New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation

Hadi Rezazadeh1,*, Muhammad Younis2, Shafqat-Ur-Rehman2, Moostafa Eslami3, Muhammad Bilal2, Usman Younas2

1 Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran.
2 Punjab University College of Information Technology, University of the Punjab, Lahore 54000, Pakistan.
3 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

Abstract

In this research work, we successfully construct various kinds of exact traveling wave solutions such as trigonometric like, singular and periodic wave solutions as well as hyperbolic solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation (CNLSE) which is used as a governing equation to discuss the wave in the quantum field theory. The mechanisms used to obtain these solutions are extended rational sine-cosine/sinh-cosh and the constraint conditions for the existence of valid solutions are also given. The attained results exhibit that the proposed techniques are a significant addition for exploring several types of nonlinear partial differential equations in applied sciences. Moreover, 3D, 2D-polar, and contour profiles are depicted for showing the physical behavior of the reported solutions by setting suitable values of unknown parameters.

keyword: Exact solutions; (2+1) CNLSE; Extended rational sine-cosine/sinh-cosh techniques

1 Introduction

During the past few decades, nonlinear partial differential equations (NLPDEs) have gained great attention to scientific societies. Diverse complex nonlinear physical phenomena such as fluid mechanics, plasma physics, solid-state physics, chemical physics, geochemistry, optical fiber, quantum field theory, mathematical biology, etc., are modeled in the form of NLPDEs. To see the behavior of these intricate phenomena, it is necessary to find the solution to the governing equation. For this, we need to extract the exact solution of the NLPDEs. Finding the analytic solutions of NLPDEs has the importance to discuss the stability of numerical solutions and also the development of a wide range of new mathematical solvers to simplify the routine calculation. Therefore, the foremost concern for the researchers is to find the exact solutions of NLPDEs. For this sake, various powerful techniques...
have been developed for finding the analytic solutions of NLPDEs by using different symbolic computation like Mathematica, Matlab, and Maple [1–27]. The study of quantum field theory is still booming, as the uses of its mechanism to many physical problems. The quantum hall effect is a quantum-mechanical version of the hall effect that can be observed in a two-dimensional electron system subject to strong magnetic fields and low temperatures. The hall conductance undergoes quantum hall transitions to take quantized values at a certain level. The prominent feature of the quantum hall effect is the persistence of the quantization when the electron density is varied.

In two dimensions, when electrons are subjected to a magnetic field then they follow circular cyclotron orbits. When the system is treated quantum mechanically, these orbits are quantized. Schrödinger’s equation works as a practical model to determine the values of these energy levels. Quantum field theory remains one of the most dynamic areas of theoretical physics today, providing a common language to several other branches of physics. Solitary waves play an important role in the non-perturbative developments in the quantum field theory. Recently, the CNLSE has been analyzed by a number of effective approaches [28–39] which provide effective outcomes in diverse areas of nonlinear sciences.

Therefore, in the present work, the main goal is to seek exact traveling wave solutions of (2+1)-dimensional CNLSE employing new extended rational sine-cosine method and extended rational sinh-cosh method [40, 41]. The acquired solutions exhibit that the extended rational sine-cosine and rational sinh-cosh approaches are simple and efficient mathematical tools for investigating several complex nonlinear models in the fields of nonlinear sciences.

The (2+1)-dimensional CNLSE with constant coefficients is given by [39]
\[i\Theta_t + a(\Theta_{xx} + \Theta_{yy}) + i(b_1(\Theta\Theta_x^* - \Theta^*\Theta_x) + b_2(\Theta\Theta_y^* - \Theta^*\Theta_y))\Theta = 0, \] (1)

where \(\Theta \) is the complex function of \(x, y \) and \(t \), respectively denote the scaled spatial and time coordinates, while \(a \) indicates the coefficient of the dispersion term. Also \(b_1, b_2 \) are nonlinear coupling constant terms. This type of nonlinearity is called current density. The inverse scattering transform method cannot integrate the Eq. (1) as it fails the Painleve test of integrability. It is to be emphasized that the above equation is not invariant under the Galilean transformation.

The basic feature of applied techniques is to establish some elementary relationships between NLPDEs and other simple NLODEs. It has been examined that with the aid of simple solutions and solvable ODEs, different kinds of exact traveling wave solutions of some complicated NLPDEs can be easily obtained. This is the key concept of the above techniques, while the primary benefit of applying techniques is that we have achieved in a single move to get various types of new analytic solutions and provide us a guideline that how to organize these solutions. This method is very, consistent, efficient, reliable and much more practical, to obtain the wide range of traveling wave solutions for complex NLPDEs that appear in many fields like, telecommunication engineering, mathematical biology, mathematical physics, optical fiber and vice versa.

This piece of article is segregated as follow: In section 2, key points of the proposed methods are presented. In section 3, applications of proposed methods are presented. Graphical representation is depicted in section 4. Results and discussion are demonstrated in section 5. Lastly, the conclusive closure is revealed in section 6.

2 Key points of the proposed methods

In this section we describe the first step of the extended methods for seeking the analytic solutions of PDEs
\[F \left(u, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x^2}, \cdots \right) = 0, \] (2)
where \(u = u(x, y, t) \) is an unknown function and \(F \) is a polynomial in \(u \) and its partial derivatives. Suppose that

\[
u(x, y, t) = u(\xi), \quad \xi = \alpha x + \beta y - \nu t,
\]

where \(x, y \) and \(t \) are spatial domains and time, respectively. Then, by using (3), Eq. (2) can be turned into following ODE w.r.t. \(\xi \)

\[
G(u, u', u'', \cdots) = 0.
\]

In next we discuss the exact solutions of Eq. (4) by using the extended rational techniques.

2.1 Extended rational sin-cos method

According to this method, we assume that the analytic solution can be expressed in the following forms

\[
u(\xi) = \frac{a_0 \sin(\eta \xi)}{a_2 + a_1 \cos(\eta \xi)}, \quad \cos(\eta \xi) \neq -\frac{a_2}{a_1}, \tag{5}
\]

\[
u(\xi) = \frac{a_0 \cos(\eta \xi)}{a_2 + a_1 \sin(\eta \xi)}, \quad \sin(\eta \xi) \neq -\frac{a_2}{a_1}, \tag{6}
\]

where \(a_0, a_1 \) and \(a_2 \) are parameters to be found in terms of the other parameters. The non-zero constant \(\eta \) is the wave number. The derivatives of the predicted solutions are

\[
u'(\xi) = -\frac{a_0 \mu [\sin(\eta \xi) a_2 + a_1]}{[a_2 + a_1 \sin(\mu \xi)]^2}, \tag{7}
\]

\[
u''(\xi) = \frac{a_0 \mu^2 \sin(\eta \xi) [2a_1^2 + a_1 \cos(\eta \xi) a_2 - a_2^2]}{[a_2 + a_1 \cos(\eta \xi)]^3}, \tag{8}
\]

in the first form and

\[
u'(\xi) = -\frac{a_0 \mu [\sin(\eta \xi) a_2 + a_1]}{[a_2 + a_1 \sin(\eta \xi)]^2}, \tag{10}
\]

\[
u''(\xi) = \frac{a_0 \mu^2 \cos(\eta \xi) [2a_1^2 + a_1 \sin(\eta \xi) a_2 - a_2^2]}{[a_2 + a_1 \sin(\eta \xi)]^3}, \tag{11}
\]

in the second form. We substitute Eqs. (7) or (10) into the reduced form of the governing equation obtained above in Eq. (4). On collecting the same power coefficients of the \(\cos^m(\eta \xi) \) or \(\sin^n(\eta \xi) \) and equating to zero, we have a set of algebraic expression. The obtained algebraic polynomial produce the values of the coefficients involved. After determine \(a_0, a_1, a_2, c \) and \(\eta \) in terms of other parameters and substitute into Eq. (5) and Eq. (6), one gets solutions for Eq. (4) in rational sin-cos forms.
2.2 Extended rational sinh-cosh method

According to this method, which was introduced by Darvishiet al. [40], we suppose that the exact solution can be written in the following forms

\[u(\xi) = \frac{a_0 \sinh(\eta \xi)}{a_2 + a_1 \cosh(\eta \xi)}, \quad \cosh(\eta \xi) \neq -\frac{a_2}{a_1}, \quad (13) \]

\[u(\xi) = \frac{a_0 \cosh(\eta \xi)}{a_2 + a_1 \sinh(\eta \xi)}, \quad \sinh(\eta \xi) \neq -\frac{a_2}{a_1}, \quad (14) \]

where \(a_0, a_1 \) and \(a_2 \) are parameters to be found in terms of the other parameters. The non-zero constant \(\eta \) is the wave number. The derivatives of the predicted solutions are

\[u'(\xi) = \frac{a_0 \eta [\cosh(\eta \xi) a_2 + a_1]}{[a_2 + a_1 \sinh(\eta \xi)]^2}, \quad (15) \]

\[u''(\xi) = -\frac{a_0 \eta^2 \sinh(\eta \xi) [2a_1^2 + a_1 \cosh(\eta \xi) a_2 - a_2^2]}{[a_2 + a_1 \cosh(\eta \xi)]^3}, \quad (16) \]

in the first form and

\[u'(\xi) = \frac{a_0 \eta [\sinh(\eta \xi) a_2 - a_1]}{[a_2 + a_1 \sinh(\eta \xi)]^2}, \quad (18) \]

\[u''(\xi) = \frac{a_0 \eta^2 \cosh(\eta \xi) [2a_1^2 - a_1 \sinh(\eta \xi) a_2 + a_2^2]}{[a_2 + a_1 \sinh(\eta \xi)]^3}, \quad (19) \]

in the second form. We substitute Eqs. (15) or (18) into the reduced form of the governing equation obtained above in Eq. (4). On collecting the same power coefficients of the \(\cosh^{m}(\eta \xi) \) or \(\sinh^{m}(\eta \xi) \) and equating to zero, we have a set of algebraic expression. The obtained algebraic polynomial produce the values of the coefficients involved. After determine \(a_0, a_1, a_2, c \) and \(\eta \) in terms of other parameters and substitute into Eq. (13) and Eq. (14), one gets solutions for Eq. (4) in rational sinh-cosh forms.

3 Applications

For Eq. (1), we start with the complex wave transformation:

\[\Theta(x, y, t) = \Psi(\tau) e^{i\Phi}, \quad \tau = \alpha x + \beta y - \nu t, \quad \Phi = px + qy + \omega t + \varphi, \quad (21) \]

where \(c, \nu, \varphi, \omega \) and \(k \) are parameters, which represent the amplitude component of the soliton, velocity of soliton, phase constant, frequency and wave number respectively. Substituting (21) into Eq. (1), we get the real part

\[a(\alpha^2 + \beta^2) \Psi'' + 2(p \beta + q \alpha) \Psi' - (a(p^2 + q^2) + \omega) \Psi = 0, \quad (22) \]

and the relation

\[\nu = 2a(\alpha p + \beta q), \quad (23) \]
Set-2

On solving these algebraic equations, we get the following solution sets as:

3.1 Solutions via extended rational sine-cosine method

Suppose that (22) has the solutions in the form

\[\Psi(\tau) = \frac{a_0 \sin(\eta \tau)}{a_2 + a_1 \cos(\eta \tau)}. \]

(24)

Substituting Eq. (24) and its derivative into Eq. (22) and the coefficients with the same power of \(\cos(\eta \tau)^m \) equating to zero and resultantly, we get the following set of algebraic equations by using Mathematica:

\[
\begin{align*}
\cos(\eta)^2 : & \quad -2a_0 b_1 p - 2a_0 b_2 q - a a_1 p^2 - a a_1 q^2 - a_2^2 \omega = 0, \\
\cos(\eta)^1 : & \quad a a_1 a_2 \eta^2 + a a_1 a_2 \beta^2 \eta^2 - 2a a_1 a_2 p^2 - 2a a_1 a_2 q^2 - 2a_1 a_2 \omega = 0, \\
\cos(\eta)^0 : & \quad 2a a_1 \eta^2 - a a_1^2 \eta^2 + 2a a_2 \beta^2 \eta^2 - a a_2^2 \beta^2 \eta^2 - a a_2^2 \eta^2 - a_2^2 \omega + 2a_0 b_1 p + 2a_0 b_2 q = 0.
\end{align*}
\]

On solving these algebraic equations, we get the following solution sets as:

Set-1

\[
\eta = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{2a(\alpha^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} a_1, \quad a_1 = a_1, \quad a_2 = 0.
\]

Set-2

\[
\eta = \pm \sqrt{\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} a_1, \quad a_1 = a_1, \quad a_2 = \pm a_1.
\]

For set 1 the solutions of Eq. (1) can be written as:

\[
\Theta_{1,1}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \tan \left[\sqrt{\frac{a(p^2 + q^2) + \omega}{2a(\alpha^2 + \beta^2)}} (\alpha x + \beta y - vt) \right] e^{i(px + qy + \omega t + \varphi)}. \tag{25}
\]

\[
\Theta_{1,2}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \tan \left[\sqrt{\frac{a(p^2 + q^2) + \omega}{2a(\alpha^2 + \beta^2)}} (\alpha x + \beta y - vt) \right] e^{i(px + qy + \omega t + \varphi)}. \tag{26}
\]

Similarly, for set 2 the solutions of Eq. (1) can be written as:

\[
\Theta_{2,1}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \sin \left[\sqrt{\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)}} (\alpha x + \beta y - vt) \right] \frac{1}{1 + \cos \left[\sqrt{\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)}} (\alpha x + \beta y - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \tag{27}
\]

\[
\Theta_{2,2}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \sin \left[\sqrt{\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)}} (\alpha x + \beta y - vt) \right] \frac{1}{1 - \cos \left[\sqrt{\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)}} (\alpha x + \beta y - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \tag{28}
\]
\[\Theta_{2,3}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \sin \left[\frac{2a(p^2 + q^2) + \omega}{a(a^2 + \beta^2)} (\alpha x + \beta y - vt) \right] \frac{e^{i(px+qy+\omega t+\phi)}}{1 + \cos \left[\frac{2a(p^2 + q^2) + \omega}{a(a^2 + \beta^2)} (\alpha x + \beta y - vt) \right]} \]

(29)

\[\Theta_{2,4}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \sin \left[\frac{2a(p^2 + q^2) + \omega}{a(a^2 + \beta^2)} (\alpha x + \beta y - vt) \right] \frac{e^{i(px+qy+\omega t+\phi)}}{1 - \cos \left[\frac{2a(p^2 + q^2) + \omega}{a(a^2 + \beta^2)} (\alpha x + \beta y - vt) \right]} \]

(30)

Consider the Eq. (22) has solutions in the form, as

\[\Psi(\tau) = \frac{a_0 \cos(\eta \tau)}{a_2 + a_1 \sin(\eta \tau)} \]

(31)

Substituting Eq. (31) and its derivative into Eq. (22) and the coefficients with the same power of \(\sin(\eta \tau)^m \) equating to zero and resultantly, we get the following set of algebraic equations by using Mathematica:

\[\sin(\eta \tau)^2 : \quad 2a_0^2 b_1 p + 2a_0^2 b_2 q + aa_1 p^2 + aa_1 q^2 + a_1^2 \omega = 0, \]
\[\sin(\eta \tau)^1 : \quad 2a_1 a_2 p^2 + 2a_1 a_2 q^2 + 2a_1 a_2 \omega a - a_2 a_2 \omega a - aa_1 a_2 \beta^2 \eta^2 = 0, \]
\[\sin(\eta \tau)^0 : \quad aa_2^2 \beta^2 \eta^2 + aa_2^2 p^2 - aa_2^2 q^2 + a_2^2 \omega - 2aa^2 a_2^2 \eta^2 + aa^2 a_2^2 \eta^2 - 2aa_2^2 \beta^2 \eta^2 = 0. \]

On solving these algebraic equations, we get the following solution sets as:

Set-3

\[\eta = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{2a(a^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} a_1, \quad a_2 = a_1, \quad a_2 = 0. \]

Set-4

\[\eta = \pm \sqrt{\frac{2a(p^2 + q^2) + \omega}{a(a^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} a_1, \quad a_1 = a_1, \quad a_2 = \pm a_1. \]

For set 3 the solutions of Eq. (1) can be written as:

\[\Theta_{3,1}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \cot \left[\frac{a(p^2 + q^2) + \omega}{2a(a^2 + \beta^2)} (\alpha x + \beta y - vt) \right] e^{i(px+qy+\omega t+\phi)}. \]

(32)

\[\Theta_{3,2}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \cot \left[\frac{a(p^2 + q^2) + \omega}{2a(a^2 + \beta^2)} (\alpha x + \beta y - vt) \right] e^{i(px+qy+\omega t+\phi)}. \]

(33)
Similarly, for set 4 the solutions of Eq. (1) can be written as:

\[
\Theta_{41}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \frac{\cos \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]}{1 + \sin \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \tag{34}
\]

\[
\Theta_{42}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \frac{\cos \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]}{1 - \sin \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \tag{35}
\]

\[
\Theta_{43}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \frac{\cos \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]}{1 + \sin \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \tag{36}
\]

\[
\Theta_{44}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{-2(pb_1 + qb_2)}} \frac{\cos \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]}{1 - \sin \left[\frac{2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)} (\alpha x + \beta y - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \tag{37}
\]

3.2 Solutions via extended rational sinh-cosh method

Assume that the Eq. (22) has solutions of the form

\[
\Psi(\tau) = \frac{a_0 \sinh(\eta \tau)}{a_2 + a_1 \cosh(\eta \tau)} \tag{38}
\]

Substituting Eq. (38) and its derivative into Eq. (22) and the coefficients with the same power of \(\cosh(\eta \tau)^m\) equating to zero and resultantly, we get the following set of algebraic equations by using Mathematica:

\[
\cosh(\eta \tau)^2 : \quad 2a_0^2 b_1 p + 2a_0^2 b_2 q - a_1^2 p^2 - a_1^2 q^2 - a_1^2 \omega = 0,
\]

\[
\cosh(\eta \tau)^1 : \quad -a_0^2 a_1 a_2^2 \eta^2 - a_1 a_2^2 \eta^2 - 2a_0 a_1 a_2 p^2 - 2a_0 a_1 a_2 q^2 - 2a_1 a_2 \omega = 0,
\]

\[
\cosh(\eta \tau)^0 : \quad -2a_0^2 a_1 \eta^2 + a_0^2 a_2 \eta^2 - 2a_0 a_1 a_2^2 \eta^2 + a_0^2 a_2^2 \eta^2 - 2a_0 b_1 p - 2a_0 b_2 q - a_1^2 p^2 - a_1^2 q^2 - a_1^2 \omega = 0.
\]

On solving these algebraic equations, we get the following solution sets as:

Set-5

\[
\eta = \pm \sqrt{\frac{-a(p^2 + q^2) + \omega}{2a(\alpha^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} a_1, \quad a_1 = a_1, \quad a_2 = 0.
\]

Set-6

\[
\eta = \pm \sqrt{\frac{-2a(p^2 + q^2) + \omega}{a(\alpha^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} a_1, \quad a_1 = a_1, \quad a_2 = \pm a_1.
\]
For set 5 the solutions of Eq. (1) can be written as:

\[\Theta_{5,1}(x,y,t) = \sqrt{\frac{a(p^2+q^2) + \omega}{2(pb_1+qb_2)}} \tanh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right] e^{i(px+qy+\omega t+\varphi)}. \] (39)

\[\Theta_{5,2}(x,y,t) = -\sqrt{\frac{a(p^2+q^2) + \omega}{2(pb_1+qb_2)}} \tanh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right] e^{i(px+qy+\omega t+\varphi)}. \] (40)

Similarly, for set 6 the solutions of Eq. (1) can be written as:

\[\Theta_{6,1}(x,y,t) = \sqrt{\frac{a(p^2+q^2) + \omega}{2(pb_1+qb_2)}} \sinh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right] \frac{1}{1 + \cosh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right]} e^{i(px+qy+\omega t+\varphi)}. \] (41)

\[\Theta_{6,2}(x,y,t) = \sqrt{\frac{a(p^2+q^2) + \omega}{2(pb_1+qb_2)}} \sinh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right] \frac{1}{1 - \cosh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right]} e^{i(px+qy+\omega t+\varphi)}. \] (42)

\[\Theta_{6,3}(x,y,t) = -\sqrt{\frac{a(p^2+q^2) + \omega}{2(pb_1+qb_2)}} \sinh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right] \frac{1}{1 + \cosh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right]} e^{i(px+qy+\omega t+\varphi)}. \] (43)

\[\Theta_{6,4}(x,y,t) = -\sqrt{\frac{a(p^2+q^2) + \omega}{2(pb_1+qb_2)}} \sinh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right] \frac{1}{1 - \cosh \left[\frac{\sqrt{-2(ap^2+aq^2+\omega)}}{a(\alpha^2+\beta^2)}(\alpha x + \beta y - vt) \right]} e^{i(px+qy+\omega t+\varphi)}. \] (44)

OR

Consider the Eq. (22) has the solutions in the form as

\[\Psi(\tau) = \frac{a_0 \cosh(\eta \tau)}{a_2 + a_1 \sinh(\eta \tau)}. \] (45)

Substituting Eq. (45) and its derivative into Eq. (22) and the coefficients, with the same power of \(\sinh(\eta \tau)^m \) equating to zero and resultantly, we get the following set of algebraic equations by using Mathematica:

\[\sinh(\eta \tau)^2 : \quad 2a_0^2b_1p + 2a_0^2b_2q - aa_1^2p^2 - aa_1^2q^2 - a_1^2\omega. \]
\[\sinh(\eta \tau)^1 : \quad -aa^2a_1a_2\eta^2 - aa_1a_2b_2^2\eta^2 - 2aa_1a_2p^2 - 2aa_1a_2q^2 - 2a_1a_2\omega. \]
\[\sinh(\eta \tau)^0 : \quad 2a_0^2a_1^2\eta^2 + aa^2a_1^2\eta^2 + 2aa_1^2b_2^2\eta^2 + aa_1^2b_2^2\eta^2 + 2a_0^2b_1p + 2a_0^2b_2q - aa_1^2q^2 - a_1^2p^2 - aa_2^2q^2 - a_2^2\omega. \]
On solving these algebraic equations, we get the following solution sets as:

Set-7

\[\eta = \pm \sqrt{\frac{-(ap^2 + aq^2 + \omega)}{2a(a^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}}a_1, \quad a_1 = a_1, \quad a_2 = 0. \]

Set-8

\[\eta = \pm \sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}, \quad a_0 = \pm \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}}a_1, \quad a_1 = a_1, \quad a_2 = \pm a_1. \]

For set 7 the solutions of Eq. (1) can be written as:

\[\Theta_{7,1}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} \frac{\cosh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]}{1 + \sinh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \] \hspace{1cm} (46)

\[\Theta_{7,2}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} \frac{\cosh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]}{1 - \sinh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \] \hspace{1cm} (47)

Similarly, for set 8 the solutions of Eq. (1) can be written as:

\[\Theta_{8,1}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} \frac{\cosh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]}{1 + \sinh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \] \hspace{1cm} (48)

\[\Theta_{8,2}(x, y, t) = \sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} \frac{\cosh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]}{1 - \sinh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \] \hspace{1cm} (49)

\[\Theta_{8,3}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} \frac{\cosh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]}{1 + \sinh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \] \hspace{1cm} (50)

\[\Theta_{8,4}(x, y, t) = -\sqrt{\frac{a(p^2 + q^2) + \omega}{2(pb_1 + qb_2)}} \frac{\cosh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]}{1 - \sinh \left[\sqrt{\frac{-2(ap^2 + aq^2 + \omega)}{a(a^2 + \beta^2)}}(ax + by - vt) \right]} e^{i(px + qy + \omega t + \varphi)}. \] \hspace{1cm} (51)

4 Graphical Representations

In this section, some of the graphical representations of the acquired exact traveling wave solutions to the CNLSE obtained by the extended rational sine-cosine/sinh-cosh techniques. The 3D plots for the modulus, real and
imaginary parts, of the exact traveling wave solutions \(\theta_{2,2}(x,t) \), \(\theta_{3,1}(x,t) \), \(\theta_{5,1}(x,t) \), and \(\theta_{8,3}(x,t) \) are displayed in Figures. 1(a), 2(a), 3(a) and 4(a), respectively. Figures. 1(b), 2(b), 3(b) and 4(b), demonstrate the shape of contour plot of, indicated by the for the modulus, real and imaginary parts, of the exact traveling wave solutions \(\theta_{2,2}(x,t) \), \(\theta_{3,1}(x,t) \), \(\theta_{5,1}(x,t) \) and \(\theta_{8,3}(x,t) \). The 2D line plot of the modulus, real and imaginary parts, of the exact traveling wave solutions \(\theta_{2,2}(x,t) \), \(\theta_{3,1}(x,t) \), \(\theta_{5,1}(x,t) \) and \(\theta_{8,3}(x,t) \). are presented in Figs. 1(c), 2(c), 3(c) and 4(c) with \(t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1 \).
Figure 1. (a) 3D-plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{2,2}$ (b) the contour plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{2,2}$ (c) and 2D-polar plot of the modulus (left), real (middle) and imaginary (right) parts of the travelling wave solution of $\theta_{2,2}$ at $t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1$, respectively, when $p = 1.5$, $q = 1.5$, $a = 1$, $\omega = 2.5$, $b_1 = -1$, $b_2 = -0.5$, $\alpha = 1.5$, $\beta = 1$, $\varphi = 1$, $\nu = 1.5$ and $y = 1$.

$\theta_{3,1}$	$\text{Re}(\theta_{3,1})$	$\text{Im}(\theta_{3,1})$

(a)

$\theta_{3,1}$	$\text{Re}(\theta_{3,1})$	$\text{Im}(\theta_{3,1})$

(b)

$\theta_{3,1}$	$\text{Re}(\theta_{3,1})$	$\text{Im}(\theta_{3,1})$

(c)
Figure 2. (a) 3D-plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{3,1}$ (b) the contour plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{3,1}$ (c) 2D-polar plot of the modulus (left), real (middle) and imaginary (right) parts of the travelling wave solution of $\theta_{3,1}$ at $t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8, t = 1$, respectively, when $p = 1.5, q = 1, a = 2.5, \omega = 1.5, b_1 = -3, b_2 = -1, \alpha = 0.5, \beta = 1, \varphi = 2, v = 1$ and $y = 1$.
Figure 3. (a) 3D-plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{5,1}$ (b) the contour plot of the modulus (left), real (middle) and imaginary (right) parts of the travelling wave solution of $\theta_{5,1}$ (c) 2D-polar plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{5,1}$ at $t = 0$, $t = 0.2$, $t = 0.4$, $t = 0.6$, $t = 0.8$, $t = 1$, respectively, when $p = 0.5$, $q = 0.2$, $a = 3$, $\omega = 3$, $b_1 = 2$, $b_2 = 1.5$, $\alpha = 2$, $\beta = 1$, $\varphi = 2$, $v = 2$ and $y = 1$.
Figure 4. (a) 3D-plot of the modulus (left), real (middle) and imaginary (right) parts of the exact traveling wave solution of $\theta_{8,3}$ (b) the contour plot of the modulus (left), real (middle) and imaginary (right) parts of exact traveling wave solution of $\theta_{8,3}$ (c) 2D-polar plot of the modulus (left), real (middle) and imaginary (right) parts of the travelling wave solution of $\theta_{8,3}$ at $t = 0$, $t = 0.2$, $t = 0.4$, $t = 0.6$, $t = 0.8$, $t = 1$, respectively, when $p = 0.5$, $q = 0.75$, $a = 1$, $\omega = 2.5$, $b_1 = 2$, $b_2 = 0.5$, $\alpha = 1.5$, $\beta = 2$, $\varphi = 1.5$, $\nu = 1$ and $y = 1$.

5 Results and discussion

In this section we compare our results with some existing results in the literature. In this study, we have applied two innovative integrations norms to the (2+1)-dimensional CNLSE. Different kinds of solutions like trigonometric like, singular and periodic wave solutions as well as hyperbolic solutions solutions to the (2+1)-dimensional CNLSE are extracted. In published work, we have observed that, N. Raza and S. Arshad [28] discussed the different types of chiral solitons for the proposed model by using two robust and efficient integration tools. The chiral solitons are constructed for governing model via exp($-\varphi(\rho)$)-expansion and modified simple function methods by A. Javid and N. Raza [29]. Moreover N. Raza and A. Javid [36] derived optical dark and dark-singular soliton solutions of (2+1)-dimensional CNLSE through extended direct algebraic and extended trial equation methods. We observe that the retrieved solutions are new and to the best of our knowledge the applications of these techniques to the (2+1)-dimensional CNLSE have not been reported in the literature beforehand and could be beneficial to understand the different physical behaviors. For instance, hyperbolic functions such as the hyperbolic tangent emerge in the calculation and rapidity of special relativity while, the hyperbolic cotangent arises in the Langevin function for magnetic polarization [42]. The graphical description of derived solutions have been articulated in the mentioned figures by assigning the different values of the involved parameters.

6 Conclusion

In this work, we have investigated diverse exact traveling wave solutions like hyperbolic and trigonometric solutions to (2+1)-dimensional CNLSE with extended rational sine-cosine and rational extended sinh-cosh schemes. These various kinds of solutions are favorable for explaining diverse nonlinear physical phenomena. Our results exhibited that the proposed methods are powerful and can be used to extract exact solutions for other NLPDEs that appear in many fields like engineering, mathematical biology, physics, chemistry, and vice versa. Furthermore, for the physical illustration of the acquired results, we plot 3D, 2D-polar and contour profiles by setting suitable values of involved parameters.

Acknowledgements

This research work has been supported by a research grant from the Amol University of Special Modern Technologies, Amol, Iran.

References

[1] M. Inc, H. Rezazadeh, J. Vahidi, M. Eslami, M. A. Akinlar, M. N. Ali, and Y. M. Chu, New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS MATHEMATICS, 5(6) (2020). 6972-6984.
[2] M. S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, and M. Mirzazadeh, Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods. UPB Scientific Bulletin-Series A-Applied, 80(4) (2018). 267-278.

[3] N. Raza, M. Abdullah and A.R. Butt, Analytical soliton solutions of Biswas-Milovic equation in Kerr and non-Kerr law media. Optik. 157 (2018) 993-1002.

[4] M. Younis, T. A. Sulaiman, M. Bilal, S.U. Rehman and U. Younas, Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72 (2020) 065001.

[5] M. Younis, M. Bilal, S.U. Rehman, U. Younas, and S.T.R. Rizvi, Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect. Int. J. Mod. Phys. B. 34 (2020) 2050113.

[6] H.U. Rehman, M. Younis, S. Jafar, M. Tahir, and M.S. Saleem, Optical Solitons of Biswas-Arshed Model in Birefringent Fiber Without Four Wave Mixing. Optik. 213 (2020) 164669.

[7] N. Raza, M. Abdullah, A.R. Butt, I.G. Murtaza, and Sultan Sial, New exact periodic elliptic wave solutions for extended quantum Zakharov-Kuznetsov equation. Opt. Quant. Elect. 50 (2018) 177.

[8] A. Korkmaz, O.E. Hepson, K. Hosseini, H. Rezazadeh and M. Eslami, Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32 (2018) 567-574.

[9] B. Younas, and M. Younis, Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation. Pramana - J Phys. 94 (2020) 3.

[10] S. Ali, M. Younis, Rogue Wave Solutions and Modulation Instability With Variable Coefficient and Harmonic Potential, Front. Phys. 7 (2020) 255.

[11] W. Gao, M. Senel, G. Yel, H.M. Baskonus, and B. Senel, New complex wave patterns to the electrical transmission line model arising in network system. Aims. Math. 5 (2020) 1881-1892.

[12] D. Lu, A.R. Seadawy, and M. Arshad, Applications of extended simple equation method on unstable nonlinear Shrodingers equations. Optik. 140 (2017) 136-144.

[13] M. Younis, U. Younas, S.U. Rehman, M. Bilal, and A. Waheed, Optical bright-dark and Gaussian soliton with third order dispersion. Optik. 134 (2017) 233-238.

[14] R. M. Jena, S. Chakraverty, H. Rezazadeh, and D. Domiri Ganji, On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions. Math. Methods Appl. Sci. , 43(7) (2020) 3903-3913.

[15] M.M.A. El-Sheikh, A.R. Seadawy, H.M. Ahmed, A.H. Arnous, and W.B. Rabie, Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations. Physica A. 537 (2020) 122662.

[16] H.M. Baskonus, M. Younis, M. Bilal, U. Younas, S.U. Rehman, W. Gao, Modulation instability analysis and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear optics. (2020) 2050404 (15 pages). DOI:10.1142/S0217984920504047

[17] M. Tahir, and A. U. Awan, Optical dark and singular solitons to the Biswas-Arshed equation in birefringent fibers without four-wave mixing. Optik, 207 (2020). 164421.
[18] M. Iqbal, A.R. Seadawy, O.H. Khalil, and D. Lu, Propagation of long internal waves in density stratified ocean for the $(2+1)$-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation. Res. Phys. 16 (2020) 102838.

[19] U. Younas, A.R. Seadawy, M. Younis, S.T.R. Rizvi, Dispersive of propagation wave structures to the dullin-Gottwald-Holm dynamical equation in a shallow water waves. Chin. J. Phys. 68 (2020) 348364.

[20] H. Triki, R.T. Alqahtani, Q. Zhou, and A. Biswas, New envelope solitons for Gerdjikov-Ivanov model in nonlinear optics. Superlattices Microstruct. 111 (2017) 326-334.

[21] N. Cheema, and M. Younis, New and more exact traveling wave solutions to integrable $(2+1)$-dimensional Maccari system, Nonlinear Dyn. 83 (2016) 1395-1401.

[22] K.U. Tariq, A.R. Seadawy, M. Younis, and S.T.R. Rizvi, Dispersive traveling wave solutions to the spacetime fractional equal-width dynamical equation and its applications. Opt. Quant. Elect. 50 (2018) 147.

[23] M. Eslami, and H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo. 53(3) (2016) 475-485.

[24] M. Bilal, A.R. Seadawy, M. Younis, S.T.R. Rizvi, H. Zahed, Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin-Gottwald-Holm system and modulation instability analysis. Math. Methods Appl. Sci. DOI: 10.1002/mma.7013

[25] M. Eslami, M. Mirzazadeh, and A. Biswas, Soliton solutions of the resonant nonlinear Schrödinger's equation in optical fibers with time dependent coefficients by simplest equation approach. J. Mod. Opt. 60 (2013) 16271636.

[26] M. Tahir, A. U. Awan, and H. U. Rehman, Dark and singular optical solitons to the Biswas-Arshed model with Kerr and power law nonlinearity. Optik, 185 (2019) 777-783.

[27] F. Ferdousa, M.G. Hafeza, A. Biswasb, M. Ekicid, Q. Zhoue, M. Alfrasf, S.P. Mosshokoac, and M. Belic, Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp $(-\phi(\xi))$-expansion. Optik. 178 (2019) 439-448.

[28] N. Raza, and S. Arshed, Chiral bright and dark soliton solutions of Schrödinger's equation in $(1+2)$-dimensions. Ain. Shams. Eng. J. https://doi.org/10.1016/j.asej.2020.03.018.

[29] A. Javid, and N. Raza, Chiral solitons of the $(1+2)$-dimensional nonlinear Schrodinger's equation. Mod. Phy. Lett. B. 33 (2019) 1950401.

[30] M. Younis, N. Cheema, S.A. Mahmood, and S.T.R. Rizvi, On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt. Quant. Elect. 48 (2016) 542.

[31] D. Gianzo, J.O. Madsen, and J.S. Guilln, Integrable chiral theories in $(2+1)$ dimensions, Nucl. Phys. B. 537 (1999) 586-598.

[32] G. Ebadi, A. Yildirim, and A. Biswas, Chiral solitons with bohm potential using G'/G method and exp function method. Rom. Rep. Phys. 64 (2012) 357-366.

[33] A.G. Johnpillai, A. Yildirim, and A. Biswas, Chiral solitons with Bohm potential by lie group analysis and traveling wave hypothesis, Rom. J. Phys. 57 (2012) 545-554.
[34] A. Biswas, and D. Milovic, Chiral solitons with Bohm potential by He’s variational principle. Phys. Atomic Nuclei. **74** (2011) 781-783.

[35] A. Biswas, Perturbation of chiral solitons. Nucl. Phys. **806** (2009) 457-461.

[36] N. Raza, anad A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation. Waves Random Complex. **29** (2018) 1-13.

[37] M. Eslami, Trial solution technique to chiral nonlinear Schrödinger’s equation in (1+2)-dimensions. Nonlinear Dyn. **85** (2) (2016) 813-816.

[38] K.M. Abdul Al Woadud, D. Kumar, M.J. Islam, M. ImrulKayes, and A.K. Joardar, Analytic solutions of the chiral nonlinear schrödinger equations investigated by an efficient approach, Int. J. Phys. Res. **7** (2019) 94-99.

[39] H. Bulut, T.A. Sulaiman, and B. Demirdag, Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations, Nonlinear Dyn. **91** (2017) 1985-1991.

[40] M.T. Darvishi, M. Najafi, and A. M. Wazwaz, New extended rational trigonometric methods and applications, Waves Random Complex. **30** (2018) 1-22.

[41] S.U. Rehman, J. Ahmad, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing. Alex. Eng. J. DOI.org/10.1016/j.aej.2020.10.055

[42] E.W. Weisstein, Concise Encyclopedia of Mathematics, 2nd edition. New York: CRC Press, (2002).