About counter concurrent flows with general conjugation conditions

V G Markov¹ and S V Popov¹,²

¹ Institute of Mathematics and Informatics, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677027, Russia
² Academy of Sciences of the Republic of Sakha (Yakutia), 33 Lenin Ave., Yakutsk 677007, Russia
E-mail: guspopov@mail.ru

Abstract. The article [1] is devoted to the conjugation problems for different physical processes such as the heat propagation in nonhomogeneous media, diffraction type problems, interaction of filtration and channel flows of a fluid, filtration in a borehole, reverse flows in a boundary layer after a separation point, etc. These conjugation problems are supplemented with examples of their realization including existence and uniqueness theorems of the corresponding boundary value problems. In the present article we consider counter concurrent flows with general conjugation conditions in the conjugation models and contact boundary value problems proposed.

1. Introduction

In the article we examine boundary value problems for forward-backward parabolic equations of the order $2n$ in the case of the full gluing matrix. As is known, in the case of boundary value problems for forward-backward parabolic equations, smoothness of initial and boundary data does not ensure the membership of a solution in Hölder spaces. Tersenov S.A. [2] in the simplest case exhibited necessary and sufficient conditions for solvability of these problems for parabolic second order equations in the spaces $H^{p, p/2}_x$ for $p > 2$. The solvability (orthogonality) conditions for the data of the problem in this case were written out explicitly. Note that the number of orthogonality conditions is finite in the one-dimensional case. At the same time the number of orthogonality conditions of an integral form is infinite in the multi-dimensional case [3].

Boundary value problems for counter concurrent flows in the linear case (mainly the model cases were considered) are examined in the articles by M.S. Bouendi, P. Grisvard, K.D. Pagani, G. Talenti, O. Arena, S.A. Tersenov, A.M. Nakhushev, I.E. Egorov, A.A. Kerefov, N.V. Kislov, S.G. Pyatkov and other authors (see [2–4] and the bibliography therein). N.V. Kislov [5] studies similar problems with the use of the “projection theorem”, generalizing the corresponding result by M.S. Bouendi and P. Grisvard and S.G. Pyatkov relies on the properties of eigenfunctions of the corresponding eigenvalue problem. Nonlinear variable type equations are studied in [6], where the reader can find sufficiently complete bibliography as well.
2. Conjugation of flows
In a domain \((x, y) \in Q \subset \mathbb{R}^2\) we consider the equation

\[
a \nabla u = \text{div}(\lambda \nabla u), \quad a = a(x, y, u), \quad \lambda = \lambda(x, y, u) \geq 0,
\]

describing the propagation of the quantity \(u\) in a medium, more exactly transfer along the trajectories of the vector \(a\) with the diffusion coefficient \(\lambda\). For example, it is possible that \(u\) is the concentration of an admixture in a fluid flow, the temperature, or the density of a fluid.

The equation (1) also describes the flow of viscous incompressible fluid (the Stokes equations).

3. Counter concurrent flows
In this case the conjugation conditions (4) are as follows:

\[
Aa \nabla \xi \eta u = \nabla^2 \xi \eta u
\]

and there by the equation (2) is written as

\[
Aa \nabla \xi \eta u = u_{\xi \eta},
\]

where

\[
\nabla \xi \eta = A \nabla xy, \quad a \nabla xy = Aa \nabla \xi \eta, \quad \nabla^2 \xi \eta = (A \nabla xy)^2 = \nabla^2 xy.
\]

Let a curve \(\Gamma\) passing trough \((0, 0)\) divide the the domain \(Q\) into the domains \(Q_1\) and \(Q_2\) so that \(Q = Q_1 \cup Q_2 \cup \Gamma\). The main directions of the propagation of the quantity \(u(x, y)\) in \(Q_1\) and \(Q_2\) are the directions of the axes \(0x\) and \(0\xi\), respectively. We assume that \(u = u^1(x, y)\) and \(u = u^2(\xi, \eta)\) in \(Q_1\) and \(Q_2\) satisfy the equations (2) and (3).

The continuity conditions of the functions \(u^k\) and their normal derivatives on \(\Gamma\) are of the form

\[
u^1(x) = u^2(Ax), \quad \nabla xy u^1(x) \cdot n = A \nabla \xi \eta \cdot u^2(\xi, \eta) \cdot n|_{(\xi, \eta)^T = A(x, y)^T},
\]

where \(n\) is the normal to \(\Gamma\) interior with respect to \(Q_1\).

4. Equation of the 2n order
In the domain \(Q^\pm\) we consider the equation

\[
f(x)u_t = Lu,
\]

where \(L\) is a strictly elliptic operator of the order \(2n\) in the variables \(x\) with Hölder coefficients.

Let \(f(x) = \text{sgn} x\) in (5) and \(Q = \Omega \times (0, T)\), where either \(\Omega\) is a domain in \(\mathbb{R}\) or \(\Omega \equiv \mathbb{R}\). We assume that \(0 \in \Omega\) and the interval \(\Gamma = (0, T)\) divides \(Q\) into two simply connected domains \(Q^+\) and \(Q^-\). A solution to the equation (5) satisfying the initial conditions

\[
u(x, 0) = \varphi_1(x) \quad (x \in \Omega^+), \quad u(x, T) = \varphi_2(x) \quad (x \in \Omega^-)
\]
and its derivatives up to and including the order $2n - 1$ of the form
\[
\left. \frac{\partial^k u}{\partial x^k} \right|_{x=-0} = \left. \frac{\partial^k u}{\partial x^k} \right|_{x=+0} \quad (k = 0, 1, \ldots, 2n - 1)
\]
is unique in the class of bounded functions.

By the method of simple layer parabolic potentials with unknown densities $\vec{\alpha}$ and $\vec{\beta}$ constructed with the help of a fundamental solution and the elementary Cattabriga solutions (see [7]), the boundary value problem (5)–(7) is reduced to solving the following systems of singular integral equations of the normal type:
\[
K_1 \vec{\alpha} \equiv A \vec{\alpha}(t) + \frac{1}{\pi} \int_0^T \frac{B(t - \tau, T - \tau) \vec{\alpha}(\tau)}{\tau - t} \, d\tau = \vec{Q}_1(t),
\]
\[
K_2 \vec{\beta} \equiv A \vec{\beta}(t) - \frac{1}{\pi} \int_0^T \frac{B(t, \tau) \vec{\beta}(\tau)}{\tau - t} \, d\tau = \vec{Q}_2(t),
\]
where A and B are matrices of the n-th order written out explicitly. Note that this representation is unique. The systems of singular integral equations can be solved in the class of functions bounded at the ends of the interval $(0, T)$ (in the class $h(0, T)$ [8]) with the index $\alpha = -1$ [9, 10]. Regularizing the equations obtained we derive the systems of Fredholm equations
\[
\vec{\alpha} + K_1^* k_1 \vec{\alpha} = \vec{Q}_1^*,
\]
\[
\vec{\beta} + K_2^* k_2 \vec{\beta} = \vec{Q}_2^*.
\]
Solvability of the Fredholm equations (10) results from uniqueness of solutions to the basic problem (5)–(7) and their unique representations through the potentials.

If we look for a solution to (10) in the Hölder class $H^{p/2n}_x(Q^\pm)$ then for solvability of the problem (5)–(7) it is necessary that
\[
L_s(\varphi_1, \varphi_2) = 0, \quad s = 1, \ldots, 2\left(\frac{[p]}{2n} + 1\right),
\]
where L_s are integral operators containing the functions φ_1, φ_2.

Theorem 1. Let $\varphi_1(x), \varphi_2(x) \in H^p(\Omega^\pm)$. Then under the conditions (11) there exists a unique solution to the equation (5) from the Hölder space $H^{p/2n}_x(Q^\pm)$ satisfying (6), (7).

5. Equation of the third order

In the domain Q^\pm we consider equation
\[
u_{xxx} - \text{sgn} \, x \cdot u_t = 0.
\]

The solution of the equation is sought from the Hölder space $H^{p/3}_x(Q^\pm)$, $p = 3 + \gamma$, $0 < \gamma < 1$, satisfying the following initial conditions (6) and conjugation conditions:
\[
\left. \frac{\partial^k u}{\partial x^k} \right|_{x=-0} = \left. \frac{\partial^k u}{\partial x^k} \right|_{x=+0} \quad (k = 0, 1, 2).
\]
The solvability of the Gevrey problem (12), (6), (13) is reduced to the theory of integral equations with a kernel homogeneous of degree -1 [11]

$$\frac{4}{\sqrt{3}} \beta(t) + \frac{1}{\pi} \int_0^T K(t, \tau) \beta(\tau) \, d\tau = Q(t).$$

Theorem 2. Let $\varphi_1(x), \varphi_2(x) \in H^p(\Omega^\pm) \ (p = 3 + \gamma), \ 0 < \gamma < 1$. Then under the 4 conditions of the form (11) there exists a unique solution to (12) satisfying (6) and (13) from the space $H^{p, p/3}_{x+t}(Q^\pm)$.

6. Equations of the second, third and fourth orders

In the domain Q we consider the equations of the second, third and fourth orders

$$\begin{cases}
 u_t + u_{xxx} = 0 \ (x \in \Omega^-), \\
 u_t + Lu = 0 \ (x \in \Omega^+),
\end{cases}$$

(14)

where L — is an elliptic operator of 2-nd or 4-th order.

Let $L \equiv -\frac{\partial^2}{\partial x^2}$.

The solution of the equation (14) is sought from the Hölder space, satisfying the following initial conditions (6) and conjugation conditions:

$$\begin{cases}
 u(-0, t) = u(0, t), \\
 u_{xx}(-0, t) = u_x(+0, t).
\end{cases}$$

(15)

Theorem 3. Let $\varphi_1(x) \in H^p(\Omega^+), \ p = 2 + \gamma, \ \gamma \in (0, \frac{1}{3})$ and $\varphi_2(x) \in H^q(\Omega^-), \ q = 3 + \mu, \ \mu \in (0, \frac{1}{2}), \ 1 + 3\gamma = \mu$. Then under the 2 conditions of the form (11) there exists a unique solution to (14) satisfying (6) and (15) from the space $H^{p, p/2}_{x+t}(Q^+) \text{ and } H^{q, q/3}_{x+t}(Q^-)$.

Let $L \equiv \frac{\partial^4}{\partial x^4}$.

The solution of the equation (14) is sought from the Hölder space, satisfying the following initial conditions (6) and conjugation conditions:

$$\begin{cases}
 u(-0, t) = u(0, t), \\
 u_{xx}(-0, t) = u_{xxx}(+0, t), \\
 u_x(+0, t) = 0 \text{ or } u_{xx}(+0, t) = 0.
\end{cases}$$

(16)

Theorem 4. Let $\varphi_1(x) \in H^p(\Omega^+), \ p = 4 + \gamma, \ \gamma \in (0, 1) \text{ and } \varphi_2(x) \in H^q(\Omega^-) \ q = 3 + \mu, \ \mu \in (\frac{1}{4}, 1), \ 1 + 3\gamma = 4\mu$. Then under the 4 conditions of the form (11) there exists a unique solution to (14) satisfying (6) and (16) from the space $H^{p, p/4}_{x+t}(Q^+) \text{ and } H^{q, q/3}_{x+t}(Q^-)$.

7. Conclusion

The paper consider $2n$-parabolic equations with changing time direction. For such problems smoothness of the initial and boundary data do not ensure the membership of a solution in some Hölder space. Application of the theory of singular equations along with the smoothness of the data of the problem makes it possible to find additional necessary and sufficient conditions ensuring that a solution belongs to the Hölder spaces $H^{p, p/2n}_{x+t}$ for $p \geq 2n$.

In the article we consider well-posedness questions of boundary value problems for parabolic equations of the second, third and fourth orders with changing time direction.
Acknowledgments

The work was supported by the Ministry of Education and Science of Russia (project 1.6069.2017/8.9).

References

[1] Monakhov V N and Popov S V 2000 Dynam. Sploshn. Sredy 116 62-72 (in Russian)
[2] Tersenov S A 1985 Parabolic Equations with a Changing Direction of Time (Novosibirsk: Nauka) (in Russian)
[3] Pyatkov S G 2002 Oper. Theory (Utrecht, Boston, Köln, Tokyo: VSP)
[4] Popov S V and Markov V G 2017 J. Phys.: Conf. Series 894 012075
[5] Kislov N V 1983 Differ. Eq. 19 1427-36 (in Russian)
[6] Larkin N A, Novikov V A and Janenko N N 1985 Nonlinear Equations of Variable Type (Novosibirsk: Nauka) (in Russian)
[7] Cattabriga L 1958 Rend. Sem. Mat. Univ. Padova 28 376-401
[8] Mushelishvili N I 1968 Singular Integral Equations (Moscow: Nauka) (in Russian)
[9] Gahov F D 1977 Boundary Value Problems (Moscow: Nauka) (in Russian)
[10] Monakhov V N 1977 Boundary Value Problems with Free Boundaries for Elliptic Systems of Equations (Novosibirsk: Nauka) (in Russian)
[11] Antipin V I and Popov S V AIP Conf. Proc. 2017 1907 030002