An extended 3-3-1 model with radiative linear seesaw mechanism

A. E. Cárcamo Hernándeza,b,c *, Sergey Kovalenkob,c,d †, Farinaldo S. Queirozc,e,f ‡, and Yoxara S. Villamizare §

a Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile,
b Centro Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso, Chile
c Millennium Institute for Subatomic physics at high energy frontier - SAPHIR,
Fernandez Concha 700, Santiago, Chile
d Departamento de Ciencias Físicas,
Universidad Andrés Bello,
Sazié 2212, Piso 7, Santiago, Chile
e International Institute of Physics,
Universidade Federal do Rio Grande do Norte,
Campus Universitario, Lagoa Nova,
Natal-RN 59078-970, Brazil
f Departamento de Física,
Universidade Federal do Rio Grande do Norte,
59078-970, Natal, RN, Brasil

(Dated: August 4, 2022)

Motivated by the recent muon anomalous magnetic moment (g-2) measurement at FERMILAB and non-zero neutrino masses, we propose a model based on the $SU(3)_C \times SU(3)_L \times U(1)_X$ (3-3-1) gauge symmetry. The most popular 3-3-1 models in the literature require the presence of a scalar sextet to address neutrino masses. In our work, we show that we can successfully implement an one-loop linear seesaw mechanism with right-handed neutrinos, and vector-like fermions to nicely explain the active neutrino masses, and additionally reproduce the recent Muon g-2 result, in agreement with existing bounds.

I. INTRODUCTION

Despite its success in describing the electromagnetic, strong and weak interactions with a high degree of precision, the Standard Model (SM) has several unaddressed issues. The very large mass hierarchy in the SM fermion sector extending, over a range of about 13 orders of magnitude, from the light active neutrino mass scale up to the top quark mass, the small quark mixing angles and the sizeable leptonic mixing ones, the existence of three fermion families, the electric charge quantization as well as the muon anomalous magnetic moments do not find an explanation within the context of the SM. To address these issues, we propose a renormalizable theory based on the $SU(3)_C \times SU(3)_L \times U(1)_X$ gauge symmetry (3-3-1 model), which is supplemented by the spontaneously broken $U(1)$ global symmetry. In our proposed theory, we considered the $SU(3)_C \times SU(3)_L \times U(1)_X$ gauge symmetry, since models having this symmetry naturally explain the number of SM fermion families as well as the electric charge quantization, see for instance \cite{1–22}.

Unlike several 3-3-1 models, our proposed theory does not have right handed Majorana neutrinos in the fermionic

*Electronic address: antonio.carcamo@usm.cl
†Electronic address: sergey.kovalenko@unab.cl
‡Electronic address: farinaldo.queiroz@ufrn.br
§Electronic address: yoxara@ufrn.edu.br
spectrum that induce a low scale linear or inverse seesaw mechanism that produces the tiny neutrino masses. In our proposed model, the heavy charged exotic vector like leptons are included instead of the right handed Majorana neutrinos and they induce a low scale Universal seesaw mechanism that produces the SM charged lepton masses. These heavy charged exotic leptons mediate a radiative linear seesaw mechanism that produces the tiny masses of the light active neutrinos and at the same time are crucial for accommodating the muon anomalous magnetic moment. In our proposed model, the third family of the SM quarks receive tree-level masses from their Yukawa interactions with the η and ρ $SU(3)_L$ scalar triplets, whereas the first and second families of SM quarks get their masses from a Universal seesaw mechanism mediated by heavy vector like quarks. It is worth mentioning that the Universal Seesaw mechanism have been implemented to generate the masses of all SM charged fermions and light active neutrinos for the first time in $[23–25]$, in the context of left-right symmetric models and $SU(5)$ Grand Unified Theory. Here we implement the Universal Seesaw mechanism only to generate the SM charged lepton masses as well as the masses of the first and second families of SM quarks, in the context of a model with extended gauge symmetry $SU(3)_C \times SU(3)_L \times U(1)_X$ gauge symmetry, which is different than the models considered in $[23–25]$.

The layout of the reminder of the paper is as follows. In section II we describe our proposed 3-3-1 model. Its implications on the SM fermion mass hierarchy are discussed in section III. The model scalar potential is analyzed in detail in section IV. The implications of our model in the muon anomalous magnetic moment are discussed in section V. We conclude in section VI.

II. THE MODEL

We propose a renomalizable theory based on the $SU(3)_C \times SU(3)_L \times U(1)_X$ gauge symmetry (3-3-1 model), which is supplemented by the spontaneously broken $U(1)$ global symmetry, where the scalar sector is composed of three $SU(3)_L$ scalar triplets and two gauge singlet scalars, from which one is electrically neutral and the other one electrically charged. The fermion sector of our theory contains the fermionic particles of the conventional 3-3-1 model with right handed neutrinos plus the following $SU(3)_L$ singlets charged vector like fermions: two exotic up type quark T_n, two exotic down type quarks $B_n (n = 1, 2)$ and three exotic charged leptons $E_i (i = 1, 2, 3)$ in singlet representations under $SU(3)_L$. The aforementioned exotic charged fermion spectrum is the minimal necessary so that no massless charged SM-fermions would appear in the model. Such extension of the particle content of the 3-3-1 model with right handed neutrinos allows the implementation of the tree-level Universal seesaw mechanism to generate the SM charged fermion mass hierarchy as well as of the one-loop level linear seesaw mechanism to produce the light active neutrino masses. It is worth mentioning that a successful implementation of the tree-level Universal seesaw mechanism to generate the SM charged fermion mass hierarchy, requires to extend the scalar spectrum of the conventional 3-3-1 model by adding a electrically neutral gauge singlet scalar field σ which allows mixings between left handed charged exotic fermions and right handed SM fermions. The mixing between left handed SM charged fermions and right handed exotic charged fermions arises from renormalizable Yukawa interactions involving the η and ρ $SU(3)_L$ scalar triplets. Furthermore, the implementation of the one loop level radiative linear seesaw mechanism to generate the light active neutrino masses requires to consider the electrically charged scalar singlet S^- in the scalar spectrum. The scalar, quark and lepton content with their assignments under the $SU(3)_C \times SU(3)_L \times U(1)_X \times U(1)$ group are shown in Tables I, II and III, respectively. In our proposed model the top and bottom quarks as well as the exotic charged fermion masses are generated at tree level. The top and bottom quarks get their masses from renormalizable Yukawa interactions involving different $SU(3)_L$ scalar triplets (η and ρ for the top and bottom quarks, respectively) thus allowing an explanation of their mass hierarchy, which is consequence of the VEV hierarchy of the neutral components of these triplets. The $U(1)$ global symmetry prevents the appearance of renormalizable Yukawa interactions that can directly generate tree level masses for the first and second families of SM quarks as well as for the SM charged leptons. The masses of the first and second families of SM quarks as well as the SM charged lepton masses are generated from a tree level Universal seesaw mechanism mediated by heavy charged vector like fermions. In addition, light active
neutrino masses are generated from a one loop level radiative linear seesaw mechanism mediated by charged exotic vector-like leptons and electrically charged scalars. In addition, our model does not have fermions with exotic electric charges. Thus, in our model the electric charge is defined as:

$$Q = T_3 - \frac{1}{\sqrt{3}} T_8 + X,$$

In our model the full symmetry G experiences the following spontaneous symmetry breaking chain:

$$G = SU(3)_C \times SU(3)_L \times U(1)_X \times U(1) \xrightarrow{\nu} SU(3)_C \times SU(2)_L \times U(1) \xrightarrow{\nu_\eta, \nu_\rho, \nu_\sigma} SU(3)_C \times U(1)_Q,$$

where the different symmetry breaking scales fulfill the hierarchy:

$$v_\chi \gg v_\eta, v_\rho \sim v_\sigma,$$

with $v_\eta^2 + v_\rho^2 = v^2$, $v = 246$ GeV. The first step of spontaneous symmetry breaking is produced the $SU(3)_L$ scalar triplet χ, whose third component acquires a 10 TeV scale vacuum expectation value (VEV) that breaks the $SU(3)_L \times U(1)_X$ gauge symmetry, thus providing masses for the exotic fermions, non Standard Model gauge bosons and the heavy CP even neutral scalar state of χ. The second step of symmetry breaking is caused by the gauge singlet scalar σ as well as by the remaining two $SU(3)_L$ scalar triplets η and ρ, whose first and second components, respectively, get VEVs at the Fermi scale, thus producing the masses for the SM particles and for the physical neutral scalar states arising from those scalar triplets. We assume that the scale v_χ of spontaneous $SU(3)_L \times U(1)_X$ gauge symmetry breaking is about 10 TeV or larger in order to keep consistency with the collider constraints [26], the constraints from the experimental data on K, D and B-meson mixings [27] and $B_{s,d} \rightarrow \mu^+\mu^-$, $B_d \rightarrow K^*(K)\mu^+\mu^-$ decays [5, 28–31].

The $SU(3)_L$ scalar triplets of our model can be expanded around the minimum as follows:

$$\eta = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_\eta + \xi_\eta \pm i\zeta_\eta) \\ \eta_2 \\ \eta_3 \end{pmatrix}, \quad \rho = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_\rho + \xi_\rho \pm i\zeta_\rho) \\ \rho_1^+ \\ \rho_3^+ \end{pmatrix},$$

$$\chi = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_\chi + \xi_\chi \pm i\zeta_\chi) \\ \chi_1 \\ \chi_2 \end{pmatrix}. \quad \quad \quad (3)$$

The $SU(3)_L$ fermionic antitriplets and triplets are

$$Q_{nL} = \begin{pmatrix} D_n \\ -U_n \\ J_n \\ L \end{pmatrix}_L, \quad Q_{3L} = \begin{pmatrix} U_3 \\ D_3 \\ T \end{pmatrix}_L, \quad L_{iL} = \begin{pmatrix} \nu_1 \\ l_i \\ \nu_i^c \end{pmatrix}_L, \quad n = 1, 2, i = 1, 2, 3. \quad \quad \quad (5)$$

where $l_{1,2,3} = e, \mu, \tau$.

With the field assignment specified in Tables I, II and III, the following quark and lepton Yukawa terms arise:

$$-\mathcal{L}_Y^{(2)} = y^{(j)}_1 Q_{3L} \chi J_{1R} + \sum_{n=1}^2 y^{(j)}_{1n} Q_{nL} \chi^* J_{mR} + \sum_{j=1}^3 y^{(u)}_{j3} Q_{3L} \eta_{u,jR} + \sum_{j=1}^3 y^{(d)}_{j3} Q_{3L} \rho_{d,jR}$$

$$+ \sum_{n=1}^2 \sum_{m=1}^2 y^{(T)}_{nm} Q_{nL} T_{mR}^* + \sum_{n=1}^2 \sum_{j=1}^3 y^{(u)}_{nm} T_{nL} \sigma^* u_{jR} + \sum_{n=1}^2 \sum_{m=1}^2 (M_T)_{nm} T_{nL} T_{mR}$$

$$+ \sum_{n=1}^2 \sum_{m=1}^2 y^{(B)}_{nm} Q_{nL} \eta_{B_{mR}} + \sum_{n=1}^2 \sum_{j=1}^3 y^{(d)}_{nj} B_{nL} \sigma^* d_{jR} + \sum_{n=1}^2 \sum_{m=1}^2 (M_B)_{nm} B_{nL} B_{mR} + h.c. \quad \quad \quad (6)$$
From the quark Yukawa interactions in Eq. (6), we find that the up-type mass matrix in the basis the multijet and multilepton final state can be a signal of support of this model at the LHC. Consequently, observing an excess of events in into a SM charged fermion and a scalar. These heavy charged exotic fermions can be pair produced at the LHC via gluon fusion (for the exotic quarks only) and Drell Yan mechanism. Consequently, observing an excess of events in the SM quarks, excepting the top and bottom quarks. Such mixing terms allow that these exotic charged fermions can decay into any of the scalars of the model and SM charged fermions. These exotic charged fermions can decay into a SM charged fermion and a scalar. These heavy charged exotic fermions can be pair produced at the LHC via gluon fusion (for the exotic quarks only) and Drell Yan mechanism. Consequently, observing an excess of events in the multijet and multilepton final state can be a signal of support of this model at the LHC.

III. FERMION MASS MATRICES

From the quark Yukawa interactions in Eq. (6), we find that the up-type mass matrix in the basis \((\bar{u}_{1L}, \bar{u}_{2L}, \bar{u}_{3L}, \bar{T}_{1L}, \bar{T}_{2L})\) versus \((u_{1R}, u_{2R}, u_{3R}, J_{1R}, T_{1R}, T_{2R})\) is given by:

\[
M_U = \begin{pmatrix}
C_U & 0_{3 \times 3} & A_U \\
0_{1 \times 3} & m_{j_1} & 0_{1 \times 2} \\
B_U & 0_{2 \times 1} & M_T
\end{pmatrix}, \quad (A_U)_{3j} = 0, \quad (A_U)_{nm} = y_{nm}^{(T)} \frac{v_\rho}{\sqrt{2}}, \quad (B_U)_{nj} = x_{nj}^{(u)} v_\sigma,
\]

\[
C_U = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
y_3^{(u)} & y_3^{(u)} & y_3^{(u)}
\end{pmatrix} \frac{v_\eta}{\sqrt{2}}, \quad m_{j_1} = y_1^{(j)} \frac{v_\chi}{\sqrt{2}}, \quad j = 1, 2, 3,
\]

In what follows we comment about some phenomenological aspects of our model concerning LHC signals of non-SM fermions. As follows from the Yukawa terms of Eq. (6) and (7), the exotic fermions have mixing mass terms with all the SM quarks, excepting the top and bottom quarks. Such mixing terms allow that these exotic charged fermions can decay into any of the scalars of the model and SM charged fermions. These exotic charged fermions can decay into a SM charged fermion and a scalar. These heavy charged exotic fermions can be pair produced at the LHC via gluon fusion (for the exotic quarks only) and Drell Yan mechanism. Consequently, observing an excess of events in the multijet and multilepton final state can be a signal of support of this model at the LHC.

\(SU(3)_C\)	\(SU(3)_L\)	\(U(1)_Y\)	\(U(1)_X\)	\(U(1)\)
\(\chi\)	1	3	\(-\frac{1}{3}\)	0
\(\eta\)	1	3	\(-\frac{1}{3}\)	4
\(\rho\)	1	3	\(\frac{2}{3}\)	\(-2\)
\(S^+\)	1	1	\(-1\)	2
\(\sigma\)	1	1	0	\(-2\)

Table I: Scalar assignments under \(SU(3)_C \times SU(3)_L \times U(1)_X \times U(1)\).

\(SU(3)_C\)	\(SU(3)_L\)	\(U(1)_Y\)	\(U(1)_X\)	\(U(1)\)
\(Q_{uL}\)	3	\(\bar{3}\)	0	0
\(Q_{dL}\)	3	3	\(\frac{1}{3}\)	0
\(u_{iR}\)	3	1	\(\frac{2}{3}\)	\(-4\)
\(d_{iR}\)	3	1	\(-\frac{1}{3}\)	2
\(J_{1R}\)	3	1	\(\frac{4}{3}\)	0
\(J_{2R}\)	3	1	\(-\frac{1}{3}\)	0
\(T_{nL}\)	3	1	\(\frac{2}{3}\)	\(-2\)
\(T_{nR}\)	3	1	\(\frac{2}{3}\)	\(-2\)
\(B_{nL}\)	3	1	\(-\frac{1}{3}\)	4
\(B_{nR}\)	3	1	\(-\frac{1}{3}\)	4

Table II: Quark assignments under \(SU(3)_C \times SU(3)_L \times U(1)_X \times U(1)\). Here \(i = 1, 2, 3\) and \(n = 1, 2\).
whereas the down type quark mass matrix written in the basis \((d_{1L}, d_{2L}, d_{3L}, J_{1L}, J_{2L}, B_{1L}, B_{2L})-(d_{1R}, d_{2R}, d_{3R}, J_{1R}, J_{2R}, B_{1R}, B_{2R})\) takes the form:

\[
M_D = \begin{pmatrix}
C_D & 0_{3 \times 2} & A_D \\
0_{2 \times 3} & M_J & 0_{2 \times 3} \\
B_D & 0_{3 \times 2} & M_B
\end{pmatrix}, \quad (A_D)_{3j} = 0, \quad (A_D)_{nm} = y^{(B)}_{nm} \frac{v_\eta}{\sqrt{2}}, \quad (B_D)_{nj} = x^{(d)}_{nj} v_\sigma,
\]

\[
C_D = \begin{pmatrix}
0 & 0 & 0 \\
y_{d1}^{(d)} & y_{d2}^{(d)} & y_{d3}^{(d)}
\end{pmatrix} \frac{v_\rho}{\sqrt{2}}, \quad (M_J)_{nm} = y^{(J)}_{nm} \frac{v_\chi}{\sqrt{2}}, \quad n, m = 1, 2, \quad j = 1, 2, 3.
\]

Furthermore, from the charged lepton Yukawa terms, we get that the mass matrix for SM charged leptons in the basis \((l_{1L}, l_{2L}, l_{3L}, E_{1L}, E_{2L}, E_{3L})-(l_{1R}, l_{2R}, l_{3R}, E_{1R}, E_{2R}, E_{3R})\) is given by:

\[
M_E = \begin{pmatrix}
0_{3 \times 3} & A_E \\
B_E & M_E
\end{pmatrix}, \quad (A_E)_{ij} = y^{(E)}_{ij} \frac{v_\rho}{\sqrt{2}}, \quad (B_E)_{ij} = x^{(l)}_{ij} v_\sigma, \quad i, j = 1, 2, 3.
\]

The masses of the charged exotic vector like fermions are assumed to be much larger than the \(SU(3)_L \times U(1)_X\) symmetry breaking scale. Consequently, the first and second generation of SM quarks as well as the SM charged exotic leptons obtain their masses via Universal Seesaw mechanism, while the bottom and top quark masses are generated from the renormalizable Yukawa interactions involving the \(SU(3)_L\) scalar triplets \(\rho\) and \(\eta\), respectively. Furthermore, the exotic fermion masses are generated at tree level. In view of the aforementioned considerations, we find that the SM charged fermion mass matrices are given by:

\[
\tilde{M}_U = C_U + A_U M_T^{-1} B_U, \\
\tilde{M}_D = C_D + A_D M_B^{-1} B_D, \\
\tilde{M}_E = A_E M_E^{-1} B_E.
\]

The neutrino Yukawa interactions give rise to the following neutrino mass terms:

\[
-\mathcal{L}^{(\nu)}_{\text{mass}} = \frac{1}{2} \left(\bar{\nu}_L \nu_R \bar{N}_R \right) M_\nu \left(\begin{array}{c} \nu_L \\ \nu_R \\ N_R \end{array} \right) + \text{H.c.}
\]

where the neutrino mass matrix reads:

\[
M_\nu = \begin{pmatrix}
0_{3 \times 3} & m_{\nu D} & \varepsilon \\
m^{T}_{\nu D} & 0_{3 \times 3} & M \\
\varepsilon^T & M^T & 0_{3 \times 3}
\end{pmatrix},
\]

Table III: Lepton assignments under \(SU(3)_C \times SU(3)_L \times U(1)_X \times U(1)\). Here \(i = 1, 2, 3\).
being the submatrices M and $m_{\nu D}$ generated at tree level from the first and second terms of the leptonic Yukawa interactions of Eq. (7), respectively, whereas the submatrix ε is generated at one loop level from the Feynman diagram of Figure 1. The aforementioned submatrices are given by:

$$m_{\nu D} = \left[v_{\rho}^{(L)} + v_{\rho}^{(L)} \right] \frac{v_{\rho}}{2\sqrt{2}}, \quad M_{ij} = y_{ij}^{(N)} \frac{v_{X}}{\sqrt{2}}, \quad i, j = 1, 2, 3, \quad (16)$$

$$\varepsilon_{ij} = \frac{1}{16\pi^2} \lambda_{S+\rho} \chi x \sum_{k=1}^{3} \frac{y_{ik}^{(E)} x_{kj}^{(N)} v_{X}}{m_{E_k}} C_0 \left(\frac{m_{\rho}^2}{m_{E_k}}, \frac{m_{S}}{m_{E_k}} \right) \quad (17)$$

and the loop function has the form:

$$C_0 (\hat{m}_1, \hat{m}_2) = \frac{\hat{m}_1^2 \ln \frac{\hat{m}_1^2}{\hat{m}_2^2} - \hat{m}_2^2 \ln \frac{\hat{m}_1^2}{\hat{m}_2^2} + \hat{m}_2^2 \ln \hat{m}_2^2}{(1 - \hat{m}_1^2) (1 - \hat{m}_2^2) (\hat{m}_1^2 - \hat{m}_2^2)} \quad (18)$$

The light active neutrino masses arise from a linear seesaw mechanism and the physical neutrino mass matrices are:

$$M_{\nu}^{(1)} = - \left[\varepsilon M^{-1} m_{\nu D}^T + m_{\nu D} (M T)^{-1} \varepsilon^T \right], \quad (19)$$

$$M_{\nu}^{(2)} = \frac{1}{2} (M + M^T) - \frac{1}{2} \left[m_{\nu D}^T m_{\nu D} (M T)^{-1} + (M)^{-1} m_{\nu D}^T m_{\nu D} \right], \quad (20)$$

$$M_{\nu}^{(3)} = \frac{1}{2} (M + M^T) + \frac{1}{2} \left[m_{\nu D}^T m_{\nu D} (M T)^{-1} + (M)^{-1} m_{\nu D}^T m_{\nu D} \right], \quad (21)$$

where $M_{\nu}^{(1)}$ corresponds to the active neutrino mass matrix whereas $M_{\nu}^{(2)}$ and $M_{\nu}^{(3)}$ are the sterile neutrino mass matrices. The smallness of the light active neutrino masses is attributed to the loop suppression as well as to the small $\frac{\langle m_{\nu D} \rangle}{M_{\nu}^{(1)}} \sim \frac{v_\nu}{v_X}$ ratio. The physical neutrino spectrum is composed of 3 light active neutrinos and 6 nearly degenerate sterile exotic pseudo-Dirac neutrinos. The sterile neutrinos can be produced in pairs at the LHC, via quark-antiquark annihilation mediated by a heavy Z' gauge boson. They can decay into SM particles giving rise to a SM charged lepton and a W gauge boson in the final state. Thus, observing an excess of events with respect to the SM background in the opposite sign dileptons final states can be a signal in support of this model at the LHC.

IV. THE SCALAR POTENTIAL

The most general scalar potential, with one neutral scalar singlet, one electrically charged scalar singlet, and three scalar triplets, is written as follows:

$$V(\eta, \rho, \chi, S) = \mu_\chi^2 (\chi^\dagger \chi) + \mu_\eta^2 (\eta^\dagger \eta) + \mu_\rho^2 (\rho^\dagger \rho) + \mu_\sigma^2 ((\sigma^\dagger \sigma) + h.c.) + \mu_S^2 S^\dagger S^- + \lambda_1 (\chi^\dagger \chi) (\chi^\dagger \chi) + \lambda_2 (\rho^\dagger \rho) (\rho^\dagger \rho) + \lambda_3 (\eta^\dagger \eta) (\eta^\dagger \eta) + \lambda_4 (\sigma^\dagger \sigma) (\sigma^\dagger \sigma) + \lambda_5 (\chi^\dagger \chi) (\sigma^\dagger \sigma) + \lambda_6 (\eta^\dagger \eta) (\sigma^\dagger \sigma) + \lambda_7 (\rho^\dagger \rho) (\sigma^\dagger \sigma) + \lambda_8 (\chi^\dagger \chi) (\rho^\dagger \rho) + \lambda_9 (\chi^\dagger \chi) (\eta^\dagger \eta) + \lambda_{10} (\rho^\dagger \rho) (\eta^\dagger \eta) + \lambda_{11} (\chi^\dagger \eta) (\eta^\dagger \chi) + \lambda_{12} (\rho^\dagger \chi) (\rho^\dagger \chi) + \lambda_{13} (\rho^\dagger \eta) (\eta^\dagger \rho) - \frac{f_\eta}{\sqrt{2}} (\sigma \chi \eta \eta \rho \rho \varepsilon ^{ijk} + h.c.) + \frac{f_\chi}{\sqrt{2}} ((S^+ S^-) (\sigma^\dagger \sigma) + h.c.) \right) \quad (22)$$

$$+ \frac{f_\chi}{\sqrt{2}} ((\chi^\dagger \chi) \sigma^\dagger \chi + h.c.) + \frac{A}{\sqrt{2}} (\chi^\dagger S^- \rho + h.c.) \right) \quad (22)$$

$$+ \lambda_{14} (S^+ S^-)^2 + \lambda_{15} (\chi^\dagger \chi) (S^+ S^-) + \lambda_{16} (\eta^\dagger \eta) (S^+ S^-) + \lambda_{17} (\rho^\dagger \rho) (S^+ S^-).$$

Where μ_n ($n = \chi, \mu, \rho, \sigma$) are dimensionful parameters (mass matrices), coefficients λ_i ($i = 1,...,17$), f and f_j ($j = q, s,$) are quartic scalar couplings, and A is the trilinear coupling. Besides, charged scalar singlet S^- is not allowed to have VEV, and we take on that the neutral scalars η_0^0 and χ_0^0 do not develop VEVs. Therefore, we can
Substituting Eq. (23), and Eq. (4) in the scalar potential Eq. (22), we can determinate three mass squared matrices for CP odd, CP even, and complex neutral scalars in the pseudoscalar basis \((\zeta_\eta, \zeta_\rho, \zeta_\chi, \sigma_I)\), scalar basis \((\xi_\eta, \xi_\rho, \xi_\chi, \sigma_R)\) and complex scalar basis \((\eta_0^3, \chi_1^0)\) respectively. Also, we can obtain a mass squared matrix for charged scalars in the basis \((\eta_2^+, \rho_1^+, \chi_2^+, S^+)\). In this way, we find the physical mass eigenvalues of these square matrices. Thus, for the pseudoscalar basis we have the squared masses for the CP odd \(A_1\) physical scalar field and the Goldstone bosons \(G_0^1, G_0^2\) and \(G_0^3\) as following,

\[
\begin{align*}
M^2_{A_1} &= f_q \frac{v^2 v_\eta v_\rho v_\sigma}{2} (v_\chi^2 v_\eta^2 + (v_\chi^2 + v_\rho^2) v_\sigma^2) \\
M^2_{G_0^1} &= f_q \frac{v^2 v_\eta v_\rho v_\sigma}{2} \\
M^2_{G_0^2} &= M^2_{G_0^3} = M^2_{G_2^3} = 0,
\end{align*}
\]
being A_1 a heavy pseudoscalar. For the complex scalar basis, we can obtain the following squared mass,

$$M_{G_\phi}^2 = \frac{v_\chi(\sqrt{2}f_q v_\sigma v_\rho + 2\lambda_{11} v_\chi v_\eta)}{4v_\eta},$$

$$M_{G_\phi}^2 = 0,$$ \hspace{1cm} (25)

where G_ϕ is the Goldstone boson corresponding to the imaginary part of the gauge singlet scalar φ. Such Goldstone boson associated with the spontaneous breaking is the global $U(1)$ symmetry is the Majoron which is harmless since it is a gauge singlet. It is worth mentioning that the imaginary part of φ can acquire a mass by including a soft breaking term $\mu_{ab}^2 (\varphi^2 + h.c)$ in the scalar potential. Analyzing the squared mass matrix for the CP even scalar fields,

$$M_{C}^2 = \begin{pmatrix} \lambda_1 v_\eta v_\eta - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} & \lambda_8 v_\eta v_\chi - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} & \lambda_5 v_\sigma v_\eta - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} \\ \lambda_8 v_\eta v_\chi - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} & \lambda_2 v_\chi v_ \chi - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} & \lambda_7 v_\sigma v_\rho - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} \\ \lambda_5 v_\sigma v_\eta - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} & \lambda_7 v_\sigma v_\rho - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} & \lambda_3 v_\rho v_\rho - \frac{f_q v_\sigma v_\rho}{\sqrt{2} v_\eta} \end{pmatrix},$$ \hspace{1cm} (26)

we can find physical scalars h_1^0, H_1, H_2 and their masses $M_{h_1}^2$, $M_{H_1}^2$, and $M_{H_2}^2$. In order to simplify the computations we consider a benchmark point: $\lambda_6 = \lambda_7 \left(\frac{v_\eta}{v_\chi}\right)^2$, $f_q = 4\sqrt{2}v_\eta v_\rho \lambda_4$, $\lambda_8 = \lambda_9 \left(\frac{v_\eta}{v_\rho}\right)^2$, $\lambda_5 = \lambda_9 \left(\frac{v_\eta}{v_\rho}\right)^2$, $\lambda_7 = \lambda_9 \left(\frac{v_\eta}{v_\rho}\right)^2$, $\lambda_{10} = 2\lambda_3$, $\lambda_2 = \lambda_3$ and $\lambda_9 = \frac{2\lambda_4^2}{v_\chi v_\rho}$. In this case we find from (26) the squared masses for the CP even Higgs bosons, $M_{h_1}^2$, $M_{H_1}^2$, $M_{H_2}^2$, and the Goldstone boson $M_{G_H}^2$, the following expressions

$$M_{h_1}^2 = 2v_\chi^2 \lambda_3,$$

$$M_{H_1}^2 = 2v_\chi^2 \lambda_4 + \frac{v_\chi^4}{v_\rho^2} \lambda_4,$$

$$M_{H_2}^2 = 2v_\sigma^4 \lambda_4 \left(\frac{1}{v_\eta^2} + \frac{1}{v_\rho^2}\right), \hspace{1cm} M_{H_3}^2 = 4\lambda_4 v_\sigma^2$$ \hspace{1cm} (27)

Hence, the scalar denoted as h_1^0 might be linked to the SM Higgs boson; the scalar H_1 would correspond to the physical scalar field associated with the spontaneous symmetry breaking produced through the $SU(3)_L$ scalar triplet χ, and the scalars H_2 and H_3 could be identified with the CP even part of the σ field. Finally, the squared masses for the charged scalar fields are,

$$M_{h_1}^2 = \frac{(v_\chi^2 + v_\rho^2)(\sqrt{2}f_q v_\sigma v_\eta + 2\lambda_{12} v_\chi v_\rho)}{4v_\chi v_\rho},$$

$$M_{h_2}^2 = \frac{(v_\rho^2(\sqrt{2}f_q v_\sigma v_\chi + 2\lambda_{13} v_\rho v_\rho)}{4v_\rho v_\rho},$$

$$M_{h_3}^2 = \frac{1}{2} \left(\sqrt{2}f_q v_\sigma^2 + \lambda_{15} v_\chi^2 + \lambda_{16} v_\eta^2 + \lambda_{17} v_\rho^2 + 2\mu_S^2\right),$$

$$M_{G_1}^2 = M_{G_2}^2 = 0,$$ \hspace{1cm} (28)

with G_1^\pm, G_2^\pm as Goldstone bosons, and taking into account $f = 0$.
V. MUON ANOMALOUS MAGNETIC MOMENT

In this section we will analyze the phenomenological consequences of our model in the muon anomalous magnetic moment. The dominant contribution to the muon anomalous magnetic moment corresponds to the one-loop diagram involving the exchange of electrically neutral CP even and CP odd scalars and charged exotic lepton E_2 running in the internal lines of the loop. To simplify our analysis we can consider a simplified benchmark scenario close to the decoupling limit where ξ_ρ (ζ_ρ) and σ_R (σ_I) are mainly composed of two orthogonal combinations involving two heavy CP even (odd) H_1 (A_1), H_2 (A_2) physical scalar fields. Furthermore, we work on the basis where the SM charged lepton mass matrix is diagonal, which implies that the charged exotic leptons E_i ($i = 1, 2, 3$) are physical fields and the submatrices A_E and B_E are diagonal. Consequently, the muon anomalous magnetic moment is given by:

$$\Delta a_\mu \simeq \frac{y^{(E)}_{22} x^{(E)}_{22} m_\mu^2}{8\pi^2} [I_S (m_{E_2}, m_{H_1}) - I_S (m_{E_2}, m_{H_2}) + I_P (m_{E_2}, m_{A_1}) - I_P (m_{E_2}, m_{A_2})] \sin \theta \cos \theta,$$

where $H_1 \simeq \cos \theta_S \sigma_R + \sin \theta_S \xi_\rho$, $H_2 \simeq -\sin \theta_S \sigma_R + \cos \theta_S \xi_\rho$, $A_1 \simeq \cos \theta_P \sigma_I + \sin \theta_P \zeta_\rho$, $A_2 \simeq -\sin \theta_P \sigma_I + \cos \theta_P \zeta_\rho$ and for the sake of simplicity we have set $\theta_S = \theta_P$ and m_{E_2} is the mass of the charged exotic lepton E_2. Furthermore, loop $I_{S(P)} (m_E, m)$ function has the form [32–36]:

$$I_{S(P)} (m_E, m_{S,P}) = \int_0^1 \frac{x^2 \left(1 - x \pm \frac{m_E}{m_\mu}\right)}{m_\mu^2 x^2 + (m_{E_2}^2 - m_\mu^2) x + m_{S,P}^2 (1 - x)} dx$$

Considering that the muon anomalous magnetic moment is constrained to be in the range [37–44]:

$$(\Delta a_\mu)_{\text{exp}} = (2.51 \pm 0.59) \times 10^{-9}.$$ (31)

We display in Figure 2 the muon anomalous magnetic moment as a function of the charged exotic lepton mass M_{E_2}. In our numerical analysis we have considered a benchmark scenario where we have fixed $\theta = \frac{\pi}{4}$, $M_{A_1} = M_{H_1} = 0.5$ TeV, $M_{A_2} = 0.6$ TeV and $M_{H_2} = 2$ TeV. The mass of the charged exotic lepton E_2 has been varied in the range 1.5 TeV $\leq M_{E_2} \leq 2$ TeV. Figure 2 shows that the muon anomalous magnetic moment decreases when the charged exotic lepton mass is increased. We find that our model can successfully accommodate the experimental value of Δa_μ.
VI. CONCLUSIONS

It has been shown that the most popular 3-3-1 models, such as minimal 3-3-1 are not capable of explaining g-2. They need to be extended. Moreover, the simplest versions of the most popular 3-3-1 models fail in generating two mass differences between the active neutrinos and be consistent with observation, unless a scalar sextet is added to the models. Motivated by these two facts, we proposed a new 3-3-1 model where neutrino masses are generated via one-loop linear seesaw and g-2 is accommodated in agreement with existing bounds. Our work, stands a plausible alternative to the well known 3-3-1 models in the literature, especially if the g-2 anomaly reaches 5σ of statistical significance with a larger data sample from the Muon g-2 experiment.

Acknowledgements

The authors thank Alfonso Zerwekh for discussions. AECH has received funding from ANID-Chile FONDECYT 1210378, ANID-Chile PIA/APOYO AFB180002 and Milenio-ANID-ICN2019_044. SK acknowledges support from CONICYT-Chile Fondecyt No. 1190845, ANID-Chile PIA/APOYO AFB180002 and Milenio-ANID-ICN2019_044. YSV acknowledge support from CAPES under grant number 88882.375870/2019-01. FSQ thanks CNPq grants 303817/2018-6 and 421952/2018-0, and Sao Paulo Research Foundation (FAPESP) through ICTP-SAIFR FAPESP grant 2016/01343-7,2021/01089-1, and grants 2015/158971 and Milenio-ANID-ICN2019_044, for the financial support. FSQ thanks Universidad Federico Santa Maria, Universidad Andres Bello and UFRGS for the hospitality where part of this was partly done. This work was supported by the Serrapilheira Institute (grant number Serra-1912-31613). We thank the High Performance Computing Center (NPAD) at UFRN for providing computational resources.

REFERENCES
[1] J. W. F. Valle and M. Singer, “Lepton Number Violation With Quasi Dirac Neutrinos,” Phys. Rev. D28 (1983) 540.
[2] F. Pisano and V. Pleitez, “An SU(3) x U(1) model for electroweak interactions,” Phys. Rev. D46 (1992) 410–417, arXiv:hep-ph/9206242 [hep-ph].
[3] P. H. Frampton, “Chiral dilepton model and the flavor question,” Phys. Rev. Lett. 69 (1992) 2889–2891.
[4] H. N. Long, “The 331 model with right handed neutrinos,” Phys. Rev. D53 (1996) 437–445, arXiv:hep-ph/9504274 [hep-ph].
[5] A. E. Carcamo Hernandez, R. Martinez, and F. Ochoa, “Z and Z' decays with and without FCNC in 331 models,” Phys. Rev. D73 (2006) 035007, arXiv:hep-ph/0510421 [hep-ph].
[6] D. Chang and H. N. Long, “Interesting radiative patterns of neutrino mass in an SU(3)(C) x SU(3)(L) x U(1)(X) model with right-handed neutrinos,” Phys. Rev. D73 (2006) 053006, arXiv:hep-ph/0603098 [hep-ph].
[7] A. E. Carcamo Hernandez, R. Martinez, and F. Ochoa, “Radiative seesaw-type mechanism of quark masses in SU(3)C ⊗ SU(3)L ⊗ U(1)X,” Phys. Rev. D87 no. 7, (2013) 075009, arXiv:1302.1757 [hep-ph].
[8] A. E. Carcamo Hernandez, R. Martinez, and F. Ochoa, “Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S3 flavor symmetry,” Eur. Phys. J. C76 no. 11, (2016) 634, arXiv:1309.6567 [hep-ph].
[9] S. M. Boucenna, S. Morisi, and J. W. F. Valle, “Radiative neutrino mass in 3-3-1 scheme,” Phys. Rev. D90 no. 1, (2014) 013005, arXiv:1405.2332 [hep-ph].
[10] A. E. Carcamo Hernandez, E. Cataño Mur, and R. Martinez, “Lepton masses and mixing in SU(3)C ⊗ SU(3)L ⊗ U(1)X models with a S3 flavor symmetry,” Phys. Rev. D90 no. 7, (2014) 073001, arXiv:1407.5217 [hep-ph].
[11] A. E. Carcamo Hernandez, R. Martinez, and J. Nisperuza, “S3 discrete group as a source of the quark mass and mixing pattern in 331 models,” Eur. Phys. J. C75 no. 2, (2015) 72, arXiv:1401.0937 [hep-ph].
[12] H. Okada, N. Okada, and Y. Orikasa, “Radiative seesaw mechanism in a minimal 3-3-1 model,” Phys. Rev. D93 no. 7, (2016) 073006, arXiv:1504.01204 [hep-ph].
[13] A. E. Carcamo Hernandez, H. N. Long, and V. V. Vien, “A 3-3-1 model with right-handed neutrinos based on the ∆(27) family symmetry,” Eur. Phys. J. C76 no. 5, (2016) 242, arXiv:1601.05062 [hep-ph].
[14] R. M. Fonseca and M. Hirsch, “A flipped 331 model,” JHEP 08 (2016) 003, arXiv:1606.01109 [hep-ph].
[15] A. E. Carcamo Hernandez, S. Kovalenko, H. N. Long, and I. Schmidt, “A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern,” JHEP 07 (2018) 144, arXiv:1705.09169 [hep-ph].
[16] A. E. Carcamo Hernandez, H. N. Long, and V. V. Vien, “The first ∆(27) flavor 3-3-1 model with low scale seesaw mechanism,” Eur. Phys. J. C78 no. 10, (2018) 804, arXiv:1803.01636 [hep-ph].
[17] A. E. Carcamo Hernandez, Y. Hidalgo Velásquez, and N. A. Pérez-Julve, “A 3-3-1 model with low scale seesaw mechanisms,” Eur. Phys. J. C79 no. 10, (2019) 828, arXiv:1905.02323 [hep-ph].
[18] A. E. Carcamo Hernandez, N. A. Pérez-Julve, and Y. Hidalgo Velásquez, “Fermion masses and mixings and some phenomenological aspects of a 3-3-1 model with linear seesaw mechanism,” Phys. Rev. D100 no. 9, (2019) 095025, arXiv:1907.13083 [hep-ph].
[19] A. E. Cárcamo Hernández, D. T. Huong, and H. N. Long, “Minimal model for the fermion flavor structure, mass hierarchy, dark matter, leptogenesis, and the electron and muon anomalous magnetic moments,” Phys. Rev. D102 no. 5, (2020) 055002, arXiv:1910.12877 [hep-ph].
[20] A. E. Cárcamo Hernández, Y. Hidalgo Velásquez, S. Kovalenko, H. N. Long, N. A. Pérez-Julve, and V. V. Vien, “Fermion spectrum and g − 2 anomalies in a low scale 3-3-1 model,” Eur. Phys. J. C81 no. 2, (2021) 191, arXiv:2002.07347 [hep-ph].
[21] A. Das, K. Enomoto, S. Kanemura, and K. Yagyu, “Radiative generation of neutrino masses in a 3-3-1 type model,” Phys. Rev. D 101 no. 9, (2020) 095007, arXiv:2003.05857 [hep-ph].
[22] A. E. Cárcamo Hernández, J. W. F. Valle, and C. A. Vaquera-Araujo, “Simple theory for scotogenic dark matter with residual matter-parity,” Phys. Lett. B809 (2020) 135757, arXiv:2006.06009 [hep-ph].
[23] A. Davidson and K. C. Wali, “Universal Seesaw Mechanism?,” Phys. Rev. Lett. 59 (1987) 393.
[24] A. Davidson and K. C. Wali, “SU(5)-L x SU(5)-R HYBRID UNIFICATION,” Phys. Rev. Lett. 58 (1987) 2623.
[25] A. Davidson, S. Ranfone, and K. C. Wali, “Quark Masses and Mixing Angles From Universal Seesaw Mechanism,” Phys. Rev. D 41 (1990) 208.
[26] C. Salazar, R. H. Benavides, W. A. Ponce, and E. Rojas, “LHC Constraints on 3-3-1 Models,” *JHEP* **07** (2015) 096, arXiv:1503.03519 [hep-ph].

[27] V. T. N. Huyen, H. N. Long, T. T. Lam, and V. Q. Phong, “Neutral Current in Reduced Minimal 3-3-1 Model,” *Commun. in Phys.* **24** no. 2, (2014) 97, arXiv:1210.5833 [hep-ph].

[28] R. Martinez and F. Ochoa, “Mass-matrix ansatz and constraints on B0(s) - anti-B0(s) mixing in 331 models,” *Phys. Rev.* **D77** (2008) 065012, arXiv:0802.0309 [hep-ph].

[29] A. J. Buras, F. De Fazio, and J. Girrbach, “331 models facing new $b \rightarrow s\mu^+\mu^-$ data,” *JHEP* **02** (2014) 112, arXiv:1311.6729 [hep-ph].

[30] A. J. Buras, F. De Fazio, and J. Girrbach-Noe, “$Z - Z'$ mixing and Z-mediated FCNCs in $SU(3)C \times SU(3)_L \times U(1)_X$ models,” *Phys. Rev.* **D77** (2008) 065012, arXiv:0802.0309 [hep-ph].

[31] A. J. Buras, F. De Fazio, J. Girrbach, and M. V. Carlucci, “The Anatomy of Quark Flavour Observables in 331 Models in the Flavour Precision Era,” *JHEP* **02** (2013) 023, arXiv:1211.1237 [hep-ph].

[32] A. J. Buras, F. De Fazio, J. Girrbach, and M. V. Carlucci, “Connection of ($g - 2)_\mu$ and lepton decays,” *Phys. Rev.* **D67** (2003) 075011, arXiv:hep-ph/0208117 [hep-ph].

[33] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” *Phys. Rept.* **731** (2018) 1–82, arXiv:1610.06587 [hep-ph].

[34] K. Kowalska and E. M. Sessolo, “Expectations for the muon g-2 in simplified models with dark matter,” *JHEP* **09** (2017) 112, arXiv:1707.00753 [hep-ph].

[35] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and T. Teubner, “($g - 2)_\mu$ and $\alpha(M_Z^2)$ re-evaluated using new precise data,” *J. Phys.* **G38** (2011) 085003, arXiv:1105.3149 [hep-ph].

[36] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$,” *Eur. Phys. J. C* **80** no. 3, (2020) 241, arXiv:1908.07408 [hep-ph].