Inducing and exploiting vulnerabilities for the treatment of liver cancer

Cun Wang1,2,7, Serena Vegna3,7, Haojie Jin1,2,7, Bente Benedict1,7, Cor Lieftink2, Christel Ramirez3, Rodrigo Leite de Oliveira2, Ben Morris2, Jules Gadiot1, Wei Wang1, Aimée du Chatinier2, Liqin Wang2, Dongmei Gao2, Bastiaan Evers2, Guangzhi Jin6, Zheng Xue2, Arnout Schepers2, Fleur Jochems2, Antonio Mulero Sanchez2, Sara Mainardi2, Hein te Riele3, Roderick L. Beijersbergen2, Wenxin Qin1*, Leila Akkari3* & René Bernards2*

Liver cancer remains difficult to treat, owing to a paucity of drugs that target critical dependencies1,2; broad-spectrum kinase inhibitors such as sorafenib provide only a modest benefit to patients with hepatocellular carcinoma3. The induction of senescence may represent a strategy for the treatment of cancer, especially when combined with a second drug that selectively eliminates senescent cancer cells (senolysis)4,5. Here, using a kinome-focused genetic screen, we show that pharmacological inhibition of the DNA-replication kinase CDC7 induces senescence selectively in liver cancer cells with mutations in TP53. A follow-up chemical screen identified the antidepressant sertraline as an agent that kills hepatocellular carcinoma cells that have been rendered senescent by inhibition of CDC7. Sertraline suppressed mTOR signalling, and selective drugs that target this pathway were highly effective in causing the apoptotic cell death of hepatocellular carcinoma cells treated with a CDC7 inhibitor. The feedback reactivation of mTOR signalling after its inhibition6 is blocked in cells that have been treated with a CDC7 inhibitor, which leads to the sustained inhibition of mTOR and cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction in causing the apoptotic cell death of hepatocellular carcinoma and selective drugs that target this pathway were highly effective in liver cancer cells treated with a CDC7 inhibitor. The feedback reactivation of mTOR signalling after its inhibition6 is blocked in cells that have been treated with a CDC7 inhibitor, which leads to the sustained inhibition of mTOR and cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction in cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction in cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction.

As seen in several types of tumour12, liver cancer cell lines express levels of CDC7 that are higher than those of non-transformed cells (Extended Data Fig. 1b). Expression of CDC7 is upregulated in tumour tissues relative to paired non-tumour tissues in two cohorts of patients with liver cancer (n = 213 and n = 50) (Fig. 1d), and this was confirmed at the protein level (Extended Data Fig. 1c). Moreover, in a cohort of 365 patients with HCC13, patients with the highest levels of CDC7 mRNA in their tumours exhibited the worst survival (Extended Data Fig. 1d).

We treated a panel of non-transformed cells and liver cancer cell lines with increasing concentrations of XL413. Proliferation was impaired in liver cancer cell lines with mutations in TP53, whereas liver cancer cell lines with wild-type TP53 (SK-Hep1 and Huh6 cells)—as well as all four non-transformed cell lines—displayed no sensitivity to XL413 (Fig. 2a). The XL413-sensitive cell line HepG2 is an outlier in this respect but carries a mutation in ATM, which acts upstream of p53 in the DNA-damage response. Importantly, knockdown of TP53 mediated by short hairpin RNA (shRNA) in wild-type cells sensitized these cells to CDC7 inhibition (Extended Data Fig. 1e–g), which indicates a causal relationship between TP53 mutation status and sensitivity to inhibition of CDC7.

The anti-proliferative effect of XL413 was associated with the induction of senescence markers in liver cancer cells with TP53 mutations, but not in liver cancer cells with wild-type TP53 or in non-transformed cells (Fig. 2b, Extended Data Fig. 2a), and a senescence signature14 was enriched in HCC cells with mutations in TP53 treated with XL413 (Fig. 2c). The notion that CDC7 inhibition induces a senescence-like state in liver cancer cells with mutations in TP53 is further supported by the findings that (i) withdrawal of XL413 does not lead to re-entry into the cell cycle in the majority of HCC cells, (ii) treatment with XL413 induced senescence-associated heterochromatin foci and (iii) treatment with XL413 induced expression of a number of cytokines, as part of the senescence-associated secreted phenotype15 (Extended Data Fig. 2b–d). There was no evidence for substantial induction of apoptosis in HCC cells with TP53 mutations treated with XL413 (Extended data Fig. 2e). Comparable results were obtained with two CDC7 inhibitors that are unrelated to XL413—LY3177833 and TAK-931 (Extended Data Fig. 3a–f). Consistent with this, knockdown of CDC7 impaired proliferation and induced senescence in liver cancer cells with TP53 mutations, but had no effect on cells with wild-type TP53 (Extended Data Fig. 3g–i).

The phosphorylation of MCM2 (a target of CDC712) was suppressed equally by each of the three CDC7 inhibitors in both wild-type cells and cells with TP53 mutations (Fig. 2d, Extended Data Fig. 4a, b),
enrichment score

which indicates that there is no correlation between the cell fate that is induced by CDC7 inhibitors and the degree of inhibition of the downstream targets of CDC7. To further address why it is that inhibition of CDC7 selectively induces senescence in the context of TP53 mutation, we assessed protein expression associated with DNA damage following treatment with XL413. The induction of γH2AX and DNA double-strand breaks was notable after CDC7 inhibition in liver cancer cells with TP53 mutations as compared to cells with wild-type TP53; these latter instead displayed a clear upregulation of p21 (CIP1) (Fig. 2d, e, Extended Data Fig. 4a–c). This differential effect is most readily explained by the finding that multiple gene signatures associated with DNA repair are upregulated in cells with wild-type TP53 (SK-Hep1 and BJ) treated with XL413, but are suppressed in cells with TP53 mutations upon inhibition of CDC7 (Fig. 2f, Extended Data Fig. 4d, e). Consistently, the inhibition of DNA repair with the ATR inhibitor AZD6738, or with the CHK1 inhibitor MK-8776, in liver cancer cells with wild-type TP53 resulted in increased double-strand breaks when combined with treatment with XL413 (Extended Data Fig. 4f). Inhibition of CDC7 also resulted in a significant increase in the duration of mitosis (Extended Data Fig. 4g, h). We further confirmed the specificity of the effects of CDC7 inhibition in Trp53+/− mouse cell models of liver cancer10 (Extended Data Fig. 4i, j). Moreover, XL413 induced senescence in non-small-cell lung-cancer cells with TP53 mutations, but not in cells with wild-type TP53 (Extended Data Fig. 5a, b). Similarly, in isogenic TP53+/− and TP53+/+ HCT116 colon-cancer cells, the inhibition of CDC7 induced senescence only in TP53−/− cells (Extended Data Fig. 5c–e).

The induction of senescence represents a double-edged sword for tumour control15,17, and the potentially harmful properties of senescent tumour cells make their elimination therapeutically relevant. The high concentration of ABT263, a senolytic BH3 mimetic drug, that is required to promote apoptosis of XL413-induced senescent cells—and the lack of sensitivity of these cells to dasatinib5—prevent their...
AZD8055 selectively triggers apoptosis in XL413-induced senescent cells. a, Hep3B and HuH7 cells were treated with 10 μM XL413 or vehicle for 10 days, before sequential exposure to increasing concentrations of AZD8055 for 5–7 days in colony-formation assays. b, Apoptotic cells were determined by caspase-3 and caspase-7 (caspase-3/7) apoptosis assay, 96 h after treatment with AZD8055. c, Control cells and XL413-induced senescent cells were treated with AZD8055 for 48 h before western blot analyses with the indicated antibodies. S6RP(pSer235/236), S6RP phosphorylated at Ser235 and Ser236; S6RP(pSer240/244), S6RP phosphorylated at Ser240 and Ser244; 4EBP1(pSer65), 4EBP1 phosphorylated at Ser65. d, Control cells and XL413-induced senescent cells were treated with AZD8055, and cell lysates were collected at the indicated time points before western blot analyses with the indicated antibodies. 4EBP1(pThr37/46), 4EBP1 phosphorylated at Thr37 and Thr46; 4EBP1(pThr70), 4EBP1 phosphorylated at Thr70. e, f, Long-term colony formation assays, and caspase-3 and caspase-7 apoptosis assays, showing the synergistic effect of mTOR and SHP2 inhibitors on the proliferation of Hep3B cells. SHP2i no. 57, SHP2 inhibitor (compound no. 57; Methods). g, Hep3B cells were treated with AZD8055, SHP2 inhibitor or a combination of both drugs at the indicated time points, before western blot analysis with the indicated antibodies. For gel source images, see Supplementary Fig. 1. Data in a–f are representative of three independent biological experiments. Data in g are representative of two independent biological experiments.

translational use in the clinic (data not shown). We therefore sought to identify less-toxic compounds to selectively kill senescent liver cancer cells using a library screen of G-protein-coupled receptor (GPCR) compounds in proliferating and in XL413-treated senescent HuH7 cells (Extended Data Fig. 6a). Of these compounds, only the anti-depressant sertraline exhibited differential effects on proliferating versus XL413-induced senescent cells (Extended Data Fig. 6b, c); sertraline had modest effects on proliferating cells, but induced substantial apoptosis after treatment with XL413 (Extended Data Fig. 6d–f).

The concentration of sertraline needed to induce apoptosis of senescent cells precludes its clinical use. We therefore explored the mechanism through which sertraline selectively induces apoptosis in XL413–treated senescent cells. We analysed signalling pathways in cells treated with sertraline, and found that this treatment leads to inhibition of S6RP and 4EBP1 phosphorylation in XL413-induced senescent cells (Extended Data Fig. 6g). This suggests that the apoptotic effects of sertraline may involve regulation of mTOR signalling, as has previously been reported18. Consistently, gene-set enrichment analyses (GSEA) on RNA-sequencing data from cells treated sequentially with XL413 and sertraline indicated the enrichment of a gene set related to the downregulation of mTOR signalling (Extended Data Fig. 6h).

To explore whether mTOR inhibitors may be used as effective drugs in our XL413-induced senescence models, we analysed the activity of two mTOR inhibitors (AZD8055 and AZD2014). Both of these inhibitors induced apoptosis in XL413–treated liver- and lung cancer cells with TP53 mutations, but only limiting the proliferation of untreated cells (Fig. 3a, b, Extended Data Fig. 6i–k). As expected, sequential treatment with AZD8055 did not lead to apoptosis in non-senescent liver cancer cells with wild-type TP53 that were pre-treated with XL413 (Extended Data Fig. 6l). Importantly, mTOR signalling was further inhibited in XL413-induced senescent cells exposed to AZD8055 or AZD2014, as compared to proliferating cells (Fig. 3c, Extended Data Fig. 6m).

mTOR blockade results in a feedback-loop reactivation of mTOR signalling through the engagement of receptor tyrosine kinases, which thus limits the efficacy of mTOR inhibitors8. We explored the feedback activation of mTOR signalling in time-course experiments, and found that the rapid reactivation of mTOR—as judged by the phosphorylation of S6RP and 4EBP1 at multiple sites—was observed in proliferating, but not in senescent, Hep3B cells (Fig. 3d). This feedback reactivation loop may stem from both transcriptional and biochemical activation of EGFR, PDGFRα and IGF-1R, which leads to an increase in the phosphorylation of SHP2—this latter process is disrupted in Hep3B cells treated with XL413 (Extended Data Fig. 7a–c). Combining mTOR and SHP2 inhibitors resulted in an inhibition of the feedback reactivation of mTOR signalling and caused cell death in proliferating Hep3B cells (Fig. 3e–g), which indicates that suppression of mTOR reactivation is critical for the induction of apoptosis in senescent cells. In support of these findings, inhibition of mTOR also induced the activation of AKT in proliferating cells, and inhibition of AKT synergized with mTOR blockade to induce cell death (Extended Data Fig. 7d–f). Oncogene-induced senescent primary fibroblasts were insensitive to treatment with AZD8055 (Extended Data Fig. 8a, b), which indicates that not all senescent cells are killed by inhibition of mTOR. Importantly, feedback reactivation of mTOR was not impaired in cisplatin- or alisertib-induced senescent Hep3B cells and, consequently, no cell death was observed following the inhibition of mTOR in these cells (Extended Data Fig. 8c–e). These data indicate that the efficacy of mTOR inhibitors is dependent on context, and relies on CDC7 inhibition.
elicted a more-effective inhibition of growth, and combination-treated xenografts with TP53 mutations displayed diminished proliferation and phosphorylation of 4EBP1 that was associated with increased apoptosis (Fig. 4a, Extended Data Fig. 9c–g).

In immune-competent, somatic mouse models of HCC\(^{19}\) (Extended Data Fig. 10a), treatment with XL413 induced senescence specifically in Trp53-deficient tumours (overexpression of Myc and knockout of Trp53, Myc\(^{OE};Trp53\(^{KO}\)) but not in Myc\(^{OE}\);Pten\(^{KO}\) tumours (Extended Data Fig. 10b). Mice bearing Myc\(^{OE}\);Trp53\(^{KO}\) tumours that received XL413 or AZD8055 monotherapy showed a modest reduction in tumour volume and increased mouse lifespan, whereas treatment with XL413 combined with AZD8055 was well-tolerated, significantly reduced tumour burden and increased survival compared to either monotherapy or to treatment with sorafenib in this model of aggressive HCC (Fig. 4b–e, Extended Data Fig. 10c–f). Importantly, the number of SA-β-gal\(^{+}\) and p16\(^{+}\) (INK4A\(^{+}\)) cells was decreased in the combination-treated group, which suggests that senescent cells were efficiently eliminated by treatment with AZD8055 (Fig. 4f, g, Extended Data Fig. 10g, h). An influx of macrophages (CD11b\(^{+}\)Ly6C\(^{+}\)Ly6G\(^{-}\)), CD4\(^{+}\) T cells and increased proliferation of CD4\(^{+}\) and CD8\(^{+}\) T cells were observed after treatment with XL413 at the intermediate time-point of treatment. These changes were largely lost in the combination-treated groups, and in XL413-treated endpoint tumours (Extended Data Fig. 10i). Withdrawal of XL413 after the induction of senescence in vivo did not alter the absolute number of senescent cells, which suggests that infiltrating immune cells were unable to efficiently clear senescent cells (Extended Data Fig. 10j).

Our data indicate that pro-senescence therapy with a CDC7 inhibitor, combined with mTOR inhibitor, may deliver clinical benefit in liver cancer by alleviating both the cell-autonomous\(^{20}\) and non-cell-autonomous\(^{21}\) attributes of senescent cells—thus reducing the risk of tumour relapse. Although immune surveillance was mobilized, it had limited effect after inhibition of CDC7. It will be worthwhile to investigate whether combining immunotherapy (which has demonstrated activity in HCC\(^{22}\)) with pro-senescence therapy can activate the cytotoxic potential of recruited immune cells in tumours that have been treated with pro-senescence therapy.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information, details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1607-3.

Received: 18 October 2018; Accepted: 21 August 2019; Published online 2 October 2019.

1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
2. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2, 16018 (2016).
3. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).
4. Wang, L. et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Reports 21, 773–783 (2017).
5. Sieben, C. J., Sturmlechner, L., van de Stuijs, B. & van Deursen, J. M. Two-step senescence-focused cancer therapies. Trends Cell Biol. 28, 732–737 (2018).
6. Rodrik-Outezmguine, V. S. et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 1, 248–259 (2011).
7. Zucman-Rossi, J., Villanueva, A., Nault, J. C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239 (2015).
8. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).
9. Ogrondnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).
10. Wang, C. et al. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res. 28, 690–692 (2018).
11. Koltun, E. S. et al. Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg. Med. Chem. Lett. 22, 3772–3773 (2012).
12. Montagani, A., Moll, J. & Colotta, F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin. Cancer Res. 16, 4503–4508 (2010).
13. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341 (2017).
14. Fridman, A. L. & Tainsky, M. A. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 27, 5975–5987 (2008).
15. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).
16. Dauch, D. et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. *Nat. Med.* **22**, 744–753 (2016).
17. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. *Cancer Cell* **30**, 533–547 (2016).
18. Lin, C. J.; Robert, F.; Sukarieh, R.; Michnick, S. & Pelletier, J. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling. *Cancer Res.* **70**, 3199–3208 (2010).
19. Keng, V. W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. *Nat. Biotechnol.* **27**, 264–274 (2009).
20. Milanovic, M. et al. Senescence-associated reprogramming promotes cancer stemness. *Nature* **553**, 96–100 (2018).
21. Georgilis, A. et al. PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. *Cancer Cell* **34**, 85–102 (2018).
22. Flynn, M. J.; Sayed, A. A.; Sharma, R.; Siddique, A. & Pinato, D. J. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma. *Hepatology* **69**, 2258–2270 (2019).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS

No statistical methods were used to predetermine sample size. The experiments were not randomized and investigators were not blinded to allocation during experiments and outcome assessment.

Cell lines. The human liver cancer cell lines, Hep3B, Huh7, HepG2, SNU182, SNU398, SNU449, HuH6, SK-Hep1 and PLC/PRF5 were provided by Erasmus University. MHCC97H and HCCLM3 were provided by the Liver Cancer Institute of Zhongshan Hospital. The majority of liver cancer cell lines were established from HCC. Among these cell lines, SK-Hep1 was established from an endothelial tumour in the liver and HuH6 is a hepatoblastoma cell line. Liver cancer cells were cultured in DMEM with 10% FBS, glutamine and penicillin–streptomycin (Gibco) at 37 °C and 5% CO2. The liver cancer cell lines were authenticated by applying short-tandem-repeat DNA profiling. HCT116 (TP53+/− and TP53−/−) cells were provided by B. Vogelstein. hTERT immortalized BJ fibroblasts and retinal pigment epithelial cells (RPE-1) were provided by X. Qiao (Netherlands Cancer Institute). TIG-3 immortalized with hTERT and MCF-10A cells were provided by L. Li (Netherlands Cancer Institute). Two mouse cell models of liver cancer with different genetic backgrounds (NrasG12V, MycOE;Tp53+/− and NrasG12V, MycOE;CdK20Ne−/−) were provided by L. Zender (University Hospital Tubingen). Mycopsoma contamination was excluded using a PCR-based method.

Compounds and antibodies. XL413 (S7457), BMS265246 (S2014), ON-19019 (S1362), PD0166285 (S8148), LDC000067 (S7461), PF-03814735 (S2725), D4476 (S7642), VE-281 (S8007), AZD8053 (S1555), AZD2014 (S7838), AZD7678 (S7693) and MK-8776 (2735) were purchased from Selleck Chemicals. Thz531 (A8736) was purchased from ApexBio. XL413 (205768), BLU9931 (206192) and LY3177833 (S7642) were purchased from MedKoo. TAK 911 (GT TAK911) was purchased from Chemietek. XL31A (A13677) was also purchased from AdoO BIOscience. The SHP2 inhibitor used in this study is covered by a patent application (WO 2015/017495A1; compound no. 57) and was synthesized as previously described23.

Antibodies against HSP90 (sc-7947; sc-13119), p53 (sc-126; sc-6246), and SHP2 (sc-280) were purchased from Santa Cruz Biotechnology. Antibodies against CDC7 (ab77668), p-MCM2 (ab109133, ab132342), MCM2 (ab4461), p-SHP2 (ab26233), PCNA (ab2426), and cleaved caspase-3 (ab2303) were provided by Abcam. Antibodies against β-H2AX (no. 9718), p-ERK (no. 4695, no. 5646), ERK (no. 3227), p-4EBP1 (no. 9456, no. 2855, no. 9455), 4EBP1 (no. 9644), p-IGF-1R-INSR (no. 3024), IGF-1R (no. 9750), p-IGF1R (no. 3161), PDGFRα (no. 4546), p-AKT (no. 4060) and AKT (no. 2920) were purchased from Cell Signalling, EGF receptor (ab61017) was purchased from BD Bioscienes. H3K9me3 antibody (49-1008) and p-EGFR (44-788) were from Thermo Fisher Scientific.

Pooled ‘stress lethal’ CRISPR screen. For the design of the kinsome CRISPR library, 5,971 gRNAs targeting 504 human kinases, 10 essential genes and 50 non-targeting gRNAs were selected. Oligonucleotides with gRNA sequences flanked by adaptors were ordered from CustomArray, and cloned as a pool by Gibco using the CRISPRѐCrisprCube. The kinsome CRISPR library was introduced to Hep3B and HuH7 cells by lentiviral transduction. Cells stably expressing gRNA were cultured for 14 days. The abundance of each gRNA in the pooled samples was determined by Illumina deep-sequencing. gRNAs prioritized for further analysis were selected by the fold depletion of abundance in the day-14 sample compared with that in the day-0 sample, using previously described methods24.

Compound screens. Induction of senescent screen. We performed a compound screen including 10 small-molecule inhibitors that targeting the 14 hits identified in the CRISPR screen. The compounds used for this screen are described in Fig. 1c. Each compound was evaluated in two liver cancer cell lines (Hep3B and HuH7) and two non-transformed cell lines (BJ and RPE-1) using five different concentrations. The screens were performed in three replicates of each cell line. SA-β-gal staining was performed after 4 days of treatment.

Killing senescent-cell screen. Cells were screened for sensitivity against a panel of 260 small-molecule inhibitors from a GPCR compound library (L2000, Selleck Chemicals). In brief, HuH7 cells were treated with 10 μM XL413 for 5 days, and then cells and XI413-treated cells were plated in 96-well plates. All compounds from GPCR library were tested at four concentrations. Each plate included 8 wells containing DMSO (as a negative control) and 8 wells containing 10 μM PAO (as a positive control). The cell viability in each well was determined using CellTiter-Blue reagent (Promega). The relative survival of control cells and XL413-treated senescent cells in the presence of drug was normalized against control conditions (untreated cells) after subtraction of background signal.

SA-β-gal staining. SA-β-gal staining was performed either in 6-well or 96-well plates (for in vitro studies), on 10-μm thick cryosections from xenograft tumours or on 8-μm thick cryosections from hydrodynamic-tail-vein-injection (HDTV)-generated MycOE;Tp53+/− tumours, using a commercial kit (Sigma) following the kit instructions.

Protein lystate preparation and western blots. Cells were washed with PBS and lysed with RIPA buffer supplemented with complete protease inhibitor (Roche) and phosphatase inhibitor cocktails II and III (Sigma). Protein quantification was performed with the BCA protein assay kit (Pierce). All lysates were freshly prepared and processed with Novex NuPAGE gel electrophoresis systems (Thermo Fisher Scientific), followed by western blotting.

Immunohistochemical staining. Specimens of HCC were obtained from 80 patients (from 26 to 76 years old) who underwent curative surgery in Eastern Hepatobiliary Hospital of the Second Military Medical University. Patients were not subject to any preoperative anti-cancer treatment. Ethical approval was obtained from the Eastern Hepatobiliary Hospital Research Ethics Committee, and written informed consent was obtained from each patient. Of these cases, 12 patients are female and 68 patients are male. Fifty-nine patients had a background of HBV infection. Clinical information—including tumour number, diameter of tumour, tumour differentiation, serum AFP, status of cancer recurrence, disease-free survival and death from recurrence—was collected. For immunohistochemical analysis, formalin-fixed paraffin-embedded samples from patients with HCC were probed with CDC7 antibody (ab77688, Abcam). Formalin-fixed paraffin-embedded samples were also obtained from xenograft tumours or tumours from immunocompetent somatic mouse models, and then probed with antibodies against PCNA (ab2426, Abcam), cleaved caspase-3 (ab2503, Abcam), p-EBP1 (no. 2855, Cell Signalling) or p16 (ab54210, Abcam). Following incubation with the primary antibodies, positive cells were visualized using DAB+ as a chromogen. For the analysis of p16 and SA-β-gal staining, slides were digitally processed using the Aperio ScanScope (Aperio) at a magnification of 20×. Nucleolus size was drawn by hand in HALO image-analysis software (Indica Labs) and an algorithm was designed with the Multiplex IHC v.1.2 module to quantify the number of positive cells25 either as absolute or per mm2 (as indicated in figure legends).

Long-term proliferation screening (growth rate and the design of the experiment). About 24 h later, drugs were added at the indicated concentrations using the HP D300 Digital Dispenser (HP). Cells were imaged every 4 h using the Incucyte ZOOM (Essen Bioscience). Phase-contrast images were analysed to detect cell proliferation on the basis of cell confluence. For cell apoptosis, caspase-3 and caspase-7 green apoptosis-assy reagent was added to the culture medium, and cell apoptosis was analysed on the basis of green fluorescent staining of apoptotic cells.

RNA sequencing. RNA (one sample per cell line per condition) was isolated using Trizol, and cDNA libraries were sequenced on an Illumina HiSeq2500 to obtain 65–100 single-end sequence reads. Reads were aligned to the GRCh38 human reference genome. GSEA was performed using GSEA software as previously described26. The FRIDMANSENESCENCE_UP set was used to assess the enrichment of senescence-associated genes in XL413-treated versus control cells. Gene sets related to DNA-damage repair were used to assess the enrichment of genes associated with DNA-damage repair in the XL413-treated versus control cells. Enrichment scores were corrected for gene-set size (normalized enrichment score). The PENG_REAPMYCIN_RESPONSE_DN gene set was used to assess the enrichment of downregulation of mTOR signalling in liver cancer cells that had been sequentially treated with XL413 and sertaline, versus control cells. The P value estimates the statistical significance of the enrichment score for a single gene set, as previously described26. Exact P values are shown in the figures, unless the P value < 0.001.

Immunofluorescence and image analysis. For immunofluorescence microscopy, cells were seeded on glass coverslips and cultured in the presence of 10 μM XL413 for 7 days. Cells were fixed in 2% paraformaldehyde and permeabilized with 0.2% Triton X-100 for 5 min, blocked with PBS containing 2% bovine serum albumin (BSA) and 0.1% sodium selenite, and incubated with HS793m3 antibody (Thermo Fisher Scientific, 49-1008) and goat anti-rabbit Alexa Fluor 488 (Invitrogen; 1:200) for 1 h, respectively. Nuclei were stained with 4,6-diamidino-2-phenylindole. Samples were mounted on glass slides in Mowiol after three
waxing steps with PBS. Images were acquired with a Leica TCS SP5 confocal microscope with a 63× (NA 1.4) oil objective. Image processing was performed using ImageJ software.

Neutral comet assay. To detect DNA double-strand breaks, neutral comet assays were performed as previously described.28 In brief, cells were collected and embedded in 1% low-gelling-temperature agarose (Sigma-Aldrich). A cell suspension was used to make gels onto comet assay slides (Trevigen). Cells in the agarose gels were lysed at 37 °C in lysis buffer (2% sodium citrate, 0.5M NaEDTA and 0.5 mg/ml proteinase K) overnight. Subsequently, slides were washed 3 times for 30 min at room temperature in electrophoresis buffer (90 mM Tris–HCl pH 8.5, 90 mM boric acid and 2 mM Na2EDTA). Electrophoresis was performed for 25 min at 20 V in electrophoresis buffer. Afterwards, slides were washed once with MQ, and DNA was stained using 2.5 μg/ml propidium iodide in MQ. Individual comets were imaged with a Zeiss AxioObserver Z1 inverted microscope. Tail moments of individual comets were assessed using the CASP software. For each condition, at least 50 cells were analysed.

Time-lapse live imaging. To allow visualization of chromosomes, cells were transduced with a histrone H2B–GFP (LV-GFP, Addgene plasmid no. 25999). Cells were then plated 24 h before starting the microscope acquisition. XL413 (10 μM) was added in the medium 1 h before starting the movie. Cells were filmed over 96 h and images were taken every 10 min. For each condition filmed, five different fields were selected. In each field, we randomly choose and followed cells entering in mitosis. Nuclear envelope breakdown was used as an indicator of the onset of mitotic division.

Quantitative reverse-transcription PCR. Total RNA was extracted from cells using TRIzol reagent (Invitrogen or Quick-RNA Miniprep from Zymo Research). cDNA synthesis was performed using Maxima Universal First Strand cDNA Synthesis Kit from Thermo Scientific. Quantitative PCR reactions were performed with FastStart Universal SYBR Green Master (Roche) from Roche. The experiments were performed according to the manufacturer’s instructions. The sequences of the primers used for quantitative reverse-transcription PCR (RT-qPCR) analyses were as follows: IL6 forward, ACTCACCTCTGACAAAGGATTG; IL6 reverse, CCATCTTTGGAAAGTGTTGTG; IL8 forward, TTTTGCAGCAGTGAGAGAT; IL8 reverse, AACCTCTGGCAACGACTATC; IGF1R forward, TCAAACTGCGA; IGF1R reverse, CACCATGAAACATACCCAGCA; GAPDH forward, TCTGAGCCGAGAAAGGCA; GAPDH reverse, CACCATGGAAGGATGACCC; EGFR forward, AGGGATGAATGAGGATCC; EGFR reverse, AGGGATGAATGAGGATCC; EGFR forward, AGGGATGAATGAGGATCC; EGFR reverse, AGGGATGAATGAGGATCC; EGFR forward, TGGACATCGCCAAGCATATC; EGFR reverse, CGAGGGCTGATTGTGAAGAG; INSR forward, AAAAGGAGCGGCGAGATGT; INSR reverse, TCAGATAGGAGGCAGAGG; PDGFR forward, AGCCACCTTGGTCTGAGC; PDGFR reverse, TATTTCTCCGCTGTTACCCA; PDGFH forward, AAGGGTGAAGTGCTGATCC; PDGFH reverse, AATGGAAGGGTCTACTAGTGG. All reactions were run in triplicate.

Human phospho-receptor tyrosine kinase array. Phospho-receptor tyrosine kinase (RTK) arrays were used to analyse alterations of kinase signalling in response to treatment with AZD8055 in Hep3B cells, according to the manufacturer’s instructions (R&D systems).

Xenografts. All mice were manipulated according to protocols approved by the Shanghai Medical Experimental Animal Care Commission and Shanghai Cancer Institute. The maximum permitted tumour volume was 2,000 mm³. Huh7 and MHC97H cells (5 × 10⁵ cells per mouse) were injected subcutaneously into the right posterior flanks of 6-week-old BALB/c nude mice (male, 6–10 mice per group). Tumour volume, based on caliper measurements, was calculated by the modified ellipsoidal formula: tumour volume = (2 × length × width²). After tumour establishment, mice were randomly assigned to 6 days per week treatment with vehicle, XL413 (50–100 mg/kg, oral gavage), AZD8055 (100 mg/kg, oral gavage), a combination in which XL413 and AZD8055 were administered at the same dose as the single agent, or with sorafenib (30 mg/kg, oral gavage). For time-point analysis, mice were killed 14–16 days after the initiation of treatment, and tumour volume was measured. The tumour treatment continued until mice were symptomatic (the tumour reached a total volume of ≥2 cm³).

When HCCs were first visible by MRI (14–21 days after HDTVi), tumour-size-matched mice were randomized over the treatment groups: vehicle, XL413, AZD8055, a combination of XL413 and AZD8055, or sorafenib. Mice were dosed 6 days per week with vehicle, XL413 (100 mg/kg, oral gavage), AZD8055 (20 mg/kg, oral gavage), a combination in which XL413 and AZD8055 were administered at the same dose as the single agent, or with sorafenib (30 mg/kg, oral gavage). For time-point analysis, mice were killed 14–16 days after the initiation of treatment, and tumour volume was measured. The tumour treatment continued until mice were symptomatic (the tumour reached a total volume of ≥2 cm³).

No toxicity was observed over the monotherapy groups. Seventeen per cent of mice showed therapy-induced adverse events in the XL413 + AZD8055 treatment group and 83% of mice showed a well-tolerated response to treatment.

For quantification of SA-β-gal staining, the sample size was as follows: vehicle-treated, n = 41 biologically independent nodules from 7 mice; XL413-treated, n = 81 biologically independent nodules from 11 mice; AZD8055-treated, n = 26 nodules from 3 mice; and combination-treated, n = 101 nodules from 15 mice.

For quantification of p16 staining, the sample size was as follows: vehicle-treated, n = 23 biologically independent nodules from 3 mice; XL413-treated, n = 43 biologically independent nodules from 5 mice; AZD8055-treated, n = 37 nodules from 3 mice; and combination-treated, n = 59 nodules from 8 mice.

Flow cytometry. Mouse livers were perfused with PBS and then dissociated into single-cell suspension using the Liver Dissociation kit (Miltenyi Biotec) and the gentleMACS Octo Dissociator, following the manufacturer’s instructions. The cell suspension was passed through a 100-μm cell strainer (Corning) and then centrifuged at 300g for 10 min at 4 °C and washed 3 times in FACS buffer. Samples were then incubated with anti-CD16/CD32 antibody (BD Biosciences) for 15 min and then washed with MIPAV (‘Medical, Image, Processing, Analysis and Visualization’ software) to stain the indicated antibodies (Supplementary Table 2) following standard procedures. Samples were fixed with efBioscience fixation and permeabilization kit (Invitrogen) and Ki67 antibody was used for intracellular staining. The signal was detected by using a four-laser Fortessa flow cytometer (Becton Dickinson).

Data Availability
Raw and processed data from the next-generation RNA sequencing of samples have been deposited in the NCBI Gene Expression Omnibus (GEO) under accession number GSE121276 and GSE121277. All other data can be found in the Source Data, Supplementary Information or are available from the corresponding authors upon reasonable request.

23. Garcia Fontanet, J. et al. Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J. Med. Chem. 59, 7773–7782 (2016).
24. Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).
25. Koebel, V. H. et al. Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma. Histopathology 73, 397–406 (2018).
26. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
27. Peng, T., Golub, T. R. & Sabatini, D. M. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol. Cell. Biol. 22, 5575–5584 (2002).
28. Olive, P. L. & Barndt, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).
Acknowledgements We thank L. Zender, R. Smits, X. Qiao and L. Li for the kind gift of cell lines. This work was funded by grants from the European Research Council (ERC 787925 to R.B.), the Dutch Cancer Society (KWF 12049/2018-2 to L.A., 6702/2014 to B.B. and H.t.R) through the Oncode Institute and the Center for Cancer Genomics (CGC: http://cancergenomics.nl), the National Basic Research Program of China (973 Program: 2015CB553905), the National Key Sci-Tech Special Projects of Infectious Diseases of China (2018YFC0900200, 2016YFC0900900), the National Natural Science Foundation of China (81920108025, 81421001, 81672933, and 81874229), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20181703), Shanghai Municipal Commission of Health and Family Planning (2017YQ064 and 2018YQ20) and Shanghai Rising-Star Program (18QA1403900). We thank the facilities of Netherlands Cancer Institute: Animal Laboratory, Mouse Clinic Imaging Unit, Experimental Animal Pathology, Flow Cytometry, Sequencing and Biolmaging.

Author contributions C.W. and R.B. conceived the idea and designed the study. R.B., L.A., W.Q. and R.L.B. supervised all research. R.B., L.A., C.W. and S.V. wrote the manuscript and prepared the figures. C.W. designed, performed and analysed in vitro experiments and interpreted the results of the xenograft model. S.V. designed, performed and analysed in vivo data conducted on the immunocompetent mouse models with technical support from J.G. H.J. and D.G. performed xenograft experiments. B.B. designed, performed and analysed neutral comet assays. C.L. and B.E. performed data analysis. C.R. performed quantification analyses of in vivo staining. B.M. performed the GPCR-compound screen. W.W. performed immunofluorescence. A.d.C. and A.M.S. performed and analysed SHP2 experiments. G.J. provided clinical samples. R.L.d.O., L.W., Z.X., A.S., F.J., S.M. and H.t.R. provided advice for the project. All authors commented on the manuscript.

Competing interests C.W. and R.B. are listed as inventors of a patent application using the one–two punch therapy (CDC7 inhibitor and mTOR inhibitor) for liver cancers with TP53 mutations. R.B. is the founder of the company Oncosence, which exploits pro-senescence therapies for cancer.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1607-3. Correspondence and requests for materials should be addressed to W.Q., L.A. or R.B.

Peer review information Nature thanks Hisao Masai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Upregulation of CDC7 mRNA correlates with poor prognosis of patients with HCC, and TP53 knockdown sensitizes liver cancer cells with wild-type TP53 to the CDC7 inhibitor. a, Thirty-eight common hits (among the top-50 most-strongly depleted hits in each cell line) were identified by CRISPR screen in Hep3B and Huh7 cells. Hits in red represent factors that are targetable with small-molecule compounds. Blue represents non-targetable hits.
b, Western blot analysis of levels of CDC7, MCM2 and phosphorylated MCM2 in non-transformed cell lines and liver cancer cell lines. HSP90 served as a loading control.
c, Immunohistochemical analysis showing increased expression of CDC7 in HCC tissues, compared to paired adjacent non-tumour tissues.
d, According to the level of CDC7 mRNA obtained from the TCGA database (n = 365 patients), patients with HCC were classified into 3 groups: the top 33.3% were considered as high-expression, the medium 33.3% were considered as intermediate-expression and the lowest 33.3% were considered as low-expression. Kaplan–Meier curves depicting that upregulation of CDC7 mRNA correlates with poor prognosis of patients with HCC. Statistical significance was calculated using a two-sided log-rank test. e, Liver cancer cell lines with wild-type TP53 (SK-Hep1 and Huh6) were stably transduced with control pLKO vector or with one of three independent shRNAs that target TP53 (labelled here as shp53 #1, #2 and #3). On the basis of knockdown efficiency, TP53 shRNA no. 1 and TP53 shRNA no. 3 were selected for further experiments. f, SK-Hep1 and Huh6 cells that express a control shRNA (pLKO) or knockdown of TP53 (shp53) were exposed to the indicated concentrations of XL413 in colony-formation assays. Cells were fixed, stained and photographed after 10–14 days of culture.
g, SK-Hep1 and Huh6 cells expressing control shRNA or shRNA against TP53 were exposed to the indicated concentrations of XL413 for five days. CellTiter-Blue viability assays revealed that TP53 knockdown synergizes with treatment with XL413 in SK-Hep1 and Huh6 cells. Graphs represent mean ± s.d. from six technical replicates. For gel source images, see Supplementary Fig. 1. Data in a, b, e–g are representative of three independent biological experiments. Data in c are representative images from immunohistochemical analyses using a tissue microarray containing 80 specimens of HCC.
Extended Data Fig. 2 | Inhibition of CDC7 induces senescence selectively in liver cancer cells with TP53 mutation.

a, Liver cancer cell lines with TP53 mutation were cultured in the presence of 10 μM XL413 for 4 days, which induces senescence (as detected by SA-β-gal staining).

b, Growth curves (measured by Incucyte live-cell analyses) of liver cancer cell lines with TP53 mutations that were either untreated, continuously treated with XL413 or treated with 10 μM of XL413 for 5 or 6 days before withdrawal of treatment. Graphs represent mean ± s.d. from five technical replicates.

c, Representative images of H3K9me3 staining in liver cancer cell lines with TP53 mutations, exposed to 10 μM XL413 for 7 days.

d, Treatment with XL413 induces a senescence-associated secretory phenotype (SASP) in Hep3B and Huh7 cells treated with 10 μM XL413 for 7 days. mRNA expression of genes associated with the senescence-associated secretory phenotype was determined by qRT–PCR analysis. Graphs represent mean ± s.d. from four technical replicates.

e, Liver cancer cells were cultured in the presence of 10 μM XL413 for 4 days, and apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay. Data in a are representative of three independent biological experiments. Data in b–e are representative of two independent biological experiments.
Extended Data Fig. 3 | Pharmacological or genetic inhibition of CDC7 induces a senescent phenotype in liver cancer cells with TP53 mutations. a, b, Liver cancer cell lines with TP53 mutations (Hep3B, Huh7, SNU398, MHCC97H and HCCLM3) (blue) and liver cancer cell lines with wild-type TP53 (SK-Hep1 and Huh6) (red) were seeded at low confluence and grown in the absence or presence of the CDC7 inhibitors LY3177833 or TAK-931 at the indicated concentrations, in long-term colony-formation assays. Cells were fixed, stained and photographed after 10–14 days of culture. c, d, Growth curves (measured by Incucyte live-cell analyses) of liver cancer cell lines with TP53 mutations (Hep3B and Huh7) (blue) and liver cancer cell lines with wild-type TP53 (SK-Hep1 and Huh6) (red) exposed to LY3177833 or TAK-931. Graphs represent mean ± s.d. from four technical replicates. e, f, Liver cancer cells were cultured in the presence of the CDC7 inhibitors LY3177833 or TAK-931 at the indicated concentration for 4 days. SA-β-gal staining revealed that CDC7 inhibitors (LY3177833 or TAK-931) selectively induced senescence in liver cancer cells with TP53 mutations (blue) and not in liver cancer cells with wild-type TP53 (red). g, Liver cancer cell lines with TP53 mutations (Hep3B and Huh7) and liver cancer cell lines with wild-type TP53 (SK-Hep1 and Huh6) were stably transduced with control pLKO vector or with two independent shRNAs that target CDC7 (labelled here shCDC7 #1 and #2) and the efficiency of CDC7 knockdown in liver cancer cell lines was evaluated by western blot. h, Colony-formation assays of liver cancer cell lines with TP53 mutation (blue) and liver cancer-cell lines with wild-type TP53 (red), with and without CDC7 knockdown, were performed. Cells were fixed, stained and photographed after ten days of culture. i, CDC7 knockdown induced senescence in Hep3B and Huh7 cells with TP53 mutations, but not in SK-Hep1 and Huh6 cells, which have wild-type TP53. Senescence was detected by SA-β-gal staining. For gel source images, see Supplementary Fig. 1. Data in a–i are representative of three independent biological experiments.
Extended Data Fig. 4 | Inhibition of CDC7 leads to the accumulation of DNA damage specifically in liver cancer cells with TP53 mutations.

a, b, Western blot analysis of liver cancer cell lines treated with CDC7 inhibitors (LY3177833 or TAK-931) for seven days. Inhibition of CDC7 induces the expression of the DNA-damage marker γH2AX in liver cancer cells with TP53 mutations while lower γH2AX together with functional upregulation of p53 and p21cip1 were observed in TP53 wild-type liver cancer cell lines post-XL413 treatment.

c, Representative neutral-comet-assay images of liver cancer cells with TP53 mutations (Hep3B and Huh7) and liver cancer cells with wild-type TP53 (SK-Hep1 and Huh6) treated with XL413 for seven days. d, Heat map displays fold gene-expression changes (expressed in log2) in cells with wild-type TP53 (BJ and SK-Hep1) and liver cancer cells with TP53 mutations (Hep3B and Huh7) upon treatment with XL413 (10 μM, 4 days). e, GSEA was performed on RNA-sequencing data from Hep3B, Huh7, SK-Hep1 and BJ cells treated with 10 μM XL413 for 4 days; this identified DNA-repair signatures (recombinational repair and Fanconi anaemia pathway) to be significantly different between cells with TP53 mutations and cells with wild-type TP53 (Methods). f, Neutral comet assays were performed on SK-Hep1 and Huh6 cells treated with 20 μM XL413 combined with AZD6738 (ATR inhibitor, 2.5 μM) or MK-8776 (CHK1 inhibitor, 2.5 μM) for 3 days. The value of tail moments in each treatment group were normalized on the basis of the mean value of the control cells (n = 50 cells per cell line and condition). Graphs represent mean ± s.d., analysed with unpaired two-sided Student’s t-test. g, h, H2B–GFP Hep3B and Huh7 cells were cultured in absence or presence of XL413 (10 μM), and time-lapse microscopy was performed over 96 h to measure the length of mitosis. Graphs represent mean ± s.d., n = 30 cells per cell line and condition, analysed with unpaired two-sided t-test.

i, Mouse cell models of liver cancer with different genetic backgrounds (NrasG12V;MycOE;Trp53−/− and NrasG12V;MycOE;Cdkn2a−/−) were exposed to the indicated concentrations of CDC7 inhibitors (XL413, LY3177833 or TAK-931) for seven days in colony-formation assays. j, Western blot analysis of mouse cell models of liver cancer treated with XL413, LY3177833 or TAK-931 for seven days. For gel source images, see Supplementary Fig. 1. Data in a–c, f, g, h are representative of two independent biological experiments. Data in i, j are representative of three independent biological experiments.
Extended Data Fig. 5 | Inhibition of CDC7 induces senescence selectively in cancer cells with TP53 mutations. **a**, Lung-cancer cell lines with TP53 mutations (blue) and lung-cancer cell lines with wild-type TP53 (red) were seeded at low confluence and grown in the absence or presence of XL413 at the indicated concentration for 10–14 days in colony-formation assays. **b**, Lung-cancer cells were exposed to 10 μM XL413 for 4 days, which induces senescence selectively in cells with TP53 mutations (as detected by SA-β-gal staining). **c**, Expression of p53 was assessed in isogenic TP53−/− and TP53+/+ HCT116 colon-cancer cell lines by western blot. **d**, HCT116 TP53+/+ and HCT116 TP53−/− cells were seeded at low confluence and grown in the absence or presence of XL413 at the indicated concentration for seven days in a colony-formation assay, to assess their proliferation capacity. **e**, HCT116 TP53+/+ and HCT116 TP53−/− cells were cultured in the presence of 10 μM XL413 for 4 days, and senescence was selectively induced in TP53−/− HCT116 cells (as detected by SA-β-gal staining). For gel source images, see Supplementary Fig. 1. Data in **a**–**e** are representative of two independent biological experiments.
Extended Data Fig. 6 | Sertraline selectively induces apoptosis in XL413-induced senescent cells through the suppression of mTOR signalling. a, Schematic of the GPCR-compound screen. Huh7 cells were treated with 10 μM XL413 for 5 days before seeding in 96-well plates. All compounds were tested at four concentrations for six days, and cell viability was measured using CellTiter-Blue assay. b, c, Graph depicting the effects of compounds on cell viability. Each point represents a single compound, with per cent activity calculated by dividing the cell viability score in the presence of 5 μM of that compound by the mean viability of the negative control. Blue dots indicate compounds that induce cell death in both control and XL413-induced senescent cells. Sertraline (red dot) induced selective cell death in XL413-induced senescent cells. Representative images of the effects of compounds on XL413-treated and untreated cells are shown. d, Control cells and XL413-induced senescent cells were sequentially cultured with increasing concentrations of sertraline for 48 h and apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay. e, Control and XL413-treated cells were sequentially exposed to 10 μM sertraline, and growth curves were measured by Incucyte live-cell assay. Graphs represent mean ± s.d. from three technical replicates. f, Control and XL413-treated cells were sequentially cultured with vehicle or 10 μM sertraline, and western blot analyses of the indicated proteins of the mTOR signalling pathway were performed. g, Control and XL413-treated cells were treated with vehicle or 10 μM XL413 or vehicle for 5–7 days before sequential treatment with sertraline (10 μM, 24 h), and RNA sequencing was performed. GSEA indicates that the gene set related to downregulation of mTOR signalling was negatively enriched in liver cancer cells that were sequentially treated with XL413 and sertraline (Methods). i, j, Liver cancer cells with TP53 mutations (SNU449 and PLC/PRF/5) and lung-cancer cell lines with TP53 mutations (NCI-H358 and PC9) were treated with 10 μM XL413 or vehicle for 5–7 days, and sequentially exposed to increasing concentrations of AZD8055. Apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay 96 h after treatment with AZD8055. k, Liver cancer cells with TP53 mutations (Hep3B and Huh7) were treated with 10 μM XL413 or vehicle for 7–10 days. Control cells and XL413-induced senescent cells were plated and exposed to increasing concentrations of the mTORC1 and mTORC2 inhibitor AZD2014. Apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay 96 h after treatment with AZD2014. l, Liver cancer cell lines with wild-type TP53 (SK-Hep1 and Huh6) were treated with 10 μM XL413 or vehicle for 5–7 days before exposure to increasing concentrations of AZD8055. m, Control cells and XL413-induced senescent cells were treated with AZD2014 for 48 h. Western blot analysis was performed with the indicated antibodies (left) and the levels of phosphorylated 4EBP1 and phosphorylated eIF4DR1 were normalized to the total levels of 4EBP1 and eIF4DR1, respectively (right); this shows that treatment with AZD2014 leads to strong inhibition of mTOR signalling in XL413-induced senescent cells. For gel source images, see Supplementary Fig. 1. Data in a–f are representative of three independent biological experiments. Data in i–m are representative of two independent biological experiments.
Extended Data Fig. 7 | The activation of RTK feedback that is induced after treatment with AZD8055 is disrupted in XL413-induced senescent cells. a, Control cells and XL413-treated Hep3B cells were treated with AZD8055 for 48 h, and extracted proteins were analysed using a human phosphorylated-RTK array kit (left). The levels of phosphorylated RTK proteins were normalized to positive controls (right). b, The activation of RTKs identified by RTK arrays and the phosphorylation of SHP2 were validated by western blot analyses. c, Hep3B cells were treated with AZD8055 for 48 h before extraction of mRNA, and quantification of the indicated genes for RTK proteins was performed by qRT–PCR. Graph represents mean ± s.d. from three technical replicates. d, Hep3B cells were treated with AZD8055, and cell lysates were collected at the indicated time points to perform western blot analyses with the indicated antibodies. e, Hep3B cells were exposed to increasing concentrations of the AKT inhibitor MK-2206 in combination with AZD8055, and long-term colony-formation assays were performed; this revealed the synergistic effects of these two compounds on cell viability. f, Hep3B cells were treated with AZD8055, MK-2206 or a combination of both compounds at the indicated concentrations for five days, and apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay. For gel source images, see Supplementary Fig. 1. All experiments shown (except for the RTK array analyses) are representative of two independent biological experiments.
Extended Data Fig. 8 | Treatment with AZD8055 does not induce apoptosis in cisplatin- or alisertib-induced senescent cells. a, BJ/ET/RASV12 cells were treated with 100 nM 4-OHT for 21 days to induce senescence, as detected by SA-β-gal staining. b, Control or senescent BJ/ET/RASV12 cells were treated either with vehicle or with 400 nM AZD8055 for 96 h, and apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay. c, Hep3B cells were cultured in the presence of cisplatin or alisertib (aurora-A kinase inhibitor) for 4 days at the indicated concentrations, and the induction of senescence was detected by SA-β-gal staining. d, Hep3B cells were treated with cisplatin (1 μg ml⁻¹) or alisertib (250 nM) for 4 days, and subsequently exposed to vehicle or 400 nM AZD8055 for 96 h. Apoptotic cells were visualized by caspase-3 and caspase-7 apoptosis assay. e, Control cells, or cisplatin-, alisertib- or XL413-induced senescent cells were treated with AZD8055, and cell lysates were collected at the indicated time points. Western blot analyses were performed with the indicated antibodies, which revealed that the mTOR signalling feedback loop is functional in cisplatin- and alisertib-induced senescent cells (whereas it is efficiently inhibited in XL413-induced senescent cells). For gel source images, see Supplementary Fig. 1. Data in a–e are representative of two independent biological experiments.
Extended Data Fig. 9 | Pro-senescence treatment combined with an mTOR inhibitor suppresses tumour growth in liver cancer xenografts. a, Representative images of γH2AX and SA-β-gal staining performed on formalin-fixed, paraffin-embedded or frozen sections from subcutaneous Huh7-tumour xenografts treated with vehicle, XL413, AZD8055 or combination of both for 12 days. b, Representative images of SA-β-gal staining performed on frozen sections from subcutaneous SK-Hep1-tumour xenografts treated either with vehicle or with XL413 for 21 days. c, Tumour-volume measurements in mice bearing Huh7- and MHCC97H-tumour xenografts, treated with vehicle, XL413, AZD8055 or a combination of both, at endpoint (12 days for Huh7 and 22 days for MHCC97H). For sample sizes, see Fig. 4a. One mouse in the vehicle group and one mouse in the XL413 group were excluded from the analysis, because the maximum permitted tumour volumes (2,000 mm3) were reached in these mice before the endpoint of the trial. Graph shows mean ± s.e.m., analysed with two-sided unpaired Student’s t-test. d, e, Longitudinal progression of tumour volume in mice bearing Huh7 and MHCC97H tumours, treated with vehicle or sorafenib for 16 or 22 days; this revealed that sorafenib therapy has limited efficacy in these two xenograft models. Graph shows mean ± s.e.m. f, g, Representative images of haematoxylin and eosin (H & E), PCNA, cleaved caspase-3 and phosphorylated 4EBP1 staining performed on formalin-fixed, paraffin-embedded Huh7 and MHCC97H xenografts from mice killed after the last dose of vehicle, XL413, AZD8055 or a combination of both drugs. Data in a, b, f, g are representative of three independent biological experiments.
Extended Data Fig. 10 | See next page for caption.
Extended Data Fig. 10 | Pro-senescence treatment combined with an mTOR inhibitor suppresses tumour growth in p53-deficient, immunocompetent mouse models of HCC. a, Schematic of hydrodynamic-tail-vein gene delivery of the Myc proto-oncogene transposon system and a CRISPR–Cas9 vector targeting either Trp53 or the Pten tumour suppressor, used to induce models of HCC two to three weeks after HDTVi. b, Quantification of SA-β-gal staining performed on frozen sections from mouse models of MycOE;PtenKO or MycOE;Trp53KO HCC, 14 days after treatment with vehicle or XL413 monotherapy (results from MycOE;Trp53KO HCC are also shown in Fig. 4f). For analyses of MycOE;PtenKO tumours, vehicle-treated, n = 9 biologically independent nodules from 3 mice; XL413-treated, n = 16 biologically independent nodules from 3 mice. For analyses of MycOE;Trp53KO tumours, vehicle-treated, n = 41 biologically independent nodules from 7 mice; XL413-treated, n = 81 biologically independent nodules from 11 mice. Graph shows the mean ± s.e.m. of the number of SA-β-gal+ cells per tumour nodule per mm². Statistics were calculated by two-sided unpaired Student’s t-test. c, Trial design to evaluate the efficacy of the pro-senescence treatment combined with an mTOR inhibitor in mice bearing MycOE;Trp53KO HCC. Mice were monitored by weekly MRI after HDTVi, and enrolled into treatments with vehicle, XL413 (100 mg kg⁻¹, daily gavage), AZD8055 (20 mg kg⁻¹, daily gavage) or XL413 + AZD8055 combination at the first signs of tumour development (revealed by MRI). Drugs were administered six days per week, and mice were killed when they became symptomatic. Immunohistochemical analyses confirmed MYC expression and p53 knockout in endpoint MycOE;Trp53KO HCC. d, Longitudinal individual-body-weight curves from mice bearing MycOE;Trp53KO tumours, treated with the combination of XL413 + AZD8055. e, Individual tumour-growth curves from mice treated with vehicle, XL413, AZD8055 or a combination of both drugs were calculated on the basis of MRI images from mice bearing MycOE;Trp53KO tumours. f, Volumes of MycOE;Trp53KO tumours from mice bearing HCC, treated with vehicle (n = 5, as shown in Fig. 4c), sorafenib (n = 4) or XL413 + AZD8055 (n = 6) at day 0 and day 14. Graphs show mean ± s.e.m., analysed with two-sided unpaired Student’s t-test. g, h, Representative images of SA-β-gal (g) and p16 (h) staining performed on frozen and paraffin-embedded sections, respectively, from mice bearing MycOE;Trp53KO tumours, treated with the indicated drugs and killed at the intermediate time point (14–16 days in time-matched treated cohorts). Quantifications are shown in Fig. 4f, g. Scale bar, 50 μm. i, Mice bearing MycOE;Trp53KO tumours, treated with vehicle, XL413, AZD8055 or a combination of both drugs were killed at the indicated time point after treatment. Tumours were dissociated as single-cell suspensions, and flow cytometry analyses were performed to determine the content of tumour-associated macrophages (CD45+CD11b+Ly6C+Ly6G−), CD8 T cells (CD45+CD3+CD19−NK1.1−CD8+), CD4 T cells (CD45+CD3+CD19−NK1.1+CD4+) relative to total CD45+ leucocytes. Cell proliferation (Ki67+) was determined within CD8 T cells and CD4 T cell populations. Graphs show mean ± s.e.m., analysed with two-sided unpaired Student’s t-test. Sample sizes are given in Methods. j, Mice bearing MycOE;Trp53KO HCC were treated with XL413 (n = 20) or XL413 + AZD8055 combination (n = 8) for 14 days. Among the XL413-treated mice, a subset (n = 10) was killed at 14 days after treatment, concomitantly with the group treated with the combination of drugs. The rest of the XL413-treated mice (n = 10) underwent withdrawal of XL413 for 4 days. The absolute number of senescent cells per tumour nodule were visualized by SA-β-gal staining, performed on frozen sections and quantified for each treatment group (XL413-treated, n = 60 biologically independent nodules from 10 mice; XL413-withdrawn, n = 63 biologically independent nodules from 10 mice; XL413 + AZD8055-treated, n = 57 biologically independent nodules from 7 mice). Graphs show mean ± s.e.m. analysed with two-sided unpaired Student’s t-test. Data in c are representative of three independent biological experiments.