SUPPLEMENTARY DATA

Proteolytic cleavage and truncation of NDRG1 in human prostate cancer cells, but not normal prostate epithelial cells

Mohammad K. GHALAYINI*, Qihan DONG†‡, Des R. RICHARDSON§1 and Stephen J. ASSINDER*1

*Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, New South Wales, Australia, †Discipline of Medicine, Endocrinology Section and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia, §School of Science and Health, University of Western Sydney, Penrith South, New South Wales, Australia, and Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, University of Sydney, New South Wales, Australia

Supplementary Figures S1 and S2 are on the following pages
Figure S1 Post-translational modifications for α-casein, NDRG1 and fetuin proteins

(A) Bovine α-S1-casein protein is phosphorylated on nine amino acid residues according to Uniprot. The bovine α-S1-casein protein contains nine phosphorylation sites according to the Uniprot website (http://www.uniprot.org/uniprot/P02662). Phosphorylation sites in bold red.

(B) Human NDRG1 protein has the potential to be phosphorylated on 15 amino acid residues according to Uniprot. The human NDRG1 protein contains 15 phosphorylation sites according to the Uniprot website (http://www.uniprot.org/uniprot/Q92597). Phosphorylation sites in bold red.

(C) Bovine fetuin glycoprotein contains three N-linked glycans and four O-linked glycans according to Uniprot. The bovine fetuin glycoprotein contains 3 N-linked and 4 O-linked glycosylation sites according to the Uniprot website (http://www.uniprot.org/uniprot/P12763). N-linked glycosylation sites in bold green, whereas O-linked glycosylation sites in bold red.
Proteolytic cleavage and truncation of NDRG1

Figure S2
(A) The mRNA (accession number NM_001135242) of the coding region of NDRG1 (exon 2–16) and (B) translated protein product using ensemble (http://asia.ensembl.org/index.html)

For (B), black font, alternating exons; blue font, alternating exons; red font, residue overlap splice site.

Received 18 April 2013; accepted 29 April 2013
Published as Immediate Publication 2 May 2013, doi 10.1042/BSR20130042