Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes

James T. Englanda, Alym Abdullaa, Catherine M. Biggsb, Agnes Y.Y. Leea, Kevin A. Haya, Ryan L. Hoilandc, Cheryl L. Wellingtond, Mypinder Sekhone, Shahin Jamalf, Kamran Shojaniaf, Luke Y.C. Chena,g,*

a Division of Hematology, University of British Columbia, Canada
b Division of Allergy and Immunology, University of British Columbia, Canada
c Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
d Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
e Division of Critical Care Medicine, University of British Columbia, Canada
f Division of Rheumatology, University of British Columbia, Canada
g Centre for Health Education Scholarship, University of British Columbia, Canada

\textbf{ARTICLE INFO}

\textbf{Keywords:}
COVID-19
Severe acute respiratory syndrome coronavirus
–2 (SARS-CoV-2)
Cytokine storm syndrome
Hemophagocytic lymphohistiocytosis
Idiopathic multicentric Castleman disease
Cytokine release syndrome

\textbf{ABSTRACT}

A subset of patients with severe COVID-19 develop profound inflammation and multi-organ dysfunction consistent with a “Cytokine Storm Syndrome” (CSS). In this review we compare the clinical features, diagnosis, and pathogenesis of COVID-CSS with other hematological CSS, namely secondary hemophagocytic lymphohistiocytosis (sHLH), idiopathic multicentric Castleman disease (iMCD), and CAR-T cell therapy associated Cytokine Release Syndrome (CRS). Novel therapeutics targeting cytokines or inhibiting cell signaling pathways have now become the mainstay of treatment in these CSS. We review the evidence for cytokine blockade and attenuation in these known CSS as well as the emerging literature and clinical trials pertaining to COVID-CSS. Established markers of inflammation as well as cytokine levels are compared and contrasted between these four entities in order to establish a foundation for future diagnostic criteria of COVID-CSS.

\section{1. Introduction}

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 4 million people worldwide, resulting in a pandemic responsible for over 278,000 deaths as of May 11, 2020 \cite{1,2}. The severity of coronavirus disease of 2019 (COVID-19) ranges from asymptomatic infection to critical illness, with up to one third of hospitalized patients requiring mechanical ventilation in an intensive care unit (ICU) \cite{3–6}. Fatality rates vary between demographic groups, with old age and certain comorbidities (hypertension, obesity, diabetes) associated with higher risk.

In a subset of patients with severe COVID-19, rapid progression of pulmonary infiltrates and multi-organ failure coincides with dramatic increases in inflammatory cytokines and other biochemical markers of inflammation, consistent with a COVID-19 associated cytokine storm syndrome (COVID-CSS) \cite{7–11}. The high mortality rate associated with COVID-CSS has led to the off-label use of targeted anti-cytokine therapies aimed at blocking the inflammatory cascade and improving patient outcomes. Clinical trials are being conducted to assess the safety and efficacy of cytokine blockade in COVID-19. Currently there are no standard therapies for COVID-19 or COVID-CSS, and recent National Institutes of Health (NIH) guidelines have recommended against use of investigational agents outside of clinical trials \cite{12}. On May 1, 2020 the United States Food and Drug Administration (FDA) have granted Emergency Use Authorization for the anti-viral drug remdesivir based on the as-yet unpublished results of a National Institute of Allergy and Infectious Diseases (NIAID) sponsored randomized control trial that demonstrated reduced recovery time compared to placebo \cite{13}. How this drug may influence cytokine storm and how the NIAID trial compares to a prior study that found no benefit of the drug are currently not known \cite{14}.

COVID-CSS has brought renewed attention to cytokine storm syndrome as a general concept \cite{15}. In 1993, (perhaps influenced by the military operation “Desert Storm”) the term “cytokine storm” was

* Corresponding author at: 2775 Laurel St, 10th Floor, Vancouver, BC V5Z1M9, Canada.
E-mail address: lchen2@bccancer.bc.ca (L.Y.C. Chen).

https://doi.org/10.1016/j.blre.2020.100707
coined to describe the hypercytokinemia seen in graft-versus-host disease (GVHD) [16,17]. CSS has since been associated with viral infections (eg. Influenza, severe acute respiratory syndrome/SARS), autoimmune diseases (eg. systemic lupus erythematosus/SLE, systemic juvenile idiopathic arthritis/JIA), hematologic conditions (hemophagocytic lymphohistiocytosis/HLH) and medications [18–20]. Examples of the latter include the phase I clinical trial of TGN1412, an anti-CD28 monoclonal antibody that caused severe cytokine storm in healthy volunteers, and the cytokine release syndrome (CRS) following chimeric antigen receptor (CAR)-T cell therapy [21,22]. The wide heterogeneity of conditions that have been placed under this umbrella term underscores the need to better understand the pathophysiology and treatment of diseases characterized by hypercytokinemia. Recently, CSS has been defined as a condition of dysregulation and perpetuated activation of lymphocytes and macrophages resulting in secretion of large quantities of cytokines leading to overwhelming systemic inflammation and multi-organ failure with high mortality [20].

Understanding the hypercytokinemia and immune dysregulation associated with COVID-19 is urgent. Some have proposed that COVID-19 is actually a hypo-inflammatory vasculopathy rather than a cytokine storm. This hypothesis is based on one study reporting relatively low interleukin-6 (IL-6) levels (mean 25 pg/mL, normal range < 7) measured on admission to hospital in one Chinese study [23]. However, cytokine storm is generally thought to develop later in the course of this disease, and emerging data from our center and others indicates that patients with COVID-CSS have a degree of hypercytokinemia (i.e. IL-6 levels 100 to 5000 pg/mL) comparable to conditions such as CAR-T cell CRS. The overlap in clinical and biochemical features between COVID-CSS and cytokine storm syndromes associated with other conditions may allow for insight into the underlying pathologic immune dysregulation in COVID-CSS and inform strategies for therapeutic intervention. In this review, we summarize the clinical features, pathologic mechanisms, standard and investigational therapies for CSS in three well-defined hematological cytokine storm syndromes: secondary hemophagocytic lymphohistiocytosis (sHLH), idiopathic multicentric Castleman disease (iMCD), CAR-T cell CRS, in order to compare and contrast them with COVID-CSS.

2. Clinical features and diagnosis

2.1. Secondary HLH

HLH is a hyperinflammatory syndrome of fever, cytopenias, and multi-organ dysfunction caused by uncontrolled immune activation and excessive cytokine production [24]. Primary HLH is typically a pediatric condition driven by germline mutations impairing granule-mediated cytotoxicity in natural killer and cytotoxic T cells [25]. The secondary HLH syndromes observed in adults are most often driven by infection (commonly viral such as Epstein-Barr virus [EBV], Cytomegalovirus [CMV], or Human Immunodeficiency Virus [HIV]); malignancy (lymphomas), primary rheumatologic conditions (termed Macrophage Activation Syndrome-HLH subtype, MAS-HLH), or medications (immune checkpoint inhibitors, lamotrigine) [24]. The HLH-2004 diagnostic criteria (Table 1) developed for the pediatric population are recommended to guide diagnosis in adults, and include soluble interleukin-2 receptor, a marker of T cell activation, as a cytokine-related diagnostic criterion [24,26,27]. The HLH-2004 criteria may be restrictive in identifying all patients that may benefit from immunomodulation. The HScore was developed specifically for secondary, and especially malignancy associated, HLH in adults, but unfortunately does not include any cytokine-related criteria [28]. Initially named for the hemophagocytosis seen on tissue biopsy; hemophagocytosis in bone marrow aspirate is a common but non-specific feature in adults [29,30]. Clinical and laboratory features include fevers (often described as “hectic” in that they may exceed 40 °C), organomegaly, cytopenias, coagulopathy, and profound hyperferritinemia often >10,000 μg/L; which often rapidly worsen despite initial empiric anti-microbial therapy resulting in eventual multisystem organ failure [24,31]. Mortality remains high in adults, around 70% despite therapy; though patients with MAS-HLH driven by rheumatologic diseases have better prognosis with less aggressive immunosuppression than other secondary HLH syndromes [24,29].

2.2. Idiopathic MCD

Castleman disease (CD) describes a group of syndromes with shared clinical hyperinflammation and histopathological features [32]. Diagnosis requires lymph node biopsy with characteristic histopathology, as defined by consensus guidelines, residing on a spectrum of histologic patterns from regressed germinal centers and prominent vascularization to hyperplastic germinal centers with prominent plasmacytosis [32,33]. Idiopathic MCD is characterized by dysregulation of IL-6 mediated inflammation. Typically occurring in the 5th and 6th decade of life, patients present with lymphadenopathy in more than one lymph node station, constitutional symptoms, fluid accumulation, and cytopenias [32,33]. Liver or kidney dysfunction as well as the presence of secondary autoimmune phenomenon are also common [32,34]. The profound inflammation of the disease is reflected by a frequently observed polyclonal hypergammaglobulinemia in the iMCD-not otherwise specified

Table 1

HLH [24,29,31,114]	Post CAR-T cell therapy [36,36,46,42]	iMCD [33,34,115]	COVID-CSS [116]
Fever	Fever	Fever	Fever
Hepatosplenomegaly	Malaise	Headache	Weight loss
Hepatobiliary dysfunction	Anorexia	Encephalopathy	Hypotension
Coagulopathy	Myalgias	Dysphasia/aplasia	Night sweats
Neurologic symptoms	Tachycardia	Delirium	Hypoxia
Headache	Widened pulse pressure	Tremor	Lymphadenopathy
Cognitive changes	Hypotension	Seizures	Lymphadenopathy
Focal neurologic deficits	Hypoxia	Peripheral Edema	Cardiomyopathy
Seizure	Capillary leak syndrome	Renal impairment	Anasarca
Associated conditions and triggers	Renal impairment	Pleural effusion	Multi-organ dysfunction
Infection [commonly EBV, CMV]	Hepatic failure	Ascites	Thrombosis
Malignancy [commonly lymphoma]	DIC	Peripheral neuropathy	
Rheumatologic disease	Medullary teach	Renal impairment	
Immunodeficiency	Medications [such as checkpoint inhibitors and lamotrigine]	Cherry angioma	

HLH – Hemophagocytic lymphohistiocytosis; CAR-T cell – chimeric antigen receptor T cell; CRS – cytokine release syndrome; ICANS – Immune effector cell-associated neurotoxicity syndrome; iMCD – idiopathic multicentric Castleman disease; COVID-CSS – coronavirus disease of 2019 associated cytokine storm syndrome; EBV – Epstein-Barr virus; CMV – cytomegalovirus; ARDS – acute respiratory distress syndrome.
Blood Reviews 45 (2021) 100707

3

Routine laboratory investigations on admission demonstrate lymphopenia from the disease at home. Individuals who require hospitalization most likely have a distinctive toxicity [39, 41, 42]. CRS may be observed after other tumour-separation of ICANS from CRS in the consensus grading system as a distinct toxicity [36, 38]. Immune effector cell associated neurotoxicity syndrome (ICANS) with a varied symptom profile (Table 1) may also be observed with later onset: during an episode of CRS or shortly after its resolution [36, 38-40]. ICANS can also occur in patients who did not develop CRS and this observation in addition to the separate timeline of development has resulted in the separation of ICANS from CRS in the consensus grading system as a distinct toxicity [39, 41, 42]. CRS may be observed after other tumour-directed immune therapies, including the bi-specific T-cell engager drug, blinatumomab [37].

2.4. COVID-CSS

For most people who contract COVID-19, the clinical course is mild (and often asymptomatic) with the majority of those able to be recover from the disease at home. Individuals who require hospitalization most commonly present with fever, cough, fatigue, and dyspnea [7-9, 43]. Routine laboratory investigations on admission demonstrate lymphopenia, elevated D-Dimer, and elevated CRP. Chest imaging demonstrates bilateral patchy shadows or ground glass opacities [7-9, 43]. Twelve to 31% of patients admitted to hospital will eventually develop severe hypoxemic respiratory failure and require critical care support [5, 6, 9, 43]. Severe COVID-19 disease, as per WHO-China working group definition, includes the following: respiratory frequency \geq 30/min, blood oxygen saturation \leq 93%, PaO2/FiO2 ratio < 300, and/or lung infiltrates $> 50\%$ of the lung field within 24-48 h [44]. Critical disease is defined as severe COVID-19 with any of the following: respiratory failure, septic shock, and/or multiple organ dysfunction/failure [44]. While multi-organ failure is frequently reported in this population, marked organomegaly has not been reported. One of the emerging facets of severe COVID-19 is the association with a hypercoagulable state. D-dimer elevation was recognized early on in the pandemic to be an important prognostic marker for predicting severe disease and mortality [43]. Klok et al. have reported a 31% incidence of thrombotic complications in COVID patients admitted to the ICU including demonstration of venous thromboembolism (VTE) in 27% of patients [45]. Increased thrombotic risk is seen with many inflammatory states and reflects overlap in the regulation inflammation and thrombosis [46]. The profound activation of thrombotic pathways may be a unique feature to COVID-19 compared to other CSS, but remains to be confirmed in further studies.

In the pediatric population affected with COVID-19 there have been emerging reports of a hyperinflammatory shock syndrome, sharing features with an atypical Kawasaki disease. Initial symptoms of fever, conjunctivitis, rash, and gastrointestinal symptoms progress to shock requiring vasopressor support, fluid accumulation, and cardiac injury [47]. The delayed-onset and profound rise in inflammatory markers suggest a secondary pathologic immune response that may share features with adult COVID-CSS but further study is needed to confirm these observations.

There is no consensus definition of COVID-CSS, and it is prudent to recognize that not all patients with severe or critical COVID-19 infection develop dysregulated immune response and toxic cytokine secretion [11]. The working definition of COVID-CSS at our institution used for consideration of adjunct immunomodulatory therapy is: critical COVID-19 with evidence of derangement of multiple inflammatory markers including ferritin $> 1000 \mu g/L$ and CRP $> 100 \mu g/L$ although we are presently analyzing other clinical and laboratory parameters and immune biomarkers such as IL-1 and IL-6 to produce a more nuanced definition.

3. Pathophysiology

The recent consensus recommendations for the management of adult HLH state that: “Primary and secondary HLH, including MAS-HLH, are hyperferritinemic hyperinflammatory syndromes with a common terminal pathway but with different pathogenetic roots” [24]. This concept of a common terminal pathway resulting from diverse pathophysiological mechanisms can reasonably be extended to other cytokine storm syndromes including COVID-CSS. Marked elevation in inflammatory cytokines such as IL-1 and IL-6, and chemokines associated with a Th1 response, such as IP-10 and MCP-3, were reported in a subset of COVID patients, affirming the notion of a cytokine storm in this disease [48]. The marked elevation in IL-6 bears some resemblance to hyper-IL-6 syndromes such as CAR-T cell CRS and Castleman disease, and the hyperferritinema and coagulopathy parallels sHLH [49]. Similarities and differences between the pathophysiology of COVID-CSS and these hematological cytokine storm syndromes are outlined below.

3.1. Secondary HLH

As the adult secondary HLH disorders result from many different etiologies and triggers, an in-depth understanding of pathophysiology is lacking. Inferring from studies of the genetic defects in primary HLH patients, the HLH syndrome results from the dysregulation and unrestrained activation of macrophages, cytotoxic T-cells and NK cells leading to the observed end-organ damage [24, 25, 31, 50]. The inability to resolve certain infections and subsequent uncontrolled immune activation may explain the amplified inflammatory response in sHLH from viral, bacterial, and fungal infections. aberrant, autonomous cytokine production from malignant cells of the immune system may develop into the HLH observed in lymphomas [24, 25, 51]. Secondary HLH can complicate auto-inflammatory conditions (SLE, Stills disease, etc) with the inappropriate response to self-antigen driving continuous activation of T-cells and macrophages [24, 51]. The observed responses to IFN-γ antibody therapy suggests this may be a key factor perpetuating the pathologic feedback loop of inflammation; but murine models of primary HLH have implicated both IFN-γ dependant and independent pathways [52-54].

3.2. Idiopathic MCD

The pathogenesis of iMCD is less well understood than when the syndrome is driven by human herpesvirus 8 (HHV-8) or POEMS. Increased IL-6 is seen in the majority of patients and the response to IL-6 targeted therapy has implicated dysregulation of this pathway as the main driver of disease [32]. Elevated Vascular endothelial growth factor (VEGF) levels and dysregulated mammalian target of rapamycin (mTOR) signaling are also observed in some patients [32, 55]. The cause of the elevated IL-6 levels and inappropriate inflammatory activation is
not known. Associations of iMCD and autoimmune and malignant conditions may point to shared pathophysiology, while as-yet-undiscovered infectious triggers have also been hypothesized.

3.3. CAR-T cell therapy CRS

The development and severity of CRS correlates with CAR-T cell expansion, but preclinical mouse studies have also shown monocyte and macrophage production of IL-1 and IL-6 to be the major drivers of the inflammatory response [38,56–58]. Subsequent endothelial activation results in microvascular permeability and the clinical features of capillary leak, hypotension, and reduced serum albumin levels [38]. Autopsy evidence also suggests activated endothelial cells produce additional IL-6 reinforcing the pathologic inflammatory feedback loop [59]. Eventual blood-brain barrier disruption as a result of increased IL-6 levels and endothelial activation is thought to contribute to severe ICANS [37].

3.4. COVID-CSS

Our understanding of COVID-CSS is rapidly evolving, with early clinical, biochemical, and autopsy observations supplemented by more thorough preclinical studies of the closely related SARS-CoV, responsible for the 2003 SARS outbreak. Mouse models of SARS-CoV suggest that delayed type I interferon signaling promotes accumulation of pathogenic inflammatory macrophages leading to hypercytokinemia, vascular leakage, and impaired T cell responses [60]. Deleting the IFN-gamma receptor or depleting macrophages protected mice from lethal infection without affecting viral load, supporting that the inflammatory response may contribute more to severe disease pathology than direct viral effects [60]. In a subset of patients with COVID-19, disease severity seems to correlate with inflammatory markers commonly implicated in other cytokine storm disorders including IL-2R, IL-6, IL-10, and TNF cytokines [7,8,10]. In patients with COVID-CSS, development of sepsis, need for intubation, and ARDS, are accompanied by worsening inflammatory markers and are observed between 7 and 14 days after illness onset consistent with clinical deterioration due to inflammatory sequelae [43]. An autopsy series from 6 patients who died from COVID-19 demonstrated IL-6 production by virus-infected macrophages present in lymph nodes and spleen tissue, suggesting that viral-infection leading to macrophage production of IL-6 was the initial trigger for inflammatory dysregulation [61].

4. Treatment of cytokine storm syndromes

Established and investigational therapies for sHLH, iMCD, CAR-T CRS are summarized by condition in Tables 2–4. Potential therapies and ongoing clinical trials for COVID-CSS are summarized in Table 5.

4.1. Corticosteroids (with or without chemotherapy)

Corticosteroids have been the cornerstone in managing hyper-inflammatory disorders due to their broad effects leading to reduced inflammatory mediators and immune cell activity. Used alone or in combination with cytotoxic therapies, responses are frequent but often short-lived and associated with significant long-term toxicity. The HLH-94 protocol combines upfront dexamethasone with etoposide for its specific reduction of T cell activity and cytokine production [62,63]. Cyclosporine may be introduced after 8 weeks, or after 1 week as per the HLH-2004 protocol, though it is often poorly tolerated in adult patients [24,26]. Despite the demonstrated efficacy in pediatric HLH syndromes, adults treated with the HLH-94 protocol and its variations demonstrate poor long-term survival around 30% [24]. Relapses in secondary HLH occur frequently either despite standard therapy or as therapy intensity is tapered; mortality related to infectious or other complications of prolonged immunosuppression is also common.

In iMCD, corticosteroids are frequently used as adjunct therapy for disease flares, though only half of patients will demonstrate improvement with corticosteroids [32]. As high dose corticosteroid therapy is poorly tolerated in the long term, a number of lymphoma-like chemotherapy options have been used to treat patients with iMCD [32]. Steroid-
Corticosteroids are still used second-line after directed anti-cytokine therapy. Steroids are particularly useful as first line therapy in the treatment of ICANS, with CNS penetrating steroids such as dexamethasone preferred.

Corticosteroids were used frequently in the management of COVID-19 in the early days of the pandemic in China, with reported use in 30–79% of patients [4,7–9,43,65]. The indication for therapy is not widely reported and may be due to comorbid conditions (COPD, asthma) or as adjunct therapy for sepsis. Analysis has suggested improved outcomes in patients with ARDS treated with steroids though this has not been conclusive and ideal timing and patient selection are not known [9,43,65]. Animal models and some human data of the closely related SARS-CoV infection have demonstrated early corticosteroid use may increase viral transmission [65,67].

Table 3
Summary of therapies for CAR-T cell cytokine release syndrome.

Medication	Mechanism of action	Approved indications	Dose regimen	Notable toxicities	Evidence
Corticosteroids	Inhibits inflammatory cells and suppresses expression of inflammatory mediators	1. Multiple allergic, hematologic dermatologic, neoplastic, rheumatic, autoimmune, nervous system, renal, and respiratory conditions.	Grade 3 CRS: Methylprednisolone 1 mg/kg BID or dexamethasone 10 mg every 6 h 4 days, followed by a rapid taper Alternative: methylprednisolone 1 g/day × 3 days, followed by a rapid taper	Immunosuppression Metabolic changes Hypertension Mood alteration	Consensus over dose and regimen is debated Considered second line therapy after tocilizumab given potential effect on persistence and efficacy of CAR-T cells
Tocilizumab	Monoclonal antibody against IL-6 receptor	1. Rheumatoid arthritis 2. Giant cell arteritis 3. Polycystic juvenile idiopathic arthritis 4. Systemic juvenile idiopathic arthritis 5. Severe or life-threatening CAR-T induced cytokine release syndrome	Grade 2–4 CRS: 8 mg/kg x 1 dose Repeat 8 mg/kg dose within 3–5 days if lack of improvement	Immunosuppression Hepatotoxicity Bowel perforation Demyelinating disorders	69% (95% CI, 53% - 82%) of patients responded to 1–2 doses within 14 days, with median time to response of 4 days in retrospective analysis of CTLO19 and KTE-C19 on prospective clinical trials

Table 4
Summary of therapies for idiopathic Multicentric Castleman Disease.

Medication	Mechanism of action	Approved indications	Dose regimen	Notable toxicities	Evidence
Siltuximab	Monoclonal antibody against IL-6	1. HHV-8 negative/idiopathic multicentric Castleman disease	11 mg/kg every 3 weeks	Infusion reactions Hyperkalemia Hypermagnesemia URTI Edema Weight gain Rash Bowel perforation	Randomized, placebo controlled trial (N = 79) found durable tumour and symptomatic response with siltuximab compared to placebo (34% vs 0%; p = .0012) [71] Extension study of ongoing responders (N = 19) found 100% sustained disease control at 61 months
Tocilizumab	Monoclonal antibody against IL-6 receptor	1. Rheumatoid arthritis 2. Giant cell arteritis 3. Polycystic juvenile idiopathic arthritis 4. Systemic juvenile idiopathic arthritis 5. Severe or life-threatening CAR-T induced cytokine release syndrome	8 mg/kg every 2 weeks	Immunosuppression Hepatotoxicity Bowel perforation Demyelinating disorders	Multicenter, open-label, single-arm trial (N = 28) found sustained improvement in symptoms and biochemical abnormalities associated with MCD over 1 year [72]
Rituximab	Monoclonal antibody against CD20 antigen on B-lymphocytes	1. Non-Hodgkin’s lymphoma 2. Chronic Lymphocytic Leukemia 3. Rheumatoid arthritis 4. Granulomatosis with polyangiitis 5. Microscopic polyangiitis	375 mg/m² weekly for 4 weeks	Infusion reactions Neutropenia Hepatitis B reactivation PML	Better evidence for use in HHV8 positive MCD. In 25 cases of iMCD, CR and PR rates with rituximab as first-line therapy were 20% and 48%, respectively, with a lower PFS compared to siltuximab [118] Case reports [32,103]
Sirolimus	mTOR inhibitor	1. Post-transplant rejection prophylaxis 2. Lymphangioleiomyomatosis.	7.5 mg/m² loading dose 2.5 mg/m²/day maintenance	Immunosuppression Edema Hypertension Cytopenas dyslipidemia	Clinical trial in TAFRO subtype ongoing (NCT03933904)

UTRI – upper respiratory tract infection, PML – progressive multifocal leukoencephalopathy, HHV-8 – human herpesvirus-8, CR – complete response, PR – partial response, PFS – progression free survival.

* May be used in conjunction with corticosteroids.

† May be used in monotherapy or in conjunction with chemotherapy/corticosteroids.
Table 5

Potential therapies for COVID cytokine storm syndrome.

Intervention	Published data in COVID-19 as of April 20, 2020	NIH treatment guidelines	Select registered trials
Corticosteroids	Case series and retrospective cohort studies found possible improved outcomes in ARDS [9,43]; but there remains concern for prolonged viral shedding [67]	For Critically Ill Patients with COVID-19:	NCT04345445, NCT04329650, NCT04344288, NCT04273321, NCT04327401, NCT04344736, NCT04325061, NCT04343729
	• The Panel recommends against the routine use of systemic corticosteroids for the treatment of mechanically ventilated patients with COVID-19 without acute respiratory distress syndrome (ARDS) (AIII).		
	• For mechanically ventilated patients with ARDS, there is insufficient evidence to recommend for or against the use of systemic corticosteroids (CI).		
	• For adults with COVID-19 and refractory shock, the Panel recommends using low-dose corticosteroid therapy (i.e., shock reversal) over no corticosteroids (BII).		
IL-6 Blockade	Case reports and case series report improvement in fever and inflammatory markers with possible improvement in cytokine storm and ARDS through inhibition of IL-6 [74-80,86,119,120]	There are insufficient clinical data to recommend either for or against the use of the following agents for the treatment of COVID-19 (AII):	NCT04317092, NCT04345445, NCT04331798, NCT04332094, NCT04346355, NCT04355071, NCT04320615, NCT04339712, NCT04332913, NCT04333914, NCT04330638, NCT04322773, NCT04331808, NCT04321993, NCT04345289, NCT04324073, NCT04315298, NCT04341870, NCT04329650, NCT04322188, NCT04306705, NCT04327388, NCT04330638, NCT04342021, NCT04339712, NCT04341584
Tocilizumab	Case reports and case series report improvement in fever and inflammatory markers with possible improvement in cytokine storm and ARDS through inhibition of IL-6 [74-80,86,119,120]		NCT04343729
Siltuximab	Case reports and case series report improvement in fever and inflammatory markers with possible improvement in cytokine storm and ARDS through inhibition of IL-6 [74-80,86,119,120]		NCT04343729
IL-1 Inhibition	A retrospective cohort study of 29 patients with COVID-19 and moderate-to-severe ARDS, and	As above	NCT04343729
Anakinra	Case reports and case series report improvement in fever and inflammatory markers with possible improvement in cytokine storm and ARDS through inhibition of IL-6 [74-80,86,119,120]		NCT04343729

Table 5 (continued)

Intervention	Published data in COVID-19 as of April 20, 2020	NIH treatment guidelines	Select registered trials
Complement inhibition	Inhibition of complement activity to reduce inflammation and subsequent tissue injury.	No recommendation	NCT04382755
LMWH	Improves the coagulation dysfunction and exerts anti-inflammatory effects by reducing IL-6 and increasing lymphocyte percentage a retrospective cohort study [90]	No recommendation	NCT04344756, NCT04345848
IVIG	Case reports of clinical improvement when administered at the time of respiratory deterioration [123]	No recommendation	NCT04261426

NIH – National Institutes of Health (https://www.covid19treatmentguidelines.nih.gov/MAS – accessed May 11, 2020), MAS – macrophage activation syndrome, LMWH - low molecular weight heparin, IVIG – intravenous immune globulin.
4.2. Cytokine targeted therapy

4.2.1. Interferon-γ

Improved mechanistic understanding of hyperinflammatory syndromes has led to therapies targeting specific cytokines implicated in disease pathogenesis. Emapalumab is a monoclonal antibody targeting interferon-γ that has demonstrated efficacy with overall response rates over 60% in a study of pediatric HLH [69]. Based on this trial the US Food and Drug Administration (FDA) approved emapalumab for use in refractory, recurrent, or progressive primary HLH in both children and adults [22]. Though there is a concern of secondary infections, particularly from organisms responsive to IFN-gamma driven immune reactions, the medication has been well tolerated in the majority of patients including those with infectious complications prior to therapy [54,69,70]. Data are limited in the use of emapalumab for secondary HLH in adults.

4.2.2. IL-6

In iMCD the disease process is thought to be dependent on elevated IL-6 levels perpetuating the hyperinflammatory state in most patients; therefore, use of IL-6 targeted therapy is now the front-line management for patients with iMCD with or without adjunctive steroids. Siltuximab, a monoclonal antibody directed against IL-6, in a placebo controlled trial has shown reduction in tumour burden and symptomatic response in a third (34%) of patients with responders having sustained disease control up to 6 years of follow-up [71]. Tocilizumab, a monoclonal antibody directed against the IL-6 receptor, has demonstrated similar improvement in symptoms and biochemical markers of disease activity in a single arm study [72]. Anti-IL-6 therapy is well tolerated for many years in patients with disease response, though relapses may be common following cessation of therapy [32,72].

The early observation of a substantial increase in IL-6 during CRS prompted the introduction of anti-IL-6 agents for management of those receiving CAR-T therapy, with good effect [73]. Tocilizumab is now FDA approved for use in CRS with response rates of 70% following 1–2 doses with a median time to response of 4 days [22,37]. Doses can be repeated every 6 to 24 h until CRS symptoms begin to improve. As tocilizumab is only used in short courses for a limited period, there is less concern of serious adverse events that may be seen in patients taking the drug long-term for rheumatologic indications. Tocilizumab administration has been demonstrated to not affect CAR-T cell efficacy, and is thus the preferred first line agent over corticosteroids. Tocilizumab appears to be not as effective for ICANS, likely because it does not cross the blood-brain barrier and targets the IL-6 receptor with no direct IL-6 lowering effect, leading to elevated systemic IL-6 levels after therapy without CNS protection [38,40,72]. Direct targeting of IL-6 by siltuximab may have better CNS response, though this has not been studied in clinical trials.

As IL-6 levels correlate with disease severity in hospitalized COVID-19 patients, anti-IL-6 therapy has been one of the first treatment strategies explored during the pandemic [7–10]. There have been several published case reports, as well as two larger case series from China, using tocilizumab as a treatment for severe COVID-19 demonstrating biochemical efficacy with decrease markers of inflammation, but the impact of clinical outcomes such as time in intensive care and mortality compared to supportive care, remains unknown [74–79]. A recent large series of 100 consecutive patients with severe COVID-19 demonstrated clinical stability or improvement in 77% of patients following administration of tocilizumab [80]. A press release for CORIMUNO-TOCI (NCT04331808), a multi-centre, open-label randomized controlled trial of tocilizumab in moderate and severe COVID19 has suggested positive results and with the study currently under peer-review [81]. Optimal timing of tocilizumab initiation is unknown, but there is sound rationale that earlier treatment in patients demonstrating a pathologic inflammatory response may ameliorate immune-mediated lung injury. Repeated doses of tocilizumab, similar in strategy to its use in CAR-T cell related CRS, may be reasonable for patients with refractory COVID-CSS.

Serious risks of tocilizumab in the short term include a small risk of bowel perforation, acute hepatic failure, and osteonecrosis of the jaw [82,83]. Case reports of hypertriglyceridemia and candidemia following tocilizumab infusion for COVID-19 have been reported [84,85]. There is a concern that the use of tocilizumab in COVID-19 could increase the risk of secondary infections and delay viral clearance, as was postulated in the report of 2 cases of viral myocarditis following tocilizumab for COVID-19 [86]. These safety concerns should be thoroughly evaluated in future studies. Clinical trials of tocilizumab, siltuximab, and sarilumab (an IL-6 receptor blocker) are currently being conducted in patients with moderate and severe COVID-19 though trials specifically evaluating these agents in the COVID-CSS population are not yet planned.

In addition to their well-known anticoagulant properties, heparins are known to have anti-inflammatory effects with lowering of IL-6 levels specifically described [87–89]. In patients with COVID-19, a retrospective study has observed reduction of IL-6 levels in patients treated with low-molecular weight heparin (LMWH) [90]. Given the maturing evidence of increased thrombotic risk in COVID-19, LMWH may be a good adjunct therapy for COVID-CSS to reduce both IL-6 driven inflammation and thrombotic risk. Optimal dosing strategies in patients without proven thromboembolic disease is not currently known but is being investigated in upcoming clinical trials (NCT04359277).

4.2.3. IL-1

IL-1-receptor blockade with anakinra has been used in case series and retrospective studies for HLH, with a clinical trial currently ongoing [91–93]. Anakinra has been hypothesized to have utility for CAR-T CRS and neurotoxicity based on the observation that IL-1 elevations precede IL-6 spike in murine CRS models and treatment with anakinra therapy resulted in reduction of both cytokines [56,58]. Anakinra has the added benefit of having a very short half-life compared to other anti-cytokine therapies. A retrospective cohort study of 29 patients with COVID-19 and moderate-to-severe ARDS, and hyperinflammation (CRP ≥100 mg/L, and/or ferritin ≥900 ng/mL) treated with high dose anakinra demonstrated clinical improvement in 72% of patients, and improved survival compared to historical controls [94].

4.2.4. TNF

TNF inhibiting agents are available for the management of other inflammatory conditions, though at the time of this review no reports of TNF inhibition have been reported for COVID-19. The use of TNF inhibitors has some potential concern these drugs have also been thought to trigger sHLH in some case reports [95–97]. Clinical trials for TNF inhibition in COVID-19 are planned.

4.3. Signaling pathway inhibition

To implement cellular responses to cytokines, cell surface receptors must connect these external environmental signals to the nucleus to guide gene expression, cell proliferation, and activity. This “bottle-neck” of inflammatory communication through shared internal signaling molecular pathways has facilitated the creation of targeted therapies that inhibit multiple cytokine pathways simultaneously. Many cytokine and growth receptors signal through the Janus Kinase (JAK) signal transducer of activators of transcription (STAT) pathway; this has spurred the development of small molecular JAK inhibitors for the treatment of inflammatory and neoplastic conditions [98]. These agents may be advantageous for disease states in which broader inhibition of cytokine signaling is required to control inflammation compared to the targeted blockade of single cytokines. Ruxolitinib, a JAK1/2 inhibitor already approved for the therapy of myeloproliferative neoplasm and rheumatologic disorders, has activity in murine HLH models by reducing inflammation through IFN-γ dependent and independent pathways. This results in reduced activity and tissue infiltration of T-cells and neutrophils [52,53]. Case series in
relapsed/refractory HLH, as well as a single case of upfront therapy for moderate severity HLH, have described biochemical and clinical efficacy in treatment of HLH with ruxolitinib monotherapy [99-101]. Early phase clinical trials are ongoing, but preliminary results have demonstrated biochemical, hematologic, and clinical recovery in the few patients enrolled thus far [102]. Importantly, the treatment is tolerated well with few adverse events reported, especially in contrast to standard regimens of prolonged chemotherapy combined with high dose steroids.

Patients with the TAFRO subtype of iMCD will typically have a more aggressive course and most have no substantial response to IL-6 blockade. Analysis of molecular signaling pathways active in iMCD patients refractory to anti-IL-6 agents has implicated downstream activation of the PI3K/Akt/mTOR pathway, common to signaling of the T cell receptor and VEGF pathways [103]. Use of the mTOR inhibitor sirolimus has met with early success in limited numbers of patients and a clinical trial in IL-6 blockade refractory TAFRO patients is underway [32,55,103]. Pre-clinical studies of cells obtained from patients with iMCD have also indicated that JAK inhibitors may be able to interrupt IL-6 driven mTOR pathway activation [55].

Currently there are limited reports of the use of JAK-STAT or other cell signaling pathway inhibitors in the management of COVID-CSS. The use of JAK inhibitors is attractive as the medications are well tolerated, have short half-lives, and have the potential to target numerous inflammatory cytokine signaling pathways simultaneously. While ruxolitinib has been the agent most studied in HLH other JAK inhibitors may have potential advantages. Baricitinib, an oral JAK1/2 inhibitor that is currently approved for treatment of rheumatoid arthritis, was recently identified by artificial intelligence-based technology as a potential immunomodulatory treatment strategy for SARS-CoV-2 [104]. At therapeutic doses baricitinib is predicted to inhibit clathrin-mediated endocytosis and viral entry into cells by blocking the AP2-associated protein kinase 1 (AAK1) [104]. AAK1 regulates endocytosis and viral entry into cells by blocking the AP2-associated protein kinase 1 (AAK1) [104]. AAK1 regulates endocytosis in hyperferritinemia is the most common biomarker for cytokine storm syndromes and monitoring systemic inflammation. Utility of cytokine levels for diagnosis and monitoring of cytokine storm syndromes are not standardized and currently limited to research settings. Published values for inflammatory markers and cytokines observed in cytokine storm conditions are summarized in Table 6. Importantly, many of these assays are not routinely performed in hospital laboratories, and as such their clinical relevance remains to be determined by future studies that address both analytical and clinical validation of these markers.

5. Inflammatory biomarkers and cytokines

CSS are disorders driven and recognized by characteristic hyperferritinemia, however availability of objective cytokine profiles is limited. Clinicians are forced to evaluate and base treatment decisions on clinical signs and symptoms of inflammation, and few widely available markers of overall systemic inflammation. Utility of cytokine levels for diagnosis and monitoring of cytokine storm syndromes are not standardized and currently limited to research settings. Published values for inflammatory markers and cytokines observed in cytokine storm conditions are summarized in Table 6. Importantly, many of these assays are not routinely performed in hospital laboratories, and as such their clinical relevance remains to be determined by future studies that address both analytical and clinical validation of these markers.

5.1. Inflammatory markers

Ferritin, the iron storage protein, and C-reactive protein (CRP) are the acute phase reactants most widely available at hospitals for monitoring systemic inflammation. Hyperferritinemia is the most common feature to prompt further evaluation for secondary HLH, with levels

Table 6

Biomarkers and cytokine levels in cytokine storm syndromes.
Marker
Ferritin (μg/L) (Normal: 30-400)
CRP (mg/L) (Normal: <1)
IL-6 pg/mL (normal range: <7)
IFN-γ pg/mL (Normal: <7)
D-Dimer μg/mL (Normal: <0.5)
Cytokine Release Syndrome, CSS
Chimeric antigen receptor T cell, CRS
CSS = Cutaneous sarcomatoid Carcinoma, CRS = Cytokine Release Syndrome, IL-6 = Interleukin 6, IFN-γ = Interferon-γ

References

[99-101] J.T. England et al. Hoiland et al., manuscript under review.
>10,000 μg/L observed in 78.9% of adult patients and can frequently be in excess of 100,000 μg/L [27,107]. Patients with CRS also demonstrate elevated ferritin levels with most patients reaching a peak over 3000 and many in excess of 10,000 μg/L [38,57]. Patients experiencing higher grade CRS have greater median peak ferritin and CRP though with significant overlap in the observed ranges [38,57]. Similarly, ferritin and CRP levels in patients with COVID-19 are reportedly higher in patients with severe compared to moderate disease, and in patients who died compared to those that recovered [7,8,10]. In our experience with COVID-CSS patients in the ICU we have observed ferritin levels in the range of 1000–10,000 μg/L with CRP levels typically above 100 mg/L (Holland R et al., manuscript under review).

The measurement of D-dimer, a fibrin degradation product, is a widely available test that shows active clot formation and breakdown. Its increase in systemic inflammation reflects the overlap between the physiologic inflammatory and thrombotic pathways. Though not frequently used in the evaluation of the cytokine storm disorders, it has been correlated with severity of CRS following CAR-T [38]. D-dimer levels correlate with disease severity in COVID-19 and admission D-dimer >1 μg/mL has emerged as one of the earliest prognostic marker to identify patients with high mortality [49].

The pattern of inflammatory markers may be more useful than relying on absolute values alone in order to establish a diagnosis. In children with sJIA the ratio of ferritin to erythrocyte sedimentation rate (ESR) was useful for identifying patients with MAS [108]. In one study of Japanese HLH cases a ratio of sIL-2R to ferritin was predictive of those with lymphoma-associated rather than benign disease [109].

6. Conclusions and future directions

COVID-CSS has many clinical and pathologic similarities with other cytokine storm disorders. Therapy for classic CSS conditions such as iMCD and secondary HLH has been hampered by low numbers of patients, lack of diagnostic clarity and incompletely understood pathophysiology. Progress has been made with the introduction of targeted therapy aimed at interrupting the positive feedback loops of inflammatory pathways. The story of CRS following CAR-T cell therapy with comparatively rapid determination of pathophysiology and use of existing medications for treatment has been a recent success. Future goals for CSS include improved access to immunophenotyping and expression profiling to inform our understanding of disease mechanisms, and enhancing diagnostic and monitoring capabilities.

Due to the lack of currently available evidence, the NIH guidelines for the management of COVID-19 do not recommend for or against cytokine inhibition with IL-1 and IL-6 blockade and specifically recommend against off-label use of JAK pathway inhibitors outside of clinical trial [12]. Current industry sponsored trials of sarilumab (NCT04327388) and tocilizumab (NCT04320615) in patients with severe-critical COVID-19 are underway. However, they exclude critically ill patients requiring vasopressors and therefore will not address the question of whether these agents will be of benefit in those who are critically unwell with evidence of CSS. Development of consensus definitions for COVID-CSS may lead to identification of patients most likely to benefit most from immune modulating therapy. We should use the lessons learned from hematologic cytokine storm syndromes to help expedite rapid identification, evaluation, and implementation of treatments urgently needed for COVID-19 CSS.

Practice points

- A subset of patients with COVID-19 develop a syndrome characterized by organ dysfunction and marked elevation of inflammatory markers dubbed cytokine storm syndrome (CSS).
- To date, there is no consensus definition of COVID-CSS. Fever, organ dysfunction, hypoalbuminemia, and capillary leak are common to COVID-19 and other cytokine storm syndromes such as sHLH, iMCD and CAR-T cell CRS.
- COVID-19 appears to be a hypercoagulable state leading to microvascular thrombosis, a feature distinct from other hypercytokinemia syndromes.
- Therapies targeting specific cytokines or common inflammatory signaling pathways have demonstrated benefit in HLH, iMCD, and CAR-T CRS and are well tolerated in those contexts. Their role in COVID-19 CSS is under active investigation.
- A pragmatic definition of COVID-CSS will likely require a combination of clinical criteria (such as fever, hypotension, critical illness), widely available laboratory parameters (such as CRP, ferritin, D-dimer), as well as novel biomarkers (such as IL-1, IL-6, other cytokines, and immunophenotyping).
Research agenda

- Consensus definitions of CSS in general and COVID- CSS in particular, with particular attention to the relationship with COVID related coagulopathy and vasculopathy
- Rapid, coordinated investigations of potentially beneficial agents targeting inflammatory pathways in COVID-19 CSS with methodologically rigorous clinical trials
- Measurement of biomarkers in CSS including traditional laboratory parameters as well as genetic studies, cytokine profiles and lymphocyte immunophenotyping at presentation and through the course of disease

Declaration of Competing Interest

Kamran Shoajania: Involved in investigator-initiated vasculitis study for Bristol-Myers-Squibb.

Shahin Jamal: Attended Roche advisory board for tocilizumab in giant cell arteritis and rheumatoid arthritis.

Kevin A. Hay: Attended Advisory boards and received honoraria for Celgene and Gilead related to CAR-T cell products.

James T. England, Alym Abdulla, Ryan L. Holiand, Cheryl L. Wellington, Myipinder Sekhon, Agnes Y.Y. Lee, Catherine Biggs, Luke Chen – no conflicts of interest to declare.

References

[1] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med 2020;382(8):727–33.

[2] Coronavirus disease 2019 (COVID-19): situation report. World Health Organization; 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

[3] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.

[4] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323(12):1239–42.

[5] Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical development and validation of the iScore-a score for the diagnosis of reactive hemophagocytic lymphohistiocytosis. Arthritis Rheum 2014;66:2613–20.

[6] Hayden A, Park S, Gissmann D, Lee AT, Chien LY. Hemophagocytic syndromes (HPSs) including hemophagocytic lymphohistiocytosis (HLH) in adults: a systematic scoping review. Blood Rev 2016;30:41–20.

[7] Muckensturm E, Chen LV, Wu K, Revell MR. Post-transfusion hemophagocytic syndrome without hemophagocytic lymphohistiocytosis. Mayo Clin Proc 2019;95:217–22.

[8] George MR. Hemophagocytic lymphohistiocytosis: review of etiologies and management. J Blood Med 2014;5:69.

[9] Dispizeni A, Fajgenbaum DC. Overview of Castleman disease. Blood 2020;136:1353–64.

[10] Fajgenbaum DC, Ulldriz TH, Bagg A, Done F, Wu D, Skalakov G, et al. International, evidence-based consensus diagnostic criteria for HHV-8-negative idiopathic multicentric Castleman disease. Blood 2017;129:1466–57.

[11] Liu AY, Nabel CS, Finkelman BS, Ruth JR, Kurzrock R, van Rhee F, et al. Idiopathic multicentric Castleman’s disease: a systematic literature review. Lancet Haematol 2016;3:e163–75.

[12] Oksenhendler E, Boutboul D, Arisic RB, Malphettes M, et al. The full spectrum of Castleman disease: 273 patients studied over 20 years. Br J Haematol 2018;180:260–16.

[13] Neeleman LS, Locke FL, Bartlett NL, Lekkas LJ, Miklos DB, Jacobson CA, et al. Axicitabagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–44.

[14] Hay KA. Cytokine release syndrome and neurotoxicity after CD 19 chimeric antigen receptor-modified (CAR T) cell therapy. Br J Haematol 2018;183:364–74.

[15] Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. Intracellular and extracellular markers of severe cytokine release syndrome after chimeric antigen receptor-modified T-cell therapy. Blood 2017;130:2295–306.

[16] Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR T cells. Cancer Discov 2017;7:404–19.

[17] Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenleculucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–48.

[18] Lee DW, Gardner R, Porter DL, Louis CJ, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188–95.

[19] Lee DW, Santomasso BD, Locke FL, Gbobi A, Tortice CJ, Brudno JN, et al. ASTCT consensus guidelines for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019;25:625–38.

[20] Zhou F, Yu T, Du R, Fan G, Liu V, Liu Z, et al. Clinical course and risk factors for mortality of adult interventional COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.

[21] Report of the who-china joint mission on coronavirus disease 2019 (covid-19). World Health Organization; 2020. https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).

[22] Klok F, Kruip M, van der Meer N, Arbous M, Gommers D, Kruip K, et al. Incidence and features of hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020. https://doi.org/10.1016/S0140-6736(20)31049-1.

[23] Foley J, Peterson E, Lei V, Wan L, Krisinger M, Conway E. Interplay between innate immune responses and dendritic cells during COVID-19 pneumonia. MedRxiv. 2020. https://doi.org/10.1101/2020.03.30.20048726.

[24] Leisman DDCaL, M.. Facing COVID-19 in ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-06059-6.

[25] Marsh RA, Haddad E. How i treat primary haemophagocytic lymphohistiocytosis. Arthritis Rheum 2018;123:465–77.

[26] La Roesse P, Horne A, Hines N, von Bahr Greenwood T, Machowicz R, Berliner N, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019;133:2465–77.

[27] Le QQ, Li L, Yuan W, Shord SS, Nia L, Kaufmann BA, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018;23:943.

[28] Leclercq L, Dhont M, Van den Bergh E, Luckermans M, Vanrenterghem YA, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020. https://doi.org/10.1016/S0140-6736(20)31049-1.
[49] McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2020;2(5):e341-9. https://doi.org/10.1016/j.lerr.2020.03.012.

[50] Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, et al. An activating JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2017;68:225-45. https://doi.org/10.1146/annurev-med-051315-040432.

[51] Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv 2020;4(13):e00931.

[52] Albeituni S, Verbist KC, Tedrick PE, Tillman H, Picarsic J, Bassett R, et al. Risk factors associated with COVID-19 in patients with systemic sclerosis treated with tocilizumab for SSc-ILD. J Rheum Dis 2020;79:668-9.

[53] Dewolfe D, Ciaccio D, Kozarova P, Villa A, Musolin A, Mazzali G, et al. COVID-19 in patients with systemic sclerosis treated with tocilizumab for SSc-ILD. J Rheum Dis 2020;79:668-9.

[54] Raebel JNN, Bhatt PJ. Use of tocilizumab for COVID-19 infection-induced cytokine storm syndrome: a cautionary case report. Chest 2020. https://doi.org/10.1016/j.chest.2020.04.024.

[55] The Lancet Respiratory Medicine. Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a patient with COVID-19 pneumonia after treatment with tocilizumab. Lancet Respir Med 2020. https://doi.org/10.1016/S2213-2600(20)30158-X.

[56] Cavalli G, De Luca G, Tardito M, Opota E, Gysin P, St. Martin J, et al. Acute hypercytogenicemia in patients with COVID-19 receiving tocilizumab. J Med Virol 2020. https://doi.org/10.1002/jmv.25907.

[57] Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2016;22:473-8.

[58] Fang Z, Diao B, Wang R, Wang G, Wang C, Tan Y, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016;6:644-79.

[59] Wahn V, de Vries SJ, Eoquem T, Hamich M, Piersiglissi A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and ablated by IL-6 blockade. Nat Med 2017;23:34.

[60] Boman RJ, Ramelet AA, van der Wall E, Moorman JP, Janssens SJ, Smith LB. Letter to the editor: cytokine release syndrome: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis. Clin Pathol 2020;4:1307.

[61] Zhang X, Song K, Tong F, Fei M, Guo H, Lu Z, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv 2020;4(13):e00931.

[62] Neri M, Morini M, Castelletti M, Carattini M, Citton C, Faustini L, et al. Macrophage activation syndrome and hyperinflammation in a patient treated with tocilizumab for Castleman disease. Blood Adv 2020;4:1307.

[63] Albeituni S, Verbist KC, Tedrick PE, Tillman H, Picarsic J, Bassett R, et al. Risk factors associated with COVID-19 in patients with multiple myeloma successfully treated with tocilizumab. Blood Adv 2020;4(13):e00931.
