Cartographic analysis of woodlice fauna of the former USSR

Daria M. Kuznetsova¹, Konstantin B. Gongalsky¹

¹ A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia

Corresponding author: Konstantin B. Gongalsky (gongalsky@gmail.com)

Abstract
An inventory of the woodlice fauna of the former USSR yielded 190 species, 64 of them were recorded from the territory of Russia. According to the cartographic analysis, the limits of distribution of epigean terrestrial isopods over the area, excluding mountains, is explained by temperature. No woodlice records were found outside the isocline of 120 days a year with the mean daily air temperature >10°C. The highest species diversity was found between the isoclines of 180 and 210 days. These areas correspond to forest-steppe and steppe zones.

Keywords
Woodlice, mean annual air temperature, database, Russia

Introduction
Studies of spatial differentiation of various taxa are among the most important frontiers of modern biogeography. For some well-studied groups, mainly, vertebrates and plants, such trends are already discovered (Loiselle et al. 2003; Guisan and Thuiller 2005; Grenouillet et al. 2011), but for soil-dwelling invertebrates they are only at the stage of species inventory. However, there are certain groups of invertebrates for which analysis of spatial differentiation is already possible due to the large number of records from different geographical localities. Woodlice are among such groups.

There is no faunistic list of terrestrial isopods for the territory of the former USSR until now, as well as of the territory of Russia. However, there are extensive regional lists (Borutzky 1948, 1953; Zalesskaya and Rybalov 1982; Khisametdinova 2007;...
Gongalsky and Kuznetsova 2011), and numerous records scattered in the literature devoted to soil macrofauna. At the same time, there are only a few ecological studies about factors affecting woodlice distribution over regions of the former USSR (Gongalsky et al. 2005; Khisametdinova 2009).

The aim of the study is to determine the factors affecting woodlice distribution over the plain area of the former Soviet Union. To achieve this, an inventory of species distribution across the study area was made. The task was to create a database indicating locations with woodlice presence/absence overlaid with several environmental variable values distribution.

Material and methods

Database

The first step was to compile a list of species for the study area. We made a database of isopod presence or absence in the locations across the whole territory of the former USSR (both plains and mountains). For each record the database includes information about date, data source, geographical coordinates, location, isopod species list or information about woodlice absence in the soil fauna list, biotope, and natural zone.

Three types of information sources of terrestrial isopod locations were used: i) available literature on soil fauna surveys; ii) collections of the Zoological Museum of Moscow State University (Moscow, Russia) and the Zoological Institute of the Russian Academy of Sciences (St.-Petersburg, Russia); and iii) authors’ personal collections. Here we provide a list of woodlice from the territory of the former USSR since some species and localities were not included in the list of Schmalfuss (2003), although it covered the majority of species. To work with regional databases, a specific list would be useful. Since such a list for this area did not exist, the proposed compilation would be a start to be completed in the future. We used the taxonomic system proposed by Schmalfuss (2003) for species naming. Isopod absence was recorded only in extensively surveyed locations.

For cartographic analysis, 259 locations were chosen, 44 of which with woodlice absence. Due to the difficulty of tracing ecological trends in the mountains, only plain territories were involved into the analysis. Some species were excluded from the analysis: i) synanthropic species and ii) species inhabiting azonal locations, such as sea coasts, caves and anthills.

Then database records with isopod presence or absence locations were laid on the geographic maps to perform cartographic analysis.

Cartographic analysis

The map of woodlice distribution was visually compared with the maps of environmental factors (mean annual temperature; the period with temperature above 10°C;
Results and discussion

Limits of isopod distribution

Woodlice have not been recorded northwards the isocline of 120 days a year with temperature >10°C (Fig. 1). The northern border of woodlice distribution matches the distribution of this parameter. Other parameters did not coincide with isopod distribution as well as with this isocline (data not shown).

Species diversity

In total, 190 species were recorded from the territory of the former USSR (Appendix 1). Among them, 64 were recorded from the territory of Russia. Northernmost natural

Figure 1. Map of woodlice presence or absence over the plain territory of the former USSR. The duration of period with temperature >10°C is adapted from Geographical Atlas of the USSR (Kolosova 1980).
zone with woodlice records is southern taiga. No woodlice records were in tundra, northern and middle taiga. The species diversity increases southwards, but decreases in the deserts. However, this may be due to the low number of locations extensively studied to reveal local faunas.

Distribution of isopods is known to be limited by natural factors, such as temperature and moisture (Harding and Sutton 1985, Hopkin 1991). In our study, the limiting factor of woodlouse distribution towards the north turned out to be the length of the warm period, expressed as number of days when the temperature was above 10°C. The highest species diversity was observed between isoclines of 180 and 210 days with temperature >10°C. Colder conditions slow down their physiological processes (Hopkin 1991) and limit their distribution. For a better understanding of distribution of woodlouse, a Species Distribution Modeling (Elith and Leathwick 2009, Franklin 2009) should be applied, which is a next step in the analysis of the database of Russian isopods.

Acknowledgements

The authors are grateful to Dr H. Schmalfuss and Dr Ch. Schmidt for the help with isopod identifications, and to Dr K.G. Mikhailov and Dr B.V. Mezhov for allowing working with crustacean material kept at Zoological Museum of Moscow State University.

The study is supported by Russian Foundation for Basic Research (grant 11-04-00245) and the Program “Biodiversity” of the Presidium of the Russian Academy of Sciences.

References

Borutzky EV (1948) To the fauna of spring Isopoda of Middle Asia. Sbornik Trudov zoologicheskogo Muzeya, 274–279. [in Russian]
Borutzky EV (1953) To the fauna of woodlice of Tadjikistan. Izvestiya Akademii Nauk Tadjikskoi SSR 3: 15–22. [in Russian]
Elith J, Leathwick JR (2009) Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697. doi: 10.1146/annurev.ecolsys.110308.120159
Franklin J (2009) Mapping species distributions: Spatial inference and prediction. Cambridge University Press, Cambridge, 338 pp.
Gongalsky KB, Kuznetsova DM (2011) Fauna and population of woodlouse (Isopoda, Oniscidea) of Abrau Peninsula, North-West Caucasus. Zoologicheskii Zhurnal 90: 916–922. [in Russian]
Gongalsky KB, Savin FA, Pokarzhevskii AD, Filimonova ZV (2005) Spatial distribution of isopods in an oak-beech forest. European Journal of Soil Biology 41: 117–122. doi: 10.1016/j.ejsobi.2005.09.012
Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17. doi: 10.1111/j.1600-0587.2010.06152.x

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x

Harding PT, Sutton SL (1985) Woodlice in Britain and Ireland; Distribution and habitat. Institute of Terrestrial Ecology, Huntingdon, 152 pp.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. doi: 10.1002/joc.1276

Hopkin S (1991) A key to the woodllice of Britain and Ireland. An AIDGAP key. Richmond Publishing, Slough.

Khisametdinova DD (2007) To the fauna of woodlice (Isopoda, Oniscidea) of Rostov Region. Izvestia vuzov. Severo-Kavkazkiy Region. Yestestvennye Nauki 6: 86–87. [in Russian]

Khisametdinova DD (2009) Ecologic-faunistic characteristic of woodlice (Isopoda, Oniscidea) of the Lower Don River. PhD Thesis. Southern Federal University, Rostov-on-Don. [in Russian]

Kolosova LN (Ed) (1980) Geographical Atlas of the USSR for schoolteachers. Vysshaya Shkola, Moscow, 238 pp. [in Russian]

Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conservation Biology 17: 1591–1600. doi: 10.1111/j.1523-1739.2003.00233.x

Schmalfuss H (2003) World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde, Serie A, Nr. 654, 341 pp.

Schmalfuss H, Wolf-Schwenninger K (2002) A bibliography of terrestrial isopods (Crustacea, Isopoda, Oniscidea). Stuttgarter Beitrage zur Naturkunde, Serie A, Nr. 639, 120 pp.

Tulupnikov AI (Ed) (1960) Agricultural Atlas of the USSR. GUGK, Moscow, 308 pp. [in Russian]

Zalesskaya NT, Rybalov LV (1982) Fauna of woodlice of Moscow Region (Crustacea, Isopoda, Oniscidea). In: Gilyarov MS (Ed.) Soil invertebrates of Moscow Region. Nauka Publ., Moscow, 171–179. [in Russian]
Appendix I

List of woodlice species from the territory of the former USSR. Abbreviations: Ab – Abkhazia, Ar – Armenia, Az – Azerbaijan, Bl – Belarus, Ge – Georgia, Kz – Kazakhstan, Kg – Kyrgyzstan, Lt – Lithuania, Md – Moldova, Ru – Russia, Td – Tajikistan, Tu – Turkmenistan, Ua – Ukraine, Uz – Uzbekistan; S, N, W, E – south, north, west, east. References to authorships of the species can be found in Schmalfuss and Wolf-Schwenninger (2002).

No.	Species Name	Abbreviations	
1	Acaeroplastes kosswigi Verhoeff, 1941	Az: Nabran’	
2	Agabiformius orientalis (Dollfus, 1905)	Ru: Volgograd region	
3	Armadillidium azerbaizhanum Schmalfuss, 1990	Ar: Khastarak; Az: Baku, Adjikend, Drmbon, Lenkoran, Salyany, Sheki; Ge: Kakhetia, Vashlovan; Ru: Rostov, Stavropol regions, N Ossetia	
4	Armadillidium granulatum Brandt, 1833	Ru: Krasnodar region; Ua: S Crimea	
5	Armadillidium nasatum Budde-Lund, 1885	Ru: Moscow; Ab: Sukhum	
6	Armadillidium opacum (C. Koch, 1841)	Ua: Kiev	
7	Armadillidium pallasi Brandt, 1833	Ab: Sukhum; Ua: Crimea, Odessa; Ru: Krasnodar region	
8	Armadillidium pictum Brandt, 1833	Ua: Crimea	
9	Armadillidium pulchellum (Zenker, 1798)	Lt: Vilnius	
10	Armadillidium traiani Demianowicz, 1932	Md	
11	Armadillidium versicolor Stein, 1859	Ru: Penza, Saratov, Tula regions	
12	Armadillidium vulgare Latreille, 1804	Ab: Sukhum; Az: Ge: Adygeni, Tbilisi; Ru: Dagestan, Krasnodar, Kaluga, Volgograd, Rostov regions; Ua: Crimea, Kiev, Odessa	
13	Armadillidium zenckeri Brandt, 1833	Ua: Crimea, Zakaspyisk region	
14	Armadillo allevi Schmalfuss, 1990	Az: Baku, Kobustan	
15	Armadillo officinalis Duméril, 1816	Ru: Krasnodar region; Ua: S Crimea, Odessa	
16	Armadillonicus ellipticus (Harger, 1878)	Ru: Krasnodar region; Ab: Gabry	
17	Borutzkyella revari (Borutzky, 1973)	Ab: Gudauty region	
18	Buddelundiella cataractae Verhoeff, 1930	Ge: Tskhaltubo	
19	Caucasocyphonethes caviaticus Borutzky, 1948	Ru: Krasnodar region	
20	Caucasoligidium cavernicolae Borutzky, 1950	Ab: Gudauty, Sukhum; Ge: Gogolety	
21	Caucasonethes borutzkyi Verhoeff, 1932	Ge: Tskhaltubo	
22	Chaetophiloscia cellaria Dollfus, 1884	Ru: Rostov region	
23	Chaetophiloscia elongata Dollfus, 1884	Ua: Crimea	
24	Chaetophiloscia hastata Verhoeff, 1929	Ru: Krasnodar region	
25	Colchidoniscus kutaissianus Borutzky, 1974	Ge: Tskhaltubo	
26	Cylisticoides angulatus Schmalfuss, 2003	Az: Istru, Lenkoran, Yardymly; Kz: Astana; Ru: Krasnodar region	
27	Cylisticus albomaculatus Borutzky, 1957	Ru: Rostov, Voronezh, Volgograd regions	
28	Cylisticus arnoldii Borutzky, 1961	Ua: Kharkov, Zmiev	
29	Cylisticus birsteinii Borutzky, 1961	Ru: Krasnodar region	
30	Cylisticus caucasius Verhoeff, 1917	Ab: Gudauty, Gabry, Kelassuri, Sukhum; Ge: Kutaisti, Tkibuli, Tskhaltubo, Shovi; Ru: Krasnodar region	
	Scientific Name	Country/Region Description	
---	-------------------------------------	--	
31	*Cylisticus convexus* De Geer, 1778	Ru: Chelyabinsk, Kaluga, Moscow, Rostov, Voronezh regions, Ua: S Crimea, Kiev	
32	*Cylisticus cretaceus* Borutzky, 1957	Ru: Rostov region; Ua: Lugansk region	
33	*Cylisticus desertorum* Borutzky, 1957	Ru: Rostov, Stavropol regions; Ua	
34	*Cylisticus giljarovi* Borutzky, 1977	Ru: Adygea, Stavropol, Krasnodar regions, N Ossetia	
35	*Cylisticus iners* Budde-Lund, 1880	Ar: Azizbekov, Leninakan, Tshakhkavan; Az: Airidja, Mardakert, Zakatalinsk regions; Ru: Chechnya; Ge: Manglisi, Shuahevi	
36	*Cylisticus lecooranensis* Borutzky, 1977	Az: Prishib	
37	*Cylisticus mitis* Budde-Lund, 1885	Ge: Kutaisi	
38	*Cylisticus orientalis* Borutzky, 1939	Ru: Orenburg region	
39	*Cylisticus rotabilis* Budde-Lund, 1885	Ua: S Crimea	
40	*Cylisticus sarmaticus* Borutzky, 1977	Ru: Rostov region; Ua: Zaporozhye region	
41	*Cylisticus silvestris* Borutzky, 1957	Ru: Moscow, Rostov, Stavropol regions	
42	*Cylisticus strouhali* Borutzky, 1977	Ar: W Vanadzor, Spitaki	
43	*Desertoniscus birsteini* Borutzky, 1945	Tu	
44	*Desertoniscus bulbifrons* Borutzky, 1945	Tu	
45	*Desertoniscus elongatus* Borutzky, 1945	Tu	
46	*Desertoniscus kirghizicus* Borutzky, 1978	Kg	
47	*Desertoniscus reductus* Borutzky, 1978	Td	
48	*Desertoniscus subterraneus* Verhoeff, 1930	Kg; Tu: (Kizil-arvat); Td: Samgar massif	
49	*Desertoniscus tekinus* Borutzky, 1945	Tu	
50	*Desertoniscus zhelchovtsvei* Borutzky, 1945	Uz	
51	*Detonella papillicornis* (Richardson, 1904)	Ru: Kamchatka, Sakhalin regions	
52	*Halophiloscia couchii* (Kinahan, 1858)	Ru: Krasnodar region; Ua: Crimea	
53	*Haplophthalmus danicus* Budde-Lund, 1880	Ru: Krasnodar, Rostov regions	
54	*Hemilepistoides meserianus* Borutzky, 1945	Tu	
55	*Hemilepistus buddelundi* Borutzky, 1945	Tu	
56	*Hemilepistus communis* Borutzky, 1945	Td: Samgar massif; Tu: Central Karakum, Kyzyly-Arvat; Uz: Zakaspiysk, Fergana regions; Kg	
57	*Hemilepistus crenulatus* (Pallas, 1771)	Td: Samgar massif; Tu: Central Karakum, Kyzyly-Arvat; Uz: Zakaspiysk, Fergana regions; Kg	
58	*Hemilepistus cristatus* Budde-Lund, 1885	Tu: Kyzyly-Arvat	
59	*Hemilepistus elongatus* Budde-Lund, 1885	Ru: Rostov, Stavropol regions; Tu: SW part	
60	*Hemilepistus fedtschenkoi* (Ulianin, 1875)	Kz: Semipalatinsk; Tu: Krasnovodsk; Uz: Bukhara, Samarkand, Syrdaryinsk, Zakaspyisk regions	
61	*Hemilepistus heptneri* Borutzky, 1945	Tu	
62	*Hemilepistus klugii* (Brandt, 1833)	Az: Baku	
63	*Hemilepistus magnus* Borutzky, 1945	Uz	
64	*Hemilepistus nodosus* Budde-Lund, 1885	Tu; Kz	
65	*Hemilepistus pavlovskii* Borutzky, 1954	Kz	
66	*Hemilepistus reductus* Borutzky, 1945	Uz: Bukhara, Samarkand, Syrdaryinsk, Zakaspyisk regions	
67	*Hemilepistus rhinoceros* Borutzky, 1958	Kz	
68	*Hemilepistus ruderalis* (Pallas, 1771)	Ru: Volgograd region; Kz: Djanybek	
69	*Hemilepistus russenovae* Borutzky, 1951	Az: Baku	
70	*Hemilepistus zachvatkini* Verhoeff, 1930	Td: Samgar massif; Tu: Central Karakum, Kyzyly-Arvat; Uz: Zakaspiysk, Fergana regions; Kg	
	Species Name	Authors, Year	Distribution
---	-------------------------------	---------------	-------------------------
71	*Hyloniscus riparius* C. Koch, 1838		Ru: Moscow, Penza, Pskov, Rostov, Tula regions; Ua: Kiev region
72	*Leptotrichus panzerii* (Audoin, 1826)		Ua: Crimea
73	*Leptotrichus tauricus* Budde-Lund, 1885		Ua: Crimea
74	*Ligia cinerascens* Budde-Lund, 1885		Ru: Kurily islands
75	*Ligia italic* Fabricius, 1798		Ua: Crimea
76	*Ligia pallasi* Brandt, 1833		Kadakh?
77	*Ligidium biristeini* Borutzky, 1950		Ab: Gagry
78	*Ligidium cavaticum* Borutzky, 1950		Ru: Krasnodar region
79	*Ligidium fragile* Budde-Lund, 1885		Ab: Sukhum
80	*Ligidium germanicum* Verhoeff, 1901		Md
81	*Ligidium hypnorum* Cuvier, 1792		Ab: Sukhum; Bl: Belovezha National Park; Ru: Tver, Kaluga, Moscow regions; Ua: Crimea, Kiev
82	*Ligidium margaritae* Borutzky, 1955		Kz: Alma-Ata
83	*Ligidium nodulosum* Verhoeff, 1918		Ab: Gagry
84	*Ligidium shadini* Borutzky, 1948		Td
85	*Ligidium tauricum* Verhoeff, 1930		Ua: Crimea
86	*Ligidium zaitzevi* Borutzky, 1950		Ab: Sukhum
87	*Ligidium zernovi* Borutzky, 1948		Kg
88	*Mingrelloniscus inchburi* Borutzky, 1974		Ge: Megrelia
89	*Nagurus matekini* Borutzky, 1959		Kg
90	*Oniscus asellus* Linne, 1758		Lt: Vilnius; Ru: Pskov region; Ua: Kiev
91	*Parcylisticus armenicus* Borutzky, 1970		Ar: Daralagez
92	*Parcylisticus dentifrons* Budde-Lund, 1885		Az: Kutkashen; Ge: Manglis; Ru: Astrakhan, Stavropol regions, Chechnya, Dagestan, Kabardino-Balkaria, N Osetia; Ua: Crimea
93	*Parcylisticus georgianus* Schmalfuss, 2003		Ge: Adigeni, Batumi, Kutaissi, Mestia
94	*Parcylisticus golovatchi* Schmalfuss, 2003		Az: Shikahokh
95	*Parcylisticus mrovdaghicus* (Borutzky, 1970)		Az: Avash, Dashsalry, Kelbadjar, Kirovobad, Lenkoran, Zuvand
96	*Parcylisticus waruensis* Borutzky, 1970		Ar
97	*Parcylisticus zangezuricus* Borutzky, 1970		Ar
98	*Platyrhbrus armenicus* Borutzky, 1976		Ar: Megri
99	*Platyrhbrus hoffmannseggii* Brandt, 1833		Ru: Krasnodar region
100	*Platyrhbrus luppovae* Borutzky, 1953		Td
101	*Platyrhbrus mesasiaticus* Borutzky, 1976		Tu
102	*Platyrhbrus ocellatus* Borutzky, 1953		Td
103	*Platyrhbrus schoblii* Budde-Lund, 1885		Ua: Crimea
104	*Porcellio bistriatus* Budde-Lund, 1885		Ab: Sukhum; Ru: Krasnodar region
105	*Porcellio crassicornis* C. Koch, 1841		Bl: Minsk
106	*Porcellio dilatatus* Brandt, 1833		Ar: Sevan
107	*Porcellio laevis* Latreille, 1804		Ab: Sukhum; Ru: Altay, Kalmykia, Moscow, Primorie, Rostov regions; Ua: S Crimea, Odessa; Uz: Bukhara region
108	*Porcellio lamellatus* Budde-Lund, 1885		Ua: Crimea
109	*Porcellio oboletus* Budde-Lund, 1885		Ua: S Crimea
Cartographic analysis of woodlice fauna of the former USSR

110 Porcellio scaber Latreille, 1804
Bl: Belovezha, Berezinsky reserves; Lt: Vilnius; Ru: Belgorod, Kaluga, Moscow, Nizhni Novgorod, Primorie, Rostov regions, Kamchatka, Sakhalin islands; Ua: Kiev, Kremenchet, Vinnikaya region (Yampol')

111 Porcellio spinicornis Say, 1818
Bl: Minsk; Lt: Vilnius; Md; Ru: Kaluga, Leningrad, Moscow Pskov regions; Ua: Kiev

112 Porcellio uljanini Budde-Lund, 1885
Ua: Crimea

113 Porcellio variabilis Lucas, 1849
Ua: Crimea

114 Porcellionides approximatus Budde-Lund, 1885
Md; Ru: Stavropol region; Ua: Crimea

115 Porcellionides linearis (Budde-Lund, 1885)
Uz: Nukus

116 Porcellionides pruinosus Brandt, 1833
Ab: Sukhum; Ar: Shorza; Az: Baku, Khachmas, Nabran; Ru: Baikal, Volgograd, Krasnodar region, Moscow, Rostov, Saratov regions; Ua: Crimea

117 Porcellionides rectifrons (Budde-Lund, 1885)
Ua: Crimea

118 Porcellium collicola (Verhoeff, 1907)
Md

119 Porcellium conspersum C. Koch, 1841
Bl: Belovezha Reserve; Ua

120 Protracheoniscus abricossovi Borutzky, 1945
Tu

121 Protracheoniscus alabashensis Borutzky, 1959
Kg

122 Protracheoniscus almaatinus Borutzky, 1975
Kz: Alma-Ata

123 Protracheoniscus anatolii Borutzky, 1959
Kg

124 Protracheoniscus armenicus Borutzky, 1975
Ge: Megri

125 Protracheoniscus asiaticus (Uljanin, 1875)
Ru: Moscow, Nizhni Novgorod, Rostov, Ryazan' regions; Tu: Smagar massif

126 Protracheoniscus atreclus Borutzky, 1945
Tu: Bugdaily

127 Protracheoniscus bugdayliensis Borutzky, 1975
Tu: Bugdaily

128 Protracheoniscus cristatus Borutzky, 1945
Az: Lenkoran, Sara isl.; Tu

129 Protracheoniscus darevskii Borutzky, 1975
Ar: Megri

130 Protracheoniscus deliensis Borutzky, 1945
Tu

131 Protracheoniscus desertoaur Verhoeff, 1930
Turkestan?

132 Protracheoniscus digitifer Borutzky, 1945
Tu

133 Protracheoniscus fossuliger Verhoff, 1901
Ru: Krasnodar, Rostov regions

134 Protracheoniscus giljarovi Borutzky, 1957
Ru: Rostov region; Ua: Lugansk region

135 Protracheoniscus gisarenensis Borutzky, 1975
Td: Dushanbe

136 Protracheoniscus hierutul Verhoff, 1930
Uz: Tashkent

137 Protracheoniscus koptedagicus Borutzky, 1945
Tu

138 Protracheoniscus kryszanovskii Borutzky, 1957
Ru: Volgograd region, Kalmykia

139 Protracheoniscus latus (Uljanin, 1875)
Td: Zeravshan valley

140 Protracheoniscus litoralis (Budde-Lund, 1885)
Ua: Crimea

141 Protracheoniscus major (Dollfus, 1903)
Ru: Rostov region; Ua: Kiev

142 Protracheoniscus maracandicus (Uljanin, 1875)
Td: Smagar massif; Uz: Bukhara, Samarkand, Syrdaryinsk regions

143 Protracheoniscus marginatus (Uljanin, 1875)
Ua: Crimea
Page	Taxon Name	Country/Region								
144	Protracheoniscus nogaicus	Demianowicz, 1931 Md; Ru: Rostov region								
145	Protracheoniscus orientalis	Uljanin, 1875								
146	Protracheoniscus panphilovi	Borutzky, 1959 Kg								
147	Protracheoniscus politus	C. Koch, 1841								
148	Protracheoniscus scythicus	Demianowicz, 1932 Md								
149	Protracheoniscus steinbergi	Borutzky, 1961 TU: SW part								
150	Protracheoniscus taschkentensis	Verhoeff, 1930 Uz: Tashkent;Td								
151	Protracheoniscus tasbicus	Borutzky, 1976 Tu; Ru: Rostov region								
152	Protracheoniscus topczevi	Borutzky, 1975 Ru: Krasnodar, Rostov regions; Ua: Zaporozhye region								
153	Protracheoniscus tuberculatus	Borutzky, 1945 Tu								
154	Protracheoniscus turcomanicus	Borutzky, 1945 Tu								
155	Protracheoniscus tzvetkovi	Borutzky, 1975 Kz: Alma-Ata, Uzun-Agach; Ru: Moscow region?								
156	Protracheoniscus uljanini	Borutzky, 1953 Td								
157	Protracheoniscus verhoeffi	Strouhal, 1929 Ge: Tbilisi								
158	Protracheoniscus zenkevitschi	Borutzky, 1945 Tu								
159	Psachonethes czerkecicus	Borutzky, 1969 Ru: Krasnodar region								
160	Pseudobuddelundiella hostensis	Borutzky, 1967 Ru: Krasnodar region								
161	Pseudobuddelundiella ljovuschkini	Borutzky, 1967 Ru: Krasnodar region								
162	Schizidium davidi	Dollfus, 1887 Az: Divichi								
163	Schizidium golowati	Schmalfuss, 1988 Ar: Shikalyukh; Az: Baku; Ge: Batumi								
164	Schizidium reinoehli	Schmalfuss, 1988 Ru: Rostov region								
165	Tedzhikoniscus coecus	Borutzky, 1976 Td								
166	Tauroligidium stygium	Borutzky, 1950 Ua: Crimea								
167	Tauronethes lebedinskii	Borutzky, 1949 Ua: Crimea								
168	Titanethes albus	C. Koch, 1841 Ua: Crimea								
169	Trachelipus azerbaidzhanus	Schmalfuss, 1986 Az: E part								
170	Trachelipus caucasicus	Verhoeff, 1918 Ab: Gagry; Ru: Krasnodar region								
171	Trachelipus difficilis	Radu, 1950 Bl: Belovezha, Berezinsky reserves; Ua: S Crimea								
172	Trachelipus ensiculorum	Verhoeff, 1949 Ar: Yerevan								
173	Trachelipus gagiensis	Verhoeff, 1918 Ab: Gagry								
174	Trachelipus kerszliei	Arcangeli, 1938 Ru: Rostov region								
175	Trachelipus signa	Verhoeff, 1918 Ab: Gagry; Ru: Rostov region								
176	Trachelipus longipennis	Budde-Lund, 1885 Ab; Ua: S Crimea								
177	Trachelipus luteshnikii	Verhoeff, 1933 Ru: Krasnodar region								
No.	Species	Ab:	Az:	Ar:	Ge:	Bl:	Lt:	Md:	Ru:	Ua:
-----	---------------------------------	-----	------	------	------	-----	------	-----	----------------------	----------------------
178	*Trachelipus rathkii* Brandt, 1833								Belgorod, Kursk, Tver, Maryi-El, Kaluga, Mordovia, Moscow, Penza, Rostov, Leningrad, Saratov, Tula regions	Crimea, Kiev
179	*Trachelipus razzautii* (Arcangeli, 1913)								Krasnodar region	
180	*Trachelipus sarculatus* (Budde-Lund, 1896)								Crimea	
181	*Trachelipus trachealis* Budde-Lund, 1885								Md	
182	*Trichoniscus aphonicus* Borutzky, 1977								Ab	
183	*Trichoniscus gudaucicus* Borutzky, 1977								Ab	
184	*Trichoniscus pusillus* Brandt, 1833								Crimea, Kiev	
185	*Trichoniscus pygmaeus* Sars, 1898								Krasnodar region	
186	*Turanoniscus anacanthotermitis* Borutzky, 1969								Uz: Tashkent	
187	*Tylos granuliferus* Budde-Lund, 1885								Primorie region, S Kuril Islands	
188	*Tylos ponticus* Grebnicki, 1874								Crimea, Odessa	
189	*Typhloligidium coecum* (Carl, 1904)								Crimea	
190	*Typhloligidium karabijajae* Borutzky, 1962								Crimea	