Etanercept may induce neurosarcoidosis in a patient treated for rheumatoid arthritis.
Cécile-Audrey Durel, Elodie Feurer, Jean-Baptiste Pialat, Emilie Berthoux, Roland Chapurlat, Cyrille Confavreux

To cite this version:
Cécile-Audrey Durel, Elodie Feurer, Jean-Baptiste Pialat, Emilie Berthoux, Roland Chapurlat, et al.. Etanercept may induce neurosarcoidosis in a patient treated for rheumatoid arthritis.. BMC Neurology, BioMed Central, 2013, 13 (1), pp.212. 10.1186/1471-2377-13-212 . inserm-00923470

HAL Id: inserm-00923470
https://www.hal.inserm.fr/inserm-00923470
Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Etanercept may induce neurosarcoidosis in a patient treated for rheumatoid arthritis

Cécile-Audrey Durel²†, Elodie Feurer¹†, Jean-Baptiste Pialat³, Emilie Berthoux², Roland D Chapurlat¹ and Cyrille B Confavreux¹

Abstract

Background: TNFα blockers have drastically improved rheumatoid arthritis prognosis by preventing joint destruction in DMARD resistant patients. Altering cytokine balance in immune diseases may expose to paradoxical adverse events.

Case presentation: We present the case of a 40-year-old woman, with a confirmed erosive and seropositive RA, successfully treated by TNFα blocker (etanercept) for seven years, and who developed a severe neurosarcoidosis. She had lymphocytic meningitis, bilateral peripheral facial paralysis and anosmia, associated with bilateral hilar lymph nodes, papilloedema, anterior uveitis and elevated serum angiotensin-converting enzyme level. Magnetic resonance imaging showed a bilateral thickening of the Gasser’s ganglia walls and enhanced signal of the vestibulocochlear, the facial and the proximal portion of trigeminal nerves.

Conclusion: This case raised the issue of the imputability of etanercept in the development of neurosarcoidosis. Neurological symptoms onset in patients on TNFα blockers should lead to exclude infections, induced lupus but also paradoxical neurosarcoidosis.

Keywords: Neurosarcoioidosis, Rheumatoid arthritis, Etanercept, Facial palsy, TNF alpha blockers
Paradoxical neurosarcoidosis appeared as the RA was in complete remission on etanercept monotherapy for several years. Since we did not obtain histological confirmation, this case is not a definite neurosarcoidosis according to Zajicek's criteria [1]. The delay of one month to perform biopsy while already on steroids may be the reason for non contributive histology. Nevertheless, we eliminated other neurological diseases and the diagnosis was supported by neurological impairment (lymphocytic meningitis, bilateral peripheral facial paralysis, anosmia, eyesight deficiency, papilloedema) associated with anterior uveitis, eye and mouth dryness, weight loss, hypercalcemia and hyperproteineemia. The presence of evidences for systemic sarcoidosis criteria with bilateral hilar lymph nodes, lymphocytic alveolitis, and elevated serum angiotensin-converting enzyme level classified this case as probable [1]. More recently, chest radiograph and angiotensin-converting enzyme of Zajicek's criteria have been shown to be of insufficient diagnostic value by Marangoni and replaced by chest high resolution computed tomography and bronchoalveolar lavage, with a CD4/CD8 lymphocytic ratio higher than 3.5, of better positive predictive value [2]. According to these revised criteria, our case is still considered as probable [2].

TNFα blockers have already been associated in some cases with “paradoxical” systemic sarcoidosis [3] but only two cases of neurosarcoidosis have been reported and none with etanercept. One occurred in another RA female patient treated by infliximab and methotrexate [4]. The second one refers to a man on adalimumab for an ankylosing spondylitis, who developed seizures [5]. These three cases raise the issue of TNFα blockers imputability on the onset of neurosarcoidosis. Interestingly, some TNFα-blocker-induced sarcoidosis patients did not relapse after rechallenging [6]. However, there are biological arguments to support imputability of TNFα blockers to sarcoidosis onset as a “class effect” rather than a drug specific phenomenon regarding sarcoid-like granulomatous disease occurring during all three anti-TNF therapies. About 40 cases of sarcoid-like granuloma development during anti-TNF therapy have been actually reported in the literature. First, the key pathophysiological feature of sarcoidosis is granuloma. It aims at isolating pathogens and restricting inflammation. As sarcoidosis preferentially involves skin, lungs and eyes, one mechanism relies on the direct exposure to environmental antigens [7]. Thus the induced immunosuppressive condition may favor development of microorganisms involved in sarcoidosis development (Propionibacterium acnes or granulosum). A second mechanism in sarcoidosis is that granulomas are characterized by local proinflammatory activated CD4+ T lymphocytes with Th1 profile (IFNγ, IL2) stimulating

Figure 1 Axial MRI images of the brain. Post gadolinium enhanced T1 weighted sequence on initial exam shows (A) bilateral focal enhancement of the proximal portion of both trigeminal nerves (arrowheads), (B) bilateral enhancement of the vestibulocochlear and facial nerves, more pronounced on the right side (arrow) and bilateral thickening of the Gasser's ganglia walls (*).
TNFα production by macrophages. Sarcoidotic patients have simultaneously systemic anergy due to the suppressive abilities of regulatory CD4 + CD25 + FoxP3 T lymphocytes partly triggered by TNFα. Thus TNFα blockade, independently to its anti-inflammatory effect, may be able to stimulate Th17 pathway (IL17, IL23) [8] and to alter T-reg lymphocyte subpopulations [9].

By contrast some studies reported refractory sarcoidosis cases successfully treated by TNFα blockers especially adalimumab and infliximab [10]. Indeed, monoclonal TNFα blockers antibodies are considered to be more effective to block granuloma formation rather than etanercept which partially preserves the mechanisms leading to granuloma formation. This could explain a lack of efficacy of etanercept in granulomatous diseases (e.g. refractory sarcoidosis, crohn’s disease).

In addition to paradoxical neurosarcoidosis, other neurological adverse events have been reported with the use of TNFα blockers such as multiple sclerosis [11], poly-cranial neuritis, chronic inflammatory demyelinating poly-radiculo-neuropathy and multifocal motor neuropathy [12]. TNFα blockers may trigger the demyelinating process which can evolve independently afterwards [13]. Thus physician should pay a particular attention to patients on TNFα blocker therapy who present any new neurological symptoms.

In conclusion, this case of paradoxical neurosarcoidosis induced by TNFα blockade in a RA patient underlines the risk to destabilize autoimmune profile when using targeted therapies and promote unexpected immune disease.

Consent
Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Competing interests
The authors declare that they have no competing of interests.

Authors’ contributions
EF, CAD, JBP, EB, RDC and CBC diagnosed and treated the patient, contributing equally to writing and revising the manuscript. All authors read and approved the final manuscript.

Author details
1INSERM UMR 1033 – Université de Lyon, Department of Rheumatology, Hôpital Edouard Herriot, 5, Place d’Arsonval, Hospices Civils de Lyon, Lyon 69003, France. 2Department of Internal Medicine, Hôpital Edouard Herriot, Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France. 3INSERM UMR 1033 – Université de Lyon, Department of Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon 69003, France.

Received: 17 September 2013 Accepted: 23 December 2013
Published: 28 December 2013

References
1. Zajicek JP, Scolding NJ, Foster O, Rovaris M, Evason J, Moseley IF, et al: Central nervous system sarcoidosis–diagnosis and management. QJM Mon J Assoc Physicians 1999, 92(2):103–117.
2. Marangoni S, Argentiero V, Tavolato B: Neurosarcoïdosis. Clinical description of 7 cases with a proposal for a new diagnostic strategy. J Neurol 2006, 253(4):488–495.
3. Tong D, Manolos N, Howe G, Spencer D: New onset sarcoid-like granulomatosis developing during anti-TNF therapy: an under-recognised complication. Intern Med J 2012, 42(1):89–94.
4. Sturffelt G, Christensson B, Byrke G, Saemie T: Neurosarcoïdosis in a patient with rheumatoid arthritis during treatment with infliximab. J Rheumatol 2007, 34(11):2313–2314.
5. Mao-Draayer Y, Cash T: Neurosarcoïdosis in a patient treated with tumor necrosis factor alpha inhibitors. J Neurol 2013, 260(2):651–653.
6. Van der Stoep D, Braunsstahl G-J, van Zieben J, Wouters J: Sarcoïdosis during anti-tumor necrosis factor-alpha therapy: no relapse after rechallenge. J Rheumatol 2009, 36(12):2847–2848.
7. Iannuzzi MC, Rybicki BA, Teirstein AS: Sarcoïdosis. N Engl J Med 2007, 357(21):2153–2165.
8. Bosé F, Raelli L, Garutti C, Frigerio E, Cozzi A, Crimi M, et al: Dual role of anti-TNF therapy: enhancement of TCR-mediated T cell activation in peripheral blood and inhibition of inflammation in target tissues. Clin Immunol Orlando Fla 2011, 139(2):164–176.
9. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005, 201(2):233–240.
10. Russell E, Luk F, Manocha S, Ho T, O’Connor C, Hussain H: Long term follow-up of infliximab efficacy in pulmonary and extra-pulmonary sarcoïdosis refractory to conventional therapy. Semin Arthritis Rheum 2013, 43(1):119–124.
11. Hamon MA, Nicolai G, Deviere F, Letoumelf F, Dubas F: Demyelinating neuropathy during anti-TNF alpha treatment with a review of the literature. Rev Neurol 2007, 163(12):1223–1235.
12. Jarand J, Zochodne DW, Martin LO, Voll C: Neurological complications of infliximab. J Rheumatol 2006, 33(5):1018–1020.
13. Seror R, Richez C, Sordet C, Rist S, Gossec L, Drez G, et al: Pattern of demyelination occurring during anti-TNF-α therapy: a French national survey. Rheumatol Oxf Engl 2013, 52(5):868–874.

Cite this article as: Durel et al.: Etanercept may induce neurosarcoidosis in a patient treated for rheumatoid arthritis. BMC Neurology 2013 13:212.

doi:10.1186/1471-2377-13-212

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit