Thermal entanglement of a spin-1/2 Ising–Heisenberg model on a symmetrical diamond chain

N S Ananikian¹,², L N Ananikyan¹, L A Chakhmakhchyan¹,³,⁴ and Onofre Rojas²

¹ A I Alikhanyan National Science Laboratory, 0036 Yerevan, Armenia
² Departamento de Ciências Exatas, Universidade Federal de Lavras, CP 3037, 37200000, Lavras, MG, Brazil
³ Institute for Physical Research, 0203 Ashtarak-2, Armenia
⁴ Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex, France

E-mail: ors@ufla.br (Onofre Rojas)

Received 5 December 2011, in final form 17 April 2012
Published 25 May 2012
Online at stacks.iop.org/JPhysCM/24/256001

Abstract
The entanglement quantum properties of a spin-1/2 Ising–Heisenberg model on a symmetrical diamond chain were analyzed. Due to the separable nature of the Ising-type exchange interactions between neighboring Heisenberg dimers, calculation of the entanglement can be performed exactly for each individual dimer. Pairwise thermal entanglement was studied in terms of the isotropic Ising–Heisenberg model and analytical expressions for the concurrence (as a measure of bipartite entanglement) were obtained. The effects of external magnetic field \(H \) and next-nearest neighbor interaction \(J_{mn} \) between nodal Ising sites were considered. The ground state structure and entanglement properties of the system were studied in a wide range of coupling constant values. Various regimes with different values of ground state entanglement were revealed, depending on the relation between competing interaction strengths. Finally, some novel effects, such as the two-peak behavior of concurrence versus temperature and coexistence of phases with different values of magnetic entanglement, were observed.

(Some figures may appear in colour only in the online journal)

1. Introduction

During the last two decades, low-dimensional magnetic materials with competing interactions or geometrical frustration have become an intriguing research topic. In particular, these materials exhibit a rich variety of unusual ground states and thermal properties as a result of zero and finite temperature phase transitions [3, 1, 2, 4, 5]. As attractive models among these systems, one should mention those having a diamond chain structure. The latter consists of diamond-shaped topological units along the chain (figure 1). It has been observed that the compounds \(A_2Cu_3(PO_4)_4 \) with \(A = Ca, Sr [6], Bi_4Cu_3V_2O_{14} [7] \) and \(Cu_3(SeO_3)_2Br_2 [8] \) can be nicely modeled by the Heisenberg diamond chain. Besides, recent experimental results on the natural mineral azurite \((Cu_3(CO_3)_2(OH)_2) [9] \) showed that \(Cu^{2+} \) ions of this material form a spin-1/2 diamond chain. Furthermore, the discovery of a plateau at one-third of the saturation value in the low-temperature magnetization curve [9, 10] has triggered an intensive interest in the magnetic properties of azurite [12, 11]. Azurite falls into the class of geometrically frustrated magnets. However, the question of the strength and the type of exchange interactions for...
this natural mineral, despite the long-standing interest, is still open. The first diamond spin chain was explored under a symmetrical condition \(J_1 = J_3 \) [13] that predicted magnetization plateaus both at one-third and one-sixth of saturation [14]. The frustrated diamond chain with ferromagnetic interactions \(J_1, J_3 < 0 \) and antiferromagnetic interaction \(J_2 > 0 \) was also investigated theoretically [15]. Other exchange interactions, such as an additional cyclic four-spin [16] and \(J_m \) interaction between monomeric units (the so called generalized diamond chain) [17], were considered. Additionally, the importance of an anisotropic exchange and Dzyaloshinskii–Moriya interaction [18] or interchain coupling [19] was discussed. To sum up, note that the theory predictions for certain values of exchange coupling constants within a relatively broad range can fit the experimental results. The controversy surrounding these values seems to have been cleared up only recently (the latest comparison of experimental and theoretical results can be found in [20]).

Motivated by the controversies discussed above and the fact that different compounds can be described by means of a diamond chain, we shall explore systematically the generalized symmetrical spin-1/2 diamond chain with various competing interactions in a magnetic field. Unfortunately, the rigorous theoretical treatment of geometrically frustrated quantum Heisenberg models is difficult to fulfil. The problem arises due to a non-commutability of spin operators involved in the Heisenberg Hamiltonian. This is also a primary cause of the presence of quantum fluctuations. Owing to this fact, we shall use the recently proposed geometrically frustrated Ising–Heisenberg diamond chain model [21, 23, 22]. The latter suggests overcoming the mathematical difficulties by introducing the Ising-type (nearest-neighbor \(J_1, J_3 \) and next-nearest neighbor \(J_m \)) interactions.

Note that some exactly solvable models with Ising and Heisenberg bonds can also provide a satisfactory quantitative picture [24].

In the present paper we shall mainly deal with the quantum entanglement properties of the spin-1/2 Ising–Heisenberg model on a generalized symmetrical diamond chain. It is well known that the entanglement is a generic feature of quantum correlations in systems, that cannot be quantified classically [25, 26]. It provides a new perspective for understanding the quantum phase transitions (QPTs) and collective phenomena in many-body and condensed matter physics. This problem, which has been under scrutiny for nearly two decades, has recently attracted much attention [27–31]. A new line of research points to a relation between the entanglement of a many-particle system and the existence of the QPTs and scaling [32, 33]. On the other hand, the study of entanglement in solid state physics is of a great relevance to the area of quantum information and quantum computation, since many proposals for quantum chips are solid state based. Although it was believed that the entanglement should not manifest itself in macroscopic objects (because of a large number of constituents interacting with the surroundings that induce the decoherence phenomena), it was theoretically demonstrated that entangled states can exist in solids at finite temperatures. This kind of entanglement is referred to in the literature as ‘the thermal entanglement’ [27]. Since then some experimental evidence has been reported for low-dimensional spin systems [34], confirming the presence of entanglement in solid state materials.

Returning to the spin-1/2 Ising–Heisenberg model on a diamond chain, we remark that the nodal Ising spins represent a barrier for quantum fluctuations. On the other hand, taking into account that each Heisenberg dimer interacts with its neighboring dimer through the Ising-type, i.e. classical exchange, interaction, we find that the states of two adjacent dimers become separable (disentangled) [25]. Thus, we can calculate the concurrence (the measure of pairwise entanglement [35]), which characterizes quantum features of the system, for each dimer separately. The main objective of the paper is to reveal different regimes of the symmetrical diamond chain and to analyze new quantum effects (such as double peak behavior in the concurrence versus temperature curves and existence of magnetic entanglement [27] of two different values).

The rest of the paper is organized as follows: we start in section 2 by obtaining concurrence as a measure of entanglement of the spin-1/2 Ising–Heisenberg model on a generalized symmetrical diamond chain. The ground state structure and the entanglement features of the ideal diamond chain \((J_1 = J_3, J_m = 0) \) are discussed in section 2.1. The following section contains similar results with the incorporation of \(J_m \) interaction. Some comments and concluding remarks are given in section 4.
2. Concurrence and thermal entanglement of the spin-1/2 Ising–Heisenberg model on a generalized symmetrical diamond

We consider the spin-$\frac{1}{2}$ Ising–Heisenberg model on a generalized symmetrical diamond chain ($J_1 = J_3 = J$), which consists of monomeric and dimeric sites (empty and full circles in figure 1, respectively). Within the proposed Ising–Heisenberg model, the monomeric (nodal) sites are occupied by Ising spins, while the dimeric sites by Heisenberg-type spins. The Hamiltonian can be written as follows:

$$\mathcal{H} = \sum_{k=1}^{N} H_k = \sum_{k=1}^{N} \left[J_2 S_k^+ S_{k+1}^x + \mu_k (\mu_k^x + \mu_k^{x+1}) (S_k^x + S_{k+1}^x) + J_m \mu_k^x \mu_k^{x+1} - H \left(S_k^x + S_{k+1}^x + \frac{\mu_k^x + \mu_k^{x+1}}{2} \right) \right],$$ \hspace{1cm} (1)

where the summations run over clusters (figure 1). H_k represents the Hamiltonian of the kth cluster, $S_k = (S_k^x, S_k^y, S_k^z)$ denotes the Heisenberg spin-$\frac{1}{2}$ operator, and μ_k is the Ising spin. Considering, that each Ising spin belongs simultaneously to two clusters, we have taken a factor of 1/2 for the Ising spins in the last term of (1), which incorporates the effects of the external magnetic field. $J_1, J_2, J_m > 0$ corresponds to the antiferromagnetic couplings. The system will be strongly frustrated due to the chain’s geometry and existence of competing interactions J_1, J_2 and J_m. When $J_m = 0$ we deal with the so called ideal diamond chain [21]. Before introducing the calculations and discussion we would like to emphasize the fact which has already been discussed in section 1: the states of two neighboring Heisenberg dimers (with interaction J_2) are separable (disentangled), because of a classical character of the coupling between them (by means of the Ising spin). Hence we can calculate the entanglement for each of the dimers individually. Note that a different approach of a mean-field-like treatment, based on the Gibbs–Bogoliubov inequality, was used in [36], where all the couplings between the diamond chain sites were chosen to be of a quantum (Heisenberg-type) character.

Here we use concurrence (as a measure of bipartite entanglement [35]) of the Heisenberg dimers by tracing out the Ising spins in each cluster. For the construction of eigenvectors of each cluster we shall take into account that \mathcal{H}_k possesses a symmetry corresponding to the permutations $\mu_k \leftrightarrow \mu_{k+1}$ and $\{ \mu_k \leftrightarrow \mu_{k+1}; S_k^x \leftrightarrow S_{k+1}^x \}$. Besides, the Hilbert space of the cluster $\mathcal{H}_{\text{cluster}} = \mathcal{H}_k \otimes \mathcal{H}_{\text{dimer}} \otimes \mathcal{H}_{k+1}$, where $\mathcal{H}_{\text{k1}}, \mathcal{H}_{\text{dimer}}, \mathcal{H}_{\text{k2}}$ denotes the Hilbert spaces of μ_k, Heisenberg dimer and μ_{k+1} respectively. We obtain the following eigenvectors, due to the symmetries and Hilbert space structure (hereafter, the letter k labels the number of the cluster):

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\uparrow_k \uparrow_{k+1};$$
$$|\psi_2\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\uparrow_k \downarrow_{k+1};$$
$$|\psi_3\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \uparrow_{k+1};$$
$$|\psi_4\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_5\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\uparrow_k \downarrow_{k+1};$$
$$|\psi_6\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_7\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_8\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_9\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\uparrow_k \downarrow_{k+1};$$
$$|\psi_{10}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_{11}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_{12}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_{13}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\uparrow_k \downarrow_{k+1};$$
$$|\psi_{14}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$
$$|\psi_{15}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\uparrow_k \downarrow_{k+1};$$
$$|\psi_{16}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow_1 \downarrow_{k+1} + |\downarrow_1 \uparrow_{k+1} \right) \otimes |\downarrow_k \downarrow_{k+1};$$

and the corresponding eigenvalues

$$E_1 = \frac{1}{2}(-2H + J_m + J_2); \quad E_2 = E_3 = -\frac{J_m - J_2}{4};$$
$$E_4 = \frac{1}{4}(J_m + J_2 + 2H); \quad E_5 = \frac{1}{4}(-2H + J_m - 3J_2);$$
$$E_6 = E_7 = -\frac{3H + J_m + J_2}{4}; \quad E_8 = \frac{1}{4}(2H + J_m - 3J_2);$$
$$E_9 = -\frac{3H + J_m + J_2}{4}; \quad E_0 = -\frac{3H + J_m + J_2}{4} + J;$$
$$E_{10} = E_{11} = -H - \frac{J_m - J_2}{4};$$
$$E_{12} = -\frac{H}{2} + \frac{1}{4}(J_m + J_2 - 4J);$$
$$E_{13} = \frac{H}{2} - \frac{1}{4}(J_m + J_2 - 4J);$$
$$E_{14} = E_{15} = \frac{1}{2}(-J_m + J_2 + 4H);$$
$$E_{16} = \frac{3H}{2} + \frac{J_m + J_2}{4} + J.$$

We study concurrence $C(\rho)$, to quantify pairwise entanglement [35], defined as

$$C(\rho) = \max\{\lambda_1 - \lambda_2 - \lambda_3 - \lambda_4, 0\}. \quad (4)$$
where \(\lambda, s \) are the square roots of the eigenvalues of the corresponding operator for the density matrix

\[
\hat{\rho} = \rho_{12}(\sigma_i^z \otimes \sigma_j^z)\rho_{12}^*(\sigma_i^z \otimes \sigma_j^z)
\]

in descending order. Since we consider pairwise entanglement, we shall use the reduced density matrix \(\rho_{12} \), by tracing out two (or four) spins of the cluster.

The reduced density matrix \(\rho_{12} \) is defined as [37]

\[
\rho_{12} = \sum_{\alpha} |\alpha\rangle\langle\alpha|.
\]

In this equation \(|\alpha\rangle \) denotes basis vectors of the Hilbert space associated with the system, with respect to which the density matrix is reduced. The summation runs over all these basis vectors. Since in our case we make reduction with respect to two spins, \(|\alpha\rangle = \{|\downarrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\uparrow\uparrow\rangle\}. \)

It is obvious that the only entangled pair is formed by the Heisenberg spins. Other pairs are disentangled (separable) because of the classical (diagonal) character of the Ising-type interaction between them. Hence we shall be interested in the reduced density matrix, by tracing out two Ising-type spins \(\mu_k \) and \(\mu_{k+1} \). In other words, \(\rho_{k12} = \text{Tr}_{\{\mu_k, \mu_{k+1}\}} \rho_k \) and the full density matrix \(\rho_k \) of the 4th cluster is defined as (henceforth the Boltzmann constant is set to be \(k_B = 1 \))

\[
\rho_k = \frac{1}{Z_k} \sum_{i=1}^{16} \exp(-E_i/T)|\psi_i\rangle\langle\psi_i|,
\]

where \(Z_k \) is the partition function:

\[
Z_k = \text{Tr} \rho_k = e^{-\frac{6H_0+J_m+J_2}{T}} (2e^{-\frac{H_0+J_m+3J_2}{T}} + 2e^{-\frac{H_0+J_m+4J_2}{T}} + e^{-\frac{2H_0+2J_m+2J_2}{T}} + e^{-\frac{2H_0+2J_m+3J_2}{T}} + e^{-\frac{H_0+3J_m+2J_2}{T}} + e^{-\frac{H_0+4J_m+2J_2}{T}} + e^{-\frac{3H_0+2J_m+J_2}{T}} + e^{-\frac{2H_0+3J_m+J_2}{T}} + e^{-\frac{H_0+5J_m}{T}} + e^{-\frac{3H_0+J_m}{T}} + e^{-\frac{2H_0+2J_m}{T}} + e^{-\frac{H_0+3J_m}{T}} + e^{-\frac{2H_0+J_m}{T}} + e^{-\frac{H_0}{T}} + 1).
\]

Using the definition (6) and the basis vectors \(|\alpha\rangle = \{|\downarrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\uparrow\uparrow\rangle\} \) we construct the reduced density matrix \(\rho_{k12} \) of the 4th cluster:

\[
\rho_{k12} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & w & 0 & 0 \\
0 & y^* & w & 0 \\
0 & 0 & 0 & v
\end{pmatrix},
\]

where

\[
u = e^{-\frac{6H_0+J_m+J_2}{T}} (2e^{-\frac{H_0+J_m+3J_2}{T}} + e^{-\frac{2H_0+2J_m+2J_2}{T}} + e^{-\frac{2H_0+2J_m+3J_2}{T}} + e^{-\frac{H_0+3J_m+2J_2}{T}} + e^{-\frac{H_0+4J_m+2J_2}{T}} + e^{-\frac{3H_0+2J_m+J_2}{T}} + e^{-\frac{2H_0+3J_m+J_2}{T}} + e^{-\frac{H_0+5J_m}{T}} + e^{-\frac{3H_0+J_m}{T}} + e^{-\frac{2H_0+2J_m}{T}} + e^{-\frac{H_0+3J_m}{T}} + e^{-\frac{2H_0+J_m}{T}} + e^{-\frac{H_0}{T}} + 1),
\]

\[
u = e^{-\frac{6H_0+J_m+J_2}{T}} (2e^{-\frac{H_0+J_m+3J_2}{T}} + e^{-\frac{2H_0+2J_m+2J_2}{T}} + e^{-\frac{2H_0+2J_m+3J_2}{T}} + e^{-\frac{H_0+3J_m+2J_2}{T}} + e^{-\frac{H_0+4J_m+2J_2}{T}} + e^{-\frac{3H_0+2J_m+J_2}{T}} + e^{-\frac{2H_0+3J_m+J_2}{T}} + e^{-\frac{H_0+5J_m}{T}} + e^{-\frac{3H_0+J_m}{T}} + e^{-\frac{2H_0+2J_m}{T}} + e^{-\frac{H_0+3J_m}{T}} + e^{-\frac{2H_0+J_m}{T}} + e^{-\frac{H_0}{T}} + 1).
\]

The density matrix \(\rho_{k12} \) in equation (9) has the form of a so-called X-state [38], since the Hamiltonian \(\mathcal{H}_k \) is translationary invariant with a symmetry \(|S, \mathcal{H}_k\rangle = 0 (S = 1/2(\mu_k^z + \mu_{k+1}^z) + S_{k1}^z + S_{k2}^z) \) [39]. The concurrence \(C(\rho) \) of such an X-state density matrix has the following form [40]:

\[
C(\rho) = \frac{2}{Z} \max(|v| - \sqrt{uv}, 0).
\]

We note here that the reduced density matrix \(\rho_{k12} \) of any pair of spins, different from the Heisenberg dimer, has no non-diagonal elements, responsible for the quantum correlations, i.e. entanglement (see (11)). Thus we conclude that there is no entanglement between a pair of spins which contains at least one Ising spin.

In equations (3), one finds a set of states with maximum value of entanglement, for which the Heisenberg dimer is in a singlet or a triplet state (\(\psi_i \) with \(i = 1, \ldots, 16 \)). As for the rest of the states (\(\psi_i \) with \(i = 9, \ldots, 16 \)) the Heisenberg dimer is in a separable state and therefore these \(\psi_{i} \)s are non-entangled ones.

2.1. Ideal diamond chain

In this section we proceed to the investigation of entanglement features of a dimeric unit of an ideal diamond chain (\(J_m = 0 \)). First, we study the behavior of \(C(\rho) \) at \(H = 0 \). We shall discuss here three regimes, depending on the value of \(J - J_2 : J > J_2 > 0, J < J_2 < 0, J - J_2 = 0 \). In the first case, as one finds out from (3), the ground state contains twofold degenerate states \(\psi_{12} \) and \(\psi_{13} \). Since these states are factorable, the corresponding dependence curve of \(C(\rho) \) on temperature \(T \) starts from \(C(\rho) = 0 \) (figure 2). Furthermore, the entanglement can be invoked by increasing the temperature (for values of \(J - J_2 \) close to 0). This happens since the contribution of entangled states in the mixture \(\rho_k \) increases with the growth of temperature \(T \). The local maximum appearing here arises due to the optimal thermal mixing of all eigenstates in the system. This maximum becomes narrower and smaller and gradually vanishes by increasing \(J - J_2 \). But the value of \(J - J_2 \) corresponding to disappearance of \(C(\rho) \) also depends on the value of \(J_2 \) (e.g. for \(J_2 = 1, J - J_2 \approx 0.2 \)). The latter becomes obvious if one takes into account that \(J_2 \), being the coupling constant of the Heisenberg-type interaction between dimeric units, is responsible for the strength of quantum correlations between...
Heisenberg spins. We should like to emphasize here that in the case $J - J_2 > 0$ the system exhibits weak ($0 < J_2 < J$) or no frustration ($J_2 < 0$).

In the second case, when $J - J_2 < 0$, the system will obviously manifest more of its quantum nature. Firstly, the dependence curve of $C(\rho)$ from temperature starts from $C(\rho) = 1$ at $T = 0$ (figure 2). This happens due to the fact that at zero temperature the maximum entangled states ψ_5, ψ_6, ψ_7 and ψ_8 form a fourfold degenerate ground state with the value of $C(\rho) = 1$ for the corresponding reduced density matrix $\rho_{k_{12}}$. When the temperature is increased, the concurrence gradually disappears because of the thermal mixing with other states of the system (including the factorable ones). The sudden-death temperature T_d, corresponding to the dying out of quantum correlations in the system, can be found through the equation $C(\rho) = 0$. It has the following form:

$$x^J(x^J + 1)^2 = 2|x^2 − 1|,$$

where $x = e^{1/JT}$. The solution can be presented in the form $T_d = J/\log a$ (when $J - J_2 < 0$), where a depends on the ratio parameter J_2/J. Increasing this ratio, a decreases, but the linear dependence on J remains (e.g. when $J_2/J = 2$, $a = \frac{1}{2}(3 + \sqrt{17})$).

Finally, the case $J - J_2 = 0$ can be regarded as a boundary case in the following sense. Here the ground state is sixfold degenerate, containing additionally ψ_{12} and ψ_{13}, besides ψ_5, ψ_6, ψ_7 and ψ_8 (in other words all the states as in the previous two cases). Since the ψ_{12} and ψ_{13} are factorable, this leads to entanglement of the ground state’s reduced matrix, that is $C(\rho) = 1/3$ (figure 2). Moreover, the above discussed sudden-death temperature T_d is lower than in the case $J - J_2 < 0$ (although again $T_d = J/\log a$ with $a = 2 + \sqrt{3}$).

On the other hand, as can be seen from figure 2, there are two sudden-death temperatures in the case $J - J_2 > 0$ (corresponding to arising and vanishing of entanglement) [41]. The dependence of T_d on the ratio parameter J_2/J is shown in figure 3. In the area $0 < J_2/J < 1$ there are two sudden-death temperatures (as mentioned above), while for the values $J_2/J \geq 1$ the dependence is a linear one.

Our further investigation concerns the effects of the magnetic field H.

Firstly we shall discuss how magnetic field affects the above introduced sudden-death temperature T_d. While increasing H, T_d increases too, but it always remains lower than $J_2/\log 3$ (in other words $\lim_{H \to -\infty} T_d = J_2/\log 3$). Another interesting fact is that magnetic field gives rise to more than two sudden-death temperatures in the case $J - J_2 > 0$ (figure 4(a)), and for the dependence of $C(\rho)$ on temperature T one finds two peaks separated by an area of a zero entanglement (figure 4(b)). With increasing H the smaller of the aforementioned peaks tears apart from $C(\rho) = 0$, starts merging with the bigger one and eventually disappears. An effect of this kind has not been reported yet, to the best of our knowledge, although a similar two-peak behavior of concurrence was found in the dissipative Lipkin–Meshkov–Glick model versus magnetic field [42]. However, when $T \to 0$, $C(\rho)$ remains finite and becomes zero only at absolute zero temperature $T = 0$ (i.e. there can not be more than three sudden-death temperatures corresponding to disappearing or arising of thermal entanglement, as can be also seen from figure 4(a)). In other words, in the area of low temperatures the behavior of concurrence is smooth, in contrast with the case when the magnetic field is absent.

Now, we concentrate on the dependence of $C(\rho)$ on the magnetic field. Because of the above introduced ground state structure, the dependence curve of $C(\rho)$ from the magnetic field at zero temperature has a dip at $H = 0$ with $C(\rho) = 1/3$ for $J - J_2 = 0$. There is no dip if $J - J_2 < 0$ (figure 5). When the Ising-type interaction is stronger than the Heisenberg one ($J - J_2 > 0$), one does not find a magnetic entanglement. Furthermore, magnetic entanglement is of a higher value than that at zero magnetic field in the case $J - J_2 = 0$. This happens due to the fact that the ground state here is twofold degenerated and contains ψ_5 and ψ_{12} with the value $C(\rho) = 1/2$ for the corresponding reduced density matrix. $C(\rho)$ becomes zero for the case $J - J_2 \leq 0$ at the values of H corresponding to saturation field, that is when the non-entangled state $↑↑↑↑$ (in the area $H > 0$) or $↓↓↓↓$ (in the area $H < 0$) becomes the ground state. One can find the described values of H from the conditions $E_0 = E_3$ and $E_{16} = E_8$, giving $H_s^+ = J + J_2$ and $H_s^- = −J − J_2$, respectively. Thermal effects smooth the step-like behavior of concurrence in the case when $J - J_2 \geq 0$ and induce thermal entanglement when $J - J_2 > 0$ (see figure 2). Further increase of temperature causes the quantum correlations to eventually die out for both cases.

Summarizing, in figure 6 we also plot three-dimensional dependences of the concurrence $C(\rho)$ versus temperature T and magnetic field H.

![Figure 3. Sudden-death temperature T_d corresponding to the vanishing or arising of entanglement at zero magnetic field H versus ratio parameter J_2/J ($J = 0.5$).](image-url)
3. Incorporation of J_m interaction

In this section we shall study the effects of the next-nearest neighbor interaction J_m between the Ising spins of the cluster, using the full expression for (10) and (11). We shall start with the discussion of the ground state structure for the case $H = 0$ and $J - J_2 > 0$. It turns out that here one can distinguish two regimes. First, when $0 < J_m < 2(J - J_2)$, the frustrated ground state contains twofold degenerate ψ_{12} and ψ_{13} and thus the dependence curve of $C(\rho)$ on temperature starts up at $C(\rho) = 0$. However, the thermal effects can cause the thermal entanglement for the values of J_m, close to $2(J - J_2)$ (but still $J_m < 2(J - J_2)$). One finds two sudden-death temperatures on the dependence curve of $C(\rho)$ on T (figure 7). This effect can be understood from the following discussion. The ground state consists of fourfold degenerate states $\psi_6, \psi_7, \psi_{12}$ and ψ_{13}, for the case $J_m = 2(J - J_2)$. Although this mixture contains maximum entangled states ψ_6 and ψ_7, the corresponding density matrix for this ground state gives $C(\rho) = 0$. By increasing temperature, one obtains the thermal mixing of states, which leads to a higher contribution of entangled states. This contribution, however, becomes less when the values of J_m are considerably higher than $2(J - J_2)$. Thus, on increasing the difference of J_m and $2(J - J_2)$, the local maximum becomes narrower and eventually disappears.

In the opposite case, when $J_m > 2(J - J_2)$, the frustrated ground state is twofold degenerate, but with ψ_6 and ψ_7, hence the above mentioned curve of $C(\rho)$ starts from $C(\rho) = 1$. We find only one sudden-death temperature here, which
increases with the growth of J_m (figure 7). In other words, the qualitative picture remains the same as for the case $J_m = 0$. $C(\rho)$ is of a maximum value ($C(\rho) = 1$) at zero magnetic field and zero temperature, regardless of the J_m for a dominant Heisenberg interaction ($J - J_2 < 0$).

Concluding the discussion of zero magnetic field properties in the case $J_m \neq 0$, we note that when $J_m < 0$ (ferromagnetic coupling), the absolute value of J_m does not interfere with the ground state properties of the system (it will be twofold degenerate ψ_{12} and ψ_{13}, if $J > J_2$ or ψ_5 and ψ_8, if $J < J_2$).

Here then, we shall discuss the regime $J - J_2 > 0$ introducing effects of the magnetic field H. We differentiate two subcases. First, when $J_m \leq 2(J - J_2)$, one does not find magnetic entanglement in the system, since increasing the absolute value of magnetic field H, we obtain a sequence of separable states (e.g. $\psi_{12} \to (\psi_{10} + \psi_{11}) \to \psi_0$ or $\psi_{12} \to \psi_9$ for $H > 0$). Henceforth by $(\psi_i + \psi_j)$ we shall mean twofold degenerate states.

Meanwhile, when $J_m > 2(J - J_2)$, the aforementioned sequence of states starts from $(\psi_6 + \psi_7)$ with maximum value of $C(\rho) = 1$, therefore we obtain magnetic entanglement (figure 8). One can introduce here critical values of magnetic field H_{C}^+ and H_{C}^-, corresponding to vanishing of magnetic entanglement. In contrast to the case $J_m = 0$, H_{C}^\pm does not coincide with the saturation fields H_{S}^{\pm} (see section 2.1).

On the one hand, we have the ground state transitions $(\psi_6 + \psi_7) \to \psi_{12} \to (\psi_{10} + \psi_{11}) \to \psi_0$ (for $H > 0$) if the value of magnetic field corresponding to the intersection of energies E_6 and E_{12} is lower than that of E_{10} and E_{12} (figure 9(a)). This condition gives: $J_m < 2J - J_2$. Thus the corresponding critical values of magnetic field can be found from $E_6 = E_{12}$ with $H_{\text{C}}^+ = 2J_5 - 2J + J_m$ (obviously, $H_{\text{C}}^- = -H_{\text{C}}^+$, from equation $E_6 = E_{13}$). On the other hand, when $J_m > 2J - J_2$, we have the ground state transitions $(\psi_6 + \psi_7) \to (\psi_{10} + \psi_{11}) \to \psi_9$ (figure 9(b)). The corresponding $H_{\text{C}}^+ = J_2$, found from $E_9 = E_{10}(H_{\text{C}}^+ = -J_2$, from $E_6 = E_{14}$).

The ground state transition $(\psi_6 + \psi_7) \to \psi_9$ cannot occur, since the corresponding condition is inconsistent with $J_m > 2J - J_2$.

Following the same technique as in the previous paragraph (we shall not describe the detailed phase structure), we obtain the following regimes for $J - J_2 < 0: H_{\text{C}}^+ = H_{\text{C}}^- = J + J_2 (H_{\text{C}}^- = -H_{\text{C}}^-)$ in the case $J_m < J_2 - J$ and $H_{\text{C}}^+ = 2J_5 - J_m$ if $J_2 > J_m > J_2 - J$, and finally when $J_m > J_2$ one finds $H_{\text{C}}^+ = J_2$.

The special (boundary) case $J - J_2 = 0$ is also of interest, since one can observe here magnetic entanglement of different values ($C(\rho) = 1$ and $1/2$) (figure 10), whereas in the case $J_m = 0$, these two regimes cannot coexist for fixed values of J and J_2. This situation arises only for $0 < J_m < J$, when one finds the sequence of states $(\psi_6 + \psi_7) \to (\psi_5 + \psi_12) \to (\text{factorable state})$ (for $H > 0$). In other words, at the values of magnetic field $H = \pm J_m$ (found from conditions $E_6 = E_{12}$ for $H > 0$ and $E_5 = E_9$ for $H < 0$) the states with different values of magnetic entanglement coexist.

As for the sudden-death temperature corresponding to the disappearing or arising of entanglement at non-zero magnetic field, one finds a similar behavior as in the case $J_m = 0$, i.e. here again we find up to three sudden-death temperatures (as in figure 4), with a two-peak behavior of the dependence of $C(\rho)$ on temperature.

4. Conclusion

In this paper we have studied the thermal entanglement of a spin-1/2 Ising–Heisenberg model on a symmetrical diamond chain, which has been proposed to understand the frustrated magnetism of series of compounds, such as $A_3Cu_3(PO_4)_4$ with $A = \text{Ca, Sr, Ba}_4\text{Cu}_3\text{V}_2\text{O}_7\text{I}_4$, $\text{Cu}_3(\text{TeO}_3)\text{Br}_2$ and $\text{Cu}_3(\text{CO}_3)\text{Ba}(\text{OH})_2$. We have studied the phase structure and entanglement properties of the system in a wide range of Ising-type interaction constants $J_1 = J_3 \equiv J$, J_m and Heisenberg-type J_2, considering that the diamond chain structure describes a broad class of materials (within different
values of exchange interaction parameters) and that the exact value of coupling constants for azurite (Cu$_3$(CO$_3$)$_2$(OH)$_2$) is still under scrutiny. Taking into account the classical and hence separable character of Ising-type interactions which are coupling adjacent Heisenberg dimers, we have calculated the entanglement of each of these dimers separately. We have used the concurrence to quantify the amount of entanglement between two Heisenberg-type spins, by tracing out Ising-type ones from the density matrix of the diamond-shaped cluster (the only entangled pair here is the Heisenberg dimer). The incorporation of next-nearest neighbor interaction J_m has also been investigated (generalized diamond chain) and the effects of external magnetic field have been invoked.

We have revealed a number of regimes with distinct ground state structure and qualitatively different thermodynamic behavior, depending on the relations between J, J_2 and J_m and values of magnetic field H. We found that in general for a dominant Heisenberg-type interaction ($J_2 > J$) the system’s ground state is maximally entangled, but on increasing the temperature the pure quantum correlations eventually disappear. On the other hand, for a dominant Ising-type interaction ($J > J_2$) the ground state is non-entangled, whether the temperature gives rise to thermal entanglement or not. In the latter case one does not find magnetic entanglement at the absolute zero temperature (the system behaves as a classical one). However, magnetic field can lead to another, not yet described effect of the two-peak behavior of concurrence $C(\rho)$ versus temperature with three sudden-death temperatures (one of them corresponding to reappearance of concurrence and the other two to its disappearance). These two peaks are separated by an area of zero entanglement, which becomes narrower with the growth of the magnetic field and the aforementioned peaks merge into each other. Another novel effect was indicated for a boundary case $J = J_2$ when $0 < J_m < J$. Specifically, two states with different values of magnetic entanglement coexist for the value of magnetic field $H = \pm J_m$. One finds a step-like behavior of concurrence versus magnetic field H, with plateaus at the values $1/2$ and 1. In other words, the presence of competing interactions in the system and geometrical structure of the chain, each leading to frustration, makes the phase structure of the system richer and gives rise to an interesting physical behavior. Finally, the adopted model guarantees an experimental realization for suitable theoretical treatment. Our results will be useful for further experimental detection of entanglement in the diamond chain structured macroscopic samples by means of entanglement witnesses (e.g. built from measurements of magnetic susceptibility [43]).

Acknowledgments

The work was supported by the French–Armenian grant CNRS IE-017, Brazilian grants CEX-BPV-00028-11, ECSP-09-08-SASP NFSAT, PS-2497 ANSEF, Marie Curie IRSES SPIDER, and project PIRSES-GA-2011-295302 (NA). LC wishes to acknowledge the support of the Regional Council of Burgundy (Conseil Régional de Bourgogne), and the International Associated Laboratory IRMAS. OR thanks the CNPq for the partial financial support.

References

[1] Liu D E, Chandrasekharan S and Baranger H U 2010 Phys. Rev. Lett. 105 256801
de Sousa J R and Branco N S 2005 Phys. Rev. B 72 134421
Vedmedenko E Y et al 2007 Phys. Rev. B 75 104431
[2] Diep H T (ed) 2004 Frustrated Spin Systems (Singapore: World Scientific)
Gardner J S, Gingras M J P and Greedan J E 2010 Rev. Mod. Phys. 82 53
[3] Lee S-H et al 2007 Nature Mater. 6 853
Grohol D et al 2005 Nature Mater. 4 323
J. Phys.: Condens. Matter 24 (2012) 256001

N S Ananikian et al

Stone M B et al 2001 Phys. Rev. B 64 144405
Wawrzynska E et al 2008 Phys. Rev. Lett. 97 094439
Zhitomirsky M E, Honecker A and Petrenko O A 2000 Phys. Rev. Lett. 85 3269
Lee S and Lee K-C 1998 Phys. Rev. B 57 8472
Drillon M et al 1988 J. Appl. Phys. 63 3551
Drillon M et al 1993 J. Magn. Magn. Mater. 97 83
Sakurai H et al 2002 J. Phys. Soc. Japan 71 1161
Uematu D and Sato M 2007 J. Phys. Soc. Japan 76 084712
Okamoto K, Tonegawa T and Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979
Kiyomi O et al 1999 J. Phys.: Condens. Matter 11 10485
Kikuchi H et al 2005 Phys. Rev. Lett. 94 227201
Kikuchi H et al 2005 Prog. Theor. Phys. Suppl. 159 1
Valverde S, Rojas O and de Souza S M 2008 J. Phys.: Condens. Matter 20 345208
Li Y-Ch and Li S-S 2008 Phys. Rev. B 78 184412
Kikuchi H et al 2003 Physica B Condensed Matter 317 329
Rule K C et al 2008 Phys. Rev. Lett. 100 117202
Aimanto et al 2011 Phys. Rev. B 84 012401
Takano K, Kubo K and Sakamoto H 1996 J. Phys.: Condens. Matter 8 6405
Tonegawa T et al 2001 J. Phys. Chem. Solids 62 125
Okamoto K et al 1999 J. Phys.: Condens. Matter 11 10485
Tonegawa T et al 2000 J. Phys. Soc. Japan 69 332
Honecker A and Lauchli A 2001 Phys. Rev. B 63 174407
Ivanov N B, Richter J and Schulenburg J 2009 Phys. Rev. B 79 104412
Honecker A et al 2011 J. Phys.: Condens. Matter 23 164211
Rule K C et al 2011 Phys. Rev. B 83 104401
Kang J et al 2009 J. Phys.: Condens. Matter 21 392201
Jeschke H et al 2011 Phys. Rev. Lett. 106 217201
Canova L, Strecker J and Lucivjansky T 2009 J. Phys.: Condens. Matter 12 353
Canova L, Strecker J and Jascu M 2006 J. Phys.: Condens. Matter 18 4967
Jascu M and Strecker J 2004 J. Magn. Magn. Mater. 272 984
Lisnii B M 2011 Ukr. J. Phys. 56 1237
Antonosyan D, Bellucci S and Ohanyan V 2009 Phys. Rev. B 79 014432
Rojas O et al 2011 Phys. Rev. B 83 094430
Rojas O, Valverde J S and de Souza S M 2009 Physica A 388 1419
Valverde J S, Rojas O and de Souza S M 2008 J. Phys.: Condens. Matter 20 345208
Strecker J et al 2005 Phys. Rev. B 72 024459

Amico L et al 2008 Rev. Mod. Phys. 80 517
Peschel I and Eisler V 2009 J. Phys. A 42 504003
Amico L and Fazio R 2009 J. Phys. A 42 504001
Guhne O and Toth G 2009 Phys. Rep. 474 1
Bennett C H et al 1996 Phys. Rev. A 54 3824
Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
Bennett C H et al 1996 Phys. Rev. Lett. 76 722
Ekert A K 1991 Phys. Rev. Lett. 67 661
Ekert A K 1992 Nature (London) 358 14
Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
Gunlycke D et al 2001 Phys. Rev. B 64 042302
Wang X 2001 Phys. Rev. A 64 012313
Wang X 2001 Phys. Lett. A 281 101
Vidal J, Palacios G and Mosseri R 2004 Phys. Rev. A 69 022107
Ananikian N S et al 2011 J. Phys. A 44 025001
Abgaryan V S et al 2011 Phys. Scr. 83 055702
Ananikian N, Ananikyan L and Lazaryan H 2012 Phys. Atom. Nuclei at press (arXiv:1102.2603v2 [cond-mat])
Larsson D and Johansson H 2005 Phys. Rev. Lett. 95 196406
Alba V, Tagliacozzo L and Calabrese P 2010 Phys. Rev. B 81 060411(R)
Souza A M et al 2008 Phys. Rev. B 77 104402
Rappoport T G et al 2007 Phys. Rev. B 75 054422
Souza A M et al 2009 Phys. Rev. B 79 054408
Lima Sharma A L and Gomes A M 2008 Europhys. Lett. 84 60003
Soares-Pinto D O et al 2009 Europhys. Lett. 87 40008
Bill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
Wootters W K 1998 Phys. Rev. Lett. 80 2245
Ananikian N, Lazaryan H and Nalbandyan M 2012 Eur. Phys. J. B at press (arXiv:1203.5518v1 [cond-mat])
See, e.g. Benenti G, Casati G and Strini G 2004 Principles of Quantum Computation and Information: Basic Tools and Special Topics (Singapore: World Scientific)
Rau A R P 2009 J. Phys. A 42 412002
Rau A R P, Ali M and Alber G 2008 Europhys. Lett. 82 40002
O’Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302
Wang X and Zanardi P 2002 Phys. Lett. A 301 1
Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
Wang X, Fu H and Solomon A I 2001 J. Phys. A 34 11307
Morrison S and Parkins A S 2008 Phys. Rev. Lett. 100 040403
Wiesniak M, Vedral V and Brukner C 2005 New J. Phys. 7 258