GENERALIZATION OF SCARPIS’S THEOREM ON HADAMARD MATRICES

DRAGOMIR ˇZ. DOKOVI´C

Abstract. A \{1, −1\}-matrix H of order m is a Hadamard matrix if $HH^T = mI_m$, where T is the transposition operator and I_m the identity matrix of order m. J. Hadamard published his paper [1] on Hadamard matrices in 1893. Five years later, Scarpis [4] showed how one can use a Hadamard matrix of order $n = 1 + p$, $p \equiv 3 \pmod{4}$ a prime, to construct a bigger Hadamard matrix of order pn. In this note we show that Scarpis’s construction can be extended to the more general case where p is replaced by a prime power q.

1. Introduction

We fix some notation which will be used throughout this note. By \mathcal{H}_m we denote the set of Hadamard matrices of order m. Let $q \equiv 3 \pmod{4}$ be a prime power and set $n = 1 + q$. Let F_q be a finite field of order q.

Given a bijection $\alpha : \{1, 2, \ldots, q\} \to F_q$, we shall construct a map $\varphi_{q, \alpha} : \mathcal{H}_n \to \mathcal{H}_{qn}$.

Consequently, the following theorem holds.

Theorem 1. Let $q \equiv 3 \pmod{4}$ be a prime power. If there exists a Hadamard matrix of order $n = 1 + q$ then there exists also a Hadamard matrix of order qn.

In the special case, where q is a prime, this theorem was proved by Scarpis [4]. For a nice and short description of the original Scarpis’s construction see [2].

By the well known theorem of Paley [3], the hypothesis of the above theorem is always satisfied. Thus we have

Corollary 1. If $q \equiv 3 \pmod{4}$ is a prime power, then there exists a Hadamard matrix of order $q(1 + q)$.

We shall describe a procedure whose input is a Hadamard matrix $A = [a_{i,j}]$ of order $n = 1 + q$ and output a Hadamard matrix $B = \varphi_{q, \alpha}(A)$ of order qn. For convenience, we set $a_i = a(i)$.

2. Construction of B

Step 1: If $a_{1,1} = -1$ then replace A by $-A$. From now on $a_{1,1} = 1$.

Step 2: For each $i \in \{2, 3, \ldots, n\}$ do the following: if $a_{i,1} = -1$ then multiply the row i of A by -1, and if $a_{1,i} = -1$ then multiply the column i of A by -1. The resulting matrix A is independent of the order in which these operations are performed.

Note that A is now normalized, i.e., $a_{i,1} = a_{1,i} = 1$ for each i. Denote by C its core, i.e., the submatrix of A obtained by deleting the first row and the first column.
of A. For $i \in \{1, 2, \ldots, q\}$, we denote by c_i the row i of C. For convenience, we also set $c(\alpha_i) = c_i$.

The tensor product $X \otimes Y$ of two matrices $X = (x_{i,j})$ and Y is the block matrix $[x_{i,j}Y]$.

Let j be the row vector of length q all of whose entries are 1. We view j also as a $1 \times q$ matrix.

Step 3: We partition B into n blocks of size $q \times qn$:

$$B = \begin{bmatrix} B_0 \\ B_1 \\ \vdots \\ B_q \end{bmatrix}.$$ We set $B_0 = A' \otimes j$ where A' is the submatrix of A obtained by deleting the first row of A.

Step 4: For $r \in \{1, 2, \ldots, q\}$, we partition B_r into n blocks of size $q \times q$:

$$B_r = [B_{r,0} B_{r,1} \cdots B_{r,q}].$$

We set $B_{r,0} = j^T \otimes c_r$.

It remains to define the blocks $B_{r,i}$ for $\{r, i\} \subseteq \{1, 2, \ldots, q\}$.

Step 5: For $\{r, i\} \subseteq \{1, 2, \ldots, q\}$, we define $B_{r,i}$ by specifying that its row k is $c(\alpha_i \alpha_r + \alpha_k)$. Thus $B_{r,i} = P_{r,i} C$ where $P_{r,i}$ is a permutation matrix.

This completes the definition of B.

It remains to prove that B is a Hadamard matrix.

3. Proof that B is a Hadamard matrix

As B is a square $\{1, -1\}$-matrix of order qn, it suffices to prove that the dot product of any pair of rows of B is 0. There are four cases to consider.

(i) Two distinct rows of B_0. They are orthogonal because two distinct rows of A' are orthogonal.

(ii) Two distinct rows of B_r, $r \neq 0$. Since A is normalized, the dot product $c_r \cdot c_s$ is q when $r = s$, and -1 otherwise. Hence, the same is true for each of the blocks $B_{r,i}$ for $i \neq 0$. On the other hand, the dot product of any two rows of $B_{r,0}$ is 0. It follows that the dot product of any pair of rows of B_r is 0.

(iii) A row of B_0 and a row of B_s, $s \neq 0$.

The row k of B_0 is $[j^T \otimes c_k]^{T}$ and the row l of B_s is

$$[c(\alpha_s) c(\alpha_s \alpha_1 + \alpha_1) c(\alpha_s \alpha_1 + \alpha_2) \cdots c(\alpha_s \alpha_1 + \alpha_q)].$$

Since all row sums of C are -1, it follows that the dot product of the two rows above is 0.

(iv) A row of B_r and a row of B_s, $0 < r < s$.

The dot product of the row k of B_r and the row l of B_s is

$$c(\alpha_r) \cdot c(\alpha_s) + \sum_{i=1}^{q} c(\alpha_i \alpha_r + \alpha_k) \cdot c(\alpha_i \alpha_s + \alpha_l).$$

Note that $c(\alpha_i \alpha_r + \alpha_k) \cdot c(\alpha_i \alpha_s + \alpha_l)$ is equal to -1 for all i except that it is equal to q for the unique $i \in \{1, 2, \ldots, q\}$ for which $\alpha_i \alpha_r + \alpha_k = \alpha_i \alpha_s + \alpha_l$. Since also $c(\alpha_r) \cdot c(\alpha_s) = -1$, it follows that the rows of B_r are orthogonal to the rows of B_s.

We have shown that $B \in \mathcal{H}_{q^n}$. This completes our construction of $\varphi_{q,\alpha}$.

The smallest q which satisfies the condition of Theorem 6 but is not a prime (so Scarpis’s theorem does not apply) is $q = 27$. It gives a Hadamard matrix of order $4 \cdot 189 = 756$.

We conclude with an open problem: Find an analog of our procedure which uses prime powers $q \equiv 1 \pmod{4}$.

The author acknowledges generous support by NSERC.

References

[1] J. Hadamard, Résolution d’une question relative aux déterminants, Bull. des Sciences Mathématiques 17 (1893) 240–246.
[2] W. Orrick, Maximal determinant blog, Hadamard matrices: the construction of Scarpis. //willorrick.wordpress.com/2012/11/17/ November 17, 2012
[3] R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics 12 (1933) 311–320.
[4] U. Scarpis, Sui determinanti di valore massimo, Rendiconti della R. Istituto Lombardo di Scienze e Lettere (2), 31 (1898) 1441–1446.

University of Waterloo, Department of Pure Mathematics and Institute for Quantum Computing, Waterloo, Ontario, N2L 3G1, Canada

E-mail address: djokovic@uwaterloo.ca