Improving Robustness via Disjunctive Statements in Imperative Programming

Keehang Kwon, Sungwoo Hur, and Mi-Young Park

Dept. of Computer Engineering, DongA University Busan 604-714, South Korea
khkwon, swhur, openmp@dau.ac.kr

May 6, 2014

Abstract

To deal with failures as simply as possible, we propose a new foundation for the core (untyped) C, which is based on a new logic called task logic or imperative logic. We then introduce a sequential-disjunctive statement of the form $S : R$. This statement has the following semantics: execute S and R sequentially. It is considered a success if at least one of S, R is a success. This statement is useful for dealing with inessential errors without explicitly catching them.

1 Introduction

Imperative programming is an important modern programming paradigm. Successful languages in this paradigm includes C and Java. Despite much attractiveness, imperative languages have traditionally lacked fundamental notion of success/failure for indicating whether a statement can be successfully completed or not. Lacking such a notion, imperative programming relies on nonlogical, awkward devices such as exception handling to deal with failures. One major problem with exception handling is that the resulting language becomes complicated and not easy to use.

To deal with failures as simply as possible, we propose a new foundation for the core (untyped) C, which is based on a new logic called task logic or imperative logic. The task logic expands the traditional t/f (true/false) so as to include T/F (success/failure). The task logic interprets each statement as T/F, depending on whether it can be successfully completed or not. The premature exit of a statement due to failures can be problematic. To avoid this, we adopt “all-or-nothing” semantics discussed in [3] to guarantee atomicity. Thus, if a failure occurs in the course of executing a statement, we assume that the machine rolls back partial updates.

We can then extend this “logic-based” C with other useful logical operations. To improve robustness, we introduce a sequential-disjunctive statement of the form $S : R$. Here, to avoid complications, we assume that S and R are independent of each other, i.e., no variables appear in both S and R. This statement has the following semantics: execute S and R sequentially. It is considered a
success if at least one of \(S, R \) is a success. This statement generates less exceptions, is easier to succeed, and hence is more robust than other statements. This statement has the effect of reducing the number of exceptions to be dealt with without catching them. It is useful for dealing with inessential errors that can be ignored. For example, the statement \(S: true \) has the effect of erasing all the possible exceptions raised in the course of executing \(S \) so that none of these exceptions can have further interactions with the environment.

We also introduce a choice-disjunctive statement of the form \(S \text{ else } R \) which is a logical version of the \textit{try S catch R} statement. This statement has the following semantics: execute \(S \). If it is a success, then do nothing. If it fails, execute \(R \).

The remainder of this paper is structured as follows. We describe the new language \(C^L \) in the next section. In Section 3 we present some examples. Section 4 concludes the paper.

2 The Language

The language is a subset of the core (untyped) \(C \) with some extensions. It is described by \(G \) - and \(D \) -formulas given by the syntax rules below:

\[
G ::= t \mid f \mid A \mid x = E \mid G; G \mid G \mid G \text{ else } G
\]

\[
D ::= A = G \mid \forall x \; D
\]

In the rules above, \(A \) represents an atomic procedure definition of the form \(p(t_1, \ldots, t_n) \). A \(D \)-formula is called a procedure definition. \(f \) denotes \textit{false} which corresponds to a user-thrown exception.

In the transition system to be considered, \(G \)-formulas will function as the main program (or statements), and a set of \(D \)-formulas enhanced with the machine state (a set of variable-value bindings) will constitute a program.

We will present an operational semantics for this language via a proof theory. The rules are formalized by means of what it means to execute the main task \(G \) from a program \(P \). These rules in fact depend on the top-level constructor in the expression, a property known as uniform provability\cite{5}. Below the notation \(D; P \) denotes \(\{D\} \cup P \) but with the \(D \) formula being distinguished (marked for backchaining). Note that execution alternates between two phases: the goal-reduction phase (one without a distinguished clause) and the backchaining phase (one with a distinguished clause). The notation \(S \text{ sand } R \) denotes the following: execute \(S \) and execute \(R \) sequentially. It is considered a success if both executions succeed. The notation \(\text{not}() \) denotes a failure.

\textbf{Definition 1.} Let \(G \) be a main task and let \(P \) be a program. Then the notion of executing \(\langle P, G \rangle \) successfully and producing a new program \(P' \) – \(\text{ex}(P, G, P') \) – is defined as follows:

1. \(\text{ex}(P, t, P). \) \% True is always a success.
2. \(\text{ex}(\langle A = G_1 \rangle; P, A) \) if \(\text{ex}(P, G_1) \) and \(\text{ex}(D; P, A). \)
3. \(\text{ex}(\forall x D; P, A) \) if \(\text{ex}([t/x]D; P, A). \) \% argument passing
(4) \(\text{ex}(\mathcal{P}, A) \) if \(D \in \mathcal{P} \) and \(\text{ex}(D; \mathcal{P}, A) \). % a procedure call

(5) \(\text{ex}(\mathcal{P}, x = E, \mathcal{P} \uplus \{\langle x, E'\rangle\}) \) if \(\text{eval}(\mathcal{P}, E, E') \). % \(\uplus \) denotes a set union but \(\langle x, V \rangle \) in \(\mathcal{P} \) will be replaced by \(\langle x, E' \rangle \).

(6) \(\text{ex}(\mathcal{P}, G_1; G_2, \mathcal{P}_2) \) if \(\text{ex}(\mathcal{P}, G_1, \mathcal{P}_1) \) sand \(\text{ex}(\mathcal{P}_1, G_2, \mathcal{P}_2) \). % both \(G_1 \) and \(G_2 \) succeed.

(7) \(\text{ex}(\mathcal{P}, G_1 : G_2, \mathcal{P}_2) \) if \(\text{not(ex}(\mathcal{P}, G_1, \mathcal{P}_1)) \) sand \(\text{ex}(\mathcal{P}, G_2, \mathcal{P}_2) \). % only \(G_2 \) succeeds.

(8) \(\text{ex}(\mathcal{P}, G_1 : G_2, \mathcal{P}_2) \) if \(\text{not(ex}(\mathcal{P}, G_1, \mathcal{P}_1)) \) sand \(\text{not(ex}(\mathcal{P}, G_2, \mathcal{P}_2)) \). % only \(G_1 \) succeeds.

(9) \(\text{ex}(\mathcal{P}, G_1 else G_2, \mathcal{P}_1) \) if \(\text{ex}(\mathcal{P}, G_1, \mathcal{P}_1) \) sand \(\text{ex}(\mathcal{P}, G_2, \mathcal{P}_2) \).

(10) \(\text{ex}(\mathcal{P}, G_1 else G_2, \mathcal{P}_1) \) if \(\text{ex}(\mathcal{P}, G_1, \mathcal{P}_1) \) sand \(\text{ex}(\mathcal{P}, G_2, \mathcal{P}_2) \).

If \(\text{ex}(\mathcal{P}, G, \mathcal{P}_1) \) has no derivation, then the machine returns \(F \), the failure. For example, \(\text{ex}(\mathcal{P}, f, \mathcal{P}_1) \) is a failure because it has no derivation.

3 Examples

So far, we have considered only one kind of failures. In reality, there are many kinds of failures in imperative programming. Thus, we need to expand \(f \) to include \(f(e) \) for a user-thrown exception \(e \). The notion of exception trees [4] is then useful to organize failures, similar to a file system in Unix and similar to an exception class in Java. Below we assume that the machine returns an exception tree stored in \(\text{Failtree} \) rather than just \(F \). We also assume that \(/F \) is the root directory of \(\text{Failtree} \) and \(/F/usr \) is the directory for user-thrown failures. An exception can be derived from the parent exception. Exception trees allow the programmer to select to deal with failures at varying degrees of specificity. An example of the use of this construct is provided by the following program which contains some basic file-handling rules.

```
main
  openfile(); readline()
else
  case Failtree of
    /F/sys : . . .
    /F/usr/EOF : . . ;
  x = factorial(4)
  readline() = (read() ≠ -1); . . . else f(EOF)
```

Our language makes it possible to simplify the program if some statements are inessential. For example, the following program explicitly tells the machine that the statement \(\text{openfile(); readline()} \) is inessential and optional and thus it is OK not to perform the statement if it fails.
main
(open file(); read file()) :
 x = factorial(4)
read file() = (read() ≠ −1); ... else f(EOF)

4 Conclusion
In this paper, we have considered an extension to the core C with disjunctive statements. This extension allows statements of the form S : R where S, R are statements. These statements are particularly useful for dealing with inessential statements.

5 Acknowledgements
This work was supported by Dong-A University Research Fund.

References
[1] G. Japaridze, “Introduction to computability logic”, Annals of Pure and Applied Logic, vol.123, pp.1–99, 2003.
[2] G. Japaridze, “Sequential operators in computability logic”, Information and Computation, vol.206, No.12, pp.1443-1475, 2008.
[3] C. Fetzer and P. Felber, “Improving Program Correctness with Atomic Exception Handling”, Journal of Universal Computer Science, vol.13, no.8, pp.1047–1072, 2007.
[4] P. Buhr and W. Bok, “Advanced Exception Handling Mechanisms”, IEEE Transactions on Software Engineering, vol.26, no.9, pp.1–15, 2000.
[5] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform proofs as a foundation for logic programming,” Annals of Pure and Applied Logic, vol.51, pp.125–157, 1991.