Mild expression differences of MECP2 influencing aggressive social behavior

Martesa Tantra1,2,†, Christian Hammer1,†, Anne Kästner1,†, Liane Dahm1, Martin Begemann1, Chiranjeevi Boddà2,3, Kurt Hammerschmidt4, Ina Giegling5, Beata Stepnialk, Aracely Castillo Venzor1, Bettina Korte5, Begun Erbaba4, Annette Hartmann5, Asieh Tarami5, Walter Schulz-Schaeffer6, Dan Rujescu5, Ashraf U Mannan2,3 & Hannelore Ehrenreich1,2,*

Abstract

The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (~50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in a schizophrenia cohort. We found MECP2 SNPs rs2734647 (G/A) and rs2734647 (C/T; 3’UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2 mRNA expression differs in peripheral blood mononuclear cells by ~50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3’UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior.

Keywords genetic background; human; microRNA; mouse; phenotype-based genetic association study

Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience

DOI 10.1002/emmm.201303744 | Received 4 December 2013 | Revised 23 January 2014 | Accepted 27 January 2014 | Published online 20 March 2014

EMBO Mol Med (2014) 6: 662–684

Introduction

The X-chromosomal MECP2/Mecp2 gene encodes for methyl-CpG-binding protein 2, which can act both as a transcriptional activator and repressor (Chao & Zoghbi, 2012). Indeed, hundreds of genes have been estimated to be regulated, directly or indirectly, by this protein (Chahrour et al, 2008; Cohen et al, 2008). Complete or partial loss-of-function mutations of MECP2 lead to Rett syndrome, characterized by a gender-dependent array of symptoms, ranging from early loss of acquired speech and motor skills to severe mental retardation and neonatal encephalopathy, among many others (Amir et al, 1999; Bienvenu & Chelly, 2006). Interestingly, gene duplication can cause very similar symptoms (Ramocki et al, 2010), and both down- and upregulation of MECP2 are associated with behavioral core features of autism spectrum disorders (ASD) (Peters et al, 2013).

Diverse genetic mouse models, ranging from complete loss-of-function to reduced or enhanced expression, have been generated to study consequences of Mecp2 mutations (Chen et al, 2001; Guy et al, 2001; Shahbazian et al, 2002; Collins et al, 2004; Moretti et al, 2005; Samaco et al, 2008; Boddà et al, 2013). In fact, there is a correlation between Mecp2 “dosage” and phenotype severity, indicating a narrow normal expression range, with deviance in both directions being disadvantageous (Chao & Zoghbi, 2012). Along these lines, we have previously shown that mild overexpression of Mecp2 of ~1.4–1.5 times the wildtype (WT) level induces increased seizure propensity and aggression in male FVB/N mice, together with alterations in neuronal branching sites and augmented spine density (Boddà et al, 2013). Application of an epileptogenic compound, pentylentetrazole, to transgenic (TG) neurons in vitro leads to a marked increase in amplitude and frequency of calcium spikes (Boddà et al, 2013).
While epileptic seizure susceptibility is a well-established result of alterations in MECP2 expression (Shahbazian et al., 2002; Collins et al., 2004; Chahroul & Zoghbi, 2007; Chao et al., 2010; Chao & Zoghbi, 2012; Bodda et al., 2013), information on the behavioral consequences of mild overexpression is still rather limited. Doubling the Mecp2 expression level in mice resulted in impaired social interaction (Samaco et al., 2012). Mecp2 deficiency, however, also led to abnormal social behavior such as deficits in nest building, altered social interaction and enhanced aggression (Shahbazian et al., 2002; Moretti et al., 2005; Fyffe et al., 2008; Kerr et al., 2008; Samaco et al., 2008, 2009; Chao et al., 2010; Pearson et al., 2012). Taken together, tightly regulated Mecp2 expression is obviously critical for normal function of genes involved in social behavior (Moretti et al., 2005).

Importantly, the reported phenotypes arose from diverse genetic backgrounds of mice carrying Mecp2 mutations, not considering basic phenotypic differences among mouse strains (Wolfer & Lipp, 2000; Moy et al., 2009; Pietropaolo et al., 2011; O’Leary et al., 2013; Samaco et al., 2013). For example, behavioral comparisons between FVB/N and C57BL/6N strains revealed that FVB/N mice showed a higher frequency of bouts during behavioral paradigms of aggression (Mineur & Crusio, 2002; Pugh et al., 2004). Thus, the genetic background might well mask or modulate phenotypic changes induced by alterations in Mecp2 expression.

In humans, data on aggression/impulsivity in Rett or MECP2 gene duplication syndrome are scarce. A family study characterizing neuropsychiatric differences among mouse strains (Wolfer & Lipp, 2000; Moy et al., 2009; Pietropaolo et al., 2011; O’Leary et al., 2013; Samaco et al., 2013). For example, behavioral comparisons between FVB/N and C57BL/6N strains revealed that FVB/N mice showed a higher frequency of bouts during behavioral paradigms of aggression (Mineur & Crusio, 2002; Pugh et al., 2004). Thus, the genetic background might well mask or modulate phenotypic changes induced by alterations in Mecp2 expression.

This study has been designed (1) to explore the role of gender and genetic background (FVB/N versus C57BL/6N) for behavioral phenotypes associated with mild Mecp2 overexpression in mice, that is, altered aggression, spontaneous home cage behavior and predisposition to epileptic seizures, and (2) in parallel to search in humans for social behavioral consequences of common single-nucleotide polymorphisms (SNPs) within MECP2 and (3) to strive for mechanistic insight into SNP-related MECP2 expression differences in man.

Results

Mild Mecp2 overexpression in FVB/N and C57BL/6N mice of both genders leaves most basic behaviors unaltered but modulates spontaneous home cage activity

To estimate the expression of the TG protein Mecp2^WT_EGFP (~100 kDa) compared to endogenous Mecp2 (~70 kDa) in TG mice, we performed Western blot analysis with total protein extracted from hippocampus and cerebellum. As described previously for FVB/N mice (Bodda et al., 2013), the relative expression of Mecp2^WT_EGFP in brain amounts to 40-50% of endogenous Mecp2 in both strains, leading to a subtle overexpression of ~1.4- to 1.5-fold compared to WT. Mecp2^WT_EGFP TG mice of both genders and strains (FVB/N and C57BL/6N) develop and reproduce normally, and are devoid of any immediately obvious phenotype. Also, upon comprehensive testing of several independent cohorts of both genotypes and genders at different ages, all major domains of basic behavior, that is, general activity, anxiety, motor functions, exploratory behavior, sensory and cognitive functions were unaltered when compared to the respective WT littermate controls (Table 1a, b), thus confirming and extending our earlier report on male FVB/N TG mice (Bodda et al., 2013).

We wondered whether subtle behavioral differences upon mild overexpression of Mecp2 are perhaps not captured by the usual behavioral test battery. Therefore, spontaneous home cage behavior was monitored continuously overnight using LABORASSTM. Indeed, we found significant differences between TG and WT mice. There was an overall tendency of reduced locomotion, including climbing, and increased immobility in TG as compared to WT, noticeable across strains and genders, except for male FVB/N mice that failed to show significant changes in locomotion (Fig 1).

Male Mecp2 transgenic mice of both genetic backgrounds exhibit altered territorial social behavior and aggression as compared to their WT littermates

Based on the unexpected observation that mild overexpression of Mecp2 leads to increased territorial aggressive behavior of male TG versus WT FVB/N mice when exposed to FVB/N intruders (Bodda et al., 2013), we started here a series of new experiments on the resident-intruder paradigm: (1) We aimed at testing reproducibility of this phenomenon in FVB/N mice exposed to younger intruder males of C57BL/6N background, that is, per se less aggressive intruders (Mineur & Crusio, 2002; Pugh et al., 2004). This experiment yielded similar results (Fig 2A), that is, increased territorial aggression in TG FVB/N. (2) We were interested to see whether another genetic background, C57BL/6N, would modify the effect of Mecp2 overexpression. However, using the same resident-intruder protocol as in FVB/N males, no attack by C57BL/6N males was observed (Table 1b). As male C57BL/6N mice are generally less aggressive compared to male FVB/N (Mineur & Crusio, 2002; Pugh et al., 2004), the resident-intruder protocol had to be slightly modified by extending the cut-off time to 10 min and increasing the basal level of aggression using warming (Greenberg, 1972; Gaskill et al., 2012). Even though the necessary increase in surrounding temperature (<38°C) is far below the temperature used to test pain sensitivity (hot plate test; temperature set to 55°C), we note here that the pain threshold in TG and WT mice was identical (Table 1b). Prior to testing, the home cage of the resident mouse was placed under a heat-emitting red lamp for 20 min to obtain mild prewarming. Further, during testing, the home cage of the resident was positioned on a warming pad (set to 38°C). Surprisingly and opposite to FVB/N mice, the attack latency of TG C57BL/6N was longer, pointing to reduced territorial aggression as compared to WT littermates. In fact, within the 10 min observation, 30% of WT and 55% of TG residents of the C57BL/6N background did not attack the intruder at all (Fig 2A). In contrast to the clear alteration of territorial aggression in TG versus WT male mice of both strains, the sociability test (mouse preferred over empty cage) revealed entirely normal behavior, indistinguishable between TG and WT (Fig 2B).
Table 1. (A) FVB/N mice.
Behavioral paradigms (order according to domains)
Cohort 1
Age
WT (N=14)
Anxiety-like behavior
Elevated plus maze (time in open versus closed arms [s])
Activity
Open field (total distance [m])
Holeboard (holes visited [#])
Impulsivity
Marble burying and digging (marbles buried [#])
Motor leaning and coordination
Rotarod (latency to fall [s])
Motor strength
Grip strength (grip strength [P])
Hearing
Hearing curve (startle amplitude [AU])
Vision
Visual cliff (preference for “ground” [%])
Olfaction
Food finding test (latency to find hidden cookie [s])
Food finding test (latency to find visible cookie [s])
Pain sensation
Hot plate (latency to lick [s])
Anhedonia-like behavior
Sucrose preference test (preference for sucrose [%])
Sociability
Social interaction: 3-partite chamber (sociability index [AU])
Communication
Ultrasound vocalization (calls [#])
Social competence
Nest building (Nest score [AU])
Behavioral paradigms (order according to domains)	Cohort 1	Cohort 2	Cohort 3																		
	Male	Female	Male	Female	Male	Female	Male	Female													
Age	(N=14)	(N=18)	(N=9)	(N=4)	(N=10-28)	(N=6-22)	(N=15-27)	(N=14-37)													
Social dominance																					
Tube test (dominance score [AU])																					
Aggression	8	200 ± 39 109 ± 19	0.049	25	55 ± 12	49 ± 8.1	0.7	no attack	9	36 ± 11	19 ± 3.6	0.4									
Resident-intruder paradigm (latency to attack [s]; 5 min session; FVB/N as intruder)	16	209 ± 22	84 ± 33	0.002																	
Resident-intruder paradigm (latency to attack [s]; 5 min session; C57B6/J as intruder)																					
Resident-intruder paradigm (latency to attack [s]; 10 min session with pre-warming; C57B6/J as intruder)																					
Sensorimotor gating	Startle reactivity - PPI set up (startle amplitude [AU])	7	85 ± 0.8	106 ± 1	0.06	61 ± 0.6	10 ± 0.7	0.0001													
Prepulse inhibition (percentage inhibition [%])	16	96 ± 1.2	15 ± 2	0.05	54 ± 1.3	12 ± 1.2	0.005														
Novel object recognition																					
No delay paradigm (preference for new object [%])	12	Genotype: P = 0.3, F = 1.314			Genotype: P = 0.2, F = 2.005																
10 delay paradigm (preference preference for new object [%])																					
Working memory	Y-maze (percentage alternation [%])	7	55 ± 3.0	61 ± 2.8	ns	67 ± 5.4	61 ± 5.4	ns													
Hole board errors [#]																					
Reference memory	Hole board errors [#]																				
Hole board errors [#]																					
Home cage activity (LABORAS)	Locomotion frequency [#]	35	6246 ± 724	7822 ± 1155	ns	20466 ± 2598	6398 ± 919	0.0002													
Immobility frequency [#]	35	26679 ± 2510	23922 ± 1678	ns	5623 ± 2198	23903 ± 3181	0.0002														
Climb frequency [#]	35	331 ± 100	136 ± 45	ns	451 ± 78	277 ± 115	ns														
Seizure propensity	PTZ seizure induction (seizure score [AU])	30	48 ± 0.7	9.1 ± 2	0.042	6 ± 1	8 ± 1	0.006													
Body weight [g]	6	25 ± 0.5	25 ± 0.3	ns	21 ± 0.3	22 ± 0.6	ns	16	30 ± 0.5	30 ± 0.7	ns	25 ± 0.5	25 ± 0.3	ns	6	21 ± 0.5	21 ± 0.7	ns	17 ± 0.5	17 ± 0.4	ns

Gray-shaded cells denote experiments that are presented in the figures. All P-values ≤ 0.05 are set in bold face.

*Age in weeks.
Table 1. (B) C57BL/6N mice

Behavioral paradigms (order according to domains)	Cohort 1 and 2	Cohort 3							
	Male	Female	Male						
Age[^a]	WT (N = 10–26)	TG (N = 12–13)	P	WT (N = 9–28)	TG (N = 11–13)	P	WT (N = 16)	TG (N = 10)	P
Anxiety-like behavior									
Elevated plus maze (time in open versus closed arms [%])	5	Genotype: \(P = 0.07, F = 3.398 \)		Genotype: \(P = 0.6, F = 0.244 \)					
Activity									
Open field (total distance [m])	5	553 ± 2	581 ± 3	n.s.	60 ± 19	59 ± 27	n.s.		
Exploratory behavior									
Hole board (holes visited [#])	7	11 ± 1	12 ± 1.7	n.s.	18 ± 2.5	20 ± 2.9	n.s.		
Impulsivity									
Marble burying and digging (marbles buried [#])	8	95 ± 1.4	82 ± 2.2	n.s.	59 ± 0.8	7.7 ± 12	n.s.		
Motor leaning and coordination									
Rotarod (latency to fall [s])	6	Genotype: \(P = 0.4, F = 0.552 \)		Genotype: \(P = 0.8, F = 0.054 \)					
Motor strength									
Grip strength (grip strength [g])	30	134 ± 3.9	138 ± 5.8	n.s.	129 ± 3.2	117 ± 5.3	n.s.		
Hearing									
Hearing curve (startle amplitude [AU])	7	Genotype: \(P = 0.2, F = 1.434 \)		Genotype: \(P = 0.1, F = 2.773 \)					
Vision									
Visual cliff (preference for “ground” [%])	10	53 ± 1.3	53 ± 1.3	n.s.	52 ± 1.3	56 ± 3.4	n.s.		
Olfaction									
Food finding test (latency to find hidden cookie [s])	16	107 ± 15	89 ± 17	n.s.	96 ± 14	113 ± 30	n.s.		
Food finding test (latency to find visible cookie [s])	16	86 ± 1.5	12 ± 35	n.s.	65 ± 1.8	7.5 ± 20	n.s.		
Pain sensation									
Hot plate (latency to lick [s])	32	13 ± 0.6	15 ± 1.2	n.s.	16 ± 0.7	15 ± 1.2	n.s.		
Anhedonia-like behavior									
Sucrose preference test (preference for sucrose [%])	14	91 ± 1.3	88 ± 1.4	n.s.	75 ± 26	71 ± 4.9	n.s.		
Sociability									
Social interaction: 3-partite chamber (sociability index [AU])	12	64 ± 18	62 ± 32	n.s.	90 ± 1.3	7.2 ± 3.4	n.s.		
Communication									
Ultrasound vocalization (calls [#])	13	126 ± 33	26 ± 12	0.03	345 ± 57	150 ± 62	0.08		
Social competence									
Nest building (Nest score [AU])	7	38 ± 0.2	24 ± 0.5	0.02					
Table 1. (B) (continued)

Behavioral paradigms (order according to domains)	Cohort 1 and 2	Cohort 3										
Male (Cohort 1)	Male (Cohort 2)	Male (Cohort 3)										
Genotype	Genotype	Genotype										
Age	WT	TG	P	WT	TG	P	Age	WT	TG	P		
---	---	---	---	---	---	---	---	---	---	---	---	
Social dominance												
Male												
Female												
Aggression												
Resident-intruder paradigm (latency to attack [s]; 5 min session; FVB/N as intruder)												
Resident-intruder paradigm (latency to attack [s]; 5 min session; C57Bl/6N as intruder)	32	No attack							13	No attack		
Resident-intruder paradigm (latency to attack [s]; 10 min session with pre-warming; C57Bl/6N as intruder)												
Sensorimotor gating												
Startle reactivity - PPI set up (startle amplitude [AU])	7	7.7 ± 0.5	7.7 ± 0.6	n.s.	68 ± 0.4	8.9 ± 0.6	0.01					
Prepulse inhibition (percentage inhibition [%])	7	Genotype: P = 0.7, F = 0.1135	Genotype: P = 0.7, F = 0.115									
Novel object recognition												
No delay paradigm (preference for new object [%])	8	56 ± 3.9	66 ± 3.7	n.s.	53 ± 2.4	56 ± 3.5	n.s.					
30' delay paradigm (preference for new object [%])	8	57 ± 2.9	51 ± 4.4	n.s.	54 ± 2.5	62 ± 37	n.s.					
Working memory												
Y-maze (percentage alternation [%])	10	64 ± 2.0	63 ± 4.2	n.s.	63 ± 2.1	66 ± 2.6	n.s.					
Hole board (errors [#])	20	Genotype: P = 0.07, F = 3.511 (TG: more errors)	Genotype: P = 0.8, F = 0.0228									
Reference memory												
Hole board (errors [#])	20	Genotype: P = 0.09, F = 3.174 (TG: more errors)	Genotype: P = 0.6, F = 0.262									
Home cage activity (LABORAS)												
Locomotion frequency [#]	37	5110 ± 279	2584 ± 220	<0.0001	5423 ± 376	3579 ± 442	0.009					
Immobility frequency [#]	37	13921 ± 1258	27359 ± 1250	<0.0001	12266 ± 1121	23697 ± 1118	<0.0001					
Climbing frequency [#]	37	105 ± 10	49 ± 12	0.004	349 ± 73	75 ± 21	0.0003					
Seizure propensity												
PTZ- seizure induction (seizure score [AU])	40	67 ± 1.1	10 ± 0.8	0.03	7.7 ± 0.8	8.1 ± 1	0.02					
Body weight [g]	12	27 ± 0.4	27 ± 0.4	n.s.	23 ± 0.3	23 ± 0.4	n.s.	14	29 ± 0.6	30 ± 1.3	n.s.	

Gray-shaded cells denote experiments that are presented in the figures. All P-values ≤ 0.05 are set in boldface.

*Age in weeks.
The unforeseen result of reduced aggression in male TG C57BL/6N prompted us to investigate the pattern of their territorial behavior during the resident–intruder test. We measured frequency and duration of agonistic encounters of the resident mouse for the first 3 min upon introducing the intruder. Whereas the latency to initiate the first contact was comparable between male WT and TG C57BL/6N mice (8.5 ± 1.3 s versus 10.7 ± 1.9 s; \(P = 0.35 \)), TG mice exhibited lower frequency and duration of follow/chase behavior, as well as sniffing of facial and anogenital areas of the intruder mice than their WT littermates (Fig 3).

Since this territorial behavioral pattern of male C57BL/6N TG mice indicated somewhat reduced social interest, we hypothesized that these mice might also display other signs of changed social interest/competence. Indeed, nest building capacity/quality, social dominance measured by the tube test, and ultrasound vocalization in response to an anesthetized female intruder, revealed inferiority or at least a strong tendency thereof in TG animals (Fig 3). Together, these data indicate that also in MeCP2 overexpressing mice of C57BL/6N background, territorial aggressive behavior is a central target phenotype. In these intrinsically non-aggressive mice, however, the direction of change is exactly opposite to the FVB/N strain and accompanied by reduced social interest and competence.

Seizure propensity is increased upon mild MeCP2 overexpression, independent of genetic background and gender

A common characteristic neurological phenotype found in different mouse models of mutant MeCP2, ranging from complete loss-of-function to overexpression, is epileptic seizures (Guy et al., 2001; Shahbazian et al., 2002; Collins et al., 2004; Chahrour & Zoghbi, 2007). We previously reported in male FVB/N TG mice a higher susceptibility to seizure induction by the GABA\(_A\) receptor antagonist, pentylentetrazole (PTZ) (Bodda et al., 2013). This work could now be expanded to female FVB/N as well as to male and female C57BL/6N TG mice. Indeed, PTZ-induced seizure propensity is increased across genetic backgrounds and genders (Fig 4), pointing to a strong overall phenotypical consequence of mild MeCP2 overexpression.
The startle response to acoustic stimulation is augmented upon mild Mecp2 overexpression in female mice of both genetic backgrounds

Deletion of Mecp2 in GABAergic neurons resulted in reduction in the startle response to acoustic stimuli of 120db (Chao et al, 2010), but nothing has been known regarding a potential influence of mild Mecp2 overexpression on startling. Since Mecp2 TG mice of both genetic backgrounds exerted an exaggerated seizure reaction to a GABA_A receptor antagonist, PTZ, we wondered whether mild overexpression of Mecp2 might also alter the startle reflex and/or the prepulse inhibition of the startle response (PPI). Indeed, we found enhanced startling in female but not male Mecp2 TG mice of both FVB/N and C57BL/6N background (Fig 4). No changes in the percentage of PPI were observed in any strain or gender (Table 1a,b). Similar findings that the startle response at 120db does not necessarily affect overall PPI were reported in the context of a study on mouse inbred strain differences (Paylor & Crawley, 1997).

MECP2 SNP distribution is comparable in healthy and schizophrenic individuals

Since our mouse studies revealed aggressive social behavior as a central phenotype modulated by subtle Mecp2 overexpression, we started a hypothesis-driven analysis on subjects of the GRAS (Göttingen Research Association for Schizophrenia) data collection (Ribbe et al, 2010). Genotyping for association analyses was performed for 4 SNPs located in the X-chromosomal MECP₂ gene with reasonably high minor allele frequency (Fig 5A). At first, a potential genetic risk condition of the selected SNPs for schizophrenia was assessed: A case–control study comparing allele frequencies of the 4 genotyped SNPs rs2239464, rs3027933, rs2075596, and rs2734647 in 1052 GRAS patients versus 1248 healthy controls was performed separately for men and women. All markers fulfilled Hardy–Weinberg criteria, and no significant associations with diagnosis were detected (Fig 5B,C). Due to strong linkage disequilibrium (LD) between markers, only rs2239464 and rs2734647 were considered for the phenotype-based genetic association study (PGAS, inclusion criterion r² < 0.8) (Fig 5D).

Normal genetic variation of MECP2 influences aggression and impulsivity in man

We next selected aggression-related variables from the GRAS phenotypical data collection and tested their association with the 2 selected MECP2 SNPs separately in men and women. Poor impulse control and a further trait reflecting behavioral expression of impulsive aggression (excitement) were chosen. For both, SNP rs2734647 in the 3’UTR (Table 2) and for SNP rs2239464 (Table 3), significant associations with these traits were found in men, with C carriers and G carriers (the major alleles), respectively, being more aggressive. Sociodemographic and clinical measures potentially confounding these results did not differ between genotype groups. The nominally significant result for years of education in males (SNP rs2734647) was accounted for by including it as a covariate in all models with target measures as dependent variables. In contrast, for women, no statistically significant results were obtained. The phenotype–genotype relationships could be reproduced in a small independent sample of schizophrenic men (Table 4). Taken together, an association of MECP2 genotypes with readouts of aggression was found in two independent cohorts of men.

SNP rs2734647 in the 3’UTR affects miR-511 binding and gene expression

To examine possible functional implications of SNP rs2734647 in the 3’UTR on microRNA (miR)-dependent regulation of gene expression, in silico analyses were performed using TargetScan (Release 6.2) (Lewis et al, 2005; Grimson et al, 2007) and PITA (Kertesz et al, 2007), resulting in the prediction of 4 miRs with seed binding
Allele-specific differences of the predicted DD values, indicating strength of miR binding, are summarized in Fig 6A. While miR-4711-3p and miR-511 are predicted to show preferential binding in case of the T-allele, miR-515-3p has a strong negative DD only in case of the C-allele, and miR-519e lacks a strong allele preference. In vitro luciferase assays using HEK293 cells revealed significantly reduced luciferase activity in case of co-transfection of the plasmid carrying the T-allele with both miR-4711-3p and miR-511 (Fig 6B). Co-transfection with miR-515-3p or miR-519e did not lead to luciferase activity reduction for either rs2734647 T or C (Fig 6B). In luciferase assays using N2a cells, the positive result was only replicated for miR-511 (Fig 6C). In summary, these data strongly suggest miR-511 as rs2734647 genotype-dependent candidate for MECP2 regulation in humans. For the sake of completeness, we determined endogenous expression of miR-511

Figure 3. Male TG C57BL/6N mice show reduced territorial social interaction as well as inferior social competence. Upper 2 rows: Frequency and duration of determinants of territorial social interaction, that is, follow/chase behavior, nose/snout sniff and anogenital sniff, are consistently reduced in TG carriers. Lower row: TG mice are inferior in nest building, social dominance behavior and ultrasound vocalization. N = 10–23; mean ± s.e.m. given.
in the cell lines used for transfection. Whereas mmu-miR-511 levels were under the detection limit in N2a cells, hsa-miR-511 was clearly expressed in HEK293 cells (3.59 × 10⁻¹⁰/C₀⁻³). However, since we always used negative, that is, non-miR-transfected controls, Luciferase assay results are unlikely to have been affected.

miR-511 is expressed in aggression-relevant human brain regions

Since miR-511 seems to be an important modulator of rs2734647 genotype-dependent MECP2 expression in humans, we asked whether this miR would be detectable in brain regions relevant for impulsivity and aggression (frontal and prefrontal cortex, temporal cortex, occipital cortex, hippocampus, and amygdala). Placenta was used as developmental control tissue. In all regions examined, miR-511 expression was found (Fig 6D). Importantly, the same holds true for MECP2 using primers amplifying either MECP2_e2 only or both isoforms (Fig 6E). In contrast, miR-4711-3p expression was not detected (data not shown), at least questioning a role of this miR for MECP2 regulation in the adult human brain. In the adult C57BL/6N versus FVB/N mouse brain, the expression of miR-511 was low and comparable between strains in cortex (2.39 × 10⁻⁵ versus 3.71 × 10⁻⁵), hippocampus (6.45 × 10⁻⁵ versus 3.78 × 10⁻⁵), and cerebellum (2.22 × 10⁻⁵ versus 2.36 × 10⁻⁵). Strong expression was found in embryonic tissue (C57BL/6N embryo head E17: 1.83 × 10⁻³; embryo body: 2.26 × 10⁻³), and highest in cultured microglia (13.02 × 10⁻³).

Peripheral blood mononuclear cells (PBMC) of male rs2734647 T-carriers show lower MECP2 expression

Since miR-511 was shown to be expressed in dendritic cells and macrophages (Tserel et al., 2011), we investigated the hypothesized allele-specific downregulation of MECP2 expression in PBMC of male subjects. Indeed, a significantly lower expression in T carriers versus C carriers (amounting to around 50%) was detected with primers amplifying both MECP2 isoforms, whereas MECP2_e2 alone showed no expression difference dependent on the rs2734647 genotype (Fig 6F). This result may indicate that in T carriers mainly the MECP2_e1 isoform is affected, at least in PBMC, potentially related to isoform-specific different lengths of the MECP2 3'UTR (Coy et al., 1999).

Sequence variation of miR-511 in mouse and man underlines the importance of an interaction with the MECP2 3'UTR

A perfect seed match of human hsa-miR-511 with the MECP2 3'UTR in carriers of rs2734647-T is the most likely reason for the difference
in luciferase activity in contrast to the C-allele, which results in a mismatch in the seed binding region. C is the conserved ancestral allele found in multiple other mammalian species, including mouse. Strikingly, the seed sequence of mouse mmu-miR-511 differs from hsa-miR-511 exactly regarding the nucleotide complementary to the SNP position (Fig 6G). Thus, mmu-miR-511 shows an ideal seed match to the mouse 3’UTR, whereas hsa-miR-511 perfectly fits to the human 3’UTR carrying the T-allele. This observation may emphasize the importance of the miR-511 interaction with MECP2. Notably, screening of available data from Jackson Laboratories (http://www.jaxlab.org) revealed that the two mouse lines employed here are not polymorphic for the Mecp2 3’UTR allele or the miR-511 sequence. It would, however, be interesting to investigate whether non-inbred mice are polymorphic for the respective alleles.

Discussion

The present study shows that mildly increased MeCP2 expression leads to alterations in male social aggression. Using C57BL/6N versus FVB/N mice (with their known inherent strain differences in aggressive behavior) (Mineur & Crusio, 2002; Pugh et al, 2004) as models, we demonstrate that the direction of change upon mild MeCP2 overexpression in this behavioral target domain is subject to modification by the genetic background. In other words, the resulting lower or higher social aggression depends on the basic genetic make-up of a particular subject. Hints of MeCP2 influencing aggressive behavior could also be shown in two independent cohorts of schizophrenic men, with a polymorphism in the 3’UTR of the gene co-determining both the level of MeCP2 expression as well as of aggression. The genotype-dependent expression difference in
Table 2. Phenotype comparison of GRAS patients by MECP2 SNP rs2734647 genotypes

Target variables	C	T	P-value (F/Z/\chi^2 value)
Poor impulse control, mean ± s.d. [range]	1.72 ± 1.12 [1 to 6]	1.39 ± 0.76 [1 to 4]	0.0001 (F = 14.65)
Excitement, mean ± s.d. [range]	2.05 ± 1.30 [1 to 7]	1.82 ± 1.13 [1 to 6]	0.034 (F = 4.52)

Sociodemographic variables			
Age (at examination), years, mean ± s.d. [range]	37.40 ± 12.09 [17 to 78]	37.02 ± 11.99 [21 to 71]	0.736 (Z = −0.34)
Education, years, mean ± s.d. [range]	12.11 ± 3.10 [0 to 24]	11.32 ± 2.48 [8 to 18]	0.020 (Z = −2.33)
Unemployment, No. (%)	107 (17.8)	22 (21.0)	0.446 (\chi^2 = 0.58)

Clinical variables			
PANSS general score, mean ± s.d. [range]	30.57 ± 10.82 [15 to 81]	31.88 ± 9.73 [16 to 55]	0.542 (Z = −0.61)
PANSS negative score, mean ± s.d. [range]	18.04 ± 7.67 [7 to 46]	19.23 ± 7.31 [7 to 40]	0.070 (Z = −1.81)
PANSS positive score, mean ± s.d. [range]	11.61 ± 5.23 [6 to 34]	11.39 ± 5.15 [6 to 30]	0.667 (Z = −0.43)
Cognition composite score, mean ± s.d. [range]	0.09 ± 0.84 [−2.4 to 2.2]	0.00 ± 0.84 [−2.1 to 1.7]	0.543 (F = 0.37)
Chlorpromazine equivalents, mean ± s.d. [range]	688 ± 644 [0 to 4513]	725 ± 734 [0 to 6324]	0.394 (Z = −0.85)
GAF score, mean ± s.d. [range]	45.48 ± 16.35 [5 to 90]	46.94 ± 15.45 [15 to 85]	0.375 (Z = −0.89)

Females (GRAS sample)	CC	CT	TT	P-value (F/Z/\chi^2 value)
Target variables	N = 194 to 234	N = 73 to 91	N = 8 to 10	
Poor impulse control, mean ± s.d. [range]	1.73 ± 1.15 [1 to 7]	1.57 ± 0.94 [1 to 5]	1.60 ± 1.07 [1 to 4]	0.729 (F = 0.31)
Excitement, mean ± s.d. [range]	2.11 ± 1.30 [1 to 7]	1.93 ± 1.31 [1 to 7]	1.50 ± 0.53 [1 to 2]	0.277 (F = 1.29)

Sociodemographic variables				
Age (at examination), years, mean ± s.d. [range]	43.41 ± 12.90 [18 to 76]	41.82 ± 12.47 [19 to 72]	43.52 ± 12.10 [20 to 58]	0.657 (\chi^2 = 0.84)
Education, years, mean ± s.d. [range]	12.61 ± 3.36 [8 to 27]	12.14 ± 2.83 [8 to 21]	12.15 ± 3.76 [8 to 19]	0.750 (\chi^2 = 0.58)
Unemployment, No. (%)	25 (10.9)	12 (13.6)	4 (40.0)	0.176 (\chi^2 = 1.83)

Clinical variables				
PANSS general score, mean ± s.d. [range]	33.04 ± 12.10 [15 to 69]	32.38 ± 12.25 [15 to 72]	31.30 ± 10.64 [19 to 54]	0.872 (\chi^2 = 0.28)
PANSS negative score, mean ± s.d. [range]	18.13 ± 8.50 [7 to 44]	17.82 ± 8.11 [7 to 36]	19.30 ± 9.36 [7 to 39]	0.904 (\chi^2 = 0.20)
PANSS positive score, mean ± s.d. [range]	12.25 ± 6.03 [6 to 32]	11.41 ± 5.23 [6 to 30]	11.40 ± 4.40 [6 to 18]	0.650 (\chi^2 = 0.86)
Cognition composite score, mean ± s.d. [range]	−0.02 ± 0.83 [−2.0 to 1.9]	−0.19 ± 0.90 [−2.0 to 2.0]	0.08 ± 0.83 [−1.5 to 1.1]	0.090 (F = 2.43)
Chlorpromazine equivalents, mean ± s.d. [range]	677 ± 839 [0 to 7375]	608 ± 685 [0 to 4375]	640 ± 512 [150 to 1680]	0.614 (\chi^2 = 0.98)
GAF score, mean ± s.d. [range]	45.44 ± 19.07 [12 to 90]	47.07 ± 18.60 [8 to 90]	48.80 ± 14.73 [25 to 70]	0.472 (\chi^2 = 1.50)

All P ≤ 0.05 are set in boldface.

GAF, global assessment of functioning.

*Due to missing data, sample sizes vary.

For statistical methods, Mann–Whitney U/Kruskal–Wallis test (women) or Chi-square tests and for models including covariates ANCOVAs (target variables and cognition composite score) were used.

*ANCOVA with education, age at examination, negative symptoms (PANSS) and medication status (chlorpromazine equivalent) as covariates.

*Years spent in education system; patients currently in school or educational training included (score 0).

*Item 14 (target variable) excluded from sum score.

*Item 4 (target variable) excluded from sum score.

*ANCOVA with age, negative symptoms (PANSS) and medication status (chlorpromazine equivalent) as covariates.

Men found in PBMC (around 50%) is in the range of the transgenic overexpression in both mouse strains, emphasizing the physiological significance of these findings as well as of our mouse models for studying behavioral consequences of a normal “Mecp2 dose range”.

Even though in both schizophrenia samples, higher expression of MECP2 (3’UTR SNP rs2734647 C carriers lack suppressibility by miR-511) was associated with higher aggression, it has to be considered that also humans are not an isogenic population. One might
Table 3. Phenotype comparison of GRAS patients by MECP2 SNP rs2239464 genotypes

Males (GRAS sample)	G	A	P-value (F/Z/\chi^2 value)
Target variables^c			
Poor impulse control, mean ± s.d. [range]	1.72 ± 1.12 [1 to 6]	1.44 ± 0.81 [1 to 4]	0.001 (F = 10.84)
Excitement, mean ± s.d. [range]	2.05 ± 1.31 [1 to 7]	1.83 ± 1.11 [1 to 6]	0.056 (F = 3.67)
Control variables			
Sociodemographic variables			
Age (at examination), years, mean ± s.d. [range]	37.31 ± 12.07 [17 to 78]	37.27 ± 12.12 [21 to 71]	0.918 (Z = -0.10)
Education, years, mean ± s.d. [range]^4	12.10 ± 3.10 [0 to 24]	11.50 ± 2.52 [8 to 20]	0.063 (Z = -1.86)
Unemployment, No. (%)	101 (17.6)	28 (21.5)	0.294 (\chi^2 = 1.10)
Clinical variables			
PANSS general score, mean ± s.d. [range]^5	31.71 ± 10.84 [15 to 81]	31.36 ± 9.83 [16 to 55]	0.966 (Z = -0.04)
PANSS negative score, mean ± s.d. [range]	18.13 ± 7.66 [7 to 46]	18.61 ± 7.48 [7 to 40]	0.420 (Z = -0.81)
PANSS positive score, mean ± s.d. [range]^6	11.67 ± 5.29 [6 to 34]	11.20 ± 4.99 [6 to 30]	0.358 (Z = -0.92)
Cognition composite score, mean ± s.d. [range]^7	0.09 ± 0.83 [−2.4 to 2.2]	0.05 ± 0.88 [−2.1 to 1.9]	0.842 (F = 0.40)
Chlorpromazine equivalents, mean ± s.d. [range]	691 ± 635 [0 to 4511]	688 ± 700 [0 to 6324]	0.996 (Z = -0.08)
GAF score, mean ± s.d. [range]	45.11 ± 16.26 [5 to 90]	45.27 ± 15.75 [15 to 85]	0.045 (Z = -2.00)

Females (GRAS sample)	GG	GA	AA	P-value (F/Z/\chi^2 value)
Target variables^c				
Poor impulse control, mean ± s.d. [range]	1.74 ± 1.18 [1 to 7]	1.62 ± 0.99 [1 to 5]	1.23 ± 0.60 [1 to 3]	0.243 (F = 1.42)
Excitement, mean ± s.d. [range]	2.12 ± 1.29 [1 to 7]	1.98 ± 1.31 [1 to 7]	1.62 ± 1.12 [1 to 5]	0.416 (F = 0.88)
Control variables				
Sociodemographic variables				
Age (at examination), years, mean ± s.d. [range]	43.65 ± 13.11 [18 to 76]	42.01 ± 12.15 [19 to 72]	42.66 ± 12.37 [20 to 58]	0.665 (\chi^2 = 0.82)
Education, years, mean ± s.d. [range]^4	12.66 ± 3.32 [8 to 27]	12.22 ± 3.05 [8 to 21]	11.96 ± 3.28 [8 to 19]	0.538 (\chi^2 = 1.24)
Unemployment, No. (%)	20 (10.0)	17 (14.9)	4 (30.8)	0.056 (\chi^2 = 5.77)
Clinical variables				
PANSS general score, mean ± s.d. [range]^5	32.92 ± 12.42 [15 to 69]	33.11 ± 11.79 [15 to 72]	30.23 ± 11.42 [19 to 54]	0.690 (\chi^2 = 0.74)
PANSS negative score, mean ± s.d. [range]	18.07 ± 8.49 [7 to 44]	18.20 ± 8.37 [7 to 39]	17.62 ± 8.48 [7 to 39]	0.961 (\chi^2 = 0.08)
PANSS positive score, mean ± s.d. [range]^6	12.28 ± 5.99 [6 to 32]	11.74 ± 5.55 [6 to 32]	10.00 ± 4.26 [6 to 18]	0.440 (\chi^2 = 1.64)
Cognition composite score, mean ± s.d. [range]^7	0.01 ± 0.84 [−2.0 to 1.9]	−0.20 ± 0.87 [−2.0 to 2.0]	0.03 ± 0.75 [−1.5 to 1.4]	0.049 (F = 3.06)
Chlorpromazine equivalents, mean ± s.d. [range]	671 ± 852 [0 to 7375]	638 ± 702 [0 to 4370]	650 ± 504 [150 to 1680]	0.811 (\chi^2 = 0.41)
GAF score, mean ± s.d. [range]	46.07 ± 19.12 [15 to 90]	45.13 ± 18.87 [8 to 90]	51.38 ± 12.35 [25 to 70]	0.323 (\chi^2 = 2.26)

All P ≤ 0.05 are set in boldface.
^cDue to missing data, sample sizes vary.
^bFor statistical missing, Mann–Whitney U/Kruskal–Wallis test (women) or Chi-square tests and for models including covariates ANCOVAs (target variables and cognition composite score) were used.
^aANOVA with education, age at examination, negative symptoms (PANSS) and medication status (chlorpromazine equivalent) as covariates.
^4Years spent in education system; patients currently in school or educational training included (score 0).
^Item 14 (target variable) excluded from sum score.
^5Item 4 (target variable) excluded from sum score.
^ANOVA with age, negative symptoms (PANSS) and medication status (chlorpromazine equivalent) as covariates.

Thus, in analogy to our observation in different mouse strains, predict a human population with reduced aggression as suggested by the C57BL/6N data (i.e., a bimodal aggression distribution when combining different genetic backgrounds).

Although the results for women show a similar tendency for poor impulse control and excitement as aggression readouts, they are far from reaching significance, likely due to the smaller number of individuals, but certainly also to the fact that MECP2 is X chromosomal. Homozygous T carriers in the female sample are therefore expectedly very rare.

In our translational PGAS approach, we had the chance to explore the aggression association of MECP2 genotypes in a phenotypically very well-characterized large sample of schizophrenic individuals (Ribbe et al., 2010), and we replicated the association findings in a
second, independent cohort of schizophrenic men. Therefore, we cannot state with certainty at this point that the phenotype association holds true in the same way for healthy individuals. Nevertheless, apart from the supporting data obtained for healthy mice, it has to be emphasized that aggression is not a specific or unique symptom in schizophrenia. Also, the range of aggressive features in the whole GRAS patient sample follows a normal distribution, extending from very low to very high aggression scores.

Along the same lines, the case–control study presented here, including 1052 cases and 1248 controls, fails to attribute to MECP2 any schizophrenia risk gene role. In some contrast, a recent study reported in a Han Chinese population an association of rs2734647 C with the disease (498 cases versus 2025 controls, replicated in 1027 cases versus 1005 controls) (Wong et al, 2013). Although we did not even find a respective trend (Fig 5C), we cannot entirely exclude limited power of our case–control approach. On the other hand, the association might well be population-specific. In any case, a potential risk gene status, even if confirmed by future GWAS including X-chromosomal genotypes, will not be dramatic considering the large number of individuals needed for its demonstration. Instead, MECP2 is most likely disease-independently involved in the regulation of a basic mammalian behavioral phenotype, that is, aggression. Interestingly, carriers of the minor allele of MECP2 SNP rs2239464 were previously shown to have decreased cortical surface area in brain regions such as the cuneus (Joyner et al, 2009), which is associated with inhibitory control in patients with bipolar disorder (Haldane et al, 2008).

In further support of an association between MECP2 and aggression, impulse control alterations in individuals with MECP2/Mecp2 gene duplication syndrome have been reported (Ramocki et al, 2009), even though the findings of the present study are more relevant for the understanding of physiological gene-dose effects on social behavior. Importantly, Mecp2/MECP2 functions as transcriptional regulator targeting hundreds of other genes (Chen et al, 2003; Sun & Wu, 2006; Bird, 2008; Chahrour et al, 2008; Ben-Shachar et al, 2009; Wu et al, 2010). Thus, it is most likely a whole pattern of genes—directly or indirectly influenced by this regulator—that primes nuances of aggressive social behavior. As an example, changes in the expression of a Mecp2 regulated gene, Prom1, are associated with domestication and aggressive behavior in animals (Albert et al, 2012; Gopisetty et al, 2012). Furthermore, Mecp2 is known to control expression of brain-derived neurotrophic factor (Bdnf) (Martinowich et al, 2003), which in turn is involved in the regulation of aggression (Ito et al, 2011).

Aggression seems to be a strong target phenotype of mild Mecp2 overexpression independent of the genetic background, since these expression changes did not lead to alterations in basic behavior, including motor, sensory and cognitive functions. Male and female TG mice of both the FVB/N and C57BL/6N genetic backgrounds displayed basic behavior comparable to their WT littermates. Apart from aggression, only home cage activity, seizure propensity and startle response were influenced by mild Mecp2 overexpression in a fashion widely independent of the genetic background.

There have been reports on sexual dimorphism with respect to Mecp2 expression and function in the brain. For instance, in amygdalae and ventromedial hypothalamus, male rats express less Mecp2 as compared to females (Kurian et al, 2007, 2008). Furthermore, conditional knockout of Mecp2 during amygdala development caused subtle modifications of juvenile play behavior in male but not female rats (Kurian et al, 2008). These findings may indicate a role of Mecp2 in gender-specific modulation of behavior. In the present work, however, sexual dimorphism was consistently observed.

Table 4. Phenotype comparison of replication sample patients by MECP2 SNPs rs2734647 and rs2239464

Males (replication sample)	rs2734647 genotypes	rs2239464 genotypes	P-value (Z/χ² value)				
Target variablesa	C	T		G	A		
Poor impulse control, mean ± s.d. [range]	3.16 ± 1.91 [1 to 7]	2.86 ± 1.93 [1 to 6]	0.05 (Z = –1.64)	3.19 ± 1.92 [1 to 7]	2.82 ± 1.89 [1 to 6]	0.03 (Z = –1.91)	
Excitement, mean ± s.d. [range]	3.79 ± 1.60 [1 to 7]	3.52 ± 1.56 [1 to 7]	0.09 (Z = –1.33)	3.83 ± 1.60 [1 to 7]	3.42 ± 1.58 [1 to 7]	0.02 (Z = –2.07)	
Control variables	Age (at examination), years, mean ± s.d. [range]	35.34 ± 10.91 [19 to 65]	36.63 ± 10.80 [18 to 67]	0.16 (Z = –1.01)	35.28 ± 11.01 [19 to 65]	36.66 ± 10.40 [18 to 67]	0.12 (Z = –1.23)
Education rating,% low, intermediate, high education level	47.8%, 22.4%, 29.8%	42.9%, 30.2%, 27.0%	0.21 (χ² = 1.78)	48.7%, 22.1%, 29.2%	40.3%, 29.9%, 29.9%	0.14 (χ² = 2.53)	

All P ≤ 0.05 are set in boldface.

aFor statistical methods, Mann–Whitney U or Chi-square tests were used (all P-values one-sided).

bMann–Whitney U-tests with standardized residuals from linear regression with target variables as dependent variables and age at examination and negative symptoms as independent variables.
only with the startle response in a genotype and genetic background independent manner.

Even though the explicit situations are still unknown in which miR-511 regulated MECP2/Mecp2 expression might be of particular physiological relevance, any kind of inflammation in the brain for instance could play a pivotal role, considering the relatively high expression found here in mouse microglia. The distinct suppression of MECP2 expression by miR-511 in SNP rs2734647-T carriers reported here may even be considered as a future treatment target in MECP2 gene duplication syndrome. In any case, the high conservation of the interaction between miR-511 and MECP2 in both mouse and man makes a specific significance of their interplay very likely. This significance is further supported by the here demonstrated co-expression of MECP2 and miR-511 in human brain areas pivotal for aggression and impulsivity regulation (Brower & Price, 2001; Horn et al., 2003; Berlin et al., 2004; Bauman et al., 2006; Zetzschke et al., 2007; Siever, 2008; Whelan et al., 2012). Interestingly, miR-511 expression was found here also in different mouse brain areas, with levels comparable across both genetic backgrounds.

To conclude, MECP2/Mecp2 has been shown here to be a regulator of social aggressive behavior in mouse and man, with the genetic background playing an important modifier role.

Materials and Methods

Mice

All mouse experiments have been approved by the Animal Care and Use Committee of Lower Saxony, Oldenburg, Germany. The generation of Mecp2^{WT}→^{EGFP} TG mice with a 1.4–1.5-fold Mecp2 overexpression on FVB/N background has been described in detail previously (Bodd et al., 2013). Briefly, a bacterial artificial chromosome (BAC) clone, pBAC_B22804, containing 120 Kb of murine genomic fragment with the intact Mecp2 gene and the flanking Opsin1 and Irak1 genes was used for generating the transgenic construct (Kifayathullah et al., 2010). To generate the pBAC_Mecp2WT_EGFP construct, the enhanced green fluorescent protein/kanamycin-resistance gene (EGFP/kan) cassette was PCR amplified using pEGFP1 vector as template with primers containing 50-bp flanking sequence from either side of the Mecp2 stop codon. The endogenous stop codon was replaced by two glycine residues inframe between the Mecp2 protein and the EGFP protein to facilitate the two proteins to fold and function independently. The amplified EGFP/kan cassette was electropropelled into E.coli harboring the BAC clone and pGET recombination system, to facilitate the homologous recombination of EGFP/Kan cassette at the site of stop codon of Mecp2. The correct insertion of EGFP/Kan cassette after the recombination event into the BAC clone was confirmed by sequencing. The Mecp2 flanking genes, Opsin1 and Irak1 were deleted from the modified BAC clone using additional BAC recombineering with zeocin selection cassette (containing the BAC homology arms and zeocin antibiotic marker gene driven by EM7 promoter from pSELECT vector) (InvivoGen, Toulouse, France), to avoid any additional phenotype arising from the overexpression of these genes. During the process of Opsin1 deletion, a MluI restriction site was introduced into BAC clone. The final BAC construct pBAC_Mecp2WT_EGFP was linearized with MluI restriction enzyme and micro-injected into the male pronuclei of the fertilized mouse oocytes derived from the FVB/N strain. Next, the injected oocytes were transplanted into the uteri of the foster mothers. Genomic DNA isolated from tail biopsies was analyzed for the presence of the transgene by PCR. Because the transgene was not confirmed to be localized to the X chromosome, translational relevance with respect to modeling mosaicism resulting from X chromosome loss is limited.

To create a comparator congenic strain for behavioral analyses, Mecp2 TG FVB/N mice were backcrossed for 10 generations to the C57BL/6N background. For experiments reported here, male and female Mecp2^{WT}→^{EGFP} TG (hemizygous) and their WT littermates on either FVB/N or C57BL/6N backgrounds were used. Tail biopsies were taken before weaning to obtain genomic DNA for genotyping (Kifayathullah et al., 2010; Bodd et al., 2013). Western blot and qPCR analyses for TG expression estimation were performed as described previously (Bodd et al., 2013).

Behavioral analyses

After weaning and during the whole period of behavioral testing, mice were housed individually in standard plastic cages (26.5 × 20 × 14 cm) and kept under temperature-controlled environment (21 ± 2°C) on 12 h light/dark cycle with food and water ad libitum, unless stated otherwise. Single housing was necessary since male FVB/N mice exhibited extremely aggressive behavior in a group-housed setting. In order to avoid housing differences as confounding variables, we decided to single-house all mice, independent of gender and strain. All experiments were conducted by investigators unaware of the genotype (“blinded”), during the light phase of the day (between 8:00 am and 6 pm, except for automated home cage behavioral assessment. Several independent cohorts of mice (genders and strains tested separately, starting at 5 weeks of...

Figure 6. SNP rs2734647 in the 3’UTR of MECP2: Search for mechanistic insight.

A. Human miRNAs predicted to bind to the MECP2 3’UTR in an rs2734647 allele-specific manner. The bases corresponding to the SNP position are black-shadowed. Numbers left and right of the nucleotide sequence refer to its base-pair position within the miRNA sequence.

B, C. Luciferase assay results showing relative luciferase activity in HEK293 and n2a cells after co-transfection of candidate miRNAs with pRL-TK rs2734647C, or rs2734647T, respectively; mean ± s.e.m.; N = 7 (refers to biological replicates) for all conditions. Statistical significance was calculated relative to the non-transfection control (100%).

D, E. Relative expression of hsa-miR-511 and of MECP2 isoform 2 (MECP2 e2) or both isoforms (MECP2 e1&2) in aggression/impulsivity - relevant brain areas: FC=frontal cortex, PFC=prefrontal cortex, TC=temporal cortex, OC=occipital cortex, HC=hippocampus; AM=amygdala; as well as in placenta (N = 1) as control tissue. Numbers of individual brains included in the analysis are given in brackets; mean ± s.e.m.

F. Relative expression of MECP2 e2 or MECP2 e1&2 in peripheral blood mononuclear cells (PBMC) of male patients dependent on rs2734647 genotype; N numbers of individuals in brackets; mean ± s.e.m.

G. Alignment of human and mouse MECP2 3’UTRs around rs2734647 SNP position (black-shadowed) and human and mouse mir-511, illustrating a perfect species-specific seed match; hsa-miR-511 perfectly matches the human MECP2 3’UTR in case of rs2734647 T. Additional mismatches are gray-shadowed.

© 2014 The Authors

EMBO Molecular Medicine Vol 6 | No 5 | 2014

676
Table A

miRNA	Mature sequence	ΔΔG value for rs2734647
hsa-miR-4711-3p	45- CGUGCCUCUCUGCUCUGAU	T-allele: -62, C-allele: -8.58
hsa-miR-511	16- GUCGCUCUCUGCUCCUGAUC	T-allele: -36, C-allele: -7.82
hsa-miR-515-3p	51- GAGUGCCUCUCUUGCAGGU	T-allele: -72, C-allele: NA
hsa-miR-519e	52- AAGUGCCUCUCUUGAGAGUU	T-allele: -73, C-allele: -9.48

Graph B
- **HEK293 cells**
 - Bar chart showing relative luciferase activity for different miRNAs (miR-4711-3p, miR-511, miR-515-3p, miR-519e-3p, neg. control) with conditions for rs2734647 T and C alleles.
 - Statistical significance: p=0.003, p=0.002

Graph C
- **N2a cells**
 - Bar chart showing relative luciferase activity for different miRNAs (miR-4711-3p, miR-511, miR-515-3p, miR-519e-3p, neg. control) with conditions for rs2734647 T and C alleles.
 - Statistical significance: p=0.027

Graph D
- **Relative to RNU43 (%)**
 - Bar chart showing relative expression of hsa-miR-511 across different samples (FC (3), PFC (3), TC (4), OC (4), HC (3), AM (3), placenta (1)).

Graph E
- **Relative to GAPDH (%)**
 - Bar chart showing relative expression of MECP2_e1&2 and MECP2_e2 across different samples (FC (3), PFC (3), TC (4), OC (4), HC (3), AM (3), placenta (1)).

Graph F
- **Relative expression**
 - Bar chart showing relative expression of MECP2_e1&2 and MECP2_e2 across samples for hsa-miR-511 (C (23), T (11)).
 - Statistical significance: p=0.005

Graph G
- **Sequence comparison**
 - Comparison of hsa-miR-511, human MECP2, mouse Mecp2, and mmu-miR-511 5' and 3' sequences with highlighted mismatches.
The resident–intruder test

The resident–intruder test was used to study inter-male aggression in various independent cohorts of TG and WT mice of both genetic backgrounds (FVB/N and C57BL/6N) and different age groups, ranging from 8 to 32 weeks (Jamain et al., 2008; Bodda et al., 2013). As standard opponents (intruders), group-housed males (4 weeks younger than resident test males) of C57BL/6N background were employed (Charles River, Sulzfeld, Germany). An intruder was introduced into the home cage of the test resident. Observation started when the resident first sniffed the opponent and stopped (stop watch) at first attack (defined as bite) to prevent wounding, but lasted for 300s (FVB/N) or 600s (C57BL/6N) if no attack occurred (cut-off) (Mineur & Crusio, 2002; Pugh et al., 2004). Male mice (FVB/N: 12TG, 22WT; C57BL/6N: 10TG, 13WT) were tested. Over the first 180s (unless mice attacked before), frequency and duration of following behaviors was additionally quantified in C57BL/6N (10TG, 11WT): nose/snout and anogenital sniff, following/chasing.

Nest building

Nest building is an important behavior in rodents, reflecting social competence in reproduction (Deacon, 2006; Satoh et al., 2011; El-Kordi et al., 2012). Two hours before dark phase, the nesting towel was removed from home cages of single-housed mice and replaced by a nestlet (pressed 2.7 g cotton square). Nest building quality was

Ultrasound vocalizations (USVs)

Ultrasound vocalizations (USVs) were recorded using a microphone (UltraSoundGateCM16) connected to a preamplifier (UltraSoundGate16), which was linked to a computer. At the day of recording, mice in their home cage (single-housed) were placed in the recording room for 60s. Subsequently, the intruder mouse was put into the resident’s cage, and vocalization behavior recorded for 3 min. The intruder mouse was an anesthetized unfamiliar female (anesthetic: intraperitoneal injection of 0.25% tribromoethanol, 0.1 ml/10 g body weight). Number of calls per recording session was counted, and USVs were separated from other sounds using the whistles detection algorithm of Avisoft-SASLab 5.2 with following selection criteria: Possible changes per step = 4 (4687 Hz), minimal continuity = 8 ms, possible frequency range = 35–150 kHz. These criteria had been tested in former studies of mouse USVs (El-Kordi et al., 2012; Hammerschmidt et al., 2012). Avisoft Bioacoustics, Berlin, Germany, delivered all sound recording hardware and software. Male C57BL/6N mice (12TG and 23WT) were tested.

The resident–intruder test

The resident–intruder test was used to study inter-male aggression in various independent cohorts of TG and WT mice of both genetic backgrounds (FVB/N and C57BL/6N) and different age groups, ranging from 8 to 32 weeks (Jamain et al., 2008; Bodda et al., 2013). As standard opponents (intruders), group-housed males (4 weeks younger than resident test males) of C57BL/6N background were employed (Charles River, Sulzfeld, Germany). An intruder was introduced into the home cage of the test resident. Observation started when the resident first sniffed the opponent and stopped (stop watch) at first attack (defined as bite) to prevent wounding, but lasted for 300s (FVB/N) or 600s (C57BL/6N) if no attack occurred (cut-off) (Mineur & Crusio, 2002; Pugh et al., 2004). Male mice (FVB/N: 12TG, 22WT; C57BL/6N: 10TG, 13WT) were tested. Over the first 180s (unless mice attacked before), frequency and duration of following behaviors was additionally quantified in C57BL/6N (10TG, 11WT): nose/snout and anogenital sniff, following/chasing.

Nest building

Nest building is an important behavior in rodents, reflecting social competence in reproduction (Deacon, 2006; Satoh et al., 2011; El-Kordi et al., 2012). Two hours before dark phase, the nesting towel was removed from home cages of single-housed mice and replaced by a nestlet (pressed 2.7 g cotton square). Nest building quality was
scored in the morning (Deacon, 2006; El-Kordi et al, 2012). Male C57BL/6N mice (10TG, 16WT) were tested.

The pentylentetrazole-induced seizure protocol

The pentylentetrazole-induced seizure protocol has been described in detail previously (Ferraro et al, 1999; Bodda et al, 2013; Wojcik et al, 2013). Seizure activity was induced in wakeful mice by a single intraperitoneal (i.p.) injection of pentylentetrazole (PTZ) (50 mg/kg body weight) followed by close observation for 30 min in a small, clear homecage. Latencies to focal (partial clonic), generalized clonic and maximal tonic-clonic behavioral seizures were recorded. Furthermore, 4 phases in the continuum of behavioral response to PTZ injection were defined as follows: (1) Hypoactivity (progressive decrease in motor activity until resting in a crouched or prone position with abdomen in full contact with cage bottom); (2) Partial clonus (clonus seizure activity affecting face, head, and/or forelimb or forelimbs); (3) Generalized clonus (sudden loss of upright posture, whole body clonus involving all 4 limbs and tail, rearing and autonomic signs); and (4) Tonic-clonic (maximal) seizure (generalized seizure characterized by tonic hindlimb extension — also associated with death). Finally, latencies to partial clonus (PC), generalized clonus (GC), and tonic-clonic (TC) seizures were summed to assign each mouse a seizure score that was used as a quantitative trait measure for mapping according to the following equation: Seizure score = (0.2)(1/PC latency) + (0.3)(1/GC latency) + (0.5)(1/TC latency)] × 1000. The weighting factors (0.2, 0.3 and 0.5) in the equation were included as means of incorporating a measure of the progressive nature of the PTZ-induced seizure phenotype into the severity rating because generalized clonus is regarded as a more significant event than partial clonus, and tonic hind limb extension is regarded as the most severe component of the phenotype. Therefore, the seizure score reflects the degree of progression of the seizure phenotype in each mouse. (Ferraro et al, 1999) The test was performed on adult Mecp2 TG of FVB/N and C57BL/6N background (30–40 weeks old). Male (FVB/N: 6 TG, 10 WT; C57BL/6N: 12 TG, 10 WT) and female mice (FVB/N: 14 TG, 14 WT; C57BL/6N: 10 TG, 11 WT) were tested.

Human sample

Schizophrenic patients (discovery sample)

The GRAS (Göttingen Research Association for Schizophrenia) data collection (Ribbe et al, 2010) was approved by the ethics committee of the Georg-August-University Göttingen (master committee) and respective review boards of collaborating centers. The project complies with the Helsinki Declaration. Patients fulfilling DSM-IV criteria for schizophrenia or schizoaffective disorder were included regardless of disease stage (acute, chronic, residual, or remitted). All study participants (European Caucasian 95.3%; other 2.0%; unknown 2.7%) and, if applicable, their legal representatives gave written informed consent. Of the included 1052 patients, 68.2% were male (N = 717) and 31.8% female (N = 335). Average age was 39.14 ± 12.56 years (range 17–78).

Healthy controls

Healthy voluntary blood donors were recruited by the Department of Transfusion Medicine at the Georg-August-University of Göttingen according to national guidelines for blood donation. As such, they widely fulfill health criteria, ensured by a broad predonation screening process including standardized health questionnaires, interviews, and assessment of hemoglobin concentration, blood pressure, pulse, and body temperature. Of the N = 1248 successfully genotyped control subjects (European Caucasian 97.8%; other 2%; unknown 0.2%), 61.5% were male (N = 768) and 38.5% female (N = 480). Average age was 37.44 ± 13.23 years (range 18–69).

Independent schizophrenia sample (replicate sample)

To replicate in an independent sample the phenotype-genotype associations found in male schizophrenic GRAS patients, data from male schizophrenic subjects (N = 385) of the Munich/Halle collection of Dan Rujescu could be analyzed (Van den Oord et al, 2006). Also in this replicate sample, written informed consent had been obtained from all subjects after detailed and extensive description of the study, which was approved by the local ethics committee and carried out in accordance with the ethical standards laid down in the Declarations of Helsinki.

Phenotyping — target variables

All schizophrenic patients of the GRAS data collection were comprehensively phenotyped (Ribbe et al, 2010). To prove our hypothesis that MeCP2 genotypes modulate aggressive behavior in human subjects, we selected target variables closely related to (poor impulse control) or predicting (excitement) aggressive behavior in schizophrenic individuals (Arango et al, 1999; Soyka et al, 2007; Colasanti et al, 2010). To assess the severity of poor impulse control, item 14 of the positive and negative syndrome scale (PANSS) (Kay et al, 1987) was used (disordered regulation and control of action on inner urges, resulting in sudden, unmodulated, arbitrary or misdirected discharge of tension and emotions without concern about consequences). From the subscale covering positive symptomatology, item 4 assessing excitement (hyperactivity as reflected in accelerated motor behavior, heightened responsivity to stimuli, hypervigilance or excessive mood lability) was employed (Tables 2 and 3). Both PANSS readouts were also available in the independent sample of schizophrenic individuals (replicate sample). The choice of items is supported by the literature: Cheung and colleagues compared aggressive and non-aggressive schizophrenia patients (aggression assessed by the Staff Observation Aggression Scale) with respect to single items of the PANSS (Cheung et al, 1997). The largest group difference was found for the PANSS item “poor impulse control”. Strikingly, the aggressive group had an average score of 4 (range: 1–7) on this item. Even after controlling for the total level of psychopathology, the associations of “poor impulse control” and aggressive behavior remained significant. Additionally, in a more recent prospective study, “poor impulse control” as measured by PANSS was highly predictive of aggressive behavior (assessed by the Overt Aggression Scale) (Nolan et al, 2005).

Phenotyping — control variables

Control variables (and potential confounders) are also presented in Tables 2 and 3. Sociodemographic data (age, years of education, unemployment rate), a cognition composite score and clinical variables describing disease severity were used to characterize the GRAS sample and exclude potential confounding effects explaining
the target phenotype–genotype associations. The cognition composite score (Begemann et al., 2011) represents the mean of 3 z-standardized neuropsychological measures of higher cognitive functioning: reasoning ability (Leistungsprüfsystem subtest 3; Horn, 1983), executive functioning (Trail-Making Test B; Reitan, 1958) and verbal learning and memory (Verbal Learning and Memory Test; Helmstaedter et al., 2001). As further clinical variables, the general, positive and negative scores of the PANSs (target variables excluded from respective scores), chlorpromazine equivalents (standardized dosage of antipsychotic medication) (Rijcken et al., 2003; Woods, 2003) and Global assessment of functioning (GAF; Wittchen et al., 1997) as measure of impaired psychological, social and occupational performance were used.

DNA extraction, normalization, and genotyping

Genomic DNA was purified from whole blood using JETQUICK Blood & Cell Culture DNA Spin Kit (Genomed GmbH, Löhne, Germany) according to the manufacturer’s protocol. Resulting DNA samples were aliquoted and stored at −80°C. For further analysis, DNA was normalized to 50 ng/μl with an automated robotic platform (Microlab Star, Hamilton, Bonaduz, Switzerland). For quality control, each sample was analyzed with a 0.8% agarose gel. Genotyping was performed using SimpleProbes (TIB Molbiol, Berlin, Germany) on LightCycler 480 (Roche Diagnostics, Basel, Switzerland), according to the manufacturer’s instructions.

Transfection studies

Cell lines

Human embryonic kidney 293 (HEK293) and mouse neuroblastoma (N2a) cells were maintained in DMEM supplemented with 1 g/l glucose, L-glutamine (Glutamax), 5% fetal calf serum, 100U/ml penicillin G sodium and 100 μg/ml streptomycin sulfate. For luciferase assays, cells were seeded into 12-well plates (220,000 cells/well/2 ml medium), cultured for 24 h and co-transfected using Lipofectamine 2000 (Invitrogen, Karlsruhe, Germany), or no miRNA, respectively. The reference construct pCMV-LacZ (Clontech, Mountain View, CA, USA) was co-transfected in the presence of 10 pg of mirVana miRNA mimic hsa-miR-4711-3p, hsa-miR-511, hsa-miR-515-3p, hsa-miR-519e-3p, negative control #2 (all Life Technologies, Darmstadt, Germany), or no miRNA, respectively. After 24 h, cells were split in 96-well plates, creating four technical replicates for each condition, and separately for luciferase and beta-galactosidase measurement. Enzyme activity was determined using a Mithras LB 940 Plate Reader (Berthold, Bad Wildbad, Germany). Renilla luciferase activity was normalized to beta-galactosidase activity.

RNA isolation and quantitative PCR

Peripheral blood mononuclear cells (PBMC) were isolated from citrate blood of men with rs2734647C or rs2734647T genotype (X-chromosomal gene), applying a standard isolation procedure (Ficol-Paque Plus, GEHealthcare, München, Germany). Human RNA was extracted from deep-frozen human brain samples of adult male subjects who had been free of neuropsychiatric diseases, from placentas or PBMC, respectively, using a mirNeasy Mini kit (Qiagen, Hilden, Germany). The same kit was employed for isolation of mouse RNA from whole E17 embryo (divided into body and head), hippocampus, amygdala, placenta, and cultured microglia. Synthesis of cDNA was done by the SuperScriptIII system (Invitrogen, Karlsruhe, Germany). Detection of MECP2 cDNA was performed using SYBR green (Roche, Diagnostics GmbH, Mannheim, Germany) and specific primer pairs amplifying the MECP2_e2 isoform (NCBI reference sequence NM_004992), spanning exons 2–3 (forward primer: 5'- CA GCTCCAACAGATTCCCAT-3', reverse primer: 5'- TGGAGGTCTCGG TCTTCTGA-3'), or both isoforms (NM_004992 and NM_00110792), spanning exons 3–4 (forward primer: 5'- AGCTTAAACGAAGAAT CTGG-3', reverse primer: 5'- GCTTTTCCTGGGATGT-3'). Specific Taqman microRNA assays were used to detect hsa-miR-511, hsa-miR-4711-3p, or mmu-miR-511 (Applied Biosystems, Foster City, CA, USA), following the manufacturer’s instructions. MECP2 expression levels were normalized to GAPDH, human miRNA expression levels to RNU43, and mouse miRNA expression levels to sno-142.

Statistics

All experimental data acquisition was done by experimenters unaware of group assignment (“blinded”). Mouse behavioral data were analyzed by Mann–Whitney U-test or 2-way analysis of variance including post hoc Bonferroni testing, where applicable, using Prism4 (GraphPad Software, San Diego, CA, USA). All data are presented as mean ± s.e.m., unless stated otherwise. Luciferase assay results from each experiment were normalized to the relative luciferase activity without miRNA co-transfection and analyzed using one-tailed unpaired t-tests. qPCR results were normalized to the respective control genes and analyzed using one-tailed unpaired t-tests. PLINK (v1.07) (Purcell et al., 2007) was used for the analysis of statistical association between single SNPs and case or control status (allelic test), and to test for deviations from Hardy–Weinberg equilibrium. Statistical analyses of phenotype–genotype associations in the human samples (both GRAS and replicate sample) were performed using SPSS for Windows version 17.0 (SPSS Inc., Chicago, IL, USA; http://www.spss.com). As MECP2 is X-linked, analyses were performed separately for men and women. Genotype differences with respect to the target variables were assessed by analysis of covariance. Covariates age at examination, years of education, chlorpromazine equivalents and severity of negative symptoms (PANSs) were used, as these parameters are likely to influence the extent to which impulsive aggressive behavior becomes obvious in a social situation. For the cognition composite score, analysis of covariance with covariates age, chlorpromazine equivalents and severity of negative symptoms was applied as these variables have been widely reported to confound performance on neuropsychological tests (Bilder et al., 1992; Hori et al., 2006). Genotype differences

EMBO Molecular Medicine

MECP2 expression differences in aggression

Martesa Tantra et al

© 2014 The Authors

680 EMBO Molecular Medicine Vol 6 No 5 2014
The paper explained

Problem
The transcripational regulator methyl-CpG-binding protein2, MECP2, is renowned because of the devastating neurodevelopmental disorder Rett syndrome, caused by partial or complete loss of its function. The very same gene, when duplicated, induces a similar disorder, indicating the necessity of tight MECP2 regulation. Among the vast array of other genes influenced by MECP2, many are involved in modulating behavior. Surprisingly, nothing is known on the physiological (i.e., non-disease-related) effects on behavior of subtle MECP2 expression differences.

Results
We present here a translational study that explores behavioral consequences of mildly increased MECP2 expression across species. We find that the behavioral target domain directed by MECP2 is male social aggression. This in turn is subject to modification by the genetic background, as we demonstrate by comparing an inherent aggressive with a less aggressive mouse strain. In two independent cohorts of schizophrenic individuals, that is, a discovery and a replicate sample, we identify a role of MECP2 in aggressive human behavior and show that a polymorphism in the untranslated region of the gene determines binding efficiency of another brain-expressed regulator, microRNA-511. Notably, the genotype-dependent expression difference of 40–50% (rs2734647-C>T) in man, at least partially mediated by microRNA-511, is comparable to the level of transgenic overexpression in our mice, emphasizing the physiological significance of these findings.

Impact
Genetic regulation of behavior is still poorly understood. We explore for the first time behavioral consequences of mildly (~50%) increased MECP2 expression in mouse and man. This is achieved by transgenic Mecp2 overexpression in mice and—in parallel—through genetic variation-induced non-regulability of MECP2 gene expression (rs 2734647-C: no miR-511-mediated MECP2 downregulation) in humans. We find MECP2 to be a modulator of social aggression. While the mouse data shows an interaction between genetic background and Mecp2 expression on behavior, the human data provides means by which genetic variation may affect MECP2 expression and result in behavioral change.

with respect to sociodemographic and clinical measures were tested non-parametrically using chi-square (nominal variables) or Mann–Whitney U/Kruskal–Wallis tests (continuous variables). All P-values derived from statistical models for the GRAS sample are two-sided (Tables 2 and 3). For the replicate sample one-sided P-values are displayed (Table 4). Nominal significance level for all analyses was set to \(P < 0.05 \).

Supplementary information for this article is available online: http://embomolmed.embopress.org

Acknowledgments
We are indebted to all patients for their participation in the GRAS (Göttingen Research Association for Schizophrenia) study, and all collaborating GRAS centers for their support. We are grateful to all colleagues who contributed to the GRAS data collection. We would also like to thank Anja Ronnenberg and Maria Zerche for excellent technical assistance and Dr. Wilko Hinrichs for his help regarding luciferase assay reading. This work was supported by the Max Planck Society, the Max-Planck-Förderstiftung, the DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB- B2) and COST action ECMNet.

Author contributions
Conceived and designed the study: HE, MT, CH, AK. Prepared the data: MT, CH, AK, MB, LD, CB, KH, BS, ACV, BE, IG, AT, BK, AH, WSS. Analyzed the data: MT, CH, AK, LD, KH, DR, AUM. Wrote the paper: HE, MT, AK, CH. Critical review and approval of the manuscript: all authors.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Albert FW, Somel M, Carneiro M, Aximu-Petri A, Halbwax M, Thalmann O, Blanco-Aguilar JA, Plyusninia IZ, Trut L, Villafuerte R et al (2012) A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet 8: e1002962
Amir RE, Van den Veyyer IB, Wan M, Tran Q0, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23: 185–188
Arango C, Calcedo Barba A, Gonzalez S, Calcedo Ordonez A (1999) Violence in inpatients with schizophrenia: a prospective study. Schizophr Bull 25: 493–503
Bauman MD, Toscano JE, Mason WA, Lavenex P, Amaral DG (2006) The expression of social dominance following neonatal lesions of the amygdala or hippocampus in rhesus monkeys (Macaca mulatta). Behav Neurosci 120: 749–760
Begemann M, Grube S, Papliol S, Malzahn D, Krampe H, Ribke B, Friedrichs H, Radyushkin KA, El-Kordi A, Benseler F et al (2011) Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch Gen Psychiatry 67: 879–888
Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY (2009) Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet 18: 243L–2442
Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127: 1108–1126
Bienvenu T, Chelly J (2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 7: 415–426
Bilder RM, Turkel E, Lipschutz-Broch L, Lieberman JA (1992) Antipsychotic medication effects on neuropsychological functions. Psychopharmacol Bull 28: 353–366
Bird A (2008) The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem Soc Trans 36: 575–583
Bodda C, Tantra M, Mollajew R, Arunachalam JP, Can K, Rosenberger A, Mironov SL, Ehrenreich H, Mannan AU (2013) Mild Overexpression of Mecp2 in Mice Causes a Higher Susceptibility toward Seizures. Am J Pathol 183: 195–210
Brower MC, Price BH (2001) Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neural Neurosurg Psychiatry 71: 720–726
Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320: 1224–1229
Chahrou M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. *Neuron* 56: 422 – 437

Chao HT, Chen H, Samaco RC, Xue M, Chahrou M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. *Nature* 468: 263 – 269

Chao HT, Zoghbi HY (2012) MeCP2: only 100% will do. *Nat Neurosci* 15: 176 – 177

Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Ferraro TN, Golden GT, Smith GG, St Jean P, Schork NJ, Mulholland N, Ballas Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, (2003) Deregulation of CD1/CD1 expression during a critical period of rat brain development. *J Neurosci* 23: 12931 – 12940

Coy JF, Sedlacek Z, Bachner D, Delius H, Poustka A (1994) A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3’-untranslated region of the methyl-CpG-binding protein 2 gene (MeCP2) suggests a regulatory role in gene expression. *Hum Mol Genet* 3: 1253 – 1262

Deacon RM (2008) Assessing nest building in mice. *Nat Protoc* 1: 1117 – 1119

El-Kordi A, Winkler D, Hammerschmidt K, Kastner A, Krueger D, Ronnenberg A, Ritter C, Jatho I, Radyushkin K, Burgeron T et al (2012) Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. *Behav Brain Res* 251: 41 – 49

Ferraro TN, Golden GT, Smith GC, St Jean P, Schork NJ, Mulholland N, Ballas C, Schill J, Buono RJ, Berretti NH (1999) Mapping loci for pentyletetrazol-induced seizure susceptibility in mice. *J Neurosci* 19: 6733 – 6739

Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben-Shachar S, Moretti P, McGill BE, Goulding EH, Sullivan E, Tecott LH et al (2008) Deletion of MeCP2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. *Neuron* 59: 947 – 958

Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD et al (2011) Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. *Nature* 469: 534 – 538

Gaskill BN, Gordon CJ, Pajor EA, Lucas JR, Davis JK, Garner JP (2012) Heat or insuluation: behavioral titration of mouse preference for warmth or access to a nest. *PloS ONE* 7: e32799

Gopisetty G, Xu J, Sampath D, Colman H, Puduvalli VK (2012) Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. *Oncogene* 32: 3119 – 3129

Greenberg B (1972) The effects of ambient temperature and population density on aggression in two inbred strains of mice, Mus musculus. *Behaviour* 42: 119 – 130

Griffin A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. *Mol Cell* 27: 91 – 105

Guy J, Hendrich B, Holmes M, Martin J, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. *Nat Genet* 27: 322 – 326

Haldane M, Cunningham G, Androuchos C, Frangou S (2008) Structural brain correlates of response inhibition in Bipolar Disorder. *J Psychopharmacol* 22: 138 – 143

Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J (2012) The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. *PLoS ONE* 7: e41133

Helmstaedter C, Lendt M, Lux S (2001) *Verbal Learning and Memory Test (VLMT)*. Goettingen, Germany: Beltz

Hori H, Noguchi H, Hashimoto R, Nakabayashi T, Omori M, Takahashi S, Tsukue R, Anami K, Hirabayashi N, Harada S et al (2006) Antipsychotic medication and cognitive function in schizophrenia. *Schizophr Res* 86: 138 – 146

Horn NR, Dolan M, Elliott R, Deakin JF, Woodruff PW (2003) Response inhibition and impulsivity: an fMRI study. *Neuropsychologia* 41: 1959 – 1966

Horn W (1983) *Leistungsprüfsystem (LPS)*. Goettingen, Germany: Hogrefe

Huppke P, Maier EM, Warnke A, Brendel C, Laccof F, Gardner J (2006) Very mild cases of Rett syndrome with skewed X inactivation. *J Med Genet* 43: 814 – 816

Ito W, Chehab M, Thakur S, Li J, Morozov A (2011) BDNF-restricted knockout mice as an animal model for aggression. *Genes Brain Behav* 10: 365 – 374

Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Borel E, Varoqueaux F, Ramantonsa N, Gallego J, Ronnenberg A, Winter D et al (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. *Proc Natl Acad Sci USA* 105: 1710 – 1715

Joyner AH, Roddycy J, Blos CS, Bakken TE, Rimol LM, Melie I, Agartz I, Djurovic S, Topol EJ, Schork NJ et al (2009) A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. *Proc Natl Acad Sci USA* 106: 15483 – 15488

Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. *Schizophr Bull* 13: 261 – 276

Kerr B, Alvarez-Saavedra M, Saez MA, Saona A, Young J (2008) Defective body-weight regulation, motor control and abnormal social interactions in MeCP2 hypomorphic mice. *Hum Mol Genet* 17: 1707 – 1717

Kertesz M, Lovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. *Nat Genet* 39: 1278 – 1284

Kifayathullah LA, Arunachalam JP, Boddia C, Agbemenyah HY, Laccof F, Mannan AU (2010) MeCP2 Mutant Protein Is Expressed in Astrocytes as well as in Neurons and Localizes in the Nucleus. *CytoGenet Genome Res* 129: 290 – 297

Kuc KA, Gregersen BM, Gannon KS, Dodart JC (2006) Holeboard discrimination learning in mice. *Genes Brain Behav* 5: 355 – 363

Kurian JR, Bychowski ME, Forbes-Lorman RM, Auger CJ, Auger AP (2008) MeCP2 organizes juvenile social behavior in a sex-specific manner. *J Neurosci* 28: 7137 – 7142

Kurian JR, Forbes-Lorman RM, Auger AP (2007) Sex difference in mec2 expression during a critical period of rat brain development. *Epigenetics* 2: 173 – 178

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell* 120: 15 – 20
Mandillo S, Tucci V, Holter SM, Meziane H, Banchaabouchi MA, Kalinik M, Lad HV, Nolan PM, Ouagazzal AM, Coghill EL et al (2008) Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics 34: 243 – 255

Martinowich K, Hatton D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302: 890 – 893

Messerli P, Eleftheriou BE, Oliverio A (1975) Dominance behavior: A phylogenetic analysis in the mouse. Physiol Behav 14: 53 – 58

Mineur YS, Crusio WE (2002) Behavioral and neuroanatomical characterization of FVB/N inbred mice. Brain Res Bull 57: 41 – 47

Moretti P, Bouwknecht JA, Teague R, Paylor R, Zoghbi HY (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 14: 205 – 220

Moy SS, Nadler jj, Young NB, Nonneman RJ, Grossman AW, Murphy DL, O’Riccole Aj, Crawley JN, Magnuson TR, Lauder JM (2009) Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 8: 129 – 142

Nolan KA, Volavka J, Czobor P, Sheitman B, Lindenmayer JP, Citrome LL, Nolan PM, Ouagazzal AM, Martin B, D’Andrea JN (2003) The behavioral phenotype in MECP2 duplication syndrome. J Neurolinguistics 16: 223 – 234

Pietropaolo S, Guilleminot A, Martin B, D’Andrea JN (2001) A behavioural analysis of MECP2 knock-out mice. Brain Res 906: 21971 – 21977

Ramocki MB, Carvalho CM, Davidson C, Mandel-Brehm C, McCraw CM, Shaw CA, McCall BE, Zoghbi HY (2012) Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 44: 206 – 211

Samaco RC, Carvalho CM, Ward CS, Sun Y, Neul JL, Zoghbi HY (2013) Female Mecp2(-/-) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet 22: 96 – 109

Sato Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, Takeuchi A, Hiramoto T, Watanabe Y, Kazama T (2011) ERK2 contributes to the control of social behaviors in mice. J Neurosci 31: 11953 – 11967

Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35: 243 – 254

1958

Suykema, G., Graz, C., Bottender, R., Dirschedl, P., Schoech, H. (2007) Clinical correlates of later violence and criminal offences in schizophrenia. Schizophr Res 94: 89 – 98

Sun YE, Wu H (2006) The ups and downs of BDNF in Rett syndrome. Neuron 49: 321 – 323

Tserel L, Runnels T, Kim K, Pihlak M, Baklaff H, Kolde R, Peterson H, Vilo J, Peterson P, Rebane A (2011) MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as a putative positive regulator of Toll-like receptor 4. J Biol Chem 286: 26487 – 26495

Van den Oord EJ, Rujescu D, Roberts JR, Giegling I, Birrell C, Buxsar J, Murrelle L, Moller HJ, Middleton L, Muglia P (2006) Factor structure and external validity of the PANSS revisited. Schizophr Res 82: 213 – 223

Whelan R, Conrod PJ, Poline JB, Lourdusamy A, Banaschewski T, Barker GJ, Belgrove MA, Buchel C, Byrne M, Cummins TD et al (2012) Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat Neurosci 15: 920 – 925

2008

Wittchen H-U, Zaudig M, Fydrich T (1997) SCID-I: Structured Clinical Interview for DSM-IV Disorders. Goettingen, Germany: Hogrefe

Wojcik SM, Tantra M, Stepniak B, Man KN, Muller-Ribe K, Beggam M, Ju A, Papilo R, Nonnenberg A, Gurvich A et al (2013) Genetic Markers of a Munc13 Protein Family Member, BAIAP3, Are Gender-Specifically Associated with Anxiety and Benzodiazepine Abuse in Mouse and Man. Mol Med 19: 135 – 148

Wolfer D, Lipp H (2000) Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp Physiol 85: 627 – 634

Wong EH, So HC, Li M, Wang Q, Butler AW, Paul B, Wu HM, Hui TC, Choi SC, So MT et al (2013) Common Variants on Xq28 Conferring Risk of Schizophrenia in Han Chinese. Schizophr Bull. doi: 10.1093/schbul/sbt104

© 2014 The Authors

Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64: 663 – 667

Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP, Ruan X, Ruan Y, Sun YE (2010) Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 107: 18161 – 18166

Zetzsche T, Preuss UW, Frodl T, Schmitt G, Seifert D, Munchhausen E, Tabrizi S, Leinsinger G, Born C, Reiser M et al (2007) Hippocampal volume reduction and history of aggressive behaviour in patients with borderline personality disorder. Psychiatry Res 154: 157 – 170

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.