Personal and transgenerational cues are nonadditive at the phenotypic and molecular level

Laura R. Stein1,2*, Syed Abbas Bukhari3,4 and Alison M. Bell1,3,4,5,6

Organisms can gain information about their environment from their ancestors, their parents or their own personal experience. ‘Cue integration’ models often start with the simplifying assumption that information from different sources is additive. Here, we test key assumptions and predictions of cue integration theory at both the phenotypic and molecular level in threespine sticklebacks (Gasterosteus aculeatus). We show that regardless of whether cues about predation risk were provided by their father or acquired through personal experience, sticklebacks produced the same set of predator-adapted phenotypes. Moreover, there were nonadditive effects of personal and paternal experience: animals that received cues from both sources resembled animals that received cues from a single source. A similar pattern was detected at the molecular level: there was a core set of genes that were differentially expressed in the brains of offspring regardless of whether risk was experienced by their father, themselves or both. These results provide strong support for cue integration theory because they show that cues provided by parents and personal experience are comparable at both the phenotypic and molecular level, and draw attention to the importance of nonadditive responses to multiple cues.

Recent evolutionary theory seeks to understand how cues from ancestors, parents and personal experience are integrated together to produce adaptive phenotypes1–6. The central problem is that organisms in natural populations must decide how and whether to attend to cues from different sources, and those sources might not always agree with each other. For example, an animal might obtain cues from their father that the environment is safe, while personal experience suggests otherwise. Recent theory identifies the conditions that favour the evolution of reliance on some sources of cues over others1–6, and highlights the importance of cue reliability during cue integration. The relative weight given to a cue depends on its accuracy as a predictor of selective conditions in the future. For example, a cue might not give entirely reliable information on current conditions, and/or the cue might give information on current conditions but the environment might change during the interval between cue detection and when selection acts on the phenotype7,8.

Evidence that different sources of cues (for example, genetic and environmental) trigger similar phenotypic responses9 provides support for cue integration theory, but a key assumption of several cue integration models concerns the way that organisms respond to cues from different sources that are in agreement with each other. Several models start with the simplifying assumption that cues from different sources are additive1–11. Under this assumption, additional information increases an individual’s confidence in its assessment of the environment, which results in a linear relationship between the number of sources of consistent cues and the adaptive phenotype1. For example, assume a wide range of anti-predator phenotypes available to a developing individual and that greater elaboration of those phenotypes confers greater fitness benefits9. An individual receiving cues from its parent that the environment is dangerous might begin to develop anti-predator phenotypes. In an additive model, if personally acquired cues confirm that the environment is dangerous, then the individual will further develop those phenotypes1–3, but if personally acquired cues indicate that the environment is safe, the individual will stop developing those phenotypes.

However, there are also several reasons to expect that organisms receiving consistent cues from different sources will respond in a nonadditive manner. For example, there might be underlying constraints (epistasis, fundamental biochemical or biophysical constraints) that limit the most extreme phenotypes. Nonadditivity is also expected for threshold traits, that is, when a single source of cues is sufficient to push a phenotype past a threshold11,12. Another possibility is that if organisms integrate cues in a Bayesian fashion, that is, they update personal information by continuously sampling their environment11,12, then they might not respond to a personally acquired cue if it is consistent with their strong prior expectation that was set by their evolutionary history or their parents. Alternatively, additional cues might disproportionally increase the individual’s confidence in the state of the environment, causing a multiplicative effect on the phenotype. Finally, nonadditivity is expected when the absence of cues provides an unreliable assessment of the environment. For example, imagine two different sources that provide highly reliable cues about predation risk, and both sources indicate the same level of risk. If the absence of cues about predation risk is unreliable—perhaps because predators come and go—then organisms might be better off always strongly responding to cues of predation risk, even if they are only from a single source13. This scenario might be especially likely to occur when the costs of failing to respond to cues about risk is high, or even deadly (‘smoke detector principle’14). In contrast, additive responses might be more likely to occur in response to environmental information that is not as immediately threatening, such as weather, food availability and so on.

1Department of Animal Biology, University of Illinois, Urbana, IL, USA. 2Department of Biology, Colorado State University, Fort Collins, CO, USA. 3Illinois Informatics Program, University of Illinois, Urbana, IL, USA. 4Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA. 5Program in Ecology, Evolution and Conservation, University of Illinois, Urbana, IL, USA. 6Neuroscience Program, University of Illinois, Urbana, IL, USA. *e-mail: lstein@colostate.edu

NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol
Here, we investigate the independent and combined influence of personal and paternal experience with danger at both the phenotypic and molecular level in threespine sticklebacks. Specifically, using a 2 × 2 factorial experiment with a split-clutch design (Fig. 1), we explore how juvenile sticklebacks combine personally and paternally acquired cues about predation risk. In this species, parental care is necessary for offspring survival, males are the sole providers of parental care for embryos and offspring for approximately two weeks, and the way fathers behave toward their offspring influences offspring phenotypic development15,16.

Adult males (one year of age) were randomly assigned to either a predator-exposed or control (unexposed) treatment. While males were providing care for their offspring, fathers in the predator-exposed group were chased by a model sculpin predator for two minutes (unexposed: not chased)18. Sculpin are a fish predator that primarily prey on stickleback nests and juveniles19. At two months of age, half of the offspring within each family were chased by a model sculpin predator for one minute a day for seven days (personal experience: exposed), while the other half of the family was undisturbed (personal experience: unexposed).

This design resulted in four different conditions: offspring that were not exposed to risk and whose fathers were also unexposed, offspring that were not exposed to risk but whose fathers were exposed, offspring that were exposed to risk but whose fathers were unexposed and offspring that were exposed to risk and whose fathers were also exposed (Fig. 1). At three months of age, offspring were measured for size, weight, latency to emerge from a refuge (timidity) and brain gene expression using RNA-seq. We infer that differences between offspring of predator-exposed versus unexposed fathers reflect transgenerational plasticity, whereas differences between predator-exposed and unexposed offspring reflect developmental plasticity. We investigated additivity by comparing offspring with both personal and paternal experience with risk to the three other conditions.

Results and discussion

When fathers were exposed to predation risk while they were caring for offspring, they decreased parental behaviour (Supplementary Fig. 1, consistent with refs17,18,20). This behavioural shift suggests that fathers can provide cues to their offspring through their behavioural interaction with them, similar to the way that mothering influences the behavioural development of offspring in mammals21. Juvenile offspring of predator-exposed fathers were relatively small, had lower mass for a given length and took more time to emerge from a refuge compared to juvenile offspring of unexposed fathers (Supplementary Table 1; Fig. 2), consistent with a previous study on sticklebacks21, and with studies on both evolved and developmental response to risk in small fishes22–25. It is possible that offspring of predator-exposed fathers had these phenotypes because they received less fanning (oxygen) from their fathers, which caused altered growth patterns during embryonic development. As these phenotypes align with anti-predator phenotypes arising from selection and from developmental plasticity17,22–25, it is unlikely that they are due to poor parenting from fathers, and instead might reflect adaptive anti-predator phenotypes.

In general, the phenotypes of offspring with personal predation risk experience resembled the phenotypes of offspring whose fathers had been exposed to predation risk (Fig. 2). It is possible that the personal experience of being chased by the model sculpin caused offspring to hide more and forage less, again resulting in smaller, more timid phenotypes18. These results support the hypothesis that regardless of its source, cues about risk cause sticklebacks to produce a similar set of predator-adapted phenotypes. Moreover, the combined influence of personal and paternal experience on body size and timidity was nonadditive: offspring that received cues about risk from two sources were statistically indistinguishable from offspring that received cues about risk from a single source (Fig. 2). In general, offspring of predator-exposed fathers had lower body mass relative to length compared to the control group. Personal experience with risk by itself strongly decreased body mass relative to length. Interestingly, personal experience with risk combined with paternal experience with risk appeared to attenuate the negative effects of personal experience with risk by itself on body mass relative to length.

One possible explanation for these nonadditive patterns is that they reflect constraints on the maximum phenotype that can be produced in response to cues about risk. For example, it might not be possible to be much smaller or have lower weight relative to body size and still function. There might also be a constraint imposed by the tradeoff between foraging and predation risk that limits timidity: an animal can only hide in the refuge for so long before eventually venturing out to feed17. The results could also be consistent with a threshold model: once a certain threshold of information about the environment is reached, one of only a few alternate states is induced17, perhaps because there are few benefits to having an intermediate phenotype.

Another potential explanation for the nonadditive patterns is that sticklebacks combined cues from their fathers and their personal experience in a Bayesian fashion1. In this population, fathers are likely to have highly reliable information about the extent to which
which sculpin are likely to be a threat to their offspring. Fathers have opportunities to perceive visual and/or olfactory cues of sculpin without being threatened themselves because sculpin tend to specialize on juveniles soon after they emerge\(^1\), before juveniles have had time to sample their environment. Under this Bayesian scenario, after receiving highly reliable cues from their fathers, offspring in this experiment maximally produced anti-predator phenotypes, but additional cues (based on personal experience) that also indicated that sculpin were present did not provide any additional information about predation risk to those subjects. Similarly, when offspring were chased by a model sculpin for several days, this provided highly reliable cues that sculpin were present, and this information overrode the effects of unreliable cues from their father indicating that predation risk was low, and those offspring also maximally produced anti-predator phenotypes. Indeed, because sticklebacks are a prey species highly vulnerable to predation\(^{2,3}\), they might be better off responding to a false alarm than not responding at all (the smoke detector principle\(^{4}\)). Our results suggest that once a response is triggered in response to paternal information indicating that the environment is dangerous, it remained ‘on’, perhaps because the costs of reversal were higher than the costs of failing to respond to an unpredictable, but potentially deadly threat.

Other studies that have examined how organisms integrate information from their parents and personal experience have also found that responses to multiple cues tend to be nonadditive\(^{27–34}\), but the precise nonadditive pattern is variable across studies. For example, personal and parental responses to cues of predation risk are synergistic in snails, such that snails only mounted a phenotypic response when they received cues of predation risk from both sources\(^{27}\). Another recent study found that phenotypic responses to both personal and maternal experience with food availability was highly variable among clones of Daphnia\(^{35}\). An important consideration is that different types of patterns are likely to be expected in studies where the environment simply acts as a cue, for example, cues of predation risk, versus in studies where the environment also influences state, for example, food availability. A challenge for the theory is to incorporate experiences that not only act as cues but also affect state.

Personal and parental experiences also produced similar responses\(^5\) at the molecular level: there was a core set of genes that were differentially expressed in the brain in response to risk, regardless of whether the risk was experienced by fathers, their offspring or both (Fig. 3b), and the number of shared genes between the three pairwise contrasts is greater than expected due to chance (shared genes across all treatments: 208; hypergeometric test: \(P < 1 \times 10^{-10}\)). Moreover, the brain gene expression pattern of the core set of genes was remarkably concordant (Fig. 3c). The brain gene expression profile of offspring with both personal and paternal experience with predation risk resembled the brain gene expression profile of offspring that independently received either source of information on its own. These results suggest that for this core set of genes, both sources of information trigger the same response at the molecular level, and that personally and paternally acquired information share some ‘equivalence’ at the molecular level. While West–Eberhard’s discussed ‘equivalence’ in the context of the exchangeability of genetic and environmental effects, our findings suggest that the same concept applies to different environmental effects acting over different timescales (transgenerational versus developmental). This is in contrast to a study in Daphnia, which found few similarities between personal experience and maternal experience at either the phenotypic or molecular level\(^{34}\), highlighting the need for future work to examine patterns of information integration across organisms with differing life histories, sensory inputs and development.

Although the overlap between developmental and transgenerational plasticity at the molecular level was much greater than expected due to chance, there were also sets of genes that were unique to the different forms of plasticity. There were, for example, 322 genes that were differentially expressed in response to paternal experience with risk, but were not differentially expressed in response to personal experience with risk. Given the common response to personal and paternal cues about risk at the phenotypic level, it is tempting to speculate that the shared genes reflect the similar ‘output’ in response to cues about risk from different sources, while the unique genes reflect differences in the ‘input’ between developmental and transgenerational plasticity, that is, whether the cue was acquired via paternal behaviour versus from the experience of being personally chased by the model predator. The large num-

Fig. 2 | The effect of personal and paternal experience with predation risk on offspring phenotypes was nonadditive. Box plots indicate median, interquartile range (IQR) and 1.5 × IQR at both the upper and lower ranges (whiskers). Dots indicate raw data points. a–c. There was a significant interaction between personal and paternal experience on standard length (a, linear mixed model; \(F_{1,23,60} = 5.08, P = 0.035\)); body mass relative to length (b, linear mixed model; \(F_{1,23,60} = 10.23, P = 0.004\)); and latency to emerge from a refuge (c, linear mixed model; \(F_{1,23,63} = 11.79, P = 0.002\)).
Results suggest that there is little commonality between the genes associated with paternally and maternally mediated transgenerational plasticity in our study and maternally mediated transgenerational plasticity in ref. 38, suggesting different molecular mechanisms responsive to cues from fathers versus mothers. As mothers do not provide care or interact with their offspring after fertilization, mothers and fathers provide different cues about environmental conditions to offspring. Future studies explicitly comparing cues from both parents may help resolve whether and how stickleback integrate cues from mothers and fathers differently. Given the effects of personally and paternally acquired information on nonbehavioural traits (for example, body size), it would also be interesting for future studies to examine how cues from different sources are ‘read’ by the genome in peripheral tissues and at different developmental timepoints.

Cue integration models offer a fresh framework for understanding why developing organisms sometimes pay more attention to their genes, their parents or their own personal experience to produce adaptive phenotypes. Key assumptions and predictions of these models are beginning to be empirically tested by studies that simultaneously manipulate cues from different sources27-29. Our study provides strong empirical support at both the phenotypic and molecular level for this theory27-29 and suggests that future models should explore the consequences of relaxing the assumption of additivity.

Methods

Study population and breeding. Adult threespine stickleback (approximately 1 year of age) were collected in April 2013 from Putah Creek, a dammed, regulated freshwater stream in northern California. Sculpin (Cottus spp.), a fish predator known to prey on stickleback eggs, fry, and adults27 are present at this site. Fish were shipped to the University of Illinois at Urbana-Champaign, and males were introduced into separate 9.5 l (36.23×18 cm) tanks with a refuge (plastic ‘plant’), an open plastic box (13×13×3 cm) filled with fine sand, and filamentous algae for nesting. Following nest completion, males were presented with a gravid female and allowed to spawn. A previous study showed that there was no effect of previous breeding experience or previous experience with predation risk while breeding on subsequent paternal behaviour30. Each male spawned with a unique female. After spawning, the female was removed. Fish were kept at 20 °C on a summer (16 h light:8 h dark) photoperiod in freshwater. Water was cleaned via a recirculating flow-through system that consists of a series of particulate, biological and UV filters (Aquaneering). 10% of the water volume in the tanks was replaced each day. Fish were fed a mixed diet consisting of frozen bloodworm, brine shrimp and Mysis shrimp in excess each day. Experiments were carried out in accordance with institutional guidelines (University of Illinois IACUC protocol no. 15077). Animals were collected under a California Fish and Game Collecting permit no. SC-3310 to AMB.

Exposing fathers to predation risk and recording paternal behaviour. A total of 20 males were randomly assigned to either the ‘unexposed’ or ‘predator-exposed’ treatment (N = 10 unexposed, N = 10 predator-exposed). The first five males from each treatment group to complete clutches were used in this experiment (N = 5 unexposed, N = 5 predator-exposed). Predator exposure did not increase the likelihood of a male's nest failing. On the third day after males spawned (when the embryos were three days old), males in the ‘predator-exposed’ treatment were chased with a 10 cm rubber model sculpin (Jewel Bait Company) for two minutes to simulate predator attack, as in ref. 7. Model predator exposure occurred at 11:00 CST. A predator of this size is a threat to the eggs and fry, but not to the adult males7. Previous research has shown that male stickleback adjust their parenting behaviour in response to this predator model7,18,19. At this developmental stage, the optic cups of the embryo are still developing30, and the eggs were covered by nesting material, thereby reducing the possibility of direct embryonic exposure to predation risk. For males in the unexposed treatment, we removed the top of the tank and gently splashed the water when the eggs were three days old to simulate the water disturbance caused when the model predator entered the tank. This splashing did not cause males to alter their paternal behaviour18.

After spawning, paternal behaviour was observed every day for ten minutes between 10:00 and 12:00 CST from one day after spawning through five days after the eggs hatched (when fry naturally disperse in this population). Eggs hatched on day five following fertilization (Supplementary Fig. 1). We measured the total amount of time the male spent fanning his eggs. Fanning is a paternal behaviour that oxygenates the eggs31, is important for offspring development32 and consistently varies among fathers33,34. The simulated predation threat (or water splashing in the unexposed treatment) occurred after the daily observation of paternal behaviour. Five days after the eggs hatched, males were removed from the tank.

Exposing offspring to predation risk. Once fry were approximately 1 cm long (at around one month of age), each full sibling family was evenly divided into two separate tanks and randomly assigned to either unexposed or predator-exposed treatments. Offspring were fed newly hatched Artemia nauplii shrimp in excess each day until they reached 3 cm in length, at which time they were fed the adult slurry of frozen food.

At two months of age, juveniles in the predator-exposed treatment were briefly exposed to risk once a day for seven days. Specifically, they were chased with a 10 cm model sculpin for one minute at a random time each day (between 10:00 and 14:00 CST), once a day for seven days, to minimize the potential for habituation.

** Fig. 3 | Brain gene expression responses to personal experience with risk and paternal experience with risk.** a. Comparisons. The brain gene expression profiles (RNA-seq) of offspring in response to personally and paternally acquired information about risk was compared relative to a control group of offspring that did not receive information about risk from either source (double control). The brain gene expression pattern of offspring of unexposed fathers was compared between offspring with and without personal experience with risk. This pairwise contrast represents developmental plasticity genes (purple). The brain gene expression profile of offspring without personal experience risk, but whose fathers did experience risk, was compared to the double control. This pairwise contrast represents transgenerational plasticity genes (blue). The brain gene expression profile of offspring with both personal and paternal experience with risk was compared to the double control. This pairwise contrast includes both developmental and transgenerational plasticity, as well as their interaction (green). b. Number of differentially expressed genes in each pairwise contrast, along with the number of overlapping genes between contrasts. The size of each circle is proportional to the number of genes. c. Heat map showing the differential expression pattern of the 208 genes that were common to all three contrasts. Red = upregulated, purple = downregulated. Columns represent pairwise contrasts, rows represent genes. Note that genes that were upregulated in the brain in response to paternal information were upregulated in response to personal information and were also upregulated in animals that received information from both sources, and vice versa. The direction of regulation is more congruent than expected by chance (χ² = 60.84, n = 208, P < 0.00001). The full gene lists and their functional enrichments are in Supplementary Tables 3 and 4, respectively.
For juveniles in the unexposed treatment, we removed the top of the tank and gently splashed the water once per day for seven days.

Offspring measurements and behaviour. At three months of age, we collected a subset of juveniles (N = 2 per treatment per family) and quickly measured standard length and body weight. Due to differences in clutch size and offspring mortality, the final sample sizes were no paternal/cue/no personal cue: N = 7; parental only: N = 10; personal only: N = 10; and both: N = 9.

Phenotypic data analysis. We analysed phenotypic data (height, mass relative to length and latency response) using linear mixed models. All models included paternal treatment (predator-exposed, unexposed), offspring treatment (predator-exposed, unexposed) and offspring sex as fixed effects and father ID as a random effect. Analyses were conducted with R v 3.2.2. Linear mixed models were compared using the lme function from the ‘lme4’ package and ‘lmerTest’ packages. We used restricted maximum likelihood (REML) estimation and a diagonal covariance structure for our model. Positional testing was conducted for degrees of freedom. We determined whether levels of fixed factors differed from one another using Tukey’s honest significant difference test.

RNA extraction and RNA-seq. Individuals for brain gene expression profiling were gently netted directly from their home tanks and rapidly decapitated with sharp scissors. Heads were flash frozen and stored at −80 °C until dissection. We first scraped the skull with rongeurs to expose brain tissue. Heads were placed in RNAlater (Thermo Fisher Scientific) for 24 h at 4 °C. We then dissected whole brains in RNAlater (Thermo Fisher Scientific) on a clean bench. We further euthanized the juveniles via rapid decapitation and flash froze the heads and bodies in supercooled ethanol (−110 °C) for RNA extraction at a later time. At this time we also removed the caudal fin and stored it in 70% ethanol for later determination of genetic sex using a male-specific genetic marker.

For behavioural testing of predator response, another subset of juveniles (N = 2 per treatment per family) were measured at five months of age. Juveniles were transferred individually to an observation tank in an opaque cylinder (10 cm height, 10 cm diameter) plugged with a cork. After a 15 min acclimation period, we removed the cork remotely and recorded latency to emerge from the refuge. Juveniles were returned to their home tanks following behaviour assays. Due to differences in clutch size and offspring mortality, the final sample sizes were no paternal cue/no personal cue: N = 6; paternal only: N = 10; personal only: N = 10; and both: N = 9.

RNA-seq informatics. FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess the quality of the reads. Adaptor sequences and low-quality bases were clipped from 100bp single-end sequences using Trimmomatic. RNA-seq produced an average of 34 million reads per sample. We aligned reads to the *G. aculeatus* reference genome (the repeat masked reference genome, Ensembl release 75), using TopHat (2.0.8) and Bowtie (2.1.0). On average 26 million reads aligned to the genome that translate to ~76% alignment rate (Supplementary Table 2). Reads were assigned to features according to the Ensembl release 75 gene annotation file (ftp://ftp.ensembl.org/pub/release-75/gtf/gasterosteus_aculeatus/).

Defining differentially expressed genes. HTSeq-Count was used to count reads mapped to gene features using stickleback genome annotation. Any reads that fell in multiple genes were excluded from the analysis. One sample from the transgenerational plasticity treatment group was excluded from the analysis based on high variability on a multidimensional scaling (MDS) plot (Supplementary Fig. 2), resulting in a final sample size for the transgenerational plasticity treatment group of N = 8. We included genes with at least 0.5 counts per million (cpm) in at least five samples. Values of cpm were log transformed and were analysed using limma voom (“a program that allowed us to control for the effect of father”). To assess differential expression, we fit a linear model (~ Sex + Treatment) and performed pairwise comparisons among Treatment levels to find differentially expressed genes due to father’s experience, offspring experience, or cues from both fathers and personal experience relative to individuals who had no exposure to predator cues. We also controlled for family by including father identity as a random factor. For false discovery rate correction we used the ‘global’ method in limma decideTests functionality (limma user guide section 13.3), which adjusts P values from all contrasts at once. A false discovery rate cutoff of <0.05 was used to call for differentially expressed genes (Supplementary Table 3).

To test for reproducibility of the results, we randomly permuted our sample labels 250 times and generated an empirical null distribution of coefficients by fitting a same model using limma voom. A permutation-based P value was generated for each gene by comparing the observed model coefficient with the permuted ones (Supplementary Fig. 3). A statistically significant overlap was observed between DE identified by limma voom alone and permutation tests, which suggests that our results were not biased by comparing the three experimental conditions to the same ‘double control’ condition.

The significance of the pattern of congruent gene expression of the core set of genes was assessed with χ² tests in each sex, where 25% of differentially expressed genes within each sex are expected to show a congruent pattern by chance alone.

Reporting Summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Phenotypic data is provided in Supplementary Table 5. Gene expression data are deposited in the Gene Expression Omnibus, under accession GSE113548.

Received: 13 September 2017; Accepted: 11 June 2018; Published online: 09 July 2018

References

1. Dall, S. R., McNamara, J. M. & Leimar, O. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. *Trends Ecol. Evol.* 30, 327–333 (2015).
2. Leimar, O. The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. *Am. Nat.* 165, 669–681 (2005).
3. Leimar, O. & McNamara, J. M. The evolution of transgenerational integration of information in heterogeneous environments. *Am. Nat.* 185, E55–E69 (2015).
4. Stamps, J. A. & Frankenhus, W. E. Bayesian models of development. *Trends Ecol. Evol.* 31, 260–268 (2016).
5. Stamps, J. A. & Krishnan, V. V. Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. *Am. Nat.* 184, 647–657 (2014).
6. English, S., Pen, I., Shea, N. & Uller, T. The information value of non-genetic inheritance in plants and animals. *PLoS ONE* 10, e0116996 (2015).
7. McNamara, J. M., Dall, S. R. X., Hammerstein, P., Leimar, O. & Coulson, T. Detection vs selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. *Ecol. Lett.* 19, 1267–1276 (2016).
8. Rivoire, O. & Leibler, S. A model for the generation and transmission of variations in evolution. *Proc. Natl Acad. Sci. USA* 111, E1940–E1949 (2014).
9. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, Oxford, 2003).
10. Frankenhus, W. E. & Panchanathan, K. Balancing sampling and specialization: an adaptationist model of incremental development. *Proc. R. Soc. B* 278, 3558–3565 (2011).
11. McColman, S. A. & Van Buskirk, J. Costs and benefits of predator-induced polymorphism in the gray treefrog *Hyla chrysocelis*. *Evolution* 50, 283–293 (1996).
12. Buoro, M., Gimenez, G. & Prévost, E. Assessing adaptive phenotypic plasticity by means of conditional strategies from empirical data: the latent environmental threshold model. *Evolution* 66, 996–1009 (2012).
13. Sih, A. Prey uncertainty and the balancing of antipredator and feeding needs. *Am. Nat.* 139, 1052–1069 (1992).
14. Nesse, R. M. The smoke detector principle. Natural selection and the regulation of defensive responses. *Ann. NY Acad. Sci.* 935, 75–85 (2001).
15. Tulliy, J. J. & Huntingford, F. A. Paternal care and the development of adaptive variation in anti-predator responses in sticklebacks. *Anim. Behav.* 35, 1570–1572 (1987).
16. McGhee, K. E. & Bell, A. M. Paternal care in a fish: epigenetics and fitness enhancing effects on offspring anxiety. *Proc. R. Soc. B* 281, 20141146 (2014).
17. Stein, L. R. & Bell, A. M. Paternal programming in sticklebacks. *Am. Nat.* 195, 165–171 (2014).
18. Stein, L. R. & Bell, A. M. Consistent individual differences in paternal behavior in threespine sticklebacks, *Gasterosteus aculeatus*. *Evolution* 35, 282–295 (1981).
31. Seiter, M. & Schausberger, P. Maternal intraguild predation risk affects offspring reaction norms shaped by parental early experience in mouthbrooding cichlids. *Funct. Ecol.* **24**, 943–953 (2011).

32. Stratmann, A. & Taborsky, B. Antipredator defences of young are differences in morphology, performance and behaviour between recently diverged populations of *Podaricis sicula* mirror differences in predation pressure. *Oikos* **116**, 1343–1352 (2007).

33. Sultan, S. E., Barton, K. & Wilcek, A. M. Contrasting patterns of gene expression in the brains of male and female threespine stickleback. *Proc. R. Soc. B* **283**, 20161734 (2016).

34. Swarup, H. States in the development of the stickleback *Gasterosteus aculeatus*. *J. Embryol. Exp. Morphol.* **6**, 373–383 (1958).

35. Swarup, H. States in the development of the stickleback *Gasterosteus aculeatus*. *J. Embryol. Exp. Morphol.* **6**, 373–383 (1958).

36. Metzger, D. C. H. & Schulte, P. M. Maternal stress has divergent effects on gene expression patterns in the brains of male and female threespine stickleback. *Proc. R. Soc. B* **283**, 20161734 (2016).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
- Clearly defined error bars
- State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection: JWatcher was used to collect behavioral data. All software is cited in our methods section.

Data analysis: We used Tophat, Bowtie, and R to perform our analyses. All software is cited in our methods section.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Phenotypic data summarized in Figure 2 is provided in Supplementary Table 5. Gene expression data may be found in GEO, accession #GSE113548.
Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [] Life sciences
- [] Behavioural & social sciences
- [x] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Eccological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Here, we investigate the independent and combined influence of personal and paternal experience with danger at both the phenotypic and molecular level in threespined sticklebacks. Specifically, using a 2x2 factorial experiment with a split-clutch design, we explore how juvenile sticklebacks combine personality- and paternaly-acquired cues about predation risk.
Research sample	This study used adult male threespine sticklebacks (Gasterosteus aculeatus) collected from the Putah River in Northern California. Female stickleback were presented to nesting males to produce offspring. Offspring resulting from these pairings were then measured for this study. Experiments were carried out in accordance with institutional guidelines (University of Illinois IACUC protocol #15077).
Sampling strategy	A total of 20 males were randomly assigned to either the “unexposed” or “predator-exposed” treatment (N = 10 unexposed, N = 10 predator-exposed). The first five males from each treatment group to complete clutches were used in this experiment (N = 5 unexposed, N = 5 predator-exposed). We then randomly sampled offspring from each clutch.
Data collection	LRS visually observed nesting males and recorded their parenting behavior using JWatcher software. Offspring measured for morphology were measured with calipers and weighed on a balance by LRS. Offspring measured for behavior were placed in an assay tank and allowed to acclimate. They were then filmed emerging from a refuge by LRS, who then analyzed the videos. LRS dissected brains on RNALater and extracted total RNA as described in the methods section of the manuscript.
Timing and spatial scale	This experiment was conducted from May - October 2014, measured from first establishment of males to final offspring RNA extraction. On the third day after males spawned (when the embryos were three days old), males in the “predator-exposed” treatment were chased with a 10 cm rubber model sculpin (Jewel Bait Company) for two minutes to simulate a nest predation attempt. Model predator exposure occurred at 11AM CST. After spawning, paternal behavioural was observed every day for ten minutes between 1000 and 1200 CST from one day after spawning through five days after the eggs hatched (when fry naturally disperse in this population). Eggs hatched on day 5 following fertilization. Once fry were approximately one cm in length (at around one month of age), each full sibling family was evenly divided into two separate tanks and randomly assigned to either “unexposed” or “predator-exposed” treatments. At two months of age, juveniles in the predator-exposed treatment were briefly exposed to risk once a day for seven days. Specifically, they were chased with a 10 cm model sculpin for one minute at a random time each day (between 1000 and 1400 CST), once a day for seven days, to minimize the potential for habituation. For juveniles in the unexposed treatment, we removed the top of the tank and gently splashed the water once per day for seven days. At three months of age, we collected a subset of juveniles (N = 2 per treatment per family) and quickly measured standard length and body weight. For behavioural testing of predator responses, another subset of juveniles (N = 2 per treatment per family) were measured at five months of age. Juveniles were transferred individually to an observation tank in an opaque cylinder (10 cm height, 10 cm diameter) plugged with a cork. After a 15-minute acclimation period, we removed the cork remotely and recorded latency to emerge from the refuge. Juveniles were returned to their home tanks following behaviour assays.
Data exclusions	We did not have enough good quality RNA from some of our samples to perform RNA-seq; we describe this in the methods. We excluded one outlier individual in our informatics analysis. This is described in the Informatics section of the methods.
Reproducibility	Parts of this study replicate two similar studies performed earlier in our lab. Our results from this study replicate our findings from those previous studies.
Randomization	Males were randomly assigned to either the control or predator-exposed group using a random number generator. Offspring were randomly assigned to either the control or predator-exposed group using a random number generator.
Blinding	All individuals were assigned a random number. Investigators did not know the family or treatment group when measuring individuals or running initial analyses.
Did the study involve field work?	[x] Yes

Reporting for specific materials, systems and methods
Materials & experimental systems

Involved in the study
✗ Unique biological materials
✗ Antibodies
✗ Eukaryotic cell lines
✗ Palaeontology
✗ Animals and other organisms
✗ Human research participants

Methods

Involved in the study
✗ ChIP-seq
✗ Flow cytometry
✗ MRI-based neuroimaging

Animals and other organisms

Policy information about [studies involving animals](#), [ARRIVE guidelines](#) recommended for reporting animal research

Laboratory animals

This study did not involve laboratory animals.

Wild animals

F0 fish used in this study were collected from a wild population in Putah Creek, Northern California, USA. Fish were collected with minnow traps. All traps were checked every four hours and adult stickleback removed immediately. Juvenile stickleback and non-stickleback were immediately released. Adult stickleback were shipped via FedEx overnight within 24 hours of trapping and immediately placed into quarantine upon arrival at University of Illinois. Collections were carried out in accordance with institutional guidelines (University of Illinois IACUC protocol #15077).

Field-collected samples

Fish were kept at 20 degrees Celsius on a summer (16L:8D) photoperiod in freshwater. Water was cleaned via a recirculating flow-through system that consists of a series of particulate, biological, and UV filters (Aquaneering, San Diego, USA). 10% of the water volume in the tanks was replaced each day. Fish were fed a mixed diet consisting of frozen bloodworm, brine shrimp and Mysis shrimp in excess each day. Experiments were carried out in accordance with institutional guidelines (University of Illinois IACUC protocol #15077). Males and females used for breeding in this experiment were transferred to another protocol after parenting had ceased. Offspring used in this project were euthanized in accordance with the protocol.