The Matrix of Linear Mappings

Aleks Kleyn

Abstract. On the set of mappings of the given set, we define the product of mappings. If A is associative algebra, then we consider the set of matrices, whose elements are linear mappings of algebra A. In algebra of matrices of linear mappings we define the operation of \(\circ\)-product. The operation is based on the product of mappings.

If the matrix \(a\) of linear mappings has an inverse matrix, then the quasideterminant of the matrix \(a\) and the inverse matrix are matrices of linear mappings. In the paper, I consider conditions when a matrix of linear mappings has inverse matrix, as well methods of solving a system of linear equations in an associative algebra.

Contents
1. Preface . 1
2. Conventions . 2
3. Product of Mappings . 3
4. Biring of Functional Matrices . 3
5. Algebra of Linear Mappings . 4
6. Matrix of Linear Mappings . 5
7. Quasideterminant of Matrix of Linear Mappings 6
8. System of Linear Equations in Associative Algebra 7
9. References . 8
10. Index . 9
11. Special Symbols and Notations . 10

1. Preface

I gave the definition of tensor products of division rings (section [3]-12.2) almost at the same time when I defined the linear mapping of division rings (section [3]-9.2). It was evident for me that components of a linear mapping are tensor of order 2. However this statement was for me so unexpected that until now I have written nothing about this in my papers.

There was a contradiction in this statement. I used a linear mapping to define a tensor of order 1. However to build a mapping I was need a tensor of order 2; in other words, I was need a bilinear mapping.
However, I do not see any contradiction now. For any field F, tensor product $F \otimes F$ is isomorphic to F. The consequence of this isomorphism is the possibility of replacing tensor $a \otimes b$ by ordinary product ab. Therefore, the set of linear mappings of the field F is isomorphic to the field F or, to be more exact, to the set of left shifts of the multiplicative group of the field F. In division ring, the product is noncomutative and there is no such isomorphism.

Another problem that I met arose when I wanted to represent a derivative of a mapping of vector space as a matrix of partial derivatives (the equation \(4\)-(6.2.11)). One may be tempted to write the Jacobi-Gâteaux matrix of mapping as a product of matrices

\[
\begin{pmatrix}
\frac{\partial f^1}{\partial x^1}(h^1) & \cdots & \frac{\partial f^1}{\partial x^n}(h^1) \\
\vdots & \ddots & \vdots \\
\frac{\partial f^m}{\partial x^1}(h^n) & \cdots & \frac{\partial f^m}{\partial x^n}(h^n)
\end{pmatrix}
=
\begin{pmatrix}
\frac{\partial f^1}{\partial x^1} & \cdots & \frac{\partial f^m}{\partial x^1} \\
\vdots & \ddots & \vdots \\
\frac{\partial f^1}{\partial x^n} & \cdots & \frac{\partial f^m}{\partial x^n}
\end{pmatrix}
\begin{pmatrix}
h^1 \\
h^2 \\
h^n
\end{pmatrix}
\]

However, it is evident that the equation (1.1) is not true. However the matrix written in the left side of the equation (1.1) has very strong deficiency. I have impression that rank of this matrix depends on increment of argument.

We observe similar picture in the theorem \(4\)-6.2.12, where the derivative has form

\[
\frac{\partial g}{\partial f}(x)(a) = \frac{\partial g}{\partial f}(f(x))(\frac{\partial f}{\partial x}(a))
\]

The last reason to change model under study was the rule of transformation of vector in curvilinear coordinates of affine space (equations \(5\)-(8.1.5), \(5\)-(8.1.6))

\[
\pi'_i(\pi')(v'^i) = \pi_j(\pi) \left(\frac{\partial x^j}{\partial x'^i} \right)
\]

This finally convinced me that I had met new mathematical object. The name of this object is functional matrix, in other words, the matrix whose elements are mappings.

All that remains is the final step. If the element of the matrix is the mapping, then I break the connection between the mapping and the argument, or more exactly, I write the mapping as an operator

\[
f(x) = f \circ x
\]

Using new notation, I can write the linear mapping of division ring in the following form

\[
(a^{ij} \pi_i \otimes \pi_j) \circ x = a^{ij} \pi_i x \pi_j
\]

Correspondingly, we can write derivative of mapping f in the form

\[
\frac{\partial f(x)}{\partial x} \circ a = \left(\frac{\partial f(x)}{\partial x} \pi_i \otimes \pi_j \right) \circ a
\]

In the equation (1.4), I succeeded in separation of derivative and increment.

2. Conventions

(1) In any expression where we use index I I assume that this index may have internal structure. For instance, considering the algebra A we enumerate coordinates of $a \in A$ relative to basis π by an index i. This means that a is a vector. However, if a is matrix, then we need two indexes, one
enumerates rows, another enumerates columns. In the case, when index has structure, we begin the index from symbol \(i \) in the corresponding position. For instance, if I consider the matrix \(a^j_i \) as an element of a vector space, then I can write the element of matrix as \(a^j_i \).

(2) We consider algebra \(A \) which is finite dimensional vector space over center. Considering expansion of element of algebra \(A \) relative basis \(e \) we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression \(a^2 \), it is not clear whether this is component of expansion of element \(a \) relative basis, or this is operation \(a^2 = aa \). To make text more clear we use separate color for index of element of algebra. For instance,

\[
a = a^i e_i
\]

(3) When we consider finite dimensional algebra we identify the vector of basis \(e_0 \) with unit of algebra.

(4) Without a doubt, the reader of my articles may have questions, comments, objections. I will appreciate any response.

3. Product of Mappings

On the set of mappings \(f : A \rightarrow A \)

we define product according to rule

\[
(3.1) \quad f \circ g = f(g)
\]

The equation

\[
(3.2) \quad f \circ g = g \circ f
\]

is true iff the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & A \\
\downarrow{g} & & \downarrow{g} \\
A & \xrightarrow{f} & A
\end{array}
\]

is commutative.

For \(a \in A \), there exists mapping

\[
(3.3) \quad f_a(x) = a
\]

If we denote mapping \(f_a \) by letter \(a \), then using equation \((3.1) \), assume

\[
(3.4) \quad f \circ a = f(a)
\]

4. Birign of Functional Matrices

If \(A \) is \(\mathfrak{H} \)-algebra ([1, 7]), where the operation of addition is defined, then we consider the set of functional matrices, whose elements are mappings

\[
f : A \rightarrow A
\]

According to definition [3]-2.2.1, we define \(\circ \)-product of functional matrices

\[
(4.1) \quad \begin{cases}
(b \circ c) \circ d = (b \circ c \circ d) \\
(b \circ c) \circ d = b \circ (c \circ d)
\end{cases}
\]
According to definition 3-2.2.2, we define \(\circ \)-product of functional matrices

\[
\begin{align*}
(b \circ c)^b &= (b^e \circ c^e) \\
(b^e c)^b &= b^e \circ c^e
\end{align*}
\]

5. Algebra of Linear Mappings

Let \(A \) be associative algebra over field \(F \). Let \(\overline{e} \) be basis of algebra \(A \) over field \(F \). Let \(e_0 \) be unit of algebra \(A \). The product in the algebra \(A \) is defined according to rule

\[
\overline{e}_i \overline{e}_j = B^k_{ij} \overline{e}_k
\]

The equation

\[
B^p_{ij} B^q_{pk} = B^q_{ip} B^p_{jk}
\]

follows from equation

\[
(\overline{e}_i \overline{e}_j) \overline{e}_k = \overline{e}_i (\overline{e}_j \overline{e}_k)
\]

For given \(a, b \in A \) we define linear mapping \(a \otimes b \) according to rule

\[
(a \otimes b) \circ x = axb
\]

The sum of linear mappings is also a linear mapping. The set of linear mappings is algebra \(A \otimes A \). We define the product in algebra \(A \otimes A \) according to rule

\[
(a \otimes b) \circ (c \otimes d) = (ac) \otimes (db)
\]

The equation (5.3) follows from the equation

\[
(a \otimes b) \circ (c \otimes d) \circ x = (a \otimes b) \circ (cxd) = a(cxd)b = (ac)x(db)
\]

Hereinafter we will use the standard representation

\[
(a \otimes b) \circ x = a^i_j \overline{e}_i x \overline{e}_j
\]

Theorem 5.1. The product of linear mappings in the standard representation has form

\[
(a^i_j \overline{e}_i \otimes \overline{e}_j) \circ (b^k_l \overline{e}_k \otimes \overline{e}_l) = a^i_j b^k_l B^p_{ik} B^q_{lj} \overline{e}_p \otimes \overline{e}_q
\]

Proof. The statement of the theorem follows from the equation

\[
(a^i_j \overline{e}_i \otimes \overline{e}_j) \circ ((b^k_l \overline{e}_k \otimes \overline{e}_l) \circ x) = (a^i_j \overline{e}_i \otimes \overline{e}_j) \circ (b^k_l \overline{e}_k x \overline{e}_l)
\]

\[
= a^i_j \overline{e}_i b^k_l \overline{e}_k x \overline{e}_l \overline{e}_j
\]

\[
= a^i_j b^k_l B^p_{ik} B^q_{lj} \overline{e}_p \otimes \overline{e}_q
\]

Theorem 5.2. The product of linear mappings of algebra \(A \) is associative.

Proof. Consider linear mapping

\[
a = a^i_j \overline{e}_i \otimes \overline{e}_j \\
b = b^i_j \overline{e}_i \otimes \overline{e}_j \\
c = c^i_j \overline{e}_i \otimes \overline{e}_j
\]

According to equation (5.6)

\[
(a \circ b) \circ c = (a^i_j b^k_l B^p_{ik} B^q_{lj} \overline{e}_p \otimes \overline{e}_q) \circ (c^a_b \overline{e}_a \otimes \overline{e}_b)
\]

\[
= a^i_j b^k_l B^p_{ik} B^q_{lj} c^a_b B^s_{pa} B^t_{bq} \overline{e}_s \otimes \overline{e}_t
\]
\[a \circ (b \circ c) = (a^{ij} \bar{e}_i \otimes \bar{e}_j) \circ (b^{kl} c^{ab} B_{ka}^P B_{bl}^q \bar{e}_p \otimes \bar{e}_q) \]
\[= a^{ij} b^{kl} c^{ab} B_{ka}^P B_{bl}^q B_{sp}^b B_{aq}^t \bar{e}_s \otimes \bar{e}_t \]

According to equation (5.2)
\[B_{ik}^p B_{pa}^s = B_{ka}^P B_{ip}^s \]
\[B_{lj}^q B_{bq}^t = B_{bl}^q B_{qt}^s \]

The statement of theorem follows from equations (5.8), (5.9), (5.10), (5.11). \(\square \)

6. Matrix of Linear Mappings

Let \(A \) be associative algebra over field \(F \).

Definition 6.1. Functional matrix \(a \) is called **matrix of linear mappings**, if \(a^j_i \)

is linear mapping of algebra \(A \).

Theorem 6.2. The product of matrices of linear mappings of algebra \(A \) is associative.

Proof. The statement of theorem follows from theorem 5.2 and chain of equations
\[(f \circ g)_o \circ h = \left((f \circ g)_j \circ h^j_k \right) = \left((f \circ g)_m \circ h^m_k \right) \]
\[= \left(f \circ (g \circ h) \right)_m \]
\[= f \circ (g \circ h) \]
\(\square \)

Theorem 6.3. \(\circ \)-product of matrices of linear mappings is a matrix of linear mappings.

Proof. The statement is corollary of equation (4.1) and theorem [3]-9.2.21. \(\square \)

We will use the standard representation for notation of linear mapping. The standard representation of matrix of linear mappings has form
\[f = \begin{pmatrix}
 f_{1}^{i,j} \bar{e}_i \otimes \bar{e}_j & \ldots & f_{n}^{i,j} \bar{e}_i \otimes \bar{e}_j \\
 \ldots & \ldots & \ldots \\
 f_{m}^{i,j} \bar{e}_i \otimes \bar{e}_j & \ldots & f_{n}^{i,j} \bar{e}_i \otimes \bar{e}_j
\end{pmatrix} \]

According to the definition (3.3),
\[\left(f_{1}^{i,j} \bar{e}_i \otimes \bar{e}_j & \ldots & f_{n}^{i,j} \bar{e}_i \otimes \bar{e}_j
\right) \circ \left(a^1 \right) = \left(f_{k}^{i,j} \bar{e}_i a^k \bar{e}_j \right) \]

Theorem 6.4. For given matrices of linear mappings
\[b = (b_{j}^{i,k} \bar{e}_k \otimes \bar{e}_i) \quad c = (c_{j}^{i,k} \bar{e}_k \otimes \bar{e}_i) \]

\(\circ \)-product has form
\[b \circ c = (b_{p}^{i,j} c_{j}^{p,cd} B_{ac}^P B_{bd}^q \bar{e}_p \otimes \bar{e}_q) \]
\textbf{Theorem 7.1.} Suppose $n \times n$ matrix a of linear mappings of algebra A has \circ^{-1}-inverse matrix1

\begin{equation}
(7.1)
a^{-1}_\circ \circ = \delta
\end{equation}

Then $k \times k$ minor of \circ^{-1}-inverse matrix satisfy to the following equation, on conditions that considered inverse matrices exist,2

\begin{equation}
(7.2)
(a^{-1}_\circ \cdot J_1 \cdot I)^{-1}_\circ = a^I_1 - a^I_{[j]} \circ a^{-1}_J [j]^{-1}_\circ a^J_1
\end{equation}

\textbf{Proof.} Definition (7.1) of \circ^{-1}-inverse matrix leads to system of linear equations

\begin{equation}
(7.3)
a^I_{[j]} \circ a^{-1}_J [j] + a^I_1 \circ a^{-1}_J [j] = 0
\end{equation}

\begin{equation}
(7.4)
a^I_1 \circ a^{-1}_J [j] + a^J_1 \circ a^{-1}_J [j] = \delta
\end{equation}

We multiply (7.3) by \((a^{-1}_J [j] - a^I_1)^{-1}_\circ\)

\begin{equation}
(7.5)
a^{-1}_J [j] + (a^{-1}_J [j] - a^I_1)^{-1}_\circ a^I_1 \circ a^{-1}_J [j] = 0
\end{equation}

Now we can substitute (7.5) into (7.4)

\begin{equation}
(7.6)
a^I_1 \circ (a^{-1}_J [j] - a^I_1)^{-1}_\circ a^I_1 \circ a^{-1}_J [j] + a^J_1 \circ a^{-1}_J [j] = \delta
\end{equation}

(7.2) follows from (7.6).$^\blacksquare$

\textbf{Corollary 7.2.} Suppose $n \times n$ matrix a of linear mappings of algebra A has \circ^{-1}-inverse matrix. Then elements of \circ^{-1}-inverse matrix satisfy to the equation2

\begin{equation}
(7.7)
(\mathcal{H}a^{-1}_\circ)^i_j = a^I_1 - a^I_{[i]} \circ a^{-1}_J [j]^{-1}_\circ a^J_1
\end{equation}

\textbf{Definition 7.3.} $(\circ)_a^{-1}$-quasideterminant of $n \times n$ matrix a is formal expression2

\begin{equation}
(7.8)
\det (a, \circ)_a^\circ = (\mathcal{H}a^{-1}_\circ)^a_b
\end{equation}

1This statement and its proof are based on statement 1.2.1 from [2] (page 8) for matrix over free division ring.

2The notation \((A^{i \cdot j} \cdot _{i j})^{-1}\) means that we exchange rows and columns in Hadamard inverse. We can formally write this expression in following form

\begin{equation}
(A^{i \cdot j} \cdot _{i j})^{-1} = \frac{1}{A_i}
\end{equation}
According to the remark [3]-2.1.1 we can get \((b)_{a}^{\circ\circ} \)-quasideterminant as an element of the matrix \(\det(a, \circ\circ) \) which we call \(\circ\circ\)-quasideterminant. □

Theorem 7.4. Expression for elements of \(\circ\circ\)-inverse matrix has form

\[
a^{-1}_{\circ\circ} = \mathcal{H} \det(a, \circ\circ)
\]

Proof. (7.9) follows from (7.8). □

Theorem 7.5. Expression for \((a, b)_{\circ\circ} \)-quasideterminant can be evaluated by either form

\[
det\left((a, a, \circ\circ)\right)_{b} = a^{b} - a^{b}_{[a]} \circ\circ \left(a_{\circ\circ}^{-1}_{\circ\circ} - a_{\circ\circ}^{-1}_{\circ\circ}\right)_{a} \circ\circ a_{[b]}
\]

\[
det\left((a, a, \circ\circ)\right)_{a} = a^{b} - a^{b}_{[a]} \circ\circ \mathcal{H} \det\left(a_{\circ\circ}^{-1}_{\circ\circ} - a_{\circ\circ}^{-1}_{\circ\circ}\right)_{a} \circ\circ a_{[b]}
\]

Proof. Statement follows from (7.7) and (7.8). □

Theorem 7.6. Let \(a \) be matrix of linear mappings. Then matrices \(\det(a, \circ\circ) \) and \(a^{-1}_{\circ\circ} \) are matrices of linear mappings.

*Proof. We will prove the theorem by induction over order of matrix.
For \(n = 1 \), from the equation (7.10) it follows that

\[
det\left((a, a, \circ\circ)\right)_{1} = a^{1}
\]

Therefore, quasideterminant is a matrix of linear mappings. From theorem [6]-4.2, it follows that the matrix \(a^{-1}_{\circ\circ} \) is a matrix of linear mappings.

Let the statement of the theorem be true for \(n - 1 \). Let \(a \) be \(n \times n \) matrix. According to assumption of induction, the matrix \(\left(a_{\circ\circ}^{-1}_{\circ\circ} - a_{\circ\circ}^{-1}_{\circ\circ}\right)_{a} \circ\circ a_{[b]} \) in the equation (7.10) is a matrix of linear mappings. Therefore, \((a, b)_{\circ\circ} \)-quasideterminant is linear mapping. From theorems [6]-4.2, 7.4, it follows that the matrix \(a^{-1}_{\circ\circ} \) is a matrix of linear mappings.* □

8. System of Linear Equations in Associative Algebra

Theorem 8.1. Identity matrix \(e \) has standard representation

\[
e^{i \cdot \delta \cdot m}_{j} = \delta^{i}_{j} \delta^{k}_{0} \delta^{m}_{0}
\]

Proof. First of all, elements of identity matrix are different from 0 only on diagonal. Therefore, \(i = j \). Since every element on diagonal equal to identity of the field, then element of the matrix has form \(\overline{c}_{0} \otimes \overline{c}_{0} \). Therefore, \(k = 0, m = 0 \). □

Theorem 8.2. Let \(a \) be matrix of linear mappings of algebra \(A \). Let \(b \) be matrix, \(\circ\circ\)-inverse matrix \(a \). Elements of matrices \(a \) and \(b \) satisfy to the equation

\[
a^{i \cdot \delta \cdot m}_{j} b^{i \cdot \delta \cdot m}_{j} B^{i \cdot \delta \cdot m}_{j} = \delta^{i}_{j} \delta^{k}_{0} \delta^{m}_{0}
\]

Proof. Equation (8.2) follows from equations (6.3), (8.1). □

Definition 8.3. If \(n \times n \) matrix \(a \) of linear mappings of algebra \(A \) has \(\circ\circ\)-inverse matrix we call matrix \(a \) \(\circ\circ\)-**nonsingular matrix of linear mappings**. Otherwise, we call such matrix \(\circ\circ\)-**singular matrix of linear mappings**. □
The system of linear equations in associative algebra has form

\[
\begin{aligned}
a_k^{ij} x_i^k x_j = b^1 \\
\vdots \\
a_k^{m \cdot ij} x_i^k x_j = b^m
\end{aligned}
\]

(8.3)

We can write the system of linear equations (8.3) in matrix form

\[
\begin{pmatrix}
a_1^{1 \cdot ij} x_i^1 \otimes x_j \\
a_1^{1 \cdot ij} x_i^2 \otimes x_j \\
\vdots \\
a_m^{1 \cdot ij} x_i^1 \otimes x_j \\
a_m^{1 \cdot ij} x_i^2 \otimes x_j
\end{pmatrix}
\cdot
\begin{pmatrix}
(x_1^i) \\
(x_2^i) \\
\vdots \\
(x_n^i)
\end{pmatrix}
=
\begin{pmatrix}
b_1^1 \\
b_1^2 \\
\vdots \\
b_m^1 \\
b_m^2
\end{pmatrix}
\]

(8.4)

\[
\begin{pmatrix}
a_1^{i \cdot j} x_i^1 \otimes x_j \\
a_1^{i \cdot j} x_i^2 \otimes x_j \\
\vdots \\
a_m^{i \cdot j} x_i^1 \otimes x_j \\
a_m^{i \cdot j} x_i^2 \otimes x_j
\end{pmatrix}
\cdot
\begin{pmatrix}
(x_1^i) \\
(x_2^i) \\
\vdots \\
(x_n^i)
\end{pmatrix}
=
\begin{pmatrix}
b_1^1 \\
b_1^2 \\
\vdots \\
b_m^1 \\
b_m^2
\end{pmatrix}
\]

(8.5)

Definition 8.4. Suppose \(a\) is \(\cdot\)-nonsingular matrix. Appropriate system of linear equations (8.5) is called \(\cdot\)-nonsingular system of linear equations. \(\Box\)

Theorem 8.5. Solution of nonsingular system of linear equations (8.5) is determined uniquely and can be presented in either form

\[
x = a^{\cdot -1(\cdot^o)} \circ b
\]

(8.6)

\[
x = \mathcal{H} \det (a_{\cdot \circ}) \circ b
\]

(8.7)

Proof. Multiplying both sides of equation (8.5) from left by \(a^{\cdot -1(\cdot^o)}\) we get (8.6). Using definition (7.8) we get (8.7). \(\square\)

We can also consider solving of the system of linear equations (8.4) the same way as is done in the theorem [6]-4.1 If \(a^k\) has expansion

\[
a^k = a^{k \mid p} x_p
\]

then the system of linear equations (8.3) is equivalent to the system of linear equations

\[
f_{kp}^{i \cdot j} a^{k \mid j} = b^p
\]

(8.8)

where

\[
f_{kp}^{i \cdot j} = f_{kp}^{i \cdot j} \cdot B_{pq}^{\circ} B_{qj}^{\circ}
\]

9. References

[1] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982), eprint http://www.math.uwaterloo.ca/ snburris/htdocs/ualg.html (The Millennium Edition)

[2] I. Gelfand, S. Gelfand, V. Retakh, R. Wilson, Quasideterminants, eprint arXiv:math.QA/0208146 (2002)

[3] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2010)

[4] Aleks Kleyn, Introduction into Calculus over Division Ring, eprint arXiv:0812.4763 (2010)

[5] Aleks Kleyn, Introduction into Geometry over Division Ring, eprint arXiv:0906.0135 (2009)

[6] Aleks Kleyn, Linear Equation in Finite Dimensional Algebra, eprint arXiv:0912.4061 (2009)

[7] Paul M. Cohn, Universal Algebra, Springer, 1981
10. **Index**

(\(\mathcal{F}\))-\(\circ\)-quasideterminant 6

\(\circ\)-product of functional matrices 4

functional matrix 3

matrix of linear mappings 5

\(\circ\)-product of functional matrices 3

\(\circ\)-nonsingular matrix of linear mappings 7

\(\circ\)-nonsingular system of linear equations 8

\(\circ\)-quasideterminant 7

\(\circ\)-singular matrix of linear mappings 7
11. Special Symbols and Notations

\[\text{det} (a, \phi^o)^b_c \quad \text{\(\phi^o\)-quasideterminant 6} \]

\[\text{det} (a, \phi^o)^{} \quad \text{\(\phi\)-quasideterminant 7} \]

\[b^o_c \quad \text{\(\phi\)-product of functional matrices 4} \]

\[b^o_c \quad \text{\(\phi\)-product of functional matrices 3} \]
Матрица линейных отображений

Александр Клейн

Аннотация. На множестве отображений заданного множества определено произведение отображений. Если A - ассоциативная алгебра, то мы можем рассмотреть множество матриц, элементы которых являются линейные отображения алгебры A. В алгебре матриц линейных отображений определена операция \circ-произведения, опирающаяся на произведение отображений.

Если матрица a линейных отображений имеет обратную матрицу, то квазидетерминант матрицы a и обратная матрица являются матрицами линейных отображений. В статье рассмотрены условия, когда матрица линейных отображений имеет обратную матрицу, а также методы решения системы линейных уравнений в ассоциативной алгебре.

Содержание
1. Предисловие ... 1
2. Соглашения .. 3
3. Произведение отображений 3
4. Бикольцо функциональных матриц 4
5. Алгебра линейных отображений 4
6. Матрица линейных отображений 5
7. Квазидетерминант матрицы линейных отображений .. 6
8. Система линейных уравнений в ассоциативной алгебре 8
9. Список литературы ... 9
10. Предметный указатель 10
11. Специальные символы и обозначения 11

1. Предисловие

Я дал определение тензорного произведения тел (раздел [3]-12.2) практически одновременно с определением линейного отображения тел (раздел [3]-9.2). Для меня было очевидно, что компоненты линейного отображения были тензором валентности 2. Но этот факт был для меня настолько неожиданным, что я до сих пор ничего не писал об этом в своих статьях.

В этом утверждение было некоторое противоречие. Я использовал линейное отображение, чтобы определить тензор валентности 1, а для построения отображения мне нужен был тензор валентности 2, т. е. билинейное отображение.
Никакого парадокса, однако, здесь нет. Для любого поля \(F \) тензорное произведение \(F \otimes F \) изоморфно \(F \). Следствием этого изоморфизма является возможность заменить тензор \(a \otimes b \) обычным произведением \(ab \). Поэтому множество линейных отображений поля \(F \) изоморфно полю \(F \), или точнее, множеству левых сдвигов мультипликативной группы поля \(F \). В теле произведение некоммутативно и этот изоморфизм отсутствует.

Другая проблема, с которой я встретился, возникла, когда я захотел представить производную отображения векторных пространств в виде матрицы частных производных (равенство [4]-6.2.11). Возникает желание записать матрицу Якоби-Гауссо отображения в виде произведения матриц (1.1)

\[
\begin{pmatrix}
\frac{\partial f^1(x)}{\partial x^1}(h_1) & ... & \frac{\partial f^m(x)}{\partial x^1}(h_1) \\
... & ... & ...
\end{pmatrix}
\begin{pmatrix}
\frac{\partial f^1(x)}{\partial x^1}(h_1) & ... & \frac{\partial f^m(x)}{\partial x^1}(h_1) \\
... & ... & ...
\end{pmatrix}
\]

Однако очевидно, что равенство (1.1) неверно. Однако матрица, записанная в левой части равенства (1.1) имеет очень серьёзный недостаток. Возникает ощущение, что ранг этой матрицы зависит от приращения аргумента.

Похожая картина наблюдается в теореме [4]-6.2.12, где производная имеет вид

\[
\partial g(f(x))(a) = \partial g(f(x))(\partial f(x)(a))
\]

Последним доводом изменить рассматриваемую модель стал закон преобразования вектора в криволинейных координатах аффинного пространства (равенства [5]-8.1.5, [3]-8.1.6)

\[
\tau'_i(\tau'(v'^i)) = \tau_j(\tau) \left(\frac{\partial x^j}{\partial x'^i} (v'^i) \right)
\]

Это меня окончательно убедило в том, что я встретил новый математический объект. Имя этого объекта функциональная матрица, т. е. матрица, элементами которой являются отображения.

Осталось сделать последний шаг. Если элемент матрицы отображение, то я разрываю связь между отображением и аргументом, точнее говоря, я записываю отображение как оператор

\[f(x) = f \circ x \]

В новых обозначениях линейное отображение тела можно записать в виде

\[(a^{ij} \tau_i \otimes \tau_j) \circ x = a^{ij} \tau_i x \tau_j \]

Соответственно, производную отображения \(f \) можно записать в виде

\[
\partial f(x) \circ a = \left(\frac{\partial f(x)}{\partial x} \tau_i \otimes \tau_j \right) \circ a
\]

В равенстве (1.4) мне удалось разделить производную и приращение.
2. Соглашения

(1) В любом выражении, где появляется индекс, я предполагаю, что этот индекс может иметь внутреннюю структуру. Например, при рассмотрении алгебры A координаты $a \in A$ относительно базиса \mathcal{e} пронумерованы индексом i. Это означает, что a является вектором. Однако, если a является матрицей, нам необходимо два индекса, один нумерует строки, другой - столбцы. В том случае, когда мы уточняем структуру индекса, мы будем начинать индекс с символа - в соответствующей позиции. Например, если я рассматриваю матрицу a^i_j как элемент векторного пространства, то я могу записать элемент матрицы в виде a^i_j.

(2) Мы будем рассматривать алгебру A, которая является конечно мерным векторным пространством над центром. При разложении элемента алгебры A относительно базиса \mathcal{e} мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении a^2 не ясно - это компонента разложения элемента a относительно базиса или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например, $a = a^i_\mathcal{e}$.

(3) При рассмотрении конечномерной алгебры мы будем отождествлять вектор базиса \mathcal{e}_0 с единицей алгебры.

(4) Без сомнения, у читателя моих статей могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.

3. Произведение отображений

На множестве отображений $f : A \to A$ определено произведение согласно правилу

$$f \circ g = f(g)$$

Равенство $f \circ g = g \circ f$ справедливо тогда и только тогда, когда диаграма

```
/ \         / \      / \      / \      / \      / \      / \      / \      / \\
A ---f-\-A   A ---g-\-A   A ---f-\-A   A ---g-\-A   A ---f-\-A   A ---g-\-A
        \ /     \ /     \ /     \ /     \ /     \ /     \ /     \ /     \ /
        A -----A     A -----A     A -----A     A -----A     A -----A
```

коммутативна.

Для $a \in A$, существует отображение

$$f_a(x) = a$$

Если мы будем обозначать отображение f_a буквой a, то опираясь на равенство (3.1), положим

$$f \circ a = f(a)$$
4. Бикольцо функциональных матриц

Если \(A \) - \(H \)-алгебра ([1, 7]), в которой определена операция сложения, то мы рассмотрим множество функциональных матриц, элементы которых являются отображения

\[f : A \rightarrow A \]

Согласно определению [3]-2.2.1, мы определим \(\circ \)-произведение функциональных матриц

\[
\begin{align*}
\{ & b_{\circ} c = (b^c \circ c^c) \\
& (b^c \circ c)^b = b^c \circ c^b
\end{align*}
\]

Согласно определению [3]-2.2.2, мы определим \(\circ \)-произведение функциональных матриц

\[
\begin{align*}
\{ & b_{\circ} c = (b^c \circ c^c) \\
& (b^c \circ c)^b = b^c \circ c^b
\end{align*}
\]

5. Алгебра линейных отображений

Пусть \(A \) - ассоциативная алгебра над полем \(F \). Пусть \(\overline{e} \) - базис алгебры \(A \) над полем \(F \). Пусть \(e_0 \) - единица алгебры \(A \). Произведение в алгебре \(A \) определено согласно правилу

\[(e_i e_j) = B^k_{ij} e_k \]

Из равенства

\[(e_i e_j) e_k = (e_i (e_j e_k)) \]

следует равенство

\[B^p_{ij} B^q_{pk} = B^q_{ip} B^p_{jk} \]

Для заданных \(a, b \in A \) определено линейное отображение \(a \otimes b \) согласно правилу

\[(a \otimes b) \circ x = axb \]

Сумма линейных отображений также является линейным отображением. Множество линейных отображений является алгеброй \(A \otimes A \). Произведение в алгебре \(A \otimes A \) определено согласно правилу

\[(a \otimes b) \circ (c \otimes d) = (ac) \otimes (db) \]

Равенство (5.3) следует из равенства

\[(a \otimes b) \circ ((c \otimes d) \circ x) = (a \otimes b) \circ (cxd) = a(cx) = b = (ac)x \]

В дальнейшем мы будем пользоваться стандартным представлением

\[(a^{ij} e_i \otimes e_j) \circ x = a^{ij} e_i \otimes e_j \]

Теорема 5.1. Произведение линейных отображений, заданных в стандартизированном представлении, имеет вид

\[(a^{ij} e_i \otimes e_j) \circ (b^{kl} e_k \otimes e_l) = a^{ij} b^{kl} B^p_{ij} B^q_{kl} e_p \otimes e_q \]
Доказательство. Утверждение теоремы следует из равенства
\[(a^{ij} \otimes e^j) \circ ((b^{kl} \otimes e^k) \circ x) = (a^{ij} \otimes e^j) \circ (b^{kl} x e^l)\]
(5.7)
\[= a^{ij} b^{kl} B_{ik}^p B_{lj}^q x e^p e^q\]
(5.8)
\[= a^{ij} b^{kl} B_{ik}^p B_{lj}^q x e^p e^q\]
(5.9)
Согласно равенству (5.6)
(5.10)
\[B_{ik}^p B_{pj}^q = B_{ik}^p B_{pj}^q\]
(5.11)
Утверждение теоремы следует из равенств (5.8), (5.9), (5.10), (5.11).

6. Матрица линейных отображений

Пусть A - ассоциативная алгебра над полем F.

Определение 6.1. Функциональная матрица a называется матрицей линейных отображений, если \(a^i_j\) является линейным отображением алгебры A.

Теорема 6.2. Произведение матриц линейных отображений алгебры A ассоциативно.

Доказательство. Утверждение теоремы следует из теоремы 5.2 и цепочки равенств
\[(f \circ g) \circ h = \left((f \circ g) \circ h^l_k \right) = \left((f_m \circ g^m_j) \circ h^l_k \right)\]
(5.12)
\[= \left((f^i_m \circ g^m_j \circ h^l_k \right) \circ (f^m_i \circ (g^m_j h^l_k) \right) \circ \left(f^m_i \circ (g^m_j h) \right)\]
(5.13)
\[= f \circ (g \circ h)\]
(5.14)

Теорема 6.3. \(\circ\)-произведение матриц линейных отображений является матрицей линейных отображений.

Доказательство. Следствие равенства (4.1) и теоремы [3]-9.2.21.
 Для записи линейного отображения мы будем пользоваться стандартным представлением. Стандартное представление матрицы линейных отображений имеет вид

\[
(6.1) \quad f = \begin{pmatrix}
 f_{1}^{1\cdot j} & \cdots & f_{1}^{n\cdot j} \\
 \vdots & \ddots & \vdots \\
 f_{n}^{1\cdot j} & \cdots & f_{n}^{n\cdot j}
\end{pmatrix}
\]

Согласно определению (3.3),

\[
(6.2) \quad \left(\begin{array}{ccc}
 f_{1}^{1\cdot j} & \cdots & f_{1}^{n\cdot j} \\
 \vdots & \ddots & \vdots \\
 f_{n}^{1\cdot j} & \cdots & f_{n}^{n\cdot j}
\end{array} \right) \circ \begin{pmatrix}
 a_{1} \\
 \vdots \\
 a_{n}
\end{pmatrix} = \begin{pmatrix}
 f_{1}^{1\cdot j} a_{1} \\
 \vdots \\
 f_{n}^{1\cdot j} a_{n}
\end{pmatrix}
\]

Теорема 6.4. Для заданных матриц линейных отображений

\[
(6.3) \quad B = (b_{j}^{kl} e_{k} \otimes e_{l}) \quad c = (c_{j}^{kl} e_{k} \otimes e_{l})
\]

\(\circ\)-произведение имеет вид

Доказательство. Из равенства (4.2) следует

\[
(6.4) \quad (b_{j} \circ c_{j})^i = (b_{p}^{i\cdot ab} c_{p}^{ab} B_{ac} B_{bd} e_{k} \otimes e_{l})
\]

Равенство (6.3) следует из равенства (6.4).

\[
7. \text{ Квазидетерминант матрицы линейных отображений}
\]

Теорема 7.1. Предположим, что \(n \times n\) матрица а линейных отображений алгебры \(A\) имеет \(\circ\)-обратную матрицу

\[
(7.1) \quad a_{o} \circ a^{-1\circ} = \delta
\]

Тогда \(k \times k\) минор \(\circ\)-обратной матрицы удовлетворяет следующему равенству, при условии, что рассматриваемые обратные матрицы существуют,

\[
(7.2) \quad \left(a^{-1\circ} \cdot J_{-I} \right)^{-1\circ} = a_{j}^f - a_{j}^{[I]} \circ \left(a_{-I}^{[J]} \right)^{-1\circ} \circ a_{j}^{[J]}
\]

Доказательство. Определение (7.1) \(\circ\)-обратной матрицы приводит к системе линейных уравнений

\[
(7.3) \quad a_{j}^{[I]} \circ a^{-1\circ} [I]_{f} + a_{j}^{[J]} \circ a^{-1\circ} [J]_{f} = 0
\]

\[
(7.4) \quad a_{j}^{[I]} \circ a^{-1\circ} [I]_{f} + a_{j}^{[J]} \circ a^{-1\circ} [J]_{f} = \delta
\]

1Это утверждение и его доказательство основаны на утверждении 1.2.1 из [2] (page 8) для матриц над свободным кольцом с делением.

2Запись \((A_{-I}^{-1\circ})^{-1}\) означает, что при обращении Адамара столбцы и строки меняются местами. Мы можем формально записать это выражение следующим образом

\[
(A_{-I}^{-1\circ})^{-1} = \frac{1}{A_{I}^{f}}
\]
Матрица линейных отображений

Мы умножим (7.3) на

\[
(a_{-}[j] \cdot [j])^{-1} \circ
\]

(7.5)

\[
a^{-1} \circ [j] + \left(a_{-}[j] \cdot [j] \right)^{-1} \circ a_{-}[j] \circ a^{-1} \circ [j] = 0
\]

Теперь мы можем подставить (7.5) в (7.4)

Но целесообразно добавить (7.6) в (7.4)

\[
(7.6) \quad \circ [j] \circ a_{-}[j] \circ a^{-1} \circ [j] + a_{-}[j] \circ a^{-1} \circ [j] = \delta
\]

(7.2) следует из (7.6).

Следствие 7.2. Предположим, что $n \times n$ матрица линейных отображений алгебры A имеет \circ-обратную матрицу. Тогда элементы \circ-обратной матрицы удовлетворяют равенству

\[
(7.7) \quad (a_{-}^{-1} \circ [j])_{i}^{j} = a_{i}^{j} - a_{i}^{[j]} \circ (a_{-}[j] \circ [j])^{-1} \circ a_{i}^{[j]}
\]

Определение 7.3. $(b)^{\circ}$-квазидетерминант $n \times n$ матрицы a - это формальное выражение

\[
(7.8) \quad \det (a, \circ)_{b}^{a} = (a_{-}^{-1} \circ [j])_{i}^{j}
\]

Согласно замечанию [3]-2.1.1 мы можем рассматривать $(b)^{\circ}$-квазидетерминант как элемент матрицы $\det (a, \circ)$, которую мы будем называть \circ-квазидетерминантом.

Теорема 7.4. Выражение для элементов \circ-обратной матрицы имеет вид

\[
(7.9) \quad a^{-1} \circ = H \det (a, \circ)
\]

Доказательство. (7.9) следует из (7.8).

Теорема 7.5. Выражение для $(b)^{\circ}$-квазидетерминанта имеет любую из следующих форм

\[
(7.10) \quad \det (a, \circ)_{a}^{b} = a_{a}^{b} - a_{[a]}^{b} \circ (a_{-}[a] \circ [a])^{-1} \circ a_{[a]}
\]

\[
(7.11) \quad \det (a, \circ)_{a}^{b} = a_{a}^{b} - a_{[a]}^{b} \circ H \det (a_{-}[a] \circ [a])^{-1} \circ a_{[a]}
\]

Доказательство. Утверждение следует из (7.7) и (7.8).

Теорема 7.6. Пусть a - матрица линейных отображений. Тогда матрицы $\det (a, \circ)$ и $a^{-1} \circ$ являются матрицами линейных отображений.

Доказательство. Мы докажем теорему индукцией по порядку матрицы.

При $n = 1$ из равенства (7.10) следует

\[
\det (a, \circ)_{1}^{1} = a_{1}^{1}
\]

Следовательно, квазидетерминант является матрицей линейных отображений. Из теоремы [6]-4.2 следует, что матрица $a^{-1} \circ$ является матрицей линейных отображений.

Пусть утверждение теоремы верно для $n - 1$. Пусть $a = n \times n$ матрица. Соответственно предположению индукции, матрица $a^{-1} \circ$ в равенстве (7.10)
является матрицей линейных отображений. Следовательно, $(a^i_{-1})^{-o}$-квазидетерминант является линейным отображением. Из теорем [6]-4.2, 7.4 следует, что матрица a^{-1}_{-1} является матрицей линейных отображений.

8. Система линейных уравнений в ассоциативной алгебре

Теорема 8.1. Единичная матрица e имеет стандартное представление

$e^i_{-1} = \delta^i_0 \delta^m_0$

Доказательство. Прежде всего, элементы единичной матрицы отличны от 0 только на диагонали. Следовательно, $i = j$. Так как каждый элемент на диагонали равен единице поля, то элемент матрицы имеет вид $e^i_0 \otimes e^j_0$. Следовательно, $k = 0, m = 0$. □

Теорема 8.2. Пусть a - матрица линейных отображений алгебры A. Пусть b - матрица, o-отвратная матрица a. Элементы матриц a и b связаны уравнением

$a^i_{-1} b^j_{-1} B^k_{-1} B^m_{-1} = \delta^i_0 \delta^k_0 \delta^m_0$

Доказательство. Равенство (8.2) является следствием равенств (6.3), (8.1). □

Определение 8.3. Если $n \times n$ матрица a линейных отображений алгебры A имеет o-отвратную матрицу, мы будем называть матрицу a o-невырожденной матрицей линейных отображений. В противном случае, мы будем называть такую матрицу o-вырожденной матрицей линейных отображений. □

Система линейных уравнений в ассоциативной алгебре имеет вид

$$
\begin{cases}
a^i_{-1} b^j_{-1} = b^i_{1} \\
a^m_{-1} b^j_{-1} = b^m_{1}
\end{cases}
$$

Мы можем записать систему линейных уравнений (8.3) в матричной форме

$$
\begin{pmatrix}
a^1_{-1} \otimes \tau_1 \\ \vdots \\ a^n_{-1} \otimes \tau_n
\end{pmatrix} o \begin{pmatrix}
x^1 \\ \vdots \\ x^n
\end{pmatrix} = \begin{pmatrix}
b^1 \\ \vdots \\ b^n
\end{pmatrix}
$$

Определение 8.4. Предположим, что a - o-невырожденная матрица. Мы будем называть соответствующую систему линейных уравнений (8.5) o-невырожденной системой линейных уравнений. □

Теорема 8.5. Решение невырожденной системы линейных уравнений (8.5) определено однозначно и может быть записано в любой из следующих форм

$$
\begin{cases}
x = a^{-1}_{-1} o b \\
x = H \det (a_{-1}) o b
\end{cases}
$$

Доказательство. Умножая обе части равенства (8.5) слева на a^{-1}_{-1}, мы получим (8.6). Пользуясь определением (7.8), мы получим (8.7). □
Матрица линейных отображений

Мы можем также рассмотреть решение системы линейных уравнений (8.4) аналогично тому, как это сделано в теореме 6.1. Если \(a^k \) имеет разложение

\[
a^k = a^{kp}c
\]

то система линейных уравнений (8.3) эквивалентна системе линейных уравнений

\[
f^{lp}_{kq}a^{kq} = b^l_p
\]

где

\[
f^{lp}_{kq} = f^{1.ij}_{k} B_{ij}^{a} B_{aj}^{p}
\]

9. Список литературы

[1] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982), eprint http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html (The Millennium Edition)

[2] I. Gelfand, S. Gelfand, V. Retakh, R. Wilson, Quasideterminants, eprint arXiv:math.QA/0208146 (2002)

[3] Александр Клейн, Лекции по линейной алгебре над телом, eprint arXiv:math.GM/0701238 (2010)

[4] Александр Клейн, Введение в математический анализ над телом, eprint arXiv:0812.4763 (2010)

[5] Александр Клейн, Введение в геометрию над телом, eprint arXiv:0906.0135 (2009)

[6] Александр Клейн, Линейное уравнение в конечномерной алгебре, eprint arXiv:0912.4061 (2009)

[7] П. Кон, Универсальная алгебра, М., Мир, 1968
10. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

(\(a\)-\(b\)) - квазидетерминант 7

\(a\)-произведение функциональных матриц 4

\(a\)-произведение функциональных матриц 4

\(a\)-вырожденная матрица линейных отображений 8

\(a\)-квазидетерминант 7

\(a\)-невырожденная матрица линейных отображений 8

\(a\)-невырожденная система линейных уравнений 8

матрица линейных отображений 5

функциональная матрица 4
11. Специальные символы и обозначения

\[\det (a, s^o)^b \] - о-квазидетерминант 7

\[\det (a, s^o) \] - о-квазидетерминант 7

\[b^o_c \] - произведение функциональных матриц 4

\[b^o_c \] - произведение функциональных матриц 4