Characterization of Copy Number Variations in the Human Genome

Cytogenet Genome Res 123:253–262 (2008)
DOI: 10.1159/000184715

Copy number variation on the human Y chromosome

M.A. Jobling
Department of Genetics, University of Leicester, Leicester (UK)

Accepted in revised form for publication by H. Kehrer-Sawatzki and D.N. Cooper, 20 June 2008.

Abstract. The Y chromosome is unusual in being constitutively haploid and escaping recombination for most of its length. This has led to a correspondingly unusual genomic landscape, rich in segmental duplications, which provide a potent environment for the generation of copy number variation (CNV). Interest in the chromosome comes from diverse fields, including infertility research, population genetics, forensics, and genealogy. Together with inclusion in more systematic surveys, this has led to the ascertainment of a variety of CNVs. Assessment in the context of the well-resolved Y phylogeny allows their mutational history to be deciphered and an estimation of mutation rate. The functional consequences of variants are moderated by the specialization of the chromosome and the presence of functionally equivalent X-chromosomal homologues for some genes. However, deletions of the AZFa, b, and c regions cause impaired spermatogenesis, while partial deletions and duplications within these regions, and deletions and duplications elsewhere, may be selectively neutral or have subtle phenotypes.

The Y chromosome is, both literally and metaphorically, the most singular of human chromosomes. Specialized in sex determination, inessential for viability, and (for most of its length) constitutively haploid, it has evolved a bizarre genomic landscape and a correspondingly unusual repertoire of copy number variants (CNVs). In marked contrast to the functional specialization of the Y chromosome itself is the eclectic nature of the research fields that encompass the study of Y diversity, including molecular reproductive genetics, genome dynamics, population genetics, and forensics, and this has led to the ascertainment of CNVs in many different ways. Compared to many autosomal regions, ascertainment is therefore high, although, as explained below, probably biased.

Because of its haploidy, the Y chromosome is unconstrained by pairing along its entire length, and this has led to the accumulation of a high proportion of segmental duplications (~35%, Skaletsky et al., 2003; compared to a genome average of only ~5%, Bailey et al., 2002) that can act as substrates for the generation of CNVs through non-allelic homologous recombination (NAHR). Many Y-chromosomal CNVs (Y-CNVs) are certainly driven by NAHR and show the recurrence expected for such variants. However, the high ascertainment of variation in some regions means that some of the variants detected represent sporadic and non-recurrent rearrangements with very low mutation rates.

The Y chromosome’s unusual evolutionary history provides some unique opportunities to study the rates and processes of CNV generation, but at the same time its sequence organization poses some particular practical challenges. This review will describe the genomic and phylogenetic context for Y-CNV studies and summarize what is currently known about Y-CNVs, how they have been discovered, and what their functional significance might be. The pseudoautosomal regions, in which recombination with the X chromosome occurs, are not considered here, and the focus is on the non-recombining region of the Y chromosome (NRY), also known as the male-specific region of the Y (MSY).
The Y phylogeny as a framework for interpreting CNVs

The power to detect recurrence or unique origin of variants comes from the fact that all sequences on a given Y chromosome share a single evolutionary history due to the lack of recombination (Jobling and Tyler-Smith, 2003). We can therefore employ a phylogenetic approach to understanding mutation history and the dynamics of CNV formation.

The Y phylogeny is based on binary markers (mostly single nucleotide polymorphisms, SNPs) that have low mutation rates, and therefore can be regarded largely as unique events in human history. Haplotypes constructed using such markers are known as haplogroups and can be arranged in a robust tree that provides a framework for considering CNVs and other variants and asking questions about recurrence and mutation rate. Figure 1a shows the major branches of the most recently published version of the Y phylogeny; in detail, the full tree is constructed from 599 mutations defining 311 distinct haplogroups (Karafet et al., 2008), but its resolution will increase enormously as new and reliable Y-chromosomal sequences become available.

The finding of a seemingly identical CNV in all members of a haplogroup (a monophyletic set) implies that the sharing is by descent (Fig. 1b). Of course, if the CNV has a high mutation rate, it might be expected to revert so that some haplogroup members no longer carry the variant, but we can nonetheless reconstruct the CNV status of the common ancestor assuming the minimum number of mutational events (a maximum parsimony approach). Conversely, the finding of such a CNV distributed among different branches of the phylogeny, where the likely ancestral state is absence of the CNV, indicates multiple recurrence.

This approach allows the minimum number of independent events to be counted for a given Y-CN V. The rate of CNV generation could then be deduced if the numbers of generations encompassed by the sampled chromosomes were known, but estimation of this parameter is not trivial. Estimates of the time to most recent common ancestor (TMRCA) for the major branches of the phylogeny are available, based on coalescent analysis (Hammer and Zegura, 2002) or other methods (Karafet et al., 2008), but rely upon markers that are subject to ascertainment bias. A less biased (though more labor intensive) approach is to resequence segments in all sampled chromosomes (Repping et al., 2006) and estimate the time encompassed in the tree resulting from newly ascertained SNPs by comparison with the chimpanzee orthologous sequence, assuming a date for the human-chimpanzee divergence.

Surveys of the population distributions of Y-chromosomal haplogroups have shown that they are highly geographically differentiated (Underhill and Kivisild, 2007), with particular populations carrying their own characteristic sets of lineages. This is due to the powerful influence of genetic drift on the Y, driven by its low effective population size, and the high reproductive variance of males (Jobling and Tyler-Smith, 2003). High geographical differentiation is important in the ascertainment of CNVs since the inclusion of only limited sets of populations in CNV studies could mean that many variants will be missed. Furthermore, drift can elevate the frequency of a CNV-carrying haplogroup in some regions or populations (some examples are given below), so high observed frequency does not necessarily mean a high rate of the CNV-generating process.

The reference sequence and others

The starting point for the consideration of any Y-chromosomal variant is the reference sequence. The completion of a reliable sequence of this chromosome (Skaletsky et al., 2003) was a particularly impressive achievement. Assembly was complicated because of the high level of very similar intrachromosomal segmental duplications and XY-homologous sequences, and these problems had to be surmounted by sequencing to high coverage mainly in a library derived from the DNA of one individual man. The majority of the Y-chromosomal reference sequence thus derives from a single chromosome belonging to haplogroup R, with one 0.8-Mb segment on the long arm (the AZFa region) deriving from a different man (Sun et al., 1999) and belonging to haplogroup G. This contrasts with the rest of the genome, where libraries were constructed from the DNAs of many different individuals so that the final sequence constitutes a complex and artificial mosaic.
As with all chromosomes, the Y sequence is incomplete over the repetitive centromeric region. Most of the euchromatin, however, is complete, although some other large repetitive regions remain as gaps. These include the DYZ5 repeat array on Yp (containing the TSPY gene, discussed below) and the large and highly polymorphic heterochromatic region on distal Yq.

The reference sequence is powerful because it allows an unambiguous description of sequence organization and the identification of duplicated and repeated sequences – in particular, segmentally duplicated and often extremely similar (>99.98%) sequences that have been dubbed ‘ampliconic’ (Skaletsky et al., 2003). This provides an invaluable framework for considering any new variant and the possible mutational mechanisms underlying it. At the same time, however, the reference sequence is constraining, because other Y chromosomes from other lineages are likely to be different in organization and sequence copy number and might even contain sequences that are entirely absent from the reference. Proposed mutational mechanisms that are based on the reference might not apply.

High-throughput application of traditional capillary DNA sequencing and the advent of new sequencing technologies (Bentley, 2006) have yielded two new Y chromosome sequences to date, deriving from Craig Venter (Levy et al., 2007) and James D. Watson (Wheeler et al., 2008). It is unfortunate that both belong to the same branch of the Y phylogeny as the reference sequence (hgR-M269) so that limited new information is provided. The current 1,000 Genomes Project (www.1000genomes.org) will include fathers of HapMap trios whose Y chromosomes belong to haplogroups E and I, and the general availability of the new technologies should allow large-scale sequencing of chromosomes from many different parts of the tree. However, in addition to the issue of choice of haplogroup, the assemblies are likely to be unreliable, which compromises ability to diagnose CNVs at least at the medium to large scale. Indeed, all the new sequencing technologies rely upon mapping against a reference sequence, so may have limited power to characterize novel structural organizations of Y chromosomes.

How are Y-CNVs found?

The discovery of Y-CNVs has arisen from several fields of investigation, all of which involve biases due to the regions of the chromosome surveyed and/or the populations analysed. As discussed above, population bias will lead to haplogroup bias due to the strong population differentiation of Y variation and hence to the identification of an unrepresentative sample of CNVs.

Early polymorphism surveys in evolutionary studies revealed a number of CNVs (e.g., Page et al., 1982; Oakey and Tyler-Smith, 1990; Jobling, 1994; Jobling et al., 1996), some of which were of value as markers in the era before widely available SNPs and STRs. Many of these variants were properly defined only later when the sequence became available (though some remain to be defined), and the history of this field will not be detailed here.

Molecular reproductive genetics

In infertility research, CNVs are functional candidates for effects on sperm count or other phenotypes. These studies have focused on the three regions on Yq (two of which overlap) that have been associated with infertility when they are deleted (AZFa, b, and c) (Vogt et al., 1996). Studies of men with reduced sperm count or specific spermatogenic abnormalities as well as control groups have revealed variation in copy number particularly in the AZFc region, a remarkable segment of DNA composed of very large and highly similar repeat units (Kuroda-Kawaguchi et al., 2001). Specific CNVs involving the AZF regions will be further discussed in the next section. Detection of CNVs in infertility studies is usually via the presence or absence of sequence-tagged sites (STTs), many of which are unique in the reference sequence. Over 1,200 of these have been defined (Vollrath et al., 1992; Tilford et al., 2001; Skaletsky et al., 2003), and locating relevant STTs for a particular interval has recently been facilitated by the availability of an online database, MSY Breakpoint Mapper (http://breakpointmapper.wi.mit.edu/) (Lange et al., 2008). Some studies have reinforced STS-based findings by carrying out quantitative PCR or FISH-based analyses. The use of presence or absence of particular paralogous sequence variants (PSVs – known in some studies as sequence family variants) in repeated sequences to diagnose deletions (Fernandes et al., 2004a) has caused some controversy (Fernandes et al., 2004b; Repping et al., 2004), in part because gene conversion between copies could lead to misinterpretation.

Forensic and population studies

CNVs detected in forensic and population studies can be serendipitous by-products of the practical exploitation of short tandem repeat markers (STRs), emerging from the observation of anomalous STR haplotypes (Fig. 2) (Bosch and Jobling, 2003; Butler et al., 2005; King et al., 2005; Balaresque et al., 2008). When a normally single-copy STR within a haplotype is absent, and this is not due to a primer-site mutation, it indicates a deletion variant. Conversely, when it gives two peaks in an electropherogram it can signal a duplication variant, though this needs to be distinguished from mosaicism of STR alleles differing through somatic mutation, particularly if the DNA source is a cell-line (Banchs et al., 1994; Balaresque et al., 2009). There is underascertainment of duplications by this method, because their detection relies upon an STR mutation having led to a detectable size difference between the duplicated alleles; when the alleles are identical in length, they will be detectable only by quantitative methods, which are not routinely employed. Some STRs are present in more than one copy in the reference sequence, and in these cases other variations in copy number can be observed. For example, the normally bilocal DYS385 can show three or sometimes four alleles (Butler et al., 2005). If the putative deletion or duplication involves two or more STRs, this can give an indication of the physical extent of the CNV.
Although the number of chromosomes surveyed with STRs can be large (for example, release 23 of the Y chromosome Haplotype Reference Database (http://www.yhrd.org; Willuweit et al., 2007) contains ~55,000 9-STR haplotypes), only a limited proportion of the Y chromosome is covered, because the number of the available >200 STRs used (Kayser et al., 2004) is usually small and they are non-randomly distributed (Hanson and Ballantyne, 2006). The number of STRs included in forensic studies is at least 9, and a current commercial multiplex, Y-Filer (Applied Biosystems), contains 17; the number used in population studies can vary from 6 (e.g., Bowden et al., 2007) to as many as 61 (Xue et al., 2005). There is a notable bias in population studies against use of multi-locus STRs, which can lead to the underrepresentation of regions (such as \(AZFc \)) in which multi-copy sequences are the norm.

Targeted and systematic CNV surveys

Following the description of the genomic architecture of the Y chromosome, a structural survey was undertaken of 47 chromosomes belonging to different branches of the phylogeny (Repping et al., 2006). Attention was focused on already known or suspected variants, including the 'ampliconic' regions, the \(TSPY1 \) array length variation, a short arm paracentric inversion, and length variation of the distal Yq heterochromatin. A combination of STS content analysis, pulsed-field gel electrophoresis, metaphase and interphase FISH, and cytogenetic length measurement (for the heterochromatin) were used. A number of novel CNVs of the \(AZFc \) region were discovered, and the phylogenetic context allowed an estimate of mutation rates of various CNVs and other variants. The careful approach to characterizing CNVs is a strength of this study, but its targeted nature based on previously known variants and the reference sequence organization constitutes a bias.

Inclusion of the Y chromosome in systematic genome-wide CNV surveys (Sharp et al., 2005; Locke et al., 2006; Redon et al., 2006; Perry et al., 2008), plus the availability of whole Y chromosome resequencing data (Levy et al., 2007), has provided a more objective picture of Y-CNVs. As a result, the Database of Genomic Variants (http://projects.tcag.ca/variation/; April 18, 2008 update) (Iafrate et al., 2004) contains 51 Y variants, of which 40 lie in the non-recombining region. These vary over a wide range of scales from a few tens of base-pairs to hundreds of kilobases and have been detected in different samples, using different methods with differing sensitivities.

The largest scale study (Redon et al., 2006) surveyed the HapMap samples – 270 individuals with ancestry in Africa, Europe, and East Asia, carrying 104 distinct Y chromosomes. Y-CNVs were detected using a whole genome tile-path array of BAC clones; for other chromosomes, CNVs could be validated by comparative analysis of hybridization intensities on Affymetrix GeneChip 500K SNP arrays, but the lack of Y-SNPs on these arrays meant that this was not possible for the Y chromosome.

Limited published information is available on the distribution of the HapMap Y chromosomes in the Y phylogeny (International HapMap Consortium, 2005). The African chromosomes are of low diversity, with all lying within haplogroup (hg) E (and 29/30 in one sublineage, E3a); all but one of the European chromosomes belong to two lineages, R1 and I; the Asian chromosomes have higher diversity, but with predominance in hgs D, NO, and a poorly defined...
group including hg F, H, or K. Many major lineages are thus absent from the survey, including the basal haplogroups A and B.

The variation found in this study (Fig. 3) largely corresponds to already known variants including TSPY1 and the AZFc region, though some other variants deserve further investigation. Resolution of the study is limited by the size of the clones in the tiling array, so that only CNVs >50 kb were called efficiently, and combining calls from individuals tends to inflate CNV size. An independent study has developed an X- and Y-chromosome-specific BAC tiling path array that allows the mapping and characterization of XY translocations and other sex-chromosomal rearrangements, as well as Y-CNVs (Karcanias et al., 2007).

Examples of known Y-CNVs

Much of the current interest in CNVs focuses on their likely functional significance in terms of effects on gene content or expression (Hurles et al., 2008). However, there are a number of reasons to suspect that functional effects of such variation on the Y chromosome might be slight, or at least difficult to interpret. The great majority of the ~0.1% of men who carry an additional Y chromosome (47,XYY) are not identified (Abramsky and Chapple, 1997), because the extra Y has relatively mild phenotypic effects and even carrying one or two more is tolerated (Shanske et al., 1998). This suggests that extra doses of individual genes may not have serious consequences, unless the stoichiometry of Y-specific gene doses is crucial. In fact, many Y-specific genes are present in multiple copies in the reference sequence (Skaletsky et al., 2003), which implies that subtle alterations in copy number might not have noticeable effects.

However, careful follow-up of 47,XYY males and comparison to controls (Ratcliffe, 1999; Higgins et al., 2007) does show a higher incidence of reduced intelligence, delayed speech development, increased stature, and significantly elevated mortality from a number of causes, in particular epilepsy. Furthermore, absence of the Y, and presence of only one X (45,X), gives Turner syndrome, with a suite of abnormalities (Elsheikh et al., 2002) indicating that the dosage of some XY-homologous genes is important. Although some of these genes are pseudoautosomal, some lie on the NRY, and haploinsufficiency through CNV could lead to expression of some Turner syndrome features. Finally, since many genes involved in spermatogenesis have accumulated on the NRY (Skaletsky et al., 2003), there could be subtle effects on male fertility.

Interpretation of the functional effects of Y-CNVs depends on how they were identified. Clearly, those identified by workers in the field of male infertility research can be linked to appropriate data on sperm parameters and testicular histology; however, when Y-CNVs are identified in forensic or population studies, phenotypic information on the individuals carrying the variant chromosomes is not usually available, so inferences on their effects are often indirect. However, the populations surveyed frequently include examples from parts of the world where andrologists do not normally venture, so there is the potential to identify interesting and important variants that may throw light on the complex subject of spermatogenic genes.

A particular difficulty in interpreting the effects of Y-CNVs is due to the absence of recombination. A phenotype might be associated with a particular Y chromosome type, and while this could be due to a CNV of interest, it could also be due to some other unknown Y-variant to which the CNV is permanently linked. In contrast, on an autosome, recombination allows the study of the effect a given CNV has on various different chromosomal backgrounds.

AZFc deletions, duplications, and complex rearrangements

Deletions in the AZFc region (Fig. 4) are the commonest known cause of Y-linked male infertility (Vogt et al., 1996). The availability of the reference sequence allowed the definition of the remarkable structure of the region (Kuroda-Kawaguchi et al., 2001), which spans several megabases and is made up almost entirely of large paralogous repeats ('amplicons') that are highly similar (>99.9%) in sequence due...
to gene conversion (Rozen et al., 2003) and contain a set of repeated testis-specific protein-coding and untranslated genes. Most \textit{AZFc} deletions associated with spermatogenic failure are caused by NAHR between the repeats \textit{b2} and \textit{b4}, removing 3.5 Mb of DNA including all copies of the genes \textit{DAZ (DAZ1–4)} and \textit{BPY2}. Emphasizing the complexity of interpreting the phenotypic effects of rearrangements, however, the sperm phenotypes are heterogeneous, and \textit{AZFc} deletions can even be found in males who have fathered offspring (Chang et al., 1999; Kühnert et al., 2004). Phenotypic complexity has caused controversy about the effects of \textit{Y-CNVs} in the region (McElreavey et al., 2006), and the lack of simple genotype-phenotype correlations has led to the resurrection of an earlier idea that the effects of deletions might be mediated through meiotic disruption (Vogt et al., 2008), rather than specific gene loss.

Given the complex repetitive structure of the region, it is no surprise that many other rearrangements can and do occur — some examples are shown in Fig. 4b. Indeed, in a thorough description (Repping et al., 2006) of the possible architectures, following putative recombination events of the \textit{AZFc} region based on the reference sequence, there are nine possible structures following single recombination events, a further 57 following double recombination events, and a further 799 following triple events. These include inversions that can give rise to novel substrates for deletions or duplications. The known and well-characterized NAHR-mediated rearrangements are considerably fewer than this but include examples that are apparently fixed in particular branches of the \textit{Y} phylogeny. One example is the gr/gr deletion following \textit{b2/b3 inversion} that is fixed in haplogroup \textit{N} (Fernandes et al., 2004a) and makes up more than 50% of \textit{Y} chromosomes in such populations as the Finns (Rosser et al., 2000).

When ascertainment is good (Repping et al., 2006; Balaresque et al., 2008), rare variants as well as recurrent NAHR-mediated variants are found; these often do not map to direct repeats and (at least based on the reference sequence organization) are likely to be mediated by non-recurrent, non-homologous processes. Significant over-representation of independent \textit{CNVs} involving \textit{DYS448} deletion in two haplogroups (C and G) and under-representation in haplogroup \textit{R}, to which the reference sequence belongs, indicates that there may be structural predisposition or susceptibility in particular lineages (Balaresque et al., 2008).

\textbf{AZFa deletions and duplications}

\textit{CNV} at the \textit{AZFa} region was originally defined by the observation of rare deletions associated with spermatogenic failure (Vogt et al., 1996), in particular Sertoli-cell only syndrome, in which post-meiotic germ cells are absent. The
\[\text{~790 kb deleted region contains two protein-coding genes, USP9Y and DDX3Y (formerly DBY), both with functional X-linked homologues. Although early observations had suggested a key role for USP9Y (Sun et al., 1999), individuals with partial deletions affecting only this gene are fertile (Krausz et al., 2006), suggesting that DDX3Y is critical.}

The mechanism underlying AZFa deletion (Fig. 5a) is NAHR between a direct pair of ~10 kb human endogenous retroviral sequences (HERVs) (Blanco et al., 2000; Kamp et al., 2000; Sun et al., 2000), which also engage in directional gene conversion (Bosch et al., 2004). Two independent examples of the reciprocal duplication were identified after investigation of chromosomes showing STR duplications (Bosch and Jobling, 2003) and shown to be due to HERV-mediated NAHR. No direct information is available about the phenotypic effects of such duplications, although fertility is unlikely to be seriously impaired, since the chromosomes can persist in the population. Examination of the YHRD (Y chromosome haplotype reference database, www.yhrd.org) shows 18 other examples of STR duplication that probably represent AZFa duplication chromosomes. Notably, rearrangements involving AZFa were not identified in any of the systematic surveys (Redon et al., 2006; Repping et al., 2006), reflecting their low frequency in the population.

AZFb deletions

The AZFb region was originally defined as one of the three non-overlapping intervals in which deletions could impair spermatogenesis (Vogt et al., 1996), though larger deletions characterized as AZFb+c were also observed. Molecular characterization showed that the AZFb region actually overlaps with the AZFc region (Repping et al., 2002); most AZFb deletions are caused by NAHR between repeats within palindromes P5 and proximal P1 (Fig. 5b) encompassing 6.2 Mb and removing 19 protein-coding genes. In most AZFb+c deletions NAHR between P5 and distal P1 removes 7.7 Mb of DNA containing 25 protein-coding genes (Repping et al., 2002). Other deletions in the region seem not to be homology-mediated (Repping et al., 2002; Vinci et al., 2005). Reciprocal P5/P1-mediated duplications have not been reported, though they should be readily recognizable through STR allele duplications if they persist in populations for sufficiently long.

AMELY deletions and duplications

Interstitial deletions of Yp have been detected due to the very widespread use of the AMELY/AMELX sex test incorporated in all commercial autosomal forensic profiling kits, in which a normal male is signaled by Y- and X-specific PCR products that differ in size (Sullivan et al., 1993). When an individual lacks the Y product, but other evidence indicates a male and small-scale primer site mutation can be excluded, a so-called AMELY deletion is diagnosed (Santos et al., 1998). The very high ascertainment means that some are rare sporadic cases with apparent non-homologous mechanisms, but the majority are 3.0–3.8 Mb deletions mediated by NAHR.
between the proximal array of TSPY1 repeats (DYZ5) and a single distal TSPY1 repeat (Jobling et al., 2007). Consideration of the phylogenetic context indicates that at least seven such independent deletions were represented in a set of 45 deletion chromosomes, though one founder deletion within haplogroup J2el* has risen to high frequency in some populations (Cadenas et al., 2006; Jobling et al., 2007), reaching ~2% in India. The phenotypic consequences of the deletion (which removes the genes PRKY and TBL1Y as well as AMELY) are not clear but seem unlikely to be severe.

The reciprocal TSPY1-mediated duplication of the region has also been observed in a pair of brothers (Murphy et al., 2007). Ascertainment was initially through an elevated AMELY:AMELX ratio in PCR in one of the brothers, who was being investigated because of non-Hodgkin lymphoma, and was confirmed using CGH. The brothers were otherwise apparently normal.

As in the case of the AZFa duplications, AMELY-region CNVs were not detected in systematic surveys (Redon et al., 2006; Repping et al., 2006).

TSPY1 copy number variation

The TSPY1 gene encodes a protein that is a member of a superfamly including the protooncogene SET, found in the cytoplasm of spermatogonia (Schnieders et al., 1996). The gene is unusual in being arranged in a tandem array of 20.4 kb repeat units on proximal Yp, with a single active copy located more distally. Array length varies through NAHR, but maintenance of a minimum copy number through selection is suggested by the evolutionary conservation of multiple copies of the gene on the Y chromosomes of other mammals (Guttenbach et al., 1992; Jakubiczka et al., 1993; Raudsepp et al., 2004; Murphy et al., 2006) and the limited degree of copy number polymorphism observed in two studies of human Y chromosomes: one study found a median number of 29 copies, with a range of 18–47 in a sample of 89 chromosomes (Mathias et al., 1994); the other found a median of 32, with a range of 23–64 in 47 chromosomes (Repping et al., 2006). Increased TSPY1 copy number has been reported in infertile males (Vodicika et al., 2007), but the phenotype of a reduced copy number is unknown.

Other candidate CNVs

Duplications of other STRs, including DYS19, DYS390, DYS391, DYS393, and DYS385, suggest the existence of other Y-CNVs (http://www.yhrd.org/). In the case of DYS19 duplications, the repetitive sequence context makes the underlying mechanism difficult to discern (Balaresque et al., 2009), though again the high ascertainment appears to be identifying rare CNVs that may have arisen by non-homologous mechanisms. Some are identical by descent and have reached high frequency in particular populations (Capelli et al., 2007; Balaresque et al., 2009) through drift and social selection.

The future

As CNV typing and new sequencing methods advance, they should provide means for a relatively unbiased assessment of CNV on the Y chromosome. Most CNVs are small, but we currently know very little about small Y-CNVs, so much remains to be discovered. The 1,000 Genomes Project aims to detect variants down to a frequency of 1% in European, East Asian, and African populations and will detect some of the small CNVs, although the size range accessible to current technologies remains unclear. It is to be hoped that additional surveys can examine other populations – South Asian populations are currently conspicuous by their absence – and that the Y CNVs discovered are included in commercially available CNV typing platforms. There is coverage on the Illumina Human1M-Duo BeadChip, which is promising.

It would certainly be a pity if the Y chromosome was ignored in future CNV analyses. After all, the sex chromosomes constitute the major copy number polymorphism, with half of our species carrying one X and one Y chromosome, and the other two Xs and no Y chromosome. In addition, one in a thousand men carries extra Y chromosomes without knowing it. Gene dosage effects are modulated through X inactivation, XY homology, and the functional specialization of the Y, but nonetheless we still have much to learn about the variation of sex-chromosomal gene dosage and its influence on inter-individual variation.

Acknowledgements

I thank Chris Tyler-Smith for helpful comments.

References

Abramsky L, Chapple J: 47,XXY (Klinefelter syndrome) and 47,XY: estimated rates of and indication for postnatal diagnosis with implications for prenatal counselling. Prenat Diagn 17: 363–368 (1997).

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al: Recent segmental duplications in the human genome. Science 297:1003–1007 (2002).

Balaresque P, Bowden GR, Parkin EJ, Omran GA, Heyer E, et al: Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis. Hum Mut 29:1171–1180 (2008).

Balaresque P, Parkin EJ, Roewer L, Carvalho-Silva DR, Mitchell RJ, et al: Genomic complexity of the Y-STR DYS19: inversions, deletions and founder lineages carrying duplications. Int J Legal Med 123:15–23 (2009).

Banchs I, Bosch A, Guimera J, Lazaro C, Puig A, Estivill X: New alleles at microsatellite loci in CEPH families mainly arise from somatic mutations in the lymphoblastoid cell-lines. Hum Mut 3:365–372 (1994).

Bentley DR: Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552 (2006).
Several studies have investigated the inheritance and evolution of Y chromosome mutations. For example, a study by Butler JM et al. (2004) investigated the impact of Y-STR interpretation on forensic science. Another study by Hanson EK et al. (2002) reported the results of a survey on the use of Y-chromosomal microsatellites in forensic applications.

Moreover, a recent study by Santos FR et al. (2013) explored the reliability of DNA-based sex tests. The authors found that the diploid genome sequence of an individual human X chromosome shows massive deletions and spermatozoa. The study further demonstrated that the diploid genome sequence of an individual human Y chromosome shows massive deletions and spermatozoa.

In conclusion, the Y chromosome plays a crucial role in human genetic diversity and health-related traits. Understanding the evolution and inheritance of Y chromosome mutations is essential for advancing forensic science and human genetics.
Sullivan KM, Mannucci A, Kimpton CP, Gill P: A rapid and quantitative DNA sex test – fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15:636 (1993).

Sun C, Skaletsky H, Birren B, Devon K, Tang Z, et al: An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 23:429–432 (1999).

Sun C, Skaletsky H, Rozen S, Gromoll J, Nieschlag E, et al: Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet 9:2291–2296 (2000).

Tilford CA, Kuroda-Kawaguchi T, Skaletsky H, Rozen S, Brown LG, et al: A physical map of the human Y chromosome. Nature 409:943–945 (2001).

Underhill PA, Kivisild T: Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu Rev Genet 41:539–564 (2007).

Vinci G, Raicu F, Popa L, Popa O, Cocos R, McElreavey K: A deletion of a novel heat shock gene on the Y chromosome associated with azoospermia. Mol Hum Reprod 11:295–298 (2005).

Vodicka R, Vrtel R, Dusek L, Singh AR, Krizova K, et al: TSPY gene copy number as a potential new risk factor for male infertility. Reprod Biomed Online 14:579–587 (2007).

Vogt PH, Falcao CL, Hanstein R, Zimmer J: The AZF proteins. Int J Androl 31:383–394 (2008).

Vollrath D, Foote S, Hilton A, Brown LG, Beerr Romero P, et al: The human Y chromosome – a 43-interval map based on naturally-occurring deletions. Science 258:52–59 (1992).

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, et al: The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876 (2008).

Willuweit S, Roewer L, on behalf of the International Forensic Y Chromosome User Group: Y chromosome haplotype reference database (YHRD): update. Forensic Sci Int Genet 1:83–87 (2007).

Xue Y, Zerjal T, Bao W, Zhu S, Lim SK, et al: Recent spread of a Y-chromosomal lineage in northern China and Mongolia. Am J Hum Genet 77:1112–1116 (2005).