QSAR analysis on a large and diverse set of potent phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using MLR and ANN methods

Fereydoun Sadeghi1, Abbas Afkhami1,2,*, Tayyebeh Madrakian1,3 & Raouf Ghavami4

Phosphorylation of PI3Kγ as a member of lipid kinases-enzymes, plays a crucial role in regulating immune cells through the generation of intracellular signals. Deregulation of this pathway is involved in several tumors. In this research, diverse sets of potent and selective isoform-specific PI3Kγ inhibitors whose drug-likeness was confirmed based on Lipinski’s rule of five were used in the modeling process. Genetic algorithm (GA)-based multivariate analysis was employed on the half-maximal inhibitory concentration (IC50) of them. In this way, multiple linear regression (MLR) and artificial neural network (ANN) algorithm, were used to QSAR models construction on 245 compounds with a wide range of pIC50 (5.23–9.32). The stability and robustness of the models have been evaluated by external and internal validation methods (R2 0.623–0.642, RMSE 0.464–0.473, F 40.114, Q2LOO 0.600, and R2y-random 0.011). External verification using a wide variety of structures out of the training and test sets show that ANN is superior to MLR. The descriptors entered into the model are in good agreement with the X-ray structures of target-ligand complexes; so the model is interpretable. Finally, Williams plot-based analysis was applied to simultaneously compare the inhibitory activity and structural similarity of training, test and validation sets.

Phosphatidylinositol 3-kinases (PI3Ks) are a group of plasma membrane-associated lipid kinases-enzymes that their phosphorylation plays a critical regulatory role in the cellular processes1,2. In the cellular regulatory mechanism, kinases and phosphatases catalyze activation and deactivation processes via phosphorylation and dephosphorylation of PI3Ks, respectively3. In response to various external stimuli such as oncogenes, growth factors, hormones, and environmental variations, PI3Ks are phosphorylated through conversions of phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 4,5. PIP3 serves as a docking site of effector proteins such as protein kinase B (PKB/Akt) that act as the second messenger molecule in the cellular membranes1. This intracellular signaling pathway has an important role in regulating diverse cellular processes such as cell growth, differentiation, proliferation, survival, and migration4–8. Reversible phosphorylation of inositol lipids controls diverse functions in cells. Deregulation of this pathway occurs by various genetic and epigenetic mechanisms in a wide range of tumors9–11. PI3Ks are divided into classes I, II, and III based on the differences in their structures and specific substrates12,13. According to the regulator proteins and signaling pathways, class I PI3Ks are further subdivided into class IA and class IB. Class IA PI3Ks contain three enzyme isoforms, PI3Kα, PI3Kβ, and PI3Kδ; while PI3Kγ is the only member of class IB and its corresponding signal primarily is generated by G-protein coupled receptors (GPCRs). PI3Kδ and PI3Kγ can generate intracellular signals to regulate immune cells. These two enzyme isoforms are being investigated for cancer treatment in the clinic14–16. PI3Kα and PI3Kβ are involved in the regulation of cell survival and metabolism17–20. Overall, PI3Kγ controls a critical switch between immune stimulation and suppression during inflammation and cancer21. The abnormal expression of PI3Kγ is the result of the mutation and deficiency of phosphatase and tensin homolog on chromosome ten (PTEN)1–12.
In competition with ATP, PI3Kγ inhibitors bind to the ATP cofactor binding site in the active form of kinases to block PI3Kγ activity through stabilizing inactive kinase conformations. PI3Kγ has attracted attention as a potential drug target in treating advanced solid tumors, leukemia, inflammatory, and various autoimmune diseases. Over the past two decades, PI3Ks (especially PI3Kγ) inhibitors have been attracting extensive interest and more than 600 medicinal chemistry-based publications and patents to date show the importance of these compounds. Enormous efforts have been dedicated to the development of highly efficient, safer, potent, and selective isoform PI3Kγ inhibitors. Gangadhara et al. discovered a class of PI3Kγ inhibitors. They proposed that the cyclopropyl ethyl moiety of these inhibitors induces a significant conformational change in both the kinase and helical domains of PI3Kγ which results in blocking the ATP-binding site. Other research groups also discovered a series of potent and selective PI3Kγ inhibitors, some of which are: azaisoindolinones, benzothiazoles, 7-substituted triazolopyridine (CZC24758), IPI-549 (through optimization of isoquinolnine), and 7-azaindoles. Drew et al. designed potent PI3Kγ inhibitors based on the differences of IPI-549 and AZ2 in the binding modes interaction with ATP binding site of PI3Kγ. SAR study on 6-aryl-2-amino-triazolopyridines was performed by Bell et al. Zhu et al. provide an overview to discuss the structure-selectivity-activity relationship of existing clinical PI3Kγ inhibitors and, ultimately Taha et al. used ligand-based modeling and virtual screening followed by in vitro analysis to discover nanomolar PI3Kγ inhibitors.

Despite all these efforts, indeed selecting isoenzyme compounds is difficult; due to the high sequence homology among the PI3K isoforms. Therefore, the discovery and development of PI3Kγ-selective inhibitors are still quite challenging.

Cost and time consumption are disadvantages of the in vitro assays during drug development. QSAR analysis in a primary screening through selecting and proposing the most potent drug candidates causes to prioritize the synthesis of effective drugs; subsequently, pharmaceutical research can be more efficient. Halder and Cordeiro reported the QSAR-Co tool for predicting the activity of inhibitor compounds against different isoforms of PI3Ks, under various experimental conditions. In this research, QSAR analysis was carried out on a large and diverse set of potent and selective isoform-specific PI3Kγ inhibitors using an artificial neural network and multivariate linear regression. The interpretability, clarity, and understandability of the models presented by MLR make it a good choice for modeling. At the same time, the complex relationship between the chemical structures of PI3Kγ inhibitors and their biological response is the best justification for using the ANN-based nonlinear method.

Classification as another aspect of QSAR modeling can also be mentioned that was developed on qualitative categorical responses. In the simplest case, chemical compounds are classified into two categories active/inactive based on their biological activity. The mapping function based on the output variables is employed to predict the class or category for a given observation. In the case of two classes, binary classification is applied. Due to the high sequence homology among the PI3K isoforms, here we used regression-based QSAR models for a quantitative study.

Most of the compounds used in this research have been recently synthesized or evaluated experimentally. Also, to increase the application domain of the models, the compounds were investigated in a wide range of pIC$_{50}$ ($-\log IC_{50}$). The selectivity of these compounds for PI3Kγ over the other PI3K isoforms is confirmed by X-ray crystallography. To take into account safety profiles related to absorption, distribution, metabolism, elimination, and toxicity (ADMET) during the prediction of activity, Speck-Planche and Cordeiro introduced the multitasking model for quantitative structure-biological effect relationships (mtk-QSBER). In the present work, Lipinski’s rule of five was used to check the drug-likeness of compounds. Moreover, to further assess the models, external verification was performed using another group of PI3Kγ inhibitors with high structural diversity and a wide range of activity.

Materials and methods

Data sets. In this study, 245 compounds of PI3Kγ inhibitors collected from published literature were used for QSAR modeling. It is worth mentioning that, after removing duplicate molecules from the above references, a data set consisting of 256 molecules was collected. Then 11 compounds were removed from the data set, including seven molecules that were too different structurally for investigation in the application domain of the models and four molecules whose pIC$_{50}$ values were out of the considered range significantly. Thus, the final data set was reduced to 245 molecules. All minimum inhibitory concentration (IC$_{50}$) values of molecules were converted into the corresponding pIC$_{50}$. The structure of these molecules and their corresponding values of PI3Kγ inhibitory activity (pIC$_{50}$) are presented in Supplementary Table S1. Also, simplified molecular input line entry specification (SMILES) strings of molecules are provided in Supplementary Table S2.

Drug-likeness assessment. For assessment of drug-likeness of a molecule, Lipinski’s rule of five was employed. Based on the distribution of molecular properties (molecular weight, H-bond donors, H-bond acceptors, and logP) among several thousand drugs of USAN (United States Adopted Name) data set, the percents of drugs that are predicted to have poor absorption or permeation are specified in Table 1. In this Table, the ClogP parameter is calculated based on the substructure (atomic group) contribution. In comparison with other estimation methods, ClogP has a better agreement with experimental results. This parameter as a criterion of lipophilicity affects the permeability, accumulation, absorption, bioavailability, and drug cytotoxicity.

For 245 compounds involved in the modeling process, the aforementioned properties were calculated using Dragon 5.5 software package, except the ClogP that the Data warrior software was used to calculate it. Calculated parameters for these 245 compounds are presented in Supplementary Table S3. The result of checking them by Lipinski’s rule of five confirmed their favorable drug-likeness as shown in Table 1.
molecules were discarded from the descriptors pool. Additionally, as a rule highly correlated (R > 0.90), from reduce the redundant and unnecessary information. In this way, descriptors that are zero and constant for all tors and the superior features that make them most appropriate for modeling are provided at the end of the manuscript. To avoid overfitting, during the QSAR model development, objective feature selection was used to

Descriptors calculation and feature selection. In the first stage of the molecular modeling, SMILES strings of the structures were saved in SDF (Structure Data File) format; then, Open Babel software\(^44\) was applied to convert them into the HyperChem HIN format. Following the modeling process in the HyperChem 8 software package\(^42\), the molecular mechanics force field (MM\(^+\)) procedure was used to pre-optimization of 3D structures to lower energy levels. Then, the Semi-empirical methods including PM3 and AM1, which belong to quantum chemistry methods, were used to optimize the structures geometrically and electronically, respectively. Root mean square gradient equal to 0.001 kcal Å\(^{-1}\) mol\(^{-1}\) was determined as the critical value of optimization. The most stable optimized conformer of each structure was selected and saved. Subsequently, Dragon 5.5 software package\(^42\) was used to compute 2D autocorrelation descriptors (a total of 96 of such descriptors) and, using the former optimized geometrics, three-dimensional (3D) descriptors including Randic molecular profiles, geometrical, RDF, 3D-MoRSE, WHIM, and GETAW AY categories (a total of 41, 74, 150, 160, 99 and 197 of such descriptors, respectively).

Among 22 different classes of descriptors computable by the Dragon software, 3D and 2D autocorrelation descriptors most probably have a successful performance in 2D-QSAR modeling based on the results of our previous studies on the inhibitory activity of anti-cancer drug candidates\(^46,47\). More details about these descrip-
tors and the superior features that make them most appropriate for modeling are provided at the end of the manuscript. To avoid overfitting, during the QSAR model development, objective feature selection was used to reduce the redundant and unnecessary information. In this way, descriptors that are zero and constant for all molecules were discarded from the descriptors pool. Additionally, as a rule highly correlated (R > 0.90), from each pair of descriptors that have a correlation coefficient greater than 0.9, only one remains in the descriptors pool and the other one is eliminated. Following the feature selection, based on the above described, the number of descriptors is reduced from 817 to 290 cases.

Dataset splitting

One of the most common methods in QSAR model evaluation is external validation that is performed through dividing the whole data set into the training and test sets by a ratio of 4:1. It is highly critical that both groups must be a reliable representatives of the entire dataset in terms of molecular structure, biological activity, and physicochemical property.

Among the various methods of data splitting, DUPLEX\(^50\) and Kennard–Stone\(^51\) algorithms are more welcomed; because, they perform data splitting according to the aforementioned conditions, which are introduced below.

properties	Percent of USAN\(^a\) data set out of (cutoff) Lipinski\'s rule of five	Percent cutoff compounds in the present study (%)
MW\(^b\)	More than 500 daltons (11%) to (22%) in the entire data set	14.3
	More than 600 daltons (8%)	1.63
nHDon\(^c\)	More than 5 (8%)	0.82
nHAcc\(^d\)	More than 10 (12%)	10.61
CLogP	Greater than 5 (10%)	3.67
TPSA(NO)\(^e\)	Greater than 140 Å\(^2\)	9.32
RBN\(^f\)	More than 10	0.82
nAT\(^g\)	More than 70	2.94

Table 1. Assessment of the drug-likeness (solubility and permeability of a molecule) based on Lipinski\'s rule of five. \(^a\)United States Adopted Name. \(^b\)Molecular weight. \(^c\)H-bond donors (Total NH and OH). \(^d\)H-bond acceptors (The sum of nitrogen and oxygen atoms). \(^e\)Polar surface area (only nitrogen and oxygen atoms considered). \(^f\)Rotatable bonds number. \(^g\)Number of atoms.
The DUPLEX algorithm based on the PCA. Considering the large number of structural descriptors, this approach causes the total space of structures to be counted for data splitting and helps to uniform distribution (homogeneity) of data set into the training and test. Based on this algorithm, first, principal component analysis (PCA) was performed on the entire data set including 290 relevant descriptors. Then a new activity was calculated through establishing a principal component regression (PCR) between original experimental inhibitory activity and PCs. Subsequently, the results were provided to the DUPLEX algorithm to splitting the data set based on the following process:

In the beginning, the two most distant (i.e. most dissimilar) objects are removed from the dataset and placed into the training set. From the remaining points, the next pair which are farthest apart are picked up and placed into the test set. Among the remaining points, two points are moved to the training set with the greatest distance from each other, again. Then, from the remaining objects, the one which is furthest away from those previously selected as the training set, is moved to the test set. The process is repeated until each set contains a certain number of molecules. By employing this method, the uniform distribution of data between the training and test sets was guaranteed not only in the properties but also in the structures.

Kennard–Stone algorithm. In a similar approach to DUPLEX, Kennard–Stone algorithm ensures that each point of the test set is close to at least one point of the training set. This algorithm uses the following equation to split a dataset into training and test set:

\[
\text{Objective function} = \sum_{i=1}^{k+1} \left\{ \left[\mu(i)_{\text{train}} - \mu(i)_{\text{test}} \right] + \left[\sigma(i)_{\text{train}} - \sigma(i)_{\text{test}} \right] \right\},
\]

(1)

k represents the number of inputs, while μ and σ are labels for mean and standard deviation of the input or output variable, respectively.

Euclidean distance \(ED_x(p,q)\) is employed by this algorithm to ensure the uniform distribution of the selected subset in the data space as below:

\[
ED_x(p,q) = \sqrt{\frac{1}{n} \sum_{j=1}^{n} [x_p(j) - x_q(j)]^2}, \quad p, q \in [1, M].
\]

(2)

Based on the several reports, in the data splitting process, the superiorit and high quality of the DUPLEX algorithm over other methods have been confirmed so in this research, the modeling process was performed using the training set obtained from DUPLEX.

In our research following data splitting by DULEX algorithm, Kennard-stone algorithm, and Random data splitting by Minitab software, GA-MLR models were established on the training set and then generalized to the test and validation sets. More details of data splitting and model validation using these methods are presented in the section “QSAR modeling results”.

Statistical factors and methods used in the model evaluation and validation. Since the external and internal validation of the model is an essential step in QSAR analysis, several statistical parameters were employed to assess the performance of the models, which are briefly described in Table 2, and equations used in calculation them have been presented. Williams plot-based analysis is explained later (Determination of the application domain of the model).

Table 2. Parameters of the genetic algorithm.

Cross validation	Random
Number of subsets	4
Window width	2
% Initial terms	20
Max generation	100
% at Convergence	70
Mutation rate	0.003
Cross-over	Double

Model development. The SPSS software establishes multivariate linear regression by receiving the data matrix consist of the most suitable 3D and 2D autocorrelations descriptors selected by GA and the corresponding inhibitory activity of each x-vectors. According to the stepwise procedure, the entry of the descriptors into the model continues until the R² value is strengthened significantly and the root mean square error (RMSE) value is weakened by entering the new descriptor. Of course, simultaneously the value of the Fisher’s test (F) parameter is controlled so that it accepts its optimum value. Very high and very low values of F lead to overfitting and underfitting errors, respectively. One of the valid criteria in monitoring the optimum value of F is the variance inflation factor (VIF) which shows the correlation between the descriptors (described in continue further); during the modeling process, its value must be kept less than 5. In addition, the coefficients of the descriptors...
Statistical parameters

	Brief definition	Equations*	
Correlation coefficient	R was used to investigate the correlation between the descriptors entered in the models	$R = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$	$-1 \leq R \leq 1$
The square correlation coefficient of multiple linealities (R²)	R^2 is used to indicate the goodness of fit	$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$	
Adjusted R squared (R²_adj)	R^2_{adj} is measured based on descriptors that really help in explaining the dependent variable	$R^2_{adj} = 1 - (1 - R^2) \left(\frac{n-1}{n-p-1} \right)$	
Fisher’s test (F)	F used to calculate the variance established between groups to the variance within groups. The larger value for F ratio indicates that the model ability is better to predict pIC_{50} in the training set	$F = \frac{\text{between groups variance}}{\text{within groups variance}}$	
Root mean square error of prediction (RMSEP)	RMSEP based on the difference between predicted and observed values of pIC_{50} for the test set represents the model’s prediction ability	$RMSEP = \sqrt{\frac{1}{n-p} \sum (y_i - \hat{y}_i)^2}$	
The square correlation coefficient for leave-one-out cross-validation (Q²_LOO)	Q^2_{LOO} is calculated based on the predicted values of pIC_{50} during perform LOO-CV	Q^2_{LOO} is calculated based on the predicted values of pIC_{50} calculated from this method, are placed in the R squared equation	
Prediction residual error sum of squares (PRESS)	PRESS is determined the difference between experimental and predicted values of pIC_{50} for the total data set during the LOO-CV processing	$PRESS = \sum_{i=1}^{n} (y_{iobs} - \hat{y}_{ipred})^2$	

Table 3. Model performance parameters and their related equations. *y_i, \hat{y}_i, and \bar{y} are experimental, predicted, and average values of pIC_{50} respectively; p: the number of descriptors in the model; n: the number of samples.

should be acceptable values based on their standard deviation. The criterion for stopping the entry of descriptors into the model is that by entering the new descriptor, the statistical performance factors do not improve significantly.

The above approach prevents overfitting. The variance inflation factor (VIF) test, ensures that the modeling process is not accompanied with multicollinearity and is calculated as below:

$$VIF = \frac{1}{1 - R^2_j}, \quad (3)$$

where R^2_j is the square of the correlation coefficient between descriptors during the model development. VIF equal to 1 indicates that the j-th descriptor is not correlated to the remaining ones. To accept the model, the VIF value should be between 1 and 5, but in the case of VIF values higher than 10, there is significant multicollinearity; so the model must be corrected.

Leave-one-out cross-validation (LOO-CV). During the LOO-CV as one of the internal validation methods, each molecule is removed from the data matrix and the remaining molecules are employed to model development. Using the extracted model, the molecule that was kept out is predicted; this process is repeated for all molecules.

y-randomization test. To ensure that the developed model does not arise from chance, y-randomization is performed through the scrambled biological activity. This procedure is repeated twenty times randomly; then a new regression is established using the same parameters of the original model. Low values of $R^2_{y-random}$ and $Q^2_{y-random}$ in the new models with shuffled pIC_{50} confirm the efficiency and robustness of the main developed model.

Description of the artificial neural network theory, briefly. Artificial neural networks algorithms inspired by biological neural networks in the human brain. The application of ANN is based on this hypothesis that a given training data to construct a model, can learn and generalize from previously seen examples. During the learning, the algorithm extracts the rules and relationships governing the experimental data through their processing. The extracted information is inducted into the network. ANN, as a nonlinear modeling technique, has been used extensively in QSAR analysis and constructed from an input layer, hidden layer(s), and an output layer. The number of input neurons to the network is equal to descriptors used in the linear model development. The weight parameter determines the effect of the input layer on the output layer, which is adjusted during training with the feed-forward back-propagation approach. The trial and error procedure on the training set is employed to optimize the size of the hidden layers. The criterion for this assessment is the average square error (MSE) which acts as a performance function. In the present study, the Bayesian regularization algorithm was used to train with a feed-forward approach and sigmoid as a hidden layer transfer function was employed. Experimental pIC_{50} acts as one output layer. A large number of hidden layers causes the developed model to have an overfitting problem; however, a too-small number of hidden layers leads to fault tolerance and weakens the generalization capability of the net. In the current study, the implementation of the above approach resulted in the 10-3-1 network architecture. Separate validation of the model was performed by one-tenth of the training set randomly. In this way, the performance of the ANN was monitored; through evaluation predicted...
values of the validation set during the training of the network. The training is stopped when the results for the validation set are not significantly improved.

Results

QSAR modeling results. The DUPLEX algorithm was employed to dividing total 245 PI3Kγ inhibitors into the training (196 molecules) and test sets (49 molecules). The MLR model was developed using a relevant set of descriptors selected by GA and was evaluated by the test set

\[
pIC_{50} = 9.670 \pm 0.935 - 0.891(\pm 0.138)\text{Mor}12p + 0.246(\pm 0.046)\text{RDF}010e - 0.604(\pm 0.115)\text{Mor}14u \\
- 0.540(\pm 0.110)\text{Mor}15u - 1.727(\pm 0.302)\text{GATS}6p - 0.732(\pm 0.183)\text{Mor}19m + 0.038(\pm 0.008)\text{Te} \\
- 12.244(\pm 4.271)\text{G}2v - 0.039(\pm 0.014)\text{Mor}02v + 0.718(\pm 0.293)\text{GATS}4p,
\]

\[
R^2 \text{ training} = 0.623, R^2 \text{ adj} = 0.602, \text{RMSE} = 0.473, F = 30.546,
\]

\[
R^2 \text{ test} = 0.662, \text{RMSEP} = 0.451.
\]

Figure 1 is plotted based on the data splitting pattern by Kennard–Stone algorithm on 245 compounds.

![Figure 1](https://www.nature.com/scientificreports/)
except for the fifth iteration (in this case the R² value is slightly less than 0.5 for the test set). These results also
training and test sets and VIF. These results are in good agreement with the accepted values for these parameters
performance (R² in comparison to R² test)17,25,33,62–65 (Supplementary Table S7), were used to external verification of the predictive QSAR
in the face of novel structures, a diverse set of PI3Kγ inhibitors consisting of 45 compounds, out of the training
ond, to investigate the application domain of the models, and, third, to compare the effectiveness of the models
Table 5. The correlation coefficient of descriptors and corresponding VIF values based on model 1 (Eq. 4).

n_training	n_test	R²	R² adj	RMSE	VIF
Mor12p	1.00	0.642	0.610	0.623	3.455
RDF010e	0.142	1.000			
Mor14u	0.097	0.155			
Mor15m	0.227	0.269	0.053	1.000	1.332
GATS6p	0.0219	0.057	0.147	0.102	1.828
Mor19m	0.418	0.179	0.016	0.019	1.388
Te	0.384	0.193	0.172	0.020	1.957
G2v	0.084	0.168	0.024	0.170	2.885
Mor02v	0.277	0.439	0.014	0.176	1.559
GATS4p	0.184	0.083	0.176	0.056	3.893

The performance of ANN is relatively better than MLR, in the case of the training set (R² train = 0.642 for ANN
in comparison to R² train = 0.623 for MLR); conversely, in the case of the test set, the MLR has the better prediction performance (R² test = 0.662 for MLR in compare to ANN with R² train = 0.615). The calculated values of pIC₅₀ for training and test sets using of ANN technique can be seen in Table 6.

Out-of-sample testing validation. We carried out the out-of-sample testing, as a validation method, to
indicate the robustness and stability of the model and to show that the test set selected by the DUPLEX algo-

The above-mentioned process was repeated 10 times. The results were presented in Table 7; including R² of
training and test sets and VIF. These results are in good agreement with the accepted values for these parameters except for the fifth iteration (in this case the R² value is slightly less than 0.5 for the test set). These results also confirm that the descriptors are relevant and model 1 (Eq. 4) is predictive. Also, the maximum value obtained for the VIF parameter at each time of out-of-sample testing validation is less than 5, so the established models are not involved with multicollinearity error. The test compounds that were selected randomly at each time of the aforementioned validation method are presented in Supplementary Table S6. In Table 8, the total 56 descriptors selected by GA are listed and descriptors with the highest frequency of iterations in the established models are bold.

A notable point is that frequent descriptors in the models established based on this validation method are also
included in model 1 (Eq. 4). Since model 1 (Eq. 4), is well confirmed by the recent validation, the methodology used for QSAR modeling can be considered valid; especially, in the case of feature selection by GA and data splitting by duplex algorithm. Statistical performance parameters represented in Table 7, also verify that model 1 (Eq. 4) is not involved with overfitting problem.

Subsequently, the GA-MLR model was developed using whole 245 compounds (no splitting) for comple-
mentary evaluations of the model.

pIC₅₀ = 9.402(±0.829) − 0.933(±0.141)Mor12p + 0.270 (±0.041)RDF010e − 0.589(±0.103)Mor14u
− 0.536(±0.098)Mor15m − 1.728(±0.269)GATS6p − 0.810 (±0.167)Mor19m
+ 0.036(±0.007)Te + 0.770 (±0.264)GATS4p − 11.635(±3.658)G2v − 0.039(±0.013)Mor02v

n = 245, R² = 0.632, R² adj = 0.616, Q² LOO = 0.600, RMSE = 0.476, F = 40.114,
RMSECV = 0.623, R² y−random = 0.011, Q² y−random = 0.0006, PRESS = 94.677.

External verification of the QSAR modes. In order to, first, further evaluate the model robustness, sec-
ond, to investigate the application domain of the models, and, third, to compare the effectiveness of the models
in the face of novel structures, a diverse set of PI3Kγ inhibitors consisting of 45 compounds, out of the training and test sets17,25,33,62–65 (Supplementary Table S7), were used to external verification of the predictive QSAR models. SMILES strings of these molecules are presented in Supplementary Table S8. External verification was carried out based on the following process: first, by considering model 1 (Eq. 4), the corresponding descriptors

Table 5. The correlation coefficient of descriptors and corresponding VIF values based on model 1 (Eq. 4).
Compound	Activity (pIC₅₀)	References			
	Exp	Pred	MLR	ANN	
1	7.05	8.07	7.82		[31]
2	6.32	7.89	7.95		[31]
3	7.30	7.26	7.19		[31]
4^a	7.10	7.68	7.72		[31]
5	6.54	7.47	7.40		[31]
6	7.12	7.26	7.49		[31]
7	6.37	7.79	7.48		[31]
8	8.26	7.90	7.81		[31]
9	7.77	8.09	7.97		[31]
10	7.82	7.55	7.49		[31]
11	7.22	7.92	7.46		[31]
12	8.36	7.95	7.84		[31]
13	8.54	8.71	7.94		[31]
14	6.37	7.59	7.89		[31]
15	8.04	7.57	7.32		[31]
16	8.14	7.90	8.05		[31]
17	7.85	7.56	7.78		[31]
18	7.15	8.09	8.19		[31]
19	7.03	8.01	8.40		[31]
20	8.54	8.82	8.78		[31]
21	8.19	8.17	8.17		[31]
22	8.23	7.78	7.93		[31]
23	7.36	8.40	8.08		[31]
24	7.51	8.05	8.25		[31]
25	7.19	7.55	7.86		[31]
26	8.12	7.94	7.38		[31]
27	8.66	8.00	7.94		[31]
28	8.68	8.32	7.95		[31]
29	8.66	7.85	7.98		[31]
30	8.89	7.91	7.86		[31]
31	8.57	8.43	8.41		[31]
32	8.18	8.05	8.12		[31]
33	8.10	8.08	8.06		[31]
34	7.28	8.71	7.92		[31]
35	9.00	8.01	8.00		[31]
36	8.68	7.27	7.37		[31]
37	8.15	8.22	8.06		[31]
38	8.48	7.51	7.72		[31]
39	8.48	8.57	8.47		[31]
40	7.38	7.64	7.69		[31]
41	8.24	8.16	8.23		[31]
42	7.80	7.46	7.54		[31]
43	8.59	7.75	7.97		[31]
44	8.49	8.33	7.49		[31]
45	6.55	8.21	7.86		[31]
46	7.89	7.61	7.70		[31]
47	7.92	8.23	8.40		[31]
48	8.35	8.32	8.36		[31]
49	8.60	8.26	8.24		[31]
50	8.55	8.60	8.55		[31]
51	8.68	8.56	8.41		[31]
52	8.80	8.62	8.26		[31]
53	8.66	8.56	8.41		[31]
54	8.92	8.69	8.47		[31]

Continued
Compound	Activity (pIC₅₀)	Exp	Pred	MLR	ANN	References
55	8.51	8.33	8.51			
56	8.79	8.49	8.60			
57	8.82	8.63	8.77			
58	8.40	8.09	8.21			
59	8.57	7.92	8.08			
60	8.30	8.08	8.17			
61	6.74	7.59	7.63			
62	8.59	8.79	8.47			
63	8.30	8.01	8.32			
64	8.22	7.87	7.89			
65	8.17	8.47	8.42			
66	8.05	7.66	7.74			
67	7.30	6.67	7.17			
68	7.59	8.04	7.84			
69	7.55	8.63	8.22			
70	7.40	7.18	7.22			
71	7.60	6.86	7.49			
72	8.38	8.31	7.67			
73	8.37	8.42	8.28			
74	8.62	8.21	7.64			
75	8.43	8.22	8.00			
76	8.62	7.82	8.00			
77	8.10	8.02	8.09			
78	8.60	8.04	8.32			
79	8.40	8.37	8.46			
80	8.59	8.14	8.27			
81	8.40	7.70	7.88			
82	8.82	8.55	8.53			
83	8.92	7.83	8.21			
84	8.55	8.01	8.21			
85	8.59	8.17	8.06			
86	8.48	8.00	8.09			
87	8.68	8.40	8.46			
88	8.48	8.73	8.68			
89	8.44	7.58	7.92			
90	6.07	6.85	6.94			
91	5.24	5.98	6.09			
92	5.23	5.65	5.93			
93	7.40	6.31	6.43			
94	6.00	5.90	5.92			
95	6.58	6.85	6.70			
96	7.60	6.92	6.98			
97	7.10	7.47	7.80			
98	6.36	5.99	5.98			
99	7.61	7.51	7.84			
100	8.10	8.46	9.07			
101	5.23	5.72	5.52			
102	6.75	7.58	7.30			
103	7.60	6.94	7.04			
104	6.33	7.04	7.10			
105	6.57	6.94	7.04			
106	7.00	6.69	6.36			
107	8.40	7.97	8.35			
108	9.00	9.13	8.95			
Continued						
Compound	Activity (pIC₅₀)	References				
----------	---------------------------	------------				
		Exp	Pred	MLR	ANN	
109		6.09	6.24	6.28		
110		7.22	6.90	6.95		
111		7.22	6.75	6.98		
112		8.19	7.66	7.88		
113		7.30	8.20	7.90		
114		5.33	5.96	5.82		
115		5.53	6.17	6.43		
116		5.65	6.52	5.95		
117		6.76	6.52	6.20		
118		8.08	7.51	8.43		
119		6.00	7.09	6.79		
120		6.10	7.08	6.59		
121		6.29	6.21	6.26		
122		5.52	5.66	5.96		
123		6.17	6.22	6.09		
124		5.70	6.00	5.92		
125		7.60	7.13	7.85		
126		7.60	7.20	7.38		
127		8.40	8.15	8.47		
128		8.30	8.18	8.31		
129		8.00	7.43	7.02		
130		8.52	7.80	7.32		
131		7.54	7.19	6.87		
132		6.80	7.78	7.38		
133		8.90	8.41	8.33		
134		8.10	7.57	7.08		
135		5.40	6.49	6.26		
136		6.80	6.22	6.38		
137		6.00	6.00	6.13		
138		7.40	6.09	6.14		
139		6.30	6.48	6.55		
140		6.50	7.19	7.03		
141		6.60	6.39	6.47		
142		6.20	6.45	6.36		
143		6.70	6.98	7.27		
144		6.30	6.77	6.90		
145		6.60	6.23	5.97		
146		5.40	6.39	6.13		
147		5.50	5.65	5.75		
148		5.80	6.20	6.07		
149		5.40	6.70	6.43		
150		6.40	6.03	6.95		
151		7.20	6.81	6.49		
152		7.10	6.77	6.69		
153		8.10	7.37	7.34		
154		7.00	6.68	6.41		
155		6.50	6.75	7.02		
156		6.50	6.33	6.39		
157		5.50	5.92	6.04		
158		8.20	7.67	8.03		
159		6.20	7.46	7.68		
160		6.60	6.70	6.52		
161		7.89	7.70	7.90		
162		7.50	7.31	7.23		

Continued
Compound	Activity (pIC₅₀)	Exp	Pred MLR	Pred ANN	References
163	7.80	7.48	7.64		
164	6.80	7.08	7.39		
165	7.00	7.05	6.83		
166	6.00	6.59	6.38		
167	5.70	6.86	6.63		
168	6.90	6.73	6.87		
169	5.68	6.39	6.27		
170	5.64	6.98	6.63		
171	6.72	7.24	7.49		
172	5.52	6.76	6.44		
173	7.57	7.07	6.97		
174	7.60	7.38	7.52		
175	7.55	7.42	7.58		
176	8.24	7.60	7.46		
177	7.38	6.63	6.60		
178	8.52	7.46	7.67		
179	7.42	6.66	6.96		
180	6.72	6.66	6.86		
181	7.16	7.82	7.55		
182	6.96	6.64	7.16		
183	6.00	7.01	7.45		
184	7.44	8.27	7.72		
185	7.82	7.62	7.85		
186	8.70	8.64	8.76		
187	8.52	8.56	9.00		
188	8.10	7.88	7.89		
189	8.40	7.52	7.62		
190	6.80	6.51	6.38		
191	6.00	7.07	7.45		
192	9.22	8.14	7.85		
193	6.10	6.81	7.22		
194	6.60	6.20	6.13		
195	7.40	6.91	6.92		
196	7.22	6.89	6.70		
197	6.40	6.58	6.33		
198	6.00	6.37	6.14		
199	6.52	7.09	7.04		
200	6.82	6.92	7.08		
201	6.96	6.71	6.69		
202	7.30	6.28	6.36		
203	6.00	6.73	6.68		
204	5.96	6.56	6.51		
205	5.96	6.44	6.55		
206	6.48	6.81	6.67		
207	7.85	6.69	6.77		
208	7.60	6.72	6.73		
209	6.55	6.96	6.91		
210	6.96	6.95	6.98		
211	6.46	6.86	7.03		
212	6.77	6.49	6.73		
213	6.96	7.12	6.95		
214	7.12	6.74	6.66		
215	6.44	6.96	6.76		
216	7.00	6.54	6.61		

Continued
were extracted for each structure of the validation set (Supplementary Table S9). Then, predicted pIC50 values of these compounds were calculated through the generalization of the MLR and ANN models to them (Table 9).

Simultaneous comparison of training, test, and validation sets based on the QSAR analysis results. Displaying the training, test, and validation sets in one graphical plot provides a clear insight into the molecular distribution, goodness of fit in three subsets of PI3Kγ inhibitors, and ultimately, a more accurate assessment of the application domain of the models. In the following, each of these three aspects is explained in detail.

Data set distribution in terms of standard deviation. Based on the MLR and ANN models, standard deviation ((pIC50)Exp− (pIC50) pred) of PI3Kγ inhibitors versus their corresponding (pIC50)Exp values have been displayed in Fig. 2. The random and uniform distribution of the data on both sides of standard deviation equal to zero can be seen not only in the training set but also in the test and validation sets as a reliable representative of the entire data set. These results confirm that the systematic error did not occur during the model development.

Regression results of the validation set in comparison to the training and test sets. Modeling efficiency has been evaluated based on the training and test sets in section “QSAR modeling results”; here, we will focus on the model evaluation based on the validation set. A scatter plot of the predicted pIC50 versus the experimental values during the QSAR model development on 196 PI3Kγ inhibitors has been displayed in Fig. 3. Based on these observations, both proposed models have good predictive performance; nevertheless, ANN is superior to MLR in the face of the validation set. (R2 whole = 0.648 for ANN in comparison to R2 whole = 0.532 for MLR). Since ANN is a nonlinear modeling algorithm, considered to be more efficient with high flexibility. Also, using three methods for data splitting, the performance statistical parameters were obtained as: DUPLEX algorithm (R2 = 0.532, RMSE = 0.566), Kennard–Stone algorithm, (R2 = 0.552, RMSE = 0.571) and random data.

Table 6. Experimental pIC50 values for 245 PI3Kγ inhibitors used as training and test sets and corresponding predicted values for them based on the MLR and ANN methods. *Bold cases used as a test set.*

Compound	Activity (pIC50) Exp	Pred MLR	ANN	References
217	7.10	7.22	6.92	
218	7.90	7.88	7.72	
219	6.90	7.82	7.99	
220	6.90	7.81	7.31	
221	7.80	7.78	7.57	
222	6.60	7.38	7.23	
223	7.20	7.53	7.22	
224	7.50	7.07	6.66	
225	7.60	8.18	7.86	
226	7.60	7.78	7.43	
227	8.10	7.76	7.56	
228	8.20	8.13	7.94	
229	8.00	8.22	8.13	
230	8.60	8.43	8.37	
231	7.20	8.18	7.88	
232	8.50	7.30	7.21	
233	7.80	7.74	7.73	
234	8.20	8.37	7.99	
235	8.40	8.24	8.34	
236	8.60	7.90	7.44	
237	7.70	7.23	7.32	
238	7.60	6.91	7.41	
239	7.50	7.45	7.91	
240	7.70	7.44	7.48	
241	7.70	8.10	7.72	
242	7.40	7.37	7.87	
243	8.10	7.07	7.40	
244	7.60	7.86	7.89	
245	7.80	7.81	8.03	
splitting ($R^2 = 0.532$, RMSE = 0.517). Based on the following reasons both models, especially ANN, are robust and approved:

1. The wide variety of structures with pIC$_{50}$ from 5.00 to 9.30 was used in the validation process.

Iteration	GA-MLR models developed on the training set (196 molecules) which were selected randomly by Minitab Number of descriptors included in the model Max. VIF value	R2	Training set	Test set	
1	– 4.584 + 0.205 × RDF010e + 1.196 × Mor32p − 0.924 × MATS7p + 3.12 2 × AT31p − 0.044 × RDF015e + 4.589 × G3v + 0.935 × Mor18p + 0.80 1 × GATS4p − 1.015 × GATS2e	9	3.514	0.612	0.567
2	8.065 – 0.857 × Mor12p + 0.227 × RDF010e − 0.406 × Mor14u – 0.512 × Mor15m − 0.966 × MATS7p − 12.374 × G2v − 1.31 × MATS4p − 1.001 × Mor19m − 0.531 × Mor17p + 0.017 × Te	10	3.640	0.649	0.519
3	8.213 – 0.829 × Mor12p + 0.225 × RDF010e − 0.378 × Mor14u – 0.529 × Mor15m − 0.852 × MATS7p − 12.482 × G2v − 1.238 × MATS4p − 1.162 × Mor19m − 0.504 × Mor17p + 0.022 × Te − 0.81 × GATS6p + 3.491 × G2v	12	3.720	0.671	0.573
4	4.73 – 1.174 × Mor14p + 0.075 × RDF040m − 1.179 × MATS7p + 4.615 × G3v + 0.188 × RDF010e + 1.588 × Mor18p + 0.04 × Tm − 0.618 × Mor17p − 0.392 × Mor15m + 0.019 × RDF070e	10	3.770	0.655	0.546
5	7.584 – 0.889 × Mor12p + 0.056 × RDF115p − 0.554 × Mor14u − 0.91 × Mor19m − 1.721 × GATS6p + 0.03 × Te − 0.416 × Mor15m + 0.222 × RDF010e + 0.782 × GATS4p − 0.038 × Mor02v	10	4.071	0.629	0.618

Table 7. Out-of-sample testing validation results based on the random dataset splitting.

Molecular descriptors	Descriptor category
AT31m, MATS7v, MATS2e, MATS4p, MATS7p (6 times), MATS8p, GATS7m, GATS2v, GATS6v, GATS2e, GATS8e, GATS4p (5 times), GATS6p (7 times)	2D autocorrelations
RDF050u, RDF040m, RDF050m, RDF070v, RDF010e (9 times), RDF015e, RDF020e, RDF035e, RDF045e, RDF050e, RDF070e, RDF020p, RDF030p, RDF115p	RDF descriptors
Mor12u, Mor14u (6 times), Mor17u, Mor26u, Mor15m (8 times), Mor19m (7 times), Mor32m, Mor18p (4 times), Mor19v, Mor30e, Mor02p, Mor03p, Mor10p, Mor12p (8 times), Mor14p, Mor17p (5 times), Mor18p, Mor19p, Mor32p	3D-MoRSE descriptors
G2v (6 times), G3v (5 times), G2c, G2p, E3c, Tm, Te (5 times)	WHIM descriptors

Table 8. The total 56 descriptors selected by GA carried out to out-of-sample testing validation. The most frequent descriptors, also included in model 1 (Eq. 4), are in bold.
2. QSAR models established on the small number of compounds tend to have better prediction performance than the models developed on a large data set. On the other hand, the efficiency of the QSAR model built from the large data set, consisting of diverse chemical structures and a wide range of \(pIC_{50} \) values, may seem low due to confounding factors. However, a model that has been established on more compounds may have a wider applicability domain which will be described in the next section.

Table 9. The experimental \(pIC_{50} \) values of 45 PI3K\(\gamma \) inhibitors used as a validation set and corresponding predicted values for them based on the MLR and ANN methods.

Compound	Activity (\(pIC_{50} \))	Exp	Pred MLR	Pred ANN	References
246	7.01	7.86	6.98		
247	7.43	8.21	7.63		
248	7.20	8.27	7.38		
249	7.82	8.47	8.64		
250	7.77	7.80	7.70		
251	9.30	8.02	8.07		
252	8.15	7.96	7.95		
253	9.15	7.98	8.37		
254	9.15	8.28	8.05		
255	7.12	6.97	6.91		
256	7.85	7.03	7.05		
257	7.85	7.48	7.83		
258	7.32	6.76	6.58		
259	7.44	7.07	7.40		
260	6.51	6.25	6.56		
261	7.80	7.38	7.58		
262	9.00	7.80	8.41		
263	5.98	6.83	6.33		
264	7.80	7.79	8.31		
265	6.80	5.94	5.71		
266	7.30	7.27	7.30		
267	7.60	7.11	7.14		
268	5.51	6.46	6.13		
269	6.80	7.53	7.28		
270	7.60	7.82	7.95		
271	8.10	8.25	8.44		
272	7.20	7.13	6.93		
273	9.10	7.91	8.10		
274	8.90	8.13	8.32		
275	9.10	7.55	7.96		
276	8.90	7.83	7.90		
277	9.00	8.29	8.62		
278	6.30	7.40	7.47		
279	5.20	6.62	6.78		
280	7.60	6.14	6.40		
281	7.55	7.77	7.95		
282	5.00	5.83	5.53		
283	5.72	6.12	6.37		
284	6.79	6.31	6.31		
285	6.42	5.96	5.63		
286	5.89	6.06	5.78		
287	7.68	6.70	6.84		
288	8.70	8.06	8.37		
289	7.20	7.16	7.49		
290	7.30	6.92	6.69		
Determination of the application domain of the model. One of the main aspects of QSAR modeling is determining the application domain (AD) of the model. AD is defined as a chemical space constructed by the descriptors and biological responses used in QSAR model development on the training set. Using this approach, the model efficiency in the face of new compounds that may have not been synthesized is assessed. Williams plot-based analysis was used to determine AD. Williams plots represented in Fig. 4 are based on the MLR and ANN model results. This figure makes it possible to comparison the validation set with the training and test set simultaneously in terms of structural similarity and inhibitory activity.

Acceptable limits of structural similarity and inhibitory activity, have been marked with vertical dash line (warning leverage) and horizontal dotted lines, respectively. It can be observed that all of the 290 compounds, consisting of 196, 49, and 45 molecules as training, test, and validation set respectively, are within the boundaries of acceptable standard deviation (± 3δ). To get a better insight from the structural similarity and biological activity in Fig. 4, the molecules close to the boundaries, have been also specified by their corresponding numbers. A chemical structure with high leverage ($h > h^*$) in the training has high influences ability in the modeling process, thus the chemical in the training set is not an outlier for the response fitting. h^* is calculated as follow:

$$h^* = \frac{3(K + 1)}{n}.$$ (6)

n and k are the numbers of training compounds and descriptors in the model, respectively.

None of the compounds belonging to the test set is X outlier ($h^* = 0.17$). However, two molecules that belong to the validation set are out of the structural similarity threshold. In interpreting these observations, the following explanations can be noted:

![Figure 2](image1.png)

Figure 2. Dispersion plots of standardized residuals versus experimental values of the pIC$_{50}$ during the QSAR model development on PI3Kγ inhibitors.

![Figure 3](image2.png)

Figure 3. Scatter plots of the predicted versus experimental pIC$_{50}$ values for MLR (A) and ANN (B) models constructed on PI3Kγ inhibitory activity.
1. The whole molecules of the test set are placed in the acceptable limits of structural similarity and standard deviation; it may be because that the models are developed based on the samples with a wide range of structures and pIC50. The proposed models with wide application domain can predict the test set with credibility.

2. The four molecules of the training set with a leverage value greater than 0.17, means that these compounds are very dominant in determining the model; in other words, they are good “influence points” and can be indicators of high accuracy and robustness of the model. Moreover, these compounds have been accurately predicted by model 1 (Eq. 4) with the lowest standard deviation.

3. In the case of the validation set, as can be seen, only two compounds are X outlier; however, it should be noted that in the routine QSAR studies, evaluation is limited to the test set but in this research, for further assessment of the models, a wide variety of structures were employed as a validation set, out of the training and test sets. As shown in Fig. 4, two X outlier compounds of the validation set are also located on the left side of compound 100 with lower leverage than it. Therefore, according to the description provided in “Materials and methods”, the predicted results of these two compounds can be also accepted. In addition, these molecules are also well predicted by model 1 (Eq. 4). Accordingly, the high stability, predictive ability, and robustness of the MLR and ANN models were assessed in the face of new compounds.

Descriptors interpretation. In-depth insight about structural descriptors helps chemists in the design of new effective drugs through the interpretation of QSAR models. For example, several factors are involved in the binding of a ligand to a target such as van der Waals volumes and surfaces, polarizability, hydrophobicity, lipophobicity, etc. Four categories of descriptors which are entered in the models are defined in Supplementary Table S5 and briefly described here:

Characteristics and capabilities of the four different categories of descriptors. 3D-MoRSE descriptors. This category of descriptors was introduced in 1996 by Schuur and et al. Range of scattering parameter values (0–31 Å⁻¹) and variety of weighting schemes (unweighted and weighted with atomic mass, atomic van der Waals volume, atomic Sanderson electronegativity, and atomic polarizability) has given them high flexibility and pervasively. 3D-MoRSE descriptors can be employed successfully to extract information from the entire structure of the molecule that results to discriminate a large and diverse set of compounds correctly. These descriptors are sensitive to the presence of specific molecular fragments.

Based on the coordinates, 3D structure, and electron diffraction of molecules, 3D-MoRSE descriptors provide information that calculates by summing atom weights as the following expression:

\[
I(s) = \sum_{i=2}^{N} \sum_{j=1}^{i-1} A_i A_j \sin(s_{ij}) / s_{ij},
\]

where I is diffraction intensity of electron diffraction, s is the scattering parameter (Angle X-ray scattering), r\(_{ij}\) is the interatomic distance between \(i\)-th and \(j\)-th atoms, N indicates the number of atoms, and \(A_i\) and \(A_j\) expressed the different atomic properties as the weight that were mentioned above. The wide range of scattering parameters is calculated at 32 evenly distributed values at scattering angle(s) in the range of 0–31 Å⁻¹ from the 3D atomic coordinates of molecules based on the above function.

RDF descriptors. In this category, molecular descriptors are calculated through radial basis functions centered on different interatomic distances and are based on the probability of finding an atom in interatomic space with an r radius. In this category, atoms can also be weighted by various atomic properties (atomic mass, polarizability, etc.). They are independent of factors such as the size of a molecule that is dependent on the number...
of atoms and focus on describing the 3D arrangement of atoms. These descriptors are effective in providing
properties that refer to the morphology of molecular such as steric hindrance, planar or non-planar structure,
etc. Another feature of these descriptors which makes them a suitable choice for QSAR analysis is that they are
invariant against translation and rotation of a molecule.

WHIM descriptors. These descriptors as statistical indexes are obtained through the projection of atoms on the
Cartesian coordinate. To calculate them, the most stable conformer with minimum energy is used. They can
cover 3D information about different characteristics of molecular structure such as size, shape, symmetry, and
atomic distribution. Specific information can be obtained from any subset of these descriptors.

2D autocorrelation descriptors. 2D autocorrelation descriptors are calculated based on the molecular graph to
represent the topological structure of the compounds. In this class of descriptors, interatomic topology dis-
tance is considered based on the length of the types of atomic pairs. Atoms are visualized as the set of discrete
points in space and atomic properties including atomic masses, atomic van der Waals volumes, atomic Sander-
son electronegativities, and atomic polarizabilities were used to evaluate at that points. This class of descriptors
in combination with 3D-MoRSE descriptors, discuss chemical space between the compounds. Depending on
they are unweighted or weighted with atomic mass, atomic van der Waals volume, atomic Sanderson electron-
enegativity, and atomic polarizability provide a wide variety of information.

**Interpretation of the type and coefficient of descriptors in the model compared with X-ray
structures of target-ligand complexes.** It is noteworthy that in the models established in this research,
3D-MoRSE descriptors have a prominent presence. The negative sign of the coefficients for descriptors weighted
with van der Waals volume (G2v and Mor02v) and the positive sign of the coefficients for descriptors weighted
with atomic Sanderson electronegativity (RDF010e and Te) is favorable for increasing the inhibitory activities
of molecules. The negative sign of the coefficients for Mor12p and GATS6p that were weighted with atomic
polarizability, show that smaller or negative values for these descriptors are favorable for increasing the activities
of molecules. In the case of descriptors weighted with atomic mass (Mor15m and Mor19m), the negative sign of
coefficients is favorable for increasing the inhibitory activities of molecules.

These results, clearly are in good agreement with the experimental observations. This claim is confirmed
through an investigation of the X-ray crystal structure which is used following the experimental assays to dem-
onstrate the binding of the ligand with the target site (ATP-binding pocket) of the PI3Kγ enzyme. Interaction
between drug structures and PI3K enzyme occurs through strongly electronegative atoms such as N, O,
and F. These atoms in the role of hydrogen bond acceptor or hydrogen bond donor (NH and OH) bind to the
corresponding polar group R of residual amino acids including Aspartic acid, Glycine, Glutamine, Tryptophan,
Lysine, Serine and so on.

Based on the empirical observations, there is a direct relationship between the polarity of the compounds
and their inhibitory activity. In a similar situation, the type and coefficients of the descriptors present in the
models, show that by increasing the electronegative atoms (N, O, or F) in the structures, their inhibitory activity is
enhanced.

Devinyak et al. reported that in 3D-MoRSE descriptors weighted by atomic van der Waals volume, and
atomic polarizability, significantly decreases the effect of Hydrogen and diminishes the roles of Nitrogen, Oxygen,
and Fluorine. In other words, the presence of Oxygen and Nitrogen atoms in the structures reduces the values of
these descriptors. Since these descriptors have negative-sign coefficients in the model, smaller values for them
are favorable and lead to an increase in their inhibitory activity.

They also showed that 3D-MoRSE descriptors weighted by atomic mass, practically eliminate the role of
Hydrogen atoms, while significantly increasing the effect of Phosphorus, Sulfur, and Chlorine on the values of
these descriptors. Considering the negative sign of coefficients for this class of descriptors entered in our
developed model, larger values of them, in agreement with the experimental observations, lead to the decrease
of drug inhibitory activity.

In the case of RDF010e and two other descriptors that were weighted by atomic Sanderson electronegativity
coefficients in the models have a positive sign. The presence of the electronegative atoms such as N, O, F, or Cl
in the structure of these compounds, increases the value of the aforementioned descriptors; consequently, leads
to an increase in the predicted inhibitory activity. In agreement with the empirical observations, these results
confirm the stability and correctness of the models, again.

Based on the above interpretation, the total descriptors used in the modeling are in good agreement with the
experimental results except for GATS4p. This descriptor was the last choice in the stepwise modeling approach
with SPSS software and has the least influence in prediction activity. Elimination of GATS4p has no significant
effect on the predictive ability of the models.

Altogether, polar regions strengthen the inhibitory activity of the molecules used as inhibitors of PI3K enzyme.
while hydrophobic substitution such as bulky groups and long carbon chain substitution weaken it. Comparing the
structures presented in Supplementary Table S1 with experimental activities and modeling results gives a better impression of these structures. For example, the pairs or the series of following compounds can be compared: the series 107, 108 and 109, the pairs 96 and 97, 102 and 103, 191 and 192, 193 and 194, 202 and 203, 209 and 228, 229 and 230, 167 and 168, and so on.

Based on the above discussions the stability and efficiency of the QSAR model were confirmed; so, it can be
employed in the face of the external structures in the application domain of the model.
Conclusion
These compounds were previously confirmed as selective isoform-specific PI3Kγ inhibitors by X-ray crystallography. Drug-likeness of them was also confirmed well, based on Lipinski’s rule of five, before using them in the modeling process. QSAR analysis and its evaluation were performed on a diverse set of PI3Kγ inhibitors in a wide range of pIC50 using MLR and ANN models. The out-of-sample testing, as a validation method, was carried out 10 times with different test set selected randomly. The results indicate that descriptors are relevant, the model is predictive, and not facing overfitting. The models were assessed also successfully using another set of compounds out of training and test sets with various structures. To further evaluate the robustness and interpretability of the models and to ensure the accuracy of the methodology used in the modeling process, these models were interpreted based on the type and coefficients of the descriptors included in the models. Results are in good agreement with X-ray structures of target-ligand complexes.

Received: 27 June 2021; Accepted: 10 March 2022

Published online: 12 April 2022

References
1. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
2. Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).
3. Lewis, J., Raff, M. & Roberts, K. Molecular biology of the cell (4th Ed.). J. Biol. Educ. 37, 45–47 (2002).
4. Hirsch, E. et al. Central role for G protein coupled PI3Kgamma in inflammation. Science 287, 1049–1053 (2000).
5. Wymann, M. P., Zvelebil, M. & Laffargue, M. Phosphoinositide 3-kinase signalling—Which way to target?. Trends Pharmacol. Sci. 24, 366–376 (2003).
6. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).
7. Cantley, L. C. The phosphoinositide 3-Kinase pathway. Science 296, 1655–1657 (2002).
8. Hawkins, P. T., Anderson, K. E., Davidson, K. & Stephens, L. R. Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34, 647–662 (2006).
9. Fruman, D. A. & Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).
10. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).
11. Brader, S. & Eccles, S. A. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori 90, 2–8 (2004).
12. Katso, R., Okkenhaug, K., Ahmadi, K., Timms, J. & Waterfield, M. D. Cellular function of phosphoinositide 3-kinas: Implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).
13. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinas as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).
14. Porcu, P. et al. Clinical activity of duvelisib (IPI-145), a phosphoinositide 3-kinase-δ, γ inhibitor, in patients previously treated with irbritin. Blood 124, 3335 (2014).
15. Hancox, U. et al. Inhibition of PI3Kγ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol. Cancer Ther. 14, 48–58 (2015).
16. Okkenhaug, K., Graupera, M. & Vanhaesebroeck, B. Targeting PI3K in cancer: Impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6, 1090–1105 (2016).
17. Williams, O. et al. Discovery of dual inhibitors of the immune cell PI3Ks p110δ and p110γ: a prototype for new anti-inflammatory drugs. Chem. Biol. 17, 123–134 (2010).
18. Perry, M. W. D. et al. Evolution of PI3Kδ and δ inhibitors for inflammatory and autoimmune diseases. J. Med. Chem. 62, 4783–4814 (2019).
19. D'Angelò, N. D. et al. Discovery and optimization of a series of benzo[h]azole phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors. J. Med. Chem. 54, 1789–1811 (2011).
20. Pujala, B. et al. Discovery of pyrazolopyrimidine derivatives as novel dual inhibitors of BTK and PI3Kδ. ACS Med. Chem. Lett. 7, 1161–1166 (2016).
21. Kaneda, M. M. et al. PI3K δ is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).
22. Stark, A. K., Sriskantharajah, S., Hessel, E. M. & Okkenhaug, K. PI3Kδ inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol. 23, 82–91 (2015).
23. Arditò, F., Giuliani, M., Perrone, D., Troiano, G. & Muzio, L. L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int. J. Mol. Med. 40, 271–280 (2017).
24. Garces, A. E. & Stocks, M. J. Class I PI3K clinical candidates and recent inhibitor design strategies: A medicinal chemistry perspective. J. Med. Chem. 62, 4813–4850 (2019).
25. Gangadharana, G. et al. A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat. Chem. Biol. 15, 348–357 (2019).
26. Cone, J. H. et al. Design and synthesis of a novel series of orally bioavailable, CNS-penetrant, isoform selective phosphoinositide 3-kinase γ (PI3Kγ) inhibitors with potential for the treatment of multiple sclerosis (MS). J. Med. Chem. 61, 5245–5256 (2018).
27. Collier, P. N. et al. Structural basis for isoform selectivity in a class of benzo[h]azole inhibitors of phosphoinositide 3-kinase γ. J. Med. Chem. 58, 517–521 (2015).
28. Sunose, M. et al. Discovery of 5-(2-amino-[1,2,4]triazolo[1,5-a]pyridin-7-yl)-N-(tert-butyl) pyridine-3-sulfonamide (CZC24758), as a potent, orally bioavailable and selective inhibitor of PI3K for the treatment of inflammatory disease. Bioorg. Med. Chem. Lett. 22, 4613–4618 (2012).
29. Evans, C. A. et al. Discovery of a selective phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-OncoLOGY Clinical Candidate. ACS Med. Chem. Lett. 7, 862–867 (2016).
30. Miles, D. H. et al. Discovery of potent and selective 7-azaindole isindolinone-based PI3Kγ inhibitors. ACS Med. Chem. Lett. 11, 2244–2252 (2020).
31. Drew, S. L. et al. Discovery of potent and selective PI3Kδ inhibitors. J. Med. Chem. 63, 11235–11257 (2020).
32. Bell, K. et al. SAR studies around a series of triazolopyrimidines as potent and selective PI3Kδ inhibitors. Bioorg. Med. Chem. Lett. 22, 5237–5263 (2012).
33. Zhu, J. et al. Targeting phosphatidylinositol 3-kinase gamma (PI3Kγ): Discovery and development of its selective inhibitors. Med. Res. Rev. 41, 1599–1621 (2021).
34. Taha, M. O., Al-Sha’er, M. A., Khanfar, M. A. & Al-Nadaf, A. H. Discovery of nanomolar phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. Eur. J. Med. Chem. 84, 454–465 (2014).
35. Halder, A. K. & Cordeiro, M. N. D. S. Development of multi-target chemometric models for the inhibition of class I PI3K enzyme isoforms: A case study using QSA R-Co tool. Int. J. Mol. Sci. 20, 6191 (2019).
36. Gramatica, P. On the development and validation of QSAR models. Methods Mol. Biol. (Clifton, N.J.) 930, 499–526 (2013).
37. Speck-Planche, A. & Cordeiro, M. N. D. S. Simultaneous modeling of antimycobacterial activities and ADMET profiles: A Chemoinformatic approach to medicinal chemistry. Curr. Top. Med. Chem. 13, 1656–1665 (2013).
38. Speck-Planche, A. & Cordeiro, M. N. D. S. Chemoinformatics for medicinal chemistry: In silico model to enable the discovery of potent and safer anti-cocci agents. Future Med. Chem. 6, 2013–2024 (2014).
39. Speck-Planche, A. & Natalia Dias Soeiro Cordeiro, M. N. D. S. Speeding up early drug discovery in antiviral research: A fragment-based in silico approach for the design of virtual anti-hepatitis C leads. ACS Comb. Sci. 19, 501–512 (2017).
40. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development research. Adv. Drug Deliv. Rev. 64, 4–17 (2012).
41. Ellard, K. et al. Discovery of novel PI3Kγ/δ inhibitors for potential agents in inflammation. Bioorg. Med. Chem. Lett. 22, 4546–4549 (2012).
42. DRAGON Version 5.5, Todeschini, R., Consonni, V., Mauri, A. & Pavan, M. TALETE SRL: Milano, Italy, (2007); software available at http://www.talete.mi.it. (Accessed 07 Mar 2021).
43. (Data warrior Version 05.05.0) software available at http://www.openmolecules.org/datawarrior/. (Accessed 20 Jan 2021).
44. Open Babel Version 2.3.2. (2012) software available at http://openbabel.org/. (Accessed 10 Feb 2021).
45. HyperChem Version 8.0, Hypercube, Inc. (2007); software available at http://www.hyper.com. (Accessed 10 Oct 2020).
46. Sadeghi, F., Afkhami, A., Madrakian, T. & Ghavami, R. Computational study on subfamilies of piperidine derivatives: QSAR modelling, model external verification, the inter-subset similarity determination, and structure-based drug designing. SAR QSAR Environ. Res. 32, 433–462 (2021).
47. Sadeghi, F., Afkhami, A., Madrakian, T. & Ghavami, R. A new approach for simultaneous calculation of pIC_{50} and logP through QSAR/QSPR modeling on anthracyline derivatives: A comparable study. J. Iran. Chem. Soc. https://doi.org/10.1007/s41378-021-02233-9 (2021).
48. Hassanat, A. et al. Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach. Informatica 10, 390 (2019).
49. MATLAB Version 9.0, math work. Inc., Natick, MA, USA, (2016); software available at http://www.mathworks.com. (Accessed 15 Nov 2020).
50. Snee, R. D. Validation of regression models: Methods and examples. Technometrics 19, 415–428 (1977).
51. Kennard, R. W. & Stone, L. A. Computer aided design of experimental. Technometrics 1969(11), 137–148 (1969).
52. Wu, W., May, R., Dandy, G.C. & Maier, H. R. A method for comparing data splitting approaches for developing hydrological ANN models. In: The 6th International Congress on Environmental Modelling and Software (IEMS), Leipzig, Germany (2012).
53. Puzyn, T., Montrat-Selichtyng, A., Gajewicz, A., Skrzyński, M. & Wird, A. P. Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct. Chem. 22, 795–804 (2011).
54. May, R. J., Maier, H. R. & Dandy, G. C. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 23, 283–294 (2010).
55. Minitab Version 18.0 software available at https://www.minitab.com/en-us/.
56. SPSS software Version 26.0 (2019) software available at https://www.ibm.com/analytics/spss-statistics-software.
57. Kato, Y., Hamada, S. & Goto, H. Validation study of QSAR/DNN models using the competition datasets. Mol. Inform. 39, 1900154 (2020).
58. Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 26, 694–701 (2007).
59. Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 29, 476–488 (2010).
60. Consonni, V. & Gramatica, P. Molecular Shape and QSAR. In: QSAR modeling: Where have you been? Where are you going to?. J. Med. Chem. 45, 2002–2005 (2002).
61. Merkoçi, A. & Moad, G. Chemical and physical methods in QSAR: A critical review. J. Mol. Graph. Model. 19, 523–538 (2021).
62. Yang, C. & Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 26, 694–701 (2007).
63. Ellard, K. M., Selzer, P. & Gasteiger, J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J. Chem. Inf. Comput. Sci. 36, 334–344 (1996).
64. Hemmer, M. C., Steinhauser, V. & Gasteiger, J. Deriving the 3D structure of organic molecules from their infrared spectra. Vib. Spectrosc. 19, 151–164 (1999).
65. Miller, M. S., Thompson, P. E. & Gabelli, S. B. Structural determinants of isoform selectivity in p3k inhibitors. Biomolecules 9, 82 (2019).
66. De Fortuny, E. J., Martens, D. & Provost, F. Predictive modeling with big data: Is bigger really better?. Big Data 1, 215–226 (2013).
67. Cherkasov, A. et al. QSAR modeling: Where have you been? Where are you going to?. J. Med. Chem. 57, 4977–5010 (2014).
68. Jaworska, J., Nikolova-Jeliazkova, N. & Anderberg, T. QSAR applicability domain estimation by projection of the training set in descriptor space: A review. Altern. Lab. Anim. 33, 445–459 (2005).
69. Schuur, J. H., Selzer, P. & Gasteiger, J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J. Chem. Inf. Comput. Sci. 36, 334–344 (1996).
70. Gramatica, P., Corradi, M. & Consonni, V. Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41, 763–777 (2000).
71. Moreau, G. & Broto, P. Auto-correlation of a topological structure: A new molecular descriptor. Nouv. J. Chim. 4, 359–360 (1980).
72. Asadollahi, T., Dadfarnia, S., Shabani, A. M. H., Ghasemi, J. B. & Sarkhosh, M. QSAR models for ccx2 receptor antagonists based on the genetic algorithm for data preprocessing prior to application of the pls linear regression method and design of the new compounds using in silico virtual screening. Molecules 16, 1928–1935 (2011).
73. Sadeghi, F., Afkhami, A., Madrakian, T. & Ghavami, R. Computational study to select the capable anthracycline derivatives through an overview of drug structure-specificity and cancer cell line-specificity. Chem. Pap. 75, 523–538 (2021).
74. Devinyak, O., Havrylyuk, D. & Lesyk, R. 3D-MoRSE descriptors explained. J. Mol. Graph. Model. 54, 194–203 (2014).

Author contributions
F.S. did modeling work, F.S., A.A., and T.M. wrote the manuscript, F.S. and R.G. contributed equally to prepare figures, tables, and supplementary information and all authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.
