Electronic Supplementary Information

Photoreforming of food waste into value-added products over visible-light-absorbing catalysts

Taylor Uekert, Florian Dorchies, Christian M. Pichler, Erwin Reisner*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

*e-mail: reisner@ch.cam.ac.uk
Contents
Supplementary Tables .. S3
Supplementary Figures ... S14
Mechanisms ... S27
Carbon Footprint Calculations ... S30
References ... S34

List of Abbreviations
CdS/CdO\textsubscript{x} – cadmium sulphide quantum dots with a thin cadmium oxide/hydroxide shell
HN\textsubscript{2}CN\textsubscript{x} – melamine-derived carbon nitride
HN\textsubscript{2}CN\textsubscript{x}|Ni\textsubscript{2}P – melamine-derived carbon nitride coupled with a (2 wt%) nickel phosphide co-catalyst
NCNCN\textsubscript{x} – cyanamide-functionalised carbon nitride
NCNCN\textsubscript{x}|Ni\textsubscript{2}P – cyanamide-functionalised carbon nitride coupled with a (2 wt%) nickel phosphide co-catalyst

Reaction Details
Casein:* \textsubscript{*} C_{81}H_{125}N_{22}O_{39}P + 127 H\textsubscript{2}O \xrightarrow{hv} 155 H_{2} + 81 CO\textsubscript{2} + 22 NH\textsubscript{3} + H_{3}PO\textsubscript{4} \hspace{1cm} (1)
Fructose: C_{6}H_{12}O_{6} + 6 H\textsubscript{2}O \xrightarrow{hv} 12 H_{2} + 6 CO\textsubscript{2} \hspace{1cm} \Delta G^{\circ} = -42.7 \text{ kJ mol}-1, E_{\text{cell}}^{\circ} = 0.02 \hspace{1cm} (2)
Starch:* C_{12}H_{22}O_{11} + 13 H\textsubscript{2}O \xrightarrow{hv} 24 H_{2} + 12 CO\textsubscript{2} \hspace{1cm} (3)
*chemical formulas for casein and starch were provided by the supplier.

Acetic acid: \textsubscript{hv, CN\textsubscript{x}} C_{2}H_{4}O_{2} + 2 H\textsubscript{2}O \rightarrow 4 H_{2} + 2 CO\textsubscript{2} \hspace{1cm} \Delta G^{\circ} = 73.7 \text{ kJ mol}-1, E_{\text{cell}}^{\circ} = -0.09 \hspace{1cm} (4)
Formic acid: \textsubscript{hv, CN\textsubscript{x}} CH_{2}O\textsubscript{2} \rightarrow H_{2} + CO\textsubscript{2} \hspace{1cm} \Delta G^{\circ} = -41.0 \text{ kJ mol}-1, E_{\text{cell}}^{\circ} = 0.21 \hspace{1cm} (5)
Lactic acid: \textsubscript{hv, CN\textsubscript{x}} C_{3}H_{6}O_{3} + 3 H\textsubscript{2}O \rightarrow 6 H_{2} + 3 CO\textsubscript{2} \hspace{1cm} \Delta G^{\circ} = 27.0 \text{ kJ mol}-1, E_{\text{cell}}^{\circ} = -0.02 \hspace{1cm} (6)
Supplementary Tables

Table S1. Inductively coupled plasma optical emission spectrometry (ICP-OES) quantification of Ni, P and Cd content. Solid samples (typically ~3 mg) were dissolved in 2 mL of 2:1 H$_2$O$_2$:H$_2$SO$_4$ overnight, diluted with H$_2$O and then submitted for measurement. For supernatant samples, the photocatalyst was removed via centrifugation after 5 days of photoreforming, and only the supernatant was submitted for analysis.

Catalyst Type	Expected Ni content (mg Ni g$_{CNx}^{-1}$)	Measured Ni content (mg Ni g$_{CNx}^{-1}$)	Expected P content (mg P g$_{CNx}^{-1}$)	Measured P content (mg P g$_{CNx}^{-1}$)	Expected Cd content (mg Cd g$_{QD}^{-1}$)	Measured Cd content (mg Cd g$_{QD}^{-1}$)	
H$_2$N-CN$_x$	Ni$_2$P	15.9	15.1	4.2	5.8	--	--
NCN-CN$_x$	Ni$_2$P$^{[1]}$	15.9	15.1	4.2	52.2	--	--
Supernatant post-PR with H$_2$N-CN$_x$	Ni$_2$P in H$_2$O	0.0	9.5	0.0	4.2	--	--
Supernatant post-PR with H$_2$N-CN$_x$	Ni$_2$P in 10 M KOH	0.0	0.67	0.0	2.7	--	--
Supernatant post-PR with CdS/CdO$_x$ in 10 M KOH	--	--	--	--	0.0	13.8	

$^{[1]}$ Data from ref. [1]. The high P content was reported to arise from the high affinity of POx species to the NCN functionalities of NCN.$_x$.

Table S2. Optimisation of carbon nitride type and aqueous conditions for photoreforming of food. Conditions: ultrasonicated H$_2$N-CN$_x$|Ni$_2$P or NCN-CN$_x$|Ni$_2$P (1.5 mg mL$^{-1}$), aqueous solution (2 mL), untreated substrate (25 mg mL$^{-1}$), sealed photoreactor (internal volume of 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm$^{-2}$, 25 °C). σ is the standard deviation calculated from 3 samples.

Catalyst Type	Substrate	Aqueous conditions	H$_2$ Yield ± σ (µmol H$_2$ g$_{sub}^{-1}$)	Activity ± σ (µmol H$_2$ g$_{CNx}^{-1}$ h$^{-1}$)			
H$_2$N-CN$_x$	Ni$_2$P	Fructose	10 M KOH	H$_2$O	1 M H$_2$SO$_4$	57.3 ± 5.8	47.7 ± 4.8
NCN-CN$_x$	Ni$_2$P$^{[1]}$	Fructose	10 M KOH	H$_2$O	1 M H$_2$SO$_4$	37.4 ± 1.6	31.2 ± 1.3
NCN-CN$_x$	Ni$_2$P$^{[1]}$	Starch	10 M KOH	H$_2$O	1 M H$_2$SO$_4$	0.228 ± 0.158	0.190 ± 0.132
NCN-CN$_x$	Ni$_2$P$^{[1]}$	Starch	10 M KOH	H$_2$O	1 M H$_2$SO$_4$	8.01 ± 2.78	6.68 ± 2.32

$^{[1]}$ Data from ref. [1]. The high P content was reported to arise from the high affinity of POx species to the NCN functionalities of NCN.$_x$.
Table S3. Optimisation of food substrate concentration. Conditions: CdS/CdO$_x$ QDs (1 nmol), 10 M aq. KOH (2 mL), untreated substrate, sealed photoreactor (internal volume of 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm$^{-2}$, 25 °C). σ is the standard deviation calculated from 2 samples.

Substrate	Substrate loading (mg mL$^{-1}$)	H$_2$ ± σ (µmol H$_2$ g$_{sub}$$^{-1}$)	Activity ± σ (µmol H$_2$ g$_{CdS}$ h$^{-1}$)
Sucrose	12.5	816 ± 41	6640 ± 330
	25	513 ± 26	8350 ± 420
	50	304 ± 15	9890 ± 490
	12.5	202 ± 10	3290 ± 160
	25	143 ± 7	4660 ± 230
	50	95.0 ± 4.7	3170 ± 160
Casein	12.5	36.9 ± 1.8	3000 ± 150
	25	21.5 ± 1.1	3500 ± 170
	50	11.0 ± 0.5	3590 ± 180
Soybean oil	12.5	36.9 ± 1.8	3000 ± 150
	25	21.5 ± 1.1	3500 ± 170
	50	11.0 ± 0.5	3590 ± 180

Table S4. Optimisation of aqueous conditions for photoreforming of food substrates with CdS/CdO$_x$ QDs. Conditions: CdS/CdO$_x$ QDs (1 nmol), aqueous solution (2 mL), pre-treated substrate (25 mg mL$^{-1}$), sealed photoreactor (internal volume of 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5 G, 100 mW cm$^{-2}$, 25 °C). σ is the standard deviation calculated from 3 samples.

Substrate	Aqueous conditions	Yield ± σ (µmol H$_2$ g$_{sub}$$^{-1}$)	Activity ± σ (µmol H$_2$ g$_{CdS}$ h$^{-1}$)
Fructose	10 M KOH	1070 ± 80	17200 ± 2600
	5 M KOH	246 ± 18	3790 ± 290
	H$_2$O	1.00 ± 0.0	16.2 ± 0.8
	1 M H$_2$SO$_4$	0.0 ± 0.0	0.0 ± 0.0
	10 M KOH	462 ± 78	7720 ± 1300
	5 M KOH	500 ± 24	8410 ± 400
	H$_2$O	1.30 ± 0.0	21.1 ± 1.3
	1 M H$_2$SO$_4$	0.0 ± 0.0	0.0 ± 0.0
Starch	10 M KOH	501 ± 70	8340 ± 1160
	5 M KOH	151 ± 10	2570 ± 160
	H$_2$O	0.803 ± 0.057	13.0 ± 0.9
	1 M H$_2$SO$_4$	0.0 ± 0.0	0.0 ± 0.0
Table S5. Comparison of photoreforming with pre-treated versus untreated substrate. Conditions for CdS experiments: CdS/CdOx QDs (1 nmol), 10 M aq. KOH (2 mL), pre-treated (40 °C with stirring in the dark overnight) or untreated substrate (25 mg mL⁻¹), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm⁻², 25 °C). Conditions for CNx experiments: ultrasonicated H₂³CNx[Ni₂P (1.5 mg mL⁻¹), aqueous solution (2 mL), pre-treated (80 °C with stirring in the dark overnight in H₂O, or 40 °C with stirring in the dark overnight in KOH and H₂SO₄) or untreated substrate (25 mg mL⁻¹), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm⁻², 25 °C). σ is the standard deviation calculated from 3 samples.

Experiment Details	Substrate	Aqueous conditions	H₂ Yield ± σ (μmol H₂ g⁻¹)	Activity ± σ (μmol H₂ g⁻¹ h⁻¹)
No pre-treatment, CdS/CdOx	Fructose	10 M KOH	969 ± 110	31.4 ± 3.6
	Starch	10 M KOH	189 ± 10	4.41 ± 0.15
With pre-treatment, CdS/CdOx	Fructose	10 M KOH	1070 ± 80	17200 ± 2600
	Starch	10 M KOH	462 ± 78	7720 ± 1300
No pre-treatment, H₂³CNx[Ni₂P	Fructose	10 M KOH	26.8 ± 8.1	4.7 ± 10.4
	H₂O	1 M H₂SO₄	2.34 ± 1.14	1.95 ± 0.95
	Starch	10 M KOH	0.228 ± 0.158	0.190 ± 0.132
	H₂O	1 M H₂SO₄	8.01 ± 2.78	6.68 ± 2.32
With pre-treatment, H₂³CNx[Ni₂P	Fructose	10 M KOH	42.2 ± 20.8	35.2 ± 17.3
	H₂O	14.5 ± 3.5	12.1 ± 2.9	
	1 M H₂SO₄	4.68 ± 3.33	3.90 ± 6.84	
	Starch	10 M KOH	48.1 ± 5.7	40.1 ± 4.8
	H₂O	5.50 ± 0.53	4.58 ± 0.44	
	1 M H₂SO₄	14.8 ± 2.2	12.3 ± 1.9	
Table S6. Control experiments with no substrate. Conditions for CdS experiments: CdS/CdOₓ QDs (1 nmol), 10 M aq. KOH (2 mL), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm⁻², 25 °C). Conditions for CNₓ experiments: ultrasonicated H₂CNₓ|Ni₂P (1.5 mg mL⁻¹), aqueous solution (2 mL), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Background H₂ evolution with CdS/CdOₓ can be attributed to photocorrosion. Background H₂ evolution with H₂CNₓ|Ni₂P is likely due to residual P precursor from the co-catalyst synthesis (see Table S1).

Description	Time (h)	H₂ ± σ (µmol H₂)	Activity (µmol H₂ g⁻¹ cat h⁻¹)	
CdS/CdOₓ, 10 M aq. KOH, no substrate	2	0.064 ± 0.007	0.088 ± 0.009	
	4	0.384 ± 0.058	0.268 ± 0.037	
	20	2.14 ± 0.13	0.270 ± 0.016	
	24	2.15 ± 0.19	0.241 ± 0.020	
	48	2.76 ± 0.14	0.152 ± 0.008	
	72	3.07 ± 0.43	0.119 ± 0.015	
	96	3.14 ± 0.18	0.086 ± 0.005	
H₂CNₓ	Ni₂P, 10 M aq. KOH, no substrate	2	0.053 ± 0.026	8.87 ± 4.41
	4	0.125 ± 0.009	10.4 ± 0.8	
	20	0.183 ± 0.009	3.05 ± 0.15	
	24	0.208 ± 0.010	2.89 ± 0.14	
	48	0.252 ± 0.013	1.75 ± 0.09	
	72	0.269 ± 0.015	1.24 ± 0.06	
	96	0.258 ± 0.013	0.897 ± 0.045	
H₂CNₓ	Ni₂P, H₂O, no substrate	2	0.00 ± 0.00	0.00 ± 0.00
	4	0.00 ± 0.00	0.00 ± 0.00	
	20	0.00 ± 0.00	0.00 ± 0.00	
	24	0.00 ± 0.00	0.00 ± 0.00	
	48	0.008 ± 0.001	0.057 ± 0.007	
	72	0.023 ± 0.006	0.108 ± 0.025	
	96	0.023 ± 0.005	0.081 ± 0.019	
Table S7. Photoreforming control experiments. Conditions for CdS experiments unless stated otherwise below: CdS/CdOx QDs (1 nmol), 10 M aq. KOH (2 mL), pre-treated substrate (25 mg mL⁻¹), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm⁻², 25 °C). Conditions for CNx experiments unless stated otherwise below: ultrasonicated H2N-CN|Ni2P (1.5 mg mL⁻¹), pre-treated substrate (25 mg mL⁻¹), aqueous solution (2 mL), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm⁻², 25 °C). σ is the standard deviation calculated from 3 samples.

Description	Substrate	Aqueous Conditions	Yield (µmol H₂ g⁻¹)	Activity (µmol H₂ g cat⁻¹ h⁻¹)	
CdS/CdOx, no light	Fructose	10 M KOH	0.0 ± 0.0	0.0 ± 0.0	
	Starch	10 M KOH	0.0 ± 0.0	0.0 ± 0.0	
H₂N-CN	Ni2P, no light	Fructose	10 M KOH	0.0 ± 0.0	0.0 ± 0.0
	Starch	10 M KOH	0.0 ± 0.0	0.0 ± 0.0	
	Fructose	H₂O	0.0 ± 0.0	0.0 ± 0.0	
	Starch	H₂O	0.0 ± 0.0	0.0 ± 0.0	
No catalyst	Fructose	10 M KOH	0.0 ± 0.0	0.0 ± 0.0	
	Starch	10 M KOH	0.0 ± 0.0	0.0 ± 0.0	
	Fructose	H₂O	0.0 ± 0.0	0.0 ± 0.0	
	Starch	H₂O	0.0 ± 0.0	0.0 ± 0.0	
No co-catalyst (H₂N-CN	Ni2P only)	Fructose	10 M KOH	0.0 ± 0.0	0.0 ± 0.0
	Fructose	H₂O	0.0 ± 0.0	0.0 ± 0.0	
No light-absorber (Ni2P only)	Fructose	10 M KOH	0.0 ± 0.0	0.0 ± 0.0	
	Fructose	H₂O	0.0 ± 0.0	0.0 ± 0.0	
H₂N-CN	Ni2P powder (not annealed)	Fructose	H₂O	3.64 ± 0.18	3.03 ± 0.15
CdS/CdOx, irradiated with λ > 410 nm filter	Fructose	10 M KOH	644 ± 36	10400 ± 580	
	Fructose	H₂O	0.581 ± 0.029	9.35 ± 0.47	
	H₂O	8.97 ± 0.45	7.47 ± 0.37		
	H₂O	2.34 ± 0.20	1.95 ± 0.17		
Table S8. Photoreforming substrate screening. Conditions for CdS experiments: CdS/CdO, QDs (1 nmol), 10 M aq. KOH (2 mL), pre-treated (for food waste survey) or untreated (for oxidation intermediates survey) substrate (25 mg mL\(^{-1}\)), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm\(^{-2}\), 25 \(^\circ\)C). Conditions for CN\(_x\) experiments: ultrasonicated H\(_2\)N-CN\(_x\)|Ni\(_2\)P (1.5 mg mL\(^{-1}\)), H\(_2\)O or 10 M aq. KOH (2 mL), pre-treated (for food waste survey) or untreated (for oxidation intermediates survey) substrate (25 mg mL\(^{-1}\)), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm\(^{-2}\), 25 \(^\circ\)C). \(\sigma\) is the standard deviation calculated from 3 samples unless stated otherwise.

Experiment Details	Substrate	H\(_2\) Yield ± \(\sigma\) (µmol H\(_2\) g\(_{\text{sub}}\)\(^{-1}\))	Activity ± \(\sigma\) (µmol H\(_2\) g\(_{\text{cat}}\) h\(^{-1}\))	
Food waste substrate survey, CdS/CdO, in 10 M KOH	BSA\([a]\)	68.0 ± 12.0	1430 ± 250	
	Beef extract\([a]\)	10.2 ± 2.0	217 ± 43	
	Casein	501 ± 70	8340 ± 1160	
	Castor oil	47.1 ± 4.3	762 ± 65	
	Fructose	1070 ± 80	17200 ± 2600	
	Galactose	436 ± 24	9500 ± 500	
	Glucose	1060 ± 50	15500 ± 2200	
	Glutamic acid	1330 ± 90	21900 ± 1480	
	Glycerol	376 ± 22	6200 ± 360	
	Soybean oil	111 ± 14	1990 ± 110	
	Starch	462 ± 78	7720 ± 1300	
	Sucrose	511 ± 26	8350 ± 80	
Food waste substrate survey, H\(_2\)N-CN\(_x\)	Ni\(_2\)P in H\(_2\)O	BSA\([a]\)	0.49 ± 0.16	0.41 ± 0.13
	Beef extract\([a]\)	0.51 ± 0.02	0.43 ± 0.02	
	Casein	3.72 ± 0.83	3.10 ± 0.70	
	Castor oil\([a]\)	1.17 ± 0.63	0.97 ± 0.52	
	Fructose	14.5 ± 3.5	12.1 ± 2.9	
	Galactose\([a]\)	26.2 ± 1.3	21.8 ± 1.1	
	Glucose\([a]\)	13.6 ± 0.7	11.3 ± 0.6	
	Glutamic acid\([a]\)	53.9 ± 4.8	44.9 ± 4.0	
	Glycerol\([a]\)	28.4 ± 1.6	23.6 ± 1.3	
	Soybean oil\([a]\)	2.42 ± 0.14	2.02 ± 0.12	
	Starch	5.50 ± 0.53	4.58 ± 0.44	
	Sucrose\([a]\)	14.3 ± 1.9	11.9 ± 1.6	
Oxidation intermediates survey, CdS/CdO, in 10 M NaOH	Acetate\([b]\)	5.00 ± 0.25	124 ± 23	
	Formate\([b]\)	147 ± 30	10700 ± 2200	
	Lactate\([b]\)	290 ± 14	19800 ± 2000	
	Pyruvate\([b]\)	0.0 ± 0.0	0.0 ± 0.0	
Oxidation intermediates survey, H\(_2\)N-CN\(_x\)	Ni\(_2\)P in H\(_2\)O\([b]\)	Acetate	15.6 ± 0.8	13.0 ± 0.7
	Formate	162 ± 10	135 ± 8	
	Lactate	128 ± 8	107 ± 7	
	Pyruvate	30.8 ± 1.7	25.7 ± 1.4	
Oxidation intermediates survey, H\(_2\)N-CN\(_x\)	Ni\(_2\)P in 10 M KOH\([b]\)	Acetate	6.70 ± 0.56	5.58 ± 0.47
	Formate	92.2 ± 6.6	76.8 ± 5.5	
	Lactate	196 ± 13	163 ± 11	
	Pyruvate	0.0 ± 0.0	0.0 ± 0.0	

\([a]\) calculated from 2 samples
\([b]\) Data from ref. [2]
Table S9. Hydrogen conversion calculations. Conditions for CdS experiment: CdS/CdO₂ QDs (1 nmol), 10 M aq. KOH (2 mL), substrate (0.5 mg mL⁻¹), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm⁻², 25 °C). Conditions for CNₓ experiments: ultrasonicated H₂CN_xNi₂P (1.5 mg mL⁻¹), H₂O or 10 M aq. KOH (2 mL), substrate (0.5 mg mL⁻¹), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm⁻², 25 °C). Yields are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Substrate	Time (h)	N_{\text{H}_2}^{100\%} (mol_h_2 mol_sub⁻¹)	N_{\text{H}_2}^{\text{yield} ± σ} (mol_h_2 mol_sub⁻¹)	Conversion ± σ (%)
H₂ Conversion					
with CdS/CdO₂ in 10 M KOH	Casein,	72	17.5 ± 0.9	11.3 ± 0.6	
	0.485 µmol	96	18.2 ± 0.9	11.7 ± 0.6	
		120	25.8 ± 1.3	16.6 ± 0.8	
	Fructose,	72	2.69 ± 0.13	22.4 ± 1.1	
	5.5 µmol	96	2.94 ± 0.15	24.5 ± 1.2	
		120	3.20 ± 0.16	26.7 ± 1.3	
	Starch,	72	4.20 ± 0.21	17.5 ± 0.9	
	2.9 µmol	96	4.37 ± 0.22	18.2 ± 0.9	
		120	4.71 ± 0.23	19.6 ± 1.0	
H₂ Conversion					
with H₂NCN_xNi₂P in H₂O	Casein,	72	0.540 ± 0.027	0.348 ± 0.017	
	0.485 µmol	96	0.856 ± 0.142	0.550 ± 0.091	
		120	1.20 ± 0.06	0.774 ± 0.039	
	Fructose,	72	0.227 ± 0.011	1.89 ± 0.09	
	5.5 µmol	96	0.323 ± 0.039	2.69 ± 0.03	
		120	0.411 ± 0.021	3.42 ± 0.17	
	Starch,	72	0.536 ± 0.108	2.23 ± 0.45	
	2.9 µmol	96	0.758 ± 0.131	3.16 ± 0.54	
		120	0.980 ± 0.180	4.08 ± 0.75	
H₂ Conversion					
with H₂NCN_xNi₂P in 10 M KOH	Casein,	72	3.32 ± 0.17	2.14 ± 0.11	
	0.485 µmol	96	4.22 ± 0.21	2.72 ± 0.13	
		120	4.58 ± 0.23	2.95 ± 0.15	
	Fructose,	72	0.862 ± 0.043	7.18 ± 0.36	
	5.5 µmol	96	0.910 ± 0.045	7.58 ± 0.37	
		120	0.891 ± 0.044	7.43 ± 0.37	
	Starch,	72	0.763 ± 0.038	3.18 ± 0.16	
	2.9 µmol	96	0.879 ± 0.044	3.66 ± 0.18	
		120	0.945 ± 0.047	3.94 ± 0.20	
Table S10. External quantum yield (EQY) measurements from photoreforming of food waste. Conditions for CdS experiment: CdS/CdO, QDs (1 nmol), 10 M aq. KOH (2 mL), substrate (25 mg mL\(^{-1}\)), sealed quartz cuvette (path length 1 cm, internal volume 3.83 mL), anaerobic conditions. Conditions for CN\(_x\) experiments: ultrasonicated H\(_2\)N\(\text{CN}_x\)|Ni\(_2\)P (1.5 mg mL\(^{-1}\)), H\(_2\)O or 10 M aq. KOH (2 mL), substrate (25 mg mL\(^{-1}\)), sealed quartz cuvette (path length 1 cm, internal volume 3.83 mL), anaerobic conditions. Samples were irradiated with monochromatic light (\(\lambda = 430\) nm, full-width at half maximum: 5, intensity taken as the average of the intensities measured at the beginning and end of the experiments) over an area of 0.28 cm\(^2\). \(\sigma\) is the standard deviation calculated from the 3 listed samples.

Catalyst	Substrate	Aqueous Conditions	Time (h)	Light Intensity (mW cm\(^{-2}\))	H\(_2\) (\(\mu\)mol)	EQY (%)	Average EQY ± \(\sigma\) (%)
CdS/CdO\(_x\)	Fructose	10 M KOH	24	0.9 ± 0.1	0.97	2.49	2.73 ± 0.18
			24	1.0 ± 0.1	1.31	3.01	
			24	1.0 ± 0.2	1.17	2.70	
H\(_2\)N\(\text{CN}_x\)	Ni\(_2\)P	Fructose	24	1.3 ± 0.2	n.d.	--	0.0049 ± 0.0005\(^{(a)}\)
		H\(_2\)O	72	1.3 ± 0.2	0.008	0.0046	
			96	1.3 ± 0.2	0.012	0.0052	
		10 M KOH	24	1.1 ± 0.2	0.013	0.027	0.026 ± 0.001
			24	1.0 ± 0.1	0.012	0.027	
			24	0.9 ± 0.2	0.010	0.025	

n.d. indicates not detectable

\(^{(a)}\) Average does not include the 24-hour time point.

Table S11. Long-term photoreforming of fructose over H\(_2\)N\(\text{CN}_x\)|Ni\(_2\)P. Conditions: ultrasonicated H\(_2\)N\(\text{CN}_x\)|Ni\(_2\)P (1.5 mg mL\(^{-1}\)), H\(_2\)O or 10 M aq. KOH (2 mL), pre-treated substrate (25 mg mL\(^{-1}\)), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm\(^{-2}\), 25 \(^\circ\)C). Yields and activities are cumulative values. \(\sigma\) is the standard deviation calculated from 3 samples.

Aqueous Conditions	Time (h)	H\(_2\) Yield ± \(\sigma\) (\(\mu\)mol\(_{H_2}\) g\(_{sub}\)\(^{-1}\))	Activity ± \(\sigma\) (\(\mu\)mol\(_{H_2}\) g\(_{CN_x}\)\(^{-1}\) h\(^{-1}\))
10 M KOH	20	42.2 ± 20.8	35.2 ± 17.3
	24	44.6 ± 24.8	31.0 ± 17.2
	48	62.6 ± 31.0	21.7 ± 10.8
	72	91.3 ± 32.2	21.1 ± 7.5
	96	143 ± 26	24.8 ± 4.6
	120	192 ± 57	26.7 ± 7.9
H\(_2\)O	20	9.33 ± 5.07	7.78 ± 4.22
	24	13.0 ± 5.2	9.00 ± 3.64
	48	30.7 ± 7.7	10.7 ± 2.7
	72	46.8 ± 5.6	10.8 ± 1.4
	96	63.0 ± 4.5	10.9 ± 0.8
	120	68.3 ± 9.4	9.5 ± 1.3
1 M H\(_2\)SO\(_4\)	20	4.68 ± 3.33	3.90 ± 2.78
	24	6.36 ± 3.59	4.42 ± 2.50
	48	13.0 ± 3.1	4.50 ± 1.06
	72	14.1 ± 3.2	3.27 ± 0.75
	96	14.1 ± 3.4	2.45 ± 0.60
	120	15.0 ± 3.8	2.09 ± 0.53
Table S12. Photoreforming of food-derived waste over alternative photocatalysts. Conditions: \(\text{H}_2\text{CN}_x\text{Pt}-2\text{wt\%} \) (1.5 mg mL\(^{-1}\)), TiO\(_2\)\(\text{RuO}_2\)-10\text{wt\%}, Pt-5\text{wt\%} (7.5 mg mL\(^{-1}\)) or TiO\(_2\)\(\text{Ni}_2\text{P}-2\text{wt\%} \) (1.5 mg mL\(^{-1}\)), H\(_2\)O or 10 M aq. KOH (2 mL), pre-treated substrate (25 mg mL\(^{-1}\)), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (20 h, AM 1.5G, 100 mW cm\(^{-2}\), 25 °C).

Description	Catalyst	Substrate	Aqueous Conditions	Yield ± σ (µmol H\(_2\) g\(_{\text{cat}}\) \(^{-1}\) h\(^{-1}\))	Activity ± σ (µmol H\(_2\) g\(_{\text{cat}}\) \(^{-1}\) h\(^{-1}\))
Alternative photocatalysts	\(\text{H}_2\text{CN}_x\text{Pt}-2\text{wt\%} \)	Casein	H\(_2\)O 10 M KOH	0.840 ± 0.042	0.700 ± 0.033
	Fructose	H\(_2\)O 10 M KOH	65.4 ± 3.3	54.5 ± 2.7	
	Starch	H\(_2\)O 10 M KOH	271 ± 13	226 ± 11	
		64.7 ± 4.2	70.6 ± 3.5		
		69.3 ± 3.5	57.7 ± 2.9		
		23.2 ± 1.2	19.3 ± 1.0		
TiO\(_2\)\(\text{RuO}_2\)-Pt	Casein	H\(_2\)O 10 M KOH	12.4 ± 0.6	2.07 ± 0.10	
	Fructose	H\(_2\)O 10 M KOH	387 ± 19	64.5 ± 3.2	
	Starch	H\(_2\)O 10 M KOH	449 ± 22	74.8 ± 3.7	
		380 ± 19	63.3 ± 3.2		
		159 ± 8	26.5 ± 1.3		
		219 ± 11	36.5 ± 1.8		
TiO\(_2\)\(\text{Ni}_2\text{P}-2\text{wt\%} \)	Casein	H\(_2\)O 10 M KOH	0.300 ± 0.021	0.250 ± 0.017	
	Fructose	H\(_2\)O 10 M KOH	218.8 ± 1.1	18.2 ± 0.9	
	Starch	H\(_2\)O 10 M KOH	11.2 ± 0.6	9.33 ± 0.50	
		53.2 ± 2.7	44.3 ± 2.3		
		0.822 ± 0.050	0.688 ± 0.042		
		23.8 ± 1.2	19.8 ± 1.0		
Alternative photocatalysts irradiated with \(\lambda > 410 \text{nm filter} \)	RuO\(_2\)\(\text{TiO}_2\)-Pt	Fructose	H\(_2\)O KOH	0.0 ± 0.0	0.0 ± 0.0
	TiO\(_2\)\(\text{Ni}_2\text{P}-2\text{wt\%} \)	Fructose	H\(_2\)O KOH	0.0 ± 0.0	0.0 ± 0.0

S11
Table S13. Previously reported catalysts for food waste photoreforming.

Catalyst	Substrate	Aqueous Conditions	H_2 ($\mu\text{mol}_{\text{H}_2}$)	Yield ($\mu\text{mol}_{\text{H}_2} \text{ g}_{\text{sub}}^{-1}$)	Activity ($\mu\text{mol}_{\text{H}_2} \text{ g}_{\text{cat}}^{-1} \text{ h}^{-1}$)	Ref	
TiO$_2$	RuO$_2$-Pt	Sucrose	H_2O	280	467	47	3
	Sucrose	6 M NaOH		341	568	57	3
	Starch	H_2O		204	1700	34	3
	Starch	6 M NaOH		320	2670	53	3
TiO$_2$	Pt	Glucose	H_2O	1130	2260	377	4
	Sucrose	H_2O		920	1840	307	4
	Starch	H_2O		240	480	80	4
	Glutamic acid	H_2O		126	252	42	4
	Olive oil	H_2O		32	64	11	4
	Sweet potato	H_2O		39	78	13	5
	Sweet potato	5 M NaOH		378	756	126	5
TiO$_2$	Pt-0.5 wt%	Olive mill wastewater	H_2O	44	--	183	6

Experimental details: 300 mg catalyst (weight ratio RuO$_2$:TiO$_2$:Pt of 10:100:5), 600 mg sucrose or 120 mg starch, 40 mL H_2O or NaOH, 500 W Xe lamp (20 h)

Table S14. Quantification by 1H-NMR spectroscopy of fructose samples. Potassium hydrogen phthalate and maleic acid were used as standards in NaOD and D$_2$O, respectively.

Sample	Organic product	Concentration (μM)
Pre-treated fructose in 10 M NaOD	Formate	2340
	Lactate	7200
Fructose after photocatalysis in D$_2$O	Formate	98
Fructose after photocatalysis in D$_2$O after heptanol extraction	Formate	60
Table S15. Photoreforming of real-world waste. Artificial mixed waste consists of 5 mg mL\(^{-1}\) each of cheese, apple, bread, polyethylene terephthalate bottle and cardboard. Conditions for CdS experiments: CdS/CdO\(_x\) QDs (1 nmol), 10 M aq. KOH (2 mL), pre-treated substrate (25 mg mL\(^{-1}\) apple, bread, cheese and artificial mixed waste, or 12.5 mg mL\(^{-1}\) municipal waste), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm\(^{-2}\), 25 °C). Conditions for CN\(_x\) experiments: ultrasonicated H\(_2\)N\(\text{CN}_x\)Ni\(_2\)P (1.5 mg mL\(^{-1}\)), H\(_2\)O or 10 M aq. KOH (2 mL), pre-treated substrate (25 mg mL\(^{-1}\) apple, bread, cheese and artificial mixed waste, or 12.5 mg mL\(^{-1}\) municipal waste), sealed photoreactor (internal volume 7.91 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm\(^{-2}\), 25 °C). Yields and activities are cumulative values. \(\sigma\) is the standard deviation calculated from 3 samples.

Experiment Details	Aqueous Conditions	Substrate	Time (h)	Yield ± \(\sigma\) (\(\mu\)mol \(\text{H}_2\) g\(_{\text{sub}}\)\(^{-1}\))	Activity ± \(\sigma\) (\(\mu\)mol \(\text{H}_2\) g\(_{\text{cat}}\) h\(^{-1}\))
Real waste experiments with \(\text{H}_2\text{N}CN_x\text{Ni}_2\text{P}\)	H\(_2\)O	Apple	20	76.3 ± 8.5	63.6 ± 7.1
		Bread	20	36.9 ± 1.8	30.8 ± 1.5
		Cheese	20	99.4 ± 7.4	82.9 ± 6.2
	10 M KOH	Apple	2	2.58 ± 0.72	21.5 ± 6
		Bread	4	6.80 ± 1.58	27.5 ± 6.6
		Cheese	24	52.5 ± 4.4	36.4 ± 3.0
			48	83.3 ± 6.1	28.9 ± 2.1
			72	115 ± 25	26.6 ± 5.8
			96	129 ± 16	22.4 ± 3.0
	Municipal waste		2	0.00 ± 0.00	0.00 ± 0.00
			4	0.00 ± 0.00	0.00 ± 0.00
			24	80.2 ± 5.8	27.8 ± 2.0
			48	183 ± 9	31.8 ± 1.6
			72	229 ± 20	26.5 ± 2.3
			96	245 ± 16	21.3 ± 1.4
Real waste experiments with CdS/CdO\(_x\) QDs	10 M KOH	Apple	20	374 ± 17	6070 ± 280
		Bread	20	567 ± 42	9200 ± 680
		Cheese	20	576 ± 35	9350 ± 570
	Municipal waste		2	50.8 ± 8.4	8250 ± 1360
			4	122 ± 7	9900 ± 570
			24	387 ± 29	5230 ± 390
			48	609 ± 30	4120 ± 200
			72	762 ± 38	3440 ± 170
			96	851 ± 49	2880 ± 170
	Artificial mixed waste		2	16.8 ± 1.9	1360 ± 150
			4	146 ± 15	5920 ± 610
			24	669 ± 78	4520 ± 530
			48	815 ± 76	2760 ± 260
			72	875 ± 62	1970 ± 140
			96	950 ± 159	1600 ± 270
Supplementary Figures

Figure S1. UV-Vis absorption spectrum of CdS/CdO\textsubscript{x} QDs in 10 M aq. KOH prior to photocatalysis. The inset shows a transmission electron microscopy image of CdS QDs (drop-cast in DMF prior to photocatalysis onto a carbon-coated Cu grid and dried under vacuum).
Figure S2. (a) UV-Vis absorption spectra, (b) fluorescence spectra ($\lambda_{\text{ex}} = 390$ nm, $\lambda_{\text{em}} = 450$ nm) in H$_2$O, (c) Fourier-transform infrared spectra and (d) X-ray diffraction patterns of H$_2$N-CN$_x$, H$_2$N-CN$_x$Ni$_2$P and Ni$_2$P prior to photocatalysis.
Figure S3. X-ray photoelectron spectroscopy (XPS) of the (a) C\(_1s\) and (b) N\(_1s\) edges of H\(_2\)NCN\(_x\) and H\(_2\)NCN\(_x\)|Ni\(_2\)P and (c) Ni\(_{2p}\) and (d) P\(_{2p}\) edges of Ni\(_{2p}\) and H\(_2\)NCN\(_x\)|Ni\(_2\)P prior to photocatalysis. The NiO\(_x\) and PO\(_x\) peaks observed in the Ni\(_{2p}\) and P\(_{2p}\) edges, respectively, can be attributed to surface oxidation of the Ni\(_2\)P co-catalyst.
Figure S4. Scanning electron microscopy (SEM) images of (a-b) $\text{H}_2\text{N-CN}_x$ and (c-d) $\text{H}_2\text{N-CN}_x\text{Ni}_2\text{P}$ prior to ultrasonication and photoreforming. (e-f) Energy dispersive X-ray spectroscopy (EDX) spectra of $\text{H}_2\text{N-CN}_x\text{Ni}_2\text{P}$ at two separate points (marked on d). These results suggest that Ni_2P forms agglomerates (the bright spots observed in c-d) on the $\text{H}_2\text{N-CN}_x$ surface. Samples were sputtered with a 10 nm layer of Cr prior to imaging.
Figure S5. 1H-NMR spectroscopy of (a) starch pre-treated in D$_2$O at various temperatures, (b) starch pre-treated in 10 M NaOD in D$_2$O at 40 °C, (c) casein pre-treated in D$_2$O at 80 °C, (d) casein pre-treated in 10 M NaOD in D$_2$O at 40 °C, (e) fructose pre-treated in D$_2$O at 80 °C, and (f) fructose pre-treated in 10 M NaOD in D$_2$O at 40 °C. The labels in f mark formate (i) and lactate (ii).
Figure S6. Transmission electron microscopy (TEM) image of CdS/CdO$_2$ QDs after 5 days of photoreforming with fructose in 10 M KOH. Photoreforming conditions: CdS/CdO$_2$ QDs (1 nmol), 10 M aq. KOH (2 mL), fructose (25 mg mL$^{-1}$), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 °C, 5 days). Samples were centrifuged, re-dispersed in H$_2$O, drop-casted onto a carbon-coated Cu grid and dried under vacuum prior to imaging.
Figure S7. Scanning electron microscopy (SEM) images and energy dispersive x-ray spectroscopy (EDX) of 4H$_2$N$_6$CN$_6$|Ni$_2$P after 5 days of photoreforming in (a-b, e) H$_2$O and (c-d, f) 10 M aq. KOH. Photoreforming conditions: ultrasonicated 4H$_2$N$_6$CN$_6$|Ni$_2$P (1.5 mg mL$^{-1}$), fructose (25 mg mL$^{-1}$), H$_2$O or 10 M aq. KOH (2 mL), anaerobic conditions, irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 °C, 5 days). Samples were centrifuged, washed with H$_2$O, dried and then sputtered with a 10 nm layer of Cr prior to imaging.
Figure S8. 1H-NMR spectra of (a) casein, (b) fructose and (c) starch in 10 M NaOD in D$_2$O after photoreforming with 3H$_2$NCCN$_x$|Ni$_2$P. Labels indicate formate (i), internal standard potassium hydrogen phthalate (PHP), lactate (ii, iii), and unidentified oxidation products (x). Unlabelled peaks correspond to the substrate structure. Photoreforming conditions: ultrasonicated 3H$_2$NCCN$_x$|Ni$_2$P (1.5 mg mL$^{-1}$), substrate (25 mg mL$^{-1}$), 10 M NaOD in D$_2$O (1 mL), irradiation (4 days, AM 1.5G, 100 mW cm$^{-2}$, 25 °C).
Figure S9. 1H-NMR spectra of acetate in (a) D$_2$O and (b) 10 M NaOD in D$_2$O, formate in (c) D$_2$O and (d) 10 M NaOD in D$_2$O, lactate in (e) D$_2$O and (f) 10 M NaOD in D$_2$O, (g) maleate in D$_2$O (used as standard), and (h) potassium hydrogen phthalate in 10 M NaOD in D$_2$O (used as standard).
Figure S10. 13C-NMR spectra of fructose after photoreforming with (a) CdS/CdO$_x$ in 10 M KOH, (b) 1H$_2$CN$_4$|Ni$_2$P in 10 M KOH, and (c) 1H$_2$CN$_4$|Ni$_2$P in H$_2$O. Samples were spiked with 10 vol% D$_2$O prior to measurement with solvent suppression. Labels indicate formate (i), lactate (ii), fructose (f), maleic acid (m, used as an internal standard), potassium hydrogen phthalate (PHP, used as an internal standard), carbonate (CO_3^{2-}), and unidentified organics (*). Photoreforming conditions: CdS/CdO$_x$ (0.5 nmol) or 1H$_2$CN$_4$|Ni$_2$P (1.5 mg mL$^{-1}$), fructose (25 mg mL$^{-1}$), 10 M KOH or H$_2$O (1 mL), irradiation (4 days, AM 1.5G, 100 mW cm$^{-2}$, 25 °C).
Figure S11. High performance liquid chromatography (HPLC) spectra of fructose after pre-treatment and photoreforming in (a) H$_2$O and (b) KOH, starch after (c) photoreforming in H$_2$O and (d) pre-treatment and photoreforming in KOH, (e) reference sugar components, and (f) reference acid components. Alkaline samples were neutralised before measurement. Photoreforming conditions: H$_2$NCN_xNi$_2$P (1.5 mg mL$^{-1}$), H$_2$O (2 mL) or 10 M aq. KOH (2 mL), fructose or starch (25 mg mL$^{-1}$), irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 °C, 24 h).
Figure S12. Mass spectra of the gas evolved after photoreforming (AM 1.5G, 100 mW cm$^{-2}$, 24 h) of fructose over CdS/CdO$_x$ in 10 M KOH or over H$_2$CN$_x$Ni$_2$P in 10 M KOH and in H$_2$O. Note that CH$_4$ is used as a quantification reference, and is not a gaseous product of the system. The O$_2$ observed in the CdS spectrum is atmospheric. In the case of PR in H$_2$O, the H$_2$ could be easily separated from CO$_2$ by common industrial processes such as pressure swing adsorption.

Figure S13. Zeta potential measurements of (a) CdS QDs (data from ref. [9]) and (b) H$_2$CN$_x$ with and without Ni$_2$P over a range of pH.
Figure S14. 1H-NMR spectra of artificial mixed waste (apple, bread, cheese, cardboard and polyethylene terephthalate bottle) after pre-treatment in (a) H$_2$O and (b) 10 M aq. KOH, and of municipal waste after pre-treatment in (c) H$_2$O and (d) 10 M aq. KOH.
Mechanisms

1. Sugar hydrolysis in alkaline media

Sugars in alkaline media will react following Lobry de Bruyn – van Ekenstein transformations (Scheme 1), which show reversible isomerisation between different sugars. For fructose, the formed isomers are glucose and mannose, which were detected in the pre-treated solutions. However, glucose (e.g. from starch) will also engage in this reaction and the same isomers will be formed.

Scheme 1. Lobry de Bruyn – van Ekenstein transformations.

A key intermediate in the Lobry de Bruyn – van Ekenstein transformation is the enediol (or enediolate), which can be converted into a dicarbonyl derivative by beta elimination (Scheme 2).

Scheme 2. Beta-elimination reaction.

The intermediates derived from the enediols can take part in a variety of reactions, which are responsible for the broad array of decomposition products observed after pre-treatment. The precise mechanism of these decomposition reactions has been the subject of many detailed studies, and the type and amount of decomposition products can be influenced by reaction conditions such as temperature, base and sugar concentration.

In our case, we could detect formate, lactate as well as C5 and C4 sugars in the alkaline-treated fructose and starch samples. The formation of formate and the shorter chain sugars
occurs by carbon cleavage from a nucleophilic attack by an OH\(^-\) anion (Scheme 3). The resulting C\(_{\alpha-1}\) sugar can participate in the same reaction.

Scheme 3. Formation of formate from sugar hydrolysis.

The formation of lactate from sugar hydrolysis has also been reported (Scheme 4).\(^{11-13}\) Briefly, a C6 sugar is cleaved into two C3 units. A dehydration step then yields an \(\alpha,\beta\)-dihydroxy compound, and a subsequent nucleophilic attack by an OH\(^-\) anion yield lactate.

Scheme 4. Formation of lactate from sugar hydrolysis.

A broad variety of other reactions takes place under alkaline conditions as well. Aldol condensation of short-lived aldehydes will lead to deoxygenated intermediate products, or benzylic acid rearrangements will yield saccharinic acid acids that can again partake in further reactions.\(^{10}\)
2. Sugar photoreforming in neutral media

The mechanism of photoreforming of sugars (fructose, glucose) has been studied by Sanwald, et al. (Scheme 5). In brief, ring-opening (C-C α-scission) of the sugar generates formate species. Light-driven formate hydrolysis (path A) is very slow under neutral conditions, and the primary photoreforming pathway is therefore suggested to be oxidative C-C cleavage (path B) to shorter formates. This mechanism would account for the formate that we observed after photoreforming of fructose and starch in neutral conditions.

Scheme 5. Photoreforming of sugars in neutral conditions, as reported in ref. [14].
Details of Carbon Footprint Calculations

For all cases, a raw material input of 1 kg fructose and 40 L H$_2$O (with 22 kg KOH for case 1) was utilised. Experimentally measured conversions (see Table S9) were used, except for the 100% conversion cases. For simplicity, the following assumptions were made:

- A lower H$_2$ energy density of 120×10^6 J kg$^{-1}$ was used;
- The carbon footprint of fructose is assumed to be equal to that of real food waste;
- The catalyst is re-usable and not included in the calculations;
- Heat recovery of 80% is applied to the pre-treatment process;
- Less formate is experimentally observed than we would expect from the stoichiometric conversion of fructose to formate and H$_2$. The remainder of the carbon is assumed to be contained within CO$_2$/CO$_3^{2-}$. The quantities of CO$_2$/CO$_3^{2-}$ utilised in the case studies below are estimations based on this assumption, rather than experimental values;
- The energy required to extract formate was not included, as an estimated value for this process could not be found in the literature;
- The carbon footprint of waste disposal is not included due to lack of data.

Case 1: CdS/CdO$_x$ in 10 M KOH

1a. 22% conversion (after 3 days), formate not extracted & CO$_2$ captured

Parameter	Amount	CO$_2$ equivalent per unit	Total CO$_2$ equivalent (kg CO$_2$)
H$_2$ obtained	15 mol (1 kWh)	--	--
Formate obtained	--	--	--
CO$_2$ obtained	--	--	--
H$_2$O utilised	40 L	0.0032 kg CO$_2$ / L H$_2$Oa	+0.013
KOH utilised	22 kg	1.95 kg CO$_2$ / kg KOHa	+42.7
Pre-treatment	40 °C, 24 h	1.19 kg CO$_2$ / totalb	+1.19
Stirring	40 L, 3 days	0.0005 kg CO$_2$ / L·hc	+1.44
Food waste consumed	0.22 kg	3.38 kg CO$_2$ / kg food wasted	−0.744e

TOTAL: 44.6 kg CO$_2$ / kWh H$_2$

Total without stirring & pre-treatment: 42.0 kg CO$_2$ / kWh H$_2$

a values obtained from ref. [15].
b calculated assuming that pre-treatment occurs in a polypropylene tank (thermal conductivity 0.20 W m$^{-1}$ K$^{-1}$, cross sectional area 0.75 m2, wall thickness 4.8 mm), initial water temperature and external air temperature are both 25 °C, and the carbon footprint of electricity consumption is 500 g CO$_2$ / kWh.17
c calculated assuming that stirring requires 1 kW m$^{-3}$, and that the carbon footprint of electricity consumption is 500 g CO$_2$ / kWh.17
d this value was obtained from ref. [18].
e this value is negative since we are removing food waste.
1b. 100% conversion (after 3 days) to H₂ and CO₃²⁻, CO₂ captured as CO₃²⁻

Parameter	Amount	CO₂ equivalent per unit	Total CO₂ equivalent (kg CO₂)
H₂ obtained	67 mol (4.4 kWh)	--	--
Formate obtained	--	--	--
CO₂ obtained	--	--	--
H₂O utilised	40 L	0.0032 kg CO₂ / L H₂Oᵃ	+0.013
KOH utilised	22 kg	1.95 kg CO₂ / kg KOHᵇ	+42.7
Pre-treatment	40 °C, 24 h	1.19 kg CO₂ / totalᵇ	+1.19
Stirring	40 L, 3 days	0.0005 kg CO₂ / L∙hᶜ	+1.44
Food waste consumed	1.0 kg	3.38 kg CO₂ / kg food wasteᵃ	−3.38ᵃ

TOTAL: 9.5 kg CO₂ / kWh H₂

Total without stirring & pre-treatment: 8.9 kg CO₂ / kWh H₂

ᵃ values obtained from ref. [15].
ᵇ calculated assuming that pre-treatment occurs in a polypropylene tank (thermal conductivity 0.20 W m⁻¹ K⁻¹, cross sectional area 0.75 m², wall thickness 4.8 mm), initial water temperature and external air temperature are both 25 °C, and the carbon footprint of electricity consumption is 500 g CO₂ / kWh.¹⁷
ᶜ calculated assuming that stirring requires 1 kW m⁻³,¹⁶ and that the carbon footprint of electricity consumption is 500 g CO₂ / kWh.¹⁷
ᵈ this value was obtained from ref. [18].
ᵉ this value is negative since we are removing food waste.

1c. 100% conversion (after 3 days) to H₂ and formate, formate extracted

Parameter	Amount	CO₂ equivalent per unit	Total CO₂ equivalent (kg CO₂)
H₂ obtained	33 mol (2.2 kWh)	--	--
Formate obtained	33 mol (1.53 kg)	2.51 kg CO₂ / kg formic acidᵃ	−3.84ᵇ
CO₂ obtained	--	--	--
H₂O utilised	40 L	0.0032 kg CO₂ / L H₂Oᵃ	+0.013
KOH utilised	22 kg	1.95 kg CO₂ / kg KOHᵇ	+42.7
Pre-treatment	40 °C, 24 h	1.19 kg CO₂ / totalᶜ	+1.19
Stirring	40 L, 3 days	0.0005 kg CO₂ / L∙hᵈ	+1.44
Food waste consumed	1.0 kg	3.38 kg CO₂ / kg food wasteᵃ	−3.38ᵃ

TOTAL: 17.3 kg CO₂ / kWh H₂

Total without stirring & pre-treatment: 16.1 kg CO₂ / kWh H₂

ᵃ values obtained from ref. [15].
ᵇ this value is negative since we are producing formic acid rather than consuming it.
ᶜ calculated assuming that pre-treatment occurs in a polypropylene tank (thermal conductivity 0.20 W m⁻¹ K⁻¹, cross sectional area 0.75 m², wall thickness 4.8 mm), initial water temperature and external air temperature are both 25 °C, and the carbon footprint of electricity consumption is 500 g CO₂ / kWh.¹⁷
ᵈ calculated assuming that stirring requires 1 kW m⁻³,¹⁶ and that the carbon footprint of electricity generation is 500 g CO₂ / kWh.¹⁷
ᵉ this value was obtained from ref. [18].
ᶠ this value is negative since we are removing food waste.
Case 2: $\text{H}_2\text{N}CN\text{e}_2\text{Ni}_2\text{P}$ in H_2O

2a. 1.9% conversion (after 3 days), formate extracted, no CO\(_2\) capture

Parameter	Amount	CO\(_2\) equivalent per unit	Total CO\(_2\) equivalent (kg CO\(_2\))
H\(_2\) obtained	1.27 mol (0.084 kWh)	--	--
Formic acid obtained	0.08 mol (0.0037 kg)	2.51 kg CO\(_2\) / kg formic acid\(^a\)	−0.009\(^b\)
CO\(_2\) obtained	0.59 mol (0.026 kg)	--	+0.026
H\(_2\)O utilised	40 L	0.0032 kg CO\(_2\) / L H\(_2\)O\(^a\)	+0.013
Pre-treatment	80 °C, 24 h	4.38 kg CO\(_2\) / total\(^c\)	+4.38
Stirring	40 L, 3 days	0.0005 kg CO\(_2\) / L h\(^d\)	+1.44
Food waste consumed	0.02 kg	3.38 kg CO\(_2\) / kg food waste\(^e\)	−0.068\(^f\)

TOTAL: 68.8 kg CO\(_2\) / kWh H\(_2\)

Total without stirring & pre-treatment: −0.45 kg CO\(_2\) / kWh H\(_2\)

\(^{a}\) values obtained from ref. [15].

\(^{b}\) this value is negative since we are producing formic acid rather than consuming it.

\(^{c}\) calculated assuming that pre-treatment occurs in a polypropylene tank (thermal conductivity 0.20 W m\(^-1\) K\(^-1\), cross sectional area 0.75 m\(^2\), wall thickness 4.8 mm), initial water temperature and external air temperature are both 25 °C, and the carbon footprint of electricity consumption is 500 g CO\(_2\) / kWh.\(^{17}\)

\(^{d}\) calculated assuming that stirring requires 1 kW m\(^-3\),\(^{16}\) and that the carbon footprint of electricity generation is 500 g CO\(_2\) / kWh.\(^{17}\)

\(^{e}\) this value was obtained from ref. [18].

\(^{f}\) this value is negative since we are removing food waste.

2b. 100% conversion to H\(_2\) and CO\(_2\) (after 3 days), CO\(_2\) capture

Parameter	Amount	CO\(_2\) equivalent per unit	Total CO\(_2\) equivalent (kg CO\(_2\))
H\(_2\) obtained	67 mol (4.4 kWh)	--	--
Formic acid obtained	--	--	--
CO\(_2\) obtained	--	--	--
H\(_2\)O utilised	40 L	0.0032 kg CO\(_2\) / L H\(_2\)O\(^a\)	+0.013
Pre-treatment	80 °C, 24 h	4.38 kg CO\(_2\) / total\(^b\)	+4.38
Stirring	40 L, 3 days	0.0005 kg CO\(_2\) / L h\(^c\)	+1.44
Food waste consumed	1.0 kg	3.38 kg CO\(_2\) / kg food waste\(^d\)	−3.38\(^e\)

TOTAL: 0.55 kg CO\(_2\) / kWh H\(_2\)

Total without stirring & pre-treatment: −0.76 kg CO\(_2\) / kWh H\(_2\)

\(^{a}\) values obtained from ref. [15].

\(^{b}\) calculated assuming that pre-treatment occurs in a polypropylene tank (thermal conductivity 0.20 W m\(^-1\) K\(^-1\), cross sectional area 0.75 m\(^2\), wall thickness 4.8 mm), initial water temperature and external air temperature are both 25 °C, and the carbon footprint of electricity consumption is 500 g CO\(_2\) / kWh.\(^{17}\)

\(^{c}\) calculated assuming that stirring requires 1 kW m\(^-3\),\(^{16}\) and that the carbon footprint of electricity generation is 500 g CO\(_2\) / kWh.\(^{17}\)

\(^{d}\) this value was obtained from ref. [18].

\(^{e}\) this value is negative since we are removing food waste.
2c. 100% conversion to H₂ and formate (after 3 days), formate extracted

Parameter	Amount	CO₂ equivalent per unit	Total CO₂ equivalent (kg CO₂)
H₂ obtained	33 mol (2.2 kWh)	--	--
Formic acid obtained	33 mol (1.53 kg)	2.51 kg CO₂ / kg formic acid^a	-3.84^b
CO₂ obtained	--	--	--
H₂O utilised	40 L	0.0032 kg CO₂ / L H₂O^a	+0.013
Pre-treatment	80 °C, 24 h	4.38 kg CO₂ / total^c	+4.38
Stirring	40 L, 3 days	0.0005 kg CO₂ / L∙h^d	+1.44
Food waste consumed	1.0 kg	3.38 kg CO₂ / kg food waste^e	-3.38^f

TOTAL: -0.63 kg CO₂ / kWh H₂

Total without stirring & pre-treatment: -3.2 kg CO₂ / kWh H₂

^a values obtained from ref. [15].
^b this value is negative since we are producing formic acid rather than consuming it.
^c calculated assuming that pre-treatment occurs in a polypropylene tank (thermal conductivity 0.20 W m⁻¹ K⁻¹, cross sectional area 0.75 m², wall thickness 4.8 mm), initial water temperature and external air temperature are both 25 °C, and the carbon footprint of electricity consumption is 500 g CO₂ / kWh.¹⁷
^d calculated assuming that stirring requires 1 kW m⁻³,¹⁶ and that the carbon footprint of electricity generation is 500 g CO₂ / kWh.¹⁷
^e this value was obtained from ref. [18].
^f this value is negative since we are removing food waste.
Supporting References

1. T. Uekert, H. Kasap and E. Reisner, *J. Am. Chem. Soc.*, 2019, **141**, 15201–15210.

2. T. Uekert, M. F. Kuehnel, D. W. Wakerley and E. Reisner, *Energy Environ. Sci.*, 2018, **11**, 2853–2857.

3. T. Kawai and T. Sakata, *Nature*, 1980, **286**, 474–476.

4. T. Kawai and T. Sakata, *Chem. Lett.*, 1981, 81–84.

5. T. Sakata and T. Kawai, *J. Syn. Org. Chem. Jpn.*, 1981, **39**, 589–602.

6. A. Speltini, M. Sturini, F. Maraschi, D. Dondi, G. Fisogni, E. Annovazzi, A. Profumo and A. Buttafava, *Int. J. Hydrogen Energy*, 2015, **40**, 4303–4310.

7. A. Indra, A. Acharjya, P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich, S. Lochbrunner, A. Thomas and M. Driess, *Angew. Chemie Int. Ed.*, 2017, **56**, 1653–1657.

8. D. Zeng, W. Xu, W.-J. Ong, J. Xu, H. Ren, Y. Chen, H. Zheng and D.-L. Peng, *Appl. Catal. B Environ.*, 2018, **221**, 47–55.

9. D. W. Wakerley, M. F. Kuehnel, K. L. Orchard, K. H. Ly, T. E. Rosser and E. Reisner, *Nat. Energy*, 2017, **2**, 17021.

10. B. Yun Yang and R. Montgomery, *Carbohydr. Res.*, 1996, **280**, 27–45.

11. G. De Wit, A. P. G. Kieboom and H. van Bekkum, *Carbohydr. Res.*, 1979, **74**, 157–175.

12. O. Novotny, K. Cejpek and J. Velisek, *Czech J. Food Sci.*, 2008, **26**, 117–131.

13. A. V. Ellis and M. A. Wilson, *J. Org. Chem.*, 2002, **67**, 8469–8474.

14. K. E. Sanwald, T. F. Berto, W. Eisenreich, A. Jentys, O. Y. Gutiérrez and J. A. Lercher, *ACS Catal.*, 2017, **7**, 3236–3244.

15. https://www.winnipeg.ca/finance/findata/matmgt/documents/2012/682-2012/682-2012_Appendix_H-WSTP_South_End_Plant_Process_Selection_Report/Appendix%207.pdf. (accessed 19 January 2020)

16. W. Keim, Ed., *Kunststoffe: Synthese, Herstellungsverfahren, Apparaturen*, Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

17. The Parliamentary Office of Science and Technology, *Carbon Footprint of Electricity Generation*, 2011.

18. Food and Agriculture Organization of the United Nations, *Food wastage footprint and climate change*, Rome, 2015.

End of ESI