Maternal Obesity and Occurrence of Fetal Macrosomia: A Systematic Review and Meta-Analysis

Laura Gaudet, Zachary M. Ferraro, Shi Wu Wen, and Mark Walker

1University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
2Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Newborn Care, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6
3Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6
4Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, Canada K1H 8L1

Correspondence should be addressed to Laura Gaudet; lagaudet@ottawahospital.on.ca

Received 25 August 2014; Accepted 9 November 2014; Published 7 December 2014

Academic Editor: Francesco Saverio Papadia

Copyright © 2014 Laura Gaudet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To determine a precise estimate for the contribution of maternal obesity to macrosomia. Data Sources. The search strategy included database searches in 2011 of PubMed, Medline (In-Proceedings & Other Non-Indexed Citations and Ovid Medline, 1950–2011), and EMBASE Classic + EMBASE. Appropriate search terms were used for each database. Reference lists of retrieved articles and review articles were cross-referenced. Methods of Study Selection. All studies that examined the relationship between maternal obesity (BMI ≥ 30 kg/m²) (pregravid or at 1st prenatal visit) and fetal macrosomia (birth weight ≥ 4000 g, ≥ 4500 g, or ≥ 90th percentile) were considered for inclusion. Tabulation, Integration, and Results. Data regarding the outcomes of interest and study quality were independently extracted by two reviewers. Results from the meta-analysis showed that maternal obesity is associated with fetal overgrowth, defined as birth weight ≥ 4000 g (OR 2.17, 95% CI 1.92, 2.45), birth weight ≥ 4500 g (OR 2.77, 95% CI 2.22, 3.45), and birth weight ≥ 90th percentile for gestational age (OR 2.42, 95% CI 2.16, 2.72). Conclusion. Maternal obesity appears to play a significant role in the development of fetal overgrowth. There is a critical need for effective personal and public health initiatives designed to decrease prepregnancy weight and optimize gestational weight gain.

1. Introduction

The term macrosomia describes a newborn with an excessively high birth weight indicative of fetal overgrowth. Most studies define macrosomia as a birth weight greater than or equal to 4000 g; however others use 4500 g as the cut-point [1, 2]. There has been further interest in the group of infants whose birth weight exceeds 5000 g [3]. Based on the variation in cut-points, we propose that macrosomia can be subdivided into Class I (birth weight 4000–4499 g), Class II (4500–4999 g), and Class III (≥ 5000 g). Alternatively, fetal overgrowth can be defined as a birth weight greater than the 90th percentile, corrected for gestational age [4].

Excessive growth in the fetus is a major contributor to adverse obstetrical outcomes. Khashu et al. examined the perinatal outcomes of 1842 macrosomic newborns in British Columbia, and Canada and identified significantly increased maternal risks of emergency Caesarean section, obstetrical trauma, postpartum hemorrhage, and maternal diabetes (all outcomes, \(P < 0.001 \)) [5]. Further, the infants were at higher risk of having birth trauma, of needing resuscitation, and of having an Apgar score less than seven at five minutes of life (\(P < 0.001 \)) [5]. There is also evidence that macrosomia is associated with shoulder dystocia, brachial plexus injury, skeletal injuries, meconium aspiration, perinatal asphyxia, hypoglycemia, and fetal death [6]. Based on existing literature, there is little doubt that fetal macrosomia is associated with adverse pregnancy outcomes for both mother and infant. In addition, there is a recognized association between fetal macrosomia and long-term consequences for the newborn, including obesity, diabetes, and heart disease [7–20].
Although there is a plethora of information available in the literature regarding the contribution of maternal obesity, both preexisting and due to excessive gestational weight gain, to fetal macrosomia, the exact effect size of this relationship remains imprecise [4, 21–40]. At the time of our analysis, only one previous meta-analysis could be identified, in which the relationship between obesity and fetal overgrowth was examined as a secondary outcome [41]. Therefore, the objective of this project was to systematically review the literature regarding maternal obesity and fetal macrosomia and to complete a meta-analysis to provide the best possible estimate for the increase in macrosomia that can be attributed to maternal obesity.

2. Sources

The following databases were searched by a librarian experienced in systematic reviews: PubMed, Medline (In-Process & Other Non-Indexed Citations and Ovid Medline, 1950–2011), and EMBASE Classic + EMBASE. Databases were searched using a comprehensive and sensitive search strategy aimed at identifying as many studies as possible. The search strategy was formulated with the assistance of the librarians at the University of Ottawa. Results were filtered to include studies involving human subjects. The terms used in PubMed were as follows:

1. body mass index[mh] AND obesity[mh] AND (pregnancy complications[majr] OR pregnancy outcome[majr]),
2. ((inprocess[sb]) OR (publisher [sb])) AND (pregnancy AND obesity* [Title] AND obes* [Title]).

The terms used in Medline were as follows:

1. Exp Obese/ or obesity.mp,
2. Exp Body Mass Index/or BMI.mp,
3. 1 and 2,
4. Exp Pregnancy Complications or pregnancy complication*.mp,
5. Exp Pregnancy Outcome/or pregnancy outcome*.mp,
6. 3 or 4,
7. 3 and 6.

The terms used in EMBASE Classic + EMBASE were as follows:

1. exp MORBID OBESITY/or exp ABDOMINAL OBESITY/or exp OBESITY/or obesity.mp,
2. exp body mass/or body mass index.mp,
3. 1 and 2,
4. exp pregnancy complication/or pregnancy complic *.mp,
5. exp pregnancy outcome/or pregnancy outcome*.mp,
6. 3 or 4,
7. 3 and 6.

The references for the resulting studies were then reviewed to identify any additional studies that were not identified in the preliminary search. The full texts of articles that were felt to be potentially relevant were obtained. Finally, review articles on obesity and maternal outcomes published between 2000 and 2011 were reviewed and their reference lists searched for additional potential studies. We did not attempt to locate unpublished studies. Electronic messages were sent to some authors to obtain clarification where necessary.

3. Study Selection

Observational studies, including prospective and retrospective cohort studies as well as case-control studies were sought for inclusion. To be eligible for inclusion, studies had to identify cases using the Institute of Medicine (IOM) definition of obesity (BMI ≥30.0 kg/m²). Maternal obesity defined as prepregnancy, first trimester, or first antenatal visit BMI ≥30 kg/m² comprised the exposure variable. There had to be sufficient data present to allow for quantification of the number of obese patients included in the study. Studies also had to identify a control group of women with a BMI in the underweight range (BMI <18.5 kg/m²), normal weight range (BMI 18.5–24.9 kg/m²), or combined overweight + normal weight range (BMI <25.0 kg/m²) that must have been obtained prepregnancy, in the first trimester, or at the first antenatal visit. Studies were included if maternal weight was obtained by self-report or direct measurement and infant birth weight was reported. For the outcome measures, studies had to include data that allowed for quantitative measurement of risk of overgrowth, defined as large for gestational age (≥90th percentile) or fetal macrosomia (≥4000 g and/or ≥4500 g).

All studies with an English abstract were considered for inclusion. Studies that did not have full text in English were translated for review. All potential studies were assessed for eligibility by the first reviewer (LG) according to the prespecified criteria outlined in the previous sections. Studies and abstracts were screened and duplicates were removed. Data were extracted from each publication by the first reviewer. All identified studies were then reviewed by a second reviewer (ZF) and data extraction completed. Discrepancies regarding inclusion and extraction were then resolved by consensus.

The quality of included studies was assessed using criteria from the Newcastle-Ottawa Quality Assessment Scale [72]. The representativeness of the exposed and control groups, the means by which the exposure was ascertained, and follow-up rates were assessed. The overall quality of the included studies was then graded as low, moderate, or high according to prespecified criteria. All data were extracted independently by both reviewers and quality grades assigned; discrepancies were resolved by consensus.

A structured data form was developed prior to beginning data abstraction. Data from the different studies were then combined by meta-analysis. Frequencies were then used to generate unadjusted odds ratios and confidence intervals and Forest plots were generated. Meta-analysis was completed using the Comprehensive Meta-Analysis Version 2.0. A random effect model was used to estimate the overall effect...
Table 1: Quality assessment criteria.

Quality assessment (QA) variable	Quality assessment criteria		
Representativeness of exposed cohort	Low: Selected group of users (e.g., nurses, volunteers)	Moderate: Somewhat representative of the average obese pregnant woman in the community	High: Truly representative of the average obese pregnant woman in the community
Source of nonexposed cohort	Low: N/A	Moderate: Drawn from a different source than exposed cohort	High: Drawn from the same source as the exposed cohort
Ascertainment of exposure (obesity)	Low: Self-report height and weight	Moderate: Self-report height or weight	High: Measured height and weight
Comparability of cohorts	Low: Comparable for less than 3 of the variables assessed	Moderate: Comparable for 3 or 4 of the variables assessed	High: Comparable for at least 5 of the variables assessed
Adequacy of follow-up	Low: Loss to follow-up rate >5% or no description of those lost	Moderate: Subjects lost to follow-up unlikely to introduce bias (<5% loss to follow-up and description of those lost)	High: All subjects accounted for
Overall rating	Low: Majority of QA variables rated as high, including ascertainment of exposure	Moderate: Some QA variables rated as high, obesity self-reported	High: Few QA variables rated as high, obesity self-reported

[73]. To assess statistical heterogeneity and its magnitude, we used Cochran’s Q ($\alpha = 0.10$) and the I^2 statistic, respectively. A sensitivity analysis was then undertaken, including assessment of the effect of study quality.

4. Results

Thirty studies met the inclusion criteria (Figure 1). The quality of studies was assessed for those included and excluded. Criteria for quality assessment were determined a priori (Table 1). Four studies were judged to be of high quality, fifteen were of moderate quality and eleven were of low quality. Quality assessment of the included studies [23, 24, 42–46, 48–59, 61–69, 71, 74] can be found in Table 2 and characteristics of excluded [4, 6, 21, 25, 27–29, 31, 34–39, 47, 60, 70, 75–307] studies can be found in Table 3. Of the included studies, nine were conducted in the United States, four in the United Kingdom, four in Canada, two in Germany, and one in each of Hong Kong, Australia, Norway, Italy, India, France, Finland, Saudi Arabia, and the West Indies. Thus, the information in this review applies primarily to upper/middle income countries according to the World Bank classification [308]. The year of publication ranged from 1992 to 2010. Of included studies, eight had prospective cohort design, twenty-one had retrospective cohort design, and 1 was a retrospective case-control study. Eleven of the studies were conducted using population-based databases; these studies contributed 1,443,449 women to the meta-analysis.

When studies were reviewed, the outcome measures of interest were identified. Six studies reported on more than one outcome measure; information for all relevant outcome measures was abstracted. Thus, thirteen studies reported on LGA, sixteen reported on macrosomia ≥ 4000 g, and eight reported on macrosomia ≥ 4500 g. In the thirteen studies that examined the relationship between maternal obesity and infant birth weight $\geq 90\%$ ile, there were a total of 162,183 obese parturients. The control group consisted of 1,072,397 underweight or normal weight women. A total of 214,385 infants were large for gestational age (17.4%). Of these, 36,293 were born to obese mothers; thus, 22.4% of obese mothers gave birth to an LGA baby. By comparison, 16.6% of underweight or normal weight mothers gave birth to an LGA baby ($n = 178,092$). Meta-analysis revealed an overall unadjusted odds ratio of 2.42 (2.16, 2.72) (Table 4, Figure 2).

In the sixteen studies that examined the relationship between maternal obesity and macrosomia ≥ 4000 g,
Study	Representativeness of the exposed cohort	Source of nonexposed cohort	Ascertainment of exposure (obesity)	Comparability of cohorts	Adequacy of follow-up	Overall rating	
Hoff et al., 2009 [42]	Moderate	High	Low	Low	High	Low	
	Outcome of second pregnancy in women who were overweight in their first pregnancy	Same population as exposed cohort	No information	Comparable for parity and race Not comparable for age and socioeconomic status No information on diabetes or hypertension	Retrospective cohort, 100% “follow-up”		
Salihu et al., 2009 [43]	High	High	Moderate	Low	High	Moderate	
	State-wide registry used to validate US national datasets	Same population as exposed cohort	Self-reported prepregnancy weight, measured height	No comparable variables Not comparable for age, parity, diabetes, hypertension, or race No information on socioeconomic status	Retrospective cohort, 100% “follow-up”		
Crane et al., 2009 [44]	High	High	Low	Low	High	Moderate	
	Provincial perinatal database	Same population as exposed cohort	Self-reported prepregnancy weight and height	Comparable for age Not comparable for parity, diabetes, hypertension No information on socioeconomic status or race	Prospective cohort, 100% “follow-up”		
Leung et al., 2008 [45]	Low	High	Low	Low	High	Low	
	Not enough information to determine	Same population as exposed cohort	BMI obtained from weight and height at antenatal booking—unclear whether self-report or measured	Comparable for age and race Not comparable for parity, presence of diabetes, presence of hypertension No information on socioeconomic status or race	Prospective cohort, 100% “follow-up”		
Nohr et al., 2008 [46, 47]	High	High	Low	Low	High	Moderate	
	Truly representative of the average obese pregnant woman in Denmark	Same population as exposed cohort	Self-reported prepregnancy weight and height	Not comparable for age, parity, presence of diabetes, presence of hypertension, socioeconomic status No information on race	~30% of women were excluded because they did not participate in the second interview, no description given		
Khashan and Kenny 2009 [48]	High	High	High	Moderate	High	High	
	Truly representative of the average obese pregnant woman in Manchester	Same population as exposed cohort	Measured height and first antenatal visit (around 16 weeks)	Comparable for age and socioeconomic status Not comparable for parity or race No information on presence of diabetes or hypertension	Prospective cohort, 100% “follow-up”		
Bhattacharya et al., 2007 [24]	High	High	High	Low	High	High	
	Truly representative of the average obese pregnant woman in Aberdeen and district	Same population as exposed cohort	Measured height and first antenatal visit (around 10 weeks)	Comparable for parity Not comparable for maternal age, presence of diabetes, presence of hypertension, socioeconomic status No information for race	Prospective cohort, 100% “follow-up”		
Study	Representativeness of the exposed cohort	Source of nonexposed cohort	Ascertainment of exposure (obesity)	Comparability of cohorts	Adequacy of follow-up	Overall rating	
-----------------------	---	-----------------------------	-------------------------------------	--------------------------	-----------------------	------------------	
Getahun et al., 2007 [49]	High	High	Low	Low	High	Moderate	
	Truly representative of the average obese pregnant woman in Missouri	Same population as exposed cohort	Self-reported prepregnancy weight and height	Not comparable for age, presence of diabetes, presence of hypertension or race	Retrospective cohort, 100% “follow-up”		
Sukalich et al., 2006 [50]	Low	High	Low	Low	High	Low	
	Selected group of users—<19 years old only	Same population as exposed cohort	Self-reported prepregnancy weight and height	Comparable for presence of preexisting diabetes	Retrospective cohort, 100% “follow-up”		
Jensen et al., 2003 [51]	Low	High	Low	Low	High	Low	
	Selected group of users—women with a normal 75 g OGTT	Same population as exposed cohort	No description of how prepregnancy BMI was obtained	Comparable for presence of diabetes	Prospective cohort, 100% “follow-up”		
Stepan et al., 2006 [52]	High	High	Low	Low	High	Low	
	Truly representative of the average obese pregnant woman in Leipzig	Same population as exposed cohort	No description of how prepregnancy BMI was obtained	Comparable for maternal age	Retrospective cohort, 100% “follow-up”		
Athukorala et al., 2010 [53]	Low	High	High	Moderate			
	Selected group of users—women enrolled in the Australian Collaborative Trial of Supplements with antioxidants vitamin C and vitamin E	Same population as exposed cohort	Measured height and first antenatal visit	Comparable for age, parity, and race	Information not available		
Narchi and Skinner 2010 [54]	High	High	High	Low	High	High	
	Truly representative of the average obese pregnant woman in the UK site	Same population as exposed cohort	Measured height and first antenatal visit (8–12 weeks)	Not comparable for age, presence of diabetes, presence of hypertension, or race	Retrospective cohort, 100% “follow-up”		
Study	Representativeness of the exposed cohort	Source of nonexposed cohort	Ascertainment of exposure (obesity)	Comparability of cohorts	Adequacy of follow-up	Overall rating	
-----------------------------	---	----------------------------	-------------------------------------	--------------------------	-----------------------	-------------------	
Baeten et al., 2001 [23]	High	High	Low	Low	High	Moderate	
	Truly representative of the average obese pregnant woman in the state of Washington	Same population as exposed cohort	Self-reported prepregnancy weight and height	Comparability for parity	Not comparable for age, presence of diabetes, presence of hypertension, socioeconomic status, or race	Retrospective cohort, 100% “follow-up”	
Clausen et al., 2005 [55]	Low	High	Low	Low	Low	Low	
	Selected group of users (participants in a larger cohort study)	Same population as exposed cohort	No description of how obesity was ascertained	Loss to follow-up	No information given on age, parity, presence of diabetes, presence of hypertension, socioeconomic status, or race	244/2294, 10.6%	
Driul et al, 2008 [56]	High	High	Low	Low	High	Low	
	Truly representative of the average obese pregnant woman in the state of Washington	Same population as exposed cohort	Self-reported prepregnancy weight and height	No information given on age, parity, presence of diabetes, presence of hypertension, socioeconomic status, or race	Retrospectively derived cases and controls	Moderate	
Roman et al., 2007 [57]	High	High	Low	Moderate	High	Moderate	
	Truly representative of the average obese pregnant woman on Reunion Island (consecutive cases)	Controls derived from the same population as cases	No description of how obesity was ascertained	Comparable for age and parity	Not comparable for presence of diabetes, presence of hypertension, or race	Retrospectively derived cohort	
Sahu et al, 2007 [58]	Moderate	High	Low	Moderate	High	Low	
	Somewhat representative of the average obese woman in Northern India (had to deliver on site)	Controls derived from the same population as cases	No description of how obesity was ascertained	Comparable for age and parity	Not comparable for presence of diabetes or presence of hypertension	Retrospectively derived cohort	
van Wootten and Turner 2002 [59]	Low	High	Low	Low	Low	Moderate	
	Selected group—patients with gestational diabetes	Controls derived from the same population as cases	Measured height and first antenatal visit (8-9 weeks)	Comparability for presence of diabetes or presence of hypertension	No information for age, parity, presence of hypertension, socioeconomic status, or race	14 women were missing height and weight information	
Rode et al., 2005 [33, 60]	High	High	Low	Low	High	Moderate	
	Truly representative of the average obese pregnant woman in Copenhagen	Controls derived from the same population as cases	Self-reported prepregnancy weight and height	Not comparable for presence of diabetes or presence of hypertension	No information on age, parity, socioeconomic status, or race	Retrospectively derived cohort, 100% “follow-up”	
Study	Representativeness of the exposed cohort	Source of nonexposed cohort	Ascertainment of exposure (obesity)	Comparability of cohorts	Adequacy of follow-up	Overall rating	
-----------------------------	---	-----------------------------	-------------------------------------	--------------------------	-----------------------	------------------	
Magann et al., 2011 [61]	Moderate	High	High	Low	High	Moderate	
	Somewhat representative of the average obese woman in Jackson or Portsmouth (two hospitals only, one naval)	Controls derived from the same population as cases	Measured height and first antenatal visit (all first trimester)	Not comparable for age, parity, presence of diabetes, presence of hypertension, or race	Retrospective cohort, 100% “follow-up”		
Lumme et al., 1995 [62]	High	High	High	Low	High	High	
	Truly representative of the average obese pregnant woman in Northern Finland	Controls derived from the same population as cases	Measured height and first antenatal visit (all first visit)	Not comparable for age, parity, presence of diabetes, or presence of hypertension	Prospective cohort, 100% “follow-up”		
Langer et al., 2005 [63]	Low	High	Low	Low	High	Low	
	Selected group of users (women with GDM)	Controls derived from the same population as cases	No description of how prepregnancy BMI was derived	Not comparable for age or parity	Prospective cohort, 100% “follow-up”		
Jensen et al., 1999 [64]	Moderate	High	Low	Low	High	Low	
	Somewhat representative of the average pregnant woman in Herning (several exclusion criteria)	Controls derived from the same population as cases	No description of how obesity was ascertained	Comparable for presence of diabetes and presence of hypertension	Retrospective cohort, 100% “follow-up”		
Mantakas and Farrell 2010 [65]	Low	High	Low	Low	High	Low	
	Selected group of users (nulliparous women, one hospital site)	Controls derived from the same population as cases	No description of how obesity was ascertained	Not comparable for age or race	Retrospective cohort, 100% “follow-up”		
El-Gilany and Hammad 2010 [66]	Low	High	High	Low	Moderate		
	Selected group of users—volunteers	Same population as exposed cohort	Measured height and first antenatal visit	Comparable for socioeconomic status	Subjects lost to follow-up unlikely to introduce bias (<5% and description given)		
Bodnar et al., 2010 [67]	High	High	Low	Low	High	Moderate	
	Truly representative of the average obese pregnant woman in Pittsburgh, PA	Same population as exposed cohort	Self-reported prepregnancy weight and height	Not comparable for age, parity, or race	Retrospective cohort, 100% “follow-up”		
Study	Representativeness of the exposed cohort	Source of nonexposed cohort	Ascertainment of exposure (obesity)	Comparability of cohorts	Adequacy of follow-up	Overall rating	
--------------------------	---	-----------------------------	------------------------------------	--------------------------	-----------------------	-------------------	
Le Thai et al., 1992 [68]	Moderate	High	Low	Low	High	Moderate	
	Case definition adequate but not independently validated, consecutive cases	Controls from same population as cases	Self-reported prepregnancy weight and height	Comparable for age Not comparable for parity, presence of diabetes, presence of hypertension No information for socioeconomic status or race	Retrospective case control study, no loss to follow-up		
Voigt et al., 2008 [69, 70]	High	High	High	Low	High	High	
	Truly representative of the average obese pregnant woman in Germany	Same population as exposed cohort	Measured height and first antenatal visit	Comparable for age Not comparable for parity, presence of diabetes, or presence of hypertension No information on socioeconomic status or race	Retrospective cohort, 100% "follow-up"		
Brennand et al., 2005 [71]	High	High	High	Low	Low	High	
	Truly representative of the average obese pregnant Cree woman in James Bay	Same population as exposed cohort	Measured height and first antenatal visit (<14 weeks)	Comparable for race Not comparable for age, presence of diabetes, or presence of hypertension No information on socioeconomic status or parity	314 women were excluded because they did not have a recorded first weight <14 weeks (no description given)		
Table 3: Characteristics of excluded studies.

Reason for exclusion	Number of studies excluded
Unrelated topic	62
Obesity not defined as BMI ≥ 30 kg/m2	83
Obesity measure not prepregnancy, first trimester, or first antenatal visit	5
Comparison group not one of BMI 18.5–24.9 kg/m2 or BMI < 25.0 kg/m2	32
Data not present to allow quantitative analysis of obesity	15
Data not present to allow quantitative analysis of macrosomia	29
Meta-analysis	1
Review article	24
Comment	3
Case report	1
Duplicate articles	4
Total number excluded	259

Study name	Odds ratio	Lower limit	Upper limit	Z-value	P-value
Hoff	0.860	0.367	2.018	0.046	0.729
Leung	3.188	2.632	3.661	11.863	0.000
Nohr	2.743	2.519	2.986	23.231	0.000
Getahun	2.061	1.973	2.152	32.709	0.000
Nurchi	2.468	2.107	2.890	11.205	0.000
Magann	2.721	2.666	3.583	7.127	0.000
Lumme	2.777	2.117	3.644	7.374	0.000
Bodnar	4.328	3.886	4.821	26.635	0.000
Voigt	2.452	2.387	2.519	65.143	0.000
Salihu	1.964	1.929	2.000	72.996	0.000
Jensen	1.606	1.266	2.038	3.903	0.000
Athukorala	2.261	1.521	3.362	4.033	0.000
Langer	1.833	1.483	2.265	5.608	0.000
	2.423	2.159	2.719	15.060	0.000

Heterogeneity: $Q = 421.5$, $P = 0.00$, $I^2 = 97$

Figure 2: Forest plot for large for gestational age (>90% ile).

There were a total of 20,693 obese parturients. The control group consisted of 110,696 underweight or normal weight women. A total of 13,612 infants had a birth weight ≥ 4000 g (10.4%). Of these, 3,275 were born to obese mothers; thus, 15.8% of obese mothers gave birth to a macrosomic baby weighing ≥ 4000 g. By comparison, 15.8% of obese mothers gave birth to a macrosomic baby weighing ≥ 4000 g ($n = 10,337$). Meta-analysis revealed an overall unadjusted odds ratio of 2.17 (1.92, 2.45) (Table 3, Figure 3).

In the eight studies that examined the relationship between maternal obesity and macrosomia ≥ 4500 g, there were a total of 18,909 obese parturients. The control group consisted of 62,712 underweight or normal weight women. A total of 1,739 infants had a birth weight ≥ 4500 g (2.1%). Of these, 746 were born to obese mothers; thus, 3.9% of obese mothers gave birth to an LGA baby. By comparison, 1.6% of underweight or normal weight mothers gave birth to an LGA baby ($n = 993$). Meta-analysis revealed an overall unadjusted odds ratio of 2.77 (2.22, 3.45) (Table 3, Figure 4).

There was some important clinical heterogeneity between the included studies. For example, some studies included only normal weight patients in the control (17/30) while others included normal weight and underweight women (13/30). Also, most studies determined BMI using self-reported prepregnancy weight or did not provide information on how BMI was derived (20/30), while those studies that used measured weights had differing criteria for when that weight was measured (varied from <8 weeks to <16 weeks). Furthermore, some studies excluded women with hypertension or diabetes, while others included them.

There was also a marked amount of statistical heterogeneity, as assessed by the I^2 statistic. For obese women, the I^2 value for LGA was 97%, for macrosomia of ≥ 4000 g the I^2 value was 69%, and for macrosomia of ≥ 4500 g the I^2 value was 48%. These indicate diverse results and a large
Outcome of subgroup title	Study	Calculated unadjusted odds ratio	Reported adjusted odds ratio
Large for gestational age (≥90th percentile)	Hoff et al., 2009 [42]	0.86 (0.37, 2.02)	N/A
	Leung et al., 2008 [45]	3.19 (2.63, 3.87)	3.39 (2.78, 4.13)
	Nohr et al., 2008 [46, 47]	1.97 (1.81, 2.14)	N/A
	Getahun et al., 2007 [49]	2.06 (1.97, 2.15)	N/A
	Narchi and Skinner, 2010 [54]	2.47 (2.11, 2.89)	1.4 (1.3, 1.5)
	Magann et al., 2011 [61]	2.72 (2.07, 3.58)	3.10 (2.32, 4.15)
	Lumme et al., 1995 [62]	2.78 (2.12, 3.64)	2.3 (1.7, 3.0)
	Bodnar et al., 2010 [67]	4.33 (3.89, 4.82)	N/A
	Voigt et al., 2008 [69, 70]	2.54 (2.39, 2.52)	N/A
	Salihu et al., 2009 [43]	1.96 (1.93, 2.00)	N/A
	Jensen et al., 2003 [51]	1.61 (1.27, 2.04)	N/A
	Athukorala et al., 2010 [53]	2.26 (1.52, 3.36)	2.08 (1.47, 2.93)
	Langer et al., 2005 [63]	1.83 (1.48, 2.26)	N/A
	Total	**2.13 (2.10, 2.16)**	N/A
Macrosomia (birth weight ≥ 4000 g)	Bhattacharya et al., 2007 [24]	2.17 (1.89, 2.49)	N/A
	El-Gilany and Hammad, 2010 [66]	7.01 (1.52, 32.33)	N/A
	Stepan et al., 2006 [52]	2.86 (2.28, 3.60)	N/A
	van Wootten and Turner, 2002 [59]	4.72 (0.90, 24.75)	N/A
	Mantakas and Farrell, 2010 [65]	2.20 (1.74, 2.79)	1.9 (1.5, 2.5)
	Le Thai et al., 1992 [68]	23.88 (3.09, 184.72)	N/A
	Brennand et al., 2005 [71]	3.76 (2.34, 6.03)	3.73 (2.41, 5.05)
	Crane et al., 2009 [44]	1.86 (1.47, 2.36)	N/A
	Sukalich et al., 2006 [50]	1.78 (1.29, 2.46)	1.6 (1.2, 2.0)
	Jensen et al., 2003 [51]	1.43 (1.15, 1.79)	2.2 (1.6–3.1)
	Baeten et al., 2001 [23]	1.95 (1.84, 2.07)	2.1 (1.9, 2.3)
	Driul et al., 2008 [56]	2.58 (1.07, 6.19)	2.58 (1.08, 6.21)
	Roman et al., 2007 [57]	3.11 (2.28, 4.22)	3.1 (2.2, 4.3)
	Sahu et al., 2007 [58]	N/A	N/A
	Rode et al., 2005 [33, 60]	1.9 (1.53, 2.32)	1.8 (1.4–2.2)
	Langer et al., 2005 [63]	1.89 (1.43, 2.50)	N/A
	Total	**2.01 (1.93, 2.11)**	N/A
Macrosomia (birth weight ≥ 4500 g)	Khashan and Kenny, 2009 [48]	3.23 (2.86, 3.66)	2.71 (2.38, 3.07)
	Clausen et al., 2005 [55]	3.72 (1.86, 7.41)	4.3 (1.5, 12.1)
	Mantakas and Farrell, 2010 [65]	3.72 (2.08, 6.66)	8.7 (3.6–21.0)
	Brennand et al., 2005 [71]	2.94 (1.40, 6.16)	2.95 (1.87, 4.03)
	Crane et al., 2009 [44]	1.87 (1.28, 2.73)	N/A
	Athukorala et al., 2010 [53]	4.68 (2.03, 10.80)	4.54 (2.01, 10.24)
	Lumme et al., 1995 [62]	2.23 (1.45, 3.45)	1.8 (1.1, 2.8)
	Jensen et al., 1999 [64]	2.02 (1.21, 3.38)	N/A
	Total	**3.01 (2.71, 3.34)**	N/A
amount of heterogeneity that cannot be explained by chance alone. Sensitivity analysis showed that including only high quality studies decreased heterogeneity for LGA; the I^2 value improved to 0% from 97%. Including only high quality studies for LGA gives an odds ratio of 2.54 (95% CI 2.22, 2.92). As there was only one high quality study for macrosomia ≥4000 g, a similar analysis could not be undertaken. For macrosomia ≥4500 g, the I^2 value worsened slightly, from 48% to 62%.

5. Conclusion
This systematic review and meta-analysis confirms that maternal obesity is associated with fetal overgrowth.
odds of delivering an excessively large baby are increased: for large for gestational age infant (≥90th percentile) by 142%, for birth weight ≥4000 g by 117%, and for birth weight ≥4500 g by 277%. Determinants of macrosomia have been studied extensively. Identified risk factors include maternal prepregnancy diabetes (adjusted OR 4.6, 95% CI 2.57, 8.24), previous macromacrosomic birth (OR 3.1, 95% CI 2.61, 3.74), postterm pregnancy greater than 42 weeks gestation (OR 3.1, 95% CI 2.47, 3.86), maternal excess weight with BMI greater than 25 before pregnancy (OR 2.0, 95% CI 1.72, 2.32), male infant gender (OR 1.9, 95% CI 1.66, 2.21), gestational diabetes mellitus (OR 1.6, 95% CI 1.26, 2.16), and non-smoking (OR 1.4, 95% CI 1.14, 1.82) [302]. Fetal growth is a complex biologic process that is regulated by both maternal and fetal factors including genes and environment. Maternal obesity likely contributes to macrosomia via mechanisms including increased insulin resistance (even in women who do not have diabetes) resulting in higher fetal glucose and insulin levels [309]. Placental lipases metabolize triglycerides in maternal blood, allowing free fatty acids to be transferred in excess to the growing fetus [310].

The sensitivity analysis suggested the importance of conducting well-designed high-quality studies. Of particular importance is ensuring that maternal weight and height are directly measured as early in pregnancy as possible. Data from a recent prospective cohort study found that pregnant women of all body masses under-report their prepregnancy weight when first trimester weight is used as a proxy which further substantiates the need for objective measurements [311]. The limitations of using either self-reported prepregnancy weight or first trimester weight as a surrogate for prepregnancy weight must be considered. Few women, however, will enter a different class of body mass on the basis of this potential misclassification bias.

The generalizability of the results should be interpreted with caution. The majority of the studies included in this review (including several national population-based cohorts) were completed in North America and Western Europe. Few studies examined the role of maternal obesity on fetal overgrowth in women from Africa, Asia, or South America. As there are fundamental differences in nutrition, socioeconomic and educational status, and prenatal/intrapartum care in these regions, results may or may not be applicable.

The results from this meta-analysis provide convincing evidence of the positive relationship between maternal obesity and fetal overgrowth. Clearly, optimization of weight prior to pregnancy is ideal; individual and public health measures should be in place to encourage women to have a normal body weight prior to pregnancy. Maternity and newborn care providers should be aware of the increased risk among obese women, encourage lifestyle modifications that decrease gestational weight gain, and manage abnormal glucose metabolism to optimize fetal growth. This is important to decrease both intrapartum complications and neonatal sequelae (such as birth trauma and hypoglycemia). Furthermore, optimal fetal growth contributes to in utero epigenetic programming that favours a healthy long-term weight trajectory and metabolic profile. The association between maternal obesity and fetal overgrowth may well represent the first opportunity through which obese mothers can modify the intergenerational obesity cycle and result in healthier, happier families.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] J. Bérard, P. Dufour, D. Vinatier et al., “Fetal macrosomia: risk factors and outcome. A study of the outcome concerning 100 cases>4500 g,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 77, no. 1, pp. 51–59, 1998.
[2] K. D. Gregory, O. A. Henry, E. Ramicone, L. S. Chan, and L. D. Platt, “Maternal and infant complications in high and normal weight infants by method of delivery,” Obstetrics and Gynecology, vol. 92, no. 4, pp. 507–513, 1998.
[3] S. P. Chauhan, W. A. Grobman, R. A. Gherman et al., “Suspicion and treatment of the macromosomic fetus: a review,” American Journal of Obstetrics & Gynecology, vol. 193, no. 2, pp. 332–346, 2005.
[4] P. J. Surkan, C.-C. Hsieh, A. L. V. Johansson, P. W. Dickman, and S. Cnattingius, “Reasons for increasing trends in large for gestational age births,” Obstetrics and Gynecology, vol. 104, no. 4, pp. 720–726, 2004.
[5] M. Khashu, G. Pelligra, S. Bhargava, and J. A. Smyth, Perinatal Morbidity in Macrosomic Infants, Pediatric Academy of Sciences, 2005.
[6] S. L. Boulet, H. M. Salihu, and G. R. Alexander, “Mode of delivery and birth outcomes of macromosomic infants,” Journal of Obstetrics and Gynaecology, vol. 24, no. 6, pp. 622–629, 2004.
[7] D. J. Barker, “In utero programming of cardiovascular disease,” Theriogenology, vol. 53, no. 2, pp. 555–574, 2000.
[8] D. J. P. Barker, A. R. Bull, C. Osmond, and S. J. Simmonds, “Fetal and placental size and risk of hypertension in adult life,” British Medical Journal, vol. 301, no. 6746, pp. 259–262, 1990.
[9] P. M. Catalano and H. M. Ehrenberg, “The short- and long-term implications of maternal obesity on the mother and her offspring,” BJOG: An International Journal of Obstetrics & Gynaecology, vol. 113, no. 10, pp. 1126–1133, 2006.
[10] D. Dabelea, R. L. Hanson, R. S. Lindsay et al., “Intruterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships,” Diabetes, vol. 49, no. 12, pp. 2208–2211, 2000.
[11] L. Dubois and M. Girard, “Early determinants of overweight at 4.5 years in a population-based longitudinal study,” International Journal of Obesity, vol. 30, no. 4, pp. 610–617, 2006.
[12] M. W. Gillman, S. Rifas-Shiman, C. S. Berkey, A. E. Field, and G. A. Colditz, “Maternal gestational diabetes, birth weight, and adolescent obesity,” Pediatrics, vol. 111, no. 3, pp. e221–e226, 2003.
[13] P. D. Gluckman, M. A. Hanson, C. Cooper, and K. L. Thornburg, “Effect of in utero and early-life conditions on adult health and disease,” The New England Journal of Medicine, vol. 359, no. 1, pp. 61–73, 2008.
[14] R. C. Huang, V. Burke, J. P. Newnham et al., “Perinatal and childhood origins of cardiovascular disease,” International Journal of Obesity, vol. 31, no. 2, pp. 236–244, 2007.
[46] E. A. Nohr, M. Vaeth, J. L. Baker, T. I. A. Sørensen, J. Olsen, and K. M. Rasmussen, "Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy," *The American Journal of Clinical Nutrition*, vol. 88, no. 6, pp. 1705–1759, 2008.

[47] E. A. Nohr, M. Vaeth, J. L. Baker, T. I. A. Sørensen, J. Olsen, and K. M. Rasmussen, "Combines associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy," *The American Journal of Clinical Nutrition*, vol. 88, no. 6, pp. 1705–1759, 2008.

[48] A. S. Khashan and L. C. Kenny, "The effects of maternal body mass index on pregnancy outcome," *European Journal of Epidemiology*, vol. 24, no. 11, pp. 697–705, 2009.

[49] D. Getaun, C. V. Ananth, M. R. Peltier, H. M. Salihu, and W. E. Scorza, "Changes in prepregnancy body mass index between the first and second pregnancies and risk of large-for-gestational-age birth," *American Journal of Obstetrics and Gynecology*, vol. 196, no. 6, pp. 530.e1–530.e8, 2007.

[50] S. Sukalich, M. J. Mingione, and J. C. Glantz, "Obstetric outcomes in overweight and obese adolescents," *American Journal of Obstetrics & Gynecology*, vol. 195, no. 3, pp. 851–855, 2006.

[51] D. M. Jensen, P. Damm, B. Sørensen et al., "Pregnancy outcome and prepregnancy body mass index in 2459 glucose-tolerant Danish women," *The American Journal of Obstetrics and Gynecology*, vol. 189, no. 1, pp. 239–244, 2003.

[52] H. Stepan, S. Scheithauer, N. Dornhofer, T. Kramer, and R. Faber, "Obesity as an obstetric risk factor: does it matter in a perinatal center?" *Obesity*, vol. 14, no. 5, pp. 770–773, 2006.

[53] C. Athukorala, A. R. Rumbold, K. J. Willson, and C. A. Crowther, "The risk of adverse pregnancy outcomes in women who are overweight or obese," *BMC Pregnancy and Childbirth*, vol. 10, article 56, 2010.

[54] H. Narchi and A. Skinner, "Overweight and obesity in pregnancy do not adversely affect newborn outcomes: new evidence," *Journal of Obstetrics and Gynaecology*, vol. 30, no. 7, pp. 679–686, 2010.

[55] T. Clausen, T. K. Burski, N. Øyen, K. Godang, J. Bollerslev, and T. Henriksen, "Maternal anthropometric and metabolic factors in the first half of pregnancy and risk of neonatal macrosomia in term pregnancies. A prospective study," *European Journal of Endocrinology*, vol. 153, no. 6, pp. 887–894, 2005.

[56] L. Dziul, G. Cacciaguerra, A. Citossi, M. D. Martina, L. Perssini, and D. Marchesoni, "Prepregnancy body mass index and adverse pregnancy outcomes," *Archives of Gynecology and Obstetrics*, vol. 278, no. 1, pp. 23–26, 2008.

[57] H. Roman, P. Y. Robillard, T. C. Hulsey et al., "Obstetrical and neonatal outcomes in obese women," *West Indian Medical Journal*, vol. 56, no. 5, pp. 421–426, 2007.

[58] M. T. Sabu, A. Agarwal, V. Das, and A. Pandey, "Impact of maternal body mass index on obstetric outcome," *Journal of Obstetrics and Gynaecology Research*, vol. 33, no. 5, pp. 655–659, 2007.

[59] W. van Wootten and R. E. Turner, "Macrosomia in neonates of mothers with gestational diabetes is associated with body mass index and previous gestational diabetes," *Journal of the American Dietetic Association*, vol. 102, no. 2, pp. 241–243, 2002.

[60] L. Rode, L. Nilas, K. Wojdemann, and A. Tabor, "Obesity-related complications in Danish single cephalic term pregnancies," *Obstetrics and Gynecology*, vol. 105, no. 3, pp. 537–542, 2005.

[61] E. F. Magann, D. A. Doherty, S. P. Chauhan, J. M. Klimpel, S. D. Huff, and J. C. Morrison, "Pregnancy, obesity, gestational weight gain, and parity as predictors of peripartum complications," *Archives of Gynecology and Obstetrics*, vol. 284, no. 4, pp. 827–836, 2011.

[62] R. Lumme, P. Rantakallio, A.-L. Hartikainen, and M.-R. Jarvelin, "Pre-pregnancy weight and its relation to pregnancy outcome," *Journal of Obstetrics and Gynaecology*, vol. 15, no. 2, pp. 69–75, 1995.

[63] O. Langer, Y. Yoge, E. M. J. Xenakis, and L. Brustman, "Overweight and obese in gestational diabetes: the impact on pregnancy outcome," *American Journal of Obstetrics and Gynecology*, vol. 192, no. 6, pp. 1768–1776, 2005.

[64] H. Jensen, A. O. Agger, and K. L. Rasmussen, "The influence of prepregnancy body mass index on labor complications," *Acta Obstetricia et Gynecologica Scandinavica*, vol. 78, no. 9, pp. 799–802, 1999.

[65] A. Mantakas and T. Farrell, "The influence of increasing BMI in nulliparous women on pregnancy outcome," *European Journal of Obstetrics Gynecology and Reproductive Biology*, vol. 153, no. 1, pp. 43–46, 2010.

[66] A.-H. El-Gilany and S. Hammad, "Body mass index and obstetric outcomes in pregnant in Saudi Arabia: a prospective cohort study," *Annals of Saudi Medicine*, vol. 30, no. 5, pp. 376–421, 2010.

[67] L. M. Bodnar, A. M. Siega-Riz, H. N. Simhan, K. P. Himes, and B. Abrams, "Severe obesity, gestational weight gain, and adverse birth outcomes," *The American Journal of Clinical Nutrition*, vol. 91, no. 6, pp. 1642–1648, 2010.

[68] N. Le Thai, G. Lefebvre, V. Stella et al., "Pregnancy and obesity. A study of 140 cases and controls," *Journal de Gynecologie Obstetrique et Biologie de la Reproduction*, vol. 21, no. 5, pp. 563–567, 1992.

[69] M. Voigt, S. Straube, M. Zygmun, B. Krafczyk, K. T. M. Schneider, and V. Briese, "Obesity and pregnancy—a risk profile," *Zeitschrift für Geburtshilfe und Neonatologie*, vol. 212, no. 6, pp. 201–205, 2008.

[70] M. Voigt, M. Zygmun, W. Henrich, S. Straube, M. Carstensen, and V. Briese, "Analysis of subgroup of pregnant women in Germany 16th communication: morbid obesity: pregnancy risks, birth risks and status of the newborn," *Geburtshilfe und Frauenheilkunde*, vol. 68, no. 8, pp. 794–800, 2008.

[71] E. A. Brennan, D. Dannenbaum, and N. D. Willows, "Pregnancy outcomes of First Nations women in relation to pregravid weight and pregnancy weight gain," *Journal of Obstetrics and Gynecology Canada*: JOGC, vol. 27, no. 10, pp. 936–944, 2005.

[72] G. A. Wells, B. Shea, D. O’Connell et al., "The Newcastle-Ottawa Quality Assessment Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis," 2010, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

[73] R. DerSimonian and N. Laird, "Meta-analysis in clinical trials," *Controlled Clinical Trials*, vol. 7, no. 3, pp. 177–188, 1986.

[74] L. Rode, H. K. Heggaard, H. Kjergaard, L. F. Moller, A. Tabor, and B. Ottesen, "Association between maternal weight gain and birth weight," *Obstetrics and Gynecology*, vol. 109, no. 6, pp. 1309–1315, 2007.

[75] M. I. Cedergren, "Non-elective caesarean delivery due to ineffective uterine contractility or due to obstructed labour in relation to maternal body mass index," *European Journal of Obstetrics Gynecology and Reproductive Biology*, vol. 145, no. 2, pp. 163–166, 2009.

[76] J. C. Madan, J. M. Davis, W. Y. Craig et al., "Maternal obesity and markers of inflammation in pregnancy," *Cytokine*, vol. 47, no. 1, pp. 61–64, 2009.
women: a randomized clinical trial,” *Journal of the National Medical Association*, vol. 101, no. 6, pp. 569–577, 2009.

[108] H. Aly, T. Hammad, A. Nada, M. Mohamed, S. Bathgate, and A. El-Mohandes, “Maternal obesity, associated complications and risk of prematurity,” *Journal of Perinatology*, vol. 30, no. 7, pp. 447–451, 2010.

[109] D. A. Lawlor, A. Fraser, R. S. Lindsay et al., “Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort,” *Diabetologia*, vol. 53, no. 1, pp. 89–97, 2010.

[110] E. Jarvie and J. E. Ramsay, “Obstetric management of obesity in pregnancy,” *Seminars in Fetal and Neonatal Medicine*, vol. 15, no. 2, pp. 83–88, 2010.

[111] M. C. Baron, L. G. Girling, A. L. Mathieson et al., “Obstetrical and neonatal outcomes in obese parturients,” *Journal of Maternal-Fetal & Neonatal Medicine*, vol. 23, no. 8, pp. 906–913, 2010.

[112] K. Raatikainen, N. Heiskanen, and S. Heinonen, “Transition of overweight to obesity worsens pregnancy outcome in a BMI-dependent manner,” *Obesity*, vol. 14, no. 1, pp. 165–171, 2006.

[113] E. T. Rhodes, D. B. Pawlak, T. C. Takoudes et al., “Effects of a low-glycemic load diet in overweight and obese pregnant women: a pilot randomized controlled trial,” *The American Journal of Clinical Nutrition*, vol. 92, no. 6, pp. 1306–1315, 2010.

[114] M. C. Dennedy and F. Dunne, “The maternal and fetal impacts of obesity and gestational diabetes on pregnancy outcome,” *Best Practice and Research: Clinical Endocrinology and Metabolism*, vol. 24, no. 4, pp. 573–589, 2010.

[115] A. Lapolla, M. Bonomo, M. G. Dalfra et al., “Prepregnancy BMI influences maternal and fetal outcomes in women with isolated gestational hyperglycaemia: a multicentre study,” *Diabetes and Metabolism*, vol. 36, no. 4, pp. 265–270, 2010.

[116] M. Knight, J. J. Kurinczuk, P. Spark, and P. Brocklehurst, “Extreme obesity in pregnancy in the United Kingdom,” *Obstetrics and Gynecology*, vol. 115, no. 5, pp. 989–997, 2010.

[117] M. C. Alanis, W. H. Goodnight, E. G. Hill, C. J. Robinson, M. S. Villers, and D. D. Johnson, “Maternal super-obesity (body mass index ≥ 50) and adverse pregnancy outcomes,” *Acta Obstetricia et Gynecologica Scandinavica*, vol. 89, no. 7, pp. 924–930, 2010.

[118] HAPO Study Cooperative Research Group, “Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) Study: associations with maternal body mass index,” *BJOG*, vol. 117, no. 5, pp. 575–584, 2010.

[119] M. S. Hauger, L. Gibbons, T. Vik, and J. M. Belizán, “Prepregnancy weight status and the risk of adverse pregnancy outcome,” *Acta Obstetricia et Gynecologica Scandinavica*, vol. 87, no. 9, pp. 953–959, 2008.

[120] T. O. Scholl, M. L. Hediger, J. I. Schall, I. G. Ances, and W. K. Smith, “ Gestational weight gain, pregnancy outcome, and postpartum weight retention,” *Obstetrics and Gynecology*, vol. 86, no. 3, pp. 423–427, 1995.

[121] H. C. Jang, N. H. Cho, Y.-K. Min, I. K. Han, K. B. Jung, and B. E. Metzger, “ Increased macrosomia and perinatal morbidity independent of maternal obesity and advanced age in Korean women with GDM,” *Diabetes Care*, vol. 20, no. 10, pp. 1582–1588, 1997.

[122] S. Cnattingius, R. Bergström, L. Lipworth, and M. S. Kramer, “ Prepregnancy weight and the risk of adverse pregnancy outcomes,” *The New England Journal of Medicine*, vol. 338, no. 3, pp. 147–152, 1998.

[123] H. Wolfe, “High prepregnancy body-mass index—a maternal-fetal risk factor,” *The New England Journal of Medicine*, vol. 338, no. 3, pp. 191–192, 1998.

[124] D. Ogunyemi, S. Hullett, J. Leeper, and A. Risk, “Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population,” *The Journal of Maternal-Fetal Medicine*, vol. 7, pp. 190–193, 1998.

[125] F. F. Lauszus, J. Paludan, and J. G. Klebe, “Birthweight in women with potential gestational diabetes mellitus—an effect of obesity rather than glucose intolerance?” *Acta Obstetricia et Gynecologica Scandinavica*, vol. 78, no. 6, pp. 520–525, 1999.

[126] A. S. Kumari, “ Pregnancy outcome in women with morbid obesity,” *International Journal of Gynecology and Obstetrics*, vol. 73, no. 2, pp. 101–107, 2001.

[127] J. M. Wojcicki, N. A. Hessol, M. B. Heyman, and E. Fuentes-Afflick, “Risk factors for macrosomia in infants born to Latina women,” *Journal of Perinatology*, vol. 28, no. 11, pp. 743–749, 2008.

[128] Y. Yoge, O. Langer, E. M. J. Xenakis, and B. Rosen, “The association between glucose challenge test, obesity and pregnancy outcome in 6390 non-diabetic women,” *Journal of Maternal-Fetal and Neonatal Medicine*, vol. 17, no. 1, pp. 29–34, 2005.

[129] L. E. Edwards, W. L. Hellerstedt, I. R. Alton, M. Story, and J. H. Himes, “Pregnancy complications and birth outcomes in obese and normal-weight women: effects of gestational weight change,” *Obstetrics & Gynecology*, vol. 87, no. 3, pp. 389–394, 1996.

[130] D. W. Kiel, E. A. Dodson, R. Artal, T. K. Boehmer, and T. L. Leet, “Gestational weight gain and pregnancy outcomes in obese women: how much is enough?” *Obstetrics and Gynecology*, vol. 110, no. 4, pp. 752–758, 2007.

[131] P. M. Dietz, W. M. Callaghan, M. E. Cogswell, B. Morrow, C. Ferre, and L. A. Schieve, “Combined effects of prepregnancy body mass index and weight gain during pregnancy on the risk of preterm delivery,” *Epidemiology*, vol. 17, no. 2, pp. 170–177, 2006.

[132] M. C. Jolly, N. J. Sebire, J. P. Harris, L. Regan, and S. Robinson, “Risk factors for macrosomia and its clinical consequences: a study of 350,311 pregnancies,” *European Journal of Obstetrics Gynecology and Reproductive Biology*, vol. 111, no. 1, pp. 9–14, 2003.

[133] N. Voldner, K. F. Froslie, K. Bø et al., “Modifiable determinants of fetal macrosomia: role of lifestyle-related factors,” *Acta Obstetrica et Gynecologica Scandinavica*, vol. 87, no. 4, pp. 423–429, 2008.

[134] U. M. Schaefer-Graf, R. Heuer, O. Kilavuz, A. Pandura, W. Henrich, and K. Vetter, “Maternal obesity not maternal glucose values correlates best with high rates of fetal macrosomia in pregnancies complicated by gestational diabetes,” *Journal of Perinatal Medicine*, vol. 30, no. 4, pp. 313–321, 2002.

[135] G. A. Ramos and A. B. Caughhey, “The interrelationship between ethnicity and obesity on obstetric outcomes,” *American Journal of Obstetrics & Gynecology*, vol. 193, no. 3, pp. 1089–1093, 2005.

[136] A. H. Balen and R. A. Anderson, “Impact of obesity on female reproductive health: British fertility society, policy and practice guidelines,” *Human Fertility*, vol. 10, no. 4, pp. 195–206, 2007.

[137] E. A. McCarthy, B. J. G. Strauss, S. P. Walker, and M. Permezel, “ Determination of maternal body composition in pregnancy and its relevance to perinatal outcomes,” *Obstetrical and Gynecological Survey*, vol. 59, no. 10, pp. 731–742, 2004.
C. Savona-Ventura and M. Gatt, “Short-term obstetric outcomes in obese Maltese women,” *International Journal of Diabetes and Metabolism*, vol. 14, no. 2, pp. 88–91, 2006.

P. Kalk, F. Guthmann, K. Krause et al., “Impact of maternal body mass index on neonatal outcome,” *European Journal of Medical Research*, vol. 14, no. 5, pp. 216–222, 2009.

H. M. Wolfe, I. E. Zador, T. L. Gross, S. S. Martier, and R. J. Sokol, “The clinical utility of maternal body mass index in pregnancy,” *American Journal of Obstetrics & Gynecology*, vol. 164, no. 5, pp. 1306–1310, 1991.

E. A. Khorshid, T. A. Elbeheyd, and A. M. Quinaib, “Risk of morbid obesity with pregnancy,” *Saudi Medical Journal*, vol. 25, no. 1, pp. 121–122, 2004.

The World Bank Group, *The World Bank: Working for a World Free of Poverty*, 2012, http://data.worldbank.org/.

F. Ahlsson, B. Diderholm, B. Jonsson et al., “Insulin resistance, a link between maternal overweight and fetal macrosomia in nondiabetic pregnancies,” *Hormone Research in Paediatrics*, vol. 74, no. 4, pp. 267–274, 2010.

M. L. S. Lindegaard, P. Damm, E. R. Mathiesen, and L. B. Nielsen, “Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression,” *Journal of Lipid Research*, vol. 47, no. 11, pp. 2581–2588, 2006.

A. Russell, S. Gillespie, S. Satya, and L. M. Gaudet, “Assessing the accuracy of pregnant women in recalling pre-pregnancy weight and gestational weight gain,” *Journal of Obstetrics and Gynaecology Canada*, vol. 35, no. 9, pp. 802–809, 2013.