Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Persistent endotheliopathy in the pathogenesis of long COVID syndrome

Helen Fogarty1 | Liam Townsend2,3 | Hannah Morrin1 | Azaz Ahmad1 | Claire Comerford1 | Ellie Karampini1 | Hanna Englert4 | Mary Byrne5 | Colm Bergin2,3 | Jamie M. O'Sullivan1 | Ignacio Martin-Loeches6 | Parthiban Nadarajan7 | Ciara Bannan2 | Patrick W. Mallon8,9 | Gerard F. Curley10 | Roger J. S. Preston1,11 | Aisling M. Rehill1 | Dennis McGonagle12,13 | Cliona Ni Cheallaigh2,3 | Ross I. Baker14,15 | Thomas Renné4,16 | Soracha E. Ward1 | James S. O’Donnell1,5,11,15 | the Irish COVID-19 Vasculopathy Study (iCVS) investigators

1Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
2Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
3Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
4Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
5National Coagulation Centre, St James’s Hospital, Dublin, Ireland
6Department of Intensive Care Medicine, St James’s Hospital, Dublin, Ireland
7Department of Respiratory Medicine, St James’s Hospital, Dublin, Ireland
8Department of Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
9St Vincent’s University Hospital, Dublin, Ireland
10Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
11National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
12Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
13National Institute for Health Research (NIHR), Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
14Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, WA, Australia
15Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland
16Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany

Correspondence
Soracha E. Ward, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, D02Y777 Dublin, Ireland.
Email: sorachaward@rcsi.ie

Abstract
Background: Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this “long COVID” syndrome remain unknown.
INTRODUCTION

Recent studies have reported sustained symptoms in a significant proportion of patients following acute SARS-CoV-2 infection.\(^1\,^2\) Patients with this "long COVID" syndrome complain of persistent breathlessness, fatigue, and decreased exercise tolerance.\(^2\) Although the biological mechanisms underlying these ongoing symptoms remain unknown, we recently reported that persistent increased D-dimer levels were present in approximately 25% of convalescent COVID-19 patients up to 4 months following the apparent resolution of their acute infection.\(^3\)

Importantly, these increased D-dimers were seen in a significant number of both hospitalized and nonhospitalized COVID-19 patients, respectively. Similarly, von Meijenfeldt et al also observed persistently elevated D-dimers in convalescent COVID-19 patients at 4 months after hospital discharge.\(^4\) Moreover, sustained prothrombotic changes in thrombin-generating capacity were also reported. Critically, however, the biological mechanisms underlying these persistent procoagulant effects following acute COVID-19 remain poorly understood.

Postmortem studies in acute COVID-19 have demonstrated disseminated thrombosis throughout the pulmonary vasculature.\(^5\,^7\) These thrombi are platelet- and fibrin-rich, and also contain neutrophils, neutrophil extracellular traps (NETs) and activated factor XII (FXII) that triggers the contact pathway.\(^7\,^8\) Current evidence suggests pulmonary thrombi in patients with severe
COVID-19 likely arise in situ within the lungs, rather than being embolic in origin.7,9 Autopsy studies have consistently highlighted that marked pulmonary endotheliopathy is a characteristic feature of severe COVID-19.5,7–9 Consistent with these pathological findings, plasma markers of endothelial cell (EC) activation including von Willebrand factor antigen (VWF:Ag),10–15 VWF propeptide (VWFPp),16 and soluble thrombomodulin (sTM)16 are all markedly elevated in patients with severe COVID-19. Importantly, these EC biomarkers also correlate with disease severity.20,12,36,17 Given the key roles of endotheliopathy and immunothrombosis in modulating the pathogenesis of acute SARS-CoV-2,18 we hypothesized that persistent EC activation might be important in modulating ongoing procoagulant effects in convalescent COVID-19 patients and thereby contribute to the pathogenesis underpinning long COVID.

2 | METHODS

Consecutive adult patients were enrolled from the post-COVID-19 review clinic in St James’s Hospital, Dublin, between May and September 2020. Patients were assessed at a minimum of 6 weeks following either symptom resolution in nonhospitalized patients or hospital discharge for those requiring admission.3 Informed written consent was obtained from all participants and ethical approval was obtained from the St James’s Hospital Research Ethics Committee. A control group of nonhospitalized asymptomatic controls (n = 17, mean age 47 ± 12 years) were also recruited. Plasma VWF:Ag, VWFPp, FVIII:C, and sTM were analyzed as previously described.16 Thrombin generation was performed in a Fluoroskan Ascent Fluorometer with Thrombinoscope software (Stago) using PPP Low reagent (1 pM tissue factor, 4 mM phospholipids) as before.13 Additionally, the release of extracellular DNA was measured using the fluorescent DNA-intercalating dye Sytox Green (Invitrogen) and DNAase activity was assessed by an in vitro NET degradation assay.20,21 Activation of the contact factor pathway was evaluated by photometric measurement using conversion of the chromogenic substrate S-2302 (Chromogenix).22 Clinical assessment at time of outpatient review included: chest x-ray, 6-min walk test (6MWT), measuring distance covered, lowest arterial oxygen saturation, and maximal exertion (using a Modified Borg Scale). Fatigue scores were assessed using the Chalder fatigue scale.23 Statistical analyses were performed using the Mann-Whitney U tests and the Spearman rank correlation in GraphPad Prism 9.0 (GraphPad Software, USA) with a p value of < .05 considered statistically significant.

3 | RESULTS AND DISCUSSION

Fifty convalescent COVID-19 patients (mean age 50 ± 17 years) were assessed at a median of 68 (interquartile range 61.3–72) days following COVID-19 symptom resolution or hospital discharge (Table S1). The majority of patients (37/50, 74%) required hospitalization during their acute COVID-19 illness and eight patients (16%) required intensive care unit admission. Median body mass index was 28 kg/m2 (interquartile range 25–32) and comorbidities were apparent in 31 patients (31/50, 62%) (Table S1). All hospitalized patients received weight- and renally adjusted low molecular weight heparin prophylaxis during their inpatient stay. Conversely, nonhospitalized and discharged patients did not receive thromboprophylaxis and none of the cohort was on anticoagulation at time of convalescent clinic review.

In keeping with the recent report of von Meijenfeldt et al.,4 significantly enhanced thrombin generation was observed in convalescent COVID-19 patients (Figure 1A–E and Figure S1A,B). Compared with healthy controls, lag times were significantly shorter in convalescent COVID-19 patients (medians 6.2 min vs. 8.2 min, p < .0001, 95% CI −2.57 to −1.02) (Figure 1B). Additionally, endogenous thrombin potential and peak thrombin were both significantly higher in convalescent COVID-19 patients (median endogenous thrombin potential: 1111 nM/min vs. 768 nM/min, p = .04, 95% CI 15–416; median peak thrombin: 157 nM vs. 97 nM, p < .0001, 95% CI 39–93) (Figure 1C–D). Convalescent COVID-19 patients also demonstrated a shorter time to peak compared with controls (median 9.8 min vs. 13.8 min, p < .0001, 95% CI −4.8 to −2.7) (Figure 1E). To investigate whether ongoing contact pathway activation was responsible for the effects on thrombin generation, FXII activation was assessed. No significant differences in systemic FXIIa levels were seen between a subset of convalescent patients (n = 20) and controls (n = 17) (p = .16, 95% CI −0.15 to 0.03) (Figure S1C). Elevated plasma FVIII:C levels have previously been reported in patients with acute COVID-19 and are known to influence thrombin generation. In the convalescent COVID-19 patient cohort, plasma FVIII:C levels remained significantly increased compared with controls (median 1.53 IU/ml vs. 1.13 IU/ml; p = .04, 95% CI 0.03–0.44) with 14 (28%) patients having FVIII:C levels >1.5 IU/ml (Figure 1F). Notably, one patient with FVIII:C of 2.7 IU/ml at follow-up 84 days postacute illness was later readmitted with pulmonary embolism. In addition, FVIII:C levels correlated with peak thrombin generation (p = .001) (Figure 1G). Together, these findings suggest that persistent increases in plasma FVIII levels contribute to ongoing increased
thrombin generation potential in a significant proportion of convalescent COVID-19 patients.

We next investigated the mechanism(s) responsible for the sustained elevation in plasma FVIII:C levels in convalescent COVID-19 patients. Increased FVIII levels are associated with acute phase responses. However, in contrast to the significant elevation seen in FVIII:C levels in convalescent COVID-19 patients, acute phase markers (including C-reactive protein, neutrophil and white cell counts, interleukin-6, and sCD25 levels) had normalized in most patients (Table S1 and Figure S1D,E). Although NETosis has been implicated in acute COVID-19 immunothrombosis and endotheliopathy, comparison of NETosis parameters in blood collected by peripheral venipuncture including DNase activity and extracellular DNA in a subset of convalescent patients and controls did not reveal any differences (median DNase activity convalescent COVID-19 (n = 20); 22 792 AU vs. controls (n = 8); 18 835 AU; p = .53 95% CI −4554 to 9410 and median extracellular DNA convalescent COVID-19 (n = 16); 0.37 μg/ml vs. controls (n = 4); 0.37 μg/ml; p = .73 95% CI −0.04 to 0.05) (Figure S1F–G).

In normal plasma, the majority of FVIII circulates in high-affinity complex with VWF. Moreover, both FVIII and VWF are predominantly synthesized within EC. We observed that plasma VWF:Ag levels were also significantly increased in convalescent COVID-19 patients compared with controls (median 1.1 IU/ml vs. 0.84 IU/ml; p = .004, 95% CI 0.09–0.57) (Figure 1H). Marked interindividual variation was observed, with VWF:Ag levels ranging from 0.48 to 3.4 IU/ml in convalescence. Notably, VWF:Ag levels above the upper limit of normal were observed in 15 patients (30%) with median VWF:Ag 2.0 IU/ml in this subgroup (Figure 1H). In addition, FVIII:C levels also correlated strongly with VWF:Ag levels (r = 0.87; p < .0001) (Figure 1). During posttranslational modification within ECs, an N-terminal 741 residue VWFpp is cleaved from each VWF monomer. VWF:Ag and VWFpp are subsequently stored together within WPB and co-secreted in equimolar amounts following EC activation. We recently reported markedly elevated VWFpp levels in acute COVID-19 and found that these levels correlated inversely with clinical outcome. Interestingly, VWFpp levels were also significantly elevated in convalescent COVID-19 patients compared with controls (p = .009, 95% CI 0.06–0.5) (Figure 2A). Intervariation was again observed, with VWFpp levels being above the upper limit of normal in 10 patients (20%). Consistent with the concept of ongoing endotheliopathy, VWFpp levels also correlated strongly with VWF:Ag levels (r = 0.87; p < .0001) (Figure 2B). Collectively, these data demonstrate that persistent endotheliopathy is a common finding in convalescent COVID-19 patients.

Thrombomodulin (TM) is an EC surface receptor that facilitates thrombin-induced activation of protein C on EC surfaces. Recently, Giri et al reported that TM plays a key role in maintaining EC quiescence. Of particular relevance, they showed that VWF expression and secretion was markedly increased in TM-deficient ECs. Interestingly, Goshua et al also demonstrated increased shedding of TM from EC in patients with acute COVID-19. Furthermore, TM levels were found to represent an independent prognostic biomarker. Given these data, we proceeded to investigate sTM levels in our cohort of convalescent COVID-19 patients. We observed that sTM levels remained significantly elevated in convalescent COVID-19 compared with controls (median 5.3 vs. 4.1 ng/ml; p = .02, 95% CI 0.01–2.7) (Figure 2C). Interestingly, the highest sTM level (14.4 ng/ml) was observed in a patient who did not require hospitalization, suggesting that sustained endotheliopathy during convalescence is not restricted to those who experienced severe COVID-19. Consistent with the concept that loss of TM may be associated with reduced EC quiescence, we observed a significant correlation between sTM levels and plasma VWF:Ag levels (Figure 2D). Highest levels of all the EC activation parameters studied were consistently observed in the convalescent COVID cohort (Figure 2E).

To examine factors that influence sustained endotheliopathy following COVID-19, clinical parameters including age, comorbidities, and severity of acute illness were assessed. On univariate analysis, plasma VWF:Ag, VWFpp, FVIII:C, and sTM were all significantly higher in patients who had required hospital admission during their acute COVID-19; in patients aged ≥50 years and in patients with two or more comorbidities (Figure 2G–H). Given this association, we sought to further evaluate using multivariable linear regression analysis including the common confounders of age, sex, and severity of initial infection. Following adjustment, however, a significant relationship between 6MWT distance and VWF:Ag (beta coefficient −4.4, 95% CI −65.5 to 56.7, p = .89) and VWFpp (beta coefficient −64.2, 95% CI −157.8 to 29.3, p = .17) was no longer seen.

Our study has some limitations. These include the small number of cases, the limited period after the acute infection, and the observational and retrospective design. In addition, the relationship between clinical outcome measures such as the 6MWT may be confounded by old age and comorbidities. Finally, EC activation is not unique to COVID-19. EC activation and dysfunction have also been described to play important roles in the pathogenesis of other severe viral illnesses, including influenza. However, specific differences in vascular perturbation between acute COVID-19 and influenza have also been described. Ackermann et al showed that at autopsy, alveolar capillary microthrombi were 9 times more prevalent in patients with COVID-19 compared with patients with influenza. Moreover, new pulmonary vessel formation was also significantly higher in COVID-19 patients, with prominent intussusceptive angiogenesis. In addition, Stals et al recently reported that thrombotic complications were significantly higher in hospitalized patients with acute COVID-19 compared with influenza. Collectively, these data suggest that are some similarities but also
important differences vis-a-vis pathogenesis, endotheliopathy and immunothrombosis between acute COVID-19 and other acute viral infections. To better understand the potential translational significance of our findings, additional studies including "omics" and imaging that directly compare EC activation and dysfunction in convalescent COVID-19 patients as opposed to patients recovering from other types of severe viral illness will be essential.

In conclusion, our data demonstrate for the first time that sustained EC activation is common up to 10 weeks following acute SARS-CoV-2 infection. Importantly, this persistent endotheliopathy.

![Comparison of EC activation parameters between convalescent COVID-19 (n = 50) and healthy controls (n = 17) including: (A) VWFpp and (C) sTM. Data are presented as median and the interquartile range. Comparisons between groups were assessed by the Mann-Whitney U test. Dotted lines represent the upper and lower limits of the local normal range with results in the green shaded areas falling within the normal reference range. Correlations are shown between plasma levels of (B) VWF:Ag vs. VWFpp and (D) VWF:Ag vs. sTM. (E) Heatmap visualization indicating EC marker levels detected in each subject (columns) for each protein (rows). (F) Convalescent VWF:Ag results are grouped according to whether acute infection was managed as an outpatient or inpatient; patients were aged ≥50 or <50 years and whether comorbidity counts were ≥2 or <2, respectively. Correlations are shown between 6-min walk test distance and plasma levels of (G) VWF:Ag and (H) VWFpp, respectively. Correlations were evaluated using the Spearman rank correlation test. (ns, not significant, *p < .05, **p < .01, ****p < .0001). EC, endothelial cell; VWF:Ag, von Willebrand factor antigen; VWFpp, von Willebrand factor propeptide]
appears to occur independently of ongoing acute phase response or NETosis and is associated with enhanced thrombin generation potential. We postulate that shedding of TM from EC may play a role in modulating the loss of normal EC quiescence. These findings are interesting given the critical role played by endotheliopathy in the pathogenesis of acute COVID-19. However, further adequately powered clinical trials will be required to determine whether this sustained EC activation and coagulation activation has a role in (1) stratifying patients at increased risk of thrombotic events after resolution of acute SARS-CoV-2 infection who may benefit from extended duration postdischarge thromboprophylaxis and/or (2) the pathogenesis of long COVID syndrome.

ACKNOWLEDGMENTS

The Irish COVID-19 Vasculopathy Study (ICVS) is supported by a Health Research Board COVID-19 Rapid Response award (COVID-2020-086). This research was also supported by a philanthropic grant from the 3 M Foundation to RCSU University of Medicine and Health Sciences in support of COVID-19 research. This work was performed within the Irish Clinical Academic Training (ICAT) Programme, supported by the Wellcome Trust and the Health Research Board (Grant Number 203930/B/16/Z), the Health Service Executive, National Doctors Training and Planning and the Health and Social Care, Research and Development Division, Northern Ireland. J.O.D was supported by the National Children’s Research Centre Project Award (C/18/1). T.R. acknowledges the German Research Foundation (grants A11/SFB 877, P6/KFO 306 and B8/ SFB 841) for funding. Open access funding provided by IReL.

CONFLICT OF INTEREST

James S. O’Donnell has served on the speaker’s bureau for Baxter, Bayer, Novo Nordisk, Sobi, Boehringer Ingelheim, Leo Pharma, Takeda, and Octapharma. He has also served on the advisory boards of Baxter, Sobi, Bayer, Octapharma CSL Behring, Daiichi Sankyo, Boehringer Ingelheim, Takeda, and Pfizer and has also received research grant funding awards from 3 M, Bayer, Pfizer, Shire, Takeda, and Novo Nordisk. The remaining authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTION

Helen Fogarty, Soracha E. Ward, Liam Townsend, Azaz Ahmad, Hannah Morrin, Claire Comerford, Cliona Ni Cheallaigh, Colm Bergin, Jamie M. O’Sullivan, and James S. O’Donnell undertook conception, patient enrollment, data collection, and interpretation. All authors contributed to literature review, final draft writing, and critical revision. All the authors have participated sufficiently in this work, take public responsibility for the content, and have made substantial contributions to this research.

ORCID

Helen Fogarty https://orcid.org/0000-0001-8161-7931
Ellie Karampini https://orcid.org/0000-0003-4082-076X
Roger J. S. Preston https://orcid.org/0000-0003-0108-4077

REFERENCES

1. Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026. https://doi.org/10.1136/bmj.m3026
2. Carfi A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603-605. https://doi.org/10.1001/jama.2020.12603
3. Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064-1070. https://doi.org/10.1111/jth.15267
4. von Meijenfeldt FA, Haverrvall S, Adelmeijer J, et al. Sustained pro-thrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 2021;5:756-759. https://doi.org/10.1182/bloodadvances.2020003968
5. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endotheliopathies, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120-128. https://doi.org/10.1056/NEJMoa2015432
6. Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173:268-277. https://doi.org/10.7326/m20-2003
7. Rapkiewicz AV, Mai X, Carsones SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine. 2020;24:100434. https://doi.org/10.1016/j.eclinm.2020.100434
8. Fox SE, Akmatbekov A, Harbert J, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8:681-686. https://doi.org/10.1016/S2213-2600(20)30243-5
9. Bussani R, Schneider E, Zentilin L, et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. Elife Medicine. 2020;61:103104. https://doi. org/10.1016/j.ebiom.2020.103104
10. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7:e575-e582. https://doi.org/10.1016/s2352-3026(20)30216-7
11. Panigada M, Bottino N, Tagliajure P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelas-tography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18:1738-1742. https://doi.org/10.1111/jth.14850
12. Rauch A, Labreuche J, Lassalle F, et al. Coagulation biomarkers are independent predictors of increased oxygen requirements in COVID-19. J Thromb Haemost. 2020;18:2942-2953. https://doi.org/10.1111/jth.15067
13. Turecek PL, Peck RC, Rangarajan S, et al. Recombinant ADAMTS13 reduces abnormally up-regulated von Willebrand factor in plasma from patients with severe COVID-19. Thromb Res. 2021;201:100-112. https://doi.org/10.1016/j.thromres.2021.02.012
14. Peyvandi F, Artoni A, Novembrino C, et al. Hemostatic alterations in COVID-19. Haematologica. 2021;106(5):1472-1475.
15. Ward SE, Fogarty H, Karampini E, et al. ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J Thromb Haemost. 2021;19(8):1914-1921. https://doi.org/10.1111/jth.15409
16. Ward SE, Curley GF, Lavim M, et al. Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): evidence of acute and sustained endothelial cell activation. Br J Haematol. 2021;192(4):714-719. https://doi.org/10.1111/bjh.17273
17. O’Sullivan JM, Gonagle DM, Ward SE, Preston RJ, O’Donnell JS. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020;7:e553-e555. https://doi.org/10.1016/s2352-3026(20)30215-5
18. O’Donnell JS, Peyvandi F, Martin-Loeches I. Pulmonary immunothrombosis in COVID-19 ARDS pathogenesis. Intensive Care Med.
19. Harmon S, Preston RJS, Ainle F, et al. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement. J Biol Chem. 2008;283:30531-30539. https://doi.org/10.1074/jbc.M802338200

20. Jiménez-Alcázar M, Limacher A, Panda R, et al. Circulating extracellular DNA is an independent predictor of mortality in elderly patients with venous thromboembolism. PLoS One. 2018;13:e0191150. https://doi.org/10.1371/journal.pone.0191150

21. Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358:1202-1206. https://doi.org/10.1126/science.aam8897

22. Björkvist J, de Maat S, Lewandrowski U, et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest. 2015;125:3132-3146. https://doi.org/10.1172/JCI77139

23. Chalder T, Berelowitz G, Pawlikowska T, et al. Development of a fatigue scale. J Psychosom Res. 1993;37:147-153. https://doi.org/10.1016/0022-3999(93)90081-p

24. Jenkins PV, Rawley O, Smith OP, O'Donnell JS. Elevated factor VIII levels and risk of venous thrombosis. Br J Haematol. 2012;157:653-663. https://doi.org/10.1111/j.1365-2414.2012.09134.x

25. Turecek PL, Johnsen JM, Pipe SW, O'Donnell JS. Biological mechanisms underlying inter-individual variation in factor VIII clearance in haemophilia. Haemophilia. 2020;26:575-583. https://doi.org/10.1002/hae.14078

26. Gleson EM, O'Donnell JS, Preston RJ. The endothelial cell protein C receptor: cell surface conductor of cytoprotective coagulation factor signaling. Cell Mol Life Sci. 2012;69:717-726. https://doi.org/10.1007/s00018-011-0825-0

27. Giri H, Panicker SR, Cai X, Biswas I, Weiler H, Rezaie AR. Thrombomodulin is essential for maintaining quiescence in vascular endothelial cells. Proc Natl Acad Sci USA. 2021;118(11):e2022248118.

28. Armstrong SM, Darwish I, Lee WL. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence. 2013;4:537-542. https://doi.org/10.4161/viru.25779

29. Teijaro JR, Walsh KB, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146:980-991. https://doi.org/10.1016/j.cell.2011.08.015

30. Stals MAM, Grootenboers MJH, Guldener C, et al. Risk of thrombotic complications in influenza versus COVID-19 hospitalized patients. Res Pract Thromb Haemost. 2021;5:412-420. https://doi.org/10.1002/rth2.12496

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Fogarty H, Townsend L, Morrin H, et al; the Irish COVID-19 Vasculopathy Study (iCVS) investigators. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19:2546–2553. https://doi.org/10.1111/jth.15490

APPENDIX
Additional investigators of the Irish COVID-19 Vasculopathy Study (iCVS).
Niamh O’Connell (National Coagulation Centre, St James’s Hospital, Dublin), Kevin Ryan (National Coagulation Centre, St James’s Hospital, Dublin), Mary Byrne (National Coagulation Centre, St James’s Hospital, Dublin), Dermot Kenny (Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland), and Judicael Fazavana (Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland).