Panthera pardus (Carnivora: Felidae)

ANDREW B. STEIN AND VIRGINIA HAYSSEN

Department of Natural Resources Conservation, University of Massachusetts, Amherst, MA 01003, USA; astein33@hotmail.com (ABS)
Department of Biology, Smith College, Northampton, MA 01063, USA; vhayssen@email.smith.edu (VH)

Abstract: Panthera pardus (leopard; Linnaeus, 1758) is the smallest of the 4 large felids in the genus Panthera. A solitary and adaptable species, P. pardus is the widest ranging of all wild felids, inhabiting rain forests, mountains, semiarid environments, and suburban areas throughout sub-Saharan Africa, the Middle East, and South Asia to the Russian Far East. Despite this distribution, P. pardus is listed as “Near Threatened” by the International Union for Conservation of Nature and Natural Resources and several Asian subspecies are listed as endangered. P. pardus primarily feeds on small to medium-sized ungulates, but has a varied diet including fish, reptiles, birds, and small mammals.

Key words: Africa, Asia, felid, India, leopard, wild felid

© 12 June 2013 American Society of Mammalogists
Synonymy completed 1 October 2010
DOI: 10.1644/900.1

Panthera pardus (Linnaeus, 1758)
Leopard

Felis pardus Linnaeus, 1758:41. Type locality “Indiis” restricted to “Egypt” by Thomas (1911a:133) or “Algeria” by J. A. Allen (1924:249).
Felis panthera Schreber, 1775:plate XCIX; Schreber, 1777:384–385. Type locality “Africa,” restricted to “Algeria” by Ellerman and Morrison-Scott (1951:316).
Felis leopaldus Schreber, 1775:plate Cl; Schreber, 1777:387. Type locality “Senegal.”
Felis leopardus varia Schreber, 1777:387, plates Cl and Clb. Vide Wagner 1841:479. Type locality unknown.
Felis chalybeata Schreber, 1775:plate Clc. Type locality unknown. Attributed to Hermann 1804. Possibly Leptailurus serval (Griffith et al., 1827:175).
Felis fusca Meyer, 1794:394. Type locality “India orientali.”
Felis chalybeata Hermann, 1804:36. Type locality unknown (Duvernoy 1834).
Felis melas G. Cuvier, 1809:152. Type locality “Java.”
Panthera vulgaris Oken, 1816:1052. Unavailable name (International Commission on Zoological Nomenclature 1956: Opinion 417).
Felis. pardus antiquorum Griffith et al., 1827:165. Type locality unknown.
Felis palaearia F. G. Cuvier, 1832:3 for plate of panthère male. Type locality “Alger.”
Felis nimr Hemprich and Ehrenberg, 1833:plate xvii. Type locality “Arabia.”
Felis variegata Wagner, 1841:483. Preoccupied (Pocock, 1930b:326).

Fig. 1.—An adult male leopard (Panthera pardus) from Namibia. Used with permission of the photographer, Andrew Stein.
Felis tulliana Valenciennes, 1856:1039. Type locality "l'Asie Mineure."
Felis orientalis Schlegel, 1857:23. Type locality "Korea."
Leopardus japonensis Gray, 1862:262, plate XXXIII. Alleged type locality "Japan."
Leopardus varius: Gray, 1863:3. Name combination.
Leopardus perniger Gray, 1863:3. Type locality "Sikim," Tibet (see "Nomenclatural Notes").
Felis pardus melania Gray, 1863:3. Type locality "Sikim," Tibet.
Leopardus poliopardus Brehm, 1863:108. Type locality unknown.
Leopardus pardus: Gray, 1867:263. Name combination.
Felis. palaeopardus Gray, 1867:263. Type locality unknown; Gray attributed to Fitzinger.
Leopardus chinensis Gray, 1867:264. Type locality "Pekin, mountain-forests of the west," China; not Felis chinensis Gray, 1837.
Felis fontanieri Milne-Edwards, 1867:375. Type locality "environ de Pekin."
Panthera pardus: Fitzinger, 1868:457. First use of current name combination.
Panthera niger monticolus Fitzinger, 1868:466. Type locality "Abyssinien."
Panthera antiquorum Fitzinger, 1868:466. Type locality "Ost-Indien."
Panthera leopardus: Fitzinger, 1868:468. Name combination.
Panthera variegata: Fitzinger, 1868:473. Name combination.
Panthera variegata nigra Fitzinger, 1868:475. Type locality "Java."
Panthera orientalis: Fitzinger, 1868:477. Name combination.
Leopardus japonensis Swinhoe, 1870:628. Type locality "North China and Manchuria." Preoccupied by Leopardus japonensis Gray, 1862:262.
Felis leopardus Sclater, 1878:289. Type locality "Persia," not Felis leopards Schreber, 1775.
Felis leopardus melanotica Günther, 1885:plate xvi. Type locality "Grahamstown," clarified to "about 20 miles from Grahamstown" by Günther (1886:205).
Felis. antiquorum: Matschie, 1895:194. Name combination.
(Leopardus) pardus variegata: Matschie, 1895:199. Name combination.
(Leopardus) pardus tulliana: Matschie, 1895:199. Name combination.
(Leopardus) pardus panthera: Matschie, 1895:199. Name combination.
(Leopardus) pardus minor Matschie, 1895:199. Nomen nudum.
(Leopardus) pardus leopardus: Matschie, 1895:199. Name combination.
Felis pardus melas de Pousargues, 1896:181. Type locality "Yun-nan." Not Felis melas Cuvier, 1809.
Leopardus japanensis Lydekker, 1896:71. Unjustified emendation of Leopardus japonensis Gray, 1862.
Felis leopardus suahiensis Neumann, 1900:551. Type locality "Tanga, am Manjara-See und in den Loita-Bergen ... in Nai (Nord-Ugogo), in Usandawe und in Uganda."
Felis villosa Bonhote, 1903:475. Type locality "Amur Bay, E. Siberia."
Felis pardus chinensis: Brass, 1904:6. Name combination.
Felis pardus fontanieri: Brass, 1904:6. Name combination and unjustified emendation of Felis fontanieri Milne-Edwards, 1867.
Felis pardus nanopardus Thomas, 1904:94. Type locality "40 miles west of Gorahai." Somaliland.
Felis [Leopardus] grayi Trouessart, 1904:268. Type locality "China."
Leopardus pardus tullianus: Satunin, 1905:152. Correction of gender agreement.
Felis pardus ruwenzorii Camerano, 1906:1. Type locality "Ruwenzori ... Bunjungolo."
Felis (Felis). pardus melanotica: Pocock, 1907:677. Name combination.
Felis (Felis). pardus suahelica: Lydekker, 1907:785. Name combination and inappropriate gender attribution.
Panthera hanensis Matschie, 1908:198. Type locality "Hsing-an-fu," China.
Felis (Felis). pardus melanosticta Lydekker, 1908:430. Unjustified emendation of Felis melanosticta Günther, 1885.
Felis (Felis). pardus panthera: Lydekker, 1910:385. Name combination.
Felis (Felis). pardus villosa: Lydekker, 1910:385. Name combination.
Felis fontanieri Thomas, 1911b:688. Unjustified emendation of Felis fontanieri Milne-Edwards, 1867.
Felis pardus panthera: Brass, 1911:402. Name combination.
Felis pardus variagata: Brass, 1911:402. Name combination.
Felis pardus tulliana: Brass, 1911:403. Name combination.
Felis pardus sinensis Brass, 1911:403. Type locality "südlichen China."
Felis pardus leopardus: Brass, 1911:405. Name combination.
Felis pardus variegata G. M. Allen, 1912:235. Type locality "Yangtze valle, at Changyanghsien, Hupeh," China. Not Felis variegata Wagner, 1841.
Felis pardus fortis Heller, 1913:5. Type locality "Loita Plains, Southern Guaso Nyiro district, British East Africa."
Felis pardus chui Heller, 1913:6. Type locality "Gondokoro, northern Uganda."
Felis (Felis). pardus variegata Lydekker, 1914:498. Preoccupied by Felis pardus variegata G. M. Allen, 1912. Not Felis variegata Wagner, 1841.
Leopardus pardus ciscaucasicus Satunin, 1914:159. Type locality "Kuban Provence, Caucasus" vide Ellerman and Morrison-Scott 151:317.
Leopardus pardus orientalis: Satunin, 1914:160. Name combination.

Felis pardus centralis Lönnberg, 1917:5, 49. Type locality “Kabare at Lake Albert,” Belgian Congo, now Democratic Republic of the Congo.

Panthera pardus reichenowi Cabrera, 1918:481. Type locality “Yokó (Kamerun).”

Felis (Felis). pardus. ruwenzori de Beaux, 1923:275. Unjustified emendation of Felis pardus ruwenzori Camerano, 1906. (Felis pardus) antinori de Beaux, 1923:276, 278. Type locality “Keren, paese dei Bogos,” Somalia.

Panthera pardus iturensis J. A. Allen, 1924:259. Type locality “Niapu, Belgium Congo.”

Panthera pardus leopardus: J. A. Allen, 1924:252. Name combination.

Panthera pardus nimr: J. A. Allen, 1924:252. Name combination.

Panthera pardus melanotica: J. A. Allen, 1924:252. Name combination.

Panthera pardus suahelica: J. A. Allen, 1924:253. Name combination.

Panthera pardus centralis: J. A. Allen, 1924:253. Name combination.

Panthera pardus reichenowi: J. A. Allen, 1924:253. Name combination.

Panthera pardus saxicolor Pocock, 1927:213. Type locality “Asterabad, North Persia.”

Panthera pardus adusta Pocock, 1927:214. Type locality “unknown.”

Felis (Felis). pardus. saxicolor: Dollman and Burlace, 1928:482. Name combination.

Leopardus varius: Pocock, 1930a:74. Name combination and unjustified emendation of Felis leopardus varia Schreber, 1777.

Panthera pardus sindica Pocock, 1930a:80. Type locality “Kirthar Range on the Sind-Baluchi boundary,” Pakistan.

Panthera pardus fusca: Pocock, 1930b:307. Name combination.

Panthera pardus millardi Pocock, 1930b:316. Type locality “Kashmir.”

Panthera pardus japonensis: Pocock, 1930b:320. Name combination.

Panthera pardus bedfordi Pocock, 1930b:323. Type locality “Shong Chou in S. E. [sic] Shensi, 3,000 ft.”

Panthera pardus delacouri Pocock, 1930b:325. Type locality “Hué in Annam.”

Panthera pardus melas: Pocock, 1930b:326. Name combination.

Panthera pardus jarvisi Pocock, 1932a:33. Type locality “Sinai.”

Panthera pardus suahelica: Pocock, 1932a:33. Type locality “Keren, paese dei Bogos,” Somalia.

Panthera pardus panthera: Pocock, 1932b:544. Name combination.

Panthera pardus adusta: Pocock, 1932b:549. Name combination.

Panthera pardus brockmani Pocock, 1932b:555. Type locality “Upper Sheikih in the Golis Range.”

Felis pardus fusca: J. A. Allen, 1938:448. Name combination.

Panthera pardus kotiya Deraniyagala, 1956:116. Type locality “Ceylon.”

Panthera pardus dathei Zukowsky, 1959:343. Type locality “Persiens,” Iran.

Panthera pardus ciscaucasicus Weigel, 1961:69. Name combination.

Panthera pardus tulliana Weigel, 1961:70. Name combination.

Panthera pardus ciscaucasica Weigel, 1961:70. Name combination.

Panthera pardus permigra: Weigel, 1961:70. Name combination.

Panthera pardus orientalis: Weigel, 1961:70. Name combination.

Panthera pardus transcaucasica Zukowsky, 1964:158. Type locality “südkaukasischen,” Armenia.

Panthera pardus xicolor Ahmed et al., 1988:1341. Unjustified emendation of xicolor Pocock, 1927.

Panthera pardus fusea Johnson et al., 1993:646. Unjustified emendation of fusea Meyer, 1794.

Context and Content. Order Carnivora, family Felidae. Panthera pardus has 9 subspecies (Uphyrkina et al. 2001); 8 if P. p. nimr is included with P. p. ciscaucasica (Miththapala et al. 1996). Misspellings and gender changes are not included in the following subspecies synonymy.
MAMMALIAN SPECIES

P. p. ciscaucasica Satunin, 1914:159. See above; ciscaucasica, dathei, leoparda (Schater), saxicolar, sindica, transcaucasia, and sulliana are synonyms.

P. p. delacouri Pocock, 1930b:325. See above; sinensis and variegata (Lydekker) are synonyms.

P. p. fusca (Meyer, 1794:394). See above; antiquorum, centralis, chinenesis, chui, inurensis, longicaudata, melas, millardi, pernigra, and variegata (Allen) are synonyms.

P. p. japonensis (J. E. Gray, 1862:262). See above; bedfordi, chinenesis, fontanierii, grayi, and hanensis are synonyms.

P. p. koriya Deraniyagala, 1956:116. See above.

P. p. melas G. Cuvier, 1809:152. See above; variegata (Wagner) is a synonym.

P. p. nigrum (Hempich and Ehrenberg, 1833:plate xvii). See above; javisi is a synonym.

P. p. orientalis (Schiegel, 1857:23, figure 13). See above; villosa is a synonym.

P. p. pardus (Linnaeus, 1758:41). See above; adersi, adusta, antinorii, barbara, fortis, leopards (Günther), leopards (Schreber), melanosticta, melanotica, minor, nanoparda, palearia, panthera, pocelura, preella, reichenowi, rowen- zorii, shortridgei, suahelicus, varia, and vulgaris are synonyms.

NOMENCLATURAL NOTES. A thorough discussion of the type locality is in Pocock (1930a). The species name pardus is from the Greek pardos for male panther. Fitzinger (1868) provides pre-Linnean synonyms. The name pernigra/perniger is often attributed to Hodgson, but was published by Gray (1863) when cataloging Hodgson’s specimens. Thus, following Ellerman and Morrison-Scott (1951), we have attributed the name to Gray. An alternative attribution would be Hodgson in Gray (1863). Other common names are graupanther (Brehm 1863); leopard, panther, panthere tigris is a synonym. Leopard is the name by which the animal is commonly known amongst English-speaking people in Europe, America and Africa; but … panther … is more usually employed by Indian sportsmen” (Pocock 1930a:64). The generic synonymy for Panthera includes Felis and Leopardus as well as jaguarius, leo, pardus, and tigris (Mazák 1981).

DIAGNOSIS

Panthera pardus (Fig. 1) is a large spotted cat distinguished from other members of the genus Panthera by its distribution throughout sub-Saharan Africa and Asia and its characteristic dark, rosette spots. In Africa, Panthera pardus may be confused with cheetahs (Acinonyx jubatus), which also have been called “hunting leopards” in Asia (Sterndale 1884), but cheetahs are taller and more slender with circular, solid spots, unlike the robust Panthera pardus with rosettes. Cheetahs also have a diagnostic tearmark from the inside of the eye to the outside of the mouth, absent in Panthera pardus (Krausman and Morales 2005).

The coat pattern of Panthera pardus is similar, but Panthera onca often has a small spot within the rosette pattern, whereas Panthera pardus often does not. Panthera pardus and Panthera onca are not sympatric because Panthera onca inhabits Central and South America and Panthera pardus occurs in Africa, the Middle East, and Asia. Panthera pardus is marginally smaller than Panthera onca (length of head and body, 1.0–1.5 m, 1.1–1.8 m; mass, 30–90 kg, 61–132 kg, respectively), but Panthera pardus has a somewhat longer tail (0.8–1.0 m, 0.5–0.8 m, respectively—Nelson and Goldman 1933; Roberts 1951; Hall and Kelson 1959; Roscovar 1974; Eisenberg and Redford 1999; Stein 2008). Panthera pardus has a more slender head and smaller foot pads compared to the more robust skull and more evenly rounded foot pads of Panthera onca (Nelson and Goldman 1933).

GENERAL CHARACTERS

Individual measurements can vary by geographic region with smaller individuals typically coming from Cape Province, South Africa, where adult male Panthera pardus pardus have a mean mass of 31 kg (range, 20–45 kg), whereas the more typical masses for an adult male Panthera pardus are reported from Zimbabwe as 60 kg (range, 52–71 kg) with individuals up to 90 kg on occasion (Kitchener 1991). Ranges of mean body mass (kg) for 34 females and 47 males from India, the Ivory Coast, Namibia, and South Africa were 21.2–54.0 and 30.9–62.6, respectively (Robinson 1963; Smithers 1983; Grimbeek 1991; Bailey 1993; Stein 2008). Ranges of mean body mass (kg) for 34 females and 47 males from India, the Ivory Coast, Namibia, and South Africa were 21.2–54.0 and 30.9–62.6, respectively (Robinson 1963; Smithers 1983; Grimbeek 1991; Bailey 1993; Stein 2008). Ranges of mean body mass (kg) for 34 females and 47 males from India, the Ivory Coast, Namibia, and South Africa were 21.2–54.0 and 30.9–62.6, respectively (Robinson 1963; Smithers 1983; Grimbeek 1991; Bailey 1993; Stein 2008). Ranges of mean body mass (kg) for 34 females and 47 males from India, the Ivory Coast, Namibia, and South Africa were 21.2–54.0 and 30.9–62.6, respectively (Robinson 1963; Smithers 1983; Grimbeek 1991; Bailey 1993; Stein 2008).
Measurements for 2 female *P. p. nimr* from the Judean Desert (mm) were: total length, 1,684–1,920; length of head and body, 930–1,130; length of tail, 754–790; length of hind leg from the hip to foot pad, 223–230; length of ear, 59–64; width of front interdigital foot pad, 52–52; width of hind interdigital foot pad, 48–49; mass, 22–23.5 kg (Ilani 1981). Mean and range of head and body lengths and length of tail (cm) for 10 *P. p. nimr* of unknown sex from Jordan, Sinai, Iraq, Oman, and Saudi Arabia were 197.11, 160.0–226.1; 78.12, 66.0–94.0 (Harrison and Bates 1991). Ear length of 1 animal was 44 mm (Harrison and Bates 1991).

Mean cranial measurements (cm; n in parentheses) for males and females, respectively, from Namibia were: greatest length, 17 (2), 15.6 (3); greatest width, 15.6 (2), 11.3 (3); upper canine length, 3.6 cm (3), 2.7 (Stein 2008; Fig. 2). Cranial measurements (mm – indicates missing measurement) for 2 males and 2 females, respectively, from Gabon were: greatest length, 226.5, –, 171.5, –; condylobasal length, 202.0, –, 158.5, 166.0; zygomatic width, 148.8, 147.0, 106.7, 114.5; skull width, 91.7, –, 68.7, 73.1; I–M distance, 87.8, 83.0, 64.5, 67.0; C–M distance, 71.6, 68.1, 55.2, 57.0; palatal length, 101.0, 99.8, 75.7, 76.0; mandibular length, 149.8, 145.5, 114.2, 121.5 (Dobroruka and van Bree 1965).

Mean cranial measurements (mm; range, n) for male and female *P. p. delacouri*, respectively, from Southeast Asia were: greatest skull length, 212, 207–218, 4; 188, 180–196, 6; condylobasal length, 195, 186–202, 4; 172, 165–178, 5; zygomatic width, 139, 134–148, 4; 125, 116–130, 6; greatest skull width, 69.0, 67–71, 2; 65, 65, 1; interorbital width, 37.6, 36–41, 3; 31, 31, 1; postorbital width, 42.6, 42–43, 3; 37, 37, 1 (Dobroruka 1963). Mean cranial measurements (mm; range, n) for animals of unknown sex from Jordan, Sinai, Iraq, Oman, and Saudi Arabia were: greatest skull length, 193, 166–213, 6; condylobasal length, 177, 151–194, 6; zygomatic width, 121, 105–132, 7; mandibular length, 130, 111–142, 7 (Harrison and Bates 1991). Cranial measurements (mm; range) for males and females, respectively, from the former Soviet Union (no sample size) were: greatest skull length, 193–256, 180–218; condylobasal length, 186–224, 170–188; zygomatic width, 123–172, 116–135; muzzle width above canines, 53–65, 47–53; length of upper toothrow, 65–79, 60–68 (Heptner and Sludskii 1992). Canines average 34.4 mm in length (Christiansen 2007). The mandibular symphysis is not fused (Kalita et al. 2001).

Fur color varies from a pale yellow to rich ochre to black. Fur is generally soft and thick, with individuals living in colder climates having longer fur than those from warmer habitats (Turnbull-Kemp 1967). Fur along the ventral portion of the torso is generally lightly colored and long, regardless of the region. Fur is short and uniform in color on the rostrum and becomes spotted with solid dots along the muzzle and forehead. Whisker spots can be used for individual identification (Pennycuick and Rudnai 1970). The solid spots become irregular, rosette patterns along the neck and shoulders extending along the back and midsection to the rump and tail. Large, irregular spots are present along the limbs from the elbow and knee to the feet and along the ventral side of the torso. One of us (ABS) observed variation in eye color from golden yellow to a pale blue.

DISTRIBUTION

Panthera pardus is the most widely distributed wild cat species in the world (Fig. 3), with a range extending from the Cape of Good Hope, South Africa, through the Middle East and Southeast Asia to the Amur Peninsula in the Russian Far East (Nowell and Jackson 1996). The population of *P. p. pardus* is distributed throughout sub-Saharan regions except for the Skeleton Coast of Namibia and most of South Africa outside of the Limpopo region, Eastern and Western Cape provinces. *P. p. adersi* is extinct (Goldman and Walsh 2002). In the Middle East, *P. p. nimr* occurs in Israel on the Arabian Peninsula (El-Mashjary 1995; Al-Johany 2007). *P. p. ciscaucasica* persists in protected areas and mountainous areas of the Russian North Caucasus, Georgia, Armenia, Azerbaijan, Nagorno-Karabakh Republic, Turkey, Turkmenistan, Afghanistan, Pakistan, and Iran in southwestern Asia (Henschel et al. 2008). *P. p. fusca* is pervasive throughout the protected area system within India. *P. p. kotiya* is present on Sri Lanka. *P. p. delacouri* is increasingly rare in China and Southeast Asia outside of protected areas. In northern China, *P. p. japonensis* also is rare. *P. p. melas* is still found in Malaysia, but not on the islands of Borneo or Sumatra (Nowell and Jackson 1996; Meijaard 2004).

Panthera pardus pardus is primarily distributed throughout sub-Saharan Africa with smaller isolated populations in the Atlas Mountains of Morocco, Ahaggar in southeastern Algeria, the eastern desert of Egypt, and Niger (Ray et al. 2005). The remaining populations of *P. p. pardus* are in West Africa extending from Nigeria to Senegal. The eastern and southern African population is more contiguous, although increasingly patchy, extending east to west from Somalia to Gabon and eastern Nigeria and south of the Sahel from Sudan to South Africa with an isolated population in the western Cape region (Nowell and Jackson 1996; Ray et al. 2005).

FOSSIL RECORD

The origin of the modern *Panthera pardus* is between 470,000 and 850,000 years ago in Africa. Modern *P. pardus* migrated to Asia more recently, between 170,000 and 300,000 years ago (Uphyrkina et al. 2001). The earliest documented ancestral fossils of *P. pardus* were from Laetoli, Tanzania, along with lion (*Panthera leo*) fossils dated at approximately 3.5 million years ago (Turner and Anton...
Fig. 2.—Dorsal, ventral, and lateral views of skull and lateral view of mandible of an adult *Panthera pardus* (1996, University of Massachusetts Natural History Museum) confiscated by United States Fish and Wildlife. Greatest length of skull is 219 mm.

Fig. 3.—Geographic distribution of *Panthera pardus* (modified from Henschel et al. 2008). Subspecies are: 1. *P. p. ciscaucasica*; 2. *P. p. delacouri*; 3. *P. p. fuscus*; 4. *P. p. japonensis*; 5. *P. p. kotiya*; 6. *P. p. melas*; 7. *P. p. nimr*; 8. *P. p. orientalis*; 9. *P. p. pardus*.

The oldest fossil within Asia is from the Inain Siwaliks at approximately 2 million years ago (Hemmer 1976). This Asiatic *P. pardus* was similar in appearance to *P. onca* and the now extinct *P. gombazogensis* (Kitchener 1991).

FORM AND FUNCTION

One of us (ABS) has observed that large male *Panthera pardus* may develop a dewlap extending from the lower jaw to the chest. *P. pardus* has large and well-defined musculature on the forelimbs, shoulders, and neck. *P. pardus* can drag a carcass more than double its body mass using its mouth and hoist the carcass into trees (Scheepers and Gilchrist 1991). A 39-kg *P. pardus* had a forelimb length of 57 cm, a hind-limb length of 76 cm, and an intergirdle distance of 74 cm (Day and Jayne 2007). In length, a humerus was 21 cm and a femur was 23 cm (Ray et al. 1996; 1997). Limb bone mean lengths and circumferences (mm) for 5 *P. pardus* were: humerus, 211.2, 90.1; radius, 263.6, 60.9; femur, 353.4, 87.0; tibia, 302.3, 83.4 (Christiansen 1999). Meniscal ossicles are present (Walker et al. 2002). Dental formula is i 3/3, c 1/1, p 3/2, m 1/1, total 30 (Stander 1997).

Hair of *P. p. nimr* is about 1.5–2.0 cm in length on dorsum and 4–5 cm in length on ventrum (Borner 1977). Hair on the distal part of the tail is longer than on the proximal region, thus the last one-third of the tail appears to have a larger diameter (Borner 1977). Hair density is about 3,000 hairs/cm² on dorsum with 1 guard hair for every 4 underfur hairs (Heptner and Sludskii 1992). Yellow guard hairs are “30 mm long and 121 microns thick but the black hairs [are] 40 mm long and 96 microns thick” (Heptner and Sludskii 1992:204). Similarly, yellow underfur is 20 mm long (21 μm thick) and black underfur is 24 mm long (32 μm...
thick—Heptner and Sludskii 1992). Dark, smokey-gray dorsal underfur in a winter coat is up to 19 mm long (Pocock 1934). Winter hair (45-50 mm) is longer than summer hair (20-25 mm—Pocock 1934; Heptner and Sludskii 1992).

A 94-cm-long adult female had the following measurements (cm or g): height at withers, 67; height at hind limb, 69; length of head, 27; width of head, 15.5; mass of head, 2000; mass of skull and mandible, 550; orbital cavity, 6 by 5; eyeball mass, 45; eyeball size, 3.4 by 3.2 by 3.3; cornea lateromedial by dorsoventral diameters, 2.2 by 1.8; mass of larynx, 105; thyroid size, 6.0 by 1.6 by 0.6; tracheal length, 26 (with 43 tracheal rings); lung mass with trachea, 405; heart mass, 175; heart circumference, 22.5; esophageal larynx, 105; thyroid size, 6.0 by 1.6 by 0.6; tracheal length, 26 (with 43 tracheal rings); lung mass with trachea, 405; heart mass, 175; heart circumference, 22.5; esophageal length, 42; mass of stomach, 250; lesser curvature of stomach, 24.5; greater curvature of stomach, 44; length of small intestine, 106; length of large intestine, 75.2; cecum length, 3.2; rectal length, 40; mass of intestines, 650; mass of spleen, 80; size of spleen, 21.5 by 4.5 by 1.8; mass of 5-lobed liver, 525; length of hepatic duct, 13.7 (Archana et al. 2006). An adult female had 13 ribs, a left lung with 2 lobes, a right lung with 5 lobes, and a gall bladder (Archana et al. 2006).

Panthera pardus has a digitigrade foot structure with the forefeet having 5 toes and the hind feet having 4. The 1st toe, set on the inside of the foot above the wrist, is only used when bringing down prey. The feet of adult male P. pardus are 70–90 mm in length and width, forming a near circular track for the forefoot (Stuart and Stuart 1994). The hind foot is often slightly longer than it is wide, but conforms to these measurements. The female feet are similar but are 55–70 mm in length and are 5–10 mm more slender (Stuart and Stuart 1994). The metacarpal–phalanx ratio is 1.87 (Iwanluk et al. 2001). Maximal speeds of 60 km/h, horizontal leaps of 28.7, 27.5 (Brown et al. 1989). Basal serum estrogen in females was 8.8 pg/ml (Brown et al. 1988) and peak fecal estrogen (1,433 ng/g) was twice basal levels (De Haas van Dorsser et al. 2007). The peak urinary relaxin concentration during 2 pregnancies was 3.6-4.6 nmol/liter; low-density lipoprotein (LDL) cholesterol, 3.4 mmol/liter; triglycerides, 0.40–0.88 mmol/liter; retinol, 1,259 nmol/liter; retinyl palmitate, 267 nmol/liter; α-tocopherol, 24.2 µmol/liter (Crissey et al. 2003).

In females, baseline serum progesterone is 1.6 ng/ml and increases to 13–98 ng/ml during the luteal phase (Schmidt et al. 1988); fecal progesterone is 706–732 pg/g (De Haas van Dorsser et al. 2007). Progesterone stays at basal levels when animals are isolated (Schmidt et al. 1988). Basal concentrations (ng/ml) of luteinizing hormone and follicle-stimulating hormone in males and females, respectively, were: 1.9, 1.8; 28.7, 27.5 (Brown et al. 1989). Basal serum estrogen in females was 8.8 pg/ml (Brown et al. 1988) and peak fecal estrogen (1,433 ng/g) was twice basal levels (De Haas van Dorsser et al. 2007). The peak urinary relaxin concentration during 2 pregnancies was 3.6-4.6 ng/mg creatinine (De Haas van Dorsser et al. 2006). Sperm density, number of motile sperm, and number of normal sperm, respectively, were: 51.6–55.8 X 10⁶/ml, 57%, and 72% (Jayaprakash et al. 2001; De Haas van Dorsser and Strick 2005). Total sperm length, head length, and head width (µm) are: 54.6, 4.2, and 2.5, respectively (De Haas van Dorsser and Strick 2005). Males over 8 years and under 3 years had lower sperm counts than males of intermediate ages and sperm counts were lower in summer than in winter (De Haas van Dorsser and Strick 2005).

Scats have the following bile acids: deoxycholic, chenodeoxycholic, and dehydrocholic (Khorozyan et al. 2007). Urine contains cauxin (McLean et al. 2007). Marking fluid contains 1.15 mg/ml lipids as well as the following acids: acetic, butyric, heptanoic, hexanoic, isohexanoic, isooctanoic, isovaleric, octanoic, nonanoic,
propionic, and valeric; neutral compounds: 2-acetyl-1-pyrroline, acetaldehyde, and acetone; and basic compounds: cadaverine, dimethylamine, ethylenediamine, phenylethylamine, putrescine, and trimethylamine (Poddar-Sarkar and Brahmacary 2004).

ONTOGENY AND REPRODUCTION

Mating occurs mid-January–mid-February in Iran (Farhadinia et al. 2009), January–February in Amur, and November–December in Nepal (Hayssen et al. 1993). Births occur February–March in India and Nepal, April–May in Amur, in the spring and early summer in Pakistan, during the rainy season in Angola, at the start of the rainy and start of the dry seasons in Zaire, and year-round in South Africa (Hayssen et al. 1993).

The mean length of estrus is 5–13 days; mean cycle length is 20–55 days and the follicular phase is 18–23 days (Hayssen et al. 1993; Cunningham and Gross 2000; De Haas van Dorsser et al. 2007). Gestation is 88–112 days (Acharjyo and Patnaik 1985; Hayssen et al. 1993; Cunningham and Gross 2000; De Haas van Dorsser et al. 2006, 2007). Lactation is 114–130 days with den emergence at 42 days (Hayssen et al. 1993) and independence at 13 months (Sunquist 1983; Le Roux and Skinner 1989). Lactating females may leave cubs alone for up to 36 h (Seidensticker 1990). Females have 4 mammae. Litter size is 1–6, with a mode of 2, and litters of 5 or 6 are rare (Eaton 1977; Acharjyo and Patnaik 1985; Hayssen et al. 1993; Kumar and Luna 2005). Birth mass from secondary sources is 43–60 g (Kingdon 1977; Smithers 1983) but is 280–1,000 g from primary sources (Desai 1975; Acharjyo and Patnaik 1985; Shukla et al. 2003). Neonates have closed eyes, short fur, and pink skin on nose tip, paws, and perineal area (Desai 1975). From tip to tip neonates averaged 43.8 cm (Acharjyo and Patnaik 1985). Sex ratio at birth was 49 males to 41 females (Acharjyo and Patnaik 1985). Eyes open at 4–9 days, incisors erupt at 21–29 days, canines erupt at 30 days, and molars start to appear at 52 days (Desai 1975; Cunningham and Gross 2000; Shukla et al. 2003).

Females 1st mate at 23–32 months with a 1st birth from 27 to 52 months, whereas males can 1st sire young at 1.5 years (Hayssen et al. 1993). In Kruger National Park an average of 28% of adult females produced young each year (Bailey 1993). Infanticide may occur when territorial males are removed before cubs reach independence (Ilani 1990; Bailey 1993). Fully developed dentition is present at 2 years of age (Stander 1997). Incisors and canines show wear before premolars and molars (Stander 1997). A table of age and tooth wear from 8 months until 10 years is available (Stander 1997). Males have more enamel flaking and canine fractures than do females (Stander 1997).

ECOLOGY

Population characteristics.—Populations of *Panthera pardus* in the Russian Far East are estimated at < 60 individuals (Miquelle and Murzin 2003). Smaller populations are present in Thailand and Malaysia (Grassman 1999). In Rajaji National Park, India, the population of *P. pardus* was estimated at 14.99 individuals/100 km² (Harirhar et al. 2009). The stronghold of *P. p. pardus* is in Africa, where large, continuous populations still exist (Henschel et al. 2008). Density of *P. pardus* ranges from 2.49 to 11.11 individuals/100 km² in South Africa (Balme et al. 2010) and is 3.6 individuals/100 km² in north-central Namibia (Stein et al. 2011). Although a radio-collared female lived over 10 years in Thailand, at least 27 animals in zoos have lived 20–27 years (Grassman and Larney 2002; Weigl 2005).

Space use.—*Panthera pardus* occupies a variety of habitats where competitors are present, prey sizes vary, and cover is variable. Considering all of these influences on movements and habitat use of *P. pardus*, generally home ranges of *P. pardus* are largest where prey availability is relatively low, although ranges are smallest where prey availability is high and cover is available. In semiarid and arid environments with low prey density, ranges of *P. pardus* are the largest recorded, including the Kalahari Desert (male home range $\bar{x} = 2,182$ km²—Bothma and Le Riche 1984) and the mountainous areas of Cape Province, South Africa ($\bar{x} = 388$ km²—Norton and Lawson 1985). The ranges of *P. pardus* in northeastern Namibia were relatively large ($\bar{x} = 451$ km² for males and 188 km² for females) in Kaudam National Park (Stander et al. 1997a). In north-central Namibia *P. pardus* had medium to large ranges; a male’s range was 108 km² and 2 female ranges averaged 50 km² with the availability of desert warthogs (*Phacochoerus aethiopicus*) and greater kudu (*Tragelaphus strepsiceros* [currently *Strepsiceros strepsiceros*]—Stein et al. 2011). In rocky areas of eastern Botswana, ranges of *P. pardus* were 32.9 km² for females in Botswana (Steyn and Funston 2009) and 40–69 km² for males in the Cedarberg Wilderness Area, Cape Province, South Africa (Norton and Henley 1987). Ranges of *P. pardus* ranges within rain-forested areas vary from medium sized such as 86 km² for males and 25 km² for females in Tai National Park, Ivory Coast (Jenny 1996), to small range sizes of 32–46 km² for males and 14–26 km² for females in Huai Kha Kaeng National Park, Thailand (Rabinowitz 1989; Simcharoen et al. 2008). In Nepal, 2 males had home ranges of 47 and 48 km², whereas a female had a range of 17 km² (Odden and Wegge 2005). Ranges of *P. p. pardus* are smallest in forested and rocky areas such as Kruger National Park, where prey includes impala.
(Aepyceros melampus; $X = 38$ km2 for males and 15 km2 for females—Bailey 1993) and the Lolldaiga Hills, Kenya ($X = 33$ km2 for males and 14 km2 for females—Mizutani and Jewell 1998), but 1 female in the Serengeti, Tanzania, had a home range of 15.9 km2 (Bertram 1982). However, the smallest ranges were in Sri Lanka (8–10 km2—Eisenberg and Lockhart 1972).

Individual $P. pardus$ that have larger ranges tend to have areas of overlap with neighbors, yet core areas or territories are exclusively maintained (Bothma and Le Riche 1984; Steyn and Funston 2009). Females typically share portions of their territories with their female offspring (Bailey 1993; Steyn and Funston 2009).

$Panthera pardus$ feeding on large prey items may remain in a single location for several days (Bothma and Le Riche 1984; Bailey 1993), but will typically move through its entire home range over a period of 7–10 days (Mizutani and Jewell 1998). Human disturbances may influence the range use and activity patterns of $P. pardus$ (Marker and Dickman 2005).

Typically $P. pardus$ is nocturnal with peak activity during the hours of dawn and dusk (Eisenberg and Lockhart 1972; Chambers et al. 1984; Bailey 1993) or diurnal with peak activity during late morning and late afternoon–early evening (Norton and Henley 1987). The homing instinct is strong in $P. pardus$ (Stander et al. 1997b), making translocation an impractical solution to conflict with people. Radiotagged $P. pardus$ returned to their original range in proportion to the distance from the release site (Stander et al. 1997b).

Juveniles remain with their mother 12–18 months (Bailey 1993). Young males disperse, whereas young females often take over part of their mother’s range (Bailey 1993).

Diet.—Diet selection of *Panthera pardus* is primarily driven by opportunity to catch and maintain possession of its prey. Although it prefers prey within the range of 10–40 kg, in the absence of larger competitors, it may feed on larger prey (Hayward et al. 2006; Stein 2008). The costs of attempting to kill larger prey (> 150 kg) may restrict the diet of *P. pardus*, although it has been recorded feeding on prey in this size range (Scheepers and Gilchrist 1991). As well, *P. pardus* can persist on a variety of smaller prey in environments of lean resources or an absence of larger prey (Stuart and Stuart 1993; Hayward et al. 2006). Most (69%) kills by *P. pardus* in southern India were < 50 kg (Johnsingh 1992). In Africa, *P. p. pardus* feeds on diverse species depending on ungulate species available. Primary prey are impala in Kruger National Park, South Africa, and Rhodes Matopos National Park, Zimbabwe (Smith 1978; Bailey 1993); impala, springbok (Antidorcas marsupialis), and small antelope in the Kalahari, South Africa (Mills 1990; Owen Smith and Mills 2008); impala, bush duiker (Sylvicapra grimmia), nyala (Tragelaphus angasii), red duiker (Cephalophus natalensis), southern reedbuck (Redunca arundinum), and desert warthog in the Phinda–Mkhuzu complex, South Africa (Balme et al. 2010); rodents, bush-pig (Potamochoerus larvatus), and red-flanked duiker (Cephalophus rufilatus) in Lope National Park, Gabon (Henschel et al. 2005); rock hyrax (Procavia johnstoni [currently *P. capensis*]) and groove-toothed rat (Otomys) on Mt. Kenya (Roedel et al. 2004); chital (*Axis axis*) in Nepal (Odden et al. 2010) and India (Arivazhagan et al. 2007); cattle (*Bos taurus*), northern plains gray langur (*Presbytis entellus* [currently *Semnopithecus entellus*]), goral (Naenorhedus goral), and dogs (*Canis lupus familiaris*) in the Himalayas (Mukherjee and Mishra 2001); bezoar goats (*Capra aegagrus*) in Armenia (Khorozyan and Malkhasyan 2003); tufted deer (*Elaphodus cephalophus*) and bamboo rats (*Rhizomys sinensis*) in the Wolong Reserve, China (Johnson et al. 1993); and sambar (*Cervus unicolor* [currently *Rusa unicolor*]), muntjac (*Muntiacus*), Gee’s golden langur (*Trachypithecus geei*), goral, and livestock in Bhutan (Wang and Macdonald 2009). In mountainous and semiarid areas, *P. pardus* preys upon small prey such as rock hyrax, bush duiker, and crested porcupine (*Hystrix cristata*—Bothma and Le Riche 1984; Norton et al. 1986; Stuart and Stuart 1993; Stander et al. 1997a). In the absence of larger predators *P. pardus* may prey on slightly larger prey such as greater kudu (Karanth and Sunquist 1995; Stein 2008). Other prey include ungulates: hartebeest (*Alcelaphus*), bay duiker (*Cephalophus dorsalis*), Maxwell’s duiker (*C. maxwellii* [currently *Philantomba maxwelli*]), black duiker (*C. niger*), red-flanked duiker, yellow-backed duiker (*C. similis* [currently *C. similis*]), wildebeest (*Connochaetes taurinus*), common tsessebe (*Damaliscus lunatus*), Equus, roan antelope (*Hippotragus equinus*), sable antelope (*H. niger*), water chevrotain (*Hyemoschus aquaticus*), waterbuck (*Kobus ellipsiprymnus*), kob (*K. kob*), klipspringer (*Oreotragus oreotragus*), oribi (*Ourebia ourebi*), common warthog (*Phacochoerus africanus*), red river hog (*Potamochoerus porcus*), steenbok (*Raphicerus campestris*), Sharpe’s grysbok (*R. sharpei*), mountain reedbuck (*Redunca fulvorufa*), bush duiker, African buffalo (*Syncerus caffer*), common eland (*Taurotragus oryx*), and bushbuck (*Tragelaphus scriptus*); primates: Campbell’s mona monkey (*Cercopithecus campbelli*), Diana monkey (*C. diana*), mona monkey (*C. mona*), lesser spotted-nosed monkey (*C. petaurista*), vervet monkey (*Chlorocebus pygerythrus*), green monkey (*C. sabaeus*), urine colobus (*Colobus vellerosus*), patas monkey (*Erythrocebus patas*), rhesus monkey (*Macaca mulatta*), bonobo (*Pan paniscus*), olive baboon (*Papio anubis*), chacma baboon (*P. ursinus*), and northern plains gray langur; rodents: African brush-tailed porcupine (*Atherurus africanus*), northern giant pouched rat (*Hystrix cristata*—Bothma and Le Riche 1984; Norton et al. 1986; Stuart and Stuart 1993; Stander et al. 1997a).
greater cane rat (Thryonomysswinderianus), and striped ground squirrel (Xeruserythropus); and miscellaneous: domestic dog, African civet (Civetticiscivetta), common genet (Genetta genetta), common dwarf mongoose (Helogaleparvula), scrub hare (Lepus saxatilis), tree pangolin (Manis tricuspis), ground pangolin (M. temminckii), long-tailed pangolin (M. tetradactyla), banded mongoose (Mungosmango), aardvark (Orycteropus aerus), birds, reptiles, fish, dung beetles (Fey1964; Pienaar 1969; Eisenberg and Lockhart1972; Le Roux and Skinner 1989; Edgaonkar and Chellam 1998; Zuberbühler 2001; Roedel et al. 2004; D'Amour et al. 2006; Bodendorfer et al. 2006; Odden and Wegge2009), and perhaps the Indian giant squirrel (Ratufaindica—Mehta1997). The probability of a kill is greatest in areas with intermediate cover (Balme et al. 2007).

Cannibalism can occur (Pienaar 1969; Bodendorfer et al. 2006; Steyn and Funston2006). P. pardus, in general, does not target domestic stock or humans, but particular individuals may develop the habit of raiding livestock or human settlements (Sterndale1884; Corbett1947; Turnbull-Kemp1967; Mizutani1999). A P.pardus killed 51 sheep and lambs in a single event (Stuart1986). In Kashmir, 48.5% of 35 attacks by P. pardus on humans were fatal (Nabi et al. 2009), whereas in Uganda, 32.5% of 114 attacks were fatal (Treves and Naughton-Treves1999).

Diseases and parasites.—External parasites include flies: Lipoptena chalcomelaena and Wohlfahrtiamagnifica; ticks: Amblyommahebraium, A. nuttali, A. thaolloni, A. variegatum, Haemaphysalisacciculfer, H. bispinosa, H. concinna, H. dentipalpis, H. elliptica, H. hystricis, H. konigsbergeri, H. leachi, H. papuana, H. parmata, Ixodescavipalpus, I. cumulatimpuctatus, I. moreli, I. muniensis, I. nurrali, I. pilosus, I. rasus, I. vanidicus, Rhipicephalusappendiculatus, R. armatus, R. capensis, R. compositus, R. haemaphysaloides, R. pravus, R. sanguineus, R. senegalensis, R. sinis, R. sulcatus, R. tendeiroti, R. tricuspis, and R. tsiemani; fowl and pig fleas: Echidnopahaga gallinacea and E. larina respectively; chiggers: Gahrliepia rustica; and mange-causing ear mites: Notoedrescaimunum, Brugia pahangi, Capillaria, Dirofilaria immitis, Draecunculus, Galoncusperniciosus, Gnathostoma, Mammonmonogamus, Molineus, Spiruroidea, Strongyle, Toxocara, Toxascarisleonina, T. mystax, and Trichinellabritovi; sporocysts of Isospora felis; tapeworms: Dibothrioccephalus latus, Diphyllobothriumlatum, Dipylidium, Taenia ingewi, and T. pisiformes but not Echinococcusfeli; and trematodes: Dicrocoeliidae, Echinostomatidiae, Nanophysetusalmincola, and Paragonismwestermanii (Strauss and Sivanandam1966; Turnbull-Kemp1967; Somvanshi et al. 1987; Bailey1993; Pythal et al. 1993; Patton and Rabinowitz1994; Tehsin1996; Upadhye and Dhoot2000; Dhoot et al. 2002; Penzhorn et al. 2002; Gawande et al. 2007; Amin et al. 2008; Hüttner et al. 2009; Mowlavi et al. 2009; Fayer2010).

Some P. pardus were seropositive for feline immunodeficiency virus (Troyer et al. 2005) and for type 2 feline coronavirus (Kennedy et al. 2002). The yeast Malasseziasymphodialis was isolated from the ear canal of 2 P. pardus (Coutinho et al. 2006). The bacteria Salmonellatabletis and S. typhimurium occurred in P. pardus (Busulah et al. 1993). Pyrometra in a captive, 14-year-old female was treated by ovariohysterectomy and systemic antibiotics (McCain et al. 2009). Adenocarcinoma (Ranganath et al. 2008), uterine leiomyma (Siegal-Willott et al. 2005), histiocytoma (Nath et al. 2006), lymphosarcoma (Sujatha et al. 2005), squamas cell carcinoma (Sabapara et al. 2003), avian influenza H5N1 (Keawcharoen et al. 2004), bovine tuberculosis (Renwick et al. 2006), Clostridiumperfringens enterotoxosis (Neiffer1971), degenerative spinal disease (Kolmstetter et al. 2000), feline enteritis (Singh et al. 1983), hepatitis (Gupta1978), hiatal hernia (Kearnset al. 2000), neoplasia (Owston et al. 2008), pulmonary anthracosis (Sujatha et al. 2007), and rabies (Jayakumaret al. 1989) occurred in P. pardus.

Interspecific interactions.—Although they coexist, tigers (Pantheratigris) restrict the distribution of P. pardus in Nepal (Seidensticker1976; Odden et al. 2010); 5 P. pardus were killed by P. tigris in Nepal (McDougal1988). In Rajaji National Park in India, with the displacement of human communities and the increased population, densities of P. pardus declined sharply and diet of P. pardus showed a pronounced shift (Harilaret al. 2011). Diet of P. pardus can be an indicator of the presence of intraguild competitors, where dietary shifts signaled the decline of a P. tigris population in India (Ramakrishnan et al. 1999). In Cameroon evidence of changes in the population of P. pardus were not always tied to the presence of one larger competitor, however, because reduced lion (Panthera leo) numbers did not signal an increase in the population of P. pardus where spotted hyenas (Crocutacrocuta) were still present (Crees et al. 2011). Dietary overlap of P. pardus with cheetahs (Acinonyx jubatus) is 68.7%, with wild dogs (Lycaon pictus) is 65.7%, and with P. leo is 39.1% (Hayward and Kerley2008). P. leo, spotted hyenas, wild dogs, and P. tigris will opportunistically kill P. pardus or their cubs, just as P. pardus will kill the unprotected cubs of intraguild members. These larger predators also take kills
from *P. pardus* (Schaller 1972; Mills 1990; Creel and Creel 2002). *P. pardus* tends to select smaller prey when inhabiting areas with larger competitors (Karanth and Sunquist 1995, 2000). In Bandipur, India, *P. pardus* accounted for 15% of 379 kills, whereas dholes (*Cuon alpinus*) took 80%, and *P. tigris* took 5% (Johnsingh 1983). Human agropastoralists regularly scavenge the prey of *P. pardus* (Treves and Naughton-Treves 1999).

HUSBANDRY

Panthera pardus can be anesthetized with a mixture of tiletamine hydrochloride and zolazepam hydrochloride at dosages of 4–5 mg/kg (Swanepoel et al. 2010) or a xylazine hydrochloride (1.4 mg/kg)–ketamine hydrochloride (5 mg/kg) mixture (Belsare and Athreya 2010). When mass is not estimated an initial dose of 50 mg xylazine–150 mg ketamine can be supplemented with 50–75 mg of ketamine only (Belsare and Athreya 2010). Odden and Wegge (2005) also suggests using 3.6–5.9 mg/kg of ketamine and 0.07–0.12 mg/kg of medetomidine. Other drugs and dosages are: diazepam (0.17–0.18 mg/kg), ketamine (6–12 mg/kg), xylazine (0.5–2.0 mg/kg), and telazol (2–7 mg/kg—Sabapara 1995).

Novel odors have short-term (3-h) effects on behavior of captive *P. pardus* (Yu et al. 2009). *P. pardus* in structurally enriched enclosures is more active than those in unenriched enclosures (Mallapur et al. 2002).

BEHAVIOR

Reproductive behavior.—Adult *Panthera pardus* are solitary with the exception of females rearing cubs and during mating when males and females associate for several days before separating again (Eisenberg and Lockhart 1972).

Females attract mates through the release of scent marks and vocalizations that attract a male, which associates with her for 1–4 days (Bailey 1993). In mating, the male mounts the female and holds the skin on the nape of her neck (De Haas van Dorsser et al. 2007). Males often leap off the female as she aggressively snarls and occasionally strikes at the male (Seidensticker 1977). The female rolls “on her back in front of the male and presents herself. She sits with her forelimbs extended fully on the ground, her hind limbs remaining half bent” (Desai 1975:297). Insertion occurs 4–8 s after mounting and coitus is 10–50 s; 5–60 copulations occurred during a 9-h period in peak estrus (Desai 1975), whereas 13 copulations occurred during an 1.5-h period, with a mean duration of copulation of 3 s and an average interval between copulations of 6.5 min (Laman and Knott 1997). A female associated with a male 11 days after her cubs were killed (Bailey 1993).

Communication.—“Cubs emit low cries when hungry or uncomfortable” (Desai 1975:299). Guttural sounds accompany coitus and at the peak of copulation both males and females make a high-pitched sound (Desai 1975). “A leopard call consists of a repeated pattern of strokes sounding much like the sawing of wood” (Eisenberg and Lockhart 1972:71). Average number of strokes per call is 13–16 with a range of 2–30 with an intercall interval of 6 min and a range of 1–10 min (Ulmer 1966; Eisenberg and Lockhart 1972). Dueting may occur (Eisenberg and Lockhart 1972). Both males and females roar (Ulmer 1966). Marking behavior includes tree scratching and soil scrapes (Eisenberg and Lockhart 1972). Scent marking, roaring, and conspicuous behaviors maintain spacing distances (Muckenhirn and Eisenberg 1971).

Miscellaneous behavior.—In Kenya and South Africa, 66% of activity of *Panthera pardus* is nocturnal (Hayward and Slotow 2009). In the rain forests of West Africa, *P. pardus* is diurnal with strong individual prey preferences (Jenny and Zuberbühler 2005). In Oman, *P. p. nimr* was most active at 0200–0700 h and least active at 1200–1500 h (Spalton et al. 2006).

Panthera pardus attacks its prey in a variety of ways, but primarily stalks to within a short distance of its target before pouncing (Stander et al. 1997a). Females with cubs increase foraging efficiency by killing smaller prey (Bothma and Coertze 2004a). *P. pardus* kills smaller prey by biting the nape of the neck or puncturing the skull with its canines, whereas larger prey are bitten on the throat, avoiding the horns and antlers of antelope and deer. In the Kalahari, *P. pardus* exhibited a flexible hunting strategy that did not regularly include the typical stalk–chase–kill sequence, but rather involved longer stalking periods at further distances related to the target prey species and reduced available cover (Bothma and Le Riche 1989).

After making a kill *P. pardus* will either eat a small prey item immediately or cache the kill for feeding in safety (Bothma and Le Riche 1984; Bailey 1993). *P. pardus* may drag its kills several hundred meters to specific types of trees for a prescribed height, trunk thickness, and foliage density (Bothma and Le Riche 1984; Bailey 1993). In Kruger National Park, *P. pardus* hoisted 84% of its kills into trees (Bailey 1993). In the Kalahari Desert, Tsavo National Park, Kenya, or the commercial farmlands of north-central Namibia, where larger predators are less common, *P. pardus* cached its kills under bushes (Hamilton 1976; Bothma and Le Riche 1984; Stein 2008). In northern Botswana, male *P. pardus* tended to take prey to trees more than females (Stein et al. 2010). *P. pardus* also will cache kills in caves (de Ruiter and Berger 2001).

In northeastern Namibia, *P. pardus* staggered its activities in different parts of its shared range when another animal was occupying the area (Stander et al. 1997a). *P. pardus* fights on rare occasions, usually when a newcomer
challenges the resident animal (Corbett 1947; Hamilton 1976; Bailey 1993).

In the Kalahari, adult males scent marked 2.3 times more than adult females without cubs and 5.9 times more often than females with cubs (Bothma and Coertze 2004b). The frequency of scent marking increased during courting and bouts of mating. Tree scratching also is used to mark territory, but less frequently than scent marking (Bothma and Coertze 2004b). Scrapes in Iran had a mean length of 39.3 cm and a mean width of 22.7 cm (Ghoddousi et al. 2008). P. pardus prefers specific tree species for scratching, for example Acacia erioloba in the Kalahari or water berry (Syzgium cordatum) in the Soutpansberg mountains of South Africa, but may not scratch trees in other parts of its range (Hamilton 1976; Stuart and Stuart 1994; Bothma and Le Riche 1995).

GENETICS

Diploid chromosome number (2n) is 38 with a fundamental number (FN) of 72 and includes 5 metacentric, 7 submetacentric, 4 acrocentric, and 2 telocentric pairs (Hsu et al. 1963; Tanomtong et al. 2008). The X chromosome is a small submetacentric and the Y chromosome is the smallest metacentric (Tanomtong et al. 2008).

The most genetically diverse (expected heterozygosity, 0.77-0.80) population of Panthera pardus pardus is found in sub-Saharan Africa, whereas the lowest genetic variation (expected heterozygosity, 0.340-0.356) occurs in the isolated Amur peninsula, P. p. orientalis, of the Russian Far East (Spong et al. 2000; Uphyrkina et al. 2001, 2002). For P. p. kotiya, percent polymorphism and percent average heterozygosity for wild-caught, captive-born, and melanistic P. pardus, respectively, were 4.0, 1.2; 4.0, 1.4; 4.0, 2.0 (Miththapala et al. 1991). Two of 12 loci were polymorphic in P. pardus (Newman et al. 1985). Inbreeding coefficients for captive P. pardus ranged from 0 to 0.5 (Shoemaker and Wharton 1984). Y-chromosome, mitochondrial, and autosomal DNA suggest that P. leo and P. pardus are sister taxa (Davis et al. 2010).

Melanism is inherited as a recessive trait (nonagouti) of the agouti locus in P. pardus (Robinson 1969, 1970; Roychoudhury and Acharjyo 1984) and is not the result of the 2-base pair deletion in the ASIP gene or either of 2 “in-frame” deletions in the MC 1R gene (Eizirik et al. 2003). Albino P. pardus have been seen (Divyabhanusinh 1993). Hybrids between P. pardus and P. leo, P. onca, P. tigris, and cougars (Puma concolor) have been reported (Gray 1971).

Microsatellite DNA from scats can individually identify P. pardus (Perez et al. 2006; Mondol et al. 2009), as can spot patterns (Miththapala et al. 1989). Artificial insemination can be successful (Dresser et al. 1982). Cytochrome b from fecal genetic material can distinguish sympatric tigers and P. pardus (Nagata et al. 2005).

CONSERVATION

Panthera pardus is listed in the Convention for the International Trade of Endangered Species of Wild Fauna and Flora (CITES) Appendix I (2013). In 2005, only 11 African countries could export skins of P. pardus under the Convention for the International Trade of Endangered Species of Wild Fauna and Flora, representing 2,590 specimens (Ray et al. 2005). The range of P. pardus has been drastically reduced worldwide and reduced approximately 37% throughout Africa (Ray et al. 2005). As of 1964, only 10-15 P. p. orientalis were estimated to live in the former Union of Soviet Socialist Republics (Bannikov 1964). Conservation efforts and the regulation of the distribution of trophy hunting permits can reduce mortality (Balme et al. 2009). Efforts to distribute financial benefits from trophy hunting and photographic tourism may also mitigate conflicts with farmers (Stein et al. 2010).

On the International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species, P. p. melas, P. p. orientalis, and P. p. nimr are “Critically Endangered” (Ario et al. 2008; Jackson and Nowell 2008; Mallon et al. 2008), whereas P. p. kotiya and P. p. ciscaucasica are “Endangered” (Khorozyan 2008; Kittle and Watson 2008). In 2011, the total captive population of P. p. nimr consisted of 42 males, 32 females, and 3 unsexed individuals derived from 14 founders (Budd et al. 2011).

REMARKS

The earliest writings of Panthera pardus were recorded in Sumeria dating back to 3100 BC (Turnbull-Kemp 1967). In Sumerian culture, the god Nin-urta used cyclone winds as a weapon, in the form of the P. pardus–headed Shargaz. The Chinese believe P. pardus to be 1 of 4 beasts of power (Turnbull-Kemp 1967). P. pardus is present on ancient Egyptian hieroglyphics and drawings (Budge 1978). Ancient Rome used P. pardus for gladiatorial fighting.

In East Africa, killing a P. pardus can assist a young Maasai male achieve warrior status (Hazzah et al. 2009). Skins of P. pardus are used in the ceremonial dress of cultures throughout Africa, and consuming meat or genitalia of P. pardus is thought to transfer the power and stealth of the P. pardus (Turnbull-Kemp 1967).

ACKNOWLEDGMENTS

We thank K. Doyle, curator of the mammal collection at the University of Massachusetts, Amherst, for the skull of Panthera pardus skull from their collection. We also thank F. Belcharid, C. Burton, A. Sanei, and C. Stuart for information related to the current range of P. pardus. J. Edwards helped with the map. We appreciate the critical
review of previous versions of this manuscript by T. K. Fuller, S. DeStefano, and L. L. Sievert.

LITERATURE CITED

ABBASI, A., AND G. BRAUNITZER. 1985. The primary structure of hemoglobin from amur-leopard (Panthera pardus orientalis). Journal of Protein Chemistry 4:57–67.

ACHARJYO, L. N., AND S. K. PATNAIK. 1985. Observations on some aspects of reproduction among the panthers (Panthera pardus) of Nandan-Kanan Biological Park, Orissa. Indian Journal of Forestry 8:8–14.

AHMED, A., M. JAHAN, AND G. BRAUNITZER. 1988. The primary structure of the major and minor hemoglobin components of adult north Persian leopard (Panthera pardus sexicolor). Zeitschrift für Naturforschung 43:1341–1346.

AL-JOMANY, A. M. H. 2007. Distribution and conservation of the Arabian leopard Panthera pardus nimr in Saudi Arabia. Journal of Arid Environments 68:20–30.

ALEN, G. M. 1912. Some Chinese vertebrates. Mammalia. Memoirs of the Museum of Comparative Zoology at Harvard College 15:201–247.

ALLEN, J. A. 1924. Carnivora collected by the American Museum Congo Expedition. Bulletin of the American Museum of Natural History 47:73–281.

ALLEN, J. A. 1936. The mammals of China and Mongolia. Natural History of Central Asia 11:1–1350.

AMIN, O. M., S. V. HA, AND R. A. HECKMANN. 2008. New and already known acanthocephalans mostly from mammals in Vietnam, with descriptions of two new genera and species in Archaeacanthocephala. Journal of Parasitology 94:194–201.

APARASKEVICH, D. A., I. G. HORAK, AND J. L. CAMICAS. 2007. Rediscription of Haemaphysalis (Rhipistoma) ellipsica (Koch, 1844), and old taxon of the Haemaphysalis (Rhipistoma) leachi group from East and southern Africa, and of Haemaphysalis (Rhipistoma) leachi (Audouin, 1826) (Ixodida, Ixodidae). Onderstepoort Journal of Veterinary Research 74:181–208.

ARCHANA, D., N. SHARMA, R. RAJPUT, R. S. KISHTWARIA, R. L. BHARDWAJ, AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

ARIO, A., S. SUNARTO, S., AND J. SANDERSON. 2008. Panthera pardus spp. melas. International Union for Conservation of Nature and Natural Resources 2010. International Union for Conservation of Nature and Natural Resources Red list of threatened species. Version 2010.3. www.iucnredlist.org, accessed 25 September 2010.

ARNAZHAQAN, C., R. ARUMUGAM, AND K. THIYAGESAN. 2007. Food habits of leopard (Panthera pardus fusca), dhole (Cuon alpinus) and striped hyena (Hyaena hyaena) in a tropical dry thorn forest of southern India. Journal of the Bombay Natural History Society 104:178–187.

BARI, N. G. R., A. J. BRAGITHA, M. M. BARI, C. R. PRASAD, AND T. GOPAL. 1993. Incidence of salmonellosis in leopards (Panthera pardus). Indian Veterinary Journal 70:289–290.

BAILEY, T. N. 1993. The African leopard: ecology and behavior of a solitary felid. Columbia University Press, New York.

BALME, G. A., L. HUNTER, AND R. SLOTOW. 2007. Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Animal Behaviour 74:589–598.

BALME, G. A., R. SLOTOW, AND L. T. B. HUNTER. 2009. Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population. Biological Conservation 142:2681–2690.

BALME, G. A., R. SLOTOW, AND L. T. B. HUNTER. 2010. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze complex, South Africa. Animal Conservation 13:315–323.

BANNIKOV, A. G. 1964. The Amur leopard in the USSR. IUCN Bulletin 2:2279.

BELSARE, A. V., AND V. R. ATHREYA. 2010. Use of xylazine hydrochloride-ketamine hydrochloride for immobilization of wild leopards (Panthera pardus fusca) in emergency situations. Journal of Zoo and Wildlife Medicine 41:331–333.

BERTRAM, B. C. R. 1982. Leopard ecology as studied by radio tracking. Symposium of the Zoological Society of London 49:341–352.

BODENDURFER, T., B. HOPPE-DOMINIK, F. FISCHER, AND K. E. LINSENDORF. 2006. Prey of the leopard (Panthera pardus) and the lion (Panthera leo) in the Comoe and Maranhõ National Parks, Côte d’Ivoire, West Africa. Mammalia 79:231–246.

BONHOTE, J. L. 1903. On two new species of cat from China. Annals and Magazine of Natural History, Series 7, 11:474–476.

BORNER, M. 1977. Leopards in western Turkey. Oryx 14:26–30.

BOTHMA, J. DU P. 2005. Water use by Kalahari leopards. South African Journal of Wildlife Research 35:131–137.

BOTHMA, J. DU P., AND R. J. COERTZE. 2004a. Motherhood increases hunting success in southern Kalahari leopards. Journal of Mammalogy 85:756–760.

BOTHMA, J. DU P., AND R. J. COERTZE. 2004b. Scent-marking frequency in southern Kalahari leopards. South African Journal of Wildlife Research 34:163–169.

BOTHMA, J., AND E. A. N. LE RICHE. 1984. Aspects of the ecology and the behaviour of the leopard Panthera pardus in the Kalahari Desert. Koedoe 27, supplement:259–279.

BOTHMA, J., AND E. A. N. LE RICHE. 1989. Evidence of a flexible hunting technique in Kalahari leopards. South African Journal of Wildlife Research 19:57–60.

BOTHMA, J., AND E. A. N. LE RICHE. 1995. Evidence of the use of rubbing, scent-marking and scratching posts by Kalahari leopards. Journal of Arid Environments 29:511–517.

BRASS, E. 1904. Nuthzbarie Tiere Ostasiens. Pelz- und Jagdtiere, Haustiere, Seetiere. J. Neumann, Neudamm, Germany.

BRASS, E. 1911. Aus dem Reich der Pelze. Im Verlage der Neuen Pelzwaren-Zeitung, Berlin, Germany.

BREM, A. E. 1963. Ergebnisse einer Reise nach Habesho, Otto Meissner, Hamburg, Germany.

BROWN, J. L., K. L. GOODROWE, L. G. SIMMONS, D. L. ARMSTRONG, AND D. E. WILDT. 1988. Evaluation of the pituitary–gonadal response to GnRH, and adrenal status, in the leopard (Panthera pardus japonensis) and tiger (Panthera tigris). Journal of Reproduction and Fertility 85:605–613.

BROWN, J. L., ET AL. 1989. Adrenal–pituitary–gonadal relationships and ejaculate characteristics in captive leopards (Panthera pardus kotiya) isolated on the island of Sri Lanka. Journal of Reproduction and Fertility 85:605–613.

BUDD, J., AND K. LEUS. 2011. The Arabian leopard Panthera pardus nimr conservation breeding programme. Biodiversity Conservation in the Arabian Peninsula, Zoology in the Middle East, Supplement 3:141–150.

BUDGE, E. A. 1978. An Egyptian hieroglyphic dictionary. Dover Publications, Mineola, New York.

CABRERA, A. 1918. Sobre los leopardos africanos, con descripcion de una forma nueva. Boletín de la Real Sociedad Española de Historia Natural 18:472–482.

CABRERA, A. 1919. Sobre los leopardos africanos, con descripcion de una forma nueva. Boletín de la Real Sociedad Española de Historia Natural 19:472–482.

BELLER, E. 1947. The man-eating leopard of Rudraprayag. Oxford University Press, New York.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.

BOLZETTI, A., AND L. S. SUDHAKAR. 2006. Anatomy of north-western Himalayan leopard. Indian Journal of Animal Sciences 76:616–617.
COUTINHO, S. D. J., D. J. FEDDELLO, AND S. H. CORRÊA. 2006. Isolation of *Malassezia* spp. from cerumen of wild felids. Medical Mycology 44:383-387.

CREEL, S., AND N. M. CREEL. 2002. The African wild dog: behavior, ecology and conservation. Princeton University Press, Princeton, New Jersey.

CRISSEY, S. D., ET AL. 2003. Serum concentrations of lipids, vitamin D metabolites, retinol, retinyl esters, tocopherols and selected carotenoids in captive wild felid species at four zoos. Journal of Nutrition 133:160-166.

CROES, B. M., ET AL. 2011. The impact of trophy hunting on lions (*Panthera leo*) and other large carnivores in Benoue Complex, northern Cameroon. Biological Conservation 144:3064-3072.

CUNNINGHAM, P., AND C. GROSS. 2000. Reproduction and development of the Arabian leopard, *Panthera pardus nimr*, in captivity. Zoology in the Middle East 25:9-14.

CUYPER, F. G. (with M. GEOFFROY-SAINT-HILAIRE). 1832. Histoire naturelle des mammifères. Blaise, Paris, France.

CUYPER, G. 1809. Sur les espèces vivantes de grands chat, pour servir de preuves et d’éclaircissements au chapitre sur carnassiers fossiles. Annales du Musée D’Histoire Naturelle 7:156-164.

D’AMOUR, D. E., G. HOHMANN, AND B. FRUTH. 2006. Evidence of urinary relaxin radioimmunoassay for the diagnosis and monitoring of fertility and breeding in captive Female *Panthera pardus nimr*. Zoo Biology 24:125-137.

DE BEAUX, O. 1923. Mammiferi della Somalia Italiana. Raccolta del Museo Civico di Genova. Atti della Società Italiana di Scienze Naturali 62:247-316.

DE BLAINVILLE, H. M. 1843. Osteographie ou description iconographique du comparat de scelette et du systeme dentaire de mammiferes recents et fossiles pour servir de base a la zoologie et a la geologie. J. B. Ballière et Fils, Paris, France.

DE HAAS VAN DORSSER, F. J., D. I. GREEN, W. V. HOLT, AND A. R. PICKARD. 2007. Ovarian activity in Arabian leopards (*Panthera pardus nimr*): sexual behaviour and faecal steroid monitoring during the follicular cycle, mating and pregnancy. Reproduction, Fertility and Development 19:822-830.

DE HAAS VAN DORSSER, F. J., D. I. GREEN, AND A. R. PICKARD. 2008. Reproductive ecology of Arabian leopard, *Panthera pardus nimr*, in Kaeng Krachan National Park, Thailand. Natural History Bulletin of the Siam Society 50:109-110.

DÉSIRÉ, J. H. 1975. Observations on the reproductive biology and early postnatal development of the panther, *Panthera pardus L.*, in captivity. Journal of the Bombay Natural History Society 72:293-304.

DHOT, V. M., S. V. UPADHYE, AND S. W. KOLTE. 2002. Prevalence of parasitism in wild animals and birds of Maharashtra zoo, Nagpur. Indian Veterinary Journal 79:225-227.

DIVYABHANUSINH [NO FIRST NAME]. 1993. On mutant leopards *Panthera pardus* from India. Journal of the Bombay Natural History Society 90:58-89.

DOBROVSKA, L. J. 1963. Leoparden aus Hinterindien und den südöstlichen Provinzen Chinas. Zeitschrift für Säugetierkunde 28:84-88.

DOBROVSKA, L. J., AND P. H. VAN BREE. 1965. Quelques données taxonomiques sur les panthères, *Panthera pardus* (Linnaeus, 1758), de la région nord-est du Gabon. Biologia Gabonica 1:297-302.

DOLMAN, J. G., AND J. B. BURLACE. 1928. Rowland Ward’s records of big game, with their distribution, characteristics, dimensions, weights, and horn and tusk measurements. 9th ed. Rowland Ward, London, United Kingdom.

DRESSER, B. L., L. KRAMER, B. REECE, AND P. T. RUSSELL. 1982. Induction of ovulation and successful artificial insemination in a Persian leopard (*Panthera pardus saxicolor*). Zoo Biology 1:55-57.

DUVERNOY, G. L. 1834. Notice critique sur les espèces des grands chats nommées par Hermann Felis chalybeata et guttata. Mémories de la Société d’Histoire Naturelle de Strasbourg 2(51):1-12.

EATON, R. L. 1977. Reproductive biology of the leopard. Zoologische Garten 47:329-351.

EDGAONKAR, A., AND R. CHELLAM. 1998. A preliminary study on the ecology of the leopard, *Panthera pardus fusca* in the Sarjay Gandhi National Park, Maharashtra. Wildlife Institute of India, Chandrabani, Dehradun, India.

EISENBERG, J. F., AND M. LOCKHART. 1972. An ecological reconnais­sance of Wilpattu National Park, Ceylon. Smithsonian Contributions to Zoology 101:1-117.

EISENBERG, J. F., AND K. H. REDFORD. 1990. Mammals of the Neotropics. The central Neotropics. Vol. 2. Ecuador, Peru, Bolivia, Brazil. University of Chicago Press, Chicago, Illinois.

EIJEIRIK, E., N. YUHIL, W. E. JOHNSON, M. MERNOTTI-RAYMOND, S. S. HANNAH, AND S. J. O’BRIEN. 2003. Molecular genetics and evolution of melanism in the cat family. Current Biology 13:448-453.

ELLERMAN, J. R., AND T. C. S. MORRISON-SMITH. 1951. Checklist of Panzeran and Indian mammals 1758 to 1946. Trustees of the British Museum, London, United Kingdom.

EL-MASARRY, M. S. 1995. The Arabian leopard its habitat and prey in the Republic of Yemen. Report 1. Environmental Protection Council, Sharjah, Republic of Yemen.

FARHADNA, M. S., A. MAHDAVI, AND H. HOSSEIN-ZAVAREI. 2009. Reproductive ecology of Persian leopard, *Panthera pardus saxicolor* in Sarigol National Park, northeastern Iran. Zoology in the Middle East 48:13-18.

FAULDS, R. 2010. Taxonomy and species delimitation in *Cryptospirono­diurn*. Experimental Parasitology 124:90-97.

FEY, V. 1954. The diet of leopards. African Wildlife 18:105-108.

FITTGER, L. F. J. 1868. Revision der zur naturlichen Familie der Katzen (Feles) gehö­rigen Formen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 58:421-519.

GAWANDE, P. J., B. S. BAVISKAR, D. K. MASKE, A. K. JAYRAW, AND S. W. KOLTE. 2007. A note on the occurrence of *Sporo­mitis infection* in leopard *Panthera pardus* from Nagpur region. Zoos Print Journal 22:2737.

GHODDOUSI, A., A. K. HAMDI, AND T. GHADIRIAN. 2008. Territorial characteristics and sperm morphology in the Arabian leopard (*Panthera pardus nimr*). In: *Eurasian and African Leopard Management Symposium*. 11th ed. Rowland Ward, London, United Kingdom.

GODFREY, J. C. 1961. Ecology of the cheetah (*Acinonyx jubatus*). University of Chicago Press, Chicago, Illinois.

GOREYDOSSI, A., A. K. HAMDI, AND T. GHADIRIAN. 2008. Territorial characteristics and sperm morphology in the Arabian leopard (*Panthera pardus nimr*). In: *Eurasian and African Leopard Management Symposium*. 11th ed. Rowland Ward, London, United Kingdom.

GRASSMAN, L. I. 1999. Ecology and behavior of the Indochinese leopard in Kaeng Krachan National Park, Thailand. Natural History Bulletin of the Siam Society 47:77-93.

GRASSMAN, L. I., AND E. LARNEY. 2002. Survival of a radio-collared leopard (*Panthera pardus adersi*) in the Sanjay Gandhi National Park, northeastern India. Zoology in the Middle East 44:101-103.

GOLDMAN, H. V., AND M. T. WALSH. 2002. Is the Zanzibar leopard (*Panthera pardus adersi*) extinct? Journal of East African Natural History 91:15-25.

GRASSMAN, L. I., AND E. LARNEY. 2002. Survival of a radio-collared leopard (*Panthera pardus adersi*) in the Sanjay Gandhi National Park, northeastern India. Zoology in the Middle East 44:101-103.

GRAY, A. P. 1971. Mammalian hybrids: a checklist with bibliography. Commonwealth Bureau of Animal Breeding and Genetics, Edinburgh, Technical Communication 10(revised):1-262.

GRAY, J. E. 1837. New or little known Mammalia, principally in the British Museum. Magazine of Natural History and Journal of Zoology, Botany, Mineralogy, Geology, and Meteorology, New Series 1:577-587.
GRAY, J. E. 1863. Catalogue of the specimens and drawings of Mammalia. Proceedings of the Royal Zoological Society of London 1862:261–263, plate XXXIII.

GRAY, J. E. 1862. Description of some new species of Mammalia. Proceedings of the Royal Zoological Society of London 1862:238–240.

GRAY, J. E. 1863. Catalogue of the specimens and drawings of Mammalia. Proceedings of the Royal Zoological Society of London 1863:250–251.

GRAY, J. E. 1864. Catalogue of the specimens and drawings of Mammalia. Proceedings of the Royal Zoological Society of London 1864:228–230.

GRAY, J. E. 1865. Catalogue of the specimens and drawings of Mammalia. Proceedings of the Royal Zoological Society of London 1865:243–244.

GRAY, J. E. 1866. Catalogue of the specimens and drawings of Mammalia. Proceedings of the Royal Zoological Society of London 1866:258–277.

GRIFFITH, E., C. HAMILTON-SMITH, AND E. PIDGEON (eds.). 1827. The Mammals of the British Museum. British Museum (Natural History), London, United Kingdom.

GRIMBEEK, A. N. 1991. The ecology of the leopard (Panthera pardus) in the Waterberg. M.S. thesis, University of Pretoria, Pretoria, South Africa.

GUNTHER, A. 1885. Note on a supposed melanotic variety of the South African leopard. Proceedings of the Royal Zoological Society of London 1885:243–244.

GUNTHER, A. 1886. A second note on a melanotic variety of the species of the class Mammalia, as arranged with reference to their organization. Geo. B. Whittaker, London, United Kingdom.

GRIMBEEK, A. N. 1991. The ecology of the leopard (Panthera pardus) in the Waterberg. M.S. thesis, University of Pretoria, Pretoria, South Africa.

HAMILTON, P. H. 1976. The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking. M.S. thesis, University of Nairobi, Nairobi, Kenya.

HARIHAR, A., B. PANDAV, AND S. P. GOYAL. 2011. Responses of leopard (Panthera pardus) to the recovery of a tiger Panthera tigris population. Journal of Applied Ecology 48:806–814.

HAMILTON, P. H. 1976. The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking. M.S. thesis, University of Nairobi, Nairobi, Kenya.

HARRISON, D. L., AND P. L. L. BATES. 1991. Mammals of Arabia. 2nd ed. Harrison Zoological Museum, Sevenoaks, Kent, United Kingdom.

HAST, M. H. 1989. The larynx of roaming and nonroaming cats. Journal of Anatomy 163:117–121.

HAWKEY, C. M., AND M. G. HART. 1986. Haematological reference values for adult pumas, lions, tigers, leopards, jaguars and cheetahs. Research in Veterinary Science 41:268–269.

HAYWARD, M. W., AND R. SLOTOW. 2009. Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses. South African Journal of Wildlife Research 39:109–125.

HAYWARD, M. W., AND R. SLOTOW. 2009. Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses. South African Journal of Wildlife Research 39:109–125.

HAYWARD, M. W., AND G. A. BALME, AND G. I. H. KERLEY. 2006. Prey preferences of the leopard (Panthera pardus). Journal of the Zoological Society of London 207:298–313.

HAYWARD, M. W., AND G. I. H. KERLEY. 2008. Prey preferences and dietary overlap amongst Africa’s large predators. South African Journal of Wildlife Research 38:93–108.

HAYWARD, M. W., AND R. SLOTOW. 2009. Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses. South African Journal of Wildlife Research 39:109–125.

HASSAH, L., M. B. MULDER, AND L. G. FRANK. 2009. Lions and warriors: social factors underlying declining African lion populations and the effect of incentive-based management in Kenya. Biological Conservation 142:2428–2437.

HELLER, E. 1913. New races of carnivores and baboons from equatorial Africa and Abyssinia. Smithsonian Miscellaneous Collections 61(19):1–12.

Hemmer, H. 1976. Fossil history of living Felidae. Pp. 1–14 in The world’s cats (R. L. Eaton, ed.). Carnivore Research Institute, Burke Museum, Seattle, Washington.

Hemsley, F. W., AND C. G. Ehrenberg. 1833. Synopticae Physicae, seu icones et descriptiones corporum naturalium novorum aut minus cognitorum quae ex itin eribus per Libyam Aegyptiam Nubiam Dongolam Syrian Arabiam et Habessianiam publico institutis sumptu. Signature gg. Ex Officina Academica, Venditut a Mittero, Berlin, Germany.

Henschel, P., K. A. Abernathy, AND L. J. T. White. 2005. Leopard food habits in the Lope National Park, Gabon, Central Africa. African Journal of Ecology 43(2):252–257.

Henschel, P., ET AL. 2008. Panthera pardus. International Union for Conservation of Nature and Natural Resources 2010. International Union for Conservation of Nature and Natural Resources Red list of threatened species. Version 2010.3. www.iucnredlist.org. accessed 6 September 2010.

Heftner, V. G., AND A. A. SLADKIE. 1992. Mammals of the Soviet Union. Vol. 2. part 2. Carnivora (hyenas and cats). Smithsonian Institution Libraries and the National Science Foundation, Washington, D.C.

Hermann, J. 1804. Observationes zoologicae quibus novae complices, aliaque animalium species descriptur et illustrantur. Amandum Koenig, Strasbourg (Argentorati), France.

Hoppe-Domink, B. 1988. Grass-eating leopards: wolves turned into sheep. Naturwissenschaften 75:240–245.

Hsu, C. C., H. H. REARDEN, AND G. F. LUQUETTE. 1963. Karyological studies of nine species of Felidae, American Naturalist 97:225–234.

Huang, G. T., J. J. Rosowski, AND W. T. Peake. 2000. Relating middle-eared acoustic performance to body size in the cat family: measurements and models. Journal of Comparative Physiology, A. Sensory, Neural, and Behavioral Physiology 186:447–465.

Hutterer, R., R. Slovak, U. MACKENSTEDT, AND T. ROMIG. 2009. A survey of Echinococcus species in wild carnivores and livestock in East Africa. International Journal of Parasitology 39:1269–1276.

Ilani, G. 1981. The leopards of the Judean desert. Israel AL 6:59–71.

Ilani, G. 1990. The spotted ambassadors of a vanishing world. Israelal Journal of the Zoological Society of London 207:298–313.

Jenny, D. 1996. Spatial organization of leopard Panthera pardus. Journal of Mammalogy 77:900–906.

Jenny, D., AND K. ZUBERBUHLER. 2005. Hunting behaviour in West African forest leopards. African Journal of Ecology 43:197–200.

Jenkinson, J. 1991. The role of incentive-based management in Kenya. African Journal of Ecology 43:197–200.

Jenkinson, J. 1991. The role of incentive-based management in Kenya. African Journal of Ecology 43:197–200.

Jackson, P., AND K. NOWELL. 2008. Panthera pardus ssp. orientalis. International Union for Conservation of Nature and Natural Resources 2010. International Union for Conservation of Nature and Natural Resources Red list of threatened species. Version 2010.3. www.iucnredlist.org, accessed 25 September 2010.

Jain, N. C. 1986. Schalm's veterinary hematology. Lea and Febiger, Philadelphia, Pennsylvania.

Jayakumar, S. R., M. M. Babu, T. Gopal, AND B. S. Keshavmurthy. 1989. Rabies in a wild leopard, Felis (Panthera pardus). Indian Veterinary Journal 66:1076–1077.

Jayaprakash, D., S. B. Path, M. N. Kumar, K. C. Majumdar, AND S. Shrivastav. 2001. Senem characteristics of the captive Indian leopard, Panthera pardus. Journal of Andrology 22:25–33.

Jenny, D. 1996. Spatial organization of leopard (Panthera pardus) in Tai National Park, Ivory Coast: is rain forest habitat a tropical haven? Journal of Zoology (London) 240:427–440.

Jenny, D., AND K. ZUBERBUHLER. 2005. Hunting behaviour in West African forest leopards. African Journal of Ecology 43:197–200.

Johnson, A. J. T. 1991. Large mammalian prey-predator in Bandipur. Journal of the Bombay Natural History Society 80:1–57.

Johnson, A. J. T. 1991. Large mammalian prey-predator in Bandipur. Journal of the Bombay Natural History Society 80:1–57.

Johnson, K. G., W. Wei, D. G. Reid, AND H. Jinchu. 1993. Food habits of Asian leopards (Panthera pardus fusca) in Wolong Reserve, Sichuan, China. Journal of Mammalogy 74:646–650.
LYDEKKER, R. 1910. Harmsworth's natural history. A complete survey of the animal kingdom with thousands of photographs from life and an unrivalled series of colour plates. Vol. 1. Carmel House, London, United Kingdom.

LYDEKKER, R. 1914. Ward's records of big game with their distribution, characteristics, dimensions, weights, and horn and tusk measurements. 7th ed. Rowland Ward, Limited, London, United Kingdom.

MACDONALD, A. A., AND M. JOHNSTONE. 1995. Comparative anatomy of the cardiac foramen ovale in cats (Felidae), dogs (Canidae), bears (Ursidae) and hyaenas (Hyaenidae). Journal of Anatomy 186:235-243.

MALLAPUR, A., Q. QURESHI, AND R. CHELLAM. 2002. Enclosure design and space utilization by Indian leopards (Panthera pardus) in four zoos in southern India. Journal of Applied Animal Welfare Science 5:111-124.

MALLON, D. P., U. BREITENMOSER, AND J. AHMAD KHAN. 2008. Panthera pardus ssp. nimr. International Union for Conservation of Nature and Natural Resources 2010. International Union for Conservation of Nature and Natural Resources Red list of threatened species. Version 2010.3. www.iucnredlist.org, accessed 25 September 2010.

MAHLER, L. L., AND A. J. DICKMAN. 2005. Factors affecting leopard (Panthera pardus) spatial ecology, with particular reference to Namibian leopards. South African Journal of Wildlife Research 35:105-115.

MATSCHE, P. 1895. Die geographische Verbreitung der Katzen und ihre Verwandtschaft untereinander. Sitzungs-Bericht der Gesellschaft Naturforschender Freunde zu Berlin 1:190–191.

MATSCHE, P. 1908. 4. Mammalia. Über chinesische Säugetier, besonders aus den Sammlungen de Herrn Wilhelm Filchner. Pp. 134–244 in Wissenschaftliche Ergebnisse der Expedition Filchner nach China und Tibet 1903–05 (W. Filchner, ed.) Ernst Siegfried Mittler und Sohn, Berlin, Germany.

MAZÁK, V. 1981. Panthera tigris. Mammalian Species 152:1–8.

MCCAIN, S., E. RAMSAY, M. C. ALLENDER, C. SOUZA, AND J. SCHUMAKER. 2009. Pyometra in captive large felids: a review of eleven cases. Journal of Zoo and Wildlife Medicine 40:147–151.

MCDONALD, C. 1988. Leopard and tiger interactions at Royal Chitwan National Park, Nepal. Journal of the Bombay Natural History Society 85:609–610.

MCLEAN, L., J. L. HURST, C. J. GASKELL, J. C. M. LEWIS, AND R. J. BEYNON. 2007. Characterization of cauxin in the urine of domestic and big cats. Journal of Chemical Ecology 33:1997–2009.

MEHTA, P. 1997. Leopard (Panthera pardus) attempting to prey on Indian giant squirrel (Ranuca indica centrata). Journal of the Bombay Natural History Society 94:555–556.

MEIJAARD, E. 2004. Biogeographic history of the Javan leopard Panthera pardus based on a craniometric analysis. Journal of Mammalogy 85:302–310.

MEYER, F. A. A. 1979. Zoologische Annalen, Erster Band Von 1793. Verlage des Industriele-Comptoirs, Weimar, Germany.

MILLS, M. G. L. 1990. The Kalahari hynae: comparative behavioral ecology of two species. Blackburn Press, Caldwell, New Jersey.

MILNE-EDWARDS, A. 1867. Observations sur quelques mammiferes du nord de la Chine. Annales des Sciences Naturelles, Cinquième Série, Zoologie et Paléontologie, Comprendant L'Anatomie, la Physiologie, la Classification et l'Histoire Naturelle des Animaux 8:374–376.

MIQUELLE, D. G., AND A. MURZIN. 2003. Spatial distribution of far eastern leopard in Southwest Primorski Krai, and recommendations for their conservation. Wildlife Conservation Society, World Wildlife Fund and Tigris Foundation, Vladivostok, Russia.

MITTHAPALA, S., J. SEIDENSTICKER, AND S. J. O'BIEN. 1996. Phylogeny of subspecies in leopards (Panthera pardus): molecular genetic variation. Conservation Biology 10:1115–1122.

MITTHAPALA, S., J. SEIDENSTICKER, L. G. PHILLIPS, S. B. U. FERNANDO, AND J. A. SMALLWOOD. 1989. Identification of individual leopards (Panthera pardus kotiya) using spot pattern variation. Journal of Zoology (London) 218:527–536.

MITTHAPALA, et al. 1991. Genetic variation in Sri Lankan leopards. Zoo Biology 10:319–146.
MIZUTANI, F. A. 1999. Impact of leopards on a working ranch in Laikipia Kenya. African Journal of Ecology 37:221-225.

MIZUTANI, F. A., and P. A. JEWELL. 1998. Home-range and movements of leopards (*Panthera pardus*) on a livestock ranch in Kenya. Journal of Zoology (London) 244:269-286.

MONDO, S., N. R [SIC], V. ATHREYA, K. SUNAGAR, V. M. SELVARAJ, and U. RAMAKRISHNAN. 2009. A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genomics 10:79.

MOWLAVI, G., G. MARUCCI, I. MOBEDI, F. ZAHABIIOON, H. MIRJALAI, and E. POOZI. 2009. Trichinella britovi in a leopard (*Panthera pardus sxicolor*) in Iran. Veterinary Parasitology 164:350-352.

MUCKENHINN, N. A., and J. F. EISENBERG. 1971. Home ranges and predation of the Ceylon leopard (*Panthera pardus fusca*). J. R. (L. Eaton, ed.). Vol. 1. World Wildlife Safari, Winston, Oregon.

MUKHHERJEE, S., and C. MISHRA. 2001. Predation by leopard *Panthera pardus* in Majhatal Harsang wildlife sanctuary, western Himalaya. Journal of the Bombay Natural History Society 98:267-268.

NAM, D. G., S. R. TAK, K. A. KANGOO, and M. A. HALWA. 2009. Comparison of injury pattern in victims of *Ursus thibetanus* and leopard (*Panthera pardus*) attacks. A study from a tertiary care center in Kashmir. European Journal of Trauma and Emergency Surgery 2:153-158.

NAOJATI, S. V. V., A. BEZOROZ, T. SUIGHOTO, and D. R. MCCULLOUGH. 2005. Fecal genetic analysis using PCF-RFLP of cytochrome b to identify sympatric carnivores, the tiger *Panthera tigris* and the leopard *Panthera pardus*, in far eastern Russia. Conservation Genetics 6:863-865.

NATH, I., T. K. PATTANNAK, N. SAHOO, V. S. C. BOSE, H. K. MOHAPATRA, and P. K. ROY. 2006. A case of histiocytoma in a leopard *Panthera pardus*. Zoos’ Print Journal 21:2302.

NEUMANN, O. 1900. Die von mir in den Jahren 1892-95 in Ost und Central-Africa, speciell in den Massai-Landern und den Ländern am Victoria nyansa gemessenen und beobachteten Sägetiere. Zoologische Jahrbücher. Abteilung für Systematik Geographie und Biologie der Tiere 13:529-562.

NEWMAN, A., ET AL. 1985. Biochemical genetic variation in eight endangered or threatened felid species. Journal of Mammalogy 68:256-267.

NORTH, P. M., and S. R. HENLEY. 1987. Home range and movements of male leopards in the Cedarberg Wilderness Area, Cape Province. South African Journal of Wildlife Research 17:41-48.

NORTON, P. M., and A. B. LAWSON. 1985. Radio tracking of leopards and caracals in the Stellenbosch area, Cape Province. South African Journal of Wildlife Research 15:17-24.

NORTON, P. M., A. B. LAWSON, S. R. HENLEY, and G. AVERY. 1986. Prey of leopards in four mountainous areas of the south-western Cape Province. South African Journal of Wildlife Research 16:47-52.

NOWAK, R. M. 1999. Walker’s mammals of the world. 6th ed. Johns Hopkins University Press, Baltimore, Maryland.

NOWELL, K., and P. JACKSON. 1996. Wild cats: status, survey and conservation action plan. International Union for Conservation of Nature and Natural Resources/Species Survival Commission Cat Specialist Group, Gland, Switzerland.

ODDEN, M., and P. WEGGE. 2005. Spacing and activity patterns of leopards *Panthera pardus* in the Royal Bardia National Park, Nepal. Wildlife Biology 11:145-152.

ODDEN, M., and P. WEGGE. 2009. Kill rates and food consumption of leopards in Bardia National Park, Nepal. Acta Theriologica 54:23-30.

ODDEN, M., P. WEGGE, and T. FREDRIKSEN. 2010. Do tigers displace leopards? If so, why? Ecological Research 25:875-881.

OGEN, L. 1816. Lehrbuch der naturgeschichte. August Schmid und Companie, Jena, Germany 3:1-1270.

OWEN SMITH, N., and M. G. L. MILLS. 2008. Predator–prey size relationships in an African large-mammal food web. Journal of Animal Ecology 77:173-183.

OWSTON, M. A., E. C. RAMSAIY, and D. S. ROTSTEIN. 2008. Neoplasia in felids at the Knoxville Zoological Gardens, 1979-2003. Journal of Zoo and Wildlife Medicine 39:608-613.

PATTON, S., and A. R. RABINOWITZ. 1994. Parasites of wild Felidae in Thailand: a coprological survey. Journal of Wildlife Diseases 30:472-475.

PENNYCUCk, C., J., and J. RUDNAI. 1970. A method of identifying individual lions *Panthera leo* with an analysis of the reliability of identification. Journal of the Zoology (London) 160:497-508.

PENZBORN, B. L., E. SYLLANDIES, M. VAN VUUREN, K. ALEXANDER, D. G. A. MELTZER, and N. MUKARATI. 2002. Seroprevalence of *Toxoplasma gondii* in free-ranging lion and leopard populations in southern Africa. South African Journal of Wildlife Research 32:163-165.

PEREZ, L. E, GIEFFEN, and O. MOckARY. 2006. Critically endangered Arabian leopard *Panthera pardus nimr* in Israel: estimating population parameters using molecular scatology. Oryx 40:295-301.

PIENaar, U. DE V. 1969. Predator-prey relationships amongst the larger mammals of the Kruger National Park. Koedoe 12:108-176.

POCCOCK, R. I. 1907. Notes upon some African species of the genus *Felis*, based upon specimens recently exhibited in the Society’s gardens. Proceedings of the Zoological Society of London 1907:656-677.

POCCOCK, R. I. 1932b. Descriptions of two subspecies of leopards. Annals and Magazine of Natural History, Series 9, 20:213-214.

POCCOCK, R. I. 1930a. The panthers and ounces of Asia. Journal of the Bombay Natural History Society 34:64-82.

POCCOCK, R. I. 1930b. The panthers and ounces of Asia. Part II. The panthers of Kashmir, India, and Ceylon. Journal of the Bombay Natural History Society 34:307-336.

POCCOCK, R. I. 1932a. [No title.] Proceedings of the Zoological Society of London 1932(April):33.

POCCOCK, R. I. 1932b. The leopards of Africa. Proceedings of the Zoological Society of London 1932:543-591, plates i-iv.

POCCOCK, R. I. 1934. Note on a bear and a panther obtained by Col. F. M. Builey from Tibet and a panther from Asia Minor obtained by Mr. J. E. Whittall. Journal of the Bombay Natural History Society 37:947-949.

POPODAR-SARKAR, M., and R. L. BRAHMACHARY. 2004. Putative chemical signals of leopard. Animal Biology 54:255-259.

POSPISIL, J., F. KASE, and J. VAHALA. 1987. Basic haematological values in carnivores. II. The felidae. Comparative Biochemistry and Physiology, A. Comparative Physiology 87:387-391.

PYTIAL, C., K. K. PILiA, C. G. VARGHESE, and T. SURENDRANANTHAN. 1993. Death of a wild Indian leopard *Panthera pardus fusca* (Meyer) due to parasitism with the lung fluke *Paragonimus westermanii* (Kerbert, 1878) and the hookworm *Galanus perniciosus* (Linstow, 1885). Journal of Veterinary and Animal Sciences 24:44-46.

RABINOWITZ, A. 1989. The density and behaviour of large cats in a dry tropical forest mosaic in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Natural History Bulletin of the Siam Society 37:235-251.

RAMAKRISHNAN, U., R. G. COSS, and N. W. PELKEY. 1999. Tiger decline caused by the reduction of large ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation 89:113-120.

RANGANATH, L., Y. MANISH, and D. D. KUMAR. 2008. Adenocarcinoma in a leopard (*Panthera pardus*): a case report. Indian Journal of Veterinary Surgery 29:149.

RAY, J. C., L. HUNTER, and J. ZIGOURIS. 2005. Setting conservation and research priorities for larger African carnivores. WCS Working Paper 24. Wildlife Conservation Society, New York.

RAY, S., M. RAY, S. C. MANDAL, and G. K. DUTTA. 1997. Anatomy of the humerus of leopard (*Panthera pardus*). Indian Journal of Animal Sciences 67:131.
Sujatha, K., C. Srilatha, and N. S. Babu. 2007. Pulmonary anthracosis in large wild felids. Zoos’ Print Journal 22:2902.

Sujatha, K., C. Srilatha, and N. Sailaja. 2005. Lymphosarcoma in a leopard: A case report. Zoos’ Print Journal 21:2429.

Sunquist, M. E. 1983. Dispersal of three radiotagged leopards. Journal of Mammalogy 64:337–341.

Swanepoel, L. H., F. Dalerum, and W. Van Hoven. 2010. Factors affecting location failure of GPS collars fitted to African leopards (Panthera pardus). South African Journal of Wildlife Research 40:10–15.

Swinhoe, R. 1870. Catalogue of the mammals of China (south of the river Yangtse) and of the island of Formosa. Proceedings of the Zoological Society of London 1870:615–653.

Tanomtong, A., S. Khunsook, P. Keawmad, and K. Pintong. 2008. Cyogenetic study of the leopard, Panthera pardus (Carnivora, Felidae) by conventional staining, G-banding and high-resolution staining technique. Cytologia 73:81–90.

Tehsin, R. H. 1996. Panther, Panthera pardus (Linnaeus) with guinea worm infection. Journal of the Bombay Natural History Society 93:79–80.

Thomas, O. 1904. On a collection of mammals obtained in Somaliland by Major H. N. Dunn, R. A. M. C., with descriptions of allied species from other localities. Annals and Magazine of Natural History, Series 7, 14:94–96.

Thomas, O. 1911a. The mammals of the tenth edition of Linnaeus; an attempt to fix the types of the genera and the exact bases and localities of the species. Proceedings of the Zoological Society of London 1911:120–158.

Thomas, O. 1911b. The Duke of Bedford’s zoological exploration of eastern Asia. XIV. On mammals from southern Shen-si, central China. Proceedings of the Zoological Society of London 1911:687–695.

Treves, A., and L. Naughton-Treves. 1999. Risk and opportunity for humans coexisting with large carnivores. Journal of Human Evolution 36:275–282.

Trouessart, E. L. 1904. Catalogus mammalium tam viventium quam fossilium. Quinquennale supplementum anno 1904. R. Friedländer and Sohn, Berlin, Germany.

Troyer, J. L., et al. 2005. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. Journal of Virology 79:8282–8294.

Turnbull-Kemp, P. 1967. The leopard. Howard Timmons Press, Cape Town, South Africa.

Turner, A., and M. Anton. 1997. The big cats and their fossil relatives. Columbia University Press, New York.

Ulmer, F. A., Jr. 1966. Voices of the Felidae. International Zoo Yearbook 6:229–262.

Upadhye, S. V., and V. M. Dhoot. 2000. Sudden death of a leopard (Panthera pardus) due to babesiosis. Zoos’ Print Journal 15:327.

Upyrkina, O., et al. 2001. Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. Molecular Ecology 10:2617–2633.

Upyrkina, O., D. Miquelle, H. Quigley, C. Driscoll, and S. J. O’Brien. 2002. Conservation genetics of the far eastern leopard (Panthera pardus orientalis). Journal of Heredity 93:303–311.

Valenciennes, M. A. 1856. Sur une nouvelle espèce de panthère. Compte Rendu des Séances de l’Academie de Sciences 62:1034–1039.

Wagner, J. A. 1841. Schreber’s Die Saugthiere in Abbildugen nach der Natur mit Beschreibungen. Supplementary Vol. 2. Wolfgang Walther, Erlangen, Germany.

Walker, M., et al. 2002. Meniscal ossicles in large non-domestic cats. Veterinary Radiology and Ultrasound 43:249–254.

Wang, S. W., and D. W. Macdonald. 2009. Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan. Journal of Zoology (London) 277:275–283.

Ward, R. 1910. Records of big game with their distribution, characteristics, dimensions, weights, and horn and tusk measurements. 6th ed. Rowland Ward, Ltd., London, United Kingdom.

Weigel, I. 1961. Das Fellmuster der wildebenden Katzenarten und der Hauskatze in Vergleichender und Stammesgeschicher Hinsicht. Saugertierkundliche Mitteilungen 9:1–120.

Weigel, R. 2005. Longevity of mammals in captivity: from the living collections of the world. A list of mammalian longevity in captivity. Klein Senckenberg-Reihe, Frankfurt, Germany.

Wilson, V. J. 1968. Weights of some mammals from eastern Zambia. Arnoldia 3(32):1–20.

Yu, S., et al. 2009. Effects of odors on behaviors of captive Amur leopards Panthera pardus orientalis. Current Zoology 55:20–27.

Zuberbuhler, K. 2004. Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. Behavioral Ecology and Sociobiology 56:414–422.

Zukowsky, L. 1959. Persische panther. Der Zoologische Garten 24:329–344.

Zukowsky, L. 1964. Weitere Mitteilungen über Persische Panther. Der Zoologische Garten 28:151–182.

Associate editor of this account was David Zegers. Editor was Meredith J. Hamilton.