Seismic performance factors of RC frames with infilled walls based on APOA and IDA

LI Yanjun1,*, LU Dagang2, WANG Zhenyu2
1 School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China;
2 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
*Corresponding author’s e-mail: mmssott@163.com

Abstract. Seismic performance factors are important parts of performance-based seismic design, and values of seismic performance factors are directly related to structural safety and economy. Six typical RC structures in high intensity region are designed according to the current Chinese Codes, and finite element models are built on OpenSees platform. The objectivity and accuracy of modeling methods are verified by existing experimental results. Values and rules of seismic performance factors are revealed by adaptive pushover analysis (APOA) and incremental dynamic analysis (IDA). Through comparison with values of design codes, values of the system overstrength factor, the ductility reduction factor, the response modification factor and the deflection amplification factor in this paper is reasonable, and this study provides theoretical reference for Chinese Codes. Analytical methods have important effect on seismic performance factors. Comparing with the IDA method, the APOA method underestimates seismic performance factors. Structural height has significant influence on seismic performance factors. Overstrength factor increases with increase of structural height but ductility reduction factor, response modification factor and deflection amplification factor decrease. Infilled walls increase seismic performance factors of RC frame with infilled walls. The effect of infilled walls on seismic performance factors decreases gradually with increase of structural height.

1. Introduction
At present, most codes for design of structures emphasize design of structural members, and for structural integral safety is mostly qualitative and conceptual description. Ductility of various members and different material is considered by adjustment coefficient of capacity in Chinese Code for seismic design of buildings, but seismic performance factors of structures can’t be estimated. Moreover, determination of seismic performance factors is mainly based on experience in most national design specifications. Many researchers studied seismic performance factors of various structures using methods of experimental tests and numerical simulation [1-11], but systematic studies of seismic performance factors of RC frame with infilled walls are rarely reported. The aim of this paper is to present values and rules of seismic performance factors of RC frame with infilled walls by adaptive pushover analysis (APOA) and incremental dynamic analysis (IDA).

2. Basic concept of seismic performance factors
Seismic performance factors include the response modification coefficient (R factor), the system overstrength factor (Rs), and the deflection amplification factor (Cd) in the FEMA-P695 report [12]. The R factor is structural influencing coefficient (C) and C=1/R in TJ11-74, TJ11-78 and CECS 160: 2004.
2.1. Response modification coefficient
At present, strength-based seismic design is used in major seismic codes. In these codes, \(R \) is used to reflect system overstrength, ductility and dissipation by reducing earthquake action of seismic precautionary intensity. So the value of \(R \) directly affects design seismic force, and establishes relation between the bearing capacity and ductility of structures. The response modification coefficient (\(R \) factor) is a ratio of the maximum base shear of elastic structures under earthquake action of seismic precautionary intensity and the design base shear. The \(R \) factor is a product of \(R_s \) and the structural ductility reduction factor (\(R_\mu \)). It is a basic parameter that defines design seismic force in strength-based seismic design and inelastic response spectra in performance-based seismic design. The system overstrength factor (\(R_s \)) is a ratio of actual strength and design strength, and reflects the strength reserve of structures. Its expression is as follow:

\[
R_s = \frac{V_y}{V_d}
\]

Where,
\(V_y \) is the structural equivalent yield strength.
\(V_d \) is the structural design base shear.

The structural ductility reduction factor (\(R_\mu \)) is a ratio of the maximum base shear of elastic structures under earthquake action of seismic precautionary intensity and the structural equivalent yield strength. Its expression is as follow:

\[
R_\mu = \frac{V_e}{V_y}
\]

Where,
\(V_e \) is the maximum base shear of elastic structures under earthquake action of seismic precautionary intensity.
\(V_y \) is the structural equivalent yield strength.

For intact structures, the expression of \(R \) is as follow:

\[
R = \frac{V_y}{V_d} = \frac{V_e}{V_y} \cdot \frac{V_y}{V_d} = R_s R_\mu
\]

2.2. Deflection amplification factor
Deformation checking is a very important part of serviceability limit state analysis, but bearing capacity in elastic phase is more focused on. The deflection amplification factor (\(C_d \)) is used to simplify calculation of structural maximum displacement in elastic-plastic stage under action of moderate earthquake. The maximum structural elastic-plastic displacement under action of rare earthquake can be obtained by enlarging the design deformation of elastic phase using the factor \(C_d \). The expression of \(C_d \) is as follow:

\[
C_d = \frac{\Delta_{max}}{\Delta_d}
\]

Where,
\(\Delta_{max} \) is the maximum structural displacement.
\(\Delta_d \) is the structural design displacement.

3. Analysis of seismic performance factors
3.1. Analysis of seismic performance factors based on APOA
The classical pushover analysis obtains structural capacity curves under fixed load mode, and cannot consider stiffness degradation and period change due to structural plasticity. So adaptive pushover analysis (APOA) is performed based on OpenSees platform and used to obtain structural capacity curves in this paper. The analysis process of seismic performance factors is as follows:

1. Develop structural capacity curve in form of base shear (\(V_b \)) and top displacement (\(\Delta \)) by APOA.
2) Convert $V_b-\Delta$ curve to bilinear elastic-plastic model based on equal energy theory and solve the structural equivalent yield strength (V_y), the structural initial stiffness (k_0) and the structural yield displacement (Δ_y).

3) Calculate design base shear (V_d) by bottom shear method or spectrum response method.

4) Calculate R_s by formula $R_s=V_y/V_d$.

5) Solve top displacement (A_e) corresponding to the maximum inter-story drift ratio of 2% and Calculate R_μ by formula $R_\mu=V_e/V_y=k_0A_e/V_y$.

6) Calculate R by formula $R=R_s\times R_\mu$.

7) Calculate C_d by formula $C_d=\Delta_{max}/\Delta_d$.

3.2. Analysis of seismic performance factors based on IDA

Incremental dynamic analysis (IDA) in which individual ground motions are scaled to increasing intensities can represent structural performance subjected to one ground motion record of different intensity levels. The analysis of seismic performance factors combine IDA and dynamic time history analysis. The process is as follows:

1) Develop structural dynamic capacity curve in form of base shear (V_b) and top displacement (Δ) by IDA, and solve base shear (V_y), top displacement (Δ_{max}) and spectral acceleration ($S_{a0.002}$) corresponding to the maximum inter-story drift ratio of 2%.

2) Solve base shear (V_i) and top displacement (Δ_i) by linear time history analysis of structures subjected to ground motion records corresponding to spectral acceleration of $S_{a0.002}$.

3) Calculate design base shear (V_d) by bottom shear method or spectrum response method.

4) Calculate R_s, R_μ, R and C_d by formulas $R_s=V_y/V_d$, $R_\mu=V_e/V_y$, $R=R_s\times R_\mu$ and $C_d=\Delta_{max}/\Delta_d$.

4. Seismic performance factors analysis of RC frame with infilled walls

4.1. Design and analysis of structural models

The height of buildings has an important influence on structural seismic performance. According to the current code, representative RC frames and RC frames with infilled wall in high intensity region are designed. The number of stories of structural models is 3, 5 and 10 respectively with same plane layout, and infilled wall is full layout. The 5-story RC frame with infilled masonry walls is shown in Figure 1. Design data of structural models is in References 13.

Finite element analysis is performed using OpenSees platform. And the rationality and reliability of numerical analysis is verified by comparison with results of pseudo static tests and shaking table tests [13, 14]. The finite element model of the 5-story RC frame with infilled walls is shown in Figure 2.

4.2. Analysis of seismic performance factors

Table 1 provides values of seismic performance factors of structural models based on APOA and IDA.
Table 1. Seismic performance factors based on APOA and IDA.

Analysis method	Structural models	Number of stories	Seismic performance factors			
			R_s	R_μ	R	C_d
APOA	RC frames	3	1.12	5.14	5.76	4.18
		5	1.26	3.71	4.66	3.13
		10	1.52	2.87	4.35	2.95
	RC frames with infilled walls	3	2.06	10.67	21.97	19.74
		5	2.11	5.59	11.78	7.89
		10	2.49	3.59	8.94	3.82
		3	1.54	4.38	6.75	4.15
IDA	RC frames	3	1.45	4.02	5.84	3.42
		5	2.64	7.17	18.92	6.13
		10	3.44	4.63	15.91	5.69
	RC frames with infilled walls	3	3.21	8.07	25.90	9.26
		5	2.64	7.17	18.92	6.13

Values of R_s, R_μ, R and C_d of RC frames with infilled walls are greater than those of RC frames. The influence of infilled walls on seismic performance factors diminishes with the increasing structural height. Based on both APOA and IDA values of R_μ, R and C_d increases with the structural height. Values of R_s and R based on IDA is greater than that based on APOA. According to principle of minimum value, Values of R_s, R_μ, R and C_d of RC frames is 1.12, 2.40, 4.35 and 2.95, and Values of R_s, R_μ, R and C_d of RC frames with infilled walls is 2.11, 3.59, 8.94 and 3.82.

4.3. Comparison of seismic performance factors

Recommended values of seismic performance factors are proposed in design codes by physical tests, numerical simulation analysis, seismic damage investigation and engineering experience. Numerical simulation analysis can develop seismic performance factors of innovative structures and provide reference values to seismic performance factors of general structures. Table 2 compares values of seismic performance factors of this paper with that of different design codes. It is shown that analysis methods and results in this paper of seismic performance factors of RC frames with infilled walls are reasonable and reliable.

Table 2. Comparison of seismic performance factors.

Country	Design code	R_s	R	C_d/R
America	NEHRP	3.0	1.25-8	0.5-1.0
America	UBC	2.5	4-12	0.375
Japan	BSL 1988	1.0-1.8	1.8-4	—
Europe	EC8	≥2.0	1.5-5.85	1.0
New Zealand	NZS4203	1.0-1.5	1.88-9	—
Canada	NRCC200	1.3-1.7	1.95-6.80	0.6
China	GB50011-2010	1.0	2.86	—
China	CECS160: 2004	—	1.82-4	0.97-1.76
This paper	—	1.12-2.11	4.35-8.94	0.42-0.68

5. Conclusion

Seismic performance factors of RC frames with infilled walls based on APOA and IDA is analyzed. And conclusions are as follow through comparative analysis:

(1) The range of R_s, R_μ, R and C_d of RC frames with and without infilled walls is 1.12-2.11, 2.40-3.59, 4.35-8.94 and 2.95-3.82. It is shown that analysis methods and results in this paper of seismic performance factors of RC frames with and without infilled walls are reasonable and reliable by comparison.
(2) Seismic performance factors analysis is very sensitive to analysis methods. Comparing to IDA method, estimation of seismic performance factors based on APOA is generally conservative. And comparing to RC frames, RC frames with infilled walls is more sensitive to analysis methods.

(3) Structural height has significant influence on seismic performance factors. R_s increases with increase of structural height but R_μ, R and C_d decrease. Values of R_s, R_μ, R and C_d of RC frames with infilled walls is greater than that of RC frames. The influence of infilled walls on seismic performance factors diminishes with the increasing structural height.

Acknowledgments
The work described in this paper was fully supported by grants from the National Natural Science Foundation of China (Project No. 51608229) and University of Jinan Scientific Research Foundation (Project No. XBS1450 and XKY1909).

References
[1] Yang, W.X., Gu, Q., Song Z.S., et al. (2012) Response modification factor R and overstrenth factor Ω of y-eccentric braced steel frame. Engineering Mechanics, 29: 129-136.
[2] Zhao Y.F., Tong G.S. (2009) Inelastic displacement amplification factor for ductile structures with the same strength reduction factor. Journal of Harbin Institute of Technology, 41: 107-110.
[3] Shao J.H., Tang B.J. (2014) Seismic force modification factor and displacement amplification factor of moment resisting steel frame-thin steel plate shear wall using incremental dynamic analysis. China Civil Engineering Journal, 47: 139-144.
[4] Chen W.H., Cui S.S., Lu D.G, et al. (2014) Capacity analysis for structural displacement amplification factor of reinforced concrete frames. China Civil Engineering Journal, 47: 47-55.
[5] Cui S.S., Lu D.G., Song P.Y. (2014) Effects of infill walls and cast-in-place slabs on global overstrench of RC frames. Journal of Building Structures, 35: 30-36.
[6] Zhai C.H., Xie L.L. (2007) Study on overstrench of RC frame structures. Journal of Building Structures, 28: 101-106.
[7] Yang J.F., Gu Q., He T., et al. (2010) Response modification factor and displacement amplification factor for inverted V-CBSFs based on IDA (I): Method. Earthquake Engineering and Engineering Dynamic, 30: 64-71.
[8] Zhou J., Hu X.Q., Wang H.Y. (2013) Seismic Ductility Reduction Factor for Flexural-Type Structures with Vertical Irregularities of Bearing Capacity. Natural Science Journal of Xiangan University, 35: 27-33.
[9] Zhou J., Bu G.B., Wang H.Y. (2014) Ductility reduction factor for vertically irregular structures under strong earthquake actions. Engineering Mechanics, 31: 189-195.
[10] Li C., Xu B.R., Gu Q. (2007) Research on Structural Influencing Coefficient of Moment-resisting Steel Frames. Building Structure, 37: 43-45.
[11] Kurban C.O., Topkaya C. (2009) A numerical study on response modification, overstrench and displacement amplification factors for steel plate shear wall systems. Earthquake Engineering and Structural Dynamics, 38: 497-516.
[12] FEMA. (2009) Quantification of Building Seismic Performance Factors, FEMA P695, prepared by the Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C.
[13] Li Y.J., Lu D.G., Wang Z.Y. (2017) Overstrench factor of RC frame with infilled walls based on adaptive POA and IDA. Engineering Mechanics, 34: 197-201.
[14] Lu D.G., Li Y.J., Wang Z.Y. (2013) Numerical simulation of seismic performance of reinforced concrete columns under biaxial lateral load JOURNAL OF SOUTHEAST UNIVERSITY (Natural Science Edition), 43: 414-419.