CaV1.3 as pacemaker channels in adrenal chromaffin cells
Specific role on exo- and endocytosis?

Valentina Comunanza,† Andrea Marcantoni,† David H. Vandael,† Satyajit Mahapatra, Daniela Gavello, Victor Navarro-Tableros, Valentina Carabelli and Emilio Carbone*

Department of Neuroscience; NIS Centre; CNiSM; University of Torino; Torino, Italy

†These authors contributed equally to this work.

Key words: L-type calcium channels, BK channels, pacemaking currents, action potential firing, Ca2+-dependent secretion, cAMP, cGMP, hypoxia

Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca2+-dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneously firing cells: low-threshold, steep voltage-dependence of activation and slow inactivation. By using CaV1.3−/−KO mice and the AP-clamp it has been possible to resolve the time course of CaV1.3 pacemaker currents, which is similar to that regulating Substantia nigra dopaminergic neurons. In mouse chromaffin cells CaV1.3 is coupled to fast-inactivating BK channels within membrane nanodomains and controls AP repolarization. The ability to carry subthreshold Ca2+ currents and activate BK channels confers to CaV1.3 the unique feature of driving Ca2+ loading during long interspike intervals and, possibly, to control the Ca2+-dependent exocytosis and endocytosis processes that regulate catecholamine secretion and vesicle recycling.

Introduction

LTCCs are hetero-oligomers consisting of a pore-forming α, subunit interacting with accessory subunits (β and α2-δ) to form a functional channel complex. LTCCs belong to the large family of voltage-gated Ca2+ channels that are permeable to Ca2+ and include the N, P/Q, R and T-types.1 Like the other Ca2+ channels, LTCCs open readily during membrane depolarization and allow Ca2+ to enter the cell. In this way, LTCCs can both regulate cell excitability and trigger a variety of Ca2+-dependent physiological processes, such as: excitation-contraction coupling in all muscle types, gene expression, synaptic plasticity, brain aging, hormone secretion2 and pacemaker activity in heart, neurons and endocrine cells.3-6 Presently, four genes are identified coding for the CaV1.1, CaV1.2, CaV1.3 and CaV1.4 subunits.1 Of these, CaV1.1 and CaV1.4 exhibit specific expression profiles that are restricted to skeletal muscle, endocrine pituitary cells and the retina, whereas CaV1.2 and CaV1.3 are widely expressed throughout the central nervous system, sensory and endocrine cells, atrial myocytes and cardiac pacemaker cells.7,8

CaV1.2 and CaV1.3 channels are widely expressed in the chromaffin cells of the adrenal medulla6,9-11 and possess key properties that are conditional for the control of chromaffin cell activity. First, CaV1.2 and CaV1.3 channels markedly contribute to catecholamine secretion.12-15 In rat (RCCs) and mouse chromaffin cells (MCCs) they are responsible for nearly half of the total Ca2+ current and the corresponding exocytosis.12,16-20 Second, compensatory and excess endocytosis are strongly attenuated when LTCCs are blocked.21 Third, LTCC gating can be either up or downregulated by autocrinally released neurotransmitters coupled to membrane-delimited G protein dependent receptors or cGMP/PKG and cAMP/PKA pathways.20,22-27 Fourth, CaV1.3 channels activate at very low voltages and inactivate slowly with respect to CaV1.2 and other high-threshold channels (N, P/Q, R).2,28,29 This enables CaV1.3 to carry pacemaker currents sustaining chromaffin cell spontaneous activity.6,15-20 Finally, CaV1.3 is tightly coupled to fast inactivating BK channels, suggesting a key control of AP firings and shape.6

All these peculiar properties of CaV1.2 and CaV1.3 channels highlight the strategic role that these two channels exert on chromaffin cell activity. Full understanding of the function of CaV1.2 and CaV1.3 on adrenal medulla physiology could help solving neuronal and cardiovascular pathologies deriving from stressful conditions that develop during prolonged and elevated levels of circulating catecholamine’s.

Why Chromaffin Cells Fire Spontaneously?

Bovine, rat, mouse and human adrenal chromaffin cells fire spontaneously when cultured in vitro6,20,30-39 or maintained in slices of the adrenal gland.40-41 The percentage of firing chromaffin cells varies considerably (from 20 to 80%) depending...
on the animal species, the intracellular physiological solutions and methods of cell isolation. In spite of this, chromaffin cells fire spontaneously regardless of the patch-clamp technique used for AP recording: whole-cell, cell-attached and perforated-patch recording modes.

Spontaneous activity of chromaffin cells can also be monitored by extracellular recording techniques. When plated on a multi-electrode array (MEA) recording system the spontaneous activity is maintained. This proves that AP firing is a genuine phenomenon of chromaffin cells persisting in the absence of splanchnic nerve stimulation and not related to cell damage induced by the patch-clamp electrode. With the MEA system, the intact cell simply adheres to the TiN microelectrodes and the extracellular AP firing is recorded in a non-invasive manner. Indeed, the firing frequencies and the firing modes (tonic versus bursts) monitored by the MEA (Fig. 1) match those intracellularly recorded in perforated-patches.

Given that chromaffin cells are contacted by multiple cholinergic innervations that effectively control their activity by splanchnic nerve discharges, an unsolved question is why in vivo adrenal chromaffin cells should possess spontaneous AP activity. A possible explanation could be that chromaffin cells are packed together and electrically coupled by gap-junctions to form groups of cells that synchronously release the content of secretory granules in nearby blood capillaries. Under these conditions, the spontaneous firing of one or a group of chromaffin cells could warrant the basal release of catecholamines of several electrically coupled cells. Tonic or burst firing, as shown in Figure 1, could be also at the basis of the adrenal gland response to increased blood levels of histamine, acetylcholine, angiotensin II (ATII) and K⁺ ions. Histamine and acetylcholine are known to increase the firing rate of spontaneous APs and the same is likely to occur during postprandial hyperkalemia and enhanced blood levels of ATII that is known to increase the levels of circulating catecholamines. All these events could occur independently of the neurogenic control of chromaffin cell activity and could be sustained by the electrical synchronism through gap-junctions.

Caᵥ1.3 Expression and Pacemaking: Ca²⁺ Versus Na⁺ Subthreshold Currents

All the above arguments justify a detailed analysis of the pacemaker current sustaining chromaffin cell firing, but surprisingly enough there are only few reports on the ion channels controlling chromaffin cell pacemaking. The few studies available focus on the main role of TTX-sensitive Na⁺ channels in sustaining the AP upstroke, and voltage-gated Ca²⁺ channels contributing to AP activity or shaping APs through their coupling to BK channels. The critical role of voltage-gated Ca²⁺ channels in pacemaking MCCs is best illustrated in Figure 2, where addition of 300 nM TTX reduces both the AP overshoot and undershoot with little effect on the firing frequency. In the presence of TTX, there are oscillatory potentials of smaller amplitude that do not overshoot and are effectively blocked by Cd²⁺ (200 μM). This is similar to what is reported for Substantia nigra pars compacta (SNc) dopaminergic neurons and is indicative of a main role of Ca²⁺ channels in sustaining both the AP upstroke and the firing frequency. In the case of SNc neurons, the block of firing after Ca²⁺ application causes hyperpolarization due to the block of a dominant subthreshold Ca²⁺ current. In MCCs and RCCs this is not always the case, in some cells the block of firing by Ca²⁺ causes slight depolarizations, as illustrated in Figure 2, indicating a parallel block of Ca²⁺-activated K⁺ currents. As in SNc neurons, the persister firing in the presence of TTX can be effectively blocked by nifedipine (3 μM) and accelerated by BayK 8644 (1 μM) (Fig. 2, bottom), suggesting a main role of LTCCs in controlling AP firing in these cells.

Evidence for the existence of an L-type pacemaker current in MCCs comes directly from AP-clamp experiments when K⁺ and TTX-sensitive Na⁺ channels are blocked. Figure 3 shows the time course of these currents in a WT MCC, which is very similar to that recorded in SNc or suprachiasmatic neurons and is highly suggestive of a contribution of Caᵥ1.3 currents. However, as for SNc neurons and cardiac sino-atrial node cells, a direct role of Caᵥ1.3 in pacemaking MCCs was uncovered by using Caᵥ1.3 KO mice. Deletion of Caᵥ1.3 reduces drastically the amplitude of the pacemaker L-type current (Fig. 3, bottom) and the fraction of firing cells (from 80% to 30%). Figure 3 (bottom) shows how small the average L-type pacemaker currents are in Caᵥ1.3 KO MCCs and how BayK 8644 can effectively restore them. This reminds of the restored L-type-dependent bursting activity of silent mid-brain spiny neurons in Caᵥ1.3 KO mice after addition of BayK 8644.

Figure 3 shows also that Na⁺ pacemaker currents are nearly absent in MCCs when compared to the sum of Ca²⁺ and Ca²⁺-activated K⁺ currents recorded from the same cell. The former are obtained by subtracting TTX-insensitive from control currents and the latter from a similar procedure using Cd²⁺ (200 μM).
RCCs and MCCs are shown to express two different BK channel subtypes that can be distinguished according to their inactivation kinetics: a fast inactivating and a slowly inactivating subtype. The fast inactivating BK channel is typically expressed in chromaffin cells and is involved in tonic cell firing. The slowly inactivating BK channel has gating properties similar to central neurons and smooth muscle BK channels and gives rise to phasic firings. Chromaffin cells expressing fast inactivating BK channels are further characterized by deeper AHPs and higher charybdotoxin-sensitivity. Fast inactivating BK channels possess slower deactivation kinetics that might contribute to long lasting AHP, necessary for recovering voltage-gated Na+ and Ca2+ channels to initiate the following AP during sustained firing.

In MCCs we have recently shown that the AP repolarization phase could be delayed by either blocking BK channels with paxilline, or LTCCs with nifedipine, proving the existence of a tight coupling between L-type and BK channels. The main difference between the two blockers is that paxilline increases the firing frequency while nifedipine decreases or blocks the firing. A similar selective coupling is reported in RCCs. In MCCs there is also evidence that the coupling involves specifically Ca,1.3. Deletion of Ca,1.3 channels in Ca,1.3 KO MCCs causes more depolarized interspike (resting) potentials and produces prolonged plateau depolarizations in response to BayK 8644. Two properties that cannot be explained by simply silencing Ca,1.3, but rather by assuming that Ca,1.3 is effectively coupled.

Figure 3. (A and B) Pacemaker Ca++ currents in WT and Ca,1.3 KO MCCs before (control) and during application of 3 μM nifedipine (nife). In (A) is shown also the Ca++ current after washing nifedipine (recovery). In (B) 1 μM BayK 8644 was applied to test the presence of Ca,1.2 channels. On the top is shown the AP train stimulus used for the AP-clamp recording. K+ and Na+ currents were blocked by adding 135 mM TEA and 0.3 μM TTX to the bath containing 2 mM Ca2+. Both parts are adapted from Marcantoni et al. (C) Comparison of Na+ and Ca++ currents in a WT MCC. TTX-sensitive Na+ currents (red trace) were obtained by subtracting TTX-resistant (0.3 μM TTX) from control currents. The Ca++ + K+ currents (blue trace) was obtained by adding 200 μM Cd2+ to the TTX-resistant currents and subtracting the remaining component.
to Ca\(^{2+}\)-activated BK channels. This also suggests that Ca\(_{\text{a,1.3}}\) sustains the subthreshold pacemaker current in MCCs (and possibly in RCCs) and that the highly expressed BK channels counterbalance the inward Ca\(^{2+}\) current with an outward K\(^+\) current component that decelerates the firing.\(^6\)

Functional Coupling of Ca\(_{\text{a,1.3}}\) to Fast Inactivating BK Channels in MCCs

In line with the above arguments, it is evident that the BK channels contributing to the repolarization phase of the AP are mostly activated by the Ca\(^{2+}\) entering the cell during the interspike. Since this current is mainly carried by Ca\(_{\text{a,1.3}}\), this explains why nifedipine can effectively control both the frequency and the shape of the AP in spontaneously firing chromaffin cells. A better view to this functional coupling is obtained by directly measuring the K\(^+\) currents flowing during an AP and testing their block by nifedipine (Fig. 4). The K\(^+\) current rises and falls very quickly during the AP. The majority of this current is carried by voltage-gated K\(^+\) channels and the BK channels activated by the Ca\(^{2+}\) entering the cytoplasm during the interspike. This Ca\(^{2+}\) is mainly carried by Ca\(_{\text{a,1.3}}\) in WT cells and by the other Ca\(^{2+}\)-channels in Ca\(_{\text{a,1.3-/-}}\) cells. Thus, the percentage of K\(^+\) current blocked by nifedipine furnishes a direct estimate of the effective coupling between Ca\(_{\text{a,1.3}}\) and BK channels. Figure 4 shows that in the case of WT MCCs, nifedipine blocks more than 60% of the outward K\(^+\) currents while in Ca\(_{\text{a,1.3-/-}}\) MCCs the DHP blocks only a small fraction in spite of the large inward Ca\(^{2+}\) current (blue trace).

Given the strong coupling between Ca\(_{\text{a,1.3}}\) and BK channels, a second interesting issue to solve is how close the two channel subunits are. This can be done using well calibrated Ca\(^{2+}\) buffers that limit the diffusion of Ca\(^{2+}\) ions beyond membrane nano- or microdomains in which voltage-gated Ca\(^{2+}\) channels and BK channels operate. Marty and Neher\(^60\) were the first to use this approach in bovine chromaffin cells. They found that internal solutions containing BAPTA were more effective in blocking the Ca\(^{2+}\)-dependent K\(^+\) currents than EGTA containing solutions. Following the same approach and using a double-pulse protocol to quantify the amount and type of BK currents, Chris Lingle and coworkers could formulate a quite realistic picture of how L-type and BK channels are coupled in RCCs\(^61,62\). The experimental data are consistent with a model in which BK channels are located between 160 and 50 nm from the Ca\(^{2+}\)-channels that fuel them.\(^63\) More precisely, 30 to 40% of fast inactivating BK channels in RCCs are insensitive to EGTA buffers and are therefore positioned sufficiently close to LTCCs (between 50 and 160 nm) to be influenced by the Ca\(^{2+}\) influx through these channels during brief depolarization steps.\(^63\) The remaining channels are far apart (>160 nm) and their activation is fully prevented by saturating EGTA.

We followed a similar approach to evaluate the coupling between Ca\(_{\text{a,1.3}}\) and BK channels in MCCs, measuring the BK currents by using a voltage-clamp protocol consisting of two consecutive pulses. During the first pulse of 400 ms the cell is stepped from a negative holding potential (-70 mV) to a positive test potential (+80 mV) that overrates the Ca\(^{2+}\) reversal potential and produces large driving forces for K\(^+\) ions. In this way, the voltage-gated K\(^+\) channels (K\(_{\text{V}}\)) are fully activated for the entire duration of the pulse. During the second pulse the cell is first stimulated by a Ca\(^{2+}\) preloading step to +10 mV for 90 ms to achieve maximal Ca\(^{2+}\) entry and then stepped to the positive test potential. The resulting current is a mixture of transient BK and sustained K\(_{\text{V}}\) currents and the difference between the two K\(^+\) currents with and without Ca\(^{2+}\) preloading represents the BK portion.\(^58,61\)

In the case of MCCs, prolongation of the Ca\(^{2+}\) preloading step has different effects on WT and Ca\(_{\text{a,1.3-/-}}\) MCCs (Fig. 5). WT MCCs possess BK currents with relatively fast inactivating kinetics that increase in amplitude with increasing preloading steps.\(^6\) In contrast, KO MCCs mainly show slowly inactivating BK currents which turn on with long preloading steps.\(^6\) When
G protein-coupled membrane autoreceptors23-25,27 and intracellularly PKA 26 or PDE type-420 In principle, by acting on LTCCs, any of these signaling loops can exert a potent modulatory effect also on the exocytotic response. In fact, the L-type current increase induced by prolonged cAMP stimulation only accounts for 20% of the total secretory response, suggesting an additional down-stream effect on the secretory machinery.12 It is also interesting to notice that, due to their slower and less complete time-dependent inactivation, LTCCs are favored in triggering exocytosis with respect to other HVA Ca2+ channels during sustained stimuli. Nevertheless, the contribution of LTCCs to exocytosis remains proportional to the quantity of Ca2+ ions entering the cell, suggesting that there is no preferential co-localization of CaV1 channels to secretory granules.15

Although the critical role of LTCCs in triggering exocytosis is well established,12,13,71,72 there are no clear indications of a possible distinct role of CaV1.2 and CaV1.3 to exocytosis, despite the different inactivation kinetics and voltage range of activation of the two isoforms.2 Preliminary observations show that deletion of CaV1.3 subunit in MCCs lowers the amount of exocytosis at very negative potentials (-50 to -30 mV in 10 mM Ca2+) (Navarro V, Striessnig J, Carbone E, Carabelli V, unpublished data), indicating that besides sustaining action potential firing, CaV1.3 preferentially contributes to exocytosis at low membrane potentials. In this way, CaV1.3 contributes to the low-threshold exocytosis similarly to the T-type CaV3.2 channel.14,67,70

Another open question to solve concerns the role of Ca2+ and Ca2+ channels in the retrieval of synaptic vesicles during endocytosis. Neuroendocrine chromaffin cells exhibit different types of endocytosis, according to cell activity and stimulation protocols. Square pulse depolarizations cause exocytosis followed by a decline in membrane capacitance, which can reach the pre-stimulus level (compensatory endocytosis) or fall even below (excess endocytosis).73,74 Transition between these two modes appears to be regulated by intracellular Ca2+: the retrieval being accelerated and potentiated by increasing Ca2+ levels. It is interesting that in chromaffin cells endocytosis is also supported by barium,75 by the activation of kinase/phosphatase-mediated pathways3,76 and by additional pathways of vesicle

LTCC-Secretion Coupling in Adrenal Chromaffin Cells

In chromaffin cells, the different Ca2+ channel subtypes (L, N, P/Q, R) contribute to exocytosis proportionally to their density of expression and gating properties.12,17-19,64-68 Secretion is not particularly linked to a specific Ca2+ channel type and either deletion or upregulation of one of them causes a proportional change to secretion. For instance, Ca\textsubscript{2,1} deletion causes a loss of the P/Q-type currents with a compensatory increase of L-type currents and secretion.69 Similarly, when upregulated by cAMP14 or chronic hypoxia,70 T-type channels contribute to low-threshold exocytosis with the same Ca2+-dependence of L-type channels.

In RCCs and MCCs, LTTCs represent the final target of different modulatory pathways mediated by the activation of either
recycling independent of dynamin and calmodulin. In bovine chromaffin cells, the mechanism of action involves sphingosine and originates at the intracellular site. The phenomenon is lost when applying repeated stimuli.

Concerning the role of Ca²⁺ channels in sustaining endocytosis, a preferential coupling of LTCCs to endocytosis has been recently proposed: Ca²⁺-entry through LTCCs in bovine chromaffin cells is more effective in triggering endocytosis than exocytosis. Even at the mammalian neuromuscular junction, endocytosis is mainly sustained by LTCCs, while P/Q-type channels trigger exocytosis. Block of LTCCs by DHPs decreases endocytosis and directs newly formed synaptic vesicle to a slow-release vesicle pool during high-frequency stimulation. According to the proposed model, in the absence of functioning LTCCs, endocytosis cannot be sufficiently fast to balance exocytosis causing vesicular membrane to accumulate at the presynaptic surface.

Given the main role of LTCCs in controlling compensatory and excess endocytosis, the next issue is whether Ca₄.1.2 or Ca₄.1.3 has a preferential control on vesicle retrieval. One argument in favor of Ca₄.1.3 is its slower and less complete time-dependent inactivation with respect to Ca₄.1.2. The delayed inactivation of Ca₄.1.3 could be physiologically relevant for sustaining prolonged Ca²⁺ influxes that support normal endocytosis. Finally, also the coupling of Ca₄.1.2 and Ca₄.1.3 to calmodulin, the Ca²⁺ sensor of different forms of endocytosis, could be a further molecular target of differential regulation of the endocytic response. These issues will be answered using specific L-type KO animal models.

LTCCs play multiple roles in adrenal chromaffin cells function. They set the frequency of spontaneous AP firing and condition the AP shape through their coupling to BK channels. These are critical parameters that may set the basal release of catecholamine and the response of adrenal gland to changing levels of blood hormones (histamine, angiotensin II, aldosterone). LTCCs also sustain catecholamine secretion and vesicle retrieval. Secretion occurs without any preferential Ca²⁺ channel co-localization to secretory vesicle while endocytosis requires a preferential coupling to LTCCs. Spontaneous AP firing, low-threshold exocytosis and compensatory/excess endocytosis are likely to be directly controlled by Ca₄.1.3, which then turns out to be an important molecular gateway for controlling catecholamine release and regulate the “fight-or-flight” response under stress condition. Since Ca₄.1.3 is also critical for the control of vital functions such as: heart beating, hearing and dopamine release, it is evident that the availability of new DHP compounds that selectively block Ca₄.1.3 would be beneficial for the therapeutic treatment of Parkinson disease, cardiac arrhythmias, chronic stress and other neuro- and cardiovascular pathologies in which Ca₄.1.3 is likely to be involved.

Conclusions

We wish to thank Dr. Claudio Franchino for technical assistance. This work was supported by the Marie Curie Research Training Network “Ca₄.NET” Contract MRTN-CT-2006-035367, the Italian M.I.U.R. Grant PRIN 2007SYRBBH_001 to Emilio Carbone and the San Paolo Company Grant 2008.2191 to Andrea Marcantoni.

References

1. Catterall WA, Perez-Reyez E, Snutch TP, Striessnig J. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57:411-25.

2. Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engell J, Striessnig J. Alpha1D (CaV1.3) subunits can form L-type Ca²⁺ channels activating at negative voltages. J Biol Chem 2001; 276:22100-6.

3. Platzer J, Reiner J, Schrott-fischer A, Stephan K, Bova 2010; 102:89-97.

4. Mangoni ME, Courtel B, Bourinet E, Platzer J, Reimer D, Striessnig J, et al. Functional role of L-type Ca₄.1.3 Ca²⁺ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 2003; 100:5543-8.

5. Chan CS, Guzman JN, LLijic E, Mercer JR, Rick C, Tkatch T, et al. Rejuvenation protects neurons in mouse models of Parkinson’s disease. Nature 2007; 447:1081-90.

6. Marcantoni A, Vandal DH, Mahapatra S, Carabelli V, Sinniger-Brauns MJ, Striessnig J, et al. Loss of Ca₄.1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 2010; 30:491-504.

7. Calin-Jageman I, Lee A, Ca₄.1 L-type Ca²⁺ channel signaling complexes in neurons. J Neurochem 2008; 105:573-83.

8. Stojilkovic SS, Tabak J, Bertram R, Ion channels and signaling in the pituitary gland. Endocrine Rev 2010; 31:845-915.

9. García-Palomero E, Cuchillo I, García AG, Renart J, Albillos A, Montiel C. Greater diversity than previously thought of chromaffin cell Ca²⁺ channels, derived from mRNA identification studies. FEBS Letters 2000; 481:359-9.

10. Baldelli P, Hernández-Guijo JM, Carabelli V, Novara M, Cesetti T, Andrés-Mateos E, et al. Direct and remote modulation of L-channel in chromaffin cells: Distinct actions on α1C and α1D subunits. Molecular Neurobiology 2004; 29:73-86.

11. Benavides A, Calvo S, Tornedo D, Gonzalez-Garcia C, Ceña V. Adrenal medulla calcium channel population is not conserved in bovine chromaffin cells in culture. Neuroscience 2004; 128:99-109.

12. Carabelli V, Giancippoli A, Baldelli P, Carbone E, Atrálejos AR. Distinct potentiation of L-type currents and secretion by cAMP in rat chromaffin cells. Biophys J 2003; 85:1326-37.

13. García AG, García de Diego AM, Gandía L, Borges R, García-Sancho J. Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 2006; 86:1093-131.

14. Carabelli V, Marcantoni A, Cumpanza V, Carbone E. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca²⁺-dependence. Eur Biophys J 2007; 36:753-62.

15. Marcantoni A, Carabelli V, Cumpanza V, Hodda H, Carbone E. Calcium channels in chromaffin cells: focus on L- and T-type channels. Acta Physiol 2008; 192:233-46.

16. Gandia L, Borges R, Albillos A, García AG. Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflügers Arch 1995; 430:55-63.

17. Kim SJ, Lim W, Kim J. Contribution of L- and N-type calcium currents to exocytosis in rat adrenal medullary chromaffin cells. Brain Res 1995; 675:289-96.

18. Engisch KL, Nowyzyk MC. Calcium dependence of large dense-cored vesicle exocytosis evoked by calcium influx in bovine adrenal chromaffin cells. J Neurosci 1996; 16:1359-69.

19. Lukács E, Neher D. Different types of calcium channels and secretion from bovine chromaffin cells. Eur J Neurosci 1999; 11:2865-73.

20. Marcantoni A, Carabelli V, Vandal DH, Comunanza V, Carbone E. PDE type-4 inhibition increases L-type Ca²⁺ currents, action potential firing and quantal size of exocytosis in mouse chromaffin cells. Pflügers Arch 2009; 457:1093-110.

21. Rosa JM, de Diego AM, Gandía L, Garcia AG. L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. Biochem Biophys Res Commun 2007; 357:834-9.

22. Albillos A, Carbone E, Gandía L, García AG, Pollo A. Opioid inhibition of Ca²⁺ channel subtypes in bovine chromaffin cells: selectivity of action and voltage-dependence. Eur J Neurosci 1998; 8:1501-70.

23. Hernández-Guijo JM, Carabelli V, Gandía L, García AG, Carbone E. Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 1999; 11:3574-84.

24. Carabelli V, Hernández-Guijo JM, Baldelli P, Carbone E. Direct autocrine inhibition and cAMP-dependent potentiation of single L-type Ca²⁺ channels in bovine chromaffin cells. J Physiol 2001; 532:73-90.

25. Carbone E, Carabelli V, Baldelli P, Cesetti T, Hernández-Guijo JM, Giusta L. G protein- and cAMP-dependent modulation of L-channel gating: a multi-functional system to control calcium in neurosecretory cells. Pflügers Arch 2001; 442:801-13.
26. Carabelli V, D'Accenso M, Carboni E, Grassi C. Nitric oxide inhibits neuroendocrine Ca, L-channel gating via GMP-dependent protein kinase in cell-attached patches of bovine chromaffin cells. J Physiol 2002; 541:351-66.

27. Gisolfi P, Henderson-Guio JM, Baldelli P, Carabelli V, Carboni E. Opposite action of B1- and B2-adrenergic receptors on Ca, L-channel current in rat adrenal chromaffin cells. J Neurosci 2003; 23:73-83.

28. Xu W, Lipscombe D. Neuronal Ca, L-type channel activators at relatively hypopermediated membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 2001; 21:5944-51.

29. Brand A, Striessng J, Moser T. Ca, L,3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 2003; 23:10882-40.

30. Brandt B, Hagiwara S, Kidokoro Y, Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol 1976; 263:417-39.

31. Biales B, Dichter M, Tischler A. Electrical excitability measures of bovine chromaffin cells and of their sensitivity to acetycholine. J Physiol 1982; 331:577-97.

32. Kubo Y, Kidokoro Y. Potassium currents induced by muscarinic receptor activation in the rat adrenal chromaffin cell. Biomed Res 1989; 10:71-81.

33. Akaike A, Mine Y, Sasa M, Takatori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharm Exp Therap 1990; 255:333-9.

34. Hollins B, Ikeda SR. Inward currents underlying action potentials in rat adrenal chromaffin cells. J Neurophysiol 1996; 76:1195-211.

35. Wallace DJ, Chen C, Marley PD. Histamine promotes an M-current. J Physiol 2002; 540:921-39.

36. Wallace DJ, Chen C, Marley PD. Histamine promotes an M-current. J Physiol 2002; 540:921-39.

37. Gullo F, Ales E, Rosati B, Lecchi M, Masi A, Guasti M. Activation of BK channels in rat chromaffin cells. J Neurophysiol 1999; 83:3084-100.

38. Hounsgaard J, Kiehn O. Serotonin-induced bistability of turto montoneurons caused by a nifedipine-sensitive calcium plateau current. J Physiol 1989; 414:265-82.

39. Van Goor F, Krumanov LC, Kart JG, Stojilkovic SS. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Molec Endocrinol 1999; 13:587-603.

40. Perez-Marcantonio C, de Ju M, Delgrande D. Calcium-dependent increased role for L-type calcium channels in rat adrenal medulla. J Physiol 1999; 528:397-405.

41. Colomer C, Lafont C, Guérineau NC. Stress-induced chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. J Physiol Cell Physiol 2003; 284:145-62.

42. Jackson AC, Yao GL, Bean BP. Mechanism of spontaneous calcium channel block in chromaffin cells of intact mouse adrenal gland. J Physiol 1976; 263:417-39.

43. van Goor F, Krumanov LC, Kart JG, Stojilkovic SS. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Molec Endocrinol 1999; 13:587-603.

44. Puopolo M, Solaro CR, Lingle CJ. The structure of the rat adrenal medulla. I. The ultrastructure and organization of chromaffin cells in the normal adrenal medulla. J Anat 1965; 99:231-54.

45. Prakriya M, Solaro CR, Lingle CJ. Activation of BK channels in rat adrenal medulla. Ann NY Acad Sci 2008; 1148:106-11.

46. Prakriya M, Lingle CJ, BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q type calcium channels in rat chromaffin cells. J Neurophysiol 1999; 81:2267-78.

47. Puopolo M, Raviola E, Bean BP. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 2007; 27:645-56.

48. Wallach J, Kira A, Hagiwara S, Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol 1976; 263:417-39.

49. Foist JA, Putnam RW. Multimodal Ca2+ signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. J Physiol Cell Physiol 2003; 284:145-62.

50. Jackson AG, Yan GL, Bean BM. Mechanism of spontaneous calcium channel block in chromaffin cells of intact mouse adrenal gland. J Physiol 1976; 263:417-39.

51. Hounsgaard J, Kiehn O. Serotonin-induced bistability of turto montoneurons caused by a nifedipine-sensitive calcium plateau current. J Physiol 1989; 414:265-82.

52. Van Goor F, Krumanov LC, Kart JG, Stojilkovic SS. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Molec Endocrinol 1999; 13:587-603.

53. Prakriya M, Solaro CR, Lingle CJ. Activation of BK channels in rat adrenal medulla. Ann NY Acad Sci 2008; 1148:106-11.

54. Prakriya M, Solaro CR, Lingle CJ. Activation of BK channels in rat adrenal medulla. Ann NY Acad Sci 2008; 1148:106-11.

55. Stett A, Egert U, Guenther E, Hofmann F, Thomas I, et al. ERG K+ channel blockade enhances firing and eipinephrine secretion in rat chromaffin cells: the missing link to LQT2-related sudden death? FASEB J 2003; 17:330-2.

56. Herrington J, Solaro CR, Neely A, Lingle CJ. The calcium dependence of potassium currents in rat adrenal chromaffin cells. Am J Physiol Cell Physiol 2010; 308:C137-41.

57. Colomer C, Lafont C, Guérineau NC. Stress-induced intercellular communication remodeling in the rat adrenal medulla. Ann NY Acad Sci 2008; 1148:106-11.

58. Colomer C, Lafont C, Guérineau NC. Stress-induced intercellular communication remodeling in the rat adrenal medulla. Ann NY Acad Sci 2008; 1148:106-11.

59. Colomer C, Desarémien MG, Guérineau NC. Revisiting the stimulus-secretion coupling in the adrenal medulla: role of gap junction-mediated intercellular communication. Mol Neurobiol 2009; 40:87-100.

60. Coupland RE. Electron microscopic observations on the structure of the rat adrenal medulla. I. The ultrastructure and organization of chromaffin cells in the normal adrenal medulla. J Anat 1965; 99:231-54.

61. Prakriya M, Lingle CJ. BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q type calcium channels in rat chromaffin cells. J Neurophysiol 1999; 81:2267-78.