Abstract. We attach a Dixmier algebra B to the closure \overline{O} of any nilpotent orbit of G where G is $GL(n, \mathbb{C})$, $O(n, \mathbb{C})$ or $Sp(2n, \mathbb{C})$. This algebra B is a noncommutative analog of the coordinate ring R of \overline{O}, in the sense that B has a G-invariant algebra filtration and $\text{gr } B = R$.

We obtain B by making a noncommutative analog of the Kraft-Procesi construction which modeled \overline{O} as the algebraic symplectic reduction of a finite-dimensional symplectic vector space L. Indeed B is a subquotient of the Weyl algebra for L.

B identifies with the quotient of $U(g)$ by a two-sided ideal J, where $g = \text{Lie}(G)$. Then $\text{gr } J$ is the ideal $\mathfrak{m}(\overline{O})$ in $S(g)$ of functions vanishing on \overline{O}. In every case where O is connected, J is a completely prime primitive ideal.

1. Introduction

By means of symplectic reduction in the setting of complex algebraic varieties, Kraft and Procesi (\cite{Kraft},\cite{Procesi}) constructed a model of the closure of any nilpotent coadjoint orbit O of G when G is one of the classical groups $GL(n, \mathbb{C})$, $O(n, \mathbb{C})$ and $Sp(2n, \mathbb{C})$. The symplectic aspect is not actually mentioned, but the construction is clearly symplectic.

In this paper we give a noncommutative analog, or quantization, of the Kraft-Procesi construction. The result is that we attach a Dixmier algebra B to each orbit closure \overline{O}. Our algebra B has a G-invariant algebra filtration and we show that $\text{gr } B$ is isomorphic, as a graded Poisson algebra, to the coordinate ring R of \overline{O}.

In fact, B identifies, as a filtered algebra, with the quotient $U(g)/J$ of the universal enveloping algebra $U(g)$ of $g = \text{Lie}(G)$ by some two-sided ideal J. Then $\text{gr } J$ is the ideal $\mathfrak{m}(\overline{O})$ in $S(g)$ defining \overline{O}. We find that J is stable under the principal anti-automorphism of $U(g)$, and also under the anti-linear automorphism of $U(g)$ defined by a Cartan involution of g.

The Kraft-Procesi construction attaches to O a complex symplectic vector space L together with a Hamiltonian action of $G \times S$ on L, where S is an auxiliary complex reductive Lie group. The actions of G and S lie inside the symplectic group $Sp(L, \mathbb{C})$. Kraft and Procesi show that \overline{O} is scheme-theoretically the algebraic symplectic reduction of L by S. In this way, they obtain R as a subquotient of the algebra P of polynomial functions on L. More precisely, R is realized as $P^{\text{inv}}/I^{\text{inv}}$ where I is an ideal in P and the superscript inv denotes taking S-invariants.

Key words and phrases. nilpotent coadjoint orbit, Dixmier algebra, symplectic reduction.
It is nice from the viewpoint of representation theory to regard \mathcal{R} as a subquotient of the algebra \mathcal{P}^{even} of even polynomials. (We can do this since \mathcal{P}^{inv} lies in \mathcal{P}^{even}.) For \mathcal{P}^{even} is the coordinate ring of the closure of the minimal nilpotent orbit \mathcal{O} of $Sp(L, \mathbb{C})$.

To make a noncommutative analog of the Kraft-Procesi construction, we start from the fact that there is a unique Dixmier algebra attached to \mathcal{Y}, namely the quotient of $\mathcal{U}(sp(L, \mathbb{C}))$ by its Joseph ideal \mathcal{J}. We can model $\mathcal{U}(sp(L, \mathbb{C}))/\mathcal{J}$ as the even part \mathcal{W}^{even} of the Weyl algebra \mathcal{W} for L and then $\text{gr } \mathcal{W}^{even} = \mathcal{P}^{even}$. There is an obvious quantization of the Hamiltonian S-action on L, namely the natural $(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c)$-module structure on \mathcal{W}. Here the subscript c denotes taking a compact real form.

We define \mathcal{B} to be the coinvariants for the $(\mathfrak{s} \oplus \mathfrak{s}, S_c)$-action on \mathcal{W}^{even}. A priori, \mathcal{B} is a $(\mathfrak{g} \oplus \mathfrak{g}, G_c)$-module with a G_c-invariant filtration, but \mathcal{B} is not an algebra. However, we easily identify \mathcal{B} as the quotient by a two-sided ideal of \mathcal{W}^{inv} (where the superscript again indicates taking S-invariants, or equivalently, S_c-invariants). In this way, \mathcal{B} becomes a filtered algebra and a subquotient of \mathcal{W}^{even}.

Our main result (Theorem 6.3) is to compute the associated graded algebra $\text{gr } \mathcal{B}$. It is easy to see that $gr \mathcal{B}$ is some quotient of $\mathcal{P}^{inv}/\mathcal{I}^{inv}$, but in fact we prove $\text{gr } \mathcal{B} = \mathcal{P}^{inv}/\mathcal{I}^{inv}$. To do this, we recognize \mathcal{B} as the degree zero part of the relative Lie algebra homology $H(s \oplus s, S_c; \mathcal{W}^{even})$. We consider the standard complex which computes this homology, introduce a filtration and then apply the spectral sequence for a filtered complex. We compute the E_1 term of the spectral sequence by using the fact proven by Kraft and Procesi that \mathcal{I} is a complete intersection ideal. Then we easily show $E_1 = E_2$.

We establish some properties of \mathcal{B} and the corresponding ideal J. If \mathcal{O} is connected then J is a completely prime primitive ideal (Corollary 6.5). In every case, \mathcal{B} admits a unique \mathfrak{g}^\ast-invariant Hermitian inner product $(\cdot | \cdot)$ such that $(1|1) = 1$, where \mathfrak{g}^\ast is a real form of $\mathfrak{g} \oplus \mathfrak{g}$ with $\mathfrak{g}^\ast \simeq \mathfrak{g}$ (see Proposition 3.1). This prompts the question as to whether J is “good” in the sense that J is maximal and $\mathcal{U}(\mathfrak{g})/J$ is unitarizable. The latter property means (since $\mathcal{B} \simeq \mathcal{U}(\mathfrak{g})/J$) that $(\cdot | \cdot)$ is positive-definite.

Attaching “good” ideals to \mathcal{O} is an important problem in representation theory and the orbit method. Quite a bit of work has been done on this (see e.g., some of the references and authors cited below) but the problem for nilpotent orbits of a complex semisimple Lie group remains unsolved.

If $G = GL(n, \mathbb{C})$, then our J is good (see Remark 6.6(i) and [8]). But $G = GL(n, \mathbb{C})$ is really a very special case for us as the geometry of \mathcal{O} is incredibly nice, including but not limited to the fact that $\overline{\mathcal{O}}$ is always normal. For $G = O(n, \mathbb{C})$ or $G = Sp(2n, \mathbb{C})$, it is not the case that J is always good. Certainly if $\overline{\mathcal{O}}$ is not normal, we should not expect J to be good.

Our point of view (to be justified in [9]) is that \mathcal{B} is the “canonical” quantization of the Kraft-Procesi construction, and so the failure of J to be good is really a statement about $\overline{\mathcal{O}}$. The next step is then to investigate whether we can make a modification to our quantization process in order to obtain some good ideals in $\mathcal{U}(\mathfrak{g})$ attached to \mathcal{O} (and even its covers).

This paper is the first in a series. In the subsequent papers we make explicit the important role of Howe duality in our project. Indeed, \mathcal{W}^{even} is the Harish-Chandra module.
of the (even) oscillator representation of $Sp(L, \mathbb{C})$, and the pair (G, S) constitutes a sequence of Howe dual pairs (see Remark 4.1). In taking coinvariants, we are implementing a sequence of Howe duality “operations”. Each “operation” is like implementing a Howe duality correspondence, except that we do not pass to the the irreducible quotient. In working on this project (which started in earnest in the summer of 2001 – and is part of a program we began in 1994), we have been reading the Howe duality literature. We have been influenced by especially the papers [18], [29], [1] and [25].

Our first construction of the Dixmier algebra B actually came out of the ideas of Howe duality and quantization by constraints. This is given in [9] and lies more in the realm of harmonic analysis than algebra. Our starting point there is the fact ([21]) that L is hyperkähler and the Kraft-Procesi construction is the algebraic analog of the hyperkähler reduction of L by S_c.

The notion of Dixmier algebra for nilpotent orbits (including their closures and their coverings) was first developed in work of McGovern, Joseph and Vogan. See e.g. [27], [31], and [32]. The motivation for these authors and for most Dixmier algebra theorists is the search for completely prime primitive ideals. This motivation is very important for us too; we also find additional motivations coming from star products and from geometric quantization.

The results in this paper should be compared with the work in [1], [3], [4], [5], [6], [7], [10], [14], [13], [16], [21], [25], [26], [27], [28], [29] and [33]. Some of this comparison work will be done in [8] and [9].

Part of this work was carried out while I was visiting the IML and the CPT of the Université de la Méditerranée in the summer of 2001, and I thank my colleagues there for their hospitality. I especially thank Christian Duval and Valentin Ovsienko for some very valuable discussions.

It is a real pleasure to dedicate this article to Sasha Kirillov whose discoveries have opened up so many new vistas, starting of course with the Orbit Method. I warmly thank him for his friendship and his interest in my own work.

2. Dixmier Algebra for the Closure of a Complex Nilpotent Orbit

Let G be a reductive complex algebraic group. Let \mathfrak{g} be the Lie algebra of G and let \mathfrak{g}^* be the dual space. Then G acts on \mathfrak{g} and \mathfrak{g}^* by, respectively, the adjoint action and the coadjoint action. The symmetric algebra $S(\mathfrak{g}) = \bigoplus_{p=0}^{\infty} S^p(\mathfrak{g})$ is the algebra of polynomial functions on \mathfrak{g}^*. The G-invariants form the graded subalgebra $S(\mathfrak{g})^G = \bigoplus_{p=0}^{\infty} S^p(\mathfrak{g})^G$. We can fix some nondegenerate G-invariant bilinear form (\cdot, \cdot) on \mathfrak{g}.

The nullcone in \mathfrak{g}^* is the set of $\lambda \in \mathfrak{g}^*$ which satisfy the following equivalent properties:

(i) the closure of the coadjoint orbit of λ contains zero
(ii) the coadjoint orbit of λ is stable under dilations of the vector space \mathfrak{g}^*
(iii) every nonconstant homogeneous G-invariant in $S(\mathfrak{g})$ vanishes on λ
(iv) $\lambda = (x, \cdot)$ where x is a nilpotent in \mathfrak{g}

The nullcone is G-stable and breaks into finitely many orbits of G, which are then called the nilpotent coadjoint orbits, or simply the nilpotent orbits, of G.

3
Let O be a nilpotent orbit of G. The closure \overline{O} is a complex algebraic subvariety of g^*; but \overline{O} may be reducible if G is disconnected. The coordinate ring $\mathbb{C}[\overline{O}]$ of \overline{O} is the quotient algebra

$$R = S(g)/\mathcal{I}(\overline{O})$$

(2.1)

where $\mathcal{I}(\overline{O})$ is the ideal of functions which vanish on \overline{O}. Then $\mathcal{I}(\overline{O})$ is a graded ideal and $R = \oplus_{p=0}^{\infty} R^p$ is a graded algebra where $R^p = S^p(g)/\mathcal{I}(\overline{O})^p$. Each space R^p is a finite dimensional completely reducible representation of G. Kostant’s description of $S(g)$ as a module over $S(g)^G$ implies that all G-multiplicities in R are finite.

R inherits from $S(g)$ the structure of a graded Poisson algebra where $\{R^p, R^q\} \subseteq R^{p+q-1}$. This Poisson bracket $\{\cdot, \cdot\}$ on R is G-invariant and corresponds to the holomorphic Kirillov-Kostant-Souriau symplectic form on O.

In this situation, we define Dixmier algebras in the following way. We fix a Cartan involution ζ of g. Then ζ corresponds to a compact real form G_c of G with Lie algebra g_c. Let $N = \{0, 1, 2, \ldots\}$.

Definition 2.1. A Dixmier algebra for \overline{O} is a quadruple $(D, \xi, \tau, \vartheta)$ where

- D is a filtered algebra with an increasing algebra filtration $D = \cup_{p \in \mathbb{N}} D_p$ such that $\text{gr} D$ is commutative.
- $\xi : g \to D_1$, $x \mapsto \xi^x$, is a homomorphism of Lie algebras and ξ induces an isomorphism of graded Poisson algebras from $S(g)/\mathcal{I}(\overline{O})$ onto $\text{gr} D$.
- τ is a filtered algebra anti-involution of D such that $\tau(\xi^x) = -\xi^x$.
- ϑ is an anti-linear filtered algebra involution such that $\vartheta(\xi^x) = \xi^{(\vartheta)}$.

Here are some explanations about the definition. First, commutativity of $\text{gr} D$ implies that $\text{gr} D$ has a natural structure of graded Poisson algebra; here the commutator in D induces the Poisson bracket on $\text{gr} D$. Second, ξ extends naturally to a filtered algebra homomorphism

$$\tilde{\xi} : U(g) \to D$$

(2.2)

Let J be the kernel of $\tilde{\xi}$. Then $\text{gr} J$ is a Poisson ideal of $S(g)$, and $\text{gr} \tilde{\xi}$ induces a 1-to-1 homomorphism $\zeta : S(g)/\text{gr} J \to \text{gr} D$ of graded Poisson algebras. We require that ζ is surjective and

$$\text{gr} J = \mathcal{I}(\overline{O})$$

(2.3)

Notice that ζ is surjective if and only if $\tilde{\xi}$ is surjective in each filtration degree; then $\tilde{\xi}$ induces a filtered algebra isomorphism

$$U(g)/J \sim \to D$$

(2.4)

Third, τ satisfies $\tau(cA) = c \tau(A)$, $\tau(A + B) = \tau(A) + \tau(B)$, and $\tau(AB) = \tau(B)\tau(A)$ where $A, B \in D$ and $c \in \mathbb{C}$. Fourth, ϑ satisfies $\vartheta(cA) = \tau \vartheta(A)$, $\vartheta(A + B) = \vartheta(A) + \vartheta(B)$, and $\vartheta(AB) = \vartheta(A)\vartheta(B)$. Clearly $\tau \vartheta = \vartheta \tau$.

Notice that D and ξ (and ζ) uniquely determine τ and ϑ, if the latter exist. Indeed, the endomorphisms $x \mapsto -x$ and $x \mapsto \varsigma(x)$ of g extend uniquely to τ_g and ϑ_g, where τ_g is an algebra anti-involution of $U(g)$ and ϑ_g is an antilinear algebra involution of $U(g)$. Then, via (2.1), τ_g and ϑ_g induce τ and ϑ.

4
We have an obvious notion of isomorphism of Dixmier algebras for \(\mathcal{O}\): \((\mathcal{D}, \xi, \tau, \vartheta)\) is isomorphic to \((\mathcal{D}', \xi', \tau', \vartheta')\) if there is a filtered algebra isomorphism \(\eta : \mathcal{D} \to \mathcal{D}'\) such that \(\xi' = \eta \circ \xi\), \(\eta \circ \tau = \tau' \circ \eta\), and \(\eta \circ \vartheta = \vartheta' \circ \eta\). We can easily classify Dixmier algebras.

Observation 2.2. Suppose \((\mathcal{D}, \xi, \tau, \vartheta)\) is a Dixmier algebra for \(\mathcal{O}\). In addition to (2.3), \(J\) satisfies

\[
\tau_g(J) = J \quad \text{and} \quad \vartheta_g(J) = J
\]

In this way, we get a bijection between (isomorphism classes of) Dixmier algebras for \(\mathcal{O}\) and two-sided ideals \(J\) of \(\mathcal{U}(\mathfrak{g})\) satisfying (2.3) and (2.5).

Proof. Clearly (2.3) and (2.5) imply that \((\mathcal{U}(\mathfrak{g})/J, \iota, \tau'_g, \vartheta'_g)\) is a Dixmier algebra for \(\mathcal{O}\), where \(\iota\) is the obvious map and \(\tau'_g\) and \(\vartheta'_g\) are induced by \(\tau_g\) and \(\vartheta_g\). Conversely, if \((\mathcal{D}, \xi, \tau, \vartheta)\) is given, then \((\mathcal{U}(\mathfrak{g})/J, \iota, \tau'_g, \vartheta'_g)\) is isomorphic to it via (2.4). \(\square\)

3. Properties of Dixmier Algebras

The hopes in constructing a Dixmier algebra are (i) \(J\) will be a completely prime primitive ideal of \(\mathcal{U}(\mathfrak{g})\), or even better, a completely prime maximal ideal, and (ii) \(\mathcal{D}\) will be unitarizable. See \([12, \S 3.1]\) for the definitions of the terms in (i).

To understand (ii), we observe that Definition 2.1 makes \(\mathcal{D}\) a \((\mathfrak{g} \oplus \mathfrak{g}, \mathcal{O})\)-module. Indeed, the natural \((\mathfrak{g} \oplus \mathfrak{g}, \mathcal{O})\)-module structure on \(\mathcal{U}(\mathfrak{g})/J\) transfers over to \(\mathcal{D}\) via (2.4). Then \(\mathfrak{g} \oplus \mathfrak{g}\) acts on \(\mathcal{D}\) through the representation

\[
\Pi : \mathfrak{g} \oplus \mathfrak{g} \to \text{End} \mathcal{D}, \quad (x, y) \mapsto \Pi^{x,y}
\]

where \(\Pi^{x,y}(A) = \xi^x A - A \xi^y\). The action of \(\mathcal{O}\) corresponds to the subalgebra \(\{(x, x) : x \in \mathfrak{g}\}\).

Next consider the subalgebra \(\mathfrak{g}^* = \{(x, \zeta(x)) : x \in \mathfrak{g}\}\) of \(\mathfrak{g} \oplus \mathfrak{g}\). We say \(\mathcal{D}\) is unitarizable if \(\mathcal{D}\) admits a \(\mathfrak{g}^*\)-invariant positive definite Hermitian inner product. In this event, by a theorem of Harish-Chandra, the operators \(\Pi^{x,\zeta(x)}\) correspond to a unitary representation of \(\mathcal{G}\) on the Hilbert space completion of \(\mathcal{D}\). This unitary representation is then a quantization of \(\mathcal{O}\) in the sense of geometric quantization, if we view \(\mathcal{O}\) as a real symplectic manifold. (If \(\mathbb{C}[\mathcal{O}] \neq \mathbb{C}[\mathcal{O}]\), then this might be just a piece of a quantization of \(\mathcal{O}\).)

Notice that the following three properties are equivalent: (i) \(J\) is maximal, (ii) \(\mathcal{D}\) is a simple ring, and (iii) the representation \(\Pi\) is irreducible.

Our formalism gives some partial results pertaining to hopes (i) and (ii). Notice that \(\mathcal{D}_0 = \mathbb{C}\) by (2.4).

Proposition 3.1. Suppose \((\mathcal{D}, \xi, \tau, \vartheta)\) is a Dixmier algebra for \(\mathcal{O}\) and \(J = \ker \tilde{\xi}\). Then

1. \(J\) has an infinitesimal character.
2. If \(\mathcal{O}\) is irreducible then \(J\) is a completely prime primitive ideal in \(\mathcal{U}(\mathfrak{g})\).
3. There is a a unique \(\mathcal{G}_c\)-invariant projection \(\mathcal{T} : \mathcal{D} \to \mathbb{C}\). This map \(\mathcal{T}\) is a trace, i.e., \(\mathcal{T}(AB) = \mathcal{T}(BA)\).
4. \(\mathcal{D}\) admits a unique \(\mathfrak{g}^*\)-invariant Hermitian inner product \((\cdot | \cdot)\) such that \((1|1) = 1\), and it is given by

\[
(A|B) = \mathcal{T}(AB\vartheta).
\]

where \(B\vartheta = \vartheta(B)\).
Proof. (i) This means (for any proper two-sided ideal J) that J contains a maximal ideal of the center of $\mathcal{U}(\mathfrak{g})$. This happens if and only $\text{gr} J$ contains $S^+(\mathfrak{g})^G = \oplus_{p \geq 0} S^p(\mathfrak{g})^G$. But $\text{gr} J = \mathcal{J}(\mathcal{O})$ and $\mathcal{J}(\mathcal{O}) \supset S^+(\mathfrak{g})^G$ since \mathcal{O} lies in the nullcone. (ii) If \mathcal{O} is irreducible then $\mathcal{J}(\mathcal{O})$ is a prime ideal in $S(\mathfrak{g})$ and so J is a completely prime ideal in $\mathcal{U}(\mathfrak{g})$. This together with (i) implies, by a result of Dixmier, that J is primitive. (iii) Since $\mathcal{J}(\mathcal{O}) \supset S^+(\mathfrak{g})^G = S^+(\mathfrak{g})^{G_e}$, we have $\mathcal{R}^{G_e} = \mathbb{C}$ and so $\mathcal{D}^{G_e} = \mathbb{C}$. Thus we get a unique G_e-invariant projection map T. Now G_e-invariance implies $T([\xi^x, A]) = 0$ where $x \in \mathfrak{g}$. We can write this as $T(\xi^x A) = T(A \xi^x)$. Iteration gives $T(\xi_{x_1} \cdots \xi_{x_k} A) = T(A \xi_{x_1} \cdots \xi_{x_k})$. This proves $T(BA) = T(A B)$ since the ξ^x generate \mathcal{D}. (This is the same proof as in [2, Proposition 8.4].) (iv) Suppose $(\cdot | \cdot)$ is an inner product with the desired properties. Then $(A | 1) = T(A)$. Now $\mathfrak{g}^\mathcal{J}$-invariance means that the operators $\Pi_{\xi^x(x)}$ are skew-hermitian, or equivalently, $(\xi^x A | B) = (A | B \xi^x(x))$. So for $B = \xi_{x_1} \cdots \xi_{x_k}$, we have $(A | B) = (\xi^c(x_1) \cdots \xi^c(x_k) A | 1) = (B^\vartheta A | 1) = T(B^\vartheta A)$. The result is now clear. \qed

Corollary 3.2. \mathcal{D} is unitarizable if and only if the pairing defined by (3.2) is positive definite. If \mathcal{D} is unitarizable, then J is maximal.

Proof. Both statements follow from the uniqueness in Proposition 3.1 (iv). \qed

Example 3.3. Suppose \mathcal{O} is the minimal nilpotent orbit in \mathfrak{g} where \mathfrak{g} is simple and $\mathfrak{g} \neq \mathfrak{sl}(2, \mathbb{C})$. This is a case where $\mathbb{C}[\mathcal{O}] = \mathbb{C}[\mathcal{O}]$. Then there is a unique Dixmier algebra for \mathcal{O}. This follows by Observation 2.2 since there is exactly one choice for J satisfying (2.3) and (2.5). Moreover, (i) J is a completely prime maximal ideal of $\mathcal{U}(\mathfrak{g})$, and (ii) $\mathcal{U}(\mathfrak{g})/J$ is unitarizable if \mathfrak{g} is classical.

Indeed, there is a unique two-sided ideal J satisfying (2.3) and $\tau_0(J) = J$; see [2, proof of Proposition 3.1]. Since the ideal $\mathcal{J}(\mathcal{O})$ is preserved by the antilinear algebra involution of $S(\mathfrak{g})$ defined by ς, it follows by the uniqueness of J that $\vartheta_0(J) = J$. Since \mathcal{O} is irreducible, Proposition 3.1 (ii) implies that J is completely prime. If $\mathfrak{g} \neq \mathfrak{sl}(n, \mathbb{C})$, then J is the Joseph ideal and this is maximal by [19, Theorem 7.4]. If $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$ ($n \geq 3$), then J is maximal by [30]. Finally, unitarizability is known; see [2, Theorem 9.1] for a uniform construction of these unitary representations on spaces of holomorphic functions on \mathcal{O}.

4. The Kraft-Procesi Construction

In this section we recall how Kraft and Procesi in [22] and [23] constructed the closures of complex classical nilpotent orbits. We add to their construction the framework of algebraic symplectic reduction.

Let V be a complex vector space with \mathfrak{b} a bilinear form on V. Let G be the symmetry group of \mathfrak{b}. We consider only the following three cases.

(i) \mathfrak{b} is identically zero. Then $G = GL(V, \mathbb{C})$.

(ii) \mathfrak{b} is nondegenerate and symmetric. Then $G = O(V, \mathbb{C})$.

(iii) \mathfrak{b} is nondegenerate and symplectic. Then $G = Sp(V, \mathbb{C})$.

Choose a nilpotent orbit \mathcal{O} of G and an element λ in \mathcal{O}. Then λ corresponds (via the trace functional on $\text{End} V$) to $x \in \mathfrak{g}$; so x is in particular a nilpotent endomorphism of V.
We note that \mathcal{O} is connected, and so $\overline{\mathcal{O}}$ is irreducible, except in the following situation. If $G = O(V, \mathbb{C})$ where $\dim V$ is even and also the Jordan block size partition of \mathcal{O} is very even (i.e., all parts are even and occur with even multiplicities), then \mathcal{O} has two connected components and $\overline{\mathcal{O}}$ has two irreducible components. See [23], [11, Chapter 5].

Let V_d be the image of x^d. Then

$$V = V_0 \supset V_1 \supset \cdots \supset V_r \supset V_{r+1} = 0$$

(4.1)

where r is the largest number such that $x^r \neq 0$. We define a complex vector space L by

$$L = L(V_0, V_1) \oplus L(V_1, V_2) \oplus \cdots \oplus L(V_{r-1}, V_r)$$

(4.2)

where $L(V_{d-1}, V_d)$ is obtained in the following way. If $G = GL(V, \mathbb{C})$ then

$$L(V_{d-1}, V_d) = \text{Hom}(V_d, V_{d-1}) \oplus \text{Hom}(V_{d-1}, V_d)$$

(4.3)

If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then

$$L(V_{d-1}, V_d) = \text{Hom}(V_d, V_{d-1})$$

(4.4)

Next we construct a complex Lie group S of the form

$$S = S_1 \times S_2 \times \cdots \times S_r$$

(4.5)

where S_d is obtained in the following way. To begin with, we put $b_0 = b$ and $S_0 = G$. If $G = GL(V, \mathbb{C})$ then for each d we put $b_d = 0$ and $S_d = GL(V_d, \mathbb{C})$. If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then V_d admits an intrinsic nondegenerate complex bilinear form b_d and we define S_d to be the symmetry group of b_d. In more detail, b_d is the bilinear form on V_d defined by $b_d(x^d(u), x^d(v)) = b(u, x^d(v))$. It turns out that b_d is nondegenerate. If b_{d-1} is orthogonal then b_d is symplectic and we put $S_d = Sp(V_d, \mathbb{C})$. If b_{d-1} is symplectic then b_d is orthogonal and we put $S_d = O(V_d, \mathbb{C})$.

Next we construct commuting actions of G and S on L. If $G = GL(V, \mathbb{C})$, we make G and S act by

$$(g, s_1, \ldots, s_r) \cdot (A_1, B_1, A_2, B_2, \ldots, A_r, B_r) = (gA_1s_1^{-1}, s_1B_1g^{-1}, s_1A_2s_2^{-1}, s_2B_2s_1^{-1}, \ldots, s_{r-1}A_rs_r^{-1}, s_rB_rs_{r-1}^{-1})$$

(4.6)

where $A_d \in \text{Hom}(V_d, V_{d-1})$ and $B_d \in \text{Hom}(V_{d-1}, V_d)$. If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, we make G and S act by

$$(g, s_1, \ldots, s_r) \cdot (C_1, C_2, \ldots, C_r) = (gC_1s_1^{-1}, s_1C_2s_2^{-1}, \ldots, s_{r-1}C_rs_r^{-1})$$

(4.7)

where $C_d \in \text{Hom}(V_d, V_{d-1})$.

L has a (complex) symplectic form Ω given by $\Omega = \Omega_1 + \Omega_2 + \cdots + \Omega_r$ where Ω_d is the symplectic form on $L(V_{d-1}, V_d)$ defined in the following way. If $G = GL(V, \mathbb{C})$, then $\Omega_d(A + B, A' + B') = \text{tr}(AB') - \text{tr}(BA')$. If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then $\Omega_d(C, C') = \text{tr}(C^*C)$ where $C^* \in \text{Hom}(V_{d-1}, V_d)$ is the adjoint of C defined by $b_{d-1}(u, C^*(v)) = b_d(C(u), v)$.

Now G and S act faithfully and symplectically on L. Thereby G and S identify with commuting subgroups of the symplectic group $Sp(L, \mathbb{C})$. The action of $Sp(L, \mathbb{C})$ is Hamiltonian with canonical moment map

$$L \to sp(L, \mathbb{C})^*$$

(4.8)
Hence our actions of G and S are Hamiltonian with induced moment maps (obtained by projection)

$$\gamma : L \to \mathfrak{g}^* \quad \text{and} \quad \sigma : L \to \mathfrak{s}^*$$

(4.9)

Then γ is G-equivariant and S-invariant, and σ is S-equivariant and G-invariant.

Here are the explicit formulas for γ and σ. We may write these as \mathfrak{g}-valued and \mathfrak{s}-valued maps, with the convention that the trace functional on $\text{End} \, L$ induces isomorphisms $\mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ and $\mathfrak{s} \xrightarrow{\sim} \mathfrak{s}^*$. If $G = GL(V, \mathbb{C})$, then γ and σ are given by

$$(-A_1B_1) \quad \text{and} \quad (B_1A_1 - A_2B_2, \ldots, B_{r-1}A_{r-1} - A_rB_r, B_rA_r)$$

(4.10)

If $G = O(V, \mathbb{C})$ or $G = Sp(V, \mathbb{C})$, then γ and σ are given by

$$(-C_1C_1^*) \quad \text{and} \quad (C_1^*C_1 - C_2C_2^*, \ldots, C_{r-1}^*C_{r-1} - C_rC_r^*, C_r^*C_r)$$

(4.11)

Remark 4.1. For each $d = 1, \ldots, r$, S_d and S_d act on $L(V_{d-1}, V_d)$ as a Howe dual pair.

Let \mathcal{P} be the algebra of polynomial functions on L. Then $\mathcal{P} = S(L^*)$ is a graded Poisson algebra with respect to the Poisson bracket $\{\cdot, \cdot\}$ defined by Ω. Our grading is $\mathcal{P} = \bigoplus_{j \in \frac{1}{2}\mathbb{N}} \mathcal{P}^j$ where $\mathcal{P}^j = S^j(L^*)$ and then $\{\mathcal{P}^j, \mathcal{P}^k\} \subseteq \mathcal{P}^{j+k-1}$. (This choice of halving the natural degrees is convenient as the aim is to obtain R as a subquotient of \mathcal{P}.) The momentum functions $\gamma_y (y \in \mathfrak{g})$ and $\sigma_x (x \in \mathfrak{s})$ are the component functions of γ and σ; i.e., $\gamma_y(m) = \langle \gamma(m), y \rangle$ and $\sigma_x(m) = \langle \sigma(m), x \rangle$ where $m \in L$. The γ_y and σ_x lie in \mathcal{P}^1 and satisfy the bracket relations $\{\gamma_y, \gamma_{y'}\} = \gamma_{[y, y']}, \{\sigma_x, \sigma_{x'}\} = \sigma_{[x, x']} \text{ and } \{\gamma_y, \sigma_x\} = 0$.

Let \mathcal{I} be the ideal in \mathcal{P} generated by the momentum functions σ_x where $x \in \mathfrak{s}$. Then $\mathcal{I} = \bigoplus_{j \in \frac{1}{2}\mathbb{N}} \mathcal{I}^j$ is a graded ideal stable under both G and S. Hence the quotient algebra \mathcal{P}/\mathcal{I} is a graded algebra on which G and S act by graded algebra automorphisms. The grading is

$$\mathcal{P}/\mathcal{I} = \bigoplus_{j \in \frac{1}{2}\mathbb{N}} (\mathcal{P}/\mathcal{I})^j$$

where $(\mathcal{P}/\mathcal{I})^j = \mathcal{P}^j/\mathcal{I}^j$. Kraft and Procesi proved that \mathcal{I} is the full ideal of functions vanishing on $\sigma^{-1}(0)$. Thus \mathcal{P}/\mathcal{I} is the coordinate ring $\mathbb{C}[\sigma^{-1}(0)]$ of the zero locus of σ.

The **algebraic symplectic reduction** L^{red} of L by S is the Mumford quotient of $\sigma^{-1}(0)$ by S. Thus L^{red} is the affine complex algebraic variety with coordinate ring

$$\mathbb{C}[L^{\text{red}}] = (\mathcal{P}/\mathcal{I})^{\text{inv}} = \mathcal{P}^{\text{inv}}/\mathcal{I}^{\text{inv}}$$

(4.12)

where the superscript inv denotes taking S-invariants. Moreover \mathcal{I}^{inv} is a Poisson ideal in \mathcal{P}^{inv}. So $\mathbb{C}[L^{\text{red}}]$ inherits the structure of a graded Poisson algebra.

Notice that S contains the center $\mathbb{Z}_2 = \{1, -1\}$ of $Sp(L, \mathbb{C})$ and the action of \mathbb{Z}_2 induces the decomposition $\mathcal{P} = \mathcal{P}^{\text{even}} \oplus \mathcal{P}^{\text{odd}}$ where the even part is the graded Poisson algebra

$$\mathcal{P}^{\text{even}} = \bigoplus_{d \in \mathbb{N}} \mathcal{P}^d$$

(4.13)

So \mathcal{P}^{inv} lies in $\mathcal{P}^{\text{even}}$, and thus \mathcal{P}^{inv} and $\mathbb{C}[L^{\text{red}}]$ are \mathbb{N}-graded.

The symplectic version of the Kraft-Procesi result is

Theorem 4.2. [22 Theorem 3.3], [23 Theorem 5.3] The algebra homomorphism $\gamma^* : S(\mathfrak{g}) \to \mathcal{P}$ defined by $y \mapsto \gamma_y (y \in \mathfrak{g})$ induces a G-equivariant isomorphism of \mathbb{N}-graded Poisson algebras from \mathcal{R} onto $\mathcal{P}^{\text{inv}}/\mathcal{I}^{\text{inv}}$.

The cited results of Kraft and Procesi are given in geometric language, and the reader who wants to read all the proofs in [22] and [23] will need some knowledge in algebraic geometry. The statements in [22] Theorem 3.3 and [23] Theorem 5.3 are easy to translate into algebra though, since we are dealing with affine varieties. Kraft and Procesi show that \(\gamma \) maps \(\sigma^{-1}(0) \) onto \(\mathcal{O} \), and moreover this surjection \(\gamma' : \sigma^{-1}(0) \to \mathcal{O} \) is a quotient map for the action of \(S \). In this setting of a reductive group acting on an affine variety, “quotient map” has a very strong meaning coming from Mumford’s geometric invariant theory, as explained in [22, §1.4] and [23, §0.11]. Precisely, \(\gamma' \) being a quotient map means that the corresponding map \(\mathcal{R} \to \mathcal{P}/\mathcal{I} \) on coordinate rings is injective and has image equal to \((\mathcal{P}/\mathcal{I})^{\text{inv}}\).

In symplectic language then, Kraft and Procesi proved that the moment map \(\gamma \) induces a \(G \)-isomorphism of affine complex algebraic varieties from \(L_{\text{red}} \) onto \(\mathcal{O} \). This isomorphism is also equivariant with respect to the natural \(\mathbb{C}^* \)-actions on \(L_{\text{red}} \) and \(\mathcal{O} \). Finally, since \(\gamma \) is a moment map it follows that \(\gamma^* \) preserves the Poisson brackets. Thus we get Theorem 4.2.

5. Weyl algebra \(\mathcal{W} \) for \(L \)

The Kraft-Procesi construction realized \(\mathcal{R} \) as a subquotient, namely \(\mathcal{P}^{\text{inv}}/\mathcal{I}^{\text{inv}} \), of \(\mathcal{P}^{\text{even}} \). Our aim is to make a noncommutative analog of their construction.

The image of the moment map \(\mathcal{L} \) is the closure \(\mathcal{Y} \) of the minimal nilpotent orbit \(\mathcal{Y} \) of \(Sp(L, \mathbb{C}) \), and \(\mathcal{P}^{\text{even}} = \mathbb{C}[\mathcal{Y}] \) as graded Poisson algebras. We know by Example 3.3 that \(\mathcal{Y} \) has a unique Dixmier algebra \((\mathcal{D}, \xi, \tau_{\mathcal{D}}, \psi_{\mathcal{D}}) \), and then \(\mathcal{D} \) is the quotient of \(\mathcal{U}(sp(L, \mathbb{C})) \) by its Joseph ideal. In this section we will give a more concrete model for this Dixmier algebra. Then in 6 we will perform the noncommutative analog of reduction.

Let \(\mathcal{W} \) be the Weyl algebra for \(L^* \). This means that \(\mathcal{W} \) is the quotient of the tensor algebra of \(L^* \) by the two-sided ideal generated by the elements \(a \otimes b - b \otimes a - \{a, b\} \) where \(a \) and \(b \) lie in \(L^* \). Let \(a \mapsto \hat{a} \) be the natural map \(L^* \to \mathcal{W} \). We can identify \(sp(L, \mathbb{C}) \) with \(S^2 L^* \) and then we have the Lie algebra embedding

\[
\xi : sp(L, \mathbb{C}) \to \mathcal{W}, \quad \xi^{ab} = \hat{a} \hat{b} + \hat{b} \hat{a}
\]

(5.1)

There is an increasing algebra filtration \(\mathcal{W} = \bigcup_{j \in \mathbb{N}} \mathcal{W}_j \) where \(\mathcal{W}_j \) is the image of the space of tensors of degree at most \(2j \). We have \([\mathcal{W}_j, \mathcal{W}_k] \subset \mathcal{W}_{j+k-1} \). Thus the associated graded algebra \(\text{gr} \mathcal{W} = \bigoplus_{j \in \mathbb{N}} \mathcal{W}_j/\mathcal{W}_{j-1} \) is commutative and the commutator in \(\mathcal{W} \) induces a Poisson bracket (of degree \(-1\)) on \(\text{gr} \mathcal{W} \). In this way \(\text{gr} \mathcal{W} \) becomes a graded Poisson algebra. Then \(\text{gr} \mathcal{W} \) identifies naturally with \(\mathcal{P} \).

The symplectic group \(Sp(L, \mathbb{C}) \) acts naturally on \(\mathcal{W} \) by algebra automorphisms. This action respects \(\xi \), the filtration on \(\mathcal{W} \), the Poisson bracket on \(\text{gr} \mathcal{W} \), etc. The corresponding action of \(sp(L, \mathbb{C}) \) on \(\mathcal{W} \) is given by the operators \([\xi^{ab}, \cdot]\).

We next choose a Cartan involution \(\zeta \) of \(sp(L, \mathbb{C}) \). To do this, we go back into the Kraft-Procesi construction. Recall that each space \(V_d \) in (4.1) carried a bilinear form \(\mathbf{b}_d \) \((d = 0, \ldots, r)\). We can choose a positive definite hermitian form \(\mathbf{h}_d \) on \(V_d \) which is compatible with \(\mathbf{b}_d \) in the sense that the intersection of \(S_d \) with the unitary group of \(\mathbf{h}_d \)}
is a maximal compact subgroup K_d of S_d. (This is an equivalent version of the setup in [21].) These h_j determine naturally a positive definite hermitian form h on L. Now we define $\varsigma(T) = -T^\dag$ for $T \in \mathfrak{sp}(L, \mathbb{C})$, where T^\dag is the adjoint of T with respect to h.

Corresponding to ς is a compact real form $Sp(L)$ of $Sp(L, \mathbb{C})$ with Lie algebra $\mathfrak{sp}(L)$. For later use (see [10], we notice that $G \cap Sp(L) = K_0$ and $S \cap Sp(L) = K_1 \times \cdots \times K_r$ are compact real forms of G and S, which we will denote by G_c and S_c.

Now \mathcal{W} is a $(\mathfrak{sp}(L, \mathbb{C}) \oplus \mathfrak{sp}(L, \mathbb{C}), Sp(L))$-module, where the representation

$$\mathfrak{sp}(L, \mathbb{C}) \oplus \mathfrak{sp}(L, \mathbb{C}) \rightarrow \text{End} \mathcal{W}$$

is given by $(x, y) \cdot A = \xi^x A - A \xi^y$ and the action of $Sp(L)$ corresponds to the subalgebra $\{(x, x) : x \in \mathfrak{sp}(L)\}$. The action of the center \mathbb{Z}_2 of $Sp(L)$ produces the decomposition

$$\mathcal{W} = \mathcal{W}^{even} \oplus \mathcal{W}^{odd}$$

where \mathcal{W}^{even} is space of invariants for \mathbb{Z}_2. The induced filtration on \mathcal{W}^{even} satisfies $\mathcal{W}_{p+\frac{1}{2}}^{even} = \mathcal{W}_p^{even}$ if $p \in \mathbb{N}$. So we might as well just consider the algebra filtration

$$\mathcal{W}^{even} = \bigcup_{d \in \mathbb{N}} \mathcal{W}_d^{even}$$

Now we can make \mathcal{W}^{even} into a Dixmier algebra.

Proposition 5.1. The Dixmier algebra for the closure $\overline{\mathcal{O}}$ of the minimal nilpotent orbit of $Sp(L, \mathbb{C})$ is the quadruple $(\mathcal{W}^{even}, \xi, \tau, \vartheta)$, for some unique choices of τ and ϑ.

Proof. The map ξ induces a filtered algebra isomorphism $\pi : \mathcal{U}(\mathfrak{sp}(L, \mathbb{C}))/\mathcal{J} \rightarrow \mathcal{W}^{even}$ where \mathcal{J} is the Joseph ideal (see [2], §5). Clearly $\text{gr} \mathcal{W}^{even} = \mathcal{P}^{even}$ and so π induces a graded isomorphism $S(\mathfrak{sp}(L, \mathbb{C}))/\mathcal{J}(\overline{\mathcal{O}}) \sim \rightarrow \mathcal{P}^{even}$. Now everything follows by Example 3.3. \[\square\]

6. Dixmier Algebra for $\overline{\mathcal{O}}$

\mathcal{W}^{even} is, by means of (5.2), both a $(g \oplus g, G_c)$-module and an $(s \oplus s, S_c)$-module, and these two actions commute.

Definition 6.1. \mathcal{B} is the $(g \oplus g, G_c)$-module obtained by taking the coinvariants of \mathcal{W}^{even} in the category of $(s \oplus s, S_c)$-modules.

This means that \mathcal{B} is the quotient $\mathcal{W}^{even}/\mathcal{M}$ where \mathcal{M} is the subspace spanned by all $\xi^x A - A \xi^y$ and $A - s \cdot A$ where $x, y \in s$, $s \in S_c$ and $A \in \mathcal{W}^{even}$ (see [20, Chapter II]). Then \mathcal{B} inherits from \mathcal{W}^{even} an increasing G_c-stable vector space filtration $\mathcal{B} = \bigcup_{d \in \mathbb{N}} \mathcal{B}_d$.

Let \mathcal{W}^{inv} be the algebra of invariants for S_c. Then \mathcal{W}^{inv} lies in \mathcal{W}^{even} (since S_c contains \mathbb{Z}_2) and so \mathcal{W}^{inv} inherits from \mathcal{W}^{even} an algebra filtration $\mathcal{W}^{inv} = \bigcup_{d \in \mathbb{N}} \mathcal{W}_d^{inv}$.

Lemma 6.2. The natural map

$$\phi : \mathcal{W}^{inv} \rightarrow \mathcal{B}$$

is surjective in each filtration degree and its kernel is a two-sided ideal. In this way, \mathcal{B} becomes a filtered algebra. The corresponding map $\text{gr} \phi : \mathcal{P}^{inv} \rightarrow \text{gr} \mathcal{B}$ is a surjective homomorphism of graded Poisson algebras.

Proof. We prove this in §7. \[\square\]
Our main result is

Theorem 6.3. We have \(\text{gr}\mathcal{B} = \mathcal{P}^{\text{inv}}/\mathcal{I}^{\text{inv}} \). So \(\text{gr}\mathcal{B} \simeq \mathcal{R} \) as graded Poisson algebras.

Proof. The proof occupies §8. \(\square \)

Corollary 6.4. The quadruple \((\mathcal{B}, \xi, \tau, \vartheta) \) is a Dixmier algebra for \(\mathcal{O} \), where \(\xi, \tau \) and \(\vartheta \) are the maps induced by \(\xi, \tau, \) and \(\vartheta \).

Proof. We prove this in §9. \(\square \)

Let \(J \) be the kernel of the algebra homomorphism \(\tilde{\xi} : \mathcal{U}(\mathfrak{g}) \to \mathcal{B} \) defined by \(\xi \).

Proposition 6.1. Suppose we exclude the cases where \(\mathcal{O} \) is disconnected (so where \(G = O(2n, \mathbb{C}) \) and the Jordan block size partition of \(\mathcal{O} \) is very even). Then \(J \) is a completely prime primitive ideal of \(\mathcal{U}(\mathfrak{g}) \) with \(\text{gr}\ J = \mathcal{I}(\mathcal{O}) \) \(\tau_{\mathfrak{g}}(J) = J \), and \(\vartheta_{\mathfrak{g}}(J) = J \).

The methods we have used thus far give no information about the excluded cases.

Remark 6.6. (i) Suppose \(G = GL(n, \mathbb{C}) \). Then the space \(L \) has a \(G \times S \)-invariant polarization, and using this we can describe \(\mathcal{B} \) and \(\xi \) in the following way. Let \(X \) be the flag manifold of \(G \) of flags of the type in \([16]\). Let \(\mathcal{D}^{\frac{1}{2}}(X) \) be the algebra of twisted differential operators for the (locally defined) square root of the canonical bundle on \(X \) as in \([7]\). We can show \((8)\) that \(\mathcal{B} \) identifies with \(\mathcal{D}^{\frac{1}{2}}(X) \) in such a way that \(\xi \) corresponds to the canonical mapping of \(\mathfrak{g} \) into \(\mathcal{D}^{\frac{1}{2}}(X) \). Then by \([7\) Corollary 8.5], \(J \) is a maximal ideal in \(\mathcal{U}(\mathfrak{g}) \).

(ii) Suppose \(G = O(n, \mathbb{C}) \) or \(G = Sp(2n, \mathbb{C}) \). If \(\mathcal{O} \) is the minimal nilpotent orbit, then \(\mathcal{B} \) is the quotient of \(\mathcal{U}(\mathfrak{g}) \) by its Joseph ideal. This follows by the result in Example 8.3.

7. **Proof of Lemma 6.2**

The action of \(S_c \) on \(\mathcal{W} \) is completely reducible and locally finite, and \(S \) and \(S_c \) have the same invariants and the same irreducible subspaces. So we can form the decomposition

\[
\mathcal{W}^{\text{even}} = \mathcal{W}^{\text{inv}} \oplus \mathcal{X}
\]

where \(\mathcal{X} \) is the sum of all non-trivial \(S_c \)-isotypic components. Then \(\mathcal{X} \) is the span of the elements \(A - s \cdot A \) where \(A \in \mathcal{W}^{\text{even}} \) and \(s \in S_c \). Then \(\mathcal{M} = \mathcal{M}^{\text{inv}} \oplus \mathcal{X} \). Hence the natural map \(\phi \) is surjective and its kernel is \(\mathcal{M}^{\text{inv}} \). I.e., we have vector space isomorphisms

\[
\mathcal{W}^{\text{inv}}/\mathcal{M}^{\text{inv}} \sim \mathcal{W}^{\text{even}}/\mathcal{M} \sim \mathcal{B}
\]

(7.2)

The decomposition \((7.1)\) is compatible with the filtration on \(\mathcal{W}^{\text{even}} \), since the filtration is \(S_c \)-invariant. Consequently \(\phi \) is surjective in each filtration degree. So \(\mathcal{W}^{\text{even}} \) and \(\mathcal{W}^{\text{inv}} \) induce the same filtration on \(\mathcal{B} \).

Next we show that \(\mathcal{M}^{\text{inv}} \) is a two-sided ideal in \(\mathcal{W}^{\text{inv}} \). To begin with, \(\mathcal{M}^{\text{inv}} \) lies inside the subspace \(\mathcal{M}' \) of \(\mathcal{M} \) spanned by all \(\xi^x A \) and \(\Lambda \xi^x \) where \(x \in s \) and \(A \in \mathcal{W}^{\text{even}} \). This follows using \((7.1)\). So it suffices to show that \(D\mathcal{M}' \) and \(\mathcal{M}'D \) lie in \(\mathcal{M}' \) if \(D \in \mathcal{W}^{\text{inv}} \). Obviously \(DA \xi^x \) lies in \(\mathcal{M}' \). Invariance of \(D \) gives \(\xi^x D - D \xi^x = 0 \) and so \(D \xi^x A = \xi^x DA \) lies in \(\mathcal{M}' \). Thus \(D\mathcal{M}' \subseteq \mathcal{M}' \); similarly \(\mathcal{M}'D \subseteq \mathcal{M}' \).
The associated graded algebra $\text{gr } B$ is the quotient $\text{gr } W^{\text{inv}} / \text{gr } M^{\text{inv}}$. We find $\text{gr } W^{\text{inv}} = \mathcal{P}^{\text{inv}}$. Now the final assertion is clear.

Remark 7.1. If we replace W^{even} by \mathcal{W} in Definition 6.1, then we get the same thing. I.e., if B is the module of coinvariants of W, then B identifies naturally with \mathcal{B}. Indeed $\mathcal{B} = W/\hat{M}$ where \hat{M} is the subspace spanned by all $\xi^x A - A \xi^y$ and $A - s \cdot A$ where now $A \in \mathcal{W}$. But then $\hat{M} = W^{\text{odd}} \oplus M$ and so the natural map $\tilde{\phi} : W^{\text{inv}} \to \mathcal{B}$ is surjective with the same kernel M^{inv}. Also the filtration $\mathcal{B} = \cup_{j \in \mathbb{N}} \mathcal{B}_j$ induced by \mathcal{W} reduces to the one induced by W^{inv} in the sense that $\tilde{\phi}(W^{\text{inv}}) = \mathcal{B}_d = \mathcal{B}_{d+1}$.

8. Proof of Theorem 6.3

We will compute $\text{gr } B$ by using a homology spectral sequence. We will consider the relative Lie algebra homology $H(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c; \mathcal{W}^{\text{even}})$. By definition (see [20], Chapter II, §6-7), $H_j(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c; \mathcal{W}^{\text{even}})$ is the jth derived functor, in the category of $(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c)$-modules, of the coinvariants. So

$$B = H_0(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c; \mathcal{W}^{\text{even}})$$

The idea is that we will introduce a filtration of the complex that computes the homology in such a way that the induced filtration on $H_0(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c; \mathcal{W}^{\text{even}})$ is the one we have already defined on B. Then we will use the usual spectral sequence of a filtered complex to compute $\text{gr } H_0(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c; \mathcal{W}^{\text{even}})$. The computation will rely on the geometric result of Kraft and Procesi that (in the notation of [11]) $\sigma^{-1}(0)$ is a complete intersection.

To begin with, we have $\mathfrak{s} \oplus \mathfrak{s} = \mathfrak{t} \oplus \mathfrak{p}$ where $\mathfrak{t} = \{(x, x) : x \in \mathfrak{s}\}$ and $\mathfrak{p} = \{(x, -x) : x \in \mathfrak{s}\}$. Then \mathfrak{t} is the complexified Lie algebra of \mathfrak{s}_c. The standard complex ([20], page 163) for computing $H(\mathfrak{s} \oplus \mathfrak{s}, \mathfrak{s}_c; \mathcal{W}^{\text{even}})$ is

$$0 \leftarrow \Lambda^0 \mathfrak{p} \otimes \mathfrak{s}_c \mathcal{W}^{\text{even}} \leftarrow \Lambda^1 \mathfrak{p} \otimes \mathfrak{s}_c \mathcal{W}^{\text{even}} \leftarrow \cdots \leftarrow \Lambda^m \mathfrak{p} \otimes \mathfrak{s}_c \mathcal{W}^{\text{even}} \leftarrow 0$$

(8.2)

Here $m = \dim \mathfrak{s}$ and $\otimes \mathfrak{s}_c$ denotes the \mathfrak{s}_c-coinvariants of the tensor product. We call this complex A where $^tA = \Lambda^t \mathfrak{p} \otimes \mathfrak{s}_c \mathcal{W}^{\text{even}}$.

The differential ∂ in (8.2) is given by

$$\partial(Y_1 \wedge \cdots \wedge Y_t \otimes D) = \sum_{l=1}^t (-1)^l Y_1 \wedge \cdots \wedge \hat{Y}_l \wedge \cdots \wedge Y_t \otimes \Pi Y_l(D)$$

(8.3)

where the Y_i lie in \mathfrak{p}, $D \in \mathcal{W}^{\text{even}}$, and Π is the representation (5.2). (Notice the terms involving $[Y_i, Y_j]$ are not present because $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{t}$.) To make the complex more transparent, we identify \mathfrak{p} with \mathfrak{s} so that $(x, -x)$ corresponds to x. Then (8.2) becomes

$$\partial(x_1 \wedge \cdots \wedge x_t \otimes D) = \sum_{l=1}^t (-1)^l x_1 \wedge \cdots \wedge \hat{x}_l \wedge \cdots \wedge x_t \otimes (\xi^x D + D \xi^x)$$

(8.4)

Next we define an increasing filtration of A by the spaces

$$^tA^d = \Lambda^t \mathfrak{p} \otimes \mathfrak{s}_c \mathcal{W}^{\text{even}}_{d-t}$$

(8.5)

where we set $\mathcal{W}^{\text{even}}_j = 0$ if $j < 0$. Then $^tA^d \subseteq ^{t-1}A^{d+1}$. This follows since the ξ^x lie in $\mathcal{W}^{\text{even}}_1$ and so $\mathfrak{p} \cdot \mathcal{W}^{\text{even}}_d \subseteq \mathcal{W}^{\text{even}}_{d+1}$. So we have in hand a filtration of the complex (8.1). We
put $A^{d,q} = d+q A^d$; then d is the filtration degree and q is the complementary degree. The induced filtration on the homology is $H(s \oplus s, S_c; \mathcal{W}^{even}) = \bigcup_{d \in \mathbb{N}} F^d$ where $F^d = \bigoplus_{q \in \mathbb{Z}} F^{d,q}$ and $F^{d,q}$ is the dth filtration piece of $H_{d+q}(s \oplus s, S_c; \mathcal{W}^{even})$. The associated graded space gr $H(s \oplus s, S_c; \mathcal{W}^{even})$ is the direct sum of the spaces

$$\text{gr}^d H_{d+q}(s \oplus s, S_c; \mathcal{W}^{even}) = F^{d,q}/F^{d-1,q+1}$$

(8.6)

Notice that $0A = \mathcal{W}^{even}$ and the filtration on $0A$ defined by (8.5) is the same one as in (5.4). So gr $H_0(s \oplus s, S_c; \mathcal{W}^{even}) = \mathfrak{B}$. Our goal is to prove

$$\text{gr}^d H_0(s \oplus s, S_c; \mathcal{W}^{even}) = (\mathcal{P}^{inv}/\mathcal{T}^{inv})^d$$

(8.7)

Now we consider the spectral sequence E_0, E_1, \ldots associated to our filtered complex. (See e.g., [20, Appendix D] or [15, Chapter I, §4] for the construction of this spectral sequence in the general setting.) The E_0 term is given by $E_0^{d,q} = A^{d,q}/A^{d-1,q+1}$ and so

$$E_0^{d,q} = \wedge^{d+q} p \otimes_{S_c} \mathcal{W}^{even}_{-q}/\mathcal{W}^{even}_{-q-1}$$

(8.8)

The identification gr $\mathcal{W}^{even} = \mathcal{P}^{even}$ gives

$$E_0^{d,q} = \wedge^{d+q} p \otimes_{S_c} \mathcal{P}^{q}$$

(8.9)

(Thus the E_0 term occupies the octant of the d, q plane where $q \leq 0$ and $d + q \geq 0$.) So E_0^d is the complex

$$0 \leftarrow \wedge^0 p \otimes_{S_c} \mathcal{P}^d \leftarrow \wedge^1 p \otimes_{S_c} \mathcal{P}^{d-1} \leftarrow \wedge^2 p \otimes_{S_c} \mathcal{P}^{d-2} \leftarrow \ldots \leftarrow \wedge^m p \otimes_{S_c} \mathcal{P}^{d-m} \leftarrow 0$$

(8.10)

The boundary ∂_0 is induced by ∂. We can easily compute ∂_0 since the natural projection maps $\psi_d : \mathcal{W}_d \to \mathcal{P}^d$ are given by $\psi_d(a_1 \cdots \hat{a}_{2d}) = a_1 \cdots a_{2d}$ where $a_i \in L^*$ (cf. §5). So for $D \in \mathcal{W}_d$ we have $\psi_{d+1}(\xi^x D) = \psi_{d+1}(D \xi^x) = \sigma_x \psi_d(D)$. Thus (8.4) gives

$$\partial_0(x_1 \wedge \cdots \wedge x_t \otimes f) = \sum_l (-1)^l x_1 \wedge \cdots \wedge \hat{x}_l \wedge \cdots \wedge x_t \otimes (2\sigma_{x_l} f)$$

(8.11)

The total complex E_0 is

$$0 \leftarrow \wedge^0 p \otimes_{S_c} \mathcal{P}^{even} \leftarrow \wedge^1 p \otimes_{S_c} \mathcal{P}^{even} \leftarrow \wedge^2 p \otimes_{S_c} \mathcal{P}^{even} \leftarrow \ldots \leftarrow \wedge^m p \otimes_{S_c} \mathcal{P}^{even} \leftarrow 0$$

(8.12)

The homology $H(E_0)$, together with a differential ∂_1, is the E_1 term of the spectral sequence. More precisely, $E_1^{d,q} = H_{d+q}(E_0^d)$.

To compute E_1, we observe that $H(E_0)$ is the S_c-coinvariants of the homology of the complex

$$0 \leftarrow \wedge^0 p \otimes \mathcal{P}^{even} \leftarrow \wedge^1 p \otimes \mathcal{P}^{even} \leftarrow \wedge^2 p \otimes \mathcal{P}^{even} \leftarrow \ldots \leftarrow \wedge^m p \otimes \mathcal{P}^{even} \leftarrow 0$$

(8.13)

Indeed, E_0 is the S_c-coinvariants of (8.13), and taking coinvariants commutes with taking homology. The latter follows because each space $\wedge^l p \otimes \mathcal{P}^{even}$ is a locally finite S_c-representation, and for any such representation \mathcal{V}, the natural map $\mathcal{V}^{S_c} \to \mathcal{V}_c$ from invariants to coinvariants is an isomorphism.

To compute the homology of (8.13), we recognize (8.13) as the Koszul complex K of the sequence $\sigma_{y_1}, \ldots, \sigma_{y_m}$ in \mathcal{P}^{even} where y_1, \ldots, y_m is any basis of s. Recall from [14] that \mathcal{I} is the ideal in \mathcal{P} generated by the σ_{y_i}. Kraft and Procesi proved in [22, Theorem 3.3] and [23, Theorem 5.3] that the subscheme $\sigma^{-1}(0)$ of L is a reduced complete intersection, i.e., $\sigma_{y_1}, \ldots, \sigma_{y_m}$ is a regular sequence in \mathcal{P}. Let us consider the Koszul complex \tilde{K} of this
sequence in \mathcal{P}. By a well known result of commutative algebra (see [17 III, Proposition 7.10A]) the homology of \widetilde{K} is concentrated in degree zero and $H_0(\widetilde{K}) = \mathcal{P}/\mathcal{I}$ as graded algebras. But K is simply obtained from \widetilde{K} by taking \mathbb{Z}_2-invariants. Hence the homology of K is concentrated in degree zero and $H_0(K) = \mathcal{P}_{even}/\mathcal{I}_{even}$ as graded algebras. Then the module $H_0(K)_{S_c}$ of coinvariants identifies with $\mathcal{P}_{inv}/\mathcal{I}_{inv}$.

Thus E_1 is the complex

$$0 \leftarrow \mathcal{P}^{inv}/\mathcal{I}^{inv} \xleftarrow{\partial_1} 0 \xleftarrow{\partial_1} \cdots \xleftarrow{\partial_1} 0 \leftarrow 0$$

where the differentials $\partial^{d,q}_1 : E^{d,q}_1 \rightarrow E^{d-1,q}_1$ are obviously zero and

$$E^{d,d}_1 = (\mathcal{P}^{inv}/\mathcal{I}^{inv})^d \quad \text{while} \quad E^{d,q}_1 = 0 \text{ if } q \neq -d$$

(8.15)

Now we can compute the rest of the spectral sequence. We know E_{r+1} is the homology of E_r with respect to a differential ∂_r; i.e. $E^{r,q}_{r+1} = \ker \partial^{r,q}_r / \text{im } \partial^{r,q+r}_{r+1}$ where $\partial^{r,q}_r$ maps $E^{r,q}_r$ to $E^{r-r,q+r-1}_r$. For $r \geq 1$, we find that $E^{d,q}_1 = E^{d,q}_r$ and the differentials $\partial^{r,q}_r$ are all zero.

The E_∞ term of the spectral sequence satisfies

$$E^{d,q}_\infty = \text{gr}^d H_{d+q}(S \oplus S_c; \mathcal{W}^{even})$$

(8.16)

Our final step is to show our spectral sequence converges in that

$$E^{d,q}_1 = E^{d,q}_\infty$$

(8.17)

This will finish off the proof of Theorem 6.3 because then (8.15) gives the desired result (8.17).

The convergence (8.17) follows formally from the two properties: (i) $A^d = 0$ if $d < 0$ where $A^d = \oplus_{q \in \mathbb{Z}} A^{d,q}$ and (ii) $A^{d,q}$ has finite dimension. Indeed, following the notation in [15 I,§4.2], we have

$$E^{d,q}_r = Z^{d,q}_r/(B^{d,q}_r + Z^{d-1,q+1}_r)$$

$$E^{d,q}_\infty = Z^{d,q}_\infty/(B^{d,q}_\infty + Z^{d-1,q+1}_\infty)$$

(8.18)

where $Z^{d,q}_r = \{ z \in A^{d,q} : \partial z \in A^{d-r,q} \}$, $Z^{d,q}_\infty = \bigcap \ker \partial_r$, $B^{d,q}_r = A^{d,q} \cap \partial A^{d+r}$ and $B^{d,q}_\infty = A^{d,q} \cap \partial A$. Suppose we fix d and q. Then (i) gives $Z^{d,q}_r = Z^{d,q}_\infty$ and $Z^{d-1,q+1}_r = Z^{d-1,q+1}_\infty$ if $r > d$, and (ii) gives $B^{d,q}_r = B^{d,q}_\infty$ if r is large enough. Therefore $E^{d,q}_r = E^{d,q}_\infty$ for r large enough. But we found $E^{d,q}_1 = E^{d,q}_r \ (r \geq 1)$ and so (8.17) follows.

We remark that it also follows that $\text{gr } H_j(S \oplus S_c; \mathcal{W}^{even}) = 0$ for $j > 0$. Thus we have proven

Proposition 8.1. $H_j(S \oplus S_c; \mathcal{W}^{even}) = 0$ if $j > 0$.

9. **Proof of Corollary 6.4**

S_c and G_c are commuting subgroups of $Sp(L)$. It follows that ξ maps \mathfrak{g} into \mathcal{W}^{inv} and so ξ induces ξ_B where ξ_B is the composition $\mathfrak{g} \xrightarrow{\xi} \mathcal{W}^{inv} \rightarrow \mathcal{B}$. Next τ is $Sp(L)$-invariant and so in particular is S_c-invariant. Then τ preserves \mathcal{W}^{inv}. We see that τ preserves \mathcal{M}, and so τ preserves \mathcal{M}^{inv}. Hence τ induces a filtered algebra anti-involution τ_B of $\mathcal{B} = \mathcal{W}^{inv}/\mathcal{M}^{inv}$. Finally, ϑ is $Sp(L)$-invariant and so in particular is S_c-invariant. Then
\(\vartheta \) preserves \(\mathcal{W}^{inv} \). We see that \(\vartheta \) preserves \(\mathcal{M} \), and so \(\vartheta \) induces an antilinear filtered algebra involution \(\vartheta_B \) of \(\mathcal{B} \).

Thus we have in place our Dixmier algebra data for \(\mathcal{O} \). It is clear because of Proposition 5.1 that the axioms are satisfied.

References

[1] J. Adams and D. Barbasch, *Reductive dual pair correspondence for complex groups*, J. Funct. Anal. 132 (1995), 1-42.
[2] A. Astashkevich and R. Brylinski, *Non-Local Equivariant Star Product on the Minimal Nilpotent Orbit*, math.QA/0010257 v2, Adv. Math. 171 (2002), 86-102
[3] D. Barbasch, *The unitary dual for complex classical Lie groups*, Inv. Math. 96 (1989), 103–176.
[4] D. Barbasch, *Orbital integrals of nilpotent orbits*, The Mathematical Heritage of Harish-Chandra, R. S. Doran and V. S. Varadarajan, eds., Proc. Symp. Pure Math., vol. 68, AMS, 2000, 97–110.
[5] D. Barbasch and D.A. Vogan, *Primitive ideals and orbital integrals in complex classical groups*, Math. Ann. 259 (1982), 152–199.
[6] D. Barbasch and D.A. Vogan, *Unipotent representations of complex semisimple groups*, Ann. of Math. 121 (1985), 41–110.
[7] R. Brylinski, *Equivariant Deformation Quantization for the Cotangent Bundle of a Flag Manifold*, math.QA/0010258, Ann. Inst. Fourier 52:3 (2002), 881-897.
[8] R. Brylinski, *Dixmier Algebras for Classical Complex Nilpotent Orbits via Kraft-Procesi Models II*, in preparation.
[9] R. Brylinski, *Quantization of Classical Complex Nilpotent Orbits*, in preparation.
[10] M. Cahen and S. Gutt, *An algebraic construction of \(\ast \) product on the regular orbits of semi simple Lie groups*, Gravitation and Geometry, W. Rindler and A. Trautman eds., 73–82, Bibliopolis, 1987.
[11] D.H. Collingwood and W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, 1993.
[12] J. Dixmier, *Enveloping Algebras*, North-Holland, 1977.
[13] M. Duflo, *Représentations unitaires irréductibles des groupes simples complexes de rang deux*, Bull. Soc. Math. France 107 (1979), 55–96.
[14] C. Duval, P. Lecomte and V. Ovsienko, *Conformally equivariant quantization: existence and uniqueness*, Ann. Inst. Fourier 49:6 (1999), 1999–2029.
[15] R. Godement, *Théorie des Faisceaux*, Hermann, Paris, third edition, 1973.
[16] K.I. Gross, *The dual of a parabolic subgroup and a degenerate principal series of \(Sp(n, \mathbb{C}) \)*, Amer. Jour Math 93 (1971), 399-428.
[17] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Math 52, Springer-Verlag New York, 1977.
[18] R. Howe, *Transcending classical invariant theory*, J. Amer. Math. Soc. 2 (1989), 535–552.
[19] A. Joseph, *The minimal orbit in a simple Lie algebra and associated maximal ideal*, Ann. Scient. Ec. Norm. Sup. 9 (1976), 1–30.
[20] A. Knapp and D.A. Vogan, *Cohomological Induction and Unitary Representations*, Princeton University Press, 1995.
[21] P.Z. Kobak and A. Swann, *Classical nilpotent orbits as hyperkähler quotients*, Int. J. Math. 7 (1996), 193–210.
[22] H. Kraft and C. Procesi, *Closures of conjugacy classes of matrices are normal*, Inv. Math. 53 (1979), 227–247.
[23] H. Kraft and C. Procesi, *On the geometry of conjugacy classes in classical groups*, Comment. Math. Helv. 57 (1982), 539–602.
[24] T. Levasseur and J.T. Stafford, *Rings of differential operators on classical rings of invariants*, Mem. Amer. Math. Soc., number 412, 1989.

[25] J-S Li, *Singular unitary representations of classical groups*, Inv. Math. 97 (1989), 237–255.

[26] W. McGovern, *Quantization of nilpotent orbits and their covers in complex classical groups*, preprint, Yale University (1989).

[27] W. McGovern, *Completely prime maximal ideals and quantization*, Mem. Amer. Math. Soc., number 519, 1994.

[28] C. Moeglin, *Idéaux complètement premiers de l’algèbre enveloppante de \(gl_n(\mathbb{C}) \)*, J. Alg. 87 (1987), 287–366.

[29] C. Moeglin, *Correspondance de Howe pour les paires réductives duales, quelques calculs dans le cas Archimédien*, J. Funct. Anal. 85 (1989), 1–85.

[30] M. Van den Bergh, *Differential operators on semi-invariants for tori and weighted projective spaces*, Topics in Invariant Theory (Paris 1989/90), 255-272, Lecture Notes in Math. 1478, Springer, Berlin 1991.

[31] D.A. Vogan, *Noncommutative algebras and unitary representations*, The Mathematical Heritage of Hermann Weyl, 35–60, Proc. Symp. Pure Math., vol. 48, Amer. Math. Soc., Providence, 1988.

[32] D.A. Vogan, *Dixmier algebras, sheets and representation theory*, Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, 333–396, Progress in Math, vol. 92, Birkhäuser, 1990.

[33] D.A. Vogan, *Associated varieties and unipotent representations*, in Harmonic Analysis on Reductive Lie Groups, 315-388, Progress in Math, vol. 101, Birkhäuser, 1991.

Department of Mathematics, Penn State University, University Park 16802

current mailing address (2002-...): P.O.Box 1089, Truro MA 02666-1089

E-mail address: rkb248@yahoo.com

URL: www.math.psu.edu/rkb