Experimental and numerical investigations were carried out to understand cavity formation on a water and a low-melting-point metal bath. A cavity formation behavior was classified by the critical gas velocity of the droplet formation. The depth of the cavity formed in the near field of the gas jet was reasonably predicted by numerical simulation. An empirical equation was newly proposed for the cavity depth as a function of a modified Froude number.

Key words: cavity depth; cold model; low-melting-point metal; wood's metal; numerical simulation; modified Froude number.

Synopsis: Experimental and numerical investigations were carried out to understand cavity formation on a water and a low-melting-point metal bath induced by gas blowing from a top lance set in the near field of the bath surface. A cavity formation behavior was classified by the critical gas velocity of the droplet formation. The depth of the cavity formed in the near field of the gas jet was reasonably predicted by numerical simulation. An empirical equation was newly proposed for the cavity depth as a function of a modified Froude number.

Key words: cavity depth; cold model; low-melting-point metal; wood's metal; numerical simulation; modified Froude number.

1. 緒言

転炉における鉄鋼精錬プロセスでは、脱炭等のため上吹きランスから高流量の酸素ジェットを溶浴表面に吹き付ける。この強い酸素ジェットにより、溶浴表面には窪みができるとともに、溶浴は激しく運動し、スピッティングやスプラッシュ等が発生する。この溶浴運動によって生成される液滴群は、ダストとなって金属の損失をもたらすだけではなく、上吹きランスや炉壁等に付着して多くの不都合につながることから、その生成および飛散挙動の解明が望まれている。\(^{1,2,3}\)

一般的に、上吹きランスが溶浴表面に近いほど溶浴構造は激しくなり、液滴飛散量が多くなるだけではなく、上吹きランスへの地金の付着量も多くなり操業上好ましくない。そのため、実操業では上吹きランス下端から溶浴表面までを距離にランスの内径で除した値はおよそ10以上の範囲に設定されている。すなわち、このような設置位置によって溶浴表面の挾拌力は弱くなり、大きなエネルギー損失が生じることになる。よって、何らかの方法で窪みの形成に起因する溶浴表面の挾拌と液滴飛散を抑えることができれば、上吹きランスを溶浴表面に近い位置に設置して効率の良い操業が可能となる。

これまで、上吹きランスからのガス吹き付けによる窪み形成と溶浴表面の挾拌について、上吹き操業条件を考慮して、ランス下端から溶浴表面までの距離はランス内径と上の比が10以上の範囲で多くの実験が行われてきた。このようなランス位置が高い場合の窪み深さは、後述の運動量数の値で整理できることが分かっている。この区間（Far field）では、噴流の中心軸上の速度がほぼランス出口からの距離xに反比例して減少し、噴流幅はxの比例して大きくなる。ところが、ランス近傍ではこの関係式は成立せず、運動量数の関数として提案されている従来の実験式は適用できない。本研究では、上吹きランスによる強攪拌を得るため、エネルギー損失が比較的小さい領域であるランス出口における噴流の特性量ではなく、溶浴表面における特性量に着目して、窪み形成と溶浴表面の挾拌、ならびに液滴の発生について、モデル実験と数値計算の両面から解明を行うことを試みた。

転炉内の溶浴流動場の現象は、溶鋼と水の動粘度がほぼ等しいことを利用して水モデル実験により評価されることが多い。\(^{4,5}\) 液体として水の他にアルコール類やグリセリン水溶液、四塩化炭素を用いた従来のコールドモデル実験に、スピッティングやスプラッシュ発生の源となる窪みの形成については、液体の表面張力と粘度の影響は小さいといわれている。\(^{6}\) ただし、これらのコールドモデル実験においては、液体の粘度は大きく変化させることができたが、表面張力については水の表面張力の73 mN/mよりも約30%小さくできる程度である。したがって、窪みの形成に関する表面張力の影響に関しては、溶鋼
と水とで表面張力が約20倍も異なることから、コールドモデル実験の結果がそのまま実機に適用できるとは限らない。また、表面張力の影響を受ける液滴の大きさや形状についても、水モデルで得られた結果とは異なる可能性が高い。スピッティングやスプレッシュについては過去多くの調査がなされているが、溶融金属の滴みに関する研究は、h/d_wが約10よりも十分大きい場合についてしか見られていない。なお、数値解析に関しても、水を対象としたものがほとんどであり、溶融金属を対象とした解析モデルは、近年研究が進みつつあるが、まだ数が少ないのが現状である。

本報では、溶表面近傍に設置した上吹きランスからのガス噴流の吹き付けによる自由界面挙動に及ぼす液体の物性値の影響を解明することを目的に、ランス出口と溶表面が近い条件下において、低融点金属であるウッドメタルと水を用いた実験に加えて数値解析を実施し、まず液面の滴み深さ（以下、滴みの貫入深さと呼ぶ）について調査した結果について報告する。

2. コールドモデル実験の装置と方法

2.1 低融点金属を用いたコールドモデル実験

Fig.1に実験装置の模式図を示す。上吹きランスの内径 ($d_r = 10$ mm) を比べて十分大きな円筒容器（直径 $D = 200$ mm) に、低融点金属であるウッドメタル（密度 $\rho_w = 9560$ kg/m3、動粘度 ν_1 = 0.341×10^{-6} m2/s、表面張力 σ_1 = 431 mN/m, 融点73℃) の溶深h_1 = 100 mmまで満たしておき、容器下部からヒーターで温め溶融させ、実験中に温度がほぼ一定に保つようにヒーターの出力を調整した（浴温105℃）。実験は大気開放環境下にて行うため、表面下には酸化膜（スカム）が形成されるが、各実験の前には各度除去した。上吹き錐形ランスは、液面以上$h = 8, 17$ mm ($h/d_w = 0.8, 1.7$) の位置に下向きに設置した。空気流量を$Q_g = 44.6$から129 L/minの間で変化させ、液面に向けて垂直に吹き付けた。ランス出口でのガスジェット吐出速度は、空気の密度を一定とするときでv_1 = 9.46～27.4 m/sとなる。空気の温度は27℃（=300 K）、密度は$\rho_g = 1.17$ kg/m3、動粘度は$\nu_1 = 15.29 \times 10^{-6}$ m2/sである。

ガスジェットの衝突によって浴表面上に形成される滴みの深さの最大値、すなわち貫入深さh_iを測定した。測定は、低融点金属が不透明であるため、低融点金属内に熱電対を浸漬させる方法を採用した。以下に測定方法の詳細を示す。始めに熱電対の先端を気相中に存在するように設置し、ガス吹き付け後、熱電対の先端を徐々に低下させた。熱電対の先端が浴表面よりも上方にあると指示温度は浴温に比べて低いが、低融点金属内に侵入した瞬間に浴温の105℃に示す。このときの熱電対位置とガス吹込み前の初期静止浴表面との距離を貫入深さh_iとした。ガス吹き付け中の溶表面は時間変動しており、時間変動の影響を小さくするために、測定は各実験条件に10回実施し、その平均値を採用した。なお、各条件での測定値のばらつきは、平均値に対し±20%程度であった。

2.2 水を用いたコールドモデル実験

実験装置にはFig.1に示した低融点金属での装置と同じものを用いた。低融点金属の場合と同様に上吹きランスの内径は$d_r = 10$ mm、透明アクリル製円筒容器の内径は$D = 200$ mmである。温度27℃（=300 K）の水を円筒容器内に浴深h_1 = 100 mmまで満たしておき、上吹き錐形ランスから27℃の空気を吹き付けた。水の密度は$\rho_w = 996.5$ kg/m3、動粘度は$\nu_1 = 0.854 \times 10^{-6}$ m2/s、表面張力は$\sigma_1 = 71.7$ mN/mである。上吹きランスの出入口の初期静止浴面までの距離は低融点金属の場合と同様に$h = 8, 17$ mm、空気流量は$Q_g = 17.6～129$ L/minとした。貫入深さh_iは浴の側面からスチールカメラを用いて測定した。この場合も各実験条件に10回測定を行い、その平均値を採用した。

本研究で用いた3種類の流体の物性値をまとめてTable 1に示す。水とウッドメタルの表面張力は、約6倍異なる。
4. 実験結果ならびに数値解析結果

4・1 貫入深さとガス流量との関係に関する従来知見

これまでに，鋳直上吹き式によるガス吹き付けによって形成される溶表面の変動と，それに伴うスピッティング現象などを整理している研究はいくつか見られる23-25）．徳田は，本実験に基づき鋳直上吹き式によるガス吹き付けによって形成される溶表面の変動，それに伴うスピッティング現象などを整理している23）．Fig.3に徳田による図表を一部図示する．上吹き式内径の一定にして溶表面の貫入深さを変化させたとき，スピッティングの発生は大きく変わることがわかった（ステージA）．この状態は，スリットの幅の一定で，かつ貫入深さを変化させたとき，スリットの幅が大きいほど貫入深さの影響が大きく出る（ステージB）．この貫入深さの大きいほど，スリットの幅が大きいほど貫入深さの影響が大きく出る（ステージC）．貫入深さの大きいほど，スリットの幅が大きいほど貫入深さの影響が大きいことが示された（ステージD）．なお，ステージDはマッハ数の大きい高速スリットの場合のみみられるという
いる。ここで，v^*は浴表面における噴流の速度 [m/s]，c は音速 [m/s] である。本研究では，第一段階として喷流速度の比較的小さいステージA～Cを対象とし，実験結果や数値解析結果を従来の知見と比較・検証を行った。また，各ステージに対し，貫入深さh_iの予測式を構築することを試みるとともに，各ステージの境界となるガス流量条件についても検討を行った。

なお，Fig.3には上吹きジェットによって生じる溝の回復現象は含まれていないが，吹き付け条件によってはステージCで溝の部分が浴中心軸の周りを回転することもある[20]。また，溝の半径方向への挾動もみられることもあるが，これら現象が貫入深さに及ぼす影響は小さい。

4.2 実験結果

Fig.4に水でのガス噴流の貫入深さh_iを，Fig.5に低融点金属でのガス噴流の貫入深さh_iを示す。まず水の場合に着目すると，ガス流量Q_gが大きくなるにつれて貫入深さh_iは大きくなっている。これは，ガス流量が大きくなると浴表面に衝突する噴流の慣性力が大きくなるためである。また，ランス位置h_oの影響はほとんど見られなかった。これ

は，本条件での浴表面に衝突する噴流の速度v^*が，ほとんど変わらなかったためと推察されている。Kumagai and Iguchi[21]によれば，ランス出口における噴流速度v^*と浴表面における噴流速度v^*の間に次の関係があるとしている。

$$v^*_i = v^*_o \left(\frac{h_i}{d_m} < 1.26 \right) \quad (1a)$$

$$= \frac{v^*_o}{0.00523 \left(\frac{h_i}{d_m} - 1.26 \right) + 1} \quad (1.26 \leq \frac{h_i}{d_m} < 17.2) \quad (1b)$$

$$= \frac{v^*_o}{0.167 \left(\frac{h_i}{d_m} - 0.543 \right)} \quad (17.2 \leq \frac{h_i}{d_m}) \quad (1c)$$

$$v^*_i = \frac{4Q_g}{\pi d_m^2} \quad (2)$$

ここで，h_iはガス吹込み前の浴表面からランスまでの距離，Q_gはガス流量，d_mはランス内径である。ランス位置が$h_i/d_m < 1.26$の領域にある場合には，浴表面はいわゆるガス噴流のポテンシャルコア内に存在することになる。本条件では，h_i/d_mが0.8，1.7であり，式(1)から計算するとほぼ$v^*_i = v^*_o$となる。

Fig.5に示すように，低融点金属のガス流量$Q_g = 125 \text{ L/min}$の条件にて，ランス位置h_oの違いより，貫入深さh_iが異なる結果が得られた。すなわち，式(1)から計算されるように，浴表面における噴流速度v^*_iがほぼ等しいにも関わらず，$h_o = 17 \text{ mm}$の場合の貫入深さh_iが$h_o = 8 \text{ mm}$の場合より大きくなった。この原因は，熱電対を用いた測定精度の問題であると推察される。ガス流量Q_gを増加させることで浴面変動が大きくなり，それにともない貫入深さh_iの変動も大きくなるが，熱電対による測定はその変動の瞬時の値を計測するため，特に大流量となる条件では測定精度に課題がある。このため，このような貫入深さh_iの差が生じ考えられる。

一方，h_iはガス流量Q_gの2乗に比例して増加しているように見えるが，水に比べて低融点金属の方が極めて小さい。密度の大きい低融点金属の方が，大きな浮力を生み出し，溝の形成を抑えるためである。

4.3 数値解析結果

Fig.6に，空気噴流を吹き付けた際の水浴と低融点金属浴での貫入深さh_iの時間履歴をそれぞれ示す。いずれの浴でも空気噴流吹き付け後の貫入深さが最も大きく，それ以降の貫入深さは時間とともに減衰していき，やがて定常的な振動状態に落ち着く様子が観察される。定常的な振動状態における貫入深さの時間平均値を実験結果と比較した。

Fig.7に，空気噴流の低融点金属浴への貫入深さh_iに関する数値解析結果を実験結果と比較して示す。図より，数値解析結果は実験結果と比較的良く一致していることがわかる。また，本論文には示していないが，水浴への貫入深さ
5. 考察

5・1 貫入深さ的予測式の導出

従来、ステージA～Dのうち特に液滴の発生に関係の深いステージC、Dについては数多くの研究がなされており、液滴飛散に関する貴重な知見が蓄積されている。しかし、ステージA、Bについては知見が少ない。本研究では、特にステージA～Cに着目し、ステージAにおける貫入深さの推定式を構築するとともに、ステージCでの既存の推定式と比較し、h_j/d_mが小さい場合（Near field）における貫入深さの推定式を検討した。

$\frac{\pi d_j^2}{4} \rho_n v_n^2 = \frac{k}{4} \rho_L g h_j + \pi d_j \sigma \sin \theta \cdots \cdOTS

Fig. 6. Time history of cavity depth by simulation.

Fig. 7. Cavity depth by experiment and simulation.

Fig. 8. Wave motion on low-melting-point metal bath.
関係式 (1) を用いた。

ステージ A において、溶みの周辺はほとんど変成が
ことなく水平面に滑らかにつながっているとみなせば、角
度 θ は十分小さいとみなすことができる。そこで、表面張
力による力を無視できると仮定すれば、式 (3) は次のよ
うになる。

\[
\frac{\pi d^2}{4} \frac{\rho y^2}{2} = k \frac{\pi d^2}{4} \rho_i g h_j
\]

上式 (4) から溶みの貫入深さ \(h \) は次式で与えられる。

\[
h = \frac{\rho y^2}{2k \rho_i g} = d_a \left(\frac{4}{\pi} \right)^{2} \frac{Fr_m}{2k} = \frac{0.811}{k} d_a Fr_m
\]

ここで、\(Fr_m \) は慣性力と浮力の比を表すフロード数の一種
であり、速度を表表面における噴流速度 \(v' \) とした時の修正
フロード数と呼ぶこととする。式 (5) は次のように無次元
表示できる。

\[
h = \frac{0.811}{d_a} Fr_m
\]

調整係数 \(k \) の値は後で示すように、実験結果や数値解析結
果と比較することによって決定する。

5.1.2 ステージ B

ステージ B でも式 (7) が近似的に適用できると思われる
が、溶みの周辺が複雑な形状を示し、表面張力の影響を出
てくる可能性がある。このステージでの貫入深さの整理法
については、今後実験結果や数値解析結果を蓄積してから
行いたい。

5.1.3 ステージ C

徳田によれば、ステージ C では四つの過程 (i) ～ (iv) が
繰り返される。過程 (i) に示すようにステージ B よりも溶
みは深くなり、(ii), (iii) では気柱の先端が気泡のように
なる。(iii) のように気柱の入口が狭まると、噴流が溶み形
成に寄与することなく上方へ飛ばされ続けるようになる。こ
れにより、溶みの気泡が浮上がり溶表面に到達し、過程
(iv) にて滴液が生じる。このステージ C とされる領域では
\(h/d_a \) の大きい場合に対して多くの実験式が報告されてい
る [6,13-16]。以下に、水を溶融金属に対して提案された実験
式についていくつか示す。なお、このようなガス吹き付け
による溶み形成挙動の整理に、以下の式 (8) で定義される
修正フロード数 \(Fr_m \) がよく用いられている。

\[
Fr_m = \left(\frac{\pi}{4} \right)^2 \frac{\rho y^2}{\rho_i g d_a}
\]

先述の式 (6) においても修正フロード数を定義したが、式
(6) の修正フロード数は速度を表表面における噴流速度 \(v' \)
とした時の修正フロード数であるのに対し、式 (8) で定義
した修正フロード数は速度をノズル出口における噴流速度
\(v_r \) とした時の修正フロード数であることと留意されたい。
溶表面での溶み形成挙動を整理するには、溶表面におけ
る噴流速度を用いた修正フロード数を用いるのが望ましい
が、以下に示す実験式を導出する過程からは溶表面におけ
る噴流速度を算出することが困難であるため、従来の整理
方法であるノズル出口における噴流速度を用いた修正フ
ロード数の形で示している。

(1) Tanaka and Okane の実験式

Tanaka and Okane は水空気系に対して次式を提案してい
ている [10]。

\[
h = \frac{Fr_m \left(1 + \frac{h_i}{h_0} \right)^2}{2 \pi} \frac{p}{\rho_i g h_0} = \frac{Fr_m}{2 \pi} \frac{M_m}{p}
\]

ここで、\(p \) は表表面におけるガスの運動量、\(M_m \) は運動
量数 [-] であり、それぞれ次式で与えられる。

\[
p = \frac{m_v v_s}{\rho_i g h_0} = \frac{\pi d_a^2}{4} \frac{\rho y^2}{\rho_i g h_0} = \frac{\pi}{4} \left(\frac{d_a}{h_0} \right)^3 \frac{Fr_m}{\rho_i g d_a}
\]

ここで、\(M_m \) の成立範囲は、\(M_m = 0.002 \sim 0.25 \) であるが、水空気
系の本測定値は、\(M_m = 0.112 \sim 0.158 \) の範囲で得られてい
る。したがって、水空気系の本測定値のうち \(M_m \) の小さ
い所、すなわち臨界修正フロード数0.911の近傍の測定値
は式 (12) ととかくして比較可能な。

(2) Ishikawa などの式

Ishikawa などは水空気系の貫入深さ \(h_i \) に対して次式を提
案している [11]。

\[
h_i = \frac{h_m}{d_a} \exp \left[-1.77 \frac{h_m}{h_m} \right]
\]

ここで、\(h_m \) は合成高さをゼロ (\(h_m = 0 \)) とした際の溶み深
さである。また、式 (13) 中のいくつか無次元量を本論文の
記号に直すと、
\[
\begin{align*}
\frac{h_{\text{dn}}}{d_{\text{in}}} &= 0.426 \left(\frac{Q}{d_{\text{in}}^2 \sqrt{gd_{\text{in}}}} \right)^{0.23} \\
&= 0.426 \left(\frac{\pi}{4} \right)^{0.23} \left(\frac{\pi^2 \rho_s}{16 \rho_s} \right)^{0.23} \left(\frac{\rho_s v_n^2}{\rho_i g d_{\text{in}}} \right)^{0.23} = 4.04F_{\text{rn}}^{0.23} \\
\frac{h_{\text{f}}}{h_{\text{f}}} &= \frac{h_{\text{f}}}{4.04d_{\text{in}}F_{\text{rn}}^{0.23}}
\end{align*}
\]

となる。ただし、上式の変形過程において、液体と気体の密度には、本実験での水と空気の値を与えた。式 (14)，(15)を式 (13) に代入すると次式が導かれる。

\[
\frac{h_{\text{f}}}{d_{\text{in}}} = 4.04F_{\text{rn}}^{0.23} \exp \left[-0.438 \frac{h_{\text{f}}}{d_{\text{in}}} F_{\text{rn}}^{-0.23} \right]
\]

式 (16) の成立範囲は, \(h_{\text{f}}/d_{\text{in}} = 0.03 \sim 0.65, h_{\text{f}}/d_{\text{in}} = 0 \sim 100 \)であり、本研究の範囲は、\(h_{\text{f}}/d_{\text{in}} = 0.133 \sim 0.682, h_{\text{f}}/d_{\text{in}} = 0.8 \sim 1.7 \) であり、式 (16) を水－空気系の本実験結果と比較することにより可能である。

(3) Kumagai and Iguchiの式
Kumagai and Iguchiの式は空気の実験式を提案している。

\[
\frac{h_{\text{f}}}{d_{\text{in}}} = 4.1F_{\text{rn}}^{0.23} \quad (F_{\text{rn}} \geq 2, h_{\text{f}}/d_{\text{in}} \leq 20)
\]

本研究の範囲は、\(F_{\text{rn}} = 0.07 \sim 5.7 \)であり、\(F_{\text{rn}} \geq 2 \)の範囲で比較可能である。ただし、式 (17) の超音速の適用範囲の上限については分かっていない。

(4) Koria and Langeの式（溶鉄－酸素系）
前述のように、溶鉄－酸素系の貫入深さについてはランス位置の高い場合（\(h_{\text{f}}/d_{\text{in}} > 10 \)）を対象として多くの研究が行われている（13-18）。Koria and Langeはそれらの結果をまとめ次式を提案した（19）。

\[
\frac{h_{\text{f}}}{h_{\text{f}}} = 4.69M_{\text{m}}^{0.66}
\]

\[
M_{\text{m}} = \frac{p}{\rho_i g h_{\text{f}}} = \frac{\pi}{4} d_{\text{in}} \frac{1.27 (p_s - p_i)}{\rho_i g h_{\text{f}}^{1.7}}
\]

ここで、\(p_i \)は高圧酸素ガス供給容器内の圧力 [Pa]、\(p_s \)は大気圧 [Pa] である。式 (18) の運動量数\(M_{\text{m}} \)の指針が0.66であり、2/3に近いことから、ステージB近傍で適用できるものと思われが、この点の詳細については、前述のように実験結果や数値解析結果が不明確であることから今後の検討課題としたい。

以上のことをまとめると、貫入深さが修正フルード数\(Fr_n \)の増加につれて、すなわちステージAからCへと移っていくにつれて\(Fr_n \)の1乗から1/3乗へと変化していくと推察できる。

5.2 ステージCの下限境界に関する考察
ステージCの過程 (iii) では、気柱の先端がくびれて気泡のようにになっている。このことは、気泡巻き込み現象の起こる臨界ガス流量あるいは臨界速度を求めれば、おそらくあるが、ステージCとされる領域で提案された式 (17) の成立する範囲の下限を予測できることを示唆している。なお、式 (7) の成立範囲は臨界速度よりも十分小さないい所にある。

周知のように、連続鉄造鍛型内ではモールドバウダーの巻き込みによる品質の劣化が一般的な課題であり、その原因となる巻き込み機構について多くの研究が行われてきた（20-31）。今までに多数の巻き込み機構の報告されているが、まだ定説はない。その中から提案されている機構の一つに次のようなものがある。溶鉄ノズルの出口から鍛型内に入った溶鋼が鍛型の側壁に衝突して溶鉄ノズル側へ跳ね返り、モールドバウダー層に接触するとモールドバウダーと溶鋼の界面には強いせん断応力が働く。溶鋼の速度がある臨界速度\(V_c \)を超えると、モールドバウダーが崩れ溶鋼中に取り込まれる。これを定常円軸流によるモールドバウダー巻き込みと呼ぶことになる。臨界速度\(V_c \)を求めるに際し、浅井はモールドバウダー層から球状のモールドバウダー滴を引き出すに要する仕事に着目し、臨界速度に対して次式を提案した（31）。

\[
V_c = \left[\frac{48 \cdot g (p_s - p_i) \sigma_{\text{sl}}}{\rho_s^2} \right]^{1/4}
\]

ここで、\(\rho_s \)はモールドバウダーの密度、\(\sigma_{\text{sl}} \)は界面張力である。

溶表面に吹き付けた空気が気泡となって液体中に巻き込まれる現象は、上記モールドバウダー巻き込み現象に類似している。そこで\(V_c, \rho_s, \sigma_{\text{sl}} \)を本論文の記号\(v_{\text{cr}}', \rho_{\text{cr}}, \sigma \)に置き換え、液が水と低融点金属、気体が気泡の境界について\(V_{\text{cr}}' \)を計算するとつきのようになる。

(1) 水－空気系

\[
v_{\text{cr}}' = \left[\frac{48 \cdot g (p_s - p_i) \sigma}{\rho_s^2} \right]^{1/4}
\]

\[
= \left[48 \cdot 9.8(909.17 - 0.073) \right]^{1/4} = 12.6 \left[\frac{m}{s} \right]
\]

(2) 低融点金属－空気系

\[
v_{\text{cr}}' = \left[\frac{48 \cdot 9.8(9473 - 1.17) \cdot 0.431}{1.17^2} \right]^{1/4} = 34.4 \left[\frac{m}{s} \right]
\]
低融点金属－空気系の臨界速度の方が水－空気系の値よりも3倍ほど大きいことが分かる。

本実験条件下のランス出口速度は前述のように、v_i = 9.46～27.4 m/sである。またh/d_a = 0.8, 1.7であるから、式 (1) から判断して、v_iはv_eにほぼ等しいとおける。水－空気系の臨界速度はv_e = 12.6 m/sであり、v_e > 12.6 m/sにおける水－空気系の貫入深さhの測定値は式 (12), (17) などのようにF_r_mの1/3乗で近似できる可能性がある。一方、低融点金属－空気系の臨界速度v_e'は34.4 m/sであり、ガス流量Q_a < 162.1/minとは式 (7) で、それ以上ではF_r_mの1/3乗で近似できると考えられる。

なお、本研究で対象としている流れ場の式 (20) の適用性について少し言及する。浅井は、球形のモールドバウダー滴が溶鋼とモールドバウダーの界面を通過するとき、モールドバウダー滴の有する慣性力による仕事がモールドバウダー滴に働く浮力による仕事と表面張力による仕事の和よりも大きければ、モールドバウダー滴が溶鋼中に巻き込まれると考え、滴の直径を実数値を持つという条件下臨界流速に対する式 (20) を導いている。モールドバウダーを空気、溶鋼を水やウッドメタルに置き換えるば、いずれも流体であるから同じことが言えると考え、本研究では式 (20) を適用した。ただし、本研究の場合、気体は液体よりも変形しやすく、気泡径の倍にもよるが球形の気泡が巻き込まれることは考えにくい。また、気泡速度が大きければ粘性散逸も考慮する必要があるとの予想された。したがって、式 (20) はあくまでも近似式であって、詳細については今後の検討が必要である。

5・3・3 予測式での整理

5・3・3・1 水－空気系

Fig.9, 10に各ランス高さでの水－空気系の無次元深さh/d_a, の測定値と数値計算値を修正式F_r_mに対するで示す。なお、他の研究者によって提案されている水－空気系の予測式 (12), (16), (17) もそれぞれの適用範囲に応じて示した。それらの式はF_r_mではなくFr_mの関数として表されているものもあるが、本実験の範囲ではランス位置が溶鋼面に近い(h/d_a = 0.8, 1.7) ことから、式 (1) から判断して、v_iはv_eにほぼ等しいとおける。つまり、v_i = v_e' となるので、Fr_m = Fr_m とおける。

図より、ランス高さが大きい場合には従来の予測式は比較的良好一致を示すが、ランス高さが小さい場合には大幅に乖離する傾向が見られた。これは、h/d_aが10より大きい領域で提案された式であるため、特にランス高さが小さい場合には適用することが困難であると示している。そこで、h/d_a < 10の領域における貫入深さの推定式を検討した。水－空気系の臨界速度を与える式 (21) の12.6 m/sを用いて修正フロード数の臨界値を求めるとF_r_m = 1.17となる。図10の実験および解析条件では、臨界值以下は水準であるが、Fr_mに対し直線的に増加していることがわかる。つまり、先述のように流速v_e'の二乗に比例しているということを意味している。実験での測定値と数値解析結果の両方に対し最小二乗法を適用すると、ステージAでの貫入深さは以下の式 (23) にて表すことができる。

\[
\frac{h}{d_a} = 1.3F_{r_m} \quad \text{(23)}
\]

このときの調整係数は、式 (7) より \(k = 0.624 \). となる。Fig.3のステージAの模式図から考えて、1よりも小さいkの値は妥当であるが、データが不足しているためこの値と断定することはできない。

一方、臨界値以上の領域に関しては、修正フロード数F_r_mが2～6の範囲では既存の推定式とはやや乖離が見られる。そこで、これらの範囲においても適用できる推定式として、最小二乗法にて以下の式 (24) を提案する。

![Fig. 9: Dimensionless cavity depth by modified Froude number (Water, h_e = 8 mm).](image1)

![Fig. 10: Dimensionless cavity depth by modified Froude number (Water, h_e = 17 mm).](image2)
Fig. 11. Dimensionless cavity depth by modified Froude number (Low-melting-point metal, \(h_i=8\) mm).

Fig. 12. Dimensionless cavity depth by modified Froude number (Low-melting-point metal, \(h_i=17\) mm).

\[
\frac{h_i}{d_m} = 1.37Fr_m^{0.73} \tag{24}
\]

以上のようによ、水の場合には臨界値に対して式 (21) が
近似的に適用でき、修正フロード数の臨界値 \(Fr_m'=1.17\) より
小さいときには \(Fr_m'\) の1/3乗で、臨界値よりも大きいときには
\(Fr_m'\) の0.73乗で近似できることがわかった。先に述べた
ように \(Fr_m'\) の1/3乗では近似できなかったが、これはラ
ンスが浴面に近い \(h_i/d_m\) が10よりも十分小さい (Near field)
ためである。臨界値よりも大きいときに \(Fr_m'\) の0.73乗で
近似できることから、さらに \(Fr_m'\) が大きい条件では1/3乗
に近づくと推測されるが、これら条件に関しては今後の検
討課題としたい。

5.3.2 低融点金属-空気系

Fig.11. 12にランス高さでの低融点金属-空気系の無
次元深さ深さ \(h_i/d_m\) の測定値と数値計算値を修正フロード
数 \(Fr_m'\) に対して示す。これらも同様に、他の研究者によっ
て提案されている推定式をそれぞれの適用範囲に応じて示
している。図より、従来の推定式とは大幅に異なっている
ことがわかる。これは、\(h_i/d_m\) が10より大きな領域で提案さ
れた式であるため、今回のような条件では適用することが
困難であると示している。そこで、\(h_i/d_m < 10\) の領域におけ
る貫入深さの推定式を検討した。

低融点金属-空気系の臨界速度を与える式 (22) の
34.4 m/sを用いて修正フロード数の臨界値を求めると \(Fr_m'^* =
0.911\) となる。実験での測定値はすべて臨界修正フロード数
よりも小さいところに存在しているが、\(Fr_m'\) に対して
直線的に増加しており、式 (7) の関数形が適用できる。そ
かで、実験での測定値と数値解析結果の両方に対し最小二
乗法を用いて近似すると、本水で得られた式 (23) で整理
できることがわかった。

数値解析においても、修正フロード数の臨界値0.911よ
リも小さいところにおける低融点金属-空気系の数値計算結
果は測定値にほぼ一致しており、式 (23) で近似できる。
一方、臨界値より大きい範囲においても、検証が必要だっ
て式 (24) を適用したところ、計算結果と式 (24) との一致は比
較的良いことがわかった。しかし、修正フロード数が \(Fr_m'
> 0.911\) の領域における数値計算については、測定値が
無いので厳密な議論はできない。今後の課題としたい。

以上のことから、表面張力が約6倍異なる低融点金属-空気系
においても、今後の検証は必要であるものの同じ
予測式を用いて貫入深さを予測することが可能である。す
なわち、深さの貫入深さに関しては、今回調査した物性値
の範囲内では表面張力の影響が小さいといえる。

6. 結言

本報告では、水と低融点金属を用いたコードモデル実
験に基づき、上吹きランスからのガス噴流による自由界面
挙動に及ぼす液体の物性値の影響をランス出口と浴表面が
近い場合 \(h_i/d_m = 0.8, 1.7\) について調査した。得られた成
果は以下のようにまとめられる。

(1) 上吹きランスからのガス噴流によって液面近傍に誘起
される薄いの挙動を調査し、低流量では徳田が示した
ステージAが、高流量ではステージCが発生すること
を数値解析にて再現した。

(2) 水-空気系の貫入深さに関し、下記の式 (23) と
(24) を提案した。

\[
\frac{h_i}{d_m} = 1.37Fr_m'^* \quad (0.8 \leq \frac{h_i}{d_m} \leq 1.7, Fr_m'^* < 1.17) \tag{23}
\]

\[
\frac{h_i}{d_m} = 1.37Fr_m^{0.73} \quad (0.8 \leq h_i/d_m \leq 1.7, 1.17 < Fr_m'^* < 5.5) \tag{24}
\]

(3) 低融点金属-空気系の貫入深さに関し、臨界速
度以下の領域では、水-空気系の貫入深さの式
(23) で整理できることがわかった。
1) R.D.Collins and H.Lubanska: *Br. J. Appl. Phys.*, 5(1954), 22.
2) K.Segawa, S.Maebara, M.Shimada and M.Ishibashi: *Tetsu-to-Hagané*, 44(1958), 1056.
3) M.Shimada, M.Ishibashi, T.Ariyoshi and H.Morise: *Tetsu-to-Hagané*, 52(1966), 1499.
4) E.T.Turkdogan: *Chem. Eng. Sci.*, 21(1966), 1133.
5) H.Ishikawa, S.Maehara, M.Shimada and M.Ishibashi: *Tetsu-to-Hagané*, 44(1958), 1056.
6) M.Shimada, M.Ishibashi, T.Ariyoshi and H.Morise: *Tetsu-to-Hagané*, 52(1966), 1499.
7) E.T.Turkdogan: *Chem. Eng. Sci.*, 21(1966), 1133.
8) A.Masui, W.Wenzel and F.R.Block: *Tetsu-to-Hagané*, 57(1971), S404.
9) S.Ito and I.Muchi: *Tetsu-to-Hagané*, 55(1969), 1164.
10) J.Maatsch: *Techn. Mitt. Krups Forsch-Ber.*, 20(1962), 1.
11) R.A.Flinn, R.D.Pehlke, D.R.Glass and O.Hays: *Trans. Metall. Soc. AIME*, 239(1967), 1776.
12) S.C.Koria and K.W.Lange: *Arch. Eisenhüttenwes.*, 55(1984), 427.
13) S.C.Koria and K.W.Lange: *Steel Res.*, 58(1987), 421.
14) P.Nakao, T.Ono, M.Mimura, Y.Takeda, H.Horiuchi and T.Oura: *Tetsu-to-Hagané*, 78(1992), 761.
15) Z.Wang, K.Mukai, Z.Ma, M.Nishi, H.Tsukamoto and F.Shi: *ISIJ Int.*, 39(1999), 795.
16) M.Iguchi, J.Yoshida, T.Shimizu and Y.Mizuno: *ISIJ Int.*, 40(2000), 685.
17) M.Iguchi and H.Tokunaga: *Metall. Mater. Trans. B*, 33(2002), 695.
18) V.B.Okhotckii: *Izv. VUZ. Cher. Met.*, 1(1984), 45.
19) A.Masui, W.Wenzel and F.R.Block: *Tetsu-to-Hagané*, 57(1971), S404.
20) C.W.Hirt and B.D.Nichols: *J. Comput. Phys.*, 39(1981), 201.
21) M.Iguchi and H.Tokunaga: *Metall. Mater. Trans. B*, 33(2002), 695.
22) V.B.Okhotckii: *Izv. VUZ. Cher. Met.*, 1(1984), 45.
23) Z.Wang, K.Mukai, Z.Ma, M.Nishi, H.Tsukamoto and F.Shi: *ISIJ Int.*, 39(1999), 795.
24) V.B.Okhotckii: *Izv. VUZ. Cher. Met.*, 1(1984), 45.
25) T.Kumagai and M.Iguchi: *ISIJ Int.*, 41(2001), S52.
26) C.W.Hirt and B.D.Nichols: *J. Comput. Phys.*, 39(1981), 201.
27) M.Iguchi, J.Yoshida, T.Shimizu and Y.Mizuno: *ISIJ Int.*, 40(2000), 685.
28) H.Tanaka, H.Kuwatori and R.Nishihara: *Tetsu-to-Hagané*, 78(1992), 761.
29) Z.Wang, K.Mukai, Z.Ma, M.Nishi, H.Tsukamoto and F.Shi: *ISIJ Int.*, 39(1999), 795.
30) J.Yoshida, M.Iguchi and S.Yokoya: *Tetsu-to-Hagané*, 87(2001), 529.
31) M.Iguchi and H.Tokunaga: *Metall. Mater. Trans. B*, 33(2002), 695.
32) C.W.Hirt and B.D.Nichols: *J. Comput. Phys.*, 39(1981), 201.
33) M.Iguchi, J.Yoshida, T.Shimizu and Y.Mizuno: *ISIJ Int.*, 40(2000), 685.