Residual Belief Propagation for Topic Modeling

Jia Zeng, Member, IEEE, Xiao-Qin Cao and Zhi-Qiang Liu

Abstract—Fast convergence speed is a desired property for training latent Dirichlet allocation (LDA), especially in online and parallel topic modeling for massive data sets. This paper presents a novel residual belief propagation (RBP) algorithm to accelerate the convergence speed for training LDA. The proposed RBP uses an informed scheduling scheme for asynchronous message passing, which passes fast-convergent messages with a higher priority to influence those slow-convergent messages at each learning iteration. Extensive empirical studies confirm that RBP significantly reduces the training time until convergence while achieves a much lower predictive perplexity than other state-of-the-art training algorithms for LDA, including variational Bayes (VB), collapsed Gibbs sampling (GS), loopy belief propagation (BP), and residual VB (RVB).

Index Terms—Latent Dirichlet allocation, topic models, residual belief propagation, Gibbs sampling, variational Bayes.

1 INTRODUCTION

Probabilistic topic modeling [1] is an important problem in machine learning and data mining. As one of the simplest topic models, latent Dirichlet allocation (LDA) [2] requires multiple iterations of training until convergence. Recent studies find that the convergence speed determines the efficiency of topic modeling for massive data sets. For example, online topic modeling algorithms [3] partition the entire data sets into mini-batches, and optimize sequentially each mini-batch until convergence. Another example lies in parallel topic modeling algorithms [4], which optimize the distributed data sets until convergence and then synchronize the global topic distributions. Therefore, faster convergence speed leads to faster online and parallel topic modeling algorithms for massive data sets.

Training algorithms for LDA can be broadly categorized into variational Bayes (VB) [2], collapsed Gibbs sampling (GS) [5] and loopy belief propagation (BP) [6]. According to a recent comparison [6], VB requires around 100 iterations, GS takes around 300 iterations and synchronous BP (sBP) needs around 170 iterations to achieve convergence in terms of training perplexity. Although VB uses the minimal number of iterations to achieve convergence, its digamma function computation is so time-consuming as to slow down the convergence speed [6], [7]. GS is a stochastic Markov chain Monte Carlo (MCMC) process, which practically takes more iterations for convergence. In contrast, sBP is a deterministic scheme with smaller number of iterations until convergence than GS. Moreover, sBP does not involve complicated digamma functions, and thus gains faster convergence speed over VB and GS.

In this paper, we further adopt a residual belief propagation (RBP) [8] algorithm to accelerate the convergence speed of topic modeling. Compared with sBP, RBP uses an informed scheduling strategy for asynchronous message passing, in which it efficiently influences those slow-convergent messages by passing fast-convergent messages with a higher priority. Through dynamically scheduling the order of message passing based on the residuals of two messages resulted from successive iterations, RBP in theory converges significantly faster and more often than sBP [8]. The novelty of this paper is to introduce RBP into the probabilistic topic modeling community, which significantly speeds up the convergence for training LDA. Although jumping from sBP to RBP is a simple and straightforward idea, extensive experimental results demonstrate that RBP in most cases converges fastest while reaches the lowest predictive perplexity when compared with other state-of-the-art training algorithms, including VB [2], GS [5], sBP [6], and residual VB (RVB) [9], [10]. Because of its ease of use and fastest convergence speed, RBP is a strong candidate for becoming the standard LDA training algorithm, which may inspire faster online and parallel topic modeling algorithms in the near future.

2 RELATED WORK

Recently, LDA [2] has seen a rapid development for solving various topic modeling problems, because of its elegant three-layer graphical representation as well as two efficient approximate inference methods like VB [2] and GS [5]. Both VB and GS have been widely used to learn LDA-based topic models until our recent work [6] reveals that there is yet another learning algorithm for LDA based on BP. Extensive experiments show that the synchronous BP (sBP) is faster and more accurate than both VB and GS, and has the potential to become a generic learning scheme for LDA-based topic models. The basic idea of sBP is inspired by the factor graph [11] representation for LDA within the Markov random field (MRF) framework. Similar BP ideas have
been also proposed within the approximate mean-field framework \cite{12} as the zero-order approximation of collapsed VB (CVB0) algorithms \cite{7}.

VB, GS and sBP can be explained within the unified message passing framework. All these algorithms infer the marginal distribution of topic label for the word index called \emph{message}, and estimate parameters by the iterative expectation-maximization (EM) algorithm according to the maximum-likelihood criterion \cite{13}. They mainly differ in the E-step of EM algorithm for message update equations. VB is a synchronous variational message passing algorithm \cite{14}, which updates variational messages by complicated digamma functions, introducing biases and slowing down the training speed \cite{6}, \cite{7}. GS updates messages by discrete topic labels randomly sampled from the message in the previous iteration. Obviously, the sampling process does not keep all uncertainties encoded in the previous message. Also, such a stochastic message updating often requires more iterations until convergence. By contrast, sBP directly uses the previous residuals in a descending order of \emph{message} updating often requires more iterations until convergence. By contrast, sBP directly uses the previous residuals in a descending order of

By contrast, sBP directly uses the previous residuals in a descending order of

\begin{equation}
\mu_{w,d}(k) \propto \frac{\alpha}{\sum_k [\mu_{w,d}(k) + \alpha]} \times \frac{\beta}{\sum_w [\mu_{w,d}(k) + \beta]},
\end{equation}

where

\begin{equation}
\mu_{w,w}(d) = \sum_{-w} x_{w,d} \mu_{w,d}(k),
\end{equation}

\begin{equation}
\mu_{w,d}(k) = \sum_{-d} x_{w,d} \mu_{w,d}(k),
\end{equation}

where $-\mathbf{w}$ and $-\mathbf{d}$ denote all word indices except \mathbf{w} and all document indices except \mathbf{d}. Based on messages, the multinomial parameters θ and ϕ can be estimated as

\begin{equation}
\theta_d(k) = \frac{\mu_{d,k} + \alpha}{\sum_k [\mu_{d,k} + \alpha]},
\end{equation}

\begin{equation}
\phi_{w}(k) = \frac{\mu_{w,k} + \beta}{\sum_w [\mu_{w,k} + \beta]}.
\end{equation}

In sBP, the synchronous schedule updates all messages simultaneously at iteration t based on the messages at previous iteration $t-1$. Although in practice this schedule often converges, it often uses the more number of training iterations until convergence than VB \cite{6}.

The asynchronous schedule updates the message of each variable in a certain order, which is in turn used to update other neighboring messages immediately at each iteration t. The basic idea of sBP \cite{8} is to select the best updating order based on the messages’ residuals $r_{w,d}$, which are defined as the p-norm of difference between two message vectors at successive iterations,

\begin{equation}
r_{w,d} = x_{w,d} \| \mu_{w,d}^t - \mu_{w,d}^{t-1} \|_p,
\end{equation}

where $x_{w,d}$ is the number of word counts. Here, we choose the L_1 norm with $p = 1$. If we sequentially update message in a descending order of $r_{w,d}$ at each iteration, the RBP algorithm theoretically converges faster or more often to a fixed point than sBP. Because we extend sBP algorithms to classical RBP algorithms, the theoretical proof of RBP’s fast convergence rate remains the same as that in \cite{8}.

3 RESIDUAL BELIEF PROPAGATION

In this section, we first introduce the conventional sBP algorithm for training LDA \cite{6}. From the Markov random field (MRF) perspective, the probabilistic topic modeling task can be interpreted as a labeling problem. We assign a set of thematic topic labels, $z = \{z_{w,d}^k\}$, to explain the nonzero elements in the document-word matrix, $x = \{x_{w,d}\}$, where $1 \leq w \leq W$ and $1 \leq d \leq D$ are the word index in vocabulary and the document index in corpus. The notation $1 \leq k \leq K$ is the topic index. The nonzero element $x_{w,d} \neq 0$ denotes the number of word counts at the index $\{w,d\}$. The topic label satisfies $\sum_k z_{w,d}^k = 1$, where $z_{w,d}^k = \{0,1\}$. To maximize the joint probability $p(x,z|\alpha, \beta)$ of LDA, the sBP algorithm computes the conditional marginal probability $p(z_{w,d}^k = 1, x_{w,d}, z_{w,d}^k, x_{w,d}^k)$, called the message, $\mu(z_{w,d}^k = 1) = \mu_{w,d}(k)$, which can be normalized using a local computation, i.e., $\sum_{k=1}^K \mu_{w,d}(k) = 1.0 \leq \mu_{w,d}(k) \leq 1$. The message is proportional to the product of its neighboring messages,

\begin{equation}
\mu_{w,d}(k) \propto \frac{\alpha}{\sum_k [\mu_{w,d}(k) + \alpha]} \times \frac{\beta}{\sum_w [\mu_{w,d}(k) + \beta]},
\end{equation}

where

\begin{equation}
\mu_{w,d}(k) = \sum_{-w} x_{w,d} \mu_{w,d}(k),
\end{equation}

\begin{equation}
\mu_{w,d}(k) = \sum_{-d} x_{w,d} \mu_{w,d}(k),
\end{equation}

where $-\mathbf{w}$ and $-\mathbf{d}$ denote all word indices except \mathbf{w} and all document indices except \mathbf{d}. Based on messages, the multinomial parameters θ and ϕ can be estimated as

\begin{equation}
\theta_d(k) = \frac{\mu_{d,k} + \alpha}{\sum_k [\mu_{d,k} + \alpha]},
\end{equation}

\begin{equation}
\phi_{w}(k) = \frac{\mu_{w,k} + \beta}{\sum_w [\mu_{w,k} + \beta]}.
\end{equation}

In sBP, the synchronous schedule updates all messages simultaneously at iteration t based on the messages at previous iteration $t-1$. Although in practice this schedule often converges, it often uses the more number of training iterations until convergence than VB \cite{6}.

The asynchronous schedule updates the message of each variable in a certain order, which is in turn used to update other neighboring messages immediately at each iteration t. The basic idea of RBP \cite{8} is to select the best updating order based on the messages’ residuals $r_{w,d}$, which are defined as the p-norm of difference between two message vectors at successive iterations,

\begin{equation}
r_{w,d} = x_{w,d} \| \mu_{w,d}^t - \mu_{w,d}^{t-1} \|_p,
\end{equation}

where $x_{w,d}$ is the number of word counts. Here, we choose the L_1 norm with $p = 1$. If we sequentially update message in a descending order of $r_{w,d}$ at each iteration, the RBP algorithm theoretically converges faster or more often to a fixed point than sBP. Because we extend sBP algorithms to classical RBP algorithms, the theoretical proof of RBP’s fast convergence rate remains the same as that in \cite{8}.
messages with a higher priority in the order W_t^{t+1}. Because the asynchronous message passing influences the current message updating by the previous message updating, passing fast-convergent messages will speed up the convergence of those slow-convergent messages.

4 Experimental Results

We carry out experiments on six publicly available data sets: 1) 20 newsgroups (NG20), 2) BLOG, 3) CORA, 4) MEDLINE, 5) NIPS, and 6) WEBKB. Table 1 summarizes the statistics of six data sets, where D is the total number of documents in the corpus, W is the number of words in the vocabulary, N_d is the average number of word tokens per document, and W_d is the average number of word indices per document. All subsequent figures show results on six data sets in the above order. We compare RBP with three state-of-the-art approximate inference methods for LDA including VB [2], GS [5], and sBP [6] under the same fixed hyperparameters $\alpha = \beta = 0.01$. We use MATLAB C/C++ MEX-implcitations for all these algorithms [15], and carry out the experiments on a common PC with CPU 2.4GHz and RAM 4G.

Fig. 2 shows the training perplexity [7] at every 10 iterations in 1000 iterations when $K = 10$ for each data set. All algorithms converge to a fixed point of training perplexity within 1000 iterations. Except the NIPS set, VB always converges at the highest training perplexity. In addition, GS converges at a higher perplexity than both sBP and RBP. While RBP converge at almost the same training perplexity as sBP, it always reaches the same perplexity value faster than sBP. Generally, the training algorithm converges when the training perplexity difference at two consecutive iterations is below a threshold. In this paper, we set the convergence threshold to 1 because the training perplexity decreases very little after this threshold is satisfied in Fig. 2.

Fig. 3 illustrates the number training iterations until convergence on each data set for different topics $K \in \{10, 20, 30, 40, 50\}$. The number of iterations until convergence seems insensitive to the number of topics. On the BLOG, CORA and WEBKB sets, VB uses the minimum number iterations until convergence, consistent with the previous results in [6]. For all data sets, GS consumes the maximum number of iterations until convergence. Unlike the deterministic message updating

Fig. 1. The RBP algorithm for LDA.

Table 1

Statistics of six document data sets.

Data set	D	W	N_d	W_d
NG20	7505	61188	239	129
BLOG	5177	33574	217	149
CORA	2410	2961	57	43
MEDLINE	2317	8918	104	66
NIPS	1740	13649	1323	536
WEBKB	7061	2785	50	29

In practice, the computational cost of sorting [3] is very high because we need to sort all non-zero residuals r_w,d in the document-word matrix at each learning iteration. This scheduling cost is expensive in case of large-scale data sets. Alternatively, we may accumulate residuals based on either document or vocabulary indices,

$$r_d = \sum_w r_w,d,$$

(5)

$$r_w = \sum_d r_w,d.$$

(6)

These residuals can be computed during message passing process at a negligible computational cost. For large-scale data sets, we advocate (6) because the vocabulary size is often a fixed number W independent of the number of documents D. So, initially sorting r_w requires at most a computational complexity of $O(W \log W)$ using the standard quick sort algorithm. If the successive residuals are in almost sorted order, only a few swaps will restore the sorted order by the standard insertion sort algorithm, thereby saving time. In our experiments (not shown in this paper), RBP based on (6) uses little computational cost to sort r_w while retains almost the same convergence rate as that of sorting (4). We see that Eq. (5) is also useful for small-scale data sets, because in this case $D < W$ as shown in Table 1.

Fig. 1 summarizes the proposed RBP algorithm based on (6), which will be used in the following experiments. First, we initialize messages randomly and normalize them locally. Second, we start a random order of $w \in W^1$ and accumulate residuals r_w^{t+1} during message updating. At the end of each learning iteration t, we sort r_w^{t+1} in the descending order to refine the updating order $w \in W_t^{t+1}$. Intuitively, residuals reflect the convergence speed of message updating. The larger residuals correspond to the faster-convergent messages. In the successive learning iterations, RBP always start passing fast-convergent
Fig. 2. Training perplexity as a function of number of iterations when $K = 10$.

Fig. 3. Number of training iterations until convergence as a function of number of topics.

Fig. 4. Training time until convergence as a function of number of topics.

Fig. 5. Predictive perplexity for ten-fold cross-validation when $K = 50$.

in VB, sBP and RBP, GS uses the stochastic message updating scheme accounting for the largest number of iterations until convergence. Although sBP costs significantly less number of iterations until convergence than GS, it still uses much more number of iterations than VB. By contrast, through the informed dynamic scheduling for asynchronous message passing, RBP on average converges more rapidly than sBP for all data sets. In particular, on the NG20, MEDLINE and NIPS sets, RBP on average uses a comparable or even less number of iterations than VB until convergence. Fig. 4 shows the training time in seconds until convergence on each data set for different topics $K \in \{10, 20, 30, 40, 50\}$. Surprisingly, while VB usually uses the minimum number iterations until convergence, it often consumes the longest training time for these iterations. The major reason may be attributed to the time-consuming digamma functions in VB, which takes at least triple more time for each iteration than GS and sBP. If VB removes the digamma functions, it runs as fast as sBP. Because RBP uses significantly less number of iterations until convergence than GS and sBP, it consumes the least training time until convergence for all data sets in Fig. 4. We also examine the predictive perplexity of all algorithms until convergence based on a ten-fold cross-validation. The predictive perplexity for the unseen test set is computed
as that in [7]. Fig. 5 shows the box plot of predictive perplexity for ten-fold cross-validation when \(K = 50 \). The plot produces a separate box for ten predictive perplexity values of each algorithm. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually by the red plus sign. Obviously, VB yields the highest predictive perplexity, corresponding to the worst generalization ability. GS has a much lower predictive perplexity than VB, but it has a much higher perplexity than both sBP and RBP. The underlying reason is that GS samples a topic label from the messages without retaining all possible uncertainties. The residual-based scheduling scheme of RBP not only speeds up the convergence rate of sBP, but also slightly lowers the predictive perplexity. The reason is that RBP updates fast-convergent messages to efficiently influence those slow-convergent messages, reaching fast to the local minimum of the predictive perplexity. Figs. 6 and 7 illustrate the box plots for the number of iterations and the training time until convergence for ten-fold cross-validation when \(K = 50 \). Consistent with Figs. 5 and 4, VB consumes the minimum number of iterations, but has the longest training time until convergence. GS has the maximum number of iterations, but has the second longest training time until convergence. Because RBP improves the convergence rate over sBP, it consumes the least training time until convergence.

To measure the interpretability of inferred topics, Fig. 8 shows the top ten words of each topic when \(K = 10 \) on CORA set using 500 training iterations. We observe that both sBP and RBP can infer almost the same topics as other algorithms except the topic one, where sBP identifies the “pattern recognition” topic but RBP infers the “parallel system” topic. It seems that both sBP and RBP obtain slightly more interpretable topics than GS and VB especially in topic four, where “reinforcement learning” is closely related to “control systems”. For other topics, we find that they often share the similar top ten words but with different ranking orders. More details on subjective evaluation for interpretability of topics can be found in [16]. However, even if GS and VB yield comparably interpretable topics as RBP, we still advocate RBP because it consumes less training time until convergence while reaches a much lower predictive perplexity value.

We also compare RBP with other residual-based techniques for training LDA such as R VB [9], [10]. It is not easy to make a fair comparison because RBP is an offline learning but R VB is an online learning algorithm. However, using the same data sets WEBKB and NG20 [9], we can approximately compare RBP with R VB using the training time when the predictive perplexity converges. When \(K = 100 \), R VB converges at the predictive perplexity 600 using 60 seconds training time on WEBKB, while it converges at the predictive perplexity 1050 using 600 seconds training time on NG20. With the same experimental settings as R VB (hyperparameters \(\alpha = \beta = 0.01 \)), RBP achieves the predictive perplexity 540 using 35 seconds for training on WEBKB, while it achieves the predictive perplexity 1004 using 420 seconds for training on NG20. The significant speedup is because R VB involves relatively slower digamma function computation, and adopts a more complicated sampling method based on residual distributions for dynamic scheduling.

5 Conclusions

This paper presents a simple but effective RBP algorithm for training LDA. Through the residual-based dynamic scheduling scheme, RBP significantly improves the convergence rate of sBP but adding only an affordable scheduling cost for large-scale data sets. On average, it reduces around 50 ~ 100 training iterations until convergence, while achieves a relatively lower predictive perplexity than sBP. For the ten-fold cross-validation on six publicly available document sets when \(K = 50 \), RBP on average reduces 63.7% and 85.1% training time until convergence than two widely-used GS and VB algorithms, respectively. Meanwhile, it on average achieves 8.9%
model visual recognition data neural learning object patterns input learning network model networks feature neural features selection models paper
model visual recognition system patterns object structure sequences network human parallel performance paper system implementation efficient execution memory machine data
learning algorithm model show algorithms number class general queries time algorithm learning model algorithms results class number show error problem algorithm learning number function model algorithms results show class bounds algorithm learning function model show number results algorithms functions class
system paper learning knowledge design case reasoning problem approach theory system paper design case reasoning knowledge systems memory performance planning design system reasoning case knowledge paper cases systems approach planning design case system reasoning knowledge case paper problem planning approach cases
learning paper system control approach systems robot results reinforcement environment learning algorithm problem method results problems reinforcement system function learning control reinforcement paper state agent environment robot problem dynamic learning model reinforcement control system environment visual robot agent behavior
bayesian belief probability network shows model problem probabilistic revision paper algorithm data bayesian learning show results algorithms methods genetic learning paper examples rules system problem approach concept
bayesian belief probability network shows model problem probabilistic revision paper algorithm data bayesian learning show results algorithms methods genetic learning paper examples rules system problem approach concept
generic problem search algorithms paper algorithm problems results optimization programming problem genetic learning paper system search approach design knowledge problems genetic problem search algorithms programming problems paper results optimization evolutionary genetic problem search algorithms programming problems paper results optimization algorithm
model models algorithm data distribution markov state analysis paper methods method algorithm network networks model neural data distribution markov state analysis paper methods model models bayesian data markov probability distribution methods analysis belief model models bayesian data markov probability distribution methods analysis algorithm
learning algorithm training decision method paper data algorithms classification results learning paper decision problem algorithms system algorithm results methods model data decision training algorithm classification methods method performance learning algorithms decision training data classification algorithm learning methods method algorithms performance
neural network networks learning input training function algorithms recurrent algorithm neural network networks learning input training function algorithms recurrent algorithm neural network networks learning input training function algorithms recurrent algorithm neural network networks learning input training function algorithms recurrent algorithm
research report grant university technical science supported department part national research learning grant paper models supported methodology science part research report technical university science supported department part paper research report technical university science supported department part paper

and 22.1% lower predictive perplexity than GS and VB, respectively. Compared with other residual techniques like RVB, RBP reduces around 30%~50% training time to achieve the lower predictive perplexity. While RBP is a simple extension of sBP [6] by introducing the dynamic scheduling for message passing, its theoretical basis [8] and strong experimental results support its promising role in the probabilistic topic modeling field.

ACKNOWLEDGEMENTS
This work is substantially supported by NSFC (Grant No. 61003154), the Shanghai Key Laboratory of Intelligent Information Processing, China (Grant No. IIP-2010-009), and a grant from Baidu to JZ, and a GRF grant from RGC UGC Hong Kong (GRF Project No.9041574) and a grant from City University of Hong Kong (Project No. 7008026) to ZQL.

REFERENCES
[1] D. M. Blei, “Introduction to probabilistic topic models,” Communications of the ACM.
[2] D. M. Blei, A. Y. Ng, and M. J. Jordan, “Latent Dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.
[3] M. Hoffman, D. Blei, and F. Bach, “Online learning for latent Dirichlet allocation,” in NIPS, 2010, pp. 856–864.
[4] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed algorithms for topic models,” J. Mach. Learn. Res., vol. 10, pp. 1801–1828, 2009.
[5] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. Natl. Acad. Sci., vol. 101, pp. 5228–5235, 2004.
[6] J. Zeng, W. K. Cheung, and J. Liu, “Learning topic models by belief propagation,” IEEE Trans. Pattern Anal. Mach. Intell., p. arXiv:1109.3437v4 [cs.LG], 2011.
[7] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh, “On smoothing and inference for topic models,” in UAI, 2009, pp. 27–34.
[8] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: Informed scheduling for asynchronous message passing,” in UAI, 2006, pp. 165–173.
[9] M. Wahabzada and K. Kersting, “Larger residuals, less work: Active document scheduling for latent Dirichlet allocation,” in ECML/PKDD, 2011, pp. 475–490.
[10] M. Wahabzada, K. Kersting, A. Pliz, and C. Bauckhage, “More influence means less work: fast latent Dirichlet allocation by influence scheduling,” in CIKM, 2011, pp. 2273–2276.
[11] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on Inform. Theory, vol. 47, no. 2, pp. 498–519, 2001.
[12] A. Asuncion, “Approximate Mean Field for Dirichlet-Based Models,” in ICML Workshop on Topic Models, 2010.
[13] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
[14] J. Winn and C. M. Bishop, “Variational message passing,” J. Mach. Learn. Res., vol. 6, pp. 661–694, 2005.
[15] J. Zeng, “A topic modeling toolbox using belief propagation,” J. Mach. Learn. Res., p. arXiv:1201.0838v1 [cs.LG], 2012.
[16] J. Chang, J. Boyd-Graber, S. Gerris, C. Wang, and D. Blei, “Reading tea leaves: How humans interpret topic models,” in NIPS, 2009, pp. 288–296.

Fig. 8. Top ten words of $K = 10$ topics for GS (blue), VB (red), sBP (green) and RBP (black) on CORA set.