Pentoxifylline decreases post-operative intra-abdominal adhesion formation in an animal model

Ya-Lin Yang 1, Meng-Tse Gabriel Lee 1, Chien-Chang Lee 1, Pei-I Su 1, Chien-Yu Chi 1, Cheng-Heng Liu 1, Meng-Che Wu 1, Zui-Shen Yen 1, Shyr-Chyr Chen* 1

1 Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan

Corresponding Author: Shyr-Chyr Chen
Email address: scchen@ntu.edu.tw

Background Intra-abdominal adhesions develop after nearly every abdominal surgery, commonly causing female infertility, chronic pelvic pain, and small bowel obstruction. Pentoxifylline (PTX) is a methylxanthine compound with immunomodulatory and antifibrotic properties. The aim of this study was to investigate whether PTX can reduce post-operative intra-abdominal adhesion formation via collagen deposition, tissue plasminogen activator (tPA) level, inflammation, angiogenesis, and fibrosis.

Methods Seventy male BALB/c mice were randomized into one of three groups: (1) sham group without peritoneal adhesion model; (2) peritoneal adhesion model (PA group); (3) peritoneal adhesion model with PTX (100 mg/kg/day i.p.) administration was started on preoperative day 2 and continued daily (PA+PTX group). On postoperative day 3 and day 7, adhesions were assessed using the Lauder scoring system. Parietal peritoneum was obtained for histological evaluation with hematoxylin and eosin (HE) and picrosirius red staining. Fibrinolysis was analyzed by tPA protein levels in the peritoneum by ELISA. Immunohistological analysis was also conducted using markers for angiogenesis (ki67+/CD31+), inflammation (F4/80+) and fibrosis (FSP-1+ and α-SMA+). All the comparisons were made by comparing the PA group with the PTX treated PA group, and p< 0.05 was considered statistically significant.

Results Intra-abdominal adhesions were markedly reduced by PTX treatment. Compared with the PA group, PTX treatment had lower adhesion scores than the PA group on both day 3 and day 7 (p< 0.05). Histological evaluations found that PTX treatment reduced collagen deposition and adhesion thickening. ELISA analysis showed that PTX treatment significantly increased the level of tPA in the peritoneum. In addition, in the immunohistological analysis, PTX treatment was found to significantly decreased the number of ki67+/CD31+ cells at the site of adhesion. Finally, we also observed that in the PTX treated group, there was a reduction in the expression of F4/80+, FSP-1+, and α-SMA+ cells at the site of adhesion.

Conclusion PTX may decrease intra-abdominal adhesion formation via increasing peritoneal fibrinolytic activity, suppressing angiogenesis, decreasing collagen synthesis, and reducing peritoneal fibrosis. Our findings suggest that PTX can be used to decrease post-operative intra-abdominal adhesion formation.
Pentoxifylline decreases post-operative intra-abdominal adhesion formation in an animal model

Ya-Lin Yang, Meng-Tse Gabriel Lee, Chien-Chang Lee, Pei-I Su, Chien-Yu Chi, Cheng-Heng Liu, Meng-Che Wu, Zui-Shen Yen, Shyr-Chyr Chen

1. Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.

‡ The two authors contribute equally to this work

* Correspondence and address reprint request to: Dr. Shyr-Chyr Chen
Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.

* scchen@ntu.edu.tw
Abstract

Background
Intra-abdominal adhesions develop after nearly every abdominal surgery, commonly causing female infertility, chronic pelvic pain, and small bowel obstruction. Pentoxifylline (PTX) is a methylxanthine compound with immunomodulatory and antifibrotic properties. The aim of this study was to investigate whether PTX can reduce post-operative intra-abdominal adhesion formation via collagen deposition, tissue plasminogen activator (tPA) level, inflammation, angiogenesis, and fibrosis.

Methods
Seventy male BALB/c mice were randomized into one of three groups: (1) sham group without peritoneal adhesion model; (2) peritoneal adhesion model (PA group); (3) peritoneal adhesion model with PTX (100 mg/kg/day i.p.) administration was started on preoperative day 2 and continued daily (PA+PTX group). On postoperative day 3 and day 7, adhesions were assessed using the Lauder scoring system. Parietal peritoneum was obtained for histological evaluation with hematoxylin and eosin (HE) and picrosirius red staining. Fibrinolysis was analyzed by tPA protein levels in the peritoneum by ELISA. Immunohistological analysis was also conducted using markers for angiogenesis (ki67+/CD31+), inflammation (F4/80+) and fibrosis (FSP-1+ and α-SMA+). All the comparisons were made by comparing the PA group with the PTX treated PA group, and p<0.05 was considered statistically significant.

Results
Intra-abdominal adhesions were markedly reduced by PTX treatment. Compared with the PA group, PTX treatment had lower adhesion scores than the PA group on both day 3 and day 7 (p<0.05). Histological evaluations found that PTX treatment reduced collagen deposition and adhesion thickening. ELISA analysis showed that PTX treatment significantly increased the level of tPA in the peritoneum. In addition, in the immunohistological analysis, PTX treatment was found to significantly decreased the number of ki67+/CD31+ cells at the site of adhesion. Finally, we also observed that in the PTX treated group, there was a reduction in the expression of F4/80+, FSP-1+, and α-SMA+ cells at the site of adhesion.

Conclusion
PTX may decrease intra-abdominal adhesion formation via increasing peritoneal fibrinolytic activity, suppressing angiogenesis, decreasing collagen synthesis, and reducing peritoneal fibrosis. Our findings suggest that PTX can be used to decrease post-operative intra-abdominal adhesion formation.
Introduction

Post-operative intra-abdominal adhesion after laparotomy is a source of considerable morbidity. It is estimated that more than 90% of patients develop primary intra-abdominal adhesion after laparotomy. Post-operative adhesions affect the quality of life in millions of people worldwide, causing many different types of complications, including chronic pelvic or abdominal pain, small bowel obstructions (SBO), and even infertility (Arung et al. 2011; Liakakos et al. 2001). SBO is the most common complication of adhesion and is observed in up to 70% of patients undergoing laparotomy (Ellis 1997; Menzies & Ellis 1990; ten Broek et al. 2013). Although less commonly observed, up to 20% of female infertility has been associated with post-operative adhesions (Luijendijk et al. 1996).

The pathogenesis of post-operative intra-abdominal adhesion is a complex process that involves inflammation, collagen related clot formation, angiogenesis, fibrinolysis, and tissue repairs which include epithelial-mesenchymal transition (EMT)/endothelial-mesenchymal transition (EndMT) or mesothelial-mesenchymal transition (MMT) (diZerega 1997; Hellebrekers & Kooistra 2011; Homdahl & Ivarsson 1999). The key area in adhesion formation is the surface lining of the peritoneum. Injury of the peritoneum leads to activation of coagulation cascade and an inflammatory response consisting of hyperemia, fluid exudation, recruitment of floating mesothelial cells, and release of white blood cells and platelets into the peritoneal cavity (diZerega 1997; diZeregal & Campeau 2001). Normal fibrinolytic activity usually prevents fibrinous attachments for 3-4 day, and mesothelial repair occurs in 5-6 day after surgery (diZeregal & Campeau 2001). Therefore, previous studies focused on the cellular events 3-6 day after the peritoneal injury.

Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitors, has been used to improve the walking ability in patients with intermittent claudication (Ernst 1994; Hood et al. 1996; Rossner & Muller 1987). Previous animal studies have also demonstrated that PTX can reduce post-operative adhesions, but the biological mechanisms that were responsible have not been fully clarified (Durmus et al. 2011; Hung et al. 2008; Jafari-Sabet et al. 2015; Tarhan et al. 2006). Five separate mechanisms on how PTX can alter the essential components in adhesion formation have been proposed: (1) reduction of inflammation (Durmus et al. 2011; Pollice et al. 2001); (2) reduction of collagen synthesis (Chen et al. 1999); (3) reduction of angiogenesis (Amirkhosravi et al. 1998) (4) increased fibrinolysis by up-regulation of tissue plasminogen activator (tPA) expression (Tarhan et al. 2006); (5) reduced fibrosis (Durmus et al. 2011; Wen et al. 2017). However, it is unclear if PTX can decrease post-operative intra-abdominal adhesion formation by simultaneously altering all of the five proposed mechanisms. Therefore, we aimed to
investigate the effects of PTX on peritoneum collagen expression, peritoneal tPA expression, peritoneum angiogenesis, inflammation, and peritoneal fibrosis.

Methods

Animals

Male BALB/c mice weighing 25-30 g (Charles River Laboratories, BioLasco, Taiwan) were maintained in a temperature and light-controlled room (12-hour light/dark cycle) and allowed free access to water and food. The experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUCs) of the National Taiwan University Hospital (approval ID: 20120285). All the protocols are in adherence to the guidelines established in the Guide for the Care and Use of Laboratory Animals of the National Health Research Institutes.

Experimental design

70 BALB/c mice were randomly divided into three different groups: (1) sham group without peritoneal adhesion model (sham group, n = 8); (2) peritoneal adhesion model (PA group, n = 31); (3) peritoneal adhesion model with PTX (Trental) (100 mg/kg/day i.p., once daily) administration was started on preoperative day 2 and continued daily (PA+PTX group, n = 31).

We used a slightly modified standard adhesion model (Oncel et al. 2001). The details for peritoneal adhesion model had been reported before (Lee et al. 2016).

Briefly, mice were anesthetized using 2% isoflurane in oxygen. The abdomen was then shaved and disinfected with povidone iodine. A 4 cm median laparotomy was performed to gain access to the abdominal cavity. In peritoneal adhesion model (PA and PA+PTX group), were pooled and randomly underwent surgery. The cecum was gently removed and abraded with 20 vertically reciprocal movements of dry gauze. After, the right abdominal sidewall be more aggressive with the abraded than cecum and until punctate bleeding was seen. The injury sites were cleaned with physiological salt solution and covered the gauze, making sure that was no active bleeding. The cecum was then placed back into the abdominal cavity and surgical wound was sutured. For the sham group, only open laparotomy and closure was conducted and there is no abrading of cecum and abdominal wall.

The PTX group received 100 mg/kg of PTX from left abdominal cavity, whereas the other two group (group sham and PA) received 0.125 ml of physiological saline solution. For preventing postoperative pain, buprenorphine (0.05 mg/kg s.c., twice daily) was administered during the two postoperative days. Mice were placed under a warming lamp and observed until they recovered.
fully from anesthesia. Mice were monitored daily for signs of wound infection and general health condition periodically until 3 or 7 days after surgery.

**Adhesion score**

Mice were euthanized on postoperative day 3 and day 7. The abdominal cavity was opened via a U-shaped incision. The adhesion score was evaluated by an observer blinded to treatment, using the Lauder scoring system (Lauder et al. 2011). The adhesion were graded in a blinded fashion using the classification system described (Table 1).

**Histology staining**

Tissue samples from the parietal peritoneum, liver, and mesentery were collected after euthanasia. For histological staining, tissue were fixed in 10% neutral-buffered formalin (NBF), paraffin embedded, thinly sectioned. Tissue sections of 4-5μm thickness were prepared for staining. After deparaffinization and rehydration, sections were counterstained in Gill’s hematoxylin (Sigma, St Louis, MO) and for 5 min, cleared in 0.1% acid alcohol for 30 sec, and rinsed in tap water, then stained in eosin (Sigma) for 2 min, cleared in 95% alcohol, and rinsed 70% alcohol to remove the staining solution, dehydrated, and mounted, for histologic assessment.

**Picrosirius red staining**

Picrosirius red staining was used to compare collagen and fibrosis in tissue between different groups. Peritoneal sections (4-5 μm) were deparaffinized, rehydrated and then subjected to counterstaining in Gill’s hematoxylin (Sigma) for 5 min, cleared in 0.1% acid alcohol 30 sec, and rinsed in running tap water. Then stained in picrosirius red stain kit (polysciences, Warrington, PA). Subsequently, sections were dehydrated and mounted for assessment.

**Tissue plasminogen activator**

Peritoneal tissue were prepared by grinding on ice in radioimmunoprecipitation assay buffer (RIPA buffer) with protease inhibitor cocktail (Sigma). After the samples were centrifuged at 12,000g for 15 min at 4°C, supernatants were aspirated and placed in new tubes. Samples were analyzed for total antigen concentration of tPA, using commercially available ELISA kits from Molecular Innovations (Molecular Innovations, Novi, MI). Total protein content was determined by Bradford assay (Sigma).

**Immunohistochemistry**
Formalin-fixed and paraffin-embedded peritoneal tissue was sectioned at 4-5 μm and then subjected to double immunostaining. Briefly, sections were deparaffinized, rehydrated and endogenous peroxidase activity was quenched by 3% hydrogen peroxide (H₂O₂) for 10 min. Sections were subjected to antigen retrieval was performed in pH 6.0 citrate buffer using a microwave oven for 15 min. Blocking of non-specific binding was done by incubation with 2.5% horse serum at room temperature for 30 min. Sections were incubated with primary antibodies, rabbit anti-ki67 (1:200, Abcam, Cambridge, MA), rat anti-F4/80 (1:200, Abcam) or rabbit anti-FSP-1 (1:200, Abcam) overnight at 4°C. After washing with Tris-buffered saline (TBS, pH7.4), sections were incubated using the ImmPRESS AP anti-rabbit polymer reagent (Vector Laboratories, Burlingame, CA) for 30 min at room temperature. Positive signal resulted in blue nuclear staining with the VECTOR Blue kit (Vector Laboratories). After washing and blocking again, the sections were incubated with goat anti-CD31 (1:500, R&D System, Minneapolis, MN) for 1 hour at room temperature. After washing, ImmPRESS HRP anti-goat polymer reagent (Vector Laboratories) was used for 30 min at room temperature. Positive reactions for endothelial cells resulted in brown red staining with the NovaRed substrate kit (Vector Laboratories). Sections were examined by light microscopy (Nikon Instruments, Nikon Corporation, Tokyo, Japan).

**Immunofluorescence staining**

Peritoneal tissue sections (4-5 μm) were performed for double immunofluorescence staining. Briefly, sections were deparaffinized, rehydrated and were treated with 0.3% H₂O₂ for 10 min to block endogenous peroxide activity and boiled in pH 6.0 citrate buffer using a microwave oven for 15 min. Sections were subsequently incubated with 5% Donkey serum for 20 min at room temperature. Sections were incubated with rabbit anti-cytokeratin 18 (CK18) (1:200, Enogene, New York, NY) overnight at 4°C, washed in phosphate-buffered saline (PBS, pH7.4) and incubated using donkey anti-rabbit DyLight 488 antibody (Thermo Scientific, Rockford, IL) and Cy3-conjugated mouse anti-α-smooth muscle actin (α-SMA) (Sigma) and then mounted and subjected to fluorescence microscopy (Leica DMRA, Leica Microsystems, Wetzlar, Germany). Images were recorded at x100, x200 and x400 magnification of light microscopy, which were then digitalized and analyzed using Image-Pro Plus 6.0 software (Media Cybernetics, Rockville, MD).

**Statistical Analysis**

Normal distributed continuous data were expressed as mean ± standard error (SE). For non-parametric data, results were expressed as median ± interquartile range (IQR). The difference between continuous variables were evaluated using one-way ANOVA when data distribution
was normal and a Mann-Whitney test was used for non-normal distributed continuous data. A \( p \) value of less than 0.05 was considered statistically significant. The statistical analyses were performed with GraphPad Prism (version 6.0, GraphPad Software, Inc., La Jolla).

**Results**

**Deaths of animal**

Surgical procedures were successfully completed on 69 animals, except for one mice in the sham group, which died due to anesthesia-related complication before the commencement of surgery. One mice in the PA+PTX group died during recovery from anesthesia. Four mice died within 48 hour of surgery and were excluded from the study (PA and PA+PTX group, \( n = 2 \)/group). Two mice in the PA group were excluded due to severe distress, according to three criteria in Health Evaluation of Experimental Laboratory Mice: very rough hair coat, hunched, and not eating or drinking. No mice in the PA+PTX treated group incurred any life-threatening side effects or deaths at 48 hours after surgery, which lead to exclusion from the study. Therefore, a total of 8 animals were excluded from the study.

Mice were euthanatized for the planned experiments on postoperative day 3 (PA group, \( n = 14 \); PA+PTX group, \( n = 13 \)) and day 7 (sham group, \( n = 7 \); PA group, \( n = 13 \); PA+PTX group, \( n = 15 \)).

**Pentoxifylline Treatment Reduces Adhesion score**

Total adhesion scores data was examined and plotted for post-operative day 3, and 7 (Figure 1). We observed that the sham group, which had not undergone the adhesion model, had significantly lower adhesion score than the animals that had undergone adhesion model, as expected. PA+PTX group (median, 1.00; IQR, 0.50-2.00) had significantly lower adhesion score than the PA group (median, 2.00; IQR, 2.00-3.00) on day 3 (\( p < 0.05 \)). On day 7, mice treated with PTX (median, 3.00; IQR, 0.00-3.00) still had lower adhesion score than the PA group (median, 3.00; IQR, 3.00-4.50) (\( p < 0.05 \)).

**Pentoxifylline Treatment Inhibits Collagen Deposition**

We used the HE staining to compare changes in peritoneal structure (Figure 2A). In general, there were increased thickness of submesothelial layer on day 3, and the adhesion score also increased. We observed that the sham group, had the thin submesothelial layer as demonstrated
in (Figure 2A). The severe adhesion and thick submesothelial layer was observed, as well as increased cellularity in the PA group. In contrast, PA+PTX group had less peritoneal submesothelial thickness and adhesion severity as compared with the PA group.

We further used picrosirius red staining to assess the quality of collagen fiber in peritoneal adhesion (Figure 2B). Compared with PA group, PA+PTX group had less collagen deposition and the thickness of the abdominal adhesions. Our data suggested that PTX could decrease collagen deposition during adhesion formation.

**Pentoxifylline Treatment Increased tPA level**

The tPA protein levels in the peritoneum of mice were perceived to be measured and plotted on post-operative day 3 and 7 (Figure 3). We observed that the sham group of mice had the lowest tPA protein level throughout the study period ($p<0.001$). Those mice were treated with PTX had higher tPA protein level than those untreated mice (sham and PA group). There was significant difference between PA+PTX group and PA group on day 7 ($0.365 \pm 0.024$ vs. $0.193 \pm 0.03$, $p<0.001$).

**Pentoxifylline Treatment Reduced Angiogenesis**

We performed immunohistochemical staining assay to analyze the status of angiogenesis during peritoneal repair. Proliferating endothelial cells were identified as those cells with cytoplasmic CD31 staining and nuclear Ki67 staining (Figure 4A, arrows). Cells that staining positive for CD31 but without nuclear staining for Ki67 were scored as nonproliferating endothelial cells. We examined the effect of endothelial cell proliferation in peritoneum was quantified by measuring the number of $\text{ki67}^+\text{CD31}^+$ cell at the site of adhesion (Figure 4B). Our results showed that PA group had significantly higher proliferating endothelial cells compared to both sham and PA+PTX group on day 3 and day 7(all $p<0.001$). We also observed that number of $\text{ki67}^+\text{CD31}^+$ proliferating endothelial cell count decrease substantially over time ($p<0.001$) in the PA group. Otherwise, we examined the angiogenic effect in peritoneum by measuring the area of $\text{CD31}^+$ microvessel at the site of adhesion (Figure 4C). We also observed that the PA group, which had vessel coverage (percentage of area covered by $\text{CD31}^+$ per field) of 1.63% at day 3, and 3.63% at day 7, respectively. On post-operative day 7, PA group demonstrated an increase in CD31 expression compared to the day 3 and indicated that blood vessel formation was significantly more prominent in the PA group compared to PA+PTX groups($p<0.001$). Thus, PTX can significantly suppress angiogenesis during peritoneal repair.
**Pentoxifylline Treatment Reduced Inflammation**

Inflammation, an important component both in normal and pathological healing, is a protective response of the tissue injury, designed for removal of the causative agent and restoration of tissue structure and function. We performed immunohistochemical staining assay to analyze the infiltration of macrophage during peritoneal repair. F4/80 is a macrophage-specific marker in the mice. As shown in figure 5A, a large number of F4/80+ expressed cells were observed in the PA group. Quantification analysis of IHC image revealed significantly increased expression of F4/80+ cells on day 3 (0.80% ± 0.10%), and highest expression on day 7 (2.56% ± 0.22%) in the PA group as compared to the sham group (p< 0.01 for both day 3 and day7) or PA+PTX group (1.37% ± 0.28%, p< 0.01 on day 7, Figure 5B). PA+PTX group had significantly lower expression of F4/80+ as compared with PA group.

**Pentoxifylline Treatment Reduced the Expression of Fibrosis Marker FSP-1**

FSP-1, also known as fibroblast-specific protein 1 (FSP1), belongs to the S100 superfamily of cytoplasmic calcium-binding proteins and can be expressed by cell of mesenchymal origin or fibroblastic phenotype. This protein is reported to be specific for fibroblasts and to play a causal role in EMT. As shown in figure 6A and 6B, a large number of FSP-1+ expressed cells were observed in the PA group. Quantification analysis of IHC image revealed significantly increased expression of FSP-1+ on day 3 (5.37% ± 1.03%), and highest expression on day 7 (11.26% ± 1.66%) in the PA group compared to the PA+PTX group (p< 0.05 for both day 3 and day7, Figure 6C). Consistently, we found the mice were treated with PTX had significantly reduced expression of FSP+ as compared with PA group.

**Pentoxifylline Treatment Reduced the Expression of Fibrosis Marker α-SMA**

As a response to injury, mesothelium is undergoing change to mesothelial-to-mesenchymal transition (MMT). Thus, we further performed double immunofluorescence staining for CK18 and α-SMA for peritoneal injury (Figure 6, A and B). Many studies have demonstrated that mesenchymal cell markers, including α-SMA, is proposed as indicator of EMT (Margetts et al. 2005). Cytokeratin (CK) are structural marker proteins specific for epithelial cell, and CK18 is highly expressed in mesothelial cells. α-SMA has become the most reliable marker of myofibroblasts. Figure 7A are consistent with previous studies, in the PA group observed a few CK18+α-SMA+ double-positive cells appear first in the mesothelial monolayer and later in the reorganized submesothelial matrix. We examined the extent of accumulation of myofibroblasts in peritoneum was quantified by assessing the percentage α-SMA+ cells (Figure 7C). Our result showed that PA group had significantly increased α-SMA+ expression at day 3 (3.48% ± 1.28%), and highest expression at day 7 (13.71% ± 1.40%) compared with the PA+PTX group (p< 0.05 for day 3 and p< 0.01 for day 7, respectively). PTX significantly attenuated thickening of fibrotic...
peritoneum, and accumulation of α SMA+ myofibroblasts in peritoneum after injury.
In this study, we demonstrated that PTX treatment could effectively reduce post-operative intra-abdominal adhesion formation. PTX could prevent peritoneum adhesion formation via 5 related biological processes: increasing fibrinolysis; reducing inflammation; reducing angiogenesis; reducing collagen deposition; and reducing fibrosis.

Post-operative intra-abdominal adhesion formation is considered to be an inevitable result of peritoneum injury after abdominal surgery. Peritoneum injury initiates an inflammatory response, which increase in vascular permeability leading to fibrin release and adhesion formation (diZeregal & Campeau 2001). Under normal conditions, the majority of fibrin is degraded within a few days by locally released proteases of the fibrinolytic system (Harris et al. 1995; Sulaiman et al. 2002). In a pathological state, fibrinolysis does not occur within 5-7 days of the peritoneal injury, the provisional fibrin matrix persists and more gradually becomes organized as the collagen-secreting myofibroblasts and other repairing cell infiltrate the matrix (Homedahl & Ivarsson 1999). This process leads to peritoneal adhesion and new blood vessel formation (angiogenesis) (Saltzman et al. 1996).

We hypothesized that there are at least four mechanisms that PTX treatment might result in reduce post-operative adhesion. First, PTX has been reported to alter rheological properties of blood such as: decreasing blood viscosity by stimulating fibrinolysis to reduce plasma fibrinogen concentrations, increasing erythrocyte flexibility and platelet deaggregation, and inhibiting neutrophil activity to reduce the tissue damage (McCarty et al. 2016). The alteration in the rheological properties of blood may be the reason why we observed that the tPA level was significantly higher in the PTX treated group than those without PTX treatment group. In fact, we have previously found that mice treated with therapeutic hypothermia, have increased tPA levels and reduced post-operative adhesion (Lee et al. 2016).

Second, the anti-inflammation property of PTX has been well established by several previous studies, and has been found to attenuate the cardiopulmonary bypass (CPB)-induced systemic inflammatory response syndrome and postoperative mortality (Barkhordari et al. 2011; Heinze et al. 2007; Otani et al. 2008). PTX has been found to affect inflammation by reducing the plasma levels of pro-inflammatory cytokines such as TNF-α, IL-1 and IL-6 (Otani et al. 2008; Pollice et
The reduction of cytokines at the site of injury may explain why we observed a reduction in the infiltration of macrophage in the PTX treated group.

Third, PTX also has been reported by previous studies to inhibit endothelial cell proliferation and angiogenesis (Gude et al. 2001; Hasebe et al. 2000). Vlahos et al. reported that PTX might cause suppression of endometriotic lesions by suppressing angiogenesis through VEGF-C and flk-1 expression (Vlahos et al. 2010). Recent evidence also found that PTX inhibits PKC-dependent activation of NFκB and prevent hypoxia-induced expression of VEGF (Amirkhosravi et al. 1998). Our results on reduction in angiogenesis in PTX treated groups correspond with the above findings.

Fourth, PTX was reported by previous studies to down regulate the intracellular signaling of TGF-β; which can affect collagen synthesis and fibrosis through the cAMP–PKA pathway (Fang et al. 2000; Kucich et al. 2000). Through PKA, PTX has been found to reduce TGF-β-induced collagen synthesis in vascular smooth muscle cells and human peritoneal mesothelial cells (Chen et al. 1999; Hung et al. 2003). This might explain why we observed lower amount of collagen deposition in PTX treated mice. Moreover, TGF-β1 has been reported to be the key initiating factor of fibrosis, and is also known to strongly induce EMT or EndMT (Lamouille et al. 2014; Piera-Velazquez et al. 2011). EMT is defined as a cellular and molecular changes that are usually characterized by loss of cell–cell adhesion, the down-regulation of E-cadherin and other epithelial genes, accompanied by the acquisition of mesenchymal cell morphology, increased contractility and actin stress fibers. This might explain why we observed reduction in markers of fibrosis with PTX treatment.

In this study, we found that PTX treatment decreased intra-abdominal adhesion formation by reducing fibrosis, but it is not in our initial objective to confirm whether the reduction in fibrosis might affect general wound healing. The main reason is because several studies have already found that PTX can instead improve general wound healing. Parra-Membrives et al. (2007) showed that PTX improved healing of experimental ischemic colorectal anastomoses by reducing wound and intra-abdominal infections, adhesion formation, and leaks. Comert et al. (2000) showed PTX has positive effect of the obstructive jaundice on healing of intestinal anastomosis healing by suppressing endotoxin-induced TNF-α release from macrophages and monocyte and stabilizing effect on the neutrophils. Therefore, future studies may need to clarify
the time-frame on how PTX treatment can reduce fibrosis and yet improve wound healing, before clinical trial of PTX can be recommend on post-operative patients. In addition, future studies can also clarify the mechanism on how streptokinase interact synergistically with PTX to reduce post-operative adhesion (Jafari-Sabet et al. 2015).

Conclusion

In conclusion, our study showed that PTX may decrease intra-abdominal adhesion formation via increasing peritoneal fibrinolytic activity, reducing inflammation, suppressing angiogenesis, decreasing collagen synthesis, fibroblast producing and peritoneal fibrosis. We believe that future studies should take into the account that PTX can reduce intra-abdominal adhesion formation through multiple pathways.

Acknowledgments

We thank the staff of the Core Labs, the Department of Medical Research, and National Taiwan University Hospital for technical support.

References

Amirkhosravi A, Meyer T, Warnes G, Amaya M, Malik Z, Biggerstaff JP, Siddiqui FA, Sherman P, and Francis JL. 1998. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor. *Thrombosis and Haemostasis* 80:598-602.

Arung W, Meurisse M, and Detry O. 2011. Pathophysiology and prevention of postoperative peritoneal adhesions. *World Journal of Gastroenterology* 17:4545-4553. 10.3748/wjg.v17.i41.4545

Barkhordari K, Karimi A, Shafiee A, Soltaninia H, Khatami MR, Abbasi K, Yousefshahi F, Haghighat B, and Brown V. 2011. Effect of pentoxifylline on preventing acute kidney injury after cardiac surgery by measuring urinary neutrophil gelatinase - associated lipocalin. *Journal of Cardiothoracic Surgery* 6. Artn 8 10.1186/1749-8090-6-8

Chen YM, Wu KD, Tsai TJ, and Hsieh BS. 1999. Pentoxifylline inhibits PDGF-induced proliferation of and TGF-beta-stimulated collagen synthesis by vascular smooth muscle cells. *Journal of Molecular and Cellular Cardiology* 31:773-783. DOI 10.1006/jmcc.1998.0910

Comert M, Taneri F, Tekin E, Ersoy E, Oktemer S, Onuk E, Duzgun E, and Ayoglu F. 2000. The
effect of pentoxifylline on the healing of intestinal anastomosis in rats with experimental obstructive jaundice. *Surgery Today-the Japanese Journal of Surgery* 30:896-902.

diZerega GS. 1997. Biochemical events in peritoneal tissue repair. *European Journal of Surgery* 163:10-16.

diZeregal GS, and Campeau JD. 2001. Peritoneal repair and post-surgical adhesion formation. *Hum Reprod Update* 7:547-555. DOI 10.1093/humupd/7.6.547

Durmus AS, Yildiz H, Yaman M, and Simsek H. 2011. The effects of heparin and pentoxifylline on prevention of intra-abdominal adhesions in rat uterine horn models: histopathological and biochemical evaluations. *Revue Med Vet* 162:198-203.

Ellis H. 1997. The clinical significance of adhesions: Focus on intestinal obstruction. *European Journal of Surgery* 163:5-9.

Ernst E. 1994. Pentoxifylline for Intermittent Claudication a Critical-Review. *Angiology* 45:339-345. Doi 10.1177/000331979404500502

Fang CC, Yen CJ, Chen YM, Shyu RS, Tsai TJ, Lee PH, and Hsieh BS. 2000. Pentoxifylline inhibits human peritoneal mesothelial cell growth and collagen synthesis: effects on TGF-beta. *Kidney Int* 57:2626-2633. 10.1046/j.1523-1755.2000.00123.x

Gude RP, Binda MM, Boquete AL, and Bonfil RD. 2001. Inhibition of endothelial cell proliferation and tumor-induced angiogenesis by pentoxifylline. *Journal of Cancer Research and Clinical Oncology* 127:625-630. DOI 10.1007/s004320100262

Harris ES, Morgan RF, and Rodeheaver GT. 1995. Analysis of the Kinetics of Peritoneal Adhesion Formation in the Rat and Evaluation of Potential Antiadhesive Agents. *Surgery* 117:663-669. Doi 10.1016/S0039-6060(95)80010-7

Hasebe Y, Thomson LR, and Dorey CK. 2000. Pentoxifylline inhibition of vasculogenesis in the neonatal rat retina. *Investigative Ophthalmology & Visual Science* 41:2774-2778.

Heinze H, Rosemann C, Weber C, Heinrichs G, Bahlmann L, Misfeld M, Heringlake M, and Eichler W. 2007. A single prophylactic dose of pentoxifylline reduces high dependency unit time in cardiac surgery - a prospective randomized and controlled study. *European Journal of Cardio-Thoracic Surgery* 32:83-89. 10.1016/j.ejcts.2007.04.01

Hellebrekers BWJ, and Kooistra T. 2011. Pathogenesis of postoperative adhesion formation. *British Journal of Surgery* 98:1503-1516. 10.1002/bjs.7657

Homdahl L, and Ivarsson ML. 1999. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. *European Journal of Surgery* 165:1012-1019.

Hood SC, Moher D, and Barber CG. 1996. Management of intermittent claudication with pentoxifylline: Meta-analysis of randomized controlled trials. *Canadian Medical Association Journal* 155:1053-1059.

Hung KY, Huang JW, Chen CT, Lee PH, and Tsai TJ. 2003. Pentoxifylline modulates...
intracellular signalling of TGF-beta in cultured human peritoneal mesothelial cells: implications for prevention of encapsulating peritoneal sclerosis. *Nephrol Dial Transplant* 18:670-676.

Hung KY, Huang JW, Chiang CK, and Tsai TJ. 2008. Preservation of peritoneal morphology and function by pentoxifylline in a rat model of peritoneal dialysis: molecular studies. *Nephrology Dialysis Transplantation* 23:3831-3840. 10.1093/ndt/gfn369

Jafari-Sabet M, Shishegar A, Saeedi AR, and Ghahari S. 2015. Pentoxifylline Increases Antiadhesion Effect of Streptokinase on Postoperative Adhesion Formation: Involvement of Fibrinolytic Pathway. *Indian J Surg* 77:837-842. 10.1007/s12262-013-1025-y

Kucich U, Rosenbloom JC, Shen G, Abrams WR, Hamilton AD, Sebti SM, and Rosenbloom J. 2000. TGF-beta1 stimulation of fibronectin transcription in cultured human lung fibroblasts requires active geranylgeranyl transferase I, phosphatidylcholine-specific phospholipase C, protein kinase C-delta, and p38, but not erk1/erk2. *Arch Biochem Biophys* 374:313-324. 10.1006/abbi.1999.1625

Lamouille S, Xu J, and Derynck R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. *Nature Reviews Molecular Cell Biology* 15:178-196. 10.1038/nrm3758

Lauder CIW, Garcea G, Strickland A, and Maddern GJ. 2011. Use of a Modified Chitosan-Dextran Gel to Prevent Peritoneal Adhesions in a Rat Model. *Journal of Surgical Research* 171:877-882. 10.1016/j.jss.2010.06.028

Lee MTG, Lee CC, Wang HM, Chou TH, Wu MC, Hsueh KL, and Chen SC. 2016. Hypothermia Increases Tissue Plasminogen Activator Expression and Decreases Post-Operative Intra-Abdominal Adhesion. *Plos One* 11. ARTN e0160627 10.1371/journal.pone.0160627

Liakakos T, Thomakos N, Fine PM, Dervenis C, and Young RL. 2001. Peritoneal adhesions: Etiology, pathophysiology, and clinical significance - Recent advances in prevention and management. *Digestive Surgery* 18:260-273. Doi 10.1159/000050149

Luijendijk RW, deLange DCD, Wauters CCAP, Hop WCJ, Duron JJ, Pailer JL, Camprodon BR, Holmdahl L, vanGeldorp HJ, and Jeekel J. 1996. Foreign material in postoperative adhesions. *Annals of Surgery* 223:242-248. Doi 10.1097/00000658-199603000-00003

Margetts PJ, Bonniaud P, Liu LM, Hoff CM, Holmes CJ, West-Mays JA, and Kelly MM. 2005. Transient overexpression of TGF-beta 1 induces epithelial mesenchymal transition in the rodent peritoneum. *Journal of the American Society of Nephrology* 16:425-436. Doi 10.1681/ASN.2004060436

McCarty MF, O'Keefe JH, and DiNicolantonio JJ. 2016. Pentoxifylline for vascular health: a brief review of the literature. *Open Heart* 3:e000365. 10.1136/openhrt-2015-000365

Menzies D, and Ellis H. 1990. Intestinal-Obstruction from Adhesions - How Big Is the Problem.
Annals of the Royal College of Surgeons of England 72:60-63.

Oncel M, Kurt N, Remzi FH, Sensu SS, Vural S, Gezen CF, Cincin TG, and Olcay E. 2001. The effectiveness of systemic antibiotics in preventing postoperative, intraabdominal adhesions in an animal model. Journal of Surgical Research 101:52-55. 10.1006/jsre.2001.6245

Otani S, Kuinose M, Murakami T, Saito S, Iwagaki H, Tanaka N, and Tanemoto K. 2008. Preoperative oral administration of pentoxifylline ameliorates respiratory index after cardiopulmonary bypass through decreased production of IL-6. Acta Medica Okayama 62:69-74.

Parra-Membrives P, Ruiz-Luque V, Escudero-Severin C, Aguilar-Luque J, and Mendez-Garcia V. 2007. Effect of pentoxifylline on the healing of ischemic colorectal anastomoses. Diseases of the Colon & Rectum 50:369-375. 10.1007/s10350-006-0803-z

Piera-Velazquez S, Li ZD, and Jimenez SA. 2011. Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders. American Journal of Pathology 179:1074-1080. 10.1016/j.ajpath.2011.06.001

Pollice PE, Rosier RN, Looney RJ, Puzas JE, Schwarz EM, and O'Keefe RJ. 2001. Oral pentoxifylline inhibits release of tumor necrosis factor-alpha from human peripheral blood monocytes - A potential treatment for aseptic loosening of total joint components. Journal of Bone and Joint Surgery-American Volume 83a:1057-1061.

Saltzman AK, Olson TA, Mohanraj D, Carson LF, and Ramakrishnan S. 1996. Prevention of postoperative adhesions by an antibody to vascular permeability factor/vascular endothelial growth factor in a murine model. American Journal of Obstetrics and Gynecology 174:1502-1506. Doi 10.1016/S0002-9378(96)70596-3

Sulaiman H, Dawson L, Laurent GJ, Bellingan GJ, and Herrick SE. 2002. Role of plasminogen activators in peritoneal adhesion formation. Biochemical Society Transactions 30:126-131.

Tarhan OR, Barut I, Sutcu R, Akdeniz Y, and Akturk O. 2006. Pentoxifylline, a methyl xanthine derivative, reduces peritoneal adhesions and increases peritoneal fibrinolysis in rats. Tohoku Journal of Experimental Medicine 209:249-255. DOI 10.1620/tjem.209.249

ten Broek RPG, Issa Y, van Santbrink EJP, Bouvy ND, Kruitwagen RFPM, Jeekel J, Bakkum EA, Rovers MM, and van Goor H. 2013. Burden of adhesions in abdominal and pelvic surgery: systematic review and meta-analysis. Bmj-British Medical Journal 347. ARTN f5588 10.1136/bmj.f5588
Vlahos NE, Gregoriou O, Deliveliotou A, Perrea D, Vlachos A, Zhao YL, Lai J, and Creatsas G. 2010. Effect of pentoxifylline on vascular endothelial growth factor C and flk-1 expression on endometrial implants in the rat endometriosis model. *Fertility and Sterility* 93:1316-1323. 10.1016/j.fertnstert.2008.10.056

Wen WX, Lee SY, Siang R, and Koh RY. 2017. Repurposing Pentoxifylline for the Treatment of Fibrosis: An Overview. *Adv Ther* 34:1245-1269. 10.1007/s12325-017-0547-2
Table 1 (on next page)

Scoring system for intra-abdominal adhesion.
| Score | Adhesion grading scale                                      |
|-------|------------------------------------------------------------|
| 0     | No adhesion                                                |
| 1     | Thin filmy adhesion                                        |
| 2     | More than one thin adhesion                                 |
| 3     | Thick adhesion with focal point                             |
| 4     | Thick adhesion with planar attachment                       |
| 5     | Very thick vascular adhesion or more than one planar adhesion|
Figure 1

Intra-abdominal adhesion score.

The PA+PTX group had lower adhesion score. Data are expressed as the median ± IQR. *P < 0.05, **P < 0.01, ***P < 0.001, respectively.
Figure 2

Pentoxifylline Treatment Inhibits Collagen Deposition

(A) Representative images of HE staining. No adhesion was observed in the sham group. Severe liver or bowel adhesion and was observed in the PA group, whereas PTX treated group decreased adhesion severity. (B) Representative images of picrosirius red staining. The thickness of the collagen deposition was increased in PA group, whereas PTX treated group has less collagen deposition. (Original magnification, x200, bar = 100 µm).
Figure 3

The levels of tPA protein in peritoneum.

tPA protein level increased in both PA group and PA+PTX group on postoperative day 3 and day 7. PTX-treated mice increased tPA protein level at 7 day postoperative compared with 3 day postoperative. Data are expressed as the mean ± SE. *P < 0.05, **P < 0.01, ***P < 0.001, respectively.
Figure 4

Pentoxifylline Treatment Reduced Angiogenesis.

(A) Representative examples of double immunohistochemistry staining of ki67 (blue) and CD31 (brown-red) (arrows) in peritoneum on day 3 and day 7. (Original magnification, x200, bar = 100 μm). (B) The graph shows numbers of cells expressing Ki67+ and CD31+ (proliferating endothelial cells) on day 3 and day 7. (C) The graph shows the percentage of CD31+ vessel area per field at x200 magnification on day 3 and day 7. Data are expressed as the mean ± SE. *P < 0.05, **P < 0.01, ***P < 0.001, respectively.
Figure 5

Pentoxifylline Treatment Reduced Inflammation

(A) Immunohistochemistry for F4/80 was performed on mice peritoneal tissue in the different groups at day 3 and day 7. The F4/80 expression was increased in PA group. Representative images of the sham group, PA group, and PA+PTX group are shown (Original magnification, x200, bar = 100 μm). (B) Quantification of F4/80+ cells (%) in high-powered field (HPF) at x400 magnification. Data are expressed as the mean± SE. *P < 0.05, **P < 0.01, ***P < 0.001, respectively.
Pentoxifylline Treatment Reduced the Expression of Fibrosis Marker FSP1

(A-B) Immunohistochemistry for FSP-1 was performed on mice peritoneal tissue in the different groups at day 3 and day 7. The FSP-1 expression was increased in PA group. Representative images of the sham group, PA group, and PA+PTX group are shown. (Original magnification, x100, bar = 100 μm). (C) Quantification of FSP-1⁺ cells (%) in high-powered field (HPF) at x400 magnification. Data are expressed as the mean± SE. *P< 0.05, **P< 0.01, ***P< 0.001, respectively.
Figure 7

Pentoxifylline Treatment Reduced the Expression of Fibrosis Marker α-SMA

(A-B) Double immunofluorescence was performed with CK18 and α-SMA in mice peritoneum in the different groups at day 3 and day 7. Immunofluorescence shows the staining of mesothelial cells by CK18 was expressed in green color, and myofibroblast by α-SMA was expressed in red color. In PA group, we observed a few CK18⁺ cells was co-localization with α-SMA in the mesothelial layer. (Original magnification, x400, bar = 100 μm). (C) Quantification of α-SMA⁺ cells (%) in high-powered field (HPF) at x400 magnification. Data are expressed as the mean± SE. *P < 0.05, **P < 0.01, ***P < 0.001, respectively.
