Rotational constants of multi-phonon bands in an effective theory for deformed nuclei

Jialin Zhang\(^1\) and T. Papenbrock\(^{1,2}\)

\(^1\)Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
\(^2\)Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Dated: February 18, 2013)

We consider deformed nuclei within an effective theory that exploits the small ratio between rotational and vibrational excitations. For even-even nuclei, the effective theory predicts small changes in the rotational constants of bands built on multi-phonon excitations that are linear in the number of excited phonons. In \(^{232}\)Th, the effective theory correctly explains the trend that the rotational constants decrease with increasing spin of the band head. We also study the effective theory for deformed odd nuclei. Here, time-odd terms enter the Lagrangian and generate effective magnetic forces that yield the high level densities observed in such nuclei.

PACS numbers: 21.60.-n,21.60.Ev,21.10.Re,03.65.Vf

I. INTRODUCTION

Deformed nuclei exhibit rotational bands as their lowest excitations, with actinides and rare earth nuclei being the most prominent and best studied examples \(^1, 2\). The theoretical description and understanding of these nuclei largely rests on the Bohr Hamiltonian \(^3\), the collective model by Bohr and Mottelson \(^4,5\), its extension within the general geometric models \(^6–9\), and algebraic models \(^10, 11\). For even-even nuclei the geometrical models employ rotations and shape parameters as the relevant degrees of freedom, while algebraic models utilize bosonic degrees of freedom. The theoretical approach to odd-mass nuclei is more cumbersome and is based on coupling the odd nucleon to an even-even nucleus \(^12, 13\).

More microscopic approaches to deformed nuclei can be based on mean-field calculations \(^14, 15\) and shell-model studies \(^16\). Being solidly based on fermionic degrees of freedom, the microscopic models can properly illuminate interesting phenomena such as, e.g., the effect of pairing on nuclear moments of inertia \(^17–21\).

The collective models are particularly successful in certain symmetry limits of the Hamiltonian (or for certain choices of the potential energy) where analytical solutions are available. Away from these limits, generalizations of collective models employ expansions of kinetic and potential terms, or expansions in the number of boson operators. Such approaches can be systematic but lack a power counting, i.e., higher-order terms in the Hamiltonian are not guaranteed to yield smaller contributions than low order terms. This difficulty compounds the adjustment of model parameters \(^9\). Recently, a computationally tractable approach to the collective model was proposed by Rowe \(^21\), and applied to the Bohr model \(^22\). Some of the challenges in the theory of deformed nuclei are described in Ref. \(^23\).

An alternative approach to deformed nuclei can be formulated as an effective theory \(^24\). This approach employs similar degrees of freedom as the Bohr Hamiltonian, and its highlights are the non-linear realization of rotational symmetry (as a consequence of the spontaneous symmetry breaking associated with nuclear deformation), and a power counting. It is thus similar in spirit to other effective field theories \(^25, 26\) that have been employed to describe nuclear interactions \(^27, 30\), halo nuclei \(^31, 32\) and dilute Fermi systems \(^33–36\).

At next-to-leading order, the effective theory for deformed even-even nuclei yields spectra that agree (to this order) with those from the Bohr Hamiltonian, i.e., vibrational states serve as band heads of rotational bands, with all bands exhibiting the same moment of inertia \(^24\). However, the phenomenology is richer and more complicated. Deformed nuclei typically exhibit small variations in the rotational constants of individual bands, and accounting for the observation \(^1\) that rotational constants decrease with increasing energy of the band head is a longstanding problem for the traditional collective models for well-deformed \(^22, 37–43\) and transitional nuclei \(^44–46\). To address this problem, we extend the effective theory of deformed nuclei to next-to-next-to-leading order.

Another interesting problem concerns deformed odd-mass nuclei. Though accounting for half of all deformed nuclei, our understanding of them is much more limited, and the theoretical approach more complicated, than is the case for even-even nuclei. Within the collective models such nuclei are described by coupling a nucleon to an even-even nucleus \(^7, 12\), or within boson-fermion models \(^13\). The presence of the odd fermion compounds the description of odd-mass nuclei considerably. The question thus arises whether the odd nucleon really is a degree of freedom that is relevant at low energies, or to what extent collective vibrations and rotations alone are sufficient to describe low-energy phenomena of odd nuclei. In this paper, we will address this question by constructing the effective theory for deformed odd-mass nuclei at next-to-leading order.

This paper is organized as follows. Section \(^1\) introduces the effective theory for deformed nuclei. In Sect. \(^1\) we derive the couplings between rotations and vibrations at next-to-next-to leading order, and compute the resulting spectrum. We confront theory and data in Section \(^1\).
Section VI extends the effective theory for odd-mass nuclei to next-to-leading order. Finally, a summary of our results is presented in Sect. VII.

II. EFFECTIVE THEORY FOR DEFORMED NUCLEI

An effective theory for deformed nuclei with axial symmetry was derived in Ref. [24]. Here we summarize the essential ingredients of the theory and contrast it to the collective model.

The effective theory is based on quadrupole degrees of freedom $\phi_\mu(t)$, $\mu = -2, -1, \ldots, 2$ because these are sufficient to reproduce the spins and parities of low-lying states in even-even nuclei. The reality condition $\phi_{-\mu} = (-1)^{\mu} \phi_\mu^*$ expresses invariance under time reversal and implies that we deal with five real degrees of freedom. We must assume that the expectation value $\langle \phi_0 \rangle = v > 0$. This implies the existence of two Nambu-Goldstone modes, which may be chosen as the Euler angles $\alpha(t)$ and $\beta(t)$ that change the orientation of the axially symmetric nucleus. The three remaining degrees of freedom are chosen as the complex “field” $\phi_2(t)$ and the real “field” $\phi_0(t)$.

Thus, the complex “field” $\phi_1(t)$ is replaced by the two Nambu-Goldstone bosons. This is consistent with the choice of ϕ_0 having a nonzero expectation value v [47]: An infinitesimal rotation of the configuration with components $\phi_\mu = v \delta_0\mu$ will generate nonzero components $\phi_{\pm 1}$. It is convenient to rewrite ϕ_0 in terms of its vacuum expectation value v and a small fluctuating part φ_0 as

$$\phi_0(t) = v + \varphi_0(t).$$

We must assume that $|\varphi_0| \ll v$ because of the spontaneous breaking of rotational symmetry.

Due to the spontaneous symmetry breaking, the rotational symmetry is realized nonlinearly, and quantities with proper transformation properties are

$$E_x = \dot{\alpha} \sin \beta, \quad E_y = -\dot{\beta}.$$

(3)

Under a general rotation by the Euler angles $(\varphi_1, \varphi_2, \varphi_3)$, the quantities E_x and E_y transform as the x and y components, respectively, of a vector under a rotation around the z axis by a complicated angle $\eta(\varphi_1, \varphi_2, \varphi_3, \alpha, \beta)$. The exact transformation is of no interest here but can be found in Ref. [24]. Thus, the linear combinations

$$E_{\pm} = E_x \mp iE_y$$

transform under a rotation as $E_{\pm} \rightarrow e^{\mp \imath \eta} E_{\pm}$.

Likewise, the quadrupole fields transform as $\phi_\mu \rightarrow e^{-i\mu \eta} \phi_\mu$ under a rotation. The covariant derivative

$$D_t \equiv \partial_t - iE_z J_z,$$

(5)

with

$$E_z = -\dot{\alpha} \cos \beta$$

(6)

is invariant under rotations because E_z transforms as a gauge field. Here, J_z is the z component of an angular momentum, i.e. $J_z E_\pm = \pm E_\pm$ and $J_z \phi_0 = \mu \phi_0$.

Due to the nonlinear realization of rotational symmetry, any Lagrangian that consists of $E_{\pm}, \phi_{\pm 2}, \phi_0, D_t$ and is formally invariant under axial (i.e. $SO(2)$) symmetry is indeed invariant under full rotational (i.e. $SO(3)$) symmetry.

For the systematic construction of Lagrangians one needs to establish a power counting. We denote the energy scale of rotational excitations as ξ and that of vibrational excitations as Ω. One has $\xi \ll \Omega$ with typical values of $\xi \approx 100$ keV and $\Omega \approx 1$ MeV in rare earth nuclei. For actinides, the typical values for ξ are smaller by about a factor of two. We also have to identify a breakdown scale Λ of our effective theory. The complete spectroscopy of low-lying levels in deformed nuclei has been reported for 168Er [1] and 162Dy [2]. The existence of negative parity bands in these nuclei (which would require the introduction of octupole degrees of freedom), and the absence of clear signatures for multi-phonon vibrations indicates that $\Lambda = \kappa \Omega$ with $\kappa \approx 2$ or 3. For the quantities introduced so far the power counting is

$$E_{\pm} \sim E_z \sim \xi,$$

$$D_t \phi_0 \sim D_t \phi_2 \sim \Omega^{1/2},$$

$$\varphi_0 \sim \varphi_2 \sim \Omega^{-1/2},$$

$$\phi_0 \sim v \sim \xi^{-1/2}.$$

(7)

This power counting is based on the following rationale: The angles α and β are dimensionless, and a time derivative of these fields (as in E_{\pm} and E_z) must scale as the low-energy scale ξ. Likewise, a time derivative on the field ϕ must scale as Ω, and the scaling of the fields ϕ_2, φ_0 itself ensures that the kinetic term $(D_t \phi)^2$ scales as Ω. Finally, the expectation value v is associated with the spontaneous symmetry breaking and must thus scale as $\xi^{-1/2}$. In an infinite system, we would have $\xi \rightarrow 0$, correctly implying both the divergence of the vacuum expectation value v and zero-energy Nambu-Goldstone modes.

Let us briefly recapitulate the effective theory for deformed nuclei at next-to-leading order for even-even nuclei [24]. At leading order, i.e. at order Ω, we have only vibrations, and we note that

$$(D_t \phi_2) (D_t \phi_{-2}) = \phi_2 \phi_2^* - 4\imath \left(\phi_2 \phi_2^* \right) E_z + 4\phi_2 \phi_2^* E_z^2$$

consists of three terms that are suppressed by subsequent factors of ξ/Ω when going from left to right.
The Hamiltonian at LO is
\[H_{LO} = \frac{\gamma^2}{2} \phi_0^2 + \phi_2 \phi_{-2} - \frac{\omega^2}{2} \phi_2^2 - \frac{\omega^2}{4} \phi_2 \phi_{-2} . \] (9)

Here, we assume that \(\omega_0 \sim \omega_2 \sim \Omega \). We use \(\phi_2 = \varphi_2 e^{i\gamma} \) with real \(\varphi_2 \) and \(\gamma \), and perform the Legendre transformation
\[p_0 = \frac{\partial L_{LO}}{\partial \dot{\phi}_0}, \]
\[p_2 = \frac{\partial L_{LO}}{\partial \dot{\phi}_2}, \]
\[p_\gamma = \frac{\partial L_{LO}}{\partial \dot{\gamma}} . \] (10)

The Hamiltonian is
\[H_{LO} = \frac{p_0^2}{2} + \frac{\omega_0^2}{2} \phi_0^2 + \frac{1}{4} \left(p_2^2 + \frac{p_\gamma^2}{\varphi_2^2} \right) + \frac{\omega_2^2}{4} \varphi_2^2 , \] (11)

and the spectrum is thus equal to the one of an axially symmetric harmonic oscillator in three spatial dimensions with energies
\[E_{LO}(n_0, n_2, l_2) = \omega_0(n_0 + 1/2) + \omega_2(2n_2 + |l_2| + 1) . \] (12)

With view on the breakdown scale \(\Lambda \) of the effective theory, we limit ourselves to the ground state with quantum numbers \((n_0, n_2, l_2) = (0, 0, 0)\), and the two lowest vibrational states with quantum numbers \((1, 0, 0)\) and \((0, 0, 1)\), respectively. The eigenfunctions are products
\[\Psi_{LO}(\gamma, \varphi_0, \varphi_2) = e^{-i\xi \gamma} \psi_{n_0}(\varphi_0) \chi_{n_2 l_2}(\varphi_2) . \] (13)

Here, \(\psi_{n_0}(\varphi_0) \) is the eigenfunction of the one-dimensional harmonic oscillator with frequency \(\omega_0 \), while \(\chi_{n_2 l_2}(\varphi_2) \) is the radial eigenfunction of the two-dimensional isotropic oscillator with frequency \(\omega_2 \).

At next-to-leading order, the Nambu-Goldstone modes enter in addition to higher order corrections in the kinetic energy \(\delta L_{LO} \), and the Lagrangian becomes with
\[L_{NLO} = L_{LO} + \Delta L_{NLO} \]
\[\Delta L_{NLO} = \frac{C_0}{2} E_+ E_- - 4 \text{Im} \left(\phi_2 \phi_2^* \right) E_\xi \]
\[= \frac{C_0}{2} \left(\beta^2 + \alpha^2 \sin^2 \beta \right) + 4 \varphi_2^2 \gamma \alpha \cos \beta . \] (14)

Here, we assume that \(C_0 \sim \xi^{-1} \), and the NLO correction is thus of order \(\xi \). Note that we neglected next-to-leading order corrections (“anharmonicities”) to the vibrational potential. Such anharmonicities would affect higher-lying vibrational states (which are at or beyond the breakdown scale \(\Lambda \) of the effective theory) and transition matrix elements (which are not the interest of this work). The Hamiltonian at NLO thus becomes
\[H_{NLO} = \frac{1}{2} p_0^2 + \frac{1}{4} p_2^2 + \frac{p_\gamma^2}{4 \varphi_2^2} + \frac{\omega_0^2}{2} \phi_0^2 + \frac{\omega_2^2}{4} \varphi_2^2 \]
\[+ \frac{1}{2 C_0} \left(p_\alpha + \frac{1}{\sin^2 \beta} (p_\alpha - 2 p_\gamma \cos \beta)^2 \right) . \] (15)

The corresponding energy spectrum is
\[E_{NLO}(n_0, n_2, l_2, I) = E_{LO}(n_0, n_2, l_2) + \frac{I(I + 1) - (2l_2)^2}{2C_0} , \] (16)

and the eigenfunctions are
\[\Psi_{NLO}(\alpha, \beta, \gamma, \varphi_0, \varphi_2) = e^{-im \alpha} d_{m, 2l_2}^I(\beta) \Psi_{LO}(\gamma, \varphi_0, \varphi_2) . \] (17)

Here, \(I \geq |2l_2| \) denotes the angular momentum, and \(m \) the angular-momentum projection with \(-I \leq m \leq I\). The eigenfunction \(d_{m, \nu}^I(\beta) \) is part of the Wigner D function \(D_{m, \nu}^I(\alpha, \beta, \gamma) = e^{-im \alpha} d_{m, \nu}^I(\beta) e^{-i\nu \gamma} \). Thus, we can rewrite
\[\Psi_{NLO}(\alpha, \beta, \gamma, \varphi_0, \varphi_2) = D_{m, 2l_2}^I(\alpha, \beta, \gamma) \psi_{n_0}(\varphi_0) \chi_{n_2 l_2}(\varphi_2) . \] (18)

The spectrum \(\xi^2 / \Omega \) consists of rotational bands (labeled by the angular momentum \(I \)) on top of the vibrational band heads (labeled by the quantum numbers \(n_0, n_2, l_2 \)). Note that the moment of inertia \(C_0 \) is identical for every rotational band.

Let us also compare the effective theory with the Bohr model. Recall that the Bohr model starts from five quadrupole degrees of freedom, and a transformation to the body-fixed coordinate system yields three Euler angles and two shape parameters (usually denoted as \(\beta \) and \(\gamma \)). The \(\beta \) degree of freedom corresponds to axially symmetric oscillations around the static deformation while \(\gamma \) accounts for triaxial deformations. In the Bohr Hamiltonian, the vibrational and rotational degrees of freedom are coupled via the moment of inertia, while the effective theory is less constrained. Bohr’s \(\beta \) degree of freedom corresponds to \(\varphi_0 \) in the effective theory. One can combine Bohr’s \(\gamma \) degree of freedom and Bohr’s rotational angle \(\psi \) to a two-dimensional harmonic oscillator \(\xi^2 \). In this combination, these two degrees of freedom correspond to the complex \(\phi_2 \) (or \(\varphi_2 \) and \(\gamma \)) in the effective theory. Let us introduce
\[K \equiv 2l_2 \] (19)

for the third quantum number of the axially symmetric rotor. With this notation, the effective theory at NLO is in agreement with the spectra and wave functions obtained for the collective model (cf. chapter 6 of Ref. [7]). This agreement is expected.

III. EVEN-EVEN NUCLEI AT NEXT-TO-NEXT-TO-LEADING ORDER

At NNLO we have to include terms of the size \(\xi^2 / \Omega \). As before, we focus on the terms that couple rotations and vibrations. This is perhaps one of the main differences between the collective model and the effective theory. In the former, most authors have restricted themselves to study higher order corrections to the vibrational...
potential. This is presumably due to the difficulty to write down (and to work with) higher order corrections to the kinetic terms. In the effective theory, this task is straightforward and yields [24]

\[
L_{\text{NNLO}} = L_{\text{NLO}} + 4\phi_2 \dot{\phi}_2 E_2^2 + \Delta L_{\text{NNLO}} ,
\]

\[
\Delta L_{\text{NNLO}} = D_0(E,E) \phi_0^2 + F_0(E,E) \dot{\phi}_0^2 \\
+ D_2(E,E) \phi_2^2 + F_2(E,E) |D_1 \phi_2|^2 \\
+ D_1 \phi_0 (\phi_2 E_2^2 + \phi_2 E_2^2) \\
+ F_1 \phi_0 (E_2^2 D_1 \phi_2 + E_2^2 D_1 \phi_2) .
\]

Here, \(\Delta L_{\text{NNLO}} \) denotes the rotation-vibration interaction at NNLO. Each term in \(\Delta L_{\text{NNLO}} \) has the order of magnitude \(O(\xi^2/\Omega) \), making the undetermined coefficients scale as

\[
D_0 \sim D_1 \sim D_2 \sim O(1) , \\
F_0 \sim F_1 \sim F_2 \sim \Omega^{-2} .
\]

The correctness of these scaling relations should be validated by fitting the derived spectrum to the experimental level schemes.

The Lagrangian \(L_{\text{NNLO}} \) expanded in terms of the polar coordinates \(\phi_2 \) and \(\gamma \) and the Euler angles \(\alpha \) and \(\beta \) is

\[
L_{\text{NNLO}} = \frac{1}{2} \dot{\phi}_0^2 + \phi_2^2 + \phi_2^2 \gamma^2 - \frac{\Omega_0^2}{2} \phi_0^2 - \frac{\Omega_0^2}{2} \phi_2^2 \\
+ 4\phi_2^2 (\dot{\gamma} + \dot{\alpha} \cos \beta) \dot{\alpha} \cos \beta \\
+ C_0(2(\dot{\beta}^2 + \dot{\alpha}^2 \sin^2 \beta) + \Delta L_{\text{NNLO}} ,
\]

with

\[
\Delta L_{\text{NNLO}} = \left(\dot{\beta}^2 + \dot{\alpha}^2 \sin^2 \beta \right) \left[D_0 \phi_0^2 + F_0 \dot{\phi}_0^2 \\
+ D_2 \phi_2^2 + F_2 (\phi_2^2 + \phi_2^2 \gamma^2) \right] \\
+ 2 \left(\dot{\alpha}^2 \sin^2 \beta - \dot{\beta}^2 \right) \left[D_1 \phi_0 \phi_2 \cos \gamma \\
+ F_1 \phi_0 (\phi_2 \cos \gamma - \phi_2 \gamma \sin \gamma) \right] \\
+ 4\dot{\alpha} \beta \sin \beta \left[D_1 \phi_0 \phi_2 \sin \gamma \\
+ F_1 \phi_0 (\phi_2 \sin \gamma + \phi_2 \gamma \cos \gamma) \right] .
\]

It is difficult to perform the Legendre transformation rigorously on \(L_{\text{NNLO}} \), because \(\Delta L_{\text{NNLO}} \) admixes the Nambu-Goldstone modes and quadrupole fields and the velocity-momentum inversions always involve quadratic terms. Fortunately, we do not need the perform the Legendre transformation of the Lagrangian [23] exactly but rather can employ perturbation theory for this task.

For this purpose we follow Fukuda and coworkers [49] who applied perturbative Legendre transformations to several physics problems [50, 51]. Fukuda’s inversion method expands the generalized velocities perturbatively order by order in the small quantity \(\xi/\Omega \). For instance, \(\phi_0 \) is expanded as

\[
\phi_0 = \phi_0^{(0)} + \phi_0^{(1)} + \phi_0^{(2)} + \ldots .
\]

Here, \(\phi_0^{(0)} \) has the same order of magnitude as \(\phi_0 \) and is of leading order. Higher-order corrections scale as

\[
\phi_0^{(i+1)} \sim \phi_0^{(i)} \xi/\Omega .
\]

The key step consists of assuming the generalized momenta to be of leading order (and with no further corrections). Thus, the leading-order relation between the momenta and velocities of the Lagrangian [23] is

\[
\begin{align*}
p_0 &= \phi_0^{(0)} , \\
p_2 &= 2\phi_2^{(0)} , \\
p_\gamma &= 2\phi_2^{(0)} \phi_0^{(0)} , \\
p_\alpha &= C_0 \phi_0^{(0)} \sin^2 \beta + 4\phi_2^{(0)} \gamma^{(0)} \cos \beta , \\
p_\beta &= C_0 \phi_0^{(0)} .
\end{align*}
\]

It is straightforward to invert these equations. The higher-order corrections of the velocities now fulfill homogeneous equations (as the momenta consist only of leading-order terms), and can be solved perturbatively to the desired order. In what follows, we only present the result of the Legendre transformation of the Lagrangian Eq. [23] using the Fukuda’s inversion method, and refer the reader to Ref. [51] for more details.

The Legendre transformation yields the Hamiltonian

\[
H_{\text{NNLO}} = H_{\text{NLO}} - \Delta L_{\text{NNLO}} .
\]

Here \(H_{\text{NLO}} \) is the NLO Hamiltonian given in Eq. [15], and the term \(\Delta L_{\text{NNLO}} \) is from Eq. [24] with all leading-order velocities re-expressed in terms of momenta [27] and all higher-order velocities dropped in this term.

The eigenvalues of \(H_{\text{NNLO}} \) are given in Eq. [16] and the small contribution of \(\Delta L_{\text{NNLO}}^{(0)} \) to the spectrum can be worked out in perturbation theory by computing the expectation value of \(\Delta L_{\text{NNLO}}^{(0)} \) in the eigenstates [18] of the Hamiltonian [15]. For computation of the expectation value \(\langle (\dot{\alpha}^{(0)})^2 \sin^2 \beta + (\dot{\beta}^{(0)})^2 \rangle \) we note that

\[
\begin{align*}
\langle \dot{\alpha}^{(0)} \rangle^2 \sin^2 \beta + \langle \dot{\beta}^{(0)} \rangle^2 \\
&= \frac{1}{C_0^2} \left(\frac{1}{\sin^2 \beta} (p_\alpha - 2p_\gamma \cos \beta)^2 + p_\beta^2 \right) \\
&= \frac{1}{C_0^2} (I(I+1) - (2I_2)^2) .
\end{align*}
\]

For the expectation values involving the quadrupole vibrations we have

\[
\begin{align*}
\langle \phi_0 \rangle &= \langle \phi_0^{(0)} \rangle = 0 , \\
\langle \phi_2 \rangle &= \frac{1}{\omega_0} \left(n_0 + \frac{1}{2} \right) , \\
\langle (\phi_0^{(0)})^2 \rangle &= \omega_0 \left(n_0 + \frac{1}{2} \right) , \\
\langle \phi_2^2 \rangle &= \frac{1}{\omega_2} (2n_2 + |l_2| + 1) , \\
\langle (\phi_2^{(0)})^2 + \phi_2^2 \gamma^{(0)} \rangle^2 &= \frac{\omega_2}{4} (2n_2 + |l_2| + 1) .
\end{align*}
\]
Hence, we find

$$\langle \Delta L_{\text{NNLO}} \rangle = \frac{I(I+1) - (2l^2)}{2C_0} \left[(n_0 + \frac{1}{2}) R + (2n_2 + |l_2| + 1) S \right]. \quad (31)$$

Here, we used the shorthand

$$R = \frac{2}{C_0} \left(\frac{D_0}{\omega_0} + F_0 \omega_0 \right),$$

$$S = \frac{2}{C_0} \left(\frac{D_2}{\omega_2} + \frac{1}{4} F_2 \Omega \right). \quad (32)$$

Thus, the next-to-next-to-leading order correction to the energies \[\text{NNLO}\] is the small shift \[\text{NNLO}\] of order \[O(\xi^2/\Omega)\]. This shift yields corrections to the moments of inertia of the different rotational bands and depends on the quantum numbers \((n_0, n_2, l_2)\) of the band head. In particular, the moment of inertia of the \(\beta\) band depends on \(R\) while that of the \(\gamma\) band depends on \(S\). Thus, the rotational bands of multi-phonon excitations have rotational constants

$$A_{\text{theo}} = 1 - \left(n_0 + \frac{1}{2} \right) R - (2n_2 + |l_2| + 1) S. \quad (33)$$

In practice it is useful to rewrite this expression as

$$A_{\text{theo}} = A_{\text{g.s.}} - a_\beta n_0 - a_\gamma (2n_2 + |K|/2). \quad (34)$$

Here, \(A_{\text{g.s.}}\) is the rotational constant of the ground-state band, and \(a_\beta\) and \(a_\gamma\) are the small corrections for bands built on multi-phonon excitations. We used the relation \[19\]. As usual, \(A_{\text{theo}}[I(I+1) - K^2]\) describes the energy levels of rotational bands. Note that the change in the rotational constants is linear in the number of excited phonons. This is one of the main result of this paper. The small correction to the moment of inertia depends on the parameters \(a_\beta\) and \(a_\gamma\) (or \(R\) and \(S\)), and can be determined by fit to data. Note that the terms in Eq. \[24\] proportional to \(D_1\) and \(F_1\) do not affect the spectrum at next-to-next-to leading order because of the zero expectation values of the position \(\varphi_0\) and velocity \(\dot{\varphi}_0\) of the harmonic oscillator. These terms will affect wave functions at the considered order and spectra at the next higher order.

IV. COMPARISON BETWEEN THEORY AND DATA

Let us confront our predictions with data. The effective theory we derived allows us to describe small deviations in the moment of inertia of the \(\beta\) band and the \(K = 2\) \(\gamma\) band by a fit of \(R\) and \(S\), respectively. The theory is thus sufficiently flexible to accommodate the small differences between the observed rotational constants for the ground-state band and the \(\beta\) and \(\gamma\) bands of a deformed nucleus. This overcomes a deficiency of the collective models, see e.g. Refs. [37, 39, 41, 42, 43]. The Table I in Ref. [13] shows that \(a_\beta\) is positive for most deformed nuclei. Once the low-energy constants \(C_0\), \(R\) and \(S\) (or \(A_{\text{g.s.}}, a_\beta\) and \(a_\gamma\)) are determined from the ground-state, the \(\beta\), and the \(\gamma\) bands, the effective theory predicts that the difference between the rotational constants of multi-phonon vibrations and the ground-state band depends linearly on the number of excited phonons. There are only a few candidates for two-phonon excitations in deformed nuclei, see Refs. [37, 52, 53] for a summary of the status of the field in the early 1990s. Due to experimental advances, there is now robust evidence for two-phonon \(\gamma\)-vibrational excitations in \(166\)Er [54–56], \(166\)Er [57, 58], and \(232\)Th [59, 60]. For earlier theoretical discussions on multi-phonon states in \(166\)Er, we refer the reader to Refs. [37, 48, 61, 63].

Table I summarizes our results for \(166,166\)Er and \(232\)Th, respectively. The Table shows the excitation energy \(E_r\) of the band head, its spin \(K\), and the rotational constant \(A\). The latter was determined by computing the first level spacing of the respective rotational bands according to the formula \(A[I(I+1) - K^2]\). For each nucleus, the theoretical rotational constants \(A_{\text{theo}}\) are determined by adjusting the low-energy constants \(A_{\text{g.s.}}\) and \(a_\gamma\) of Eq. \[34\] to the rotational constants of the ground-state band and the \(\gamma\) band. This yields \(a_\gamma = 0.84\) keV, \(a_\gamma = 1.18\) keV, and \(a_\gamma = 0.85\) keV for \(166\)Er, \(166\)Er, and \(232\)Th, respectively. These corrections are much smaller (i.e. by about a factor \(\xi/\Omega\)) than the rotational constant \(A_{\text{g.s.}} = 13.17\) keV, \(A_{\text{g.s.}} = 13.43\) keV, and \(A_{\text{theo}} = 8.25\) keV of the respective ground-state bands. For \(K = 4\), \(A_{\text{theo}}\) is a prediction. These predictions are in good quantitative agreement with data for \(166\)Er and \(166\)Er and semi-quantitative agreement with the data for \(166\)Er and \(232\)Th. More precisely, for \(166\)Er, the difference between data and theory is about 10% of \(a_\gamma\) and thus consistent with neglected higher-order corrections [which are of order \(O(\xi/\Omega)\)]. For \(166\)Er, the difference between data and theory is about 43% of \(a_\gamma\). This difference is probably at the limit of what one expects from estimates within the effective theory. For \(232\)Th, the difference between data and theory is about 87% of \(a_\gamma\) and clearly larger than expected. Here, the effective theory only describes correctly the trend that the rotational constants decrease with increasing spin \(K\) of the band head.

Note that – at the considered order in the effective theory – the variation in the rotational constants is not affected by the omission of next-to-next-to-leading order corrections in the potential of the vibrational degrees of freedom \((\varphi_0, \dot{\varphi}_0)\). Those corrections introduce anharmonicities in the vibrational spectrum (i.e. the energies of the band heads), but they do not influence the moments of inertia. Note also, that the effective theory – at the here considered order – yields the rotational bands of the rigid rotor (which are proportional to \(I(I+1) - K^2\)). At the next higher order, i.e. at order \(O(\xi^2/\Omega^2)\), correc-
TABLE I: Experimental excitation energies E (in keV) and spins K of γ vibrational band heads in 168,166Er and 232Th. The rotational constants A (in keV) are deduced from the first level spacing of the rotational band. In the theoretical description, the γ vibrational states have quantum numbers $n_0 = 0 = n_2$, and $I_2 = K/2$. The theoretical result A_{theo} (in keV) for the rotational constant is determined by fit to the $K = 0$ and $K = 2$ bands and is a prediction for the $K = 4$ states.

V. ODD-MASS NUCLEI AT NEXT-TO-LEADING ORDER

Odd-mass nuclei have half-integer spins in their ground states. We want to describe these nuclei in terms of vibrations and rotations alone. The elimination of the odd nucleon as an active degree of freedom leads to an important change in the symmetry properties of the Lagrangian for the rotations and vibrations. Due to the finite ground-state spin, the Lagrangians of odd-mass nuclei are not invariant under time reversal, and terms that are odd under time reversal need to be included into the description. In Ref. [24], the effective theory for the Nambu-Goldstone modes of odd-mass nuclei was considered at leading order. Here, we go one step further and include the vibrational degrees of freedom and consider the effective theory for deformed odd-mass nuclei at next-to-leading order.

Let us start with the vibrational degrees of freedom. The time-odd and rotationally invariant terms $\phi_0 D_t \phi_0$, $\phi_2 D_t \phi_{-2}$ and its complex conjugate enter as additional building blocks of the Lagrangian. Instead of decomposing ϕ_2 in the polar coordinates as in even-even nuclei, we here decompose it in the Cartesian coordinates (mostly for its simplicity in gauge transformation which we will see later)

$$\phi_2 = x + iy . \hspace{1cm} (35)$$

Hence,

$$\phi_2 D_t \phi_{-2} = x \dot{x} + y \dot{y} - i(x \dot{y} - y \dot{x}) + 2i E_z (x^2 + y^2) ,$$

$$\phi_0 D_t \phi_0 = \phi_0 \dot{\phi}_0 = \frac{1}{2} \partial_t (\phi_0^2) . \hspace{1cm} (36)$$

The power counting Eq. (17) yields the scaling

$$\phi_2 D_t \phi_{-2} \sim \phi_{-2} D_t \phi_2 \sim \phi_0 D_t \phi_0 \sim O(1) . \hspace{1cm} (37)$$

All leading-order terms of the Lagrangian of even-even nuclei Eq. (3) also enter for odd-mass nuclei. The leading order Lagrangian for odd-mass nuclei thus becomes

$$L_{LO}^{(odd)} = (D_t \phi_2)(D_t \phi_{-2}) + \frac{1}{2} \phi_0^2 + \frac{A}{2} \partial_t (\phi_0^2)$$

$$+ \frac{\tilde{A}}{2} (\phi_2 D_t \phi_{-2} + \phi_{-2} D_t \phi_2) + \frac{iB}{2} (\phi_2 D_t \phi_{-2} - \phi_{-2} D_t \phi_2) . \hspace{1cm} (38)$$

Here the parameters B, \tilde{A} and A scale as

$$B \sim \tilde{A} \sim A \sim \Omega . \hspace{1cm} (39)$$

Note that $\phi_2 D_t \phi_{-2}$ and $\phi_{-2} D_t \phi_2$ are complex conjugate to each other, so they appear as linear combinations to yield real values. The terms proportional to A and \tilde{A} are total time derivatives and can thus be dropped from the Lagrangian. However, it is instructive to keep them for a moment, and we will soon eliminate them by a gauge transformation. We employ Eq. (39) and find in leading order

$$L_{LO}^{(odd)} = \dot{x}^2 + \dot{y}^2 + \frac{1}{2} \phi_0^2 + B(x \dot{y} - y \dot{x})$$

$$+ \frac{A}{2} \partial_t (\phi_0^2) + \frac{\tilde{A}}{2} \partial_t (x^2 + y^2) . \hspace{1cm} (40)$$

Clearly, the nontrivial part of the Lagrangian describes a particle in three dimensions in a constant magnetic field with strength proportional to B. A Legendre transformation yields the Hamiltonian

$$H_{LO}^{(odd)} = \frac{1}{2} (p_0 - A \phi_0)^2 + \frac{1}{4} (p_x - \tilde{A} x + B y)^2$$

$$+ \frac{1}{4} (p_y - \tilde{A} y - B x)^2 . \hspace{1cm} (41)$$

Let us employ a gauge transformation with the phase function

$$\lambda(x, y, \phi_0) = \frac{\tilde{A}}{2} (x^2 + y^2) + \frac{A}{2} \phi_0^2 , \hspace{1cm} (42)$$

and gradient

$$\nabla \lambda = (\tilde{A} x, \tilde{A} y, A \phi_0) \hspace{1cm} (43)$$

to gauge away the trivial terms proportional to A and \tilde{A}. This yields

$$H_{LO}^{(odd)} = \frac{1}{2} p_0^2 + \frac{1}{4} (p_x + B y)^2 + \frac{1}{4} (p_y - B x)^2 . \hspace{1cm} (44)$$

At leading order, we thus have free motion in the direction of ϕ_0 and quantized Landau levels in the xy plane. At next-to-leading order, the Lagrangian is

$$L_{NLO}^{(odd)} = L_{LO}^{(odd)} + C_0 E_z E_+ + q E_z$$

$$+ \frac{1}{2} \phi_0^2 + \dot{x}^2 + \dot{y}^2 + B(x \dot{y} - y \dot{x})$$

$$+ \frac{C_0}{2} \left(\alpha^2 \sin^2 \beta + \beta^2 \right) - \left[y - 4(x \dot{y} - y \dot{x}) \right] \alpha \cos \beta . \hspace{1cm} (45)$$
Here, we have dropped the irrelevant terms proportional to A and A in L_{LO}^{odd}. We identify again the Lagrangian of a particle on the sphere and note that the term $q E_z = -q \dot{\phi} \cos \beta$ is technically a Wess-Zumino term. Under rotations, this term remains invariant up to a total derivative, and the parameter q is related to the ground-state spin $|2\ell|$ [24]. The coupling between rotations and vibrations in the Lagrangian (13) stems from the covariant derivative that appears in the leading-order Lagrangian (10), and higher-order terms have been neglected.

Let us discuss the coupling of the nuclear spin to the vibrations and rotations which is due to the time-odd terms in the Lagrangian. The coupling of the ground-state spin to the Euler angles can be viewed as a particle on the sphere coupled to a magnetic monopole with charge $2q$ [48]. Technically, the vibrations couple to the ground-state spin via an effective magnetic field B that is generated by the ground-state spin. Note that our approach takes the spin of the ground state as a static quantity and not as a degree of freedom. This is an approximation that we expect to be valid only for sizeable spins and low energies. At higher energies, or for small ground-state spins, the spin is a dynamical quantity and only the total spin, i.e. the sum of ground-state spin and the spin I associated with the Euler angles is conserved. Our approach excludes terms such as the “Coriolis coupling” [12] from the Langrangian, and it is well known that this coupling has an important, i.e. leading order, contribution for ground-states (or band heads) with spin $1/2$ [5].

At this point, we add a leading-order harmonic potential

$$V_{\text{LO}} = \frac{\omega_0^2}{2} \varphi_0^2$$

in the φ_0 vibrational degree of freedom (the magnetic field B is the leading-order contribution to the φ_2 degrees of freedom), and perform the Legendre transformation to obtain the Hamiltonian. One finds

$$H_{\text{NLO}}^{\text{odd}} = \frac{1}{2c_0} \left[\frac{p_\beta^2}{\sin^2 \beta} + \frac{1}{\sin^2 \beta} (p_\alpha + (q - 2l_2) \cos \beta) \right]^2 + \frac{1}{4} \left(p_x^2 + p_y^2 \right) + \frac{B^2}{4} \left(x^2 + y^2 \right) - \frac{B}{2} l_2 + \frac{1}{2} p_0^2 + \frac{\omega_0^2}{2} \varphi_0^2 \label{47}.$$

Note that $l_2 = (xp_y - yp_x)$ is an angular momentum. In the φ_0 degree of freedom we have a harmonic oscillation. Upon quantization, one finds the usual levels of the one-dimensional harmonic oscillator. The $\varphi_2 = x + i y$ degrees of freedom corresponds to a charged particle moving in a plane perpendicular to a strong magnetic field. This yields Landau levels upon quantization. On top of each of these “vibrational” states, one finds a rotational band due to the Euler angles.

The spectrum of the Hamiltonian for odd-mass nuclei at next-to-leading order thus is

$$E_{\text{NLO}}^{\text{odd}} = \omega_0 \left(n_0 + \frac{1}{2} \right) + \frac{|B|}{2} \left(2n_2 + |l_2| + 1 \right) - \frac{B}{2} l_2 + \frac{1}{2c_0} \left[(I(I+1) - (q - 2l_2)^2) \right]. \label{48}$$

The quantum numbers are $n_0 = 0, 1, 2, \ldots$ for the harmonic oscillation of φ_0, $n_2 = 0, 1, 2, \ldots$, $l_2 = 0, \pm 1, \pm 2, \ldots$, from the Landau levels, and $I = |q - 2l_2|, |q - 2l_2| + 1, |q - 2l_2| + 2, \ldots$ for the rotational bands. The eigenfunctions are essentially as in Eq. (18) for the even-even nuclei, but with modification of the indices of the Wigner D function (and again rewriting $\phi_2 = x + iy = \varphi_2 e^{i\gamma}$).

Thus, the spectrum exhibits a large level density close to the ground state, in qualitative agreement with experimental observations for odd-mass nuclei. The large degeneracy of the lowest Landau level is split by the l_2-dependent shift of the band head. Next-to-leading order corrections to the vibrational potential (that we neglected for convenience) would further modify this picture. Note that q must be a positive or negative half integer, and the ground state with spin $|q - 2l_2|$ is obtained for the value of l_2 that minimizes $|q - 2l_2|$ for the fixed q. For negative values of q (and positive values of B), this is achieved for $l_2 = 0$ in the lowest landau level, and the spin of the ground state is $|q|$. For positive values of q (again assuming positive B), the ground state has spin $1/2$, and l_2 is such that $|q - 2l_2| = 1/2$. We repeat that the the effective theory derived in this Section is not valid for band heads with spin $1/2$ because the assumption of a static spin is only warranted for sizeable spins.

Thus, the effective theory for odd nuclei is quite similar to the effective theory for even-even nuclei. Both theories predict a number of low-lying band heads that are collective vibrations. The comparison with experimental spectra shows that considerable anharmonicities are required in practice, i.e. next-to-leading order corrections to the vibrational Lagrangian must be significant. Within the effective theory, the higher level density in odd deformed nuclei arises due to magnetic effects and Landau-level physics.

It would of course be interesting to consider the spin as a dynamic degree of freedom, and to drive the effective theory for odd-mass nuclei also to next-to-next-to-leading order. However, many more time-odd terms contribute, and many new parameters will appear, and this makes the description of spectra less challenging. Instead, it might be more interesting to couple electromagnetic fields to the effective theory and confront low-order results with the considerable amount of available data.

Note finally that the assumption of a static ground-state spin is probably not valid for odd-odd nuclei due to the weak coupling between the odd proton and neutron. Thus, one cannot simply let q assume integer values and apply the theory derived in this Section to odd-odd nuclei.
VI. CONCLUSION

In summary, we computed higher-order corrections in the effective theory for deformed nuclei, and focused particularly on the kinetic terms that couple rotations and vibrations. In even-even nuclei, the next-to-next-to-leading order corrections yield small corrections to the moments of inertia that are linear in the number of excited phonons. When applied to 166,168Er, the effective theory largely explains the observed variations of the rotational constants of the two-phonon γ vibrations. In 232Th, the theory explains the trend that rotational constants decrease with increasing spin of the band head. For odd nuclei, the effective theory at next-to-leading order includes time-odd terms in the Lagrangian. This approach introduces effective magnetic fields into the Hamiltonian and qualitatively explains observed features such as the high level densities.

Acknowledgments

The authors thank M. Caprio, W. Nazarewicz, and N. Pietralla for discussions. This work has been supported by the U.S. Department of Energy under grant Nos. DE-FG02-96ER40963 (University of Tennessee) and DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory).

[1] W. F. Davidson, D. D. Warner, R. F. Casten, K. Schreckenbach, H. G. Börner, J. Simic, M. Stojanovic, M. Bogdanovic, S. Koicki, W. Gelletly, et al., Journal of Physics G: Nuclear Physics 7, 455 (1981), URL http://stacks.iop.org/0305-4408/7/i=4/a=011
[2] A. Aprahamian, X. Wu, S. R. Lesher, D. D. Warner, W. Gelletly, H. G. Börner, F. Hoyler, K. Schreckenbach, R. F. Casten, Z. R. Shi, et al., Nuclear Physics A 764, 42 (2006), URL http://www.sciencedirect.com/science/article/pii/S037594740501136X
[3] A. Bohr, Dan. Mat. Fys. Medd. 26, no. 14 (1952).
[4] A. Bohr and B. R. Mottelson, Dan. Mat. Fys. Medd. 27, no. 16 (1953).
[5] A. Bohr and B. R. Mottelson, Nuclear Structure, vol. II: Nuclear Deformation (W.A. Benjamin Inc., Reading, Massachusetts, USA, 1975).
[6] A. Faessler, W. Greiner, and R. K. Sheline, Nuclear Physics 70, 33 (1965), URL http://www.sciencedirect.com/science/article/pii/0029558265902245
[7] J. M. Eisenberg and W. Greiner, Nuclear Models: Collective and Single-Particle Phenomena (North-Holland Publishing Company Ltd., London, 1970).
[8] G. Gneuss and W. Greiner, Nuclear Physics A 171, 449 (1971), URL http://www.sciencedirect.com/science/article/pii/0375947402901145
[9] P. Hess, M. Seiwart, J. Maruhn, and W. Greiner, Zeitschrift für Physik A Atoms and Nuclei 296, 147 (1980), URL http://dx.doi.org/10.1007/BF01412656
[10] A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975), URL http://link.aps.org/doi/10.1103/PhysRevLett.35.1069
[11] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, UK, 1987).
[12] A. K. Kerman, Dan. Mat. Fys. Medd. 30, no. 15 (1956).
[13] F. Iachello and O. Scholten, Phys. Rev. Lett. 43, 679 (1979), URL http://link.aps.org/doi/10.1103/PhysRevLett.43.679
[14] S. Aberg, H. Floard, and W. Nazarewicz, Annual Review of Nuclear and Particle Science 40, 439 (1990), URL http://www.annualreviews.org/doi/abs/10.1146/annurev.ns.40.120190.002255
[15] S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001), URL http://link.aps.org/doi/10.1103/RevModPhys.73.463
[16] C. Vargas, J. G. Hirsch, T. Beuschel, and J. P. Draayer, Phys. Rev. C 61, 031301 (2000), URL http://link.aps.org/doi/10.1103/PhysRevC.61.031301
[17] E. C. Halbert and W. Nazarewicz, Phys. Rev. C 48, R2158 (1993), URL http://link.aps.org/doi/10.1103/PhysRevC.48.R2158
[18] G. Dracoulis, F. Kondev, and P. Walker, Physics Letters B 419, 7 (1998), URL http://www.sciencedirect.com/science/article/pii/S0370269397014561
[19] Z. Zhang, X. Wu, Y. Lei, and J. Zeng, Nuclear Physics A 816, 19 (2009), URL http://www.sciencedirect.com/science/article/pii/S0375947408007550
[20] X. Wu, Z. H. Zhang, J. Y. Zeng, and Y. A. Lei, Phys. Rev. C 83, 034323 (2011), URL http://link.aps.org/doi/10.1103/PhysRevC.83.034323
[21] D. J. Rowe, Nuclear Physics A 735, 372 (2004), URL http://www.sciencedirect.com/science/article/pii/S0375947404002076
[22] D. J. Rowe, T. A. Welsh, and M. A. Caprio, Phys. Rev. C 79, 054304 (2009), URL http://link.aps.org/doi/10.1103/PhysRevC.79.054304
[23] K. Matsuyanagi, M. Matsuo, T. Nakatsukasa, N. Hinohara, and K. Sato, Journal of Physics G: Nuclear and Particle Physics 37, 064018 (2010), URL http://stacks.iop.org/0954-3899/37/i=6/a=064018
[24] T. Papenbrock, Nuclear Physics A 852, 36 (2011), URL http://www.sciencedirect.com/science/article/pii/S0375947410007773
[25] S. Weinberg, Physics Letters B 251, 288 (1990), URL http://www.sciencedirect.com/science/article/pii/0370269390903833
[26] S. Weinberg, Nuclear Physics B 363, 3 (1991), URL http://www.sciencedirect.com/science/article/pii/055032139090231L
[27] U. van Kolck, Phys. Rev. C 49, 2932 (1994), URL http://link.aps.org/doi/10.1103/PhysRevC.49.2932
[28] P. F. Bedaque and U. van Kolck, Annual Review of Nuclear and Particle Science 52, 339 (2002), arXiv:nucl-th/0203055.
