Constraints on neutrino physics from cosmology

Alessandro Melchiorri1, Maria Archidiacono1, Erminia Calabrese2 and Eloisa Menegoni3

1Physics Department and INFN, Università di Roma “La Sapienza”, Ple Aldo Moro 2, 00185, Rome, Italy
2Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK
3I.C.R.A. and INFN, Università di Roma “La Sapienza”, Ple Aldo Moro 2, 00185, Rome, Italy

E-mail: alessandro.melchiorri@roma1.infn.it, maria.archidiacono@roma1.infn.it, maria.archidiacono@roma1.infn.it, eloisa.menegoni@roma1.infn.it

Abstract. We discuss the latest constraints from cosmology on the neutrino number and mass. We show that the cosmological data we considered are clearly suggesting the presence for an extra relativistic component with an effective neutrino number $N_{\text{eff}} = 3.08_{-0.68}^{+0.71}$ at 95\% c.l.. Performing an analysis on neutrino sound speed c_{eff} and viscosity c_{vis} parameters, we found $c_{\text{eff}}^2 = 0.312 \pm 0.026$ and $c_{\text{vis}}^2 = 0.29_{-0.16}^{+0.21}$ at 95\% c.l., consistent with the expectations of a relativistic free streaming component ($c_{\text{eff}}^2 = c_{\text{vis}}^2 = 1/3$). Assuming the presence of 3 relativistic neutrinos we constrain the extra relativistic component as $N_{\nu}^0 = 1.10_{-0.72}^{+0.79}$ and $c_{\text{eff}}^2 = 0.24_{-0.13}^{+0.08}$ at 95\% c.l., while c_{vis}^2 results as unconstrained. Assuming a massive neutrino component we obtain further indications for an extra neutrino with $N_{\nu}^0 = 1.12_{-0.74}^{+0.86}$ at 95\% c.l.

1. Introduction

The recent observations from Cosmic Microwave Background (CMB hereafter) satellite, balloon-borne and ground based experiments ([1, 2, 3, 4]), galaxy redshift surveys [5] and luminosity distance measurements, have fully confirmed the theoretical predictions of the standard ΛCDM cosmological model. This not only allows stringent constraints on the parameters of the model but can be fruitfully used to constrain non standard physics at the fundamental level, such as classes of elementary particle models predicting a different radiation content in the Universe.

One of the major theoretical predictions of the standard scenario is the existence of a relativistic energy component (see e.g. [6]), beside CMB photons, with a current energy density given by:

$$\rho_{\text{rad}} = \left[1 + \frac{7}{8}\left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma},$$

where ρ_{γ} is the energy density of the CMB photons background at temperature $T_{\gamma} = 2.728 K$ and N_{eff} is in principle a free parameter, defined as the effective number of relativistic degrees of freedom. Assuming standard electroweak interactions, three active massless neutrinos and including the (small) effect of neutrino flavour oscillations the expected value is $N_{\text{eff}} = 3.046$ with a deviation from $N_{\text{eff}} = 3$ that takes into account effects from the non-instantaneous neutrino decoupling from the primordial photon-baryon plasma (see e.g. [7]).
In recent years, thanks to the continuous experimental advancements, the value of N_{eff} has been increasingly constrained from cosmology ([8], [9], [10], [11], [12], [1], [13], [14], [15], [16], [19], [20]), ruling out $N_{\text{eff}} = 0$ at high significance.

However, especially after the new ACT [2] and SPT [4] CMB results, the data seem to suggest values higher than the "standard" one, with $N_{\text{eff}} \sim 4 - 5$ (see e.g. [13], [14], [19], [20], [21]) in tension with the expected standard value at about two standard deviations.

A larger value for N_{eff} respect to the one expected in the standard scenario could be due to non-standard neutrino decoupling (see e.g. [22]) or could hint for the existence of a fourth (or fifth) sterile neutrino. The hypothesis of extra neutrino flavour could be also compatible with the recent results from short-baseline neutrino oscillation data from LSND [23] and MiniBooNE [24] experiments (see [13, 14] and references therein). Moreover $N_{\text{eff}} \sim 4$ could also be produced by axions (see e.g. [25]), gravity waves ([26]), decaying particles (see e.g. [27]), extra dimensions [28, 29] and dark energy (see e.g. [30] and references therein).

Since there is a large variety of models that could enhance N_{eff} it is clearly important to investigate the possible ways to discriminate among them. If Dark Radiation is made of relativistic particles as sterile neutrinos it should behave as neutrinos also from the point of view of perturbation theory, i.e. it should have an effective sound speed c_{eff} and a viscosity speed c_{vis} such that $c_{\text{eff}}^2 = c_{\text{vis}}^2 = 1/3$. Free streaming of relativistic neutrino will indeed produce anisotropies in the neutrino background yielding a value of $c_{\text{vis}}^2 = 1/3$ while a smaller value would indicate possible non standard interactions (see e.g. [32]). A value of c_{vis} different from zero, as expected in the standard scenario, has been detected in [33] and confirmed in subsequent papers [34]. More recently, the analysis of [21] confirmed the presence of anisotropies from current cosmological data but also suggested the presence of a lower value for the effective sound speed with $c_{\text{eff}}^2 = 1/3$ ruled out at more than two standard deviations.

In these proceedings we present the results on N_{eff} reported in [17] from an analysis of the most recent cosmological data. We organize our work as follows: in Sec. II we describe the data and the data analysis method adopted. We present our results in the first two subsections of Sec. III, depending on two adopted different parametrizations for the Dark Radiation. Moreover a model independent analysis is also discussed in the last subsection of Sec. III. Finally we conclude in Sec. IV.

2. Analysis Method
We perform a COSMOMC [35] analysis combining the following CMB datasets: WMAP7 [1], ACBAR [3], ACT [2], and SPT [4], and we analyze datasets using out to $t_{\text{max}} = 3000$. We also include information on dark matter clustering from the galaxy power spectrum extracted from the SDSS-DR7 luminous red galaxy sample [5]. Finally, we impose a prior on the Hubble parameter based on the last Hubble Space Telescope observations [36].

The analysis method we adopt is based on the publicly available Monte Carlo Markov Chain package cosmomc [35] with a convergence diagnostic done through the Gelman and Rubin statistic. We sample the following six-dimensional standard set of cosmological parameters, adopting flat priors on them: the baryon and cold dark matter densities Ω_b and Ω_c, the ratio of the sound horizon to the angular diameter distance at decoupling θ, the optical depth to reionization τ, the scalar spectral index n_S, and the overall normalization of the spectrum A_S at $k = 0.002$ Mpc$^{-1}$. We consider purely adiabatic initial conditions and we impose spatial flatness. We vary the effective number of relativistic degrees of freedom N_{eff}, the effective sound speed c_{eff}^2, and the viscosity parameter c_{vis}^2. In some cases, we consider only variations in the extra dark radiation component $N_{\nu}^S = N_{\text{eff}} - 3.046$, varying the perturbation parameters c_{vis} and c_{eff} only for this extra component and assuming $c_{\text{eff}}^2 = c_{\text{vis}}^2 = 1/3$ for the standard 3 neutrino component.

In our analysis we always fix the primordial Helium abundance to the observed value
Figure 1. 68% and 95% c.l. constraints for the degeneracy between N_{eff} and the Hubble constant H_0, the age of the universe t_0, and the amplitude of mass fluctuations σ_8.

$Y_p = 0.24$. This procedure is different from the one adopted, for example, in [4], where the Y_p parameter is varied assuming Big Bang Nucleosynthesis for each values of N_{eff} and Ω_b in the chain. Since the cosmological epoch and the energy scales probed by BBN are dramatically different from the ones probed by CMB and large scale structure we prefer to do not assume standard BBN in our analysis and to leave the primordial Helium abundance as fixed to a value consistent with current observations.

We account for foreground contributions including three extra amplitudes: the SZ amplitude A_{SZ}, the amplitude of clustered point sources A_C, and the amplitude of Poisson distributed point sources A_P. We marginalize the contribution from point sources only for the ACT and SPT data, based on the templates provided by [4]. We quote only one joint amplitude parameter for each component (clustered and Poisson distributed). Instead, the SZ amplitude is obtained fitting the WMAP data with the WMAP own template, while for SPT and ACT it is calculated using the [37] SZ template at 148 GHz. Again, this is different from the analysis performed in [4] where no SZ contribution was considered for the WMAP data.

3. Results

As stated in the previous section, we perform two different analyses. In the first analysis we vary the amplitude of the whole relativistic contribution changing N_{eff} and the corresponding perturbation parameters c^2_{vis} and c^2_{eff}. In the second analysis we assume the existence of a standard neutrino background and vary only the extra component $N_{\nu}^S = N_{\text{eff}} - 3.046$ considering only in this extra component the variations in c^2_{vis} and c^2_{eff}.

3.1. Varying the number of relativistic degrees of freedom N_{eff}.

In Table 4 we report the constraints on the cosmological parameters varying N_{eff} with and without variations in perturbation theory. We consider two cases: first we run our analysis fixing the perturbation parameters to the standard values, i.e. $c^2_{\text{eff}} = c^2_{\text{vis}} = 1/3$, then we let those parameters to vary freely.

As we can see from the results in the left column of Table 4, the WMAP7+ACT+SPT+DR7+H0 analysis is clearly suggesting the presence for Dark Radiation with $N_{\text{eff}} = 4.08^{+0.71}_{-0.68}$ at 95% c.l.. When considering variations in the perturbation parameters (right column) the constraint is somewhat shifted towards smaller values with $N_{\text{eff}} = 3.89^{+0.70}_{-0.68}$. The constraint on the sound speed, $c^2_{\text{eff}} = 0.312 \pm 0.026$ is fully consistent with the expectations of a free streaming component. Anisotropies in the neutrino background are detected at high statistical significance with
Table 1. MCMC estimation of the cosmological parameters assuming N_{eff} relativistic neutrinos. Upper bounds at 95% c.l. are reported for foregrounds parameters. We quote the one-dimensional marginalized 68% and 95% c.l. for the neutrino parameters.

Parameter	1D upper bound	2D upper bound
$\Omega_b h^2$	0.02229 ± 0.00038	0.02206 ± 0.00081
$\Omega_c h^2$	0.1333 ± 0.0086	0.1313 ± 0.0094
τ	0.082 ± 0.012	0.083 ± 0.014
H_0	74.3 ± 2.2	74.2 ± 2.1
n_s	0.977 ± 0.011	0.972 ± 0.021
$\log(10^{10}A_s)$	3.195 ± 0.035	3.196 ± 0.035
A_{SZ}	< 1.2	< 1.4
$A_{C}[\mu K^2]$	< 14.3	< 14.6
$A_{P}[\mu K^2]$	< 25.2	< 24.7
N_{eff}	$4.08^{+0.18+0.71}_{-0.18-0.68}$	$3.89^{+0.19+0.70}_{-0.19-0.70}$
C_{eff}^2	$1/3$	$0.312^{+0.008+0.026}_{-0.007-0.026}$
C_{vis}^2	$1/3$	$0.29^{+0.004+0.021}_{-0.006-0.016}$
χ_{min}^2	7594.2	7591.5

$c_{\text{vis}}^2 = 0.29^{+0.21}_{-0.16}$ improving previous constraints presented in [33].

It is interesting to consider the possible degeneracies between N_{eff} and other "indirect" (i.e. not considered as primary parameters in MCMC runs) model parameters. In Figure 1 we therefore plot the 2D likelihood constraints on N_{eff} versus the Hubble constant H_0, the age of the universe t_0 and the amplitude of r.m.s. mass fluctuations on spheres of 8Mpc$^{-1}$, σ_8.

As we can see from the three panels in the figure, there is a clear degeneracy between N_{eff} and those three parameters. Namely, an extra radiation component will bring the cosmological constraints (respect to the standard 3 neutrino case) to higher values of the Hubble constant and of σ_8 and to lower values of the age of the universe t_0. These degeneracies have been already discussed in the literature (see e.g. [38]) and could be useful to estimate the effect of additional datasets on our result. The 3% determination of the Hubble constant from the analysis of [19] plays a key role in our analysis in shifting the constraints towards larger values of N_{eff}. If future analyses will point towards lower values of the Hubble constant, this will make the standard 3 neutrino case more consistent with observations. If future observations will point towards values of the age of the universe significantly larger than 13 Gyrs, this will be against an extra dark radiation component, since it prefers $t_0 \sim 12.5$Gyrs. Clearly, adding cluster mass function data as presented in [39] and that points towards lower values of σ_8 renders the standard $N_{\text{eff}} = 3.046$ case more consistent with observations. A future and precise determination of σ_8 from clusters or Lyman-α surveys could be crucial in ruling out dark radiation.

3.2. Varying only the excess in the relativistic component N_{ν}^S and assuming 3 standard neutrinos.

In Table 2 we report the constraints considering only an excess N_{ν}^S in the number of relativistic degrees of freedom over a standard 3 neutrinos background.

As we can see for the results in the table, the evidence for an extra background is solid with $N_{\nu}^S = 1.46^{+0.76}_{-0.74}$ at 95% c.l. when only variations in the c_{vis}^2 component are considered, while the constraint is $N_{\nu}^S = 1.10^{+0.79}_{-0.72}$ when also variations in c_{eff}^2 are considered. Again, the data provide a good determination for c_{eff}^2 with $c_{\text{eff}}^2 = 0.24^{+0.08}_{-0.13}$ at 95% c.l., in marginal agreement at about 2σ with the standard $c_{\text{eff}}^2 = 1/3$ value. This lower value of c_{eff}^2, also found in [21], could hint for a dark radiation component with a varying equation of state, ruling out a a massless sterile.
Figure 2. 68% and 95% c.l. constraints for the degeneracy between neutrinos parameters. Red contours refer to model (A) in Table 2, while blue contours show model (B).

Table 2. MCMC estimation of the cosmological parameters considering an extra component N^S_ν and assuming a standard background of 3 relativistic neutrinos. The perturbation parameters refer to the extra component. Both 68% and 95% confidence levels for the neutrino parameters are reported. Upper bounds are at 95% c.l. .

Model :	varying c^2_{eff}, c^2_{vis}	$c^2_{\text{eff}} = 1/3$, varying c^2_{vis}
$\Omega_b h^2$	0.02177 ± 0.00066	0.02262 ± 0.00049
$\Omega_c h^2$	0.135 ± 0.010	0.143 ± 0.010
τ	0.086 ± 0.013	0.084 ± 0.013
H_0	72.8 ± 2.1	73.7 ± 2.2
n_s	0.989 ± 0.014	0.978 ± 0.014
$log(10^{10} A_s)$	3.178 ± 0.035	3.192 ± 0.035
A_{SZ}	< 1.6	< 1.4
$A_c[\mu K^2]$	< 15.0	< 15.0
$A_P[\mu K^2]$	< 24.8	< 24.8
N^S_ν	$1.10^{+0.46}_{-0.33-0.70}$	$1.46^{+0.21}_{-0.21-0.74}$
c^2_{eff}	$0.24^{+0.03+0.08}_{-0.02-0.13}$	1/3
c^2_{vis}	< 0.91	< 0.74
λ^2_{min}	7590.5	7592.0

Neutrino. It will be certainly interesting to investigate if this signal remains in future analyses. No significant constraint is obtained on c^2_{vis}.

In Figure 2 we show the degeneracy between the parameters N^S_ν, c^2_{eff}, and c^2_{vis} by plotting the 2D likelihood contours between them. As we can see a degeneracy is present between c^2_{eff} and N^S_ν: models with lower values of N^S_ν are more compatible with $c^2_{\text{eff}} = 0$ since the effect of c^2_{eff} on the CMB spectrum is smaller. No apparent degeneracy is present between c^2_{vis} and the remaining parameters since c^2_{vis} is weakly constrained by current data.

Since oscillation experiments have clearly established that neutrino are massive, it is interesting to perform a similar analysis but letting the 3 neutrino standard background with $c^2_{\text{eff}} = c^2_{\text{vis}} = 1/3$ to be massive, and varying the parameter Σm_ν that consider the sum of masses of the 3 active neutrinos. The extra dark radiation component is assumed massless and we treat the perturbations in it as in the previous sections. In Table 3 we report the results of this analysis.
As we can see, when masses in the active neutrinos are considered, there is a slightly stronger evidence for the extra background with $N^S\nu = 1.12^{+0.26}_{-0.74}$. This is can be explained by the degeneracy present between $\sum m_\nu$ and $N^S\nu$, well known in the literature (see e.g. [13]) and clearly shown in Figure 3 where we report the 2D marginalized contours in the plane $\sum m_\nu - N^S\nu$.

Figure 3. Degeneracy in the plane $\sum m_\nu - N^S\nu$ at 68% and 95% c.l. .

Table 3.
MCMC estimation of the cosmological parameters considering $N_\nu = 3.04$ massive neutrinos. Values and 68% - 95% errors for the neutrino parameters are reported. Upper bounds are at 95% c.l.

Parameter	Value
$\Omega_b h^2$	0.02174 ± 0.00063
$\Omega_c h^2$	0.135 ± 0.011
τ	0.087 ± 0.014
H_0	72.7 ± 2.1
n_s	0.989 ± 0.015
$\log(10^{10} A_s)$	3.179 ± 0.036
A_{SZ}	< 1.6
$A_C[\mu K^2]$	< 15.9
$A_P[\mu K^2]$	< 26.1
$\sum m_\nu [eV]$	< 0.79
$N^S\nu$	$1.12^{+0.26}_{-0.74}$
c^2_{eff}	$0.241^{+0.03+0.09}_{-0.02-0.12}$
c^2_{vis}	< 0.92
χ^2_{min}	7590.7

4. **A varying fine-structure constant?**
As we saw in the previous section the current data seems to prefer a larger value for N_{eff} at more than two standard deviation. However this could indicate the presence of a completely different process. As discussed in [18] a value for $N_{\text{eff}} > 3$ could be compensated by a different value of the fine structure constant α at recombination. We have therefore performed a similar
analysis but by also letting the value of the fine structure constant to be different from the current value of $\alpha_0 = 1/137.03599907$. To the 6 standard Λ-CDM parameters reported in the previous section we therefore add as additional free parameters the fine structure constant (first case), the number of relativistic degrees of freedom N_{eff} (second case) and the primordial Helium abundance Y_p (third case). In Table 4 we report the constraints on the cosmological parameters for these three scenarios.

Parameter	α/α_0	$\alpha/\alpha_0 + N_{\text{eff}}$	$\alpha/\alpha_0 + N_{\text{eff}} + Y_p$
$\Omega_B h^2$	0.0218 ± 0.0004	0.0224 ± 0.0005	0.0223 ± 0.0007
$\Omega_c h^2$	0.1144 ± 0.0034	0.1302 ± 0.0095	0.1303 ± 0.0094
τ	0.086 ± 0.014	0.088 ± 0.015	0.088 ± 0.016
H_0	68.9 ± 1.4	71.52 ± 2.0	71.8 ± 2.1
α/α_0	0.984 ± 0.005	0.990 ± 0.006	0.987 ± 0.014
n_s	0.976 ± 0.013	0.991 ± 0.015	0.992 ± 0.016
$\log[10^{10} A_s]$	3.193 ± 0.037	3.169 ± 0.040	3.167 ± 0.042
A_{SZ}	< 2.00	< 2.00	< 2.00
A_C	< 16.0	< 15.8	< 14.8
A_P	< 24.7	< 24.9	< 22.4
Ω_Λ	0.7137 ± 0.0070	0.7020 ± 0.0094	0.704 ± 0.013
Age/Gyr	13.76 ± 0.24	13.18 ± 0.38	13.15 ± 0.37
Ω_m	0.2863 ± 0.0070	0.2980 ± 0.0094	0.296 ± 0.013
σ_8	0.836 ± 0.023	0.862 ± 0.028	0.859 ± 0.034
z_{re}	10.7 ± 1.2	11.0 ± 1.3	11.0 ± 1.3
N_{eff}	–	4.10 ±0.24	4.19 ±0.31
Y_p	–	–	0.215 ± 0.096
χ^2_{min}	7600.2	7596.8	7596.5

Table 4. MCMC estimation of the cosmological parameters from the dataset described in the text. Results for the three analyses described in the text are reported. Upper bounds at 95% c.l. are reported for foregrounds parameters.

As we can see the dataset considered prefers a value of α/α_0 smaller than unity at more than two standard deviations when both the N_{eff} and Y_p are kept fixed at their standard values. This result, while interesting, is to be expected since is clearly driven by data preference for larger values of N_{eff}. Allowing for variations in N_{eff} significantly shifts the best fit value for α/α_0, which is now consistent with the standard value. However, even in this case the best fit value for N_{eff} is still ~ 4, i.e. allowing for variable in the fine structure constant enlarges the error bars on N_{eff} of about $\sim 30\%$ but does not shift the best fit value towards the standard result. The largest effect on α comes however when also the helium abundance Y_p is let to vary. In this case, indeed, the errors on α are almost doubled.

5. Conclusions

In these proceedings we have reported the results obtained by a new search for Dark Radiation, parametrizing it with an effective number of relativistic degrees of freedom N_{eff}. We have shown that the cosmological data we considered are clearly suggesting the presence for an extra dark radiation component with $N_{\text{eff}} = 4.08^{+0.74}_{-0.68}$ at 95% c.l. . Performing an analysis on its effective sound speed c_s^2 and viscosity c_v^2 parameters, we found $c_s^2 = 0.312 \pm 0.026$ and $c_v^2 = 0.298^{+0.021}_{-0.016}$ at 95% c.l., consistent with the expectations of a relativistic free streaming component ($c_s^2=c_v^2=1/3$). Assuming the presence of 3 standard relativistic neutrinos we
constrain the extra dark radiation component with $N^S_\nu = 1.10^{+0.79}_{-0.72}$ and $c^S_{\nu\text{vis}} = 0.24^{+0.08}_{-0.13}$ at 95% c.l. while $c^S_{\nu\text{vis}}$ is practically unconstrained. Assuming a mass in the 3 neutrino component we obtain further indications for the dark radiation component with $N^S_\nu = 1.12^{+0.86}_{-0.74}$ at 95% c.l. From these results we conclude that Dark Radiation currently represents one of the most relevant anomaly for the Λ-CDM scenario.

While a variation in the fine structure constant could explain a larger value for N_{eff}, the data still prefer this solution with $N_{\text{eff}} > 3$ than a variation in α.

Dark Radiation will be severely constrained in the very near future by the Planck satellite data, where a precision on N_{eff} of about $\Delta N_{\text{eff}} \sim 0.2$ is expected (see e.g. [41] and [42]) only from CMB data.

Acknowledgments

We thank Ryan Keisler for providing us with the likelihood code for the SPT data. We thank Luca Pagano for help. This work is supported by PRIN-INAF, "Astronomy probes fundamental physics”. Support was given by the Italian Space Agency through the ASI contracts Euclid-IC (1/031/10/0).

References

[1] E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO].
[2] J. Dunkley et al., arXiv:1009.0866 [astro-ph.CO].
[3] C. L. Reichardt et al., Astrophys. J. 694 (2009) 1200 [arXiv:0801.1491 [astro-ph]].
[4] R. Keisler et al., arXiv:1105.3182 [astro-ph.CO].
[5] B. A. Reid et al., Mon. Not. Roy. Astron. Soc. 404 (2010) 60 [arXiv:0907.1659 [astro-ph.CO]].
[6] E. W. Kolb and M. S. Turner, Front. Phys. 69 (1990) 1.
[7] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, P. D. Serpico, Nucl. Phys. B729 (2005) 221-234 [hep-ph/0506164].
[8] R. Bowen, S. H. Hansen, A. Melchiorri, J. Silk and R. Trotta, Mon. Not. Roy. Astron. Soc. 334, 760 (2002) [arXiv:astro-ph/0110636].
[9] U. Seljak, A. Slosar, P. McDonald, JCAP 0610 (2006) 014 [astro-ph/0604335].
[10] M. Cirigli and A. Strumia, JCAP 0612 (2006) 013 [arXiv:astro-ph/0607086].
[11] G. Mangano, A. Melchiorri, O. Mena, G. Miele, A. Slosar, JCAP 0703 (2007) 006 [astro-ph/0612150].
[12] K. Ichikawa, M. Kawasaki, F. Takahashi, JCAP 0705, 007 (2007). [astro-ph/0611784].
[13] J. Hamann, S. Hannestad, G. G. Raffelt, I. Tamborra, Y. Y. Y. Wong, Phys. Rev. Lett. 105 (2010) 181301. [arXiv:1006.5276 [hep-ph]].
[14] E. Giusarma, M. Corsi, M. Archidiacono, R. de Putter, A. Melchiorri, O. Mena, S. Pandolfi, Phys. Rev. D83 (2011) 115023 [arXiv:1102.4774 [astro-ph.CO]].
[15] L. M. Krauss, C. Lunardini, C. Smith, [arXiv:1009.4666 [hep-ph]].
[16] B. A. Reid, L. Verde, R. Jimenez, O. Mena, JCAP 1001, 003 (2010). [arXiv:0910.0008 [astro-ph.CO]].
[17] M. Archidiacono, E. Calabrese and A. Melchiorri, Phys. Rev. D 84 (2011) 123008 [arXiv:1109.2767 [astro-ph.CO]].
[18] E. Menegoni, M. Archidiacono, E. Calabrese, S. Galli, C. J. A. P. Martins and A. Melchiorri, Phys. Rev. D 85 (2012) 107301 [arXiv:1202.1476 [astro-ph.CO]].
[19] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li et al., Astrophys. J. 730, 119 (2011). [arXiv:1103.2976 [astro-ph.CO]].
[20] Z. Hou, R. Keisler, L. Knox, M. Millea, F. Takahashi, [arXiv:1104.2333 [astro-ph.CO]].
[21] T. L. Smith, S. Das and O. Zahn, arXiv:1105.3246 [astro-ph.CO].
[22] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, P. D. Serpico, Nucl. Phys. B756 (2006) 100-116. [hep-ph/0607267].
[23] A. Aguilar et al. [LSND Collaboration], Phys. Rev. D 64 (2001) 112007. [arXiv:hep-ex/0104049].
[24] A. A. Aguilar-Arevalo et al. [The MiniBooNE Collaboration], Phys. Rev. Lett. 98 (2007) 231801 [arXiv:0704.1500 [hep-ex]]; A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 103 (2009) 111801 [arXiv:0904.1958 [hep-ex]].
[25] S. Hannestad, A. Mirizzi, G. G. Raffelt and Y. Y. Y. Wong, JCAP 1008 (2010) 001 [arXiv:1004.0695 [astro-ph.CO]]; A. Melchiorri, O. Mena and A. Slosar, Phys. Rev. D 76 (2007) 041303 [arXiv:0705.2695 [astro-ph]].

K. Nakayama, F. Takahashi and T. T. Yanagida, Phys. Lett. B 697 (2011) 275 [arXiv:1010.5693 [hep-ph]].
[26] T. L. Smith, E. Pierpaoli and M. Kamionkowski, Phys. Rev. Lett. 97 (2006) 021301 [arXiv:astro-ph/0603144].
[27] W. Fischler, J. Myers, Phys. Rev. D 83 (2011) 063520. [arXiv:1011.3501 [astro-ph.CO]]; K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami, F. Takahashi, “Increasing effective number of neutrinos by decaying particles,” JCAP 0705 (2007) 008. [hep-ph/0703034 [HEP-PH]]; K. Nakayama, F. Takahashi, T. T. Yanagida, “A theory of extra radiation in the Universe,” Phys. Lett. B 697, 275-279 (2011). [arXiv:1010.5693 [hep-ph]]
[28] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B 477 (2000) 285 [arXiv:hep-th/9910219]; T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62 (2000) 024012 [arXiv:gr-qc/9910076]; V. V. Flambaum and E. V. Shuryak, Europhys. Lett. 74 (2006) 813 [arXiv:hep-th/0512038].
[29] A. Hebecker and J. March-Russell, Nucl. Phys. B 608 (2001) 375 [arXiv:hep-ph/0103214].
[30] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B 477 (2000) 285 [arXiv:hep-th/9910219]; T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62 (2000) 024012 [arXiv:gr-qc/9910076]; V. V. Flambaum and E. V. Shuryak, Europhys. Lett. 74 (2006) 813 [arXiv:hep-th/0512038].
[31] A. Hebecker and J. March-Russell, Nucl. Phys. B 608 (2001) 375 [arXiv:hep-ph/0103214].
[32] A. Hebecker and J. March-Russell, Nucl. Phys. B 608 (2001) 375 [arXiv:hep-ph/0103214].
[33] A. Melchiorri, A. Cooray, JCAP 0806, 013 (2008). [arXiv:0804.1925 [astro-ph]]
[34] J. F. Beacom, N. F. Bell, S. Dodelson, Phys. Rev. Lett. 93 (2004) 121302. [astro-ph/0404585]; S. Hannestad, JCAP 0502 (2005) 011. [astro-ph/0411475]; A. Basboll, O. E. Bjaelde, S. Hannestad and G. G. Raffelt, Phys. Rev. D 79 (2009) 043512 [arXiv:0806.1735 [astro-ph]].