Effects of Three Plantation Coniferous Species on Plant-Soil Feedbacks and Soil Physical and Chemical Properties in Semi-Arid Mountain Ecosystems

Chun Han
Lanzhou University

Yongjing Liu
School of Life Sciences, Lanzhou University

Cankun Zhang
School of Life Sciences, Lanzhou University

Yage Li
School of Life Sciences, Lanzhou University

Tairan Zhou
School of Life Sciences, Lanzhou University

Salman Khan
School of Life Sciences, Lanzhou University

Ning Chen
School of Life Sciences, Lanzhou University

Changming Zhao (zhaochm@lzu.edu.cn)
School of Life Sciences, Lanzhou University

Research

Keywords: Plantation, C:N:P stoichiometry, Plant-soil feedbacks, Soil physicochemical properties, Mountain ecosystems

DOI: https://doi.org/10.21203/rs.3.rs-55005/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Large-scale afforestation can significantly change ground cover and soil physicochemical properties, especially the soil fertility maintenance and water conservation function of artificial forest is very important in semi-arid mountain ecosystems. To better understand the effects of different tree growth on soil nutrient and soil physicochemical properties following afforestation to determine the best plantation tree species for improving soil fertility and water conservation functions.

Methods: This study investigated the soil nutrient contents for three different tree species (Larix principis-rupprechttii, Picea crassifolia, Pinus tabuliformis), soils and plant-soil feedbacks, as well as the interaction between soil physicochemical properties.

Results: The results revealed that the leaf and litter layer strongly influences soil nutrient availability through biogeochemical processes: P. tabuliformis has higher organic carbon, C:N and C:P in the leaves and litter layer than L. principis-rupprechttii or P. crassifolia, suggesting that higher C:N and C:P hinder litter decomposition. As a result, the L. principis-rupprechttii and P. crassifolia plantation forests significantly improve soil nutrients and clay component than P. tabuliformis plantation forest. Furthermore, the the L. principis-rupprechttii and P. crassifolia plantation forests significantly improved the soil capacity, soil total porosity and capillary porosity, decreased soil bulk density, and enhanced water storage capacity than P. tabuliformis plantation forest. In conclusion, the results of this study show that the strong link between plants and soil is tightly coupled to C:N and C:P, and there had strong correlation between soil particle size distribution and soil physicochemical properties.

Conclusions: Therefore, our results recommend planting the L. principis-rupprechttii and P. crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions, especially in semi-arid regions mountain forest ecosystems.

1 Introduction

The reforestation remains one of the most effective strategies for coping with climate change (Jean-Francois et al., 2019), which is also the most effective management method to solve the problems of soil erosion all over the world (Clemente et al. 2004; Kou et al. 2016). It is considered to be an effective strategy to prevent soil erosion and soil degradation, and to promote the restoration of degraded ecosystems (Zhang et al. 2011). For the past three decades, to prevent soil erosion and desertification, improve water conservation capacity, the Grain to Green Program (GTGP) has been implemented by the Chinese government (Chang et al. 2012). Large-scale afforestation not only increased ground cover but caused changes in soil physical and chemical properties (Fu et al. 2010). Forests as an ecosystem engineer, not only have species-specific effects on soil physicochemical properties and soil communities (soil animal communities and soil microbial communities) (Prescott and Grayston, 2013; Vesterdal et al. 2008), but also regulate climate, mineral cycling and prevent soil erosion (Kozlowski 2002). Besides, artificial forest could potentially lead to circulation and feedback effects of mineral nutrients between above-ground and below-ground ecosystems (Peichl et al. 2012; Wang et al. 2009). Therefore, a study of vegetation recovery processes and their impacts on nutrient cycling and soil properties would provide a critical guide to forest management aimed at improving the ecological restoration of natural and planted forests (Du et al. 2019; Gu et al. 2019), especially in semi-arid mountain ecosystem regions.

It is well known that vegetation is an important factor affecting soil physical and chemical properties. Previous studies have shown that leaves not only respond to environmental factors, but also effects many service function of ecosystem system (Ayres et al. 2009; Aponte et al., 2013), leaves affect soil nutrient availability through decomposition processes (Hobie et al. 2006; Prescott 2002). Thus, leaf quality largely determines decomposition of litter, as well as the release of nutrients and minerals into the soil (Norris et al. 2012; Aponte et al., 2013), indicating the relationship between leaves, litter and soil (Lucas-Borja et al. 2019). Therefore, it is of considerable importance to use knowledge of leaf and litter effects on soil organic carbon and nitrogen cycling to further understand the nutrient cycling and plant-soil interactions in semi-arid mountain forest ecosystems.

Soil play an important fertility and stability function in the forest ecosystems (Lucas-Borja et al. 2019), and soil directly or indirectly regulates and influences many biological processes in forest ecosystems (Zhang et al., 2018). Soil properties are determined by chemical, physical and biological processes, which is plays a key role in determining the plant growth, community composition and individual productivity (Van der Putten et al. 2013). Besides, different plants species tend to have species-specific effects on soil quality and quantity (Hobie et al. 2006; Ayres et al. 2009), and they also change the physical, chemical and biological properties of soil (Qiao et al. 2019). Thus, aboveground and belowground processes of forest ecosystems determine plant-soil feedbacks and influence the composition of the plant community and nutrient cycling processes (Kardol et al. 2006; Van der Putten et al. 2013), potentially affecting ecosystem functioning, such as interactions between plants and other communities (Van der Putten et al. 2013), conserving water.
resource, preventing soil losses. Therefore, understanding the relationships between soil physical and chemical properties and forest types is of great significance for the soil and water conservation, nutrient cycling and soil health assessment of forest stands.

Soil particle-size distribution (PSD) refers to the percentage of each particle size class in the soil, which can reflect the influence of soil water movement, solute transport and nutrient status, vegetation types on texture and other factors (Sun et al., 2016). Soil texture is divided into clay, silt and sand, which is one of the important physical parameters of soil (Mohammadi & Meskini-Vishikaei 2013; Hu et al., 2011; Xu et al., 2013). The change of soil particle-size distribution is the result of the combined effects of soil evolution, vegetation restoration and environmental factors. Soil texture and organic matter are the key factors affecting soil particle size (Qi et al., 2018). Previous studies have shown that the aboveground part of plants can effectively increase the roughness of the surface, thus increasing the content of fine particles and nutrients in the soil, leading to the change of soil structure (Xiang et al., 2015). Therefore, to explore the relationship between soil physical and chemical properties of different vegetation types and soil particle-size distribution and its influencing factors can provide a theoretical basis for sustainable management measures of ecological construction, soil conservation and artificial forests in semi-arid areas in the future.

Xinglong Mountain is an important water conservation area, with three plantation forest stands, on semi-arid land in northwestern China. Three plantation forest species (Larix principis-rupprechtii, Picea crassifolia, Pinus tabuliformis) were planted, and it provided good research sites and vegetation types for this study. The main purposes of the study were to: (1) investigate the influence of different tree species used for afforestation on the nutrient status of plants and soils and plant-soil feedbacks, (2) study the effects of different tree species on soil physical and chemical properties, and (3) explore the influence of soil physical and chemical properties of three forest stands on soil particle-size distribution characteristics and its factors. Therefore, the results of this study can provide the theoretical guidance for the implementation of soil fertility maintenance, water conservation, plantation management and forest resource restoration measures in the semi-arid mountain forest ecosystem.

2 Materials And Methods

2.1 Study site description

This research area is located in the Gansu Xinlongshan National Nature Reserve (35°44′20.12″N, 104°1′3.07″E, H: 2778m) located in the Loess Plateau, China (Fig.1). As a “green rock island” on the Loess Plateau, it is an important water conservation forest and biodiversity protection area in the upper reaches of the Yellow River. The climate in this region is classified as semi-arid continental monsoon climate, and the annual precipitation about were 450-622 mm, and the precipitation frequency is not uniform, mostly concentrated in July to September. The effective accumulated temperature was 1800-2800°C, and the average annual relative air humidity was 68%.

Since the implementation of China’s Three-North Shelterbelt forest program in 1980s, a large-scale artificial afforestation project has been carried out on Xinglong mountain, and the planted forest species were L. principis-rupprechtii, P. crassifolia, P. tabuliformis. The distance between every study site is less than 20 km, and the environmental, meteorological, soil and the parent material within stands was homogeneous. Three plantations planted more than 30 years, and approaching mature forest. The type of land before plantations is a natural succession of grassland, and no human disturbance and management to the forests and soils since the planted. During the growth and succession of different tree species, the soil physicochemical properties will change accordingly, thus potentially affecting ecosystem functioning. Therefore, these differences among plots can be attributed to tree species. There was a large amount of herbaceous vegetation (i.e., Carex rigescens, Fragaria orientalis, Aconitum sinomontanum and Potentilla bifurca) and shrubs (i.e., Sorbus koeheana, Berberis kansuensis, Rosa sweiginzowii, Cotoneaster multiflorus, Spiraea alpine and Lonicera hispida) growing on the forest floor and the litter thickness was about 10 cm. In the three different forest research sites, three typical repeated plots (25 m×25 m) were selected as the research objects.

2.2 Analysis methods of nutrient content in the leaf and litter layers

Two leaf samples were randomly selected from each site for three different forest stands in August 2018, and litter samples were sampled under the canopy of each selected tree (The collection distance of leaf and litter samples is greater than 10 m in each sample plot, and six repeated leaf and litter samples were collected from each forest stand). Litter and leaf samples were processed in a grinder (dried to constant weight at 75 °C) and sieved through a 60-mesh sieve. The leaf and litter layer organic carbon values were determined using the K2Cr2O7-H2SO4 oxidation method (Bao 2000; Wang 2009), the total nitrogen (TN) values were determined using the micro-Kjeldahl method (Bao 2000; Zhang et al. 2019a), whilst leaf and litter layer total phosphorus (TP) values were determined colorimetrically (ammonium molybdate method) after wet digestion with H2O2-H2SO4, and the total potassium (TK) values were
determined using an atomic absorption spectrophotometer (detection limit is 0-1000mg·L\(^{-1}\)) (Aurora, Al-1200, Canada) after wet digestion with H\(_2\)O\(_2\)-H\(_2\)SO\(_4\) (Bao 2000; Zhang et al. 2019a).

2.3 Analysis methods of soil physical and chemical properties

To determine soil nutrient content, the soil samples were collected from the 0-10 cm, 10-20 cm and 20-30 cm soil layers at each site (The collection distance of soil samples is greater than 10m in each sample plot, and six repeated soil samples were collected from each of the three soil layers for each forest stand). Air-dried soil was sieved through a 2 mm then a 0.15 mm mesh sieve to determining soil physiochemical properties and particle-size distribution (PSD). Soil organic carbon (SOC) content was determined using the K\(_2\)Cr\(_2\)O\(_7\)-H\(_2\)SO\(_4\) oxidation method (Bao 2000; Wang 2009). Litter layer and soil total nitrogen (TN) values were determined using the micro-Kjeldahl method (Yang et al. 2018), whilst soil total phosphorus (TP) and total potassium (TK) values were determined colorimetrically (ammonium molybdate method) and flame photometer after wet digestion with HClO\(_4\)-H\(_2\)SO\(_4\) (Bao 2000; Cao and Chen 2017), respectively. Inorganic nitrogen in the form of nitrate nitrogen (-N) and ammonium nitrogen (-N) were determined by means of colorimetry (Bao 2000), and available phosphorus (AP) was extracted with 0.5 mol/L NaHCO\(_3\) then determined by molybdenum-antimony colorimetry (Bao 2000; Kou et al. 2016). Available potassium (AK) was extracted with 1 mol/L CH\(_3\)COONH\(_4\) then determined by flame photometry (Bao 2000; Zhou et al. 2015). TN, TP, -N and -N were measured using an automatic intermittent chemical analyzer (SmartChem140, France). The AK and TK in the soil were determined using flame atomic absorption spectrophotometric method (detection limit is 0-1000mg·L\(^{-1}\)) (Aurora, Al-1200, Canada).

To determine soil physical properties, undisturbed samples were obtained from the 0-10 cm, 10-20 cm and 20-30 cm soil layers using a ring knife at each typical repeated plots for three different forest stands (six intact soil cores were obtained from each of the three soil layers for each forest stand). The bulk density and soil capacity of the sampled soil was followed the method exposed by Zhang et al. (2019b). The total porosity was determined by measuring soil moisture content at saturation (total volume of water-filled soil pores) and capillary porosity (capillary porosity is the percentage of soil voids in soil volume) was determined the method exposed by Qiu et al. (2019).

2.4 Determination of the soil particle-size distribution of the soil samples

The soil particle-size distribution was measured using a laser particle analyzer (Mastersizer 2000, Malvern Company, UK), samples were pretreated with 10% H\(_2\)O\(_2\) solution to each 0.25 g soil sample to remove organic matter, and add 10% HCl solution to remove carbonate salts. Add deionized water and soak for 12 h, and the liquid supernatant was then removed. The samples were chemically dispersed with 0.06mol/L sodium hexametaphosphate, and were mechanically dispersed in an ultrasonic bath for 10 min (Qi et al., 2018). The measurements were repeated three times for each sample, and the soil particle-size distribution (PSD) was classified into clay (<2 μm), silt (2-50 μm), and sand (50-2000 μm) according to United States Department of Agriculture classification (USDA) classification system (Xia et al., 2020; Zhai et al., 2020).

2.5 Statistical analyses

The effect of different forest species on the physical and chemical properties of the soil, nutrient content in the vegetation and litter layers, and soil particle-size distribution (PSD) were evaluated using one-way ANOVA, followed by least significant difference (LSD) tests for different soil layer (P<0.05). Pearson correlation analysis was undertaken to identify the relationships between SOC, TN, TP, TK, bulk density, soil capacity, total porosity and capillary porosity. The relationship between soil physicochemical properties and soil particle-size distribution was analyzed by confirmatory factor analysis using maximum likelihood method to build a path model. All statistical analyses were performed using SPSS 26.0 and AMOS 24.0(SPSS Inc. an IBM Company, Chicago, IL, USA), and all figures were prepared with Origin 2020 software (Origin Lab Inc., Northampton, MA, USA).

3 Results

3.1 Nutrient content of the leaves and litter layer for the three plantations

The content of organic carbon (OC), TN, TP and TK were different in leaves and litter layer for the different tree species (Fig. 2). The organic carbon content in the leaves and litter of *P. tabuliformis* was clearly higher than that of *L. principis-rupprechtii* and *P. crassifolia* (Fig. 2A). The content of N, P and K in the leaves and litter of *L. principis-rupprechtii* and *P. crassifolia*, however, was higher than that of *P. tabuliformis* (Fig. 2B, C). The C:N ratio, C:P ratio and N:P ratio of leaves of *P. tabuliformis* was the highest, followed by *L. principis-
rupprechtii and then P. crassifolia (Fig. 2E, F, G). The C:N ratio and C:P ratio of litter for P. tabuliformis was the highest, followed by P. crassifolia, and the lowest for L. principis-rupprechtii (Fig. 2E, F). The N:P ratio of litter of P. tabuliformis was higher than those of L. principis-rupprechtii and P. crassifolia (Fig. 2G).

3.2 Soil nutrient content for the three plantation stands

Overall, SOC, TN and TP showed a gradually decreasing trend from the litter layer to deep soil layers for the three plantation stands (Fig. 3). The only exception was for the TP in the L. principis-rupprechtii stand, where there were no significant differences between different soil layers (Fig. 3A, B, C). This trend was because C, N and P released by litter decomposition were mainly concentrated in the topsoil layer, with only a small percentage of nutrients reaching the deeper soil layers. However, there was no significant difference in soil TK in the different soil layers for the three plantation species (Fig. 3D). Furthermore, the C:N, C:P and N:P ratio exhibited a gradually decreasing trend from surface soil layers to deep soil layers; the exceptions were for the C:N ratio of the P. crassifolia stand and the C:P and N:P ratio of the P. tabuliformis stand, where there were no significant differences between the different soil layers (Fig. 3E, F, G). On the whole, the SOC, TN, TP, C:N ratio, C:P ratio and N:P ratio of the L. principis-rupprechtii stand were higher than in the P. crassifolia and P. tabuliformis stands; except for individual nutrient indexes (such as TN and N:P ratio), for which there was no significant difference between the surface and the deep soil layer.

Available nutrients (-N, -N, AP and AK) in the soil also exhibited a gradually decreasing trend from the topsoil to deep soil layers for the three forest stands (Fig. 4). The available nutrients were highest in the L. principis-rupprechtii stand, followed by the P. crassifolia stand, and lowest in the P. tabuliformis stand. The differences declined with depth in the soil profile for the three forest stands, so there was no significant difference in AP and AK in the deepest layer.

3.3 Soil physical properties for the three plantation stands

The different tree species also had different effects on the soil physical properties of the different soil layers (Fig. 5). There was no significant difference in soil bulk density, soil capacity, soil total porosity and soil capillary porosity in soil layers down to 30cm under the P. tabuliformis stand (Fig. 5A, B, C, D). The soil capacity, soil total porosity and soil capillary porosity exhibited a gradually decreasing trend from the topsoil to deep soil layers for L. principis-rupprechtii and P. crassifolia stands, while soil bulk density showed the opposite trend. The soil bulk density of P. crassifolia and P. tabuliformis stands was higher than that of the L. principis-rupprechtii stand (Fig. 5A), while the soil capacity, soil total porosity and soil capillary porosity of the L. principis-rupprechtii stand were higher than those of the P. crassifolia and P. tabuliformis stands (Fig. 5B, C, D), except that there was no significant difference in the soil capillary porosity in the 20-30cm layer (Fig. 5D).

3.4 The correlation between soil nutrient content and physical properties

Pearson correlation analysis was performed to evaluate the correlation between soil nutrient content and physical properties (Table 1). The results reveal that the SOC, TN, -N, -N, AP and AK in the soil were significantly positively correlated with soil capacity, total porosity and capillary porosity ($P<0.05$ or $P<0.01$), with the exceptions that there was no significant correlation between soil total porosity and -N, TP and TK. However, there was significant negative correlation between soil bulk density and SOC, TN, -N, -N, AP and AK ($P<0.05$ or $P<0.01$). In addition, the SOC, TN, -N, -N, AP and AK contents of soil were significantly positively correlated with each other ($P<0.05$ or $P<0.01$), and the soil capacity, total porosity and capillary porosity were also significantly positively correlated with each other ($P<0.05$ or $P<0.01$). These results indicate that the water permeability and water storage capacity of the soil markedly improved with increasing soil organic matter and available nutrients.

Table 1. Pearson correlation coefficients between soil nutrient contents and physical properties.
	SOC	TN	TP	TK	-N	-N	AP	AK	Soil bulk density	Soil capacity	Total porosity
TN	0.98**										
TP	0.34	0.45									
TK	-0.50	-0.44	-0.24								
-N	0.81**	0.81**	0.18	-0.24							
-N	0.72*	0.73*	0.28	-0.20	0.95**						
AP	0.92**	0.88**	0.17	-0.28	0.87**	0.81**					
AK	0.79*	0.83**	0.30	0.03	0.91**	0.88**	0.88**				
Soil bulk density	-0.88**	-0.91**	-0.31	0.47	-0.82**	-0.69*	-0.71*	-0.73*			
Soil capacity	0.95**	0.96**	0.27	-0.46	0.84**	0.73*	0.82**	0.78*	-0.97**		
Total porosity	0.80**	0.87**	0.29	-0.25	0.69*	0.55	0.61	0.70*	-0.95**	0.92**	
Capillary porosity	0.85**	0.84**	0.11	-0.20	0.95**	0.90**	0.91**	0.91**	-0.79*	0.87**	0.71*

** indicates $P<0.01$, * indicates $P<0.05$.

3.5 Soil particle-size distribution for the three plantation stands

The percentage of clay and silt in the topsoil of the three plantation stands are higher than those in the deep soil, which is gradually decreasing from topsoil to subsoil (Table 2). The percentage of sand in the topsoil of the *L. principis-rupprechtii* and *P. crassifolia* plantation stands is lower than subsoil, which is gradually increasing from topsoil to subsoil. However, the distribution of sand in *P. tabuliformis* plantation stand has high heterogeneity.

The soil texture triangle showed the texture class of three different soil layer for three different plantation stands (Fig. 6A). The different soil layers of Larix principis-rupprechtii and Red-leaf plum plantations had similar soil particle size composition. the sand content of subsoil was generally higher than topsoil, and the clay content of topsoil was generally higher than subsoil (Fig. 6B). Moreover, the distribution of sand and clay contents of different layers soil had high heterogeneity for *Pinus tabuliformis* plantation stand (Fig. 6B).

3.6 The relationship between soil particle-size distribution and soil physical and chemical properties

Path analysis showed that soil organic carbon (SOC) had direct effect on clay (0.76), silt (0.66), and sand (-0.94), while total potassium (TK) had an indirect effect on clay (0.75), silt (0.85), sand (-0.79). The SOC and TK had a negative effect on sand, while SOC and TK had a positive effect on soil bulk density (BD). This is also confirms the results in Table 1.

Table 2 Characteristics of the various soil particle-size distribution (PSD) in the three soil profiles layers of different forest types.
Tree species	Soil depth	Clay (%)	Silt (%)	Sand (%)				
	0-10cm	2.00-20.00μm	20.00-50.00μm	50.00-100.00μm	100.00-250.00μm	250.00-500.00μm	500μm-2000μm	
Larix principis-rupprechtii	0-10cm	8.66±0.38a	48.75±0.71a	27.21±0.35a	9.24±0.51b	4.46±0.53b	3.38±0.45b	0.18±0.09c
	10-20cm	8.13±0.35a	43.67±0.96a	25.70±0.26b	10.06±0.10b	6.65±0.44b	6.41±0.46a	1.86±0.22b
	20-30cm	5.96±0.50b	31.92±4.49b	22.99±0.34c	13.90±1.21a	10.65±1.44a	7.10±0.46a	3.06±0.55a
Picea crassifolia	0-10cm	9.23±0.17a	51.35±0.79a	29.63±0.49a	8.61±0.41b	1.40±0.23b	3.79±0.63c	—
	10-20cm	8.03±0.32a	46.45±2.23a	26.93±0.56a	8.43±0.34b	3.70±1.11ab	6.51±0.38b	—
	20-30cm	6.31±0.58b	32.72±3.49b	18.23±3.84b	11.75±0.61a	5.83±0.77a	10.30±0.74a	—
Pinus tabuliformis	0-10cm	8.88±0.29a	47.07±0.45c	18.62±2.00b	8.37±0.96a	1.03±0.32a	20.63±1.41a	—
	10-20cm	7.78±0.64ab	53.15±1.07b	24.99±0.42a	5.95±0.58b	2.11±0.26b	5.89±0.89b	—
	20-30cm	6.46±0.54b	59.03±1.82a	27.66±1.68a	4.12±0.63b	7.37±2.31c	3.02±0.59b	—

The different lowercase letters refer to significant differences among different soil layers in the same plantation stands (P<0.05).

— indicates no data.

4 Discussion

4.1 The interaction between leaf, litter and soil nutrient content for the three different plantations

The plant-soil feedbacks as drivers of plant community composition and species coexistence is increasingly being recognized (Kulmatiski et al. 2008; Kardol et al. 2013; Aponte et al., 2013). Previous studies have shown that the C, N, and P contents of plants will significantly affect soil nutrient contents, and they are often plant species-specific in that different species have differing nutrient contents and deliver different elemental contributions to soil (Vesterdal et al. 2008). As a result, the C:N:P stoichiometry of the soil will inevitably occur due to different litter inputs and rhizodeposition (Peichl et al. 2012; Wang et al. 2009; Zhang et al., 2019b), which is very important to improve our understanding of relationship between plants and soil nutrient contents (Cleveland and Liptzin 2007; Zhao et al. 2015). In this study, we found that the C:N, C:P and N:P of leaves and litter of *P. tabuliformis* were higher than those of *L. principis-rupprechtii* and *P. crassifolia*. The possible reason for these results is that the C:N and the nutrient contents of the litter are the most directly factors influencing decomposition rate and nutrient release of litters (Prescott 2010; Ge et al. 2013), and higher C:N and C:P are important in hindering the decomposition of litter. Conversely, the decrease in C:N and C:P means that litter is converted into a decomposed state more readily (He et al. 2010). Moreover, the C:N and C:P of litter are negatively correlated with decomposition rate, and the litter with higher C:N and C:P needs to obtain a large amount of N and P from external sources to accelerate decomposition (Wang and Huang 2001; He et al. 2010). In addition, *P. tabuliformis* litter is richer in lignin than *L. principis-rupprechtii* and *P. crassifolia* litter, decomposition is hampered (He et al., 2010). This conclusion is also confirmed by previous studies indicating that the lignin/N or crude fiber/N reflects the ease of litter decomposition: decomposition rate is negatively correlated with this ratio (Wang and Huang 2001; He et al. 2010). These reasons also explain why the soil nutrient contents of the *P. tabuliformis* plantation is lower than those of the *L. principis-rupprechtii* and *P. crassifolia* plantations.

Soil C:N, C:P, and N:P are important indexes for determining the mineralization and fixation of soil nutrients during soil development (Tian et al. 2010). The N:P of soil not only reflect the availability of P and N in the forest ecosystem, but also reveal nutrient movements between the plants and soils (Cao and Chen, 2017; Fan et al., 2015). Our results showed that the *L. principis-rupprechtii* stand had the highest C:N, C:P and N:P of soil, followed by *P. crassifolia* and *P. tabuliformis* stands (Fig.3), and the C:N and C:P in leaves of *P.
tableuliformis were lower than in *L. principis-rupprechtii* and *P. crassifolia*. Therefore, it can be speculated that the process from the rapid growth stage of a *P. tabuliformis* stand to a mature forest requires a larger amount of phosphorus than *L. principis-rupprechtii* and *P. crassifolia* stands, because the soil phosphorus is not replaced quickly enough, resulting in the forest land becoming phosphorus-depleted. These also confirm the idea that the higher C:N and C:P values in plants usually represent higher N and P utilization (Wardle et al., 2004).

4.2 Effects of the three different plantations on soil nutrients

It is well known that the soil is critical to maintaining the productivity and sustainability of forest ecosystems, and the ability of forest soil to store and transform organic material is influenced by the soil organic matter, which can be influenced by forest vegetation types (Liu et al., 2018; Xia et al. 2019). Therefore, knowledge about the soil nutrients in different forest soils is of great importance to understanding biogeochemical cycles (Yang et al. 2010). The results of this study show that the SOC, TN, and available nutrients (\(-\text{N}, \text{P}, \text{AP}\) and \(\text{AK}\)) were highest in the *L. principis-rupprechtii* stand, followed by the *P. crassifolia* stand, and lowest in the *P. tabuliformis* stand. Moreover, all nutrient contents declined with depth in the soil profile layer in the three different stands. This is because *L. principis-rupprechtii* is a deciduous coniferous specie, so the biomass of litter input is higher than that of *P. crassifolia* or *P. tabuliformis*. In addition, the soil organic carbon accumulation may be mainly driven by litter inputs (Zhao et al., 2017), and higher C:N and C:P hinder the decomposition of litter layer (He et al. 2010). This suggests that the SOC, TN, and available nutrient contents in the *L. principis-rupprechtii* stand are higher than in the *P. crassifolia* and *P. tabuliformis* stands. Besides, the amount of potassium in the soil is directly related to the parent material (Mishra et al. 2017). Potassium in plants is involved in many important biochemical processes, such as activation of biological enzymes, ion channels, synthesis of macromolecules, and regulation of transpiration, etc (Mishra et al. 2017), and the availability of potassium in the soil is maintained by the decomposition of organic matter (Basumatary and Bordoloi 1992). This is the reason that there is no significant difference in TK, although there was a significant difference in AK content between different soil layers in the three stands.

4.3 The relationship between soil nutrient contents and soil physical properties for the three different plantations

The water storage capacity of soil are influenced by soil physical and chemical properties (Guzman et al. 2019). Soil bulk density and soil capacity play an important role in hydrological processes, which are essential to the supply and storage of water, nutrients and oxygen in the soil (Krainovica et al. 2020; Wang et al. 2010). The size of soil pores porosity plays a key role in quantifying soil structure, because it can affects soil hydraulic conductivity, solute convection and water retention (Zhang et al. 2019a). Therefore, these indicators can be used as indicators to evaluate the impact of vegetation restoration on soil properties (Gu et al. 2019). The results of this study indicated that the content of SOC, TN, soil available nutrients and soil capacity, soil total porosity and soil capillary porosity exhibited the same changing trends for different plantation species, and the correlation analysis (Table 1) also showed that the SOC, TN and available nutrient contents (\(-\text{N}, \text{P}, \text{AP}\) and \(\text{AK}\)) were positively correlated with soil capacity, soil total porosity and soil capillary porosity, while negatively correlated with soil bulk density. Furthermore, soil bulk density increased with the increase of soil depth, and the differences in soil bulk density between the different species stands was mainly related to the degree of decomposition and amounts of easily decomposable litters. Our results are in agreement with previous studies showing that increases in SOC are associated with an increase in soil total porosity (Abu, 2013) and decreases in soil bulk density (Koestel et al. 2013). Besides, there was also a significant positive correlation between SOC and available nutrients (\(-\text{N}, \text{P}, \text{AP}\) and \(\text{AK}\)) (Table 1). These results indicate that the soil physical characters and water conservation capacity are largely affected by soil nutrient contents after afforestation.

4.4 The relationship between soil particle-size distribution and soil physical and chemical properties for the three different plantations

In general, the vegetation can not only improve soil fertility, increase carbon storage, enhance water conservation capacity, etc., but also improve soil particle composition, reduce the content of sand and silt, increase the content of clay, and thus improve soil structure (Su et al., 2018; Xia et al., 2020). The results of this study indicated that *L. principis-rupprechtii* and *P. crassifolia* plantations could significantly improve the nutrient contents of topsoil, make the topsoil particles finer, the clay content increased, and sand decreased than *P. tabuliformis* plantation. The main reason is that *L. principis-rupprechtii* and *P. crassifolia* plantations had higher soil nutrient returning capacity than *P. tabuliformis* plantation, which further increases the soil nutrient contents, improves the soil structure and promotes the formation of soil clay. The soil particle-size distribution is closely related to soil organic carbon content and has a significant influence on soil organic carbon conversion (Von Lützow & Kögel-Knabner, 2009). Generally, soil organic carbon is easy to combine with finer soil particles (silt and clay) to form organic-inorganic complexes. Meanwhile, the surface area is relatively large of silt and clay, which will expose more positive charges and combine with negatively charged humus (Zhao et al., 2014). On the other hand, the finer particles have poor permeability, and the organic carbon is more difficult to be decomposed by microorganisms once it combines with them.
Compared with finer clay, sand particles are opposite to each other. Because sand have fewer positive charge sites and large particles, they have fewer opportunities to combine with organic carbon. Moreover, sand have strong permeability, looser the soil structure and poorer soil water holding capacity, which can be easily decomposed by microorganisms (Zhao et al., 2014; Xia et al., 2020). Therefore, this is also the reason why the clay has a negative effect on soil bulk density.

5 Conclusions

In this study, we investigated the influence of different tree species on the nutrient cycling of plants, soils and plant-soil feedbacks, as well as the interaction between soil physicochemical properties in semi-arid mountain forest ecosystems. Our study suggests that *L. principis-rupprechtii* and *P. crassifolia* had higher TN, TP and TK contents in their leaves and litter layer than *P. tabuliformis*, while *P. tabuliformis* had higher organic carbon, C:N and C:P in leaves and litter than *L. principis-rupprechtii* and *P. crassifolia*. This suggests that higher C:N and C:P hinder the decomposition of litter. Thus, the leaves and litter layer strongly influence soil nutrient availability through their biogeochemical processes, and *L. principis-rupprechtii* and *P. crassifolia* plantation forests were clearly associated with a more substantial improvement in soil nutrients and clay component than *P. tabuliformis* plantation forest. In addition, the *L. principis-rupprechtii* and *P. crassifolia* significantly improved the clay component, soil capacity, soil total porosity and capillary porosity, decreased soil bulk density and sand component, were associated with a larger void ratio, and enhanced water storage capacity. In conclusion, we are recommend planting the *L. principis-rupprechtii* and *P. crassifolia* as the preferred tree species to enhance the water conservation function, increasing soil fertility, which should be useful for ecological vegetation construction and management in semi-arid mountain forest ecosystems.

Declarations

Acknowledgements

The authors thank personnel at the Gansu Xinlongshan National Nature Reserve and Gansu provincial field scientific observation and research station of mountain ecosystems for providing assistance.

Author's contributions

Changming Zhao and Chun Han conceived and designed the experiments. Cankun Zhang, Yongjing Liu, and Yage Li performed the experiments. Chun Han and Yage Li analyzed the data, Chun Han wrote the manuscript. All authors provided editorial advice and gave final approval for publication.

Funding

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100101), a Major Special Science and Technology Project of Gansu Province (18ZD2FA009) and the National Natural Science Foundation of China (NSFC) (31522013).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References
1. Abu ST (2013) Evaluating long-term impact of land use on selected soil physical quality indicators. Soil Res 51, 471-476.

2. Aponte C, García LV, & Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For. Ecol. Manage 309: 36-46.

3. Bao SD (2000) Soil and Agriculture Chemistry Analysis. China Agriculture Press, Beijing in Chinese.

4. Basumalty A, Bordoloi PK (1992) Forms of potassium in some soils of Assam in relation to soil properties. J Ind Soci Soil Sci 40(3): 443-446.

5. Bautista-Cruz A, Del Castillo RF, Etchevers-Barra JD, del Carmen Gutiérrez-Castorena M, Baez A (2012) Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manage 277: 74-80.

6. Cao Y, Chen YM (2017) Ecosystem C: N: P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecol Eng 105: 125-132.

7. Chang RY, Fu BJ, Liu GH, Yao XL, Wang S (2012) Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China. Ecological research 27(4): 827-836.

8. Clemente AS, Werner C, Mágicas C, Cabral MS, Martins-Louçao MA, Correia O (2004) Restoration of a limestone quarry: effect of soil amendments on the establishment of native Mediterranean sclerophyllous shrubs. Restor Ecol 12: 20-28.

9. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85: 235-252.

10. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85: 235-252.

11. Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015) Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 392: 127-138.

12. Fu XL, Shao M A, Wei XR, Horton R (2010) Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155: 31-35.

13. Ge X, Zeng L, Xiao W, Huang Z, Geng X, Tan B (2013) Effect of litter substrate quality and soil nutrients on forest litter decomposition: a review. Acta Ecol. Sin 33(2): 102-108.

14. Gu CJ, Mu XM, Gao P, Zhao GJ, Sun WY, Tatarko J, Tan XJ (2019) Influence of vegetation restoration on soil physical properties in the loess plateau, china. Journal of Soils and Sediments. Journal of Soils and Sediments 19: 716-7280.

15. Guzman JG, Ussiri DAN, Lal R (2019) Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. Catena 176: 289-295.

16. He F, Wang DX, Lei RD., Wang J, Wang YC, Liu JH (2010) Decomposition characteristics of withered leaves at different altitudes on south slope of the Qinling Mountains. Acta Botanica Boreali-Occidentalia Sinica 30(5): 1004-1011.

17. Hobbie SE, Reich PB, Oleksyn J, Ogldahl M, Zytkowski R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9): 2288-2297.

18. Hu HC, Tian FQ, Hu HP (2011) Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China. Science China Technology Sciences 54(6): 1568-1574.

19. Jean-Francois B, Yelena F, Claude G, Danilo M, Marcelo R, Devin R, Constantin MZ, Thomas WC (2019) The global tree restoration potential. Science 365 (6448): 76-79.

20. Krainovica PM, Bastos RP, de Almeida DR, Juniord AFN, Sampaio PTB, de Souzaa LAG, Falcão NPS (2020) Effect of rosewood plantation chronosequence on soil attributes in Central Amazonia, Geoderma 357: 113952.
25. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol. Lett 11: 980-992.

26. Liu S, Yang M, Cheng F, Coxiao A, Wu X, Zhang Y (2018) Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catena 165: 279-285.

27. Lucas-Borja ME, de Santiago JH, Yang Y, Shen Y, Candel-Pérez D (2019) Nutrient, metal contents and microbiological properties of litter and soil along a tree age gradient in Mediterranean forest ecosystems. Science of the Total Environment 650: 749-758.

28. Mishra G, Das PK, Borah R., Dutta A (2017) Investigation of phytosociological parameters and physico-chemical properties of soil in tropical semi-evergreen forests of Eastern Himalaya. Journal of forestry research 28(3): 513-520.

29. Mohammadi MH, Meskini-Vishkaee F (2013) Predicting soil moisture characteristic curves from continuous particle-size distribution data. Pedosphere 23(1): 70-80.

30. Norris M, Avis P, Reich P, Hobbie S (2012) Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 1-15.

31. Peichl M, Leava NA, Kiely G (2012) Above- and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland. Plant Soil 350: 281-296.

32. Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22. 1193-1200.

33. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101: 133-149.

34. Qi F, Zhang RH, Liu X, Niu Y, Zhang HD, Li H, Li JZ, Wang BY, Zhang GG (2018) Soil particle size distribution characteristics of different land-use types in the funiu mountainous region. Soil and Tillage Research 184: 45-51.

35. Qiao LL, Li YZ, Song YH, Zhai JY, Wu Y, Chen WJ, Liu GB, Xue S (2019) Effects of Vegetation Restoration on the Distribution of Nutrients, Glomalin-Related Soil Protein, and Enzyme Activity in Soil Aggregates on the Loess Plateau, China. Forests 10(9): 796.

36. Qiu XC, Peng DL, Wang HB, Wang ZY, Cheng S (2019) Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators 103: 236-247.

37. Su, M, Ding, GD, Gao, GL, Zhang, Y, Guo, MS (2018) Multi-fractal analysis of soil particle size distribution of Pinus sylvestris var. mongolica plantations in Hulunbeier sandy land. J. Arid Land Resour. Environ 32(11): 129-135.

38. Sun C, Liu G, Xue S (2016) Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients. Ecological research 31(6): 1-12.

39. Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry 98: 139-151.

40. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology 101(2): 265-276.

41. Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For. Ecol. Manage 309: 4-18.

42. Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manage 255 (1): 35-48.

43. Von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know?. Biology and Fertility of Soils 46(1):1-15.

44. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683): 509-513.

45. Wang GL, Liu GB, Xu MX (2009) Above- and belowground dynamics of plant community succession following abandonment of farmland on the Loess Plateau, China. Plant Soil 316: 227-239.

46. Wang J and Huang JH (2001) Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecological Sinica 25(3): 375-380.

47. Wang Y, Shao M, Shao H (2010) A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol 381: 9-17.

48. Xia JB, Ren JY, Zhang SY, Wang YH, Fang Y (2019) Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma 349: 25-35.
49. Xia JB, Ren RR, Chen YP, Sun J, Zhao XM, Zhang SY (2020) Multifractal characteristics of soil particle distribution under different vegetation types in the Yellow River Delta Chenier of China. Geoderma 368: 114311.

50. Xiang N, Peng G, Bing W, Yu L (2015) Fractal characteristics of soil retention curve and particle size distribution with different vegetation types in mountain areas of northern China. International Journal of Environmental Research and Public Health 12(12): 15379-15389.

51. Xu GC, Li ZB, Li P (2013) Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena 101: 17-23.

52. Yang XD, Ni K, Shi YZ, Yi XY, Zhang QF, Fang L, Ma LF, Ruan JY (2018) Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ 252: 74-82.

53. Yang YH, Fang JY, Guo DL, Ji CJ, Ma WH (2010) Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands. Biogeo Discuss 7: 1-24.

54. Zhai JY, Song YH, Entemake W, Xu HW, Wu Y, Qu Q, Xue S (2020) Change in Soil Particle Size Distribution and Erodibility with Latitude and Vegetation Restoration Chronosequence on the Loess Plateau, China. Int. J. Environ. Res. Public Health 17: 822.

55. Zhang C, Xue S, Liu GB, Song ZL (2011) A comparison of soil qualities of different revegetation types in the Loess Plateau, China. Plant Soil. 347: 163-178.

56. Zhang GS, Hu XB, Zhang XX, Li J (2015) Effects of plastic mulch and crop rotation on soil physical properties in rain-fed vegetable production in the mid-Yunnan plateau, China. Soil Tillage Res 145: 111-117.

57. Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment 642: 12-20.

58. Zhang GS, Zhang FX, Li XT (2019a) Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Science of The Total Environment 670: 1-7.

59. Zhang W, Liu W C. Xu MP, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019b) Response of forest growth to C: N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 337: 280-289.

60. Zhao FZ, Kang D, Han XH, Yang GH, Yang GH, Feng YZ, Ren GX (2015) Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecol Eng 74: 415-422.

61. Zhao FZ, Zhang L, Sun J, Ren CJ, Han XH, Yang GH, Pang GW, Bai HY, Wang Y (2017) Effect of soil C, N and P stoichiometry on soil organic carbon fractions after afforestation. Pedosphere 27(4): 705-713.

62. Zhao XM, Zhao LP, Guo XX, Li MT, Yu SS, Wang MY (2014) Particle component and distribution characteristics of organic carbon of sediments in water and shore soils. Journal of Soil and Water Conservation 28(6): 304-308.

63. Zhou XN, Zhou Y, Zhou CJ, Wu ZL, Zheng LF, Hu XS, Chen HX, Gan JB (2015) Effects of cutting intensity on soil physical and chemical properties in a mixed natural forest in southeastern China. Forests 6(12): 4495-4509.

Figures
Figure 1

The location map of Xinglong Mountain in the Loess Plateau, China. Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status
of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been
provided by the authors.
Figure 2

Differences in OC, TN, TP, TK contents and C:N:P stoichiometry in leaves and litter for three different plantation species. Different lowercase letters indicate significant differences (P<0.05) among different plantation species.
Figure 3

SOC, TN, TR, TK, C:N ratio, C:P ratio and N:P ratio in 10cm soil layers to a depth of 30cm under three different plantation species. Different capital letters within the same depth indicate significant difference (P<0.05) among three different plantation species. Different lowercase letters for the same study site indicate significant differences (P<0.05) between different soil layers. The same is the case below.

Figure 4

NH$_4^+$-N, NO$_3^-$-N, AP and AK concentrations at different soil depths (0-30cm) under three different plantation species.

Figure 5

Soil bulk density, soil capacity, total porosity and capillary porosity in 10cm soil layers to a depth of 30cm under the different plantation species.
Figure 6

Soil texture triangle showing the range of textures for three different plantation stands.

Figure 7

Path diagram for the relationship between soil particle-size distribution and soil physical and chemical properties. Red solid line indicate standardized regression weights are positive paths, black solid lines indicate standardized regression weights negative paths (**: P<0.01, *: P<0.05, χ²/df=3.07), and dashed lines indicate standardized regression weights are not significant (P>0.05). The
number in the top-right corner of each boxes is the squared multiple correlations, and the number on the lines among these parameters is the standardized regression weights.