Treatment of Palmar Hyperhidrosis with Tap Water Iontophoresis: A Randomized, Sham-Controlled, Single-Blind, and Parallel-Designed Clinical Trial

Do Hun Kim, Tae Han Kim, Seung Ho Lee, Ai Young Lee

Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Korea

Background: Palmar hyperhidrosis is a common disorder of excessive sweating. A number of studies have demonstrated the effectiveness of iontophoresis in the treatment of palmar hyperhidrosis. However, controlled clinical studies on iontophoresis for palmar hyperhidrosis have been limited. Objective: To determine the efficacy and safety of iontophoresis in the treatment of palmar hyperhidrosis with a randomized, sham-controlled, single-blind, and parallel-designed study. Methods: Twenty-nine patients with significant palmar hyperhidrosis were enrolled in this study. They received active iontophoresis treatment (group A) or sham treatment (group B). Iontophoresis was performed 20 minutes each time, five times per week, for 2 weeks. Its efficacy was assessed with starch-iodine test, mean sweat secretion rate, and hyperhidrosis disease severity scale. Results: Twenty-seven of the 29 patients completed the 2-week treatment. After completion of 10 times of treatment, results of the starch-iodine test showed clinical improvement in 92.9% of patients in group A and 38.5% of patients in group B ($p=0.001$). The mean sweat secretion rate was reduced by 91.8% of patients in group A and by 39.1% of patients in group B ($p<0.001$). Improvement in quality of life was reported by 78.6% of patients in group A and by 30.8% of patients in group B ($p=0.028$). In group A, one case of localized adverse event was noted, although no adverse event was encountered in group B. Conclusion: Tap water iontophoresis could be used as an effective and safe treatment modality for palmar hyperhidrosis. (Ann Dermatol 29(6) 728~734, 2017)

Keywords - Hyperhidrosis, Iontophoresis

INTRODUCTION

Hyperhidrosis is defined as perspiration in excess of physiologic amount necessary to maintain thermal homeostasis. Hyperhidrosis might be a primary condition or secondary condition due to medications or systemic disorders. Primary hyperhidrosis is usually focal, bilateral, and symmetric. It mainly affects the axillae, palms, soles, face, and scalp. The incidence of primary hyperhidrosis has been reported to be between 0.6% ~ 2.8% in both genders1. Symptoms usually begin in childhood or around puberty. It interferes with daily social and occupational activities of patients and significantly impacts their quality of life2. In order to assess the degree of impairment, various types of subjective and objective measurements have been developed. Minor’s starch-iodine test is a simple test that can be used to measure the approximate volume of sweat production1. Gravimetric measurement is useful for quantifying the amount of sweat1. To evaluate the effect of hyperhidrosis on patient’ life, hyperhidrosis disease severity scale (HDSS) has been reported4. Various treatments have been proposed to control primary hyperhidrosis. The treatment options for hyperhidrosis include topical therapy, anticholinergics, iontophoresis, bot-
been used for mild to moderate hyperhidrosis of palms and axillae. Its continued use is often limited by skin irritation. Anticholinergic agents inhibit the acetylcholine induced activation of eccrine sweat glands. Oral anticholinergic drugs, such as glycopyrrolate and oxybutynin, have been regarded as somewhat effective for primary multifocal hyperhidrosis. However, the use of these drugs is frequently limited by systemic side effects, including dry mouth, dry eyes, difficulty in urination, constipation, blurred vision, drowsiness, dizziness and mydriasis. Recently, topical formulation of anticholinergic agents are being investigated and may provide efficacy with fewer systemic adverse effects. Botulinum toxin, administered by local intradermal injection, blocks acetylcholine release from the cholinergic nerves supplying the sweat glands. Although botulinum toxin has been widely used in the treatment of hyperhidrosis because of its well established efficacy, the use of botulinum toxin is often limited by its relative high cost and the discomfort associated with multiple needle injection. In terms of stopping perspiration, surgical treatment including endoscopic thoracic sympathectomy (ETS) can be an effective option for primary hyperhidrosis. However, compensatory hyperhidrosis occurs in 50%–70% of patients with 1%–2% of severe cases. ETS has been recommended to use for patients diagnosed with severe hyperhidrosis refractory to conservative therapy.

In addition to these treatment options for hyperhidrosis, several medical devices delivering energy to destroy sweat glands are undergoing promising clinical investigation. Microwave technology, several lasers (such as 1,064-nm, 1,320-nm, and 1,440-nm neodymium:yttrium-aluminum-garnet laser, 924-nm and 975-nm diode laser, long-pulsed 800-nm diode laser), microneedle radiofrequency, and ultrasound technology could be included as example of the device. A number of studies have demonstrated the efficacy of iontophoresis treatment for hyperhidrosis. In iontophoresis, an electromotive force is used to enhance percutaneous absorption of a drug or chemical in forms of ions on the skin. Although the exact mechanisms by which iontophoresis reduces sweating remain unclear, some hypotheses have been proposed, including sweat gland pore obstruction secondary to hyperkeratinization, impairment of the electrochemical gradient of sweat, and increased stimulus threshold of the sympathetic nervous system. However, controlled studies are limited. Therefore, the objective of this study was to determine the effectiveness and safety of iontophoresis treatment for hyperhidrosis with a randomized, sham-controlled, single-blind, and parallel-designed study.

MATERIALS AND METHODS

Study population

Healthy volunteers with significant palmar hyperhidrosis were recruited through an advertisement in a local newspaper. Diagnosis of hyperhidrosis was made based on starch-iodine test. Patients who were pregnant or lactating, who had metal implants such as a pacemaker, who had history of ischemic heart disease or arrhythmias, who had any other diseases that could be the cause of secondary hyperhidrosis, and those who were older than 60 years old or younger than 13 years old were excluded.

Study design

This study was a single-center, randomized, sham-controlled, single-blind, and parallel-designed clinical trial. The study protocol was approved by the Institutional Review Board of Dongguk University Ilsan Hospital (IRB no. 2014-1). After obtaining informed written consent from all participants, the study was conducted in accordance with the Declaration of Helsinki principles.

Intervention

Patients were randomly assigned into either active treatment group or sham treatment group at a 1:1 ratio. Iontophoresis was performed with a single device (Hidro-X©; Medilight, Yongin, Korea) which allowed to select conventional or pulsating direct current mode. It has been reported that the pulsating direct current iontophoresis is less effective than the conventional one. Therefore, the conventional direct current was used for patients in the active treatment group (group A) while low intensity pulsating direct current was used for patients in the sham treatment group (group B). Iontophoresis treatment was administered for 20 minutes each time, five times a week, for 2 weeks. To administer the treatment, both hands were immersed in pronated position in a tray filled with tap water containing electrode pads. Electrode pads were covered with a plastic grill to protect skin from burns. Patients were blinded throughout the study concerning treatment assignments.

Efficacy assessment

The severity of hyperhidrosis was assessed objectively and subjectively at baseline (week 0), after 10 times of treatment (week 2), and 1 week (week 3), 2 weeks (week 4), and 4 weeks (week 6) after completing the treatment. Objective assessment consisted of colorimetric and gravimetric measurements. The colorimetric measurement was...
evaluated using starch-iodine test. Briefly, after washing both hands and drying, 2% iodine solution was applied onto the palms and starch powder was sprayed. The result of starch-iodine test was graded according to the degree of sweating11. Gravimetric measurement was performed by using filter papers. They were weighted before and after having contact with the palm for 5 minutes in order to measure the volume of sweat absorbed. The weight difference was used to calculate the amount of sweat produced per minutes (mg/min)3. These assessments were conducted in a private and quiet room with temperature of 20°C ~ 25°C and humidity of 40% ~ 60%. Subjective assessment was performed by asking patients to answer HDSS questionnaire in a scale of 1 to 4 (see Table 1).

Safety assessment
After each iontophoresis treatment prior to the next, patients were assessed for any local or systemic adverse events such as erythema, dryness, and irritation.

Statistical analysis
Data were analyzed using SAS 9.3 (SAS Inc., Cary, NC, USA).

Table 1. Baseline demographic and clinical characteristics of the 27 patients who completed the study

Characteristic	Group A (n=14)	Group B (n=13)	p-value
Sex			0.128*
Male	10 (71.4)	5 (38.5)	
Female	4 (28.6)	8 (61.5)	
Age (yr)	30.2 ± 11.7	29.5 ± 11.4	0.881
Body weight (kg)	66.4 ± 16.3	61.4 ± 10.5	0.362
Body height (cm)	170.1 ± 11.2	166.7 ± 7.6	0.371
Starch-iodine test			0.326*
Grade 3	10 (71.4)	12 (92.3)	
Grade 4	4 (28.6)	1 (7.7)	
Sweat secretion rates (mg/min)	35.2 ± 9.6	33.8 ± 8.3	0.571
HDSS			0.159†
Grade 2	2	0	
Grade 3	9	8	
Grade 4	3	5	

Values are presented as number (%) or mean±standard deviation. Starch-iodine test; grade 1: no reaction, grade 2: mild discoloration, grade 3: moderate discoloration, grade 4: severe discoloration. HDSS: hyperhidrosis disease severity scale; grade 1: my sweating is never noticeable and never interferes with my daily activities, grade 2: my sweating is tolerable but sometimes interferes with my daily activities, grade 3: my sweating is barely tolerable and frequently interferes with my daily activities, grade 4: my sweating is intolerable and always interferes with my daily activities. *Fisher’s exact test, †linear by linear association.

Statistical analysis was performed using the Mann-Whitney test and t-test. Statistical significance was considered when p-value was less than 0.05. To account for the multiple testing, we applied the Bonferroni correction.

RESULTS

Patient characteristics
Thirty-five participants were initially screened. After excluding six patients who met the exclusion criteria, a total of 29 patients were enrolled in the study. Fourteen patients were randomly allocated to group A and 15 patients were assigned to group B. A total of 27 patients (14 in group A and 13 in group B) completed the study (Fig. 1). The demographic and clinical characteristics of these 27 patients who completed the study are summarized in Table 1. No difference in baseline demographic or clinical characteristics was observed between the two groups.

Effectiveness of treatment by colorimetric measurement
The starch-iodine test showed a clinical improvement in 92.9% (13/14), 92.9% (13/14), 88.9% (8/9), and 71.4%
(5/7) of patients in group A at week 2, 3, 4, and 6, respectively. On the other hand, only 38.5% (5/13) and 23.1% (3/13) of patients in group B showed clinical improvement at week 2 and 3, respectively (Fig. 2). The clinical improvement based on starch-iodine test were significantly different between the two groups at week 2 and 3 (week 2, \(p=0.001 \); week 3, \(p<0.001 \); Table 2)\(^1\).

Effectiveness of treatment by gravimetric measurement

In group A, the mean sweat secretion rate was reduced by 91.8%, 85.8%, 90.1%, and 69.0% at week 2, 3, 4, and 6, respectively. However, in group B, the mean sweat secretion rate was reduced by 39.1%, 18.0%, and 8.3% at week 2, 3, and 4, respectively. The decrease in sweat se-
Table 2. Changes in starch-iodine test immediate after completing the 10 times of treatment (week 2) and 1 week (week 3), 2 weeks (week 4), and 4 weeks (week 6) after the completion of treatment

Starch-iodine test	Week 2	Week 3	Week 4	Week 6				
Group A (n=14)	Group B (n=13)	Group A (n=14)	Group B (n=13)	Group A (n=9)	Group B (n=1)	Group A (n=7)	Group B (n=0)	
Grade 3 improvement	28.6%	0%	21.4%	0%	33.3%	0%	71.4%	-
Grade 2 improvement	11.3%	30.8%	64.3%	15.4%	55.6%	0%	0%	-
Grade 1 improvement	10.0%	7.7%	7.1%	7.7%	0%	0%	28.6%	-
Unchanged	42.9%	69.2%	54.2%	76.9%	11.1%	100.0%	0%	-
Grade 1 worsening	0.0%	0.0%	0.0%	7.7%	0.0%	0.0%	0.0%	-

p-value 0.001

Values are presented as number (%). Grade 1: no reaction, grade 2: mild discoloration, grade 3: moderate discoloration, grade 4: severe discoloration. *Mann-Whitney test with Bonferroni correction.

Table 3. Mean sweat secretion rate immediate after completing the 10 times of treatment (week 2) and 1 week (week 3), 2 weeks (week 4), and 4 weeks (week 6) after completion of treatment

Sweat secretion rate	Week 2	Week 3	Week 4	Week 6
Mean sweat secretion rate (mg/min)	2.9	20.6	5.0	27.7
Sweat decrease (%)*	91.8	39.1	85.8	18.0

p-value <0.001

*Sweat decrease=[(mean sweat secretion rate at baseline)-(mean sweat secretion rate at each measurement)]/(mean sweat secretion rate at baseline)×100%, *t-test with Bonferroni correction.

Table 4. Changes in hyperhidrosis disease severity scale (HDSS) immediate after completing the 10 times of treatment (week 2) and 1 week (week 3), 2 weeks (week 4), and 4 weeks (week 6) after completion of treatment

HDSS	Week 2	Week 3	Week 4	Week 6				
Group A (n=14)	Group B (n=13)	Group A (n=14)	Group B (n=13)	Group A (n=9)	Group B (n=1)	Group A (n=7)	Group B (n=0)	
Grade 3 improvement	1 (7.1)	1 (7.7)	1 (7.1)	1 (7.7)	0 (0.0)	0 (0.0)	0 (0.0)	-
Grade 2 improvement	5 (35.7)	0 (0.0)	5 (35.7)	0 (0.0)	3 (33.3)	0 (0.0)	1 (14.3)	-
Grade 1 improvement	5 (35.7)	23.1%	5 (35.7)	15.4%	4 (44.4)	0 (0.0)	1 (14.3)	-
Unchanged	3 (21.4)	69.2%	21.4%	76.9%	22.2%	100.0%	5 (71.4)	-
Grade 1 worsening	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	-

p-value 0.028

Values are presented as number (%). Grade 1: my sweating is never noticeable and never interferes with my daily activities, grade 2: my sweating is tolerable but sometimes interferes with my daily activities, grade 3: my sweating is barely tolerable and frequently interferes with my daily activities, grade 4: my sweating is intolerable and always interferes with my daily activities. *Mann-Whitney test with Bonferroni correction.

creation rate was significantly different between the two groups at week 2 and 3 (both p<0.001, Table 3).

Effectiveness of treatment based on HDSS

In group A, 78.6% (11/14), 78.6% (11/14), 77.8% (7/9), and 28.6% (2/7) of patients stated that they had improvement in their quality of life at week 2, 3, 4, and 6, respectively. On the other hand, in group B, 30.8% (4/13) and 23.1% (3/13) of patients stated that they had improvement in their quality of life at week 2 and 3, respectively. The improvement in patients’ quality of life based on HDSS were significantly different between the two groups at week 2 and 3 (p-=0.028 and p-=0.014, respectively; Table 4).
Table 5. Efficacy of iontophoresis with direct current for hyperhidrosis according to the literature

Author (year)	Study design	No. of patients	Methods of assessment	Result	Current intensity (mA)
Stolman9 (1987)	Left-right hand comparison	18	Colorimetric measurement (starch-iodine test)	83.3% of patients experienced a marked reduction in sweating	12 ~ 20
Dahl and Glent-Madsen10 (1989)	Randomized, double-blind, left-right hand comparison	11	Gravimetric measurement (pad grove method)	38% reduction in sweating	2 ~ 10
Kim and Jun11 (1990)	Randomized, left-right hand comparison	18	Colorimetric measurement (starch-iodine test)	77.8% of patients accomplished sufficient control	3 ~ 14
Chan et al.12 (1999)	Retrospective analysis	9	Gravimetric measurement & patient’s rating of severity (VAS)	51% reduction in sweating & 44.4% of patients reported significant improvement	6.6 ~ 22.0
Karaköç et al.13 (2002)	Uncontrolled	112	Gravimetric measurement (pad grove method)	81.2% of patients showed significant improvement	Not specified
Dogruk Kacar et al.14 (2014)	Retrospective analysis	19	Patient’s rating of severity (VAS)	89.5% of patients stated 50% or more decrease in sweating	6.8 ~ 24.0

VAS: visual analog scale.
the other hand, iontophoresis has limitations as other treatment options. It is technically difficult to apply to face or axillae. In addition, the short-lived effect usually requires continuous application. Although the present study had some limitations, including short follow-up period and high rates of follow-up loss after treatment in the sham-treated group, this controlled study confirmed that iontophoresis could be used an effective and safe treatment modality for palmar hyperhidrosis.

CONFLICTS OF INTEREST

The authors have nothing to disclose.

REFERENCES

1. Callejas MA, Grimalt R, Cladellas E. Hyperhidrosis update. Actas Dermosifiliogr 2010;101:110-118.
2. Schlereth T, Dieterich M, Birklein F. Hyperhidrosis—causes and treatment of enhanced sweating. Dtsch Arztebl Int 2009;106:32-37.
3. Vorkamp T, Foo FJ, Khan S, Schmitto JD, Wilson P. Hyperhidrosis: evolving concepts and a comprehensive review. Surgeon 2010;8:287-292.
4. Solish N, Bertucci V, Dansereau A, Hong HC, Lynde C, Lupin M, et al. A comprehensive approach to the recognition, diagnosis, and severity-based treatment of focal hyperhidrosis: recommendations of the Canadian Hyperhidrosis Advisory Committee. Dermatol Surg 2007;33:908-923.
5. Kurta AO, Glaser DA. Emerging nonsurgical treatments for hyperhidrosis. Thorac Surg Clin 2016;26:395-402.
6. Kim WO, Kil HK, Yoon KB, Yoon DM. Topical glycopyrrolate for patients with facial hyperhidrosis. Br J Dermatol 2008;158:1094-1097.
7. Walling HW, Swick BL. Treatment options for hyperhidrosis. Am J Clin Dermatol 2011;12:285-295.
8. Fujimoto T. Pathophysiology and treatment of hyperhidrosis. Curr Prob Dermatol 2016;51:86-93.
9. Stolman LP. Treatment of excess sweating of the palms by iontophoresis. Arch Dermatol 1987;123:893-896.
10. Dahl JC, Glent-Madsen L. Treatment of hyperhidrosis manuum by tap water iontophoresis. Acta Derm Venereol 1989;69:346-348.
11. Kim YD, Jun JB. Treatment of palmpoplantar hyperhidrosis with iontophoresis. Korean J Dermatol 1990;28:758-764.
12. Chan LY, Tang WY, Mok WK, Ly CY, Ip AW. Treatment of palmar hyperhidrosis using tap water iontophoresis: local experience. Hong Kong Med J 1999;5:191-194.
13. Karakoç Y, Aydemir EH, Kalkan MT, Unal G. Safe control of palmpoplantar hyperhidrosis with direct electrical current. Int J Dermatol 2002;41:602-605.
14. Dogrul Kacar S, Ozuguz P, Ergolu S, Polat S, Karaca S. Treatment of primary hyperhidrosis with tap water iontophoresis in paediatric patients: a retrospective analysis. Cutan Ocul Toxicol 2014;33:313-316.
15. Papa CM, Kligman AM. Mechanisms of eccrine anidrosis. I. High level blockade. J Invest Dermatol 1966;47:1-9.
16. Sato K, Timm DE, Sato F, Templeton EA, Meletiou DS, Toyomoto T, et al. Generation and transit pathway of H+ is critical for inhibition of palmar sweating by iontophoresis in water. J Appl Physiol (1985) 1993;75:2258-2264.
17. Ohshima Y, Shimizu H, Yanagishita T, Watanabe D, Tamada Y, Sugenoya J, et al. Changes in Na+, K+ concentrations in perspiration and perspiration volume with alternating current iontophoresis in palmpoplantar hyperhidrosis patients. Arch Dermatol Res 2008;300:595-600.
18. Anliker MD, Kreyden OP. Tap water iontophoresis. Curr Probl Dermatol 2002;30:48-56.
19. Reinauer S, Neusser A, Schauf G, Höhlze E. Pulsed direct current iontophoresis as a possible new treatment for hyperhidrosis. Hautarzt 1995;46:543-547.
20. Bouman HD, Lentzer EM. The treatment of hyperhidrosis of hands and feet with constant current. Am J Phys Med 1952;31:158-169.
21. Höhlze E, Hund M, Lommel K, Melnik B; Deutsche Dermatologische Gesellschaft. Recommendations for tap water iontophoresis. J Dtsch Dermatol Ges 2010;8:379-383.
22. Reinauer S, Neusser A, Schauf G, Höhlze E. Iontophoresis with alternating current and direct current offset (AC/DC iontophoresis): a new approach for the treatment of hyperhidrosis. Br J Dermatol 1993;129:166-169.