Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
This Month in AJP

Galectin-3 May Facilitate Cardiac Wound Healing

The β-galactosidase-binding lectin galectin-3 (Gal-3) is a known proinflammatory and profibrotic molecule in cardiovascular pathophysiology; however, its specific role in macrophage infiltration and fibrosis during myocardial infarction (MI) is unclear. Using wild-type and galectin 3 knock-out mice, Cassaglia and Penas et al (Am J Pathol 2020, 1789–1800) studied this role. Mice were studied 1 week and 4 weeks after induction of MI. Lack of Gal-3 markedly decreased macrophage infiltration and fibrosis at the infarct zone one week after induction of MI. Gal-3 is critical for early post-MI healing of the heart.

Understanding Diabetic Retinopathy

Although plasma microRNA-93 (miR-93) is linked to diabetic retinopathy (DR), its role is unclear. Using cultured primary human retinal pigment epithelium (RPE) cells and blood samples from normal and DR patients, Luo et al (Am J Pathol 2020, 1813–1822) studied this role. The cells were cultured in low- and high-glucose (HG) medium. miR-93 was elevated in blood samples of DR patients as well as in HG-treated cultured cells. Mechanistically, long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) decreased HG-induced apoptosis and inflammation of RPE through the miR-93—nuclear factor erythroid 2-related factor 2 (Nrf2) axis. This study provides foundation to explore MEG3—miR-93—Nrf2 axis in vivo.

Understanding COVID-19

The association of viral load (VL) of the 2019 novel coronavirus (SARS-CoV-2), which causes COVID-19 disease, and clinical parameters is unclear. Using a cohort of 205 patients from a tertiary care center in New York City, Argyropoulos and Serrano et al (Am J Pathol 2020, 1881–1887) studied this link. Hospitalized patients showed significantly lower diagnostic VL than nonhospitalized patients; age, sex, race, body mass index, and comorbidities were adjusted for comparisons. Higher VL was associated with shorter duration of the symptoms in all patients as well as shorter hospital stay in hospitalized patients. Less symptomatic COVID-19 patients may pose a higher virus shedding risk.

Managing Pancreatic Cancer

The role of neuroprotein sortilin in pancreatic cancer regulation is unclear. Using in vitro cell cultures, Gao et al (Am J Pathol 2020, 1931–1942) studied this role. The expression of sortilin was higher in pancreatic cancer cell lines than normal pancreatic ductal epithelial cells. This finding was also confirmed in human pancreatic adenocarcinomas and normal pancreatic tissues. Genetic as well as chemical inhibition of sortilin decreased pancreatic cancer cell adhesion and invasion. Sortilin increases pancreatic cancer invasion and may be targeted to manage pancreatic cancer.

Exploring Acoustic Trauma in the Inner Ear

Pericytes (PCs) aid in vascular repair and regeneration; however, their role in reversing acoustic trauma—triggered vascular damage in the inner ear is unclear. Using an in vitro cell-line—based three-dimensional co-culture model, Hou and Neng et al (Am J Pathol 2020, 1943–1959) explored this role. Cochlear PCs vividly promoted sprouting angiogenesis. Significant positive changes were observed upon transplanting fresh cochlear PCs derived from neonatal day-10 mouse cochlea to mice 2 weeks after being exposed to loud sound trauma. Though acoustic trauma—triggered PC transformation causes damage and regression of capillaries, transplantation of young PC rehabilitates the vascular regression and improves hearing.