Numerical simulation and optimization of centrifugal compressor return channels: methods and results

Y.B. Galerkin¹, L.N. Marenina², A.A. Drozdov³, O.A. Solovyeva⁴ and K.V. Soldatova²

¹ Leading research center "Digital Design and Modeling (Smart Design)" Peter the Great St.Petersburg Polytechnic University, Polytechnical st. 29, St.Petersburg, Russia
² R&D Laboratory “Gas dynamics of turbo machines” Peter the Great St.Petersburg Polytechnic University, Polytechnical st. 29, St.Petersburg, Russia
³ Higher School of Power Engineering Institute of Power Engineering Peter the Great St.Petersburg Polytechnic University, Polytechnical st. 29, St.Petersburg, Russia
⁴ Higher School of Hydraulic and Power Engineering Construction Engineering Institute Peter the Great St.Petersburg Polytechnic University, Polytechnical st. 29, St.Petersburg, Russia

Email: marenina_in@mail.ru.

Abstract. The authors actively use their engineering Universal Modelling Method for gas-dynamic design of centrifugal compressors for industrial partners. Currently, there are two approaches to improving the Method: improving the preliminary design and increasing the accuracy of gas-dynamic characteristics calculation. Computational Fluid Dynamics (CFD) methods give good results for the flow path stator part. Recently, massive CFD calculations of the vaneless diffusers (VLD) characteristics were generalized by a system of algebraic equations, which replaced the previous more complex mathematical model in the Method. Then, based on CFD optimization of a large series of return channels (RCh), corrections were made to the preliminary design of this element of the flow path. This paper presents the results of the joint CFD optimization of a vaneless diffuser and a return channel. Stator elements have many geometric parameters. For a stage with the flow rate coefficient of 0.0597 and the loading factor of 0.60, only the VLD relative radial length D_4/D_2, the number and the inlet angle of the return channel vanes were optimized. Engineering calculations and design experience predicted an optimal value of D_4/D_2 within the interval 1.9 - 2.0. CFD optimization demonstrated almost linear reduction of the total head loss towards the end of the investigated range $D_4/D_2 = 2.3$. After careful optimization of the U-bend, the optimization of D_4/D_2 was repeated. The influence of on the loss coefficient has decreased, but the value of $D_4/D_2 = 2.3$ is still far from optimum. It significantly exceeds technically acceptable radial size. The result obtained influenced the design plan of future calculation experiments with a large series of stator elements of the stages in a practically significant range of design parameters.

1. Introduction
The total capacity of industrial centrifugal compressors in developed countries reaches dozens of GW. It is important to create a compressor flow path with minimal energy consumption. The development
of CFD technologies formally solves both the direct and inverse problems of gas dynamics. The problem is that CFD calculation of gas dynamic characteristics of a compressor does not guarantee their compliance with actual characteristics. The authors of [1 - 4] presented data on good agreement of CFD-calculated characteristics with test results. Other publications [5 - 11] and own experience of the authors of this paper [12 - 14] show that the characteristics of centrifugal compressors according to CFD calculations do not correspond to test results.

The authors believe that CFD technologies are currently effective as an auxiliary tool, but not as a primary design tool. The final goal of the authors of this paper is to optimize and calculate the stator elements of centrifugal stages in the range of design parameters Φ_{des} (flow rate coefficient), $\psi_{T,des}$ (loading factor). This will make it possible to formulate design recommendations and obtain dataset from a computational experiment for creating a mathematical model. The first stage of the research presented below made it possible to work out the optimization technique and evaluate the possible results. The authors optimized the stator elements of a stage with design parameters $\Phi_{des} = 0.0597$ and head $\psi_{T,des} = 0.60$.

2. State of the art
In recent years among researchers from different countries, CFD calculations of return channels have become widespread. Of particular interest are the papers in which the calculated results are compared with experimental data. In [15 - 19], various aspects of CFD modeling of a high-flow-rate stage with $\Phi_{des} = 0.15$ and its return channels are analyzed. The authors have a modern test rig at their disposal, which made it possible to compare the stage characteristics and structure of the flow. Satisfactory compliance of the stage characteristics was obtained, and good results of comparison of the flow structure were attained as well. CFD calculations, in particular, correctly estimated the efficiency of stage variants with different radial lengths of a vaneless diffuser. The authors of [20] experimentally confirmed the CFD calculations of the RCh with additional vanes at the outlet and improved the RCh characteristic at $\Phi > \Phi_{des}$. The authors of [21] by CFD-optimization of RCh increased the efficiency of a two-stage compressor by 0.7% (experimental confirmation). RCh with a vaneless diffuser is optimized by many parameters.

Computational gas dynamics methods are able to improve stator elements of the flow path of centrifugal compressors. The authors of [22, 23] designed and investigated return channels of stages with design parameters $\Phi_{des} = 0.015–0.15$ and $\psi_{T,des} = 0.45–0.70$. The Direct Optimization program optimizes the main dimensions of RCh. The RCh with a constant vane height $b_2 = b_0$ and a smaller number of vanes in comparison with the preliminary design turned out to be the optimal ones. The loss coefficients of optimized RCh are less by up to 30%. Corresponding adjustments were made to the preliminary design methodology.

The main conclusion that follows from the publications of recent years is that the results of CFD calculations of return channels and vaneless diffusers are confirmed experimentally.

3. The objectives of the research
Universal Modeling Method [24, 25] makes the initial design of the VLD + RCh. Figure 1 shows the configuration.
This engineering tool is in design practice since mid-1990's. More than 400 centrifugal compressors with unit capacity of up to 25 MW designed using the Method effectively operate in different industries. The efficiency of best multistage compressors was more than 87% [20], which indicates good aerodynamic characteristics of an initial design of vaneless diffusers and return channels. To improve this flow path elements would be complicated but important.

The meridional form of VLD and RCh is circular arcs and straight lines. The choice of all dimensions is described in [25]. The new recommendation follows of the research presented in [21]. For 15 stages with design parameters \(\Phi_{des} = 0.015–0.15, \psi_{T,des} = 0.45 – 0.70 \), the optimal configuration is \(\bar{b}_h = \bar{b}_b \). It is accepted for return channels under investigation. In the meridional plane, the optimization parameters are:

- the relative radial length of the VLD and RCh: \(\bar{D}_s = \bar{D}_b \);
- the relative radii \(\bar{R}_s, \bar{R}_b \) that determine the friction losses in the U-bend and the local velocity gradients.

In the radial plane, the inlet angle of the vanes \(\alpha_{v,5} \) is subject to optimization to ensure a favorable flow inlet. The number of vanes \(z \) is optimized to minimize the sum of friction and separation losses.

Stator elements of the stage with design parameters \(\Phi_{des} = 0.0597, \psi_{T,des} = 0.60, \bar{D}_b = 0.35 \) were chosen as a specific object of optimization. Basic dimensions and parameters of stator elements according to preliminary design: \(\bar{b}_s = 0.039, \bar{D}_s = 1.73; \bar{b}_b = \bar{b}_b = 0.085, z = 22; \alpha_{v,5} = 14.65^\circ; \alpha_{2,\ldots,des} = 30.8^\circ, \zeta_{SE} = 0.1988 \).

4. **Influence of the radial length on the loss coefficient of the SE**

The Workbench of the ANSYS 19 software package was used. The parameterized model of the flow path was made in DesignModeler. In the TurboGrid mesh generator, design meshes for the main and splitter vanes were built. The values \(y + <20 \) were set in accordance with the requirements of the correct modeling of the boundary layer using the SST turbulence model (Shear-Stress-Transport). The total number of elements is 893,000. The loss coefficient \(\zeta_{SE} \) was the object for optimization in the
Direct Optimization program. An optimization method depends on the number of objectives, the set limits and the desired number of design points. For the research conducted in the work, the MOGA (Multi-Objective Genetic Algorithm) method was used.

The experience of RCh optimization in [20, 21] pointed out certain difficulties of multiparameter optimization. CFD calculations have a certain margin of error, so to find a truly optimal variant requires significant resources. Optimal solutions for return channels in [21] were obtained by optimizing two or three geometric parameters, and only then the others. Accordingly, the diameters $D_4 = D_5$, the number of vanes z, and the inlet angle of the vanes α_{s5} were optimized. The range of variation was chosen to be $D_4 = D_5 = 1.40–2.14$. Figure 2 illustrates the influence of optimization parameters on the SE loss coefficient:

![Figure 2. Influence of optimization parameters on the SE loss coefficient](image)

Beyond expectations, the optimum of D_4 was not found in the selected range. The loss coefficient decreases monotonously with increasing of D_4. For investigation of the optimized stator elements operation in off-design modes, the loss coefficient and the outlet flow angle characteristics was calculated. Figure 3 shows these characteristics for the initial variant of the SE and the variant with $D_4 = 1.9$. Hardly bigger D_4 could be in real compressors.
Figure 3. Loss coefficients of SE (above) and outlet flow angle (below).
Stage 2DI-0.0579-0.60-0.35, $\bar{D}_4 = 1.73$ and 1.9

The range of \bar{D}_4 was extended up to 2.3. The loss coefficient diminished again. Figure 4 shows the dependence of the loss coefficient (design flow rate) on the radial size of the stator elements.

The linear dependence $\zeta_{SE} = f(\bar{D}_4)$ indicates the remoteness of the optimum. At the same time, the value $\bar{D}_4 = 2.3$ is far beyond the constructive limitation acceptable for real compressors.

Table 1 shows a comparison of loss coefficients and efficiency for SE with $\bar{D}_4 = 1.73, 1.90, 2.20$.

\bar{D}_4	ζ_{SE}	ζ_{RCh}	η_{SE}	$\Delta\eta_{SE}$
1.73	0.1988	0.1907	0.772	0.0808
1.90	0.1869	0.2376	0.7857	0.076
2.20	0.1758	0.2911	0.7987	0.0715
Figure 4. The minimized loss coefficient of SE, depending on \(\bar{D}_4 \).

The stage 2DI-0.0579-0.60-0.35 before the U-bend optimization

The stator element polytrophic efficiency is:

\[
\eta_{SE} = \frac{\lg(p_{\text{U}} / p_s)}{\kappa - 1} \frac{\lg(T_0 / T_s)}{\frac{T_0}{T_s} - 1}
\]

(3)

The loss of efficiency of a stage in the SE is:

\[
\Delta \eta_{SE} = \frac{\zeta_{SE}}{2 \psi_T} \pi_{2-3}^2 = \frac{\zeta_{SE}}{2} \psi_T \frac{\psi_T}{\cos \alpha_{2-3}}
\]

(4)

The radial length \(\bar{D}_4 \) influence obvious: the losses in the longer RCh are greater. However, VLD+RCh of greater radial length are more effective due to flow deceleration in longer VLD. Flow structure in the radial plane does not reveal principal differences between the original SE variant and the variant with a larger radial dimension \(\bar{D}_3 = \bar{D}_4 \) - Figure 5.

The flow pattern in Figure 6 points to a possible reason for the unexpected monotonous influence of \(\bar{D}_4 \) on the loss coefficient. A significant flow separation zone occurs in the U-bend. In this case, the pressure loss depends on the kinetic energy at the inlet to the U-bend. The smaller the radial length of the VLD, the greater the kinetic energy. Obviously, the size of the U-bend needs optimization.
Figure 5. SE of stage 2DI-0.0579-0.60-0.35. Streamlines at the vane-to-vane mean surface.

5. Optimization of the U-bend of SE with $D_4 = 1.9$

In [23] is recommended to correlate the optimal value of the radius of curvature of the channel with its width, i.e. R_y/b_y, R_n/b_y. The optimization was carried out for the inner radius of curvature R_s, auxiliary parameter a connected with R_y/b_4, the number of vanes z, the inlet vane angle α_s. The outer radius of curvature $R_n = f(a,R_s)$ was calculated by the formula $R_n = a(b_4 + b_5 + 2R_y)/2$. For $a = 1$, the outer contour is described by one radius R_n, as in the case of the U-bend in the section 5. In accordance with the chosen MOGA method, the optimization has converged when 118 SE variants were calculated. The parameters of the initial and the optimized SE variants are presented in Table 2.
Table 2. Parameters of the initial and best optimized SE variants

№	α_5, deg	z	R_i/b_1	R_i/b_2	ζ_{SE}	α_0', deg	Δc_{av}
118	14.00	18	1.90	2.82	0.1759	88.50	0.297
Initial	13.25	18	1.23	2.49	0.1869	88.92	0.230

Decrease of the loss coefficient is associated with better organization of the flow in the meridional plane, Figure 7. The maximum radial size of the SE with an optimized U-bend is slightly larger. The SE loss coefficient decreased by 6.4%. The loss of efficiency in the SE decreased by 0.47%; such a saving deserves attention.

Figure 7. On the left is the U-bend shape. Preliminary design is shown in gray, the design after optimization in red. In the center are streamlines of the original version, on the right are streamlines after U-bend optimization

6. Influence of the radial length on the loss coefficient of the SE after U-bend optimization

With optimized values of R_i/b_1 and R_i/b_2, the number and inlet angle of the SE vanes with $\bar{D}_4 = 1.73$ and 2.3 were optimized. The separation zones in the meridional plane have practically disappeared. The U-bend with $R_i/b_1 = 1.90$ and $R_i/b_2 = 2.82$ can be considered optimal for all investigated \bar{D}_4. Table 3 shows the parameters of the SE with the optimal U-bend at $\bar{D}_4 = 1.73$, 1.9 and 2.3 and with the U-bend from after the preliminary design (ORG):

Table 3. Parameters of the SE with the optimal U-bend and with the U-bend after the preliminary design

№	\bar{D}_4	z	α_5, deg	ζ_{SE}	$\Delta \eta_{SE}$	ζ_{SE} (ORG)	$\Delta \eta_{SE}$ (ORG)
1.73	22	14.65	0.1841	0.0749	0.1988	0.0808	
1.9	18	13.25	0.1769 (+0.3%)	0.0719	0.1869	0.076 (+0.48%)	
In rows 4 and 6, the increment in the stage efficiency due to the increase in the radial size of the SE is given in brackets. With an optimal U-bend, the efficiency gain is smaller. However, the growth rate is still significant. With a lot of design practice [24, 25] the authors were unable to use vaneless diffusers with $\bar{D}_4 > 1.86$. Anyway the result in Table 3 deserves attention.

Conclusion

The authors propose in the near future to continue the search for the optimal dimensions of the stator elements of stages with vaneless diffusers in the practically significant range of design parameters $\Phi_{des} = 0.015–0.15$, $\psi_{r,des} = 0.45–0.70$. From the study of the stage with parameters $\Phi_{des} = 0.0597$, $\psi_{r,des} = 0.60$ it follows that the optimal radial size \bar{D}_4 for high-flow stages can be much larger than the constructively acceptable values. In this case, the geometric parameter \bar{D}_4 cannot be optimized. It is necessary to optimize stator elements with several fixed values of \bar{D}_4 in a constructively acceptable and practically significant range. Before doing this work, it is necessary to pay attention to the role of the return channel geometry parameters that were not studied in the present work. For example, high-flow stages may require the 3D shape of vanes. It is also necessary to study profiles and midline shape of vanes.

Acknowledgments

The research was performed by a Grant of the President of the Russian Federation for young PhD MK-1893.2020.8. The calculations were performed using computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center (www.spbstu.ru)

References

[1] Guidotti E 2014 Towards Centrifugal Compressor Stages Virtual Testing. Thesis for the Degree of Ph. D. p. 100. Università degli Studi di Bologna
[2] Mosdzien M, Enneking M, Hehn A, Grates D, Jeschke P 2018 Influence of blade geometry on secondary flow development in a transonic centrifugal compressor Journal of the Global Power and Propulsion Society, Vol 2, Iss 1
[3] Sorokes J, Hutchinson B 2000 The Practical Application of CFD in the Design of Industrial Centrifugal Compressors Challenges and Goals in Pipeline Compressors PID.V. 5.
[4] Sorokes J M, Nye D A, D’Orsi N, Broberg R 2000 Sidestream optimization through the use of computational fluid dynamics and model testing turbomachinery sympos Proceed. Texas: A&M.
[5] Abel M, Newton P, Martinez-Botas R F, Wohr M, Muller M, Leweux J 2018 3D computational analysis of a compressor for heavy duty truck engine turbochargers. Proceedings of ASME Turbo Expo 2018. Turbomachinery Technical Conference and Exposition. June 11-15, Oslo
[6] Kryłłowicz W, Świder P, Kozanecki Z, Kabalyk K, Kozanecki Jr Z 2017 Technical and Aerodynamical Aspects of a High Pressure Synthesis Gas Turbocompressor Modernization. 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, April 3–7 Stockholm, Sweden.
[7] Matas R, Syka T, Lunacek O 2017 Numerical and experimental modelling of the centrifugal compressor stage – setting the model of impellers with 2D blades. EPJ Web of Conferences 11th International Conference on Experimental Fluid Mechanics Volume 143, 02073 DOI:10.1051/epjconf/201714302073 Czech Republic
[8] Hazby H, Casey M, Robinson C, Spataro R 2017 The design of a family of process compressor stages. Proceedings of 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC12, April 3-7, 2017; Stockholm, Sweden Paper ID: ETC2017-134
[9] Le Sausse P, Fabrie P, Arnou D and Clunet F 2013 CFD comparison with centrifugal compressor
measurements on a wide operating range. *EPJ Web of Conferences*, Volume 45 (2013) DOI:10.1051/epjconf/20134501059

[10] Xinquan Z, Meijie Z 2018 Criteria for the Matching of Inlet and Outlet Distortions in Centrifugal Compressors. *Applied Thermal Engineering* Volume 131, 25 February 2018, Pages 933-946

[11] Elfert M, Weber A, Wittrock D, Peters A, Voss C, Nicke E 2016 Experimental and numerical Kowalski S C, Pacheco J E, Fakhri S, Sorokes J. M. 2012 Centrifugal stage performance prediction and validation for high mach number applications. *Proceedings of the Forty-First Turbomachinery Symposium* September 24-27, Houston, Texas

[12] Kortikov N, Borovkov A, Voynov I, Kirillov A, Drozdov A Modeling the gas-dynamic characteristics of the low-flow and mid-flow model stages for an industrial centrifugal compressor MATEC Web Conf. Volume 245, *International Scientific Conference on Energy, Environmental and Construction Engineering* DOI: https://doi.org/10.1051/matecconf/201824504019

[13] Borovkov A I, Voinov I B, Galerkin Yu B, Drozdov A A, Soldatova K V 2019 Experimental characteristic simulation for two-stage pipeline centrifugal compressor. *International Conference on Compressors and their Systems* IOP Conf. Series: Materials Science and Engineering 604 (2019) 012052. doi:10.1088/1757-899X/604/1/012052

[14] Borovkov A, Voinov I, Galerkin Y, Nikiforov A, Nikitin M, Solovyeva O and Kabalyk K 2019 Issues of gas dynamic characteristics modeling: a study on a centrifugal compressor model stage *E3S Web of Conferences* 140, 06003 International Scientific Conference on Energy, Environmental and Construction Engineering https://doi.org/10.1051/e3sconf/201914006003

[15] Bisping J, Rossbach T, Grates D, Hildebrandt A, Jeschke P 2018 Influence of diffuser diameter ratio on the performance of a return channel within a centrifugal compressor stage. Proceedings of GPPS Forum 18 Global Power and Propulsion Society Montreal

[16] Franz H, Rube C, Wedeking M, Jeschke P 2015 Numerical investigation of the return channel of a high-flow centrifugal compressor stage. Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Montréal, Canada

[17] Rube C, Rossbach T, Wedeking M, Grates D R, Jeschke P 2016 Experimental and Numerical Investigation of the Flow Inside the Return Channel of a Centrifugal Process Compressor. Journal of Turbomachinery Vol. 138 / 101006-1; DOI: 10.1115/1.4032905

[18] Yagi M, Nishioka T, Kobayashi H, Nishida H, Yamamoto S 2015 Effects of return channel with splitter vanes on performance of multistage centrifugal compressor Turbine Technical Conference and Exposition GT2015. – Montreal, Canada

[19] Nishida Y, Kobayashi H, Nishida H, Sugimura K 2013 Performance improvement of a return channel in a multistage centrifugal compressor using multiobjective optimization. Journal of Turbomachinery, Vol. 135, 031026 1-8, 201313.

[20] Marenina L, Galerkin Yu, Drozdov A 2020 Stator elements optimization of centrifugal compressor intermediate type stage by CFD methods The 2nd International Conference on High Speed Turbomachines and Electrical Drives E3S Web of Conferences 178, 01013 https://doi.org/10.1051/e3sconf/202017801020

[21] Galerkin Yu, Rekstn A, Marenina L, Drozdov A, Solovyeva O, Semenovskiy V 2020 Optimization of return channels of high flow rate centrifugal compressor stages using CFD methods Energies, 13(22), 5968; https://doi.org/10.3390/en13225968

[22] Galerkin Y, Danilov K, Popova E 1995 Universal Modelling for Centrifugal Compressors-Gas Dynamic Design and Optimization Concepts and Application. Yokohama International Gas Turbine Congress, Yokohama.

[23] Galerkin Y 2010 Turbo-compressors. Workflow, calculation and design of the flow path; LLC "Information and Publishing Center" KHT", Moscow, Russia, p. 596.

[24] Galerkin Yu, Rekstn A, Drozdov A, Soldatova K, Solovyeva O, Popova E 2020 The optimal gas dynamic design system of industrial centrifugal compressors based on Universal modeling method. The 2nd International Conference on High Speed Turbomachines and Electrical Drives
[25] Soldatova K. 2017 Creation of a new mathematical model of the flow path of centrifugal compressors and a database of model stages Dr. Tech. Sciences thesis. SPbPU. P. 357. Russian.