

Facies analysis and depositional sequences of the middle Cretaceous Sarvak Formation in the northwest of Behbahan, Zagros basin, Iran

Department of Geology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran; *Corresponding author, E-mail: aleali.mohsen@gmail.com

(Received: July 24, 2016; Revised accepted: March 14, 2017)

http://dx.doi.org/10.18814/epiiugs/2017/v40i4/017029

Sarvak Formation, a thick carbonate succession with the age of Middle Cretaceous, is one of the most significant hydrocarbon reservoirs in the Zagros basin. The Tang-e Solak section of the Sarvak Formation in the Bangestan anticline with a total thickness of about 850 m has been studied, in order to determine its microfacies types, depositional setting model and depositional sequences. Detailed textural and petrographic analysis led to the identification of 11 microfacies that arranged in three facies associations: inner ramp, mid-ramp, outer ramp and basin. Examination of vertical and lateral facies changes indicated these sediments were deposited in a carbonate ramp depositional system. Frequency analysis of facies indicated outer ramp and basin facies associations are the most frequent facies. Sea level fluctuations during in deposition of Sarvak successions led to formation of two depositional sequences. These depositional sequences are composed of transgressive systems tract and highstand systems tract. The highstand systems tract can be separated into Early HST and Late HST. Stacking pattern in Early HST part is aggradational and in Late HST is progradational.

Introduction

The middle to late Cretaceous carbonates in the petroliferous Zagros basin in Iran are known as the Bangestan Group (James and Wynd, 1965). It includes the Kazhdumi, Sarvak, Surgah and Ilam Formations (James and Wynd, 1965; Motiei, 1993; Aghanabati, 2004) and host giant hydrocarbon reservoirs in southwestern Iran (Fig. 2). Well-known reservoirs of this stratigraphic unit contain the Mauddud, Khatiyah, Ahmadi and Mishrif Formations in the Arabian Peninsula, and the Sarvak Formation in Iran (Alsharhan and Naim, 1997; Sharland et al., 2001; Sharland et al., 2004; Bordenave and Hegre, 2005; Ghazban, 2007). The Sarvak Formation, a thick carbonate succession of the middle Cretaceous, is one of the richest hydrocarbon provinces of the world that cover most of the Arabian Platform (e.g., Sharland et al., 2001) and formed the second most important reservoir rock in Zagros basin.

Albian to Turonian age Sarvak Formation (James and Wynd, 1965; Motiei, 1993) in southwest Iran composed of carbonate sequence including limestone and dolostone with subordinate intervals of shale that demonstrated both neritic and pelagic facies (Fig. 2). Detailed facies analysis in different part of Zagros basin has revealed that thickness and facies distribution of Sarvak Formation varies greatly in from place to place. As, this formation composed of shallow marine successions in the south and central parts of Zagros basin and Persian Gulf area and deep marine units in the north and north west of Zagros basin (Lurestan Province). In the Dezful embayment and Khuzestan areas the Sarvak Formation usually exhibits either facies or both (Fig. 1a). Previous studies show that the lateral and vertical facies changes in Sarvak succession are result of relative sea-level fluctuation in middle Cretaceous age that is effected by wide climate and tectonic changes (e.g., Mehrabi and Rahimpour-Bonab, 2014).

The sediments of middle Cretaceous carbonate systems were deposited in carbonate platform under humid tropical to subtropical climates (e.g., Murris, 1980; Scott, 2007; Hollis, 2011; Rahimpour-Bonab et al., 2012a, 2013; Mehrabi et al., 2015). Digenetic features, depositional environment, sequence stratigraphy and reservoir quality of the Sarvak succession and equivalent in Arabian Peninsula previously studied by many authors (e.g., Alsharhan, 1995; Taghavi et al., 2006; Bashari, 2007a, b; Ghabeishavi et al., 2009, 2010; Piryaee et al., 2010, 2011; Hajikazemi et al., 2010, 2012; Razin et al., 2010; Sharpe et al., 2010; Van Buchem et al., 2006, 2011; Cross et al., 2010; Hollis, 2011; Rahimpour-Bonab et al., 2012a, b, 2013; Asadi Mehdoundoust et al., 2013; Mehrabi and Rahimpour-Bonab, 2014; Mahdi et al., 2013; Mahdi and Aqrawi, 2014; Mehrabi et al., 2015; Vincent et al., 2015; Esrafili-Dizaji et al., 2015).

The study area, Tang-e Solak outcrop, is located in southwestern flank of the Bangestan anticline about 45 km northwest of Behbahan city in Khuzestan Province (Figs. 1b and 3a). In this area, The Sarvak Formation overlies the deep marine shale of the Kazhdumi Formation and is disconformably underlain Gurpi Formation (Figs. 2 and 3a). According to Bordenave and Hegre (2010) the principal source of hydrocarbon for the Sarvak reservoir is the underlying Kazhdumi Formation (Figs. 2 and 3a). The main aim of this article is to discuss the facies distribution and depositional setting characteristics, delineate depositional sequences...
and reconstruct the sea-level history during the middle Cretaceous time in the study area.

Geological Setting

Iran is divided into three important geological areas based on two great mountain belts (Zagros Mountains in the south and the Alborz Mountains in the north of Iran) including Zagros basin, central Iran and Alborz basin (Aghanabati, 2004). The Zagros basin is characterized by 7–14 km of sediment sequences along the north–northeast edge of the Arabian plate, which are deposited over an exceptional long and wide region (Fig. 1a). This petroliferous basin, with a length of more than 1500 km and width between 100 and 300 km, is one of the most significant tectono-stratigraphic units of Iran (Motiei, 1993; Alavi, 2004, 2007).
The Zagros basin was part of the margin of huge Gondwana supercontinent during Paleozoic. It was a passive margin during Mesozoic periods and a convergent orogen in Cenozoic times.

The Zagros Mountains are the result of Subduction of a passive continental margin on the Arabian Plate under an active continental margin on the Eurasian Plate in the Mesozoic times and Alpine-type orogenic continental collision between Arabia and Eurasia in the Cenozoic times (Stocklin, 1968; Falcon, 1974; Berberian and King, 1981; Jackson and McKenzie, 1984; Beydoun et al., 1992; Talebian and Jackson, 2002). The plate’s convergence movement at the eastern edge of the Arabian Plate has not been stopped at the present day. This movement is continued at a rate of nearly 25–30 mm/year and in an approximately N-S direction (Berberian, 1995; Tavani et al., 2011).

During the Late Permian through Late Mesozoic, the Zagros Mountain belt was a part of the Arabian southwest Iranian Plate of the northeast Gondwana margin, at equatorial location, at the Neotethys passive margin (e.g., Berberian and King, 1981; Stampfli and Pillevuit, 1993; Scotese and Langford, 1995; Golonka, 2004). Continuously subsided along the main faults in the Mesozoic times was formed several thousands of meters of mainly carbonate rocks in the basin (James and Wynd, 1965; Motiei, 1993; Kashfi, 1992; Alavi, 2004).

Based on stratigraphic framework, structural elements and petroleum habitat, the Zagros basin divided into several main zones including High Zagros, Lurestan, Izeh zone, Dezful embayment, Fars province and Bandar-Abbas Hinterland (Stocklin, 1968; Berberian and King, 1981; Motiei, 1993) (Fig. 1a). The study area (Bangestan anticline) is located 45 km northwest of Behbahan, in the south of the Izeh zone (boundary of the Izeh zone and Dezful Embayment), adjacent to the Izeh-Hendijan Fault (e.g., Ahmadhadi et al., 2008; Tavani et al., 2011) (Figs. 1b and 3a). The Izeh zone, part of Simply Folded Zagros (SFZ), lies across a sharp topographical break to the southwest of the High Zagros fault (Fig. 1a). This zone comprises of a variety of structures of variable size and geometrical character (Sherkati and Letouzey, 2004).

The Bangestan anticline is one of the significant structures in Izeh zone with about 80 km length and 10 km width (Fig. 1b).

Materials and Methods

This research is based on the field and laboratory investigation of the Sarvak Formation from the Bangestan anticline (Tang-e Solak area) of southwest Iran (Figs. 1b and 3a). One section was measured, described and more than 600 thin sections collected and studied to determine petrographic characteristics, facies analysis, depositional setting and depositional sequences. The measured section is continuous (there are no gaps) and the thickness of the Sarvak Formation in study area is about 950 meters. Method of sampling was combination of simple random and systematic sampling. All of thin sections were half-stained with Alizarin Red-S to distinguish calcite and dolomite. Carbonate facies are classified based on Dunham (1962) and Embry and Klovan (1971) textural classification schemes. Facies were recognized for each subenvironment according to microfacies characters including carbonate matrix and grain contents, depositional fabric, grain size and type, textural features and energy index (Tucker, 2001; Flugel, 2010). Based on facies characteristics, comparison with ancient and recent environments and standard facies from well-known depositional environments (e.g., Wilson, 1975; Buxton and Pedley, 1989; Burchette and Wright, 1992; Pomar, 2001, Flugel, 2010) the depositional setting of each facies was recognized and interpreted. For determine depositional sequences, sedimentary stacking patterns, sequence boundaries, sequence stratigraphic interpretation and basic sequence stratigraphy concepts were used.

Lithostratigraphy

The Sarvak Formation is part of lithostratigraphic unit of the Middle to Upper Cretaceous Bangestan Group (James and Wynd, 1965) (Fig. 2). In the Tang-e Solak area, Bangestan anticline, the thickness of the Sarvak Formation is about 850 m (Fig. 3a). It is comprised of thin to medium bedded shaley limestone in the lower part, thick bedded to massive limestone in the middle part and medium to thick bedded limestone in the upper part (Figs. 3a–e). Sarvak succession in this
area consists of both shallow water (neritic) and deep water (pelagic) sediments (Fig. 3a). The section was lithologically measured and described bed-by-bed according to layers color, thickness, grain size, fossil content, biogenic and sedimentary structures. Based on the field observations, large-scale lithostratigraphic units in the Sarvak Formation separated into three units (from base to top).

Unit A

The succession of Unit A is composed of 230 m gray to dark gray, thin to medium bedded, fine-grained shaley argillaceous limestone. Planktonic foraminifera and Calciispheres (oligosteginids) are common in this part and this unit signifies a deep marine deposition (Fig. 3b).

Figure 3. Field aspects of the Sarvak Formation in the study area. (a) General view of the Sarvak Formation, in southern flank of the Bangestan anticline northwest of Behbahan city, Izeh zone. (b) Field view of the thin to medium bedded shaley limestone (unit A). (c) Field view of the cream to brown medium to thick bedded limestone (unit C). (d) Field view of the massive middle part limestone, Note that the lower strata are mainly medium to thick bedded, whereas the upper are thick to massive bedded. (e) Field photograph of reddish chert nodules in the middle massive limestone (unit B).
This lithostratigraphic unit conformably overlies the deep marine dark gray argillaceous limestone of the Kazhdumi Formation with a sharp contact (Fig. 4a).

Unit B

This unit is composed of 510 m cream to light brown, thick bedded to massive limestone with reddish chert nodules (Figs. 3d and e). Large rudist debris, foraminifers, calcareous algae, mollusks and echinoderm are major fossil contents. This succession illustrates a full transition from deep to shallow water marine environments (from unit A to B).

Unit C

This unit with a thickness of 110 m is consist of dark cream to brown, medium to thick bedded limestone with chert nodules (Fig. 3c). The top of this unit is characterized by 36 m red-weathered beds (Fe oxides staining) that show sedimentological evidence of subaerial exposure (Fig. 4b). As this reason, the Upper boundary in this unit with the marls and shales of the Gurpi Formation is sharp and indicated erosional disconformity (Fig. 4b). This disconformity is equivalent to Late Cenomanian–Early Turonian (C–T) disconformity (92 Ma) that is documented in south and southwest of Iran and in some parts of the Arabian plate (e.g., Immenhauser et al., 2000; Van Buchem et al., 2002, 2011; Sharp et al., 2010; Vincent et al., 2010; Hollis, 2011; Hajikazemi et al., 2012; Rahimpour-Bonab et al., 2012a, 2013).

Facies Descriptions and Interpretations

The Sarvak succession in the Tang-e Solak area (Bangestan anticline) contains of shallow to deep-water carbonate facies. The major facies constituents are significant variety of skeletal grains, non-skeletal grains, calcite cements and micrite. Rudist debris, benthic and planktonic foraminifera, oligostegina, crinoids/echinoids, bivalve, gastropods, ostracods and sponge spicules are the most skeletal components. The dominant non-skeletal grains are peloids and intraclasts. On the basis of petrographic examination, sedimentary characteristics, facies constituents, textures and fossil contents 11 microfacies are distinguished for the Sarvak Formation in the studied area, which can be organized to three main facies associations including inner ramp, mid ramp, outer ramp and basin (Figs. 5–9).

Inner Ramp Facies Association

MF1: Benthic foraminifera wackestone
This microfacies is characterized by the presence of diverse benthic foraminifera in fine grained mud-supported texture. Large benthic foraminifera (porcelaneous wall benthic foraminifers) such as miliolid, orbitolinid, alveolinid, Nezzazata, Dictyoconus, Pseudolituitonella are the principal components. They comprise 40% to 60% of the grains. Green algae debris, calcareous sponge spicules, gastropods are also present as subordinate grains of this facies. This microfacies is a sparse biomicrite according to Folk (1962) (Fig. 5a).

MF2: Benthic foraminifera bioclast wackestone to packstone
In this microfacies, texture varies from bioturbated wackestone to packstone. The main biota are porcelaneous wall benthic foraminifers such as miliolid, orbitolinid, alveolinid, Nezzazata, Dictyoconus, Pseudolituitonella are the principal components. They comprise 40% to 60% of the grains. Green algae debris, calcareous sponge spicules, gastropods are also present as subordinate grains of this facies. This microfacies is a rare biomicrite according to Folk (1962) (Fig. 5b).

MF3: Bioclast rudist debris packstone
The bioclast content is formed by coarse rudist debris, bivalves, echinoid/crinoid, gastropods, green algae and large to small benthic foraminifera. The size of bioclasts in this microfacies is very various (ranging in size from 200 µm to 2 mm). Rudist debris comprises 20 to 45% of the grains and exhibit variation in size. Bivalve and rudist debris are mostly coated by a micrite envelope, with the interior filled with spatic microcrystalline calcite. Peloid is less common constituent. Skeletal debris are surrounded by micritic fine grained matrix (Fig. 5c). This microfacies is a packed biomicrite according to Folk (1962).

Environment interpretation

The thickest interval of the inner ramp (mainly lagoon) deposits is
existent in the upper part of the Sarvak Formation (upper Sarvak) and is approximately 130 m thick. High-diversity of imperforate porcelaneous wall benthic foraminifers and presence of mud-rich texture with oligotopic fauna (such as miliolids) exhibit a low to moderate energy shallow subtidal environment in this facies association (e.g., Purser and Evans, 1973; Tucker and Wright, 1990; Alsharhan and Kendall, 2003; Bachmann and Hirsch, 2006; Flugel, 2010). Wackestone to packstone facies with bioturbated fabric are mostly demonstrative of low energy shallow subtidal and lagoon deposition (e.g., Wilson, 1975; Strasser et al., 1999; Aleali et al., 2013a; Hajian Barzi et al., 2015). Development of micritic envelopes exhibits low sedimentation rates and microbial organisms activities (Friedman et al., 1971; Perry, 1999; Palma et al., 2007; Flugel, 2010).

The presence of green algae suggested good aeration and light penetration (e.g., Zhicheng et al., 1997; Flugel, 2010). The existence of mud nature and peloid grains, abundant benthic foraminifers, green algae and gastropods indicates a very shallow subtidal (lagoon) setting (e.g., Purser, 1973; Bachmann and Hirsch, 2006; Flugel, 2010). A similar inner ramp facies association was reported from moderate to low energy lagoon in the Sarvak Formation (e.g., Taghavi et al., 2006;
Mid Ramp Facies Association

MF4: Rudist framestone/boundstone
Rudist boundstone (mounds and biostromes) are most common in the middle part of Sarvak Formation in the study area. The main constituent of this facies is rudist (specially radiolitidae rudist) which encompasses the whole thin section surface. The space between rudist frameworks has been filled by micrite (internal sediments). A rudist fabric shows packed texture in this facies. Based on James (1984), rudist packed texture corresponds to rudist boundstone, rudist bafflestone or rudist rudstone. The finely granular or granular cement filled the pores or replaced some dissolved pieces of rudist debris and parts of rudist framework internally neomorphosed to microcrystalline calcite. This facies formed the core of lenticular mounds and buildups, few meters to 10 m high, which located in the margin of platform (Flugel, 2010). Radiolitidae rudist in this facies shows reticulate fabric caused by the calcitic cellular prismatic layer (Flugel, 2010) (Fig. 5d).

MF5: Rudist debris grainstone
The main feature of this grain-dominated facies is indicated by the abundance of rudist debris (mostly radiolitids), as compared to the other constituents. Rudist fragments comprise 40 to 65% of the grains and demonstrate variation in size. Other bioclast similar to shell fragments and benthic foraminifera represent only less than 15% of the total grains. Peloids and intraclasts are relatively scarce (< 5%). This facies is marked by presence of grain-supported fabric, well-rounded bioclast fragments, and poor to moderate sorted (ranging in size from 500µm to 3mm). The matrix is coarse sparry calcite, rarely micritic (pelagic fauna). The bioclastic content is mainly composed of small calcareous bioclast fragments, and echinoids/crinoids shells are also present as subordinate components of this facies. Most of the skeletal grains, especially rudist debris and echinoderm fragments exhibit a thin micritic rim. Emery and Klovan (1971) are introduced this facies after Dunham (1962) classification, it composed of self-supporting large grains (more than 2mm thick) surrounded by fine matrix of lime mudstone (Fig. 6a).

MF6: Rudist debris bioclastic grainstone
This grainstone is characterized by the plenty of rudist debris and shell fragments. This microfacies is represented by grain-supported texture (grainstone), absence of mud and large size bioclasts fragments. The main skeletal constituents are rudist debris, bivalve shells, bryozoans, echinoderms and coral debris. Grains are coarse in size (mainly up to 1.5 mm) and well-sorted (Figs. 5f and 6a).

MF7: Rudist debris floatstone/rudstone
This facies comprises of larger than sand size rudist debris, which are embedded or floated in fine-grained lime matrix (micritic mudstone). The grains are mainly derived from the devastation of reef builder frameworks, especially rudist skeletons. Rudist fragments range in size from 0.5–2.5 mm thick and 0.75–5 mm length. They represent 10–40% on average, and exceptionally 60%. Benthic foraminifera, bivalves and echinoid/erinoids shells are also present as subordinate components of this facies. Most of the skeletal grains, especially rudist debris and echinoderm fragments exhibit a thin micritic rim. Emery and Klovan (1971) are introduced this facies after Dunham (1962) classification, it composed of self-supporting large grains (more than 2mm thick) surrounded by fine matrix of lime mudstone (Fig. 6b).

Environment interpretation
Rudist framestone/boundstone facies (MF4) forms as isolated barrier/biostrome island-shoal with low-relief feature similar to the copice at the margin of platforms and in this article used the term build-up to describe them.

Facies 5 and 7 indicated fragmentation of rudist happened under circumstances of irregular storm events and/or intensive bioerosion and indicated that the build-up has been destroyed before creating the wide colonize. These fragments create rudist debris sediments that were extended to the different parts of mid-ramp. Sadooni (2005) believed that Rudist barriers were eroded continuously during deposition whilst the basin was shallowing-up to wave base. Based on Wilson (1975) these facies are formed in forereef setting where the powerful waves and currents action are predominant. Rudist conglomeratic floatstone has applied by Alsharhan and Nairn (1993) to describe lime wackestone in the Middle Cretaceous rudist bearing carbonate (Mishrif Formation) in Persian Gulf.

The rudist barriers are discontinuous and separate by channels. The grain supported nature and lack of mud, well-sorted bioclastic grainstones, mixture of the bentic and planktonic fauna indicated that facies 6 is part of a high-energy and turbulent channels located in the proximal to middle parts of the mid-ramp. Rahimpour-Bonab et al. (2013) and Mehrabi et al. (2015) interpreted these facies as patch reef taluses and mid-ramp channel facies.

Records of this facies association of the Arabian Peninsula and Zagros basin have been documented by several authors (e.g., Alsharhan, 1995; Aqrawi et al., 1998; Sadooni, 2005; Taghavi et al., 2006; Cross et al., 2010; Ghabeshavi et al., 2010; Rahimpour-Bonab et al., 2012a, 2013; Aleali et al., 2013; Mahdi et al., 2013; Mahdi and Aqrawi, 2014; Esrafil-Dizaji et al., 2015).

Outer Ramp and Basin Facies Association

MF8: Peloid bioclastic packstone
This facies is a transitional facies between mid ramp and outer ramp, in which mid ramp components such as small rudist debris and benthic foraminifera are located next to open marine components (pelagic fauna). The bioclastic content is mainly composed of small rudist debris, bivalve and echinoids/erinoids fragments, calcareous sponge spicules, planktonic foraminifera (such as globigerina) and oligostegina, accompanied by smaller quantities of benthic foraminifera. Peloid grains also are visible. The allochems are dispersed in bioturbated micritic matrix (Fig. 6c).

MF9: Oligostegind wackestone/packstone
This wackestone to packstone is characterized by the abundance of oligostegindis together with infrequent planktonic foraminifera, echnoid fragments, ostracods, tiny rudist debris and scarce peloids (Fig. 6d). The matrix is micrite with important fractures. In some cases, Glaucosization and phosphatization are also visible.

MF10: Planktonic foraminifera wackestone/packstone
This microfacies is micritic mud rich facies with lacks of shallow subtidal fauna. Non-keeled planktonic foraminifera (such as Globigerinoloides, Hedbergellides, etc.) are the common skeletal constituents that are immersed in a micritic matrix. Oligostegind, thin bivalve
shell, ostracods and very small peloids are Subordinate constituents. Deposition took place below both storm wave base and light penetration zone. (Fig. 6e).

MF11: Microbioclastic mudstone/wackestone
This microfacies characterized by mud dominated matrix and abundant silt size components such as planktonic foraminifer, oligostegi- nids and very thin shell fragments. Other major features are lacks a shallow-water neritic fauna, presence of anoxic minerals and calcite filled microfractures. This facies is deepest microfacies of the Sarvak Formation (Fig. 6f).

Environment interpretation
The thickest interval of the outer ramp and basin deposits is present in the lower part of the Sarvak Formation (lower Sarvak) and is approximately 250 m thick (Fig. 3b). MF8, 9 and 10 are belong to outer ramp and MF 11 is belong to basin sub-environment. Absent of wave and flow structure, high amount of lime mud, mud-dominate texture, lack of large amount of shallow-water neritic (benthic) fauna and large skeletal fragments and abundance of planktonic foraminifera suggest low energy, calm and deep conditions, below fair weather wave base for this facies association (Wilson, 1975; Buxton and Pedly, 1989; Reading, 1996; Flugel, 2010). According to Omidvar et al.
(2014) abundance of planktonic fauna demonstrated deeper and more pelagic conditions. The dominance of non-keeled pelagic foraminifers and calcispheres (Oligosteginids) implies eutrophic conditions (Luciani and Cobianchi, 1999; Aguilera-Franco and Hernández Romano, 2004). The low energy hydrodynamic regime evidences in this facies association implies a deposition below the normal wave base (Wilson, 1975; Read, 1985; Tucker, 2001; Flugel, 2010; Geel, 2000). A similar these microfacies (MF8 to MF11) was reported from outer ramp to basinal low-energy, deep subtidal (e.g., Alsharhan, 1995; Asadi Mehmandousti et al., 2013; Mehrabi and Rahimpour-Bonab, 2014; Mahdi and Aqrawi, 2014).

Depositional Environments

Microfacies and depositional setting analysis of the Sarvak Formation (and its equivalents) in various parts of Zagros basin and Arabian Peninsula have been antecedently studied by many authors. Some of studies implicated that Sarvak Formation was deposited in a wide carbonate ramp platforms (e.g., Aqrawi et al., 1998; Rahimpour-Bonab et al., 2012a, b, 2013). On the contrary, some other examples demonstrated that Sarvak Formation was formed in rimmed shelf system (e.g., Alsharhan and Nairn, 1993; Alsharhan, 1995; Sadooni and Alsharhan, 2003; Taghavi et al., 2006). Ghabeishavi et al. (2010) distinguished 12 microfacies types formed on a shallow carbonate shelf setting in the SW of Iran (Zagros basin). Asadi Mehmandosti et al. (2013) proposed Sarvak Formation in Izeh Zone comprised of four facies groups including open marine, shoal, lagoonal and tidal flat, that formed in a ramp-type platform in the middle Cretaceous. Mahdi and Aqrawi (2014) and Mehdi et al. (2013) mentioned that Mishrif Formation (Sarvak equivalent) in southern Mesopotamian Basin of the Iraq was formed on a Rimmed carbonate platform. According to Rahimpour-Bonab et al. (2012), Mehrabi and Rahimpour-Bonab (2014) and Mehrabi et al. (2015) Sarvak Formation was developed on the a homoclinal ramp-type depositional regime of the humid tropical climate and abundant rainfall.

On the basis of sedimentologic and petrographic criteria, facies types and distributions, and lateral and vertical arrangement of facies associations, it could be mentioned that the Sarvak Formation in the studied area, formed on the carbonate ramp like platform with gentle slope.

In middle part of this ramp, rudist build-ups separated the platform interior from the deep marine and basin environments (Fig. 7). These rudist build-ups are located in shallow marine mid ramp, near the fair

![Figure 7. Schematic diagram showing a ramp platform depositional setting reconstructed for the Sarvak carbonates succession in the study area. Three facies associations identified in this environment are juxtaposed along the inner ramp to basin as shown in schematic cross-section. Distribution of facies and carbonate particles and sedimentary characteristics are shown on the model.](image-url)
weather wave base (FWWB) and continuously were eroded by high-energy waves and currents (Fig. 7). Destroyed fragments of rudist build-ups dispersed over a wide area and created rudist debris bearing facies (MF3, 5, 6 and 7). Tucker (2001) and Flugel (2010) introduced barrier system ramp depositional model with isolated barrier island-shoal. Scott (1990) claimed that on the shelf margins, ramps, and atolls of the middle Cretaceous, rudists and corals formed “true reefs,” and that within carbonate shelves, and on high-energy shelf margins, rudist-dominated associations formed reef mounds and biostromes (Kaufman and Johnson, 1988; Scott, 1990; Skelton and Gili, 1991; Gili et al., 1995; Hernandez, 2011). Sanders (Sanders, 1996; Sanders, 1998) suggested the term rudist formations for all rudist bearing lithologies, irrespective of any other connotations. Ross and Skelton (1993) believed that rudists prevalently created biostromes/reefal barriers (especially in cretaceous age) at the margins of carbonate platforms. Previous works show that in many fields in the Middle East, the rudist bearing reservoirs mainly composed of rudist build-ups (bafflestone and boundstone) and/or rudist debris bearing facies such as grainstone and floatstone (e.g., Alsharhan, 1995; Aqrawi et al., 1998).

Rudist build-ups did not form continuous barrier reef with barred nature and they arranged like island chain. The presence of benthic foraminifera (such as miliolid) associated with planktonic microfacies is the credible evidences for absence of any continuous and uninterrupted bioclastic barriers / barrier reef in depositional setting (currents removed benthic foraminifera to deeper parts of platform). According to facies characteristics, distribution of the bioclast remains and relationship between facies three major facies association recognized in the middle Cretaceous succession in the study area. These contain inner ramp, middle ramp, outer ramp and basin (Figs. 7, 8b, 9).

Bioturbated wackestone to packstone facies, abundance of benthic foraminifera and peloid, strong bioturbation and micritization interpreted to have deposited in the restricted inner ramp (restricted lagoon) settings with slight connection with the mid ramp (Figs. 7 and 8b; MF: 1–3). Middle ramp deposits are interpreted based mainly on grain-supported texture (allochemical nature), high abundant rudist debris, roundness and large size grains (Figs. 7 and 8b; MF: 4–7). The outer ramp and basin settings are characterized by high frequency of planktonic foraminifera and oligosteginid contents inserted in mud-dominated sediments (Figs. 7 and 8b; MF: 8–11).

Detailed frequency analysis of facies indicated that outer ramp and

Figure 8. (a) Schematic sketch showing idealized third-order sequence model. The Sarvak Formation sequences are generally composed of rise hemisequence with deepening upward trend and fall hemisequence with shallowing upward trend. (b) Pie Diagram showing the proportion of facies associations (sub environments). (c) Facies percentage pie diagram, representing the percentage distribution of facies in the Sarvak Formation.
Figure 9. Sedimentological log of the Sarvak Formation on the Tang-e Solak area. Sedimentological characteristics, facies features, depositional environments and third-order sequences are shown.
basin facies associations are the most frequent facies in the study area (approximately 44 percent) (Fig. 8b). Inner ramp facies association exhibit low frequencies (around 8 percent) (Fig. 8b). This shows that deep marine conditions were mainly predominated in middle Cretaceous age, in the study area (Izeh zone). Oligosteginitid wackestone/packstone (MF9) is the most frequent facies and rudist framestone/boundstone (MF4) is the least abundant facies (Fig. 8c).

Depositional Sequences

The depositional facies characteristics of the Sarvak Formation indicate a distinct number of depositional sequences, systems tract and sequence boundaries. According to the vertical distribution of the facies associations, the carbonate successions of the Sarvak Formation can be grouped into two-third order depositional sequences. This depositional sequences were deposited during middle Cretaceous age (Fig. 9) and were comprised of depositional transgressive system tract (TST) with deepening trend and highstand system tract (HST) with shallowing trend. In this study, according to detailed visual observations of field study and thin sections, distribution of facies (the vertical arrangement of the facies) and stacked to form facies groups, depositional sequences were interpreted.

The concepts that advanced by many researchers were applied for sequence stratigraphy interpretation (e.g., Posamentier et al., 1988; Vail et al., 1991; Van Wagoner et al., 1991; Emery and Myers, 1996; Catuneanu, 2002, 2006; Catuneanu et al., 2011). The sequence stratigraphy of Sarvak Formation (and its equivalents) has been documented in the previous study (e.g., Van Buchem et al., 2006, 2011; Cross et al., 2010; Ghabeishavi et al., 2010; Razin et al., 2010, 2014; Mahdi and Aqrawi, 2014; Vincent et al., 2015). Two 3rd-order depositional sequences were denoted in the Sarvak Formation (Figs. 8a and 9) that includes:

Depositional Sequences A

The depositional sequence A formed in the lower part of the Sarvak Formation in the study area. This sequence is around 570 m thick and directly overlays basinal shale/marl of the uppermost part of the Kazhdumi Formation (Fig. 4a). The lower sequence boundary (SB-A) is located on underlying Kazhdumi Formation and there is no evidences of subaerial exposure and sharp facies changes at the lower boundary of the Kazhdumi/Sarvak Formations. The transgressive systems tract (TST) of sequence A is mostly consist of outer ramp and basinal facies association (MF8–MF11). The TST package is characterized by packstone to mudstone texture and pelagic content (such as planktonic foraminifera) that exhibited deepening-upward trend (Fig. 9). The maximum transgression is marked by fine-laminated argillaceous mudstone/wackestone with pelagic foraminifers and oligosteginitids (MF11) that was deposited under low-energy basinal conditions (Figs. 6f and 9). In the present study, define this part as maximum flooding zone (MFZ) instead of a maximum flooding surface (due to high thickness). The highstand systems tract (HST) of sequence A exhibits a gradual exchange from deep-water facies toward the Inner ramp facies and shows shallowing upward pattern. The early HST is characterized by benthic foraminifer bearing wackestone (Fig. 9).

Depositional Sequences B

The lower part of the depositional sequence B (TST) predominately composed of mid ramp and outer ramp facies association and indicated a retrogradational stacking pattern with a deepening upward trend (Figs. 8a and 9). A development in the accommodation space is recognized by shallow inner ramp facies (Benthic foraminifera packstone/wackestone) covered by the mid ramp facies such as rudist boundstone, rudist debris grainstone and rudist debris floatstone. The maximum flooding surface that put a top on transgressive systems tract corresponds to an outer ramp facies association (Fig. 9). Peloid bioclastic packstone (MF8, Fig. 6c) with present planktonic foraminifers indicates deep-subtidal outer ramp facies and is described as the MFS. Development of grain-supported mid ramp facies such as rudist debris grainstone and rudstone represents the early highstand systems tract in sequence B.

The upper part of sequence B (late HST) chiefly is made up of the inner ramp facies association with shallowing upward trend (Fig. 8a). Bioclast rudist debris packstone/grainstone overlain by benthic foraminifera wackestone/packstone represents progradation of strata into late HST (Fig. 9). The boundary between sequence A and B is characterized by benthic foraminifera wackestone and is interpreted as a SB 2 sequence boundary, because displays no obvious evidences of subaerial exposure. The upper boundary of the sequence B is characterized by erosional unconformities, weathered surface and intense iron-oxide staining (Figs. 4b and 9).

Conclusions

The Sarvak Formation in the Tang-e Solak area can be subdivided into three large-scale lithostratigraphic units; including A, B and C units, from base to top. Based on the sedimentary features 11 representative microfacies that are organized into three facies associations from distal to proximal part of the platform including inner ramp, mid-ramp, outer ramp and basin facies associations. Facies analysis in lateral and vertical distribution indicated middle cretaceous successions was formed on a shallow carbonate ramp depositional system with rudist build-ups that separated the platform interior from the basin environment. Frequency analysis of facies indicated outer ramp and basin facies associations are the most frequent facies. In addition, on the basis of the sequence stratigraphic analysis two third-order deposition sequences are recognized. These deposition sequences are composed of depositional transgressive system tract (TST) with deepening trend and highstand system tract (HST) with shallowing trend.

Acknowledgements

This research is funded by the department of geology, Islamic Azad
References

Aghanabati, A., 2004, Geology of Iran: Geological Survey of Iran, Tehran, 586 p. (in Persian)

Agullera-Franco, N., and Hernández Romano, U., 2004, Cenomanian–Turonian facies succession in the Guerrero-Morelos Basin, Southern Mexico: Sedimentary Geology, v. 170, pp. 135–162.

Ahmadfahid, F., Daniel, J.M., Azzizadeh, M., and Lacombe, O., 2008, Evidence for pre-folding vein development in the Oligo-Miocene Asmari Formation in the Central Zagros Fold Belt, Iran: Tectonics, v. 27, pp. 1–22.

Alavi, M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations: Tectonophysics, v. 299, pp. 211–238.

Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American Journal of Science, v. 304, no. 1, pp. 1–20.

Aleali, M., Rahimpour-Bonah, H., Moussavi-Harami, R., Jahan, D., 2013a, Environmental and sequence stratigraphic implications of anhydrite textures: A case from the Lower Triassic of the Central Persian Gulf: Journal of Asian Earth Sciences, v. 75, pp. 110–125.

Aleali, M., Rahimpour-Bonah, H., Moussavi-Harami, R., Jahan, D., and Asadi-Eskandari, A., 2013b, Depositional environment and sequence stratigraphy of the Kangan Formation in South Pars Field: Geosciences, v. 22, pp. 65–74.

Alsharhan, A.S., 1995, Facies variation, diagenesis, and exploration potential of the Cretaceous rudist-bearing carbonates of the Arabian Gulf: American Association of Petroleum Geologists Bulletin, v. 79, pp. 531–550.

Alsharhan, A.S., 2014, Petroleum systems in the Middle East. in Rollinson, H.R., Searle, M.P., Abbs, I.A., Al-Lazki, A.I., and Al Kindi, M.H. (eds.), Tectonic Evolution of the Oman Mountains: Geological Society of London, Special Publications, v. 392, pp. 361–408.

Alsharhan, A.S., and Naimi, A.E.M., 1993, Carbonate platform model of Arabian: Cretaceous reservoir: American Association of Petroleum Geologists Memoir, v. 56, pp. 173–184.

Alsharhan, A.S., and Naimi, A.E.M., 1997, Sedimentary Basins and Petroleum Geology of the Middle East: Elsevier Science, New York, 614 p.

Alsharhan, A.S., and Kendall, C.G.S.C., 2003, Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues: Earth-Science Reviews, v. 61, pp. 191–243.

Aqravi, A.A.M., Therni, G.A., Sherwani, G.H., and Kareem, B.M.A., 1998, Mid cretaceous rudist-bearing carbonates of the Mishrif Formation: an important reservoir sequence in the Mesopotamian Basin, Iraq: Journal of Petroleum Geology, v. 21, pp. 57–82.

Asadi Mehmendosti, E., Adabi, M.H., and Wood, D., 2013, Microfacies and geochemistry of the middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran: Sedimentary Geology, v. 293, pp. 9–20.

Bachman, M., and Hirsch, F., 2006, Lower cretaceous carbonate platform of Eastern Levant (Galilee and the Golan Heights), Stratigraphy and second-order sea level change: Cretaceous Research, v. 27, pp. 487–512.

Bashari, A., 2007a, Integrated 3D seismic and petrophysical data of the Sarvak Formation in the Persian Gulf: First Break, v. 25, pp. 45–53.

Bashari, A., 2007b, Petrographic, petrophysics and seismic integration: an approach to characterize Mishrif Reservoir on Reshadat Oil Field in the Persian Gulf: Geoscience Scientific Quarterly Journal, v. 16, pp. 11–204.

Berberian, M., 1995, Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics: Tectonoophysics, v. 241, pp. 193–224.

Berberian, M., and King, G., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian Journal Of Earth Sciences, v. 18, pp. 210–265.

Bordenave, M.L., and Hegre, J.A., 2005, The influence of tectonics on the entrapment of oil in the Dezful Embayment, Zagros fold belt, Iran: Journal of Petroleum Geology, v. 28, pp. 339–368.

Bordenave, M.L., and Hegre, J.A., 2010, A current distribution of oil and gas fields in the Zagros fold belt of Iran and contiguous offshore as the result of petroleum systems: Geological Society of London, Special Publications, v. 330, pp. 291–353.

Burchette, T.P., and Wright, V.P., 1992, Carbonate ramp depositional systems. in Selwood, B.W. (ed.), Ramps and Reefs: Sedimentary Geology, v. 79, pp. 3–57.

Buxton, M.W.N., and Pedley, M., 1989, A standardized model for Tethyan Tertiary carbonate ramps: Journal of the Geological Society, v. 146, pp. 746–748.

Catuneanu, O., 2006, Principles of Sequence Stratigraphy (1st edition): Elsevier, Amsterdam, 375 p.

Catuneanu, O., Galloway, W.E., Kendall, C.G.S.C., Miall, A.D., Posamentier, H.W., Strasser, A., and Tucker, M.E., 2011, Sequence stratigraphy: methodology and nomenclature: Newsletters on Stratigraphy, v. 44, pp. 173–245.

Cross, N., Goodall, I., Hollis, C., Burchette, T., Al Ajmi, H., Gorman Johnson, I., Mukherjee, R., Simmons, M., and Davies, R., 2010, Reservoir description of a mid-Cretaceous siliciclastic-carbonate ramp reservoir: Maaddad Formation in the Raudhatain and Sabiriyah Fields, North Kuwait: GeoArabia, v. 15, pp. 17–50.

Dunham, R.J., 1962, Classification of carbonate rocks according to depositional environment: American Association of Petroleum Geologists Memoir, v. 1, pp. 108–121.

Emby, A.F., and and Klovian, J.E., 1971, A Late Devonian reef tract on Northeastern Banks Island, NWT: Canadian Petroleum Geology Bulletin, v. 19, pp. 730–781.

Emery, D., and Myers, K., 1996, Sequence Stratigraphy: Blackwell Scientific Publications, Oxford, 297 p.

Esarfii-Dizaji, B., Rahimpour-Bonah, H., Mehrabi, H., Afshin, S., Kiani Harchegani, F., and Shahverdi, N., 2015, Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran: Facies, v. 61, pp. 1–25.

Falcon, N.L., 1974, Southern Iran: Zagros Mountains: Geological Society of London, Special Publications, v. 4, pp. 199–211.

Flügel, E., 2010, Microfacies of Carbonate Rocks, Analysis, Interpretation and Application: Springer, Berlin, 976 p.

Friedman, G.M., Gebelein, C.D., and Sanders, J.E., 1971, Micritic envelopes of carbonate grains are not exclusively of photosynthetic algal origin: Sedimentology, v. 16, pp. 89–96.

Folk, R.L., 1962, Spectral subdivision of limestone types. in Ham, W.E. (ed.), Classification of Carbonate Rocks – A Symposium: American Association of Petroleum Geologists Memoir v. 1, pp. 62–84.

Geel, T., 2000, Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of paleogene deposits in southeastern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 155, pp. 211–238.

Ghabeishavi, A., Vaziri-Moghaddam, H., Taheri, A., and Taati, F., 2010, Microfacies and depositional environment of the Cenomanian of the Bangestan Palaeo-high in the Bangestan Anticline, SW Iran: Facies, v. 55, pp. 243–257.

Ghabeishavi, A., Vaziri-Moghaddam, H., Taheri, A., and Taati, F., 2010, Microfacies and depositional environment of the Cenomanian of the Bangestan Anticline, SW Iran: Journal of Asian Earth Sciences, v. 37, pp. 275–285.

Ghazban, F., 2007, Petroleum Geology of the Persian Gulf: Joint publication of Tehran University Press and National Iranian Oil Company, Tehran, 707 p.
Gilli, E., Masse, J.P., and Skelton, P.W., 1995, Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 118, pp. 245–267.

Golonka, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, v. 381, pp. 235–273.

Hajian Barzi, M., Alcali, M., Jahani, D., and Falah Kheyrykah, M., 2015, Microfacies, sedimentary environment, sequence stratigraphy and strontium dating of the Dashtak Formation in the Persian Gulf, Fars and Izeh Regions: Geosciences, v. 24, pp. 185–198.

Hajikazemi, E., Al-Aasm, I.S., and Coniglio, M., 2010, Subaerial exposure and meteoric diagenesis of the Cenomanian–Turonian upper Sarvak Formation, southwestern Iran: Geological Society of London, Special Publications, v. 330, pp. 253–272.

Hajikazemi, E., Al-Aasm, I.S., and Coniglio, M., 2012, Chemostratigraphy of Cenomanian–Turonian carbonates of the Sarvak Formation, southern Iran: Journal of Petroleum Geology, v. 35, pp. 187–206.

Haynes, S.J., and McQuillan, H., 1974, Evolution of the Zagros suture zone, southern Iran: Geological Society of America Bulletin, v. 85, pp. 739–744.

Hernández, J.O., 2011, Rudists: Geology Today, v. 27, pp. 74–77.

Hollis, C., 2011, Diagenetic controls on reservoir properties of carbonate successions within the Alban–Turonian of the Arabian Plate: Petroleum Geoscience, v. 17, pp. 223–241.

Homke, S., Vergès, J., and Bernaola, G., 2009, Late Cretaceous–Paleocene Formation of the Proto-Zagros Foreland Basin, Lurestan Province, SW Iran: Geological Society of America Bulletin, v. 121, pp. 963–978.

Immenhauser, A., Creusen, A., Esteban, M., and Vonhof, H., 2000, Recognition and interpretation of polygenetic discontinuity surfaces in the Middle Cretaceous Shu’aliba, Nahr Umr and Natih Formations of North Oman: GeoArabia, v. 5, pp. 299–322.

Jackson, J.A., and Mckenzie, D., 1984, Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan: Geophysical Journal of the Royal Astronomical Society, v. 77, pp. 185–264.

James, G.A., and Wynd, J.G., 1965, Stratigraphic nomenclature of Iranian oil province, agreement area: American Association of Petroleum Geologists Bulletin, v. 49, no. 12, pp. 2182–2245.

Kashfi, M.S., 1992, Geology of the Persian “Super-Giant” gas reservoirs in the Greater Persian Gulf Area: Journal of Petroleum Geology, v. 5, pp. 465–480.

Kaufman, E.G., and Johnson, C.C., 1988, The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudists: PALAIOS, v. 3, pp. 194–216.

Luciani, V., and Cobianchi, M., 1999, The Bonarelli Level and other black shales in the Cenomanian–Turonian of the northeastern Dolomites (Italy): calcareous nanofossil and foraminiferal data: Cretaceous Research, v. 20, pp. 135–167.

Mahdi, T.A., Aqrawi, A.A.M., Horbury, A.D., and Sherwani, G.H., 2014, Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin, Iraq: GeoArabia, v. 18, no. 1, pp. 139–174.

Mahdi, T.A., and Aqrawi, A.A.M., 2014, Sequence stratigraphic analysis of the mid-Cretaceous Mishrif Formation, southern Mesopotamian Basin, Iraq: Journal of Petroleum Geology, v. 37, pp. 287–312.

Mehrdad, H., and Rahimpour-Bonah, H., 2014, Palaeoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian–Early Turonian carbonate reservoirs, Dezful Embayment, SW Iran: Facies, v. 60, pp. 147–167.

Mehrdad, H., Rahimpour-Bonah, H., Enayati-Bidgoli, A.H., and Esraffles-Dizaji, B., 2015, Impact of contrasting paleoclimate on carbonate reservoir architecture: cases from arid Permo-Triassic and humid Cretaceous platforms in the south and southwestern Iran: Journal of Petroleum Science and Engineering, v. 126, pp. 262–283.

Motiei, H., 1993, Stratigraphy of Zagros. Geological Survey of Iran, Tehran, 583 p.

Motiei, H., 1995, Petroleum geology of Zagros. in Hashmandzadeh, A. (ed.), Treatise on the Geology of Iran: Geological Survey of Iran, Tehran. (in Persian)

Murris, R.J., 1980, Middle East: stratigraphic evolution and oil habitat: American Association of Petroleum Geologists Bulletin, v. 64, pp. 597–618.

Nimz, W.D., 1982, Paleobiology, 2 ed., Prentice Hall, Englewood Cliffs, New Jersey, 577 p.

Nodari, A., 1999, The Naqadeh Formation, SW Iran: Facies, v. 45, no. 2, pp. 135–167.

Perry, C.T., 1999, Biofilm-related calcification, sediment trapping and constructive micrite envelopes: a criterion for recognition of ancient grass-bed environments?: Sedimentology, v. 46, pp. 33–45.

Piraye, A.R., Reijmer, J.J.G., van Buchem, F.S.P., Yazdimoghadam, M., Sadouji, J., and Danelian, T., 2010, The influence of Late Cretaceous tectonic processes on sedimentation patterns along the Northeastern Arabian Plate Margin (Fars Province, SW Iran), in Leturmy, P., and Robin, C. (eds.), Tectonic and Stratigraphic Evolution of Zagros and Makran During the Mesozoic–Cenozoic: Geological Society of London, Special Publications, v. 330, pp. 211–251.

Piraye, A., Reijmer, J., Borgomano, J., and van Buchem, F., 2011, Late Cretaceous tectonic and sedimentary evolution of the Bandar Abbas area, Fars region, southern Iran: Journal of Petroleum Geology, v. 34, no. 2, pp. 157–180.

Pomar, L., 2001, Types of carbonate platforms, a genetic approach: Basin Research, v. 3, pp. 313–334.

Pomar, L., Bassant, P., Brandano, M., Ruchonnet, C., and Jansson, X., 2012, Impact of carbonate producing biota on platform architecture: Insights from Miocene examples of the Mediterranean region: Earth-Science Reviews, v. 113, pp. 186–211.

Posamentier, H.W., Jervey, M.T., and Vail, P.R., 1988, Eustatic controls on clastic deposition II – conceptual framework. in Wilgus, C.K., Hastings, B.S., Kedall, C.G., St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C. (eds.), Sea Level Changes: An Integrated Approach: Society of Economic Paleontologists and Mineralogists, Special Publication, v. 42, pp. 125–154.

Purser, B.H., and Van, G.E., 1973, Regional sedimentation along the Trucial Coast, SE Persian Gulf: in Purser, B.H. (ed.), The Persian Gulf, Holocene Carboneate Sedimentation and Diagenses in a Shallow Epicontinental Sea: Springer, Berlin, pp. 211–231.

Purser, B.H., 1973, The Persian Gulf: Holocene carbonate sedimentation and diagenses in a shallow epicontinental sea: Springer, New York, 471 p.

Rahimpour-Bonah, H., Mehrabi, H., Enayati-Bidgoli, A.H., and Omidvari, M., 2012a, Coupled imprints of tropical climate and recurring eumery on reservoir evolution of a mid-Cretaceous carbonate ramp, Zagros Basin, SW Iran: Cretaceous Research, v. 37, pp. 15–34.

Rahimpour-Bonah, H., Mehrabi, H., Navidtalab, A., and Izadi-Mazidi, E., 2012b, Flow unit distribution and reservoir modeling in Cretaceous carbonates of the Sarvak Formation, Abteymour oilfield, Dezful Embayment, SW Iran: Journal of Petroleum Geology, v. 35, no. 3, pp. 213–236.

Rahimpour-Bonah, H., Mehrabi, H., Navidtalab, A., Omidvari, M., Enayati-Bidgoli, A.H., Sonei, R., Sajjadi, F., Amiri-Bakhtyar, H., Arzani, N., and Izadi-Mazidi, E., 2013, Palaeo-exposure surfaces in Cenomanian–Sanatian carbonate reservoirs in the Dezful Embayment, SW Iran.
Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D., and Sutcliffe, A.P., Horbury, A.D., and Simmons, M.D., 2001, Arabian Plate Sequence Stratigraphy: The Upper Cretaceous of Montagna della Maiella, Italy: Geologisch-Paläontologische Mitteilungen nnsbruck, v. 89, no. 2, pp. 845–871.

Sanders, D., 1998, Upper Cretaceous rudist formations: Geologisch-Paläontologische Mitteilungen nnsbruck, v. 23, pp. 37–59.

Sarg, J.F., 1988, Carbonate sequence stratigraphy. in Wilgus, C.K., Hasting, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C. (eds.), Society for Sedimentary Geology, Special Publication, v. 42, pp. 155–181.

Scotese, C.R., and Langford, R.P., 1995, Pangea and the paleogeography of the Permian. in Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S. (eds.), The Permian of Northern Pangaeva, v. 1, pp. 3–19.

Scott R.W., 2007, Cretaceous rudists and carbonate platforms: environmental feedback: Society for Sedimentary Geology, Special Publication, v. 87.

Scott R.W., 1990, Models and stratigraphy of Mid-Cretaceous reef communities, Gulf of Mexico: SEPM Concepts in Sedimentology and Paleontology, v. 2, 102 p.

Selkirk, P.W., and Gili, E., 1991, Paleocological classification of rudist morphotypes (abs.): The 1st International Conference on Rudists, Belgrade, October 1988, Serbian Geological Society, pp. 71–86.

Strasser, A., Pittet, B., Hillgrtner, H., and Pasquier, J.B., 1999, Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis: Sedimentary Geology, v. 128, pp. 201–221.

Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Horbury, A.D., and Simmons, M.D., 2001, Arabian Plate Sequence Stratigraphy: GeoArabia, Special Publication, v. 2, 371 p.

Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D., and Sutcliffe O.E., 2004, Arabian Plate Sequence Stratigraphy: GeoArabia, v. 9, pp. 199–214.

Sharp, I., Gillespie, P., Morsalnezhad, D., Taberner, C., Karupz, R., Verges, J., horbury, A., Pickard, N., Garland, J., and Hunt, D., 2010, Stratigraphic architecture and fracture-controlled dolomitization of the Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros Mountains, Iran. in Van Buchem, F.S.P., Gerdes, K.D., and Esteban, M. (eds.), Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East Stratigraphic and Diagenetic Reference Models: Geological Society of London, Special Publications, v. 329, pp. 343–396.

Sherkati, S., and Letouzey, J., 2004, Variation of structural style and basin evolution in the central Zagros (Izech zone and Dezful Embayment): Marine and Petroleum Geology, v. 21, pp. 535–554.

Stampfl, G.M., and Pillevuit, A., 1993, An alternative Permo-Triassic reconstruction of the kinematics of the Tethyan realm. in Derecourt, J., Ricu, L.E., and Vrielinck, B. (eds.), Atlas Tethys Palaeoenvironmental Maps. Explanatory Notes: Gauthier-Villars, Paris, pp. 55–62.

Stocklin, J., 1968, Structural history and tectonics of Iran: a review: American Association of Petroleum Geologists Bulletin, v. 52, pp. 1229–1258.

Taghavi, A.A., Mork, A., and Emadi, M.A., 2006, Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehuran field, SW Iran: Petroleum Geoscience, v. 12, pp. 115–126.

Talebian, M., and Jackson, J., 2002, Offset on main recent fault of NW Iran and implication for the Late Cenozoic tectonics of the Arabia–Eurasia collision zone: Geophysical Journal International, v. 150, pp. 422–39.

Tavani, S., Stori, F., Soleimany, B., Fahlall, M., Munoz, J.A., and Gambini, R., 2011, Geometry, kinematics and fracture pattern of the Bangezant anticline, Zagros, SW Iran: Geological Magazine, v. 148, pp. 964–979.

Tucker, M.E., and Wright, V.P., 1990, Carbonate Sedimentology: Blackwell Scientific Publications, London, 482 p.

Tucker, M.E., 2001, Sedimentary Petrology: Blackwell, Oxford, 260 p.

Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N., and Perez-cruz, C., 1991, The stratigraphic signatures of tectonics, eustasy and sedimentation. in Eisene, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Strigraphy: Springer-Verlag, Berlin, pp. 617–659.

Vincent, B., Van Buchem, F.S.P., Bulot, L.G., Jalali, M., Swennen, R., Hosseini, A.S., and Baghban, D., 2015, Depositional sequences, diagenesis and structural control of the Alban to Taurian carbonate platform systems in coastal Fars (SW Iran): Marine and Petroleum Geology, v. 63, pp. 46–67.

Van Buchem, F.S.P., Razin, P., Homewood, P.W., Oterdoom, H., and Philip, J., 2002, Stratigraphic organization of carbonate ramps and organic-rich intrashelf basins: Nafih Formation (middle Cretaceous) of northern Oman: American Association of Petroleum Geologists Bulletin, v. 86, pp. 21–54.

Van Buchem, F., Gaumet, F., Védrénne, V., and Vincent, B., 2006, Middle East Cretaceous sequence stratigraphy study: NIIOC-IFF, Iran.

Van Buchem, F.S.P., Simmons, M.D., Drost, H.J., and Davies, R.B., 2011, Late Aptian to Turonian stratigraphy of the eastern Arabian Plate depositional sequences and lithostratigraphic nomenclature: Petroleum Geoscience, v. 17, pp. 211–222.

Van Wagoner, J.C., Mitchell, R.M., Campion, K.M., and Rahmanian, V.D., 1990, Siliciclastic sequence stratigraphy in well logs, cores and outcrop: concepts for high resolution correlation of time and facies: American Association of Petroleum Geologists Bulletin Method, Exploration Series, v. 7, 55 p.

Wilson, J.L., 1975, Carbonate Facies in Geological History: Springer, Berlin, 471 p.

Zhicheng, Z., Williams, H., and Binggao, Z., 1997, Marine Cretaceous Paleogene biofacies and ichnofacies in southern Tibet, China and their sedimentary significance: Marine Micropaleontology, v. 32, pp. 3–29.