Direction of Arrival Estimation in the presence of Scatterer in noisy environment

Tahniyat Aslam1, Irfan Ahmed1, Muhammad Imran Aslam1, *, Syed M. Usman Ali1, Tahir Malik1

1Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
*corresponding author, E-mail: iaslam@neduet.edu.pk

Abstract
We present an algorithm to estimate direction of arrival (DOA) of an incoming wave received at an array antenna in the scenario where the incoming wave is contaminated by the additive white Gaussian noise and scattered by arbitrary shaped 3D scatterer(s). We present different simulation examples to show the validity of the proposed method. It is observed that the proposed algorithm is capable of closely estimating the DOA of an incoming wave irrespective of the shape of the scatterer provided the decision is made over multiple iterations. Moreover, presence of noise affects the estimate especially in the case of low signal-to-noise ratio (SNR) that gives a relatively large estimation error. However, for larger SNR the DOA estimation is primarily dependent on the scatterer only.

Keywords — Antenna Array, AWGN, Classical Beam forming, Direction of Arrival

1. Introduction

Array signal processing emerged in the last few decades as an active area of research. It is an important area in the field of signal processing, which uses antenna array to detect the useful signals while rejecting the interference and noise [1]. Direction-of-arrival estimation (DOA) plays an important role in antenna processing. The main purpose of the DOA algorithm is to estimate the direction of incoming signals while restraining the interference and noise. The accuracy of the estimate depends on the number of received signal samples. The benefit of using an array antenna is to enhance the resolution of multiple signals DOAs and has a better performance in signal detection and estimation than using a single antenna [2]. DOA estimation has several potential applications such as search and rescue, law enforcement and wireless emergency call locating etc. DOA estimation as an considerable attention in wireless communication, radar, system co-commercial and military application and sonar system. The prime advantage of using DOA estimation algorithm is to improve the performance of an antenna by controlling the directivity of a antenna to reduce the effects of interference, delay spread and multipath fading [3]. DOA estimation is a lossy process and network in wireless communication [4].

Several DOA estimation algorithms are presented in the literature targeting the problem of DOA estimation in the presence of either noise [5-8] or the presence of scatterer [9-12]. For the case of noise, the DOA estimation is achieved by directly applying the algorithm on Uniform Linear Array without pre-processing techniques such as forward-backward averaging of the cross correlation of array output data or spatial smoothing. For the case of scatterer, spherical harmonics are used to remove the effects of scattered field. It has better realization of scattered field because the number of harmonics used is less and it also reduces the number of antenna elements in comparison of using cylindrical harmonics [10].

In this paper we address the problem of estimating the DOA in the situation where Additive White Gaussian Noise and 3D near zone scatterer are simultaneously present. The noise is independent of a signal and present at each antenna elements. The location of the 3D scatterer is assumed to be known but its shape is not known. The effect of near zone scatterer is compensated by employing spherical harmonics expansions of unknown scattered field. A number of numerical experiments were conducted while multiple incident sources and multiple scatterers are present. For the purpose of simulation the ellipsoidal-shaped scatterer h owever t h e shape of t he scatterer in the algorithm which is shown by comparing results with a cubic-shaped scatterer. The simulation results show the performance of the proposed DOA estimation techniques.

Rest of the paper is organized as follows. Section 2 presents the proposed solution of the problem of both noise and scatterer. In section 3, different examples are presented to elaborate the usability of the proposed method. Section 4 concludes the paper.

2. DOA Estimation

DOA estimation is a process for determining the signal of interest while rejecting the signal not of interest [13] using antenna array [14]. The presence of noise in the received signals generate unintended copies of the signal that are rejected. The algorithm description of the considered environment and then present the proposed solution.
2.1. Environment Description

Consider a uniform linear array (ULA) geometry with \(N \) identical x-directed dipole elements numbered from 1 to \(N \) as shown in Figure 1. The antenna elements have a uniform spacing of \(d \) between them. Plane wave a ray is used because source of incident wave is located sufficiently far away from the antenna elements [15]. Consider a plane wave incident on an antenna array in the direction. Near field scatterers are also present, whose locations are known but geometries are unknown as shown in Figure 1. The plane wave and the scattered waves are incident on the \(n \)-th antenna element located at \(r_n = (x_n, y_n, z_n) \). Therefore plane wave from far field region is desired signal and spherical waves due to near zone scatterer field are interfering signals. The total electric field at an \(n \)-th antenna element is given by

\[
E^t = E^\text{inc} + E^\text{scat}
\]

where

\[
V^t = V^\text{inc} + V^\text{scat}
\]

\(V^\text{rec} = V^t + N_t = V^\text{inc} + V^\text{scat} + N_t \) (3)

2.2. Classical Method

Classical method for direction of arrival (DOA) estimation is based on the concept of beam forming. A commonly used classical method is a delay-and-sum method [16,17]. An array can steer beams through space and measure the output power. The direction from which maximum amount of power is obtained yields direction of a signal (DOA) estimation [18, 19]. Figure 2 shows that the output signal \(z[k] \) is computed by using linear weights \((w) \) combined with received data \(x_k \). Figure 2: Illustration of Delay-And-Sum Method

The received data can be expressed as:

\[
x[k] = \sum_{l=1}^{L} s_l[k]a(\psi_l) + v[k]
\]

Where, \(x[k] \) is the \(k \)-th received sample for total \(L \) incident waves, \(s_l[k] \) is the \(l \)-th incident wave, \(a(\psi_l) \) is a column of array manifold matrix relating the \(l \)-th incident wave to the receiver terminal, and \(v[k] \) represents sample form AWGN. For known number of signal samples \(K \), covariance matrix \(R_{xx} \) can be expressed as

\[
R_{xx} = E[x_k x_k^H]
\]

where \(E[\cdot] \) represents expectation operator. In this case, the total output power is the sum method can be expressed as:

\[
P(\theta) = E[|z[k]|^2] = E[|w^H x_k|^2]
\]

\(= w^H E[x_k x_k^H]w = w^H R_{xx} w \) (7)

In classical beam forming, the signal power is measured over an angular region of interest by setting beam forming weights equal to steering weights \(w = a(\theta) \) corresponding...
to the particular direction. The output power is obtained as a function of angle of arrival as [20].

\[P(\theta) = w^H R_{uu} w = a(\theta) R_{uu} a(\theta)^H \]

(8)

The direction of arrival of the incident wave is taken as the direction corresponding to the maximum received power.

2.3. Proposed Solution

The total voltage at the output of the receiver \(V_{rec} \) is measured or known. In the absence of noise and scatterer the received signal is measured or known. The incident signal is corrupted by noise and scatterer. To remove the effect of AWGN from the total receiver voltage spectrum, the linear equation for an array of DOA estimation but may also give rise to false peaks in DOA estimation is achieved.

The linear equation for an array of DOA estimation but may also give rise to false peaks in DOA estimation is achieved.

\[\text{DOA} = \text{DOA} \]

It is assumed that the total voltages received by incident field and scatterer field can be expressed as

\[X^{is} = V^{inc} + V^{sct} \]

(9)

This total voltage \(X^{is} \) is known as measured or as mention earlier. The noise at each antenna terminal is independent from snapshot to snapshot and it is uncorrelated. But the signal remains same during each snapshot. The output of the signal is given as

\[Y^{is} = X^{is} + V \]

(10)

Where, \(Y^{is} \) is the received output signal which is corrupted by noise \(V \). DOA estimation method uses sampled version of array output at \(k \)-th snapshot \((k = 1, 2, ..., K) \) is given by [21].

\[Y^{is}[k] = \sqrt{SNR} X^{is}[k] + V[k] \]

(11)

The key factor for this evaluation is Signal to Noise (SNR) of the environment surrounding the antenna arrays and incident sources, while the numbers of snapshots \((K) \) is kept constant.

Next step is to remove the effect of scattering by using spherical harmonics. It is assumed that scattering at exterior to array elements. It is to be noted that the incorrect assumption of letting \(Y^{is} = V^{inc} \) not only causes errors in DOA estimate but may also give rise to false peaks in DOA spectrum. The linear equation for an array of \(N \) elements is given in [22].

Classical DOA estimation techniques are applied for \(L^{(i)} \) number of sources an d dipoles antenna elements. The elevation \(\theta = [\theta_1^{(i)}, \theta_2^{(i)}, ..., \theta_L^{(i)}] \) at \(i = 0 \). The algorithm is based on least square method with condition \(M < N \). The total number of unknowns \(M \) is given as \(M = L^{(i)} + 2S \). Where \(S \) is number of scatterer and \(Q \) is number of spherical harmonics. The incident voltage in each iteration is given as

\[V^{inc} = Y^{is} - V^{sct} \]

(12)

The incident voltage is used to find the elevation of the desired incident sources and as iterative index is increases and algorithm is repeated until plot of convergence of DOA estimation is achieved.

3. Numerical Examples and Results

The electromagnetic simulations are carried out by using COMSOL multiphysics environment. In the considered scenarios we assumed \(x \)-directed and \(y \)-directed horizontal half wave dipole an antenna element and \(z \)-directed linear array. The radius of half wave dipole is \(r_a = 0.001 \lambda \). The operating frequency is 2.4 GHz. The first element center is \((0,0,0) \) and its axis is along \(z \) direction as shown in Fig. 1. Two to three spherical harmonics will be sufficient to represent the field due to a scatterer. Here we assumed that a antenna and environment is stationary during a single sample. In real environment 3D scatterer can be approximated to a sphere, therefore spherical harmonics is used to remove the effects of scattered field. It has better realization of scattered field because the number of spherical harmonics used is less and it allows us to reduce the number of incident field in case of comparison of using cylindrical harmonics. In classical method, when the amplitude of DOA angle equals or exceeds to 40% of the maximum amplitude in spectrum the incident sources are detected.

3.1. Case 1: Single Scatterer, Single Wave

The assumed geometry for case 1 is shown in Fig. 3, here number of scatterer \(S = 1 \), scatterer in the form of ellipsoid (semi axis \(a = 0.5 \lambda, b = 0.5 \lambda \) and \(c = 0.8 \lambda \) and is located at \((0.1, -0.6, 3) \lambda \). The number of far field elements \(N = 10 \), the spacing between the elements is \(d = 0.5 \lambda \). The incident wave \(L = 1 \) a nd the elevation of the incident wave is \(\theta = 75^\circ \). Gaussian noise is added at each antenna element and it is assumed that noise is complex and uncorrelated.

![Figure 3: Geometric setup for case 1](image)

![Figure 4: DOA spectrum for case 1](image)
The DOA spectrum obtained in this case is shown in Fig. 4. Due to the presence of noise and scatterer, the peak is shifted thereby introducing errors. Moreover three spurious DOA peaks at 27.1°, 113.8° and 143.7° are also detected. When the noise is removed initial algorithm of delay and sum estimates incident wave DOA $\theta_1^{(0)} = 72.8^\circ$ and one spurious DOA at 90.4° is also detected at SNR= 10 dB. The corrected spectrum suppresses the spurious peak and gives desired DOA estimation. The convergence of first decided $\theta_1^{(i)}$ to $\theta_1^{(I)} = 74.8^\circ$ using spherical harmonics $Q=3$ as shown in Fig. 5.

Figure 5: Convergence of decided $\theta^{(i)}$ for case 1

The presence of noise and scatterer shifts the peak and introduce five spurious DOAs at 69.0°, 84.3°, 98.2°, 116.7° and 158.7°. When the noise is removed, the initial algorithm of delay and sum estimates incident wave DOA $\theta_1^{(0)} = 79.8^\circ$ and $\theta_2^{(0)} = 119.6^\circ$ as shown in Fig. 8. One spurious DOA 63.4° is also detected at SNR = 10dB. The corrected spectrum suppresses the spurious peak and gives desired DOA estimation.

The convergence of first decided DOA is $\theta_1^{(i)}$ to $\theta_1^{(I)} = 79.2^\circ$ and the convergence of second decided DOA is $\theta_2^{(i)}$ to $\theta_2^{(I)} = 119.7^\circ$ as shown in Fig. 9 using $Q=3$ Spherical harmonics. The Fig. 10 shows the plot of decided DOA with respect to SNR. In this case when the scatterer is present, the first decided DOA is detected at 79.2° and the second decided DOA is detected at 119.7°. But in the presence of noise and scatterer, the algorithm gives the same results at high SNR for both decided DOAs.

3.2. Case 2(a): Single Scatterer, Two Waves

In case 2, we use two different scatterer geometries (a) cube (b) ellipsoid with approximatively the same size and the same location to show that the proposed algorithm is applicable to any 3D geometry. The simulation environment for case 2(a) is shown in Fig. 7. The case 2(a) is similar to the case 1 except that two incident waves ($L=2$) with elevation angles $\theta_1 = 80^\circ$ and $\theta_2 = 120^\circ$ are used. The number of scatterer $S=1$ and it is in the form of cube with side length λ and is located at $(0.2,-0.6, 2.5)\lambda$. The number of array elements $N=10$ and the spacing between the element is $d=0.5\lambda$. The signal is contaminated with AWGN which is uncorrelated at each antenna element.
3.3. Case 2(b): Single Scatterer, Two Waves

The case 2(a) is repeated with different shape of scatterer. Here the scatterer is in the form of ellipsoid (semi axis $a=0.5\lambda$, $b=0.5\lambda$, and $c=0.8\lambda$) and it is located at same location as in previous case at $(0.2, -0.6, 2.5)\lambda$ as shown in Fig. 11. Here the number of incident wave $L=2$ and the elevation of incident wave is $\theta_1=80^\circ$ and $\theta_2=120^\circ$. The number of array elements $N=10$ and the spacing between the element is $d=0.5\lambda$. Here Gaussian noise is added and it is assumed that noise is uncorrelated.

In the presence of noise, the peak is shifted and introducing errors, four spurious DOAs at 39.9°, 83.7°, 120.0°, and 140.2°. When the noise is removed, the initial algorithm of delay and sum estimates the correct DOAs $\theta_1^{(0)} = 78.9^\circ$ and $\theta_2^{(0)} = 120.0^\circ$ as shown in Fig. 12. One spurious DOA 63.4° is also detected at SNR = 10dB. The corrected spectrum suppresses the spurious peak and gives desired DOA estimation.

The convergence of the first decided DOA $\theta_1^{(i)}$ to $\theta_1^{(I)} = 79.0^\circ$ and the convergence of second decided DOA is $\theta_2^{(i)}$ to $\theta_2^{(I)} = 119.6^\circ$ as shown in Fig. 13 using $Q=3$. The Fig. 14 shows the plot of decided DOA with respect to SNR. In this case when the scatterer is present, the first decided DOA is detected at 79.0° and the second decided DOA is detected at 119.6°. But in the presence of noise and scatterer, the algorithm gives the same results at high SNR for both decided DOAs.
3.4. Case 3: Two Scatterers, Single Wave

The setup of case 3 is shown in Fig. 15. This case is more complex because the number of array elements are increased to \(N=20 \) and the spacing between the element is \(d=0.25\lambda \). Here number of scatterer \(S=2 \). Both scatterer are in the form of sphere (radius = 0.5 \(\lambda \)) and are located at \((-0.2,-0.6, 4) \lambda \) and \((-0.2,-0.6, 1) \lambda \). There is one incident wave \((L=1) \) and the elevation of incident wave is \(\theta_1 = 95^\circ \). Gaussian noise is added and it is assumed that noise is uncorrelated.

Fig. 16 shows that in the presence of noise, the peak is shifted and introducing errors, two spurious DOAs 60.2° and 85.4° are also detected. When the noise is removed, the initial algorithm of delay and sum estimates incident wave DOA at \(\theta_1^{(0)} = 94.6^\circ \). One spurious DOA at 119.8° is also detected at SNR=10dB.

The convergence of decided DOA is \(\theta^{(i)} \) to \(\theta^{(f)} = 95.1^\circ \) as shown in Fig. 17 using \(Q=2 \) spherical harmonics. The Fig. 18 shows the plot of decided DOA with respect to SNR. In this case when the scatterer is present, decided DOA is detected at 95.1°. But in the presence of noise and scatterer, the algorithm gives the same results in high SNR.

3.5. Case 4: Two Scatterers, Two Waves

The geometry of case 4 is shown in Fig. 19. Here number of scatterer \(S=2 \). One scatterer is in the form of ellipsoid (semi axis \(a=0.4\lambda, b=0.5\lambda \) and \(c=0.7\lambda \)) and is located at \((0.1,-0.6, 4) \lambda \). Another scatterer is in the form of sphere (radius= 0.5 \(\lambda \)) and is located at \((-0.1,-0.6, 1.5) \lambda \). The number of array elements \(N=20 \) and the spacing between the elements is \(d=0.25\lambda \). The incident wave \(L=2 \) and the elevation of incident wave is \(\theta_1 = 65^\circ \) and \(\theta_2 = 120^\circ \). Gaussian noise is added and it is assumed that noise is uncorrelated.
Fig. 20 shows that in the presence of noise, the peak is shifted and introducing five spurious DOAs at 35.6°, 53.6°, 78.0°, 104.1° and 126.8° are detected. When the noise is removed the initial algorithm of delay and sum estimates the incident wave DOA $\theta_1^{(0)} = 62.3°$ and $\theta_2^{(0)} = 120.5°$. Two spurious DOAs 87.5° and 103.3° are also detected at SNR= 10dB. The corrected spectrum suppresses the spurious peak and gives desired DOA estimation.

The convergence of first decided DOA is $\theta_1^{(i)}$ to $\theta_1^{(1)} = 64.2°$ and the second decided DOA is from convergence of $\theta_2^{(i)}$ to $\theta_2^{(1)} = 119.7°$ as shown in Fig. 21 using $Q = 2$ Spherical harmonics. The Fig. 22 shows the plot of decided DOA with respect to SNR. In this case when the scatterer is present, the first decided DOA is detected at 64.2° and the second decided DOA is detected at 119.7°. But in the presence of noise and a scatterer, the algorithm gives the same results at high SNR for both decided DOAs.

4. Conclusions

An iterative algorithm for DOA estimation is presented in the case where Additive White Gaussian Noise (AWGN) and 3D scatterer(s) are simultaneously present. Although all the simulations are performed with the cubic, spherical, or ellipsoidal scatterer, the algorithm imposes no condition on the shape of the scatterer. However, the location of the scatterer must be known. The convergence of DOA is achieved iteratively and the algorithm is repeated until the correct (converged) DOA is achieved. A number of numerical experiments were conducted where multiple incident sources and multiple scatterers are present. Where noise is a sum of multiple independent and present at each antenna terminal. It is also assumed that signal remain same at each sample. SNR directly affect the performance of DOA estimation especially in the low SNR regime. It is observed that the algorithm is capable of closely estimating the DOA in the presence of noise and scatterers.

References

[1] Krim, Hamid, and Mats Viberg. "Two decades of array signal processing research: the parametric approach." IEEE signal processing magazine 13.4 (1996): 67-94.

[2] Van Trees, Harry L. Detection, estimation, and modulation theory, optimum array processing. John Wiley & Sons, 2004.

[3] Abdalla, Moustafa M., Moustafa B. A. Buittel, and Mohamed A. Hassan. "Performance evaluation of algorithms for mobile communication systems." Wireless and Mobile Networking Conference (WMNC), 2013 6th Joint IFIP. IEEE, 2013.

[4] Foutz, J effrey, Andreas Spanias, and Mahesh K. Banavar. "Narrowband direction estimation for antenna arrays." Synthesis Lectures on Antennas 3.1 (2008): 1-76.

[5] Khmou, Youssef, Said Safi, and Miloud Frikel. "Comparative study between several direction of arrival estimation methods." Journal of Telecommunications and Information Technology (2014).

[6] Wang, Haixiang, Jianguo Huang, and Wei Gao. "DOA estimation for coherent sources with unknown correlations using spatial correlation matrices." Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference on. IEEE, 2012.
Xiao-guang, Wu, and Guo Tian-wen. "Direction of arrival parameter estimation and simulation based on MATLAB." Proceedings of the 2011, International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19–20, 2011, Melbourne, Australia. Springer Berlin Heidelberg, 2011.

Godara, Lal C. "Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations." Proceedings of the IEEE 85.8 (1997): 1195-1245.

Ahmed, Irfan, and Perger, Warren "Direction Finding in the Presence of Near Zone Resonance Scatterers." Progress In Electromagnetics Research B56 (2013): 219-234.

Horiki, Yasutaka, and Edward H. Newman. "A self-calibration technique for an OA array with near-zone scatterers." IEEE transactions on antennas and propagation 54.4 (2006): 1162-1166.

Ahmed, Irfan and Perger, Warren. "Effects of ground on antenna mutual impedance for DOA estimation using dipole arrays." Progress In Electromagnetics Research C, Vol. 46, 179-185, 2014.

Ahmed, Irfan; Perger, Warren, and Zekavat, Seyed A.; "Effects of Ground Constituent Parameters on Array Mutual Coupling for DOA Estimation," International Journal of Antennas and Propagation, vol. 20 11, Article ID 425913, 5 pages, 2011.

Balani, C onstantine A., an d P anayiotis I . Ioannides. "Introduction to smart antennas." Synthesis Lectures on Antennas 2.1 (2007): 1-175.

Balanis, C onstantine A. Advanced engineering electromagnetics. John Wiley & Sons, 2012.

Chen, Zhizhang, Gopal Gokada, and Yiqiang Yu. Introduction to Direction-of-arrival Estimation. Artech House, 2010.

Balanis, C onstantine A. Antenna theory: analysis and design. John Wiley & Sons, 2016.

Elkamchouchi, Hassan, and Mohamed Abd Elsalam Mofeed. "Direction-of-arrival methods (DOA) and time difference of arrival (TDOA) position location technique." Radio Science Conference, 2005. NRSC 2005. Proceedings of the Twenty-Second National. IEEE, 2005.

Bhuiya, S. N., F. Islam, and M. A. Matin. "Analysis of Direction of Arrival techniques using uniform linear array." International Journal of Computer Theory and Engineering 4, no. 6 (2012): 931.