THE ASTROPHYSICAL JOURNAL, 730:58 (11pp), 2011 March 20

THE SURPRISINGLY CONSTANT STRENGTH OF O VI ABSORBERS OVER COSMIC TIME

ANDREW J. FOX
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago, Chile; afox@eso.org
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK

Received 2010 October 25; accepted 2011 January 25; published 2011 March 3

ABSTRACT

O VI absorption is observed in a wide range of astrophysical environments, including the local interstellar medium, the disk and halo of the Milky Way, high-velocity clouds, the Magellanic Clouds, starburst galaxies, the intergalactic medium (IGM), damped Lyα systems, and gamma-ray-burst host galaxies. Here, a new compilation of 775 O VI absorbers drawn from the literature is presented, all at high resolution (instrumental FWHM ≤ 20 km s\(^{-1}\)) and covering the redshift range \(z = 0\)–3. In galactic environments \(\log N(H I) \gtrsim 20\), the mean O VI column density is shown to be insensitive to metallicity, taking a value \(\log N(O VI) \approx 14.5\) for galaxies covering the range \(-1.6 \lesssim [O/Fe] \lesssim 0\). In intergalactic environments \(\log N(H I) < 17\), the mean O VI component column density measured in data sets of similar sensitivity shows only weak evolution between \(z = 0.2\) and \(z = 2.3\), but IGM O VI components are on average almost twice as broad at \(z = 2.3\) than at \(z = 2.3\). The implications of these results on the origin of O VI are discussed. The existence of a characteristic value of \(\log N(O VI)\) for galactic O VI absorbers, and the lack of evolution in \(\log N(O VI)\) for intergalactic absorbers, lend support to the “cooling-flow” model of Heckman et al., in which all O VI absorbers are created in regions of initially hot shock-heated plasma that are radiatively cooling through coronal temperatures. These regions could take several forms, including conductive, turbulent, or shocked boundary layers between warm (~10\(^4\) K) clouds and hot (~10\(^6\) K) plasma, although many such layers would have to be intersected by a typical galaxy–halo sight line to build up the characteristic galactic \(N(O VI)\). The alternative, widely used model of single-phase photoionization for intergalactic O VI is ruled out by kinematic evidence in the majority of IGM O VI components at low and high redshift.

Key words: cosmology: observations – galaxies: evolution – galaxies: ISM – intergalactic medium – quasars: absorption lines

Online-only material: color figures

1. INTRODUCTION

In a ground-breaking paper discussing the theoretical basis for a hot Galactic corona, Spitzer (1956) correctly predicted that the lithium-like O\(^{+5}\) ion “might be sufficiently abundant to produce measurable absorption” in the UV spectra of background sources, and could therefore be used to detect and analyze such a corona. O VI absorption in its far-ultraviolet resonance doublet at 1031.926 and 1037.617 Å is now routinely detected in the interstellar medium (ISM) of the Milky Way, the extended halos of other galaxies, and the intergalactic medium (IGM) from \(z = 0\) to \(z \approx 3\). The high cosmic abundance of oxygen, the intrinsic strength of the O VI doublet, and the ability to probe warm/hot gas all combine to make O VI a powerful and well-studied tracer of the diffuse universe.

It is common practice to study the detailed properties of O VI absorption in a specific interstellar or intergalactic location. An alternative, global approach is to compare O VI measurements from many different locations, and search for correlations with other observable parameters (such as redshift and metallicity). Along these lines, Heckman et al. (2002, hereafter H02) synthesized O VI observations across several low-redshift environments, and proposed a unified model in which all O VI absorbers (both galactic and intergalactic) trace radiatively cooling regions of initially hot gas. In the last eight years, many new high-resolution (instrumental FWHM ≤ 20 km s\(^{-1}\)) O VI data sets have become available. In order to draw them together, and to gain insight into the nature of O VI absorbers, a new, heterogeneous compilation of 775 O VI absorbers is presented in this paper. The compilation includes galactic O VI covering galaxy metallicities in the range \(\approx 0.01–1\) times solar, and intergalactic O VI covering redshifts from \(z = 0\) to \(z \approx 2.5\). In Section 2, the relevant O VI ionization physics is briefly reviewed. In Section 3, a survey of all published interstellar and intergalactic O VI absorbers is presented. The new galactic and intergalactic compilations are presented in Sections 4 and 5, respectively, together with a discussion of their properties. The key results are summarized in Section 6.

2. BRIEF OVERVIEW OF O VI IONIZATION PHYSICS

The energy required to ionize O\(^{+4}\) to O\(^{+5}\) (the ion traced by O VI) is 113.9 eV (8.4 Rydbergs), whereas ionizing O\(^{+5}\) to O\(^{+6}\) requires 138.1 eV (10.2 Rydbergs). In a given plasma, the O VI ionization fraction \(f(O VI) \equiv \bar{O}VI/O\) will be set by the balance between ionization from lower states and recombination from higher states. The ionization process can be either electron–electron collisions in high-temperature plasma (collisional ionization) or photoionization by extreme-UV radiation. Collisional ionization of O VI requires “coronal” plasma temperatures of \(\sim 10^5–10^6\) K, with the ion fraction \(f(O VI)\) reaching a maximum of \(\approx 0.22\) near 300,000 K (Sutherland & Dopita 1993; Bryans et al. 2006; Gnat & Sternberg 2007) in the case of collisional ionization equilibrium (CIE). However, non-equilibrium conditions are likely given that the interstellar cooling function peaks at coronal temperatures, and that coronal plasma is thermally unstable (Kafatos 1973; Shapiro & Moore 1976; Edgar & Chevalier 1986; Wiersma et al. 2009). Under non-equilibrium conditions, the cooling time can be shorter than the recombination time, resulting in “frozen-in” O VI persisting to lower temperatures than would hold under CIE. This has the important consequence that narrow O VI components are not necessarily...
photoionized; they can also trace cooled, initially hot plasma. Given the additional complication of non-thermal broadening, O vi line widths (b-values) by themselves do not offer a clean discriminator between ionization mechanisms. Photoionization of O vi is possible if the density of EUV photons with $E > 113.9$ eV is high enough, e.g., near active galactic nuclei (AGNs) and gamma-ray bursts (GRBs). In the Galactic ISM (and by extension, in the ISM of external galaxies), the ionizing radiation field has a sharp break at 54 eV caused by the He II edge in hot-star spectra (Bregman & Harrington 1986), and so photoionization is ruled out as the origin of the observed O vi absorption. In the IGM, photoionization models (Hamann 1997; Bergeron et al. 2002; Lehner et al. 2006; Howk et al. 2009) indicate that the production of O vi by the extragalactic background (EGB) radiation requires an ionization parameter $U \equiv n_{\gamma}/n_{\text{H}}$ (the ratio of the ionizing photon density to the gas density) in the range $\approx 0.1–1$ at any redshift, so long as the shape of the EGB does not change substantially, which is reasonable for the redshift range $z = 0–3$ over which O vi can be observed (Haardt & Madau 1996, 2001).

3. PUBLISHED O vi ABSORPTION DETECTIONS

In this paper, galactic (interstellar) and intergalactic O vi absorbers are distinguished by a simple cut made in H i column density, referring to absorbers with N(H i) > 10^{17} cm$^{-2}$ and N(H i) < 10^{17} cm$^{-2}$, respectively. This approach is powerful since the H i lines can often be measured in the same spectra as the O vi lines. Of course, the galactic/intergalactic division is not clear-cut and somewhat arbitrary; Wakker & Savage (2009) report that all low-z O vi absorbers arise within 550 kpc of an $L > 0.25L_{\odot}$ galaxy, so all O vi absorbers could be called galactic at some level (see also Stocke et al. 2006). Nonetheless, the distinction at 10^{17} cm$^{-2}$ is still useful: it represents the transition where an absorber becomes optically thick to hydrogen-ionizing radiation at $\lambda < 912$ Å. The distinction also fits historically defined observational categories: intergalactic absorbers are traced by the Lyα forest, whereas galactic absorbers can be divided into Lyman limit systems (LLSs) with $19 < \log N$(H i) < 19, sub-damped Lyα systems (sub-LLSs) with $19 < \log N$(H i) < 20.3, and genuine damped Lyα systems (DLAs) with $\log N$(H i) > 20.3, which represent structures of progressively higher overdensity.

In order to prepare the compilations, a review of all published interstellar and intergalactic O vi absorption detections is now presented. Readers interested in the new results drawn from the compilations may wish to skip to Section 4.

3.1. Galactic (Milky Way) O vi

The first detections of interstellar O vi absorption were made with the Copernicus satellite, along sight lines through the Galactic disk (Rogerson et al. 1973; York 1974, 1977; Jenkins & Meloy 1974; Jenkins 1978a, 1978b; Cowie et al. 1979; Shelton & Cox 1994). This revealed a network of highly ionized interstellar clouds seen in the form of low-velocity ($|v_{LSR}| \lesssim 100$ km s$^{-1}$) O vi absorption components. A small number of O vi detections were made with the Astro-1 (Davidson 1993) and Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) Space Shuttle missions (Hurwitz et al. 1998; Widmann et al. 1998; Sembach et al. 1999). The study of interstellar O vi absorption flourished following the launch of the Far-Ultraviolet Spectroscopic Explorer (FUSE) satellite in 1999. Many FUSE studies of O vi took the form of surveys over many lines of sight, each targeting different regions of the Galaxy, either the local ISM (LISM; Oegerle et al. 2000; Savage & Lehnert 2006; Welsh & Lallement 2008; Barstow et al. 2010), the Galactic disk (lunarities $|b| < 10^\circ$; Bowen et al. 2008; Lehner et al. 2011), or the Galactic halo ($|b| > 10^\circ$; Savage et al. 2000, 2003; Wakker et al. 2003; Zsargó et al. 2003; Indebetouw & Shull 2004b; Savage & Wakker 2009). Other FUSE studies analyzed the O vi absorption in individual disk and halo directions (Richter et al. 2001a; Nicastro et al. 2002; Sterling et al. 2002; Fox et al. 2003; Howk et al. 2003; Welsh et al. 2004; Williams et al. 2005, 2006, 2007; Yao et al. 2009b), and the small-scale structure in O vi using closely spaced (degree-scale) sight lines (Howk et al. 2002a; Lehner & Howk 2004). Chandra X-ray observations of zero-redshift (interstellar) absorption in the K-shell line of O vi at 22.040 Å have also been reported (Nicastro et al. 2005; Williams et al. 2005; Yao et al. 2009a).

In addition to these low-velocity detections, O vi is also commonly detected in high-velocity clouds (HVCs), defined as absorption features at $|v_{LSR}| > 100$ km s$^{-1}$ (and in practice $|v_{LSR}| \gtrsim 400$ km s$^{-1}$) seen in the spectra of background AGN (Sembach et al. 2000, 2002, 2003; Murphy et al. 2000; Richter et al. 2001b; Tripp et al. 2003; Nicastro et al. 2003; Collins et al. 2003, 2004, 2005, 2007; Fox et al. 2004, 2005, 2006; Ganguly et al. 2005; Keeney et al. 2006) or distant halo stars (Zech et al. 2008). HVCs trace a variety of processes in the extended gaseous halo of the Milky Way, including accretion, outflow, and the stripping of gas from nearby satellites. O vi absorption has also been detected in individual Galactic interstellar objects, such as the Cygnus Loop supernova remnant (Blair et al. 2002, 2009) and the Southern Coalsack dark nebula (Andersson et al. 2004).

3.2. O vi in Nearby Galaxies

O vi absorption is detected in the LMC (Friedman et al. 2000; Blair et al. 2000; Howk et al. 2002b; Danforth et al. 2002; Danforth & Blair 2006; Lehner & Howk 2007; Lehner et al. 2009b; Pathak et al. 2010), the Small Magellanic Cloud (SMC; Hoopes et al. 2002; Danforth et al. 2002), and the Magellanic Bridge (Lehner 2002) and Magellanic Stream (Sembach et al. 2003; Fox et al. 2005, 2010), which trace the interactions between the two Magellanic Clouds and the Milky Way. The typical O vi column densities in the LMC (Howk et al. 2002b; Pathak et al. 2010) are comparable to those in the Milky Way halo; those seen in the SMC (Hoopes et al. 2002) are slightly higher. Strong O vi absorption is detected in the starburst galaxy NGC 1705 (Heckman et al. 2001), the merging galaxy VV 114 (Grimes et al. 2006), the UV-luminous galaxy Haro 11 (Grimes et al. 2007), and in 12 of the 16 low-redshift starburst galaxies studied by Grimes et al. (2009).

3.3. Low-redshift ($z \lesssim 0.5$) Intergalactic O vi

The study of low-redshift intergalactic O vi absorption was enabled by the launch of the Hubble Space Telescope (HST) and the installation of a series of high-resolution ultraviolet spectrographs (GHRS, STIS, and COS). Following the detection of O vi at $z = 0.14232$ toward QSO PG 0953+415 by Tripp et al. (2000), detections and detailed analyses of low-redshift intergalactic O vi absorbers were reported by many groups. Most of these studies focused on individual sight lines (Tripp & Savage 2000; Tripp et al. 2001, 2002, 2006a; Sembach et al. 2009).
3.5. High-redshift (z ≥ 2.0) Intergalactic O vi

Above z ≈ 2.0, the O vi doublet becomes detectable from the ground, where it can be measured using high-resolution spectrographs. However, high-redshift O vi detections are complicated by the possibility of blending with intervening Lyα forest absorbers. The rapidly increasing density of the forest with increasing redshift makes O vi absorption detections in individual systems above z ≈ 3 very challenging, but not impossible (Burles & Tytler 1996; Frank et al. 2010a).

The earliest evidence for the presence of intergalactic O vi absorption at z ≥ 2.0 came from features seen in composite spectra formed by stacking individual frames (Lu & Savage 1993; Davé et al. 1998). Since then, high-z IGM O vi detections have been reported in many individual systems studied at high resolution (Bergeron et al. 2002; Carswell et al. 2002; Simcoe et al. 2004, 2006; Levshakov et al. 2003a, 2004, 2009; Agafonova et al. 2005, 2007; Lopez et al. 2007; Schaye et al. 2007; Gonzalves et al. 2008; Fedchen & Richter 2009), and several high-z O vi surveys exist (Simcoe et al. 2002; Bergeron & Herbert-Fort 2005; Fox et al. 2008a). Furthermore, 1756 O vi doublet candidates (of which 145 fall in the most secure category) have been reported in a Sloan Digital Sky Survey (SDSS) database of 3702 QSOs observed at low resolution (Frank et al. 2010a, 2010b).

A complementary, statistical approach for detecting intergalactic O vi is the pixel optical depth method, where one searches pixel-by-pixel for a Lyα signal and measures whether absorption appears at the corresponding O vi pixel (Schaye et al. 2000; Aracil et al. 2004; Pieri & Haehnelt 2004; Pieri et al. 2006, 2010; Aguirre et al. 2008). This method is increasingly being used on large samples of low-resolution spectra, and allows O vi to be detected out to z > 3 (Pieri et al. 2010).

3.6. High-redshift (z ≥ 2.0) Galactic O vi

O vi detections have been reported in each of the three classes of optically thick (galactic) quasar absorption-line system at z ≥ 2.0: in LLSs (Kirkman & Tytler 1997, 1999; D’Odorico & Petitjean 2001), in sub-DLAs (Simcoe et al. 2002; Fox et al. 2007b), and in DLAs (Fox et al. 2007a; Lehner et al. 2008; Ellison et al. 2010). A composite spectrum of 341 DLAs in the SDSS database shows clear O vi absorption (Rahmani et al. 2010). O vi has also been detected in the host galaxies of high-redshift GRBs (D’Elia et al. 2007, 2010; Fox et al. 2008b), which can be viewed as a subset of DLAs, known as GRB-DLAs, though in these cases there may be a contribution to the O vi from the circumburst region immediately surrounding the GRB (Prochaska et al. 2008).

4. Compilation of Galactic O vi

In Figure 1, the new compilation of galactic O vi absorbers is presented. It includes a total of 447 O vi measurements made at high resolution, covering 24 LISM sight lines (Savage & Lehner 2006), 131 Galactic disk sight lines (Bowen et al. 2008), 91 Galactic halo sight lines (Savage et al. 2003), 84 HVCs (Sembach et al. 2003), 18 SMC sight lines (Hoopes et al. 2002), 70 LMC sight lines (Pathak et al. 2010), 12 starburst galaxies with O vi detections (Grimes et al. 2009), 12 DLAs at z = 2–3 (Fox et al. 2007a), and five GRB-DLAs at z = 2–4 (Fox et al. 2008b). All these environments have log N(H i) ≥ 17, and most have log N(H i) ≥ 20. The galactic compilation is summarized in Table 1, with details of each set of measurements given in the footnotes. All O vi measurements (except for the Galactic disk, where profile fitting was used) were
made using the apparent optical depth (AOD) method (Savage & Sembach 1991), integrating over the observed range of absorption, and were retrieved from tables in the online versions of the papers cited (except the GRB-DLA AOD measurements, which were remade by the author). The AOD method gives accurate measurements of the true column density unless the lines are saturated, in which case the results are lower limits. Saturation is present for all O\textsc{vi} absorbers in the GRB–DLA sample, and for several objects in the starburst galaxy sample.

On the left side of Figure 1 are the LISM O\textsc{vi} measurements, made along short (~40–200 pc) sight lines with a well-known geometry (Savage & Lehner 2006). The O\textsc{vi} in the LISM is thought to arise at the interface between the Local Bubble, the cavity of hot (~10^6 K) gas immediately surrounding the Sun, and the neutral gas beyond (Savage & Lehner 2006; Barstow et al. 2010). This is supported by the observation that the typical O\textsc{vi} column density measured along LISM sight lines is close to the value predicted theoretically in a single conductive interface, N(O\textsc{vi}) \approx 10^{13} \text{ cm}^{-2} (Borkowski et al. 1990; Ginat et al. 2010). The LISM column densities cannot be easily compared to those measured in extended sight lines through other galactic halos, which cover length scales on the order of kpc to tens of kpc. All the extended sight-line samples shown in Figure 1 (i.e., all samples except the LISM and HVCs) have mean O\textsc{vi} columns confined to a narrow range between log N(O\textsc{vi}) = 14.1 and 14.9 (the Galactic disk sight lines studied by Bowen et al. (2008) have lengths of \approx 0.8–10 kpc, and are therefore treated here as extended).

To emphasize the relatively small range in O\textsc{vi} column shown by these diverse galaxies, in Figure 2 the mean log N(O\textsc{vi}) is plotted versus gas-phase metallicity for the extended sight-line samples. Here, the mean O\textsc{vi} column densities through the Milky Way and HVCs have been summed to determine the total O\textsc{vi} column in a (one-sided) sight line through the Milky Way halo (integrated over velocity), allowing a better comparison with the other galactic environments. The main finding of Figure 2 is that the mean column density for galactic O\textsc{vi} is surprisingly constant over two orders of magnitude of metallicity, with the Galactic disk, the Galactic halo, the LMC, the SMC, and starburst galaxies, and DLAs at z = 2–3 all showing (log N(O\textsc{vi})) with 0.4 dex of 14.5. The existence of a characteristic log N(O\textsc{vi}) in galactic environments has been noticed before (H02, Savage et al. 2003). What is new here is the observational finding that the insensitivity of N(O\textsc{vi}) to galaxy metallicity extends down to −1.6 \lesssim [O/H] \lesssim −0.6, to the upper end of the DLA metallicity regime. Below −1.6, (log N(O\textsc{vi})) falls off and is no longer independent of metallicity: the low-metallicity sub-sample of DLAs shows a mean log N(O\textsc{vi}) 0.5 dex lower than the high-metallicity sub-sample (Fox et al. 2007a). If one reduces the mean DLA O\textsc{vi} column by a factor of two (0.3 dex) to correct for the two-sided nature of a DLA–halo sight line (as opposed to the Milky Way, LMC, SMC, and starburst galaxy cases, where the sight line only passes through one side of the halo), then the constancy of O\textsc{vi} (down to [O/H] \approx −1.5) becomes even more striking.

The non-dependence of N(O\textsc{vi}) on metallicity has an important consequence on the total ionized hydrogen column in the O\textsc{vi} absorbers N(H\textsc{i})_{O\textsc{vi}}, which can be written as N(H\textsc{i})_{O\textsc{vi}} = N(O\textsc{vi})/([O/H]f(O\textsc{vi})), and so scales inversely with metallicity. If the ionization fraction f(O\textsc{vi}) is treated as a constant (as is possible if a common origin mechanism applies), then the constant value of N(O\textsc{vi}) implies that the
lower-metallicity galaxies contain larger columns of ionized hydrogen at O VI-bearing temperatures. For example, a typical sight line through a high-metallicity DLA, with \(\langle N(\text{O} \text{VI}) \rangle = 14.79 \) and \(\langle [O/H] \rangle = -1.2 \), contains an average \(N(\text{H} \text{I}) \text{O} \text{VI} \), a factor of \(\approx 17 \) higher than a typical sight line through the Milky Way halo, which has \(\langle N(\text{O} \text{VI}) \rangle = 14.50 \), and an assumed \([O/H] \approx -0.25 \).

4.1. Discussion on Origin of Galactic O VI

Detailed studies of the high ions in the Milky Way (the galaxy with the best-studied gaseous halo) have emphasized that the Galactic halo is a complex environment, with many astrophysical processes potentially at work (Savage et al. 2003; Indebetouw & Shull 2004b; Bowen et al. 2008), and there is no obvious reason for other galactic halos to be any simpler. Therefore, the existence of a characteristic value for galactic \(N(\text{O} \text{VI}) \) is somewhat surprising, and models that can explain it deserve attention. Such a model was suggested by H02, who argued that the insensitivity of \(N(\text{O} \text{VI}) \) to metallicity could be explained if the O VI arises in radiatively cooling regions of initially hot shock-heated plasma that are passing through the coronal regime (see also Furlanetto et al. 2005). In such a “cooling flow,” \(N(\text{O} \text{VI}) = 3 k T v_{\text{cool}}(\text{O}/\text{H})_c Z f(\text{O} \text{VI})/\Lambda, \) where \(v_{\text{cool}} \) is the cooling-flow velocity and \(\Lambda \) is the cooling function (H02). Since \(\Lambda \) is almost linearly proportional to \(Z \), the \(Z \) terms cancel out, elegantly explaining the independence of \(N(\text{O} \text{VI}) \) to metallicity. For \(T = 3 \times 10^5 \) K (where O VI peaks in CIE) and \(f(\text{O} \text{VI}) = 0.22 \), the equation evaluates to \(N(\text{O} \text{VI}) = 3 \times 10^{14} (v_{\text{cool}}/100 \text{ km s}\text{^{-1}}) \), implying a single cooling flow could explain the observed galactic column of \(\langle \log N(\text{O} \text{VI}) \rangle = 14.5 \) if \(v_{\text{cool}} \approx 100 \text{ km s}\text{^{-1}}. \) However, the kinematic complexity of galaxy halos makes such single-zone solutions unlikely. More plausibly, the characteristic value could be explained by a multi-zone cooling-flow scenario, where each galactic sight line intersects a number of cooling regions. If each region contributes an O VI column of \(\approx 10^{13} \text{ cm}\text{^{-2}} \), the amount seen in the nearby LISM directions (Savage & Lehner 2006; Barstow et al. 2010) and predicted by conductive interface models (Borkowski et al. 1990; Gnat et al. 2010), then \(\approx 30 \) regions are required along the kpc to tens of kpc scale sight lines through galactic halos to build up the characteristic column. In this multi-zone explanation, the constancy of \(N(\text{O} \text{VI}) \) would be due not only to a similar O VI column per interface, but also to a similar number of interfaces intersected by each sight line.

The framework of the H02 model allows the cooling flows to take several forms, including turbulent (Begelman & Fabian...
Table 2
Compilation of Intergalactic O VI components \([\log N(\text{H}I) < 17]\)

Sample	Number*	\(\langle z \rangle\)	\(\langle \log N(\text{O} VI)\rangle\)	\(\langle b(\text{O} VI)\rangle\)	Instrument	Reference
Low-						
\(z\) intervening	77	0.21	13.78 ± 0.36	26.2 ± 14.2	STIS	Tripp et al. (2008)
... log \(N > 13.2\) only	(73)	0.21	13.82 ± 0.33	26.8 ± 14.2	STIS	"
Low-						
\(z\) proximate	34	0.30	13.80 ± 0.41	19.4 ± 11.0	STIS	"
... log \(N > 13.2\) only	(32)	0.30	13.85 ± 0.37	19.9 ± 11.1	STIS	"
Intermediate-						
\(z\) intervening\(\dagger\)	18	1.54	13.78 ± 0.35	15.2 ± 3.4	STIS	Reimers et al. (2001, 2006)
Intermediate-						
\(z\) proximate\(\dagger\)	5	1.77	13.78 ± 0.37	16.8 ± 5.1	STIS	"
High-						
\(z\) intervening	146	2.27	13.56 ± 0.37	14.4 ± 6.9	UVES	Berger & Herbert-Fort (2005)
... log \(N > 13.2\) only	(125)	2.28	13.65 ± 0.31	15.1 ± 7.1	UVES	"
High-						
\(z\) proximate	48	2.36	13.45 ± 0.36	14.8 ± 7.8	UVES	Fox et al. (2008a)
... log \(N > 13.2\) only	(33)	2.35	13.64 ± 0.26	17.2 ± 8.2	UVES	"

Notes. “Intervening” and “proximate” refer here to components with velocity offsets from the background QSO of \(>5000\) and \(<5000\) \(\text{km s}^{-1}\), respectively. Quasar-intrinsic absorbers are excluded.

* Sample size: the number of components. Numbers for sub-samples given in parentheses.

\(\dagger\) Mean and standard deviation of logarithmic O VI column density in \(\text{cm}^{-2}\).

\(\ddagger\) Mean and standard deviation of O VI \(b\)-value in \(\text{km s}^{-1}\).

\(\mathbb{R}\) All intermediate-z absorbers have log \(N > 13.2\), so no sub-sample is needed.

Notes. “Intervening” and “proximate” refer here to components with velocity offsets from the background QSO of \(>5000\) and \(<5000\) \(\text{km s}^{-1}\), respectively. Quasar-intrinsic absorbers are excluded.

* Sample size: the number of components. Numbers for sub-samples given in parentheses.

\(\dagger\) Mean and standard deviation of logarithmic O VI column density in \(\text{cm}^{-2}\).

\(\ddagger\) Mean and standard deviation of O VI \(b\)-value in \(\text{km s}^{-1}\).

\(\mathbb{R}\) All intermediate-z absorbers have log \(N > 13.2\), so no sub-sample is needed.

Notes. “Intervening” and “proximate” refer here to components with velocity offsets from the background QSO of \(>5000\) and \(<5000\) \(\text{km s}^{-1}\), respectively. Quasar-intrinsic absorbers are excluded.

* Sample size: the number of components. Numbers for sub-samples given in parentheses.

\(\dagger\) Mean and standard deviation of logarithmic O VI column density in \(\text{cm}^{-2}\).

\(\ddagger\) Mean and standard deviation of O VI \(b\)-value in \(\text{km s}^{-1}\).

\(\mathbb{R}\) All intermediate-z absorbers have log \(N > 13.2\), so no sub-sample is needed.

Notes. “Intervening” and “proximate” refer here to components with velocity offsets from the background QSO of \(>5000\) and \(<5000\) \(\text{km s}^{-1}\), respectively. Quasar-intrinsic absorbers are excluded.

* Sample size: the number of components. Numbers for sub-samples given in parentheses.

\(\dagger\) Mean and standard deviation of logarithmic O VI column density in \(\text{cm}^{-2}\).

\(\ddagger\) Mean and standard deviation of O VI \(b\)-value in \(\text{km s}^{-1}\).

\(\mathbb{R}\) All intermediate-z absorbers have log \(N > 13.2\), so no sub-sample is needed.

Notes. “Intervening” and “proximate” refer here to components with velocity offsets from the background QSO of \(>5000\) and \(<5000\) \(\text{km s}^{-1}\), respectively. Quasar-intrinsic absorbers are excluded.

* Sample size: the number of components. Numbers for sub-samples given in parentheses.

\(\dagger\) Mean and standard deviation of logarithmic O VI column density in \(\text{cm}^{-2}\).

\(\ddagger\) Mean and standard deviation of O VI \(b\)-value in \(\text{km s}^{-1}\).

\(\mathbb{R}\) All intermediate-z absorbers have log \(N > 13.2\), so no sub-sample is needed.
Figure 3. Column density in intergalactic O\textsc{vi} components as a function of redshift, using results from line-profile fitting. Shown are low-z data from T08, intermediate-z data from R01 and R06, and high-z data from BH05 and F08. Proximate absorbers (within 5000 km s\(^{-1}\) of the QSO redshift) are shown with open symbols. Red symbols with error bars show the mean and standard deviation of log N(O\textsc{vi}) and z in each sample. Approximate detection limits for each sample are shown with red dotted lines. (A color version of this figure is available in the online journal.)

Figure 4. Distribution of column density in intervening O\textsc{vi} components at low-z (T08), intermediate-z (R01, R06), and high-z (BH05) using a bin size of 0.15 dex. The mean value of each distribution is shown with a color-coded tick mark. Dotted lines show the approximate detection limit of each sample. (A color version of this figure is available in the online journal.)

correlation coefficient of \(-0.17\) was found at high significance, indicating that the evolution in log N is weak but real. The same correlation coefficient \((\sim -0.17)\) was found when using the entire (intervening+proximate) sample. The weak evolution in the mean O\textsc{vi} column density is highlighted in Figure 4, which compares the distribution of log N of intervening O\textsc{vi} components in the three redshift bins.

It is worth considering the potential impact of systematic effects on the weak evolution of N(O\textsc{vi}), particularly because the intergalactic compilation is formed from several heterogeneous data sets. Furthermore, the sensitivity limit of a given spectrum (the limiting O\textsc{vi} column density) is not straightforward to describe by a single number, often varying from pixel to pixel, and so the limits given on Figures 3 and 4 should be considered as approximate, being set close to the column density of the weakest component detected. At \(z > 2\), the increasing density of the Ly\(\alpha\) forest leads to an increasing probability of a given O\textsc{vi} component being blended, which effectively reduces the sensitivity to O\textsc{vi}. When considering these effects, the O\textsc{vi} column density distributions at both low redshift (Danforth & Shull 2008) and high redshift (Bergeron & Herbert-Fort 2005) can be described by power laws. In this sense, the observation of weak evolution in the mean log N(O\textsc{vi}) does not indicate the existence of an underlying characteristic value of intergalactic N(O\textsc{vi}), as is the case for galactic O\textsc{vi} absorbers, but rather indicates that only part of the intergalactic distribution is observable. Nonetheless, Figure 4 shows that in the range log N > 13.5, where all samples are expected to be complete, the distributions of N(O\textsc{vi}) in the three redshift bins show similar behavior, overlapping up to log N \(\approx 14.5\). Therefore, accounting for sensitivity differences between the data sets in the compilation reinforces the conclusion that the O\textsc{vi} populations are not strongly evolving.

If, for the low-redshift intergalactic sample, results are taken from Danforth & Shull (2008) instead of T08, one finds \(\langle N(O\textsc{vi}) \rangle = 13.66 \pm 0.45\) instead of 13.78 \(\pm 0.36\), strengthening the result that the mean log N of intergalactic O\textsc{vi} evolves slowly with redshift. Since Danforth & Shull present system-level (integrated) rather than component-level column densities, this indicates that the weak evolution of log N(O\textsc{vi}) remains true whether one looks at components or systems.

The other key result from Figure 3 is that at both low and high redshifts, there is no difference in the mean O\textsc{vi} component column density between the intervening and proximate samples (so long as truly intrinsic absorbers are excluded; Section 3.3). At low redshift, the mean log N(O\textsc{vi}) is 13.78 \(\pm 0.36\) for
Figure 5. Line width (\(b\)-value) vs. redshift for intergalactic O vi components, using low-\(z\) data from T08, intermediate-\(z\) data from R01 and R06, and high-\(z\) data from BH05 and F08. Open symbols show proximate absorbers. The \(b\)-value distributions for the low-\(z\) and high-\(z\) intervening samples (the solid circles and solid triangles) are shown on the right-hand side. Dotted tick marks show the mean \(b\)-value of each distribution.

(A color version of this figure is available in the online journal.)

interacting components and 13.80 ± 0.41 for proximate components (T08). At high redshift, the mean log \(N(O\,vi)\) is 13.56 ± 0.37 for intervening components (BH05) and 13.45 ± 0.36 for proximate components (F08). Note that the incidence \(dN/dz\) of O vi components does increase with proximity to the quasar (within \(\approx 2000\) km s\(^{-1}\)), at both low-\(z\) (T08) and high-\(z\) (F08); our point here is that \(N(O\,vi)\) does not. This finding is important because, at both low and high redshift, the intervening and proximate samples are measured in the same set of spectra, so the non-dependence of \(N(O\,vi)\) on proximity cannot be simply a sensitivity effect.

Despite the weak evolution in the mean \(N(O\,vi)\), there is an important difference between the low-\(z\) and high-\(z\) populations, in that the IGM O vi components are, on average, almost twice as broad at low-\(z\) than at high-\(z\). This is shown in Figure 5, where \(b(O\,vi)\) is plotted against redshift for the intergalactic compilation, with the low-\(z\) and high-\(z\) distributions compared on the right. At low redshift, the mean and standard deviation of \(b(O\,vi)\) for intervening components is 26 ± 14 km s\(^{-1}\) (T08). At high redshift, the corresponding number is 14 ± 7 km s\(^{-1}\) (BH05). This difference is not due to resolution, since the instrumental line widths of each sample are much smaller than the mean O vi line widths: the instrumental FWHMs of 7 km s\(^{-1}\) and 6.6 km s\(^{-1}\) in the T08 and BH05 samples correspond to \(b\)-values of 4.2 km s\(^{-1}\) and 4.0 km s\(^{-1}\), respectively.

5.1. Discussion on Origin of Intergalactic O vi

The findings that \(N(O\,vi)\) is insensitive to both redshift and quasar proximity are consistent; they show that intergalactic O vi absorbers are photoionized by the EGB radiation, as is often argued (e.g., Levshakov et al. 2003b; Thom & Chen 2008b; Oppenheimer & Davé 2009, BH05), because the production of O vi by EGB photoionization (at any redshift) requires an ionization parameter \(U \equiv n_e/n_H\) in the range \(\approx 0.1-1\) (see Section 2). Since \(n_e\) rises monotonically with \(z\) (Haardt & Madau 1996, 2001), the non-variation of the mean \(N(O\,vi)\) between \(z = 0.2\) and \(z = 2.3\) can only be explained by photoionization if \(n_H\) tracks \(n_e\), meaning that the average gas density in the O vi absorbers would have to be \(\approx 20\) times higher at \(z = 2.3\) than at \(z = 0.2\). Since \(n_H\) scales as \((1+z)^2\) in an expanding universe, such a scaling may be physically reasonable (even expected). In turn, since the O vi column density in any uniform-density absorber can be written as \(N(O\,vi) = n_H d(O/H)(O\,vi) = n_e d(O/H)(O\,vi)/U\), where \(d\) is the line-of-sight size of the cloud, the product \(d(O/H)(O\,vi)\) would have to decrease with redshift in exact proportion to the increase in \(n_e\), in order for EGB photoionization to work, i.e., for it to explain the non-evolution of \(N(O\,vi)\). This would require the high-\(z\) absorbers to have smaller sizes, lower metallicities, or lower O vi ionization fractions (or some combination of these three) than their low-\(z\) counterparts.

On the other hand, the H02 model, in which both galactic and intergalactic O vi absorbers are formed in radiatively cooling regions of initially hot shock-heated plasma passing through the coronal regime, offers a unified explanation for the non-evolution of \(N(O\,vi)\) without any need for tunable parameters or for photoionization. Explaining the mean intergalactic log \(N(O\,vi)\) 13.7 by the cooling-flow model would require a single region with \(v_{cool}(IGM) \approx 20\) km s\(^{-1}\), or a multi-zone arrangement such as \(\approx 5\) interfaces each contributing \(\approx 10^{13}\) cm\(^{-2}\). The idea that the plasma traced by intergalactic O vi is cooling rather than photoionized is further supported by the following two model-independent kinematic observations.

1. The median line width (\(b\)-value) is higher for O vi than for other (photoionized) metal lines observed in the IGM. In their high-\(z\) intervening samples, BH05 and Simcoe et al. (2002) report a median \(b(O\,vi)\) of 13 km s\(^{-1}\) and 16 km s\(^{-1}\), respectively, whereas significantly smaller median \(b\)-values are seen for C iv (\((b) \approx 9\) km s\(^{-1}\); D’Odorico et al. 2010) and N v (\((b) \approx 6\) km s\(^{-1}\); Fechner & Richter 2009). At low-\(z\), the IGM sample of Danforth & Shull (2008) has a median \(b(O\,vi)\) of 27 km s\(^{-1}\) (the T08 sample has 24 km s\(^{-1}\)), again larger than the median \(b\)-values for N v (17 km s\(^{-1}\)) and C iv (19 km s\(^{-1}\)) observed in the same redshift range (Danforth & Shull 2008).

2. Significant velocity-centroid offsets (up to 20 km s\(^{-1}\)) exist between the O vi, H i, and C iv components in a large fraction of intergalactic O vi absorbers observed at low (T08), intermediate (R01) and high (F08, Simcoe et al. 2002; Fechner & Richter 2009) redshifts. For the T08 sample, only 28 of 77 intervening O vi components (36%) are aligned with H i components.

For (the majority of) IGM absorbers with \(b\)-value differences and/or velocity-centroid offsets between O vi and other species, multi-phase solutions are required, and single-phase photoionization models cannot be used; their use will give physically irrelevant results. Even in (the minority of) IGM absorbers with aligned O vi and H i components, there is no guarantee of co-spatiality of the two ions; simulations show cases of coincident absorption arising from spatially distinct regions of gas (Oppenheimer & Davé 2009). Therefore, the observation that O vi and H i components are occasionally aligned should not be taken as proof of single-phase photoionization. Such alignments can easily be explained by interface theories (e.g., Börhringer & Hartquist 1987). Finally, the high-\(z\) mean O vi \(b\)-value of 14 km s\(^{-1}\) implies a plasma temperature log \(T < 5.27\), close to the temperature at which O vi peaks in CIE, and easily explainable by non-equilibrium CI models (e.g., Gnat & Sterngberg 2007), which indicate that O vi can exist at temperatures below 10\(^5\) K if the metallicity is high enough.
6. SUMMARY AND CONCLUSIONS

An extensive heterogeneous compilation of 775 O\textsc{vi} absorbers observed at high-resolution (instrumental FWHM \(\lesssim 20\) km s\(^{-1}\)) has been presented, covering the LISM, the disk and halo of the Milky Way, HVCs, the SMC, the LMC, starburst galaxies, the IGM from \(z = 0\) to \(z \approx 2.5\), DLAs at \(z = 2\)–\(3\), and GRB host galaxies at \(z = 2\)–\(4\), using results drawn from the literature. This compilation is divided into a galactic sample (defined by log \(N(H)\) \(> 17\) and usually log \(N(H) \gtrsim 20\)) consisting of 447 O\textsc{vi} measurements in galaxies with metallicities from \(\approx 0.1\) solar to solar, and an intergalactic sample (log \(N(H) < 17\)) consisting of 328 O\textsc{vi} components covering redshifts from \(z = 0\) to \(z \approx 2.5\). The key observational findings are as follows.

1. For O\textsc{vi} measured in extended sight lines through galactic halos, the mean value of log \(N(O\textsc{vi})\) is surprisingly insensitive to metallicity (and mass), with the Milky Way halo, the LMC, the SMC, starburst galaxies, and DLAs at \(z = 2\)–\(3\) all showing a mean log \(N(O\textsc{vi})\) within 0.4 dex of 14.5, even though they span \(\approx 2\) dex in \([O/H]\). While this characteristic value has been noticed before in the local universe, the new result is that it applies down to the DLA regime at \(-1.6 \lesssim [O/H] \lesssim -0.6\), though there is a suggestion from the lowest-metallicity DLAs that \((N(O\textsc{vi})/N(H))\) falls off at \([O/H] < -1.6\).

2. For intergalactic O\textsc{vi}, there is surprisingly little evolution in the mean O\textsc{vi} component column density over cosmic time. Over the 8.2 Gyr interval between \(z = 2.28\) and \(z = 0.21\), the mean log \(N\) of intervening O\textsc{vi} components with log \(N(O\textsc{vi}) > 13.2\) (corresponding to rest equivalent widths \(> 20\) m\(\AA\)) increases by only 0.17 dex, a factor of 1.5. The distributions of \(N(O\textsc{vi})\) at log \(N \gtrsim 13.5\), where the samples are complete, are shown to be insensitive to redshift. Furthermore, at both low and high redshifts, there is no difference in the mean log \(N(O\textsc{vi})\) between the intervening and proximate samples (so long as truly intrinsic absorbers are excluded). The insensitivity of log \(N(O\textsc{vi})\) to redshift and quasar proximity indicates an insensitivity to the strength of the ionizing radiation field, which (using the EGB) is a factor of \(\approx 20\) higher at \(z = 2.28\) than at \(z = 0.21\).

3. Intergalactic O\textsc{vi} components are, on average, almost twice as broad at low-\(z\) than at high-\(z\), with the mean \(b(O\textsc{vi})\) rising from 14 km s\(^{-1}\) at \((z) = 2.28\) to 26 km s\(^{-1}\) at \((z) = 0.21\).

The observation of a “characteristic” O\textsc{vi} column density in many diverse galactic halos covering a range of mass and metallicity is suggestive of a common origin or regulation mechanism. One such potential origin is the cooling-flow model of H02. In this model both galactic and intergalactic O\textsc{vi} absorbers trace regions of initially hot shock-heated plasma that are now radiatively cooling through coronal temperatures. The key advantage of this model is that it naturally explains the insensitivity of \(N(O\textsc{vi})\) to metallicity and redshift, though it is unclear how it could explain the evolution in IGM \(b\)-values (result (3)). The general framework of the cooling-flow theory allows the regions to take several forms, including conductive, turbulent, or shocked interfaces between warm (\(\sim 10^7\) K) clouds and hot (\(\sim 10^8\) K) plasma. However, many such regions would have to be intersected by a typical galaxy–halo sight line to build up the characteristic galactic \(N(O\textsc{vi})\), which is \(\approx 30\) times larger the column predicted in a single conductive interface.

The idea that much of the galactic O\textsc{vi} arises in coronal-temperature boundary layers is well known and well supported (see references in Section 3.1). The idea that intergalactic O\textsc{vi} absorbers are also produced in such boundary layers, instead of by photoionization, is more controversial. The newly demonstrated insensitivity of the mean intergalactic \(N(O\textsc{vi})\) to \(z\) can only be explained by photoionization if the gas density tracks the ionizing photon density, which would require the high-\(z\) O\textsc{vi} absorbers to have smaller sizes, lower metallicities, and/or lower ionization fractions at high-\(z\) than the low-\(z\) absorbers. While this is plausible (even expected), the kinematics of most intergalactic O\textsc{vi} absorbers observed at low and high redshift (specifically the \(b\)-value differences and velocity-centroid offsets observed between O\textsc{vi}, C\textsc{iv}, and H\textsc{i}) rule out single-phase photoionization, and require multi-phase models such as the cooling-flow scenario.

Intergalactic O\textsc{vi} absorbers are often discussed in the context of the elusive warm-hot IGM (WHIM), predicted by cosmological simulations to contain a substantial fraction of the present-day baryons (Cen & Ostriker 1999, 2006; Cen et al. 2001; Davé et al. 2001; Fang & Bryan 2001; Kang et al. 2005; Cen & Fang 2006). The results presented here support the view that although O\textsc{vi} absorbers do not directly trace the (hotter) bulk of the WHIM (Oppenheimer & Davé 2009; Tepper-Garcia et al. 2010; Smith et al. 2010), they do trace the boundary layers, where the WHIM interfaces with cooler, metal-enriched regions.

The author acknowledges valuable conversations with Blair Savage, Benjamin Oppenheimer, Linda Smith, and Bart Wakker, and is grateful to the anonymous referee for an insightful report. He thanks Jacqueline Bergeron for providing her O\textsc{vi} sample in electronic form. He appreciates the support of an ESO Fellowship, and a Marie Curie Intra-European Fellowship (contract MEIF-CT-2005-023720) awarded to investigate O\textsc{vi}. This paper has made considerable use of the NASA Astrophysics Data System Abstract Service.

REFERENCES

Agafonova, I. I., Centurió n, M., Levshakov, S. A., & Molaro, P. 2005, A&A, 441, 9
Agafonova, I. I., Levshakov, S. A., Reimers, D., Fechner, C., Tytler, D., Simeoe, R. A., & Songaila, A. 2007, A&A, 461, 893
Aguirre, A., Dow-Hygeland, C., Schaye, J., & Theuns, T. 2008, ApJ, 689, 851
Andersson, B.-G., Knauth, D. C., Snowden, S. L., Shelton, R. L., & Wannier, P. G. 2004, ApJ, 606, 341
Aracil, B., Petitjean, P., Pichon, C., & Bergeron, J. 2004, A&A, 419, 811
Barstow, M. A., Boyce, D. D., Welsh, B. Y., Lallement, R., Barstow, J. K., Forbes, A. E., & Prevot, S. 2010, ApJ, 723, 1762
Begelman, M. C., & Fabian, A. C. 1990, MNRAS, 244, 26
Bergeron, J., Aracil, B., Petitjean, P., & Pichon, C. 2002, A&A, 396, L11
Bergeron, J., & Herbert-Fort, S. 2005, in Proc. IAU Coll. 199, Probing Galaxies through Quasar Absorption Lines, ed. P. R. Williams, C.-G. Shu, & B. Ménard (Cambridge: Cambridge Univ. Press), 265 (BH05)
Bergeron, J., et al. 1994, ApJ, 436, 33
Blair, W. P., Sankrit, R., Torres, S. I., Chayer, P., & Danforth, C. W. 2009, ApJ, 692, 335
Blair, W. P., Sankrit, R., & Tulin, S. 2002, ApJS, 140, 367
Blair, W. P., et al. 2000, ApJ, 538, L61
Böhringer, H., & Hartquist, T. W. 1987, MNRAS, 228, 915
Borkowski, K. J., Balbus, S. A., & Fristrom, C. C. 1990, ApJ, 355, 501
Bowen, D. V., et al. 2008, ApJS, 176, 59
Bregman, J. N., Dupke, R. A., & Miller, E. D. 2004, ApJ, 614, 31
Bregman, J. N., & Harrington, J. P. 1986, ApJ, 309, 833
Bryans, P., Badnell, N. R., Gorczyca, T. W., Laming, J. M., Mitthumsiri, W., & Savin, D. W. 2006, ApJS, 167, 343
Burles, S., & Tytler, D. 1996, ApJ, 460, 584
Carswell, B., Schaye, J., & Kim, T.-S. 2002, ApJ, 578, 43
Cen, R., & Fang, T. 2006, ApJ, 650, 573
Cen, R., & Ostriker, J. P. 1999, ApJ, 514, 1

9
