Updated List of Transport Proteins in *Plasmodium falciparum*

Juliane Wunderlich1,2,3*

1 Max Planck Institute for Infection Biology, Berlin, Germany, 2 European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany, 3 Centre for Structural Systems Biology, Hamburg, Germany

Malaria remains a leading cause of death and disease in many tropical and subtropical regions of the world. Due to the alarming spread of resistance to almost all available antimalarial drugs, novel therapeutic strategies are urgently needed. As the intracellular human malaria parasite *Plasmodium falciparum* depends entirely on the host to meet its nutrient requirements and the majority of its transmembrane transporters are essential and lack human orthologs, these have often been suggested as potential targets of novel antimalarial drugs. However, membrane proteins are less amenable to proteomic tools compared to soluble parasite proteins, and have thus not been characterised as well. While it had been proposed that *P. falciparum* had a lower number of transporters (2.5% of its predicted proteome) in comparison to most reference genomes, manual curation of information from various sources led to the identification of 197 known and putative transporter genes, representing almost 4% of all parasite genes, a proportion that is comparable to well-studied metazoan species. This transporter list presented here was compiled by collating data from several databases along with extensive literature searches, and includes parasite-encoded membrane-resident/associated channels, carriers, and pumps that are located within the parasite or exported to the host cell. It provides updated information on the substrates, subcellular localisation, class, predicted essentiality, and the presence or absence of human orthologs of *P. falciparum* transporters to quickly identify essential proteins without human orthologs for further functional characterisation and potential exploitation as novel drug targets.

Keywords: *Plasmodium falciparum*, malaria, drug target, transport pathway, transporters and channels, systems biology, calcium homeostasis, nutrient uptake

INTRODUCTION

To sustain rapid growth within human red blood cells, *Plasmodium falciparum* requires sufficient nutrients and electrolytes for its active metabolism. Therefore, the parasite expresses a wide range of transport proteins to acquire substrates and efflux metabolites. As the majority of these carriers, channels, and pumps are predicted to be essential during intraerythrocytic stages (Martin, 2020) and have no identified human orthologs, these could be exploited as targets of novel drugs (Ludin et al., 2012). Due to the emergence of parasite resistance to most available antimalariais, new therapeutic strategies are urgently needed (Plowe, 2022). There are many reports on transporters associated with drug resistance (Cowell and Winzeler, 2019; Martin, 2020; Murithi et al., 2021;...
Shafik et al., 2022), and advances in the development of drugs that target solute transporters were recently reviewed (Belete, 2020; Monteiro Júnior et al., 2022). Here, an extended list of P. falciparum transport proteins is presented with many new additions and updated information on transporter localisation and essentiality based on experimental evidence and orthology inference.

The last two transporter lists were published in 2020 and 2016 and contained 117 (Martin, 2020) and 139 (Weiner and Kooij, 2016) proteins, corresponding to 2.2% and 2.6% of the predicted P. falciparum proteome, respectively. The localisation within the parasite-infected host cell was not indicated for all of these, as microscopic examination after endogenous tagging with fluorescent proteins or staining using specific antibodies was not conducted for all transporters. However, precise knowledge of the location of a transport protein and its orientation in the membrane is paramount for understanding its function and the dynamics of solute transport processes between cellular compartments. Therefore, the list presented here contains new information on subcellular localisation and function based on results from recent microscopy experiments (Edaye and Georges, 2015; Haase et al., 2021; Murithi et al., 2021; Wichers et al., 2021; Ahiya et al., 2022; Wichers et al., 2022), solubility assays, immunoprecipitation, proximity-dependent biotinylation or subcellular fractionation followed by immunoblot or proteomic analyses (Boucher et al., 2018; Balestra et al., 2021; Bullen et al., 2022), functional and structural studies (Shafik et al., 2020; Beck and Ho, 2021), the presence of targeting signals (Sayers et al., 2018; van Esveld et al., 2021), and Gene Ontology (GO) annotations (Blake et al., 2015). In addition, data on essentiality of P. falciparum genes are usually based on a large piggyBac screen (Zhang et al., 2018) that is known to contain some false-positive and false-negative results (Martin, 2020), highlighting the need for verification by other studies. Thus, results from the latest publications (Jiang et al., 2020; Swift et al., 2020; Oberstaller et al., 2021; Wichers et al., 2022) were included in the list along with information on the presence or absence of human orthologs, as this is important for therapeutic development and was not systematically specified previously. Of note, this mini review focuses mainly on asexual blood-stage parasites and also contains recent data on other stages, as transporters are likely important throughout the life cycle.

Plasmodium gene annotations are still incomplete with a large proportion of genes completely lacking characterisation of their function and localisation or only having sparse functional annotation deduced by orthology (Böhme et al., 2019). The lower number of genes representing the malaria transportome reported in earlier studies may be due to the lack of conventional transmembrane domains in some P. falciparum transporters (Desai, 2012) and difficult analysis by mass spectrometry. The reduced number of detected peptides (Lu et al., 2021) stems both from the typically low protein amounts extracted from parasite culture that are subjected to subcellular fractionation or immunoprecipitation and from the fact that membrane proteins such as transporters are less amenable to proteomics compared to soluble proteins. This has resulted in the conclusion that P. falciparum may have a reduced set of transporters compared to metazoan reference genomes (Weiner and Kooij, 2016; Martin, 2020).

Here, additional putative transporters were detected by compiling data from several databases (Aurrecoechea et al., 2009; Blake et al., 2015; Saier et al., 2016; Elbourne et al., 2017) and the literature. This mini review also covers newly identified putative calcium transporters (Balestra et al., 2021; Gupta et al., 2022), as calcium homeostasis is thought to be critical for all parasite stages (Brochet and Billker, 2016) and likely a promising drug target (Gupta et al., 2022). However, the molecular identity of most of the transporters involved in calcium transport has remained unclear (Lourido and Moreno, 2015), with contrasting results and conclusions regarding their substrates and subcellular localisation as well as the cellular compartment used for calcium storage (Brochet and Billker, 2016). The manually curated list of 197 transporter genes presented here represents almost 4% of 5720 P. falciparum 3D7 genes, of which 5318 are protein-coding (Aurrecoechea et al., 2009), a proportion that is comparable to the 3 – 5% reported for well-studied metazoan species (Elbourne et al., 2017). It includes the most recent published data and provides an updated overview on the substrates, localisation, function, classification, essentiality, and human orthologs of P. falciparum transporters and may serve as a basis for improved annotations of transporter genes and further functional characterisation of potential drug targets.

APPRAOCHES FOR TRANSPORT PROTEIN IDENTIFICATION AND COMPIILATION OF A COMPREHENSIVE LIST

Whole-genome sequencing, genome-wide searches and comparative genomics enabled the detection and fast annotation of many P. falciparum transporter genes by assigning functions that are computationally inferred from orthology across hundreds of species, facilitating functional characterisation at a large scale. However, molecular pathways and mechanisms that occur in parasites can differ tremendously from model organisms (Woo et al., 2015), and some known Plasmodium transporters are genus-specific and/or lack conventional transmembrane domains (Desai, 2012). Thus, function predictions based on the presence of protein features and on orthology inference harbour the possibility of incomplete or incorrect annotations. For example, PF3D7_1368200 was annotated as “ABC transporter E family member 1, putative (ABCE1)” due to its ATP-binding cassette that similar to that of ABC transporters (Koenderink et al., 2010). However, it is unlikely to be a transporter because of its function in RNA processing (Mather et al., 2007; Sinha et al., 2021), demonstrating the need for manual curation of GO terms and gene annotations.
The existing transporter list published in 2020 (Martin, 2020) was extended by collating data from various sources. Therefore, a table of 123 transport proteins from the *P. falciparum* strain 3D7 (genome version 3.0) with information on substrates, transporter classes and families was downloaded from http://www.membranetransport.org/transportDB2/index.html (Elbourne et al., 2017). Additional transporters associated with the GO term “transmembrane transporter activity” (GO:0022857) (Blake et al., 2015), mentioned on Malaria Parasite Metabolic Pathways (https://mpmp.huji.ac.il/maps/transporters.html) (Ginsburg and Tilley, 2011) or in research articles were included. For example, PTMCO1 (transmembrane and coiled-coil domain-containing protein, PF3D7_1362300), identified based on orthology to proteins in other protozoan parasites (Gupta et al., 2022), was added. In contrast, glideosome-associated protein 40 (PGAP40, PF3D7_0515700) and rhoptry protein PfROP14 (PF3D7_0613300) were removed, as new data on their function and localisation suggest that these are not transporters (Anantharaman et al., 2007; Zuccala et al., 2012; Ferreira et al., 2020).

As different names were sometimes used for the same protein (Weiner and Kooij, 2016; Staines et al., 2017; Martin, 2020), all alternative names found in the literature are mentioned in the table for clarification (Table 1). Transporter localisation, substrates and functions are indicated as in Martin (2020) and predicted gene essentiality according to Zhang et al. (2018), unless stated otherwise. Transporter classes were assigned according to the Transport Classiﬁcation Database (TCDB) (Saier et al., 2016) and if the transporter family was unknown, it was assigned according to the top TCDB blast hit (http://www.tcdb.org/progs/blast.php) based on sequence similarity to known transport proteins (Altschul et al., 1997). Data on the presence of human orthologs was retrieved from https://mpmp.huji.ac.il/maps/orth_hsap.html (Ginsburg and Tilley, 2011), a list compiled using recent publications. The existence of human orthologs was further verified using the TCDB protein blast.

In total, 197 transport proteins were identiﬁed (Table 1), with some of these forming a complex, e.g. the *Plasmodium* Translocon of Exported proteins (PTEX), consisting of three core components (de Koning-Ward et al., 2009; Beck and Ho, 2021). Protein complex components residing in or associated with the respective membrane that are required for substrate translocation were included, whereas accessory and auxiliary subunits were excluded. For clarity, only the likely site of active transport is indicated for each protein, although it might be detectable in other subcellular compartments during trafficking.

CALCIUM TRANSPORT PROTEINS AS POTENTIAL DRUG TARGETS

Calcium homeostasis was chosen as an example for illustrating transport pathways in the *P. falciparum*-infected erythrocyte (Figure 1), as Ca$^{2+}$ signalling is known to be critical throughout the parasite life cycle (Brochet and Billker, 2016) and a link between Ca$^{2+}$ uptake and virulence has been proposed in the related parasite *Toxoplasma gondii* (Pace et al., 2014). In fact, Ca$^{2+}$ transporters such as PfATP6 (PF3D7_0106300) are currently under investigation as novel antimalarial drug targets (Gupta et al., 2022; Monteiro Júnior et al., 2022). While the concentration of free Ca$^{2+}$ is ~1.8 mM in the blood plasma, mature erythrocytes only contain 30 – 60 nM Ca$^{2+}$ (Brochet and Billker, 2016) due to active ion extrusion by the P-type plasma membrane Ca$^{2+}$ ATPases (PMCA) 1 and 4 and slow Ca$^{2+}$ uptake via several channels such as Piezo1, the erythroid N-methyl-d-aspartate (NMDA) receptor, and the voltage-dependent anion channel (VDAC) (Kaestner et al., 2020).

A malaria parasite that resides within an erythrocyte maintains a cytosolic calcium level of approximately 100 nM by permeabilising its host cell and using a regulatory Ca$^{2+}$ pool (Garcia et al., 1996). Extracellular Ca$^{2+}$ is thought to first pass through a parasite-encoded channel in the erythrocyte plasma membrane (EMP) that is independent of PSAC (plasmodial surface anion channel), thereby increasing the intracellular Ca$^{2+}$ concentration of the infected red blood cell (Zippier et al., 2014). One candidate for this channel is hemolysin III (PfHlyIII, PF3D7_1455400), which forms an ion-porous pore of approximately 3.2 nm in EMPS after its release from the parasite digestive vacuole (DV) upon merozoite egress (Moonah et al., 2014). Another potential route of Ca$^{2+}$ entry into the infected erythrocyte is via enhanced activity of a host channel induced by the parasite, as suggested for VDAC (Bouyer et al., 2011).

Passage through the parasitophorous vacuole membrane (PVM) likely occurs via a nutrient pore for solutes < 1.4 kDa formed by PfEXP1 (PF3D7_1121600) and PfEXP2 (PF3D7_1471100) (Garten et al., 2018; Mesén-Ramírez et al., 2019). The ion may then enter the parasite cytosol via a parasite-encoded channel, one candidate being the calcium-permeable stress-gated cation channel PfCSC (PF3D7_1250200) that is activated by high external calcium levels (Martin, 2020). The localisation of this transporter at the PPM was inferred from an ancestral gene (Gaudet et al., 2011) and although this remains to be confirmed experimentally, it seems plausible due to the identification of this protein as an immunoreactive antigen with high serodominance in exposed individuals (Doolan et al., 2008). PfCSC is highly expressed in sporozoites (Le Roch et al., 2003), its exposure to the immune system may occur at this parasite stage.

Calcium can then be stored in the endoplasmic reticulum upon active import by the SERCA-type Ca$^{2+}$-ATPase PfATP6 (Lourido and Moreno, 2015; Martin, 2020). In case of Ca$^{2+}$ overload of the ER, the putative calcium load-activated calcium channel PFMCO1 (Gupta et al., 2022) may become active and release ions into the cytosol (Lourido and Moreno, 2015; Wang et al., 2016). Ca$^{2+}$ efflux from the mitochondrion is likely mediated by the cation/H$^+$ antiporters PfLETM1 (PF3D7_0417300) (Martin, 2020) and PfCAX/PfCHA (PF3D7_0603500) in exchange for protons that travel along the H$^+$ gradient across the inner mitochondrial membrane (Rotmann et al., 2010).
Gene ID	Product	Substrate and function	Family	Localisation	Essential	Human ortholog
PF3D7_1227200	K1, Kch1	voltage-gated potassium channel	1.A.1	e - EPM	b - yes	yes
PF3D7_1465500	K2, Kch2	voltage-gated potassium channel	1.A.1	e - PPM	b - no	yes
PF3D7_1436100	NIC	putative K+ channel (Ginsburg and Tilley, 2011)	1.A.1	c - PPM	b - no	no
PF3D7_1132800	AQP	channel for water, glycerol and polyols	1.A.8	e - PPM	b - yes	no
PF3D7_1438100	SEC62	protein import in complex with Sec61 (Marapana et al., 2018)	1.A.15	e - ER	b - yes	yes
PF3D7_1250200	CSC, CSC1	calcium-activated stress-gated channel for Ca2+, K+ and Na+	1.A.17	c - PPM	b - yes	yes
PF3D7_1107900	MSOS	putative mechanosensitive anion channel	1.A.23	c - PPM?	b - no	no
PF3D7_1120300	MIT1	magnesium/nickel/cobalt ion channel (Ginsburg and Tilley, 2011)	1.A.35	c - mitochondrion (van Esveld et al., 2021)	b - no	yes
PF3D7_1304200	MIT2	magnesium/nickel/cobalt ion channel (Ginsburg and Tilley, 2011)	1.A.35	c - mitochondrion (Blake et al., 2015)	b - no	no
PF3D7_1427600	MIT3	magnesium/nickel/cobalt ion channel (Ginsburg and Tilley, 2011)	1.A.35	c - mitochondrion (Blake et al., 2015)	b - no	yes
PF3D7_1333800	IQn	anion channel	1.A.47	c - PPM	b - no	no
PF3D7_1439000	CTR1	copper channel	1.A.56	e - EPM, PPM	b - yes	no
PF3D7_1421900	CTR2	copper channel	1.A.56	e - PPM	b - no	no
PF3D7_0306700	MMgT, EMC5	solute channel	1.A.67	c - apicoplast	b - yes	no
PF3D7_0302500	CLAG3.1, CLAG3.2, RhopH1, RhopH2, RhopH3	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_0302200	CLAG3.1, CLAG3.2, RhopH1, RhopH2, RhopH3	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_0208000	CLAG2	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_0331800	CLAG8	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_0335800	CLAG9	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_0934900	RhopH2	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_0929000	RhopH3	PSAC/RhopH complex components for nutrient uptake (anions/organic cations)	1.A.91.1.1	e - EPM	b - no	no
PF3D7_1362300	TMCO1	Ca2+ channel, prevents ER overfilling? (Wang et al., 2016)	1.A.106	c - ER? (Blake et al., 2015)	unknown	yes
PF3D7_1432100	OMP1, VDAC, TOM7	solute channel	1.B.8.5.2	c - mitochondrion (Blake et al., 2015)	unknown	no
PF3D7_0823700	TOM7	components of TOM complex for protein import across outer membrane (Sheiner and Soldati-Favre, 2008; Schmidt et al., 2010)	1.B.8	c - mitochondrion (Blake et al., 2015)	b - yes	no
PF3D7_0524700	TOM22	components of TOM complex for protein import across outer membrane (Sheiner and Soldati-Favre, 2008; Schmidt et al., 2010)	1.B.8	c - mitochondrion (van Dooren et al., 2006)	b - yes	no
PF3D7_0617000	TOM40	components of TOM complex for protein import across outer membrane (Sheiner and Soldati-Favre, 2008; Schmidt et al., 2010)	1.B.8	c - mitochondrion (van Dooren et al., 2006)	b - yes	no
PF3D7_0408700	PLP1, PPLP1	erythrocyte permeabilisation and rupture (Jarg et al., 2013)	1.C.39	e - EPM (Garg et al., 2013)	b - no, s - yes	no (Yang et al., 2017)
PF3D7_1216700	PLP2, PPLP2	erythrocyte permeabilisation and rupture (Wirth et al., 2014)	1.C.39	e - EPM (Wirth et al., 2014)	b - no, g - yes	no
PF3D7_0923300	PLP3, PPLP3	erythrocyte permeabilisation and rupture (Wirth et al., 2014)	1.C.39	c - host cell membrane (Sassmannshausen et al., 2020)	unknown	no
PF3D7_0819400	PLP4, PPLP4	erythrocyte permeabilisation and rupture (Wirth et al., 2014)	1.C.39	c - host cell membrane (Sassmannshausen et al., 2020)	unknown	no
		rupture of mosquito midgut epithelial cells (Wirth et al., 2015)	1.C.39	c - host cell membrane (Sassmannshausen et al., 2020)	unknown	no

(Continued)
Gene ID	Product	Substrate and function	Family	Localisation	Essential	Human ortholog
PF3D7_0819200	PLP5, PPLP5	host cell permeabilisation and rupture (Sassmannshausen et al., 2020)	1.C.39	c - host cell membrane (Sassmannshausen et al., 2020)	b - yes	no
PF3D7_1331500		putative calcium channel (Gupta et al., 2022)	1.C.105	c - PPM? (Blake et al., 2015)	unknown	yes
PF3D7_1234600	TOC75	protein import across 2nd inner membrane (Agrawal and Striepen, 2010)	1.C.105	c - apicoplast (Boucher et al., 2018)	b - yes	no
PF3D7_0104100	E140, MPMP		1.C.105	c - PPM? (Blake et al., 2015)	b - yes	no
PF3D7_1455400	HylI	forms pore (~3.2 nm) for solutes and ions	1.C.113	e - EPM	b - yes	no
PF3D7_0204700	HT1	imports glucose and fructose	2.A.1.1	e - PPM	b - yes	yes
PF3D7_0516500	MFS1, MT	putative metabolite/drug transporter	2.A.1.2	unknown	b - no	yes
PF3D7_0916000	MFS2	putative sugar transporter	2.A.1.1	unknown	b - no	yes
PF3D7_0919500	MFS3	putative sugar transporter	2.A.1.1	e - PPM? (Swearingen et al., 2016), c - mitochondrion (Blake et al., 2015)	b - no	yes
PF3D7_1203400	MFS4	putative transporter	2.A.1	unknown	b - no	no
PF3D7_1428200	MFS5	putative metabolite transporter	2.A.1	unknown	b - no	no
PF3D7_1440800	MFS6	H+ import, metabolite/drug export	2.A.1	e - apicoplast	b - no	no
PF3D7_1107000	P115		2.A.1	c - PPM (Blake et al., 2015)	b - no	no
PF3D7_0614300	MFR1	putative organic anion transporter	2.A.1.2	unknown	b - no	no
PF3D7_0104700	MFR2	putative amino acid transporter	2.A.1	e - PPM (Wichers et al., 2021)	b - no	no
PF3D7_0312500	MFR3	putative amino acid transporter	2.A.1	e - PPM (Wichers et al., 2021)	b - no	no
PF3D7_0914700	MFR4	putative amino acid transporter	2.A.1	e - PPM (Wichers et al., 2021)	b - no	no
PF3D7_1129900	MFR5	putative amino acid transporter	2.A.1	e - PPM (Wichers et al., 2021)	b - no	no
PF3D7_0104800	NPT1	putative amino acid transporter	2.A.1	e - PPM (Wichers et al., 2021)	b - no	no
PF3D7_0201300	MCT1	exports monocarboxylate	2.A.1	c - PPM	b - yes	yes
PF3D7_0926400	MCT2	exports organic solutes, imports H+	2.A.1	e - apicoplast	b - no	no
PF3D7_1038800	ACT, AT, AT1	imports acetyl-CoA, exports CoA	2.A.1.25	e - ER	b - no	yes
PF3D7_1104800	UMF	pantothenate:H+ import	2.A.1.63	c - PPM	b - yes	no
PF3D7_0206200	TFP1, PAT	pantothenate:H+ import (Ginsburg and Tilley, 2011)	2.A.1.66	e - PPM	b - no	yes
PF3D7_0529200	GPH	putative sucrgarction symporter	2.A.2	unknown	b - no	no
PF3D7_0715900	CDF, ZIP3		2.A.4	e - cytoplasmic vesicle (Wichers et al., 2022)	b - no	yes
PF3D7_0609100	ZIP1	Zn2+ import? (Ginsburg and Tilley, 2011)	2.A.5	e - PPM (Wichers et al., 2022)	b - no	yes
PF3D7_1022300	ZIPCO, ZIP2	Zn2+/Fe2+ import into cytosol	2.A.5	c - PPM? (Blake et al., 2015)	b - no	yes
PF3D7_0107500	NCR1, NPC1R	cholesterol/sterol/lipid export, H+ import	2.A.6.6	e - PPM	b - yes	yes
PF3D7_0715800	DMT1	organic solute transport	2.A.7.3	c - apicoplast	b - no	no
PF3D7_0716900	DMT2	IPP export	2.A.7	e - apicoplast	b - yes	no
PF3D7_0709800	CRT	drug:peptide:H+ export	2.A.7.3	e - DV	b - no	yes
PF3D7_0508300	TPT, TPT, aPT	PEP/3GP import, P, export	2.A.7.9	e - apicoplast	b - yes	yes
PF3D7_0530200	PPT, PPT, aPT	PEP/3GP import, P, export	2.A.7.9	e - apicoplast	b - yes	yes
PF3D7_1218400	TPT3	putative organic phosphate ester,P, antiporter	2.A.7.9	unknown	b - no	yes

(Continued)
Gene ID	Product	Substrate and function	Family	Localisation	Essential	Human ortholog	
PF3D7_0505300	NGT	UDP-N-acetylglucosamine import, UMP export	2.A.7.10	c - Golgi	b - no	yes	
PF3D7_1113300	UGT	UDP-galactose/UDP-glucose import, UMP export	2.A.7.11	e - ER	b - yes	yes	
PF3D7_0212000	GFT	GDP-tucose import, GMP export	2.A.7.16	c - Golgi	b - yes	yes	
PF3D7_0522500	NPA	Mg²⁺ import	2.A.7.25	e - PPM	b - yes	yes	
PF3D7_0629500	AT1	transports Ile, Leu, Met	2.A.18	c - PPM, DV	b - yes	yes	
PF3D7_1231400	AAT2	transports amino acids, GABA	2.A.18	c - PPM	b - no	yes	
PF3D7_1231400	AAT3	transports Ile, Leu, Met or Ca²⁺ (Buikstra et al., 2021)	2.A.18	unknown	b - yes	no	
PF3D7_0603500	CAX, CHA	imports H⁺, exports Ca²⁺/Mg²⁺/Mn²⁺	2.19	e - mitochondrion	b - no	no	
PF3D7_1340900	PT	imports phosphate and Na⁺ into cytosol	2.20	e - PPM	b - yes	yes	
PF3D7_0209800	NSS1	putative amino acid transporter	2.22	e - PPM (Blake et al., 2015)	b - yes	yes	
PF3D7_0515500	GEP1, NSS2	neurotransmitter:Na⁺ symport (Ginsburg and Tilley, 2011)	2.22	c - cytoplasmic vesicle (Jiang et al., 2020)	b - no	no	
PF3D7_1132500	NSS3	amino acid/GABA transport	2.22	c - PPM	b - no	yes	
PF3D7_0714100	MAATS1	export of H⁺ and amino acids (Ginsburg and Tilley, 2011)	2.22	unknown	b - no	yes	
PF3D7_1368700	TPC, DNC	thiamine pyrophosphate import, nucleotide export	2.29	c - mitochondrion	b - yes	yes	
PF3D7_0905200	MRS3, MC5	putative Fe²⁺/Mn²⁺ import (Blake et al., 2015)	2.29	c - mitochondrion	b - yes	yes	
PF3D7_0407500	MTA1, MC3	unknown	2.29	c - mitochondrion	b - yes	yes	
PF3D7_1214600	SAMC, PET8	imports S-adenosylmethionine, exports S-adenosylhomocysteine	2.29	e - mitochondrion	b - yes	yes	
PF3D7_0108400	MEM1, MC1	unknown	2.29	c - mitochondrion	b - no	yes	
PF3D7_0108800	AMC1, MC2	unknown	2.29	c - mitochondrion	b - yes	no	
PF3D7_0811100	AMC2, MC4	unknown	2.29	c - mitochondrion	b - no	yes	
PF3D7_0908800	AMC3, MC6	unknown	2.29	c - mitochondrion	b - yes	yes	
PF3D7_1037300	AAC1, ADT	ADP/ATP antiporter (Blake et al., 2015)	2.29	e - mitochondrion	b - yes	yes	
PF3D7_1004800	AAC2, PAAC	ADP/ATP antiporter (Blake et al., 2015)	2.29	c - mitochondrion	b - yes	yes	
PF3D7_1223800	COC, YHM2	imports oxoglutarate, exports citrate	2.29	c - mitochondrion	b - no	yes	
PF3D7_0825900	DTC, CMT	imports dicarboxylate, exports tricarboxylate	2.29	e - mitochondrion	b - yes	yes	
PF3D7_1302500	MPC, PIC, PIC2	P₁H⁺ import	2.29	c - mitochondrion	b - no	yes	
PF3D7_1303500	NHE	H⁺ import into cytosol in exchange for Na⁺	2.36	c - PPM (Blake et al., 2015)	b - no	yes	
PF3D7_0904500	MR1, MC5	putative Na⁺:H⁺ exchanger (Saier et al., 2016)	2.36	unknown	b - yes	yes	
PF3D7_0827700	MGT1	Mg²⁺:H⁺ antiporter (Blake et al., 2015)	2.36	unknown	b - no	yes	
PF3D7_1135000	unknown	unknown	2.43	c - apicoplast	unknown	no	
PF3D7_0316600	FNT	lactate/formate and H⁺ release from cytosol	2.44	e - PPM, DV	b - no	no	
PF3D7_1471200	SuLP	inorganic anion antiporter	2.53	e - PPM	b - yes	yes	
PF3D7_0523800	NRAMP2, NRAMP, VRVT1	Fe²⁺/Mn²⁺:H⁺ export	2.55	e - DV (Wichers et al., 2022)	b - yes	yes	
PF3D7_1347200	NT1, ENT1	purine base import	2.57	e - PPM	b - yes	no	
PF3D7_0824400	NT2, ENT2	nucleoside/nucleobase import	2.57	e - ER	b - no	no	
PF3D7_1469400	NT3, ENT3	putative nucleoside transporter	2.57	unknown	b - no	no	
PF3D7_0103500	NT4, ENT4	adenosine/adenosine import	2.57	c - PPM	b - yes	yes	
PF3D7_0212800	MATE	putative organic solute:Na⁺/H⁺ antiporter	2.66	unknown	b - no	yes	
PF3D7_0826800	FT1	imports pABA and folates	2.71	e - PPM	b - no	no	
PF3D7_1116500	FT2	imports pABA, folates, 5-methyltetrahydrofolate	2.71	e - PPM	b - no	no	
PF3D7_1223700	VT	imports Fe³⁺ for detoxification, exports H⁺	2.89	unknown	b - no	yes	
PF3D7_0417300	LETM1	imports H⁺, exports Ca²⁺/K⁺	2.97	c - mitochondrion	b - yes	yes	
PF3D7_1340800	MIP1	pyruvate:H⁺ importer	2.105	c - mitochondrion	b - yes	yes	
Gene ID	Product	Substrate and function	Family	Localisation	Essential	Human ortholog	
---------	---------	------------------------	---------	---------------	-----------	----------------	
PF3D7_1470400	MPC2	pyruvate:H+ importer	2.A.105	c - mitochondrion	unknown	yes	
PF3D7_1033000	HPR1, AMC4	unknown	2.A.123	c - mitochondrion?	(van Esved et al., 2021)	b - yes	no
PF3D7_0216600	SWEET	putative glucose/galactose transporter	2.A.123	c - ER/Golgi	unknown	b - yes	yes
PF3D7_0523000	MDR1, ABCB1, Pgh1	active drug and solute import (Friedrich et al., 2014)	3.A.1.201	e - DV (Papalexis et al., 2001)	b - yes	yes	
PF3D7_1447900	MDR2, ABCB2	active Cd^2+ extrusion from cytosol	3.A.1.210	e - PPM, DV	b - no (van der Velden et al., 2015)	yes	
PF3D7_1145500	MDR3, ABCB3	active peptide efflux	3.A.1.209	e - apicoplast	b - no	yes	
PF3D7_0302600	MDR4, ABCB4	active peptide/heavy metal cation transport	3.A.1.209	e - apicoplast	b - no	yes	
PF3D7_1339900	MDR5, ABCB5	active solute export	3.A.1.201	e - PPM	b - no	yes	
PF3D7_1352100	MDR6, ABCB6, Atm1	active glutathione trisulfide efflux	3.A.1.210	c - mitochondrion, apicoplast	b - yes	yes	
PF3D7_1209900	MDR7, ABCB7	active peptide efflux	3.A.1.209	c - mitochondrion	b - no	yes	
PF3D7_0112200	MRP1, ABCB1	active export of drugs and glutathione conjugates	3.A.1.208	e - PPM	b - no	yes	
PF3D7_1229100	MRP2, ABCB2	active export of glutathione conjugates	3.A.1.208	e - PPM	b - no	yes	
PF3D7_0813700	ABCF1	heme import? (Blake et al., 2015)	3.A.1	e - cytoplasmic vesicle (Murithi et al., 2021)	unknown	yes	
PF3D7_1426500	ABCG3, ABCG1, ABCG2	putative cell metabolite exporter (Edaye and Georges, 2015)	3.A.1.204	e - PPM (Edaye and Georges, 2015)	b - no	yes	
PF3D7_0319700	ABCB3	active solute transport (Murithi et al., 2021)	3.A.1	e - cytoplasmic vesicle (Murithi et al., 2021)	unknown	yes	
PF3D7_0810200	ABCK1	active peptide efflux (Ginsburg and Tilley, 2011)	3.A.1	c - mitochondrion (van Esved et al., 2021)	b - yes	yes	
PF3D7_1004600	drug transport? (Park et al., 2012)	unknown	3.A.1	unknown	b - no	no	
PF3D7_0812900	drug transport? (Park et al., 2012)	unknown	3.A.1	unknown	b - no	no	
PF3D7_1434000	CAF16	putative ABC transporter (Blake et al., 2015)	3.A.1	unknown	b - yes	yes	
PF3D7_0614900	unknown		3.A.1	c - PPM (Blake et al., 2015)	b - yes	no	
PF3D7_1144700	Tic20	protein import across innermost membrane (Agrawal and Striepen, 2010)	3.A.1	c - apicoplast (Boucher et al., 2018)	b - yes	no	
PF3D7_1121600	EXP1	pore for solutes < 1.4 kDa with EXP2 (Mesén-Ramírez et al., 2019)	3.A.1	e - PVM (Mesén-Ramírez et al., 2019)	b - yes (Maier et al., 2008)	no	
PF3D7_0217100	ATPα, F₁, α	H^+-importing ATP synthase subunits	3.A.2	e - mitochondrion	b - yes	yes	
PF3D7_1235700	ATPβ, F₁, β		3.A.2	unknown	b - no	yes	
PF3D7_1311300	ATPγ, F₁, γ		3.A.2	unknown	b - yes	yes	
PF3D7_1147700	ATPδ, F₁, δ		3.A.2	unknown	b - no	no	
PF3D7_0715500	ATPε, F₁, ε		3.A.2	unknown	b - no	no	
PF3D7_1310000	OSCP		3.A.2	b - yes	yes		
PF3D7_0719100	Fₐ		3.A.2	b - yes	no		
PF3D7_1125100	Fₐ		3.A.2	b - yes	no		
PF3D7_0705900	Fₐ		3.A.2	b - yes	yes		
PF3D7_0311800	Fₐ		3.A.2	b - yes	no		
Gene ID	Product	Substrate and function	Family	Localisation	Essential	Human ortholog	
------------	---------	---	--------	------------------------	-----------	-----------------	
PF3D7_1311900 vapA, V1 subunit A	V-ATPase subunits: active H⁺ export from cytosol	3.A.2	e - PPM, DV, cytoplasmic vesicle (Hayashi et al., 2000)	b - yes	yes		
PF3D7_0406100 vapB, V1 subunit B				b - yes	yes		
PF3D7_0106100 vapC, V1 subunit C				b - yes	yes		
PF3D7_1341900 vapD, V1 subunit D				b - yes	yes		
PF3D7_0934500 vapE, V1 subunit E				b - yes	yes		
PF3D7_1140100 vapF, V1 subunit F				b - no	yes		
PF3D7_1323200 vapG, V1 subunit G				b - yes	no		
PF3D7_1306000 vapH, V1 subunit H				b - yes	yes		
PF3D7_0806800 Ṽ subunit a	extrusion of inorganic cations from cytosol	3.A.3	e - PPM, DV	b - yes	no		
PF3D7_0519200 Ṽ subunit c, 16-kDa proteolipid	putative phospholipid flippase	3.A.3	c - apicoplast	b - yes	yes		
PF3D7_1354400 Ṽ subunit c*, 21-kDa proteolipid	putative phospholipid flippase	3.A.3	c - PPM (Blake et al., 2015)	b - no	yes		
PF3D7_1468600 Ṽ subunit d, C/AC39	putative phospholipid flippase	3.A.3	c - cytoplasmic vesicle (Jiang et al., 2020)	b - yes	yes		
PF3D7_0904900 CuTP	active Cu²⁺ export	3.A.3	e - EPM, PPM	b - no	yes		
PF3D7_1360500 GCb	phospholipid flippase	3.A.3	c - PPM	b - no	yes		
PF3D7_0319000 ATP4	active Mr²⁺ transport	3.A.3	c - ER	b - yes	yes		
PF3D7_1348800 ATP7	putative phospholipid flippase	3.A.3	c - PPM	b - no	yes		
PF3D7_0821800 SECo	active Ca²⁺ transport	3.A.3	e - ER (Marapana et al., 2018)	b - no	yes		
PF3D7_1234400 SECo	putative phospholipid flippase	3.A.3	c - PPM (Blake et al., 2015)	b - no	yes		
PF3D7_1346100 SECo	putative phospholipid flippase	3.A.3	c - cytoplasmic vesicle (Jiang et al., 2020)	b - yes	yes		
PF3D7_0721900 Ṽ subunit e	protein import across inner membrane (Sheiner and Soldati-Favre, 2008; Schmidt et al., 2010)	3.A.8	c - mitochondrion (van Esved et al., 2021)	unknown	no		
PF3D7_0512000 VP1	active H⁺ export	3.A.10	e - PPM	b - yes	no		
PF3D7_1352200 VP2	putative Ca²⁺-dependent H⁺ export from cytosol	3.A.10	e - PPM, cytoplasmic	b - no	no		

(Continued)
Another putative intracellular Ca2+ pool may consist of acidocalcisomes – small electron-dense vesicles that are conserved from bacteria to humans and contain high concentrations of Ca2+, pyrophosphate, polyphosphate, iron, and zinc (Huang et al., 2014). Accordingly, acidocalcisome membranes contain a variety of specific transporters for these substrates across the tree of life (Huang et al., 2014). While many transporters were shown to reside in the acidocalcisome membrane in Trypanosoma brucei through proteomic studies and microscopy (Huang et al., 2014), no protein has been definitely localised to these organelles in P. falciparum (Magowan et al., 1997; Ruiz et al., 2004). Their low internal pH is likely required for the secondary active import of various ions and thought to be established and maintained by the plant-like H+-pump V-ATPase (Wunderlich et al., 2012; de Oliveira et al., 2021). This has yet to be verified experimentally, and there may be differences between parasite species. For example, PfVP1 (PF3D7_1456800), an orthologue of the acidocalcisome marker in T. brucei (Huang et al., 2014) and T. gondii (Rohloff et al., 2011), was previously suggested to localise to the parasite plasma membrane (PPM), DV and acidocalcisomes in P. falciparum, but could only be detected at the PPM by microscopy (Ahiya et al., 2022).

Other proteins that may translocate calcium and whose subcellular localisation has not yet been confirmed are PfATP9 (PF3D7_1348800), the putative calcium channel PF3D7_1331500, and PfICM1 (PF3D7_1231400). Elucidating their location and function is an important knowledge gap to be addressed (Kustatscher et al., 2022). Of the aforementioned putative Ca2+ transport proteins, PfICM1 and PfHlyIII may be worth exploring as drug targets due to their predicted essentiality and the absence of human counterparts.

TABLE 1 | Continued

Gene ID	Product	Substrate and function	Family	Localisation	Essential	Human ortholog
PF3D7_0810400 AQP2	water channel (Blake et al., 2015)	3.A.16	c - PPM (Blake et al., 2015)	b - no	no	
PF3D7_0314300 Der1-1	protein import across periplastid membrane (Spork et al., 2009)	3.A.25.2.1	e - apicoplast (Spork et al., 2009)	b - yes	no	
PF3D7_1452300 Der1-2	protein import across periplastid membrane (Spork et al., 2009)	3.A.25.2.1	e - apicoplast (Spork et al., 2009)	unknown	yes	
PF3D7_0216800	unknown	3.A.25	unknown	b - no	no	
PF3D7_015700	unknown	3.A.25	unknown	b - no	no	
PF3D7_1471100 EXP2	PTEX core components for protein export (Beck and Ho, 2021), EXP2	3.A.26.1.1	e - PVM (de Koning-Ward et al., 2009)	b - yes	no	
PF3D7_1436300 PTEX150	putative transporter	3.A.26	c - PPM (Blake et al., 2015)	b - yes	no	
PF3D7_1116800 HSP101	putative transporter	3.A.26	unknown	b - no	no	
PF3D7_1404600 ACo	phospholipid scramblase (Jose et al., 2021)	3.A.26	e - parasite periphery (Jose et al., 2021)	b - no	no	
PF3D7_1022700 PLSCK	putative transporter	3.A.26	unknown	b - no	no	
PF3D7_1332100	putative transporter	3.A.26	unknown	b - no	no	
PF3D7_0530500	putative transporter	3.A.26	unknown	b - no	no	
PF3D7_0628400	putative transporter	3.A.26	unknown	b - no	no	
PF3D7_1135300 PMRT1	unknown	3.A.26	unknown	b - no	no	
PF3D7_1022200 FBT	putative metabolite/vitamin transporter (Ginsburg and Tilley, 2011)	3.A.26	e - cis-Golgi (Jose et al., 2021)	b - no	no	
PF3D7_0314300 Der1-1	protein import across periplastid membrane (Spork et al., 2009)	3.A.26	unknown	b - no	no	
PF3D7_1135300 PMRT1	putative transporter	3.A.26	unknown	b - no	no	
PF3D7_0810400 AQP2	water channel (Blake et al., 2015)	3.A.16	c - PPM (Blake et al., 2015)	b - no	no	

Substrates, functions, and localisations are indicated as in Martin (2020), unless stated otherwise. Known or putative localisation refers to the site of active function of the transport protein regardless of its trafficking route, as evidenced either by experimental data (e) or computational analysis (c). DV: digestive vacuole, EPM, erythrocyte plasma membrane; PPM, parasite plasma membrane; PVM, parasitophorous vacuole membrane. Transporter families were assigned according to the Transport Classification Database (Saier et al., 2016). 1: channels and pores, 1.A: α-type channels, 1.B: β-barrel pores, 1.C: pore-forming toxins. 2: electrochemical potential-driven transporters, 2.A: porters (uniporters, symporters, antiporters), 3: primary active transporters, 3.A: P-B-barrel-hydrolase-driven transporters, 8: accessory factors involved in transport, 9: incompletely characterised transport systems, 9.A: recognised transporters of unknown biochemical mechanism, 9.B: putative transport proteins. Predicted gene essentiality refers to Zhang et al. (2018), unless another reference is given. The tested life cycle stages are indicated as b, asexual blood stage; g, gametocytes; o, ookinetes; s, sporozoites. Information on the presence of human orthologs is listed according to https://mpmp.huji.ac.il/maps/orth_hsap.html (Ginsburg and Tilley, 2011).
CONCLUSIONS AND FUTURE PERSPECTIVES

This mini review consolidates data from various databases and provides an up-to-date overview of the subcellular localisation, function, predicted essentiality, and human orthologs of *P. falciparum* transporters for the fast identification of essential parasite transporters without human orthologs that may be promising novel targets for therapeutic development. Many of these candidates localise to the apicoplast, the mitochondrion, or the digestive vacuole, which are known to be “druggable” (Wunderlich et al., 2012; Oberstaller et al., 2021).

Moreover, the new transporter list will improve gene annotations and serve as a basis for further functional characterisation of the proteins. It will also be useful for systems biology approaches as it allows more reliable screening of e.g. genomic, transcriptomic, and proteomic data for *P. falciparum* transporters. The low coverage of the *P. falciparum* membrane proteome that complicates target profiling (Lu et al., 2021) may be overcome by large-scale culturing (Dalton et al., 2012) and more sensitive mass spectrometry techniques (McClure and Williams, 2018). Chemogenomic and transcriptional profiling of mutant-parasite libraries with altered drug sensitivities will further guide the determination of the mechanisms of drug action (Adjalley et al., 2015; Pradhan et al., 2015).

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

JW was supported by the Boehringer Ingelheim Foundation and the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement 759534).

ACKNOWLEDGMENTS

The author thanks Jan Strauss for providing many helpful tips and gratefully acknowledges Silvia Portugal and Eileen Devaney for critical reading of the manuscript.
REFERENCES

Adjalley, S. H., Scalford, D., Kozlowski, E., Llinas, M., and Fidock, D. A. (2015). Genome-Wide Transcriptome Profiling Reveals Functional Networks Involving the Plasmodium Falciparum Drug Resistance Transporters PFCRT and Pfmdr1. BMC Genomics 16, 1090. doi: 10.1186/s12864-015-2320-8

Agrawal, S., and Striepen, B. (2010). More Membranes, More Proteins: Complex Protein Import Mechanisms Into Secondary Plastids. Protist 161 (5), 672–687. doi: 10.1016/j.protis.2010.09.002

Ahilya, A. I., Bhatnagar, S., Morrissey, J. M., Beck, J. R., and Vaidya, A. B. (2022). Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium Falciparum. Microbiol. Spectr. 10 (1), e0156822. doi: 10.1128/spectrum.0158-22

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al (1997). Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 25 (17), 3389–3402. doi: 10.1093/nar/25.17.3389

Anantharaman, V., Iyer, L. M., Balaji, S., and Aravind, L. (2007). Adhesion Molecules and Other Secreted Host-Interaction Determinants in Apicomplexa: Insights From Comparative Genomics. Int. Rev. Cytol. 262, 1–74. doi: 10.1016/S0074-7696(07)62004-0

Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., et al. (2009). PlasmoDB: A Functional Genomic Database for Malaria Parasites. Nucleic Acids Res. 37 (Database issue), D359–D434. doi: 10.1093/nar/gkn818

Balestra, A. C., Kousis, K., Klages, N., Howell, S. A., Flynn, H. R., Bantscheff, M., et al (2021). Ca2+ Signals Critical for Egress and Gametogenesis in Malaria Parasites Depend on a Multipass Membrane Protein That Interacts With PKG. Sci. Adv. 7 (13), eabe5396. doi: 10.1126/sciadv.eabe5396

Beck, J. R., and Ho, C. M. (2021). Transport Mechanisms at the Malaria Parasite-Host Cell Interface. PLoS Pathog. 17 (4), e1009394. doi: 10.1371/journal.ppat.1009394

Belete, T. M. (2020). Recent Progress in the Development of New Antimalarial Drugs With Novel Targets. Drug Des. Dev. Ther. 14, 3875–3889. doi: 10.2147/DDDT.S265602

Blake, J. A., Christie, K. R., Dolan, M. E., Drabkin, H. J., Hill, D. P., Ni, L., et al (2015). Gene Ontology Consortium: Going Forward. Nucleic Acids Res. 43 (D1), D1049–D1056. doi: 10.1093/nar/gku179

Böhme, U., Otto, T. D., Sanders, M., Newbold, C. I., and Berriman, M. (2019). Progression of the Canonical Reference Malaria Parasite Genome From 2002-2019. Wellcome Open Res. 4, 58. doi: 10.12688/wellcomeopenres.151941

Boucher, M. J., Ghosh, S., Zhang, L., Lad, A., Jang, S. W., Ju, A., et al (2018). Integrative Proteomics and Bioinformatic Prediction Enable a High-Confidence Apicomplexa Proteinome of Plasmodium in Malaria Parasites. PloS Biol. 16 (9), e2005885. doi: 10.1371/journal.pbio.2005885

Bouyer, G., Cuffe, A., Egée, S., Kmiecik, J., Masikovska, Y., Glogowska, E., et al (2011). Erythrocyte Peripheral Type Benzodiazepine Receptor/Voltage-Dependent Anion Channels are Upregulated by Plasmodium Falciparum. Blood 118 (8), 2305–2312. doi: 10.1182/blood-2011-01-329300

Brochet, M., and Billker, O. (2016). Calcium Signalling in Malaria Parasites. Mol. Microbiol. 100 (3), 397–408. doi: 10.1111/mmi.13324

Bullen, H. E., Sanders, P. R., Dans, M. G., Jonsdottir, T. K., Riglar, D. T., Looker, O., et al (2022). The Plasmodium Falciparum Parasitophorous Vacuole Protein P113 Interacts With the Parasite Protein Export Machinery and Maintains Normal Vacuole Architecture. Mol. Microbiol. 117 (5), 1245–1262. doi: 10.1111/mmi.14904

Cowell, A. N., and Winzeler, E. A. (2019). Advances in Omics-Based Methods to Identify Novel Targets for Malaria and Other Parasitic Protozoan Infections. Genome Med. 11 (1), 63. doi: 10.1186/s13073-019-0673-3

Dalton, J. P., Demanga, C. G., Reiling, S. J., Wunderlich, J., Eng, J. W., and Rohrbach, P. (2012). Large-Scale Growth of the Plasmodium Falciparum Malaria Parasite in a Wave Bioreactor. Int. J. Parasitol. 42 (3), 215–220. doi: 10.1016/j.ijpara.2012.01.001

Das, S., Lemgruber, L., Tay, C. L., Baum, J., and Meissner, M. (2017). Multiple Essential Functions of PfPlasmodium Falciparum Actin-1 During Malaria Blood Stage Development. BMC Biol. 15 (1), 70. doi: 10.1186/s12915-017-0406-2
Cytoadherent Plasmodium Falciparum Parasites With a Chromosome 9 Deletion. PloS One 6 (12), e29039. doi: 10.1371/journal.pone.0029039
Oberstaller, J., Otto, T. D., Rayner, J. C., and Adams, J. H. (2021). Essential Genes of the Parasitic Apicomplexa. Trends Parasitol. 37 (4), 304–316. doi: 10.1016/j.pt.2020.11.007
Pace, D. A., McKnigh, C. A., Liu, J., Jimenez, V., and Moreno, S. N. (2014). Calcium Entry in Toxoplasma Gondii and its Enhancing Effect of Invasion-Linked Traits. J. Biol. Chem. 289 (28), 19637–19647. doi: 10.1074/jbc.M114.563390
Papalexis, V., Siomos, M. A., Campanale, N., Guo, X., Kocak, G., Foley, M., et al (2001). Histidine-Rich Protein 2 of the Malaria Parasite, Plasmodium falciparum, is Involved in Detoxification of the by-Products of Haemoglobin Degradation. Mol. Biochem. Parasitol. 115 (1), 77–86. doi: 10.1016/S0166-6851 (01)00271-7
Park, D. J., Lukens, A. K., Neafsey, D. E., Schaffner, S. F., Chang, H. H., Valim, C., et al (2012). Sequence-Based Association and Selection Scans Identify Drug Resistance Loci in the Plasmodium Falciparum Malaria Parasite. Proc. Natl. Acad. Sci. U.S.A. 109 (32), 13052–13067. doi: 10.1073/pnas.1210585109
Plowe, C. V. (2022). Malaria Chemoprevention and Drug Resistance: A Review of the Literature and Policy Implications. Malar. J. 21 (1), 104. doi: 10.1186/s12936-022-04115-8
Pradhan, A., Siwo, G. H., Singh, N., Martens, B., Baliu, B., Button-Simons, K. A., et al (2015). Chemogenomic Profiling of Plasmodium falciparum as a Tool to Guide the Design of Novel Chemotherapeutic Agents. Mol. Biochem. Parasitol. 193 (1), 71–80. doi: 10.1016/j.molbiopara.2013.10.001
Rohloff, P., Miranda, K., Rodrigues, J. C., Fang, J., Galizi, M., Plattner, H., et al (2011). Calcium Uptake and Proton Transport by Acidocalcisomes of Toxoplasma Gondii. PLoS One 6 (4), e18390. doi: 10.1371/journal.pone.0018390
Rohrbach, P., Friedrich, O., Hentschel, J., Plattner, H., Fink, R. H., and Lanzer, M. (2005). Quantitative Calcium Measurements in Subcellular Compartments of Plasmodium falciparum-Infected Erythrocytes. J. Biol. Chem. 280 (30), 27960–27969. doi: 10.1074/jbc.M500777200
Rottmann, A., Sanchez, C., Guiguemde, A., Rohrbach, P., Dave, A., Bakouh, N., et al (2010). PCHA is a Mitochondrial Divalent Cation/H+ Antipporter in Plasmodium falciparum. Mol. Microbiol. 76 (6), 1591–1606. doi: 10.1111/j.1365-2958.2010.07187.x
Ruiz, F. A., Luo, S., Moreno, S. N., and Docampo, R. (2004). Polyphosphate Content and Fine Structure of Acidocalcisomes of Plasmodium Falciparum. Microsc. Microanal. 10 (5), 563–567. doi: 10.1017/S1350465X0400875
Saier, M. H. Jr., Reddy, V. S., Tsu, B. V., Ahmed, M. S., Li, C., and Moreno-Hagelsieb, G. (2016). The Transporter Classification Database (TCDB): Recent Advances. Nucleic Acids Res. 44 (D1), D372–D379. doi: 10.1093/nar/gkv1103
Sassmannshausen, J., Pradel, G., and Bennink, S. (2020). Perforin-Like Proteins of Apicomplexan Parasites. Front. Cell. Infect. Microbiol. 10, 578883. doi: 10.3389/fcimb.2020.578883
Sayers, C. P., Mollard, V., Buchanan, H. D., McFadden, G. L., and Goodman, C. D. (2018). A Genetic Screen in Rodent Malaria Parasites Identifies Five New Apicoplast Putative Membrane Transporters, One of Which is Essential in Human Malaria Parasites. Cell Microbiol. 20 (1), e12789. doi: 10.1111/cmi.12789
Schmidt, O., Pfanner, N., and Meisinger, C. (2010). Mitochondrial Protein Import: From Proteomics to Functional Mechanisms. Nat. Rev. Mol. Cell Biol. 11 (9), 655–667. doi: 10.1038/nrm2959
Shaﬁk, S. H., Cobbold, S. A., Barkat, K., Richards, S. N., Lancaster, N. S., Llinás, M., et al (2020). The Natural Function of the Malaria Parasite’s Chloroquine Resistance Transporter. Nat. Commun. 11 (1), 3922. doi: 10.1038/s41467-020-17781-6
Shaﬁk, S. H., Richards, S. N., Corry, B., and Martin, R. E. (2022). Mechanistic Basis for Multidrug Resistance and Collateral Drug Sensitivity Conferred to the Malaria Parasite by Polymorphisms in PDR1 and PIRC1. PLoS Pathog. 20 (5), e1001616. doi: 10.1371/journal.ppat.1001616
Sheiner, L., and Soldati-Favre, D. (2008). Protein Trafficking Inside Toxoplasma Gondii. Traffic 9 (5), 636–646. doi: 10.1111/j.1600-0854.2008.00713.x
Sinha, A., Baumgarten, S., Distiller, A., McHugh, E., Chen, P., Singh, M., et al (2021). Functional Characterization of the M+⁺-Dependent Vesicular Transporter MOD1 in the Human Malaria Parasite. mBio 12 (2), e00661–e00621. doi: 10.1128/mBio.00661-21

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

12 June 2022 | Volume 12 | Article 926541
Spork, S., Hess, J. A., Mandel, K., Sommer, M., Kooij, T. W., Chu, T., et al (2009). An Unusual ERAD-Like Complex is Targeted to the Apicoplast of Plasmodium Falciparum. *Eukaryot. Cell* 8 (3), 1134–1145. doi: 10.1128/ec.00083-09

Staines, H. M., Moore, C. M., Slavic, K., and Krishna, S. (2017). Transmembrane Solute Transport in the Apicomplexan Parasite Plasmodium. *Emerg. Top. Life Sci.* 1 (6), 553–561. doi: 10.1042/etls20170097

Swearingen, K. E., Lindner, S. E., Shi, L., Shears, M. J., Harupa, A., Hopp, C. S., et al (2016). Interrogating the *Plasmodium* Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. *PloS Pathog.* 12 (4), e1005606. doi: 10.1371/journal.ppat.1005606

Swift, R. P., Rajaram, K., Keutcha, C., Liu, H. B., Kwan, B., Dziedzic, A., et al (2020). The NTP Generating Activity of Pyruvate Kinase II is Critical for Apicoplast Maintenance in Plasmodium Falciparum. *eLife* 9, e50807. doi: 10.7554/eLife.50807.sa2

Taylor, C. J., McRobert, L., and Baker, D. A. (2008). Disruption of a *Plasmodium Falciparum* Cyclic Nucleotide Phosphodiesterase Gene Causes Aberrant Gametogenesis. *Mol. Microbiol.* 69 (1), 110–118. doi: 10.1111/j.1365-2958.2008.06267.x

van der Velden, M., Ripma, S. R., Russel, F. G., Sauerwein, R. W., and Koenderink, J. B. (2015). P*MDR2* and P*MDR3* are Dispensable for *Plasmodium Falciparum* Asexual Parasite Multiplication But Change In Vivo Susceptibility to Anti-Malarial Drugs. *Malar. J.* 14, 76. doi: 10.1186/s12936-015-0581-y

van Dooren, G. G., Stimmler, L. M., and McFadden, G. I. (2006). Metabolic Maps of the *Plasmodium* Mitochondrion. *EMBO* Rev. 30 (4), 596–630. doi: 10.1111/j.1574-9793.2006.00027.x

van Esveld, S. L., Meerstein-Kessel, L., Boshoven, C., Baaij, J. F., Barylyuk, K., Coolen, J. P. M., et al (2021). A Prioritized and Validated Resource of Mitochondrial Proteins in *Plasmodium* Identifies Unique Biology. *mSphere* 6 (5), e006121. doi: 10.1128/mSphere.00612-21

Waller, K. L., McBride, S. M., Kim, K., and McDonald, T. V. (2008). Characterization of Two Putative Potassium Channels in Plasmodium Falciparum. *Malar. J.* 7, 19. doi: 10.1186/1475-2875-7-19

Wang, Q. C., Zheng, Q., Tan, H., Zhang, B., Li, X., Yang, Y., et al (2016). TMCO1 Is an ER Ca$^{2+}$ Load-Activated Ca$^{2+}$ Channel. *Cell* 165 (6), 1454–1466. doi: 10.1016/j.cell.2016.04.051

Weiner, J., and Kooij, T. W. (2016). Phylogenetic Profiles of All Membrane Transport Proteins of the Malaria Parasite Highlight New Drug Targets. *Microb. Cell* 3 (10), 511–521. doi: 10.15698/mic2016.10.534

Wichers, J. S., Mesén-Ramírez, P., Fuchs, G., Yu-Strzelczyk, J., Stäcker, J., von Thien, H., et al (2022). PMRT1, a *Plasmodium*-Specific Parasite Plasma Membrane Transporter, is Essential for Asexual and Blood Stage Development. *mBio* 13 (2), e0062322. doi: 10.1128/mBio.00623-22

Wichers, J. S., van Gelder, C., Fuchs, G., Ruge, J. M., Pletsch, E., Ferreira, J. L., et al (2021). Characterization of Apicomplexan Amino Acid Transporters (ApiATs) in the Malaria Parasite Plasmodium Falciparum. *mSphere* 6 (6), e0074321. doi: 10.1128/mSphere.00743-21

Wirth, C. C., Bennink, S., Schueremayer, M., Fischer, R., and Pradel, G. (2015). Perforin-Like Protein PPLP4 is Crucial for Mosquito Midgut Infection by *Plasmodium Falciparum*. *Mol. Biochem. Parasitol.* 201 (2), 90–99. doi: 10.1016/j.molbiopara.2015.06.005

Wirtz, C. C., Glushakova, C., Schueremayer, M., Repnik, U., Garg, S., Schack, D., et al (2014). Perforin-Like Protein PPLP2 Permeabilizes the Red Blood Cell Membrane During Egress of *Plasmodium Falciparum* Gametocytes. *Cell Microbiol.* 16 (5), 709–733. doi: 10.1111/cmi.12288

Woo, Y. H., Ansari, H., Otto, T. D., Klinger, C. M., Kolisko, M., Michálek, J., et al (2015). Chromerid Genomes Reveal the Evolutionary Path From Photosynthetic Algae to Obligate Intracellular Parasites. *eLife* 4, e06974. doi: 10.7554/eLife.06974.033