Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein

Patel Nilpa1,*, Kapadia Chintan6,*, R. Z. Sayyed2,3,*, Hesham El Enshasy4,5,6‡, Hala El Adawi6‡, Alaa Alhazmi7,8‡, Atia Hughes Almalki9,10‡, Shaﬁul Haque11,12‡

1 Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India, 2 Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, Maharashtra, India, 3 Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States of America, 4 Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia, 5 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia, 6 City of Scientiﬁc Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt, 7 Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia, 8 SMiRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia, 9 Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia, 10 Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, Saudi Arabia, 11 Research and Scientiﬁc Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia, 12 Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey

* These authors contributed equally to this work.
‡ These authors also contributed equally to this work.

Citation: Patel P, Chintan K, Sayyed RZ, El Enshasy H, El Adawi H, Alhazmi A, et al. (2022) Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein. PLoS ONE 17(4): e0265969. https://doi.org/10.1371/journal.pone.0265969

Editor: Rahul Datta, Mendel University of Agriculture and Forestry: Mendelova univerzita v Brne, CZECH REPUBLIC

Received: December 11, 2021
Accepted: March 10, 2022
Published: April 1, 2022

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0265969

Copyright: © 2022 Patel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript.

Abstract

The tissue of insects, pests, and fungi has a chitin layer followed by protein in the cell membrane. The complete biodegradation of chitin and protein-present in the waste requires the action of two enzymes, namely chitinase, and protease. Combining chitinase and protease in a single protein/enzyme will serve as a bifunctional enzyme that can efﬁciently degrade the chitin and protein-rich biomass. The present study was aimed to fuse these two enzymes to produce a single protein and study the kinetics of the recombinant fusion protein. A chitinase and alkaline protease genes were isolated, cloned, and expressed successfully as a fusion product in heterologous host Escherichia coli. The native genes were successfully fused in E.coli by using ﬂexible glycine–serine (G4S)2 linker (G4G4S, GS linker). The recombinant fusion protein in E.coli showed hydrolyzed chitin and protein on chitin and bovine serum albumin agar plates conﬁrming the successful cloning and expression of chitinase and protease enzymes in a single fusion protein. The common pUC18-T7 mini vector with the ompA signal sequence helps the extracellular expression of fusion protein efficiently. The native gel electrophoresis revealed a molecular mass of puriﬁed protein as 92.0 kDa. The fusion protein’s maximal chitinase and protease activity occurred at pH 5.0 and 8.0 and 30 °C, respectively resembling the individual enzymes’. In the kinetic studies of the fusion protein, it was observed that the presence of metal ions such as Cu2+, Na2+, and Ca2+; signiﬁcantly enhanced the enzyme activities while organic solvents oxidants and chemicals have drastically affected the activities of both the enzymes in the fusion protein.
No such fusion protein has been produced in a heterologous host yet. The reports on fusion protein with biomass-degrading capacity are also scarce. This is probably the first report of a bifunctional chitinase/protease expressed in *E. coli*.

Introduction

Chitin is the most abundant, water-insoluble homopolymer of N-acetyl D-glucosamine (GlcNAc) just next to cellulose and lignin [1]. It is present in most invertebrates, the cuticle of nematodes, the cell wall of filamentous fungi, and the cuticle of arthropods [2]. Chitin, being a natural product, is continuously synthesized and degraded in the natural environment through chitinase. Chitinases (EC 3.2.1.14) are hydrolytic enzymes that cleave glycosidic bonds of chitin to produce GlcNAc and N-acetyl chitooligosaccharides (COSs) [3, 4]. Chitinase has received much commercial attention recently due to the increased demand for its reaction products such as GlcNAc and COSs in food industries and ethanol production and its application as a biocontrol agent against phytopathogenic fungi [5, 6]. Various microorganisms secrete different families of chitinases [7, 8], however, bacterial chitinase is the best source of chitinase, as it is easily regulated, its production is easily scaled up, it is produced extracellularly and in large quantities in shorter time. The microbes produce multiple chitinases for the complete degradation of chitin into monomers. Bacterial chitinase gradually cleaves chitin and probably generates a better end product than individual enzymes [9]. The use of cloned bacterial chitinase has been reported in a few bacterial genera [3, 10–19].

Proteases (E.C.3.4.21) are the hydrolytic enzymes that cleave peptide bonds and thus release amino acids and/or short-chain oligopeptides. Proteases have become industrially significant enzymes, acquiring about 60% share of the global enzyme market, accounting for about $2.21 billion in value. They are widely used in agriculture, pharmaceuticals, food processing, detergent, leather processing, etc. [20, 21]. Proteases have been produced by plants, animals, fungi, and bacteria [22–24]. However, microbial protease is preferred over plant or animal sources due to their higher activity ease in genetic modification, ample availability, convenient processing, and safe and cost-effective production, besides high stability and ability to function over the broader pH and temperature range [25]. Cloning the protease gene and its expression in *E. coli* has been reported in a few bacterial genera [26–32]. Among the different bacterial sp. *Bacillus* sp. has been more frequently studied and used to synthesize diverse and industrially important protease, as it produces the enzymes extracellularly, thus offers ease in the extraction and recovery, and the fermentation process is conveniently regulated [33].

Enzymes from wild strains have a narrow range of working temperature and pH, less stability, and more sensitivity to metal ions, solvents, detergents, oxidants, feed-back inhibitions, etc. Gene cloning of commercially important enzymes in the fast-growing host that also gives better expression, easy recovery and purification, higher enzyme yield, and aid into the desired features to the enzyme has been the goal of making industrially valuable enzymes.

The co-expression strategies have the limitation of low transformation efficiency and inconvenient screening during co-expression. Constructing a bifunctional/trifunctional gene could be an effective approach [34–39].

Although there are reports on the cloning of Chitinases and proteases; there are no reports on the cloning of two individual enzymes to produce a single fusion protein that possesses chitinase and protease activities. Thus, there is a need to produce a single fusion protein that exhibits two enzymes useful in the biodegradation of chitin and protein-rich wastes. The
present study aimed at cloning, expression, and biochemical characterization of a single fusion gene product so that a single protein will have multifunctional activities.

Materials and methods

Bacterial strains, vector, chemical reagents, and culture conditions

The *Bacillus circulans* strain MTCC 7906 (Accession No.JN645176.1) for alkaline protease and *Serratia marcescens* strain GPS5 (Accession No.KX579968.1) for chitinase D and *E. coli* BL21 (DE3); an expression host was cultured overnight in LB broth at 30˚C. These bacterial cultures and the extracellular expression vector pUC18T-mini-Tn7T-Tp-gfpmut3 were procured from the SLS research Pvt. Ltd. India. 5-Bromo-4-chloro-indolyl-β—galactopyranoside (X-Gal), isopropyl thiogalactoside (IPTG), and antibiotics (ampicillin and gentamycin) were procured from Merck (Germany) and used for the selection of transformed clones. All other chemical reagents were purchased from SLS Research Pvt. Ltd., India.

Cloning of chitinase and protease genes. The genomic DNA of *B.circulans* strain MTCC 7906 and *S.marcescens* GPS5 was isolated from the overnight grown cultures of these organisms [40], and purity of the separated DNA was confirmed by agarose gel electrophoresis.

PCR amplified the gene encoding chitinase and protease from genomic DNA with the primers mentioned in Table 1. The laboratory designed these primers to remove a deduced signal sequence so that protein can be targeted to the extracellular site using the ompA signal sequence [41]. The rrnB transcription termination sequence was used to termination the transcription process. The amplified fragments were checked on the agarose gel electrophoresis for their expected band size. The sense and antisense strands of the linker (GGGGS) were annealed by placing 10 ng each in PCR tubes and incubated under a PCR machine with a touchdown cycle from 95˚C to 25˚C with a gradual decrease of 5˚C for every 5 min and incubated further at 25˚C. The chitinase gene amplicon, protease gene amplicon, and linker were added to the PCR mixture. The overlapping primer was used to amplify the entire sequence as a long consensus [42] (Table 1). The amplified PCR products were analyzed through 1.5% agarose gel electrophoresis prepared in 1x TBE buffer and run for 20 min. at 7V/cm. The size of the amplified DNA fragments was determined on agarose gel by comparing with the 100+500 bp DNA ladder and photographed under the Bio-Rad Gel documentation system. Three constructs, namely (i) protease, (ii) chitinase, and (iii) chitinase fused with protease, were constructed by using flexible glycine–serine peptide linker (GGGGS, (G4S)2) [43]. The amplified and purified fragments were inserted into the vector pUC18 mini-Tn7T purchased from add gene, USA. The fusion sequence was treated with KpnI (GGTACC) restriction enzyme to create 3’ overhang. The BamHI site (GGATCC), lac UV5 promoter, shine-Dalgarno sequence, ompA (Signal Sequence for secretion), and spacer sequences were synthesized as a separate unit (Table 1; sequence No. 10). The regulatory sequence along with BamHI at the 5’ end was ligated with the fusion product. The same sequence was treated with the mentioned restriction enzyme to create a 5’ cohesive end and mixed with the linear vector pUC18miniTn7 in the ratio of 1:5 (Vector: Insert) (Fig 1).

The chemically competent *E. coli* BL21 (DE3) were mixed with the recombinant plasmids and transformed using the heat shock method [44]. The transformants were grown on an LB plate containing ampicillin and gentamycin (100 µg/mL each) at 30˚C for 24 h and observed for the appearance of growth of transformants. The transformed cells were then picked from the plates and incubated in the antibiotic-containing LB broth at 30˚C for 24 h and used for further study.
Estimation of enzyme activities of the different constructs

Estimation of chitinase and protease activity was performed on basal agar plates containing (g/L) K$_2$HPO$_4$; 0.3, KH$_2$PO$_4$; 0.7, MgSO$_4$; 0.5, FeSO$_4$; 0.01, MnCl$_2$; 0.001, ZnSO$_4$; 0.001, and yeast extract; 5.0 separately amended with 1% azo-casein and 1% colloidal chitin. The transformed cells having fusion protein were grown on these plates at 30˚C for 72 h. Following the incubation, the chitin agar plate was stained with 0.1% congo red and observed for the zone of chitin hydrolysis. Azocasein plate was observed for the zone of casein (protein) hydrolysis around the bacterial colonies.

Induction and purification of enzymes

E. coli BL21 (DE3) transformed with the corresponding expression vector was grown overnight at 30˚C in LB supplemented with antibiotics. The next day, 100 µL of each culture broth was inoculated in 10 mL of fresh LB medium supplemented with antibiotics (ampicillin and gentamycin @100 µg/mL) and incubated at 30˚C for 45 min., followed by the addition of 400 µM/mL of IPTG and further incubation at 30˚C for 2 h to get 10^8 numbers of cells/mL of culture. The one mL of each culture was transferred to their respective substrates containing LB broth. The induction of enzymes was carried out by providing 200 µM/mL IPTG, and then the cells were allowed to grow further at 30˚C for 72 h. The broths were centrifuged at 10,000 rpm for 10 min. and the supernatants were dialyzed against Tris buffer (pH 7.5) to remove media ingredients. Enzymes were purified using Ni-Nitrilotriacetic acid agarose column for His tagged dialyzed proteins (Takara Bio Inc., USA). The columns were equilibrated with equilibration buffer (50 mM sodium phosphate, 300 mM sodium chloride, 20 mM imidazole; pH 7.4) followed by washing with His60 Ni wash buffer (50 mM sodium phosphate, 300 mM
sodium chloride, 40 mM imidazole; pH 7.4) and incubated at 30˚C for 5–7 min. To this tube, 10–20 mL of dialyzed clear protein was added and eluted with 15 mL elution buffer (50 mM sodium phosphate, 300 mM sodium chloride, 300 mM imidazole; pH 7.4). The eluted proteins were collected and assayed for chitinase and protease activities.

Chitinase assay. Chitinase activity was estimated according to the method of Lee et al. [45]. The reaction mixture consisting of different volumes of enzyme solution (60 μL, 300 μL, and 500 μL for crude, dialyzed, and purified respectively) and 4 mL (1% w/v) of colloidal chitin (prepared from shrimp shells in 100 mM sodium acetate buffer (pH 5.5) was incubated at 30˚C for 60 min. The reducing sugars were estimated analyze by the Somogyi–Nelson method [46], using GlcNAc as the standard. One unit (U) of chitinase activity was defined as the amount of enzyme that liberated one μM of GlcNAc per minute per mL under the assay conditions. According to Lowry et al. [47], the amount of available proteins was measured, using bovine serum albumin (100–1000 μg/mL) as the standard.

Protease assay. Protease activity was measured according to the method of Aretz et al. [48]. The reaction mixture consisting of different volumes of enzyme solution (60 μL, 300 μL, and 500 μL for crude, dialyzed, and purified respectively), 5 mL substrate (1% casein) was incubated at 30˚C for 10 min and followed by adding 5 mL of 100 mM Trichloroacetic acid (TCA) and mixed thoroughly. The solutions were filtered through Whatman filter paper and checked for color development due to the release of tyrosine. The amount of tyrosine from the filtrate was measured according to the Lowry method [47], and the amount of tyrosine was
calculated from the standard curve of tyrosine (100–1000 μg/mL). One unit of protease was defined as the amount of enzyme that liberates 1μg tyrosine mL/min from casein [49].

Polyacrylamide gel electrophoresis (PAGE)
Proteins were resolved on the 12.5% continuous gel system [49]. The Tris-glycine buffer system at pH 8.8 was used to determine purity and molecular weight. The predetermined molecular weight markers of 44.3 KDa, 66.4 KDa, 97.2KDa, 116 KDa, and 200 KDa protein mixtures were loaded in the marker lane while the purified proteins were added to the gel in different wells. In individual wells, the uninduced and induced Ni-NTA purified protein was loaded along with crude protein from E.coli without insert. The gel was allowed to run in Tris-glycine buffer at 30 mA constant current for 2.5 h. After electrophoresis, the gel was stained with Coomassie Brilliant Blue R-250, and the molecular weight of the separated proteins was determined by comparing them with molecular weight standards.

Characterization of the purified proteins
Effect of pH and temperature on enzyme activity
The effect of pH on protease, chitinase, and fusion protein activities was recorded in various buffers of varying pH in the range of 5.0–9.0. The buffers used were sodium acetate buffer (pH 5.0 and 6.0), phosphate buffer (pH 7.0), and Tris–HCl buffer (pH 8.0 and 9.0). The 70 μL purified proteins were separately incubated in the respective buffers at 30˚C for 30 min, and the pH stability and residual enzyme activities were measured as described earlier.

The effect of temperature on the activity of purified proteins was measured at different temperatures in the range from 20˚C to 50˚C. The purified proteins were separately incubated in phosphate buffer (pH 7) at various temperatures for 30 min, and the thermal stability and residual enzyme activities were measured as described earlier.

Effect of metal ions, detergent, and organic solvent on enzyme activity. The effect of metal ions on enzyme activity was analyzed using varying concentrations (1 to 100 mM) of metal ions like Co^{2+}, Zn^{2+}, Ca^{2+}, Mg^{2+}, Na^{2+}, Cu^{2+}, and Fe^{2+}. The respective concentrations of these metal ions were separately added into each reaction mixture, followed by the addition of the purified protein 70 μL/enzyme. The stability and activities of these enzymes were measured as described earlier.

Enzyme activities were measured as described earlier. The effects of various detergents (β-Mercaptoethanol, Ethylene diamine tetra acetic acid, Sodium dodecyl sulfate, Tween 20) and organic solvents (glycerol, acetone, ethanol, methanol, butanol, and isopropanol) on the stability and activities of purified enzymes was studied by separately adding two concentration (1% and 5%) of these detergents and solvents into the reaction mixture followed by adding 70 μL purified protein [50, 51]. The enzyme activities in the absence of metal ions, detergents, and solvents were considered 100%. The percentage relative activity of enzymes was measured by dividing chemical influenced activity by enzyme activity without adding chemicals [51].

Statistical analysis
All the experiments were carried out in five replicates, and the average of five replicates was analyzed using the Student’s t-test, and the values of p≤0.05 were considered statistically significant using SPSS Statistics for Windows, version x. 0 (SPSS Inc., Chicago, Ill., USA) [52].
Results

Vector construction for fusion gene with the linker

The molecular size of an amplified fragment of protease and chitinase, as evident from agarose gel electrophoresis (Fig 2A and 2B), was 1.3 kb and 1.2 kb, respectively. The comparison of fragment size and gene sequences was done with their respective sequences in the database, which confirmed the molecular weight and the size of gene sequences. The regulatory sequence of 300 bases and the BamH1 restriction site at 5’end was ligated with individual genes. The overlapping PCR containing (G4S) 2linker was used to get a single polynucleotide sequence with a bicistron of 2.9 Kb (Fig 2B). The bicistron (Fused gene product) and monocistron (Single gene) were treated with BamH1 and KpnI to get sequences ready for ligation into the vector. The vector pUC18- Tn7 mini was double digested with BamHI and KpnI (Fig 2C) and incubated with individual genes and fusion product for the ligation. The orientation and accuracy of ligation were confirmed by restriction digestion with respective enzymes (Fig 2C).

Estimation of enzyme activities of different constructs

The zone of hydrolysis of casein was observed on the azocasien agar plate around the bacterial colonies (Fig 3A) and while the addition of 0.1% congo red on the chitin agar plate showed the zone of hydrolysis of chitin (Fig 3B).

Protein gel electrophoresis

The recombinant fusion protein on native PAGE revealed 92 KDa, distinct protein bands, suggesting that the enzyme is a monomer and intact (Fig 4). The fusion protein was mixed with the control protein of known molecular weight, and in both lanes, it showed the band’s presence at the same place. The unknown protein was added with the protein of interest to confirm protein stability.

Expression and purification of proteins

Estimation of crude chitinase activity and protease activity of the recombinant expressing fusion protein revealed 1.05 folds and 1.27 folds (Table 2) increase over the individual constructs of these enzymes. Ni-NTA purified protein in the recombinant expressing fusion protein
protein exhibited a 1.60 fold and 6.87 fold increases in the activities of chitinase and protease, respectively.

Characterization of purified protein

The effect of pH and temperature on enzyme activity. The activities of recombinant proteins were stable at different pH in a different buffer. The purified fusion protein’s optimal chitinase and protease activities were observed at pH 5.0 and 8.0, respectively (Fig 5A). Whereas the optimum temperature for the activity of purified fusion protein was found to be 30˚C for both the enzyme of fusion proteins (Fig 5B). The pH and temperature optima of the fusion protein were similar to the individual proteins.

Effect of metal ions, detergents, and organic solvents on enzyme activity. The presence of Na\(^{2+}\), Ca\(^{2+}\) and Cu\(^{2+}\) at 5 mM, and 10 mM concentrations significantly enhanced the protease activity. Metal ions such as Fe\(^{2+}\), Mg\(^{2+}\), and Zn\(^{2+}\) also improved the enzyme activities (Fig 6A). However, Na\(^{2+}\) at 5mM concentration showed enhanced chitinase activity compared to the other cations (Fig 6B). The presence of organic solvents drastically affected chitinase and protease activity in the purified fusion protein. The concentration of 1% acetone and butanol caused 40% inhibition in chitinase activity. A higher concentration (5%) of acetone drastically affected the activities of both enzymes (Fig 6C). Thus, the organic solvents showed negative impacts on the activities of both the enzyme. The purified chitinase retained 80% activity and 65% activity from its uninoculated control at 1% SDS and 5% SDS. There was a noticeable reduction in the activity of protease at both concentrations of EDTA. The addition of 2-mercaptoethanol, Tween 20 and EDTA (1%) caused a more than 50% reduction in the activity of both enzymes (Fig 6D).

Discussion

The fragment size and gene sequences of an amplified fragment of protease and chitinase with their respective sequences in the database confirmed the molecular weight and the size of gene sequences. The map is showing the transcription termination signal, fusion gene construct and ampicillin resistant gene. The regulatory sequence of 300 bases and the BamHI restriction site at 5’end was ligated with individual genes. The formation of the fusion product indicated the successful ligation of individual chitinase and protease genes to form a fusion protein. The
Fig 4. Native PAGE of fusion proteins expressed by *E. coli*. Lane 1- Protein marker (44.3 KDa, 66.4 KDa, 97.2KDa, 116 KDa, and 200 KDa), Lane 2- Sample purified using Ni-NTA column without IPTG induction; Lane 3-Sample purified using Ni-NTA column with IPTG induction; Lane 4- Crude protein without insert. Proteins were resolved on the 12.5% PAGE with standard molecular weight markers. The gel was allowed to run in Tris-glycine buffer at 30 mA constant current for 2.5 h followed by staining with Coomassie Brilliant Blue R-250. The molecular weight of the separated proteins was determined by comparing them with molecular weight standards.

https://doi.org/10.1371/journal.pone.0265969.g004

Table 2. The activity of recombinant proteins expressed in *E.coli*.

Enzyme	Stage	Unit (μM/mL/min)	Total volume (mL)	Total activity (Unit/mL)	Specific activity (Unit/mg)	Fold purification
Protease Construct	Crude	2.53	100	253.1	14.71	1.0
	Ni-NTA column	3.58	15	53.7	13.87	0.94
Protease of fusion	Crude	3.21	100	321.4	18.69	1.0
	Ni-NTA column	5.72	15	85.8	22.17	1.18
Chitinase Construct	Crude	0.03	100	2.9	0.17	1.0
	Ni-NTA column	0.16	15	2.4	0.62	3.68
Chitinase of fusion	Crude	0.03	100	3.1	0.18	1.0
	Ni-NTA column	1.10	15	1.5	0.38	2.11

https://doi.org/10.1371/journal.pone.0265969.t002
gel band of 2.9 kb size further confirmed the presence of the fusion gene sequence in the correct orientation. Growth of transformant E. coli BL21 (DE3) on chitin and casein agar plates indicated that three constructs were successfully transformed into it. Formation of the zone of hydrolysis of casein on azocasein agar plate and chitin on chitin agar plate surrounding the transformant E. coli indicated the successful expressions of chitinase and protease. The over expression of recombinant protein under IPTG induction at low temperature increases stability and solubility. Incubation period between 48–72 h yields maximum protein. The 48 h incubated samples achieved sufficient microbial concentration and low concentration of IPTG for longer time will gives better protein yield. This will lead to proper folded and biologically active protein production with least inclusion bodies formation.

The presence of fusion protein of 92 kDa on native PAGE suggested that the bifunctional enzyme is a monomer and intact. The present study results agree with the molecular weight of 44.4 KDa for SmChiD chitinase reported in Serratia marcescens [53] and 46 kDa for alkaline protease reported in Bacillus circulans [27]. Thus, the PAGE analysis confirms the respective size protein expressed. Mixing the fusion protein with control protein of known molecular weight followed by electrophoresis showed the band’s presence at the same place, i.e., 92 kDa indicated that a product with higher molecular weight could be efficiently expressed without any change in its activity. Sometimes, heterogenous expression of higher molecular weight proteins leads to truncated protein expression. Protein with lower molecular mass increases the stability during the post-translation stage. Various bacterial chitinase from a wide range of bacteria is possessed lower molecular mass [3, 7, 13]. The purified chitinase of B. licheniformis and S. maltophilia have been reported to have molecular weights 71 kDa and 70.5 kDa, respectively [54, 55].

Increased activities of chitinase (1.60 fold) and protease (1.10 fold) in the recombinant E. coli BL21 (DE3) expressing fusion protein indicated improved activities of both enzymes in fusion construct showed enhanced activity towards the substrate. No confirmation changes occurred during the fusion of the individual proteins [56]. The thick outer membrane and limited secretion signals restrict the expression of heterogenous proteins in E. coli. However, the ompA signal sequence was successfully employed in the present study to target protein to the extracellular site. ompA sequence has been efficiently utilized to secretion exoglucanase of C. fimi from E. coli [57]. Improved enzyme activities following the cloning of genes have been reported by several scientists [58, 59]. The SmChiD can break down colloidal chitin in a time-dependent manner with a very low rate and produce DP2 as a significant end product [53, 58]. The chitinase used in the present study belongs to the endo acting class; it generated both reducing and non-reducing ends. The chitinase-C and N-acetyl hexosaminidase of S. coelicolor has been reported to give 90% pure GlcNAc from crab shell chitin after 8 h incubation [59]. The ChiA, ChiB, and ChiC of S. marcescens act synergistically to break chitin proficiently and give GlcNAc a major product [58, 60]. The Chi D used in the present study of S. marcescens is, an endo enzyme that produces non-reducing and reducing ends. The complete lysis of insoluble chitin requires the activity of multiple enzymes and a longer incubation time to get GlcNAc [59]. The present study reports 1 h incubation period for complete degradation of chitin into GlcNAc vis-à-vis 4 h incubation reported earlier. However, a longer incubation time will serve the purpose of breakdown complex chitin into its monomers.

The stability of activities of recombinant proteins over the range of pH and temperature optima indicated that chitinase and protease activity of fusion protein is more stable, remain more active, and retain the activities over the range of pH and temperature as compared to their counterparts [27, 53]. Other scientists have reported similar pH optima of recombinant chitinase for PbChi70 of Paenibacillus barengoltzii and M. timonae, respectively [13, 61]. The mesophilic temperature optima for protease and chitinase may be due to the mesophilic nature
of the producing organisms. The results are in agreement with the work reported for chitinase of *Stenotrophomonas maltophilia* [55], *Bacillus licheniformis* N1 [62], and *Thermoanaerobacter tengcongensis* [63]. The serine alkaline protease Alp from *Acinetobacter* sp. IHB B 5011 (MN12) was cloned and expressed in *E. coli* BL21 (DE3) using the N-terminal signal sequence [25]. Similarly, a serine protease from *Bacillus* sp. WRD-2 was cloned and expressed into *E. coli* [64].

Improved enzyme activities in the presence of Na$^{2+}$, Ca$^{2+}$ and Cu$^{2+}$, and Zn$^{2+}$ are due to the requirement of metal ions for optimum enzyme activities. Enhanced activities protease and chitinase in the presence of Ca$^{2+}$ ions indicated the requirement of this metal ion for the activities of these enzymes as EDTA chelate divalent cations. Similar observations have been reported in alkaliphilic *Bacillus pumilus* MCAS8 [65] and *Caldicoprobacter guelmensis* [66].

The inhibition of enzyme activities in the presence of solvents and chemicals is due to the denaturation of proteins by these solvents and chemicals. An et al. [64] reported inhibition of intracellular serine protease of *Bacillus* sp. WRD-2 in the presence of organic solvents. The inhibitory effect of organic solvents on recombinant alkaline protease and subtilisin was observed by scientists [67, 68]. Similarly, a reduction in alkaline protease activity from *Bacillus cereus* in the presence of isopropanol, methanol, ethanol, and butanol was reported [69].

The glycine-serine linker is flexible and helps in the proper folding of the enzymes. The fusion of three catalytic domains with a (G4S) 3 flexible linker showed trifunctional cellulase activity in *Saccharomyces cerevisiae* [43]. They found the higher activity of fusion protein as compared to individual clones. There was a successful fusion of *B. subtilis* expansin EXLX1 and *Clostridium thermocellum* endoglucanase CelD genes with a linker of different lengths and observed the highest enzyme activities in the fusion protein [70]. The fusion of two enzymes brings the active site together, and the product of one enzyme-catalyzed reaction will be immediately utilized as a substrate for the other. These strategies will be helpful for the biotransformation of various raw materials by generating a fusion of enzymes from different pathways. In the present studies, an active bifunctional protein was constructed, which presented the activities of chitinase and protease, respectively, through specific substrate analysis. *E. coli* has been the host of choice for cloning and heterologous expression of a wide range of proteins. Due to its well-studied genetics, faster growth rate, ability to grow on cost-effective media, safety, ample availability of vectors, ease in extracellular production using signal sequences, and convenient in the extraction of the product, *E. coli* is preferred over the other hosts. The fusion
Fig 6. The effect of various metal ions (5–10 mM) on the activity of the protease and chitinase. Values are the average of five replicates and significant at P<0.05 (A). The effect of various metal ions (5 mM and 10 mM) on the activity of chitinase. (B). Effect of denaturing agents and organic solvents at 1% and 5% on protease activity (C). Effect of denaturing agents and organic solvents (1% and 5% of each) on chitinase activity (D).

https://doi.org/10.1371/journal.pone.0265969.g006
and Co-expression of endoglucanase and beta-glucosidase were successfully carried out in *E. coli* [36]. Several other reports indicating fusion and co-expression of proteins belong to endoglucanase and \(\beta \)-glucosidase for hydrolyzing sugarcane bagasse [38]. Thus chitinase and protease can be successfully fused and expressed in *E.coli* without changing their catalytic activities, properties, and kinetics. However, more studies on kinetics, molecular aspects, and protein characterization are required to claim the success of fusion protein.

Conclusion

Heterologous expression of the fusion protein is successfully carried out by using a pUC18-T7 mini vector with an *ompA* signal sequence. The bicistronic vector expresses fusion protein using glycine-serine linker as a single peptide appears to be a feasible and cost-effective approach of combining two enzymes in a single protein. A single fusion protein exhibiting the activities of two enzymes can effectively degrade the complex substrates made up of chitin and protein. Improved activities of these enzymes in fusion protein offer higher biodegradation rates than the biodegradation by a single enzyme. Moreover, the biodegradation of chitin mediated by fusion protein holds merits in terms of safety, higher productivity, and the formation of a good number of monomers. Cloning of genes of two enzymes in the fast-growing host that also gives better co-expression, higher enzyme yield, and improved activities compared to individual enzymes will have more and broader applications. This report is the first report on a single fusion protein that has chitinase and protease activities. However, further studies on enzyme kinetics, molecular studies on genes involved, and studies on protein structure may further enhance the activities, yield, and stability of fusion under diverse physico-chemical conditions.

Supporting information

S1 Fig. (JPG)

S2 Fig. (JPG)

S3 Fig. (JPG)

S4 Fig. (JPG)

S1 Raw images. (PDF)

Acknowledgments

The authors would like to extend their sincere appreciation to Taif University Researchers Supporting Project Number (TURSP-2020/208), Taif University, Saudi Arabia and RMC, UTM, Malaysia for grant No. RJ130000.7609.4C359 and RJ130000.7609.4C336.

Author Contributions

Conceptualization: Kapadia Chintan.

Formal analysis: Kapadia Chintan.
Funding acquisition: Hesham El Enshasy, Hala El Adawi, Alaa Alhazmi, Atiah H. Almalki.
Methodology: Patel Nilpa.
Writing – review & editing: R. Z. Sayyed, Hesham El Enshasy, Hala El Adawi, Alaa Alhazmi, Atiah H. Almalki, Shafiul Haque.

References
1. Cohen E. Chitin synthesis and inhibition: A revisit. Pest Manag Sci. 2001; 57: 946–950. https://doi.org/10.1002/ps.363 PMID: 11695188
2. Andronopoulou E, Vorgias CE. Isolation, cloning, and overexpression of a chitinase gene fragment from the hyperthermophilic archaeon Thermococcus chitonophagus: semi-denaturing purification of the recombinant peptide and investigation of its relation with other chitinases. Protein Expr Purif. 2004; 35: 264–271. https://doi.org/10.1016/j.pep.2004.02.002 PMID: 15135401
3. Hammami I, Siala R, Jridi M, Nasri M, Triki MA. Partial purification and characterization of chIo8, a novel antifungal chitinase produced by Bacillus cereus IO8. J Appl Microbiol. 2013; 115: 358–366. https://doi.org/10.1111/jam.12242 PMID: 23647603
4. Hammami I, Siala R, Jridi M, Nasri M, Triki MA. Partial purification and characterization of chitinase ChiW from Paenibacillus sp. str. FPU-7 reveals a novel type of bacterial cell-surface-expressed multi-modular enzyme machinery. PLoS One. 2016; 11: 1–26. https://doi.org/10.1371/journal.pone.0167310 PMID: 27907169
5. Purushotham P, Arun PVPS, Prakash JSS, Podile AR. Chitin binding proteins act synergistically with chitinases in Serratia proteamaculans 568. PLoS One. 2012; 7: 1–10. https://doi.org/10.1371/journal.pone.0036714 PMID: 22590591
6. Madhuprakash J, El Gueddiari NE, Moerschbacher BM, Podile AR. Catalytic efficiency of chitinase-D on insoluble chitosinous substrates was improved by fusing auxiliary domains. PLoS One. 2015; 10: 1–14. https://doi.org/10.1371/journal.pone.0116823 PMID: 25615694
7. Yang S, Fu X, Yan Q, Guo Y, Liu Z, Jiang Z. Cloning, expression, purification and characterization of a novel chitinase from a thermophilic marine bacterium Paenibacillus barencticus. Food Chem. 2016; 192: 1041–1048. https://doi.org/10.1016/j.foodchem.2015.07.092 PMID: 26304445
8. Honda S, Wakiya S, Sugahara Y, Kawakita M, Oyama F, Sakaguchi M. Characterization of two Listeria innocua chitinases of different sizes that were expressed in Escherichia coli. Appl Microbiol Biotechnol. 2016; 100: 8031–8041. https://doi.org/10.1007/s00253-016-7546-0 PMID: 27198200
9. Liu C, Shen N, Wu J, Jiang M, Shi S, Wang J, et al. Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002. PeerJ. 2020; 2020: 1–23. https://doi.org/10.7717/peerj.8964 PMID: 32411515
10. Menghui G, Ostafe V, Prodanovic R, Fischer R, Ostafe R. Biochemical characterization of chitinase A from Paenibacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. Protein Expr Purf. 2019; 154: 25–32. https://doi.org/10.1016/j.pep.2018.09.007 PMID: 30237128
11. Abdel-Salam MS, Ameer HH, Kassab ASM, Mahgoob AEA, Elkelyan US. Enhancement of nematicidal potential through cloning and expression of chitinase gene from Bacillus subtilis subsp. Subtilis BTN7A
strain. Journal of Genetic Engineering and Biotechnology. 2018. pp. 305–310. https://doi.org/10.1016/j.jgeb.2018.05.006 PMID: 30733739

18. Paek A, Kim MJ, Park HY, Yoo JG, Jeong SE. Functional expression of recombinant hybrid enzymes composed of bacterial and insect’s chitinase domains in E. coli. Enzyme Microb Technol. 2020; 136: 109492. https://doi.org/10.1016/j.enzmictec.2019.109492 PMID: 32331713

19. de Souza PM, de Assis Bittencourt ML, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, et al. A biotechnology perspective of fungal proteases. Brazilian J Microbiol. 2015; 46: 337–346. https://doi.org/10.1590/S1517-838246220140359 PMID: 26273247

20. Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014; 4: 117–139. https://doi.org/10.3390/biom4010117 PMID: 24970208

21. Chew LY, Toh GT, Ismail A. Application of Proteases for the Production of Bioactive Peptides. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Academic Press; 2019. https://doi.org/10.1016/B978-0-12-813280-7.00015-3

22. Jadhav HP and Sayyed RZ. Hydrolytic Enzymes of Rhizospheric Microbes in Crop Protection. MOJ Cell Sci Rep. 2016; 3: 3–5. https://doi.org/10.15406/mojcsr.2016.03.00070

23. Shaikh SS, Sayyed RZ and Jadhav HP. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: Plant growth promotion to bioremediation. In: (ed.) SM, editor. Rhizotrophs: Plant Growth Promotion to Bioremediation, Microorganisms for Sustainability 2. Springer Nature Singapore Pte Ltd.; 2017. pp. 183–203. https://doi.org/10.1007/978-981-10-4862-3_9

24. Jacobs M, Eliasson M, Uhlen M, Flock JI. Cloning, sequencing and expression of subtilisin carlsberg. J Appl Microbiol. 2009; 107: 567–574. https://doi.org/10.1111/j.1365-2672.2009.04188.x PMID: 19260468

25. Salwan R, Sharma V, Pal M, Kasana RC, Yadav SK, Gulati A. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12). Int J Biol Macromol. 2018; 107: 567–574. https://doi.org/10.1016/j.ijbiomac.2017.09.025 PMID: 28916383

26. Johnson J, Yang YH, Lee DG, Yoon JJ, Choi KY. Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudalteromonas phenolica. Protein Expr Purif. 2018; 152: 46–55. https://doi.org/10.1016/j.pep.2018.07.010 PMID: 30055246

27. Kaur I, Kocher GS, Gupta VK. Molecular Cloning and Nucleotide Sequence of the Gene for an alkaline protease from Bacillus circulans MTCC 7906. Indian J Microbiol. 2012; 52: 630–637. https://doi.org/10.1007/s12088-012-0297-4 PMID: 24293722

28. Sadeghi HMM, Rabbani M, Naghitorabi M. Cloning of alkaline protease gene from Bacillus subtilis 168. Res Pharm Sci. 2009; 3: 43–46.

29. Saeki K, Ozaki K, Kobayashi T, Ito S. Detergent Alkaline Proteases: Enzymatic Properties, Genes, and Crystal Structures. 2007; 103: 501–508. https://doi.org/10.1016/S0098-7174(07)70016-0

30. Deng A, Wu J, Zhang G, Wen T. Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family. Biochimie. 2011; 93: 783–791. https://doi.org/10.1016/j.bioch.2011.01.011 PMID: 21281692

31. Suberu Y, Akande I, Samuel T, Lawal A, Olaniran A. Cloning, expression, purification and characterisation of serine alkaline protease from Bacillus subtilis RD7. Biocatal Agric Biotechnol. 2019; 20: 101264. https://doi.org/10.1016/j.bcab.2019.101264

32. Xu Y, Xu F, Ding X, Qian K, Li L. Cloning, secretory expression, partial characterization, and structural modeling of an alkaline protease from Bacillus subtilis D-2. BioResources. 2019; 14: 5301–5315. https://doi.org/10.15376/biores.14.3.5301–5315

33. Rao CS, Sathish T, Brahmaiah P, Prathap T, Shetty R. Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. 2009; 302–307. https://doi.org/10.1002/jctb.2040

34. Wang W, Meng F, Liu P, Yang S, Wei D. Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei. J Ind Microbiol Biotechnol. 2014; 41: 1709–1718. https://doi.org/10.1007/s10529-014-1508-2 PMID: 25209688

35. Gong Y, Tang G, Wang M, Li J, Xiao W, Lin J, et al. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing trichoderma viride EG3 and BGL1. J Gen Appl Microbiol. 2014; 60: 198–206. https://doi.org/10.13231/jgam.60.198 PMID: 25420425

36. Liu M, Yu H. Co-production of a whole cellulase system in Escherichia coli. Biochem Eng J. 2012; 69: 204–210. https://doi.org/10.1016/j.bej.2012.09.011

37. Liu M, Gu J, Xie W, Yu H. Directed co-evolution of an endoglucanase and a β-glucosidase in Escherichia coli by a novel high-throughput screening method. Chem Commun. 2013; 49: 7219–7221. https://doi.org/10.1039/c3cc42485e PMID: 23841109
38. Kurniashil SD, Alfi A, Natalia D, Radjasa OK, Nurachman Z. Construction of individual, fused, and co-expressed proteins of endoglucanase and β-glucosidase for hydrolyzing sugarcane bagasse. Microbiol Res. 2014; 169: 725–732. https://doi.org/10.1016/j.microres.2014.02.002 PMID: 24598011

39. Elleuche S. Bringing enzymes together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol. 2015; 99: 1545–1556. https://doi.org/10.1007/s00253-014-6315-1 PMID: 25539094

40. Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996; 62: 316–322. https://doi.org/10.1128/aem.62.2.316-322.1996 PMID: 8593035

41. Suma K, Podile AR. Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and anti-fungal activities. Bioresearch Technol. 2013; 133: 213–220. https://doi.org/10.1016/j.bioretech.2013.01.103 PMID: 23428818

42. Baneyx F. Proteolytic enzyme from recombinant Streptomyces lividans TK24. FEMS Microbiol Lett. 1989; 65: 35–38. https://doi.org/10.1016/0378-1097(89)90361-3 PMID: 2693198

43. Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970; 227: 680–685. Available: https://www.nature.com/articles/227680a0#citeas https://doi.org/10.1038/227680a0 PMID: 5432063

44. Aretz W, Koller KP, Riess G. Proteolytic enzymes from recombinant Stenotrophomonas maltophilia. Appl Microbiol Biotechnol. 2007; 2007. https://doi.org/10.3791/253 PMID: 18997900

45. Vaikunta Pu PR, Rambabu S, Madhuprakash J, Podile AR. A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. Bioresour Technol. 2016; 220: 25–32. https://doi.org/10.1016/j.biortech.2015.12.038 PMID: 26767320

46. Kurniasih SD, Alfi A, Natalia D, Radjasa OK, Nurachman Z. Construction of individual, fused, and co-expressed proteins of endoglucanase and β-glucosidase for hydrolyzing sugarcane bagasse. Microbiol Res. 2014; 169: 725–732. https://doi.org/10.1016/j.microres.2014.02.002 PMID: 24598011

47. Elleuche S. Bringing enzymes together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol. 2015; 99: 1545–1556. https://doi.org/10.1007/s00253-014-6315-1 PMID: 25539094

48. Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996; 62: 316–322. https://doi.org/10.1128/aem.62.2.316-322.1996 PMID: 8593035

49. Suma K, Podile AR. Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and anti-fungal activities. Bioresearch Technol. 2013; 133: 213–220. https://doi.org/10.1016/j.bioretech.2013.01.103 PMID: 23428818

50. Baneyx F. Proteolytic enzyme from recombinant Streptomyces lividans TK24. FEMS Microbiol Lett. 1989; 65: 35–38. https://doi.org/10.1016/0378-1097(89)90361-3 PMID: 2693198

51. Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970; 227: 680–685. Available: https://www.nature.com/articles/227680a0#citeas https://doi.org/10.1038/227680a0 PMID: 5432063

52. Aretz W, Koller KP, Riess G. Proteolytic enzymes from recombinant Stenotrophomonas maltophilia. Appl Microbiol Biotechnol. 2007; 2007. https://doi.org/10.3791/253 PMID: 18997900

53. Vaikunta Pu PR, Rambabu S, Madhuprakash J, Podile AR. A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. Bioresour Technol. 2016; 220: 25–32. https://doi.org/10.1016/j.biortech.2015.12.038 PMID: 26767320
60. Gutiérrez-Román MI, Dunn MF, Tinoco-Valencia R, Holguín-Meléndez F, Huerta-Palacios G, Guillén-Navarro K. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World J Microbiol Biotechnol. 2014; 30: 33–42. https://doi.org/10.1007/s11274-013-1421-2 PMID: 23824666

61. Adrangi S, Faramarzi MA, Shahverdi AR, Sepehrizadeh Z. Purification and characterization of two extracellular endochitinases from Massilia timonae. Carbohydr Res. 2010; 345: 402–407. https://doi.org/10.1016/j.carres.2009.11.015 PMID: 19962135

62. Lee KY, Heo KR, Choi KH, Kong HG, Nam J, Yi YB, et al. Characterization of a Chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol J. 2009; 25: 344–351. https://doi.org/10.5423/PPJ.2009.25.4.344

63. Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K. Overexpression and characterization of thermostable serine protease in Escherichia coli encoded by the ORF TTE0824 from Thermoaerrobacter tengcongensis. Extremophiles. 2007; 11: 769–779. https://doi.org/10.1007/s00792-007-0103-0 PMID: 17657405

64. An SY, Ok M, Kim JY, Jang MS, Cho YS, Choi YL, et al. Cloning, high-level expression and enzymatic properties of an intracellular serine protease from Bacillus sp. WRD-2. Indian J Biochem Biophys. 2004; 41: 141–147. PMID: 22900344

65. Jayakumar R, Jayashree S, Annapurna B, Seshadri S. Characterization of thermostable Serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and Its Applications. Appl Biochem Biotechnol. 2012; 168: 1849–1866. https://doi.org/10.1007/s12010-012-9902-6 PMID: 23076563

66. Bouacem K, Bouanane-Darenfed A, Laribi-Habchi H, Ben Elhouli M, Hmidâ-Sayari A, Hacene H, et al. Biochemical characterization of a detergent-stable serine alkaline protease from Caldiciprobacter guelmensis. Int J Biol Macromol. 2015; 81: 299–307. https://doi.org/10.1016/j.ijbiomac.2015.08.011 PMID: 26261082

67. Gulmez C, Atakisi O, Dalginli KY, Atakisi E. A novel detergent additive: Organic solvent- and thermoalkaline-stable recombinant subtilisin. Int. J. Biol. Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2017.11.135 PMID: 29174357

68. Gupta R, Beg Q, Lorenz P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl Microbiol Biotechnol. 2002; 59: 15–32. https://doi.org/10.1007/s00253-002-0975-y PMID: 12073127

69. Lakshmi BKM, Muni Kumar D, Hemalatha KPJ. Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J Genet Eng Biotechnol. 2018; 16: 295–304. https://doi.org/10.1016/j.jgeb.2018.05.009 PMID: 30733738

70. Nakashima K, Endo K, Shibasaki-Kitakawa N, Yonemoto T. A fusion enzyme consisting of bacterial expansin and endoglucanase for the degradation of highly crystalline cellulose. RSC Adv. 2014; 4: 43815–43820. https://doi.org/10.1039/c4ra059891g