the hypercalcemia was not controllable long term. A small size study in Japan administering 10mg alendronate via hepatic artery rather than IV route for patients with HCC showed enhancement of the apoptosis of HCC in addition to controlling hypercalcemia. An animal study on anti-PTHrP monoclonal murine antibody showed improved mortality of PTHrP producing pancreatic carcinoma (FA-6) in transplanted nude mice.

Conclusion:
Most of the patients with PTHrP mediated hypercalcemia have advance cancer that is not amendable for surgery or chemotherapy. A non-invasive treatment approach other than alendronate should be investigated to control PTHrP mediated hypercalcemia.

Bone and Mineral Metabolism
BONE AND MINERAL CASE REPORTS I

Giant Parathyroid Adenoma
Sima Saberi, MD, Matthew J. Wasco, MD, Ramin Behjatnia, DO, Beth Kimball, MD.
1Ann Arbor Endocrinology & Diabetes Associates PC, Ann Arbor, MI, USA, 2IHA Pathology, Ypsilanti, MI, USA, 3Huron Valley Radiology, Ypsilanti, MI, USA, 4IHA Surgery, Ypsilanti, MI, USA.

SAT-379
Giant parathyroid adenoma

Background: Primary hyperparathyroidism is the most common cause of hypercalcemia. On ultrasound PTH adenomas are typically homogenous, hypoechoic, oval or bean-shaped with peripheral vascularity.

Clinical Case: A 60 year old woman with a history of calcium oxalate nephrolithiasis presented with fatigue, worsening depression, body aches of 3 months duration. Labs showed a serum calcium 11.1 mg/dl (normal range 8.5–10.1 mg/dl), PTH 114.3 pg/ml (normal range 12–88 pg/ml), alkaline phosphatase 137IU/L (normal range 27–120 IU/L), spot urine calcium 34.8 mg/dl, spot urine creatinine 92.1 mg/dl (estimated 24 hour urine calcium 415 mg/dl). She was started on Vitamin D 1000 IU daily. A PTH scan showed enhancement of the apoptosis of HCC in transplanted nude mice.

Clinical Lessons: A normal parathyroid gland typically weighs 30–60 mg and is 3–4 mm in size. The differential diagnosis for large parathyroid lesions is parathyroid carcinoma vs giant parathyroid adenoma. Although there is not a definitive size cutoff to define giant parathyroid adenomas, a size greater than 3.5 gm has been used (1). On ultrasound giant parathyroid adenomas are homogenous with smooth borders whereas parathyroid carcinomas are large lobulated heterogeneous hypoechoic lesions (2). A depth/width ratio on ultrasound may be the ultrasound parameter with greatest discriminatory capacity as a depth/width ratio greater than or equal to 1 had 94% sensitivity and 95% specificity for parathyroid carcinoma (2). Whether vitamin D deficiency is a risk factor for the development of large parathyroid glands is controversial as there has been conflicting data on this (1,3). Because there is no serum calcium level that distinguishes parathyroid carcinoma from a parathyroid adenoma neck ultrasound may be a helpful tool in evaluating these patients.

References:
1. Spanhemier PM, Stoltze AJ, Howe JR, et al. Do giant PTH adenomas represent a distinct clinical entity? Surgery. 2013 Oct; 154(4):714–719.
2. Hara H, Igarashi A, Yano Y, et al. Ultrasonographic features of PTH carcinoma. Endocr J. 2001 April 48(2):213–217.
3. Rao DS, Honasoge M, Divine GW, et al. Effect of vitamin D nutrition on PTH adenoma weight: pathogenetic and clinical implications. J Clin Endocrinol Metab. 2000 Mar 85(3): 1054–1058.

Thyroid
THYROID DISORDERS CASE REPORTS II

Oh My Thyrotoxic Heart! An Uncommon Presentation of High Output Heart Failure
Maria Del Mar Felix Morales, Medical Doctor, Rebeca Vazquez Nieves, Medical Doctor, Jonathan Torrens Olan, Medical Doctor, Lorianna Aleman Maymi, Medical Doctor, Xiomara Cruz Bracero, Medical Doctor, Milton D. Carrero Quiñones, MD, FACP, Mayagüez Medical Center Internal Medicine Residency, Mayagüez, PR, USA.

SAT-508
High output heart failure is an extremely rare manifestation of thyrotoxicosis in patients without heart disease. Thyroid hormone has a potent metabolic, vascular, positive chronotropic and inotropic effects. Thyrotoxicosis is accompanied by a reduction in systemic vascular resistance and an obligatory increase in cardiac output to compensate high metabolic state. Most of the patients had completed or near completed recovery of cardiac function after treatment to euthyroid status, if cut in time.

Case of 70 y/o female with past medical history of hypothyroidism, hypertension and chronic smoker, came to emergency room due to lightheadedness, weakness, shortness of breath, palpitations and acute bedridden for one week ago. Denied fever, nausea, vomiting or chest pain. On examination patient presented with 122bpm, 23rpm and normotensive. She was in acute respiratory distress requiring BiPAP. Lungs auscultation bilateral crackles, decrease sounds in the bases. Cardiac exam significant for tachycardia, lower extremity edema and JVD +. Laboratories significant for CKD stage 2, chronic anemia and hypoxemia. EKG no ST changes neither T depressions. CXR day #1 reported no cardiopulmonary disease. Basing in these she was admitted with Suspected Pulmonary Embolism. Well’s score was moderate risk; a Chest CTA and full anticoagulation were ordered. Later, venous duplex reported no DVT and D-dimer levels 1.65µg/ml. TSH levels 8.5–10.1 mg/dl, PTH 84 pg/ml, 25 OH Vitamin D 11 µg/dl (normal range above 29 µg/L), spot urine calcium 34.8 mg/dl, spot urine creatinine 85(3): 1054–1058.
ECHO2D moderate LVH and preserved systolic function. Patient referred her doctor recently increased thyroid medications from 50 to 100 mcg. Instead of presenting with pulmonary embolism, she has hyperthyroidal state causing cardiac failure. Levothyroxine, heparin and Chest CTA scan were cancelled. She was started in Atenolol and diuretics. Patient symptoms improved and was discharged home to be followed in the clinic. After one week, TSH levels were in 0.008mU/L and one month later in 3.032mU/L. She was started in Levothyroxine 50mcg, to maintain patient euthyroid state.

This case illustrates that sometimes tachycardia and tachypnea are symptoms which frequently presents as baffling diagnostic problems. The association of thyrotoxicosis and cardiovascular morbidity is well established. Thyrotoxicosis most common cardiac manifestation is high output heart failure. Patients presenting with heart failure may have thyrotoxicosis as the underlying cause. Treatment of the thyrotoxicosis can restore normal heart function. Hyperthyroidal state may be take into consideration as a differential of tachycardia and tachypnea even if it’s not one of the common causes. Awareness of this presentation may help identify patients with reversible dilated cardiomyopathy and other complications.

Neuroendocrinology and Pituitary

NEUROENDOCRINOLOGY AND PITUITARY

Clinical Relevance of Serum Prolactin Levels to Inflammatory Reaction in Male Patients.

Koichiro Yamamoto, MD1, Yoshihisa Hanayama, MD, PhD2, Kou Hasegawa, MD2, Mio Yasuda, MD2, Kazuki Tokumasu, MD2, Hideharu Hagiy, MD, PhD2, Hiroko Ogawa, MD, PhD2, Mieko Okita, MD, PhD2, Fumio Otsuka, MD, PhD2.

1Okayama University Hospital, Okayama, Japan, 2Okayama University Graduate School, Okayama, Japan.

MON-272

PRL is a polypeptide hormone that is, in phylogeny, well conserved but elicits various species-dependent functions. PRL is related to the regulation of osmotic pressure in fish and amphibians, fat retention in reptiles and birds, and glucose-lipid metabolism, bone homeostasis and development of the mammary gland in mammals. In humans, PRL secretion is regulated in an inhibitory manner by dopaminergic neurons that project from the hypothalamus to PRL-producing cells in the anterior pituitary gland. Since dopaminergic actions are mainly mediated by D2R, various agents that bind D2R can affect serum PRL levels. In the clinical aspect, hyperprolactinemia is considered in cases with galactorrhea, infertility and sexual dysfunction. Other causes of hyperprolactinemia include hypothyroidism, chronic kidney disease and pregnancy. Also, PRL receptors have been considered as therapeutic targets for some cancers and autoimmune diseases. Given that several pathophysiological functions related to PRL have been recently uncovered, the utility of measuring serum PRL levels could be more widely applicable for a clinical setting. We therefore attempted to reveal the relevance of PRL levels to various clinical parameters in patients who visited a general medicine department. We reviewed medical records of 353 patients whose serum PRL levels were measured in our department during the period from 2016 to 2018. Patients lacking detailed clinical records (n=194) and patients taking medications that affect D2R (n=19) were excluded from this study. Data were analyzed for 140 patients (42 males, aged 49 ± 18 years; 98 females, 45 ± 19 years) in whom various pain and general fatigue were major symptoms at the first visit and in whom hypertension and dyslipidemia were frequently seen in past histories. Average PRL levels were significantly lower in males than in females. The median PRL level in males was 6.5 ng/ml (IQR: 4.2–10.3) ng/ml and that in females was 8.1 ng/ml (5.9–12.9). Patients were divided into two groups depending on whether PRL levels were higher than 10 ng/ml. The group of males with relatively high PRL levels (≥10 ng/ml) had significantly lower levels of serum albumin and higher levels of serum LDH. Of note, there were significant correlations of male PRL levels to erythrocyte sedimentation rate (ESR) (r=0.6), serum LDH (r=0.4) and albumin level (r=−0.5), and TSH/FT4 ratio (r=0.5). On the other hand, female PRL levels were negatively correlated to age (r=−0.2) and serum levels of FSH (r=−0.3) and positively correlated to serum levels of GH (r=0.3). Collectively, the results revealed that PRL levels had gender-specific relevance to various clinical factors. It is notable that PRL levels in males were related to inflammatory status shown by high ESR and low serum albumin and were also associated with a hypothyroid condition.

Bone and Mineral Metabolism

NEW FRONTIERS IN BONE AND MINERAL METABOLISM

The Effects of Hormone Therapy on Premature Ovarian Failure Following Allogenic Hematopoietic Stem Cell Transplantation: A Single-Center Experience

Jeonghoon Ha, MD1, Je-Ho Han, M.D., Ph D2, Moo-Il Kang, MD, PhD3.

1Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea, Republic of, 2The Catholic University of Korea, Incheon St. Mary’s Hospital, Incheon, Korea, Republic of.

OR29-03

Background: With increasing survival rates after hematopoietic stem cell transplantation (HSCT), it has become important to evaluate methods of improving patients’ quality of life. Most female patients of childbearing age experience premature ovarian failure after transplantation, which results in decreased quality of life and an increase in fracture risk due to rapid bone loss. We analyzed the effects of hormone therapy (HT) on serum follicle stimulating hormone (FSH), serum estradiol, and bone mineral density (BMD) in young female HSCT recipients. **Methods:** This retrospective cohort study included 234 female patients who underwent allogenic HSCT between April 2009 and April 2018 at our center. The maximum age at the time of transplantation was 40 years, and patients were followed up for at least 3 years. Of the 734 patients who were initially screened, 360 patients aged <18 years and 8 who were transferred to another institution after transplantation were excluded from the study. There were 93 patients who died within 3 years of transplantation, while 30 were lost to follow-up,