Abstract

Canine vector-borne diseases (CVBDs) are highly prevalent in Brazil and represent a challenge to veterinarians and public health workers, since some diseases are of great zoonotic potential. Dogs are affected by many protozoa (e.g., *Babesia vogeli*, *Leishmania infantum*, and *Trypanosoma cruzi*), bacteria (e.g., *Anaplasma platys* and *Ehrlichia canis*), and helminths (e.g., *Dirofilaria immitis* and *Dipylidium caninum*) that are transmitted by a diverse range of arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies. This article focuses on several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance) of CVBDs in Brazil and discusses research gaps to be addressed in future studies.

Background

Canine vector-borne diseases (CVBDs) constitute an important group of illnesses affecting dogs around the world. These diseases are caused by a diverse range of pathogens, which are transmitted to dogs by different arthropod vectors, including ticks, fleas, lice, triatomines, mosquitoes, tabanids, and phlebotomine sand flies.

CVBDs are historically endemic in tropical and subtropical regions and have increasingly been recognized, not only in traditionally endemic areas, but also in temperate regions [1]. This may be attributed to several factors, including the availability of improved diagnostic tools, higher public awareness about CVBDs, dog population dynamics, and environmental and climate changes [2], which directly influences the distribution of arthropod vectors and the diseases they transmit.

CVBDs have long been recognized in Brazil [3]. At the beginning of the 21st century, CVBDs are prevalent in all regions of the country and some of them have increasingly been recognized in previously free areas, as it is the case of canine leishmaniasis in São Paulo, Southeast Brazil [4-11]. Despite their recognized importance, many aspects concerning epidemiology and public health significance of CVBDs in Brazil are still poorly known and data have not been comprehensively discussed.

This article summarizes several aspects (etiology, transmission, distribution, prevalence, risk factors, diagnosis, control, prevention, and public health significance) of CVBDs in Brazil and discusses research gaps to be addressed in future studies.

Protozoal diseases

Canine babesiosis

Canine babesiosis has been recognized in Brazil since the beginning of the 20th century [12]. This disease is caused by *Babesia vogeli* (= *Babesia canis vogeli*) (Piroplasmida: Babesioidea) (Fig. 1), which has recently been molecularly characterized in Brazil [13]. Cases of *Babesia gibsoni* infection in Brazilian dogs have also been reported [14]. The
only proven vector of B. vogeli in Brazil is Rhipicephalus sanguineus (Fig. 2), which is also the suspected vector of B. gibsoni [15].

Canine babesiosis is prevalent in virtually all Brazilian regions [12,16-24]. The prevalence of infection ranges from 35.7% [24] to 66.9% [16] in serological surveys and from 1.9% [23] to 42% [21] by cytology on blood smears. The incidence of disease seems to be higher among adult dogs [24], although young dogs are also highly susceptible to infection [22]. Apparently, there are no breed or sex predilections [16,21,24-26].

The diagnosis of canine babesiosis is usually based on the presence of suggestive clinical signs (e.g., apathy, fever, anorexia, weigh loss, pale mucous membranes, and jaundice) and patient history. The infection by Babesia spp. is confirmed by the examination of Giemsa-stained peripheral blood smears. A detailed review of all aspects, including diagnosis and treatment, of canine babesiosis in Brazil can be found elsewhere [22].

Canine leishmaniasis
Canine leishmaniasis was firstly recognized in Brazil during the 1930s [27]. This disease is mainly caused by Leishmania infantum (Kinetoplastida: Trypanosomatidae) (Fig. 3), sometimes referred to as Leishmania chagasi or Leishmania infantum chagasi [28]. Infection by other Leishmania species (e.g., Leishmania amazonensis) have also been reported [7,10] and cases of co-infection by two species (e.g., L. infantum and Leishmania braziliensis) as well [29]. The main vector of L. infantum in Brazil is Lutzomyia longipalpis (Diptera: Psychodidae). Other modes of transmission, including by Rh. sanguineus ticks, are suspected to occur [30,31], particularly in foci where suitable phlebotomine sand fly vectors are absent (e.g., Recife, Northeast Brazil) [32]. The vectors of L. amazonensis and L. braziliensis vary from region to region and several species may eventually be involved, including Lutzomyia whitmani (Fig. 4) and Lutzomyia intermedia (reviewed in [33]).

Canine visceral leishmaniasis by L. infantum is endemic in all Brazilian regions [34-47], except in South where the disease is seldom recognized [44,48,49]. Canine cutaneous leishmaniasis by L. braziliensis is also prevalent in all regions [7,10,38,50-58], except in Center-West. The only two cases of L. amazonensis infection in dogs reported so far were diagnosed in Southeast Brazil [10]. The prevalence of Leishmania spp. infection in dogs varies widely [38,47,59,60] and may be as high as 67% in highly endemic foci [61]. Risk factors associated with canine
Leishmaniasis have extensively been studied in Brazil. There appears to be no sex predilection [35,60]. Although the prevalence of infection is often higher among males [47], this seems to be a matter of exposition rather than sex-related susceptibility. The prevalence is also higher in young dogs [47]. Some breeds (e.g., boxer and cocker spaniel) are apparently more susceptible to *L. infantum* infection [60]. Short-furred dogs are at a higher risk of infection [60] and this has been attributed to the fact that their short-hair makes them more exposed to phlebotomine sand fly bites.

The diagnosis of canine leishmaniasis is based on the presence of suggestive clinical signs (e.g., weight loss, dermatitis, hair loss, mouth and skin ulcers, enlarged lymph nodes, onychogryphosis, and conjunctivitis) (Fig. 5) and on a positive serological response to *Leishmania* antigens [47,62]. Detailed information on several aspects of canine leishmaniasis, including diagnosis and treatment, can be found elsewhere [31,63,64].

The treatment of canine leishmaniasis is not routinely practiced in Brazil. Until the middle of the 1980s, most attempts to treat Brazilian dogs affected by leishmaniasis were unsuccessful [65]. Nowadays, there is scientific evidence supporting the treatment of canine leishmaniasis in Brazil [66-69]. However, although the available protocols are effective in promoting clinical improvement, a parasitological cure is seldom achieved [66-71]. Hence, considering the importance of dogs in the epidemiology of zoonotic visceral leishmaniasis, the Ministry of Health and the Ministry of Agriculture, Livestock and Food Supply have recently prohibited the treatment of canine visceral leishmaniasis in Brazil [see Addendum].
Canine hepatozoonosis

Canine hepatozoonosis was firstly diagnosed in Brazil during the 1970s [72]. This disease is caused by *Hepatozoon canis* (Apicomplexa: Hepatozoidae) (Fig. 6), which has recently been molecularly characterized in Brazil [73-75]. Dogs become infected by ingestion of a tick containing mature *H. canis* oocysts. Ticks involved in the transmission of *H. canis* in Brazil include some *Amblyomma* species, particularly *Amblyomma aureolatum*, *Amblyomma ovale* (Fig. 7), and *Amblyomma cajennense* [76-78]. *Rhipicephalus sanguineus*, which is a known vector of *H. canis* in the Old World, may also play a role in the transmission of this pathogen in Brazil.

Canine hepatozoonosis is prevalent in Center-West, Northeast, South, Southeast [72-82], and much probably in the North region. The prevalence of infection may be as high as 39% in some rural areas [76]. Little is known about the risk factors associated with *H. canis* infection in Brazil. The infection is more prevalent in rural areas [76], where dogs are more exposed to *Amblyomma* ticks. However, this association is not fully understood, because dogs from urban areas are highly exposed to *Rh. sanguineus* [83], a major vector of *H. canis* in the Old World [84].

The diagnosis of canine hepatozoonosis is based on the presence of suggestive clinical signs (e.g., apathy, anorexia, pale mucous membranes, fever, weight loss, diarrhoea, vomit, and muscle pain) and on the observation of *H. canis* gamonts in leucocytes in Giemsa-stained blood smears [79,84-87]; the sensitivity is higher if peripheral blood is used [78]. More information on diagnosis and treatment of canine hepatozoonosis can be found elsewhere [84,86].

Canine trypanosomiasis

Canine trypanosomiasis has been studied in Brazil since the beginning of the 20th century [88]. This disease is caused by protozoa of the genus *Trypanosoma* (Kinetoplastida: Trypanosomatidae) and has sporadically been recognized in Brazil. *Trypanosoma* species known to infect dogs in Brazil are *Trypanosoma evansi* [89-96], *Trypanosoma cruzi* [97-100], and possibly *Trypanosoma rangeli* [101], the latter species is normally nonpathogenic.

The vectors of *T. cruzi* (a stercorarian species) are triatomines of the genera *Pansstrongylus*, *Rhodnius*, and *Triatoma* (Hemiptera: Triatominae). *Rhipicephalus sanguineus* ticks feed on dogs infected by *T. cruzi* can acquire the infection [102], but there is no evidence supporting the development and subsequent transmission to naïve dogs. *Trypanosoma cruzi* infection in dogs is prevalent in all regions, except in South [103]. In areas where American trypanosomiasis (or Chagas disease) is endemic, it is estimated that around 15–50% of the dogs are exposed to *T. cruzi* infection [97-100,104,105]. Clinically, the infection is of minor significance; that is, infected dogs are often asymptomatic carriers. In an experimental model, only sporadic febrile episodes were noted during the first weeks post inoculation [106]. Some dogs developed chronic focal and discrete myocarditis, which was only noticed during necropsy [106].
The vectors of *T. evansi* (a salivarian species) are hematophagous flies of the genera *Tabanus* (Diptera: Tabanidae) and *Stomoxys* (Diptera: Muscidae) (Fig. 8). *Trypanosoma evansi* infection in dogs is found predominately in Center-West and South regions [89-96,107,108]. In Mato Grosso (Center-West Brazil), for instance, the prevalence of *T. evansi* infection is serologically estimated to be around 30% [90]. Dogs are regarded as efficient reservoirs of *T. evansi*, which is the causative agent of a severe disease affecting horses, commonly known as *mal de cadeiras* or *surra*. The infection in dogs is also severe and potentially fatal [93]. Clinical signs include edema of the hind limbs, anorexia, apathy, dehydration, pale mucous membranes, fever, and weight loss [93,108-110].

Vectors of *T. rangeli* are triatomines of the genus *Rodnius*. While *T. cruzi* is transmitted through the feces of triatomines, *T. rangeli* is can be transmitted through both feces and saliva. *Trypanosoma rangeli* is widely spread in Brazil and has been found on a large number of hosts, including marsupials, rodents, and humans [101,111-114]. While nonpathogenic neither to dogs nor to humans, *T. rangeli* can be confounded with *T. cruzi*, which poses a challenge for the diagnosis of Chagas diseases, particularly in areas where both species are endemic. The distinction between *T. rangeli* and *T. cruzi* can be done by several biological, immunological, biochemical and molecular assays. The characteristic biological behavior in the invertebrate host is considered the best method for their differentiation [115].

Nambiuvú
Nambiuvú (in English, bloody ears) or *peste de sangue* (bleeding plague) was firstly recognized in Brazil in 1908 [116]. This little known disease is caused by *Rangelia vitalli* (Piroplasmorida), a protozoan whose current taxonomic position is uncertain. The infection is thought to be transmitted by ticks [117]. Cases of *Nambiuvú* have been recognized in Center-West, South, and Southeast regions [117-120]. The diagnosis of *Nambiuvú* is based on the presence of suggestive clinical signs (e.g., anemia, jaundice, fever, splenomegaly, and persistent bleeding from the nose, oral cavity, and tips, margins and outer surface of the pinnae) (Fig. 9) and on the observation of the parasites within endothelial cells of blood capillaries in necropsy samples. Recent information on several aspects of *Nambiuvú* can be found elsewhere [117,121].

Bacterial diseases
Canine monocytic ehrlichiosis
Canine monocytic ehrlichiosis was firstly recognized in Brazil in the 1970s [122]. This disease is caused by *Ehrlichia canis* (Rickettsiales: Anaplasmataceae) (Fig. 10), which was firstly isolated in Brazil in 2002 [123]. The agent of canine monocytic ehrlichiosis is well characterized in Brazil [124-128], where it is transmitted by *Rh. sanguineus* [124]. Other *Ehrlichia* species found in Brazil – e.g., *Ehrlichia chaffeensis*, [129] – are also suspected to...
infect dogs. In fact, there is serological evidence of *E. chaffeensis* infection in Brazilian dogs [130].

Canine ehrlichiosis is prevalent in virtually all regions of Brazil [24,124-127,131,132]. This disease affects around 20–30% of the dogs referred to veterinary clinics and hospitals in Brazil [24,124,131], but the prevalence of infection vary widely from region to region [23,76,126,128,131-135]. The prevalence of infection can be as high as 46.7% in asymptomatic [128] and 78% in symptomatic dogs [132]. The risk of *E. canis* infection is higher for dogs that live in houses when compared to dogs living in apartments [23]. This is expected because dogs that live in houses with backyards are theoretically more exposed to ticks than those living in apartments. Seroepidemiological studies revealed that male adult dogs are more likely to present antibodies to *E. canis*, particularly those infested by ticks [24,134].

The diagnosis of canine ehrlichiosis is usually based on clinical signs (e.g., fever, pale mucous membranes, anaplasmosis

Canine anaplasmosis is caused by *Anaplasma platys* (formerly *Ehrlichia platys*) (Rickettsiales: Anaplasmataceae) and has been recognized sporadically in Brazil. There are different *A. platys* strains circulating in Brazilian dogs, as revealed by analysis of partial sequences of the 16S rRNA gene [137]. The vector of *A. platys* is still unknown or unproven. Ticks of various genera (e.g., *Rhipicephalus*, *Dermacentor*, and *Ixodes*) have been found naturally infected by *A. platys* around the world [138-142]. The suspected vector of *A. platys* in Brazil is *Rh. sanguineus*.

Canine anaplasmosis has been found in all regions of Brazil, although few cases have been formally published in the literature [124,127,143-145]. The prevalence of *A. platys* infection ranges from 10.3 [146] to 18.8% [145]. Little is known about risk factors associated with canine anaplasmosis in Brazil. The infection by *A. platys* is seldom associated with clinical disease, except in cases of co-infection with other organisms (e.g., *E. canis* and *B. vogeli*), which is common in Brazil [19,21,127,134]. Typically, dogs infected by *A. platys* display only a cyclic thrombocytopenia, but no hemorrhagic events are noted. The laboratory diagnosis is based on the observation of *A. platys* inclusions in platelets in peripheral blood smears stained with ordinary hematological staining methods. Serological studies have never been performed and molecular techniques are currently restricted to research.

Canine Rocky Mountain spotted fever

Canine Rocky Mountain spotted fever is caused by *Rickettsia rickettsii* (Fig. 11) and has been associated with significant morbidity and occasional mortality in the United States [147,148]. Serological surveys conducted in Brazil have shown that dogs from some Rocky Mountain spotted fever-endemic areas (e.g., Minas Gerais and São Paulo) have presented antibodies to *R. rickettsii* [124,127]. The prevalence of *R. rickettsii* infection in dogs has been reported to range from 0.08% to 0.2% (149). The disease is usually transmitted by a variety of tick species, including *Amblyomma* species and *Ixodes dammini*. The clinical presentation of canine Rocky Mountain spotted fever is similar to that in humans, with the most common signs being fever, anorexia, lymphnode enlargement, and weight loss. The diagnosis is usually based on the serological detection of *R. rickettsii* antibodies in the dog's blood. The treatment of canine Rocky Mountain spotted fever is supportive, and antibiotics such as tetracycline or doxycycline can be used to treat the infection.
Paulo) are exposed to *R. rickettsii* infection [129,149-154]. The vectors of *R. rickettsii* are *Amblyomma* ticks, mainly *Am. cajennense* [155] (Fig. 12) and *Am. aureolatum* [156]. Additionally, *Rh. sanguineus* ticks have the potential to be involved in the *R. rickettsii* transmission cycle in areas other than Mexico and United States, including Brazil [157]. Serological surveys in Minas Gerais, Espírito Santo, Rondônia, and São Paulo revealed that the prevalence of anti-*R. rickettsii* antibodies in dogs ranges from 4.1 to 64% [129,149-154,158]. However, it is difficult to estimate the actual prevalence of *R. rickettsii* infection in dogs using serological tests, because of their low specificity [157].

Little is known about the risk factors associated with *R. rickettsii* infection in Brazilian dogs. In a study conducted in São Paulo, the proportion of dogs positive to anti-*R. rickettsii* antibodies increased with age [158]. Although there is no information about clinical cases of Rocky Mountain spotted fever in dogs in Brazil, veterinarians working in areas where human cases have been reported must consider the possibility of this disease to request laboratory tests that will allow a proper diagnosis.

Canine haemobartonellosis

Canine haemobartonellosis has been sporadically recognized in Brazil, but little is known about this disease in this country, because few reports have been formally published in the literature. This disease is caused by *Mycoplasma haemocanis* (formerly *Haemobartonella canis*) (Mycoplasmatales: Mycoplasmataceae), which is transmitted by *Rh. sanguineus* [159]. *Mycoplasma haemocanis* infection in dogs has been recognized in South and Southeast Brazil [17,144,160-162]. Clinical disease in immunocompetent animals is uncommon. On the other hand, immunosuppressed dogs (e.g., splenectomized dogs) are particularly susceptible to infection [161,163].

Clinical signs include pale mucous membrane, weight loss, apathy, anorexia, and fever [164]. The diagnosis of *M. haemocanis* infection is based on microscopic examination of blood smears stained with ordinary hematological staining techniques. Serological and molecular assays have also been used [164].

Canine borreliosis

A Lyme-like illness has been recognized in humans in Brazil since 1989 [165], although the true identity of the causative agent has not yet been determined. Serological surveys conducted in Southeast Brazil confirmed that dogs are often exposed to infection by *Borrelia burgdorferi* (sensu lato). *Borrelia*-like spirochetes have been detected in *Ixodes* ticks in the State of São Paulo [166], but the possible vectors of *B. burgdorferi s. l.* in Brazil are largely unknown. *Amblyomma* ticks are also suspected to be involved in transmission [167].

The prevalence of anti-*B. burgdorferi s. l.* antibodies in Brazilian dogs ranges from less than 1 up to 20% [130,132,168,169]. The infection in dogs is usually asymptomatic and there appears to be no correlation between seropositivity and sex or age of the animals [169]. As expected, the seropositivity correlates with history of previous contact with ticks [169]. At present, there is no information about the treatment of dogs with suspected *B. burgdorferi s. l.* infection in Brazil.

Helminthiasis (heartworm and tapeworm)

Canine dirofilariasis

Canine heartworm was firstly recognized in Brazil in 1878 [3]. The disease is caused by *Dirofilaria immitis* (Nematoda: Onchocercidae), which is transmitted by many mosquito species. *Aedes scapularis* and *Aedes taeniorhynchus* are implicated as the primary vectors, while *Culex quinquefasciatus* is a secondary vector [170-174]. Another filarid nematode commonly found infecting dogs in Brazil is *Acanthocheilonema reconditum* (formerly *Dipetalonema reconditum*) (Nematoda: Onchocercidae), whose intermediate hosts are fleas (*Ctenocephalides canis* and *Ctenocephalides felis*) (Fig. 13) and lice (*Heterodoxus spiniger* and *Trichodectes canis*) [175,176]. *Acanthocheilonema reconditum* infection usually causes no clinical signs in dogs. Despite this, it is important to distinguish the microfilaria of *A. reconditum* from that of *D. immitis*, as these filarid nematodes are often found in sympaty.
Dirofilaria immitis is prevalent in virtually all regions of Brazil [3,172,177-185]. The prevalence of D. immitis infection in dogs varies widely and can be higher than 60% in highly endemic foci [185]. The countrywide prevalence has decreased from 7.9% in 1988 to 2% in 2001 [186]. The possible reasons for this decrease include the reduction of transmission as a result of effective chemo prophylaxis and/or reduction of microfilaremic dog populations due to the off-label use of injectable ivermectin [187]. The risk of D. immitis infection is greater in dogs living in coastal regions [170,172,182,187] and in dogs older than two years [185]. Apparently there is no sex or breed predisposition [172,182]. In some areas, the prevalence of infection is higher among males [177,185], although this is likely to be a matter of exposure rather than sex-related susceptibility. Likewise, the prevalence of infection seems to be higher among mixed-breed dogs [188].

The diagnosis of canine heartworm is based on clinical signs (e.g., coughing, exercise intolerance, dyspnea, weight loss, cyanosis, hemoptysis, syncope, epistaxis, and ascites). The infection is confirmed by the observation of microfilariae in blood samples using the modified Knott’s test or the detection of antigens produced by adult heartworms using commercial enzyme-linked immunosorbent assay kits [189].

Dipylidiasis (tapeworm infection)
Dipylidiasis is caused by Dipylidium caninum (Cestoda: Dipylidiidae), whose intermediate hosts include fleas (C. felis and C. canis) and lice (T. canis and H. spiniger). Dogs become infected by ingestion of intermediate hosts containing infective cysticercoids (i.e., the adult tapeworm encysted in the intestinal wall of an intermediate host) [190]. In a recent study on endosymbionts of C. felis felis collected from dogs in Minas Gerais, of 1,500 fleas examined, six (0.4%) were infested by D. caninum [191]. Not surprisingly, the infestation by D. caninum in dogs (and also in cats) is commonly found in all regions of Brazil [192-198]. The infestation is usually asymptomatic. Some dogs may be seen scooting or dragging the rear end across the floor. This behavior is a consequence of the intense perianal pruritus caused by the rice grain-like proglottids, which can be eventually seen crawling around the anus.

Control and prevention of CVBDs in Brazil
Vaccination
At present, only two CVBDs are preventable by vaccination in Brazil. A vaccine (Leishmune, Fort Dodge Animal Health Brazil) against canine visceral leishmaniasis was recently licensed in Brazil [199]. This vaccine is only recommended for healthy, seronegative dogs at the minimum age of four months. The vaccine is well tolerated, although some dogs display transient mild adverse events (e.g., pain, anorexia, apathy, local swelling reactions, vomit, and diarrhea) [200]. Its efficacy is around 80% [43]. However, it is important to state that this vaccine protects dogs against the disease (i.e., appearance of clinical signs), but not against L. infantum infection [199].

Until recently, there was no vaccine against canine babesiosis in Brazil [22]. A vaccine (Nobivac® Piro, Intervet Brazil) was recently licensed for commercialization in Brazil, but no information about efficacy and safety of this vaccine in preventing canine babesiosis in Brazil is currently available.

Chemoprophylaxis
The chemoprophylaxis of canine heartworm is usually undertaken in Brazil, using different microfilaricides, such as ivermectin, milbemycin oxime, and selamectin [189]. The chemoprophylaxis of canine babesiosis has been recommended in Brazil [22]. Imidocarb can protect dogs from B. canis infection for 2–6 weeks [201], whereas doxycycline is effective in preventing clinical disease, but not infection [202].

Vector control
Vector control is the only effective measure for the control of most CVBDs in Brazil. The strategies currently used for the control of ticks in Brazil have recently been reviewed elsewhere [22,203]. The control of vectors other than ticks (i.e., fleas, lice, mosquitoes, triatomines, and phlebotomine sand flies) is performed by using insecticides under different formulations (pour-on, spot on, spray, etc.). The use of insecticide-impregnated collars limits the exposure of dogs to phlebotomine sand flies. However, it has been
demonstrated that the impact of such intervention is dependent on collar coverage and loss rate [204]. Moreover, experience shows that this approach is of limited impact, mainly because most dog owners living in endemic areas cannot afford the costs such collars.

Other control measures
While not universally accepted, the culling of dogs positive to anti-Leishmania antibodies is still practiced in Brazil [70,72]. This control measure has been subject of intense, ongoing debate in Brazil. Many dog owners, veterinarians, and non-governmental organizations have opposed the culling of seropositive dogs, both for ethical reasons and due to the lack of scientific evidence supporting the effectiveness of this strategy.

From 1990 to 1994, more than 4.5 million dogs were screened and more than 80,000 were culled in Brazil [205]. In the same period, there was an increase of almost 100% in the incidence of human visceral leishmaniasis [205]. Actually, China is probably the only country where the culling of seropositive dogs seems to have been effective [206]. The possible reasons for the failure of the culling of seropositive dogs in Brazil include: high incidence of infection, limited sensitivity and specificity of available diagnostic methods, the time delays between diagnosis and culling, rapid replacement of culled dogs by susceptible puppies or already infected dogs, and owner's unwillingness to give up asymptomatic seropositive dogs [11,70,206,207]. A recent study conducted in Southeast Brazil suggests that the dog culling as a control measure for human visceral leishmaniasis in Brazil should be re-evaluated [11].

CVBDs from the public health standpoint
CVBDs constitute a group of diseases of great interest because some vector-borne pathogens affecting dogs in Brazil (e.g., L. infantum, T. cruzi, and E. canis) are potentially zoonotic (see Tables 1, 2, and 3). Despite this, in some instances, there is little research-based evidence supporting the role of dogs in the transmission to these pathogens to humans in Brazil.

Dogs are implicated as important reservoirs of L. infantum in Brazil [206-211]. It is interesting to note that in some areas a high proportion of dogs are exposed to L. infantum infection [47], but human cases of visceral leishmaniasis are only sporadically notified [210]. In these areas, the low incidence of visceral leishmaniasis may be because of the difficulties in diagnosing and notifying the human cases [207,210], but it also indicate that the role of dogs in the epidemiology of visceral leishmaniasis may vary from region to region [211].

Near a century after its discovery, Chagas disease is still a serious public health concern in Brazil. Dogs are considered to be an efficient source of T. cruzi infection and are thought to play a role in the peridomestic transmission cycle [212,213]. However, Southern Cone countries (e.g., Brazil) have experienced significant changes in the epidemiology of Chagas disease in recent years [214].

Table 1: Vector-borne protozoa affecting dogs in Brazil.

Agent	Vector(s)	Distribution	Zoonotic potential
Babesia vogeli	Rhipicephalus sanguineus	Center-West, North,	Yes (but low)
Babesia gibsoni	Rh. sanguineus?	South,	No
Hepatozoon canis	Amblyomma spp., Rh. sanguineus	Center-West, South,	No
Leishmania amazonensis	Lutzomyia spp.	Southeast	Yes b
Leishmania braziliensis	Lutzomyia spp.	North, Northeast,	Yes b
Leishmania infantum	Lutzomyia longipalpis,	Center-West, North,	Yes
	Lutzomyia spp.	South, Northeast,	
Rangelia vitalli	Amblyomma spp., Rh. sanguineus	Center-West, South,	No
Trypanosoma cruzi	Panstrongylus spp., Triatoma spp., Rhodnius spp.	Center-West, North,	Yes
Trypanosoma evansi	Tabanus spp., Stomoxys spp.	Center-West, South	No

a Includes some reports not formally published.

b Dogs are unlikely to be important reservoir hosts for human infection.
studies to understand the current role of dogs in the cycle of transmission of *T. cruzi* in Brazil are needed.

Human ehrlichiosis is an emerging zoonosis that has been suspected to occur in Brazil since 2004 [215,216]. The suspected causative agent is *E. chaffeensis* [216], but tick vectors are completely unknown. Cases of natural infection by *E. chaffeensis* in dogs are suspected to occur in Brazil [129], but this has not yet been confirmed [126]. Cases of human ehrlichiosis caused by *E. canis* infection have been reported in Venezuela [217]. This raises a number of questions about the risk of *E. canis* infection in humans in Brazil as the main vector (i.e., *Rh. sanguineus*) of this rickettsial agent is already known to parasitize humans in this country [218,219]. Further molecular studies are urgently needed to characterize the cases of human ehrlichiosis in Brazil.

Human pulmonary dirofilariasis, a zoonosis that has been diagnosed in Brazil since 1887 [220], has been reported in Rio de Janeiro, São Paulo, and Santa Catarina [179,220-227], where the prevalence of *D. immitis* infection in dogs is moderate to high [183,186]. Cases of human dipylidiosis have also been reported in Brazil [228-230]. Dogs play a major role in the transmission of *D. caninum* for humans, and thus must be periodically evaluated for the presence of gastrointestinal helminths and treated accordingly.

Little is known about human babesiosis in Brazil, where clinical cases of are seldom recognized [231-233]. As *B. canis* is rarely involved in cases of babesiosis in humans [234], dogs are unlikely to play a role in the epidemiology of human babesiosis in Brazil. Although dogs are also unlikely reservoirs of *R. rickettsii* [157], they may play a role in bringing ticks to human dwellings, particularly if ticks like *Am. aureolatum* and *Rh. sanguineus* are involved in the transmission.

Research gaps

Rhipicephalus sanguineus is potentially involved in the transmission of at least nine pathogens affecting dogs in Brazil. Despite this, little is known of the relationship between the ecology of *Rh. sanguineus* and the dynamics of CVBDs in Brazil. Further research is needed to clarify the role of *Rh. sanguineus* in the transmission of *A. platys*, *B. gibsoni*, *H. canis*, *R. rickettsii*, and *L. infantum* in Brazil.

Considering that dogs and humans live in close contact and that both dogs and humans are susceptible to infec-

Agent	Vector(s)	Distribution a	Zoonotic potential
Table 2: Vector-borne bacteria affecting dogs in Brazil.			
Anaplasma platys	*Rhipicephalus sanguineus*?	Center-West, North, Northeast, South, Southeast	Yes (but low)
Borrelia burgdorferi s.l.	*Amblyomma spp.*, *Rh. sanguineus*?	Center-West, Northeast, Southeast	Yes b
Ehrlichia canis	*Rh. sanguineus*	Center-West, North, Northeast, South, Southeast	Yes
Mycoplasma haemocanis	*Rh. sanguineus*	South, Southeast	No
Rickettsia rickettsii	*Amblyomma spp.*, *Rh. sanguineus*?	Southeast	Yes b

* a Includes some reports not formally published.

* b Dogs are unlikely to be important reservoir hosts for human infection.

Agent	Vector(s)	Distribution a	Zoonotic potential
Table 3: Vector-borne helminths affecting dogs in Brazil.			
Acanthocheilonema reconditum	*Ctenocephalides spp.*, *Heterodoxus spiniger*, *Trichodectes canis*	Center-West, Northeast, South, Southeast	Yes (but low)
Dipylidium caninum	*Ctenocephalides spp.*, *H. spiniger*, *T. canis*	Center-West, North, Northeast, South, Southeast	Yes
Dirofilaria immitis	*Aedes spp.*, *Culex spp.*	Center-West, North, Northeast, South, Southeast	Yes

* a Includes some reports not formally published.
tion by *L. infantum* and *L. braziliensis*, it is reasonable to imagine that in areas where dogs are exposed to these pathogens, humans are exposed as well. However, the finding of a dog infected by a given *Leishmania* species should be analyzed carefully to avoid misinterpretation. While the role of dogs in *L. infantum* transmission is well known, their role as reservoirs of other *Leishmania* species is probably minor [208]. The epidemiology of the leishmaniasis is complex and varies from region to region and even within each region. The pattern of transmission of *Leishmania* parasites is intimately linked to the behavior of hosts and vectors involved. Local studies are crucial to understand the dynamics of transmission and to provide information for the establishment of vector control programs.

Most information on CVBDs in Brazil has been informally presented in scientific meetings, which makes it difficult to access the actual distribution and prevalence of these diseases across the different geographical regions of the country. For instance, only five CVBDs have been formally reported to occur in the North region, while 13 CVBDs have been recognized in Southeast Brazil. Indeed, this situation reflects the limited number of studies on CVBDs carried out in North in comparison with Southeast Brazil, where there is a large number of researchers working in this field. Further studies to access the countrywide distribution and prevalence of CVBDs should be encouraged. It is also important to evaluate the impact of environmental changes and human behavior on the prevalence and zoonotic potential of CVBDs in Brazil. CVBDs are likely influenced by climate variations and environmental changes. Also, the zoonotic potential of these diseases is probably greater in remote areas where the access to education and healthcare services is limited.

Co-infection by vector-borne pathogens is a common condition among Brazilian dogs [19,21,29,94,127,134,235]. This is expected because these pathogens often share the same arthropod vector. The occurrence of mixed infections is of great practical importance. Just to give an example, the use of serological tests with low specificity to access *L. infantum* infection may lead to an unnecessary culling of dogs infected by *L. braziliensis* or even by *T. cruzi* [236,237], in areas where both species occur. The use of contemporary techniques to distinguish the species of *Leishmania* infecting dogs [7] is highly desirable, particularly where *L. infantum* and *L. braziliensis* occur in sympatry. The burden of co-infections in Brazilian dogs should be investigated and better molecular tools should be developed to improve the accuracy of the diagnosis.

Conclusion

In this review, it became clear that CVBDs in Brazil should be faced as a priority by public health authorities. Certain vector-borne pathogens infecting dogs in Brazil are of great significance for human health, as it is the case of *L. infantum* and *T. cruzi*. In this scenario, veterinarians play a key role in providing information to owners about what they should do to reduce the risk of infection by zoonotic vector-borne pathogens in their dogs and in themselves.

CVBDs are prevalent in all geographical regions of Brazil and have been increasingly recognized in recent years. In part, this is a result of the improvements achieved in terms of diagnostic tools. On the other hand, factors such as deforestation, rapid urbanization, climate changes, and the indiscriminate use of chemicals may cause a significant impact on the dispersion of arthropod vectors and on the incidence of CVBDs. The impact of such factors on CVBDs in Brazil has not yet been fully addressed and deserves further research.

Today, the use of molecular biology techniques is contributing to the knowledge on the etiology and epidemiology of CVBDs in Brazil. A better understanding about the ecology of the arthropods involved in the transmission of pathogens to dogs in Brazil is essential to reduce the burden of CVBDs, whose magnitude is probably much greater than is actually recognized.

Addendum

After this manuscript was submitted, the Ministry of Health and the Ministry of Agriculture, Livestock and Food Supply have published an ordinance prohibiting the treatment of canine leishmaniasis in Brazil [238]. Indeed, this ordinance will enhance the debate around the treatment of canine leishmaniasis in Brazil, in the years to come.

Note added in proof

After the provisional PDF of this review was available, Dr. Michele Trotta (Laboratorio d’Analisi Veterinaria “San Marco,” Padova, Italy) asked me whether there are cases of canine bartonellosis in Brazil. Cases of *Bartonella* spp. infection in dogs have been reported worldwide. It was, however, only recently that antibodies to and DNA of *Bartonella henselae* and *Bartonella vinsonii* subspecies *berkhoffii* were detected in dogs from Southeast Brazil [132,239]. Further studies are needed to assess the clinical and zoonotic significance of *Bartonella* spp. infection in dogs from different Brazilian regions.

Competing interests

The author declares that they have no competing interests.
Acknowledgements
I would like to express my gratitude to Professor Domenico Otranto and Luciana A. Figueredo for their critical reading of the manuscript and to Andrey J. de Andrade for kindly provide the Fig. 4. Thanks also to the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) for a PhD scholarship.

References
1. Irwin PJ: Companion animal parasitology: a clinical perspective. Int J Parasitol 2002, 32:581-593.
2. Hunter PR: Climate change and waterborne and vector-borne disease. Lancet Infectious Diseases 2004, 19:437-455.
3. Silva-Araújo A: Filaria immitis e a Filaria sanguinolenta no Brasil. Gaz Méd Bahia 1878, 7:295-312.
4. Camargo-Neves VL, Katz G, Rodas LA, Poletto DW, Lage LC, Spinola RM, Cruz OG: Utilização de ferramentas de análise espacial na vigilância epidemiológica de leishmaniose visceral americana – Araçatuba, São Paulo, Brasil, 1998-1999. Cad Saúde Pública 2001, 17:1263-1267.
5. Savani EMM, Schimonsky B, Camargo MCDO, D’auria SRN: Vigilância do MFB. Lami J: Piscina sanguinolenta em cães de área não endêmica, São Paulo. Rev Saúde Pública 2003, 37:260-262.
6. Corrêa AP, Dossi AC, Oliveira Vasconcelos R, Munari DP, Lima VM: Evaluation of transformation growth factor beta1, interlukin-10, and interferon-gamma in male symptomatic and asymptomatic dogs naturally infected by Leishmania (Leishmania) chagasi. Vet Parasitol 2007, 143:267-274.
7. Gomes AH, Ferreira IM, Lima ML, Cunha EA, Garcia AS, Araújo MF, Pereira-Chioccola VL: PCR identification of Leishmania in diagnosis and control of canine leishmaniasis. Vet Parasitol 2007, 144:234-241.
8. Morea MA, Luzivozto MC, Garcia JF, Corbett CE, Laurenti MD: Comparison of parasitological, immunological and molecular methods for the diagnosis of leishmaniasis in dogs with different clinical signs. Vet Parasitol 2007, 145:245-252.
9. Ribeiro JC, Cortés-Vecino JA, Gennari SM, Dubey JP, Tidwell RR, Lindsay DS: Serological survey of Leishmania infantum and Trypanosoma cruzi in dogs from urban areas of Brazil and Colombia. Vet Parasitol 2007, 149:172-177.
10. Tolezaneje J, Uillana SR, Taniguchi HH, Araújo MF, Barbosa J, Barbosa JE, Pontes-Winter LM, Shaw J: The first records of Leishmania (Leishmania) amazonensis indogs (Canis familiaris) diagnosed clinically as having canine visceral leishmaniasis from Araçatuba County, São Paulo State, Brazil. Vet Parasitol 2011, 149:280-284.
11. Nunes CM, Lima VM, Paula HB, Perri SH, Andrade AM, Dias FE, Burattini MN: Dog culling and replacement in an area endemic for visceral leishmaniasis in Brazil. Vet Parasitol 2008, 153:19-23.
12. Regendanz P, Muniz J: O Rhipegophus sanguineus como transmissor da piroplasmose canina no Brasil. Mem Inst Oswaldo Cruz 2003, 98:212-214.
13. Passos LM, Geiger SM, Ribeiro MF, Pfister K, Zahler-Rinder M: First molecular detection of Babesia vogeli in dogs from Brazil. Vet Parasitol 2005, 127:81-85.
14. Trapp SM, Messick JB, Vidotto O, Jojima FS, Morais HS: Babesia gibsoni genotype Asia in dogs from Brazil. Vet Parasitol 2006, 141:177-180.
15. Dantas-Torres F: Causative agents of canine babesiosis in Brazil. Prev Vet Med 2008, 83:210-211.
16. Ribeiro L, Lima JD, Passos LM, Guimarães AM: Frequência de anticorpos fluorescentes anti-Babesia canis em cães de Belo Horizonte, Minas Gerais. Arq Bras Med Vet Zootec 1990, 42:511-517.
17. Bracchi GL, Chaplin EL, Stobbe NS, Araújo FAP, Santos NR: Protozoology and kytotaxistical findings in the Veterinary Faculty of the Federal University of Rio Grande do Sul, Brazil 1986-1990. Arq Fac Vet UFRGS 1992, 20:134-149.
18. Dell’Porto A, Oliveira MR, Miguel O: Babesia canis in stray dogs from the city of São Paulo. Comparative studies between the clinical and hematological aspects and the indirect fluorescence antibody test. Rev Bras Parasitol Vet 1993, 2:37-40.
19. Dantas-Torres F, Faustino MAG, Alves LC: Coinfection by Anaplasma plathy, Babesia canis and Ehrlichia canis in a dog from Recife, Pernambuco, Brazil: case report. Rev Bras Parasitol Vet 2004, 13:371.
20. Limas-Martins JC, Albernaz AP, Machado JA, Junior QAM, Garcia LNN: Aspectos clinico-laboratoriais da babesiose canina na cidade de Campos do Goytacazes, RJ. Rev Bras Parasitol Vet 2004, 13:229.
21. Baxost CV, Moreira SM, Passos LM: Retrospective study (1998-2001) on canine babesiosis in Belo Horizonte, Minas Gerais, Brazil. Ann N Y Acad Sci 2004, 1026:158-160.
22. Dantas-Torres F, Figueredo LA: Canine babesiosis: A Brazilian perspective. Vet Parasitol 2006, 141:197-203.
23. Soares AO, Souza AD, Feliciano EA, Rodrigues AF, D’Agostao M, deMedha A: Avaliação epidemiológica e parasitológica em cães criados em apartamentos e casas com quintal na cidade de Juiz de Fora, MG. Rev Bras Parasitol Vet 2006, 15:13-16.
24. Trapp SM, Dagnone A, Vidotto O, Freire RL, Amude AM, Morais HS: Seroepidemiology of canine babesiosis and ehrlichiosis in a hospital population. Prev Vet Med 1991, 13:60-68.
25. Dantas-Torres F, Oliveira TMFS, Santa-Rosa ICA: Babesia canis: uma visão dos clínicos veterinários de Minas Gerais. Clin Vet 2002, 41:60-68.
26. Brandão LP, Hagiwara MK: Babesia canis: revisão. Clin Vet 2002, 41:70-59.
27. Cunha AM: Experimental infections in American visceral leishmaniasis. Mem Inst Oswaldo Cruz 1938, 33:581-616.
28. Dantas-Torres F: Final comments on an interesting taxonomic dilemma: Leishmania infantum versus Leishmania infantum chagasi. Mem Inst Oswaldo Cruz 2006, 101:379-380.
29. Madeira MF, Schubach A, Schubach TM, Pacheco RS, Oliveira FS, Pereira SA, Figueiredo FB, Baptista C, Marzochi MC: Mixed infection with Leishmania (Viannia) braziliensis and Leishmania (Leishmania) chagasi in a naturally infected dog from Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg 2006, 100:442-445.
30. Coutinho MT, Bueno LL, Sterzik A, Fujimura WT, Botelho JR, Maria M, Genaro O, Linardini PM: Participation of Rhipicephalus sanguineus (Acanthoeciodes) in the epidemiology of canine visceral leishmaniasis. Vet Parasitol 2005, 128:199-135.
31. Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Furrer L: Canine leishmaniosis – new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 2008, 24:324-330.
32. Dantas-Torres F, Faustino MAG, Lima OC, Acioi RV: Epidemiologic surveillance of canine visceral leishmaniasis in the municipality of Recife, Pernambuco. Rev Soc Bras Med Trop 2005, 38:444-445.
33. Rangel EF, Lainson R: Ecologia das leishmanioses: transmissores de leishmaniose tegumentar americana. In Flebotomíneos do Brasil Edited by: Rangel EF, Lainson R. Rio de Janeiro: FIOCRUZ; 2003:291-310.
34. Chagas E, Cunha AM, Ferreira LC, Deane L, Deane G, Guimarães FN, Von Paumgarten MJ, Sá B: Leishmaniose visceral americana (Relatório dos trabalhos realizados pela Comissão encarregada do estudo da Leishmaniose visceral americana, em 1937). Mem Inst Oswaldo Cruz 1933, 33:89-283.
35. Alencar JE, Cunha RV: Survey of canine kala-azar in Ceará. Latest results. Rev Bras Malariol Doencas Trop 1963, 15:391-403.
36. Alencar JE, Deane L, Deane G, Cunha RV, Albernaz AP, Machado JA, Arcoverde S: Kala-azar in the coast of Region of the State of Paraíba, Brazil. Findings of 70 human and 16 canine cases. Rev Inst Med Trop Sao Paulo 1974, 16:265-269.
37. Coutinho SG, Nunes MP, Marzochi MC, Tramontano N: A survey for American cutaneous and visceral leishmaniasis among 1,342 dogs from areas in Rio de Janeiro (Brazil) where the human diseases occur. Mem Inst Oswaldo Cruz 1985, 80:17-22.
38. Senra MS, Pimentel FS, Souza PE: Visceral leishmaniasis in Santarem/PA: general aspects of the control, serological survey in dogs and treatment of the human cases. Rev Bras Malar Doencas Trop 1985, 37:47-59.
39. Vasconcelos IA, Vasconcelos AW, Momen H, Grimaldi G Jr, Alencar JE: Epidemiological studies on American leishmaniasis in Ceará State, Brazil. Molecular characterization of the Leishmania isolates. Ann Trop Med Parasitol 1988, 82:547-554.
40. Castellón EG, Domingos ED: On the focus of kala-azar in the state of Roraima, Brazil. Mem Inst Oswaldo Cruz 1991, 86:375.
42. Vexenat JA, Fonseca de Castro JA, Cavalcante R, Silva MR, Batista WH, Campos JH, Pereira PC, Tavares JP, Miles MA: Preliminary observations on the diagnosis and transmissibility of canine visceral leishmaniasis in Teresina, NE Brazil. Arch Inst Postepy Zdrowia Tuszyn 1993, 40:470-472.

43. Borja-Cabrera GP, Correia-Pontes NN, Silva VO, Paraguaiade-Souza E, Santos WR, Gomes EM, Luz KG, Palatnik M, Palatnik-de-Sousa CB: Long lasting protection against canine kalaazar using the FML-Qiqua Saponin vaccine in an endemic area of Brazil (Sao Goncalo do Amarante, RN). Vaccine 2002, 20:3277-3284.

44. Marcondes CB, Pircme C, Silva E, Laurentino-Silva V, Steindel M, Santos AJ, Smaniotto H, Silva CF, Schuck Neto VF, Donetto A: Levantamento de leishmaniose visceral em cães de Santa Maria e municípios proximos, Estado do Rio Grande do Sul. Rev Soc Bras Med Troç 2003, 36:499-501.

45. Almeida MA, Jesus EE, Sousa-Atta ML, Alves LC, Berne ME, Atta AM: Clinical and serological aspects of visceral leishmaniasis in man and dog. Parasite Vectors 2008, 1:125.

46. Vexenat JA, Fonseca de Castro JA, Cavalcante R, Silva MR, Batista WH, Campos JH, Pereira PC, Tavares JP, Miles MA: Preliminary observations on the diagnosis and transmissibility of canine visceral leishmaniasis in Teresina, NE Brazil. Arch Inst Postepy Zdrowia Tuszyn 1993, 40:470-472.

47. Dantas-Torres F, Brito ME, Brandão-Filho SP: Long-lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (Sao Goncalo do Amarante, RN). Vaccine 2002, 20:3277-3284.

48. Pocai EA, Frozza L, Headley SA, Graça DL: Presence of Leishmania amastigotes in peripheral blood of dogs with leishmaniasis from Alagoas, Northeast Brazil. Rev Inst Med Trop Sao Paulo 2006, 48:219-221.

49. Batista-Taib ER, Barros GC, Grimaldi Filho G, Sessa PA, Carias A, Falqueto A, Coura JR, Barros GC, Grimaldi Filho G, Sessa PA: Leishmaniose visceral em um canino de Cruz Alta, Rio Grande do Sul, Brasil. Inst Med Trop Sao Paulo 1990, 27:513-515.

50. Dias M, Mayrink W, Deane LM, Costa CA, Magalhães PA, Melo MN, Batista SM, Araujo FG, Coelho MV, Williams P: Epidemiology of mucocutaneous leishmaniasis American. I. Study of reservoirs in an endemic region of the State of Minas Gerais. Rev Inst Med Trop Sao Paulo 1977, 19:403-410.

51. Dias M, Mayrink W, Deane LM, Costa CA, Magalhães PA, Melo MN, Batista SM, Araujo FG, Coelho MV, Williams P: Epidemiology of mucocutaneous leishmaniasis American. II. Study of reservoirs in an endemic region of the State of Minas Gerais. Rev Inst Med Trop Sao Paulo 1977, 19:403-410.

52. Ribeiro VM, Rajao RA, Diniz SA, Michalick SM: Evaluation of the potential transmission of visceral leishmaniasis in a canine shelter. Revue Med Vet 1998, 149:200-222.

53. Schettini DA, Costa VA, Zuqui LF, Demicheli C, Rocha OG, Melo MN, Michalick MS, Frézard F: Pharmacokinetic and parasitological evaluation of the bone marrow of dogs with visceral leishmaniasis submitted to multiple dose treatment with liposome-encapsulated meglumine antimoniate. Braz J Med Biol Res 2005, 38:1879-1883.

54. Ikeda-Garcia FA, Lopes RS, Marques FJ, Lima VM, Morinishi CK, Bonelllo FL, Zanette MP, Perri SH, Foisota MM: Clinical and parasitological evaluation of dogs naturally infected by Leishmania (Leishmania) chagasi submitted to treatment with meglumine antimoniate. Vet Parasitol 2007, 143:254-259.

55. Miret J, Nascimento E, Sampaio W, França JC, Fujiwara RT, Vale A, Dias ES, Vieira E, Costa RT, Mayrink W, Campos Neto A, Reed S: Evaluation of an immunocytopathological therapeutic protocol constituted of N-methyl meglumine antimoniate (Gluconamide(R)) and the recombinant Leish-110(R)+MPL-SE(R)) vaccine to treat canine visceral leishmaniasis. Vaccine 2008, 26:1585-1594.

56. Ribeiro VM: Leishmaniose visceral canina: aspectos de tratamento e controle. Clin Vet 2007, 1:66-76.

57. Ikeda-Garcia FA, Lopes RS, Clarlini PC, Marques FJ, Lima VM, Perri SH, Foisota MM: Evaluation of renal and hepatic functions in dogs naturally infected by visceral leishmaniasis submitted to treatment with meglumine antimoniate. Res Vet Sci 2007, 83:105-108.

58. Massard CA: Hepatopatosis canis (James, 1905) (Adeleida: Hepatozoidae) de cães do Brasil, com uma revisão do gênero em membros da ordem carnivora. In MSc dissertation Universidade Federal Rural do Rio de Janeiro, Departamento de Parasitologia; 1979.

59. Rabini KS, Paduan KS, Cavalcante GC, Ribolla PEM, O’Dwyer LH: Molecular identification and characterization of canine Hepatopatosis species from Brazil. Parasitol Res 2005, 97:91-93.

60. Crasto-Fornello A, Paiva V, Casado N, Farías NA, Soares JC, Muller G, Brumpt JG, Berne ME, Buling-Saraña A, Barba-Carretero JC: New molecular data on mammalian Hepatopatosis species (Aplicomplexa: Adeleorina) from Brazil and Spain. J Parasitol 2006, 92:91-99.

61. Forlano MD, Teixeira KR, Scofield A, Elisei C, Yotoko KS, Fernandes KR, Linhares GF, Ewing SA, Massard CL: Molecular characterization of Hepatopatosis sp from Brazilian dogs and its phylogenetic relationship with other Hepatopatosis sp. Vet Parasitol 2007, 145:21-30.

62. O’Dwyer LH, Massard CL, Sousa JC: Hepatopatosis canis infection associated with dog ticks of rural areas of Rio de Janeiro State, Brazil. Vet Parasitol 2001, 94:143-150.

63. Forlano M, Scofield A, Elisei C, Fernandes KR, Ewing SA, Massard CL: Diagnosis of Hepatopatosis sp. in Amblyomma ovalis and its
experimental transmission in domestic dogs in Brazil. Vet Parasitol 2005, 134:1-7.
78. Raimondi AS, Paduan KD, Lopes VV, O’Dwyer LH: Molecular and parasitological survey of Hepatozoon conis (Apicomplexa: Hepatozoidea) in dogs from rural area of Sao Paulo state, Brazil. Parasitol Res 2008, 102:895-899.
79. Gondim LF, Kohayagawa A, Alencar NX, Biondo AW, Takahira RK, Franco SR: Canine hepatozoonosis in Brazil: description of eight naturally occurring cases. Vet Parasitol 1998, 74:319-323.
80. Paludo GR, Dell’Porto A, Castro e Trindade AR, McManus C, Friedman H: Hepatozoon spp.: report of some cases in dogs in Brasilia, Brazil. Vet Parasitol 2003, 118:243-248.
81. O’Dwyer LH, Dell’Porto ME, Kohayagawa MY, Kohayagawa A: Tissue stages of Hepatozoon conis in naturally infected dogs from Sao Paulo State, Brazil. Parasitol Res 2004, 94:240-242.
82. Mundim AV, Morais IA, Tavares M, Cury MC, Mundim MJ: Clinical and hematological signs associated with dogs naturally infected with other hematozoa. A retrospective study in Uberlândia, Minas Gerais, Brazil. Vet Parasitol, 2008, 153:3-8.
83. Dantas-Torres F, Figueiredo LA, Faustino MAG: Ectoparasitos de cães provenientes de alguns municípios da região metropolitana de São Paulo, Brasil. Mem Inst Oswaldo Cruz 2005, 100:817-820.
84. O’Dwyer LH, Massard CL: Hepatozoonose em pequenos animais domésticos e como zoonose. In Hemoparasitos em pequenos animais domésticos e como zoonoses. Almosny NRP. Rio de Janeiro: L.F. Livros de Veterinária; 2002:79-89.
85. Ewing SA, Panciera RJ: American canine hepatozoonosis. Clin Microbial Rev 2003, 16:688-697.
86. Chagas CRJ: Nova tripanosomiase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzenu gen. n. esp., agente da nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1909, 1:159-218.
87. Stevens JR, Nunes VL, Lanham SM, Oshiro ET: Isoenzyme characterization of Trypanosoma evansi isolated from capybaras and dogs in Brazil. Acta Trop 1989, 46:213-222.
88. Franken CR, Greiner M, Mehlitz D: Investigations on naturally occurring Trypanosoma evansi infections in horses, cattle, dogs and capybaras (Hydrochaeris hydrochaeris) in Pantanal (Mato Grosso, Brazil). Acta Trop 1994, 58:159-169.
89. Queiroz AO, Cabello PH, Jansen AM: Biological and biochemical characterization of isolates of Trypanosoma evansi from Pantanal of MatoGrosso–Brazil. Vet Parasitol 2000, 92:107-118.
90. Herrera HM, Davila AM, Norek A, Abreu UG, Souza SS, D’Andrea PS, Jansen AM: Epidemiology of Trypanosoma evansi in Pantanal, Brazil. Vet Parasitol 2004, 125:263-275.
91. Colpo CB, Monteiro SG, Stainki DR, Colpo ETB, Henriques GB: Infecção natural por Trypanosoma evansi em cães. Ciência Rural 2005, 35:717-719.
92. Herrera HM, Norek A, Freitas TP, Rademaker V, Fernandes OJ, Jansen AM: Domestic and wild mammals infection by Trypanosoma evansi in a pristine area of the Brazilian Pantanal region. Parasitol Res 2005, 96:121-126.
93. Savani ESM, Nunes VL, Galati EA, Castillo TM, Araujo FS, Ilha JM, Camargo MC, Dourado RN. Floeter-Winter LM: Occurrence of co-infection by Leishmania (Leishmania) chagasi and Trypanosoma cruzi (Trypanozoon) evansi in a dog in the state of Mato Grosso do Sul, Brazil. Mem Inst Oswaldo Cruz 2005, 100:739-741.
94. Franceschi C, Lopes STA, Teixeira MMG, Monteiro SG, Garmatz BC, Paim CB: Cão naturalmente infectado por Trypanosoma evansi em Santa Maria, RS, Brasil. Ciência Rural 2007, 37:288-291.
95. Mott KE, Mota EA, Sheldon I, Hoff R, Muniz TM, Oliveira TS, Draper CC: Trypanosoma cruzi infection in dogs and cats and house-hold seroreactivity to T. cruzi in a rural community in north-east Brazil. Am J Trop Med Hyg 1997, 57:1123-1127.
96. Barrett TV, Hoff R, Mott KE, Guedes F, Sheldon IA: An outbreak of acute Chagas’s disease in the São Francisco Valley region of Bahia, Brazil: triatomine vectors and animal reservoirs of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 1979, 73:703-709.
endemic area for Brazilian spotted fever in the State of São Paulo, Brazil. Cad Saúde Pública 2008, 24:247-252.
159. Feres STA, Weerasinghe N, Arayadasa S: Transmission of Haemobartonella canis by the dog tick, Rhhipcephalus sanguineus. Res Vet Sci 1973, 14:112-114.
160. Biondini J, Lopes ZO, Viana FAB, Araújo T: Diagnóstico laboratorial de Haemobartonella canis em Belo Horizonte, Minas Gerais. Arq Bras Med Vet Zootec. 1983, 35:743-744.
161. O’Dwyer LH, Guimarães L, Massard CL: Ocorrência de infecção múltipla por Babesia canis, Hepatozoon canis e Haemobartonella canis em um cão esplenectomizado. Rev Bras Cien Vét 1997, 4:83-84.
162. Ribeiro EA, Ribeiro-Azevedo Cunha CG, Gonçalves GF, Portela MAS: Hemobartonelose em um canid e de Umuarama, estado do Paraná-Brasil. Arq Cien Vét Zool Unipar 2000, 3:236.
163. Keimning G, Messick JB, Mueller W, Enders G, Meisner F, Muenzing S, Kisch-Wedel H, Schropp A, Wojtczyk C, Packert K, Messner K, Temel S: Can we control leishmaniasis in splenectomized dogs? Mycoplasma haemocanis: old problem—new insight. Eur Surg Res 2004, 36:198-205.
164. Souza AM, Almosny NRP, Cunha VF, Gomes PA: Focos de dirofilariose canina na ilha do Marajó: um fator de risco para a saúde humana. Rev Soc Bras Med Trop 2006, 39:333-336.
165. Labarthe N, Guerrero J: Epidemiology of heartworm: what is happening in South America and Mexico? Vet Parasitol 2005, 133:149-156.
166. Larsson MHMA: Prevalência de filariose canina causada por Dirofilaria immitis. Vet Parasitol 2004, 122:273-286.
167. Labarthe N, Sao Jay, V. Montanini-Ferreira F: Epidemiological assessment of filariasis in the oceanic region of Niterói municipality, state of Rio de Janeiro, Brazil. Rev Soc Bras Med Trop 2001, 34:321-325.
168. Labarthe NW, Sanchez M, Caires O: Description of Lyme disease-like syndrome in Brazil. Arq Bras Med Vet Zootec 1999, 51:383-389.
169. Joppert AM, Higawara MK, Yoshinari NH, Barros PJ, Bonoldi VL, Ishikawa M, Battesti DM, Piraneta VF, Gomes PA: Freqüência de dirofilariose canina (D. immitis) in algumas regiões do Estado de São Paulo por meio da detecção de antígenos circulantes. Arq Bras Med Vet Zootec 2001, 53:321-325.
170. Serrão ML, Labarthe N, Lourenço-de-Oliveira R: Dirofilariose em pequenos animais domésticos e como zoonose. In Hemoparasitoses em pequenos animais domésticos e como zoonoses Edited by: Almosny NRP. Rio de Janeiro: L.F. Livros 2002, 89-109.
171. Yoshinari NH, Barros PJ, Bonoldi VL, Ishikawa M, Battesti DM, Piraneta VF, Gomes PA: Frecuência de dirofilariose canina (D. immitis) in algumas regiões do Estado de São Paulo por meio da detecção de antígenos circulantes. Arq Bras Med Vet Zootec 2001, 53:321-325.
172. Mantovani E, Costa IP, Gaudiano G, Bonoldi VL, Higuchi ML, Yoshinari NH: Description of Lyme disease-like syndrome in Brazil. Is it a new tick borne disease or Lyme disease variation? Braz J Med Biol Res 2007, 40:435-456.
173. Soares CO, Fonseca AH, Ishikawa MM, Manara GB, Scofield A, Yoshinari NH: Sorologia para borreliose em cães procedentes da Baixada Fluminense, Estado do Rio de Janeiro. Rev Bras Med Vet 1999, 21:111-114.
174. Albiol I, Massagó G, Yoshinari NH, Schumaker TT: Borrelia-like spirochetes recovered from ticks and small mammals collected in the Atlantic Forest Reserve, Cota County, State of São Paulo, Brazil. Mem Inst Oswaldo Cruz 2000, 95:621-624.
175. Gennari SM, Kasai N, Pena HFJ, Cortez A: Ocorrência de protozoários e helmintos em amostras de fezes de cães institucionalizados no Rio de Janeiro, RJ. Rev Soc Bras Med Trop 2000, 33:759-777.
176. Serrão ML, Labarthe N, Lourenço-de-Oliveira R: Vectorial competence of Culex quinquefasciatus Say from different regions of Brazil to Dirofilaria immitis. Mem Inst Oswaldo Cruz 2000, 95:769-775.
177. Serrão ML, Labarthe N, Lourenço-de-Oliveira R: Vectorial competence of Aedes aegypti (Linnaeus 1762) Rio de Janeiro strain, to Dirofilaria immitis (Leidy 1856) in Itacoatiara, oceanic region of Niterói municipality, state of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 1999, 93:425-432.
178. Labarthe N, Serrão ML, Mele YF, Oliveira SJ, Lourenço-de-Oliveira R: Potential vectors of Dirofilaria immitis (Leidy, 1856) in Itacoatiara, oceanic region of Niterói municipality, state of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 1999, 93:560-565.
179. Labarthe N, Lourenço-de-Oliveira R, Saraiva LQ: Filaroiose canina nas Ilhas dos Mares, Nordeste do Brasil: uma zoonose potencial. Cad Saúde Publica 1999, 15:405-412.
180. Labarthe NW, Sanchez M, Caires O: Prevalência de filariose canina causada por Dirofilaria immitis. Mem Inst Oswaldo Cruz 2000, 95:769-775.
181. Alves LC, Almeida Silva LV, Faustino MA, McCall JW, Supakonder PJ, Labarthe NW, Sanchez M, Caires O: Survey of canine heartworm in the city of Recife, Pernambuco, Brazil. Mem Inst Oswaldo Cruz 1999, 94:587-590.
182. Labarthe N, Sao Jay, V. Montanini-Ferreira F: Epidemiological assessment of filariasis in the oceanic region of Niterói municipality, state of Rio de Janeiro, Brazil. Rev Soc Bras Med Trop 2005, 38:73-74.
183. Labarthe NW, Sanchez M, Caires O: Ocorrência de protozoários e helmintos em amostras de fezes de cães errantes da Cidade de Itapema, Santa Catarina. Rev Soc Bras Med Trop 2000, 14:1-8.
184. Parra LE, Borja-Cabrera GP, Santos FN, Souza LO, Palatinik-de-Sousa CB, Menz I: Safety trial using the Leishmune vaccine against canine visceral leishmaniasis in Brazil. Vaccine 2007, 25:2180-2186.
214. Moncayo A.
212. Deane LM.
213. Coura JR, Junqueira AC, Giordano CM, Funatsu RK.
202. Vercammen F, Deken R, Maes L.
222. Saad JR, Ethel Filho J, Próspero JD, Dorgan Neto V, Aguiar Neto JR.
219. Louly CCB, Fonseca IN, Oliveira VF, Borges LMF.
218. Dantas-Torres F, Figueredo LA, Brandão-Filho SP.
203. Dantas-Torres F.
205. Dietze R, Barros GB, Teixeira L, Harris J, Michelson K, Falqueto A.
220. Magalhães PS.
217. Bondoc G, Nishizawa J, Dean LM, Ostfeld RS, Patz JE.
216. Schaefer F, Kozarski S, Wasilewski J, Tabachnik-Vieira M, Iwasaki H.
221. Goveia LS, Soares-Júnior BB, Simões-Silva SE.
201. Vercammen F, Dekern F, Maes L.
215. Almeida Ouaknine P, Fonseca CAM, Conti RC, Coelho FRG, Soncini L.
223. Ministério da Saúde/Ministério da Agricultura, Pecuária e Abastecimento.
204. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
211. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
210. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
209. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
208. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
207. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
206. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
205. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
204. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
203. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
202. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
201. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
214. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
213. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
212. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
211. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
210. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
209. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
208. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
207. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
206. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
205. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
204. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
203. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
202. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
201. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
214. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
213. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
212. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
211. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
210. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
209. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
208. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
207. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
206. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
205. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
204. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
203. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
202. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
201. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
214. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
213. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
212. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
211. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.
210. Costa CA, Genaro O, Lana M, Magalhães PA, Dias M, Michalick MS.