Agreement between nicotine metabolites in blood and self-reported smoking status: The Netherlands Epidemiology of Obesity study

Sofia Folpmers a, Dennis O Mook-Kanamori a, b, Renée de Mutsert a, Frits R. Rosendaal a, Ko Willems van Dijk c, d, e, Diana van Heemst f, Raymond Noordam f, Saskia le Cessie a, g, * 

Keywords: Smoking, Agreement, Nicotine metabolites, Self reported smoking status

Abstract

Introduction: Self-report and nicotine detection are methods to measure smoking exposure and can both lead to misclassification. It is important to highlight discrepancies between these two methods in the context of epidemiological research. 

Objective: The aim of this cross-sectional study is to assess the agreements between self-reported smoking status and nicotine metabolite detection.

Methods: Data of 599 participants from the Netherlands Epidemiology of Obesity study were used to compare serum metabolite levels of five nicotine metabolites (cotinine, hydroxycotinine, cotinine N-Oxide, norcotinine, 3-hydroxy-cotinine-glucuronide) between self-reported never smokers (n = 245), former smokers (n = 283) and current smokers (n = 71). We assessed whether metabolites were absent or present and used logistic regression to discriminate between current and never smokers based on nicotine metabolite information. A classification tree was derived to classify individuals into current smokers and non/former smokers based on metabolite information.

Results: In 94% of the self-reported current smokers, at least one metabolite was present, versus in 19% of the former smokers and in 10% of the never smokers. In none of the never smokers, cotinine-N-oxide, 3-hydroxycotinine-N-glucuronide or norcotinine was present, while at least one of these metabolites was detected in 68% of the self-reported current smokers. The classification tree classified 95% of the participants in accordance to their self-reported smoking status. All self-reported smokers who were classified as non-smokers according to the metabolite profile, had reported to be occasional smokers. The classification tree classified 95% of the participants in accordance to their self-reported smoking status. All self-reported smokers who were classified as non-smokers according to the metabolite profile, had reported to be occasional smokers.

Conclusion: The agreement between self-reported smoking status and metabolite information was high. This indicates that self-reported smoking status is generally reliable.

1. Introduction

Self-reported smoking status has been used most frequently as measure for smoking exposure as it is cheap and easy to collect. However, data based on self-report are error prone as participants may not fill in their smoking habits truthfully. For instance, pregnant people or individuals from households with children are sometimes reluctant to confide that they smoke (Shipton et al., 2009). Self-reported data thereby result in an underestimation of true smoking prevalence (Gorber et al., 2009).

Another method to assess smoking exposure is by measuring nicotine metabolites as biomarkers, with targeted metabolomics in for example blood (Cross et al., 2014). Nicotine’s primary metabolite product is cotinine, as 70–80 % of nicotine is metabolized to cotinine by C-oxidation, catalyzed by the CYP2A6 enzyme. Of nicotine and nicotine metabolism products, cotinine is most studied. For example, recent studies...
found high agreement between cotinine saliva levels and self-reported current smoking status in veterans (McGinnis et al., 2022) and positive associations between urine cotinine levels and smoking properties such as the number of cigarettes consumed per day and the time to first cigarette (Yang et al., 2020).

Cotinine has the longest half-life of 16 to 20 h in blood (Miller et al., 2010). This indicates that nicotine metabolites in blood may be specific for short-term smoking behavior. Nicotine metabolites are generally seen as a more objective representation of short-term smoking exposure than self-report (Cross et al., 2014). However metabolites assays may be influenced by environmental tobacco smoking, interindividual variations in inhalation depth and variability in detection limits (Hukkanen et al., 2005).

Both methods of measuring smoking exposure are subjective to misclassification. In order to increase reliability of studies on the effects of smoking exposure, it is necessary to quantify the agreement between self-reported and metabolomic smoking data.

The aim of this study was to determine the agreement between self-reported smoking status and the presence of multiple nicotine metabolites in blood and to develop a classification method for smoking status based on smoking metabolite data.

2. Material and methods

2.1. Study population

We used data from a subset of the Netherlands Epidemiology of Obesity (NEO) study (de Mutsert et al., 2013; Faquih, et al. 2020), which is a population-based prospective cohort of 6671 individuals aged between 45 and 65 years recruited between 2008 and 2012. As part of the NEO study, all inhabitants between 45 and 65 years from the municipality of Leiderdorp were invited to participate irrespective of their BMI (n = 1671).

For the present study, metabolites were measured in a subgroup of these individuals, consisting of 599 European-ancestry participants with fasting blood sample and abdominal imaging available. Detailed information on the study design and data collection has been described previously (de Mutsert et al., 2013; Faquih, et al., 2020). The study was approved by the medical ethical committee of the Leiden University Medical Centre (LUMC) and all participants provided written informed consent.

2.2. Data collection

Before the first study visit, participants filled in a general questionnaire on demography, health and medical history, with questions about smoking status, exposure and history. In one of the questions participants were asked to indicate if they had never smoked, formerly smoked, smoked occasionally or regularly. The last two were considered current smokers but the variation was large (IQR 0.01-3). Regular smokers had 3 or more metabolites detected compared with 21 per participant the number of smoking metabolites with deviations, or medians and interquartile ranges for skewed distributions, and categorical variables with numbers and percentiles. We specifically reported the number of not detected measurements of the different metabolites for each group. A not detected measurement could either indicate a value below the detection limit, or complete absence of the metabolite. Per participant the number of smoking metabolites with measurements (‘detected’ metabolites) was counted and the numbers were compared between the never, current and former smokers’ groups. Logistic regression was used to discriminate between current and never smokers (former smokers were excluded from these analyses because they fall in between the other two categories). For each metabolite, two independent variables were used: a binary variable indicating whether a measurement of the metabolite was present (1 = present, 0 = absent) and a second variable equal to the log transformed metabolite level, with value 0 when the metabolite was not detected. Details are given in supplementary material. The results of the logistic regression were used to create a classification tree to predict smoking status based on metabolite information. Data were analyzed using R statistics version 4.0.3, packages table1, pROC and dplyr.

3. Results

3.1. General characteristics

Table 1 shows results separately for self-reported current smokers (n = 283, 12 %), former smokers (n = 283, 47 %) and those who never smoked (n = 245, 41 %). In 94 % (67/71) of the current smokers at least one metabolite was detected, versus in 19 % (55/283) of former smokers and in 10 % (25/245) of those who never smoked. In five of the never smokers only hydroxy-cotinine was present, in 18 only cotinine and in two both cotinine and hydroxy-cotinine (Suplement Table 1). When these metabolites were detectable, the median values were lower in never smokers and former smokers than smokers (Supplement Figure 1). In none of the never smokers were any of the metabolites cotinine-oxide, 3-hydroxy-cotinine-n-glucuronide or nornicotine detectable, while at least one of these metabolites was present in 487/71 (68 %) of current smokers. Cotinine was the metabolite most frequently present in former smokers (49/283; 17 %).

Of the current smokers, 34 % (24/71) declared to smoke occasionally. Regarding these occasional smokers, in 83 % (20/24) cotinine was detected and in 54 % (13/24) hydroxy-cotinine, while these metabolites were invariably (100 %) present in regular smokers. 91 % (43/47) of regular smokers had 3 or more metabolites detected compared with 21 % (5/24) of the occasional smokers. The current smokers without any metabolites present (4/71) all reported to be occasional smokers. Of the 23 current smokers without detectable cotinine-oxide, 3-hydroxy-cotinine-glucuronide and nornicotine, 83 % (19/23) were occasional smokers, while of the 37 smokers with all five metabolites present, only 3 were occasional smokers. The median NMR was substantially higher in current smokers but the variation was large (IQR 0.01-0.56, minimum 0.00, max 48).

3.2. Classification tree

Results of the logistic regression analyses can be found in the supplementary material. The results were used to develop a classification tree (Supplementary Figure 2). Three different situations are distinguished: (a) none of the five metabolites are present, in which case an individual is classified as a non-smoker, (b) at least one of the metabolites cotinine-oxide, 3-hydroxy-cotinine glucuronide or nornicotine is present, in which case an individual is classified as smoker and (c) only
participants with a predicted probability higher than 50%.

In never smokers, 10% (25/245) had cotinine or hydroxy-cotinine detected and two of them (0.8%) had a predicted probability higher than 50%. For current smokers, 15% (11/71) would be classified as a non-smoker, 4 of them because no metabolites were detected, for 7 smokers only cotinine or hydroxy-cotinine was present and the predicted probability to be a smoker was below 50%. All 11 current smokers who were classified as non-smokers were occasional smokers.

4. Discussion

In this cross-sectional study of n = 599 individuals, we explored agreements between two commonly used smoking exposure methods; self-reported smoking status and metabolite detection. Logistic regression resulted in a classification tree with multiple scenarios. Over 95% of the self-reported data were in agreement with the metabolite data.

Most studies on smoking exposure focus on linking health effects to smoking exposure, or highlight the disagreement between self-report and smoking metabolites, with faulty self-report as most probable cause of disagreement (Rebagliato, 2002). Our results are in line with previous studies that found that self-reported data on smoking can lead to underreporting of smoking habits, although in our study underreporting seems limited; fewer than 1% of the reported never smokers were classified to be a smoker based on the metabolite information, and only 4% of former smokers were classified as a smoker. High metabolite values in non smokers do not necessarily indicate concealing recent smoking. Environmental tobacco smoke or household smoking could cause the detection of these xenobiotics (Yang et al., 2022; Onoue et al., 2022).

However, concentrations of metabolites due to environmental tobacco smoke in blood were found to be generally lower than the concentrations at which we classified individuals to be smokers (Hukkainen et al., 2005).

It is noticeable that the smoking metabolites cotinine-n-oxide, 3-hydroxy cotinine glucuronide and norcotinine were undetectable in all never smokers and that using these metabolites increased the specificity of the classification to 100%. These results are in line with results of van Waastertinge et al. (2017), who found high test sensitivities for cotinine in plasma and urine and cotinine-n-oxide in urine. However, defining smoking exposure based on these metabolites is not perfect as the metabolites cotinine-n-oxide, 3-hydroxy-cotinine-glucuronide and norcotinine were not present in all smokers, and in a small subgroup of smokers, no metabolites could be detected at all. In line, these individuals all reported to be occasional smokers. Potential explanations may be that some occasional smokers did not smoke shortly before blood draw, as nicotine biomarkers in general reflect short term exposure to tobacco smoke, or that their smoking habits differ, as smoking habits may be that some occasional smokers did not smoke shortly before blood draw, as nicotine biomarkers in general reflect short term exposure to tobacco smoke, or that their smoking habits differ, as smoking habits...
current, former and non-smokers.

This study has strengths and limitations. The focus on (dis)agreement between self-report and nicotine metabolite detection is a strength, as the aim is to highlight discrepancies between the two methods in an example dataset as proof of principle. We do not address any links with other outcome variables or diseases. A limitation is that we did not collect information on environmental exposure to smoking, as this could increase metabolite levels in blood. Furthermore no definitions of current, occasional, and regular smoking were provided in the questionnaire, which may have affect concordance with metabolites. Another weakness is that we have not validated the classification between self-report and nicotine metabolite detection is a current, former and non smokers.

In conclusion, agreement between smoking metabolite information and self reported smoking status is high. Researchers should, when possible, distinguish between people who report to be regular smokers and occasional smokers.

Statements and Declarations.

Ethical approval.

The Netherlands Epidemiology of Obesity study was approved by the medical ethical committee of the Leiden University Medical Centre (LUMC). All participants provided written informed consent.

Funding

Part of this work was supported by the VELUX Stiftung [Grant No 1165] to DvH and RN.

CRediT authorship contribution statement

Sofia Folpmers: Formal analysis, Writing – original draft. Dennis O Mook-Kanamori: Conceptualization, Investigation, Writing – review & editing. Renée de Mutsert: Conceptualization, Investigation, Writing – review & editing, Supervision. Frits R. Rosendaal: Conceptualization, Writing – review & editing, Supervision. Ko Willems van Dijk: Investigation, Writing – review & editing. Diana van Heemst: Writing – review & editing. Raymond Noordam: Conceptualization, Investigation, Writing – review & editing. Saskia le Cessie: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing – review & editing.

Declaration of Competing Interest

Dennis O Mook-Kanamori reports a relationship with Metabolon INC that includes: employment. The other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to all individuals who participate in the Netherlands Epidemiology of Obesity study. We thank for all participating general practitioners for inviting eligible participants. We furthermore thank P. R. van Beelen and all research nurses for collecting the data and P.J. Noordijk and her team for sample handling and storage and I. de Jonge, M.Sc. for data management of the NEO study.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jabrep.2022.100457.

References

Cross, A. J., Boca, S., Freedman, N. D., Caporaso, N. E., Huang, W. Y., Sinha, R., … Moore, S. C. (2014). Metabolites of tobacco smoking and colorectal cancer risk. Cancerogenesis, 35(7), 1516-1522. https://doi.org/10.1093/carcin/bgu071

de Mutsert, R., Den Heijer, M., Babelink, T. J., Smit, J. W. A., Romijn, J. A., Jukema, J. W., … Rosendaal, F. R. (2013). The Netherlands Epidemiology of Obesity (NEO) study: Study design and data collection. European Journal of Epidemiology, 28 (6), 513-523. https://doi.org/10.1007/s10654-012-9801-3

Dempsey, D., Tutka, P., Jacob, P., III, Allen, F., Schoedel, K., Tyndale, R. F., & Benowitz, N. L. (2004). Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clinical Pharmacology & Therapeutics, 70(1), 64-72.

Faquth, T., van Smeden, M., Lui, J., le Cessie, S., Kastenmüller, G., Kromski, J., … Mook-Kanamori, D. O. (2020). A workflow for missing values imputation of untargeted metabolomics data. Metabolites, 10(12), 486. https://doi.org/10.3390/metabo10120486

Gerber, S. C., Schofield-Hurwitz, S., Hardt, J., Levasseur, G., & Tremblay, M. (2009). The accuracy of self-reported smoking: A systematic review of the relationship between self-reported and cotinine- assessed smoking status. Nicotine & Tobacco Research, 11 (1), 12–24. https://doi.org/10.1080/14622030902734778

Hukkanen, J., Jacob, P., & Benowitz, N. L. (2005). Metabolism and disposition kinetics of nicotine. Pharmacological Reviews, 57(1), 79–115. https://doi.org/10.1124/pr.57.1.3

McGinnis, K. A., Skanderson, M., Justice, A. C., Tindle, H. A., Akgi, K. M., Wrona, A., … Croathers, K. A. (2022). Using the biomarker cotinine and survey self-report to validate smoking data from United States Veterans Health Administration electronic health records. JAMIA Open, 5(2), ooac040.

Miller, E. I., Norris, H. R. K., Rollins, D. E., Tiffany, S. T., Moore, C. M., Vincent, M. J., … Wilkins, D. G. (2010). Identification and quantification of nicotine biomarkers in human oral fluid from individuals receiving low-dose transdermal nicotine: A preliminary study. Journal of Analytical Toxicology, 34(7), 357–366. https://doi.org/10.1093/jat/34.7.357

Onoue, A., Inaba, Y., Machida, K., Samukawa, T., Inoue, H., Kurosawa, H., … Omori, H. (2022). Association between Fathers’ Use of Heated Tobacco Products and Urinary Cotinine Concentrations in Their Spouses and Children. International Journal of Environmental Research and Public Health, 19(10), 24775. https://doi.org/10.3390/ijerph191024775

Rebagliato, M. (2002). Validation of self reported smoking. Journal of Epidemiology & Community Health, 56(3), 163–164.

Shenker, N. S., Ueland, P. M., Polidoro, S., van Veldhoven, K., Ricerri, F., Brown, R., … Vineis, P. (2013). DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology, 712–716. https://doi.org/10.1097/EDE.0b013e31828d5eb3

Shtion, D., Tappin, D. M., Vadiveloo, T., Crossley, J. A., Atien, D. A., & Chalmers, J. (2009). Reliability of self reported smoking status by pregnant women for estimating smoking prevalence: A retrospective, cross sectional study. BMJ, 339. https://doi.org/10.1136/bmj.b4347

van Waestering, R. P., Mook-Kanamori, M. J., Slagter, S. N., van der Klauw, M. M., van Vliet-Ostapchouk, J. V., Graaff, R., … Wolffenbuttel, B. H. (2017). The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation. PLoS One, 12(6), Article e0179330. https://doi.org/10.1371/journal.pone.0179330

Yang, J., Hashemi, S., Han, W., Lee, C., Kang, Y., & Lim, Y. (2020). Korean male active smokers: Quantifying their smoking habits and the transformation factor among smokers in urine and blood. Biomarkers, 25(8), 659–669. https://doi.org/10.1080/1354750X.2020.1797879

Yang, J., Jiyeon, Hashemi, Sheerin, Han, Wonseo, Lee, Chaelin, Song, Yoojin, & Lim, Youngwook (2021). Study on the Daily Ad Libitum smoking habits of active Korean smokers and their effect on urinary smoking exposure and impact biomarkers. Biomarkers, 26(8), 691–702. https://doi.org/10.1080/1354750X.2021.1981448

Yang, J., Hashemi, S., Han, W., Song, Y., & Lim, Y. (2022). Exposure and Risk Assessment of Second-and Third-Hand Tobacco Smoke Using Urinary Cotinine Levels in South Korea. International Journal of Environmental Research and Public Health, 19(6), 3746. https://doi.org/10.3390/ijerph19063746