Lack of efficacy of mono-mode of action therapeutics in COVID-19 therapy - How the lack of predictive power of preclinical cell and animal studies leads developments astray

Annekathrin Haberland | Johannes Müller

Abstract
The diverse experiences regarding the failure of tested drugs in the fight against COVID-19 made it clear that one should at least question the requirement to apply classical preclinical development strategies that demand cell and animal efficacy models to be tested before going into clinical trials. Most animals are not susceptible to infection with SARS-CoV-2, and so this led to one-sided virus replication experiments in cells and the use of animal models that have little in common with the complex pathogenesis of COVID-19 in humans. Therefore, non-clinical development strategies were designed to meet regulatory requirements, but they did not truly reflect the situation in the clinic. This has led the search for effective agents astray in many cases. As proof of this statement, we now bring together the results of such required preclinical experiments and compare with the results in clinical trials. Two clear conclusions that can be drawn from the experience to date: The required preclinical models are unsuitable for the development of innovative treatments medical devices in the case of COVID-19 and mono-action strategies (e.g. direct antivirals) are of very little or no benefit to patients under randomized, blinded conditions. Our hypothesis is that the complex situation of COVID-19 may benefit from multi-mode drugs. Here, the molecular class of aptamers could be a solution.

KEYWORDS
aptamer, COVID-19, COVID-19 animal experiments, innovative thinking, mode of action, predictive value, SARS-CoV-2 cell assays

1 | INTRODUCTION
During the first wave of the COVID-19 pandemic no drugs existed, and doctors and healthcare workers had limited treatment options available, which resulted in high mortality rates. The World Health Organization (WHO) made, therefore, a call in early Spring 2020, for a search for readily accessible drugs. Fast accessibility would only apply to a re-purposing of existing approved drugs or to candidate drugs in advanced stages of development (phase
2). The development of new anti-SARS-CoV-2-specific drugs would take months or years until reaching the point of being able to test for efficacy in patients.

With respect to re-purposing, it made perfect sense in this emergency situation to check for (i) existing antiviral drugs and drug candidates for possible effectiveness (Chopra et al., 2020; Wang, Cao, et al., 2020).

It was reasonable to also check (ii) for all available options to treat the inflammatory stage of the COVID-19 disease given the different stages of its pathogenesis (ferro et al., 2020; Galani et al., 2021; Pascarella et al., 2020; Rivellese & Prediletto, 2020; Rohilla, 2021) and taking into account the differences observed with respect to the severity of the disease (Galani et al., 2021; Lopez et al., 2020). This resulted in the suggestion to check the impact of, for example IL-6 inhibitors in those with hyperinflammation.

A different strategy would be (iii) to support the defense against the virus via, for example the application of the type-III interferon IFN-λ (Lopez et al., 2020).

Then, (iv) direct attack on the virus by application of convalescent serum, especially in severe cases, seemed to be a lifeline (Rajendran et al., 2020). Derived from the principle of convalescent serum containing anti-SARS-CoV-2 antibodies, the development of therapeutic monoclonal anti-SARS-CoV-2 antibodies was a next logical step (Chen et al., 2021; Haagmans et al., 2021; Kreer et al., 2020; Yang et al., 2020), with several players in at the start (DeFrancesco, 2020).

Later, the horizon was widened to (v) include in silico methods to check for any approved drugs that may bind onto SARS-CoV-2 proteins (ke et al., 2020; Singh, Kushwaha, et al., 2020; watashi, 2021; Wu et al., 2020), checking up to more than 10 million registered molecules (Kowalewski & Ray, 2020) in order to find molecules with the potential to be helpful in fighting the virus.

The strategies were logical and scientifically convincing. Many early attempts seemed to be promising – success was reported for cell and animal experiments and for single strategies when tested in very low numbers of selected cases. This also held true for treatment including hydroxychloroquine (Puyo et al., 2020). But, as soon as these strategies and drugs were tested in the clinic under randomized-blinded conditions, in many cases the failure to demonstrate statistically significant benefit, became obvious (Table 1). Table 2 lists the substances that have already passed non-clinical tests but for which the result of the clinical tests is still pending.

The failure to demonstrate clinical efficacy even when non-clinical models were promising held true for antivirals such lopinavir and ritonavir (Paul & Biswas, 2021), the use of which in the WHO Solidarity trial programme was discontinued before its end (https://www.who.int/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19).

Even remdesivir, an inhibitor of the viral RNA-dependent RNA polymerase and originally developed against Ebola, failed to show an effect when tested under ‘field conditions’ (WHO Solidarity Trial Consortium et al., 2021), putting the minor effect seen in the single clinical trial in a different perspective (Beigel et al., 2020; Goldman et al., 2020).

Studies with convalescent serum, where more than 100,000 patients were enrolled (Estcourt & Roberts, 2020), failed to demonstrate efficacy when tested under blinded conditions (Simonovich et al., 2021; Wang et al., 2021). As a consequence, unfortunately the first report about the failure of a therapeutic monoclonal antibody followed soon (ACTIV-3/TICO LY-CoV555 Study Group et al., 2021). A different antibody combination is still not the solution to the problem (Weinreich et al., 2021). This study revealed that the antibody is of benefit only when given at a very small time window after infection with SARS-CoV-2. When patients already have developed their own antibodies the cocktail did not show an effect. This is a situation that does not often match the clinical situation of the COVID-19 medical routine (especially not in clinics). For seriously ill COVID patients either hospitalized or requiring oxygen therapy the FDA even issued a warning that the drug might actually make their situation worse (https://www.fda.gov/media/143892/download).

Although the safety and effectiveness of the REGN-COV2 cocktail in the treatment of COVID-19 continues to be evaluated, it is remarkable that a novel cocktail of therapeutic antibodies got into the clinic in less than one year after initiation of development.

Tocilizumab, an inhibitor of IL-6 following a different therapeutic strategy of interfering in later phases of the COVID-19 pathogenesis, also failed (Stone et al., 2020). The well-known anti-inflammatory drug hydroxychloroquine (Floris et al., 2018) was discontinued in the WHO guided Solidarity trial and a failure in the RECOVERY trial (https://www.recoverytrial.net/results/hydroxychloroquine-results).

These reports into the failures in randomized studies raise a number of questions:

2 | WHAT DOES AN IN-VITRO SARS-COV-2 GROWTH INHIBITION CELL EXPERIMENT TELL US?

Most of these drugs, now failing to show a significant benefit in COVID-19 patients, showed good-to-excellent SARS-CoV-2 growth inhibition in cell experiments, as
TABLE 1 Comparison of outcomes of corresponding preclinical cell and animal experiments to outcome of clinical trials of therapeutic COVID-19 drugs

Drug	MoA	Cell-experiments	Animal-experiments	Human outcome (randomized/blinded when available)
		Vero E6 cells	Calu3 cells	
		Ref eff. yes/no	Ref Eff. yes/no	
Direct anti-virals				
Remdesivir	RdRp inhibitor	EC50 = 0.77 \(\mu M\) [2]	y 0.28 \(\mu M\) [21]	y Failed (Recovery trial) [22] n
		EC50 = 1.65 \(\mu M\) [21]	y	
Lopinavir and	3CLpro	EC50 = 11.41 \(\mu M\) [23]	y 1.3 \(\mu M\) [23]	y Failed (SOLIDARITY trial discontinued) [24] n
Ritonavir				
Lopinavir	3CLpro	EC50 = 9.12 \(\mu M\) [25]	y EC50 = 21.7 \(\mu M\) [25]	y Failed (SOLIDARITY trial discontinued) [24] n
Favipiravir	RdRp inhibitor	EC50 = 61.88 \(\mu M\) [2]	y	
	(pro-drug)			
Ribavirin	RdRp	EC50 = 109.90 \(\mu M\) [2]	y	

(Continues)
Drug MoA

Drug	MoA	Cell-experiments	Animal-experiments	Human outcome (randomized/blinded when available)
Camostat mesylate	Serin-Protease inhibitor (TMPRSS2)	Vero E6 cells	Ref [25]	Eff. yes/no
		EC50 >50 μM	[25] EC50 = 0.187 μM	y
			[25]	[30] n
Anti-protozoal and anti-leprosy	Nitazoxanide (NTZ)	Vero E6 cells	[2] EC50 = 2.12 μM	y
				(NCT04348409)
				"Interpretation: Compared to placebo in clinical and virologic outcomes and improvement of inflammatory outcomes, the superiority of NTZ warrants further investigation of this drug for moderate COVID-19 in larger clinical trials. A higher incidence of adverse events in the placebo arm might be attributed to COVID-19 related symptoms."
				but: "no statistically significant difference between treatments in the number of death" and "the number of participants who required invasive mechanical ventilation, although not statistically significant, was higher in the placebo group"
				"Conclusions: In patients with mild COVID-19, symptom resolution did not differ between nitazoxanide and placebo groups after 5 days of therapy. However, early nitazoxanide therapy was safe and reduced viral load significantly."

(Continues)
Table 1 (Continued)

Drug	MoA	Cell-experiments	Animal-experiments	Human outcome (randomized/blinded when available)		
		Vero E6 cells	Calu3 cells	Eff. yes/no	Ref	eff. yes/no
Direct virus attack						
Convalescent serum						
Therapeutic antibody	LY-CoV555 (Bamlavinab)	[37] y				
Cocktail:						
LY-CoV555						
LY-CoV016	(Etesevimab or JS016)					
Regn-COV2						
Antiinflammatory						
Chloroquine						
	EC50 = 1.13 μM				[2]	y
	EC50 = 7.28 μM				[25]	y
Hydroxychloroquine	EC50 = 0.72 μM				[43]	y
Tocilizumab	IL-6 inhibitor					

Eff. = effective; y = yes; n = no; (y) tendency towards yes; (n) = tendency towards no; (y/n) no clear result of yes or no; MoA = mode of action; RdRp = RNA-dependent RNA polymerase, n† = between submission of the manuscript May 05 and its approval Aug 16 tocilizumab received emergency use authorization by the FDA for COVID-19 therapy based on the outcome of different clinical trials (June 25th, 2021; https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-treatment-covid-19).
TABLE 2 List of substances that have already succeeded in non-clinical tests but for which the result of the clinical tests is still pending

Drug	MoA	Cell-experiments	Animal-experiments	Human outcome (randomized/blinded when available)
Direct anti-virals				
Nafamostat	Serin-Protease inhibitor (TMPRSS2)			
	EC50 = 22.50 μM	[2]	**Ref**	
		eff. yes/no		
		yes		
Clofazimine	Anti-leprosy	**EC50 = 0.31 μM**	[45]	
	Anti-protozoal and anti-leprosy			
	Anti-protozoal and anti-leprosy	**EC50 = 0.0022 M**	[25]	
	Anti-protozoal and anti-leprosy			
		Ref		
		eff. yes/no		
		yes		
		Expected EOS		
		Aug 2021		
		Dec 2021		
		Apr 2021		
		April 2021		
		Dec 2020		
		Dec 2021		
		Dec 2022		
		NCT04390594 (Senegal)		
		NCT04352400 (Padova, Zurich), posted April 2021		
		NCT04418128 (Gyeongsang), posted June 2020, not jet recruiting		
		NCT04628143 (Chong Kun Dang Pharm.), posted Nov 20; completed, no results posted yet		
		NCT04623021 (Chong Kun Dang Pharm.), completed, no results posted yet		
		NCT04473053 University of Edinburgh UK, posted July 2020, recruiting		
		NCT04483960 (University of Melbourne), posted July 2020, recruiting		

(Continues)
TABLE 1 (Continued)

Drug	MoA	Cell-experiments	Animal-experiments	Human outcome (randomized/blinded when available)				
		Vero E6 cells	Calu3 cells	Eff. yes/no	Ref	Eff. yes/no	Study	Expected EOS
Direct virus attac	SC31	EC50 = 1.85 nM	[10]	y		y	not yet identified	
Therapeutic antibody	SC31							
MAb 47D11		EC50 = 0.57 μg/ml	[47]	y		y	not yet identified	
CV07-209		4.1 ng/mL (about 0.027 μM)	[48]	y		y	not yet identified	

Eff. = effective; **y** = yes; **n** = no; (y) tendency towards yes; (n) = tendency towards no; (y/n) no clear result of yes or no; MoA = mode of action; RdRp = RNA-dependent RNA polymerase, EOS = End of study.
seen with remdesivir (Pruijssers et al., 2020; Wang, Cao, et al., 2020) and many other antivirals such as lopinavir, favipiravir, penciclovir (Wang, Cao, et al., 2020); for an overview see (Ko et al., 2021) (and see Table 1).

Are these cell experiments too removed from reality – monitoring virus growth only in a very few cancer cell lines (https://web.expasy.org/cellosaurus/sars-cov-2.html#A) and special cell media, often serum free – which do not reflect the viral growth in-vivo, in the patient?

Why do we observe a good viral growth inhibition when the virus is cultivated in one cell line, but not when cultivated in another, or vice versa (Ko et al., 2021)?

And a second question that has to be answered in the light of the outcome of clinical studies is the question:

3 | WHAT DOES AN IN-VIVO SARS-COV-2 ANIMAL EXPERIMENT TELL US, WHEN COMPARING THE ANIMAL EXPERIMENT WITH THE CLINICAL OUTCOME?

Preclinical animal effectiveness experiments required by the majority of the regulatory authorities before drug developers can move forward to the clinics to check for COVID-19 effectiveness, even when testing approved and advanced clinical development drugs. This is a challenge because (i) strictly speaking, no adequate animal models exist and (ii) on top of that, only very few institutes and companies worldwide are able to conduct such experiments under the necessary strict safety measures.

Many animals are almost or completely resistant to SARS-CoV-2, which means they do not develop symptoms of the disease after inoculation (Singh, Singh, et al., 2020). Therefore, new animal models are under development, such as hACE2-receptor-overexpressing mice (Dinnon et al., 2020; Hassan et al., 2020). Given the short time since the beginning of the pandemic, most models are not yet well characterized. Currently, the best model with respect to comparability to humans seems to be the Syrian hamster, which is also one of the best characterized models (Imai et al., 2020; Rosenke et al., 2020; Sia et al., 2020). Here it becomes clear that even with this hamster model, animals start to recover on their own already 5–8 days after virus inoculation. Therefore, the drugs to be tested are given pre-inoculation (prophylactically) of SARS-CoV-2 virus infections (Haagmans et al., 2021; Kreye et al., 2020; Yuan et al., 2020), or almost parallel to the inoculation (Kreye et al., 2020). Very few studies have tested the application at 1, or a maximum 3, days post inoculation in order to still meet the small time window of being able to show an effect compared to controls (Chan et al., 2021; Yuan et al., 2020) (see also Table 1, column “animal experiments”).

This time frame clearly does not reflect the situation in humans in the clinic. Neither from the point of view of viral load nor the accompanying variable immune response in humans. Here the patient comes in days (typically more than 5 days) after infection, when infection and inflammatory and other processes already overlap.

Is this the reason why we can read about successful animal tests with drugs, which afterwards failed in humans, such as in the case of convalescent serum (Cross et al., 2021; Zheng et al., 2021) or Favipiravir (Kaptein et al., 2020)?

Why are these animal models still demanded, which do not predict the situation in the clinic? This non-comparability was well described by Gilead in their Assessment report for remdesivir EMA/357513/2020, (dated 25 June 2020), on page 77 with respect to the rhesus macaque COVID-19 model:

The rhesus macaque model resembles a moderate COVID-19 disease; thus, conclusions from this animal model might not be transferable to severe disease. The inoculation with SARS-CoV-2 induced a transient, moderate disease in rhesus macaques with signs of infection one day post inoculation (dpi) with disease lasting 8–16 days. ... The duration of disease in rhesus macaques seems to be very short with differences also in incubation times, compared to the disease in humans. In addition, differences observed in pulmonary involvement, duration of viraemia, serological and immunological responses might impact the validity of this animal disease model for SARS-CoV-2 in humans. ... One of the uncertainties includes the relevance of the animal models for human COVID-19, as well as the fact that RDV was administered only 12 hours after viral challenge in the animal model. ... This is not reflective of the currently studied use of remdesivir in COVID-19 patients, where first administration is unusual before day 4 of symptom onset. Thus, animals in this model may not be representative for the clinical status of patients that will receive RDV in clinical practice, as it rather reflects a prophylactic or post-exposure than a therapeutic approach.

This raises the question: wouldn’t it be possible with appropriate justification to omit animal experiments in certain situations? Is there not also the option to look at the
development as a whole – safety aspects from previous studies along with the likelihood of having a positive effect and just assess the benefit/risk ratio from previous data and afterwards check in small groups? Would that not be a way to go, in the light of the progress of the disease of the ongoing global crisis which seems to be increasing in complexity despite the availability of vaccines in some regions of the world?

This way, the bottleneck of inaccessible animal experiments – which seem not to predict the clinical situation very well anyway – might be circumvented, thereby allowing faster development for this high unmet need.

Even in the case of complete success of vaccination programmes, for which we hope for the sake of humanity, effective medicines will still be very necessary in view of variant escape and waning of immunity or poor response to immunization.

So far, no reliable drugs exist besides dexamethasone, and this only for patients on ventilators in a progressed state of the disease (Gozzo et al., 2020).

Since specific single-mode of action drugs widely failed so far to show any meaningful benefit for COVID-19 patients, we developed the working hypothesis that multimode of action drugs need to be searched for.

4 | THE COMPLEXITY OF THE COVID-19 DISEASE DEMANDS NEW CONCEPTS OF TREATMENT

Aptamers, already the focus of interest for antiviral treatment, including for SARS-CoV (Esposito et al., 2020; Jeon et al., 2004; Musafia et al., 2014; Song et al., 2020; Torabi et al., 2020), have at least in some cases the chance to be not only absolutely specific for one epitope but to also show (some) affinity with several oligonucleotide-binding-susceptible sequence sections for different proteins of the virus (Esposito et al., 2020; Tucker et al., 2012; Weisshoff et al., 2020). This way, a cumulative multi-effect might result (multi-mode of action), together increasing the chance of treatment success.

Supporting this demand is the fact that a monotherapeutic anti-SARS antibody has already lost its emergency authorization due to resistance of a viral variant when used alone (Commissioner O of the. Coronavirus (COVID-19), 2021). This can be overcome to some extent using mixtures of anti-SARS antibodies.

In the same light, Brouwer and colleagues have also recently proposed to develop monoclonal antibodies that “define multiple targets of vulnerability” (Brouwer et al., 2020).

Multi-mode of action is important as it has already been shown that less than fully effective treatment could trigger the formation of viral escape mutations in an immunocompromised patient (Kemp et al., 2021).

Moreover, the drug/aptamer might also show effects occurring from its original indication, as is the case with aptamer BC 007, which is able to neutralize functionally active autoantibodies which target and activate G-protein coupled receptors (GPCR-γAAbs) (Becker et al., 2020; Haberland et al., 2016; Müller, 2019). If able also to neutralize self-reactive SARS-CoV-2-induced antibodies (autoantibodies) which are discussed to be one of the reasons for the severity and persistence of COVID-19 symptoms (Long-COVID) (Bastard et al., 2020; Ehrenfeld et al., 2020; Khamsi, 2021; Novelli et al., 2021; Zhou et al., 2020), an additional positive impact on treatment might be possible. This is especially the case since with Long-COVID patients the occurrence of such GPCR-γAAbs have also already been described (Wallukat et al., 2021). And, a treatment of a Long-COVID patient in a named patient programme has shown that BC 007 neutralizes the autoantibodies and significantly improved the patient’s health status (Hohberger et al., 2021).

Such a complexity of effects, however, cannot be tested in existing animal models, as explained above.

So, the chance to adopt completely new methods for combating SARS-CoV-2 might be lost if forced to comply with prescribed regulatory development requirements, not being able to bypass certain requirements such as animal models which would not even reflect the complex clinical situation.

5 | CONCLUSIONS

Established strategies for the research and development of efficient anti-SARS-CoV-2 drugs have so far not been very successful. Completely new innovative strategies have been delayed due to conservative regulatory expectations, since drug developers have to follow prescribed regulatory methods (efficacy tests using animal models that may not even reflect the mode of action, besides that there is no easy access to such experiments given the current situation of many developments being pursued in parallel).

Moreover, at least in Europe, only very little money has been given for drug development (https://www.faz.net/aktuell/wirtschaft/unternehmen/firmen-brauchen-geld-fuer-forschung-an-corona-mediakament-17098254.html). All resources have gone into vaccine development. This is a strategy that needs to be reconsidered. Given the mutation rate of viruses and other factors, such as not everybody being able to be vaccinated at least at the same time, the focus on vaccines at the expense of treatment development is now becoming evident. There is an urgent need for the medicines regulators, public health organizations
and funding bodies to adapt to this shifting paradigm in view of the global health crisis. For innovative drugs with multiple mechanisms of action relevant to the human disease spectrum with COVID (which cannot be recapitulated in non-clinical disease models) and where little will be gained from non-clinical animal model testing – but doing so will delay clinical development – standard requirements for non-clinical testing should be reconsidered on a case by case basis. While the promise of vaccines has in part been met, the lack of global vaccination, the emergence of new variants of concern and the lack of an immunological correlate of protection (ICP), and waning immunity means that effective new treatment for disease remain a priority. Improved funding opportunities are needed now for innovative approaches to address the unmet need of COVID-19 disease.

ACKNOWLEDGEMENT
This manuscript was proofread by Proof-Reading-Service.com. This work was funded by Berlin Cures. The funder provided support in the form of salaries but did not have any additional role in the design, data collection and analysis, decision to publish, or preparation of the manuscript.

CONFLICTS OF INTEREST
Annekathrin Haberland and Johannes Müller are employed at Berlin Cures GmbH. Annekathrin Haberland and Johannes Müller are shareholders of Berlin Cures Holding AG, the holding company of Berlin Cures.

REFERENCES
ACTIV-3/TICO LY-CoV555 Study Group, Lundgren, J. D., Grund, B., Barkauskas, C. E., Holland, T. L., & Gottlieb, R. L. et al. (2021). A neutralizing monoclonal antibody for hospitalized patients with Covid-19. New England Journal of Medicine, 384, 905–914. https://doi.org/10.1056/NEJMoa2033130
Bastard, P., Rosen, L. B., Zhang, Q., Michailidis, E., Hoffmann, H.-H., Zhang, Y., Dorfman, K., Philippot, Q., Rosain, J., Béziant, V., Manry, J., Shaw, E., Haljasmägi, L., Peterson, P., Lorenzo, L., Bizien, L., Trouillet-Assant, S., Dobbs, K., de Jesus, A. A., ... Le, P. (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 370(6515), eabd4585. https://doi.org/10.1126.science.abd4585
Baum, A., Ajithdoss, D., Copin, R., Zhou, A., Lanza, K., Negron, N., Ni, M., Wei, Y., Mohammadi, K., Musser, B., Atwal, G. S., Oyejide, A., Goez-Gazi, Y., Dutton, J., Clemmons, E., Staples, H. M., Bartley, C., Klaffke, B., Alfson, K., ... Gonzalez, O. (2020). REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 370(6520), 1110–1115. https://doi.org/10.1126/science.abe2402
Becker, N.-P., Haberland, A., Wenzel, K., Göttel, P., Wallukat, G., Davideit, H., Schulze-Rothe, S., Hönike, A.-S., Schimke, I., Bartel, S., Grossmann, M., Sinn, A., Iavarone, L., Boergermann, J. H., Prilliman, K., Golor, G., Müller, J., & Becker, S. (2020). A three-part, randomised study to investigate the safety, tolerability, pharmacokinetics and mode of action of BC 007, neutraliser of pathogenic autoantibodies against G-protein coupled receptors in healthy, young and elderly subjects. Clinical Drug Investigation, 40(5), 433–447. https://doi.org/10.1007/s40261-020-00903-9
Beigel, J. H., Tomashak, K. M., Dodd, L. E., Mehta, A. K., Dingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., ... Oh, M.-D. (2020). Remdesivir for the treatment of Covid-19 — final report. New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764
Blum, V. F., Cimerman, S., Hunter, J. R., Tierno, P., Lacerda, A., Soeiro, A., Cardoso, F., Bellei, N. C., Maricato, J., Mantovani, N., Vassao, M., Dias, D., Galinskas, J., Janini, L. M. R., Santos-Oliveira, J. R., Da-Cruz, A. M., & Diaz, R. S. (2021). Nitazoxanide superiority to placebo to treat moderate COVID-19 - A Pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine, 37, 100981. https://doi.org/10.1016/j.jcellm.2021.100981
Brouwer, P. J. M., Caniels, T. G., van der Straten, K., Snitselaar, J. L., Aldon, Y., Bangaru, S. et al (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 369, 643–650. https://doi.org/10.1126/science.abc5902
Chan, C. E. Z., Seah, S. G. K., Chye, D. H., Massey, S., Torres, M., Lim, A. P. C., Wong, S. K. K., Neo, J. J. Y., Wong, P. S., Lim, J. H., Loh, G. S. L., Wang, D., Boyd-Kirkup, J. D., Guan, S., Thakkar, D., Teo, G. H., Purushotoman, K., Hutchinson, P. E., Young, B. E., Low, J. G. et al (2021). The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS One, 16(6), e0253487.
Chen, P., Nirula, A., Heller, B., Gottlieb, R. L., Boscia, J., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., Shawa, I., Adams, A. C., Van Naarden, J., Custer, K. L., Shen, L., Durante, M., Oakley, G., Schade, A. E., Sabo, J., ... Skovronsky, D. M. (2021). SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. New England Journal of Medicine, 384(3), 229–237. https://doi.org/10.1056/NEJMoa2029849
Chopra, D., Boparai, J. K., Bhandari, B., Srivastava, A., & Gupta, R. (2020). Pharmacological strategies for COVID-19 - A review of the most promising repurposed antiviral drugs. Infectious Disorders - Drug Targets, 20, https://doi.org/10.2174/1871871526520666201218151841. Online ahead of print.
Commissioner O of the. Coronavirus (COVID-19) (2021). Update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab. FDA 2021. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-updatet-dfa-revoices-emergency-use-authorization-monoclonal-antibody-bamlanivimab (accessed August 17, 2021).
Cross, R. W., Prasad, A. N., Borisевич, V., Woolsey, C., Agans, K. N., Deer, D. J., Dobias, N. S., Geisbert, J. B., Fenton, K. A., & Geisbert, T. W. (2021). Use of convalescent serum reduces severity of COVID-19 in nonhuman primates. Cell Reports, 34(10), 108837. https://doi.org/10.1016/j.celrep.2021.108837
Dabbous, H. M., Abd-Elsalam, S., El-Sayed, M. H., Sherief, A. F., Ebeid, F. F. S., El Ghafer, M. S. A., Soliman, S., Elbahnasawy, M., Badawi, R., & Tageldin, M. A. (2021). Efficacy of favipiravir
in COVID-19 treatment: a multi-center randomized study. Archives of Virology, 166, 949–954. https://doi.org/10.1007/s00705-021-04956-9

DeFrancesco, L. (2020). COVID-19 antibodies on trial. Nature Biotechnology, 38, 1242–1252. https://doi.org/10.1038/s41587-020-0732-8

Dinnon, K. H., Leist, S. R., Schäfer, A., Edwards, C. E., Martinez, D. R., Montgomery, S. A., West, A., Yount, B. L., Hou, Y. J., Adams, L. E., Gully, K. L., Brown, A. J., Huang, E., Bryant, M. D., Choong, I. C., Glenn, J. S., Gralinski, L. E., Sheahan, T. P., & Baric, R. S. (2020). A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 586(7830), 560–566. https://doi.org/10.1038/s41586-020-2708-8

Ehrenfeld, M., Tincani, A., Andreoli, L., Cattalini, M., Greenbaum, A., Kanduc, D., Allijotas-Reig, J., Zinserling, V., Semenova, N., Amtil, H., & Shoenefeld, Y. (2020). Covid-19 and autoimmunity. Autoimmunity Reviews, 19(8), 102597. https://doi.org/10.1016/j.autrev.2020.102597

Esposito, V., Esposito, F., Pepe, A., Gomez Monterrey, I., Tramontano, E., Mayol, L., Virgilio, A., & Galeone, A. (2020). Probing the importance of the G-quadruplex grooves for the activity of the anti-HIV aptamer T30923. International Journal of Molecular Sciences, 21(16), 5637. https://doi.org/10.3390/ijms21165637

Estcourt, L. J., & Roberts, D. J. (2020). Convalescent plasma for covid-19. BMJ, 370, m3516. https://doi.org/10.1136/bmj.m3516

Ferro, F., Elefante, E., Baldini, C., Bartoloni, E., Puxeddu, I., Talarico, R., Mosca, M., & Bombardieri, S. (2020). COVID-19: the new challenge for rheumatologists. Clinical and Experimental Rheumatology, 38, 175–180.

Floris, A., Piga, M., Mangoni, A. A., Bortoluzzi, A., Erre, G. L., & Cauti, A. (2018). Protective effects of hydroxychloroquine against accelerated atherosclerosis in systemic lupus erythematosus. Mediators of Inflammation, 2018, 3424136. https://doi.org/10.1155/2018/3424136

Galani, I.-E., Rovina, N., Lampropoulou, V., Triantafyllia, V., Manioudaki, M., Pavlos, E., Koukaki, E., Fragkou, P. C., Panou, V., Rapti, V., Koltsida, O., Mentis, A., Koulouris, N., Tsiodras, S., Koutsoukou, A., & Andreaskos, E. (2020). Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nature Immunology, 22, 32–40. https://doi.org/10.1038/s41590-020-00840-x

Goldman, J. D., Lye, D. C. B., Hui, D. S., Marks, K. M., Bruno, R., Montejano, R., Spinner, C. D., Galli, M., Ahn, M.-Y., Nahass, R. G., Chen, Y.-S., Sen Gupta, D., Hyland, R. H., Osinusi, A. O., Cao, H., Blair, C., Wei, X., Gaggar, A., Brainard, D. M., & Subramanian, A. (2020). Remdesivir for 5 or 10 days in patients with severe Covid-19. New England Journal of Medicine, 383(19), 1827–1837. https://doi.org/10.1056/NEJMoA2015301

Gozzo, L., Longo, L., Vitale, D. C., & Drago, F. (2020). Dexamethasone treatment for COVID-19, a curious precedent following a regulatory gap. Frontiers in Pharmacology, 11, 621934. https://doi.org/10.3389/fphar.2020.621934.

Group TRC, Horby, P. W., Estcourt, L., Peto, L., Emberson, J. R., Staplin, N. et al (2021). Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, 397(10289), 2049–2059.

Gunst, J. D., Staerke, N. B., Pahus, M. H., Kristensen, L. H., Bodilsen, J., Lohse, N., Dalgaard, L. S., Brønnum, D., Fröbert, O., Hønge, B., Johansen, I. S., Monrad, I., Erikstrup, C., Rosendal, R., Vilsøstrup, E., Mariager, T., Bove, D. G., Offersen, R., Shakar, S., Cajander, S. et al (2021). Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. eClinicalMedicine, 35, 100849. https://doi.org/10.1016/j.eclinm.2021.100849

Haagmans, B. L., Noack, D., Okba, N. M. A., Li, W., Wang, C., Bestebroer, T., de Vries, R., Herfst, S., de Meulder, D., Verveer, E., van Run, P., Lamers, M. M., Rijnders, B., Roxx, C., van Kuppevelt, F., Grosvold, F., Drabek, D., van Kessel, C. G., Koopmans, M., Bosch, B. J. et al (2021). SARS-CoV-2 neutralizing human antibodies protect against lower respiratory tract disease in a hamster model. The Journal of Infectious Diseases, 222(12), 2010–2028. https://doi.org/10.1093/infdis/jiab289

Haberland, A., Holtzhauer, M., Schlichtiger, A., Bartel, S., Schimke, I., Müller, J., Dandel, M., Lupa, P. B., & Wallukat, G. (2016). Apteram BC 007 – A broad spectrum neutralizer of pathogenic autoantibodies against G-protein-coupled receptors. European Journal of Pharmacology, 789, 37–45. https://doi.org/10.1016/j.ejphar.2016.06.061

Hassan, A. O., Case, J. B., Winkler, E. S., Thackray, L. B., Kafi, N. M., Bailey, A. L., McCune, B. T., Fox, J. M., Chen, R. E., Alsoussi, W. B., Turner, J. S., Schmitz, A. J., Lei, T., Shrihari, S., Keeler, S. P., Fremont, D. H., Greco, S., McCray, P. B., Perlman, S., Diamond, M. S. (2020). A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell, 182(3), 744–753.e4. https://doi.org/10.1016/j.cell.2020.06.011

Hohberger, B., Harrer, T., Mardin, C., Kruse, F., Hoffmanns, J., & Rogge, L. et al (2021). Neutralization of autoantibodies targeting G-protein coupled receptors improves capillary impairment and fatigue symptoms after COVID-19 infection. Social Science Research Network. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3879488

Hungr, I.- F.-N., Lung, K.-C., Tso, E.- Y.-K., Liu, R., Chung, T.- W.- H., Chu, M.-Y., Ng, Y.-Y., Lo, J., Chan, J., Tam, A. R., Shum, H.-P., Chan, V., Wu, A.- K.-L., Sin, K.-M., Leung, W.-S., Law, W.-L., Lung, D. C., Sin, S., Yeung, P., Yip, C.- Y. et al (2020). Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. The Lancet, 395, 1695–1704. https://doi.org/10.1016/S0140-6736(20)31042-4

Imai, M., Iwatsuki-Horimoto, K., Hatta, M., Lober, S., Halfmann, P. J., Nakajima, N., Watanabe, T., Ujje, M., Takahashi, K., Ito, M., Yamada, S., Fan, S., Chiba, S., Kuroda, M., Guan, L., Takada, K., Armbrust, T., Balogh, A., Furusawa, Y., & Hattori, S. (2020). Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences, 117, 16587–16595. https://doi.org/10.1073/pnas.2009799117

Jeon, S. H., Kayhan, B., Ben-Yedidia, T., & Arnon, R. (2004). A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. Journal of Biological Chemistry, 279(46), 48410–48419. https://doi.org/10.1074/jbc.M409059200

Jones, B. E., Brown-Augsburger, P. L., Corbett, K. S., Westendorf, K., Davies, J., Cubrec, T. P., Wiethoff, C. M., Blackbourne, J. L., Heinz, B. A., Foster, D., Higgs, R. E., Balasubramaniam, D., Wang, L., Zhang, Y., Yang, E. S., Bidshahri, R., Kraft, L., Hwang, Y., Zentelis, S., & Smith, M. A. (2021). The neutralizing
antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. *Science Translational Medicine*, 13(593), eabf1906. https://doi.org/10.1126/scitranslmed.abf1906

Kaptein, S. J. F., Jacobs, S., Langendries, L., Seldeslaghts, L., ter Horst, S., Liesenborgs, L., Hens, B., Vergote, V., Heylen, E., Bartheleyem, K., Maas, E., De Keyzer, C., Bervoets, L., Rymenants, J., Van Buyten, T., Zhang, X., Abdelnabi, R., Pang, J., Williams, R., Thibaut, H. J. et al. (2020). Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. *Proceedings of the National Academy of Sciences*, 117, 26955–26965. https://doi.org/10.1073/pnas.2014441117

Ke, Y.-Y., Peng, T.-T., Yeh, T.-K., Huang, W.-Z., Chang, S.-E., Wu, S.-H., Hung, H.-C., Hsu, T.-A., Lee, S.-J., Song, J.-S., Lin, W.-H., Chiang, T.-J., Lin, J.-H., Sytwu, H.-K., & Chen, C.-T. (2020). Artificial intelligence approach fighting COVID-19 with repurposing drugs. *Biomedical Journal*, 43, 355–362. https://doi.org/10.1016/j.biij.2020.05.001

Kemp, S. A., Collier, D. A., Datir, R. P., Ferreira, I. A. T. M., Gayed, S., Jahun, A., Hosmillo, M., Rees-Spear, C., Mlochova, P., Lumb, I. U., Roberts, D. J., Chandra, A., Temperton, N., Sharrock, K., Blane, E., Modis, Y., Leigh, K. E., Briggs, J. A. G., van Gils, M. J., ... Gupta, R. K. (2021). SARS-CoV-2 evolution during treatment of chronic infection. *Nature*, 592(7853), 277–282. https://doi.org/10.1038/s41586-021-03291-y

Khamsi, R. (2021). Rogue antibodies could be driving severe COVID-19. *Nature*, 590, 29–31. https://doi.org/10.1038/d41586-021-00149-1

Ko, M., Jeon, S., Ryu, W.-S., & Kim, S. (2021). Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. *Journal of Medical Virology*, 93, 1403–1408. https://doi.org/10.1002/jmv.26397

Kowalewski, J., & Ray, A. (2020). Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. *Heliyon*, 6, e04639. https://doi.org/10.1016/j.heliyon.2020.e04639

Kreer, C., Zehner, M., Weber, T., Ercanoglu, M. S., Gieselmann, L., Rohde, C., Halwe, S., Korenkov, M., Schommers, F., Vanshylla, K., Di Cristianzio, V., Janicki, H., Brinker, R., Ashurov, A., Krähl, V., Kupke, A., Cohen-Dvashi, H., Koch, M., Eckert, J. M., Lederer, S. et al. (2020). Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. *Cell*, 182, 843–854.e12. https://doi.org/10.1016/j.cell.2020.06.04

Kreye, J., Reincke, S. M., Kornau, H.-C., Sánchez-Sendin, E., Corman, V. M., Liu, H., Yuan, M., Wu, N. C., Zhu, X., Lee, C.-C., D., Trimpert, J., Höltje, M., Dietert, K., Stöffler, L., von Wardenburg, N., van Hoof, S., Homeyer, M. A., Hoffmann, J., Abdelgawad, A., ... Hocke, A. C. (2020). A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. *Cell*, 183(4), 1058–1069.e19. https://doi.org/10.1016/j.cell.2020.09.049

Lopez, L., Sang, P. C., Tian, Y., & Sang, Y. (2020). Dysregulated interferon response underlying severe COVID-19. *Viruses*, 12(12), 1433. https://doi.org/10.3390/v12121433

Müller, J. (2019). The DNA-based drug BC007 neutralizes agonistically acting autoantibodies directed against G protein-coupled receptors successful mode of action demonstrated in clinical phase 1 trial. *Chemistry Today*, 37(2), 65–67.

Musafia, B., Oren-Baranoy, R., & Noiman, S. (2014). Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer – virus interaction. *PLoS One*, 9(5), e97696. https://doi.org/10.1371/journal.pone.0097696

Novelli, L., Motta, F., De Santis, M., Ansari, A. A., Gershwin, M. E., & Selmi, C. (2021). The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 – A systematic review of the literature. *Journal of Autoimmunity*, 117, 102592. https://doi.org/10.1016/j.jaut.2020.102592

Pascarella, G., Strumia, A., Piliego, C., Bruno, F., Del Buono, R., Costa, F., Scarlata, S., & Agro, F. E. (2020). COVID-19 diagnosis and management: a comprehensive review. *Journal of Internal Medicine*, 288, 192–206. https://doi.org/10.1111/joim.13091

Pasquerou, S., Nehme, Z., Haidar Ahmad, S., Daoud, F., Van Assche, J., Walle, C., Schwartz, C., Rohn, O., Morot-Bizot, S., & Herbein, G. (2021). Remdesivir inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. *Viruses*, 13(2), 354. https://doi.org/10.3390/v13020354

Paul, S. S., & Biswas, G. (2021). Repurposed antiviral drugs for the treatment of COVID-19: Syntheses, mechanism of infection and clinical trials. *Mini-Reviews in Medicinal Chemistry*, 21, 1123–1134. https://doi.org/10.2174/13895575216662012221

Pruissers, A. J., George, A. S., Schiffer, A., Leist, S. R., Graulinski, L. E., Dinnon, K. H., Yount, B. L., Agostini, M. L., Stevens, L. J., Chappell, J. D., Lu, X., Hughes, T. M., Gulyk, K., Martinez, D. R., Brown, A. J., Graham, R. L., Perry, J. K., Du Pont, V., Pitts, J., & Ma, B. (2020). Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. *Cell Reports*, 32(3), 107940. https://doi.org/10.1016/j.celrep.2020.107940

Puyo, C., Kreig, D., Saddi, V., Ansari, E., & Prince, O. (2020). Case report: Use of hydroxychloroquine and N-acetylcysteine for treatment of a COVID-19 patient. *F1000Research*, 9, 491. https://doi.org/10.12688/f1000research.23995.2

Rajendran, K., Krishnasamy, N., Rangarajan, J., Rathinam, J., Natarajan, M., & Ramachandran, A. (2020). Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. *Journal of Medical Virology*, 92, 1475–1483. https://doi.org/10.1002/jmv.25961

Rivellese, F., & Prediletto, E. (2020). ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. *Autoimmunity Reviews*, 19(6), 102536. https://doi.org/10.1016/j.iumvr.2020.102536

Rocco, P. R. M., Silva, P. L., Cruz, F. F., Melo-Junior, M. A. C., Tierno, P. F. G. M. M., Moura, M. A., De Oliveira, L. F. G., Lima, C. C., Dos Santos, E. A., Junior, W. F., Fernandes, A. P. S. M., Franchini, K. G., Magri, E., de Moraes, N. F., Gonçalves, J. M. J., Carbonieri, M. N., Dos Santos, I. S., Paes, N. F., Maciel, P. V. M., & Rocha, R. P. et al (2021). Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. *European Respiratory Journal*, 58(1), 2003725. https://doi.org/10.1183/13993003.03725-2020

Rohilla, S. (2021). Designing therapeutic strategies to combat severe acute respiratory syndrome coronavirus-2 disease: COVID-19. *Drug Development Research*, 82, 12–26. https://doi.org/10.1002/ddr.21720

Rosenke, K., Meade-White, K., Letko, M., Clancy, C., Hansen, F., Liu, Y., Okumura, A., Tang-Huau, T.-L., Li, R., Saturday, G.,
Yuan, S., Yin, X., Meng, X., Chan, J., Ye, Z.-W., Riva, L. et al. (2020). Clofazimine is a broad-spectrum coronavirus inhibitor that antagonizes SARS-CoV-2 replication in primary human cell culture and hamsters. Res Sq.

Yuan, S., Yin, X., Meng, X., Chan, J.-F.-W., Ye, Z.-W., Riva, L., Pache, L., Chan, C.-C.-Y., Lai, P.-M., Chan, C.-C.-S., Poon, V.-K.-M., Lee, A.-C.-Y., Matsunaga, N., Pu, Y., Yuen, C.-K., Cao, J., Liang, R., Tang, K., Sheng, L., ... Lau, C. Y. (2021). Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature, 593(7859), 418–423. https://doi.org/10.1038/s41586-021-03431-4

Zheng, J., Wong, L.-Y.-R., Li, K., Verma, A. K., Ortiz, M. E., Wohlford-Lenane, C., Leidinger, M. R., Knudson, C. M., Meyerholz, D. K., McCray, P. B., & Perlman, S. (2021). COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature, 589(7843), 603–607. https://doi.org/10.1038/s41586-020-2943-2

Zhou, Y., Han, T., Chen, J., Hou, C., Hua, L., He, S., Guo, Y., Zhang, S., Wang, Y., Yuan, J., Zhao, C., Zhang, J., Jia, Q., Zuo, X., Li, J., Wang, L., Cao, Q., & Jia, E. (2020). Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clinical and Translational Science, 13(6), 1077–1086. https://doi.org/10.1111/cts.12805

How to cite this article: Haberland, A., & Müller, J. (2022). Lack of efficacy of mono-mode of action therapeutics in COVID-19 therapy - How the lack of predictive power of preclinical cell and animal studies leads developments astray. Chemical Biology & Drug Design, 99, 32–45. https://doi.org/10.1111/cbdd.13954