Hallazgos en la tomografía computarizada de tórax en las fases evolutivas de la infección por SARS-CoV-2

I. Soriano Aguadero*, A. Ezponda Casajús, F. Mendoza Ferradas, A. Iguá Rouilleault, A. Paternain Nuin, J. Pueyo Villoslada y G. Bastarrika

Departamento de Radiología, Clínica Universidad de Navarra, Pamplona, España

Recibido el 7 de diciembre de 2020; aceptado el 22 de febrero de 2021
Disponible en Internet el 27 de febrero de 2021

PALABRAS CLAVE
Tomografía computarizada; Neumonía; COVID-19

Resumen
Objetivo: Comparar los hallazgos radiológicos mediante tomografía computarizada (TC) torácica en pacientes con COVID-19 en diferentes fases de la enfermedad y evaluar la reproducibilidad de un score radiológico visual para estimar la extensión de la afectación pulmonar.

Métodos: Se evaluaron retrospectivamente las tomografías computarizadas de tórax de 182 pacientes con RT-PCR positiva para SARS-CoV-2. En función del tiempo de evolución de la infección, los pacientes fueron clasificados en tres grupos/estadios: fase precoz (0-4 días), intermedia/progresiva (5-9 días) y avanzada (>10 días). Se analizó la frecuencia de cada hallazgo radiológico, así como el patrón, la apariencia y la distribución predominantemente de la afectación pulmonar. La extensión de la afectación pulmonar se estimó para cada lóbulo pulmonar y para el volumen pulmonar total mediante un score tomográfico visual (rango 0-25).

Resultados: El hallazgo tomográfico predominante fue el patrón en vidrio deslustrado (n=110, 60,4%), la distribución más frecuente, la periférica (n=116, 66,7%) y la apariencia más prevalente, la típica (n=112, 61,5%). El “signo del halo” se encontró más frecuentemente en la fase precoz (25%), mientras que las opacidades en vidrio deslustrado, el patrón en empedrado y las líneas subpleurales fueron más frecuentes en las fases intermedia/progresiva y avanzada. La mediana del score de gravedad fue de 10 (RIQ: 5-13), aumentando los valores con la progresión de la enfermedad. El acuerdo interobservador (kappa, k) para la apariencia, la distribución y el patrón predominante, así como para el score visual fueron de 0,92; 0,84; 0,70, y 0,89; respectivamente.

Conclusión: Los hallazgos tomográficos en la COVID-19 varían con el curso de la infección. El score radiológico sugerido es una herramienta sencilla, reproducible y fiable para evaluar la afectación pulmonar en la neumonía COVID-19.

© 2021 SERAM. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

* Autor para correspondencia.
Correo electrónico: isoriano@unav.es (I. Soriano Aguadero).

https://doi.org/10.1016/j.rx.2021.02.004
0033-8338/© 2021 SERAM. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
Introducción

En diciembre de 2019 se registró un creciente número de casos de pacientes con neumonía de etiología desconocida en la ciudad de Wuhan (Hubei, China). En el estudio de las células epiteliales de la vía aérea de pacientes infectados se descubrió un nuevo tipo de coronavirus mutado, llamado Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)\(^1\). Desde entonces, el número de casos confirmados de coronavirus aumentó rápidamente en todo el mundo. El 11 de marzo, la Organización Mundial de la Salud (OMS) declaró la infección como pandemia y designó el término oficial COVID-19 (Coronavirus Disease 2019) para referirse a la enfermedad causada por el SARS-CoV-2\(^1\). Más de 93 millones de casos globales y más de 2 millones de muertes por COVID-19 han sido confirmados a fecha de 19 de enero de 2021\(^2\).

Clínicamente, la neumonía COVID-19 se caracteriza por fiebre, fatiga, disnea y tos seca. Otros síntomas de presentación de la infección por SARS-CoV-2 son la diarrea, la cefalea, las mialgias, la anorexia y la anemia\(^3\). Entre los factores de riesgo para el desarrollo del síndrome de distrés respiratorio del adulto (SDRA) se encuentran la edad avanzada (mayores de 65 años, especialmente varones) y la coexistencia de comorbididades, como diabetes e enfermedades cardiovasculares o pulmonares crónicas\(^4\).

La tomografía computarizada (TC) de tórax adquiere un gran valor en el diagnóstico y pronóstico de pacientes con sospecha de neumonía COVID-19\(^1,5\). Se ha descrito una gran variedad de hallazgos en la tomografía torácica de estos pacientes\(^6-10\). Entre ellos, la presencia de opacidades en vidrio deslustrado, con o sin consolidaciones asociadas, ha sido descrita como un hallazgo típico (aunque no específico) en la neumonía COVID-19, especialmente en las fases iniciales\(^6-10\). De hecho, la identificación de opacidades bilaterales en vidrio deslustrado con una distribución predominantemente periférica y posterior ha demostrado mayor sensibilidad que la prueba de la reacción en cadena de la polimerasa con transcripción inversa (RT-PCR)\(^11-15\). Sin embargo, algunos de los hallazgos de imagen se asemejan a aquellos vistos en otras neumonías virales o no muestran una distribución específica para el diagnóstico de COVID-19\(^16-16\).

Desde el punto de vista pronóstico, algunos grupos de investigación han propuesto diferentes scores radiológicos (por estimación visual o por evaluación automática usando inteligencia artificial) para la evaluación de la extensión y gravedad de la neumonía COVID-19\(^17-31\). La validación de scores radiológicos que evalúen la severidad de la neumonía por SARS-CoV-2 proporcionaría información adicional para identificar a los pacientes que puedan beneficiarse de tratamiento antiviral o que se encuentren en riesgo de desarrollar SDRA\(^32\).

El objetivo principal de este estudio es describir la prevalencia de los distintos hallazgos radiológicos en el curso temporal de la neumonía COVID-19 en una cohorte de pacientes procedente de dos centros españoles. De forma secundaria, se evaluó la reproducibilidad de un score radiológico visual (semicuantitativo) para evaluar la extensión y gravedad de la neumonía COVID-19.

Materiales y métodos

Reclutamiento de pacientes y recogida de datos

En este estudio retrospectivo observacional, entre el 7 y el 30 de marzo de 2020 se realizaron estudios de...
TC a 218 pacientes con sospecha o diagnóstico de neumonía COVID-19 procedentes de dos hospitales terciarios españoles. De la muestra inicial de TC torácicas, se incluyeron aquellos pacientes que presentasen clínica sospechosa de infección por SARS-CoV-2 y que tuvieran una RT-PCR positiva. Como criterios de exclusión se consideraron: a) pacientes menores de 18 años, b) prueba RT-PCR negativa, c) neumonía causada por un patógeno diferente al SARS-CoV-2 y d) TC consecutivas realizadas al mismo individuo. En función del tiempo de evolución de la infección COVID-19, los pacientes fueron clasificados en tres grupos: 1) fase precoz, menos de 5 días desde el inicio de los síntomas; fase intermedia/progresiva, entre 5 y 9 días desde el inicio de los síntomas, y fase avanzada, más de 9 días desde el inicio de los síntomas. Los radiólogos de etapa de ética del hospital aprobó el protocolo del estudio de ambos hospitales (2020.55) y todos los pacientes firmaron el consentimiento informado.

Protocolo de adquisición de TC

Las TC de tórax se realizaron al ingreso con dos equipos de TC multidetector (SOMATOM Sensation 64 y SOMATOM Emotion 16; Siemens Healthineers, Forchheim, Alemania) dedicados especialmente al estudio de pacientes con sospecha o diagnóstico de infección por SARS-CoV-2. Los estudios se obtuvieron con el paciente en décúbito supino y en apnea. Los parámetros utilizados fueron: voltaje del tubo de 120 kV, corriente del tubo de 190 mAs con sistema antropométrico de modulación de la corriente (CareDose 4D, Siemens Healthineers), colimación del detector de 32 x 0,6 mm y pitch de 1. Las imágenes se reconstruyeron con un grosor de corte de 1 mm y un incremento de reconstrucción de 1 mm utilizando filtros de partes blandas (B31f) y de alta resolución (B60f) para evaluar el mediastino y el parénquima pulmonar, respectivamente. Las imágenes se almacenaron en PACS (Picture Archiving and Communication Systems) para su estudio.

Análisis de imagen

Las imágenes de las TC torácicas fueron analizadas, de forma independiente, por dos radiólogos (un residente con 2 años de experiencia en imagen de TC de tórax y un radiólogo de tórax con 16 años de experiencia). Los observadores no conocían el resultado obtenido por cada uno de ellos (estudio doble ciego). Los hallazgos fueron descritos utilizando como referencia la terminología de la sociedad Fleischner23.

Se evaluaron 16 hallazgos radiológicos que podían objetivarse en las distintas TC torácicas de pacientes con neumonía COVID-19, de acuerdo con la literatura: 1) opacidades en vidrio deslustrado, consolidación, opacidades en vidrio deslustrado asociadas a áreas de consolidación, patrón reticular, nódulos, líneas subpleurales, opacidades redondas/seudonodulares, cavitation, patrón en empedrado, ingurgitación vascular intralvesional, broncograma aéreo, signo del halo, signo del halo invertido, engrosamiento de las paredes bronquiales, bronquiolectasias y fibrosis pulmonar. De estas alteraciones, se definió los 6 patrones radiológicos principales de afectación pulmonar (opacidades en vidrio deslustrado, opacidades en vidrio deslustrado con áreas de consolidación, consolidación, patrón en empedrado, patrón reticular y líneas subpleurales). Asimismo, se evaluó el patrón predominante (opacidades en vidrio deslustrado, consolidación o fibrosis) para cada lóbulo (>50% del lóbulo afectado) y para el volumen pulmonar total (>50% del pulmón). La distribución de las alteraciones pulmonares se describió como predominantemente periférica, central o mixta (afectación periférica y central).

Siguiendo la declaración consensuada de la RSNA (Radiological Society of North America) y en función de los hallazgos radiológicos de cada paciente, se determinaron cuatro categorías que indican la probabilidad de neumonía COVID-19 (patrón típico, indeterminado, atípico y negativo)24. También se evaluó la presencia de adenopatías torácicas (>10 mm de diámetro menor) y de derrame o engrosamiento pleural o pericárdico.

Se empleó un score radiológico visual para la evaluación semicuantitativa de la extensión de la afectación pulmonar en cada uno de los cinco lóbulos pulmonares: score = 0, ausencia de afectación; score = 1, afectación del 1-5% del volumen del lóbulo; score = 2, afectación del 6-25%; score = 3, afectación del 26-50%; score = 4, afectación del 51-75%; y score = 5, afectación del 76-100%. La puntuación total se obtuvo de la suma de los scores de cada lóbulo. Las discrepancias se resolvieron por consenso.

Análisis estadístico

Las variables categóricas se expresaron como proporciones y porcentajes, y las variables cuantitativas continuas, como media ± desviación estándar (intervalo de confianza al 95% para la media) o como mediana y rango intercuartílico (RIQ). El análisis de la normalidad se evaluó con la prueba de Kolmogorov-Smirnov. Las diferencias entre los grupos previamente establecidos se compararon con la prueba de χ² para las variables categóricas y con la prueba de ANOVA para las variables continuas.

Se empleó el estadístico de kappa ponderado de Cohen (κ) para establecer el acuerdo interobservador para el patrón predominante, la distribución y la aparición de los hallazgos en la TC y el score de gravedad entre observadores. El valor de kappa obtenido se interpretó de la siguiente manera: ≤0,20, acuerdo pobre; 0,21-0,40, acuerdo aceptable; 0,41-0,60, acuerdo moderado; 0,61-0,80, acuerdo fuerte; >0,80, acuerdo excelente25. El análisis estadístico se realizó mediante el programa SPSS (versión 25.0; IBM Corporation). Se consideró un valor de p < 0,05 como estadísticamente significativo.

Resultados

Población

De los 218 pacientes iniciales, 20 fueron excluidos por tener pruebas RT-PCR negativas y 16 pacientes presentaron infecciones por otros patógenos distintos de SARS-CoV-2. En 2 sujetos se realizaron TC subsiguientes por complicaciones secundarias, incluyendo en el análisis final solo la TC inicial (fig. 1). Finalmente, se incluyeron 182 pacientes, de los cuales 48, 80 y 54 presentaron una fase precoz, intermedia/progresiva y avanzada de la enfermedad, respectivamente.
Los datos demográficos y las pruebas de laboratorio al momento del ingreso se presentan en la tabla 1. La mayoría de los individuos eran varones (58,2%), con una media de edad de 60,7 ± 15,3 (rango 20-94) años. El tiempo medio desde el inicio de los síntomas hasta la realización de la TC fue de 7,31 ± 3,98 (6,73-7,89) días. Se encontró una mayor proporción de varones en los pacientes pertenecientes a los grupos de fases intermedia/progresiva (65%) y avanzada (62,9%). Asimismo, los pacientes en fases intermedia/progresiva o avanzada presentaron valores más elevados de plaquetas, proteína C reactiva (PCR), lactato deshidrogenasa (LDH), dímero D y ferritina (p < 0,05) (tabla 1).

Hallazgos en tomografía computarizada

Las TC de tórax se realizaron en una media de 2,38 ± 1,25 (2,01-2,74), 7,08 ± 1,17 (6,82-7,33) y 12,04 ± 2,39 (11,38-12,69) días desde el inicio de los síntomas en los grupos precoz, intermedio/progresivo y avanzado, respectivamente. De forma global, el patrón predominante fueron las opacidades en vidrio deslustrado (n = 110, 60,4%), la distribución más frecuente, la periférica (n = 116, 63,7%), y la apariencia más frecuente, la típica (n = 112, 61,5%). La mayoría de los pacientes presentaron una afectación pulmonar bilateral (n = 153, 84,1%). Catorce pacientes (7,7%) con una prueba RT-PCR positiva presentaron una TC de tórax normal (tabla 2).

Los hallazgos en TC de todos los pacientes analizados se resumen en la tabla 3. El hallazgo más frecuente fueron las opacidades en vidrio deslustrado (n = 153, 84,1%), seguido del patrón en empedrado (n = 100, 54,9%), las bronquiolectasias (n = 95, 52,2%) y la ingurgitación vascular (n = 88, 48,4%). El signo del "halo" se detectó más frecuentemente en la fase precoz que en las fases intermedia/progresiva o avanzada (25% vs. 18,8% vs. 13%, respectivamente) (fig. 2). La presencia de opacidades en vidrio deslustrado, el patrón reticular, el patrón en empedrado, las líneas subpleurales, el engrosamiento pleural o la fibrosis se encontraron con mayor frecuencia en la fase intermedia/progresiva (fig. 3) y, especialmente, en la fase avanzada (fig. 4). No se encontraron diferencias estadísticamente significativas...
Tabla 1	Datos demográficos y analíticos de los pacientes en las fases precoz, intermedia/progresiva y avanzada de la enfermedad				
	Total (n = 182)	Fase precoz (n = 48)	Fase intermedia/progresiva (n = 80)	Fase avanzada (n = 54)	Valor de p
Datos demográficos					
Edad (años)	60,7 ± 15,3 (rango 20-94)	61,7 ± 17,3 (rango 22-89)	59,7 ± 14,7 (rango 20-94)	61,3 ± 14,5 (rango 30-86)	0,722
Género (varones)	106 (58,2%)	20 (41,7%)	52 (65%)	34 (62,9%)	0,025
Datos analíticos					
Linfocitos (x 10^9/L)	1,99 ± 8,97 (0,67-3,3)	1,3 ± 2,1 (0,69-1,91)	2,98 ± 13,47 (0,04-5,99)	1,15 ± 0,48 (1,02-1,29)	0,427
Plaquetas (x 10^9/L)	192,93 ± 67,46 (183,04-202,83)	175,8 ± 55,99 (159,62-192,13)	189,47 ± 65,19 (174,87-204,07)	213,17 ± 75,65 (192,52-233,81)	0,016
PCR (mg/dL)	7,79 ± 8,33 (6,57-9,01)	4,34 ± 5,53 (2,73-5,94)	8,55 ± 8,77 (6,58-10,51)	9,76 ± 8,94 (7,31-12,19)	0,002
Procalcitonina (mg/mL)	0,21 ± 0,76 (0,1-0,33)	0,17 ± 0,41 (0,05-0,29)	0,25 ± 1,06 (0,01-0,5)	0,21 ± 0,43 (0,09-0,33)	0,847
Creatina (mg/dL)	0,96 ± 0,68 (0,86-1,06)	1,07 ± 1,23 (0,71-1,43)	0,91 ± 0,3 (0,85-0,98)	0,93 ± 0,28 (0,85-1,00)	0,405
LDH (UI/L)	303,03 ± 129,14 (238,88-322,19)	243,77 ± 85,3 (217,84-269,71)	293,91 ± 120,77 (266,86-320,96)	364,67 ± 145,26 (325,02-404,32)	<0,001
Bilirrubina (mg/dL)	0,55 ± 0,35 (0,5-0,61)	0,61 ± 0,5 (0,46-0,77)	0,52 ± 0,28 (0,46-0,59)	0,54 ± 0,26 (0,47-0,62)	0,403
Troponina T (ng/L)	18,96 ± 25,46 (14,96-22,96)	28,41 ± 47,56 (13,39-43,42)	15 ± 6,09 (13,49-16,51)	16,44 ± 8,73 (14,01-18,87)	0,02
Dímero D (ng/mL)	1041,4 ± 1185,5 (860,83-1221,97)	737,38 ± 511,66 (577,94-896,83)	979,58 ± 850,63 (781,11-1178,04)	1367,47 ± 1765,46 (880,85-1854,09)	0,03
Pro-BNP (pg/mL)	779,23 ± 3386,93 (215,32-1343,15)	2347,54 ± 6529,31 (104,65-4590,44)	216,68 ± 564,9 (65,43-367,96)	311,48 ± 702,72 (111,77-511,19)	0,006
Ferritina (mg/mL)	997,37 ± 997,15 (827,63-1167,1)	471,69 ± 520,98 (286,96-656,42)	1134,76 ± 825,52 (907,21-1362,29)	839,16 ± 1265,97 (839,16-1566,41)	0,002
IL-6 (pg/mL)	88,25 ± 318,29 (28,38-148,12)	30,84 ± 18,98 (22,64-39,05)	66,07 ± 190,04 (8,97-123,16)	142,2 ± 471,17 (2,83-287,18)	0,336

Tabla 2	Apariencia, patrón y distribución predominante de los hallazgos tomográficos en pacientes con COVID-19, en función del curso de la infección				
	Total (n = 182)	Fase precoz (n = 48)	Fase intermedia/progresiva (n = 80)	Fase avanzada (n = 54)	Valor de p
Apariencia					
Típica	112 (61,5%)	19 (39,6%)	58 (72,5%)	35 (64,8%)	0,001
Indeterminada	52 (28,6%)	18 (37,5%)	28 (22,5%)	16 (29,6%)	0,259
Atípica	4 (2,2%)	4 (8,3%)	0 (0%)	0 (0%)	
Negativa	14 (7,7%)	7 (14,6%)	4 (5%)	3 (5,6%)	
Patrón predominante					
Opacidades en vidrio deslustrado	110 (60,4%)	28 (58,3%)	53 (66,3%)	29 (53,7%)	0,001
Consolidación	48 (26,4%)	11 (22,9%)	20 (25%)	17 (31,5%)	0,006
Fibrosis	10 (5,5%)	2 (4,2%)	3 (3,8%)	5 (9,3%)	0,187
Distribución					
Periférica	116 (63,7%)	31 (64,6%)	54 (67,5%)	31 (57,4%)	0,001
Central	2 (1,1%)	1 (2,1%)	1 (1,3%)	0 (0%)	
Mixta	50 (27,5%)	9 (18,8%)	21 (26,3%)	20 (37%)	
entre los grupos en trece de los hallazgos analizados; entre los que se encontraban las consolidaciones, las opacidades redondas/seudonodulares, el broncograma aéreo, el signo del “halo”, la ingurgitación vascular y la presencia de bronquiectasias. Hallazgos más infrecuentes, como las adenopatías, derrame pleural y derrame pericárdico, fueron identificados en un 24,2%, 7,7% y 9,3% de los pacientes, respectivamente. Los distintos patrones predominantes en TC en función del tiempo de evolución de la infección se resumen en la figura 5.

Score visual de gravedad en tomografía computarizada

La mediana (RIQ) de la puntuación de gravedad para el volumen pulmonar total fue de 10 (5-13). Para cada lóbulo, se
I. Soriano Aguadero, A. Ezponda Casajús, F. Mendoza Ferradas et al.

Figura 4 Tomografía computarizada de tórax en un varón de 83 años con COVID-19 y con síntomas desde hace 15 días (fase avanzada de la enfermedad). A y B) Imágenes axiales que muestran opacidades en vidrio deslustrado con consolidación (flechas) y patrón reticular con engrosamiento de los septos interlobulillares (cabezas de flecha) con distribución periférica.

Figura 5 Patrones predominantes por lóbulo en las fases precoz, intermedia/progresiva y avanzada de la enfermedad.

Tabla 4 Score visual de gravedad total y para cada lóbulo en las fases precoz, intermedia/progresiva y avanzada de la enfermedad

Score	Fase precoz (n = 48)	Fase intermedia/progresiva (n = 80)	Fase avanzada (n = 54)	Valor de p
Total	4,5 (2,25-9,75)	10 (6-13)	12,5 (9-17,25)	<0,001
LSD	1 (0-2)	2 (1-2,75)	2 (2-3,25)	<0,001
LM	0,5 (0-2)	1 (0-2)	2 (1-3)	<0,001
LID	1 (0-2)	2 (2-3)	3 (2-4)	<0,001
LSI	1 (0-2)	2 (1-3)	2 (2-3)	<0,001
LII	1 (0-2)	2 (1-3)	3 (1,75-4)	<0,001

LID: lóbulo inferior derecho; LII: lóbulo inferior izquierdo; LM: lóbulo medio; LSD: lóbulo superior derecho; LSI: lóbulo superior izquierdo.

obtuvieron las siguientes medianas (RIQ) de puntuación: LSD 2 (1-3), LM 1 (0-2), LID 2 (2-3), LSI 2 (1-3), LII 2 (1-3). Los pacientes en la fase precoz de la enfermedad presentaron un score de gravedad significativamente más bajo (4,5 [2,25-9,75]) que los individuos pertenecientes a las fases intermedia/progresiva (10 [6-13]) o avanzada (12,5 [9-17,25]) (p < 0,001). De forma similar, en el análisis independiente de cada lóbulo, las puntuaciones de gravedad más elevadas se obtuvieron en las fases más avanzadas de la enfermedad (tabla 4).

Acuerdo interobservador

El acuerdo interobservador (k) para la apariencia, distribución y patrón predominantes fue de 0,92; 0,84 y 0,70; respectivamente. Respecto a la extensión de la afectación
el acuerdo interobservador fue excelente para el score total (k = 0,89), así como para el score de cada uno de los lóbulos (LSD, k = 0,9; LM, k = 0,89; LiD, k = 0,87; LSI, k = 0,88; LII, k = 0,83).

Discusión

En este estudio observacional se describen los principales hallazgos tomográficos de pacientes con sospecha o diagnóstico de neumonía COVID-19 en función del tiempo transcurrido desde el inicio de los síntomas. De forma global, la afectación en vidrio deslustrado fue el patrón radiológico predominante; la periferia de los pulmones, la zona más frecuentemente afectada; y la apariencia típica, la más detectada. No obstante, en un considerable número de casos (30,8%), la presentación radiológica de la infección fue considerada como “indeterminada” o “atipica”, especialmente en las fases precoces de la enfermedad.

Especially en momentos en que la evolución de la pandemia condicionó limitaciones diagnósticas de la RT-PCR (disponibilidad de kits, tiempo necesario para procesar las muestras biológicas o las altas tasas de falsos positivos), la TC de tórax se alza como una herramienta útil y complementaria que contribuye no solo al diagnóstico temprano de la neumonía COVID-19, sino que proporciona, además, un valor pronóstico añadido a los parámetros clínicos y analíticos. Un metaanálisis demostró una sensibilidad para la TC de tórax y para la prueba RT-PCR del 94% y del 89%, respectivamente, mientras que el valor predictivo negativo oscilaba entre el 95,4% y el 99,8% para la primera y entre un 96,8% y un 99,9% para la RT-PCR22. Teniendo en cuenta estos resultados, la National Health Commission of the People’s Republic of China promovió el diagnóstico de infección por SARS-CoV-2, con alto grado de certeza, basándose únicamente en los datos clínicos y en los hallazgos de la TC de tórax27,28. No obstante, en nuestro estudio, 14 pacientes (7,7%) con RT-PCR positiva no presentaron alteraciones en la TC de tórax, lo que sugiere que la prueba de imagen posee un valor predictivo negativo menor en las fases iniciales de la enfermedad. En su estudio, Caruso et al.29 también observaron 2 TC de tórax negativas en pacientes con RT-PCR positiva (3,3%). Al igual que en estudios previos30,31, la presencia de opacidades en vidrio deslustrado fue el hallazgo principal en nuestra cohorte (84,1% de los pacientes). Dichas opacidades fueron más frecuentemente identificadas de forma bilateral (84,1%) y con una distribución periférica (63,7%). De forma similar, Bernheim et al. describieron una afectación pulmonar bilateral en el 28% de los pacientes en fase precoz, en el 76% de los pacientes en fase intermedia/progresiva y en el 88% de los pacientes que se encontraban en fase avanzada de la enfermedad10. Además, las opacidades en vidrio deslustrado se asociaron frecuentemente con otros patrones, como el patrón en empedrado o las consolidaciones, ambos encontrados con mayor frecuencia en las fases intermedia/progresiva y avanzada de la enfermedad10,12. Sin embargo, aunque la afectación pulmonar bilateral, multilobar y periférica manifestada como opacidades en vidrio deslustrado, con o sin consolidaciones asociadas, se considera una característica típica por TC de la neumonía COVID-19, este patrón no es específico ni, por tanto, exclusivo de la infección por SARS-CoV-2, pudiendo encontrarse en otras neumonías virales. Por ello, algunos autores han sugerido que las TC de tórax solo deberían usarse como herramienta de cribado en regiones de alta prevalencia, para evitar una alta proporción de falsos positivos30.

Otros hallazgos de la TC, como el patrón en empedrado, la inurgitación vascular y las bronquiectasias fueron también frecuentemente identificados en nuestra cohorte. Por el contrario, los nódulos sólidos, el signo del “halo invertido”, las cavítaciones y el derrame pleural o pericárdico fueron hallazgos inusuales4-11. La presencia de un mayor número o mayor extensión de áreas consolidadas y los signos de fibrosis (entre otros como el patrón reticular, las líneas subpleurales o el engrosamiento pleural) fueron más prevalentes en pacientes que se encontraban en la fase avanzada de la enfermedad. Dado el carácter dinámico de los hallazgos tomográficos de la neumonía COVID-19, la imagen puede tener un papel importante en el control evolutivo de la infección, así como en la valoración de la respuesta al tratamiento31.

Por otro lado, la cuantificación de la infección pulmonar puede ser una de las piedras angulares del uso de la TC en la evaluación inicial de los pacientes con COVID-19. En ausencia de un software de posprocesado sofisticado (p. ej., programas de autoaprendizaje), la evaluación visual de la extensión de la afectación infecciosa pulmonar puede proporcionar información clínica útil. En nuestro estudio observamos mayor grado de gravedad de la neumonía, evaluado con el score visual descrito, en pacientes con mayor tiempo de evolución de la infección. Los pacientes en la fase precoz de la enfermedad mostraron un menor score (4,5 [2,25-9,75]) que los individuos en fase intermedia/progresiva (10 [6-13]) o avanzada (12,5 [9-17,25]) de la enfermedad. Del mismo modo, Zhou et al.6 obtuvieron puntuaciones de gravedad más altas en las TC torácicas de pacientes pertenecientes a la fase intermedia/progresiva que en los que se encontraban en la fase precoz. El excelente acuerdo interobservador observado en nuestro trabajo demuestra, además, que el score tomográfico sugerido es una herramienta accesible y reproducible para estimar la gravedad de la afectación pulmonar en la neumonía COVID-19, incluso cuando la emplean radiólogos con menos experiencia.

Nuestro estudio presenta varias limitaciones. En primer lugar, se analiza un reducido número de pacientes con COVID-19 y se incluyen únicamente las TC torácicas de pacientes con RT-PCR positiva. La inclusión de pacientes con RT-PCR negativa o con infecciones causadas por otros patógenos podría ser de interés para comparar los hallazgos radiológicos. Del mismo modo, un análisis secundario de los hallazgos tomográficos de pacientes con infección subclínica (asintomáticos) también podría ser de interés. Algunos estudios42 han demostrado la presencia de alteraciones en las TC de pacientes asintomáticos, previo al inicio de los síntomas. En segundo lugar, no se han correlacionado los scores visuales de TC con los scores clínicos de gravedad. Recientemente, Xiong Y et al. observaron que algunos valores clínicos o analíticos, como la RT-PCR, la tasa de sedimentación eritrocitaria y la LDH, se correlacionaban con la gravedad de la neumonía evaluada en la TC inicial42. Finalmente, la relación entre las comorbilidades clínicas y los hallazgos en TC no fueron evaluados. Sería interesante incluir, en futuras
investigaciones, un mayor número de pacientes con neuromonia COVID-19 y estudiar el valor pronóstico que proporcionan las pruebas de imagen a los parámetros clínicos y analíticos. En conclusión, nuestro estudio sugiere que la TC de tórax es una técnica de imagen útil para evaluar la afectación pulmonar en pacientes COVID-19. Aunque el diagnóstico tomográfico de neuromonia COVID-19 típica se basa en la presencia de opacidades en vidrio deslustrado, bilaterales y periféricas, es frecuente encontrar otras manifestaciones en la TC de tórax que, además, varían en función del tiempo transcurrido desde el inicio de los síntomas. Reconocer los patrones de imagen es crucial para entender la historia natural de la enfermedad. El score visual semiquantitativo utilizado en este trabajo es una herramienta fácil, útil y reproducible para la evaluación de la gravedad de la afectación pulmonar en COVID-19. Se requiere la validación de este score en futuras investigaciones y su correlación con los hallazgos clínicos y analíticos.

Autoría
1. Responsable de la integridad del estudio: ISA.
2. Concepción del estudio: ISA, GBA.
3. Diseño del estudio: ISA, GBA.
4. Obtención de los datos: ISA, AEC, FMF, AIR, APN, JPV, GBA.
5. Análisis e interpretación de los datos: ISA, AEC, APN, GBA.
6. Tratamiento estadístico: ISA, AEC, APN, GBA.
7. Búsqueda bibliográfica: ISA, GBA.
8. Redacción del trabajo: ISA, GBA.
9. Revisión crítica del manuscrito con aportaciones intelectualmente relevantes: ISA, AEC, APN, GBA.
10. Aprobación de la versión final: ISA, GBA.

Conflicto de intereses
Los autores declaran no tener ningún conflicto de intereses.

Bibliografía
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020;382:727–33.
2. Coronavirus disease 2019. World Health Organization. https://www.who.int/. (fecha último acceso: 19 de enero de 2021).
3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan. China: a descriptive study. Lancet. 2020;395:507–13. https://doi.org/10.1016/S0140-6736(20)30211-7.
4. Kivu N. WHO Director- General’s opening remarks at the media briefing on. 2020:1–5.
5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan. China. Jama. 2020;323:1061–9.
6. Zhou Z, Guo D, Li C, Fang Z, Chen L, Yang R, et al. Coronavirus disease 2019: initial chest CT findings. Eur Radiol. 2020;30:4398–406. https://doi.org/10.1007/s00330-020-06816-7.
7. Salehi S, Abedi A, Balakrishnan S, Gholamrezaezyehad A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. Am J Roentgenol. 2020;215:87–93.
8. Shi H, Han X, Jiang N, Cao Y, Alwaidi O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan. China: a descriptive study. Lancet Infect Dis [Internet]. 2020;20:425–34. https://doi.org/10.1016/S1473-3099(20)30086-4.
9. Inui S, Fujikawa A, Jitsu M, Kunishima N, Watanabe S, Suzuki Y, et al. Chest CT Findings in Cases from the Cruise Ship “Diamond Princess” with Coronavirus Disease 2019 (COVID-19). Radiol Cardiothorac Imaging. 2020;2:e200110. https://doi.org/10.1148/rct.20200200110.
10. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al., Chest CT. findings in coronavirus disease-19 (COVID-19): relationship to duration of the infection. Radiology. 2020;295:685–91, https://doi.org/10.1148/radiol.2020200463.
11. Zheng Y, Yun Z, Yi W, Zixiang H, Bin S, Chest CT. manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020;30:4381–9, https://doi.org/10.1007/s00330-020-08601-0.
12. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes on chest CT during recovery from 2019 Novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295:715–21, https://doi.org/10.1148/radiol.2020200370.
13. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of Chest CT for COVID-19 Comparison to RT-PCR. Radiology. 2020;296:E115–7, https://doi.org/10.1148/radiol.2020200432.
14. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J, Chest CT. for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;296:E41–5, https://doi.org/10.1148/radiol.2020200433.
15. Chinese Society of Radiology. Radiological diagnosis of new coronavirus infected pneumonitis: Expert recommendation from the Chinese Society of Radiology (First edition). Chin J Radiol. 2020;54:E001. doi: 10.3760/cma.j.issn.1005-1201.2020.0001.
16. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA.
17. Lee KS. Pneumonia associated with 2019 novel coronavirus: can computed tomographic findings help predict the prognosis of the disease? Korean J Radiol. 2020;21, https://doi.org/10.3348/kjr.2020.0096.
18. Wang B, Li X, Liu H, Zhan Y, Zhang X, Xiong Q, et al., Chest CT. Severity Score: An Imaging Tool for Assessing Severe COVID-19. Radiol Cardiothorac Imaging. 2020;2:e200047.
19. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol. 2020;214;1072–7.
20. Huang L, Han R, Ai T, Yu P, Kang H, Tao Q, et al. Serial quantitative chest CT assessment of COVID-19: Deep-Learning Approach. Radiol Cardiothorac Imaging. 2020;2:e200075, https://doi.org/10.1148/rct.2020200075.
21. Chaganti S, Balachandran A, Chabin G, Cohen S, Flohr T, Geogescu B, et al. Automated Quantification of CT Patterns Associated with COVID-19 from Chest CT. Radiology: Artificial Intelligence (En prensa). https://doi.org/10.1148/ryai.2020200048.
22. Francone M, Iafrette F, Masci GM, Coco S, Cilia F, Manganaro L, et al. Chest CT score in COVID-19 patients: correlation
with disease severity and short-term prognosis. Eur Radiol. 2020;30:6808–17.
23. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246:697–722.
24. Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiothorac Imaging. 2020;2:e200152, https://doi.org/10.1148/ryct.2020200152.
25. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas. 1960;20:37–46.
26. Kim H, Hong H, Yoon SH. Diagnostic Performance of CT and Reverse Transcriptase-Polymerase Chain Reaction for Coronavirus Disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296:E145–55, https://doi.org/10.1148/radiol.2020201343.
27. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296:E32–40, https://doi.org/10.1148/radiol.2020200642.
28. National Health Commission of the People’s Republic of China (2020) The diagnostic and treatment protocol of COVID-19. China. http://www.gov.cn/zhengce/zhengceku/2020-02/19/content_5480948.htm.
29. Caruso D, Zerunian M, Polici M, Pucciarelli F, Polidori T, Rucci C, et al. Chest CT Features of COVID-19 in Rome, Italy. Radiology. 2020;296:E79–85, https://doi.org/10.1148/radiol.2020201237.
30. Kunhua Li JW, Wu F, Guo D, Chen L, Zheng F, Li C. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol. 2020;55:327–31.
31. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–32.
32. Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X, et al. Clinical characteristics of 24 asymptomatic infections with COVID19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;63:706–11.
33. Xiong Y, Sun D, Liu Y, Fan Y, Zhao L, Li X, et al. Clinical and High-Resolution CT Features of the COVID-19 Infection: Comparison of the Initial and Follow-up Changes. Invest Radiol. 2020;55:332–9.