The Model Selection Curse†

By Kfir Eliaz and Ran Spiegler*

A statistician takes an action on behalf of an agent, based on the agent’s self-reported personal data and a sample involving other people. The action that he takes is an estimated function of the agent’s report. The estimation procedure involves model selection. We ask the following question: Is truth-telling optimal for the agent given the statistician’s procedure? We analyze this question in the context of a simple example that highlights the role of model selection. We suggest that our simple exercise may have implications for the broader issue of human interaction with machine learning algorithms. (JEL C52)

In recent years, actions in ever-expanding domains are taken on our behalf by automated systems that rely on machine learning tools. Consider the case of online content provision. A website obtains information about a user’s personal characteristics. Some of these characteristics are actively provided by the user himself; others are obtained by monitoring his online navigation history. The website then feeds these characteristics into a predictive statistical model, which is estimated on a sample consisting of observations of other users. The estimated model then outputs a prediction of the user’s ideal content. In domains like autonomous driving or medical decision making, AI systems are mostly confined to issuing recommendations for a human decision maker. In the future, however, it is possible that decisions in such domains will be entirely based on machine learning.

How should users interact with such a procedure? In particular, should they truthfully share personal characteristics with the automatic system? Of course, in the presence of a conflict of interest between the two parties—e.g., when the online content provider has a distinct political or commercial agenda—the user might be better off if he misreports his characteristics or deletes cookies from his computer. This is a familiar situation of communication under misaligned preferences, which seems

* Eliaz: The Eitan Berglas School of Economics, Tel Aviv University, PO Box 39040, Ramat Aviv, Tel Aviv, 69978 Israel, and Department of Finance, David Eccles School of Business, University of Utah (email: kfire@tauex.tau.ac.il); Spiegler: The Eitan Berglas School of Economics, Tel Aviv University, PO Box 39040, Ramat Aviv, Tel Aviv, 69978 Israel, Department of Economics, University College London, and CfM (email: rani@tauex.tau.ac.il). Larry Samuelson was the coeditor for this article. We thank Susan Athey, Yoav Binyamini, Assaf Cohen, Rami Atar, Loren Imhof, Annie Liang, Benny Moldovanu, Ron Peretz, and especially Martin Cripps for helpful conversations. Special thanks to Leifu Zhang who pointed out an error in the proof of Proposition 2 in an earlier version of the paper. We are also grateful to seminar and conference audiences at Aarhus, Bocconi, DICE, UCL, Brown, Yale, BRIQ, Warwick, and ESSET, and the referees of this journal for their useful comments. Eliaz thanks the hospitality and support of Columbia University.

† Go to https://doi.org/10.1257/aeri.20180485 to visit the article page for additional materials and author disclosure statement(s).
amenable to economists’ standard model of strategic information transmission as a game of incomplete information (with a common prior).

However, suppose there is no conflict of interest between the two parties—i.e., the objective behind the machine learning algorithm is to make the best prediction of the user’s ideal action. But how do such actual systems perform this prediction task? Consider a very basic textbook tool like LASSO. This is a variant on standard linear regression analysis, which adds a cost function that penalizes nonzero coefficients. The procedure involves both model selection (i.e., choosing which of many available variables will enter the regression) and estimation of the selected variables’ coefficients. The predicted action for an agent with a particular vector of personal characteristics x is the dependent variable’s estimated value at x. Such a procedure is considered useful when users have many potentially relevant characteristics relative to the sample size, and especially when we can expect few of them to be relevant for predicting the agent’s ideal action (i.e., the true data-generating process is sparse).

However, LASSO is not a fundamentally Bayesian procedure. Although one can justify its estimates as properties of a Bayesian posterior derived from some prior (Tibshirani 1996; Park and Casella 2008; Gao, van der Vaart, and Zhou 2015), these properties are not necessarily relevant for maximizing the user’s welfare. Furthermore, there is no reason to assume that the prior that rationalizes LASSO in this manner coincides with the user’s actual prior beliefs (the priors in the above-cited papers involve Laplacian distributions over parameters). Thus, neither the preferences nor the priors that take part in the Bayesian foundation for LASSO are necessarily the ones an economic modeler would like to attribute to the user in a plausible model of the interaction.

This observation could be extended to many machine learning predictive methods that are far more elaborate than the simple textbook example of penalized regression. If we want to model human interaction with such algorithms, some departure from the standard Bayesian framework with common priors seems warranted. Put differently, if one were to analyze a model with common priors, where a benevolent Bayesian decision maker tries to take the optimal action for an agent with unknown characteristics, then for almost all prior beliefs, the decision maker’s behavior will not be perfectly mimicked by a familiar machine learning procedure. Our approach in this paper is to take the statistician’s procedure as given (rather than trying to provide a formal rationalization for it) and examine the user’s strategic response to it.

Machine learning algorithms can be extremely complicated. Nevertheless, in this paper we follow the tradition of using simple “toy” models to get insight into complex phenomena. Economists have developed models in this tradition to study the behavior of large organizations or the macroeconomy; surely these are more complex than the most intricate machine learning algorithm. Accordingly, our model is perhaps the simplest that can capture the key element we wish to address—namely, how the element of model selection in machine learning algorithms affect users’ self-reporting decision.

1 The least absolute shrinkage and selection operator (Tibshirani 1996).
Specifically, we present a model of an interaction between an “agent” and a “statistician”—the latter is a stand-in for an automated system that obtains personal data from the agent and outputs an action on his behalf. The agent has a single binary personal characteristic x, which is his private information. The agent has an ideal action, which is a function of x. This function is unknown. The statistician learns about it by obtaining noisy observations of other agents’ ideal actions. This sample constitutes the statistician’s private information. It is small, consisting of one observation for each value of x. The statistician follows a penalized regression procedure: the estimated coefficients of his model minimize a combination of the residual sum of squares and a cost function that combines two common forms of penalties: A fixed penalty for the mere inclusion of the explanatory variable x (L_0 penalty) and a penalty for the absolute value of the variable’s coefficient (L_1 penalty or LASSO).

The procedure’s element of model selection in this simple example consists of the decision whether to admit x as a predictor of the agent’s ideal action.

With one binary characteristic and two sample points, this environment is as far from big data as one could imagine. Nevertheless, it shares a crucial feature with a typical big data predicament that motivates machine learning methods: the sample size is roughly the same as the number of potential explanatory variables, such that an estimation procedure that does not involve selection or shrinkage risks over-fitting (e.g., see Hastie, Tibshirani, and Wainwright 2015). Indeed, an unpenalized regression would perfectly fit the data. As a result, the estimator would have high variance and its predictive performance could be poor, relative to an estimator that excludes x or shrinks its coefficient. Thus, the merit of our simple example is that it manages to capture in a tractable manner the over-fitting problem.

We pose the following question: Fixing the statistician’s procedure and the agent’s prior belief over the true model’s parameters, would the agent always want to truthfully report his personal characteristics to the statistician? When this is the case for all possible priors, we say that the statistician’s procedure (or “estimator”) is incentive-compatible. Our analysis identifies an aspect of the problem that creates a misreporting incentive. Because the agent’s report of x only matters when this variable is selected by the statistician’s procedure, he should only care about the distribution of the variable’s estimated coefficient conditional on the pivotal event in which the variable’s coefficient is not zero. One can construct distributions of the sample noise for which the estimated coefficient conditional on the pivotal event is so biased that the agent is better off introducing a counter-bias by misreporting his personal characteristic.

We refer to this effect as the “model selection curse.” As the term suggests, the logic is reminiscent of pivotal-reasoning phenomena like the winner’s curse in auction theory (Milgrom and Weber 1982) or the swing voter’s curse in the theory of strategic voting (Feddersen and Pesendorfer 1996). The model selection curse does not disappear with large samples: When the noise distribution is asymmetric, the statistician’s procedure can fail incentive-compatibility even asymptotically. In contrast, we show that when the sample noise is symmetrically distributed, the estimator is incentive-compatible.

Related Literature.—Our paper joins a small literature that has begun exploring incentive issues that emerge in the context of classical statistics procedures.
Cummings, Ioannidis, and Ligett (2015) study agents with privacy concerns who strategically report their personal data to an analyst who performs a linear regression. Caragiannis, Procaccia, and Shah (2016) consider the problem of estimating the most accurate classifier when the input to the classifier is provided by a strategic agent who faces a cost of lying. Chassang, Padró i Miquel, and Snowberg (2012) argue for a modification of randomized controlled trials when experimental subjects take unobserved actions that can affect treatment outcomes. Banerjee et al. (2017) rationalize norms regarding experimental protocols (especially randomization) by modeling experimenters as ambiguity-averse decision makers. Spiess (2018) studies the design of estimation procedures that involve model selection when the statistician and the social planner have conflicting interests (e.g., when the statistician has a preference for reporting large effects).

I. A Model

An agent has a privately known, binary personal characteristic \(x \in \{0, 1\} \). In the context of medical decision making, \(x \) can represent a risk factor (e.g., smoking). In the context of online content provision, it can indicate whether the agent visited a particular website. A statistician must take an action \(a \in \mathbb{R} \) on the agent’s behalf. The agent’s payoff from action \(a \) is \(- (a - f(x))^2\), where \(f(x) \in \mathbb{R} \) is the agent’s ideal action as a function of \(x \). It will be convenient to write \(f(0) = \beta_0 \) and \(f(1) = \beta_0 + \beta_1 \), such that \(\beta_1 \) captures the effect of \(x \) on the agent’s ideal action. The parameter profile \(\beta = (\beta_0, \beta_1) \) is unknown.

Before taking an action, the statistician privately observes a noisy signal about \(f \). Specifically, for each \(x = 0, 1 \), he obtains a single observation \(y_x = f(x) + \varepsilon_x \), where \(\varepsilon_0 \) and \(\varepsilon_1 \) are drawn i.i.d. from some distribution with 0 mean. Denote \(\varepsilon = (\varepsilon_0, \varepsilon_1) \). The observations do not involve the agent himself. We have thus described an environment with two-sided private information: the agent privately knows \(x \), whereas the statistician has private access to the sample \((y_0, y_1)\).

Equipped with the sample \((y_0, y_1)\), the statistician follows a penalized regression procedure for estimating \(\beta \). That is, he solves the following minimization problem:

\[
\min_{b_0, b_1} \sum_{x=0,1} (y_x - b_0 - b_1 x)^2 + C(b_1).
\]

The first term is the standard residual sum of squares, whereas the second term is a cost associated with \(b_1 \); the intercept \(b_0 \) entails no cost. (Of course, given our simple setup, referring to the procedure as a penalized regression is a bit of an exaggeration.) The solution to (1) is denoted \(b(\varepsilon, \beta) = (b_0(\varepsilon, \beta), b_1(\varepsilon, \beta)) \). We refer to \((b(\varepsilon, \beta))\) as the estimator. The dependence on \((\varepsilon, \beta)\) follows from the fact that the estimator is a function of \((y_0, y_1)\), which in turn is determined by \((\varepsilon, \beta)\).

We assume the penalty function

\[
C(b_1) = c_0 1_{b_1 \neq 0} + c_1 |b_1|,
\]
where $c_0, c_1 \geq 0$. This is a linear combination of the two common penalties mentioned in the introduction, L_0 and L_1. Assume that when the statistician is indifferent between including and excluding x, he includes it.

In the absence of the penalty C, the solution to (1) is $b_0 = y_0$, $b_1 = y_1 - y_0$, such that the residual sum of squares is 0. In other words, the estimator perfectly fits the data. As a result, the estimator’s predictive performance will tend to be poor—relative to an estimator that sets $b_0 = \frac{1}{2}(y_0 + y_1)$, $b_1 = 0$—when the true value of β_1 is relatively small.

Having estimated f, the statistician receives a report $r \in X$ from the agent. The statistician then takes the action $a = b_0 + b_1 r$. The agent’s expected payoff for a given β is therefore

$$\begin{align*}
-E_{\varepsilon} \left[(b_0(\varepsilon, \beta) + b_1(\varepsilon, \beta) r - \beta_0 - \beta_1 x) \right]^2.
\end{align*}$$

This expression can also be written as

$$-E_{\varepsilon} \left[\hat{f}(r) - f(x) \right]^2,$$

where $\hat{f}(r) = b_0(\varepsilon, \beta) + b_1(\varepsilon, \beta) r$ is the estimated model’s value at the agent’s self-report r.

Note that the agent’s preferences are given by a quadratic loss function. This is also a standard criterion for evaluating estimators’ predictive success. Suppose that $r = x$—i.e., the agent submits a truthful report of his personal characteristic. Then, the agent’s expected payoff coincides with the estimator’s mean squared error.

The following are the key definitions of this paper.

DEFINITION 1: The estimator is incentive compatible at a given prior belief over the true model f (i.e., the parameters β) if the agent is weakly better off truthfully reporting his personal characteristic, given his prior. That is,

$$E_{\beta} E_{\varepsilon} \left[\hat{f}(x) - f(x) \right]^2 \leq E_{\beta} E_{\varepsilon} \left[\hat{f}(r) - f(x) \right]^2$$

for every $x, r \in \{0, 1\}$.

In this definition, the expectation operator E_{ε} is taken with respect to the given exogenous distribution over the noise realization profile. The expectation operator E_{β} is taken with respect to the agent’s prior belief over β.

DEFINITION 2: The estimator is incentive compatible if it is incentive compatible at every prior belief. Equivalently,

$$E_{\varepsilon} \left[\hat{f}(x) - f(x) \right]^2 \leq E_{\varepsilon} \left[\hat{f}(r) - f(x) \right]^2$$

for every true model f and every $x, r \in \{0, 1\}$.

2 Adding an L_2 (Ridge) term $c_2(b_1)^2$ would not change any of the results in the paper.
Incentive-compatibility means that the agent is unable to perform better by misreporting his personal characteristic, regardless of his beliefs over the true model’s parameters. How should we interpret this requirement, given that we do not necessarily want to think of the agent as being sophisticated enough to think in these terms? One interpretation is that lack of incentive-compatibility is a purely normative statement about the agent’s welfare—namely, given how the statistician takes actions on the agent’s behalf, it would be advisable for the agent to misreport. Furthermore, there are opportunities for new firms to enter and offer the agent paid advice for how to manipulate the procedure—in analogy to the industry of search engine optimization. Incentive-compatibility theoretically eliminates the need for such an industry. In the context of online content provision, deviating from \(x = 1 \) to \(r = 0 \) can be interpreted as deleting a cookie. This deviation is straightforward to implement, and the agent can check if it leads to better content match in the long run.

The agent’s expected payoff function is known to be decomposable into two terms, one capturing the bias of estimator and another its variance. Comparing the predictive success of different estimators thus boils down to trading off the estimators’ bias and variance. Incentive-compatibility can thus be viewed as a collection of bias-variance comparisons between two estimators: one is the statistician’s estimator, and another is an estimator that applies the statistician’s procedure to \(r \) rather than \(x \). The latter is not an estimation method that a real-life statistician is likely to propose, but it arises naturally in our setting.

II. Analysis

We first derive a complete characterization of the estimator.

Proposition 1: *The solution to the statistician’s minimization problem\(^1\) is as follows:

\[
\begin{align*}
\beta_1(\epsilon, \beta) &= \begin{cases}
\beta_1 + \epsilon_1 - \epsilon_0 - c_1 & \text{if } \beta_1 + \epsilon_1 - \epsilon_0 - \sqrt{(c_1)^2 + 2c_0} \geq 0 \\
\beta_1 + \epsilon_1 - \epsilon_0 + c_1 & \text{if } \beta_1 + \epsilon_1 - \epsilon_0 + \sqrt{(c_1)^2 + 2c_0} \leq 0, \\
0 & \text{otherwise}
\end{cases} \\
and \quad b_0(\epsilon, \beta) &= \frac{1}{2} [y_0 + y_1 - b_1(\epsilon, \beta)].
\end{align*}
\]

The proof is mechanical and relegated to the online Appendix. Note that \(L_0 \) penalty leads to model selection without affecting the value of \(b_1 \) conditional on being nonzero. The \(L_1 \) penalty term leads to both shrinkage and selection.

Let us now turn to incentive-compatibility. Two factors create a problem in this regard: sample noise and model selection. Neither factor is problematic on its own, as the following pair of observations establishes.

Claim 1: *Suppose that \(\epsilon = (0, 0) \) with probability 1. Then, the estimator is incentive compatible.*
PROOF:
Suppose that β_1 is such that $b_1 = 0$. Then, the agent’s report has no effect on the statistician’s action, and incentive-compatibility holds trivially. Now suppose β_1 is such that $b_1 > 0$. Given the characterization of b_1, we must have $\beta_1 - c_1 \geq 0$. The statistician’s action as a function of the agent’s report is b_0 if $r = 0$ and $b_0 + b_1$ if $r = 1$, where

$$b_0 = \beta_0 + \frac{1}{2} \beta_1 - \frac{1}{2} b_1 = \beta_0 + \frac{1}{2} \beta_1 - \frac{1}{2} (\beta_1 - c_1),$$

$$b_0 + b_1 = \beta_0 + \frac{1}{2} \beta_1 - \frac{1}{2} b_1 + b_1 = \beta_0 + \frac{1}{2} \beta_1 + \frac{1}{2} (\beta_1 - c_1).$$

When $x = 0$ ($x = 1$), the agent’s ideal action is β_0 ($\beta_0 + \beta_1$), and since $\beta_1 - c_1 \geq 0$, the action b_0 ($b_0 + b_1$) is closer to the ideal point than $b_0 + b_1$ (b_0). Thus, honesty is optimal for the agent. A similar calculation establishes incentive-compatibility when $b_1 < 0$.

CLAIM 2: If $c_0 = c_1 = 0$, then the estimator is incentive-compatible.

PROOF:
When $c_0 = c_1 = 0$, we have $b_1 = (\beta_1 + \varepsilon_1 - \varepsilon_0)$. Suppose $x = 1$ and the agent contemplates whether to report $r = 0$. In this case inequality (3) can be simplified into

$$E_{\varepsilon}[(b_1(\varepsilon, \beta))^2 + 2b_1(\varepsilon, \beta) \cdot (b_0(\varepsilon, \beta) - \beta_0 - \beta_1)] \leq 0.$$

Plugging in the expressions for $b_0(\varepsilon, \beta)$ and $b_1(\varepsilon, \beta)$ given by (4), this inequality reduces to

(5) $$E_{\varepsilon_0, \varepsilon_1}[-(\beta_1)^2 + 2\beta_1\varepsilon_0 + (\varepsilon_1)^2 - (\varepsilon_0)^2] \leq 0.$$

This inequality holds for all β_1 because ε_0 and ε_1 are i.i.d. with mean zero. An analogous argument shows that an agent with $x = 0$ will not benefit from reporting $r = 1$.

Thus, sampling noise and model selection are both necessary to produce violations of incentive-compatibility in our simple setup. This finding should not be taken for granted. First, even in the absence of sampling noise, the penalty C creates a wedge between the statistician’s objective function and the agent’s utility. Therefore, it is not obvious a priori that this defacto conflict of interest does not give the agent an incentive to misreport. Second, as long as the agent’s prior over β_1 is not diffuse, the zero-penalty estimator does not produce actions that maximize his subjective expected utility. This, too, creates a defacto conflict of interest between the two parties, which nevertheless does not give the agent a sufficient incentive to misreport. One might think that the *unbiasedness* of the zero-penalty estimator explains Claim 2. However, this intuition is misleading because the agent’s utility function involves a *bias-variance* trade-off. As a result, Claim 2 breaks down when the statistician draws different numbers of observations for $x = 0$ and $x = 1$: the
agent may be willing to experience a biased action due to misreporting because it will reduce its variance.

Our next result establishes that incentive compatibility is an issue in the presence of noisy measurement and nonzero penalty. For expositional convenience, we restrict attention to the case of $c_1 = 0$. However, the result can easily be extended to arbitrary $(c_0, c_1) > (0, 0)$.

PROPOSITION 2: Let $c_0 > c_1 = 0$. Then, there exists a distribution over sample noise for which the estimator is not incentive-compatible.

PROOF:

Construct the following sample noise distribution. For each x, let

$$
\varepsilon_x = \begin{cases}
-k & \text{with probability } p \\
kp/(1-p) & \text{with probability } 1-p,
\end{cases}
$$

where $p > 1/2$ and $k > 0$. Consider an agent with $x = 1$ who reports $r = 0$. This misreporting violates incentive-compatibility if there is some β_1 for which

$$
E_{\varepsilon}[b_0(\varepsilon, \beta) + b_1(\varepsilon, \beta) - \beta_0 - \beta_1]^2 > E_{\varepsilon}[b_0(\varepsilon, \beta) - \beta_0 - \beta_1]^2.
$$

Because the agent’s misrepresentation matters only in the pivotal event in which $b_1(\varepsilon, \beta) \neq 0$, this inequality can be rewritten as

$$
E_{\varepsilon_0, \varepsilon_1}[-(\beta_1)^2 + 2\beta_1\varepsilon_0 + (\varepsilon_1)^2 - (\varepsilon_0)^2 | (\beta_1 + \varepsilon_1 - \varepsilon_0)^2 \geq 2c_0] > 0.
$$

For every $c_0 > 0$, we can find a range of positive values for β_1 and k such that

$$
(\beta_1 + \varepsilon_1 - \varepsilon_0)^2 \geq 2c_0 \text{ if and only if } \varepsilon_1 = kp/(1-p) \text{ and } \varepsilon_0 = -k.
$$

In this case (6) is reduced to $\beta_1 < k(2p-1)/(1-p)$. Thus, fixing p, every pair of positive numbers (β_1, k) that satisfies the inequalities

$$
\frac{k}{1-p} - \beta_1 < \sqrt{2c_0} < \frac{k}{1-p} + \beta_1,
$$

$$
\beta_1 < \min\left\{ \frac{k(2p-1)}{(1-p)}, \sqrt{2c_0} \right\},
$$

will violate incentive-compatibility. $

The example in the above proof illustrates a feature we refer to as the model selection curse, in the spirit of the winner’s curse and swing voter’s curse. Like these familiar phenomena, the model selection curse involves statistical inferences from a pivotal event. Here, the pivotal event is the inclusion of an explanatory variable in the statistician’s predictive model. The agent’s decision whether to misreport his personal characteristic is relevant only if the statistician’s model includes it. Misreporting will change the statistician’s action by $b_1(\varepsilon, \beta)(r - x)$. Therefore, the agent only cares about the distribution of $b_1(\varepsilon, \beta)$ conditional on the event
\{\varepsilon \mid b_1(\varepsilon, \beta) \neq 0\}. This distribution can be so skewed that the agent will prefer to introduce a counter-bias by misreporting.

A key feature of the above example is the asymmetry in the noise distribution. Our next result shows that this is a crucial feature: symmetric noise ensures incentive-compatibility of the statistician’s procedure. For convenience, we consider the case in which the distribution of \(\varepsilon_x\) is described by a well-defined density function. The result is stated for arbitrary \(c_0, c_1 \geq 0\).

PROPOSITION 3: If \(\varepsilon_x\) is symmetrically distributed around zero, then the estimator is incentive-compatible.

PROOF:

Consider the deviation from \(x = 1\) to \(r = 0\). This deviation matters only if \(b_1(\varepsilon, \beta) \neq 0\). Incentive-compatibility thus requires the following inequality to hold for all \(\beta_0, \beta_1\):

\[
E_{\varepsilon_0, \varepsilon_1}(b_1(\varepsilon, \beta)^2 + 2b_1(\varepsilon, \beta)(b_0(\varepsilon, \beta) - \beta_0 - \beta_1) \mid b_1(\varepsilon, \beta) \neq 0) \leq 0.
\]

Plugging the expression for \(b_0(\varepsilon)\) given by (4), this inequality reduces to

\[
E_{\varepsilon_0, \varepsilon_1}(b_1(\varepsilon, \beta)(-\beta_1 + \varepsilon_0 + \varepsilon_1) \mid b_1(\varepsilon, \beta) \neq 0) \leq 0.
\]

Fix \(b_1(\varepsilon, \beta)\) at some value \(b_1^* \neq 0\). Define \(\mathcal{E}(b_1^*) = \{(\varepsilon_0, \varepsilon_1) : b_1(\varepsilon, \beta) = b_1^*\}\). Suppose \(\mathcal{E}(b_1^*)\) is nonempty. Then, \((u, v) \in \mathcal{E}(b_1^*)\) implies that \((-v, -u) \in \mathcal{E}(b_1^*)\).

This follows immediately from the fact that \(b_1(\varepsilon, \beta)\) is defined by the difference \(\varepsilon_1 - \varepsilon_0\). Because \(\varepsilon_0\) and \(\varepsilon_1\) are i.i.d. and symmetrically distributed around zero, the realizations \((u, v)\) and \((-v, -u)\) have the same probability. This implies that for any given \(b_1^* \neq 0\),

\[
E_{\varepsilon_0, \varepsilon_1}(b_1(\varepsilon, \beta)(\varepsilon_0 + \varepsilon_1) \mid b_1(\varepsilon, \beta) = b_1^*) = 0.
\]

Therefore, showing that the deviation from \(x = 1\) to \(r = 0\) is unprofitable reduces to showing that

\[
\beta_1E_{\varepsilon_0, \varepsilon_1}(b_1(\varepsilon, \beta) \mid b_1(\varepsilon, \beta) \neq 0) \geq 0,
\]

which simplifies further to

\[
\beta_1E_{\varepsilon_0, \varepsilon_1}(b_1(\varepsilon, \beta)) \geq 0.
\]

Suppose without loss of generality that \(\beta_1 > 0\). We will show that \(E_{\varepsilon_0, \varepsilon_1}(b_1(\varepsilon, \beta)) \geq 0\). Denote \(\Delta = \varepsilon_1 - \varepsilon_0\). Let \(G\) and \(g\) denote the cdf and density of \(\Delta\). Since \(\varepsilon_0\) and \(\varepsilon_1\) are symmetrically distributed around zero, \(g\) is symmetric. Denote

\[
c^* = \sqrt{(c_1)^2 + 2c_0}.
\]
We need to show that
\begin{equation}
\int_{-\infty}^{-c^*} (\beta_1 + \Delta + c_1) g(\Delta) + \int_{c^*}^{\infty} (\beta_1 + \Delta - c_1) g(\Delta) \geq 0.
\end{equation}

Denote $t = \beta_1 + c^*$, $s = \beta_1 - c_1$, and observe that because $c^* \geq c_1 \geq 0$, $t + s > 0$ and $t - s > 0$. By the symmetry of g, (7) becomes
\begin{equation}
\int_{-\infty}^{-t} (t + \Delta) g(\Delta) + \int_{s}^{\infty} (s + \Delta) g(\Delta) = tG(-t) + sG(s) + \int_s^{t} \Delta g(\Delta) \geq 0.
\end{equation}

Applying integration by parts and the symmetry of g, (8) becomes
\begin{equation}
\int_{-\infty}^{\infty} \Delta g(\Delta) + \int_{-\infty}^{s} G(\Delta) - \int_{-\infty}^{-t} G(\Delta) \geq 0.
\end{equation}

Since $\int_{-\infty}^{\infty} \Delta g(\Delta) = E_{\epsilon_0, \epsilon_1}(\epsilon_1 - \epsilon_0) = 0$, the inequality we need to prove reduces to
\begin{equation}
\int_{-\infty}^{s} G(\Delta) - \int_{-\infty}^{-t} G(\Delta) \geq 0,
\end{equation}

which holds because $s > -t$.

An analogous argument shows that deviation from $x = 0$ to $r = 1$ is unprofitable.

The intuition behind this result is that symmetric noise curbs the model selection curse: although model selection implies that b_1 is a biased estimate of β_1, the bias is too small to give the agent the incentive to introduce the counter-bias that results from misreporting.

III. Does the Curse Vanish with Large Samples?

So far, we focused on a sample with two observations, hence, one may think that the model selection curse is a small-sample phenomenon. In this section we show that this need not be the case. Extend our model by assuming that for each $x = 0, 1$, the statistician obtains N observations of the form $y^n_x = f(x) + \epsilon^n_x$, $n = 1, \ldots, N$, where ϵ^n_x is i.i.d. with mean zero across all x, n. The statistician’s problem is essentially the same:

\begin{equation}
\min_{b_0, b_1} \sum_{x=0,1} \sum_{n=1}^{N} (y^n_x - b_0 - b_1 x^n_k)^2 + N(c_0 1_{b_1 \neq 0} + c_1 |b_1|).
\end{equation}

The entire model and its analysis are unchanged, except that now $\epsilon = (\epsilon^n_0, \epsilon^n_1)_{n=1, \ldots, N}$, and in the solution for the estimator (4), ϵ_x is replaced with the average sample noise $\bar{\epsilon}_x = \frac{1}{N} \sum_{n=1}^{N} \epsilon^n_x$. Denote $\bar{\epsilon} = (\bar{\epsilon}_x)_{x=0,1}$. Returning to the Bernoulli-noise example from the previous section, we investigate whether the set of parameters that violate incentive compatibility vanishes as $N \to \infty$. We continue to assume $c_1 = 0$ and restrict attention to the case of $\beta_1 > 0$—both are without loss of generality. Note that c_0 is constant per observation, we address this issue at the end of this section.
Suppose that for every $x = 0, 1$ and every observation $n = 1, \ldots, N$, ε_x^n is independently drawn from the Bernoulli distribution that assigns probability $p > 1/2$ to -1 and probability $1-p$ to $d = p/(1-p)$. Let $\bar{\varepsilon}_x(N)$ denote the average noise realization over all the N observations for $x \in \{0, 1\}$. The pivotal event \{\varepsilon | b_1(\varepsilon, \beta) \neq 0\} can be written as

$$\{\varepsilon | \bar{\varepsilon}_1(N) - \bar{\varepsilon}_0(N) \notin (-\sqrt{2c_0 - \beta_1}, \sqrt{2c_0 - \beta_1})\}.$$

(9)

Our goal is to find the set of parameters for which incentive-compatibility is violated in the $N \rightarrow \infty$ limit.

PROPOSITION 4: The set of parameters $\beta_1 > 0$ and c_0, d for which incentive-compatibility is violated in the $N \rightarrow \infty$ limit is given by

$$\beta_1 < \frac{c_0}{\sqrt{2c_0} + \frac{2d}{d-1}}.$$

(10)

PROOF:

We first find the limit distribution over $(\bar{\varepsilon}_0(N), \bar{\varepsilon}_1(N))$, conditional on the event (9). To do this, it helps to combine the two samples $(\varepsilon_0^1, \ldots, \varepsilon_0^N)$ and $(\varepsilon_1^1, \ldots, \varepsilon_1^N)$ into one composite sample (η^1, \ldots, η^N), such that for every n, $\eta^n = (\varepsilon_0^n, \varepsilon_0^n)$. Thus, η^n is drawn i.i.d. according to the following distribution π:

$$\pi_{-1,-1} = \Pr(-1, -1) = p^2,$$

$$\pi_{-1,d} = \Pr(-1, d) = p(1-p) = \Pr(d, -1) = \pi_{d,-1},$$

$$\pi_{d,d} = \Pr(d, d) = (1-p)^2.$$

Denoting by $s_{i,j}$ the empirical frequency of the realization (i,j) in this composite sample allows us to redefine the pivotal event in terms of a subset of empirical frequencies $s = (s_{-1,-1}, s_{-1,d}, s_{d,-1}, s_{d,d})$:

$$R^N = \left\{ s^N | (s_{d,-1} - s_{-1,d}) \notin \left(-\frac{\sqrt{2c_0 - \beta_1}}{d+1}, \frac{\sqrt{2c_0 - \beta_1}}{d+1} \right) \right\}.$$

For any empirical distribution s, let $D(s||\pi)$ be the relative entropy of s with respect to π:

$$D(s||\pi) = \sum_{i,j \in \{-1,d\}} s_{i,j} \ln \left(\frac{s_{i,j}}{\pi_{i,j}} \right).$$

(11)

Denote

$$\theta_i = -\frac{\sqrt{2c_0 - \beta_1}}{d+1}, \quad \theta_d = \frac{\sqrt{2c_0 - \beta_1}}{d+1}.$$

We will now show that in the $N \rightarrow \infty$ limit, the distribution over s^N conditional on $s^N \in R^N$ assigns probability one to the unique s that minimizes $D(s||\pi)$ subject to
the constraint \(s_{d,-1} - s_{-1,d} = \theta_h \). Recall that we are restricting attention to a range of parameters such that \(-1 < \theta_1 < \theta_h < 1\). We can partition the pivotal event \(R_N \) into 2 closed intervals: \([-1, \theta_1]\) and \([\theta_h, 1]\). Because \(\beta_1 > 0, |\theta_1| > |\theta_h| \).

The relative entropy function \(D(s||\pi) \) is strictly convex in \(s \) and attains a unique unconstrained minimum of zero at \(s = \pi \). Furthermore, because \(\pi_{-1,d} = \pi_{d,-1} \), \(D(s||\pi) \) treats \(s_{-1,d} \) and \(s_{d,-1} \) symmetrically. Therefore, for any \(\theta \in [-1, 1] \), the minimum of \(D(s||\pi) \) subject to \(s_{d,-1} - s_{-1,d} = \theta \) is equal to the minimum of \(D(s||\pi) \) subject to \(s_{d,-1} - s_{-1,d} \neq \theta \), and it is strictly increasing with \(|\theta| \). Therefore, the minimum of \(D(s||\pi) \) subject to \(s_{d,-1} - s_{-1,d} \in [\theta_h, 1] \) is strictly below the minimum of \(D(s||\pi) \) subject to \(s_{d,-1} - s_{-1,d} \in [-1, \theta_1] \). By Sanov’s Theorem (see Theorem 11.4.1 in Cover and Thomas 2006, p. 362), the probability of the event \([\theta_h, 1]\) is arbitrarily higher than the probability of the event \([-1, \theta_1]\) as \(N \to \infty \). Therefore, we can take the pivotal event to be \([\theta_h, 1]\). Furthermore, by the conditional limit theorem (Theorem 11.6.2 in Cover and Thomas 2006, p. 371), in the \(N \to \infty \) limit, the probability that \(s_{d,-1} - s_{-1,d} = \theta_h \) conditional on the event \(s_{d,-1} - s_{-1,d} \in [\theta_h, 1] \) is 1.

It follows that the objective function is \(D(s||\pi) \) and the constraints are

\[
\begin{align*}
\frac{1}{d+1} - 2c_0 - \beta_1 \lesssim s_{d,-1} - s_{-1,d}, \\
\frac{1}{d+1} + 2c_0 + \beta_1 \lesssim s_{-1,-1} + s_{-1,d} + s_{d,-1} + s_{d,d} = 1.
\end{align*}
\]

Writing down the Lagrangian, the first-order conditions with respect to \((s_{i,j})\) are (\(\lambda_1\) and \(\lambda_2\) are the multipliers of the first and second constraints):

\[
\begin{align*}
1 + \ln s_{-1,-1} - \ln p^2 - \lambda_2 &= 0, \\
1 + \ln s_{d,d} - \ln (1 - p)^2 - \lambda_2 &= 0, \\
1 + \ln s_{d,-1} - \ln p(1 - p) - \lambda_1 - \lambda_2 &= 0, \\
1 + \ln s_{-1,d} - \ln p(1 - p) + \lambda_1 - \lambda_2 &= 0.
\end{align*}
\]

These equations imply

\[
\begin{align*}
s_{d,-1} s_{-1,d} &= s_{d,d} s_{-1,-1}, \\
s_{-1,-1} &= d^2 s_{d,d}.
\end{align*}
\]

Now, since

\[
\begin{align*}
d &= \frac{p}{1 - p}, \\
\bar{\varepsilon}_1 &= (s_{d,-1} + s_{d,d})(d + 1) - 1, \\
\bar{\varepsilon}_0 &= (s_{-1,d} + s_{d,d})(d + 1) - 1,
\end{align*}
\]
we have that in the $N \to \infty$ limit, the distribution over ε conditional on the pivotal event assigns probability 1 to

$$
\bar{\varepsilon}_0 = -\frac{1}{2} \left(\sqrt{2c_0} - \beta_1 \right) - \frac{d}{d-1} + \frac{1}{2} \sqrt{\left(\sqrt{2c_0} - \beta_1 \right)^2 + \frac{4d^2}{(d-1)^2}},
$$

$$
\bar{\varepsilon}_1 = \frac{1}{2} \left(\sqrt{2c_0} - \beta_1 \right) - \frac{d}{d-1} + \frac{1}{2} \sqrt{\left(\sqrt{2c_0} - \beta_1 \right)^2 + \frac{4d^2}{(d-1)^2}}.
$$

Plugging these values into (6) produces the result. □

Thus, the incentive-compatibility problem in the Bernoulli-noise example does not vanish when the sample is large. Moreover, the more skewed the underlying noise distribution and the larger the complexity cost, the larger the set of prior beliefs for which incentive-compatibility is violated in the $N \to \infty$ limit. The reason that large samples do not fix the incentive-compatibility problem is that the agent’s reasoning hinges on the pivotal event in which the variable is included. Therefore, even if the estimator’s unconditional distribution is asymptotically well behaved, the relevant question for incentive-compatibility is whether it is well behaved conditional on the pivotal event.

Recall that our original assumption of only two observations captured (in a highly stylized fashion) the idea that model selection can avert over-fitting. When we continue to assume a single explanatory variable and raise N, the over-fitting problem is attenuated and the role of model selection diminishes. Indeed, practitioners of penalized regression adjust penalty parameters to sample size, such that $c_0, c_1 \to 0$ as $N \to \infty$. The key question is therefore whether the rate by which c_0 or c_1 decrease with N is fast enough to outweigh the model selection curse. To answer this question, one needs to characterize the condition for incentive-compatibility for arbitrary values of N, c_0, c_1. This is an open question that we leave for future work.

Since the probability of the pivotal event decreases with n, the payoff consequence of misreporting vanishes in the $N \to \infty$ limit, such that the agent becomes almost indifferent between reporting and misreporting (as is indeed the case in models of strategic voting in large elections). If we were to extend our analysis to account for the strategic reasoning of all the individuals—including those in the statistician’s sample—the equilibrium outcome could stray far from the sincere-reporting benchmark. Exploring this problem, too, is left for future research.

IV. Conclusion

Interactions between humans and machines that follow statistical procedures are becoming ubiquitous, giving rise to interesting questions for economists. Our question is whether human decision makers should act cooperatively toward a machine that employs a non-Bayesian statistical procedure that aims at good predictions. We demonstrated, via a toy example, that the element of model selection in the procedure creates nontrivial incentive issues.

Our little exercise exposed a major methodological challenge. The standard economic model of interactive decision making is based on the Bayesian, common prior paradigm. However, the actual behavior of machine decision makers is often hard to
reconcile with this paradigm. We addressed this challenge by examining the agent’s response to a fixed statistical procedure with a given specification of its parameters. One would like to endogenize these choices. However, given that the procedure is fundamentally non-Bayesian, capturing this endogenization with a well-defined ex ante optimization problem is not obvious. Incorporating incentive-compatibility as a criterion for selecting prediction methods is therefore conceptually challenging. In general, modeling strategic interactions that involve machine learning requires us to depart from the conventional Bayesian framework, toward an approach that admits decision makers who act as non-Bayesian statisticians. Such approaches are familiar to us from the bounded rationality literature (e.g., Osborne and Rubinstein 1998; Spiegler 2006; Cherry and Salant 2016; and Liang 2018). Further study of human-machine interactions is likely to generate new ideas for modeling interactions that involve boundedly rational human decision makers.

REFERENCES

Banerjee, Abhijit, Sylvain Chassang, Sergio Montero, and Erik Snowberg. 2017. “A Theory of Experimenters.” National Bureau of Economic Research Working Paper 23867.

Caragiannis, Ioannis, Ariel D. Procaccia, and Nisarg Shah. 2016. “Truthful Univariate Estimators.” Proceedings of the 33rd International Conference on Machine Learning 48: 127–35.

Chassang, Sylvain, Gerard Padró i Miquel, and Erik Snowberg. 2012. “Selective Trials: A Principal-Agent Approach to Randomized Controlled Experiments.” American Economic Review 102 (4): 1279–1309.

Cherry, Josh, and Yuval Salant. 2016. “Statistical Inference in Games.” https://www.kellogg.northwestern.edu/faculty/salant/personal/Papers/Statistical_Inference_Salant_Cherry.pdf.

Cover, Thomas M., and Joy A. Thomas. 2006. Elements of Information Theory, 2nd ed. Hoboken: Wiley.

Cummings, Rachel, Stratis Ioannidis, and Katrina Ligett. 2015. “Truthful Linear Regression.” Conference on Learning Theory 40: 448–83.

Feddersen, Timothy J., and Wolfgang Pesendorfer. 1996. “The Swing Voter’s Curse.” American Economic Review 86 (3): 408–24.

Gao, Chao, Aad van der Vaart, and Harrison H. Zhou. 2015. “A General Framework for Bayes Structured Linear Models.” arXiv preprint arXiv:1506.02174.

Hardt, Moritz, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. 2016. “Strategic Classification.” Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science 111–22

Hastie, Trevor, Robert Tibshirani, and Martin Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations. Boca Raton: CRC Press.

Liang, A. 2018. “Games of Incomplete Information Played by Statisticians.” https://docs.wixstatic.com/ugd/aafd19_dcc4b67c327141888c934fdacb8f3876.pdf.

Milgrom, Paul R., and Robert J. Weber. 1982. “A Theory of Auctions and Competitive Bidding.” Econometrica 50 (5): 1089–1122.

Osborne, Martin J., and Ariel Rubinstein. 1998. “Games with Procedureally Rational Players.” American Economic Review 88 (4): 834–47.

Park, Trevor, and George Casella. 2008. “The Bayesian Lasso.” Journal of the American Statistical Association 103: 681–86.

Spiegler, Ran. 2006. “The Market for Quacks.” Review of Economic Studies 73 (4): 1113–31.

Spiess, Jann. 2018. “Optimal Estimation when Researcher and Social Preferences are Misaligned.” Unpublished.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society, Series B (Methodological) 58 (1): 267–88.