Sampling bias in systems with structural heterogeneity and limited internal diffusion

J.-P. Onnela1,2,3(a), N. F. Johnson4, S. Gourley1,2, G. Reinert5 and M. Spagat6

1 Department of Physics, University of Oxford - Oxford OX1 3PU, UK, EU
2 CABDyN Research Cluster, Said Business School, University of Oxford - Oxford, OX1 1HP, UK, EU
3 DBEC, Helsinki University of Technology - P.O. Box 9203, Helsinki, FIN-02015 HUT, Finland, EU
4 Physics Department, University of Miami - Coral Gables, FL 33124, USA
5 Department of Statistics, University of Oxford - Oxford OX1 3TG, UK, EU
6 Department of Economics, Royal Holloway, University of London - London, TW20 0EX, UK, EU

received 13 October 2008; accepted in final form 22 December 2008
published online 29 January 2009

PACS 89.65.-s – Social and economic systems
PACS 89.75.Fb – Structures and organization in complex systems
PACS 89.75.-k – Complex systems

Abstract – Complex-systems research is becomingly increasingly data-driven, particularly in the social and biological domains. Many of the systems from which sample data are collected feature structural heterogeneity at the mesoscopic scale (i.e. communities) and limited inter-community diffusion. Here we show that the interplay between these two features can yield a significant bias in the global characteristics inferred from the data. We present a general framework to quantify this bias, and derive an explicit corrective factor for a wide class of systems. Applying our analysis to a recent high-profile survey of conflict mortality in Iraq suggests a significant overestimate of deaths.

Introduction. – Monitoring large social or biological systems bears similar challenges to monitoring many-particle systems in physics. The increasing availability of data on human behaviour from information and communication technologies \cite{1,2} and data from high throughput techniques in biology enable scientists to study these diverse systems with similar methodologies. Many biological and social systems are not internally homogeneous, but instead feature time-dependent community groupings and limited inter-community mixing \cite{1–4}. Individuals form dynamic groups in professional and private settings reflected in, for example, structures of scientific collaboration and mobile phone call patterns \cite{3}. The cell nucleus consists of multiple compartments with different micro-environments that exist in spatially localised regions in the heterogeneous intranuclear space \cite{4}. This problem setup is similar to that in so-called metapopulation models, which involve spatially structured populations and are commonly used in ecology and epidemiology \cite{5,6}. In this letter, we quantify the consequences of sampling a subset of objects in such a system. Starting with a general theoretical framework, we show that the interplay between heterogeneity and limited diffusion can yield a substantial bias in the inferred global characteristics. We obtain an explicit corrective factor to offset a bias that occurs if the structural heterogeneity of the system and the limited internal diffusion within the system are not taken into account in the initial data sampling. We then consider a special case of this general framework, in which the corrective factor turns out to only depend on three parameters. Two of these parameters are associated with heterogeneity and one with diffusion. Finally, we consider the specific example of a recent conflict mortality study in Iraq, and show that a considerable positive bias likely arose in the inferred mortality numbers.

General framework. – Consider a large system made up of \(N \) particles characterised by a microscopic state variable \(x_i \). The system is heterogeneous in that it consists of \(m \) different subsystems or communities \(S_1, \ldots, S_m \) with \(N_i \) particles in \(S_i \) such that \(N_1 + \ldots + N_m = N \). The subsystems are interconnected in some limited way, thereby allowing for only partial diffusion or mixing of particles between them. We wish to learn about the state
of the system described by the extensive macroscopic variable $X = \sum_{i=1}^{N} x_{i}$, but, in line with typical empirical scenarios, assume that we cannot observe the entire system. Instead, we monitor the state of a set of tagged particles in different subsystems and use this data to make statistical inferences about X.

Let us assume that the particles are identical and non-interacting and that each can be in one of two states $x_{i} \in \{0,1\}$. The system is initially prepared with $x_{i} = 0$ for all i and only irreversible $0 \rightarrow 1$ changes are considered. Microscopic state changes are subsystem specific, with the element q_{k} of the vector \vec{q} specifying the probability for a particle in subsystem S_{k} to change state. Hence the x_{i} are independent and identically distributed random variables within a given subsystem and we let y_{k} denote a random variable having the distribution of any x_{i} present in S_{k}. The state of a particle can be identified with, for example, the staining of cancerous cells in a biological organism under medical imaging (stained vs. clear), or the disease status of an individual (healthy vs. diseased). The subsystem specific probabilities q_{k} could arise from there being different numbers of cancerous cells or pathogens in these systems.

The mixing of particles is governed by the constant mixing matrix $f = \{ f_{1} f_{2} \cdots f_{m} \}$, where f_{i} specifies the fraction of time particles initially placed in S_{i} spend in other subsystems. The entries of f can be interpreted as probabilities of finding particles in different subsystems (see fig. 1). The diagonal elements f_{ii} correspond to the probability of finding a particle in its initial subsystem. Note that f does not need to be symmetric. In the limit as the mobility of the particles tends to zero, the matrix f consists of only diagonal elements $f_{ij} = \delta_{ij}$, with the effect that the subsystems become completely isolated.

Denote by X_{i} the contribution of all particles initially in S_{i} towards X, and by X_{ij} the contribution of a single particle $j = 1, \ldots, N_{i}$ initially in S_{i} towards X_{i}. Let D_{ik} denote the number of particles initially in S_{i} which are observed in S_{k}; then D_{ik} follows a binomial distribution with parameters N_{i} and f_{ik}. We write our quantity of interest X as

$$X = \sum_{i=1}^{m} X_{i} = \sum_{i=1}^{m} \sum_{j=1}^{N_{i}} X_{ij}. \quad (1)$$

Consider now a situation where, to estimate X, we can draw samples from only some of the subsystems. Let S consisting of m subsets S_{k} denote the set of all subsystems and let $S' = \bigcup_{k=1}^{m'} S_{k}$, i.e. the first m' of these sets, denote the set of samplable subsystems. The expectation value of X in the entire system, $\langle X \rangle_{S}$, and in the samplable system, $\langle X \rangle_{S'}$, is given by

$$\langle X \rangle_{S} = \sum_{i=1}^{m} \langle X_{i} \rangle = \sum_{i=1}^{m} \sum_{k=1}^{m} \langle D_{ik} \rangle y_{k} = \sum_{i=1}^{m} N_{i} \sum_{k=1}^{m} f_{ik} y_{k},$$

$$\langle X \rangle_{S'} = \sum_{i=1}^{m'} \langle X_{i} \rangle = \sum_{i=1}^{m'} \sum_{k=1}^{m} N_{i} f_{ik} y_{k}, \quad (2)$$

respectively. If the subsystems are heterogeneous and this is not accounted for in the sampling procedure, we may incur a significant bias. To quantify this, we define the bias factor R as the scaled ratio of $\langle X \rangle_{S'}$ to $\langle X \rangle_{S}$,

$$R = \frac{\sum_{i=1}^{m'} N_{i} \sum_{k=1}^{m} f_{ik} y_{k}}{\sum_{i=1}^{m} N_{i} \sum_{k=1}^{m} f_{ik} y_{k}}.$$

where $N' \leq N$ is the number of particles in S' and values of $R > 1$ ($R < 1$) correspond to overestimating (underestimating) the expectation value of X in the system when sampling is based on subsystems in S' only.

Specialised framework. – A special case of the framework arises when the microscopic state variables x_{i} and y_{k} correspond to independent Bernoulli trials related to some event ω. We assume that the event ω occurs independently of the mixing. Now $q_{i} (1 - q_{i})$ is the probability of observing $x = 1$ ($x = 0$) in subsystem S_{i} long enough after the initial state so that the system has reached an equilibrium. Regardless of the number of subsystems present, the system can always be divided into a samplable subsystem and a non-samplable subsystem. Let $S_{I} = S'$ and let the remaining subsystems form the non-samplable subsystem $S_{O} = \bigcup_{k=m'+1}^{m} S_{k}$. As a mnemonic, the subscript I refers to in-sample and O to out-of-sample. Note that whereas before $S' \subseteq S$, here $S_{I} \cap S_{O} = \emptyset$, so that although $S_{I} = S'$, $S_{O} \neq S$. We now have $N_{I} = N' = \sum_{k=1}^{m'} N_{k}$ and $N_{O} = \sum_{k=m'+1}^{m} N_{k}$, corresponding to the number of particles in S_{I} and S_{O}, respectively, and $N_{I} + N_{O} = N$. We define the “renormalised” probabilities $q_{I} = N_{I}^{-1} \sum_{k=1}^{m'} N_{k} q_{k}$ for a particle.
to be subjected to ω while present in S_I and its complement $1 - q_f$ for the particle to not be subjected to ω while present in S_I. Similarly, we define for S_O the probability $q_O = \frac{N_O}{1 + \sum_{k=m'+1}^m N_k q_k}$ (and its complement $1 - q_O$) for a particle to (not) be subjected to ω while present within S_O. Finally, we define the mobility factors such that $f_I(f_O)$ is the probability for a particle initially placed in S_I (S_O) to be present within S_I (S_O), and $1 - f_I (1 - f_O)$ is the probability for a particle initially placed in S_I (S_O) to not be present within S_I (S_O), i.e., to be present within S_O (S_I). These are written as

$$f_I = N_I^{-1} \sum_{i=1}^{m'} N_i \sum_{j=1}^{m'} f_{ij},$$
$$f_O = N_O^{-1} \sum_{m'=1}^m N_i \sum_{j=m'+1}^m f_{ij}. \quad (4)$$

We now define $\pi_{\alpha\beta}$ with $\alpha, \beta \in \{O, I\}$ as the probability that a particle picked uniformly at random was placed initially in S_α with $x_i = 0$ and changes state to $x_i = 1$ in S_β. This leads to $\pi_{OO} = \frac{N_O}{N_I + N_O} f_0 q_O$, $\pi_{OI} = \frac{N_O}{N_I + N_O} (1 - f_0) q_I$, $\pi_{II} = \frac{N_I}{N_I + N_O} (1 - f_0) q_I$, and $\pi_{II} = \frac{N_I}{N_I + N_O} f_1 q_I$. The sum $\pi_{II} + \pi_{IO} + \pi_{II} + \pi_{II}$ is the probability that a randomly chosen particle is subjected to ω and hence changes its microscopic state. The expected number of particles with $x_i = 1$ in a population of size N is hence $N_O f_0 q_O + N_O (1 - f_0) q_I + N_I (1 - f_I) q_O + N_I f_I q_I = (q_I - q_O)(f_I N_I - f_O N_O) + q_I N_O + q_O N_I$; whereas the probability that a randomly chosen particle in S_I changes state is $q_I f_I + q_O (1 - f_I)$. Hence the expected number of realisations for a population of size N, based on the rate for S_I only, would be $(N_I + N_O)[q_I f_I + q_O (1 - f_I)]$. We obtain

$$R = \frac{(N_I + N_O)[q_I f_I + q_O (1 - f_I)]}{(q_I - q_O)(f_I N_I - f_O N_O) + q_I N_O + q_O N_I}. \quad (5)$$

Assuming that $N_I \neq 0$ and $q_O \neq 0$, and setting $q = q_I/q_O$ and $n = N_O/N_I$, we obtain

$$R = R(f_I, f_O, q, n) = \frac{(1 + n)(1 + q f_I - f_I)}{(q - 1)(f_I - f_O n) + q n + 1}. \quad (6)$$

Hence the bias factor R depends only on f_I, f_O, and the ratios $q = q_I/q_O$ and $n = N_O/N_I$. Finally, in the case of symmetric mobility with $f_I = f_O = f$, the above expression simplifies to

$$R = R(f, q, n) = \frac{(1 + n)(1 + q f - f)}{f(q - 1)(1 - n) + q n + 1}. \quad (7)$$

The no-bias limit of $R = 1$ requires either 1) $n = 0$ (i.e. $N_O = 0$) implying that no particle is placed initially in S_O, or 2) $q = 1$ (i.e. $q_I = q_O$) implying equal rates of changing state in S_I and S_O, or 3) $f = 1/2$ which suggests that particles based in S_I spend on average half of their time in S_O and vice versa. Setting $R(f, q, n) = r$ for general r and solving for q in terms of n and f yields

$$q(f, n, r) = \frac{f(1 + n + nr - r) + r - n - 1}{f(1 + n + nr - r) - nr}. \quad (8)$$

Although q is unobservable, we can estimate $\tilde{q} = N^{-1} \sum_{ij} X_{ij}$ and $\tilde{q}' = (N')^{-1} \sum_{i=1}^{m'} \sum_{j=1}^n X_{ij}$, leading to the asymptotically unbiased estimator $\tilde{R} = \tilde{q}'/\tilde{q}$ for the bias factor R. If $R = 1$, then we would expect that $\tilde{R} \approx 1$. The variation in \tilde{R} can be assessed via a normal approximation [7]. Basing \tilde{q}' on S_I and assuming that $(X)_S$ is not too small, the approximate variance is

$$\text{Var}(\tilde{R}) \approx \frac{(1 + n)^2}{q_0 N_I (f - (1/n) + q n + 1) \times (f q (1 - q_I) + (1 - f)(1 - q_O) + f (1 - f)(qq_I + q - q))}. \quad (9)$$

Application to conflict mortality. – We will now exemplify the above framework by applying it to study conflict mortality. To estimate the number of deaths in a conflict, one would ideally like to have access to a complete national list of households from which a sample could be drawn at random. Even when this scenario is feasible, the selected households are widely scattered, which is costly not only in terms of time and money, but also exposes the researchers to high levels of risk. To overcome these concerns, recent studies economise resources by using a cluster sampling methodology. This hierarchical sampling process involves making choices on how to choose large geographic areas and how to proceed from them to individual households.

We can equate particles in the framework with individuals such that the system size N corresponds to the population of the country and the state of each particle $x_i \in \{0, 1\}$ corresponds to the individual being alive or dead (where the death has resulted from conflict-related violence), respectively. The different subsystems correspond to heterogeneous areas that are characterised by varying levels of conflict-related violence such that the probability for an individual to be killed when he or she is in S_k is given by q_k regardless of where his or her residence is located. Note that these areas, or zones, may be fragmented and inter-dispersed. Now $\langle X_k \rangle$ corresponds to the expected number of deaths in S_k for a given q_k, and $\langle X \rangle$ corresponds to the expected number of deaths in the country. Daily human movement between different areas is quantified by the mixing matrix. The initial subsystem of a particle can be identified with the residential zone of the individual. The “renormalised” systems S_I and S_O correspond to sets of subsystems that may or may not be sampled, respectively, given the sampling method. To include an individual in the study, his or her home needs to be located in the sampleable subsystem S_I.

Let us consider a situation in which data has been collected using a sampling procedure and we are concerned

28001-p3
that this sampling procedure may not be sufficiently sensitive to the structural heterogeneity of the system and the limited internal diffusion within the system, so that a systematic bias may arise. We can then use the proposed framework, after the initial data collection, to offset the bias resulting from not having taken these factors fully into account.

Structural heterogeneity between subsystems in the context of conflict mortality is exemplified in fig. 2, which shows how urban violence varies from neighbourhood to neighbourhood, in this case in Bogotá, Colombia. Similar patterns hold for cities worldwide [9]. While these data are based mostly on criminal violence as opposed to conflict violence, it is plausible that, similarly, a spatially inhomogeneous pattern holds for conflict violence. Each cell in the map can be associated with one of the $k = 1, \ldots, m$ subsystems and the colouring reflects a realised value of X_k. In a completely homogeneous system with $q_1 = \cdots = q_m$, we have $\langle X_1 \rangle = \cdots = \langle X_m \rangle$ and would expect to observe less fluctuation in the values of X_k. We conjecture that structural heterogeneity is likely to hold in conflict areas.

Limited internal diffusion between subsystems in the context of conflict mortality is exemplified in fig. 3, which shows the location of residence of the victims (horizontal axis) and the location of attacks (vertical axis) in a conflict in Thailand. This matrix can be interpreted to reflect the underlying diffusion matrix f and it is useful to consider two limiting cases. First, if the matrix were completely scattered, there would be no correlation between the location of residence and the location of violence. In this case the choice of sampling locations and the locations of violence are uncorrelated, and one might wish to choose sampling locations that are easily accessible. These sampling locations might be inherently more or less violent than the system at large but, due to extensive mobility of individuals, the choice of sampling locations would not induce a systematic bias. Second, if the matrix were perfectly diagonal, there would be a one-to-one correlation between the location of residence and the location of violence. If the sampling locations were, say, more violent than the system at large, due to
Sampling bias

Fig. 5: (Colour on-line) Sensitivity analysis of bias factor R defined by eq. (6). Each panel shows $R = R(f_I, f_O, q, n)$ with the values of f_I and f_O fixed for each panel. Here f_I (f_O) varies by columns (rows) over the values $\{0.75, 0.85, 0.95\}$ increasing from left to right (bottom to top). The height of the surface from the (n, q) surface, in addition to being given by the z-coordinate in the plots, is also colour coded to guide the eye and to emphasise the smoothness of the surfaces.

lack of mobility between subsystems, the overall estimate would be biased upward. In both scenarios one would need to take population densities into account. We conjecture that diffusion between subsystems is very limited under conflict.

We now focus on the final stages of the sampling procedure that was used to estimate conflict mortality in Iraq [12], and refer to it as the Cross Street Sampling Algorithm (CSSA): 1) Select a “constituent administrative unit” proportionally to their estimated population size, 2) select a main street from “a list of all main streets”, 3) select randomly a residential street from “a list of residential streets crossing the main streets”, 4) enumerate the households on the street, 5) select one household at random to initiate the interviewing, proceeding to 39 further adjacent households. Figure 4 demonstrates that violent events tend to be focused around cross-streets. Because cross-streets are chosen for sampling, the location of violence and the location of sampled sites are correlated by means of accessibility. This correlation results in a biased estimate of deaths and is further amplified due to minimal mixing of populations between the zones.

To apply the above framework, we need values for the model parameters. The population parameter $n = N_O/N_I$ gives the proportion of population resident in S_O to that resident in S_I. Street layouts in Iraq are often irregular, hence CSSA will miss any neighbourhood not in the immediate proximity of a cross-street. Analysis of Iraqi maps suggests $n = 10$ is plausible [13]. The violence parameter $q = q_I/q_O$ gives the relative probability of death for anyone present in S_I, regardless of their zone of residence, to that of S_O. For conflicts like the one in Iraq, violent events tend to be focused around cross-streets since they are a natural habitat for patrols, convoys, police stations, parked cars, roadblocks, cafes and street-markets. Major highways would not offer such a wide range of potential targets — nor would secluded neighborhoods and, therefore, the streets that define the samplable region S_I are prime targets for improvised explosive devices, car bombs, sniper attacks, abductions and drive-by shootings [13]. Given the extent and frequency of attacks, $q = 5$ is plausible [13]. The diffusion parameter $f = f_I = f_O$ gives the fraction of time spent by residents of S_I (S_O) in S_I (S_O). Given the nature of the violence, travel is limited; women, children and the elderly tend to stay close to home. Consequently, mixing of populations between the zones is minimal. Using the time people spend in their homes as a lower bound on the time they spend in their zones, assuming that there are two working-age males per average household of seven [12], with each spending 6 h per 24 h day outside their own zone, yields $f = f_I = f_O = 5/7 + 2/7 \cdot 18/24 = 13/14$ [13]. These values yield $R = 3.0$, suggesting that the Iraq estimate [12] provides a substantial overestimate of deaths.

It is clear from eq. (6) that in order to arrive at an accurate estimate of R, one needs to have reasonably accurate estimates of the parameters f_I, f_O, q and n. To gauge the sensitivity of our result, we perform a simple sensitivity analysis by evaluating R for different values of parameters in fig. 5. This shows the effect of relaxing
the constraint \(f = f_I = f_O \) and it is clear that in the limit of no mobility \((f_I = f_O = 1) \) the bias is greatest. Conceptually speaking, the bias emerges from having simultaneously partial localisation of violence (structural heterogeneity) and partial localisation of people (limited internal diffusion). Both of these conditions are needed for the bias to emerge, since if \(q = 1 \) (structural homogeneity) we have \(R = 1 \) regardless of \(n \) and \(f \), and if \(f = 1/2 \) (perfect diffusion), we have \(R = 1 \) regardless of \(q \) and \(n \). In general, the shapes of the \(R \)-surfaces in fig. 5 are smooth and the surfaces are monotonically increasing functions of \(n \) and \(q \). In this sense the framework is robust to the parameter values.

A more precise quantification of the bias can be achieved within the framework only if the actual micro-level data of the conflict study [12] are released, which would enable a more precise determination of the model parameters. Importantly, this does not entail further data collection, which is especially valuable when the survey needs to be carried out under extremely difficult conditions. Even release of information concerning how many streets are included in “a list of all main streets” in step (2) of CSSA would improve the estimate. This is because the definition of a “main street” sets the granularity level of the system. A shorter list implies that the areas enclosed by the streets are bigger, which necessarily decreases mixing between areas, and results in an even larger bias.

Conclusion. – We have presented a framework that can be used to gauge sampling bias in systems featuring heterogeneity and limited internal diffusion. We have applied the framework to a recent conflict mortality study [12] to illustrate how one can, after the initial data collection, adjust for the bias resulting in sampling such a system. We have demonstrated that the conflict mortality study is likely to present a high upward bias and, using our framework, we have gauged the extent of this bias using simple plausibility arguments for our framework parameters. We believe that our approach and assumptions are reasonable given the limited information at hand. It appears that the results reported in [12] are a substantial overestimate of deaths. This finding is compatible with recent independent research. The figures reported in [12] are 3 times higher than the Iraq Living Conditions Survey of the UN Development Program estimate for the same time period (the first 13 months of the war) [14], 4 times the Iraq Family Health Survey estimate for the same time period [15], and 12 times the Iraq Body Count estimate (based on media monitoring) for the same time period [16]. Rather than opening a debate on the precise extent of the bias, we hope that the present work will open up the way to further studies aimed at specifying more precisely the information needed to improve these estimates. Given that many social and biological systems feature structural heterogeneity and limited internal diffusion, our framework should prove invaluable for correcting for such biases.

REFERENCES

[1] Onnela J.-P., Saramäki J., Hyvönen J., Szabó G., Lazer D., Kaski K., Kertész J. and Barabási A.-L., *Proc. Natl. Acad. Sci U.S.A.*, **104** (2007) 7332.

[2] González M. C., Hidalgo C. A. and Barabási A.-L., *Nature*, **453** (2008) 779.

[3] Pallá G., Barabási A.-L. and Vicsek T., *Nature*, **446** (2007) 664.

[4] Grima R. and Schnell S., *Essays Biochem.*, **44** (2008) in press.

[5] Hanski I., *Nature*, **396** (1998) 41.

[6] Möllanen A., *Oxos*, **96** (2002) 516.

[7] Barnett V., *Sample Surveys, Principles and Methods*, 2nd edition (Edward Arnold, London) 1991.

[8] Llorente M. V., Escobedo R., Echandía C. and Rubio M., *Documento de trabajo No. 20: Violencia homicida y estructuras criminales en Bogotá* (Universidad de los Andes) 2001.

[9] Conflict mortality website http://www.rhul.ac.uk/Economics/Research/conflict-analysis/iraq-mortality/index.html, accessed 10/2008.

[10] Report on conflict mortality in Thailand. Available at http://medipe2.psu.ac.th/~vis/report/VIS_Report_Jan_Dec07.pdf.

[11] “Baghdad: Mapping the violence”, BBC News, available at http://news.bbc.co.uk/2/shared/spl/hi/in_depth/baghdad_navigator/, accessed 10/2008.

[12] Burnham G., Lafta R., Doocy S. and Roberts L., *Lancet*, **368** (2006) 1421.

[13] Johnson N. F., Spagat M., Gourley S., Onnela J.-P. and Reinert G., *J. Peace Res.*, **45** (2008) 653.

[14] UN Development Program, *Iraq Living Conditions Survey 2004, 2005*.

[15] Iraq Family Health Survey Study Group, *N. Engl. J. Med.*, **358** (2008) 484.

[16] Iraq Body Count Project, *A Dossier of Civilian Casualties in Iraq 2003-2005*, 2005.

J.-P. Onnela et al.