Glucose homeostasis is one of the most critical phenomena in the human body. Glucose can originate exogenously from the ingestion of food, and also, endogenously from the liver by glycogenolysis [9]. The absorption of glucose in the cells determines the actual concentration of blood glucose. Integrated hormonal and enzymatic processes control all of this. The system comprises of many complicated sub-processes; whose erroneous activity usually leads to common diabetic diseases [1]. The human body system consists of various organs. Those organs have their specific functions and play their roles in maintaining relevant biological activities in the body. Each organ needs a stable and adequate glucose supply from the blood to carry through its function. It is, therefore, important to keep the optimal blood glucose level [2]. The two main organs involved in the maintenance of glucose homeostasis are the pancreas and the liver. The role of the pancreas is to release the two most important hormones that control glucose homeostasis: insulin and glucagon. They are produced in pancreatic-β-cells and pancreatic-α-cells, respectively [3], [4], [5]. When the blood glucose level is high, β cells secrete insulin to help cells in the process of glucose absorption. Whereas, α-cells secrete glucagon when blood glucose levels fall below normal. It acts as an antagonist of insulin by causing hepatic glucose output to rise [3], [5], [6]. Whereas, the role of the liver acts as a storage organ of excess blood glucose. When blood glucose levels are high, it takes up glucose and converts it into glycogen. When glucose levels are low, it releases glucose by either glycogenolysis or synthesizing new glucose (gluconeogenesis) [7]. Figure 1 illustrates the mechanism of glucose homeostasis.
Insulin is a hormone secreted by the pancreas within the β-cells of the islets of Langerhans. [3],[4],[5]. Insulin has the most important role in maintaining glucose homeostasis. It enables glucose uptake by muscle and adipose tissue cells. It also regulates the storage and releases of glucose in the liver and promotes fat synthesis and storage [5]. The pancreas secretes plasma insulin into the portal vein, where it first passes through the liver and subsequently enters systemic circulation [8]. Glucose uptake is activated once plasma insulin is distributed to interstitial fluid, where it binds to cell-surface or transmembrane receptors [8].

B. The insulin sub-model

- Insulin

Insulin is a hormone secreted by the pancreas within the β-cells of the islets of Langerhans. [3],[4],[5]. Insulin has the most important role in maintaining glucose homeostasis. It enables glucose uptake by muscle and adipose tissue cells. It also regulates the storage and releases of glucose in the liver and promotes fat synthesis and storage [5]. The pancreas secretes plasma insulin into the portal vein, where it first passes through the liver and subsequently enters systemic circulation [8]. Glucose uptake is activated once plasma insulin is distributed to interstitial fluid, where insulin binds to cell-surface or transmembrane receptors [8].

- Glucose-dependent regulation of Insulin secretion

Through previous studies, glucose-dependent regulation of Insulin secretion can be summarized into the following steps (Figure 2):

1. Glucose enters into pancreatic β-cells and is metabolized through the glycolytic pathway and subsequently in mitochondria [11].
2. The resultant increase in ATP production leads to closure of the ATP-sensitive potassium (K\textsubscript{ATP}) channel leading to membrane depolarization [11] depolarizing the membrane potential to a range where the inactivation of voltage-dependent channels takes place. This results in the inhibition of electrical activity, Ca2+ influx, and glucagon secretion [12].
3. This causes Ca2+ entry through the voltage-dependent Ca2+ channel and elevation of cytoplasmic Ca2+ concentration ([Ca2+]c), which initiates exocytosis of insulin granules [11].
4. The main feature of insulin secretion is its biphasic secretion pattern [9].

a. This pattern was earlier described by a mathematical model developed by [14]. The model describes insulin as stored packets inside the β-cells, and each insulin packet has a specific threshold-level to glucose concentration. When the glucose concentration increases, a specific number of insulin packets are secreted into the blood.

b. Recently, the movement of insulin granules inside β-cells, and the mechanism of exocytosis have been revealed by total internal reflection fluorescence microscopy (TIRFM) [15]–[17].

c. The insulin granules can be further divided into different insulin pools according to the different movement patterns and relative locations [17].

d. Readily releasable pools, composed of insulin granules adjacent to the plasma membranes of β-cells, exist in a fully releasable state and are associated with the fast first phase of insulin secretion.

e. These pools provide quick response of insulin secretion to a sudden glucose increase. In the cell plasma of the β-cells, insulin granules denoted reserve pools secrete insulin granules for maintaining the baseline insulin level and producing the second-phase insulin secretion through the nonstandard secretion pathway and provide supplemental insulin granules to the readily releasable pools [17]. Several other kinetic models have been proposed to describe the biphasic secretion pattern and provided agreement with data from different experimental approaches [9],[18]–[21].

5. Gupta et al. proposed an insulin kinetic model to analyze the insulin kinetics of β-cells, post hepatic insulin delivery, and insulin elimination [22]. The model has detailed descriptions of the insulin pools inside the β-cells and of how glucose affects insulin production and secretion.

- Glucose–Insulin mechanism

Glucose uptake is activated once plasma insulin is distributed to interstitial fluid, where it binds to cell-surface or transmembrane receptors.

Figure 3 shows steps of entering glucose to the target cell, which is summarized as a following:

1. Cells can communicate with each other by sending and receiving signals, which include hormonal signals from distant endocrine cells, paracrine signals from neighboring cells, or autocrine sensing of signals emitted from the same cell. Cell surface or transmembrane receptors on the plasma...
membrane provide cells with the means of sensing different ligands in their environment with relevant signaling cascades, without specific uptake of the respective ligands.

2. Insulin binds to the receptor of the cell[11]
3. The binding process leads to stimulate the signal transduction cascade to stimulate the cell to the Exocytosis process.
4. Exocytosis (moving target cell's transporter to the cell membrane surface to allow the glucose to enter the cell)
5. The target cell's transporter enters glucose from the interstitial spaces and transports it inside the cytoplasm with distinct affinities and maximal transport rates [5].

When insulin secretion phases are faded. At that time, the purpose of insulin secretion has been achieved which is to access to desired balancing by reducing blood glucose level.

When glucose concentration is considerably high due to external glucose appearance through meals or to a lesser extent via intravenous bolus. However, low glucose concentrations inverse the process by stimulating glucagon secretion via pancreatic α-cells, which activates glycogenolysis and thus rapidly increases glucose concentrations to prevent hypoglycemia. The rate of endogenous glucose production is a function of both stimulus and the availability of substrates. In reality, EGP is modulated by the interaction of many hormones in response to metabolic dysfunctions that cause insulin sensitivity irregularities. As tissue cells fail to respond adequately to insulin, blood glucose concentrations rise. Normally, the liver helps regulate glucose concentrations by reducing glucose production in the presence of insulin. [8]

- **Glucose-dependent regulation of Glucagon secretion**

Alpha-cell models are not available to the same extent as β-cell models[12],[26]. Through previous studies, which is proposed to be since potential action generation in alpha-cells is dependent on T-type Ca²⁺ channels and Na⁺ channels, which inactivate and cause decreased electrical excitability. Glucose-dependent regulation of Glucagon secretion can be summarized in the following steps:

1. Glucose is incorporated into the α-cell by the transporter.
2. At low-glucose concentrations, the moderate activity of KATP channels situates the α-cell membrane potential in a range that allows the opening of voltage-dependent T- and N-type Ca²⁺ channels and voltage-dependent N⁺ channels[12](Figure 4).
 - The opening of A-type K⁺ channels is necessary for action potential repolarization.[12]
3. Most of the Ca²⁺ current goes through L-type channels in α-cells, the Ca²⁺ required for exocytosis at low-glucose levels is mediated by N-type channels.[12]
 - Their blockade inhibits glucagon secretion in this range that allows the opening of voltage-dependent T- and N-type Ca²⁺ channels and voltage-dependent Na⁺ channels.[12]. However, their activation triggers action potentials, Ca²⁺ influx, and exocytosis of glucagon granules.[12]

4. Glycogenolysis.
5. Subsequently, blood glucose level rises, and through continuous monitoring of glucose level by the pancreas. It makes the right decision by choosing the appropriate hormone to keep the blood glucose level in the normal range.

C. **Glucagon sub-model**

- **Glucagon**

Glucagon is a hormone that secreted by pancreatic α-cells. Under normal circumstances, the elevation of glucose has opposite effects on the secretion of glucagon from the alpha-cells. When blood glucose levels fall below normal, particularly during fasting and exercise. It also acts as an antagonist of insulin by causing hepatic glucose output to rise. This is either achieved by glycogen breakdown (Glycogenolysis) or increased gluconeogenesis (storing excess circulating glucose as glycogen in the liver). [7]. If glycogen stores are saturated, glucose is converted into fat and stored in the liver and fat cells in the adipose tissue. These processes can be reversed when energy demand is high. Glucose is rapidly released from glycogen via the glycogenolysis process if glycogen stores are used, once the fat is used via the gluconeogenesis process with amino acids to form glucose [8]. Both glycogenolysis and gluconeogenesis are commonly grouped under and described as endogenous glucose production (EGP)). EGP is tightly regulated in the healthy body to maintain basal (minimum) blood glucose concentration. EGP represents net glucose production by the body, primarly by the liver, and released into the blood. EGP is suppressed when blood glucose concentration is considerably high due to external glucose appearance through meals or to a lesser extent via intravenous bolus. However, low glucose concentrations inverse the process by stimulating glucagon secretion via pancreatic α-cells, which activates glycogenolysis and thus rapidly increases glucose concentrations to prevent hypoglycemia.

![Figure 3: Steps of Glucose entering to target cell [25].](image)

![Figure 4: Schematic model for glucose-dependent regulation of glucagon secretion in the mouse a-cell [12].](image)
Figure 5: A simplified model of the blood glucose regulatory system using by Ackerman (Ref. [27]).

Figure 6: Schema of Glucose and insulin sub-systems in the Dalla Man model (Ref. [28]).

II. MATHEMATICAL MODELS FOR THE REGULATION MECHANISM OF GLUCOSE BY PANCREAS’S HORMONES IN THE HUMAN BODY (Table 1)

Table 1: Mathematical models for blood glucose levels regulation

Reference	Equations	Variable description
Cobelli et al. [29]	**Glucose sub model:** \(\dot{X}_1 = F(x_1 \cdot u_{12}, u_{13}, u_2) + I_x (t) \)	\(X_1 \) : is a quantity of glucose in the plasma and extracellular fluids.
	Insulin synthesis: u_{1p} = k_{21}u_{1p} + k_{12}u_2 + W(x_1)u_{1p}(0) = u_{1p0} u_{2p} = k_{21}u_{1p} - (k_{12} + k_{02}(x_1))u_{2p} + W(x_1)u_{2p}(0) = u_{2p0}	\(u_{1p} \) : is a quantity of pancreatic stored insulin. \(u_{2p} \) : is a quantity of pancreatic, promptly releasable insulin.
	Insulin secretion: u_{11} = (m_{01} + m_{11} + m_{12})u_1 + m_{12}u_{12} + m_{13}u_{13}(0) = u_{110} \(u_{12} = -(m_{02} + m_{12})u_1 + m_{12}u_{11} + k_{02}(x_1)u_{2p}u_{12}(0) = u_{120} \(u_{13} = -m_{13}u_{13} + m_{31}u_{11} \), \(u_{13}(0) = u_{130} \)	\(u_{11} \) : is a quantity of insulin in plasma. \(u_{12} \) : is a quantity of insulin in the liver. \(u_{13} \) : is a quantity of insulin in the interstitial fluids.
	Glucagon secretion: u_2 = -h_{02}u_2 + F_7(x_1 \cdot u_{13})u_2(0) = u_{20}	\(u_2 \) : is a quantity of glucagon in the plasma and interstitial fluids. \(W \) and \(F_1 - F_7 \) : are nonlinear functions. \(I_x \) : is the test input of glucose. \(m_{ij} \), \(h_{ij} \), and \(k_{ij} \) are constant rate parameters except for \(k_{02} \), which is a function of \(X_1 \). \(F_7 \) is the endogenous release of glucagon, dependent on blood glucose and interstitial fluid insulin.
Reference

Reference	Equations	Variable description
Ackerman et al. [27]	**Glucose equation:**	
\[Q_{gut} = Q_{sto2}(0) = 0 \]		
\[Q_{sto}(t) = Q_{sto1}(t) + Q_{sto2}(t), \]		
\[Q_{sto}(0) = 0 \]		
\[R_i(t) = k_{a1} \cdot I_{sc1}(t) + k_{a2} \cdot I_{sc2}(t) \]		
\[G : \text{is the glucose concentration.} \]		
\[H : \text{is glucose-regulating hormones.} \]		
\[G_0 \text{ and } H_0 : \text{are the change in the values of } G \text{ or } H, \text{respectively.} \]		
\[m_1 : \text{rate constant for the removal of glucose above the initial (fasting) level due to its own excess above the initial level.} \]		
\[m_2 : \text{rate constant for the removal of glucose above the initial level due to blood-hormone concentrations above the initial level.} \]		
\[m_3 : \text{rate constant for the removal of hormone above the initial (fasting) level due to its own excess above the initial level.} \]		
\[m_4 : \text{rate constant for the release of hormone above the initial level due to blood-glucose concentrations above the initial level.} \]		
\[J(t) \text{ and } K(t) : \text{are the rate of infusion of exogenous glucose and insulin, respectively. Figure 5} \]		
Other research using MM [31], [33]–[36]	**Hormone equation:**	
\[S_G : \text{is the effect of glucose itself.} \]		
\[X(t) : \text{is the effect of insulin in the interstitial compartment, which acts synergistically with glucose to return the glycemia to basal levels.} \]		
\[X(t) : \text{is increased by plasma insulin } [I(t) \text{ determined by } k_a] \text{ but decreases by a first-order process proportional to } k_b \text{ to interstitial insulin itself} [k_bX(t)]. \]		
\[\text{Parameter C accounts for glucose production at basal insulin.} \]		
Minimal model (MM) Bergman et al. [31], [32]	**The physiological factors that determine the restoration of plasma glucose after injection:**	
\[\frac{dg}{dt} = -\left(S_G + X(t) \right)G + C \]		
\[\text{The factors that determine the level of insulin in the interstitial:} \]		
\[\text{increase in remote insulin} = k_a \text{ (plasma insulin) - } k_b \text{ (remote insulin)} \]		
\[\frac{dX(t)}{dt} = -\left(k_a I(t) - k_b X(t) \right) \]		
\[I_{sc1} \text{ and } I_{sc2} : \text{represent the amount of nonmonomeric and monomeric insulin in the sc space, respectively.} \]		
\[u(t) : \text{is the exogenous insulin infusion rate.} \]		
\[k_d : \text{is the rate constant of insulin dissociation.} \]		
\[k_{a1} \text{ and } k_{a2} : \text{are the rate constants of nonmonomeric and monomeric insulin absorption, respectively.} \]		
\[R_i(t) : \text{is the rate of appearance of insulin in plasma.} \]		
\[Q_{sto1} \text{ and } Q_{sto2} : \text{are the change in the values of } G \text{ or } H, \text{respectively.} \]		
\[\text{u(t)} : \text{is the measured glucose concentration.} \]		
\[B_l : \text{is the steady-state plasma glucose concentration.} \]		
\[IR_i(t) : \text{is the steady-state infusion rate (that is, for } y_i = B_l) \]		
\[Q_l : \text{is the inverse of a static gain.} \]		
\[m : \text{is the slope of the regression line on the last five measured values of glucose concentration (derivative control).} \]		
K. Zarkogianini, et al. [37]	**Compartmental Model for subcutaneous (sc) Insulin Kinetics**	
\[I_{sc1}(t) = -(k_d + k_{s1}) \cdot I_{sc1}(t) + u(t), \quad I_{sc1}(0) = I_{sc1ss} \]		
\[I_{sc2}(t) = k_d \cdot I_{sc1}(t) - k_{s2} \cdot I_{sc2}(t), \quad I_{sc2}(0) = I_{sc2ss} \]		
\[R_i(t) = k_{a1} \cdot I_{sc1}(t) + k_{a2} \cdot I_{sc2}(t) \]		
\[I_{sc1} \text{ and } I_{sc2} : \text{are the rate of infusion of exogenous insulin and monomeric insulin in the sc space, respectively.} \]		
\[k_{s1} \text{ and } k_{s2} : \text{are the rate constants of nonmonomeric and monomeric insulin absorption, respectively.} \]		
\[R_i(t) : \text{is the rate of appearance of insulin in plasma.} \]		
\[Q_{sto1} \text{ and } Q_{sto2} : \text{are the amount of glucose in the intestine.} \]		
\[k_{gr} : \text{is the rate of gridding.} \]		
\[k_{empt}(Q_{sto}) : \text{is the rate constant of the gastric emptying, which is a nonlinear function of } Q_{sto}. \]		
\[k_{abs} : \text{is the rate constant of intestinal absorption.} \]		
\[f(0.90) : \text{represent the fraction of intestinal absorption which appears in plasma.} \]		
\[D : \text{is the amount of ingested glucose.} \]		
\[BW : \text{is the body weight.} \]		
\[R_a(t) = \frac{f \cdot k_{abs} \cdot Q_{gut}(t)}{BW}, \quad Ra(0) = 0 \]		
\[IR(t) : \text{is an insulin infusion rate.} \]		
\[y_i : \text{is the measured glucose concentration.} \]		
Cobelli et al. [38]	**Compartmental Model for Glucose Absorption From the Gut**	
\[Q_{sto1}(t) = Q_{sto1}(t) + Q_{sto2}(t), Q_{sto1}(0) = 0 \]
\[Q_{sto2}(t) = -k_{gr} \cdot Q_{sto1}(t) + D \cdot d(t), Q_{sto1}(0) = 0 \]
\[Q_{sto2}(0) = 0 \]
\[Q_{gut} = -k_{abs} \cdot Q_{gut}(t) + k_{empt}(Q_{sto}) \cdot Q_{sto1}(t), Q_{sto1}(0) = 0 \]
\[Q_{gut}(0) = 0 \]
\[Ra(t) = \frac{f \cdot k_{abs} \cdot Q_{gut}(t)}{BW}, \quad Ra(0) = 0 \]
\[IR(t) : \text{is an insulin infusion rate.} \]
\[y_i : \text{is the measured glucose concentration.} \]
\[B_l : \text{is the steady-state plasma glucose concentration.} \]
\[IR_i(t) : \text{is the steady-state infusion rate (that is, for } y_i = B_l) \]
\[Q_l : \text{is the inverse of a static gain.} \]
\[m : \text{is the slope of the regression line on the last five measured values of glucose concentration (derivative control).} \]

© 2020-2022, IJARCS All Rights Reserved 9
The Glucose-Insulin feedback system:

\[
\frac{dx}{dt} = f_1(z) - E \left(\frac{x}{V_1} - \frac{y}{V_2} \right) - \frac{x}{t_1}
\]

\[
\frac{dy}{dt} = E \left(\frac{x}{V_1} - \frac{y}{V_2} \right) - \frac{y}{t_2}
\]

\[
\frac{dz}{dt} = f_5(h_3) + I - f_2(z) - f_3(z)f_4(y)
\]

\[
\frac{dh_1}{dt} = \frac{3(x-h_1)}{t_1}
\]

\[
\frac{dh_2}{dt} = \frac{3(h_1-h_2)}{t_2}
\]

\[
\frac{dh_3}{dt} = \frac{3(h_2-h_3)}{t_3}
\]

Glucose concentration and Insulin action:

\[
\{ \dot{G}(t) = [p_1 + X(t)] G(t) + p_1 G_b + \frac{Ra(t)}{V} ; \ G(0) = G_b \}
\]

\[
X(t) = -p_2 X(t) + p_3[I(t) - I_b] ; \ X(0) = 0
\]

Reference

Equations
Dynamic Mode: \(IR(t) = \frac{k}{10}m(y(t) - BI) \frac{RI}{10} . \ y_i > BI \)
\(IR(t) = 0 . \ y_i \leq BI \)

Equations
The control algorithm optimizes the multistage quadratic cost function
\(J_{GPC} = \sum_{k=N_d}^{N_m} \delta_k \| C(r_{t-k} - y_{t-k}) \|^2 + \sum_{k=0}^{N_u} \lambda_k (\Delta u_{t-k})^2 \)

Variable description
\(k \) takes on different values depending upon the sign of \(m \) (\(m>0 \), \(m<0 \), respectively).

Equations
The Glucose-Insulin feedback system:
\(x : \) the amount of plasma insulin.
\(y : \) the amount of remote insulin.
\(z : \) the amount of glucose.
\(E : \) a constant rate of insulin exchange between compartments.
\(V_1, V_2, \) and \(V_3 : \) are volumes.
\(f_1(z) : \) represents insulin secretion.
\(f_3(z) : \) represents insulin-independent glucose utilization.
\(f_4(y) : \) are insulin-dependent utilizations.
\(f_5(h_3) : \) represents glucose production.
\(h_1, h_2, \) and \(h_3 : \) are variables representing delay processes between plasma insulin and glucose production.
\(I : \) is the exogenous glucose delivery rate.
\(t_1 \) and \(t_2 : \) are time constants related to insulin degradation.
\(t_3 : \) is the delay time between plasma insulin and glucose production.
\(\alpha (A.G) \) and \(\beta (B.G) : \) describe the effects of glucagon and insulin on the blood glucose concentration, respectively.
\(\gamma (R.G) : \) Uptake of glucose by muscles and other tissues is, where \(R \) is an externally determined quantity describing the activity of the organism.
\(\phi (G) : \) is The dependence of the insulin secretion rate on the blood glucose concentration and is a decreasing function of \(G \).
\(\psi (G) : \) represents the dependence of the glucagon secretion rate on the blood glucose concentration and is an increasing function of \(G \).
The two functions \(sh_1(A.B) \) and \(h_2(A.B) \) represents the mutual and self-inhibitions of the secretion rates on the insulin and glucagon levels.
Equations

Piecewise-Linear Model to find Ra(t):

\[
R_{a,i}(t) = \begin{cases}
 \frac{k_i}{t_i} - \frac{k_{i-1}}{t_{i-1}} & \text{per } t_{i-1} \leq t \leq t_i, \ i = 1 \ldots 7 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
Ra(t) = 0.
\]

Plasma glucose concentration:

\[
\dot{G} = -p_1 G - X(G + G_b) + P(t) \\
G(0) = G_0
\]

Plasma insulin concentration:

\[
\dot{X} = -p_2 X + p_3 I \\
X(0) = X_0 \\
\dot{I} = -n(I + I_0) + u(t)/V_i \\
I(0) = I_0
\]

Kinetic modeling [42]

\[
\dot{x} = u - b_3 z + G_{exg} \\
\dot{u} = -k_0 u - b_1 b_3 y + b_1 b_3 z + b_1 (b_0 - G_{exg}) \\
\dot{z} = -k_2 z + k_2 y
\]

\[
\begin{align*}
G &= G_{exg}(t) - GU_1(t) + NEGB(t) - G_{ren}(t) \\
GU_1(t) &= \sum_{i=0}^{n} b_3 z(t_i) - b_3 z(0) \\
NEGB(t) &= \sum_{i=0}^{n} b_3 u(t_i) - u(0)
\end{align*}
\]

Variable description

Values, and \(p_1 \), \(p_2 \), and \(p_3 \) are rate parameters. Specifically, \(p_1 \) is the fractional (i.e., per unit distribution volume) glucose effectiveness (GE) measuring glucose ability per se to promote glucose disposal and inhibit glucose production.

\(p_2 \): is the rate constant of the remote insulin compartment from which insulin action is emanated.

\(p_3 \): is a scale factor governing the amplitude of insulin action.

\(\{k_{i,j}\} \) is the unknown parameter set representing the values of Ra at the break times.

\(G(t) \): represent the differences of plasma glucose concentration.

\(I(t) \): represent free plasma insulin concentration.

\(P(t) \): is the rates of infusion of exogenous glucose.

\(u(t) \): is the rates of infusion of exogenous insulin.

\(X(t) \): is proportional to the concentration of insulin in the remote compartment.

\(G_b \): the value of corresponds approximately to the basal plasma glucose concentration found in normal individuals.

\(G \): is basal values of plasma glucose concentration.

\(I \): free plasma insulin concentration.

\(V \): is the insulin distribution volume.

\(n \): is the fractional disappearance rate of insulin.

\(y \): is a circulating concentration of insulin.

\(x \): is a circulating concentration of glucose.

\(u \): is the endogenous glucose balance.

\(z \): peripheral insulin-dependent glucose utilization.

\(b_i \) and \(k_i \): are six parameters that necessary to identify all state variables.

\(k_0 \): is a supplementing time constant.

\(G_{exg}(t) \): exogenous input of glucose

\(GU_1(t) \): insulin-controlled peripheral glucose disappearance.

\(NEGB(t) \): net endogenous glucose balance

\(G_{ren}(t) \): renal glucose excretion.
The glucose model:

\[
\frac{dx}{dt} = NHGB(x,u_{12},u_2) - F_3 - F_4 - F_5 + x_{\text{input}}
\]

The net hepatic glucose balance:

\[
NHGB(x,u_{12},u_2) = F_1(x,u_{12},u_2) - F_2(x,u_{12})
\]

Insulin equations:

\[
\frac{du_{11}}{dt} = -(m_{01} + m_{21} + m_{31})u_{11} + m_{12}u_{12} + m_{13}u_{13} + u_{\text{input}}
\]

\[
\frac{du_{12}}{dt} = -(m_{02} + m_{12})u_{12} + m_{21}u_{11} + F_6(u_{2p} - x)
\]

\[
\frac{du_{13}}{dt} = -m_{13}u_{13} + m_{31}u_{11}
\]

Glucagon equation:

\[
\frac{du_2}{dt} = -h_{02}u_2 + F_7(x,u_{13})
\]

The insulin model:

\[
\frac{dl_p}{dt} = f_1(G_1) - E \left(\frac{I_p}{V_p} - \frac{I_i}{V_i} \right) - \frac{I_p}{t_p}
\]

\[
\frac{dl_i}{dt} = E \left(\frac{I_p}{V_p} - \frac{I_i}{V_i} \right) - \frac{I_i}{t_i}
\]

The glucose model:

\[
\frac{dG}{dt} = G_{\text{in}} - f_2(G) - f_3(G)f_4(I_i) + f_5(x_3)
\]

\[
f_1(G) = \frac{R_m}{1 + \exp((C_1 - G/V_g)/\alpha_1)}
\]

\[
f_2(G) = U_b(1 - \exp(-G/(C_2V_g)))
\]

\[
f_3(G) = \frac{G}{(C_2V_g)}
\]

\[
f_4(I_i) = U_0 + \frac{1 + \exp(-\beta I_i(1/C_4(1/V_1 + 1/Et_i)))}{1 + \exp(\alpha(x_3/V_p)/C_5)}
\]

\[
f_5(x_3) = \frac{R_g}{1 + \exp(\alpha(x_3/V_p)/C_5)}
\]

The receptor model:

\[
\frac{dR_{b,a}}{dt} = k_{b,\text{bind},a}I_{f,\text{free}}R_{f,a} + k_{a,\text{act},b}R_{b,a} - k_{d,\text{dis},a}R_{b,a} - k_{i,\text{in},b}R_{b,a}
\]

\[
\frac{dR_{b,i}}{dt} = k_{b,\text{bind},i}I_{f,\text{free}}R_{f,i} + k_{a,\text{act},b}R_{b,i} - k_{d,\text{dis},i}R_{b,i} - k_{i,\text{in},b}R_{b,i}
\]

\[
\frac{dR_{f,a}}{dt} = k_{d,\text{dis},a}R_{b,a} + k_{a,\text{act},f}R_{f,a} - k_{b,\text{bind},a}I_{f,\text{free}}R_{f,a} - k_{i,\text{in},f}R_{f,a}
\]

\[
\frac{dR_{f,i}}{dt} = k_{d,\text{dis},i}R_{b,i} + k_{a,\text{act},f}R_{f,i} - k_{b,\text{bind},i}I_{f,\text{free}}R_{f,i} - k_{i,\text{in},f}R_{f,i}
\]

Variable description:

- \(x_i\): denotes the amount of glucose in the plasma and extracellular fluids.
- \(u_{1p}\): is the amount of stored insulin in the pancreas.
- \(u_{2p}\): is the amount of promptly releasable insulin in the pancreas.
- \(u_{11}\): is the amount of insulin in the plasma.
- \(u_{12}\): is the amount of insulin in liver.
- \(u_{13}\): is the amount of insulin in the interstitial fluids.
- \(u_{2}\): is the amount of glucagon in the plasma and interstitial fluids.
- \(m_{ij}, h_{ij}\) and \(k_{ij}\): are appropriate rate constants.
- \(W, F_6\) and \(F_7\): represent the insulin synthesis rate, insulin secretion rate and glucagon secretion rate, respectively.
- \(x_{\text{input}}\) and \(u_{\text{input}}\): describe the input rates of glucose and insulin to the plasma, respectively.

Figure 7

\[G: \text{is the amount of glucose in the plasma and intercellular space.}\]
\[I_p: \text{is the amount of insulin in the plasma.}\]
\[I_i: \text{is the amount of insulin in the interstitial space.}\]
\[x_3: \text{represents the delay between insulin in plasma and its effect on the hepatic glucose production.}\]
\[f_1(G): \text{is the pancreatic insulin production controlled by the glucose concentration.}\]
\[f_2(G): \text{is the insulin-independent glucose utilization (glucose uptake by the brain and nerve cells).}\]
\[f_3(G): \text{is the glucose-dependent term in the function describing glucose utilization.}\]
\[f_4(I_i): \text{is the insulin-dependent term.}\]
\[f_5(x_3): \text{is the influence of insulin on the hepatic glucose production.}\]
\[E: \text{is the transfer rate of the transport of insulin between plasma and intercellular space.}\]
\[V_p: \text{is the distribution volume for insulin in plasma, and}\]
\[V_i: \text{the effective volume of the intercellular space}\]
\[R_{b,a}: \text{is the amount of bound active receptors.}\]
\[R_{b,i}: \text{is the amount of inactive bound receptors.}\]
\[R_{f,a}: \text{is the amount of free active receptors.}\]
\[R_{f,i}: \text{is the amount of free inactive receptors.}\]
\[I_{f,\text{free}}: \text{is the amount of free insulin in the intercellular space.}\]
\[k_{b,\text{bind},a}: \text{is the active receptor binding rate constant.}\]
\[k_{b,\text{bind},i}: \text{is the inactive receptor binding rate constant.}\]
\[k_{d,\text{dis},a}: \text{is the active receptor dissociation rate constant.}\]
\[k_{d,\text{dis},i}: \text{is the inactive receptor dissociation rate constant.}\]
Glucose Subsystem:
\[G_p(t) = EGP(t) + Ra(t) - U_id(t) - E(t) - k_1 \cdot G_p(t) + k_2 \cdot G_i(t) \; ; \; \; G_p(0) = G_{pb} \]
\[G_i(t) = -U_id(t) + k_1 \cdot G_p(t) - k_2 \cdot G_i(t) \; ; \; \; G_i(0) = G_{ib} \]
\[G(t) = \frac{G_p}{V_g} \; ; \; G(0) = G_b \]

Insulin Subsystem:
\[i_i(t) = -(m_1 + m_3) \cdot I_i(t) + m_2 I_p(t) + S(t) \; ; \; I_i(0) = I_{ib} \]
\[I_p(t) = -(m_2 + m_4) \cdot I_p(t) + m_1 I_i(t) \; ; \; I_p(0) = I_{pb} \]
\[I(t) = \frac{I_p}{V_i} \; ; \; I(0) = I_b \]

Unit Process Models:

1) **Endogenous Glucose Production:**
\[EGP(t) = k_{p1} - k_{p2} \cdot G_p(t) - k_{p3} \cdot I_i(t) - k_{p4} \cdot I_po(t) \]
\[EGP(0) = EGP_b \]
\[I_i(t) = -k_1 \cdot [I_i(t) - I(t)] I_i(0) = I_b \]
\[I_{id}(t) = -k_1 \cdot [I_{id}(t) - I_i(t)] I_{id}(0) = I_{ib} \]

2) **Glucose Rate of Appearance:**
\[Q_{sto}(t) = Q_{sto1}(t) + Q_{sto2}(t) Q_{sto}(0) = 0 \]
\[Q_{sto1}(t) = -k_{gr1} \cdot Q_{sto1}(t) Q_{sto1}(0) + D \cdot d(t) Q_{sto1}(0) = 0 \]
\[Q_{sto2}(t) = -k_{empt} \cdot Q_{sto2}(t) Q_{sto2}(0) + k_{gr2} Q_{sto1}(t) Q_{sto2}(0) = 0 \]
\[Q_{gut}(t) = -k_{abs} \cdot Q_{gut}(t) + k_{empt} \cdot Q_{sto1}(t) Q_{sto2}(t) Q_{gut}(0) = 0 \]
\[Ra(t) = \frac{f \cdot k_{abs} \cdot Q_{gut}(t)}{BW} \]

3) **Glucose Utilization:**
\[U(t) = U_i(t) + U_id(t) \]

4) **Insulin Secretion:**
\[S(t) = \gamma \cdot I_{po}(t) \]

5) **Glucose Renal Excretion:**
\[E(t) = k_{e1} \cdot [G_p(t) - k_{e2}] \] if \(G_p(t) > k_{e2} \)
\[E(t) = 0 \] if \(G_p(t) \leq k_{e2} \]

Reference	Equations	Variable description
Dalla Man et al. [28]	\(k_{act,b} \): is the bound receptor activation rate constant. \(k_{act,f} \): is the free receptor activation rate constant. \(k_{in,b} \): is the bound receptor inactivation rate constant. \(k_{in,f} \): is the free receptor inactivation rate constant. \(G_p \) and \(G_i \): are glucose masses in plasma and rapidly equilibrating tissues, and in slowly equilibrating tissues, respectively. \(G \): plasma glucose concentration. \(b \): denotes basal state. \(EGP \): is the endogenous glucose production. \(Ra \): is the glucose rate of appearance in plasma. \(E \): is renal excretion. \(U_{id} \) and \(U_{id} \): are the insulin-independent and dependent glucose utilization, respectively. \(V_{G} \): is the distribution volume of glucose. \(k_1 \) and \(k_2 \): are the rate parameters. \(I_p \) and \(I_i \): are insulin masses in plasma and liver, respectively. \(I \): is plasma insulin concentration. \(V_I \): is the distribution volume of insulin. \(m_1 \), \(m_2 \), and \(m_4 \): are rate parameters. \(S \): is insulin secretion. \(I_{po} \): is the amount of insulin in the portal vein. \(I_{id} \): is a delayed insulin signal realized with a chain of two compartments. \(k_{p1} \): is the extrapolated \(EGP \) at zero glucose and insulin. \(k_{p2} \): is liver glucose effectiveness. \(k_{p3} \): is parameter governing amplitude of insulin action on the liver. \(k_{p4} \): is parameter governing amplitude of portal insulin action on the liver. \(k_{i} \): is rate parameter accounting for the delay between insulin signal and insulin action. \(Q_{sto} \): is the amount of glucose in the stomach. \(Q_{sto1} \): is solid phase and \(Q_{sto2} \): is liquid phase. \(Q_{gut} \): is the glucose mass in the intestine. \(k_{gri} \): is the rate of grinding. \(k_{empt} \) \(Q_{sto} \): is the rate constant of gastric emptying, which is a nonlinear function of \(Q_{sto} \). \(k_{abs} \): is the rate constant of intestinal absorption. \(f \): is the fraction of intestinal absorption, which appears in plasma. \(D \): is the amount of ingested glucose. \(BW \): is the body weight. \(Ra \): is the appearance rate of glucose in plasma. \(\gamma \): is the transfer rate constant between portal vein and liver. \(k_{e1} \): is the glomerular filtration rate. \(k_{e2} \): is the renal threshold of glucose.	

Figure 6
This paper explains the general mechanism of the (glucose-insulin–glucagon) system. It extracts the main equations from research which show mathematical models in blood glucose regulatory system that have been done among thirteen research which were studied by biochemistry, medical, biophysical, physiological researchers. Much work can be done in the future to improve the blood glucose regulatory system in diabetes. It is known that science has not found the exact mechanism of how this system works, but it is an ongoing challenge that keeps scientists working continually in order to improve their hypotheses as much as possible to help diabetics in the world.

IV. REFERENCE

[1] D. Meszéna, “Model-based analysis and parameter estimation of a human blood glucose control system model,” 2014.

[2] H. Kang, K. Han, and M. Choi, “Mathematical model for glucose regulation in the whole-body system,” Islets, vol. 4, no. 2, pp. 84–93, Mar. 2012, doi: 10.4161/is.19505.

[3] M. Brenner et al., “Estimation of insulin secretion, glucose uptake by tissues, and liver handling of glucose using a mathematical model of glucose-insulin homeostasis in lean and obese mice,” Heliyon, vol. 3, no. 6, p. e00310, Jun. 2017, doi: 10.1016/j.heliyon.2017.e00310.

[4] O. Vahidi, “Dynamic modeling of glucose metabolism for the assessment of type II diabetes mellitus,” PhD Thesis, University of British Columbia, 2013.

[5] M. Giugliano, M. Bove, and M. Grattarola, “Insulin release at the molecular level: metabolic-electrophysiological modeling of the pancreatic beta-cells,” IEEE Trans. Biomed. Eng., vol. 47, no. 5, pp. 611–623, 2000.

[6] N. A. Abbasi and O. B. Akan, “An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things,” IEEE Trans. Nanobioscience, vol. 16, no. 8, pp. 783–791, 2017.

[7] P. Jauslin-Stetina, “Mechanism-Based Modeling of the Glucose-Insulin Regulation during Clinical Provocation Experiments,” PhD Thesis, Acta Universitatis Upsaliensis, 2008.

[8] U. Jamaludin, “Developing and validating a new comprehensive glucose-insulin pharmacokinetics and pharmacodynamics model,” 2013.

[9] C.-W. Lin, “Modeling glucose-insulin kinetics and development of type 2 diabetes in offspring of diabetic parents,” PhD, University of Iowa, Iowa City, Iowa, USA, 2011.

[10] R. R. Whitesell, D. M. Regen, and N. A. Abumrad, “Evidence for functionally distinct glucose transporters in basal and insulin-stimulated adipocytes,” Biochemistry, vol. 28, no. 17, pp. 6937–6943, Aug. 1989, doi: 10.1021/bi00443a024.

[11] I. Kojima, J. Medina, and Y. Nakagawa, “Role of the glucose-sensing receptor in insulin secretion,” Diabetes Obes. Metab., vol. 19, pp. 54–62, 2017.

[12] I. Quesada, E. Tuduri, C. Ripoll, and Á. Nadal, “Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes,” J. Endocrinol., vol. 199, no. 1, pp. 5–19, Oct. 2008, doi: 10.1677/JOE-08-0290.

[13] P. G. Jacobs et al., “Development of a fully automated closed loop artificial pancreas control system with dual pump delivery of insulin and glucagon,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 397–400.

[14] G. M. Grodsky, “A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling,” J. Clin. Invest., vol. 51, no. 8, pp. 2047–2059, 1972.

[15] M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, and S. Nagamatsu, “TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: different behaviour of granule motion between normal and Goto–Kakizaki diabetic rat β-cells,” Biochem. J., vol. 381, no. 1, pp. 13–18, 2004.

[16] S. Nagamatsu, “TIRF microscopy analysis of the mechanism of insulin exocytosis,” Endocr. J., pp. 0606260021–0606260021, 2006.

[17] M. Ohara-Imaizumi et al., “Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis,” J. Cell Biol., vol. 177, no. 4, pp. 695–705, 2007.

[18] R. V. Overgaard, K. Jelic, M. Karlsson, J. E. Henriksen, and H. Madsen, “Mathematical beta cell model for insulin secretion following IVGTT and OGTT,” Ann. Biomed. Eng., vol. 34, no. 8, pp. 1343–1354, 2006.

[19] G. Toffolo, M. Campioni, R. Basu, R. A. Rizza, and C. Cobelli, “A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction,” Am. J. Physiol.-Endocrinol. Metab., vol. 290, no. 1, pp. E169–E176, 2006.

[20] A. De Gaetano and O. Arino, “Mathematical modelling of the intravenous glucose tolerance test,” J. Math. Biol., vol. 40, no. 2, pp. 136–168, 2000.

[21] G. Toffolo, R. N. Bergman, D. T. Finegood, C. R. Bowden, and C. Cobelli, “Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog,” Diabetes, vol. 29, no. 12, pp. 979–990, 1980.

[22] N. Gupta, R. P. Hoffman, and P. Veng-Pedersen, “Pharmacokinetic/pharmacodynamic differentiation of pancreatic responsiveness in obese and lean children,” Biopharm. Drug Dispos., vol. 26, no. 7, pp. 287–294, 2005.

[23] “Scheme of mechanism of glucose-induced insulin secretion (4) | Download Scientific Diagram.” [Online]. Available: https://www.researchgate.net/figure/Scheme-of-mechanism-of-glucose-induced-insulin-secretion-4_fig4_319555151. [Accessed: 07-Aug-2019].

[24] H. Kristinsson, “Effects of Free Fatty Acids on Insulin and Glucagon Secretion—with special emphasis on the role of Free fatty acid receptor 1,” PhD Thesis, Acta Universitatis Upsaliensis, 2017.

[25] “Glucose Regulation.” [Online]. Available: https://www.austinec.edu/apreview/EmphasisItems/Glucose_regulation.html. [Accessed: 02-Aug-2019].

[26] E. Gylfe, “Glucose Control of Glucagon Secretion: There Is More to It Than KATP Channels,” Diabetes, vol. 62, no. 5, pp. 1391–1393, May 2013, doi: 10.2337/db13-0193.
[27] E. Ackerman, L. C. Gatewood, J. W. Rosevear, and G. D. Molnar, “Model studies of blood-glucose regulation,” Bull. Math. Biophys., vol. 27, no. 1, pp. 21–37, 1965.

[28] C. Dalla Man, R. A. Rizza, and C. Cobelli, “Meal simulation model of the glucose-insulin system,” IEEE Trans. Biomed. Eng., vol. 54, no. 10, pp. 1740–1749, 2007.

[29] C. Cobelli and A. Mari, “Validation of mathematical models of complex endocrine-metabolic systems. A case study on a model of glucose regulation,” Med. Biol. Eng. Comput., vol. 21, no. 4, pp. 390–399, 1983.

[30] M. E. Fisher and K. L. Teo, “Optimal insulin infusion resulting from a mathematical model of blood glucose dynamics,” IEEE Trans. Biomed. Eng., vol. 36, no. 4, pp. 479–486, 1989.

[31] R. N. Bergman, “Minimal model: perspective from 2005,” Horm. Res. Paediatr., vol. 64, no. Suppl. 3, pp. 8–15, 2005.

[32] R. N. Bergman, “Toward physiological understanding of glucose tolerance: minimal-model approach,” Diabetes, vol. 38, no. 12, pp. 1512–1527, 1989.

[33] C. Della Man, A. Caumo, and C. Cobelli, “The oral glucose minimal model: estimation of insulin sensitivity from a meal test,” IEEE Trans. Biomed. Eng., vol. 49, no. 5, pp. 419–429, 2002.

[34] R. N. Bergman, R. Prager, A. Volund, and J. M. Olefsky, “Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp.,” J. Clin. Invest., vol. 79, no. 3, pp. 790–800, 1987.

[35] S. Welch, S. S. P. Gebhart, R. N. Bergman, and L. S. Phillips, “Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects,” J. Clin. Endocrinol. Metab., vol. 71, no. 6, pp. 1508–1518, 1990.

[36] G. M. Steil, A. Volund, S. E. Kahn, and R. N. Bergman, “Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model: suitability for use in population studies,” Diabetologia, vol. 42, no. 2, pp. 250–256, 1999.

[37] K. Zarkogianni, A. Vazeou, S. G. Mougiakakou, A. Prountzou, and K. S. Nikita, “An insulin infusion advisory system based on autotuning nonlinear model-predictive control,” IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2467–2477, 2011.

[38] C. Cobelli and A. Ruggeri, “Evaluation of portal/peripheral route and of algorithms for insulin delivery in the closed-loop control of glucose in diabetes-A modeling study,” IEEE Trans. Biomed. Eng., no. 2, pp. 93–103, 1983.

[39] F. H. El-Khatib, J. Jiang, and E. R. Damiano, “Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine,” J. Diabetes Sci. Technol., vol. 1, no. 2, pp. 181–192, 2007.

[40] C. L. Adams and D. G. Lasseigne, “An extensible mathematical model of glucose metabolism. Part I: the basic glucose-insulin-glucagon model, basal conditions and basic dynamics,” Lett. Biomath., vol. 5, no. 1, pp. 70–90, Dec. 2018, doi: 10.1080/23737867.2018.1429332.

[41] M. E. Fisher, “A semiclosed-loop algorithm for the control of blood glucose levels in diabetics,” IEEE Trans. Biomed. Eng., vol. 38, no. 1, pp. 57–61, 1991.

[42] E. Salzsieder, G. Albrecht, U. Fischer, and E.-J. Freyse, “Kinetic modeling of the glucoregulatory system to improve insulin therapy,” IEEE Trans. Biomed. Eng., no. 10, pp. 846–855, 1985.

[43] I. M. Tolić, E. Mosekilde, and J. Sturis, “Modeling the insulin–glucose feedback system: the significance of pulsatile insulin secretion,” J. Theor. Biol., vol. 207, no. 3, pp. 361–375, 2000.