Involvement of Phospholipase Cγ1 in Mouse Egg Activation Induced by a Truncated Form of the C-kit Tyrosine Kinase Present in Spermatozoa

Claudio Sette,* Arturo Bevilacqua,‡ Raffaele Geremia,* and Pellegrino Rossi*

*Dipartimento di Sanità Pubblica e Biologia Cellulare, Sezione di Anatomia, Università di Roma Tor Vergata, Rome, Italy; and ‡Dipartimento di Istologia ed Embriologia Medica and Dipartimento di Psicologia, Università di Roma La Sapienza, Rome, Italy

Abstract. Microinjection of a truncated form of the c-kit tyrosine kinase present in mouse spermatozoa (tr-kit) activates mouse eggs parthenogenetically, and tr-kit–induced egg activation is inhibited by preincubation with an inhibitor of phospholipase C (PLC) (Sette, C., A. Bevilacqua, A. Bianchini, F. Mangia, R. Geremia, and P. Rossi. 1997. Development [Camb.]. 124:2267–2274). Co-injection of glutathione-S-transferase (GST) fusion proteins containing the src-homology (SH) domains of the γ1 isoform of PLC (PLCγ1) competitively inhibits tr-kit–induced egg activation. A GST fusion protein containing the SH3 domain of PLCγ1 inhibits egg activation as efficiently as the whole SH region, while a GST fusion protein containing the two SH2 domains is much less effective. A GST fusion protein containing the SH3 domain of the Grb2 adaptor protein does not inhibit tr-kit–induced egg activation, showing that the effect of the SH3 domain of PLCγ1 is specific. Tr-kit–induced egg activation is also suppressed by co-injection of antibodies raised against the PLCγ1 SH domains, but not against the PLCγ1 COOH-terminal region. In transfected COS cells, coexpression of PLCγ1 and tr-kit increases diacylglycerol and inositol phosphate production, and the phosphotyrosine content of PLCγ1 with respect to cells expressing PLCγ1 alone. These data indicate that tr-kit activates PLCγ1, and that the SH3 domain of PLCγ1 is essential for tr-kit–induced egg activation.

Key words: truncated-c-kit • spermatozoa • egg-activation • phospholipase-C-γ1 • src-homology-domains

After sperm–egg fusion, sperm cytosolic factors are released into the egg cytoplasm, and recent evidence obtained in a number of animal systems suggests that such a factor may trigger the series of events culminating in cell cycle resumption and the first mitotic division of the zygote (Stice and Robl, 1990; Swann, 1990; Homa and Swann, 1994; Dozortsev et al., 1995; Wu et al., 1997; Stricker, 1997). In many species, a series of Ca2+ transients is the early event triggered by the sperm at fertilization (Whitaker and Swann, 1993), and the increase in intracellular Ca2+ is required for several of the events that accompany egg activation (Kline and Kline, 1992). In the mouse, it has been shown that sperm–egg fusion precedes the onset of these Ca2+ oscillations (Lawrence et al., 1997), suggesting that a factor released by the sperm is responsible for the fertilization-associated Ca2+ mobilization. However, the nature of such factor in mammals is still uncertain. A possible candidate is oscillin, a glucosamine 6-phosphate deaminase that has been localized in the equatorial segment of the hamster sperm head (Parrington et al., 1996). However, whereas the protein fraction containing oscillin induces Ca2+ transients when microinjected into mouse eggs (Parrington et al., 1996), neither recombinant nor highly purified oscillin has osclillogenic activity, even though they maintain glucosamine 6-phosphate deaminase activity (Wolosker et al., 1998). Thus, it is possible that either oscillin requires additional factors to elicit egg activation or a different protein of the sperm is responsible for such function.

An additional candidate for a soluble sperm factor inducing the early events of fertilization is tr-kit, an alternative product of the c-kit gene (Sette et al., 1997). Tr-kit is encoded by an mRNA specifically expressed in the haploid phase of mouse spermatogenesis (Sorrentino et al., 1991; Rossi et al., 1992). Tr-kit mRNA is transcribed in late spermiogenesis under the control of an intronic promoter, as demonstrated by the tr-kit promoter driven expression of a reporter gene in transgenic mice (Albanesi...
The open reading frame (ORF)\(^1\) of tr-kit encodes a 23-kD protein that contains only part of the cytoplasmic portion of the c-kit receptor tyrosine kinase (Rossi et al., 1992). This region corresponds to the c-kit phosphotransferase catalytic domain, but lacks the inter-kinase region, the ATP-binding site, the transmembrane and the extracellular domains. The tr-kit protein has an apparent molecular size of 24–28 kD, is expressed in elongating spermatids (Albanesi et al., 1996), and immunofluorescence experiments indicate that it is localized in the residual cytoplasm of mouse epididymal spermatozooa (Sette et al., 1997). We have previously reported that microinjection of either lysates from cells expressing a recombinant tr-kit protein or synthetic tr-kit RNA into metaphase II (MII)–arrested mouse oocytes triggers the set of events associated with egg activation, from cortical granule exocytosis to pronuclear formation and progression through cleavage stages (Sette et al., 1997).

Tr-kit action is blocked by chelation of egg intracellular Ca\(^{2+}\) or by preincubation of eggs with an inhibitor of phospholipase C (PLC) (Sette et al., 1997), suggesting that tr-kit mediates Ca\(^{2+}\) mobilization through activation of a PLC isof orm(s). PLCs are a family of enzymes that catalyze hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP\(_2\), with production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP\(_3\)) (Berridge, 1993). DAG is a powerful stimulator of various protein kinase C (PKC) isof orms, and it has been suggested that PKC activity is required for sperm-induced egg activation (Colonna et al., 1997; Gallicano et al., 1997a,b). On the other hand, InsP\(_3\) binds to receptors coupled to channels responsible for the release of Ca\(^{2+}\) from intracellular stores (Berridge, 1993). An increase in InsP\(_3\) production is required for the Ca\(^{2+}\) wave at fertilization in Xenopus oocytes (Nuccitelli et al., 1993) and InsP\(_3\) receptors have been found to play an essential role in mammalian egg activation at fertilization (Miyazaki et al., 1992, 1993; Xu et al., 1994; Berridge, 1996). Furthermore, the involvement of InsP\(_3\) produced by PLC in mammalian fertilization is also supported by the observation that a PLC inhibitor can block the sperm-induced Ca\(^{2+}\) spiking at fertilization in mouse eggs (Du pont et al., 1996).

PLC\(_{\gamma 1}\) may represent the most likely PLC isof orm involved in tr-kit action inside the egg for the following reasons: (a) PLC\(_{\gamma 1}\) has been shown by immunoblotting of ovulated mouse oocytes (Dupont et al., 1996); (b) PLC\(_{\gamma 1}\) is activated after physical interaction with tyrosine kinases (Lee and Rhee, 1995; Kamat and Carpenter, 1997; Rhee and Bae, 1997), and it has been found to interact with the activated c-kit receptor (Herbst et al., 1991; Lev et al., 1991; Rottapel et al., 1991); (c) mutation of a tyrosine residue (Y936) of the COOH-terminal portion of the human c-kit receptor impairs association with PLC\(_{\gamma 1}\) (Herbst et al., 1995), and the homologous residue is also present in the mouse c-kit receptor (Y934) and in tr-kit (Y161); and (d) it has been recently reported that PLC\(_{\gamma 1}\) is essential for the sperm-induced Ca\(^{2+}\) mobilization at fertilization in starfish eggs (Carroll et al., 1997).

Both physical interaction with tyrosine kinases and tyrosine phosphorylation of PLC\(_{\gamma 1}\) correlate with PLC\(_{\gamma 1}\) activation and subsequent stimulation of PIP\(_2\) hydrolysis (Lee and Rhee, 1995; Kamat and Carpenter, 1997; Rhee and Bae, 1997). In addition to catalytic domains, PLC\(_{\gamma 1}\) contains several regulatory regions, and in particular src-homology 2 (SH2) and SH3 domains, which mediate its interaction with upstream and downstream effectors (Cohen et al., 1995; Pawson, 1995). The SH2 domains of the protein directly bind specific phosphotyrosine residues present in cytoplasmic domains of receptor tyrosine kinases (RTKs) (Mohammadi et al., 1991), whereas the targets of the SH3 domain are proline-rich sequences present in proteins such as the microtubule-associated GTPase dynamin (Gout et al., 1993).

In the present study, we demonstrate that PLC\(_{\gamma 1}\) is actually involved in tr-kit–induced parthenogenetic egg activation and that the SH3 domain of PLC\(_{\gamma 1}\) is essential for this process. Using biochemical approaches in transfected COS cells, we also show that coexpression of PLC\(_{\gamma 1}\) and tr-kit stimulates an increase in tyrosine phosphorylation of PLC\(_{\gamma 1}\), together with production of DAG and inositol phosphates (InsPs). These data strongly suggest that the mechanism of mouse egg activation triggered by tr-kit microinjection involves PLC\(_{\gamma 1}\)-mediated hydrolysis of PIP\(_2\).

Materials and Methods

Expression of Recombinant Tr-kit Protein

Subconfluent COS cell monolayers were cultured in 90-mm dishes (Corning Glass Works, Corning, NY) and processed for CaPO\(_4\) transfection with either 20 \(\mu\)g of the PMVS antibody expression vector containing the tr-kit cDNA (pCMV5-tr-kit) or no DNA (mock) as previously described (Albanesi et al., 1996). 48 h after transfection, mock- and tr-kit–transfected COS cells were harvested in microinjection buffer (20 mM Hepes, pH 7.5, 120 mM KCl, 0.1 mM EGTA, 10 mM \(\beta\)-glycerophosphate, 10 \(\mu\)g/ml leupeptin, 10 \(\mu\)g/ml aprotinin), homogenized, and then centrifuged for 10 min at 14,000 g at 4°C. Aliquots of supernatant fractions were immediately frozen at −80°C. Tr-kit expression was monitored by Western blot analysis before microinjection experiments.

Quantification of Tr-kit in Mouse Spermatozooa and in COS Cell Extracts

Spermatozooa from the cauda of the epididymis of 12- to 15-week-old CD1 mice were collected in MEM (GIBCO BRL, Gaithersburg, MD) supplemented with 30 mg/ml BSA (Sigma Chemical Co., St. Louis, MO). After a 2-h incubation at 37°C, spermatozooa were collected by centrifugation at 3,000 g at 4°C, washed twice with PBS, and then lysed in SDS-PAGE sample buffer. Lysates were sonicated, for three cycles of 20 s at 4°C, boiled for 5 min, and then centrifuged for 10 min at 10,000 g at 4°C. Soluble material was analyzed by Western blot.

Cell lysate from 3 × 10\(^6\) spermatozooa and 50 \(\mu\)g of proteins from mock- and tr-kit–transfected COS cell extracts were separated on a 10% SDS-PAGE gel under denaturing conditions, blotted onto a nitrocellulose membrane, and then analyzed by Western blot using an anti-c-kit antibody as described below. Intensity of the bands corresponding to tr-kit were quantified by optical densitometry using the Molecular Analyst program and a GS-700 Imaging Densitometer (Bio-Rad Laboratories, Hercules, CA). 50 \(\mu\)g of tr-kit–transfected COS cell extracts contained an amount of tr-kit threefold higher than that present in 3 × 10\(^6\) spermatozooa (see Fig. 1). In microinjection experiments we injected 5 pl of a 0.2–0.4 \(\mu\)g/µl

1. Abbreviations used in this paper: DAG, diacylglycerol; GST, glutathione-S-transferase; InsP, inositol phosphate; InsP\(_3\), inositol 1,4,5-trisphosphate; MII, metaphase II; NRTK, non-receptor tyrosine kinase; PIP\(_2\), phosphatidylinositol-4,5-bisphosphate; PIP\(_3\), phosphatidylinositol-3,4,5-trisphosphate; PKC, protein kinase C; PLC, phospholipase C; RTK, receptor tyrosine kinase; SCF, stem cell factor; SH, src-homology; SH2, src-homology 2; SH3, src-homology 3; tr-kit, truncated c-kit.
solution of tr-kit cell extracts (1–2 pg of proteins), an amount corresponding to 0.2–0.4 sperm equivalents of tr-kit.

Oocyte Collection, Microinjection and In Vitro Culture

MII-arrested oocytes were collected from hormonally primed (Hogan et al., 1994) 4- to 6-wk-old CD1 female mice (Charles River, Calco, Italia) 15 h after hCG (Sigma Chemical Co.) injection. Ovulated oocytes were freed from cumulus cells by a brief incubation in 0.5 mg/ml hyaluronidase (Sigma Chemical Co.) in M2 medium (Hogan et al., 1994), washed with M2 medium, and then immediately processed for microinjection as described (Sette et al., 1997). Groups of 20 MII oocytes were transferred to 50–μl drops of M2 under mineral oil (Sigma Chemical Co.) and subjected to intracytoplasmic injections using a Nikon inverted scope (Nikon Corp., Tokyo, Japan) equipped with Hoffman modulation contrast optics (Modulation Optics, Inc., Greenvale, NY) and two Leitz mechanical micromanipulators (Leica AG, Heerbrugg, Switzerland). A quantification of the approximate volume of solution microinjected into a single oocyte, was performed in repeated experiments as follows: a known amount of injection solution (usually 100 pl) was drawn in the injection pipette and used completely for a series of microinjections under the same routine conditions. The average number of oocytes microinjected with 100 pl of solution was 17. Considering the loss of small amounts of solution between injections, the injected volume per oocyte was ~5 pl. After injection, surviving oocytes were cultured at 37°C in M16 medium (Hogan et al., 1994) under a humidified atmosphere of 5% CO2 in air for 7–9 h, and then scored for prometaphase formation by phase-contrast microscopy. To confirm the score, in most experiments eggs were fixed in 4% PFA in PBS 7 h after the injection, and stained with 10 μg/ml Hoechst 33342 (Sigma Chemical Co.) for 5 min. After five washes in M2, eggs were mounted in 30% glycerol in PBS on glass slides with coverslip compression, sealed, and then analyzed by fluorescence microscopy.

For cortical granule staining, microinjected eggs were fixed after 1–4 h, and processed as described below.

Cortical Granule and Chromosome Staining

1–4 h after microinjection, cultured oocytes were freed from the zona pel lucida by acidic tyrode solution (Hogan et al., 1994) and fixed in 4% PFA in PBS for 30 min at room temperature. After three washes in M2 (blocking solution), oocytes were incubated with 0.1% Triton X-100 in the same medium for 5 min and transferred to blocking solution for 60 min at room temperature. Oocytes were then treated for 60 min at room temperature with 0.1 mg/ml TRITC-labeled lectin from Lens Culinaris (Sigma Chemical Co.) in blocking solution (Ducibella et al., 1988), washed four times for 5 min in blocking solution, incubated for 5 min with 10 μg/ml Hoechst 33342 dye in blocking solution, and washed again. Oocytes were then mounted in 30% glycerol in PBS as described above and analyzed by fluorescence microscopy.

Glutathione-S-Transferase–PLCg1 Fusion Proteins and Antibodies Used in Microinjection Experiments

The glutathione-transferase (GST)-encoding plasmid pGEX3X was obtained from Pharmacia Biotech, Inc. (Piscataway, NJ). Plasmid DNA encoding for GST fusion proteins of bovine PLCg1 SH2-SH2 and human PLCg1 SH3 (see Fig. 3) in pGEX2T were a kind gift from S. Courtneidge (Sugen, Inc., Redwood City, CA).

Affinity-purified GST-PLCg1 SH region fusion protein (GST-PLCg1-SH2-HS2H3) (No. sc4039), and GST-Grb2-SH3 (residues 156–199; No. sc4036) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Control GST protein, GST-PLCg1 SH2-SH2, and GST-PLCg1 SH3 fusion proteins were produced as described by Gish et al. (1995), affinity purified on glutathione Sepharose, extensively dialyzed against PBS, and concentrated to 10 mg/ml using a 10-kD cutoff Centricon (Millipore Corp., Bedford, MA). Protein concentration was determined according to Bradford (1976) using BSA as a standard.

The anti-PLCg1bd antibody (No. 426; Santa Cruz Biotechnology) consists of affinity-purified rabbit polyclonal IgGs directed against a peptide of the COOH terminus of bovine PLCg1 (amino acids 1,240–1,262). Both antibodies recognize mouse PLCg1 in Western blot and immunoprecipitation and do not cross-react with other PLC isoforms. As a control, affinity-purified normal rabbit IgGs were used.

For tr-kit co-injection experiments in mouse eggs, GST fusion proteins were diluted in the injected solution to 500 μg/ml whereas affinity-purified rabbit polyclonal IgGs were diluted to 10 μg/ml. Since we injected 5 pl of protein solution in the oocytes, considering the average volume of mouse eggs equal to 270 pl, the final concentration inside the injected eggs of all microinjected proteins was ~50-fold lower (10 μg/ml for the GST fusion proteins and 0.2 μg/ml for the antibodies), unless otherwise specified in the Results section. Control experiments using the Santa Cruz glycerol butanol vehicle (in addition to the injected tr-kit) were done in the presence of egg activation (Sette, C., and A. Bevilacqua, unpublished observations).

Measurement of DAG and InsP Production in COS Cells

For measurement of DAG production, subconfluent COS cell monolayers in 90-mm dishes were processed for Ca2+P0 transfection with either 20 μg pRK-PLCg1 (expression vector for PLCg1), a generous gift from Dr. A. Ullrich, Max-Planck Institut, Martinsried, Germany) alone, or with 20 μg pRK-PLCg1 and 20 μg pCMV5-tr-kit (see Albanesi et al., 1996). 18 h after transfection, cells were washed with PBS and cultured for additional 2 h in DME containing 10% FCS (GIBCO-BRL) and 0.5 mM [3H]-myo-inositol acid. At the end of the incubation, cells were washed twice with cold PBS and harvested in 0.5 ml PBS dish. The pH of the cell suspensions was lowered to 2–3 by addition of HCl (30 mM final concentration). Lipids were extracted by addition of 4 vol of chloroform/methanol (1:2) in glass tubes according to the method of Bouchkhache and Lagarde (1982). Neutral lipids were separated by thin layer chromatography on silicagel plates (Merck, Darmstadt, Germany) using a solution of hexane/diethyl ether/aqueous acetic acid (50:50:1) for the migration. Plates were stained with 0.3 mg/ml Coomassie brilliant blue R250 (Bio-Rad Laboratorys) in 0.15 M NaCl containing 20% methanol. The DAG bands were identified on the plates based on the migration of known lipid standards (Sigma Chemical Co.), scraped off, mixed with Picofluor (Packard), and their radioactivity was determined by liquid scintillation counting. DAG-associated radioactivity was expressed as cpm incorporated in DAG versus 106 cpm incorporated in total lipids (neutral lipids bands plus phospholipids at the origin of the chromatogram). DAG-associated radioactivity ranged between 1,200 and 3,000 cpm; the average amount of cpm in total lipids was ~200,000.

For measurement of InsP production, subconfluent COS cell monolayers in 35-mm dishes were transfected with either 4 μg pRK-PLCg1 alone, or 4 μg pRK-PLCg1 and 4 μg pCMV5-tr-kit. Immediately after transfection cells were transferred to DME containing 10% FCS and 5 μCi/ml D-myoinositol[3H]-Hnositol, and cultured for additional 12–24 h. We selected two time points after transfection (12 and 24 h) to investigate whether cells had reached steady state of phosphoinositides labeling and InsP accumulation. The tr-kit–induced InsP accumulation measured at 24 h is only slightly higher than that observed at 12 h, suggesting that cells had reached steady-state levels. During the final 60 min of incubation, 10 mM LiCl was added to the medium. Incubation was stopped by washing three times with PBS and adding ice-cold 10% TCA to the cells. [3H]-Inositol-labeled InsPs were extracted, separated by ion exchange chromatography on Dowex 1×8-200 and counted as described by Adamo et al. (1985). InsPs were expressed as cpm incorporated in InsPs fractions per mg of total protein resumed after TCA precipitation.

Immunoprecipitation and GST-PLCg1 Coprecipitation Experiments

Subconfluent COS cell monolayers in 90-mm dishes were processed for Ca2+P0 transfection with the appropriate plasmids as described above. Cells transfected with pCMV5-c-kit (obtained by subcloning c-kit cDNA from pCDM8-c-kit [a generous gift from Dr. P. Besmer, Sloan Kettering Cancer Center, New York, NY] into pCMV5) were treated for 10 min with or without 100 ng/ml stem cell factor (SCF) in the presence of 250 μM sodium orthovanadate in complete medium before harvesting. 24 h after transfection, cells were rinsed with PBS, harvested in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 15 mM MgCl2, 15 mM EGTA, 250 mM sodium orthovanadate, 10% glycerol, 1% Triton X-100, 0.1% SDS, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 10 μg/ml pepstatin), and incubated on ice for 5 min. Detergent-soluble extracts were separated by 10% centrifugation at 15,000 g at 4°C. For immunoprecipitation experiments, either a rabbit anti-kit antiserum raised against the 13 COOH-terminal amino acids common to the
mouse c-kit and tr-kit proteins (1:100 dilution; Albanesi et al., 1996) or a mixture of 1 μg anti-PLCγ1bd and 1 μg anti-PLCγ1ct IgGs were preincubated for 60 min with protein A-Sepharose beads (Sigma Chemical Co.). At the end of the incubation, the beads were washed once with 20 mM Tris-HCl, pH 7.8, containing 0.5 M NaCl, twice with 20 mM Tris-HCl, pH 7.8, and then incubated for 90 min at 4°C with the detergent-soluble extracts under constant shaking. Protein A–Sepharose–bound immunocomplexes were rinsed three times with PBS containing 0.05% BSA, twice with PBS, and finally eluted in SDS-PAGE sample buffer (62.5 mM Tris-HCl, pH 6.8, 10% glycerol, 2% (wt/vol) SDS, 0.7 M 2-mercaptoethanol, and 0.0025% (wt/vol) bromophenol blue). For GST-PLC coprecipitation experiments, 10 μg of affinity-purified GST-PLC (SH2-SH2-SH3) protein were added to detergent-soluble extracts. After 30 min, samples were incubated with glutathione–agarose beads for additional 90 min at 4°C under constant shaking. At the end of the incubation, glutathione–agarose–bound protein complexes were rinsed three times with PBS before elution in 50 mM Tris-HCl, pH 8.0, containing 5 mM reduced glutathione. Eluted proteins were diluted in SDS-PAGE sample buffer for Western-blot analysis.

Western Blot Analysis

For detection of recombinant proteins, samples from transfected cells, from immunoprecipitation, and from coprecipitation with GST-PLC protein, were separated on 10% SDS-PAGE, transferred onto nitrocellulose membrane (Amersham) and subjected to Western blot analysis with different antibodies as previously described (Albanesi et al., 1996). In brief, first antibody incubation (90 minutes at room temperature) was carried out with 1:1,000 dilution of a polyclonal anti-kit antisera (Albanesi et al., 1996), or affinity-purified polyclonal anti-PLCγ1bd IgGs described above, or affinity-purified mouse anti-phosphotyrosine mAb (No. 508, Santa Cruz Biotechnology). Second antibody incubation was carried out with 1:10,000 dilution of either anti-rabbit or anti-mouse IgGs antibody conjugated to horseradish peroxidase (Amersham Corp., Arlington Heights, IL). Immunobonded bands were detected by the enhanced chemiluminescence method (Amersham Corp.). Tyrosine phosphorylation of immunoprecipitated PLCγ1 was quantified as the ratio of the optical density detected by the anti-phosphotyrosine antibody (αPY) versus that detected by the anti-PLCγ1 antibody (αPLCγ1) (mean ± SD of six separate experiments). Optical Densitometry was performed using the Molecular Analyst program and a GS-700 Imaging Densitometer (Bio-Rad Laboratories).

Results

Kinetics of Tr-kit–induced Parthenogenetic Activation of Mouse Eggs

We have previously shown that microinjection of either cell extracts expressing recombinant tr-kit or synthetic tr-kit mRNA is able to induce complete parthenogenetic activation of mouse eggs and cleavage to the two-cell stage (Sette et al., 1997). To compare the amount of recombinant tr-kit capable of activating mouse eggs with the amount carried by a single mouse sperm, we performed Western blot analysis (Fig. 1). Densitometric analysis of immunoreactive bands indicated that the amount of tr-kit protein obtained from extracts of 3 × 10⁶ sperm was nearly threefold smaller than that from 50 μg of extracts of tr-kit–expressing COS cells (see also Materials and Methods). As shown in Fig. 2 and Table I, injection of ~0.2–0.4 sperm equivalents of recombinant tr-kit is sufficient to exert activation of 60–70% mouse eggs. Injection of ~0.1 sperm equivalents of tr-kit reduced the activation rate to 40–50%, and injection of ~0.01 sperm equivalents did not result in significant activation of mouse eggs above the background reported in Table I (not shown). Although the timing of egg activation triggered by microinjection of recombinant tr-kit is not completely synchronous, the typical time course and pattern of the cell cycle events (Fig. 2) closely resemble those observed at fertilization of the mouse eggs (Mori et al., 1988). 1 h after injection, 60–70% of the eggs underwent metaphase–anaphase transition and initiated polar body extrusion (Fig. 2, A and B). At 4 h, the polar body was extruded in all activated eggs, chromosome decondensation had begun and an incipient pronucleus was evident (Fig. 2 C). The size of the pronucleus progressively increased from the time of appearance to reach its full size after 6–7 h from the injection in all the activated eggs (Fig. 2 D).

A GST Fusion Protein Containing the PLCγ1-SH3 Domain Inhibits Tr-kit–induced Parthenogenetic Activation of Mouse Eggs

To test the hypothesis that PLCγ1 is involved in tr-kit–induced parthenogenetic activation of mouse eggs, we injected MI-arrested oocytes, which express PLCγ1 (Fig. 3 A; DupONT et al., 1996), to co-injection of extracts from COS cells expressing a recombinant tr-kit protein, and a purified GST fusion protein containing the entire SH2-SH2-SH3 region of PLCγ1 (GST-PLCγ1-SH2SH3H3) (Fig. 3 B). The SH region mediates interaction of PLCγ1 with proteins involved in enzyme regulation (Lee and Rhee, 1995; Kamat and Carpenter, 1997; Rhee and Bae, 1997), and competition to this region of PLCγ1 has been shown to prevent enzyme activation (Chen et al., 1994). Injection of recombinant tr-kit alone, or co-injection of tr-kit together with a control GST protein resulted in activation of 63–70% of the eggs, as monitored by formation of a pronucleus 4–7 h after injection (Table I). Co-injection of tr-kit and GST-PLCγ1-SH2SH3H3 significantly reduced the activation rate to 15%, suggesting a role of PLCγ1 in tr-kit action in the egg cytoplasm. Only 5–8% of spontaneous activation was obtained in either non-injected eggs (Table I) or in eggs injected with extract from mock-transfected cells (data not shown; Sette et al., 1997).

To further investigate which SH domain of PLCγ1 is involved in tr-kit–induced egg activation, we co-injected tr-kit with GST fusion proteins containing either the tandem SH2 domains (GST-PLCγ1-SH2SH3H2) or the SH3 domain (GST-PLCγ1-SH3) of the protein (Fig. 3 C). Co-injection of GST-PLCγ1-SH2SH3H2 only slightly reduced tr-kit–induced egg activation (55% versus 70%; Table I). However, co-injection of GST-PLCγ1-SH3 inhibited egg activation as efficiently as the entire SH2-SH2-SH3 region, reducing the activation rate to 14% (Table I). Since we have previously reported that tr-kit–induced egg activation is also associ-

![Figure 1. Quantitative analysis of recombinant tr-kit microinjected into MI-arrested mouse oocytes. Western blot analysis with an anti-e-c kit antibody was performed on 25 μl (50 μg of total proteins) of extracts from COS cells expressing recombinant tr-kit or on extracts from 3 × 10⁶ sperms. The expected major immunoreactive band of ~28 kD was present in both samples in a 3:1 ratio (see Materials and Methods). Since in our microinjection experiments we inject into mouse eggs ~1–2 pg of proteins from extracts of tr-kit–expressing COS cells, we can calculate that we inject between 0.2 and 0.4 sperm equivalents of recombinant tr-kit. This experiment was performed twice with similar results.](image-url)
ated with early events of egg activation, such as the Ca\(^{2+}\)-dependent cortical granules (CGs) exocytosis (Sette et al., 1997), the effect of the GST-PLC\(_1\) SH2 and SH3 fusion proteins on CGs release was investigated. Co-injection of GST-PLC\(_1\)-SH3 inhibited both cortical granule release (Fig. 4A) and polar body extrusion (not shown) with a rate similar to that observed for pronuclear formation (Fig. 4A; see Table I for rate of inhibition) while the GST-PLC\(_1\)-SH2SH2 protein was much less effective (Fig. 4B; see Table I for rate of inhibition). Co-injection of 10-fold diluted GST-PLC\(_1\)-SH3, at a final concentration in the egg of \(~1\mu\text{g/ml}\), resulted in an almost equally efficient inhibition of tr-kit–induced pronuclear formation (Table I). To test for the specificity of the SH3 domain of PLC\(_1\), we co-injected tr-kit together with a GST fusion protein containing the SH3 domain of the adaptor protein Grb2. Although the SH3 domains of Grb2 and PLC\(_1\) can bind to common targets, such as dynamin (Gout et al., 1993), they have been reported to direct the corresponding GST fusion proteins to different cell compartments when microinjected in NIH3T3 fibroblasts (Bar-Sagi et al., 1993), implying that the Grb2 and PLC\(_1\) SH3 domains can also recognize different targets. As shown in Table I, co-injection of GST-Grb2-SH3 was not able to affect tr-kit–induced egg activation. These data indicate that competition for targets of the SH3 domain specific to PLC\(_1\) impairs tr-kit–induced egg activation.

Table I. A GST-PLC\(_1\)-SH3 Domain Fusion Protein Specifically Inhibits Tr-kit–induced Parthenogenetic Activation of Mouse Eggs

Sample	No. of experiments	Total eggs	Pronuclei formed	Percent Activated eggs
Non-injected	9	80	4	5***
Tr-kit	16	118	75	63.5
Tr-kit+GST	4	20	14	70.0*
Tr-kit+PLC\(_1\)-SH2SH2	4	46	7	15.2***
Tr-kit+PLC\(_1\)-SH2	6	41	21	53.8**
Tr-kit+PLC\(_1\)-SH3	6	56	8	14.2***
Tr-kit+PLC\(_1\)-SH3 (1 µg/ml)	3	35	7	20.0***
Tr-kit+Grb2SH3	3	24	16	66.6*

Summary of microinjection experiments using 5 pl of extracts (200–400 µg/ml) from tr-kit–transfected COS cells (tr-kit) alone or plus GST (tr-kit+GST), or plus GST-PLC\(_1\)-SH2SH2 (tr-kit+PLC\(_1\)-SH2SH2), or plus GST-PLC\(_1\)-SH3 (tr-kit+PLC\(_1\)-SH3), or plus GST-Grb2SH3 (tr-kit+Grb2SH3). Final concentration of all co-injected GST fusion proteins inside the egg was 10 µg/ml. GST-PLC\(_1\)-SH3 was also tested at a 10-fold lower concentration (1 µg/ml). Pronuclear formation was scored 4–7 h after microinjection by phase-contrast microscopy. In most experiments pronuclear formation was confirmed by Hoechst staining. Statistical analysis (ANOVA test) was performed using program PSI-plot 3.0 from Polysoftware International (P values vs. tr-kit: *P > 0.5; **P < 0.05; ***P < 0.0001).

The role of the SH region of PLC\(_1\) in tr-kit–mediated egg activation was also investigated by microinjection experiments using antibodies raised against different regions of PLC\(_1\). The anti-PLC\(_1\)bd antibody is directed against the SH region of PLC\(_1\) and we hypothesized that its binding would prevent PLC\(_1\) interaction with effector proteins. The anti-PLC\(_1\)ct antibody is directed against the COOH terminus of PLC\(_1\), a region of the enzyme that is not known to be involved in catalytic activity and/or interaction of PLC\(_1\) with other proteins (Lee and Rhee, 1995). These antibodies are specific for PLC\(_1\), and they do not cross-react with other PLC isoenzymes. The anti-PLC\(_1\)bd (Fig. 3A) and the anti-PLC\(_1\)ct antibodies (not shown) recognize PLC\(_1\) in Western blots from extracts of both PLC\(_1\)-overexpressing COS cells and of MII-arrested mouse oocytes. Microinjection experiments showed that the anti-PLC\(_1\)bd antibody almost completely suppresses...
tr-kit–induced mouse egg activation, resembling the effect obtained by co-injection of tr-kit and either the GST-PLCγ1-SH2SH2SH3 or the GST-PLCγ1-SH3 fusion proteins, whereas nonimmune antibodies at the same concentration are ineffective (Table II). On the other hand, co-injection of recombinant tr-kit and the anti-PLCγ1ct antibody did not significantly inhibit egg activation, showing that binding of antibodies to the COOH terminus of PLCγ1 does not impair interaction with factors required for egg activation (Table II). The inhibition obtained with the anti-PLCγ1bd antibody confirms that PLCγ1 is involved in parthenogenetic egg activation triggered by tr-kit and that an essential role in such pathway is played by the SH region of PLCγ1.

Tr-kit Stimulates PIP2 Hydrolysis in Transfected COS Cells

The ability of tr-kit to stimulate the catalytic activity of PLCγ1 was investigated by cotransfection experiments in COS cells. Cells were transfected with a tr-kit expression construct and assayed for PLCγ1 activity. The results showed that tr-kit stimulated PIP2 hydrolysis in transfected COS cells, confirming the role of PLCγ1 in tr-kit signaling.

Figure 3. Expression of PLCγ1 in MII-arrested mouse eggs, and schematic representation of the bacterial fusion proteins containing different PLCγ1 domains. In the schematic representation of PLCγ1 on the top of this figure, brackets identify the regions of PLCγ1 recognized by the two antibodies used for microinjection experiments shown in Table II. PH, pleckstrin homology domain; Ca2+, EF-hand domain (calcium binding motif); X and Y, split catalytic domain; P and H, split pleckstrin homology domain; SH2 and SH3, src-homology domains; C2, Ca2+-dependent lipid binding domain. (A) Western blot from extracts of COS cells transfected with a PLCγ1 expression vector (50 μg), and from extracts of 50 mouse eggs, probed with the anti-PLCγ1bd antibody, described in the Materials and Methods section, and used for the microinjection experiments shown in Table II. (B) Bacterial fusion proteins containing different PLCγ1 domains used for the experiments shown in Table I. The Coomassie blue staining of a 10% SDS-PAGE gel loaded with affinity-purified GST fusion proteins is shown on the right: lane 1, GST; lane 2, GST-PLCγ1-SH2SH2SH3; lane 3, GST-PLCγ1-SH2SH; lane 4, GST-PLCγ1-SH3.

Figure 4. The SH3 domain, and not the SH2 domains, of PLCγ1 inhibits tr-kit-induced cortical granules exocytosis and pronuclear formation in mouse eggs. Eggs were co-injected with cell extracts (200 μg/ml) containing recombinant tr-kit and 500 μg/ml (final concentration in the egg: ~10 μg/ml) of either GST-PLCγ1-SH3 (A) or GST-PLCγ1-SH2SH2 (B) and fixed 4 h after injection. Tr-kit–induced cortical granule reaction was inhibited by co-injection of GST-PLCγ1-SH3, but not by GST-PLCγ1-SH2SH2, with a similar rate as for pronuclear formation (see Table I) in three separate experiments. Double staining of chromatin (Hoechst dye) and cortical granules (TRITC-labeled lectin) was performed as described under Materials and Methods. Bar, 30 μm.
Tr-kit Stimulates Tyrosine Phosphorylation of PLCγ1 in Transfected COS Cells

Since tyrosine phosphorylation is often associated with activation of PLCγ1 (Rhee and Bae, 1997), we tested whether an increase in phosphotyrosine content of PLCγ1 is detectable in tr-kit–expressing cells. In cells transfected with a PLCγ1 expression vector alone, PLCγ1 was found to be

Figure 5. Tr-kit stimulates DAG and InsP production in COS cells coexpressing PLCγ1. Cells were transfected with the indicated expression vectors and labeled with either [3H]arachidonic acid (A) or [3H]inositol (B) and processed as described under Materials and Methods. (A) DAG content was measured as cpm incorporated in DAG versus 10^6 cpm incorporated in total lipids. (B) InsPs content was measured as cpm incorporated into InsPs per mg protein 24 h after transfection. The data represent the mean ± SD of three separate experiments, each performed in triplicate. (C) Pellets obtained after TCA precipitation of representative samples analyzed for InsP production were resuspended in SDS-PAGE sample buffer and analyzed in Western blot (50 µg in each lane) by using either anti-PLCγ1bd or anti-kit antibodies.
already tyrosine-phosphorylated, but a significant increase in its phosphotyrosine content was observed in tr-kit/PLCγ1 cotransfected cells (Fig. 6 A, right panel). We routinely observed an increase in immunoprecipitated PLCγ1 from PLCγ1/tr-kit cotransfected cells (Fig. 6 A, left panel), but this does not reflect higher PLCγ1 expression in these cells as shown by the Western-blot analysis of total cell extracts (Fig. 6 B, left panel; see also Fig. 5 C). Densitometric analysis indicated that the tyrosine phosphorylation of PLCγ1 (normalized for PLCγ1 content of the immunoprecipitates) was approximately threefold higher in tr-kit cotransfected cells, with respect to cells transfected with PLCγ1 alone (not shown). This effect was selective since tr-kit expression did not induce a general increase in the tyrosine phosphorylation pattern of total cell extracts (Fig. 6 B, right panel).

PLCγ1 Activation Does Not Require a Stable Association with Tr-kit

Tr-kit shares with c-kit the 190 COOH-terminal residues (Rossi et al., 1992), a region thought to mediate the interaction of activated c-kit with PLCγ1. Indeed, mutation of tyrosine 936 to phenylalanine in the human c-kit receptor impairs docking of PLCγ1 (Herbst et al., 1995), and this residue is conserved in mouse tr-kit (tyr161). SCF-induced autophosphorylation of the c-kit receptor creates docking sites for several signaling proteins (Herbst et al., 1991; Lev et al., 1991; Rottapel et al., 1991; Koike et al., 1993; Blumenjensen et al., 1994; Herbst et al., 1995), and presumably, phosphorylation of tyrosine 936 creates a binding site for the SH2 domains of PLCγ1 or of intercalated adaptor proteins. It is therefore conceivable that also tr-kit, if phosphorylated on tyr161, can bind to PLCγ1.

To test this hypothesis we expressed tr-kit in COS cells and purified the cell extracts on a GST-PLCγ1 fusion vector. (A) Immunoprecipitated proteins were analyzed in Western blot using either the anti-PLCγ1bd antibody (aPLCγ1, left panel) or an anti-phosphotyrosine antibody (aPY, right panel). These images are representative of six separate experiments, which gave similar results. (B) Western blot analysis with anti-PLCγ1 antibody (aPLCγ1) and anti-phosphotyrosine antibody (aPY) of total cell extracts (50 μg in each lane) from PLCγ1- and PLCγ1/tr-kit–transfected COS cells.

Figure 6. Tr-kit stimulates tyrosine phosphorylation of PLCγ1 in transfected COS cells. Cells were transfected with a PLCγ1 expression vector, either alone or together with the tr-kit expression vector. (A) Cell extracts were immunoprecipitated using a mixture of anti-PLCγ1 antibodies (see Materials and Methods). Immunoprecipitated proteins were analyzed in Western blot using either the anti-PLCγ1bd antibody (aPLCγ1, left panel) or an anti-phosphotyrosine antibody (aPY, right panel). These images are representative of six separate experiments, which gave similar results. (B) Western blot analysis with anti-PLCγ1 antibody (aPLCγ1) and anti-phosphotyrosine antibody (aPY) of total cell extracts (50 μg in each lane) from PLCγ1- and PLCγ1/tr-kit–transfected COS cells.

Discussion

Entrance of a sperm factor(s) into the egg cytoplasm after sperm-egg fusion is thought to trigger a series of events starting with Ca2+ release from intracellular stores and culminating in completion of the meiotic cell cycle and the onset of embryonic development (Whitaker and Swann, 1993). Recently, it has been reported that activation of PLCγ is required for the sperm-induced Ca2+ rise observed in starfish eggs at fertilization, and that the two SH2 domains of PLCγ and their ability to bind phosphotyrosines are important for PLCγ activation and the onset of Ca2+ rise (Carroll et al., 1997). Here we report that PLCγ mediates the parthenogenetic activation of mouse eggs induced by microinjection of recombinant tr-kit, a protein present in the residual cytoplasm of mouse spermatozoa. The SH3 domain of PLCγ1 plays a fundamental role in tr-kit–induced egg activation, being required for both cortical granule exocytosis and cell cycle resumption. This role is specific since the SH3 domain of the Grb2 adaptor protein does not inhibit tr-kit action inside the egg. We also show that tr-kit is able to activate recombinant PLCγ1 when coexpressed in a heterologous system.

Activation of PLC results in hydrolysis of PIP2, with production of DAG and InsP3 (Berridge, 1993), and both these second messengers are likely to play a major role in mammalian egg activation at fertilization. DAG and/or synthetic PKC activators are able to trigger resumption of cell cycle in MII-arrested oocytes (Colonna et al., 1997; Gallicano et al., 1997a,b). Microinjection of InsP3 into mammalian eggs is able to trigger Ca2+ transients, cortical granule exocytosis, and pronuclear formation, and microinjection of antibodies directed against the InsP3 receptor blocks sperm-induced egg activation (Miyazaki et al., 1992, 1993; Xu et al., 1994; Berridge, 1996). Furthermore, inhibition of PIP2 hydrolysis with the specific PLC inhibi-
activation in Stimulation of artificially expressed RTKs can initiate egg activity is involved in egg activation in different species (Lee and Rhee, 1995; Kamat and Carpenter, 1997; or other proteins mediating PLC

Figure 7. Tr-kit does not stably associate with PLCγ1. (A) COS cells were transfected with no DNA (mock), or 20 ng/dish pCMV5-c-kit (c-kit), or 20 ng/dish pCMV5-tr-kit (tr-kit). C-kit-transfected cells were incubated for the final 10 min with or without 100 ng/ml SCF. Cell extracts were either analyzed immediately in Western blot (50 μg in each lane) with an anti-kit antibody (right side of the panel), or incubated for 2 h with a GST-PLCγ1-SH2SH2SH3 fusion protein linked to glutathione–agarose beads. Proteins bound to the beads were eluted as described under Materials and Methods and analyzed in Western blot using an anti-kit antibody (left side of the panel). (B) Cells were transfected as described in A with tr-kit or c-kit expression vectors. Cell extracts were immunoprecipitated using an anti-kit antibody preadsorbed to protein A–Sepharose beads. Immunoprecipitated proteins were analyzed in Western blot using an anti-phosphotyrosine antibody. The band recognized by the anti-phosphotyrosine antibody with a molecular size similar to the one expected for tr-kit is present in all the samples, regardless of tr-kit presence, indicating that this band is due to a different tyrosine-phosphorylated protein present in the anti-kit immunoprecipitates from COS cells. (C) Cell extracts (50 μg) from the same samples shown in B were analyzed in Western blot using an anti-kit antibody. All panels are representative of at least three separate experiments.

ator U73122 blocks the sperm-induced Ca2+ spiking at fertilization in mouse eggs (Dupont et al., 1996). The present data, showing that tr-kit acts through activation of PLCγ1, are in agreement with the previous observation that U73122 blocks parthenogenetic egg activation triggered by tr-kit (Sette et al., 1997). The whole of these data indicates that tr-sit is a sperm factor that might play a physiological role in triggering early mouse embryonic development. Further support to this hypothesis is the observation that activation of mouse eggs is elicited by microinjection of an amount of recombinant tr-kit comparable to that carried by a single mouse sperm.

PLCγ1 is activated by tyrosine kinase–dependent pathways (Lee and Rhee, 1995; Kamat and Carpenter, 1997; Rhee and Bae, 1997) and data suggest that tyrosine kinase activity is involved in egg activation in different species. Stimulation of artificially expressed RTKs can initiate egg activation in Xenopus (Yim et al., 1994) and in starfish eggs (Shilling et al., 1994). Moreover, endogenous soluble src-related tyrosine kinases are activated shortly after fertilization both in Xenopus and in sea urchin (Sato et al., 1996; Kinsey, 1996). In addition, a membrane-associated c-abl–related tyrosine kinase is also activated at fertilization in sea urchin eggs (Moore and Kinsey, 1994). Although the activation of these tyrosine kinases does not always precede the Ca2+ rise, these data indicate that tyrosine phosphorylation is involved in the early events of fertilization. Furthermore, the involvement of PLCγ in Ca2+ rise at fertilization in starfish eggs (Carroll et al., 1997) suggests that one or more tyrosine kinases play a role in the upstream signaling pathway at fertilization in several species. Indeed, experiments with specific inhibitors have shown that tyrosine kinase activity is important for both block of polyspermy and late events of starfish egg activation (Moore and Kinsey, 1995). In the mouse, it has been shown that inhibitors of both tyrosine kinases and PLC can impair very early events, such as sperm-induced Ca2+ spiking, associated with egg activation at fertilization (Dupont et al., 1996).

Although tr-kit lacks an ATP-binding site, and thus it should not present intrinsic tyrosine kinase activity (Rossi et al., 1992), the possibility exists that tr-kit interacts with either RTKs or non-receptor tyrosine kinases (NRTKs) present in the egg, which in turn phosphorylate tr-kit itself, or other proteins mediating PLCγ1 activation. The full-length c-kit RTK is present in oovulated mouse oocytes (Manova et al., 1990; Horie et al., 1991; Yoshinaga et al., 1991); however, we have previously shown that SCF fails to induce cortical granule exocytosis, meiosis resumption and pronuclear formation in MII-arrested oocytes (Sette et al., 1997). In agreement with those observations, we show here that the SCF-stimulated c-kit receptor binds PLCγ1 but does not stimulate its enzymatic activity in transfected COS cells, as previously reported in other cellular systems (Lev et al., 1991; Koike et al., 1993; Blumen-Jensen et al., 1994, Kozawa et al., 1997). The results herein presented also indicate that tr-kit is able to stimulate both DAG and InsPs production when coexpressed with PLCγ1 in COS cells. Since activation of PIP2 hydrolysis does not seem to require a stable physical interaction between tr-kit and PLCγ1, intercalated proteins may mediate the activation of PLCγ1.
The SH region of PLCγ1 plays an essential role in tr-kit–mediated activation of mouse eggs, as shown by direct competition experiments with either a GST-PLCγ1-SH2SH2SH3 fusion protein or an antibody specifically directed against this region of the enzyme. Since a GST-PLCγ1-SH2SH2 fusion protein inhibits sperm-induced activation of starfish eggs (Carroll et al., 1997), our results suggest that SH-mediated activation of PLCγ1 is an evolutionarily conserved mechanism of egg activation. On the other hand, a GST-PLCγ1-SH3 fusion protein is much more effective than a GST-PLCγ1-SH2SH2 fusion protein in inhibiting tr-kit action in mouse eggs. These results are somehow surprising, since the interaction of the SH2 domains of PLCγ1 with phosphotyrosine residues present in activated RTKs or NRTKs is thought to be an essential step for tyrosine phosphorylation, translocation, and activation of PLCγ1 (Lee and Rhee, 1995; Kamat and Carpenter, 1997; Rhee et al., 1996). Ultimately, cytosolic PLCγ1 has to reach the particulate compartments of the cell to exert its enzymatic function. Translocation of PLCγ1 to the membrane and/or the cytoskeleton might bring the enzyme in close proximity to other agents, such as phosphatidic acid (Jones and Carpenter, 1993), arachidonic acid in concert with microtubule-associated tau proteins (Hwang et al., 1996), and PIP3 (Baet et al., 1998; Falasca et al., 1998), which have been reported to stimulate its hydrolytic activity also independently from tyrosine phosphorylation. The SH3 domain of PLCγ1 has been shown to direct the enzyme to the cytoskeleton in proximity of the plasma membrane (Bar-Sagi et al., 1993), whereas the PH domain is required for the stable interaction of PLCγ1 with membrane lipids (Falasca et al., 1998). According to this model, our data suggest that tr-kit triggers activation of PLCγ1 by allowing its interaction with effector proteins in the particulate compartment of the egg via the SH3 domain.

The SH3 domain might also be directly involved in the modulation of PLCγ1 enzymatic activity. Indeed, microinjection of a catalytically inactive PLCγ1 into quiescent NIH3T3 fibroblasts induces a mitogenic response, and the SH3 domain of the protein is required for this effect (Huang et al., 1995), suggesting that the SH3 domain of PLCγ1 is the target of inhibitory proteins. Titration of these proteins with exogenous PLCγ1-SH3 domains might allow activation of endogenous PLCγ1, leading to the mitogenic response. Deletion experiments suggest that the SH region of PLCγ1 exerts an inhibitory role on the enzyme, probably impairing the correct folding of the two X and Y catalytic domains (Horstman et al., 1996). Presumably, tyrosine phosphorylation of the enzyme produces a conformational modification and relieves this negative influence (Kamat and Carpenter, 1997). However, it is possible that other interactions within the SH region, such as binding of proteins to the SH3 domain, are able to induce similar modifications and derepress PLCγ1 enzyme activity. Intercalated proteins might mediate the interaction between tr-kit and PLCγ1 causing the consequent activation of the enzyme. Indeed, it is known that SH2-containing, tyrosine-phosphorylated, adaptor proteins, such as the Syp tyrosine phosphatase, can indirectly couple other signaling proteins to tyrosine-phosphorylated RTKs (Li et al., 1994). Tyrosine phosphorylation induced by tr-kit interaction with a kinase present in the egg cytoplasm might create docking sites for intercalated adaptor proteins, which in turn may activate PLCγ1 by association with its SH3 domain.

Recent findings highlight the importance of SH3 domains in cell signaling. In Xenopus oocytes, the ras-GAP pathway is involved in germinal vesicle breakdown, and it has been shown that both an antibody directed against the SH3 domain of GAP, or peptides encompassing this region of the enzyme, are able to block germinal vesicle breakdown induced by oncogenic ras (Duchesne et al., 1993). The role of SH3 domains in regulating enzyme activity has been demonstrated in the case of some NRTKs. Interaction of proline-rich targets with the SH3 domain of src-related kinases results in enzyme activation, as demonstrated for Nef-mediated activation of Hck (Moarefi et al., 1997). Furthermore, the SH3 domain of Itk (a Tec-related kinase) interacts with a proline-rich region of the enzyme resulting in intramolecular inhibition, suggesting that binding of other proline-rich proteins to this SH3 domain might result in Itk activation (Andreotti et al., 1997).

Experiments are underway to identify proteins possibly interacting with tr-kit and PLCγ1 inside the egg cytoplasm and to investigate the physiological role played by tr-kit at fertilization. Mutagenesis experiments will clarify whether the phosphotransferase domain, or discrete tyrosine residues, or other structural elements present in tr-kit are involved in PLCγ1 stimulation and consequent egg activation.
Gallicano, G.I., M.C. Yousef, and D.G. Capco. 1997a. PKC: a pivotal regulator of early development. Bioessays. 19:29–36.

Gallicano, G.I., R.W. McGaughey, and D.G. Capco. 1997b. Activation of protein kinase C after fertilization is required for remodeling the mouse egg into the zygote. Mol. Reprod. Dev. 46:587–601.

Gish, G., M.L. McGlone, T. Pawson, and J.A. Adams. 1995. Biological expression, purification and preliminary kinetic description of the kinase domain of v-Src. J. Biol. Chem. 270:4339–4346.

Gout, I., R. Dhand, I.D. Hiles, M.J. Fry, G. Panayotou, P. Das, O. Truong, N.F. Totty, J. Husan, G.W. Booker, I.D. Campbell, and M.D. Waterfield. 1993. The GTPase dynamics bind to and is activated by a subset of SH3 domains. J. Biol. Chem. 268:24826–24831.

Hoganson, B., R. Beddington, F. Costantini, and E. Lacy. 1994. Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 497 pp.

Homa, S.T., and K. Swann. 1994. A cytosolic sperm factor triggers calcium oscillations and membrane hyperpolarization in human oocytes. Hum. Reprod. 9:2356–2361.

Horio, T., K. Takakura, S. Tai, K. Narimoto, Y. Noda, S. Nishikawa, H. Nakayama, J. Fujita, and T. Morii. 1991. The expression of the c-kit protein during early embryonic development. Biol. Reprod. 45:547–552.

Horstman, D.A., K. DeStefano, and G. Carpenter. 1996. Enhanced phospholipase C-γ1 activity produced by the expression of a truncated c-kit protein during mouse spermatid elongation. Development (Camb.). 122:1291–1302.

Andreato, A.H., S.C. Bunnell, S. Feng, L.J. Berg, and S.L. Schreiber. 1997. Regulatory intramolecular association in a tyrosine kinase of the T-cell family. Nature. 385:93–97.

Bae, Y.S., L.G. Cantley, C.S. Chen, S.R. Kim, K.S. Kwon, and S.G. Rhee. 1998. Significance of PIP2 hydrolysis and regulation of PLCγ1 by phospholipid hydrolysis requires PLCγ1-phosphorylation on tyrosine residues 783 and 1254. Cell. 65:435–441.

Kim, H.K., J.W. Kim, A. Zilberstein, B. Margolis, J.G. Kim, J. Schlessinger, and S.G. Rhee. 1995. PDGF stimulation of inositol phospholipid hydrolysis requires PLCγ1-phosphorylation on tyrosine residues 783 and 1254. Cell. 65:435–441.
Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature. 379:364–368.

Pawson, T. 1995. Protein modules and signaling networks. Nature. 373:573–580.

Rhee, S.G., and Y.S. Bae. 1997. Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272:15045–15048.

Rossi, P., G. Marziali, C. Albanesi, A. Charlesworth, R. Geremia, and V. Sorrentino. 1992. A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Dev. Biol. 152:203–207.

Rottapel, R., M. Reedijk, D.E. Williams, S.D. Lyman, D.M. Anderson, T. Pawson, and A. Bernstein. 1991. The Steel/W transduction pathway: kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol. Cell. Biol. 11:3043–3051.

Sato, K., M. Aoto, K. Mori, S. Akasofu, A.A. Tokmakov, S. Sahara, and Y. Fukami. 1996. Purification and characterization of a src-related p57 protein-tyrosine kinase from Xenopus oocytes. Isolation of an inactive form of the enzyme and its activation and translocation upon fertilization. J. Biol. Chem. 271:13250–13257.

Sette, C., A. Bevilacqua, A. Bianchini, F. Mangia, R. Geremia, and P. Rossi. 1997. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development (Camb.). 124:2267–2274.

Shilling, F.M., D.J. Carroll, A.J. Muslin, J.A. Escobedo, L.T. Williams, and L.A. Jaffe. 1994. Evidence for both tyrosine kinase and G protein-coupled pathways leading to starfish egg activation. Dev. Biol. 162:590–599.

Sorrentino, V., M. Giorgi, R. Geremia, P. Besmer, and P. Rossi. 1991. Expression of the c-kit proto-oncogene in the murine male germ cells. Oncogene. 6:149–151.

Stice, S.L., and J.M. Robl. 1990. Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol. Reprod. Dev. 25:272–280.

Stricker, S.A. 1997. Intracellular injections of a soluble sperm factor trigger calcium oscillations and meiotic maturation in hamster eggs. Development (Camb.). 110:1295–1302.

Valius, M., J.P. Secrist, and A. Kazlauskas. 1995. The GTPase-activating protein of ras suppresses platelet-derived growth factor β receptor signaling by silencing phospholipase C-γ1. Mol. Cell. Biol. 15:3058–3071.

Whitaker, M., and K. Swann. 1993. Lighting the fuse at fertilization. Development (Camb.). 117:1–12.

Wolosker, H., D. Kline, Y. Bian, S. Blackshaw, A.M. Cameron, T.D. Fralich, R.L. Schmaa, and S.H. Snyder. 1998. Molecularly cloned mammalian glucosamine-6-phosphate deaminase localizes to transporting epithelium and lacks oscillin activity. FASEB (Fed. Am. Soc. Exp. Biol.) J. 12:91–99.

Wu, H., C.L. He, and R.A. Fissore. 1997. Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs. Mol. Reprod. Dev. 46:176–189.

Xu, Z., G.S. Kopf, and R.M. Schultz. 1994. Involvement of inositol 1,4,5-triphosphate-mediated Ca2+ release in early and late events of mouse egg activation. Development (Camb.). 120:1851–1859.

Yim, D.L., L.K. Opresko, H.S. Wiley, and R. Nuccitelli. 1994. Highly polarized EGF receptor tyrosine kinase activity initiates egg activation in Xenopus. Dev. Biol. 162:41–55.

Yoshinaga, K., S. Nishikawa, M. Ogawa, S. Hayashi, T. Kunisada, T. Fujimoto, and S.-I. Nishikawa. 1991. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development (Camb.). 113:689–699.