Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice

Jing Guo\(^a,b\), Teng Zhang\(^a,\), Yueshuai Guo\(^a,\), Tao Sun\(^a\), Hui Li\(^a\), Xiaoyun Zhang\(^a\), Hong Yin\(^a\), Guangyi Cao\(^a\), Yaoxue Yin\(^a\), Hao Wang\(^b\), Lanying Shi\(^b\), Xuejiang Guo\(^b\), Jiahao Sha\(^b\), John J. Eppig\(^b,2\), and You-Qiang Su\(^a,c,d,2\)

\(^a\)State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, People’s Republic of China; \(^b\)The Jackson Laboratory, Bar Harbor, ME 04609; Collaborative Innovation Center of Genetics and Development, Fudan University, 200433 Shanghai, People’s Republic of China; and \(^c\)Key Laboratory of Model Animal Research, Nanjing Medical University, 211166 Nanjing, People’s Republic of China

Contributed by John J. Eppig, April 24, 2018 (sent for review January 8, 2018; reviewed by Hugh J. Clarke and Laurinda A. Jaffe)

MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence.

Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice

MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation (12–14). In mouse ovarian follicles, the MTOR pathway is selectively activated in cumulus cells, the granulosa cells surrounding oocytes, before ovulation induction, and this specific activation is partially attributable to oocyte-suppressing expression of Delilah, a negative regulator of MTOR (15). This oocyte-enabled activation of MTOR is crucial for the development and survival of both cumulus cells and oocytes (15). Mtor is also robustly expressed in oocytes; however, its function, especially its specific roles in the control of coordinated development and function of oocytes and granulosa cells, was unknown. Here, we deleted Mtor specifically in oocytes at two different developmental stages: primordial and growing oocytes. Both conditional knockouts (cKOs) caused infertility, demonstrating the crucial role of oocyte-expressed Mtor in female reproduction; however, the resultant oocyte and granulosa cell phenotypes differed in these two cKOs, reflecting changing functions of the MTOR-dependent pathways during oocyte development.

Author contributions: J.J.E. and Y.-Q.S. designed research; J.G., T.Z., Y.G., T.S., H.L., X.Z., H.Y., G.C., Y.Y., H.W., L.S., X.G., J.S., and Y.-Q.S. performed research; J.G. and X.G. analyzed data; and J.J.E. and Y.-Q.S. wrote the paper.

Reviewers: H.J.C., McGill University; and L.A.J., University of Connecticut Health Center.

The authors declare no conflict of interest.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

MTOR (mechanistic target of rapamycin), an integrator of pathways important for cellular metabolism, proliferation, and differentiation, is expressed at all stages of oocyte development. Primordial oocytes constitute a nonproliferating, nongrowing reserve of potential eggs maintained for the entire reproductive lifespan of mammalian females. Using conditional knockouts, we determined the role of MTOR in both primordial and growing oocytes. MTOR-dependent pathways in primordial oocytes are not needed to sustain the viability of the primordial oocyte pool or their recruitment into the cohort of growing oocytes but are essential later for maintenance of oocyte genomic integrity, sustaining ovarian follicular development, and fertility. In growing oocytes, MTOR-dependent pathways are required for processes that promote completion of meiosis and enable embryonic development.

Data deposition: RNA-seq data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (datasets GSE98497 and GSE114124); proteomics data have been deposited in the ProteomeXchange Consortium (dataset PXD006408).

1J.G., T.Z., and Y.G. contributed equally to this work.

2To whom correspondence may be addressed. Email: youqiang su@njmu.edu.cn or john.eppig@jax.org.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800352115/-/DCSupplemental.

Published online May 21, 2018.
Results and Discussion

Oocyte-Specific Knockout of Mtor Compromises Oocyte Quality and Female Fertility in Mice. MTOR was expressed in both the oocytes and granulosa cells of all stages of follicles being examined (SI Appendix, Fig. S1 A and B). To assess the function of oocyte-expressed MTOR, we produced Mtor oocyte-cKO mice by crossing female mice carrying the conditional allele of Mtor (Mtor^{flm1.2Koz}) with male transgenic (Tg) mice [Tg(Gdf9-cre)5092Coo and Tg(Zp3-cre)93Kfmw] expressing the transgene for Cre recombinase specifically in oocytes at either primordial or early growing stages (Fig. 1 A (16)]. We refer to the Gdf9-CRE-mediated cKO in primordial oocytes as “Mtor-GcKO” and the Zp3-CRE-mediated cKO in growing oocytes as “Mtor-ZcKO.” Both immunofluorescence (IF) and Western blot analyses showed that MTOR was nearly undetectable in primordial oocytes of Mtor-GcKO ovaries and at all subsequent oocyte stages (Fig. 1B and SI Appendix, Fig. S1C). In Mtor-ZcKO ovaries, MTOR was present at normal levels in primordial oocytes, but only trace levels, probably residual protein from primordial follicles, were detected in growing oocytes (Fig. 1B and SI Appendix, Fig. S1C). These data confirmed the effectiveness of the specific deletion of MTOR in the primordial and growing oocytes, respectively, by these two cKOs. Furthermore, Western blot analysis revealed that both MTOR and its downstream activities were barely detected in the fully grown oocytes (FGOs) of both cKO mice (Fig. 1C), thus indicating the efficient abrogation of the MTOR pathways.

Fertility testing revealed that, unlike WT female mice that produced about six litters per mouse during 8–10 mo of breeding, with an average of about six mice per litter, Mtor-GcKO females were completely infertile (Fig. 1D). Mtor-ZcKO females were nearly infertile (Fig. 1D); Only one of the tested Mtor-ZcKO females conceived during the entire fertility testing period, and that female produced only one litter with only one pup (Fig. 1D). Therefore, oocyte MTOR is indispensable for female fertility in mice. Mtor-GcKO and Mtor-ZcKO females ovulated an average of 3 and 30 oocytes, respectively, compared with an average of 43 ovulated oocytes in WT females (Fig. 1D). Only about 20% of the cKO-ovulated oocytes underwent successful fertilization and development to the two-cell stage after in vitro fertilization (IVF) with normal sperm (Fig. 1D), and 10% or less of the fertilized cKO-oocytes developed to blastocysts in culture (Fig. 1D and SI Appendix, Fig. S2). The latter result was repeated with the oocytes that underwent in vitro maturation (SI Appendix, Fig. S2 B and C). In sum, the ovulation rate was dramatically reduced when Mtor was deleted at the primordial oocyte stage but was reduced only slightly when Mtor was deleted at the growing oocyte stage. Oocyte developmental competence was severely compromised in both Mtor-GcKO and Mtor-ZcKO oocytes (SI Appendix, Table S1).

Defective Development of the Follicles and Granulosa Cells in Mtor-GcKO but Not Mtor-ZcKO Ovaries. Follicular development was quantified to explore the basis for the reduced ovulation rate, particularly in female produced only one litter with only one pup (Fig. 1D). Therefore, oocyte MTOR is indispensable for female fertility in mice. Mtor-GcKO and Mtor-ZcKO females ovulated an average of 3 and 30 oocytes, respectively, compared with an average of 43 ovulated oocytes in WT females (Fig. 1D). Only about 20% of the cKO-ovulated oocytes underwent successful fertilization and development to the two-cell stage after in vitro fertilization (IVF) with normal sperm (Fig. 1D), and 10% or less of the fertilized cKO-oocytes developed to blastocysts in culture (Fig. 1D and SI Appendix, Fig. S2). The latter result was repeated with the oocytes that underwent in vitro maturation (SI Appendix, Fig. S2 B and C). In sum, the ovulation rate was dramatically reduced when Mtor was deleted at the primordial oocyte stage but was reduced only slightly when Mtor was deleted at the growing oocyte stage. Oocyte developmental competence was severely compromised in both Mtor-GcKO and Mtor-ZcKO oocytes (SI Appendix, Table S1).

Defective Development of the Follicles and Granulosa Cells in Mtor-GcKO but Not Mtor-ZcKO Ovaries. Follicular development was quantified to explore the basis for the reduced ovulation rate, particularly in

![Fig. 1](https://i.imgur.com/5Q5Q5Q.png)

Fig. 1. Infertility and compromised oocyte quality in cKO mice. (A) Schematic illustration of the stages at which GDF9-Cre and ZP3-Cre are expressed. Expression of GDF9-Cre and ZP3-Cre starts in primordial and growing oocytes, respectively. (B) IF staining of MTOR in 21-d-old WT, Mtor-GcKO, and Mtor-ZcKO ovaries. MTOR and DNA are stained in magenta and blue, respectively. Arrows point to oocytes in primordial follicles; asterisks indicate growing oocytes. (Scale bars, 50 μm.) (C) Western blot analysis of the expression of MTOR and the activated form of its major downstream effectors—pRPS6KB1, pRPS6, pEIF4EBP1, and p-AKT^{Ser473}—and the internal control ACTB in WT, Mtor-GcKO, and Mtor-ZcKO FGOs. (D) Number of pups born and number of oocytes ovulated by WT and Mtor-cKO females and the rate of two-cell and blastocyst formation by ovulated WT and Mtor-cKO oocytes after IVF. *P < 0.05, compared with the WT or control by student’s t test. Data represent the mean ± SEM.
Mtor-GcKO females. Neither of the cKOs affected the number of primordial follicles when quantified in the ovaries of 21-d-old mice (SI Appendix, Fig. S3); thus MTOR-dependent pathways were not necessary for the survival of the primordial oocyte pool, at least to this age. However, there were fewer large secondary and more primary follicles in the ovaries of 21-d-old Mtor-GcKO prepubertal mice (Fig. 2 and SI Appendix, Fig. S3), indicating defective follicular development beyond the primary stage. Nevertheless, MTOR was not necessary for the important transition of primordial oocytes to the activated growing oocyte stage. No aspect of follicular development in Mtor-ZcKO females was different from controls (SI Appendix, Fig. S3B). Thus, although MTOR deletion in primordial stage oocytes impacted the development of advancing follicles and oocytes and the ovulation rate, MTOR deletion in growing oocytes did not overtly affect follicular development or ovulation rate, although it did impair the developmental competence of the ovulated oocytes (SI Appendix, Table S1).

There was progressive deterioration of follicular development in Mtor-GcKO ovaries with aging: At 3 mo, there were fewer normal follicles (SI Appendix, Fig. S4A), while at 6 mo there were essentially no normal developing follicles (SI Appendix, Fig. S4B).

Fig. 2. Defective follicle and granulosa cell development in Mtor-GcKO ovaries. (A) Micrographs of periodic acid-Schiff (PAS)-stained 21-d-old WT and Mtor-GcKO ovarian sections. (B, Upper) Photographs of whole bodies (Left) and ovaries (Right) of 6-mo-old WT and Mtor-GcKO mice. (Lower) Micrographs of PAS-stained ovarian sections of 6-mo-old WT (Left) and Mtor-GcKO 9 (Right) mice. (C) qRT-PCR analyzing the expression of a cohort of genes characteristic of ovarian granulosa cells (Top) and testicular Sertoli and/or Leydig cells (Bottom) in 6-mo-old WT and Mtor-GcKO ovaries. (D, Upper) Transmission electron microscopic imaging of a 6-mo-old Mtor-GcKO mouse ovarian follicle with abnormal somatic cells that resemble immature Sertoli-like cells. (Lower) Magnified view of the boxed area in the Upper image indicated as ectoplasmic specialization (ES). BM, basal membrane; N, nucleus; Nu, nucleolus; TJ, tight junction. (E) IF staining of CLDN5 in 6-mo-old Mtor-GcKO ovaries. CLDN5, ZP2, and DNA are stained magenta, green, and blue, respectively. (F, Upper) IF staining of γH2AX in 5-wk-old WT and Mtor-GcKO ovaries. γH2AX and DNA are stained green and blue, respectively. (Lower) The bar graph shows the quantification of the γH2AX staining. *P < 0.05, compared with the WT or control by student's t test. Data represent the mean ± SEM. (Scale bars, A, B, E, and F, 100 μm.)
The 6-mo ovaries were smaller and had many abnormal early-stage growing follicles that were surrounded by a prominent basal lamina and were devoid of normal oocytes (Fig. 2 B and D and SI Appendix, Fig. S4B). The somatic cells within these abnormal follicles showed some characteristics of immature Sertoli cells rather than granulosa cells. They exhibited veil-like elongated cytoplasm extending toward the center of the follicle and a round nucleus locating near the basal membrane and formed tight junctions with the adjacent partners (Fig. 2 B and D). There were no tripartite nucleoli characteristic of mature Sertoli cells; rather, the cells appeared similar to immature Sertoli cells of 7-d-old mice (17). No typical tight junctions were found in the WT early-stage growing follicles (SI Appendix, Fig. S5A). Consistent with the morphological similarity to Sertoli cells, transcriptomic analysis by RNA sequencing (RNA-seq) (SI Appendix, Fig. S5B) revealed that genes normally expressed by ovarian granulosa cells and essential for granulosa cell development and steroidogenesis, i.e., *Amh*, *Cyp19a1*, *Esr2*, *Esr1*, *Fshr*, *Fst*, *Hsd17b1*, *Inhibb*, and *Nr5a2* (18–24), were down-regulated (Fig. 2C), while genes characteristic of testicular Sertoli and/or Leydig cells and normally not expressed by granulosa cells, i.e., *Cldn5*, *Cldn11*, *Cyp11b1*, *Cyp26b1*, *Gata1*, *Hsd3b6*, and *Sax9* (25–30), were up-regulated in *Mtor-GcKO* ovaries (Fig. 2C). Moreover, CLDN5, an essential component of tight junctions that form the blood–testis barrier in testis, was robustly expressed by these apparently transdifferentiated granulosa cells in a pattern similar to that expressed by Sertoli cells but was barely detected in granulosa cells of WT ovaries (Fig. 2E and SI Appendix, Fig. S6A). Given that no tight junctions have been observed in mouse early-stage growing follicles (31), these data indicate that *Mtor-GcKO* ovarian granulosa cells lost their unique female identity and acquire male Sertoli cell-like characteristics. These Sertoli-like structures were found only when *Mtor* was deleted in primordial, but not in growing, oocytes.

In addition to oocyte loss, reduction of steroidogenic gene expression, and ovarian size, the levels of estradiol and progesterone in circulation were low in 6-mo-old *Mtor-GcKO* females (SI Appendix, Fig. S6B). In contrast, follicular development in 6-mo-old *Mtor-ZcKO* mice appeared normal (SI Appendix, Fig. S6C), and steroid hormone levels were not changed (SI Appendix, Fig. S6C).

What factors contributed to oocyte loss and could give rise to the immature Sertoli cell-like structures prevalent in *Mtor-GcKO* ovaries? A similar transdifferentiation of ovarian cells to Sertoli-like cells occurred after oocyte-lethal irradiation of rats (9). Oocyte death is one consequence of a self-surveillance mechanism to defend genome integrity against the accumulation of excessive DNA damage (32, 33). We therefore assessed potential DNA damage in *Mtor-GcKO* oocytes. IF staining of γH2AX revealed more DNA double-strand breaks (DSBs) in *Mtor-GcKO* oocytes of the early-stage growing follicles (Fig. 2F). No increase in γH2AX staining was evident in *Mtor-ZcKO* oocytes at the similar stage (SI Appendix, Fig. S4D). Hence, *Mtor* deletion in primordial oocytes may result in progressive accumulation of DSBs in developing oocytes and acute loss of these oocytes with age in *Mtor-GcKO* ovaries. While DNA damage may instigate oocyte death that leads to the loss of granulosa identity, there are probably other factors downstream of MTOR deletion that contribute to the phenotype of defective granulosa cell development. Indeed, oocyte death does not necessarily always cause identity loss in its associated granulosa cells. Although irradiation induces oocyte loss in rat primordial follicles and leads to the subsequent transdifferentiation of granulosa cells into Sertoli-like cells in the early-stage growing follicles (9), ablation of mouse oocytes at the similar stages by expressing diphtheria toxin does not result in the same phenotype (11). Despite this conundrum, our observations suggest that a unique MTOR-dependent pathway exists in primordial oocytes that sustains the sex-specific developmental and functional identity of granulosa cells during the later growth stage of these oocytes.

Oocyte-Specific Knockout of Mtor Impairs Completion of the First Meiotic Division in Oocytes. Meiotic errors reduce egg quality (34). Oocyte meiotic progression was therefore determined to assess possible mechanisms for the diminishment of egg quality in cKO females. Even though *Mtor-cKO* mutant oocytes produced the first polar body with nearly the same frequency as WT oocytes (Fig. 3A), oocytes ovulated by both cKOs did not complete the first meiosis normally (Fig. 3 B and C): 78.2% and 65.5% of *Mtor-GcKO* and *Mtor-ZcKO* oocytes, respectively, either formed abnormal metaphase II (MII) spindles and misaligned chromosomes (c, d, g, and h) or did not complete cytokinesis and remained at telophase I (Fig. 3 C, c, d, and f–h). These defects were recapitulated when cKO oocytes underwent maturation in vitro (SI Appendix, Fig. S7), as shown by live imaging of spindles and chromosomes of fluorescent protein-tagged tubulin and histone (SI Appendix, Fig. S8). Therefore, the failure of meiotic progression to MII reflects the diminished quality of both cKO oocytes even though the deletion of *Mtor* occurred in much earlier-stage oocytes. These meiotic defects could be far-downstream consequences of the initial MTOR deficiency.

Differential Effect of Mtor Deletion at the Primordial and Growing Oocyte Stage on Transcriptomic Integrity of FGOs. Transcriptomic differences in steady-state levels of mRNAs expressed by both cKO FGOs were assessed by RNA-seq analyses. A remarkable difference was observed between the transcriptomes of *Mtor-GcKO* and *Mtor-ZcKO* FGOs: 979 transcripts were expressed differentially between them (Fig. 4A). Compared with WT FGOs, the transcriptome was changed more profoundly in *Mtor-GcKO* FGOs, with a significant difference in the expression of 447 transcripts, while in *Mtor-ZcKO* oocytes the changes were relatively minor; only 85 transcripts were differentially expressed.
Differential effect of Mtor cKO on the integrity of transcriptome of FGOs. (A) Venn diagram illustrating the relationship of the changed transcripts identified by RNA-seq in Mtor-GcKO and Mtor-ZcKO FGOs. WT-GcKO: WT vs. Mtor-GcKO; WT-ZcKO: WT vs. Mtor-ZcKO; GcKO-ZcKO: Mtor-GcKO vs. Mtor-ZcKO. The total number of changed transcripts is indicated in parentheses. (B) Venn diagram illustrating the relationship of up- and down-regulated transcripts identified by RNA-seq in Mtor-GcKO and Mtor-ZcKO FGOs. WT-GcKO_Up: up-regulated in Mtor-GcKO compared with WT; WT-ZcKO_Down: down-regulated in Mtor-ZcKO compared with WT; WT-GcKO_Down: down-regulated in Mtor-GcKO compared with WT; WT-ZcKO_Down: down-regulated in Mtor-ZcKOs compared with WT. The number of changed transcripts in each group is shown in parentheses. (C) Real-time qRT-PCR validating changes in representative transcripts selected from RNA-seq data. (D) Heatmaps illustrating the enriched terms (GO/KEGG terms or canonical pathways) associated significantly with changed transcripts identified by RNA-seq in Mtor-GcKO and Mtor-ZcKO FGOs. GcKO-ZcKO: Mtor-GcKO vs. Mtor-ZcKO; WT-GcKO: WT vs. Mtor-GcKO; WT-ZcKO: WT vs. Mtor-ZcKO. (E) Heatmaps illustrating differences between WT and Mtor-GcKO FGOs in the expression of a cohort of transcripts involved in various processes.

Moreover, among transcripts changed in either cKO, there were very few that were in common (Fig. 4B). Likewise, Gene Ontology (GO) terms associated with changed transcripts had little in common (Fig. 4C). The changes in the expression of a group of representative transcripts were validated by real-time RT-PCR (Fig. 4D). Interestingly, it has been reported that the transition from primordial to growing oocytes produces the most dramatic changes in oocyte gene expression, both in the level of transcript expression and their diversity (35). Since the immediate effects of MTOR are primarily posttranscriptional (36), the transcriptomic changes reported here reflect downstream consequences of MTOR action with deletion of Mtor at the primordial stage having greater transcriptional impact for oocyte and follicular development.

The greater impact of Mtor-GcKO on the downstream transcriptome of FGOs paralleled the greater severity of phenotypic differences in oocyte and follicular development. Gene-enrichment analysis revealed some of the transcriptomic changes in Mtor-GcKO oocytes that could bring about the observed defects in oocyte and follicular development. These include genes controlling key oogenic processes, oocyte mRNA decay, epigenetic and transcriptional control, cell cycle, and microtubule-related processes (Fig. 4 C and E). For example, down-regulation of the expression of genes involved in oocyte–granulosa communication (i.e., Gja4 and Oosp1, -2, -3) and the development and survival of oocytes (i.e., Aldh1a2) in Mtor-GcKO oocytes could potentially affect the development and functions of oocyte-companion granulosa cells (37–42). In addition, up-regulation of several genes for mRNA decay could dysregulate the transcript dosage of certain factors key for oocyte and follicle development. These include Ythdf2 and Lsm1, both of which are implicated in the control of oocyte maturation processes and are essential for female fertility (38, 43).

Mtor Deletion in Growing Oocytes Alters the Oocyte Proteome. Meiotic progression in transcriptionally silent FGOs is exquisitely coordinated with selective translation of some maternal transcripts that are synthesized and stored during oocyte growth (44, 45). This coordination is essential for oocyte completion of the first meiotic division and supporting preimplantation development (44, 46). Since MTOR has a crucial role in the control of cellular translation (36), and Mtor deletion in growing oocytes has only a minor impact on oocyte transcriptome, the defects of meiotic and developmental competence observed in Mtor-ZcKO oocytes could be caused by aberrant oocyte translation during maturation. We therefore compared the protein-expression profile of Mtor-ZcKO oocytes with that of WT oocytes by liquid chromatography–mass spectrometry (LC-MS).

About 4,000 ovulated oocytes of each genotype (WT and Mtor-ZcKO) were collected and used for proteomic analysis. A
total of 4,172 proteins were detected, of which 237 were differentially expressed by Mtor-ZcKO (Fig. 5A and SI Appendix, Table S5). Changes were validated by Western blot analysis of selected representatives, i.e., RICTOR, TRIM36, and PRC1 (protein regulator of cytokinesis 1) (Fig. 5B). Gene-enrichment analysis revealed that the 149 down-regulated and the 88 up-regulated proteins participate in different processes (SI Appendix, Fig. S9). In particular, the processes “mRNA metabolic process” and “actin filament bundle assembly” are among the GO terms associated with down-regulated proteins. Since selective degradation of maternal transcripts is an important part of the oocyte cytoplasmic maturation process (43, 47, 48), and actin dynamics drive oocyte meiotic division (49, 50), down-regulation of the expression of proteins involved in these two processes is likely detrimental to oocyte maturation and contributes to the defects observed in Mtor-ZcKO oocytes.

Deleted in azoospermia-like (DAZL) is reported to drive the translation of a specific subset of maternal mRNAs (e.g., Tpx2, targeting protein for Xenopus kinesin xklp2) during oocyte meiotic maturation (44). This oocyte maturation-requiring translational program is thought to be mediated by the PI3K–AKT–MTOR pathway (46). Surprisingly, our proteomic analysis did not detect significant changes of either DAZL or Tpx2 proteins in ovulated Mtor-ZcKO oocytes (SI Appendix, Table S5). This suggests that the oocyte meiotic progression-associated translation of DAZL and Tpx2 is not dependent on MTOR and that meiotic defects in Mtor-ZcKO oocytes were not caused directly by the alteration of DAZL and Tpx2 expression. This unexpected observation prompted us to ask which MTOR-dependent proteins are produced during maturation. To address this, we compared the proteins expressed differentially in WT and Mtor-ZcKO oocytes with those identified by Chen et al. (44) on polysome-bound mRNA in oocytes during maturation. Accordingly, translation of 169 proteins in germlinal vesicle (GV), metaphase I (MI), or MII oocytes was apparently MTOR dependent (Fig. 5C, Left). Of these, 37 were selectively translated in MII oocytes (Fig. 5C, Right). Therefore, MTOR signaling in growing oocytes controls the translation of 37 proteins downstream during the GV-to-MII transition in oocytes. Of these, 36 were expressed at lower levels in Mtor-ZcKO oocytes compared with WT oocytes (Fig. 5D), indicating that their expression was promoted downstream during oocyte maturation by the MTOR pathway expressed during the oocyte growth phase. Identification of these MTOR-controlled proteins provided candidates for further investigation of their role in control of oocyte maturation and preimplantation development.

MTOR-Dependent Expression of PRC1 Is Crucial for Oocyte Completion of the First Meiotic Division. Levels of PRC1 were down-regulated in Mtor-ZcKO oocytes (Fig. 5B). Given the indispensable role of PRC1 in controlling cytokinesis during somatic cell division (51), we assessed potential effects of PRC1 down-regulation in Mtor-ZcKO oocytes on oocyte maturation. PRC1 was distributed throughout the cytoplasm of normal GV-stage oocytes (Fig. 6A), indicating that their expression was promoted during the GV-to-MII transition in oocytes. Of these, 36 were expressed at lower levels in Mtor-ZcKO oocytes compared with WT oocytes (Fig. 5D), indicating that their expression was promoted downstream during oocyte maturation by the MTOR pathway expressed during the oocyte growth phase. Identification of these MTOR-controlled proteins provided candidates for further investigation of their role in control of oocyte maturation and preimplantation development.
We thank Prof. Marco Conti for providing oocyte try, and Western Blot Analysis.

Materials and Methods

Mice. *Mtor*-floxed and *Gdf9*, *Zp3-Cre* mice were obtained from The Jackson Laboratory and were maintained on identical C57BL/6J genetic backgrounds. The procedures of mouse breeding, genotyping, and fertility testing are detailed in *SI Appendix*. All mouse procedures and protocols were approved by the Animal Care and Use Committee at Nanjing Medical University and were conducted in accordance with the institutional guides for the care and use of laboratory animals.

Chemicals and Reagents. Unless otherwise specified, all chemicals and reagents were purchased from Sigma-Aldrich Co.

Hormone Assays. Sera were collected as described previously (52), and hormones in them were measured using the methods detailed in *SI Appendix*.

Histology, Immunohistochemistry, and Western Blot Analysis. These analyses and follicle count were carried out as described previously (15, 53–56) and are detailed, along with information about the antibodies used, in *SI Appendix*.

Oocyte Isolation, In Vitro Manipulation, and Imaging. These were carried out as described previously (15, 56) and are detailed in *SI Appendix*.

Proteomic, RNA-Seq, and qRT-PCR Analyses. About 4,000 WT and *Mtor-ZcKO* ovulated oocytes were collected for the proteomic analysis. Transcriptomic analyses were carried out using RNA-seq. Real-time qPCR analysis was carried out as described previously (48). Detailed procedures are described in *SI Appendix*. RNA-seq data have been deposited in the Gene Expression Omnibus (datasets GSE98497 and GSE98548), and proteomics data have been deposited in the ProteomeXchange Consortium (dataset PXD006408).

ACKNOWLEDGMENTS. We thank Prof. Marco Conti for providing oocyte polysome data; Profs. Qingyuan Sun, Zhenbo Wang, and Xiang Gao for GFP-tubulin and Mcherry-H2B plasmids; and Profs. Zijiang Chen and Hongbin Liu for help with the steroid hormone assay. This work was supported by National Basic Research (973) Program of China Grants 2014CB943200 and 2013CB945500, National Natural Science Foundation of China Grants 31471351 and 31271538, and Natural Science Foundation of Jiangsu Province Grant BK20140061 (to Y.-Q.S.).
1. Clarke HJ (2018) Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdiscip Rev Dev Biol 7:e294.
2. Hsieh AJ, Kawamura K, Cheng Y, Fauser BC (2015) Intravarian control of early folliculogenesis. Endocr Rev 36:1–24.
3. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N (2016) Ovarian folliculogenesis. Results Probl Cell Diff 58:167–190.
4. Díaz FJ, Wigglesworth K, Epigi J (2007) Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci 120:1330–1340.
5. Epigi J (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838.
6. Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:159–177.
7. Matsuz MM, Burns KH, Viveiros MM, Epigi J (2002) Intercellular communication in the mammalian ovary: Oocytes carry the conversation. Science 296:2178–2180.
8. Su YQ, Sugiki K, Epigi J (2009) Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27:32–42.
9. Guigon CJ, Coudouel N, Maxaud-Guittot S, Forest MG, Magre S (2005) Follicular cells acquire sertoli cell characteristics after oocyte loss. Endocrinology 146:2992–3004.
10. Guigon CJ, Magre S (2006) Contribution of germ cells to the differentiation and maturation of the ovary: Insights from models of germ cell depletion. Biol Reprod 74:450–458.
11. Uhlenhaut NH, et al. (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142.
12. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. Curr Opin Cell Biol 21:744–755.
13. Hakkarainen J, et al. (2015) Hydroxysteroid (17α) dehydrogenase type I and type II isoforms in the mouse testis during development. Genes Dev 29:3806–3816.
14. Duggavath R, et al. (2008) Liver receptor homolog 1 is essential for ovulation. Genes Dev 22:1871–1876.
15. Stanton PG (2016) Regulation of the blood-testis barrier. J Cell Sci 129:3091–3103.
16. Lan ZX, Xu X, Cooney AJ (2004) Differential oocyte-specific expression of CRE recombinase activity in GDF-9, Icrc, Zp3cire, and Mx2Cre transgenic mice. Biol Reprod 71:1469–1474.
17. Handel MA, Epigi J (1997) Sertoli cell differentiation in the testes of mice genetically deficient in germ cells. Biol Reprod 56:1031–1038.
18. van Houten EL, Themen AP, Visser JA (2010) Anti-MÜLLERIAN hormone (AMH): Regulator and marker of ovarian function. Ann Endocrinol (Paris) 71:191–197.
19. Britt KL, et al. (2002) Estrogen regulates development of the somatic cell phenotype in the eutherian ovary. FASEB J 16:1389–1397.
20. Couse JF, et al. (1999) Postnatal sexual reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 286:2328–2331.
21. Dierich A, et al. (1998) Impairing follicle-stimulating hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 95:13612–13617.
22. Knight PG, Glister C (2001) Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 121:502–513.
23. Hakkarainen J, et al. (2015) Hydroxysteroid (17(α)) dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production. FASEB J 29:3806–3816.
24. Chaigne A, Terret ME, Verlhac MH (2017) Asymmetries and symmetries in the mouse oocyte and zygote. Results Probl Cell Diff 55:1–21.
25. Clarke HJ (2012) Post-transcriptional control of gene expression during mouse oogenesis. Results Probl Cell Diff 55:1–21.
26. Chen J, et al. (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15:1415–1423.
27. Svoboda P, Franke V, Schultz RM (2015) Sculpting the transcriptome during the oocyte-embryo transition in mice. Dev Cell 33:41–49.
28. Su YQ, Oop1 encodes a novel mouse oocyte-secreted protein. Proc Natl Acad Sci USA 105:105–110.
29. Ivanova I, et al. (2017) The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell 67:1059–1067.e4.
30. Chen J, et al. (2011) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 25:755–766.
31. Clarke HJ (2012) Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol Reprod 86:153, 1–14.
32. Bolurn-Fléas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–536.
33. Vandermael-Pourain S, et al. (2015) Oocyte-specific inactivation of Omeg1 leads to DNA damage and c-Abi/Tap63-dependent oocyte death associated with dramatic remodeling of ovarian somatic cells. Cell Death Differ 22:108–117.
34. Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504.
35. Pan H, O'Brien MJ, Wigglesworth K, Epigi J, Schultz RM (2005) Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev Biol 286:493–506.
36. Thoreen CC (2017) The molecular basis of mTORC1-regulated translation. Biochem Soc Trans 45:213–221.
37. Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529.
38. Morgan M, et al. (2017) mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548:347–351.
39. Best MM, et al. (2015) A role for retinoids in human oocyte fertilization: Regulation of connexin 43 by retinoic acid in cumulus granulosa cells. Mol Reprod Hum Dev 81:572–579.
40. Conceição JC, et al. (2015) Use of retinoids during oocyte maturation diminishes apoptosis in caprine embryos. Acta Vet Hung 62:234–242.
41. Paillas A, et al. (2005) Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome. BMC Genomics 6:76.
42. Yan C, et al. (2001) Oosp1 encodes a novel mouse oocyte-secreted protein. Proc Natl Acad Sci USA 98:1397–1401.
43. Su YQ, et al. (2007) Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol 302:104–117.
44. Schneider I, Lénart P (2017) Chromosome segregation: Is the spindle all about microtubules? Curr Top Dev Biol 113:305–349.
45. Chaing A, Terret ME, Verlhac MH (2017) Asymmetries and symmetries in the mouse oocyte and zygote. Results Probl Cell Diff 61:285–299.
46. Shrestha S, Wilmeth LJ, Eyer J, Shuster CB (2012) PRC1 controls spindle polarization and recruitment of cytokinetic factors during monopolar cytokinesis. Mol Biol Cell 23:1196–1207.
47. Su YQ, Nyegaard M, Overgaard MT, Qiao J, Giudice LC (2006) Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles. Biol Reprod 75:859–867.
48. Rankin TL, et al. (2001) Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 128:1119–1126.
49. Su YQ, Rubinstein S, Lucia A, Lax Y, Breitbart H (2001) Involvement of MEK-mitogen-activated protein kinase pathway in follicle-stimulating hormone-induced but not spontaneous meiotic resumption of mouse oocytes. Biol Reprod 65:358–365.
50. Su YQ, et al. (2010) Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGFR receptor-dependent signaling. Mol Endocrinol 24:1230–1239.
51. Su YQ, et al. (2012) MARCH1 regulates essential oogenic processes in mice. Science 335:1496–1499.