In-Situ Fabrication of ZrB2-ZrC-SiCnws Hybrid Nanopowders With Tunable Morphologies of SiCnws

Changqing Liu (✉ liu280097311@163.com)
Shaanxi University of Science &Technology

Xiaoxiao Yuan
Shaanxi University of Science &Technology

Wanting Wang
Shaanxi University of Science &Technology

Hulin Liu
Shaanxi University of Science &Technology

Chengxin Li
Xi'an Jiaotong University

Heng Wu
cGongyi Van-Re Yihui Composite Material CO.

Xianghui Hou
The University of Nottingham

Research Article

Keywords: SiCnws, Morphologies, In-situ synthesis, ZrB2-ZrC, Nanopowder

DOI: https://doi.org/10.21203/rs.3.rs-738256/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
In-situ fabrication of ZrB$_2$-ZrC-SiCnws hybrid nanopowders with tunable morphologies of SiCnws

Changqing Liua*, Xiaoxiao Yuana, Wanting Wanga, Hulin Liua, Chengxin Lib, Heng Wuc*, Xianghui Houd*

aSchool of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China

bState Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

cGongyi Van-Re Yihui Composite Material CO., LTD, Gongyi 451261, China

dAdvanced Materials Research Group, The University of Nottingham, Nottingham, NG7 2RD, UK

*Corresponding authors

Changqing Liu liu280097311@163.com (C.Q. Liu)

Heng Wu wuheng@van-research.cn (H. Wu)

Xianghui Hou Xianghui.Hou@nottingham.ac.uk (X.H. Hou)
Abstracts
SiC nanowires (SiCnws) with different morphologies have great potential for the reinforcement of ceramic materials. But it is a big challenge in the in-situ synthesis of SiCnws in the ceramic powders which is critical to ensure high reinforcing effects. For the reinforcement of ZrB$_2$-ZrC composites, a simple method is developed to in-situ fabricate SiCnws with various morphologies in nano-sized ZrB$_2$-ZrC powders through pyrolyzing ZrB$_2$-ZrC-SiC gel precursors. The prepared ZrB$_2$-ZrC ceramic powders have mean diameter of about 100 nm with uniformly distributed SiCnws in morphologies of nanocylider, bead-like, bamboo-shape with tunable nodes, chain-like and hexagonal prisms were prepared by optimizing the preparation process. Moreover, the SiCnws were in a diameter of ranging from 100 to 400 nm, while the length was controlled from tens to hundreds of microns. The generation of ZrB$_2$/ZrC can determine the formation of SiCnws with specific morphologies by producing CO gas to affect the local supersaturation of the SiO and CO vapors. The study provides an opportunity for fabricating SiCnws reinforced ceramic materials with enhanced strengthening effect and also overcome its critical fabrication process.

Keywords: SiCnws, Morphologies, In-situ synthesis, ZrB$_2$-ZrC, Nanopowder,
1. Introduction

As members of ultra-high-temperature ceramics (UHTCs), ZrB$_2$-ZrC ceramics have been considered as one of the most excellent materials for high-temperature applications because of their chemical inertness, high thermal and electrical conductivity, and super thermal shock resistance, etc [1-3]. However, their wide applications in harsh environment are still restricted owe to the low oxidation resistance, intrinsic brittleness, and poor sinterability [4-7].

Recently, ZrB$_2$-ZrC ceramic materials with the addition of SiC have demonstrated improved densification behavior, enhanced mechanical properties and excellent oxidation and ablation resistance at high temperatures [8-13], since the incorporated SiC phase could effectively restrain the crystallite growth, promote the sinterability, and form ZrB$_2$-ZrC-SiC composites with higher eutectic temperature and higher hardness [14-16]. Moreover, SiC nanowires (SiCnw s) are used extensively as effective reinforcements with a larger aspect ratio, better strength and elasticity, to enhance the flexural strength and the fracture toughness of ceramic materials [17-20].

As the starting materials to prepare bulk ceramics, ultrafine powders with controlled compositions and microstructures have drawn much attention. ZrB$_2$-ZrC ceramic powders with uniformly distributed SiCnw s are critical for the fabrication of ZrB$_2$-ZrC-SiC composites. However, it is difficult to disperse SiCnw s homogenously into ceramic powders through ball-milling or other mixing approaches, which would affect the mechanical performance of the prepared composites [21]. To solve this problem, in-situ growth of SiCnw s in ceramics is believed to be an effective solution [22-25], in which the synchronous growth of the nanowires and ceramic components can be well achieved.

Furthermore, SiCnw s with special morphologies have shown great potential for the reinforcement of structural materials. It is reported that SiCnw s with necklace and bamboo morphology could offer enhanced strengthening effect compared with common SiCnw s, due to the mechanical interlocking with the matrix [26]. Although great efforts have been devoted to the fabrication of SiCnw s with different morphologies, including diameter-fluctuated (such as necklace-like and
bamboo-shaped) [27,28], twinned [29], nanodishes or nanorods [30] etc. There is no report concerning the in-situ synthesis of SiCnws with specific morphologies in the ceramic powders. And it is still a great challenge to fabricate ZrB$_2$-ZrC-SiCnws hybrid powders, due to the difficulty in the control of SiCnws growth during the preparation of ZrB$_2$-ZrC-SiC ceramics, especially in a ternary system with sophisticated gas saturation variation.

Moreover, the sinterability of ceramics is determined by the size and distribution of the starting powders. Usually better refinement and uniformity of the particles are desirable for a better sinterability [31,32]. Recent study suggests that an enormous improvements in terms of optical, mechanical and electrical properties can be acquired through reducing the component size towards nanoscale in the composite materials [33,34]. Sol-gel method is a commonly used approach for the preparation of a wide range of nanocomposites, such as oxide powders, and carbides, boride and nitride UHTCs [35,36], due to the advantages of high purity and homogeneity of the ceramic elements at the molecular level, which may also reduce the particle size and the formation temperature of aimed ceramic phases [37-39].

Therefore, in the present work, ZrB$_2$-ZrC-SiC nanocomposite powders with evenly distributed SiCnws of various specific morphologies in large amount were obtained via a simple sol-gel method, i.e. pyrolysis of as-prepared ZrB$_2$-ZrC-SiC gel precursor. The formation mechanism of ZrB$_2$-ZrC-SiCnws and the growth behavior of SiCnws were investigated, together with the pyrolysis process parameters, such as the heat-treatment temperature and holding time as well as the silicon source in feed. The successful preparation of the ZrB$_2$-ZrC-SiCnws powders provides a new opportunity for the preparation of high-performance SiCnws-reinforced ceramic materials with desirable nanostructures.

2. Experimental Section

In our work, the ZrB$_2$-ZrC-SiC sol precursor was obtained by fully mixing zirconium solution, boron-ethanol solution, silicon-ethanol solution and glucose-water solution. And then, the ZrB$_2$-ZrC-SiC sol precursor was dried and used for the
subsequent heat treatment. To be specific, the zirconium solution was prepared by dissolving ZrOCl$_2$·8H$_2$O (0.01 mol) in ethanol (20 mL) and H$_2$O$_2$ (2 mL). The boron-ethanol solution was prepared by dissolving H$_3$BO$_3$ (0.02 mol) and PEG-600 (0.05 mL) in boiling ethanol (50 mL). A series of silicon-ethanol solutions were obtained by mixing various TEOS content in ethanol (20 mL). While, the glucose-water solution was prepared by dissolving glucose (0.068 mol) in distilled water (10 mL).

In order to produce SiCnws with different microstructures, precursors, heat-treated temperature and holding times were carefully controlled. A lower processing temperature of 1500 °C and a holding time of 2 h as well as improving the content of silicon in the gel precursor, i.e., the silicon/zirconium molar ratio (n(Si)/n(Zr)) in the precursor was varied from 6, 8, 10, 12, 14 to 16, were applied in our work. In comparison, the holding time varied from 1 to 4 h, and the temperature was set at 1300 and 1400 °C. Moreover, the reaction temperature was increased to 1600 °C and the holding time was kept at 2 h with a silicon/zirconium molar ratio of 12. The preparation process is illustrated in Figure 1. As illustrated, with an n(Si)/n(Zr) value of 6-10, SiCnws in nanocylinders shape were formed by heat-treating the precursor at 1500 °C for 2 h. By increasing the n(Si)/n(Zr) value to 12, SiCnws with uneven diameters showing bead-like morphology were formed. Further increasing the silicon source in the precursor (n(Si)/n(Zr) value of 14-16), the morphologies of the produced SiCnws would be in bamboo shape with varying nodes. For a longer holding time of 4 h, the SiCnws finally grew into hexagonal prism nanocylinders. At high temperature (1600 °C), the SiCnws in chain-like morphologies were obtained.

Phases of the samples were identified by X-Ray diffraction (XRD, Bruker, Germany). Crystalline sizes of each phase were calculated by the Scherrer equation. Contents of each phase were obtained by the Rietveld method. The structure of the ceramic samples was investigated by high-resolution transmission electron microscope (HRTEM, FEI Tecnai G2 F20 STWIN). Raman spectra were collected on a Raman spectrometer (Raman, Renishaw, UK) with its excitation wavelength at 514 nm. Separation and analysis of the Raman peaks were conducted using the peak
3. Results and discussion

3.1 Impact of heat-treated temperature on the formation of the products

Fig. 2 shows the XRD results of products obtained at 1300, 1400, 1500 and 1600 °C. At 1300 °C, only SiO$_2$ and ZrO$_2$ were observed, indicating that the temperature was not high enough to initiate the carbo/boronthermal reduction reactions to produce ZrB$_2$, ZrC and SiC. As the temperature was increased to 1400 °C, SiO$_2$ and ZrO$_2$ remained the major phase, and a small amount of SiC was observed, indicating the onset temperature for SiC formation. At 1500 °C, a XRD pattern containing ZrB$_2$, ZrC and SiC was obtained. The peaks of SiC can be assigned to the (101), (006) and (108) reflections of 6H-SiC, among which and the (006) diffraction peak are the strongest, indicating that SiCnws mainly grew along the direction of [001]. Besides SiC, ZrB$_2$ and ZrC phases, no other phases were detected, which suggested that the carbo/boronthermal reduction reactions were complete at 1500 °C. As the temperature was raised to 1600 °C, the intensities of SiC diffraction peaks
increased, suggesting that higher temperature may favour the generation of SiC by reducing the loss of Si-related gaseous reactants.

![XRD results of products obtained at 1300, 1400, 1500 and 1600 °C](image)

Figure 2. XRD results of products obtained at 1300, 1400, 1500 and 1600 °C

Fig. 3 displays the SEM results of products obtained at 1300, 1400, 1500 and 1600 °C, respectively. Since the temperature of 1300 °C was not high enough to initiate carbo/boronthermal reduction reactions, a porous product with many micro-cracks was observed (Fig. 3a). Meanwhile, without the release of SiO/CO gases, there was no SiCnw grown in the product. After heat-treated at 1400 °C (Fig. 3b), the porous products remained, but dropletwise projections appeared on its surface, which was ascribed to SiO$_2$ based on the result of EDS. Meanwhile, large quantities of wire-like SiCnws with diameters around 200 nm and lengths longer than 100 um appeared. Combined with the XRD analysis, SiC was formed at 1400 °C, during which the generated SiO/CO gases provided the gas saturation for the continuous growth of one-dimensional SiC. And also, due to the low and periodical fluctuating gas supersaturation, the periodically fluctuated diameter of nanowires were produced. Hence, uniform and thin SiCnws in bamboo-like shape were achieved at a relatively stable growth rate. Further increasing the temperature to 1500 °C (Fig. 3c), a large quantity of SiCnws together with fine ceramic particles were obtained. The SEM image reveals the formation of fine ceramic particles in a size of about 150 nm with irregular appearance. The diameter of SiCnw varied in the range of 100-400 nm. The
length of SiCnws was over tens of microns. Moreover, unevenly distributed bamboo
joints with variations in thickness were observed. At this temperature, reactions
between the oxides and the carbon happened vigorously, accompanied with the
generation of large quantity of SiO/CO gases and the formation of ZrB₂-ZrC-SiC
phases. Because of the higher temperature and higher amount of gases, a high gas
supersaturation contributing to an enhanced deposition rate and growth rate of SiC
was obtained. Large fluctuations of gas saturation resulting from the rapid gas
consumption lead to the nonconstant diameter in a single SiCnw. Further heat-treated
at 1600 °C (Fig. 3d), an increased gas concentration and accelerated growth rate of
SiC were achieved because of the increased temperature, accompanied by the
formation of chain-like nanowires with lengths higher than 100 um and diameter
around 400 nm. Meanwhile, the average size of ceramic particles was about 100 nm.

Based on the above discussion, by improving the temperature from 1300 to
1600 °C, the ceramic products were transformed from porous oxides into ZrB₂, ZrC
and SiC ceramics with 100 nm size. 1400 °C was high enough to provide the energy
to grow one-dimensional SiCnws. The growth of SiCnws began at 1400 °C, and with
the increasing of temperature, the morphology of SiCnws evolved from bamboo-like
shape (diameter around 150 nm) into chain-like shape linked by polyhedra (diameter
around 400 nm).
3.2 Impact of holding time on the formation of the products

Fig. 4 demonstrates the XRD results of the products prepared at different holding times at 1500 °C. After heat treatment at 1500 °C for 1 h, only ZrB$_2$ and SiC phases were detected, indicating that the reaction was not completed to produce ZrC. Diffraction peaks assigned to ZrC appeared with extending holding time of 2 h. With prolonged holding time, besides the sharped diffraction peaks and increased peak intensities, no other changes were observed from the XRD patterns. Based on the phase composition of the products in Fig. 5a, the content of SiC, ZrB$_2$ and ZrC phases
did not change significantly with extending the holding time from 2 to 4 h, indicating that the reactions to produce the above phases were completed for two hours of holding time. When further increased the holding time, phase composition of the products kept unchanged, except for the improved crystallinity. Fig.5b shows the apparent crystal size of each phase in the products obtained from various holding times. It shows that with extending holding time, the crystal size of each ceramic phase tended to decrease.

Figure 4. XRD results of the products with different holding times

Figure 5. The content (a) and the crystal size (b) of key phases in the products with various holding times

Fig.6 displayes the SEM results of the products from the precursors with
different holding times. After thermal treatment at 1500 °C for 1 h, because of the short holding time, the reactions were not completed, and only a low concentration of reactant gases was produced. Under this condition, the growth of SiCnws was favoured, and a large quantity of long SiCnws was observed. Meanwhile, the ceramic particles mainly composed of cubic ZrB$_2$ particles. With prolonged holding time of 2 h, large amount of SiCnws with a length up to 100 microns were found to disperse uniformly in the ceramic products. Combined with the analysis of XRD, the carbo/borothermal reduction reactions seemed to be completed with holding time of 2 h, during which the gas concentration reached its maximum. Due to the increase amount of reactant gases and high temperature, the energy of gas molecules, their migration and collision frequencies are increased, and a larger gas supersaturation was obtained. Since the nucleation is proportional to the supersaturation degree, a large amount of SiC crystals were formed. And then, with a relatively higher degree of gas supersaturation, a high nucleation and growth rate lead to the formation of large amount of SiCnws with uneven diameters and shorter lengths. With a holding time of 3 h, a large amount of SiCnws were distributed in the product, showing smaller diameters and longer lengths. Compared to two hours of holding time, the particle size of ceramic powder was reduced. With the prolonging of holding time, the gas concentration was further diluted by the growth of large SiC crystals. The growth of SiCnws was maintained by a low but stable gas supplement, and reached lengths higher than 100 um. When holding at 1500 °C for 4 h, only a few SiCnws was observed in the product. The uniform ceramics with an average size around 50nm were obtained. With an excessive holding time (4 h), the growth of SiCnws was strongly suppressed. The above analysis confirmed that the continuous growth of SiCnws was supported by a relatively low supersaturation Σ, which is controlled by the partial pressure of SiO and CO gases, i.e., $\Sigma=k\cdot P_{SiO}/P_{CO}$. k represents the equilibrium constant of the reaction to form SiC, i.e., SiO (g) + 3CO (g) = SiC (s) + 2CO$_2$ (g). When supersaturation exceeded the adaptable range, the SiC phase in the form of particles was favoured. Due to the over-consumption of gases through the generation of large SiC crystals during the holding period, the degree of gas
supersaturation was too low to keep the growth of one-dimensional SiC. Therefore, just a small amount of SiC nws was formed under the over-reduced gas saturation.

SiC Nanowires	Ceramic Particles	Time
![Image](image1.png)	![Image](image2.png)	a2 1 h
![Image](image3.png)	![Image](image4.png)	b2 2 h
![Image](image5.png)	![Image](image6.png)	c2 3 h
![Image](image7.png)	![Image](image8.png)	d2 4 h

Figure 6. SEM results of the products from the precursors with different holding times

The reason for the morphological evolution of the SiC nws during the prolonging of holding times can be explained as follows. The shape of the grown 2D nuclear lay
on the competition between the kinetic conditions and the minimization of surface and line energies [40]. With a low and fluctuating gas saturation, the growth of SiCnws in hexagonal and cylindrical shape grew competitively, forming this metastable shape of nanowires with holding time of one hour. Improving the holding time to 2 h, the gas saturation increased dramatically, accompanied by an increase in growth rate, thus contributing to the generation of altering hexagonal or hexagonal-like and cylindrical shape. Since an angle of about 141° is formed between the two adjacent \{111\} facets of hexagonal shape, the and compressive and tensile stresses may be caused by the growth of SiCnw. In the following process, bamboo-shaped nanowires were formed resulted from the promoted growth at the dilated region and inhibited growing at the compressive region. Further increasing the holding time, full rearrangements of atom was better achieved, and the nanowires grew into hexagonal with lower specific line energy.

3.3 Impact of holding time on the structure order of SiCnws

Fig.7 shows the Raman spectra and fitted Raman peaks of the SiCnws from the products with different holding times. In Fig.7a, there are two Raman peaks of 796 cm\(^{-1}\) (transversal optic mode of SiC, TO) and 968 cm\(^{-1}\) (longitudinal optic mode of SiC, LO) existed. The appearance of a shoulder peak located at around 765 cm\(^{-1}\) may be raised from the stacking faults of the SiCnws. Based on the phonon-confinement model, a smaller nanocrystal size and larger disorder will contribute to Raman scattering, thus leading to a broadening and downshift of the peaks [41]. Compared with that of the other samples, the TO and LO modes shift from about 796 to 779 cm\(^{-1}\) and from about 960 to 950 cm\(^{-1}\) for the SiCnws with a holding time of 2 h, indicating a high structure disorder in this sample.

In the spectra of SiCnws with holding times from 1 h to 4 h, the LO mode intensity decreases, gradually lowering than that of TO. According to previous reports, the LO mode intensity is always weaker than that of the TO mode, as a result of the suppression effect arising from the imperfect or disordered microstructures [42]. Whereas, the quantum confinement or defects as a result of the inner stress during the crystal growth is believed as the reason for a high LO mode. Moreover, smaller LO
mode intensities are related to the size decrease of the SiC nanostructures. With a larger nanocrystal, the enhanced LO mode intensity will be detected [43]. Based on the above analysis, it can be inferred that the amount of structural defects reached the highest level with a holding time of 2 h, and then decreased by prolonging the holding time. Meanwhile, as the holding time increases, the size of the SiC microcrystals was gradually decreased, as verified by the calculated grain size in Fig. 5b.

Figure 7. Raman spectra (a) and the fitted Raman peaks (b) of the SiCnw from the products with different holding times

Moreover, the ratio of the shoulder peak intensity to the one at 784 cm\(^{-1}\) suggests the proportion of defects versus the SiC crystallines. And the frequency separation between the TO peaks and its shoulders can reflect the average distance between stacking faults [44]. In Fig.7b, the intensity ratio of the shoulder peak to TO peak (I\(_1\):I\(_2\)) increases, and the frequency separation between these two peaks (\(\Delta x\)) decreased as the holding time was extended from 1 h to 2 h, indicating an increased structure disorder. Prolonging the holding time to 3 h, decrease of the relative intensity and increase of the frequency separation suggest that prolonging the holding time would contribute to an reduced structure disorder. Whereas, the degree of the structure order decreased with an excessive holding time of 4 h.

3.4 Impact of silicon content on the composition and morphology of the products

Fig.8 presents the XRD results of the samples obtained at 1500 ℃ using various amounts of silicon source. As can be seen, all the samples had a composition of SiC, ZrB\(_2\) and ZrC. With increasing of the silicon content, peak intensity of SiC continually increased, and relative peak intensities of ZrB\(_2\)/ZrC first decreased and
then increased. Based on the phase compositions shown in Fig.9, SiC (52 wt%), ZrB$_2$ (33 wt%) and ZrC (13 wt%) were detected in the obtained product with a Si/Zr molar ratio (n(Si)/n(Zr)) of 6. With the increase of the n(Si)/n(Zr) value, the content of SiC continually increased, and the relative content of ZrB$_2$/ZrC decreased gradually on the whole. When n(Si)/n(Zr) reached 16, SiC (78 wt%), ZrB$_2$ (11 wt%) and ZrC (11 wt%) were identified. By analyzing all the products, it is found that all the phase contents were lower than the theoretical SiC: (ZrB$_2$ and ZrC) weight ratio of the samples, indicating that a certain amount of gaseous reactants (SiO, CO) was escaped during the reactions. Moreover, the higher evaporation loss of B$_2$O$_3$ as a result of the refinement ceramic particles (confirmed by the following SEM analysis) contributed to the decreased amount of ZrB$_2$. Meanwhile, the reactions between the oxides and the carbon phase to form these ceramic products became more intensive due to the same reason.

![Figure 8. XRD results of the products with different silicon contents](image-url)
Figure 9 The content of key phases (a) and the average diameters of SiCnws (b) in the products with different silicon contents.

Figure 10. SEM results of the products with different silicon contents. The average diameters of SiCnws in these products were shown in Fig.9b. The amount of SiCnws grown in the product increased with increasing n(Si)/n(Zr) value. When the n(Si)/n(Zr) value reached 16, the growth of
nanowires was suppressed. Moreover, besides the gradually increased length of the nanowires, the average diameters of SiCnws increased first and then decreased (as seen in Fig. 9b). In addition, an obvious refinement of ceramic particles, i.e. the mean particle size decreased from about 500 nm to around 150 nm, can be observed, verifying the refining functions of SiC [45]. For the morphologies of the grown SiCnws, from the precursor with a low n(Si)/n(Zr) value (Fig. 10a), only a few short but uniform SiCnws were observed due to the insufficient concentration of reactant gases. Further increasing the silicon content (Fig. 10b), the concentration of reactant gases increased, and the growth of SiCnws was supported with a higher but fluctuating gas supersaturation. Therefore, the diameter of a single SiCnw increased, and a bead-like morphology was obtained. At an excessive silicon content, the growth of SiCnws was restricted due to the excess gas supersaturation. The formation of large SiC crystals was favoured initially and then the SiCnws grew in the product under reduced gas supersaturation. And a bamboo-like morphology (Fig. 10c) was obtained as a result of the gradually stabilized growth rate of the radical direction in the SiCnws.

3.5 Impact of silicon content on the structure order of SiCnws

Fig. 11 presents the typical Raman spectrum of the SiCnw with different n(Si)/n(Zr). TO and LO modes positioned at around 784 cm$^{-1}$ and 956 cm$^{-1}$ were detected, and a shoulder peak appeared at the center of 756 cm$^{-1}$ corresponding to the stacking faults of SiCnws. Compared with bulk SiC with narrow diffraction peaks, all the peaks of SiCnws exhibited a broadening and asymmetry characteristic, which was believed to be caused by the size confinement effects and planar faults. Moreover, an obvious red shift was observed with increasing n(Si)/n(Zr) value, suggesting a decreasing nanocrystal size and increasing structure disorder. Based on the analysis of fitted Raman peaks, it can be seen that the TO line shifted to lower frequencies and was broadened with the increasing n(Si)/n(Zr) value. Furthermore, the relative intensity of the shoulder peak to TO peak (I_1/I_2) increased, along with the decreased frequency separation between these two peaks, i.e. a decreasing average stacking fault distance (L), verifying an increased disorder in the products with higher silicon
3.6 Mechanism discussion

Fig.12a shows the TEM results of the products annealed at 1500°C with a n(Si)/n(Zr) value of 12, which reveals a uniform size distribution of 50-100 nm. Fig.12b, 12c and 12e show the typical images of the prepared nanowires with different morphologies, and the diameters ranges from ~100 nm to ~250 nm. The morphology of nanowires includes uniform, straight and long linear structure (Fig.12b), linear shape with a thicker node (Fig.12c), as well as short and spiral shape (Fig.12e). Moreover, no metal catalyst existed at the tip of the grown nanowires, indicating the SiCnw were formed via the typical VS mechanism. From the HRTEM in Fig. 12d, the (006) fringes are divided by about 0.254 nm averagely, inferring that the single crystalline SiCnw grew along the [001] direction. The SAED pattern (the inset of Fig.12c) indicates a feature of a single-crystal structure. Fig.12f reveals the existence of stacking faults and planar defects with high density in the spiral shape SiCnw (denoted by the white arrows in Fig. 12f). The HRTEM image of the spiral shape SiCnw also shows a growth direction of [001] (indicated by the black arrow in Fig. 12f). While, the adjacent facets form a 146.2° angle, suggesting the existence of growth stress, which may be a metastable shape. Moreover, the evolution of morphologies verifies the variation of gas saturation in the growth region of SiCnw, which was determined by the competition between supplement of reaction gases (SiO and CO) released from the carbothermal reduction reactions and the formation rate of...
SiC. Especially, in the multiphase system, the reactions to produce SiC, ZrB$_2$ and ZrC are crucial to determine the morphology of SiCnw, which will be discussed in the next section.
Figure 12. (a, b) TEM results of ZrB$_2$-ZrC-SiC ceramic powder, (b) TEM image of SiCnw in nano-cylinder shape, TEM (c) and HRTEM (d) results of SiCnw with fluctuating diameters and the corresponding SAED pattern (the inset of c). TEM (e) and HRTEM (f) results of SiCnw with high content of stacking faults.
The growth process of ZrB$_2$-ZrC-SiCnw is demonstrated as follows, and the influences of each factor on the morphology evolution of the SiCnws were illustrated in Fig.13. Firstly, SiO and CO gas sources were produced with the reduction of SiO$_2$ and CO$_2$ through reactions (1)-(3) [46]. SiC embryos were formed from heterogeneous nucleation by the solid-gas interaction of reaction (4), but the growth of SiC nanowires is determined by reaction (5) with gas–gas interaction [47,48]. As observed, the growth of SiCnw is decided by the separate partial pressure of CO and SiO vapour. At the same time, ZrB$_2$ and ZrC were generated through reactions (6) and (7), respectively, accompanied by the release of gaseous CO.

\[
\begin{align*}
\text{SiO}_2 (s) + C (s) &= \text{SiO} (g) + \text{CO} (g) \quad (1) \\
\text{SiO}_2 (g) + \text{CO} (g) &\rightarrow \text{SiO} (s) + \text{CO}_2 (g) \quad (2) \\
\text{CO}_2 (g) + C (s) &= 2\text{CO} (g) \quad (3) \\
\text{SiO} (g) + 2C (s) &= \text{SiC} (s) + \text{CO} (g) \quad (4) \\
\text{SiO} (g) + 3\text{CO} (g) &= \text{SiC} (s) + 2\text{CO}_2 (g) \quad (5) \\
\text{B}_2\text{O}_3(l)+\text{ZrO}_2(s)+5\text{C}(s)&\rightarrow\text{ZrB}_2(s)+5\text{CO(g)} \quad (6) \\
\text{ZrO}_2(s)+3\text{C(s)}&\rightarrow\text{ZrC(s)}+2\text{CO(g)} \quad (7)
\end{align*}
\]

The growth of SiCnw was achieved through reaction 5, in which the CO gases was hard to get saturated. The irregularities along the axis of nanowires were resulted from the fluctuation in the partial pressure of gaseous CO. Since slight variation in the gaseous will influence violently the growth of SiCnws, the CO gas generated from the bro/carbothermal reactions to form ZrB$_2$/ZrC ceramics has an impact on the local supersaturation of the SiO and CO vapors. Below the formation temperature of ZrB$_2$ and ZrC ceramics (Fig.13a), e.g. 1400 °C, SiCnws in nanocylinders shape were formed since the precipitation rate of SiC was approximately equal to the adsorption rates of gaseous CO and SiO. As shown in Fig.13b, for the sample with an n(Si)/n(Zr) value of 10-12, when heat treated at 1500 °C, i.e., the formation temperature of ZrB$_2$ and ZrC ceramics, as the concentration of CO reached high supersaturation during the heating, structural defects or imperfections reached the highest level with preservation time 2 hours and the SiCnws showed a bead-like morphology. With extended holding time, the defects were reduced and the SiCnws finally grew into hexagonal
nanocylinders. Variations in silicon source of the precursor, seen in Fig.13c, i.e. the raw material contents participated in the reactions to form SiC, mainly caused remarkable changes in the length of nanocylinder SiCnw, while the morphologies of the SiCnws would be more or less maintained, except for the variations in diameter fluctuation range of the single SiCnw. At higher temperature (Fig.13a), however, e.g. 1600 °C, the SiCnws became energetically favorable hexagonal after the fully atom rearrangements.

(a) Influence of temperature on the growth of SiCnws

(b) Influence of holding time on the growth of SiCnws

(c) Influence of n(Si)/n(Zr) in the precursor on the growth of SiCnws

Figure 13. Schematic illustrating the influence of different factors on the morphology evolution of SiCnws

4. Conclusions

In summary, this work provided a simple method of in-situ fabricating uniformly dispersed SiCnws with various special morphologies in ZrB2-ZrC nanopowders was proposed. The prepared SiCnws had a diameter of varying from 100 to 400 nm, and
the morphologies of SiCnws included nanocylinder, bamboo-shape with tunable nodes, chain-like and hexagonal prisms, with the length of which varies from tens to hundreds of microns. The formation of ZrB$_2$-ZrC-SiC phases occured at temperatures over 1500 °C. The obtained ceramic powders were in a nanoscale of about 100 nm. The CO gas generated from the bro/carbothermal reactions to form ZrB$_2$/ZrC ceramics shows an obvious impact on the local supersaturation of the SiO and CO vapors, thus leading to formation of SiCnws with specific morphologies. The in-situ grown SiCnws with specific microstructures, and the controllable morphologies opens up a new opportunity for fabricating high-performance ceramic composites.

Notes
The authors declare no competing financial interest.

Acknowledgements
This work was funded by the National Natural Science Foundation of China (grant numbers 51702194, 51702192); the Natural Science Foundation of Shaanxi Province (grant number 2018JQ5055); and the Research Startup Fund of Shaanxi University of Science and Technology (grant number 2016GBJ-09).

References
[1] Chamberlain AL, Fahrenholtz WG, Hilmas GE, et al. High-Strength Zirconium Diboride-Based Ceramics. *J Am Ceram Soc* 2004, **87**: 1170-1172.

[2] Monteverde F, Guicciardi S, Bellosi A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. *Mater Sci Eng A* 2003, **346**: 310-319.

[3] Sonber JK, Suri AK. Synthesis and consolidation of zirconium diboride: review. *Adv Appl Ceram* 2011, **110**: 321-334.

[4] Miller-Oana M, Neff P, Valdez M, et al. Oxidation Behavior of Aerospace Materials in High Enthalpy Flows Using an Oxyacetylene Torch Facility. *J Am
Tian CY, Gao D, Zhang Y, et al. Oxidation behaviour of zirconium diboride-silicon carbide ceramic composites under low oxygen partial pressure.
Corros Sci 2011, **53**: 3742-3746.

Opeka MM, Talmy IG, Wuchina EJ, et al. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds. *J Eur Ceram Soc* 1999, **19**: 2405-2414.

Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory Diborides of Zirconium and Hafnium. *J Am Ceram Soc* 2010, **90**: 1347-1364.

Tu R, Xiao B, Zhang S, et al. Mechanical, electrical and thermal properties of ZrC-ZrB$_2$-SiC ternary eutectic composites prepared by arc melting. *J Eur Ceram Soc* 2018, **38**: 3759-3766.

Xiang MY, Gu JF, Ji W, et al. Reactive Spark Plasma Sintering and Mechanical Properties of ZrB$_2$-SiC-ZrC Composites from ZrC-B$_4$C-Si System. *Ceram Int* 2018, **44**: 8417-8422.

Guo SQ, Kagawa Y, Nishimura T, et al. Mechanical and physical behavior of spark plasma sintered ZrC-ZrB$_2$-SiC composites. *J Eur Ceram Soc* 2008, **28**: 1279-1285.

Wu WW, Zhang GJ, Kan YM et al. Reactive Hot Pressing of ZrB$_2$-SiC-ZrC Composites at 1600°C. *J Am Ceram Soc* 2008, **91**: 2501-2508.

Zhang XH, Qu Q, Han JC, et al. Microstructural features and mechanical properties of ZrB$_2$-SiC-ZrC composites fabricated by hot pressing and reactive hot pressing. *Scr Mater* 2008, **59**: 753-756.

Bull J, White MJ, Kaufman L. Ablation resistant zirconium and hafnium ceramics. *US*. 1998.

Monteverde F. Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB$_2$. *Appl Phys Mater Sci Process* 2006, **82**: 329-337.

King DS, Hilmas GE, Fahrenholtz WG. Plasma arc welding of ZrB$_2$-20 vol% ZrC ceramics. *J Eur Ceram Soc* 2014, **34**: 3549-3557.
[16] Xu L, Huang CZ, Liu HL, et al. In situ synthesis of ZrB$_2$-ZrC$_x$ ceramic tool materials toughened by elongated ZrB$_2$ grains. *Mater Des* 2013, **49**: 226-233.

[17] He F, Liu YS, Tian Z et al. Improvement of the strength and toughness of carbon fiber/SiC composites via chemical vapor infiltration-grown SiC nanowire interphases. *Ceram Int* 2018, **44**: 2311-2319.

[18] Wang WY, Fu QG, Tan BY. Effect of in-situ grown SiC nanowires on the mechanical properties of HfC-ZrB$_2$-SiC modified C/C composites. *J Alloys Compd* 2017, **726**: 866-874.

[19] Huang JF, Zhou L, Cao LY, et al. Effect of the incorporation of SiC nanowire on mullite/SiC protective coating for carbon/carbon composites. *Corros Sci* 2016, **107**: 85-95.

[20] Yang W, Araki H, Tang CC, et al. Single-Crystal SiC Nanowires with a Thin Carbon Coating for Stronger and Tougher Ceramic Composites. *Adv Mater* 2005, **17**: 1519-1523.

[21] Wang C, Xia L, Zhong B, et al. Fabrication and mechanical properties of carbon fibers/lithium aluminosilicate ceramic matrix composites reinforced by in-situ growth SiC nanowires. *J Eur Ceram Soc* 2019, **39**: 4625-4633.

[22] Zhang ZF, Sha JJ, Dai JX, et al. Enhanced fracture properties of ZrB$_2$-based composites by in-situ grown SiC nanowires. *Adv Appl Ceram* 2019, **118**: 137-144.

[23] Zhong ZX, Yan LW, Liu L, et al. Fabrication of modified ultra high-temperature ceramic hybrid powders using in situ grown SiC nanowires. *Ceram Int* 2017, **43**: 3462-3464.

[24] Vorotilo S, Potanin AY, Loginov PA, et al. Combustion synthesis of SiC-based ceramics reinforced by discrete carbon fibers with in situ grown SiC nanowires. *Ceram Int* 2020, **46**: 7861-7870.

[25] Liu CQ, Zhang LY, Yuan XX, et al. Preparation of ZrB$_2$-ZrC-SiC-ZrO$_2$ nanopowders with in-situ grown homogeneously dispersed SiC nanowires. *Mater Des* 2020, **196**: 109186.

[26] Hao YJ, Wagner JB, Su DS, et al. Beaded silicon carbide nanochains via
carbothermal reduction of carbonaceous silica xerogel. *Nanotechnology* 2006, *17*: 2870-2874.

[27] Chu YH, Li HJ, Fu QG, et al. Bamboo-shaped SiC nanowire-toughened SiC coating for oxidation protection of C/C composites. *Corros Sci* 2013, *70*: 11-16.

[28] Tao XY, Liu J, Koley G, et al. B/SiOx Nanonecklace Reinforced Nanocomposites by Unique Mechanical Interlocking Mechanism. *Adv Mater* 2008, *20*: 4091-4096.

[29] Huang ZH, Liu HT, Chen K, et al. Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method. *RSC Adv* 2014, *4*: 18360-18364.

[30] Xin LP, Shi Q, Chen JJ, et al. Morphological evolution of one-dimensional SiC nanomaterials controlled by sol-gel carbothermal reduction. *Mater Charact* 2012, *65*: 55-61.

[31] Jaworska L, Panasiuk J, Putyra P, et al. The influence of powder characteristics on the sintering behaviour and impurity content of spark-plasma-sintered zirconium. *Int J Refract Met Hard Mater* 2019, *82*: 259-267.

[32] Liang MS, Li F, Ma XF, et al. Syntheses of ZrC-SiC nanopowder via sol-gel method. *Ceram Int* 2016, *42*: 1345-1351.

[33] Gleiter H. Nanostructured materials: state of the art and perspectives. *Nanostructured Mater* 1995, *6*: 3-14.

[34] Sawaguchi A, Toda K, Niihara K. Mechanical and Electrical Properties of Silicon Nitride-Silicon Carbide Nanocomposite Material. *J Am Ceram Soc* 1991, *74*: 1142-1144.

[35] Ionescu E, Kleebe HJ, Riedel R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. *Chem Soc Rev* 2012, *41*: 5032-5052.

[36] Venugopal S, Boakye EE, Paul A, et al. Sol-Gel Synthesis and Formation Mechanism of Ultrahigh Temperature Ceramic: HfB$_2$. *J Am Ceram Soc* 2014, *97*: 92-99.

[37] Ang C, Seeber A, Wang K, et al. Modification of ZrB$_2$ powders by a sol-gel ZrC
precursor-A new approach for ultra high temperature ceramic composites. *J Asian Ceram Soc* 2013, 1: 77-85.

[38] Dolle M, Gosset D, Bogicevic C, *et al.* Synthesis of nanosized zirconium carbide by a sol-gel route. *J Eur Ceram Soc* 2007, 27: 2061-2067.

[39] Zhang Y, Li RX, Jiang YS, *et al.* Morphology evolution of ZrB$_2$ nanoparticles synthesized by sol-gel method. *J Solid State Chem* 2011, 184: 2047-2052.

[40] Wu RB, Li BS, Gao MX, *et al.* Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties. *Nanotechnology* 2008, 19: 35602-35602.

[41] Campbell IH, Fauchet PM. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. *Solid State Commun* 1986, 58: 739-741.

[42] Sasaki Y, Nishina Y, Sato M, *et al.* Raman study of SiC fibres made from polycarbosilane. *J Mater Sci* 1987, 22: 443-448.

[43] Liu LZ, Wang J, Wu XL, *et al.* Longitudinal optical phonon-plasmon coupling in luminescent 3C-SiC nanocrystal films. *Opt Lett* 2010, 35: 4024-4026.

[44] Wieligor M, Wang YJ, Zerda TW. Raman spectra of silicon carbide small particles and nanowires. *J Phys Condens Matter* 2005, 17: 2387-2395.

[45] Liu CQ, Chang XJ, Wu YT, *et al.* Effect of SiC content on microstructure evolution of ZrB$_2$-ZrC-SiC ceramic in sol-gel process. *Vacuum* 2020, 177: 109430.

[46] Alex AS, Bhuvaneswari S, Chandran SC, *et al.* Microstructure and phase evolution in pyrolysed short fibre reinforced polymethylsilsesquioxane-phenolic interpenetrating networks. *J Anal Appl Pyrolysis* 2018, 129: 241-247.

[47] Wu ZH, Zheng HK, Zhang GL, *et al.* Synthesis of diameter-fluctuating silicon carbide nanowires for excellent microwave absorption. *Mater Chem Phys* 2020, 244: 122648.

[48] Shen ZZ, Chen JH, Li B, *et al.* Tunable fabrication and photoluminescence property of SiC nanowires with different microstructures. *Appl Surf Sci* 2020, 506: 144979.