Parameter estimation for SPDEs based on discrete observations in time and space

Florian Hildebrandt and Mathias Trabs

Abstract: Parameter estimation for a parabolic linear stochastic partial differential equation in one space dimension is studied observing the solution field on a discrete grid in a fixed bounded domain. Considering an infill asymptotic regime in both coordinates, we prove central limit theorems for realized quadratic variations based on temporal and spatial increments as well as on double increments in time and space. Resulting method of moments estimators for the diffusivity and the volatility parameter inherit the asymptotic normality and can be constructed robustly with respect to the sampling frequencies in time and space. Upper and lower bounds reveal that in general the optimal convergence rate for joint estimation of the parameters is slower than the usual parametric rate. The theoretical results are illustrated in a numerical example.

AMS 2000 subject classifications: Primary 60H15, 60F05; secondary 62F12, 62M09.

Keywords and phrases: Central limit theorems, infill asymptotics, optimal rate of convergence, realized quadratic variation, stochastic partial differential equations.

1. Introduction

Stochastic partial differential equations (SPDEs) combine the ability of deterministic PDE models to describe complex mechanisms with the key feature of diffusion models, namely a stochastic signal which evolves within the system. While SPDEs have been intensively studied in stochastic analysis, their statistical theory is only at its beginnings. Since we first need to have a thorough statistical understanding for basic SPDEs before more complex models can be studied, let us consider the prototype for the large class of parabolic SPDEs given by the stochastic heat equation on $[0,1]$:

$$\begin{align*}
 dX_t(x) &= \vartheta^2 \frac{\partial^2}{\partial x^2} X_t(x) \, dt + \sigma \, dW_t(x), \\
 X_t(0) &= X_t(1) = 0, \\
 X_0 &= \xi,
\end{align*}$$

where dW denotes white noise in space and time, ξ is some independent initial condition and we impose Dirichlet boundary conditions. More general, we will later incorporate also a first and zero order term in the differential operator. The statistical aim is to infer on the diffusivity parameter $\vartheta^2 > 0$ and the diffusion or volatility parameter $\sigma^2 > 0$.

In the seminal works by Huebner et al. [13] as well as Huebner and Rozovskii [14] a spectral approach has been considered where the processes $t \mapsto u_{\ell}(t) := \langle X_t, e_{\ell} \rangle_{L^2}$ are observable for the eigenfunctions e_{ℓ} of the underlying differential operator. These so called Fourier modes u_{ℓ} are independent and satisfy Ornstein-Uhlenbeck dynamics. Consequently, classical results from statistics for stochastic processes can be applied directly. While the spectral approach is studied in numerous papers, see Lototsky [21] or Cialenco [6] for a review, this specific observation scheme is limiting and too restrictive in potential applications. Especially, for more general equations the
eigenfunctions will depend on unknown parameters, which is already the case if we add a first order term \(\partial_1 \frac{\partial}{\partial x} X_t(x) dt \) with unknown \(\partial_1 \in \mathbb{R} \) in (1).

Complementary to this spectral approach, the canonical problem of parameter estimation based on discrete observations of the solution field of the SPDE recently attracted an increased research activity. Assuming \(X \) is observed on a discrete grid \((t_i, y_k)_{i=0,\ldots,N, k=0,\ldots,M} \subset [0,T] \times [0,1] \), approximate maximum likelihood estimators have been first investigated by Markussen [22] for \(T \to \infty \).

For various linear SPDEs central limit theorems for method of moment type estimators based on realized quadratic variations have been studied by Torres et al. [29], Cialenco and Huang [7], Bibinger and Trabs [3, 2], Chong [4, 5], Shevchenko et al. [28], as well as Kaino and Uchida [18]. However, all these works only give partial answers to the estimation problem. Even for the stochastic heat equation there neither is a sharp analysis for joint estimation of \(\vartheta_2 \) and \(\sigma^2 \) nor the case where the number of spatial observations \(M \) dominates the number of temporal observations \(N \) has been explored in general.

Therefore, in this relatively young research field basic and elementary questions even for simple (linear, parabolic) SPDEs still need to be answered. This becomes most important with regard to an increasing number of SPDE models in applications, e.g., in neurobiology [31], for the description of oceans [25, 11], climate modelling [12] or the description of interest rates [8, 27].

In order to provide a complete statistical analysis of parametric estimation for linear parabolic SPDEs in dimension one based on discrete observations on a finite time horizon \(T > 0 \), our main contributions reveal that:

(i) \(\vartheta_2 \) and \(\sigma^2 \) cannot be jointly estimated if \(N \) or \(M \) is fixed.

(ii) The optimal convergence rate for estimating \((\vartheta_2, \sigma^2) \) is \(1/\sqrt{MN} \Lambda N^{3/2} \) which generally is slower than the parametric rate \(1/\sqrt{MN} \).

(iii) Realized space-time quadratic variations can be used to construct estimators which are robust with respect to the sampling frequencies \(N \) and \(M \) in time and space, respectively.

In view of (i), we will consider the double asymptotic regime \(M,N \to \infty \) in our analysis which results in infill asymptotics in time and space. Since the vector of observations \((X_{t_i}, (y_k))_{i=0,\ldots,N, k=0,\ldots,M} \) is normally distributed with only two unknown parameters in equation (1), it might surprise that there is no estimator with parametric rate for \((\vartheta_2, \sigma^2) \). Indeed, our lower bound verifies that the parametric rate can only be achieved if \(N \) and \(M^2 \) are of the same order of magnitude. In view of the scaling invariance of the stochastic heat equation, this particular asymptotic regime \(N \approx M^2 \) implies that we add the same amount of information in time and space as \(N \) and \(M \) increase. In this sense we have a balanced design. An unbalanced regime \(N = o(M^2) \) or \(M = o(\sqrt{N}) \) causes a deterioration of the convergence rate.

Our statistical analysis also gives insights into the relation between the spectral and the discrete observation scheme. While both are heuristically comparable in view of the discrete Fourier transform, it turns out that there are important differences. In particular, the fully discrete observation scheme is not statistically equivalent (in the sense of Le Cam) to time discrete observations of the first \(M \) Fourier modes in general.

Our estimators rely on realized quadratic variations, taking into account time and space increments

\[
(\Delta^N X)(y_k) := X_{t_{i+1}}(y_k) - X_{t_i}(y_k), \quad (\delta^M X)(t_i) := X_{t_i}(y_{k+1}) - X_{t_i}(y_k), \tag{2}
\]

respectively, as well as space-time increments or double increments

\[
D_{ik} := (\delta^M_k \circ \Delta^N) X = (\Delta^N \circ \delta^M_k) X = X_{t_{i+1}}(y_{k+1}) - X_{t_{i+1}}(y_k) - X_{t_i}(y_{k+1}) + X_{t_i}(y_k). \tag{3}
\]

In contrast to the maximum likelihood approach which requires inversion of the large \(MN \times MN \) covariance matrix, method of moments type estimators based on (2) and (3) are easy to implement. As observed in [3], a central limit theorem for realized temporal quadratic variations requires that the observation frequency in time dominates the observation frequency in space, more precisely, \(M = o(\sqrt{N}) \) is necessary. Complementarily, we show that the realized spatial quadratic variation
satisfies a central limit theorem if $N = o(M)$. The remaining gap can be filled by double increments and the corresponding realized space-time quadratic variation turns out to be robust with respect to the sampling frequencies M and N. Based on these statistics, we construct method of moments estimators for ϑ_2 and σ^2 (as well as ϑ_1 from a first order term). Hereby, the rate optimal method for joint estimation of all identifiable parameters is an M-estimator relying on double increments. Our proofs employ directly the Gaussian distribution of X which allows for an explicit covariance condition for asymptotic normality of quadratic forms of Gaussian triangular schemes. Let us remark that our estimators could be directly generalized to a nonparametric model with time dependent coefficients, as indicated in [3, 4].

Note that the solution process X to the SPDE (1) admits continuous trajectories only in one spatial dimension. In the multi-dimensional case one could consider noise processes which are more regular in space as studied by Chong [4]. Alternatively, Kriz and Maslowski [20] as well as Altmeu and Reiß [1] generalize the spectral approach to the observation of functionals (X_t, K) for some (localizing) kernel K.

This work is organized as follows: In Section 2 we give a precise definition of the model and study probabilistic properties of the solution field. In Section 3 we present the central limit theorems for realized quadratic variations based on space and double increments. The resulting method of moments estimators are constructed in Section 4. Lower bounds are derived in Section 5. In Section 6 we illustrate our results with a numerical example. The proofs of the main results are collected in Section 7 while auxiliary results are postponed to the appendix.

2. Properties of the solution process

For parameters $\sigma^2 > 0$ and $\vartheta = (\vartheta_2, \vartheta_1, \vartheta_0) \in \mathbb{R} \times \mathbb{R}^2$ we consider the linear parabolic SPDE

\[
\begin{cases}
 dX_t(x) = \left(\vartheta_2 \frac{\partial^2}{\partial x^2} X_t(x) + \vartheta_1 \frac{\partial}{\partial x} X_t(x) + \vartheta_0 X_t(x) \right) dt + \sigma dW_t(x), & x \in [0,1], t \geq 0, \\
 X_t(0) = X_t(1) = 0, & \\
 X_0 = \xi
\end{cases}
\]

(4)

driven by a cylindrical Brownian motion W and where $\xi \in L^2([0,1])$ is some independent initial condition. More precisely, we study the weak solution $X = (X_t(x), t \geq 0, x \in [0,1])$ to $dX_t = A_\vartheta X_t dt + \sigma dW_t$ associated with the differential operator $A_\vartheta = \vartheta_2 \frac{\partial^2}{\partial x^2} + \vartheta_1 \frac{\partial}{\partial x} + \vartheta_0$. As usual, the Dirichlet boundary condition in (4) is implemented in the domain $\mathcal{D}(A_\vartheta) = H^2((0,1)) \cap H^1_0((0,1))$ of A_ϑ where $H^k((0,1))$ denotes the L^2-Sobolev spaces of order $k \in \mathbb{N}$ and with $H^1_0((0,1))$ being the closure of $C_0^\infty((0,1))$ in $H^1((0,1))$. The cylindrical Brownian motion W is defined as a linear mapping $L^2((0,1)) \ni u \mapsto W_t(u)$ such that $t \mapsto W_t(u)$ is a one-dimensional standard Brownian motion for all normalized $u \in L^2([0,1])$ and such that the covariance structure is $\text{Cov}(W_t(u), W_s(v)) = (s \wedge t) \langle u, v \rangle$, for $u, v \in L^2([0,1])$, $s, t \geq 0$. W can thus be understood as the anti-derivative in time of space-time white noise.

The differential operator A_ϑ has a complete orthonormal system of eigenvectors. Indeed, the eigenpairs $(-\lambda_\ell, \epsilon_\ell)_{\ell \geq 1}$ associated with A_ϑ are given by

$$
\epsilon_\ell(y) = \sqrt{2} \sin(\pi \ell y) e^{-\kappa y/2}, \quad \lambda_\ell = \vartheta_2 (\pi^2 \ell^2 + \Gamma), \quad y \in [0,1], \ell \in \mathbb{N},
$$

denoting

$$
\kappa := \frac{\vartheta_1}{\vartheta_2} \quad \text{and} \quad \Gamma := \frac{\vartheta_1^2}{4\vartheta_2} - \frac{\vartheta_0}{\vartheta_2}.
$$

The functions $(\epsilon_\ell)_{\ell \geq 1}$ are orthonormal with respect to the weighted L^2-inner product

$$
\langle u, v \rangle_\vartheta := \langle u, v \rangle_0 := \int_0^1 u(x)v(x)e^{\kappa x} \, dx, \quad u, v \in L^2([0,1]).
$$
Note that in absence of the first derivative in A_ϑ, i.e. $\vartheta_1 = 0$, the system $(e_\ell)_{\ell \geq 1}$ reduces to the usual sine-base and $\langle \cdot, \cdot \rangle$ to the standard inner product on $L^2([0,1])$. In general, both the eigenpairs and the inner product depend on the model parameters. Hence, they are not accessible from a statistical point of view.

Throughout, we restrict the parameter space to

$$\Theta = \left\{ (\sigma^2, \vartheta_2, \vartheta_1, \vartheta_0) \in \mathbb{R}^4 : \sigma^2, \vartheta_2, \frac{\vartheta_1^2}{4\vartheta_2} - \vartheta_0 + \pi^2 > 0 \right\}$$

such that all the eigenvalues are negative and A_ϑ is a negative self-adjoint operator. Consequently, the weak solution to the SPDE (4) exists and is given by the variation of constants formula $X_t = e^{tA_\vartheta}x + \sigma \int_0^t e^{(t-s)A_\vartheta} \, dW_s$, $t \geq 0$, where $(e^{tA_\vartheta})_{t \geq 0}$ denotes the strongly continuous semigroup generated by A_ϑ, see [26, Theorem 5.4].

Since $(e_\ell)_{\ell \geq 1}$ is a complete orthonormal system, the cylindrical Brownian motion W can be realized via $W_t = \sum_{\ell \geq 1} \beta_\ell(t)e_\ell$ in the sense of $W_t(\cdot) = \sum_{\ell \geq 1} \beta_\ell(t)e_\ell$ for a sequence of independent standard Brownian motions $(\beta_\ell)_{\ell \geq 1}$. In terms of the projections or Fourier modes $u_\ell(t) := \langle X_t, e_\ell \rangle$, $t \geq 0, \ell \in \mathbb{N}$, we obtain the representation

$$X_t(x) = \sum_{\ell \geq 1} u_\ell(t)e_\ell(x), \quad t \geq 0, \, x \in [0,1], \quad (5)$$

where $(u_\ell)_{\ell \geq 1}$ are one dimensional independent processes satisfying the Ornstein-Uhlenbeck dynamics $du_\ell(t) = -\lambda_\ell u_\ell(t) \, dt + \sigma \, dB_\ell(t)$ or equivalently

$$u_\ell(t) = u_\ell(0)e^{-\lambda_\ell t} + \sigma \int_0^t e^{-\lambda_\ell(t-s)} \, dB_\ell(s), \quad u_\ell(0) = \langle \xi, e_\ell \rangle$$

in the sense of the usual finite dimensional stochastic integral. For simplicity, we will assume throughout that $\{\beta_\ell, u_\ell(0), \ell \in \mathbb{N}\}$ is an independent family and $u_\ell(0) \sim \mathcal{N}(0, \sigma^2/(2\lambda_\ell))$ such that each coefficient process u_ℓ is stationary with covariance $\text{Cov}(u_\ell(s), u_\ell(t)) = \frac{\sigma^2}{2\lambda_\ell} e^{-\lambda_\ell |t-s|}$, $s, t \geq 0$.

The reduction of more general conditions on X_0 to the stationary case is discussed in [3].

From representation (5) it is evident that X is a two parameter centered Gaussian field. Therefore, the model is completely specified by its covariance structure

$$\text{Cov} \left(X_s(x), X_t(y) \right) = \sigma^2 \sum_{\ell \geq 1} \frac{e^{-\lambda_\ell |t-s|}}{2\lambda_\ell} e_\ell(x)e_\ell(y), \quad s, t \geq 0, \, x, y \in [0,1]. \quad (6)$$

While σ^2 is only a multiplicative factor, the covariance structure depends on ϑ through λ_ℓ and e_ℓ. By Kolmogorov’s criterion there is a continuous version of the process $(X_t(x), t \geq 0, x \in [0,1])$, cf. [26, Chapter 5.5]. In particular, point evaluations $X_t(x)$ for fixed values of t and x are well defined.

For a fixed spatial location x the sample paths of the process $X_t(x)$ are no semi-martingales. In fact, $t \mapsto X_t(x)$ is only Hölder continuous of order almost 1/4 [26, Theorem 5.22] and thus has infinite quadratic variation over any time interval. On the other hand, regarding X as a function of space at a fixed point in time substantially simplifies the probabilistic structure of the process:

Proposition 2.1. Fix $t \geq 0$ and define $\Gamma_0 = \sqrt{|\Gamma|}$.

(i) For $x \leq y$,

$$\text{Cov} \left(X_t(x), X_t(y) \right) = \frac{\sigma^2}{2\vartheta_2} e^{-\frac{\pi}{2}(x+y)} \cdot \begin{cases} \frac{\sin(\Gamma_0(1-y)) \sin(\Gamma_0x)}{\Gamma_0 \sin(\Gamma_0)}, & \Gamma < 0, \\ x(1-y), & \Gamma = 0, \\ \frac{\sinh(\Gamma_0(1-y)) \sinh(\Gamma_0x)}{\Gamma_0 \sinh(\Gamma_0)}, & \Gamma > 0. \end{cases}$$
(ii) The process \([0, 1] \ni x \mapsto Z(x) := X_t(x)\) is an Itô diffusion. In particular,

\[
dZ(x) = \sqrt{\sigma^2} e^{-\frac{x^2}{2}} dB(x) - \left(\frac{\Gamma_0 \cos(\Gamma_0 (1-x))}{\sinh(\Gamma_0 (1-x))} + \frac{\kappa}{2} \right) Z(x) dx, \quad \Gamma < 0, \\
\left(\frac{1}{\sqrt{\sigma^2}} + \frac{\kappa}{2} \right) Z(x) dx, \quad \Gamma = 0, \\
\left(\frac{\Gamma_0 \cos(\Gamma_0 (1-x))}{\sin(\Gamma_0 (1-x))} + \frac{\kappa}{2} \right) Z(x) dx, \quad \Gamma > 0,
\]

where \(B(\cdot) = B_t(\cdot)\) is a standard Brownian motion.

Note the similarity of the covariance structures of \(X_t(\cdot)\) and of the Brownian bridge, especially in the case \(\Gamma = 0\). This resemblance is in line with the Dirichlet boundary conditions \(X_t(0) = X_t(1) = 0\) in our model.

Remark 2.2. For \(N \geq 2\) and fixed \(0 \leq t_1 < t_2 < \ldots < t_N\) the multi-dimensional process \(x \mapsto (X_{t_1}(x), \ldots, X_{t_N}(x))\) is not an Itô diffusion. Indeed, it is not even a Markov process: Take \(N = 2\) and let \(s < t\). It is a well known fact that for Markov processes past and future are independent, given the present state. For \(x < y < z\) on the other hand, using the Gaussianity of \(X\), the (Gaussian) conditional distribution of \((X_s(x), X_t(x))\) given \((X_s(y), X_t(y))\) can be computed explicitly. From here, independence is easily disproved by checking the non-diagonal entries of the conditional covariance matrix.

We conclude this section by studying absolute continuity properties for different parameter values \((\sigma^2, \vartheta)\) which in particular has implications for their identifiability. To that aim we introduce the notations

\[
(X_{t_1}(\cdot), t \in [0,T]) \sim P_{(\sigma^2, \vartheta)} on C([0,T], L^2[0,1]), \\
(X_{t_0}(x), x \in [0,1]) \sim P_{(\sigma^2, \vartheta)}^{(t_0, 1)} on L^2[0,1], \\
(X_{t_1}(x_0), t \in [0,T]) \sim P_{(\sigma^2, \vartheta)}^{(t, x_0)} on L^2[0,T]
\]

for fixed values \(t_0 \geq 0, x_0 \in (0,1)\) and a finite time horizon \(T > 0\). Further, for probability measures \(Q\) and \(P\) we write \(Q \sim P\) if they are equivalent.

Proposition 2.3. Let \(t_0 \geq 0, x_0 \in (0,1)\) be fixed and consider a finite time horizon \(T > 0\). For any two sets of parameters \((\sigma^2, \vartheta), (\tilde{\sigma}^2, \tilde{\vartheta}) \in \Theta\) we have

(i) \(P_{(\sigma^2, \vartheta)} \sim P_{(\tilde{\sigma}^2, \tilde{\vartheta})}\) if and only if \((\sigma^2, \vartheta), (\tilde{\sigma}^2, \tilde{\vartheta})\) = \((\sigma^2, \vartheta), (\tilde{\sigma}^2, \tilde{\vartheta})\),

(ii) \(P_{(\sigma^2, \vartheta)} \sim P_{(\tilde{\sigma}^2, \tilde{\vartheta})}\) if and only if \(\left(\frac{\sigma^2}{\sqrt{\vartheta}}, \kappa \right) = \left(\frac{\tilde{\sigma}^2}{\sqrt{\tilde{\vartheta}}}, \tilde{\kappa} \right)\),

(iii) \(P_{(\sigma^2, \vartheta)} \sim P_{(\tilde{\sigma}^2, \tilde{\vartheta})}\) if and only if \(\frac{\sigma^2}{\sqrt{\vartheta}} e^{-\kappa x_0} = \frac{\tilde{\sigma}^2}{\sqrt{\tilde{\vartheta}}} e^{-\tilde{\kappa} x_0}\),

where \(\kappa = \vartheta/\vartheta, \tilde{\kappa} = \tilde{\vartheta}/\tilde{\vartheta}\).

Firstly, (i) shows that it is impossible to estimate \(\vartheta_0\) consistently on a finite time horizon. Secondly, (ii) and (iii) reveal that an estimator that only exploits the temporal or spatial covariance structure cannot consistently estimate any other parameters than \((\sigma^2/\sqrt{\vartheta}, \kappa)\) or \((\sigma^2/\vartheta, \kappa)\), respectively. On the other hand, such estimators can be constructed by using squared time increments at least at two different spatial positions (cf. [3, Theorem 4.2]) or squared space increments (cf. Section 4), respectively.

3. Central limit theorems for realized quadratic variations

We will now study central limit theorems for realized quadratic variations based on the space and double increments from (2) and (3), respectively. To fix assumptions and notation, let \(X\) be given by (5) and suppose we have \((M + 1)(N + 1)\) time and space discrete observations

\[X_{t_i}(y_k), \quad i = 0, \ldots, N, k = 0, \ldots, M,\]
at a regular grid \((t_i, y_k) \subset [0, T] \times [0, 1]\) with a fixed time horizon \(T > 0\) and \(M, N \in \mathbb{N}_0\). More precisely, assume that

\[y_k = b + k\delta \quad \text{and} \quad t_i = i\Delta \quad \text{where} \quad \delta = \frac{1 - 2b}{M}, \quad \Delta = \frac{T}{N} \]

for some fixed \(b \in [0, 1/2]\). The spatial locations \(y_k\) are thus equidistant inside a (possibly proper) sub-interval \([b, 1 - b] \subset [0, 1]\). Note that whenever \(M \to \infty\) or/and \(N \to \infty\), we obtain infill asymptotics in space \(\delta \to 0\) or/and time \(\Delta \to 0\), respectively.

Throughout, \(M, N \to \infty\) should be understood in the sense of \(\min(M, N) \to \infty\). For two sequences \((a_n), (b_n)\), we write \(a_n \lesssim b_n\) to indicate that there exist some \(c > 0\) such that \(|a_n| \leq c \cdot |b_n|\) for all \(n \in \mathbb{N}\) and we write \(a_n \approx b_n\) if \(a_n \lesssim b_n \lesssim a_n\). If \(a_n \equiv a\) for some \(a \in \mathbb{R}\) and all \(n \in \mathbb{N}\), we write \((a_n) \equiv a\). Moreover, \(|\cdot|\) denotes the spectral norm and \(\|\cdot\|_F\) denotes the Frobenius norm for matrices.

The realized quadratic variations can be regarded as sums of squares of certain Gaussian random vectors. Hence, our central limit theorems embed into the literature on quadratic forms in random variables and their asymptotic properties, see e.g. [23]. Our key tool for proving asymptotic normality is the following proposition which is tailor made for the situation present in this work and which gives an explicit covariance condition that ensures convergence to the normal distribution.

Proposition 3.1. Let \((Z_{i,n}, 1 \leq i \leq d_n, n \in \mathbb{N})\) be a triangular array which satisfies \((Z_{i,n}, \ldots, Z_{d_n,n}) \sim \mathcal{N}(0, \Sigma_n)\) for a covariance matrix \(\Sigma_n \in \mathbb{R}^{d_n \times d_n}, n \in \mathbb{N}\), and let \((\alpha_{i,n}, 1 \leq i \leq d_n, n \in \mathbb{N})\) be a deterministic triangular array with values in \([-1, 1]\). Define \(S_n := \sum_{i=1}^{d_n} \alpha_{i,n} Z_{i,n}^2\) for \(n \geq 1\). If \(\|\Sigma_n\|^2_2 / \text{Var}(S_n) \to 0\) as \(n \to \infty\), then we have

\[
\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} \xrightarrow{d} \mathcal{N}(0, 1) \quad \text{for} \quad n \to \infty.
\]

The proof relies on the fact that \(S_n\) can be represented as a linear combination of independent \(\chi^2(1)\)-distributed random variables. \(\|\Sigma_n\|^2_2 / \text{Var}(S_n) \to 0\) then implies that the corresponding Lyapunov condition is fulfilled. In this section we only require \(\alpha_{i,n} = 1\) for all \(i, n\), i.e. \(S_n = \|Z_n\|^2_2\). The general case will be necessary to verify asymptotic normality of the M-estimator in Section 4. It is worth noting that Proposition 3.1 reveals a quite elementary proof strategy to verify several central limit theorems in [3, 7, 28, 29] instead of advanced techniques from Malliavin calculus or mixing theory.

Remark 3.2.

1. If \(\alpha_{i,n} = 1\) for all \(i, n\), it follows from Isserlis’ theorem [17] that \(\text{Var}(S_n) = 2\|\Sigma_n\|^2_2\) and thus, the condition for asymptotic normality may be written as \(\|\Sigma_n\|^2_2 / \|\Sigma_n\|_F \to 0\). This condition is essentially optimal: In case of independent observations it is in fact equivalent to asymptotic negligibility of the individual normalized and centered summands and hence equivalent to Lindeberg’s condition.

2. The spectral norm is bounded by the maximum absolute row sum. Writing \(\Sigma_n = (\sigma_{ij}^{(n)})_{i,j}\), asymptotic normality thus holds under the sufficient condition

\[
\frac{\left(\sum_{i=1}^{d_n} \sigma_{ij}^{(n)}\right)^2}{\text{Var}(S_n)} \to 0, \quad n \to \infty. \quad (7)
\]

So far, the double asymptotic regime \(M, N \to \infty\) has only been studied for time increments \((\Delta_i^N X)(y_k) = X_{i+1}(y_k) - X_i(y_k)\): If \(b > 0\) and if there exists \(\rho \in (0, 1/2)\) such that \(M = O(N^\rho)\), then the rescaled realized temporal quadratic variation

\[
V_i := \frac{1}{MN\sqrt{\Delta}} \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} e^{\rho y_k} (\Delta_i^N X)^2(y_k) \quad (8)
\]
satisfies

$$\sqrt{MN} \left(V_i - \frac{\sigma^2}{\sqrt{\pi \theta_2}}\right) \xrightarrow{p} \mathcal{N} \left(0, \frac{B \sigma^4}{\pi \theta_2}\right), \quad N, M \to \infty,$$

where

$$B = 2 + \sum_{J=1}^{\infty} \left(2\sqrt{J} - \sqrt{J+1} - \sqrt{J-1}\right)^2,$$

cf. [3, Thm. 3.4]. Note that this result is only valid under the condition $M = o(\sqrt{N})$, i.e., the observation frequency in time is much higher than in space. This constraint is due to a non-negligible correlation of realized temporal quadratic variations at two neighboring points in space if the distance δ of these points is small compared to Δ or, equivalently, if M is large compared to N.

In the situation where the number of spatial observations dominates the number of temporal observations the above result is not applicable. In this case, spatial increments $(\delta_k^M X)(t_i) = X_t(y_{k+1}) - X_t(y_k)$ and the corresponding rescaled realized spatial quadratic variations

$$V_{sp}(t_i) := \frac{1}{M^2} \sum_{k=0}^{M-1} e^{\epsilon_y k} (\delta_k^M X)^2(t_i)$$

at time t_i turn out to be useful. In contrast to squared time increments, which have to be renormalized by $\sqrt{\Delta}$ due to the roughness of $t \mapsto X_t(y)$, squared space increments have to be renormalized by δ due to the semi-martingale nature of $y \mapsto X_t(y)$.

In the extreme case where observations are only available at one point t in time (and assuming $\vartheta_1 = \vartheta_0 = 0$ as well as $X_0 = 0$) Cialenco and Huang [7] showed that $V_{sp}(t)$ is asymptotically normal with $1/\sqrt{M}$-rate of convergence. An analogous result has been proved by Shevchenko et al. [28] for the wave equation. Proposition 2.1 reveals that $V_{sp}(t)$ is in fact a rescaled realized quadratic variation of the Itô diffusion $y \mapsto X_t(y)$. Hence,

$$\sqrt{M} \left(V_{sp}(t) - \frac{\sigma^2}{2\vartheta_2}\right) \xrightarrow{p} \mathcal{N} \left(0, \frac{\sigma^4}{2\vartheta_2}\right), \quad M \to \infty,$$

follows from standard theory on quadratic variation for semi-martingales. In order to generalize this central limit theorem to the double asymptotic regime $M, N \to \infty$, we define the time average of the rescaled realized spatial quadratic variations:

$$V_{sp} := \frac{1}{N} \sum_{i=0}^{N-1} V_{sp}(t_i) = \frac{1}{NM^2} \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} e^{\epsilon_y k} (\delta_k^M X)^2(t_i).$$

(11)

Theorem 3.3. Let $b \in [0, 1/2)$. If $N/M \to 0$ then

$$\sqrt{MN} \left(V_{sp} - \frac{\sigma^2}{2\vartheta_2}\right) \xrightarrow{p} \mathcal{N} \left(0, \frac{\sigma^4}{2\vartheta_2}\right), \quad M, N \to \infty.$$

Remark 3.4. The condition $N/M \to 0$ is necessary in order to to neglect the bias: The proof of the theorem reveals that $\delta^{-1} E \left(e^{-\epsilon_y k} (\delta_k^M X)^2(t_i)\right) - \frac{\sigma^2}{2\vartheta_2} \approx \delta$ and consequently, the overall bias is of the order

$$E \left(\sqrt{MN} \left(V_{sp} - \frac{\sigma^2}{2\vartheta_2}\right)\right) \approx \sqrt{MN} \cdot \delta \approx \sqrt{\frac{N}{M}}.$$

We conclude that the central limit theorem for realized temporal quadratic variations V_i holds when (roughly) $M = o(\sqrt{N})$, whereas the central limit theorem for realized spatial quadratic variations V_{sp} is fulfilled if $N = o(M)$. To close the remaining gap, we finally study the space-time
increments D_{ik} from (3). The corresponding rescaled realized quadratic variations are robust with respect to the sampling regime, as indicated by the representation

$$D_{ik} = \sum_{\ell \geq 1} \left(u_\ell(t_{i+1}) - u_\ell(t_i) \right) \left(e_\ell(y_{k+1}) - e_\ell(y_k) \right)$$

in terms of the series expansion (5).

In contrast to the case of space increments (and in line with the result for time increments), we impose $b > 0$ for the remainder of this section. Inspection of the proofs suggests that this condition may be relaxed to $b \to 0$ as long as the decay is sufficiently slow. As a first step, we calculate the expectation of the double increments

Proposition 3.5. Let $b \in (0, 1/2)$. Then:

(i) It holds uniformly in $0 \leq k \leq M - 1$ and $1 \leq i \leq N - 1$ that

$$E(D_{ik}^2) = \sigma^2 e^{-r\delta y} \Phi_\delta(\delta, \Delta) + O(\delta \sqrt{\Delta} (\delta / \sqrt{\Delta})),$$

where

$$\Phi_\delta(\delta, \Delta) := F_{\varnothing_2}(0, \Delta) \left(1 + e^{-\kappa \delta} \right) - 2F_{\varnothing_2}(\delta, \Delta) e^{-\kappa \delta / 2}$$

and

$$F_{\varnothing_2}(\delta, \Delta) := \sum_{\ell \geq 1} \frac{1 - e^{-\kappa \delta / 2}}{\pi^2 \varnothing_2 \ell^2} \cos(\pi \ell \delta).$$

(ii) Assuming that $r = \lim \delta / \sqrt{\Delta} \in [0, \infty]$ exists, Φ_δ admits three different asymptotic regimes:

$$\Phi_\delta(\delta, \Delta) = \begin{cases} \frac{1}{\varnothing_2} \cdot \delta + o(\delta), & r = 0, \\ \psi_{\varnothing_2}(r) \cdot \sqrt{\Delta} + o(\sqrt{\Delta}), & r \in (0, \infty), \\ \frac{2}{\sqrt{\varnothing_2} \pi} \cdot \sqrt{\Delta} + o(\sqrt{\Delta}), & r = \infty, \end{cases}$$

where

$$\psi_{\varnothing_2}(r) := \frac{2}{\sqrt{\varnothing_2}} \left(1 - e^{-\kappa r / \varnothing_2} + r \int_{r \varnothing_2}^{\infty} e^{-z^2} \, dz \right).$$

If moreover $\delta / \sqrt{\Delta} \equiv r \in (0, \infty)$, we have

$$\Phi_\delta(\delta, \Delta) = e^{-\kappa \delta / 2} \psi_{\varnothing_2}(r) \cdot \sqrt{\Delta} + O(\Delta^{3/2}).$$

Remark 3.6. The first order constants appearing in the asymptotic expressions in (ii) stem from a first derivative of $F_{\varnothing_2}(\cdot, \Delta)$ in 0 in case $r = 0$ and a Riemann sum approximation of $F_{\varnothing_2}(\delta, \Delta)$ in case $r \neq 0$, respectively. Assuming for simplicity that $\kappa = 0$, the proof of Proposition 3.5 shows a more precise expression for the remainder terms in case $r \in \{0, \infty\}$:

$$E(D_{ik}^2) = \begin{cases} \frac{1}{\varnothing_2} \cdot \delta + O(\delta^2 / \sqrt{\Delta}), & r = 0, \\ \frac{2}{\pi \varnothing_2} \cdot \sqrt{\Delta} + O(\Delta^{3/2} / \delta^2), & r = \infty. \end{cases}$$

Thus, if our analysis of the remainder terms is sharp (which we believe is the case), the first order approximations have a poor quality if $\delta / \sqrt{\Delta}$ converges slowly.

Proposition 3.5 suggests to renormalize double increments with δ if $\delta / \sqrt{\Delta} \to 0$ and with $\sqrt{\Delta}$ otherwise, which is in line with the renormalization of V_{sp} and V_{ap}, respectively. However, this approach might not be feasible: Firstly, it requires the knowledge which asymptotic regime is present, i.e., whether or not $\delta / \sqrt{\Delta} \to 0$. Especially for one given set of observations this information may be inaccessible. In this case renormalizing with $\Phi_\delta(\delta, \Delta)$ automatically captures the correct asymptotic regime. Secondly, if $r \in \{0, \infty\}$, the previous remark shows that the asymptotic
expressions for $\Phi_\rho(\delta, \Delta)$ may lead to an undesirably large bias. In fact, in order to obtain a central limit theorem with $1/\sqrt{NM}$-rate of convergence, we would have to impose the assumptions $N^2/M \to 0$ and $M^5/N \to 0$, respectively. These constraints are even more restrictive than the ones required for time or space increments.

Therefore, we renormalize with $\Phi_\rho(\delta, \Delta)$ and introduce the rescaled realized quadratic space-time variation

$$V := \frac{1}{MN\Phi_\rho(\delta, \Delta)} \sum_{k=0}^{M-1} \sum_{i=0}^{N-1} e^{\rho y_k} D_{ik}^2.$$

Theorem 3.7. Let $b > 0$. If either $\delta/\sqrt{\Delta} \to r \in (0, \infty)$ or $\delta/\sqrt{\Delta} \equiv r \in (0, \infty)$, then

$$\sqrt{MN}(V - \sigma^2) \overset{D}{\to} N(0, C(r/\sqrt{\Delta})\sigma^4), \quad N, M \to \infty,$$

where $C(\cdot)$ is a bounded continuous function on $[0, \infty]$, given by (25), satisfying

$$C(0) = 3 \quad \text{and} \quad C(\infty) = 3 + \frac{3}{2} \sum_{j=1}^{\infty} \left(\sqrt{J-1} - \sqrt{J+1} - 2\sqrt{J} \right)^2.$$

The condition $\delta/\sqrt{\Delta} \equiv r \in (0, \infty)$ can be relaxed to $\delta/\sqrt{\Delta} \to r \in (0, \infty)$ as long as the convergence is fast enough which we omit for the sake of simplicity. If $\delta/\sqrt{\Delta} \equiv r \in (0, \infty)$ holds, (13) shows that the renormalization $\Phi_\rho(\delta, \Delta)$ and its first order approximation are close enough to be exchanged in the previous theorem. In this case we obtain a central limit theorem with a simpler renormalization which particularly does not depend on the model parameters:

Corollary 3.8. If $b > 0$ and $\delta/\sqrt{\Delta} \equiv r \in (0, \infty)$, then

$$V_r := \frac{1}{MN\sqrt{\Delta}} \sum_{k=0}^{M-1} \sum_{i=0}^{N-1} \exp \left(\frac{\kappa}{2} (y_k + y_{k+1}) \right) D_{ik}^2$$

satisfies with $\psi_{\rho_2}(r)$ from (12) and $C(\cdot)$ from (25):

$$\sqrt{MN}\left(V_r - \psi_{\rho_2}(r)\sigma^2\right) \overset{D}{\to} N\left(0, C(r/\sqrt{\Delta})\psi_{\rho_2}^2(r)\sigma^4\right), \quad N, M \to \infty.$$

Remark 3.9. The previous central limit results are satisfied for a possibly growing time horizon $T_{N,\Delta} := N\Delta$, too. Theorem 3.3 only requires that $T_{N,\Delta} > \varepsilon$ for some $\varepsilon > 0$. Theorem 3.7 holds if $T_{N,\Delta} = o(M)$ and, in particular, Corollary 3.8 is applicable if $N\Delta^{3/2} \to 0$.

To end this section, we compare the realized quadratic variations V_t, V_{sp} and V and their asymptotic variances. For this purpose, we scale the statistics in such a way that they are asymptotically centered around the same mean, say $\sigma^2:

$$V'_t = \sqrt{\pi} \varrho_2 V_t, \quad V'_{sp} = 2\varrho_2 V_{sp}, \quad V' = V.$$

For simplicity, let $\kappa = 0$. Plugging in the asymptotic expressions for $\Phi_\rho(\delta, \Delta)$ from Proposition 3.5 shows that

$$V' \approx \frac{1}{2} \sum_{k=0}^{M-1} \sum_{i=0}^{N-1} D_{ik}^2 \left\{ \begin{array}{ll} 2\varrho_2 & \delta/\sqrt{\Delta} \to 0, \\ \sqrt{2\varrho_2 \pi} & \delta/\sqrt{\Delta} \to \infty, \end{array} \right.$$

Therefore, V' approximately coincides with V'_{sp} and V'_r for $r \in (0, \infty)$, respectively, except for the factor $1/2$ and using double increments instead of time or space increments, respectively.

Further, denoting the asymptotic variances of V'_t, V'_{sp} and V' by $\mathcal{E}_t, \mathcal{E}_{sp}$ and $\mathcal{E}(r)$, respectively, we observe the relations $\mathcal{E}(\infty) = 3\mathcal{E}_t$ and $\mathcal{E}(0) = 3\mathcal{E}_{sp}$, where the factor $3/2$ occurs since each double increment consists of two space or time increments, respectively.
4. Parameter estimation

In view of the covariance structure of the observation vector and the fact that the value of ϑ_0 is irrelevant from a statistical point of view (cf. Proposition 2.3), we consider the parameter vector

$$\eta = (\sigma^2, \vartheta_2, \kappa).$$

It is straightforward to use the results from the previous section to construct method of moments estimators for the volatility parameter σ^2 or the diffusivity parameter ϑ_2, provided that the other two parameters in $(\sigma^2, \vartheta_2, \kappa)$ are known, respectively. Doing so, we generalize the spatial increments based estimator from [7] to the double asymptotic regime and we complement the time increments based methods in [3, 4]. Our estimators do not hinge on ϑ_0 (or Γ) such that the knowledge of its true value is not required.

Assuming firstly that ϑ_2 and κ are known, we obtain the following volatility estimators:

$$\hat{\sigma}_{sp}^2 := V'_{sp}, \quad \hat{\sigma}_t^2 := V'_t \quad \text{and} \quad \hat{\sigma}^2 := V$$

where V'_{sp} and V'_t have been introduced in (15).

Proposition 4.1.

(i) If $N = o(M)$, then we have

$$\sqrt{MN} (\hat{\sigma}_{sp}^2 - \sigma^2) \xrightarrow{D} \mathcal{N}(0, 2\sigma^4), \quad N, M \to \infty.$$

(ii) If $M = o(N^\rho)$ for some $\rho \in (0, 1/2)$, then we have with B defined in (10):

$$\sqrt{MN} (\hat{\sigma}_t^2 - \sigma^2) \xrightarrow{D} \mathcal{N}(0, B\sigma^4), \quad N, M \to \infty.$$

(iii) If $\sqrt{N} = o(M)$, $M = o(\sqrt{N})$ or $\sqrt{N}/M \equiv r_0 > 0$, then we have with $r = r_0 \frac{1 - 2b}{\sqrt{T}}$ and $C(\cdot)$ from (25):

$$\sqrt{MN}(\hat{\sigma}^2 - \sigma^2) \xrightarrow{D} \mathcal{N}(0, C(r/\sqrt{\vartheta_2})\sigma^4), \quad N, M \to \infty.$$

As discussed above, the double increments estimator has a larger variance than the single increments estimators. Hence, if one of the regimes $N = o(M)$ or $M = o(\sqrt{N})$ certainly applies, the single increments estimators are preferable. If none of the regimes is present or the situation is unclear, one can profit from the robustness of the double increments estimator with respect to the sampling regime.

If $N = o(M)$, the situation is close to that of N independent semi-martingales (cf. Proposition 2.1) and the asymptotic variance $2\sigma^4$ of the spatial increments estimator equals the Cramér-Rao lower bound for estimating σ^2, as can be seen by a simple calculation. Consequently, $\hat{\sigma}_{sp}^2$ is an asymptotically efficient estimator. The efficiency loss of the other estimators is due to the fact that for increasingly more temporal observations the infinite dimensional nature of the process X becomes apparent, leading to non-negligible covariances between increments.

If σ^2 and κ are known, the diffusivity ϑ_2 can be estimated by

$$\hat{\vartheta}_{2,sp} := \frac{\sigma^2}{2V_{sp}} \quad \text{and} \quad \hat{\vartheta}_{2,t} := \frac{\sigma^4}{\pi V_t^2}$$

using V_{sp} and V_t from (11) and (8), respectively. Due to the non-trivial dependence of the renormalization $\Phi_3(\delta, \Delta)$ on ϑ, it is not apparent how to construct a method of moments estimator for ϑ_2 based on Theorem 3.7 in general. However, if $\sqrt{N}/M \equiv r_0 > 0$, the renormalization can be decoupled from the unknown parameter as exploited in Corollary 3.8. Since the function $\vartheta_2 \mapsto \psi_{\vartheta_2}(r)$ has range $(0, \infty)$ and is monotonic, there is an inverse $H_r(\cdot)$ and we can define the method of moments estimator

$$\hat{\vartheta}_{2,r} = H_r(V_r/\sigma^2)$$
with \(V_r \) from (14) and \(r = \frac{\delta}{\sqrt{\Delta}} = r_0 \frac{1 - 2b}{\sqrt{T}} \). As a direct consequence of the delta method,

\[
H'_\varrho(\psi_{\varrho_2}(r)) = \left(\frac{\partial}{\partial \varrho_2} \psi_{\varrho_2}(r) \right)^{-1} = -\varrho_2^{3/2} \sqrt{\pi} \left(1 - e^{-\varrho_2^2} + \frac{2r}{\sqrt{\varrho_2}} \int_{\sqrt{\varrho_2}} e^{-z^2} \, dz \right)^{-1}
\]

and the above central limit theorems, we obtain:

Proposition 4.2.

(i) If \(N = o(M) \), then we have

\[
\sqrt{MN} \left(\hat{\varrho}_{2,sp} - \varrho_2 \right) \xrightarrow{D} \mathcal{N} (0, 2\varrho_2^2), \quad N, M \to \infty.
\]

(ii) If \(M = o(N^\rho) \) for some \(\rho \in (0, 1/2) \), then we have with \(B \) from (10):

\[
\sqrt{MN} \left(\hat{\varrho}_{2,1} - \varrho_2 \right) \xrightarrow{D} \mathcal{N} (0, 4\varrho_2^2 B), \quad N, M \to \infty.
\]

(iii) If \(\sqrt{N}/M \equiv r_0 > 0 \), then we have with \(r = r_0 \frac{1 - 2b}{\sqrt{T}} \) and \(C(\cdot) \) from (25):

\[
\sqrt{MN} \left(\hat{\varrho}_{2,r} - \varrho_2 \right) \xrightarrow{D} \mathcal{N} \left(0, C(r/\sqrt{\varrho_2}) \left(\psi_{\varrho_2}(r) / \varrho_2 \psi_{\varrho_2}(r) \right)^2 \right), \quad N, M \to \infty.
\]

We now consider parameter estimation when \((\sigma^2, \vartheta) \) is unknown. Recall from Proposition 2.3 and its subsequent discussion that \(\vartheta_0 \) cannot be estimated consistently on a finite time horizon. Moreover, it is not possible to estimate other parameters than \((\sigma^2/\sqrt{\varrho_2}, \kappa) \) or \((\sigma^2/\varrho_2, \kappa) \) only based on the temporal or the spatial covariance structure, respectively. Estimation of \((\sigma^2/\sqrt{\varrho_2}, \kappa) \) via a least squares procedure based on temporal increments is discussed in [3] in the \(M = o(\sqrt{N}) \) regime. Analogously, it is possible to estimate \((\rho^2, \kappa) \), where \(\rho^2 = \sigma^2/\varrho_2 \), using spatial increments and Theorem 3.3: Provided that \(N = o(M) \), classical M-estimation theory reveals that

\[
(\hat{\rho}^2, \hat{\kappa}) := \arg \min_{(\rho^2, \kappa)} \sum_{k=0}^{M-1} \left(\frac{2}{N\delta} \sum_{i=0}^{N-1} (\Delta_{ik})^2 - \rho^2 \kappa y_k \right)^2
\]

satisfies a central limit theorem with rate \(1/\sqrt{MN} \). We omit a detailed analysis of this estimator.

To estimate all three identifiable parameters \(\eta = (\sigma^2, \vartheta_2, \kappa) \), we employ a least squares approach based on double increments. Due to the highly nontrivial dependence of the normalization \(\Phi_\varrho(\delta, \Delta) \) on \(\vartheta \), a direct application of Theorem 3.7 is impossible. Assuming, however, a balanced design in the sense of \(\delta/\sqrt{\Delta} \equiv r \in (0, \infty) \), we can use Corollary 3.8 where the normalization is decoupled from the unknown parameter \(\vartheta \).

Let \(\delta/\sqrt{\Delta} \equiv r \in (0, \infty) \) and define \(D_{ik} := D_{ik} + D_{i(i+1)k} \) as well as \(z_k = (y_k + y_{k+1})/2 \). Corollary 3.8 suggests that

\[
\frac{1}{N\sqrt{\Delta}} \sum_{i=0}^{N-1} D_{ik}^2 \approx e^{-\kappa z_k} \sigma^2 \psi_{\varrho_2}(r) \quad \text{and} \quad \frac{1}{N\sqrt{2\Delta}} \sum_{i=0}^{N-2} D_{ik}^2 \approx e^{-\kappa z_k} \sigma^2 \psi_{\varrho_2}(r/\sqrt{2}).
\]

By considering the two different sampling frequency ratios \(r \) and \(r/\sqrt{2} \), we can distinguish \(\sigma^2 \) and \(\vartheta_2 \) instead of recovering only the product \(\sigma^2 \psi_{\varrho_2}(r) \). To estimate \(\eta = (\sigma^2, \vartheta_2, \kappa) \), we thus introduce the contrast process

\[
K_{M,N}(\hat{\eta}) := K^1_{M,N}(\hat{\eta}) + K^2_{M,N}(\hat{\eta}) \quad \text{where}
\]

\[
K^1_{M,N}(\hat{\eta}) := \frac{1}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N\sqrt{\Delta}} \sum_{i=0}^{N-1} D_{ik}^2 - f^1_{\hat{\eta}}(z_k) \right)^2,
\]

\[
K^2_{M,N}(\hat{\eta}) := \frac{1}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N\sqrt{2\Delta}} \sum_{i=0}^{N-2} D_{ik}^2 - f^2_{\hat{\eta}}(z_k) \right)^2,
\]
and \(f'_\eta(z) := \sigma^2 e^{-\kappa z} \psi_{\vartheta_{2}}(r/\sqrt{\nu}) \), \(\nu = 1, 2 \). The corresponding M-estimator is given by

\[
\hat{\eta} = \arg\min_{\tilde{\eta} \in H} K_{M,N}(\tilde{\eta}),
\]

where \(H \) is some subset of \((0, \infty)^2 \times \mathbb{R} \) containing the true parameter \(\eta \).

Theorem 4.3. Assume \(b > 0 \) and \(\delta/\sqrt{\Delta} \equiv r > 0 \). If \(\eta = (\sigma^2, \vartheta_{2}, \kappa) \) lies in the interior of \(H \) for some compact set \(H \subset (0, \infty)^3 \times \mathbb{R} \), then the least squares estimator \(\hat{\eta} \) from (16) satisfies

\[
\sqrt{MN}(\hat{\eta} - \eta) \xrightarrow{D} \mathcal{N}(0, \Omega^{\eta}_n), \quad M, N \to \infty,
\]

where \(\Omega^{\eta}_n \in \mathbb{R}^{3 \times 3} \) is a strictly positive definite covariance matrix, explicitly given by (29).

Remark 4.4. Based on \(\hat{\eta} \), we can define \(\hat{\vartheta}_{1} := \hat{\vartheta}_{2}\hat{\vartheta}_{3} = \hat{\vartheta}_{2}\hat{\vartheta}_{1} \) to estimate \(\vartheta_{1} \). The delta method then yields a central limit theorem for \((\hat{\vartheta}_{2}, \hat{\vartheta}_{2}, \hat{\vartheta}_{1})\).

Even when \(\delta/\sqrt{\Delta} \equiv r > 0 \) does not hold, there are always subsets of the data having the balanced sampling design. Hence, the estimation procedure treated in Theorem 4.3 can be generalized to an arbitrary set \(\{X_{t_{i}}(y_{k}), i \leq N, k \leq M\} \) of discrete observations by considering an averaged version of the above contrast process. To that aim, choose \(v, w \in \mathbb{N} \) such that \(v \approx \max(1, N/M^{2}) \) and \(w \approx \max(1, M/\sqrt{N}) \). Then, \(\Delta := v\Delta \) and \(\delta := w\delta \) satisfy

\[
r := \delta/\sqrt{\Delta} \approx 1.
\]

Using double increments on the coarser grid

\[
D_{v,w}(i, k) = X_{t_{i}}(y_{k+w}) - X_{t_{i}}(y_{k}) - X_{t_{i+w}}(y_{k}) + X_{t_{i}}(y_{k}),
\]

we set

\[
K'_{N,M}(\hat{\eta}) = \frac{1}{M - w + 1} \sum_{k=0}^{M-w} \left(\frac{1}{N - \nu v + 1} \mathcal{S}_{v}(\nu v \Delta) \sum_{i=0}^{N-\nu v} D_{v,w}^{2}(i, k) - f'_{\eta}\left(\frac{y_{k} + y_{k+w}}{2} \right) \right)^{2},
\]

where \(f'_{\eta}(z) = 2\sigma^2 \psi_{\vartheta_{2}}(r/\sqrt{\nu}) e^{-\kappa z} \) and \(\nu = 1, 2 \). The final estimator for \(\eta \) is then defined as

\[
\hat{\eta}_{v,w} = \arg\min_{\tilde{\eta} \in H} \left(K'^{1}_{N,M}(\tilde{\eta}) + K'^{2}_{N,M}(\tilde{\eta}) \right).
\]

The rate of convergence of this estimation procedure is inherited from the observations on the coarser grids \(\{ (t_{i+j}, y_{k+l}) : 0 \leq j \leq N/v - 1, 0 \leq l \leq M/w - 1 \} \), \(i = 0, \ldots, v - 1, k = 0, \ldots, w - 1 \), on which we calculate the double increments. Each such subset consists of

\[
M/w \cdot N/v \approx (M \wedge N^{1/2})(N \wedge M^{2}) = M^{3} \wedge N^{3/2}
\]

observations and has a balanced design by construction. Therefore, Theorem 4.3 implies the convergence rate \(1/\sqrt{M^{3} \wedge N^{3/2}} \).

Proposition 4.5. Assume \(b > 0 \) and let \(\eta = (\sigma^2, \vartheta_{2}, \kappa) \) lie in the interior of \(H \) for some compact set \(H \subset (0, \infty)^3 \times \mathbb{R} \). If there exist values \(v \approx \max(1, N/M^{2}) \in \mathbb{N} \) and \(w \approx \max(1, M/\sqrt{N}) \in \mathbb{N} \) such that \(w\delta/\sqrt{v\Delta} \) is constant, then the estimator given by (17) satisfies

\[
||\hat{\eta}_{v,w} - \eta|| = O_{P}\left(\frac{1}{\sqrt{M^{3} \wedge N^{3/2}}} \right), \quad M, N \to \infty.
\]

Remark 4.6. Integer values \(v \) and \(w \) such that \(w\delta/\sqrt{v\Delta} \) is constant exist, for instance, if the observations are recorded at a diadic grid, i.e. \(M = 2^{n} \) and \(N = 4^{m} \) where \(m, n \to \infty \).

Compared to the thinning method of [18], this rate is a considerable improvement. Indeed, it is (almost) optimal in the minimax sense, as shown in Section 5.
5. Lower bounds

Our next theorem proves that the estimator $\hat{\gamma}$ from (17) for $\eta = (\sigma^2, \vartheta_2, \kappa)$ is optimal in the minimax sense, up to a logarithmic factor. To obtain a lower bound, it suffices to consider the sub-problem where $\vartheta_1 = \vartheta_0 = 0$ and only (σ^2, ϑ_2) has to be estimated.

Theorem 5.1. Let $\vartheta_1 = \vartheta_0 = 0$, $(\sigma^2, \vartheta_2) \in H$ for some open set $H \subset (0, \infty)^2$ and consider observations at $t_i = i/N$, $i \leq N$, and $y_k = b + k\delta$, $k \leq M$, for some $b \in [0, 1/2] \cap \mathbb{Q}$. Then:

(i) If $\min(M, N)$ remains finite, there is no consistent estimator of (σ^2, ϑ_2).

(ii) There is a constant $c > 0$ such that

$$\liminf_{M, N \to \infty} \inf_{T} \sup_{(\sigma^2, \vartheta_2) \in H} \mathbf{P}_{(\sigma^2, \vartheta_2)} \left(\left\| T - \left(\frac{\sigma^2}{\vartheta_2} \right) \right\| > c \cdot r_{M, N} \right) > 0,$$

where $r_{M, N} := \begin{cases} N^{-3/4}, & \frac{M}{\sqrt{N}} \gtrsim 1, \\ \left(M^3 \log \frac{N}{M^2} \right)^{-1/2}, & \frac{M}{\sqrt{N}} \to 0. \end{cases}$

and \inf_T is taken over all estimators T of (σ^2, ϑ_2) based on observations $\{X_{t_{i+1}}(y_k) - X_{t_i}(y_k), i \leq N, k \leq M \}$.

Remark 5.2. The lower bound for the case $M/\sqrt{N} \gtrsim 1$ is also valid for estimators based on $\{X_{t_i}(y_k), i \leq N, k \leq M \}$ instead of the increments. We conjecture that this is also true for the case $M/\sqrt{N} \to 0$.

This lower bound shows that, in general, (σ^2, ϑ_2) cannot be estimated with the parametric rate $1/\sqrt{MN}$, in contrast to a conjecture in [7]. Instead, we observe a phase transition in the rate depending on the sampling frequency. The parametric rate can only be attained for a balanced design $N \approx M^2$.

The proof of Theorem 5.1 relies on the standard lower bound technique, cf. Tsybakov [30]. Using an inequality by Ibragimov and Has’minskii [16], we will bound the Hellinger distance of the laws of the observations in terms of the corresponding Fisher information for suitably chosen reparametrizations of (σ^2, ϑ_2). For each sampling regime we choose a reparametrization (γ_1, γ_2) of (σ^2, ϑ_2) in such a way that γ_1 can be estimated with parametric rate, even without knowledge of γ_2. Bounding the Fisher information for γ_2, we then obtain a lower bound for the simpler problem of estimating the one dimensional parameter γ_2, assuming that γ_1 is known. Clearly, the resulting lower bound for γ_2 carries over to (γ_1, γ_2) and consequently to (σ^2, ϑ_2). The main effort, noting that the observations are significantly correlated, is to derive sharp upper bounds for the Fisher information in the different sampling regimes.

In the case $M/\sqrt{N} \gtrsim 1$ we apply the following bound on the Fisher information for discrete observations of the first M coefficient processes. Thanks to the Markov property, the probability density function for discrete observations of an Ornstein-Uhlenbeck process is provided by the transition density and allows for explicit computations.

Proposition 5.3. Let $\vartheta_1 = \vartheta_0 = 0$ and consider a sample $(u_{\ell}(i\Delta), \ell \leq M, i \leq N)$ where $(u_{\ell}, \ell \in \mathbb{N})$ are independent Ornstein-Uhlenbeck processes given by

$$du_{\ell}(t) = -\lambda_{\ell} u_{\ell}(t) dt + \sigma d\beta_{\ell}(t), \quad u_{\ell}(0) \sim \mathcal{N} \left(0, \frac{\sigma^2}{2\lambda_{\ell}} \right).$$

Consider the reparametrization (σ^2, ρ^2) where $\rho^2 = \sigma^2/\vartheta_2$ and the corresponding Fisher information $J_{N,M}$. For $\max(M, N) \to \infty$, the diagonal entries of $J_{N,M}$ satisfy

$$J_{N,M}(\sigma^2) = O(N^{3/2} \wedge (MN)) \quad \text{and} \quad J_{N,M}(\rho^2) = O(M^3 \wedge (MN)).$$

In particular, $\min(J_{N,M}(\sigma^2), J_{N,M}(\rho^2)) \leq N^{3/2} \wedge M^3$ for $\max(N, M) \to \infty$.
Remark 5.4.

1. If $M \leq \sqrt{N}$ and σ^2 is known, Proposition 5.3 suggest a lower bound of $M^{-3/2}$ for estimation of ϑ_2 in the spectral approach. Indeed, this rate is achieved by the maximum likelihood estimator for time continuous observations of the coefficient processes, cf. [21].

2. The reparametrization was chosen since σ^2 can be computed from the quadratic variation of any coefficient process u_ℓ when $N \to \infty$, while ρ^2 can be computed from the empirical variance of $\ell u_\ell(t_i)$, $\ell \leq M$, for a fixed t_i as $M \to \infty$, even without knowledge of the other parameter, respectively.

Letting $M \to \infty$, Proposition 5.3 suggests that based on observations of the coefficient processes it is not possible to estimate σ^2 (and in particular (σ^2, ϑ_2)) at a rate faster than $N^{-3/4}$. Further, assuming $\vartheta_1 = 0$, the eigenfunctions $e_\ell(\cdot)$ do not depend on unknown parameters and hence, the space-time discrete observations of the SPDE may be reconstructed from $\{u_\ell(t_i), i \leq N, \ell \in \mathbb{N}\}$. Consequently, the lower bound $N^{-3/4}$ carries over to discrete observations of the SPDE.

Although the lower bounds resulting from Proposition 5.3 and Theorem 5.1 are almost the same, their proofs require a very different reasoning if $M/\sqrt{N} \to 0$: In this case, if σ^2 is known, Proposition 4.2 shows that it is possible to estimate ϑ_2 with parametric rate of convergence based on discrete observations of the SPDE whereas Proposition 5.3 suggests that $\vartheta_2 = \sigma^2/\rho^2$ cannot be estimated at a faster rate than $M^{-3/2}$ based on the coefficient processes. In particular, both observation schemes are not asymptotically equivalent in the sense of Le Cam.

To derive the lower bound in the case $M/\sqrt{N} \to 0$, we consider the situation where observations are recorded at rational positions $y_k = \frac{k}{M}$, $k = 1, \ldots, M-1$, where we work with $M-1$ instead of M spatial observations for ease of notation. Thus, we potentially add spatial observations on the margin $[0,b) \cup (1-b,1]$ which can only increase the amount of information contained in the data. Since $e_\ell(\cdot) = \sqrt{2} \sin(\pi \ell \cdot)$ is the sine basis, trigonometric identities imply that the vectors

$$\bar{e}_k := (e_k(y_1), \ldots, e_k(y_{M-1})) \in \mathbb{R}^{M-1}, \quad k \in \mathbb{N},$$

satisfy $\bar{e}_{k+2M} = \bar{e}_k$ for all $k \in \mathbb{N}$ and $\langle \bar{e}_k, \bar{e}_l \rangle = M I_{\{k \neq l \}} - M I_{\{k + l = 2M\}}$ for $k, l \leq 2M$. Equivalently, $(e_k)_{k=1,\ldots,M-1}$ form an orthonormal basis with respect to the empirical scalar product and the relations for $(\bar{e}_k)_{k \geq 1}$ follow from the symmetry of the sine. Therefore, observing $\{X_t(y_k), i \leq N, k \leq M-1\}$ is equivalent to observing

$$\{U_k(t_i), k \leq M-1, i \leq N\}, \quad U_k(t) := \frac{1}{M} \langle X_t(y), \bar{e}_k \rangle = \sum_{\ell \in \mathcal{I}_k^+} u_\ell(t) - \sum_{\ell \in \mathcal{I}_k^-} u_\ell(t),$$

(19)

where $\mathcal{I}_k^+ := \{k + 2M\ell, \ell \geq 0\}$, $\mathcal{I}_k^- := \{2M - k + 2M\ell, \ell \geq 0\}$. Since the sets $\mathcal{I}_k = \mathcal{I}_k^+ \cup \mathcal{I}_k^-$ are disjoint for different values of k, the processes $\{U_1, \ldots, U_{M-1}\}$ are independent which simplifies the calculation of the Fisher information considerably. Based on their spectral densities and Whittle’s formula (34) for the asymptotic Fisher information of a stationary Gaussian time series, we obtain the following result for the increment processes $\hat{U}_k, k \leq M-1$, defined by

$$\hat{U}_k(j) := U_k(t_{j+1}) - U_k(t_j), \quad j = 0, \ldots, N-1.$$

(20)

Proposition 5.5. Consider the parametrization $(\sigma_0^2, \vartheta_2)$ where $\sigma_0^2 := \sigma^2/\sqrt{2}$. If $M/\sqrt{N} \to 0$, the Fisher information $J_{M,N}$ with respect to ϑ_2 of a sample $\{\hat{U}_k(j)\}, j \leq N-1, k \leq M-1$ satisfies

$$J_{M,N}(\vartheta_2) = O\left(M^3 \log \frac{N}{M^2}\right).$$

Hereby, the reparametrization allows for estimation of $\sigma_0^2 = \sigma^2/\sqrt{2}$ with parametric rate based on time increments in the regime $M/\sqrt{N} \to 0$, even when ϑ_2 is unknown. We have considered \hat{U}_k instead of U_k due to the technical reason that the N-th order Fourier approximation of the spectral density of the increment process is positive and hence, a spectral density as well. We conjecture that the same bound holds for the Fisher information of U_k.

Hildebrandt and Trabs/Parameter estimation for SPDEs based on discrete observations
6. Simulations

The following numerical example illustrates the asymptotic results for the estimators derived in Section 4. In order to simulate X on a grid in time and space, we have considered the approximation

$$X^K_t(y_k) = \sum_{\ell=1}^{K} u_\ell(t_i) e_\ell(y_k)$$

where K is a large number. Moreover, the Ornstein-Uhlenbeck processes u_ℓ are simulated exploiting their AR(1)-structure, namely

$$u_\ell(0) = \sigma \sqrt{2 \lambda_\ell} N_0^\ell, \quad u_\ell(t_{i+1}) = e^{-\lambda_\ell \Delta} u_\ell(t_i) + \sigma \sqrt{1 - e^{-2 \lambda_\ell \Delta}} \frac{1}{2 \lambda_\ell} N_i^\ell, \quad i \in \mathbb{N},$$

where (N_i^ℓ) are independent standard normal random variables.

Hereby, we have considered a fixed number $N = 625 = 25^2$ of temporal observations and $M \in \{10, 15, 25, 40, 70, 110, 180, 300\}$. The margin was set to $b = 0.1$. In general, an appropriate choice for the cut of frequency K highly depends on these values. For our setting $K = 70,000$ produced accurate results. The parameters are chosen as $\sigma^2 = 0.1, \vartheta^2 = 0.5, \vartheta_1 = -0.4$ and $\vartheta_0 = 0.3$.

First, we consider the estimators for the volatility σ^2 and the diffusivity ϑ^2 which have been analyzed in Propositions 4.1 and 4.2, respectively. Figure 1 shows the normalized mean squared error based on 500 Monte Carlo iterations plotted against the logarithm of the sampling ratio $\sqrt{N/M}$. The simplified double increments estimator $\hat{\vartheta}_2^r$ is computed with $r = (1 - 2b) \sqrt{N/M}$. Using the same value for r, the simplified double increments estimator for σ^2 is computed by replacing the normalization $\Phi_\vartheta(\delta, \Delta)$ by $e^{-\lambda_\ell / 2} \psi_\vartheta^\ell(r) \sqrt{\Delta}$.

As expected, the estimators based on temporal increments only achieve the parametric rate of convergence as long as M is not too large, whereas estimators based on space increments only work well when M is not too small. The estimators based on double increments perform very well throughout any regime depicted in the plot. Even the simplified versions work surprisingly well, although their applicability is only supported by our theory as long as $M \lessapprox \sqrt{N}$. In particular, the double increments estimator for σ^2 can barely be distinguished from the simplified one. The theory suggests that the estimators based on space increments or time increments should have a smaller mean squared error than the double increments estimators in the regimes $\sqrt{N}/M \to 0$ or $\sqrt{N}/M \to \infty$, respectively. The simulation confirms this effect for time increments, while we would require larger values of M to see the asymptotic behavior for space increments. However, to simulate the spatial increments estimator for large M, a considerably larger value of K turns out to be crucial since otherwise the statistical bias of the estimator is amplified by a numerical bias.
The above estimators require that all but one of the parameters \((\sigma^2, \vartheta_2, \kappa)\) are known. In the more difficult statistical problem where all parameters are unknown, \(\eta = (\sigma^2, \vartheta_2, \kappa)\) can be estimated by \(\hat{\eta}\) from (16) and by \(\hat{\eta}_{v,w}\) from (17). Figure 2 shows their mean squared error, again based on 500 Monte Carlo iterations. For the averaged estimator \(\hat{\eta}_{v,w}\), we set \(v = \lceil \max(1, N/4M^2) \rceil\) and \(w = \lceil \max(1, M/\sqrt{N}) \rceil\) where \(\lceil \cdot \rceil\) indicates rounding to the next integer. Since minimizing a functional of the type \(\|F(\tilde{\eta})\|^2\) for some function \(F\) on a compact set is a hard numerical task we have considered the corresponding ridge regression problem, that is we minimize \(\|F(\tilde{\eta})\|^2 + \lambda\|\tilde{\eta}\|^2\) instead. Regularizing with the squared inverse of the expected rate of convergence, i.e. \(\lambda = 1/(N^{3/2}M^3)\) for \(\hat{\eta}_{v,w}\) and \(\lambda = 1/(NM)\) for \(\hat{\eta}\) produced reasonable results, respectively.

In contrast to the double increments estimators for single parameters, \(\hat{\eta}\) only produces good results as long as \(M \approx \sqrt{N}\), which is covered by the theoretical foundation. The averaged version \(\hat{\eta}_{v,w}\) works well throughout. Furthermore, we see that it is only possible to profit from an increasing number of spatial observations up to a certain degree. Indeed, for \(M \geq \sqrt{N}\) the optimal rate is \(N^{-3/2}\) and the Monte Carlo mean squared error does not improve further. To cover also the regime \(\sqrt{N}/M \to \infty\) for sufficiently large values of \(M, N\), corresponding simulations are costly and not part of this simulation study. The Monte Carlo mean squared error of \(\hat{\eta}_{v,w}\) is not everywhere monotonic in \(M\) since the effective sampling frequency ratio \(r\) on the coarser grid where the double increments are computed is only approximately constant throughout the plot. Finally, we remark that our choice of \(v\) and \(w\) results in \(v = w = 1\) for the two smallest values of \(M\) and hence, the two estimators are the same.

7. Proofs of the main results

7.1. Proofs for the central limit theorems for realized quadratic variations

First, we prove the generic central limit result in Proposition 3.1. Afterwards, we can verify the central limit theorems for realized quadratic variations based on spatial increments (Theorem 3.3) and double increments (Theorem 3.7).

Proof of Proposition 3.1. Since \(\Sigma_n = Q_n^\top A_n Q_n\) for an orthogonal matrix \(Q_n \in \mathbb{R}^{d_n \times d_n}\) and a diagonal matrix \(A_n\), the vector \(Z_{\bullet,n}\) has the same distribution as \(B_n X^n\) for \(B_n := Q_n^\top \Lambda_n^{1/2}\) and \(X^n := (X_1, \ldots, X_{d_n})\) with independent standard normal random variables \((X_k)_{k \in \mathbb{N}}\). Denoting \(A_n = \text{diag}(\alpha_{1,n}, \ldots, \alpha_{d_n,n})\), we obtain \(S_n = Z_{\bullet,n}^\top A_n Z_{\bullet,n} \overset{D}{=} X^n^\top B_n^\top A_n B_n X^n\). Furthermore, \(B_n^\top A_n B_n\) is symmetric such that \(B_n^\top A_n B_n = P_n^\top \Gamma_n P_n\) where \(P_n\) is an orthogonal matrix and \(\Gamma_n\)
is a diagonal matrix. Since $P_n X^n \sim \mathcal{N}(0, E_{d_n})$, we conclude as in [23, p. 36]

$$S_n \overset{D}{=} X_n^\top B_n^\top A_n B_n X^n = (P_n X^n)^\top \Gamma(P_n X^n) \overset{D}{=} X_n^\top \Gamma_n X^n = \sum_{i=1}^{d_n} \gamma_{i,n} X_i^2,$$

where $\gamma_{i,n}, i \leq d_n$ are the eigenvalues of $B_n^\top A_n B_n$. The statement now follows by Lyapunov’s condition and $\|B_n\|_2^2 = \|\Sigma_n\|_2$:

$$\sum_{i=1}^{d_n} \gamma_{i,n} \mathbb{E} \left(\frac{X_i^2 - E X_i^2}{\text{Var} S_n} \right)^4 \approx \sum_{i=1}^{d_n} \gamma_{i,n}^4 \frac{\text{Var} S_n^2}{\left(\sum_{i=1}^{d_n} \gamma_{i,n}^2 \right)^2} \leq \frac{\max_{i \leq d_n} \gamma_{i,n}^2}{\sum_{i=1}^{d_n} \gamma_{i,n}^2} \leq \frac{\|B_n^\top A_n B_n\|_2^2}{\text{Var} S_n} = \frac{\|\Sigma_n\|_2^2}{\text{Var} S_n}. \quad \square$$

Throughout, for a function $f : \mathbb{R} \to \mathbb{R}$ we use the notation

$$D_\delta f(x) := f(x + \delta) - f(x) \quad \text{and} \quad D^2_\delta f(x) := f(x + 2\delta) - 2f(x + \delta) + f(x).$$

Proof of Theorem 3.3. We abbreviate the (rescaled) space increments by $S_{ik} := (\delta_k^M X)(t_i)$ and $\tilde{S}_{ik} := e^{g_{y_k}/2}(\delta_k^M X)(t_i)$.

Step 1. We calculate the asymptotic mean of V_{sp}. Application of the trigonometric identity $\sin(\alpha) \sin(\beta) = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$ yields

$$e^{\kappa x/2}(e_{\ell}(x + \delta) - e_{\ell}(y)) e^{\kappa y/2}(e_{\ell}(y + \delta) - e_{\ell}(y))
= g(\delta) (2 \cos(\pi \ell(y - x)) - \cos(\pi \ell(y - x - \delta)) - \cos(\pi \ell(y - x + \delta)))
+ (g(2\delta) + g(0) - 2g(\delta)) \cos(\pi \ell(y - x))
+ 2g(\delta) \cos(\pi \ell(y + x)) - g(0) \cos(\pi \ell(y + x)) - g(2\delta) \cos(\pi \ell(y + x + 2\delta)),$$

where $g(x) = \exp(-\kappa x/2)$. Plugging in $x = y$ gives

$$e^{\kappa y}(e_{\ell}(y + \delta) - e_{\ell}(y))^2
= 2(1 - \cos(\pi \ell \delta)) + 2(1 - g(\delta))(\cos(\pi \ell \delta) - 1) + (g(2\delta) + g(0) - 2g(\delta))
+ 2g(\delta) \cos(\pi \ell(2y + \delta)) - g(2\delta) \cos(2\pi \ell(2y + \delta)) - g(0) \cos(2\pi \ell y).$$

Thus, in terms of

$$f(y) := \sum_{\ell \geq 1} \frac{1}{2\lambda_{\ell}} \cos(\pi \ell y), \quad y \in [0, 1],$$

we have

$$\mathbb{E} \left(e^{\kappa y} (X_{\ell}(y + \delta) - X_{\ell}(y))^2 \right) = \sigma^2 \sum_{\ell \geq 0} \frac{1}{2\lambda_{\ell}} e^{\kappa y} (e_{\ell}(y + \delta) - e_{\ell}(y))^2
= \sigma^2 \left(-2D_\delta f(0) - 2D_\delta g(0)D_\delta f(0) + f(0)D^2_\delta g(0) - D^2_\delta (g(\cdot)f(2y + \cdot))(0)) \right).$$

Owing to its closed form expression in (40) below, we see that $f \in C^\infty_c([0, 2])$ and $f'(0) = -\frac{1}{4\sigma^2}$. Hence,

$$\mathbb{E} \left(e^{\kappa y} (X_{\ell}(y + \delta) - X_{\ell}(y))^2 \right) = -2\sigma^2 f'(0) \cdot \delta + O(\delta^2) = \frac{\sigma^2}{2\sigma^2} \cdot \delta + O(\delta^2).$$

For $y = y_k$ we obtain the asymptotic mean $\mathbb{E}(V_{sp}) = \frac{\sigma^2}{2\sigma^2} + O(\delta)$ and in particular, under the condition $N/M \to 0$,

$$\sqrt{MN} \left(V_{sp} - \frac{\sigma^2}{2\sigma^2} \right) = \sqrt{MN}(V_{sp} - \mathbb{E}(V_{sp})) + o(1).$$
Step 2. We calculate the asymptotic variance. By Isserlis' Theorem [17] we have
\[\text{Cov}((\hat{S}_{ik})^2, (\hat{S}_{jl})^2) = 2 \text{Cov}(\hat{S}_{ik}, \hat{S}_{jl}). \]
Together with the symmetry \(\text{Cov}(\hat{S}_{ik}, \hat{S}_{jl}) = \text{Cov}(\hat{S}_{jk}, \hat{S}_{il}) \) this implies
\[\text{Var}(V_{\text{ep}}) = \frac{2}{N^2 M^2 \delta^2} (v_1 + v_2 + v_3 + v_4) \]
where
\[v_1 := \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} \text{Var}(\hat{S}_{ik})^2, \quad v_2 := 2 \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} \sum_{k=0}^{M-1} \text{Cov}(\hat{S}_{ik}, \hat{S}_{jk})^2 \]
\[v_3 := 2 \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} \sum_{t=k+1}^{M-1} \text{Cov}(\hat{S}_{ik}, \hat{S}_{il})^2, \quad v_4 := 4 \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} \sum_{k=0}^{M-1} \sum_{l=k+1}^{M-1} \text{Cov}(\hat{S}_{ik}, \hat{S}_{jl})^2. \]

We have already shown that \(\text{Var}(\hat{S}_{ik}) = \mathbb{E}((\hat{S}_{ik})^2) = \frac{\sigma^2}{N^2} \cdot \delta + O(\delta^2). \) Therefore,
\[v_1 = N M \delta^2 \frac{\sigma^4}{4 \delta^2} + O \left(\frac{N}{M^2} \right) = N M \delta^2 \frac{\sigma^4}{4 \delta^2} + o \left(\frac{N}{M} \right). \]
In the sequel, we show that the remaining covariances do not contribute to the asymptotic variance.

For \(v_2 \) we define \(\omega := \omega_2(\pi^2 \wedge (\pi^2 + \Gamma)) > 0 \) such that \(\lambda_\ell \geq \omega \ell^2 \) for all \(\ell \in \mathbb{N}. \) Since \((e_\ell(y_{k+1}) - e_\ell(y_k))^2 \lesssim \ell^2 \delta^2, \) we get for \(J = |i-j| \geq 1 \)
\[\text{Cov}(\hat{S}_{ik}, \hat{S}_{jk}) = \sigma^2 \sum_{\ell \geq 1} \frac{e^{-\lambda_\ell J \Delta}}{2 \lambda_\ell} e^{\gamma y_k} (e_\ell(y_{k+1}) - e_\ell(y_k))^2 \lesssim \delta^2 \sum_{\ell \geq 1} e^{-\omega \ell^2 J \Delta} \lesssim \frac{\delta^2}{\sqrt{J \Delta}} \]
where the last step follows by Riemann summation with mesh size \(\sqrt{J \Delta}. \) Since \(\frac{\log N}{M^2 \Delta} \leq \frac{N^2}{M^2} = \frac{N^2}{M^2} \rightarrow 0, \)
\[v_2 \lesssim \frac{M \delta^4 N^2}{\Delta} \sum_{i=0}^{N-1} \sum_{j=i+1}^{N} \frac{1}{(j-i)} \lesssim \frac{N M \delta^4}{\Delta} \sum_{i=1}^{N} \frac{1}{i} = O \left(\frac{N \log N}{M^3 \Delta} \right) = o \left(\frac{N}{M} \right). \]

To bound \(v_3 \) we follow the same strategy as for the mean: Since (21) consists exclusively of second order differences we have \(\text{Cov}(\hat{S}_{ik}, \hat{S}_{il}) = O(\delta^2) \) for \(k \neq l. \) Therefore, \(v_3 = O(NM^2 \delta^4) = o(N/M). \)

To estimate \(v_4, \) we deduce from (21) for \(k < l \) and \(J = |i-j| \geq 1 \) that
\[\text{Cov}(\hat{S}_{ik}, \hat{S}_{jl}) = -g(\delta) D_1^2 f_{J \Delta} (y_l - y_k+1) \]
\[+ f_{J \Delta} (y_l - y_k) D_3^2 g(0) - D_3^2 (g(\cdot) f_{J \Delta} (y_l + y_k + \cdot)) (0), \] where
\[f_1(y) := \sigma^2 \sum_{\ell \geq 1} \frac{e^{-\lambda_\ell t}}{2 \lambda_\ell} \cos(\pi \ell y). \]

By Riemann summation we have \(f_1''(y) \lesssim \sum_{\ell \geq 1} e^{-\lambda_\ell t} \lesssim \frac{1}{\sqrt{t}}. \) On the other hand, by Lemma A.7,
\[f_1''(y) \lesssim \frac{1}{y \wedge (2-y)} \sup_k \left| \frac{k^2}{\lambda_k e^{-\lambda_k t}} \right| \lesssim \frac{1}{y \wedge (2-y)}. \]

Therefore,
\[f_1''(y) \lesssim B(t, y) := \frac{1}{y \wedge (2-y)} \wedge \frac{1}{\sqrt{t}}. \]
Similarly, \(f_t(y), f'_t(y) \) \(\lesssim B(t, y) \) can be shown. We conclude
\[
v_4 \lesssim N M \sum_{i=0}^{N-1} \sum_{k=0}^{M-2} \delta^4 B \left(\frac{i \Delta}{M} \right) \leq \frac{N}{M^2} \sum_{i=1}^{N} \sum_{k=0}^{M} \frac{M^2}{k^2} \frac{1}{i \Delta}
\]
\[
= \frac{N}{M^2} \sum_{i=1}^{N} \left(\sum_{k<M \sqrt{i \Delta}} \frac{1}{i \Delta} + \sum_{M \geq k \geq M \sqrt{i \Delta}} \frac{M^2}{k^2} \right) \lesssim \frac{N}{M^2} \sum_{i=1}^{N} \frac{M}{\sqrt{i \Delta}} \lesssim \frac{N^{3/2}}{M^{2/\Delta}} = o \left(\frac{N}{M} \right)
\]
where the last step follows from \(\frac{\sqrt{N}}{M^{2 \Delta}} = \frac{N}{M} \to 0 \). Summing up, we have proved that
\[
\text{Var}(V_{sp}) = \frac{\sigma^4}{2 \delta_2^2} \frac{1}{MN} + o \left(\frac{1}{NM} \right).
\]
Step 3. To prove asymptotic normality, we interpret the number of temporal and spatial observations as sequences \(M = M_n, N = N_n \) indexed by \(n \in \mathbb{N} \) and consider the triangular array \((Z_{ik,n}, n \in \mathbb{N}, k < M_n, i < N_n) \), where \(Z_{ik,n} = \tilde{S}_{ik}/\sqrt{N \Delta} \). Since \(\text{Var}(\sum_{t=1}^{M} Z_{ik}) \approx (MN)^{-1} \), Proposition 3.1 applies if:
\[
V_{ij} = \frac{\sigma^4}{2 \delta_2^2} \frac{1}{NM} = o \left(\frac{1}{N} \right).
\]
uniformly in \(j < N, l < M \) in view of criterion (7). The covariance bounds in Step 2 yield uniformly in \(j < N, k < M \):
\[
\sum_{k < M} |\text{Cov}(\tilde{S}_{jk}, \tilde{S}_{jl})| = O(\delta), \quad \sum_{i < N} |\text{Cov}(\tilde{S}_{il}, \tilde{S}_{jl})| = O(\delta^2 \sqrt{N}/\sqrt{\Delta}),
\]
\[
\left(\sum_{i \neq j, k \neq l} |\text{Cov}(\tilde{S}_{ik}, \tilde{S}_{jl})| \right)^2 \lesssim MN \sum_{i \neq j, k \neq l} |\text{Cov}(\tilde{S}_{ik}, \tilde{S}_{jl})|^2 = o(NM),
\]
where we have used the Cauchy-Schwarz inequality to obtain the last bound. It remains to note \(N/M \to 0 \) and \(N \Delta \gtrsim 1 \).\(\square \)

The proof of Theorem 3.7 is similar to the previous one but the more complex covariance structure of the double increments has to be taken into account carefully, see Section A.1. The (asymptotic) mean of the realized quadratic space-time variation is provided by Proposition 3.5, which we prove first. In the following, we write
\[
\tilde{D}_{ik} := e^\nu y_k/2 D_{ik}.
\]

Proof of Proposition 3.5. Step 1. We show asymptotic independence of \(\Gamma \), i.e.,
\[
\mathbb{E}((D_{ik})^2) = \sigma^2 \sum_{\ell \geq 1} \frac{1 - e^{-\pi \ell^2 \Delta}}{\pi \ell^2 \Delta} (e\ell(y_{k+1}) - e\ell(y_k))^2 + O \left(\delta \sqrt{\Delta} \left(\delta \wedge \sqrt{\Delta} \right) \right).
\]
Define \(f(x) := \frac{1 - e^{-\pi x^2}}{x} \). A first order Taylor approximation of \(f \) yields
\[
\mathbb{E}((D_{ik})^2) = \sigma^2 \Delta \sum_{\ell \geq 1} f (\pi \ell^2 \Delta) (e\ell(y_{k+1}) - e\ell(y_k))^2 + R
\]
where \(R \lesssim \Delta^2 \sum_{\ell \geq 1} f'(\pi \ell^2 + \xi \ell \Delta) (e\ell(x + \delta) - e\ell(x))^2 \) for some \(|\xi| \leq |\Gamma| \). Since
\[
(e\ell(y + \delta) - e\ell(y))^2 \lesssim \left(e^{-\kappa \delta^2/2} \sin(\pi \ell(y + \delta)) - \sin(\pi \ell y) \right)^2 \lesssim 1 \wedge (\ell \delta)^2
\]
and noting that \(f'(x^2) \) and \(x^2 f'(x^2) \) are integrable, we deduce
\[
R \lesssim \Delta^2 \sum_{\ell \geq 1} (1 \wedge (\ell \delta)^2) f'(\pi \ell^2 + \xi \ell \Delta) = O(\Delta^{3/2} \wedge (\delta^2 \sqrt{\Delta})) = O((\delta \Delta) \wedge (\delta^2 \sqrt{\Delta})).
\]
Step 2. We verify (i). Thanks to Step 1 we may assume \(\lambda_\ell = \pi^2 \vartheta_2 \ell^2 \). It follows from (22) that
\[
E(D_{ik}^2) = \sigma^2 e^{-\kappa y} \left(F_{\vartheta_2}(0, \Delta) \left(1 + e^{-\kappa \Delta} \right) - 2 F_{\vartheta_2}(\delta, \Delta) e^{-\kappa \Delta/2} \right)
- \sigma^2 e^{-\kappa y} D_\delta^2 \left(g(\cdot) F_{\vartheta_2}(2y_k + \cdot, \Delta) \right)(0).
\]
Consequently, it remains to show
\[
D_\delta^2 \left(g(\cdot) F_{\vartheta_2}(2y + \cdot, \Delta) \right)(0) = O \left(\delta \sqrt{\Delta} \left(\delta \wedge \sqrt{\Delta} \right) \right)
\]
uniformly in \(y \in [b, 1-b] \). As before, this is done by showing
\[
F_{\vartheta_2}(x, \Delta) \lesssim \delta, \quad \frac{\partial F_{\vartheta_2}(x, \Delta)}{\partial x} \lesssim \Delta \quad \text{and} \quad \frac{\partial^2 F_{\vartheta_2}(x, \Delta)}{\partial x^2} \lesssim \sqrt{\Delta}
\]
uniformly in \(x \in [2b, 2(1-b)] \). By Lemma A.8 we have \(F_{\vartheta_2}(x, \Delta) = \Delta \sum_{\ell \geq 1} f(\lambda_\ell \Delta) \cos(\pi \ell x) = O(\Delta) \). In order to access the first two derivatives of \(F_{\vartheta_2}(\cdot, \Delta) \), we split it into two summands,
\[
F_{\vartheta_2}(x, \Delta) = \Delta \sum_{\ell \geq 1} \frac{1}{1 + \lambda_\ell \Delta} \cos(\pi \ell x) + \Delta \sum_{\ell \geq 1} \left(\frac{1 - e^{-\lambda_\ell \Delta}}{\lambda_\ell \Delta} - \frac{1}{1 + \lambda_\ell \Delta} \right) \cos(\pi \ell x).
\]
Using the cosine series formula (40), we can compute
\[
H_\Delta(x) = \frac{1}{\vartheta_2 \pi^2} \sum_{\ell \geq 1} \left(\frac{1}{\ell^2 + \frac{1}{\pi^2 \vartheta_2 \Delta}} \cos(\pi \ell x) \right) = \frac{\sqrt{\Delta}}{2 \sqrt{\vartheta_2}} \frac{\cos \left(\frac{\ell \Delta}{\sqrt{\vartheta_2 \Delta}} (x - 1) \right)}{\sin \left(\frac{\ell \Delta}{\sqrt{\vartheta_2 \Delta}} \right)} - \frac{\Delta}{2}.
\]
from which it easily follows that \(H'_\Delta(x) \lesssim \Delta \) and \(H''_\Delta(x) \lesssim \sqrt{\Delta} \). The derivatives of
\[
G_\Delta(x) = \Delta \sum_{\ell \geq 1} h(\ell \sqrt{\Delta}) \cos(\pi \ell x), \quad \text{where} \quad h(z) := \frac{1 - e^{-z}(1 + z)}{z(1 + z)},
\]
can be bounded summand-wisely,
\[
G'_\Delta(x) \approx \sqrt{\Delta} \sum_{\ell \geq 1} (\ell \sqrt{\Delta}) h(\ell \sqrt{\Delta}) \sin(\pi \ell x) \lesssim \Delta, \quad G''_\Delta(x) \approx \sum_{\ell \geq 1} (\ell^2 \Delta) h(\ell \sqrt{\Delta}) \cos(\pi \ell x) \lesssim \sqrt{\Delta},
\]
where the bounds follow from the Riemann sum approximations in Lemma A.8, owing to \(x h(x)|_{x=0} = x^2 h(x)|_{x=0} = 0 \).

Step 3. We show the asymptotic expressions in (ii). Due to a Riemann sum argument, we have \(\| F_{\vartheta_2}(\cdot, \Delta) \|_\infty \lesssim \sqrt{\Delta} \) and consequently,
\[
\Phi_\vartheta(\delta, \Delta) = 2 \left(F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(\delta, \Delta) \right) + F_{\vartheta_2}(0, \Delta) \left[1 + e^{-\kappa \delta} - 2 e^{-\kappa \delta/2} \right]
- 2 \left(F_{\vartheta_2}(\delta, \Delta) - F_{\vartheta_2}(0, \Delta) \right) \left(e^{-\kappa \delta/2} - 1 \right)
= 2 \left(F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(\delta, \Delta) \right) + O(\delta \sqrt{\Delta}).
\]
In the case \(\delta/\sqrt{\Delta} \to 0 \) Taylor’s formula yields
\[
F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(\delta, \Delta) = -\delta \frac{\partial F_{\vartheta_2}(0, \Delta)}{\partial x} - \frac{\delta^2}{2} \frac{\partial^2 F_{\vartheta_2}(\eta, \Delta)}{\partial x^2}
\]
for some \(\eta \in [0, \delta] \). We employ the representation \(F_{\vartheta_2}(\cdot, \Delta) = H_\Delta + G_\Delta \) from Step 2. Since \(\sin(0) = 0 \) we have \(\frac{\partial F_{\vartheta_2}(0, \Delta)}{\partial x} = H'_\Delta(0) = -\frac{1}{2 \vartheta_2} \). Further, \(H'_\Delta(\eta) = 1/\sqrt{\Delta} \) and the Riemann sum argument yields \(G'_\Delta(\eta) \lesssim \sum_{\ell \geq 1} (\ell^2 \Delta) h(\ell \sqrt{\Delta}) \lesssim 1/\sqrt{\Delta} \). Therefore, \(F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(\delta, \Delta) = \frac{1}{2 \vartheta_2} \cdot \delta + O \left(\frac{\Delta^2}{\sqrt{\Delta}} \right) \).
If $\delta/\sqrt{\Delta} \to \infty$, Lemma A.8 implies $F_{\vartheta_2}(\delta, \Delta) = -\frac{\Delta}{2} + O(\frac{\Delta^{3/2}}{\delta^2})$ and Lemma A.9 yields

$$F_{\vartheta_2}(0, \Delta) = \sqrt{\Delta} \int_0^\infty \frac{1 - e^{-\pi^2 \vartheta_2 z^2}}{\pi^2 \vartheta_2 z^2} dz - \frac{\Delta}{2} + O(\Delta^{3/2}). \quad (24)$$

Since $\int_0^\infty \frac{1 - e^{-\pi^2 \vartheta_2 z^2}}{\pi^2 \vartheta_2 z^2} dz = \frac{1}{\sqrt{\vartheta_2 \pi}}$, we obtain $F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(\delta, \Delta) = \frac{\sqrt{\Delta}}{\sqrt{\vartheta_2 \pi}} + O(\frac{\Delta^{3/2}}{\delta^2})$.

Finally, we derive the asymptotic expression for the case $\delta/\sqrt{\Delta} = r$, while $\delta/\sqrt{\Delta} \to r$ can be handled similarly. We have

$$\Phi_\varphi(\delta, \Delta) = 2(F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(\delta, \Delta)) e^{-\kappa \delta/2} + F_{\vartheta_2}(0, \Delta)(1 + e^{-\kappa \delta} - 2e^{-\kappa \delta/2})$$

and since $1 - \cos(0) = 0$, Lemma A.9 yields

$$F_{\vartheta_2}(0, \Delta) - F_{\vartheta_2}(r\sqrt{\Delta}, \Delta) = \sum_{k \geq 1} \frac{1 - e^{-\pi^2 \vartheta_2 \ell^2 \Delta}}{1 - \cos(\pi r \vartheta z)} (1 - \cos\left(\pi \ell r \sqrt{\Delta}\right))$$

$$= \sqrt{\Delta} \int_0^\infty \frac{1 - e^{-\pi^2 \vartheta_2 z^2}}{\pi^2 \vartheta_2 z^2} (1 - \cos(\pi r z)) dz + O(\Delta^{3/2}).$$

It remains to compute the integral. By substituting $r = r/\sqrt{\vartheta_2}$ we can pass to

$$\int_0^\infty \frac{1 - e^{-\pi^2 \vartheta_2 z^2}}{\pi^2 \vartheta_2 z^2} (1 - \cos(\pi r z)) dz = \frac{1}{\pi \sqrt{\vartheta_2}} (h_1(\bar{r}) - h_2(\bar{r}))$$

where

$$h_1(\bar{r}) = \int_0^\infty \frac{1 - \cos(\bar{r} z)}{z^2} dz, \quad h_2(\bar{r}) = \int_0^\infty e^{-\bar{r} z} \frac{1 - \cos(\bar{r} z)}{z^2} dz.$$

To compute h_1, note that $S(z) + \frac{\cos(z) - 1}{z}$ is an antiderivative of $\frac{1 - \cos(z)}{z^2}$, where $S(z) = \int_0^z \frac{\sin(h)}{h} dh$ is the sine integral. Consequently, a substitution and $\lim_{z \to \infty} S(z) = \pi/2$ yields

$$h_1(\bar{r}) = \bar{r} \int_0^\infty \frac{1 - \cos(z)}{z^2} dz = \frac{\pi \bar{r}}{2}.$$

To treat h_2, note that $h_2(0) = h'_2(0) = 0$ and hence, $h_2(\bar{r}) = \int_0^{\bar{r}} \int_0^s h''_2(u) du ds$. Now, plugging in $h''_2(\bar{r}) = \int_0^\infty e^{-s^2} \cos(\bar{r} z) dz = \frac{\sqrt{\pi}}{2} e^{-\bar{r}^2/4}$ and integrating by parts yields

$$h_2(\bar{r}) = \frac{\sqrt{\pi}}{2} \int_0^{\bar{r}} \int_0^s e^{-u^2} du = \sqrt{\pi \bar{r}} \int_0^{\bar{r}/2} e^{-u^2} du + \sqrt{\pi} \left(e^{-\bar{r}^2/4} - 1 \right).$$

The claim thus follows from

$$h_1(\bar{r}) - h_2(\bar{r}) = \frac{\pi \bar{r}}{2} \left(1 - \frac{2}{\sqrt{\pi}} \int_0^{\bar{r}/2} e^{-u^2} du \right) + \sqrt{\pi} \left(1 - e^{-\bar{r}^2/4} \right)$$

$$= \bar{r} \sqrt{\pi} \int_0^{\bar{r}/2} e^{-u^2} du + \sqrt{\pi} \left(1 - e^{-\bar{r}^2/4} \right).$$

Proof of Theorem 3.7. Asymptotic normality follows just like in the proof of Theorem 3.3. Using the notation from the proof of the latter theorem (with space increments replaced by double increments) we have

$$\text{Var}(\bar{\mathcal{V}}) = \frac{2}{M^2 N^2 \vartheta_2^2(\delta, \Delta)} \left(v_1 + v_2 + v_3 + v_4 \right).$$

To determine the asymptotic variances, we have to treat the three different sampling regimes separately.
Case $\delta/\sqrt{\Delta} \to 0$. By Lemmas A.1 and A.2 we have
\[
\text{Var}(\tilde{D}_{ki}) = \frac{\sigma^4}{\bar{\tau}_2^2} e^{-\kappa \delta} \cdot \Delta + o(\Delta), \quad \text{Cov}(\tilde{D}_{ki}, \tilde{D}_{k(i+1)}) = \frac{\sigma^4}{4\bar{\tau}_2^2} e^{-\kappa \delta} \cdot \Delta + o(\Delta)
\]
as well as
\[
\text{Cov}(\tilde{D}_{ki}, \tilde{D}_{kj}) = o\left(\frac{\delta^2}{|i-j|^2}\right), \quad |i-j| \geq 2,
\]
\[
\text{Cov}(\tilde{D}_{ki}, \tilde{D}_{lj}) = O\left(\frac{\delta^4}{(|i-j|+1)^2} \left(\frac{M^2}{(k-l)^2} \wedge \frac{1}{\Delta}\right)\right), \quad k \neq l.
\]
The latter covariances are negligible for the asymptotic variance since $\sum_{k \leq M} (\frac{M^2}{k^2} \wedge \frac{1}{\Delta}) \lesssim \frac{M}{\sqrt{\Delta}}$, cf. the proof of Theorem 3.3. Inserting $\Phi_\delta^2(\delta, \Delta) = \frac{e^{-\kappa \delta}}{\bar{\tau}_2^2} \cdot \Delta + o(\Delta)$ from Proposition 3.5 yields the claim.

Case $\delta/\sqrt{\Delta} \to \infty$. By Lemmas A.1 and A.3 we have
\[
\text{Var}(\tilde{D}_{ki}) = \frac{4\sigma^4}{\pi \bar{\tau}_2^2} e^{-\kappa \delta} \cdot \Delta + o(\Delta), \quad \text{Cov}(\tilde{D}_{ki}, \tilde{D}_{(k+1)i}) = \frac{\sigma^4}{\pi \bar{\tau}_2^2} e^{-\kappa \delta} \cdot \Delta + o(\Delta).
\]
From $\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J} = O(J^{-3/2})$ and $\sqrt{\Delta}/\delta \to 0$ it follows for $J = |i-j| \geq 1$ that
\[
\text{Cov}(\tilde{D}_{ki}, \tilde{D}_{kj}) = \frac{\sigma^4}{\pi \bar{\tau}_2^2} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J}\right)^2 e^{-\kappa \delta} \cdot \Delta + o\left(\frac{\Delta}{\bar{\tau}_2^2} J^{3/2}\right) + O(\Delta^3),
\]
\[
\text{Cov}(\tilde{D}_{ki}, \tilde{D}_{(k+1)j}) = \frac{\sigma^4}{4\pi \bar{\tau}_2^2} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J}\right)^2 e^{-\kappa \delta} \cdot \Delta + o\left(\frac{\Delta}{\bar{\tau}_2^2} J^{3/2}\right) + O(\Delta^3).
\]
Note that the $O(\Delta^3)$-term is negligible for the asymptotic variance since
\[
N^2 M \Delta^3 = M N \Delta \cdot N \Delta^2 = M N \Delta \cdot \frac{T}{M} \cdot M \sqrt{\Delta} \cdot \sqrt{\Delta} = o(N M \Delta).
\]
The remaining covariances do not contribute to the asymptotic variance since for $|k-l| \geq 2$ we have
\[
\text{Cov}(\tilde{D}_{ki}, \tilde{D}_{lj}) = O\left(\frac{\Delta \delta^4}{(J+1)^3}\right) + O\left(\frac{\Delta}{(J+1)^2} \frac{M^2}{(k-l)^2}\right).
\]
The claim is now proved by inserting $\Phi_\delta^2(\delta, \Delta) = \frac{4}{\pi \bar{\tau}_2^2} e^{-\kappa \delta} \Delta + o(\Delta)$ and noting that for the function $g(j) = (\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J})^2$ we have
\[
\frac{1}{N} \sum_{i=1}^{N-1} g(|i-j|) = \frac{2}{N} \sum_{i=1}^{N-1} \sum_{j=1}^{i} g(j) \to 2 \sum_{j \geq 1} g(j), \quad N \to \infty
\]
by Cesàro summation.

Case $\delta/\sqrt{\Delta} \equiv r \in (0, \infty)$. For $f: \mathbb{R}^2 \to \mathbb{R}$ define
\[
D_x^2 f(x, y) := f(x + 2, y) + f(x, y) - 2f(x + 1, y),
\]
\[
D_y^2 f(x, y) := f(x, y + 2) + f(x, y) - 2f(x, y + 1).
\]
We show that the asymptotic variance is given by $C(r/\sqrt{\bar{\tau}_2}) \sigma^4$ where
\[
C(h) := \frac{2}{\Lambda_0^2(h)} \sum_{j,l \in \mathbb{Z}} \Lambda_{j,l}^2(h), \quad \Lambda_{j,l}(h) := (D_x^2 D_y^2 G_h)(|j| - 1, |l| - 1) \quad (25)
\]
Define
\[\xi^\Delta_{i-j,k-l} := \begin{cases} 2D_\delta F_{i-j,\Delta}(0), & l = k, \\ D_\delta^2 F_{i-j,\Delta}((|k-l|-1)\delta), & l \neq k, \end{cases} \]
with \(\delta = r\sqrt{\Delta} \) such that Lemma A.1 reads as
\[\text{Cov}(\hat{D}_{ik}, \hat{D}_{ik}) = -\sigma^2 e^{-\kappa \delta/2} \xi^\Delta_{i-j,k-l} + O\left(\frac{\Delta^{3/2}}{(J+1/3)^2} \right). \] (27)
Since each term \(\xi^\Delta_{J,L} \) is a Riemann sum multiplied by \(\sqrt{\Delta} \), we have for \(J, L \geq 0 \)
\[\lim_{\Delta \to 0} \Delta^{-1/2} \xi^\Delta_{J,L} = - \begin{cases} 2(\Psi_r(J, 1)) - \Psi_r(J, 0), & L = 0, \\ \Psi_r(J, L - 1) + \Psi_r(J, L + 1) - 2\Psi_r(J, L), & L \geq 1, \end{cases} \]
where
\[\Psi_r(J, L) := \begin{cases} \int_0^\infty 1 - e^{-\pi^2 \varrho_2 z^2} \cos(\pi r Lz) \, dz, & J = 0, \\ \int_0^\infty 2e^{-J\pi^2 \varrho_2 z^2} - e^{-(J+1)\pi^2 \varrho_2 z^2} - e^{-(J-1)\pi^2 \varrho_2 z^2} \\ \frac{2\pi^2 \varrho_2 z^2}{2\pi^2 \varrho_2 z^2} \cos(\pi r Lz) \, dz, & J \geq 1. \end{cases} \]
By symmetry of the cosine,
\[\lim_{M,N \to \infty} \Delta^{-1/2} \xi_{J,L} = - \left(\Psi_r(J, |L| - 1) + \Psi_r(J, |L| + 1) - 2\Psi_r(J, |L|) \right) \]
also holds for negative \(L \). Hence, we can write for all \(L \in \mathbb{Z} \) and \(J \geq 0 \) and with \(G \) from (26)
\[\Psi_r(J, L) = \int_0^\infty 2e^{-J\pi^2 \varrho_2 z^2} - e^{-(J+1)\pi^2 \varrho_2 z^2} - e^{-(J-1)\pi^2 \varrho_2 z^2} \\ \frac{2\pi^2 \varrho_2 z^2}{2\pi^2 \varrho_2 z^2} \cos(\pi r Lz) \, dz \\ (G_{r/\sqrt{\varrho_2}}(J + 1, L) + G_{r/\sqrt{\varrho_2}}(J - 1, L) - 2G_{r/\sqrt{\varrho_2}}(J, L)) \big/ \sqrt{\varrho_2}, \]
where the last equality follows from
\[\frac{G_{r/\sqrt{\varrho_2}}(J, l)}{\sqrt{\varrho_2}} = \int_0^\infty 1 - e^{-|j|\pi^2 \varrho_2 z^2} \\ \frac{2\pi^2 \varrho_2 z^2}{2\pi^2 \varrho_2 z^2} \cos(\pi rlz) \, dz, \quad j, l \in \mathbb{Z}, \]
which may be shown analogously to the calculation of \(\psi_\varrho_2(r) \). Consequently, for all \(J \in \{1 - N, \ldots, N - 1\} \) and \(L \in \{1 - M, \ldots, M - 1\} \) we have
\[\lim_{M,N \to \infty} \Delta^{-1/2} \xi_{J,L} = -\Lambda_{J,L}(r/\sqrt{\varrho_2})/\sqrt{\varrho_2}. \]
The usual Riemann sum argument yields \(F_{J,\Delta}(0) \lesssim \frac{\Delta^{3/2}}{(J+1)^{1/3}} \lesssim \frac{\Delta^{3/2}}{(J+1)^{1/4}} \) for \(J \geq 0 \) and Lemma A.3 (more precisely (44)) yields \(F_{J,\Delta}(L\delta) \lesssim \frac{\Delta}{(J+1)L^3} \lesssim \frac{\Delta}{(J+1)(L+1)} \) for \(J \in \mathbb{N}_0 \) and \(L \geq 1 \). We obtain
\[\Delta^{-1/2} \xi^\Delta_{J,L} = O\left(\frac{1}{(|J| + 1)(|L| + 1)} \right), \quad J, L \in \mathbb{Z}. \] (28)
Therefore,
\[\text{Var}\left(\frac{1}{\sqrt{N M \Delta}} \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} \hat{D}_{ik} \right) = \frac{2\sigma^4}{N M \Delta} \sum_{i,j=0}^{N-1} \sum_{k,l=0}^{M-1} (\xi^\Delta_{i-j,k-l})^2 + o(1). \]
By dominated convergence and taking Cesàro limits twice, we conclude
\[
\lim_{M,N \to \infty} \text{Var} \left(\frac{1}{\sqrt{NM}} \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} \tilde{D}_{ik} \right) = \lim_{M,N \to \infty} \frac{2\sigma^4}{\vartheta_2 NM} \sum_{i,j=0}^{N-1} \sum_{k,l=0}^{M-1} \Lambda_{i-j,k-l}^2 (r/\sqrt{\vartheta_2}) = \frac{2\sigma^4}{\vartheta_2} \sum_{i,k \in \mathbb{Z}} \Lambda_{i,k}^2 (r/\sqrt{\vartheta_2}).
\]

Since \(\psi_{\theta_2}(r) = -\Lambda_{0,0}(r/\sqrt{\vartheta_2})/\sqrt{\vartheta_2} \), we have \(\Phi_2^2(\delta, \Delta) = e^{-\rho_0} \Lambda_{0,0}^2(r/\sqrt{\vartheta_2})/\vartheta_2 \cdot \Delta + o(\Delta) \) and dividing by \(\lim_{M,N \to \infty} \Delta^{-1} \Phi_2^2(\delta, \Delta) = \Lambda_{0,0}^2(r/\sqrt{\vartheta_2})/\vartheta_2 \) yields the claimed asymptotic variance.

\[\square\]

7.2. Proofs for the estimators

Propositions 4.1 and 4.2 follow immediately from the central limit theorems for the realized quadratic variations and the delta method. Before proving Theorem 4.3, we introduce some notation that will be used throughout the proof and we state the asymptotic covariance matrix explicitly. Recall the definition of \(\Lambda_{i,k}(\cdot) \) from (25) and for any \(i, k \in \mathbb{Z} \) let
\[
A_{ik} := -\Lambda_{ik}(r/\sqrt{\vartheta_2})/\sqrt{\vartheta_2}, \quad B_{ik} := 2A_{ik} + A_{(i-1)k} + A_{(i+1)k}, \quad C_{ik} := A_{ik} + A_{(i-1)k},
\]
\[
A_r := \sum_{i,k \in \mathbb{Z}} (A_{ik})^2, \quad B_r := \sum_{i,k \in \mathbb{Z}} (B_{ik})^2, \quad C_r := \sum_{i,k \in \mathbb{Z}} (C_{ik})^2.
\]

In terms of
\[
H(x) := \frac{4x}{\sqrt{\pi}} \left(1 - e^{-x^2} + 2x \int_x^\infty e^{-z^2} \, dz \right), \quad H'(x) = \frac{4}{\sqrt{\pi}} \left(1 - e^{-x^2} + 4x \int_x^\infty e^{-z^2} \, dz \right),
\]
x \geq 0, we have \(\psi_{\theta_2}(r) = \frac{1}{r} H\left(\frac{r}{2\sqrt{\vartheta_2}} \right) \) and \(\frac{\partial}{\partial \vartheta_2} \psi_{\theta_2}(r) = \frac{\partial}{\partial \vartheta_2} H\left(\frac{r}{2\sqrt{\vartheta_2}} \right) \frac{1}{4\vartheta_2^2} \). Denoting \(r_i := r/\sqrt{\vartheta_i} \), let
\[
g_{\eta}^i(z) := e^{-\kappa z} \left(\frac{1}{r_i} H\left(\frac{r_i}{2\sqrt{\vartheta_2}} \right) - \frac{\sigma^2}{4\vartheta_i} H'\left(\frac{r_i}{2\sqrt{\vartheta_2}} \right) \right)^T, \quad h_{\eta}^i(z) := e^{-\kappa z} g_{\eta}^i(z)
\]
for \(i = 1, 2 \) and \(z \in [b, 1-b] \), where \(g_{\eta}^i \) is the gradient of \(\eta \mapsto f_{\eta}^i(z) \). Moreover, we write \((f, g)_b := \frac{1}{1-2b} \int_b^{1-b} f(x)g(x) \, dx \) for \(f, g \in L^2([b, 1-b]) \). We will prove that the asymptotic covariance matrix equals
\[\Omega_{\eta}^i := V^{-1} U V^{-1}, \quad (29)\]
where \(U = U(\eta) \) and \(V = V(\eta) \) are defined via
\[
U_{ij} = 4\sigma^4 \left(2A_r \langle h_1^i \rangle_b + b_r \langle h_2^i \rangle_b + \sqrt{2} C_r \langle \langle h_1^i \rangle_b + \langle h_2^i \rangle_b \rangle_b \right),
\]
\[
V_{ij} = 2 \left(\langle g_{\eta}^i \rangle_b + \langle g_{\eta}^2 \rangle_b \right), \quad i, j \in \{1, 2, 3\}.
\]

Proof of Theorem 4.3. The proof uses the classical theory on minimum contrast estimators, see e.g. [9]. In particular, the mean value theorem yields
\[
-K_{N,M}(\eta) = K_{N,M}(\hat{\eta}) - K_{N,M}(\eta) = \left(\int_0^1 K_{N,M}(\eta + \tau(\hat{\eta} - \eta)) \, d\tau \right) (\hat{\eta} - \eta)
\]
as soon as \([\hat{\eta}, \eta] \subset H\), where \(K_{N,M} \) and \(\hat{K}_{N,M} \) denote gradient and Hessian with respect to \(\eta \), respectively. In the sequel, we will verify that \(K_{N,M} \) is associated with the contrast function
\[
K(\eta, \hat{\eta}) = K^1(\eta, \hat{\eta}) + K^2(\eta, \hat{\eta}), \quad \text{where} \quad K^1(\eta, \hat{\eta}) = \frac{1}{1-2b} \int_b^{1-b} (f_{\eta}^i(z) - f_{\hat{\eta}}^i(z))^2 \, dz,
\]
(Steps 1–2), show consistency of \(\hat{\eta} \) (Step 3), prove asymptotic normality of \(\hat{K}_{N,M}(\eta) \) with covariance matrix \(U \) (Steps 4–7) and deduce stochastic convergence of \(\int_0^1 \hat{K}_{N,M}(\eta + \tau(\hat{\eta} - \eta)) \, d\tau \) to the invertible matrix \(V \) (Steps 8–9). The result then follows from Slutsky’s Lemma and

\[
-\sqrt{MN}V(\eta)^{-1}K_{N,M}(\eta) \xrightarrow{D} \mathcal{N}(0, \Omega^*_0).
\]

Step 1. We show that \(K \) is a contrast function in the sense that for each \(\eta \) the function \(\hat{\eta} \mapsto K(\eta, \hat{\eta}) \) attains its unique minimum in \(\eta = \bar{\eta} \). Since \(f_{\eta}^{(i)}(\cdot) \) is continuous it is sufficient to show that \((f_{\eta}^{(1)}, f_{\eta}^{(2)}) = (f_{\bar{\eta}}^{(1)}, f_{\bar{\eta}}^{(2)}) \) if and only if \(\eta = \bar{\eta} \). Clearly, \((f_{\eta}^{(i)}, f_{\eta}^{(2)}) = (f_{\bar{\eta}}^{(i)}, f_{\bar{\eta}}^{(2)}) \) holds if and only if \(\kappa = \bar{\kappa} \) and \(\sigma^2 \psi_\bar{\alpha}(r_i) = \bar{\sigma}^2 \psi_\bar{\alpha}(r_i) \) for \(i = 1, 2 \). Therefore, in order to prove identifiability, it is sufficient to show that \(\psi_\bar{\alpha} \) is injective, which in turn is implied by strict monotonicity of \(H(r_1 z)/H(r_2 z) \) in \(z > 0 \). We show that the corresponding derivative or, equivalently, the function \(z \mapsto H'(r_1 z)H(r_2 z)r_1 - H'(r_2 z)H(r_1 z)r_2 \), is strictly negative for all \(z > 0 \): For \(x > 0 \) define

\[
p(x) = \int_x^\infty e^{-z^2} \, dz
\]

and \(q(x) = 1 - e^{-x^2} \). A simple calculation shows that

\[
H'(r_1 z)H(r_2 z)r_1 - H'(r_2 z)H(r_1 z)r_2 = 32 \pi \int_0^{r_1 r_2 z} (p(r_1 z)q(r_2 z) - p(r_2 z)q(r_1 z)) \, dz
\]

which is strictly negative if we can show that \(p(b)q(a) - p(a)q(b) < 0 \) for all \(0 < a < b \). Now, a substitution yields

\[
p(b)q(a) - p(a)q(b) = 2a^2 b^2 \int_0^1 \int_0^\infty s \left(e^{-b^2 t^2 - a^2 s^2} - e^{-a^2 t^2 - b^2 s^2} \right) \, dt \, ds < 0
\]

follows from negativity of the integrand.

In the sequel we follow the series of arguments from Theorem 5.1 of [3].

Step 2. \(K \) is the contrast function associated with the process \(K_{N,M} \) in the sense that \(K_{N,M}(\hat{\eta}) \xrightarrow{P} K(\eta, \hat{\eta}) \), \(N, M \rightarrow \infty \), for all \(\eta \in H \): Recall from the proof of Theorem 3.7 that for \(i, j, k, l \in \mathbb{N} \) we have

\[
\text{Cov}(D_{ik}, D_{jl}) = \sigma^2 e^{-\kappa \frac{z_i z_j}{z_k z_l}} \xi^{\Delta}_{i-j, k-l} + O \left(\frac{\Delta^{3/2}}{(|i-j| + 1)^{3/2}} \right), \quad (30)
\]

\[
\xi^{\Delta}_{i, k} = O \left(\frac{\sqrt{\Delta}}{(|i| + 1)(|k| + 1)} \right) \quad (31)
\]

and \(\lim_{N,M \rightarrow \infty} \Delta^{-1/2} \xi^{\Delta}_{i-j, k-l} = A^*_{ik} = -\Lambda_{ik}(r/\sqrt{2})/\sqrt{2} \). Now, in terms of

\[
r_{ik}(\eta) = D_{ik}^2/\sqrt{\Delta} - f_{\eta}^{(1)}(z_k), \quad R_k(\eta) = \frac{1}{N} \sum_{i=0}^{N-1} r_{ik}(\eta)
\]

we can write

\[
K_{N,M}(\hat{\eta}) = \frac{1}{M} \sum_{k=0}^{M-1} (f_{\eta}^{(1)}(z_k) - f_{\hat{\eta}}^{(1)}(z_k))^2 + \frac{2}{M} \sum_{k=0}^{M-1} R_k(\eta) (f_{\eta}^{(1)}(z_k) - f_{\hat{\eta}}^{(1)}(z_k)) + \frac{1}{M} \sum_{k=0}^{M-1} R_k^2(\eta). \quad (32)
\]

Clearly, the first summand converges to \(K^1(\eta, \hat{\eta}) \). To prove that the other two summands are negligible, note that

\[
E(r_{ik} r_{jl}) = E \left((D_{ik}^2/\sqrt{\Delta} - E(D_{ik}^2/\sqrt{\Delta}) + O(\Delta))(D_{jl}^2/\sqrt{\Delta} - E(D_{jl}^2/\sqrt{\Delta}) + O(\Delta)) \right)
\]

\[
= \frac{1}{\Delta} \text{Cov}(D_{ik}^2, D_{jl}^2) + O(\Delta^2)
\]

\[
= \frac{2}{\Delta} \text{Cov}(D_{ik}, D_{jl})^2 + O(\Delta^2) = O \left(\frac{1}{(|i-j| + 1)^2(|k-l| + 1)^2} \right) + O(\Delta^2).
\]
By Markov’s inequality and boundedness of \(\phi(t) = f^1_{\theta}(\cdot) - f^2_{\theta}(\cdot) \), we have for any \(\varepsilon > 0 \),

\[
P\left(\left| \frac{1}{M} \sum_{k=0}^{M-1} R_k \phi(z_k) \right| \geq \varepsilon \right) \leq \frac{1}{\varepsilon^2 M^2} \sum_{k,l=0}^{M-1} |E(R_k R_l) \phi(z_k) \phi(z_l)| \lesssim \frac{1}{M^2} \sum_{k,l=0}^{M-1} |E(R_k R_l)| \]

\[
\leq \frac{1}{M^2 N^2} \sum_{k,l=0}^{M-1} \sum_{i,j=0}^{N-1} |E(r_{ik} r_{jk})| = o(1),
\]

hence, the second summand in (32) converges to zero in probability. For the third summand the same argument applies to \(\eta \).

Step 3. Consistency of \(\hat{\eta} \) follows from uniform convergence in probability of the contrast process. Since \(K_{N,M} \) and \(K \) are continuous, this in turn follows from

\[
\forall \varepsilon > 0 : \lim_{h \to 0} \limsup_{M,N \to \infty} \mathbf{P}_q \left(\sup_{|\eta_1 - \eta_2| < \varepsilon} \left| K_{N,M}(\eta_1) - K_{N,M}(\eta_2) \right| \geq \varepsilon \right) = 0:
\]

By compactness of the parameter space, for each \(a > 0 \) there exists \(h > 0 \) such that \(\|f^{\eta_1}_{\theta_1} - f^{\eta_2}_{\theta_2}\|_\infty, \|(f^{\eta_1}_{\theta_1})^2 - (f^{\eta_2}_{\theta_2})^2\|_\infty \leq a \) for all \(|\eta_1 - \eta_2| < h \). Therefore,

\[
\left| K^1_{N,M}(\eta_1) - K^1_{N,M}(\eta_2) \right| \leq 2 \frac{M-1}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N \sqrt{\Delta}} \sum_{i=0}^{N-1} D^2_{ik} \right) |f^{\eta_1}_{\theta_1}(z_k) - f^{\eta_2}_{\theta_2}(z_k)| \quad + \quad \frac{1}{M} \sum_{k=0}^{M-1} |f^{\eta_1}_{\theta_1}(z_k)^2 - f^{\eta_2}_{\theta_2}(z_k)^2|
\]

\[
\leq a \left(2 \frac{M-1}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N \sqrt{\Delta}} \sum_{i=0}^{N-1} D^2_{ik} \right) + 1 \right)
\]

and hence,

\[
\limsup_{M,N \to \infty} \mathbf{P}_q \left(\sup_{|\eta_1 - \eta_2| < \varepsilon} \left| K^1_{N,M}(\eta_1) - K^1_{N,M}(\eta_2) \right| \geq \varepsilon \right) \leq \limsup_{M,N \to \infty} \frac{1}{\varepsilon} \mathbf{E}_q \left(\sup_{|\eta_1 - \eta_2| < \varepsilon} \left| K^1_{N,M}(\eta_1) - K^1_{N,M}(\eta_2) \right| \right) \leq \limsup_{M,N \to \infty} \frac{a}{\varepsilon} \mathbf{E}_q \left(\frac{2}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N \sqrt{\Delta}} \sum_{i=0}^{N-1} D^2_{ik} \right) + 1 \right) \lesssim \frac{a}{\varepsilon}.
\]

The same argument applies to \(K^2_{N,M} \) and the result follows.
Step 4. Let $F_1, F_2 \in C^1([0,1])$ and $(a_k)_{k \in \mathbb{Z}}$ be absolutely summable. Then we can write
\[
\frac{1}{n} \sum_{k,l=0}^{n-1} a_{k-l} F_1(z_k)F_2(z_l) = \frac{a_0}{n} (F_1(z_0)F_2(z_0) + \cdots + F_1(z_{n-1})F_2(z_{n-1})) \\
+ \frac{a_1}{n} (F_1(z_1)F_2(z_0) + \cdots + F_1(z_{n-1})F_2(z_{n-2})) \\
+ \frac{a_{-1}}{n} (F_1(z_0)F_2(z_1) + \cdots + F_1(z_{n-2})F_2(z_{n-1})) + \cdots
\]
and, consequently, we have $\frac{1}{n} \sum_{k,l=0}^{n-1} a_{k-l} F_1(z_k)F_2(z_l) \to \langle F_1, F_2 \rangle_b \cdot \sum_{k \in \mathbb{Z}} a_k, \, n \to \infty$, by dominated convergence.

Step 5. We show that the asymptotic covariance matrix of $\sqrt{NM} \hat{K}_{N,M}(\eta)$ is given by U: We have $\hat{K}_{N,M}(\eta) = \hat{K}_{N,M}^1(\eta) + \hat{K}_{N,M}^2(\eta)$ as well as
\[
\hat{K}_{N,M}^1(\eta) = \frac{2}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N\sqrt{\Delta}} \sum_{i=0}^{N-1} D_{ik}^2 - f_{\eta}^i(z_k) \right) g_{\eta}^i(z_k)
\]
and similarly for $\hat{K}_{N,M}^2(\eta)$. From Isserlis’ theorem, (30) and $\tilde{D}_{ik} = D_{ik} + D_{i(i+1)k}$ it follows that
\[
\text{Cov}(D_{ik}^2, D_{jl}^2) = 2 \left(\sigma^2 e^{-\frac{\Delta z_{i-j,k-l}}{4\xi}} + O\left(\frac{\Delta^{3/2}}{|i-j| + 1}^{3/2} \right) \right)^2,
\]
\[
\text{Cov}(D_{ik}^2, \tilde{D}_{jl}^2) = 2 \left(\sigma^2 e^{-\frac{\Delta z_{i-j,k-l}}{4\xi}} (2\xi \Delta_{i-k,l} + \xi \Delta_{i-j-k-l} + \xi \Delta_{i-j-1-k,l}) + O\left(\frac{\Delta^{3/2}}{|i-j| + 1}^{3/2} \right) \right)^2,
\]
\[
\text{Cov}(D_{ik}^2, \tilde{D}_{jl}^2) = 2 \left(\sigma^2 e^{-\frac{\Delta z_{i-j,k-l}}{4\xi}} (\xi \Delta_{i-j-1,k-l} + \xi \Delta_{i-j-1-k,l}) + O\left(\frac{\Delta^{3/2}}{|i-j| + 1}^{3/2} \right) \right)^2.
\]
Now, for any $1 \leq e, f \leq 3$, the first summand in the expansion
\[
\text{Cov}(\hat{K}_{N,M}^1(\cdot), \hat{K}_{N,M}^1(\cdot)) = \text{Cov}((\hat{K}_{N,M}^1)_c, (\hat{K}_{N,M}^1)_f) + \text{Cov}((\hat{K}_{N,M}^2)_c, (\hat{K}_{N,M}^2)_f) + \text{Cov}((\hat{K}_{N,M}^1)_c, (\hat{K}_{N,M}^2)_f) + \text{Cov}((\hat{K}_{N,M}^2)_c, (\hat{K}_{N,M}^1)_f)
\]
is given by
\[
\text{Cov}((\hat{K}_{N,M}^1)_c, (\hat{K}_{N,M}^1)_f) = \frac{4}{M^2 N^2 \Delta} \sum_{i,j=0}^{M-1} \sum_{k,l=0}^{N-1} \text{Cov}(D_{ik}^2, D_{jl}^2) (g_{\eta}^i(z_k))(g_{\eta}^j(z_l)).
\]
Like in the proof of Theorem 3.7, the covariances may be replaced by their asymptotic expressions due to dominated convergence. Further, using $(h_{\eta}^i)(z) = e^{-n \xi z}(g_{\eta}^i)(z)$ and Step 4, we have
\[
MN \cdot \text{Cov}((\hat{K}_{N,M}^1)_c, (\hat{K}_{N,M}^1)_f) \to 8 \sigma^4 \sum_{i,k \in \mathbb{Z}} (A^r_{i,k})^2 \cdot \langle (h_{\eta}^1)_c, (h_{\eta}^1)_f \rangle_b, \quad M, N \to \infty.
\]
Analogously,
\[
MN \cdot \text{Cov}((\hat{K}_{N,M}^2)_c, (\hat{K}_{N,M}^2)_f) \to 4 \sigma^4 \sum_{i,k \in \mathbb{Z}} (B^r_{i,k})^2 \cdot \langle (h_{\eta}^2)_c, (h_{\eta}^2)_f \rangle_b, \quad M, N \to \infty,
\]
\[
MN \cdot \text{Cov}((\hat{K}_{N,M}^1)_c, (\hat{K}_{N,M}^2)_f) \to 4 \sqrt{2} \sigma^4 \sum_{i,k \in \mathbb{Z}} (C^r_{i,k})^2 \cdot \langle (h_{\eta}^1)_c, (h_{\eta}^2)_f \rangle_b, \quad M, N \to \infty,
\]
and insertion into (33) yields the claimed asymptotic covariance matrix.

Step 6. U is strictly positive definite: It is sufficient to show that $C_r < \sqrt{A_r B_r}$, then it follows for
any $\alpha \in \mathbb{R}^3 \setminus \{0\}$ and $H^i_\alpha = \sum_{j=1}^3 \alpha_j (h^i_\alpha)_j$, $i = 1, 2$ that

$$
\alpha^\top U\alpha = 4\sigma^4 \left(2A_r \|H^1_\alpha\|^2 + B_r \|H^2_\alpha\|^2 + 2\sqrt{2}C_r \langle H^1_\alpha, H^2_\alpha \rangle_b \right) > 4\sigma^4 \left(2A_r \|H^1_\alpha\|^2 + B_r \|H^2_\alpha\|^2 + 2\sqrt{2}A_r B_r \langle H^1_\alpha, H^2_\alpha \rangle_b \right) = 8\sigma^4 \left\| \sqrt{2}A_r H^1_\alpha + \sqrt{B_r} H^2_\alpha \right\|_b^2 \geq 0,
$$

where we may assume $\langle H^1_\alpha, H^2_\alpha \rangle_b < 0$ since otherwise $\alpha^\top U\alpha > 0$ follows immediately from the first equality. Now, consider $(A^r_{i,k})$ and $(B^r_{i,k})$ as elements in the Hilbert space ℓ^2 of square summable sequences indexed by $\mathbb{Z} \times \mathbb{Z}$. Clearly, $A_r = \|(A^r_{i,k})\|^2_2$, $B_r = \|(B^r_{i,k})\|^2_2$ and a direct calculation shows that $C_r = \langle (A^r_{i,k}), (B^r_{i,k}) \rangle_{2,2}$. Thus, by the Cauchy-Schwarz inequality we have $C_r \leq \sqrt{A_r B_r}$ and equality is ruled out by the fact that $(A^r_{i,k})$ and $(B^r_{i,k})$ are not linearly dependent.

Step 7. We show $\sqrt{N}M K_{N,M}(\eta) \xrightarrow{D} N(0,U)$ in view of the Cramér-Wold device, we have to prove $\sqrt{N}M \alpha^\top K_{N,M} \xrightarrow{D} N(0,\alpha^\top U\alpha)$ for any $\alpha \in \mathbb{R}^3$. Let s_{ik} and Z_{ik} be given by the relation $s_{ik}Z_{ik} = -\frac{2A^r_{i,k}(\chi_n)}{\sqrt{N}M} D^2_{ik}$ where $s_{ik} \in \{-1, 1\}$ is deterministic. Analogously, define \bar{s}_{ik} and \bar{Z}^2_{ik}. Then, $Z_{N,M} = (Z_{ik}, \bar{Z}_{i,k})$ is a Gaussian vector and from Proposition 3.5 it follows that

$$
\sqrt{N}M \alpha^\top K_{N,M}(\eta) = S_{N,M} - \mathbf{E}(S_{N,M}) + o(1)
$$

where $S_{N,M} = \sum_{i=0}^{N-1} \sum_{k=0}^{M-1} s_{ik}Z^2_{ik} + \sum_{i=0}^{N-1} \sum_{k=0}^{M-2} \bar{s}_{ik}\bar{Z}^2_{ik}$. From Steps 5 and 6 we can deduce that $\text{Var}(S_{N,M}) \to \alpha^\top U\alpha > 0$, $N, M \to \infty$ and thus, in view of criterion (7), asymptotic normality follows if the absolute row sums of the covariance matrix of $\bar{Z}_{N,M}$ vanish uniformly. This in turn is a simple consequence of (30) and (31).

Step 8. In order to prove $\int_0^1 \tilde{K}_{N,M}(\eta + \tau(\eta - \eta)) \, d\tau \xrightarrow{P} V(\eta)$, we show $\tilde{K}_{N,M}(\eta_{N,M}) \xrightarrow{P} V(\eta)$ for any consistent estimator $\eta_{N,M}$ of η: We have

$$
\tilde{K}_{N,M}(\eta) = \frac{2}{M} \sum_{k=0}^{M-1} g^1_k(z_k) g^1_k(z_k)^\top - \frac{2}{M} \sum_{k=0}^{M-1} \left(\frac{1}{N\sqrt{\Delta}} \sum_{i=0}^{N-1} D^2_{ik} - f^1_\eta(z_k) \right) \bar{f}^1_\eta(z_k)
$$

and analogously for $\tilde{K}^2_{N,M}$. By using $\mathbf{P}_\eta(\eta_{N,M} \in H) \to 1$ and the uniform continuity of $f^i_\eta(z)$ and its derivatives in the parameter $(\eta, \eta) \in [0, 1] \times H$, it is straightforward to show $\tilde{K}_{N,M}(\eta_{N,M}) - \tilde{K}_{N,M}(\eta) \xrightarrow{P} 0$. Now, write $V = 2(V^1 + V^2)$ where V^i is the Gram matrix of the functions $(g^i_n)_1, (g^i_n)_2, (g^i_n)_3$ with respect to the inner product $\langle \cdot , \cdot \rangle_b$, i.e. $V^i_{ef} = \langle (g^i_n)_e, (g^i_n)_f \rangle_b$, $1 \leq e, f \leq 3$. Clearly, first summand of $\tilde{K}_{N,M}(\eta)$ converges to $2V^1$ while the calculations of Step 2 show that the second summand converges to 0 in probability. The same reasoning holds for $\tilde{K}^2_{N,M}(\eta)$ and the result follows.

Step 9. V is strictly positive definite: Being Gram matrices, V^1 and V^2 are positive semi-definite and consequently, the same holds for V. Clearly, the only way V can be singular is if there exists $\alpha \in \mathbb{R}^3$ such that $0 = \alpha^\top V \alpha = \| \sum_{i=1}^3 \alpha_i (g^i_n)_e \|_b^2$ holds for both $i \in \{1, 2\}$. From the particular form of the functions $(g^i_n)_e$ it is apparent that this would imply that $\alpha_1 \psi_2(r_1) + \alpha_2 \sigma^2 \frac{\partial \psi_2(r_1)}{\partial \sigma^2} = \alpha_3 = 0$ for both $i \in \{1, 2\}$, which is impossible.

Proof of Proposition 4.5. We have to prove

$$
\forall \varepsilon > 0 \exists C > 0 : \limsup_{N,M \to \infty} \mathbf{P}_\eta \left(\sqrt{M^3 \land N^3/2} \| \hat{\eta}_{v,w} - \eta \| \geq C \right) \leq \varepsilon.
$$

Similar calculations as in Theorem 4.3 show that Steps 1-3 and 8-9 of the corresponding proof remain valid. Consequently, we have the representation $-\hat{K}_{N,M}(\eta) = V_{N,M}(\hat{\eta}_{v,w}, \eta)(\hat{\eta}_{v,w} - \eta)$,
where \(V_{N,M}(\tilde{\eta}, \eta) = \int_0^1 \tilde{K}_{N,M}(\eta + \tau(\tilde{\eta} - \eta)) d\tau \) as well as \(V_{N,M}(\tilde{\eta}, \eta, \eta) \rightarrow V(\eta) \) where \(V(\eta) \) is an invertible deterministic matrix. In particular, the set

\[
A_{N,M} = \{ V_{N,M}(\tilde{\eta}, \eta) \text{ is invertible with } \| V_{N,M}(\tilde{\eta}, \eta) \|^{-1}_2 \leq \| V(\eta) \|^{-1}_2 + 1 \}
\]
satisfies \(P_\eta(A_{N,M}) \rightarrow 1 \). Further, \(\tilde{K}_{N,M}(\eta) \) can be written as an average of expressions of the type \(\tilde{K}_{N,M} \) from Theorem 4.3 so that the calculations of Step 5 show together with the Cauchy-Schwarz inequality that \(E_\eta(\| \tilde{K}_{N,M}(\eta) \|^2) = O((M^3 \wedge N^{3/2})^{-1}) \). Now,

\[
P_\eta \left(\sqrt{M^3 \wedge N^{3/2}} \| \tilde{\eta}, \eta \| \geq C \right) \leq P_\eta \left(\sqrt{M^3 \wedge N^{3/2}} \| \tilde{\eta}, \eta \| \geq C \right) \cap A_{N,M} + P_\eta(A_{N,M}).
\]

The second summand becomes arbitrarily small as \(M, N \rightarrow \infty \). For the first summand, let \(\gamma(\eta) = \| V(\eta) \|^{-1} \) and then it follows from Markov’s inequality that

\[
P_\eta \left(\sqrt{M^3 \wedge N^{3/2}} \| \tilde{\eta}, \eta \| \geq C \right) \cap A_{N,M} \leq \frac{C}{\gamma(\eta)} \left(\sqrt{M^3 \wedge N^{3/2}} \| \tilde{\eta}, \eta \| \geq C \right) \leq (M^3 \wedge N^{3/2}) E_\eta(\| \tilde{K}_{N,M}(\eta) \|^2) \gamma(\eta)^2 = \frac{1}{C^2}.
\]

7.3. Proofs of the lower bounds

Before we prove Theorem 5.1, we verify its ingredients Proposition 5.3 and Proposition 5.5.

Proof of Proposition 5.3. By setting \(a = k^2 \), \(\mu = \pi^2 \theta_2 \) and \(\nu^2 = \frac{\sigma^2}{\theta_2^2} \) in Lemma A.4 and using independence of \((u_\ell, \ell \in \mathbb{N}) \) we get the Fisher information matrix \(I \) for the parameters \((\mu, \nu^2) \), namely

\[
I_{11} = N \sum_{\ell=1}^M \frac{\ell^4 \Delta^2 (e^{-4\mu^2 \Delta} + e^{-2\mu^2 \Delta})}{(1 - e^{-2\mu^2 \Delta})^2} = N \sum_{\ell=1}^M g_{11}(\ell \sqrt{\Delta}), \quad g_{11}(x) := \frac{x^2 (e^{-4\mu^2 x^2} + e^{-2\mu^2 x^2})}{(1 - e^{-2\mu^2 x^2})^2},
\]

\[
I_{12} = N \sum_{\ell=1}^M \frac{\ell^2 \Delta e^{-2\mu^2 \Delta}}{\nu^2 (1 - e^{-2\mu^2 \Delta})} = N \sum_{\ell=1}^M g_{12}(\ell \sqrt{\Delta}), \quad g_{12}(x) := \frac{x^2 e^{-2\mu^2 x}}{\nu^2 (1 - e^{-2\mu^2 x})},
\]

\[
I_{22} = \frac{(N + 1)M}{2\nu^4}.
\]

The Fisher information matrix \(J = J_{M,N} \) for the parameters \((\sigma^2, \rho^2) \) can be computed via the change of variables formula \(J = A^T I A \) where

\[
A = \begin{pmatrix}
\pi^2 / \rho^2 & -\pi^2 \sigma^2 / \rho^4 \\
0 & 1 / \pi^2
\end{pmatrix}
\]

is the Jacobian of the function transforming \((\sigma^2, \rho^2) \) to \((\mu, \nu^2) \). Hence, the diagonal entries of \(J \) are given by

\[
J_{11} = \frac{\pi^4}{\rho^4} I_{11}, \quad J_{22} = \frac{\pi^4 \sigma^4}{\rho^8} I_{11} - \frac{2\sigma^2}{\rho^4} I_{12} + \frac{1}{\pi^4} I_{22}.
\]

If \(M \sqrt{\Delta} \) is bounded away from 0, then \(I_{11} \) can be interpreted as a Riemann sum. We obtain

\[
J_{11} \approx I_{11} \approx N^{3/2} \int_0^{M \sqrt{\Delta}} g_{11}(x) dx \approx N^{3/2}.
\]
On the other hand, if $M \sqrt{\Delta} \to 0$, it follows from Lemma A.10 and $g_{11}(0) = \frac{1}{2\mu^2} = \frac{\rho^4}{2\pi^2}$. $g_{12}(0) = \frac{1}{2\mu^2} = \frac{1}{2\pi}$ as well as $g_{11}(0) = g_{12}(0) = 0$ that
\begin{align*}
I_1 &= N^{3/2}(M \sqrt{\Delta} g_{11}(0) + \frac{M^2 \Delta}{2} g_{11}(0) + O(M^3)) = \frac{\rho^4}{2\pi^2} + O(M^3), \\
I_2 &= N^{3/2}(M^2 \sqrt{\Delta} g_{12}(0) + \frac{M^2 \Delta}{2} g_{12}(0) + O(M^3)) = \frac{NM}{2\pi^2} + O(M^3), \\
I_{22} &= \frac{\pi^4}{2\rho^4} MN + O(M).
\end{align*}
Therefore, the leading terms in J_{22} cancel and consequently, $J_{22} = O(M^3)$.

Proof of Proposition 5.5. For a discrete time, centered, stationary Gaussian process $(Z_j)_{j \in \mathbb{Z}}$ whose covariance function depends on an unknown parameter $\theta \in \mathbb{R}$ we denote the Fisher information of a sample (Z_0, \ldots, Z_{n-1}) with respect to θ by $I_n(Z)$. A particularly useful result to calculate $I_n(Z)$ for the above class of Gaussian processes is given by Whittle [32]:
\begin{equation}
\lim_{n \to \infty} \frac{1}{n} I_n(Z) = \frac{1}{4\pi} \int_\pi^{-\pi} \left(\frac{\partial}{\partial \theta} \phi_0(\omega) \right)^2 d\omega, \quad n \to \infty, \tag{34}
\end{equation}
where $\phi(\omega) = \sum_{j \in \mathbb{Z}} \mathbb{E}[Z_0 Z_j] e^{-ij\omega}, \omega \in [-\pi, \pi]$, is the spectral density of Z.

Setting $\theta = \pi Z_2$, (34) cannot be directly applied to the process $Z = \bar{U}_k$, for $1 \leq k \leq M - 1$, since \bar{U}_k arises from high-frequency increments of the continuous time process U_k. In this case, the spectral density Φ_k^Δ of \bar{U}_k hinges on $\Delta = 1/N$ and therefore, even for large N, $I_N(\bar{U}_k)/N$ is not necessarily close to the asymptotic Fisher information defined in (34).

To circumvent this difficulty, consider the N-th order Fourier approximation to Φ_k^Δ:
\begin{equation}
\Phi_k^{N,\Delta}(\omega) = \sum_{j=1-N}^{-1} \mathbb{E}[\bar{U}_k(0) \bar{U}_k(j)] e^{-ij\omega} \geq 0, \quad \omega \in [-\pi, \pi]. \tag{35}
\end{equation}

Lemma A.6(i) verifies that $\Phi_k^{N,\Delta}$ is positive. Therefore, there exists a stationary Gaussian process $Y_k = (Y_k(j))_{j \in \mathbb{Z}}$ with spectral density $\Phi_k^{N,\Delta}$. Clearly,
\begin{equation}
(Y_k(j), \ldots, Y_k(j + N - 1)) \overset{\mathcal{D}}{=} (\bar{U}_k(0), \ldots, \bar{U}_k(N - 1)), \quad j \in \mathbb{N}_0,
\end{equation}
and $(Y_k(j), \ldots, Y_k(j + N - 1))$ is independent of $(Y_k(h), \ldots, Y_k(h + N - 1))$ whenever $|j - h| > 2N$. Consequently, it is possible to extract L independent copies of $(\bar{U}_k(0), \ldots, \bar{U}_k(N - 1))$ from a sample $(Y_k(0), \ldots, Y_k(2NL - 1))$ for any $L \in \mathbb{N}$. Now, using the fact that a statistic never has larger information than the data from which it is constructed (cf. [16, Theorem I.7.2]) yields
\begin{equation}
L \cdot I_N(\bar{U}_k) \leq I_{2NL}(Y_k). \tag{36}
\end{equation}

For fixed $\Delta = 1/N$ we can now apply Whittle’s formula (34) for $L \to \infty$: For each $\varepsilon > 0$ we can choose $L \in \mathbb{N}$ such that
\begin{equation}
I_{2NL}(Y_k) \leq 2NL(1 + \varepsilon)\mathcal{J}_k, \tag{37}
\end{equation}
where
\begin{equation}
\mathcal{J}_k^{N,\Delta} := \frac{1}{4\pi} \int_\pi^{-\pi} S^2(\omega) d\omega, \quad S := \frac{\partial}{\partial \theta} \log \Phi_k^{N,\Delta}.
\end{equation}
By combining (36) and (37) we get $I_N(\bar{U}_k) \leq 2N\mathcal{J}_k$. Proving below that uniformly in $k = 0, \ldots, M - 1$
\begin{equation}
\mathcal{J}_k^{N,\Delta} \lesssim M^2 \Delta \log \frac{1}{M^2 \Delta}, \tag{38}
\end{equation}
we obtain $I_N(\bar{U}_k) \lesssim M^2 \log \frac{1}{M^2 \Delta}$ and the results follows by independence of the processes $\bar{U}_1, \ldots, \bar{U}_{M-1}$.

\hline
\end{tabular}
\end{document}
In order to verify (38), we only have to consider the integral over \([0, \pi]\) by symmetry. From Lemma A.6 we can deduce for \(\omega \geq k^2 \Delta\)

\[
S(\omega) \lesssim \begin{cases} \frac{M \sqrt{\Delta}}{\omega}, & \omega \geq M^2 \Delta \\ 1, & \omega \in [k^2 \Delta, M^2 \Delta] \end{cases}
\]

implying \(\int_{k^2 \Delta}^{\pi} S^2(\omega) \, d\omega \lesssim M^2 \Delta \log \frac{1}{M^2 \Delta} \).

For \(\omega \leq k^2 \Delta\), Lemma A.6 gives \(S(\omega) \lesssim (\frac{\omega^2}{k^2 \Delta} + k^2 e^{-\theta k^2})/((\frac{\omega^2}{k^2 \Delta} + e^{-\theta k^2}) \). Since

\[
\int_0^1 \frac{d\omega}{(\omega^2 + e^{-\theta k^2})^2} \leq \int_0^{e^{-\theta k^2/2}} \frac{1}{e^{-2\theta k^2}} \, d\omega + \int_0^1 \frac{1}{\omega^2} \, d\omega \lesssim \exp\left(\frac{3}{2} \theta k^2\right),
\]
a substitution yields

\[
\int_0^{k^2 \Delta} S^2(\omega) \, d\omega \lesssim k^2 \Delta \int_0^1 \left(\frac{\omega^2 + k^2 e^{-\theta k^2}}{\omega^2 + e^{-\theta k^2}}\right)^2 \, d\omega \lesssim M^2 \Delta.
\]

We can now conclude the main lower bound.

Proof of Theorem 5.1. The proof of the lower bound relies on the fact that if \((P_\gamma)_{\gamma \in G}\) is a dominated family of distributions with a convex parameter space \(G \subseteq \mathbb{R}\), then the Hellinger distance \(H\) can be bounded in terms of the Fisher Information \(J\): Let \(\nu\) be a dominating measure, \(p(\cdot, \gamma) = dP_\gamma/d\nu\) and \(g = \sqrt{\nu}\). Then, as shown in [16, Theorem I.7.6], Jensen’s inequality yields

\[
H^2(P_\gamma, P_{\gamma+h}) = \int (g(x, \gamma) - g(x, \gamma + h))^2 \, \nu(dx) \leq h^2 \int_0^1 \frac{\partial g}{\partial \gamma}(x, \gamma + sh)^2 \, ds \, \nu(dx) = \frac{h^2}{4} \int_0^1 J(\gamma + sh) \, ds.
\]

Combining this bound of the Hellinger distance (in the setting of Theorem 5.1) with Theorem 2.2 by Tsybakov [30], it suffices that for each sampling regime there is a reparametrization \((\gamma_1, \gamma_2)\) of \((\sigma^2, \vartheta_2)\) such that the corresponding Fisher information satisfies \(J_{M,N}(\gamma_2) \lesssim r_{M,N}^{-2}\) locally uniformly. Inspection of the proofs of Propositions 5.3 and 5.5 shows that the bounds on the Fisher information are indeed locally uniform.

Case \(M/\sqrt{N} \geq 1\). For \(L \in \mathbb{N}\) define the process \(X^L\) via \(X^L_t(y) = \sum_{i=0}^{L} u(t) e^\gamma(y), t \geq 0, y \in [0, 1]\), and let \(X_{N,M}^L = \{X^L_t(y_k), i = 0, \ldots, N - 1, k = 0, \ldots, M\}\) as well as \(X_{N,M} = X_{N,M}^\infty\). Denoting the corresponding covariance matrices by \(\Sigma^L_{N,M}\) and \(\Sigma_{N,M}\) and using the result of [10], we can bound the total variation distance of the Gaussian distributions by \(TV(\Sigma_{N,M}, \Sigma^L_{N,M}) \lesssim \frac{3}{2} \|\Sigma_{N,M}^{1/2}(\Sigma^L_{N,M} - \Sigma_{N,M})\|_F \lesssim \frac{3}{2} \|\Sigma_{N,M}^{1/2}\|_F \|\Sigma^L_{N,M} - \Sigma_{N,M}\|_F\). Consequently, we can pick a sequence \(L_{N,M} \to \infty\) such that \(X_{N,M}^{L_{N,M}}\) and \(X_{N,M}\) are statistically equivalent in the sense of Le Cam and it is sufficient to derive a lower bound for \(X_{N,M}^{L_{N,M}}\), or even \(\{u(t_i), i \leq N, \ell \leq L_{N,M}\}\). Assuming \(L_{N,M} \geq M\) without loss of generality, for this observation scheme Proposition 5.3 yields under the parametrization \((\sigma^2/\vartheta_2, \sigma^2)\):

\[
J_{M,N}(\sigma^2) \lesssim N^{3/2} \wedge L_{N,M}^3 = N^{3/2} = r_{N,M}^{-2}.
\]

Case \(M/\sqrt{N} \to 0\). For \(b \in \mathbb{Q} \cap (0, 1/2)\) write \(b = p/q\) where \(p \in \mathbb{Z}\) and \(q \in \mathbb{N}\) such that \(y_k = \frac{p b M + k(q - 2 \vartheta)}{2 M q}\), \(k \leq M\), and consequently \(\{y_k, k = 0, \ldots, M\}\) is a subset of \(\{\zeta_k, k = 1, \ldots, q M - 1\}\) where \(\zeta_k = \frac{k}{2 M q}\). Now, \(q M \sqrt{\Delta} \to 0\) and since \(q^2 M^3 \log\left(\frac{1}{\sqrt{M \Delta}}\right) \lesssim M^3 \log\left(\frac{1}{M^{3/2} \sqrt{\Delta}}\right)\) Proposition 5.5 implies under the parametrization \((\sigma^2/\sqrt{\vartheta_2}, \sigma^2)\):

\[
J_{M,N}(\vartheta_2) \lesssim M^3 \log\left(\frac{1}{\sqrt{M^2 \Delta}}\right) = r_{N,M}^{-2}.
\]
(i) If \(\min(M, N) \) remains finite and \(M/\sqrt{N} \to 1 \), then \(N \) necessarily remains finite and the result follows from (ii). On the other hand, if \(M/\sqrt{N} \to 0 \), then \(M \) must remain finite. Like in the proof of (ii), extend the set of spatial locations to \(\{ z_k, k < qM \} \) and consider the corresponding processes \(U_k, k = 1, \ldots, qM - 1 \) from (19). A similar calculation as in the proof of Proposition 2.3 shows that for any \(k < qM \), the laws of the independent continuous processes \(\{U_k(t), t \leq 1\} \) are absolutely continuous for different parameter values \((\sigma^2, \vartheta_2) \) and \((\hat{\sigma}^2, \vartheta_2) \) as long as \(\sigma^2/\sqrt{\vartheta_2} = \hat{\sigma}^2/\sqrt{\vartheta_2} \) and hence, consistent estimation of \((\sigma^2, \vartheta_2) \) based on continuous or discrete observations is impossible:

Note that the continuous spectral density of \(U_k \) is \(f_k(u) = \frac{1}{2\pi^2} \sum_{\ell \geq 0} h_{(\sigma^2, \vartheta_2)} \left(\frac{k + 2M\ell}{\sqrt{u}} \right) \), \(u \in \mathbb{R} \), where \(h_{(\sigma^2, \vartheta_2)} \) is defined in the proof of Proposition 2.3. Now, a Riemann sum midpoint approximation, cf. Lemma A.9, shows that

\[
\begin{align*}
& f_k^+(u) := \frac{1}{2\pi^2} \sum_{\ell \geq 0} h_{(\sigma^2, \vartheta_2)} \left(\frac{k + 2M\ell}{\sqrt{u}} \right) = \frac{1}{2\pi^2} \left(\sqrt{u} \int_{(k-M)/\sqrt{u}}^{\infty} h_{(\sigma^2, \vartheta_2)}(z) \, dz + O \left(\frac{1}{\sqrt{u}} \right) \right) \\
& f_k^-(u) := \frac{1}{2\pi^2} \sum_{\ell \geq 0} h_{(\sigma^2, \vartheta_2)} \left(\frac{2M - k + 2M\ell}{\sqrt{u}} \right) = \frac{1}{2\pi^2} \left(\sqrt{u} \int_{(M-k)/\sqrt{u}}^{\infty} h_{(\sigma^2, \vartheta_2)}(z) \, dz + O \left(\frac{1}{\sqrt{u}} \right) \right),
\end{align*}
\]

as \(u \to \infty \). Since \(h_{(\sigma^2, \vartheta_2)} \) is symmetric around 0 we obtain

\[
f_k(u) = f_k^+(u) + f_k^-(u) = \frac{1}{2\pi^2} \left(\sqrt{u} \int_{0}^{\infty} h_{(\sigma^2, \vartheta_2)}(z) \, dz + O \left(\frac{1}{\sqrt{u}} \right) \right)
\]

from which equivalence follows as in Proposition 2.3.

\[\square\]

7.4. Proofs for Section 2

Proof of Proposition 2.1. Due to (6) and the trigonometric identity

\[
\sin(\alpha) \sin(\beta) = \frac{1}{2} \left(\cos(\alpha - \beta) - \cos(\alpha + \beta) \right)
\]

we have

\[
\text{Cov}(X_t(x), X_t(y)) = \frac{\sigma^2}{2\pi^2} e^{-\frac{2}{\pi}(x+y)} \sum_{\ell \geq 1} \frac{1}{\ell^2 + \Gamma/\pi^2} \left(\cos(\pi\ell(y-x)) - \cos(\pi\ell(x+y)) \right).
\]

The claimed formulas now follow by inserting the closed expressions

\[
\sum_{\ell \geq 1} \frac{1}{\ell^2 + \beta} \cos(\pi\ell x) = \left\{ \begin{array}{ll}
\frac{\pi}{2\sqrt{\beta}} \sin(\pi\sqrt{\beta}) & , \quad -1 < \beta < 0 \\
\frac{\pi^2}{4} - \frac{\pi^2}{12} & , \quad \beta = 0 \\
\frac{\pi^2}{2\sqrt{\beta}} \sinh(\pi\sqrt{\beta}) & , \quad \beta > 0
\end{array} \right.
\]

for \(x \in [0,1] \) and again applying (39) and \(\sinh(\alpha) \sinh(\beta) = \frac{1}{2} \left(\cosh(\alpha + \beta) - \cosh(\alpha - \beta) \right) \), respectively. To prove the second statement we use the ansatz \(Z(x) = u(x)B(v(x)) \), \(u, v \) positive and \(v \) non-decreasing, which is the general form of a Gaussian Markov process, cf. [24]. Comparison of covariance functions yields explicit expressions for \(u \) and \(v \). Further, \(u(x)B(v(x)) \overset{d}{=} u(x) \int_{0}^{v(x)} dB(z) \) \(\overset{d}{=} \int_{0}^{u(x)} \right \}

\[\square\]

Proof of Proposition 2.3. The necessity of the conditions on the parameters follow from the fact that (i) the parameter \(\sigma^2/\sqrt{\vartheta_2} \) may be consistently estimated using time increments, see [3], and (ii) the parameters \(\sigma^2/\vartheta_2 \) and \(\kappa \) may be consistently estimated by computing the quadratic
variation of the process $x \mapsto X_t(x)$ on two different sub-intervals of $[0, 1]$ in view of Proposition 2.1.

It remains to prove sufficiency of the conditions on the parameters:

(i) is a simple consequence of [19, Proposition 1]: Set $\lambda_\ell = \vartheta_2(\pi^2\ell^2 + \Gamma)$ and $\hat{\lambda}_\ell = \vartheta_2(\pi^2\ell^2 + \hat{\Gamma})$ where $\Gamma = \frac{\vartheta^2}{\vartheta_2^2} - \frac{\vartheta_0}{\vartheta_2}$ and $\hat{\Gamma} = \frac{\vartheta^2}{\vartheta_2^2} - \frac{\vartheta_0}{\vartheta_2}$. Then, absolute continuity follows from $\sum_{\ell \geq 1} (\lambda_\ell - \hat{\lambda}_\ell)^2 < \infty$.

Thanks to (i) and due to the one to one correspondence between Γ and ϑ_0 we may assume $\Gamma = \hat{\Gamma} = 0$ for the remainder of the proof.

(ii) follows from the fact that $\text{Cov}(X_{t_0}(x), X_{t_0}(y))$ only depends on $\left(\frac{\sigma^2}{\vartheta_2}, \kappa\right)$ in view of the Gaussianity of X.

For (iii) note that $t \mapsto X_t(x_0)$ is a stationary Gaussian process with covariance function

$$
\rho(t) = \sigma^2 \sum_{k \geq 1} \frac{e^{-\lambda_k t}}{2\lambda_k} c_k^2(x_0).
$$

Let

$$
f_{(\sigma^2, \vartheta_2)}(u) = \frac{1}{2\pi} \int e^{-iut} \rho(|t|) dt = \frac{1}{\pi} \int_0^\infty \cos(ut) \rho(t) dt = \frac{\sigma^2}{2\pi} \sum_{\ell \geq 1} \frac{c^2_k(x_0)}{\lambda^2_k + u^2}
$$

be the spectral density of $t \mapsto X_t(x_0)$. By Theorem 17 and its preceding discussion in [15] it suffices to show

$$
\exists r > 1 : \lim_{u \to \infty} u^r f_{(\sigma^2, \vartheta_2)}(u) \in (0, \infty) \quad \text{and} \quad \frac{f_{(\sigma^2, \vartheta_2)} - f_{(\hat{\sigma}^2, \hat{\vartheta}_2)}}{f_{(\sigma^2, \vartheta_2)}} \in L^2(\mathbb{R}).
$$

To prove these statements, we may assume $\kappa = 0$ without loss of generality. Set $h_{(\sigma^2, \vartheta_2)}(z) = \sum_{\ell \geq 1} h_{(\sigma^2, \vartheta_2)} \left(\frac{\ell}{u}\right) \sin^2(\pi \ell x_0) = \frac{1}{u^2} \left(\frac{\sqrt{\pi}}{2} \int_0^\infty h_{(\sigma^2, \vartheta_2)}(z) dz + O\left(\frac{1}{\sqrt{u}}\right)\right),$

which proves the first condition. Now, if $\sigma^2/\sqrt{\vartheta_2} = \hat{\sigma}^2/\sqrt{\hat{\vartheta}_2}$ then clearly $\int_0^\infty h_{(\sigma^2, \vartheta_2)}(z) dz = \int_0^\infty h_{(\hat{\sigma}^2, \hat{\vartheta}_2)}(z) dz$ and therefore, the second condition follows:

$$
\frac{f_{(\sigma^2, \vartheta_2)}(u) - f_{(\hat{\sigma}^2, \hat{\vartheta}_2)}(u)}{f_{(\sigma^2, \vartheta_2)}(u)} = O\left(\frac{1}{u}\right), \quad u \to \infty.
$$

\[\square\]

Appendix A: Remaining proofs and auxiliary results

A.1. Covariances of double increments

The following three lemmas are used to calculate the asymptotic variance of \tilde{V}. Recall the definition of \tilde{D}_{ik} from (23).

Lemma A.1. Let $b \in (0, 1/2)$. For $J \geq 1$ define

$$
F_{J, \Delta}(z) = \sum_{\ell \geq 1} \frac{2\sigma^2 - \pi^2 \vartheta_2 J^2 \Delta - e^{-\pi^2 \vartheta_2 (J+1)^2 \Delta} - e^{-\pi^2 \vartheta_2 (J-1)^2 \Delta}}{2\pi^2 \vartheta^2 \ell^2} \cos(\pi \ell z)
$$

and $F_{0, \Delta} = F_{\vartheta_2}(\cdot, \Delta)$. Then, for $J = |i - j|$, \[\begin{align*}
\text{Cov}(\tilde{D}_{ik}, \tilde{D}_{jl}) &= -\sigma^2 e^{-\kappa \delta/2} \begin{cases} 2D_1 F_{J, \Delta}(0) & l = k \\ 2D_{3}^2 F_{J, \Delta}(y_l - y_{k+1}) & l > k \end{cases} + O \left(\frac{\sqrt{\Delta} \delta^2}{(J+1)^{3/2}}\right),
\end{align*}\]
Proof. It immediately follows from the covariance structure \(\text{Cov}(u_t(s), u_t(t)) = \frac{\sigma^2}{2\lambda_t} e^{-\lambda_t|t-s|}, s, t \geq 0, \) of the coefficient processes that

\[
\text{Cov}(D_{ik}, D_{jl}) = \sigma^2 \sum_{l \geq 1} \left(e_{l}(y_{k+1}) - e_{l}(y_{k}) \right) \left(e_{l}(y_{l+1}) - e_{l}(y_{l}) \right) \cdot \frac{1-e^{-\lambda_{l}}}{2\lambda_{l}} \cdot \begin{cases} 1-e^{-\lambda_{l}} \cdot \lambda_{l}, & J = 0, \\ 2-\lambda_{l} - e^{-\lambda_{l}}(J+1)\Delta - e^{-\lambda_{l}(J-1)\Delta}, & J \geq 1. \end{cases}
\]

Step 1. We show negligibility of \(\Gamma \). From the first step of the last proof we already know that

\[
\text{Cov}(D_{ik}, D_{il}) = \sigma^2 \sum_{l \geq 1} \frac{1-e^{-\pi^2 \vartheta \ell^2 \Delta}}{\pi^2 \vartheta \ell^2} \left(e_{l}(y_{k+1}) - e_{l}(y_{k}) \right) \left(e_{l}(y_{l+1}) - e_{l}(y_{l}) \right) + O \left(\Delta \delta^2 \right).
\]

For \(J \geq 1 \) we will show now that

\[
\text{Cov}(D_{ik}, D_{jl}) = \sigma^2 \sum_{l \geq 1} \frac{1-e^{-\pi^2 \vartheta \ell^2 \Delta}}{\pi^2 \vartheta \ell^2} \cdot \left(e_{l}(y_{k+1}) - e_{l}(y_{k}) \right) \left(e_{l}(y_{l+1}) - e_{l}(y_{l}) \right) + O \left(\Delta \delta^2 \right).
\]

If \(J = 1 \) this directly follows from the case \(J = 0 \) since

\[
\frac{2e^{-\lambda_{l} \Delta} - e^{-2\lambda_{l} \Delta} - 1}{\lambda_{l}} = 1 - \frac{e^{-2\lambda_{l} \Delta}}{2\lambda_{l}} - \frac{1-e^{-\lambda_{l} \Delta}}{\lambda_{l}}.
\]

For \(J \geq 2 \) define \(g_{J}(x) = \frac{2e^{-\vartheta x} - e^{-(J+1)\vartheta x} - e^{-(J-1)\vartheta x}}{2\vartheta x} \). A first order Taylor approximation of \(g_{J} \) gives

\[
\text{Cov}(D_{ik}, D_{jl}) = \Delta \sum_{\ell \geq 1} g_{J}(\lambda_{\ell} \Delta) \left(e_{\ell}(y_{k+1}) - e_{\ell}(y_{k}) \right) \left(e_{\ell}(y_{l+1}) - e_{\ell}(y_{l}) \right)
\]

\[
= \Delta \sum_{\ell \geq 1} g_{J}(\pi^2 \vartheta \ell^2 \Delta) \left(e_{\ell}(y_{k+1}) - e_{\ell}(y_{k}) \right) \left(e_{\ell}(y_{l+1}) - e_{\ell}(y_{l}) \right) + R,
\]

where \(R \lesssim \Delta^2 \sum_{\ell \geq 1} g_{J}(\vartheta \ell^2) \vartheta \ell^2 \Delta \). It can be shown easily that \(g_{J}(x) \lesssim e^{-(J-1)\vartheta x^2} \). Therefore, for some \(\omega > 0 \) and by regarding \(R \) as a Riemann sum with lag \(\sqrt{(J-1)\Delta} \),

\[
R \lesssim \Delta^2 \sum_{\ell \geq 1} e^{-\omega(J-1)\vartheta \ell^2 \Delta} \lesssim \frac{\sqrt{\Delta \delta^2}}{(J-1)^{3/2}} \lesssim \frac{\sqrt{\Delta \delta^2}}{(J+1)^{3/2}}.
\]

Step 2. By Step 1 we may assume \(\lambda_{\ell} = \pi^2 \vartheta \ell^2 \). By (22) we have

\[
\text{Cov}(\tilde{D}_{ik}, \tilde{D}_{jk}) = -\sigma^2 g(\delta) D_{\delta} F_{J,\Delta}(0) + \sigma^2 F_{J,\Delta}(0) D_{\delta}^2 g(0) - \sigma^2 D_{\delta}^2 (g(\cdot) F_{J,\Delta}(2y_{k} + \cdot)) (0)
\]

and by (21) for \(l > k \)

\[
\text{Cov}(\tilde{D}_{ik}, \tilde{D}_{jl}) = -\sigma^2 g(\delta) D_{\delta}^2 F_{J,\Delta}(y_{l} - y_{k+1}) + \sigma^2 F_{J,\Delta}(y_{l} - y_{k}) D_{\delta}^2 g(0) - \sigma^2 D_{\delta}^2 (g(\cdot) F_{J,\Delta}(y_{l} + y_{k} + \cdot)) (0).
\]

Hence, as in previous Lemmas it is sufficient to establish

\[
F_{J,\Delta}(0), F_{J,\Delta}(z), F_{J,\Delta}'(z) F_{J,\Delta}''(z) \lesssim \frac{\sqrt{\Delta}}{J^{3/2}}, \quad z \in [2b, 2(1-b)].
\]
For \(J = 0 \) this was already proven in Proposition 3.5. The case \(J = 1 \) follows from the case \(J = 0 \) since (41) shows
\[
F_{1, \Delta}(z) = \frac{1}{2} F_{2 \Delta}(z) - F_{\Delta}(z).
\] (42)

For \(J \geq 2 \) we have
\[
2e^{-\lambda_{t} J \Delta} - e^{-\lambda_{t} (J+1) \Delta} - e^{-\lambda_{t} (J-1) \Delta} \lesssim e^{-\lambda_{t} (J-1) \Delta} (\lambda_{t} \Delta)^2,
\] and therefore, again using a Riemann sum approximation with lag \(\sqrt{(J-1) \Delta} \),
\[
F_{J, \Delta}(z) \lesssim F_{J, \Delta}(0) \lesssim \sum_{\ell \geq 1} \lambda_{\ell} \Delta^2 e^{-\lambda_{\ell} (J-1) \Delta} = O \left(\frac{\sqrt{\Delta}}{(J-1)^{3/2}} \right).
\]

The bound on the first derivative is provided by Lemma A.7,
\[
F'_{J, \Delta}(z) \lesssim \sum_{\ell \geq 1} \frac{2e^{-\lambda_{\ell} J \Delta} - e^{-\lambda_{\ell} (J+1) \Delta} - e^{-\lambda_{\ell} (J-1) \Delta}}{2 \lambda_{\ell}} \ell \sin(\pi \ell z) \\
\lesssim \sup_{\ell} \left\{ \frac{2e^{-\lambda_{\ell} J \Delta} - e^{-\lambda_{\ell} (J+1) \Delta} - e^{-\lambda_{\ell} (J-1) \Delta}}{2 \lambda_{\ell}} \ell \right\} \sup_{\ell} \left| \lambda_{\ell} \Delta^2 e^{-\lambda_{\ell} J \Delta} \right| \lesssim \frac{\sqrt{\Delta}}{J^{3/2}}.
\]

Finally, to bound \(F''_{J, \Delta} \) we define \(h_{J}(z) = 2e^{-Jz^2} - e^{-(J+1)z^2} - e^{-(J-1)z^2} \). Clearly, \(h_{J}(0) = 0 \) and
\[
\frac{d}{dz} h_{J}(z) = -2(J-1)ze^{-(J-1)z^2} \left(2e^{-z^2} - e^{-2z^2} - 1 \right) - e^{-(J-1)z^2} \left(4ze^{-z^2} - 4ze^{-2z^2} \right) \lesssim \frac{1}{J^{3/2}},
\]
i.e. \(\|h'_{J}\|_{\infty} \lesssim J^{-3/2} \). In view of Lemma A.8 this shows
\[
F''_{J, \Delta}(z) \lesssim \sum_{\ell \geq 1} \frac{2e^{-\lambda_{\ell} J \Delta} - e^{-\lambda_{\ell} (J+1) \Delta} - e^{-\lambda_{\ell} (J-1) \Delta}}{2 \lambda_{\ell}} \ell^2 \cos(\pi \ell z) \\
\lesssim \sum_{\ell \geq 1} h_{J}(\sqrt{\lambda_{\ell} \Delta}) \cos(\pi \ell z) = O \left(\frac{1}{(z \wedge (2-z))^2} \frac{\sqrt{\Delta}}{J^{3/2}} \right). \quad \square
\]

Lemma A.2. For \(J \in \mathbb{N}_0 \) and \(z \in (0,2) \) it holds that

(i) \(F_{J, \Delta}(0) - F_{J, \Delta}(\delta) = \delta \frac{1}{2\sqrt{2}} \mathbb{1}_{(J=0)} - \delta \frac{1}{16\sqrt{2}} \mathbb{1}_{(J=1)} + O \left(\frac{\delta^2}{(J+1)^{3/2} \sqrt{\Delta}} \right) \)

(ii) \(2F_{J, \Delta}(z) - F_{J, \Delta}(z+\delta) - F_{J, \Delta}(z-\delta) = O \left(\frac{\delta^2}{J+1} \left(\frac{1}{z \wedge (2-z)} \right) \right) \).

Proof. (i) The validity for the case \(J = 0 \) follows from the proof of Proposition 3.5 (ii), the case \(J = 1 \) follows from (42). For \(J \geq 2 \) we have by Taylor’s theorem
\[
F_{J, \Delta}(0) - F_{J, \Delta}(\delta) = -\delta F'_{J, \Delta}(0) - \frac{\delta^2}{2} F''_{J, \Delta}(\xi)
\]
for some \(\xi \in [0, \delta] \). Now, the claim is proved by inserting \(F'_{J, \Delta}(0) = 0 \) and noting due to (43):
\[
\|F''_{J, \Delta}\|_{\infty} \lesssim \sum_{\ell \geq 1} \left(2e^{-\lambda_{\ell} J \Delta} - e^{-\lambda_{\ell} (J+1) \Delta} - e^{-\lambda_{\ell} (J-1) \Delta} \right) \lesssim \sum_{\ell \geq 1} \lambda_{\ell}^2 \Delta^2 e^{-\lambda_{\ell} (J-1) \Delta} \lesssim \frac{1}{J^{5/2} \sqrt{\Delta}}.
\]

(ii) As in previous Lemmas it suffices to establish
\[
F''_{J, \Delta}(z) \lesssim \frac{1}{(J+1)^2} \left(\frac{1}{\sqrt{\Delta}} \wedge \frac{1}{z \wedge (2-z)} \right).
\]
For the case \(J = 0 \) we employ the representation \(F_{\Delta} = H_{\Delta} + G_{\Delta} \) from Proposition 3.5. The validity of the bound on \(H'_{\Delta} \) follows from \(H''_{\Delta}(z) \lesssim 1/\sqrt{z} \wedge \frac{1}{z^{\lambda}(2-z)} \). The bound on \(G''_{\Delta}(z) \) follows from \(\|G''_{\Delta}\|_{\infty} \lesssim 1/\sqrt{z} \) and \(G''_{\Delta}(z) \lesssim \sup_{\ell} \frac{1-e^{-\lambda_{\ell}^2(1+\lambda_{\ell}\Delta)}}{1+\lambda_{\ell}\Delta} \frac{1}{\sqrt{z}(2-z)} \lesssim \frac{1}{\sqrt{z}(2-z)} \), see Lemma A.7.

The case \(J = 1 \) follows from the case \(J = 0 \), see (42). For \(J \geq 2 \) we proceed in the same way: In the proof of (i) it was shown that \(|F''_{\Delta,J}| \lesssim \frac{1}{\sqrt{z}(2-z)} \). Finally, by Lemma A.7,

\[
F''_{J,\Delta}(z) \lesssim \sup_{\ell} \left| 2e^{-\lambda_{\ell}J\Delta} - e^{-\lambda_{\ell}(J+1)\Delta} - e^{-\lambda_{\ell}(J-1)\Delta} \right| \frac{1}{z \wedge (2-z)} \lesssim \frac{1}{1-J^2} \frac{1}{z \wedge (2-z)}. \]

Lemma A.3. For \(J \in \mathbb{N}_0 \) and \(z \in (0,2) \) we have

(i) \(F_{J,\Delta}(0) - F_{J,\Delta}(\delta) = \begin{cases} \frac{\sqrt{\Delta}}{2\sqrt{\pi} \delta} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J} \right) + O \left(\Delta^{3/2} + \frac{\Delta}{(J+1)^3} \right), & J = 0, \\ \frac{\sqrt{\Delta}}{2\sqrt{\pi} \delta} + O \left(\frac{\Delta}{\delta^2} \right), & J \geq 1. \end{cases} \)

(ii) \(2F_{J,\Delta}(\delta) - F_{J,\Delta}(0) - F_{J,\Delta}(2\delta) = \begin{cases} \frac{\sqrt{\Delta}}{2\sqrt{\pi} \delta} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J} \right) + O \left(\Delta^{3/2} + \frac{\Delta}{(J+1)^3} \right), & J = 0, \\ \frac{\sqrt{\Delta}}{2\sqrt{\pi} \delta} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J} \right) + O \left(\frac{\Delta}{J+1} \right), & J \geq 1. \end{cases} \)

(iii) \(2F_{J,\Delta}(z) - F_{J,\Delta}(z - \delta) - F_{J,\Delta}(z + \delta) = O \left(\frac{\Delta}{J+1} \frac{1}{z \wedge (2-z)} \right) \).

Proof. (iii) It is sufficient to show

\[
F_{J,\Delta}(z) = O \left(\frac{\Delta}{J+1} \frac{1}{z \wedge (2-z)} \right) \quad (44)
\]

for \(J \in \mathbb{N}_0 \) and \(z \in (0,2) \): If \(J = 0 \), Lemma A.7 gives

\[
F_{\Delta}(z) \lesssim \sup_{\ell \geq 1} \left| 1 - e^{-\lambda_{\ell}\Delta} \right| \frac{1}{\lambda_{\ell}} \frac{1}{z \wedge (2-z)} \lesssim \frac{\Delta}{z \wedge (2-z)}. \]

By (42) this bound is also valid for \(F_{1,\Delta}(z) \). For \(J \geq 2 \) the same method gives

\[
F_{J,\Delta}(z) \lesssim \sup_{\ell \geq 1} \left| 2e^{-\lambda_{\ell}J\Delta} - e^{-\lambda_{\ell}(J+1)\Delta} - e^{-\lambda_{\ell}(J-1)\Delta} \right| \frac{1}{\lambda_{\ell}} \frac{1}{z \wedge (2-z)} \lesssim \frac{\Delta}{J z \wedge (2-z)},
\]

where we have used (43).

(i) The case \(J = 0 \) was already shown in the proof of Proposition 3.5. For \(J \geq 1 \) we prove

\[
F_{J,\Delta}(0) = \frac{\sqrt{\Delta}}{2\sqrt{\pi} \delta} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J} \right) + O(\Delta^{3/2}),
\]

then (ii) follows in view of (44): If \(J = 1 \) we use (24) to calculate

\[
F_{1,\Delta}(0) = \frac{1}{2} F_{2\Delta}(0) - F_{\Delta}(0) = \frac{1}{2} \left(\frac{\sqrt{\Delta}}{\sqrt{\pi} \delta} - \Delta \right) - \left(\frac{\sqrt{\Delta}}{\sqrt{\pi} \delta} - \frac{\Delta}{2} \right) + O(\Delta^{3/2}) = \frac{\sqrt{\Delta}}{2\sqrt{\pi} \delta} \left(\sqrt{2} - 2 \right) + O(\Delta^{3/2}).
\]

For \(J \geq 2 \) define \(g_J(z) = 2e^{-Jz^2}e^{-z} - e^{-(J+1)z^2} - e^{-(J-1)z^2} \). Then,

\[
\int_0^\infty g_J(z) \, dz = \frac{1}{2\sqrt{\pi} \delta} \left(\sqrt{J-1} + \sqrt{J+1} - 2\sqrt{J} \right)
\]
and since \(g_J(0) = 0 \) we have by Lemma A.9
\[
F_{J,\Delta}(0) = \Delta \sum_{\ell \geq 1} g_J(\ell \sqrt{\Delta}) = \sqrt{\Delta} \int_0^\infty g_J(z) \, dz + O(\Delta^{3/2})
\]
\[
= \frac{\sqrt{\Delta}}{2\sqrt{\pi \theta^2}} \left(\sqrt{\Delta - 1} + \sqrt{\Delta + 1} - 2\sqrt{J} \right) + O(\Delta^{3/2}).
\]
Finally, (ii) is a direct consequence of (i).

A.2. Auxiliary results for the lower bounds

For the proofs of Propositions 5.3 and 5.5 we require the following auxiliary lemmas.

Lemma A.4. Consider a discrete sample \((u(i\Delta), i = 0, \ldots, N) \) of an Ornstein-Uhlenbeck process given by
\[
du(t) = -\mu u(t) \, dt + \nu \sqrt{u} \, dB_t, \quad u(0) \sim \mathcal{N}(0, \frac{\nu^2}{2\theta})
\]
and assume \(\Delta = 1/N \). Then, the Fisher information \(I = I_N \) for the parameter \((\mu, \nu^2) \) is given by
\[
I_{11} = a^2 \Delta (e^{-2\mu \Delta} + e^{-2\mu \Delta}) \quad \text{(i)}
\]
\[
I_{12} = a e^{-2\mu \Delta} \quad \text{(ii)}
\]
\[
I_{22} = \frac{N+1}{2\nu^4} \quad \text{(iii)}
\]

Proof. By the Markov property of \(u \), the log-likelihood function of \((\mu, \nu^2) \) is given by
\[
\ell(\mu, \nu^2) = \log p_0(u(0)) + \sum_{i=0}^{N-1} \log p_\Delta(u(i\Delta), u((i+1)\Delta)),
\]
where \(p_t(x, y) = \frac{1}{\sqrt{2\pi \nu^2(1-e^{-2\mu \Delta})/a}} \exp \left(\frac{(y-xe^{-\mu t})^2}{2\nu^2(1-e^{-2\mu \Delta})/a} \right) \) is the transition density of \(u \) and \(p_0 \) is the density of the initial distribution \(\mathcal{N}(0, \frac{\nu^2}{2\theta}) \). By stationarity of \(u \), the Fisher information simplifies to
\[
I = -\mathbb{E}(D^2 \ell(\mu, \nu^2)) = -\mathbb{E}(D^2 \log p_0(u(0))) - \mathbb{N}(D^2 \log p_\Delta(u(0), u(\Delta)))
\]
where we write \(D^2 g \) for the Hessian of a function \(g \). This expression can be computed explicitly, yielding the claimed formulas.

Lemma A.5. The function \(g : [0, \infty) \times [-\pi, \pi] \to \mathbb{R} \) defined by
\[
g(x, \omega) = \frac{2x^2 - \sinh(x^2) \cosh(x^2) + \cos(\omega)(\sinh(x^2) - 2x^2 \cosh(x^2))}{x^2(\cosh(x^2) - \cos(\omega))^2} (1 - \cos(\omega))
\]
satisfies
\[
(i) \quad \int_0^\infty g(x, \omega) \, dx = 0, \text{ for all } \omega \in [-\pi, \pi],
\]
\[
(ii) \quad \sup_{|\omega| \leq \pi} \| \frac{\partial}{\partial x} g(x, \omega) \|_{L^1} < \infty.
\]
\[
(iii) \quad |g(x, \omega)| \lesssim \frac{1+|x|^2}{x^4} \omega^2 \text{ uniformly in } \omega \in [-\pi, \pi], \quad x > 0.
\]

Proof. (i) follows from the fact that
\[
G(x, \omega) := \frac{\sinh(x^2)(1 - \cos(\omega))}{x(\cosh(x^2) - \cos(\omega))}, \quad x > 0, \ \omega \in [-\pi, \pi],
\]
is a primitive of \(x \mapsto g(x, \omega) \) and since \(\lim_{x \to \infty} G(x, \omega) = \lim_{x \to 0} G(x, \omega) = 0 \) for all \(\omega \in [-\pi, \pi] \).

(ii) can be shown by writing \(G(\cdot, \omega) \) as a sum of monotonic functions and noting that for a monotonic function \(g : \mathbb{R}_+ \to \mathbb{R} \) it holds that \(\| g' \|_{L^1} = | \lim_{x \to \infty} g(x) - \lim_{x \to 0} g(x) | \).

Finally, (iii) follows by direct calculations.
Lemma A.6. Consider the parametrization of Proposition 5.5 and the function $\Phi_k^{N,\Delta}$ from (35). If $M \sqrt{\Delta} \to 0$, then

(i) $\Phi_k^{N,\Delta}(\omega) > 0$ for all $\omega \in [-\pi, \pi]$,

(ii)

$$
\Phi_k^{N,\Delta}(\omega) \gtrless \begin{cases}
\frac{\sqrt{\Delta}}{M} \sqrt{|\omega|}, & |\omega| \geq M^2 \Delta, \\
\Delta, & k^2 \Delta \leq |\omega| \leq M^2 \Delta, \\
\frac{\omega^2}{k^4 \Delta} + \Delta e^{-\theta_2 k^2}, & |\omega| \leq k^2 \Delta.
\end{cases}
$$

(iii)

$$
\frac{\partial}{\partial \theta_2} \Phi_k^{N,\Delta}(\omega) \lesssim \begin{cases}
\Delta, & \omega \in [-\pi, \pi], \\
\frac{\omega^2}{k^4 \Delta} + \Delta k^2 e^{-\theta_2 k^2}, & |\omega| \leq k^2 \Delta.
\end{cases}
$$

Proof. Without loss of generality let $\theta = \pi^2 \theta_2$ and $\sigma_0^2 = \pi^2$. We denote the covariance function of \tilde{U}_k by $p_k : \mathbb{Z} \to \mathbb{R}$ and write Φ_k^N instead of $\Phi_k^{N,\Delta}$, i.e. $\Phi_k^N(\omega) = \sum_{j=1}^{N-1} p_k(j)e^{-ij\omega}, \omega \in [-\pi, \pi]$.

(i) Let r_k be the covariance function of the process $(U_k(t_0), U_k(t_1), \ldots)$, i.e.

$$
r_k(j) = \sum_{\ell \in \mathbb{Z}_k} e^{-\theta_2 |j| \Delta}/2\sqrt{\theta_2^2}, \quad j \in \mathbb{Z},
$$

where $\mathbb{I}_k = \mathbb{I}_k^+ \cup \mathbb{I}_k^-$. Note that r_k and p_k are related by $p_k(j) = 2r_k(j) - r_k(j-1) - r_k(j+1)$, $j \in \mathbb{Z}$, which is a second order difference. Since $x \mapsto e^{-x}$ has a positive second derivative, it follows that $p_k(j) < 0$ if $j \neq 0$. On the other hand, for $j = 0$ we have $p_k(0) = \text{Var}(\tilde{U}_k(t_0)) > 0$ and therefore,

$$
\Phi_k^N(\omega) = p_k(0) + 2 \sum_{j=1}^{N-1} p_k(j) \cos(j\omega) \geq p_k(0) + 2 \sum_{j=1}^{N-1} p_k(j) = 2(r_k(N-1) - r_k(N)) > 0.
$$

To treat (ii) and (iii) we calculate

$$
\Phi_k^N(\omega) = \sum_{j=1}^{N-1} p_k(j)e^{-ij\omega} = 2(1 - \cos(\omega)) \sum_{j=2}^{N-2} r_k(j)e^{-ij\omega} + 4r_k(N-1) \cos((N-1)\omega) - 2r_k(N) \cos((N-1)\omega) - 2r_k(N) \cos((N-2)\omega).
$$

From $\sum_{j=0}^{j-1} z^j = \frac{1 - z^j}{1 - z}$ for $z \in \mathbb{C} \setminus \{1\}$ it follows that

$$
\sum_{j=1}^{J-1} e^{-\theta_2 |j| \Delta} e^{-ij\omega} = \frac{1 - e^{-2\theta_2 \Delta}}{1 + e^{-2\theta_2 \Delta}} e^{-2(J+1)\theta_2 \Delta} \cos((J+1)\omega) - \frac{2e^{-2\theta_2 \Delta} \cos(J\omega)}{\cosh(\theta_2 \Delta) - \cos(\omega)}
$$

for $J \geq 1$ and by elementary manipulations we can pass to the representation $\Phi_k^N = \Phi + R_N$, where

$$
\Phi(\omega) = (1 - \cos(\omega)) \sum_{\ell \in \mathbb{I}_k} \frac{1}{\sqrt{\theta_2^2}} \frac{\sinh(\theta_2 \Delta)}{\cosh(\theta_2 \Delta) - \cos(\omega)},
$$

$$
R_N(\omega) = \sum_{\ell \in \mathbb{I}_k} (1 - \cosh(\theta_2 \Delta)) \frac{e^{-\theta_2(N-1)\Delta} e^{-\theta_2 \Delta} \cos((N-1)\omega) - \cos(N\omega)}{\cosh(\theta_2 \Delta) - \cos(\omega)}.
$$
Note that we have suppressed the dependence on \(k \) for ease of notation. We remark that \(\Phi(\omega) = \sum_{j \in \mathbb{Z}} p_k(j) e^{-ij\omega}, \omega \in [-\pi, \pi] \), is the spectral density of the process \((\hat{U}_k(j))_{j \geq 0}\).

(ii) To prove (45a) we note that for \(\omega \geq M^2 \Delta \) we have
\[
\left| e^{-\theta \ell^2 \Delta} \cos((N - 1)\omega) - \cos(N\omega) \right| = \left| (e^{-\theta \ell^2 \Delta} - 1) \cos((N - 1)\omega) + \cos((N - 1)\omega) - \cos(N\omega) \right| \lesssim \ell^2 \Delta + \omega \lesssim \ell^2 \omega.
\]
Consequently,
\[
R_N(\omega) \lesssim \sum_{\ell \in \mathbb{Z}_k} \ell^2 \Delta \sinh(\theta \ell^2 \Delta) \frac{e^{-\theta \ell^2 (N-1)\Delta}}{\sqrt{\theta \ell^2}} \frac{\ell^2 \omega}{\cosh(\theta \ell^2 \Delta) - \cos(\omega)} \lesssim \frac{\Delta}{\omega} \sum_{\ell \in \mathbb{Z}_k} \frac{\sinh(\theta \ell^2 \Delta)}{\ell^2 (\cosh(\theta \ell^2 \Delta) - \cos(\omega))} (1 - \cos(\omega)) \lesssim \frac{1}{M^2} \Phi(\omega)
\]
and hence, \(R_N \) is negligible compared to \(\Phi \). In order to compute an asymptotic expression for \(\Phi \), set
\[
h(x, \omega) = \frac{\sinh(\theta x^2)(1 - \cos(\omega))}{x^2 (\cosh(\theta x^2) - \cos(\omega))}, \quad x > 0, \omega \in [-\pi, \pi].
\]
We have \(\frac{\partial}{\partial x} h(\cdot, \omega) \|_{L^1} \leq 0 \) and therefore, \(\| \frac{\partial}{\partial x} h(\cdot, \omega) \|_{L^1} = h(0, \omega) = \lim_{x \to \infty} h(x, \omega) = \theta \) is uniformly bounded in \(\omega \). Thus, using the mean value theorem and a Riemann sum approximation with mesh size \(M \sqrt{\Delta} \) for \(\frac{\partial}{\partial x} h(\cdot, \omega) \), we obtain
\[
\Phi(\omega) \approx \Delta \sum_{\ell \in \mathbb{Z}_k} h(\ell \sqrt{\Delta}, \omega) = \Delta \sum_{\ell = 1}^{\infty} h(2\ell M \sqrt{\Delta}, \omega) + O(\Delta).
\]
Further, since
\[
\left| \epsilon \sum_{\ell \geq 1} f(\ell \varepsilon) - \int_0^\infty f(x) \, dx \right| \leq \epsilon \| f' \|_{L^1}, \quad (47)
\]
for any function \(f \in C^1[0, \infty) \), we get \(\Phi(\omega) \approx \Delta \int_0^\infty h(x, \omega) \, dx + O(\Delta) \). Finally, due to
\[
a + b \approx \max(a, b), \quad a, b > 0, \quad (48)
\]
we have \((\cosh(\theta \omega x^2) - \cos(\omega)) \approx \max(\cosh(\theta \omega x^2) - 1, 1 - \cos(\omega)) \) and consequently,
\[
h(\sqrt{\omega} x, \omega) = \frac{\sinh(\theta \omega x^2)(1 - \cos(\omega))}{\omega x^2 (\cosh(\theta \omega x^2) - \cos(\omega))} \gtrsim \frac{\sinh(\theta \omega x^2)}{\omega x^2} \gtrsim 1, \quad x \leq \theta^{-1/2}.
\]
Therefore,
\[
\int_0^\infty h(x, \omega) \, dx = \sqrt{\omega} \int_0^\infty h(\sqrt{\omega} x, \omega) \, dx \gtrsim \sqrt{\omega},
\]
finishing the proof of (45a).

To prove (45b) and (45c), let us write \(\Phi = \sum_{\ell \in \mathbb{Z}_k} \varphi_\ell + R_N = \sum_{\ell \in \mathbb{Z}_k} \varphi_\ell + R_N^N \). Since the argument in the proof of (i) was on a summand-wise level, also each of the functions \(\varphi_\ell + \varphi_\ell^N \) is positive, \(\ell \in \mathbb{N} \). Therefore, we can bound \(\Phi_k^N \) from below with the first summand,
\[
\Phi_k^N \geq \varphi_k + \varphi_k^N = \varphi_k^N(0) + \varphi_k + (\varphi_k^N - \varphi_k^N(0)) \cdot (49)
\]
We show that there exists an environment \(U \) around zero and some \(\delta \in (0, 1) \) such that
\[
|\varphi_k^N(\omega) - \varphi_k^N(0)| \leq (1 - \delta) \varphi_k(\omega), \quad \omega \in U.
\]
A simple calculation yields
\[
\varrho_k^N(\omega) - \varrho_k^N(0) = e^{-(N-1)\theta k^2 \Delta} \left(\frac{\cos((N-1)\omega)) - \cos(N\omega)(1 - \cosh(\theta k^2 \Delta))}{\sqrt{\theta k^2} (\cosh(\theta k^2 \Delta) - \cos(\omega))} \right. \\
+ e^{-(N-1)\theta k^2 \Delta} \frac{(1 - e^{-\theta k^2 \Delta})(1 - \cos((N-1)\omega))(1 - \cosh(\theta k^2 \Delta))}{\sqrt{\theta k^2} (\cosh(\theta k^2 \Delta) - \cos(\omega))} \\
\left. + e^{-(N-1)\theta k^2 \Delta} \frac{e^{-\theta k^2 \Delta} - 1}{\sqrt{\theta k^2} (\cosh(\theta k^2 \Delta) - \cos(\omega))} \right).
\]

Since \(\cos(x) - \cos(y) = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}, \) \(x, y \in \mathbb{R}, \) we have
\[
|\cos((N-1)\omega)) - \cos(N\omega)| = 2 \sin \left(\frac{(2N-1)\omega}{2} \right) \sin \left(\frac{\omega}{2} \right) \leq N\omega^2.
\]
Therefore, for any \(\alpha > 0 \) there exists an environment \(U \) of 0 such that
\[
|\cos((N-1)\omega)) - \cos(N\omega)| \leq N\omega^2 \leq N(1 - \cos(\omega))(2 + \alpha)
\]
holds for all \(\omega \in U. \) Further, for all \(x \geq 0 \) we have \(\cosh(x) - 1 \leq \frac{\sinh(x)}{2}, \) \(1 - e^{-x} \leq \sinh(x), \) and consequently,
\[
\frac{|\varrho_k^N(\omega) - \varrho_k^N(0)|}{\varphi_k(\omega)} \leq e^{-(N-1)\theta k^2 \Delta(1 + 2 + \alpha \frac{2}{2} + \frac{\alpha}{4} \theta^2 k^4)} \\
\leq 2 + \alpha e^{\Delta \theta k^2} e^{-\theta k^2} (1 + \theta k^2 + \frac{\theta^2 k^4}{2}) < 2 + \alpha e^{\Delta \theta k^2}.
\]
Clearly, for \(\Delta \) sufficiently small one can choose \(\alpha \) in such a way that this bound is strictly less than 1 for all \(k \leq M - 1, \) yielding (49). Consequently, it is sufficient to prove (45b) and (45c) with \(\Phi_k \) replaced by \(\varphi_k + \varrho_k^N(0): \) Now,
\[
\varphi_k(0) + \varrho_k^N(0) = \varrho_k^N(0) = e^{-\theta k^2(N-1)\Delta} \frac{1 - e^{-\theta k^2 \Delta}}{k^2} \approx \Delta e^{-\theta k^2}
\]
and again by using (48), we get
\[
\varphi_k(\omega) \geq \frac{\sinh(\theta k^2 \Delta)}{k^2} \geq \Delta, \quad \omega \geq k^2 \Delta,
\]
\[
\varphi_k(\omega) \geq (1 - \cos(\omega)) \frac{\sinh(\theta k^2 \Delta)}{\sqrt{\theta k^2} \cosh(\theta k^2 \Delta) - 1} \geq \frac{\omega^2}{k^4 \Delta}, \quad \omega \leq k^2 \Delta.
\]
(iii) We show (46a): We have \(\frac{\partial}{\partial \theta} \Phi(\omega) = \frac{\Delta}{2\sqrt{\Delta}} \sum_{\ell \in I_1} g(\ell \sqrt{\Delta}, \omega) \) with \(g \) defined in Lemma A.5. Using the properties of \(g \) derived in Lemma A.5 and the Riemann sum approximation (47) with mesh size \(M \sqrt{\Delta}, \) we obtain
\[
\frac{\partial}{\partial \theta} \Phi(\omega) \approx \Delta \sum_{\ell \geq 1} g(\ell M \sqrt{\Delta}, \omega) + \mathcal{O}(\Delta) = \frac{\sqrt{\Delta}}{M} \int_0^\infty g(x, \omega) \, dx + \mathcal{O}(\Delta) = \mathcal{O}(\Delta).
\]
To show that also \(\frac{\partial}{\partial \theta} R_N \) is of the claimed order, we write
\[
\varrho_N^\ell = \alpha_\ell \beta_\ell \quad \text{where} \quad \alpha_\ell(\omega) = \frac{1 - \cosh(\theta \ell^2 \Delta)}{\sqrt{\theta \ell^2} (\cosh(\theta \ell^2 \Delta) - \cos(\omega))}, \quad \beta_\ell(\omega) = e^{-\theta \ell^2(N-1)\Delta} \left(e^{-\theta \ell^2 \Delta} \cos((N-1)\omega) - \cos(N\omega) \right).
\]
The corresponding derivatives are given by
\[
\frac{\partial}{\partial \theta} \alpha_\ell(\omega) = \frac{\cosh(\theta \ell^2 \Delta) - 1}{2 \theta^{1/2} \ell^2 (\cosh(\theta \ell^2 \Delta) - \cos(\omega))} \Delta \sinh(\theta \ell^2 \Delta) (1 - \cos(\omega)) =: a_\ell^1(\omega)
\]
and
\[
\frac{\partial}{\partial \theta} \beta_\ell(\omega) = e^{-\theta \ell^2 (N-1) \Delta} \left(-\ell^2 N \Delta e^{-\theta \ell^2 \Delta} \cos((N-1) \omega) + \ell^2 (N-1) \Delta \cos(N \omega) \right) =: b_\ell(\omega).
\]
Using the estimates
\[
\frac{\cosh(x) - 1}{\cosh(x) - \cos(\omega)} \lesssim \frac{x^2}{x^2 \lor \omega^2}, \quad \frac{x \sinh(x)(1 - \cos(\omega))}{(\cosh(x) - \cos(\omega))^2} \lesssim \frac{x^2}{x^2 \lor \omega^2}
\]
in combination with \(\beta_\ell(\omega) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \left((\ell^2 \Delta) \lor \omega \right) \) and \(b_\ell(\omega) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \ell^2 \left((\ell^2 \Delta) \lor \omega \right) \) shows that any of the three products in
\[
\frac{\partial}{\partial \theta} R_N = \sum_{\ell \in \mathbb{I}_k} a_\ell^1 \beta_\ell + a_\ell^2 \beta_\ell + \alpha_\ell b_\ell
\]
(51)
can be bounded by
\[
\sum_{\ell \in \mathbb{I}_k} e^{-\theta \ell^2 (N-1) \Delta} \frac{\ell^4 \Delta^2}{(\ell^4 \Delta^2) \lor \omega^2} \left((\ell^2 \Delta) \lor \omega \right) \lesssim \Delta \sum_{\ell \in \mathbb{I}_k} e^{-\theta \ell^2 (N-1) \Delta} \ell^2 \lesssim \Delta.
\]
Consequently, we have \(\frac{\partial}{\partial \theta} R_N = \mathcal{O}(\Delta)\), which finishes the proof of (46a).
To prove (46b), we use property (iii) of Lemma A.5 to deduce
\[
\frac{\partial}{\partial \theta} \Phi(\omega) \lesssim \omega^2 \Delta \sum_{\ell \in \mathbb{I}_k} \frac{1 + \theta \ell^2 \Delta}{\theta^2 \ell^4 \Delta^2} \lesssim \frac{\omega^2}{\Delta} \left(1 + \frac{\theta k^2 \Delta}{\theta^2 k^4} + \sum_{\ell \geq 1} \frac{1 + \theta (2 \ell M)^2 \Delta}{\theta^2 (2 \ell M)^4} \right) \lesssim \frac{\omega^2}{k^4 \Delta},
\]
where the last step follows from \(k^2 \Delta \leq M^2 \Delta \to 0\). Further, using decomposition (51),
\[
\frac{\partial}{\partial \theta} (R_N(\omega) - R_N(0)) = \sum_{\ell \in \mathbb{I}_k} a_\ell^1(\omega) \beta_\ell(\omega) - \beta_\ell(0) + \sum_{\ell \in \mathbb{I}_k} (a_\ell^1(\omega) - a_\ell^1(0)) \beta_\ell(0) + \sum_{\ell \in \mathbb{I}_k} \alpha_\ell(\omega)(b_\ell(\omega) - b_\ell(0)) + \sum_{\ell \in \mathbb{I}_k} (\alpha_\ell(\omega) - \alpha_\ell(0)) b_\ell(0). \tag{52}
\]
Now, by (50), we have
\[
\beta_\ell(\omega) - \beta_\ell(0) = e^{-\theta \ell^2 (N-1) \Delta} \left((e^{-\theta \ell^2 \Delta} - 1)(\cos((N-1) \omega) - 1) + \cos((N-1) \omega) - \cos(N \omega) \right) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \ell^2 N \omega^2.
\]
In a similar way we can bound
\[
\beta_\ell(0) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \ell^2 \Delta, \quad \beta_\ell(\omega) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \left((\ell^2 \Delta) \lor \omega \right) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \ell^2 \Delta,
\]
\[
b_\ell(\omega) - b_\ell(0) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \ell^4 N \omega^2, \quad b_\ell(0) \lesssim e^{-\theta \ell^2 (N-1) \Delta} \ell^4 \Delta,
\]
where the second inequality uses \(\omega \leq k^2 \Delta \leq \ell^2 \Delta\) for \(\ell \in \mathbb{I}_k\). Also,
\[
a_\ell^1(\omega) - a_\ell^1(0) \lesssim \frac{1 - \cos(\omega)}{\cosh(\theta \ell^2 \Delta) - \cos(\omega)} \lesssim \frac{1 - \cos(\omega)}{(\cosh(\theta \ell^2 \Delta) - 1)} \lesssim \omega^2 \frac{1}{k^4 \Delta^2},
\]
and similarly, \(\alpha_\ell(\omega) - \alpha_\ell(0) \lesssim \frac{\omega^2}{k^4 \Delta^2}, a_\ell^2(\omega) \lesssim \frac{\omega^2}{k^4 \Delta^2}, a_\ell^1(\omega) \lesssim 1\) and \(\alpha_\ell(\omega) \lesssim 1\).
Using the bounds just developed in combination with \(e^{-\theta^2(N-1)\Delta} \lesssim \frac{1}{\sqrt{\pi}} e^{m} \), \(m \in \mathbb{N} \), shows that any of the five terms in (52) is of order \(\mathcal{O}(\frac{\omega^2}{\pi \Delta}) \) and hence, \(\frac{\partial}{\partial \theta} (R_N(\omega) - R_N(0)) \lesssim \frac{\omega^2}{\pi \Delta} \). Now, the proof of (46b) is finalized by

\[
\frac{\partial}{\partial \theta} R_N(0) = \sum_{\ell \in I_\theta} e^{-\theta^2(N-1)\Delta} \frac{2\theta \ell^2(N-1)\Delta(e^{-\theta^2\Delta} - 1) + 2\theta \ell^2 \Delta e^{-\theta^2\Delta} + e^{-\theta^2\Delta} - 1}{2\theta^3/2\ell^2} \\
\lesssim \Delta \sum_{\ell \in I_\theta} e^{-\theta^2(N-1)\Delta \ell^2} \lesssim \Delta k^2 e^{-\theta k^2}.
\]

\[\square\]

A.3. Bounds on Fourier series and Riemann summation

The Lemmas in this section provide bounds for Fourier series and Taylor expansions for Riemann sums. Similar results are stated in Lemma 7.2 of [3].

Lemma A.7. Let \((a_n)\) be a real sequence and \(\tau \in \{\sin, \cos\}\). Then,

\[
\left| \sum_{k=1}^{N} a_k \tau(ky) \right| \leq \frac{1 + 2K_N}{y \wedge (2\pi - y)} \sup_{n \leq N} |a_n|
\]

holds for any \(y \in (0, 2\pi)\) where \(K_N\) is the number of monotone sections of \((a_n)_{1 \leq n \leq N}\).

Proof. By Lagrange’s trigonometric identities,

\[
\sum_{k=1}^{N} \cos(ky) = \frac{\sin((N + 1/2)y) - \sin(y/2)}{2 \sin(y/2)}, \quad \sum_{k=1}^{N} \sin(ky) = \frac{\cos(y/2) - \cos((N + 1/2)y)}{2 \sin(y/2)},
\]

we have \(\left| \sum_{k=M}^{N} \tau(ky) \right| \leq \frac{1}{\sin(y/2)} \leq \frac{1}{y \wedge (2\pi - y)}\) uniformly in \(M \leq N\). Therefore, \(\left| \sum_{k=1}^{N} a_k \tau(ky) \right|\) can be decomposed by

\[
\left| a_1 \sum_{k=1}^{N} \tau(ky) + (a_2 - a_1) \sum_{k=2}^{N} \tau(ky) + (a_3 - a_2) \sum_{k=3}^{N} \tau(ky) + \cdots + (a_N - a_{N-1}) \tau(Ny) \right|
\]

\[
\leq |a_1| \left| \sum_{k=1}^{N} \tau(ky) \right| + |a_2 - a_1| \left| \sum_{k=2}^{N} \tau(ky) \right| + |a_3 - a_2| \left| \sum_{k=3}^{N} \tau(ky) \right| + \cdots + |a_N - a_{N-1}| \left| \tau(Ny) \right|
\]

\[
\leq \frac{1}{y \wedge (2\pi - y)} \left| a_1 \right| \left| \sum_{k=1}^{N-1} |a_{k+1} - a_k| \right| \leq \frac{1 + 2K_N}{y \wedge (2\pi - y)} \sup_{n \leq N} |a_n|,
\]

where the last inequality follows from the fact that if \((a_k)_{N_0 \leq k \leq N_1}\) is monotone for some \(N_0 \leq N_1 \leq N\), then \(\sum_{k=N_0}^{N_1} |a_{k+1} - a_k| = |a_{N_1} - a_{N_0}| \leq 2 \sup_{n \leq N} |a_n|\).

Lemma A.8. Let \(g \in C^1(\mathbb{R}_+)\) be such that \(g'\) is bounded and has a finite number \(K\) of monotone sections. Then, for \(y \in (0, 2\pi)\), as \(\varepsilon \to 0\),

\[
\sum_{k=1}^{\infty} g(k\varepsilon) \cos(ky) = \frac{g(0)}{2} + \mathcal{O}\left(\frac{\varepsilon \|g'\|_{\infty}}{(y \wedge (2\pi - y))^2}\right)
\]

\[
\sum_{k=1}^{\infty} g(k\varepsilon) \sin(ky) = \frac{g(0)}{2} \cot\left(\frac{y}{2}\right) + \mathcal{O}\left(\frac{\varepsilon \|g'\|_{\infty}}{(y \wedge (2\pi - y))^2}\right).
\]
Proof. We use the formula \(\sin(\alpha) - \sin(\beta) = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}, \alpha, \beta \in \mathbb{R}\), to calculate
\[
\frac{g(0)}{2} + \sum_{k=1}^{\infty} g(k\varepsilon) \cos(k\pi) = \frac{g(0)}{2} + \frac{1}{2} \sum_{k=1}^{\infty} g(k\varepsilon) \left(\sin \left((k + 1/2) \varepsilon \right) - \sin \left((k - 1/2) \varepsilon \right) \right)
\]
\[
= \frac{g(0)}{2} - g(\varepsilon) + \frac{1}{2} \sum_{k=1}^{\infty} \sin \left((k + 1/2) \varepsilon \right) \left(g(k\varepsilon) - g((k+1)\varepsilon) \right)
\]
\[
= -\frac{1}{2} \left[g'(\xi_k) + \frac{1}{2} \sum_{k=1}^{\infty} \sin \left((k + 1/2) y \right) g'(\xi_k) \right] \varepsilon \leq \frac{1 + 2K}{(y \wedge (2\pi - y))^2} \|g'\|_{\infty},
\]
where \(\xi_k \in [(k\varepsilon),(k+1)\varepsilon]\). Here, the last step follows from \(\sin((k + 1/2)\varepsilon) = \sin(k\varepsilon) \cos(y/2) + \cos(k\varepsilon) \sin(y/2)\) and then applying Lemma A.7. The second statement can be proved analogously, using \(\cos(\alpha) - \cos(\beta) = -2 \sin \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right), \alpha, \beta \in \mathbb{R}\).

Lemma A.9. Let \(g \in C^2(\mathbb{R}_+) \cap L^1(\mathbb{R}_+), g' \in L^\infty(\mathbb{R}_+)\) and \(g'' \in L^1(\mathbb{R}_+)\). Then,
\[
(i) \varepsilon \sum_{k \geq 1} g(k\varepsilon) = \int_0^{\infty} g(z) \, dz - \frac{g(0)}{2} \varepsilon + O(\varepsilon^2 \|g''\|_{L^1}),
\]
\[
(ii) \varepsilon \sum_{k \geq 1} g(k\varepsilon) \sin^2(k\pi) = \frac{1}{2} \int_0^{\infty} g(z) \, dz + O \left(\varepsilon^2 \left(\frac{\|g''\|_{L^1}}{(y \wedge (\pi - y))^2} \wedge \|g''\|_{L^1} \right) \right).
\]

Proof. For a detailed proof of (i) we refer to [3, Lemma 7.2]. The main idea is to regard each term \(\varepsilon g(k\varepsilon)\) as a midpoint integral approximation. Since \(\sin^2(y) = (1 - \cos(2y))/2\), statement (ii) is a direct consequence of (i) and the previous lemma.

Lemma A.10. Let \(g \in C^2(\mathbb{R}_+)\) and \(M \to \infty, M\varepsilon \to 0\). Then,
\[
\epsilon \sum_{k=1}^{M} g(k\varepsilon) = M \epsilon g(0) + \frac{(M^2 + M)\epsilon^2}{2} g'(0) + O((M\epsilon)^3).
\]

Proof. First of all, by the midpoint rule there exist \(\eta_k \in [(k-1/2)\varepsilon,(k+1/2)\varepsilon]\) such that
\[
\left| \epsilon \sum_{k=1}^{M} g(k\varepsilon) - \int_{\epsilon/2}^{(M+1/2)\epsilon} g(x) \, dx \right| = \left| \sum_{k=1}^{M} \int_{(k-1/2)\varepsilon}^{(k+1/2)\epsilon} (g(k\varepsilon) - g(x)) \, dx \right| \leq \epsilon^3 \sum_{k=1}^{M} |g''(\eta_k)| \lesssim M^3 \epsilon^3
\]
and secondly, a Taylor approximation shows that
\[
\int_{\epsilon/2}^{(M+1/2)\epsilon} g(x) \, dx = M \epsilon g(0) + \frac{(M^2 + M)\epsilon^2}{2} g'(0) + O((M\epsilon)^3).
\]

References

[1] Altmeyer, R. and Reiß, M. (2019). Nonparametric estimation for linear SPDEs from local measurements. arXiv preprint arXiv:1903.06984.
[2] Bibinger, M. and Trabs, M. (2019a). On central limit theorems for power variations of the solution to the stochastic heat equation. In Stochastic Models, Statistics and Their Applications. Springer Proceedings in Mathematics & Statistics, volume 294, pages 69–84.
[3] Bibinger, M. and Trabs, M. (2019b). Volatility estimation for stochastic PDEs using high-frequency observations. Stochastic Process. Appl. Forthcoming.
[4] Chong, C. (2019a). High-frequency analysis of parabolic stochastic PDEs. Ann. Statist. Forthcoming.
[5] Chong, C. (2019b). High-frequency analysis of parabolic stochastic PDEs with multiplicative noise: Part I. arXiv preprint arXiv:1908.04145.
[6] Cialenco, I. (2018). Statistical inference for spdes: an overview. *Statistical Inference for Stochastic Processes*, 21(2):309–329.

[7] Cialenco, I. and Huang, Y. (2019). A note on parameter estimation for discretely sampled SPDEs. *Stoch. Dyn.* Forthcoming.

[8] Cont, R. (2005). Modeling term structure dynamics: an infinite dimensional approach. *Int. J. Theor. Appl. Finance*, 8(3):357–380.

[9] Dacunha-Castelle, D. and Duflo, M. (1986). *Probability and statistics. Vol. II*. Springer-Verlag, Berlin Heidelberg New York.

[10] Devroye, L., Mehrabian, A., and Reddad, T. (2019). The total variation distance between high-dimensional Gaussians. *arXiv preprint arXiv:1810.08693v3*.

[11] Dostal, L. (2019). The effect of random wind forcing in the nonlinear Schrödinger equation. *Fluids*, 4(3):121.

[12] Hottovy, S. and Stechmann, S. N. (2015). A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. *J. Atmospheric Sci.*, 72(12):4721–4738.

[13] Huebner, M., Khasminskii, R., and Rozovskii, B. (1993). Two examples of parameter estimation for stochastic partial differential equations. In *Stochastic processes*, pages 149–160. Springer.

[14] Huebner, M. and Rozovskii, B. L. (1995). On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE’s. *Probab. Theory Related Fields*, 103(2):143–163.

[15] Ibragimov, I. and Rozanov, Y. (1978). *Gaussian random processes*. Springer-Verlag, Berlin Heidelberg New York.

[16] Ibragimov, I. A. and Has’minskii, R. Z. (1981). *Statistical estimation*, volume 16 of *Applications of Mathematics*. Springer-Verlag, New York Berlin. Asymptotic theory, Translated from the Russian by Samuel Kotz.

[17] Isserlis, L. (1918). On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. *Biometrika*, 12:134–139.

[18] Kaino, Y. and Uchida, M. (2019). Parametric estimation for a parabolic linear SPDE model based on sampled data. *arXiv preprint arXiv:1909.13557*.

[19] Koski, T. and Loges, W. (1985). Asymptotic statistical inference for a stochastic heat flow problem. *Statist. Probab. Lett.*, 3:185–189.

[20] Kriz, P. and Maslowski, B. (2019). Central limit theorems and minimum-contrast estimators for linear stochastic evolution equations. *Stochastics*, 0(0):1–32.

[21] Lototsky, S. V. (2009). Statistical inference for stochastic parabolic equations: a spectral approach. *Publ. Mat.*, 53(1):3–45.

[22] Markussen, B. (2013). Likelihood inference for a discretely observed stochastic partial differential equation. *Bernoulli*, 9(5):745 – 762.

[23] Mathai, A. M. and Provost, S. B. (1992). *Quadratic Forms in Random Variables*. Marcel Dekker, inc., New York.

[24] Neveu, J. (1968). *Processus aléatoires gaussiens*. Séminaire de mathématiques superieures. Les Presses de l’Université de Montréal.

[25] Piterbarg, L. I. and Ostrovskii, A. G. (1997). *Advection and Diffusion in Random Media: Implications for Sea Surface Temperature Anomalies*. Springer Science & Business Media.

[26] Prato, G. D. and Zabczyk, J. (2014). *Stochastic Equations in Infinite Dimensions*. Cambridge University Press, Cambridge.

[27] Santa Clara, P. and Sornette, D. (2000). The dynamics of the forward interest rate curve with stochastic string shocks. *Rev. Financial Stud.*, 14(1):149–185.

[28] Shevchenko, R., Slauoi, M., and Tudor, C. A. (2019). Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus. *arXiv preprint arXiv:1903.02369*.

[29] Torres, S., Tudor, C., Viens, F., et al. (2014). Quadratic variations for the fractional-colored stochastic heat equation. *Electron. J. Probab.*, 19.

[30] Tsybakov, A. B. (2010). *Introduction to Nonparametric Estimation*. Springer, New York.

[31] Tuckwell, H. C. (2013). Stochastic partial differential equations in neurobiology: Linear and nonlinear models for spiking neurons. In *Stochastic Biomathematical Models*, pages 149–173.
Springer.

[32] Whittle, P. (1953). The analysis of multiple stationary time series. *J. R. Stat. Soc. Ser. B*, 15:125–139.