Abstract

The irreducible unitary highest weight representations \((\pi_\lambda, H_\lambda)\) of the group \(U(\infty)\), which is the countable direct limit of the compact unitary groups \(U(n)\), are classified by the orbits of the weights \(\lambda \in \mathbb{Z}^N\) under the Weyl group \(S(N)\) of finite permutations. Here, we determine those weights \(\lambda\) for which the first cohomology space \(H^1(U(\infty), \pi_\lambda, H_\lambda)\) vanishes. For finitely supported \(\lambda \neq 0\), we find that the first cohomology space \(H^1(U(\infty), \pi_\lambda, H_\lambda)\) never vanishes. For these \(\lambda\), the highest weight representations extend to norm-continuous irreducible representations of the full unitary group \(U(H)\) (for \(H := \ell^2(\mathbb{N}, \mathbb{C})\)) endowed with the strong operator topology and to norm-continuous representations of the unitary groups \(U_p(H) (p \in [1, \infty])\) consisting of those unitary operators \(g \in U(H)\) for which \(g - \mathbb{I}\) is of \(p\)th Schatten class. However, not every 1-cocycle on \(U(\infty)\) automatically extends to one on these unitary groups, so we may not conclude that the first cohomology spaces of the extended representations are non-vanishing. On the contrary, for the groups \(U(H)\) and \(U_\infty(H)\), all first cohomology spaces vanish. This is different for the groups \(U_p(H)\) with \(1 \leq p < \infty\), where only the identical representation on \(H\) and its dual representation have vanishing first cohomology spaces.

Key words: First order group cohomology, unitary representation, (Banach-) Lie group, Lie algebra, direct limit group

1 Introduction

For a continuous unitary or orthogonal representation \((\pi, H)\) of the topological group \(G\) we call a map \(\beta : G \rightarrow H\) a 1-cocycle if it satisfies the 1-cocycle relation

\[
\beta(gh) = \beta(g) + \pi(g)\beta(h), \quad \text{for all } g, h \in G.
\]

A 1-cocycle of the form \(\beta(g) = \partial_v(g) := \pi(g)v - v\) for some \(v \in H\) is called a 1-coboundary or a trivial 1-cocycle. The vector space of all continuous 1-cocycles associated to \((\pi, H)\) is denoted by \(Z^1(G, \pi, H)\), its subspace of 1-coboundaries by \(B^1(G, \pi, H)\). The quotient space

\[
H^1(G, \pi, H) := Z^1(G, \pi, H)/B^1(G, \pi, H)
\]

is called the 1-cohomology space.

Interest in the first order cohomology of Lie groups has grown in the last decades since it is related to mathematical problems occurring in a wide range of mathematical disciplines such as geometric
group theory, unitary representations, ergodic theory, stochastic processes and theoretical physics. Its motivation comes from the construction of irreducible unitary representations in Fock spaces (cf. [Is96], [PS72]), the study of unitary representations of mapping groups/current groups (cf. [Is96], [PS72], [Ar69], [A-T93]), the classification theory of negative definite functions (cf. [FH74]), Lévy processes and infinitely divisible probability distributions (cf. [PS72]) and continuous tensor products of unitary representations (cf. [PS72b], [St69], [Gui72]). The study of group cohomology spaces was notably propagated in the 1970s due to influential papers by J.P. Serre. One of the key results developed during that decade was the Delorme–Guichardet Theorem which states that, for a σ-compact locally compact group G, the following are equivalent (cf. [BHV08, Thm. 2.12.4, Prop. 2.2.10]):

Property (T): There exists a compact subset $K \subseteq G$ and some positive constant $\varepsilon > 0$ such that every continuous unitary representation (π, \mathcal{H}), for which there exists a unit vector $v \in \mathcal{H}$ such that $\sup_{g \in K} \|\pi(g)v - v\| < \varepsilon$, has a non-trivial G-fixed vector, i.e. $\mathcal{H}_G \neq \{0\}$.

Property (FH): $H^1(G, \pi, \mathcal{H}) = 0$ for every continuous orthogonal representation (π, \mathcal{H}) of G.

More precisely, the implication $(T) \implies (FH)$ holds for arbitrary topological groups whereas the σ-compactness is necessary for the converse implication (cf. [BHV08, Remark 2.12.5]).

It is a well-known fact that a 1-cocycle is trivial if and only if it is bounded (cf. [BHV08, Prop. 2.2.9]). This implies that compact groups have property (FH) (see also [PS72, Thm. 15.1]). In the realm of irreducible unitary representations of finite dimensional Lie groups, the vanishing of the first cohomology spaces occurs surprisingly often: In view of the Delorme–Guichardet Theorem, [BHV08, Theorem 3.5.4] states that a connected semi-simple Lie group G has property (FH) if and only if no simple factor of its Lie algebra is isomorphic to $\mathfrak{su}(n, 1)$ or $\mathfrak{so}(n, 1)$ (for $n \in \mathbb{N}$). Moreover, up to equivalence, there exists only a finite number of (topologically complete) irreducible continuous unitary representations (π, \mathcal{H}) of a connected semi-simple Lie group, for which $H^1(G, \pi, \mathcal{H}) \neq \{0\}$ (cf. [PS75, Prop. 11]).

In this article, we turn to infinite dimensional Lie groups: Let $\mathcal{H} \cong \ell^2(\mathbb{N}, \mathbb{C})$ be an infinite dimensional complex separable Hilbert space. We consider the unitary groups

$$U(\infty) \subset U_1(\mathcal{H}) \subset \ldots \subset U_p(\mathcal{H}) \subset \ldots \subset U_\infty(\mathcal{H}) \subset U(\mathcal{H}).$$

Here $U(\infty)$ is the increasing union of the compact Lie groups $U(n) := U(n, \mathbb{C})$, endowed with the direct limit Lie group structure (cf. [Gloe05, Thm. 4.3]). Its Lie algebra $\mathfrak{u}(\infty) = \lim_{n \to \infty} \mathfrak{u}(n)$ is an increasing union of finite dimensional compact Lie algebras (cf. [Gloe05, Thm. 4.3]). The other groups $U_p(\mathcal{H}) := U(\mathcal{H}) \cap (1 + B_p(\mathcal{H}))$ (for $1 \leq p \leq \infty$) are Banach–Lie groups whose Lie algebras $\mathfrak{u}_p(\mathcal{H}) = \mathfrak{u}(\mathcal{H}) \cap B_p(\mathcal{H})$ are determined by the pth Schatten ideals $\mathcal{B}_p(\mathcal{H})$ (cf. [dlH72, Sections II.5, II.6]). Note that $\mathcal{B}_\infty(\mathcal{H})$ is the space of compact operators on \mathcal{H}. In [Ne98], unitary highest weight representations of the group $U(\infty)$ have been classified by the orbits of the weights $\lambda = (\lambda_n)_{n \in \mathbb{N}}$ in $\mathbb{Z}^\mathbb{N}$ under the Weyl group $W \cong S_\mathbb{N}$. This means that two highest weight representations $(\pi_{\lambda}, \mathcal{H}_{\lambda})$ and $(\pi_{\mu}, \mathcal{H}_{\mu})$ are equivalent if and only if the entries of the weights λ and μ coincide up to a finite permutation. The unitary representation $(\pi_{\lambda}, \mathcal{H}_{\lambda})$ extends to the group $U_1(\mathcal{H})$ if and only if the weight λ is bounded (cf. Proposition III.7 and Theorem III.4 in [Ne98]). Moreover, the
proof of Proposition III.10 in [Ne98] shows that (π_λ, H_λ) extends to the group $U_p(H)$ for some $p > 1$ if and only if the weight λ has finite support. The problem is to determine for which weights λ, the corresponding first cohomology spaces are trivial. The case $\lambda = 0$ corresponds to the one-dimensional trivial representation and the fact that there is no nonzero continuous group homomorphism $G \to \mathbb{R}$ for each of the unitary groups G from (2) implies that the corresponding 1-cohomology spaces vanish (cf. Remark 3.7). For $\lambda \neq 0$, we derive the following solutions:

Theorem 4.10: For the direct limit $U(\infty)$, the first cohomology space $H^1(U(\infty), \pi_\lambda, H_\lambda)$ vanishes if and only if all but finitely many entries of λ are positive integers or all but finitely many entries are negative integers. In particular, for finitely supported weights λ, the corresponding 1-cohomology spaces never vanish.

Theorem 7.7: For $1 \leq p < \infty$ and for finitely supported nonzero weights λ, the first cohomology space $H^1(U_p(H), \pi_\lambda, H_\lambda)$ vanishes in exactly two cases, namely either if $U_p(H)$ acts on H via the identical representation or if $U_p(H)$ acts on H^* via the dual representation. This corresponds to the case $\lambda = (1, 0, 0, 0, \ldots)$ (natural action) resp. $\lambda = (-1, 0, 0, 0, \ldots)$ (conatural action).

In particular, Theorem 7.9 reveals that the group $U_p(H)$ (with $1 \leq p < \infty$) neither has property (FH) nor has property (T). For $p = 2$, the fact that $U_2(H)$ does not have property (T) has already been shown in [Pe17]. The question whether $U_2(H)$ has property (FH) is however stated there as an open problem (see [Pe17, 3.5]) which is answered by Theorem 7.9.

[At91, Prop. 6.5, Remark 6.8(a)] shows that the full unitary group $U(H)$ and the group $U_\infty(H)$ belong to the class of bounded groups. We call a topological group G bounded if, for every identity neighborhood $U \subseteq G$, there exists an integer $n \in \mathbb{N}$ and a finite subset $F \subseteq G$ such that $G \subseteq U^n F$. \footnote{Using the terminology of [At91], this can be expressed as G being bounded in the right uniformity of the topological group G. If G is connected, one can always use $F = \{e\}$ which leads some authors to adopt this as a requirement in their definition.} That $U(H)$ and $U_\infty(H)$ are bounded groups is also shown in [Ne13] with a proof relying on the spectral calculus of operators on Hilbert spaces. It is immediate from the definition that bounded groups have property (FH) \footnote{Indeed, if $\beta : G \to H$ is a continuous 1-cocycle associated to a continuous unitary representation (π, H) of a bounded group G, then $U := \{g \in G : \|\beta(g)\| < 1\}$ is an open identity neighborhood of $G \subseteq U^n F$ for some $n \in \mathbb{N}$ and some finite subset F of β, we have $\sup_{g \in U} \|\beta(g)\| \leq n + \max_{f \in F} \|\beta(f)\| < \infty$.}. Hence, if $G \in \{U_\infty(H), U(H)\}$ and (π, H) is a continuous unitary representation of G, then $H^1(G, \pi, H) = \{0\}$ (see also [Ro09]). The unitary groups $U(\infty)$ and $U_p(H)$ for $1 \leq p < \infty$ are not bounded because they have nontrivial 1-cohomology spaces.

The core ideas for the proof of Theorem 4.10 are the following: Any 1-cocycle of one of the unitary groups above has the property that its restriction to one of the compact subgroups $U(n)$ yields a 1-coboundary. This leads us to the notion of a conditional 1-cocycle in Section 3. If $(G_j)_{j \in J}$ is a family of subgroups of the group G, then we call a 1-cocycle conditional if its restriction to every subgroup G_j yields a 1-coboundary. A special case arises if $G = \lim G_n$ is the direct limit of an increasing sequence of subgroups G_n. The statement that every conditional 1-cocycle (w.r.t. the family of the subgroups G_n) is a 1-coboundary is then equivalent to the statement that every G_n-fixed vector is already fixed by the whole group G provided that n is sufficiently large (cf. Proposition 3.6). In Section 4, we introduce the highest weight representations (π_λ, H_λ) of $U(\infty)$ as a direct limit of highest weight representations of the subgroups $U(n)$ and we directly conclude
that the representation \((\pi_\lambda, \mathcal{H}_\lambda)\) admits a \(U(n)\)-fixed vector if and only if one of the highest weight subrepresentations of \(U(k)\) (with \(k \geq n\)) admits a \(U(n)\)-fixed vector. This observation allows us to reformulate the problem as a matter of branching from \(U(k)\) to \(U(n)\). Thus, Theorem 4.10 is obtained by applying the classical branching law as stated in Theorem 4.1.

Our strategy to prove Theorem 7.9 can be outlined as follows: For finitely supported \(\lambda\), we realize the extended highest weight representations \((\pi_\lambda, \mathcal{H}_\lambda)\) of the group \(U_p(H)\) (for \(1 \leq p < \infty\)) as subrepresentations of finite tensor product representations that are built from the identical and its dual action of \(U_p(H)\) on \(H\) respectively on the dual \(H^*\) (cf. Section 7). For these finite tensor product representations (with at least two factors), it is easy to construct nontrivial 1-cocycles as a countably infinite sum of 1-coboundaries (cf. Section 6). Projecting these 1-cocycles onto the corresponding highest weight submodules gives nontrivial 1-cocycles for the highest weight representations \((\pi_\lambda, \mathcal{H}_\lambda)\) (cf. Proposition 7.8). That the first cohomology spaces for the identical representations on \(H\) and the dual representation on \(H^*\) (cf. Section 5) vanish is shown in Remark 3.2 and Proposition 5.1.

In a subsequent paper, we plan to treat the case where \(\lambda\) is bounded with infinite support and the corresponding highest weight representation \((\pi_\lambda, \mathcal{H}_\lambda)\) of \(U(\infty)\) extends to the group \(U_1(H)\). The problem here is that it is much harder to realize the representation \((\pi_\lambda, \mathcal{H}_\lambda)\) concretely than it is in the finitely supported case. If the first cohomology space vanishes for the group \(U(\infty)\), then it also does for the group \(U_1(H)\) since \(U(\infty)\) is dense in \(U_1(H)\). But this is not the case for every bounded weight with infinite support and this situation remains, at the present stage, an open problem.

Acknowledgements
We would like to thank the referee for pointing out the references [At91] and [Ro09].

2 Notation, terminology and preliminaries
Throughout this article, we use the symbol \(\mathcal{H}\) for a complex Hilbert space. We follow the convention that the scalar product \((\cdot, \cdot)\) of a complex Hilbert space \(\mathcal{H}\) is linear in the first argument and antilinear in the second. If \(V\) is any complex vector space, we write \(\mathbf{V}\) for the complex vector space with the same addition operation but with scalar multiplication \((\lambda, v) \mapsto \lambda v\) for \(v \in V\) and \(\lambda \in \mathbb{C}\). We use the symbol \(G\) for a (topological) group and write \(e\) for its neutral element. If not otherwise stated, we always assume that any topological group is a Hausdorff space. A continuous unitary representation \((\pi, \mathcal{H})\) of \(G\) on a complex Hilbert space \(\mathcal{H}\) is a group homomorphism \(\pi : G \to U(\mathcal{H})\) which is continuous with respect to the strong operator topology on the unitary group \(U(\mathcal{H})\). The unitary representation \((\pi, \mathcal{H})\) is called norm-continuous, if \(\pi\) is continuous with respect to the norm-topology on \(U(\mathcal{H})\). We stick to the convention of writing \(\mathcal{H}^G\) for the subspace of \(G\)-fixed vectors.

2.1 On the Lie groups used in this article
Throughout this article, a Lie group \(G\) is either a real Banach–Lie group or a direct limit of real finite-dimensional Lie groups. We write \(\mathfrak{g} := \mathfrak{L}(G) \cong T_e(G)\) for its (real) Lie algebra. The corre-
sponding Lie bracket is denoted by $[\cdot, \cdot]$. Elements $z \in \mathfrak{g}_\mathbb{C}$ of the complexified Lie algebra split into $z = x + iy$, where $x, y \in \mathfrak{g}$ are uniquely determined and are therefore called the real resp. imaginary part of z. We obtain an involution on $\mathfrak{g}_\mathbb{C}$ via $z^* := -x + iy$ for $z = x + iy$.

Let G be a Banach-Lie group and (π, \mathcal{H}) be a norm-continuous unitary representation of G. Every continuous 1-cocycle $\beta : G \to \mathcal{H}$ defines a continuous group homomorphism of Banach-Lie groups

$$\alpha : G \to \mathcal{H} \rtimes U(\mathcal{H}), \quad g \mapsto (\beta(g), \pi(g)).$$

By the Automatic Smoothness Theorem of Banach-Lie groups 3 we thus obtain a smooth map. In particular, both maps

$$\pi : G \to U(\mathcal{H}), \quad \beta : G \to \mathcal{H}$$

are smooth. Taking the derivative at e, we obtain continuous \mathbb{R}-linear maps

$$d\pi : \mathfrak{g} \to \mathfrak{u}(\mathcal{H}), \quad d\beta : \mathfrak{g} \to \mathcal{H}$$

satisfying, for arbitrary $x, y \in \mathfrak{g}$, the relations

$$d\pi([x, y]) = d\pi(x)d\pi(y) - d\pi(y)d\pi(x), \quad d\beta([x, y]) = d\pi(x)d\beta(y) - d\pi(y)d\beta(x).$$

Complexification yields continuous \mathbb{C}-linear maps

$$d\pi_\mathbb{C} : \mathfrak{g}_\mathbb{C} \to \mathfrak{b}(\mathcal{H}), \quad d\beta_\mathbb{C} : \mathfrak{g}_\mathbb{C} \to \mathcal{H}.$$

2.2 Unitary highest weight representations of the group $U(n)$

Let G be a compact Lie group. Standard references for the classification of irreducible unitary representations of G in terms of highest weights are [Ze73] (for the case $G = U(n)$) and [GW98] (for the classical groups). For the infinite-dimensional unitary groups, we refer to the survey in [Ne04b], where the reader also finds an introduction to Banach–Lie groups and crucial results from [Ne98]. Here, we briefly introduce the terms highest weight and highest weight representation for the group $U(n)$ because these concepts are mentioned several times throughout this paper.

Let (π, \mathcal{H}) be an irreducible, continuous unitary representation of $U(n)$. Then, \mathcal{H} is finite-dimensional and the derived Lie algebra representation $(d\pi_\mathbb{C}, \mathcal{H})$ of $\mathfrak{g}(n, \mathbb{C})$ is also irreducible. A weight λ of the representation $(d\pi_\mathbb{C}, \mathcal{H})$ is a linear functional $\lambda : \mathfrak{h} \to \mathbb{C}$ on the maximal abelian subalgebra \mathfrak{h} of diagonal matrices of the Lie algebra $\mathfrak{g}(n, \mathbb{C})$. Let \mathfrak{b} be a maximal solvable Lie subalgebra of $\mathfrak{g}(n, \mathbb{C})$ containing \mathfrak{h}. It is a consequence of Lie’s Theorem on the finite dimensional representations of solvable Lie algebras that there exists a (unique) one-dimensional \mathfrak{b}-eigenspace in \mathcal{H}. The corresponding \mathfrak{b}-eigenvalue is a Lie algebra homomorphism $\lambda : \mathfrak{b} \to \mathbb{C}$ and its restriction to \mathfrak{h} is a weight which is called a highest weight (for \mathfrak{b}) of the representation (π, \mathcal{H}). For instance, we may choose \mathfrak{b} to be the upper triangular matrices in $\mathfrak{g}(n, \mathbb{C})$. Then, one can show that for $x = \text{diag}(x_1, \ldots, x_n) \in \mathfrak{b}$, we have $\lambda(x) = \sum_{i=1}^n \lambda_i x_i$ with decreasingly ordered integer-valued coefficients λ_i. This means that any irreducible, continuous unitary representation of $U(n)$ defines a decreasingly ordered integer-valued n-tuple. Conversely, to every $\lambda \in \mathbb{Z}^n$ with $\lambda_1 \geq \ldots \geq \lambda_n$ there exists an irreducible unitary representation $(\pi_\lambda, \mathcal{H}_\lambda)$ of $U(n)$ with highest weight λ (for the solvable

3For more details see [Ne06, Thm. IV.1.18] and the references given there.
subalgebra of upper triangular matrices). We call \((\pi_\lambda, \mathcal{H}_\lambda)\) a unitary highest weight representation. Two highest weight representations \((\pi_\lambda, \mathcal{H}_\lambda), (\pi_\mu, \mathcal{H}_\mu)\) are isomorphic if and only if \(\lambda = \mu\). Therefore, we obtain a one to one correspondence between the equivalence classes of irreducible, continuous unitary representations of \(U(n)\) and the decreasingly ordered vectors in \(\mathbb{Z}^n\).

For tuples \(\lambda \in \mathbb{Z}^n\) which are not necessarily decreasingly ordered, we write \((\pi_\lambda, \mathcal{H}_\lambda)\) for the unitary highest weight representation corresponding to the decreasingly ordered tuple \(\lambda'\) which is obtained after a suitable permutation of the entries of \(\lambda\). This has the following background: Every tuple \(\lambda \in \mathbb{Z}^n\) occurs as a highest weight of some irreducible unitary representation of \(U(n)\) for some solvable subalgebra \(b\) containing \(h\). It is a general fact in highest weight theory that two highest weight representations are isomorphic if and only if the corresponding weights belong to the same orbit under the Weyl group action on the set of weights. The Weyl group action on \(\mathbb{Z}^n\) can be realized by the natural permutation action of \(S_n\) on \(\mathbb{Z}^n\).

The polar map
\[p : U(n) \times \mathfrak{u}(n) \to \text{GL}(n, \mathbb{C}), \quad (g, x) \mapsto g \exp(i x) \]
is a diffeomorphism and therefore, every continuous unitary representation \((\pi, \mathcal{H})\) of \(U(n)\) extends to a holomorphic\(^4\) representation of \(\text{GL}(n, \mathbb{C})\) via \(\pi_c(g \exp(i x)) := \pi(g) \exp i d x_c\). This extension is unique (universal complexification) and, in view of Weyl’s Unitarian Trick, there is a one-to-one correspondence between continuous, irreducible unitary representations of \(U(n)\) and irreducible, holomorphic representations of \(\text{GL}(n, \mathbb{C})\). In particular, the classification of the equivalence classes of holomorphic irreducible representations of \(\text{GL}(n, \mathbb{C})\) in terms of highest weights is the same as for the group \(U(n)\). In this paper, we will use occasionally some results from the highest weight theory of the group \(\text{GL}(n, \mathbb{C})\) (especially from [GW98]). The preceding remark shows that they may be applied equally well to the group \(U(n)\).

3 Conditional 1-cocycles

In this section, we set the foundation for our analysis of the 1-cocycles of the unitary groups \(U(\infty)\) and \(U_p(\mathcal{H})\) (for \(1 \leq p < \infty\)) in Sections 4 and 5. Assume that a topological group \(G\) admits an increasing sequence of subgroups (such that the union is dense in \(G\)). If the restriction of a 1-cocycle on \(G\) to each of these subgroups yields a 1-coboundary, then we call it a conditional 1-cocycle. This concept is based on the observation that the restriction of any 1-cocycle on the unitary groups \(U(\infty)\) and \(U_p(\mathcal{H})\) (for \(1 \leq p < \infty\)) to any of the compact groups \(U(n)\) yields a trivial 1-cocycle. Any conditional 1-cocycle may be viewed as a limit of a sequence of 1-coboundaries and the question whether the coboundary property is preserved under this limit can be translated into handy necessary and sufficient criteria (cf. Lemma 3.3). Proposition 3.6 applies in particular to the group \(U(\infty)\) and provides a solution to the problem to decide whether a 1-cohomology space of \(U(\infty)\) is trivial.

Let \(G\) be a topological group with an ascending sequence of topological subgroups \((G_n)_{n \in \mathbb{N}}\) such that \(G_\infty := \bigcup_{n \in \mathbb{N}} G_n\) is a dense subgroup in \(G\).

Definition 3.1. Let \((\pi, \mathcal{H})\) be a continuous unitary representation of \(G\). A 1-cocycle \(\beta : G \to \mathcal{H}\) is called conditional if its restriction to every subgroup \(G_n\) is a 1-coboundary. In particular, every

\[^4\text{in the sense that the derivative is complex linear.}\]
1-coboundary on G is a conditional 1-cocycle. We write $Z^1_{\text{cond}}(G, \pi, \mathcal{H})$ for the vector space of conditional 1-cocycles and $H^1_{\text{cond}}(G, \pi, \mathcal{H})$ for the quotient $Z^1_{\text{cond}}(G, \pi, \mathcal{H})/B^1(G, \pi, \mathcal{H})$.

We consider a conditional 1-cocycle $\beta \in Z^1_{\text{cond}}(G, \pi, \mathcal{H})$. Restricting β to the subgroup G_n yields a 1-coboundary by assumption, i.e. $\beta|_{G_n} = \partial v_n$ for some $v_n \in \mathcal{H}$. The vector v_n is unique up to adding a G_n-fixed vector. We shall write $H_n := \mathcal{H}^{G_n}$ for the subspace of G_n-fixed vectors. Any conditional 1-cocycle β thus defines a unique sequence $(v_n \in H_n^1)_{n \in \mathbb{N}}$ with the following compatibility condition

$$v_n - v_m \in H_m \text{ if } m \leq n.$$

This means that we can write $\beta(g) = \lim_{n \to \infty} \pi(g)v_n - v_n$ for any $g \in G_{\infty}$. We will reformulate the compatibility condition in two ways:

First, note that the spaces H_n form a decreasing sequence of Hilbert subspaces and the intersection is given by $\bigcap_{n \in \mathbb{N}} H_n = \mathcal{H}^{G}$, the subspace of G-fixed vectors. For $n = 0$ we put $G_0 := \{e\}$, $H_0 := \mathcal{H}$ and $v_0 := 0$. In view of $H_0^\perp = \bigoplus_{k=1}^\infty (H_k^\perp \cap H_{k-1})$, we can write $v_n = \sum_{k=1}^n w_k$ for uniquely determined $w_k \in W_k := H_k^\perp \cap H_{k-1}$. The compatibility condition (3) then reads $w_k = v_k - v_{k-1}$, hence every conditional 1-cocycle β defines a unique sequence $(w_n \in W_n)_{n \in \mathbb{N}}$. For $g \in G_{\infty}$, we then have

$$\beta(g) = \sum_{n \in \mathbb{N}} \pi(g)w_n - w_n.$$

A second way to interpret (3) is as follows: For any $v \in \bigcup_{n \in \mathbb{N}} H_n^\perp$, the limit $\lim_{n \to \infty} \langle v_n, v \rangle$ exists and we obtain an antilinear functional $a : \bigcup_{n \in \mathbb{N}} H_n^\perp \to \mathbb{C}$, $v \mapsto \lim_{n \to \infty} \langle v_n, v \rangle$ which has the property that its restriction to every subspace H_n^\perp is continuous. Moreover, if $g \in G_{\infty}$ and $v \in \mathcal{H}$, then $\pi(g)v - v \in \bigcup_{n \in \mathbb{N}} H_n^\perp$ and we obtain the relation

$$a(\pi(g)v - v) = \lim_{n \to \infty} \langle v_n, \pi(g)v - v \rangle = \lim_{n \to \infty} \langle \pi(g^{-1})v_n - v_n, v \rangle = \langle \beta(g^{-1}), v \rangle.$$

Remark 3.2. In a Lie-group context, we assume that G is a Banach–Lie group with an increasing sequence $(G_n)_{n \in \mathbb{N}}$ of Banach-Lie subgroups such that $G_{\infty} = \bigcup_{n \in \mathbb{N}} G_n$ is a dense subgroup. The corresponding Banach-Lie algebras g_n form an increasing sequence of Lie subalgebras of g. We write $g_{\infty} := \bigcup_{n \in \mathbb{N}} g_n \subseteq g$ for the union which is a Lie subalgebra of g. Now, let (π, \mathcal{H}) be a norm-continuous unitary representation of G and let $\beta \in Z^1_{\text{cond}}(G, \pi, \mathcal{H})$. Recall that we obtain continuous linear maps $d\pi_C : g_{\mathbb{C}} \to \mathcal{B}(\mathcal{H})$ and $d\pi_B : g_{\mathbb{C}} \to \mathcal{H}$ via complex linear extension of the derivatives. If $(v_n)_{n \in \mathbb{N}}$ is the sequence defined by β, then the compatibility condition (3) implies $d\beta (z) = \lim_{n \to \infty} d\pi_C(z)v_n$. For any $z \in g_{\infty, \mathbb{C}} \subseteq g_{\mathbb{C}}$ and $v \in \mathcal{H}$, we have $d\pi_C(z)v \in \bigcup_{n \in \mathbb{N}} H_n^\perp$ and obtain

$$a(d\pi_C(z)v) = \lim_{n \to \infty} \langle v_n, d\pi_C(z)v \rangle = \lim_{n \to \infty} \langle d\pi_C(z^*)v_n, v \rangle = \langle d\beta(z^*), v \rangle.$$

This fact will be used later in Section 5.

Lemma 3.3. Let β, v_n and w_n be as above. For a vector $v \in (\mathcal{H}^G)^\perp$, the following are equivalent:

i) The conditional 1-cocycle β is a 1-coboundary with $\beta = \partial w$.

ii) The sequence $(w_n)_{n \in \mathbb{N}}$ is square-summable and $v = \sum_{n \in \mathbb{N}} w_n$.

iii) The sequence $(v_n)_{n \in \mathbb{N}}$ converges in \mathcal{H} with limit v.

7
iv) The antilinear functional a extends to a continuous antilinear functional on H such that $a(v') = \langle v, v' \rangle$ for all $v' \in H$.

Proof. i) \Rightarrow ii) For each vector $v_n = \sum_{k=1}^{n} w_k$, we have $v - v_n \in H_n = \mathcal{H}^{G_n}$, hence $(v - v_n) \perp v_n$. Since the vectors w_k are mutually orthogonal, we find $\|v\|^2 = \sum_{k=1}^{n} \|w_k\|^2$ for all $n \in \mathbb{N}$. This shows that the sequence $(w_k)_{k \in \mathbb{N}}$ is square integrable and the series $\sum_{k=1}^{\infty} w_k$ converges in H.

By virtue of (4), we have $|\pi(g) - 1|v = [\pi(g) - 1] \sum_{k=1}^{\infty} w_k$ for each $g \in G$ and, since both v and $\sum_{k=1}^{\infty} w_k$ belong to $(\mathcal{H}^G)\perp$, we conclude $v = \sum_{k=1}^{\infty} w_k$.

ii) \Rightarrow iii) This is clear, since the convergence of the series implies that the sequence $(v_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence in H whose limit coincides with the limit of the series.

iii) \Rightarrow iv) This follows directly from the definition of a.

iv) \Rightarrow i) For any $v' \in H$ and $g \in G$, we have $\langle \pi(g)^{-1}v - v, v' \rangle = a(\pi(g)v' - v') = (\beta(g^{-1}), v')$ by equation (5). This shows that $\beta = \partial_v$.

Lemma 3.3 shows that if all but finitely many of the spaces W_n are trivial, then every conditional 1-cocycle is trivial. This occurs in particular, if the Hilbert space H is finite dimensional.

Remark 3.4. We have $(\mathcal{H}^{G_n})\perp = \oplus_{k=1}^{n} W_k$ for any $n \in \mathbb{N}$ and $(\mathcal{H}^G)\perp = \oplus_{k \in \mathbb{N}} W_k$. This shows that, for any $n \in \mathbb{N}$,

$$\forall k > n \quad W_k = \{0\} \iff \mathcal{H}^{G_n} = \mathcal{H}^G.$$

Thus, we have shown the following corollary.

Corollary 3.5. If $\mathcal{H}^G = \mathcal{H}^{G_n}$ for some $n \in \mathbb{N}$, then $H^1_{\text{cond}}(G, \pi, \mathcal{H}) = \{0\}$.

We conclude our discussion on conditional 1-cocycles by specializing to the case where $G = \bigcup_{n \in \mathbb{N}} G_n$. We write $G = \varinjlim G_n$ whenever the group topology on G coincides with the direct limit topology. This requirement ensures that every sequence $(w_n \in W_n)_{n \in \mathbb{N}}$ defines a conditional 1-cocycle via equation (4). Thus, the space $Z^1_{\text{cond}}(G, \pi, \mathcal{H})$ may be described in terms of the spaces W_n and we conclude that the converse statement of Corollary 3.5 holds.

Proposition 3.6. For $G = \varinjlim G_n$, we have the following statements

i) $Z^1_{\text{cond}}(G, \pi, \mathcal{H}) \cong \prod_{n \in \mathbb{N}} (\mathcal{H}^{G_n})\perp \cap \mathcal{H}^{G_{n-1}}$.

ii) $H^1_{\text{cond}}(G, \pi, \mathcal{H}) = \{0\} \iff (\exists n \in \mathbb{N}) \quad \mathcal{H}^{G_n} = \mathcal{H}^G$.

Proof. i) Every sequence $(w_n \in W_n)_{n \in \mathbb{N}}$ defines a map $\beta : G \to \mathcal{H}$ via $\beta(g) := \sum_{n \in \mathbb{N}} \pi(g)w_n - w_n$ for $g \in G$. Then, the restriction to every subgroup G_n yields a 1-coboundary $\beta|_{G_n} = \partial_v$ with $v_n = \sum_{k=1}^{n} w_k$. In particular, the restriction of β to G_n is continuous. Therefore, β is continuous with respect to the direct limit topology on G. This shows that β is a conditional 1-cocycle. The above mapping defines an isomorphism of vector spaces $\prod_{n \in \mathbb{N}} W_n \to Z^1_{\text{cond}}(G, \pi, \mathcal{H})$.

ad ii) In view of Corollary 3.5 and Remark 3.4, it remains to show the implication $H^1_{\text{cond}}(G, \pi, \mathcal{H}) = \{0\} \iff (\exists n \in \mathbb{N}) (\forall k > n) \quad W_k = \{0\}$. The requirement $Z^1_{\text{cond}}(G, \pi, \mathcal{H}) = B^1(G, \pi, \mathcal{H})$ amounts to saying that every sequence $(w_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} W_n$ has to be square summable (Lemma 3.3 and i)). This possible only if all but finitely many W_n are trivial. \(\square \)
Remark 3.7. Assume that all subgroups G_n are compact. Then, the restriction of every 1-cocycle on G to one of the G_n is a 1-coboundary, hence every 1-cocycle on G is conditional. This means that $Z^1(G, \pi, \mathcal{H}) = Z^1_{\text{cond}}(G, \pi, \mathcal{H})$ and $H^1(G, \pi, \mathcal{H}) = H^1_{\text{cond}}(G, \pi, \mathcal{H})$. Note, that Corollary 3.5 shows that for $\pi = 1$, one has $\{0\} = H^1(G, 1, \mathcal{H}) \cong \text{Hom}_{\text{Grp}}(G, \mathcal{H})$. This is a version of the fact that there is no nontrivial, continuous group homomorphism of G into the group of additive real numbers. Moreover, the direct limit topology on $G_\infty = \bigcup_{n \in \mathbb{N}} G_n$, i.e. the finest group topology on G_∞ for which all inclusions $G_n \hookrightarrow G_\infty$ are continuous, is a group topology (cf. [Yam98, Theorem 2]). Hence, Proposition 3.6 applies in particular to the group G_∞. The unitary group $U(\infty)$ is a direct limit of compact subgroups which are given by the unitary groups $U(n)$. Every unitary group $U_p(\mathcal{H})$ (for $\mathcal{H} = \ell^2(\mathbb{N}, \mathbb{C})$ and $1 \leq p < \infty$) contains $U(\infty)$ as a dense subgroup. The one-dimensional trivial representation of the unitary groups $U(\infty)$ and $U_p(\mathcal{H})$ is the unitary highest weight representation that corresponds to the weight $\lambda = 0$ and we have $H^1(G, \pi_0, \mathcal{H}_0) = \{0\}$ for every unitary group G occurring in (2).

4 Unitary highest weight representations of $U(\infty)$

In this section, we define for every $\lambda \in \mathbb{Z}^n$ an irreducible unitary representation $(\pi_\lambda, \mathcal{H}_\lambda)$ of $U(\infty)$ that we call unitary highest weight representation (with highest weight λ). We determine for which λ the spaces $H^1(U(\infty), \pi_\lambda, \mathcal{H}_\lambda)$ are trivial (cf. Theorem 4.10). The main ingredients are the classical Branching Law for the highest weight representations of the unitary groups $U(n)$ (cf. Theorem 4.1) and Proposition 3.6.

Let $n \in \mathbb{N}$. Recall from Section 2 that for any integer-valued tuple $\lambda \in \mathbb{Z}^n$, one can associate a unitary highest weight representation $(\pi_\lambda, \mathcal{H}_\lambda)$ of $U(n)$. This representation is irreducible and every irreducible unitary representation of $U(n)$ is isomorphic to some $(\pi_\lambda, \mathcal{H}_\lambda)$. Two highest weight representations $(\pi_\lambda, \mathcal{H}_\lambda)$, $(\pi_\mu, \mathcal{H}_\mu)$ are isomorphic if and only if the entries of the weights λ and μ coincide up to permutation. For $n \geq 2$ the subgroup $U(n-1)$ decomposes a highest weight representation $(\pi_\lambda, \mathcal{H}_\lambda)$ into a finite sum of highest weight representations $(\pi_\eta, \mathcal{H}_\eta)$ of $U(n-1)$ and it is natural to ask which weights $\eta \in \mathbb{Z}^{n-1}$ occur in the decomposition. The answer is a classical result in branching theory.

Theorem 4.1. Let $\eta \in \mathbb{Z}^n$ and $\lambda \in \mathbb{Z}^{n+1}$ be two decreasingly ordered integer valued tuples. Then, the unitary highest weight representation $(\pi_\eta, \mathcal{H}_\eta)$ of $U(n)$ is a subrepresentation of $(\pi_\lambda, \mathcal{H}_\lambda)$ if and only if the tuples η and λ satisfy the interlacing condition

$$\lambda_1 \geq \eta_1 \geq \lambda_2 \geq \eta_2 \geq \ldots \geq \lambda_n \geq \eta_n \geq \lambda_{n+1}. \quad (7)$$

Proof. A proof can be found e.g. in [GW98, Thm 8.1.1].

Definition 4.2. Let $\eta \in \mathbb{Z}^n$ and $\lambda \in \mathbb{Z}^{n+1}$ be two integer valued tuples. We say that η interlaces λ and write $\eta \preceq \lambda$ if condition (7) is satisfied after a suitable permutation of the entries of both tuples.

Now, let $\lambda \in \mathbb{Z}^n$ be an integer-valued sequence. For any $n \in \mathbb{N}$, we define the tuple $\lambda^{(n)} := (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \mathbb{Z}^n$ to be the n-tuple consisting of the first n entries of λ. Then, $\lambda^{(n)}$ interlaces $\lambda^{(n+1)}$ and, according to Theorem 4.1, $(\pi_{\lambda^{(n)}}, \mathcal{H}_{\lambda^{(n)}})$ occurs as a subrepresentation of $(\pi_{\lambda^{(n+1)}}, \mathcal{H}_{\lambda^{(n+1)}})$ (w.r.t. the group $U(n)$). Hence, each $\mathcal{H}_{\lambda^{(n)}}$ is isometrically embedded into
\(\mathcal{H}_{(n+1)} \) and we write \(V_\lambda := \varprojlim \mathcal{H}_{(n)} \) for the direct limit in the category of pre-Hilbert spaces. The representations \(\pi_{(n)} \) canonically define a unitary representation of \(U(\infty) = \bigcup_{n \in \mathbb{N}} U(n) \) on the pre-Hilbert space \(V_\lambda \) which we denote by \(\pi_\lambda \). It is clear that \(\pi_\lambda \) extends to a unitary representation on the Hilbert space completion \(\mathcal{H}_\lambda := \overline{V_\lambda} \) which is again denoted by \(\pi_\lambda \).

Lemma 4.6. The unitary representation \((\pi_\lambda, \mathcal{H}_\lambda)\) is continuous and irreducible.

Proof. To see the continuity, it is enough to verify that, for any \(v \in V_\lambda \subseteq \mathcal{H}_\lambda \), the orbit map \(g \mapsto \pi_\lambda(g)v \) is continuous. For fixed \(v \in V_\lambda \) and sufficiently large \(n \), we may assume that \(v \in \mathcal{H}_{(n)} \). Therefore, the restriction of the orbit map to the subgroup \(U(n) \) is continuous since the representation \((\pi_{(n)}, \mathcal{H}_{(n)})\) is continuous. This is true for all sufficiently large \(n \) and the continuity thus follows from the fact that the group topology on \(U(\infty) \) is given by the direct limit topology. That \((\pi_\lambda, \mathcal{H}_\lambda)\) is irreducible follows from the fact that direct limits of irreducible representations are irreducible (cf. Proposition A.5 in [BN12]). \(\square \)

Definition 4.4. The unitary representation \((\pi_\lambda, \mathcal{H}_\lambda)\) is called unitary highest weight representation of \(U(\infty) \) with highest weight \(\lambda \in \mathbb{Z}^N \).

Remark 4.5. In [Ne98, Sections I,II], the unitary highest weight representations of the direct limit Lie algebra \(\mathfrak{gl}(\infty) = \bigcup_{n \in \mathbb{N}} \mathfrak{gl}(n) \) are classified in terms of real-valued sequences \(\lambda \in \mathbb{R}^N \). The corresponding highest weight module is denoted by \(L(\lambda) \). In Section III of [Ne98] it is shown that the underlying Lie algebra representation of \(L(\lambda) \) integrates to a representation \(\hat{\pi}_\lambda : \text{GL}(\infty) \to \text{End}(L(\lambda)) \) if and only if \(\lambda \in \mathbb{Z}^N \). For any such integer-valued weight \(\lambda \), the module \(L(\lambda) \) may be identified with our pre-Hilbert space \(V_\lambda \) and the restriction of \(\hat{\pi}_\lambda \) to the subgroup \(U(\infty) \) is just our \(\pi_\lambda \). Theorem 1.20 of [Ne98] states that two highest weight modules \(L(\lambda) \) and \(L(\mu) \) are equivalent if and only if the weights belong to the same orbit under the Weyl group \(\mathcal{W} \). As remarked in Section II, the Weyl group for \(\mathfrak{gl}(\infty) \) may be identified with the group \(S_{(\mathcal{W})} \) of finite permutations on the entries of the weights. Thus, we conclude that two unitary highest weight representations \((\pi_\lambda, \mathcal{H}_\lambda)\) and \((\pi_\mu, \mathcal{H}_\mu)\) of \(U(\infty) \) are equivalent if and only if the entries of the weights \(\lambda \) and \(\mu \) coincide up to a finite(!) permutation of the entries.

Using Proposition 3.6, we want to determine for which tuples \(\lambda \in \mathbb{Z}^N \), the 1-cohomology space for the corresponding highest weight representation \((\pi_\lambda, \mathcal{H}_\lambda)\) vanishes. This is true for \(\lambda = 0 \) (cf. Remark 3.7) and from now on, we assume that \(\lambda \neq 0 \). Note that then \(\mathcal{H}_\lambda^{U(\infty)} = \{0\} \) by the irreducibility of the highest weight representation.

We need the following two observations that follow directly from Lemma 4.6 below: Let \(\lambda \in \mathbb{Z}^N \) and \((\pi_\lambda, \mathcal{H}_\lambda)\) be the corresponding unitary highest weight representation. For \(n \in \mathbb{N} \), we have

\[
\mathcal{H}_{\lambda}^{U(n)} = \{0\} \iff (\forall k \geq n) \quad \mathcal{H}_{\lambda}^{U(n)} = \{0\}. \tag{8}
\]

For \(k > n \), we have

\[
\mathcal{H}_{\lambda}^{U(n)} \neq \{0\} \iff \mathcal{H}_{\lambda}^{U(n)} \neq \{0\} \text{ for some } \eta^{(k-1)} \preceq \lambda^{(k)}. \tag{9}
\]

Both observations follow from the following lemma:

Lemma 4.6. Let \((\pi, \mathcal{H})\) be a continuous unitary representation of the topological group \(G \). Assume that, for a subset \(J \subseteq \mathbb{N} \), we have a family of \(G \)-invariant subspaces \(\langle \mathcal{H}_j \rangle_{j \in J} \) such that one of the following conditions is satisfied:
Let \((\rho, \mathcal{K})\) be an irreducible representation of \(G\). Then, \((\rho, \mathcal{K})\) occurs as a subrepresentation in \((\pi, \mathcal{H})\) if and only if it occurs as a subrepresentation in \((\pi, \mathcal{H}_j)\) for some \(j \in J\).

Proof. We denote by \(P_j\) the orthogonal projection onto the subspace \(\mathcal{H}_j\). We may assume that \(\mathcal{K} \subseteq \mathcal{H}\) is a Hilbert subspace of \(\mathcal{H}\). If \((\rho, \mathcal{K}) \subseteq (\pi, \mathcal{H})\), then, in both cases, we find an index \(j \in J\) for which \(P_j(\mathcal{K}) \neq \{0\}\). The projection operator \(P_j|_\mathcal{K}: \mathcal{K} \rightarrow \mathcal{H}_j\) intertwines \(\rho\) and \(\pi\). Therefore, \(P_j(\mathcal{K}) \subset \mathcal{H}_j\) is a \(G\)-invariant subspace. By Schur’s Lemma, we further conclude that \((P_j|_\mathcal{K})^*P_j|_\mathcal{K} = c I|_{\mathcal{K}}\). Since the operator \((P_j|_\mathcal{K})^*P_j|_\mathcal{K}\) is positive, the constant \(c\) is real-valued and nonnegative. The case \(c = 0\) is excluded by \(P_j(\mathcal{K}) \neq \{0\}\). Therefore, \(A := \frac{1}{\sqrt{c}}P_j|_\mathcal{K}: \mathcal{K} \rightarrow P_j(\mathcal{K})\) is a linear isometry intertwining \(\rho\) and \(\pi\). This shows \((\rho, \mathcal{K}) \subset (\pi, \mathcal{H}_j)\). The converse statement is trivial.

The equivalence (9) motivates the following definition.

Definition 4.7. Assume that a property (P) is defined for all tuples \(\lambda \in \mathbb{Z}^k\) of length \(k \geq n\). We say that (P) is **interlacing-inheritable** if a tuple \(\lambda\) has property (P) if and only if there exists a tuple \(\eta \preceq \lambda\) with property (P).

The property that the highest weight representation \((\pi_\lambda, \mathcal{H}_\lambda)\) of \(U(k)\) corresponding to a tuple \(\lambda \in \mathbb{Z}^k\) has a nontrivial \(U(n)\)-fixed vector (where \(k \geq n\)), is interlacing-inheritable. Any two interlacing-inheritable properties (P) and \((P')\) are equivalent if and only if they are equivalent for all tuples \(\lambda \in \mathbb{Z}^n\) of length \(n\).

Lemma 4.8. Let \(k \geq n\). For any \(\lambda \in \mathbb{Z}^k\), the property

\[
\#\{j : \lambda_j \geq 0\} \geq n \quad \text{and} \quad \#\{j : \lambda_j \leq 0\} \geq n
\]

is interlacing-inheritable.

Proof. Let \(\lambda \in \mathbb{Z}^k\) for \(k > n\). We may assume w.l.o.g. that \(\lambda\) is decreasingly ordered. The interlacing condition \(\eta \preceq \lambda\) then reads \(\lambda_1 \geq \eta_1 \geq \lambda_2 \geq \eta_2 \geq \ldots \geq \eta_{k-1} \geq \lambda_k\). If \(\eta\) has the property (10), then the first (last) \(n\) entries of \(\eta\) are \(\geq 0\) \((\leq 0)\), hence so are the first (last) \(n\) entries of \(\lambda\). Conversely, assume that \(\lambda\) has the required property. We construct \(\eta \in \mathbb{Z}^{k-1}\) as follows: If \(k > 2n\), choose \(\eta \preceq \lambda\) such that the first (last) \(n\) entries of \(\eta\) coincide with the first (last) \(n\) entries of \(\lambda\). If \(k \leq 2n\), consider the set \(J := \{1, 2, \ldots, n\} \cap \{k-1, k-2, \ldots, k-n\}\). Put \(\eta_j := \lambda_j\) whenever the index \(j\) is smaller than the indices from \(J\) and put \(\eta_j := \lambda_{j+1}\) whenever the index \(j\) is greater than the indices from \(J\).

Proposition 4.9. Let \(k \geq n\) and \(\lambda \in \mathbb{Z}^k\). Then the unitary highest weight representation \((\pi_\lambda, \mathcal{H}_\lambda)\) (of \(U(k)\)) admits nonzero \(U(n)\)-fixed vectors if and only if the following condition is satisfied:

\[
\#\{j : \lambda_j \geq 0\} \geq n \quad \text{and} \quad \#\{j : \lambda_j \leq 0\} \geq n.
\]

Proof. In view of Lemma 4.8, both conditions are interlacing-inheritable and it just remains to check that they are equivalent for tuples \(\lambda \in \mathbb{Z}^n\). Indeed, (11) is satisfied if and only if \(\lambda = 0\).
Lemma

be the corresponding antilinear functional from Section 3. Using equation (6), we find

or

This action, restricted to

Proof. According to Proposition 3.6, the first cohomology space vanishes if and only if there exists some

for which

This is equivalent to

where

is given by the prescription

for each

It is clear that the identical action defines a norm-continuous unitary representation of the group

λ ∈ Zk

Proof. Let

Then

Now, we prove that the natural actions of the group

on

5 The identical representation of

Now, we prove that the natural actions of the group

on

resp. on its topological dual

have trivial 1-cohomology spaces.

Let

and

be a complex separable Hilbert space with ONB

The unitary group

is a Banach-Lie group with Banach-Lie algebra

i.e. the skew hermitian operators of
-th Schatten class (cf. [dlH72]). Its complexification is given by the
-th Schatten operators

The inductive limit

is a dense subgroup in

so that we can apply the results of Section 3 and in particular Remark 3.2 to any norm-continuous unitary representation of

The complexification of the Lie algebra of

is given by

The identical action of

on

is given by the prescription

This action, restricted to

defines a unitary highest weight representation corresponding to the tuple

which we denote by

. It is clear that the identical action defines a norm-continuous unitary representation of the group

Proposition 5.1. We have

Proof. For

we consider the rank-1-operator

which is an element of

for each

since

For

we have

Now, let

be the corresponding antilinear functional from Section 3. Using equation (6), we find

which shows that

extends to a continuous linear functional on

The assertion now follows from Lemma 3.3.
The dual representation \((\text{id}^*, \mathcal{H}^*)\) is also a unitary highest weight representation which corresponds to the tuple \(\lambda = (-1, 0, 0, \ldots)\).

Proposition 5.2. We have \(H^1(U_p(\mathcal{H}), \text{id}^*, \mathcal{H}^*) = \{0\}\).

Proof. This immediately follows from Proposition 5.1 and the fact that the first order cohomology space for the dual representation vanishes if and only if it vanishes for the original representation. \(\qed\)

6 A simple way to construct unbounded 1-cocycles in finite tensor products

This section should be viewed as a preparation for Section 7. We consider a countably infinite sum of 1-coboundaries that converges pointwise and ask whether we thus obtain an unbounded 1-cocycle. To make life easier, we assume the underlying group \(G\) to be completely metrizable since then, the pointwise converging sum is automatically continuous. This observation is based on a Baire category argument which is carried out in Appendix A. Note that the unitary groups \(U_p(\mathcal{H})\) are completely metrizable for any \(p \in [1, \infty]\). We derive a simple sufficient criterion for the unboundedness of the sum when \((\pi, \mathcal{H})\) is an arbitrary continuous unitary representation (cf. Lemma 6.1) and focus afterwards on the case of a finite tensor product representation (cf. Proposition 6.4).

Let \(G\) be a completely metrizable group and \((\pi, \mathcal{H})\) be a continuous unitary representation of \(G\).

Lemma 6.1. Let \((e_n)_{n \in \mathbb{N}}\) be an orthonormal sequence in \(\mathcal{H}\) such that, for all \(n\), we have
\[
e_n \in (\pi(g)v - v : g \in G, v \in \mathcal{H})_{\text{lin}}.
\]
Further, let \((a_n)_{n \in \mathbb{N}}\) be a sequence in \(\mathbb{C}\) for which the sum \(\beta(g) := \sum_{n \in \mathbb{N}} a_n [\pi(g)e_n - e_n]\) converges in \(\mathcal{H}\) for every \(g \in G\). Then \(\beta : G \to \mathcal{H}\) defines a (continuous) 1-cocycle which is a 1-coboundary if and only if the sequence \((a_n)_{n \in \mathbb{N}}\) is square summable.

Proof. That \(\beta\) is a continuous 1-cocycle follows from Corollary A.5. If \(\sum_{n \in \mathbb{N}} |a_n|^2 < \infty\), then we have
\[
\sum_{n \in \mathbb{N}} a_n [\pi(g)e_n - e_n] = \pi(g)v - v
\]
for the vector \(v := \sum_{n \in \mathbb{N}} a_n e_n\). Conversely, assume that \(\beta\) is a 1-coboundary. Then, we find some \(v \in \mathcal{H}\) which satisfies (12) for all \(g \in G\). Let \((e_j)_{j \in J}\) be a complete orthonormal system in \(\mathcal{H}\) containing the \(e_n\), i.e. we have \(\mathbb{N} \subseteq J\). We expand \(v\) w.r.t. the system \((e_j)\) and obtain the coefficients \(b_j := \langle v, e_j \rangle\). For \(j \in J \setminus \mathbb{N}\), we put \(a_j := 0\). Our assumption then leads to
\[
\sum_{j \in J} (a_j - b_j) [\pi(g)e_j - e_j] = 0 \quad \text{for all } g \in G.
\]
Therefore, we have \(\sum_{j \in J} (a_j - b_j) \langle e_j, w \rangle = 0\) for any \(w \in D := \langle \pi(g)v - v : g \in G, v \in \mathcal{H}_{\text{lin}} \rangle\). Since \(e_n \in D\) by assumption, we obtain that
\[
a_n - b_n = \sum_{j \in J} (a_j - b_j) \langle e_j, e_n \rangle = 0
\]
and we conclude that the sequence \((a_n)_{n \in \mathbb{N}}\) is square integrable.

Now, we turn to unbounded 1-cocycles of finite tensor products: Assume that we are given \(m \geq 2\) continuous unitary representations \((\pi_i, \mathcal{H}_i)_{i=1,\ldots,m}\) of \(G\). We form the Hilbert tensor product \((\pi, \mathcal{H}) := \bigotimes_{i=1,\ldots,m} (\pi_i, \mathcal{H}_i)\).

Lemma 6.2. Let \((e_n^{(i)})_{n \in \mathbb{N}}\) be an orthonormal sequence in \(\mathcal{H}_i\). For simplicity we will write \(g.e_n^{(i)}\) instead of \(\pi_i(g)e_n^{(i)}\). Assume that \((a_n)_{n \in \mathbb{N}}\) is a sequence in \(\mathbb{C}\) such that, for all \(i\) and all \(g \in G\),

\[
\sum_{n \in \mathbb{N}} |a_n|^2 \left\| g.e_n^{(i)} - e_n^{(i)} \right\|_{\mathcal{H}_i}^2 < \infty.
\]

Then

\[
\beta(g) := \sum_{n \in \mathbb{N}} a_n [g.e_n^{(1)} \otimes \ldots \otimes g.e_n^{(m)} - e_n^{(1)} \otimes \ldots \otimes e_n^{(m)}]
\]

defines a 1-cocycle w.r.t. the tensor product representation. Moreover, we have the estimate

\[
\sum_{n \in \mathbb{N}} |a_n|^2 \left\| g.e_n^{(1)} \otimes \ldots \otimes g.e_n^{(m)} - e_n^{(1)} \otimes \ldots \otimes e_n^{(m)} \right\|^2 \leq m \sum_{i=1}^{m} \sum_{n \in \mathbb{N}} |a_n|^2 \left\| g.e_n^{(i)} - e_n^{(i)} \right\|^2_{\mathcal{H}_i}, \quad (13)
\]

Proof. It is enough to verify that the sum converges for all \(g \in G\) (Corollary A.5). Choose some \(g \in G\) and unitary operators \(U_i \in U(\mathcal{H}_i)\). For fixed \(j \in \{1,\ldots,m\}\) and arbitrary \(M > N \in \mathbb{N}\) we calculate

\[
\left\| \sum_{n=N}^{M} a_n [U_1 e_n^{(1)} \otimes \ldots \otimes (g - 1).e_n^{(j)} \otimes \ldots \otimes U_m e_n^{(m)}] \right\|^2
\]

\[
= \sum_{n=N}^{M} a_n \overline{a_n} [U_1 e_n^{(1)} \otimes \ldots \otimes (g - 1).e_n^{(j)} \otimes \ldots \otimes U_m e_n^{(m)}]\langle (g - 1).e_n^{(j)} \otimes \ldots \otimes U_m e_n^{(m)}\rangle_{\mathcal{H}_j}
\]

\[
= \sum_{n=N}^{M} |a_n|^2 \left\| (g - 1).e_n^{(j)} \right\|^2_{\mathcal{H}_j} \rightarrow 0.
\]

We conclude that the sum \(\sum_{n=1}^{\infty} a_n [U_1 e_n^{(1)} \otimes \ldots \otimes (g - 1).e_n^{(j)} \otimes \ldots \otimes U_m e_n^{(m)}]\) converges for every \(j\) and \(g\). This shows that

\[
\sum_{n=N}^{\infty} a_n [g.e_n^{(1)} \otimes \ldots \otimes g.e_n^{(m)} - e_n^{(1)} \otimes \ldots \otimes e_n^{(m)}] = \sum_{n=1}^{\infty} \sum_{j=1}^{m} a_n [g.e_n^{(1)} \otimes \ldots \otimes g.e_n^{(j-1)} \otimes (g - 1).e_n^{(j)} \otimes \ldots \otimes e_n^{(m)}] - \sum_{n=1}^{\infty} \sum_{j=1}^{m} a_n [e_n^{(1)} \otimes \ldots \otimes e_n^{(j-1)} \otimes (g - 1).e_n^{(j)} \otimes \ldots \otimes e_n^{(m)}]
\]

converges for every \(g \in G\).

The estimate (13) follows from

\[
\left\| g.e_n^{(1)} \otimes \ldots \otimes g.e_n^{(m)} - e_n^{(1)} \otimes \ldots \otimes e_n^{(m)} \right\|^2 \leq m \sum_{j=1}^{m} \left\| (g - 1).e_n^{(j)} \right\|^2_{\mathcal{H}_j}.
\]

For our purposes, tensor products of the form \((\pi_\mu^*, \mathcal{H}_\mu^*) \otimes (\pi_\lambda, \mathcal{H}_\lambda)\) are of particular interest, where \((\pi_\lambda, \mathcal{H}_\lambda)\) and \((\pi_\mu, \mathcal{H}_\mu)\) are two irreducible unitary representations of \(G\). The canonical isomorphism \(\mathcal{H}_\mu^* \otimes \mathcal{H}_\lambda \cong \mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda)\) induces a unitary representation on \(\mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda)\) which is equivalent to the tensor product \(\pi_\mu^* \otimes \pi_\lambda\). It is given by the conjugation action

\[
(g, A) \mapsto \pi_\lambda(g) A \pi_\mu(g^{-1}), \text{ for all } g \in G, A \in \mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda).
\]
In particular, if \((\pi_\lambda, \mathcal{H}_\lambda)\) and \((\pi_\mu, \mathcal{H}_\mu)\) are isomorphic unitary representations, then \(\pi_\mu^* \circ \pi_\lambda\) is equivalent to the conjugation representation on \(\mathcal{B}_2(\mathcal{H}_\lambda)\).

Lemma 6.3. Let \(A \in \mathcal{B}(\mathcal{H}_\mu, \mathcal{H}_\lambda)\) be a bounded linear operator such that

\[
\beta(g) := \pi_\lambda(g) A \pi_\mu(g^{-1}) - A \in \mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda)
\]

for every \(g \in G\).

i) Assume that \((\pi_\lambda, \mathcal{H}_\lambda)\) and \((\pi_\mu, \mathcal{H}_\mu)\) are non-isomorphic representations. Then, \(\beta\) is a 1-cocycle if and only if \(A \in \mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda)\).

ii) Assume that \((\pi_\lambda, \mathcal{H}_\lambda) = (\pi_\mu, \mathcal{H}_\mu)\). Then, \(\beta\) is a 1-cocycle if and only if \(A \in \mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda) + \mathbb{C} \mathbb{1}\).

Proof. In both cases, \(\beta\) is a 1-cocycle if and only if there exists \(B \in \mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda)\) such that \(\pi_\lambda(g) A - B \pi_\mu(g^{-1}) = A - B\) for all \(g \in G\). We denote by \(\mathcal{B}_G(\mathcal{H}_\mu, \mathcal{H}_\lambda)\) the space of linear bounded operators intertwining the representations \(\pi_\mu\) and \(\pi_\lambda\). If the representation are nonisomorphic, then Schur’s Lemma implies that \(\mathcal{B}_G(\mathcal{H}_\mu, \mathcal{H}_\lambda) = \{0\}\). This shows the first assertion. In the case \(\pi_\mu = \pi_\lambda\), Schur’s Lemma states that \(\mathcal{B}_G(\mathcal{H}_\lambda) = \mathbb{C} \cdot \mathbb{1}\) which proves the second assertion.

Proposition 6.4. Let \((\pi_\mu, \mathcal{H}_\mu)\) and \((\pi_\lambda, \mathcal{H}_\lambda)\) be two infinite dimensional, irreducible representations of the completely metrizable group \(G\). Assume that there exists a bounded but not square summable sequence \((a_n)_{n \in \mathbb{N}} \in L^\infty(\mathbb{N}, \mathbb{C}) \setminus l^2(\mathbb{N}, \mathbb{C})\) such that, for some orthonormal sequences \((e_n)_{n \in \mathbb{N}}\) and \((f_n)_{n \in \mathbb{N}}\) in \(\mathcal{H}_\lambda\) resp. \(\mathcal{H}_\mu\),

\[
\sum_{n \in \mathbb{N}} |a_n|^2 \| (\pi_\lambda(g) - \mathbb{1}) e_n \|_{\mathcal{H}_\lambda}^2 < \infty \quad \text{and} \quad \sum_{n \in \mathbb{N}} |a_n|^2 \| (\pi_\mu(g) - \mathbb{1}) f_n \|_{\mathcal{H}_\mu}^2 < \infty \quad (14)
\]

holds for all \(g \in G\). Then \(H^1(G, \pi_\mu^* \circ \pi_\lambda, \mathbb{H}_\mu \otimes \mathbb{H}_\lambda) \neq \{0\}\).

Proof. First, we note that \(\| (\pi_\mu(g) - \mathbb{1}) f_n \|_{\mathcal{H}_\mu} = \| (\pi_\mu(g) - \mathbb{1}) f_n \|_{\mathcal{H}_\mu}^*\). By Lemma 6.2, we obtain a 1-cocycle \(\beta(g) := \sum_{n \in \mathbb{N}} a_n [\pi_\mu(g) f_n^* \circ \pi_\lambda(g) e_n - f_n^* \circ e_n]\) for the tensor product. With respect to the conjugation action on \(\mathcal{B}_2(\mathcal{H}_\mu, \mathcal{H}_\lambda)\) this 1-cocycle has the form \(\beta(g) = \pi_\lambda(g) A \pi_\mu(g^{-1}) - A\), where \(A = \sum_{n \in \mathbb{N}} a_n e_n \otimes f_n^* = \sum_{n \in \mathbb{N}} a_n \langle \cdot, f_n \rangle_{\mathcal{H}_\mu} e_n\). Since the sequence \((a_n)\) is bounded but not square summable, the operator \(A\) is bounded but not Hilbert–Schmidt. If \(\pi_\mu\) and \(\pi_\lambda\) are not isomorphic, then Lemma 6.3 implies that \(\beta\) is unbounded. If \(\pi_\mu \cong \pi_\lambda\) are isomorphic, we may assume w.l.o.g. that \(\pi_\mu = \pi_\lambda\). In this case, Lemma 6.3 implies that \(\beta\) is unbounded unless \(A \in \mathcal{B}_2(\mathcal{H}_\lambda) + \mathbb{C} \mathbb{1}\). If this is the case, then \((a_n)\) is the sum of a constant and a square summable sequence. It is clear that condition (14) then holds for all bounded sequences \((a_n)\) because the constant part is nonzero. In particular, we may choose the sequence \(a_n := (-1)^n\). The corresponding diagonal operator \(A \in \mathcal{B}(\mathcal{H}_\lambda)\) cannot be written as a linear combination of the identity \(\mathbb{1}\) and a Hilbert–Schmidt operator. In particular, the 1-cocycle \(\beta\) is unbounded.

7 Unitary highest weight representations of \(U_p(\mathcal{H})\)

For finitely supported weights \(\lambda \in \mathbb{Z}^n\), the corresponding unitary highest weight representation \((\pi_\lambda, \mathcal{H}_\lambda)\) of \(U(\infty)\) extends to a norm-continuous unitary representation of \(U_p(\mathcal{H})\) (for \(p \in [1, \infty)\) and \(\mathcal{H} = l^2(\mathbb{N}, \mathbb{C})\)). We realize these representations as subrepresentations in finite tensor products
of the identical representation and its dual representation of $U_p(\mathcal{H})$ on \mathcal{H} resp. on \mathcal{H}^* (cf. Definition 7.5). Our results of the preceding section allow us to construct unbounded 1-cocycles for almost all finitely supported λ. There are only three exceptional cases where the first cohomology spaces are trivial (cf. Theorem 7.9).

We denote by $(\mathbb{N}_0)_↓^\mathbb{N}$ the set of all decreasingly ordered non-negative integer valued tuples with a finite number of positive entries. To any $\lambda \in (\mathbb{N}_0)_↓^\mathbb{N}$, we associate a Young diagram D_λ (also called Ferrers diagram) which consists of $\ell_\lambda := \max\{j \mid \lambda_j > 0\}$ rows and the j-th row has λ_j boxes, so that the whole diagram consists of $|\lambda| := \sum_{i=1}^{\ell_\lambda} \lambda_i$ boxes. Conversely, any Young diagram D (with row (and column) length weakly decreasing) defines a unique $\lambda \in (\mathbb{N}_0)_↓^\mathbb{N}$ by counting the row boxes. Given a Young diagram D, we obtain the conjugate (or transposed) Young diagram D' by switching rows and columns. Thus, for any $\lambda \in (\mathbb{N}_0)_↓^\mathbb{N}$, we define the conjugate tuple $\lambda' \in (\mathbb{N}_0)_↓^\mathbb{N}$ via the relation $D_{\lambda'} := D'_\lambda$. Note that $\ell_{\lambda'} = \lambda_1$ and the entry j occurs $\lambda_j - \lambda_{j+1}$ times in λ'.

Example 7.1. For $\lambda := (3, 2, 2, 1)$ we have

$$D_\lambda = \begin{array}{|c|c|c|c|c|} \hline & & & & \\ \hline \end{array} \quad \text{and} \quad D'_{\lambda} = \begin{array}{|c|c|c|c|c|} \hline & & & & \\ \hline \end{array}$$

and the conjugate tuple is given by $\lambda' = (4, 3, 1)$.

The corresponding Young tableau T_λ is obtained by filling in the boxes of the young diagram D_λ with the numbers $1, 2, \ldots, |\lambda|$ in the following manner: The number 1 is placed in the top box of the first column. The number $k + 1$ is placed in the box directly below k, if it exists and otherwise in the top box of the next column.

Example 7.2. For $\lambda = (3, 2, 2, 1)$ this yields

$$D_\lambda = \begin{array}{|c|c|c|c|} \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \quad \rightarrow \quad T_\lambda = \begin{array}{|c|c|c|} \hline 1 & 5 & 8 \\ \hline 2 & 6 & \\ \hline 3 & 7 & \\ \hline 4 & & \\ \hline \end{array}$$

Let S_λ be the permutation group of the set $\{1, 2, \ldots, |\lambda|\}$. Denote by R_λ the subgroup of permutations leaving all subsets defined by the rows of T_λ invariant and accordingly by C_λ the subgroup leaving all subsets defined by the columns invariant.

Put $\mathcal{H} := \ell^2(\mathbb{N}, \mathbb{C})$ and consider the $|\lambda|$-fold tensor product $\mathcal{H}^\otimes |\lambda|$. The permutation group S_λ acts unitarily on the tensor product via

$$(\sigma, \otimes_{j=1}^{|\lambda|} v_j) \mapsto \otimes_{j=1}^{|\lambda|} v_{\sigma^{-1}(j)}$$

for $\sigma \in S_\lambda$ and $v_j \in \mathcal{H}$. We denote this representation by $(\rho, \mathcal{H}^\otimes |\lambda|)$. The group $U_p(\mathcal{H})$ (for $p \in [1, \infty]$) also acts on the tensor product space via the tensor product representation $(\text{id}, \mathcal{H}^\otimes |\lambda|)$. Both
representations commute, i.e. for \(\sigma \in S_\lambda \) and \(g \in U_p(\infty) \), we have \(\rho(\sigma) \circ \text{id}^{H|\lambda|}(g) = \text{id}^{H|\lambda|}(g) \circ \rho(\sigma) \).

Therefore, the linear operator

\[
P_\lambda := \sum_{r \in R_\lambda, c \in C_\lambda} \text{sgn}(c) \rho(c),
\]

where \(\text{sgn}(c) \) denotes the sign of the permutation \(c \), commutes with \(\text{id}^{H|\lambda|} \) and its image

\[
H_\lambda := P_\lambda \left(H^{H|\lambda|} \right)
\]

is a \(U_p(H) \)-invariant subspace. We write \(\pi_\lambda \) for the corresponding continuous unitary representation on \(H_\lambda \). Note that \(P_\lambda \) is not necessarily an orthogonal projection, but the operators

\[
P_{C_\lambda} := \frac{1}{f_{C_\lambda}} \sum_{c \in C_\lambda} \text{sgn}(c) \rho(c) \quad \text{and} \quad P_{R_\lambda} := \frac{1}{f_{R_\lambda}} \sum_{r \in R_\lambda} \rho(r)
\]

with constants \(f_{C_\lambda} := \prod_{j=1}^{\ell_\lambda} (\lambda'_j!) \) and \(f_{R_\lambda} := \prod_{j=1}^{\ell_\lambda} (\lambda_j!) \), are orthogonal projections and we have \(P_\lambda = (f_{C_\lambda} f_{R_\lambda}) \cdot P_{C_\lambda} P_{R_\lambda} \). Let \((e_n)_{n \in \mathbb{N}} \) denote an ONB for \(H \). For \(n \in \mathbb{N} \), we define the vectors

\[
e_n^{(\lambda)} := \sqrt{f_{C_\lambda} \cdot \prod_{m=1}^{\lambda'} \lambda_i !} e_n + \sqrt{f_{C_\lambda} \cdot \prod_{m=1}^{\lambda'} \lambda_i !} e_n^i = \sqrt{f_{C_\lambda} \cdot \prod_{m=1}^{\lambda'} \lambda_i !} e_{n + i}. \tag{15}
\]

By construction, the vectors \(e_n^{(\lambda)} \) are mutually orthogonal. Since \(P_{R_\lambda} \left(\otimes_{m=1}^{\lambda'} \lambda_i ! e_{n + i} \right) = \otimes_{m=1}^{\lambda'} \lambda_i ! e_{n + i} \), we have constructed an orthonormal sequence in \(H_\lambda \). In particular, if \(|\lambda| \geq 1 \), the space \(H_\lambda \) is infinite dimensional.

Example 7.3. For \(\lambda = (3, 2, 2, 1) \) the orthonormal sequence \((e_n^{(\lambda)})_{n \in \mathbb{N}} \) in \(H_\lambda \) is given by

\[
e_n^{(\lambda)} = \sqrt{12!} (e_{n + 1} \land e_{n + 2} \land e_{n + 3} \land e_{n + 4}) \otimes (e_{n + 1} \land e_{n + 2} \land e_{n + 3} \land e_{n + 4}) \otimes e_{n + 1}.
\]

Lemma 7.4. For any \(\lambda \in (\mathbb{N}_0)^{(N)} \), the continuous unitary representation \((\pi_\lambda, H_\lambda) \) of \(U_p(H) \) extends the highest weight representation of \(U(\infty) \) with highest weight \(\lambda \) from Definition 4.4. In particular, it is irreducible.

Proof. For any \(n \in \mathbb{N} \) with \(n \geq \ell_\lambda \), consider the canonical embedding \((\mathbb{C}^n)^{\otimes|\lambda|} \hookrightarrow H^{\otimes|\lambda|} \). The operator \(P_\lambda \) leaves the subspace \((\mathbb{C}^n)^{\otimes|\lambda|} \) invariant as well as the restriction of \(\text{id}^{H|\lambda|} \) to the subgroup \(U(n) \subset U_p(H) \). Therefore, the subspace \(P_\lambda \left((\mathbb{C}^n)^{\otimes|\lambda|} \right) \) is \(U(n) \)-invariant and, according to Theorem 9.3.9 in [GW98], this is a unitary highest weight module of \(U(n) \) with highest weight \(\lambda^{(n)} \). This shows that \(\pi_{\lambda|U(\infty)} = \lim_{n \to \infty} \pi_{\lambda(n)} \) is the direct limit representation on \(P_\lambda \left((\mathbb{C}^n)^{\otimes|\lambda|} \right) \) which is dense in \(H_\lambda \).

Now, let \(\lambda \in \mathbb{Z}^{(N)} \) be an integer valued tuple such that all but finitely many entries are zero. For any such \(\lambda \in \mathbb{Z}^{(N)} \), we define \(\lambda^\pm \in (\mathbb{N}_0)^{(N)} \) to be those tuples for which the entries of the finitely supported tuples \(\text{max}(\pm \lambda, 0) \) are decreasingly ordered. We put \(|\lambda| := |\lambda^+| + |\lambda^-| = \sum_{i=1}^{\infty} |\lambda_i| \).

Definition 7.5. For any \(\lambda \in \mathbb{Z}^{(N)} \), we call the continuous unitary representation \((\pi_{\lambda^-, H_{\lambda^-}}) \otimes (\pi_{\lambda^+, H_{\lambda^+}}) \) unitary highest weight representation of the group \(U_p(H) \) with highest weight \(\lambda \).
Proof. Using Corollary I.14 of [Ne98], one finds that \((\pi, H)\) is a unitary highest weight representation of \(U_p(H)\) in the sense of Definition III.6 in [Ne98]. For the case \(p = \infty\), we refer to [BN12, Thm. 2.2].

In the remainder of this section we are going to show that, for \(|\lambda| \geq 2\), the first cohomology space \(H^1(U_p(H), \pi, H)\) never vanishes.

Lemma 7.7. Put \(q := \frac{2p}{p-2}\) if \(2 < p < \infty\) and \(q := \infty\) if \(1 \leq p \leq 2\). For every sequence \(a = (a_n)_{n \in \mathbb{N}} \in \ell^q(\mathbb{N}, \mathbb{C}), \) we have

\[\sum_{n \in \mathbb{N}} |a_n|^2 \|(g - \mathbb{1})e_n\|^2_H < \infty\]

for every \(g \in U_p(H)\). Moreover, this expression depends continuously on \(g\) in the \(U_p(H)\)-topology.

Proof. For \(A \in B_r(H)\) and \(r \in [1, \infty]\), we denote the \(r\)-th Schatten norm by

\[\|A\|_r := \begin{cases} \left(\text{Tr}([A]^r)\right)^{\frac{1}{r}} & \text{if } r < \infty, \\ \|A\|_{op} & \text{if } r = \infty. \end{cases}\]

We remind the reader of the generalized Hölder inequality (cf. [GGK00, Th. IV.11.2])

\[\|BC\|_r \leq \|B\|_s \cdot \|C\|_t \quad \text{for } B \in B_s(H), C \in B_t(H)\] \(\text{and } \frac{1}{r} \leq \frac{1}{s} + \frac{1}{t}, \ s, t \in [1, \infty].\) (16)

For \(1 \leq p \leq 2\), the statement is clear, since \(g - \mathbb{1} \in B_2(H)\) and \(\sum_{n \in \mathbb{N}} \|(g - \mathbb{1})e_n\|^2 = \|g - \mathbb{1}\|_{2}^2\). For \(p > 2\), we consider the diagonal operator \(Ae_n = a_n e_n\) and note that \(A \in B_q(H)\) and \(\sum_{n \in \mathbb{N}} |a_n|^2 \|(g - \mathbb{1})e_n\|^2 = \|g - \mathbb{1}\|_{2}^2\). Applying (16) with \(r = 2, s = p\) and \(t = q\) yields the assertion. \(\square\)

Proposition 7.8. Let \(\lambda \in \mathbb{Z}^{(N)}\) such that \(|\lambda| \geq 2\). Then, for \(p \in [1, \infty)\), we have

\[H^1(U_p(H), \pi, H) \neq \{0\}.\]

Proof. Put \(a_n := \frac{1}{\sqrt{n}}\). Then, the sequence \(a = (a_n)_{n \in \mathbb{N}}\) is in \(\ell^q(\mathbb{N}, \mathbb{C})\) for all \(q > 2\) but not in \(\ell^2(\mathbb{N}, \mathbb{C})\) and we know from the previous lemma that the sum \(\sum_{n \in \mathbb{N}} \frac{1}{n} \|(g - \mathbb{1})e_n\|^2\) is finite for each \(g \in G\).

The case \(|\lambda^-| = 0\): We first treat the case \(\lambda \in (N_0)_{\downarrow}^{(N)}\). Applying Lemma 6.2, we obtain a 1-cocycle

\[\tilde{\beta}(g) := \sum_{n \in \mathbb{N}} \frac{1}{\sqrt{n}} \otimes_{m=1}^{\ell} \otimes_{i=1}^{r} g_{k+i} \cdot \otimes_{m=1}^{\ell} \otimes_{i=1}^{r} \lambda_{m}^{i}\]

for the tensor product representation (id, \(H\))\((\lambda)\). Projecting onto \(H\) and using (15) gives

\[\beta(g) := \sqrt{f_{C\lambda}} \cdot P_{C\lambda} (\tilde{\beta}(g)) = \sum_{n \in \mathbb{N}} \frac{1}{\sqrt{n}} [g.e_n^{(\lambda)} - e_n^{(\lambda)}].\]
Here, we have used (15) and the fact that P_{C_λ} commutes with the representation $id^{\otimes |\lambda|}$. Hence, we obtain a 1-cocycle for the highest weight representation (π_λ, H_λ) and Lemma 6.1 (applied to the sequence $(e^{(\lambda)}_n)_{n \in \mathbb{N}}$) tells us that β is in fact unbounded. The condition on the $e^{(\lambda)}_n$ is satisfied, since each $e^{(\lambda)}_n$ is a nontrivial eigenvector of all diagonal operators $t - I$ for $t \in T_\rho(H)$, the maximal torus in $U_\rho(H)$.

The case $|\lambda^+| = 0$: In this case $(\pi_\lambda, H_\lambda) = (\pi^*_\lambda, H^*_\lambda)$ and the assertion follows from the fact that the 1-cohomology of the dual representation vanishes if and only if it vanishes for the original representation.

The remaining case $|\lambda^+|, |\lambda^-| \geq 1$: We want to apply Proposition 6.4. It merely remains to verify that

$$\sum_{n \in \mathbb{N}} \frac{1}{n} \| (g - I)^{e^{(\lambda^\pm)}_n} \|^2_{H_{\lambda^\pm}} < \infty$$

for each $g \in U_\rho(H)$. Indeed, we can estimate for $\lambda \in \{\lambda^\pm\}$ as follows:

$$\sum_{n \in \mathbb{N}} \frac{1}{n} \| (g - I)^{e^{(\lambda^\pm)}_n} \|^2_{H_\lambda} = f_{C_\lambda} \sum_{n \in \mathbb{N}} \frac{1}{n} \| P_{C_\lambda} [\otimes_{m=1}^{n} \otimes_{i=1}^{N_m} g e_{k+i} - \otimes_{m=1}^{n} \otimes_{i=1}^{N_m} e_{k+i}] \|^2_{H_\lambda}

\leq f_{C_\lambda} \sum_{n \in \mathbb{N}} \frac{1}{n} \| \otimes_{m=1}^{N_m} \otimes_{i=1}^{N_m} g e_{k+i} - \otimes_{m=1}^{N_m} \otimes_{i=1}^{N_m} e_{k+i} \|^2_{H_\lambda} \overset{(13)}{\leq} f_{C_\lambda} |\lambda|^2 \sum_{n \in \mathbb{N}} \frac{1}{n} \| (g - I)^{e^{(\lambda^\pm)}_n} \|^2_{H_\lambda} < \infty.$$

Proposition 7.8 together with Remark 3.7, Proposition 5.1 and Proposition 5.2 yields the following theorem.

Theorem 7.9. Put $H := \ell^2(\mathbb{N}, \mathbb{C})$. Let $\lambda \in \mathbb{Z}^{\{0\}}$ be a finitely supported integer valued sequence and (π_λ, H_λ) the corresponding unitary highest weight representation of $U_\rho(H)$. Then,

$$H^1(U_\rho(H), \pi_\lambda, H_\lambda) = \{0\} \iff |\lambda| \leq 1.$$

One immediate consequence of Theorem 7.9 is that the group $U_\rho(H)$ does not have property (FH). Since property (T) implies property (FH) for arbitrary topological groups, this entails that $U_\rho(H)$ does not have property (T).

Corollary 7.10. For $1 \leq p < \infty$, the group $U_\rho(H)$ neither has property (FH) nor has property (T).

A Infinite sums of 1-coboundaries

Let (π, H) be a continuous unitary representation of the topological group G. In general, a 1-cocycle $\beta : G \to H$ need not be continuous. Here, we show that, if β is the pointwise limit of a sequence of continuous 1-cocycles and G is completely metrizable, then a Baire category argument shows that β is continuous.
Definition A.1. Let X be a topological Hausdorff space. A subset $A \subseteq X$ is called of first (Baire) category if it can be written as a countable union of nowhere dense subsets. Otherwise, A is called a subset of second (Baire) category. The space X is called Baire space, if every nonempty open subset is of second category. A function $f : X \to X'$ with values in topological Hausdorff space X' is called a function of first class or a Baire one function if it is the pointwise limit of a sequence $(f_n)_{n \in \mathbb{N}}$ of continuous functions $f_n : X \to X'$.

Example A.2. According to the Baire Category Theorem, every complete metric space (X, d) is a Baire space (cf. [Bour58, Théorème 1 de §5]). In particular, the subset $A = X$ is of second category.

Theorem A.3. Let $(X, d), (X', d')$ be metric spaces and $f : X \to X'$ be a first class function. Then the points of discontinuity of f form a subset of first category.

Proof. see e.g. [Hau62, §45.3].

Proposition A.4. Let (π, \mathcal{H}) be a continuous unitary representation of the completely metrizable group G and let $\beta : G \to \mathcal{H}$ be the pointwise limit of a sequence of continuous 1-cocycles $(\beta_n)_{n \in \mathbb{N}}$. Then β is a continuous 1-cocycles.

Proof. The pointwise convergence implies that the map β is a first class function. It is straightforward to check that the 1-cocycle relation (1) is satisfied, hence β is a 1-cocycle. Moreover, the 1-cocycle relation shows that the points of discontinuity of β are either the empty set or coincide with the whole group G. In the latter case, the group G would have to be of first category since β is a first class function (Theorem A.3). This contradicts the fact that G is of second category (Baire Category Theorem).

Corollary A.5. Let (π, \mathcal{H}) be a continuous unitary representation of the completely metrizable group G and let $(v_n)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} for which the sum $\sum_{n \in \mathbb{N}} \pi(g)v_n - v_n$ converges for every $g \in G$. Then $\beta(g) := \sum_{n \in \mathbb{N}} \pi(g)v_n - v_n$ defines a continuous 1-cocycle.

References

[A-T93] Albeverio, S., R. J. Hoegh-Krohn, J. A. Marion, D. H. Testard, and B. S. Torresani, “Noncommutative Distributions – Unitary representations of Gauge Groups and Algebras,” Pure and Applied Mathematics 175, Marcel Dekker, New York, 1993

[Ar69] Araki, H. Factorizable representation of current algebra- Non commutative extension of the Lévy-Kinchin formula and cohomology of a solvable group with values in a Hilbert space, Publ. RIMS, Kyoto Univ., Vol. 5 (1969/70), 361–422

[At91] Atkin, C.J., Boundedness in uniform spaces, topological groups, and homogeneous spaces, Acta Math. Hungar. 57 (1991), 213–232

[BN12] Beltita, D., and K.-H. Neeb, Schur–Weyl Theory for C*-algebras, Math. Nachrichten 285:10 (2012), 1170–1198

[Bour58] Bourbaki, N.: Topologie Générale – Chapitre 9: Utilisation Des Nombres Réels en Topologie Générale, Hermann (1958)
[Ol90] Olshanskii, G. I., *Unitary representations of infinite dimensional pairs* (G, K) *and the formalism of R. Howe*, in “Representation of Lie groups and related topic”, Eds. A. M. Vershik and D. P. Zhelobenko, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York (1990), 269–463

[Pe17] Pestov, V.G., *Amenability versus property (T) for non locally compact topological groups*, to appear in Trans. Am. Math. Soc. [arXiv:1512.01572 [math.GR]], 2017

[PS72] Parthasarathy, K. R., and K. Schmidt, “Positive definite kernels, continuous tensor products, and central limit theorems of probability theory”, Lecture Notes Math. 272, Springer Verlag, 1972

[PS72b] Parthasarathy, K. R., and K. Schmidt, “Factorizable representations of current groups and the Araki–Woods embedding theorem”, Acta Math. 128 (1972), 53–71

[PS75] Pinczon, G., and J. Simon, *On the 1-cohomology of Lie groups*, Letters in Math. Physics 1 (1975), 83–91

[Ro09] Rosendal, C., *A topological version of the Bergman property*, Forum Math. 21 (2009), 299–332

[St69] Streater, R. F., *Current commutation relations, continuous tensor products and infinitely divisible group representations*, Rend. Sc. Intern. E. Fermi 45 (1969), 247–263

[Yam98] Yamasaki, A. *Inductive limit of general linear groups*, J. Math. Kyoto Univ. (JMKYAZ), Vol. 38 -4 (1998), 769–779

[Ze73] Zelobenko, D. P., *Compact Lie Groups and their Representations*, Translation of Mathematical Monographs, Vol. 40, American Mathematical Society (1973)