Composition, Characterization and Antibacterial activity of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

To cite this article: Ahmed T Numan et al 2018 J. Phys.: Conf. Ser. 1003 012016

View the article online for updates and enhancements.
Composition, Characterization and Antibacterial activity of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

Ahmed T Numan, Eman M Atiyah*, Rehab K. Al-Shemary**, Sahira S. Abd_Ulrazzaq

Department of Chemistry, College of Education for Pure Science, Ibn- Al-Haithem/University of Baghdad, Baghdad ,Iraq
emanchem12@gmail.com*, drrehabalshemary@gmail.com**

Abstract. New Schiff base ligand 2-((4-amino-5(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.

1. Introduction

Schiff bases have played a significant role in the development of coordination chemistry and have been implicated as an important point in the development of inorganic biochemistry and optical materials [1]. Schiff base metal complexes have been widely studied because they have industrial, antifungal and biological applications [2-4]. Schiff bases have played a significant role in the development of coordination chemistry and have been implicated as antreatment and urinary tract infections [5]. Antibiotic 5-(3, 4, 5-trimethoxybenzyl) pyrimidine-2, 4-diamine (Trimethoprim) is used mainly in the treatment of urinary tract infections [6]. Chelating ligands containing O and N donor atoms show broad biological activity and are of special interest because of the variety of ways in which they are bonded to metal ions [7]. Mixed ligands complexes have been studied because of their importance in biological systems [8-9, 10]. Few reports are available on the mixed metal complexes of trimethoprim [11]. Thus, this work is aimed at the synthesis, characterization and biological studies of mixed ligand complexes of trimethoprim and 2- benzoyl benzoic acid Schiff base and mixed ligand complexes with 8-hydroxy quinoline .The metal ion in an octahedral environment. The primary aim of the current study to
determine the structure and geometry of tridentate Schiff base mixed ligand Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) metal complexes.

2. Experimental

2.1. Materials and Methods
All Chemicals employed were of analytical grade and used without further purification. The reagents were used without further purification. FTIR spectra were measured as (KBr disc) utilizing "Shimadzu FTIR-8400S", Fourier Transform Infrared spectrophotometer. ¹HNMR and ¹³CNMR were carried out by using Bruker500 MHz NMR spectrophotometer in central laboratory Isfahan University. Mass spectra were obtained by using Acq Method LOW ENERGY DSD Direct Probe, central lab Isfahan University, Iran. The electronic spectra were recorded in DMSO on a "Shimadzu UV-visible-160 A Ultra Violet-Visible Spectrophotometer". Elemental microanalyses (C.H.N.) were performed by using a Leco 932 USA Elemental Analyzer. The atomic absorption was measured by using "Varian-AA 775 Atomic Absorption spectrophotometer". Conductivity measurements were made in DMSO for 10⁻³ M of complexes by using (Philips PW9526 Digital Conductivity meter) at room temperature. Magnetic moment (µ eff B.M) for the prepared complexes was measured at room temperature by using Bruker Magnet B.M. Finally, melting points were got by utilizing "Stuart Melting Point Apparatus".

2.2. Synthesis of ligand Schiff Base
(0.1g, 0.34 mmole) trimethoprim is mixed with (0.09g, 0.34 mmole) 2-benzoylbenzoic acid in (1:1) ratio mole, and the mixture is grinded in ceramic mortar. Then, the contents are subjected to microwave irradiation at (100 Co) for 10 minutes. The reaction product is washed with small portion of benzene as off white of ligand. Weight (0.16g), yield (94%), m.p (96-98)°C. The ligand [HL] is recognized by FTIR spectral, ¹H and ¹³C NMR, mass spectrum and elemental analysis. The synthesis route of the ligand is shown in figure(1).The microanalysis of results for the ligand [HL] and some of its physical properties are given in Table 1.

2.3. General synthesis of mixed ligands complexes
An ethanolic solution (25ml) of metal salts of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) was added gradually to a stirred ethanolic solution of Schiff base(25ml) and secondary ligand 8-hydroxyquinoline ethanol to get (1:1:1) (metal:HL:HQ) molar ratio. Few drops of KOH solution were added to adjust the pH < 9. The resulting solution was refluxed for about 2 hours. The chelate was precipitated, cooled and then filtered. The result got by washed with small amounts of ethanol and dried. The microanalysis of results for the ligand and some of its physical properties are given in Table 1.
Figure 2. Suggested structure for mixed ligand complexes

Table 1. Some of physical properties and microanalysis of all prepared product

Compound	Empirical Formula (formula wt.)	M.P Dec.	Yield %	Color	Elemental Analyses Found (Calc.) %	Molar conductivity (ohm cm⁻¹ mol⁻¹)				
					C	H	N	M	Cl	
[HL]	C₂₂H₂₈N₄O₁₅	498.35	(96-98)	Off white	66.34 (66.46)	5.53 (4.26)	10.19 (10.24)	-	-	
[Mn(L)(Q)(H₂O)]	C₃₇H₅₃MnN₇O₁₁	714.63	300 < dec.	Brown	62.19 (61.25)	4.65 (4.39)	9.80 (8.74)	7.69 (7.48)	Nil 12.3	
[Co(L)(Q)(H₂O)]	C₃₇H₅₃CoN₇O₁₁	718.62	300 < dec.	Olive	61.84 (60.65)	4.63 (3.39)	9.75 (9.24)	8.20 (7.88)	Nil 9.9	
[Ni(L)(Q)(H₂O)]	C₃₇H₅₃NiN₇O₁₁	718.38	300 < dec.	Pale green	61.86 (61.67)	4.63 (4.39)	9.75 (8.25)	8.17 (7.95)	Nil 8.7	
[Cu(L)(Q)(H₂O)]	C₃₇H₅₃CuN₇O₁₁	723.23	300 < dec.	Green	61.45 (60.89)	4.60 (3.36)	9.68 (8.99)	8.79 (8.34)	Nil 10.6	
[Zn(L)(Q)(H₂O)]	C₃₇H₅₃ZnN₇O₁₁	725.10	300 < dec.	Yellow	61.29 (58.15)	4.59 (4.35)	9.66 (9.16)	9.02 (8.96)	Nil 8.5	
[Cd(L)(Q)(H₂O)]	C₃₇H₅₃CdN₇O₁₁	772.10	300 < dec.	Yellow	57.56 (56.78)	4.31 (4.10)	9.07 (8.73)	14.56 (13.88)	Nil 10.2	

dec. = Decomposition

3. Results and Discussion
Spectroscopic [FT-IR, ¹H, ¹³C-NMR,Mass,and UV-Vis]. Also molar conductivity, elemental microanalysis, melting point, magnetic sensitiveness, and atomic absorption were applied to portray the synthesized mixed ligand complexes. Some physical properties were listed in Table 1.
3.1. FT-IR Spectra

In the spectra of free [HQ] ligand is found the peak found at 3182 cm$^{-1}$ assigned to the alcohol ν(OH) stretching and this band was absented in the complexes[12]. In the spectrum of ligand [HL] the sharp peak found at 3458 cm$^{-1}$ assigned to the ν(OH) stretching of carboxylic acid while the band was disappeared in the complexes, proton of ligand [HL]on complexation and participation of hydroxyl hydroxylic anionic (COO$^-$) oxygen in concert [13]. In addition the two peaks at found in range (3468-3455)cm$^{-1}$ and (3387-3348)cm$^{-1}$assigned to stretching of usym and asy(NH$_2$), in the ligand and all the mixed complexes [14]. Also the band found at (1664) cm$^{-1}$is assigned to ν(C=O) group of carboxylic acid of the ligand [HL] [15], this band disappeared in all the mixed complexes In the spectra of the mixed complexes, another bands appeared in range(1589-1572) cm$^{-1}$ and (1465-1445) cm$^{-1}$due to νasym.(COO$^-$) and νsym.(COO$^-$) vibration, respectively, (Δu(COO$^-$)=νasym.(COO$^-$)−νsym.(COO$^-$)) in range (116-127)cm$^{-1}$, indicated the involvement of deprotonated group of (COOH) in bonding and a coordination of metal ions through oxygen atoms of carboxyl groups[16]. In the ligand [HL] spectrum was exhibited the strong band at 1637cm$^{-1}$due to ν(C=N) stretching vibration, while this bond was shifted towards lower region at (1624-1627) cm$^{-1}$ in the complexes indicating the participating of the azomethine group in the complex formation. Further, the bands observed at (1591) cm$^{-1}$ and (1573) cm$^{-1}$which were due to ν(C=N) azomethine groups in rings for ligand free [HL] and ligand free [HQ], while these bands were shifted in range(1566-1553)cm$^{-1}$ and (1523-1492)cm$^{-1}$due to the reduction of double bond character carbon nitrogen bond of azomethine group and indicates that (C=N) of the ligand co-ordinate to metal through nitrogen and that was further reflected by the appearance of new bands at (586-405)cm$^{-1}$due to ν(M-N)[17]. The mixed ligand complexes formation was further evidence by the appearance of the ligand band in the complexes (455-405)cm$^{-1}$ assigned as ν(M-O) bonds[18]. In the IR spectra of mixed ligand complexes a band was observed around (3356-3197) cm$^{-1}$ to which were assigned to hydrate water molecules [19, 24].
Table 2. The FT-IR spectral data (cm\(^{-1}\)) of all the prepared compounds

Compound	\(\nu(\text{OH})\)	\(\nu(\text{H}_2\text{O})\)	\(\nu(\text{N-H})\)	\(\nu(\text{C=N})\)	\(\nu(\text{C=O})\)	\(\nu(\text{COO})\)	\(\Delta \nu\)	\(\nu(\text{M-\text{OH})}\)	\(\nu(\text{M-N})\)	\(\nu(\text{M-O})\)		
[HL]	3329	3468	1591	1637	1664	-	-	-	-	-		
	3388											
[HQ]	3356	3468	1553	1625	-	1572	1445	127	127	513	451	
	3387	1523									482	
[Mn(L)Q(H\(_2\)O)]	-	3197	1562	1624	-	1585	1462	123	123	558	432	
	3369	1496									497	
[Co(L)Q(H\(_2\)O)]	-	3348	1558	1627	-	1581	1465	116	116	547	451	
	3352	1500									497	
[Ni(L)Q(H\(_2\)O)]	-	3321	1562	1625	-	1589	1462	128	128	586	443	
	3385	1500									559	408
[Cu(L)Q(H\(_2\)O)]	-	3217	1558	1627	-	1581	1465	116	116	504	455	
	3348	1500									482	405
[Zn(L)Q(H\(_2\)O)]	-	3332	1566	1624	-	1577	1458	120	120	493	439	
	3353	1492									455	405

3.2. NMR Spectra

\(^1\)H-NMR spectrum of the ligand [HL] was recorded in d6-DMSO. The 1H-NMR spectra of [HL] exhibits signal due to proton of (-COOH) group as singlet at \(\delta 12.17\) ppm[20]. The protons of (NH\(_2\)) group as signal at \(\delta 6.62\) ppm[13]. The proton of (-CH-N) pyrimidine ring as singlet at \(\delta 7.15\) ppm. The aromatic protons as multiple at (7.97-7.27) ppm. The (OCH\(_3\)) protons as signal at \(\delta 3.76\) ppm. The DMSO signal appeared at 2.5 ppm [21], figure (3).\(^{13}\)C NMR spectrum of ligand [HL] displays chemical shifts at (170.2) ppm and (164.1) ppm indicate to (C=N) and C=O groups respectively[22]. At (157.4) ppm and (153.4) ppm were the chemical shifts attributed to C atoms of (C=C) in pyrimidine ring, respectively. Signals attached to aromatic carbon were attached in reign (106.7-138.5) ppm. The two chemical shift at (56.6) ppm and (39.6) ppm were referred to C atoms, respectively. Also the chemical shift at (40.2) ppm is due to DMSO d\(_6\)[23], figure 4.'
3.3. Mass Spectra
Mass Spectrum was completed on the ligand [HL] to determine its molecular weight and fragmentation pattern, Figure 5.
3.4. Electronic spectra, Magnetic moments and conductivity measurements

The electronic spectrum of ligand [HL] exhibit high intense absorption peaks at (279 nm) (35842 cm\(^{-1}\)) and (345 nm) (28985 cm\(^{-1}\)) which due to (\(\pi \rightarrow \pi^*\)) and (n\(\rightarrow \pi^*\)) transitions, respectively [24], the data recorded in Table (3). The electronic spectrum of 8-hydroxy quinolone [HQ], displays high intense absorption bands at (268 nm) (37313 cm\(^{-1}\)) and (305 nm) (3278 6cm\(^{-1}\)) which designated to (\(\pi \rightarrow \pi^*\)) and (n\(\rightarrow \pi^*\)) transition respectively [25], the data recorded in Table (3). Theses transitions were also found in the spectra of the complexes, but they were shifted towards in range (37037-14265) cm\(^{-1}\). The electronic spectrum of [Mn(L)(Q)(H\(_2\)O)] showed two intense peaks in (270nm) (37037 cm\(^{-1}\)) and (374nm) (2(737cm\(^{-1}\)) was assigned to the ligand field respectively. And another intense peak in (392nm) (25510 cm\(^{-1}\)) due charge transfer transition. And the peak at visible region at (755 nm) (13245cm\(^{-1}\)). This peak is assigned to (\(^{4}A_{1g} \rightarrow ^{4}T_{2g}(G))\) (d-d) transitions confirming an octahedral structure around (Mn\(^{2+}\)) ion complex[26]. The electronic spectrum of [Co(L)(Q)(H\(_2\)O)] displayed two intense peaks in (277nm) (36101 cm\(^{-1}\)) and (334 nm) (29940 cm\(^{-1}\)) were assigned to the ligand field. And another intense peak in (401 nm) (24937cm\(^{-1}\)) due charge transfer transition. And the peaks at visible region at (687 nm)(14556cm\(^{-1}\)) and (762nm)(13123cm\(^{-1}\)).These peaks are assigned to (\(^{4}T_{1g} \rightarrow ^{4}A_{1g})\) and (\(^{4}T_{1g} \rightarrow ^{4}T_{2g}(G))\) (d-d) transitions confirming an octahedral structure around (Co\(^{3+}\)) ion complex[27]. The electronic spectrum of [Ni(L)(Q)(H\(_2\)O)] showed two intense peaks in (275nm) (36363cm\(^{-1}\)) and (345nm) (28985cm-1) was assigned to the ligand field respectively. And another intense peak in (408nm) (24509 cm-1) due charge transfer transition. And the peak at visible region at (810 nm)(12345 cm\(^{-1}\)). These peaks are assigned to (\(^{4}A_{1g} \rightarrow ^{4}T_{1g}(d-d))\) transitions confirming an octahedral structure around (Ni\(^{2+}\)) ion complex[28]. The electronic spectrum of [Cu(L)(Q)(H\(_2\)O)] showed two intense peaks in (276nm) (36231 cm\(^{-1}\)) and (337nm) (29673cm\(^{-1}\)) was assigned to the ligand field respectively. And another intense peak in (412nm) (24271cm\(^{-1}\)) due charge transfer transition. And the peaks at visible region at (701 nm)(14265cm\(^{-1}\)) and (859nm)(11641cm\(^{-1}\)).These peaks are assigned to (\(^{4}B_{1g} \rightarrow ^{4}B_{2g})\) and (\(^{4}B_{1g} \rightarrow ^{4}A_{1g}(d-d))\) transitions confirming an octahedral structure around (Cu\(^{2+}\)) ion complex[29]. The electronic spectrum of [Zn(L)(Q)(H\(_2\)O)] showed absorption peaks in (277 nm) (36101cm\(^{-1}\)) and (340 nm) (29411cm\(^{-1}\)) were assigned to the ligand field. And another peak in (419 nm) (23866 cm\(^{-1}\)) due charge transfer transition. The absence of absorption peaks at the visible area suggested n(d-d)electronic transitions happened, this is a very well result for an octahedral structure around (Zn\(^{2+}\)) ion complex[30,31]. The electronic spectrum of [Cd(L)(Q)(H\(_2\)O)] showed absorption peaks in (277 nm) (36101cm\(^{-1}\)) and (342nm) (29239 cm\(^{-1}\)) were assigned to the ligand field. And another intense peak in (412 nm) (24271 cm\(^{-1}\)) due charge transfer transition. The disappeared of peaks at the visible area suggested n(d-d)electronic transition same, this is a good result for an octahedral structure around (Cd\(^{2+}\)) ion complex [30, 31]. Where a rapprochement between the data recorded of all the prepared compounds are given in Table 3. The molar conductivities indicate that all metal complexes are non-electrolytes [32], Table 3. Magnetic moment together with these values suggest octahedral configuration around the Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal ions studied, Table 3.
Table 3. UV-Vis spectral and magnetic moments values of the compounds in DMSO

Compounds	λ nm	ε max (molar \cdot cm^{-1})	Transitions	μ eff (BM)	
[HL]	279	35842	2111	n→π*	-
	345	28985	2260	n→n*	-
[HQ]	268	37313	861	n→n*	-
	305	32786	1966	n→n*	-
[Mn(L)(Q)(H₂O)]	270	37037	1675	L F	5.72
	374	26737	297	C T	
	392	25510	10		
	755	13245			
[Co(L)(Q)(H₂O)]	277	36101	2400	L F	4.72
	334	29940	1508	C T	
	401	24837	6	L F	
	687	14556			
	762	13123			
[Ni(L)(Q)(H₂O)]	275	36363	2315	L F	3.38
	345	28985	1339	C T	
	408	24509		3 A Ig	
	810	12345			
[Cu(L)(Q)(H₂O)]	276	37453	2329	L F	1.81
	337	29673	995	C T	
	412	24271	5	3 B g	
	701	14265			
	859	11641			
[Zn(H₂L)(Q)(H₂O)]	277	36101	2463	L F	Dia
	340	41666	1687	C T	
	419	23866			
[Cd(L)(Q)(H₂O)]	277	36101	2418	L F	Dia
	342	29239	1368		
	412	24271			

Dia = Diamagnetic

3.5. Antibacterial Activity Studies:

Finally, the in vitro antibacterial activities of the ligands and their complexes were tested against (Staphylococcus aureus), (Escherichia coli), (Enterobacter cloacae) and (Bacillus subtilis) using well diffusion method by nutrient agar as medium at (10⁻³) mole/liter concentration was prepared by dissolving the compound in DMSO[33]. The zone of inhibition of bacterial evolution around the disc is offered in Figure 6, Table 4 displays the obstruction capacity versus the bacteria sample of the synthesized compounds under work.

Table 4 the obstruction capacity versus the bacteria sample of the synthesized compounds under work.
Table 1. List of Compounds and their Antimicrobial Activity

No.	Compound	Staphylococcus aureus	Bacillus subtilis	Enterobacter cloacae	Escherichia Coli
1	[HL]	43	34	-	31
2	[HQ]	32	28	25	26
3	[Mn(L)(Q)(H_2O)]	26	24	-	22
4	[Co(L)(Q)(H_2O)]	26	24	-	24
5	[Ni(L)(Q)(H_2O)]	31	28	13	26
6	[Cu(L)(Q)(H_2O)]	34	33	16	30
7	[Zn(L)(Q)(H_2O)]	30	33	25	28
8	[Cd(L)(Q)(H_2O)]	27	30	22	27
C	DMSO	-	-	-	-

Figure 6. Shows the antimicrobial activity of compounds appear the inhibition zones against pathogenic bacteria (Staphylococcus Aureus, Bacillus Subtilis, Enterobacter Cloacae and Escherichia Coli)

4. Conclusion

Mixed ligand complexes can be a synthetic challenge to tune the properties of the metal complexes and have been shown to exhibit a broad range of the possible geometry of synthesized complexes is octahedral and it is six coordinated metal ligand complexes. The ligand Schiff base [HL], ligand [HQ] and their metal complexes showed broad-spectrum antimicrobial activities against all the microbes used.

Acknowledgement:
The authors express their sincere thanks to the Deanship of Faculty Education for Pure Sciences Ibn-Al-Haithem and Department of Chemistry for their moral back up.
References:

[1] F Tisato, F Refosco, G Bandoli. Structural survey of technetium complexes. Coord. Chem. 1994, 135: 325-397.
[2] Kumar, U., S Chandra, J. Saudi Chem. Soc., 2011, 15: 187.
[3] EO Offiong, N Emmanuel, AA Ayi, M Sante. Transit. Metal Chem., 2000, 25: 369.
[4] RM Patil and S.R Chaurasiya Asian J. Chem., 2008, 20 (6): 4615.
[5] N Demirezen, D Tarmıç, D Polat, M Çeşme, AM Gölcü. Tümer, Spectrochimica Acta A, 2012, 94: 243–255.
[6] Trimethoprim. The American Society of Health-System Pharmacists.Retrieved. (2015).
[7] W Hung and C Lin Inorg. Chem., 2008, 39(4): 1234567890 1003/1/012016 doi 10.1088/1742-6596/1003/1/012016
[8] MO Agwara, PT Ndion, NB Ndosiri, AG Pibouadum, DM Yufanyi, A Mohamadou Synthesis, characterization and antimicrobial activities of cobalt(II), copper(II) and zinc(II) mixed-ligand complexes containing 1,10-phenanthroline and 2,2-bipyridine. Bull. Chem. Soc. Ethiop., 2010, 24 (3): 383-389.
[9] MO Agwara, JN Fobá-Tendo, C Amah, DM Yufanyi, NB Ndosiri. Thermo gravimetric and antimicrobial properties of some divalent metal complexes of hexamethylenetetramine. RJPBCS, 2012, 3(9): 95-104.
[10] S Matangi, J Pragathi, U Bathini, K Gyana. Synthesis, characterization and antimicrobial activity of transition metal complexes of Schiff base ligand derived from 3-ethoxy salicyaldehyde and 2-(2-aminophenyl) 1-h-benzimidazole. E-J Chem, 2012, 9(4): 2516-2523.
[11] ANMA Alaghaz, RS Farag, MA Elnawawy, AD Ekaavy. Synthesis and spectral characterization studies of new trimethoprim-diphenylphosphate metal complexes. Int. Jour. Sci. Res., 2013, 5 (1).
[12] K Nakamoto, Y Morimoto, AE Martell. J. Am. Chem. Soc. 1961, 83: 4528.
[13] M. R. Silverstein, CSBassler, T TMorrill.Spectrometric Identification of Organic Compounds, 4th Ed., John-Wiley and Sons Inc., New York, London, 1981.
[14] D Demartzi-Kovala, JM Tsangaris. Complexes of 2, 4 – Diamine – 5 (3, 4, 5 Trimethoxybenzylpyrimidine (Trimethoprim) with palladium (II). Inorg. Chim.Acta, 1986, 125: L31-L33.
[15] B Geeta, V Ravinder. Synthesis, characterization and biologicalevaluation of mononuclear Co (II), Ni (II) and Pd(II) complexes, with New N,N-schiff base ligand. chem., pharm. Bull., 2011, 95 (2): 166-171.
[16] ShK Rakesh, N Munirathnam, SG Ashoka. Asymmetric allylicalkylation by palladium-bisphosphinites, Tetrahedron; Asymmetry, 2008, 19:555–663.
[17] K Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5thEd Part B Wiley; New York, 1997.
[18] Ravich, NS Ran and C Thangaraja. Copper (II), Cobalt (II), Nickel (II) and Zinc (II) Complexes of derived from benzyl 2, 4-dinitrophenyl hydrazones with aniline. J.Chem.Soc. 2004, 116(4):215-219.
[19] J A Malcolm, A Gordonk, P R. Nigam. Synthesis and characterization of platinum (II) complexes of derived from L- Ascorbic Acid. Inorg. Chem., 1999, 38, 5864-5869.
[20] D Saravanakumar, N Sengottuvelan, G Priyadarshi, M Kandaswamy, H Okawa. Synthesis of unsymmetrical end-off phenoxy and oximinatobridged Copper (II) and nickel (II) complexes: spectral, electrochemical and magneticproperties. Polyhedron, 2004, 23(4): 665-672.
[21] K D Raj and K M Sharad. Synthesis, Spectroscopic and Antimicrobial studies of new Iron (III) complexes, containing Schiff bases and substituted benzoazole ligands, J.Coord. Chem., 2011, 64 (13):2292-2301.
[22] DH Williams, IFleming.Spectroscopic Methods in Organic Chemistry. 4th Ed., Mcgraw-Hill Book Company (UK) Limited, 1989:1–33.
[23] A V Mishchenco, VVLukov, L D Popov. Synthesis and Physicochemical study of composition of Glyoxylic acid arolyhydrazone, with Cu (II) in solution and solid phale. J. Coord. Chem., 2011, 64, (11): 1963-1976.
[24] D Sutton. Electronic Spectra Transition Metal Complexes. 1st Ed., Mc.Graw-Hill Publishing, London, 1968.
[25] G Ahn, DC Ware, WA Denny, WR Wilson. Optimization of the auxiliary ligand shell of Cobalt (III) (8-hydroxyquinoline) complexes as model hypoxia-selective radiationactivated prodrugs. Radiat. res., in press, 2004.
[26] JE Huheey. Inorganic Chemistry: Principles of Structure and Reactivity. Harper and Row Publisher, New York, 1994.
[27] J Awetz, P Melnick, ADelbrgs. Medical Microbiology 4th Edition, McGraw Hill, New York, 2007.
[28] NP Priya,SV Arunachalam, N Sathy, V Chinnusamy, C Jayabalakrishnan. Catalytic and Antimicrobial Studies of Binuclear Ruthenium (III) Complexes, Containing Bis-β-Diketones. Transition Metal Chemistry, 2009, 34: 437-445
[29] A B P Lever. Inorganic Electronic Spectroscopy. Elsevier Publishing Company New York, London, 1968.
[30] K Siddappa, M Mallikarjum, V CRreddy. Synthesis, Characterization and Antimicrobial Studies of 3-[(2-Hydroxy-Quinolin-3-Ylmethylene)-Amino]-2-Phenyl-3H-Quinazolin-4-One and its Metal (II) Complexes. E. J. Chem. 2008, 5(1):155-162.
[31] A. B. P. Lever. Inorganic Electronic Spectroscopy. Elsevier, Amsterdam, the Netherlands, 2nd Ed, 1984.
[32] W J Geary. The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds. J. Coord. Chem. Rev. 1971, 7: 81-122.
[33] VL Paetznick, JH Rex. Disk Diffusion Method for Determining Susceptibilities of Candida spp. to MK-0991. J. Clin. Microbiol. 1999, 37(5): 1625-1627.
