Multiple comorbid sleep disorders adversely affect quality of life in Parkinson’s disease patients

Yu Zhang1,14, Jia hao Zhao1,14, Dong ya Huang2, Wei Chen3, Can xing Yuan4, Li rong Jin5, Yu hui Wang6, Ling jing Jin7, Lei Lu8, Xiao ping Wang9, Chang de Wang10, Xiao hui Zhao11, Xi Zhang12, Wen tao Li13,14, Jia hao Zhao1,14, and Zhen guo Liu1

Sleep disorders are common non-motor symptoms in patients with Parkinson’s disease (PD). The characteristics and impact of multiple comorbid sleep disorders remain to be elucidated. Our goal was to investigate the characteristics of various sleep disorder comorbidities, and their association with motor complications and the impact on the quality of life in PD patients. In this multicenter, observational, cross-sectional study, data concerning the clinical characteristics of complicated sleep disorders were collected from PD patients treated at 40 different hospitals in Shanghai. Sleep disorders were evaluated using the PD Sleep Scale-2, Epworth Sleepiness Scale, Rapid Eye Movement Sleep Behavior Disorder Questionnaire-Hong Kong, and the International Restless Legs Scale. Among the 1006 subjects evaluated, 77.53% exhibited signs of sleep disorders, and most had multiple sleep disorders (n = 502, 49.9%). A smaller percentage of patients with sleep disorders had a single disorder (n = 278, 27.6%). Furthermore, an increased number of sleep disorders, including nighttime problems, excessive daytime sleepiness, rapid eye movement sleep behavior disorder, and restless legs syndrome was a significant contributor to a poor quality of life (β = 4.33, CI: 3.33–5.33, P for trend <0.001), even when controlling for multiple factors. Moreover, motor complications partially mediated this relationship (indirect effect: β = 0.355, 95% boot CI: 0.134, 0.652). Our study showed that a large proportion of PD patients suffer from multiple comorbid sleep disorders, which greatly decreases the quality of life in PD patients and is partially mediated by motor complications.

INTRODUCTION
Parkinson’s disease (PD) is a movement disorder. Sleep disorders, such as nighttime problems, excessive daytime sleepiness (EDS), rapid eye movement sleep behavior disorder (RBD), and restless legs syndrome (RLS) are commonly reported in patients with PD1–3. The pathophysiology of sleep disorders associated with dopaminergic and non-dopaminergic mechanisms during the course of PD and the sleep disorder type impart different effects on PD patients4. RLS is often associated with constipation in PD patients5. RBD is associated with longer disease duration, motor fluctuations, psychiatric comorbidities, and higher doses of levodopa in PD patients6,7. RBD can be a prodromal symptom of PD and can be used for diagnosis of PD at an early stage1,2,7,8. Furthermore, sleep disorders are observed throughout the course of PD. Nighttime problems and EDS significantly reduce the quality of life in patients with advanced PD, and require prompt recognition and intervention1,2,7. Clinical subtypes of sleep disorders may even constitute distinct phenotypes of PD.

Many previous studies have focused on the effects of a single type of sleep disorder on PD9–13. It is worth noting that PD patients may have multiple comorbid sleep disorders that require attention. However, few studies have investigated the clinical distribution and characteristics of complicated sleep disorders in PD patients. Furthermore, the association between an increased number of sleep disorders and the quality of life in PD patients, along with identification of the factors that influence this relationship, is largely unknown. Although an accurate sleep disorder diagnosis should be made using polysomnography, devising a screening tool using validated questionnaires that are reliable and diagnostically accurate would be a big step forward in early identification14–16. Therefore, large-scale studies on sleep disorders in patients with PD in China are needed to devise tools for faster identification of issues, which can then be better characterized using current methodologies (e.g., polysomnography).

Sleep disorders could be observed throughout the course of PD, while motor complications typically emerge only in advanced cases of disease. Any one, or a combination of sleep disorders and/or movement disorders negatively impacts quality of life. Whether motor complications influence or regulate the impact of sleep disorders on quality of life is unknown. Exploring the effects of motor complications on this relationship may provide important implications for early interventions designed to enrich and prolong quality of life.

1Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, China. 3Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 4Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China. 5Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China. 6Department of Neurology, Shanghai Punan Hospital, Shanghai, China. 7Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China. 8Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China. 9Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 10Department of Neurology, Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. 11Department of Neurology, Shanghai Pudong New Area Hospital, Shanghai, China. 12Clinical Research Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. 13Department of Neurology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. 14These authors contributed equally: Yu Zhang, Jia hao Zhao. 15email: lwt1132@163.com; liuzhenguo@xinhuamed.com.cn

Published in partnership with the Parkinson’s Foundation
In this multicenter, observational, cross-sectional study, we aimed to investigate the clinical characteristics of complicated sleep disorders in patients with PD, their association with motor complications and the overall impact on quality of life.

RESULTS
Study population and the distribution of different types of sleep disorders
A total of 1006 patients with PD (mean age = 69.95 ± 8.41 years old, 577 males) were enrolled in the study. The mean PD disease duration was 5.54 ± 4.58 years. The mean modified Hoehn–Yahr (HY) stage was 2.17 ± 0.84 (stage 1–1.5, n = 296; stage 2–2.5, n = 471; and stage ≥3, n = 223). The Unified Parkinson’s Disease Rating Scale (UPDRS) parts I, II, III, and IV scores were 3.06 ± 2.82, 12.41 ± 8.44, 25.50 ± 15.51, and 3.20 ± 3.66, respectively. Of the total cohort, 920 patients (91.50%) were taking levodopa, 563 (56.00%) were taking dopamine agonists, 39 (3.90%) were taking a MAO-B inhibitor, and 173 (17.20%) were taking a COMT inhibitor. In the total cohort, 920 patients (91.50%) were taking levodopa, 563 (56.00%) were taking dopamine agonists, 39 (3.90%) were taking a MAO-B inhibitor, and 173 (17.20%) were taking a COMT inhibitor. Complete demographic data for the entire cohort are shown in Table 1.

Regarding the sleep assessments, the prevalence of sleep disorders was 41.80% (421/1006) for nighttime problems, 25.20% (254/1006) for EDS, 46.90% (472/1006) for probable RBD (pRBD), and 49.80% (501/1006) for RLS. There was a significant overlap of various sleep disorders in patients with PD (Fig. 1). Accordingly, 226 (22.5%) of the patients had no sleep disorder, 278 (27.6%) had only one type of sleep disorder, and 502 (49.9%) had ≥2 sleep disorders (Fig. 1).

Factors associated with different types of sleep disorders
The characteristics of the patients with PD according to sleep disorder type (nighttime problems, EDS, pRBD, and RLS) are shown in Table 1. Compared with the patients without sleep disorders, the nighttime problems, EDS, pRBD, and RLS groups had longer disease durations, higher UPDRS scores (total, parts I, II, III, and IV) and non-motor symptom scale (NMSS) scores, worse cognitive function, and shorter total sleep times. A slight increase in age was associated with nighttime problems and EDS. We found no specific pattern of initial presentation of motor symptoms that was significantly related to the presence of nighttime problems, EDS, pRBD, or RLS.

Logistic regression analysis of nighttime problems, EDS, pRBD, and RLS using a likelihood ratio forward selection showed that UPDRS part IV (32–39) scores (OR = 1.186, CI: 1.18–1.259, P < 0.001) and NMSS scores (OR = 1.030, CI: 1.024–1.035, P < 0.001) were contributing factors to occurrence of nighttime problems. UPDRS part IV (32–39) scores (OR = 1.090, CI: 1.035–1.147, P = 0.001), NMSS scores (OR = 1.018, CI: 1.014–1.022, P < 0.001), and hallucinations (OR = 1.595, CI: 1.016–2.504, P = 0.043) were contributing factors for EDS. Age (OR = 0.983, CI: 0.968–0.999, P = 0.038), NMSS scores (OR = 1.014, CI: 1.010–1.018, P < 0.001), and hallucinations (OR = 2.367, CI: 1.513–3.703, P < 0.001) were contributing factors for pRBD. Age (OR = 0.979, CI: 0.963–0.997, P = 0.019), disease duration (OR = 1.045, CI: 1.010–1.081, P = 0.012), modified HY stage (OR = 0.723, CI: 0.571–0.914, P = 0.007), UPDRS parts II scores (OR = 1.062, CI: 1.036–1.088, P < 0.001), UPDRS parts IV (32–39) scores (OR = 1.182, CI: 1.115–1.252, P < 0.001), and dopamine agonist medication use (OR = 0.571, CI: 0.429–0.761, P < 0.001) were contributing factors for RLS (Supplementary Table 1).

Clinical characteristics and factors associated with different numbers of sleep disorders
PD patients were categorized into the following five groups according to the number of sleep disorders ranked 0–4 as follows:

zero sleep disorders (n = 226, 22.50%), one type of sleep disorder (n = 278, 27.60%), two types of sleep disorders (n = 235, 23.40%), three types of sleep disorders (n = 168, 16.70%), and four types of sleep disorders (n = 99, 9.80%) (Table 2). The clinical characteristics of patients according to the number of sleep disorders are shown in Table 2. Among all PD patients, those with a greater number of sleep disorders were more likely to have a longer disease duration, higher modified HY stage, greater UPDRS score (total, III and IV), worse cognitive function, and a greater number of non-motor symptoms. They were also more likely to be currently on L-dopa medication and to have a higher levodopa equivalent daily doses (LEDs). However, they were less likely to be taking dopamine agonists. Compared to patients who suffered only one type of sleep disorder, those with multiple sleep disorders had a worse quality of life and more severe motor complications. These associations were slightly attenuated after controlling for disease duration, disease progression, motor symptoms, non-motor symptoms, and dopaminergic medications (Table 3). The multivariable regression coefficients (95% confidence intervals (95% CIs)) of quality of life in reference to no sleep disorders were 1.79 (1.17–4.76) for one type of sleep disorders, 3.89 (0.71–7.08) for two types of sleep disorders, 14.63 (10.96–18.31) for three types of sleep disorders, and 16.04 (11.43–20.65) for four types of sleep disorders; this trend was statistically significant (P for trend < 0.001). Furthermore, we found the same trend in the severity of motor complications and the number of sleep disorders (P for trend < 0.001). The multivariable regression coefficients (95% CIs) for quality of life in reference to no sleep disorders were 7.88 (1.29–14.47) for the nighttime problems + EDS + RLS group, 10.48 (1.72–19.24) for the nighttime problems + EDS + pRBD group, 14.67 (9.93–19.40) for the nighttime problems + pRBD + RLS group, and 12.56 (2.83–22.30) for the EDS + pRBD + RLS group (Table 3).

We further stratified the analyses by motor complication status. Positive associations between an increased number of sleep disorders and quality of life were found both among patients with and without motor complications (β = 4.467, 3.312; P for trend < 0.001, < 0.001; Fig. 2). However, the interaction with motor complication status was not statistically significant (P for interaction = 0.759).

The mediation analyses of the associations between multiple comorbid sleep disorders and quality of life
When the motor complications score was entered as a mediator of the number of sleep disorders and PDQ-39, the total effect was significant (β = 4.351, CI: 3.370–5.332, P < 0.001), the indirect effect was significant (β = 0.355, 95% boot CI: 0.134, 0.652), and the direct effect remained significant (β = 3.996, CI: 3.001–4.991, P < 0.001). Therefore, we can infer that motor complications partially mediated the effect of multiple comorbid sleep disorders on quality of life (Fig. 2).

DISCUSSION
In this large-scale, multicenter, cross-sectional study, we found that PD patients have a significantly higher prevalence of sleep disorders. Our results showed that the prevalence of sleep disorders (77.5%) in patients with PD is higher than previously reported in China. In addition, there were 502 patients (49.9%) with multiple comorbid sleep disorders, while only 278 patients (27.6%) had only one type of sleep disorder. The prevalence of nighttime problems with pRBD and RLS was 9.5%, which is significantly higher than the prevalence of any other combination of three of sleep disorders. Nighttime problems combined with RLS (7.5%), and nighttime problems combined with pRBD (6.4%) were significantly more prevalent than any other combination of two disorders. In contrast, EDS alone, EDS combined with
Table 1. Characteristics of study participants classified by sleep disorders.

Total	Nighttime problems	EDS	pRBD	RLS						
	Yes	No	P-value	Yes	No	P-value	Yes	No	P-value	
N	1006	970	0.062	254	752	0.001	472	534	0.918	
Sex (male, %)	57.4	54.3	0.008	61.40	56.00	0.13	56.60	58.10	0.635	
Age (yr)	69.95 ± 8.41	70.61 ± 8.56	0.034	71.01 ± 8.61	69.59 ± 8.32	0.019	69.88 ± 7.92	70.00 ± 8.83	0.825	
Family history of PD (%)	7.70	6.20	0.138	7.50	7.70	0.892	7.20	8.10	0.608	
Disease duration (yr)	5.54 ± 4.58	6.13 ± 4.89	5.11 ± 4.30	<0.001	6.48 ± 4.94	5.22 ± 4.41	<0.001	5.94 ± 4.79	5.18 ± 4.37	0.008
Initial presentation of motor symptoms (%)	0.471	0.424	0.632	0.262						
Tremor	58.40	58.40	58.50	56.70	59.00	58.10	58.80	56.50	60.40	
Rigidity	10.60	10.60	9.90	10.20	10.80	9.50	11.60	12.40	8.90	
Bradykinesia	21.40	21.40	22.70	20.90	21.50	22.20	20.60	21.00	21.80	
Other	9.50	9.50	8.90	12.20	8.60	10.20	9.00	9.50	8.90	
Modified HY stage (%)	<0.001	<0.001	<0.001	0.018						
1–1.5	29.40	19.30	37.40	18.10	33.00	23.40	35.70	25.80	33.90	
2–2.5	46.80	51.00	45.20	47.00	47.80	52.10	43.50	51.00	44.20	
≥3	22.20	29.80	17.40	34.90	18.40	24.50	20.80	23.20	21.90	
UPDRS total	44.23 ± 26.69	56.7 ± 28.7	35.27 ± 21.01	<0.001	59.24 ± 32.53	39.18 ± 22.27	<0.001	49.34 ± 27.49	39.71 ± 25.14	<0.001
UPDRS part I	3.06 ± 2.82	4.28 ± 2.92	2.19 ± 2.39	<0.001	4.50 ± 3.15	2.58 ± 2.53	<0.001	3.82 ± 2.86	2.40 ± 2.62	<0.001
UPDRS part II	12.41 ± 8.44	16.21 ± 8.87	9.69 ± 6.94	<0.001	16.81 ± 10.07	10.94 ± 7.24	<0.001	13.88 ± 8.72	11.12 ± 7.97	<0.001
UPDRS part III	25.50 ± 15.51	31.07 ± 16.83	21.49 ± 13.1	<0.001	32.76 ± 18.27	23.06 ± 13.63	<0.001	27.54 ± 15.6	23.7 ± 15.22	<0.001
UPDRS part IV (32–39)	2.30 ± 3.18	3.67 ± 3.77	1.32 ± 2.22	<0.001	3.84 ± 4.06	1.78 ± 2.63	<0.001	2.84 ± 3.44	1.83 ± 2.85	<0.001
PDQ-39 score	36.24 ± 26.60	51.82 ± 30.16	25.45 ± 23.49	<0.001	55.28 ± 32.16	30.12 ± 25.61	<0.001	43.86 ± 32.3	29.94 ± 25.04	<0.001
NMSS score	49.95 ± 44.03	74.98 ± 50.38	31.93 ± 27.08	<0.001	80.51 ± 56.06	39.65 ± 33.39	<0.001	62.74 ± 48.73	38.6 ± 35.78	<0.001
MMSE score	25.69 ± 4.90	24.27 ± 5.4	26.7 ± 4.218	<0.001	23.7 ± 5.87	26.37 ± 4.32	<0.001	25.25 ± 5.02	26.09 ± 4.75	0.006
L-dopa medication (%)	91.50	94.50	89.20	92.10	91.20	0.656	94.10	89.10	0.035	
DA's medication (%)	56.00	52.00	58.00	52.40	57.20	0.181	58.80	53.70	0.132	
Levodopa equivalent daily dose (mg/day)	444.71 ± 272.26	491.1 ± 266.7	411.3 ± 272.2	<0.001	50.145 ± 299.21	425.54 ± 259.96	<0.001	476.38 ± 261.23	416.71 ± 278.91	0.001
Hallucination (%)	12.60	19.20	7.90	23.60	8.90	<0.001	19.50	6.60	<0.001	
Total sleep time (h)	5.88 ± 1.88	5.18 ± 1.77	6.38 ± 1.82	<0.001	5.57 ± 1.85	5.98 ± 1.88	0.002	5.57 ± 1.85	6.15 ± 1.87	<0.001
Number of sleep interruptions (per night)	2.04 ± 1.44	2.583 ± 1.536	1.645 ± 2.231	<0.001	2.34 ± 1.41	1.94 ± 1.44	<0.001	2.26 ± 1.48	1.84 ± 1.38	<0.001

N. number, EDS. excessive daytime sleepiness, pRBD. probable rapid eye movement sleep behavior disorder, RLS. restless legs syndrome, modified HY stage. modified Hoehn and Yahr stage, UPDRS. Unified Parkinson’s Disease Rating Scale, NMSS. non-motor symptom scale, PDQ-39. Parkinson’s Disease Questionnaire-39, MMSE. Mini-Mental State Examination, DA. dopamine agonist. Statistically significant P-values (P < 0.05) are highlighted in bold.
nighttime problems, EDS combined with RLS, or EDS combined with pRBD are not common. These results reveal that the proportion of patients with multiple comorbid sleep disorders is much greater than the proportion with only one sleep disorder. In addition to one specific type of sleep disorder, multiple comorbidities should also be considered when assessing patients with PD who have sleep disorder complaints. Comprehensive evaluation and therapy will achieve a better curative effect.

At the same time, we found that nighttime problems, EDS, pRBD, and RLS are all accompanied by cognitive decline, which was confirmed by other studies. Compared with participants without RLS, those with RLS have a higher rate of a family history of PD. However, nighttime problems, EDS, and pRBD have no correlation with a family history of PD, which was consistent with other studies. RLS results in fewer sleep interruptions, while nighttime problems, EDS, and pRBD are typically accompanied by frequent sleep interruptions. As a clinical symptom, the prevalence of hallucinations among the different types of sleep disorders (nighttime problems, EDS, pRBD, and RLS) is described in Table 1. Our results indicated that hallucinations were more likely to occur in PD patients with EDS and RLS than those without. It is worth noting that dopamine agonists were less frequently prescribed or used in the PD group with EDS and RLS than in the PD group without EDS and RLS. Therefore, it is difficult to infer whether the appearance of hallucinations is related to the use of dopamine agonists. According to the UPDRS part I and NMSS scores, PD patients with sleep disorders (nighttime problems, EDS, pRBD, or RLS) usually have a greater number of more severe non-motor symptoms. Patients with nighttime problems, pRBD, and RLS have an inferior quality of life compared to patients with any other combination of three comorbid sleep conditions. Therefore, nighttime problems are more likely to coincide with RLS and pRBD, and these three types of sleep disorders may play some role in pathogenesis because they have similar clinical characteristics and have a more significant impact on quality of life. Alternatively, it is possible that nighttime problems may be the result of RLS and pRBD. In contrast, EDS is relatively independent, and its pathogenesis may be different from the other disorders.

Our study revealed that patients with a greater number of sleep disorders were less likely to be taking dopamine agonists.

Table 2. Clinical characteristics of patients according to number of sleep disorders.

Number of sleep disorders	P-value for trend					
None	One	Two	Three	Four		
N	226	278	235	168	99	
Sex (male, %)	58.80	59.70	55.30	54.80	56.60	0.334
Age (yr)	70.29 ± 9.19	68.72 ± 7.47	69.85 ± 8.20	71.11 ± 8.43	70.84 ± 9.18	0.102
Disease duration (yr)	4.26 ± 3.79	5.50 ± 4.68	5.91 ± 4.15	5.95 ± 4.77	6.96 ± 5.86	<0.001
Modified HY stage (%)	41.60	38.00	23.10	20.20	12.50	<0.001
1–1.5	39.80	44.60	57.70	44.80	54.20	
2–2.5	18.60	17.40	19.20	35.00	33.30	
UPDRS total	31.92 ± 19.99	36.91 ± 21.38	45.07 ± 22.42	55.71 ± 28.61	71.52 ± 31.99	<0.001
UPDRS part III	19.95 ± 13.21	22.07 ± 12.95	26.4 ± 14.04	30.27 ± 17.28	37.64 ± 17.86	<0.001
UPDRS part IV (32–35)	0.32 ± 0.86	0.70 ± 1.52	0.91 ± 1.60	1.71 ± 2.37	3.38 ± 2.74	<0.001
UPDRS part IV (36–39)	0.75 ± 1.17	0.84 ± 1.35	1.16 ± 1.53	1.63 ± 1.60	2.69 ± 1.81	<0.001
PDQ-39 score	21.27 ± 21.46	26.77 ± 25.03	35.38 ± 22.07	54.88 ± 29.72	69.83 ± 30.24	<0.001
NMSS score	25.53 ± 25.17	35.21 ± 27.7	52 ± 36.45	72.96 ± 44.92	103.12 ± 62.26	<0.001
MMSE score	26.94 ± 3.62	26.65 ± 4.74	25.7 ± 4.29	24.81 ± 5.34	21.7 ± 5.96	<0.001
L-dopa medication (%)	87.60	89.60	94.00	93.50	96.00	0.002
DAs medication (%)	56.60	61.90	56.20	48.80	49.50	0.026
Levodopa equivalent daily dose (mg/day)	384.92 ± 280.81	423.96 ± 260.68	461.9 ± 247.59	481.63 ± 296.82	535.98 ± 263.84	<0.001
Total sleep time (h)	6.32 ± 1.89	6.36 ± 1.93	5.76 ± 1.58	5.18 ± 1.78	4.96 ± 1.79	<0.001
Number of sleep interruptions (per night)	1.60 ± 1.33	1.78 ± 1.32	2.23 ± 1.33	2.50 ± 1.68	2.55 ± 1.39	<0.001

Number of sleep disorders (0–4; nighttime problems, EDS, pRBD, and RLS).

N number, modified HY stage modified Hoehn and Yahr stage, UPDRS Unified Parkinson’s Disease Rating Scale, NMSS non-motor symptom scale, PDQ-39 Parkinson’s Disease Questionnaire-39, MMSE Mini-Mental State Examination, DA Dopamine agonist. Statistically significant P-values (P < 0.05) are highlighted in bold.
The dopamine agonists used in the China are pramipexole and piribedil. We performed a subgroup analysis, after we adjusted for multiple factors. Our results represent statistically significant correlations. Due to the limitations of observational cross-sectional studies, we are unable to make further inferences. Future longitudinal studies would enhance our interpretations. Furthermore, the analyses revealed that the number of sleep disorders was an independent and significant contributor to quality of life in PD patients, even after we adjusted for multiple factors. Our findings demonstrated that an increased number of sleep disorders had a significant negative impact on quality of life.

Through regression analysis, we found that motor complications were related to nighttime problems, EDS, and RLS, while both sleep disorders and motor complications were necessary for significant deteriorations in quality of life. These findings suggested that there may be interactions between sleep disorders and motor complications. Notably, rather than examining the direct relationship between motor complications and quality of life in PD, we investigated the interaction effect between motor complications and multiple comorbid sleep disorders. Our findings show there was no significant interactive effect between motor complications and multiple sleep disorder comorbidities on quality of life in PD patients (P for interaction = 0.759). Nevertheless, the impact of motor complications on quality of life shows a mediating effect according to our study. Motor complications act as a mediator of the association between multiple comorbid sleep disorders and quality of life. Controlling for the severity of motor complications resulted in a decrease in the strength of the correlation between multiple sleep disorders and quality of life. Motor complications had a statistically significant indirect effect on the relationship between multiple sleep disorders and quality of life. Although the size of the indirect effect was moderate, despite worse sleep quality, a patient may experience a further improvement in quality of life when his or her motor complications are treated, and motor function is better maintained.

The strengths of this study include the systematic assessment of sleep disorders in a relatively sizeable multicenter sample of patients with PD. There are two implications for the present findings. First, it may be valuable for clinicians to consider how motor complications as a mediator between an increased number of sleep disorders and quality of life. Second, it may be valuable for clinicians to consider how motor complications partially mediated the effect of multiple comorbid sleep disorders on quality of life. a Stratification analyses of positive associations between an increased number of sleep disorders and quality of life by motor complications status. Number of sleep disorders and quality of life. All associations were adjusted for sex, age, disease duration, modified HY stage, UPDRS part III, NMSS, and MMSE. Model 3 was further adjusted for L-dopa medication status, DA medication status, levodopa equivalent daily dose, total sleep time, and number of sleep interruptions. Statistically significant P-values (P < 0.05) are highlighted in bold.

Variable	PDQ-39 score β (95% CI)*	UPDRS part IV (32–39) β (95% CI)*				
	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3
Number of sleep disorders						
None	1.00 (reference)					
One	5.83 (1.73–9.92)	1.80 (–1.18–4.77)	1.79 (–1.17–4.76)	10.77 (4.30–17.24)	0.12 (–0.34–0.58)	0.11 (–0.35–0.57)
Two	14.41 (10.16–18.66)	3.75 (0.59–6.91)	3.89 (0.71–7.08)	26.93 (20.2–33.63)	0.19 (–0.30–0.68)	0.18 (–0.32–0.67)
Three	32.73 (28.08–37.38)	15.40 (11.79–19.01)	14.63 (10.96–18.31)	46.42 (39.07–53.77)	1.02 (0.46–1.58)	0.92 (0.35–1.49)
Four	48.16 (42.67–53.65)	16.16 (11.60–20.72)	16.04 (11.43–20.65)	77.23 (68.57–85.89)	2.70 (2.00–3.40)	2.68 (1.96–3.39)
P for trend	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Increase per disorder	11.72 (10.57–12.87)	4.47 (3.50–5.45)	4.33 (3.33–5.33)	1.03 (0.89–1.18)	0.51 (0.36–0.66)	0.49 (0.34–0.65)

*βs and 95% CIs were calculated with the use of multivariate linear regression. Model 1 was adjusted for sex and age. Model 2 additionally was adjusted for disease duration, modified HY stage, UPDRS part III, NMSS, and MMSE. Model 3 was further adjusted for L-dopa medication status, DA medication status, levodopa equivalent daily dose, total sleep time, and number of sleep interruptions. Statistically significant P-values (P < 0.05) are highlighted in bold.
multiple comorbid sleep disorders relate to quality of life in people with PD. Further assessment could provide a clearer understanding of these relationships, enabling the design and implementation of comprehensive therapeutic approaches. Second, the present findings highlight the complex mediating effect between multiple comorbid sleep disorders and motor complications. Previous research has demonstrated that PD patients with motor complications are more likely to suffer from a lower quality of life. Revealing the impact of motor complications and impaired sleep problems may help clinicians better manage symptoms to improve the quality of life.

Nonetheless, this study also has several limitations. First, our study was a cross-sectional study and did not include premorbid or de novo PD patients. Therefore, the causality between multiple comorbid sleep disorders, motor complications, and quality of life cannot be confirmed. It is crucial to perform prospective studies to investigate causality. Second, an increasing number of sleep disorder screening tools have been developed for use in research and clinical practice. Therefore, cross-comparison between different cohorts is often limited by the types of screening tool used. Finally, assessments of motor complications were limited to the UPDRS IV rather than the scale for wearing off and dyskinesia. Hence, the detailed characteristics of motor complications in patients could not be identified.

In summary, our large-scale, cross-sectional study indicates a close relationship between multiple comorbid sleep disorders and reduced quality of life in PD patients. In addition, motor complications may at least in part mediate the detrimental effects on quality of life caused by multiple comorbid sleep disorders. Therefore, complete and comprehensive assessments of all types of sleep disorders and motor complications in PD patients is imperative to improve the quality of life.

METHODS
Study design and participants
We performed a multicenter, observational, outpatient-based, cross-sectional study entitled, “Nocturnal symptoms and quality of life in patients with Parkinson’s disease in Shanghai” (SHAPD, clinical trial.gov ID: NCT04023201). From June to November of 2019, the study recruited 1006 PD patients from the clinics of 40 hospitals in Shanghai. Patients had been diagnosed with PD according to the Movement Disorder Society (MDS) PD Criteria. Patients with secondary Parkinsonism, stroke, brain tumor, or an alternative cause for parkinsonism symptoms were excluded. Written informed consent was obtained from all participants, and the study was performed with the approval of the Ethics Committee of Xinhua Hospital affiliated to the Shanghai Jiao Tong University School of Medicine and the Research Ethics Committee of each site in the SHAPD study group.

Clinical assessment
All patients received standardized assessments. The assessments included an evaluation of demographic and clinical characteristics, disease duration, family history of PD, and medication history for PD-related complications. Total LEDD was calculated according to a previously suggested conversion formula. There were in total 45 examiners from all 40 study sites who attended training and calibration sessions to prevent inter-rater variability before recruitment. All PD subjects were on medication for their condition. Family history of PD, and medication history for PD-related complications were adjusted for sex, age, disease duration, PD severity, and dopaminergic therapy. We performed tests for linear trends by entering the number of sleep disorders (0–4) as a continuous variable in the models.

Mediation analyses were conducted with SPSS mediation modeling software and PROCESS to evaluate whether the severity of motor complications mediated the associations between multiple comorbid sleep disorders and the quality of life. The analysis considered the total effect of multiple sleep disorders (number of sleep disorders) on the quality of life (PDQ-39) and the indirect effect mediated by the motor complications score. A bootstrap estimation approach with 5000 samples was used to measure the indirect effect with 95% CIs. The indirect effect was considered significant when the 95% CIs did not contain zero. Statistical significance was set at P < 0.05. Statistical computations were performed by SPSS Statistics 26.0 (IBM Corp., Armonk, New York, USA), and OriginPro 2019b software (OriginLab Corp., Northampton, Massachusetts, USA) was used to generate the figure.

DATA AVAILABILITY
The data are available from the corresponding author upon reasonable request.

CODE AVAILABILITY
Analytic code can be made available upon request to the corresponding author.

Received: 31 May 2020; Accepted: 13 August 2020;
Published online: 15 September 2020

REFERENCES
1. Liu, C.-F. et al. Management recommendations on sleep disturbance of patients with Parkinson’s disease. Chin. Med. J. 131, 2976–2985 (2018).
2. Stefani, A. & Högl, B. Sleep in Parkinson’s disease. Neuropsychopharmacology 45, 121–128 (2019).
3. Matar, E. & Lewis, S. J. REM sleep behaviour disorder: not just a bad dream. Med. J. Aust. 207, 262–268 (2017).
4. Gan-Or, Z., Alcalay, R. N., Rouleau, G. A. & Postuma, R. B. Sleep disorders and Parkinson disease; lessons from genetics. Sleep. Med. Rev. 41, 101–112 (2018).
5. Ikeda, H., Hughes, K., Gao, X., Schwarzschild, M. & Ascherio, A. The association between restless legs syndrome and premotor symptoms of Parkinson’s disease. J. Neurol. Sci. 394, 41–44 (2018).
6. Sixel-Döring, F., Trautmann, E., Mollenhauer, B. & Trenkwalder, C. Associated factors for REM sleep behavior disorder in Parkinson disease. Neurology 77, 1048–1054 (2011).
7. Suzuki, K. et al. Impact of sleep-related symptoms on clinical motor subtypes and disability in Parkinson’s disease: a multicentre cross-sectional study. J. Neurol. Neurosurg. Psychiatry 88, 953 (2017).

8. Postuma, R. B. et al. Risk and predictors of dementia and Parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 142, 744–759 (2019).

9. Zhu, K., Hilten, J. Van & Marinus, J. The course of insomnia in Parkinson’s disease. Parkinsonism Relat. Disord. 33, 51–57 (2016).

10. Jozwiak, N. et al. REM sleep behavior disorder and cognitive impairment in Parkinson’s disease. Sleep 40, zsx101 (2017).

11. Zhang, J., Xu, C.-Y. & Liu, J. Meta-analysis on the prevalence of REM sleep behavior disorder symptoms in Parkinson’s disease. BMC Neurol. 17, 23 (2017).

12. Bargiotas, P., Lachenmayer, M. L., Schreier, D. R., Mathis, J. & Bassetti, C. L. Sleepiness and sleepiness perception in patients with Parkinson’s disease: a clinical and electrophysiological study. Sleep 42, zxs004 (2019).

13. Yang, X. et al. Prevalence of restless legs syndrome in Parkinson’s disease: a systematic review and meta-analysis of observational studies. Sleep Med. 43, 40–46 (2018).

14. Kurtis, M. M., Balestrino, R., Rodriguez-Blazquez, C., Forjaz, M. J. & Martinez-Martin, P. A review of scales to evaluate sleep disturbances in movement disorders. Front. Neurol. 9, 369 (2018).

15. Rodriguez-Blázquez, C., Forjaz, M. J., Kurtis, M. M., Balestrino, R. & Martinez-Martin, P. Rating scales for movement disorders with sleep disturbances: a narrative review. Front. Neurol. 9, 435 (2018).

16. Höglinger, G. et al. Scales to assess sleep impairment in Parkinson’s disease: critique and recommendations. Mov. Disord. 25, 2704–2716 (2010).

17. Yan, Y.-Y., Lei, K., Li, Y.-Y., Liu, X.-F. & Chang, Y. The correlation between possible RBD and cognitive function in Parkinson’s disease patients in China. Ann. Clin. Transl. Neurol. 6, 848–853 (2019).

18. Pagano, G. et al. REM behavior disorder predicts motor progression and cognitive decline in Parkinson disease. Neurology 91, e894–e905 (2018).

19. Kamble, N. et al. Impaired sleep quality and cognition in patients of Parkinson’s disease with REM sleep behavior disorder: a comparative study. Sleep Med. 62, 1–5 (2019).

20. Jiménez-Jiménez, F. J., Alonso-Navarro, H., García-Martín, E. & Agüindez, J. A. G. Genetics of restless legs syndrome: an update. Sleep Med. Rev. 39, 108–121 (2018).

21. Chapuis, S., Ouchchane, L., Metz, G., Gerbaud, L. & Durif, F. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov. Disord. 20, 224–230 (2004).

22. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS–PD Clinical Diagnostic Criteria. Mov. Disord. 30, 1591–1601 (2015).

23. Tomlinson, C. L. et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25, 2649–2653 (2010).

24. Suzuki, K. et al. Evaluation of cutoff scores for the Parkinson’s disease sleep scale–2. Acta Neurol. Scand. 131, 426–430 (2014).

25. Arnulf, I. et al. Parkinson’s disease and sleepiness: an integral part of PD. Neurology 58, 1019–1024 (2002).

26. Li, S. X. et al. Validation of a new REM sleep behavior disorder questionnaire (RBDQ-HK). Sleep Med. 11, 43–48 (2009).

27. Allen, R. P. et al. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. Sleep Med. 4, 101–119 (2003).

28. Group, T. I. R. L. S. S. Validation of the International Restless Legs Syndrome Study Group rating scale for restless legs syndrome. Sleep Med. 4, 121–132 (2003).

29. Hayes, A. F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-based Approach (Guilford publications, 2017).

30. Shrouf, P. E. & Bolger, N. Mediation in experimental and non-experimental studies: new procedures and recommendations. Psychol. Methods 7, 422–445 (2002).

31. Preacher, K. J. & Hayes, A. F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 36, 717–731 (2004).

ACKNOWLEDGEMENTS
We wish to thank all physicians and patients for participating in this study. This study was supported by the National Key R&D Program of China (2017YFC130300, 2016YFC1306601, 2017YFC1306002, and 2018YFC1314700), and the Shanghai Health and Family Planning Commission Foundation (201940021).

AUTHOR CONTRIBUTIONS
Y.Z. and J.H.Z.: drafting and critical revision of the manuscript. D.Y.H., W.C., C.X.Y., L.R.J., Y.H.W., L.J.L., X.P.W., C.D.W., and X.Z.: enrolling patients, critical revision of the manuscript. X.Z.: analysis and interpretation of data. W.T.L. and Z.G.L.: critical revision of the manuscript and study supervision.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/s41531-020-00126-x.

Correspondence and requests for materials should be addressed to W.T.L. or Z.G.L. Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020