Betaine and Choline Intakes are Related to Total Plasma Homocysteine: Health Survey of São Paulo, Brazil

Raíssa do Vale Cardoso Lopes¹, Michelle Alessandra de Castro², Valéria Troncoso Baltar³, Dirce Maria Lobo Marchioni², Regina Mara Fisberg²

¹Universidade de São Paulo - Faculdade de Saúde Pública - Departamento de Nutrição - Programa de Pós-graduação (Mestrado) - São Paulo, SP - Brazil
²Universidade de São Paulo - Faculdade de Saúde Pública - Departamento de Nutrição - São Paulo, SP - Brazil
³Universidade Federal Fluminense - Instituto de Saúde Coletiva - Departamento de Epidemiologia e Bioestatística - Niterói, RJ - Brazil

Abstract

Background: High concentrations of plasma homocysteine (Hcy) have been associated with increased risk of cardiovascular diseases. Hcy can be decreased by remethylation to methionine, which uses folate or betaine as a donor of the methyl group.

Objectives: To evaluate the intake of betaine and choline and its relation to homocysteine in residents of the city of São Paulo.

Methods: Data from 584 individual, of both sexes, from the population-based study ISA-SP 2008. Geometric averages of Hcy were analyzed according to choline and betaine intake tertiles and trend test was applied.

Results: The study analyzed 584 individuals: 222 (38.0%) men and 362 (62.0%) women, mean age 55.0 ± 19.0 years. The prevalence of hyperhomocysteinemia was higher among men (28.0%), the elderly (21.0%) and those with lower household income (21.0%). Approximately 31.0% of individual with hyperhomocysteinemia presented folate deficiency (<7.5 nmol/L) and 26.0% presented vitamin B12 deficiency (<200 pmol/L). There was a decrease in the geometric means of homocysteine according to an increase in betaine tertiles in both sexes, adults, normal and in all categories of education. Choline was related to Hcy in both sexes, higher household income individuals, non-smokers and alcohol consumers.

Conclusions: This study suggests the importance of betaine intake due to its inverse relationship with the concentration of Hcy in adults and elderly in the city of São Paulo. Choline played a protective role in specific subgroups of the population.

Keywords: Betaine; Choline; Homocysteine; Diet; Cardiovascular diseases

Introduction

High plasma homocysteine concentrations have been associated with increased risk for developing cardiovascular diseases, especially atherosclerosis and coronary ischemia events¹⁻⁴.

A biologically plausible mechanism for the atherothrombotic effect of homocysteine refers to its autoxidation with subsequent generation of hydrogen peroxide, damaging the endothelial cells and causing the proliferation of smooth muscle cells of vessels⁵⁻⁶. High concentrations of homocysteine can still activate inflammatory responses involved in the etiology of atherosclerosis⁶.

Reduction in homocysteine concentrations may occur through remethylation to methionine, using folate or betaine as donors of the methyl group. Betaine obtained directly from the diet or from the oxidation of its precursor, choline, can remethylate homocysteine via the enzyme betaine-homocysteine methyltransferase (BHMT). The activity of BHMT becomes crucial when folate availability is reduced due to low intake or low use of the folate pool by organism⁷. Besides the folate, deficiencies of vitamins B6 and B12 may also contribute...
to the elevation of plasma homocysteine⁸, since they are interrelated compounds in the homocysteine metabolic cycle. Regardless of folate and vitamins B6 and B12, higher dietary intakes of choline and betaine were associated with lower concentrations of homocysteine⁹.

The main dietary sources of choline are animal products such as red meat, eggs and poultry; while betaine is obtained mainly from grains¹⁰.

Considering the importance of betaine and choline in homocysteine metabolism and the lack of studies dedicated to investigating its use in humans, this study aims to assess the intake of these nutrients and to investigate its relationship with plasma homocysteine in adults and elderly in São Paulo.

Methods

The data used in this study came from the cross-sectional population-based “ISA - Capital 2008”, with a probabilistic sample of residents from the urban area of the city of São Paulo, Brazil¹¹. Adults (20-59 years) and elderly (≥60 years) of both sexes with full food consumption data were selected for this study (n=584).

The Research Ethics Committee from Faculdade de Saúde Pública da Universidade de São Paulo approved the study under no. 2001 and all participants signed an Informed Consent Form.

Data collection for the study ISA-Capital was conducted from 2008 to 2011. Demographic, socioeconomic and lifestyle variables (dietary intake, physical activity, smoking and intake of alcohol) were obtained at home through questionnaires given by trained interviewers.

In the next stage, blood samples were collected, anthropometric measurements were taken (weight, height and waist circumference) and the blood pressure of the same individuals assessed in the first stage of the study was checked. For this, there was another home visit by a trained nurse, following standardized procedures developed specifically for the study. The second dietary measure was collected one week before the home visit, by telephone interview and in order to investigate the association of dietary variables with anthropometric and biochemical variables.

Diet analysis

We obtained the first measure of food consumption by a 24-hour food recall applied by the Multiple Pass Method developed by the US Department of Agriculture, in which data collection is structured around five steps¹². This method helps the individuals record any food and drink consumed the day before the interview and report them in detail, reducing errors in dietetic measures¹³.

In the second measure of dietary intake, the 24-hour food recall was applied by telephone by Nutrition students, according to the procedures of the Automated Multiple Pass Method (AMPM), also divided into five stages, including direct typing in the program Nutrition Data System for Research. Students were trained to use the program and used an explanatory manual to assist them in collecting data.

The study employed the statistical modeling technique Multiple Source Method (MSM), an online platform to estimate the usual intake of nutrients based on consumption data from two 24-hour recalls. MSM provides estimates of usual intake through the combination of likelihood and amount of consumption¹⁴.

Biomarkers

Blood collection was performed at home by a trained nursing professional after the participant’s 12-hour fasting period. About 10 ml of blood was collected by venipuncture in two dry tubes centrifuged at 1448 rpm for 15 min at room temperature. After centrifugation, plasma samples were stored at -80 °C.

For homocysteine measurement, the high-performance chromatography method (HPLC) was used. Serum vitamin B6 analysis was performed by HPLC¹⁵ while serum folate and vitamin B6 levels were measured by the electrochemiluminescence method¹⁶-¹⁸.

For the classification of individuals with hyperhomocysteinemia, the following cutoff points were adopted: Hcyp ≥12 mmol/l, for individuals aged 15-65 years, and Hcyp ≥16 mmol/l, for those aged >65 years.

Statistical analysis

For each individual, the average intake of choline and betaine was calculated and measured by both 24-hour recalls. The intake of these nutrients has been described as median due to the lack of normal distribution of choline and betaine revealed by the Skewness-Kurtosis test.
The geometric averages of plasma homocysteine were analyzed according to tertiles of choline and betaine intake and nonparametric trend test was conducted. Stata version 12.0 was employed, considering a level of significance of 5%.

The relative contribution (RC) of food to betaine and choline was calculated according to Block20, in which:

\[RC = \frac{\text{Total Choline or Betaine from the diet } i}{\text{Total Choline or Betaine from all foods}} \times 100 \]

This study describes only the foods that contributed 1% or more betaine and choline in the diet of individuals in the study.

Results

The study analyzed 584 individuals: 222 (38.0%) men and 362 (62.0%) women, of which 285 (49.0%) are elderly. The mean age of the study population was 55.0±19.0 years; the average age of the non-elderly group was 39.0±12.0 years, while the average age of the elderly was 71.0±7.0 years.

Table 1 shows the prevalence of hyperhomocysteinemia according to demographic, anthropometric and lifestyle variables. The prevalence of hyperhomocysteinemia was statistically higher in males (28.0%) compared to women (10.0%) (p<0.001). In addition, hyperhomocysteinemia was more prevalent in the elderly (21.0%) and in individuals with household income equal or below the minimum wage (21.0%).

People with hyperhomocysteinemia showed significant differences in the consumption of energy and nutrients compared to individuals without hyperhomocysteinemia, except for carbohydrates, dietary folate equivalent and synthetic folate (Table 2). For biochemical variables, median serum folate, vitamin B6 and vitamin B12 were shown statistically lower in individuals with hyperhomocysteinemia. Furthermore, about 31.0% of individuals hyperhomocysteinemia presented folate deficiency (<7.5 nmol/L) and 26.0% had a vitamin B12 deficiency (<200 pmol/L).

Table 1

Variables	Plasma homocysteine					
	Normala	Higha				
	nc	%	nc	%		
Sex	Male	159	71.6	63	28.4	<0.001
	Female	325	89.8	37	10.2	
Age group	Non-elderly	259	86.6	40	13.4	
	Elderly	225	78.9	60	21.1	
Nutritional status	Low weight	44	84.6	8	15.4	
	Eutrophy	191	83.0	39	17.0	
	Overweight	106	86.9	16	13.1	
	Obesity	126	81.3	29	18.7	
Education	≤8 years	297	82.0	65	18.0	
	>9 years	184	84.0	35	16.0	
Income	≤1 minimum wage	196	79.0	52	21.0	
	>1 minimum wage	288	85.7	48	14.3	
Smoking	Former smoker	116	78.9	31	21.1	
	Smoker	86	81.1	20	18.9	
	Non smoker	282	85.2	49	14.8	
Alcoholism	Yes	212	81.5	48	18.5	
	No	272	84.0	52	16.0	

aAverage Hcyp: 9.4 µmol/l (n=484)

bAverage Hcyp: 20.4 µmol/l (n=100)

cIndividuals with incomplete data have been excluded
Table 3 shows the geometric averages of plasma homocysteine according to tertiles of betaine intake for demographic, socioeconomic and lifestyle variables. There was a decrease in the geometric averages of plasma homocysteine according to an increase in consumption tertiles of betaine for all variable categories considered, except for the elderly, non-normal individuals, non-smoking individuals, individuals with household income above one minimum wage and non-alcoholics. As for choline, the relationship with plasma homocysteine levels was observed in both sexes, individuals with household income above one minimum wage, non-smokers and alcohol consumers (Table 4).

Table 5 shows the foods that mostly contribute to the intake of betaine and choline, and average consumption in grams of food and nutrients. About 69.0% of the total dietary betaine was provided by the intake of 10 foods, including white bread (21.0%), cereals and pasta (15.0%) and biscuits (13.0%). As for choline, 60.0% of this nutrient was provided by 10 foods. Of these, beef (20.0%), poultry (11.0%) and eggs (6.0%) had the largest contribution percentages.
Table 3
Geometric averages of plasma homocysteine of the population studied according to tertiles of betaine intake

Variables	betaine (mg)	n	T1	T2	T3	p-value*
Sex						
Male		222	12.1	10.6	9.3	0.001
Female		362	8.3	8.1	7.2	0.019
Age group						
Non-elderly		299	9.0	8.8	7.8	0.014
Elderly		285	12.4	11.1	10.5	0.121
Nutritional status						
Low weight		52	9.4	9.5	9.1	0.328
Eutrophy		230	10.0	9.2	8.1	0.002
Overweight		122	8.9	8.7	7.8	0.264
Obesity		155	9.5	9.5	8.2	0.131
Education						
≤8 years		362	10.1	8.9	8.2	0.028
≥9 years		219	9.2	9.4	8.2	0.016
Income						
≤1 minimum wage		248	9.7	9.1	7.7	0.008
>1 minimum wage		336	9.6	9.3	8.4	0.057
Smoking						
Former smoker		147	11.1	9.3	8.1	0.024
Smoker		106	10.4	8.4	8.9	0.043
Non smoker		331	8.8	9.4	7.9	0.056
Alcoholism						
Yes		260	10.8	9.2	8.6	0.001
No		324	8.8	9.3	7.7	0.132

*p-non-parametric trend test

Table 4
Geometric averages of plasma homocysteine of the population studied according to tertiles of choline intake

Variables	choline (mg)	n	T1	T2	T3	p-value*
Sex						
Male		222	12.7	10.5	9.6	0.005
Female		362	8.7	7.7	6.9	<0.001
Age group						
Non-elderly		299	8.9	8.5	8.1	0.164
Elderly		285	12.2	11.2	10.3	0.708
Nutritional status						
Low weight		52	9.4	9.1	9.5	0.908
Eutrophy		230	9.5	9.1	8.1	0.072
Overweight		122	9.0	7.9	8.5	0.212
Obesity		155	10.3	8.3	8.5	0.309
Education						
≤8 years		362	9.7	9.2	8.5	0.085
≥9 years		219	9.8	8.8	8.3	0.061
Income						
≤1 minimum wage		248	9.2	9.3	8.1	0.186
>1 minimum wage		336	10.2	8.7	8.5	0.024
Smoking						
Former smoker		147	10.1	9.8	8.5	0.327
Smoker		106	9.9	8.6	9.4	0.935
Non smoker		331	9.5	8.8	7.9	0.004
Alcoholism						
Yes		260	10.5	9.1	8.8	0.048
No		324	9.2	8.6	7.8	0.060

*p-non-parametric trend test
Discussion

This study is the first to investigate the relationship between dietary betaine and choline and plasma homocysteine in a population-based sample in individuals from São Paulo.

The higher prevalence of hyperhomocysteinemia in men and in the elderly confirms the results also obtained by Jacques et al.21 in the Framingham cohort study. According to Neves et al.22, sex and age are the main physiological factors related to hyperhomocysteinemia. Men have, on average, plasma homocysteine levels 21.0% higher than women. In addition, older individuals tend to have higher circulating levels of homocysteine both resulting from aging19 and deficiency of vitamins, especially vitamin B1223.

Most dietary variables presented different intake means according to plasma homocysteine concentrations. Lower median intakes of choline, betaine, natural folate and vitamins B6 and B12 were observed in individuals with hyperhomocysteinemia. Note that these nutrients are interrelated in the metabolic cycle of homocysteine4,8,9.

Table 5

Food group	%	Average consumption (g)	Nutrient (mg)
White breads	20.59	71	51.02
Cereals and pasta	15.49	202	116.07
Biscuit	12.69	39	69.97
Whole meal breads	5.80	59	67.69
Mate tea	4.80	297	220.52
Beer	3.11	849	68.75
Beef	2.34	120	14.60
Beetroot	1.93	51	77.07
Beetroot	1.38	101	7.04
Pizza	1.30	176	55.78
Beef	19.73	120	104.75
Poultry	10.52	101	81.61
Eggs	6.28	64	140.21
Milk	5.45	202	31.24
Ox liver	4.08	158	695.37
Beans	3.24	74	27.44
Fish	2.39	221	142.12
Cakesa	2.33	55	88.26
Sausage	2.20	84	50.42
Beer	1.84	849	84.03
French bread roll	1.71	72	10.66

ano topping or filling
Individuals with hyper-homocysteinemia also presented lower serum folate and vitamin B6 and B12 concentrations according to the results obtained by Refsum et al. The low availability of folate in the body, indicated by low serum or erythrocyte concentrations suggests that the remethylation pathway of homocysteine to methionine may be dependent on betaine as a donor of the methyl group, which reinforces the importance of adequate intake of betaine and choline for the reduction of homocysteine in individuals from São Paulo.

In this study, individuals in the lowest stratum of per capita household income had a prevalence of hyperhomocysteinemia greater than individuals in the highest income strata. According to the literature, the socioeconomic factor is important and consistent predictor of morbidity and mortality. However, there are no studies in the literature that investigate the influence of socioeconomic variables in plasma homocysteine concentration in individuals, making it difficult to compare and interpret the results.

Plasma concentrations of homocysteine showed a downward trend from the first to the last tertile of intake of betaine for many of the categories studied. Although it is not possible to establish causality due to the cross-sectional design, this study suggests that consumption of betaine exercises a protective role against the increase of plasma homocysteine in individuals from the city of São Paulo. The foods that most contributed to the inclusion of betaine in the diet include breads, cereals and pasta, foods that are also sources of other nutrients involved in homocysteine metabolism, such as the B complex vitamins.

Higher choline consumption was associated with lower plasma homocysteine levels to a smaller number of variables, such as sex (male and female), per capita income (higher than one minimum wage) and alcoholism (alcohol consumers). Thus, the results point to the protective role of choline on plasma homocysteine in specific subgroups of the population. It should be noted that the foods that most contribute for choline intake were animal foods (beef, poultry and eggs), which are also sources of protein, which can increase the endogenous production of homocysteine. Thus, the protective effect of choline can be counterbalanced by the proteins of animal origin in the diet, resulting in no association with plasma homocysteine, as observed in most of the individuals studied.

In relation to smoking, there was no difference in the prevalence of hyperhomocysteinemia. It is known that smoking promotes increased homocysteine concentrations and smokers tend to have lower circulating levels of vitamins B6, B12 and folate, nutrients that are related to the metabolism of homocysteine. The highest intake of betaine was associated with lower homocysteine levels for smokers; for choline, the highest consumption levels were associated with decreased homocysteine only for nonsmokers. Although the reason for these results is not clear, it is possible that differences in food intake between the groups could explain the effects of choline and betaine to homocysteine reduction.

With regard to alcohol consumption, there was no difference in the prevalence of hyperhomocysteinemia among consumers and non-consumers. However, the effects of alcohol on homocysteine plasma concentrations seem to vary according to the degree of consumption. Higher total plasma homocysteine concentrations are directly related to chronic and excessive consumption of alcohol, possibly by interference of alcohol in the cycle of methionine and the antagonistic action in the metabolism of folate. However, moderate consumption of alcohol (≤2 drinks/day) seems to have an effect on lowering total homocysteine. Thus, the findings in the literature suggest an ambiguous effect of alcohol in relation to homocysteine, exercising a protective effect when ingested moderately; and a harmful effect when consumed excessively.

In the present study, plasma homocysteine concentrations among alcohol users revealed a downward trend according to tertiles of choline and betaine intake. In a previous study, Cho et al. observed that even when folate intake is low, as long as choline and betaine intakes are adequate, metabolism of the methyl group can function properly. It is possible that the interference of excessive alcohol consumption in the folate metabolism reinforces the importance of betaine and choline in the remethylation of homocysteine.

Despite the protective role in the reduction of homocysteine levels and thus in the reduction of cardiovascular risk, recent studies show that n-trimethylamine oxide (TMAO), a metabolite formed from the intestinal microbiota of nutrients containing trimethylamine, such as choline, is associated with the pathogenesis of atherosclerosis and the severity of cardiovascular diseases.

The limitations of this study are worth mentioning. Since the data were obtained from a cross-sectional study, one should be cautious in assuming conclusions about the causal effect of exposure of interest on the biochemical factors studied. In addition, there is no data on genetic variations that are known to affect plasma homocysteine concentrations.
Conclusions

This study suggests the importance of food sources of betaine for their protective role in relation to high plasma levels of homocysteine in individuals from the city of São Paulo. As for choline, the results indicate a protective effect in specific subgroups of the population, considering that animal proteins can counteract its effect, resulting in the lack of association with plasma homocysteine.

References

1. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002;288(16):2015-22.
2. Bertoia ML, Pai JK, Cooke JP, Joosten MM, Mittleman MA, Rimm EB, et al. Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease. Atherosclerosis. 2014;235(1):94-101.
3. Mdlroy SP, Dynan KB, Lawson JT, Patterson CC, Passmore AP. Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke. 2002;33(10):2351-6.
4. Akanji AO, Thalib L, Al-Isa AN. Folate, vitamin B12 and total homocysteine levels in Arab adolescent subjects: reference ranges and potential determinants. Nutr Metab Cardiovasc Dis. 2012;22(10):900-6.
5. Hankey GJ, Eikelboom J. Homocysteine and vascular disease. Lancet. 1999;354(9176):407-13.
6. Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med. 1999;340(2):115-26.
7. Chiuve SE, Giovannucci EL, Hankinson SE, Zeisel SH, Dougherty LW, Willett WC, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073-81.
8. Robinson K, Arheart K, Refsum H, Brattström L, Boers G, Ueland P, et al. Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. European Comac Group. Circulation. 1998;97(5):437-43. Erratum in: Circulation. 1999;99(7):983.
9. Cho E, Zeisel SH, Jaques P, Selhub J, Dougherty L, Colditz GA, et al. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am J Clin Nutr. 2006;83(4):905-11.
10. Yonenori KM, Lim U, Koga KR, Wilkens LR, Au D, Boushey CJ, et al. Dietary choline and betaine intakes vary in adult multiethnic population. J Nutr. 2013;143(6):894-9.
11. Selhem SS, Castro MA, César CL, Marchioni DM, Fisberg RM. Associations between dietary betaine and self-reported hypertension among Brazilian adults: a cross-sectional population-based study. J Acad Nutr Diet. 2014;114(8):1216-22.
12. Mosfiegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC, Rumpler WV, et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr. 2008;88(2):324-32.
13. Raper N, Perloff B, Ingwersen L, Steinfeldt L, Anand J. An overview of USDA’s dietary intake data system. J Food Compost Anal. 2004;17:545-55.
14. Harttig U, Haubrock J, Knüppel S, Boeing H; EFCOVAL Consortium. The MSM program: web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur J Clin Nutr. 2011;65(Suppl 1):S87-91.
15. Rybak ME, Jain RB, Pfeiffer CM. Clinical vitamin B6 analysis: an interlaboratory comparison of pyridoxal 5'-phosphate measurements in serum. Clin Chem. 2005;51(7):1223-31.
16. Brown RD, Robin H, Kronenberg H. Folate assays - an alternative to microbiological assays and commercial kits. Pathology. 1982;14(4):449-53.
17. Kubasik NP, Ricotta M, Sine HE. Commercially-supplied binders for plasma cobalamin (vitamin B12), analysis--“purified” intrinsic factor, “cobinamide”-blocked R-protein binder, and non-purified intrinsic factor-R-protein binder--compared to microbiological assay. Clin Chem. 1980;26(5):598-600.
18. Bigio RS, Verly E Jr, Castro MA, Cesar CL, Fisberg RM, Marchioni DM. Are plasma homocysteine concentrations in Brazilian adolescents influenced by the intake of the main food resources of natural folate? Ann Nutr Metab. 2013;62(4):331-8.
19. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50(1):3-32.
20. Block G. Foods contributing to energy intake in the US: data from NHANES III and NHANES 1999-2000. J Food Compost Anal. 2004;17(3-4):439-47.
21. Jacques PF, Bostom AG, Wilson PW, Rich S, Rosenberg IH, Selhub J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr. 2001;73(3):613-21.
22. Neves LB, Macedo DM, Lopes AC. Homocisteína. Bras Patol Med Lab. 2004;40(5):311-20.
23. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteine in an elderly population. JAMA. 1993;270(22):2693-8.

Potential Conflicts of Interest

No relevant conflicts of interest.

Sources of Funding

This study received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (proceedings no. 473100/2009-6 and no. 124652/2010-7) and Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (proceeding no. 2009/15831-0).

Academic Association

This study is not associated to any graduate programs.
24. Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31-62.
25. Lantz PM, Lynch JW, House JS, Lepkowski JM, Mero RP, Musick MA, et al. Socioeconomic disparities in health change in a longitudinal study of US adults: the role of health-risk behaviors. Soc Sci Med. 2001;53(1):29-40.
26. Mackenbach JP, Kunst AE. Measuring the magnitude of socioeconomic inequalities in health: an overview of available measures illustrated with two examples from Europe. Soc Sci Med. 1997;44(6):757-71.
27. Pagán K, Hou J, Goldenberg RL, Cliver SP, Tamura T. Effect of smoking on serum concentrations of total homocysteine and B vitamins in mid-pregnancy. Clin Chim Acta. 2001;306(1-2):103-9.
28. McCarty MF. Increased homocysteine associated with smoking, chronic inflammation and aging may reflect acute-phase induction of pyridoxal phosphatase activity. Med Hypotheses. 2000;55(4):289-93.
29. Mansoor MA, Kristensen O, Hervig T, Drablos PA, Stakkestad JA, Woie L, et al. Low concentrations of folate in serum and erythrocytes of smokers: methionine loading decreases folate concentrations in serum of smokers and nonsmokers. Clin Chem. 1997;43(11):2192-4.
30. Vollset SE, Refsum H, Ueland PM. Population determinants of homocysteine. Am J Clin Nutr. 2001;73(3):499-500.
31. Halsted CH. Alcohol: medical and nutritional effects. In: Ziegler EE, Filer LJ Jr, eds. Present knowledge in nutrition. 7th ed. Washington, DC: ILSI; 1996. p.547-56.
32. Koehler KM, Baumgartner RN, Garry PJ, Allen RH, Stabler SP, Rimm EB. Association of folate intake and serum homocysteine in elderly persons according to vitamin supplementation and alcohol use. Am J Clin Nutr. 2001;73(3):628-37.
33. Halsted CH. Lifestyle effects on homocysteine and an alcohol paradox. Am J Clin Nutr. 2001;73(3):501-2.
34. Wang Z, Tang WH, Buffa JA, Fu X, Britt EB, Koeth RA, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904-10.
35. Kuka J, Liepinsh E, Makreeca-Kuka M, Liepins J, Cirule H, Gustina D, et al. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci. 2014;117(2):84-92.