INTRODUCTION

In his commentary on our recent studies and subsequent editorial in Epilepsia, Kevin Staley addresses the potential use of bumetanide for the treatment of neonatal seizures and the possible mechanisms involved.

BUMETANIDE ACTIONS ON γ-AMINOBUTYRIC ACID TYPE A RECEPTOR SIGNALING IN VITRO VERSUS IN VIVO

Dr Staley starts by explaining how seizures and neuronal injury can, and often do, lead to an increase in Cl⁻ uptake by enhancing the functional expression of NKCC1 in neurons, which promotes depolarizing γ-aminobutyric acid type A (GABA_A) receptor responses. Notably, all the available data on block by bumetanide of NKCC1-dependent depolarizing GABA actions in epileptic tissue are based on in vitro work with the drug typically applied at about 10 µmol⋅L⁻¹. A dose–response study on immature hippocampal network events (giant depolarizing potentials) yielded a threshold concentration of ~.1 µmol⋅L⁻¹, which is in line with data in other cells and tissues, and in ectopic expression models (see Fig 11 in Löscher and Kaila).

Based on data by Cleary et al. in neonatal rats, achieving concentrations of 1 µmol⋅L⁻¹ within brain tissue would require extremely high doses (~9 mg/kg ip). In experiments by Staley and coworkers, bumetanide is applied...
Key Points

- Seizures are the most common neurological emergency in the neonatal period and only poorly respond to antiseizure drugs
- Birth asphyxia is a frequent cause of neonatal seizures, mortality, and poor neurodevelopmental outcome
- Bumetanide has been proposed to potentiate the antiseizure activity of phenobarbital by blocking NKCC1-dependent depolarization mediated by GABA, but this has not been demonstrated in vivo
- In his commentary in Epilepsia (this issue), Dr Staley incorrectly describes our noninvasive model of birth asphyxia
- Here, we will explain why bumetanide is not suitable for seizure suppression in neonates

In the spectral power of ictal EEG have little relevance to clinical seizure treatment, which aims at blocking—not modifying—the electrographic seizure activity.”

3 | HELSINKI BA MODEL: SIMULATING THE CLINICAL SITUATION

BA is characterized by severely impaired respiratory gas exchange, which leads to progressive hypoxia, hypercarbia, and acidosis. Based on this, Kai Kaila’s group has developed a rat model of moderate BA in P11 rat pups (termed the “Helsinki model” in the following), in which the animals are exposed for 30 min to intermittent hypoxia (step changes between 9% and 5% ambient O2) and maintained hypercapnia (20% CO2). We have demonstrated that this model mimics BA in human neonates in several important aspects. Our model recapitulates the most salient physiological responses to BA in human neonates, including systemic acid–base changes caused by anaerobic energy metabolism (acidosis, accumulation of lactic acid, and fall in base excess) and used routinely in diagnosis of BA. The model also shows the characteristic stress-hormone surge as monitored by blood copeptin, a widely used clinical biomarker.

In the Helsinki model, seizures are never observed during asphyxia. The 20% CO2 used in this model suppresses the hypoxia-induced increase in neuronal excitability, which reflects an important endogenous protective role for CO2 in mammalian birth. Importantly, and in contrast to commonly used hypoxia-only models...
in which seizures are triggered already during the insult, the pups develop seizures after the termination of asphyxia, that is, after full recovery from hypoxia, which is analogous to the clinical situation.

Staley’s argument that our model is “closely based on the hypercarbia withdrawal model of acute seizures developed by Dixon Woodbury” is an erroneous conclusion. Woodbury et al. found that ambient CO2 has immediate anticonvulsant effects at 5%–20% (see also Tolner et al.), becomes proconvulsant at 25%–40%, and induces anesthesia at very high levels (>40%). Animals exposed to CO2 levels of >30% displayed seizures upon withdrawal. Hypercarbia-only is a condition that obviously had to be examined in the piloting phase of our work, and 20% CO2 never led to postexposure seizures. Interestingly, we found that intermittent strongly hypoxic episodes (from 9% to 5% O2) during the asphyxia exposure resulted in postasphyxia seizures, whereas asphyxia with continuous 5% O2 hypoxia did not promote seizures at all, even when the total hypoxic load was equal in the two paradigms.

Staley’s further criticism is that the time course of seizures in the Helsinki model is different from those in asphyxiated human newborns, in which seizures begin hours after delivery and continue for hours to days, not minutes. Here, we wish to emphasize that in the widely used rodent models of BA/HIE based on carotid ligation and/or hypoxia, the seizures start already during the insult. Moreover, our model provides the possibility of testing fast-acting antiseizure medications such as midazolam and acetazolamide with drug application after the insult. Thus, our model satisfies numerous criteria for translational validity better than the other current rat- and mouse-based approaches. A relevant question is obviously whether evoking “neonatal seizures” by exposing a neonatal animal to a proconvulsant agent (such as kainate) has any translational validity at all.

Staley makes the surprising statement that “The editorial cited other studies finding higher levels of KCC2 in the human neonatal brain as evidence that the gabaγ reversal potential was already sufficiently hyperpolarizing in human neonates, such that inhibition of Nkcc1 by bumetanide would not be an effective anticonvulsant therapy.” This is not what we state. We have worked on NKCC1-dependent excitatory gaba actions observed in damaged neurons in epileptic adult rodent and human tissue, in which neurons that remain healthy have a high level of KCC2. Neither does our editorial claim anything about the relative expression of KCC2 versus NKCC1 at any developmental time point. As explained before, KCC2 is a neuron-specific molecule, whereas NKCC1 is widely expressed in nearly all cell types of the brain, making the ratio (quantitative or qualitative) between KCC2 and NKCC1 expression at the tissue level (whether mRNA or protein) a meaningless parameter.

Very briefly, we would also like to point out that the concept of fixed charges participating in the generation of the Cl− driving force across neuronal membranes was not “initially controversial.” This concept violates the basic laws of thermodynamics, and it is therefore not merely controversial but simply wrong.

5 | BUMETANIDE IS A POTENT OTOTOXIC DRUG

In striking contrast to Staley’s statement that “bumetanide has not been shown to be ototoxic experimentally,” this drug has been reported to be a potent ototoxic drug when administered alone in adult cats, dogs, and guinea pigs. Significant ototoxic effects were observed at intravenous doses of ~2 mg/kg in cats and .5 mg/kg in dogs. In contrast, mice are strikingly less sensitive to the ototoxicity of bumetanide. However, only the latter mouse study was cited by Staley to support his argument that bumetanide is not ototoxic when administered alone.

In the two clinical trials on bumetanide in newborns with neonatal seizures, the combined total incidence of permanent hearing loss was ~12%, which might have been due to coincident risk factors, in particular, administration of aminoglycoside antibiotics. Loop diuretics applied together with aminoglycoside antibiotics, such as gentamycin or kanamycin are known to have a synergistic ototoxic action, leading to irreversible hearing loss in doses that would not be expected to cause ototoxicity if either drug was used alone. One of 13 neonates in the NEMO trial developed hearing loss after treatment with bumetanide in the absence of an aminoglycoside. Staley pointed out that neonates with HIE are at an increased risk of hearing loss, which is true and may increase the sensitivity to the ototoxic effect of bumetanide. Thus, based on the risk of ototoxicity alone, one may question further clinical trials on bumetanide in newborns with neonatal seizures.

6 | DO WE REALLY NEED MORE CLINICAL TRIALS WITH BUMETANIDE ON NEONATAL SEIZURES?

At the end of his commentary, Staley states that “the next step is a randomized, controlled, multicenter phase II–III
trial of bumetanide for neonatal seizures that do not re-
respond to phenobarbital, excluding neonates treated with
aminoglycosides.” Taken together, all available evidence
speaks against another trial:

1. The pharmacokinetic properties of bumetanide as
a central nervous system (CNS) drug are extremely
poor. The physicochemical properties of bumetanide
are consistent with its very low permeability across
the blood–brain barrier (BBB).\(^4\,\text{9,50}\) In addition, active
efflux transport at the BBB further restricts brain levels
of bumetanide.\(^5\) Lack of CNS access with clinically
relevant doses has been convincingly shown by direct
chemical measurements from cerebrospinal fluid\(^5\) and
from brain tissue.\(^2,\text{9,11,12,53}\)

2. The original idea of targeting NKCC1 in the brain to
specifically reduce the intracellular chloride concentra-
tion in damaged principal neurons with depolar-
izing or excitatory GABA\(_A\) receptor responses\(^8\) has
turned out to be impossible. Even if a brain-permeable
NKCC1 blocker were available, it would obviously act
on NKCC1 in all kinds of cells, including astrocytes and
oligodendrocytes, as well as microglia.\(^8,\text{54}\) NKCC1 ex-
pressed in astrocytes and oligodendrocytes has robust
effects on neuronal plasticity, and on the development
of neuronal connectivity and axonal functions.\(^55–58\) These
insights call for a re-evaluation of the mechanistic basis
of practically all in vivo data obtained by bumetanide
doses that are high enough to lead to relevant drug lev-
els in brain tissue, including our own work on sharp
waves.\(^59\) Bumetanide has also effects on cells and tis-
ues other than the kidney outside the brain, which is,
again, consistent with the ubiquitous expression pat-
terns of NKCC1.\(^8,\text{37,60}\)

Finally, on a more personal note, the present authors
have invested a great deal of time and resources in basic
research on the roles of NKCC1 in neuronal signaling and
network functions, including seizures.\(^5,\text{8,36,37,49,50,53,59,61–63}\)
Not long ago, we were enthusiastic about the possibility
of developing BBB-permeant NKCC1 blockers and prod-
rugs to generate a novel type of anticonvulsant medica-
tion.\(^4,\text{9,44–66}\) However, in light of the steeply accumulating
data on the vital roles of NKCC1 in various types of non-
neuronal cells within brain tissue as described above,\(^8\) this
goal had to be abandoned.

It is obvious that much of the previous work on NKCC1
needs a reality check based on the steadily evolving data
within this field. There are many novel and interesting ob-
servations on the in vivo effects of bumetanide and other
NKCC1 blockers, which do not require brain access of
the drug.\(^8\) The putative targets include NKCC1-expressing
cells in the autonomic nervous system, in endocrine
glands, and in the immune system. Interestingly, bumeta-
nide administered parenterally ameliorates inflammation
in the brain, whereas an opposite effect is seen in response
to intracerebral application of the drug.\(^5\) The cellular and
physiological mechanisms underlying the potential ther-
apneic actions of bumetanide deserve open-minded in-
vestigations based on scientific curiosity, not on outdated
concepts.\(^1,\text{10}\)

ACKNOWLEDGMENTS
We thank Tommi Ala-Kurikka for comments on the man-
uscript. The original research work of the authors was
supported by the German Research Foundation (W.L.),
and by the Academy of Finland and the Sigrid Jusélius
Foundation (K.K.).

CONFLICT OF INTEREST
Neither of the authors has any conflict of interest to dis-
close. We confirm that we have read the Journal’s position
on issues involved in ethical publication and affirm that
this report is consistent with those guidelines.

ORCID
Kai Kaila © https://orcid.org/0000-0003-0668-5955
Wolfgang Löscher © https://orcid.org/0000-0002-9648-8973

REFERENCES
1. Staley K. Clarifications regarding bumetanide for neonatal sei-
zures. Epilepsia. 2022. in press.
2. Johne M, Römermann K, Hampel P, Gailus B, Theilmann
W, Ala-Kurikka T, et al. Phenobarbital and midazolam sup-
press neonatal seizures in a noninvasive rat model of birth
asphyxia, whereas bumetanide is ineffective. Epilepsia.
2021;62(4):920–34.
3. Ala-Kurikka T, Pospelov A, Summanen M, Alafuzoff A, Kurki
S, Voipio J, et al. A physiologically validated rat model of term
birth asphyxia with seizure generation after, not during, brain
hypoxia. Epilepsia. 2021;62(4):908–19.
4. Löscher W, Kaila K. Reply to the commentary by Ben-Ari and
Delpeire: Bumetanide and neonatal seizures: fiction versus real-
ity. Epilepsia. 2021;62(4):941–6.
5. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K,
Miles R, et al. Perturbed chloride homeostasis and GABAergic
signaling in human temporal lobe epilepsy. J Neurosci.
2007;27(37):9866–73.
6. Pallud J, Le Van QM, Bielle F, Pellegrino C, Varlet P, C resto
N, et al. Cortical GABAergic excitation contributes to epi-
leptic activities around human glioma. Sci Transl Med.
2014;6(244):244ra89.
7. Kaila K, Trevelyan A, Raimondo J, Ala-Kurikka T, Huberfeld G,
Avoli M, et al. GABA\(_A\)-receptor signaling and ionic plasticity in
the generation and spread of seizures. In: Noebels J, Avoli M,
Rogawski M, Vezzani A, Delgado-Escueta A, editors. Jasper’s
basic mechanisms of the epilepsies. 5th ed. Oxford, UK: Oxford
University Press; in press.
subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia. 2021;62(6):1460–71.
25. Summanen M, Bäck S, Voipio J, Kaila K. Surge of peripheral arginine vasopressin in a rat model of birth asphyxia. Front Cell Neurosci. 2018;12:1–9.
26. Spoljaric A, Seja P, Spoljaric I, Virtanen MA, Lindfors J, Uvarov P, et al. Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth. Proc Natl Acad Sci U S A. 2017;114(50):201717337.
27. Evers KS, Wellmann S. Arginine vasopressin and coepitin in perinatology. Front Pediatr. 2016;4:2–11.
28. Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods. 2016;260:252–60.
29. Lynch NE, Stevenson NJ, Livingstone V, Murphy BP, Rennie JM, Boylan GB. The temporal evolution of electrophysiological seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia. 2012;53(3):549–57.
30. Woodbury DM, Rollins LT, Gardner MD, Hirschi WL, Hogan JR, Rallison ML, et al. Effects of carbon dioxide on brain excitability and electrolytes. Am J Physiol. 1958;192(1):79–90.
31. Woodbury DM, Koch A, Vernadakis A. Relation between excitability and metabolism in brain as elucidated by anticonvulsant drugs. Neurology. 1958;8(Suppl 1):112–6.
32. Woodbury DM, Karler R. The role of carbon dioxide in the nervous system. Anesthesiology. 1960;21(6):686–703.
33. Tolner EA, Hochman DW, Hassinen P, Otáhal J, Gaily E, Haglund MM, et al. Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia. 2011;52(1):104–14.
34. Pospelov AS, Ala-Kurikka T, Kurki S, Voipio J, Kaila K. Carbonic anhydrase inhibitors suppress seizures in a rat model of birth asphyxia. Epilepsia. 2021;62(8):1971–84.
35. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, et al. BDNF-induced TrkB activation down-regulates the K+/Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion. J Cell Biol. 2002;159(5):747–52.
36. Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The multifaceted roles of KCC2 in cortical development. Trends Neurosci. 2021;44(5):378–92.
37. Virtanen MA, Uvarov P, Häbner CA, Kaila K. NKCC1, an elusive molecular target in brain development: making sense of the existing data. Cells. 2020(9)(12):1–20.
38. Glykys J, Dzhala V, Egawa K, Balena T, Saponjian Y, Kuchibhotla JR, Rallison ML, et al. Effects of carbon dioxide on brain excitability and electrolytes. Am J Physiol. 1958;192(1):79–90.
39. Voipio J, Boron WF, Jones SW, Hopfer U, Payne JA, Kaila K. Comment on “Local impermanent anions establish the neuronal chloride concentration. Science. 2014;343(6171):670–7.
40. Woodbury DM, Rollins LT, Gardner MD, Hirschi WL, Hogan JR, Rallison ML, et al. Effects of carbon dioxide on brain excitability and electrolytes. Am J Physiol. 1958;192(1):79–90.
41. Brown RD, Feldman AM. Pharmacology of hearing and ototoxicity. Annu Rev Pharmacol Toxicol. 1978;18:233–52.
42. Gött K, Roesch A, Kline R. Quantitative evaluation of ototoxic side effects of furosemide, piretanide, bumetanide, azosemide and ozolinone in the cat—a new approach to the problem of ototoxicity. Naunyn Schmiedebergs Arch Pharmacol. 1985;331(2–3):275–82.
43. Brown RD, Manno JE, Daigeneault EA, Manno BR. Comparative acute ototoxicity of intravenous bumetanide and furosemide in
the pure-bred beagle. Toxicol Appl Pharmacol. 1979;48(1 Pt 1):157–69.

44. Ward A, Bumetanide HRC. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs. 1984;28(5):426–64.

45. Taylor RR, Nevill G, Forge A. Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolarngol. 2008;9(1):44–64.

46. Pressler RM, Boylan GB, Marlow N, Blennow M, Chiron C, Cross JH, et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 2015;14(5):469–77.

47. Soul JS, Bergin AM, Stopp C, Hayes B, Singh A, Fortuno CR, et al. A pilot randomized, controlled, double-blind trial of bumetanide to treat neonatal seizures. Ann Neurol. 2021;89:327–40.

48. Brater DC. Pharmacology of diuretics. Am J Med Sci. 2000;319(1):38–50.

50. Löscher W, Puskarjov M, Kaila K. The cation-chloride cotransporter NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuroneuropharmacology. 2013;69:62–74.

51. Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, et al. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuroneuropharmacology. 2017;117:182–94.

52. Javaheri S, Davis C, Rogers DH. Ionic composition of cisternal CSF in acute respiratory acidosis: lack of effect of large dose bumetanide. J Neurochem. 1993;61(4):1525–9.

53. Brandt C, Nozadze M, Heuchert N, Rattka M, Löscher W. Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J Neurosci. 2010;30(25):8602–12.

54. Tóth K, Lénárt N, Berki P, Fekete R, Szabadits E, Pósfai B, et al. The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner. PLoS Biol. 2020;22(10):e3001526.

55. Henneberger C, Bard L, Panatier A, Reynolds JP, Kopach O, Medvedev NI, et al. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astrogia. Neuron. 2020;108(5):919–936.e11.

56. Yamazaki Y, Abe Y, Fujii S, Tanaka K, K+--Cl-- co-transporter 1 activity facilitates axonal conduction and restores plasticity in the adult mouse brain. Nat Commun. 2021;12(1):5146.

57. Zonouzi M, Scafidi J, Li P, McEllin B, Edwards J, Dupree JL, et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat Neurosci. 2015;18(5):674–82.

58. Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity Science. 2021;374(6569):eaba6905.

59. Sipilä ST, Schuchmann S, Voipio J, Yamada J, Kaila K. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol. 2006;573(Pt 3):765–73.

60. Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch. 2014;466(1):91–105.

61. Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci. 2005;25(22):5280–9.

62. Puskarjov M, Ahmad F, Kaila K, Blaesse P. Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J Neurosci. 2012;32(33):11356–64.

63. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15(10):637–54.

64. Tillner K, Brandt C, Töpfner M, Brunhofer G, Erker T, Gabriel M, et al. A novel prodrug-based strategy to increase effects of bumetanide in epilepsy. Ann Neurol. 2014;75(4):550–62.

65. Erker T, Brandt C, Töllner K, Schreppl P, Twele F, Schildlitzki A, et al. The bumetanide prodrug BUM5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice. Epilepsia. 2016;57(5):698–705.

66. Hampel P, Römermann K, MacAulay N, Löscher W. Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci Rep. 2018;8(1):11.