A formula for the partition function of the $\beta\gamma$ system on the cone pure spinors

M.V. Movshev
Mathematics Department, Stony Brook University, Stony Brook NY, 11794-3651, USA
mmovshev@math.sunysb.edu

February 16, 2016

Abstract

In this note, we propose a closed formula for the partition function $Z(t, q)$ of the $\beta\gamma$ system on the cone of pure spinors. We give the answer in terms of theta functions, q-Pochhammer symbols and Eisenstein series.

1 Introduction

The $\beta\gamma$ system on the cone of pure spinors C is an integral part of the version of the string theory invented by N. Berkovits [5]. C is an eleven-dimensional subvariety in 16-dimensional linear space with coordinates $\lambda, p_i, w_{ij}, 1 \leq i, j \leq 5, w_{ij} = -w_{ji}$ defined by the equations

$$
\begin{align*}
\lambda p_i - \text{Pf}_i(w) &= 0 \quad i = 1, \ldots, 5, \\
p w &= 0.
\end{align*}
$$

(1)

$\text{Pf}_i(w), 1 \leq i \leq 5$ are the principal Pfaffians of w. The action is common to all $\beta\gamma$ systems:

$$
S(\beta, \gamma) = \int_{\Sigma} \langle \bar{\partial} \beta, \gamma \rangle.
$$

The field β is a smooth map $\beta: \Sigma \rightarrow C$, where Σ is a Riemann surface, γ is a smooth section of the pullback $\beta^* T^*_c \otimes T^*_\Sigma$. We advise the reader to consult [7] for the notation and discussion of issues related to definition of a $\beta\gamma$ systems on the nonsmooth C.

In [7], a geometric construction of the space of states $H^{i+\frac{\infty}{2}}, i = 0, \ldots, 3$ of this system was presented. It is a properly regularized space of the semi-infinite local cohomology of the space of polynomial maps $\text{Maps}(C^x, C)$. The support of the local cohomology lies at $\text{Maps}(C, C)$. The space C is an affine cone over $\text{OGr}(5,10)$. $C^x \times \text{Spin}(10)$ is the groups of symmetries C, where C^x acts by dilations. The group $C^x \times T \times \text{Spin}(10)$ acts by the symmetries of the pair $\text{Maps}(C, C) \subset \text{Maps}(C^x, C)$. The factor $T \cong C^x$ corresponds to loop rotations. The action of $C^x \times T \times \text{Spin}(10)$ survive the regularization and continue to act on $H^{i+\frac{\infty}{2}}$. It turns out (see [7]) that the formal character

$$
Z(t, q, z) = \sum_{i=0}^{3} (-1)^i \chi_{H^{i+\frac{\infty}{2}}} (t, q, z)
$$

(2)
is well defined as an element in \(Z((t, z_1, \ldots, z_5))(q) \cap \mathbb{Q}(t, z_1, \ldots, z_5))(q) \), where \(z_1, \ldots, z_5 \) are the coordinates on the Cartan subgroup \(T^5 \subset \text{Spin}(10) \). More precisely, \(Z(t, q, z) \) is a limit of coefficients of an infinite matrix product. The matrix product simplifies when \(z = 1 \). We use it to derive the formula for \(Z(t, q) := Z(t, q, 1) \).

It is necessary to state from the outset that the analysis presented in this note is based on experimentations with the formula for \(Z_N^N(t, q) \) using \textit{Mathematica} for finite \(N, N' \) and extrapolation of the found structures to infinite \(Ns \). Though somewhat loose in justification, the result looks convincing because it passes a number of consistency checks.

Acknowledgment The author would like thank N.Berkovits, A.S. Schwarz, E. Witten for their interest and helpful conversations about this work.

2 The formula

As it is mentioned in the abstract, \(Z(t, q) \) will be expressed in terms of some standard special functions. We start with reviewing their definitions.

The functions used in the formula Recall that the \(q \)-Pochhammer symbol is an infinite product

\[
(t; q)_\infty := \prod_{n \geq 0} (1 - tq^n).
\]

It is used to write concisely the three-term identity

\[
\theta(t, q) = (1 - t^{-1})(q, q)_\infty (q/t, q)_\infty (qt, q)_\infty
\]

for the theta function

\[
\theta(q, t) := \sum_{n \in \mathbb{Z}} (-1)^n q^{-n(n+1)/2} t^n.
\]

Another ingredient of the formula are theta functions with characteristics:

\[
\epsilon_k(t, q) = \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{7n(n+1)}{2} + kn} t^{7n+k} = t^k \left(1 - q^{-k} t^{-7}\right) \left(q^7, q^7\right)_\infty \left(q^{7-k} t^{-7}, q^7\right)_\infty \left(q^{k+7}, q^7\right)_\infty, k = 0, \ldots, 6.
\]

The proposed answer will also depend on the Eisenstein series

\[
E_2(q) := 1 - 24 \sum_{n=1}^{\infty} \frac{nq^n}{1 - q^n}, \quad E_4(q) := 1 + 240 \sum_{n=1}^{\infty} \frac{n^3q^n}{1 - q^n}.
\]

Define linear combinations of \(\epsilon_k(q, t) \):

\[
\theta_1(t, q) := -q^3 \epsilon_3(q, t) - q^4 \epsilon_4(q, t),
\]

\[
\theta_2(t, q) := q^2 \epsilon_2(q, t) + q^5 \epsilon_5(q, t), \quad \text{and}
\]

\[
\theta_3(t, q) := -q \epsilon_1(q, t) - q^6 \epsilon_6(q, t)
\]

and introduce abbreviation \(\theta_k(q) := \theta_k(1, q), k = 1, 2, 3. \)

The following conjecture contains the promised formula.
Conjecture 1 The partition function $Z(t, q)$ has the form

$$Z(t, q) = \frac{a(q)\theta_1(t, q) + b(q)\theta_2(t, q) + c(q)\theta_3(t, q)}{t^6\theta(t, q)^{11}} =: \Psi(t, q)$$

where the string functions a, b, c are

$$a := \frac{1}{768(q, q)_{\infty}}(2744q^2E_2(q)\theta_3(q)\theta'_2(q) - 2744q^2E_2(q)\theta_2(q)\theta'_3(q) - 343qE_2(q)^2\theta_3(q)\theta'_2(q) + 3626qE_2(q)\theta_3(q)\theta''_2(q)$$

$$+ 343qE_2(q)^2\theta_2(q)\theta''_3(q) - 5194qE_2(q)\theta_2(q)\theta'_3(q) + 98E_2(q)^2\theta_2(q)\theta_3(q) - 476E_2(q)\theta_2(q)\theta_3(q)$$

$$+ 42E_4(q)\theta_3(q)\theta'_2(q) - 42E_4(q)\theta_2(q)\theta'_3(q) - 12E_4(q)\theta_2(q)\theta_3(q) - 6586q^3\theta''_2(q)\theta'_3(q)$$

$$+ 6586q^3\theta'_2(q)\theta''_3(q) - 29400q^2\theta_3(q)\theta''_2(q) + 37632q^2\theta'_2(q)\theta''_3(q) + 10584q^2\theta_2(q)\theta''_3(q)$$

$$- 25725q\theta_3(q)\theta'_2(q) + 18333q\theta_2(q)\theta'_3(q) + 1350\theta_2(q)\theta_3(q)),$$

$$b := -\frac{1}{768(q, q)_{\infty}}(2744q^2E_2(q)\theta_3(q)\theta''_2(q) - 2744q^2E_2(q)\theta_1(q)\theta''_3(q) - 343qE_2(q)^2\theta_3(q)\theta'_2(q) + 2842qE_2(q)\theta_3(q)\theta'_1(q)$$

$$+ 343qE_2(q)^2\theta_1(q)\theta'_3(q) - 5194qE_2(q)\theta_1(q)\theta''_3(q) + 147E_2(q)^2\theta_1(q)\theta_3(q) - 546E_2(q)\theta_1(q)\theta_3(q)$$

$$+ 42E_4(q)\theta_3(q)\theta'_2(q) - 42E_4(q)\theta_2(q)\theta'_3(q) - 18E_4(q)\theta_1(q)\theta_3(q) - 6586q^3\theta''_1(q)\theta'_3(q)$$

$$+ 6586q^3\theta'_1(q)\theta''_3(q) - 29400q^2\theta_3(q)\theta''_1(q) + 56448q^2\theta'_1(q)\theta''_3(q) + 1176q^2\theta_1(q)\theta''_3(q)$$

$$- 17325q\theta_3(q)\theta'_1(q) + 2205q\theta_1(q)\theta'_3(q) + 225\theta_1(q)\theta_3(q)),$$

$$c := \frac{1}{768(q, q)_{\infty}}(2744q^2E_2(q)\theta_2(q)\theta''_1(q) - 2744q^2E_2(q)\theta_1(q)\theta''_2(q) - 343qE_2(q)^2\theta_2(q)\theta'_1(q) + 2842qE_2(q)\theta_2(q)\theta'_2(q)$$

$$+ 343qE_2(q)^2\theta_1(q)\theta'_2(q) - 3626qE_2(q)\theta_1(q)\theta''_2(q) + 49E_2(q)^2\theta_1(q)\theta_2(q) - 70E_2(q)\theta_1(q)\theta_2(q)$$

$$+ 42E_4(q)\theta_2(q)\theta'_1(q) - 42E_4(q)\theta_1(q)\theta'_2(q) - 6E_4(q)\theta_1(q)\theta_2(q) - 6586q^3\theta''_1(q)\theta'_2(q)$$

$$+ 6586q^3\theta'_1(q)\theta''_2(q) - 10584q^2\theta_2(q)\theta''_1(q) + 18816q^2\theta'_1(q)\theta''_2(q) + 1176q^2\theta_1(q)\theta''_2(q)$$

$$- 9261q\theta_2(q)\theta'_1(q) + 1533q\theta_1(q)\theta'_2(q) + 27\theta_1(q)\theta_2(q)).$$

3 Supporting evidences

The matrix product presentation for $Z(t, q)$ It was established in [7] that $Z(t, q)$ is the limit in the sense of formal power series convergence of a certain infinite matrix product. To state the result let us fix some additional notations:

$$B^3_0 := \frac{1 + 3t + t^2}{(1 - t)^3(1 - qt)^2},$$

$$A^3_0 := \frac{1 + 5t + 5t^2 + t^3}{(1 - t)^{11}},$$

$$K(t, q) := \begin{pmatrix}
\frac{t(t^2+3t+1)}{(t-1)^2(qt-1)} & \frac{(t^2+3t+1)(t^3+q^2)-5q(t+1)t^2}{q^2t(t-1)(qt-1)} \\
\frac{t(t+1)(t^2+4t+1)}{(t-1)^{10}} & \frac{(t^3+5t^2+5t+1)(t^3+q^2)-q(5t^2+14t+5)t^2}{q^2(t-1)^{10}}
\end{pmatrix}
$$
\[
\begin{pmatrix}
B_0^{r+1}
A_0^r
\end{pmatrix} := K(q^r t, q) \cdots K(q t, q) \begin{pmatrix}
B_0^1
A_0^0
\end{pmatrix},
\]
(10)

\[
A_N^{N'}(t, q) := A_0^{N'-N}(t q^N, q).
\]

It was verified in [7] that the limit of

\[
Z_N^{N'}(t, q) := A_N^{N'}(t, q) t^{4-4N} q^{-2+4N-2N^2}, N < 0
\]
(11)

\[
N \to -\infty, N' \to \infty
\]
coincides with \(Z(t, q)\) \(^2\).

Poles of \(Z(t, q)\) The rational function \(Z_N^{N'}(t, q)\) has a fairly complicated structure. Still, experiments with Mathematica show that \(Z_N^{N'}(t, q)\) has poles of multiplicity \(\dim \mathcal{C} = 11\) precisely at \(q^{-N}, \ldots, q^{-N'}\). It is natural to conjecture that in the limit \(N \to -\infty, N' \to \infty\) this pattern persists and \(Z\) is a meromorphic function for \(|q| < 1\) with poles at \(t = q^n, n \in \mathbb{Z}\) of multiplicity 11.

\(Z(t, q)\) and a line bundle of degree 7 If this conjecture is true, then the product

\[
\Theta(t, q) := t^6 Z(t, q) \theta(t, q)^{11}
\]
(12)

is an analytic function for \(t \neq 0, |q| < 1\).

One of the results of [7] is that \(Z(t, q, g)\) as a formal power series in \(q\) satisfies

\[
\frac{Z(q t, q, g)}{Z(t, q, g)} = \frac{t^4}{q^2},
\]
(13)

\[
\frac{Z(1/t, q, g^{-1})}{Z(t, q, g)} = -t^8.
\]
(14)

It follows from the functional equations

\[
\theta(q t, q) = -\theta(t, q)/(qt), \quad \theta(1/t, q) = -t\theta(t, q)
\]
(15)

that \(\Theta(t, q)\) obeys

\[
\frac{\Theta(tq, q)}{\Theta(t, q)} = -\frac{1}{q^2 t^2},
\]
(16)

\[
\frac{\Theta(1/t, q)}{\Theta(t, q)} = t^7
\]
(17)

Stated differently, equation (15) says that \(\theta\) is a holomorphic section of a line bundle \(\mathcal{L}\) of degree one on the elliptic curve \(\mathbb{C}^\times/\{q^k\}\). To say that \(\Theta\) satisfy (16) is equivalent to saying that \(\Theta\) is a section of \(\mathcal{L}^\otimes 7\). The space of global sections of \(\mathcal{L}^\otimes 7\) has a basis \(\epsilon_k, k = 0, \ldots, 6\) \(^4\). Symmetry condition (17) determines a subspace in the span of \(\epsilon_k\) of dimension three with a basis \(\theta_i, i = 1, 2, 3\). As a consequence, we get

\[
\Theta(t, q) = a(q) \theta_1(t, q) + b(q) \theta_2(t, q) + c(q) \theta_3(t, q),
\]
(18)

which is equivalent to (5).
Equations on coefficients a, b, c It remains to determine a, b, c. Denote the right-hand side in (5) by $\Psi(t, q)$. Identity
\[
\lim_{t \to 1} \partial_t^k Z(t, q)(1 - t)^{11} = \lim_{t \to 1} \partial_t^k \Psi(t, q)(1 - t)^{11}, \quad k = k_1, k_2, k_3
\] (19) produces three linear equations for $a(q), b(q), c(q)$. Denote by x the vector (a, b, c). We can write the system of equations on x in the matrix form
\[
z' = Ax.
\] (20)
The coefficients of the matrix A depend only on the functions θ_i and can be explicitly computed. The vector z is more complicated because it depends on the unknown function Z. But if we manage to compute three Taylor coefficients of $Z(t, q)$ with respect to the variable t, we can easily find the functions a, b, c.

Coefficients of the matrix A Let us find the matrix A first. The convenient choice for k_i in (19) is $0, 2, 4$. The function $\theta(t, q)$ has a zero of order one at $t = 1$ so that $\frac{\theta(t, q)}{t - 1}$ is regular. Denote
\[
\theta_0(q) := \lim_{t \to 1} \frac{\theta(t, q)}{1 - t}.
\] The right-hand-side of fist equation Eq\(_0\) (19), the $k = 0$ case, becomes
\[
\lim_{t \to 1} \Psi(t, q)(1 - t)^{11} = \frac{a \theta_0 + b \theta_2 + c \theta_3}{\theta_0^3}.
\] (21) The second equation Eq\(_2\), corresponding to $k = 2\begin{cases} 1 \end{cases}$, contain t-partial derivatives of functions at $t = 1$. Note that θ and ϵ_k satisfy the heat equations:
\[
t^2 \partial_t^2 \theta + t \partial_t \theta = 2q \partial_q \theta, \quad t^2 \partial_t^2 \epsilon_k + 8t \partial_t \epsilon_k - k(k + 7)\epsilon_k = 14q \partial_q \epsilon_k.
\] In addition, linear combinations θ_i of ϵ_k satisfy (17). These equations allow to express t-derivatives of θ_i at $t = 1$ in terms of q-derivatives of θ_i. Thus equations [3] and the results of [1] imply that
\[
\theta_0(q) = -(q, q)^3, \quad \lim_{t \to 1} \partial_t^3 \frac{\theta(t, q)}{1 - t} = -\theta_0(q), \quad \lim_{t \to 1} \partial_t^2 \frac{\theta(t, q)}{1 - t} = \theta_0 \times \left(\frac{23}{12} + \frac{E_2}{12}\right),
\]
\[
\lim_{t \to 1} \partial_t^3 \frac{\theta(t, q)}{1 - t} = \theta_0 \times \left(\frac{11}{2} - \frac{1}{2} E_2\right),
\]
\[
\lim_{t \to 1} \partial_t^4 \frac{\theta(t, q)}{1 - t} = \theta_0 \times \left(\frac{1689}{80} + \frac{23}{8} E_2 + \frac{1}{48} E_2^2 - \frac{1}{120} E_4\right),
\]
\[
\lim_{t \to 1} \partial_t^5 \frac{\theta(t, q)}{1 - t} = \theta_0 \times \left(-\frac{1627}{16} - \frac{145}{8} E_2 - \frac{5}{16} E_2^2 + \frac{1}{8} E_4\right).
\] Similarly
\[
\theta_1(q) := \theta_1(1, q) = 2(q^3, q^7) \infty(q^4, q^7) \infty(q^7, q^7) \infty, \quad \partial_t \theta_1(1, q) = -7/2 \theta_1(q), \quad \partial_t^2 \theta_1(1, q) = 16 \theta_1(q) + 14 q \partial_q \theta_1(q),
\]

\[1\text{Eq}_1\] is proportional to Eq\(_0\)
\[\partial^3_t \theta_1(1, q) = -90\theta_1 - 189q\partial_q \theta_1, \quad \partial^4_t \theta_1(1, q) = 600\theta_1 + 2268q\partial_q \theta_1 + 196q^2 \partial^2_q \theta_1, \]

\[\theta_2(q) := \theta_2(1, q) = -2(q^2, q^7)_\infty(q^5, q^7)_\infty(q^7, q^7)_\infty, \quad \partial_t \theta_2(1, q) = -7/2\theta_2, \quad \partial^2_t \theta_2(1, q) = 18\theta_2 + 14q\partial_q \theta_2, \]

\[\partial^3_t \theta_2(1, q) = -1170\theta_2 - 189q\partial_q \theta_2, \quad \partial^4_t \theta_2(1, q) = 900\theta_2 + 2324q\partial_q \theta_2 + 196q^2 \partial^2_q \theta_2, \]

\[\theta_3(q) := \theta_3(1, q) = 2(q^2, q^7)_\infty(q^6, q^7)_\infty(q^7, q^7)_\infty, \quad \partial_t \theta_3(1, q) = -7/2\theta_3, \quad \partial^2_t \theta_3(1, q) = 22\theta_3 + 14q\partial_q \theta_3, \]

\[\partial^3_t \theta_3(1, q) = -1710\theta_3 - 189q\partial_q \theta_3, \quad \partial^4_t \theta_3(1, q) = 1524\theta_3 + 2436q\partial_q \theta_3 + 196q^2 \partial^2_q \theta_3. \]

After simplifications Eq2 and Eq4 become

\[\lim_{t \to 1} \partial^2_t \Psi(t, q)(1 - t)^{11} = \frac{1}{12} \theta_1^1 \times \]

\[\times (11E_2 \theta_1 - 168q\theta'_1 - 23\theta_1) \alpha + (11E_2 \theta_2 - 168q\theta'_2 - 47\theta_2) \beta + (11E_2 \theta_3 - 168q\theta'_3 - 95\theta_3) \gamma, \]

\[\lim_{t \to 1} \partial^4_t \Psi(t, q)(1 - t)^{11} = \frac{1}{2400^11} \times \]

\[\times ((-18480qE_2 \theta'_1 + 605E_2^2 \theta_1 - 990E_2 \theta_1 + 22E_4 \theta_1 + 47040q^2 \theta''_1 + 58800q\theta'_1 + 363\theta_1) \alpha \]

\[(-18480qE_2 \theta'_2 + 605E_2^2 \theta_2 - 3630E_2 \theta_2 + 22E_4 \theta_2 + 47040q^2 \theta''_2 + 72240q\theta'_2 + 3003\theta_2) \beta \]

\[(-18480qE_2 \theta'_3 + 605E_2^2 \theta_3 - 8910E_2 \theta_3 + 22E_4 \theta_3 + 47040q^2 \theta''_3 + 99120q\theta'_3 + 14043\theta_3) \gamma. \]

The matrix A consists of coefficients of a, b, c from equations (21)2223).

The vector z components Computation of the vector z from (20) relies on the extrapolation of the results obtained with Mathematica. We use that Z(t, q) has presentation as a limit of (11), which makes it possible computation of the q-series limt→1 \(\partial^k_t Z(t, q)(1 - t)^{11} \) with arbitrary precision. Due to integrality of the coefficients, limt→1 \(\partial^k_t Z_N(t, q)(1 - t)^{11} \mod q^r \) stabilizes for sufficiently large N and N'. The first computation shows that

\[\frac{1}{12} \lim_{t \to 1} Z(t, q)(1 - t)^{11} = \]

\[= 1 + 22q + 275q^2 + 2530q^3 + 18975q^4 + 124230q^5 + 702328q^6 + 3661900q^7 + 17627775q^8 + \ldots O(q^{20}). \]

The database http://oeis.org hints that these series is the generating function for the sequence [A023020](http://oeis.org/A023020). \(a_n \) is the number of partitions of n into parts of 22 kinds. The generating function coincides with the Taylor expansion of \(\frac{1}{q^2 q^7}. \)

Another computation with Mathematica shows that

\[\frac{1}{98} (q, q)^{22} \lim_{t \to 1} \partial^2_t Z(t, q)(1 - t)^{11} = 1/6 + q + 3q^2 + 4q^3 + 7q^4 + 6q^5 + 12q^6 + 8q^7 + 15q^8 + \ldots O(q^{20}). \]

If we drop the term 1/6, the sequence \(a_n \) of Taylor coefficients of the remaining series is [A000203](http://oeis.org/A000203). \(a(n) = \sigma(n) \), the sum of the divisors of n. The generating function for \(a_n \) is \((1 - E_2(q))/24. \) The same way we find that

\[(q, q)^{22} \lim_{t \to 1} \partial^4_t Z(t, q)(1 - t)^{11} = \frac{42}{5} - 12E_2(q) + 4E_2^2(q) - \frac{2}{3} E_4 + O(q^{20}). \]
To summarize, the vector z in (20) is conjecturally equal
\[
\left(\frac{12}{(q,q)_{\infty}^{22}}, \frac{20 - 4E_2(q)}{(q,q)_{\infty}^{22}}, \frac{42}{(q,q)_{\infty}^{22}} - 12E_2(q) + 4E_2^2(q) - \frac{2}{3}E_4 \right)
\]

The matrix A has the determinant
\[
\Delta = \frac{8\tilde{\Delta}}{\theta_0^{33}}
\]
\[
\tilde{\Delta} = (-343q^3\theta_3\theta_1\theta_0' + 343q^3\theta_2\theta_0''\theta_3' + 343q^3\theta_3\theta_0'\theta_0'' - 343q^3\theta_2\theta_1\theta_0'\theta_3' + 343q^3\theta_1\theta_0'\theta_0'' + 98q^2\theta_2\theta_3\theta_0'' + 98q^2\theta_2\theta_1\theta_0'\theta_3' + 147q^2\theta_1\theta_0'\theta_0'' + 196q^2\theta_1\theta_2\theta_0'') + 49q^2\theta_1\theta_2\theta_0'' + 42q_2\theta_3\theta_0' + 126q_1\theta_3\theta_0' + 84q_1\theta_2\theta_0' + 6q_1\theta_2\theta_0'').
\]

It is not hard to check with Mathematica that
\[
\tilde{\Delta} = -48(q,q)_{\infty}^{15} + O(q^{300}).
\]

We conjecture that this is an exact equality. We use it and the Kramer’s rule to derive from (20) the formulas (6, 7, 8).

4 Some consistency checks

Note that by construction the function Ψ (5) satisfies equations (13, 14). $Z(t, q)$ is the solution of the same set of equations. The q-expansion of Ψ is

\[
\Psi(t, q) = -\frac{t^3 + 5t^2 + 5t + 1}{(t - 1)^{11}} - \frac{q(46t^3 + 86t^2 + 86t + 46)}{(t - 1)^{11}} + \frac{q^2(t^{11} - 11t^{10} + 55t^9 - 181t^8 - 567t^7 - 947t^6 - 947t^5 - 567t^4 - 181t^3 + 55t^2 - 11t + 1)}{(t - 1)^{11}t^4}
\]
\[
+ \frac{2q^3(8t^{13} - 65t^{12} + 195t^{11} - 143t^{10} - 1011t^9 - 2657t^8 - 3917t^7 - 3917t^6 - 2657t^5 - 1011t^4 - 143t^3 + 195t^2 - 65t + 1)}{(t - 1)^{11}t^5}
\]
\[
- \frac{q^4(-126t^{15} + 794t^{14} - 1491t^{13} - 559t^{12} + 3597t^{11} + 18745t^{10} + 38767t^9 + 54123t^8 + 54123t^7 + 38767t^6 + 18745t^5 + 336t^{17} + 1662t^{16} + 1810t^{15} + 2173t^{14} + 1337t^{13} - 21131t^{12} - 65159t^{11} - 122387t^{10} - 162607t^9 - 162607t^8 - 122387t^7 - 162607t^6 - 162607t^5 + 122387t^4 + 162607t^3 + 162607t^2 + 122387t - 1)}{(t - 1)^{11}t^7} + O(q^6)
\]

It agrees with the expansion from (2).

Another interesting consistency check gives comparison of the functions $Z(t, q)$ and $\Psi(t, q)$ at $t = -1$. Literal comparison is not very fruitful because by virtue of (17). $Z(-1, q) = \Psi(-1, q) = 0$. To get a nonzero
result, we used Mathematica to compute the derivatives $\partial_t Z(-1, q)$ and $\partial_t \Psi(-1, q)$. Two values agree by giving

$$-1024(q, q)^{22}_{\infty} \partial_t Z(-1, q) = -1024(q, q)^{22}_{\infty} \partial_t \Psi(-1, q) = 1 - 48q + 1104q^2 - 16192q^3 + 170064q^4 - 1362336q^5 + 8662720q^6 - 44981376q^7 + 195082320q^8 + O(q^9).$$

(24)

The coefficients a_n (up to a sign) coincide with the sequence \texttt{A000156}. a_n, according to the database, is the number of ways of writing n as a sum of 24 squares. This is why it is very plausible that the series (24) is the expansion of

$$\left(\sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} \right)^{24} = (1 - q)^{24}(q, q^2)^{24}(q^2, q^3)^{24}(q^3, q^4)^{24}.$$

5 Functions θ_k

$\theta_k, k = 1, 2, 3$ are closely related to Rogers-Selberg functions (see e.g. \cite{8}, \cite{3}). They satisfy

$$A(q) := \sum_{n \geq 0} \frac{q^{2n^2}}{(1 - q^2)(1 - q^4) \cdots (1 - q^{2n})(1 + q)(1 + q^2) \cdots (1 + q^{2n})} = \frac{(q^3, q^7)_{\infty}(q^4, q^7)_{\infty}(q^7, q^7)_{\infty}}{(q^2, q^2)_{\infty}} = \frac{\theta_1}{2(q^2, q^2)_{\infty}},$$

$$B(q) := \sum_{n \geq 0} \frac{q^{2n^2 + 2n}}{(1 - q^2)(1 - q^4) \cdots (1 - q^{2n})(1 + q)(1 + q^2) \cdots (1 + q^{2n})} = \frac{(q^2, q^7)_{\infty}(q^5, q^7)_{\infty}(q^7, q^7)_{\infty}}{(q^2, q^2)_{\infty}} = -\frac{\theta_2}{2(q^2, q^2)_{\infty}},$$

$$C(q) := \sum_{n \geq 0} \frac{q^{2n^2 + 2n}}{(1 - q^2)(1 - q^4) \cdots (1 - q^{2n})(1 + q)(1 + q^2) \cdots (1 + q^{2n+1})} = \frac{(q^4, q^7)_{\infty}(q^6, q^7)_{\infty}(q^7, q^7)_{\infty}}{(q^2, q^2)_{\infty}} = \frac{\theta_3}{2(q^2, q^2)_{\infty}}.$$

For a list known identities these functions obey see \cite{6}.

6 $Z(t, q, g)$ in the general case

Some of the above arguments extend to $Z(t, q, g)$. In particular the divisor of poles of $Z(t, q, g)$ satisfies equations

$$1 - q^{4i} tv_\alpha(z) = 0$$

where $v_\alpha(z)$ are the weights of the spinor representation. In order to be more explicit recall (see see e.g. \cite{7}) that coordinates λ^α on the spinor representation of Spin(10) can be labelled by elements of the set

$$\alpha \in \mathbb{E} := \{(0), (ij), (k)| 1 \leq i < j \leq 5, 1 \leq k \leq 5\}$$

8
Let \widetilde{T}^5 be the two-sheeted cover of the maximal torus $T^5 \subset \text{SO}(10)$ and $z = (z_1, \ldots, z_5)$ be the image of g under projection $T^5 \to T^5$. The action Π of $g \in \widetilde{T}^5$ on λ^8 is given by the formula

$$\Pi(g)\lambda^8 v_{\alpha}(z)\lambda^8,$$

or in more details:

$$\Pi(g)\lambda^{(0)} = \det^{-\frac{1}{2}}(z)\lambda^{(0)},$$
$$\Pi(g)\lambda^{(ij)} = \det^{-\frac{1}{2}}(z)z_i z_j \lambda^{(ij)},$$
$$\Pi(g)\lambda^{(k)} = \det^{\frac{1}{2}}(z)z_k^{-1} \lambda^{(k)},$$
$$\det^{\frac{1}{2}}(z) = \sqrt{z_1 \cdots z_5}.$$

(25)

Introduce the product

$$\theta_{E}(t, q, z) := \prod_{\alpha \in E} \theta(tv_{\alpha}(z), q)$$

If the conjecture about the structure of the poles of $Z(t, q, z)$ is correct, then

$$\Xi(t, q, z) := t^6 Z(t, q, z)\theta_{E}(t, q, z)$$

is an analytic function for $|q| < 1$ and $t, z \in \mathbb{C} \times \widetilde{T}^5$. Equations (13) (15) imply that $\Theta(t, q, z)$ satisfies

$$\Xi(qt, q, z) = \frac{1}{t^{12}q^{12}}\Xi(t, q, z)$$

That is $\Xi(t, q, z)$ is a section of $L^\otimes 12$. Let us fix a basis

$$\eta_k(t, q) = \sum_{n \in \mathbb{Z}} q^{\frac{12n(n+1)}{2}+kn} t^{12n+k}, k = 0, \ldots, 11$$

in the space of global sections of $L^\otimes 12$. Functions η_k satisfy

$$\eta_k(qt, q) = 1/(tq)^{12}\eta_k(t, q), \quad \eta_k(1/t, q) = q^{12-2k}t^{12}\eta_{12-k}(t, q), \quad \eta_k(t, q) = q^{k+12}\eta_{k+12}(t, q)$$

The function $\Xi(t, q, z)$ is a linear combination

$$\Xi(t, q, z) = \sum_{k=0}^{11} c_k(q, z)\eta_k(t, q).$$

(17) implies that

$$c_k(q, z) = -q^{12-2k}c_{12-k}(q, z^{-1}), k \neq 0, 6,$$
$$c_0(q, z) = -c_6(q, z^{-1}), \quad c_6(q, z) = -c_0(q, z^{-1})$$

Determination of the coefficients $c_i(q, z)$ is more difficult than in the case $z = 1$ and will be postponed for the future publications.

Note that after specialization $g = 1 \Xi(t, q, 1) = \Theta(t, q)\theta(t, q)^5$ and $\theta_{E}(t, q, 1) = \theta(t, q)^{16}$ giving as a fraction the function $Z(t, q)$.

9
7 Concluding remarks

Partition function Z_{X} for $X = Q$ a smooth affine quadric of dimension $n - 1$ is known [1]:

$$Z_{Q}(t, q) = \frac{1 - t^2 (qt^2, q)_{\infty}(qt^{-2}, q)_{\infty}}{(1 - t)^n (qt, q)_{\infty}^n(qt^{-1}, q)_{\infty}^n}$$

It satisfies

$$\frac{Z_{Q}(qt, q)}{Z_{Q}(t, q)} = (-1)^n t^{n-4} q^{-1},$$

$$\frac{Z_{Q}(t^{-1}, q)}{Z_{Q}(t, q)} = -(-t)^{n-2}. \quad (26)$$

Functions $Z_{C}(t, q), Z_{Q}(t, q)$ have some common features. In both cases $\lim_{t \to 1} Z_{X}(t, q)(1-t)^{\dim X} = c_{X} \frac{1}{(q, q)^{\dim X}},$

where c_{X} is some constant. Functions $Z_{X}(t, q)$ have poles of multiplicity $\dim X$ at points $\{q^{k}\}$.

To further extend the analogy we need to digress. The spaces of polynomial maps $\mathbb{C} \to X$ of degree N is a cone over the space of Drinfeld’s quasimaps $QMaps_{N}(X)$ to projectivization of X. The space $QMaps_{N}(X)$ is not smooth but still has a well defined line bundle of algebraic volume forms K. $K^{*} = O(a(X) + Nb(X))$ in for some constants $a(X), b(X)$. As usual $O(n)$ is the power of the tautological line bundle. Exponents of t in (13) and (26) coincide with $b(C)$ and $b(Q)$. Thus functions $\Theta_{C}(t, q)$ and $\Theta_{Q}(t, q)$ are sections of $L^{\dim C - a(C)} = L^{7}$ and $L^{\dim Q - a(Q)} = L^{3}$ respectively. Finally $P_{X}(t) = \lim_{q \to 0} Z_{X}(t, q)$ is the classical Poincaré series of the algebra of homogeneous functions on X.

It is tempting to say that this is a common features of an elliptic generalization of Poincaré series of an algebra of functions X that should exist for a class of conical varieties whose members are C and Q. This class contains in the class of local conical Calabi-Yao varieties X, whose base $B(X)$ is Fano of sufficiently large index. In this generalization

$$Z_{X}(t, q) = \frac{\Theta_{X}(t, q)}{t^{l(X)\theta}(t, q)^{\dim X}}.$$

$l(X) \in \mathbb{Z}^{>0}$, Θ_{X} is a section of $L^{\dim X - a(X)}$. The denominator in this formula is similar to the denominator in the Kac formula for the character of an integrable representations of an affine Lie algebra \hat{g} at a positive level.

It appears that the first nontrivial Laurent coefficients of $Z_{Q_{n}}(t, q)$ for a quadric at $t = 1$ can be expressed through algebraic combinations of $(q, q)_{\infty}, E_{2}, E_{4}$ and probably E_{6}. The formulas are similar to the ones that have already appeared in Section [3]

$$\lim_{t \to 1} Z_{Q_{n}}(t, q)(1-t)^{n-1} = 2(q, q)^{2-2n}$$

$$\lim_{t \to 1} \partial_{t}(Z_{Q_{n}}(t, q)(1-t)^{n-1}) = (q, q)^{2-2n}$$

$$\lim_{t \to 1} \partial_{t}^{2}(Z_{Q_{n}}(t, q)(1-t)^{n-1}) = (q, q)^{2-2n} \frac{(n-4)(1-E_{2})}{6}$$

$$\lim_{t \to 1} \partial_{t}^{3}(Z_{Q_{n}}(t, q)(1-t)^{n-1}) = (q, q)^{2-2n} \frac{(4-n)(1-E_{2})}{4}$$

$$\lim_{t \to 1} \partial_{t}^{4}(Z_{Q_{n}}(t, q)(1-t)^{n-1}) = (q, q)^{2-2n} \left(\frac{(n-4)^{2}E_{2}^{2}}{24} - \frac{(n-4)(6+E_{2})}{12} + \frac{(n-16)E_{4}}{60} + \frac{5n^{2} + 58n - 288}{120} \right)$$
Introduce an increasing multiplicative filtration on the algebra of function generated by E_2, E_4, E_6. The n-th derivative of $Z_{Q_n}(t,q)(1-t)^{n-1}$ at $t = 1$ is a multiple of $(q,q)^{-2\dim Q}_\infty$. The factor belongs to n filtration space of the algebra. This parallels between Z_{Q_n} and Z_C suggests that this also holds for a more general \mathcal{X}. It raises a question whether coefficients of the E_2, E_4, E_6-monomials in the above formulas can be computed in terms of the characteristic classes of some bundles on the base of the cone \mathcal{X}.

References

[1] Y. Aisaka and E. A. Arroyo. Hilbert space of curved $\beta\gamma$ systems on quadric cones. JHEP, 0808(052), 2008.

[2] Y. Aisaka, E. A. Arroyo, N. Berkovits, and N. Nekrasov. Pure spinor partition function and the massive superstring spectrum. JHEP, 0907(062), 2009. arXiv:0806.0584v1 [hep-th].

[3] G. E. Andrews. Gap-frequency partitions and the Rogers-Relberg identities. Ars. Combin., 9:201–210, 1980.

[4] Nikos Bagis. Evaluations of derivatives of Jacobi theta functions in the origin. arXiv:1105.6279 [math.GM], 2011.

[5] Nathan Berkovits. Covariant quantization of the superstring. Int. J. Mod. Phys. A, 16:801–811, 2001.

[6] H. Hahn. Septic analogues of the Rogers-Ramanujan functions. Acta Arith., 110:381–399, 2003.

[7] M.V. Movshev. Local algebra and string theory. arXiv:1511.04743 [math.QA].

[8] L.J. Slater. Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. Ser. 2, 54:147–167, 1952.