Study of the T16189C variant and mitochondrial lineages in Tunisian and overall Mediterranean region

Sana Hsouna¹, Nizar Ben Halim¹, Khaled Lasram¹, Ghlna Meiloud², Imen Arfa¹, Emna Kerkeni³, Lila Romdhane¹, Henda Jamoussi¹, Sonia Bahri², Slim Ben Ammar³, Abdelmajid Abid¹,⁴, Abdelhamid Barakat⁶, Ahmed Houmeida², Sonia Abdelhal¹, and Rym Kefi¹

¹Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar, Tunis, Tunisia, ²Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences et Techniques, Nouakchott, Mauritania, ³Genetics Laboratory, Faculté de Médecine de Monastir, Monastir, Tunisia, ⁴Service de Consultation Externe et Exploration Fonctionnelle, Institut National de Nutrition, Tunis, Tunisia, ⁵Department of Biochemistry, Institut Pasteur de Tunis, Tunis, Tunisia, and ⁶Laboratoire de Génétique Moléculaire Humaine, Département de Recherche Scientifique, Institut Pasteur du Maroc, Casablanca, Morocco

Abstract

The mitochondrial DNA (mtDNA) variant T16189C has been investigated in several metabolic diseases. In this study, we aimed to estimate the frequency of the T16189C variant in Tunisian and other Mediterranean populations and to evaluate the impact of this variant on the phylogeny of Mediterranean populations. Blood sample of 240 unrelated Tunisian subjects were recruited from several Tunisian localities. The hypervariable region 1 of the mtDNA were amplified and sequenced. Additional sequences (N = 4921) from Mediterranean populations were compiled from previous studies. The average frequency of T16189C variant in Tunisia (29%) is similar to that observed in North African and Near Eastern populations. Our findings showed positive correlation of the T16189C variant with Sub-Saharan and North African lineages, while a negative correlation was found with the Eurasian haplogroups, reaching its maximum with the Eurasian haplogroup H. The principal component analyses showed a high internal heterogeneity between Tunisian localities. At the Mediterranean scale, Tunisians are closer to North African (Algerian and Moroccan) and Near Eastern populations (Syrians and Palestinians) than to Europeans.

Introduction

Human mtDNA is a small circular double-stranded DNA molecule of 16,569 in length (Anderson et al., 1981). It contains 37 genes encoded for two ribosomal RNAs, 22 transfer RNAs and 13 proteins of the oxidative phosphorylation system. The mtDNA is maternally inherited and non-recombined molecule with higher mutation rate (10–12 times higher than that of nuclear DNA) (Ingman et al., 2000). Accumulation of mtDNA variants results in impairment of electron transport and the oxidative phosphorylation system (Schapira, 2006). MtDNA variants are implicated in impairment of electron transport and the oxidative phosphorylation system (Schapira, 2006). MtDNA variants are implicated in different pathologies. Among them, the T16189C variant was reported to be associated with increased risk of type 2 diabetes (Park et al., 2008, Poulton et al., 2002), metabolic syndrome (Weng et al., 2005), dilated cardiomyopathy (Khogali et al., 2001), hereditary haemochromatosis (Livesey et al., 2004) and in the reduced birth weight (Mohlke et al., 2005).

Most T16189C variant investigation have been performed mainly on European and Asian populations. We propose in the present study to estimate the frequency of the T16189C variant in Tunisian and other Mediterranean populations and to evaluate the interaction of T16189C variant with mitochondrial haplogroups.

Methods

Samples

Blood samples were collected from 240 unrelated Tunisian subjects recruited from several Tunisian localities: North (N = 113), Centre (N = 81) and South (N = 46).

Ethics statement

This study was conducted according to the principles of the Declaration of Helsinki. Participants gave their written informed consent to be part of scientific project without restriction.

Genetic analysis

DNA sequencing of the hypervariable segment 1 (HVS1) was performed on ABI 3130 (Applied Biosystems Life Technologies SAS, Saint Aubin, France). Sequences obtained were aligned using Blast 2 sequences and Seqscape software (V2.7) (Applied Biosystems, LifeTechnologies SAS, Saint Aubin, France) and were sorted into haplogroups following van Oven and Kayser (van Oven & Kayser, 2009). Generated sequences are available in GenBank under accession numbers (KF694756-KF694805; KF931344-KF931392; KJ187805-KJ187945).

Data analysis

We have analyzed 955 mtDNA sequences (HVS1) from 18 Tunisian populations collected from the literature and the present...
study (Table 1). We also extended analyses to 39 Mediterranean populations (total = 5161) (Table 1).

Statistical analysis

Principal component analyses (PCA) as well as Pearson’s chi-square or Fisher’s exact tests were performed using the statistical package for the social sciences (SPSS, version 13.0, Chicago, IL).

Results

Comparisons frequencies of the T16189C variant among Tunisian regions

We proceeded by classifying our Tunisian sample into three regions according to their geographic origin: the North, the Centre and the South of Tunisia. Then, we investigated the T16189C frequency among these groups. Statistical analysis showed similar frequencies of the 16189C variant between the three regions ($p < 0.05$) (Supplementary Appendix A). Similar results were obtained when we included all previous studied Tunisian populations in the analysis, which we classified into the North, the Centre and the South of Tunisia (Supplementary Appendix B).

Comparisons of the T16189C variant frequencies between Tunisian localities

The T16189C variant was widely represented in different Tunisian regions and its frequency ranges from 0% in Berbers from Jerba ($N = 30$) to 62% in the population of Bou Saâd ($N = 40$) (Supplementary Appendices C and D (A)) with an average frequency of 29%. Statistical analyses comparing the frequency of T16189C variant among Tunisians revealed that both Berber Berbers and Bou Saâd had significant differences with the rest of the studied Tunisian localities with the exception of Arabs from Zriba who were not differentiated from Bou Saâd (Supplementary Appendix C).

Comparisons of the T16189C variant frequencies between Tunisians and 39 Mediterranean populations

We proceeded by grouping all Tunisian populations into one group (TUN) and comparing them to 39 Mediterranean populations for the frequencies of the T16189C variant. Results from this study showed that the frequency of the T16189C variant in Tunisia is similar to that found in North African (Except for: Upper Egypt (EGY), Algerians Mozabites (MOZ), Moroccans (MBS and MBN)) and Near Eastern populations, whereas it was different from that observed in Europeans (Except for Andalusians (AGP) and Corsicans (COB)) (Supplementary Appendices D, E, and F).

Principal component analyses of the T16189C variant and haplogroup distribution in 18 studied Tunisian localities

PCA of the mitochondrial T16189C variant and haplogroup frequencies in Tunisian population revealed 14.2%, 12.3% and 12.2% of the variance in PCA1, PCA2 and PCA3, respectively (Figure 1, Supplementary Appendices G and H). Overall, eight components (T16189C, L0, L1, L2, L3, M1, N and R) of the PCA explained 86.7% of the total genetic variance. The T16189C variant was mainly correlated with Sub-Saharan haplogroups, North African lineages and with the Eurasian haplogroup H. It is noteworthy that the T16189C variant correlated negatively with most Eurasian haplogroups, reaching its maximum with the Eurasian haplogroup H (Supplementary Appendices E and G). Accordingly, the five Tunisian localities from Chenini-Douiret (CHO), Bou Saâd (SAB), Bou Omrane (OMB), Kesra (Kesra) and Skira (SKI) appeared dispersed in the plot. PCA showed that Tunisian locality from SAB was most correlated with axis 1. Besides, CHO and KES correlated positively with axis 2, while OMB and SKI correlated negatively with axis 2. Whereas, the remaining Tunisian populations were clustered together, occupying the first and the second axes (Figure 1).

Principal component analyses of the mitochondrial T16189C variant and haplogroup distribution in Tunisians (TUN) and 39 Mediterranean populations

We proceeded by grouping all Tunisian populations into one group (TUN). PCA analyses for the T16189C variant and haplogroup frequencies in Tunisians (TUN) and 39 Mediterranean populations revealed 14.8%, 14.3% and 11% of the variance in PCA1, PCA2 and PCA3, respectively (Figure 2, Supplementary Appendix I). Overall, seven components (T16189C, L0, L1, L3, M1, N and I) of the PCA explained 76.4% of the total genetic variance. PCA analysis showed that most North African populations segregated positively with at least one axis, while the majority of the European populations showed a negative segregation with two axes with intermittent position for Near Eastern populations (SYR, PAL). Accordingly, Tunisians were most segregated with axis 2. Tunisians were most related to North Africans from Algeria (ALG) and Morocco (ASB, FIB, and MOA) and were differentiated from Egyptians (GUR, EGY, and ALX) (Figure 2).

Similar position of Tunisians was obtained when we excluded outliers from Chenini-Douiret and Bou Saâd mentioned in Kefi et al. (2014).

Discussion

The present study provides an overview on the distribution of the variant T16189C in Tunisia and in the Mediterranean. T16189C variant is frequent in Tunisia (29%) (Supplementary Appendix D). This value is similar to that reported in a case-control study performed on Tunisians with type 2 diabetes (Hsouna et al., 2013).

The distribution of the T16189C variant is not significantly different between the North, the Centre and the South of Tunisia (Supplementary Appendices A and B). This finding is shown by AMOVA analyses (Kefi et al., 2014).

It is noteworthy that the maximum of genetic variance between Tunisian populations was explained by the interaction between T16189C variant and mitochondrial haplogroups. T16189C variant correlates positively with Sub-Saharan and North African lineages, and negatively with the Eurasian haplogroup H.

Our investigations contribute to the stratification of the Tunisian population. Five Tunisian populations (Chenini-Douiret (CHO), Bou Saâd (SAB), Bou Omrane (OMB), Kesra (KES) and Skira (SKI)) differ from the rest of Tunisians. The position of SAB at the extreme one end of axis 1 is mainly due to the most frequent T16189C variant and haplogroup L0 in Tunisia. Similarly, the positive correlation of CHO and KES with axis 2 is linked to the high values of the Eurasian haplogroups K, T and HV for CHO and to the frequent haplogroup K for KES. While the position of OMB and SKI at the extreme other end of axis 2 is related to the higher frequencies of haplogroups H and L3 for OMB and of the haplogroup H for SKI (Figure 1).

At the Mediterranean scale, the present study showed that the frequency of the T16189C variant in Tunisia is similar to most North Africans and Near Eastern populations and higher than that encountered in Mauritians (~12.5%) (Meiloud et al., 2013) and Europeans (Supplementary Appendices D–F). Position of
Table 1. Estimated Frequencies of the T16189C variant in 57 Mediterranean populations.

Populations	Code	Sample size	Number of individuals with T16189C	Frequency of T16189C variant (%)	References
NORTH AFRICA					
TUNISIA					
NORTH					
Northern Tunisia	NOT	177	60	34	(Turchi et al., 2009; Kefi et al., 2014), Present Study
Qalaat El Andalous	QAL	29	9	31	(Cherni et al., 2009)
Capital Tunis	CTU	98	33	34	(Cherni et al., 2009, Plaza et al., 2003)
El Alia	ELA	48	8	17	(Cherni et al., 2009)
Zriba	ZRI	35	7	20	(Cherni et al., 2009)
Slouguiia	SLO	28	4	14	(Cherni et al., 2009)
Testour	TES	50	13	26	(Cherni et al., 2009)
Kesra	KES	43	16	37	(Cherni et al., 2009)
CENTRE					
Central Tunisia	CET	81	22	27	Present Study
SOUTH					
Southern Tunisia	SOT	46	13	28	Present Study
Skira	SKI	20	4	20	(Cherni et al., 2009)
Jerba Arabs	JEA	29	8	28	(Loueslati et al., 2006)
Jerba Berbers	JEB	30	–	–	(Loueslati et al., 2006)
Chenini-Douiret	CHO	53	19	36	(Fadhlaoui-Zid et al., 2004)
Senned	SEN	55	23	42	(Fadhlaoui-Zid et al., 2004)
Bou Omrane	OMB	40	7	18	(Ennafaa et al., 2011)
Bou Sâid	SAB	40	25	62	(Ennafaa et al., 2011)
Matmata	MAT	53	8	15	(Fadhlaoui-Zid et al., 2004)
TOTAL TUNISIANS	TUN	955	279	29	
LIBYA					
Fezzan	FAL	129	36	28	(Ottoni et al., 2009)
EGYPT					
Upper Egypt	EGY	102	41	40	(Stevanovitch et al., 2004)
Gurna	GUR	34	13	38	(Stevanovitch et al., 2004)
Siwa Berbers	SIB	78	24	31	(Coudray et al., 2009)
Alexandria	ALX	277	75	50	(Saunier et al., 2009)
ALGERIA					
Algerians	ALG	47	14	30	(Plaza et al., 2003)
Algerian Mozabites	MOZ	85	42	49	(Corte-Real et al., 1996)
MOROCCO					
NORTH AFRICA					
MOROCCO					
Southern Moroccan (Berbers)	MBS	50	5	10	(Brakez et al., 2001)
Northern Moroccan (Berbers)	MBN	60	6	10	(Plaza et al., 2003)
Moroccan Arabs	MOA	50	17	34	(Plaza et al., 2003)
Saharawi	SAH	56	16	29	(Plaza et al., 2003)
Marrakech	MAR	52	15	29	(Falchi et al., 2006)
Asni Berbers	ASB	53	15	28	(Coudray et al., 2009)
Bouhria Berbers	BOB	70	21	30	(Coudray et al., 2009)
Figuig Berbers	FIB	94	23	24	(Coudray et al., 2009)
Total North African sequences				2192	
NEAR EAST					
PALESTINE-ISRAEL					
Palestinian-Israeli	PAL	117	25	21	(Richards et al., 2000)
Druze	DRU	45	19	42	(Macaulay et al., 1999)
SYRIA					
Syrian	SYR	69	18	26	(Richards et al., 2000)
Total Near Eastern populations				231	
EUROPE					
GREECE					
Greeks	GRE	184	30	16	(Villens, 2011)
Northern Greeks	GNG	319	53	16	(Irwin et al., 2008)
CYPRUS					
Cypriots	GRC	91	10	11	(Irwin et al., 2008)
TURKEY					
Turks	TUR	213	45	21	(Richards et al., 2000)
SPAIN					
Andalusian	AND	158	31	20	(Plaza et al., 2003)
Andalusia (Granada Province)	AGP	66	12	19	(Falchi et al., 2006)
Catalan	CAT	162	12	20	(Plaza et al., 2003)

(continued)
Table 1. Continued

Populations	Code	Sample size	Number of individuals with T16189C	Frequency of T16189C variant (%)	References
Galician	GAL	374	34	9	(Alvarez-Iglesias et al., 2009, Salas et al., 1998)
Basque	BAS	45	4	9	(Bertranpetit et al., 1995)
Majorcan	MAJ	112	14	13	(Falchi et al., 2006, Picornell et al., 2005)
Minorcan	MIN	46	4	9	(Picornell et al., 2005)
EUROPE					
SPAIN					
Valencian	VAL	42	2	5	(Picornell et al., 2005)
Ibizan	IBI	50	–	–	(Picornell et al., 2005)
Chuetas	CHU	48	6	12	(Picornell et al., 2005)
FRANCE					
French	FRE	109	14	13	(Dubut et al., 2004)
Centre Corsica	COR	47	2	4	(Varesi et al., 2000)
Southern Corsica	COB	53	12	23	(Falchi et al., 2006)
ITALIA					
South Italy	ITS	86	9	10	(Francalacci et al., 1996, Richards et al., 2000)
Sardinian	SAR	303	46	15	(Di Rienzo and Wilson, 1991, Falchi et al., 2006)
Sicilian	SIC	169	23	14	(Cali et al., 2001, Richards et al., 2000)
Tuscan	TUE	61	8	13	(Falchi et al., 2006)
Total Eurasiun sequences	2738				
Total					5161

Figure 1. PCA of 18 Tunisian populations based on frequencies of the mitochondrial T16189C variant and haplogroups. See Table 1 for more details on codes and reference information. (TIF).
Tunisians is mainly attributed to frequencies of the Sub-Saharan haplogroups L2, L3 and of the North African haplogroup U6 (Figure 2).

These findings were confirmed by our phylogenetic study (Kefi et al., 2014) and were in accordance with a previous study using ancestry informative marker SNPs (Khodjet-el-Khil et al., 2011).

On the other hand, we revealed that Tunisians were genetically distant from Egyptian populations. These differences were previously reported in studies using uniparental markers (Coudray et al., 2009; Fadhlaoui-Zid et al., 2011) and in anthropological studies (Kefi, 2011).

Conclusions

Our results suggested that T16189C is common in Tunisia (29%), in North African and in Near Eastern populations belonging to the Mediterranean region. It correlated positively with Sub-Saharan and North African lineages and negatively with the Eurasian haplogroups H. Tunisians are genetically closer to North Africans (Algerian and Moroccans) and Near Eastern populations than to Europeans.

Findings from this study contribute to the better knowledge of the matrilineal background of Tunisia within Mediterranean populations. This genetic stratification will be useful for the design of future studies.

Acknowledgements

We thank the sample donors for taking part in this study. We also thank Mr Hichem Ben Hassine for his help to publish the supplementary material on the web site of Institut Pasteur de Tunis.

Declaration of interest

The authors declare that no conflicts of interest exist. This work was supported by the Tunisian Ministry of Public Health, the Ministry of Higher Education and Scientific Research, the NEPAD/NABNet T2D project and EMRO-COMSTECCH (3(174)/09-COMSTECCH). Sana Hsouna, Sonia Abdelhak and Rym Kefi are part of the MEDIGENE Consortium (FP7-279171-1).

References

Alvarez-Iglesias V, Mosquera-Miguel A, Cerezo M, Quintans B, Zarrabeitia MT, Cusco I, Lareu MV, et al. (2009). New population and phylogenetic features of the internal variation within mitochondrial DNA macro-haplogroup R0. PLoS One 4:e5112.

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, et al. (1981). Sequence and organization of the human mitochondrial genome. Nature 290:457–65.

Bertranpetit J, Sala J, Calafell F, Underhill PA, Moral P, Comas D. (1995). Human mitochondrial DNA variation and the origin of Basques. Ann Hum Genet 59:63–81.

Bracek Z, Bosch E, Izaabel H, Akhayat O, Comas D, Bertranpetit J, Calafell F. (2001). Human mitochondrial DNA sequence variation in the Moroccan population of the Souss area. Ann Hum Biol 28:295–307.

Cherni L, Fernandes V, Pereira JB, Costa MD, Goios A, Frigi S, Yacoubi-Loueslati B, et al. (2009). Post-last glacial maximum expansion from Iberia to North Africa revealed by fine characterization of mtDNA H haplogroup in Tunisia. Am J Phys Anthropol 139:253–60.

Corte-Real HB, Macaulay VA, Richards MB, Hariti G, Issad MS, Cambon-Thomsen A, Papila S, et al. (1996). Genetic diversity in the Iberian Peninsula determined from mitochondrial sequence analysis. Ann Hum Genet 60:331–50.
Coudray C, Olivieri A, Achilli A, Pala M, Melhaoui M, Cherkaoui M, El-Chennawi F, et al. (2009). The complex and diversified mitochondrial gene pool of Berber populations. Ann Hum Genet 73:196–214.

Di Rienzo A, Wilson AC. (1991). Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci USA 88: 1597–601.

Dubet V, Chollet L, Murali P, Cartault F, Beraud-Colomb E, Serre M, Mogentale-Profizi N. (2004). mtDNA polymorphisms in five French groups: Importance of regional sampling. Eur J Hum Genet 12: 293–300.

Ennafaa H, Frehel R, Khodjet-EI-Khil H, Gonzalez AM, Mahmoudi HA, Cabrera VM, Larruga JM, et al. (2011). Mitochondrial DNA and Y-chromosome microstructure in Tunisia. J Hum Genet 56:734–41.

Fadhlaoui-Zid K, Plaza S, Calafell F, Ben Amor M, Comas D, Bennamar El gaaied A. (2004). Mitochondrial DNA heterogeneity in Tunisian Berbers. Ann Hum Genet 68:222–33.

Fadhlaoui-Zid K, Rodriguez-Botigue L, Naoui N, Benammar-Elgaaied A, Calafell F, Comas D. (2011). Mitochondrial DNA structure in North Africa reveals a genetic discontinuity in the Nile Valley. Am J Phys Anthropol 145:107–17.

Falchi A, Giovannoni L, Calo CM, Piras IS, Moral P, Paoli G, Vona G, et al. (2006). Genetic history of some western Mediterranean human isolates through mtDNA HVR1 polymorphisms. J Hum Genet 51:9–14.

Francalacci P, Bertranpetit J, Calafell F, Underhill PA. (1996). Sequence diversity of the control region of mitochondrial DNA in Tuscany and its implications for the peopling of Europe. Am J Phys Anthropol 100: 443–60.

Hsouna S, Ben Halim N, Lasram K, Arfa I, Jamoussi H, Bahri S, Ammar SB, et al. (2013). Association study of mitochondrial DNA polymorphisms with type 2 diabetes in Tunisian population. Mitochondrial DNA. [Epub ahead of print]. doi: 10.3109/19401736.2013.836508.

Ingman M, Kaessmann H, Paabo S, Gyllensten U. (2000). Mitochondrial control-region sequence variation in the European variation. Eur J Hum Genet 6:365–75.

Irwin J, Saunier JL, Strouss KM, Ramachandran S, Parson TJ. (2009). Mitochondrial control region sequences from an Egyptian population sample. Forensic Sci Int Genet 3:e97–103.

Ji L, et al. (2005). Association of mitochondrial deoxyribonucleic acid 16189 C transition) with metabolic syndrome in Chinese adults. Prim Care Diabetes 7:19–24.

Kefi R. (2011). Ancient DNA investigations: A review on their significance in different research fields. Int J Mod Anthrop 4:61–76.

Kefi R, Hsouna S, Ben Halim N, Lasram K, Romdhane L, Messai H, Abdelhamid I, Veten F, Lasram K, Ben Halim N, et al. (2013). Type 2 diabetes in Mauritania: Prevalence of the undiagnosed diabetes, influence of family history and maternal effect. Prim Care Diabetes 7:19–24.

Kefi R, Hsouna S, Ben Halim N, Lasram K, De Angelis F, Truccchi E, et al. (2009). First genetic insight into Libyan Tuaregs: A maternal perspective. Ann Hum Genet 73:438–48.

Kohlmeier KA, Scott LJ, Peck EC, Suh YD, Chines PS, Watanabe RM, et al. (2005). Mitochondrial polymorphisms and susceptibility to type 2 diabetes-related traits in Finns. Hum Genet 118:245–54.

Kohoutova M, Villettes JL, Austin T, Schmitt H, Chines PS, Watanabe RM, et al. (2005). Mitochondrial DNA HVRI variation in Balearic populations. Am J Phys Anthropol 128:119–30.

Meiloud G, Arfa I, Kefi R, Abdelhamid I, Veten F, Lasram K, Ben Halim N, et al. (2013). Type 2 diabetes in Mauritania: Prevalence of the undiagnosed diabetes, influence of family history and maternal effect. Prim Care Diabetes 7:19–24.

Mohlke KL, Jackson AU, Scott LJ, Peck EC, Suh YD, Chines PS, Watanabe RM, et al. (2005). Mitochondrial polymorphisms and susceptibility to type 2 diabetes-related traits in Finns. Hum Genet 118:245–54.

Mollard C, Martinez-Labarga C, Loogvali EL, Pennarun E, Achilli A, De Angelis F, Truccchi E, et al. (2009). First genetic insight into Libyan Tuaregs: A maternal perspective. Ann Hum Genet 73:438–48.

Park KS, Chan JC, Chuang LM, Suzuki S, Arai K, Nanjo K, Ji L, et al. (2008). A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia 51:602–8.

Piconcelli A, Gomez-Barbeta L, Tomas C, Castro JA, Ramon MM. (2005). Mitochondrial DNA HVRI variation in Balearic populations. Am J Phys Anthropol 128:119–30.

Plaza S, Calafell F, Helal A, Bouzerna N, Lefranc G, Bertranpetit J, Comas D. (2003). Joining the pillars of Hercules: mtDNA sequences show multidirectional gene flow in the western Mediterranean. Ann Hum Genet 67:312–28.

Poulton J, Luan J, Macaulay V, Hennings S, Mitchell J, Wareham NJ. (2002). Type 2 diabetes is associated with a common mitochondrial variant: Evidence from a population-based case-control study. Hum Mol Genet 11:1581–3.

Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, et al. (2000). Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 67:1251–76.

Salas A, Comas D, Lareu MV, Bertranpetit J, Carracedo A. (1998). mtDNA analysis of the Galician population: A genetic edge of European variation. Eur J Hum Genet 6:365–75.

Saunier JL, Irwin JA, Strouss KM, Ramachandran S, Parson TJ. (2009). Mitochondrial control region sequences from an Egyptian population sample. Forensic Sci Int Genet 3:e97–103.

Schapira AH. (2006). Mitochondrial disease. Lancet 368:70–82.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Salas A, Comas D, Lareu MV, Bertranpetit J, Carracedo A. (1998). mtDNA analysis of the Galician population: A genetic edge of European variation. Eur J Hum Genet 6:365–75.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.

Scozzari R, et al. (1999). The emerging tree of West Eurasian mtDNAs: A synthesis of control-region sequences and RFLPs. Am J Hum Genet 64:232–49.