The Ballet of Triangle Centers on the Elliptic Billiard

Dan Reznik*, Ronaldo Garcia and Jair Koiller

To Clark Kimberling, Peter Moses, and Eric Weisstein

Abstract. The dynamic geometry of the family of 3-periodics in the Elliptic Billiard is mystifying. Besides conserving perimeter and the ratio of inradius-to-circumradius, it has a stationary point. Furthermore, its triangle centers sweep out mesmerizing loci including ellipses, quartics, circles, and a slew of other more complex curves. Here we explore a bevy of new phenomena relating to (i) the shape of 3-periodics and (ii) the kinematics of certain Triangle Centers constrained to the Billiard boundary, specifically the non-monotonic motion some can display with respect to 3-periodics. Hypnotizing is the joint motion of two such non-monotonic Centers, whose many stops-and-gos are akin to a Ballet.

Mathematics Subject Classification (2010). 51N20 51M04 51-04 37-04.

Keywords. elliptic billiard, periodic trajectories, triangle center, loci, dynamic geometry.

1. Introduction

Being uniquely integrable [12], the Elliptic Billiard (EB) is the avis rara of planar Billiards. As a special case of Poncelet’s Porism [4], it is associated with a 1d family of N-periodics tangent to a confocal Caustic and of constant perimeter [27]. Its plethora of mystifying properties has been extensively studied, see [26] for a recent treatment.

Through the prism of classic triangle geometry, we initially explored the loci of their Triangle Centers (TCs) [20]: e.g., the Incenter X_1, Barycenter X_2, Circumcenter X_3, etc., see summary below. The X_i notation is after Kimberling’s Encyclopedia [14], where thousands of TCs are catalogued. Appendix A

* dreznik@gmail.com. 1st author thanks IMPA for the opportunity to present this research at the 2019 Math Colloquium. 2nd author thanks CNPq for a Fellowship and Project PRONEX/CNPq/FAPEG 2017 10 26 7000 508. 3rd author thanks Federal University of Juiz de Fora for a 2018-2019 fellowship.
reviews basic TCs. Here we explore a bevy of curious behaviors displayed by the family of 3-periodics, roughly divided into two categories (with an intermezzo):

1. The shape of 3-periodics and/or TC loci: when are the former acute, obtuse, pythagorean, and the latter non-smooth, self-intersecting, non-compact? See for example this recent treatment of TCs at infinity [15].

2. The kinematics of EB-railed TCs: a handful of TCs is known to lie on the EB. As the family of 3-periodics is traversed, what is the nature of their motion (monotonicity, critical points, etc.). We further examine the joint motion of two EB-railed TCs which in some cases resembles a Ballet.

In the intermezzo we introduce (i) a deceptively simple construction under which the EB bugles out the Golden Ratio, and (ii) a triangle closely related to 3-periodics\(^2\), whose vertices are dynamically clutched onto the EB.

Throughout the paper Figures will sometimes include a hyperlink to an animation in the format [23, PL#nn], where nn is the entry into our video list on Table 5 in Section 5. Indeed, the beauty of most phenomena remain elusive unless they are observed dynamically.

Recent Work. Two particularly striking observations have been [24]:

1. The Mittenpunkt \(X_9\) is the black swan of all TCs: its locus is a point at the center of the EB\(^3\) [23, PL#01].

2. The 3-periodic family conserves the ratio of Inradius-to-Circumradius. This implies the sum of its cosines is invariant. Suprisingly the latter holds for all \(N\)-periodics [1, 2].

Other observations focused on the surprising elliptic locus of many a TC: the locus of the Incenter \(X_1\) is an ellipse [25], as is that of the Excenters [6]. The latter is similar to a rotated locus of \(X_1\), Figure 1. Also elliptic are the loci of the Barycenter \(X_2\) [28], Circumcenter \(X_3\) [5], Orthocenter \(X_4\) [6], Center \(X_5\) of the Nine-Point Circle [7]. See Figure 2 (left). Recently we showed that out of the first 100 Kimberling Centers in [14], exactly 29 produce elliptic loci [7]. This is quite unexpected given the non-linearities involved.

Other observations, many which find parallels in Triangle Geometry, included (i) the locus of the Feuerbach Point \(X_{11}\) is on the Caustic\(^4\), as is that of the Extouchpoints, though these move in opposite directions; (ii) the locus of \(X_{100}\), the anticomplement of \(X_{11}\), is on the EB [8]. See Figure 2 (right); (iii) the locus of vertices of Intouch, Medial and Feuerbach Triangles are all non-elliptic. See Figure 3.

We still don’t understand how loci ellipticity or many of the phenomena below correlate to the Trilinears of a given TC.

1Some 50 out of 40 thousand in [14].
2The Contact (or Intouch) Triangle of the Anticomplementary Triangle (ACT).
3In Triangle parlance, the EB is the “\(X_9\)-Centered Circumellipse”.
4The Inconic centered on the Mittenpunkt \(X_9\) which passes through the Extouchpoints is known as the Mandart Inellipse [29]. By definition, an Inconic is internally tangent to the sides, so it must be the Caustic.
Figure 1. **Left Top:** A 3-periodic and its Incenter X_1: where bisectors meet. **Left Mid:** Three 3-periodics, each identified by a starting vertex P, P', P'', and their Inceners X_1, X_1', X_1''. Also shown is the confocal Caustic (brown) which is the stationary **Mandart Inellipse** [29] of the 3-periodic family. **Left Bot:** the locus of X_1 over the 3-periodic family is an ellipse (green). Also shown is the Caustic (brown). **Right:** the Excentral Triangle (green) of a 3-periodic (blue). The locus of its vertices (the Excenters) is an ellipse (dashed green) similar to a perpendicular copy of the locus of the Incenter (solid green inside the EB). This is the stationary **MacBeath Circumellipse** of the Excentral Triangle [29], centered on the latter’s X_6 (i.e., X_9) **Video:**[23, PL#01,04].
Figure 2. **Left:** The loci of Incenter X_1 (green), Barycenter X_2 (brown), Circumcenter X_3 (purple), Orthocenter X_4 (orange), and Center of the 9-Point Circle X_5 (pink), are all ellipses, Video [23, PL#05]. Also shown is the Euler Line (dashed black) which for any triangle, passes through all of X_i, $i = 1...5$ [29]. **Right:** The locus of X_{11}, where the Incircle (green) and 9-Point Circle (pink) meet, is the Caustic (brown), also swept (in the opposite direction) by the Extouchpoints e_i. X_{100} (double-length reflection of X_{11} about X_2) sweeps the EB. X_9 is the black swan of all points: it is stationary at the EB center [24]. Video: [23, PL#05,07].

Figure 3. The loci of the Intouch (green), Feuerbach (blue), and Medial (red) Triangles which are all non-elliptic. An exception is the locus of the Extouchpoints (brown), who sweep the elliptic Caustic (as does X_{11} not shown). [23, PL#07]
2. First Movement: Shape

Let the boundary of the EB be given by, \(a > b > 0 \):

\[
f(x, y) = \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1
\]

(1)

Below \(c^2 = a^2 - b^2 \), and \(\delta = \sqrt{a^4 - a^2b^2 + b^4} \).

Throughout this paper we assume one vertex \(P_1(t) = (x_1, y_1) \) of a 3-periodic is parametrized as \(P_1(t) = [a \cos t, b \sin t] \). Explicit expressions for the locations of \(P_2(t) \) and \(P_3(t) \) under this specific parametrization are given in [6].

2.1. Can 3-periodics be obtuse? Pythagorean?

The locus of the Orthocenter \(X_4 \) is an ellipse of axes \(a_4, b_4 \) similar to a rotated copy of the EB. These are given by [7]:

\[
(a_4, b_4) = \left(\frac{k_4}{a}, \frac{k_4}{b}\right), \quad k_4 = \frac{(a^2 + b^2)\delta - 2a^2b^2}{c^2}
\]

Referring to Figure 4, let \(\alpha_4 = \sqrt{2} \sqrt{2} - 1 \approx 1.352 \).

Proposition 1. If \(a/b = \alpha_4 \), then \(b_4 = b \), i.e., the top and bottom vertices of the locus of \(X_4 \) coincide with the EB’s top and bottom vertices.

Proof. The equation \(b_4 = b \) is equivalent to \(a^4 + 2a^2b^2 - 7b^4 = 0 \). Therefore, as \(a > b > 0 \), it follows that \(a/b = \sqrt{2} \sqrt{2} - 1 \).

Let \(\alpha_4^* \) be the positive root of \(x^6 + x^4 - 4x^3 - x^2 - 1 = 0 \), i.e., \(\alpha_4^* \approx 1.51 \).

Proposition 2. When \(a/b = \alpha_4^* \), then \(a_4 = b \) and \(b_4 = a \), i.e., the locus of \(X_4 \) is identical to a rotated copy of Billiard.

Proof. The condition \(a_4 = b \), or equivalently \(b_4 = a \), is defined by \(a^6 + a^4b^2 - 4a^3b^3 - a^2b^4 - b^6 = 0 \). Graphic analysis shows that \(x^6 + x^4 - 4x^3 - x^2 - 1 = 0 \) has only one positive real root which we call \(\alpha_4^* \).

Theorem 1. If \(a/b < \alpha_4 \) (resp. \(a/b > \alpha_4 \)) the 3-periodic family will not (resp. will) contain obtuse triangles.

Proof. If the 3-periodic is acute, \(X_4 \) is in its interior, therefore also internal to the EB. If the 3-periodic is a right triangle, \(X_4 \) lies on the right-angle vertex and is therefore on the EB. If the 3-periodic is obtuse, \(X_4 \) lies on exterior wedge between sides incident on the obtuse vertex (feet of altitudes are exterior). Since the latter is on the EB, \(X_4 \) is exterior to the EB.

5Their coordinates involve double square roots on \(x_1 \) so these points are constructible by ruler and compass.
Figure 4. Let $\alpha_4 = \sqrt{2} - 1 \approx 1.352$ and H be the elliptic locus of X_4 (orange), similar to a rotated copy of the EB (black). **Top Left:** $a/b < \alpha_4$, H is interior to the EB and all 3-periodics (blue) are acute. **Bot Left:** at $a/b = \alpha_4$, H is tangent to the top and bottom vertices of the EB. The 3-periodic shown is a right triangle since one vertex is at the upper EB vertex where X_4 currently is. **Right:** at $a/b > \alpha_4$, the 3-periodic family will contain both acute and obtuse 3-periodics, corresponding to X_4 interior (resp. exterior) to the EB. For any obtuse 3-periodic, X_4 will lie within the wedge between sides incident upon the obtuse angle and exterior to the 3-periodic, i.e., exterior to the EB. For the particular aspect ratio shown ($a/b = 1.51$), H is identical to a 90°-rotated copy of the EB.

2.2. Can a locus be non-smooth?

Loci considered thus far have been smooth, regular curves.

Proposition 3. If $a/b > \alpha_4$ the locus of the Incenter of the 3-periodic’s Orthic Triangle comprises four arcs of ellipses, connected at four corners.

To see this, let T be a triangle, T_h its Orthic6, and I_h be the latter’s Incenter. It is well-known that if T is acute I_h coincides with T’s Orthocenter X_4. However, for obtuse T:

Lemma. T_h has to vertices outside of T, and I_h is “pinned” to the obtuse vertex [3, Chapter 1].

This is restated in Appendix B as Lemma 2 followed by a proof. This curious phenomenon is illustrated in Figure 5.

6Its vertices are the feet of the altitudes.
The Ballet of the Triangle Centers on the Elliptic Billiard

Figure 5. **Left:** If $T = ABC$ is acute (blue), its Orthic $T' = A'B'C'$ is the so-called Fagnano Triangle [26], whose properties include: (i) inscribed triangle of minimum perimeter, (ii) a 3-periodic of T, i.e., the altitudes of T are bisectors of T', i.e., the Orthic Incenter X'_4 coincides with the Orthocenter X_4. **Right:** If T is obtuse, two of the Orthic’s vertices lie outside T, and X_4 is exterior to T. T' is the Orthic of both T and acute triangle $T_e = AX_4C$. So the Orthic is the latter’s Fagnano Triangle, i.e., B is where both altitudes and bisectors meet. The result is that if T is obtuse at B, the Incenter X'_4 of the Orthic is B. **Video:** [23, PL#06]

Assume $a/b > \alpha_4$. Since the 3-periodic family contains both acute and obtuse triangles, the locus of I_h transition between acute and obtuse regimes:

3-periodic	X_4 wrt EB	I_h location
acute	interior	Orthocenter X_4
right	on it	right-angle vertex
obtuse	external (3-periodic Excenter)	obtuse vertex, on EB

In turn, this yields a locus for I_h consisting of four elliptic arcs connected by their endpoints in four corners, Figure 6. Notice top and bottom (resp. left and right) arcs belong to the EB (resp. X_4 locus).

For the next proposition, let α^2_h (resp. α_h') be the real root above 1 (resp. less than 1) of the polynomial $1+12x-122x^2-52x^3+97x^4$. Numerically, $\alpha_h \simeq 1.174$ and $\alpha'_h \simeq 2.605$.

Proposition 4. At $a/b = \alpha_h$ (resp. $a/b = \alpha'_h$), at the sideways (resp. upright) 3-periodic, the Orthic is a right triangle, Figure 7. If $a/b > \alpha_h$ some Orthics are obtuse (a family always contains acutes).

Proof. The orthic of an isosceles triangle with vertices $A = (a,0)$, $B = (-u,v)$ and $C = (-u,-v)$ is the isosceles triangle with vertices:

$A' = (-u,0)$

$B' = \left(\frac{-u(a+u)^2+v^2(2a+u)}{(a+u)^2+v^2}, \frac{v((a+u)^2-v^2)}{(a+u)^2+v^2} \right)$

$C' = \left(\frac{-u(a+u)^2+v^2(2a+u)}{(a+u)^2+v^2}, -\frac{v((a+u)^2-v^2)}{(a+u)^2+v^2} \right)$

It is rectangle, if and only if, $\langle B' - A', C' - A' \rangle = 0$. This condition is expressed by $r(a,u,v) = (a+u)^2 - v(2a+2u+v) = 0$.
Figure 6. An $a/b > \alpha_4$ EB is shown (black). Let T and T_h be the 3-periodic and its Orthic Triangle (blue and purple, respectively). (a) T is acute (X_4 is interior to the EB), and $I_h = X_4$. (b) X_4 is on the EB and T is a right triangle. T_h degenerates to a segment. (c) X_4 is exterior to the EB. Two of T_h’s vertices are outside T. I_h is pinned to T’s obtuse vertex, on the EB. X_4 is an Excenter of the 3-periodic. The complete locus of I_h comprises therefore 4 elliptic arcs (thick purple). Video: [23, PL#07]

Figure 7. Left: At $a/b = \alpha_h \simeq 1.174$, a sideways 3-periodic (blue) has a right-triangle Orthic (purple). If $a/b > \alpha_h$ some Orthics in the family are obtuse. Right: At $a/b = \alpha_h' \simeq 2.605$, when the 3-periodic is an upright isosceles (obtuse since $a/b > \alpha_h$), its extraverted Orthic is also a right triangle.

Using explicit expression to the 3-periodic vertices [6], obtain that $u = u(a, b) = a(\delta - b^2)/(a^2 - b^2)$ and $v = v(a, b) = b^2\sqrt{2\delta - a^2 - b^2}/(a^2 - b^2)$. So it follows that $r(a, u, \simeq) = r(a, b) = 97a^8 - 52a^6b^2 - 122a^4b^4 + 12a^2b^6 + b^8 = 0$. The same argument can be applied to the isosceles 3-periodic with vertices:

$A = (0, b), \ B = (-v(b, a), -u(b, a)), \ C = (v(b, a), -u(b, a))$

The associated orthic triangle will be rectangle, if and only if, $r(b, a) = 0$. □

The obtuseness of 3-periodic Orthics is a complex phenomenon with several regimes depending on a/b. Figure 8 provides experimental details.
When are Orthics Obtuse? As before, this requires the Orthic Orthic’s In-center X''_1 (dashed green) to be detached from the Orthic’s Orthocenter X'_4 (blue). Let V (resp. H) denote either one of the two upright (resp. sideways) isosceles 3-periodics. Notable transitions occur at: (i) $a/b = \alpha_h \approx 1.174$, the locus of X''_1 is identical to that of X'_4, and at H, its Orthic is a right-triangle, Figure 7 (left); (ii) $a/b > \alpha_h$, one can see X''_1 detaching from X'_4 indicating a region of obtuse Orthics about the H; (iii) At $a/b \approx 1.325$ the locus of X'_4 touches the EB’s left and right vertices at the H; (iv) At $a/b = \alpha_4 \approx 1.352$, the loci of X_4 of X'_4, and X''_1 touch the EB’s top and bottom vertices, indicating V are right-triangles and all Orthics not stemming from these are obtuse; (v) At $a/b > \alpha_4$, X''_1 tracks X'_4 about V, indicating some Orthics are acute; (vi) At $a/b \approx 2.571$, X'_4 two acute Orthics pass through the origin. Above this threshold, the locus of X'_4 becomes self-intersecting on the horizontal axis of the EB; (vii) At $a/b = \alpha'_h \approx 2.605$, V yield right-triangle Orthics, Figure 7 (right). Just above this threshold a new region of obtuse Orthics flares up about V; (viii) at $a/b \approx 2.965$ X'_4 of two obtuse Orthics touch top and bottom vertex of the EB at V; (ix) as a/b increases, Orthics about V become more and more obtuse (judging from the deviation between blue and dashed green curves), however two sideline regions of acute Orthic remain where X''_1 tracks X'_4; these are squeezed to the left and right of the self-intersections of X'_4 and the locus of X_4. Video: [23, PL#08]
2.3. Can a Locus be Self-Intersecting?

Yeats points us an elegant TC: X_{59}, the "Isogonal Conjugate of X_{11}" [14], i.e., the two centers have reciprocal trilinear.

Experimentally, X_{59} is a continuous curve internally tangent to the EB at its four vertices, and with four self-intersections, Figure 9, and as an animation [23, PL#12]. It intersects a line parallel to and infinitesimally away from either axis on six points, so its degree must be at least 6. Producing analytic expressions for salient aspects of its geometry has proven a tough nut to crack, namely, the following are unsolved:

- What is the degree of its implicit equation?
- What is t in $P_1(t) = (a \cos(t), b \sin(t))$ such that X_{59} is on one of the four self-intersections? For example, at $a/b = 1.3$ (resp. 1.5), t, given in degrees is $\approx 32.52^\circ$ (resp. 29.09°), Figure 9 (left-bottom).
- What is a/b such that if X_{59} is on one of the lower self-intersection on the y-axis, the 3-periodic is a right triangle? Numerically, this occurs when $a/b = \alpha_{59} \approx 1.58$ and $t \approx 27.92^\circ$, Figure 9 (right).

2.4. Can a Locus be Non-compact

X_{26} is the Circumcenter of the Tangential Triangle [29]. Its sides are tangent to the Circumcircle at the vertices. If the 3-periodic is a right-triangle, its hypotenuse is a diameter of the Circumcircle, and X_{26} is unbounded.

We saw above that:

- $a/b < \alpha_4$, the 3-periodic family is all-acute, i.e., the locus of X_{26} is compact. Figure 4 (top left).
- $a/b = \alpha_4$, the family is all-acute except when one of its vertices coincides with the top or bottom vertex of the EB, Figure 4 (bottom left). In this case the 3-periodic is a right triangle and X_{26} is unbounded.
- $a/b > \alpha_4$, the family features both acute and obtuse triangles. The transition occurs at for four right-angle 3-periodics whose X_4 is on the EB, Figure 6(b). Here too X_{26} flies off to infinity, Figure 10.

3. Intermezzo: Two unexpected phenomena

3.1. The Billiard Lays a Golden Egg

The Bevan Point X_{40} is known as the Circumcenter of the Excentral Triangle [14]. It is the tangential polygon to the 3-periodic, and can be thought of as its projective dual [17].
The Ballet of the Triangle Centers on the Elliptic Billiard

Figure 9. The locus of X_{59} is a continuous curve with four self-intersections, and at least a sextic. It is tangent to the EB at its four vertices. **Top Left:** circular EB, X_{59} is symmetric about either axis. **Bottom Left:** $a/b = 1.3$, at $t \approx 32.5^\circ$ X_{59} is at the lower self-intersection and the 3-periodic is acute (X_4 is interior). **Right:** at $a/b = \alpha_{59} \approx 1.58$ the following feat is possible: X_{59} is at the lower self-intersection and the 3-periodic is a right-triangle (X_4 is on P_2). This occurs at $t \approx 27.9^\circ$. **Video:** [23, PL#12]

We have shown elsewhere the locus of X_{40} is an ellipse similar to a rotated copy of the Billiard. Its semi-axes are given by [7]:

$$a_{40} = c^2/a, \quad b_{40} = c^2/b.$$

Proposition 5. At $a/b = \sqrt{2}$ i.e., the top and bottom vertices of the X_{40} touch the Billiard’s top and bottom vertices.

Proof. This follows from imposing $b_{40} = b$.

What we got next was unexpected, see Figure 11:

Proposition 6. At $a/b = (1 + \sqrt{5})/2 = \varphi$, the Golden Ratio, the locus of X_{40} is identical to a 90°-rotated copy of the EB.

Proof. This follows from imposing $b_{40} = a$.

Figure 10. The locus of X_{26} for a 3-periodic (blue) in an $a/b = 1.25$ EB (black). Also shown is the 3-periodic’s Circumcircle (purple) and its Tangential Triangle [29] (dashed green). X_{26} is the center of the latter’s Circumcircle (solid green). Its locus is non-elliptic. In fact, when $a/b \geq \alpha_4$, the 3-periodic family will contain right-triangles (X_4 crosses the EB). At these events, X_{26} flies off to infinity. The right inset shows an inversion of X_{26} with respect to the EB center for various values of a/b. When $a/b > \alpha_4$, the inversion goes through the origin, i.e., X_{26} is at infinity.
Figure 11. An $a/b = \varphi$ EB is shown golden. Also shown is a sample 3-periodic (blue). The Bevan Point X_{40} is the Circumcenter of the Excentral Triangle (solid green). At this EB aspect ratio, the locus of X_{40} (purple) is identical to a 90°-rotated EB. Video: [23, PL#13].

3.2. A Derived Triangle railed onto the EB

Consider a 3-periodic’s Anticomplementary Triangle (ACT) [29] and its Intouchpoints i'_1, i'_2, i'_3, Figure 12. Remarkably:

Theorem 2. The locus of the Anticomplementary Triangle’s Intouchpoints is the EB.

Proof. Consider an elementary triangle with vertices $Q_1 = (0,0)$, $Q_2 = (1,0)$ and $Q_3 = (u,v)$. Its sides are $s_1 = |Q_3 - Q_2|$, $s_2 = |Q_3 - Q_1|$, and $s_3 = 1$.

Let E be its Circumbilliard, i.e., the Circumellipse for which $Q_1Q_2Q_3$ is a 3-periodic EB trajectory. The following implicit equation for E was derived [6]:

$$E(x,y) = v^2 x^2 + (u^2 + (s_1 + s_2 - 1)u - s_2)y^2 +$$
$$v(1 - s_1 - s_2 - 2u)xy + v(s_2 + u)y - v^2 x = 0$$

The vertices of the ACT are given by $Q'_1 = (u - 1, v)$, $Q'_2 = (u + 1, v)$, $Q'_3 = (1 - u, -v)$, and its Incenter7 is:

7This is the Nagel Point X_8 of the original triangle.
\[X'_1 = \left[s_1 - s_2 + u, \frac{s_2(s_1 - 1) + (1 - s_1 + s_2)u - u^2}{v} \right]. \]

The ACT Intouchpoints are the feet of perpendiculars dropped from \(X'_1 \) onto each side of the ACT, and can be derived as:

\[
\begin{align*}
i'_1 & = \left[s_1(u - 1)u + s_2, \frac{s_2 v(s_1 - 1)}{s_2} \right] \\
i'_2 & = \left[\frac{(u - 1)(s_2 - 1)}{s_2}, \frac{(s_2 - 1)v}{s_2} \right] \\
i'_3 & = [s_1 - s_2 + u, v].
\end{align*}
\]

Direct calculations shows that \(E(i'_1) = E(i'_2) = E(i'_3) = 0 \). Besides always being on the EB, the locus of the Intouchpoints cover it. Let \(P_1(t)P_2(t)P_3(t) \) be a 3-periodic and \(P'_1(t)P'_2(t)P'_3(t) \) its ACT. For all \(t \) the Intouchpoint \(i'_1(t) \) is located on the side \(P'_2(t)P'_3(t) \) of the ACT and on the elliptic arc \(\text{arc}(P_1(t)P_3(t)) \), Figure 12. Therefore, when \(P_1(t) \) completes a circuit on the EB, \(i'_1(t) \) will have to complete a similar tour. Analogously for \(i'_2(t) \) and \(i'_3(t) \).

Figure 12. A 3-periodic \(P_1P_2P_3 \) is shown (blue). Shown also is the Mittenpunkt \(X_9 \), at the EB center. The 3-periodic’s Anticomplementary Triangle (ACT) \(P'_1P'_2P'_3 \) (dashed blue) has sides parallel to the 3-periodic. The latter’s Intouchpoints \(i'_1, i'_2, \) and \(i'_3 \) are the feet of perpendiculars dropped from the ACT’s Incenter (\(X_8 \)) to each side (dashed green). The ACT’s Incircle (green) and 9-point circle (the 3-periodic’s Circumcircle, pink) meet at \(X_{100} \), the ACT’s Feuerbach Point. Its locus is also the EB. The Caustic is shown brown. On it there lie \(X_{11} \) and the three Extouchpoints \(e_1, e_2, e_3 \). Video: [23, PL#09]
The Ballet of the Triangle Centers on the Elliptic Billiard

Figure 13. As one endpoint \(P_1 \) of a billiard trajectory is slid CCW to \(P'_1 \), its tangency point \(C \) with the Caustic (brown) slides in the same direction to \(C' \). This must be the case since \(P'_1P'_2 \) corresponds to a CCW rotation about \(P'_1 \) of segment \(P'_1P'_2 \) (pink) parallel to \(P_1P_2 \) (see pink arrow). By convexity, said rotation will first touch the Caustic at \(C' \), lying “ahead” of \(C \). Repeating this for the \(P_2P_3 \) segment of a 3-periodic (not shown), it follows said vertices will move in the direction of \(P_1 \).

4. Second Movement: Motion

Let \(P_1P_2P_3 \) be the vertices of a 3-periodic.

Proposition 7. If \(P_1 \) is slid along the EB in some direction, \(P_2 \) and \(P_3 \) will slide in the same direction.

Proof. Consider the tangency point \(C \) of \(P_1P_2 \) with the confocal Caustic, Figure 13. Since this segment remains tangent to the Caustic for any choice of \(P_1(t) \), a counterclockwise motion of \(P_1(t) \) will cause \(C \) to slide along the Caustic in the same direction, and therefore \(P_2(t) \) will do the same. \(\square \)

The simultaneous monotonic motion of 3-periodic vertices is shown in Figure 14, note the non-linear progress of \(P_2, P_3 \). Alternatively, we could have linearized their motion using the so-called Poritsky-Lazutkin string length parameter \(\eta \) for \(C \) on the Caustic (Figure 13) given by \([18, 16, 9]\):

\[
d\eta = \kappa^{2/3} \, ds,
\]

where \(s \) is the arc length along the Caustic, and \(\kappa \) is the curvature. Both \(\eta \) and \(s \) are related to the parameter \(t \) on the billiard by elliptic functions. Adjusting conveniently with a constant factor, one has \(\eta \equiv \eta + 1 \) and for any \(\eta_0 \) the other vertices correspond to \(\eta_0 + 1/3 \) and \(\eta_0 + 2/3 \).

4.1. Non-monotonicity: a first brushing

Let \(\alpha_{act} = 2 \sqrt{2/5} \simeq 1.2649 \).
Figure 14. As $P_1(t)$ moves monotonically forward, so do $P_2(t)$ and $P_3(t)$, albeit with varying velocities with respect to t. In the text we mention an alternate parametrization (Poritsky-Lazutkin) under which the three lines would become straight.

Proposition 8. The motion of the ACT Intouchpoints is as follows:

- $a/b < \alpha_{act}$: monotonic in the direction of $P_1(t)$.
- $a/b = \alpha_{act}$: monotonic in the direction of $P_1(t)$, except for two instantaneous stops when passing at EB top and bottom vertices.
- $a/b > \alpha_{act}$: non-monotonic with four reversals of velocity, a first (resp. second) pair of reversals near the EB’s top (resp. bottom) vertex Figure 12.

Proof. As before, let a 3-periodic $P_1P_2P_3$ be parameterized by a leading vertex

$$P_1(t) = (x_1, y_1) = (a \cos t, b \sin t).$$

Its ACT P_i' is given by double-length reflections of P_i about the Barycenter X_2 [29]. Taking the ACT as the reference triangle, use Intouchpoint Trilinears $0 : s_1s_3/(s_1 - s_2 + s_3) :: [29$, Contact Triangle] to compute an Intouchpoint $i_1'(t) = (x_1(t), y_1(t))$ it follows that $x_1'(t) \mid_{t=\pi} = 0$ is equivalent to $5a^2 - 8b^2 = 0$. This yields the result. □

See [22, PL#09] for an animation of the non-monotonic case. As we had been observing the EKG-like graph in Figure 2 (right), we stumbled upon an unexpected property, namely, the fixed linear relation between a 3-periodic vertex and its corresponding (opposite) Extouchpoint:

Proposition 9. Let $P_i(t) = (x_i, y_i)$ be one of the 3-periodic vertices and $e_i = (x'_i, y'_i)$ be its corresponding Extouchpoint on the Caustic, where a_c, b_c are the latter’s semi-axes. Then, for all t:

$$\frac{a}{b} \frac{y_i}{x_i} = \frac{a_c}{b_c} \frac{y'_i}{x'_i} \quad (2)$$

8Where $P_i-1(t)P_i+1(t)$ touch the Caustic.

9It can be shown (2) also holds if x', y' are the coordinates of an Excenter and a_c, b_c are the semi-axes of the excentral locus, known to be an ellipse [6].
Equivalently, for \(e_i(t') = [a_c \cos t', b_c \sin t'] \), then \(\tan(t) = \tan(t') \), i.e., \(t' = t \pm \pi \).

Proof. This property follows directly\(^{10}\) from [17, Lemma 3]. \(\square\)

In fact, more general properties of the “Poncelet grid” are described in the reference above. The result reported here is a particular case and can also be demonstrated by simplifying rather long symbolic parametrics with a Computer Algebra System (CAS).

Furthermore, since \(a_c = (\delta - b^2)a/c^2 \) and \(b_c = (a^2 - \delta)b/c^2 \) [8]:

\[
\frac{y}{x} = \left(\frac{\delta - b^2}{a^2 - \delta} \right) \frac{y'}{x'}
\]

(3)

Figure 15. The “EKG” of ACT motion, to be interpreted as a flat torus. On the horizontal axis is parameter \(t \) of \(P_1(t) = [a \cos(t), b \sin(t)] \), with \(a/b = 1.5 \). On the vertical is the \(t \) parameter for \(P_1, X_{11}, X_{100} \) and an ACT Intouchpoint \(i_1' \). These all lie on the EB and are shown blue, red, dashed red, and green, respectively. Also shown is Extouchpoint \(e_1 \) on the Caustic (dashed blue). Just for it, the vertical axis represents \(t' \) in \(e_1 = [a_c \cos(t'), b_c \sin(t')] \), where \(a_c, b_c \) are the Caustic semi-axes. By Proposition 9, \(t' = t \pm \pi \). Notice the only non-monotonic motion is that of \(i_1' \) since \(a/b > \alpha_{\text{act}} \approx 1.265 \). To see this, a \(\text{vel}(i_1') \) of its velocity is also shown (dashed green), containing two negative regions corresponding to 4 critical points of position. For \(\text{vel}(i_1') \) ignore units and the fact that values near 0°, 180° are not shown, these are all positive and above the vertical scale.

4.2. A Non-Monotonic Triangle Center

Dovetailing into the non-monotonicity of the ACT’s Intouchpoints is a similar behavior by \(X_{88} \), the Isogonal Conjugate of \(X_{44} \), known to lie on the EB and to be to be collinear with \(X_1 \) and \(X_{100} \), [14]. The latter is verified by the vanishing determinant of the 3x3 matrix whose rows are the trilinears of \(X_1, X_{100}, X_{88} \) [29, under “Collinear”, eqn 9]:

\(^{10}\)We thank A. Akopyan for pointing this out.
Furthermore X_{100} is a very special point: it lies on the EB and on the Circumcircle simultaneously \cite{14}. Let $\alpha_{88} = (\sqrt{6 + 2\sqrt{2}})/2 \simeq 1.485$.

Proposition 10. At $a/b = \alpha_{88}$, the y velocity of X_{88} vanishes when the 3-periodic is a sideways isosceles.

Proof. Parametrize $P_1(t)$ in the usual way. At $t = 0$, $P_1 = (a, 0)$ it can be easily checked that $X_{88} = (-a, 0)$. Solve $y_{88}'(t)|_{t=0} = 0$ for a/b. After some algebraic manipulation, this equivalent to solving $4x^4 - 12x^2 + 7 = 0$, whose positive roots are $(\sqrt{6 + 2\sqrt{2}})/2$. α_{88} is the largest of the two. \hfill \square

As shown in Table 1, there are three types of X_{88} motion with respect to $P_1(t)$: monotonic, with stops at the EB vertices, and non-monotonic.

a/b vs. α_{88}	motion	comment
$<$	CW	monotonic
$=$	CW	stops at EB vertices
$>$	CW+CCW	non-monotonic

Table 1. Conditions for the type of motion of X_{88} with respect to $P_1(t)$. Video: \cite[PL#11]{23}

An equivalent statement is that the line family X_1X_{100} is instantaneously tangent to its envelope \cite{29} at X_{88}. Figure 16 shows that said envelope lies (i) entirely inside, (ii) touches at vertices of, or (iii) is partially outside, the EB, when a/b is less than, equal, or greater than α_{88}, respectively. Each such case implies the motion of X_{88} is (i) monotonically opposite to $P_1(t)$, (ii) opposite but with stops at the EB vertices, or (iii) is non-monotonic.

The reader is challenged to find an expression for parameter t in $P_1(t)$ where the motion of X_{88} changes direction. The following additional facts are also true for X_{88}:

Proposition 11. X_{88} coincides with a 3-periodic vertex if and only if $s_2 = (s_1 + s_3)/2$. In this case, X_1 is the midpoint between X_{100} and X_{88} \cite{11}, Figure 17 (bottom left)

Proof. The first trilinear coordinate of X_{88} is $1/(s_2 + s_3 - 2s_1)$ \cite{14}, and of a vertex is 0. Equating the two yields $s_2 = (s_1 + s_3)/2$. Consider a triangle of reference $P_1 = (-1, 0)$, $P_2 = (u, v)$, $P_3 = (1, 0)$. Its circumcircle is given by $v(x^2 + y^2) + (1 - u^2 - v^2)y - v = 0$. Under the hypothesis $s_2 = (s_1 + s_3)/2$ it follows that $v = \sqrt{12 - 3u^2}/2$, $s_1 = 2 - u/2$, $s_2 = 2$ and $s_3 = 2 + u/2$. Therefore the incenter is $I = (s_1P_1 + s_2P_2 + s_3P_3)/(s_1 + s_2 + s_3) =$
Collinear points X_1, X_{100}, X_{ss} shown for billiards with a/b less than (top-left), equal (top-right), or greater (bottom) than $\alpha_{ss} \approx 1.486$, respectively. In each such case, the motion of X_{ss} relative to the 3-periodic vertices will be monotonic, with stops at the vertices, or non-monotonic, respectively. Equivalently, the motion of X_{ss} is opposite to P_1, stationary, or in the direction of P_1 if the instantaneous center of rotation E of line X_1X_{100} lies inside, on, or outside the EB. The locus of E (the envelope of X_1X_{100}) is shown purple. Notice it only “pierces” the EB when $a/b > \alpha_{ss}$ (bottom), i.e., only in this case can the motion of X_{ss} be non-monotonic. \textbf{Video: [23, PL#12]}

\[(u/2, \sqrt{12 - 3u^2}/6)\]. The intersection of the straight line passing through P_2 and I with the circumcircle of the triangle o reference is the point $D = (0, \sqrt{12 - 3u^2}/6)$. Therefore, I is the midpoint of B and $D = X_{100}$. Moreover, $|P_1 - D| = |P_2 - D| = |I - D| = \sqrt{48 - 3u^2}/6$.

It is well-known that the only right-triangle with one side equal to the average of the other two is $3 : 4 : 5$. Let $\alpha_{ss}^\perp = (7 + \sqrt{5})\sqrt{11}/22 \approx 1.3924$. Referring to Figure 17 (right):

\textbf{Proposition 12.} The only EB which can contain a 3:4:5 3-periodic has an aspect ratio $a/b = \alpha_{ss}^\perp$.

\textbf{Proof.} With $a/b > \alpha_4 = \sqrt{2}\sqrt{2 - 1} \approx 1.352$ the 3-periodic family contains obtuse triangles amongst which there always are 4 right triangles (identical up to rotation and reflection). Consider the elementary triangle $P_1 = (0, 0)$,
X_{88} is always on the EB and collinear with X_1 and X_{100} [14]. Let ρ (shown above each picture) be the ratio $|X_1 - X_{100}|/|X_1 - X_{88}|$. **Top Left:** The particular 3-periodic shown is obtuse (X_4 is exterior), and $\rho > 1$, i.e., X_1 is closer to X_{88}. **Bottom Left:** When X_{88} coincides with a vertex, if sidelengths are ordered as $s_1 \leq s_2 \leq s_3$, then $s_2 = (s_1 + s_3)/2$, and X_1 becomes the midpoint of $X_{88}X_{100}$, i.e., $\rho = 1$. **Right:** If $a/b = \alpha_{88} \simeq 1.39$, when X_{88} is on a vertex, the 3-periodic is a $3 : 4 : 5$ triangle (X_4 lies on an alternate vertex). **Video:** [23, PL#11]

$P_2 = (s_1, 0)$, and $P_3 = (s_1, s_2)$ choosing s_1, s_2 integers such that $s_3 = s_3 = \sqrt{s_1^2 + s_2^2}$ is an integer. The Circumbilliard [8] is given by:

$$E_9(x, y) = s_2 x^2 + (s_3 - s_1 - s_2) xy + s_1 y^2 - s_1 s_2 x - s_1 (s_1 - s_3) y = 0.$$

Squaring the ratio of the Eigenvalues of E_9’s Hessian yields the following expression for a/b:

$$\frac{[a/b](s_1, s_2, s_3)}{(s_1 + s_2 + 3 s_3) (s_1 + s_2 - s_3)}$$

Table 2 shows a/b for the first 5 Pythagorean triples ordered by hypotenuse11.

4.3. Swan Lake

11The a/b which produces $3 : 4 : 5$ was first computed in connection with X_{88} [10].
Table 2. First 5 Pythagorean triples ordered by hypotenuse. a/b is the aspect ratio of the EB which produces 4 triangles homothetic to the triple.

\[
\begin{array}{|c|c|c|}
\hline
(s_1, s_2, s_3) & a/b & \approx a/b \\
\hline
3, 4, 5 & (7 + \sqrt{5})\sqrt{11}/22 & 1.392 \\
5, 12, 13 & \sqrt{11}(\sqrt{55} + 17)/56 & 1.674 \\
8, 15, 17 & \sqrt{11}(\sqrt{55} + 23)/222 & 1.529 \\
7, 24, 25 & \sqrt{15}(\sqrt{13} + 31)/318 & 1.944 \\
20, 21, 29 & \sqrt{6}(\sqrt{145} + 41)/96 & 1.353 \\
\hline
\end{array}
\]

In addition to X_{88} and X_{100}, a gaggle of 50+ other TCs are also known to lie on the EB [14, X(9)], e.g., X_{162}, X_{190}, X_{651}, etc. We have found experimentally that the motion of X_{100} and X_{190} is always monotonic.

In contradistinction: Let $\alpha_{162} \approx 1.1639$ be the only positive root of $5x^8 + 3x^6 - 32x^4 + 52x^2 - 36$.

Proposition 13. The motion of X_{162} with respect to $P_1(t)$ is non-monotonic if $a/b > \alpha_{162}$.

Proof. The trilinear coordinates of X_{162} are given by

\[
\frac{1}{(s_2^2 - s_3^2)(s_2^2 + s_3^2 - s_1^2)} : \frac{1}{(s_3^2 - s_1^2)(s_3^2 + s_1^2 - s_2^2)} : \frac{1}{(s_1^2 - s_2^2)(s_1^2 + s_2^2 - s_3^2)}.
\]

Let a 3-periodic $P_1P_2P_3$ be parametrized by $P_1(t) = (a \cos t, b \sin t)$, with $P_2(t)$ and $P_3(t)$ computed explicitly as in [6]. Using the trilinear coordinates above, we have $X_{162}(t) = (x_{126}(t), y_{126}(t))$ At $t = \frac{\pi}{2}$, $P_1 = (0, b)$ and $X_{162}(\frac{\pi}{2}) = (0, b)$.

Solve $x_{162}(t)|_{t=\frac{\pi}{2}} = 0$ for a/b. After some long algebraic symbolic manipulation, this is equivalent to solving $5x^8 + 3x^6 - 32x^4 + 52x^2 - 36 = 0$, whose positive roots is $\alpha_{162} \approx 1.16369$.

\[\square\]

Since $\alpha_{88} > \alpha_{162}$, setting $a/b > \alpha_{88}$ implies both centers will move non-monotonically.

If the EB be a lake, their joint motion is a dance along its margins. Over a complete revolution of $P_1(t)$ around the EB, X_{88} and X_{162} wind thrice around it, however:

Proposition 14. X_{88} and X_{162} never coincide, therefore their paths never cross each other.

Proof. Consider an elementary triangle $P_1 = (-1, 0)$, $P_2 = (1, 0)$ and $P_3 = (u, v)$. Using the trilinear coordinates of X_{88} and X_{162}, see Propositions 11 and 13, and equation (6) compute the triangle centers X_{88} and X_{162}. The

But now they drift on the still water,
Mysterious, beautiful;
Among what rushes will they build,
By what lake’s edge or pool
Delight men’s eyes when I awake some day
To find they have flown away?

W.B. Yeats
equation $X_{88} = X_{162}$ is given by two algebraic equations $F(u,v,s_1,s_2) = G(u,v,s_1,s_2) = 0$ of degree 17 with $s_1 = \sqrt{(u-1)^2 + v^2} = |P_3 - P_2|$ and $s_2 = \sqrt{(u+1)^2 + v^2} = |P_2 - P_1|$. Particular solutions of these equations are equilateral triangles with $P_3 = (0, \pm \sqrt{3})$. Analytic and graphic analysis reveals that the level curves $F = G = 0$ are as shown in Figure 18.

Therefore the equilateral triangle is the only one such that the triangle centers X_{88} and X_{162} are equal. It is well known that an equilateral billiard orbit occurs only when the billiard ellipse is a circle. This ends the proof. □

Their never-crossing joint motion as well as the instants when they come closest is illustrated in Figure 19.
The Ballet of the Triangle Centers on the Elliptic Billiard

Figure 19. **Top**: location t' of 3-periodic vertices P_1 (blue), P_2 (dashed blue), and P_3 (dashed blue), as well as X_{88} (red), and X_{162}, plotted against the t parameter of $P_1(t)$. **Bottom**: absolute parameter difference along the EB between X_{88} and X_{162}. Notice there are 12 identical maxima at 180° occurring when the two centers at the left and right vertices of the EB. Additionally, there are 12 identical minima whose values can be obtained numerically. The fact that the minimum is above zero implies the points never cross. Note the highlighted minimum at $t \approx 41°$: it is referred to in Figure 20.

These paths can also be viewed as non-intersecting loops on the torus shown in Figure 20. A part of the harmonious ballet of X_{88} and X_{162} is depicted in Figure 21 with each center imagined a swan.

Though we lack a theory for non-monotonicity of EB-bound TCs X_i, we think it is ruled by at least the following aspects:

- When the 3-periodic is an isosceles, will X_i lie at the summit vertex or below the base?
- As the 3-periodic rotates about the EB, does X_i follow it or move counter to it?
- Can X_i be non-monotonic? For example, neither X_{100} nor X_{190} ever are. If so, what is the aspect ratio α_i which triggers it?

Still murky is how the above derive from the Trilinears which specify X_i. We refer the reader to an animation depicting the joint motion of 20-odd such centers [23, PL#15].

4.4. Summary of Phenomena

Tables 3 and 4 respectively summarize this Section’s various loci phenomena, and notable a/b thresholds.
Figure 20. Visualizing the joint motion of $P_1(t), X_{88}, X_{162}$ on the surface of a torus. The meridians (circles around the smaller radius) correspond to a given t (a solid black meridian is wound at $t = 0$). The parallels represent a fixed location on the Billiard boundary. The curves for X_{88} and X_{162} are thrice-winding along the torus though never intersecting. To be determined: an analytic value for t where X_{88} and X_{162} are closest (there are 12 solutions). The dashed meridian represents one such minimum which for $a/b = 2$ occurs at $t \cong 41^\circ$. Notice it does not coincide with any critical points of motion.

Point	Type of Locus	Non-Monotonic	Comments
X_{11}	Caustic	–	reverse dir.
Extouchpts.	Caustic	–	forward dir.
X_4	Upright Ellipse	–	Inside EB when $a < \alpha_4$
Orthic X_1	Can be 4-piece Ell.	–	If $a < \alpha_4$ is X_4 locus, else 4-piecewise ellipse: 2 arcs from X_4 locus, 2 arcs from EB
X_{26}	Can be non-compact	–	When $a/b \geq \alpha_4$, goes to ∞ if 3-periodic is right triangle
X_{40}	Upright Ellipse	–	At $a/b = \varphi$ identical to EB
X_{59}	At Least Sextic	–	4 Self-Intersections
X_{88}	EB	$a/b > \alpha_{88}$	at $a/b = \alpha_{88} > \alpha_4$ contains 3:4:5 triangle
X_{162}	EB	$a/b > \alpha_{162}$	never crosses X_{88}
ACT Intouchpts.	EB Boundary	$a/b > \alpha_{act}$	

Table 3. Loci phenomena for various Triangle Centers.
Figure 21. Triangle Center Ballet along the margins of an $a/b = 2.5$ Elliptic Lake. (i) while P_1 moves CCW, Triangle Swancers X_{88} and X_{162} glide toward each other; (ii) at their closest they touch bills. (iii) Suddenly, X_{162} reverses course, (iv) and a short-lived same-direction pursuit ensues. (v) An unswooned X_{88} also changes course, (vi) and now both glide in opposite directions. The duo will meet again on 2nd, 3rd and 4th quadrants, where the dance steps are played back in alternating forward and backward order. Unfazed, a black Mittenschwan floats still at the center of the Lake. With some help from Tchaikovsky, Video: [23, PL#14]

symbol	a/b	Degree	Significance
α_{162}	1.164	8	above it, motion of X_{162} is non-monotonic
α_8	1.174	8	above it, some 3-periodic Orthics can be obtuse.
α_{act}	1.265	2	above it, motion of ACT Intouchpoints is non-monotonic
α_4	1.352	4	locus of X_4 is tangent to EB. above it, some 3-periodics are obtuse
α^4_{88}	1.392	4	with X_{88} on a vertex, sidelengths are $3:4:5$
σ_{88}	1.486	4	above it, motion of X_{88} is non-monotonic
α^4_4	1.510	6	X_4 locus identical to rotated EB
α^5_{50}	1.580	–	when X_{50} is at self-intersection, 3-periodic is right triangle
φ	1.618	2	X_{49} locus identical to rotated EB

Table 4. Aspect ratio thresholds, the degree of the polynomial used to find them, and their effects on loci phenomena.
5. Conclusion

Examining the mysterious, beautiful 3-periodics under the lens of Classical
Triangle Geometry has yielded many a cygnet. We think the EB’s chant is
far from over, surely many delightful secrets still hide under its plumage.

Still, our haphazard experimental process could use some theoretical
teeth. As next steps, we submit the following questions to the reader:

- Can a Triangle Center be found such that its locus can intersect a
 straight line more than 6 times?
- The questions about X_{59} in Section 2.3.
- What causes a Triangle center to move monotonically (or not), forward
 or backward, with respect to the the monotonic motion of 3-periodic
 vertices?
- What is t in $P_1(t)$ at which point X_{88} or X_{162} reverses motion? When
 do they comes closest?
- What can be said about the joint motion of other pairs in the 50+ list of
 EB-bound points provided in [14, X(9)]? Which are monotonic, which
 are not, is there a Pavlova or Baryshnikov amongst them?
- With [19] one observes X_{823} reverses direction at the exact moment a
 3-periodic vertex crosses it. Can this be proven?

Videos mentioned herein are on a playlist [23], with links provided on
Table 5. The reader is especially encouraged to interact with the phenomena
above using our online applet [19]. A gallery of loci generated by X_1 to X_{100}
(as well as vertices of derived triangles) is provided in [21].

PL#	Video Title	Section
01	X_9 stationary at EB center	1
02	Loci for $X_1 \ldots X_5$ are ellipses	1
03	Elliptic locus of Excenters similar to rotated X_1	1
04	Loci of X_{11}, X_{100} and Extouchpoints are the EB	1
05	Non-Ell. Loci of Medial, Intouch and Feuerbach Vertices	1
06	Pinning of Incenter of Orthic to Obtuse Vertex	2.1
07	Locus of Orthic Incenter is 4-piece ellipse	2.2
08	Locus of X_4, Orthic X_1, X_4, and Orthic’s Orthic X_1	2.2
09	Non-monotonic motion on the EB of Anticompl. Intouchpoints	4.1
10	Locus of X_{88} is on the EB and can be non-monotonic	4.2
11	Non-monotonic motion of X_{88} and X_1X_{100} envelope	4.2
12	Locus of X_{59} with 4 self-intersections	2.3
13	Locus of X_{40} and the Golden Billiard	3.1
14	Swan Lake: the dance of X_{88} and X_{162}	4.3
15	Peter Moses’ Points on the EB	4.3

Table 5. Videos mentioned in the paper. Column “PL#” indicates the entry within
the playlist [23].
Acknowledgements

Warm thanks go out to Clark Kimberling, Peter Moses, Arseniy Akopyan, Ethan Cotterill, and Mark Helman for their generous help.

References

[1] Akopyan, A., Schwartz, R., Tabachnikov, S.: Billiards in ellipses revisited (2020). URL https://arxiv.org/abs/2001.02934. ArXiv

[2] Bialy, M., Tabachnikov, S.: Dan Reznik’s identities and more (2020). URL https://arxiv.org/abs/2001.08469. ArXiv

[3] Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, New Mathematical Library, vol. 19. Random House, Inc., New York (1967)

[4] Dragović, V., Radnović, M.: Caustics of Poncelet polygons and classical extremal polynomials. Regul. Chaotic Dyn. 24(1), 1–35 (2019). DOI 10.1134/S1560354719010015. URL https://doi.org/10.1134/S1560354719010015

[5] Fierobe, C.: On the circumcenters of triangular orbits in elliptic billiard (2018). URL https://arxiv.org/pdf/1807.11903.pdf. Submitted

[6] Garcia, R.: Elliptic billiards and ellipses associated to the 3-periodic orbits. American Mathematical Monthly 126(06), 491–504 (2019). URL https://doi.org/10.1080/00029890.2019.1593087

[7] Garcia, R., Reznik, D., Koiller, J.: Loci of 3-periodics in an elliptic billiard: why so many ellipses? (2020). URL https://arxiv.org/abs/2001.08041

[8] Garcia, R., Reznik, D., Koiller, J.: New properties of triangular orbits in elliptic billiards (2020). URL https://arxiv.org/abs/2001.08054

[9] Glutsyuk, A.: On curves with poritsky property. arXiv (2019)

[10] Helman, M.: Aspect ratio required for 3 : 4 : 5 3-periodic. Private Communication (January, 2020)

[11] Helman, M.: Proofs related to locus of X_{ss}. Private Communication (January, 2020)

[12] Kaloshin, V., Sorrentino, A.: On the integrability of Birkhoff billiards. Phil. Trans. R. Soc. A(376) (2018). DOI https://doi.org/10.1098/rsta.2017.0419

[13] Kimberling, C.: Triangle centers as functions. Rocky Mountain J. Math. 23(4), 1269–1286 (1993). DOI 10.1216/rmjm/1181072493. URL https://doi.org/10.1216/rmjm/1181072493

[14] Kimberling, C.: Encyclopedia of triangle centers (2019). URL https://faculty.evansville.edu/ck6/encyclopedia/ETC.html

[15] Kimberling, C.: Polynomial triangle centers on the line at infinity. Journal of Geometry 111(10) (2020). URL 10.1007/s00022-020-0522-y

[16] Lazutkin, V.: The existence of caustics for a billiard problem in a convex domain. Math. USSR Izvestija 7, 185–214 (1973)

[17] Levi, M., Tabachnikov, S.: The Poncelet grid and billiards in ellipses. Amer. Math. Monthly 114(10), 895–908 (2007). DOI 10.1080/00029890.2007.11920482. URL https://doi.org/10.1080/00029890.2007.11920482

[18] Poritsky, H.: The billiard ball problem on a table with a convex boundary - an illustrative dynamical problem. Annals of Mathematics 51(2), 446–470 (1950)
Appendix A. Triangles: Constructions for Centers

Constructions for a few basic Triangle Centers appear in Figure 22.

Any point on the plane of a triangle $T = P_1P_2P_3$ can be defined by specifying a triple of Trilinear Coordinates $x:y:z$ which are proportional to the signed distances from P to each side, which makes them invariant under similarity, and reflection transformations.

A Triangle Center (with respect to a triangle $T = P_1P_2P_3$) is defined by Trilinear Coordinates obtained by thrice applying a Triangle Center Function h to the sidelengths as follows:

$$x:y:z \iff h(s_1,s_2,s_3) : h(s_2,s_3,s_1) : h(s_3,s_1,s_2)$$ (5)

h must (i) be bi-symmetric, i.e., $h(s_1,s_2,s_3) = h(s_1,s_3,s_2)$, and (ii) homogeneous, $h(ts_1,ts_2,ts_3) = t^n h(s_1,s_2,s_3)$ for some n [13]. Trilinears for nearly 40k Triangle centers are available in [14]. Trilinears can be converted to Cartesians using [29]:

[19] Reznik, D.: Applet showing the locus of several triangular centers (2019). URL https://editor.p5js.org/dreznik/full/i1Lin7lt7
[20] Reznik, D.: Triangular orbits in elliptic billiards: Loci of points X(1) X(100) (2019). URL https://dan-reznik.github.io/Elliptical-Billiards-Triangular-Orbits/loci_6tri.html
[21] Reznik, D.: Triangular orbits in elliptic billiards: Loci of points X(1) X(100) (2019). URL https://dan-reznik.github.io/Elliptical-Billiards-Triangular-Orbits/loci_6tri.html
[22] Reznik, D.: YouTube playlist for mathematical intelligencer (2019). URL https://bit.ly/2kTvPPr
[23] Reznik, D.: Playlist for “Loci of Triangular Orbits in an Elliptic Billiard: Intriguing Phenomena” (2020). URL https://bit.ly/2vvJ9hW
[24] Reznik, D., Garcia, R., Koiller, J.: Can the elliptic billiard still surprise us? Math Intelligencer (2019). DOI 10.1007/s00283-019-09951-2. URL https://doi.org/10.1007/s00283-019-09951-2
[25] Romaskevich, O.: On the incenters of triangular orbits on elliptic billiards. Enseign. Math. 60(3-4), 247–255 (2014). DOI 10.4171/LEM/60-3/4-2. URL https://arxiv.org/pdf/1304.7588.pdf
[26] Rozikov, U.A.: An Introduction To Mathematical Billiards. World Scientific Publishing Company (2018)
[27] Tabachnikov, S.: Geometry and Billiards, Student Mathematical Library, vol. 30. American Mathematical Society, Providence, RI (2005). DOI 10.1090/stml/030. URL http://www.personal.psu.edu/sot2/books/billiardsgeometry.pdf. Mathematics Advanced Study Semesters, University Park, PA
[28] Tabachnikov, S.: Projective configuration theorems: old wine into new wine-skins. In: S. Dani, A. Papadopoulos (eds.) Geometry in History, pp. 401–434. Springer Verlag (2019). URL https://arxiv.org/pdf/1607.04758.pdf
[29] Weisstein, E.: Mathworld (2019). URL http://mathworld.wolfram.com
The construction of Basic Triangle Centers X_i, as listed in [14]. **Left:** The Incenter X_1 is the intersection of angular bisectors, and center of the Incircle (green), a circle tangent to the sides at three Intouchpoints (green dots), its radius is the Inradius r. The Barycenter X_2 is where lines drawn from the vertices to opposite sides’ midpoints meet. Side midpoints define the Medial Triangle (red). The Circumcenter X_3 is the intersection of perpendicular bisectors, the center of the Circumcircle (purple) whose radius is the Circumradius R. The Orthocenter X_4 is where altitudes concur. Their feet define the Orthic Triangle (orange). X_5 is the center of the 9-Point (or Euler) Circle (pink): it passes through each side’s midpoint, altitude feet, and Euler Points [29]. The Feuerbach Point X_{11} is the single point of contact between the Incircle and the 9-Point Circle. **Right:** given a reference triangle $P_1P_2P_3$ (blue), the Excenters $P'_1P'_2P'_3$ are pairwise intersections of lines through the P_i and perpendicular to the bisectors. This triad defines the Excentral Triangle (green). The Excircles (dashed green) are centered on the Excenters and are touch each side at an Extouch Point e_i, $i = 1, 2, 3$. Lines drawn from each Excenter through sides’ midpoints (dashed red) concur at the Mittenpunkt X_9. Also shown (brown) is the triangle’s Mandart Inellipse, internally tangent to each side at the e_i, and centered on X_9. This is identical to the $N = 3$ Caustic.

$$X_i|_{\text{cartesian}} = \frac{s_1 x P_1 + s_2 y P_2 + s_3 z P_3}{D}$$

Where and $D = s_1 x + s_2 y + s_3 z$.

Appendix B. Obtuse Triangles and their Orthics

Let $T = ABC$ be any triangle and $T' = A'B'C'$ its Orthic, Figure 5. Let X'_1 be the orthic’s Incenter. Referring to Figure 5.
Lemma 1. If T is acute, the Incenter X'_1 of T' is the Orthocenter X_4 of T.

Proof. This is Fagnano’s Problem, i.e., the Orthic is the inscribed triangle of minimum perimeter, and the altitudes of T are its bisectors [26, Section 3.3]. Since the altitudes or T are bisectors of T' this completes the proof. □

Lemma 2. If T is obtuse, the Incenter X'_1 of T' is the vertex of T subtending the obtuse angle.

Proof. Let B be the obtuse angle. Then B' will be on the longest side of T whereas A' (resp. C') will lie on extensions of BC (resp. AB), i.e., A' and C' are exterior to T. Therefore, X_4 will be where altitudes AA' and CC' meet, also exterior to T. Since $AA' \perp CB$ and $CC' \perp AB$, then CA' and AC' are altitudes of triangle $T_e = AX_4C$. Since these meet at B, the latter is the Orthocenter of T_e and $T' = A'B'C'$ is its Orthic [12]. By Lemma 1, lines CA', AC', X_4B' are bisectors of T', therefore their meetpoint B is the Incenter of T'. □

Corollary 1. When T is obtuse, $T_e = AX_4C$ is acute and the Excentral Triangle of T'.

Since all vertices of T' lie on the sides of T_e, this is the situation of Lemma 1, i.e., T_e is acute. Notice the sides of T_e graze each vertex of T' perpendicular to the bisectors, which is the construction of the Excentral Triangle.

Let Q be a generic triangle and Q_e its Excentral [29]. Let θ_i be angles of Q and ϕ_i those of Q_e opposite to the θ_i’s. By inspection, $\phi_i = \frac{\pi - \theta_i}{2}$, i.e., all excentral angles are less than $\pi/2$.

Corollary 2. If T is obtuse, X_4 is an Excenter of T' [3].

X_4 is the intermediate vertex of T_e.

Dan Reznik*
Data Science Consulting
Rio de Janeiro, RJ, Brazil
e-mail: dreznik@gmail.com

Ronaldo Garcia
Inst. de Matemática e Estatística
Univ. Federal de Goiás
Goiânia, GO, Brazil
e-mail: ragarcia@ufg.br

Jair Koiller
Dept. de Matemática
Univ. Federal de Juiz de Fora
Juiz de Fora, MG, Brazil
e-mail: jairkoiller@gmail.com

[26] The pre-image of T' comprises both T and T_e.
