Coordinated Flexible Energy and Self-Healing Management According to the Multi-Agent System-Based Restoration Scheme in Active Distribution Network

Leila Bagherzadeh 1, Hossein Shayeghi 1, Sasan Pirouzi 2, Miadreza Shafie-khah 3, João P.S. Catalão 4

1 Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 Faculty of Engineering, Semirom Branch, Islamic Azad University, Semirom, Esfahan, Iran
3 School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland
4 Faculty of Engineering of University of Porto and INESC TEC, 4200-465 Porto, Portugal

Abstract: This study presents the optimal model of the coordinated flexible energy and self-healing management (C-FE&SH-M) in the active distribution network (ADN) including renewable energy sources (RESs), electric vehicles (EVs) and demand response program (DRP). The flexible energy management (FEM) is extracted using coordination between the RESs, EVs and DRP. The self-healing method (SHM) is related to multi-agent system-based restoration process (MAS-based RP) that is obtained the optimal restoration pattern at the fault condition according to the different zone agents (ZAs) distributing along with the network. This method minimizes the difference between energy cost and flexibility benefit related to the FEM part and difference between the number of switching operation and priority loads restored based on the SHM part. Also, this problem subjects to power flow equations, RESs and active loads constraints, restoration process formulation and system operation limits. Stochastic programming is used to model the uncertainty of loads, energy prices, RESs and EVs. Hereupon, the suggested strategy is implemented on the 33-bus radial distribution network and it is solved by the crow search algorithm (CSA). Ultimately, the obtained results imply the high flexibility and security of the operation, incorporating the proposed strategy, and delineate the optimal restoration scheme for the ADN.

Keywords – Active distribution network, Coordinated flexible energy and self-healing management, Demand response program, Electric vehicle, Multi-agent system-based restoration process, Renewable energy source.

Nomenclature

Indexes

\[b, j \] Index of bus
\[D \] Index of demand
\[i, f \] Index of switch and fault point
\[t, w \] Index of simulation time and scenario sample

Variables

\(E \) Stored energy of EVs in parking lot in per-unit (p.u)
\(F_{DR}^+, F_{DR}^- \) Upward and downward flexibility of DRP (p.u)
\(FE \) Total flexible energy (p.u)
\(F_{EV}^+, F_{EV}^- \) Upward and downward flexibility of EVs (p.u)
\(I_{eh}, I_{ef} \) Maximum current of healthy and fault feeder without violating voltage limit (p.u)
\(N_{line} \) Total number of distribution lines
\(N_{sw} \) Number of switch operation
\(P_{ch}, P_{dch} \) Charging and discharging active power of EVs (p.u)
\(P_{DR} \) Active power of DRP (p.u)
\(P_{f}, Q_{f} \) Active and reactive power of distribution station (p.u)
\(P_{l}, Q_{l} \) Active and reactive power flow of distribution line (p.u)

Parameters

\(V, \theta \) Voltage magnitude (p.u), and voltage angles (rad)
\(x_{ch}, x_{dch} \) Charging and discharging state of EVs

\(A^D \) Incidence matrix of bus–demand
\(A^L \) Incidence matrix of bus–line based on current direction
\(CR, DR \) Charge and discharge rate of EVs (p.u)
\(E_{init}, E_{final} \) Initial and final energy of EVs (p.u)
\(FIP \) Flexibility incentive price ($/MWh)
\(g, b \) Conductance and susceptance of a line (p.u)
\(N_B, N_D, N_T \) Number of bus, demand, simulation time and scenario sample
\(N_f, N_{sw} \) Number of fault point and switch
\(P_D, Q_D \) Active and reactive load (p.u)
\(S_{G_{max}} \) Maximum capacity of distribution station (p.u)
\(S_{L_{max}} \) Maximum capacity of distribution line (p.u)
\(V_{min}, V_{max} \) Minimum and maximum of voltage magnitude (p.u)
\(\pi \) Probability of scenario
\[\lambda \] Energy price ($/MWh)
\[\omega_1, \omega_2, \omega_3 \] Weight factors of objective function parts
\[\eta \] Efficiency of EVs charger
\[\gamma \] Co-participation rate of loads in DRP
\[\mu \] Priority factor of load that is between 0 and 1

1. Introduction

Today, the penetration rate of renewable energy sources (RESs) is increased in the power system, because, it includes low operation cost and provide clean energy (green energy). But, it is noted that the RESs have high uncertainty; hence, the system flexibility is reduced at this condition [1-2]. Flexibility is defined as “the modification of generation injection and/or consumption patterns in reaction to an external price or activation signal in order to provide a service within the electrical system” [3]. Moreover, the connection of a high number of RESs in the electrical network is caused that the system operational indices are placed in an inappropriate situation. In other words, the voltage magnitude and power loss will be increased, and the overloading of power lines will be occurred in this condition due to high injection power by RESs [4-5]. Therefore, the advantage of the flexible energy management (FEM) approach can be appeared in these cases, where it manages the electrical energy between RESs and flexible sources (FSs), i.e., demand response program (DRP) [6], energy storage system (ESS) [7], non-RES and conventional generation units [8] to obtain the high flexibility, reliability, security, and stability with low operation cost in the power system or active distribution network (ADN) [9-11].

To reduce the environmental concerns due to the mismanagement of fossil fuel in cars, a high number of electric vehicles (EVs) have been entered the worldwide car market in recent years [12]. Generally, the EVs are connected to the distribution network to provide their required energy during the trip [13], and also they can be connected to this network by the on-board unidirectional charger at peak load time, i.e., 17:00 to 22:00, to charge their battery [14]. Hence, the voltage drop [15-16] and power losses [17-18] are increased, and overloading occurs [19] in the network lines at the case of high EVs penetration rate. To cope with this issue, the vehicle-to-grid (V2G) technology [20-21] and energy management strategy [22-24] can be used which they can remove the negative impacts of EVs energy mismanagement in the power system. For this condition, EVs are equipped to the bidirectional charger; thus, each EV can control the injection/receiving active and reactive power to/from distribution network [25-26]. Besides, the new capabilities are defined for EV or EVs parking lot [27-31]. In [27-29], power management is used for EVs to improve the network voltage profile and their financial benefits, respectively. Also, the capability of EVs was investigated in [30] to voltage stability of the ADN, and the [31] presented the EVs potential for reactive power management and harmonic compensation in the ADN. Moreover, the authors of [32] proposed that the EVs can be used as a storage system. Therefore, it is forecasted that the FEM method is able to flexibility, reliability, security, and stability management of ADN by EVs equipping to V2G technology based on the different researches in [25-32]. It is noted that based on the U.S. Department of Energy (DOE) report, the outage in the distribution network is more than 80% considering other parts of the power system [33]. Hereupon, distribution network restoration can aim at finding a healthy path for restoring the maximum possible out of service loads of a faulted feeder [34]. Different researches have investigated the restoration methods in this network. In [35], the heuristic algorithm-based decentralized strategy is used to obtain a fast and suitable restoration pattern. Also, the multi-agent system (MAS)-based restoration process, including different zone agents distributed along with the network, was represented in [36], where it is based on a decentralized restoration method; thus, it uses the expert system rules to find the restored path. The reported strategy of [36] is upgraded in [37] by using the artificial bee colony algorithm, and it was used in [38-39] in the presence of distributed generations (DGs). The decentralized MAS for distribution network restoration in the uncertainty environment was presented in [40]. Finally, the taxonomy of recent research works is expressed in Table 1.

Ref.	Flexibility model of EVs	Coupling model of FEM and SHM	Network variable calculation in SHM
[12-32]	No	No	-
[33-40]	No	No	Power flow method
Current paper	Yes	Yes	Optimal power flow formulation

According to the literature review and Table 1, there are three main research gaps for the coordination between the flexible energy management and the self-healing method:

- **Based on the results of [25-32], EVs’ battery storage system is an important flexible source due to its high responsible speed, and it acts as a local power source that can control the different network variables in consumption points to obtain high reliability, security, stability and flexibility in ADN. But, it is noted that this capability of EVs is not considered in different researches such as [12-32].**
- **In the many types of research, the energy management and restoration process of ADN have been investigated, separately [12-40]. In other words, the coordination of zone agents and RESs, as well as FSs with the distribution system operator (DSO), has not been considered such as works in [12-40]. In contrast, this coordination can obtain the high advantage and optional to ADN from reliability, security, stability, flexibility, and operationally viewpoints. For example, it is forecasted that the load not supplied and the total number of switches operation at fault condition will be reduced if the restoration process is coordinated with FEM, in comparison with the cases including only the self-healing method.**
- **Moreover, the restoration approach needs to calculate the network variables before fault occurrence, where**
research related to this approach such as [33-40] uses power flow analyses for this purpose. But, noted that the power flow method is not suitable for ADN that includes different sources and active loads; for this reason, it needs optimal operation formwork to obtain the network variables. Therefore, the restoration process in the ADN needs optimal power flow analysis.

To cope with the above issues, this paper presents the optimal formwork as Fig. 1 to model the coordinated flexible energy and self-healing management (C-FE&SH-M) in the ADN to obtain the high flexibility and security for this network and optimal restoration pattern at the fault condition. It is noted that the proposed ADN includes the RESs due to low operation cost and flexible sources (FSs), i.e., EVs and DRP, to manage the negative impacts due to the RES power uncertainty based on the proposed flexible energy management (FEM) approach. Moreover, one of the important factors in the ADN is the self-healing that is referred to the ability of ADN to restore themselves after permanent faults [41-42] automatically. Accordingly, the coordination between RESs and FSs is proposed in this paper to extract the optimal FEM, and MAS-based RP, including different ZAs along with the network, that is implemented on the ADN to obtain the suitable self-healing method (SHM). Therefore, the proposed strategy uses the coordination between all sources and ZAs with DSO to explain the optimization formulation that has minimized the objectives of FEM and SHM as a normalized objective function equation. In this equation, the FEM part minimizes the difference between energy cost and flexibility benefit, and the SHM part minimizes the difference between the number of switching operations and priority loads restored. Also, this optimization problem includes the ADN constraints and operation limits, RESs and FSs equations as well as restoration process formulation. Besides, the RES active power, energy price, active and reactive load, charge/discharge rate, and energy demand of EVs in the parking lot are uncertainty that is modeled by scenario-based stochastic programming (SBSP). The proposed SBSP is based on the Roulette Wheel Mechanism (RWM) and Kantorovich method related to scenario generation and reduction techniques. Noted that the proposed formulation is non-linear, where it solves with the crow search algorithm (CSA) to obtain a reliable and secure solution with low standard deviation and high calculation speed. Finally, the main contributions of this paper can be summarized as follows:

- Modeling the coordinated flexible energy and self-healing management strategy in the active distribution network to obtain the high flexibility, security, and reliability in fault or non-fault conditions.
- Coordination between renewable energy and flexible sources and multi-agent system-based restoration approach with the distribution system operator to improve the restoration indexes such as load not supplied and the total number of switch numbers at fault conditions.
- Achieving the reliable and secure solver with low standard deviation and high calculation speed in the proposed large-scale problem.

The rest of the paper is organized as follows: Section 2 formulates the proposed scheme of the C-FE&SH-M strategy in the ADN. Section 3 presents the solution method, and Section 4 demonstrates numerical simulations. Finally, the main conclusion and contributions of the proposed study are highlighted in Section 5.

2. Proposed problem formulation

This section presents the mathematical model of the proposed C-FE&SH-M that has minimized the energy cost and the number of switching operations and maximized the flexibility benefit and the amount of priority loads to be restored as a normalized function. Also, the problem constraints are AC power flow equations, EVs parking lot and DRP constraints, restoration process, and ADN limits.

2.1. Objective Function

The objective function in this section considers the FEM and SHM tasks in coordination between them and DSM as follows:

2.1.1. Flexible Energy Management in ADN: The first term of equation (1) is applied for this part of the proposed problem, where it minimizes the difference between energy cost obtained from upstream network and flexibility benefit that is depended on flexibility incentive price (FIP) and flexible energy (FE). Therefore, it is forecasted that the optimal scheduling obtains for RESs and FSs according to low energy cost and high flexibility as well as suitable and allowed value for ADN operation variables, e.g., voltage and line flow [9-11].

2.1.2. Self-healing Method: The second part of equation (1) refers to the SHM that is dependent on the operation of MAS-based RP uses in the fault conditions. This part refers to minimizing the difference between the number of switching operations and the amount of priority loads to be restored at these conditions. So, it is expected the optimal restoration path for ADN based on these objectives in fault conditions [42].

Finally, the proposed objective function is normalized using weight factors of ω_1 to ω_2 that are calculated based on the same variation range for all parts in this equation. In other words, with considering $\omega_1 = 1$, ω_2 is equal to the difference between maximum and minimum values of the first part of (1) division to maximum and minimum values of the second part of (1), where this format is the same for calculation of ω_1. Moreover, to obtain the maximum and minimum values of the objective function terms, the proposed problem is solved in three stages, where
it considers only one of the parts of the objective function in each stage [43].

\[
\min \alpha = \sum_{w=1}^{N_w} \beta_w \cdot FIP \cdot FEM_w + \sum_{i=1}^{N_e} \sum_{t=1}^{T} \pi_{i,t} \cdot P_{c,t}^e + \sum_{d=1}^{D} \pi_d \cdot P_{d,t}^g + \omega_d \cdot P_{d,t}^h + \omega_2 \sum_{t=1}^{T} \pi_{i,t} \cdot P_{c,t}^e + \sum_{d=1}^{D} \pi_d \cdot P_{d,t}^g + \omega_d \sum_{d=1}^{D} P_{d,t}^h
\]

(1)

FEM objectives

Flexibility benefit	Energy cost
\(\sum_{w=1}^{N_w} \beta_w \cdot FIP \cdot FEM_w \)	\(\sum_{i=1}^{N_e} \sum_{t=1}^{T} \pi_{i,t} \cdot P_{c,t}^e + \sum_{d=1}^{D} \pi_d \cdot P_{d,t}^g + \omega_d \cdot P_{d,t}^h \)

SHM objectives

- Number of switching operations
- Amount of priority loads

2.2. Constraints

2.2.1. EVs Parking Lot Equations: Equations of the EVs parking lot in bus \(b \) at hour \(t \) for scenario \(w \) are introduced in (2) to (7) that expresses the stored energy of all EVs in parking lot, EVs energy at arrival and departure hours, charging and discharging limits related to EVs batteries in parking lot, and logical constraint that prevents simultaneous operation between charging and discharging mode of EVs, respectively. Note, \(E^{\text{max}}/E^{\text{off}} \) is equal to the summation of the initial/final energy of each EV battery at arrival/departure hour, where the initial and final energy of the EVs are expressed as \((1 - \text{SOC}) \times \text{BC} \) and \(\text{BC} \), respectively. The terms of \(\text{BC} \) and \(\text{SOC} \) respectively represent the “EV battery capacity” and “state of charge”, and \(\text{SOC} \) is formulated as \(L \times \text{AER} \), where \(L \) is the traveled distance by EV in electrical mode, and \(\text{AER} \) is “all electrical range” that refers to the total distance which EV can be driven in electric mode. In addition, \(\text{CR}/\text{DR} \) is the summation of each EV battery charge/discharge rate [31].

\[
E_{b,t,w} = E_{b,t,w-1} + \eta_{bch,t,w} \cdot P_{ch}^b - \frac{1}{\eta_{bdh}} \cdot P_{bdh}^b \quad \forall b,t,w
\]

(2)

\[
E_{b,t,w} = E_{b,t,w-1} + \eta_{bdh} \cdot P_{bdh}^b
\]

(3)

\[
E_{b,t,w} = E_{b,t,w-1} \quad \forall b, t = \text{Arrival time, } w
\]

(4)

\[
E_{b,t,w} = E_{b,t,w-1} \quad \forall b, t = \text{Departure time, } w
\]

(5)

\[
0 \leq P_{ch}^{b,t,w} \leq C R_{b,t,w} \cdot \Delta t_{b,t,w} \quad \forall b, t, w
\]

(6)

\[
0 \leq P_{bdh}^{b,t,w} \leq D R_{b,t,w} \cdot \Delta t_{b,t,w} \quad \forall b, t, w
\]

(7)

2.2.2. DRP Equations: The incentive model of DRP is used in the proposed problem with constraints (8) and (9). Equation (8) presents the DRP power limitation, and (9) expresses that the total daily energy of DRP should be zero. Besides, the demand can be shifted from peak load time to off-peak load periods based on electrical energy prices. Because, the peak load time are the same with high energy price hours, and off-peak load period includes low energy price, generally. Moreover, the DRP benefit is defined in the energy cost formulation that is presented in (1), because, this equation considers the total power consumption of passive and active load as well as power loss of total network equipment. Therefore, the proposed DRP is sensitive to energy prices based on the first part of (1), and it can shift its consumption according to (8) and (9). Also, the term of \(\gamma \) defines the co-participation rate of loads in DRP, where it changes between zero and one [44].

\[
-\gamma P_{d,t,w}^{0} \leq P_{d,t,w}^{DR} \leq \gamma P_{d,t,w}^{0} \quad \forall d, t, w
\]

(8)

\[
\sum_{t=1}^{T} P_{d,t,w}^{DR} = 0 \quad \forall d, w
\]

(9)

2.2.3. MAS-based RP: In this method, each bus between two switches as Fig. 2 defines a zone agent (ZA) that is as follows based on its location to fault point [35]:

- Faulted zone agent (FZA): This ZA is the decision-making agent that is used in the faulted zone.
- Down zone agent (DZA): This ZA is related to buses that lose their energy due to the fault occurrence.
- Zone tie agent (ZTA): This ZA is defined for the healthy zone, including a tie switch.
- Healthy zone agent (HZA): This ZA is used for zones in the healthy feeder along the restoration path.

Fig. 2. Restoration process based on MAS technique

Fig. 2 shows the role of zones 1 to 8 in the fault and healthy feeders based on fault point A. Accordingly, there is the bidirectional communication between FZA and DZA, FZA and ZTA, ZTA and HZA, and all ZAs with DSO to obtain proper coordination between all ZAs. Additionally, the MAS-based RP started with knowledge of an inside fault in zone and feeder circuit breaker tripping. Thus, the situation of all ZAs is determined according to fault location, and in the next step, each ZA plays its role based on restoration objectives and technical constraints. In the proposed method, FZA receives the information of DZAs load demand; thus, it sends this data to ZTA. In the next step, ZTA closes the switches B and C to provide the DZAs load...
according to HZA and ADN limitations, i.e., radial structure of ADN, (10), line capacity, (11), allowed voltage limit in fault and healthy feeders, (12) and (13), while FZA opens Z2 switches form fault feeder. It is noted that the corresponding current limit with voltage magnitude in healthy and fault feeder, I_{ch} and I_{ch}, are used in the proposed MAS-based RP as constraints (12) and (13), respectively [35].

$$N_{line} = N_B - 1$$ \hspace{1cm} (10) \\
$$|I_j| \leq I_{max,j}$$ \hspace{1cm} (11) \\
$$I_{ch} = \frac{V_h - V_{min}}{|Z_h|}$$ \hspace{1cm} (12) \\
$$I_{ef} = \frac{V_f - V_{min}}{Z_f}$$ \hspace{1cm} (13)

Algorithm 1 MAS-based RP

1) Realize an inside fault in the zone and tripping the feeder circuit breaker
2) Send the Request for Information (RFI) message by FZA to DZAs
3) Send the information of load demand in DZAs to FZA by DZAs
4) Send the Call for Proposal (CFP) message to ZTAs by FZA
5) Send RFI message to HZAs by ZTA
6) Send the data of V_h, V_{min}, Z_h and existing capacity of zone line (I_e) as $I_e = I_{max} - I$ to ZTA by HZA, where I and I_{max} are flowing current and maximum capacity of the zone line
7) Calculate the I_{ch} by ZTA based on equation (12)
8) Calculate the minimum existing capacity, I_{ch}, related to HZAs that connected to ZTA as $I_{ch} = \min_j \{I_{ch}\}$, where j is HZA index
9) Calculate the healthy feeder allowed power without violating of voltage limit (A_P) as $A_P = \left[I_{ch} \times \min \{I_e, I_{ch}\} \right]$ where voltage magnitude of $|V|$ is considered to be 1 per-unit (p.u)
10) Send the data of V_h, Z_h, Z_f, and A_P by ZTAs to FZA
11) Calculate I_f based on equation (13)
12) Calculate each healthy tie allowed power without violating of voltage limit in restored zones (A_P) as $A_P = \left[I_{ch} \times I_{ef} \right]$ where voltage magnitude of $|V|$ is considered to be 1 per-unit (p.u)
13) Calculate the maximum allowed power that can be restored from healthy tie x without violating of voltage limit in healthy and restored zones, A_P, as $A_P = \min (A_P, A_P)$
14) Check the group restoration condition:

$$\text{if } \max_{j \in \text{ties}} (A_P) \geq \sum_{j \in \text{downties}} S_j, \text{ where } n_t \text{ and } n_v \text{ refer to the total number of tie and down zone, } S \text{ is load demand}$$

Send accept proposal message to a ZTA that is included allowed power of A_P by FZA, and connect this ZTA to network end
15) If the group restoration condition isn’t possible, thus, multi ZTA connect to ADN based on limits (10)-(13)

In equations (12) and (13), V_h and V_f refer to voltage magnitude of buses h and f based on Fig. 2. Also, impedance between distribution station and bus h is defined as Z_h in (12), and Z_f in (13) is expressed as $|Z_h| + 0.5 \times |Z_f|$, where Z_h and Z_f respectively refer to impedance magnitude between distribution station and bus f and restoration section (tie-line) impedance based on Fig. 2. Finally, more details of MAS-based on RP are presented in [35] that follows Algorithm 1.

Noted that according to Fig. 2, location between two switches is as zone agent. Thus, if there is a bus between two switches, this zone agent can be operated as FZA, DZA or HZA. However, if there is a tie line between two switches, it acts as ZTA. Therefore, for a network, where its total number buses is N_B and its total tie lines is N_T, thus, total number of agents is $N_B + N_T - 1$. Also, it can be defined as $N_{sw}/2$, where N_{sw} is total number of switches.

2.2.4. ADN constraints: These constraints are expressed in (14)-(21), where equations (14)-(18) and (19)-(21) refer to the AC power flow model and ADN operation limits, respectively. Note, constraints (14) and (15) introduce the nodal active and reactive power balance, where the active and reactive power flow of distribution lines are calculated as (16) and (17), and the voltage angle should be zero in slack bus base on (18). It is noted that these equations are related to fault and non-fault conditions. In addition, the system operation limits, i.e., voltage magnitude, distribution line capacity and distribution station capacity, for before and after of fault conditions are expressed in (19) to (21).

$$p_{h,j,w}^G + p_{h,j,w}^R \left(p_{h,j,w}^{ch} - p_{h,j,w}^{ch} \right) - \sum_{j=1}^{N_B} A_{h,j,p}^L = 0 \hspace{1cm} (14)$$

$$\sum_{d=1}^{N_B} \left(p_{d,j,w}^D - p_{d,j,w}^D \right) \forall b, t, w$$

$$Q_{h,j,w}^G - \sum_{j=1}^{N_B} A_{h,j,p}^L \sum_{d=1}^{N_B} Q_{d,j,w}^D \forall b, t, w$$

$$p_{b,j,w}^L = g_{b,j,w} V_{b,j,w}^2 \forall b, j, w$$

$$Q_{b,j,w}^L = -b_{b,j,w} V_{b,j,w}^2 \forall b, j, w$$

$$\theta_{b,j,w} = 0 \forall b = \text{ref}, t, w$$

$$V_{min} \leq V_{b,t,w} \leq V_{max} \forall b, t, w$$

$$\sqrt{p_{b,j,w}^G + Q_{b,j,w}^G} \leq L_{b,j,w} \forall b, j, w$$

$$\sqrt{p_{b,j,w}^G + Q_{b,j,w}^G} \leq G_{b,j,w} \forall b, j, w$$
2.2.5. Flexibility constraints: In this paper, the flexible sources are DRP and EVs parking lot, where the upward and downward flexibility of DRP and EVs are calculated as (22) and (23), respectively [44]. Accordingly, the flexible power in scenario \(w \) is equal to the difference between FS power in scenario \(w \) and scenario with forecasted value for uncertain parameters. Hence, total flexible energy is daily summation of FS upward and downward flexibility as (24) [44].

\[
P_{FE}^{DR+w} - P_{FE}^{DR+w} = P_{t,w}^{DR} - P_{t,w}^{DR} \quad \forall t, w, P_{t,w}^{DR} + P_{t,w}^{DR} \geq 0
\]

\[
P_{FE}^{EV+w} - P_{FE}^{EV+w} = \left(P_{t,w}^{ch} - P_{t,w}^{ch} \right) - \left(P_{t,w}^{ch} - P_{t,w}^{ch} \right)
\]

\[
\forall t, w, P_{t,w}^{EV} + P_{t,w}^{EV} \geq 0
\]

\[
FE_w = \sum_{b=1}^{N_b} \sum_{l=1}^{N_l} \left(P_{b,t,w}^{DR+w} + P_{b,t,w}^{DR+w} + P_{b,t,w}^{EV+w} + P_{b,t,w}^{EV+w} \right) \quad \forall w
\]

It should be said that the network operation in the presence of the different sources and active loads implemented by DSO, hence, this section of the problem (1)-(24) includes centralized method of energy management. Also, restoration part is based on MAS that is in accordance with distributed approach, but, all agents are coordinated by DSO. Therefore, this problem, (1)-(24), considers centralized and distributed approaches. Moreover, each agent only uses local information.

2.2.6. Uncertainty Model

In the proposed problem model, (1)-(24), the parameters of active and reactive load, \(P^D \) and \(Q^D \), energy price, \(\lambda \), RES active power, \(P^R \), charge/discharge rate and initial/final energy of EVs in parking lot, \(CR/DR \) and \(E^{urr}/E^{op} \), are as uncertainty parameters. Therefore, this paper applies scenario-based stochastic programming (SBSP) to model these uncertain parameters. In this approach, the roulette wheel mechanism (RWM) generates a large number of scenario samples for these parameters. Then, it calculates occurrence probability of \(P^D \) and \(Q^D \) and \(\lambda \) by normal probability distribution function (PDF) [6], \(P^R \) by Beta/Weibull PDF for solar/wind system [45], and EVs parameters by Rayleigh PDF [30]. In the following, probability of each generated scenario is equal to the product probability of all uncertain parameters. In the next step, the Kantorovich approach is used as the scenario reduction method to obtain scenarios with the higher probabilities, where the more details of this approach are expressed in [6].

3. Solution Method

It should be noted that the proposed formwork of C-FE&SH-M, (1)-(28) is as a non-linear problem; hence, this paper solves the proposed problem using the crow search algorithm (CSA) that is reliable and secure solver with high calculation speed and low standard deviation [46]. The more details of this algorithm are presented in [46], and its format follows Algorithm 2. Finally, the flowchart of the proposed solution for the C-FE&SH-M is expressed in Fig. 3.

Algorithm 2 Crow search algorithm (CSA)

1) Define the value of awareness probability \((ap) \), flight length \((f) \), flock size \((N) \), and maximum iteration \((imax) \)
2) Calculate the randomly initial position and memory for all crows in the allowed range.
3) Obtain the fitness value, i.e., objective function, according to the date of step 2.
4) Update the position of crows for \(m = 1 \) to \(imax \), for \(k = 1 \) to \(N \)
 Obtain a random crow such as \(n \)
 if \(r \) (random value between 0 and 1) \(\geq ap \)
 position\((k, m + 1) = \)position\((k, m) + r \times fl \times \{\text{memory}(n, m) - \text{position}(k, m)\} \)
 Investigate the feasibility range of the position of all crows and variables.
 else
 position\((k, m + 1) = \)define a random value between minimum and maximum position.

End
Obtain the new fitness value based on new position.
if fitness(position\((k, m + 1) \)) is better than fitness(position\((k, m) \))
memory\((k, m + 1) = \)position\((k, m + 1) \)
else
memory\((k, m + 1) = \)memory\((k, m) \)
end

4. Numerical results

4.1. Case Study

The proposed C-FE&SH-M strategy is applied on 1-MW and 12.66-kV ADN as 33-bus radial distribution network that plotted in Fig. 4 [44], where full and crimping lines in this figure show the distribution and tie lines, respectively. The line characteristics and load value at peak hours are presented in [45], and the load value at other hours is obtained using a daily load factor curve as Fig. 5 [45]. Moreover, the RESs in this study are a 300-kW wind system and 200-kW photovoltaic system, where their location is determined in Fig. 4, and the daily power percentage curve of these sources are based on Fig. 5 [45]. Also, the daily energy price curve is shown in Fig. 6, and the minimum and maximum voltage are 0.9 and 1.05 p.u., respectively. In addition, this study is considered that buses 2-33 include EVs parking lot, where their capacities according to Fig. 7, are 21, 30 and 60 EVs based on peak active load range of (0, 100 kW], (100-kW, 200-kW] and (200-kW, +∞), respectively. Also, the EVs number into ADN at each hour is plotted in Fig. 8 [43], and EV characterizes such as, efficiency, SOC, BC, etc. are expressed in [31]. Moreover, the co-participation rate of loads \((\gamma) \) in proposed DRP, (8) and (9), is considered to be 0.3. Also, it is noted that each bus, i.e., buses 2-33, is a zone agent which is located between two switches. The left/right side switch of bus \(b \) is defined as \(SW_{bL}/SW_{bR} \), and the switch of sending/receiving bus side of the tie line between buses \(b \) and \(j \) shows \(SW_{bL}^{ij}/SW_{bR}^{ij} \).
Fig. 3. The proposed solution method of the C-FE&SH-M problem
4.2. Results

The proposed C-Fe&SH-M problem is simulated in MATLAB software, and it is solved by CSA solver [46]. The parameters of this solver such as N, T_{max}, Ap, and fI are 50, 1000, 0.1, and 2, respectively. Also, the forward-backward method is used to solve the AC power flow equations, (14)-(21) [45].

4.2.1. Flexible energy management: This section presents only the FEM results with selecting 20 $/MWh to flexibility incentive price (FIP); thus, the problem model includes the first part of equation (1) as objective function with constraints (2)-(9) and (14)-(24). Hence, the five case studies are investigated in the following details:

- Case I: Power flow analyzing in ADN without considering RESs and FSs
- Case II: Power flow analyzing in ADN without considering FSs
- Case III: FEM analyzing considering DRP
- Case IV: FEM analyzing considering EVs parking lot
- Case V: FEM analyzing considering FSs

For Cases I-V, Table 2 expresses the economic and technical indexes of the proposed FEM strategy. Accordingly, Case III includes the low operation cost or energy cost receiving from the upstream network and daily energy loss with respect to other cases due to injection power of RESs into ADN and shifted the power of loads from peak hours to off-peak time based on the DRP strategy, (8) and (9). The discharging energy level of EVs is less than the EVs charging energy level, because, the high/low level of EVs charging energy is used to EVs trip/discharging mode. Therefore, the operation cost and energy loss in Case V is greater than Case III. However, it is able to obtain high flexibility and low maximum voltage deviation or drop in comparison with other cases due to scheduling management of FSs, where this statement can explain one of the important advantages of the proposed FEM strategy. Also, the daily optimal scheduling power of ADN, RESs, DRP, and EVs parking lot are shown in Fig. 9. Based on Fig. 9(a), the daily apparent power curve of ADN station shifts downward in cases II-V with respect to Case I at the period of 1:00-24:00, 5:00-22:00, 8:00-24:00 and 8:00-22:00, respectively due to RESs and FSs injection active power into the network based on Figs. 9(b)-9(d). But, this curve shifts upward in cases III-V at the period of 1:00-3:00 and 23:00-24:00, 1:00-7:00, and 1:00-7:00 and 23:00-24:00, respectively. Because, the FSs charging at these periods are based on Figs. 9(e) and 9(d) to obtain a low operation cost. Moreover, it is noted that according to Fig. 9(d), EVs are charged at period 1:00-7:00 to provide the required consumption energy of EVs in the trip, but they are charged/discharged at period 13:00-16:00/19:00-22:00 to operate as a storage system and obtain the revenue for EVs.

Case	Flexibility benefit ($)	Operation cost ($)	Daily energy loss (MWh)	Maximum voltage devotion (p.u.)
I	1440	1.878	0.0870	
II	1086	1.252	0.0667	
III	63	1027	1.198	0.0570
IV	41	1261	1.583	0.0608
V	104	1202	1.519	0.0511

Fig. 4. 33-bus radial distribution network

Fig. 5. Daily power percentage curve of load and RESs

Fig. 6. The hourly electricity price

Fig. 7. EVs number in each bus

Fig. 8. Daily EVs number curve in the network
Advantages of FEM strategy for EVs and Loads in Case V

Table 3

	Total charging cost ($)	Revenue	Due to discharging power ($)	Due to flexibility service ($)
EVs	202.6	27.6	-27.6	41
Total EVs cost	= 202.6 – 27.6 – 41 =	134 $		
DRP	89.16	144.33	144.33 + 63 - 89.16 = 118.17	
Total DRP benefit	= 144.33 + 63 - 89.16 = 118.17	$		
Total consumption cost of loads ($)	1391.6	1391.6 – 118.17 = 1273.43 $		

Table 4

Comparison of SHM and C-FE&SH-M results at fault conditions

Fault location (bus)	Hour	Selection tie	Opened switches	Closed switches	Number of switch operation	Load not supplied without FZA load
SHM						
20	16:00	(8, 21)	SW^20_{21} and SW^20_{20}	SW^8_{21} and SW^8_{21}	8	0
11	20:00	(9, 15), (22, 12) and (33, 18)	SW^9_{11}, SW^9_{11}, SW^9_{13}, SW^9_{14}, SW^9_{16}, SW^9_{17}	SW^9_{15}, SW^9_{15}, SW^9_{22,12}, SW^9_{22,12}, SW^9_{18,18}, SW^9_{18,33}	24	19.31 kVA
Total					32	19.31 kVA
C-FE&SH-M						
20	16:00	(8, 21)	SW^20_{20} and SW^20_{20}	SW^8_{21} and SW^8_{21}	8	0
11	20:00	(22, 12)	SW^22_{11} and SW^22_{11}	SW^22_{22,12} and SW^22_{22,12}	8	0
Total					16	0
Table 3 presents the advantages of the proposed FEM strategy for EVs and loads owners. Based on this table, the total charging cost of EVs is $202.6, while EVs revenue is $68.6 due to flexibility service and their injection power into the network. Therefore, the net payment of EVs owners to ADN is $134.4; this reflects that traditional charging cost, considering net payment of EVs owners to ADN, is increased by 33.86% compared to charging cost. For loads owners, total consumption energy cost is $139.6, but net payment of loads owners is $1273.43 due to participation of loads in the proposed DRP that can be obtained $118.17 revenue for loads in the flexibility and auxiliary services.

In addition, Fig. 10 shows the changing of economic indices, i.e., operation cost and flexibility benefit, based on the variation of FIP. Accordingly, the operation cost and flexibility benefit are increased with increasing in FIP. This statement expresses that the high flexibility is obtained at a high cost.

4.2.2. Coupling the FEM and SHM: In this section, the capability of the proposed C-FE&SH-M strategy at fault condition is investigated. Hence, this work considers two faults at hours 16:00 and 20:00; respectively, in buses 20 and 11; thus, the MAS-based RP is used to solve the problem of the fault in SHM and C-FE&SH-M strategies. The results of this section are expressed in Table 4; accordingly, the suitable tie line for fault location in bus 20 and hour 16:00 is the line between buses 8 and 9. Hence, the total number of switch operations for this condition is 8, and the load not supplied is equal to zero in two proposed strategies. But, three tie lines (9, 15), (22, 12) and (33, 18) needed for fault condition in bus 11 at hour 20:00; hence, the switch operation number and load not supplied are 24 and 19.31 kVA based on this table in the SHM strategy that considered ADN without RESs and FSs. However, in the C-FE&SH-M strategy, the tie line (22, 12) is selected; thus, the number of switch operations is 8, and also, load not supplied is zero due to injection power into the network by RESs and FSs at hour 20:00 based on Fig. 9. This statement explains one of the important benefits of the proposed C-FE&SH-M strategy, and this benefit refers to the first and second contributions of this paper in Section 1.

4.2.3. Capability of CSA solver: This section presents the CSA solver capabilities in comparison with the conventional genetic algorithm (GA) [47] and particle swarm optimization (PSO) [48], where the statistical results are expressed in Table 5. For all three algorithms, the population and the number of iterations are 50 and 1000, respectively. Accordingly, the CSA solver includes low standard deviation; the mean, median, and mode values of fitness are almost the same, and the changing range of the objective function (maximum value – minimum value) is closed zero for the proposed problem. Also, CSA solver can be obtained optimal solution in the low Convergence iteration and low calculation time compared to PSO and GA based on rows 8 and 9. Therefore, the proposed algorithm is suitable and reliable to solve the proposed C-FE&SH-M strategy.

Statistical value of objective function	CSA	GA	PSO
Minimum	11.09	11.55	11.22
Maximum	11.43	13.02	12.16
Median	11.25	12.11	11.78
Mode	11.27	12.19	11.83
Standard deviation	1.05%	4.67%	3.21%
Calculation time (sec)	102	198	145
Convergence iteration	451	974	823

5. Conclusions

The optimal formwork of the C-FE&SH-M in the ADN, including the RESs and FSs, i.e., EVs and DRP, was expressed in this paper. This strategy coordinated two smart concepts of FEM and SHM in the distribution network with DSO, where the FEM has obtained the optimal scheduling for renewable and flexible sources based on coordination outline, and SHM defined the optimal restoration pattern at fault condition based on MAS-based RP. Therefore, this Strategy has minimized the difference between energy cost and flexibility benefit related to the FEM part and difference between the number of switching operations and priority loads restored based on the SHM part as a normalized objective function subject to ADN equations and limitations, RESs, FSs, and MAS-based RP constraints. Furthermore, the SBSP modeled the uncertainty of load, RES power, EVs parameters, and energy price in the proposed strategy. Based on the numerical results, the CSA could be a secure and reliable solver with low standard deviation (1.05%) to solve the proposed problem, and the C-FE&SH-M strategy was able to provide benefit to EVs and loads owners as well as ADN from economic and technical viewpoints. So that the FEM mechanism is reduced the operation cost, energy loss, and maximum voltage deviation about 16.5%, 19.1%, and 41.3%, respectively, according to the load analysis case. Moreover, the FEM is able to reduce the EVs charging cost about 33.7% compared to the case where the FEM approach is not applied. Also, using DRP the load cost can be decreased by creating revenue due to flexibility regulation and load shifting. In the proposed SHM the load not supplied can be zero with low number of switching operations. Therefore, the high flexibility, security, reliability as well as optimal restoration pattern were obtained in the ADN according to the proposed strategy.

Noted that the availability of different agent is uncertainty, hence, it is needed to investigate outage of the proposed agents based on N – 1 contingency method to obtain reliable solution. Therefore, this case is proposed as future works. Also, the approach of this paper is coordinated the DSO and MAS, thus, it is expected that number of agents can be reduces. Hence, this research is investigated in future works. In addition, the restoration part models MAS operation based on expert system rules. But restoration part
can be also modeled by defining different formulation, where this case is considered the future works.

References

[1] Zeng, B., Wei, X., Sun, B., Qiu, F., Zhang, J., & Quan, X. (2020). Assessing capacity credit of demand response in smart distribution grids with behavior-driven modeling framework. *International Journal of Electrical Power & Energy Systems*, 118, 105745.

[2] McPherson, M., & Stoll, B. (2020). Demand response for variable renewable energy integration: A proposed approach and its impacts. *Energy*, 197, 117205.

[3] Bozorgzavari, S.A., Aghaei, J., Pirouzi, S., Nikoobakht, A., Farahmand, H., Korpás, M. (2020). Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study. *Renewable and Sustainable Energy Reviews*, 123, 109739.

[4] Bagherzadeh, L., Shahinzadeh, H., & Gharehpetian, G. B. (2019, December). Scheduling of Distributed Energy Resources in Active Distribution Networks Considering Combination of Techno-Economic and Environmental Objectives. In *2019 International Power System Conference (PSC)* (pp. 687-695). IEEE.

[5] Bagherzadeh, L., Shahinzadeh, H., Shayeghi, H., & Gharehpetian, G. B. (2019). A Short-Term Energy Management of Microgrids Considering Renewable Energy Resources, Micro-Compressed Air Energy Storage and DRPs. *International Journal of Renewable Energy Research (IJRER)*, 9(4), 1712-1723.

[6] Aghaei, J., Barani, M., Shafie-Khah, M., De La Nieta, A. A. S., & Catalão, J. P. (2015). Risk-constrained offering strategy for aggregated hybrid power plant including wind power producer and demand response provider. *IEEE Transactions on Sustainable Energy*, 7(2), 513-525.

[7] Zhang, Y., Dong, Z. Y., Luo, F., Zheng, Y., Meng, K., & Wong, K. P. (2016). Optimal allocation of battery energy storage systems in distribution networks with high wind power penetration. *IET Renewable Power Generation*, 10(8), 1105-1113.

[8] Helistiö, N., Kiviluoma, J., & Holttinen, H. (2018). Long-term impact of variable generation and demand side flexibility on thermal power generation. *IET Renewable Power Generation*, 12(6), 718-726.

[9] Yu, L., & Li, Y. P. (2019). A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles. *Journal of cleaner production*, 207, 772-787.

[10] Nikoobakht, A., Mardaneh, M., Aghaei, J., Guerrero-Mestre, V., & Contreras, J. (2017). Flexible power system operation accommodating uncertain wind power generation using transmission topology control: an improved linearised AC SCUC model. *IET Generation, Transmission & Distribution*, 11(1), 142-153.

[11] Hamidpour, H., Aghaei, J., Pirouzi, S., Dehghan, S., & Niknam, T. (2019). Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs. *IET Renewable Power Generation*, 13(11), 1862-1872.

[12] Ahmadian, A., Mohammadi-Ivatloo, B., & Elkamel, A. (2020). A Review on Plug-In Electric Vehicles: Introduction, Current Status, and Load Modeling Techniques. *Journal of Modern Power Systems and Clean Energy*.

[13] Boudina, R., Wang, J., Benbouzid, M., Yao, G., & Zhou, L. (2020). A Review on Stochastic Approach for PHEV Integration Control in a Distribution System with an Optimized Battery Power Demand Model. *Electronics*, 9(1), 139.

[14] Habib, S., Khan, M. M., Abbas, F., & Tang, H. (2018). Assessment of electric vehicles concerning impacts, charging infrastructure with unidirectional and bidirectional chargers, and power flow comparisons. *International Journal of Energy Research*, 42(11), 3416-3441.

[15] Kabli, M., Quddus, M. A., Nurre, S. G., Marufuzzaman, M., & Usher, J. M. (2020). A stochastic programming approach for electric vehicle charging station expansion plans. *International Journal of Production Economics*, 220, 107461.

[16] Hemakumar Reddy, G., Badepalli, A., Shiva.prasad, N., Behera, C., Goswami, A. K., & Dev Choudhury, N. B. (2019). Impact of Electric Vehicles on Distribution System Performance in the Presence of Solar PV integration. *International Journal of Computational Intelligence & IoT*, 2(1).

[17] Bagherzadeh, L., & Shayeghi, H. (2019, June). Optimal Allocation of Electric Vehicle Parking lots and Renewable Energy Sources Simultaneously for Improving the Performance of Distribution System. In *2019 24th Electrical Power Distribution Conference (EPDC)* (pp. 87-94). IEEE.

[18] Sachan, S., & Adnan, N. (2018). Stochastic charging of electric vehicles in smart power distribution grids. *Sustainable cities and society*, 40, 91-100.

[19] Bhatt, P., Long, C., & Saiyad, M. (2020). Review of the Impact of Vehicle-to-Grid Schemes on Electrical Power Systems. In *Advances in Electric Power and Energy Infrastructure* (pp. 199-208). Springer, Singapore.

[20] Borne, O. (2019). Vehicle-to-grid and flexibility for electricity systems: from technical solutions to design of business models (Doctoral dissertation).

[21] Guo, Z., Zhou, Z., & Zhou, Y. (2019). Impacts of Integrating Topology Reconfiguration and Vehicle-to-Grid Technologies on Distribution System Operation. *IEEE Transactions on Sustainable Energy*.

[22] Liu, C., & Murphey, Y. L. (2019). Optimal power management based on Q-learning and neuro-dynamic programming for plug-in hybrid electric vehicles. *IEEE transactions on neural networks and learning systems*.

[23] Salehpoor, M. J., & Tafreshi, S. M. (2020). Contract-based utilization of plug-in electric vehicle batteries for day-ahead optimal operation of a smart micro-grid. *Journal of Energy Storage*, 27, 101157.

[24] Masotti, L., Dolara, A., & Leva, S. (2019, July). Vehicle-to-Grid for peak shaving in a Medium Voltage Grid with PV plants. In *2019 International Conference on Clean Electrical Power (ICCEP)* (pp. 482-489). IEEE.

[25] Phimphui, A., & Supatti, U. (2019, May). V2G and G2V Using Interleaved Converter for a Single-Phase Onboard Bidirectional Charger. In *2019 IEEE*
Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) (pp. 1-5). IEEE.

[26] Monfared, K. K., Iman-Eini, H., & Razi, R. (2019, February). Control of Single-Phase Bidirectional PEV/EV Charger Based on FCS-MPC Method for V2G Reactive Power Operation. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC) (pp. 641-646). IEEE.

[27] Pirozzi, S., Latifi, M.A., Yousefi, G.R. (2020). Conjugate active and reactive power management in a smart distribution network through electric vehicles: A mixed integer-linear programming model. Sustainable Energy, Grids and Networks, PP, 100344.

[28] Cheng, L., Chang, Y., & Huang, R. (2015). Mitigating voltage problem in distribution system with distributed solar generation using electric vehicles. IEEE Transactions on Sustainable Energy, 6(4), 1475-1484.

[29] Leou, R. C. (2015). Optimal charging/discharging control for electric vehicles considering power system constraints and operation costs. IEEE Transactions on Power Systems, 31(3), 1854-1860.

[30] Khorrambdel, B., Khorrambdel, H., Aghaei, J., Heidari, A., & Agelidis, V. G. (2015). Voltage security considerations in optimal operation of BEVs/PHEVs integrated microgrids. IEEE Transactions on Smart Grid, 6(4), 1575-1587.

[31] Pirozzi, S., Aghaei, J., Niknam, T., Farahmand, H., & Korpás, M. (2018). Exploring prospective benefits of electric vehicles for optimal energy conditioning in distribution networks. Energy, 157, 679-689.

[32] Cao, Y., Huang, L., Li, Y., Jemmisittiparnsart, K., Ahmadinezhad, H., & Nojavan, S. (2020). Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power & Energy Systems, 117, 105628.

[33] Yang, F., Watson, P., Koukoula, M., & Anagnostou, E. N. (2020). Enhancing Weather-Related Power Outage Prediction by Event Severity Classification. IEEE Access.

[34] Shen, F., Wu, Q., and Xue, Y. (2020). Review of Service Restoration for Distribution Networks. Journal of Modern Power Systems and Clean Energy, 8 (1), 1-14.

[35] Haefez, A. A., Omran, W. A., & Hegazy, Y. G. (2016). A decentralized technique for autonomous service restoration in active radial distribution networks. IEEE Transactions on Smart Grid, 9(3), 1911-1919.

[36] Nagata, T., & Okamoto, K. (2014, March). A decentralized distribution power system restoration by using multi-agent Approach. In 2014 International Electrical Engineering Congress (EECON) (pp. 1-4). IEEE.

[37] Felix, A., Nunna, H. K., Doolla, S., & Shukla, A. (2015, September). Multi agent based restoration for smart distribution system with microgrids. In 2015 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 2341-2347). IEEE.

[38] Li, W., et al. (2020). A Full Decentralized Multi-Agent Service Restoration for Distribution Network with DGs. IEEE Transactions on Smart Grid, 11 (2), 1100-1111.

[39] Feng, D., Wu, F., Zhou, Y., Rahman, U., Zhao, X., & Fang, C. (2020). Multi-Agent-Based Rolling Optimization Method for Restoration Scheduling of Distribution Systems with Distributed Generation. Journal of Modern Power Systems and Clean Energy.

[40] Sharma, A., Srinivasan, D., & Trivedi, A. (2016). A decentralized multi-agent approach for service restoration in uncertain environment. IEEE Transactions on Smart Grid, 9(4), 3394-3405.

[41] Shirazi, E., & Jadid, S. (2018). Autonomous Self-healing in Smart Distribution Grids Using Multi Agent Systems. IEEE Transactions on Industrial Informatics.

[42] Sun, W., Ma, S., Alvarez-Fernandez, I., & Golshani, A. (2018). Optimal self-healing strategy for microgrid islanding. IET Smart Grid, 1(4), 143-150.

[43] Pirozzi, S., Aghaei, J., Latifi, M. A., Yousefi, G. R., & Mokryani, G. (2017). A robust optimization approach for active and reactive power management in smart distribution networks using electric vehicles. IEEE Systems Journal, 12(3), 2699-2710.

[44] Hamidpour, H., Aghaei, J., Pirouzi, S., Dehghan, S., & Niknam, T. (2019). Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs. IET Renewable Power Generation.

[45] Maleki, A., & Askarzadeh, A. (2014). Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustainable Energy Technologies and Assessments, 7, 147-153.

[46] Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures, 169, 1-12.

[47] Ghorbaninejad, H., & Heydarian, R. (2016). New design of waveguide directional coupler using genetic algorithm. IEEE Microwave and Wireless Components Letters, 26(2), 86-88.

[48] Genovesi, S., Mitra, R., Monorchio, A., & Manara, G. (2006). Particle swarm optimization for the design of frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 5, 277-279.