Simultaneous Robot-Assisted Laparoendoscopic Single-Site Partial Nephrectomy and Standard Radical Prostatectomy

Jae Hung Jung,1 Hong Wook Kim,2 Cheol Kyu Oh,3 Jae Mann Song,1 Byung Ha Chung,4 Sung Joon Hong,4 and Koon Ho Rha4

1Department of Urology, Yonsei University Wonju College of Medicine, Wonju; 2Department of Urology, Konyang University College of Medicine, Daejeon; 3Department of Urology, Inje University College of Medicine, Busan; 4Department of Urology, Urological Science Institute, Yonsei University Health System, Seoul, Korea.

INTRODUCTION

In the era of prostate specific antigen (PSA) screening, the incidence of prostate cancer has been increasing in the past decade. Similar to prostate cancer, renal masses are also detected more and more on routine health examination with wide use of abdominal ultrasonography and computed tomography (CT) scan.1-5

With a technological advancement, patients with urologic malignancies have been treated with robot-assisted surgery, and the expanded role of robot-assisted surgery includes even those patients with two concomitant primary urologic malignancies.1,2 In addition, with an effort to reduce the invasiveness, robot-assisted laparoendoscopic single-site surgery (RLESS) has been developed.6

Therefore, we report our early experience and feasibility of simultaneous RLESS partial nephrectomy and standard robot-assisted laparoendoscopic radical prostatectomy (RALP) on 3 patients with synchronous renal masses and prostate cancer.

Key Words: Robot, prostate carcinoma, radical prostatectomy, renal cell carcinoma, nephron-sparing surgery

CASE REPORT

From August 2009 to July 2010, we performed simultaneous RLESS PN and stan-
androgen deprivation therapy before surgery.

Position, port placement, and surgical techniques (Fig. 1). The patient was placed in conventional flanked kidney position with the ipsilateral side elevated during RLESS PN or Trendelenburg position during RALP. In initial cases (1 and 2), we performed RALP first and then 4 cm long incision was made for prostate specimen removal and RLESS PN. In the last case (3), we carried out RLESS PN first. Finishing one procedure, we re-prepared the patient properly according to the next procedure. Port placement strategy and surgical techniques of RLESS PN and RALP were have been described previously.3,6

Results

The characteristics of the 3 patients are listed in Table 1. The median age of the patients was 61 years, and the median body mass index was 24 kg/m². The median renal tumor size was 2.7 cm, and preoperative creatinine levels of all patients were normal. For prostate cancer, the median preoperative PSA was 7.42 ng/mL and Gleason scores were higher than 7 in all patients. These prostate cancers were clinically advanced, and salvage RALP was performed in one patient. The median operation time was 342 minutes, and the median console time was 200 minutes. The median

Table 1. Preoperative Patients Characteristics

Age	BMI	Cormanbidity	Prostate	Kidney			
			PSA (ng/mL)	Gleason score	Clinical stage	Creatinine (mg/dL)	Tumor size (cm)
1	72	28	0.30	8 (5+3)	Salvage	1.1	5.3
2	55	24	7.42	8 (4+4)	T3a	1.0	2.7
3	61	23	61.21	7 (3+4)	T3b	1.0	1.6

BMI, body mass index; PSA, prostate specific antigen; HTN, hypertension; DM, diabetes mellitus.

Table 2. Intraoperative Parameters

Initial procedure	OP time (mins)	Console time (mins)	Warm ischemic time (mins)	EBL (mL) (nephrectomy/prostatectomy)			
	Nephrectomy	Prostatectomy	Nephrectomy	Prostatectomy			
1	Prostatectomy	136	206	78	110	33	150 (50/150)
2	Prostatectomy	123	144	89	111	24	800 (150/650)
3	Nephrectomy	150	330	103	272	35	700 (50/650)

EBL, estimated blood loss; OP, operation.

Table 3. Postoperative Results

Creatinine (mg/dL)	Length of stay (days)	Gleason score	Prostate	Pathologic stage	Kidney	Pathology/stage	Morbidity/mortality
1	1.3	7	0	N	T0N0M0	Clear cell type, grade2/T1	-
2	1.1	7	8 (3+5)	N	T2bN0M0	Clear cell type, grade3/T1	-
3	1.4	13	8 (3+5)	Y	T4aN0M0	Clear cell type, grade2/T1	Ureteral injury
estimated blood loss was 700 mL (Table 2). There was no blood transfusion and no patient required conversion to open surgery. Postoperative results are shown in Table 3. The median length of stay was 7 days. In salvage RALP, pathological T0 disease was noted due to the influence of hormonal therapy and radiotherapy. Positive surgical margin was shown in one patient. There was one case of ureteral injury during RALP, and consequently, ureteroneocystostomy was performed immediately and no further complications developed. The median follow-up was 18 months. As for the kidney tumor, one case was Fuhrman grade 3 renal cell carcinoma, and two cases were grade 2 and all cases were T1 renal cell carcinoma.

DISCUSSION

Robot-assisted surgery has moved into the mainstream of surgical advance. Since being described in 2001 by several centers, RALP is going far beyond the numbers performed by open and laparoscopic prostatectomy. Currently, literatures show that RALP is a safe procedure with favorable oncologic and functional outcomes. In contrast with RALP, however, initial RAPN failed to prove a considerable benefit over traditional open and laparoscopic partial nephrectomy. The surgeon needs highly developed skills over a steep learning curve to perform RAPN because precise dissection of tumor from normal renal parenchyma, repair of the collecting system and hemostasis must be done under a minimal warm ischemia time. Nevertheless, the robot-assisted renal surgery is gradually becoming more common, as safety and feasibility have been reported.

Since Kaouk et al. reported initial experience of partial nephrectomy and radical prostatectomy with LESS, LESS has been used for urologic procedure to reduce morbidity, decrease blood loss, and minimize hospital stay and pain. However, conventional LESS is not ergonomic and triangulation between laparoscopic instruments is limited, but robot-assisted LESS enhanced intraoperative maneuvering. Additionally, LESS port can be useful for specimen retrieval and it is unnecessary to reposition the port based on the laterality of renal tumor compared to standard RAPN. Furthermore, recent report demonstrated that intraoperative frozen section of prostate reduced positive margin rate during radical prostatectomy. We think that intraoperative prostate frozen section can be easily performed via already made LESS port. However, our technique is not strictly single-port due to additional ports for RALP despite of LESS technique. We should investigate further port placement strategy and special robotic instruments.

Concurrent surgery has many potential benefits because it avoids 2 separate procedures. Because patient does not have multiple induction of anesthesia, overall hospitalization, costs, and the number of port placement are minimized, and morbidity associated with anesthesia is reduced. Despite the benefits of concurrent surgery, they have a potential disadvantages, including increased total surgical and anesthesia time as well as prolonged pneumoperitoneum. Although creatinine levels of all patients were eventually decreased within normal range, a postoperative elevation of creatinine levels may be related to prolonged pneumoperitoneum. However, several studies of laparoscopic complications reported that duration of pneumoperitoneum seems to be a significant factor in pulmonary mechanics, but it does not affect overall hemodynamic parameters. In view of the sequence of the procedure, performing RALP prior to RLESS PN may be reasonable because of vulnerability of home-made single port in the process of repositioning of patient. However, surgeons need to consider the level of surgical difficulty for making an order of priority on concurrent surgery. In the present study, we decided to complete RLESS PN first for the last case who needed wide excision and extended lymphadenectomy.

In our series, patients with large renal tumor and advanced prostate cancer were included. RAPN for large renal tumor have shown outcomes comparable to smaller tumors, and RALP in advanced prostate cancer might have benefits for accurate pathological staging, durable local control and long term cancer specific survival. In particular, recent robot assisted salvage prostatectomy was performed as alternative treatment after radiation therapy, similar to the present case study. However, ureteral injury occurred during wide excision to ensure a negative surgical margin in patients with advanced prostate cancer (case 3).

REFERENCES

1. Boncher N, Vricella G, Greene G, Madi R. Concurrent robotic renal and prostatic surgery: initial case series and safety data of a new surgical technique. J Endourol 2010;24:1625-9.
2. Jung JH, Arkoencel FR, Lee JW, Oh CK, Yusoff NA, Kim KJ, et al. Initial clinical experience of simultaneous robot-assisted bilateral partial nephrectomy and radical prostatectomy. Yonsei Med J 2012;53:236-9.
3. Rha KH. Robot-assisted laparoscopic radical prostatectomy. Korean J Urol 2009;50:97-104.
4. Singh I. Robot-assisted laparoscopic partial nephrectomy: current review of the technique and literature. J Minim Access Surg 2009; 5:87-92.
5. Lee DH, Jung HB, Chung MS, Lee SH, Chung BH. The change of prostate cancer treatment in Korea: 5 year analysis of a single institution. Yonsei Med J 2013;54:87-91.
6. Han WK, Kim DS, Jeon HG, Jeong W, Oh CK, Choi KH, et al. Robot-assisted laparoendoscopic single-site surgery: partial nephrectomy for renal malignancy. Urology 2011;77:612-6.
7. Kaouk JH, Goel RK. Single-port laparoscopic and robotic partial nephrectomy. Eur Urol 2009;55:1163-9.
8. Kaouk JH, Goel RK, Haber GP, Crouzet S, Desai MM, Gill IS. Single-port laparoscopic radical prostatectomy. Urology 2008;72: 1190-3.
9. Ye H, Kong X, He TW, Jolis T, Choi K, Lepor H, et al. Intraoperative frozen section analysis of urethral margin biopsies during radical prostatectomy. Urology 2011;78:399-404.
10. Meininger D, Westphal K, Bremerich DH, Runkel H, Probst M, Zwissler B, et al. Effects of posture and prolonged pneumoperitoneum on hemodynamic parameters during laparoscopy. World J Surg 2008;32:1400-5.
11. Patel MN, Krane LS, Bhandari A, Laungani RG, Shrivastava A, Siddiqui SA, et al. Robotic partial nephrectomy for renal tumors larger than 4 cm. Eur Urol 2010;57:310-6.
12. Boorjian SA, Blute ML. Surgical management of high risk prostate cancer: the Mayo Clinic experience. Urol Oncol 2008;26:530-2.
13. Leonardo C, Simone G, Papalia R, Franco G, Guaglianone S, Galuzzi M. Salvage radical prostatectomy for recurrent prostate cancer after radiation therapy. Int J Urol 2009;16:584-6.