A New Paradigm Shift in Gastroparesis Management

Parit Mekaroonkamol, Kasenee Tiankanon, and Rungsun Rerknimitr

Division of Gastroenterology, Department of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand

INTRODUCTION

Gastroparesis is a dysmotility disease, defined by delayed gastric emptying in the absence of mechanical obstruction. With a rising prevalence over the past decade, gastroparesis has become a burden to both the patients and healthcare system. The hospitalization rate has alarmingly increased with a mortality rate of up to 3.2%. With limited available therapeutic options, patients with gastroparesis not only have impaired quality of life, but also with shorter survival. Advanced age at diagnosis and uncontrolled diabetes are the key poor prognostic factors.

Gastric motility is a complex process that involves a concert orchestration of motor, secretory, and neuromodulating activities, making it almost impossible for any single intervention to effectively target the entire gastric emptying mechanism. Only 70% of patients adequately respond to dietary modification and medical management. Most prokinetic and antiemetic medications are limited by their adverse effects. These limitations underscore the need for an alternate therapeutic options. Fortunately, with better understanding of the pathophysiology and pathogenesis of the disease, new treatments have emerged and have shown promising efficacy even in patients with refractory symptoms. The scope of this article will focus on recent advances in diagnosis and management of gastroparesis.

EPIDEMIOLOGY

The true prevalence of gastroparesis is difficult to be accurately assessed. It is estimated that only one-ninth of the patients with high likelihood of having gastroparesis was actually worked up for and diagnosed. One of the key challenges is the lack of well-designed epidemiologic study using both verified gastroparetic symptoms and validated gastric emptying scintigraphy as diagnostic criterion. Few existing data reported a prevalence of 10 to 38 per 100,000 population with predominance in female and type I diabetic patients.

These existing epidemiological data are mainly in Caucasian population. The prevalence of gastroparesis in...
minority groups such as Hispanics, Africans, and Asian population are largely unknown. Among patients with diabetes, gastroparesis is far more prevalent in diabetes type 1 (30% to 50%) with a cumulative risk of 5.2%, compared to diabetes type 2 (15% to 30%) with a lower cumulative risk of 1.1%. As for gender inequity, women are at a 4-fold increased risk to developed gastroparesis with an incidence of 9.8 per 100,000 person years—partly can be explained by cyclic rises of progesterone, a key relaxant of gastric smooth muscle which induces overall gut hypomotility. Advanced age has also been shown to increase risk of gastroparesis with an incidence of 10.5 per 100,000 person years in patients older than 60 years old. It is hypothesized that older age carries more likelihood of being exposed to infections, drugs, and neuropathogenic factors.

Emerging data has suggested a very close relationship between functional dyspepsia and gastroparesis that many believe they are two different entities of the same spectrum. A significant portion of gastroparesis patients are known to overlap with functional dyspepsia, especially in patients with mildly delayed gastric emptying (<20% retention at 4 hours).

Functional dyspepsia is defined by bothersome upper gastrointestinal symptoms, which are postprandial fullness, early satiety, epigastric pain, or epigastric burning, in the absence of structural or metabolic etiology. While pain and burning sensation are not included in gastroparesis cardinal symptoms, but up to 90% of gastroparetic patients suffer from epigastric pain which can be misdiagnosed as functional dyspepsia. The prevalence of functional dyspepsia is estimated to be 10%, 3 to 7 times higher than that of gastroparesis.

Sensorimotor symptoms of upper gastrointestinal tract lack enough specificity to help reliably differentiate functional dyspepsia from gastroparesis. Vice versa, six out of nine symptoms of gastroparesis cardinal symptoms index (GCSI) overlap with symptoms of functional dyspepsia. In addition, majority of gastroparesis patients meet ROME IV criteria for functional dyspepsia while 30% of patients with functional dyspepsia have delayed gastric emptying, raising a question on how many have been misdiagnosed as one another. Due to such complex diagnostic paradigm, true prevalence of gastroparesis is likely to be inaccurately estimated. Regardless, the hospitalization rate of gastroparesis has amplified 158% from 1994 to 2005 with an astounding 3.5 billion US dollar healthcare expenditure in the United States, putting in a perspective on the significant increase in medical and economical from this debilitating disease.

PATHOPHYSIOLOGY

A wide range of gastric neuroimmunologic abnormalities are found in patients with gastroparesis. The conventional pathogenesis of gastroparesis focuses on a disruption of interstitial cells of Cajal network and vagal nerve injury, especially in patients with diabetic gastroparesis and postsurgical gastroparesis, while loss of synaptic vesicles and increased proinflammatory M1 macrophage are more commonly seen in patients with idiopathic gastroparesis. The discovery of smooth muscle cells, interstitial cells of Cajal, PDGFRα+ cells syncytium as the main gastric pacemaker unit (Fig. 1) and the neuronal-specific autoantibodies targeting gastric myenteric ganglion have shifted our understanding from the disease of dysmotility to a spectrum of neuroimmunologic dysfunction with a component of autoimmunity (Fig. 2).
ies, not only help us better understand the pathogenesis, but also open the possibilities of targeted immunotherapy in selected refractory cases. 38,39

Gastric motility involves three main mechanisms; (1) fundic accommodation, (2) gastric phasic contraction, and (3) antro-pyloro-duodenal coordination. 6,40 Once food bolus passes through the esophagus, the fundus relaxes increasing gastric volume while maintaining intragastric pressure. Impairment of fundic accommodation can cause nausea from unaccommodated intragastric pressure. 41

Once food bolus enters the stomach, fundic tone increases at the same time as myenteric interstitial cell of Cajal generates slow wave contraction that leads to propagated smooth muscle contraction to capture food that is pushed from fundus into gastric body and antrum against a closed pylorus. Such to-and-fro movement allows mechanical grinding and enzyme mixture of the food bolus back and forth until small particle homogenous chyme is achieved. 42 This process is controlled by magnitudes of gastric hormones, primarily by cholecystokinin (CCK) as the main inhibitor of gastric emptying and orexigenic hormones such as ghrelin and motilin as an accelerator of gastric emptying (Fig. 3). 43 CCK release is triggered by fat and protein content in ingested food. It stimulates contraction of pylorus and relaxation of proximal stomach (fundic accommodation), thereby delaying gastric emptying via vagal afferent nerve. 44 Ghrelin and motilin act directly on ghrelin and motilin receptor in the stomach and small intestine to stimulate muscular contraction thereby playing an important role in the regulation of interdigestive gastrointestinal motility and indirectly causes rhythmic contraction to accelerate gastric emptying and increase appetite. 43,45 They are targets of prokinetics such as relamorelin and erythromycin 43 as shown in Fig. 3. Abnormal level of neurotransmitters responsible for enteric muscle contraction such as ghrelin, motilin, and substance P can lead to pylorospasm. 46 Imbalance of these gastric hormones can cause impaired fundic accommodation, pylorospasm, and gastric dysmotility leading to gastroparesis. 43,46

The composition of chyme determines neurohormonal response for pancreatic enzyme secretion and relaxation of the pylorus, an event that occurs at the same time as duodenal contraction, allowing food passage into the small intestine. Antroduodenal motility is therefore one of the key process that determines the pace of gastric emptying. 47

Fig. 2. Neuroimmunologic and histologic injury in the pathogenesis of gastroparesis. ICC, interstitial cell of Cajal; nNOS, neuronal nitric oxide synthase; HO1, heme oxygenase-1.
All key gastric dysmotility including antroduodenal hypomotility, impaired fundic accommodation, and pylorospasm interact with one another (Fig. 3) and such dysmotility can result from multiple causes including, diabetes with microvascular complications, vagal nerve injury, viral infections, i.e., cytomegalovirus, Epstein-Barr virus, metabolic disorders, neuromuscular disorders, certain medications, certain abdominal and thoracic surgery such as solid organ transplantation, Roux-en-Y gastric bypass, esophagectomy, etc. as described in Table 1.4,12,17,51 However, despite better understanding of its pathophysiology, majority of gastroparesis are still from an unknown cause.4,17

The cardinal symptoms of gastroparesis are essential in making the diagnosis. These symptoms do not stem from delayed gastric emptying alone, but also from a complex spectrum of neuromuscular dysfunction.

The gold standard method for assessment of gastric emptying remains scintigraphy study using a validated 4-hour T99 labeled solid meal technique according to the Tougas protocol.32,53 However, such time-consuming nuclear study poses certain dilemmas, i.e., (1) gamma-camera for T99 scintigraphy is costly and not readily available in many centers; (2) because of the 4-hour standardization, testing can be limited to only one to two patients per day; (3) radiation exposure is of concern for many women in reproductive age which represent the majority of gastroparesis patients; (4) low fat, low caloric conventional egg-based meal does not represent a general daily meal for most patients which may cause false negative in patients with mild delayed gastric emptying. Due to aforementioned limitations, repeating the study multiple times to monitor progression or treatment response are not prac-

DIAGNOSIS

Diagnosis of gastroparesis requires three main criteria; (1) gastroparetic symptoms, (2) absence of mechanical obstruction, and (3) demonstrable delayed gastric emptying.52
Table 1. Etiology of Gastroparesis

Etiology of gastroparesis	Specific causes
Diabetes	Diabetes type II (5 times more common than type I)
Postinfectious	Cytomegalovirus, Epstein-Barr virus, Herpes simplex virus
Vagal nerve injury	Pylorus-preserving Whipple, Lung transplantation, Esophagectomy, Roux-en-Y gastric bypass, Cholecystectomy, Nissen fundoplication
Metabolic disorders	Hypokalemia, Hypomagnesemia, Hypophosphatemia, Hypothyroid, Cystic fibrosis
Musculoskeletal disorder	Scleroderma, Amyloidosis, Mixed connective tissue disease
Neurological disorder	Parkinson’s, Autoimmune gastrointestinal dysmotility
Medication-induced	Opioid, Anti-cholinergic agents, Tricyclic antidepressant, Calcium channel blocker, Octreotide, Levodopa, Lithium, Glucagon-like peptide-1 analogs, Cyclosporine
Idiopathic	Accounts for 30% to 50% of cases

Recently, alternative methods such as carbon-13 labeled breath test and wireless motility capsule (WMC) study have emerged to overcome the limitations of gastric emptying scintigraphy. The concept of breath testing is to assess the time carbohydrate-base substrate is digested and absorbed in the small intestine. The tagged substrate can be a medium-chain fatty acid such as octanoic acid or an edible algae such as commercialized Spirulina platensis. Once the carbohydrate-base substrate is digested and absorbed in proximal small intestine, 13C then undergoes hepatic metabolism into tagged 13CO$_2$, which can be detected in the patient’s exhaled gas using mass spectrometry method. Timing of 13CO$_2$ detection after meal ingestion can be analyzed for gastric emptying time.

Compared to a nuclear study, breath test is more simple, reproducible, and much more economical since it does not require any special hardware equipment however, gastric outlet obstruction needs to be excluded first. Although not as extensively validated, the results of 13C breath test has shown to correlate well with scintigraphy study and has recently been approved by U.S. Food and Drug Administration. The limitation of the 13C breath test is that it cannot demonstrate the gastric region affected such as impaired fundic accommodation versus poor pyloric clearance. Moreover, the results should be interpreted with caution in patients with liver and lung pathology where false positive can occur. In addition, 39% of gastroparesis patients, especially in those with diabetes or scleroderma, may have concurrent small bowel bacterial overgrowth, a condition that can accelerate small bowel absorption process thus producing false negative results.

WMC assesses global motility function including gastric emptying and small bowel transit time by measuring changes in pH, temperature, and pressure. The limitation of the WMC is that the emptying of a non-digestible foreign body like a wireless capsule does not reflect the true emptying of a regular meal. Therefore, WMC only showed moderate correlation with the gold standard 4-hour scintigraphy study with 75% agreement (κ=0.42), 65% sensitivity, and 87% specificity. In addition to global gastric emptying, regional function assessment is of new diagnostic concept that can be helpful for targeted therapy and is of prognostic value. It can be evaluated by both scintigraphy study and by WMC while targeted physiologic evaluation of the pylorus can be evaluated by impedance planimetry using endoscopic functional lumen imaging probe (EndoFLIP). The degree of delayed gastric emptying does not always correlate with symptoms severity certain symptoms correlate with proximal and distal gastric retention. Delayed proximal gastric emptying generally causes more symptoms including nausea, vomiting, abdominal distension, and acid reflux while early satiety is more likely to be associated with delayed distal gastric emptying.

Localized gastric scintigraphy can serve not only as a surrogate for regional gastric digestive mechanism, but also as a predictor for responses to gastroparesis therapy. For example, Acotiamide, a medication that targets to improve fundic accommodation may be preferred in patients with delayed proximal gastric emptying or pylorus-directed therapy is predicted to yield clinical response in patients with high retention index. Therefore, regional emptying data should be retrieved when able as they can provide additional important information for selecting appropriate therapy.

Gastric accommodation is a different parameter than proximal delayed gastric emptying but certainly share a similar mechanism. It can be assessed using single-photon emission computed tomography or magnetic resonance imaging. Scintigraphy test may be able to crudely screen impaired fundic accommodation by measuring the size of
the proximal stomach immediately after radiolabeled meal ingestion.66

Mechanism	Medication
Anti-dopaminergic receptor	Domperidone, Levosulpiride, Metoclopramide, Itofpride
Cholinergic agonist (acetylcholinesterase inhibitor and muscarinic receptors antagonist)	Acotiamide, Itofpride
Motilin agonist	Erythromycin, Azithromycin
Cannabinoid receptor agonist	Tetrahydrocannabinol, Cannabidiol
Serotonin modulators	
SHT3 antagonist	Alosetron, Ondansetron
SHT3 agonist-Ach modulator	Prucalopride, Mosapride, Levosulpiride, Metoclopramide, Velusetrag
5HT4 agonist	Buspirone, Acotiamide
Ghrelin agonist	Buspirone, Ulimorelin
Neurokinin antagonist	Aprepitant, Tradipitant

Ach, acetychololine.

TREATMENT

Careful restoration of water and electrolyte balances with close monitoring of refeeding syndrome is the cornerstone of initial treatment. Special attention should be made on the patient’s glycemic control due to high risk of hypoglycemia, diabetic ketoacidosis, and hyperglycemic-induced exacerbation of gastroparetic symptoms.67

Dietary modification with small frequent meals of low-fat, low-caloric, low-fiber diet should be adopted by all patients.67 Vigorous chewing of ingested food into small particles can also reduce reflux and gastroparetic symptoms.68 Unfortunately, despite nutritional counseling, majority of the patients will remain symptomatic and require medical therapy.7

1. Pharmacotherapy

Medical treatment of gastroparesis is largely limited by long-term adverse effects of available medications, tachyphylaxis, and availability.7 Prokinetics remain the mainstay of pharmacotherapy.8 Other centrally-acting medications such as muscarinic cholinergic receptor antagonist, SHT3 receptor antagonists, and phenothiazines have antiemetic effects which can be used for symptomatic relieve as described in Table 2 and Fig. 4.69

1) Anti-dopaminergic receptor

Among all pharmacotherapies for gastroparesis, metoclopramide is the most commonly used as it is the only available Food and Drug Administration-approved medi-

Fig. 4. Mechanism of available pharmacotherapies for gastroparesis. THC, tetrahydrocannabinol; CBD, cannabidiol; D2RA, dopamine D2 receptor; NK1, neurokinin 1; Sub-P, substance P; M1M2, muscarinic 1 and muscarinic 2 receptors; Ach, acetychololine; Ach-R, Ach receptor; AchE, acetycholinesterase.
cation in the United States. Its 12-week black box warning due to extrapyramidal side effects is the main limitation for long-term use. It also has weak effects on 5HT₃ and 5HT₁ receptors accelerating gastric emptying. Domperidone, though is available in Europe and Asia, carries a low but significant risk of QTc prolongation and sudden cardiac death. Advantage of domperidone is that it does not cross blood brain barrier thus having much lower risk for extrapyramidal side effects. Levsulpiride increases lower esophageal sphincter pressure and inhibits dopamine D₂ receptors on both stomach and small intestine. All three anti-dopaminergic agents have dual-antiemetic activities as they bind both central (chemoreceptor trigger zone in the area postrema) and peripheral (enteric) dopamine receptors and prokinetic properties since they antagonize dopamine receptors in the central nervous system as well as in the gastrointestinal tract where dopamine augments inhibitory effects on gastrointestinal motility.

2) Serotonin modulators
Pharmacologic agents targeting serotonin receptors such as 5HT₁₆, 5HT₁₅, and 5HT₁₃ have seen the most progress among pharmacotherapy of gastroparesis. 5HT₁₃ receptor agonist and motilin receptor agonists such as prucalopride, mosapride, levsulpiride, and velusetrag have been used to relieve bloating and early satiety with varying clinical response. Prucalopride has shown to be effective for gastroparesis in a predominantly female idiopathic gastroparesis cohort. Since it is currently used for constipation, it would be ideal for gastroparesis patients who also have colonic inertia.

5HT₁₆ receptor antagonists such as ondansetron and alosetron primarily work centrally via afferent vagal nerve thus exerting antiemetic effect with little prokinetic property. Advantage of medication in this group is their availability in non-oral route of administration. Ondansetron is available in both oral disintegrating tablet and intravenous form, while granisetron is available in a transdermal delivery system.

Acotiamide, an agent with both selective and reversible acetylcholinesterase inhibition, also exhibit 5HT₁₆ agonistic activity. It is mainly used for epigastric pain syndrome and is not well studied in gastroparesis but its ability to improve fundic accommodation and reduce postprandial antral pressure has been an attractive property for gastroparesis patients. Patients with anxiety disorder can benefit from 5HT₁₆ anxiolytic agent such as Buspirone that can exert fundic relaxation effect and improve postprandial symptoms, especially for those with concomitant functional dyspepsia.

3) Neurokinin 1 inhibitor
Neurokinin 1 (NK1) inhibitor is a novel agent with selective high-affinity antagonist of substance P and NK1 receptors with little or no affinity to serotonin or dopamine receptors. Drugs in this class include aprepitant and tradipitant, which are used commonly for chemotherapy-induced nausea. Recent studies have demonstrated their efficacy in improving GCISI with a potential benefit in functional accommodation.

4) Ghrelin agonist
Ghrelin agonist such as relamorelin can stimulate gastric body and antral contraction, thereby accelerating gastric emptying. The results of phase IIa and IIb randomized controlled trials among patients with diabetes have been quite promising. Its lack of cardiovascular or extrapyramidal adverse effect make relamorelin an appealing option for patients with diabetic gastroparesis with concurrent constipation.

5) Cannabinoid receptor agonist
The role of medical marijuana has been under debate for years. Although a long chronic use of marijuana is associated with cannabinoid hyperemesis syndrome but the centrally acting effect of tetrahydrocannabinol is, in itself, antiemetic and analgesic. A recent study revealed that gastroparesis patients with concomitant use of cannabis tend to have shorter hospitalization duration and even with lower in-patient mortality rate. Another questionnaire-based study showed that there was no difference in gastric emptying between cannabis and non-cannabis users but improved gastroparesis symptoms were reported among those who use cannabinoids. Proper dosing of tetrahydrocannabinol and cannabidiol is the cornerstone of its use and remains to be verified in larger randomized controlled studies.

6) Antidepressants
Traditionally, antidepressant and neuromodulators have been used to alleviate gastroparesis symptoms with varying success. Tricyclic antidepressant, though can be useful in functional dyspepsia, has shown to have little effects in gastroparesis. Its anticholinergic property can also delay gastric emptying and generally should be used only for mild gastroparesis or functional dyspepsia with overlapping gastroparesis symptoms. Noradrenergic and specific serotonergic antidepressant such as mirtazapine, however, has demonstrated promising results in improving nausea, loss of appetite, and weight gaining benefit in an open-label study. Antipsychotic agents such as haloperidol and levsulpiride have been shown to improve nausea and pain
in gastroparesis patients via their anti-dopaminergic effects.92,93

Non-intravenous parenteral route is essential for assuring adequate delivery of the medication in nausea-predominant patients. Nasal metoclopramide, transdermal granisetron, and subcutaneous relamorelin offer practical alternatives to conventional peroral medications.94 When cannabinoid is considered, smoked cannabis offers better bioavailability compared to oral route due to a lack of first-pass effect through the liver.95

The selection of medication depends on the presenting symptoms. For nausea/vomiting which stems from a combination of increased intragastric pressure and efferent signal via central vomiting center in the medulla, dopamine receptor antagonist such as metoclopamide, domperidone, and phenothiazines and serotonin modulator such as ondansetron and granisetron are generally the first-line agents.96 Conventional antispasmodic agents with anticholinergic property such as hyoscyamine, dicyclomine, and peppermint oil can be used for abdominal pain. Bloating and early satiety are more resilient symptoms as they are associated with impaired fundic accommodation, a mechanism with no specific targeted therapy.

2. Endoscopic therapy

As pyloric dysfunction is one of the main pathogeneses of gastroparesis, all available endoscopic therapies aim to mechanically disrupt pyloric muscle, a mechanism which has been proven to impact not only pyloric clearance, but also global gastric emptying.22,96,97 Available endoscopic modalities include intramuscular pyloric botulinum injection, transpyloric stenting, pyloric dilation, and gastric peroral endoscopic pyloromyotomy (G-POEM).76 Pylorospasm is defined as a high-amplitude long contraction of pyloric muscle and is associated with muscular fibrosis and loss of interstitial cell of Cajal.98

Recent studies on surgical pyloroplasty and transpyloric stenting demonstrated an improvement of both GCSI and gastric emptying,99-102 however, randomized controlled trials of intrapyloric botulinum injection failed to show symptomatic improvement compared to sham saline injection despite improvement in gastric emptying.102,104,105 Intrapyloric botulinum injection is no longer recommended by the American College of Gastroenterology, while transpyloric stent is associated with risk of stent migration and not considered a long-term solution.8,104,105

Currently, the most promising endoscopic therapy is G-POEM, also known as peroral endoscopic pyloromyotomy, which is a novel therapy for refractory gastroparesis.106-109 Available data on G-POEM is only for short-term outcomes with the longest follow-up data of 3 years.110 Although more than a thousand patients have been reported worldwide, the follow-up data were mainly from retrospective non-controlled studies with a few small non-controlled prospective trials.22,96,106,110,111

The procedural techniques of G-POEM have been refined over time. Current recommendation is to perform selective circular pyloromyotomy to minimize the risk of perforation and that there is no difference in clinical outcomes between anterior and posterior approach, nor is there any difference in the patient’s position.22,112-114 Although general anesthesia is the standard mode of anesthesia for G-POEM however, recent study has demonstrated that the procedure can be safely carried out with conscious sedation.115

Despite its technical challenges that demands expertise in third space endoscopy, technical success of G-POEM has been reported at almost 100%.22,76,108,109,111 It is important to recognize that these results were likely subject to publication bias and all procedures were performed by expert endoscopists who are highly experienced in submucosal endoscopy. The learning curve of the procedure, even in the experts’ hands, was estimated to be at 18 procedures.116

Pyloric parameters such as cross-sectional area and diameter are shown to be inversely associated with cardinal symptoms of postprandial fullness and early satiety.49 Poor pyloric compliance and distensibility are also associated with severity of gastroparesis symptoms and delayed gastric emptying time.55 These findings can explain the mechanism of how pyloromyotomy can improve global gastric emptying and gastroparesis symptoms.

Five recent large meta-analyses have reiterated clinical efficacy of G-POEM in both short and mid-term follow-up with significantly improved both GCSI score and gastric emptying scintigraphy.117-119 Mohan et al.117 demonstrated that G-POEM has comparable clinical success, technical success, and adverse event rate to surgical pyloroplasty with shorter procedural time. Despite limited long-term data and much more complex pathophysiology, the long-term efficacy of G-POEM for gastroparesis has been quite encouraging with significantly improved symptoms and quality of life in 73% to 85.7% of patients at up to 36-month follow-up period,22,96,97,106,110,113 which was surprisingly comparable to the 72.7% to 87% clinical success rate of its predecessor, POEM for achalasia.120,121 Overall adverse events rate of G-POEM is low, ranging from 0% to 6.7%.96,108,113,114,122 Serious adverse events included gastrointestinal bleeding, pyloric ulcer, and tension c Kapneritoneum. Unusually high rate of perforation (20%) was reported in one study,111 which could have been attributed to full-thickness pyloromyotomy technique used.
Due to limited therapeutic options and growing number of patients suffering from refractory gastroparesis, G-POEM was quickly adopted.20,96,97,106,112,113,122-124 Data from Asian population is sparse and is mainly from India and Korea.106,111 This reporting disparity reflects the varying prevalence among different ethnicities. The role of G-POEM awaits further large, randomized, sham-controlled trials to verify these results.

One of the recent advances in endoscopic evaluation and management of gastroparesis is the advent of impedance planimetry using EndoFLIP5 that allows real-time evaluation of pyloric physiology and function. Pyloric compliance and distensibility have been shown to play a predictive role of clinical response to pylorus-directed therapy.52,111,125,126

G-POEM decreases pyloric pressure, increased pyloric distensibility, increased pyloric cross-sectional area, as well as the GCSI.111 The distensibility cutoff of 9.2 mm2/mm Hg yielded a specificity of 100% and a sensitivity of 72% for clinical response while the outcomes were more favorable in patients with diabetic gastroparesis.111 Subsequent studies on impedance planimetry measurements reaffirmed similar correlation between an increased pyloric distensibility and improved gastroparesis symptoms, whether the pyloromyotomy was performed by G-POEM or by an EsoFLIP-controlled pyloric dilation.127-129 Gastric emptying was also found to be decreased after G-POEM when improved pyloric indices and symptoms were observed.129,130 Although there is prognostic benefit of intra-procedural pyloric evaluation using EndoFLIP5, the cost-effectiveness of its routine use remains to be further verified.52

3. Gastric electrical stimulator

Gastric electrical stimulation (GES) involves surgically implanted neurostimulator to the gastric wall. The amplitude, frequency, and direction of these electrical activities can be adjusted to help control the gastric emptying.88,131 The device has been approved for patients with nausea-predominant diabetic gastroparesis who do not respond to medical therapy.132 However, the efficacy of GES in recent randomized controlled trials were rather disappointing with no significant improvement of symptom severity or significant superiority to sham intervention.7,133,134 In addition, the implantation and device-associated adverse effects such as pocket infection, sepsis, pulmonary embolism, stroke, or even death have been reported.132 Shen et al.135 conducted a comparative study between GES and G-POEM and demonstrated that G-POEM had higher and more durable clinical response with 76% response rate at 24-month follow-up and lower adverse event rate (4.3% vs 26%). Currently, the indication for GES is rather limited only for patients with nausea-predominant diabetic gastroparesis.

4. Surgical therapy

Although surgery can serve as a rescue therapy in those who do not respond to medication and pyloromyotomy, it is imperative to reevaluate these patients preoperatively and exclude other causes of gastroparesis-like symptoms such as small bowel dysmotility, overlapped functional dyspepsia, etc. Surgical intervention includes surgical pyloroplasty, total gastrectomy, and subtotal gastrectomy with Roux-en-Y gastrojejunostomy reconstruction. While gastrectomy with surgical gastrojejunostomy can be a durable therapeutic option but it carries significant risk with some studies reported as high as 23% morbidity and 3% mortality rate.136,137 Although endoscopic ultrasound-guided gastrojejunostomy can offer less-invasive mean to provide pyloric-bypass anastomosis, high quality studies on its long-term safety and patency are still lacking.137

A study comparing G-POEM with surgical pyloroplasty showed G-POEM had average shorter operative time, less intra-procedural blood loss, shorter hospital stay, lower adverse event rate, and lower intensive care unit admission rate.138 Recent systematic review comparing GES, surgical pyloroplasty, and gastrectomy showed favorable outcomes in pyloric intervention group.136

Pyloromyotomy can be repeated in patients with recurrent symptoms.22 Combined therapy can also be complementing to each other. Surgical pyloroplasty with gastric pacemaker has shown to improve gastroparesis symptoms.99 Total gastrectomy serves as a last resort for the patients who continue to suffer from refractory symptoms despite optimal therapy.114

As exciting as these novel breakthroughs are, a few shortcomings on gastroparesis studies remain: (1) there is no validated gold standard treatment that new therapeutic intervention can be compared with; (2) objective outcomes such as gastric retention rate does not correlate well with gastroparesis symptoms; (3) clinical response is mainly measured by GCSI which is subjective and is limited by recall bias; (4) even with an increasing prevalence, gastroparesis is still a rare disease and novel therapies are limited by the device and expertise availability, making large-scale trials very challenging; (5) most existing studies included only patients with severe refractory disease, subjecting the results to overinflated improvement due to regression to the mean phenomenon; or (6) sham-controlled randomized prospective studies with long-term follow-up are direly lacking. Until more robust data is available, caution should be made when adopting these novel modalities into routine clinical practice.
CONCLUSIONS

With recent advances in unfolding the complex pathophysiology of gastroparesis, more practical diagnostic modalities, and minimally invasive therapeutic options, management paradigm of gastroparesis has shifted significantly with an aim to become curative and more individualized. As more long-term data from randomized trials are emerging, the armamentarium of gastroparesis management will continue to evolve.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ORCID

Parit Mekaroonkamol
https://orcid.org/0000-0002-3206-3431
Kasenee Tiankanon
https://orcid.org/0000-0001-8550-8142
Rungsun Rerknimitr
https://orcid.org/0000-0001-6866-6886

REFERENCES

1. Wang YR, Fisher RS, Parkman HP. Gastroparesis-related hospitalizations in the United States: trends, characteristics, and outcomes, 1995-2004. Am J Gastroenterol 2008;103:313-322.
2. Saleem S, Inayat F, Aziz M, Then EO, Zafar Y, Gaduputi V. In-hospital mortality in gastroparesis population and its predictors: a United States-based population study. JGH Open 2021;5:350-355.
3. Lacy BE, Crowell MD, Mathis C, Bauer D, Heinberg LJ. Gastroparesis: quality of life and health care utilization. J Clin Gastroenterol 2018;52:20-24.
4. Jung HK, Choung RS, Locke GR 3rd, et al. The incidence, prevalence, and outcomes of patients with gastroparesis in Olmsted County, Minnesota, from 1996 to 2006. Gastroenterology 2009;136:1225-1233.
5. Christensen J. Manometric diagnosis of gastrointestinal motility disorders. Mayo Clin Proc 1986;61:998-999.
6. Kelly KA. Gastric emptying of liquids and solids: roles of proximal and distal stomach. Am J Physiol 1980;239:G71-G76.
7. Williams PA, Nikitina Y, Kedar A, Lahr CJ, Helling TS, Abell TL. Long-term effects of gastric stimulation on gastric electrical physiology. J Gastrointest Surg 2013;17:50-56.
8. Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L; American College of Gastroenterology. Clinical guideline: management of gastroparesis. Am J Gastroenterol 2013;108:18-37.
9. Grover M, Farrugia G, Stanghellini V. Gastroparesis: a turning point in understanding and treatment. Gut 2019;68:2238-2250.
10. Vosoughi K, Ichkhanian Y, Benias P, et al. Gastric per-oral endoscopic myotomy (G-POEM) for refractory gastroparesis: results from an international prospective trial. Gut 2022;71:25-33.
11. Rey E, Choung RS, Schleck CD, Zinsmeister AR, Talley NJ, Locke GR 3rd. Prevalence of hidden gastroparesis in the community: the gastroparesis “iceberg”. J Neurogastroenterol Motil 2012;18:34-42.
12. Jones KL, Russo A, Stevens JE, Wishart JM, Berry MK, Horowitz M. Predictors of delayed gastric emptying in diabetes. Diabetes Care 2001;24:1264-1269.
13. Choung RS, Locke GR 3rd, Schleck CD, Zinsmeister AR, Melton LJ 3rd, Talley NJ. Risk of gastroparesis in subjects with type 1 and 2 diabetes in the general population. Am J Gastroenterol 2012;107:82-88.
14. Jones KL, Russo A, Berry MK, Stevens JE, Wishart JM, Horowitz M. A longitudinal study of gastric emptying and upper gastrointestinal symptoms in patients with diabetes mellitus. Am J Med 2002;113:449-455.
15. Wald A, Van Thiel DH, Hochstetter L, et al. Gastrointestinal transit: the effect of the menstrual cycle. Gastroenterology 1981;80:1497-1500.
16. Yu D, Ramsey FV, Norton WF, et al. The burdens, concerns, and quality of life of patients with gastroparesis. Dig Dis Sci 2017;62:879-893.
17. Moshide B, Potter M, Talley NJ. Epidemiology and pathophysiology of gastroparesis. Gastrointest Endosc Clin N Am 2019;29:1-14.
18. Vijayvargiya P, Jamee-Oskooei S, Camilleri M, Chedid V, Erwin PJ, Murad MH. Association between delayed gastric emptying and upper gastrointestinal symptoms: a systematic review and meta-analysis. Gut 2019;68:804-813.
19. Chedid V, Brandler J, Vijayvargiya P, Park SY, Szarka LA, Camilleri M. Characterization of upper gastrointestinal symptoms, gastric motor functions, and associations in patients with diabetes at a referral center. Am J Gastroenterol 2019;114:143-154.
20. Carbone F, De Buyscher R, Van den Houte K, Schol J, Goel en N, Tack J. Relationship between gastric emptying rate and simultaneously assessed symptoms in functional dyspepsia. Clin Gastroenterol Hepatol 2022;20:E429-E437.
21. Stanghellini V, Chan FK, Hasler WL, et al. Gastroduodenal...
22. Mekaroonkamol P, Dacha S, Wang L, et al. Gastric peroral endoscopic pyloromyotomy reduces symptoms, increases quality of life, and reduces health care use for patients with gastroparesis. Clin Gastroenterol Hepatol 2019;17:82-89.

23. Revicki DA, Camilleri M, Kuo B, Szarka LA, McCormack J, Parkman HP. Evaluating symptom outcomes in gastroparesis clinical trials: validity and responsiveness of the Gastroparesis Cardinal Symptom Index-Daily Diary (GCSI-DD). Neurogastroenterol Motil 2012;24:456-463.

24. El-Serag HB, Talley NJ. Systemic review: the prevalence and clinical course of functional dyspepsia. Aliment Pharmacol Ther 2004;19:643-654.

25. Soykan I, Sivri B, Sarosiek I, Kiernan B, McCallum RW. Demography, clinical characteristics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci 1998;43:2398-2404.

26. van Lelyveld N, Schipper M, Samsom M. Lack of relationship between chronic upper abdominal symptoms and gastric function in functional dyspepsia. Dig Dis Sci 2008;53:1223-1230.

27. Lacy BE. Functional dyspepsia and gastroparesis: one disease or two? Am J Gastroenterol 2012;107:1615-1620.

28. Revicki DA, Rentz AM, Dubois D, et al. Gastroparesis Cardinal Symptom Index (GCSI): development and validation of a patient reported assessment of severity of gastroparesis symptoms. Qual Life Res 2004;13:833-844.

29. Jehangir A, Parkman HP. Rome IV diagnostic questionnaire complements patient assessment of gastrointestinal symptoms for patients with gastroparesis symptoms. Dig Dis Sci 2018;63:2231-2243.

30. Stanghellini V, Tack J. Gastroparesis: separate entity or just a part of dyspepsia? Gut 2014;63:1972-1978.

31. Vanheel H, Carbone F, Valvetski L, et al. Pathophysiological abnormalities in functional dyspepsia subgroups according to the Rome III criteria. Am J Gastroenterol 2017;112:132-140.

32. Faussone-Pellegrini MS, Grover M, Pasricha PJ, et al. Ultrastructural differences between diabetic and idiopathic gastroparesis. J Cell Mol Med 2012;16:1573-1581.

33. Grover M, Gibbons SJ, Nair AA, et al. Transcriptomic signatures reveal immune dysregulation in human diabetic and idiopathic gastroparesis. BMC Med Genomics 2018;11:62.

34. Bashashati M, Moraveji S, Torabi A, et al. Pathological findings of the antral and pyloric smooth muscle in patients with gastroparesis-like syndrome compared to gastroparesis: similarities and differences. Dig Dis Sci 2017;62:2828-2833.

35. Sanders KM, Kito Y, Hwang SJ, Ward SM. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology (Bethesda) 2016;31:316-326.

36. Herring BP, Hoggatt AM, Gupta A, et al. Idiopathic gastroparesis is associated with specific transcriptional changes in the gastric muscularis externa. Neurogastroenterol Motil 2018;30:e13230.

37. Grover M, Bernard CE, Pasricha PJ, et al. Diabetic and idiopathic gastroparesis is associated with loss of CD206-positive macrophages in the gastric antrum. Neurogastroenterol Motil 2017;29:e13018.

38. Soota K, Kedar A, Nikitina Y, Arendale E, Vedanarayanan V, Abell TL. Immunomodulation for treatment of drug and device refractory gastroparesis. Results Immunol 2016;6:11-14.

39. Flanagan EP, Saito YA, Lennon VA, et al. Immunotherapy trial as diagnostic test in evaluating patients with presumed autoimmune gastrointestinal dysmotility. Neurogastroenterol Motil 2014;26:1285-1297.

40. Stanghellini V, Ghidini C, Maccarini MR, Paparo GF, Corinaldesi R, Barbara L. Fasting and postprandial gastrointestinal motility in ulcer and non-ulcer dyspepsia. Gut 1992;33:184-190.

41. Gonlachanvit S, Maurer AH, Fisher RS, Parkman HP. Regional gastric emptying abnormalities in functional dyspepsia and gastro-oesophageal reflux disease. Neurogastroenterol Motil 2006;18:894-904.

42. Vella A, Camilleri M. The gastrointestinal tract as an integrator of mechanical and hormonal response to nutrient ingestion. Diabetes 2017;66:2729-2737.

43. Camilleri M. Gastrointestinal hormones and regulation of gastric emptying. Curr Opin Endocrinol Diabetes Obes 2019;26:3-10.

44. Friedenberg FK, Desipio J, Korimilli A, et al. Tonic and phasic pyloric activity in response to CCK-octapeptide. Dig Dis Sci 2008;53:905-911.

45. Kim BJ, Kuo B. Gastroparesis and functional dyspepsia: a blurring distinction of pathophysiology and treatment. J Neurogastroenterol Motil 2019;25:27-35.

46. Schwartz MZ. Hypertrophic pyloric stenosis. In: Coran AG, Adzick NS, Krummel TM, Laberge JM, Shamberger R, Calculone A, eds. Pediatric surgery. Volume 2. Philadelphia: Elsevier, 2012:1021-1028.

47. Cogliandro RF, Rizzoli G, Bellacosa L, et al. Is gastroparesis a gastric disease? Neurogastroenterol Motil 2019;31:e13562.

48. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multidue of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol 2009;296:G1-G18.

49. Malik Z, Sankineni A, Parkman HP. Assessing pyloric sphincter pathophysiology using EndoFLIP in patients with gastroparesis. Neurogastroenterol Motil 2015;27:524-531.

50. Snape WJ, Lin MS, Agarwal N, Shaw RE. Evaluation of the pylorus with concurrent intraluminal pressure and EndoFLIP in patients with nausea and vomiting. Neurogastroenterol Motil 2016;28:758-764.
51. Blackett JW, Benvenuto L, Leiva-Juarez MM, D’Ovidio F, Arcasoy S, Jodorkovsky D. Risk factors and outcomes for gastroparesis after lung transplantation. Dig Dis Sci 2022;67:2385-2394.

52. Parshica PJ, Camilleri M, Hasler WL, Parkman HP. White Paper AGA: gastroparesis: clinical and regulatory insights for clinical trials. Clin Gastroenterol Hepatol 2017;15:1184-1190.

53. Tougas G, Eaker EY, Abell TL, et al. Assessment of gastric emptying using a low fat meal: establishment of international control values. Am J Gastroenterol 2000;95:1456-1462.

54. Parkman HP. Assessment of gastric emptying and small-bowel motility: scintigraphy, breath tests, manometry, and SmartPill. Gastrointest Endosc Clin N Am 2009;19:49-55.

55. Szarka LA, Camilleri M, Vella A, et al. A stable isotope breath test with a standard meal for abnormal gastric emptying of solids in the clinic and in research. Clin Gastroenterol Hepatol 2008;6:635-643.

56. Viramontes BE, Kim DY, Camilleri M, et al. Validation of a stable isotope gastric emptying test for normal, accelerated or delayed gastric emptying. Neurogastroenterol Motil 2001;13:567-574.

57. George NS, Sankineni A, Parkman HP. Small intestinal bacterial overgrowth in gastroparesis. Dig Dis Sci 2014;59:645-652.

58. Kuo B, McCallum RW, Koh KL, et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment Pharmacol Ther 2008;27:186-196.

59. Zikos TA, Kamal AN, Neshatian L, et al. High prevalence of slow transit constipation in patients with gastroparesis. J Neurogastroenterol Motil 2019;25:267-275.

60. Lee AA, Rao S, Nguyen LA, et al. Validation of diagnostic and performance characteristics of the wireless motility capsule in patients with suspected gastroparesis. Clin Gastroenterol Hepatol 2019;17:1770-1779.

61. Spandorfer RM, Zhu Y, Mekaroonkaml P, Galt J, Halkar R, Cai Q. Gastric emptying scintigraphy before gastric per oral endoscopic myotomy: imaging may inform treatment. Gastrointest Endosc Clin N Am 2019;29:127-137.

62. Shanker A, Bashashati M. Measurement of pyloric pressures in gastroparesis: stiff competition from EndoFLIP™. Dig Dis Sci 2021;66:2475-2477.

63. Guo WJ, Yao SK, ZhangYL, Yan J, Yin LJ, Li HL. Relationship between symptoms and gastric emptying of solids in functional dyspepsia. J Int Med Res 2012;40:1725-1734.

64. Sullivan A, Temperley L, Ruban A. Pathophysiology, aetiology and treatment of gastroparesis. Dig Dis Sci 2020;65:1615-1631.

65. van den Elzen BD, Bennink RJ, Wieringa RE, Tytgat GN, Boeckxstaens GE. Fundic accommodation assessed by SPECT scanning: comparison with the gastric barostat. Gut 2003;52:1548-1554.

66. Orthe P, Yu D, Van Natta ML, et al. Intragastric meal distribution during gastric emptying scintigraphy for assessment of fundic accommodation: correlation with symptoms of gastroparesis. J Nucl Med 2018;59:691-697.

67. Parkman HP, Hasler WL, Fisher RS; American Gastroenterological Association. American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology 2004;127:1592-1622.

68. Olausson EA, Storsrud S, Grundin H, Isaksson M, Attvall S, Simren M. A small particle size diet reduces upper gastrointestinal symptoms in patients with diabetic gastroparesis: a randomized controlled trial. Am J Gastroenterol 2014;109:375-385.

69. Navas CM, Patel NK, Lacy BE. Symptomatic management of gastroparesis. Gastrointest Endosc Clin N Am 2019;29:55-70.

70. Rao AS, Camilleri M. Review article: metoclopramide and tardive dyskinesia. Aliment Pharmacol Ther 2010;31:11-19.

71. Schey R, Saadi M, Midani D, Roberts AC, Pupilli R, Parkman HP. Domperidone to treat symptoms of gastroparesis: benefits and side effects from a large single-center cohort. Dig Dis Sci 2016;61:3545-3551.

72. Patterson D, Abell T, Rothstein R, Koch K, Barnett J. A double-blind multicenter comparison of domperidone and metoclopramide in the treatment of diabetic patients with symptoms of gastroparesis. Am J Gastroenterol 1999;94:1230-1234.

73. Singh H, Bala R, Kaur K. Efficacy and tolerability of levosulpiride, domperidone and metoclopramide in patients with non-ulcer functional dyspepsia: a comparative analysis. J Clin Diagn Res 2015;9:FC9-FC12.

74. Tonini M, Cipollina L, Poluzzi E, Crea F, Corazza GR, De Ponti F. Review article: clinical implications of enteric and central D2 receptor blockade by antidiopaminergic gastrointestinal prokinetics. Aliment Pharmacol Ther 2004;19:379-390.

75. Carbone F, Van den Houte K, Cleverson J, et al. Prucalopride in gastroparesis: a randomized placebo-controlled crossover study. Am J Gastroenterol 2019;114:1265-1274.

76. Sharma A, Coles M, Parkman HP. Gastroparesis in the 2020s: new treatments, new paradigms. Curr Gastroenterol Rep 2020;22:23.

77. Ikeo K, Oshima T, Sei H, et al. Acotiamide improves stress-induced impaired gastric accommodation. Neurogastroenterol Motil 2017;29:e12891.

78. Masuy I, Tack J, Verbeke K, Carbone F. Acotiamide affects antral motility, but has no effect on fundic motility, gastric emptying or symptom perception in healthy participants. Neurogastroenterol Motil 2019;31:e13540.
79. Tack J, Janssen P, Masaoka T, Farré R, Van Oudenhove L. Efficacy of buspirone, a fundus-relaxing drug, in patients with functional dyspepsia. Clin Gastroenterol Hepatol 2012;10:1239-1245.

80. Jacob DA, Busciglio I, Burton D, et al. A randomized, placebo-controlled trial of the effects of aprepitant, an NK1 receptor antagonist, on gastric motor functions and satiation in healthy volunteers: 1210. Am J Gastroenterol 2017;112:S663-S664.

81. Carlin JL, Lieberman VR, Dahal A, et al. Tradipitant complete responder analysis in gastroparesis patients. Am J Gastroenterol 2019;114:S691.

82. Lembo A, Camilleri M, McCallum R, et al. Relamorelin reduces vomiting frequency and severity and accelerates gastric emptying in adults with diabetic gastroparesis. Gastroenterology 2016;151:87-96.

83. Camilleri M, Lembo A, McCallum R, et al. Overall safety of relamorelin in adults with diabetic gastroparesis: analysis of phase 2a and 2b trial data. Aliment Pharmacol Ther 2020;51:1139-1148.

84. Acosta A, Camilleri M, Kolar G, et al. Relamorelin relieves constipation and accelerates colonic transit in a phase 2, placebo-controlled, randomized trial. Clin Gastroenterol Hepatol 2015;13:2312-2319.

85. Parkinson Study Group. A randomized trial of relamorelin for constipation in Parkinson's disease (MOVE-PD): trial results and lessons learned. Parkinsonism Relat Disord 2017;37:101-105.

86. Venkatesan T, Levinthal DJ, Li BU, et al. Role of chronic cannabis use: cyclic vomiting syndrome vs cannabinoid hyperemesis syndrome. Neurogastroenterol Motil 2019;31(Suppl 2):e13606.

87. McCarty TR, Chouairi F, Hathorn KE, Chan WW, Thompson CC. Trends and socioeconomic health outcomes of cannabis use among patients with gastroparesis: a United States nationwide inpatient sample analysis. J Clin Gastroenterol 2022;56:324-330.

88. Jehangir A, Parkman HP. Cannabinoid use in patients with gastroparesis and related disorders: prevalence and benefit. Am J Gastroenterol 2019;114:945-953.

89. Parkman HP, Van Natta ML, Abell TL, et al. Effect of nor triptyline on symptoms of idiopathic gastroparesis: the NORIG randomized clinical trial. JAMA 2013;310:2640-2649.

90. Talley NJ, Locke GR, Saito YA, et al. Effect of amitriptyline and escitalopram on functional dyspepsia: a multicenter, randomized controlled study. Gastroenterology 2015;149:340-349.

91. Malamood M, Roberts A, Kataria R, Parkman HP, Schey R. Mirtazapine for symptom control in refractory gastroparesis. Drug Des Devel Ther 2017;11:1035-1041.

92. Roldan CJ, Chambers KA, Paniagua L, Patel S, Cardenas-Turanzas M, Chathampally Y. Randomized controlled double-blind trial comparing haloperidol combined with conventional therapy to conventional therapy alone in patients with symptomatic gastroparesis. Acad Emerg Med 2017;24:1307-1314.

93. Mansi C, Borro P, Giacomini M, et al. Comparative effects of levosulpiride and cisapride on gastric emptying and symptoms in patients with functional dyspepsia and gastroparesis. Aliment Pharmacol Ther 2000;14:561-569.

94. Midani D, Parkman HP. Granisetron transdermal system for treatment of symptoms of gastroparesis: a prescription registry study. J Neurogastroenterol Motil 2016;22:650-655.

95. Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers 2007;4:1770-1804.

96. Dacha S, Mekaroonkamol P, Li L, et al. Outcomes and quality-of-life assessment after gastric per-oral endoscopic pyloromyotomy (with video). Gastrointest Endosc 2017;86:265-289.

97. Slomovitz E, Pescaru R, Cassera MA, et al. Early human experience with per-oral endoscopic pyloromyotomy (POP). Surg Endosc 2015;29:543-551.

98. Moraveji S, Bashashati M, Elhama S, et al. Depleted interstitial cells of Cajal and fibrosis in the pylorus: novel features of gastroparesis. Neurogastroenterol Motil 2016;28:1048-1054.

99. Davis BR, Sarosiek I, Bashashati M, Alvarado B, McCallum RW. The long-term efficacy and safety of pyloroplasty combined with gastric electrical stimulation therapy in gastroparesis. J Gastrointest Surg 2017;21:222-227.

100. Sarosiek I, Forster J, Lin Z, Cherry S, Sarosiek J, McCallum R. The addition of pyloroplasty as a new surgical approach to enhance effectiveness of gastric electrical stimulation therapy in patients with gastroparesis. Neurogastroenterol Motil 2013;25:134-e80.

101. Hibbard ML, Dunst CM, Swanström LL. Laparoscopic and endoscopic pyloroplasty for gastroparesis results in sustained symptom improvement. J Gastrointest Surg 2011;15:1513-1519.

102. Arts J, van Gool S, Caenepeel P, Verbeke K, Janssens J, Tack J. Influence of intrapyloric botulinum toxin injection on gastric emptying and meal-related symptoms in gastroparesis patients. Aliment Pharmacol Ther 2006;24:661-667.

103. Khashab MA, Besharati S, Ngamruengphong S, et al. Refractory gastroparesis can be successfully managed with endoscopic transpyloric stent placement and fixation (with video). Gastrointest Endosc 2015;82:1106-1109.

104. Arts J, Holvoet L, Caenepeel P, et al. Clinical trial: a randomized-controlled crossover study of intrapyloric injection of botulinum toxin in gastroparesis. Aliment Pharmacol Ther 2007;26:1251-1258.

105. Friedenberg FK, Palit A, Parkman HP, Hanlon A, Nelson
DB. Botulinum toxin A for the treatment of delayed gastric emptying. Am J Gastroenterol 2008;103:416-423.

106. Khashab MA, Ngamruengphong S, Carr-Locke D, et al. Gastric per-oral endoscopic myotomy for refractory gastroparesis: results from the first multicenter study on endoscopic pyloromyotomy (with video). Gastrointest Endosc 2017;85:123-128.

107. Khashab MA, Stein E, Clarke JO, et al. Gastric peroral endoscopic myotomy for refractory gastroparesis: first human endoscopic pyloromyotomy (with video). Gastrointest Endosc 2013;78:764-768.

108. Mekaroonkamol P, Shah R, Cai Q. Outcomes of per oral endoscopic pyloromyotomy in gastroparesis worldwide. World J Gastroenterol 2019;25:909-922.

109. Mekaroonkamol P, Dacha S, Patel V, et al. Outcomes of per oral endoscopic pyloromyotomy in the United States. Gastrointest Endosc Clin N Am 2019;29:151-160.

110. Abdelfatah MM, Noll A, Kapil N, et al. Long-term outcome of gastric per-oral endoscopic pyloromyotomy in treatment of gastroparesis. Clin Gastroenterol Hepatol 2021;19:816-824.

111. Jacques J, Pagnon L, Hure F, et al. Peroral endoscopic pyloromyotomy is efficacious and safe for refractory gastroparesis: prospective trial with assessment of pyloric function. Endoscopy 2019;51:40-49.

112. Allemang MT, Strong AT, Haskins IN, Rodriguez J, Ponsky JL, Kroh M. How I do it: per-oral pyloromyotomy (POP). J Gastrointest Surg 2017;21:1963-1968.

113. Malik Z, Kataria R, Modayil R, et al. Gastric per oral endoscopic myotomy (G-POEM) for the treatment of refractory gastroparesis: early experience. Dig Dis Sci 2018;63:2405-2412.

114. Rodriguez JH, Haskins IN, Strong AT, et al. Per oral endoscopic pyloromyotomy for refractory gastroparesis: initial results from a single institution. Surg Endosc 2017;31:5381-5388.

115. Chung H, Khashab MA. Gastric peroral endoscopic myotomy. Clin Endosc 2018;51:28-32.

116. Reja M, Mishra A, Tyberg A, et al. Gastric peroral endoscopic myotomy: a specific learning curve. J Clin Gastroenterol 2022;56:339-342.

117. Mohan BP, Chandan S, Jha LK, et al. Clinical efficacy of gastric per-oral endoscopic myotomy (G-POEM) in the treatment of refractory gastroparesis and predictors of outcomes: a systematic review and meta-analysis using surgical pyloroplasty as a comparator group. Surg Endosc 2020;34:3352-3367.

118. Spadaccini M, Maselli R, Chandrasekar VT, et al. Gastric peroral endoscopic pyloromyotomy for refractory gastroparesis: a systematic review of early outcomes with pooled analysis. Gastrointest Endosc 2020;91:746-752.

119. Aghaie Meybodi M, Qumseya BJ, Shakoor D, et al. Efficacy and feasibility of G-POEM in management of patients with refractory gastroparesis: a systematic review and meta-analysis. Endosc Int Open 2019;7:E322-E329.

120. Zhang WG, Chai NL, Zhai YQ, Linghu EQ, Li HK. Long-term outcomes of peroral endoscopic myotomy in achalasia patients with a minimum follow-up of 7 years. Chin Med J (Engl) 2020;133:996-998.

121. Podboy AJ, Hwang JH, Rivas H, et al. Long-term outcomes of per-oral endoscopic myotomy compared to laparoscopic Heller myotomy for achalasia: a single-center experience. Surg Endosc 2021;35:792-801.

122. Kahaleh M, Gonzalez JM, Baptista A, et al. 741 Gastric peroral endoscopic myotomy for the treatment of refractory gastroparesis: a multi-centered international experience. Gastrointest Endosc 2017;85:AB105-AB106.

123. Hernández-Mondragón OV, Solórzano-Pineda OM, Blancas-Valencia JM, González-Martínez MA, Villanueva-Pérez RM. Gastric per-oral endoscopic pyloromyotomy in the treatment of refractory gastroparesis: report on the first case performed in Mexico. Rev Gastroenterol Mex (Engl Ed) 2018;83:459-461.

124. Mekaroonkamol P, Li LY, Dacha S, et al. Gastric peroral endoscopic pyloromyotomy (G-POEM) as a salvage therapy for refractory gastroparesis: a case series of different subtypes. Neurogastroenterol Motil 2016;28:1272-1277.

125. Watts LS, Baker JR, Lee AA, et al. Impact of gastric per-oral endoscopic myotomy on static and dynamic pyloric function in gastroparesis patients. Neurogastroenterol Motil 2020;32:e13892.

126. Jehangir A, Malik Z, Petrov RV, Parkman HP. EndoFLIP and pyloric dilation for gastroparesis symptoms refractory to pyloromyotomy/pyloroplasty. Dig Dis Sci 2021;66:2682-2690.

127. Murray FR, Schindler V, Hente JM, et al. Pyloric dilation with the esophageal functional lumen imaging probe in gastroparesis improves gastric emptying, pyloric distensibility, and symptoms. Gastrointest Endosc 2021;94:486-494.

128. Attaar M, Su B, Wong HJ, et al. Significant changes in impedance planimetry (EndoFLIP™) measurements after peroral pyloromyotomy for delayed gastric emptying. Surg Endosc 2022;36:1536-1543.

129. Gregor L, Wo J, DeWitt J, et al. Gastric peroral endoscopic myotomy for the treatment of refractory gastroparesis: a prospective single-center experience with mid-term follow-up (with video). Gastrointest Endosc 2021;94:35-44.

130. Fathalizadeh A, Klingler M, Landreneau J, et al. Real-time intraoperative functioning lumen imaging probe during endoscopic per-oral pyloromyotomy (pop). Surg Endosc 2022;36:745-752.

131. Soffer EE. Gastric electrical stimulation for gastroparesis. J Neurogastroenterol Motil 2012;18:131-137.
132. Bielefeldt K. Adverse events of gastric electrical stimulators recorded in the Manufacturer and User Device Experience (MAUDE) Registry. Auton Neurosci 2017;202:40-44.
133. McCallum RW, Snape W, Brody F, Wo J, Parkman HP, Nowak T. Gastric electrical stimulation with Enterra therapy improves symptoms from diabetic gastroparesis in a prospective study. Clin Gastroenterol Hepatol 2010;8:947-954.
134. Levinthal DJ, Bielefeldt K. Systematic review and meta-analysis: gastric electrical stimulation for gastroparesis. Auton Neurosci 2017;202:45-55.
135. Shen S, Luo H, Vachaparambil C, et al. Gastric peroral endoscopic pyloromyotomy versus gastric electrical stimulation in the treatment of refractory gastroparesis: a propensity score-matched analysis of long term outcomes. Endoscopy 2020;52:349-358.
136. Zoll B, Zhao H, Edwards MA, Petrov R, Schey R, Parkman HP. Outcomes of surgical intervention for refractory gastroparesis: a systematic review. J Surg Res 2018;231:263-269.
137. McCarty TR, Rustagi T. Endoscopic treatment of gastroparesis. World J Gastroenterol 2015;21:6842-6849.
138. Landreneau JP, Strong AT, El-Hayek K, et al. Laparoscopic pyloroplasty versus endoscopic per-oral pyloromyotomy for the treatment of gastroparesis. Surg Endosc 2019;33:773-781.