THE HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR s-CONVEX FUNCTIONS

AMIR G. GHAZANFARI

Abstract. In this paper we introduce operator s-convex functions and establish some Hermite-Hadamard type inequalities in which some operator s-convex functions of positive operators in Hilbert spaces are involved.

Keywords: The Hermite-Hadamard inequality, s-convex functions, operator s-convex functions.

1. INTRODUCTION

The following inequality holds for any convex function f defined on \mathbb{R} and $a, b \in \mathbb{R}$, with $a < b$

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2} \quad (1.1)$$

Both inequalities hold in the reversed direction if f is concave. The inequality (1.1) is known in the literature as the Hermite-Hadamard’s inequality. We note that the Hermite-Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex function $f : [a, b] \to \mathbb{R}$.

In the paper [7] Hudzik and Maligranda considered, among others, two classes of functions which are s-convex in the first and second senses. These classes are defined in the following way: a function $f : [0, \infty) \to \mathbb{R}$ is said to be s-convex in the first sense if

$$f(\alpha x + \beta y) \leq \alpha^s f(x) + \beta^s f(y)$$

holds for all $x, y \in [0, \infty)$ and $\alpha, \beta \geq 0$ with $\alpha^s + \beta^s = 1$. The class of s-convex functions in the first sense is usually denoted with K_s^1.

A function $f : \mathbb{R}^+ \to \mathbb{R}$ where $\mathbb{R}^+ = [0, +\infty)$, is said to be s-convex in the second sense if

$$f(\lambda x + (1 - \lambda)y) \leq \lambda^s f(x) + (1 - \lambda)^s f(y)$$
holds for all \(x, y \in [0, \infty), \lambda \in [0, 1]\) and for some fixed \(s \in (0, 1]\). The class of \(s\)-convex functions in the second sense is usually denoted with \(K^2_s\). It can be easily seen that for \(s = 1\), \(s\)-convexity reduces to ordinary convexity of functions defined on \([0, \infty)\).

It is proved in [7] that if \(s \in (0, 1)\) then \(f \in K^2_s\) implies \(f([0, \infty)) \subseteq [0, \infty)\), i.e., they proved that all functions from \(K^2_s, s \in (0, 1)\), are nonnegative. The following example can be found in [7].

Example 1. Let \(s \in (0, 1)\) and \(a, b, c \in \mathbb{R}\). We define function \(f : [0, \infty) \to \mathbb{R}\) as

\[
f(t) = \begin{cases} a, & t = 0, \\ bt^s + c, & t > 0. \end{cases}
\]

It can be easily checked that

(i) If \(b \geq 0\) and \(0 \leq c \leq a\), then \(f \in K^2_s\),

(ii) If \(b > 0\) and \(c < 0\), then \(f \notin K^2_s\).

In Theorem 4 of [7] both definitions of the \(s\)-convexity have been compared as follows:

(i) Let \(0 < s \leq 1\). If \(f \in K^2_s\) and \(f(0) = 0\), then \(f \in K^1_s\),

(ii) Let \(0 < s_1 < s_2 \leq 1\). If \(f \in K^2_{s_2}\) and \(f(0) = 0\), then \(f \in K^2_{s_1}\),

(iii) Let \(0 < s_1 < s_2 \leq 1\). If \(f \in K^1_{s_2}\) and \(f(0) \leq 0\), then \(f \in K^1_{s_1}\).

In [3], Dragomir and Fitzpatrick proved the following variant of Hadamard’s inequality which holds for \(s\)-convex functions in the second sense:

Theorem 1. Suppose that \(f : [0, \infty) \to [0, \infty)\) is an \(s\)-convex function in the second sense, where \(s \in (0, 1)\) and let \(a, b \in [0, \infty), a < b\). If \(f \in L^1[a, b]\), then the following inequalities hold:

\[
2^{s-1} f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{s + 1}
\]

the constant \(k = \frac{1}{s+1}\) is the best possible in the second inequality in (1.2). The above inequalities are sharp.

The Hermite-Hadamard inequality has several applications in nonlinear analysis and the geometry of Banach spaces, see [8]. In recent years several extensions and generalizations have been considered for classical convexity. We would like to refer the reader to [2, 5, 13] and references therein for more information. A number of papers have been written on this inequality providing some inequalities analogous to Hadamard’s inequality given in (1.1) involving two convex functions, see [11, 1, 12]. Pachpatte in [11] has proved the following theorem for the product of two convex functions.
Theorem 2. Let f and g be real-valued, nonnegative and convex functions on $[a, b]$. Then

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \leq \frac{1}{3}M(a, b) + \frac{1}{6}N(a, b),$$

$$2f\left(\frac{a+b}{2}\right)g\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx + \frac{1}{6}M(a, b) + \frac{1}{3}N(a, b),$$

where $M(a, b) = f(a)g(a) + f(b)g(b)$, $N(a, b) = f(a)g(b) + f(b)g(a)$.

Kirmaci et al. in [9] have proved the following theorem for the product of two s-convex functions, which is a generalization of Theorem 2.

Theorem 3. Let $f, g : [0, \infty) \to [0, \infty)$ be s_1-convex and s_2-convex functions in the second sense respectively, where $s_1, s_2 \in (0, 1)$. Let $a, b \in [0, \infty)$, $a < b$. If f, g and $fg \in L^1([a, b])$ then

$$\frac{1}{b-a} \int_{0}^{1} f(x)g(x)dx \leq \frac{1}{s_1 + s_2 + 1}M(a, b) + \beta(s_1 + 1, s_2 + 1)N(a, b),$$

where $M(a, b) = f(a)g(a) + f(b)g(b)$, $N(a, b) = f(a)g(b) + f(b)g(a)$.

In this paper we show that Theorem 1 and Theorem 3 hold for operator s-convex functions in a convex subset K of $B(H)^+$ the set of positive operators in $B(H)$. We also obtain some integral inequalities for the product of two operator s-convex functions.

2. OPERATOR s-CONVEX FUNCTIONS

First, we review the operator order in $B(H)$ and the continuous functional calculus for a bounded selfadjoint operator. For selfadjoint operators $A, B \in B(H)$ we write $A \leq B$ (or $B \geq A$) if $\langle Ax, x \rangle \leq \langle Bx, x \rangle$ for every vector $x \in H$, we call it the operator order.

Now, let A be a bounded selfadjoint linear operator on a complex Hilbert space $(H; \langle ., . \rangle)$ and $C(Sp(A))$ the C^*-algebra of all continuous complex-valued functions on the spectrum of A. The Gelfand map establishes a $*$-isometrically isomorphism Φ between $C(Sp(A))$ and the C^*-algebra $C^*(A)$ generated by A and the identity operator 1_H on H.
as follows (see for instance [6, p.3]): For \(f, g \in C(Sp(A)) \) and \(\alpha, \beta \in \mathbb{C} \)

(i) \(\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g) \);
(ii) \(\Phi(fg) = \Phi(f)\Phi(g) \) and \(\Phi(f^*) = \Phi(f)^* \);
(iii) \(\|\Phi(f)\| = \|f\| := \sup_{t \in Sp(A)} |f(t)| \);
(iv) \(\Phi(f_0) = 1 \) and \(\Phi(f_1) = A \), where \(f_0(t) = 1 \) and \(f_1(t) = t \), for \(t \in Sp(A) \).

If \(f \) is a continuous complex-valued functions on \(Sp(A) \), the element \(\Phi(f) \) of \(C^*(A) \) is denoted by \(f(A) \), and we call it the continuous functional calculus for a bounded selfadjoint operator \(A \).

If \(A \) is a bounded selfadjoint operator and \(f \) is a real-valued continuous function on \(Sp(A) \), then \(f(t) \geq 0 \) for any \(t \in Sp(A) \) implies that \(f(A) \geq 0 \), i.e., \(f(A) \) is a positive operator on \(H \). Moreover, if both \(f \) and \(g \) are real-valued functions on \(Sp(A) \) such that \(f(t) \leq g(t) \) for any \(t \in sp(A) \), then \(f(A) \leq f(B) \) in the operator order in \(B(H) \).

A real valued continuous function \(f \) on an interval \(I \) is said to be operator convex (operator concave) if

\[
f((1 - \lambda)A + \lambda B) \leq (\geq)(1 - \lambda)f(A) + \lambda f(B)
\]

in the operator order in \(B(H) \), for all \(\lambda \in [0, 1] \) and for every bounded self-adjoint operators \(A \) and \(B \) in \(B(H) \) whose spectra are contained in \(I \).

As examples of such functions, we give the following examples, another proof of them and further examples can be found in [6].

Example 2. (i) The convex function \(f(t) = \alpha t^2 + \beta t + \gamma \) \((\alpha \geq 0, \beta, \gamma \in \mathbb{R})\) is operator convex on every interval. To see it, for all self-adjoint operators \(A \) and \(B \):

\[
\frac{f(A) + f(B)}{2} - f\left(\frac{A + B}{2}\right) = \alpha \left(\frac{A^2 + B^2}{2} - \left(\frac{A + B}{2}\right)^2\right) + \beta \left(\frac{A + B}{2} - \frac{A + B}{2}\right) + (\gamma - \gamma)
\]

\[
= \frac{\alpha}{4}(A^2 + B^2 - AB - BA) = \frac{\alpha}{4}(A - B)^2 \geq 0.
\]

(ii) The convex function \(f(t) = t^3 \) on \([0, \infty)\) is not operator convex. In fact, if we put

\[
A = \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \quad \& \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},
\]
then
\[\frac{A^3 + B^3}{2} - \left(\frac{A + B}{2} \right)^3 = \frac{1}{8} \begin{bmatrix} 67 & -34 \\ -34 & 17 \end{bmatrix} \neq 0. \]

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [6] and the references therein.

We denoted by \(B(H)^+ \) the set of all positive operators in \(B(H) \) and
\[C(H) := \{ A \in B(H)^+ : AB + BA \geq 0, \text{ for all } B \in B(H)^+ \}. \]
It is obvious that \(C(H) \) is a closed convex cone in \(B(H) \).

Definition 1. Let \(I \) be an interval in \([0, \infty) \) and \(K \) be a convex subset of \(B(H)^+ \). A continuous function \(f : I \to \mathbb{R} \) is said to be operator \(s \)-convex on \(I \) for operators in \(K \) if
\[f((1 - \lambda)A + \lambda B) \leq (1 - \lambda)^s f(A) + \lambda^s f(B) \]
in the operator order in \(B(H) \), for all \(\lambda \in [0, 1] \) and for every positive operators \(A \) and \(B \) in \(K \) whose spectra are contained in \(I \) and for some fixed \(s \in (0, 1] \). For \(K = B(H)^+ \) we say \(f \) is operator \(s \)-convex on \(I \).

First of all we state the following lemma.

Lemma 1. If \(f \) is operator \(s \)-convex on \([0, \infty) \) for operators in \(K \), then \(f(A) \) is positive for every \(A \in K \).

Proof. For \(A \in K \), we have
\[f(A) = f \left(\frac{A}{2} + \frac{A}{2} \right) \leq \left(\frac{1}{2} \right)^s f(A) + \left(\frac{1}{2} \right)^s f(A) = 2^{1-s} f(A). \]
This implies that \((2^{1-s} - 1) f(A) \geq 0 \) and so \(f(A) \geq 0 \).

In [10], Moslehian and Najafi proved the following theorem for positive operators as follows:

Theorem 4. Let \(A, B \in B(H)^+ \). Then \(AB + BA \) is positive if and only if \(f(A+B) \leq f(A) + f(B) \) for all non-negative operator monotone functions \(f \) on \([0, \infty) \).

As an example of operator \(s \)-convex function, we give the following example.

Example 3. Since for every positive operators \(A, B \in C(H) \), \(AB + BA \geq 0 \), utilizing Theorem 4 we get
\[((1-t)A + tB)^s \leq (1-t)^s A^s + t^s B^s. \]
Therefore the continuous function \(f(t) = t^s \) \((0 < s \leq 1)\) is operator \(s \)-convex on \([0, \infty)\) for operators in \(C(H) \).
Dragomir in [4] has proved a Hermite-Hadamard type inequality for operator convex function as follows:

Theorem 5. Let $f : I \rightarrow \mathbb{R}$ be an operator convex function on the interval I. Then for all selfadjoint operators A and B with spectra in I we have the inequality

$$\left(f\left(\frac{A+B}{2}\right) \leq \frac{1}{2} \left[f\left(\frac{3A+B}{4}\right) + f\left(\frac{A+3B}{4}\right)\right]\right)$$

$$\leq \int_0^1 f((1-t)A+tB)dt$$

$$\leq \frac{1}{2} \left[f\left(\frac{A+B}{2}\right) + \frac{f(A) + f(B)}{2}\right] \left(\leq \frac{f(A) + f(B)}{2}\right).$$

Let X be a vector space, $x, y \in X$, $x \neq y$. Define the segment $[x, y] := (1-t)x + ty; t \in [0, 1]$.

We consider the function $f : [x, y] \rightarrow \mathbb{R}$ and the associated function

$$g(x, y) : [0, 1] \rightarrow \mathbb{R},$$

$$g(x, y)(t) := f((1-t)x + ty), t \in [0, 1].$$

Note that f is convex on $[x, y]$ if and only if $g(x, y)$ is convex on $[0, 1]$. For any convex function defined on a segment $[x, y] \in X$, we have the Hermite-Hadamard integral inequality

$$f\left(\frac{x+y}{2}\right) \leq \int_0^1 f((1-t)x + ty)dt \leq \frac{f(x) + f(y)}{2},$$

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the convex function $g(x, y) : [0, 1] \rightarrow \mathbb{R}$.

Lemma 2. Let $f : I \subseteq [0, \infty) \rightarrow \mathbb{R}$ be a continuous function on the interval I. Then for every two positive operators $A, B \in K \subseteq B(H)^+$ with spectra in I the function f is operator s-convex for operators in $[A, B] := \{(1-t)A + tB : t \in [0, 1]\}$ if and only if the function $\varphi_{x,A,B} : [0, 1] \rightarrow \mathbb{R}$ defined by

$$\varphi_{x,A,B} = \langle f((1-t)A+tB)x, x \rangle$$

is s-convex on $[0, 1]$ for every $x \in H$ with $\|x\| = 1$.
Proof. Let f be operator s-convex for operators in $[A, B]$ then for any $t_1, t_2 \in [0, 1]$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$ we have

$$\varphi_{x,A,B}(\alpha t_1 + \beta t_2) = \langle f((1 - (\alpha t_1 + \beta t_2))A + (\alpha t_1 + \beta t_2)B)x, x \rangle$$

$$= \langle f(\alpha[(1 - t_1)A + t_1B] + \beta[(1 - t_2)A + t_2B])x, x \rangle$$

$$\leq \alpha^s\langle f((1 - t_1)A + t_1B)x, x \rangle + \beta^s\langle f((1 - t_2)A + t_2B)x, x \rangle$$

$$= \alpha^s\varphi_{x,A,B}(t_1) + \beta^s\varphi_{x,A,B}(t_2).$$

showing that $\varphi_{x,A,B}$ is a s-convex function on $[0, 1]$.

Let now $\varphi_{x,A,B}$ be s-convex on $[0, 1]$, we show that f is operator s-convex for operators in $[A, B]$. For every $C = (1 - t_1)A + t_1B$ and $D = (1 - t_2)A + t_2B$ in $[A, B]$ we have

$$\langle f(\lambda C + (1 - \lambda)D)x, x \rangle$$

$$= \langle f[\lambda((1 - t_1)A + t_1B) + (1 - \lambda)((1 - t_2)A + t_2B)]x, x \rangle$$

$$= \langle f[(1 - (\lambda t_1 + (1 - \lambda)t_2))A + (\lambda t_1 + (1 - \lambda)t_2)B]x, x \rangle$$

$$= \varphi_{x,A,B}(\lambda t_1 + (1 - \lambda)t_2)$$

$$\leq \lambda^s\varphi_{x,A,B}(t_1) + (1 - \lambda)^s\varphi_{x,A,B}(t_2)$$

$$= \lambda^s\langle f((1 - t_1)A + t_1B)x, x \rangle + (1 - \lambda)^s\langle f((1 - t_2)A + t_2B)x, x \rangle$$

$$\leq \lambda^s\langle f(C)x, x \rangle + (1 - \lambda)^s\langle f(D)x, x \rangle.$$

The following theorem is a generalization of Theorem 1 for operator s-convex functions.

Theorem 6. Let $f : I \to \mathbb{R}$ be an operator s-convex function on the interval $I \subseteq [0, \infty)$ for operators in $K \subseteq B(H)^+$. Then for all positive operators A and B in K with spectra in I we have the inequality

$$2^{s-1}f\left(\frac{A + B}{2}\right) \leq \int_0^1 f((1 - t)A + tB)dt \leq \frac{f(A) + f(B)}{s + 1}. \quad (2.1)$$

Proof. For $x \in H$ with $\|x\| = 1$ and $t \in [0, 1]$, we have

$$\langle ((1 - t)A + tB)x, x \rangle = (1 - t)\langle Ax, x \rangle + t\langle Bx, x \rangle \in I, \quad (2.2)$$

since $\langle Ax, x \rangle \in Sp(A) \subseteq I$ and $\langle Bx, x \rangle \in Sp(B) \subseteq I$.

Continuity of f and (2.2) imply that the operator-valued integral

$$\int_0^1 f((1 - t)A + tB)dt$$

exists.

Since f is operator s-convex, therefore for t in $[0, 1]$ and $A, B \in K$ we have

$$f((1 - t)A + tB) \leq (1 - t)^sf(A) + t^sf(B). \quad (2.3)$$
Integrating both sides of (2.3) over $[0, 1]$ we get the following inequality
\[
\int_0^1 f((1 - t)A + tB)dt \leq \frac{f(A) + f(B)}{s + 1}.
\]
To prove the first inequality in (2.1) we observe that
\[
f \left(\frac{A + B}{2}\right) \leq \frac{f(tA + (1 - t)B) + f((1 - t)A + tB)}{2}.
\] (2.4)
Integrating the inequality (2.4) over $t \in [0, 1]$ and taking into account that
\[
\int_0^1 f((1 - t)A + tB)dt = \int_0^1 f(((1 - t)A + tB)dt
\]
then we deduce the first part of (2.1). □

Let $f : I \to \mathbb{R}$ be operator s_1-convex and $g : I \to \mathbb{R}$ operator s_2-convex function on the interval I. Then for all positive operators A and B on a Hilbert space H with spectra in I, we define real functions $M(A, B)$ and $N(A, B)$ on H by
\[
M(A, B)(x) = \langle f(A)x, x \rangle \langle g(A)x, x \rangle + \langle f(B)x, x \rangle \langle g(B)x, x \rangle \quad (x \in H),
\]
\[
N(A, B)(x) = \langle f(A)x, x \rangle \langle g(B)x, x \rangle + \langle f(B)x, x \rangle \langle g(A)x, x \rangle \quad (x \in H).
\]

We note that, the Beta and Gamma functions are defined respectively, as follows:
\[
\beta(x, y) = \int_0^1 t^{x-1}(1 - t)^{y-1}dt \quad x > 0, \ y > 0
\]
and
\[
\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt \quad x > 0.
\]
The following theorem is a generalization of Theorem 3 for operator s-convex functions.

Theorem 7. Let $f : I \to \mathbb{R}$ be operator s_1-convex and $g : I \to \mathbb{R}$ operator s_2-convex function on the interval I for operators in $K \subseteq B(H)^+$. Then for all positive operators A and B in K with spectra in I, the inequality

\[
\int_0^1 \langle f(tA + (1 - t)B)x, x \rangle \langle g(tA + (1 - t)B)x, x \rangle dt
\]
\[
\leq \frac{1}{s_1 + s_2 + 1}M(A, B)(x) + \beta(s_1 + 1, s_2 + 1)N(A, B)(x). \quad (2.5)
\]
holds for any $x \in H$ with $\|x\| = 1$.
Proof. For $x \in H$ with $\|x\| = 1$ and $t \in [0, 1]$, we have

$$\langle (tA + (1 - t)B)x, x \rangle = t\langle Ax, x \rangle + (1 - t)\langle Bx, x \rangle \in I, \quad (2.6)$$

since $\langle Ax, x \rangle \in Sp(A) \subseteq I$ and $\langle Bx, x \rangle \in Sp(B) \subseteq I$.

Continuity of f, g and (2.6) imply that the operator valued integrals \(\int_0^1 f(tA + (1 - t)B)dt\), \(\int_0^1 g(tA + (1 - t)B)dt\) and \(\int_0^1 (fg)(tA + (1 - t)B)dt\) exist.

Since f is operator s_1-convex and g is operator s_2-convex, therefore for t in $[0, 1]$ and $x \in H$ we have

$$\langle f(tA + (1 - t)B)x, x \rangle \leq \langle (t^{s_1}f(A) + (1 - t)^{s_1}f(B))x, x \rangle, \quad (2.7)$$

$$\langle g(tA + (1 - t)B)x, x \rangle \leq \langle (t^{s_2}g(A) + (1 - t)^{s_2}g(B))x, x \rangle. \quad (2.8)$$

From (2.7) and (2.8) we obtain

$$\langle f(tA + (1 - t)B)x, x \rangle \langle g(tA + (1 - t)B)x, x \rangle \leq \langle (t^{s_1+s_2}f(A)x, x) \langle g(A)x, x \rangle + (1 - t)^{s_1+s_2} \langle f(B)x, x \rangle \langle g(B)x, x \rangle \rangle$$

$$+ t^{s_1} (1 - t)^{s_2} [(f(A)x, x) \langle g(B)x, x \rangle]$$

$$+ t^{s_2} (1 - t)^{s_1} [(f(B)x, x) \langle g(A)x, x \rangle]. \quad (2.9)$$

Integrating both sides of (2.9) over $[0, 1]$ we get the required inequality (2.5). \(\square\)

The following theorem is a generalization of Theorem 7 in [9] for operator s-convex functions.

Theorem 8. Let $f : I \to \mathbb{R}$ be operator s_1-convex and $g : I \to \mathbb{R}$ be s_2-convex function on the interval I for operators in $K \subseteq B(H)^+$. Then for all positive operators A and B in K with spectra in I, the inequality

$$2^{s_1+s_2-1} \left\langle f \left(\frac{A + B}{2} \right)x, x \right\rangle \left\langle g \left(\frac{A + B}{2} \right)x, x \right\rangle$$

$$\leq \int_0^1 \langle f(tA + (1 - t)B)x, x \rangle \langle g(tA + (1 - t)B)x, x \rangle \, dt$$

$$+ \beta(s_1 + 1, s_2 + 1)M(A, B)(x) + \frac{1}{s_1 + s_2 + 1}N(A, B)(x), \quad (2.10)$$

holds for any $x \in H$ with $\|x\| = 1$.
Proof. Since \(f \) is operator \(s_1 \)-convex and \(g \) operator \(s_2 \)-convex, therefore for any \(t \in I \) and any \(x \in H \) with \(\|x\| = 1 \) we observe that

\[
\left\langle f\left(\frac{A + B}{2}\right) x, x \right\rangle \left\langle g\left(\frac{A + B}{2}\right) x, x \right\rangle \\
= \left\langle f\left(\frac{tA + (1-t)B}{2} + \frac{(1-t)A + tB}{2}\right) x, x \right\rangle \\
\quad \times \left\langle g\left(\frac{tA + (1-t)B}{2} + \frac{(1-t)A + tB}{2}\right) x, x \right\rangle \\
\leq \frac{1}{2^{s_1+s_2}} \left\{ \left[\langle f(tA + (1-t)B)x, x \rangle + \langle f((1-t)A + tB)x, x \rangle \right] \right. \\
\quad \times \left[\langle g(tA + (1-t)B)x, x \rangle + \langle g((1-t)A + tB)x, x \rangle \right] \\
\leq \frac{1}{2^{s_1+s_2}} \left\{ \left[\langle f(tA + (1-t)B)x, x \rangle \langle g(tA + (1-t)B)x, x \rangle \\
\quad + \langle f((1-t)A + tB)x, x \rangle \langle g((1-t)A + tB)x, x \rangle \right] \\
\quad + \left(t^{s_1} \langle f(A)x, x \rangle + (1-t)^{s_1} \langle f(B)x, x \rangle \right) 2 + \left(t^{s_2} \langle g(A)x, x \rangle + (1-t)^{s_2} \langle g(B)x, x \rangle \right) \right\} \\
\quad \times \left(\langle f(A)x, x \rangle + \langle f(B)x, x \rangle \right) \left(\langle g(A)x, x \rangle + \langle g(B)x, x \rangle \right) \right\} \\
= \frac{1}{2^{s_1+s_2}} \left\{ \left[\langle f(tA + (1-t)B)x, x \rangle \langle g(tA + (1-t)B)x, x \rangle \\
\quad + \langle f((1-t)A + tB)x, x \rangle \langle g((1-t)A + tB)x, x \rangle \right] \\
\quad + \left(t^{s_1}(1-t)^{s_2} + t^{s_2}(1-t)^{s_1} \right) \left[\langle f(A)x, x \rangle \langle g(A)x, x \rangle + \langle f(B)x, x \rangle \langle g(B)x, x \rangle \right] \\
\quad + \left((1-t)^{s_1+s_2} + t^{s_1+s_2} \right) \left[\langle f(A)x, x \rangle \langle g(B)x, x \rangle + \langle f(B)x, x \rangle \langle g(A)x, x \rangle \right] \right\}.
\]

By integration over \([0,1]\), we obtain

\[
\left\langle f\left(\frac{A + B}{2}\right) x, x \right\rangle \left\langle g\left(\frac{A + B}{2}\right) x, x \right\rangle \\
\leq \frac{1}{2^{s_1+s_2}} \left(\int_0^1 \left[\langle f(tA + (1-t)B)x, x \rangle \langle g(tA + (1-t)B)x, x \rangle \\
\quad + \langle f((1-t)A + tB)x, x \rangle \langle g((1-t)A + tB)x, x \rangle \right] dt \\
\quad + 2\beta(s_1 + 1, s_2 + 1)M(A, B)(x) + \frac{2}{s_1 + s_2 + 1} N(A, B)(x) \right) .
\]

This implies the required inequality (2.10). \(\square\)
REFERENCES

[1] M. Klaričić Bakula and J. Pečarić, Note on some Hadamard-type inequalities, J. Inequal. Pure Appl. Math. 5 (2004), no. 3, Article 74.

[2] N.S. Barnett, P. Cerone and S.S. Dragomir, Some new inequalities for Hermite-Hadamard divergence in information theory, Stochastic analysis and applications. Vol. 3, 7-19, Nova Sci. Publ., Hauppauge, NY, 2003.

[3] S.S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., 32(4)(1999), 687-696.

[4] S.S. Dragomir, The Hermite-Hadamard type inequalities for operator convex functions, Appl. Math. Comput. 218(3)(2011), 766-772.

[5] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and applications, (RGMIA Monographs http://rgmia.vu.edu.au/monographs/hermite_hadamard.html), Victoria University, 2000.

[6] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.

[7] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.

[8] E. Kikianty, Hermite-Hadamard inequality in the geometry of Banach spaces, PhD thesis, Victoria University, 2010.

[9] U.S. Kirmaci, M.K. Bakula, M.E. Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. and Compt., 193 (2007), 26-35.

[10] M. S. Moslehian and H. Najafi, Around operator monotone functions, Integr. Equ. Oper. Theory 71 (2011), 575-582.

[11] B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (E), (2003).

[12] M. Tunç, On some new inequalities for convex functions, Turk. J. Math. 36 (2012), 245-251.

[13] S. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain J. Math. 39 (2009), no. 5, 1741-1749.

DEPARTMENT OF MATHEMATICS, LORESTAN UNIVERSITY, P.O. BOX 465, KHORAMABAD, IRAN.
E-mail address: ghazanfari.amir@gmail.com