This is the accepted manuscript made available via CHORUS. The article has been published as:

Weyl points created by a three-dimensional flat band

Yinong Zhou, Kyung-Hwan Jin, Huaqing Huang, Zhengfei Wang, and Feng Liu

Phys. Rev. B 99, 201105 — Published 13 May 2019

DOI: [10.1103/PhysRevB.99.201105](https://doi.org/10.1103/PhysRevB.99.201105)
Weyl Points Enabled by Three-dimensional Flat Band

Yinong Zhou,¹ Kyung-Hwan Jin,¹ Huaqing Huang,¹ Zhengfei Wang,² and Feng Liu¹,3,*

¹Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
²Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
³Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

(Dated: February 14, 2019)

Following the discovery of topological insulator (TI), topological Dirac/Weyl semimetal has attracted much recent interest. A prevailing mechanism for the formation of Weyl points is by breaking time reversal symmetry (TRS) or spatial inversion symmetry of a Dirac point. Here we demonstrate a new generic formation mechanism for Weyl points by breaking TRS of a 3D TI featured with highly degenerate 3D flat bands (FBs). It is in direct contrast to the conventional view that breaking TRS of a 2D/3D TI leads to a Chern insulator exhibiting quantum anomalous Hall effect. Based on a tight-binding model of pyrochlore lattice, we show that this unusual 3D-FB-enabled Weyl state may contain only a minimum of two Weyl points. Furthermore, using first-principles calculations, we identify this new Weyl state in a real material Sn$_2$Nb$_2$O$_7$. The main features of the resulting Weyl points are analyzed with respect to symmetry, topological invariant and surface state. Our finding sheds new light on our fundamental understanding of topological physics and extends significantly the scope of Weyl semimetals to attract immediate experimental interest.

The mathematical concept of topology is an integral part to our fundamental understanding of a wide range of phenomena from high-energy particle physics to condensed-matter and materials physics. The discovery of topological insulators (TIs) [1–5] in solid materials has fostered a very active field of topological physics in the last decade. Following the study of TIs, Dirac/Weyl semimetals [6–8] have attracted much interest. Fundamentally, a prevailing mechanism for the formation of Weyl points is by breaking time reversal symmetry (TRS) or inversion symmetry (INS) of a Dirac point [9–11]. In this Letter, we demonstrate a generic mechanism for the formation of Weyl points by breaking TRS of a 3D TI featured with highly degenerate 3D flat bands (FBs).

Conventionally, a TI phase can arise from either a semimetal [1] or narrow-gap semiconductor [2, 3] through band inversion induced by spin-orbit coupling (SOC) that opens a global topological gap. Usually, breaking TRS of a TI leads to a Chern insulator (CI) exhibiting quantum anomalous Hall effect (QAHE). For example, the first experimental realization of QAHE [12] is achieved by magnetic doping of a 3D TI film to break TRS [13]. This TI-to-CI transition is general to both 2D and 3D TIs. In contrast, however, we discover a TI-to-Weyl semimetal transition induced by breaking TRS of a 3D TI featured with FBs, while breaking TRS of a 2D TI featured with a FB would lead still to a CI [14].

A topological FB arises from destructive interference (phase cancelation) of Bloch wave functions, independent of the single-particle crystalline Hamiltonian (i.e., the strength of lattice hopping) [15]. The completely quenched electronic kinetic energy in a FB magnifies any finite electron-electron interaction, leading to a range of exotic quantum phases, such as ferromagnetism [16–20], Wigner crystallization [21, 22], and superconductivity [23, 24]. Also, the phase cancelation renders the FB to be inherently topologically nontrivial, leading to high-temperature fractional quantum Hall effect [25, 26]. Many quantum phases exist commonly for both 2D and 3D FBs, such as the ferromagnetism [27–30] and CI phase [31–38]. Interestingly, our finding represents another unique manifestation of 3D topological FBs in forming Weyl semimetal phase, which is absent for 2D FB.

Using pyrochlore lattice as a prototypical example, we first illustrate this unusual topological phase transition from a 3D TI to a Weyl semimetal using tight-binding (TB) model analysis considering two extreme cases: large magnetization vs. large SOC. We show that the Weyl semimetal so formed may contain only a minimum of two Weyl points when the band splitting induced by magnetization (breaking TRS) is much larger than the SOC gap of the intermediate TI phase, while four Weyl points will be formed when the former is smaller than the latter. Then we further reveal its physical manifestations in a real material of Sn$_2$Nb$_2$O$_7$, using first-principles calculations. The main features of the resulting Weyl points are analyzed with respect to symmetry, topological invariant and surface state. The details of our calculation method are presented in the Supplemental Material [39].

We begin with a general introduction of this unconventional mechanism for the creation of Weyl points, i.e., the Weyl points formed by breaking TRS of 3D FBs in presence of SOC. As shown in Fig. 1, the Dirac point is a four-fold degenerate point protected by TRS and INS. To generate a pair of doubly degenerate Weyl points from a Dirac point one may break either TRS or INS (Fig. 1a) [9–11]. On the other hand, the 3D FB in a pyrochlore lattice has a four-fold degeneracy including spin
Hamiltonian:

\[H = -t \sum_{\langle ij \rangle \alpha} c_{i\alpha}^\dagger c_{j\alpha} + i\lambda_{soc} \sum_{\langle ij \rangle \alpha \beta} \frac{2}{\sqrt{3}} (\hat{r}_{ij} \times \hat{r}_{ij}^2) \cdot \sigma_{\alpha \beta} c_{i\alpha}^\dagger c_{j\beta} + \lambda_z \sum_{i\alpha} c_{i\alpha}^\dagger \sigma_z c_{i\alpha}. \]

The first term represents the NN hopping, \(c_{i\alpha}^\dagger (c_{i\alpha}) \) is the operator of the electron creation (annihilation) on site \(i \) of spin \(\alpha \). The second term represents the SOC with the coupling strength \(\lambda_{soc} \) \([32]\), where unit vectors \(\hat{r}_{ij} \) are indicated in Fig. 2a on the upper right tetrahedron; \(\frac{2}{\sqrt{3}} |\hat{r}_{ij}^1 \times \hat{r}_{ij}^2| = \pm 1 \); and \(\sigma \) is the Pauli matrix. The third term represents the Zeeman splitting with the exchange field strength \(\lambda_z \).

Figure 2 shows the TB band structures of pyrochlore lattice (see Fig. 2a). Fermi level is set at \(E=0 \), considering a half-filled system. Without SOC and magnetization, four bands (Fig. 2c) are drawn along the high symmetry points as indicated in Fig 2b; the top two bands are flat and degenerate with each other without SOC. These four bands arise from four \(s \) orbitals (atomic basis) siting at the four corners of a tetrahedron in the unit cell. Effectively, one may view the tetrahedron as a “molecule” with a molecular \(sp^3 \) orbital basis, and from parity analysis at \(\Gamma \) point (Fig. S4), one can assign the bottom band as the molecular \(s \)-orbital band, the middle dispersive band as the \(p_z \)-orbital band, and the top two degenerate FBs as \((p_x, p_y) \)-orbital bands, as indicated in Fig. 2e. The six-fold degenerate point at \(\Gamma \) is thus due to the degeneracy of three \(p \) orbitals. We note that our pyrochlore lattice model without considering correlation has a band order of 4-2-2 degeneracy which agrees with the DFT band structure of \(\text{Sr}_2\text{Nb}_2\text{O}_7 \) \([30, 32]\) (see below), but different from that of 2-4-2 in \(\text{Y}_2\text{Ir}_2\text{O}_7 \) \([6]\) which has a different Weyl semimetal phase due to intermediate correlation and strong SOC.

Next, we turn on SOC, in which a topological non-trivial band gap is opened at \(\Gamma \) point between the top FBs and the middle dispersive band (Fig. 2d). The two FBs are also gapped except at the high-symmetry points \(\Gamma \) and \(X \). Moreover, if we turn on magnetization, the system becomes ferromagnetic. If the band splitting is much larger than SOC gap (\(\lambda_z \gg \lambda_{soc} \)), then the spin-up and -down bands are fully split. The corresponding band structure along \(\Gamma_z \) is shown in Fig. 2e. There appears a band crossing between the lower FB and the middle dispersive band to form two Weyl points (1 and 1'), which is the minimum number of Weyl points that can exist in a system with inversion symmetry. On the other hand, when magnetization is much smaller than the SOC (\(\lambda_z \ll \lambda_{soc} \)), spin-up and -down bands are mixed with each other. Four Weyl points are generated by the cross-
The vectors $\hat{\mathbf{r}}_{ij}^{1,2}$ for calculating SOC in Eq. (1) are indicated on the upper right tetrahedron. (b) The first Brillouin zone of pyrochlore lattice with high-symmetry lines and points indicated; $W_{1,2}$ are two positions along k_z direction close to the Weyl points (when magnetization direction is along k_z). (c,d) TB band structures (c) without SOC and magnetization, the equivalent molecular sp^3 orbital bases are labeled on the corresponding bands; (d) with SOC but without magnetization. The SOC band gap at Γ is labeled as E_{soc}^{soc}. (e,f) TB band structures along k_z direction for two extreme cases: (e) $\lambda_z \gg \lambda_{soc}$ and (f) $\lambda_z \ll \lambda_{soc}$. The Weyl points are numbered as 1-3; their counterparts on the opposite direction are labeled as 1'-3'. The blue (red) color represents spin up (down) bands.

FIG. 2. (a) The pyrochlore lattice structure. (b) The first Brillouin zone of pyrochlore lattice with high-symmetry lines and points indicated; $W_{1,2}$ are two positions along k_z direction close to the Weyl points (when magnetization direction is along k_z). (c,d) TB band structures (c) without SOC and magnetization, the equivalent molecular sp^3 orbital bases are labeled on the corresponding bands; (d) with SOC but without magnetization. The SOC band gap at Γ is labeled as E_{soc}^{soc}. (e,f) TB band structures along k_z direction for two extreme cases: (e) $\lambda_z \gg \lambda_{soc}$ and (f) $\lambda_z \ll \lambda_{soc}$. The Weyl points are numbered as 1-3; their counterparts on the opposite direction are labeled as 1'-3'. The blue (red) color represents spin up (down) bands.

The transition from four Weyl points with $\lambda_z \ll \lambda_{soc}$ to two Weyl points with $\lambda_z \gg \lambda_{soc}$ is understandable, because in presence of SOC, the original perfect FBs become partially dispersive being gapped everywhere except at Γ and X. A small exchange splitting will induce crossings of the four FBs to form four Weyl points (Fig. 2f). In contrast, a strong exchange splitting will completely separate spin-up and -down bands. Then the SOC gapping will cause a crossing between the lower FB and the middle dispersive band forming two Weyl points (Fig. 2e). The larger the λ_{soc}, the larger the λ_z is needed to induce the transition. To show this in more detail, one can convert λ_z into the exchange energy splitting ΔE^z and λ_{soc} into the SOC gap E_{soc}^z. It can be shown by solving equation (1) that $\Delta E^z = 2\lambda_z$ and $E_{soc}^z = 8\sqrt{3}\lambda_{soc}$. For a given E_{soc}^z, from the plot of distribution of Weyl points as a function of the ratio $\Delta E^z / E_{soc}^z$ (Fig. S6), one can extract the transition point from four Weyl points to two Weyl points, which indicates ΔE^z increases linearly with E_{soc}^z with a coefficient of ~ 0.36 (see inset of Fig. S6).

In the regime of $\lambda_z \ll \lambda_{soc}$, the four Weyl points move closer with the increase of exchange field, until they annihilate with each other at a low-symmetry k-point. At the same time, two new Weyl points are generated at the Brillouin zone (BZ) boundary entering the regime of $\lambda_z \gg \lambda_{soc}$. These two Weyl points will move closer with the further increase of the exchange field and then stay fixed for sufficiently large Zeeman field when the spin-up and -down bands are totally separated. The location of Weyl points is found to be always along the magnetization direction (see e.g., the case of two Weyl points in Fig. S7).

To confirm the topology of the Weyl points, Chern number (C) is calculated using Kubo formula [41]:

$$C = \frac{1}{2\pi} \int_{BZ} d^2 k \Omega(k),$$

$$\Omega(k) = -\text{Im} \sum_{m \neq n} \frac{\langle \Psi_{n,k} | \nabla_k H_k | \Psi_{m,k} \rangle \times \langle \Psi_{m,k} | \nabla_k H_k | \Psi_{n,k} \rangle}{(E_{m,k} - E_{n,k})^2}.$$

(2)
where \(m, n \) are band indexes; \(|\Psi_{m,k}\rangle, |\Psi_{n,k}\rangle\) are eigenstates; \(E_m, E_n \) are eigenvalues; \(\Omega \) is the Berry phase connection of the Bloch state. Fig. 3a, 3b show the position and chirality of Weyl points for the two cases, \(\lambda_z \gg \lambda_{soc} \) and \(\lambda_z \ll \lambda_{soc} \) respectively. Using equation (2), Chern number is calculated on a 2D manifold enclosing the Weyl point. For points 1 and 2, \(C = 1 \); for point 3, \(C = -1 \). The points 1’, 2’, and 3’ have the opposite Chern number to points 1, 2, and 3, respectively. The non-zero Chern number are also confirmed by plotting the flux of Berry connections around these band crossing points (Fig. S8). Therefore, we confirm they are indeed Weyl points.

Lastly, we demonstrate a real material system to realize the above-mentioned unexpected Weyl semimetal associated with the 3D FB. The 3D FB material should meet the following conditions: (i) the bands formed by the atoms on the tetrahedral motif are isolated from other bands; (ii) the system has a considerable SOC strength; (iii) the system can be magnetized. Specially, we narrow down our search to pyrochlore oxide, which has a common formula \(A_2B_2O_7 \), where \(A \) is either a trivalent rare earth ion or a mono/divalent cation, and \(B \) is a transition metal or a \(p \)-block metal ion. One well-known pyrochlore oxide is \(\text{Sn}_2\text{Nb}_2\text{O}_7 \). It contains Sn atoms forming the corner-shared tetrahedral motifs, whose \(s \)-orbitals constitute the desired single-orbital TB model in a pyrochlore lattice. Importantly, \(\text{Sn}_2\text{Nb}_2\text{O}_7 \) has been shown to exhibit a TI phase in the presence of SOC without magnetization [32] and a ferromagnetic instability upon doping of its 3D FB without SOC [30]. Therefore, it would be very interesting to find out what happens when both SOC and doping are considered.

Using density functional theory (DFT), we calculate the band structures of \(\text{Sn}_2\text{Nb}_2\text{O}_7 \). Four *pyrochlore bands below Fermi level arising from the Sn-\(s \) orbitals are confirmed to be isolated from other bands, as shown in Fig. 4a. With the SOC, an 11 meV band gap opens between FBs and dispersive bands below at \(\Gamma \), as shown by the magnified view of green bands in Fig 4b. The system is confirmed to be a 3D TI with \(Z_2 = 1 \) [42], in agreement with the previous study [32]. On the other hand, without SOC, because the quenched kinetic energy of FB magnifies the Coulomb interaction, a partially filled FB will exhibit a ferromagnetic instability with hole doping [30]. As shown in Fig. 4c, the spin-up and -down bands are split upon doping of two holes. This is the largest exchange splitting with the highest magnetic momentum of \(2\mu_B \) per unit cell, which decreases with the decrease of doping concentration. Then, considering the SOC with doping (Fig. 4d), two inversion-symmetric Weyl points are generated at \((\pm 0.0115, \pm 0.0115, \pm 0.023)\) in the \(k \)-space along the magnetization direction \(k_z \). Apparently, this unexpected Weyl semimetal phase corresponds to the regime of \(\lambda_z \gg \lambda_{soc} \) described by the TB model above in Fig. 2e.

To confirm the topology of Weyl points, we calculated the Chern number using Wannier functions [43]. When the \(k_x-k_y \) plane crosses the two Weyl points from bottom to up, the Chern number jumps first from 0 to -1 and then from -1 to 0 (Fig. 5a), signifying the topology of the Weyl points. Another significant topological manifestation of Weyl point is the emergence of the Fermi arcs and surface states, which are shown in Fig. 5b and 5c respectively. One clearly sees a Fermi arc connecting two Weyl points with opposite chirality in Fig. 5b and surface states along \(k_z \) in Fig. 5c; both are on the (100) surface.

The DFT results can be well fitted by a TB model with the following parameters: on-site energy of -0.756 eV, hopping parameter of -0.28 eV, \(\lambda_{soc} = 0.75 \times 10^{-3} \) eV and \(\lambda_z = 0.2 \) eV. In addition, the DFT calculations also confirm that with a small doping concentration, four Weyl points can be formed corresponding to the regime of \(\lambda_z \ll \lambda_{soc} \) as described by the TB model. The existence
of Weyl semimetal phase at different doping concentrations is beneficial for experimental measurement because some range of doping might be achieved more easily.

In conclusion, we revealed a novel mechanism of 3D-FB-enabled creation of Weyl points, in contrast with the conventional mechanism of lowering the symmetry of a Dirac point. This mechanism is exemplified in a real material of Sn$_2$Nb$_2$O$_7$, which can be potentially extended to other 3D FB materials. In addition, we have demonstrated a fundamental difference between the 2D and 3D FB with regard to their associated topological phases, which is rooted in their distinct dimensions and band degeneracies. Our findings enrich significantly the topological physics associated with Weyl points and FBs; and provide a promising platform to extend the search for new Weyl semimetal materials.

This work is supported by U.S. DOE-BES (Grant No. DE-FG02-04ER46148). The calculations were done on the CHPC at the University of Utah and DOE-NERSC.

Y. Z. and K.-H. J. contributed equally to this work.

* fliu@eng.utah.edu

[1] C. L. Kane and E. J. Mele, Physical review letters 95, 226801 (2005).
[2] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
[3] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).
[4] M. Zhou, W. Ming, Z. Liu, Z. Wang, P. Li, and F. Liu, Proceedings of the National Academy of Sciences 111, 14378 (2014).
[5] F. Reis, G. Li, L. Dudy, M. Bauerfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Science 357, 287 (2017).
[6] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Physical Review B 83, 205101 (2011).
[7] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, et al., Science 349, 613 (2015).
[8] B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao, G. Chen, C. Matt, F. Bisti, et al., Nature Physics 11, 724 (2015).
[9] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Physical review letters 107, 186806 (2011).
[10] L. Yang, Z. Liu, Y. Sun, H. Peng, H. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. Guo, M. Rahm, et al., Nature physics 11, 728 (2015).
[11] B. Yan and C. Felser, Annual Review of Condensed Matter Physics 8, 337 (2017).
[12] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al., Science 340, 167 (2013).
[13] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang. Science 329, 61 (2010).
[14] Z. Wang, Z. Liu, and F. Liu, Physical review letters 110, 196801 (2013).
[15] Z. Liu, F. Liu, and Y.-S. Wu, Chinese Physics B 23, 077308 (2014).
[16] A. Mielke, Journal of Physics A: Mathematical and General 24, 3311 (1991).
[17] A. Mielke, Journal of Physics A: Mathematical and General 24, L73 (1991).
[18] A. Mielke, Journal of Physics A: Mathematical and General 25, 4335 (1992).
[19] H. Tasaki, Physical review letters 69, 1608 (1992).
[20] S. Zhang, H.-h. Hung, and C. Wu, Physical Review A 82, 053618 (2010).
[21] C. Wu, D. Bergman, L. Balents, and S. D. Sarma, Physical review letters 99, 070401 (2007).
[22] C. Wu and S. D. Sarma, Physical Review B 77, 235107 (2008).
[23] S. Miyahara, S. Kusuta, and N. Furukawa, Physica C: Superconductivity 460, 1145 (2007).
[24] K. Kobayashi, M. Okumura, S. Yamada, M. Machida, and H. Aoki, Physical Review B 94, 214501 (2016).
[25] E. Tang, J.-W. Mei, and X.-G. Wen, Physical review letters 106, 236802 (2011).
[26] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Physical review letters 106, 236804 (2011).
[27] T. Kimura, H. Tamura, K. Shiraishi, and H. Takayanagi, Physical Review B 65, 081307 (2002).
[28] A. Tanaka and H. Ueda, Physical review letters 90, 067204 (2003).
[29] F. Pollmann, P. Fulde, and K. Shtengel, Physical review letters 100, 136404 (2008).
[30] I. Hase, T. Yanagisawa, Y. Aiura, and K. Kawashima, Physical Review Letters 120, 16401 (2018).
[31] G. Liu, P. Zhang, Z. Wang, and S.-S. Li, Physical Review B 79, 035323 (2009).
[32] H.-M. Guo and M. Franz, Physical review letters 103, 206805 (2009).
[33] H.-M. Guo and M. Franz, Physical Review B 80, 113102 (2009).
[34] Z. Wang and P. Zhang, New Journal of Physics 12, 043055 (2010).
[35] M. Kurita, Y. Yamaji, and M. Imada, Journal of the Physical Society of Japan 80, 044708 (2011).
[36] Y. Hatsugai and I. Maruyama, EPL (Europhysics Letters) 95, 20003 (2011).
[37] K. Sun, Z. Gu, H. Katsura, and S. D. Sarma, Physical review letters 106, 236803 (2011).
[38] Z. Wang, N. Su, and F. Liu, Nano letters 13, 2842 (2013).
[39] See Supplemental Materials at http://link.aps.org/supplemental/xxx, for more details which include Ref. [44–51].

[40] One might view the pyrochlore lattice as a 3D version of Kagome lattice, as shown in Fig. S2. Effectively one stacks the 2D Kagome layers in three orientations in a pyrochlore lattice. On the other hand, the pyrochlore lattice is a 3D line graph of diamond lattice, as shown in Fig. S3, which amounts to a 3D frustrated hopping model, giving rise to the FBs with destructive interference.

[41] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Physical Review Letters 49, 405 (1982).
[42] C. L. Kane and E. J. Mele, Physical review letters 95, 146802 (2005).
[43] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Computer physics communications 178, 685 (2008).
[44] P. E. Blöchl, Physical review B 50, 17953 (1994).
[45] G. Kresse and D. Joubert, Physical Review B 59, 1758
(1999).
[46] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical review letters 77, 3865 (1996).
[47] G. Kresse and J. Furthmüller, Physical review B 54, 11169 (1996).
[48] M. Methfessel and A. Paxton, Physical Review B 40, 3616 (1989).

[49] D. Hobbs, G. Kresse, and J. Hafner, Physical Review B 62, 11556 (2000).
[50] N. Marzari and D. Vanderbilt, Physical review B 56, 12847 (1997).
[51] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, Computer Physics Communications 224, 405 (2018).