Regulation of human Δ-6 desaturase gene transcription: identification of a functional direct repeat-1 element

Chongren Tang,1 Hyekung P. Cho, Manabu T. Nakamura, and Steven D. Clarke2
Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808

Abstract The rate-limiting step in 20:4(n-6) and 22:6(n-3) synthesis is the desaturation of 18:2(n-6) and 18:3(n-3) by Δ-6 desaturase. In this report, we demonstrate that n-6 and n-3 PUFAs suppressed the hepatic expression of rodent Δ-6 desaturase by inhibiting the rate of Δ-6 desaturase gene transcription. In contrast, consumption of the peroxisome proliferator-activated receptor (PPAR) activator WY 14,643 significantly enhanced the transcription of hepatic Δ-6 desaturase by more than 500%. Transfection reporter assays with HepG2 cells revealed that the PUFAs response region for the human Δ-6 desaturase gene involved the proximal promoter region of −283/+1 human Δ-6 desaturase gene, while the WY 14,643 response element (RE) was identified as an imperfect direct repeat (DR-1) located at −385/−373. The WY 14,643 induction of the human Δ-6 desaturase promoter activity was dependent upon the expression of PPARα. Electrophoretic mobility shift assays revealed that nuclear proteins extracted from HepG2 cells expressing PPARα specifically interacted with the −385/−373 DR-1 sequence of the human Δ-6 desaturase gene. The interaction was eliminated by the unlabeled PPARα RE of the rat acyl-CoA oxidase gene, and the protein-DNA complex was super-shifted by treatment with anti-PPARα. The −385/−373 sequence also interacted with a mixture of in vitro translated PPARα-retinoic acid receptor X (RXR)α, but by themselves neither PPARα nor RXR could bind to the Δ-6 desaturase DR-1. These data indicate that the 5′-flanking region of the human Δ-6 desaturase gene contains a DR-1 that functions in the regulation of human Δ-6 desaturase gene transcription, and thereby plays a role in the synthesis of 20- and 22-carbon polyenoic fatty acids.——Tang, C., H. P. Cho, M. T. Nakamura, and S. D. Clarke. Regulation of human Δ-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J. Lipid Res. 2003. 44: 686–695.

Supplementary key words liver • peroxisome proliferator-activated receptor α • polyunsaturated fatty acids

Long chain PUFAs such as 20:4(n-6) and 22:6(n-3) play pivotal roles in a number of biological functions, includ-
The hepatic transcription of Δ-6 desaturase, fatty acid synthase (FAS), and acyl-CoA oxidase (AOX) genes in rats fed a fat-free (FF) diet or the FF diet supplemented with 0.1% WY 14,643 (WY), 10% (w/w) fish oil (FO), safflower oil (SO), or triolein (TO) was determined by nuclear run-on assay. Transcription activities (dpm/tran-script per 10⁶ dpm total RNA) were corrected for nonspecific hybridization to the pBS vector, and data are ex-
pressed as means ± SE; n = 4 rats/treatment. ND, nondetectable.

*Indicates a significant difference from the FF values (P < 0.05).

TABLE 1. Effects of dietary PUFAs and WY 14,643 on rat liver Δ-6 desaturase gene transcription

Hepatic Gene Transcript	WY	FO	SO	TO	FF
Δ-6 desaturase	27.5 ± 6.1*a	ND	1.8 ± 0.7*a	4.0 ± 1.1	4.5 ± 1.2
FAS	55.2 ± 24.0*a	18.5 ± 4.2*a	43.0 ± 9.2*a	135 ± 28.0	127 ± 15.0
AOX	67.5 ± 7.9*a	5.0 ± 2.0	6.8 ± 2.0	4.0 ± 1.0	4.3 ± 1.5

The mechanisms by which dietary PUFA and PPARα activators regulate hepatic Δ-6 desaturase and Δ-5 desaturase gene expression are unknown. In this report, we demonstr-ate that PUFAs suppress and non-PUFA PPARα ligand ac-
tivators induce transcription for both the rat and human liver Δ-6 desaturase gene. Moreover, we have determined that the human Δ-6 desaturase gene contains an imperfect direct repeat-1 (DR-1) at −385/−373 that imparts PPARα responsiveness to the Δ-6 desaturase promoter.

MATERIALS AND METHODS

Dietary study

Male Sprague Dawley rats (Harlan Sprague-Dawley) were housed in a temperature- and light-controlled environment and

Fig. 1. Transcriptional regulation of rat liver Δ-6 desaturase by WY 14,643 (WY) and PUFA. Nuclear run-on assays were conducted using nuclei isolated from rats fed the fat-free (FF) diet or the FF diet supplemented with 0.1% WY, 10% (w/w) fish oil (FO), safflower oil (SO), or triolein (TO). FAS, fatty acid synthase; AOX, acyl-CoA oxidase. A quantitative summary of the nuclear run-on output is presented in Table 1.

Fig. 2. The effects of WY and PUFA on rat liver Δ-6 desaturase and Δ-5 desaturase mRNA abundance. A: Hepatic Δ-6 desaturase and Δ-5 desaturase mRNA abundance was quantified in rats fed a FF diet or the FF diet supplemented with 0.1% WY or 10% (w/w) FO, SO, or TO. Data are expressed as means ± SE, n = 4. Asterisk indicates that the values are significantly different from the FF diet group (P < 0.05). B: A representative Northern blot (30 μg/lane) showing the 3.8 kb and 1.9 kb transcripts for Δ-6 desaturase (D6D) and the 3.8 kb and 1.9 kb transcripts for Δ-5 desaturase (D5D). GAPDH (GAPDH) transcripts.

Tang et al. Regulation of human Δ-6 desaturase gene transcription 687
adapted to a 3 h per day (9–12) meal-feeding regimen using a high-glucose, fat-free diet (Dyets, Bethlehem, PA) (23). After a 7-day adaptation period, the rats were randomly assigned to one of the following dietary treatments (n = 5 rats per group) and fed for an additional 5 days: a high-glucose, fat-free diet, the fat-free diet plus 0.1% (w/w) WY 14,643 (Chemsyn Science Labs, Lehigh Park, PA) for an additional 5 days: a high glucose, fat-free diet; the fat-free diet plus 10% fat (w/w) for an additional 5 days: a high glucose, fat-free diet; the fat-free diet plus 0.1% (w/w) WY 14,643 (Chemsyn Science Labs, Lehigh Park, PA). Each rat was killed at the end of the experiment.

RNA analysis and gene transcription

The abundance of a variety of hepatic transcripts described in the figures was determined by Northern blot analysis using total RNA extracted by the phenol-guanidinium isothiocyanate method (24). The abundance of specific transcripts of interest were quantified following hybridization with cDNA probes labeled with [α-32P]dCTP (Amersham, Arlington Heights, IL) using polymerase chain reaction radiolabeling or random prime labeling (Life Technologies, Baltimore, MD) (11, 16). The impact of WY 14,643 and various dietary fats on the in vivo transcription of rat liver Δ6 desaturase, fatty acid synthase, and acyl-CoA oxidase (AOX) was determined using the nuclear run-on assay procedure (11, 15). Equivalent counts of nuclear RNA labeled with [α-32P]UTP (Amersham) were hybridized to 72 h at 40°C to filter-bound cDNAs specific for Δ6 desaturase, FAS, and AOX. After hybridization and washing, the membranes were exposed to X-ray film (X-OMAT-AR, Kodak, Rochester, NY). Each RNA hybrid was cut out and counted by liquid scintillation counting.

Transcription and mRNA abundance data were subjected to one-way ANOVA, and treatment effects (P < 0.05) were determined as differences from the fat-free group.

Genomic cloning and reporter vector construction for human Δ6 desaturase

Human Δ6 desaturase and Δ5 desaturase cDNA sequences were used to BLAST search the human genomic database. Clone PAC AC004228 corresponding to the region of human chromosome 11q12.2–13.1 was found to contain all of the exons for Δ6 desaturase and Δ5 desaturase, as well as the entire region spanning the distance between the two genes. A KpnI-AviII fragment representing the sequence of −6,249 to +279 was cut from the human clone AC004228. A luciferase (LUC) reporter construct containing the Δ6 desaturase proximal promoter region of −118/+132 was prepared by cutting the −6,249/+279 fragment with Sau3AI and NaeI, and subsequently inserting the −118/+132 sequence into the SacI and Smal sites of pGL3.LUC basic vector (Promega, Madison, WI). The −1,749/+132pΔ6 desaturase.LUC construct was prepared by removing the Sau3AI fragment−1,749/−118 from −6,249/+279 and inserting it into the SacI site of the −118/+132pΔ6 desaturase.LUC construct. The reporter −6,249/+132pΔ6 desaturase.LUC was prepared by linking the KpnI-PstI fragment of −6,249/−1,581 with the corresponding sites located in −1,749/+132pΔ6 desaturase.LUC. Constructs −417/+132pΔ6 desaturase.LUC and −283/+132pΔ6 desaturase.LUC were generated by 5′-digestion of −1,749/+132pΔ6 desaturase.LUC using exonuclease III and mung bean nuclease. Mutation of the DR-1 located at −385/−373 of the human Δ6 desaturase gene was accomplished using the vector −417/+132pΔ6 desaturase.LUC as the template in a polymerase chain reaction procedure that employed 5′-CCTG-CGGTACCCGGGGGCCGAGAG TGGGGGAGGAGCaTCCG-GACACCG-3′ as the forward primer (mismatched bases indicated by lower-case letters). The polymerase chain reaction DNA product was then digested with KpnI and NaeI, and ligated to the KpnI and Smal sites of the pGL3 basic vector (i.e., −417mpΔ6 desaturase.LUC). Sequence fidelity and the introduced mutations were verified by sequencing.

Site of transcription initiation

The start site of transcription for Δ6 desaturase was mapped by a modification of the S1 nuclease method (26). A 5′-end labeled, single-strand 220 nucleotide (nt) DNA fragment corresponding to the 12–231 nt upstream of the translation start codon for human Δ6 desaturase was synthesized using Klenow fragment. The labeled fragment was purified by electrophoresis in a 7% acrylamide gel. Total RNA (100 μg) extracted from HepG2 or glioma cells was mixed with 8 ng (15,000 dpm) of single-strand probe, and the mixture dried under vacuum. The pellet was resuspended in 25 μl of 80% formamide, 40 mM Heps (pH 6.4), 1 mM EDTA, and 0.4 M NaCl, and incubated at 90°C for 5 min and then at 50°C overnight. The sample was subsequently digested with 800 units of S1 nuclease for 1 h at room temperature. The S1 nuclease-digested products were precipitated with ethanol, resuspended in 25 μl of water, and subjected to S1 nuclease digestion.

Fig. 3. WY induction of Δ6 desaturase expression in HepG2. A: A representative Northern blot (30 μg total RNA/lane) depicting the effect of 18:1(n-9) and 20:4(n-6) on the HepG2 abundance of Δ6 desaturase and GAPDH mRNA. Confluent HepG2 cells maintained for 48 h in a serum-free medium that contained 10−7 M insulin (Ins) and dexamethasone (Dex) were treated with varying concentrations of albumin-bound 18:1(n-9) or 20:4(n-6) (11). B: HepG2 cells were transfected with pSG5.m peroxisome proliferator-activated receptor (PPAR)α and incubated for 36 h with (+) and without (−) the PPARα-specific activator, WY. Δ6 Desaturase and GAPDH mRNA abundance was quantified by Northern analysis (30 μg/lane). The bar graph depicts relative Δ6 desaturase mRNA abundance ± SE (n = 3), and the inset represents a pooled Northern blot for the triplicate samples. Asterisk denotes that WY significantly increased relative abundance of Δ6 desaturase mRNA, P < 0.05.
Cell culture and transfection

HepG2 cells and CV-1 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (11, 27, 28). The impact of 18:1(n-9) and 20:4(n-6) on endogenous HepG2 expression of Δ6 desaturase was determined by quantifying Δ6 desaturase mRNA abundance in confluent HepG2 cells, respectively. TSS 1 and TSS 2 are located 177 and 143 nucleotides (nts) upstream from the translation initiation codon, AUG. Lane 5 is the 220 nt probe subjected to S1 nuclease in the absence of RNA, and Lane 6 is the free radiolabeled 220 nt probe. B: Depicts the nt sequence for the −309/+141 region of human Δ6 desaturase gene. The gray oval denotes a candidate consensus CCATT box, and the gray rectangles denote candidate Sp1 binding sites. The two major transcription start sites are marked as TSS 1 and TSS 2, and the translation start site for the transcript is noted at +180.

Fig. 4. Identification of the transcription initiation sites for the human Δ6 desaturase gene. A: Transcription initiation sites for the human Δ6 desaturase were identified using S1 nuclease analysis and 100 μg total RNA extracted from HepG2 cells or human glioma cells. Lanes 1 and 2 are adenine and thymidine DNA sequencing ladders, respectively. Lanes 3 and 4 depict the transcription initiation sites (TSS) for the Δ6 desaturase gene in human glioma cells and the human hepatoma HepG2 cells, respectively. TSS 1 and TSS 2 are located 177 and 143 nucleotides (nts) upstream from the translation initiation codon, AUG. Lane 5 is the 220 nt probe subjected to S1 nuclease in the absence of RNA, and Lane 6 is the free radiolabeled 220 nt probe. B: Depicts the nt sequence for the −309/+141 region of human Δ6 desaturase gene. The gray oval denotes a candidate consensus CCATT box, and the gray rectangles denote candidate Sp1 binding sites. The two major transcription start sites are marked as TSS 1 and TSS 2, and the translation start site for the transcript is noted at +180.

notated with ethanol. The precipitate was dried and resuspended in 1× Tris-EDTA (pH 7.5), boiled with formamide loading dye, and the resulting fragments were separated by electrophoresis in a 5% polyacrylamide, 7 M urea denaturing gel.

Cell culture and transfection

HepG2 cells and CV-1 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (11, 27, 28). The impact of 18:1(n-9) and 20:4(n-6) on endogenous HepG2 expression of Δ6 desaturase was determined by quantifying Δ6 desaturase mRNA abundance in confluent HepG2 cells that had been incubated for 36 h with 0 μM, 10 μM, 50 μM, or 200 μM albumin-bound (fatty acid-albumin ratio of 4:1, w/w) 18:1(n-9) or 20:4(n-6) (11). The influence of the PPARα-specific ligand activator, WY 14,643, on endogenous Δ6 desaturase expression was determined by measuring the Δ6 desaturase mRNA abundance in HepG2 cells that had been transfected with a PPARα expression vector (0.2 μg pSG5.mPPARα) and treated for 36 h with 100 μM WY 14,643 dissolved in dimethylsulfoxide or with vehicle alone. The influence of fatty acids on human Δ6 desaturase promoter activity was determined by transfecting HepG2 cells in 6-well plates with 1.8 μg of −180. The effect of PPARα activation on human Δ6 desaturase promoter activity was evaluated by
but had been treated with transfection reagent. The influence of that had not been transfected with either pSG5 or pSG5.mPPAR, period, the transfection medium was removed and replaced with (Life Technology, Rockville, MD) (28). After a 12 h incubation grown to 65–75% confluence. At this point, the cells were trans-
expression vector pCMV.HNF-4. Transfection of HepG2 and CV-1 moter activity was examined by transfecting CV-1 cells with the
ficity of the PPAR
bumin-bound fatty acid or WY as described in Materials and Methods. The spec-
activity of the PPAR
H11002
/H9251
/H11002

118 ND ND 69 ± 11 56 ± 2

TABLE 2. Regulation of the human Δ-6 desaturase promoter by PUFAs and the peroxisome proliferator activated receptor α activator, WY 14,643

Treatments	18:1(n-9)	20:4(n-6)	−WY 14,643	+WY 14,643
Luciferase activity RLU/mg protein				
−1,749	141 ± 6	126 ± 7	69 ± 8*	162 ± 14
−668	ND	ND	ND	ND
−417	149 ± 8	124 ± 10	80 ± 8*	177 ± 19
−417m	158 ± 8	124 ± 10	76 ± 9*	155 ± 5
−283	129 ± 11	127 ± 12	78 ± 13*	126 ± 6
−118	ND	ND	ND	69 ± 11

RLU, relative light unit. HepG2 cells were treated with 100 μM albumin-bound fatty acid or WY as described in Materials and Methods. Cells treated with (+) and without (−) WY were cotransfected with pSG5.m peroxisome proliferator-activated receptor (PPAR)α. Luciferase activity in cells treated with WY, but transfected with empty PPARα vector or not transfected with pSG5.mPPARα was 89% + 8% and 93% + 2% cells, respectively, of the luciferase activity observed in cells treated with vehicle alone. Values are expressed as means ± SEM for n = 2–4 separate experiments with 3–4 replicate plates in each experiment.

Transcriptional regulation of Δ-6 desaturase by PUFAs and WY 14,643

Transfecting HepG2 cells in 6-well plates with 1.8 μg of −1,749, −668, −417, −417m, −283, or −118 pA-6 desaturase.LUC and transacting the cells with 100 μM WY 14,643. The dependence of Δ-6 desaturase promoter activity on PPARα was further evaluated in CV-1 cells that had been cotransfected with 0.2 μg pSG5.mPPARα plus 0.2 μg pSG5.retinoic acid receptor X (RXR)α. The specificity of the PPARα effect was further evaluated by transfecting HepG2 and CV-1 cells with pSG5 vector lacking the open reading frame for PPARα, and by treating cells with WY 14,643 that had not been transfected with either pSG5 or pSG5.mPPAR, but had been treated with transfection reagent. The influence of hepatic nuclear factor 4 (HNF-4) on human Δ-6 desaturase promoter activity was examined by transfecting CV-1 cells with the expression vector pCMV.HNF-4. Transfection of HepG2 and CV-1 cells was conducted using cells seeded onto 6-well plates and grown to 65–75% confluence. At this point, the cells were transacted with the respective vector(s) by incubating them for 12 h in a serum-free transfection medium containing the lipofectamine (Life Technology, Rockville, MD) (28). After a 12 h incubation period, the transfection medium was removed and replaced with a serum-free medium containing 10−7 M insulin and dexamethasone, 10 μg/ml α-tocopherol plus the fatty acid, or WY 14,643. Cells were harvested after 36 h treatment using lysis buffer (Promega). Luciferase activity was quantified and is expressed as relative light units (RLUs) per μg protein (28). Transfection efficiency was evaluated by cotransfection with 0.2 μg/well pCMVβgal and determining the activity of β-galactosidase.

Electrophoretic mobility shift assay

Nuclear proteins for use in electrophoretic mobility shift assays (EMSAs) were extracted from HepG2 cells transfected with pSG5.mPPARα, empty pSG5, or no vector, and treated with or without 100 μM WY 14,643 for 36 h (28, 29). Briefly, cells were washed twice in ice-cold PBS, scraped into 1.5 ml microfuge tubes, and centrifuged at 500 g for 20 s in a microcentrifuge. The cell pellet was then resuspended in 1 ml ice-cold buffer A [10 mM Hepes (pH 7.9), 1 mM EDTA, 10 mM KCl, 1 mM phenylmethylsulfonyl fluoride, 0.5 mM dithiothreitol, 5 μg/ml pepstatin A, 10 μg/ml leupeptin, and 2 μg/ml aprotinin]. After incubation on ice for 20 min, Nonidet P-40 was added to a final concentration of 0.5%. After vigorous vortexing for 20 s, the cell suspension was centrifuged at 15,000 g for 30 s to collect the nuclei. The nuclei were resuspended in 10 vol of buffer B [10 mM Hepes (pH 7.9), 1 mM EDTA, 0.42 M NaCl, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride, 0.5 mM dithiothreitol, 5 μg/ml pepstatin A, 10 μg/ml leupeptin, and 2 μg/ml aprotinin], incubated on ice for 20 min, and centrifuged at 15,000 g for 10 min at 4°C. The resulting supernatants were stored at −80°C. In vitro translated mouse PPARα and rat RXRα were synthesized using the TNT-coupled reticulocyte lysate system (Promega). Double-strand oligonucleotides composed of the following sequences were used for EMSAs and competition analyses: human Δ-6 desaturase DR-1 (−385/−373), 5′-GGGGGAGGGAGGGTCGCGCA-3′; mutated Δ-6 desaturase DR-1, 5′-GGGGGAGGGAGGGTCGCGCA-GGcTCGGACACCGGT-3′; rat AOX DR-1/PPAR-response element (RE), GGGGACCAGGACAAAGGTCAAGCAGCCAT. The DR-1/PPRE sequences are underlined, and mutated bases are shown in lowercase letters. Annealed oligonucleotides were endlabeled with [γ-32p]ATP (Amersham) using T4 polynucleotide kinase. A 15 μl reaction containing 0.5–1.0 ng (50,000 cpm) of labeled DR-1/PPAR-RE and 4 μg of nuclear extract or in vitro translated 2 μl of PPARα and/or RXRα were incubated for 30 min on ice in a buffer containing 20 mM Hepes (pH 8.0), 60 mM KCl, 1 mM dithiothreitol, 10% glycerol, and 0.2 μg poly(dl-dc). In the super-shift analyses, 2 μg of H-98 anti-PPARα (Santa Cruz Biotechnology, Santa Cruz, CA) was incubated with nuclear protein extracts on ice for 12 h before labeled probe was added. After incubation, DNA-protein complexes were separated by electrophoresis on 5% polyacrylamide gel in Tris-glycine buffer at 4°C and visualized by autoradiography (28).

RESULTS

Transcriptional regulation of Δ-6 desaturase by PUFAs and WY 14,643

Feeding rats or mice a high-carbohydrate, fat-free diet supplemented with n-6 and n-3 PUFAs lowers the hepatic mRNA abundance and enzymatic activity of Δ-6 desaturase and Δ-5 desaturase (15, 16). On the other hand, feeding the PPARα-specific activator WY 14,643 leads to a marked increase in the mRNA abundance and enzymatic activity of Δ-6 desaturase and Δ-5 desaturase (19). Nuclear run-on assays revealed that the ingestion of safflower oil rich in 18:2(n-6) or dietary fish oil rich in 20- and 22-carbon n-3 fatty acids reduced the hepatic abundance of Δ-6 desaturase mRNA by inhibiting the rate of Δ-6 desaturase gene transcription 60% and greater than 95%, respectively (Table 1; Figs. 1, 2). The extent of inhibition by dietary PUFAs was comparable to that of the fatty acid synthase gene, a gene whose transcription is well recognized as being inhibited by dietary PUFAs (9). The inhibition of Δ-6 desaturase gene expression was specific for n-6 and n-3 PUFAs, because feeding comparable amounts of triolein [i.e., 18:1(n-9)] did not lower the rate of Δ-6 desaturase gene transcription or the hepatic abundance of Δ-6 desaturase mRNA (Table 1; Figs. 1, 2). In contrast to the effects of dietary PUFAs, ingestion of WY 14,643 increased the level of rat liver Δ-6 desaturase mRNA by inducing the rate of Δ-6 desaturase gene tran-
transcribed sequences for the \(\Delta 6 \) desaturase and \(\Delta 5 \) desaturase genes, as well as containing the 11.2 Kbp intervening sequence lying between the two genes. S1 nuclease analysis revealed that transcription for the human \(\Delta 6 \) desaturase gene was initiated at multiple sites in both human glioma and liver cells (Fig. 4). The two major points for transcription initiation were located at \(-177\) and \(-143\) nt from the ATG codon (Fig. 4A). The presence of multiple transcription initiation sites is consistent with the fact that the human \(\Delta 6 \) desaturase gene does not appear to contain a classic TATA box (Fig. 4B). For the purpose of describing the location of cis-acting elements in the 5'-flanking sequence of the human \(\Delta 6 \) desaturase gene, the \(-177\) start point is considered +1. Although the human \(\Delta 6 \) desaturase gene lacks a TATA-box, the C/G-rich region between \(-280\) and +1 contains several candidate binding sites for Sp1 (Fig. 4B). Moreover, a CCAAT-box motif is located at \(-269/\-265\), and the \(-289/\-200\) region contains recognition sequences for the enhancer factors, sterol regulatory element binding protein-1 (SREBP-1) and NF-Y (22).

Mapping the WY 14,643 response element in the human \(\Delta 6 \) desaturase gene

PUFAs reportedly are activators of PPARs (30). Thus, we wanted to ascertain if the site in the human \(\Delta 6 \) desaturase promoter responsible for the WY 14,643 induction of \(\Delta 6 \) desaturase expression overlapped with the same region that conferred 20:4(n-6) inhibition. Treating HepG2 cells with 100 \(\mu \)M WY 14,643, increased luciferase expression 2-fold (\(P < 0.05 \)) (Table 2; Fig. 5A). Arachidonate’s 20:4(n-6) inhibitory influence on human \(\Delta 6 \) desaturase promoter activity was not mimicked by 18:1(n-9) (Table 2). Moreover, luciferase expression in HepG2 cells transfected with pSV40.LUC was not suppressed by 100 \(\mu \)M albumin-bound 20:4(n-6) of luciferase expression from \(-1,749/\+132\) \(\Delta 6 \) desaturase. LUC 50% (\(P < 0.05 \)), while incubating hepatocytes with the PPARα activator, WY 14,643, increased luciferase expression 2-fold (\(P < 0.05 \)) (Table 2). Moreover, luciferase expression in HepG2 cells transfected with pSV40.LUC was not suppressed by 100 \(\mu \)M 20:4(n-6); i.e., luciferase activity (RLU/\(\mu \)g) was 60 ± 4 and 67 ± 4 in HepG2 cells treated with and without 20:4(n-6), respectively. The 20:4(n-6) suppression of the human \(\Delta 6 \) desaturase promoter was not altered when the sequences between \(-1,749\) and \(-417\) were deleted (Table 2). Similarly, deleting the \(-1,749/\-417\) region did not reduce the WY 14,643 induction of \(\Delta 6 \) desaturase promoter (Table 2; Fig. 5). Stimulation of human \(\Delta 6 \) desaturase promoter activity by WY 14,643 required the coexpression of PPARα. Luciferase activity in HepG2 cells transfected with \(-417/\+132\) \(\Delta 6 \) desaturase LUC but not cotransfected with pSG5.mPPARα was 139 ± 17 and 138 ± 13 (RLU/\(\mu \)g protein) in the absence and presence of WY 14,643, respectively, and luciferase activity in HepG2 cells transfected with empty pSG5 was 144 ± 15 and 134 ± 11 in the absence and presence of WY 14,643, respectively. Deletion of the region between \(-417\) and \(-283\) eliminated the WY 14,643 enhancement of the \(\Delta 6 \) desaturase promoter, but the deletion had no effect on the 20:4(n-6) inhibition of luciferase expression (Table 2; Fig. 5). Sequence analysis revealed that the region between \(-417\) and \(-283\) contained an imperfect DR-1 (\(-385\)AGGGAG g

Identification of the start of transcription for the human \(\Delta 6 \) desaturase

A 100 Kbp human Chr 11 fragment (Chr 11q12.2 PAC clone AC 004228) was determined to contain the entire transcription more than 500% (Table 1; Figs. 1, 2). As expected, WY 14,643 increased the rate of gene transcription for the PPARα target gene AOX more than 15-fold (Table 1; Fig. 1). Unfortunately, the impact of dietary PUFA and WY 14,643 on the rate of \(\Delta 5 \) desaturase gene transcription could not be determined because the hybridization signal was below the level of reliable detection. Expression of the human \(\Delta 6 \) desaturase gene was also inhibited by PUFA and induced by PPARα activators (Fig. 3). Specifically, treating HepG2 cells with 20:4(n-6) resulted in a dose-dependent reduction in the cellular abundance of \(\Delta 6 \) desaturase mRNA (Fig. 3), and supplementing the media with 100 \(\mu \)M WY 14,643 significantly increased the cellular abundance of \(\Delta 6 \) desaturase in HepG2 cells that expressed PPARα (Fig. 3).
AGGTCG that was a candidate PPAR-RE. The introduction of three nt mutations into the candidate DR-1 sequence (i.e., 5'AGG/tGAG g A/cGG/aTCG-3') eliminated >90% of the WY 14,643 stimulation of Δ-6 desaturase promoter activity in both HepG2 and CV-1 cells (Table 2; Fig. 5, 417mp-6 desaturase.LUC). On the other hand, luciferase expression in HepG2 cells transfected with 417mp-6 desaturase.LUC continued to be suppressed by 20:4(n-6) (Table 2). These data indicate that the PPAR and PUFA response sequences responsible for governing the human Δ-6 desaturase gene were located in different regions of the Δ-6 desaturase gene and functioned independently of each other.

A DR-1 also binds HNF-4 (31). However, expressing HNF-4 in CV-1 cells had no effect on Δ-6 desaturase promoter activity (i.e., luciferase expression from 1,749/132p-6 desaturase.LUC, 417/132p-6 desaturase.LUC, and 283/132p-6 desaturase.LUC was 47,42, and 48 RLU/g protein in CV-1 cells cotransfected with an HNF-4 expression vector, respectively, and 41 RLU/g protein in CV-1 cells transfected with empty HNF-4 vector). In contrast, luciferase expression in CV-1 cells transfected with -7,382/-6,970/-250pFAS.LUC, a construct that contains an HNF-4 response element (RE) from the rat fatty acid synthase promoter, was stimulated 3-fold (data not shown).

A DR-1 also binds PPARα and RXRα heterodimers. EMSAs were conducted with radiolabeled DR-1/PPAR-RE of rat AOX (DR-1, Lanes 1 through 6) or -385/-373 DR-1 of human Δ-6 desaturase (DR-1, Lanes 7 through 12). Nuclear protein extracts prepared from HepG2 cells expressing mouse PPARα (pSG5.mPPARα) (see Materials and Methods) were employed in the EMSAs of Lanes 1 through 5 (AOX DR-1), and Lanes 7 through 11 (Δ-6 desaturase DR-1). The electrophoresis mobility shift patterns acquired using nuclear protein extracts from HepG2 cells not transfected with pSG5.mPPARα are depicted in Lane 6 (AOX DR-1) and Lane 12 (Δ-6 desaturase DR-1). Competition experiments were conducted with 200-fold molar excess of unlabeled rat AOX DR-1/PPAR-RE (Lanes 2 and 9), human Δ-6 desaturase DR-1 (Lanes 3 and 8), and mutated Δ-6 desaturase DR-1 (Lanes 4 and 10). The lower arrow indicates the position of the PPARα-RXRα heterodimer-DNA complex, and the upper arrow indicates the location of the super-shifted complexes resulting from treatment with anti-PPARα (Lanes 5 and 11).
PPARα binding to the DR-1 of the human Δ-6 desaturase gene

Nuclear proteins extracted from HepG2 cells expressing PPARα readily interacted with the DR-1 of the human Δ-6 desaturase gene and the DR-1/PPAR-RE of the rat peroxisomal OAX gene (Fig. 6), but nuclear protein extracts from HepG2 cells not transfected with the PPARα expression vector displayed little or no binding to either the Δ-6 desaturase or the AOX DR-1. The uppermost band in the EMSA was most prevalent in HepG2 cells transfected with pSG5.mPPARα (Fig. 6, Lanes 1 and 7), and it was the only band super-shifted by treatment with anti-PPARα (Fig. 6, Lanes 5 and 11) or by anti-RXRα (data not shown). Unlabeled DR-1 from the AOX and Δ-6 desaturase genes competed for protein binding with the labeled DR-1 of the respective genes (Fig. 6, Lanes 2, 3, 8, and 9). Mutating the DR-1 of the Δ-6 desaturase gene prevented the sequence from competing for protein interactions with either the DR-1/PPAR-RE of AOX or the DR-1 of Δ-6 desaturase (Fig. 6, Lanes 4 and 10). The DR-1 from the human Δ-6 desaturase gene and the DR-1/PPAR-RE of the rat AOX gene were also found to specifically interact with a mixture of in vitro-translated PPARα and RXRα, but by themselves, neither PPARα nor RXRα were able to bind to the respective DR-1 sequences (Fig. 7). Mutation of the Δ-6 desaturase DR-1 (i.e., 5'-GG/tGAG gA/cGG/aTCG-3') completely eliminated PPARα-RXRα binding (Fig. 7), and treatment of the PPARα-RXRα-DR-1 complex with anti-RXRα super-shifted both the Δ-6 desaturase DR-1 and the classical DR-1/PPAR-RE of the rat AOX gene (Fig. 7). Collectively, these data indicate that the imperfect DR-1 located at −385/−373 of the human Δ-6 desaturase gene possesses the ability to bind the heterodimer PPARα-RXRα and subsequently to function as a PPAR-RE.

DISCUSSION

Twenty- and 22-carbon n-6 and n-3 fatty acids are essential for neural development, eye function, reproduction, and cellular differentiation (1–10). The hepatic synthesis of 20:4(n-6) and 20:5(n-3) from 18:2(n-6) and 18:3(n-3) involves Δ-6 desaturase and Δ-5 desaturase, the associated elongases. Flux through the hepatic Δ-6 desaturase pathway appears to be dictated by Δ-6 desaturase enzymatic activity, and this in turn is determined by the hepatic abundance of Δ-6 desaturase mRNA (15–22). While consumption of either n-6 or n-3 fatty acid substrates or products for Δ-6 desaturase will lower Δ-6 desaturase and Δ-5 desaturase mRNA abundance and hence flux through the pathway, we have recently determined that the bioactive inhibitory lipid is not the 18:2(n-6) or 18:3(n-3) substrate, but rather the inhibitor is a polyenoic fatty acid metabolite of the Δ-6 desaturase pathway (32).

In this report, we demonstrate that PUFAIs lower the hepatic abundance of Δ-6 desaturase mRNA by inhibiting the rate of Δ-6 desaturase gene transcription. This inhibition of Δ-6 desaturase gene transcription applies to both the rat and human Δ-6 desaturase genes (Tables 1, 2). Transfection reporter assays with HepG2 cells revealed that the PUFA response sequences for the human Δ-6 desaturase gene resided within the proximal promoter region of −283/+1 (Table 2). Recently, Nara et al. (22) reported that the E-box-like sterol RE located at −222/−231 and the NF-Y recognition site at −273/−268 are both required for PUFA suppression of the human Δ-6 desaturase promoter. SREBP-1 and NF-Y have been implicated in the PUFA inhibition of transcription of other lipogenic genes, including FAS and steroyl-CoA desaturase-1 (33, 34). Dietary PUFAs exert their inhibitory influence by lowering the nuclear content of mature SREBP-1 protein and by interfering with the transactivation action of NF-Y (11, 33–37). PUFAs decrease the nuclear content of SREBP-1 in two ways. First, they inhibit the proteolytic release of mature SREBP-1 from its membrane-anchored precursor (35, 37). Second, PUFAs accelerate the decay of SREBP-1 mRNA and consequently lower the abundance of SREBP-1 mRNA, which in turn leads to a reduction in the amount of membrane-anchored precursor SREBP-1 protein (36). The mechanism by which PUFAs interfere with NF-Y action is unclear, but it may involve a posttranslational modification of NF-Y (34).

While dietary PUFA suppressed Δ-6 desaturase and Δ-5 desaturase gene expression, ingestion of the PPARα activator Wy 14,643 increased hepatic expression of Δ-6 desaturase and Δ-5 desaturase (Table 1; Figs. 1, 2). The PPARα induction of Δ-6 desaturase and Δ-5 desaturase gene expression is accomplished by an enhanced hepatic production of 20- and 22-carbon n-6 and n-3 PUFA (21), and by an increased level of 20- and 22-carbon PUFA in peripheral tissues (H. Y. Cho and S. D. Clarke, unpublished observations). This PPARα-dependent increase in synthesis of 20- and 22-carbon PUFA may explain how PPARα activators (e.g., Wy 14,643) indirectly lowered the nuclear content of hepatic SREBP-1, and consequently reduced the transcription of lipogenic genes such as fatty acid synthase, which lack a functional PPARα RE [Table 1; Fig. 1, and (11)].

PPARα modulates the transcription of a gene by interacting with its heterodimer partner RXRα and subsequently binding to a hexameric (AGGTCA) DR with a single nt spacer. The 5’-flanking sequence of the human Δ-6 desaturase gene was found to contain an imperfect DR-1 (−385/AGGGAGGAGGCT−375). Binding of PPARα to the −385/−373 Δ-6 desaturase DR-1 required RXRα (Fig. 7), and transfection reporter analyses demonstrated that the DR-1 imparted PPARα responsiveness to the human Δ-6 desaturase promoter, i.e., expression of PPARα in HepG2 and CV-1 cells significantly enhanced human Δ-6 desaturase promoter activity in response to Wy 14,643 (Fig. 5). Nevertheless, the physiological role of the DR-1 in human Δ-6 desaturase gene transcription remains unclear because human tissues contain low amounts of PPARα (27), and because the imperfect DR-1 may be a possible recognition sequence for several tran-
scription factors including HNF-4, PPARγ, PPARδ, farnesoid X receptor, and chicken ovalbumin upstream promoter transcription factor (30, 38–40). In this regard, it is noteworthy that expression of HNF-4 in CV-1 cells did not alter Δ-6 desaturase promoter activity, but this does not eliminate the possibility that transcription factors other than HNF-4 or PPARα may recognize the DR-1 site from the human Δ-6 desaturase gene. Nevertheless, our data strongly suggest that the −385/−373 DR-1 of the human Δ-6 desaturase is a functional response element that plays a role in the expression of Δ-6 desaturase and ultimately the synthesis of 20- and 22-carbon PUFA.

This study was supported by National Institutes of Health research Grants DK-53872 (S.D.C.), HD-37133 (S.D.C.), and DK-09723 (M.T.N.).

REFERENCES

1. Birch, E. E., D. R. Hoffman, R. Uauy, D. G. Birch, and C. Prestidge. 1998. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. *Pediatrics.* **43:**201–209.

2. Uauy, R., E. Birch, D. Birch, and P. Peirano. 1992. Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. *J. Pediatr.* **120:**S168–S180.

3. Neuringer, M., S. Reisbick, and J. Janowsky. 1994. The role of n-3 fatty acid oxidation enzymes in rat liver. *J. Nutr.* **124:**S129–S138.

4. Samuellsson, B. 1983. From studies of biochemical mechanism to novel biological mediators: prostaglandin endoperoxides, thromboxanes, and leukotrienes. 1982. *Biosci. Rep.* **3:**791–813.

5. Perlman, H. K., L. A. Houghton, J. T. Brenna, and N. Noy. 1996. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. *J. Biol. Chem.* **271:**20507–20515.

6. Martinez, M. 1992. Tissue levels of polyunsaturated fatty acids during early human development. *J. Pediatr.* **120:**S129–S138.

7. Horrobin, D. F. 1997. Essential fatty acids in the management of impaired nerve function in diabetes. *Diabetes.* **46:**590–593.

8. Cameron, N. E., M. A. Cotter, and S. Robertson. 1991. Essential fatty acid diet supplementation. Effects on peripheral nerve and skeletal muscle function and capillarization in streptozocin-induced diabetic rats. *Diabetes.* **40:**532–539.

9. Clarke, S. D. 2001. Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polysaturated fatty acid regulation of gene transcription. *Am. J. Physiol. Gastrointest. Liver Physiol.* **281:**G865–G869.

10. Jump, D. B., and S. D. Clarke. 1999. Regulation of gene expression by dietary fat. *Annu. Rev. Nutr.* **19:**63–90.

11. Xu, J.-M., T. Nakamura, H. P. Cho, and S. D. Clarke. 1999. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. *J. Biol. Chem.* **274:**23577–23583.

12. Dupuis, E., M. Glorian, and C. Forest. 2000. Fatty acid regulation of gene transcription. *J. Biol. Chem.* **275:**30749–30752.

13. Ide, T., H. Kobayashi, L. Ashakumary, I. A. Rouver, Y. Takahashi, T. Aoyama, T. Hahimoto, and M. Mizugaki. 2000. Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. *Biochem. Biophys. Acta.* **1485:**29–35.

14. Brenner, R. R. 1989. Factors influencing fatty acid chain elongation and desaturation. In *The Role of Fats in Human Nutrition.* A. J. Verghesoon and M. Crawford, editors. Academic Press, San Diego. 45–79.

15. Cho, H. P., M. T. Nakamura, and S. D. Clarke. 1999. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. *J. Biol. Chem.* **274:**471–477.

16. Cho, H. P., M. Nakamura, and S. D. Clarke. 1999. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. *J. Biol. Chem.* **274:**37335–37339.

17. Aki, T., Y. Shimada, K. Inagaki, H. Higashimoto, S. Kawamoto, S. Shigeta, K. Ono, and O. Suzuki. 1999. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. *Biochem. Biophys. Res. Commun.* **255:**575–579.

18. Zolfaghari, R., C. J. Cifelli, M. D. Banta, and A. C. Ross. 2001. Fatty acid delta(5)-delta(5) mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adult rats. *Arch. Biochem. Biophys.* **391:**8–15.

19. Matsuoka, T., H. Shimano, N. Yahagi, M. Amemiya-Kudo, T. Yoshikawa, A. H. Hasty, Y. Tamura, J. Osuga, H. Okazaki, Y. Iizuka, A. Takahasi, H. Sone, T. Gotodor, S. Iisibashi, and N. Yamada. 2002. Dual regulation of mouse delta-5 and delta-6 desaturase gene expression by SREBP-1 and PPARα. *J. Lipid Res.* **43:**107–114.

20. Mimouni, V., and J. P. Poisson. 1990. Spontaneous diabetes in BB rats: evidence for insulin dependent liver microsomal delta-6 and delta-5 desaturase activities. *Horm. Metab. Res.* **22:**405–407.

21. Kawashima, Y., K. Musoh, and H. Kozuka. 1999. Peroxisome proliferators enhance linoleic acid metabolism in rat liver. Increased biosynthesis of omega 6 polyunsaturated fatty acids. *J. Biol. Chem.* **265:**9170–9175.

22. Nara, T., Y. W., S. He, C. Tang, S. D. Clarke, and M. T. Nakamura. 2002. The E-box like sterol regulatory element mediates the suppression of human delta-6 desaturase gene by highly unsaturated fatty acids. *Biochem. Biophys. Res. Commun.* **296:**111–117.

23. Toussaint, M. J., M. D. Wilson, and S. D. Clarke. 1981. Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. *J. Nutr.* **111:**146–153.

24. Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal. Biochem.* **162:**156–159.

25. Hewish, D. R., and L. A. Burgoyne. 1973. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. *Biochem. Biophys. Res. Commun.* **52:**504–510.

26. Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNA by gel electrophoresis of S1 endonuclease-digested hybrids. *Cell.* **12:**721–732.

27. Hsu, M. H., U. Savas, K. J. Griffin, and E. F. Johnson. 2001. Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor α in HepG2 cells. *J. Biol. Chem.* **276:**27900–27908.

28. Rufo, C., M. Teran-Garcia, M. T. Nakamura, S. H. Koo, H. C. Towle, and S. D. Clarke. 2001. Involvement of a unique carbohydrate-responsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription. *J. Biol. Chem.* **276:**21969–21975.

29. Degen-Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. *Nucleic Acids Res.* **11:**1475–1489.

30. Kliewer, S. A., S. S. Sundseth, S. A. Jones, P. J. Brown, G. B. Wisely, C. S. Koble, P. Devchand, W. Wahli, T. M. Willson, J. M. Lenhard, and J. M. Lehmann. 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. *Proc. Natl. Acad. Sci. USA.* **94:**4318–4323.

31. Hertz, R., J. Magenheim, I. Berman, and J. Bar-Tana. 1998. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-1 alpha. *Nature.* **392:**512–516.

32. Nakamura, M. T., H. P. Cho, and S. D. Clarke. 2000. Regulation of hepatic delta-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice. *J. Nutr.* **130:**1561–1565.

33. Tabor, D. E., J. B. Kim, B. M. Spiegelman, and P. A. Edwards. 1999. Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. *J. Biol. Chem.* **274:**20603–20610.

34. Teran-Garcia, M., C. Rufo, M. T. Nakamura, T. F. Osborne, and S. D. Clarke. 2002. NF-Y involvement in the polyunsaturated fat in...
hibitation of fatty acid synthase gene transcription. Biochem. Biophys. Res. Commun. 290: 1295–1299.
35. Hannah, V. C., J. Ou, A. Luong, J. L. Goldstein, and M. S. Brown. 2001. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 276: 4365–4372.
36. Xu, J., M. Teran-Garcia, J. H. Park, M. T. Nakamura, and S. D. Clarke. 2001. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J. Biol. Chem. 276: 9800–9807.
37. Worgall, T. S., S. L. Sturley, T. Seo, T. F. Osborne, and R. J. Deckelbaum. 1998. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. J. Biol. Chem. 273: 25537–25540.
38. Chiang, J. Y. L., R. Kimmel, C. Weinberger, and D. Stroup. 2000. Farnesoid X receptor responds to bile acids and represses cholesterol 7α-hydroxylase gene (CYP 7A1) transcription. J. Biol. Chem. 275: 10918–10924.
39. Stroup, D., and J. Y. L. Chiang. 2000. HNF4 and COUP-TFI interact to modulate transcription of the cholesterol 7α-hydroxylase gene (CYP7A1). J. Lipid Res. 41: 1–11.
40. Clarke, S. D., P. Thuillier, R. A. Ballie, and X. Sha. 1999. Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors. Am. J. Clin. Nutr. 70: 566–571.