H₂S signaling in plants and applications in agriculture

Francisco J. Corpas*, José M. Palma

Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda, 1, E-18008 Granada, Spain

HIGHLIGHTS

- Hydrogen sulfide (H₂S) plays a signaling role in higher plants.
- It mediates persulfidation, a post-translational modification.
- It regulates physiological functions ranging from seed germination to fruit ripening.
- The beneficial effects of exogenous H₂S are mainly caused by the stimulation of antioxidant systems.

GRAPHICAL ABSTRACT

Summary of the main physiological or adverse environmental situations in higher plants where the hydrogen sulfide (H₂S) participates.

INTRODUCTION

The description of the gasotransmitter hydrogen sulfide (H₂S), with its toxic impact on the metabolism of animal and plant cells,
Plant biochemistry of H2S: An overview

The study of H2S as a signaling molecule has focused on its capacity to interact with thiol (-SH) groups present in protein cysteine residues through the post-translational modification (PTM) persulfidation [4,20]. It is important to point out the major regulatory role played by protein thiol groups involved in multiple interactions which can activate or inhibit the function of the target proteins [21,22]. H2S competes with other molecules, such as nitric oxide (NO), glutathione (GSH), cyanide and fatty acids, which generate the PTMs S-nitrosation [4,23], S-glutathionylation [24,25], S-cyanylation [26] and S-acylation [27–29], respectively. Fig. 2 shows a simple model of these PTMs involving protein thiol groups. However, fewer studies have explored the potential protein targets of persulfidation, previously known as S-sulfhydration, and how this PTM affects up-regulates and down-regulates these proteins.

Information garnered from initial plant proteomic analyses focusing on the model plant Arabidopsis thaliana [30,31] and that obtained from animal cells [32,33], as well as complementary studies, have facilitated the evaluation of the in vitro effect of H2S on a specific plant protein using different H2S donors [15,34,35]. Table 1 shows a list of plant proteins, which have been observed to undergo persulfidation, and how their protein function is modulated [36,37]. In some cases, a specific purified protein can behave differently under in vitro conditions depending on whether the H2S donor is applied to the whole plant, added to the nutrient solution or growth media or sprayed on the aerial part of the plant. This is due to the complex action of H2S characterized by its functional interaction/competition in whole cells with other molecules including nitric oxide (NO) [4], melatonin [38] and phytohormones such as ethylene, auxin and abscisic acid [39,40].

Although the precise mechanisms involved remain unknown, H2S has been shown to regulate gene expression [41,42]. Exogenous applications of H2S to grapevine (Vitis vinifera L.) plants trigger gene expression involved in the synthesis of secondary metabolites as well as various defensive compounds which boosts plant development and abiotic resistance [43]. In addition, microarray analysis of differentially expressed genes of tomato plants supplemented with NaHS has shown that 5349 genes were up-regulated, while 5536 were down-regulated [44]. However, any precise biochemistry of endogenous H2S in plant cells, as well as how and where H2S is produced and its metabolic interactions with other molecules, is still in its infancy. In higher plant systems, several enzymes involved in cysteine metabolism present in subcellular compartments (the cytosol, chloroplasts, mitochondria and peroxisomes) are available for the production of H2S [35,45,46]. These enzymes include L-cysteine desulphydrase (L-DES), L-cysteine desulphydrase 1 (DES1), previously known as Cys synthase-like (CS-LIKE), and cysteine synthase (CS) in the cytosol; D-cysteine desulphydrase (D-DES) and cyano alanine synthase (CAS) in mitochondria; and sulfite reductase (SIR) in the chloroplast [3,46–48]. However, given its highly lipophilic nature, the H2S molecule can spread with ease throughout the lipid bilayer of cell membranes [49]. New promising data also show how activities, such as cysteine desulphydrases, in some of these enzymes are up-regulated under red light and down-regulated by blue and white light [50].

Potential biotechnological applications of exogenously applied H2S

Although further basic research on H2S is required, sufficient experimental data show that the exogenous application of H2S to different plant species at different stages of development can...
Table 2 shows different examples of the beneficial effects of the nitration and oxidative damage to proteins and nucleic acids.

Enzyme	Function	Effect	Ref.
RuBISCO	Photosynthesis	Activity up-regulated	[9]
O-acetylsersine(thiol)lyase (OAS-TL)	Sulfur metabolism	Activity up-regulated	[9]
L-cysteine desulphhydrase (LCD)	Sulfur metabolism	Activity up-regulated	[9]
Ascorbate peroxidase (APX)	Antioxidant	Activity up-regulated	[30]
Glyceraldehyde 3-phosphate dehydrogenase	Energy production in the glycolysis	Activity up-regulated	[30]
(GAPDH)			
Glutamine synthetase (GS)	Metabolism of nitrogen	Activity down-regulated	[30]
Actin	Involved in organelle movement, in cell division and expansion	Inhibit actin polymerization	[36]
1-aminocyclopropane-1-carboxylic acid oxidase (ACO)	Ethylene biosynthesis	Activity down-regulated	[37]
NADP-isocitrate dehydrogenase (NADP-ICDH)	Provides NADPH as a reducing agent	Activity down-regulated	[15]
NADP-malic enzyme (NADP-ME)	Provides NADPH as a reducing agent	Activity down-regulated	[34]
Catalase	Antioxidant	Activity down-regulated	[35]
SNF1-RELATED PROTEIN KINASE2.6 (SnRK2.6)	Promote ABA signaling.		[12]
Respiratory burst oxidase homolog protein D (RBODH)	Generation of superoxide radical	Activity up-regulated	[13]

Table 3 provides representative examples of the oxidative and nitrosative effects of H₂S on fruit ripening and post-harvest damage to fresh produce.

Enzyme	Function	Effect	Ref.
RuBISCO	Photosynthesis	Activity up-regulated	[9]
O-acetylsersine(thiol)lyase (OAS-TL)	Sulfur metabolism	Activity up-regulated	[9]
L-cysteine desulphhydrase (LCD)	Sulfur metabolism	Activity up-regulated	[9]
Ascorbate peroxidase (APX)	Antioxidant	Activity up-regulated	[30]
Glyceraldehyde 3-phosphate dehydrogenase	Energy production in the glycolysis	Activity up-regulated	[30]
(GAPDH)			
Glutamine synthetase (GS)	Metabolism of nitrogen	Activity down-regulated	[30]
Actin	Involved in organelle movement, in cell division and expansion	Inhibit actin polymerization	[36]
1-aminocyclopropane-1-carboxylic acid oxidase (ACO)	Ethylene biosynthesis	Activity down-regulated	[37]
NADP-isocitrate dehydrogenase (NADP-ICDH)	Provides NADPH as a reducing agent	Activity down-regulated	[15]
NADP-malic enzyme (NADP-ME)	Provides NADPH as a reducing agent	Activity down-regulated	[34]
Catalase	Antioxidant	Activity down-regulated	[35]
SNF1-RELATED PROTEIN KINASE2.6 (SnRK2.6)	Promote ABA signaling.		[12]
Respiratory burst oxidase homolog protein D (RBODH)	Generation of superoxide radical	Activity up-regulated	[13]

Many adverse external conditions are well known to negatively affect plant growth, development and productivity [58]. To palliate these effects, plants have developed various strategies which differ according to the type of stress and plant species involved. In many cases, these stresses are associated with unregulated overproduction of reactive oxygen and nitrogen species (ROS/RNS) which can trigger nitro-oxidative stress [59] characterized by an increase in key parameters such as lipid peroxidation, protein tyrosine nitration and oxidative damage to proteins and nucleic acids. Table 2 shows different examples of the beneficial effects of the exogenous application of H₂S through the use of different donors on a wide range of agronomically important plants affected by stresses such as heavy metals (cadmium, aluminum, chromium, copper, iron, zinc), metalloids (arsenic), salinity, drought, as well as high and low temperatures [60–84]. Apart from certain specific responses, in most cases, the application of exogenous H₂S appears to cause an increase in the different components of antioxidant systems, such as catalase, superoxide dismutase (SOD) isozymes, as well as enzymatic and non-enzymatic components of the ascorbate-glutathione cycle, which enables H₂O₂ levels and lipid peroxidation content to be reduced.

H₂S in fruit ripening and post–harvest damage to fresh produce

Information available on endogenous H₂S metabolism in fruits and vegetables is highly limited. Recently, endogenous H₂S content in non-climacteric sweet pepper (Capsicum annum L) fruits was reported to increase during the transition from green immature to red ripe [15]. However, the number of studies focusing on the economic impact of biotechnological applications of H₂S on fruit ripening and post-harvest storage, which prevent the loss of fresh produce caused by fungi, bacteria, viruses and low temperatures used to store fruits and vegetables, has increased over the last ten years. Given that all these factors are usually associated with oxidative stress, many studies have shown that the exogenous application of H₂S could have a beneficial effect on the shelf life of a diverse range of fruits, vegetables and flowers [14,16,38,85,86]. Table 3 provides representative examples of the exogenous application of H₂S to fruits and vegetables [87–94] which enables their quality to be maintained. Another common effect observed following exogenous treatment with H₂S is an increase in antioxidant systems which prevent ROS overproduction and consequently oxidative damage.

Implication of H₂S in rhizobium–legume symbiosis

In agriculture and natural ecosystems, a major source of nitrogen-fixation is throughout the nodule formation during the plant-rhizobia interaction [95]. As happened with the NO that was seen to be involved in the interaction rhizobium–legume symbiosis [96–98], H₂S seems to be also involved in different ways in this process. A recent report indicates that exogenous H₂S promotes plant growth, nodulation and nitrogenase activity in the functional symbiosis between rhizobium (Sinorhizobium fredii) and soybean (Glycine max) plants [99]. Furthermore, the synergy between H₂S and rhizobia allowed the increase of soybean nitrogen contents by the regulation of related enzymes at different levels (activity, protein, and gene expression) as well as senescence-associated genes which were also regulated [100]. Moreover, new data obtained during the Mesorhizobium–Lotus...
Table 2
Main effects of the exogenous application of H$_2$S to plants exposed to diverse environmental stresses. ABA, abscisic acid. APX, ascorbate peroxidase. AsA, ascorbate. CAT, catalase. GR, glutathione reductase. GSH, reduced glutathione. GSNOR, S-nitrosoglutathione reductase. HT, high temperature. MDA, malondialdehyde. POD, peroxidase. NaHS, sodium hydrosulfide. PIP, plasma membrane intrinsic proteins. PM, plasma membrane. SOD, superoxide dismutase.

Environmental stress	H$_2$S donor(µM)	Plant species	Effects	Ref.
Aluminum (%)	NaHS(2)	Rice (Oryza sativa L.)	Increases root elongation and decrease Al contents in rice root tips. Increase antioxidant enzyme activities. Decrease MDA and H$_2$O$_2$ content in roots	[60]
Sodium (Na)	NaHS(50)	Soybean (Glycine max L.)	Reduce Al accumulation. H$_2$S function downstream of NO and induce citrate secretion through the upregulation of PM H$^+$-ATPase-coupled citrate transporter cotransport systems	[61]
Cadmium (Cd)	NaHS(100)	Alfalfa (Medicago sativa L.)	Reduces the accumulation of MDA and H$_2$O$_2$. Increase the content of GSH and the activity of antioxidant enzymes (SOD, CAT and POD)	[62]
Sodium (Na)	NaHS(500)	Bermudagrass (Cynodon dactylon L.)	Alleviates Cd damages by modulating enzymatic and non-enzymatic antioxidants.	[63]
Sodium (Na)	NaHS(200)	Barley (Hordeum vulgare L.)	Reduces the accumulation of H$_2$O$_2$ and superoxide ions in roots	[64]
Endogenous H$_2$S	NaHS(200)	Wheat (Triticum aestivum)	Increases the activities of antioxidant enzymes. Inhibits Cd uptake and reduce proline content	[65]
Chromium(Cr)	NaHS(500)	Maize (Zea mays L.)	Alleviates chromium toxicity and enhances antioxidant activities (CAT, SOD, APX)	[66]
Sodium (Na)	NaHS(200)	Cauliflower (Brassica oleracea L.)	Decreases Cr content, H$_2$O$_2$ and MDA concentrations. Increases activity of antioxidant enzymes	[67]
Copper (Cu)	NaHS(1,400)	Wheat (Triticum aestivum L.)	Lowers levels of MDA and H$_2$O$_2$ in germinating seeds. Increases SOD and CAT activities, and decreases lipoygenase	[68]
Iron deficiency	NaHS(200)	Strawberry (Fragaria x ananassa)	Reduces electrolyte leakage, and content of H$_2$O$_2$ and MDA. Upregulate activities of antioxidant enzymes. Improved Fe uptake	[69]
Zinc (Zn)	NaHS(200)	Pepper (Capsicum annum L.)	Increases plant growth, fruit yield, water status and proline content. Enhances the activity of antioxidant enzymes	[70]
Arsenic (As)	NaHS(100)	Pea (Pisum sativum L.)	Increases of AsA and GSH contents and activities of the AsA–GSH cycle enzymes	[71]
Salinity	NaHS(50)	Rice (Oryza sativa L.)	Decreases the uptake of Na$^+$ and the Na$^+$/K$^+$ ratio	[72]
	NaHS(50)	Wheat (Triticum aestivum L.)	Suppresses ROS accumulation by increasing antioxidant defense	[73]
	NaHS(20)	Cucumber (Cucumis sativus L.)	Keeps Na$^+$ and K$^+$ homeostasis by the gene expression of plasma membrane Na$^+$/H$^+$ antiporter (SOS1). Decrease lipid peroxidation content and ROS generation. Increases activity of antioxidant system	[74]
	NaHS(200)	Mango tree (Kandelia obovata)	Enhances the quantum efficiency of photosystem II (PSII) and the membrane lipid stability	[75]
Drought	NaHS(500)	Wheat (Triticum aestivum L.)	Increases antioxidant enzyme activities, reduces MDA and H$_2$O$_2$ contents in both leaves and roots. Increases of the transcription levels of genes encoding ABA receptors. Induction of genes that code for antioxidant enzymes	[76]
	NaHS(400)	Wheat (Triticum aestivum L.)	Alleviates Cd damages by modulating enzymatic and non-enzymatic antioxidants.	[77]
	NaHS(20)	Alalfa (Medicago sativa L.)	Lowers MDA. Induce Cu/ZnSOD, FeSOD genes	[78]
Osmotic stress	NaHS(100)	Arabidopsis (Arabidopsis thaliana)	Increase phospholipase D2X and the antioxidant enzyme system. Reduce ROS and MDA content and reduce electrolyte leakage	[79]
Low temperature	NaHS(50)	Cucumber (Cucumis sativus L.)	Increases GSH and cuscubitan C content	[80]
	NaHS(500)	Lowbush blueberry (Vaccinium angustifolium)	Alleviate the degradation of chlorophyll and carotenoids and reduce the photoinhibition of PSII and PSI.	[81]
High temperature	NaHS(100)	Strawberry (Fragaria x ananassa cv. 'Camaroosa')	Induction of gene expression coding for antioxidant enzymes (cAPX, CAT, MnSOD, GR), heat shock proteins (HSP70, HSP80, HSP90) and aquaporins (PIP)	[82]
	NaHS(500)	Maize (Zea mays L.)	Improves seed germination and increases antioxidant enzymes. Accumulation of proline	[83]
	NaHS(50) or	Poplar (Populus trichocarpa)	Increases GSNOR activity and reduce HT-induced damage to the photosynthetic system	[84]
	CGY4137(10)	Arabidopsis	Enhances seed germination rate under HT. Increases gene expression of ABIS (ABA-INSENSITIVE 5).	[85]

1 Resulted in the Utility Patent Pub. No.: WO/2015/123273.

symbiosis indicate that this interaction is regulated by the cross-talk among H$_2$S with other signaling molecules including NO and ROS [101].

Conclusions and future perspectives

H$_2$S, which is part of the plant sulfur metabolism, is a new signal molecule whose regulatory function acts through redox interactions, especially the protein post-translational modification persulfidation. The application of exogenous H$_2$S, involving a signaling mechanism, causes an increase in different components of the antioxidant system at both the gene and protein level. Nevertheless, the precise biochemical and molecular mechanisms involved in these processes need to be further investigated in future research. However, the exogenous application of H$_2$S undoubtedly has a beneficial effect on different plant species, especially those of considerable agronomic interest under adverse environmental conditions. Therefore, the use of H$_2$S alone or combined with other molecules, such as nitric oxide, melatonin, thiourea, silicon, chitosan and calcium, which appear to beneficially affect crop plants, needs to be explored in light of climate change [102–108]. Thus, additional research is necessary in order to decipher the unknowns of H$_2$S and its interaction with the metabolism of ROS and RNS under physiological and stressful conditions [109], as well as to establish biotechnological strategies to combat these stresses.
which are responsible for major losses in plant yield and crop productivity.

Compliance with Ethics requirements

This article does not contain any studies with human or animal subjects.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

FJC and JMP research is supported by a European Regional Development Fund cofinanced grant from the Spanish Ministry of Economy and Competitiveness (AGL2015-65104-P and PID2019-103924GB-I00), the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (P18-FR-1359) and Junta de Andalucía (group BIO192), Spain.

References

[1] Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996;16:1066–71.
[2] Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 2013;36(9):1607–16.
[3] Filipovic MR, Jovanovic VM. More than just an intermediate: hydrogen sulfide. J Integr Plant Biol 2009;51:1084–92.
[4] Aroca A, Benito JM, Gotor C, Romero LC. Hydrogen sulfide promotes selenoprotein expression, cellular processes through posttranslational modification of proteins by S-sulfhydration and NO. Nitric Oxide 2018;81:36–45.
[5] Chen S, Jia H, Wang X, Shi C, Wang X, Ma P, et al. Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Mol Plant. 2020;13:334–42.
[6] Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, et al. Persulfidation-based modification of cysteine desulphydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Front Plant Sci 2020. doi: 10.3389/fpls.2020.00828.
[7] Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol 2015;57(7):628–40.
[8] Bhatnagar A, Bandyopadhyay D. Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures. Proteins. 2018;86(2):192–209.
[9] Filipovic MR, Jovanovic VM. More than just an intermediate: hydrogen sulfide. J Integr Plant Biol 2009;51:1084–92.
[10] Aroca A, Benito JM, Gotor C, Romero LC. Persulfidation proteome reveals the roles of protein persulfidation. Front Plant Sci 2018;9:1369.
[11] Duan J, Gaffrey MJ, Qian WN. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol Biotechnol 2017;13(5):816–29.
[12] Chen S, Jia H, Wang X, Shi C, Wang X, Ma P, et al. Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Mol Plant. 2020;13:334–42.
[13] Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, et al. Persulfidation-based modification of cysteine desulphydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Front Plant Sci 2020. doi: 10.3389/fpls.2020.00828.
[14] Aroca A, Benito JM, Gotor C, Romero LC. Hydrogen sulfide promotes selenoprotein expression, cellular processes through posttranslational modification of proteins by S-sulfhydration and NO. Nitric Oxide 2018;81:36–45.
[15] Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, et al. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol Technol 2011;60:251–7.
[16] Zheng K, Hu LY, Hu KD, Wu J, Yang F, Zhang H. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. PLoS One 2017;12(6):e0181013.
[17] Muñoz-Vargas MA, González-Gordo S, Cañas A, López-Jaramillo J, Palma JM, Corspos FJ. Endogenous hydrogen sulfide (H₂S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H₂S and NO. Nitric Oxide 2018;81:36–45.
[18] Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, et al. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol Technol 2011;60:251–7.
[19] Zheng K, Hu LY, Hu KD, Wu J, Yang F, Zhang H. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. PLoS One 2017;12(6):e0181013.
[20] Shih Y, Ye T, Han N, Bian H, Liu X, Chan Z. Hydrogen sulfide regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Plant Signal Behav 2013;8(10):1277–8.
[21] Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol 2015;57(7):628–40.
[22] Bhatnagar A, Bandyopadhyay D. Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures. Proteins. 2018;86(2):192–209.
[23] Astier J, Kulkil A, Koen E, Besson-Bard A, Bourque S, Jeandrou S, et al. Protein S-nitrosylation: what’s going on in plants?. Free Radic Biol Med 2012;53(5):1101–10.
[24] Zaffagnini M, Bethommé M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012;16(6):567–86.
[25] Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH. Glutathione-linking cell oxidation and plastid biogenesis. Front Plant Sci 2017;8:346.
[26] García-Corpas FJ and JMP research is supported by a European Regional Development Fund cofinanced grant from the Spanish Ministry of Economy and Competitiveness (AGL2015-65104-P and PID2019-103924GB-I00), the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) (P18-FR-1359) and Junta de Andalucía (group BIO192), Spain.

Table 3

Fruit/vegetable	H₂S donor	Effects	Ref.
Strawberry (Fragaria × ananassa Duch.)	0.8 mM NaHS	Prolongs postharvest shelf life and reduces fruit rot disease	[87]
Broccoli (Brassica oleracea)	2.4 mM NaHS	Alleviates senescent symptoms	[88]
Grape (Vitis vinifera L. × V. labruscica L. cv. Kyoho)	1 mM NaHS	Alleviates postharvest senescence of grape and maintain high fruit quality	[89]
Banana (Musa acuminate, AAA group)	1 mM NaHS	Alleviates fruit softening, Antagonizes ethylene effects	[14]
Tomato (Solanum lycopersicum L.) ‘Micro Tom’	0.9 mM NaHS	Postpones ripening and senescence of postharvest tomato fruits by antagonizing the effects of ethylene	[90]
Hawthorn (Crataegus oxyacantha) fruit	1.5 mM NaHS	Confers tolerance to chilling, Triggers H₂S accumulation, increase antioxidant enzyme activities and promote polyphenol accumulation	[91]
Avocado (Persea americana Mill, cv. ’Hass’)	200 μMNaHS	Protects against frost and day high light	[92]
Kiwifruit (Actinidia chinensis)	20 μM H₂S	Delays ripening and senescence. Inhibits ethylene production. Increases antioxidant activities. Regulates the cell wall degrading enzyme gene	[93]
Daylily (Hemerocallis fulva)	4 mM NaH₅S	Delays senescence of postharvest daylily flowers. Increases antioxidant capacity to maintain the redox balance	[94]
Tomato (Solanum lycopersicum L.)	1 M NaH₅S	Inhibits ethylene-induced petiole abscission	[94]
Zhou ZH, Wang Y, Ye XY, Li ZG. Signaling molecule hydrogen sulfide improves...

Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of Nitric Oxide synthase activity by H₂S and NO in sweet pepper (Capsicum annuum L.) fruits. Physiol Plant 2020;168(2):278–88. 10.1111/ppl.13000.

Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM. Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase induction. J Integr Plant Biol 2018;61(7):871–83.

Li J, Chen S, Wang X, Shi C, Liu H, Yang J, et al. Hydrogen sulfide disturbs actin polymerization via S-Sulfhydration resulting in stunted root hair growth. Plant Physiol 2018;178(2):936–49.

Ju H, Chen S, Liu D, Jin Y, Shi C, Wang J, et al. Ethylene-induced hydrogen sulfide negatively regulates ethylene biosynthesis by peroxidation of ACO in tomato under osmotic stress. Front Plant Sci 2018;9:1517.

Mukherjee S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nutr Oxicid 2018;9:28:5–34.

Jia H, Hu Y, Fan T, Li J. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep 2015;5:8351.

Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, et al. Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One 2016;11:e0163082.

Pang WF, Zhang Z, Ge YY. Expression responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol Plant 2020. doi: https://doi.org/10.1111/ppl.13064.

Li X, Yang R, Dou Y, Zhang W, Du H, Zhu L, et al. Transcriptome analysis reveals delaying of the ripening and cell wall degradation of kiwifruit by hydrogen sulfide. J Sci Food Agric 2020. doi: https://doi.org/10.1002/jsfa.10690.

Ma Q, Yang J. Transcriptome profiling and identification of functional genes involved in H₂S resistance in grapevine tissue cultured plants. Genes Genomics 2018;40(12):1287–300.

Guo Z, Liang Y, Yan J, Yang E, Li K, Xu H. Physiological response and transcription profiling analysis reveals the role of H₂S in alleviating excess nitrogen stress tolerance in tomato roots. Plant Physiol Biochem 2018;124:59–69.

Gotor C, Laureano-Marín AM, Moreno I, Araco A, García I, Romero LC. Soluble cysteine in the plant cytosol: cysteine or sulfide?. Amino Acids 2015;47:2155–64.

Hancock JT, Whiteman M. Hydrogen sulfide signaling: Interactions with nitric oxide and reactive oxygen species. Ann N Y Acad Sci 2016;1365:5–14.

Calderwood A, Kopriva S. Hydrogen sulfide in plants: From dissipation of excess sulfur to signaling molecule. Nitric Oxicid 2014;41:72–8.

Li D, Lu J, Li H, Wang J, Pei Y. Characterization of the O-acetylsertine(thiol) hyase gene family in Solanum lycopersicum L. Plant Mol Biol 2019;99(1–2):135–54.

Cuevasanta E, Möller MN, Alvarez B. Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 2017;617:9–25.

Liu Z, Cao C, Li Y, Yang G, Pei Y. Light regulates hydrogen sulfide signalling during cucumber fruit development and morphogenesis and focial maillet. Funct Plant Biol 2019. doi: https://doi.org/10.1071/FB19007.

Huo J, Huang D, Zhang J, Fang H, Wang B, Wang C, et al. Hydrogen sulfide: a gaseous molecule in postharvest freshness. Front Plant Sci 2018;9:1172.

Dong Y, Wang C, Wang N, Wei L, Li Y, Yao Y, et al. Roles of small molecule compounds in plant adventitious root development. Biomolecules 2019;9(9):.pii:E420.

Zhai Y, Wang H, Xian M. Cysteine-activated hydrogen sulfide (H₂S) donors. J Am Chem Soc 2011;133(1):115–7.

Yamasaki H, Ogura MP, Kingjoe KA, Cohen MF. D-Cysteine-induced rapid root growth of Arabidopsis thaliana. Arct Plants 2018;9:1288.

Antonio C, Xenofontos R, Chatzimichail G, Christou A, Kashfi K, Fotopoulos V. Exploring the potential of nitric oxide and hydrogen sulfide (NOH₂S)-releasing synthetic compounds as novel priming agents against drought stress in Medicago sativa plants. Biomolecules 2020;10(1):E120.

Zhao M, Liu Q, Zhang Y, Yang N, Wu G, Li Q, et al. Alleviation of osmotic stress by H2S is related to regulated PLD activation and suppressed ROS in Arabidopsis thaliana. J Plant Res 2020. doi: https://doi.org/10.1007/s10265-020-01182-3.

Liu Z, Li Y, Cao C, Liang S, Ma Y, Liu X, et al. The role of H₂S in low temperature-induced cucurbitacin C increases in cucumber. Plant Mol Biol 2019;96(6):335–44.

Tang X, An B, Cao D, Xu R, Wang S, Zhang Z, et al. Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings. Front Plant Sci 2020;11:301.

Christou A, Filippou P, Manganaris GA, Fotopoulos V. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporins. BMC Biol 2014;12:44.

Zhou ZH, Wang Y, Ye XY, Li ZG. Signaling molecule hydrogen sulfide improves seed germination and seedling growth of maize (Zea mays L.) seeds by NO and H₂S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiol 2017;219:71–80.

Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, et al. Hydrogen sulfide alleviates chronic hyperoxia-induced oxidative stress by restricting its uptake in tomato seedlings enhancing antioxidative system. Physiol Plant 2020;168(2):289–340. doi: https://doi.org/10.1111/ppl.13001.

Kaya C, Ashraf M, Alyemeni MN, Ahmad P. Responses of nitric oxide and hydrogen sulfide in tomato cotyledons during oxidative defense system in wheat plants grown under cadmium stress. Physiol Plant 2020;168(2):345–60. doi: https://doi.org/10.1111/ppl.13102.

Zhao Q, Cai W, Ji T, Ye L, Lu YT, Yuan TT. WRKY13 enhances cadmium tolerance by promoting D-CysteINE DESULPHURYZE and hydrogen sulfide production pp. 01504.2019. Plant Physiol 2020:01504. doi: https://doi.org/10.1002/jsfa.101504.

Kharbech O, Houmani H, Chauvi A, Corpas FJ. Alleviation of Cd(VI)-induced oxidative stress in maize (Zea mays L.) seeds by NO and H₂S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiol 2017;219:71–80.

Singh VP, Singh S, Kumar J, Prasad SM. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide. J Plant Physiol 2015;181:20–9.

Mostafa MG, Saegusa D, Fujita M, Tran LS. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na⁺/K⁺ balance, mineral homeostasis and antioxidative metabolism under excessive salt stress. Front Plant Sci 2015;6:1055.

Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS. Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na⁺ content. Plant Growth Regul 2016;79:391–9.

Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM. Hydrogen sulfide regulates salt tolerance in rice by maintaining the Na⁺/K⁺ balance, mineral homeostasis and antioxidative metabolism under excessive salt stress. Front Plant Sci 2015;6:1055.

Yamauchi H, Suzuki S, Ochatani H, Ueda S, Nakada H. Hydrogen sulfide alleviates cadmium toxicity in bermudagrass (Cynodon dactylon (L.) Pers.). Plant Physiol Biochem 2014;74:99–107.

Muñoz-Vargas MA, González-Gordo S, Palma JM. Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase induction. J Integr Plant Biol 2018;61(7):871–83.

Muniati N, Patade V, Pena S, Ford R, Pang E. Abiotic stress responses in plants: present and future. In: Abiotic stress responses in plants. New York: Springer; 2012. p. 1–19.

Corpas FJ, Barroso JB. Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 2013;199(3):633–5.

Chen Z, Huang Y, Wang W, Zhang C, Li P, Wei J, et al. The hydrogen sulfide signal enhances seed germination tolerance to high temperatures by retaining nuclear COP1 for HSP degradation. Plant Cell Physiol 2019;58:34–43.
Corpas FJ. Hydrogen Sulfide: a new warrior against abiotic stress. Trends Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. Application of Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Brouquisse R. Nitric oxide: a Liu D, Li J, Li Z, Pei Y. Hydrogen sulfide inhibits ethylene-induced petiole Valivand M, Amooaghaie R, Ahadi A. Seed priming with H$_2$ Yao GF, Wei ZZ, Li TT, Tang J, Huang ZQ, Yang F, et al. Modulation of enhanced Geng B, Huang D, Zhu S. Regulation of Hydrogen sulfide metabolism by nitric Fukudome M, Shimada H, Uchi N, Osuki KI, Ishizaki H, Murakami EI, et al. Liu D, Xu S, Hu H, Pan J, Li P, Shen W. Endogenous hydrogen sulfide Medicago truncatula Solanum lycopersicum L., Hortic Res 2020;7:14. Mahmud K, Makaju S, Ibrahim R, Missaoui A. Current progress in nitrogen fixing plants and microbe research. Plants (Basel), 2020;9(1):87. Puppo A, Pauly N, Boscari A, Mandon K, Broquissie R, Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses, Antioxid Redox Signal 2013;18:2202–19. Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Broquissie R. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J Exp Bot 2015;66(10):2877–87. Berger A, Guinand S, Boscari A, Puppo A, Broquissie R, medicago truncatula phytooglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. New Phytol 2020. doi: https://doi.org/10.1111/nph.16462. Zou H, Zhang NN, Pan Q, Zhang JH, Chen J, Wei GH. Hydrogen sulfide promotes nodulation and nitrogen fixation in soybean-rhizobia symbiotic system. Mol Plant Microbe Interact 2019;32(8):972–85. Zhang NN, Zou H, Lin XY, Pan Q, Zhang WQ, Zhang JH, et al. Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean. Plant Cell Environ 2020. doi: https://doi.org/10.1111/pce.13736. Fukudome M, Shinoda H, Uchi N, Osuki KI, Ishizaki H, Murakami EI, et al. Reactive sulfur species interact with other signal molecules in root nodule symbiosis in Lotus japonicus. Antioxidants (Basel) 2020;9(2):145. Fuentes-Lara LO, Medrano-Macías J, Pérez-Labrada F, Rivas-Martínez EN, García-Enciso EL, González-Moraes S, et al. From elemental sulfur to hydrogen sulfide in agricultural soils and plants. Molecules 2019;24(12): E2282.