Immune screening in children with Down Syndrome

1 | BRIEF REPORT

Children with Down Syndrome (DS) are an immunodeficient cohort with decreased T and B cell counts, suboptimal response to vaccinations, impaired neutrophil chemotaxis, and dysregulated cytokine responses. 1 Children with DS are at increased risk of infections, particularly recurrent respiratory tract infections (RRTIs), otitis media, and pneumonia, 2 with more frequent hospitalisations. 3 We hypothesised that given the abnormalities in immune screening tests of children with DS, there are potential biomarkers that could allow us to predict clinical outcomes and focus care for higher risk children.

Down syndrome children who were clinically well with no recent evidence of fever or infection were recruited from the dedicated paediatric DS clinic. RRTIs were defined as ≥3 episodes of lower respiratory tract symptoms; bronchitis, bronchiolitis, or pneumonia per year. 2 A 17.07% (n = 28/164) of the cohort had previous surgical intervention for congenital heart disease, but all were >3 months post-operative when recruited. Patient blood samples (3 ml) were collected for immune screening for CD3+, CD4+, CD8+, CD19+, CD56+, Ig (immunoglobulin)M, IgG, IgA, and antibody titres to pneumococcus and tetanus and full blood counts (FBC); and were compared to established and non-hospitalised sub-groups (p = 0.32; Table 1).

Using binary logistic regression models there was a significant association between low WCC and the clinical outcome (RTI) of ever requiring hospitalisation (p = 0.015). Examining this further, a WCC ROC curve (Figure S4A) had an area under the curve of 0.669 [95% CI 0.563–0.774; p = 0.002]. Neutrophils had similar statistical significance, with a low count more likely to have occurred in those previously hospitalised (AUC 0.668 [95% CI 0.568–0.771]; p = 0.002) (Figure S4B). The clinical outcome measure of RRTIs was associated with a significantly higher hospitalisation rate in the past (odds ratio 3.6, 95% CI 1.8–7.6).

A total of 82 children with DS had T and B lymphocyte subset analysis performed. CD3+ and CD4+ T lymphocyte counts were low in almost half of the patients. CD8+ cytotoxic T cell counts were decreased in 34.1%, normal in 61%, and high in 4.9%. Natural killer (CD56+) counts were low in 15.9%, normal in 79.3%, and increased in 4.9%. The B lymphocytes (CD19+) were low in 76.8% and within the normal range in 23.2% (Figure S1 and Table 1 show age-stratified results).

There were 112 children with DS who had immunoglobulin levels checked. The majority had normal IgM, IgG, and IgA in serum. IgM levels were low in 3.9% of children, IgG was low in 1.9%, and lastly IgA was reduced in 2.7% of the children with DS (Figure S1). There were 61 children with DS who had antibody titres to pneumococcus and tetanus. Regarding total pneumococcal Ig, 1.7% had low levels and 98.3% had acceptable titres, and for pneumococcal Ig2, 11.5% had low antibody titres, while 88.5% had acceptable levels. The tetanus titres were low in 3.3% and normal in 96.7% (Figure S1).

We demonstrated significant differences in WCC differentials and T and B cell subsets in children with DS compared to age-matched normative values, in keeping with the literature. 3 Almost 25% of children with DS had reduced WCC and lymphocyte counts, and 12% had lower neutrophil levels. The most striking deficiency

Table 1. Children previously hospitalised had significantly lower WCC than those who had never been admitted (p = 0.009). Neutrophil counts were significantly lower in children with previous admissions with pneumonia versus those never hospitalised (p = 0.02). There were no differences in mean lymphocyte counts between hospitalised and non-hospitalised sub-groups (p = 0.32; Table 1).

Abbreviations: CHI, children’s Health Ireland; DS, Down Syndrome; FBC, full blood counts; Ig, immunoglobulin; RRTIs, recurrent respiratory tract infections; WCC, white cell count.

© 2022 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

Acta Paediatrica. 2022;111:2025–2028.
Patient cohort (n = 164)	Mean	Standard deviation
Age	5.22	4.34

Age Subgroups	n	Percentage (%)
<1 years	31	18.9
1–5 years	62	37.8
5–10 years	45	27.4
>10 years	26	15.9

Hospitalisations	n	Percentage (%)
One admission for RTI	56	37.1
Multiple admissions for RTIs	27	17.8

Available Information	n = 151 (92%)	Percentage (%)
Self-reported RRTIs	57	34.7

Hospitalisation stratification	n	Mean (x10⁹/l)	Standard deviation	Standard error	Mean	p-Value
White cell count Hospital	42	5.48	1.99	0.31	0.009	
No Hospital	78	6.78	2.80	0.32		
Neutrophils Hospital	42	2.53	1.31	0.20	0.02	
No Hospital	78	3.51	2.61	0.30		
Lymphocytes Hospital	42	2.30	1.01	0.16	0.33	
No Hospital	78	2.47	0.91	0.10		

Low white cell counts by age stratification	n	Percentage (%)
<1 years	9	27.3
1–5 years	10	16
5–10 years	15	34.1
>10 years	6	23.8

Low neutrophils counts by age stratification	n	Percentage (%)
<1 years	11	36.4
1–5 years	3	4
5–10 years	8	17.1
>10 years	3	9.5

Low lymphocyte counts by age stratification	n	Percentage (%)
<1 years	7	22.2
1–5 years	13	20.5
5–10 years	9	20
>10 years	9	33.3

Low CD4+ counts by age stratification	n	Percentage (%)
<1 years	4	12.5
1–5 years	37	59.5
5–10 years	14	32
>10 years	11	41.7

Low NK cell counts by age stratification	n	Percentage (%)
<1 years	4	12.9
1–5 years	20	32.2
5–10 years	0	0
>10 years	4	15.3
in lymphocyte subsets was seen in the CD19+ B cell, with over 75% of children with DS having reduced counts which have been widely corroborated in other studies. Over one-third of children with DS have had RRTIs, and 37% of this population were hospitalised at least once due to an RTI. Children with DS who had a low WCC or neutrophil count were significantly more likely to hospitalisation due to an RTI and the lower the counts the higher the probability of hospital admission.

Many studies have found mixed correlations between lymphocyte subsets and infection-related hospitalisations, though Martinez et al. found only Treg number and age correlated with infection-related admissions in a DS cohort. In our study, the CD19+ B cell was the most markedly reduced of all studied cells. Children with DS have reduced CD19+ B cells, and impaired B cell function with a reduction of switched memory B cells, and a reduced capacity for vaccination response, leading to a less robust immune response over time.

We report essentially normal immunoglobulin IgM, IgG, and IgA levels in children with DS with variability in the literature. Although children with DS can produce immunoglobulins, they seem suboptimal and may be unable to maintain long-term immunity. Children with DS are vulnerable to vaccine-preventable diseases and extra immunisations are required.

To the best of our knowledge, this is the first study to provide a link between WCC and a history of hospitalisation in children with DS. Further studies should corroborate our results, as identifying those children with DS who are at greatest risk with a simple, ubiquitous test could be key to improving the standard of care.

ACKNOWLEDGEMENT

Many thanks to the children and their families who participated in this study. Open access funding provided by IReL.

CONFLICT OF INTEREST

None to disclose.

FUNDING INFORMATION

National Children's Research Centre (NCRC) [14187], Crumlin, Dublin 12 Ireland.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Dean Huggard1,2
Amy P. Worrall3,4
Colin Kirkham
Fiona McGrane1,3
Rajan Mandira3
Laura Casey3
Therese Condon3
Sara George3
Niamh Lagan1,3
Edna Roche1,3
Joanne Balfe1,3
Timonthy Ronan Leahy3,5
Eleanor J. Molloy1,3,6,7,2

1Department of Paediatrics, Children’s Hospital Ireland (CHI) at Tallaght, Tallaght University Hospital, Dublin, Ireland
2National Children’s Research Centre, CHI at Crumlin, Dublin, Ireland
3Paediatrics, Trinity College, the University of Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
4Rotunda Hospital, Dublin, Ireland
5Department of Immunology, Children’s Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
6Department of Neonatology, Children’s Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
7Coombe Women and Infants University Hospital, Dublin, Ireland

TABLE 1 (Continued)

Low B cell counts by age stratification	N	Percentage (%)
<1 years	17	54.8
1–5 years	49	79
5–10 years	38	84.4
>10 years	17	65.3

Note: WCC, neutrophils, and lymphocytes (x109/l) of children with DS who were previously hospitalised with pneumonia (“Hospital”), compared to those who were never hospitalised (“No Hospital”). p value < 0.05 denoted in bold.

Abbreviations: RRTI, recurrent respiratory tract infection; RTI, respiratory tract infection; WCC, white cell count.
Correspondence
Eleanor J. Molloy, Department of Paediatrics, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin 24, Ireland.
Email: eleanor.molloy@tcd.ie

ORCID
Amy P. Worrall https://orcid.org/0000-0002-7417-1844
Niamh Lagan https://orcid.org/0000-0003-1074-2414
Eleanor J. Molloy https://orcid.org/0000-0001-6798-2158

REFERENCES
1. Huggard D, Doherty DG, Molloy EJ. Immune dysregulation in children with Down Syndrome. Front Pediatr. 2020;8:73.
2. Verstegen RHJ, van Gameren-Oosterom HBM, Fekkes M, Dusseldorp E, De Vries E, van Wouwe JP. Significant impact of recurrent respiratory tract infections in children with Down Syndrome. Child Care Health Dev. 2013;39(6):801-809.
3. Lagan N, Huggard D, Mc Grane F, et al. Multiorgan involvement and management in children with Down Syndrome. Acta Paediatr. 2020;109:1096-1111.
4. Milford Ward A, Sheldon J, Rowbottom A, Wild G. Handbook of Clinical Immunochemistry: Protein Reference Units. 1st ed. PRU Publications; 2007.
5. Martínez E, Castañeda D, Jaramillo S, et al. Altered immune parameters correlate with infection-related hospitalizations in children with Down Syndrome. Hum Immunol. 2016;77:594-599.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.