Simulation of the thermoforming process of glass fiber–reinforced polymeric components: investigation of the combined effect of the crosshead speed and material temperature

Antonios G. Stamopoulos¹ · Antoniomaria Di Ilío¹ · Luca Glauco Di Genova¹

Received: 7 April 2021 / Accepted: 4 August 2021 / Published online: 21 August 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Thermoplastic-based composite materials are increasingly gaining the interest of many engineering sectors, among them the automotive. Their unique features, resulted from the thermoplastic matrix characteristics, such as their recyclability and their formability have given new perspectives in their use. Among the most promising fabrication methods of thermoplastic composite components is the thermoforming process, the press forming of a heated semi-finalized composite plate. This method, although requires a quite simple working station and can be implemented in mass production, demonstrates a series of disadvantages on the quality of the product. Among them, the variation of the thickness, formation of wrinkles, and overall undesired deformations are considered as defects that decrease the quality not only from the esthetical but also from the structural point of view. In the present work, a numerical analysis of the thermoforming process is conducted when applied to a box-shaped geometry. As an input for the material behavior during the process, mechanical tests are conducted at elevated temperatures. The flat and curved critical zones of the component are identified, and an analysis of the effect of the temperature and the crosshead speed of the molds on the thickness distribution are examined as well as the overall residual stress field. The results indicate a strong dependency on the quality of the product by these parameters of the process.

Keywords Thermoplastic composites · Textiles · Unidirectional · Thermoforming

1 Introduction
Nowadays, all the industrial sectors are oriented towards the implementation of advanced materials in several engineering applications aiming to exploit at maximum their potentials. As the design and fabrication methods advanced, the composite materials are being increasingly used either by the aeronautical or the automotive sector. For instance, typical examples of the utilization of composite materials in the aeronautical sector are the Boeing 787 and the Airbus A350 aircrafts, made of composite materials in percentages more than 50%. In the automotive, even though economic and technical problems have risen, the use of composite materials remains an attractive solution for decreasing the vehicle’s weight. Therefore, there has been a wide range of applications observed in vehicles including seats, exterior panels, roofs, engine covers, or even the chassis [1, 2]. It has been reported that for every 100 kg of weight saving, the consumption reduction is, directly or indirectly, up to 0.7 L per 100 km of driving distance [3].

Among the fiber-reinforced polymers (FRP), the thermoplastic-based ones are an appealing solution, especially for the automotive industry due to the advantages they have compared to the thermosets. Those advantages are mostly practical as they require less demanding storage conditions, they can be processed or reformed as they are recyclable and, from the economical point of view, appear to be more cost-efficient [4, 5]. As the thermoset-based composites can only be molded once, the thermoplastic matrix composites can be reheated, reformed, and recycled, increasing in parallel the aspect of renewable materials and structures. From the existing variety of thermoplastic matrices, polypropylene (PP)-based ones are already used in a neat or partially reinforced form in applications in the automotive such as in interior aesthetic components like dashboards, fan blades, and
other secondary components. The main reason is the applicability of easy and cost-efficient fabrication methods such as injection molding [6]. Nevertheless, the implementation of a variety of polypropylene products in more complex composite structures such as automotive sunroofs and battery trays has been noticed [7] in which, apart from the aesthetical part, they require a certain structural integrity.

As mentioned above, due to the capability of the thermoplastic composite materials to be reheated and formed accordingly, one of the methods for producing composite components efficiently, in terms of cost, is the thermoforming process. By this method, a semi-finalized thermoplastic composite product in the form of plate is hot-pressed at a temperature governed mostly by the matrix constituent and, consecutively, is cooled at the ambient temperature. The applied pressure and the exposure of the composite plate to the heating sources though are related also to the nature of the reinforcing media as it has to be over the glass transition temperature and heated in a uniform and stable way to give rubbery characteristics to the composite material. In addition, several other parameters can influence the overall quality of the product such as the stamping speed, the applied pressure, the reinforcing media drapeability, and the friction between the stamping tools and the composite plate. Consequently, all the abovementioned parameters can play a key role in the formation of defects that can degrade the produced part both structurally and aesthetically. These defects consist of wrinkles, intense shear deformation of textile composites, residual stresses, decrease of the thickness of the lamina locally and abnormal distribution of the thickness, and intense deformation of the textile globally [8].

Usually, the identification of the right process parameters is done by a trial-and-error method. Considering the time and cost consumption of such strategy, an increasing number of both experimental and numerical investigations of the thermoforming process using several approaches and materials have been reported. For instance, Abbasi et al. [9] conducted an experimental and numerical analysis of the hemispherical thermoformed carbon/PPS material. In this case, the experimental procedure was utilized to validate the proposed numerical strategy. Sadighi et al. [10] numerically investigated the stacking sequence of unidirectional (UD) glass fiber–reinforced polypropylene hemispherical parts in the thermoforming process and revealed that [0,90]s laminates have fewer wrinkles compared to [0]s and [0,90, ±45]s ones. De Luca et al. [11], back in 1998, conducted an experimental and numerical analysis of the formation of wrinkles in a double coned geometry using both UD and woven textile carbon fiber–reinforced thermoplastic polymers (CFRTP). Guzman-Maldonado et al. [12] presented a thermomechanical analysis and simulation of the thermoforming of a PA66/satin glass into a hemispherical geometry. Haanappel et al. [13] presented a simulation of the thermoforming process of both CFRTP and GFRTP into more complex aeronautical geometries. In all the works mentioned above, the results were also validated by an experimental campaign indicating that the concept of the virtualization and simulation of this process may be the key to deliver accurate results and predictions of the quality of the produced component into a short period of time, also decreasing the cost of a potential experimental approach. Moreover, the identification of potential irregularities of the forming process itself may be identified as seen in [14].

Considering the above, there have been noticed even comparisons concerning the accuracy of several finite element software packages [15, 16] as the traditional standard FE software packages are not so suitable for delivering accurate results of large deformations easily [17]. Most of the modern FE packages presuppose the knowledge of the material mechanical behavior when deformed in specific temperatures and deformation speeds. This fact requires complex experimental characterization of the tensile, shear, and bending mechanical behavior or the GFRTPs in temperatures which are, most of the time, near the melting point of them as well as the friction interaction characterization between the composite material and the stamping tools. These tests are widely investigated and implemented in a significant number of works. Chen et al. [18] and Hamila et al. [19] focused on the accurate simulation of the deformation of the reinforcing constituent in thermoforming, while Haanappel et al. [20] used a torsion test in elevated temperatures to characterize the shear behavior of thermoplastic composites. Moreover, Harrison et al. [21, 22], as well as Boisse et al. [23], assessed the efficiency of both the picture frame and the bias extension tests.

In the present work, the same FE strategy is implemented to optimize the thermoforming a box-shaped automotive component made of woven glass fiber–reinforced polypropylene. The composite material mechanical behavior is characterized in three temperatures, namely 140, 160, and 190 °C, which correspond to a temperature bellow, equal, and above the melting point. Moreover, a unidirectional E-glass/PA6 composite material is considered as an alternative solution for conducting a comparison between the two materials with different polymeric matrix system and fiber architecture. Consecutively, the influence of the synergistic effect of the temperature and the stamping speed on the distribution of the thickness, the stresses, and the shear angle is investigated while the critical zones of the component are identified. The results reveal a strong dependency of the output of the process on the material temperature and the stamping speed both for the case of the woven textile and the UD thermoplastic composite part.

2 Experimental

2.1 Materials

The present work copes with two materials, one textile and one UD, both from the category of the so-called commercial
semifinished products. This category refers to composite materials produced directly into plates or tubes in a variety of thicknesses and can be later processed utilizing a hot-forming method. Their technical datasheet is presented in Table 1.

The first one is the TEPEX 104 RG600(x)/47% (Bond Laminates GmbH, Brilon, Germany) which consists of a regular woven 2/2 twill-weave fabric made of E-glass fibers that cover an area weight of 600 g/m². The fabric features a weight rate of 50% for the warp and the weft direction, respectively, and is reinforced by a 47% volume fraction of a polypropylene matrix. This material is known also from previous research either by the measurement of the in-plane shear properties at a wide temperature range [24] or even by the implementation of the picture frame tests at extremely high temperatures above the melting point of the material [25]. In the same work, evident is the influence of the local irregularities such as the fiber roving’s interception and interface to the shear deformation of the composite material in the elevated temperatures. In fact, such type of phenomena is also present in other works dealing with woven or 3D woven textile composites [26].

The second material is the Celanese Celstran CFR-TP PA6 GF60 which is a UD E-glass/nylon PA6 system with 60% fiber content. The technical datasheet of the material is reported in Table 1 alongside with the one of the TEPEX 104 RG600(x)/47%. The two materials demonstrate similar density and flexural and tensile moduli and, due to the different matrix system, demonstrate different melting points/windows. The TEPEX appears to melt at roughly 160 °C while the Celstran is close to 270 °C with a much higher deviation on that. Since the material card of the UD material was available a priori by the FE software [13] for the temperatures of 240, 260, and 280 °C, the so-called material card of the woven textile E-glass/PP must be created. For defining the temperatures of the textile GFRTP material, a differential scanning calorimetry test was conducted while the aim is to characterize the material mechanically – and thus to have input for the FE simulation – in 3 temperatures which correspond to (a) a temperature more than 20 °C below the melting point, (b) at the melting point, and (c) more than 25 °C above the melting point. The consideration of these temperatures is made in a way to have crucial information about the material behavior in the case the temperature, during the thermoforming process, drops below the melting point due to convection and conduction losses as seen also in other works [27].

2.2 Mechanical characterization at forming conditions

Generally, any FE simulation attempt of the thermoforming process needs to be fed with experimental data, regardless of the software that is being utilized [28, 29]. Since the bending and the in-plane shear deformation are the mainly considered in the molding interaction between the stamping tools and the composite laminates, a series of mechanical tests, including also dynamic friction tests between the molds and the composite material, are conducted, listed in Table 2, to reveal the physical parameters of the contact components. All the specimens were subjected in a preconditioning for drying them which includes a slight vacuum combined with an imposed temperature of 70 °C for more than 12 h. As previously mentioned, a DSC test was conducted in correspondence with the ASTM D3418 standard [30], using a PerkinElmer LAB-SYS DSC 8500 double-furnace DSC testing machine of 750 °C capacity, in which both the heating and cooling rate imposed were 20 °C/min. The outcome of the test, in terms of both melting and crystallization curve, is presented in Fig. 1. From the DSC tests, the following observations are made regarding the melting and crystallization of the material:

1. The melting onset temperature is roughly 150 °C, the peak (T_{pm}) at 162 °C while the endset is roughly at 170 °C. ΔH = 36.25 J/g.
2. The crystallization onset appears at 135 °C, the peak (T_{pc}) at 122 °C, and the endset at roughly 117 °C. ΔH = −37.04 J/g.

Table 1	The characteristics of the two thermoplastic composite materials as indicated by their technical datasheets	
	TEPEX Dynalite 104-RG600(x)/47%	Celanese Celstran CFR-TP PA6 GF60-1
Reinforcing constituent [- %]	Twill-weave E-Glass – 47%	Unidirectional E-glass – 60%
Matrix polymer [-]	Polypropylene (PP)	Nylon 6 (PA6)
Density [kg/m³]	1680	1690
Elastic modulus [GPa]	20	20.4
Tensile strength [MPa]	430	275
Strain at break [%]	2.7	1.9
Flexural modulus [GPa]	17	18.4
Flexural strength [MPa]	370	455
Melting temperature [°C]	163	270-295
Considering the above, the 3 temperatures chosen for characterizing the material are 140 °C, 160 °C, and 190 °C, respectively. The temperature of 140 °C is of particular interest. In fact, it is a temperature very close to both the melting and crystallization onsets, and, depending on which curve does the material follow while being tested/examined, it can be solid but not completely crystallized. Thus, for conducting the tests at 140 °C, the material is heated above the melting point, and then, during the cooling down phase, it is tested when reaching the desired temperature. Consequently, apart from the preconditioning of the specimens, an additional heating and a controllable cooling down of 6 °C/min are implemented. This procedure is followed for each of the testing methods applied for characterizing this material at 140 °C.
2.2.1 Bias extension tests

The bias extension test is implemented for characterizing the in-plane shear mechanical behavior of the woven textile E-glass/PP material under various deformation rates. It is based on the ASTM D5035 standard [31] which refers to textile materials without matrix. Nevertheless, compared to other shear testing approaches, it is considered as a robust and simple method to characterize the in-plane shear deformation at high temperatures [32, 33]. In the present work, a single-layer balanced plate of the TEPEX 104-RG600(x)47% is used for ensuring the purity of the results. In Fig. 2(a), the basic geometry of the specimen used as well as the deformed shape and the individual zones of the specimen are presented. A typical specimen has a length/width aspect ratio of 3 while the textile is inclined 45° from the principal axis of the specimen. Moreover, the specimen is divided into 3 zones, as seen in Fig.2(a), based on the purity of the shear deformation during the execution of the tests. As seen in Table 2, a total number of 27 tests are conducted at the 3 temperatures of interest under various deformation rates.

2.2.2 Bending tests

A total number of 27 bending tests are conducted at the 3 temperatures of interest. Considering that the bending behavior of a composite material is highly affected by the matrix quality and state, a fixture dedicated to characterizing this behavior at forming temperatures is utilized. Instead of considering a long prismatic composite specimen under 3- or 4-point bending deformation, in the present work, a torsional bending test method is implemented, presented in Fig. 2 (b). It consists of a test according to which a rectangular single-layered specimen is loosely clammed in a fixture that introduces a bending using a rotational rheometer. This method is found also in previous works [34] and is developed by the University of Twente, the Netherlands. Considering the 2 variables, testing temperature and torsional speed (rpm) for each of the 3 temperatures of interest, 3 different testing speeds have been applied, namely 0.1, 1, and 10 rpm. Moreover, an appropriate conditioning of the climatic chamber and the fixture is applied regarding the temperature. The fixture and the oven utilized are previously heated up to the temperature of interest while during the execution of the tests, the clamps of the fixture are always 10 °C higher than the material for excluding any local cooling.

2.2.3 Dynamic friction tests

As the contact between the stamping tools and the composite material is an indispensable aspect that may introduce additional stresses during the forming process, friction tests are conducted utilizing the Twente configuration which, compared to many others, is able to derive accurate results [35]. The basic parts of this configuration are presented in Fig.2 (c). This test consists of a single-layered rectangular composite specimen, 200 mm long and 50 mm wide, that slides inside a couple of grips at the end of whom there are mounted 2 metallic plates of 120 mm length and 50 mm width. The contact area between the metallic tabs and the composite specimen is 60 mm long and 50 mm wide. Throughout the execution of the tests, the grip temperature is controlled as well as the applied pressure. Therefore, there are 3 parameters that are taken into consideration, namely the testing speed, the testing temperature, and the applied pressure, as presented in Table 2.

2.2.4 Experimental results

In the present section, the results obtained from the experimental campaign of the textile composite material are presented. Starting with the bias extension tests, the average load-displacement curves, accompanied with the corresponding standard deviation, for every
temperature and testing speed are reported in Fig. 3. A notable difference in the shear behavior of the textile material at 140 °C is observed, a fact which is explained by the partial solidification of the material. At that temperature, the shear stiffness is much higher compared to the ones obtained at 160 °C and 190 °C, respectively, a fact that does not comply with the assumption of a fully melted material. In fact, under certain circumstances seen in previous works [36–38], the polymer crystallization may vary as well as its solidification level. In fact, variations in the cooling rate and local variations in the temperature may influence the results. On the other hand, such temperature is higher than the crystallization transition, which for the PP employed in the composite under test ends at 117 °C. Therefore, the trends reported in Fig. 3 at 140 °C show a typical mechanical behavior that generally occurs in thermoplastics being in the crystalline phase.

Regarding the bending tests, the results obtained in terms of average moment-angle deformation are presented in Fig. 4 for the three testing speeds of interest. It should be noted the significant superior bending stiffness of the material at 140 °C and the increasing standard deviation obtained for this temperature, while the testing speed increases from 0.1 to 10 rpm. Considering the high bending stiffness at 140 °C, there is a strong indication of a presumed partial solidification of the composite material at this temperature, even when tested while being cooled down after reaching the melting point. At that temperature, higher moment values can be observed while the testing speed is decreasing which can be attributed to mainly 2 phenomena: the partial crystallization of the material even if the crystallization temperature is lower and the local buckling of the fibers. On the contrary, at 160 °C, the test result deviation is much lower, a fact which indicates the reproducibility of the test method at that temperature.

Finally, the average shear stress-displacement curves obtained from the dynamic friction tests for the 3 temperatures of interest and various testing speeds are presented in Fig. 5 (a) for applied pressure of 5 kPa, Fig. 5 (b) for 15 kPa, and Fig. 5
(c) for 45 kPa, respectively. A much higher peak stress value for the tests conducted at 140 °C is observed compared to the rest of the temperatures at any speed-pressure combination. Moreover, the steady stress state after the peak stress is comparatively lower compared to the maximum stress value for the tests conducted at 140 °C. The combination of those two observations is a strong indication of a partial solidification of the composite material at the abovementioned temperature, which is in accordance also with the observations of the outcome of the bending tests at the same temperatures.

Fig. 5 The shear stress-displacement curves in various temperatures for applied pressure of 5 kPa (a), 15 kPa (b), and 45 kPa (c)

Fig. 6 The geometry and basic dimensions of the composite component
3 Finite element simulation

3.1 Tools and fixture design

The geometry of the component is an inverse Ω shaped part. Its dimensions are roughly 334 mm long and 296 mm wide. The depth of the box, and thus the maximum distance from the top surface to the bottom, is 248 mm from one side and 220 from the other, while the bottom surface is 174 mm long and 290 mm wide. One of the most challenging aspects is the almost perpendicular sides of the box (92°) which, combined with the significant depth of the component, makes quite difficult the forming process. The component basic geometrical and dimensional characteristics are presented in Fig. 6. For performing the simulation, the stamping tools and the composite material plate are designed in the CATIA V5 software. A fundamental assumption made for the process simulation is the complete and perfect closing of the stamping tools.
Table 3 The material models and parameters in the forming temperatures of the TEPEX Dynalite composite material used for the thermoforming process simulation

Element type	Constitutive model	Parameters	140 °C	160 °C	190 °C
Membrane (In-plane)	Elastic fiber	E_r [MPa] orientation [0°]	1000	1000	1000
		E_r [MPa] orientation [90°]	1000	1000	1000
	Mooney-Rivlin	C_{00} [MPa]	0.048	0.012	0.005
		C_{10} [MPa]	−0.115	−0.035	−0.02
	Cross-viscosity fluid	η_0 [MPa s]	50	10	1.6
		η_∞ [MPa s]	0.05	0.01	0.02
		n	0	0	0
		m	517	425	75
DKT (bending)	Isotropic Hooke	E [MPa]	1e-16	1e-16	1e-16
		n_1	0	0	0
	Cross-viscosity fluid	η_0 [MPa s]	100000	30000	15000
		η_∞ [MPa s]	53	16	11
		n	0	0	0
		m	33000	32550	38224
Contact elements	Penalty with polymer friction	μ	100	0.297	0.143
	model (tool and ply)/	η_0 [MPa s]	1	0.0189	0.0048
	Coloumb-viscous friction	n	0.1087	0.12684	0.1332
		m	5.2463	6.2253	9.2961

Table 4 The material models and parameters in the forming temperatures of the Celanese Celstran composite material used for the thermoforming process simulation

Element type	Constitutive model	Parameters	240 °C	260 °C	280 °C
Membrane (In-plane)	Elastic fiber	E_r [MPa] orientation [0°]	1000	1000	1000
		Young [MPa]	0.017	0.011	0.009
		Poisson ν	0	0	0
	Cross-viscosity fluid	η_0 [MPa s]	0.03735	0.02628	0.025
		η_∞ [MPa s]	0.0019	0.002	0.0011
		n	0.1087	0.12684	0.1332
		m	5.2463	6.2253	9.2961
DKT (bending)	Orthotropic elastic	Young $E1$ [MPa]	19	19	17
		Young $E2$ [MPa]	0.19	0.19	0.17
		Poisson ν_{12}	0.01	0.01	0.01
		Shear G_{12} [MPa]	0.019	0.019	0.017
	Newtonian fluid	n [MPa s]	4.5873	3.1301	2.7084
Contact elements	Penalty with polymer friction	μ	0.02816	0.02816	0.02816
	model (tool and ply)/	η_0 [MPa s]	0.00317	0.00208	0.00119
	Coloumb-viscous friction	n	0.1	0.1	0.1
		m	10	10	10
Therefore, the relative distance between the stamping and the mold tool at the end of the process is equal to the composite plate nominal thickness. Moreover, a supporting fixture is designed to support the necessary auxiliary equipment for the thermoforming process such as tensioners. The complete design of the stamping tools, the composite plate, and the auxiliary fixture are presented in Fig. 7 (a). Finally, the composite plate is not perfectly rectangular as the top part of the component is wider than the bottom. A potentially rectangular composite plate can potentially introduce additional problems to the forming process. Thus, the composite plate is considered as seen in Fig. 7 (b) and has a shape which is imposed by the geometrical restrictions of the final product.
3.2 Finite element analysis

The FE package utilized in the present work is the AniForm® FE code which adopts an implicit solver and a continuum mechanical formulation \[39, 40\]. The shell elements utilized by the software combine the properties included in a LTR3D element and a discrete Kirchhoff triangle, consisting of 3 nodes each while the difference between them is the degrees of freedom; the DKT shell comprises 6 while the LTR3D membrane 3 each. To this end, all the information about the material behavior, including both the in-plane and bending, acquired experimentally, are integrated into the FE model configuration consisting of different material models. Another aspect, which is worthwhile to mention, is the contact between the stamping tools and the lamina. This contact, which includes the friction between the stamping tools and

Fig. 11 The coordinates of each of the 6 local zones selected for studying the distribution of various results

Fig. 12 Typical example of the correspondence of the thickness variation with the parts of zone 1 for the case of the 2-2 twill weave/PP composite material
the lamina described by the output experimental campaign presented in Section 2.2.3, is applied by using the corresponding master and slave contact elements. The master (CMasterLTR3D) and slave (CSlaveLTR3D) triangular contact elements are created automatically using the Hammer projection technique as seen in Fig. 8 (a) in which the slave contact elements search for projections from their quadrature point locations. This way, while the bodies are moving on the surface of the slave elements both in- and out-of-plane traction is created while the master does not take as input any material model. Also, an offset is applied to the contact elements so that the contact surface is transferred from the element midplane to the actual contact surface, an operation which is imposed explicitly as seen in Fig. 8 (b). For avoiding the penetration, a penalty stiffness is introduced, and the contact pressure \(\tau_n \) can be expressed as:

\[
\tau_n = E_p \delta \quad (1)
\]

where \(E_p \) is the penalty stiffness and \(\delta \) is the penetration depth. The overall traction developed on the surface of the slave element is calculated by the summary of the introduced shear stress and the contact pressure:

\[
\tau = \tau_{xy} + E_p \delta \quad (2)
\]

As previously mentioned, the materials used for the simulations are 2, namely the Dynalite TEPEX 104-RG600(x)47% (twill 2/2 weave glass/polypropylene) and the Celanese Celstran CFR-TP PA6 GF60-1 (UD glass/PA6). The TEPEX material constitutive laws were obtained by the mechanical testing campaign described in Section 2 of the present work, while the Celstran was one of the materials available in the software library. For creating the material card of the material, a MatLab-based subroutine is utilized (AniForm Matfit) for producing the regression curves of the mechanical behavior of the composite material (TEPEX 104-RG600(x)47%) [41]. As seen in their technical datasheets in Table 1, the 2 materials exhibit similar mechanical properties in ambient temperature in the fiber direction as they both have glass fibers as the reinforcing constituent. Yet, apart from the fact that the first one is a balanced woven textile and the second one is a UD, they have two other significant differences: the matrix material (PP for the TEPEX and Nylon 6 for the Celanese Celstran) and the fiber content (47% for the TEPEX and 60% for the Celanese Celstran). As a result, the

°C	Zone 1	Zone 2	Zone 3
140	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
160	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
190	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)

Fig. 13 The variation of thickness in the three zones of interest for all the temperatures and crosshead speeds using the TEPEX Dynalite 104-RG600(x)47% material

© Springer
two materials have different melting points and melting temperature windows. Consequently, different forming temperatures are considered for the two materials keeping also the same principal consideration about the forming temperatures. To this end, in both cases three temperatures are considered, one slightly below the nominal melting temperature, one at the melting point of the material, and one slightly above it, as explained also in the experimental campaign of the TEPEX 104RG600(x)47%. The corresponding material models imposed in each case are summarized in Table 3 and Table 4 for the TEPEX and the Celstran, respectively. As seen there, for the two materials, there are some differences in the material models used for describing the in-plane and bending behaviors while the material model for the contact is the same. At this point, it should be indicated that the values of the parameters μ and n_0, respectively, are defined by the tool-ply friction tests described in Section 2.2.3 of the present work while the penalty stiffness has a value which excludes any element penetration without interfering on the numerical stability and convergence of the finite element model. On the other hand, the stamping tools and the supporting fixing tools are considered as rigid while, for avoiding the development of wrinkles during the stamping process, 2 couples of springs delivering 0.19 N/mm each are placed in the zones identified as crucial. Their direction is perfectly aligned to the direction of the fibers (for the case of the UD Celanese Celstran) and the warp direction of the textile (for the case of the TEPEX), respectively. Other fundamental assumptions made using this software is the fact that the temperature during the process remains constant. In addition, the cooling down process after the stamping is neglected. Thus, the results obtained may be correlated with the step just before the cooling down of the final product. The mesh density and overall number are chosen after conducting a parametric study in which the computational time and the accuracy were

Fig. 14 The plot of the thickness variation of the component as obtained by the FE analysis using the TEPEX Dynalite 104-RG600(x)47%
considered. Each finite element model consists of 107030 elements from which 23350 (11390 nodes) are attributed to the composite plate and 83680 (43301 nodes) to the stamping tools. Details of the mesh discretization are presented in Fig. 9 while frames during the process simulation are presented in Fig. 10. For each of the reference temperatures of each material described previously, 4 different crosshead speeds are considered, namely 30, 45, 90, and 200 mm/s, delivering a total number of 24 simulations, 12 for each of the materials. The time needed for solving each model, using a computer composed of the Intel i9-9900x series 10-core processor and 128GB RAM, varies from 15 to 30 min.

4 Results and discussion

Regarding the results, the FE package provides either a graphical distribution of some properties or a report of the values for each of the nodes of the model. This fact was also considered during the discretization of the models; the mesh is dense enough to produce enough points from which the desired values of thickness or stress can be obtained. Therefore, in this section the results are presented both in terms of 3D distribution and graphs. For achieving this, the reports are elaborated using a script developed in MatLab in which slices of the model in the xz plane can be cut and deliver this way the distribution in a more localized zone. In all the cases, examined is the distribution of the thickness, the shear strain, and the residual stresses in the lowest part of the component (where the pressure is expected to be higher) as well as the lateral walls of the box and the upper surfaces. The zones taken into consideration are those presented in Fig. 11, considered in the half of the component towards the y axis due to the symmetry of the component. Considering the geometrical complexity of the component studied in the present work, it was divided into these 3 zones of interest that consist of 1 zone at the center (zone 1) with 2 irregularities, 1 zone without any geometrical interference (zone 2), and 1 zone with an elongated geometrical oval-shaped bulge (zone 3). These zones are the most indicative and representative of the whole structure as they are among the most critical ones as seen in the following sections. It should be noted that phenomena such as the presence of wrinkles are not severe as the tensioners and the right textile orientation are preventing them, and in the final product, considering the perfect closing of the stamping tools, there is none. Nevertheless, some local waviness is observed

![Fig. 15 The variation of thickness in the three zones of interest for all the temperatures and crosshead speeds using the UD Celanese Celstran CFR-TP PA6 GF60-1 material](image-url)
in the first parts of the simulation as the punching tool pushes down the composite plate, as seen also in Fig. 10, which is not present at the end of the process.

4.1 Thickness variation

One of the main concerns of each composite component produced by the thermoforming process is the variation of thickness which is sometimes undesired as it exceeds the limitations and tolerances imposed by the application. This variation may be the result of the nonuniformity of the applied pressure as the surfaces in direct front contact with the stamping tools are expected to receive more compared to any lateral surfaces [14]. In some cases, this phenomenon may be more complicated if parameters such as the stamping speed and the temperature of the composite plate are considered.

In Fig. 12, a typical example of the correlation between the distinct parts of the central zone (Zone 1) of the component and the variation of the thickness throughout the x direction is presented, using the 2-2 twill weave E-glass/composite material thermoformed at 140 °C with 30 mm/s stamping speed. As seen there, it is obvious that the upper parts, the lateral walls, and the lower part of the component exhibit different values of thickness. The overall variation of the thickness for the case of the TEPEX Dynalite 104-RG600(x)47 at the 3 reference temperatures and 4 stamping speeds is presented in Fig. 13 for all the zones examined. Observed is, starting from reference thickness of 0.5 mm (single layer), that the

Fig. 16 The plot of the thickness variation of the component as obtained by the FE analysis using the Celanese Celstran CFR-TP PA6 GF60-1
increment of speed seems to decrease the thickness of the component, especially in the lower part of it which is perpendicular to the stamping tool’s front. Generally, the thickness variation appears to follow a pattern, as described below:

- The upper part is close to the nominal value of thickness as it is the part of the component that comes into contact with the stamping tool last.
- The lateral walls have values lower compared to the initial thickness which tends to be decreased from top to the bottom of it.
- The lowest part that it is in contact with the punch tool continuously from the start to the end of the process appears to have the lowest values of thickness.
- The curved zones of the component appear to have higher values of thickness compared to the flat parts in the vicinity.

As the thickness of the upper part of the component remains close to the nominal value of 0.5 in each case, the most intense deviation is localized in the lateral walls of the lower part of the component. More precisely, the zone that seems to derive the maximum deviation from the nominal thickness is zone 3, especially in the curved part right before the lower flat part. The abovementioned pattern is visible by observing the thickness distribution map of the component in Fig. 14. Both Fig. 13 and Fig. 14 are useful for assessing the synergistic effect of the material temperature and the crosshead displacement of the stamping tools on the variation of the thickness of the single-ply composite material.

For the case of the UD Celanese Celstran CFR-TP PA6 GF60-1, similar observations are extracted only for the central Zone as seen in Fig. 15. The rest of the zones (zone 2 and 3) follow a slightly different pattern compared to the textile material. The lateral walls exhibit thickness values relatively lower than the nominal ones while the bottom part is quite close to the nominal plate thickness. Nevertheless, by observing the overall map of the thickness distribution of Fig. 16, observed is an accumulation of material in the curvatures of the lateral walls while the critical zones remain those having intense geometrical irregularities, perpendicular to the movement of the stamping tools as well as zones with intense curves. Moreover, by comparing the thickness variation of Fig. 16 and the maximum and minimum values in Fig. 17, there can be observed that the increment of the temperature favors the increment of the dispersion of the thickness values, while the increment of stamping speed seems to have a positive effect on that phenomenon. Finally, by comparing the two materials, there can be observed a much higher variation of the obtained values of thickness for the UD composite, the reference sheet thickness of which is 0.3 mm.

TEPEX Dynalite 104-RG600(x)47%

![Graph](image1)

Celanese Celstran CFR-TP PA6 GF60-1

![Graph](image2)

Fig. 17 The maximum and minimum values of thickness obtained by the FE analyses for varying crosshead speeds and temperatures for the 2 materials of interest
4.2 Stress analysis

Another interesting aspect that could be considered for assessing the effect of the synergy of temperature and stamping speed is the stress state of the component. These stresses, as previously mentioned, correspond to those which are acting on the component after the complete closing of the dies. In Fig. 18 the typical map of the distribution of the normal and in-plane shear stresses is

Fig. 18 Typical distribution of the normal and shear stresses field obtained by the simulation of the textile material and UD composite materials

![Stress distribution](image)

TEPEX Dynalite 104-RG600(x) 47%

140 °C – 30 mm/s

Celanese Celstran CFR-TP PA6 GF60-1

240 °C – 30 mm/s

![Stress distribution](image)

Fig. 19 The normal stress σ_x distribution and analysis of the distribution of the stresses in the central zone (zone 1) for the case of the textile composite material at 140 °C (a) and the UD at 240 °C (b), both at 30 mm/s crosshead speed
presented for the case of the 2 materials as seen at the FE simulations performed at the lowest temperature and stamping speed. The critical zone appears to be the central one, which corresponds to zone 1 of Fig. 11. An interesting observation is the low compressive stresses which can be interpreted as an outcome that indicates the absence of wrinkles as high values of compressive stress is required to form such kind of defects. Across that zone, a typical distribution of the stresses follows the pattern seen in Fig. 19 in which the stress field σ_x is in a direction parallel to the principal direction of the fibers (and in the warp direction in the case of the textile). The stresses are relatively low at the upper part of the component (indicated inside the red box of Fig. 19) and increasing almost linearly at the lateral walls and obtain the maximum values at the lowest part of the component.

Considering the above, the distribution of the normal stresses (σ_x, σ_y) as well as the in-plane shear stress (τ_{xy}) across the central zone is presented graphically in Fig. 20 and Fig. 21 for both the woven textile glass/PP and the UD glass/PA6 materials, respectively. The distribution of the 2 materials follows almost the same trend, especially for the case of the normal stress σ_x. Their main difference is the normal stresses σ_y development and distribution which, for the case of the Celstran, is almost negligible. Moreover, both of them exhibit low shear stress values in this particular zone. In addition, in the same stamping speed, the textile material always delivers higher values of stresses in all of the temperatures of reference compared to the UD. A notable observation is the influence of the temperature and the stamping speed on the residual stresses. As seen in both Fig. 20 and Fig. 21, by increasing the material temperature, the stresses are decreasing, and the influence of the stamping speed becomes more evident. For instance, by observing the normal stresses of the woven textile material, it is evident a significant increment in the deviation between the maximum values between the individual stamping speeds as the temperature increases. The maximum values of stress reported by each simulation are presented in Fig. 22. By comparing the two materials studied, in the UD composite lower stresses are developed compared to the textile; in fact, the maximum σ_x stress is almost 50% lower while the σ_y and τ_{xy} are almost negligible compared to those of the TEPEX. By observing the results of Fig. 22, it can be noted that in both materials, the increment of the material temperature relieves the stresses imposed by the stamping process while the increment of the stamping speeds augments the stresses introduced to the component.

Table 1

°C	σ_x	σ_y	τ_{xy}
140	![Graph](image1)	![Graph](image2)	![Graph](image3)
160	![Graph](image4)	![Graph](image5)	![Graph](image6)
190	![Graph](image7)	![Graph](image8)	![Graph](image9)

Fig. 20 The distribution of the stresses at the central zone (zone 1) of the component as obtained by the FE simulations in various temperatures for the case of the textile E-glass/PP composite material.
Fig. 21 The distribution of the stresses at the central zone (zone 1) of the component as obtained by the FE simulations in various temperatures for the case of the UD E-glass/PA6 composite material.

Fig. 22 The maximum values of normal and in-plane shear stresses obtained by the FE simulation of the thermoforming using the TEPEX Dynalite 104-RG600(x)47% and the Celanese Celstran CFR-TP PA6 GF60-1.
Fig. 23 The shear angle distribution as obtained by the simulation of the textile material at 140 °C/30 mm/s FE simulation.

Fig. 24 Comparison of the shear angle θ distribution at various stamping speed and temperatures.
4.3 Fiber shear deformation of the woven textile thermoplastic composite

Among the output of the simulation campaign is the distribution of the shear angle of the composite material which corresponds to the angular deformation, $d\theta$, calculated as:

$$d\theta = 2(\varphi_i - \varphi_0)$$

where $2\varphi_i$ is the final angle between the warp and weft yarns and $2\varphi_0$ the initial one, respectively [41]. This distribution is a strong indication about the deformation of the woven textile composite material. Values close to 0 indicate an undeformed textile while the macroscopic distribution of the shear angle may indicate potential in-plane waviness. Considering this, the shear angle distribution concerns not only the structural part (residual shear deformation of the textile) but also the aesthetical one in case the produced component has to serve without any over-injection that can potentially hide it. As seen in Fig. 23, the highest positive and negative values are attributed to the zones of the component which are demonstrating intense geometrical irregularities. Nevertheless, the temperature is a key factor for containing the shear angle in small values as seen in Fig. 24. As reported also by the authors of previous work [38, 39], the shear angle distribution is strongly related to the bending and shear stiffness of the material. Thus, as the influence of temperature is detrimental on both of these properties, at 190 °C the component has a more irregular distribution compared to the one at 140 °C. On the contrary, the stamping speed does not affect the shear angle significantly as there have not been observed any significant variations while the speed increases from 30 to 200 mm/s.

5 Conclusions

In the present work, a finite element simulation campaign was conducted based on a viscoelastic approach that aimed to predict the outcome of the thermoforming of a single plied box-shaped component, using both a woven textile E glass/PP and a UD E glass/PA6 material. A priori, an experimental campaign was conducted for producing the necessary input of the E glass/PP composite for the FE software. The effect of the stamping speed and temperature of the composite material was addressed for assisting the decision-making of these parameters at the phase before the realization of a component of this kind.

In the context of the present work, the possibility of utilizing a twill weave E-glass/PP and a UD E-glass/PA6 for producing a box-shaped automotive component was investigated under different deformation rates and in a variety of temperatures. Especially in the case of the textile composite, it was considered a temperature which corresponds to a state in which the material is partially solidified, even though the experimental campaign was conducted at the cooling down phase. Consequently, the shear and bending stiffness of it at 140 °C resulted much higher compared to the other temperatures. Moreover, the dynamic friction curve that describes the contact between the stamping tools and the composite plate appears to have a different tendency compared to the other temperatures, delivering higher values of stress. Generally, the increment of the material temperature contributes to the decrease of the maximum tensile and compressive stresses while increases both the thickness variation and the textile shear deformation. On the contrary, the increment of the stamping speed appears to have a negative effect in roughly all the output (stress, thickness, and shear textile deformation). In addition, by comparing the two materials used, the critical zones are partially the same considering that the UD material appears to be more easily deformable due to the absence of reinforcement in the y direction. Even though the geometrical characteristics of the component are the cause of those critical zones, there have been noticed some differences mainly the thickness variation and the stress distribution between the results from the textile and the UD composite, respectively. Also, both the 2 materials exhibit different sensitivity on these characteristics in some of the zones of the component. Therefore, by analyzing and comparing the obtained results in terms of thickness variation, stress distribution, and fiber shear angle, for each of the combinations of material temperature and stamping speed, valuable observations can be obtained that contribute to the optimal decision of both parameters.

Finally, considering the quite short time needed for the simulation result convergency, the procedure presented previously for defining the parameters of the process can be considered as a step forward to the virtualization of the thermoforming process itself, saving a lot of time and reducing the cost of its development, since it was based until recently in trial-and-error experimental procedures.

Acknowledgements The authors also wish to express their sincere appreciation for the collaboration with the Thermoplastic Composites Research Center (TPRC) in the Netherlands on the execution of the experimental campaign.

Author contribution •Antonios Stamopoulos: research, data acquisition and analysis, document preparation and review •Luca Glauco Di Genova: research, data acquisition •Antonimaria Di Ilio: funding, data analysis, document preparation and review

Funding This work was supported by the Italian research project C.R.AB (Composites Research Abruzzo) under the auspices of the Region of Abruzzo (Italy) and the European Union (POR FESR Abruzzo 2014-2020 – ASSE 1- Attività 1.1.1 e 1.1.4, contract CAR n.2617-COR n.217245).
Data availability The datasets generated and analyzed during the current study are not publicly available due to restrictions imposed by the funding scheme but are available from the corresponding author upon request.

Declarations

Ethics approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate The authors consent to participate.

Consent for publication Informed consent was obtained from all individual participants included in the study.

Competing interests The authors declare that they have no competing interests.

References

1. Gupta G, Kumar A, Tyagi R, Kumar S (2016) Application and future of composite materials: a review. International Journal of Innovative Research in Science, Engineering and Technology 5(5):6907–6911. https://doi.org/10.15680/IJRSET.2016.0505041
2. Nickels L (2019) New innovations in automotive thermoplastics. Reinf Plast 63(4):185–188. https://doi.org/10.1016/j.repl.2019.06.041
3. Patel M, Pardhi B, Chopara S, Pal M (2018) Lightweight composite materials for automotive - a review. Int Res J Eng Technol 5(11):41–47
4. Stewart R (2011) Thermoplastic composites-recyclable and fast to process. Reinf Plast 55(3):22–28. https://doi.org/10.1016/S0034-3617(11)70073-X
5. Coggwell F.N. (1992) Thermoplastic aromatic polymer composites. Butterworth-Heinemann, ISBN 9780750610865.
6. Campbell F.C. (2004) Manufacturing processes for advanced composites. Elsevier Science, ISBN 9781856174152.
7. Nickels L (2019) New innovations in automotive thermoplastics. Reinf Plast 63(4):185–188. https://doi.org/10.1016/j.repl.2019.06.041
8. Ashter S.A. (2014) Thermoforming of single and multilayer laminates. William Andrew Publishing, ISBN 9781455731725.
9. Abbassi F, Elfaleh I, Mistou S, Zghal A, Fazzini M, Djilali T (2011) Experimental and numerical investigations of a thermoplastic composite (carbon/PPS) thermoforming. Struct Control Health Monit 18:769–780. https://doi.org/10.1002/stc.491
10. Sadighi M, Rabizadeh E, Kermansaravi F (2008) Effects of laminate sequencing on thermoforming of thermoplastic matrix composites. J Mater Process Technol 201:725–730. https://doi.org/10.1016/j.jmatprotec.2007.11.239
11. De Luca P, Lefebure P, Pickett AK (1998) Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Compos A: Appl Sci Manuf 29A:101–110. https://doi.org/10.1016/S1359-835X(97)00060-2
12. Guzman-Maldonado E, Hamila N, Boisse P, Bikard J (2015) Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastic composites. Compos A: Appl Sci Manuf 78:211–222. https://doi.org/10.1016/j.compositesa.2015.08.017
13. Haanappel SN, Ten Thije RHW, Sachs U, Rietman B, Akkerman R (2014) Formability analyses of uni-directional and textile reinforced thermoplastics. Compos Part A 56:80–92. https://doi.org/10.1016/j.compositesa.2013.09.009
14. Stamopoulos AG, Spittilli P, D’Emilia G, Gaspari A, Natale E, Di Ilio A (2020) Assessment of the measurements contribution on composites thermoforming processes: a case study of an automotive component. 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, 14-16 June 2020, Rome, Italy. https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138197
15. Dorr D, Brymerski W, Ropers S, Leutz D, Joppich T, Karger L, Henning F (2017) A benchmark study of finite element codes for forming simulation of thermoplastic UD-tapes. Procedia CIRP 66:101–106. https://doi.org/10.1016/j.procir.2017.03.223
16. Stamopoulos AG, Di Ilio A (2019) On the predictive tools for assessing the effect of manufacturing defects on the mechanical properties of composite materials. Procedia CIRP 79:563–567. https://doi.org/10.1016/j.procir.2019.02.108
17. Ten Thije RHW, Akkerman R, Huetink J (2007) Large deformation simulation of anisotropic material. Comput Methods Appl Mech Eng 196(33-34):3141–3150. https://doi.org/10.1016/j.cma.2007.02.010
18. Chen QQ, Boisse P, Hamila N, Saouab A, Park CH, Breed D (2009) A finite element method for the forming simulation of the reinforcements of thermoplastic composite. Int J Mater Form 2(1):213–216. https://doi.org/10.1007/s12289-009-0655-x
19. Hamila N, Boisse P, Sabourin F, Brunet M (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 79:1443–1466. https://doi.org/10.1002/nme.2625
20. Haanappel SP, Akkerman R (2014) Shear characterization of unidirectional fibre reinforced thermoplastic melts by means of torsion. Compos Part A 56:8–26. https://doi.org/10.1016/j.compositesa.2013.09.007
21. Harrison P, Clifford MJ, Long AC (2004) Shear characterization of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos Sci Technol 64:1453–1465. https://doi.org/10.1016/j.compscitech.2003.10.015
22. Harrison P, Alvarez MF, Anderson D (2018) Towards comprehensive characterization and modelling of the forming and wrinkling mechanics of engineering fabrics. Int J Solids Struct 154:2–18. https://doi.org/10.1016/j.ijsolstr.2016.11.008
23. Boisse P, Hamila N, Guzman-Maldonado E, Madeo A, Hivet G, Dell’Isola F (2017) The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and preps: a review. Int J Mater Form 10:473–492. https://doi.org/10.1016/j.jmatprotec.2016.11.016
24. Frosta SH, Hamila N, Buczynski B, Mansfield W, Rist H (2011) Implementation of the modified V-notched rail shear method for characterizing glass fiber thermoplastic composites at sub-zero and elevated temperatures. Polym Test 39:106874. https://doi.org/10.1016/j.polymertesting.2020.106874
25. Mattner T, Korbelt W, Wrensch M, Drummer D (2018) Compensation of edge effects of picture frame testing of continuous fiber reinforced thermoplastics. Composites Part B 142:95–101. https://doi.org/10.1016/j.compositesb.2018.01.009
26. Sharma SB, Sutcliffe MFP, Chang SH (2003) Characterization of material properties for draping of dry woven composite material. Composites Part A 34:1167–1175. https://doi.org/10.1016/j.compositesa.2003.09.001
27. Xiong H, Hamila N, Boisse P (2019) Consolidation modelling during thermoforming of thermoplastic composite prepregs. Materials 12(18):2853. https://doi.org/10.3390/ma12182853
28. Althammer F., Iwan S., Mueller S., Troelzsch J., Kroll L. (2017) Simulating the forming of thermoplastic, fiber reinforced plastics-Demonstrated for a side impact protection bar. KMUTNB
29. Fiumarella D, Boria S, Belingardi G, Scattina A (2019) Experimental and numerical analysis of a thermoplastic lamina for composite material. Procedia Struct Integr 24:11–27. https://doi.org/10.1016/j.prostr.2020.02.002

30. ASTM D3418-03 Standard test method for transition temperatures of polymers by differential scanning calorimetry, ASTM International, West Conshohocken, PA, (2003).

31. ASTM D5035-06, Standard test method for breaking force and elongation of textile fabrics (strip method), ASTM International, West Conshohocken, PA, (2008).

32. Cao J, Akkerman R, Boisse P, Chen J, Cheng HS, de Graaf EF, Gorezyka JL, Harisson P, Hivet G, Launay J, Lee W, Liu L, Lamov SV, Long A, Morestin P, Padvoiskis J, Peng XQ, Sherwood J, Tz S et al (2008) Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Composites Part A 39:1037–1053. https://doi.org/10.1016/j.compositesa.2008.02.016

33. Yeager M, Cline J, Bogetti T, White K, Sherwood J (2019) Characterization and modeling of the in-plane shear deformation in ultra-high molecular weight polyethylene (UHMWPE) composites. Technical Report, DEVCOM Army Research Laboratory, ARL-TP-8791 (September 2019)

34. Sachs U, Akkerman R (2017) Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt. Composites Part A 100:333–341. https://doi.org/10.1016/j.compositesa.2017.05.032

35. Sachs U, Akkerman R, Fefatsidis K, Vidal-Sallé E, Schumaher J, Ziegmann G, Allaoui S, Hivet G, Maron B, Vanclooster K, Lamov SV (2014) Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark studies. Composites Part A 67:289–298. https://doi.org/10.1016/j.compositesa.2014.08.026

36. Ravashdeh S, Al-Raheil I (2012) The structure of isotactic polypropylene crystallized from the melt. J Chem Eng Process Technol 3:5. https://doi.org/10.4172/2157-7048.1000140

37. Wang Y, Cheng L, Cui X, Guo W (2019) Crystallization behavior and properties of glass fiber reinforced polypropylene composites. Polymers 11:1198. https://doi.org/10.3390/polym11071198

38. Grady A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng A 413-414:442–446. https://doi.org/10.1016/j.msea.2005.08.167

39. Alshahrani H, Hojjati M (2017) Bending behavior of multilayered textile composite prepregs: experiment and finite element modeling. Mater Des 124:211–224. https://doi.org/10.1016/j.matdes.2017.03.077

40. Alshahrani H (2020) Characterization and finite element modeling of coupled properties during polymer composites forming processes. Mech Mater 144:103370. https://doi.org/10.1016/j.mechmat.2020.103370

41. AniForm Virtual Forming Tool. Software and help-manual. www.aniform.com.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.