The Apoptotic Protease-Activating Factor 1-Mediated Pathway of Apoptosis Is Dispensable for Negative Selection of Thymocytes

Hiromitsu Hara,* Atsunobu Takeda,†‡ Michiyó Takeuchi,* Andrew C. Wakeham,§¶ Annick Itié,¶¶ Masafumi Sasaki,† Tak W. Mak,¶¶ Akihiko Yoshimura,* Kikuo Nomoto,2* and Hiroki Yoshida2,3*

Negative selection is a process to delete potentially autoreactive clones in developing thymocytes. Programmed cell death or apoptosis is thought to play an important role in this selection process. In this study, we investigated the role of apoptotic protease-activating factor 1 (Apaf1), a mammalian homologue of CED-4, in programmed cell death during the negative selection in thymus. There was no developmental abnormality in thymocytes from newborn Apaf1−/− mice in terms of CD4 and CD8 expression pattern and thymocyte number. Clonal deletion by endogenous male H-Y Ag of Apaf1-deficient thymocytes with transgenic expression of H-Y Ag-specific TCRs (H-Y Tg/H9004/H9023) was normally observed in lethally irradiated wild-type mice reconstituted with fetal liver-derived hematopoietic stem cells. Clonal deletion induced in vitro by a bacterial superantigen was also normal in fetal thymic organ culture. Thus, Apaf1-mediated pathway of apoptosis is dispensable for the transgenic expression of H-Y Ag-specific TCRs (H-Y Tg/H9004/H9023) expression pattern and thymocyte number. Clonal deletion by endogenous male H-Y Ag of Apaf1-deficient thymocytes with transgenic expression of H-Y Ag-specific TCRs (H-Y Tg/Apaf1−/− thymocytes) was normally observed in lethally irradiated wild-type mice reconstituted with fetal liver-derived hematopoietic stem cells. Clonal deletion induced in vitro by a bacterial superantigen was also normal in fetal thymic organ culture. Thus, Apaf1-mediated pathway of apoptosis is dispensable for the negative selection of thymocytes. However, H-Y Tg/Apaf1−/− thymocytes showed partial resistance to H-Y peptide-induced deletion in vitro as compared with H-Y Tg/Apaf1+/+ thymocytes, implicating the Apaf1-mediated apoptotic pathway in the negative selection in a certain situation. In addition, the peptide-induced deletion was still observed in H-Y Tg/Apaf1−/− thymocytes in the presence of a broad spectrum caspase inhibitor, z-VAD-fmk, suggesting the presence of caspase-independent cell death pathway playing roles during the negative selection. We assume that mechanisms for the negative selection are composed of several cell death pathways to avoid failure of elimination of autoreactive clones. The Journal of Immunology, 2002, 168: 2288–2295.

A

poptosis or programmed cell death (PCD)1 is essential for the normal development of the body and the precise regulation of homeostasis in multicellular organisms (1). Apoptosis is also critical for the development and homeostasis of T cells (2, 3). In the thymus, CD4CD8 double-positive (DP) thymocytes bearing TCRs that fail to recognize the self MHC molecules die rapidly through a process termed death by neglect. In contrast, recognition of self MHC structure with bound peptide can trigger either functional differentiation (positive selection) or apoptosis (negative selection) of DP cells. If positively selected, immature DP thymocytes develop into mature single-positive (SP) T cells expressing either CD4 or CD8. DP thymocytes bearing TCRs that strongly react with relatively abundant thymic self Ags undergo negative selection, i.e., the clonal deletion of potentially autoreactive T cells. Thus, the process of negative selection results in the PCD of over 97% of developing thymocytes (4, 5). The molecular mechanisms of apoptosis involved in these thymic selection processes, however, remain unclear. In the periphery, self-reactive T cells as well as Ag-stimulated mature T cells are deleted by a mechanism of activation-induced cell death, which is mainly mediated by Fas-mediated apoptosis (6). Apoptosis in these situations prevents autoimmune disease and inappropriate accumulation of activated lymphocytes.

A recent advance has shown that mitochondria play essential roles in apoptosis (7–10). While mitochondria produce metabolic energy in the form of ATP, they contain and release proteins that are involved in the apoptotic cascade, such as cytochrome c (cyto c) and some of caspases (11). Cyto c, an essential component of the respiratory chain of the mitochondria, is released in response to various apoptotic stimuli (12, 13) and binds the apoptotic protease-activating factor 1 (Apaf1), a mammalian homologue of CED-4, leading to the formation of apoptosome, which then proteolytically activates caspase 9. The activated caspase 9 cleaves the downstream caspases, including caspases 3, 6, and 7, to execute apoptotic cell death by digesting essential cellular proteins (14, 15). Thus, deficiency of one of the essential components of the mitochondrial apoptotic pathways renders the cells remarkably resistant to apoptotic stimulation, as shown in gene-disrupted mice (16–21). Apaf1-deficient (Apaf1−/−) mice die perinatally, and those embryos have defects in PCD in various tissues whose development is regulated by PCD, including removal of the interdigital webs, formation of the palate, control of the number of neurons, and development of the lens and retina (19). Apaf1−/−
obtained from H-Y Tg1/H11032 mouse. Thymocytes isolated from these fetal liver-transferred chimeric cells from each fetus were transferred i.v. to each irradiated, sex-matched thymocytes, in this study, we examined the negative selection of Apaf1 plays a role in apoptosis during thymic development.

To investigate the role of Apaf1 in the negative selection of thymocytes, in this study, we examined the negative selection of Apaf1−/− thymocytes in lethally irradiated wild-type mice reconstituted with fetal liver-derived hemopoietic stem cells (fetal liver-transferred chimeric mice) that bear transgenic (Tg) TCRs specific for male H-Y Ag (22). We also examined the negative selection induced by bacterial superantigen in fetal thymic organ culture (FTOC) (23). Our results showed that clonal deletion in these systems was normally executed in Apaf1−/− deficient thymocytes, demonstrating that Apaf1-dependent apoptotic pathway is dispensable for PCD during the negative selection process. However, we also showed that Apaf1−/− deficient thymocytes are more resistant to the peptide-induced cell death in vitro, implicating Apaf1-mediated apoptotic pathway in the negative selection of thymocytes. In addition, we demonstrate that Apaf1-independent caspase activation and cell death that were not inhibited by a broad spectrum caspase inhibitor, z-VAD-fmk, occurred during the peptide-induced cell death in vitro. Taken together, these data indicate that the cell death mechanisms of negative selection are composed of several pathways, which presumably play synergistic and mutually compensatory roles.

Materials and Methods

Mice

The mice bearing Tg TCR specific for male H-Y Ag peptide on H-2Db (H-Y Tg1/H11032) were provided from the Amgen Institute (Toronto, Ontario, Canada) and maintained on C57BL/6 background. Mice positive for the Tg were typed by clonotypic TCR expression using the specific mAb (T3.70; specific for α-chain of H-Y TCR) (24). Apaf1−/− mice were generated as described previously (19), and were backcrossed into the C57BL/6 background more than six times before crossing with H-Y Tg mice. H-Y Tg1/H11032 mice were also used for crossing to obtain mice with the Y chromosome derived from C57BL/6 (but not from 129) background. Mice were confirmed for H-2Db phenotype. C57BL/6 mice were purchased from Japan SLC (Shizuoka, Japan). These mice were maintained in a specific pathogen-free condition.

Genotyping

Genotyping of Apaf1−/−, Apaf1+/−, and Apaf1+/+ mice or fetuses was performed using PCR analysis of tail DNA. Two PCR primer sets were used for genotyping. One primer set for detecting the wild-type allele is 5′-CCA TTC CTG GTC TCT TGT AAG-3′ and 5′-AAC AGC GAG GCC GTC TTT-3′. The other primer set for detecting the mutant type allele is 5′-GCG CCA GCT CAT TCC TC-3′ and 5′-CAC TCT ATG GTC CAG GCT ATC-3′.

Generation of lethally irradiated wild-type mice reconstituted with fetal liver-derived hemopoietic stem cells

H-Y Tg1/H11032 or Apaf1+/− fetuses at embryonic day (E) 14.5 were obtained from H-Y Tg1/H11032 mice intercrosses. The sex of fetuses was determined individually under a microscope, and liver cell suspensions were prepared from each fetus. Eight-week-old male or female C57BL/6 mice were irradiated (900 rad), and approximately 2–5 × 106 of fetal liver cells from each fetus were transferred i.v. to each irradiated, sex-matched mouse. Thymocytes isolated from these fetal liver-transferred chimeric mice were used for analyses at least 6 wk after transfer. A schematic protocol is shown in Fig. 4A.

Fetal thymic organ culture

FTOC were performed as described previously (23). Briefly, the thymic lobes were obtained from Apaf1+/− or Apaf1+/+ fetuses at E14.5, and cultured on polycarbonate filters (pore size, 4.5 μm; Millipore, Bedford, MA) floating on complete RPMI 1640 medium supplemented with 10% FCS in a humid atmosphere with 5% CO2. The lobes were cultured for 5 days, and followed by further cultivation in the presence or absence of 1 μg/ml staphylococcal enterotoxin B (SEB; Sigma, St. Louis, MO) for 2 days. For harvesting, lobes were ground between frosted glass slides in PBS, washed, and used for flow cytometric analysis.

Flow cytometric analysis and Abs

mAbs used for flow cytometric analysis were FITC-conjugated T3.70 mAb, PE- or allophycocyanin-conjugated anti-CD8 mAb (2.43; BD Pharmingen, San Diego, CA), allophycocyanin-conjugated anti-CD4 mAb (L3T4; BD Pharmingen), allophycocyanin-conjugated anti-CD3ε mAb (145-2C11; BD Pharmingen), FITC-conjugated anti-Vβ6 mAb (44-22-1), and FITC-conjugated anti-Vβ8 mAb (F23.1; BD Pharmingen). Freshly isolated or cultured cells were stained with various combinations of mAbs before analysis with a FACSalibur flow cytometer and CellQuest program (Becton Dickinson, Franklin Lakes, NJ). In some experiments, cell suspensions were stained with propidium iodide (PI) just before analysis to detect and exclude dead cells. Mitochondrial transmembrane potential (ΔΨm) was measured by staining the cells with potential sensitive dye, 3,3′-dihexyloxadecarboxylic acid iodide (DiOC3(3) (Molecular Probes, Eugene, OR), as described elsewhere (19).

Peptide-induced deletion assay in vitro

Single cell suspension (5 × 105) of thymocytes from female fetal liver-transferred chimeric mice was cultured with 10 μM H-Y Ag peptide (sequence Lys-Cys-Ser-Arg-Asn-Arg-Gln-Tyt-Leu (25)) (Genemede Synthesis, South San Francisco, CA) in the presence or absence of 100 μM z-Val-Ala-Ala-Asp-fluoromethylketone (z-VAD-fmk; Kamiya Biomedical, Seattle, WA) for 24 h in a 96-well plate. After culture, thymocytes were harvested and stained with FITC-conjugated T3.70 mAb, PE-conjugated anti-CD8 mAb, and PI for evaluation of dead cells, or with FITC-conjugated T3.70 mAb, allophycocyanin-conjugated anti-CD8 mAb, and PhyFlux G2D2 (26) (MBL, Nagoya, Aichi, Japan) for evaluation of cells with active caspase 3, and followed by flow cytometric analysis.

T cell proliferation assay

Nylon wool-nonadherent lymph node cells containing 3 × 104 T3.70+ cells from male or female H-Y Tg mice or fetal liver-transferred chimeric mice were cultured in the presence of 5 × 105 of irradiated (3000 rad) spleen cells from male or female C57BL/6 mice as a stimulator. The cultures were pulsed with 1 μCi/well [3H]thymidine on day 4, followed by harvesting 20 h later.

Measurement of cyto c release

Thymocytes from wild-type mice with or without peptide stimulation were homogenized in ice-cold preparation buffer (10 mM Tris-HCl, pH 7.5, and 0.3 M sucrose with protease inhibitors) and supernatants collected after centrifugation at 10,000 × g for 60 min. The amounts of cyto c in the supernatants were measured with cyto c ELISA assay kit (MBL), according to the manufacturer’s direction.

Western blot analysis of caspase activation

Thymocytes from fetal liver-transferred chimera mice (Apaf1+/− or Apaf1−/−) with or without peptide stimulation were lysed with 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonate buffer (Cell Signaling Technology, Beverly, MA), electrophoresed, and transferred onto a nylon membrane. Caspases 3, 6, and 7 were visualized with anti-caspase Abs (Cell Signaling Technology).

Results

Normal development of Apaf1−/− deficient thymocytes

Apaf1−/− mice exhibited abnormalities in brain during embryogenesis and thus died perinatally (19, 20), although a few mice with a milder mutant phenotype (ectopic masses on the forehead) survived until about day 10 (19). Apaf1−/− thymocytes from these mice are strikingly resistant to a wide range of apoptotic stimuli, such as dexamethasone, gamma irradiation, and anticancer drugs, except for Fas ligation (19). However, flow cytometric analysis of thymocytes of newborn (day 10) Apaf1−/− mice showed that the thymic development of these mice appeared to be largely normal in terms of expression patterns of CD4 and CD8 (Fig. 1). There
Mitochondrial alterations in TCR-stimulated Tg thymocytes. A. Thymocytes from female H-Y Tg mice (wild type for Apaf1) were stimulated with the indicated concentration of H-Y peptide for 8 h or left untreated at 4 or 37°C. ΔΨm were measured by staining the cells with DiOC6(3) at 20 nM. The numbers in the panels indicate the percentages of the cells with low ΔΨm. The experiments were repeated three times with similar results. *, p < 0.05 compared with cyto c at 0 h. B. Thymocytes from female H-Y Tg mice (1 × 10⁶/ml) were stimulated with the indicated concentration of the peptide or staurosporine (STS) at 0.5 μM for 18 h. Cytoplasmic cyto c was collected and measured in triplicates by ELISA. Experiments were repeated two times with similar results (*, p < 0.05).
H-Y TCR is self-reactive and results in negative selection of H-Y TCR\(^+\) (T3.70\(^+\)) cells during thymocyte development. Conversely, in female mice, H-Y TCR\(^-\) thymocytes are positively selected and develop into mature CD8 SP cells. Flow cytometric analysis of thymocytes from these fetal liver-transferred chimeric mice showed that negative selection of Tg-positive T3.70\(^+\)CD8\(^+\) thymocytes in male mice was complete in the Apaf1\(^{−/−}\) background (Fig. 4B, top). Positive selection in female mice was likewise unchanged in thymocytes from H-Y Tg/Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice (Fig. 4B, bottom). These results suggest that PCD pathway for the elimination of self-reactive clones during thymic negative selection does not require Apaf1.

Lack of self-reactive T cell population in the periphery of H-Y Tg/Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice

In male H-Y Tg mice, there are many T3.70\(^+\)CD8\(^+\) T cells in the periphery. We also found T3.70\(^+\)CD8\(^+\) T cells in the periphery of male H-Y Tg/Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice. Although these T3.70\(^+\)CD8\(^+\) T cells in male H-Y Tg mice reportedly develop extrathymically and are unresponsive to male H-Y Ag (24, 27, 28), it was of importance to examine whether self-reactive T cells were actually eliminated from periphery of the H-Y Tg/Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice. To address this question, we examined anti-male Ag response of T3.70\(^+\)CD8\(^+\) lymph node T cells from the fetal liver-transferred chimeric mice and compared it with those from male or female H-Y Tg mice. In H-Y Tg mice, peripheral T3.70\(^+\)CD8\(^+\) T cells from female mice showed strong proliferative response to male spleen cells, while those from male mice did not respond to male cells, confirming that T3.70\(^+\)CD8\(^+\) cells with reactivity to self male Ag are eliminated in thymus by negative selection (Fig. 5). Similarly, peripheral T cells from female H-Y Tg/Apaf1\(^{−/−}\) or Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice showed strong proliferative response to male Ag. However, no proliferative response to male Ag was observed in cells from either Apaf1\(^{−/−}\) or Apaf1\(^{−/−}\) male chimeric mice. These results showed that self-reactive T cells are virtually absent in the periphery of male H-Y Tg/Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice, indicating complete negative selection in the thymus of these mice.

Apaf1-dependent and Apaf1-independent cell death of thymocyte induced by antigenic peptides

Normal negative selection of Apaf1-deficient thymocytes in SEB-induced and H-Y Ag-induced negative selection system was unexpected, when involvement of caspase 3 activation in the TCR-induced negative selection both in vitro and in vivo (29, 30) and the mitochondrial alterations by antigenic stimulation (Fig. 2) are taken into consideration. Therefore, to examine whether or not the susceptibility of Apaf1\(^{−/−}\) thymocytes to TCR stimulation nonetheless differs from that of Apaf1\(^{+/−}\) thymocytes, we performed

FIGURE 3. Deletion of V\(\beta\)8\(^+\)Apaf1\(^{−/−}\) thymocytes by SEB treatment. E14.5 fetal thymic lobes from Apaf1\(^{+/−}\) and Apaf1\(^{−/−}\) mice were cultured for 5 days without SEB, and further cultured for 2 days in the presence or absence of SEB (1 \(\mu\)g/ml). Cell suspensions from these thymic lobes were stained for V\(\beta\)8 or V\(\beta\)6, CD4, and CD8, and the expression of V\(\beta\)8 or V\(\beta\)6 in CD4 SP cell population was analyzed by flow cytometry. Percentages of positive cells are indicated in the histograms. Representative data from three independent experiments are shown.

FIGURE 4. Normal negative selection in H-Y Tg/Apaf1\(^{−/−}\) thymocytes. A, A schematic protocol for generation of H-Y Tg Apaf1\(^{+/−}\) or Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice. B, Single thymocyte suspension from male or female H-Y Tg/Apaf1\(^{+/−}\) or H-Y Tg/Apaf1\(^{−/−}\) fetal liver-transferred chimeric mice was stained for H-Y TCR (T3.70), CD4, and CD8. Flow cytometric analysis was performed on T3.70\(^+\) cells. Percentages of thymocyte subpopulation from representative experiments from three independently generated chimeric mice groups are indicated in each quadrant. Absolute numbers of the populations are: 2.3 ± 0.4 and 2.1 ± 0.4 × 10\(^7\) CD4\(^+\)CD8\(^+\) cells and 0.5 ± 0.09 and 0.6 ± 0.1 × 10\(^7\) CD8\(^+\) cells in Apaf1\(^{+/−}\) and Apaf1\(^{−/−}\) female chimera, respectively; 0.7 ± 0.03 and 0.4 ± 0.02 × 10\(^5\) CD4\(^+\)CD8\(^+\) cells and 0.5 ± 0.02 and 0.3 ± 0.03 × 10\(^5\) CD8\(^+\) cells in Apaf1\(^{+/−}\) and Apaf1\(^{−/−}\) male chimera, respectively.
antigenic peptide-induced deletion assay in vitro using thymocytes from female H-Y Tg/Apaf1−/− fetal liver-transferred chimeras, as a surrogate for negative selection in vivo. Addition of H-Y peptide, which is specifically recognized by H-Y TCRs, to the thymocyte culture induces the deletion of peptide-specific T3.70° CD8+ cells. As shown in Fig. 6, even in Apaf1−/− thymocytes, cell viability of T3.70° CD8+ cells was lost by peptide stimulation in a dose-dependent manner, and substantial cells were proven dead at 24 h after stimulation with 10 μM peptide. However, Apaf1−/− T3.70° CD8+ thymocytes were more resistant to peptide stimulation than Apaf1+/− T3.70° CD8+ thymocytes at 10 μM of the peptide. These results indicate the possibility that Apaf1-mediated apoptotic pathway may contribute at least partially to PCD pathway of negative selection in a certain condition.

We then investigated the state of caspase 3 activation in Apaf1−/− thymocytes and its relationship with cell viability during negative selection in our in vitro stimulation system. After induction of negative selection by peptide stimulation, we evaluated for dead cells by PI staining and cells positive for active caspase 3 by fluorogenic caspase substrate with specificity for caspase 3 (and, possibly, related caspases), and detects caspase activation in apoptotic cells without fixation (26). As shown in Fig. 7A, positive signal for caspase activation was detected in most of Apaf1−/− CD8+ T3.70° thymocytes after 10 μM peptide stimulation, and most of them underwent cell death. In Apaf1−/− CD8+ T3.70° thymocytes, cells positive for caspase activation signal remarkably decreased compared with Apaf1+/− CD8+ T3.70° thymocytes. Concomitant with this decreased caspase activity, the percentage of dead cells in Apaf1−/− CD8+ T3.70° thymocytes also decreased. Thus, it is demonstrated that TCR ligation induces caspase activation in an Apaf1-dependent way, further substantiating the possible involvement of Apaf1 in negative selection. However, substantial caspase activation was still observed in Apaf1-deficient cells after peptide stimulation, and cell death was also induced, indicating caspase activation via Apaf1-independent apoptotic pathway also took part in the negative selection. Western blot analysis of caspase activation revealed caspase 3 activation in peptide-stimulated wild-type and Apaf1-deficient thymocytes (Fig. 7B). There was no detectable level of caspase 7 and 6 activation both in wild-type and Apaf1-deficient thymocytes in response to the peptide stimulation, indicating caspase 3 was the dominant caspase activated by the stimulation.

Additionally, to examine the requirement of caspase activity in the negative selection, we also took advantage of a broad spectrum caspase inhibitor, z-VD-fmk, in this assay. Notably, even in the presence of z-VD-fmk, although the dead cells remarkably decreased compared with the culture without the inhibitor, peptide stimulation apparently induced cell death of Apaf1−/− thymocytes when caspase 3 activation was completely inhibited. Increasing dose of z-VD-fmk up to 200 μM did not prevent the cell death (data not shown), indicating that cell death observed in the presence of z-VD-fmk is caspase independent. However, with relatively weak inhibitory activities of z-VD-fmk toward other caspases than caspase 3 along with its short t1/2, it is not formally excluded that the cell death in the presence of z-VD-fmk is still caspase dependent. In any case, these data, taken together, indicate that the cell death during the negative selection is caused dominantly by the Apaf1-independent pathway and partially or supplemen
tarily by Apaf1-mediated pathway in a certain situation; the former pathway may consist of caspase-dependent (z-VD-inhibitable) one and caspase-independent (z-VD-uninhibitable) one.

Discussion

Mitochondria-dependent apoptotic pathway, i.e., the apoptotic pathway via mitochondria→cyto c→Apaf1→caspase 9→caspase 3, has been demonstrated in many reports to be critical for development of the body and maintenance of homeostasis of various tissues (16–21). Since PCD plays a critical role in thymocyte selection, we examined the role of Apaf1, a central element in the mitochondria-dependent apoptotic pathway, in the development of thymocytes. Although Apaf1−/− thymocytes show resistance to a
Thymocytes from Apaf1 wild-type or Apaf1-deficient chimeric mice were stimulated with the antigenic peptide at 10⁻⁴ M and cytochrome c release, although not at a striking degree. We, however, also showed Apaf1 is not necessary for execution of the negative selection. In addition, Kuida et al. (16) demonstrated normal susceptibility to TCR stimulation-induced apoptosis of caspase 3-deficient thymocytes, while Hakem et al. (18) showed normal caspase 3 activation in caspase 9-deficient thymocytes. These results suggest that all the apoptotic events commencing with mitochondrial damage do not play roles during the physiological negative selection process, although partial involvement of the pathway is not excluded. In this context, another view of the function of antiapoptotic Bcl-2 family members should be of note. Strasser et al. (37) proposed a model in which antiapoptotic proteins (such as Bcl-2) keep adaptor proteins (Apaf1 or Apaf1-related molecule(s)) from activating caspases, as observed in the complex formation of CED-4 and CED-9 in Caenorhabditis elegans (38). In this model, adaptor proteins may exert their proapoptotic effect when freed from antiapoptotic proteins, and the effect may be independent from mitochondrial alterations.

Ligation of the death receptors, or receptors for TNF family members, such as Fas, TNFR1, etc., has been shown also to induce apoptosis of thymocytes (6). Binding of ligands to these death receptors on thymocytes has been shown to trigger the activation of caspase 8 through the adopter molecule Fas-associated death domain (Mort1) (6). The activated caspase 8 directly cleaves and activates caspase 3, thus inducing apoptosis that is not mediated by mitochondria (39). Indeed, Apaf1⁻/⁻ thymocytes are still sensitive to Fas-induced apoptosis (19). As such, death receptor-mediated apoptotic pathway is a candidate for the PCD during negative selection besides the mitochondrial pathway. However, it has been demonstrated that thymic clonal deletion is apparently normal in mice lacking the functional Fas and Fas ligand system (such as lpr/lpr, gld/gld, or Fas-null mice) (40) and mice Tg for dominant-negative Fas-associated death domain (41, 42). In addition, Smith et al. (43) demonstrated that inhibition of caspase 8 activity by Tg expression of CrmA did not impair the deletion of self-reactive T lymphocytes. These lines of evidence suggest that death receptor-mediated apoptosis pathway is also dispensable for this process, as is the mitochondria-mediated apoptosis.

Caspases are critical mediators and effectors of apoptosis (44, 45). It has been shown that caspase 3 is activated in the thymocytes during apoptosis induced in vitro by dexamethasone, anti-CD3
References

1. Jacobson, M. D., M. Weil, and M. C. Raff. 1997. Programmed cell death in animal development. Cell 88:547.

2. Jameson, S. C., and M. J. Bevan. 1998. T-cell selection. Curr. Opin. Immunol. 10:214.

3. Sebzda, E., S. Mariathasan, T. Ohteki, R. Jones, M. F. Bachmann, and P. S. Ohashi. 1999. Selection of the T cell repertoire. Annu. Rev. Immunol. 17: 829.

4. Shortman, K., M. Egerton, G. J. Spangrude, and R. Scollay. 1990. The generation and fate of thymocytes. Semin. Immunol. 2:5.

5. Such, C. D., and J. Sprent. 1994. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100.

6. Nagata, S. 1997. Apoptosis by death factor. Cell 88:353.

7. Zamzami, N., S. A. Susin, P. Marchetti, T. Hirsch, I. Gonzalez-Monterrey, M. Castedo, and G. Kroemer. 1996. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183:1533.

8. Kroemer, G., N. Zamzami, and S. A. Susin. 1997. Mitochondrial control of apoptosis. Immunol. Today 18:44.

9. Green, D. R., and J. C. Reed. 1998. Mitochondria and apoptosis. Science 281: 1309.

10. Mignotte, B., and J. L. Vayssiere. 1998. Mitochondria and apoptosis. Eur. J. Biochem. 252:1.

11. Earnshaw, W. C. 1999. Apoptosis: a cellular poison cupboard. Nature 397:587.

12. Klauck, R. M., E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132.

13. Apoptotic pathways mediate the removal of thymocytes, presumably compensating each other. Involvement of multipathways in the negative selection is reasonable to avoid autoimmunity diseases as a result of a failure in negative selection, because a defect in one pathway can be compensated for by other pathways.

14. ROKU OF Apaf1 IN NEGATIVE SELECTION

15. Nagata, S. 1997. Apoptosis by death factor. Cell 88:353.

16. Kuida, K., T. S. Zheng, S. Na, C. Kuan, D. Yang, H. Karasuyama, P. Rakic, and R. A. Flavell. 1996. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368.

17. Kuida, K., T. F. Haydar, C. Y. Kuan, Y. Gu, C. Taya, H. Karasuyama, M. S. Su, R. Rakic, and R. A. Flavell. 1998. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking cytochrome c. Cell 94:325.

18. Hakem, R., A. Hakem, S. G. Duncan, J. T. Henderson, M. Woo, M. S. Soengas, A. Elia, J. L. de la Pompa, D. Kagi, W. Kho, et al. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339.

19. Yoshida, H., Y. Y. Kong, R. Yoshida, A. J. Elia, A. Hakem, R. Hakem, J. M. Penninger, and T. W. Mak. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739.

20. Cecconi, F., G. Alvarez-Bolado, B. I. Meyer, K. A. Roth, and P. Gruss. 1998. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727.

21. Li, K. Y. Li, J. M. Shelton, J. A. Richardson, E. Spencer, Z. C. Chen, X. Wang, and R. S. Williams. 2000. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389.

22. Kisielow, P., H. Blumenthal, U. D. Staerz, M. Steinmetz, and H. von Boehmer. 1988. Tolerance in T-cell receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333:742.

23. Aiba, Y., O. Mazda, Y. Matsuzaki, H. Nakauchi, S. Muramatsu, and Y. Katsura. 1993. Clonal deletion of thymic mature T cells induced by staphylococcal enterotoxin B in murine fetal thymus organ culture. Eur. J. Immunol. 23:815.

24. Teh, H. S., H. Kishi, B. Scott, and H. von Boehmer. 1989. Deletion of autoreactive T cells in T-cell receptor transgenic mice lacking self-reactive T cells carries no morbidity. Cell 94:79.

25. Opferman, J. T., B. T. Ober, and P. G. Ashton-Rickardt. 1999. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283:1745.

26. Komoriya, A., Z. B. Packard, M. J. Brown, M. L. Wu, and P. A. Henkart. 2000. Assay of caspase activity in intact apoptotic thymocytes using cells-per-cell-measurable fluorogenic caspase substrates. J. Exp. Med. 191:1819.

27. Yamada, H., T. Ninomiya, A. Hashimoto, K. Tamada, H. Takimoto, and K. Nomoto. 1998. Positive selection of extrathymically developed T cells by self-antigens. J. Exp. Med. 188:779.

28. Von Boehmer, H., J. Kirberg, and B. Rocha. 1991. An unusual lineage of αβ T cells that contains autoreactive cells. J. Exp. Med. 174:1001.

29. Clayton, L. K., Y. Ghendler, E. Mizoguchi, R. Patch, T. D. O'cain, K. Orth, A. K. Bhan, V. M. Dixit, and E. L. Reinherz. 1997. T-cell receptor ligation by peptide/MHC induces activation of a caspase in immature thymocytes: the molecular basis of negative selection. EMBO J. 16:2222.

30. Alam, A., M. Y. Braun, F. Hartgers, S. Lesage, L. Cohen, P. Hugo, F. Denis, and R. P. Sekaly. 1997. Specific activation of the cytochrome c protease CPP32 during the negative selection of T cells in the thymus. J. Exp. Med. 186:1503.

31. Gross, A., J. M. McDonnell, and S. J. Korsmeyer. 1999. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899.

32. Vander Heiden, M. G., and C. B. Thompson. 1999. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol. 1:E209.

33. Grillot, D. A., R. Merino, and G. Nunez. 1995. Bcl-xL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182:1973.

34. Strauss, A., A. W. Harris, and S. Cory. 1991. Bcl-2 transgene inhibits T-cell death and perturbs thymic self-censorship. Cell 67:889.

35. Tao, W., S. J. Teh, I. Melhado, F. Jirik, S. J. Korsmeyer, and H. S. Teh. 1994. The T cell receptor repertoire of CD4+8+ thymocytes is altered by overexpression of the Bcl-2 protooncogene in the thymus. J. Exp. Med. 179:145.

36. Strauss, A., A. W. Harris, H. von Boehmer, and S. Cory. 1994. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. Proc. Natl. Acad. Sci. USA 91:1376.
37. Strasser, A., L. O’Connor, and V. M. Dixit. 2000. Apoptosis signaling. Annu. Rev. Biochem. 69:217.
38. Chinnaiyan, A. M., K. O’Rourke, B. R. Lane, and V. M. Dixit. 1997. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122.
39. Green, D. R. 1998. Apoptotic pathways: the roads to ruin. Cell 94:695.
40. Singer, G. G., and A. K. Abbas. 1994. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1:365.
41. Newton, K., A. W. Harris, M. L. Bath, K. G. Smith, and A. Strasser. 1998. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17:706.
42. Walsh, C. M., B. G. Wen, A. M. Chinnaiyan, K. O’Rourke, V. M. Dixit, and S. M. Hedrick. 1998. A role for FADD in T cell activation and development. Immunity 8:439.
43. Smith, K. G., A. Strasser, and D. L. Vaux. 1996. CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. EMBO J. 15:5167.
44. Nicholson, D. W., and N. A. Thornberry. 1997. Caspases: killer proteases. Trends Biochem. Sci. 22:299.
45. Cryns, V., and J. Yuan. 1998. Proteases to die for. Genes Dev. 12:1551.
46. Izquierdo, M., A. Grandien, L. M. Criado, S. Robles, E. Leonardo, J. P. Albar, G. G. de Buitrago, and A. C. Martinez. 1999. Blocked negative selection of developing T cells in mice expressing the baculovirus p35 caspase inhibitor. EMBO J. 18:156.
47. Doerfler, P., K. A. Forbush, and R. M. Perlmutter. 2000. Caspase enzyme activity is not essential for apoptosis during thymocyte development. J. Immunol. 164:4071.
48. Sugawara, T., T. Moriguchi, E. Nishida, and Y. Takahama. 1998. Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 9:565.