Identifying the global terror hubs and vulnerable motifs using complex network dynamics

Syed Shariq Husain1, Kiran Sharma1, Vishwas Kukreti1, and Anirban Chakraborti1,*

1School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India. *anirban@jnu.ac.in

ABSTRACT

Terrorism instills fear in the minds of people and takes away the freedom of individuals to act as they will. Terrorism has turned out to be an international menace in the global community; every nation is getting affected, directly or indirectly. Here, we study the terrorist attack incidents which occurred in the last half century across the globe from the open source, Global terrorism database, and develop a view on their spatio-temporal dynamics. We construct a complex network of global terrorism and study its growth dynamics, along with the statistical properties of the network, which are quite intriguing. Normally, each nation pursues its own vision of international security based upon its mandate and particular notions of politics and its policies to counter the threat of terrorism that could naturally include the use of tactical measures and strategic negotiations, or even physical power. We study the resilience of the network against targeted attacks and random failures, which could guide the counter-terrorist outfits in designing strategies to fight terrorism. We then use a disparity filter method to isolate the backbone of the giant component, and identify the terror hubs and vulnerable motifs of global terrorism. We also examine the evolution of the hubs and motifs in a few exemplary cases like Afghanistan, Colombia, Israel, Peru and United Kingdom. The dynamics of the terror hubs and the vulnerable motifs that we discover in the network backbone can provide deep insight on their formations and spreading, and thereby help in contending terrorism or making public policies that can check their spread.

Introduction

Humans are social animals and since the early days of evolution, they have preferred to form and stay together in groups. These groups have evolved from simple settlements to huge nations; defined by multiple causes like language, common heritage, geographical boundaries, and even ideology. The human cooperation has been a motivating force behind the rapid progress of man1. Often evolutionary efforts induced the increase in human cooperation. Various factors, like delayed self-sustenance of young ones, or fear of elimination by neighboring communes competing for similar resources which obstructed the humans to sustain their progeny became reasons for cooperation. This cooperation extended from blood relatives to totally unrelated individuals. Surprisingly, evolution has also been responsible for drawing distinctions among themselves in their bids for survival of the fittest. This segregation2,3 can be seen in various forms like race, caste, class, religion, political ideology, etc. Thus, the human social behavior has been extremely convoluted with multiple parameters playing crucial roles. It is extremely difficult to assess the complexity of human social behavior, which has a wide range — co-operations, bonding, conflicts, aggression, coups, wars, etc. Similar to conflicts, aggression and wars, which have plagued mankind from antiquity, acts of terrorism — where a small group of individuals which are similarly motivated in fighting another social institution or organization or exercising indiscriminate violence in achieving financial, political, religious or ideological aim are hardly new. Though there is no single definition, terrorism may be broadly defined as a conscious and deliberate attempt to incite fear among masses through violence or the threat of violence to pursue a political or ideological gain4,5. The aim of terrorism is not limited to eliminating the target group or destruction of opponent’s resources, rather it is specifically carried out to send out a psychological message to the adversary. It is meant to propagate fear among the wider general public which may encompass rival religious or ethnic group, a state government, or an entire country. Terrorists seek to gain leverage they lack on a political scale by changing the scales of power. Even though terrorism has been prevalent ever since modern political landscape has existed, past few decades have seen an exponential increase in terrorist incidents. The scope and nature of terrorist attacks have also evolved rapidly, a fact that became evident to the world on September 11, 2001, when a series of four coordinated attacks were conducted by the Islamic terrorist group al-Qaeda in the United States. Academic and social media reports show an increase in the number of terrorist acts being carried out by an increasing number of terrorist organizations, with extending stretch of the target locations at a global scale. These realities have made it incessantly difficult for counter-terrorist organizations or governments in terminating these terrorist acts.

Apart from solutions by social scientists, physicists have recently tried to provide mathematical models, statistical and network analyses and potential solutions to the menaces of terrorism6-8 and conflicts9. Like business conglomerates, terrorist
organizations have also formed transnational ties. They are inter-connected (in a state) and have links with other terrorist organizations outside of the geographical boundaries of the target state.

In this paper, we develop and present a network based study10,11 of identification of terrorists and their targets. The international terrorist network is examined and vulnerable motifs of global terrorism network are identified. We analyze the terrorist events from the Global Terrorism database (GTD)12,13, which collected reports from the printed and digital media, over the span of 1970-2016. We construct a complex network of global terrorism and investigate the network characteristics of this anti-social network. We study the resilience of the network against targeted attacks and random failures11,14, which could guide the counter-terrorist outfits in designing strategies to fight terrorism. We also use the disparity filter method15 to isolate the backbone of this network, and identify the terror hubs and vulnerable motifs of global terrorism. We then examine the evolution of the hubs and motifs in a few special cases like Afghanistan, Colombia, Israel, Peru and United Kingdom. The backbone evolution and change of relative importance of the terror hubs and the vulnerable motifs are analyzed.

Results

Network construction, structure and backbone

We analyze the terrorist attacks over the entire 46 year period (1970-2016), excluding 1993 (non-availability of data for the given period). In our study, the temporal granularity of the data is one day. Fig. 1 (Top) shows the spatio-temporal distribution of the events across the globe; the dots representing the locations are colored according to different decades during which the events occurred. Evidently, past few decades have seen an exponential increase in terrorist incidents (see Supplementary Information Fig. S7 for the plots attack details and Fig. S8 for the impact of attacks across the globe). Over a period of time \(\tau \), we construct the network of ‘connected’ actors in the following way: Whenever a terrorist source, actor \(a_1 \), attacks a target, actor \(a_2 \), it is recorded as an event \(E_1 \) at time \(t \in [t_0 : t_0 + \tau] \), a directed link ‘connects’ the source to the target by an arrow of unit weight, where \(t_0 \) is the initial time in the entire span \(\tau \). If another event \(E_2 \) within the same time window involves source \(a_3 \) and target \(a_2 \), then \(a_3 \) is connected to \(a_2 \) with a directed link of unit weight. Thus, sources \(a_1 \) and \(a_3 \) are both connected to the common target \(a_2 \). Aggregating all such events over the time window \(\tau \), connected components are formed, as shown in Fig. 1 (Bottom Left). The terrorist network for the entire period consists of 5568 nodes, 64855 edge mentions and 10379 unique edges, with the giant component in grey consisting of 5148 nodes. Thus, the giant component encompasses more than 92\% of the network nodes. The decade-wise evolution of the network along with its giant component is displayed in Fig. S9 of the Supplementary Information.

We extracted (i) the number of mentions \(m \) of each individual actor (source or target) and (ii) the number of co-mentions \(w \) of an unique pair of actors (source-target), as well as the number of unique actors \(k \), one actor is involved with. In terms of the network theory, \(m \) measures node strength, \(w \) the link weight and \(k \) the degree of a node (out-degree for sources and in-degree for targets). While \(m \) and \(k \) measure the importance, activity or visibility of a single actor, \(w \) measures the frequency of involvement of an actor pair (source-target) in the terrorist events. Since this is a directed network, the nodes have distinct out-degree and in-degree distributions.

To find the backbone structure of the weighted network, we have used an algorithm proposed by Serrano et al.15. The disparity filter algorithm extracts the network backbone by considering the relevant edges at all the scales present in the system and by exploiting the local heterogeneity and local correlations among the weights. The disparity filter has a cut-off parameter \(\alpha_c \), the choice of which is arbitrary. It effectively controls the number of nodes and the edges that appear in the backbone. The effect of \(\alpha_c \) on the backbone is displayed in Figure S10 and summarized in Table S2 in Supplementary Information. We have chosen \(\alpha_c = 0.01 \) such that it enables us to follow the country-wise evolution of the terror hubs and vulnerable motifs that appear in the backbone structures. Using the value of the cut-off parameter \(\alpha_c = 0.01 \), we extracted the backbones of the networks for the different periods of evolution. Fig. 1 (Bottom Right) shows the backbone for the network with the aggregated data 1970 to 2016, consisting of 470 nodes (8\% of the total network), 427 edges (4\% of the total network) and 40467 edge mentions (62\% of the total network). The list of names of all the 470 nodes (190 sources and 280 targets) are given in Tables S3-S4 in the Supplementary Information. Fig. 2 shows the growing backbones of the networks for the different decades of evolution. As time evolves the backbone structure grows (number of nodes and edges increase) and becomes more intricate. The number of nodes, unique edges, edge mentions, number of clusters, and the average number of neighbors a node possesses in the growing backbone structures as shown in Fig. 2, are summarized in Table 1. Interestingly, the number of source-target pairs in the backbone structures—indicated by the number of edges, is around 4\% for most years. However, their frequencies of engagement—indicated by the number of edge mentions, grows steadily from 38\% (1970-1980) to 62\% (1970-2016). The average number of neighbors a node possesses, also increases from 1.537 (1970-1980) to 1.817 (1970-2016).

The complementary cumulative probability density function (CCDF) for degree \(Q(k) \) (out- and in-degrees), mentions \(Q(m) \) for sources and targets, and the co-mentions \(Q(w) \) show broad distributions, fitting either power-law, log-normal or stretched exponential distributions (see Fig. 3). The CCDF’s \(Q(s) \) of the cluster size \(s \) for the growing networks are shown in Fig. 3: evidently, the outliers correspond to the sizes of the growing giant cluster (as percentage of the total number of nodes in the
Figure 1. *(Top)* Spatio-temporal evolution of attacks for the period 1970 to 2016. The different colored dots indicate the locations of the attacks, along with the years mentioned in the legend. *(Bottom Left)* The aggregated network of terrorism for the period 1970 to 2016 – Network of terrorist attacks constructed from the history of the events. Two types of actors are involved in the network: source and target (source nodes refer to the terrorist organizations and target nodes are the victims). Each actor is a node and whenever two actors are involved in an event, a directed link is drawn from source to target. The network has a giant component (grey) in the center, surrounded by 168 peripheral isolated clusters (black), while the nodes colored in red are showing the backbone; the average degree of a node in the network is 3.718. *(Bottom Right)* The zoomed-in view of the backbone of the network, which has been identified using the disparity filter with $\alpha_c = 0.01$ (see Methods section). The backbone has 470 nodes (190 sources and 280 targets; details summarized in Tables S3-S4 in Supplementary Information) and 427 unique edges.

Year	Nodes (%)	Edges (%)	Edge mentions (%)	Number of clusters	Average number of neighbors
1970-1980	82 (16)	63 (3)	2490 (38)	20	1.537
1970-1990	179 (17)	156 (4)	12440 (56)	35	1.743
1970-2000	265 (7)	230 (4)	17730 (57)	51	1.736
1970-2010	341 (7)	308 (4)	23707 (57)	60	1.806
1970-2016	470 (8)	427 (4)	40467 (62)	79	1.817
Figure 2. Decade-wise evolution of the network backbone for the period 1970 to 2010 (*Left to Right*). The zoomed-in views of the backbones of the growing network, which have been identified using the disparity filter with $\alpha_c = 0.01$. The characteristics of the growing backbone structure for the different decades, are summarized in Table 1.

network): 1210 (83%) (1970-80), 2346 (88%) (1970-90), 3313 (86%) (1970-2000), 4220 (90%) (1970-2010) and 5148 (92%) (1970-2016). The above results quantitatively characterize the heterogeneity in the activities of the different actors (sources and targets), while most actors are relatively less active. The broad distributions for actor mentions indicate that there are a significant few who constantly engage in terror activities, and that for actor pair mentions indicate similar characteristic for pairs of source-target (see Table S5 in Supplementary Information for the list of top-50 actor pairs– source-target). The broad degree distributions indicate that the number of actors engaging with very large number of actors are also quite significant; the form of the distribution shows little change. Notably, the average clustering coefficient of the nodes in the backbone is zero (indicating the absence of loops), contrary to most social networks of friendships, collaborations, etc., where typically the average clustering coefficient is high10,11.

Tolerance of network to attack and failure

We study how the network breaks down under attack, in order to stop terrorism activities to happen14. The largest connected component of the network (i.e., the giant component) is subjected to targeted attack by removal of the most connected nodes (in terms of the source out-degree, which corresponds to a terrorist organization, etc.). As the network is directed, so we started by removing the source node with the highest out-degree, followed by the next highest out-degree and so on. This results in rapid fragmentation or destruction of the network by removing all the source nodes/negative nodes. We compute the fraction of nodes GC present in the largest cluster, which is observed to decrease very quickly, and the average number of nodes in the isolated clusters other than the giant component $\langle ac \rangle$, with increasing fraction of removed nodes. The network and the giant component are destroyed faster by targeted nodes removal (attack), compared to the random node removal (failure), as shown in Fig. 4.

Evolution of the hubs and motifs in the backbone structure

Using the disparity filter method, we isolate the backbone of this network and identify the terror hubs and vulnerable motifs of global terrorism. As obvious, all the terror hubs and vulnerable motifs that are very frequently engaged appear in the backbone. We show in Fig. 5, the evolution of the hubs and motifs in a few exemplary cases like Afghanistan (AFG), Colombia (COL), Israel (ISR), Peru (PER) and United Kingdom (GBR). The very fact that the backbone structure evolves indicates that often some terrorist organizations gain more prominence than others. Examining these hubs and motifs, we observe that the *star-structure* occurs quite frequently in the backbone: one source attacking many targets, or one target being attacked by many sources. The backbone structure of ISR grows from a simple structure of three nodes (1 source and 2 targets; average degree 1.33) in 1970-1980, to an intricate structure of twenty nodes (14 sources and 6 targets; average degree 1.90) in 1970-2016. The backbone structure of GBR remains fairly the same; the average degree grows from 1.85 (1970-1980) to 1.91 (1970-2016); the Irish Republican Army is the main terrorist hub, while the private citizens and property is the most vulnerable target for the entire duration. In COL, the backbone structure grows from a simple 3 node (1 source and 2 targets) in 1970-1980 to a clustered 11 nodes (5 sources and 6 targets) in 1970-1990; the average degree jumps from 1.33 to 2.91. Then it grows steadily to a closely knit structure of 15 nodes (6 sources and 9 targets) at the end of 2016. Interestingly, AFG does not appear in the backbone till the 2000-2010, and government (Diplomatic) GOVD_USA is a common target which links two countries AFG and PER. This is typically the case in many other empirical networks, where there exists a node connecting two modules or communities16. In AFG and PER, we again see the appearance of star structures, as in GBR. We have also observed in Fig. 2
Figure 3. The complementary cumulative probability density functions (CCDF’s) for the decade-wise data: (Top Left and Right) In-degrees and out-degrees (Middle Left and Right) Actor Mentions (outgoing for sources and incoming targets), (Bottom Left) Co-actor Mentions and (Bottom Right) Cluster size distribution, with the giant clusters as outliers.
Figure 4. (Top) The structure of network (directed) under targeted attack: Terrorist source nodes are removed in the sequence of their out-degree starting from the highest out-degree. The plots shows the behavior of the giant component GC (fraction of nodes in the largest connected component) and the average number of nodes in the isolated clusters other than the giant component $\langle ac \rangle$, with increasing fraction of removed nodes. (Bottom) The structure of network (directed) under random failure: Nodes having out-degree are removed randomly. The network and the giant component are destroyed faster by targeted nodes removal (attack), compared to the random node removal (failure): GC becomes zero after about 33% of the sources are removed through the former method, and about 87% of the sources are removed through the latter. The results are shown for the network aggregated over 1970 – 2016.
Figure 5. Growth of the backbones for the decades 1970 to 2016 (Left to Right), in the countries: (Top to Bottom) Israel (ISR), United Kingdom (GBR), Columbia (COL), Afghanistan (AFG) and Peru (PER). The zoomed-in views of the backbones of the network, which have been identified using the disparity filter with $\alpha_c = 0.01$.

that El Salvador (SLV) had appeared in 1970-1980 and 1970-1990 backbones, but does not appear since then; this conforms to the fact that Chapultepec peace accords were signed in 1992.

These observations on the dynamics of the terror hubs and the vulnerable motifs in the network backbone that we highlighted above, can provide deep insight on their formations and spreading, and thereby help in contending terrorism or making public policies that can reduce their spread. Our results for the range of provided parameters describe the evolution of terrorism in the above countries that emerge from the network analysis. The results are in no way a comment on the previous policies of the Governments of the countries considered.

Discussions

We have examined the spatio-temporal dynamics of the terrorist events across the globe, using the Global Terrorism database (GTD)12,13 over the span of 46 years from 1970 to 2016. We developed the view of a complex network of global terrorism and studied its growth dynamics along with the statistical regularities of the network properties. The statistical properties of the network are quite interesting and robust. The network always has a giant component, which is about 83\% to 92\% of the total number of nodes in the network. The complementary cumulative probability density functions for the degrees (k), mentions (m), and source-target mentions (w) are broad (power laws, log-normals or stretched exponentials). We studied the resilience of the network against targeted attacks and random failures. The giant component disappears after about 33\% of the hubs (in descending order of magnitude) are removed; in the case of random removal of sources, the giant component disappears much slower— only after 87\% of the sources are removed. We isolated the backbone of the terrorist network using the disparity filter method, and identified the terror hubs and vulnerable motifs of global terrorism. The backbones for the various decades contain between 8\% to 16\% of the total number of the nodes; the number of unique edges remain fairly constant around 4\% of the total number of edges in the network. Most importantly, the edge mentions grow from 38\% to 62\% of the total network, signifying very high frequency of engagement between a small number of source-target pairs. The terror hubs and vulnerable motifs are
seen to have star structures more frequently than by chance. The average degree of a node in the backbone increases steadily as time evolves. The average clustering coefficient is always observed to be zero (indicating the absence of triangles) in the growing network, as well as the evolving backbone. We analyzed the evolutionary structures of the hubs and motifs in a few special cases like Afghanistan, Colombia, Israel, Peru and United Kingdom. We also observed that US citizens, businessmen, and other organizations are often the common target nodes linking different closed knit communities of terrorist organizations from other countries. The observation that El Salvador appeared only in the backbones of 1970 – 1980 and 1970 – 1990 and not thereafter, conforming to the fact that Chapultepec peace accords were signed in 1992, is a significant outcome of the network backbone analysis.

The political and socioeconomic conditions along with the local circumstances of a region, play key roles in framing anti-terrorism policies and elimination of terrorist ties. The inter-disciplinary approaches of network analysis that we have used in this paper, may provide supplementary knowledge and insight on the formation and spreading of terrorism, and thereby help the international security agencies in contending terrorism, as well as produce acumen for the policy makers and experts of international relations.

Materials and Methods

Data description and filtration
The source for this analysis is open-access data12,13 generously provided by the National Consortium for the Study of Terrorism and Responses to Terrorism (START), University of Maryland. The data provides a detailed account of terrorist events from 1970 to 2016, except for year 1993 for which no data existed. The dataset has 170350 instances divided into 135 attributes. The dataset required considerable cleaning before any study could be done. The doubtful events, suggested by dataset itself, were removed. Further, attacks carried out by ‘Unknown’ terrorist organization on ‘Unknown’ targets were also filtered out. The events which had no spatial information in the dataset were removed, too. To maintain the network modularity at country level any attack which targeted international community instead of a particular nationality was also removed from the dataset. The feature selection consisted of removing explanatory attributes of the dataset. The cleaning left us with 64980 instances of 11 attributes (see Fig. S6 in Supplementary Information).

Disparity filter to identify backbone
To find the backbone structure of a weighted network, we have used the algorithm proposed by Serrano et al.15. The disparity filter algorithm extracts the network backbone by considering the relevant edges at all the scales present in the system and exploiting the local heterogeneity and local correlations among the weights. The disparity filter has a cut-off parameter α_c, which determines the number of edges that are reduced in the original network. The filter however, preserves the cutoff of the degree distribution, the form of the weight distribution, and the clustering coefficient.

References
1. Perc, M. \textit{et al.} Statistical physics of human cooperation. \textit{Physics Reports} \textbf{687}, 1–51 (2017).
2. Schelling, T. Models of segregation. \textit{American Economic Review} \textbf{59}, 488–93 (1969).
3. Schelling, T. Models of segregation. \textit{Journal of Mathematical Sociology} \textbf{1}, 143–186 (1971).
4. Richardson, L. \textit{The roots of terrorism} (Routledge, 2013).
5. Cutter, S. L., Richardson, D. B. & Wilbanks, T. J. \textit{The geographical dimensions of terrorism} (Routledge, 2014).
6. Galam, S. & Mauger, A. On reducing terrorism power: a hint from physics. \textit{Physica A: Statistical Mechanics and its Applications} \textbf{323}, 695–704 (2003).
7. Chakrabarti, B., Chakraborti, A. & Chatterjee, A. \textit{Econophysics and Sociophysics: Trends and Perspectives} (Wiley-VCH, Berlin, 2006).
8. Clauset, A., Young, M. & Gleditsch, K. S. On the frequency of severe terrorist events. \textit{Journal of Conflict Resolution} \textbf{51}, 58–87 (2007).
9. Sharma, K. \textit{et al.} A complex network analysis of ethnic conflicts and human rights violations. \textit{Scientific Reports} \textbf{7}, 8283 (2017).
10. Barabási, A.-L. \textit{Network science} (Cambridge university press, 2016).
11. Newman, M., Barabasi, A.-L. & Watts, D. J. \textit{The structure and dynamics of networks} (Princeton University Press, 2011).
12. Global terrorism database (gtd), https://www.start.umd.edu/gtd/contact/ (2018).
13. Global terrorism database gtd)-codebook: Inclusion criteria and variables, as on 3 Jan, 2013, https://www.start.umd.edu/gtd/downloads/codebook.pdf (2018).

14. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. *Nature* **406**, 378–382 (2000).

15. Serrano, M. A., Boguná, M. & Vespignani, A. Extracting the multiscale backbone of complex weighted networks. *Proceedings of the national academy of sciences* **106**, 6483–6488 (2009).

16. Onnela, J.-P. *et al.* Structure and tie strengths in mobile communication networks. *Proceedings of the national academy of sciences* **104**, 7332–7336 (2007).

Acknowledgements

The authors acknowledge the support by grant number BT/BI/03/004/2003(C) of Govt. of India, Ministry of Science and Technology, Department of Biotechnology, Bioinformatics division, University of Potential Excellence-II grant (Project ID-47) of JNU, New Delhi, and the DST-PURSE grant given to JNU by the Department of Science and Technology, Government of India. K.S. acknowledges the University Grants Commission (Ministry of Human Research Development, Govt. of India) for her senior research fellowship.

Author contributions statement

K.S. and A.C. designed research; S.S.H., K.S., V.K., and A.C. performed research; S.S.H., K.S. and V.K. processed and analyzed data; K.S. and V.K. prepared all the figures, and K.S., V.K. and A.C. wrote the manuscript.

Supplementary information

Data

The data source utilized for this quantitative analysis of terrorism is obtained from the Global Terrorism Database (GTD), maintained by the National Consortium for the Study of Terrorism and Responses to Terrorism (START) at the University of Maryland, United States. The database was built on unclassified source material publicly available in media, digital news archives, books, journals, and some legal documents. GTD contains 170350 terrorist events reported for a period of 46 years from 1970 to 2016. The events of 1993 are not present in the database as they were lost prior to START’s compilation. The dataset includes 135 variables such as GTD Id, date of incident, incident location, incident information, attack information, target/victim information, perpetrator information, perpetrator statistics, claims of responsibility, weapon information, casualty information, consequences, kidnapping/hostage taking information, additional information, and source information. A snapshot of few variables is shown in Figure 6.

Figure 6. Snapshot displaying few representative columns of the dataset.
Terrorist attacks

Different statistics and details of the terrorist attacks from 1970-2016, are shown in Figure S7.

Figure 7. (Top) Year-wise count of terror activities. Note that no data was available for the year 1993. (Middle Left) Heatmap of the event count of global terrorism, showing the intensity and distribution. (Middle Right) Count of terror activities in the top-10 affected countries. (Bottom Left) Target types—most frequent targets of terrorists, and (Bottom Right) Attack types—favorite modus operandi for assaults. All results are for the period 1970-2016.

Fatalities vs. injured

The impact of the terrorist attacks, as given by the number of persons killed or wounded, are shown in Figure S8. Interestingly, they have broad distributions.
Figure 8. The complementary cumulative probability density function (CCDF) for: (Left) The number of total confirmed fatalities for the incidents along with the perpetrator fatalities. The number includes all victims and attackers who died as a direct result of the incident. (Right) The number of confirmed non-fatal injuries to both perpetrators and victims along with the number of perpetrator fatalities. All results are for the period 1970-2016.

Evolution of Network and Giant Component
Decade-wise evolution of the network and its giant component is shown in Figure S9.

Figure 9. Decade-wise evolution of the network and its giant component (From left to right). The network consists of 1459 nodes in 1970-1980, 2658 nodes in 1970-1990, 3832 nodes in 1970-2000, 4669 nodes in 1970-2010, and 5568 nodes in 1970-2016. The size of the Giant Component (shown in red) and its percentage size with respect to the entire network is 1210 (83%) in 1970-80, 2346 (88%) in 1970-90, 3313 (86%) in 1970-00, 4220 (90%) in 1970-10, and 5148 (92%) in 1970-2016.
Effect of the disparity filter cut-off α_c on the backbone

The comparison of backbone characteristics (as percentage figures of the total weights $\%W_T$ of the network, total nodes $\%N_T$ in the network and total unique edges $\%E_T$ in the network) with the change in disparity filter cut-off α_c, for the different evolving backbones for the period 1970-2016, is summarized in Table S2.

Year	α_c	$\%W_T$	$\%N_T$	$\%E_T$
1970-1980	0.05	48	9	6
	0.04	45	9	5
	0.03	43	8	4
	0.02	40	7	4
	0.01	38	6	3
1970-1990	0.05	65	11	7
	0.04	64	10	6
	0.03	62	10	5
	0.02	60	8	5
	0.01	56	7	4
1970-2000	0.05	65	11	6
	0.04	64	10	6
	0.03	63	9	5
	0.02	61	8	5
	0.01	57	7	4
1970-2010	0.05	65	12	7
	0.04	64	11	6
	0.03	63	10	5
	0.02	60	9	5
	0.01	57	7	4
1970-2016	0.05	70	13	7
	0.04	68	12	6
	0.03	67	11	6
	0.02	65	10	5
	0.01	62	8	4

Table 2. Comparison of backbone characteristics (as percentage figures of the total weights $\%W_T$ of the network, total nodes $\%N_T$ in the network and total unique edges $\%E_T$ in the network) with the change in disparity filter cut-off α_c, for the different evolving backbones.
The backbone structures are displayed in the Figure S10.

Figure 10. Effect of α_c on the evolving backbones. *(From Left to Right)* Different values of $\alpha_c = 0.02, 0.03, 0.04, 0.05$).
(From Top to Bottom) Different decades 1970-1980, 1970-1990, 1970-2000, 1970-2010 and 1970-2016, respectively.
Lists of names of sources, targets and actor pairs
The names of 190 sources and their abbreviations that appear in the backbone of the global terrorist network with 470 nodes are given in Table S3.

Sr. No.	Source Name	Source Abbreviation
1	23rd of September Communist League_Mexico	23SepCL_MEX
2	31 January People’s Front (FP-31)_Guatemala	FP-31_GTM
3	Abu Sayyaf Group (ASG)_Philippines	ASG_PHL
4	Action Directe_France	AcDir_FRA
5	African National Congress (South Africa)_South Africa	ANC_ZAF
6	Aynad Misr_Egypt	AjM_EGY
7	Al-Aqsa Martyrs Brigade_Israel	AQM_ISR
8	Al-Aqsa Martyrs Brigade_West Bank and Gaza Strip	AQM_WBGS
9	Al-Fatah_West Bank and Gaza Strip	Al-Fatah_WBGS
10	Al-Gama’at al-Islamiyya (IG)_Egypt	IG_EGY
11	Algerian Islamic Extremists_Algieria	DZA_IE_DZA
12	Allied Democratic Forces (ADF)_Democratic Republic of the Congo	ADF_COD
13	Al-Nusra Front_Syria	ANF_SYR
14	Al-Qaida in Iraq_Iraq	AQIIRQ
15	Al-Qaida in the Arabian Peninsula (AQAP)_Yemen	AQAP_YEM
16	Al-Qaida in the Islamic Maghreb (AQIM)_Algeria	AQIM_DZA
17	Al-Shabaab_Kenya	ASB_KEN
18	Al-Shabaab_Somalia	ASB_SOM
19	Anarchists_Greece	ANR_GRC
20	Animal Liberation Front (ALF)_United States	ALF_USA
21	Ansar al-Sharia (Libya)_Libya	AASL_LBY
22	Anti-Abortion extremists_United States	AAE_USA
23	Anti-Balaka Militia_Central African Republic	ABM_CAF
24	Arab Separatists_Iran	ArbSEP_IRN
25	Armed Forces of National Resistance (FARN)_El Salvador	FARN_SLV
26	Armed Islamic Group (GIA)_Algeria	GIA_DZA
27	Armed Revolutionary Independence Movement (MIRA)_United States	MIRA_USA
28	Army of God_United States	ArGod_USA
29	Asa’ib Ahl al-Haqiq_Iraq	AAH_IRQ
30	Baader-Meinhof Group_Ireland	BMG_ITA
31	Baader-Meinhof Group_West Germany (FRG)	BMG_WestDEU(FRG)
32	Baloch Liberation Front (BLF)_Pakistan	BLF_PAK
33	Baloch Republican Army (BRA)_Pakistan	BRA_PAK
34	Barqa Province of the Islamic State_Libya	BARIS_LBY
35	Basque Fatherland and Freedom (ETA)_Spain	ETA_ESP
36	Black Nationalists_United States	BN_USA
37	Black Panthers_United States	BP_USA
38	Boko Haram_Cameroon	BH_CMR
39	Boko Haram_Chad	BH_TCD
40	Boko Haram_Niger	BH_NER
41	Boko Haram_Nigeria	BH_NGA
42	Chechen Rebels_Russia	ChReb_RUS
43	Chukakuha (Middle Core Faction)_Japan	ChukakuhaMCF_JPN
44	Communist Party of India - Maoist (CPI-Maoist)_India	CPI-Maoist_IND
45	Communist Party of Nepal-Maoist (Baidya)_Nepal	CPNPL-Maoist_NPL
46	Communists_Philippines	Communists_PHL
47	Conspiracy of Cells of Fire_Greece	CCF_GRC
48	Coordination Committee (CORCOM)_India	CORCOM_IND
49	Corsican National Liberation Front (FLNC)_France	FLNC_FRA
---	---	---------------------
50	Corsican National Liberation Front- Historic Channel, France	CNLF-HC_FRA
51	Death Squad, El Salvador	DS_SLV
52	Death Squad, Guatemala	DS_GTM
53	Democratic Front for the Liberation of Rwanda (FDLR), Democratic Republic of the Congo	FDLR_COD
54	Dev Sol, Turkey	DevSol_TUR
55	Dissident Republicans, United Kingdom	DisRep_GBR
56	Donetsk People’s Republic, Ukraine	DPR_UKR
57	Earth Liberation Front (ELF), United States	ELF_USA
58	Ejercito Revolucionaria del Pueblo (ERP), (Argentina), Argentina	ERP(ARG)_ARG
59	Farabundo Marti National Liberation Front (FMLN), El Salvador	FMLN_SLV
60	Fighting Proletarian Squads, Italy	FFS_ITA
61	First of October Antifascist Resistance Group (GRAPO), Spain	GRAPO_ESP
62	Free Aceh Movement (GAM), Indonesia	FrAc(GAM)_IDN
63	Free Syrian Army, Syria	FSA_SYR
64	Fuerzas Armadas de Liberacion Nacional (FALN), United States	FALN_USA
65	Fulani extremists, Nigeria	FE_NGA
66	Guerrilla Army of the Poor (EGP), Guatemala	GAP(EGP)_GTM
67	Hamas (Islamic Resistance Movement), Israel	Hamas_ISR
68	Hamas (Islamic Resistance Movement), West Bank and Gaza Strip	Hamas_WBGs
69	Haqqani Network, Afghanistan	HQN_AFG
70	Hezbollah, Israel	Hez_ISR
71	Hezbollah, Lebanon	Hez_LBN
72	Houthi extremists (Ansar Allah), Saudi Arabia	Houthi_SAU
73	Houthi extremists (Ansar Allah), Yemen	Houthi_YEM
74	Hutu extremists, Burundi	Hutuextremists_BDI
75	Institutional Revolutionary Party (PRI), Mexico	PRI_MEX
76	Irish Republican Army (IRA), Ireland	IRA_JRL
77	Irish Republican Army (IRA), United Kingdom	IRA_GBR
78	Irish Republican Extremists, United Kingdom	IRE_GBR
79	Islamic Front (Syria), Syria	IF(SYR)_SYR
80	Islamic Salvation Front (FIS), Algeria	FIS_DZA
81	Islamic State of Iraq and the Levant (ISIL), Iraq	ISIL_IRQ
82	Islamic State of Iraq and the Levant (ISIL), Lebanon	ISIL_LBN
83	Islamic State of Iraq and the Levant (ISIL), Syria	ISIL_SYR
84	Islamic State of Iraq and the Levant (ISIL), Turkey	ISIL_TUR
85	Islamic State of Iraq and the Levant (ISIL), Turkey	ISIL_TUR
86	Israeli extremists, West Bank and Gaza Strip	ISRelex_WBGs
87	Israeli settlers, West Bank and Gaza Strip	ISRelsetters_WBGs
88	Jamaat-E-Islami, Bangladesh	JEIs(BGD)_BGD
89	Janatantrik Terai Mukti Morcha, Jwala Singh (JTMM-J), Nepal	JTMM-J_NPL
90	Janjaweed, Sudan	JNJD_SDN
91	Jemaah Islamiya (JI), Indonesia	JLJDN
92	Jewish Defense League (JDL), United States	JDL_USA
93	Karen National Union, Myanmar	KNU_MMR
94	Khmer Rouge, Cambodia	KhRo_KHM
95	Khorasan Chapter of the Islamic State, Pakistan	KHCI_PAK
96	Kurdistan Workers’ Party (PKK), Germany	KWP(PKK)_DEU
97	Kurdistan Workers’ Party (PKK), Turkey	KWP(PKK)_TUR
98	Lashkar-e-Jhangvi, Pakistan	LeJ_PAK
99	Left-Wing Militants, United States	LWM_USA
100	Liberation Tigers of Tamil Eelam (LTTE), Sri Lanka	LTTE_LKA
102	Lord’s Resistance Army (LRA), Democratic Republic of the Congo	LRA_COD
103	Lord’s Resistance Army (LRA), Sudan	LRA_SDN
104	Lord’s Resistance Army (LRA), Uganda	LRA_UGA
105	Loyalists, United Kingdom	LYL_GBR
106	Luhansk People’s Republic, Ukraine	LPR_UKR
107	M-19 (Movement of April 19), Colombia	M-19_COL
108	Mahdi Army, Iraq	MAIRQ
109	Manuel Rodriguez Patriotic Front (FPMR), Chile	FPMR_CHL
110	Maoists, India	Maoists_IND
111	Maoists, Nepal	Maoists_NPL
112	Mayi Mayi, Democratic Republic of the Congo	MayiMayi_COD
113	Meibion Glyndwr, United Kingdom	McGlyn_GBR
114	Monteros (Argentina), Argentina	Mont(ARG)_ARG
115	Moro Islamic Liberation Front (MILF), Philippines	MILF_PHL
116	Moro National Liberation Front (MNLF), Philippines	MNLF_PHL
117	Movement of the Revolutionary Left (MIR) (Chile), Chile	MIR(CHL)_CHL
118	Mozambique National Resistance Movement (MNR), Mozambique	MNR MOZ
119	Mujahedin-e Khalq (MEK), Iran	MEK_IRN
120	Murle Tribe, Ethiopia	MT_ETH
121	Muslim extremists, Libya	ME_LBY
122	Muslim extremists, Syria	ME_SYR
123	Muslim Rebels, Algeria	MR_DZA
124	Muttahida Qami Movement (MQM), Pakistan	MQM_PAK
125	National Democratic Front of Bodoland (NDFB), India	NDFB_IND
126	National Liberation Army (NLA) (Macedonia), Macedonia	NLA(MKD)_MKD
127	National Liberation Army of Colombia (ELN), Colombia	ELN_COL
128	National Liberation Front of Tripura (NLFT), India	NLFT_IND
129	National Socialist Council of Nagaland-Isak-Muivah (NSCN-IM), India	NSCN-IM_IND
130	National Union for the Total Independence of Angola (UNITA), Angola	UNITA_AGO
131	National Union for the Total Independence of Angola (UNITA), Namibia	UNITA_NAM
132	National Union for the Total Independence of Angola (UNITA), Zambia	UNITA_ZMB
133	New People’s Army (NPA), Philippines	NPA_PHL
134	New World Liberation Front (NWLF), United States	NWLF_USA
135	Nicaraguan Democratic Force (FDN), Nicaragua	FDN_NIC
136	Niger Delta Avengers (NDA), Nigeria	NDA_NGA
137	November 17 Revolutionary Organization (N17RO), Greece	N17RO_GRC
138	Omega-7, United States	OMG_USA
139	Opposition Group, Bangladesh	OG_BGD
140	Palestinian Extremists, Israel	PE_ISR
141	Palestinian Extremists, West Bank and Gaza Strip	PE_WBGS
142	Palestinian Islamic Jihad (PIJ), Israel	PIJ_ISR
143	Palestinians, Israel	Pls_ISR
144	Palestinians, West Bank and Gaza Strip	Pls_WBGS
145	Patriotic Morazanista Front (FPM), Honduras	FPM_HND
146	Patriotic Resistance Front in Ituri (FRPI), Democratic Republic of the Congo	FRPI_COD
147	People’s Liberation Forces (FPL), El Salvador	FPL_SLV
148	People’s Liberation Front (JVP), Sri Lanka	JVP_LKA
149	Popular Front for the Liberation of Palestine (PFLP), Israel	PFLP_ISR
150	Popular Liberation Army (EPL), Colombia	EPL_COL
151	Popular Resistance Committees, Israel	PRC_ISR
152	Popular Revolutionary Bloc (BPR), El Salvador	BPR_SLV
153	Prima Linea, Italy	PrimaLinea_ITA
Table 3. Names and abbreviations of Sources that appear in the backbone structure (1970-2016).

The names of 280 targets and their abbreviations that appear in the backbone of the global terrorist network with 470 nodes are given in Table S4.

Sr. No.	Target Name	Target	
1	Government (General),Afghanistan	GOVG_AFG	
2	Police,Afghanistan	POL_AFG	
3	Private Citizens & Property,Afghanistan	PCP_AFG	
4	Police,Algeria	POL_DZA	
5	Business,United States	BUS_USA	
6	Private Citizens & Property,Burundi	PCP_BDI	
7	Private Citizens & Property,Democratic Republic of the Congo	PCP_COD	
8	Police,Egypt	POL_EGY	
9	Police,India	POL_IND	
No.	Category	Country	Code
-----	--	-----------------	------
10	Private Citizens & Property	India	PCP_IND
11	Police	Iraq	POL_IRQ
12	Private Citizens & Property	Iraq	PCP_IRQ
13	Business	Iraq	BUS_IRQ
14	Police	Kenya	POL_KEN
15	Private Citizens & Property	Libya	PCP_LBY
16	Private Citizens & Property	Cameroon	PCP_CMR
17	Private Citizens & Property	Nigeria	PCP_NGA
18	Educational Institution	Pakistan	EDI_PAK
19	Police	Pakistan	POL_PAK
20	Private Citizens & Property	Pakistan	PCP_PAK
21	Business	Philippines	BUS_PHL
22	Government (General)	Philippines	GOVG_PHL
23	Private Citizens & Property	Philippines	PCP_PHL
24	Government (General)	Somalia	GOVG_SOM
25	Private Citizens & Property	Somalia	PCP_SOM
26	Private Citizens & Property	South Sudan	PCP_SouthSDN
27	Private Citizens & Property	Sudan	PCP_SDN
28	Private Citizens & Property	Uganda	PCP_UGA
29	Private Citizens & Property	Syria	PCP_SYR
30	Private Citizens & Property	Turkey	PCP_TUR
31	Police	Turkey	POL_TUR
32	Private Citizens & Property	Ukraine	PCP_UKR
33	Police	United States	POL_USA
34	Police	Israel	POL_ISR
35	Private Citizens & Property	Israel	PCP_ISR
36	Private Citizens & Property	West Bank and Gaza Strip	PCP_WBGS
37	Government (General)	Yemen	GOVG_YEM
38	Police	Yemen	POL_YEM
39	Private Citizens & Property	Yemen	PCP_YEM
40	Private Citizens & Property	Northern Ireland	PCP_NIRL
41	Abortion Related	United States	Abor_USA
42	Private Citizens & Property	United States	PCP_USA
43	Private Citizens & Property	Angola	PCP_AGO
44	Utilities	Angola	UTL_AGO
45	Business	Great Britain	BUS_GBR
46	Business	Northern Ireland	BUS_NIRL
47	Police	Northern Ireland	POL_NIRL
48	Utilities	Chile	UTL_CHL
49	Transportation	China	TRP_CHN
50	Business	Colombia	BUS_COL
51	Police	Colombia	POL_COL
52	Private Citizens & Property	Colombia	PCP_COL
53	Transportation	Colombia	TRP_COL
54	Government (General)	Colombia	GOVG_COL
55	Utilities	Colombia	UTL_COL
56	Business	Peru	BUS_PER
57	Government (General)	Peru	GOVG_PER
58	Private Citizens & Property	El Salvador	PCP_SLV
59	Utilities	El Salvador	UTL_SLV
60	Government (General)	El Salvador	GOVG_SLV
61	Business	France	BUS_FRA
No.	Category	Country	Code
-----	--	------------------	------
62	Private Citizens & Property	Algeria	PCP
63	Government (General)	France	GOVG
64	Police	Spain	POL
65	Military	United States	MIL
66	Private Citizens & Property	Guatemala	PCP
67	Government (General)	Iran	GOVG
68	Business	Ireland	BUS
69	Business	Turkey	BUS
70	Terrorists/Non-State Militia	Lebanon	TNSM
71	Private Citizens & Property	Mozambique	PCP
72	Transportation	Mozambique	TRP
73	Government (General)	Nepal	GOVG
74	Utilities	Pakistan	UTL
75	Police	Peru	POL
76	Private Citizens & Property	Peru	PCP
77	Utilities	Peru	UTL
78	Police	Philippines	POL
79	Private Citizens & Property	Saudi Arabia	PCP
80	Government (General)	South Africa	GOVG
81	Police	South Africa	POL
82	Government (General)	Soviet Union	GOVD
83	Business	Spain	BUS
84	Government (General)	Spain	GOVG
85	Government (General)	Sri Lanka	GOVG
86	Police	Sri Lanka	POL
87	Private Citizens & Property	Sri Lanka	PCP
88	Transportation	Sri Lanka	TRP
89	Business	Chile	BUS
90	Government (General)	Bangladesh	GOVG
91	Private Citizens & Property	Bangladesh	PCP
92	Private Citizens & Property	Cambodia	PCP
93	Transportation	Cambodia	TRP
94	Police	Chile	POL
95	Utilities	Yemen	UTL
96	Telecommunication	El Salvador	TCM
97	Business	El Salvador	BUS
98	Business	Italy	BUS
99	Government (General)	Greece	GOVG
100	Private Citizens & Property	Sierra Leone	PCP
101	Business	Greece	BUS
102	Religious Figures/Institutions	Indonesia	RFI
103	Transportation	Israel	TRP
104	Private Citizens & Property	Lebanon	PCP
105	Police	Macedonia	POL
106	Private Citizens & Property	Myanmar	PCP
107	Private Citizens & Property	Namibia	PCP
108	Private Citizens & Property	Nepal	PCP
109	Transportation	Pakistan	TRP
110	Military	Syria	MIL
111	Utilities	Philippines	UTL
112	Educational Institution	United States	EDI
113	Utilities	Bolivia	UTL
Page	Private Citizens & Property, Zambia	PCP_ZMB	
------	---	---------	
	Private Citizens & Property, Central African Republic	PCP_CAF	
	Transportation, India	TRP_IND	
	Private Citizens & Property, Niger	PCP_NER	
	Religious Figures/Institutions, Yemen	RFI_YEM	
	Utilities, Iran	UTL_IRN	
	Refugee Camp, Iraq	RC_IRQ	
	Refugee Camp, Sudan	RC_SDN	
	Airports & Aircraft, Afghanistan	AA_AFG	
	Airports & Aircraft, Japan	AA_JPN	
	Business, Afghanistan	BUS_AFG	
	Business, Bangladesh	BUS_BGD	
	Business, Egypt	BUS_EGY	
	Business, Honduras	BUS_HND	
	Business, India	BUS_IND	
	Business, Kenya	BUS_KEN	
	Business, Lebanon	BUS_LBN	
	Business, Libya	BUS_LBY	
	Business, Mexico	BUS_MEX	
	Business, Nicaragua	BUS_NIC	
	Business, Nigeria	BUS_NGA	
	Business, Pakistan	BUS_PAK	
	Business, Somalia	BUS_SOM	
	Business, South Africa	BUS_ZAF	
	Business, Syria	BUS_SYR	
	Business, Thailand	BUS_THA	
	Business, Yemen	BUS_YEM	
	Educational Institution, Afghanistan	EDI_AFG	
	Educational Institution, India	EDI_IND	
	Educational Institution, Italy	EDI_ITA	
	Educational Institution, Nepal	EDI_NPL	
	Educational Institution, Spain	EDI_ESP	
	Educational Institution, Thailand	EDI_THA	
	Educational Institution, Turkey	EDI_TUR	
	Government (Diplomatic), Cuba	GOVD_CUB	
	Government (Diplomatic), France	GOVD_FRA	
	Government (Diplomatic), Peru	GOVD_PER	
	Government (Diplomatic), United States	GOVD_USA	
	Government (General), Argentina	GOVG_ARG	
	Government (General), Chile	GOVG_CHL	
	Government (General), Germany	GOVG_DEU	
	Government (General), Great Britain	GOVG_GBR	
	Government (General), Guatemala	GOVG_GTM	
	Government (General), India	GOVG_IND	
	Government (General), Iraq	GOVG_IRQ	
	Government (General), Israel	GOVG_ISR	
	Government (General), Italy	GOVG_ITA	
	Government (General), Japan	GOVG_JPN	
	Government (General), Kenya	GOVG_KEN	
	Government (General), Libya	GOVG_LBY	
	Government (General), Nicaragua	GOVG_NIC	
	Government (General), Nigeria	GOVG_NGA	
---	---	---	
166	Government (General)	Northern Ireland	GOVG_NIRL
167	Government (General)	Pakistan	GOVG_PAK
168	Government (General)	Russia	GOVG_RUS
169	Government (General)	Thailand	GOVG_THA
170	Government (General)	Ukraine	GOVG_UKR
171	Government (General)	United States	GOVG_USA
172	Government (General)	West Bank and Gaza Strip	GOVG_WBGGS
173	Journalists & Media	Afghanistan	JAM_AFG
174	Journalists & Media	Algeria	JAM_DZA
175	Journalists & Media	Chile	JAM_CHL
176	Journalists & Media	El Salvador	JAM_SLV
177	Journalists & Media	Iraq	JAM_IRQ
178	Journalists & Media	Italy	JAM_ITA
179	Journalists & Media	Pakistan	JAM_PAK
180	Journalists & Media	Peru	JAM_PER
181	Journalists & Media	Somalia	JAM_SOM
182	Journalists & Media	Spain	JAM_ESP
183	Journalists & Media	Yemen	JAM_YEM
184	Military	Afghanistan	MIL_AFG
185	Military	Colombia	MIL_COL
186	Military	Democratic Republic of the Congo	MIL_COD
187	Military	Great Britain	MIL_GBR
188	Military	India	MIL_IND
189	Military	Iraq	MIL_IRQ
190	Military	Libya	MIL_LBY
191	Military	Nigeria	MIL_NGA
192	Military	Northern Ireland	MIL_NIRL
193	Military	Pakistan	MIL_PAK
194	Military	Philippines	MIL_PHL
195	Military	Russia	MIL_RUS
196	Military	Spain	MIL_ESP
197	Military	Sri Lanka	MIL_LKA
198	Military	Turkey	MIL_TUR
199	Military	Yemen	MIL_YEM
200	NGO	Afghanistan	NGO_AFG
201	Police	Bangladesh	POL_BGD
202	Police	El Salvador	POL_SLV
203	Police	France	POL_FRA
204	Police	Great Britain	POL_GBR
205	Police	Indonesia	POL_IDN
206	Police	Italy	POL_ITA
207	Police	Libya	POL_LBY
208	Police	Mexico	POL_MEX
209	Police	Nepal	POL_NPL
210	Police	Nigeria	POL_NGA
211	Police	Russia	POL_RUS
212	Police	Somalia	POL_SOM
213	Police	Thailand	POL_THA
214	Police	Ukraine	POL_UKR
215	Police	West Bank and Gaza Strip	POL_WBGGS
216	Private Citizens & Property	Chad	PCP_TCD
Page	Private Citizens & Property	Code	
------	-----------------------------	-------	
218	Chile	PCP_CHL	
219	Egypt	PCP_EGY	
220	Ethiopia	PCP_ETH	
221	France	PCP_FRA	
222	Germany	PCP_DEU	
223	Great Britain	PCP_GBR	
224	Greece	PCP_GRC	
225	Indonesia	PCP_IDN	
226	Iran	PCP_IRN	
227	Ireland	PCP_IRL	
228	Italy	PCP_ITA	
229	Kenya	PCP_KEN	
230	Mexico	PCP_MEX	
231	Nicaragua	PCP_NIC	
232	Russia	PCP_RUS	
233	South Africa	PCP_ZAF	
234	Spain	PCP_ESP	
235	Thailand	PCP_THA	
236	Afghanistan	RFI_AFG	
237	Colombia	RFI_COL	
238	India	RFI_IND	
239	Iraq	RFIIRQ	
240	Nigeria	RFI_NGA	
241	Pakistan	RFI_PAK	
242	Philippines	RFI_PHL	
243	Somalia	RFI_SOM	
244	United States	RFI_USA	
245	Colombia	TCM_COL	
246	India	TCM_IND	
247	Peru	TCM_PER	
248	Philippines	TCM_PHL	
249	Spain	TCM_ESP	
250	India	TNSM_IND	
251	Iraq	TNSMIRQ	
252	Libya	TNSMLBY	
253	Northern Ireland	TNSMNIRL	
254	Pakistan	TNSMPAK	
255	Spain	Tourists_ESP	
256	Afghanistan	TRP_AFG	
257	Chile	TRP_CHL	
258	El Salvador	TRP_SLV	
259	Great Britain	TRP_GBR	
260	Iraq	TRP_IRQ	
261	Kenya	TRP_KEN	
262	Nepal	TRP_NPL	
263	Nicaragua	TRP_NIC	
264	Nigeria	TRP_NGA	
265	Northern Ireland	TRP_NIRL	
266	Peru	TRP_PER	
267	Philippines	TRP_PHL	
268	Russia	TRP_RUS	
269	South Africa	TRP_ZAF	
Table 4. Names and abbreviations of Targets that appear in the backbone structure (1970-2016).

The list of top-50 actor pairs (source-target abbreviations) along with their weights (frequencies of interactions) that appear in the backbone of the global terrorist network with 470 nodes are given in Table S5 and 427 unique edges.

Sr. No.	Source	Target	Weight
1	Taliban_AFG	POL_AFG	1854
2	ISIL_IRQ	PCP_IRQ	1303
3	Taliban_AFG	PCP_AFG	1086
4	Taliban_AFG	GOVG_AFG	810
5	BH_NGA	PCP_NGA	740
6	SPSL_PER	PCP_PER	733
7	FMLN_SLV	UTL_SLV	713
8	SPSL_PER	GOVG_PER	693
9	SPSL_PER	BUS_PER	670
10	SPSL_PER	POL_PER	552
11	ETA_ESP	POL_ESP	530
12	SPSL_PER	UTL_PER	506
13	ETA_ESP	BUS_ESP	495
14	ISIL_IRQ	POL_IRQ	451
15	CPI-Maoist_IND	PCP_IND	448
16	IRA_GBR	POL_NIRL	433
17	FARC_COL	PCP_COL	391
18	ASB_SOM	PCP_SOM	387
19	KWP(PKK)_TUR	POL_TUR	366
20	PE_NGA	PCP_NGA	361
21	CPI-Maoist_IND	POL_IND	341
22	FARC_COL	POL_COL	333
23	FMLN_SLV	PCP_SLV	330
24	ASB_SOM	GOVG_SOM	324
25	Maoists_IND	POL_IND	315
26	IRA_GBR	PCP_NIRL	296
27	NPA_PHL	POL_PHL	293
28	Houthi_YEM	PCP_YEM	292
29	NPA_PHL	BUS_PHL	291
30	CPI-Maoist_IND	GOVG_IND	278
31	LTTE_LKA	PCP_LKA	275
32	IRA_GBR	BUS_NIRL	270
33	TTP_PAK	PCP_PAK	267
34	FARC_COL	BUS_COL	251
35	KWP(PKK)_TUR	PCP_TUR	245
	FMLN_SLV	BUS_SLV	
---	----------	---------	---
37	ELN_COL	UTL_COL	230
38	IRA_GBR	BUS_GBR	222
39	AQI_IRQ	PCP_IRQ	221
40	Maoists_IND	PCP_IND	219
41	NPA_PHL	GOV_GPHL	218
42	BH_NGA	POL_NGA	218
43	FARC_COL	UTL_COL	215
44	FARC_COL	GOV_GCOL	211
45	LTTE_LKA	POL_LKA	207
46	FLNC_FRA	BUS_FRA	204
47	NPA_PHL	PCP_PHL	200
48	PE_GBR	PCP_NIRL	196
49	TTP_PAK	POL_PAK	192
50	ETA_ESP	GOV_ESP	190

Table 5. Top 50 actor pairs in the backbone