In vitro antibacterial activity of various tissue types of *Dumortiera hirsuta* (Sw) Nees from different altitudes of eastern Himalaya

Souryadeep Mukherjee\(^a\), Arijit De\(^a\), Pinky Ghosh\(^a\), Abhijit Dey\(^b\)

\(^a\)Department of Zoology and Molecular Biology & Genetics, Presidency University, West Bengal, India.
\(^b\)Department of Botany, Presidency University, West Bengal, India.

**Objective:** To study the antibacterial activity of methanol and ethanol extracts of vegetative, male sexual and female sexual reproductive thalli of the bryophyte *Dumortiera hirsuta* collected from five different altitudes of eastern Himalaya against some human pathogenic bacteria. **Methods:** Well diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were carried out against strains of human pathogenic bacteria. **Results:** Different tissue types of the bryophyte collected from various altitudes have shown to inhibit the human pathogenic bacterial strains in vitro. Maximum antibacterial activity was noted against *S. marcescens* (ATCC 13880) for both the 80% methanolic and ethanolic extracts of both the vegetative and the reproductive thalli. The extracts of the reproductive thallus showed less antibacterial activity than that of the vegetative thallus. Specimens collected from higher altitude showed slightly lesser antibacterial activity than their lower altitude counterparts. **Conclusions:** Antibiotic activity was noted to be dependent on solvent system used for extraction, altitude and tissue type. Analyses of extracts may yield some bioactive molecule responsible for antibacterial efficacy of the bryophyte.

1. Introduction

Bryophytes contain a number of secondary metabolites with diverse pharmacological activities. This group of plants were reported to possess antibacterial\(^{11}\), antifungal\(^{21}\), wound healing\(^{31}\), antioxidant\(^{41}\) and cytotoxic\(^{51}\) efficacy. Their plant body is rich in several bioactive compounds such as terpenoids, phenols, glycosides, and fatty acids\(^{6}\). Due to their continuous effort to survive against a number of biotic and abiotic stresses, they are able to biosynthesize diverse types of secondary compounds\(^{7}\). Reports on traditional use of bryophytes as medicine are available\(^{8}\) but very few attempts have been taken to exploit the pharmacological, clinical and medicinal potential of bryophytes. Ethnic use of bryophytes\(^{9}\), when scientifically verified, might serve an exciting aspect to explore the immense bioactive potential of this less used plant group. The present study aims to explore the antibiotic potential of the said bryophyte as a non-conventional and unexploited source of antibiotics against some human pathogenic bacteria. Secondly, the altitudinal and vegetative and reproductive tissue specific variation of antibacterial activity is also observed. *Dumortiera hirsuta* (Sw) Nees is distributed over a very wide range of geographical range. It is a thalloid liverwort growing on moist shady places by the streams and waterfalls. The thallus is dark green or yellowish green in colour. The male receptacles contain bristles and are borne on a very short stalk while the female receptacles are long stalked. Lack of air pores distinguishes the species from other hepatics such as *Marchantia polymorpha* and *Conocephalum conicum*.

2. Materials and methods

2.1 Collection of plant materials

The vegetative and male and female receptacles bearing...
thallloid plant body of *Dumortiera hirsuta* were collected at different seasons during the years 2010–2011 from five different altitudes of eastern Himalaya, India viz. Darjeeling town, Lava, Lolegaon, Rishap and Kalimpong. Altitudes and latitudes of the five locations are mentioned in Table 1. The voucher specimen was identified from the key to the specimen[10] and deposited at the department of Zoology and Molecular Biology, Presidency University, Kolkata.

2.2 Preparation of methanol and ethanol extracts

Fresh vegetative and male and female reproductive thalli were collected and washed in running tap water to remove soil particles from the ventral surface. The thalli were repeatedly washed in the detergent Teepol® followed by Bavistin to remove microbial contamination. Lastly, these were thoroughly washed by autoclaved distilled water. The plant material was air dried and powdered (40 mesh size) using an electrical mixer grinder. The fine powder (100g) was extracted in a Soxhlet apparatus for 4 days with 80% methanol and ethanol separately (3 changes of 100ml each). The extracts were pooled and a rotary evaporator was applied to evaporate the solvent under reduced pressure. The crude extracts were refrigerated at −4°C for future use.

2.3 Antibacterial assay

2.3.1 Bacteria tested

Antibacterial activity of *Dumortiera hirsuta* was tested against ATCC strains of some common human pathogenic bacteria viz, *Shigella dysenteriae* (ATCC 9361), *Enterobacter cloacae* (ATCC 13047), *Staphylococcus aureus* (ATCC 25923) and *Serratia marcescens* (ATCC 13880). These strains were cultured at 37 °C and after the incubation period, 1ml of culture were seen after the incubation period. Preparations were done by Microsoft Office Excel

| SL. No. | Place of collection | Altitude (ft) | Location |
|---------|---------------------|--------------|----------|
| (A1)    | Darjeeling town, West Bengal, India | 6710 | 27°31'13"N 88°15'59"E |
| (A2)    | Lava, West Bengal, India | 7200 | 27°31'11"N 88°39'47"E |
| (A3)    | Lolegaon, West Bengal, India | 5500 | 27°30'6"N 88°31'59"E |
| (A4)    | Rishap, West Bengal, India | 8500 | 27°33'33"N 88°38'57"E |
| (A5)    | Kalimpong, West Bengal, India | 4100 | 27°34'11"N 88°28'44"E |
observed also against

| Microorganism | Vegetative thallus | Reproductive thallus |
|---------------|-------------------|----------------------|
|               | 100 μg/ml | 150 μg/ml | 200 μg/ml | 100 μg/ml | 150 μg/ml | 200 μg/ml |
| S. aureus     | 6.5±0.891  | 7.7±0.437  | 8.0±0.572  | 6.5±0.788  | 7.5±0.848  | 7.8±0.789  |
| S. dysenteriae| 7.5±0.653  | 8.7±0.452  | 9.5±0.817  | 7.6±0.912  | 8.5±0.556  | 9.2±0.752  |
| E. cloaca     | 6.2±0.24   | 6.7±0.981  | 7.2±1.485  | 6.3±0.676  | 6.8±0.494  | 6.9±0.547  |
| S. marcescens | 9.5±0.526  | 9.7±0.531  | 10.2±0.985 | 9.5±0.478  | 9.6±0.805  | 9.9±0.639  |
| S. aureus     | 6.7±0.211  | 7.8±0.897  | 8.3±0.283  | 6.5±0.175  | 7.4±0.780  | 7.9±0.483  |
| S. dysenteriae| 7.5±0.371  | 8.9±0.855  | 9.4±0.845  | 7.4±0.051  | 8.4±0.543  | 9.2±0.575  |
| E. cloaca     | 6.2±0.489  | 6.4±0.654  | 6.6±0.541  | 6.1±0.485  | 6.4±0.484  | 6.7±0.321  |
| S. marcescens | 9.4±0.222  | 9.5±0.230  | 9.8±0.496  | 9.1±0.701  | 9.5±0.486  | 9.7±0.479  |
| S. aureus     | 6.2±0.470  | 7.3±0.550  | 7.9±0.219  | 6.2±0.724  | 7.2±0.344  | 7.5±0.866  |
| S. dysenteriae| 7.6±0.585  | 8.8±0.575  | 9.5±0.462  | 7.4±0.280  | 8.3±0.817  | 9.1±0.635  |
| E. cloaca     | 6.1±0.156  | 6.4±0.841  | 6.4±0.523  | 6.1±0.347  | 6.2±0.549  | 6.4±0.649  |
| S. marcescens | 9.5±0.496  | 10.1±0.479 | 12.1±0.909 | 9.1±0.173  | 9.5±0.852  | 9.8±0.817  |
| S. aureus     | 6.5±0.489  | 7.5±0.631  | 8.9±0.554  | 6.8±0.913  | 7.6±0.930  | 7.7±0.150  |
| S. dysenteriae| 7.5±0.386  | 8.6±0.751  | 9.5±0.454  | 7.5±0.757  | 8.4±0.808  | 9.3±0.477  |
| E. cloaca     | 6.3±0.894  | 6.5±0.541  | 6.8±0.052  | 6.1±0.045  | 6.3±0.458  | 6.4±0.842  |
| S. marcescens | 9.4±0.351  | 9.2±0.503  | 9.7±0.056  | 9.2±0.845  | 9.1±0.141  | 8.9±0.744  |
| S. aureus     | 6.8±0.479  | 7.6±0.292  | 8.1±0.682  | 6.5±0.714  | 7.6±0.355  | 7.5±0.702  |
| S. dysenteriae| 7.6±0.280  | 8.7±0.531  | 9.6±0.518  | 7.5±0.430  | 8.6±0.785  | 7.5±0.228  |
| E. cloaca     | 6.3±0.521  | 6.4±0.359  | 6.5±0.641  | 6.1±0.656  | 6.2±0.961  | 6.4±0.522  |
| S. marcescens | 9.5±0.539  | 9.8±0.210  | 10.0±0.272 | 9.4±0.191  | 9.6±0.301  | 9.8±0.552  |

Table 2
Antibacterial activity of vegetative and reproductive thalli extracted in 80% methanol. (Zone diameter values are expressed in mm.)

3. Results

3.1 Antibacterial activity

In the present investigation, antibacterial activities of the 80% methanol and ethanol extracts of the vegetative and male and female reproductive thalli of D. hirsuta were studied against four human pathogenic bacterial strains, *S. dysenteriae* (ATCC 9361), *E. cloaca* (ATCC 13047), *S. aureus* (ATCC 25923) and *S. marcescens* (ATCC 13880). In all the experiments, both 80% methanolic and ethanolic extracts of the vegetative thalli showed more potent antibacterial activity than that of the reproductive thalli against the bacteria tested. Among the extracts, the 80% methanolic extract of both the vegetative and the reproductive thalli showed highest antibacterial activity against *S. marcescens* (ATCC 13880). At the highest of the concentrations tested, the maximum mean zone of inhibition of the 80% methanolic extract of the vegetative thallus and reproductive structures, against *S. marcescens* (ATCC 13880) were (12.1±0.909) mm and (9.9±0.639) mm respectively. In case of ethanolic extract, the highest mean zone of activity was observed also against *S. marcescens* (ATCC 13880), showing maximum mean zone diameter of (10.5±0.466) mm and (9.3±0.697) mm for the vegetative and the reproductive thalli respectively. Minimum antibacterial activity of the 80% methanol extract was observed against *E. cloaca* (ATCC 13047), maximum mean zone being (7.2±0.485) mm, and that of the ethanolic extract was observed against *S. aureus* (ATCC 25923), maximum mean zone of inhibition (6.7±0.645) mm. In general, vegetative thalli has shown higher antibacterial activity than their reproductive counterparts. Male and female reproductive structures bearing thalli were found to show more or less similar level of activity whereas the plants collected from lower altitude have exhibited higher antibacterial efficacy than that of the plants collected from higher altitude (Tables 2 and 3). Tetracycline (30 μg/ml) was used as the positive control and yielded mean zone of inhibition ranging from (14.5±0.635) mm to (11.2±0.636) mm (Table 4), and the negative controls (80% methanol and ethanol) showed no activity against the bacteria tested.

3.2 MIC and MBC

The MIC values varied from (0.5 to 1.25) mg/ml and from (0.5 to 1) mg/ml for 80% methanolic and ethanolic extracts respectively. The range of the MBC values were from (1 to 2.5) mg/ml and from (1 to 2) mg/ml for 80% methanolic and ethanolic extracts respectively. Lowest MIC value of the 80% methanolic extract was observed against both *S. dysenteriae* (ATCC 9361) and *S. marcescens* (ATCC 13880) (0.5 mg/ml) and lowest MBC values were observed against *S. marcescens* (ATCC 13880) (1 mg/ml). Lowest MIC value of the ethanolic extract was observed against *S. marcescens* (ATCC 13880) (0.5 mg/ml) and lowest MBC values were observed also against *S. marcescens* (ATCC 13880) (1 mg/ml). (Table 5)
4. Discussion

Plant extracts and products have been reported as antimicrobial agents[14]. Ethanol and methanol extracts were found to be useful in several antimicrobial experiments[15,16]. The polar extracts (ethanol and methanol) have revealed the presence of several bioactive phyto-constituents such as alkaloids, flavonoids, saponins, triterpenoids etc.[17]. Human pathogenic bacterial strains were reported to be inhibited by plant extracts in vitro[18,19,20]. Plants extracted in different solvent systems have been proved as antibiotic against multidrug resistant bacteria[21,22]. Bryophytes have been reported to possess antibiotic activity[23]. Antibacterial[24] and antifungal[25] activities of bryophytes have been reported in many recent investigations. Among the several compounds hibenzyl[26], flavonoids[27], sphagnum acid [β-hydroxy-beta-(carboxymethyl)-cinnamic acid][28] sesquiterpenes[29] etc. isolated from different bryophytes have been reported to possess antibiotic property.

D. hirsuta has been investigated for various pharmacological activities. In vitro and in vivo experiments have proved the cytotoxic efficacy of riccardin D, a macrocyclic bisbibenzyl compound isolated from the species[30,31]. Crude extracts of the species has been tested for radical scavenging and antimicrobial activities and different sesqui- and diterpenoids and aromatic compounds have been isolated[32].
Lunularin, isolated from the same has shown cytotoxicity and antimicrobial effects against *Pseudomonas aeruginosa* [33]. Earlier sesquiterpenoids and some other bioactive constituents were isolated from the species [34,35]. Dumortane derivatives [36] and carboxylated α-pyrone derivatives [37] have been reported from the species.

Secondary metabolites of botanical origin have been reported to possess different pharmacological activities. Content of such metabolites may vary depending on several factors such as altitude, latitude, tissue type, season etc. Altitude is considered as one of the prime factors responsible for such variation [38,39]. Phenol, considered as one of the primary and qualitative variation of certain metabolites. Bioactivity guided fractionation and isolation of novel compounds can be utilized against bacteria and bacterium related diseases as an alternative to conventional synthetic drugs, prolonged use of which has resulted into development of drug resistance in certain microbes. Furthermore, the possible toxicity of herbal formulations must be considered and rigorous clinical trials should be performed to use such alternative sources of medicine.

### Conflict of interest statement

The authors declare that there is no conflict of interest.

### Acknowledgement

We acknowledge the grant and assistance provided by University Grant Commission (Minor Research Project No. F. PSW−072/09−10 (ERO) dated: 8th October, 2009).

### References

1. Singh M, Rawat AK, Govindarajan R. Antimicrobial activity of some Indian mosses. *Fitoterapia* 2007; 78: 156−158.
2. Dey A, De JN. Antifungal bryophytes: a possible role against human pathogens and in crop protection. *Res J Biol* 2011; 6: 129−140.
3. Singh M, Govindarajan R, Nath V, Rawat AK, Mehrotra S. Antimicrobial, wound healing and antioxidant activity of *Plagiochasma appendiculatum* Lehm. et Lind. *J Ethnopharmacol* 2006; 107: 67−72.
4. Dey A, De JN. Antioxidative potential of Bryophytes: Stress tolerance and commercial perspectives: A Review. *Pharmacologia* 2012; 3: 151−159.
5. Krzaczkowski L, Wright M, Rebérioux D, Massiot G, Etélvant C, Gairin JE. Pharmacological screening of bryophyte extracts that inhibit growth and induce abnormal phenotypes in human HeLa cancer cells. *Fundam Clin Pharmacol* 2009; 23: 473−482.
6. Saboljievic A, Saboljievic M, Jockovic N. In vitro culture and secondary metabolite isolation in bryophytes. *Methods Mol Biol* 2009; 547: 117−128.
7. Xie CF, Lou HX. Secondary metabolites in bryophytes: an ecological aspect. *Chem Biodivers* 2009; 6: 303−312.
8. Harris ESI. Ethnobotany: traditional uses and folk classification of bryophytes. *Bryologia* 2008; 111: 169−217.
9. Singh M, Singh S, Nath V, Sahu V, Rawat AK. Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections. *Pharm Biol* 2011; 49: 526−530.
10. Singh SK, Singh DK. Hepaticeae and Anthocerotae of Great Himalayan National Park and its environs (HP), India. Botanical Survey of India; 2009.
11. NCCLS. Approved Standards M7−A4. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. National Committee for Clinical Laboratory Standards, Wayne, PA. 1997.
12. NCCLS. Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approved Guideline M26−A. National Committee for Clinical Laboratory Standards, Wayne, PA. 1999.
13. Pagano M, Gauvreau K. *Principia of Biostatistics*. 2nd ed. Duxbury, USA. 2000.
14. Zellagui A, Ghennaf N, Ladjel S, Hameurlaine S. Chemical composition and antibacterial activity of the essential oils from *Launaea resedifolia* L. *Org Med Chem Lett* 2012; 2: 2.
15. Saty SC, Joshi S. Antibacterial activities of Ginkgo biloba L. leaf extracts. *Scientific World J* 2011; 11: 2241−2246.
16. Nain P, Kumar A, Sharma S, Nain J. In vitro evaluation of antimicrobial and antioxidant activities of methanolic extractof Jasminum humile leaves. *Asian Pac J Trop Med* 2011; 4: 804−807.
17. Panda SK, Padhi LP, Mohanty G. Antibacterial activities and...
phytochemical analysis of Cassia fistula (Linn.) leaf. J Adv Pharm Technol Res 2011; 2: 62–67.

[18]Bashriee HS, Kingsley SJ, Sathish ES, Devapriya D. Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens—an in vitro study. ISRN Dent 2011; 2011: 541421.

[19]Dey A, Das T, Mukherjee S. In vitro Antifungal activity of n–Hexane fraction of methanolic extract of Plumeria rubra L. (Apocynaceae) stem bark. J Plant Sci 2011; 6: 135–142.

[20]Mukherjee S, Dey A, Das T. In vitro antibacterial activity of n-hexane fraction of methanolic extract of Alstonia scholaris L. B.R, stem bark against some multidrug resistant human pathogenic bacteria. Eur J Med Plants 2012; 2: 1–10.

[21]Fankam AG, Kuate V, Voukeng IK, Kuate JR, Pages JM. Antibacterial activities of selected Cameroonioon spices and their synergistic effects with antibiotics against multidrug–resistant phenotypes. BMC Complement Altern Med 2011; 11: 104.

[22]Narayanan AS, Raja SS, Ponmurugan K, Kanekar SC, Natarajaseenivasan K, Maripandi A, et al. Antibacterial activity of selected medicinal plants against multiple antibiotic resistant uropathogens: a study from Kolli Hills, Tamil Nadu, India. Benef Microbes 2011; 2: 235–243.

[23]Vivanco V, Kolarova M, Alekseeva K, Dornberger K, Aleksieva K, Dornberger K. Variation of secondary metabolite profiles in flowering heads of Arnica montana cv. ARBO. Phytochemistry 2006; 67: 409–417.

[24]Kaur L, Mues R, Speicher A, Waggman T, Eicher T. Carbamoylated g–pyrone derivatives and flavonoids from the liverwort Dumortiera hirsuta. Phytochemistry 1996; 42: 1693–1698.

[25]Spitaler R, Winkler A, Böttenschlager S, Stuppner H, et al. Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana cv. ARBO. Phytochemistry 2008; 74: 453–457.

[26]Baldó A, Kamiya N, Toyota M, Asakawa Y. A 7–nordemortone and other demortane derivatives from the Argentine liverwort Dumortiera hirsuta. Phytochemistry 1999; 51: 281–287.

[27]Ivanova V, Kolarova M, Alekseeva K, Dornberger K, Aleksieva K, Dornberger K. Chemical composition, antifungal and antitumor properties of ether extracts of Scapania verrucosa Heeg. and its endophytic fungus Chaetomium fusiforme. Phytochemistry 1999; 48: 1019–1023.

[28]Ganzera M, Guggenberger M, Stuppner H, et al. Altitudinal variation of secondary metabolite profiles in flowering heads of Maticaria chamomilla cv. BONA. Planta Med 2008; 74: 355–369.

[29]Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C. Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3–year comparison. J Chem Ecol 2008; 34: 369–375.

[30]Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C. Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO. Oecologia 2009; 160: 1–8.

[31]Zhang WJ, Björn LO. The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fütöterapia 2009; 80: 207–218.

[32]Wu YH, Gu YH, Liu P, Zoltán T. [Effects of enhanced UV–B radiation on the growth of five bryophytes in Changbai Mountains]. [Article in Chinese]. Ying Yong Sheng Tai Xue Bao 2007; 21–24.

[33]Bennett RN, Mellon FA, Foill N, Pratt JH, Dupont MS, Perkins L, et al. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi–purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J Agric Food Chem 2003; 51: 3546–3553.

[34]Liu Z, Carpenter SB, Bourgeois WJ, Yu Y, Constantin RJ, Falcon MJ, et al. Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiol 1998; 18: 256–270.