Beneficial effects of oral pure caffeine on oxidative stress

Daniela Metro a, Valeria Cernaro b, Domenico Santoro b,⁎, Mattia Papa a, Michele Buemi b, Salvatore Benvenga c,d,e, Luigi Manasseria a

a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, University Hospital Policlinico G. Martino, Padiglione G, Messina, Italy
b Department of Clinical and Experimental Medicine, University of Messina, University Hospital Policlinico G. Martino Padiglione C, Via Consolare Valeria, 98100 Messina, Italy
c Department of Clinical and Experimental Medicine, University of Messina, Italy
d Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Italy
e Interdep Program of Molecular & Clinical Endocrinology and Women’s Endocrine Health, University Hospital Policlinico G. Martino, Padiglione H, Messina, Italy

A R T I C L E I N F O

Article history:
Received 24 August 2017
Received in revised form 24 September 2017
Accepted 3 October 2017

Keyword:
Oxidative stress
Coffee
Caffeine
Lipid peroxidation
Gluthathione
Malondialdehyde

A B S T R A C T

Ingestion of coffee (which is a mixture of over 1000 hydrosoluble substances) is known to protect from type-2 diabetes mellitus and its complications, and other chronic disorders associated with increased oxidative damage in blood and tissues. This protection is generally attributed to polyphenols and melanoidins. Very few studies were conducted on the amelioration of classic blood markers of oxidative stress induced after a few days of caffeine administration, but results vary.

To assess whether caffeine per se could account for antioxidant properties of coffee in the short-term, we tested the ability of pure caffeine ingestion (5 mg/kg body weight/day in two daily doses for seven consecutive days) to improve plasma levels of six biochemical indices in healthy male volunteers (n = 15). These indices were total antioxidant capacity (TAC), glutathione (GSH), oxidized glutathione (GSSG), GSH to GSSG ratio, lipid hydroperoxides (LOOH) and malondialdehyde (MDA). We found that all indices changed significantly (P < .05 or < .01) in a favourable manner, ranging from −41% for GSSG to −70% for LHP levels, and +106% for GSH levels to +249% for the GSSG/GSGG ratio. Changes of any given index were uniform across subjects, with no outliers.

We conclude that caffeine has unequivocal, consistent antioxidant properties.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The aim of the study is to assess in human volunteers whether the short term administration of caffeine would be beneficial on lipid peroxidation and a number of indices of oxidative stress.

Materials and methods

Study group

Male volunteers had to meet the following criteria in addition to signing the consent form: being of age 18–25 years, nonsmokers, nondrinkers, having normal body mass index (BMI), having a diet that met the dietary reference values indicated by the Società Italiana di Nutrizione Umana (Italian Society for Human Nutrition) [46]. Fifteen volunteers, regular coffee drinkers, were recruited.

The water solution of caffeine given to these volunteers was a galenic formulation prepared by a local pharmacy. This caffeine solution was administered orally, at room temperature, at the dose of 5 mg/kg body weight/day in two daily doses (2.5 mg/kg in the morning and 2.5 mg/kg after lunch) for seven days. The daily dose was equivalent to five cups of coffee. We evaluated the biochemical oxidative markers specified below. Oxidative stress markers were analyzed in plasma before and after the intake of caffeine. Blood for the two time points (baseline and end of the study) was drawn in the morning, with the baseline sample taken prior to the first dose of caffeine and the final sample taken on the morning on day 8.

The markers of oxidative stress measured were (i) total antioxidant capacity (TAC); (ii) Glutathione (GSH); (iii) oxidized glutathione (GSSG); (iv) GSH to GSSG ratio; (v) lipid hydroperoxides (LOOH); (vi) malondialdehyde (MDA). As well known, decreased oxidative stress is associated with an increase in TAC, GSH, GSH to GSSG ratio, and a decrease in the remaining three indices.

Assays

Lipid peroxidation, was quantified by assessing the oxidative state of the plasma through determination of the levels of lipid hydroperoxides (LOOH, μmol/l) by means of spectrophotometric technique analysis, and malondialdehyde (MDA) levels by high-performance liquid chromatography (HPLC). For LOOH, we used the Oxis Bioxytech® LPO-560™ Assay (Oxis International, Inc., Portland, OR, USA). This assay is based on the oxidation of ferrous ions (Fe²⁺) to ferric ions (Fe³⁺) by hydroperoxides under acidic conditions. Ferric ions then bind with the indicator dye, xylene orange, and form a colored complex. The absorbance of the complex was measured at 560 nm. For MDA measurement, 250 μl serum was added to 50 μl NaOH 6 M and then incubated at 60 °C in water bath for 30 min. Afterwards, proteins were precipitated with 125 μl 35% perchloric acid (v/v), with subsequent centrifugation and the mixture was centrifuged at 2800 rpm for 10 min. Next, 250 μl of the supernatant were transferred into an Eppendorf tube and mixed with 25 μl DNPH, which had been prepared as 5 mM solution in 2 M hydrochloric acid. This mixture was incubated for 30 min at room temperature in the dark and 50 μl were analyzed by HPLC [47].

The total antioxidant power (TAC, μmol/l) was determined by a colorimetric technique, using a commercial kit (DIACRON (Grosseto, Italy).

The modulation of antioxidant defenses was determined by analyzing plasma levels of reduced glutathione (GSH, μmol/ml), oxidized glutathione (GSSG, μmol/ml) and GSH/GSSG ratio. GSH and GSSG were measured by means of HPLC. This extraction procedure requires that blood samples are collected in vacutainer tubes containing K₃-EDTA. After collection, 100 μl fresh blood were mixed with 12 μl phosphate buffer 10 mmol/l, pH 7.2 (for free GSH), or 12 μl phosphate buffer 10 mmol/l, pH 7.2, containing 10 mM N-ethylmaleimide (for oxidized GSH). One hundred μl of this mixture were hemolyzed by adding 900 μl distilled water and immediately deproteinized by adding 200 μl sulfosalicylic acid (12% volume). The content of GSH was assessed in the acid-soluble fraction [48].

Statistics

For each group, the arithmetic mean of the values found and the relative standard deviation (SD) were calculated. The significance of differences between groups was evaluated by the analysis of variance (ANOVA); P values < .05 were considered statistically significant.

Results

Data are illustrated individually in Fig. 1, and summarized in Table 1.

All indices changed in a favourable manner, ranging from −41% for GSSG to −70% for LOOH levels, and +106% for GSH levels to +249% for the GSG/GSSG ratio. We did not have any side effects, except for a slight, non-statistically significant, increase in heart rate.

Fig. 1 shows that changes of any given index were uniform across subjects, with no outliers.

Discussion

As summarized in Table 2, the indices of oxidative stress we have studied in the present paper are of relevance, including the diabetes mellitus setting. Concerning the object of our study, viz. caffeine, data from the literature show beneficial effects on TAC and lipid peroxidation [44,45,49,50] with important additional actions of DNA protection from on oxidative breakage by hydroxyl radicals [51] and of decreased platelet aggregation [52,53].

As recently reviewed [54] prior to us others [39,43,55–57] have evaluated the short-term effects of drinking caffeine on the oxidative stress. While in 4/5 such studies, the number of subjects is lower than ours, only a few have evaluated all the six markers of blood oxidative stress we did. Effects on DNA protection are demonstrable as early as two hours after coffee ingestion [43], confirming previous intervention studies that provided evidence for long-term coffee consumption correlating with reduced DNA background damage in healthy volunteers. Continued coffee intake was associated with further decrements in background DNA damage within the 8 h intervention. Mean tail intensities (TIs%) decreased from 0.33 TIs (baseline, 0 h) to 0.22 TIs (within 8-h coffee consumption). The authors concluded that repeated coffee consumption was associated with reduced background DNA strand breakage, clearly measurable as early as 2 h after first intake resulting in a cumulative overall reduction by about one-third of the baseline value [43].

As reviewed elsewhere, the total antioxidant capacity of plasma is the primary measure and marker to evaluate the status and potential of oxidative stress in the body [58]. Lipid hydroperoxides and MDA have been documented as a primary biomarker of free radical mediated lipid damage and oxidative stress [58]. GSH, the most abundant nonprotein thiol that defends against oxidative stress, is considered as a biomarker of redox imbalance at cellular level [58]. In contrast, GSSG is unable to perform antioxidant functions. GSSG can be reduced back to GSH (and the GSH/GSSG ratio maintained high) by glutathione reductase and associated oxidation of NADPH to NAD+, unless such enzymatic activity is overwhelmed by excessive amounts of reactive oxygen species [59].
The effect of coffee consumption on the modulation of plasma antioxidant capacity was evaluated in 10 studies [54]. Eight studies (seven chronic interventions and one acute trial) also investigated the role of coffee in the modulation of blood GSH levels as a substrate of GPx [glutathione peroxidase] and GST [glutathione S-transferases] enzymes. Four out of seven chronic intervention studies documented an increase in GSH levels [42,58,28], while two long-term studies [12,22] and one study performing both an acute and a chronic intervention [55] did not show any significant effect. Coffee ineffectiveness was attributed to the degradation and...

Fig. 1. Individual data in the 15 volunteers for each of the six indices measured. Abbreviations are: GSH = glutathione; GSSG = oxidized glutathione; LOOH = lipid hydroperoxides; MDA = malondialdehyde; TAC = Total antioxidant capacity.
while two studies investigated both acute and chronic intervention studies. The investigation by Leelarungrayub et al. [56] deserves special attention, because it reports a significant higher level of MDA in men consuming caffeinated coffee, when compared to decaffeinated coffee or control, followed by a submaximal exercise test. Authors reported that, similarly to what observed in previous investigations, results demonstrated an increased intramuscular fat oxidation following consumption of caffeine-rich foods. For what concerns the other markers of lipid damage, only Yuka et al. [66] found a modest reduction of LDL oxidation susceptibility and a decrease of MDA levels following consumption of 3 coffees/day for 1 week. No significant effect was instead found by Mursu et al. [39] on serum LDL-conjugated dienes and plasma hydroxyl fatty acids, or by Teekachunhatea et al. [55] on MDA levels and by Hoelzl et al. [67] on both MDA and oxidized LDL.

In their article [54], Martini et al. conclude that, despite the high inter-study heterogeneity, data suggest that consumption of coffee may increase glutathione levels and reduce the levels of DNA damage. These effects are more evident in chronic interventions than in acute studies.

In summary, we have demonstrated that 7-day administration of pure caffeine induces unequivocally beneficial changes in a number of oxidative-stress biochemical indices, the magnitude of these changes being the greatest for the GSH to GSSG ratio.

Table 1
Changes in the indicated indices of oxidative stress observed in 15 healthy male volunteers after one-week administration of 5 mg/kg body weight/day in two daily doses.

Index	Caffeine administration	Statistics (P)	
Lipid hydroperoxides (LOOH)	3.88 ± 1.85	1.16 ± 0.35 (−70%)	<.05
Malondialdehyde (MDA)	0.9 ± 0.3	0.3 ± 0.1 (−67%)	<.01
Oxidized glutathione (GSSG)	0.56 ± 0.3	0.33 ± 0.4 (−41%)	<.01
Glutathione (GSH)	5.1 ± 1.5	10.5 ± 2.7 (+106%)	<.01
GSH to GSSG ratio	9.11 ± 2.8	31.8 ± 3.4 (+249%)	<.01
Total antioxidant capacity (TAC)	244 ± 40.3	398.2 ± 37.0 (163%)	<.05

The beneficial outcome after caffeine administration is a decrease for the first three indices and an increase for the last three indices. Data are mean ± SD. Differences between means ± SD by ANOVA.

Table 2
Summary of indices of oxidative stress and diabetes mellitus [ricontrollare referenze].

Index	General	Pertinence for diabetes
Lipid hydroperoxides (LOOH)	Peroxidation of lipids produces highly reactive aldehydes, including MDA, acrolein, 4-hydroxynonenal, 4-oxononenal, and isolevuglandins [68]. It has been reported that peroxyl radicals can remove hydrogen from lipids, producing hydroperoxides that further propagate the free-radical pathway [69].	Increased lipid peroxidation occurs in both type 1 and type 2 diabetes mellitus [38]. LOOH increase particularly in patients with vascular complications [70]. Lipid peroxidation in diabetes induces many secondary chronic complications including atherosclerosis and neural disorders [71,72]. Increased MDA level in plasma and many tissues was reported in diabetic patients [76,77]. Increased levels of MDA in diabetics suggests that peroxidative injury may be involved in the development of diabetic complications.
Malondialdehyde (MDA)	MDA is a three carbon, low molecular weight aldehyde representing the main product of polyunsaturated fatty acid peroxidation. It is characterized by a high toxicity due to its ability to react with other molecules like DNA and protein [54–58,28,59,30,60–75]. MDA is documented as a primary biomarker of free radical mediated lipid damage and oxidative stress [74].	Reduced levels of GSH are found in diabetes [79]. Decreased GSH level may be one of the factors in the oxidative DNA damage in type 2 diabetes.
Glutathione (GSH)	GSH is the most abundant nonprotein thiol that defends against oxidative stress [76]. GSH is an efficient antioxidant present in almost all living cells and is also considered as a biomarker of redox imbalance at cellular level [78,79].	GSSG levels in plasma from diabetic subjects were higher than those from controls.
Oxidized glutathione (GSSG)	GSSG is reduced back to GSH by the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent catalysis of the flavoenzyme GSH reductase	Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to normal. Hyperlipidemia, inflammation, and altered antioxidant profiles are the usual complications in diabetes mellitus as a result of decreased GSH/GSSG ratio. TAC is significantly lower in diabetic subjects with poor glycaemic control than healthy subjects, while patients with good glycaemic control had plasma antioxidant values similar to controls [66]. Decrease in TAC of plasma is associated with increased complications of diabetes, which include cardiovascular disease, nerve damage, blindness, and nephropathy.
GSH to GSSG ratio	This ratio is used to evaluate oxidative stress status in biological systems	
Total antioxidant capacity (TAC)	TAC is the primary measure and marker to evaluate the status and potential of oxidative stress in the body	
The authors declare no conflict of interest. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1] Arranz L, Fernández C, Rodríguez A, Ribera JM, De la Fuente M. The glutathione precursor N-acetylcysteine improves immune function in postmenopausal women. Free Radical Biol Med 2008;45:1252–62.

[2] Hashimoto T, Takasaki W, Yamato T, Manabe S, Sato I, Tsuda S. Effect of glutathione (GSH) depletion on DNA damage and blood chemistry in aged and young rats. J Toxicol Sci 2008;33:421–9.

[3] Christon R, Haloui RB, Durand G. Dietary polysaturated fatty acids and aging: modulation of glutathione-related antioxidants in rat liver. J Nutr 1995;125:3062–70.

[4] Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res Rev 2005;4:288–314.

[5] Yeh KB, Bayne AC, Mockett RJ, Orr WC, Sohal RS. Free aminothiols, glutathione redox state and protein mixed disulfides in aging Drosophila melanogaster. Biochem J 2004;382:131–6.

[6] Rebrin I, Sohal RS. Pro-oxidant shift in glutathione redox state during aging. Adv Drug Delivery Rev 2008;60:1545–52.

[7] Samec PS, Dresw-Botsch C, Flagg EW, Kurtz JC, Sternberg Jr P, Reed RL, et al. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radical Biol Med 1998;24:699–704.

[8] Celis M, Lagos A, Lizcano A, Rius A, Quatraro A, et al. Hyperglycemia counterbalances the anti-inflammatory effect of glutathione in diabetic patients: evidence linking hypertension and glycaemia through the oxidative stress in diabetes mellitus. J Diabetes Complications 2007;21:250–5.

[9] Dincer Y, Akca T, Alademir Z, Ilkova H. Effect of oxidative stress on glutathione pathway in red blood cells from patients with insulin-dependent diabetes mellitus. Metabolism 2002;51:1360–2.

[10] Yoshida H, Hirokawa J, Tagami S, Kawakami Y, Urita Y, Kondo T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 1995;38:201–10.

[11] Marguetti P, Matarrese P, Conti F, Colasanti T, Delunardo F, Capozzi A, et al. Autophagy in the C-terminal subunit of RILP76 induces oxidative stress and endothelial cell apoptosis in immune-mediated vascular diseases and atherosclerosis. Blood 2008;111:4559–70.

[12] Signorelli SS, Neri S, Di Pino L, Costa MP, Pennisi G, Digrandi D, et al. Oxidative stress and endothelial damage in patients with asymptomatic carotid atherosclerosis. Clin Exp Med 2001;1:9–12.

[13] Hassan MQ, Hadi RA, Al-Rawi ZS, Padron VA, Stos JH. The glutathione defense system in the pathogenesis of rheumatoid arthritis. J App Toxicol 2001;21:69–73.

[14] Pedersen-Lane JH, Zurier RB, Lawrence DA. Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. J Leukol Biol 2000;68:81–41.

[15] Seven A, Guzel S, Aslan M, Hamuryudan V. Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin Biochem 2008;41:538–43.

[16] Karelson E, Mahlapuu R, Zilmer M, Soomets U, Bogdanovic N, Langel U. Glutathione and glutathione-dependent enzymes in aging and in Alzheimer disease. In: Diederich M, editor. Cell Signaling, Transcription, and Translation as Therapeutic Targets. New York Academy of Sciences; New York; 2002. 973:537–40.

[17] Liu HL, Wang H, Shenvi S, Hagen TM, Liu RM. Glutathione metabolism during aging and in Alzheimer disease. In: De Greyn AD, editor. Strategies for Engineered Neligible Senescence: Why Genuine Control of Aging May Be Foreseeable. New York Academy of Sciences; 2004. 1019:346–9.

[18] Resende R, Moreira PI, Proenca T, Deshapande A, Busciglio J, Pereira C, et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radical Biol Med 2008;44:2051–7.

[19] Lang AE. The progression of Parkinson disease: a hypothesis. Neurology 2007;68:948–52.

[20] Spina MB, Cohen G. Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 1999;96:1398–400.

[21] Yamamoto N, Sawada H, Izumi Y, Kume T, Katsuki H, Shonomura S, et al. Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease. J Biol Chem 2002;278:4364–72.

[22] Barranco SC, Perry RR, Durm ME, Quarsi M, Werner AL, Gregoryck SG, et al. Relationship between colorectal cancer glutathione levels and patient survival: early results. Dis Colon Rectum 2000;43:1133–40.

[23] Kigawa J, Minagawa Y, Kanamori Y, Itamochi H, Cheng X, Okada M, et al. Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer 1998;82:697–702.

[24] Kumar A, Sharma S, Pandur CS, Sharma A. Decreased plasma glutathione in cancer of the uterine cervix. Cancer Lett 1995;94:107–11.

[25] Wong DY, Hsiao YL, Poon CK, Kwan PC, Chao SY, Chou ST, et al. Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer Lett 1995;81:934–41.

[26] Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2005;4:288–321.

[27] Hayes JD, Pulford DJ. The glutathione S-Transfere supergene family: relationship of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995;30:445–600.

[28] Lederballe P, Rhodes CJ, Moncol J, Iakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Cancer Biol Interact 2006;160:1–40.

[29] Hayes JD, McElinan LL. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Res 1995;31:273–300.

[30] Dalle-Donne I, Locatelli M, Piemonte F, Locatelli M, Lo Russo A, Medico I, et al. Oxidative stress in diabetic patients: evidence linking hypertension and glycaemia through the oxidative stress in diabetes mellitus. J Diabetes Complications 2007;21:250–5.

[31] Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V. Chemical characterization and antioxidant properties of coffee melanoids. J Agric Food Chem 2002;50:922–637.

[32] Sanchez-Gonzales I, Jimenez-Escrig A, Saura-Calixto F. In vitro antioxidant activity of coffee brews prepared using different procedures (Italian, espresso and filter). Food Chem 2005;90:133–9.

[33] Benvenga S, Bartolone L, Alves MA, Russo A, Lapa D, Giorgianni G, et al. Autolysis intestinal absorption of L-theanine caused by coffee. Thyroid 2008;18:293–301.

[34] Van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2000;284:97–104.

[35] Davi G, Falco A, Patrono C. Coffee and diabetes mellitus. Antioxid Redox Signaling 2005;7:256–68.

[36] Jaiswal SK, Kouro S. Glutathione and its role in alcohol metabolism. Alcohol Clin Exp Res 2003;27:555–65.

[37] Watanabe Y, Utsunomiya N, Kimura H, Arakawa M, Uchida T, Tsuruta K, et al. Glutathione and its role in alcohol metabolism. Alcohol Clin Exp Res 2003;27:555–65.

[38] Deasagayam TP, Kamat JP, Mohan H, Kesavan PC. Coffee as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1996;1288:29–70.

[39] Lee C. Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clin Chim Acta 2005;359:141–54.

[40] Laybutt DR, Livelli di asserimento di riferimento di nutriente ed energia per la popolazione italiana. 2012 – SINU (Società Italiana di Nutrizione Umana).

[41] Yeh CC, Hou MF, Wu SH, Tsai SM, Lin SK, Hou LA, et al. A study of glutathione status in the blood and tissues of patients with breast cancer. Cell Biochem Funct 2006;24:555–9.
Leelarungrayub D, Sallepan M, Charoenwattana S. Effects of acute caffeinated coffee consumption on energy utilization related to glucose and lipid oxidation from short submaximal Treadmill exercise in sedentary Men. Nutr Metab Insights 2011;4:65–72.

Ochiai R, Sugiuira Y, Otsuka K, Katsuragi Y, Hashiguchi T. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults. Int J Food Sci Nutr 2015;66:350–4.

Droge W. Free radicals in the physiological control of cell function. Physiol 2002;82:47–95.

Mišík M, Hoelzl C, Wagner KH, Cavin C, Moser B, Kundi M, et al. Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res 2010;692(1–2):42–8.

Droge W. Free radicals in the physiological control of cell function. Physiol 2002;82:47–95.

Ochiai R, Sugiura Y, Otsuka K, Katsuragi Y, Hashiguchi T. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults. Int J Food Sci Nutr 2015;66:350–4.

Droge W. Free radicals in the physiological control of cell function. Physiol 2002;82:47–95.

Mišík M, Hoelzl C, Wagner KH, Cavin C, Moser B, Kundi M, et al. Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res 2010;692(1–2):42–8.

Hoelzl C, Knasmüller S, Wagner KH, Elbling L, Huber W, Kager N, et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 2010;54(12):1722–33.

Guo L, Chen Z, Amarnath V, Davies SS. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radical Biol Med 2012. 53(6):1226–38.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 2010;4(8):118–26; Fowler M. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008;26(2):77–82.

Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40(4):405–12.

Ramesh B, Karuna R, Sreenivasa RS, Haritha K, Sai MD, Sasi BR, et al. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 2012;2(11):895–900.

Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005;15:316–28.

Shodehinde SA, Oboh C. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro. Asian Pac J Trop Biomed 2013;3(6):449–57.

Moussa SA. Oxidative stress in diabetes mellitus. Romanian J Biophys 2008;18:225–36.

Bandeira Sde M, Guedes Gda S, da Fonseca LJ, Pires AS, Gelain DP, Moreira JC, et al. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longevity 2012;819310.

Lu SC. Glutathione synthesis. Biochim Biophys Acta 2013;1830(5):3143–53.

Chakravarty S, Rizvi SI. Day and night GSH and MDA levels in healthy adults and effects of different doses of melatonin on these parameters. Int J Cell Biol 2011;2011:40591.

Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience 2012;226:62–72.

Calabrese V, Cornelius C, Lelo V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta 2012;1822(5):729–36.

Dinçer Y, Akçay T, Alademir Z, Ikkioh H. Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res 2002;505(1–2):75–81.