Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick
Facebook AI Research (FAIR)
Background

- Unsupervised representation learning
 - highly **successful** in natural language processing
 - generally **lag behind** in computer vision

- Approaches related to the **contrastive loss** show promising results.
 - Build dynamic **dictionaries**
 - Trains **encoders** to perform dictionary look-up
 - An encoded “**query**” (images or patches) should be **similar** to its matching key and **dissimilar** to others
Method

- Hypothesize: the dictionary should be **large** and **consistent**
- This paper presents **Momentum Contrast (MoCo)** as a way of building **large and consistent dictionaries** for unsupervised learning with a contrastive loss
Method

(K+1)-way softmax-based classifier

$$\mathcal{L}_q = - \log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=1}^{K} \exp(q \cdot k_i / \tau)}$$

momentum update with the query encoder (m=0.99)

$$\theta_k \leftarrow m \theta_k + (1 - m) \theta_q$$

The dictionary is built as a queue, with the current mini-batch enqueued and the oldest mini-batch dequeued.
Relations to previous mechanisms

Encoder q and k are different.

The representation of a sample in memory bank is updated when it was last seen.

compare with (a) → consistent
compare with (b) → large
Experiment

- **Answer two-fold questions**
 - comparison of three mechanisms
 - performance of downstream tasks

- **Dataset**
 - **ImageNet-1M (IN-1M)**: ~1.28 million images in 1000 classes
 - **Instagram-1B (IG-1B)**: ~1 billion (940M) public images from ~1500 hashtags (long-tailed, unbalanced distribution)
Compare three mechanisms

- linear classification on frozen features
Compare with previous methods

method	architecture	#params (M)	accuracy (%)
Exemplar [17]	R50w3×	211	46.0 [38]
RelativePosition [13]	R50w2×	94	51.4 [38]
Jigsaw [45]	R50w2×	94	44.6 [38]
Rotation [19]	Rv50w4×	86	55.4 [38]
Colorization [64]	R101*	28	39.6 [14]
DeepCluster [3]	VGG [53]	15	48.4 [4]
BigBiGAN [16]	R50	24	56.6
	Rv50w4×	86	61.3

Key observations:
- higher accuracy with less #parameters
- efficiency, less #parameters with higher accuracy
performance of downstream tasks

pre-train	RelPos, by [14]	Multi-task [14]	Jigsaw, by [26]	LocalAgg [66]	MoCo	AP	MoCo	Multi-task [14]	MoCo
super. IN-1M	74.2	74.2	70.5	74.6	74.4	42.4	44.3	42.7	
unsup. IN-1M	66.8 (-7.4)	70.5 (-3.7)	61.4 (-9.1)	69.1 (-5.5)	74.9 (+0.5)	46.6 (+4.2)	43.9 (-0.4)	50.1 (+7.4)	
unsup. IN-14M	-	-	69.2 (-1.3)	-	75.2 (+0.8)	46.9 (+4.5)	-	50.2 (+7.5)	
unsup. YFCC-100M	-	-	66.6 (-3.9)	-	74.7 (+0.3)	45.9 (+3.5)	-	49.0 (+6.3)	
unsup. IG-1B	-	-	-	-	75.6 (+1.2)	47.6 (+5.2)	-	51.7 (+9.0)	

Table 4. Comparison with previous methods on object detection fine-tuned on PASCAL VOC trainval2007. Evaluation is on
The performance of downstream tasks is shown in the table below:

pre-train	COCO keypoint detection	LVIS v0.5 instance segmentation						
	AP_{kp}	AP_{kp}₅₀	AP_{kp}₇₅	AP_{mk}	AP_{mk}₅₀	AP_{mk}₇₅		
random init.	65.9	86.5	71.7	22.5	34.8	23.8		
super. IN-1M	65.8	86.9	71.9	24.4	37.8	25.8		
MoCo IN-1M	66.8 (+1.0)	87.4 (+0.5)	72.5 (+0.6)	24.1 (−0.3)	37.4 (−0.4)	25.5 (−0.3)		
MoCo IG-1B	66.9 (+1.1)	87.8 (+0.9)	73.0 (+1.1)	24.9 (+0.5)	38.2 (+0.4)	26.4 (+0.6)		
	COCO dense pose estimation	Cityscapes instance seg.	Semantic seg. (mIoU)					
	AP_{dp}	AP_{dp}₅₀	AP_{dp}₇₅	AP_{mk}	AP_{mk}₅₀	Ap_{mk}₇₅	Cityscapes	VOC
random init.	39.4	78.5	35.1	25.4	51.1	65.3	39.5	
super. IN-1M	48.3	85.6	50.6	32.9	59.6	74.6	74.4	
MoCo IN-1M	50.1 (+1.8)	86.8 (+1.2)	53.9 (+3.3)	32.3 (−0.6)	59.3 (−0.3)	75.3 (+0.7)	72.5 (−1.9)	
MoCo IG-1B	50.6 (+2.3)	87.0 (+1.4)	54.3 (+3.7)	32.9 (0.0)	60.3 (+0.7)	75.5 (+0.9)	73.6 (−0.8)	
Further reading

- A Simple Framework for Contrastive Learning of Visual Representations
 - Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton (Google Brain)

- Learning deep representations by mutual information estimation and maximization
 - R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler, and Yoshua Bengio (ICLR 2019)

- Unsupervised feature learning via non-parametric instance discrimination
 - Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin (CVPR 2018 spotlight)