+\). Moreover, even if we could somehow get such a bound, in the best case, it would be proportional to \(\delta_t \max_k \|x_k^*\|\) with \(\delta_t < 1\) and decaying exponentially with \(t\). Using Assumption I-A, this would then imply that \(K_e \leq \delta_t \max_k \|x_k^*\| \leq \delta_t \mu \sqrt{r/\sigma_{\text{max}}^*}\). But, this is not small enough. We need it to be proportional to \(\delta_t (r/q)\) in order to be able to bound the gradient norm under the desired sample complexity.

Consider altGDnormal studied in [17] and [16] for LRMC. In this case again, the desired column-wise error bound cannot be obtained because the update step for \(B\) involves GD w.r.t. \(f(U, B) + f_2(U, B)\). The gradient w.r.t \(f_2\) (norm-balancing term) introduces coupling between the different columns of \(B\), and hence, also between columns of \(X = UB\). Thus, once again, it is not clear how to get a tight bound on \(\max_k \|x_k^* - x_k\|\).

For AltGD-Min, because the min step for updating \(B\) is a decoupled LS problem, it is possible to get the desired column-wise error bound. Secondly, because we use GD w.r.t \(U\), there is an extra \(b_j^\bot\) term in the gradient summmands. This makes the gradient (and its deviation from its expected value), a sum of \(\text{nice}-\text{enough}\) sub-exponential r.v.s as explained in Sec. III-B.

B. Initialization

The standard approach used for initializing iterative algorithms for LRMC (as well as other linear LRR problems) is to compute the top \(r\) left singular vectors of the matrix \(X_{0,\text{full}}\) that satisfies \((X_{0,\text{full}})_{vec} = A^T(y_{\text{full}})\), where \(y_{\text{full}}\) is the \(mq\)-length vector of all measurements and \(A\) denotes the linear mapping from \((X^+)_{vec}\) to \(y_{\text{full}}\). In case of LRMC and LRcCS, this is computed as given in Table III. It is not hard to see that, in both cases, \(\mathbb{E}[X_{0,\text{full}}] = X^*\). To show that this approach works, one typically uses a \(\sin \Theta\) theorem, e.g., Davis-Kahan or Wedin, to bound SD(\(U^*, U_0\)) as a function of terms that depend on \(H_0 := X_{0,\text{full}} - X^*\). Thus a first requirement is to bound \(\|H_0\|\). For LRMC, this can be done easily since \(H_0\) is a sum of the independent one-sparse random matrices shown in the table with each matrix containing an i.i.d. Bernoulli r.v. times \(X_{jk}^\top\) \((j,k\)-th entry of \(X^*)\) as its nonzero entry. Using the left and right singular vectors’ incoherence (assumed in all LRMC guarantees), and \(X_{jk}^\top = e_j^\top X_k e_k\), one can argue that, for unit vectors \(w,z\), each summand of \(|w^\top H_0 z|\) is of order at most \((1/p)\sigma_{\text{max}}^* r^2/\sqrt{nq}\).

Table II

LRMC	Our Problem, LRcCS	
\(\hat{f}(X)\)	\(\sum_{k=1}^q \sum_{i=1}^n \delta_{j_k} (y_{k,i} - d_{j_k} X_{j_k})^2\)	\(\sum_{k=1}^q \sum_{i=1}^n \delta_{j_k} (y_{k,i} - a_{k_i} x_k)^2\)
\(\nabla_X \hat{f}(X)\)	\(\sum_{k=1}^q \sum_{i=1}^n \delta_{j_k} (y_{k,i} - d_{j_k} X_{j_k}) e_j e_j^\top\)	\(\sum_{k=1}^q \sum_{i=1}^n \delta_{j_k} (y_{k,i} - a_{k_i} x_k) a_{k_i} e_k e_k^\top\)

\[H := H - \eta \nabla f(X) \]

\[= \sum_{k=1}^q \sum_{i=1}^n (1 - \delta_{j_k}) H_{j_k} e_j e_k^\top \]

\[\frac{1}{m} \sum_{k=1}^q \sum_{i=1}^n (I - a_{k_i} a_{k_i}^\top) h_k e_k e_k^\top \]

\(\delta_{j_k} \sim \text{Bernoulli}(p)\)
This bound, along with a bound on the “variance parameter” needed for applying matrix Bernstein [33], [26, Chap 5] helps show that \(\|H_0\| \leq c\sigma_{\text{max}}\) w.h.p., under the desired sample complexity bound. For LRcCS, the summands of \(X_{0,\text{full}}\), and hence of \(H_0\), are sub-exponential r.v.s. These can be bounded using the sub-exponential Bernstein inequality [26, Chap 2]. This requires a bound on the maximum sub-exponential roughness of any summand. Denote this bound by \(K_e\). In order to show that \(\|H_0\| \leq c\sigma_{\text{max}}\) w.h.p., under the desired sample complexity, we need \(K_e\) to be of order \((r/q)\) or smaller. However, for our summands, we can only guarantee \(K_e \leq (1/m)\max_k \|x_k^*\| \leq (1/m)\mu\sqrt{r/q}\sigma_{\text{max}}\). This is not small enough, i.e., the summands are not nice-enough subexponentials. It will require \(mq \gtrsim (n+q)r\cdot \sqrt{q}\) which is too large.

APPENDIX B

PROOF OF Initialization Theorem 3.1 WITHOUT SAMPLE-SPLITTING

Consider the initialization using \(X_0\) defined in (2). We want to bound the initialization error without sample-splitting. This means that the threshold \(\alpha\) is not independent of the \(a_{ki}, y_{ki}\) used in the expression for \(X_0\) and thus, it is not clear how to compute its expected value even if we condition on \(\alpha\). However, the following slightly more complicated approach can be used. Using Fact 3.7 and Assumption I-A, it is possible to show that \(X_0\) is close to a matrix, \(X_+ (\epsilon_1)\) given next for which \(E[X_+]\) is easily computed. Let

\[
\alpha_+ := \tilde{c}(1 + \epsilon_1) \frac{\|X^*\|^2}{q}
\]

and define

\[
X_+ (\epsilon_1) := \frac{1}{m} \sum_{k_i} a_{ki} y_{ki} e_k^T \mathbb{I}\{y_{ki}^\text{r} \leq \alpha_+\}.
\]

Then,

\[
E[X_+] = X^*D(\epsilon_1),
\]

\[
D := \text{diagonal}(\beta_k(\epsilon_1))
\]

\[
\beta_k(\epsilon_1) := E\left[\zeta_k^2 \mathbb{I}\{\zeta_k^2 \leq \frac{\alpha_+}{\|x_k^*\|^2}\}\right]
\]

with \(\zeta\) being a scalar standard Gaussian. Thus \(X_+\) is \(X_0\) with the threshold \(\alpha\) replaced by \(\alpha_+\) which is deterministic. Consequently \(E[X_+]\) has a similar form too and is obtained as explained in the proof of Lemma 3.6 given in Sec. IV-F.

Next, recall that \(X^* = \text{SVD} U^* \Sigma^* V^*\) and \(\tilde{c} = 9n^2\mu^2\). Let \(\tilde{c} = c/\tilde{C}\) for a \(c < 1\). Clearly, the span of the top \(r\) singular vectors of \(E[X_+] = X^*D\) equals span(\(U^*\)) and it is rank \(r\) matrix. Let,

\[
E[X_+] = X^* D = U^* \Sigma^* V^*
\]

be its \(r\)-SVD (here \(V\) is an \(r \times q\) matrix with its rows containing the \(r\) right singular vectors). We thus have

\[
\sigma_r(E[X_+]) = \sigma_{\min}(\Sigma^*) = \sigma_{\min}(\Sigma^* V^* D V^T) \geq \sigma_{\min}(\Sigma^*) \sigma_{\min}(V^*) \sigma_{\min}(D) \sigma_{\min}(V^T) = \sigma_{\min}^* \cdot 1 \cdot \min_k \beta_k \cdot 1
\]

Fact 3.9 given earlier shows that \((\min_k \beta_k) \gtrsim 0.9\) and thus, \(\sigma_r(E[X_+]) \gtrsim 0.9\sigma_{\min}^*\).

Also, \(\sigma_{r+1}(E[X_+]) = 0\) since it is a rank \(r\) matrix. Thus, using Wedin’s sin \(\Theta\) theorem for SD (summarized in Theorem IV-A) applied with \(M = X_0\), \(M^* = E[X_+]\) gives

\[
SD(U_0, U^*) \leq \sqrt{2} \max \left(\|X_0 - E[X_+]| U_r\|_F, \|X_0 - E[X_+]| V^T\|_F\right) \frac{0.9\sigma_{\min}^*}{\|X_0 - E[X_+]|_F}
\]

(21)

In the next three subsections, we prove a set of six lemmas that help bound the three terms in the expression above. The main new ideas over the proof given earlier in Sec III-E, are in the proof of the first lemma, Lemma B.2 given below, and in the proof of Claim B.1 that is used in this proof.

Claim B.1: Let \(x^* \in \mathbb{R}^n\), \(z \in \mathbb{R}^m\) be two deterministic vectors and let \(\alpha\) be a deterministic scalar. Let \(a \sim \mathcal{N}(0, I_n)\) be a standard Gaussian vector and define \(y := a^T x^*\). For an \(0 < \epsilon < 1\),

\[
E\left[\|y(a^T z)\|_{\mathbb{I}\{y^2 \leq |1 \pm \epsilon|\}}\right] \leq C\epsilon \|z\|_2 |\alpha|
\]

Combining Lemmas B.3 and B.2 and using Fact 3.7, and setting \(\epsilon_1 = c_{\theta}/\sqrt{r\kappa}\), we conclude that, w.p. at least

\[
1 - 2 \exp(-n + q - \epsilon c_{\theta}^2m) - \exp(-c_{\theta}^2m^2) \geq 1 - 2 \exp(-c_{\theta}^2m^2) \geq 1 - 2 \exp((-n + q) - c_{\theta}^2m^2/\kappa r^2) - \exp(-c_{\theta}^2m^2/\kappa r^2).
\]

\[
\|X_0 - E[X_+]\|_F \leq \epsilon_1 \|X^*\|_F \leq c_{\theta} \sigma_{\min}^*
\]
By combining Lemmas B.4, B.5, B.6, and B.7 and using Fact 3.7, and setting $\epsilon_1 = \epsilon_0 / \sqrt{T_\epsilon}$, we conclude that, w.p. at least
\[1 - 2 \exp(\frac{-\epsilon_0 m q^2}{2 \mu^2 T_\epsilon}) = 1 - 2 \exp(\frac{-\epsilon_0 m q^2}{2 \mu^2 T_\epsilon}) = 1 - 2 \exp(\frac{-\epsilon_0 m q^2}{2 \mu^2 T_\epsilon}), \]
\[\max \left(\left\| (X_0 - E[X_+])^T U^* \right\|_F, \left\| (X_0 - E[X_+]) V^T \right\|_F \right) \leq \epsilon_0 \sigma_{\min}. \]
Plugging these into (21) proves Theorem 3.1

A. Bounding the Denominator Term

By triangle inequality, $\left\| X_0 - E[X_+] \right\| \leq \left\| X_0 - E[X_+] \right\| + \left\| X_0 - X_+ \right\|$. The next two lemmas bound these two terms. The lemmas assume the claim of Fact 3.7 holds, i.e., that $\frac{1}{m q} \sum_{k_i} y_{k_i}^2 \in [1 \pm \epsilon_1] \tilde{C} \left\| X^* \right\|_F^2 / q$ where $\tilde{C} = 9 \mu^2 k^2$.

Lemma B.2: Assume that $\frac{1}{m q} \sum_{k_i} y_{k_i}^2 \in [1 \pm \epsilon_1] \tilde{C} \left\| X^* \right\|_F^2 / q$ (claim of Fact 3.7 holds). Then, w.p. $1 - \exp(C(n + q) - \epsilon_1 m q / \mu^2 k^2)$,
\[\left\| X_0 - X_+ \right\| \leq C_{\mu k} \left\| X^* \right\|_F. \]

Proof of Lemma B.2: We have
\[\left\| X_0 - X_+ \right\| = \max_{z \in S_{n \mu k}} \left\| z^T (X_0 - X_+) w \right\| = \max_{z \in S_{n \mu k}} \sum_{k_i} \left\| w(k) y_{k_i} (a_{k_i}^T z) \right\| \times \frac{\left\| \sum_{m} y_{k_i} \right\|}{\left\| \sum_{m} y_{k_i} \right\|} \leq \frac{C_{\mu k} \left\| X^* \right\|_F}{\sqrt{q}}. \]
For the last expression above, we have used the assumption that $\sum_{k_i} y_{k_i}^2 / m \geq (1 - \epsilon_1) \tilde{C} \left\| X^* \right\|_F^2 / q$. Consider the R.H.S for a fixed unit norm z and w. The lower threshold of the indicator function is itself a r.v.. To convert it into a deterministic bound, we need the following expression of bounding steps: To use our assumption that $\sum_{k_i} y_{k_i}^2 / m \geq (1 - \epsilon_1) \tilde{C} \left\| X^* \right\|_F^2 / q$, we first need to bound the summands by their absolute values. This is done as follows:
\[\left\| z^T (X_0 - X_+) w \right\| \leq \frac{1}{m q} \sum_{k_i} \left\| w(k) y_{k_i} (a_{k_i}^T z) \right\| \times \frac{\left\| \sum_{m} y_{k_i} \right\|}{\left\| \sum_{m} y_{k_i} \right\|} \leq \frac{1}{m q} \sum_{k_i} \left\| w(k) y_{k_i} (a_{k_i}^T z) \right\| \times \frac{\left\| \sum_{m} y_{k_i} \right\|}{\left\| \sum_{m} y_{k_i} \right\|} \leq \frac{C_{\mu k} \left\| X^* \right\|_F}{\sqrt{q}}. \]
where in the last line we used our assumption that $\sum_{k_i} y_{k_i}^2 / m \geq (1 - \epsilon_1) \tilde{C} \left\| X^* \right\|_F^2 / q$. This final expression is a sum of mutually independent sub-Gaussian r.v.s with sub-Gaussian norm $K_{k_i} \leq C \left\| w(k) \right\| \sqrt{C(1 + \epsilon_1) \left\| X^* \right\|_F / \sqrt{q}} \leq \sqrt{C \left\| w(k) \right\| \left\| X^* \right\|_F / \sqrt{q}}$. Thus, by applying the sub-Gaussian Hoeffding inequality, Theorem 2.6.2 of [26],
\[\Pr \left\{ \left| \sum_{k_i} \left\| w(k) y_{k_i} (a_{k_i}^T z) \right\| \left\| y_{k_i} \right\| \right\|_{1 \pm \epsilon_1} \frac{C_{\mu k}}{\sqrt{q}} \left\| X^* \right\|_F \right\} \leq \exp \left\{ -\frac{C_{\mu k}^2 \left\| X^* \right\|_F^2}{2 q} \right\} \leq \exp \left\{ -\frac{C_{\mu k}^2 \left\| X^* \right\|_F^2}{2 q} \right\}. \]

By setting $t = \epsilon_1 m \left\| X^* \right\|_F$, \[\sum_{k_i} K_{k_i}^2 \geq \sum_{k_i} C(1 + \epsilon_1) \left\| X^* \right\|_F^2 / q \geq \sum_{k_i} C(1 + \epsilon_1) \left\| X^* \right\|_F^2 / q \geq C_{\mu k} \left\| X^* \right\|_F. \]

Thus, for a fixed $z \in S_n$, $w \in S_m$, the sub-Gaussian Hoeffding, we conclude that, w.p. at least $1 - \exp (-\epsilon_1^2 m q / \mu^2 k^2)$,
\[\langle X_+ - E[X_+], z \rangle \leq C_{\epsilon_1} \left\| X^* \right\|_F. \]
By Proposition IV-A, the above bound holds w.p. at least $1 - \exp ((n + q) \log(17) - \epsilon_1^2 m q / \mu^2 k^2)$. \[\square \]
B. Bounding the \tilde{V} Numerator Term

We bound $\| (X_0 - E[X_+])\tilde{V}^T \|_F$ in this section. By triangle inequality, it is bounded by $\| (X_0 - X_+)\tilde{V}^T \|_F + \| (X_+ - E[X_+])\tilde{V}^T \|_F$.

Lemma B.4: Assume that $\frac{1}{m} \sum_{k} y_{k}^2 \in [1 \pm \epsilon_1] \|X^*\|^2$. Then, w.p. $1 - \exp \left[\frac{nr - \epsilon^2_m q \mu^2 \kappa^2}{4} \right]$,

$$\| (X_0 - X_+)\tilde{V}^T \|_F \leq C_{1} \mu \kappa \|X^*\|_F.$$

Proof of Lemma B.4: The initial part of the proof is very similar to that of the proof of Lemma B.2. We have,

$$\langle (X_+ - E[X_+])\tilde{V}, W \rangle = \frac{1}{m} \sum_{k} \left(y_{k}(a_{k}^T \tilde{W}v_{k}) \right) 1_{\{ |y_{k}|^2 \leq \frac{C(1+\epsilon_1)}{q} \|X^*\|^2 \}}.$$

We bound X_+ with the sub-Gaussian Hoeffding inequality Theorem 2.6.2 of [26], with $t = \epsilon_1 m \|X^*\|_F$, and using $\|W\tilde{V}\|_F = 1$, we can conclude that w.p. $1 - \exp \left[-\epsilon^2_m q / (C_2 m \kappa^2) \right]$,

$$
\langle (X_+ - E[X_+])\tilde{V}, W \rangle \leq C_{1} \|X^*\|_F.
$$

By Proposition IV-A, the above bound holds for all $W \in S_{nr}$, w.p. $1 - \exp \left[nr - \epsilon^2_m q / (C_2 \mu^2 \kappa^2) \right]$.

C. Bounding the U^* Numerator Term

We bound $\| (X_0 - E[X_+])^T U^* \|_F$ here. By triangle inequality, it is bounded by $\| (X_0 - X_+)^T U^* \|_F + \| (X_+ - E[X_+])^T U^* \|_F$.

Lemma B.6: Assume that $\frac{1}{m} \sum_{k} y_{k}^2 \in [1 \pm \epsilon_1] \|X^*\|^2 / q$. Then, w.p. $1 - \exp \left[-\epsilon^2_m q / (C_2 \mu^2 \kappa^2) \right]$,

$$\| (X_0 - X_+)^T U^* \|_F \leq C_{1} \mu \kappa \|X^*\|_F.$$

Proof of Lemma B.6: The proof is similar to that of Lemmas B.2 and B.4. We have, $\| (X_0 - X_+)^T U^* \|_F = \max_{W \in S_{qr}} \| \langle W, (X_0 - X_+)^T U^* \rangle \|_F$. For a fixed $W \in S_{qr}$, using the same approach as in Lemma B.2, and letting w_k be the k-th column of the $r \times q$ matrix W,

$$\langle W, (X_0 - X_+)^T U^* \rangle \leq \frac{1}{m} \sum_{k} |y_{k}(a_{k}^T \tilde{W}w_k)| 1_{\{ |y_{k}|^2 \leq \frac{C(1+\epsilon_1)}{q} \|X^*\|^2 \}}.$$

where the last inequality used Cauchy-Schwarz on $\sum_k |Wv_k|^2 / \sqrt{q}$ to conclude that $\sum_k |Wv_k|^2 (1 / \sqrt{q}) \leq \sqrt{\sum_k |Wv_k|^2} \sqrt{\sum_k (1 / q)} = \sqrt{\|W\tilde{V}\|^2} = 1$ since $\|W\tilde{V}\|_F = 1$.

By Proposition IV-A, the above bound holds for all $W \in S_{nr}$, w.p. at least $1 - \exp [nr \log (1 + 2 / \epsilon_{net}) - \epsilon^2_m q \mu^2 \kappa^2 / 4]$.

Lemma B.5: Consider $0 < \epsilon_1 < 1$. Then, w.p. $1 - \exp [nr - \epsilon^2_m q / (C_2 \mu^2 \kappa^2)]$,

$$\| (X_+ - E[X_+])\tilde{V}^T \|_F \leq C_{1} \|X^*\|_F.$$
By Claim B.1, and using $\sum_k \|w_k\|/\sqrt{q} \leq \sqrt{\sum_k \|w_k\|^2/\sqrt{q}}$, we have

$$\frac{1}{m} \sum_{k} \mathbb{E} \left[|y_{k}(a_{ki}^T U^* w_{k})| 1 \{ |w_{k}|^2 \leq \epsilon_1 \|x^*\|^2 \} \right]$$

$$\leq \frac{1}{m} \sum_{k} \epsilon_1 \|w_k\| \sqrt{C(1 + \epsilon_1)/q} \|x^*\|_F,$$

$$\leq C \epsilon_1 \mu_k \|x^*\|_F.$$

By Proposition IV-A (epsilon net argument), the bound holds for all unit norm W w.p. $1 - \exp(\epsilon r^2 mq/\mu^2 \kappa^2)$.

Lemma B.7: Consider $0 < \epsilon_1 < 1$. Then, w.p. $1 - \exp(\epsilon r^2 mq/\mu^2 \kappa^2)$

$$\| (X_+ - E[X_+])^T U^* \|_F \leq C \epsilon_1 \|x^*\|_F.$$

Proof of Lemma B.7: For fixed $W \in S_q$,

$$\text{trace} \left(W^T (X_+ - E[X_+])^T U^* \right)$$

$$= \frac{1}{m} \sum_{k} \left(y_{k}(a_{ki}^T U^* w_{k})| 1 \{ |w_{k}|^2 \leq \epsilon_1 \|x^*\|^2 \} \right)$$

$$- \mathbb{E} \left[y_{k}(a_{ki}^T U^* w_{k})| 1 \{ |w_{k}|^2 \leq \epsilon_1 \|x^*\|^2 \} \right].$$

The summands are independent zero mean sub-Gaussian r.v.s with norm less than $K \epsilon_1 \mu_k \|x^*\|_F$. Thus, by applying the subgaussian Holder’s inequality and Theorem 2.6.2 of [26], with $t = \epsilon_1 \mu_k \|x^*\|_F$, we can conclude that, for a fixed $W \in S_q$, w.p. $1 - \exp(- \epsilon r^2 mq/\mu^2 \kappa^2)$,

$$\text{trace} \left(W^T (X_+ - E[X_+])^T U^* \right) \leq \epsilon_1 \|x^*\|_F.$$

By Proposition IV-A (epsilon net argument), the bound holds for all unit norm W w.p. $1 - \exp(\epsilon r^2 mq/\mu^2 \kappa^2)$. □

D. Proof of Claim B.1

Proof: We can write $x^* = \|x^*\| Q e_1$ where Q is a unitary matrix with first column proportional to x^*. We need to bound

$$\mathbb{E}[\|x^*\| \cdot |(a^T Q e_1)(a^T Q Q^T z)|] 1 \{ |x^*| = |a^T Q e_1| \in [1,\epsilon/3] \}$$

$$= \mathbb{E}[\|x^*\| \cdot |z| \cdot E[|a(1)^T z Q| 1 \{ |a(1)|^2 \in [1,\epsilon/3] \}].$$

where $\tilde{z}_Q := Q^T z/\|z\|$, $a := Q^T a$ and $\beta := \sqrt{\alpha/\|x^*\|}$. Since Q is unitary and a, β has the same distribution as a. Let $\tilde{a}(1)$ be its first entry and $\tilde{a}(\text{rest})$ be the $(n-1)$-length vector with the rest of the $n-1$ entries and similarly for \tilde{z}_Q. Then, $\tilde{a}^T \tilde{z}_Q = \tilde{a}(1) \cdot \tilde{z}_Q(1) + \tilde{a}(\text{rest})^T \tilde{z}_Q(\text{rest}).$ Since $\tilde{a}(1)$ and $\tilde{a}(\text{rest})$ are independent,

$$\mathbb{E}[|\tilde{a}(1)^T \tilde{z}_Q| 1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \}] $$

$$\leq |\tilde{z}_Q(1)| \mathbb{E}[|\tilde{a}(1)|^T| 1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \}$$

$$+ \mathbb{E}[|\tilde{a}(\text{rest})^T \tilde{z}_Q(\text{rest})|] \mathbb{E}[|\tilde{a}(1)|^T| 1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \}$$

$$\leq |\tilde{z}_Q(1)| \left[1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \} + 2 \mathbb{E}[|\tilde{a}(1)|^T| 1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \}$$

The second inequality used the facts that (i) $|\tilde{z}_Q(1)| \leq \|\tilde{z}_Q\| = 1$ by definition and (ii) $\zeta := \tilde{a}(\text{rest})^T \tilde{z}_Q(\text{rest})$ is a scalar standard Gaussian r.v. and so $\mathbb{E}[|\zeta|] \leq 2$. The third one relies on the following two bounds:

1) $\mathbb{E}[|\tilde{a}(1)|^2 1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \}]$

$$\leq \frac{2 \epsilon}{\sqrt{2\pi}} \int \sqrt{1 + \epsilon \beta} z^2 \exp(-z^2/2) dz,$$

$$\leq 2 \epsilon^{-1/2} \int \sqrt{1 + \epsilon \beta} \ dz \leq 2 \epsilon^{-1/2} \sqrt{2\pi} \epsilon \beta \leq \epsilon \beta/3,$$

where we used the facts that $z^2 \exp(-z^2/2) \leq \exp(1/2)$ for all $z \in \mathbb{R}$; $\sqrt{1 + \epsilon \beta} \geq 1 + \epsilon \beta/2$ and $\sqrt{1 + \epsilon \beta} \leq 1 + \epsilon \beta/2$ for $0 < \epsilon < 1$.

2) Similarly, we can show that

$$\mathbb{E}[|\tilde{a}(1)|^2 1 \{ |\tilde{a}(1)|^2 \in [1,\epsilon/3] \}] = \frac{2 \epsilon}{\sqrt{2\pi}} \int \sqrt{1 + \epsilon \beta} z^2 \exp(-z^2/2) dz,$$

$$\leq 2 \epsilon^{-1/2} \int \sqrt{1 + \epsilon \beta} \ dz = \epsilon \beta/3.$$
[16] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust PCA via gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 4159–4167.

[17] Q. Zheng and J. Lafferty, “Convergence analysis for rectangular matrix completion using Burer–Monteiro factorization and gradient descent,” 2016, arXiv:1605.07051.

[18] S. Lang, Real and Functional Analysis, vol. 10. New York, NY, USA: Springer-Verlag, 1993, p. 1113.

[19] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion and blind deconvolution,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 3345–3354.

[20] Y. Chen and E. Candes, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2015, pp. 739–747.

[21] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, “A nonconvex approach for phase retrieval: Reshaped Wirtinger flow and incremental algorithms,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 5164–5198, 2017.

[22] G. Jagatap, Z. Chen, S. Nayer, C. Hegde, and N. Vaswani, “Sample efficient Fourier ptychography for structured data,” IEEE Trans. Comput. Imag., vol. 6, pp. 344–357, 2020.

[23] Y. Chen, Y. Chi, and A. J. Goldsmith, “Exact and stable covariance estimation from quadratic sampling via convex programming,” IEEE Trans. Inf. Theory, vol. 61, no. 7, pp. 4034–4059, Jul. 2015.

[24] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD, USA: Johns Hopkins Univ. Press, 1989.

[25] M. Hardt and E. Price, “The noisy power method: A meta algorithm with applications,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2014, pp. 2861–2869.

[26] R. Vershynin, High-Dimensional Probability: An Introduction With Applications in Data Science, vol. 47. Cambridge, U.K.: Cambridge Univ. Press, 2018.

[27] P.-Å. Wedin, “Perturbation bounds in connection with singular value decomposition,” BIT Numer. Math., vol. 12, no. 1, pp. 99–111, 1972.

[28] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Spectral methods for data science: A statistical perspective,” 2020, arXiv:2012.08496.

[29] R. Vershynin, Introduction to the Non-Asymptotic Analysis of Random Matrices. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[30] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2013, pp. 2796–2804.

[31] T. Cai, X. Li, and Z. Ma, “Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow,” Ann. Statist., vol. 44, no. 5, pp. 2221–2251, 2016.

[32] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, “Spectral statistics of Erdős–Rényi graphs I: Local semicircle law,” Ann. Probab., vol. 41, no. 3B, pp. 2270–2375, May 2013.

[33] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Found. Comput. Math., vol. 12, no. 4, pp. 389–434, Aug. 2012.

Seyedehsara (Sara) Nayer received the M.S. degree from the Sharif University of Technology, Iran, and the Ph.D. degree in ECE from Iowa State University. She currently works as a Senior Engineer at ASML, Santa Clara, CA, USA. Her research interests include information science and focus on signal processing and statistical machine learning.

Namrata Vaswani (Fellow, IEEE) received the B.Tech. degree in electrical engineering from IIT-Delhi, India, in 1999, and the Ph.D. degree in electrical engineering from the University of Maryland, College Park, MD, USA, in 2004. Since Fall 2005, she has been with Iowa State University, Ames, IA, USA, where she is currently the Anderlik Professor of electrical and computer engineering. Her research interests include data science, with a particular focus on statistical machine learning and signal processing. She was a recipient of the Iowa State Early Career Engineering Faculty Research Award in 2014, the Iowa State University Mid-Career Achievement in Research Award in 2019, and the University of Maryland’s ECE Distinguished Alumni Award in 2019. She also received the 2014 IEEE Signal Processing Society Best Paper Award for her 2010 IEEE TRANSACTIONS ON SIGNAL PROCESSING paper coauthored with her student Wei Lu on “Modified-CS: Modifying compressive sensing for problems with partially known support.” She has served two terms as an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING, a Lead Guest-Editor for the 2018 Proceedings of the IEEE Special Issue (Rethinking PCA for modern datasets), and an Area Editor for the IEEE Signal Processing Magazine from 2018 to 2020.