Breast cancer is the commonest cancer among women the world over. In India, the reported age adjusted incidence of breast cancer in women is about 26.7/100,000 population (NCRP, 1992). Unlike the West, in India, majority of the patients (about 60%) present with locally advanced breast cancer (LABC) or disseminated disease (Goel et al, 1995). In LABC, the treatment policy followed at most centres, is neoadjuvant chemotherapy (NACT) followed by surgery and local or locoregional radiotherapy. The response to NACT is assessed by clinical evaluation and supplemented by radiological measurement of reduction in tumour volume by mammography and/or ultrasonography. None of the currently available indicators of response (clinical and radiological) correlate well with the actual response as assessed on histopathological examination of the tumour.

MR imaging (MRI) is a valuable new tool for diagnostic mammography (Orel et al, 1996; Friedrich, 1998; Harms, 1998; Orel, 1998). Recently, dynamic contrast enhanced MRI techniques have also been developed for differentiation between benign and malignant tumours (Kaiser, 1991; Harms et al, 1993; Haywang-Kobrunner et al, 1997; Piccoli, 1997; Daniel et al, 1998). The above techniques, however, do not provide any metabolic/biochemical information. On the contrary, magnetic resonance spectroscopy (MRS) permits non-invasive detection of metabolic (biochemical) differences between tumours and normal tissues, and can also be used to monitor response to different treatment regimens. Recently, we have shown that in LABC, the assessment of response to NACT can be made using water-to-fat ratio calculated from volume localized proton MRS (Jagannathan et al, 1998, 1999). In addition, we also reported the presence of choline in a majority of the breast cancer patients (Jagannathan et al, 1998).

In this study, results of evaluation of choline in LABC and its response to NACT using in-vivo proton MRS are presented. The objectives are: (i) to evaluate the potential of proton MRS in the study of breast cancer, and (ii) to investigate further, the recent observation of choline containing compounds in malignant breast tissues and its response to NACT. To the best of our knowledge, this is the first report assessing the response of breast cancer to NACT in a large cohort of patients using in-vivo proton MRS.

PATIENTS AND METHODS

Patients

67 women with cytologically confirmed infiltrating ductal carcinoma (IDC) were recruited. Necessary clearance from the Institute ethical committee and written informed consent were obtained prior to examination from patients and controls. Patients were evaluated clinically and tumour size was measured using Vernier calipers. Metastatic workup included liver function tests, chest...
Table 1 Summary of patient data

TNM stage	No. of patients	Menopausal status	Av. age (yrs)	Tumour size* (cm²)	MRS data	Chemotherapy regimen	
	Pre	Post					
T₂N₂/T₃N₂	7	4	3	46.6 ± 7.6	12–22	1–8	5 1 1
T₃N₂/N₃	7	5	2	44.1 ± 7.8	9–52	3.4–8	5 1 1
T₄N₁	19	12	7	46.1 ± 10.8	14–56	3.4–8	11 5 3
T₆N₁	34	20	14	42.1 ± 11.8	8–144	2.2–27	26 7 1

CMF = Cyclophosphamide, Methotrexate & 5-Flourouracil (5FU); All drugs given on 1st and 8th day of a 28 days cycle; CAF = Cyclophosphamide, Adriamycin (epirubicin/doxorubicin) and 5-FU. Cyclophosphamide and 5FU given on day 1 and day 8 of a 28 day cycle and doxorubicin on day 1 only; Pac+Epi = Paclitaxel and epirubicin. All drugs given on day 1 of 21 days cycle. *Tumour size as determined from clinical evaluation. The data represents the length × breadth (minimum and maximum).

In-vivo localized MRS was carried out using the STEAM sequence (Frahm et al., 1987). Magnetic field shimming was carried out both globally and over the voxel region prior to MRS. Line-widths (LW) after voxel shimming corresponded typically to 10–25 Hz for the lipid peak in case of normal/control breast and 5–20 Hz for the water peak in patients with breast tumours. 32 to 64 scans with and without water suppression were collected using an echo time TE = 135 ms and a repetition time TR = 3 s, with the total acquisition time being around 2 to 4 minutes. The free induction decays were zero filled to 4 K data points with a Gaussian broadening of 3 Hz before Fourier transformation. Chemical shifts were reported using water as internal standard at 4.70 ppm. Only the presence or absence of TCho is reported in this study and no objective statistical criteria of the signal-to-noise ratio were used for detection of TCho signal. Investigators performing MRS (NRJ, MK) were not blinded to the pre-treatment clinical diagnosis. However, the presence or absence of total choline resonance was based on strict experimental criteria adopted, namely: (i) the LW of the unsuppressed water peak to be around 5 to 20 Hz, and (ii) the ratio of the water suppression ≥ 20. If these 2 criteria were not met, the data was discarded. The total study time per patient, including imaging and spectroscopy, was between 60 and 75 minutes.

Proton spectra of the FNAB (at 37°C) and the PCA extracts (at 25°C) were recorded at 400.13 MHz (Bruker, DRX). Chemical shifts were referenced to an external TMS and D₂O was used as a solvent.

Data analysis

To compare the proportions between 2 groups of patients, Fisher’s Exact Test was used. Pre- and post-therapy status of Group III patients in relation to the presence of choline was compared using McNemar’s test. Results were considered significant at 5% level of significance (P < 0.05). To assess the sensitivity and specificity of TCho before treatment in relation to histopathology, we grouped pre-therapy patients of Groups I and III and compared with 14 benign cases (fibroadenoma). Since the response to NACT is seen to be effective at the end of 3rd cycle (Jagannathan et al., 1998), the data of patients who had 3 cycles and 6 cycles of therapy were grouped together for the purpose of analysis.

RESULTS AND DISCUSSION

The proton spectrum (without water suppression – Figure 1A) from an 8 ml voxel (Figure 1B) of normal breast tissue of a
volunteer shows that resonances from lipid protons dominate. Detailed assignments of other peaks are as given in the figure caption. The spectrum shown in Figure 1 for a control subject is also typical of spectra obtained from the contralateral unaffected breast for all patients. However, it is observed that the spectra depend on the distribution of amount of glandular and fatty breast tissue inside the voxel. With increasing age, the amount of glandular breast tissue decreases and hence, young women were selected as volunteers in the present study to achieve spectra from glandular tissue as well as fatty breast tissue.
Figures 2C and 3C show the water suppressed spectra from an 8 ml voxel of the same patients. In addition to the residual water and fat, a peak at 3.2 ppm due to choline-containing compounds, is clearly seen. In few patients (n = 4, and in one volunteer), other minor resonance in the 8 to 9.5 ppm region were also observed (figure not shown). These were assigned to purine (ATP and GTP) and pyrimidine (uridine and cytidine phosphates) nucleotides. The presence of choline and the assignment of other minor resonances were verified with the help of in-vitro proton spectra of PCA extract of the breast tumor tissues (figure not shown) and FNAB samples. Only the presence or absence of total choline is reported in this paper following strict experimental criteria, as discussed previously. It is our experience that with the use of such strict experimental criteria, the quality of MR spectra obtained markedly improved (with good signal-to-noise ratio), facilitating easy observation of total choline peak. Necessary experimental precautionary measures as outlined earlier, were taken since the presence of total choline may be affected by poor quality local shim, the relative position of the voxel in relation to the surface coil sensitivity and the size of the voxel used.

To evaluate the utility of in-vivo MRS, spectra were recorded for 25 patients (pre-therapy patients of Groups I and III) choosing different regions of the breast which included both tumour and non-tumour region. Figure 4A shows the typical unsuppressed MR spectrum from a voxel which is shifted away (Figure 4B) from tumour. The spectrum looks similar to Figure 1A of normal volunteer, indicating that this region contains normal breast tissue. In addition, no choline was detected in patients (n = 11) where the residual water signal was suppressed. These exercises confirmed that the spectra recorded, reflect the pathological state of the tissue and further validate the observation of choline in malignant breast tissue. 2D/3D chemical shift imaging experiments should further help in discriminating between normal and diseased portions of the breast (Doyle et al, 1999).

Table 2 presents group specific data with desired statistical analysis. Accordingly, TCho was observed in 81% of the Group I patients. For Group II, in 3 out of 21 cases (i.e. 14%), TCho was observed. Table 3 presents the individual data of Group III patients who were monitored sequentially. Total choline was observable in 10 out of 14 cases before treatment. Out of these 10, 7 showed no or significantly reduced TCho, indicating good response to chemotherapy as evidenced by clinical and histopathological evaluation (see Table 3). 3 patients showed no histopathological response to chemotherapy, however, MRS showed significantly reduced TCho in one (#69) and no TCho signal in the other 2 patients (#70 and 81). In another patient (#77) TCho was not observed before treatment, but was detected at the end of 3rd cycle. This anomaly could not be rationalized at this point. The post-therapy histopathological investigations of Group III patients correlated well (~80%–11 out of 14 showed concordance) with the presence or absence of choline (Tables 3 and 4). Rapid decrease of phosphomonoesters (one of these is phosphocholine) has been observed in 31P MRS study of breast carcinoma during effective chemotherapy (Glaholm et al, 1989; Leach et al, 1998).

Further statistical analysis revealed that pre-therapy patients of Groups I and III are comparable in relation to the presence of TCho (P = 0.31). Similarly, the post-therapy status of patients in relation to the absence of TCho are comparable between Groups II and III (P = 0.67). The presence of TCho before initiation of NACT was compared with the histopathological diagnosis (Table 4). Of the 14 benign lesions studied, only 2 showed choline.
The sensitivity of in-vivo MRS in detecting TCho was 78% and the specificity was 86%. In comparison, contrast-enhanced MRI has a high sensitivity (93–99%) but a lower specificity (37–85%) for detecting the breast cancer (Harms et al, 1993; Bone et al, 1997; Heywang-Koburner et al, 1997). However, the advantage of in-vivo MRS is that it provides the biochemical/metabolic information which is not available from contrast MRI.

An interesting observation of this study, is the presence of TCho from the contralateral unaffected breast of a patient who was lactating at the time of MRS. Figure 5 shows TCho as well as lactose peak around 3.8 ppm in this patient. Recently, Gribbested et al (1998) and Kvisted et al (1999) have also observed choline in the normal breast of lactating women as well in 2 out of 11 benign lesions. An increase in phosphomonoester peak in lactating women has also been documented by Twelves et al (1994) through 31P MRS. Payne et al (1994) have documented that the level of phosphomonoesters changes significantly in normal breast tissues during menstrual cycle. Absolute concentration of choline in breast lesions through in-vivo proton MRS have been determined (Roebuck et al, 1998). Mackinnon et al (1997) reported elevation of choline levels in malignant breast tumours compared to benign cases from in-vivo NMR of FNAB samples and evaluated its sensitivity and specificity in distinguishing benign lesions from invasive cancer. Of the various choline containing compounds that contribute to the peak at 3.2 ppm in in-vivo MRS (choline, glycerophosphocholine and phosphocholine), an increase in

Groups	Pre	Post	Pre	Post
I	26	3	10	1
II	6	18	4	13
III	81	14	71	7
95% Confidence	68–95	0–29	48–95	0–18

Figure 5 Proton spectrum from the unaffected contralateral normal breast tissue of a patient who was breast feeding at the time of MRS.

Table 2 Group specific distribution of patients in relation to the presence of choline along with its percentage and 95% confidence interval (CI)
phosphocholine is highly probable (Katz-Brull et al, 1998; Roebuck et al, 1998).

The phosphocholine (PC) and phosphoethanolamine (PE) are the precursors in the synthesis of phosphatidylcholine (PCho) and phosphatidylethanolamine (PEth), respectively, and are also degradation products of phospholipid breakdown by phospholipase C. Several NMR studies have revealed high concentrations of phosphomonoesters (PC and PE) in human breast tumors (Sijens et al, 1988; Merchant et al, 1988; Glaholm et al, 1989; Degani, 1994; Katz-Brull et al, 1998; Leach et al, 1998). Smith et al (1991) have shown a strong association between the proliferation rate of a rat mammary tumour and the PC and GPC content of the tumour. Gribbestad et al (1993, 1994) reported that PCho showed a large variation between the same type of tumours suggesting breast tumours might have very different choline content. This may be the likely reason for choline to be detected in only 80% of patients studied by us before treatment. Recently, Singer et al (1995) have observed ~18-fold increase in phosphocholine content in 2 primary breast cancer lines (21PT and 21NT), and a 27-fold increase in the metastatic breast cancer cell line (21MT-2) compared with the normal breast epithelial cell line 76N. This increase was accounted for by a decrease in the CTP: cytidylyltransferase activity and/or by increase in choline kinase activity (Merchant et al, 1988). The metastatic breast cancer cell line 21MT-2 also has a significantly higher concentration of PC than do the primary breast cancer cell lines. Recently, Katz-Brull et al (1998) have documented through NMR a biochemical basis for the presence of high phosphocholine in breast carcinoma relative to benign tumours and normal breast tissues.

CONCLUSIONS

In conclusion, our study demonstrates the utility of volume localized in-vivo proton MR spectroscopy in the study of locally advanced breast cancer. The important finding of this study is the observation of TCho in 78% of the patients prior to therapy. In patients receiving NACT, absence/reduction of TCho was observed in 89% of the patients (31 out of 35 cases of Group II and III showed no or reduced TCho – see Tables 2 and 3). Our results indicate that the detection of TCho in malignant tumours by in-vivo proton MRS has a good sensitivity (~80%) and specificity (86%). Further studies involving methods to quantitate TCho might be of value for differentiation of breast tumours. Such observations open up the possibility of assessing noninvasively the changes in the concentration of the individual metabolites and their relation with the tumour behaviour, progression, pathophysiology and treatment. The potential clinical use of in-vivo MRS in the management of a patient with breast cancer especially in preoperative diagnosis needs further evaluation. The results presented here, however, have shown that this technique is useful to assess the response of LABC to neoadjuvant chemotherapy. In

S. No.	Patient No.	Age (yrs)	Tumour stage	Tumour size (cm)	Presence of choline	Clinical response	Histopath. response
1	43	35	T2 N M1	9 × 8	Yes	No	R
2	44	28	T2 N M1	8 × 8	Yes	No	R
3	47	35	T2 N M1	11 × 8	Yes	Yes ↓	R
4	50	35	T2 N M1	8 × 6.5	No	No	R
5	60	55	T2 N M1	6 × 4.5	Yes	Yes ↓	R
6	61	30	T2 N M1	3.4 × 2.3	No	No	R
7	67	66	T2 N M1	5 × 5	No	No	R
8	69	26	T2 N M1	12 × 12	Yes	Yes ↓	NR
9	70	33	T2 N M1	6 × 5	Yes	No	NR
10	77	23	T2 N M1	8 × 7	No	Yes	R
11	79	43	T2 N M1	18 × 17	Yes	No	R
12	81	40	T2 N M1	9 × 8	Yes	No	NR
13	85	32	T2 N M1	7 × 6.5	Yes	No	R
14	88	48	T2 N M1	8 × 6	Yes	No	R

R = corresponds to response to chemotherapy; NR = corresponds to no response to chemotherapy.

Table 4 Comparison of MRS results with histopathology

Choline from MRS	IDC* (Groups I and III) and benign cases*	After chemotherapy treatment in Group III patients (n = 14)		
	IDC (pre-therapy) (n = 46)	Benign (n = 14)	Responders*	Non-responders*
Present	36	2	1	1
Absent	10	12	10	2

*Confirmed by histopathological evaluation. Note: The sensitivity of in-vivo MR spectroscopy was 78% (36 true positive findings of TCho before therapy, out of 46 total findings), the specificity was 89% [12 true negative findings (benign cases) of 14 total findings].
addition, as discussed earlier, at our centre a large number of patients present with LABC and accurate assessment of the response to treatment by MRS may help in selecting patients for breast conservation.

ACKNOWLEDGEMENTS

The authors thank Dr Ian CP Smith and Dr Ingrid S Gribbestad for many helpful discussions, suggestions and critical evaluation of the manuscript. Financial support from the Department of Science and Technology, Government of India (SP/SO/B-27/95) is gratefully acknowledged. We wish to thank Mr M Saxena for typographical assistance.

We wish to dedicate this article in memory of our colleague and co-author of this paper [Dr O Coshic] who met with an untimely death due to AML.

REFERENCES

Bone B, Pentek Z, Perbeck L. and Veres B (1997) Diagnostic accuracy in mammography and contrast enhanced MR imaging in 238 histologically verified breast lesions. Acta Radiol 38: 489–496

Daniel BL, Yen YF, Glover GH, Ibrea DM, Birdwell RL, Glover AMS, Black JW, Pleveittis SK and Herlms RS (1998) Breast disease: dynamic spinal MR imaging. Radiology 209: 499–509

Degani H (1994) In: NMR in Physiology and Biomedicine. New York: Academic Press, pp 329–351

Den Hollander JA, Luyten PR, Marien AHJ, Segebarth CM, Baleriaux DF, De Beer R and Va Ormondt D (1989) Potentials of qualitative image localized human 31P nuclear magnetic resonance spectroscopy in clinical evaluation of intracranial tumours. Magn Reson Quart 5: 152–168

Doyle VL, Barton SJ and Griffiths JR (1999) 31P and 1H MRS of human cancer. Clin Radiol 54: 6–8

Frahm J, Merboldt KD and Hainicke W (1987) Localized proton spectroscopy using genuine spatially selective excitation. Magn Reson Med 11: 414–421

Goel AK, Seenu V, Shukla NK and Raina VK (1995) Breast cancer presentation at a tertiary hospital in India. J Magn Reson Imag 5: 168–182

Harms SE, Flemig DP, Hanmer KL, Meiches MD, Jensen RA, Evans WP, Savino DA and Wells RV (1993) MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology 187: 493–501

Heywang-Kobrunner SH, Viehray P, Heinig A and Kuchler C (1997) Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol 24: 94–108

Jagannathan NR and Sendhilvelan S (1993) Therapeutic response of tumors by in-vitro proton nuclear magnetic resonance spectroscopy. Appl Magn Reson 5: 357–367

Jagannathan NR, Meenakshi Singh, Govindaraju V, Raghunathan P, Cosich O, Julka PK and Rath GK (1998) Volume localized in-vivo proton MR spectroscopy of breast carcinoma: Variation of W/F ratio in patients receiving chemotheraphy. NMR Biomed 11: 414–421

Jagannathan NR, Mahesh Kumar, Raghunathan P, Cosich O, Julka PK and Rath GK (1999) Assessment of the therapeutic response of human breast carcinoma using in-vivo volume localized proton magnetic resonance spectroscopy. Curr Sci 76: 777–782

Kaiser WA (1993) MR mammography, Radiology 33: 292–299 and Milco Mundi 36: 168–182, 1993

Kasinoms IN, Merchant TE, Gierke LW and Glinke T (1990) 31P magnetic resonance spectroscopy of human colon cancer. Cancer Res 50: 527–532

Katz-Brull R, Margalit R, Bendel P and Degani H (1998) Choline metabolism in breast cancer. 13C and 31P NMR studies of cells and tumors. MAGMA 6: 44–52

Kivistal RA, Bakken JS, Gribbestad IS, Eshholm B, Lundgren S, Fjysne HE and Haraldseth O (1999) Characterization of neoplastic and normal human breast tissue with in-vivo 1H MR spectroscopy. J Magn Reson Imag 10: 159–164

Leach MO, Verrill M, Gribbestad, Smith T, Collins DJ, Payne GS, Sharp JC, Ronen SM, McCready PV, Powles TJ and Smith IE (1998) Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical treatment and a report of a localization of 31P measurements of response to treatment. NMR Biomed 11: 314–40

Mackinnon WB, Barry PA, Mallycha PL, Gillett DJ, Russell P, Lean CL, Doran ST, Barraough BH, Bilous M and Mountford CE (1997) Fine-needle biopsy specimens of benign breast lesions distinguished from invasive cancer ex-vivo with proton MR spectroscopy. Radiology 204: 661–666

Merchant TE, Gierke LW, Menenes P and Glinke T (1988) 31P Magnetic resonance spectroscopic profiles of neoplastic human breast tissues. Cancer Res 48: 5112–5118

NCRP (National Cancer Registry Programme) Biennial Report 1988–1989 An Epidemiological Study, Indian Council of Medical Research: New Delhi, 1992

Orel SG (1998) High-resolution MR imaging for the detection, diagnosis, and staging of breast cancer. Radiographics 18: 903–912

Orel SG, Hochman MG, Schnall MD, Reynolds C and Sullivan DC (1996) High-resolution MR imaging of the breast: clinical context. Radiographics 16: 1385–1401

Payne GS, Dowsett M and Leach MO (1994) Hormone dependent metabolic changes in the normal breast monitored noninvasively by 31P MR spectroscopy. Breast 3: 20–23

Picco CW (1997) Contrast-enhanced breast MRI: factors affecting sensitivity and specificity. Eur J Radiol 7 (suppl.5): 514–40

Roebuck JR, Cecil KM, Schnall MD and Lenkinski RE (1998) Human breast lesions: Characterization with proton MR spectroscopy. Radiology 209: 269–275

Sijms PE, Wijdtkman HK, Moerland MA, Bakker CIG, Vermeulen JWA and Luyten PR (1988) Human breast cancer in vivo: H-1 and 31P MR spectroscopy at 1.5 T. Radiology 169: 615–620

Singer S, Souza K and Thilly WG (1995) Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: A 31P and 13C Nuclear Magnetic Resonance (NMR) spectroscopy study. Cancer Res 55: 5140–5145

Smith TAD, Eccles S, Ownnerl MG, Tombs AJ, Tiley JC and Leach MO (1994) The phosphocholine and glycerophosphocholine content of an estrogen sensitive rat mammary tumour correlates strongly with growth rate. Br J Cancer 64: 821–826

Twelves CJ, Porter DA, Lowry M, Dobbs NA, Grover PE, Smith MA, Rubens RD and Richards MAC (1994) Phosphorus-31 metabolism of post-menopausal breast cancer studied in vivo by magnetic resonance spectroscopy. Br J Cancer 69: 1151–1556