Actions of Melanotropins on Mouse Melanoma Cell
Growth In Vitro ¹,²

Zalta A. Abdel Malek,³ Mac E. Hadley,³,⁴ Marvin D. Bregman,⁵
Frank L. Meyskens, Jr.,⁵ and Victor J. Hruby⁶,⁷

ABSTRACT—Melanotropins induce melanogenesis in mouse Cloudman S91 melanoma cells by stimulating the activity of tyrosinase. In monolayer culture, α-melanocyte-stimulating hormone and the superpotent analogue 4-norleucine, 7-d-phenylalanine-α-melanocyte, which had prolonged effects on tyrosinase activity, did not inhibit the proliferation of melanoma cells even at concentrations that elicited maximal tyrosinase stimulation. In soft agar the melanotropins stimulated the formation of melanized colonies and increased the cloning and proliferative potentials of melanoma cells. Both melanotropins increased the number of small (42–104 μm in diameter) colonies at initial plating densities ranging from 625 to 7,500 cells/dish. The number of larger (>104 μm in diameter) colonies was also increased except at densities 5,000 cells or more/dish, wherein the proliferative capacity was inhibited; yet the cloning efficiency was still increased. Therefore, in bilayer soft agar cultures, melanotropins stimulate the growth of the clonogenic S91 melanoma cell population under conditions that allow for optimal expression of the cloning and proliferative potentials of these cells.—JNCI 1986; 76:857–863.

MATERIALS AND METHODS

Materials.—Ham's medium F10 and penicillin and streptomycin solution (100 U/ml and 100 μg/ml, respectively) were purchased from GIBCO (Santa Clarar, CA). Fetal bovine and horse sera were either obtained from GIBCO or from KC Biologicals (Lenexa, KS). [3',5'-³H]Tyrosine (sp act, 53.8 Ci/mmol) was obtained from

ABBREVIATIONS USED: CCL=certified cell line(s); L-DOPA=L-dihydroxyphenylalanine; α-MSH=α-melanocyte-stimulating hormone; [Nle4, D-Phe7]-α-MSH = 4-norleucine, 7-d-phenylalanine-α-MSH.
New England Nuclear (Boston, MA), and α-MSH was purchased from Sigma Chemical Co. (St. Louis, MO). [Nle⁴, D-Phe⁷]-α-MSH was synthesized as described previously (11, 12).

Stock cultures.—Cloudman S91 3960, CCL 53.1, is a moderately melanotic murine melanoma cell line that was obtained from the American Type Culture Collection Repository (Rockville, MD) and has been alternately maintained by limited subculturing as monolayers or as tumors in syngeneic DBA/2J mice. All experiments were performed on early passage (<10) cells to minimize phenotypic drift that is often observed in long-term cultures. Cells were grown in Ham’s medium F10 supplemented with 10% horse serum and 2% fetal calf serum, both heat inactivated at 56°C for 30 minutes to prevent the degradation of α-MSH by serum enzymes. The medium was also supplemented with 100 U penicillin/ml and 100 μg streptomycin/ml. Cells were incubated at 37°C in a humid atmosphere of 5% CO₂ and 95% air.

Effects of melanotropins on monolayer cultures of S91 CCL cells.—The prolonged effects of α-MSH and [Nle⁴, D-Phe⁷]-α-MSH on tyrosinase activity were determined by seeding cells at 2×10⁵ cells/25-cm² flask in 4 ml medium and treating them the next day with the melanotropins (10⁻⁷ M) for 24 hours. The melanotropins were removed from the culture flask prior to determining their prolonged effects. The flasks were rinsed with melanotropin-free medium several times until no melanotropic activity could be detected in the incubation media by the frog skin bioassay. This assay is sensitive to melanotropin concentrations at least tenfold lower than the minimal effective dose required to stimulate tyrosinase activity. The medium in all flasks was exchanged daily, and medium containing [³H]tyrosine at 1 μCi/ml (i.e., 4 μCi/flask) was added to a set of control and experimental flasks 24 hours prior to data collection.

For experiments involving 6-day exposure to α-MSH or [Nle⁴, D-Phe⁷]-α-MSH, cells were seeded at 2×10⁶ cells/25-cm² flask and were allowed to attach overnight. Then the medium was removed and replaced with fresh medium with the appropriate melanotropin added at 10⁻⁷ M each day thereafter. Twenty-four hours before data collection, the medium was replaced with medium containing [³H]tyrosine (1 μCi/ml) as well as the melanotropin. At the end of each exposure period, the labeled medium from each flask was collected for assay of tyrosinase activity and the cells were harvested with EDTA-containing Tyrode’s solution and counted with an aid of a hemacytometer.

Tyrosinase assay.—Tyrosinase activity was determined by using a modification of the charcoal absorption method of Pomerantz (14), which measures the amount of ³H₂O released during the conversion of [³H]tyrosine to L-DOPA, a reaction catalyzed by tyrosinase. Duplicate 1-ml samples were taken from each flask, and each sample was treated with 1 ml of activated charcoal (10% wt/vol in 0.2 N citric acid) and centrifuged. From each sample, 1 ml of the supernatant was passed through a Dowex 50 W column. The columns were then rinsed with 1 ml of 0.1 N citric acid, and the eluents were collected into scintillation vials that received 12 ml of scintillation fluid [toluene: Triton X-100, 2:1 vol/vol, plus 5.5 g 2,5-diphenyl-1,3-oxazole/liter (Beckman Instruments, Inc., Fullerton, CA)] and were counted in a Beckman LS-8000 scintillation spectrometer. Tyrosinase activity was expressed as cpm/10⁶ cells and then as a percent of control enzyme activity.

Effects of melanotropins on bilayer agar cultures.—The colony-forming assay may be the best in vitro test to determine cellular transformation (15). This assay has been used to study the chemosensitivity of human tumor cells to various drugs (16, 17) and to determine the effects of biologic modifiers on the clonogenic potential of melanoma cells (18-20). The effects of melanotropins on the ability of S91 melanoma cells to form colonies in soft agar were determined by plating a known number of cells into 50-mm diameter petri dishes in 1 ml of 0.8% agar in serum-supplemented Ham’s medium F10 over an underlayer of 1 ml of the same medium with 0.5% agar. Cultures were continuously exposed to the appropriate melanotropin and were incubated for 10 days. It has been observed that the proliferation of S91 CCL cells is rapidly initiated and that about 40% of the cells plated divide once after 1 day in agar and continue to divide approximately every 32 hours (21). A sequential increase in the size of the growth units is observed until proliferation stops 9 days after plating. After 10 days of incubation, colonies were counted and grouped into two categories according to diameter (42-104 μm and >104 μm) with the FAS II (Bausch and Lomb, Inc., Rochester, NY) optical image analyzer (22). By using a nomogram that we have established, ln (No. of cells/growth unit)=0.87-2.80 ln (cell diameter) + 2.38 ln (growth unit diameter), the number of cells per growth unit could be calculated (23). From this equation, it can be determined that CCL growth units greater in diameter than 42 μm are composed of at least 10 cells, which corresponds to three divisions, and that growth units greater than 104 μm in diameter contain at least 105 cells, the outcome of 6-cell divisions.

RESULTS

In the present study, the effects of α-MSH and the potent analogue [Nle⁴, D-Phe⁷]-α-MSH on melanogenesis and proliferation of Cloudman S91 cells were determined. [Nle⁴, D-Phe⁷]-α-MSH was shown to be about one hundredfold more potent than α-MSH in stimulating tyrosinase activity of CCL cells (13). This analogue also exhibited ultraprolonged activation of tyrosinase, as enzyme activity was maintained for days after initial contact of the cells with the peptide and after removal of the melanotropin from the culture medium. Upon treating CCL cells with 10⁻⁷ M [Nle⁴, D-Phe⁷]-α-MSH for 24 hours, we elicited a twofold increase in enzymatic activity above basal level 24 hours following removal of the melanotropin from the culture medium. Tyrosinase activity was further increased after 48 hours and remained remarkably elevated above control for 4 days in
the absence of [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH (text-fig. 1). Under these monolayer culture conditions and despite near-maximal enzymatic activation, the rate of proliferation of melanotropin-treated cells was not inhibited (or reduced) relative to the growth rate of untreated (control) cells (text-fig. 2).

The proliferation of CCL cells in monolayer culture was not retarded even with continuous and daily exposure to \(10^{-7}\) M \(\alpha\)-MSH or [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH. After 72 and 96 hours of exposure to either melanotropin, tyrosinase activity was maximally stimulated eightfold to ninefold above basal levels (text-fig. 3). At these exposure periods the melanotropins did not inhibit the proliferative rate of CCL cells. Even after 6 days of contact with either \(\alpha\)-MSH or [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH, cellular growth in melanotropin-treated flasks was comparable to that observed in control cultures (text-fig. 4). As shown in text-figures 2 and 4, in the presence or absence of melanotropins these cells in monolayer have a doubling time of about 24 hours during log phase of growth (i.e., days 1–5).

Further evidence for a lack of growth inhibition of S91 melanoma cells by melanotropins came from studies on the effects of \(\alpha\)-MSH and [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH on the ability of CCL cells to clone and proliferate in soft agar. Cells were plated at 5,000 cells/dish and continuously treated with different concentrations of \(\alpha\)-MSH and [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH. This resulted in the formation of extremely melanized colonies and in the stimulation of cloning efficiency as evidenced by an increase in the total number of colonies/dish (42–104 \(\mu\)m in diameter; table 1). The proliferative capacity of melanoma cells (i.e., formation of colonies with diameters greater than 104 \(\mu\)m) was not affected by \(\alpha\)-MSH but was, however, inhibited by higher concentrations (\(\geq 10^{-8}\) M) of [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH (table 1).

Knowing that the size of growth units decreases with increased plating density (17, 21), we plated the cells at different cell densities and continuously treated them with \(10^{-7}\) M \(\alpha\)-MSH or [Nle\(^4\), D-Phe\(^7\)]-\(\alpha\)-MSH. At plating densities lower than 5,000 cells/dish, both melanotropins stimulated the cloning efficiency, as well as the proliferative capacity of the melanoma colony-forming cells (text-figs. 5, 6). The proliferative capacity of CCL cells was inhibited by melanotropins only when the initial plating density was equivalent to or exceeded 5,000 cells/dish, although at these densities the cloning efficiency was still increased (text-figs. 5, 6). These
results indicate that melanotropins are indeed stimulatory to the growth of S91 melanoma cells in soft agar under conditions that allow for optimal expression of their cloning and proliferative potentials.

DISCUSSION

α-MSH-induced stimulation of tyrosinase activity, and thus melanogenesis, in murine melanoma cells has

TEXT-Figure 3.—Stimulation of tyrosinase activity by continuous exposure for 6 days to \(10^{-7} M\) α-MSH or \([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH. Cells were seeded into flasks and were treated the next day with \(10^{-7} M\) α-MSH or \([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH for 24 hr and daily thereafter for 6 days. Tyrosinase activity was determined daily and was first expressed as cpm/10^6 cells and then as percent of control (basal) activity. Each value (vertical bar) represents the mean percent of control ± SE of 6 determinations.

TEXT-Figure 4.—Cells were seeded at 0.8×10^6 cells/cm^2 and were treated the next day with \(10^{-7} M\) α-MSH or \([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH. Cells were maintained in the presence of the melanotropins for 6 consecutive days, with medium in each flask changed and with fresh melanotropins added daily. Number of cells/flask was determined daily with the aid of a hemacytometer. Each value (vertical bar) represents the mean cell density/cm^2 ± SE of 3 determinations (i.e., triplicate flasks).

Table 1.—Effects of melanotropins on the clonogenic potential and the proliferative capacity of melanoma cells plated in soft agar

Concentration, M	No. of colonies with diameter 42–104 μm/dish	No. of colonies with diameter >104 μm/dish
Control	684±28	652±46
α-MSH, 10^{-9}	756±72	880±126
α-MSH, 10^{-8}	1,042±62	600±16
α-MSH, 10^{-7}	1,764±90	636±22
α-MSH, 10^{-6}	1,538±46	588±74
\([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH, 10^{-11}	1,292±146	468±36
\([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH, 10^{-9}	1,468±74	614±70
\([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH, 10^{-8}	1,286±64	576±24
\([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH, 10^{-7}	1,610±38	468±8

*Cells were plated at 5,000 cells/dish and were continuously exposed to the above concentrations of α-MSH or \([\text{Nle}^4, \text{D-Phe}^7]\)-α-MSH. After 10 days of incubation, the colonies were counted and grouped into two categories according to diameter (42–104 and ≥104 μm).

Each value represents the mean number of colonies/dish ± SE of 6 determinations for the control group and of 3 determinations for the melanotropin-treated groups.
In the present experiments, the S91 melanoma CCL, which has a moderate basal tyrosinase activity and a doubling time of about 24 hours, responded to treatment with [Nle⁴, D-Phe⁷]-α-MSH with about a fourfold increase in tyrosinase activity, which was maintained for days after the melanotropin analogue was removed from the culture flasks (text-fig. 1). However, contrary to many previous reports, these effects were not accompanied by retardation of proliferation in monolayer culture (text-fig. 2). With continuous exposure to melanotropins, the rate of cell growth was not reduced even when cultures approached confluency (text-fig. 4), a result that contrasts with other investigators’ findings relative to retardation of S91 melanoma cell proliferation by prolonged (≥3 days) melanotropin treatment (5, 24). Fuller and Lebowitz also noted that α-MSH failed to affect proliferation in this melanoma cell line (25). The lack of inhibition of cellular proliferation in our experiments might be attributed to daily supplementation of the cells with fresh media, thus replenishing essential nutrients and removing any accumulated metabolic by-products. Actually, it is possible that, under the present monolayer culture conditions, cell division is proceeding at such a rapid rate (once every 24 hr) that any positive effects that the melanotropins might have on growth go unnoticed.

In soft agar, both α-MSH and [Nle⁴, D-Phe⁷]-α-MSH stimulated colony formation and proliferation of cells plated at low densities (text-figs. 5, 6). Inhibition of proliferation of melanotropin-treated cells was only evident when cells were plated at very high densities (≥5,000 cells/dish) and treated with high concentrations of...
melanotropins (≥10⁻⁸ M; text figs. 5, 6; table 1), a condition that may result in cell crowding, depletion of nutrients, and accumulation of toxic metabolic byproducts. It has been frequently observed that when the initial plating density is very high, the number of cells per growth unit is decreased, probably because nutrients are exhausted by the large number of single cells plated, even before small growth units begin to form. We have shown this phenomenon to occur in several cell lines of human origin, including, among others, ovarian and multiple myeloma, as well as human and murine S91 melanoma (17, 21).

The nutritional requirements of CCL cells to clone in soft agar are more stringent than their requirements to grow in monolayer. In serum-free media, CCL cells grow in monolayer and yet fail to clone in agar; however, the addition of α-MSH allows the colony-forming cells to express their cloning and proliferative potential in the absence of serum (26).

Wick has reported that α-MSH does not retard the proliferation of S91 melanoma cells plated in soft agar and that growth inhibition was only evident when α-MSH and thyrophilin, an agent that mimics or augments α-MSH effects on melanogenesis, were concomitantly added (27). This observation supports the conclusion that α-MSH does not exert a direct inhibitory effect on the proliferative potential of melanoma cells. It has been suggested that α-MSH stimulates the growth of S91 melanoma cells that have a low basal tyrosinase level but inhibits the growth of cells with a high basal tyrosinase activity (9). However, we did not find such a correlation since α-MSH stimulated the growth of CCL cells that have a moderate-to-low basal tyrosinase activity (text fig. 1) as well as the growth of a highly melanotic S91 cell line that has a high basal tyrosinase level (26). It has also been reported that α-MSH stimulates the growth of slowly proliferating melanoma cells; yet it inhibits that of fast-growing cells (9, 28). Our data, however, indicate that melanotropins are stimulatory to the growth of CCL cells that divide rapidly in monolayer culture (once every 24 hr) and in soft agar (once every 32 hr) (21).

The effect of α-MSH on melanoma cell proliferation may be mediated through cAMP. Pawelek et al. have reported a biphasic effect of this cyclic nucleotide on S91 melanoma cells: stimulation of growth at low concentrations and inhibition at high concentrations (e.g., following treatment with α-MSH or prostaglandin E₁) (28). However, in this study, we have shown that neither α-MSH nor its potent analogue [Nle⁴, d-Phe³]-α-MSH, both of which increase adenylate cyclase activity (29) and thus intracellular cAMP levels, inhibited the growth of S91 CCL cells under conditions that allowed optimal phenotypic expression (stimulation of melanogenesis and colony formation). Also, melanotropins stimulate the proliferation of normal epidermal melanocytes in amphibians (30). If cAMP is indeed involved in melanotropin regulation of melanoma cell growth, then this cyclic nucleotide is a growth promoter for S91 melanoma cells, in particular, for the CCL utilized in this study. However, this does not seem to be the case, since it has previously been reported that prostaglandins, which also stimulate melanogenesis via a cAMP-mediated mechanism (31), inhibit the growth of S91 melanoma cells (32).

In a recent report, it was documented that B16 melanoma tumors enhance their own growth by secreting an insulin-like factor(s) (33). In another report, it was suggested that the ability of transformed cells to clone in agar was directly related to the amount of intercellular fibronectin (34). Therefore, melanotropins may induce colony formation by stimulating the secretion of melanoma growth-promoting factors, by increasing the production of fibronectin, or by some presently unknown mechanism. The present results might support a view that, except under conditions wherein nutritive substrates are limiting or where cytotoxic products accumulate, the normal physiologic action of melanotropins is to enhance melanogenesis, which may be coupled to cellular proliferation.

REFERENCES

(1) Hadley ME. The melanotropins. In: Endocrinology. New Jersey: Prentice Hall, 1984:160-178.
(2) Lee TH, Lee MS. In vivo effects of MSH on tyrosinase and melanogenesis of pigmented systems. Yale J Biol Med 1973; 46:493-499.
(3) Pawelek J. Factors regulating growth and pigmentation of melanoma cells. J Invest Dermatol 1976; 66:201-209.
(4) Pawelek J, Wong G, Sansone M, et al. Molecular controls in mammalian pigmentation. Yale J Biol Med 1973; 46:439–443.
(5) Wong G, Pawelek J. Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormone. Nature [New Biol] 1973; 241:215-215.
(6) Dipasquale A, McGuire J. Dibutyryl cyclic AMP arrests the growth of cultivated Cloudman melanoma cells in the late S and G₂ phases of the cell cycle. J Cell Physiol 1977; 93:395–406.
(7) Niles RM, Maraski JS. Hormonal activation of adenylate cyclase in mouse melanoma metastatic variants. J Cell Physiol 1978; 96:355–360.
(8) Lee TH, Lee MS, Lu MY. Effects of α-MSH on melanogenesis and tyrosinase of B-16 melanoma. Endocrinology 1972; 91:1180-1188.
(9) Halaban R, Lerner AB. The dual effect of melanocyte-stimulating hormone (MSH) on the growth of cultured mouse melanoma cells. Exp Cell Res 1977; 108:111-117.
(10) Pawelek J, Körner A, Berstrom A, et al. New regulators of melanin biosynthesis and autodestruction of melanoma cells. Nature 1980; 286:617-619.
(11) Sawyer TK, Sanfilippo PJ, Hruby VJ, et al. Norelucine, 7-d-phenylalnine-α-melanocyte stimulating hormone: A highly potent α-melanotropin with ultralong biological activity. Proc Natl Acad Sci USA 1980; 77:5754-5758.
(12) Sawyer TK, Hruby VJ, Wilkes BC, et al. Comparative biological activities of highly potent active-site analogues of α-melanotropin. J Med Chem 1982; 25:1022–1027.
(13) Abdel Malek ZA. Regulation of phenotypic expression and proliferation of S91 melanoma cells by potent hormone analogues. Ph.D. dissertation. Tucson: University of Arizona, 1984.
(14) Pomerantz SH. The tyrosine hydroxylase activity of mammalian tyrosinase. J Biol Chem 1966; 241:161-168.
(15) Shih S, Freedman VH, Rissel R, et al. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 1975; 72:4435-4439.
(16) Salmon SE, Hamburger AW, Soehnlen BJ, et al. Quantitation
of differential sensitivity of human tumor stem cells to anticancer drugs. N Engl J Med 1978; 298:1321-1326.

(17) MEYSKENS FL JR, THOMSON SP, HICKIE RA, et al. Potential biological explanation of stimulation of colony growth in semi-solid agar by cytotoxic agents. Br J Cancer 1983; 48:865-868.

(18) MEYSKENS FL JR, SALMON SE. Inhibition of human melanoma colony formation by retinoids. Cancer Res 1979; 39:4055-4057.

(19) BREGMAN MD, MEYSKENS FL JR. In vitro modulation of human and murine melanoma growth by prostaglandin analogues. Prostaglandins 1983; 26:449-456.

(20) SALMON SE, DURIE BG, YOUNG L, et al. Effects of cloned leukocyte interferons in the human tumor stem cell assay. J Clin Oncol 1983; 1:217-225.

(21) THOMSON SP, MOON TE, MEYSKENS FL JR. Kinetics of clonogenic melanoma cell proliferation and the limits of growth within a bilayer agar system. J Cell Physiol 1984; 121:114-124.

(22) SALMON SE, YOUNG L, LEBOWITZ J, et al. Evaluation of an automated image analysis system for counting human tumor colonies. Int J Cell Cloning 1984; 2:142-160.

(23) MEYSKENS FL JR, THOMSON SP, MOON TE. Quantitation of the number of cells within tumor colonies in semi-solid medium and their growth as oblate spheroids. Cancer Res 1981; 41:271-277.

(24) O'KEEFE E, CUATRECASAS P. Cholera toxin mimics melanocyte stimulating hormone in inducing differentiation in melanoma cells. Proc Natl Acad Sci USA 1974; 71:2500-2504.

(25) FULLER BB, LEBOWITZ J. Decay of hormone responsiveness in mouse melanoma cells as a function of cell density. J Cell Physiol 1980; 103:279-287.

(26) BREGMAN MD, ABDEL MALEK ZA, MEYSKENS FL JR. Anchorage-independent growth of murine melanoma in serumless media is dependent on insulin or melanocyte stimulating hormone. Exp Cell Res 1985; 157:419-428.

(27) WICK MM. Inhibition of clonogenic growth of melanoma cells by combination of melanocyte stimulating hormone and theophylline. J Invest Dermatol 1981; 77:253-255.

(28) PWELEK J, HALABAN R, CHRISTIE G. Melanoma cells which require cyclic AMP for growth. Nature 1975; 258:539-540.

(29) SAWYER TK, HRUBY VJ, WILKES BC, et al. Comparative biological activities of highly potent active-site analogues of α-melanotropin. J Med Chem 1982; 25:1022-1027.

(30) HADLEY ME, QUEVEDO WC JR. The role of epidermal melanocytes in adaptive color changes of amphibians. In: Montagna W, ed. Advances in biology of the skin. Vol VIII. The pigmentation system. New York: Pergamon Press, 1967:337-359.

(31) KREINER PW, GOLOD CJ, KREINS JJ, et al. MSH-sensitive adenyl cyclase in Cloudman melanoma. Yale J Biol Med 1973; 46:583-591.

(32) BREGMAN MD, SANDER D, MEYSKENS FL JR. Prostaglandin A1 and E1 inhibit the plating efficiency and proliferation of murine melanoma cells (Cloudman S-91) in soft agar. Biochem Biophys Res Commun 1982; 104:1080-1086.

(33) BAIJER Z, PAVELIC K, VUK-PAVLOVIC S. Growth self-incitement in murine melanoma B16: A phenomenological method. Science 1984; 225:930-932.

(34) RAJARAMAN R, LonerGAN K. Fibronectin distribution pattern and the three-dimensional growth behavior of mammalian cells under anchorage-independent conditions. Exp Cell Biol 1982; 50:2-12.