Viral Susceptibility Range of the Fathead Minnow
(Pimephales promelas) Poikilothermic Cell Line¹

JUAN SOLIS² AND EMILIO C. MORA

Department of Poultry Science, Auburn University, Auburn, Alabama 36830

Received for publication 15 September 1969

The viral susceptibility range of a poikilothermic cell line derived from the fathead minnow (Pimephales promelas) (FHM) to infection by a number of homioothermic viruses representing most of the presently recognized viral groups and a member of the psittacosis-lymphogranuloma-trachoma group of agents was studied. All infectious agents, except polyovirus types 1 and 3, infectious bursal agent, and an avian infectious bronchitis virus (IBV) strain, readily multiplied in the FHM cell culture system, producing a detectable cytopathic effect. Although inconclusive evidence was obtained with two other avian IBV strains, these results indicated the ability of the FHM cell culture system to readily support the propagation of a variety of cytopathogenic homioothermic viral agents.

During the past 2 years this laboratory has been engaged in the evaluation of established cell lines of various animal and tissue origin as host cells for the propagation of animal viruses. This report describes the susceptibility of a poikilothermic cell line derived from the fathead minnow (FHM) to infection by a variety of viral agents affecting homioothermic animals including human, bovine, canine, and avian species.

MATERIALS AND METHODS

Viruses. Table 1 enumerates the virus strains used and their sources.

Cell cultures. The FHM cell culture (8) was obtained from Nikolai Fijan, Fisheries Section, Zoology Department, Auburn University, Auburn, Ala. These cells were grown in Eagles minimum essential medium (MEM) with twice the normal concentration of vitamins, essential amino acids, and 1-glutamine, and supplemented with 10% heat-inactivated fetal bovine serum (FBS), plus 100 units of penicillin and 100 µg of streptomycin per ml. Cell cultures were maintained in an identical medium, except that the serum concentration was reduced to 2% and the antibiotics were deleted. The pH of the media was adjusted to 7.4 to 7.6 by the addition of a 7.5% solution of sodium bicarbonate. The heteroploid cell line derived from human embryonic intestine by Henle (9) was propagated and maintained in a similar culture medium except that FBS was replaced by calf serum. Both cell lines were grown in Leighton tubes and incubated at 36 C throughout the study.

¹ An abridgment of portions of a dissertation submitted by Juan Solis in partial fulfillment of the requisite for the degree of Doctor of Philosophy, Auburn University, Auburn, Ala.

² Present address: Poultry Science Department, Clemson University, Clemson, S.C. 29631.

Virus assay. The infectivity of all test viruses, except that of polioviruses and infectious bursal agent (IBA), was titrated in embryonated hens' eggs by using standard techniques (5) and expressed as 50% chicken embryo lethal dose (CELD₅₀) per ml. Henle's intestine cells were used to assay the polioviruses, whereas 4-week-old susceptible chickens were utilized to assay the IBA.

Experimental. Each viral agent was inoculated undiluted in 0.2-ml amounts into each of six culture tubes of FHM cells and allowed to adsorb for 3 to 4 hr at 36 C. Inoculated cultures were rinsed four times with warm Earles balanced salt solution to remove unadsorbed virus before the addition of 1.5 ml of maintenance medium per tube. Generally, serial passages were conducted at timed intervals corresponding with first appearance of viral cytopathic effect (CPE) (Table 2). Maintenance medium was replaced every 3 days with those agents that produced a delayed CPE. The culture tubes were quickly frozen and thawed three times, and the medium and cells were harvested for virus passage. At least three blind passages with undiluted cell culture fluid as inoculum were attempted before negative results were recorded.

The amount of virus present in the cell cultures at each passage level was titrated by inoculation of serial 10-fold dilutions into a susceptible host. For all titrations, five tube cultures or five eggs were used per dilution. The presence of mumps virus in the infected eggs was determined by hemagglutination with 1% chicken erythrocytes. Hemadsorption tests in the control noninoculated cell cultures were performed by the method of Shelokov et al. (16). Virus titers were calculated by the method of Reed and Muench (14).

RESULTS

Table 2 summarizes the results. Control noninoculated cultures were simultaneously observed
at each virus passage for spontaneous appearance of cytopathology, and each culture was tested for hemadsorption with chicken and human type "O" and "A" erythrocytes. In no case was there evidence of adventitious viral agents in the cell cultures.

The FHM cell culture system was readily susceptible to infection by 13 of the 19 viruses tested. Each virus was propagated for at least five serial passages, with some undergoing as many as 10 to 20. Only Sindbis and vesicular stomatitis viruses showed a marked and rapid cytocidal property against the FHM cells. All other viruses produced at best only a moderate degree of cellular destruction even though most of them replicated to high titers. Without exception, every virus that successfully multiplied in the FHM cells induced a detectable CPE.

The replication of poliovirus types 1 and 3 as well as that of IBA was not supported by the FHM cell culture system. Two of the three strains of avian infectious bronchitis virus (IBV) multiplied only for three serial passages during which time they produced no visible CPE, but failed to replicate on subsequent passages.

DISCUSSION

Cell culture systems of different animal origin have been widely used in the last 15 years to propagate animal viruses. Although growth of fish viruses appears to be supported only by fish cell cultures (8, 10, 20, 21), some frog viruses are able to propagate in certain poikilothermic, mammalian, and chick cell culture systems (7, 4, 13). However, few cell lines (3, 8, 11; G. H. Waddel and M. M. Sigel, Bacteriol. Proc., p. 99, 1965) and primary cell cultures (6, 17, 18) derived from poikilothermic vertebrates support limited replication of some mammalian and avian viruses.

Table 1. Virus strains studied

Virus	Source	Passage history, in our laboratory	Strain	Virus group
Vaccinia	Commercial vaccine, Eli Lilly & Co.	6 CAM	GB Texas Calif.	Poxvirus
Fowl pox	Commercial vaccine, Delaware Poultry Labs. Inc.	10 CAM	Poxvirus	
Newcastle disease virus	Field outbreak	TNTC allantoic	Myxovirus	
Newcastle disease virus TC	Commercial vaccine, Elanco Products Co.	3 Allantoic	Myxovirus	
Mumps	ATCC VR 106	5 Allantoic	Enders	
Avian infectious laryngotraceitis	ATCC VR 189	5 CAM	Myxovirus	
Avian infectious laryngotraceitis TC	ATCC VR 158	5 Allantoic	Herpesvirus	
Herpes simplex	Clinical oral specimen	6 CAM	Herpesvirus	
Herpes simplex	Clinical oral specimen	6 CAM	Herpesvirus	
Poliovirus 1	Commercial vaccine, Lederle Laboratories	10 HHEI	Picornavirus	
Poliovirus 3	Commercial vaccine, Lederle Laboratories	10 HHEI	Picornavirus	
Infectious bursal agent	Roberts, Auburn, Ala.	5 C	Beaudette	
Infectious bronchitis virus	Cunningham, Mich. State Univ.	6 Allantoic	Unclassified	
Infectious bronchitis virus	Cunningham, Mich. State Univ.	2 Allantoic	Unclassified	
Infectious bronchitis virus	ATCC VR 68	5 Allantoic	Beaudette	
Sindbis	ATCC VR 158	5 Allantoic	AR-339	
Vesicular stomatitis virus	ATCC VR 189	6 Allantoic	Indiana	
Rabies	Commercial vaccine, American Cyanamid Co.	2 Allantoic	Flury	
Sporadic bovine encephalo-	ATCC VR 189	5 CEYS	Rhabdovirus	
myelitis			Rhabdovirus	

\[a\] Numbers represent number of passages. Abbreviations indicate: ATTC, American Type Culture Collection; CAM, chicken embryo chorioallantoic membrane; TNTC, too numerous to count; HHEI, Henle's Human Embryonic Intestine Cell Line; C, chicken; CEYS, chicken embryo yolk sac.

\[b\] These viruses were not propagated in our laboratory.
Table 2. Results of propagation of various viral agents in fathead minnow cell culture

Virus	Virus passage	Infectivity titer (log$_{10}$ CELD$_{50}$/ml)	Passage interval (hr)
Vaccinia	TC 1	5.5	72
	TC 10	6.7	
Fowl pox	TC 1	5.2	48–72
	TC 10	6.1	
Newcastle disease virus GB	TC 1	6.6	72
	TC 20	6.7	
Newcastle disease virus TC	TC 1	4.1	72
	TC 10	7.7	
Mumps	TC 1	3.8	24–30
	TC 5	6.4	
Avian infectious laryngotracheitis TC	TC 1	5.8	48
	TC 10	6.9	
Avian infectious laryngotracheitis TC	TC 1	5.5	48
	TC 7	6.7	
Herpes simplex	TC 1	4.5	96
	TC 5	5.2	
Herpes simplex TC	TC 1	3.7	72
	TC 6	4.2	
Poliovirus 1	TC 1	Negativea	
Poliovirus 3	TC 1	Negativeb	
Infectious bursal agent	TC 1	Negativea	
Infectious bronchitis virus (Roberts)	TC 1	5.4	48–72
	TC 3	1.7	
Infectious bronchitis virus (Beaudette)	TC 1	5.7	48–72
	TC 3	1.4	
Infectious bronchitis virus (Beaudette TC)	TC 1	Negativeb	
Sindbis	TC 1	7.0	24
	TC 7	7.4	
Vesicular stomatitis virus	TC 1	7.5	12–24
	TC 5	6.9	
Rabies	TC 1	7.5	72
	TC 5	5.2	
Sporadic bovine encephalomyelitis	TC 1	4.5	168
	TC 5	7.2	

a Infectivity titer expressed as TCID$_{50}$.
b Infectivity titer expressed as chicken infective dose (CID$_{50}$).

To our knowledge, this is the first comprehensive report on the potential use of a poikilothermic cell line for homiothermic animal viral research. The data obtained in this study indicated that the FHM cell culture system possesses a fairly broad spectrum of virus susceptibility. Thirteen of 19 viruses readily replicated in this host cell system, including representative members of the myxo-, arbo-, herpes-, pox-, and rhabdovirus groups and a member of the psittacosis-lymphogranulomatous chlamydia (PLT) group of agents, and to a limited extent two other strains of an as yet unclassified avian virus.

The failure of poliovirus types 1 and 3 to propagate in FHM cell cultures was probably due to the operation of an intrinsic cellular mechanism regulating the early stages of the virus-host cell interaction, possibly at the receptor site level. This hypothesis is supported by the work of Plotkin et al. (12) who reported that only cells derived from primate tissues possess enterovirus receptors and are generally susceptible to infection by poliovirus, whereas nonprimate cells lack these receptors and are normally resistant to infection. The reported susceptibility of FHM cells to poliovirus type 1 (19) should be considered with caution in lieu of the inadequate evidence presented to substantiate this contention. The resistance shown by FHM cells to infection by IBA, which may tentatively be classified as an avian enterovirus on the basis of its suggested ribonucleic acid (RNA) core (Solis, unpublished data) and its physicochemical and epidemiological features (1, 2), may be similarly explained by drawing a parallel with poliovirus and other enteroviruses of different animal species (15), all of which are highly specific for their host cell and require homologous cell cultures with their associated specific cellular receptors to establish infection.

The results obtained with the IBV strains are inconclusive and are presently being studied further. It was tentatively postulated that the observed outcome of virus propagation was influenced by the accumulation of an interferon-like substance in the infective cell culture fluids.

This study represented a preliminary evaluation of the FHM cell culture system for animal viral research. This poikilothermic cell line may offer an unusual opportunity to study the behavior of homoiothermic viruses in a host cell phylogenetically far removed from the normal host. Also, since this host cell system possesses many attributes not found in cells derived from warm-blooded vertebrates and since it is apparently free of viral contaminants and is readily available, it is felt that it may represent a valuable addition.
to the virologist's armamentarium in his never ending search for disease control and prevention.

LITERATURE CITED

1. Benton, W. J., M. S. Cover, and J. K. Rosenberger. 1967a. Studies on the transmission of the infectious bursal agent (IBA) of chickens. Avian Dis. 11:430-438.

2. Benton, W. J., M. S. Cover, J. K. Rosenberger, and R. S. Lake. 1967b. Physicochemical properties of the infectious bursal agent (IBA). Avian Dis. 11:438-445.

3. Clark, H. F., and D. T. Karzon. 1967. Terrapene heart (TH-1), a continuous cell line from the heart of the box turtle Terrapene carolina. Exp. Cell Res. 48:263-268.

4. Clark, H. F., and D. T. Karzon. 1968. Temperature optimum of mammalian and amphibian viruses in cell cultures of homeothermic and poikilothermic origin. Arch. Gesamte Virusforsch. 23:270-279.

5. Cunningham, C. H. 1966. A laboratory guide in virology. 6th ed. Burgess Publishing Co., Minneapolis.

6. Falcoff, E., and B. Fauconnier. 1965. In Vitro production of an interferon-like inhibitor of viral multiplication by a poikilothermic animal cell, the tortoise (Testudo graeca). Proc. Soc. Exp. Biol. Med. 118:609-612.

7. Granoff, A., P. E. Came, and D. C. Breeze. 1966. Viruses and renal carcinoma of Rana pipiens. I. The isolation and properties of virus from normal and tumor tissue. Virology 29:133-148.

8. Gravell, M., and R. G. Malsberger. 1965. A permanent cell line from the fathead minnow (Pimephales promelas). Ann. N.Y. Acad. Sci. 126:555-565.

9. Henle, G., and F. Deinhardt. 1957. The establishment of strains of human cells in tissue culture. J. Immunol. 79:54-59.

10. Jensen, M. H. 1965. Research in the virus of Egtved disease. Ann. N.Y. Acad. Sci. 126:422-426.

11. Officer, J. E. 1964. Ability of a fish cell line to support the growth of mammalian viruses. Proc. Soc. Exp. Biol. Med. 116:190-194.

12. Ploquin, S. A., R. J. Carp, and A. F. Graham. 1962. The poikiloviruses of man. Ann. N.Y. Acad. Sci. 101:357-383.

13. Rafferty, K. A., Jr. 1965. The cultivation of inclusion associated viruses from Lucke tumor frogs. Ann. N.Y. Acad. Sci. 126:3-21.

14. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty per cent endpoints. Amer. J. Hyg. 27:493-497.

15. Rovozzo, G. C., R. E. Lugnbuhl, and C. F. Helmholdt. 1965. Bovine enteric cytopathogenic viruses. I. Characteristics of three prototype strains. Cornell Vet. 55:121-130.

16. Shidlovsky, A., J. E. Vogel, and L. Chi. 1958. Hemadsorption (adsorption-hemagglutination) test for viral agents in tissue culture with special reference to influenza. Proc. Soc. Exp. Biol. Med. 97:802-809.

17. Shidlovsky, A., L. Chi. 1965. Cultivation of vaccinia virus in tissue culture from the liver of a cold blooded animal (Lacerta viridis). Acta Virol. 9:459-461.

18. Somogyiova, J., and J. Rehacek. 1965. Cultivation of tick borne encephalitis virus in reptile tissue cultures. Acta Virol. 9:286.

19. Thomas, W. H. 1965. A permanent cell line from the fathead minnow (Pimephales promelas). Ann. N. Y. Acad. Sci. 126:555-565.

20. Wolf, K., M. Gravell, and R. G. Malsberger. 1966. Lymphocytosis virus: Isolation and propagation in Centrarchid fish cell lines. Science 151:1-2.

21. Wolf, K., S. F. Sniezko, C. E. Dunbar, and E. Pyle. 1960. Virus nature of infectious pancreatic necrosis in trout. Proc. Soc. Exp. Biol. Med. 104:105-108.