NMR study of the layered cobalt oxyphosphide Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$

K Magishi1, R Watanabe1, A Hisada1, T Saito1, K Koyama1, S Okada2, Y Kamihara3, N Ohkubo2, S Ban2 and M Matoba3

1 Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
2 Laboratory of Physics, College of Science and Technology, Nihon University, Funabashi 274-8501, Japan
3 Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan

E-mail: magishi@tokushima-u.ac.jp

Abstract. We report the results of 31P-nuclear magnetic resonance (NMR) measurements on the layered cobalt oxyphosphide Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ in order to investigate the magnetic properties at low temperatures from a microscopic viewpoint. The 31P-Knight shifts measured at the resonance peak maximum of Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ have positive values and are T-independent in an entire temperature range, and the absolute value decreases with increasing Fe content. Also, the nuclear spin-lattice relaxation rate $1/T_1$ is almost proportional to the temperature at low temperatures. The magnitude of $1/T_1T$ decreases with increasing the Fe content, which suggests the decrease of the density of states around the Fermi level.

1. Introduction

Since the discovery of iron-based superconductivity in F-doped LaFe(P,As)O$_3$[1, 2], many researchers focus on physical properties on oxypnictides with quasi-two dimensional structure separated by a carrier blocking layer. In the case of Co-substitution in place of Fe, LaCoPO$_3$ and LaCoAsO show weak itinerant ferromagnets with Curie temperatures of about 43 K and 66 K, respectively[3]. In these compounds, it has been proposed that spin fluctuations play an important role in the magnetic behavior[3, 4, 5, 6, 7].

Recently, we have successfully synthesized and evaluated the transport properties of a novel cobalt oxypnictide Sr$_2$ScCoPO$_3$[8], which crystallizes in an unusual intergrowth structure consisting of a CoP layer and a perovskite related K$_2$NiF$_4$-type Sr$_4$Sc$_2$O$_6$ layer. This structure is isomorphic to Sr$_2$ScFePO$_3$ which exhibits superconductivity below 17 K[9]. The electrical resistivity ρ of Sr$_2$ScCoPO$_3$ decreases upon cooling like a metal. However, the superconducting transition is not observed on that of Sr$_2$ScCoPO$_3$. Also, we investigate the effect of changing the number of 3d electrons and show the detailed physical properties[10]. The electrical resistivity ρ's for Sr$_2$ScMPO$_3$ ($M = \text{Ni and } \text{Co}_{0.5}\text{Fe}_{0.5}$) show the metallic behavior similar to that of Sr$_2$ScCoPO$_3$. The value of ρ for Sr$_2$ScNiPO$_3$, where the substitution of Ni at an Co site effectively dopes electrons, is smaller than that for Sr$_2$ScCoPO$_3$. In contrast, the value of ρ for Sr$_2$Sc(Co$_{0.5}$Fe$_{0.5}$)PO$_3$, where partially substitution of Fe at an Co site effectively reduces electrons, is larger than that for Sr$_2$ScCoPO$_3$. Quite recently, the transport
properties of Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ ($0.04 \leq x \leq 0.8$) were reported[11]. The electrical resistivity ρ's for Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ decrease with decreasing temperature like a metal, but the superconducting transition is not observed. The value of ρ increases with increasing the Fe content x.

In the paper, we will report on the 31P-nuclear magnetic resonance (NMR) results of Sr$_2$ScCoPO$_3$ and partially Fe-substituted Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$, and discuss the microscopic electronic states and the variation of the magnetic properties by changing the number of 3d electrons. It is quite helpful to make use of the NMR method for a study of local electronic properties.

2. Experimental
The polycrystalline sample of Sr$_2$ScCoPO$_3$ was synthesized by a standard solid state reaction method in a quartz tube from of CoP, SrO, Sr and Sc$_2$O$_3$. In case of Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$, the starting materials were Co$_{1-x}$Fe$_x$P, SrO, Sr and Sc$_2$O$_3$. The precursor Co$_{1-x}$Fe$_x$P was prepared by a solid state reaction of Co, Fe$_2$P and P. The detailed synthesis condition was described elsewhere[8, 10]. Samples were characterized by powder X-ray diffraction (XRD) at room temperature. The powder XRD patterns of all samples are similar to that of Sr$_2$ScFePO$_3$[9], which indicates that all samples are isomorphic to Sr$_2$ScFePO$_3$[10, 11]. For the NMR measurements, samples were crushed into powder. 31P-NMR ($I = 1/2$) measurements were performed in the temperature range of 1.5 K – 200 K in an external magnetic field of 1.2 T using a conventional phase-coherent pulsed spectrometer. NMR spectrum was obtained by sweeping magnetic field. The nuclear spin-lattice relaxation rate $1/T_1$ was measured by the saturation recovery method.

3. Results and discussion

3.1. NMR spectra
Figure 1 shows the temperature evolution of 31P-NMR spectra of Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ for (a) $x = 0$, (b) $x = 0.2$, and (c) $x = 0.5$ in a temperature range of 4.2 K – 90 K at $f = 20.760$ MHz. For the samples of $x = 0$ and 0.2, the 31P-NMR spectrum at high temperatures shows a typical powder pattern due to anisotropic Knight shift for a spin $I = 1/2$ nucleus experiencing
an axially symmetric local magnetic field. The Knight shift components perpendicular K_\perp and parallel K_\parallel to the principal axis are derived from the peak maximum and the shoulder peak in the spectra, respectively. The component K_\parallel shifts markedly upon cooling, and the spectrum becomes broader at low temperatures. In contrast, for the sample of $x = 0.5$, the spectrum is symmetric and almost independent of temperature. It suggests that the electronic states are changed by reducing the number of 3d electrons.

Figure 2 shows the 31P-NMR spectra of Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ for the compounds of $x = 0, 0.2, 0.5$ and 0.8 at $T = 4.2$ K and a frequency of $f = 20.760$ MHz. At low temperature, the spectrum is symmetric, and the resonance magnetic field H_{res} shifts higher field side with increasing the substituted Fe content, where indicates the Knight shift decreases with increasing Fe content. The Knight shift is obtained from the relation $K = (2\pi f/\gamma_N - H_{\text{res}})/H_{\text{res}}$, where γ_N is the gyromagnetic ratio of 31P ($^{31}\gamma_N/2\pi = 17.237$ MHz/T). In general, the Knight shift is proportional to the spin susceptibility, $K = A_{hf}N_A\mu_B\chi_s$, where A_{hf} is the hyperfine coupling constant, N_A is the Avogadro number and μ_B is the Bohr magneton.

Figure 3 indicates the temperature dependence of the Knight shift of the 31P nuclei, ^{31}K, of Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$. The Knight shift was determined at the resonance peak maximum, which corresponds to the component K_\perp. The Knight shift is almost T-independent, which is mainly arised from conduction electron spin susceptibility. The spin susceptibility χ_s is proportional to the density of states at the Fermi level $\chi_s = \mu_B^2D(E_F)$. The values of the Knight shift are positive and small in an entire temperature range, which suggests the small hyperfine coupling constant. Also, the magnitude decreases with increasing Fe content, which indicates the decrease of the density of states around the Fermi level.

3.2. Nuclear relaxation rate $1/T_1$

Figure 4 presents the recovery curves of the nuclear magnetization $M(t)$ of 31P in Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ for (a) $x = 0$ and (b) $x = 0.8$ at $T = 4.2$ K. The nuclear spin-lattice...
The magnetic properties at low temperatures from the microscopic viewpoints. The NMR experiments for Sr$_2$Sc(Co$_{1-x}$Fe$_x$)PO$_3$ in order to understand the magnetic properties at low temperatures from the microscopic viewpoints. The NMR spectrum of Sr$_2$ScCoPO$_3$ shows the uniaxially symmetric powder pattern due to the anisotropic...
Knight shift at high temperatures. By substitution of Fe at an Co site, the spectrum changes to be symmetric. The 31P-Knight shift measured at the resonance peak maximum of $\text{Sr}_2\text{Sc}(\text{Co}_{1-x}\text{Fe}_x)\text{PO}_3$ is T-independent and has a positive value in an entire temperature range, and the absolute value decreases with increasing Fe content. Also, $1/T_1$ is almost proportional to the temperature at low temperatures., and the magnitude of $1/T_1T$ decreases with increasing the Fe content, which suggests the decrease of the density of states around the Fermi level.

References
[1] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3] Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H and Hosono H 2008 Phys. Rev. B 77 224431
[4] Sugawara H, Ishida K, Nakai Y, Yanagi H, Kamiya T, Kamihara Y, Hirano M and Hosono H 2009 J. Phys. Soc Jpn. 78 113705
[5] Majumder M, Ghoshray K, Ghoshray A, Bandyopadhyay B, Pahari B and Banerjee S 2009 Phys. Rev. B 80 212402
[6] Ohta H and Yoshimura K 2009 Phys. Rev. B 79 184407
[7] Ohta H and Yoshimura K 2009 Phys. Rev. B 80 184409
[8] Okada S, Kamihara Y, Ohkubo N, Ban S, Matoba M and Atou T 2012 J. Phys.: Conf. Ser. 400 022091
[9] Ogino H, Matsumura Y, Katsura Y, Ushiyama K, Horii S, Kishio K and Shimoyama J 2009 Supercond. Sci. Technol. 22 075008
[10] Okada S, Kamihara Y, Ohkubo N, Ban S and Matoba M 2014 J. Phys.: Conf. Ser. 568 022034
[11] Okada S, Kamihara Y, Ohkubo N, Ban S and Matoba M 2017 Presented at the 28th Int. Conf. on Low Temperature Physics (Gothenburg)