Pharmacometric Approaches to Guide Dose Selection of the Novel GPR40 Agonist TAK-875 in Subjects With Type 2 Diabetes Mellitus

H Naik, J Lu, C Cao, M Pfister, M Vakilynejad and E Leifke

The G-protein-coupled receptor 40 agonist (GPR40) TAK-875 is being developed as an adjunct to diet and exercise to improve glycemic control in patients with type 2 diabetes mellitus. Pharmacometric approaches such as model-based exposure-response and meta-analyses were applied to (i) characterize exposure/dose–efficacy responses of TAK-875, (ii) characterize the time course of glycosylated hemoglobin A1c (HbA1c) response with TAK-875 6.25 to 200 mg q.d. doses for 12 weeks, (iii) project and compare HbA1c response with dipeptidyl peptidase 4 (DPP-4) inhibitors and TAK-875 up to 24 weeks, and (iv) provide a quantitative rationale for dose selection in phase 3. On the basis of phase 2 data, relationships between TAK-875 concentrations and HbA1c were well characterized by exposure–response models. EC50 and Emax of TAK-875 were estimated to be 3.16 µg/ml and 0.366, respectively. Model-based simulations over 24 weeks indicated that the 25- and 50-mg q.d. doses of TAK-875 achieve efficacy as comparable with or better than that of commonly used antidiabetic agents.

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e22; doi:10.1038/psp.2012.23; advance online publication 9 January 2013
also included for PK-efficacy analysis. This population PK-efficacy analysis used 2,710 FPG and 1,381 HbA1c samples collected from 346 patients with T2DM. The overall population was predominantly Caucasian (82.4%), with mean age 52 years (range 21–79) and mean body weight 86.0 kg (range 49.5–172.7). Subject demographics and covariates are summarized in Table 1.

PK analysis

A two-compartment model (Supplementary Data online, control stream 3) with first-order absorption and elimination well described the exposure data (Figure 1). Interindividual variability (IIV) was estimated only for oral clearance (CL/F). Following covariate analysis, sex was identified as a statistically significant covariate for TAK-875 CL/F as described in the following equation.

\[
CL/F = 0.752 + 0.308 \times \text{sex}
\]

\[(\text{sex} = 1 \text{ for male and } 0 \text{ for female})\]

Males appear to have higher clearance as compared with females (Figure 2). Inclusion of sex as a covariate for CL/F of TAK-875 reduced the objective function value and IIV for CL/F in the final model by 14.52 and 7.6% coefficient of variation units, respectively. The parameter estimates along with their associated precisions (% relative standard error for the final PK model for TAK-875) are presented in Table 2.

Exposure-efficacy response analysis

The effect of TAK-875 on FPG was well characterized by an indirect response model (Supplementary Data online, control stream 2) with stimulation of K_{out} (first-order rate constant for elimination of glucose). IIV was estimated for the model predicted baseline (BL) and E_{max}. The parameter estimates and their associated precision for the final FPG model for TAK-875 are presented in Table 2. Estimated E_{max} of TAK-875 increased exponentially with observed baseline FPG (BFPG) whereas it increased linearly with increasing
aspartate aminotransferase (AST) levels as described in the following equation:

\[
E_{\text{max}} = 0.366 \times \exp (0.00746 \times (\text{BFPG} - 163.5)) + 0.00731 \times (\text{AST} - 21)
\]

(2)

The identified covariates (BFPG and AST) reduced the objective function value and IIV for \(E_{\text{max}}\) in the final model by 49.3 and 18.5% coefficient of variation units, respectively.

The relationship between FPG and HbA1c was implemented in the HbA1c model (Supplementary Data online, control stream 1) to describe the time course of HbA1c (Supplementary Figure S2 online). An exponential placebo model with factor for maximum placebo response (MPL) was included in the model to empirically account for the effect of placebo on HbA1c levels observed in this short-term (12 weeks) trial. Due to the short trial duration, the half-life of MPL was fixed to the value (720 h) observed based upon the graphical analysis of data. IIV was estimated for the BL for HbA1c (BLA1), \(K_{A1C}\), and MPL with a covariance term between MPL and \(K_{A1C}\). The parameter estimates and their associated precision for the final HbA1c model for TAK-875 are presented in Table 2.

The identified covariates (BFPG, sex, and disease duration in years (DD)) reduced the IIV for BLA1, \(K_{A1C}\), and MPL in the final model by 3.2, 29.8, and 7.9% coefficient of variation units as compared with the base model without any covariates. BFPG was added as a covariate for the predicted HbA1c baseline during model refinement step. The relationship between identified covariates and efficacy parameters is presented in the equations below.

\[
\text{BLA1} = (8.32 + 0.0133 \times (\text{DD} - 4.61)) \times \exp (0.00181 \times (\text{BFPG} - 163.5))
\]

(3)

\[
\text{MPL} = 0.0590 + 0.0363 \times (\text{sex})
\]

(4)

The magnitude of the covariate effect on PK and efficacy parameters of TAK-875 are presented in Figure 2. Standard diagnostic plots for the developed population PK and efficacy models are shown in Supplementary Figure S3 online. Results of bootstrap evaluations and visual predictive check supported the robustness and predictive ability of the PK and efficacy models (Figure 3a,b, Table 2).

Simulations outcome

Simulation performed based on the developed population PK-efficacy model predicted mean reductions in HbA1c

![Figure 1](image1.png)
Figure 1 Population pharmacokinetics-efficacy model for TAK-875. GI, gastrointestinal; HbA1c, glycosylated hemoglobin A1c.

![Figure 2](image2.png)
Figure 2 Tornado Plot of covariate effects on pharmacokinetics and efficacy parameters of TAK-875. The reference line represents the typical subject in this population: a 52-year-old female subject with AST level of 21U/L, BFPG of 163.5 mg/dl and having diabetes for 4.61 years. Extreme values represent 5th and 95th percentile value observed for a covariate in this phase 2 study. AST, aspartate aminotransferase; BFPG, baseline fasting plasma glucose; DD, disease duration.
levels from baseline following administration of 25 mg q.d. dosing as −0.94% (observed value = −0.84%) and −1.24% at the end of 3 and 6 months, respectively. Predicted reductions from baseline HbA1c following 50 mg q.d. dosing were −1.16% (observed mean value = −1.05%) and −1.51% at the end of 3 and 6 months, respectively.

Model-based meta-analysis

With the model-based meta-analysis, time-response curves for DPP-4 inhibitors (therapeutic doses), gliperseide (therapeutic dose of 4 mg), and TAK-875 (selected therapeutic dose of 50 mg) were projected up to 24 weeks (Figure 4a); and dose–efficacy response curves for DPP-4 inhibitors and TAK-875 were characterized. Results indicated that therapeutic doses of DPP-4 inhibitors are associated with ~80–90% of maximum effect on HbA1c, whereas 50 mg of TAK-875 is expected to produce ~85% of maximum effect on HbA1c (Figure 4b).

DISCUSSION

One purpose of our analysis was to develop a population PK-efficacy model to describe the time course of TAK-875 plasma concentrations and FPG and HbA1c levels following oral 6.25–200 mg q.d. doses in patients with T2DM for 12 weeks. Furthermore, the main objective of the present analysis was to provide a quantitative rationale for selection of doses for phase 3 trial using two pharmacometric approaches.

The disposition kinetics of TAK-875 in patients with T2DM was best described using a PK model with first-order absorption and elimination processes. One- and two-compartment models were evaluated, with the latter PK model resulting in lower objective function value and Akaike Information Criterion values with substantially improved diagnostic plots. However, the two-compartment base PK model showed signs of instability during the bootstrap evaluation, which could indicate model over-parameterization. The model parameters describing the absorption and distribution of TAK-875 could not be precisely estimated because of the sparse sampling in this phase 2 study. It was also determined that the model was not sensitive to the particular values of intercompartmental clearance (Q/F), peripheral volume of distribution (V3/F), and first-order absorption rate constant (K). Therefore, these parameters were fixed to values estimated in an earlier population PK analysis performed using frequently collected PK samples in a multiple rising dose study in patients with T2DM. Although potential for nonlinearities in the PK model (e.g., Michaelis–Menten elimination) was not tested, the lack of bias in the diagnostic plots suggested that a linear PK model adequately described the data and that TAK-875 exhibited linear PK over the evaluated dose range. Furthermore, approximate dose proportionality was previously demonstrated for TAK-875 following oral administration of 25–800 mg single doses in healthy subjects and 25–400 mg once-daily oral doses for 14 days in patients with T2DM. PK parameters of TAK-875 were also constant over time after multiple administrations of 200 and 400 mg doses in healthy subjects. These data together further support the appropriateness of considering a linear PK model for TAK-875.

Among baseline characteristics, only sex was identified as a statistically significant covariate on the CL/F of TAK-875, with ~41% higher clearance in males (1.1 l/h) than in females (0.75 l/h). The estimated CL/F value for males in this study is consistent with the CL/F of 0.9–1.7 l/h previously observed in healthy subjects. TAK-875 primarily undergoes phase 2 metabolism via glucuronide conjugation. The results of this covariate analysis for PK of TAK-875 are not unexpected, given that higher glucuronidation activity in males...
has previously been reported for drugs mainly metabolized by glucuronidation.11,12 On the basis of the simulations, males has previously been reported for drugs mainly metabolized for the HbA1c using final pharmacokinetics-efficacy model. FPG, fasting plasma glucose; HbA1c, glycosylated hemoglobin A1c.

Figure 3

(a) Visual predictive check for the fasting plasma glucose using final pharmacokinetics-efficacy model. FPG, fasting plasma glucose; HbA1c, glycosylated hemoglobin A1c.

(b) Visual predictive check for the HbA1c using final pharmacokinetics-efficacy model. FPG, fasting plasma glucose; HbA1c, glycosylated hemoglobin A1c.

The covariate analysis for TAK-875 PD parameters identified observed BFPG and AST for \(E_{\text{max}} \) as statistically significant covariates. The effect of BFPG on TAK-875 \(E_{\text{max}} \) is consistent with the strong correlation between BFPG and \(E_{\text{max}} \) observed for many antidiabetic drugs15-17; the higher the baseline for FPG, the greater was the magnitude of TAK-875 response. On the basis of simulations over 12 weeks, the changes in FPG and HbA1c levels from baseline were \(-62\) mg/dl and \(-1.79\)%, respectively, for a subject with observed BFPG value of 100 mg/dl (5th percentile). By contrast, the changes in FPG and HbA1c levels from baseline were \(-8.5\) mg/dl and \(-0.62\)%, respectively, for a subject with observed BFPG value of 262 mg/dl (95th percentile). The effect of AST on \(E_{\text{max}} \) of TAK-875 was mainly driven by seven outliers with AST levels \(\geq 70\) U/l at baseline. On removal of these seven patients, baseline AST did not have statistically significant effect on \(E_{\text{max}} \) of TAK-875 (\(P \) value \(\geq 0.005 \)).
Disease duration had no significant effect as a covariate on PK or efficacy parameters if controlled for BLA1. However, this may be due in part to the limited range of disease duration in the study population (0.39–14.75 years from diagnosis). No differences in efficacy parameters were observed for sex. This supports our interpretation that the difference found for PK between males and females is minor and not relevant to the PD effect of TAK-875.

Of note, none of the comedications evaluated (metformin, statins, aspirin, and angiotensin-converting enzyme inhibitors) had a statistically or clinically significant effect on PK and efficacy parameters of TAK-875. This further indicates the limited potential for drug–drug interactions between TAK-875 and these drugs based on various TAK-875 interaction studies (data not shown). The lack of effect of metformin on the PD profile of TAK-875 can be attributed to the fact that patients were already on metformin treatment before entering this study.

On the basis of the simulation of HbA1c levels for 24 weeks, the predicted placebo-adjusted mean reductions in HbA1c levels from baseline to the end of 6 months were −0.80 and −1.06% for 25- and 50-mg doses of TAK-875, respectively (Supplementary Figure S4 online). Therefore, TAK-875 50-mg q.d. dosing is expected to cause a decrease in HbA1c level from baseline as comparable with that of sulfonylureas (0.9–2%) and potentially greater than that of DPP-4 inhibitors. Of note, none of the comedications evaluated (metformin, statins, aspirin, and angiotensin-converting enzyme inhibitors) had a statistically or clinically significant effect on PK and efficacy parameters of TAK-875. This further indicates the limited potential for drug–drug interactions between TAK-875 and these drugs based on various TAK-875 interaction studies (data not shown). The lack of effect of metformin on the PD profile of TAK-875 can be attributed to the fact that patients were already on metformin treatment before entering this study.

Figure 4 (a) Predicted mean changes in placebo adjusted HbA1c up to 24 weeks for the 50 mg dose of TAK-875, the 4 mg dose of glimeperide and the therapeutic doses of DPP-4 inhibitors (linagliptin 5 mg, saxagliptin 2.5 mg, sitagliptin 100 mg, and vildagliptin 100 mg). Shaded area shows the range of mean HbA1c responses for the four DPP-4 inhibitors. (b) Dose–response curves for TAK-875 and DPP-4 inhibitors (reference drug class). Doses are shown as % of maximum clinically tested dose (i.e., highest clinically tested dose is 100%). Drug effect is shown as % of maximum drug effect on HbA1c (% E_max) at week 24. Shaded area shows range of % E_max associated with therapeutic doses. Vertical lines delimit range of therapeutic doses. Dashed lines delimit range of dose response curves for DPP-4 inhibitors. DPP-4, dipeptidyl peptidase 4; HbA1c, glycosylated hemoglobin A1c.

The following limitations should be considered for the empirical model presented. (i) The effect of TAK-875 on HbA1c levels did not reach plateau by month 3 in the present phase 2 study; therefore, the projection beyond 12 weeks may be slightly over or under estimated; (ii) a substantial proportion of subjects on placebo needed rescue medication for glycemic control and were excluded from this analysis after the start of the rescue medications. As a result, the placebo response was not implemented in the PK-FPG model; (iii) the developed model assumes that BFPG and HbA1c are at steady state at the time of randomization which may not be true slightly biasing overall simulated response; and (iv) a caution should be exercised for the projection on durability of TAK-875 response and extrapolation of placebo response beyond 12 weeks due to the short duration of current phase 2 trial. The model will be further optimized, if necessary, once long-term data are available from phase 3 trial to evaluate the accuracy of the prediction using the current model and assumptions considered during the development of the model.

Applying a model-based meta-analysis approach, projected HbA1c response with TAK-875 at the selected therapeutic dose of 50 mg was consistent with that based on the exposure-efficacy response analysis. Results indicated that 50 mg of TAK-875 is expected to produce a potentially greater HbA1c response than DPP-4 inhibitors and a response similar to that of sulfonylureas after 24 weeks of treatment. Furthermore, characterized dose–response curves indicated that 50 mg of TAK-875 is expected to produce ~85% of maximum effect on HbA1c, which is consistent with values associated with therapeutic doses of DPP-4 inhibitors (~80–90% of maximum effect on HbA1c).

In conclusion, findings from pharmacometric analyses provided a quantitative rationale for dose selection of 25 and 50
mg q.d. TAK-875. Both doses will be evaluated in the future clinical phase 3 program.

METHODS

Study design. Data used here were obtained from a phase 2, randomized, double-blind, placebo- and active comparator-controlled, parallel-group, multicenter study.\(^7\) The study was conducted to evaluate the efficacy, safety, and tolerability of TAK-875 q.d. treatment in patients with T2DM who were inadequately controlled on a stable dose of metformin as monotherapy for at least 8 weeks before screening, or who had been without chronic antidiabetic therapy within 8 weeks before screening with an 8-week documented diet and exercise plan. Eligible patients were randomized to seven treatment groups (Figure 5). The study was conducted in accordance with the guidelines on Good Clinical Practice and with the Ethical Standard for Human Experimentation established by the Declaration of Helsinki. The protocol and amendments were reviewed and approved by the Institutional Review Board.

Sample collection. Four blood samples (two trough and two nontrough, 4 ml each) were collected from each subject at two separate occasions at visit 7 (week 4) and visit 8 or 9 (week 6 or 8) for quantitation of TAK-875 steady-state plasma concentrations. TAK-875 plasma concentrations were measured using a validated ultra-performance liquid chromatography coupled with tandem mass spectrometry analysis.\(^7\) FPG and HbA1c samples were collected from all patients at screening, baseline, day 7 (only FPG), day 14 (only FPG), and weeks 4, 6 (only FPG), 8, 10 (only FPG), and 12. FPG and HbA1c levels were measured using a standard laboratory method in a Clinical Laboratory Improvement Act (CLIA) certified central laboratory. Plasma pharmacokinetic, FPG, and HbA1c data collected from subjects on glimepiride were not included in the analysis.

Pharmacokinetic software. NONMEM software version VII, level 1.0 (ICON Development Solutions, Ellicott City, MD) was used for nonlinear mixed–effect population PK-efficacy modeling.\(^2\) NONMEM output was accessed through KIWI graphical interface (Cognigen Corporation, Buffalo, NY), Xpose version 4.0 (Uppsala University, Uppsala, Sweden) was used for generalized additive modeling analysis. Model-based meta-analyses and graphical plots were generated using S-PLUS version 8.0 (Tibco Software, Palo Alto, CA), Microsoft Excel 2007, and R version 2.12.1 (The R Foundation for Statistical Computing, Vienna, Austria).

Exposure-efficacy models. Population PK and efficacy analyses for TAK-875 were conducted using ADVAN4 TRANS4 (PK) or ADVAN6 TRANS1 (PK-efficacy) subroutines and first-order conditional estimation with \(\eta\)-interaction method as implemented in NONMEM VII.\(^2\) Selection of base and final models was guided by the minimum objective function value, Akaike Information Criterion, visual inspection of diagnostic plots, and the precision of parameter estimates.

One- and two-compartment models with first-order absorption and linear elimination were evaluated as base structural PK models. Efficacy models were developed to characterize the time course of FPG and HbA1c levels. A semimechanistic indirect response model,\(^30,31\) with stimulation of \(K_{\text{out}}\) (first-order rate constant for removal of fasting glucose) as depicted in Figure 1 and described in differential equations below was used to describe changes in FPG following administration of TAK-875.

\[
d\text{FPG} \over dt = K_i - K_{\text{out}} \times (1 + S) \times \text{FPG}
\]

\[
S = \frac{E_{\text{max}} \times \text{Cp}}{EC_{50} + \text{Cp}} \quad \text{BL} = \frac{K_{\text{in}}}{K_{\text{out}}}
\]

where \(K_i\) is the zero order rate constant for the production of FPG, \(E_{\text{max}}\) is the maximum effect of TAK-875 on the removal of FPG, \(EC_{50}\) is TAK-875 concentration resulting in the 50% of maximum reduction in FPG levels from baseline, BL is model predicted baseline for FPG, and Cp is the concentration of TAK-875 following administration of different doses of TAK-875. Changes in HbA1c were modeled secondary to changes in FPG and the relationship between FPG and HbA1c was implemented in the PK-efficacy model\(^15\) as depicted in Figure 1 and described in the equation below:

\[
d\text{HbA1c} \over dt = K_{\text{in}} \times \text{FPG} - \text{HbA1c} \times K_{\text{out}}
\]

\[
\text{BLA} = \frac{K_{\text{in}} \times \text{BL}}{K_{\text{out}}}
\]

\(K_{\text{in}}\) is the first-order rate constant for the production of HbA1c, BLA is model predicted baseline for HbA1c, and \(K_{\text{out}}\) is the first-order rate constant for removal of HbA1c. On the basis of the graphical analysis, a consistent reduction in HbA1c levels was observed in patients who were on placebo. As a result, a placebo factor (PLAC), as defined by the equation below, was included in the differential equation to account for the effect of lifestyle intervention or placebo on HbA1c levels.

\[
\text{PLAC} = 1 - \text{MPL} \times (1 - e^{-\left(\text{HL/2}\right) \times \text{time}})
\]

\[
\text{dHbA1c} \over dt = K_{\text{in}} \times (\text{PLAC}) \times \text{FPG} - \text{HbA1c} \times K_{\text{out}}
\]

where HL is the half-life of MPL, the maximum placebo response, and PLAC refers to overall placebo effect. IVT associated
with PK and efficacy parameters of TAK-875 was modeled assuming a log-normal distribution.

\[P_i = P_{\text{pop}} \times \exp(\eta_i) \]

(9)

where \(P_i \) is the estimated parameter value for individual \(i \), \(P_{\text{pop}} \) represents the typical population estimate for the parameter, and \(\eta_i \) is the deviation of \(P_i \) from \(P_{\text{pop}} \). A diagonal covariance matrix was implemented for PK and PK-FPG analyses whereas a block matrix was implemented for the HbA1c analysis.

Residual variability was modeled using a proportional error term for PK (non log-transformed TAK-875 plasma concentration) and a log-normal error term (additive on log-transformed scale) for PK-FPG and HbA1c analyses. Only clinically relevant and biologically plausible covariate–parameter relationships were explored in the covariate analysis. In addition, comedications taken by more than 10% of the patient population during 80% of the trial period were also evaluated in the covariate analysis. Potential covariates identified by generalized additive modeling and graphical analysis (plot of \(\eta_i \) vs. covariate) were then tested using stepwise forward addition for each trial.35–37 Dose–response relationships for randomized treatments were characterized as follows:

\[g(x) = \frac{E_{\text{max, class}}(t) \cdot \text{Dose}_i}{\text{Dose}_i + \text{ED}_{50, \text{drug}}} \]

(11)

where \(E_{\text{max, class}}(t) \) is the maximal drug effect, reflecting the maximal reduction in placebo-adjusted HbA1c (i.e., difference in response between placebo and active treatment) at a given time \(t \).35–37 A different \(E_{\text{max}} \) was estimated for DPP-4 inhibitors (class effect), glimepiride, and TAK-875. This assumption was tested by allowing for a different \(E_{\text{max}} \) for each DPP-4 inhibitor. Dose is the total daily dose and \(\text{ED}_{50} \) is the dose to achieve 50% of \(E_{\text{max}} \). A different \(\text{ED}_{50} \) was estimated for each drug.

Factors such as background treatment and baseline HbA1c were included as covariates on the parameter \(E_{\text{max}} \) in the model. Additional random between-treatment heterogeneity in the relative effect between arms was accounted for by the trial-specific model parameters that were assumed to be normally or log-normally distributed with between-trial variance \(\Omega \). Model selection was based on a Log likelihood ratio test and the confidence interval of the parameter estimate at an acceptance \(P \) value of 0.01. Confidence intervals of the parameter estimates were derived from the variance matrix of the parameter estimates.35,36

For DPP-4 inhibitors, both apparent onset and durability of drug-related effects on HbA1c were estimated. For TAK-875 (due to lack of long-term data), only the onset effect on HbA1c was estimated. To take a conservative approach, the "offset" of TAK-875 related effects (i.e., the durability of TAK-875-related effects) on HbA1c was assumed to be the same as that of DPP-4 inhibitors.37

Simulations for projection and comparison of long-term efficacy. The final PK and efficacy models were used to perform simulations to predict TAK-875, FPG, and HbA1c concentrations following administration of 25- and 50-mg q.d. doses of TAK-875 over a period of 6 months (24 weeks). The simulations were used to support dose selection for future studies and also to compare the efficacy of TAK-875 with currently approved pharmacological T2DM therapies. The simulations were performed using a population of 1,000 patients receiving 25- and 50-mg multiple q.d. doses of TAK-875. These sets of simulations assumed durability of efficacy responses beyond 12 weeks, which was the duration of this clinical trial used to generate data utilized to develop PK and efficacy models for TAK-875.

The developed meta-analysis model for HbA1c utilizing publicly available clinical trial outcomes data was also used to project time-response curves for DPP-4 inhibitors (reference drug class) and TAK-875 at the selected therapeutic dose of 50 mg up to 24 weeks. Baseline HbA1c was set to 8.5%, i.e., the baseline value observed in the phase 2 study.10 A time-response curve for DPP-4 inhibitors (drug class) at therapeutic doses was projected up to 24 weeks (linagliptin 5 mg, saxagliptin 2.5 mg, sitagliptin 100 mg, and vildagliptin 100 mg). In addition, dose–efficacy response curves of DPP-4 inhibitors (reference drug class) and TAK-875 were also characterized.
Acknowledgments. Funding for this study was supported by Takeda Pharmaceuticals North America, Inc. This study was supported by Takeda Global Research & Development Center, Inc., Deerfield, IL.

Author contributions. M.V., H.N., C.C., M.P., and E.L. wrote the manuscript; M.V., H.N., and E.L. designed the research; M.V., H.N., J.L., and E.L. performed the research; M.V., H.N., J.L., C.C., M.P., and E.L. analyzed the data.

Conflict of interest. H.N., E.L., C.C., and M.V. are employees of Takeda Global Research & Development Center, Inc., Deerfield, IL; J.L. and M.P. are employees of Quantitative Solutions, Inc., Bridgewater, NJ.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
GPR40 or free fatty acid receptor 1, expressed in pancreatic β, has become a drug target for treatment of T2DM. GPR40 agonists increase glucose-stimulated insulin secretion and have demonstrated beneficial effects in various preclinical models of T2DM. TAK-875 is a novel and first GPR40 agonist in phase 3 clinical development. TAK-875 produces a similar glucose-lowering effect as sulphonylureas with a considerably lower potential for hypoglycemia.

WHAT QUESTION DID THIS STUDY ADDRESS?
The analysis describes the pharmacometric approaches that guided the selection of TAK-875 dose for phase 3 studies in patients with type 2 diabetes.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
This analysis demonstrates the importance of pharmacometric approaches for rational therapeutic drug selection for phase 3 trial.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS?
The analysis presented emphasizes the importance of model-based drug development approach for the clinical development of drugs. The pharmacometric approaches implemented in this analysis provided a quantitative rationale for the dose selection and a comparative analysis to compare the efficacy of TAK-875 with marketed product (DPP4i).

1. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).
2. National Diabetes Statistics, 2007. National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Publication No. 08-2892. 2008.
3. American Diabetes Association. National Diabetes Fact Sheet. 2011. <http://www.diabetes.org/in-my-community/local-offices/miami-florida/assets/files/national-diabetes-fact-sheet.pdf> (2011), Accessed 1 March 2012.
4. Saydah, S.H., Fradkin, J. & Cowie, C.C. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 291, 335–342 (2004).
5. Negoro N. et al. Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med. Chem. Lett. 1, 293–294 (2010).
6. Tsujihata, Y. et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 332, 228–237 (2011).
7. Naik, H. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40 agonist TAK-875: results from a double-blind, placebo-controlled single oral dose rising study in healthy volunteers. J. Clin. Pharmacol. 52, 1007–1016 (2012).
8. Matsuno K., Hirayama M., Araki T., Dote N., Kondo T. & Nakamura K. Pharmacokinetics, safety and tolerability of single and multiple doses of TAK-875, a novel GPR40 agonist, in Japanese healthy male subjects. Diabetes 59, A193 (2010).
9. Leiffe, E. et al. A multiple-ascending-dose study to evaluate safety, pharmacokinetics, and pharmacodynamics of a novel GPR40 agonist, TAK-875, in subjects with type 2 diabetes. Clin. Pharmacol. Ther. 92, 29–39 (2012).
10. Burant, C.F. et al. TAK-875 versus placebo or glipepride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379, 1403–1411 (2012).
11. Tanaka, E. Gender-related differences in pharmacokinetics and their clinical significance. J. Clin. Pharm. Ther. 24, 339–346 (1999).
12. Greeneblatt, D.J. & von Mollee, L.L. Gender has a small but statistically significant effect on clearance of CYP3A substrate drugs. J. Clin. Pharmacol. 48, 1355–1355 (2008).
13. Wang, J., Hamrén, B., Svensson, M.K. & Karlsson, M.O. A model for glucose, insulin, and beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes. J. Clin. Pharmacol. 50, 861–872 (2010).
14. de Winter, W. et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliptazide on disease processes underlying Type 2 Diabetes Mellitus. J. Pharmacokin. Pharmacodyn. 33, 313–334 (2006).
15. Rotagati, S. et al. Model-based development of a PPARγ agonist, rivoglitazone, to aid dose selection and optimize clinical trial designs. J. Clin. Pharmacol. 48, 1420–1429 (2008).
16. Marino, M.T. et al. Pharmacokinetics and pharmacodynamics of inhaled GLP-1 (MKC253): proof-of-concept studies in healthy normal volunteers and in patients with type 2 diabetes. Clin. Pharmacol. Ther. 88, 243–250 (2010).
17. Frey, N., Lavelle, C., Paraire, M., Francillard, M., Holford, N.H. & Jochemsen, R. Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br. J. Clin. Pharmacol. 53, 147–157 (2003).
18. Verma, M., Paneri, S., Bad, P. & Raman, P.G. Effect of increasing duration of diabetes mellitus type 2 on glycated hemoglobin and insulin sensitivity. Indian J. Clin. Biochem. 21, 143–148 (2009).
19. Rodbard, H.W. et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocrinol. Pract. 13(suppl. 1), 1–68 (2007).
20. Nathan, D.M. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32, 193–203 (2009).
21. Schade, D.S., Jovanovic, L. & Schneider, J. A placebo-controlled, randomized study of gliclazide in patients with type 2 diabetes mellitus for whom diet therapy is unsuccessful. J. Clin. Pharmacol. 38, 636–641 (1998).
22. Simonson, D.C., Kourides, I.A., Feinglos, M., Shamon, H. & Fischette, C.T. Efficacy, safety, and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM. Results of two multicenter, randomized, placebo-controlled clinical trials. The Glipizide Gastrointestinal Therapeutic System Study Group. Diabetes Care 20, 597–606 (1997).
23. Amary [package insert]. Bridgewater, NJ: Sanofi-Aventis, 2012.
24. Raz, I., Hanefeld, M., Xu, L., Caria, C., Williams-Herman, D. & Khatami, H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49, 2564–2571 (2006).
25. Rosenstock, J., Aguilar-Salinas, C., Klein, E., Ncald, S., List, J. & Chen, R. Effect of saxagliptin monotherapy in treatment-naive patients with type 2 diabetes. Curr. Med. Res. Opin. 25, 2401–2411 (2009).
26. Lukashevich, V., Schweizer, A., Shao, Q., Gropp, P.H. & Kothny, W. Safety and efficacy of vildagliptin versus placebo in patients with type 2 diabetes and moderate or severe renal impairment: a prospective 24-week randomized placebo-controlled trial. Diabetes Obes. Metab. 13, 947–954 (2011).
27. Onygoza [package insert]. Prinston, NJ: Bristol-Myers Squibb Company, 2011.
28. Januńia [package insert]. Whitehouse Station, NJ: Merck & Co, 2012.
29. Nomenclature, NONMEM Users’ Guide: Introduction to NONMEM 7. (ICON Development Solutions, Ellicott City, MD, 2010).
30. Landersdorfer, C.B. & Jusko, W.J. Pharmacokinetic/pharmacodynamic modeling in diabetes mellitus. Clin. Pharmacokin. 47, 417–448 (2008).
31. Lin, S. & Chien, Y.W. Pharmacokinetic/pharmacodynamic modelling of insulin: comparison of indirect pharmacodynamic response with effect-compartment link models. J. Pharm. Pharmacol. 54, 791–800 (2002).
32. Währby, U., Jonsson, E.N. & Karlsson, M.O. Assessment of actual significance levels for covariate effects in NONMEM. J. Pharmacokinet. Pharmacodyn. 28, 231–252 (2001).

www.nature.com/psp
33. Ette, E.I., Williams, P.J., Kim, Y.H., Lane, J.R., Liu, M.J. & Capparelli, E.V. Model appropriateness and population pharmacokinetic modeling. J. Clin. Pharmacol. 43, 610–623 (2003).

34. Mandema, J.W., Gibbs, M., Boyd, R.A., Wada, D.R. & Pfister, M. Model-based meta-analysis for comparative efficacy and safety: application in drug development and beyond. Clin. Pharmacol. Ther. 90, 766–769 (2011).

35. Mandema, J.W., Boyd, R.A. & DiCarlo, L.A. Therapeutic index of anticoagulants for prevention of venous thromboembolism following orthopedic surgery: a dose-response meta-analysis. Clin. Pharmacol. Ther. 90, 828–835 (2011).

36. Mandema, J.W., Salinger, D.H., Baumgartner, S.W. & Gibbs, M.A. A dose-response meta-analysis for quantifying relative efficacy of biologics in rheumatoid arthritis. Clin. Pharmacol. Ther. 90, 828–835 (2011).

37. Mandema J., Sweeney K., Terra S. & Sahasrabudhe V. Model-Based Meta-Analysis of the HbA1c Lowering Effect of PF-04971729, a Sodium Glucose Co-Transporter-2 Inhibitor (SGLT2i), in Comparison with Other SGLT2i and Anti-Diabetic Agents (ADA). [Abstract]. Diabetes 61 (suppl. 1), A1015 (2012).

Supplementary Information accompanies this paper on the Pharmacometrics & Systems Pharmacology website (http://www.nature.com/psp)