Draft genomes of four enterotoxigenic Escherichia coli (ETEC) clinical isolates from China and Bangladesh

Fei Liu¹², Xi Yang¹, Zhiyun Wang¹, Matilda Nicklasson³, Firdausi Qadri⁴, Yong Yi⁵, Yuying Zhu¹, Na Lv¹, Jing Li¹, Ruifen Zhang¹, Huijuan Guo¹, Baoli Zhu¹², Åsa Sjöling³⁶* and Yongfei Hu¹²*

Abstract

Background: Enterotoxigenic Escherichia coli (ETEC) is an important pathogen that causes childhood and travelers’ diarrhea. Here, we present the draft genomes of four ETEC isolates recovered from stool specimens of patients with diarrhea in Beijing, China and Dhaka, Bangladesh, respectively.

Results: We obtained the draft genomes of ETEC strains CE516 and CE549 isolated in China, and E1777 and E2265 isolated in Bangladesh with a length of 5.1 Mbp, 4.9 Mbp, 5.1 Mbp, and 5.0 Mbp, respectively. Phylogenetic analysis indicated that the four strains grouped with the classical Escherichia coli phylogenetic groups A and B1 and three of them including a multi drug-resistant Chinese isolate (CE549) belonged to two major ETEC lineages distributed globally. The heat stable toxin (ST) structural gene (estA) was present in all strains except in strain CE516, and the heat labile toxin (LT) operon (eltAB) was present in all four genomes. Moreover, different resistance gene profiles were found between the ETEC strains.

Conclusions: The draft genomes of the two isolates CE516 and CE549 represent the first genomes of ETEC reported from China. Though we revealed that ETEC is uncommon in Beijing, China, however, when it does occur, multi-drug resistance and ESBL positive isolates might pose a specific public health risk. Furthermore, this study advances our understanding of prevalence and antibiotic resistance of ETEC in China and adds to the number of sequenced strains from Bangladesh.

Keywords: ETEC, Virulence factors, Antibiotic resistance

Background

ETEC infections are an important cause of childhood diarrhea resulting in significant morbidity and mortality, primarily among children aged <5 years living in developing countries [1] as well as travelers visiting these countries [2]. ETEC is characterized by the presence of the heat-labile toxin (LT) and/or the heat-stable toxin (ST), both of which are plasmid encoded [3]. The presence of virulence factors such as enterotoxins and colonization factors differentiate ETEC from other categories of diarrheagenic E. coli. [4]. Colonization factors (CFs) enable ETEC bacteria to adhere to the intestinal epithelium [5]. At present more than 25 different CFs have been identified [5]. In addition to the CFs, other putative factors involved in ETEC pathogenesis were also identified, such as EtpA and EatA. EtpA can act as a bridge between the bacterial flagella and host epithelial cells [6] and EatA is a protein of the serine protease autotransporters of the Enterobacteriaceae (SPATE) family [7].

For a long time E. coli H10407 and E24377A were the only two ETEC strains infecting humans that have their genomes completely sequenced together with a draft genome of ETEC strain B7A [8,9]. Recently whole genome sequences of additional draft genomes were published [10]. A comprehensive analysis of 362 ETEC genomes from strains isolated globally over three decades identified that ETEC distribute into several conserved monophyletic
lineages that have distributed globally [11]. In this study we analysed four additional ETEC strains with the aim to compare additional ETEC isolated in China and Bangladesh with the global collection and to better understand the dissemination of the pathogen. We also included two additional Bangladeshi strains to increase the number of sequenced genomes from Bangladeshi ETEC strains.

Methods

Strain selection

To assess the frequency of ETEC in Beijing, China, we investigated patients presenting with acute watery diarrhea at four hospitals between 2010 and 2011. This research was approved by the Research Ethics Committee of the Institute of Microbiology, Chinese Academy of Sciences. ETEC isolates were recovered after streaking diarrheal samples on to MacConkey agar followed by PCR confirmation for ETEC-specific enterotoxins [12]. In total, 880 cases were enrolled and tested for ETEC but ETEC was only recovered from three cases (0.3%). The two ETEC isolates CE516 and CE549 from China were recovered from stool of patients that tested negative for *Vibrio cholerae*, *Shigella* spp and *Salmonella* spp. CE549 expressed the heat-labile enterotoxin (LT) and the human heat-stable enterotoxin (STh) in combination with CFs CS2, CS3 and CS21; CE516 expressed LT and CS6, CS8. Antimicrobial susceptibility was determined using the VITEK 2 Gram Negative Susceptibility Test Cards AST-GN04 and AST-GN 13 (Biomerieux, Marcy l’Etoile France). CE549 was resistant to 14 of the 22 antibiotics tested (cefuroxime axetil, sulfamethoxazole, ampicillin, tobramycin, ceftriaxone, amoxicillin, cefuroxime, cefazolin, ceftriaxone, cefepime, gentamicin, ciprofloxacin, and extended spectrum beta-lactamase (ESBL) positive), while CE516 showed sensitive to all 22 antibiotics and was ESBL negative.

The two ETEC isolates E1777 and E2265 were collected from adult Bangladeshi patients that sought medical attention for severe diarrhea in hospital facilities in April 2005 and March 2006 during the bi-annual ETEC epidemic peaks in Dhaka, Bangladesh [13]. Stool samples were confirmed to be negative for *Vibrio cholerae*, *Shigella* spp and *Salmonella* spp. MacConkey agar plates were used for identification of lactose fermenting *E. coli* like colonies selection followed by PCR confirmation for ETEC [12]. The strains were further characterized by immunodiagnostic methods for toxins and colonization factors [12]. Both isolates expressed the common virulence factor combination of the enterotoxins heat labile toxin LT and heat stable toxin STh and the CFs CS5 and CS6.

Genome sequencing, assembly and annotation

DNA was extracted from bacterial cells cultured in Luria broth (LB) medium using the DNA Tissue and Blood kit (Qiagen, Duesseldorf, Germany). Genome sequencing work was carried out at the Microbial Genome Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing. The genome sequences of each ETEC isolate were generated using paired-end libraries with 350 ~ 400 bp inserts on an Illumina GAIIX (Illumina, San Diego, CA, USA). The detailed methods for genome assembly were described in another paper [14]. Genome sequences were annotated by using Subsystem Technology (RAST) [15]. The functions of predicted protein-coding genes were then annotated through comparisons with the databases of NCBI-NR, and COG. To search the antibiotic resistance genes, the protein-coding sequences were aligned against Antibiotic Resistance Database.

Table 1 Reference strains used for this study

Strain	GenBank BioSample	Accession number	Collection date	Isolation source	Genome size (bp)	GC content
B7A	SAMN02435852	NZ_AAJT020000001	\	\	5,300,242	50.7%
E24377A	SAMN02606038	NC_0097861	\	\	5,249,288	50.6%
H10407	SAMEA22272237	NC_0176331	prior to 1973	\	5,325,888	50.7%
IA39	SAMEA3138234	NC_0117501	\	\	5,132,068	50.6%
O127 H6	SAMEA1705959	NC_0116011	1969	\	5,069,678	50.5%
O157 H7	SAMEA2203441	NC_0113501	\	\	5,704,171	50.4%
O157 H7	SAMEA2606902	NC_0066552	\	\	5,620,522	50.4%
O157 H7	SAMEA2604255	NC_0130081	\	\	5,622,737	50.5%
O157 H7	SAMEA2604066	NC_0104851	\	\	5,215,377	50.5%
TW1058	SAMEA2436015	NZ_AELA010000001	\	\	5,243,318	50.6%
TW10722	SAMEA2436011	NZ_AELB010000001	\	\	5,689,893	50.5%
TW10828	SAMEA2435898	NZ_AELC010000001	\	\	5,280,267	50.6%
ARDB) [16], using similarity thresholds as recommended in ARDB.

Multiple locus sequence typing (MLST)

We used MLST system including the following seven housekeeping genes: *adk, fumC, gyrB, icd, mdh, purA, and recA* [17], which were extracted from draft genome sequences and were compared to allele profiles in the MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli/documents/primersColi_html).

Comparative genomics

For comparative genomic analysis, genome sequences of 13 previously reported isolates including *Escherichia coli* B7A (GenBank accession number NZ_AAJT0200001.1), E24377A (NC_009786.1), H10407 (NC_017633.1), IA139 (NC_011750.1), O127 H6 E2348 69 (NC_011601.1), O157 H7 EC4115 (NC_011350.1), O157 H7 EDL933 (NC_002655.2), O157 H7 TW14359 (NC_013008.1), O157 H7 Sakai (NC_002127.1), SMS 3 5 (NC_010485.1), TW10598 (NZ_AELA0100001.1), TW10722 (NZ_AELB0100001.1),

Sample name	Country	MLST	Colonization factors	ST	LT	Read length (bp)	Genome coverage	GC content	Scaffold number
CE516	China	1490	CS6, CS8	-	+	101	300x	50.5%	99
CE549	China	4	CS2, CS3, CS21	+	+	101	300x	50.6%	137
E1777	Bangladesh	443	CS5, CS6	+	+	101	200x	50.4%	150
E2265	Bangladesh	443	CS5, CS6	+	+	101	200x	50.3%	142

Table 2 Genomic characteristics of the 4 ETEC genomes

Subsystem features	Number of CDS present in ETEC strains			
	CE516	CE549	E1777	E2265
Amino Acids and Derivatives	400	391	392	395
Carbohydrates	781	756	752	754
Cell Division and Cell Cycle	39	40	38	37
Cell Wall and Capsule	267	273	272	273
Cofactors, Vitamins, Prosthetic Groups, Pigments	285	285	287	284
DNA Metabolism	129	147	153	134
Dormancy and Sporulation	4	5	5	5
Fatty Acids, Lipids, and Isoprenoids	142	131	132	131
Iron acquisition and metabolism	22	22	22	22
Membrane Transport	291	190	268	270
Metabolism of Aromatic Compounds	44	5	30	30
Miscellaneous	67	63	66	64
Motility and Chemotaxis	80	130	80	80
Nitrogen Metabolism	77	75	77	77
Nucleosides and Nucleotides	146	150	147	144
Phages, Prophages, Transposable elements, Plasmids	130	32	160	146
Phosphorus Metabolism	53	53	53	53
Photosynthesis	0	0	0	0
Potassium metabolism	29	29	28	30
Protein Metabolism	299	290	298	300
Regulation and Cell signaling	160	156	160	163
Respiration	192	190	194	192
RNA Metabolism	248	251	250	250
Secondary Metabolism	27	26	26	26
Stress Response	184	181	186	184
Sulfur Metabolism	59	54	56	56
Virulence, Disease and Defense	109	108	110	130
and TW10828 (NZ_AELC01000000.1) were downloaded from the NCBI website (Table 1). Multiple sequence alignments of *Escherichia coli* genomes were performed with Mugsy [18]. The trees were constructed based on core SNPs (single nucleotide polymorphisms) from whole genome alignment by using the maximum-likelihood method in Phylogeny Inference Package (http://evolution.genetics.washington.edu/phylip.html). The map of ORF comparisons among *E. coli* genomes was constructed using Circos [19].

Quality assurance
The genomic DNA was isolated from pure bacterial isolate and was further confirmed with 16S rRNA gene sequencing. Bioinformatic assessment of potential contamination of the genomic library by allochthonous microorganisms was done using PGAAP and RAST annotation system.

Initial findings

Genome characteristics
Through genome assembly, we obtained 99 scaffolds of 5,068,634 bp for CE516, 137 scaffolds of 4,859,890 bp for CE549, 150 scaffolds of 5,117,746 bp for E1777, and 142 scaffolds of 4,946,932 bp for E2265 (Table 2). RAST annotation of the whole genome indicated the presence of 611, 590, 605, and 605 SEED subsystems in CE516, CE549, E1777, and E2265, respectively. Table 3 shows the comparison of genomic features of the four sequenced ETEC genomes.

Phylogenetic analysis
A maximum-likelihood tree of the sequenced 4 genomes and 13 publicly available *Escherichia coli* complete genomes which represent the classical phylogenetic groups (A, B1, B2, D, and E) were created based on core SNPs from whole genome alignment (Figure 1). The sequenced strains in this study grouped with the classical *Escherichia coli* phylogenetic groups A and B1. Specifically, strains CE549, H10407 and TW10598 which belong to group A were grouped together, while other sequenced strains which belong to group B1 as well as the previously sequenced strains formed a clade. Strains CE549 and TW10598 are closely related to each other, while strains E1777 and E2265 are closely related to each other. MLST analysis was used to compare the strains to a global collection of ETEC [11]. Three strains were found to belong to the major lineages described in ETEC [11]. Strains E1777 and E2265 belong to the global lineage L5 which express LT STh CS5 + CS5, while strain CE156, the multi drug-resistant isolate belongs to the conserved ETEC lineage L2 that is distributed globally [11]. The Chinese strain CS516 belonged to a MLST type previously identified in Bangladeshi and Egyptian ETEC strains [11].

Genomic variants among ETEC strains
We compared proteins from the 4 draft genomes and 6 references within groups A and B1 with that from H10407 using BLASTP and revealed many large variable regions (VR1 to VR10) (Figure 2). Among these VRs, VR3 and VR10 (regions of 5,072 to 5,121 kb) were predicted to be prophage loci which were highly variable among all strains. Interestingly, all strains within group B1 lack VR7 gene cluster encoding general secretory pathway associated genes. In addition, region 2,405 to 2,414 kb adjacent to VR4, which encoded ribitol metabolism related genes, was present within group A but not detected within group B1.

Figure 1 Phylogenetic relationships of *E. coli* strains based on SNPs from whole genome sequences. The trees were constructed by the maximum-likelihood method. Scale bar indicates nucleotides substitutions per site.
Virulence factors

The strains were analyzed for presence of known ETEC virulence factors. Strains E1777, E2265, and CE549 contained both LT and ST genes (Table 4). The ST structural gene (*estA*) was present in all strains except in strain CE516, while the LT structural gene (*eltA*) was present in all four genomes. In addition, genes *clyA* (cytolysin), *eatA* (serine protease autotransporter), and *ecpA* (pilus subunit) were also present in all of the 4 ETEC strains, but genes *leoA* (accessory protein for LT secretion), *tibA* (autotransporter), and *tia* (surface protein) were absent in all genomes. Only CE549 contained the complete ~14 kb operon encoding longus known as a type IV pilus [20]. The *etpA* gene, which mediates adhesion between ETEC flagella and host cells [6], was present only in CE549 but absent in other strains. These specific virulence factors present in CE549 may increase its virulence in humans, but their functional effects remain to be further determined.

![Figure 2 ORF comparisons of E. coli genomes.](image)

Table 4 Virulence factors present or absent in the 4 ETEC genomes

Virulence factor	CE516	CE549	E1777	E2265
clyA	1	1	1	1
eatA	1	1	1	1
ecpA	1	1	1	1
eltA	1	1	1	1
estA	0	1	1	1
etpA	0	1	0	0
fimH	1	1	1	1
leoA	0	0	0	0
lngA	0	1	0	0
tia	0	0	0	0
tibA	0	0	0	0

"1" and "0" denotes the presence and absence of the corresponding virulence factors.
Antibiotic resistance genes
We compared all the protein-coding genes from the 4 ETEC strains with known antibiotic resistance genes [16] and found many kinds of antibiotic resistance genes, such as macrolide, tetracycline, fosfomycin and polymyxin resistance genes (Table 5), most of which were annotated as Multidrug resistance efflux pump. Interestingly, strain CE549 has two tetracycline resistance genes that were not identified in the other 3 isolates. In addition, different resistance genes profiles were found between ETEC strains from different countries. For instance, the resistant type EmrE was only identified in the two strains isolated from China.

Future directions
This study analyzed the prevalence of ETEC in Beijing, China and it was found that ETEC is not common. However the results reveal for the first time to our knowledge that a strain that belong to the globally distributed ETEC lineage L2 is multi resistant. This might have important implications for transmission of multi resistant ETEC strains as well as treatment of ETEC diarrhea and needs to be further addressed. The Chinese genomes presented here together with the two novel Bangladeshi ETEC genomes, will be valuable for future comparative genomic analysis of ETEC and will aid in molecular characterization of this important diarrheal pathogen.

Table 5 Putative antibiotic resistance genes in the 4 ETEC strains determined using the antibiotic resistance genes database

Resistance type	Description	Resistance profile	CE516	CE549	E1777	E2265
acrA	Multidrug resistance efflux pump.	aminoglycoside, glycylocycline, beta-lactam, macrolide, acriflavin	*			
acrB						
arnA	The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides.	polymyxin				
bacA	Undecaprenyl pyrophosphate phosphatase, which consists in the sequestration of Undecaprenyl pyrophosphate.	bacitracin				
bcr						
bl1_ec	Class C beta-lactamase.	cephalosporin	*			
emrD	Multidrug resistance efflux pump.					
emrE	aminoglycoside					
ksgA	Its inactivation leads to kasugamycin resistance.	kasugamycin	*			
macB	Macrolide-specific efflux system.	macrolide	*			
mdrA						
mdrE	Multidrug resistance efflux pump.	doxorubicin, erythromycin	*			
mdtF						
mdtG	Multidrug resistance efflux pump.	deoxycholate, fosfomycin	*			
mdtH						
mdtK	enoxacin, norfloxacin					
mdtL	chloramphenicol					
mdtM	chloramphenicol, acriflavin, norfloxacin					
mdtN	Multidrug resistance efflux pump.	t-chloride, acriflavine, puromycin	*			
mdtO						
mdtP						
rosB	Efflux pump/potassium antiporter system. RosB: Potassium antiporter.	fosmidomycin	*			
tetC	Major facilitator superfamily transporter, tetracycline efflux pump.	tetracycline				
tolC	Multidrug resistance efflux pump.	aminoglycoside, glycylocycline, beta-lactam, macrolide, acriflavin	*			

* means one homolog of the antibiotic resistance gene is found.
Availability of supporting data

The genome sequences of ETEC strains CE516, CE549, E1777 and E2265 reported in this paper have been deposited in the GenBank under accession numbers JTGm00000000, JTGk00000000, JTHi00000000 and JUBB00000000, respectively.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FL interpreted the sequencing data and prepared the manuscript. NL and YYZ generated the sequencing data. BLZ, YFH and ÅS participated in all discussions of data analysis and manuscript revisions. ZW, MN and ÅS analyzed the stool samples. FL, XY, ZW, FQ, YY, JL, RFZ, HKG, YFH, ÅS and BLZ were involved in overall experimental design. All authors have read the manuscript and approved.

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant 31270168 and 81401701), the National Basic Research Program of China (973 Program grant 201C5B04800), the Beijing Municipal Natural Science Foundation (1512019), the Swedish Research Council (grant no 521-2011-3435) and the Swedish Research Links (348-2011-7292) to ÅS and BLZ.

Author details

1. CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
2. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China.
3. Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 405 30 Göteborg, Sweden.
4. International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 126, Dhaka 1000, Bangladesh.
5. Clinical Diagnostic Center, 306nd Hospital of the People’s Liberation Army, Beijing 100101, PR China.
6. Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden.

Received: 19 December 2014 Accepted: 19 March 2015
Published online: 08 April 2015

References

1. Qadir F, Svennerholm AM, Faruque AS, Sack RB. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev. 2005;18:465–83.
2. Black RE. Epidemiology of traveler’s diarrhea and relative importance of various pathogens. Rev Infect Dis. 1990;12 Suppl 1:573–9.
3. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinhland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect. 2010;12:289–98.
4. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142–201.
5. Gaastra W, Svennerholm AM. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol. 1996;4:444–52.
6. Roy K, Hilliard GM, Hamilton DJ, Luo J, Ostmann MM, Fleckenstein JM. Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature. 2009;457:594–8.
7. Henderson IR, Cappello R, Nataro JP. Autotransporter proteins, evolution and redefining protein secretion. Trends Microbiol. 2000;8:29–32.
8. Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, Cunningham AF, et al. A commensal gone bad: complete genome sequence of the prototypal enterotoxigenic Escherichia coli strain H10407. J Bacteriol. 2010;192:5822–31.
9. Rasko DA, Rosovitz MJ, Myers GG, Mongodin EF, Fricker WF, Gajer P, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli communal and pathogenic isolates. J Bacteriol. 2008;190:6881–93.
10. Sahil JW, Steinland H, Redman JC, Angiuoli SV, Nataro JP, Sommerfelt H et al. A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovarspecific conservation. Infect Immun. 2011;79:950–60.
11. von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A, Thomson NR, et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet. 2014;46:1321–6.
12. Sjoling A, Wklund G, Savarino SJ, Cohen DI, Svennerholm AM. Comparative analyses of phenotypic and genotypic methods for detection of enterotoxigenic Escherichia coli toxins and colonization factors. J Clin Microbiol. 2007;45:3295–301.
13. Nicklason M, Sjoling A, von Mentzer A, Qadri F, Svennerholm AM. Expression of colonization factor CSS of enterotoxigenic Escherichia coli (ETEC) is enhanced in vivo and by the bile component Na glycocholate hydrate. PLoS One. 2012;7:e35827.
14. Liu F, Hu Y, Wang Q, Li HM, Gao GF, Liu CH, et al. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genomics. 2014;15:469.
15. Aziz RK, Bartels D, Best AA, DeLongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
16. Liu B, Pop M, ARDB—Antibiotic Resistance Genes Database. Nucleic Acids Res. 2009;37:D443–7.
17. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60:1136–51.
18. Angiuoli SV, Salberg CL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2010;26:334–42.
19. Kowienieki M, Schein J, Brod I, Connoni J, Gascoyne R, Honman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645.
20. Gomez-Duarte OG, Chattopadhyay S, Weissman SJ, Giron JA, Kaper JB, Sokurenko EV. Genetic diversity of the gene cluster encoding longus, a type IV pilus of enterotoxigenic Escherichia coli. J Bacteriol. 2007;189:9145–9.