NEWS AND VIEWS

OPINION

Building strong relationships between conservation genetics and primary industry leads to mutually beneficial genomic advances

STEPHANIE J. GALLA,* THOMAS R. BUCKLEY,†‡ ROB ELSHIRE,§ MARIE L. HALE,* MICHAEL KNAPP,† JOHN MCCALLUM,** ROGER MORAGA,†‡ ANNA W. SANTURE,‡ PHILLIP WILCOX‡‡ and TAMMY E. STEEVES*

*School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; †Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand; ‡School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; §The Elshire Group, Ltd., 52 Victoria Avenue, Palmerston North 4410, New Zealand; ††Department of Anatomy, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand; **Breeding and Genomics, New Zealand Institute for Plant and Food Research, Private Bag 4704, Christchurch 8140, New Zealand; ‡‡AgResearch, Ruakura Research Centre, Bisleys Road, Private Bag 3115, Hamilton 3240, New Zealand; ‡‡‡Department of Mathematics and Statistics, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand

Several reviews in the past decade have heralded the benefits of embracing high-throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g., agriculture, fisheries, forestry and horticulture). Here, we demonstrate how building strong relationships between conservation geneticists and primary industry scientists is leading to mutually-beneficial outcomes for both disciplines. Based on our collective experience as collaborative New Zealand-based scientists, we also provide insight for forging these cross-sector relationships.

Keywords: applied research, conservation genomics, high-throughput sequencing, interdisciplinary research, next-generation sequencing

Received 22 April 2016; revision received 23 August 2016; accepted 24 August 2016

One does not need to read beyond the pages of Molecular Ecology to see how emerging technologies are revolutionizing the way we conduct research in ecology and evolutionary biology (i.e. EEB) and conservation biology. This is exemplified by rapid advances in genomics, where in the span of two decades the field of molecular ecology has grown from using Sanger technologies to sequence single target loci to using high-throughput sequencing (HTS) technologies to affordably sequence entire draft genomes (Narum et al. 2013; Payseur & Rieseberg 2016; Tigano & Friesen 2016). When new technologies become available, there is a tendency for reviews to be published heralding their potential to address new and exciting questions. Beyond the value of these reviews, an even more important conversation needs to take place in the peer-reviewed literature: How do we efficiently incorporate new technologies into our research repertoire to make accelerated gains in applied and fundamental science?

The field of conservation genetics is currently in transition given rapid advancements in HTS technologies. Many reviews have highlighted the promise of embracing HTS technologies in conservation (Luikart et al. 2003; Kohn et al. 2006; Primmer 2009; Allendorf et al. 2010; Avise 2010; Frankham 2010a; Ouborg et al. 2010; Angeloni et al. 2011; Ekblom & Galindo 2011; Funk et al. 2012; McCormack et al. 2013; Narum et al. 2013; Steiner et al. 2013; Ellegren 2014; McMahon et al. 2014; Shafer et al. 2015; Andrews et al. 2016; Benestan et al. 2016; Grueber 2016). However, as recently discussed by Shafer et al. (2015, 2016) and Garner et al. (2016), there are a limited (albeit increasing) number of published empirical studies that apply HTS data to conservation. We are aware of empirical genomic studies in EEB that are applicable to questions in conservation (e.g. Defaveri et al. 2013; Hoffman et al. 2014; Knief et al. 2015; Bérénos et al. 2016; Hess et al. 2016; Prince et al. 2016) and there are many EEB researchers applying their genomics expertise to improve conservation outcomes for threatened species, including two of our co-authors (MK, AWS). In addition to the EEB sphere, there are conservation geneticists (e.g. our co-authors SJG, TRB, MLH, TES) who are successfully venturing into conservation genomics through collaborations with colleagues in another applied discipline well versed in genomics: primary industry (a collective term referring to scientists in agriculture, fisheries, forestry and horticulture; such as our co-authors RE, JM, RM, PW).

Through building these cross-sector relationships, it has become clear that there is immense potential for conservation geneticists and primary industry scientists to collaborate on applied research that addresses aligned questions using similar genomic approaches. In this opinion piece, we use our experience as a collaborative group of New...
Zealand-based scientists to argue that building strong relationships between conservation genetics and primary industry can lead to improved genomic outcomes for both disciplines and offer advice on how to best build meaningful cross-sector relationships.

Conservation genetics and genomics

Before discussing mutually beneficial genomic synergies between conservation genetics and primary industry, we feel it is important to first address what conservation genetics is, what can be gained using a genomic approach and what obstacles may impede geneticists from adopting genomic technologies. Conservation genetics is a subdiscipline of conservation biology (Soule 1985) which uses genetic data to inform the management of threatened species in collaboration with conservation practitioners (Frankham 1995, 2010b; Avise 2008; Haig et al. 2016). While there is overlap between the fields of conservation genetics and EEB, we distinguish conservation genetics as an applied subdiscipline with direct implications for the management of threatened species. Many threatened taxa have experienced significant population declines (i.e. demographic bottlenecks, see Keller et al. 1994), leading to small populations that are susceptible to genetic factors (i.e. loss of genetic diversity, inbreeding and inbreeding depression) associated with extinction risk (Frankham 1995). Conservation geneticists have traditionally used few targeted neutral genetic markers including mitochondrial sequences, microsatellites and amplified fragment length polymorphisms (AFLPs) to measure inbreeding, relatedness and genetic diversity within threatened populations, estimate population genetic structure and gene flow among threatened populations, delineate species boundaries in threatened taxa and detect hybridization and introgression between threatened and nonthreatened species (Allendorf et al. 2010; Ouborg et al. 2010).

Advancements in HTS technologies are enabling the development of genomic resources for threatened species including the de novo assembly and annotation of high-quality reference genomes (e.g. Li et al. 2014; Zhang et al. 2014) and characterization of a large number of genome-wide markers such as single nucleotide polymorphisms (SNPs) (e.g. Benestan et al. 2015; Kraus et al. 2015; Lemay & Russello 2015). For conservation geneticists who have traditionally used small panels of neutral genetic markers to estimate population genetic parameters above and below the species level, HTS technologies are appealing as they enable an affordable means to discover and genotype a large quantity of genome-wide SNPs (Avise 2010; McCormack et al. 2013; Shafer et al. 2015) and these large SNP data sets are more representative of genome-wide variation and can result in higher resolution estimates of population genetic parameters (Väli et al. 2008; Ljungqvist et al. 2010; Santure et al. 2010; Taylor et al. 2015). In the field of conservation genetics and EEB, a small but rapidly growing number of empirical studies have demonstrated the utility of genomic markers in estimating population genetic structure and gene flow (Bowden et al. 2012; Diericks et al. 2015; Lew et al. 2015; Oyler-McCance et al. 2015), estimating relatedness (Béronos et al. 2016), measuring genome-wide diversity (Robinson et al. 2016) and detecting hybridization and introgression (Hohenlohe et al. 2011). We anticipate even more conservation geneticists will begin to embrace HTS technologies as empirical evidence demonstrating the superiority of using genomic markers to inform conservation decisions grows and the costs of doing so diminishes (Box 1).

The paradigm underlying many conservation genetic studies is that a genetically diverse population as measured by neutral genetic markers is also likely to be functionally diverse (Bataillon et al. 1996) and therefore better able to adapt to environmental change (Frankham 2005). While many have aspired to move past this paradigm, it remains entrenched in most conservation genetic studies that use neutral markers (Caballero & García-Dorado 2013; Vilas et al. 2015). As a result of the lack of empirical data on functional genetic diversity in species of conservation interest, beyond studies that include immunocompetence genes like those in the major histocompatibility complex and Toll-like receptors (reviewed in Grueber 2016), it has been difficult to assess the validity of this conservation genetic paradigm. Further, even if supported by empirical data, neutral genetic data might not be a suitable proxy for functional genetic data for threatened species. For example, the translocation of individuals from a large genetically diverse population to supplement a small genetically depauperate population might introduce new genetic diversity (Weeks et al. 2011; IUCN/SSC 2013), but it might also inadvertently lead to outbreeding depression if source and recipient populations are each locally adapted (Edmands 2007; Frankham et al. 2011; but see Frankham 2015; Whiteley et al. 2015; He et al. 2016).

There is exceptional interest in using a conservation genomics approach to detect regions of the genome that underlie phenotypic variation linked to fitness in threatened populations (i.e. adaptive variation; Luikart et al. 2003; Kohn et al. 2006; Ouborg et al. 2010; Angeloni et al. 2011; Harrisson et al. 2014; Shafer et al. 2015). There are several methods available to study adaptive variation, including gene-mapping approaches (i.e. genome-wide association studies or GWAS, and quantitative trait loci mapping or QTL; Slate et al. 2010; Stapley et al. 2010), outlier locus analysis (Luikart et al. 2003; Haasl & Payseur 2016) and selective sweep mapping (Pardo-Diaz et al. 2015). However, determining the genetic basis of phenotypic traits, especially those linked to fitness, is complex, owing to the fact that most fitness-related traits are likely to be controlled by multiple loci (Savolainen et al. 2013) and many are likely to be under at least some environmental influence (Falconer & Mackay 1996; Lynch & Walsh 1998). In addition, the success of these approaches is often contingent on large sample sizes (e.g. Ball 2005) which will be challenging to generate for most species of conservation concern.

While there are challenges associated with the detection of adaptive variation in threatened populations (reviewed in Shafer et al. 2015), there is potential to answer new questions previously not tractable by employing small sets of targeted genetic markers. In particular, an understanding...
Box 1. The costs of using a conservation genomic approach. Perspectives are those of Tammy Steeves.

Since I arrived in New Zealand from Canada in 2004, I have had the privilege of developing conservation genetic management recommendations in collaboration with several Department of Conservation recovery or specialist groups to assist the recovery of endemic taonga (treasured) bird species. To date, these recommendations have been predominantly based on genetic markers, namely mitochondrial sequences or microsatellite genotypes (e.g. Steeves et al. 2010; Hagen et al. 2011; Overbeek et al. 2016). In collaboration with primary industry colleagues in the MapNet community (see Boxes 2 & 3), I recently assessed the direct and indirect costs associated with shifting from a conservation genetic to a conservation genomic approach and decided to develop genomic markers (SNPs) for the endangered tuturuatu/shore plover (*Thinornis novaezelandiae*; Fig. A) and the critically endangered kaki/black stilt (*Himantopus novaezelandiae*; Fig. B). [Colour figure can be viewed at wiley onlinelibrary.com].

Tuturuatu/Shore plover—I was recently invited to be an expert advisor to the Shore Plover Specialist Group. The Specialist Group was interested in sampling captive and wild birds to estimate the extent of population genetic structure and compare levels of genetic diversity, between captive and wild tuturuatu. To achieve this, I knew the cost to develop, screen and genotype ~20 polymorphic species-specific microsatellites for 94 individuals (~10K NZD) would be more than using a reduced-representation approach to simultaneously discover and genotype >20 000 SNPs for the same number of individuals (Elshire et al. 2011; ~8.5K NZD). I also knew it would be possible to expedite the characterization of SNPs if I was able to use a reference-guided approach. As a member of the Avian Genome Consortium, I was aware bird genomes are small, compact and highly conserved (Zhang et al. 2014), and that one of the newly available high-quality bird genomes (killdeer, *Charadrius vociferus*) would likely be an appropriate proxy-reference genome for SNP discovery and genotyping in tuturuatu because both species are members of the Family Charadriidae (Card et al. 2014). Thus, the main driver of my decision to embrace a conservation genomic approach for tuturuatu was to ensure that I could develop a comprehensive postgraduate research project that could deliver pertinent results to the Shore Plover Specialist Group in a timely fashion.

Kaki/Black stilt—As a member of the Kaki Recovery Group, I have used species-specific genetic markers to inform the conservation genetic management of captive and wild kaki populations for many years. For example, I routinely use genetic-based measures of relatedness based on microsatellites to inform captive pairing decisions (as per Hagen et al. 2011). However, emerging evidence indicates genetic-based measures are relatively poor indicators of genome-wide diversity, particularly in genetically impoverished species like kaki, and a better indication of genome-wide diversity should be obtained from genomic-based measures of relatedness based on genome-wide SNPs (Taylor et al. 2015; Willoughby et al. 2015). Thus, the main driver of my decision to generate SNPs for kaki was to establish the Kaki Recovery Programme as an exemplar of ‘best practice’ conservation genomic management.

of the genetic basis of fitness traits will allow more robust predictions of the evolutionary potential of threatened species (Ouborg et al. 2010; Harrisson et al. 2014), including a better understanding of genetic trade-offs between traits that might constrain adaptation (Slate et al. 2010). Further, identifying loci underlying local adaptation is likely to help identify candidate populations for conservation translocations (Seddon 2010; He et al. 2016). Finally, identification of genes responsible for detrimental traits associated with inbreeding depression will have immediate impact on the management of threatened species, especially where matings between individuals are managed (e.g. captive populations; Angeloni et al. 2011; Harrisson et al. 2014; Shafer et al. 2015).

Despite having been available for over a decade (Margulies et al. 2005), a limited number of publications
have applied HTS technologies to conservation (Shafer et al. 2015, 2016; but see Garner et al. 2016), with the term ‘conservation genomics gap’ first being used in 2015 to describe the paucity of conservation geneticists using HTS technologies to inform conservation management (Shafer et al. 2015). While there are a growing number of examples that show how genomic data are being used to inform conservation decisions (Garner et al. 2016; but see Shafer et al. 2016; see Fig. S1, Supporting information) and many conservation geneticists who are currently producing HTS data sets, there has been a substantial time lag between when these techniques have become available and uptake by the conservation research community, especially in comparison with other applied genetic disciplines like primary industry (e.g. agriculture, fisheries, forestry and horticulture; see Fig. 1). In addition, much of the uptake in conservation biology has been restricted to threatened wild fish stocks (Garner et al. 2016; Shafer et al. 2016). Of the 51 articles in Fig. 1 classified as ‘conservation genomics’, 30% pertained to the management of declining, overfished or threatened commercially fished species (e.g. Atlantic salmon, Salmo salar; orange roughy, Hoplostethus atlanticus; delta smelt, Hypomesus transpacificus), which provides an excellent example of how conservation genomic research can also be relevant to other applied scientific disciplines including primary industry (e.g., these articles were classified as both ‘conservation genomics’ and ‘primary industry’ in Fig. 1).

Shafer et al. (2015) predominantly attribute the conservation genomics gap to a persistent disconnect between academia and real-world conservation issues. We agree strong relationships between academics and conservation practitioners are crucial, but argue the conservation genomics gap as defined by Shafer et al. (2015) is more akin to a ‘research-implementation gap’ (Knight et al. 2008; Hogg et al. 2016). Indeed, if strong relationships between academics and conservation practitioners are absent, the likelihood that any research will be translated into conservation action is exceptionally low (Haig et al. 2016). Here, we predominantly attribute the apparent shortage of conservation geneticists using HTS technologies (i.e. the conservation genomics gap sensu stricto) to several interconnected challenges associated with the generation, analysis and interpretation of genomic data.

Prior to identifying these interconnected challenges, we recognize some questions in conservation are still being readily addressed with genetic data (e.g. Dowling et al. 2015; Li et al. 2015a; Facioni et al. 2015; Trask et al. 2015; Cubrinovska et al. 2016; Hammerly et al. 2016; Overbeek et al. 2016). We anticipate studies such as these to persist, at least in the short term, because existing panels of genetic markers remain a sufficient low-cost option in some situations (Angeloni et al. 2011; McCormack et al. 2013; McMahon et al. 2014). Although we acknowledge that direct cost can be a factor contributing to the conservation genomics gap, we do not think it underpins it, especially when reduced-representation approaches (e.g. restriction site-associated DNA sequencing, genotyping-by-sequencing, exome capture and RAD capture; Baird et al. 2008; Elshire et al. 2011; Jones & Good 2016; Ali et al. 2016) make it possible to characterize tens of thousands of SNPs in hundreds of individuals for nonmodel species at a lower cost than developing and screening relatively few novel microsatellite markers (Narum et al. 2013; Andrews et al. 2016; Box 1). Beyond direct cost, the shortage of high-quality reference genomes is an often cited impediment to SNP discovery and genotyping for nonmodel species (e.g. Allendorf et al. 2010; Ouborg et al. 2010; Shafer et al. 2015), particularly when approximate SNP location is of interest (e.g. Kardos et al. 2015). However, an ever increasing number of high-quality and high-coverage genomes are becoming available (Ellegren 2014). It has also become apparent that low-coverage draft genomes (sometimes referred to as ‘landing-pad’ or ‘skim’ genomes), or even high-quality and high-coverage genomes of closely related taxa, can enable reference-guided mapping assembly and SNP characterization in some taxa (Card et al. 2014; Wang et al. 2014). The lack of bioinformatic expertise and pipelines required to analyse large population genomic data sets has also been frequently cited as a challenge that precludes the use of HTS technologies in conservation (e.g. McCormack et al. 2013; Shafer et al. 2015). Steep analytical learning curves are generally associated with new technologies, particularly for rapidly advancing fields like genomics where bioinformatic expertise is needed to analyse large genomic data sets. However, the analysis of large population genomic data sets is no longer exceptional. For example, in regard to SNP discovery and genotyping alone, several comprehensive bioinformatic pipelines are readily available (e.g. Glaubitz et al. 2014; Puritz et al. 2014; Herten et al. 2015; Sovic et al. 2015; Melo et al. 2016).

Depending on the conservation genetics project at hand, one or a combination of the challenges listed above might

![Fig. 1 Number of publications using high-throughput sequencing technologies to generate genomic data in conservation (blue line) and primary industry (red line) from 2005 to 2015. Values for this graph were derived from an ISI Web of Science literature search, using inclusive terminology (see Data S1, Supporting information for details). Curve lines have been smoothed for ease of interpretation. [Colour figure can be viewed at wileyonlinelibrary.com].](image)
impede conservation geneticists from transitioning to HTS technologies. Given the recent developments in HTS technologies and the potential it has for benefiting conservation outcomes, we suggest it is time for researchers to start sharing practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate the conservation genomics gap is to capitalize on emerging synergies between conservation genetics and primary industry, and demonstrate how building strong relationships between these two disciplines is leading to mutually beneficial genomic outcomes.

Strong relationships lead to mutually beneficial genomic advances

Conservation geneticists are skilled at building strong relationships in an interdisciplinary landscape to improve conservation outcomes (Haig et al. 2016; Hogg et al. 2016). However, by pushing the boundaries of the conservation ‘silos’, conservation geneticists will be better able to navigate the conservation genomics gap if they forge novel relationships with scientists that have shared genomic goals, albeit in a different discipline such as primary industry (Fig. 2). As a discipline, primary industry represents a diverse group of scientists from universities, private institutions and government organizations that apply scientific data to the benefit of primary production output (e.g. meat, fish, eggs, dairy, fruits, vegetables, fibres and timber). Some of the early draft genomes were published to improve commercial outcomes, including rice (*Oryza sativa*; Goff et al. 2002), red jungle fowl (*Gallus gallus*; Hillier et al. 2004), silkworm (*Bombyx mori*; Xia et al. 2004) and cattle (*Bos taurus*; Schibler et al. 2004). With these early reference genomes and the accumulation of massive SNP datasets coupled with phenotypic data, many primary industry scientists have years of expertise with the application of genomic data. Approximately 1981 HTS studies using genomic data have been published in primary industry from 2005 to 2015, which outnumbers those produced in conservation biology by more than an order of magnitude (Fig. 1).

Conservation has already benefitted from genomic resources provided by primary industry. For example, genomic resources developed for cattle including the draft genome (Schibler et al. 2004) and the bovine SNP chip (Gunderson et al. 2005; Steemers et al. 2006; Matukumalli et al. 2009) have been used to estimate the extent of introgression from cattle to American bison (*Bison bison*; Halbert et al. 2005), measure genomic variation in American and European bison (*B. bonasus*; Pertoldi et al. 2009) and develop genomic resources for scimitar-horned and Arabian oryx (*Oryx dammah* and *O. leucoryx*, respectively; Ogden et al. 2012). Similarly, genomic resources developed for domestic sheep (*Ovis aries*) have been used to describe genome-wide diversity and assess genetic rescue for bighorn sheep (*Ovis canadensis*; Poissant et al. 2009; Miller et al. 2012). Of course, there are species of mutual interest to both conservation and primary industry, including species in the fishery and forestry sectors (e.g. Monterey pine, *Pinus radiata* D.Don; New Zealand tōtara, *Podocarpus spp*.; chinook salmon, *Oncorhynchus tshawytscha*; orange roughy, *Hoplostethus atlanticus*), and therefore, genomic resources produced by one discipline can be easily used by the other (Dillon et al. 2013; Larson et al. 2014; Marshall et al. 2015; da Silva et al. 2015). We anticipate conservation geneticists may opt to use closely related commercial or model species to inform adaptive variation studies in threatened species, given that genemapping approaches are contingent on large sample size (Ball 2005; see discussion above) and the small census size of threatened populations may be inadequate.

Collaborations between conservation geneticists and primary industry scientists are logical because researchers in these two disciplines are beginning to address similar questions in an applied genetic discipline (see Table 1). For example, primary industry scientists have been using neutral genome-wide SNPs to calculate inbreeding coefficients in domestic sheep (Li et al. 2011), reconstruct parentage assignments in cattle (Hayes 2011) and calculate diversity measures for genetic improvement in poultry (red jungle fowl, *Muir et al. 2008*; domestic turkey, *Meleagris gallopavo*, Aslam et al. 2012). Pipelines that have been used or developed to address these questions in commercial species are likely to be of interest to conservation geneticists, but are sometimes published in discipline-specific peer-reviewed journals such as the *Journal of Dairy Science* or *Plant Biotechnology Journal* (e.g. Allen et al. 2012; Li et al. 2015).

![Fig. 2 Simplified schematic detailing how relationships between conservation genetics and primary industry are leading to mutually beneficial outcomes. In black arrows, genomic expertise from primary industry advances conservation genetics, which in turn informs conservation biology and conservation management and policy. In white arrows, biodiversity expertise informs primary industry research, which in turn improves primary production. [Colour figure can be viewed at wileyonlinelibrary.com.](#)

© 2016 The Authors. *Molecular Ecology* Published by John Wiley & Sons Ltd.
Similarly, there are some conservation genomic articles from nonacademic sources that are not represented in peer-reviewed literature (Garner et al. 2016). These examples highlight how relationships between conservation genetics and primary industry scientists can enable the dissemination of discipline-specific publications and will allow scientists from both disciplines to learn about recently developed pipelines.

Understanding the genetic basis of desired commercial traits is also a main focus in primary industry (Womack 2005; Tuberosa & Salvi 2006; Sellner et al. 2007; Collard & Mackill 2008; Hu et al. 2013; Begum et al. 2015; Li et al. 2015b; Zhang et al. 2015; Zhou et al. 2015; Boocock et al. 2015; Wang et al. 2015; Wuerschum et al. 2015; Li et al. 2011; Herrero-Medrano et al. 2012; Siliö et al. 2016; Dodds et al. 2015). In turn, these gene-mapping approaches have been successfully applied to understanding the genetic basis of ecologically relevant traits in wild populations (Schielzeth & Husby 2014). While there are numerous research groups outside of primary industry exploring adaptive variation (e.g. Rietveld et al. 2013; Brachi et al. 2015; Chaves et al. 2016), we anticipate that conservation geneticists in particular will benefit from forging relationships with primary industry scientists given that both groups work in an applied discipline with species characterized by small effective population sizes. Additionally, there is potential for conservation geneticists to adopt a genomic selection approach (e.g. Hayes et al. 2009; Heffner et al. 2009) to generate breeding values to inform the selection of individuals for captive breeding. Lastly, we recognize that both conservation geneticists and primary industry researchers routinely work with species with complex genomes (Clevenger et al. 2015), and therefore researchers from these two disciplines have an opportunity to work together and think of creative bioinformatic solutions for species that present bioinformatic challenges (Box 3). Given these commonalities, synergies between both conservation genetics and primary industry can lead to the development of improved HTS techniques and pipelines to address mutual problems in species of both conservation and commercial interest (Boxes 2 and 3; Table 1).

Relationships between conservation geneticists and primary industry scientists can result in improved commercial outcome for primary species as well. Conservation geneticists strive to preserve genetic diversity and the ecological and evolutionary processes that generate it (Groom et al. 2006; Haig et al. 2016). There is growing discussion among primary industry scientists regarding the need for commercial breeding programs to maximize genetic diversity and minimize inbreeding (Medugorac et al. 2009; Windig & Engelsma 2010; Joost et al. 2011; Lenstra et al. 2012; Pryce et al. 2012; Kristensen et al. 2015). Livestock and crops are often of a small effective population size (i.e. Ne < 100) due to many generations of artificial selection for desired traits and are thus susceptible to loss of genome-wide variation via inbreeding and genetic drift (Windig & Engelsma 2010; Leroy et al. 2013; Kristensen et al. 2015; Jiménez-Mena et al. 2016; Shepherd et al. 2016). There is evidence for inbreeding depression in rare breeds, such as cashmere goats (Capra aegagrus; Dai et al. 2015), Iranian Guilan sheep (Eteqadi et al. 2015) and Iberian pigs (Sus scrofa; Saura et al. 2015). There is also an increasing awareness of the risks associated with deploying very few genotypes, particularly in the presence of novel crop pathogens (Kim et al. 2015) and an increasing concern among rare breeds regarding the loss of genetic variation associated with traits that might be useful in future markets (e.g. Catalan donkey Equus africanus, Gutierrez et al. 2005; Famennoise poultry, Moula et al. 2009; black Slavonian pigs, Luković et al. 2012). Conservation geneticists have many years of expertise regarding the conservation genetic management strategies for threatened species (Frankham 2010a). As a result, conservation geneticists can

Table 1 Common genomic issues facing conservation genetics and parallel examples addressed by scientists in primary industry

Topic	Challenge for conservation genomics	Examples of corresponding research from primary industries
Polyplid genomes	Developing effective tools for genome-wide SNP discovery and genotyping for plants, invertebrates and some vertebrates with polyploid genomes	Genome-wide SNP studies on polyploids including wheat, cotton, potato and peanut
Genetic basis of adaptive variants	Discovery of variants underpinning traits of relevance to conservation including adaptive variation	Trait mapping for economically important traits using GWAS and QTL mapping in rice, dairy cattle, pig and soybean
Gene copy number variation	Quantifying genome-wide copy number variation and estimating its contribution to phenotypic variation	Quantifying genome-wide copy number variation and estimating its contribution to economically important traits in apple, pig, wheat
Inbreeding and relatedness	Measuring inbreeding (f), detecting inbreeding depression and estimating relatedness (r) for small populations to maintain evolutionary potential	Measuring inbreeding (f), detecting inbreeding depression and estimating relatedness (r) in sheep, pigs and salmon to enhance traits for commercial selection

1. Clevenger et al. (2015), Allen et al. (2012), Byers et al. (2012), Uitde Vijligen et al. (2013), Bertoli et al. (2014), Collard & Mackill (2008), Hu et al. (2013), Begum et al. (2015), Li et al. (2015b), Zhang et al. (2015), Zhou et al. (2015), Boocock et al. (2015), Wang et al. (2015), Wuerschum et al. (2015), Li et al. (2011), Herrero-Medrano et al. (2012), Siliö et al. (2016), Dodds et al. (2015).

© 2016 The Authors. *Molecular Ecology* Published by John Wiley & Sons Ltd.
In 2007, I joined the Buckler Lab at Cornell University and the next-generation sequencing revolution simultaneously. My first task was to develop a new library preparation method for the nascent Illumina sequencing platform. The technology was not nearly as robust as it is today and the reads were very short (i.e. 32 bp in length). Our challenge was to sequence the nonrepetitive fraction of the maize (Zea mays) genome. To do that, we used a combination of digestion by restriction enzymes and gel-based size selection to exclude the repetitive fraction. The data generated formed the basis for the first Maize Hapmap paper (Gore et al. 2009). When that project neared completion, I was tasked with building a low-cost, high-throughput genotyping method as an extension of my previous work. The overall goal was to develop a genotyping system that would allow simultaneous marker discovery and genotyping and also address the issue of marker discovery bias. Other researcher groups at the time were developing similar methods, as there was a high demand for an affordable and reproducible method of genotyping and it was the next logical thing to try. One aim was to provide enough genetic markers at the right price point to enable plant breeding by genomic selection. To maximize the benefit of our work and encourage others to take what we did and create new methods appropriate for new questions, we made our work openly available. The resultant genotyping-by-sequencing (GBS) method was published in *PLoS One* in 2011 (Elshire et al. 2011).

We achieved our goal of developing a new genotyping method that was inexpensive, both in terms of cost per sample and cost per data point (i.e. fractions of a cent per marker). The low-cost and high-throughput nature of GBS allows plant breeders to genotype thousands of plants per cycle in genomic selection driven breeding programs (He et al. 2014). Primary industry programs in animal breeding have also taken up GBS. Unlike microsatellites or SNP chips, no previously generated genomic resources are necessary to deploy GBS. This allows researchers working in nonmodel species, such as orphan crops (i.e. crops of regional commercial importance, but not global), to take advantage of powerful genomic tools (Varshney et al. 2012). The situation for researchers in ecology and conservation biology is not dissimilar to that of those working with orphan crops. The budgets are small, resources meagre and the questions are of local importance with small (if any) obvious economic returns. It is no wonder that ecologists were among the earliest adopters of GBS.

During the development of the GBS, we tested it on species other than maize. Confident that it worked in a variety of kingdoms, we welcomed interested early adopters to the laboratory for assistance. Two of those early adopters worked in the ecology space. Dr. Thomas White worked with the invasive bank vole (Myodes glareolus, White et al. 2013) in Ireland which had small sample sizes and no reference genome. Dr. Nancy Chen studied the Florida scrub jay (Aphelocoma coerulescens) and developed a method using GBS data and Mendelian inheritance to improve SNP discovery (Chen et al. 2014). It became clear that we had developed a generally useful genomics research tool and it could be used by researchers across disciplines. We had already published the method in an open-access journal and provided analysis software under a free software licence. To allow researchers to more easily use this technology, we set up a GBS service at Cornell. By early 2016 the Cornell service had performed GBS analysis on over 1500 species.

After our initial GBS publication, a plethora of method modifications and additional software tools have emerged. The recently published epiGBS method (van Gurp et al. 2016) allows the interrogation of the methylole and does not require a reference genome, thereby extending the utility of the base method greatly. The GBSX toolkit (Herten et al. 2015) is a set of software designed to assist in the design of GBS based experiments. Many software packages have been developed to analyse GBS data (e.g. Tassel-Uneak, STACKS, GBS-SNP-CROPS, GLBPSS; Lu et al. 2013; Catchen et al. 2013; Hapke & Thiele 2016; Melo et al. 2016) that are appropriate for species without reference genomes. Extensions to the molecular method and new software tools make these types of genomics approaches more broadly accessible; however, barriers to using this technology still exist in many disciplines, including the cost of laboratory and informatics setup and reservations in transitioning to new analytical tools.

Marker technology adoption has a long tail distribution. In 2013, I gave a talk on GBS at the *Molecular Markers in Horticulture Symposium*. Perusing the poster session, I found that researchers were using every type of marker technology that I knew about: from isozymes to GBS. Why were some researchers using cutting edge technologies? Why were others using antiquated, expensive and low information content technologies? Researchers in conservation genomics are in a similar situation. Across disciplines, the biological sciences are encountering rapidly changing technologies and increasingly larger data sets. Industry service providers with expert knowledge and experience, like my small New Zealand-based company (Elshire Group, Ltd.) and many others, can help bridge the gap. By developing relationships spanning human health, primary industry and conservation, as well as actively participating in research communities like MapNet (Box 3), we can work together to expedite the adoption of genomic technologies applicable to the questions at hand, effectively, efficiently and with confidence.
Box 3. Building strong interdisciplinary relationships: MapNet and VISG. Perspectives are those of Phil Wilcox.

MapNet is a genomics collaboration that was formed in 2005 by a collective of New Zealand-based researchers from agriculture, horticulture, forestry and human medical genetics that quickly identified analytical gaps in international statistical genetics research. In response, MapNet members formed the Virtual Institute of Statistical Genetics (i.e. VISG) in 2007 and successfully obtained research funding to address these gaps. Through these synergies, methods developed for large human data sets (e.g. CNVrd, CNVrd2, selectionTools; Nguyen et al. 2013, 2014; Cadzow et al. 2014) have been successfully applied to apple (Malus pumila) data to identify genes of interest in commercial species (e.g. Boocock et al. 2015). Other workflows, such as the selectionTools pipeline developed and applied to human data sets such as the 1000Genomes human data (Cadzow et al. 2014), are applicable to other out-crossed species where genetic maps are available. Recently, these relationships have also expanded to include cross-sector projects with scientists from the EEB and conservation genetics sector, who are able to provide insight into how these pipelines can be more broadly applicable to other applied genetic disciplines.

Critical for these cross-sector collaborations is effective and ethical behaviours among researchers, distributed leadership, commitment to an explicitly articulated vision, and effective resourcing for method development and testing. Ongoing cost reductions in both high-throughput sequencing and genotyping will constantly challenge data analyses. Thus, collaborations among researchers in primary industry, human medical genetics, EEB and conservation genetics are an effective option to develop and apply genomic methods in a financially limited environment. The benefits of the above-mentioned collaborations would ensure (a) relevant data analysis tools could be produced by adding relevance and utility to primary-sector researchers proposing to develop such tools, and (b) providing a platform for more efficient utilization of resources such as laboratory spaces and analytical capabilities, further reducing costs and therefore increasing data generation capacity. Collaborating with primary-sector researchers working on closely related species would also benefit conservation genetics by improving efficiency. In some cases, the same species may be endangered within its natural range, but be of commercial value in other regions – such as Pinus radiata D. Don, which is widely planted as an exotic in the southern hemisphere but endangered in its natural range in Baja and northern California. An additional benefit of such collaborations is valuable experience and learnings from primary-sector colleagues regarding experiment design, data analyses and interpretation of results. The MapNet collective was formed and run at essentially no cost, by utilizing the resources of collaborating institutions and labour of those who were committed to this initiative, thus such cross-sector networks are easy to establish and operate – and often professionally rewarding for all involved.

provide this biodiversity expertise to commercial species for improved primary production (Fig. 2).

Conservation biologists and primary industry scientists also share similar goals regarding how best to mitigate the impact of climate change (Kristensen et al. 2015). For example, plant and animal breeders are prioritizing the selection of heat-tolerant plants (Ye et al. 2015) and low-emission animals (Hayes et al. 2013) and conservation scientists are debating a role for intentional introgression of desired phenotypic traits (e.g. heat tolerance) among locally adapted species or populations (Hamilton & Miller 2015; Kovach et al. 2016; Miller & Hamilton 2016). Given these shared goals, there is merit for scientists in primary industry and conservation to work together to maintain the evolutionary potential of commercial and threatened species in a changing climate.

A compelling rationale for building strong relationships between primary industry and conservation biology is that scientists in both disciplines conduct applied genetic research. Whereas primary industry scientists respond to the needs of primary industry practitioners (i.e. plant and animal breeders, farmers, fishermen and loggers), conservation scientists respond to the needs of conservation practitioners (i.e. wildlife managers and policy makers; Gordon et al. 2014; Haig et al. 2016). Considering the research-implementation gap that has been discussed in conservation genetic and genomic literature (Knight et al. 2008; Laikre et al. 2010; Shafer et al. 2015; Taylor & Soanes 2016), researchers from conservation genetics and primary industry can collaborate on how to best communicate research needs and results between scientists and practitioners. In the policy arena, both conservation geneticists and primary industry scientists work to develop improved policy regarding the utilization and dissemination of genetic and genomic information (e.g. the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization, https://www.cbd.int/abs; the International Treaty on Plant Genetic Resources for Plants for Food and Agriculture, http://www.planttreaty.org) and we anticipate that relationships between the two disciplines will allow for discussion on how to best form policy regarding the application of genomic information to threatened and commercial species.

Cross-sector collaborations will provide exciting opportunities to strategize how best to engage with stakeholders (e.g. private landowners, local governments and research-funding bodies; Jacobson & Duff 1998; Dubbeling & Merzthal 2006); but where we see an even greater opportunity for considerable gains is for conservation geneticists...
and primary industry scientists to learn from one another about the importance of building meaningful partnerships with local and indigenous communities. Partnering with these communities enriches conservation and primary industry science because it creates research projects that are informed by the traditional knowledge and needs of these communities from the initial research proposal to the final report. In New Zealand, scientists and practitioners have clear directives to engage with Māori (indigenous peoples of Aotearoa/New Zealand) regarding the management of taonga (treasured) species (i.e. Ko Aotearoa Tenei/This is New Zealand, conventionally known as WAI 262, http://www.waitangitribunal.govt.nz/) and various approaches have been developed to facilitate such engagement (Tipene-Matua & Henaghan 2007; Wilcox et al. 2008; Hudson et al. 2010). In addition, researchers are required to consult with relevant Māori tribes (iwi or hapū) when applying to receive permits for scientific research on taonga species from the Department of Conservation. New Zealand endemic species of cultural importance include threatened species (e.g. tuturuatu/shore plover and kaki/black slit; Box 1) and commercial species (e.g. kītāi/green-lipped mussel/Greenshell™ mussel, Perna canaliculus), and therefore, we urge conservation genetic and primary industry scientists to collaborate on how to build productive partnerships with relevant Māori communities to develop research that is responsive to the needs and expectations of those communities. Beyond New Zealand, researchers based in any of the 92 countries around the world that are signatories to the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization (https://www.cbd.int/abs/) have an opportunity to do the same. However, we argue that as global citizens, all scientists should be acting as if their country was a signatory, because as we get closer to generating population genomic data sets that include whole genomes for species of cultural importance we need to be more aware of how these genomic resources can affect and benefit local and indigenous communities.

Moving forward

While multitasking empirical research, relationships with practitioners, stakeholders and interdisciplinary partnerships can be cumbersome, we are confident that the biggest gains in both conservation genetics and primary industry will be made under this approach. Given the mutual problems that can be solved when conservation geneticists and primary industry scientists work together, we encourage scientists in both disciplines to be leaders in interdisciplinary research and we offer the following advice on how to best forge these relationships:

Get out of your silo

The first step to building successful interdisciplinary relationships is for researchers to get out of their silos and meet people with aligned research goals across disciplines. To accomplish this task for conservation genetics and primary industry, we advocate for small (<100 people) and diverse cross-sector meetings that allow participants from academia, government agencies and private institutions to actively engage with every presentation, especially those outside of their silos. In a New Zealand context, annual meetings such as MapNet (see Box 3), the Canterbury ‘Omics Symposium and the Queenstown Research Week exemplify small, diverse, cross-sector meetings that allow scientists from both conservation and primary industry to meet and expand their research networks. For larger countries, these diverse and small meetings might be more effective on a regional vs. a national level. In addition to meetings, we encourage conservation geneticists and primary industry scientists to attend genomic and networking workshops to meet people with aligned vision for genomic research, albeit in another discipline.

Practice leadership in interdisciplinary research

The second step to forging mutually beneficial partnerships between conservation and primary industry is to actively communicate with and collaborate with researchers outside of one’s silo. Doing so invariably requires leadership, respect and motivation to tackle shared problems (see Table 1), generally by expanding your own research program to incorporate collaborative interdisciplinary projects between conservation and primary industry (e.g. Banks 2004; Kowler & Bradshaw 2007; Hobbs et al. 2008; Blank 2013; Sardinas & Kremen 2015; Box 3). Upon launching these collaborations, it is essential that leaders from both parties open an honest dialog concerning expectations, limitations and potential hindrances to interdisciplinary work such as intellectual property issues. If collaborative groups choose to develop new methods or bioinformatic pipelines, we encourage these groups to test these tools on different species representing a wide range of genomic complexities (i.e. ploidy levels, genome size and number of repetitive elements, see Table 1) so these tools are robust and widely applicable to any research study (see also Boxes 2 and 3). We also advocate for these collaborative groups to develop methods and pipelines that are open source (see Box 2), which inspires others to use and improve upon cross-disciplinary tools. Pursuing co-funding opportunities between conservation and primary industry can be an excellent means of building mutually beneficial research collaborations, especially given that most grant providers favour collaborative proposals that tackle complex problems with broad research impact (Ledford 2015; but see also Bromham et al. 2016). Worldwide, there are groups that are forming to tackle complex problems through an interdisciplinary approach, including the Virtual Institute of Statistical Genetics (see Box 3) and Te Pūnaha Matatini (translated to ‘the meeting place of many faces’, http://www.tepunahamatatini.ac.nz/). As leaders from conservation and primary industry initialize interdisciplinary research, we encourage the formation and utilization of these groups to facilitate the scientific process and encourage the involvement of new partners.

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Promote a community of interdisciplinary research

Leaders in both the conservation and primary industry sphere can go beyond collaborating with interdisciplinary scientists to promote a culture of interdisciplinary research. To accomplish this, we encourage editorial teams at conservation and EEB journals with a broad readership like *Molecular Ecology* to periodically invite perspective articles from colleagues in primary industry. We equate this approach to the recent decision made by the editorial team at *Animal Conservation* to invite submissions from conservation practitioners so conservation academics can better understand the needs and challenges of real-world conservation (Gordon et al. 2014). Leaders who are organizing meetings and conferences in primary industry, conservation and genomics can strive to incorporate cross-sector talks and break down organizational silos by minimizing field-specific sessions, as proposed by Taylor & Soanes (2016) and practised by cross-sector meetings like MapNet (see Box 3). We also challenge scientists in both primary industry and conservation to become good interdisciplinary mentors to promote a culture of interdisciplinary research. This can involve mentors in conservation and primary industry promoting genomic seasonal internships or research positions to students in different silos. Not only will this encourage an interdisciplinary field, but it will also produce well-rounded and informed early-career researchers with excellent interpersonal skills and a network of colleagues to help solve shared problems.

After relationships between conservation genetics and primary industry are forged, we do not anticipate relationships will end once genomic gains are made in both disciplines. Instead, we envision these relationships will continue to grow and enable both disciplines to problem-solve and incorporate new technologies for the improvement in threatened and commercial species. With other emerging techniques being discussed and used in both conservation and primary industry, including other -omic techniques (e.g. transcriptomics, proteomics, metabolomics; Diz & Calvete 2016; Todd et al. 2016), epigenetic studies (Verhoeven et al. 2016) and genome editing (Johnson et al. 2016), we expect conservation genetics and primary industry to continue to collaborate and solve mutual problems while incorporating new technologies in applied disciplines.

We are confident that building strong interdisciplinary relationships will enable genomic advances in both conservation genetics and primary industry. However, we appreciate our colleagues in the global conservation community may be pursuing different strategies to successfully navigate the transition from genetics to genomics and we look forward to hearing about them in due course. In the meantime, our hope is that new technologies including genomics will be effectively incorporated into applied genetic disciplines like conservation and primary industry, because there is much to gain using HTS technologies to improve outcomes for the world’s threatened and commercial species.

Acknowledgements

We appreciate the constructive insights from all anonymous reviewers of this article, particularly in regard to comments that helped us shape the action plan for interdisciplinary research between conservation genetics and primary industry. We thank Margaret Paterson, Mauricio Gonzales Chang and Iлина Cubrinovska for their assistance with the literature search. We are grateful to Paul Gardner for inspiring this manuscript. We acknowledge Marty Faville for his valuable discussion. Finally, we thank Leonie Heyder for the tuturutuatu image.

References

Ali OA, O’Rourke SM, Amish SJ et al. (2016) RAD capture (capture): flexible and efficient sequence-based genotyping. *Genetics*, 202, 389–400.

Allen AM, Barker GL, Wilkinson P et al. (2012) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (*Triticum aestivum* L.). *Plant Biotechnology Journal*, 11, 279–295.

Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. *Nature Reviews Genetics*, 11, 697–709.

Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics*, 17, 81–92.

Angeloni F, Wagemaker N, Vergeer P, Ouborg J (2011) Genomic toolboxes for conservation biologists. *Evolutionary Applications*, 5, 130–143.

Aslam ML, Bastaansena JW, Ellerink MG et al. (2012) Whole genome SNP discovery and analysis of genetic diversity in Turkey (*Meleagris gallopavo*). *BMC Genomics*, 13, 591.

Aulchenko S, de Koning D, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. *Genetics*, 177, 577–585.

Avise JC (2008) The history, purview, and future of conservation genetics. In: *Conservation Biology: Evolution in Action* (eds Carroll SP, Fox CW), pp. 5–15. Oxford University Press, Oxford.

Avise JC (2010) Perspective: conservation genetics enters the genomics era. *Conservation Genetics*, 11, 665–669.

Baird NA, Etter PD, Atwood TS et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. *PLoS ONE*, 3, e3376.

Ball RD (2005) Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. *Genetics*, 170, 859–873.

Banks JE (2004) Divided culture: integrating agriculture and conservation biology. *Frontiers in Ecology and the Environment*, 2, 537–545.

Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. *Genetics*, 144, 409–417.

Begum H, Spindel JE, Lalusin A et al. (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (*Oryza sativa*). *PLoS ONE*, 10, e0119873.

Benestan LM, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L (2015) RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (*Homarus americanus*). *Molecular Ecology*, 24, 3299–3315.
Benestan LM, Ferchaud L, Hohenlohe PA et al. (2016) Conservation genomics of natural and managed populations: building a conceptual and practical framework. *Molecular Ecology*, 25, 2967–2977.

Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2016) Genomic analysis reveals depression due to both individual and maternal inbreeding in a free-living mammal population. *Molecular Ecology*, 25, 3152–3168.

Bertioli DJ, Ozias-Akins P, Chu Y et al. (2014) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. *G3*, 4, 89–96.

Blank PJ (2013) Northern bobwhite response to conservation reserve program habitat and landscape attributes. *The Journal of Wildlife Management*, 77, 68–74.

Boocock J, Chapne D, Merriman TR, Black MA (2015) The distribution and impact of common copy-number variation in the genome of the domesticated apple, *Malus × domestica* Borkh. *BMC Genomics*, 16, 848.

Bowden R, MacFie TS, Myers S et al. (2012) Genomic tools for evolution and conservation in the chimpanzee: *Pan troglodytes schweinfurthii* is a genetically distinct population. *PLoS Genetics*, 8, e1002504.

Brachi B, Meyer CG, Villouttreix R et al. (2015) Coselected genes determine adaptive variation in herbivore resistance throughout the native range of *Arabidopsis thaliana*. *Proceedings of the National Academy of Science*, 112, 4032–4037.

Bromham L, Dinunzio R, Hua X (2016) Interdisciplinary research has consistently lower funding success. *Nature*, 534, 684–687.

Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012) Genome assemblies. In: *Animal Health and Production*, chap. 29, p. 3152. *8*.

Cubrinovska I, Massaro M, Hale MI (2016) Assessment of hybridization between the endangered Chatham Island black robin (*Petroica traversi*) and the Chatham Island tomtit (*Petroica macrocephala chathamensis*). *Conservation Genetics*, 17, 259–265.

Dai S, Wang C, Wang Z et al. (2015) Inbreeding and its effects on fleece traits of inner Mongolia cashmere goats. *Small Ruminant Research*, 128, 50–53.

Defaveiri J, Viitanemi H, Leder E, Merila J (2013) Characterizing genic and nongenic molecular markers: comparison of microsatellites and SNPs. *Molecular Ecology Resources*, 13, 377–392.

Diericks EG, Shultz AJ, Sato F, Hiraoaka T, Edwards SV (2015) Morphological and genomic comparisons of Hawaiian and Japanese black-footed albatrosses (*Phoebastria nigripes*) using double digest RADseq: implications for conservation. *Evolutionary Applications*, 8, 662–678.

Dillon SK, Nolan MF, Matter P, Gapare WJ, Bragg JG, Southerton SG (2013) Signatures of adaptation and genetic structure among the mainland populations of *Pinus radiata* (D. Don) inferred from SNP loci. *Tree Genetics & Genomes*, 9, 1447–1463.

Dzd AP, Calvette JF (2016) Ecological proteomics: is the field ripe for integrating proteomics into evolutionary ecology research? *Journal of Proteomics*, 135, 1–3.

Dodds KG, McEwan JC, Brauning R et al. (2015) Construction of relatedness matrices using genotyping-by-sequencing data. *BMC Genomics*, 16, 1047.

Dowling TE, Anderson CD, Marsh PC, Rosenburg MS (2015) Population structure in the roundtail chub (*Gila robusta* complex) of the Gila River Basin as determined by microsatellites: evolutionary and conservation implications. *PLoS ONE*, 10, e0139832.

Dubbeling M, Merzthal G (2006) Sustaining urban agriculture requires the involvement of multiple stakeholders. In: *Cities Farming for Future*, 1–20. IDRC and IIRR Publishing, Ottawa, CA.

Edmonds S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding depression for conservation and management. *Molecular Ecology*, 16, 463–475.

Eklom R, Calindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. *Heredity*, 107, 1–15.

Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. *Trends in Ecology and Evolution*, 29, 51–63.

Elshire RJ, Glaubitz JC, Sun Q et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. *PLoS ONE*, 6, e19379.

Ettejadi B, Hossein-Zadeh NG, Shadparvar AA (2015) Inbreeding effects on reproductive traits in Iranian Guilan sheep. *Tropical Animal Health and Production*, 47, 533–539.

Falconer DS, Mackay TFC (1996) *Introduction to Quantitative Genetics*, 4th edn. Longman, Essex.

Frankham R (1995) Conservation genomics. *Annual Review of Genetics*, 29, 305–327.

Frankham R (2005) Genetics and extinction. *Biological Conservation*, 126, 131–140.

Frankham R (2010a) Where are we in conservation genetics and where do we need to go? *Conservation Genetics*, 11, 661–663.

Frankham R (2010b) Challenges and opportunities of genetic approaches to biological conservation. *Biological Conservation*, 143, 1919–1927.

Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. *Molecular Ecology*, 24, 2610–2618.

Frankham R, Ballou JD, Eldridge MD et al. (2011) Predicting the probability of outbreeding depression. *Conservation Biology*, 25, 265–275.

Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. *Trends in Ecology and Evolution*, 27, 489–496.

Garner BA, Hand BK, Amish SJ et al. (2016) Genomics in conservation: case studies and bridging the gap between data and application. *Trends in Ecology and Evolution*, 31, 81–83.

George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. *Genetics*, 156, 2081–2092.
Keller LF, Arcese P, Smith JNM, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. *Nature*, 372, 356–357.

Kim HB, Joa JH, Song KJ (2015) Current status and prospects of kiwifruit (*Actinidia chinensis*) genomics. *Journal of Plant Biotechnology*, 42, 342–349.

Knief U, Hemmrich-Stanisak G, Wittig M et al. (2015) Quantifying realized inbreeding in wild and captive animal populations. *Heredity*, 114, 397–403.

Knight AT, Cowling RM, Rouget M, Balmford A, Lombard AT, Campbell BM (2008) Knowing but not doing: selecting priority conservation areas and the research-implementation gap. *Conservation Biology*, 22, 610–617.

Knowler D, Bradshaw B (2007) Farmer’s adoption of conservation agriculture: a review and synthesis of recent research. *Food Policy*, 32, 25–48.

Kohn MH, Murphy WJ, Ostrander EA, Wayne RK (2006) Genomics and conservation genetics. *Trends in Ecology and Evolution*, 21, 629–637.

Kovach RP, Luikart G, Lower WH, Boyer MC, Muhlfeld CC (2016) Risk and efficacy of human-enabled interspecific hybridization for climate-change adaptation: response to Hamilton and Miller (2016). *Conservation Biology*, 30, 428–430.

Kraus RH, Vonholdt B, Cocchiaroar B et al. (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. *Molecular Ecology Resources*, 15, 295–305.

Kristensen TN, Hoffmann AA, Pertoldi C, Stron CV (2015) What can livestock breeders learn from conservation genetics and vice versa? *Frontiers in Genetics*, 6, 1–12.

Laikre L, Allendorf FW, Aroner LC et al. (2010) Neglect of genetic diversity in implementation of the convention on biological diversity. *Conservation Biology*, 24, 86–88.

Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014) Genotyping by sequencing resolves shallow population structure to inform conservation of chinook salmon (*Oncorhynchus tshawytscha*). *Evolutionary Applications*, 7, 355–369.

Ledford H (2015) Team science. *Nature*, 525, 308–311.

Lemay MA, Russello MA (2015) Genetic evidence for ecological divergence in kokanee salmon. *Molecular Ecology*, 24, 798–811.

Lenstra JA, Groeneveld LF, Eding J et al. (2012) Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. *Animal Genetics*, 43, 483–502.

Leroy G, Mary-Huard T, Danvy S, Charvolin E, Danchin-Burge C (2013) Methods to estimate effective population size using pedigree data: examples in dog, sheep, cattle, and horse. *Genetics Selection Evolution*, 45, 1.

Lew RM, Finger AJ, Baerwald MR, Goodbla A, May B, Meek MH (2015) Using next-generation sequencing to assist a conservation hatchery: a single-nucleotide polymorphism panel for the genetic monitoring in Europe based on noninvasively collected samples. *Molecular Ecology Resources*, 15, 295–305.

Li X, Buitenhuis AJ, Lund MS et al. (2015b) Joint genome-wide association study for milk fatty acid traits in Chinese and Danish Holstein populations. *Journal of Dairy Science*, 98, 8152–8163.

Ljungqvist M, Åkesson M, Hansson B (2010) Do microsatellites reflect genome-wide genetic diversity in natural populations? A comment on Våli et al. (2008). *Molecular Ecology*, 19, 851–855.

Lu F, Lipka AE, Glauzibit J et al. (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. *PLoS Genetics*, 9, e1003215.

Luikart G, England FR, Tallmon D, Jordan S, Taperlet P (2003) The power and promise of population genomics: from genotyping to genome typing. *Nature Reviews Genetics*, 4, 981–994.

Luciević Z, Karolj D, Kilićan V, Mahnet Z, Skorput D (2012) Genetic parameters and trends for litter size in Black Slavonian pigs. 7th International Symposium on the Mediterranean Pig, ISBN: 2-85352-488-4.

Lynch M, Walsh B (1998) *Genetics and Analysis of Quantitative Traits*. Sinauer Associates, Sunderland.

Margules M, Egholm M, Altman WE et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. *Nature*, 437, 376–380.

Marshall C, Chagné D, Deusch O et al. (2015) A DNA-based diagnostic for differentiating among New Zealand endemic *Podarcus*. *Tree Genetics & Genomes*, 11, 1–13.

Matukumalli LK, Lawley CT, Schnabel RD et al. (2009) Development and characterization of a high density SNP genotyping assay for cattle. *PLoS ONE*, 4, e53590.

McCormack JE, Hird SM, Zeller AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. *Molecular Phylogenetics and Evolution*, 66, 526–538.

McMahon BJ, Teeling EC, Hoglund J (2014) How and why should we implement genomics into conservation? *Evolutionary Applications*, 7, 999–1007.

Medugorac I, Medugorac A, Russ I et al. (2009) Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. *Molecular Ecology*, 18, 3394–3410.

Melo ATO, Bartaula R, Hale I (2016) GBS-SNP-CROP: a reference-assisted panel for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. *BMC Bioinformatics*, 17, 29.

Miller JM, Hamilton JA (2016) Interspecies hybridization in the conservation toolbox: response to Kovach et al. 2016. *Conservation Biology*, 30, 431–433.

Miller JM, Poissant J, Hogg JT, Coltman DW (2012) Genomic consequences of genetic rescue in an insular population of bighorn sheep (*Ovis canadensis*). *Molecular Ecology*, 21, 1583–1596.

Moul A, Antoine-Moussaiaux N, Farnir F, Leroy P (2009) Evaluation of the production performances of an endangered local poultry breed, the famennoise. *International Journal of Poultry Science*, 8, 389–396.

Muir WM, Wong GKS, Zhang Y et al. (2008) Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. *Proceedings of the National Academy of Science*, 105, 17312–17317.

Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. *Molecular Ecology*, 22, 2841–2847.

Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. *Nature Reviews Genetics*, 12, 111–112.

Nguyen HT, Merrimen TR, Black MA (2013) CNVred, a read-depth algorithm for assigning copy-number at the FCGR locus.
population-specific tagging of copy number variation at FCGR3B. PLoS ONE, 8, e63219.

Nguyen HT, Merrimen TR, Black MA (2014) The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data. Frontiers in Genetics, 5, 248.

Ogden R, Baird J, Senn H, McEwing R (2012) The use of cross-species genome-wide arrays to discover SNP markers for conservation genetics: a case study from Arabian and scimitar-horned oryx. Conservation Genetic Resources, 4, 471–473.

Ouborg NJ, Pertoldi C, Loeschke V, Bijlsma R, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends in Genetics, 26, 177–187.

Overbeek AL, Hauber ME, Brown E, Cleland S, Maloney RF, Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA (2015) Genomic information in livestock. Trends in Ecology and Evolution, 18, 796–802.

Padykula PA, Weller AA, Wolf JBW, Alves PC et al. (2015) Genomics and the challenging transition into conservation practice. Trends in Ecology and Evolution, 30, 78–87.

Pryce JE, Hayes BJ, Goodard ME (2012) Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. Journal of Dairy Science, 95, 377–386.

Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nature Review Genetics, 11, 459–463.

Pruitt CR (2009) From conservation genetics to conservation genomics. Annals of the New York Academy of Science, 1162, 357–368.

Prince DJ, O’Rourke SM, Thompson TQ et al. (2016) The evolutionary basis of premature migration in Pacific salmon highlights the utility of genetics for informing conservation. bioRxiv, doi:10.1101/056853.

Pryce JE, Hayes BJ, Goodard ME (2012) Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. Journal of Dairy Science, 95, 377–386.

Puértolas JA, Medland SE, Derringer J et al. (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 1467–1471.

Robinson JA, Vecchyo DO, Fan Z (2016) Genomic flaying in the endangered island fox. Current Biology, 26, 1183–1189.

Santure AW, Stapley J, Ball AD et al. (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Molecular Ecology, 19, 1439–1451.

Sardinas HX, Kremen C (2015) Pollination services from field-scale agricultural diversification may be context-dependent. Agriculture, Ecosystems and Environment, 207, 17–25.

Saura M, Fernández A, Varona L et al. (2015) Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47, 1.

Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nature Reviews Genetics, 14, 807–820.

Schlimmer L, Roig A, Mahe MF et al. (2004) A first generation bovine BAC-based physical map. Genetics selection evolution, 36, 105–122.

Schlitz et al. (2014) Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Annals of the New York Academy of Sciences, 1320, 35–57.

Seddon PJ (2010) From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restoration Ecology, 18, 796–802.

Sellner EM, Kim JW, McClure MC, Taylor KH, Schnabel RD, Taylor JF (2007) Board-invited review: applications of genomic information in livestock. Journal of Animal Science, 85, 3148–3158.

Shafer ABA, Wolf JBW, Alves PC et al. (2015) Genomics and the challenging transition into conservation practice. Trends in Ecology and Evolution, 30, 78–87.

Shafer ABA, Wolf JBW, Alves PC et al. (2016) Reply to Garner et al. Trends in Ecology and Evolution, 31, 83–84.

Shepherd LD, de Lange PJ, Cox S, McLenahan PA, Roskruge NR, Lockhart PJ (2016) Evidence of a strong domestication bottleneck in the recently cultivated New Zealand endemic root crop, Arthropodium cirratum (Asparagaceae). PLoS ONE, 11, e0152453.

Sililo L, Barragán C, Fernández AI, García-Casco J, Rodríguez MC (2016) Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. Journal of Animal Breeding and Genetics, 133, 145–154.

da Silva AG, Appleyard SA, Upston J (2015) Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach. Molecular Ecology, 24, 564–579.

Slate J, Santure AW, Feulner PGD et al. (2010) Genome mapping in intensively studied wild vertebrate populations. Trends in Ecology and Evolution, 26, 275–284.

Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK, Sharma TR (2011) Genomic resources in horticultural crops: Status, utility and challenges. Biotechnology Advances, 29, 199–209.

Soule ME (1985) What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. BioScience, 35, 727–734.

Sovic MG, Fries AC, Gibbs HL (2015) AftrRAD: a pipeline for accurate and efficient de novo assembly of RADseq data. Molecular Ecology Resources, 15, 1163–1171.

Stapley J, Reger J, Feulner PGD et al. (2010) Adaptation genomics: the next generation. Trends in Ecology and Evolution, 25, 705–712.

Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nature Methods, 3, 31–33.

Steeves TE, Maloney RF, Hale ML, Tylianakis JM, Gemmell NJ (2010) Genetic analyses reveal hybridization but no hybrid swarm in one of the world’s rarest birds. Molecular Ecology, 19, 5900–5910.

Steiner CC, Putnam AS, Hocke PEA, Ryder OA (2013) Conservation genomics of threatened animal species. Annual Review of Animal Bioscience, 1, 261–281.

Taylor HR, Soanes K (2016) Breaking out of the echo chamber: missed opportunities for genetics at conservation conferences. Biodiversity and Conservation, 25, 1987.

Taylor HR, Kardos MD, Ramstad KM, Allendorf FW (2015) Valid estimates of individual inbreeding coefficients from...
marker-based pedigrees are not feasible in wild populations with low allelic diversity. *Conservation Genetics*, 16, 901–913.

Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. *Molecular Ecology*, 25, 2144–2164.

Tipene-Mata B, Henaghan M (2007) Establishing a Māori ethical framework for genetic research with Māori. In: *Genes, Society and the Future* (ed. Henaghan M), pp. 1–44. Human Genome Research Project, Dunedin, New Zealand.

Todd EV, Black MA, Gemmell NJ (2016) The power and promise of RNA-seq in ecology and evolution. *Molecular Ecology*, 25, 1224–1241.

Trask AE, Bigland EM, McCracken DI, Monaghan P, Pietrney SB, Reid JM (2015) Evidence of the phenotypic expression of a lethal recessive allele under inbreeding in a wild population of conservation concern. *Journal of Animal Ecology*, 85, 879–891.

Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. *Trends in Plant Science*, 11, 405–412.

Utidewilligen JGAML, Wolters AA, D’hoop BB, Borm TJ, Visser RGF, VanEck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. *PLoS*, 10, e0141940.

Vall U, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? *Molecular Ecology*, 17, 3808–3817.

Varshney RK, Ribaut J, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? *Nature Biotechnology*, 30, 1172–1176.

Verhœven KJF, vonHoldt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. *Molecular Ecology*, 25, 1631–1638.

Vilas A, Pérez-Figueroa A, Quesada H, Caballero A (2015) Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. *Molecular Ecology*, 24, 4419–4432.

Wang B, Ekblom R, Bunikis I, Siitari H, Huglund J (2014) Whole genome sequencing of the black grouse (*Tetrao tetrix*: reference guided assembly suggests faster-Z and MHC evolution. *BMC Genomics*, 15, 180.

Wang L, Za L, Liu X (2015) Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in swine. *Scientific Reports*, 5, 12535.

Weeks AJ, Sgro CM, Young AG et al. (2013) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. *Evolutionary Applications*, 4, 709–725.

White TA, Perkins SE, Heckel G, Searle JB (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (*Myodes glareolus*) in Ireland. *Molecular Ecology*, 22, 2971–2985.

Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. *Trends in Ecology & Evolution*, 30, 42–49.

Wilcox PL, Charity JA, Roberts MR et al. (2008) A values-based process for cross-cultural dialogue between scientists and Māori. *Journal of the Royal Society of New Zealand*, 38, 215–227.

Willoughby JR, Fernandez NB, Lamb MC, Ivy JA, Lacy RC, DeWoody JA (2015) The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. *Molecular Ecology*, 24, 98–110.

Windig JJ, Engelsma KA (2010) Perspectives of genomics for genetic conservation of livestock. *Conservation Genetics*, 11, 635–641.

Womack JE (2005) Advances in livestock genomics: opening the barn door. *Genome Research*, 15, 1699–1705.

Wuerschum T, Boeven PHG, Langer SM, Longin CFJ, Leiser W (2015) Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. *BMC Genetics*, 16, 96.

Xia Q, Zhou S, Lu C et al. (2004) A draft sequence for the genome of the domesticated silkworm (*Bombyx mori*). *Science*, 306, 1937–1940.

Ye C, Tenorio F, Argayo MA et al. (2015) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. *BMC Genetics*, 16, 41.

Zhang G, Li C, Li Q et al. (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. *Science*, 346, 1311–1320.

Zhang C, Wang Z, Bruce H et al. (2015) Genome-wide association studies (GWAS) identify a QTL close to PRKAG3 affecting meat pH and colour in crossbred commercial pigs. *BMC Genetics*, 16, 33.

Zhou Z, Jiang Y, Wang Z et al. (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. *Nature Biotechnology*, 33, 408–413.

S.J.G. and T.E.S. were the lead investigators on this research. S.J.G. and T.E.S. designed the research in collaboration with all authors, S.J.G. compiled the literature search, T.E.S., R.E., and F.W. contributed perspective boxes, and all authors wrote the manuscript and provided feedback on the reviewer’s comments.

doi: 10.1111/mec.13837

Data accessibility

Text files including all literature search results presented in Fig. 1 and Fig. S1 (Supporting information) are available on Dryad: doi: 10.5061/dryad.32j55.

Supporting information

Additional supporting information may be found in the online version of this article.

Data S1 An ISI Web of Science literature search was conducted to compare the number of publications from 2005 to 2015 that have been produced in the fields of conservation biology and primary industry. It should be noted that the number of publications may be underestimated in both disciplines, given that conservation and primary industry researchers can publish their results in the grey literature (Garner et al. 2016).

Fig. S1 Growth in the number of genomic publications utilising high-throughput sequencing from 2005 to 2015 in the fields of primary industry (A) and conservation (B).