Prevalence of Non-Communicable Diseases and its Risk Factors among Ijegun-Isherhi Osun Residents in Lagos State, Nigeria: A Community Based Cross-Sectional Study

CURRENT STATUS: UNDER REVIEW

Idris Oluwaseyidayo Israel
Disease Control and Surveillance Team, Department of Primary Health Programmes, NAIJAHEALTH Initiative, Lagos

Ayodipupo Sikiru Oguntade
University College Hospital Ibadan

ayodipupoooguntade@gmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0001-8802-8590

Ekow Adom Mensah
Korle-Bu Polyclinic

Noriko Kitamura
London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Population Health

10.21203/rs.3.rs-25101/v1

SUBJECT AREAS
Health Economics & Outcomes Research Infectious Diseases

KEYWORDS
Non-communicable diseases, hypertension, dyslipidaemia, smoking, physical activity, risk factors
Abstract
Background
The rapid epidemiologic transition of diseases has adverse implications for low-and middle-income countries (LMICs) due to their limited healthcare, weaker health systems and the westernization of lifestyle. There is the need to evaluate the enormity or otherwise of the NCD burden and address it. However, there is a paucity of literature on the burden of NCDs in Nigeria. We therefore conducted this survey to determine the prevalence of NCDs and its risk factors among the Ijegun- Isheri Osun community residents of Lagos, Nigeria.

Methods
A community-based cross-sectional survey design was applied with 215 participants selected consecutively during a population preventive health campaign. Prevalence of hypertension, diabetes and dyslipidaemia were calculated, with further exploration on associations between these variables done. Multivariable logistic regression was used to estimate the risk factors of the three NCDs (hypertension, diabetes and dyslipidaemia).

Results
The prevalence of hypertension was 35.3% (95%CI 29.0-42.1), diabetes 4.6% (95%CI 2.2–8.4) and dyslipidemia 47.1% (95%CI 41.1–54.8). Three major risk factors evaluated showed prevalence of smoking to be 41.3% (95%CI 34.2-48.6), alcohol consumption 72.5% (95% CI 65.5–78.7), and physical activity 52.9 (95%CI 45.5–60.2). The independent significant risk factors of hypertension were age ≥ 60 years (aOR 4.56 95%CI: 1.72–12.09) and dyslipidaemia (aOR 5.01 95%CI: 2.26–11.13). Age ≥ 60 years (aOR 8.83 95%CI: 1.88–41.55) was an independent risk factor of diabetes. Age ≥ 60 years aOR 29.32 95%CI: 4.78-179.84), being employed (aOR 11.12 95%CI: 3.10-39.92), smoking (aOR 2.34 95%CI: 1.03–5.33) and physical activity (aOR 0.34 95%CI: 0.15–0.76) were independent risk factors of having dyslipidaemia.

Conclusions
The results suggest that prevalence of hypertension, diabetes and dyslipidaemia together with their associated risk factors are high, highlighting the need for further implementation research and policy directions to tackle the NDC burden in the research community, Nigeria, sub-Saharan Africa and the world at large. These strategies must be community specific, prioritizing the various risk factors and
addressing them accordingly.

Background
Globally there is a high burden of non-communicable diseases (NCDs) and developing countries have had their share of this rapid increase, with different risk factors contributing to the surge.\(^1\)

Undoubtedly, NCDs have the potential of becoming the leading public health burden and threat in developing countries including Nigeria, as a result of rapid urbanization, consistent decrease in physical activity due to mechanization, lifestyle changes seen in the rapid change of dietary habits and many more.\(^2\)–\(^7\) Low-and middle-income countries (LMICs) are likely to suffer a greater burden of these diseases compared to the developed nations because of their limited healthcare finances for NCDs; and their relative weak and unprepared health system(s) for these diseases.\(^7\)–\(^10\)

Africa, home to 54 LMICs, is expected to have the world’s largest increase in NCD deaths over the next decade due to the epidemiologic transition of disease.\(^2\) In most countries in Northern and Western Africa, NCDs are responsible for more than three-quarters of all deaths and this will continue to increase if urgent and evidence-based policies to curtail the situation are not successfully implemented.\(^8\),\(^9\),\(^11\) Furthermore, there are clear gaps in the evidence for successful implementation of NCD interventions within the primary health care setting in African countries. In addition, models and approaches to properly inform the design of interventions that address the needs of communities and individuals are still lacking in most developing countries like Nigeria.\(^12\) Therefore, health planners, policy and decision makers need to agree that health systems must address diseases in a discrete manner \(^7\),\(^12\). For many years, public health policies in Nigeria have focused on the control of infectious diseases, with attendant scarcity of necessary data for policy decisions on NCDs.\(^13\) It is crucial to pay attention to NCDs among the Nigerian community, because these health challenges are potentials for economic losses, household poverty and reduction in productivity.\(^14\)

Many of the surveys on NCDs in Nigeria have been largely hospital-based. The few available community surveys have shown differences in urban and rural communities in terms of the burden of NCD risk factors. Alikor et al.\(^15\) found that 38% of rural residents in Nigeria had 2 or more NCD risk
factors while Odugbemi et al. have reported hypertension prevalence and physical inactivity prevalence of 35% and 92% respectively in traders in a popular Lagos market. Prevalence rates from direct enumeration of individuals in a representative community provide credible evidence for healthcare planning, allocation of resources and monitoring trajectory of diseases by government agencies. Lagos being the “de facto” industrial capital of Nigeria is a multi-ethnic society undergoing rapid social and lifestyle dynamics of an industrialised urban society. Measuring the burden of NCDs in urban communities in Lagos is attractive and provide opportunities for health promotion and policy formulation. Hence, we set out in this survey to evaluate the prevalence of NCDs (hypertension, diabetes and dyslipidaemia) and their behavioural risk factors among the Ijegun-Isherì Osun community residents of Lagos, Nigeria.

Methods
Study Design and Setting
This cross-sectional survey was carried out by the NAIJAHEALTH Initiative, a self-funded Non-Governmental Organisation that engages in health promotion in Lagos, Nigeria. The study respondents were residents of the Ijegun-Isherì Osun community, Lagos State, Nigeria who participated in a population preventive health campaign on the 29th and 30th of June, 2018. The sites for the campaign were the Isheri-osun primary healthcare center, Isheri-osun community market and the Christ apostolic worship centre. Target participants who were at least 15 years old were recruited consecutively into the study after giving informed consent. Participants who had severe cognitive impairment that mitigated against remembering past events or giving reliable medical history were excluded from the study.

Sample size
Minimum sample size was calculated using the formula:

\[N = \left(\frac{Z_{\alpha/2}}{d}\right)^2pq \]

Where,
N = the minimum sample size

\(Z_{\alpha/2} = \) the standard normal deviate corresponding to a level of significance of 0.05 is 1.96

\(p = \) the prevalence rate of hypertension in the community according to available literature is 31.8%.\(^1\)

\(q = 1-p \)

\(d = \) the desired precision: 10%

Applying the formula, the minimum sample size is:

\[
N = (1.96)^2 \left(0.318 \times 0.682 \right) (0.1)^2
\]

\[N = 83.3 \]

Applying the minimum sample size formula as calculated above, \(N = 83.3 \), with a 20% increase taken into account for non-response rate, a minimum sample size of 100 would be ideal for the study.

However, a total of 215 respondents who participated in the study were included in the analysis.

Data Collection

Data collection instrument

A semi structured interviewer administered questionnaire was used for data collection based on a modified WHO Stepwise protocol which consists of three steps.\(^{19,20}\) The questionnaire was divided into subsections of demographic data, medical history, lifestyle risk factors, presenting symptoms and signs, medications in use, examination and laboratory test results. The questionnaire was pre-tested before the main study among 10 respondents. The questionnaire was also translated into the Yoruba language which is the local language spoken by most of the populace in the study community.

Data collection procedure

The study questionnaire as described was used for data collection. This was administered by trained assistants while medical care and advice was given by clinicians involved in the study. Baseline clinical and demographic data obtained from the participants included date of birth, age, gender, history of hypertension, diabetes mellitus, alcohol intake, smoking, physical activity, medications and other medical history.

Blood pressure measurements were obtained with a mercury sphygmomanometer according to
standard guidelines. Systolic and diastolic blood pressures were measured at Korotkoff sounds phase I and V, respectively. Two readings were taken at intervals of at least 2 minutes, and the average of the readings was used to represent the patient’s blood pressure. If there was > 5 mm Hg difference between the first and second readings, additional (1 or 2) readings was obtained, and then the average of these multiple readings was used. A participant was considered to have hypertension on the basis of self-reported history of hypertension and/or the use of blood pressure-lowering medication and/or documented blood pressure ≥ 140/90 mmHg. Blood pressure status was categorized into normal, pre-hypertension and elevated blood pressure readings using the cut-offs of the European Society of Cardiology. Diagnosis of diabetes was based on self-reported history and/or plasma random glucose reading ≥ 200 mg/dl with clinical signs of diabetes according to the American Diabetes Association. Smoking status was categorized in to 3 categories. A ‘never smoker’ was someone who had not smoked cigarette in the last 10 years. Occasional or irregular smoker was someone who had smoked at least once while a regular smoker was defined as someone who smoked at least once a week. Alcohol consumption was categorized into three categories. The category ‘Never’ was someone who had never drank alcohol. Occasional or irregular consumption was ≤ monthly consumption and/or 1–2 drinks per day while regular alcohol consumption was defined as drinking > 2 drinks per day. A drink was defined as a bottle or one glass of wine or a shot of any of the spirit. Regular physical activity was defined as at least 150 minutes of moderate intensity exercise per week; irregular physical activity was defined as 30–149 minutes of moderate intensity physical activity per week while “never” was defined as < 30 minutes of moderate intensity physical activity per week. Plasma blood glucose and lipids (total cholesterol and LDL) using finger-prick blood sample were measured with point-of-care devices. Normal total plasma cholesterol was defined as < 200 mg/dl while normal LDL was defined as < 130 mg/dl. Dyslipidaemia was defined as plasma cholesterol ≥ 200 mg/dl and/or LDL cholesterol ≥ 130 mg/dl.
DATA ANALYSIS

Data were analysed using Stata version 15 (StataCorp LLC, Lakeway Drive, College Station, Texas, USA). Normality of data was determined using Shapiro-Wilk test. Proportions were used to summarize categorical data while continuous variables were summarized as means/medians; and standard deviations/interquartile range as appropriate. Non-normally distributed variables were log-transformed to achieve normality. Prevalence of each of the NCDs and cardiovascular risk factors were then calculated. The NCDs (hypertension, diabetes and dyslipidaemia) were modeled as dependent variables while the socio-demographic and lifestyle risk factors were independent variables. The association between each of the NCDs (hypertension, diabetes and dyslipidaemia) and socio-demographic and lifestyle risk factors was determined using chi square. The odds ratios of each of the NCDs (hypertension, diabetes and dyslipidaemia) adjusted for the various socio-demographic and cardiovascular risk factors were determined using multivariable logistic regression models. Interaction terms were tested for in all regression models but there was no significant interaction between any of the variables in the regression models. Finally, Poisson regression analyses were performed to determine the effects of certain co-variates on the clustering of NCDs among the participants. Multivariate models were built using significant variables in initial univariate analyses (purposive confirmatory method) and these models were similar to results obtained by stepwise regression models. The results of the purposive confirmatory approach are presented in this paper. A p value < 0.05 was considered statistically significant in all analyses.

Results

The results of the descriptive analysis (Table 1) showed that of the study participants, 90(41.9%) were male and 125(58.1%) were female, with mean age of 38.4 ± 21.6. About 11(5.1%) had previous history of diabetes while 40 (18.6%) had a history of hypertension. Our study also revealed that about 65 (34.4%) frequently consumed more than 2 drinks of alcohol per day while few 14 (7.4%) smoked cigarettes at least once a week. There were 38 (20.1%) who reported regular physical activity or exercise per week. More than half of those tested had elevated plasma cholesterol level.

Table 1.2 shows the prevalence of NCDs and 3 major risk factors. Hypertension prevalence was 35.3%
and similar in both sexes, 4.6% of the subjects had diabetes with no sex difference while 47.9% had dyslipidaemia which showed a female preponderance (52% in women vs. 42.2% in men).

Table 1.1

Variables	Frequency(%)	Mean ± SD
Age (years)	38.4 ± 21.6	
Sex		
Male	90 (41.9%)	
Female	125 (58.1%)	
Marital Status		
Single	59 (27.4%)	
Married	144 (70.0%)	
Divorced	4 (1.9)	
Widowed	5 (2.3)	
Others	3 (1.4)	
Occupation		
Employed	139 (66.5%)	
Unemployed	70 (33.5%)	
Previous DM history		
Yes	11 (5.1)	
No	204 (94.9)	
Previous Hypertension history		
Yes	40 (18.6%)	
No	175 (81.4%)	
Alcohol consumption		
Never	52 (27.5%)	
Infrequent	72 (38.1%)	
Frequent	65 (34.4%)	
Smoking		
Never	111 (58.7%)	
Infrequent	64 (33.9%)	
Frequent	14 (7.4)	
Recommended Physical activity levels		
No	89 (47.1%)	
Infrequent	62 (32.8%)	
Frequent	38 (20.1%)	
Blood pressure (171 respondents)		
SBP (mmHg)	143 ± 24.4	
DBP (mmHg)	85.7 ± 13.5	
RBG (mg/dl)	128.7 ± 49.1	
Plasma LDL levels (n = 188)		
Normal	114 (60.6%)	
Elevated	74 (39.4%)	
Plasma Total cholesterol levels (n = 188)		
Normal	90 (47.9%)	
Elevated	98 (52.1%)	

Table 1.2

Risk factors	Total N = 215	Male N = 90	Female N = 125
Hypertension	76 (35.3)	32 (35.6)	44 (35.2)
Diabetes mellitus	10 (4.6)	4 (4.4)	6 (4.8)
Dyslipidemia	103 (47.9)	38 (42.2)	65 (52)
Total	189	72 (56.9)	117 (70.9)
Smoking	78 (41.3)	41 (56.9)	37 (31.6)
Alcohol consumption	137 (72.5)	54 (75)	83 (70.9)
Physical activity	100 (52.9)	47 (65.3)	53 (45.3)

Majority of the respondents smoked cigarettes with male preponderance (56.9% in men vs. 31.6% in women), about three-quarters of the respondents consume alcohol with slight male preponderance while about half of the respondents engaged in exercise with male preponderance (65.3% in men vs.
45.3% in women).

Bivariate analysis using chi-square (Table 2) showed significant association between hypertension and increasing age-group. Those who were employed were more likely to have hypertension (p < 0.001). There was a strong association between hypertension and diabetes with all those who were diabetic being also hypertensives. Diabetes also showed increased risk with increasing age-group. Dyslipidaemia also showed increased risk with age and was more likely in those who were employed. Hypertension and diabetes were each significantly positively associated with having dyslipidaemia while smoking was also associated with dyslipidemia (p = 0.01). Physical activity was negatively associated with dyslipidaemia.

Table 2
Distribution and bivariate analysis between risk factors and NCDs

Variables	Hypertension		DM		Dyslipidaemia						
	p-value		p-value		p-value						
Age											
< 40 years	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	< 0.001				
	14 (18.4)	92 (66.2)	0 (0.0)	106 (51.7)	18 (17.5)	88 (78.6)	< 0.001				
40-60 years	36 (47.4)	39 (28.0)	< 0.001	3 (30.0)	72 (35.1)	< 0.001	53 (51.5)	22 (19.6)	< 0.001		
> 60 years	26 (34.2)	8 (5.8)	7 (70.0)	27 (13.2)	32 (31.1)	2 (1.8)					
Sex											
Male	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	0.96				
	32 (42.1)	58 (41.7)	4 (40.0)	86 (41.9)	38 (36.9)	52 (46.4)	0.16				
Female	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	6 (60.0)	119 (58.1)	65 (63.1)	60 (53.6)	< 0.001
Marital status											
Married	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	0.88				
	67 (89.3)	77 (56.2)	7 (70.0)	137 (67.8)	91 (90.1)	53 (47.7)	< 0.001				
Unmarried	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	1.00				
	8 (10.7)	60 (43.8)	3 (30.0)	65 (32.2)	10 (9.9)	58 (52.3)					
Occupation											
Employed	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	0.81				
	63 (84.0)	76 (56.7)	7 (70.0)	132 (66.3)	91 (89.2)	48 (44.9)	< 0.001				
Unemployed	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	1.00				
	12 (16.0)	58 (43.3)	3 (30.0)	67 (33.7)	11 (10.8)	59 (55.1)					
Hypertension											
Yes	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	0.81				
	62 (81.6)	41 (29.5)	< 0.001	9 (90.0)	94 (45.8)	< 0.01					
No	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	1.00				
	14 (18.4)	98 (70.5)	1 (10.0)	111 (54.2)	-	-					
DM status											
Yes	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	0.86				
	38 (51.5)	66 (48.5)	77 (74.8)	60 (69.8)	58 (56.3)	31 (36.1)					
No	yes (%)	no (%)	yes (%)	no (%)	yes (%)	no (%)	0.90				
	66 (86.8)	139 (100.0)	7 (70.0)	104 (58.1)	94 (91.3)	111 (99.1)					

When blood pressure and age were modelled as continuous variables, systolic (SBP) and diastolic (DBP) blood pressure showed strong positive linear relationship. Also, each of SBP and DBP showed

9
strong positive linear relationship with age (see supplementary document).

In Table 3, age, being employed and dyslipidaemia were the independent risk factors of hypertension. Respondents aged ≥ 60 years were about 4.6 times more likely to have hypertension in adjusted analyses, those employed were 4 times at risk of hypertension in unadjusted analysis which was attenuated to about 2-fold increased risk in adjusted analyses. Dyslipidaemia conferred a 10-fold increased risk of hypertension in unadjusted analysis, but this was attenuated by half to 5-fold increased risk of hypertension in adjusted analyses.

Variables	Hypertension (adjusted for age, occupation and dyslipidaemia)	Diabetes (adjusted for age and dyslipidaemia)	Dyslipidaemia (adjusted for age, occupation, smoking, physical activity and hypertension)			
	crude OR (95% CI)	p-value	adjusted OR (95% CI)	p-value	adjusted OR (95% CI)	p-value
Age (≥ 60 years)	8.51 (3.61-20.06)	< 0.05	4.56 (1.72-12.09)	< 0.05	15.38 (3.75-63.12)	< 0.05
Employed	4.01 (1.98-8.11)	< 0.05	2.29 (0.91-5.77)	0.08	10.63 (1.32-85.42)	< 0.05
Dyslipidaemia	10.58 (5.34-21.00)	< 0.05	5.01 (2.26-11.13)	< 0.05	10.58 (5.34-21.00)	< 0.05
Age (≥ 60 years)	24.79 (5.76-106.67)	< 0.05	29.32 (4.78-179.84)	< 0.05	24.79 (5.76-106.67)	< 0.05
Employed	10.17 (4.89-21.15)	< 0.05	11.12 (3.10-39.92)	< 0.05	10.17 (4.89-21.15)	< 0.05
Smoking	2.14 (1.18-3.89)	< 0.05	2.34 (1.03-5.33)	< 0.05	2.14 (1.18-3.89)	< 0.05
Physical activity	0.44 (0.24-0.79)	< 0.05	0.34 (0.15-0.76)	< 0.05	0.44 (0.24-0.79)	< 0.05
Hypertension	10.58 (5.34-21.00)	< 0.05	4.31 (1.90-9.77)	< 0.05	10.58 (5.34-21.00)	< 0.05

Both age and dyslipidaemia were risk factors of diabetes in crude analyses, but in adjusted analyses, only age was an independent risk factor of diabetes conferring an 8.8-fold increased risk.

Age, being employed, dyslipidaemia, smoking and hypertension were adverse risk factors for having dyslipidaemia while physical activity was protective of having dyslipidaemia in both crude and adjusted analyses. Individuals aged ≥ 60 years were 30 times more likely to have dyslipidaemia, those who were employed had 11-fold increased risk of having dyslipidaemia, those who smoked were twice at increased risk of dyslipidaemia while those with hypertension had a 4-fold increased risk of dyslipidaemia. Individuals who engaged in physical activity were 3 times less likely to have dyslipidaemia.

In multivariable Poisson regression, individuals aged ≥ 60 years had a mean of 2 NCDs while those employed, smokers and the physically inactive each had a mean of 1 NCD (see supplementary document).

Discussion
Non-communicable diseases, an `epidemic in slow motion', have been projected to be a leading cause of morbidity and mortality in Nigeria by 2030. The surveillance of NCD risk factors is one of the key strategies advocated to tackle these emerging public health concerns, particularly in low and middle income countries. Therefore, this study investigated prevalence of NCD and its association with behavioral risk factors in the busy suburb of the Ijegun-Isherì Osun in Lagos State, Nigeria. We found that most of the participants were aged 40 years and above, more than half were female, and majority were married.

Tobacco use, the leading cause of morbidity and mortality globally that claims about 6 million lives annually, was also prevalent in this study. This finding corroborates with reports in other literature where prevalence of tobacco use of was found to be 34.4% in India 43.2% in Bangladesh. It is known that unhealthy lifestyle habits are prevalent in urban cities and industrial hubs in Nigeria. Conversely, low prevalence rates have been reported among the working class in some other parts of Nigeria. The contrast in findings could be as a result of formal civil servants being the focus of previous studies as against this study whose participants were general community residents and traders. The sex differences in smoking in this study is in keeping with similar reports in other parts of the country where more males smoked cigarettes than females. This can be attributed to the risk-taking behaviours of men. There was a significant association between increasing age and smoking, which was similar to other existing literature. Similarly previous health reports conclude that majority of adult smokers initiated the habit of smoking before the age of 18 years, a finding which supports calls for the extension of the focus for tobacco control programs to young adults in order to curtail the habit of smoking as people get older.

Alcohol consumption and harmful use of alcohol were reported in more than half of our study population as 32.8% and 34.4% respectively. Approximately 2.3 million die each year from the harmful use of alcohol, accounting for about 3.8% of all deaths in the world. More than half of these deaths occur from NCDs including cancers, cardiovascular disease and liver cirrhosis. A prevalence
of 26.9% for alcohol consumption has been reported in urban communities in Ibadan.22 The differences in our findings and that of the earlier studies could be due to differences in study populations and the prevailing lifestyles present in these different communities. Another reason for inconsistent results with the available literature could be due to differences in assessment methods. Previous studies used self-constructed instrument while this study used standard and pretested questionnaire (WHO Stepwise protocol).41

In our study, physical activity was high (52.9%), which was consistent with previous studies in Ibadan and Abuja, Nigeria which have reported physical activity of 53.6% and 49% respectively among drivers.42,43 The similarity in the outcome could be due to driving being the occupation of majority of residents in Iseri-Osun - the study setting of this study. This is especially in keeping with the higher physical activity observed in males. Also, majority of the female respondents in this study were traders who usually sit in their shops throughout the day as reported also in a study in Tejuosho market in Lagos.16 Moreover, Lagos is a boisterous city and residents have to engage in demanding jobs and travel long distance daily in search of their daily means of sustenance. However, lower prevalence of physical activity (37.8%) among civil servants in Ibadan have been reported.44,45 The differences in the findings could be due to different instruments used for the assessment of physical exercise. Previous studies reported an underestimated level of physical inactivity in their study because of the subjective method of assessment in the use of self-reported questionnaires (International Physical Activity Questionnaire).46 Meanwhile, this study used WHO recommendation to classify participants into physical activity categories.47,48 One plausible reason for high percentage of physical activity in this study was because most participants were young adults with an average age of 38 years. Also, most of them were employed, even though their occupation were not disclosed but leaving home for work place every day might require walking among most participants. Still, workplace interventions that encourage more physical activity at work should be encouraged in the community.

Raised blood pressure, the major risk factor for cardiovascular diseases, which include coronary heart
disease, cerebrovascular disease, peripheral vascular disease etc., has become a global concern. This is because CVDs are the leading cause of death globally with an estimated 17.5 million deaths yearly, occurring mostly in low-and-middle income countries. This fact was buttressed in this study where about a third had hypertension, which supports previous findings in other researches in Nigeria. This is also in keeping with the landmark meta-analysis by Adeloye et al. who reported prevalence of 30.6% in urban communities in Nigeria. Increasing age has been shown to be a risk factor for raised blood pressure. Participants aged 60 years or above were about nine times more likely to be hypertensive compared to those in age group below 60 years. As a result of aging, changes occurring within the cardiovascular system like thickening of the arterial wall. Thus, the heart does more work in pushing blood against the thickened arterial wall leading to an increase in arterial blood pressure. However, our study did not show any significant gender difference in the occurrence of hypertension. Similarly, there was no significant association between gender and high blood pressure in similar settings although a systematic review on the current prevalence and pattern of hypertension in Nigeria, higher significant prevalence of hypertension was reported among males compared to females. Being employed and having dyslipidaemia were other predictors of hypertension in this study. Dyslipidaemia contributes to atherosclerosis through endothelial dysfunction, inflammation and insulin resistance. Employed individuals living in Lagos generally are exposed to daily stress that is characteristic industrial capitals.

The low prevalence of diabetes in this study is similar to the finding by Ajayi et al., Oguoma et al., and Sani et al. but lower than the reports by Oluyombo et al. in Ekiti and Agaba et al. However, Odugbemi et al. have reported much lower prevalence of diabetes in Tejuosho market in Lagos. It appears that diabetes prevalence is much higher in Nigeria compared to her neighbouring sub-Saharan countries.

Dyslipidaemia was prevalent in almost half of the respondents. In addition, age and the lifestyle risk factors predicted those with dyslipidaemia. Dyslipidaemia usually co-exists with obesity and both are
important in the pathway to hypertension and atherosclerotic vascular disease. Ogunbode et al.59 have coined a mnemonic termed “WASHED” for NCD lifestyle modification and health education in those with obesity in primary care settings. “WASHED” stands for weight control, alcohol reduction, smoking cessation, health promotion, exercise and diet. We have shown in our study the important role of smoking and physical activity as dominant risk factors of dyslipidaemia. We believe that health promotion and education in the community and primary care settings geared towards smoking cessation, increased physical activity and healthy diet would play critical roles in stemming the tide of atherosclerotic vascular diseases in Nigeria. This will require concerted efforts by stakeholders and policy makers if Nigeria is to achieve the 2025 voluntary targets of the Global NCD Action Plan.57

This study is an important contribution to the surveillance of NCD risk factors in Nigeria as most of the observations were based on validated tools than self-reported information. Even though it is not a nationally representative survey, an assessment of one community in one of the largest cities in Nigeria can give a minuscular view of the drivers of NCDs within the larger population until the time when nationally representative surveys would be conducted in Nigeria. Although, obesity is one of the four metabolic risk factors of NCDs, it was not assessed in this study However, we have measured blood cholesterol levels which are more important in the pathophysiologic pathway to cardiovascular diseases.60,61 Cross tabulation of behavioural risk factors by socio-demographic factors was not computed which makes it difficult to observe the categories of participants that constitute more in one habit or the other. We perhaps underestimated the level of physical inactivity in our study because of the subjective method of assessment in the use of self-reported questionnaires. For future studies, using more objective means of assessing physical activity like pedometers and accelerometers could give better result.

In conclusion, we have shown the prevalence of common NCDs and their risk factors in a representative community in Nigeria’s most busy city. Many of these risk factors are modifiable and this underscores the importance of health promotion and education in reducing the burden of NCDs in Nigeria. Larger surveys of these nature are needed for policy formulation. We plan to conduct more
surveys across Nigeria’s 6 socio-political regions in the future.

Abbreviations
aOR
adjusted odds ratio
DBP
Diastolic blood pressure
LMIC
Low- and middle-income countries
OR
Odds ratio
SBP
Systolic blood pressure
WASHED
weight control, alcohol reduction, smoking cessation, health promotion, exercise and diet
WHO
World Health Organisation

Declarations
Ethics approval and consent to participate
The study protocol and conduct adhered to the principles laid down in the Declaration of Helsinki.

Ethical clearance was obtained from the Lagos State Ministry of Health, Nigeria. Written informed consent was obtained from all study participants.

Consent for publication
Not applicable

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests

Funding
This work was self-funded by the authors.

Authors’ contribution
Acknowledgements
We thank the residents of Ijegun-Isheri Osun,, Lagos state, who willingly participated in this study to
expand the frontiers of knowledge. We thank the research assistants who made the conduct of this work easy.

References
1. WHO |. Global status report on noncommunicable diseases 2010. WHO (2015).
2. Islam SMS, et al Non Communicable Diseases (NCDs) in developing countries: A symposium report. Global. Health 10, (2014).
3. Alwan AD, Galea G, Stuckler D. Development at risk: Addressing noncommunicable diseases at the United Nations high-level meeting. Bulletin of the World Health Organization 89, (2011).
4. Rapid Urbanization. and the Nutrition Transition in Southern Africa | ALNAP.
5. WHO EMRO |. Urbanization and noncommunicable disease (NCD) risk factors: WHO STEPwise Iranian NCD risk factors surveillance in 2011 | Volume 23, issue 7 | EMHJ volume 23, 2017.
6. Bricas N. Urbanization Issues Affecting Food System Sustainability. in 1–25 (2019). doi:10.1007/978-3-030-13958-2_1.
7. Maher D, Sekajugo J. Research on health transition in Africa: Time for action. Health Research Policy and Systems 9, (2011).
8. Panda R, Mahapatra S, Persai D. Health system preparedness in noncommunicable diseases: Findings from two states Odisha and Kerala in India. J Fam Med Prim Care. 2018;7:565.
9. Kengne AP, Mayosi BM. Readiness of the primary care system for non-communicable diseases in sub-Saharan Africa. The Lancet Global Health 2, (2014).
10. Kankeu HT, Saksena P, Xu K, Evans DB. The financial burden from non-communicable diseases in low- and middle-income countries: A literature review. Health Research Policy and Systems 11, (2013).
11. Noncommunicable Diseases Country Profiles 2014.

12. Aikins de-Graft. A. et al. Tackling Africa’s chronic disease burden: From the local to the global. Globalization and Health 6, (2010).

13. Gounder CR, Chaisson RE. A diagonal approach to building primary healthcare systems in resource-limited settings: Women-centred integration of HIV/AIDS, tuberculosis, malaria, MCH and NCD initiatives. Tropical Medicine International Health. 2012;17:1426–31.

14. Joshi R, et al. Task shifting for non-communicable disease management in low and middle income countries - A systematic review. PLoS ONE 9, (2014).

15. Alikor CA, Emem-Chioma P. Clustering of cardiovascular disease risk factors in a rural adult population in Nigeria. Int J Res Med Sci. 2018;6:765–71.

16. Obugbemi T, Onajole A, Osibogun A. Prevalence of cardiovascular risk factors amongst traders in an urban market in Lagos, Nigeria. Niger Postgr Med J. 2012;19:1–6.

17. Lwanga SK, Lemeshow S Sample size determination in health studies: a practical manual. WHO (WHO, 1991).

18. Ogah OS, et al. Cardiovascular risk factors and non-communicable diseases in Abia state, Nigeria : report of a community- based survey. Int J Med Biomed Res. 2013;2:57–68.

19. Ajayi I, Sowemimo I, Akpa O, Ossai N. Prevalence of hypertension and associated factors among residents of Ibadan-North Local Government Area of Nigeria. Niger J Cardiol. 2016;13:67.

20. World Health Organization. A framework for surveillance: the WHO STEPwise approach to Surveillance of noncommunicable diseases (STEPS). Geneva: World Health Organization. A framework for surveillance: the WHO STEPwise approach to
Surveillance of noncommunicable diseases (STEPS). Geneva: World Health Organization. (2003).

21. World Health Organization/ International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/ International Society of Hypertension statement on management of hypertension. J. Hypertens. 21, 1983–1992 (2003).

22. Ajayi IO, Sowemimo IO, Akpa OM, Ossai NE. Prevalence of hypertension and associated factors among residents of Ibadan – North Local Government Area of Nigeria. Nig J Cardiol. 2016;13:67-75.

23. American Society of Hypertension. Recommendations for routine blood pressure measurement by indirect cuff sphygmomanometry. Am J Hypertens. 1992;5:207–9.

24. World Health Organization International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/ International Society of Hypertension (ISH) statement on management of hypertension. J. Hypertens. 21, 1983–1992 (2003).

25. Williams B, et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). Blood Pressure 27, (2018).

26. American Diabetes Association. A. A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2007;30 Suppl(1):42-7.

27. NCDs | Global Strategy on Diet, Physical Activity and Health – 2004. WHO (2018).

28. 28.

29. Physical Activity and Hypertension.

30. WHO |. Noncommunicable diseases: the slow motion disaster. WHO (2017).

31. Maiyaki M, Garbati M. The burden of non-communicable diseases in Nigeria; In the context of globalization. Annals of African Medicine. 2014;13:1-10.

32. WHO |. Global status report on noncommunicable diseases 2014. WHO (2015).
33. World Health Organization. Global Status Report On Noncommunicable Diseases 2014. (2014).

34. Agaku IT, et al. Poly-tobacco use among adults in 44 countries during 2008-2012: Evidence for an integrative and comprehensive approach in tobacco control. Drug Alcohol Depend. 2014;139:60-70.

35. Osalusi B, Uantioje E, Ogun S, Afe T, Adeeko O. The prevalence of hypertension among the adults in a semiurbarn community in south west Nigeria. Int J Med Heal Res. 2017;3:93-9.

36. Lano-Maduagu AT, Oguntona C, Oguntona E, Agbonlahor M, Onabanjo OO. Prevalence of Coronary Heart Diseases Risk Factors in Adults Population Living in Nigeria’s Largest Urban City. J Nutr Disord Ther. 2015;5:1-5.

37. Oladimeji AM, onisol., Fawole O, Nguku P, Nsubuga P. Prevalence and factors associated with hypertension and obesity among civil servants in Kaduna, Kaduna State, June 2012. Pan Afr Med J. 2014;18:13.

38. Ige OK, Owoaje ET, Adebiyi OA. Non communicable disease and risky behaviour in an urban university community Nigeria. Afr Health Sci. 2013;13:62-7.

39. Services USD of H. and Prevention H, C. for D. C. and, Promotion NC for C. D. P. and H. & Health, O. on S. and. Executive Summary (The Health Consequences of Smoking —50 Years of Progress: A Report of the Surgeon General). 1-36 (2014). doi:NBK179276.

40. Puckrein GA, Egan BM, Howard G. Social and Medical Determinants of Cardiometabolic Health: The Big Picture. Ethn Dis. 2015;25:521-4.

41. NCDs | STEPwise approach to surveillance (STEPS).

42. Odeyinka OT, Ajayi IO. Prevalence of hypertension and diabetes and their determinants among commercial drivers in Ibadan. Niger J Cardiol. 2017;14:75-83.
43. Ojji D, Stewart S, Ajayi S, Manmak M, Sliwa K. A predominance of hypertensive heart failure in the Abuja Heart Study cohort of urban Nigerians: a prospective clinical registry of 1515 de novo cases. 835–842 (2013). doi:10.1093/eurjhf/hft061.

44. Adeoye AM, et al. Early diastolic functional abnormalities in normotensive offspring of Nigerian hypertensives. Cardiovasc J Afr. 2012;23:255–9.

45. Zuhlke L, et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur Heart J. 2015;36:1115–22a.

46. Craig CL, et al. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

47. Change4Health -. Classification of Physical Activity and Level of Intensity.

48. Physical activity.

49. Oguoma VM, Nwose EU, Richards RS. Prevalence of cardio-metabolic syndrome in Nigeria: a systematic review. Public Health. 2015;129:413–23.

50. Adeloye D, Basquill C, Aderemi AV, Thompson JY, Obi FA. An estimate of the prevalence of hypertension in Nigeria: A systematic review and meta-analysis. J Hypertens. 2015;33:230–42.

51. Commodore-Mensah Y, et al. The Afro-Cardiac Study: Cardiovascular Disease Risk and Acculturation in West African Immigrants in the United States: Rationale and Study Design. J Immigr Minor Heal. 2016;18:1301–8.

52. Akinlua JT, Meakin R, Umar AM, Freemantle N. Current Prevalence Pattern of Hypertension in Nigeria: A Systematic Review. PLoS One. 2015;10:1-18.

53. Adeoye AM, et al. Circadian blood pressure variation amongst people with chronic kidney diseases: A pilot study in Ibadan. Niger Postgrad Med J. 2017;24:131-6.

54. Oguoma VM, et al. Prevalence of cardiovascular disease risk factors among a
Nigerian adult population: relationship with income level and accessibility to CVD risks screening. BMC Public Health. 2015;15:397-412.

55. Sani MU, Wahab KW, Yusuf BO, Gbadamosi M, Johnson OV. Modifiable cardiovascular risk factors among apparently healthy adult Nigerian population - a cross sectional study. BMC Res Notes. 2010;3:11-21.

56. Oluyombo R, Olamoyegun MA, Olaifa O, Iwuala SO, Babatunde OA. Cardiovascular risk factors in semi-urban communities in southwest Nigeria: Patterns and prevalence. J Epidemiol Glob Health. 2015;5:167-74.

57. Agaba EI, et al. A survey of non-communicable diseases and their risk factors among university employees: a single institutional study. Cardiovasc J Afr. 2017;28:377-84.

58. Adeloye D, et al. Estimating the prevalence, hospitalisation and mortality from type 2 diabetes mellitus in Nigeria: a systematic review and meta-analysis. BMJ Open. 2017;7:1-16.

59. Ogunbode A, Owolabi M, Ogguniyi A, Ogunbode O. 'Weight control, Alcohol reduction, Smoking cessation, Health promotion, Exercise and Diet (WASHED)': A mnemonic for lifestyle modification in obesity. Niger J Clin Pr. 2015;18:831-2.

60. Upadhyay RK. Emerging Risk Biomarkers in Cardiovascular. J Lipids. 2015;2015:1-50.

61. Addo SA, Nti C, Vuvor F, Adjimani J, Steiner-asiedu M Impact of Successful Weight Loss Maintenance on Serum Lipids and Glucose Concentrations of Previous Participants of a Weight Loss Programme in Accra, Ghana. J. Nutr. Metab. 2019, 1-12 (2019).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
NCDPaper.supplementarydocument.docx