Applying process mining in health technology assessment

Marcelo Rosano Dallagassa1,2, Franciele Iachecen1,2, Luiz Henrique Picolo Furlan1, Sérgio Ossamu Ioshii1, Deborah Ribeiro Carvalho1

Received: 25 January 2022 / Accepted: 2 August 2022 / Published online: 23 August 2022
© The Author(s) under exclusive licence to International Union for Physical and Engineering Sciences in Medicine (IUPESM) 2022

Abstract
Objective Propose a process mining-based method for Health Technology Assessment.
Methods Articles dealing with prior studies in Health Technology Assessment using Process Mining were identified. Five research questions were defined to investigate these studies and present important points and desirable characteristics to be addressed in a proposal. The defined method with five steps and was submitted to a case study for evaluation.
Results The Literature search identified six main characteristics. As a result, the five-step method proposed was applied in the radical prostatectomy surgical procedure between the robot-assisted technique and laparoscopy.
Conclusion It was demonstrated in this article the creation of the proposal of an efficient method with its replication for other health technologies, coupled with the good interpretation of the specialists in terms of comprehensibility of the discovered patterns and their correlation with clinical protocols and guidelines.

Keywords Process mining · Health Technology Assessment · Cost analysis · Value-base health care · Real-world evidence

1 Introduction

New, modern technologies have been progressively incorporated in healthcare, resulting in increased medical and hospital products and services. Moreover, the new items incorporated repeatedly incur excessively, and frequently unnecessarily, use of these resources, thereby failing to meet the criteria of cost-effectiveness and budget impact prescribed by Health Technology Assessment studies [1, 2].

Health Technology Assessment comprises techniques applied to assess healthcare interventions considering their potential effects and consequences on the healthcare system, the sector economy, and society. This Assessment involves monitoring when a given healthcare technology should be included or excluded at a faster or slower rate, thus providing information to support healthcare managers’ decision-making. Health Technology Assessment is also defined as an interdisciplinary, multi-science activity that aims to provide sufficient input for the definition of priorities for the healthcare system and decisions regarding disease prevention, diagnosis, treatment, and rehabilitation [3, 4].

A major effort can currently be observed in scientific production in connection with Health Technology Assessment for healthcare management purposes. Nevertheless, there is still much to be investigated regarding new healthcare techniques, which requires enabling the creation of processes and appropriate methodologies adapted for dealing with individual countries’ context and address the reality of individual environments. This implies developing and applying new Health Technology Assessment techniques to support healthcare decisions [2, 5].

Some authors cite the difficulty of incorporating outcomes of Health Technology Assessment studies undertaken in other countries due to reproducibility and replicability, i.e., variations in the effectiveness of alternatives, costs, use of resources in the healthcare system, epidemiological issues, among others. To mitigate that limitation, the authors suggest producing studies using clinical data and information on the actual region’s use in question [6–8].
Randomized clinical trials are widely accepted and used in Health Technology Assessment. They have long been regarded as the technique that best provides scientific evidence, the “gold standard” for Health Technology Assessment. However, one of their main features, and actually a limitation, is that they are applied to specific populations within targeted environments, which often differ from each country’s clinical or social realities. Therefore, they may fail to provide sufficient evidence on the effectiveness of given healthcare technology, in particular, due to the profile of patients whose comorbidities and demographics frequently differ from those of the subjects used in randomized clinical trials [9].

This need led to the emergence of the concept of real-world evidence (RWE), a decision-making support methodology in Health Technology Assessment [10]. Over the past decade, countries have developed healthcare records and managerial approaches capable of providing quality data for Health Technology Assessment in a more agile and dynamic manner [11].

Real-world evidence studies require inputs known as real-world data. These are used to support decision making in the healthcare industry and are collected from traditional Health Technology Assessment studies but under an approach of non-experimental and uncontrolled observational research [10]. Real-world data provide useful information on the comorbidity profile of a target population. They can be used to confirm decisions in connection with a market choice or new investment options. Therefore, derivative studies may provide supporting evidence on interventions’ financial value to patients, government healthcare agencies, and payers [12].

The use of real-world data is similar to the concept of event logs or transaction records comprising the description of the activity, the date of execution, and the record’s identification key, all of which apply to the concept of process mining [13] - a term that consists of robust methodologies which use data mining and machine learning for pattern recognition in the data analyzed, enabling automatic extraction of models representing the process flow, it’s timing, resource evaluation, conformance checking, process improvement and prediction analyses [13–15].

Based on the event log for a given patient, applying the Process Mining algorithm results in the most frequent pattern being discovered and indicated through the flowchart with activities being represented in boxes and arrows indicating the path sequence to be followed. This flow also enables the identification of some metrics that may be associated, such as case frequency, timing between activities, costs, among others, as shown in an example in Fig. 1.

Along with this technique for process model discovery, Process Mining concepts allow comparative analyses between the models discovered and customary reference models, such as medical protocols or clinical guidelines. Figure 1 shows an example for a hypertensive patient in which the left-hand side shows the process model discovered using patient data, and the right-hand side shows the reference model representing the typical journey for patients with this disease, i.e., a clinical guideline or care protocol for the management of this ailment. In the article [16], which deals with a review of process mining and patient journey applications, describe the potential of the use of this technology applied for conformity assessment to follow the trajectory of a patient in the face of his disease, and thus generating an understanding of patterns that can be useful in the formulation of protocols and the build on medical domain knowledge [16].

There is a rapid evolution of health technologies that have an impact on the health segment, with the demand for a medicine focused on the patient’s needs and in a personalized way, and thus, process mining can develop techniques to efficiently assess the suitability of a particular treatment process for a patient with a specific profile [17].

In a brief review of studies that apply real-world evidence in health technology assessment, we can see applications that use natural language programming (NLP) [18] and techniques for the use of sentiment analysis to evaluate the effectiveness and safety of health technologies [18, 19], which can add value to the proposed technique associated with the assessment of health outcomes through the interpretation of information obtained from social media data or evaluation of device used.

Therefore, recognizing a set of events for a given procedure and ordering may help formulate rules and apply smart processes for Health Technology Assessment. A potential can be perceived here and an opportunity to apply process mining in Health Technology Assessment studies using real-world evidence methodology.

Difficulties occur in applying traditional Health Technology Assessment studies, randomized clinical trials due to adaptability issues, time for implementation, high costs, and exposure of patients in research [9, 11, 20]. This gives
rise to an opportunity to create new models and methods, enabling the use of concepts from Real-World Evidence studies in integration with data from healthcare information systems [6, 20–23]. Discovery, comparison, and improvement of process models in the healthcare area differ from other areas of their characteristics, i.e., high variability, complexity, security and privacy issues, and their activities’ multidisciplinary nature [14, 24–26].

Therefore, this paper defends the proposal of applying a Health Technology Assessment method based on Real World Evidence concepts using Process Mining. This study aims to review recent literature for possible applications of process mining in Health Technology Assessment, specifically within the concept of real-world evidence, identifying the main characteristics and their limitations, with the goal of proposing a new technique for Health Technology Assessment using process mining concepts.

2 Methods

2.1 Research strategy

The method used in this quantitative and qualitative review and comprehensive search strategy was developed to capture the maximum number of relevant articles in each database. The following databases were used to select the papers: PUBMED, ACM Digital Library, IEEEXplore, ScienceDirect, and SpringerLink by applying the following extensive search expression: (“Process Mining” AND “Health Technology Assessment”).

As for the time period covered, the initial year of selection was 2002 - an important reference year for the subject of process mining due to the creation of the Alpha or α-miner algorithm, an algorithm that, besides being the first one created, also made the subject of process mining more relevant. The review period ended in June 2020.

2.2 Criteria for study selection and scope

For the research, two inclusion criteria and three exclusion criteria were used, namely:

First inclusion criteria: The papers were published and found using the search expression between 2002 and June 2020.

First exclusion criteria: Elimination of duplicate papers.

Second exclusion criteria: only articles on Health Technology Assessment (Analysis Methodology using Process Mining) were selected, and, with the following points of interest being used as a way of analyzing the papers selected:

Question 1: In what healthcare environment was the assessment applied? / What technology was used?

Question 2: What strategy/algorithm was adopted?

Question 3: What assessment metrics/measures were used?

Question 4: What difficulties/limitations were found?

Question 5: What was the study’s main contribution?

Study analysis To map process mining applications, methodologies, and techniques used in healthcare and evaluate their significance in Health Technology Assessment studies that used the respective technique.

To identify the assessment strategy and metrics used in Health Technology Assessment studies and the difficulties and limitations encountered in applying the technique. Additionally, the analysis also aims to identify important characteristics adopted to support the study and discussion to develop new Health Technology Assessment techniques based on process mining.

3 Results

A total of 150 articles were obtained after executing the search strategies, and 57 records from subsequent snowballing were used to expand the study sample, to verify the existence of other studies published, using a search in the Google Scholar database applying the following search expressions: “Health Technology Assessment” and “Process Mining” (Fig. 2). After duplicates were removed, 143 records remained. Of these, 135 were excluded because they did not mention process mining and health technology assessment in the title, abstract, or keyword. Two of these were excluded because they did not describe empirical applications. In total, six articles were included in the analysis.

Despite the comprehensive selection applying HTA using PM as the topic, only 6 articles were identified until June 2020. The most recent article was published in 2017,
demonstrating the knowledge gap and the researcher’s interest in this approach, whose application requires specialized knowledge.

Answers to the research questions were obtained by reading the six articles selected, shown in Table 1.

The answers highlighted a few prominent points and desirable characteristics to be addressed in a proposal for a Health Technology Assessment method using process mining.

First characteristic Process mining should be considered a possible and important strategy to design a Health Technology Assessment technique based on real-world data.

Second characteristic Models based on this proposal should be replicable and reproducible for any Health Technology Assessment, using algorithms and tools specifically tailored to this purpose. Most of the related works used PROM [36] - an open-source framework provided by the University of Eindhoven [37]. The software was created to support various techniques and algorithms to experiment with the process mining technique within the academic community. Still, it is not suitable for its professional application.

Third characteristic Given the limitations and proposals raised, there is a desire for robust tools that provide integration and dynamism in Health Technology Assessment processes. However, to meet this requirement, new process mining algorithms must be considered. There already are many available that are capable of interpreting more complex models;

Fourth characteristic Another need identified relates to automatic forms of comparability among the models discovered, to reduce the dependency of Health Technology Assessment on professionals specialized in process mining techniques;

Fifth characteristic Building a knowledge-based repository capable of storing models discovered for comparative use with new models extracted seems to us to be an important requirement for a smart Health Technology Assessment proposal;

Sixth characteristic Using concepts provided by Health Technology Assessment specialists, design a tool that includes the indicators targeted and charts in the assessment should be considered a relevant feature for a proposal.

Based on the characteristics identified, we suggest a Health Technology Assessment method using process mining, illustrated in Fig. 3, addressing the following steps:

In the first step of the method, clinical data and information undergo a process of integration. Whenever possible, the data is obtained directly from the healthcare institutions’ management system, thus enabling the automatic and dynamic assessment of the outcomes achieved through the healthcare technologies.

The data pre-processing step is fundamental to address issues connected with high variability of events and differences in granularity and the quality and initial assessment of the data.

In the parameter and search definition step, like in any economic analysis study, the study design strategy must be drafted according to the PICO process (Patient or Population, Intervention, Comparison, and Outcomes) [35]. Still, at this step, HTA assessment is continuous for the patients’ health services, without neglecting the patients’ characteristics, healthcare resources, and other environmental factors that may influence care options in terms of the quality of the healthcare provided.

Thus, HTA specialists will set the parameters for the tool in terms of indicators or outcome metrics capable of expressing healthcare technologies’ efficacy and effectiveness. One example of this is the readmission rate, rate with relapse, survival, length of hospital stay, and differences in costs of the technologies used. The representation of the process models will include the definition of the event sequence and organized by time. These are then linked to the interpretation of the events’ variability through macro-activity and activity groupings, thereby enabling the extraction of the most frequent paths [25, 37]. The temporal analysis should be considered to determine the average or mean duration of activities between events and the possibility of selecting the metric of average activity cost to provide inputs of economic analyses.

In this step, processing using the PM technique is suggested, based on the Fuzzy Mining algorithm [37], the discovery of two process models (Model HT1 and HT2), for each health technology to be evaluated.

This allows a high-level view of the process and preserves the aggregate details, abstracting a behavior pattern of the most significant process tasks and relationships in the healthcare area added to the multilevel approach to solve issues due to the high variability of events [25]. In the expert evaluation step, a dashboard will be developed, allowing the application of the metrics defined in the research strategy, with the differentiation between the two process models discovered and adding indicators and charts for outcomes, rendering the tool interactive and intuitive for HTA specialists and helping them to visualize the analysis.

As far as the economic analyses, it will be possible to apply cost-minimization analysis (CMA). This basically is the difference in costs involved between techniques and
Author and Year	Use of a process-oriented methodology to evaluate the impact of the application of new technologies. CAD/CAM (Digital) techniques were used compared to the conventional technique used in dental implants.	Process discovered using process mining. The study obtained detailed information of the process model for its evaluation, using PROM software version 5.2 as a tool, with the establishment of a Petri net using the heuristic miner algorithm.	Assessment of the techniques used (conventional and digital) focused on three perspectives: evaluation of process flow, resources used and duration of activities.	One limitation relates to the process mining algorithm used to obtain other information to support more complex analyses, which greatly restricted the view of a more detailed Health Technology Assessment. The authors also mention the intention of obtaining other perspectives of analysis in future studies, such as: cost and accuracy and other information on outcome assessment.	By comparing technologies, the authors demonstrated the potential of technology driven assessment using real world data to represent how processes are performed in both methods evaluated.
Mans et al. 2013 [28]	To assess the current steps in medical-hospital process-oriented care as compared to the patient-oriented model of a health promotion and disease prevention program, specifically in the population of pregnant women with diabetes, through process mining.	The process flows of both models were discovered by means of the PROM tool, generating a Petri network with the heuristic miner algorithm.	The authors merely present the possibility of comparison between both care protocols in each step.	The authors merely evaluated the two process models without employing the protocol’s assessment metrics. They mention the intention of matching parameters automatically and performing dependency inferences in future studies.	The contribution of this work reflects an important concern in dynamic care protocol and guideline analyses, thus providing quality and cost-effective healthcare.
Huang et al. 2014 [29]	Assessment of the effect of best practices to redesign healthcare processes using evidence-based research in a Korean hospital with approximately 1400 beds and 40 surgery rooms.	The authors use the heuristic miner algorithm to generate a Petri net with LTL-CHECKER conformance assessment and indicator generation through Originator by task matrix, all algorithms available in PROM. They also mention the discovery of process models for behavior analysis (patterns) to compare assessments to improve.	The authors propose indicator dimensions related to variations in duration, cost, quality, and flexibility.	They merely analyze variations in the current and proposed processes, with results being positive, negative, and neutral for outcomes desired. They further state that the form of application and definition of indicators needs to be validated and that these were based solely on a literature review and the authors’ knowledge.	The possibility of applying some indicators from different perspectives is a strength of this work; however, this must be aligned with Health Technology Assessment metrics.
Cho et al. 2017 [30]	---	---	---	---	---
incremental cost-effectiveness ratio (ICER) [38–40]. The expression treats differences in costs concerning the difference in effectiveness between techniques. For the social (accessibility), ethical (confidentiality and privacy of information), and legal (regulation) [4] dimensions, information capable of supporting these considerations were addressed in the integration process. However, this analysis was not carried out in this study due to the limitation of obtaining reliable data for research purposes.

The knowledge base will be populated in two ways; saving the data patterns discovered recognized by the assessment or by manual definition by the specialist in BPMN (Business Process Management Notation).

3.1 Study case

With the technique performed by laparoscopy or robot-assisted (Da Vinci robot), the radical prostatectomy surgical procedure will be used as a trial for evaluating experimentally the method proposed.

The research project was submitted and approved by the research ethics committee under the number 3,326,942 of the proposing institution: Hospital Erasto Gaertner in Curitiba, Paraná, Brazil.
For study design purposes, the intention is to work with two groups of patients to compare healthcare technologies, one with patients with the use of robot-assisted surgery, 25 patients with average age 63.6 and the other using the laparoscopic technique, 232 patients with average age 66.6. The analysis period will cover information for the six-month period preceding the intervention and six months after the intervention. The intervention period is a time window from January 1, 2017, to May 31, 2019.

Step one Creation of an integration process with real-world data adding clinical information, if possible, obtained from electronic health records (EHR), together with information on the outcomes resulting from the use of technologies and data on the teams and professionals involved.

The Minimum Basic Data Set (MBDS), made available by the health information system, is required as shown in the data model in Fig. 4.

Step two The process must essentially address the issues in setting parameters for the research variables, enabling an adjustment of parameters as regards the scope of the assessment.

To deal with issues connected with the complexity of the models discovered, a service group was created in the service table (TABLE_SERVICE), attribute T_CLASS. This group’s services into macro activities can be detailed in the tool identifying services using the T_SERVICE attribute that is the description of the service or activity itself. This process mining option to initially explore models at the highest clustering level provides experts with greater clarity and understanding.

Another data processing option refers to the option of interest of the expert on the services to use, which can be selected by the T_INTEREST attribute, under the option “Y.” This enables identifying the most relevant elements for analysis and deleting elements that do not contribute to the target of the research.

Step three Use of a process mining algorithm, with the tools Upflux [25] based on the fuzzy model algorithm [37], to generate the models discovered for the healthcare technologies assessed. This allows the comparison between models to identify relationships and timing between activities, average duration, associated costs, and remaining and/or missing activities.

Figure 5 shows the models discovered for the pre-surgery technique, either robot-assisted or laparoscopic, in the macro activity option linked to the T_CLASS attribute, defined in the data treatment for grouping services. Thus, the complexity of the models discovered is addressed, representing the process flow at the most understandable level and enabling detailing it within the option of breaking it down to the service activity level.

Therefore, this compares models discovered for the two healthcare technologies possible, both from the perspective of macro activities and down to the detail of the respective activities, their use frequency, and temporal relations.

Another example of analysis based on the discovery of process models is the post-surgical care of prostate cancer, using radiotherapy, hormone therapy, or chemotherapy.

For comparing the process models concerning the treatments. Figure 6 compares the use of radiotherapy, hormone therapy, and chemotherapy for the two techniques - robot-assisted on the left and laparoscopic on the right.
of effectiveness), and in the laparoscopic (n = 232), there were 39 cases (83.19%). We have the following calculation:

\[
\text{ICER} = \frac{C_1 - C_2}{E_1 - E_2} = \frac{1367.23 - 1517.23}{0.9200 - 0.8319} = -1702.61.
\]

It is important to note that in this case, there is no differentiation of values for the surgical procedure since the health institution participating in the research does not have a differentiated charging table for the robot-assisted technique, thus having the CMA and the ICER favorable for the robot-assisted technique, as its outcome is more effective and with less use of resources.

Step four Develop a dashboard that makes it possible to apply distinguishing metrics between the two process models by adding key performance indicators (KPI) and graphs that make the tool visual and interactive with experts to support decision making. In the method proposed, the construction of a dashboard is included to broaden the specialists' analysis in the comparison of health technologies. Figure 8 presents a suggestion of some indicators that may serve as a basis for Health Technology Assessment, but other indicators may be added.

Step five Set up an area for the development of the knowledge base – which supports the expert with information from guidelines and protocols stored as process models – on the application of technology in healthcare and which will serve, in other assessments, to support the specialist’s work and decision-making.

After discovering the process model, it will be possible to store it as a reference model in the knowledge base, as shown in Fig. 9, allowing it to be maintained concerning medical guidelines and protocols.
Due to the scant use of instruments in applying process mining in Health Technology Assessment, knowledge about the specification or choice is still poor. Still, Health Technology Assessment specialists’ support should help define indicators and metrics that enable their incorporation, thus providing greater dynamism in analyses and evaluations.

The integration proposed with electronic health records will allow the adoption of assessments based on clinical data and, thus, the possibility of direct relationships with each technology’s outcomes and the identification of factors that provide better characteristics regarding the application of healthcare technology.

In a future study, the aim is to apply in the instrument proposed an assessment of radical prostatectomy surgery using laparoscopy and robotics, enabling experts to set parameters for indicators to express efficacy and effectiveness, for example, in this case: urinary function, erectile function, non-relapsing biochemical rate, quality-adjusted life years (QALY) for an outcome assessment, survival, length of hospital stay and cost differentiation.

5 Conclusion

The main contribution of this study relates to a proposal to design an instrument to dynamically analyze not only healthcare technology but the environment in which it is applied and the human resources that use such technology, thus making it possible to use it more effectively and provide a higher quality of service to patients.

An important justification for the use of this proposal can be exemplified with the crisis that we are experiencing today concerning COVID-19, with the integration of data from different health services, the deployment of procedures and administration of medications to patients could be dynamically assessed to determine the best outcomes, making the results dynamic and available in real-time to support clinical research regarding the discovery of clinical protocols and treatments.

It is proposed in future work, to add data on the patient’s experience and satisfaction in relation to the use of health technology, through the collection of quality of life research data and, through the techniques of sentiment analysis, thus enabling the evaluation of patient experience and satisfaction outcomes.

Author contributions All authors contributed to the study conception and design.

Funding The authors gratefully acknowledge the support and funding of this research by CAPES Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior under Grants: 88887.147294/2017-00 and 88887.339999/2019-00. This study was financed in party by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001.

Declarations

Competing Interests This manuscript has not been published and is not under consideration for publication elsewhere and We have no conflicts of interest to disclose.

Ethics approval The research project was submitted and approved by the research ethics committee under the number 3,326,942 of the proposing institution: Hospital Erasto Gaertner in Curitiba, Parana, Brazil.

References

1. Guimarães R. Technological incorporation in the Unified Health System (SUS): the problem and ensuing challenges. Cien Saude Colet. 2014;19:4899–908. https://doi.org/10.1590/1413-812320141912.04642014.

2. Pichon-Riviere A, Garcia-Marti S, Oortwijn W, Augustovski F, Sampietro-Colom L. Defining the Value of Health Technologies in Latin America: Developments in Value Frameworks to Inform the Allocation of Healthcare Resources. Int J Technol Assess Health Care. 2019;35:64–8. https://doi.org/10.1017/s0266462319000072.

3. Velasco-Garrido M, Busse R. Health technology assessment: An introduction to objectives, role of evidence, and structure in Europe, in: Eur. Obs. Heal. Syst. Policies, 2005: pp. 1–24. http://www.euro.who.int/__data/assets/pdf_file/0018/90432/E87866.pdf?ua=1.

4. Kristensen FB, Sigmund H. Health Technology Assessment Handbook. 1st ed. Denmark: National Board of Health; 2008.

5. Lewis JRR, Kerridge I, Lipworth W. Use of Real-World Data for the Research, Development, and Evaluation of Oncology Precision Medicines, IJC Precis Oncol 1 (2017) 1–11. https://doi.org/10.1200/po.17.00157.

6. Vieira F. Economic evidence of health interventions under the perspective of the Brazilian public health system: why and what for can we produce it and use it? J Bras Econ Saude. 2017;9:229-36. https://doi.org/10.21115/jbes.v9.n2.p229-36.

7. van Gool K, Gallego G, Haas M, Viney R, Hall J, Ward R. Economic Evidence at the Local Level. Pharmacoeconomics. 2007;25:1055–62. https://doi.org/10.2165/00019053-200725120-00006.

8. Wang SV, Schneeweiss S, Berger ML, Brown J, de Vries F, Douglas I, Gagne JJ, Gini R, Klungel O, Mullins CD, Neyman MD, Rassen JA, Smeeth L, Sturkenboom M. Reporting to Improve the Effectiveness and Facilitate Validity Assessment for Health Technology Assessment Medicines, JCO Precis Oncol 1 (2017) 1–11. https://doi.org/10.1200/po.17.00157.

9. Tugwell P, Knottnerus JA. Is the “Evidence-Pyramid” now dead? An Indian perspective. Perspect Clin Res. 2016;7:156. https://doi.org/10.4103/2229-3485.192030.

10. Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NE, LaVange L, Marinac-Dabic D, Marks PW, Robb MA, Shuren J, Temple R, Woodcock J, Yue LQ, Califf RM. Real-World Evidence - What Is It and What Can It Tell Us?, N Engl J Med 375 (2016) 2293–7. https://doi.org/10.1056/NEJMp1609216.

11. Guerra-Junior AA, Pires De Lemos LL, Godman B, Bennie M, Osorio-De-Castro CGS, Alves J, Heaney A, Vassallo CA, Wettermark B, Benguria-Arrate G, Gutierrez-libsarleza I, Santos VCC, Petramale CA, Accurio FDA. Health technology performance assessment: Real-world evidence for public health sustainability. Int J Technol Assess Health Care. 2017;33:279–87. https://doi.org/10.1017/S0266462317000423.

12. Dang A, Vallish B. Real world evidence: An Indian perspective. Perspect Clin Res. 2016;7:156. https://doi.org/10.4103/2229-3485.192030.

13. Van der Aaist W. Process mining: Data science in action, Process Min. Data Sci Action (2016) 1–467. https://doi.org/10.1007/978-3-662-49851-4.

14. Mans RS, Van Der Aaist WMP, Vanwersch RJB. Process Mining in Healthcare Evaluating and Exploiting Operational Healthcare Processes, Alexandria Tue NI (2015) 99. https://doi.org/10.1007/978-3-319-16071-9.

15. dos Santos Garcia C, Meineheim A, [Faria ER, Junior] MR, Dal-lagassa DMV, Sato DR, Carvalho EAP, Santos EE, Scarletin. Process mining techniques and applications – A systematic mapping study. Expert Syst Appl. 2019;133:260–95. https://doi.org/10.1016/j.eswa.2019.05.003.

16. Munoz-Gama J, Process mining for healthcare: Characteristics and challenges. J Biomed Inform. 2022 Mar;127:103994. doi: https://doi.org/10.1016/j.jbi.2022.103994. Epub 2022 Jan 29. PMID: 35104641.

17. Kusuma GP. Process Mining of Disease Trajectories: A Literature Review. Stud Health Technol Inform. 2021 May 28:1:457–461. doi: https://doi.org/10.3233/SHTI210200. PMID: 34042785.

18. Masci L, Luschi A, Iadanza E. Sentiment Analysis for Performance Evaluation of Maintenance in Healthcare, in International Conference on Medical and Biological Engineering. 2021: pp. 359–367. Springer, Cham.

19. Polisena J, Andellini M, Salerno P, Borsci S, Pecchia L, Iadanza E. Case Studies on the Use of Sentiment Analysis to Assess the Effectiveness and Safety of Health Technologies: A Scoping Review. IEEE Access. 2021: pp. 66043–66051.

20. de Lusignan S, Crawford L, Munro N. Creating and using real-world evidence to answer questions about clinical effectiveness. J Innov Heal Informatics. 2015;22:368–73. https://doi.org/10.14236/jhi.v22i3.177.

21. Maissenhaelter BE, Woolmore AL, Schlag PM. Real-world evidence research based on big data. Der Onkol. 2018;24:91–8. https://doi.org/10.1007/s00761-018-0358-3.

22. Spitzer E, Cannon CP, Serruys PW. Should real-world evidence be incorporated into regulatory approvals?, Expert Opin. Drug Saf. 2018;17:1155–9. https://doi.org/10.1080/14740338.2018.1540642.

23. Hampson G, Towe A, Dreitlein WB, Henshall C, Pearson SD. Real-world evidence for coverage decisions: opportunities and challenges. J Comp Eff Res. 2018;7:1133–43. https://doi.org/10.2217/cer-2018-0066.

24. Rebugue A, Ferreira DR. Business process analysis in healthcare environments: A methodology based on process mining. Inf Syst. 2012;37:99–116. https://doi.org/10.1016/j.is.2011.01.003.

25. Santos Garcia Cd, Pin Cabral Silva RV, Meinehim A, do Valle AM, Ramos MP, Scarletin EE. Applying Process Mining in a Multilevel Variants Analysis on Collaborative Sales to Cash Activities, in: 2019 IEEE 23rd Int. Conf Comput Sup Supp Work Des, 2019: 176–81.

26. Lin J, Wei J, Yang G, Wang Y. Applying Process Mining Techniques to Improve Information Sharing in a Multilevel Variants Analysis on Collaborative Sales to Cash Activities, in: 2019 IEEE 23rd Int. Conf. Comput Supp Work Des, 2019: 176–81.

27. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.
28. Mans R, Reijers H, Wismeijer D, [van Genuchten] M. A process-oriented methodology for evaluating the impact of IT: A proposal and an application in healthcare. Inf Syst. 2013;38:1097–115. https://doi.org/10.1016/j.is.2013.06.005.

29. Huang Z, Dong W, Ji L, Gan C, Lu X, Duan H. Discovery of clinical pathway patterns from event logs using probabilistic topic models. J Biomed Inform. 2014;47:39–57. https://doi.org/10.1016/j.jbi.2013.09.003.

30. Cho M, Song M, Comuzzi M, Yoo S. Evaluating the effect of best practices for business process redesign: An evidence-based approach based on process mining techniques. Decis Support Syst. 2017;104:92–103. https://doi.org/10.1016/j.dss.2017.10.004.

31. Dunkl R, Fröschl KA, Grossmann W, Rinderle-Ma S. Assessing Medical Treatment Compliance Based on Formal Process Modeling, Inf. Qual. e-Health, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-25364-5_37.

32. Baumgärtel P, Tenschert J, Lenz R. A Query Language for Workflow Instance Data, New Trends Databases Inf. Syst., Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-01863-8_9.

33. Rovani M. Strumenti per la modellazione e l’analisi dei processi sanitari, Universita’ Degli Studi Di Napoli “Federico II,” n.d.

34. Huang X, Lin J, Demner-Fushman D. Evaluation of PICO as a Knowledge Representation for Clinical Questions, in: AMIA Annu Symp Proc, 2006: pp. 359–663.

35. Cho M, Song M, Comuzzi M, Yoo S. Evaluating the effect of best practices for business process redesign: An evidence-based approach based on process mining techniques. Decis Support Syst. 2017;104:92–103. https://doi.org/10.1016/j.dss.2017.10.004.

36. Dongen B, Medeiros A, Verbeek H, Weijters A, Aalst W, The ProM Framework: A New Era in Process Mining Tool Support, in: Lect. Notes Comput. Sci., Springer-Verlag Berlin Heidelberg, 2005: pp. 444–454. https://doi.org/10.1007/11494744_25.

37. Günther CW, Van der Aalst W. Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics, Bus. Process Manag., Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-75183-0_24.

38. Vanni T, Luz PM, Ribeiro RA, Novaes HMD, Polanczyk CA. Avaliação econômica em saúde: aplicações em doenças infecciosas, Cad. Saude Publica. 2009;25:2543–52. https://doi.org/10.1590/s0102-311x2009001200002.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.