ON THE CONVERGENCE OF A STOCHASTIC 3D GLOBALLY MODIFIED TWO-PHASE FLOW MODEL

THEODORE TACHIM MEDJO

Department of Mathematics and Statistics, Florida International University
MMC
Miami, Florida 33199, USA

Abstract. We study in this article a stochastic 3D globally modified Allen-Cahn-Navier-Stokes model in a bounded domain. We prove the existence and uniqueness of a strong solutions. The proof relies on a Galerkin approximation, as well as some compactness results. Furthermore, we discuss the relation between the stochastic 3D globally modified Allen-Cahn-Navier-Stokes equations and the stochastic 3D Allen-Cahn-Navier-Stokes equations, by proving a convergence theorem. More precisely, as a parameter \(N \) tends to infinity, a subsequence of solutions of the stochastic 3D globally modified Allen-Cahn-Navier-Stokes equations converges to a weak martingale solution of the stochastic 3D Allen-Cahn-Navier-Stokes equations.

1. Introduction. It is well accepted that the incompressible Navier-Stokes (NS) equation governs the motions of single-phase fluids such as air or water. On the other hand, we are faced with the difficult problem of understanding the motion of binary fluid mixtures, that is fluids composed by either two phases of the same chemical species or phases of different composition. Diffuse interface models are well-known tools to describe the dynamics of complex (e.g., binary) fluids, [18]. For instance, this approach is used in [2] to describe cavitation phenomena in a flowing liquid. The model consists of the NS equation coupled with the phase-field system, [6, 18, 17, 19]. In the isothermal compressible case, the existence of a global weak solution is proved in [14]. In the incompressible isothermal case, neglecting chemical reactions and other forces, the model reduces to an evolution system which governs the fluid velocity \(v \) and the order parameter \(\phi \). This system can be written as a NS equation coupled with a convective Allen-Cahn equation, [18]. The associated initial and boundary value problem was studied in [18] in which the authors proved that the system generated a strongly continuous semigroup on a suitable phase space which possesses a global attractor. They also established the existence of an exponential attractor. This entails that the global attractor has a finite fractal dimension, which is estimated in [18] in terms of some model parameters. The dynamic of simple single-phase fluids has been widely investigated although some important issues remain unresolved, [37]. In the case of binary fluids, the analysis is even more complicate and the mathematical studied is still at it

2010 Mathematics Subject Classification. 35R60, 35Q35, 60H15, 76M35, 86A05.

Key words and phrases. Allen-Cahn-Navier-Stokes, globally modified, stochastic, Galerkin scheme.
infancy as noted in [18]. As noted in [17], the mathematical analysis of binary fluid flows is far from being well understood. For instance, the spinodal decomposition under shear consists of a two-stage evolution of a homogeneous initial mixture: a phase separation stage in which some macroscopic patterns appear, then a shear stage in which these patterns organize themselves into parallel layers (see, e.g. [26] for experimental snapshots). This model has to take into account the chemical interactions between the two phases at the interface, achieved using a Cahn-Hilliard approach, as well as the hydrodynamic properties of the mixture (e.g., in the shear case), for which a Navier-Stokes equations with surface tension terms acting at the interface are needed. When the two fluids have the same constant density, the temperature differences are negligible and the diffuse interface between the two phases has a small but non-zero thickness, a well-known model is the so-called “Model H” (cf. [21]). This is a system of equations where an incompressible Navier-Stokes equation for the (mean) velocity v is coupled with a convective Cahn-Hilliard equation for the order parameter ϕ, which represents the relative concentration of one of the fluids.

Many challenges in the mathematical and numerical analysis of the Allen-Cahn-Navier-Stokes equations (AC-NSE) or the Cahn-Hilliard-Navier-Stokes equations (CH-NSE) are related to the fact that the full mathematical theory for the 3D Navier-Stokes equation (NSE) is still lacking at present. Since the uniqueness theorem for the global weak solutions (or the global existence of strong solutions) of the initial-value problem of the 3D Navier-Stokes system is not proved yet, the known theory of global attractors of infinite dimensional dynamical systems is not applicable to the 3D Navier-Stokes system. This situation is the same for the 3D coupled Allen-Cahn-Navier-Stokes systems. Using regular approximation equations to study the classical 3D Navier-Stokes systems has become an effective tool both from the numerical and the theoretical point of views. As noted in [38], it was demonstrated analytically and numerically in many works that the LANS-α model gives a good approximation in the study of many problems related to turbulence flows. In particular, it was found that the explicit steady analytical solution of the LANS-α model compare successfully with empirical and numerical experiment data for a wide range of Reynolds numbers in turbulent channel and pipe flows, [38]. Let us recall that the inviscid 3D LANS-α equations was first proposed in [23, 22]. As described in [25], the 3D LANS-α equations are a systems of partial differential equations for the mean velocity in which a nonlinear dispersive mechanism filters the small scales. As such, the 3D LANS-α equations serve as an appropriate model for turbulent flows and a suitable approximation of the 3D NS as documented in [8, 10, 9, 11].

In [7], the authors proposed a three dimensional system of a globally modified Navier-Stokes equations (GMNSE). They studied the existence and uniqueness of strong solutions and established the existence of global $V-$attractors. As noted in [7], the GMNSE prevents large gradients dominating the dynamic and leading to explosion. Motivated by the results given in [7], we studied in [35] a three-dimensional system of a globally modified AC-NS equations (GMACNSE) and proved the existence and uniqueness of strong solutions as well as the existence of $U-$attractors. Let us note that the coupling between the Navier-Stokes and the Allen-Cahn equations introduces in the coupled model a highly nonlinear term that makes the analysis more involved. In this article, we consider a stochastic version of the model studied in [35].
Let us recall that stochastic partial differential equations (SPDE) are sometimes used to model physical systems subjected to the influence of internal, external or environmental noises. As noted in [5, 4], SPDE can also be used to describe systems that are too complex to be described deterministically, e.g., a flow of a chemical substance in a river subjected to wind and rain, an airflow around an airplane wing perturbed by the random state of the atmosphere and weather, etc. With the development of the theory of stochastic processes, systems such as the Navier-Stokes perturbed by noises have been widely investigated with the goal to better understand the complex phenomena of turbulent flow. The mathematical theory of the stochastic Navier-Stokes equation is very rich, covering a broad area of deep results on existence of solutions, dynamical system feature, ergodicity, and many more. The presence of noise in a model can lead to new and important phenomena. For instance, contrary to the deterministic case, it is known that the 2D Navier-Stokes system driven with a sufficiently degenerate noise has a unique invariant measure and hence exhibits ergodic behavior in the sense that the time average of a solution is equal to the average over all possible initial data, [5].

The aim of this article is to investigate the stochastic version of the GMACNSE studied in [35]. The model include an abstract and general form of random external forces depending eventually on the velocity \(v \) of the fluid and the phase function \(\phi \). We prove the existence and uniqueness of a strong solution in a three dimensional bounded domain. Here the word “strong” means “strong” both in the sense of the theory of partial differential equations and the theory of stochastic analysis. The proof of the existence relies on the Galerkin approximation, the local monotonicity of the coefficients and some compactness results. Moreover we investigate the asymptotic behavior of the unique solution when the parameter \(N \) tends to infinity. This gives the existence of a weak martingale solution for the stochastic 3D AC-NSE.

In [27], the authors considered the Kolmogorov equation associated with the stochastic Navier–Stokes equations in 3D, they proved the existence of a solution in the strict or mild sense. The method consists in finding several estimates for the solutions \(u_m \) of the Galerkin approximations of the velocity \(u \) and their derivatives. These estimates are obtained with the help of an auxiliary Kolmogorov equation with a very irregular negative potential. In [16], a 2-dimensional Navier-Stokes equation perturbed by a sufficiently distributed white noise is considered. The authors proved the uniqueness of the invariant measures, strong law of large numbers, and convergence to equilibrium.

The article is organized as follows. In the next section we present the stochastic GMACNSE model and its mathematical setting. The existence and uniqueness a solution is given in Section 3. The proof of the existence relies on a Galerkin approximation as well as some a priori estimates. The asymptotic behavior of the solution is investigated in Section 4. We investigate the convergence of the solution when the parameter \(N \) tends to infinity.

2. A stochastic GMACNSE model and its mathematical setting.

2.1. Governing equations. In this article, we consider a stochastic version of the GMACNSE a three-dimensional domain. We assume that the domain \(\mathcal{M} \) of the fluid is a bounded domain in \(\mathbb{R}^3 \). We first recall the following stochastic AC-NSE
\[
\begin{aligned}
\{ dv(t) & = [\nu_1 \nabla v - (v \cdot \nabla)v - \nabla p - g_1(v, \phi) + K\mu \nabla \phi] dt \\
& + \sum_{k=1}^{\infty} \hat{\sigma}_k^1(v, \phi)(t) dW_k^1(t), \\
\}

d\phi(t) & = [\nu_2 \Delta \phi - v \cdot \nabla \phi - g_2(v, \phi) - \alpha f(\phi)] dt \\
& + \sum_{k=1}^{\infty} \hat{\sigma}_k^2(v, \phi)(t) dW_k^2(t), \\
\mu & = -\nu_2 \Delta \phi + \alpha f(\phi), \\
\end{aligned}
\]

in \(\mathcal{M} \times [0,T], \) where \(W_k^k = (W_k^1, W_k^2)(t), t \geq 0, k = 1, 2, \ldots \) is a sequence of independent one dimensional standard Brownian motions on some complete filtration probability space \((\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in (0,T)}). \) If \((e_k)_{k \geq 1}\) is an orthonormal basis of \(l^2, \) we may formally define \(W \) by taking \(W = \sum_k W_k e_k. \) As such \(W \) is a cylindrical Brownian motion evolving over \(l^2. \) We recall that \(l^2 \) is the Hilbert space consisting of all sequences of square summable real numbers. We define the auxiliary space \(\mathcal{U}_0 \supset l^2 \) via \(\mathcal{U}_0 = \left\{ v = \sum_{k=1}^{\infty} \alpha_k e_k : \sum_{k=1}^{\infty} \alpha_k^2 k^{-2} < \infty \right\} \) endowed with the norm \(|v|_{\mathcal{U}_0}^2 := \sum_{k=1}^{\infty} \frac{\alpha_k^2}{k^2} \) for \(v = \sum_{k=1}^{\infty} \alpha_k e_k. \) Note that the embedding of \(l^2 \subset \mathcal{U}_0 \) is Hilbert-Schmidt. Moreover, using standard martingale arguments with the fact that each \(W_k \) is almost surely continuous (see [28]), we have that for almost every \(\omega \in \Omega, W(\omega) \in C([0,T]; \mathcal{U}_0). \) See Section 3 for the precise assumptions on the coefficients \(g = (g_1, g_2) \) and \(\{\hat{\sigma}_k^1, \hat{\sigma}_k^2, k = 1, \ldots, \infty\}. \)

In (1), the unknown functions are the velocity \(v = (v_1, v_2, v_3) \) of the fluid, its pressure \(p \) and the order (phase) parameter \(\phi. \) The quantity \(\mu \) is the variational derivative of the following free energy functional

\[
\mathcal{F}_1(\phi) = \int_{\mathcal{M}} \left(\frac{\nu_2}{2} |\nabla \phi|^2 + \alpha F(\phi) \right) ds,
\]

where, e.g., \(F(x) = \int_0^x f(\zeta) \, d\zeta. \) Here, the constants \(\nu_1 > 0, \nu_2 > 0 \) and \(K > 0 \) correspond to the kinematic viscosity of the fluid, the mobility constant and the capillarity (stress) coefficient respectively. Here \(\nu_2, \alpha > 0 \) are two physical parameters describing the interaction between the two phases. In particular, \(\nu_2 \) is related with the thickness of the interface separating the two fluids. Hereafter, as in [18] we assume that \(\nu_2 \leq \alpha. \)

A typical example of potential \(F \) is that of logarithmic type. However, this potential is often replaced by a polynomial approximation of the type \(F(x) = \gamma_1 x^4 - \gamma_2 x^2, \gamma_1, \gamma_2 \) being positive constants. As noted in [17], (1) \(_1\) can be replaced by

\[
\begin{aligned}
dv(t) & = [\nu_1 \nabla v - (v \cdot \nabla)v - \nabla p - g_1(v, \phi) - K\text{div} (\nabla \phi \otimes \nabla \phi)] dt \\
& + \sum_{k=1}^{\infty} \hat{\sigma}_k^1(v, \phi)(t) dW_k^1(t), \\
\end{aligned}
\]

for \(\nu_1 > 0, \nu_2 > 0, K > 0, K \) being positive constants.
where \(\tilde{p} = p - K(\nu_2 |\nabla \phi|^2 + \alpha F(\phi)) \), since \(K\mu \nabla \phi = \nabla (K(\nu_2 |\nabla \phi|^2 + \alpha F(\phi))) - K\text{div} (\nabla \phi \otimes \nabla \phi) \). The stress tensor \(\nabla \phi \otimes \nabla \phi \) is considered the main contribution modeling capillary forces due to surface tension at the interface between the two phases of the fluid.

We endow (1) with the boundary condition

\[
v = 0, \quad \frac{\partial \phi}{\partial \eta} = 0 \text{ on } \partial \mathcal{M} \times (0, +\infty),
\]

where \(\partial \mathcal{M} \) is the boundary of \(\mathcal{M} \) and \(\eta \) is its outward normal.

The initial condition is given by

\[
(v, \phi)(0) = (v_0, \phi_0) \text{ in } \mathcal{M}.
\]

Now, we define the function \(F_N : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) by

\[
F_N(r) = \min \{1, N/r\}, \quad r \in \mathbb{R}^+,
\]

for some (fixed) \(N \in \mathbb{R}^+ \).

The following lemma gives some important properties of the map \(F_N \) (see [7, 31] for the proof)

Lemma 1. For \(\forall p_1, p_2, M, N \in \mathbb{R}^+, \ p_2 \neq 0 \), we have

1) \(0 \leq F_N(p_2) \leq \frac{N}{p_2} \),

2) \(|F_N(p_1) - F_N(p_2)| \leq \frac{1}{N} F_N(p_1) F_N(p_2) |p_1 - p_2| \),

3) \(|F_M(p_1) - F_N(p_2)| \leq \frac{|M - N|}{p_2} + \frac{|p_1 - p_2|}{p_2} \).

Now we consider the following stochastic GMACNSE

\[
\begin{align*}
\begin{cases}
 dv(t) &= [\nu_1 \Delta v - F_N(\|v\|)[(v, \nabla)]v - \nabla p - g_1(v, \phi)] \, dt \\
 &+ [KF_N((v, \phi))\|_{\mathcal{U}}][\mu \nabla \phi] \, dt + \sum_{k=1}^{\infty} \tilde{\sigma}_1^2(v, \phi)(t)dW_1^1(t),
 \\[v_2 \Delta \phi - F_N((v, \phi))\|_{\mathcal{U}}][v, \nabla \phi] - g_2(v, \phi) - \alpha f(\phi)] \, dt \\
 &+ \sum_{k=1}^{\infty} \tilde{\sigma}_2^2(v, \phi)(t)dW_2^2(t),
 \\[\mu = -\nu_2 \Delta \phi + \alpha f(\phi),
 \\
 \nabla \cdot v = 0,
\end{cases}
\end{align*}
\]

in \(\mathcal{M} \times (0, +\infty) \), where \(\|v\| \) and \(\|(v, \phi)\|_{\mathcal{U}} \) are some norms defined below.

As noted in [7] in the case of the GMNSE, the GMACNSE are indeed globally modified. The factors \(F_N(\|v\|) \) and \(F_N((v, \phi))\|_{\mathcal{U}} \) depend respectively on the norms \(\|v\| \) and \(\|(v, \phi)\|_{\mathcal{U}} \). They prevent large values of \(\|v\| \) and \(\|(v, \phi)\|_{\mathcal{U}} \) dominating the dynamics. Just like the GMNSE, the GMACNSE violates the basic laws of mechanics, but mathematically the model is well defined, [35].
2.2. Mathematical setting. We first recall from [18] (see also [34, 33, 36]) a weak formulation of (1)-(5). Hereafter, we assume that the domain \mathcal{M} is bounded with a smooth boundary $\partial \mathcal{M}$ (e.g., of class C^2). We also assume that $f \in C^2(\mathbb{R})$ satisfies
\[
\begin{cases}
\lim_{|x| \to +\infty} f'(x) > 0, \\
|f'(x)| \leq c_f(1 + |x|^{2-i}), \quad i = 0, 1, \forall x \in \mathbb{R},
\end{cases}
\]
where c_f is some positive constant.

If X is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle_X$, we will denote the induced norm by $| \cdot |_X$, while X^* will indicate its dual. We set
\[V_1 = \{ u \in (C_c^\infty(\mathcal{M}))^3 : \text{div } u = 0 \text{ in } \mathcal{M} \}. \]
We denote by H_1 and V_1 the closure of V_1 in $(L^2(\mathcal{M}))^3$ and $(H^1_0(\mathcal{M}))^3$ respectively. The scalar product in H_1 is denoted by $\langle \cdot, \cdot \rangle_{H^1_2}$ and the associated norm by $| \cdot |_{H^1_2}$. Moreover, the space V_1 is endowed with the scalar product
\[((u, v)) = \sum_{i=1}^{3} (\partial_{x_i} u, \partial_{x_i} v)_{L^2}, \quad \| u \| = ((u, u))^{1/2}. \]

We now define the operator A_0 by
\[A_0 u = -\mathcal{P} \Delta u, \quad \forall u \in D(A_0) = (H^2(\mathcal{M}))^3 \cap V_1, \]
where \mathcal{P} is the Leray-Helmholtz projector in $L^2(\mathcal{M})$ onto H_1. Then, A_0 is a self-adjoint positive unbounded operator in H_1 which is associated with the scalar product defined above. Furthermore, A_0^{-1} is a compact linear operator on H_1 and $|A_0 \cdot |_{L^2}$ is a norm on $D(A_0)$ that is equivalent to the H^2-norm.

Note that from (11), we can find $\gamma > 0$ such that
\[\lim_{|x| \to +\infty} f'(x) > 2 \gamma > 0. \]
We define the linear positive unbounded operator A_γ on $L^2(\mathcal{M})$ by:
\[A_\gamma \phi = -\Delta \phi + \gamma \phi, \quad \forall \phi \in D(A_\gamma), \]
where
\[D(A_\gamma) = \left\{ \rho \in H^2(\mathcal{M}) : \frac{\partial \rho}{\partial \eta} = 0 \text{ on } \partial \mathcal{M} \right\}. \]

Note that A_γ^{-1} is a compact linear operator on $L^2(\mathcal{M})$ and $|A_\gamma \cdot |_{L^2}$ is a norm on $D(A_\gamma)$ that is equivalent to the H^2-norm.

We also set
\[f_\gamma(x) = f(x) - \alpha^{-1} \nu_2 \gamma x \]
and observe that f_γ still satisfies (12) with γ in place of 2γ since $\nu_2 \leq \alpha$. Also its primitive $F_\gamma(x) = \int_0^x f_\gamma(\zeta) d\zeta$ is bounded from below.

Now we define the Hilbert spaces \mathcal{H} and \mathcal{U} by
\[\mathcal{H} = H_1 \times H^1(\mathcal{M}), \quad \mathcal{U} = V_1 \times D(A_\gamma), \]
endowed with the scalar products whose associated norms are respectively
\[|(v, \phi)|_\mathcal{H}^2 = |v|_{L^2}^2 + \nu_2(|\nabla \phi|_{L^2}^2 + \gamma |\phi|_{L^2}^2) \quad \text{and} \quad |(v, \phi)|_\mathcal{U}^2 = \| v \|_{L^2}^2 + |A_\gamma \phi|_{L^2}^2. \]

We will also use the following notation:
\[\langle u_1, u_2 \rangle_\mathcal{U} = \langle A_0 v_1, v_2 \rangle + \langle A_\gamma^2 \phi_1, \phi_2 \rangle, \quad \forall u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2) \in \mathcal{U}. \]
It follows that
\[\langle u_1, u_1 \rangle_U = \|u_1\|^2_U, \forall u_1 \in U. \] (17)

Hereafter, we set
\[H_2 = L^2(M), \quad V_2 = H^1(M), \quad H = H_1 \times H_2, \quad V = V_1 \times V_2. \] (18)

Hereafter, if \(X \) is a Banach space, we will denote by \(X^* \) the dual space of \(X \). To simplify the notations, the duality paring between \(X \) and \(X^* \) will be denoted \(\langle \cdot, \cdot \rangle \) and the norm in \(X^* \) will be denoted \(\| \cdot \|_* \).

We introduce the bilinear operators \(B^0, B^1 \) (and their associated trilinear forms \(b^0, b^1 \)) as well as the coupling mapping \(R^0 \), which are defined from \(D(A_0) \times D(A_0) \) into \(H_1, D(A_0) \times D(A_\gamma) \) into \(L^2(M) \), and \(L^2(M) \times D(A_\gamma^{3/2}) \) into \(H_1 \), respectively. More precisely, we set
\[
(B^0(u, v), w) = \int_M [(u \cdot \nabla)v] \cdot w \, dx = b^0(u, v, w), \quad \forall u, v, w \in D(A_0),
\]
\[
(B^1(u, \phi), \rho) = \int_M [u \cdot \nabla\rho] \phi \, dx = b^1(u, \phi, \rho), \quad \forall u \in D(A_0), \quad \phi, \rho \in D(A_\gamma),
\]
\[
(R^0(\mu, \phi), w) = \int_M \mu [\nabla \phi \cdot w] \, dx = b^1(w, \phi, \mu),
\]
\[\forall w \in D(A_0), \quad (\mu, \phi) \in L^2(M) \times D(A_\gamma^{3/2}). \]

Note that
\[R^0(\mu, \phi) = \mathcal{P}_\mu \nabla \phi. \]

We recall from [18, 17, 19] the following properties of \(B^0, B^1 \) and \(R^0 \).
\[
|b^0(u, v, w)| \leq \|u\|^{1/2}_{L^2} \|v\|^{1/2}_{A_0} \|w\|_{L^2}, \quad \forall u \in V_1, \quad v \in D(A_0), \quad w \in H_1,
\]
\[|B^0(u, v)|_{L^2} \leq \|u\| \|v\|^{1/2}_{A_0} \|w\|_{L^2} , \quad \forall u \in V_1, \quad v \in D(A_0), \quad w \in H_1, \] (20)
\[
|b^1(u, \phi, \psi)| \leq \|u\|^{1/2}_{L^2} \|\phi\|^{1/2}_{A_\gamma} \|\psi\|_{L^2}, \quad \forall u \in V_1, \quad \phi \in D(A_\gamma), \quad \psi \in H_2,
\]
\[|B^1(v, \phi)|_{L^2} \leq \|v\| \|\phi\|^{1/2}_{A_\gamma} \|\psi\|_{L^2} , \quad \forall v \in V_1, \quad \phi \in D(A_\gamma), \quad \psi \in H_2, \] (21)
\[
|R^0(A_\gamma \phi, \rho)|_{L^2} \leq \|A_\gamma \phi\|_{L^2} \|A_\gamma \rho\|^{1/2}_{L^2} \|A_\gamma^{3/2} \rho\|^{1/2}_{L^2} , \quad \forall \phi \in D(A_\gamma), \quad \rho \in D(A_\gamma^{3/2}). \] (22)

Hereafter we set
\[
b^0_N(u, v, w) = F_N(\|v\|) b^0(u, v, w), \quad \forall u, v, w \in V_1,
\]
\[
(b^0_N(u, v), w) = b^0_N(u, v, w), \quad \forall u, v, w \in V_1,
\]
\[
b^1_N(v, \phi, \psi) = F_N(\|(v, \phi)\|_U) b^1(v, \phi, \psi), \quad \forall v \in V_1, \quad \phi, \psi \in V_2,
\]
\[
(b^1_N(v, \phi), \psi) = b^1_N(v, \phi, \psi), \quad \forall v \in V_1, \quad \phi, \psi \in V_2,
\]
\[
(R^0_N(A_\gamma \phi, \rho), w) = F_N(\|(v, \phi)\|_U) (R^0(\phi, \rho), w),
\]
\[\forall (v, \phi) \in V_1 \times D(A_\gamma), \quad w \in V_1. \] (23)
We note that
\[b_N^0(u, v, v) = 0, \forall u, v \in V_1, \]
\[b_N^1(v, \phi, \phi) = 0, \forall v \in V_1, \phi \in V_2, \] (24)
\[b_N^1(v, \phi, A_x \phi) = \langle R_N(A_x \phi, \phi), v \rangle, \forall (v, \phi) \in V_1 \times D(A_x). \]

To further simplify the presentation, we define the operators \(A : U \to U^*, B_N : U \times U \to U^*, B : U \times U \to U^*, R_N : U \times U \to U^*, R : U \times U \to U^* \), and \(E : V \to V^* \) as follows.

\[\langle Au, u \rangle_U = \langle A_0 v, v \rangle + \langle A_x \phi, A_x^2 \phi \rangle = |Au|_H^2, \forall u = (v, \phi) \in U. \] (26)

We also set

\[\langle B_N(u_1, u_2), u_3 \rangle = b_N(u_1, u_2, u_3) = b_N^0(v_1, v_2, v_3) + b_N^1(v_1, \phi_2, \phi_3), \forall u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2), u_3 = (v_3, \phi_3) \in U, \] (27)

\[\langle B(u_1, u_2), u_3 \rangle = b(u_1, u_2, u_3) = b^0(v_1, v_2, v_3) + b^1(v_1, \phi_2, \phi_3), \forall u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2), u_3 = (v_3, \phi_3) \in U, \]

\[R_N(u_1, u_2) = \langle R_N(A_x \phi_1, \phi_2), 0 \rangle, \quad R(u_1, u_2) = \langle R(A_x \phi_1, \phi_2), 0 \rangle, \forall u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2) \in U. \] (28)

\[E(u_1) = \langle E_1(u_1), E_2(u_1) \rangle = (0, f_\gamma(\phi_1)), \forall u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2) \in H. \] (29)

For simplicity we will also set

\[B_N(u_1) = B_N(u_1, u_1), \quad R_N(u_1) = R_N(u_1, u_1), \quad R(u) = R(u, u). \] (30)

We also set

\[D(A) = \{ u = (v, \phi) \in H, Au \in H \} = D(A_0) \times D(A_x^{3/2}). \]

With the above notations, if we set \(u = (v, \phi), u_0 = (v_0, \phi_0), G(u) \equiv g(v, \phi) = (g_1(v, \phi), g_2(v, \phi)), \sigma_k(u) = (\hat{\sigma}_k^1(v, \phi), \hat{\sigma}_k^2(v, \phi)) \) then we can rewrite (10) as:

\[du(t) = [Au - B_N(u) - Eu + R_N(u) + G(u)] dt + \sum_{k=1}^{\infty} \sigma_k(u(t)) dW_k(t), \] (31)

\[u(0) = u_0. \]

Here \(G = (g_1, g_2) \) is a mapping from \(U \) (resp. \(H \)) into \(U \) (resp. \(H \)) and \(\sigma_k(\cdot), k \geq 1 \) is a sequence of mappings from \(U \) (resp. \(H \)) into \(U \) (resp. \(H \)).
Consider the following hypothesis.
\[|G(u) - G(v)|^2_{\mathcal{U}} \leq c |u - v|^2_{\mathcal{U}}, \forall u, v \in \mathcal{U}, \]
\[\|G(u) - G(v)\|_{\mathcal{U}}^2 \leq c \|u - v\|_{\mathcal{U}}^2, \forall u, v \in \mathcal{U}, \]
\[\sum_{k=1}^{\infty} \|\sigma_k(u) - \sigma_k(v)\|_{\mathcal{U}}^2 \leq c \|u - v\|_{\mathcal{U}}^2, \sum_{k=1}^{\infty} \|\sigma_k(u)\|_{\mathcal{U}}^2 < \infty, \forall u, v \in \mathcal{U}, \] \hspace{1cm} (32)
\[\sum_{k=1}^{\infty} |\sigma_k(u)|^2_{\mathcal{H}} < \infty, \sum_{k=1}^{\infty} |\sigma_k(u) - \sigma_k(v)|^2_{\mathcal{H}} \leq c |u - v|^2_{\mathcal{H}}, \forall u, v \in \mathcal{H}. \]

Remark 2.1. The hypothesis (32) imply that for every \(u \in \mathcal{U}(\mathcal{H} \text{ resp.}) \) the map \(\sigma(u) := (\sigma_k(u))_{k \in \mathbb{N}} : l^2 \to \mathcal{U}(\mathcal{H} \text{ resp.}) \) defined by
\[\sigma(u)h := \sum_{k=1}^{\infty} \sigma_k(u)h_k, \] is in \(L_2(l^2, \mathcal{U}(\mathcal{H} \text{ resp.})) \) (=Hilbert-Schmidt operators from \(l^2 \) to \(\mathcal{U}(\mathcal{H} \text{ resp.}) \) and that \(u \mapsto \sigma(u) \) is Lipschitz.

Hereafter, we will denote by \(c \) a generic positive constant that depends on the domain \(\mathcal{M} \). To simplify the notations, we set (without loss of generality) \(\nu_1 = \nu_2 = \nu_3 = \alpha = K = 1 \).

The next result will be useful in our study of the stochastic 3D GMACNSE.

Lemma 2. Let \(u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2) \in \mathcal{U} \) and \((w, \psi) = (v_1, \phi_1) - (v_2, \phi_2) \). Let \(\mathcal{N}\mathcal{L}^1, \mathcal{N}\mathcal{L}^2, \mathcal{N}\mathcal{L}^3 \) defined by:
\[\mathcal{N}\mathcal{L}^1(u_1, u_2) = \langle F_N(\|v_1\|)B^0(v_1, v_1) - F_N(\|v_2\|)B^0(v_2, v_2), w \rangle, \]
\[\mathcal{N}\mathcal{L}^2(u_1, u_2) = \]
\[\langle F_N(\|v_1, \phi_1\|_{\mathcal{U}})R^0(A, \gamma \phi_1, \phi_1) - F_N(\|v_2, \phi_2\|_{\mathcal{U}})R^0(A, \gamma \phi_2, \phi_2), w \rangle, \] \hspace{1cm} (33)
\[\mathcal{N}\mathcal{L}^3(v_1, v_2) = \]
\[F_N(\|v_1, \phi_1\|_{\mathcal{U}})B^1(v_1, \phi_1) - F_N(\|v_2, \phi_2\|_{\mathcal{U}})B^1(v_2, \phi_2), A, \psi \rangle. \]

There exists a constant \(c_3 > 0 \) independent of \(u_1 \) and \(u_2 \) such that
\[\mathcal{N}\mathcal{L}^1(u_1, u_2) \leq \frac{1}{2} \|u_1 - u_2\|_{\mathcal{U}}^2 + c_3 N^4 \|u_1 - u_2\|_{\mathcal{U}}^2, \]
\[\mathcal{N}\mathcal{L}^2(u_1, u_2) \leq \frac{1}{2} \|u_1 - u_2\|_{\mathcal{U}}^2 + c_3 N^4 \|u_1 - u_2\|_{\mathcal{U}}^2, \] \hspace{1cm} (34)
\[\mathcal{N}\mathcal{L}^3(u_1, u_2) \leq \frac{1}{2} \|u_1 - u_2\|_{\mathcal{U}}^2 + c_3 N^4 \|u_1 - u_2\|_{\mathcal{U}}^2. \]

Proof. The proof of (34) is given in [7, 31]. For the reader convenience, we sketch it here. We first note that
\[B^0_N(v_1, v_1) - B^0_N(v_2, v_2) = F_N(\|v_1\|)B^0(w, v_1) + F_N(\|v_2\|)B^0(v_2, w) \]
\[+ (F_N(\|v_1\|) - F_N(\|v_2\|))B^0(v_2, v_1). \] \hspace{1cm} (35)
We also have
\[
\langle B^0(v_2, w), w \rangle = 0,
\]
\[
|\langle B^0(w, v_1, w) \rangle| \leq c|w|_{L^2}^{1/2} w^{3/2} v_1, \tag{36}
\]
\[
|\langle B^0(v_2, v_1, w) \rangle| \leq c|w|_{L^2}^{1/2} \|w\|^{1/2} v_1 \|v_2\|.
\]
It follows from Lemma 1 that
\[
|\langle B_N^0(v_1, v_1) - B_N^0(v_2, v_2), w \rangle| \leq cN|w|_{L^2}^{1/2} \|w\|^{3/2} + cN \frac{|w|_1}{v_1 ||v_2||} ||w||_{L^2}^{1/2} \|w\|^{1/2} \tag{37}
\]
\[
\leq \frac{1}{8} \|w\|^2 + cN^4 |w|_{L^2}^2,
\]
and (34) is proved.

For (34)_2, we note that
\[
\langle R^0_N(A_\gamma \phi_1, \phi_1) - R^0_N(A_\gamma \phi_2, \phi_2), w \rangle =
\]
\[
(F_N(||(v_1, \phi_1)||_{\Delta}) R^0_N(A_\gamma \phi_1, \phi_1) - F_N(|(v_2, \phi_2)||_{\Delta}) R^0_N(A_\gamma \phi_2, \phi_2), w \rangle =
\]
\[
F_N(||(v_1, \phi_1)||_{\Delta}) b^1(w, \phi_1, A_\gamma \psi) + F_N(||(v_2, \phi_2)||_{\Delta}) b^1(w, \psi, A_\gamma \phi_2)
\]
\[
+ (F_N(||(v_1, \phi_1)||_{\Delta}) - F_N(||(v_2, \phi_2)||_{\Delta}) b^1(w, \phi_1, A_\gamma \phi_2) \equiv K_2^1 + K_2^2 + K_2^3. \tag{38}
\]
From (20)-(22), we also have
\[
|b^1(w, \phi_1, A_\gamma \psi)| \leq c|w|_{L^2}^{1/2} \|w\|^{1/2} |A_\gamma \phi_1|_{L^2} |A_\gamma \psi|_{L^2},
\]
\[
|b^1(w, \psi, A_\gamma \phi_2)| \leq c|w|_{L^2}^{1/2} \|w\|^{1/2} |A_\gamma \psi|_{L^2} |A_\gamma \phi_2|_{L^2}, \tag{39}
\]
\[
|b^1(w, \phi_1, A_\gamma \phi_2)| \leq c|w|_{L^2}^{1/2} \|w\|^{1/2} |A_\gamma \phi_1|_{L^2} |A_\gamma \phi_2|_{L^2}.
\]
It follows from Lemma 1 and (39) that
\[
|K_2^1| = F_N(||(v_1, \phi_1)||_{\Delta}) b^1(w, \phi_1, A_\gamma \psi) \leq cN|w|_{L^2}^{1/2} \|w\|^{1/2} |A_\gamma \psi|_{L^2}
\]
\[
\leq \frac{1}{8} \|w\|^2 + \frac{1}{8} |A_\gamma \psi|_{L^2}^2 + cN^4 |w|_{L^2}^2, \tag{40}
\]
\[
|K_2^2| = F_N(||(v_2, \phi_2)||_{\Delta}) b^1(w, \psi, A_\gamma \phi_2) \leq cN|w|_{L^2}^{1/2} \|w\|^{1/2} |A_\gamma \psi|_{L^2}
\]
\[
\leq \frac{1}{8} \|w\|^2 + \frac{1}{8} |A_\gamma \psi|_{L^2}^2 + cN^4 |w|_{L^2}^2, \tag{41}
\]
\[
|K_2^3| = |F_N(||(v_1, \phi_1)||_{\Delta}) - F_N(||(v_2, \phi_2)||_{\Delta}) b^1(w, \phi_1, A_\gamma \phi_2)|
\]
\[
\leq cN \frac{||w, \psi||_{\Delta^2} \|w\|_{L^2}^{1/2} \|w\|^{1/2} |A_\gamma \phi_1|_{L^2} |A_\gamma \phi_2|_{L^2}}{||w||_{\Delta^2} \|w\|_{L^2}} \tag{42}
\]
\[
\leq \|w, \psi\|_{\Delta}^{3/2} |w|_{L^2}^{1/2}
\]
\[
\leq \frac{1}{8} \|w, \psi\|_{\Delta}^{3/2} + cN^4 |w|_{L^2}^2.
\]
Therefore (34)_2 follows from (39)-(41) and (38).
Lemma 3. Therefore (34)

Proof. Let \(\|u_1\|, \|u_2\| \leq r \) for every \(r > 0 \), there exists a constant \(L_r \) such that

\[
\|B_N^0(u_1) - B_N^0(u_2)\|_{\mathcal{U}^r} \leq L_r \|u_1 - u_2\|_{\mathcal{U}},
\]

\[
\|R_N^0(u_1) - R_N^0(u_2)\|_{\mathcal{U}^r} \leq L_r \|u_1 - u_2\|_{\mathcal{U}},
\]

\[
\|B_N^1(u_1) - B_N^1(u_2)\|_{\mathcal{U}^r} \leq L_r \|u_1 - u_2\|_{\mathcal{U}},
\]

\[
\|E(u_1) - E(u_2)\|_{\mathcal{U}^r} \leq L_r \|u_1 - u_2\|_{\mathcal{U}},
\]

for \(u_1, u_2 \in \mathcal{U} \) with \(\|u_1\|, \|u_2\| \leq r \).

Proof. Let \(u_1 = (v_1, \phi_1), u_2 = (v_2, \phi_2) \in \mathcal{U} \) and \((w, \psi) \in \mathcal{U} \). We assume that \(\|u_1\| \leq r \) and \(\|u_2\| \leq r \).
To prove \((48)_1\), we note that
\[
(B_N^0(v_1) - B_N^0(v_2), w) = b_N^0(v_1, v_1, w) - b_N^0(v_2, v_2, w)
\]
\[
= F_N(||v_2||b_N^0(v_1 - v_2, v_2, w) + (F_N(||v_2||) - F_N(||v_1||))b_N^0(v_1, v_2, w)
\]
\[
+ F_N(||v_1||b_N^0(v_1, v_1 - v_2, w)
\]
\[
\leq \frac{c}{||v_2||} N||v_1 - v_2|| ||v_2|| ||w|| + \frac{c}{||v_2||} N||v_1 - v_2|| ||v_1|| ||v_2|| ||w||
\]
\[
+ \frac{c}{||v_1||} N||v_1|| ||v_2|| ||w||,
\]
\[
\leq cN ||v_1 - v_2|| ||w||.
\]
From this, we deduce \((48)_1\).

For \((48)_2\), we note that
\[
\langle R_N^0(A, \phi, \phi_1) - R_N^0(A, \phi, \phi_2), w \rangle =
\]
\[
(F_N(||v_1||)R_0(A, \phi, \phi_1) - F_N(||v_2||)R_0(A, \phi, \phi_2), w) =
\]
\[
F_N(||v_1||)b^1(w, \phi, A, (\phi_1 - \phi_2))
\]
\[
+ F_N(||v_2||)b^1(w, \phi, A, (\phi_1 - \phi_2))
\]
\[
+ (F_N(||v_1||) - F_N(||v_2||))b^1(w, \phi, A, (\phi_1 - \phi_2)) \equiv K_2 + K_3 + K_2^3.
\]

From \((20)-(22)\), we have
\[
|b^1(w, \phi, A, (\phi_1 - \phi_2))| \leq c|w|^{1/2} ||w||^{1/2} |A, \phi_1| ||A, (\phi_1 - \phi_2)||,
\]
\[
|b^1(w, \phi, A, (\phi_1 - \phi_2))| \leq c|w|^{1/2} ||w||^{1/2} |A, (\phi_1 - \phi_2)| ||A, \phi_2||,
\]
\[
|b^1(w, \phi, A, (\phi_1 - \phi_2))| \leq c|w|^{1/2} ||w||^{1/2} |A, \phi_1| ||A, \phi_2||.
\]

It follows from Lemma 1 and \((53)\) that
\[
|K_2| \equiv F_N(||v_1|| ||v_1||)b^1(w, \phi, A, (\phi_1 - \phi_2))
\]
\[
\leq cN ||w|| |A, (\phi_1 - \phi_2)||,
\]
\[
|K_3| \equiv F_N(||v_2|| ||v_2||)b^1(w, \phi, A, (\phi_1 - \phi_2))
\]
\[
\leq cN ||w|| |A, (\phi_1 - \phi_2)||,
\]
\[
|K_3^3| \equiv |F_N(||v_1|| ||v_1||) - F_N(||v_2|| ||v_2||)b^1(w, \phi, A, (\phi_1 - \phi_2))
\]
\[
\leq cN ||u_1 - u_2|| ||w|| |A, \phi_1| ||A, \phi_2||
\]
\[
\leq cN ||u_1 - u_2|| ||w||.
\]
From this, we deduce that \((48)_2\) holds.

For \((48)_3\), we note that
\[
\langle B_N^1(v_1, \phi_1) - B_N^1(v_2, \phi_2), A, \psi \rangle =
\]
\[
\langle F_N(||v_1|| ||v_1||)B^1(v_1, \phi_1) - F_N(||v_2|| ||v_2||)B^1(v_2, \phi_2), A, \psi \rangle =
\]
\[
F_N(||v_1|| ||v_1||)b^1(v_1 - v_2, \phi_1, A, \psi)
\]
\[
+ F_N(||v_2|| ||v_2||)b^1(v_1 - v_2, \phi_1, A, \psi)
\]
\[
+ F_N(||v_2|| ||v_2||)b^1(v_1 - v_2, \phi_1, A, \psi)
\]
\[
+ F_N(||v_2|| ||v_2||)b^1(v_1 - v_2, \phi_1, A, \psi)
\]
\[(F_N((v_1, \phi_1)) \| u) - F_N((v_2, \phi_2)) \| u) b^1(v_2, \phi_1, A, \psi) \equiv K_3^1 + K_3^2 + K_3^3. \tag{52}\]

From (20)-(22), we have
\[|b^1(v_1 - v_2, \phi_1, A, \psi)| \leq c |v_1 - v_2||A_\gamma \phi_1|L^2 |A_\gamma \psi|L^2,\]
\[|b^1(v_2, \phi_1 - \phi_2, A, \phi_2)| \leq c |v_2||A_\gamma (\phi_1 - \phi_2)|L^2 |A_\gamma \psi|L^2, \tag{53}\]
\[|b^1(v_2, \phi_1, A_\gamma \phi_2)| \leq c |v_2||A_\gamma \phi_1|L^2 |A_\gamma \phi_2|L^2.\]

It follows from Lemma 1 and (53) that
\[|K_3^1| \equiv F_N((v_1, \phi_1)) \| u) b^1(v_1 - v_2, \phi_1, A, \psi)| \leq c \|v_1 - v_2\|A_\gamma \psi|L^2,\]
\[|K_3^2| \equiv F_N((v_2, \phi_2)) \| u) b^1(v_2, \phi_1 - \phi_2, A, \phi_2)| \leq c \|A_\gamma (\phi_1 - \phi_2)|L^2 |A_\gamma \psi|L^2,\]
\[|K_3^3| \equiv F_N((v_1, \phi_1)) \| u) - F_N((v_2, \phi_2)) \| u) b^1(v_2, \phi_1, A, \psi)| = \|u_1 - u_2\|_\| F_N((v_2, \phi_2)) \| u) \| A_\gamma^{1/2} B_1(v_2, \phi_1, A_\gamma^{1/2} \psi)| \leq c \|u_1 - u_2\|_\| F_N((v_2, \phi_2)) \| u) \| A_\gamma \phi_1|L^2 |A_\gamma \psi|L^2 \leq c \|u_1 - u_2\|_\| A_\gamma \psi|L^2. \tag{54}\]

We deduce that \((48)_3\) holds true.

For (48)\(_4\), we note that (see [17])
\[\alpha|f_1(\phi_1) - f_2(\phi_2), A_\gamma \psi| = \alpha|A_\gamma^{1/2} (f_1(\phi_1) - f_2(\phi_2)), A_\gamma^{1/2} \psi)| \leq Q_1(\|\phi_1\|, \|\phi_2\|)\|\phi_1 - \phi_2\| \|\psi|\| \tag{55}\]
\[\leq Q_1(r, r)\|\phi_1 - \phi_2\| \|\psi|\|,\]
where \(Q_1 = Q_1(x_1, x_2)\) is a monotone non-decreasing function of \(x_1\) and \(x_2\). Therefore (48)\(_4\) follows. \(\square\)

Now for \(u = (v, \phi) \in \mathcal{U}\), we set
\[\mathcal{G}(u) := -Au - B_N(u) - G(u) + R_N(u) - E(u) \equiv (\mathcal{G}_1(u), \mathcal{G}_2(u)),\]
where
\[\mathcal{G}_1(u) = -A_0 v - B_N^0(v, v) + R_N^0(A, \phi, \phi) - g_1(v, \phi),\]
\[\mathcal{G}_2(u) = -A_1 \phi - B_N^1(v, \phi) - E_2(\phi) - g_2(v, \phi).\]

With these notations, it is clear that (31) can be written as
\[du(t) = \mathcal{G}(u) dt + \sum_{k=1}^{\infty} \sigma_k(u(t)) dW_k(t), \quad u(0) = u_0. \tag{56}\]

Hereafter, we assume that the function \(f_\gamma\) satisfies the additional conditions:
\[\alpha|f_\gamma(\phi_1) - f_\gamma(\phi_2), A_\gamma (\phi_1 - \phi_2)| \geq -\alpha_0 \|\phi_1 - \phi_2\|^2, \quad \forall \phi_1, \phi_2 \in V_2, \tag{57}\]
\[\alpha|f_\gamma(\phi_1), A_\gamma \phi_1| \geq -\alpha_0 \|\phi_1\|^2, \quad \forall \phi_1 \in V_1,\]
where \(\alpha_0 > 0\) is a positive constant independent of \(\phi_1, \phi_2\).

The next lemma shows some strong monotonicity of the operator \(\mathcal{G}\).
Lemma 4. For $u_1, u_2 \in D(A) \subset \mathcal{U}$, we have
\[\langle G(u_1) - G(u_2), u_1 - u_2 \rangle \leq -\frac{1}{2} \|u_1 - u_2\|^2_{\mathcal{U}} + c_0 \|u_1 - u_2\|^2_{H^1}, \tag{58} \]
where the constant $c_0 > 0$ is independent of u_1, u_2.

Proof. Note that
\begin{align*}
\langle G(u_1) - G(u_2), u_1 - u_2 \rangle &= \\
\langle G_1(u_1) - G_1(u_2), w \rangle + \langle G_2(u_1) - G_2(u_2), A_\gamma \psi \rangle &= \\
= -\|u_1 - u_2\|^2_{\mathcal{U}} - \langle B^0_N(v_1, v_1) - B^0_N(v_2, v_2), w \rangle &+ \langle R^0_N(A_\gamma \phi_1, \phi_1) - R^0_N(A_\gamma \phi_2, \phi_2), w \rangle - \langle B^1_N(v_1, \phi_1) - B^1_N(v_2, \phi_2), A_\gamma \psi \rangle \\
&- \langle E_2(\phi_1) - E_2(\phi_2), A_\gamma \psi \rangle - \langle G(u_1) - G(u_2), u_1 - u_2 \rangle. \tag{59}
\end{align*}
As in (35)-(37), (38)-(42) and (43)-(47), we can check that
\begin{align*}
|\langle B^0_N(v_1, v_1) - B^0_N(v_2, v_2), w \rangle| &\leq \epsilon_1 \|w\|^2_{\mathcal{U}} + c \|w, \psi\|^2_{\mathcal{H}}, \tag{60} \\
|\langle R^0_N(A_\gamma \phi_1, \phi_1) - R^0_N(A_\gamma \phi_2, \phi_2), w \rangle| &\leq \epsilon_1 \|\phi_1 - \phi_2\|^2_{H^1} + c \|\phi_1 - \phi_2\|^2_{\mathcal{H}}, \tag{61} \\
\langle B^1_N(v_1, \phi_1) - B^1_N(v_2, \phi_2), A_\gamma \psi \rangle &\leq \epsilon_1 \|\phi_1 - \phi_2\|^2_{H^1} + c \|w, \psi\|^2_{\mathcal{H}}, \tag{62}
\end{align*}
where $\epsilon_1 > 0$ will be chosen later.

From (32)_2 and (57), we also have
\begin{align*}
-\langle G(u_1) - G(u_2), u_1 - u_2 \rangle &\leq c \|u_1 - u_2\|^2_{H^1}, \\
-\langle E_2(\phi_1) - E_2(\phi_2), A_\gamma \psi \rangle &\equiv -\alpha \langle f_\gamma(\phi_1) - f_\gamma(\phi_2), A_\gamma \psi \rangle &\leq -\alpha \|u_1 - u_2\|^2_{\mathcal{H}} + \alpha_1 \|u_1 - u_2\|^2_{\mathcal{H}}. \tag{63}
\end{align*}
It follows from (59)-(63) that
\[\langle G(u_1) - G(u_2), u_1 - u_2 \rangle \leq -\frac{1}{2} \|u_1 - u_2\|^2_{\mathcal{U}} + c_0 \|u_1 - u_2\|^2_{H^1}, \tag{64} \]
where $c_0 > 0$ is independent of u_1, u_2 and $\epsilon_1 > 0$ is chosen such that $3\epsilon_1 < 1/2$. Therefore (58) is proved.

3. Existence and uniqueness of solutions. In this section, we present one of the main results of the paper.

Theorem 1. Assume that the hypotheses (32), (57) hold and $u_0 \in L^2(\Omega, \mathcal{F}_0; \mathcal{U})$. Then there exists a unique solution to the stochastic 3D GMACNSE (56) that satisfies the following energy inequality
\[\mathbb{E} \left(\sup_{t \in [0, T]} \|u(t)\|^2_{\mathcal{U}} \right) + \mathbb{E} \int_0^T |Au(t)|^2_{\mathcal{H}} dt < \infty. \]

Proof. 1) Uniqueness
Let X and \tilde{X} two solutions to (56) starting from the same initial value u_0.
For any $\xi > 0$, define the stopping time
\[\tau_\xi := \inf \{ t \in [0, T] : \|X(t)\|_{\mathcal{U}} \vee \|\tilde{X}(t)\|_{\mathcal{U}} \geq \xi \}. \]
Set $\Theta(t) = X(t) - \tilde{X}(t)$. Then by Itô’s formula, we have
\[
|\Theta(t)|^2_H = 2 \int_0^t \langle \mathcal{G}(X(s)) - \mathcal{G}(\tilde{X}(s)), \Theta(s) \rangle ds
+ 2 \sum_{k=1}^\infty \int_0^t (\sigma_k(X(s)) - \sigma_k(\tilde{X}(s)), \Theta(s)) dW_k(s)
+ \sum_{k=1}^\infty \int_0^t |\sigma_k(X(s)) - \sigma_k(\tilde{X}(s))|^2 ds.
\]
(65)

From Lemma 4, there exists a constant $c_0 > 0$ such that
\[
\langle \mathcal{G}(X(s)) - \mathcal{G}(\tilde{X}(s)), \Theta(s) \rangle \leq -\frac{1}{2} \|\Theta(s)\|^2_U + c_0 |\Theta(s)|^2_H.
\]
(66)

Combining the estimates (66) with (65), we get
\[
E|\Theta(t \wedge \tau_\xi)|^2_H \leq C_{\xi,T} \int_0^t E|\Theta(s \wedge \tau_\xi)|^2_H ds.
\]

By Gronwall’s inequality, we get for any $t \in [0, T]$
\[
E|\Theta(t \wedge \tau_\xi)|^2_H = 0.
\]

And the uniqueness follows by letting $\xi \to \infty$ and Fatou’s lemma.

• II) Existence

We will use the Galerkin approximation combined with the strong monotonicity of the stochastic 3D GMACNSE.

We Assume that $u_0 \in L^6(\Omega; \mathcal{F}_0; \mathcal{U})$. The general case $E(\|u_0\|^2_U) < \infty$, can also be treated similarly.

Let $\{e_i : i \geq 1\} \subset D(A)$ be a fixed orthonormal basis of \mathcal{H} consisting of eigenvectors of A, so that it is also orthogonal in \mathcal{U}. Denote π_n the orthogonal projection from \mathcal{H} onto the finite dimensional space $\mathcal{H}_n := \text{span}\{e_1, e_2, ..., e_n\}$:
\[
\pi_n u := \sum_{i=1}^n (u, e_i) e_i.
\]

Thus π_n is also the orthogonal projection onto \mathcal{H}_n in \mathcal{U}.

Consider the following finite dimensional stochastic differential equations in \mathcal{H}_n:
\[
du_n(t) = [\pi_n \mathcal{G}(u_n(t))] dt + \sum_{k=1}^\infty \pi_n \sigma_k(u_n(t)) dW_k(t), \quad u_n(0) = \pi_n u_0.
\]
(67)

For $u \in \mathcal{H}_n$, we have
\[
\langle u, \pi_n \mathcal{G}(u) \rangle \leq C_N (1 + |u|^2_{\mathcal{H}_n}) \quad \text{and} \quad \sum_{k=1}^\infty \|\pi_n \sigma_k(u)\|^2_{\mathcal{H}_n} \leq c(1 + |u|^2_{\mathcal{H}_n}).
\]
(68)

Moreover by Lemma 3, and (32), the maps
\[
u \in \mathcal{H}_n \mapsto \pi_n \mathcal{G}(u) \in \mathcal{H}_n \quad \text{and} \quad u \in \mathcal{H}_n \mapsto \pi_n \sigma
\]
are respectively locally Lipschitz continuous and Lipschitz continuous. Then by the theory of stochastic differential equations (see [24, 32]), there exists a
unique continuous \((F_t)\)-adapted process \(u_n(t)\) satisfying

\[
u_n(t) = u_n(0) + \int_0^t \pi_n \mathcal{G}(u_n(s)) ds + \sum_{k=1}^\infty \int_0^t \pi_n \sigma_k(u_n(s)) dW^k_s
\]

and for any \(n \geq i\),

\[
\langle u_n(t), e_i \rangle_U = \langle u_0, e_i \rangle_U + \int_0^t \langle \pi_n \mathcal{G}(u_n(s)), e_i \rangle_U ds + \sum_{k=1}^\infty \int_0^t \langle \pi_n \sigma_k(u_n(s)), e_i \rangle_U dW^k_s.
\]

We now prove some a priori estimates of the approximated solution.

Lemma 5. There exists a constant \(C\) independent of \(n\) such that

1) \(\sup_{t \in [0,T]} \mathbb{E} \left(|u_n(t)|^2_{\mathcal{H}} \right) + \mathbb{E} \int_0^T \|u_n(s)\|^2_{\mathcal{H}} ds \leq C \mathbb{E} \left(1 + |u_0|^2_{\mathcal{H}} + |u_0|^p_{\mathcal{H}} \right) \leq C, \quad (69)\)

2) \(\mathbb{E} \left(\sup_{t \in [0,T]} |u_n(t)|^p_{\mathcal{H}} \right) \leq C \left(1 + \mathbb{E}(|u_0|^p_{\mathcal{H}}) \right), \forall p \geq 2. \quad (70)\)

Proof. The proof is similar to that of Lemma 7 given in Section 4. \(\square\)

Lemma 6. There exists a constant \(C\) independent of \(n\) such that

1) \(\sup_{t \in [0,T]} \mathbb{E} \left(\|u_n(t)\|^2_{\mathcal{H}} \right) + \mathbb{E} \int_0^T |Au_n(s)|^2_{\mathcal{H}} ds \leq c \left(1 + \mathbb{E}(\|u_0\|^2_{\mathcal{H}}) \right), \quad (71)\)

2) \(\mathbb{E} \left(\sup_{t \in [0,T]} \|u_n(t)\|^2_{\mathcal{H}} \right) \leq c \left(1 + \mathbb{E}(\|u_0\|^2_{\mathcal{H}}) \right), \quad (72)\)

3) \(\sup_{t \in [0,T]} \mathbb{E} \|u_n(t)\|^6_{\mathcal{H}} dt + \mathbb{E} \int_0^T \|u_n(s)\|^4_{\mathcal{H}} \|Au_n(s)\|^2_{\mathcal{H}} ds \leq c \left(1 + \mathbb{E}(\|u_0\|^6_{\mathcal{H}}) \right), \quad (73)\)

4) \(\sup_n \int_0^T \mathbb{E}|\pi_n \mathcal{G}(u_n(t))|^2_{\mathcal{H}} dt < \infty. \quad (74)\)

Proof. 1) By Itô’s formula, we have

\[
\|u_n(t)\|^2_{\mathcal{H}} = \|u_n(0)\|^2_{\mathcal{H}} + 2 \int_0^t \langle \mathcal{G}(u_n(s), u_n(s)) \rangle_U ds
\]

\[
+ 2 \sum_{k=1}^\infty \int_0^t \langle \sigma_k(u_n(s)), u_n(s) \rangle_U dW_k(s) + \sum_{k=1}^\infty \int_0^t \|\sigma_k(u_n(s))\|^2_{\mathcal{H}} ds. \quad (75)
\]

Note that for \(u_n = (u_n, \phi_n)\), we have

\[
\langle \mathcal{G}(u_n), u_n \rangle_U = \langle -Au_n, u_n \rangle_U - \langle B^1_N(v_n, v_n), A_0 v_n \rangle - \langle B^1_N(v_n, \phi_n), A_0^2 \phi_n \rangle + \langle B^0_N(\phi_n, \phi_n), A_0 v_n \rangle - \alpha \langle f_\gamma(\phi_n), A_0^2 \phi_n \rangle - \langle G(u_n), u_n \rangle_U.
\]

We also have

\[
- \langle Au_n, u_n \rangle_U = -|Au_n|^2_{\mathcal{H}}. \quad (77)
\]

From [7, 31], we have

\[
| - \langle B^0_N(v_n, v_n), A_0 v_n \rangle | \leq \frac{1}{8} |A_0 v_n|^2_{\mathcal{H}} + c\|v_n\|^2
\]

\[
\leq \frac{1}{8} |Au_n|^2_{\mathcal{H}} + c\|u_n\|^2_{\mathcal{H}}. \quad (78)
\]
We also have

\[|\langle R_N^\delta(\phi_n, \phi_n), A_0v_n \rangle| = |b_N^\delta(A_0v_n, \phi_n, A_{\gamma}\phi_n)| \]

\[\leq c|A_0v_n|_{L^2}|A_{\gamma}\phi_n|_{L^2}^{1/2}|A_{\gamma}^{3/2}\phi_n|_{L^2}^{1/2} \tag{79} \]

\[\leq \frac{1}{8}|Au_n|^2_{\mathcal{H}} + c\|u_n\|^2_{\mathcal{U}}. \]

\[| - \langle B_N(v_n, \phi_n), A_2^2\phi_n \rangle| = b_N^2(v_n, \phi_n, A_2^2\phi_n) \]

\[\leq c|v_n|^{1/2}|A_0v_n|_{L^2}^{1/2}|A_{\gamma}^{3/2}\phi_n|_{L^2} \tag{80} \]

\[\leq \frac{1}{8}|Au_n|^2_{\mathcal{H}} + c\|u_n\|^2_{\mathcal{U}}. \]

Using the properties (11) of \(f_\gamma \), we can check that

\[|\alpha(f_\gamma(\phi_n), A_2^2\phi_n)| = |\alpha(A_{\gamma}^{1/2}f_\gamma(\phi_n), A_{\gamma}^{3/2}\phi_n)| \]

\[\leq |A_{\gamma}^{1/2}f_\gamma(\phi_n)|_{L^2} |A_{\gamma}^{3/2}\phi_n|_{L^2} \tag{81} \]

\[\leq \frac{1}{8}|A_{\gamma}^{3/2}\phi_n|^2_{\mathcal{H}} + c\|\phi_n\|^q_0 \]

\[\leq \frac{1}{8}|Au_n|^2_{\mathcal{H}} + c\|u_n\|^q_0 + c, \]

where hereafter \(q_0 \geq 1 \) denotes some integer.

The properties of \(G \) give

\[| - \langle G(u_n), u_n \rangle_{\mathcal{U}} \leq c(1 + \|u_n\|^2_{\mathcal{U}}). \tag{82} \]

The estimates (77)-(82) and (75) yield

\[\|u_n\|_{\mathcal{U}}^2 \leq \|u_0\|_{\mathcal{U}}^2 - \int_0^t |Au_n(s)|^2_{\mathcal{H}} ds + c \int_0^t (1 + \|u_n(s)\|^2_{\mathcal{U}} + |u_n|^q_0) ds \]

\[+ 2 \sum_{k=1}^\infty \int_0^t (\|\sigma_k(u_n(s), u_n(s))\|_{\mathcal{U}} dW_k(s), \tag{83} \]

for some positive integer \(q_0 > 1 \).

Taking expectation, we get

\[\mathbb{E} |\|u_n(t)\|_{\mathcal{U}}^2| \leq \mathbb{E} |\|u_0\|_{\mathcal{U}}^2 - \mathbb{E} \int_0^t |Au_n(s)|^2_{\mathcal{H}} ds \]

\[+ CE \int_0^t (1 + \|u_n(s)\|^2_{\mathcal{U}} + |u_n|^q_0) ds. \tag{84} \]

Hence by Gronwall’s inequality and Lemma 5, we have for any \(T > 0 \),

\[\sup_{t \in [0,T]} \mathbb{E} |\|u_n(t)\|_{\mathcal{U}}^2 + \mathbb{E} \int_0^T |Au_n(s)|^2_{\mathcal{H}} ds \leq CE \left(1 + \|u_0\|^2_{\mathcal{U}} + |u_0|^q_0 \right) \leq C. \tag{85} \]

This proves 1).

2) Applying the Burkholder’s inequality to the martingale

\[M_t = 2 \sum_{k=1}^\infty \int_0^t (\sigma_k(u_n(s), u_n(s))_{\mathcal{U}} dW_k(s) \]
we have
\[
\mathbb{E} \left(\sup_{t \in [0,T]} \left| \sum_{k=1}^{\infty} \int_{0}^{t} \langle \sigma_k(u_n(s)), u_n(s) \rangle dW_k(s) \right| \right) \leq \\
c\mathbb{E} \left(\int_{0}^{T} \sum_{k=1}^{\infty} \langle \sigma_k(u_n(s)), u_n(s) \rangle_{L^2}^2 ds \right)^{\frac{1}{2}},
\]
\[
c\mathbb{E} \left(\sup_{s \in [0,T]} \|u_n(s)\|_{L^2}^2 \right)^{\frac{1}{2}} \left(\int_{0}^{T} (1 + \|u_n(s)\|_{L^2}^2) ds \right)^{\frac{1}{2}}
\]
\[
\leq c\mathbb{E} \left(\sup_{s \in [0,T]} \|u_n(s)\|_{L^2}^2 \right) + c\mathbb{E} \int_{0}^{T} (1 + \|u_n(s)\|_{L^2}^2) ds.
\]
Combining (83), (85) and the above inequalities, we get
\[
\mathbb{E} \left(\sup_{t \in [0,T]} \|u_n(t)\|_{L^2}^2 \right) \leq C \left(1 + \mathbb{E}\|u_0\|_{L^2}^2 \right) + c\mathbb{E} \left(\sup_{t \in [0,T]} \|u_n(t)\|_{L^2}^2 \right)
\]
Choosing \(\epsilon \) small enough, we obtain
\[
\mathbb{E} \left(\sup_{t \in [0,T]} \|u_n(t)\|_{L^2}^2 \right) \leq C \left(1 + \mathbb{E}\|u_0\|_{L^2}^2 \right).
\]
This ends the proof of 2).
3) We apply Itô’s formula the function \(f(x) = x^3 \) and the real-valued process \(Y(t) = \|u_n(t)\|_{L^2}^2 \) and we get
\[
\|u_n(t)\|_{L^2}^2 = \|u_n(0)\|_{L^2}^2 + 6 \int_{0}^{t} \|u_n(s)\|_{L^2}^4 \langle \mathcal{G}(u_n(s)), u_n(s) \rangle_{L^2} ds \\
+ 3 \sum_{k=1}^{\infty} \int_{0}^{t} \|u_n(s)\|_{L^2}^4 \|\pi_n \sigma_k(u_n(s))\|_{L^2}^2 ds \\
+ 12 \sum_{k=1}^{\infty} \int_{0}^{t} \|u_n(s)\|_{L^2}^4 \langle \pi_n \sigma_k(u_n(s)), u_n(s) \rangle^2 ds \\
+ 6 \sum_{k=1}^{\infty} \int_{0}^{t} \|u_n(s)\|_{L^2}^4 \langle \pi_n \sigma_k(u_n(s)), u_n(s) \rangle_{L^2} dW_k(s).
\]
Note that
\[
\langle \mathcal{G}(u_n(s)), u_n(s) \rangle_{L^2} \leq -|A u_n(s)|_{L^2}^2 + c \|u_n(s)\|_{L^2}^2 + c |u_n(s)|_{H^0}^2.
\]
It follows that
\[
\|u_n(t)\|_{L^2}^2 \leq \|u_n(0)\|_{L^2}^2 - 6 \int_{0}^{t} \|u_n(s)\|_{L^2}^4 |Au_n(s)|_{L^2}^2 ds \\
+ c \int_{0}^{t} (\|u_n(s)\|_{L^2}^2 + |u_n(s)|_{H^0}^2) ds + 12c \int_{0}^{t} \|u_n(s)\|_{L^2}^4 (1 + \|u_n(s)\|_{L^2}^2) ds \\
+ 6 \sum_{k=1}^{\infty} \int_{0}^{t} \|u_n(s)\|_{L^2}^4 \langle \pi_n \sigma_k(u_n(s)), u_n(s) \rangle_{L^2} dW_k(s).
\]
Using the inequality $|x|^{2p-2} \leq 1 + |x|^{2p}$ for $p \geq 1$, we get
\[
\|u_n(t)\|_{lt}^6 + 6 \int_0^t \|u_n(s)\|_{lt}^4 \|A u_n(s)\|_{lt}^2 \, ds \leq \|u_0\|_{lt}^6 + c \int_0^t (1 + \|u_n(s)\|_{lt}^6 + |u_n(s)|_{lt}^2) \, ds \\
+ 6 \sum_{k=1}^\infty \int_0^t \|u_n(s)\|_{lt}^4 ((\pi_n \sigma_k(u_n(s)), u_n(s)))_{lt} \, dW_k(s).
\]

Taking the supremum over $[0, t]$, we obtain
\[
\sup_{s \in [0, t]} \|u_n(s)\|_{lt}^6 + 6 \int_0^t \|u_n(s)\|_{lt}^4 \|A u_n(s)\|_{lt}^2 \, ds \leq \\
\|u_0\|_{lt}^6 + c \int_0^t (1 + \|u_n(s)\|_{lt}^6 + |u_n(s)|_{lt}^2) \, ds \\
+ 6 \sup_{s' \in [0, t]} \left(\sum_{k=1}^\infty \int_0^t \|u_n(s)\|_{lt}^4 ((\pi_n \sigma_k(u_n(s)), u_n(s)))_{lt} \, dW_k(s) \right). \quad (88)
\]

By Burkholder’s inequality, we have
\[
E \sup_{s' \in [0, t]} \left(\sum_{k=1}^\infty \int_0^{s'} \|u_n(s)\|_{lt}^4 ((\pi_n \sigma_k(u_n(s)), u_n(s)))_{lt} \, dW_k(s) \right) \\
\leq cE \left(\int_0^t \sum_{k=1}^\infty \|u_n(s)\|_{lt}^8 ((\pi_n \sigma_k(u_n(s)), u_n(s)))^2 \, ds \right)^{\frac{1}{2}} \\
\leq cE \left(\int_0^t \sum_{k=1}^\infty \|u_n(s)\|_{lt}^8 \|\pi_n \sigma_k(u_n(s))\|_{lt}^2 \|u_n(s)\|_{lt}^2 \, ds \right)^{\frac{1}{2}} \\
\leq E \left(\int_0^t \|u_n(s)\|_{lt}^{10} (1 + \|u_n(s)\|_{lt}^2) \, ds \right)^{\frac{1}{2}} \\
\leq cE \left(\sup_{s \in [0, t]} \|u_n(s)\|_{lt}^6 \right)^{\frac{1}{2}} \left(E \int_0^t \|u_n(s)\|_{lt}^2 (1 + \|u_n(s)\|_{lt}^2) \, ds \right)^{\frac{1}{2}} \\
\leq \frac{c}{2} E \left(\sup_{s \in [0, t]} \|u_n(s)\|_{lt}^6 \right) + \frac{c}{2} E \int_0^t \|u_n(s)\|_{lt}^2 \, ds + \frac{c}{2} E \int_0^t \|u_n(s)\|_{lt}^6 \, ds \\
\leq \frac{c}{2} E \left(\sup_{s \in [0, t]} \|u_n(s)\|_{lt}^6 \right) + \frac{c}{2} T + \frac{c}{2} E \int_0^t \|u_n(s)\|_{lt}^6 \, ds.
\]

Taking the expectation in (88) and using (89), we obtain
\[
E \sup_{s \in [0, t]} \|u_n(s)\|_{lt}^6 + 6E \int_0^t \|u_n(s)\|_{lt}^4 \|A u_n(s)\|_{lt}^2 \, ds \leq \\
E\|u_0\|_{lt}^6 + CT + \int_0^t E \sup_{s' \in [0, s]} \|u_n(s')\|_{lt}^6 \, ds + c \left(\int_0^t E \sup_{s' \in [0, s]} \|u_n(s')\|_{lt}^6 \, ds \right)^{\frac{1}{2}} \\
+ \frac{c}{\epsilon} \int_0^t E \sup_{s' \in [0, s]} \|u_n(s')\|_{lt}^6 \, ds + c \int_0^t E \sup_{s' \in [0, s]} |u_n(s')|_{lt}^2 \, ds.
\]
Taking ε sufficiently small, we get
\[\mathbb{E} \sup_{s \in [0, t]} \| u_n(s) \|_{\mathcal{H}}^6 + 6 \mathbb{E} \int_0^t \| u_n(s) \|_{\mathcal{H}}^4 |A u_n(s)|_{\mathcal{H}}^2 ds \]
\[\leq \mathbb{E} \| u_0 \|_{\mathcal{H}}^6 + (C T + \frac{c}{2 \epsilon} T) + (1 + \frac{c}{\epsilon}) \int_0^t \mathbb{E} \sup_{s' \in [0, s]} \| u_n(s') \|_{\mathcal{H}}^6 ds \]
\[+ c \int_0^t \mathbb{E} \sup_{s' \in [0, s]} |u_n(s')|_{\mathcal{H}}^{\epsilon_0} ds. \] \hspace{1cm} (89)
Applying Gronwall’s inequality, we obtain
\[\mathbb{E} \sup_{s \in [0, t]} \| u_n(s) \|_{\mathcal{H}}^6 + 6 \mathbb{E} \int_0^t \| u_n(s) \|_{\mathcal{H}}^4 |A u_n(s)|_{\mathcal{H}}^2 ds \leq C. \] \hspace{1cm} (90)
This ends the proof of 3).

4) We have
\[|\pi_n G(u_n(t))|_{\mathcal{H}} \leq c \left(|A u_n|_{\mathcal{H}}^2 + |B_N(u_n)|_{\mathcal{H}}^2 + |G(u_n)|_{\mathcal{H}}^2 + |R_N(u_n)|_{\mathcal{H}}^2 + |E(u_n)|_{\mathcal{H}}^2 \right) \] \hspace{1cm} (91)
We also have
\[|B_N^0(v_n, v)| = |b_N^0(v_n, v_n, v)| \leq c \| v_n \|_{L^2}^\frac{3}{2} |A_0 v_n| \frac{2}{3} |v|_{L^2}, \] \hspace{1cm} (92)
which gives
\[|B_N^0(v_n)|_{\mathcal{H}} \leq c \| v_n \|_{L^2} |A_0 u_n|_{L^2} \leq \frac{1}{8} |A u_n|_{\mathcal{H}}^2 + c \| u_n \|_{\mathcal{H}}^2. \] \hspace{1cm} (93)
We also have
\[|(R_N^0(A_\gamma \phi_n, \phi_n), v)| = |b_N^1(v_n, \phi_n, A_\gamma \phi_n)| \leq c |A_\gamma \phi_n|_{L^2}^\frac{1}{2} |A \gamma^{3/2} \phi_n|_{L^2}^\frac{1}{2} |v|_{L^2} \] \hspace{1cm} (94)
which gives
\[|R_N^0(u_n)|_{\mathcal{H}} \leq c \| u_n \|_{L^2} |A u_n|_{\mathcal{H}} \leq \frac{1}{8} |A u_n|_{\mathcal{H}}^2 + c \| u_n \|_{\mathcal{H}}^2. \] \hspace{1cm} (95)
Similarly, we have
\[|(B_N^1(v_n, \phi_n, A_\gamma \psi))| = |b_N^1(v_n, \phi_n, A_\gamma \psi)| \]
\[\leq c (\| v_n \|_{L^2}^{\frac{3}{2}} |A_0 v_n|_{L^2}^{\frac{1}{2}} + |A_\gamma \phi_n|_{L^2}^{1/2} |A \gamma^{3/2} \phi_n|_{L^2}^{1/2}) ||\psi||, \]
which gives
\[|B_N^1(v_n, \phi_n)|_{L^2} \leq \frac{1}{8} |A_0 v_n|_{L^2}^2 + \frac{1}{8} |A \gamma^{3/2} \phi_n|_{L^2}^2 + c \| v_n \|_{L^2}^2 + c |A_\gamma \phi_n|_{L^2}^{1/2} \]
\[\leq \frac{1}{8} |A u_n|_{\mathcal{H}}^2 + c \| u_n \|_{\mathcal{H}}^2. \] \hspace{1cm} (96)
For the operator \(E \), we note that
\[|(\alpha f_\gamma (\phi_n), A_\gamma \psi)| \leq |(\alpha A_\gamma^{1/2} f_\gamma (\phi_n), A_\gamma^{1/2} \psi)| \]
\[\leq c \| \phi_n \| _{L^4} + c |\phi_n|_{L^4} |A_\gamma^{1/2} \phi_n|_{L^2} |A_\gamma^{1/2} \psi|_{L^2} \]
\[\leq c \| \phi_n \| _{L^4} + c |\phi_n|_{L^4}^{(5/4)} |A_\gamma^{1/4} \phi_n|_{L^2}^{3/4} ||\psi||, \] \hspace{1cm} (97)
which gives
\[|\alpha f_\gamma(\phi_n)|^2 \leq c|\phi_n|^2 + c|\phi_n|^{(5/2)} + c|A_\gamma \phi_n|^2 \]
\[\leq c(1 + |\phi_n|^2 + |\phi_n|^{q_0} + |A_\gamma \phi_n|^2)_L^2, \]
for some positive integer \(q_0 \geq 1. \)
From (32), we also have
\[|G(u_n)|^2 \leq c(1 + |u_n|^2) \leq c(1 + \|u_n\|_H^2). \]
It follows from (32) that
\[|\pi_n G(u_n(t))|^2 \leq c(|\pi_n u_n|^2 + |\pi_n|_H + 1 + |u_n|^2). \]
and
\[E \int_0^T |\pi_n G(u_n(t))|^2_\|H < \infty. \]
This ends the proof of the lemma.

Let \(\Omega_T = \Omega \times [0, T] \). Using the energy estimates (71)-(74) along with the Banach-Alaoglu theorem, we can extract a subsequence of \(\{u_n\} \) still denoted by \(\{u_n\} \) and processes \(\tilde{u} \in L^2(\Omega_T; H) \cap L^2(\Omega; L^\infty([0, T]; u)) \), \(G \in L^2(\Omega_T; H) \) and \(\sigma := (\sigma_k)_{k \in \mathbb{N}} \in L^2(l_2; U) \) for which the following hold:

i) \(u_n \rightharpoonup \tilde{u} \) weakly in \(L^2(\Omega_T; D(A)) \), hence weakly in \(L^2(\Omega_T; U) \),
ii) \(u_n \rightharpoonup \tilde{u} \) in \(L^2(\Omega, L^\infty([0, T]; U)) \) with respect to the weak star topology,
iii) \(\pi_n G(u_n) \rightharpoonup G \) weakly in \(L^2(\Omega_T; H) \),
iv) \(\pi_n \sigma(u_n) \rightharpoonup \sigma \) weakly in \(L^2(\Omega_T; l_2(U)) \),
v) \(u_n \rightharpoonup \tilde{u} \) weakly also in \(L^6(\Omega_T; U) \).

For \(0 \leq t \leq T \), define
\[u(t) = u_0 + \int_0^t G(s)ds + \sum_{k=1}^\infty \int_0^t \tilde{\sigma}_k(s)dW_k(s). \]
It follows from [29] that \(u = \tilde{u} dt \times P \text{-} a.e. \) and \(u \) has continuous paths in \(U \).
To complete the proof of the theorem, we need to show that
\[G(s) = G(\tilde{u}(s)) \quad \text{and} \quad \sigma_k(s) = \sigma_k(\tilde{u}(s)) - a.e. \text{ on } \Omega_T. \]
The proof follows the same steps as in [30]. Fix an integer \(K \). Take \(\vartheta \in L^2(\Omega_T, H_K) \) where \(H_K \) is the linear span of \(e_1, e_2, ..., e_K \). By Itô’s formula, writing \(u = u - \vartheta + \vartheta \), we have
\[E \left[|u(t)|_H^2 e^{-r(t)} \right] = E \left[|u_0|^2_H \right] \]
\[= E \left[\int_0^t 2e^{-r(s)} \langle G(s), u(s) \rangle ds \right] + E \left[\int_0^t e^{-r(s)} \sum_{k=1}^\infty |\tilde{\sigma}_k(s)|_H^2 ds \right] \]
\[- E \left[\int_0^t e^{-r(s)} r'(s)|u(s)|^2_H ds \right] \]
\[= E \left[\int_0^t 2e^{-r(s)} \langle G(s), u(s) \rangle ds \right] + E \left[\int_0^t e^{-r(s)} \sum_{k=1}^\infty |\tilde{\sigma}_k(s)|_H^2 ds \right] \]
\[- E \left[\int_0^t e^{-r(s)} r'(s) \{ |u(s) - \vartheta(s)|^2_H + 2 \langle u(s) - \vartheta(s), \vartheta(s) \rangle + |\vartheta(s)|_H^2 ds \} \right]. \]
where \(r(t) \) is a non-negative stochastic process which is absolutely continuous and to be chosen later. A similar expression also holds for \(\mathbb{E} \left[|u_n(t)|_{\mathcal{H}}^2 e^{-r(t)} \right] - \mathbb{E} \left[|u_0|_{\mathcal{H}}^2 \right] \), that is

\[
\mathbb{E} \left[|u_n(t)|_{\mathcal{H}}^2 e^{-r(t)} \right] - \mathbb{E} \left[|u_0|_{\mathcal{H}}^2 \right] = \\
\mathbb{E} \left[\int_0^t 2e^{-r(s)} \langle \mathcal{G}(u_n(s)), u_n(s) \rangle ds \right] + \mathbb{E} \left[\int_0^t e^{-r(s)} \sum_{k=1}^\infty |\hat{\sigma}_k(u_n(s))|_{\mathcal{H}}^2 ds \right] \\
- \mathbb{E} \left[\int_0^t e^{-r(s)} r'(s) \{ |u_n(s) - \vartheta(s)|_{\mathcal{H}}^2 + 2 \langle u_n(s) - \vartheta(s), \vartheta(s) \rangle \} ds \right]. \tag{101}
\]

For any non-negative \(\psi \in L^\infty([0, T], \mathbb{R}) \), the weak convergence implies that

\[
\int_0^T \psi(t) dt \mathbb{E} \left[|u(t)|_{\mathcal{H}}^2 e^{-r(t)} \right] - \mathbb{E} \left[|u_0|_{\mathcal{H}}^2 \right] = \\
\int_0^T \psi(t) dt \mathbb{E} \left[|\tilde{u}(t)|_{\mathcal{H}}^2 e^{-r(t)} \right] - \mathbb{E} \left[|u_0|_{\mathcal{H}}^2 \right] \\
\leq \liminf_{n \to \infty} \int_0^T \psi(t) dt \mathbb{E} \left[|u_n(t)|_{\mathcal{H}}^2 e^{-r(t)} \right] - \mathbb{E} \left[|u_0|_{\mathcal{H}}^2 \right]. \tag{102}
\]

By substituting the corresponding expressions, (102) becomes

\[
\int_0^T \psi(t) dt \left\{ \mathbb{E} \left[\int_0^t 2e^{-r(s)} \langle \mathcal{G}(s), u(s) \rangle ds \right] + \mathbb{E} \left[\int_0^t e^{-r(s)} \sum_{k=1}^\infty |\hat{\sigma}_k(s)|_{\mathcal{H}}^2 ds \right] \right\} \\
- \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t e^{-r(s)} r'(s) \{ |u(s) - \vartheta(s)|_{\mathcal{H}}^2 + 2 \langle u(s) - \vartheta(s), \vartheta(s) \rangle \} ds \right] \\
\leq \liminf_{n \to \infty} \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t 2e^{-r(s)} \langle \mathcal{G}(u_n(s)), u_n(s) \rangle ds \right] \\
+ \liminf_{n \to \infty} \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t e^{-r(s)} \sum_{k=1}^\infty |\pi_n \sigma_k(u_n(s))|_{\mathcal{H}}^2 ds \right] \\
- \liminf_{n \to \infty} \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t e^{-r(s)} r'(s) |u_n(s) - \vartheta(s)|_{\mathcal{H}}^2 ds \right] \\
- 2 \liminf_{n \to \infty} \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t e^{-r(s)} r'(s) \langle u_n(s) - \vartheta(s), \vartheta(s) \rangle ds \right] \\
:= \liminf_{n \to \infty} Z_n, \tag{103}
\]

where \(Z_n = Z_n^1 + Z_n^2 + Z_n^3 \) with

\[
Z_n^1 = \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t e^{-r(s)} r'(s) |u_n(s) - \vartheta(s)|_{\mathcal{H}}^2 ds \right] \\
+ 2 \int_0^T \psi(t) dt \mathbb{E} \left[\int_0^t e^{-r(s)} \langle \mathcal{G}(u_n(s)) - \mathcal{G}(\vartheta(s)), u_n(s) - \vartheta(s) \rangle ds \right]
\]
\[
Z_n^2 = \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \{ -2r'(s) \langle u_n(s) - \vartheta(s), \vartheta(s) \rangle + 2 \langle \mathcal{G}(u_n(s)), \vartheta(s) \rangle \} ds \\
+ 2 \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \{ \langle \mathcal{G}(\vartheta(s)), u_n(s) \rangle - 2 \langle \mathcal{G}(\vartheta(s)), \vartheta(s) \rangle \} ds \\
+ 2 \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \sum_{k=1}^{\infty} \langle \pi_n \sigma_k(u_n(s)), \sigma_k(\vartheta(s)) \rangle ds,
\] (104)

\[
Z_n^3 = 2 \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \sum_{k=1}^{\infty} \langle \pi_n \sigma_k(u_n(s)), \pi_n \sigma_k(\vartheta(s)) - \sigma_k(\vartheta(s)) \rangle ds \\
- \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \sum_{k=1}^{\infty} |\pi_n \sigma_k(\vartheta(s))|^2 \mathcal{H} ds,
\] (105)

Set \(r'(s) = c + 2c_0 \). In view of (58) and (32) we see that \(Z_n^3 \leq 0 \). By the weak convergence, it is clear that \(Z_n^2 \to Z^2 \), where

\[
Z^2 = \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \{ -2r'(s) \langle u(s) - \vartheta(s), \vartheta(s) \rangle + 2 \langle \mathcal{G}(s), \vartheta(s) \rangle \} ds \\
+ 2 \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \{ \langle \mathcal{G}(\vartheta(s)), u(s) \rangle - 2 \langle \mathcal{G}(\vartheta(s)), \vartheta(s) \rangle \} ds \\
+ 2 \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \sum_{k=1}^{\infty} \langle \sigma_k(s), \sigma_k(\vartheta(s)) \rangle ds.
\] (106)

Also

\[
Z_n^3 \to Z^3 := - \int_0^T \psi(t) dt \sum_{k=1}^{\infty} \mathbb{E} \left[\int_0^t |\sigma_k(\vartheta(s))|^2 \mathcal{H} ds \right].
\] (107)

Combining (103)-(108) after cancellations it turns out that

\[
\int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} - r'(s) |u(s) - \vartheta(s)|^2 \mathcal{H}
\\n+ 2 \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \langle \mathcal{G}(s) - \mathcal{G}(\vartheta(s)), u(s) - \vartheta(s) \rangle ds
\\n+ \int_0^T \psi(t) dt \mathbb{E} \int_0^t e^{-r(s)} \sum_{k=1}^{\infty} |\sigma_k(s) - \sigma_k(\vartheta(s))|^2 \mathcal{H} ds \leq 0.
\] (109)

As \(K \) is arbitrary, by approximation it is seen that (109) holds true for every \(\vartheta \in L^2(\Omega_T, \mathcal{F}(A)) \). In particular, take \(\vartheta(s) = u(s) \) in (109) to obtain \(\sigma_k(s) = \sigma_k(u(s)) \) for every \(k \geq 1 \). For \(\lambda \in [-1,1], \tilde{\vartheta} \in L^\infty(\Omega_T, \mathcal{F}(A)) \), set \(\vartheta_\lambda(s) = u(s) - \lambda \tilde{\vartheta}(s) \). Replace \(\vartheta \) by \(\vartheta_\lambda \) in (109) to get

\[
\mathbb{E} \left[\int_0^T e^{-r(s)} \left\{ -\lambda^2 r'(\lambda(s)) |\tilde{\vartheta}(s)|^2 \mathcal{H} + 2\lambda \langle \mathcal{G}(s) - \mathcal{G}(\vartheta_\lambda(s)), \tilde{\vartheta}(s) \rangle \right\} ds \right] \leq 0,
\] (110)
where \(r_\lambda(s) \) is defined as \(r(s) \) with \(\hat{\vartheta} \) replaced by \(\hat{\vartheta}_\lambda \). Dividing (110) by \(\lambda \) we obtain

\[
E \left[\int_0^T e^{-r_\lambda(s)} \left\{ -\lambda r'_\lambda(s) \| \hat{\vartheta}(s) \|^2_H + 2 \langle \mathcal{G}(s) - \mathcal{G}(\hat{\vartheta}_\lambda(s)), \hat{\vartheta}(s) \rangle \right\} ds \right] \leq 0, \tag{111}
\]

for \(\lambda > 0 \), and

\[
E \left[\int_0^T e^{-r_\lambda(s)} \left\{ -\lambda r'_\lambda(s) \| \hat{\vartheta}(s) \|^2_H + 2 \langle \mathcal{G}(s) - \mathcal{G}(\hat{\vartheta}_\lambda(s)), \hat{\vartheta}(s) \rangle \right\} ds \right] \geq 0 \tag{112}
\]

for \(\lambda < 0 \).

By (58), we have

\[
|\langle \mathcal{G}(u(s)) - \mathcal{G}(\hat{\vartheta}_\lambda(s)), \hat{\vartheta}(s) \rangle| \leq |\lambda| \| \hat{\vartheta}(s) \|^2_H + c_0 |\lambda| \| \hat{\vartheta}(s) \|^2_H.
\]

Therefore by the dominated convergence theorem, we get

\[
\lim_{\lambda \to 0^+} E \left[\int_0^T e^{-r_\lambda(s)} \langle \mathcal{G}(s) - \mathcal{G}(\hat{\vartheta}_\lambda(s)), \hat{\vartheta}(s) \rangle ds \right] = E \left[\int_0^T e^{-r_\lambda(s)} \langle \mathcal{G}(s) - \mathcal{G}(u(s)), \hat{\vartheta}(s) \rangle ds \right]. \tag{114}
\]

Letting \(\lambda \to 0^+ \) in (111) and \(\lambda \to 0^- \) in (112), we obtain

\[
E \left[\int_0^T e^{-r_\lambda(s)} \langle \mathcal{G}(s) - \mathcal{G}(u(s)), \hat{\vartheta}(s) \rangle ds \right] = 0.
\]

As \(\hat{\vartheta} \) is arbitrary, we conclude that \(\mathcal{G}(s) = \mathcal{G}(u(s)) \) a.e. on \(\Omega_T \). Then

\[
u(t) = u_0 + \int_0^t \mathcal{G}(u(s)) ds + \sum_{k=1}^{\infty} \int_0^t \sigma_k(u(s)) dW_k(s). \tag{115}
\]

4. Convergence to martingale solutions of the stochastic 3D AC-NSE.

Let \(\mu_0 \) be a probability measure on \(\mathcal{U} \) such that \(\int_{\mathcal{U}} \|U\|^6 d\mu_0(U) < \infty \). Let \(u_0 \) be an \(\mathcal{F}_0 \)-random variable in \(\mathcal{U} \) with distribution \(\mu_0 \). Let \(u^N \) be the unique strong solution of the stochastic 3D GMACNSE. In this section, we are going to study the asymptotic behavior of \(u^N \) when \(N \to \infty \).

4.1. Some a priori estimates.

Lemma 7. We have the following a priori estimates on \(u^N \)

\[
E \sup_{s \in [0,T]} |u^N(s)|^2_H \leq c_1, \tag{116}
\]

\[
E \int_0^T \|u^N(s)\|^2_H ds \leq c_2, \tag{117}
\]

\[
E \sup_{s \in [0,T]} |u^N(s)|^4_H \leq c_3, \tag{118}
\]

\[
E \left(\int_0^T \|u^N(s)\|^2_H ds \right)^2 \leq c_4. \tag{119}
\]
where the constants c_1, c_2, c_3 and c_4 are independent of N.

Proof. By Itô's formula, we get

$$|u^N(t)|^2_{H_1} = |u_0|^2_{H_1} + 2 \int_0^t \langle \mathcal{G}(u^N), u^N \rangle_{\mathcal{U'}, \mathcal{U}} ds$$

(120)

$$+ 2 \sum_{k=1}^{\infty} \int_0^t \langle \sigma_k(u^N), u^N \rangle_{\mathcal{W}^k(s)} + \sum_{k=1}^{\infty} \int_0^t |\sigma_k(u^N(s))|_{H_1}^2 ds.$$

(121)

Note that for $u^N = (v^N, \phi^N) \in \mathcal{U}$, we also have (see (24), (32), (26) and (57))

$$-\langle Au^N, u^N \rangle = -\|u^N\|_{\mathcal{U}}^2,$$

(122)

$$-\langle B_N(u^N), u^N \rangle_{\mathcal{U'}, \mathcal{U}} + \langle R_N(u^N), u^N \rangle_{\mathcal{U'}, \mathcal{U}} \equiv$$

(123)

$$-b_N^1(v^N, u^N, \phi^N) - b_N^2(v^N, \phi^N, A_\gamma \phi^N) + b_N^3(v^N, \phi^N, A_\gamma \phi^N) = 0,$$

and

$$-\langle E(u^N), u \rangle \leq \alpha_0 |u^N|_{H_1}^2,$$

(124)

$$\sum_{k=1}^{\infty} |\sigma_k(u^N)|_{H_1}^2 \leq c(1 + |u^N|_{H_1}^2).$$

(125)

The properties of G also give

$$| - \langle G(u^N), u^N \rangle | \leq c(1 + |u^N|_{H_1}^2).$$

(126)

It follows that

$$\langle \mathcal{G}(u^N), u^N \rangle_{\mathcal{U'}, \mathcal{U}} \leq -\frac{1}{2} \|u^N\|_{\mathcal{U}}^2 + c(1 + |u^N|_{H_1}^2).$$

(127)

Using the estimates (121)-(127), we arrive at

$$|u^N|_{H_1}^2 + \int_0^t \|u^N(s)\|_{H_1}^2 ds \leq |u_0|_{H_1}^2 + c \int_0^t (1 + |u^N|_{H_1}^2) ds$$

(128)

$$+ 2 \sum_{k=1}^{\infty} \int_0^t \langle \sigma_k(u^N), u^N \rangle_{\mathcal{W}^k(s)} ds.$$

Taking the supremum over $[0, T]$, we get

$$\sup_{s \in [0, T]} |u^N(s)|_{H_1}^2 + \int_0^T \|u^N(s)\|_{H_1}^2 ds \leq |u_0|_{H_1}^2 + c \int_0^T (1 + |u^N|_{H_1}^2) ds$$

(129)

$$+ 2 \sup_{t \in [0, T]} \left(\sum_{k=1}^{\infty} \int_0^t \langle \sigma_k(u^N), u^N \rangle_{\mathcal{W}^k(s)} ds \right).$$

Raising both sides to the power $\frac{p}{2}$ for $p \geq 2$, then taking expectations, we obtain with the Minkowski inequality and Fubini’s theorem

$$E \sup_{s \in [0, T]} |u^N(s)|_{H_1}^p \leq E|u_0|^p + cE \int_0^T (1 + |u^N|_{H_1}^p) ds$$

(130)

$$+ 2 \frac{p}{2} E \sup_{t \in [0, T]} \left(\sum_{k=1}^{\infty} \int_0^t \langle \sigma_k(u^N), u^N \rangle_{\mathcal{W}^k(s)} ds \right)^{\frac{p}{2}}.$$
For the stochastic term, we use the Burkholder-Davis-Gundy inequality

\[
E \left(\sup_{t \in [0,T]} \left(\sum_{k=1}^{\infty} \int_0^t \left| \sigma_k(u_N), u_N \right| dW_k(s) \right)^2 \right)^{\frac{1}{2}} \leq c \mathbb{E} \left(\sum_{k=1}^{\infty} \int_0^T \left| u_N^{\frac{p}{2}} \sigma_k(u_N)^{\frac{p}{2}} \right|^2 ds \right)^{\frac{1}{2}}
\]

\[
\leq c \mathbb{E} \left(\sup_{s \in [0,T]} \left| u_N^{\frac{p}{2}} \int_0^T (1 + \left| u_N^{\frac{p}{2}} \right|) ds \right) \right)^{\frac{1}{2}}
\]

\[
\leq \frac{1}{2} \mathbb{E} \sup_{s \in [0,T]} \left| u_N^{\frac{p}{2}} \right| + c' \mathbb{E} \int_0^T \left| u_N^{\frac{p}{2}} \right| ds + c'.
\]

Applying the above estimate to (130), we obtain

\[
\frac{1}{2} \mathbb{E} \sup_{t \in [0,T]} \left| u_N^{\frac{p}{2}}(s) \right| \leq \mathbb{E}|u_0|_{\mathcal{H}}^2 + c' \mathbb{E} \int_0^T \left| u_N^{\frac{p}{2}}(s) \right| ds + c'.
\]

(132)

Since

\[
\mathbb{E} \int_0^T \left| u_N^{\frac{p}{2}}(t) \right|^2 dt \leq \int_0^T \mathbb{E} \sup_{s \in [0,t]} \left| u_N^{\frac{p}{2}}(s) \right| dt,
\]

the deterministic Gronwall lemma implies that

\[
\mathbb{E} \sup_{t \in [0,T]} \left| u_N^{\frac{p}{2}}(t) \right| \leq \mathbb{E}|u_0|_{\mathcal{H}}^2 + c'.
\]

(133)

Letting \(p = 4 \) and \(p = 2 \), we obtain the estimates (116) and (118).

The estimate (128) implies

\[
2 \int_0^t |u_N^{\frac{p}{2}}|^2 ds \leq |u_0|_{\mathcal{H}}^2 + c \int_0^t (1 + |u_N^{\frac{p}{2}}|^2) ds
\]

\[
+ 2 \sum_{k=1}^{\infty} \int_0^t \left(\sigma_k(u_N), u_N \right) dW_k(s).
\]

(134)

Taking the supremum over \([0, T]\), raising both sides to the power 2 then taking expectation, we obtain with Minkowski’s inequality and Fubini’s theorem

\[
\mathbb{E} \left(\int_0^T \left| u_N^{\frac{p}{2}}(s) \right|^2 ds \right)^2 \leq c \mathbb{E}|u_0|_{\mathcal{H}}^4 + c \mathbb{E} \int_0^T \left| u_N^{\frac{p}{2}}(s) \right| ds
\]

\[
+ 4 \mathbb{E} \sup_{t \in [0,T]} \left(\sum_{k=1}^{\infty} \int_0^t \left(\sigma_k(u_N), u_N \right) dW_k(s) \right)^2.
\]

(135)

(136)

For the stochastic term, we have

\[
\mathbb{E} \sup_{t \in [0,T]} \left(\sum_{k=1}^{\infty} \int_0^t \left(\sigma_k(u_N), u_N \right) dW_k(s) \right)^2 \leq c \mathbb{E} \sum_{k=1}^{\infty} \int_0^T \left| u_N^{\frac{p}{2}} \sigma_k(u_N) \right| ds
\]

\[
\leq \frac{1}{2} \mathbb{E} \sup_{t \in [0,T]} \left| u_N^{\frac{p}{2}}(t) \right| + c' \int_0^T \left| u_N^{\frac{p}{2}}(s) \right| ds + c'.
\]
This together with (136) implies the estimate (119). The proof of Lemma 7 is complete.

4.2. Estimates in fractional Sobolev spaces. We will apply the compactness result based on fractional Sobolev spaces in Lemma 12 (of the Appendix) with
\[Y = L^2(0, T; \mathcal{U}) \cap W^{\gamma,2}(0, T; D(A^{-1})), \quad 0 < \gamma < \frac{1}{2}. \]
(137)

For this purpose, we will need the following estimates on fractional derivatives of \(u^N \).

Lemma 8.

\[
\begin{align*}
\mathbb{E}|u^N|_{\mathcal{Y}} &\leq k_1, \\
\mathbb{E} \left| u^N - \int_0^t \sigma(u^N) dW(s) \right|^2_{H^1(0, T; \mathcal{H})} &\leq k_2, \\
\mathbb{E} \left| \int_0^t \sigma(u^N) dW(s) \right|^2_{W^\gamma,2(0, T; \mathcal{H})} &\leq k_3, \quad \forall \gamma < \frac{1}{2},
\end{align*}
\]

(138) - (140)

where the constants \(k_1, k_2 \) and \(k_3 \) are independent of \(N \).

Proof. Note that \(u^N = (v^N, \phi^N) \) can be written as
\[
\begin{align*}
u^N(t) &= u_0 + \int_0^t G(u^N(s)) ds + \sum_{k=1}^\infty \int_0^t \sigma_k(u^N(s)) dW_k(s),
\end{align*}
\]
(141)

Note that for \(\vartheta = (v, \varphi) \), we have
\[
\begin{align*}
\langle J_2, \vartheta \rangle &= \langle G(u^N), \vartheta \rangle = \langle -A u^N, \vartheta \rangle - \langle B_N^0(v^N), v \rangle - \langle B_N^1(v^N, \phi^N), \varphi \rangle \\
&\quad + \langle R_N(A, \phi^N, \vartheta) \rangle - \alpha \langle f, (\phi^N), \varphi \rangle - \langle G(u^N), \vartheta \rangle \\
&=: \langle J_2^1 + J_2^2 + J_2^3 + J_2^4 + J_2^5, \vartheta \rangle.
\end{align*}
\]
(142)

For \(J_2^1 \), we can check that
\[
\begin{align*}
|Au^N|_{\mathcal{U}} \leq c \|u^N\|_{\mathcal{U}}.
\end{align*}
\]
(143)

With (117), we obtain
\[
\mathbb{E}|J_2^1|_{W^{1,2}(0, T; \mathcal{H})}^2 \text{ is bounded independently of } N.
\]
(144)

For \(J_2^2 \), we observe that for \(v \in D(A_0) \)
\[
\begin{align*}
\langle B_N^0(v^N), v \rangle &= b_N^0(v^N, v^N, v) \\
&= F_N(\|u^N\|) b_0^0(v^N, v^N, v) \\
&= c \|v^N\|_{L^2} \|v^N\|_{L^{\gamma}(\Omega)}^3 \\
&\leq c \|v^N\|_{L^2} \|v^N\| \|A_0 v\|_{L^2}.
\end{align*}
\]
(145)

This implies that
\[
\begin{align*}
\mathbb{E}|B_N^0(v^N)|_{L^2(0, T; D(A_0^{-1}))}^2 &\leq c \mathbb{E} \left(\sup_{s \in [0, T]} \|v^N(s)\|_{L^2}^2 \int_0^T \|v^N(s)\|^2 ds \right) \\
&\leq c \left(\mathbb{E} \sup_{s \in [0, T]} \|v^N(s)\|_{L^2}^4 \right)^{\frac{1}{2}} \left(\mathbb{E} \left(\int_0^T \|v^N(s)\|^2 ds \right)^2 \right)^{\frac{1}{2}}.
\end{align*}
\]
(146)
This along with (118) and (119) conclude that
\[\mathbb{E}|J^2_1|_{W^{1,2}(0,T;D(A^{-1}_0))} \text{ is bounded independently of } N. \] (147)

For \(J^1_2 \), we observe that for \(v \in D(A_0) \)
\[
\langle R^0_N(A_0,\phi^N,\phi^N),v \rangle = b^1_N(v,\phi^N,\phi^N) \leq c|A_0\phi^N||\phi^N||A_0v|_{L^2}. \]
(148)

This implies that
\[
\mathbb{E}|J^0_N(A_0,\phi^N,\phi^N)|_{L^2(0,T;D(A^{-1}_0))}^2 \leq c \mathbb{E} \left(\sup_{s \in [0,T]} \|\phi^N(s)\|^2 \int_0^T |A_0\phi^N(s)|_{L^2}^2 ds \right) \leq c \left(\mathbb{E} \sup_{s \in [0,T]} \|\phi^N(s)\|^4 \right)^{1/2} \left(\mathbb{E} \left(\int_0^T |A_0\phi^N(s)|_{L^2}^2 ds \right)^2 \right)^{1/2}. \]
(149)

This along with (118) and (119) conclude that
\[\mathbb{E}|J^1_2|_{W^{1,2}(0,T;D(A^{-1}_0))} \text{ is bounded independently of } N. \] (150)

For \(J^0_2 \), using the estimate (116), we have
\[\mathbb{E}|J^0_2|_{W^{1,2}(0,T;\mathcal{H}')} \text{ is bounded independently of } N. \] (151)

The other terms \(J^3_2, J^3' \) and \(J^2_0 \) are estimates similarly. More precisely, we can check that \(\mathbb{E}|J^3_2|_{W^{1,2}(0,T;D(A^{-1}_0))}, \mathbb{E}|J^3'_2|_{W^{1,2}(0,T;A^{-1}_1)} \) and \(\mathbb{E}|J^2_0|_{W^{1,2}(0,T;\mathcal{H}')} \) are also bounded independently of \(N \).

For the term \(J_3 \), Lemma 12 implies that, \(\forall \gamma < \frac{1}{2} \)
\[
\mathbb{E}|J_3^6_{\gamma}|_{W^{\gamma,6}(0,T;\mathcal{H})} = \mathbb{E} \left[\left| \sum_{k=1}^{\infty} \int_0^T \sigma_k(\Phi^N(s))dW_k(s) \right|_{W^{\gamma,2}(0,T;\mathcal{H})}^2 \right] \leq C(\gamma) \mathbb{E} \left(\int_0^T \sum_{k=1}^{\infty} |\sigma_k(\Phi^N(s))|_{\mathcal{H}}^6 ds \right) \leq C(\gamma) \mathbb{E} \left(\int_0^T (1 + |\Phi^N|_{\mathcal{H}}^6) ds \right).
\]

This together with (133) imply that
\[\mathbb{E}|J_3^2|_{W^{\gamma,6}(0,T;\mathcal{H})} \text{ is bounded independently of } N \forall \gamma < \frac{1}{2}. \] (152)

Hence we obtain (140). Collecting the estimates (144)-(152), we obtain
\[\mathbb{E}|u^N|_{W^{\gamma,2}(0,T;D(A^{-1}))} \text{ is bounded independently of } N. \] (153)

By (117), we deduce
\[\mathbb{E}|u^N|_{L^2(0,T;\mathcal{H}')} \text{ is bounded independently of } N. \] (154)

From (153) and rem153, we obtain (138).

We observe from (141) that \(u^N(t) - \int_0^t \sigma(u^N)dW(s) = J_1 + J_2 \) combined with the estimates (144)-(151), we obtain (139) as desired.
4.3. **Compactness arguments for \(\{ (u^N, W) \}_N \).** With the estimates independent of \(N \), we can establish the compactness of the family \((u^N, W) \). For this purpose, we consider the following phase spaces:

\[
X_u = L^2(0, T; \mathcal{H}) \cap C([0, T]; D(A^{-1})), \quad X_W = C(0, T; \mathcal{U}_0), \quad \mathcal{X} = X_u \times X_W.
\] (155)

We then define the probability laws of \(u^N \) and \(W \) respectively in the corresponding phase spaces:

\[
\mu^N_u(\cdot) = \mathbb{P}(u^N \in \cdot),
\] (156)

\[
\mu_W(\cdot) = \mathbb{P}(W \in \cdot).
\] (157)

This defines a family of probability measures \(\mu^N = \mu^N_u \times \mu_W \) on the phase space \(\mathcal{X} \). We now prove that this family is tight in \(N \). More precisely:

Lemma 9. Consider the measures \(\mu^N \) on \(\mathcal{X} \) defined according to (156) and (157). Then the family \(\{ \mu^N \}_N \) is tight and therefore weakly compact over the phase space \(\mathcal{X} \).

Proof: We can use the same technic as in the proof of Lemma 4.1 in [12]. The main idea is to apply Lemma 12 (of the Appendix) and Chebychev’s inequality to (138)-(140).

Strong convergence as \(N \to \infty \). Since the family of measures \(\{ \mu^N \} \) associated with the family \((u^N, W) \) is weakly compact on \(\mathcal{X} \), we deduce that \(\mu^N \) converges weakly to a probability \(\mu \) on \(\mathcal{X} \) up to a subsequence. We can apply the Skorokhod embedding theorem (see Theorem 2.4 in [28]) to deduce the strong convergence of a further subsequence, that is:

Proposition 1. There exists a probability space \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}) \), and a subsequence \(N_k \) of random vectors \((\tilde{u}^{N_k}, \tilde{W}^{N_k}) \) with values in \(\mathcal{X} \) such that

(i) \((\tilde{u}^{N_k}, \tilde{W}^{N_k}) \) have the same probability distributions as \((u^{N_k}, W^{N_k}) \).

(ii) \((\tilde{u}^{N_k}, \tilde{W}^{N_k}) \) converges almost surely as \(N_k \to \infty \), in the topology of \(\mathcal{X} \), to an element \((\tilde{u}, \tilde{W}) \in \mathcal{X} \), i.e.

\[
\tilde{u}^{N_k} \to \tilde{u} \text{ strongly in } L^2(0, T; \mathcal{H}) \cap C([0, T]; D(A^{-1})) \text{ a.s.,}
\] (158)

\[
\tilde{W}^{N_k} \to \tilde{W} \text{ strongly in } C([0, T]; \mathcal{U}_0) \text{ a.s.,}
\] (159)

where \((\tilde{u}, \tilde{W}) \) has distribution \(\mu \).

(iii) \(\tilde{W}^{N_k} \) is a cylindrical Wiener process, relative to the filtration \(\tilde{\mathcal{F}}^{N_k}_t \), given by the completion of the \(\sigma \)-algebra generated by \(\{(\tilde{u}^{N_k}(s), \tilde{W}^{N_k}(s)); s \leq t \} \).

(iv) All the statistical estimates on \(u^{N_k} \) are valid for \(\tilde{u}^{N_k} \), in particular, the estimates (116)-(119) hold.

(v) Each pair \((\tilde{u}^{N_k}, \tilde{W}^{N_k}) \) satisfies (56) as an equation in \(\mathcal{H} \), that is

\[
d\tilde{u}^{N_k}(t) = G(\tilde{u}^{N_k}) dt + \sum_{l=1}^\infty \sigma_l(\tilde{u}^{N_k}(t)) d\tilde{W}^l(t), \quad \tilde{u}^{N_k}(0) = \tilde{u}^0_{N_k}.
\] (160)

The following lemma proves that \(\tilde{u}^{N_k}, \tilde{u} \) is weakly continuous with value in \(\mathcal{H} \)

Lemma 10. The stochastic processes \(\tilde{u}^{N_k} \) and \(\tilde{u} \in C([0, T]; \mathcal{H}_w) \tilde{\mathbb{P}} - a.s. \)

Proof. The proof follows from the fact that \(\tilde{u}^{N_k} \in L^\infty(0, T; \mathcal{H}) \cap C([0, T], D(A^{-1})) \text{ a.s.} \), hence \(\tilde{u}^{N_k} \) is weakly continuous with values in \(\mathcal{H} \) a.s.
4.4. Passage to the limit. With the strong convergence in (158), we can pass to the limit in (160). Thanks to (118) and (117), we deduce the existence of an element
\[\tilde{u} \in L^4(\tilde{\Omega}; L^\infty(0, T; \mathcal{H})) \cap L^2(\tilde{\Omega}; L^2(0, T; \mathcal{U})), \]
and a subsequence still denoted as \(N_k \) such that
\[\tilde{u}^N_k \rightharpoonup \tilde{u} \text{ weak star in } L^4(\tilde{\Omega}; L^\infty(0, T; \mathcal{H})), \tag{161} \]
and
\[\tilde{u}^N_k \rightharpoonup \tilde{u} \text{ weakly in } L^2(\tilde{\Omega}; L^2(0, T; \mathcal{U})). \tag{162} \]
Combining the strong convergence (158), the estimate (118) and the Vitali convergence theorem, we get
\[\tilde{u}^N_k \rightarrow \tilde{u} \text{ strongly in } L^2(\tilde{\Omega}; L^2(0, T; \mathcal{H})), \tag{163} \]
and, thus possibly extracting a new subsequence denoted in the same way to save notation, one has also
\[\tilde{u}^N_k \rightarrow \tilde{u} \text{ for almost all } \omega, t \text{ with respect to the measure } d\tilde{\mathbb{P}} \otimes dt. \tag{164} \]
Fix \(\vartheta \in D(A) \). Using the weak convergence (162), we can pass to the limit in the linear term.

We are going to prove that
\[\int_0^T F_N(\|\tilde{u}^N_k(s)\|_\mathcal{U})b(\tilde{u}^N_k(s), \tilde{u}^N_k(s), \vartheta)ds \rightarrow \int_0^T b(\tilde{u}(s), \tilde{u}(s), \vartheta)ds \text{ in } L^1(\tilde{\Omega} \times (0, T)), \]
\[\int_0^T (R_N(\tilde{u}^N_k(s), \tilde{u}^N_k(s)), \vartheta)ds \rightarrow \int_0^T (R(\tilde{u}(s), \tilde{u}(s)), \vartheta)ds \text{ in } L^1(\tilde{\Omega} \times (0, T)), \]
\[\int_0^T (E(\tilde{u}^N_k(s)), \vartheta)ds \rightarrow \int_0^T (E(\tilde{u}(s)), \vartheta)ds \text{ in } L^1(\tilde{\Omega} \times (0, T)). \tag{165} \]
The following lemma will be crucial for the proof of (165).

Lemma 11. We have
\[F_N(\|\tilde{u}^N(s)\|_\mathcal{U}) \rightarrow 1 \text{ in } L^p(\tilde{\Omega}; L^p(0, T; \mathbb{R})) \text{ as } N \rightarrow \infty \text{ and } p > 1. \tag{166} \]

Proof. From the estimate (117), we have
\[\tilde{E} \int_0^T \|\tilde{u}^N(s)\|^2_\mathcal{U}ds \leq k_1. \]
Let
\[O_N = \{ s \in (0, T), \|\tilde{u}^N(s)\|_\mathcal{U} \geq N \text{ a.s.} \} \]
and \(|O_N| \) the Lebesgue measure of \(O_N \). Then
\[N^2 \tilde{E}|O_N| \leq \tilde{E} \int_0^T \tilde{u}^N(s)^2_\mathcal{U}ds \leq k_1, \]
and so
\[\tilde{E}|O_N| \leq \frac{k}{N^2} \rightarrow 0 \text{ as } N \rightarrow \infty. \]
Observing that
\[T - |O_N| = \int_{[0,T]-O_N} F_N(\|u^N(s)\|_\mathcal{U})ds, \]
Finally, since
\[T - \tilde{E}|O_N| \leq \tilde{E} \int_0^T F_N(||\tilde{u}^N(s)||_{\mathcal{U}}) ds \leq T. \]
These inequalities show that
\[\tilde{E} \int_0^T F_N(||\tilde{u}^N(s)||_{\mathcal{U}}) ds \rightarrow \int_0^T 1 ds \text{ as } N \rightarrow \infty. \]
But as \(0 \leq F_N(||\tilde{u}^N(s)||_{\mathcal{U}}) \leq 1 \), we get
\[\tilde{E} \int_0^T |1 - F_N(||u^N(s)||_{\mathcal{U}})| ds = \tilde{E} \int_0^T (1 - F_N(||u^N(s)||_{\mathcal{U}})) ds \rightarrow 0 \text{ as } N \rightarrow \infty. \]
Finally, since \(|1 - F_N(||\tilde{u}^N(s)||_{\mathcal{U}})| \leq 1 \), we arrive at
\[\tilde{E} \int_0^T |1 - F_N(||u^N(s)||_{\mathcal{U}})|^{p-1} ds \]
\[\leq \tilde{E} \int_0^T |1 - F_N(||u^N(s)||_{\mathcal{U}})|^{p-1} ds \rightarrow 0 \text{ as } N \rightarrow \infty. \]
This ends the proof of the lemma.

For the proof of (165), we introduce the abbreviations as in [7]:
\[F_{N_k}(s) = F_{N_k}(||\tilde{u}^{N_k}(s)||_{\mathcal{U}}), \]
\[b_{N_k}(s) = b(\tilde{u}^{N_k}(s), \tilde{u}^{N_k}(s), w), \]
\[b(s) = b(\tilde{u}(s), \tilde{u}(s), w). \]
To prove (165), we write
\[\tilde{E} \int_0^T \left(\int_0^t (F_{N_k}(s)b_{N_k}(s) - b(s)) ds \right) dt = \]
\[\tilde{E} \int_0^T (F_{N_k}(s) - 1)b_{N_k}(s) ds dt + \tilde{E} \int_0^T \left(\int_0^t (b_{N_k}(s) - b(s)) ds \right) dt. \]
(167)
Reasoning as in the proof of the convergence of the 3D globally modified Navier-Stokes equations studied in [13], the second term of this equality tends to 0, that is
\[\int_0^t b_{N_k}(s) ds \rightarrow \int_0^t b(s) ds \text{ in } L^1(\bar{\Omega} \times (0, T)). \]
(168)
For the first term, we get
\[\tilde{E} \int_0^T (F_{N_k}(s) - 1)b_{N_k}(s) ds dt \]
\[\leq \left(\tilde{E} \int_0^T \int_0^t |F_{N_k}(s) - 1|^2 ds dt \right)^\frac{1}{2} \left(\tilde{E} \int_0^T \int_0^t |b_{N_k}(s)|^2 ds dt \right)^\frac{1}{2} \]
\[\leq T \left(\tilde{E} \int_0^T |F_{N_k}(s) - 1|^2 ds \right)^\frac{1}{2} \left(\tilde{E} \int_0^T |b_{N_k}(s)|^2 ds \right)^\frac{1}{2} , \]
and
\[\int_0^t (F_{N_k}(s) - 1)b_{N_k}(s)ds \to 0 \text{ in } L^1(\tilde{\Omega} \times (0,T)), \]
since
\[\tilde{E} \int_0^T |b_{N_k}(s)|^2 ds \leq c_2 |A|_{\mathcal{H}}^2 \tilde{E} \int_0^T |\tilde{u}^{N_k}(s)|_{L^2(\mathcal{H})}^2 |\tilde{u}^{N_k}(s)|_{H^1}^2 ds \]
\[\leq c_2 |A|_{\mathcal{H}}^2 \left(\tilde{E} \sup_{s \in [0,T]} |\tilde{u}^{N_k}(s)|_{H^1}^4 \right)^{\frac{1}{2}} \left(\tilde{E} \left(\int_0^T \|\tilde{u}^{N_k}(s)\|_{L^2(\mathcal{H})}^2 ds \right)^2 \right)^{\frac{1}{2}} \]
\[< \infty, \]
and Lemma 11 shows that
\[\tilde{E} \int_0^T |F_{N_k}(s) - 1|^2 ds \to 0. \]

This proves (165)_1. The proofs of (165)_2 and (165)_3 are similar.

The convergence
\[\int_0^t (\mathcal{G}(\tilde{u}^{N_k}(s),w)ds \to \int_0^t (\mathcal{G}(\tilde{u},w)ds \text{ in } L^1(\tilde{\Omega} \times (0,T)) \] (169)
follows from estimate (118), the Lipschitz condition on \(\mathcal{G} \) and the Vitali convergence theorem.

For the stochastic term, by (164), we obtain
\[|\tilde{u}^{N_k} - \tilde{u}|_{H^1}^2 \to 0, \text{ for a.e } (\omega, t) \in \tilde{\Omega} \times (0,T). \]

Thus, along with Lipschitz condition on \(\sigma \), we deduce
\[|\sigma(\tilde{u}^{N_k}) - \sigma(\tilde{u})|_{L_4(\tilde{\Omega}; \mathcal{H})} \to 0 \text{ for a.e. } (\omega, t) \in \tilde{\Omega} \times (0,T). \]

On the other hand
\[\sup_{N_k} E \left(\int_0^T |\sigma(\tilde{u}^{N_k})|_{L_2(\tilde{\Omega}; \mathcal{H})}^4 ds \right) \]
\[\leq \sup_{N_k} E \left(\int_0^T \left(1 + |\tilde{u}^{N_k}(s)|_{H^1}^4 ds \right) \right). \]

We therefore infer from (118) that \(|\sigma(\tilde{u}^{N_k})|_{L_2(\tilde{\Omega}; \mathcal{H})} \) is uniformly integrable for \(N_k \) in \(L^q(\tilde{\Omega} \times (0,T)) \) for any \(q \in [1, 4) \).

With the Vitali convergence theorem, we deduce that for all such \(q \in [1, 4) \),
\[\sigma(\tilde{u}^{N_k}) \to \sigma(\tilde{u}) \text{ in } L^q(\tilde{\Omega}, L^2(0,T; L_2(l^2, \mathcal{H}))). \] (170)

In particular, we get the convergence in probability of \(\sigma(\tilde{u}^{N_k}) \) in \(L^2(0,T; L_2(l^2, \mathcal{H})). \)

Thus, along with the convergence (159), we apply Lemma 14 (of the Appendix) and deduce that
\[\int_0^t \sigma(\tilde{u}^{N_k})d\tilde{W}^{N_k} \to \int_0^t \sigma(\tilde{u})d\tilde{W} \text{ in probability in } L^2(0,T; \mathcal{H}). \] (171)

By (171) and Vitali convergence theorem, we infer a stronger convergence result:
\[\int_0^t \sigma(\tilde{u}^{N_k})d\tilde{W}^{N_k} \to \int_0^t \sigma(\tilde{u})d\tilde{W} \text{ in } L^2(\tilde{\Omega}; L^2(0,T; \mathcal{H})). \] (172)
Collecting all the convergence results, we obtain
\[
(\tilde{u}(t), \vartheta) + \int_0^t \langle \mathcal{G}(\tilde{u}(s)), \vartheta \rangle ds = (\tilde{u}(0), \vartheta) + \int_0^t \langle \sigma(\tilde{u}(s)), \vartheta \rangle d\tilde{W}(s),
\]
for all \(\vartheta \in D(A) \) and for a.e. \(\omega \in \tilde{\Omega}, t \in (0, T) \). The equality (173) is also valid for \(\vartheta \in \mathcal{U} \) by density argument.

We have then proved the following result.

Proposition 2. The pair \((\tilde{S}, \tilde{u})\) where \(\tilde{S} = (\tilde{\Omega}, \tilde{\mathcal{F}}, \{\tilde{\mathcal{F}}_t\}, \tilde{\mathbb{P}}, \tilde{W})\) is a martingale solution of the stochastic 3D GMACNSE.

We now summarize the result obtained in the following theorem, which says that, up to a subsequence, the solution \(u_N^N\) of the stochastic 3D GMACNSE converges in law (and even almost surely; see [3]) to a martingale solution of the original 3D stochastic AC-NSE, when \(N\) tends to infinity.

Theorem 2. (Convergence of the stochastic 3D GMACNSE) There exists a martingale weak solution \((\tilde{\Omega}, \tilde{\mathcal{F}}, \{\tilde{\mathcal{F}}_t\}, \tilde{\mathbb{P}}, \tilde{W}, \tilde{u})\) of the stochastic 3D AC-NSE and a sequence \((\tilde{u}^N)\) of random processes defined on \(\tilde{\Omega}\), with the same law as \(u^N\), so that up to a subsequence, the following convergence holds:
\[
\tilde{u}^N = (\tilde{v}^N, \tilde{\phi}^N) \to \tilde{u} = (\tilde{v}, \tilde{\phi}) \text{ in } L^2(\tilde{\Omega} \times [0, T] \times \mathcal{M})^3 \times L^2(\tilde{\Omega} \times [0, T] \times \mathcal{M}).
\]

5. **Appendix.** In section 5.1 we recall some results of deterministic nature. In Section 5.2 we present a result of probabilistic nature.

5.1. **Compact embedding theorems.** We recall the theorems from [15] (see also [12] for Lemma 12)

Definition 5.1. (The Fractional Derivative Space) We assume that \(H\) is a separable Hilbert space. Given \(p \geq 2, \gamma \in (0, 1), W^{\gamma,p}(0, T; H)\) denotes the Sobolev space of all \(h \in L^p(0, T; H)\) such that
\[
\int_0^T \int_0^T \frac{|h(t) - h(s)|_H^p}{|t-s|^{1+\gamma p}} dt ds < \infty.
\]

Lemma 12. (i) Let \(E_0 \subset E \subset E_1\) be Banach spaces, \(E_0\) and \(E_1\) reflexive, with continuous injections and a compact embedding of \(E_0\) in \(E\). Let \(1 < p < \infty\) and \(\gamma \in (0, 1)\) be given. Let \(\mathcal{Y}\) be the space
\[
\mathcal{Y} = L^p(0, T; E_0) \cap W^{\gamma,p}(0, T; E_1),
\]
endowed with the natural norm. Then the embedding of \(\mathcal{Y}\) in \(L^p(0, T; E)\) is compact.

(ii) If \(E \subset \tilde{E}\) are two Banach spaces with \(E\) compactly in \(\tilde{E}\); \(1 < p < \infty\) and \(\gamma \in (0, 1)\) satisfy
\[
\gamma p > 1,
\]
then the space \(W^{\gamma,p}(0, T; E)\) is compactly embedded into \(C([0, T]; \mathcal{E})\).

The following lemma is based on the Burkholder-Davis-Gundy inequality and the notion of fractional derivatives (see [15] for the proof).
Lemma 13. Let $q \geq 2$, $\gamma < \frac{1}{2}$ be given. Then for any predictable process $h \in L^q(\Omega \times (0, T); L_2(\mathcal{U}, H))$, we have
\[
\int_0^t h(s)dW(s) \in L^q(\Omega, W^{\gamma, q}(0, T; H)),
\]
and there exists a constant $c' = c'(q, \gamma) \geq 0$ independent of h such that
\[
\mathbb{E} \left| \int_0^t h(s)dW(s) \right|_W^{q, \gamma} \leq c'(q, \gamma)\mathbb{E} \int_0^t |h(s)|_{L_2(\mathcal{U}, H)}^q ds.
\] (174)

5.2. Convergence theorem for the noise term. The following convergence theorem for the stochastic integral is used to facilitate the passage to the limit. The statements and proofs can be found in [1], [12].

Lemma 14. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a fixed probability space, and \mathcal{X} a separable Hilbert space. Consider a sequence of stochastic bases $S_n := (\Omega, \mathcal{F}, \{\mathcal{F}_{s,t}^n\}_{s,t \geq 0}, \mathbb{P}, W^n)$, such that each W^n is a cylindrical Brownian motion (over \mathcal{U}) with respect to $\{\mathcal{F}_{s,t}^n\}_{s,t \geq 0}$. We suppose that the $\{G^n\}_{n \geq 1}$ are a sequence of \mathcal{X}-valued \mathcal{F}_{t}^n predictable processes so that $G^n \in L^2((0, T); L_2(\mathcal{U}, \mathcal{X}))$ a.s. Finally consider $S := (\Omega, \mathcal{F}, \{\mathcal{F}_{t}\}_{t \geq 0}, \mathbb{P}, W)$ and a function $G \in L^2((0, T); L_2(\mathcal{U}, \mathcal{X}))$, which is \mathcal{F}_t predictable. If
\[
W^n \rightarrow W \text{ in probability in } C([0, T]; \mathcal{U}_0),
\] (175)
\[
G^n \rightarrow G \text{ in probability in } L^2((0, T); L_2(\mathcal{U}, \mathcal{X})),
\] (176)
then
\[
\int_0^t G^n dW^n \rightarrow \int_0^t G dW \text{ in probability in } L^2((0, T); \mathcal{X}).
\] (177)

5.3. A stochastic Gronwall lemma. The following Gronwall lemma for stochastic processes is useful to prove the existence of strong solution for the stochastic 3D globally modified Navier-Stokes equations. See [20] for the proof.

Lemma 15. Fix $T > 0$. Assume that $X, Y, Z, R : [0, T] \times \Omega \rightarrow \mathbb{R}$ are real-valued, non-negative stochastic processes. Let $\tau < T$ be a stopping time so that
\[
\mathbb{E} \int_0^\tau (RX + Z)ds < \infty.
\]
Assume, moreover that for some fixed constant k,
\[
\int_0^\tau Rds < k \text{, a.s.}
\]
Suppose that for all stopping times $0 \leq \tau_a < \tau_b \leq \tau$
\[
\mathbb{E} \left(\sup_{t \in [\tau_a, \tau_b]} X + \int_{\tau_a}^{\tau_b} Yds \right) \leq c_0 \mathbb{E} \left(X(\tau_a) + \int_{\tau_a}^{\tau_b} (RX + Z)ds \right),
\]
where c_0 is a constant independent of the choice of τ_a, τ_b. Then
\[
\mathbb{E} \left(\sup_{t \in [0, \tau]} X + \int_0^\tau Yds \right) \leq c \mathbb{E} \left(X(0) + \int_0^\tau Zds \right),
\]
where $c = c(c_0, T, k)$.

Acknowledgments. The author would like to thank the anonymous referees whose comments help to improve the contain of this article.
REFERENCES

[1] A. Bensoussan, Stochastic Navier-Stokes equations, *Acta Appl. Math.*, **38** (1995), 267–304.
[2] T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, *Physica D (Applied Physics)*, **32** (1999), 1119–1123.
[3] D. Breit, E. Feireisl and M. Hofmanová, Incompressible limit for compressible fluids with stochastic forcing, *Arch. Ration. Mech. Anal.*, **222** (2016), 895–926.
[4] Z. Brzeźniak, W Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, *Nonlinear Anal. Real World Appl.*, **17** (2014), 283–310.
[5] Z. Brzeźniak, E. Hausenblas and J. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, *Nonlinear Anal.*, **79** (2013), 122–139.
[6] G. Caginalp, An analysis of a phase field model of a free boundary, *Arch. Ration. Mech. Anal.*, **92** (1986), 205–245.
[7] T. Caraballo, J. Real and P. E. Kloeden, Unique strong solutions and V-attractors of a three-dimensional system of globally modified Navier-Stokes equations, *Adv. Nonlinear Stud.*, **6** (2006), 411–436.
[8] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flows, *Phys. Rev. Lett.*, **81** (1998), 5338–5341.
[9] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, *Physica D*, **133** (1999), 49–65.
[10] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, *Phys. Fluids*, **11** (1999), 2343–2353.
[11] S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model, *Physica D*, **133** (1999), 66–83.
[12] A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, *Phys. D*, **240** (2011), 1123–1144.
[13] G. Deugoué and T. Tachim Medjo, The stochastic 3D globally modified Navier-Stokes Equations: Existence, Uniqueness and Asymptotic behavior, *Commun. Pure Appl. Anal.*, **17** (2018), 2593–2621.
[14] E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids, *Math. Models Methods Appl. Sci.*, **20** (2010), 1129–1160.
[15] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, *Probab. Theory Related Fields*, **102** (1995), 307–391.
[16] F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations, *Commun. Math. Phys.*, **171** (1995), 119–141.
[17] C. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, *Ann. Inst. H. Poincaré Anal. Non Linéaire*, **27** (2010), 401–436.
[18] C. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, *Discrete Contin. Dyn. Syst.*, **28** (2010), 1–39.
[19] C. Gal and M. Grasselli, Trajectory-long-time behavior for binary fluid mixtures in 3D, *Chin. Ann. Math. Ser. B*, **31** (2010), 655–678.
[20] N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, *Advances in Differential Equations*, **14** (2009), 567–600.
[21] P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, *Rev. Modern Phys.*, **49** (1977), 435–479.
[22] D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semi-direct products with applications to continuum theories, *Adv. Math.*, **137** (1998), 1–81.
[23] D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion, *Phys. Rev. Lett.*, **349** (1998), 4173–4177.
[24] N. Ikeda and S. Watanabe, *Stochastic Differential Equations and Diffusion Processes*, 2nd edition, North-Holland, Kodansha, 1989.
[25] J. E. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains, *Phil. Trans. R. Soc. Lond. A*, **359** (2001), 1449–1468.
[26] A. Onuki, Phase transition of fluids in shear flow, *J. Phys. Condens. Matter*, **9** (1997), 6119–6157.
27] G. Da Prato and A. Debussche, Ergodicity for the 3D stochastic Navier–Stokes equations, J. Math. Pures Appl., 82 (2003), 877–947.
28] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
29] C. Prévôt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer-Verlag, 2007.
30] M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: Existence, Uniqueness and small time large deviation principles, J. Differential Equations, 252 (2012), 716–744.
31] M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425–427.
32] A. V. Skorohod I. I. Gikhman, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972.
33] T. Tachim Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226–243.
34] T. Tachim Medjo, Pullback attractors for a non-autonomous homogeneous two-phase flow model, J. Differential Equations, 253 (2012), 1779–1806.
35] T. Tachim Medjo, Unique strong and V-attractor of a three dimensional globally modified two-phase flow model, Ann. Mat. Pura Appl., 197 (2018), 843–868.
36] T. Tachim Medjo and F. Tone, Long time stability of a classical efficient scheme for an incompressible two-phase flow model, Asymptot. Anal., 95 (2015), 101–127.
37] R. Temam, Infinite Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997.
38] M. I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk, 34 (1979), 135–210, 256.

Received March 2018; 1st revision July 2018; 2nd revision July 2018.
E-mail address: tachimt@fiu.edu