En bloc transurethral resection of bladder tumors: A review of current techniques

Stefanie M. Croghan¹; Niall Compton¹; Rustom P. Manecksha²; Ivor M. Cullen¹; Pádraig J. Daly¹
¹Department of Urology, University Hospital Waterford, Waterford, Ireland; ²Department of Urology, St. James’s Hospital Dublin and Department of Surgery, Trinity College Dublin, Ireland

Cite as: Croghan SM, Compton N, Manecksha RP, et al. En bloc transurethral resection of bladder tumours (ERBT): A review of current techniques. Can Urol Assoc J 2021 December 21; Epub ahead of print. http://dx.doi.org/10.5489/cuaj.7539

Published online December 21, 2021

Corresponding author: Dr. Stefanie M. Croghan, Department of Urology, University Hospital Waterford, Waterford, Ireland; stefaniecroghan@rcsi.com

Abstract

Introduction: Growing interest surrounds the concept of en bloc transurethral resection of bladder tumors (ERBT). Theoretical advantages include improved adherence to oncological principles and potential yield of superior pathological specimens. Multiple ERBT methods exist. This review summarizes the current evidence regarding application of differing techniques and technologies to ERBT.

Methods: A systematic review of MEDLINE/EMBASE/Scopus databases was performed, using terms “en bloc,” “ERBT,” “bladder,” and “urinary bladder neoplasm.” Template-based data extraction included technique of ERBT, feasibility, tumor size, activation of obturator nerve reflex, operative complications, detrusor muscle sampling rate, and recurrence data.

Results: Multiple approaches to ERBT have evolved, using a variety of energy sources. The feasibility of electrocautery, laser, combined waterjet/electrocautery, and polypectomy snare techniques have been confirmed in achieving ERBT. ERBT appears safe, with a low complication rate. The use of laser energy sources reduces the risk of activating the obturator nerve reflex during lateral wall resections. Otherwise, no energy source is unequivocally superior in achieving ERBT. The rate of detrusor muscle sampling is high with use of ERBT and appears superior to that achieved with conventional TURBT (cTURBT) in multiple comparative studies. A limited number of largely non-randomized trials assess bladder tumor recurrence; current evidence suggests this is similar between ERBT and cTURBT groups.

Conclusions: En bloc resection of bladder tumors using a variety of technologies is feasible and safe, with a high detrusor muscle sampling rate. Further research is required to determine whether rates of residual disease or recurrence can be reduced with ERBT vs. cTURBT.
Introduction
Bladder cancer is the 12th most common malignancy worldwide.1 The cornerstone of accurate diagnosis and local staging is a well-performed transurethral resection of bladder tumour (TURBT), which additionally serves as the primary treatment strategy for non-muscle invasive disease. The conventional approach to TURBT (cTURBT) involves resection of the tumour in layers, resulting in multiple tumour fragments that are evacuated for histological analysis.2 Such a technique may promote ‘tumour scatter.’ This is a longstanding concern in urologic oncology, since the reimplantation theory of malignant urothelial cells was proposed by Albarran and Imbert in 1903.3 Efforts to remove bladder tumours whole have been described as far back as 1980, with a polypectomy snare.4 The current concept of transurethral energy-assisted resection of a bladder tumour as a single intact specimen with the inclusion of lamina propria +/- muscularis propria fibres, was described in 2000.5 This technique adheres to the oncological principle of excising malignant tissue ‘en bloc’ with a negative resection margin.6 In addition, en bloc TURBT (ERBT) allows accurate orientation of the extracted tumour specimen,7 and may be associated with greater rates of detrusor muscle sampling than alternative techniques,8 thus facilitating pathological staging.9

A variety of en bloc bladder tumour resection (ERBT) techniques have been described. This purpose of this review is to summarise the available modalities of ERBT and to report the current evidence for each technique.

Methods
Following prospective study registration (PROSPERO: CRD42020223162) a systematic review of MEDLINE/EMBASE/Scopus databases was performed by two reviewers, using free-text and MESH term combinations (“en bloc”/“ERBT”/“bladder”/“urinary bladder neoplasm”). English language, full-text papers published pre-July 2021 were eligible. Case reports, animal studies and non-transurethral studies were excluded. Data was extracted by a template and narrative synthesis performed. Variables recorded included study design, technique, feasibility of ERBT, size of bladder tumours resected, tumour location, obturator kick reflex for lateral wall tumours, complication data, specimen quality and presence of detrusor muscle, T stage and recurrence data where available. Risk of bias was assessed using the RoB 2 tool10 for randomised studies (outcome options: low/some concerns/high) and the ROBINS-1 tool11 (outcome options: risk low/ moderate/ serious /critical/no information) for non-randomised comparative studies.

Results
Literature review
Search strategy produced a total of 2,067 results, yielding 1,109 unique abstracts or articles following removal of duplicates. After screening, 48 full-text papers were included for narrative synthesis (21 (19 unique cohorts) relating to electrocautery ERBT, 20 to laser ERBT, 3 to hydrodissection/electrocautery ERBT, 3 to polypectomy snare ERBT and 3 to mixed cohorts). Findings are discussed below and presented in Tables 1-3.

Principles and general techniques
En bloc resection of a bladder tumour (EBRT) is generally described with the use of a continuous flow resectoscope, with sheath size 22 – 27Fr. A laser guide probe may be used with laser. The choice of irrigation fluid relates to the energy source in use – glycine or mannitol is used in monopolar electrocautery (including monopolar HybridKnife®) and 0.9% NaCl is widely used for bipolar electrocautery and laser. Distilled water has also been used with laser. Authors describe demarcation of the tumour edge with the energy source in use, generally with a 2-10mm margin of macroscopically normal bladder mucosa; margins of up to 2cm have been described. The optimal margin has not been determined. The clinical significance of positive horizontal margins remains uncertain, whilst positive vertical margins appear associated with residual tumour on re-resection of T1 disease. Where electrocautery or combined electrocautery/waterjet is the energy source in use, the coagulation current is sometimes advocated for this step. With the use of laser technology, some authors alter the energy settings to provide a coagulation effect for the first line of demarcation, whilst others describe an initial cutting incision. The line of demarcation in the bladder mucosa is deepened to the level of detrusor muscle using the energy source of choice, vertically or in a ‘fan’ shape. The deepening technique may involve, for example, ‘flash-firing’ short and rapid cutting current of an electrocautery loop, or laser ‘cutting’ or vapourisation. Blunt dissection to the muscularis layer has also been described. Dissection within the muscularis layer, using retrograde or combined retrograde-antegrade approaches, with energy and/or blunt dissection is performed, until the tumour is lifted free of the base en bloc. The base and edges may be coagulated/fulgurated in the usual fashion where electrocautery is used, or ‘coagulated’ with laser. The tumour may then be extracted, using the resectoscope sheath and siphon effect, an Ellik evacuator, a tissue forceps, a laparoscopic grasping forceps or a specimen retrieval bag (Tables 1-3). Larger tumours, for example those >3cm, may be divided within the bladder before extraction in a controlled fashion (Tables 1-3). Images 1-4 illustrate en bloc resection of a bladder tumour using an electrocautery loop.

Electrocautery ERBT

Use of electrocautery enables most surgeons to perform en bloc resection of bladder tumours (ERBT) with equipment already established in the unit for cTURBT. The findings of 19 papers evaluating electrocautery ERBT are presented in Table 1. Both monopolar and bipolar electrocautery have been used with success. The electrode of choice is most commonly a standard loop, which may be bent to 45 degrees to create an angled intersection with the bladder mucosa. Some authors have found a flat loop to be useful in ERBT, whilst others describe the use of a plasma button, Collin’s knife, or needle electrode either alone or in conjunction with a loop electrode. A novel approach of primarily cold excision with Zedd excision scissors and minimal electrocautery has recently been described. The upper limit of tumour size for electrocautery ERBT has been set at 2cm – 6cm, however ‘larger’ tumours (for example those >3cm) may require...
division within the bladder prior to extraction.5, 42 Analysis of ERBT feasibility confirms a decline with increasing tumour size with current technology, particularly above a threshold of 3cm.40 Whether controlled intravesical tumour division negates any of the hypothesized benefits of ERBT regarding tumour scatter is unknown. The majority of electrocautery ERBT papers include tumours of diverse locations within the bladder. Some authors, however, avoid ERBT of tumours in particular locations, such as the anterior wall or dome,15, 27 or overlying the ureteric orifices.18, 19 Conversely, one paper proposes that use of ERBT may in fact be superior to cTURBT around the ureteric orifices due to purported greater control of coagulation, having confirmed post-ERBT ureteric patency with indigo carmine.41 Occurrence of the obturator nerve reflex is reported in 0 – 23\% of electrocautery ERBT studies, where discussed.16, 18, 19, 21, 27, 28, 42 It is difficult to draw precise conclusions on this figure in the absence of detailed, comparable data surrounding lateral wall tumour location and anaesthesia. A bladder perforation rate of 0 – 5\%,15, 16, 18, 21, 26-29 and a bleeding rate of 0-7.3\%,5, 15, 18-21, 26-29, 40, 42 allowing for heterogeneity in definition of significant bleeding, are associated with electrocautery ERBT. Bladder perforation rates show no statistically significant difference to cTURBT controls in 3 non-randomised comparative studies.26, 28, 41 Detrusor muscle sampling rates of >80\% are associated with electrocautery ERBT in all studies where this is reported; rates of ≥90\% are reported in 13 of 16 studies (on propensity score matching in one).8, 13, 15, 18-21, 26-29, 41, 43 In comparative studies, 4 of 5 papers found electrocautery ERBT to result in higher rates of muscularis identification compared to cTURBT controls (p<0.01).26, 28, 29, 43 One study reported equal detrusor sampling rates between ERBT and cTURBT, however 100\% sampling rates were achieved in each arm.19 Decreased cautery artefact in ERBT compared to controls was observed in some studies,19, 28 and improved T1 substaging with ERBT has been reported also.44-46 Duration of irrigation and catheter time vary between studies and are likely influenced by local practice; no clear difference is apparent between ERBT and cTURBT.28, 29, 43 Where risk stratified, recurrence rates in the range of 0-11.5\% for low risk and 25.5 – 29.86\% for high risk bladder cancer at 12 – 18 months were reported.20, 42 Three relatively small studies reported decreased recurrence rates with ERBT compared to cTURBT at 3-39 month follow-up,19, 32, 43 whilst three other comparative studies identified no difference in recurrence rates at 3 – 18 month follow up.28, 29, 41 Evaluation of recurrence is limited by heterogenous risk stratification, reporting, intravesical treatment regimens and follow-up protocols.

Laser ERBT

The principles of laser ERBT involve the use of laser beams, of which a variety of wavelengths and penetration depths may be obtained, to separate, incise or vaporise tissue layers to dissect a bladder lesion free from its base and surrounding tissues.47 Multiple laser subtypes have been used to perform ERBT, and none has proven clear superiority. Endoscopic laser resection is often considered a safe technique without cessation of anti-platelet or anti-coagulant drugs, potentially a great advantage to its use.47 The numbers of patients taking such medications is, however, poorly reported in laser ERBT series throughout the literature. Twenty papers presenting findings of ERBT are outlined in Table 2. Laser ERBT of tumours up to 4.5-5.5cm in diameter is reported.12, 14, 23, 48 Whilst some series
do not include tumours located at the dome or anterior wall of the bladder, others have confirmed feasibility of laser ERBT in virtually all locations throughout the bladder. Some authors describe a specific technique or use a flexible cystoscope to approach lesions located at the dome. No occurrences of an obturator nerve reflex (ONR) were identified from the literature, and a statistically significant reduction in ONR with laser versus cTURBT has been described in several comparative studies. Rates of bladder perforation are described at 0 – 1.4 %, although this was not specifically reported in five studies. It is noteworthy that the majority of published studies evaluate outcomes of single or limited-number experienced operators. Bladder perforation rates were lower with laser ERBT than cTURBT in two studies, but did not appear to differ in other comparative studies.

A bleeding rate of 0 – 5.97% is reported, although complicated by non-uniform definitions and unclear use of anti-platelets/coagulants. Histological identification of muscularis propria fibres was confirmed in 80-100% of laser ERBT specimens in 14 studies, although in only 30.7% of specimen in one study. Detrusor sampling rate demonstrate statistically significant superiority to cTURBT controls. Cautery artefact appears reduced with laser ERBT, and improved identification of muscularis mucosa layer and T1 substaging with laser ERBT versus cTURBT has also been described, although remaining limited. Variable durations of bladder irrigation and catheter time post laser ERBT are reported, likely reflecting surgeon practice. Some authors report irrigation to rarely be necessary following ERBT, or advocate use for a short period of several hours only. Urethral catheter time varies from mean 1.76 – 5 days. Several comparative studies have found a significant reduction in catheter duration following laser ERBT versus cTURBT, and one blinded comparative study found catheter duration to be similar. Whilst one study (n=64) reports lower recurrence and progression rates with laser ERBT as compared to cTURBT at 12 month follow-up, these results are not reiterated in other literature. Laser ERBT does not appear to alter the recurrence rate of non-muscle invasive bladder cancer compared to cTURBT controls at mean 12 – 41 month follow-up based on findings of nine studies, three of which risk stratified the patients in each group according to EAU guidelines. The authors of one such study reported that it was underpowered to the question of recurrence however, and identified a reduced rate of residual disease at routine 4 week re-resection following ERBT versus cTURBT (p=0.01). Risk reduction in recurrence of high-risk bladder cancer with maintenance Pirarubicin following laser ERBT was reported in one series, however this was the drug of choice due to unavailability of BCG in the region in question. No additional oncological benefit was demonstrated with use of overnight saline irrigation following Thulium ERBT and intravesical Pirarubicin in one study. Further studies of intravesical regimens post ERBT are awaited.
Waterjet hydrodissection

Waterjet technology employs a high pressure jet of fluid to divide tissues with hydroabrasive energy, with a unique level of tissue selectivity reported.\(^53\), \(^54\) Four studies identified described the use of hydrodissection to perform ERBT (Table 3).\(^17\), \(^33\), \(^55\), \(^56\) Hydrodissection was combined with electrosurgery via a HybridKnife® (ERBE, Tübingen, Germany) in all of these studies. HybridKnife® technique may begin with demarcation of the perimeter of the lesion to be resected with the electrocautery function,\(^33\) followed by waterjet function used to elevate the mucosa to be excised, creating a ‘cushion’ underneath it. Indigo-carmine colouration of the saline fluid can be used to assist visualisation.\(^56\) The electrocautery function is used to incise the tissues allowing en bloc resection, and to coagulate the base.\(^33\) HybridKnife® en bloc resection appears feasible for papillary bladder lesions ≤4cm, with a low complication rate. Compared to cTURBT controls, Cheng et al found the occurrence of ONR and pooled complications to be lower in the HybridKnife® en bloc group, \(p=0.034\).\(^17\) Gakis et al., in the only randomised study, did not observe a difference in complications between HybridKnife® and conventional arms.\(^33\) The detrusor sampling rate with HybridKnife® EBRT is inconsistently reported and confounded by differing techniques, with some authors performing separate cold cup muscle biopsies.\(^17\), \(^55\) High rates of muscularis sampling appear achievable based on the 77% reported by Gakis et al, although statistical superiority to cTURBT in muscle sampling is unproven.\(^33\) Mean postoperative catheter time varied 1.6 – 2.5 days in all studies, with Cheng et al. observing mean 9 hours less irrigation time and 1 day less catheter time than controls.\(^17\)

Polypectomy snare

A limited amount of literature pertains to the use of electrosurgical polypectomy snares, such as those used in gastrointestinal endomucosal resection, for ERBT (Table 4). All identified papers used this technique in combination with another, for example cold cup biopsy of the tumour base,\(^57\) conventional TURBT of the tumour base,\(^58\) or en bloc resection of the tumour base.\(^59\) Muscularis sampling rates of up to 75% are reported from the very small case series;\(^58\) however authors advocate the technique as a debulking strategy prior to formal sampling of the tumour bed. Polypectomy snare TURBT has been proposed to allow relatively removal of tumours that may be too large for conventional ERBT, with lesions >5cm excised,\(^59\) and to potentially pose a more time efficient strategy to removal of large bladder tumours, although the latter is unproven in the literature.\(^59\)

ERBT techniques compared

A small number of studies compare different modalities of ERBT. In comparison of electrocautery (monopolar or bipolar) and laser (holmium or thulium) ERBT, Kramer et al. found no difference in clinically relevant complications, detrusor muscle sampling, irrigation or catheter time.\(^42\) The electrocautery ERBT group was associated with a higher conversion rate to conventional TURBT and with a greater decrease in haemoglobin compared to laser ERBT; however the absolute change in haemoglobin was low (<0.5g/dL). Similarly, Yang et al (n=162) found no difference in complication rates between bipolar and holmium laser ERBT groups, although noted increased ONR with bipolar ERBT versus laser ERBT.\(^60\)
Kramer et al. (n=221, prospective multicentre trial) found no difference in recurrence rates at 12 month follow-up with electrocautery versus laser ERBT. Conversely, Li et al. in a retrospective study (n=115) reported a lower recurrence rate at 24 months with the use of electrocautery ERBT via a pin shaped electrode as compared to holmium laser ERBT and to conventional TURBT, preserved at multivariate analysis (p=0.023); complication rates were not discussed. A histopathological study of ERBT specimen found no statistically significant difference in rates of muscularis muscle sampling or in confirmation of tumour architecture to be associated with the energy source used during resection (electrocautery, thulium laser or HybridKnife®), although sample size was small (n=34).

Maximum tumor size

The upper limit of tumour size is set at 3cm or 4cm in many series, as outlined in the data tables. This historically appears to have been an arbitrary measurement, however a marked decline in technical success rates (29.6% vs 84.3% for tumours >3cm vs those ≤3cm) has recently been confirmed. Nonetheless, ERBT of tumours up to 6cm in size is reported, with factors such as tumour location and morphology perhaps exerting an influence. Pertinently, larger tumours may require modified extraction techniques, or intra-vesical division prior to extraction. The oncological impact of this is uncertain. There is currently inadequate stratification of outcome data according to tumour size in the literature to assess any influence that tumour size may bear on surgical complications.

En bloc techniques for re-resection

One paper (n=78) evaluated the use of ERBT in re-resection of high risk bladder cancer within 40 days of initial diagnostic ERBT. Re-resection of the visualised scar with a J electrode (Collins loop) was feasible in all cases and safe, with no instances of bladder perforation or uncontrollable bleeding. Tumours of the anterior or posterior wall and those covering ureteric orifices were excluded. Detrusor muscle was obtained in all samples. A low rate of residual disease (pTa high grade in 1/78, carcinoma in situ in 4/78) and no cases of muscle invasive disease, were identified at re-resection. These figures are lower than previous literature assessing re-resection of high-risk disease would estimate, perhaps suggesting a superior initial resection with ERBT, but further analysis of such a hypothesis would be required.

Enhanced visualisation techniques for ERBT

The utility of enhanced visualisation techniques during ERBT has been poorly explored. Photodynamic diagnosis, narrowband imaging and near-infrared molecular imaging techniques have been described in a small number of studies using electrocautery and hydrodissection. Presumably enhanced visualisation techniques would offer similar advantage for ERBT as for cTURBT, however further ERBT-specific exploration is required.

Risk of bias

Estimated risk of bias (RoB) for randomised or other comparative studies is presented within the data tables. RoB was assessed ‘in general’ (including feasibility/safety/pathological results/other non-recurrence related primary endpoint) and ‘regarding recurrence.’
majority of studies were deemed to contain moderate RoB ‘in general’ due to selection and/or operator bias (non-randomised studies) and due to the subjectivity of clinical outcomes such as bleeding, irrigation time and catheter duration, which were generally not assessed/reported as assessed by a blinded researcher. Many studies were deemed at ‘serious’ RoB regarding recurrence, predominantly due to lack of clarity regarding risk stratification, intravesical treatment regimens or other potential confounders.

Conclusions
En bloc resection of bladder tumours is feasible using a variety of techniques and energy sources, which are synthesised in this review. ERBT is safe, with a consistently low complication rate, and a rate of detrusor muscle sampling that appears to exceed that of cTURBT. Comparative evidence is limited by a lack of large prospective, randomised studies, although these may be anticipated. The use of laser energy sources may eliminate obturator nerve reflex activation, potentially providing a safer approach to resections of lesions on the lateral wall. Otherwise, no definitive superiority of any energy source has been confirmed in ERBT. Doubtlessly, surgeon experience with a particular technology is of relevance. Current evidence suggests that recurrence rates of non-muscle invasive bladder cancer at short to medium term follow-up are similar between risk-stratified ERBT and cTURBT groups, but further research into the potential impact of ERBT on residual disease, recurrence and progression is merited.
References

1. Mohammadian M, Safari A, Allah Bakeshei K, et al. Recent Patterns of Bladder Cancer Incidence and Mortality: A Global Overview. *World Cancer Research Journal* 2020; 7: e1464.

2. Christie A. *Transurethral Resection of Bladder Tumors*. Philadelphia, PA: ELSEVIER, 2019.

3. Albarran J and Imbert L. *Les Tumeurs du Rein*. Paris: Masson, 1903, p. 452–59.

4. Kitamura K, Kataoka K, Fujioka H, et al. Transurethral resection of a bladder tumor by the use of a polypectomy snare. *J Urol* 1980; 124: 808-9. 1980/12/01.

5. Ukai R, Kawashita E and Ikeda H. A new technique for transurethral resection of superficial bladder tumor in 1 piece. *J Urol* 2000; 163: 878-9. 2000/02/25.

6. Lundy J. *Principles and Practice of Surgical Oncology: The Influence of Present Day Concepts of Tumor Biology*. In: A.L. G (ed) *Cancer Management in Man Cancer Growth and Progression*. Dordrecht: Springer, 1989, pp.145-48.

7. Mostafid H, Kamat AM, Daneshmand S, et al. Best Practices to Optimise Quality and Outcomes of Transurethral Resection of Bladder Tumours. *Eur Urol Oncol* 2020 2020/07/21. DOI: 10.1016/j.euo.2020.06.010.

8. Kramer MW, Altieri V, Hurle R, et al. Current Evidence of Transurethral En-bloc Resection of Nonmuscle Invasive Bladder Cancer. *Eur Urol Focus* 2017; 3: 567-76. 2017/07/30. DOI: 10.1016/j.euf.2016.12.004.

9. Yanagisawa T, Yorozu T, Miki J, et al. Feasibility and accuracy of pathological diagnosis in en bloc resection versus conventional transurethral resection of bladder tumor: Evaluation with pT1 sub-staging by 10 pathologists. *Histopathology* 2020 2020/11/28. DOI: 10.1111/his.14307.

10. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* 2019; 366: l4898. 2019/08/30. DOI: 10.1136/bmj.l4898.

11. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ* 2016; 355: i4919. 2016/10/14. DOI: 10.1136/bmj.i4919.

12. Xu H, Ma J, Chen Z, et al. Safety and Efficacy of En Bloc Transurethral Resection With 1.9 microm Vela Laser for Treatment of Non-Muscle-invasive Bladder Cancer. *Urology* 2018; 113: 246-50. 2017/12/05. DOI: 10.1016/j.urology.2017.11.030.

13. Eissa A, Zoer A, Ciarlariello S, et al. En-bloc resection of bladder tumors for pathological staging: the value of lateral margins analysis. *Minerva Urol Nefrol* 2020; 72: 763-69. 2020/02/01. DOI: 10.23736/S0393-2249.20.03551-1.

14. Hashem A, Mosbah A, El-Tabey NA, et al. Holmium Laser En-bloc Resection Versus Conventional Transurethral Resection of Bladder Tumors for Treatment of Non-muscle-invasive Bladder Cancer: A Randomized Clinical Trial. *Eur Urol Focus* 2020 2021/01/03. DOI: 10.1016/j.euf.2020.12.003.

15. Lodde M, Lusuardi L, Palermo S, et al. En bloc transurethral resection of bladder tumors: use and limits. *Urology* 2003; 62: 1089-91. 2003/12/11. DOI: 10.1016/s0090-4295(03)00761-1.

16. Yang Y, Yang X, Liu C, et al. Preliminary study on the application of en bloc resection combined with near-infrared molecular imaging technique in the diagnosis and treatment of bladder cancer. *World J Urol* 2020; 38: 3169-76. 2020/03/05. DOI: 10.1007/s00345-020-03143-w.

17. Cheng YY, Sun Y, Li J, et al. Transurethral endoscopic submucosal en bloc dissection for nonmuscle invasive bladder cancer: A comparison study of HybridKnife-assisted
versus conventional dissection technique. *J Cancer Res Ther* 2018; 14: 1606-12.

18. Bmz H, Hegde P, Shah M, et al. Cold en bloc excision (CEBE) of bladder tumours using Zedd excision scissors: a prospective, pilot, safety and feasibility study. *Ther Adv Urol* 2020; 12: 1756287220972230. 2020/12/10. DOI: 10.1177/1756287220972230.

19. Balan GX, Geavlete PA, Georgescu DA, et al. Bipolar en bloc tumor resection versus standard monopolar TURBT - which is the best way to go in non-invasive bladder cancer? *Rom J Morphol Embryol* 2018; 59: 773-80. 2018/12/12.

20. Zhang J, Wang L, Mao S, et al. Transurethral en bloc resection with bipolar button electrode for non-muscle invasive bladder cancer. *Int Urol Nephrol* 2018; 50: 619-23. 2018/02/27. DOI: 10.1007/s11255-018-1830-0.

21. Yanagisawa T, Miki J, Sakanaka K, et al. Clinical Significance of Horizontal and Vertical Margin of En Bloc Resection for Nonmuscle Invasive Bladder Cancer. *J Urol* 2021; 206: 252-59. 2021/03/30. DOI: 10.1097/JU.0000000000001735.

22. Maheshwari PN, Arora AM, Sane MS, et al. Safety, feasibility, and quality of holmium laser en-bloc resection of nonmuscle invasive bladder tumors - A single-center experience. *Indian J Urol* 2020; 36: 106-11. 2020/06/19. DOI: 10.4103/iju.IJU_348_19.

23. Muto G, Collura D, Giacobbe A, et al. Thulium:yttrium-aluminum-garnet laser for en bloc resection of bladder cancer: clinical and histopathologic advantages. *Urology* 2014; 83: 851-5. 2014/02/20. DOI: 10.1016/j.urology.2013.12.022.

24. Zhang Z, Zeng S, Zhao J, et al. A Pilot Study of Vela Laser for En Bloc Resection of Papillary Bladder Cancer. *Clin Genitourin Cancer* 2017; 15: e311-e14. 2017/01/24. DOI: 10.1016/j.clgc.2016.06.004.

25. Yang Y, Liu C, Yan X, et al. Overnight Continuous Saline Bladder Irrigation After En Bloc Resection of Bladder Tumor Does Not Improve Oncological Outcomes in Patients Who Have Received Intravesical Chemotherapy. *Front Oncol* 2021; 11: 638065. 2021/03/30. DOI: 10.3389/fonc.2021.638065.

26. Upadhyay R, Kapoor R, Srivastava A, et al. Does En-bloc transurethral resection of bladder tumor give a better yield in terms of presence of detrusor muscle in the biopsy specimen? *Indian J Urol* 2012; 28: 275-9. 2012/12/04. DOI: 10.4103/0970-1591.102700.

27. Hurle R, Lazzere M, Colombo P, et al. "En Bloc" Resection of Nonmuscle Invasive Bladder Cancer: A Prospective Single-center Study. *Urology* 2016; 90: 126-30. 2016/01/19. DOI: 10.1016/j.urology.2016.01.004.

28. Zhang KY, Xing JC, Li W, et al. A novel transurethral resection technique for superficial bladder tumor: retrograde en bloc resection. *World J Surg Oncol* 2017; 15: 125. 2017/07/08. DOI: 10.1186/s12957-017-1192-6.

29. Bangash M, Ather MH, Khan N, et al. Comparison Of Recurrence Rate Between "EN BLOC" Resection Of Bladder Tumour And Conventional Technique For Non-Muscle Invasive Bladder Cancer. *J Ayub Med Coll Abbottabad* 2020; 32: 435-40. 2020/11/24.

30. Fan J, Wu K, Zhang N, et al. Green-light laser en bloc resection versus conventional transurethral resection for initial non-muscle-invasive bladder cancer: A randomized controlled trial. *Int J Urol* 2021 2021/05/21. DOI: 10.1111/iju.14592.

31. Liu Z, Zhang Y, Sun G, et al. Comparison of Thulium Laser Resection of Bladder Tumors and Conventional Transurethral Resection of Bladder Tumors for Non-Muscle-Invasive Bladder Cancer. *Urol Int* 2021: 1-6. 2021/03/31. DOI: 10.1159/000514042.

32. Sureka SK, Agarwal V, Agnihotri S, et al. Is en-bloc transurethral resection of bladder tumor for non-muscle invasive bladder carcinoma better than conventional technique in
En bloc TURBT

33. Gakis G, Karl A, Bertz S, et al. Transurethral en bloc submucosal hydrodissection vs conventional resection for resection of non-muscle-invasive bladder cancer (HYBRIDBLUE): a randomised, multicentre trial. *BJU Int* 2020; 126: 509-19. 2020/06/25. DOI: 10.1111/bju.15150.

34. Chen J, Zhao Y, Wang S, et al. Green-light laser en bloc resection for primary non-muscle-invasive bladder tumor versus transurethral electroresection: A prospective, nonrandomized two-center trial with 36-month follow-up. *Lasers Surg Med* 2016; 48: 859-65. 2016/10/26. DOI: 10.1002/lsm.22565.

35. He D, Fan J, Wu K, et al. Novel green-light KTP laser en bloc enucleation for nonmuscle-invasive bladder cancer: technique and initial clinical experience. *J Endourol* 2014; 28: 975-9. 2014/04/17. DOI: 10.1089/end.2013.0740.

36. Cheng B, Qiu X, Li H, et al. The safety and efficacy of front-firing green-light laser endoscopic en bloc photoselective vapo-enucleation of non-muscle-invasive bladder cancer. *Ther Clin Risk Manag* 2017; 13: 983-88. 2017/09/02. DOI: 10.2147/TCRM.S141900.

37. Li K, Xu Y, Tan M, et al. A retrospective comparison of thulium laser en bloc resection of bladder tumor and plasmakinetic transurethral resection of bladder tumor in primary non-muscle invasive bladder cancer. *Lasers Med Sci* 2019; 34: 85-92. 2018/09/02. DOI: 10.1007/s10103-018-2604-8.

38. Xu S, Tan S, Wu T, et al. The value of transurethral thulium laser en bloc resection combined with a single immediate postoperative intravesical instillation of pirarubicin in primary non-muscle-invasive bladder cancer. *Lasers Med Sci* 2020; 35: 1695-701. 2020/01/24. DOI: 10.1007/s10103-020-02960-0.

39. Huang H, Wang T, Ahmed MG, et al. Retrograde en bloc resection for non-muscle invasive bladder tumor can reduce the risk of seeding cancer cells into the peripheral circulation. *World J Surg Oncol* 2020; 18: 33. 2020/02/12. DOI: 10.1186/s12957-020-1808-0.

40. Teoh JY, Mayor N, Li KM, et al. En-bloc resection of bladder tumour as primary treatment for patients with non-muscle-invasive bladder cancer: routine implementation in a multi-centre setting. *World J Urol* 2021 2021/03/29. DOI: 10.1007/s00345-021-03675-9.

41. Miyake M, Nishimura N, Fujii T, et al. Photodynamic Diagnosis-Assisted En Bloc Transurethral Resection of Bladder Tumor for Nonmuscle Invasive Bladder Cancer: Short-Term Oncologic and Functional Outcomes. *J Endourol* 2020 2020/09/18. DOI: 10.1089/end.2020.0371.

42. Kramer MW, Rassweiler JJ, Klein J, et al. En bloc resection of urothelium carcinoma of the bladder (EBRUC): a European multicenter study to compare safety, efficacy, and outcome of laser and electrical en bloc transurethral resection of bladder tumor. *World J Urol* 2015; 33: 1937-43. 2015/04/26. DOI: 10.1007/s00345-015-1568-6.

43. Poletajew S, Krawjewski W, Stelmach P, et al. En-bloc resection of urinary bladder tumour - a prospective controlled multicentre observational study. *Wideochir Inne Tech Maloinwazyjne* 2021; 16: 145-50. 2021/04/01. DOI: 10.5114/wiitm.2020.95399.

44. Yanagisawa T, Yorozu T, Miki J, et al. Feasibility and accuracy of pathological diagnosis in en-bloc transurethral resection specimens versus conventional transurethral resection specimens of bladder tumour: evaluation with pT1 substaging by 10 pathologists. *Histopathology* 2021; 78: 943-50. 2020/11/28. DOI: 10.1111/his.14307.
45. Yanagisawa T, Miki J, Yorozu T, et al. Vertical Lamina Propria Invasion Diagnosed by En Bloc Transurethral Resection is a Significant Predictor of Progression for pT1 Bladder Cancer. *J Urol* 2021; 205: 1622-28. 2021/01/28. DOI: 10.1097/JU.0000000000001630.

46. Yasui M, Ohta JI, Aoki S, et al. Prognosis of patients with T1 bladder cancer after en bloc transurethral resection of bladder tumor stratified by invasion to the level of the muscularis mucosa. *Int Urol Nephrol* 2021; 53: 1105-09. 2021/01/03. DOI: 10.1007/s11255-020-02772-9.

47. Kramer MW, Bach T, Wolters M, et al. Current evidence for transurethral laser therapy of non-muscle invasive bladder cancer. *World J Urol* 2011; 29: 433-42. 2011/05/06. DOI: 10.1007/s00345-011-0680-5.

48. Migliari R, Buffardi A and Ghabin H. Thulium Laser Endoscopic En Bloc Enucleation of Nonmuscle-Invasive Bladder Cancer. *J Endourol* 2015; 29: 1258-62. 2015/06/24. DOI: 10.1089/end.2015.0336.

49. Chen X, Liao J, Chen L, et al. En bloc transurethral resection with 2-micron continuous-wave laser for primary non-muscle-invasive bladder cancer: a randomized controlled trial. *World J Urol* 2015; 33: 989-95. 2014/06/22. DOI: 10.1007/s00345-014-1342-1.

50. Kristinsson S, Johnson M and Ralph D. Review of penile reconstructive techniques. *Int J Impot Res* 2020 2020/03/11. DOI: 10.1038/s41443-020-0246-4.

51. Tao W, Sun C, Yao Q, et al. The clinical study of en bloc transurethral resection with 980 nm laser for treatment of primary non-muscle invasive bladder cancer. *J Xray Sci Technol* 2020; 28: 563-71. 2020/04/01. DOI: 10.3233/XST-190616.

52. Liang H, Yang T, Wu K, et al. En bloc resection improves the identification of muscularis mucosae in non-muscle invasive bladder cancer. *World J Urol* 2019; 37: 2677-82. 2019/03/05. DOI: 10.1007/s00345-019-02672-3.

53. Papachristou DN and Barters R. Resection of the liver with a water jet. *Br J Surg* 1982; 69: 93-4. 1982/02/01. DOI: 10.1002/bjs.1800690212.

54. Hreha P, Hloch S and al. e. Water Jet Technology Used in Medicine. *Technicki Vjesnik* 2010; 17(2): 237-40.

55. Nagele U, Kugler M, Nicklas A, et al. Waterjet hydrodissection: first experiences and short-term outcomes of a novel approach to bladder tumour resection. *World J Urol* 2011; 29: 423-7. 2011/02/10. DOI: 10.1007/s00345-011-0653-8.

56. Fritsche HM, Otto W, Eder F, et al. Water-jet-aided transurethral dissection of urothelial carcinoma: a prospective clinical study. *J Endourol* 2011; 25: 1599-603. 2011/08/06. DOI: 10.1089/end.2011.0042.

57. Maurice MJ, Vriellia GJ, MacLennan G, et al. Endoscopic snare resection of bladder tumors: evaluation of an alternative technique for bladder tumor resection. *J Endourol* 2012; 26: 614-7. 2012/03/07. DOI: 10.1089/end.2011.0587.

58. Adam A, Sookram J, Bhattu AS, et al. Trans-Urethral Snare of Bladder Tumor (TU5nBT) with Stone Basket Retrieval: A Novel Time-Saving Technique in the Endoscopic Management of Papillary Bladder Lesions. *Curr Urol* 2018; 11: 189-95. 2018/07/13. DOI: 10.1159/000447217.

59. Hayashida Y, Miyata Y, Matsuo T, et al. A pilot study to assess the safety and usefulness of combined transurethral endoscopic mucosal resection and en-bloc resection for non-muscle invasive bladder cancer. *BMC Urol* 2019; 19: 56. 2019/06/27. DOI: 10.1186/s12894-019-0486-0.
60. Yang D., Li H., Li X., et al. Retrospective complications assessment of en bloc resection of bladder tumors with the modified clavien classification system. *Int J Clin Exp Med* 2018; 11(8):8601-8607.

61. Li S, Jia Y, Yu C, et al. Influences of Different Operative Methods on the Recurrence Rate of Non-Muscle-Invasive Bladder Cancer. *Urol J* 2020: 5965. 2020/10/02. DOI: 10.22037/uj.v16i7.5965.

62. Struck JP, Kramer MW, Katzendorn O, et al. Bicentric Retrospective Analysis of en Bloc Resection and Muscularis Mucosae Detection Rate in Non-Muscle Invasive Bladder Tumors: A Real-World Scenario. *Adv Ther* 2020 2020/10/24. DOI: 10.1007/s12325-020-01529-1.

63. Hurle R, Casale P, Lazzeri M, et al. En bloc re-resection of high-risk NMIBC after en bloc resection: results of a multicenter observational study. *World J Urol* 2020; 38: 703-08. 2019/05/23. DOI: 10.1007/s00345-019-02805-8.

64. Cumberbatch MGK, Foerster B, Catto JWF, et al. Repeat Transurethral Resection in Non-muscle-invasive Bladder Cancer: A Systematic Review. *Eur Urol* 2018; 73: 925-33. 2018/03/11. DOI: 10.1016/j.eururo.2018.02.014.

65. Miyake M, Nishimura N, Fujii T, et al. Photodynamic Diagnosis-Assisted En Bloc Transurethral Resection of Bladder Tumor for Nonmuscle Invasive Bladder Cancer: Short-Term Oncologic and Functional Outcomes. *J Endourol* 2021; 35: 319-27. 2020/09/18. DOI: 10.1089/end.2020.0371.

66. Miyake M, Nishimura N, Inoue T, et al. Fluorescent cystoscopy-assisted en bloc transurethral resection versus conventional transurethral resection in patients with non-muscle invasive bladder cancer: study protocol of a prospective, open-label, randomized control trial (the FLEBER study). *Trials* 2021; 22: 136. 2021/02/14. DOI: 10.1186/s13063-021-05094-y.

67. Severgina L.O., Sorokin N.I. and A.M. D. Laser en-bloc resection of non-muscle-invasive bladder cancer: clinical and morphological specificities. *Onkourologiya = Cancer Urology* 2018; 14(3): 78–84.
Figures and Tables

Fig. 1. Papillary bladder tumor is identified cystoscopically.

Fig. 2. The edges of the tumor are demarcated with a narrow margin of macroscopically normal mucosa.
Fig. 3. The mucosa and lamina propria are incised until the muscularis propria is reached.

Fig. 4. Gradual tumor resection within the muscularis layer is continued until the tumor specimen is separated from its base ‘en bloc.’
Author	Yr	ERB	ERB T\(^a\) (n)	Modality	Design	cTURBT control group?	Age (Avg)	Male %	Feasibility	Max. tumor size	Extraction	Anesthesia	Obturator reflex	Bladder perforation	Significant bleeding *	Muscularis propria identified in specimen?	pTa	pT1	≥pT2		
Lodde\(^3\)	2003	37	Monopolar (flat loop)	Prosp. No	64.7	86.5% (32/37)	All	2.5cm	Syringe	Mixed	NR	2.7% (1/37)	None	100% (37/37)	82.25% (51/62)	17.8% (11/62)	0				
Ukai\(^5\)	2010	97	Energy NR (bent loop)	Prosp. No	71.2	85.5% (83/97)	Unclear (some mixed technique)	5.5cm	NR	Spinal	NR	None (0/97)	None	82.5% (80/97)	30.9% (30/97)	60.8% (59/97)	7.21% (7/97)				
Upadhyay\(^26\)	2012	21	Monopolar (bent loop)	Prosp. Non-Ran	Yes	NR	NR	All	<3cm	NR	General for lateral wall; otherwise spinal	NR	None (0/21)	95.2% (20/21)	57.15% (12/21)	28.6% (6/21)	14.3% (3/21)				
Upadhyay control n=25	-	-	-	-	-	-	-	-	-	-	-	-	4% (1/25)	60% (15/25)	48% (12/25)	32% (8/25)	20% (5/25)				
Statistical significance	-	-	-	-	-	-	-	-	-	NS	-	<0.001	NS	NS	NS						
Sureka\(^32\)	2014	21	Monopolar (bent loop)	Prosp. Non-Ran	Yes	52.6	NR	All	4cm	Grasping forceps via nephroscope for large	NR	NR	NR	NR	All, but excluded if muscle not present	57.14% (12/21)	42.8% (9/21)	0			
Sureka control n = 24	55	NR	-	-	-	NR	NR	NR	NR	All, but excluded if muscle not present	54.16% (13/24)	45.8% (11/24)	0								
Study	Year	n	Procedure	Technique	Disease Size	Outcome Measure	Statistical Significance	RoB	Notes												
-------	------	---	-----------	------------	-------------	-----------------	--------------------------	-----	-------												
Kramer42 (Monopolar Arm)	2015	91	Monopolar	Prosp. No	69	78% (71/91)	26.3% of electrocautery switched to cTURBT	<5cm^	NR	1.09% (1/91)	NR	54.9% (50/91)	36.3% (33/91)	8.8% (8/91)							
Kramer42 (Bipolar Arm)	2015	65	Bipolar	Prosp. No	65.5	83% (54/65)	3.9% (6/156)	96.2% (150/156)	<5cm^	NR	None	0/65	NR	50.7% (33/65)	44.62% (29/65)	4.61% (3/65)					
Hurle27	2016	74	Energy (Collins loop)	Prosp. No	71	78.4% (58/74)	0.97% (1/103 tumors) converted	3cm	NR	1.35% (1/74)	1.35% (1/74)	0	100% (74/74)	72.3% (47/65)	41.5% (27/65)	X					
Zhang KY28	2017	40	Monopolar (Loop)	Retro. Yes	60.65	87.5% (35/40)	Combination technique for large	>3cm	Ellik (laparoscopic graspers via nephroscope for large)	GA	22.5% (9/40)	5% (2/40)	0	100% (40/40)	37.5% (15/40)	62.5% (25/40)	None				
Zhang control n=50																					
Statistical Significance										p=0.867	p=0.689	0	p<0.01	-	-	None					
Study	Year	n	Type	RCT	Follow-up	64.7	NR	All	<3cm	NR	11.1% (5/45)	NR	NR; mean Hb drop 0.28g/dL	100%	53.3% (24/45)	46.7% (21/45)	None				
-------	------	----	-----------------	-------	-----------	------	-----	-----	------	-----	---------------	-----	-------------------	-------	---------------	--------------	------				
Balan©	2018	45	Bipolar (plasma button + loop)	RCT	Yes	64.7	NR	All	<3cm	NR	11.1% (5/45)	NR	NR; mean Hb drop 0.28g/dL	100%	53.3% (24/45)	46.7% (21/45)	None				
Balan control n = 45 (monopolar cTURBT)																					
RoB: in general = Some concerns; Re recurrence = Some concerns																					
Zhang J©	2018	82	Bipolar (plasma button)	Observ. Unclear	No	58.4	74.4% (61/82)	NR	<4cm	Ellik	NR	None	None	None	100%	26	51	5			
Huang ©	2020	12	Monopolar (loop)	Prosp. Non-Ran	Yes	NR	75% (9/12)	All	<3cm	NR	NR	NR	NR	NR	6/12	6/12	None				
Huang control n= 9																					
RoB: in general = Moderate; Re recurrence = Serious																					
Statistical significance																					
Yang Y ©	2020	26	Monopolar	Retro.	No	62.39	80.7% (21/26)	All	<3cm	Ellik, occasionally forceps	Spinal + Epidural	23% (6/26)	3.8% (1/26)	NR	88.5% (23/26)	42.3% (11/26)	57.7% (15/26)	X			
Bangash ©	2020	41	Monopolar (Collins knife)	Prosp. Non-Ran	Yes	58.46	82.9% (34/41)	NR	<3cm	NR	NR	NR	NR	0% (0/41)	7.3% (3/41)	haematuria	100%	48.8% (20/41)	51.2% (21/41)	46.3% (19/41)	None
Bangash control n = 41																					
RoB: in general = Moderate; Re recurrence = Moderate																					
Statistical significance																					

© 2021 Canadian Urological Association
Study	Year	n	Device Type	Prosp.	Non-Ran	Yes	2020%	Non-Ran%	All<2.5cm	Grasping forceps	Gener al or spinal	NR	8.34%	NR	100%	83.34%	16.7%	None						
Miyake et al	2020	12	Bipolar (flat loop)	Prosp.	Non-Ran	Yes	76.5%	91.67%	<1/12	Grasping forceps	General or spinal	NR	0%	NR	0%	21/28	7/28	None						
Miyake control n=28																								
RoB: in general = Moderate; Re recurrence = Moderate-Serious																								
Statistical Significance																								
Eissa et al	2020	50	Monopolar (bent loop)	Retro.	No	72.26%	80%	<5/50	All but this was ERBT cohort	2cm	Forceps or Ellik	General	NR	4%	None	90%	28%	72%	X					
Hameed et al	2021	23	Zedd Excision Scissors	Prosp.	No	64	69.6%	<16/23	NR	2.6cm	3 pronged grasper or Ellik	NR	0%	0%	0%	91%	35%	57%	9%	2/23				
Yanagisawa et al	2021	140	Bipolar (needle electrode)	Prosp.	Non-Ran	No	72	75%	<105/140	All, but en bloc cohort studied	<3cm	Biopsy forceps	NR	0%	(n=67 lateral)	0.71%	1.42%	90%	66%	34%	X			
Teoh et al	2021	135	Mixed mono/bipolar (loop)	Prosp.	Non-Ran	Not intention-to-treat cases converted to cTURBT included	71.3	71.1%	<96/135	94.3%	<1cm	82.2%	<1cm	1.01–2 cm	<75/135	201–3 cm	<29.6%	NR	NR	NR	5.1%	80.8%	65%	X

© 2021 Canadian Urological Association
Larger tumors were divided prior to extraction however (3cm cut off for Kramer). *Each individual lesion analysed rather than each patient hence bigger denominator. ~Lower rates of obturator reflex activation, however breakdown of lateral wall location unclear. **Remainder T0. ^^Additional papers by same author referenced but not tabulated as patient cohorts overlapping. non-ran: non-randomized; NR: not reported; observ: observational; prosp: prospective; RCT: randomized controlled trial; RoB: risk of bias; X: excluded.
Table 2 – Laser ERBT

Author	Laser	Yr	ERBT Design	Study Design	cTURBT Control Group?	Age (Av g)	Male %	Laser parameters	Feasibilit y	Max tumor size	Extraction	Anesthes ia	Obturato r reflex	Bladder perforati on	Significant bleeding*	Muscle aris propria identified in specimen?	pTa	pT1	≥pT2		
Kramer 42	Holmium arm	2015	50	Prosp.	No	62.2	72%	(36/50)	1-2J 15-50Hz	98% (49/50)*	<4cm	Specimen retrieval bags in some	NR	0	NR	2% (1/50)*	50/50 (100%)	58% (29/50)	42% (21/50)	0	
Mahesh-wari 22	Holmium	2020	67	Retro.	No	57.8	77.6%	(52/67)	550u 1-2J 40-50Hz	All	4cm*	Ellik	General or regional	0	0	5.97% (4/67)	57/67 (85%)	82% (55/67)	17.9% (12/67)	X	
Hashem 14	Holmium	2020	50	RCT	Yes	60.4	74%	(37/50)	1-2J 10-15Hz 10-30W	All	<5cm	Cold-crown loop	NR	0	0	98% (49/50)	4.5% (2/50)	95.5% (42/50)	4% (2/50)	0	
Hasem control n = 50							61.1	78%	(39/50)	-	-	-	-	-	24% (12/50)	12% (6/50)	6% (3/50)	62% (31/50)	6.1% (3/50)	93.9% (46/50)	0
Statistical significance														NS	<0.001	NS	NS	NS			
Green light laser																					
He 35	Green Light (KTP) front-firing	2014	45	Retro.	No	57.8	NR	0.6J 50Hz (30W)	All, but wire loop coagulation required in I	3cm	Ellik	Continuous epidural	0	0	Irrigation n=1 Hb mean 1.1g/dL decreases	100% (45/45)	60% (27/45)	33.4% (15/45)	6.67% (3/45)		
Chen 34	Green Light 6F	2016	83	Prosp.	Yes	63.4%	72.3%	(60/83)	120-160W (cut)	NR	3cm	Ellik	Continuous epidural	0	0	NR (less Hb drop)	NR	84.3% (70/83)	15.6% (13/83)	0	
Side-firing	30-50W (coag)	with LASER 0.87 vs 1g/dL	Statistical significance																		
-------------	---------------	--------------------------	--------------------------																		
Chen control n = 75	65.3	68% (51/75)	12% (9/75)	2.67% (2/75)	NR	85.3% (64/75)	14.7% (11/75)	0													
Statistical significance	-	-	-	-	-	0.001	NS	-	-	-	-	-									
Cheng36	Green Light front-firing	2017	34	Retro.	Yes	59.4	82.4% (28/34)	120 W	NR	3cm	Ellik	Spinal / Epidural	0	NR	NR	97% (33/34)	41.2% (13/34)	16 (47.06%)	4 (11.76%)		
Statistical significance	-	-	-	-	-	-	-	-	p<0.001	-	-	p=0.04	NS	NS	NS						
Fan control n = 117	57	74% (87/117)	7.7% (9/117)	0.9% (1/117)	-	71.8% (84/117)	88.9% (104/117)	11.1% (13/117)	-												
Statistical significance	NS	-	-	-	-	0.002	NS	-	<0.005	0.031	-										

Thulium laser
Muto²³	Thulium-YAG	2014	55	Prosp.	No	68	89% (49/55)	800nm 30W continuous wave (20W pulsed-wave for coag)	All	4.5cm$^<$	Grasper	Epidural	0	0	0	100% (55/55)	56.4% (31/55)	32.7% (18/55)	10.9% (6/55)	
Kramer²⁴	Thulium arm	2015	15	Prosp.	No	69.4	80% (12/15)	550uS 5-15 W	*	<4cm$^<$	Specimen retrieval bags in some	NR	0	NR	*	100% (15/15)	66.7% (10/15)	33.3% (5/15)	0	
Migliari²⁵	Thulium	2015	58	Prosp. Non-Ran (retro control)	Yes	71	70.7% (41/58)	Continuous wave 30W 1470nm Diode for coagulation at 20W	NR	4.5cm	Via sheath with loop	Spinal	0	0	0	100% (58/58)	56.4% (30/58)	32.7% (23/58)	10.9% (5/58)	
Migliari control n =61																				
RoB: in general = Low-moderate; Re recurrence = N/A																				
Statistical significance																				
Zhang²⁶	Thulium Vela	2016	38	Prosp s.	No	62	81.6% (31/38)	1.94um	All	3cm	Sheath or grasper	General	NR	0	0	100% (38/38)	39.5% (15/38)	57.9% (22/38)	2.63% (1/38)	

© 2021 Canadian Urological Association
Study	Laser Manufacturer	Year	No. of Cases	Treatment	Laser Parameters	Sheath/Loop	Recurrence	Follow-up	Recurrence Rate	Comparison	Statistical Significance	Notes																		
Xu H²²	Thulium Vela	2018	26	Retro.	Yes	600um fibre 50W	1.9um 30W	NR	4.5cm	Sheath or with loop	General	0	0	0	100% (30/30) on initial analysis	33.34% (10/30)	40% (12/30)	X												
Xu control n = 44																														
	RoB: in general = Moderate; Re recurrence = Serious																													
Statistical significance	-	-	-	-	-	-	-	-	-	-	-				P=0.04	-	-	-												
Li³⁷	Thulium	2018	136	Retro.	Yes (plasma kinetic)	NR	550um 1.5J 20Hz 30W	<3.5cm	Ellik	Spinal	0	0	0	95.6% (130/136)	NR	NR	NR													
Li control n = 120																														
	RoB: in general = Moderate; Re recurrence = Serious																													
Statistical significance	-	-	-	-	-	-	-	-	-	-	-				0.032	NS	NS	P<0.006												
Xu S²⁸	Thulium	2020	141	Retro.	No	81.6% (115/141)	1.5J 20Hz 30W	NR	4cm	Ellik	NR	NR	1.4% (2/141)	NR	100% (141/141)	70.2% (99/141)	29.7% (42/141)	X												
Liu³¹	Thulium	2021	134	Retro.	Yes	75.4% (101/134)	30W	NR	<3cm	Via sheath	GA	0	0	0	97.4% (4 exclude due quality)	53.7% (72/134)	36.6% (49/134)	X												
Liu control n = 152																														
	(cTURBT electrosurgery. Small lesions resected en bloc with loop).																60.3	73% (111/152)	-	-	-	-	GA	15.8% (24/152)	5.9% (9/152)	2% (3/152)	87.6% (23 exclude	57.2% (87/152)	31.6% (48/152)	X
Statistical significance	NS	NS	-	-	-	-	<0.001	0.012	0.267**	0.001	NS	NS	-																	
--------------------------	----	----	---	---	---	---	--------	------	--------	------	----	----	---																	
Yang²⁵	235	Retr.	No cTURBT control	65.7	79.1% (186/235)	NR	98% (249/254 original population)	3cm	Ellik or laparoscopic forceps	Spinal/epidural	0	0	NR																	
Other lasers																														
Chen³⁹	2	Micro	2015 71 RCT Yes	63	76% (54/71)	30 – 50W	All	4cm	Extractor	Sacral block	0	0	0																	
Chen control n=71				62	71.8% (51/71)	-	-	-	-	-	25.4% (18/71)	0	0	NR																
Severgina⁶⁷	2	Wave	2018 34 Prosp. No	NR	82.35% (28/34)	1.94um Th 1.56um Erb 1.0 J 10Hz 1.94um wave-length	NR	X																						
Tao⁵¹	980nm wave	2020 36	Yes	UK	None (0/36)	None (0/36)	UK																							
Bleeding and conversion in Kramer paper expressed as LASER cohort – unclear if holmium or thulium arm. Some large tumours divided within the bladder prior to extraction. Less ‘gross haematuria’ with laser ERBT vs, cTURBT (38.1% vs 96.7%, p<0.0001) in this study. ‘Significant bleeding’ in table refers to return to theatre. NR: not reported; Non-Ran: non-randomized; observ: observational; prosp: prospective; RCT: randomized controlled trial; RoB: risk of bias; X: excluded.

Tao control n= 48	-	-	-	-	-	-	12.5% (6/48)	6.25% (3/48)	-	-	-	-	
RoB: in general = Moderate; Re recurrence = Serious	-	-	-	-	-	-	-	-	-	-	-	-	
Statistical significance	-	-	-	-	-	-	-	Apparent (NR)	Apparent (NR)	-	-	-	-

BLEEDING AND CONVERSION IN KRAMER PAPER EXPRESSED AS LASER COHORT – UNCLEAR IF HOLMIUM OR THULIUM ARM. SOME LARGE TUMOURS DIVIDED WITHIN THE BLADDER PRIOR TO EXTRACTION. “LESS ‘GROSS HEMATOMA’ WITH LASER ERBT VS, CTURBT (38.1% VS 96.7%, P<0.0001) IN THIS STUDY. ‘SIGNIFICANT BLEEDING’ IN TABLE REFERS TO RETURN TO THEATRE. NR: NOT REPORTED; NON-RAN: NON-RANDOMIZED; OBSERV: OBSERVATIONAL; PROSP: PROSPECTIVE; RCT: RANDOMIZED CONTROLLED TRIAL; ROB: RISK OF BIAS; X: EXCLUDED
Table 3. Hydrodissection

Author	Yr	ERBT T^a (n)	Study design	Control group?	Age (Avg)	Male %	Feasibility	Max Tumor Size	Extraction	Anesthesia	Obturators Reflex	Bladder perforation	Significant bleeding*	Muscularis propria identified in specimen?	pTa	pT1	≥pT2
Nagele5	2011	5	Prosp.	No	77	80%	100%	2cm	Endoscopic bag	NR	NR	None (0/5)	None (0/5)	NR (separate cold muscle biopsies taken)	100%	0	0
Fritsche56	2011	17	Prosp.	No	NR	NR	17/17 (100%)	1.6cm~	Endoscopic bag	NR	NR	None (0/17)	None (0/17)	All	41.2%	29.4%	5.9%
Cheng17	2018	95	Retro.	cTURBT	62.4	70.5%	95/95 (100%)	4cm	Nylon bag	Epidural	None (0/95)	None (0/95)	NR	(separate cold muscle biopsies taken)	54.7%	45.3%	0
Cheng Control n=98															55.1%	44.9%	0
RoB: in general = Moderate; Re recurrence = NA															55.1%	44.9%	0
Statistical significance		-	-	-	-	-	P=0.034 for complications overall	-	0.95								
Gakis33	2020	56	RCT	cTURBT	66.8	80.4%	All excluding if not ≥ 3cm	Mixed	NR	NR	1.8% (1/56)	None (0/56)	77.4% (41/56)	89.3% (50/56)	10.7% (6/56)	0	
Gakis Control n=59															71.2%	28.8%	0
RoB: in general = Low; Re recurrence = Some concerns															71.2%	28.8%	0
Statistical significance		-	-	-	-	-	p=1.0	p=0.49	p=0.28			p=0.02					

ERBT n = overall patient number. Multiple tumors were excised in some patients. Significant bleeding as reported by authors or defined as need for transfusion or manual washout postoperatively. ~ 7.5 cm tumor resected but largest extracted en bloc was 1.6 cm; cTURBT: conventional TURBT (using electrocautery in piecemeal fashion); NR: not reported; Non-Ran: non-randomized; observ: observational; prosp: prospective; RCT: randomized controlled trial; RoB: risk of bias; X: excluded.
Table 4. Polypectomy snare

Author	Yr	ERBT\(^a\) (n)	Study design	cTURBT control group?	Age (Avg)	Male %	Feasibility	Max tumor size	Extraction	Anesthesia	Obturator reflex	Bladder perforation	Significance bleeding *	Muscularis propria identified in specimen?	pTa	pT1	≥pT2
Maurice⁵⁷	2012	9	Retro.	No	NR	NR	All (pedunculated selected)	>5cm	Snare or endoscopic mesh net	NR	None (0/9)	None (0/9)	0	50% polypectomy specimen Cold cup biopsy in addition -> 100%	NR	NR	NR
Adam⁵⁸	2018	4 (18 lesions)	Prosp.	No	64.2	75%	All selected lesions	2.6cm	Stone basket	General	NR	None (0/4)	0	75% polypectomy specimen (3/4)	25%	75%	-
Hayashida⁵⁹	2019	39 (18 lesions)	Prosp.	Yes	61.5%	(24/39)	All selected lesions	6cm	NR	NR	NR	2.56% (1/39)	None (0/39)	All with en bloc base; not specified for polypectomy specimen	48.7% (19/39)	46.2% (18/39)	5.1% (2/39)
Hayashida control n=31	-	-	-	-	-	-	-	-	-	-	None (0/21)	None (0/21)	All; some cautery artefact	51.6% (16/31)	45.2% (14/31)	3.2% (1/21)	

Adams: Electrosurgical polypectomy snare plus standard TURBT of base. Maurice: Electrosurgical polypectomy snare plus cold cup biopsy base. Hayashida: Electrosurgical polypectomy snare plus en bloc TURBT of base. NR: not reported; RoB: risk of bias