Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Asymptomatic malaria infection at the China-Vietnam border: Knowledge and implications for the cross-border migrant population during the COVID-19 pandemic

Hong Tua,1, Jun Fengb,1,*, Chenghang Yua, Kangming Linc, Wang Peiyud, Xiang Shaomid, Luo Lingyund, Li Jiand

a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, PR China
b Shanghai Municipal Center for Disease Control and Prevention, Shanghai, PR China
c Institute of Parasitic Diseases, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Guangxi, PR China
d Ningming County Center for Disease Control and Prevention, Ningming, Guangxi, PR China

ARTICLE INFO

Keywords:
Malaria
Asymptomatic
The China-Vietnam border
Knowledge
Health education

ABSTRACT

Background: Eliminating malaria along the China-Vietnam border remains one of the greatest challenges in China, especially during the coronavirus disease 2019 (COVID-19) pandemic, which has disrupted the continuity of malaria control and elimination programs. Understanding the factors associated with asymptomatic malaria infection will inform control interventions aimed at elimination of the disease among migrants from Vietnam working in China, who constitute an at-risk population.

Methods: From March 2018 to September 2019, 108 migrants from Vietnam working in Ningming County, Guangxi, were enrolled in this study. Each person was interviewed using a structured questionnaire. Blood samples were collected and sent for PCR detection and sequencing. The obtained sequences were analyzed using the BLAST program and DNAMAN software.

Results: The proportion of participants with malaria knowledge was low, with 19.4% (21/108) reporting knowledge about transmission, 23.2% (25/108) reporting knowledge about clinical symptoms, 7.4% (8/108) reporting awareness of the risk of death and 14.8% (16/108) reporting awareness of prevention methods. No significant difference in the malaria knowledge rate was found among occupational groups, except in the migrant worker group, whose knowledge rate was higher than those in the other occupational groups ($\chi^2 = 32.452$, $p < 0.001$). Although most of the participants (80.6%, 87/108) owned mosquito nets, only approximately half of the participants (49.1%, 53/108) reported using bed nets. The parasitological analysis revealed that 5.6% (6/108) of all the participants were positive for malaria, including 5 participants with \textit{Plasmodium falciparum} and 1 participant with \textit{Plasmodium vivax} malaria. There were no statistically significant differences in the positivity rates among the different age, sex, family-size, nationality, occupational, and behavior groups. The positivity rates in individuals who did not use mosquito nets, did not use mosquito coils, and did not install mosquito nets were 4.8% (1/21), 6.8% (3/44), and 3.6% (2/55), respectively.

Conclusion: Health education focused on high-risk populations, such as migrant workers and forest goers, should be strengthened. Verbal communication and information transmission via the internet, radio, and mobile phone platforms may be required during the COVID-19 pandemic. Further risk assessments and proactive case detection should also be performed in Ningming County and other border counties in Guangxi to detect active and asymptomatic infections in a timely manner and prevent re-establishment of the disease in these communities.
1. Background

The malaria prevalence rates in border areas are often higher than those in other areas due to limited access to health services; a lack of treatment-seeking behavior among marginalized populations; difficulties in implementing prevention programs in hard-to-reach communities, often due to challenging terrain; and the constant movement of people across national boundaries [1]. China has eliminated malaria among its population, and no indigenous cases have been reported since 2017; accordingly, the World Health Organization (WHO) declared China malaria-free [2,3]. However, infections in border areas still pose a great challenge [4,5]. Guangxi Zhuang Autonomous Region (Guangxi) includes 8 counties along the Vietnam border and was once a high malaria-endemic area [6]. The malaria incidence rates in these 8 counties ranged from 125.58 to 605.77 per 10,000 individuals [7]. A continuous effort by the government and technical staff drastically reduced the incidence to 0.22 per 100,000 in 2010, and no local infection caused by Plasmodium falciparum has been reported since 1996. Ningming County is one of the 8 border counties and was once a malaria hyperendemic area, with 31,200 malaria cases per 10,000 individuals reported in 1953. Plasmodium vivax became the predominant species after the elimination of P. falciparum in 1988, and the elimination goal was achieved before 2000. However, imported malaria cases in Ningming County, similar to nationwide cases, have increased due to the frequent movement of migrants. Imported malaria caused by frequent migration remains the greatest challenge for border areas, as Anopheles mosquitoes are endemic in China. Blood tests performed between 2000 and 2010 revealed 7 positive cases among a total of 3439 migrant individuals, for a positivity rate of 0.20% [8]. The coronavirus disease 2019 (COVID-19) pandemic and the actions taken in response to the pandemic will have far-reaching effects on other diseases, poverty, and economic growth [9,10]. Considering the similarity of symptoms between malaria and COVID-19, clinicians may misdiagnose malaria as COVID-19 and vice versa. The lockdown and restriction of movement of health care providers due to the COVID-19 pandemic disturbed the continuity of malaria control and elimination programs, such as the distribution of seasonal malaria chemoprevention and insecticide-treated bed nets, which resulted in increases in the numbers of malaria cases and associated deaths [11,12]. Few publications have investigated and evaluated the malaria risk along the China-Vietnam border. Therefore, we administered a malaria knowledge survey and performed parasitological examinations among migrant workers to evaluate the risk and determine malaria-related needs among this population.

2. Methods

2.1. Study sites and sample collection

The study was performed between March 2018 and September 2019 in Ningming County, which is on the China-Vietnam border in Guangxi, using a cross-sectional design. Ningming County is home to 319,000 people and contains the longest border, at 212 km of southwestern Guangxi and Vietnam (Fig. 1). It has 1 national port and 3 county border exchange points; Vietnamese migrants frequently cross the border into China, with some migrants working in Ningming in the morning and returning to their home in Vietnam in the evening. Historically, several vector species were found in Ningming, including Anopheles sinensis, Anopheles minimus, and Anopheles jeyporiensis. Before the commencement of the study, small meetings were held with Vietnamese migrants to provide a clear explanation of the study objectives and their involvement. The selection of the participants was universal and based on the availability and willingness of the people. Verbal consent was obtained from the participants. Finally, 108 Vietnamese migrants were selected for inclusion.

Fig. 1. The study site in Guangxi Zhuang Autonomous Region, China. The study site (Ningming County) is labeled in blue. All ports (Pingxiang, Youyi-guan, Aidian, and Dongxing) for entry of the migrant population are labeled with black triangles. The map was created in ArcGIS 10.1.
analyses were performed using R software (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria). The chi-squared test was used to compare categorical variables between groups. A P value < 0.05 was considered statistically significant.

2.5. Ethical consideration

The study was reviewed and approved by the ethics committee of NIPD (No. 2019008).

3. Results

3.1. Demographic study

A total of 108 migrants who travelled to Guangxi from Vietnam between March 2018 and September 2019 were enrolled in this study. All participants were Vietnamese; 52.8% were male (n = 57), and 47.2% were female (n = 51). Most participants were aged 20–30 (36.1%) and 30–40 (40.7%) years. The average age of the participants was 32 years and ranged from 16 to 54 years. Most participants were migrant workers (50.9%), and farmers (37.0%). Eighty-five people crossed the border to China for less than 1 week, 50 people (46.3%) stayed for 1 month, 14 people (13.0%) stayed 1–6 months, and 5 people (4.6%) stayed longer than 6 months. Most of the migrants went to Guangxi (80.6%), and a small number worked in Guangdong (5.6%) (Table 1).

3.2. Malaria knowledge and prevention behaviors

A survey of malaria knowledge among all the participants found that the proportion of participants with knowledge about malaria transmission was 19.4% (n = 21), and that of participants with knowledge about malaria symptoms was 23.2% (n = 25). The proportion of participants with awareness of the risk of death from malaria was 7.4% (n = 8), and that of participants with awareness of prevention methods was 14.8% (n = 16). No significant difference was found among the occupational groups, except in the migrant worker group, whose knowledge rate was higher than those in the other occupational groups, including farmers and plant workers (χ² = 32.452, p < 0.001) (Table 2). Regarding prevention and control methods, 80.6% (n = 87) of the participants had mosquito nets in their homes, and 58.3% (n = 63) had screen doors and windows installed. A total of 73.2% (n = 79) of the participants reported 2 people sleeping under the net at night, and 7.4% (n = 8) reported 1 person. Approximately half of the respondents (49.1%, n = 53) used bed nets. A small proportion (7.4%, n = 8) of the participants reported sleeping outside in summer.

3.3. Malaria parasitological analysis

Of the 108 participants, 5.6% (n = 6) tested positive for malaria, including 5 patients with *P. falciparum* and 1 patient with *P. vivax* malaria. The positivity rate was 7.0% in males (P > 0.05) and 3.9% in females. There were no statistically significant differences in the positivity rates among the age, sex, family-size, nationality or occupational groups (Table 1). No statistically significant differences in positivity rates were observed for the number of outbound visits, time of overseas stay, location of entry or exit or level of malaria knowledge (P > 0.05). Malaria knowledge about transmission, symptoms, and prevention measures was low among the positive participants (9.52%, 8.00%, and 12.50%, respectively). The positivity rates among individuals who did not use mosquito nets, did not have mosquito nets installed, and did not use mosquito coils at home were 4.8% (1/21), 6.8% (3/44), and 3.6% (2/55), respectively. The positivity rate among individuals who slept outside was 0.0%, but the differences in the positivity rates between the different sleeping behaviors were not statistically significant (P > 0.05) (Table 3).

4. Discussion

The transmission of infectious diseases, such as malaria and COVID-19, across borders poses a major obstacle to achieving and maintaining the elimination of communicable diseases [12,13]. Our study detected 6 asymptomatic infections, accounting for 5.6% of the migrant population from Vietnam, in this study. Unlike the China-Myanmar border, which poses a substantial challenge for malaria elimination in Yunnan Province due to the high prevalence of *P. vivax* and *P. falciparum* in northern Myanmar [14,15], the China-Vietnam border seems to be “forgotten” in terms of malaria prevention because of the low incidence of malaria in northern Vietnam. The incidence rates in two border counties on the China-Myanmar border, Jingxi and Longzhou counties, decreased to 4.0 and 4.27 per 100,000 in the late 20th century, respectively, and no indigenous cases occurred during the early 21st century [16,17]. Hai Phong, located in northern Vietnam, had an average positive predictive value of 0.10% in 2010–2014 [18]. This value was similar in the Guangxi border area and the Yunnan-Vietnam border area. For example, the annual malaria positivity rate was 358.62 per 1000 in Hekou County in Yunnan Province, which is recognized as a malaria hyperendemic area, on the Yunnan-Vietnam border but decreased to 0.18 per 1000 in 2008. In 2015, Hekou became the first county to achieve malaria elimination along its border with Vietnam [19].

Despite achieving the goal of malaria elimination in the border counties of Guangxi [7], the frequently mobile population poses some challenges. First, how can authorities detect asymptomatic infections in a timely manner? Detection of asymptomatic infections is crucial for malaria control interventions on both sides of the border. In Vietnam, the high-risk migrant population has been proposed to be forest goers, who may live in forest border regions, have little knowledge about malaria and have limited access to preventive and therapeutic services [20,21]. As malaria transmission has declined in Vietnam, the high prevalence rates of asymptomatic and submicroscopic infections have become the main challenges [22–25]. Asymptomatic infected individuals generally do not seek treatment and have a low parasite density that is undetectable on microscopy examination. Therefore, parasites persist in these individuals from one season to the next, maintaining local transmission [26]. Asymptomatic infections have been reported in central and southern Vietnam, but our study found that residents in northern Vietnam are also at risk for asymptomatic infections. Second, the susceptibility of *P. falciparum* to artemisinin-based combination therapy (ACT) and *P. vivax* to chloroquine has declined in
Table 2
Participant awareness of factors contributing to malaria transmission, hazards, control, prevention and symptoms.

General	Participants	Awareness of malaria transmission	Awareness of malaria hazards	Awareness of malaria control and prevention measures	Awareness of malaria symptoms				
	N	%	N	%	N	%	N	%	
Sex									
Male	57	13	22.81	5	8.77	11	19.3	15	26.32
Female	51	8	15.69	3	5.88	5	9.8	10	19.61
Age									
<20	8	0	0.00	0	0.00	0	0.00	0	0.00
20-30	39	11	28.21	2	5.13	8	20.51	13	33.33
30-40	44	7	15.91	3	6.82	6	16.64	8	18.18
40-	17	3	17.65	3	17.65	2	11.76	4	23.53
Family size									
0-4	68	12	17.65	4	5.88	8	11.76	14	20.59
≥4	39	9	22.50	4	10.00	8	20.00	11	27.50
Nationality									
Jing	33	8	18.18	4	9.09	5	11.36	11	25.00
Han	35	6	16.67	3	8.33	4	11.11	6	16.67
Other	30	7	25.00	1	3.57	7	25.00	8	28.57
Occupation									
Farmer	40	3	7.50	2	5.00	1	2.50	2	5.00
Worker	55	17	30.91	5	9.09	15	27.27	22	40.00
Other	13	1	7.69	1	7.69	0	0.00	1	7.69

Table 3
Differences in positive infection rates among groups with different malaria-related behaviors, attitudes, and practices.

Behaviors, attitudes, and practices	Participants	Positive for infection	χ²	P		
Number of customs visits per year in the last 3 years?						
1	85	78.70	6	7.06	1.719	0.423
≥2	23	21.30	0	0.00		
Length of stay in China?						
One week	26	24.07	1	3.85		
One month	50	46.30	4	8.00	0.377	0.828
A month to half one year	14	12.96	1	7.14		
Half one year to one year	5	4.63	0	0.00		
Destination of entry and exit?						
Guangxi	87	80.56	4	4.60	1.599	0.450
Guangzhou	6	5.56	1	16.67		
Vietnam	15	13.89	1	6.67		

Knowledge about malaria
How is malaria transmitted?
Correct | 21 | 19.44 | 2 | 9.52 | 0.782 | 0.376 |
Incorrect or did not know | 87 | 80.56 | 4 | 4.60 | | |

What are the main symptoms of malaria?
Correct | 25 | 23.15 | 2 | 8.00 | 0.370 | 0.540 |
Incorrect or did not know | 83 | 76.85 | 4 | 4.82 | | |

Is malaria a direct threat to life if untreated?
Correct | 8 | 7.41 | 1 | 12.50 | 0.794 | 0.373 |
Incorrect or did not know | 100 | 92.59 | 5 | 5.00 | | |

How can malaria be prevented?
Correct | 16 | 14.81 | 2 | 12.50 | 1.726 | 0.189 |
Incorrect or did not know | 92 | 85.19 | 4 | 4.35 | | |

Behavior to prevent malaria
Do you have mosquito nets at home?
No | 21 | 19.44 | 1 | 4.76 | 0.031 | 0.860 |
Yes | 87 | 80.56 | 5 | 5.75 | | |

Have you installed screens on doors and windows?
No | 44 | 40.74 | 3 | 6.82 | 0.207 | 0.649 |
Yes | 63 | 58.26 | 3 | 4.76 | | |

How many people sleep under mosquito nets?
0 | 21 | 19.44 | 2 | 9.52 | 0.136 | 0.712 |
1 | 8 | 7.41 | 0 | 6.90 | | |
2 | 7 | 7.41 | 0 | 6.90 | | |

Have you used mosquito coils?
No | 55 | 50.93 | 2 | 3.64 | 0.787 | 0.375 |
Yes | 53 | 49.07 | 4 | 7.55 | | |

Do you sleep outside in the summer?
No | 98 | 90.74 | 6 | 6.12 | 0.519 | 0.471 |
Yes | 8 | 9.26 | 0 | 0.00 | | |

In summary, this study indicated poor malaria knowledge among the migrant population on the China-Vietnam border and the presence of asymptomatic infections, which may increase the risk of malaria re-emergence in the post-elimination stage in Guangxi. The findings of this study indicate that health education focusing on high-risk populations, such as migrant workers and forest goers, should be strengthened. In areas such as Guangxi, where literacy and language may be a barrier, health education based on verbal communication via the internet, radio, and mobile phone platforms may be required during the COVID-19 pandemic. Further proactive case detection should be performed in Ningming County and other border counties in Guangxi to detect active and asymptomatic infections that may promote the re-establishment of malaria.
Ethics approval and consent to participate

This study was reviewed and approved by the ethical committee of the National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (NIPD, China CDC, No. 2019008).

Funding

The work was supported by Key Techniques in Collaborative Prevention and Control of Major Infectious Diseases in the Belt and Road Initiative (Grant No. 2018ZX10101002-004). The funder was not involved in the design, data collection, analysis or the writing of the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

Not applicable.

CRedit authorship contribution statement

Hong Tu: Writing, Methodology, Software. Jun Feng: Conceptualization, Writing – review & editing. Kangming Lin: Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript. Wang Peiyi: Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript. Xiang Shaomi: Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript. Liu Lingyun: Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript. Li Jian: Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgments

We want to thank all the staff at the Ningming County CDC for their participation in sample collection and questionnaire administration.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tmaid.2022.102307.

References

[1] Wangdi K, Gatton ML, Kelly GC, Clements AC. Cross-border malaria: a major obstacle for malaria elimination. Adv Parasitol 2015;89:97–107.

[2] Feng J, Zhang L, Huang F, Yin JH, Tu H, Xia ZG, Zhou SS, Xiao N, Zhou XN. Ready for malaria elimination: zero indigenous case reported in the People’s Republic of China. Malar J 2018;17:315.

[3] Feng J, Zhang L, Xia ZG, Zhong M, Zhou SS, Xiao N. Malaria-free certification in Ningming County around China-Myanmar border. Malar J 2014;13:497.

[4] Feng J, Li J, Zhang L, Zhou SS, Xie Y, Chen L, Xiao N, Zhou XN, Frutos R, et al. Monitoring of malaria vectors at the China-Myanmar border while approaching malaria elimination. Parasites Vectors 2018;11:511.

[5] Lin K, Wei H, Jiang W, Li J, Zhang W, Wei S, Yang Y, Huang Y, Peng X, Tu H, Feng J. Malaria in the Guangxi Zhuang autonomous region in China: a twelve-year surveillance data study. Am J Trop Med Hyg 2017;97:1163–9.

[6] Li JHLL, Zhen YX. [Analysis on results of malaria surveillance in border areas of Guangxi Zhuang Autonomous Region during 2001-2010]. Int J Med Parasitol 2012;39:218–22 [in Chinese].

[7] Huang NY JR, Li J, Qiu GH, Wei HY, Ou DJ, Zou CY, et al. [Evaluation on control effective of malaria in Ningming county Guangxi province during 1952 to 2010]. J Med Pest Control 2011;27:405–7 [in Chinese].

[8] Walker PG, Whitaker C, Watson OJ. The impact of COVID-19 and strategies for Mitigation and suppression in low- and middle-income countries. Science 2020;369:413–22.

[9] Xiang Shaomi, Kangming Lin: Investigation, Field survey and Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript.

[10] Lin K, Wei H, Jiang W, Li J, Zhang W, Wei S, Yang Y, Huang Y, Peng X, Tu H, Feng J. Malaria in the Guangxi Zhuang autonomous region in China: a twelve-year surveillance data study. Am J Trop Med Hyg 2017;97:1163–9.

[11] Li JHLL, Zhen YX. [Analysis on results of malaria surveillance in border areas of Guangxi Zhuang Autonomous Region during 2001-2010]. Int J Med Parasitol 2012;39:218–22 [in Chinese].

[12] Huang NY JR, Li J, Qiu GH, Wei HY, Ou DJ, Zou CY, et al. [Evaluation on control effective of malaria in Ningming county Guangxi province during 1952 to 2010]. J Med Pest Control 2011;27:405–7 [in Chinese].

[13] Walker PG, Whitaker C, Watson OJ. The impact of COVID-19 and strategies for Mitigation and suppression in low- and middle-income countries. Science 2020;369:413–22.

[14] Xiang Shaomi, Kangming Lin: Investigation, Field survey and Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript.

[15] Huang NY JR, Li J, Qiu GH, Wei HY, Ou DJ, Zou CY, et al. [Evaluation on control effective of malaria in Ningming county Guangxi province during 1952 to 2010]. J Med Pest Control 2011;27:405–7 [in Chinese].

[16] Walker PG, Whitaker C, Watson OJ. The impact of COVID-19 and strategies for Mitigation and suppression in low- and middle-income countries. Science 2020;369:413–22.

[17] Huang NY JR, Li J, Qiu GH, Wei HY, Ou DJ, Zou CY, et al. [Evaluation on control effective of malaria in Ningming county Guangxi province during 1952 to 2010]. J Med Pest Control 2011;27:405–7 [in Chinese].

[18] Walker PG, Whitaker C, Watson OJ. The impact of COVID-19 and strategies for Mitigation and suppression in low- and middle-income countries. Science 2020;369:413–22.

[19] Xiang Shaomi, Kangming Lin: Investigation, Field survey and Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript.

[20] Lin K, Wei H, Jiang W, Li J, Zhang W, Wei S, Yang Y, Huang Y, Peng X, Tu H, Feng J. Malaria in the Guangxi Zhuang autonomous region in China: a twelve-year surveillance data study. Am J Trop Med Hyg 2017;97:1163–9.

[21] Li JHLL, Zhen YX. [Analysis on results of malaria surveillance in border areas of Guangxi Zhuang Autonomous Region during 2001-2010]. Int J Med Parasitol 2012;39:218–22 [in Chinese].

[22] Huang NY JR, Li J, Qiu GH, Wei HY, Ou DJ, Zou CY, et al. [Evaluation on control effective of malaria in Ningming county Guangxi province during 1952 to 2010]. J Med Pest Control 2011;27:405–7 [in Chinese].

[23] Walker PG, Whitaker C, Watson OJ. The impact of COVID-19 and strategies for Mitigation and suppression in low- and middle-income countries. Science 2020;369:413–22.

[24] Xiang Shaomi, Kangming Lin: Investigation, Field survey and Investigation, Field survey and Investigation, All authors have read and agreed to the published version of the manuscript.

[25] Lin K, Wei H, Jiang W, Li J, Zhang W, Wei S, Yang Y, Huang Y, Peng X, Tu H, Feng J. Malaria in the Guangxi Zhuang autonomous region in China: a twelve-year surveillance data study. Am J Trop Med Hyg 2017;97:1163–9.

[26] Li JHLL, Zhen YX. [Analysis on results of malaria surveillance in border areas of Guangxi Zhuang Autonomous Region during 2001-2010]. Int J Med Parasitol 2012;39:218–22 [in Chinese].

[27] Huang NY JR, Li J, Qiu GH, Wei HY, Ou DJ, Zou CY, et al. [Evaluation on control effective of malaria in Ningming county Guangxi province during 1952 to 2010]. J Med Pest Control 2011;27:405–7 [in Chinese].

[28] Walker PG, Whitaker C, Watson OJ. The impact of COVID-19 and strategies for Mitigation and suppression in low- and middle-income countries. Science 2020;369:413–22.
China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. J Infect Dis 2015;212:1629–35.

[32] Wang J, Huang Y, Zhao Y, Ye R, Zhang D, Pan W. Introduction of F446I mutation in the K13 propeller gene leads to increased ring survival rates in Plasmodium falciparum isolates. Malar J 2018;17:248.

[33] Feng J, Kong X, Xu D, Yan H, Zhou H, Tu H, Lin K. Investigation and evaluation of genetic diversity of Plasmodium falciparum Kelch 13 polymorphisms imported from southeast Asia and Africa in southern China. Front Public Health 2019;7:95.

[34] Su XZ, Wu J. Zoonotic transmission and host switches of malaria parasites. Zoonoses 2021;1(1).

[35] Dong YWX, Zhou YB, Li CL, Wu XH, Wang ZY, Li FC, et al. [Study on malaria knowledge in border population, Yunnan Province]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2007;19:59–63 [in Chinese].

[36] Moore SJ, Min X, Hill N, Jones C, Zaixing Z, Cameron MM. Border malaria in China: knowledge and use of personal protection by minority populations and implications for malaria control: a questionnaire-based survey. BMC Publ Health 2008;8:344.