Strong Insertion of a Contra-continuous Function between Two Comparable Contra-precontinuous (Contra-semi-continuous) of Real-valued Functions

Majid Mirmiran¹ and Binesh Naderi²

¹Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
e-mail: mirmir@sci.ui.ac.ir

²Department of General Courses, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
e-mail: naderi@mng.mui.ac.ir

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

1. Introduction

The concept of a preopen set in a topological space was introduced by Corson and Michael in 1964 [4]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq \text{Int} (\text{Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$. The term, preopen, was used for the first time by Mashhour et al. [21], while the concept of a, locally dense, set was introduced by Corson and Michael [4].
The concept of a semi-open set in a topological space was introduced by Levine in 1963 [18]. A subset \(A \) of a topological space \((X, \tau) \) is called semi-open [10] if \(A \subseteq Cl(\text{Int}(A)) \). A set \(A \) is called semi-closed if its complement is semi-open or equivalently if \(\text{Int}(Cl(A)) \subseteq A \).

A generalized class of closed sets was considered by Maki in [20]. He investigated the sets that can be represented as union of closed sets and called them \(V \)-sets. Complements of \(V \)-sets, i.e., sets that are intersection of open sets are called \(\Lambda \)-sets [20].

Recall that a real-valued function \(f \) defined on a topological space \(X \) is called \(A \)-continuous [28] if the preimage of every open subset of \(\mathbb{R} \) belongs to \(A \), where \(A \) is a collection of subsets of \(X \). Most of the definitions of function used throughout this paper are consequences of the definition of \(A \)-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

Dontchev in [6] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 12, 13, 26].

Hence, a real-valued function \(f \) defined on a topological space \(X \) is called contra-continuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of every open subset of \(\mathbb{R} \) is closed (resp. semi-closed, pre-closed) in \(X \) [6].

Results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that \(\Lambda \)-sets or kernel of sets are open [20].

If \(g \) and \(f \) are real-valued functions defined on a space \(X \), we write \(g \leq f \) in case \(g(x) \leq f(x) \) for all \(x \) in \(X \).

The following definitions are modifications of conditions considered in [16].

A property \(P \) defined relative to a real-valued function on a topological space is a \(cc \)-property provided that any constant function has property \(P \) and provided that the sum of a function with property \(P \) and any contra-continuous function also has property \(P \). If \(\mathbb{R} \)
and P_2 are cc-properties, the following terminology is used: (i) A space X has the weak cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g \leq h \leq f$. (ii) A space X has the strong cc-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2, then there exists a contra-continuous function h such that $g \leq h \leq f$ and if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$.

In this paper, for a topological space whose Λ-sets or kernel of sets are open, is given a sufficient condition for the weak cc-insertion property. Also for a space with the weak cc-insertion property, we give necessary and sufficient conditions for the space to have the strong cc-insertion property. Several insertion theorems are obtained as corollaries of these results. In addition, the insertion and strong insertion of a contra-α-continuous function and insertion of a contra-continuous function between two comparable real-valued functions has also recently considered by the authors in [22, 23, 24].

2. The Main Result

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.

The abbreviations cc, cpc and csc are used for contra-continuous, contra-precontinuous and contra-semi-continuous, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^Λ and A^V as follows:

$$A^\Lambda = \bigcap \{O : O \supseteq A, O \in (X, \tau)\} \text{ and } A^V = \bigcup \{F : F \subseteq A, F^c \in (X, \tau)\}.$$

In [7, 19, 25], A^Λ is called the kernel of A.

The family of all preopen, preclosed, semi-open and semi-closed will be denoted by $pO(X, \tau)$, $pC(X, \tau)$, $sO(X, \tau)$, and $sC(X, \tau)$, respectively.

We define the subsets $p(A^\Lambda)$, $p(A^V)$, $s(A^\Lambda)$ and $s(A^V)$ as follows:

$$p(A^\Lambda) = \bigcap \{O : O \supseteq A, O \in pO(X, \tau)\}.$$
\[p(A^V) = \bigcup \{ F : F \subseteq A, F \in pC(X, \tau) \}. \]

\[s(A^\Lambda) = \bigcap \{ O : O \supseteq A, O \in sO(X, \tau) \}. \]

and

\[s(A^V) = \bigcup \{ F : F \subseteq A, F \in sC(X, \tau) \}. \]

\(p(A^\Lambda) \) (resp. \(s(A^\Lambda) \)) is called the prekernel (resp. semi-kernel) of \(A \).

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If \(\rho \) is a binary relation in a set \(S \), then \(\overline{\rho} \) is defined as follows: \(x \overline{\rho} y \) if and only if \(y \rho v \) implies \(x \rho v \) and \(u \rho x \) implies \(u \rho y \) for \(u \) and \(v \) in \(S \).

Definition 2.3. A binary relation \(\rho \) in the power set \(P(X) \) of a topological space \(X \) is called a strong binary relation in \(P(X) \) in case \(\rho \) satisfies each of the following conditions:

1. If \(A_i \rho B_j \) for any \(i \in \{ 1, ..., m \} \) and for any \(j \in \{ 1, ..., n \} \), then there exists a set \(C \) in \(P(X) \) such that \(A_i \rho C \) and \(C \rho B_j \) for any \(i \in \{ 1, ..., m \} \) and any \(j \in \{ 1, ..., n \} \).
2. If \(A \subseteq B \), then \(A \overline{\rho} B \).
3. If \(A \rho B \), then \(A^\Lambda \subseteq B \) and \(A \subseteq B^V \).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If \(f \) is a real-valued function defined on a space \(X \) and if \(\{ x \in X : f(x) < \ell \} \subseteq A(f, \ell) \subseteq \{ x \in X : f(x) \leq \ell \} \) for a real number \(\ell \), then \(A(f, \ell) \) is called a lower indefinite cut set in the domain of \(f \) at the level \(\ell \).

We now give the following main result:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions on the topological space \(X \), in which kernel sets are open, with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the
power set of X and if there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \), then \(A(f, t_1) \leq A(g, t_2) \), then there exists a contra-continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \).

Proof. Let \(g \) and \(f \) be real-valued functions defined on the \(X \) such that \(g \leq f \). By hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \), then \(A(f, t_1) \leq A(g, t_2) \).

Define functions \(F \) and \(G \) mapping the rational numbers \(\mathbb{Q} \) into the power set of \(X \) by \(F(t) = A(f, t) \) and \(G(t) = A(g, t) \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then \(F(t_1) \leq F(t_2) \), \(G(t_1) \leq G(t_2) \), and \(F(t_1) \leq G(t_2) \). By Lemmas 1 and 2 of [15] it follows that there exists a function \(H \) mapping \(\mathbb{Q} \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \leq H(t_2) \), \(H(t_1) \leq H(t_2) \) and \(H(t_1) \leq G(t_2) \).

For any \(x \) in \(X \), let \(h(x) = \inf \{ t \in \mathbb{Q} : x \in H(t) \} \).

We first verify that \(g \leq h \leq f \): If \(x \) is in \(H(t) \), then \(x \) is in \(G(r') \) for any \(r' > t \); since \(x \) is in \(G(r') = A(g, r') \) implies that \(g(x) \leq r' \), it follows that \(g(x) \leq t \). Hence \(g \leq h \). If \(x \) is not in \(H(t) \), then \(x \) is not in \(F(r') \) for any \(r' < t \); since \(x \) is not in \(F(r') = A(f, r') \) implies that \(f(x) > r' \), it follows that \(f(x) \geq t \). Hence \(h \leq f \).

Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1, t_2) = H(t_2)^\Lambda \setminus H(t_1)^\Lambda \). Hence \(h^{-1}(t_1, t_2) \) is closed in \(X \), i.e., \(h \) is a contra-continuous function on \(X \).

The above proof used the technique of Theorem 1 in [14].

If a space has the strong \(cc \)-insertion property for \((P_1, P_2)\), then it has the weak \(cc \)-insertion property for \((P_1, P_2)\). The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak \(cc \)-insertion property to satisfy the strong \(cc \)-insertion property.

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 279-295
Theorem 2.2. Let \(P_1 \) and \(P_2 \) be cc-property and \(X \) be a space that satisfies the weak cc-insertion property for \((P_1, P_2) \). Also assume that \(g \) and \(f \) are functions on \(X \) such that
\[g \leq f, \quad g \text{ has property } P_1 \text{ and } f \text{ has property } P_2. \]
The space \(X \) has the strong cc-insertion property for \((P_1, P_2) \) if and only if there exist lower cut sets \(A(f - g, 2^{-n}) \) and there exists a sequence \(\{F_n\} \) of subsets of \(X \) such that (i) for each \(n \), \(F_n \) and \(A(f - g, 2^{-n}) \) are completely separated by contra-continuous functions, and (ii)
\[\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n. \]

Proof. Suppose that there is a sequence \((A(f - g, 2^{-n})) \) of lower cut sets for \(f - g \) and suppose that there is a sequence \(\{F_n\} \) of subsets of \(X \) such that
\[\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n \]
and such that for each \(n \), there exists a contra-continuous function \(k_n \) on \(X \) into \([0, 2^{-n}]\) with \(k_n = 2^{-n} \) on \(F_n \) and \(k_n = 0 \) on \(A(f - g, 2^{-n}) \). The function \(k \) from \(X \) into \([0, 1/4]\) which is defined by
\[k(x) = 1/4 \sum_{n=1}^{\infty} k_n(x) \]
is a contra-continuous function by the Cauchy condition and the properties of contra-continuous functions, (1) \(k^{-1}(0) = \{x \in X : (f - g)(x) = 0\} \) and (2) if \((f - g)(x) > 0 \), then \(k(x) < (f - g)(x) \): In order to verify (1), observe that if \((f - g)(x) = 0 \), then \(x \in A(f - g, 2^{-n}) \) for each \(n \) and hence \(k_n(x) = 0 \) for each \(n \). Thus \(k(x) = 0 \).
Conversely, if \((f - g)(x) > 0 \), then there exists an \(n \) such that \(x \in F_n \) and hence \(k_n(x) = 2^{-n} \). Thus \(k(x) \neq 0 \) and this verifies (1). Next, in order to establish (2), note that
\[\{x \in X : (f - g)(x) = 0\} = \bigcap_{n=1}^{\infty} A(f - g, 2^{-n}) \]
and that $(A(f - g, 2^{-n}))$ is a decreasing sequence. Thus if $(f - g)(x) > 0$, then either $x \not\in A(f - g, 1/2)$ or there exists a smallest n such that $x \not\in A(f - g, 2^{-n})$ and $x \in A(f - g, 2^{-j})$ for $j = 1, ..., n - 1$.

In the former case,

$$k(x) = \frac{1}{4} \sum_{n=1}^{\infty} k_n(x) \leq \frac{1}{4} \sum_{n=1}^{\infty} 2^{-n} < 1/2 \leq (f - g)(x),$$

and in the latter,

$$k(x) = \frac{1}{4} \sum_{j=n}^{\infty} k_j(x) \leq \frac{1}{4} \sum_{j=n}^{\infty} 2^{-j} < 2^{-n} \leq (f - g)(x).$$

Thus $0 \leq k \leq f - g$ and if $(f - g)(x) > 0$, then $(f - g)(x) > k(x) > 0$. Let $g_1 = g + (1/4)k$ and $f_1 = f - (1/4)k$. Then $g \leq g_1 \leq f_1 \leq f$ and if $g(x) < f(x)$, then $g(x) < g_1(x) < f_1(x) < f(x)$.

Since P_1 and P_2 are cc-properties, then g_1 has property P_1 and f_1 has property P_2. Since by hypothesis X has the weak cc-insertion property for (P_1, P_2), then there exists a contra-continuous function h such that $g_1 \leq h \leq f_1$. Thus $g \leq h \leq f$ and if $g(x) < f(x)$, then $g(x) < h(x) < f(x)$. Therefore X has the strong cc-insertion property for (P_1, P_2). (The technique of this proof is by Lane [16].)

Conversely, assume that X satisfies the strong cc-insertion for (P_1, P_2). Let g and f be functions on X satisfying P_1 and P_2 respectively such that $g \leq f$. Thus there exists a contra-continuous function h such that $g \leq h \leq f$ and such that if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$. We follow an idea contained in Powderly [27]. Now consider the functions 0 and $f - h$. 0 satisfies property P_1 and $f - h$ satisfies property P_2. Thus there exists a contra-continuous function h_1 such that $0 \leq h_1 \leq f - h$ and if $0 < (f - h)(x)$ for any x in X, then $0 < h_1(x) < (f - h)(x)$. We next show that

$$\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}.$$
If \(x \) is such that \((f - g)(x) > 0\), then \(g(x) < f(x) \). Therefore \(g(x) < h(x) < f(x) \). Thus \(f(x) - h(x) > 0 \) or \((f - h)(x) > 0\). Hence \(h_1(x) > 0 \). On the other hand, if \(h_1(x) > 0 \), then since \((f - h) \geq h_1\) and \(f - g \geq f - h \), therefore \((f - g)(x) > 0\). For each \(n \), let

\[
A(f - g, 2^{-n}) = \{ x \in X : (f - g)(x) \leq 2^{-n} \},
\]

\[
F_n = \{ x \in X : h_1(x) \geq 2^{-n+1} \}
\]

and

\[
k_n = \sup \{ \inf \{ h_1, 2^{-n+1} \}, 2^{-n} \} - 2^{-n}.
\]

Since \(\{ x \in X : (f - g)(x) > 0 \} = \{ x \in X : h_1(x) > 0 \} \), it follows that

\[
\{ x \in X : (f - g)(x) > 0 \} = \bigcup_{n=1}^{\infty} F_n.
\]

We next show that \(k_n \) is a contra-continuous function which completely separates \(F_n \) and \(A(f - g, 2^{-n}) \). From its definition and by the properties of contra-continuous functions, it is clear that \(k_n \) is a contra-continuous function. Let \(x \in F_n \). Then, from the definition of \(k_n \), \(k_n(x) = 2^{-n} \). If \(x \in A(f - g, 2^{-n}) \), then since \(h_1 \leq f - h \leq f - g \), \(h_1(x) \leq 2^{-n} \). Thus \(k_n(x) = 0 \), according to the definition of \(k_n \). Hence \(k_n \) completely separates \(F_n \) and \(A(f - g, 2^{-n}) \). \(\square \)

Theorem 2.3. Let \(P_1 \) and \(P_2 \) be cc-properties and assume that the space \(X \) satisfied the weak cc-insertion property for \((P_1, P_2)\). The space \(X \) satisfies the strong cc-insertion property for \((P_1, P_2)\) if and only if \(X \) satisfies the strong cc-insertion property for \((P_1, cc)\) and for \((cc, P_2)\).

Proof. Assume that \(X \) satisfies the strong cc-insertion property for \((P_1, cc)\) and for \((cc, P_2)\). If \(g \) and \(f \) are functions on \(X \) such that \(g \leq f \), \(g \) satisfies property \(P_1 \), and \(f \) satisfies property \(P_2 \), then since \(X \) satisfies the weak cc-insertion property for \((P_1, P_2)\) there is a contra-continuous function \(k \) such that \(g \leq k \leq f \). Also, by hypothesis there exist contra-continuous functions \(h_1 \) and \(h_2 \) such that \(g \leq h_1 \leq k \) and if \(g(x) < k(x) \),

http://www.earthlinepublishers.com
then \(g(x) < h_1(x) < k(x) \) and such that \(k \leq h_2 \leq f \) and if \(k(x) < f(x) \), then \(k(x) < h_2(x) < f(x) \). If a function \(h \) is defined by \(h(x) = (h_2(x) + h_1(x))/2 \), then \(h \) is a contra-continuous function, \(g \leq h \leq f \). and if \(g(x) < f(x) \), then \(g(x) < h(x) < f(x) \). Hence \(X \) satisfies the strong cc-insertion property for \((P_1, P_2) \).

The converse is obvious since any contra-continuous function must satisfy both properties \(P_1 \) and \(P_2 \). (The technique of this proof is by Lane [17].)

\[\square \]

3. Applications

Before stating the consequences of Theorems 2.1, 2.2, and 2.3 we suppose that \(X \) is a topological space whose kernel sets are open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \) of \(X \), there exist closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \), then \(X \) has the weak cc-insertion property for \((cpc, cpc) \) (resp. \((csc, csc) \)).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \), such that \(f \) and \(g \) are \(cpc \) (resp. \(csc \)), and \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(p(A^\Lambda) \subseteq p(B^V) \) (resp. \(s(A^\Lambda) \subseteq s(B^V) \)), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \). If \(t_1 \) and \(t_2 \) are any elements of \(Q \) with \(t_1 < t_2 \), then

\[A(f, t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \subseteq \{ x \in X : g(x) < t_2 \} \subseteq A(g, t_2); \]

since \(\{ x \in X : f(x) \leq t_1 \} \) is a preopen (resp. semi-open) set and since \(\{ x \in X : g(x) < t_2 \} \) is a preclosed (resp. semi-closed) set, it follows that \(p(A(f, t_1)^\Lambda) \subseteq p(A(g, t_2)^V) \) (resp. \(s(A(f, t_1)^\Lambda) \subseteq s(A(g, t_2)^V) \). Hence \(t_1 < t_2 \) implies that \(A(f, t_1) \rho A(g, t_2) \). The proof follows from Theorem 2.1. \[\square \]

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \), there exist closed sets \(F_1 \) and \(F_2 \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \), then every contra-precontinuous (resp. contra-semi-continuous) function is contra-continuous.
Proof. Let f be a real-valued contra-precontinuous (resp. contra-semi-continuous) function defined on X. Set $g = f$, then by Corollary 3.1, there exists a contra-continuous function h such that $g = h = f$. □

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 of X, there exist closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$, then X has the cc-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are cpc (resp. csc), and $g < f$. Set $h = (f + g)/2$, thus $g \leq h \leq f$ and if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$. Also, by Corollary 3.2, since g and f are contra-continuous functions hence h is a contra-continuous function. □

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is semi-open, there exist closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$, then X has the weak cc-insertion property for (cpc, csc) and (csc, cpc).

Proof. Let g and f be real-valued functions defined on X, such that g is cpc (resp. csc) and f is csc (resp. cpc), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $s(A^\lambda) \subseteq p(B^V)$ (resp. $p(A^\lambda) \subseteq s(B^V)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \subseteq \{ x \in X : g(x) < t_2 \} \subseteq A(g, t_2);$$

since $\{ x \in X : f(x) \leq t_1 \}$ is a semi-open (resp. preopen) set and since $\{ x \in X : g(x) < t_2 \}$ is a preclosed (resp. semi-closed) set, it follows that $s(A(f, t_1)^\lambda) \subseteq p(A(g, t_2)^V)$ (resp. $p(A(f, t_1)^\lambda) \subseteq s(A(g, t_2)^V)$). Hence $t_1 < t_2$, implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 2.1. □

Before stating consequences of Theorems 2.2, 2.3 we state and prove the necessary lemmas.
Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is semi-open, there exist closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.

(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed (resp. semi-closed) subset F of X, then there exists a closed subset H of X such that $G \subseteq H \subseteq H^\Lambda \subseteq F$.

Proof. (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are semi-open (resp. preopen) and preclosed (resp. semi-closed) subsets of X, respectively. Hence, F^c is a preopen (resp. semi-open) and $G \cap F^c = \emptyset$.

By (i) there exists two disjoint closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F_1^c \subseteq F_2$. But

$$F_1^c \subseteq F_2 \Rightarrow F_2^c \subseteq F,$$

and

$$F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c$$

hence

$$G \subseteq F_1 \subseteq F_2^c \subseteq F$$

and since F_2^c is an open subset containing F_1, we conclude that $F_1^\Lambda \subseteq F_2^\Lambda$, i.e.,

$$G \subseteq F_1 \subseteq F_1^\Lambda \subseteq F.$$

By setting $H = F_1$, condition(ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is preopen and G_2 is semi-open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is a preclosed subset of X. Hence by (ii) there exists a closed set H such that $G_2 \subseteq H \subseteq H^\Lambda \subseteq G_1^c$.

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 279-295
But

\[H \subseteq H^\Lambda \Rightarrow H \cap (H^\Lambda)^c = \emptyset \]

and

\[H^\Lambda \subseteq G_1^c \Rightarrow G_1 \subseteq (H^\Lambda)^c. \]

Furthermore, \((H^\Lambda)^c\) is a closed subset of \(X\). Hence \(G_2 \subseteq H, G_1 \subseteq (H^\Lambda)^c\) and \(H \cap (H^\Lambda)^c = \emptyset\). This means that condition (i) holds. \(\square\)

Lemma 3.2. Suppose that \(X\) is a topological space. If each pair of disjoint subsets \(G_1, G_2\) of \(X\), where \(G_1\) is preopen and \(G_2\) is semi-open, can be separated by closed subsets of \(X\), then there exists a contra-continuous function \(h : X \to [0, 1]\) such that \(h(G_2) = \{0\}\) and \(h(G_1) = \{1\}\).

Proof. Suppose \(G_1\) and \(G_2\) are two disjoint subsets of \(X\), where \(G_1\) is preopen and \(G_2\) is semi-open. Since \(G_1 \cap G_2 = \emptyset\), hence \(G_2 \subseteq G_1^c\). In particular, since \(G_1^c\) is a preclosed subset of \(X\) containing the semi-open subset \(G_2\) of \(X\), by Lemma 3.1, there exists a closed subset \(H_{1/2}\) such that

\[G_2 \subseteq H_{1/2} \subseteq H_{1/2}^\Lambda \subseteq G_1^c. \]

Note that \(H_{1/2}\) is also a preclosed subset of \(X\) and contains \(G_2\), and \(G_1^c\) is a preclosed subset of \(X\) and contains the semi-open subset \(H_{1/2}^\Lambda\) of \(X\). Hence, by Lemma 3.1, there exists closed subsets \(H_{1/4}\) and \(H_{3/4}\) such that

\[G_2 \subseteq H_{1/4} \subseteq H_{1/4}^\Lambda \subseteq H_{1/2} \subseteq H_{1/2}^\Lambda \subseteq H_{3/4} \subseteq H_{3/4}^\Lambda \subseteq G_1^c. \]

By continuing this method for every \(t \in D\), where \(D \subseteq [0, 1]\) is the set of rational numbers that their denominators are exponents of 2, we obtain closed subsets \(H_t\) with the property that if \(t_1, t_2 \in D\) and \(t_1 < t_2\), then \(H_{t_1} \subseteq H_{t_2}\). We define the function \(h\) on \(X\) by \(h(x) = \inf \{t : x \in H_t\}\) for \(x \notin G_1\) and \(h(x) = 1\) for \(x \in G_1\).
Note that for every \(x \in X, \ 0 \leq h(x) \leq 1 \), i.e., \(h \) maps \(X \) into \([0, 1]\). Also, we note that for any \(t \in D, G_2 \subseteq H_t \); hence \(h(G_2) = \{0\} \). Furthermore, by definition, \(h(G_1) = \{1\} \). It remains only to prove that \(h \) is a contra-continuous function on \(X \). For every \(\alpha \in \mathbb{R} \), we have if \(\alpha \leq 0 \), then \(\{ x \in X : h(x) < \alpha \} = \emptyset \) and if \(0 < \alpha \), then \(\{ x \in X : h(x) < \alpha \} = \bigcup \{H_t : t < \alpha\} \), hence, they are closed subsets of \(X \). Similarly, if \(\alpha < 0 \), then \(\{ x \in X : h(x) > \alpha \} = X \) and if \(0 \leq \alpha \), then \(\{ x \in X : h(x) > \alpha \} = \bigcup \{(H_t)^c : t > \alpha\} \), hence, every of them is a closed subset. Consequently \(h \) is a contra-continuous function.

\[\square \]

Lemma 3.3. Suppose that \(X \) is a topological space. If each pair of disjoint subsets \(G_1, G_2 \) of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi-open, can separate by closed subsets of \(X \), and \(G_1 \) (resp. \(G_2 \)) is a closed subsets of \(X \), then there exists a contra-continuous function \(h : X \to [0, 1] \) such that, \(h^{-1}(0) = G_1 \) (resp. \(h^{-1}(0) = G_2 \)) and \(h(G_2) = \{1\} \) (resp. \(h(G_1) = \{1\} \)).

Proof. Suppose that \(G_1 \) (resp. \(G_2 \)) is a closed subset of \(X \). By Lemma 3.2, there exists a contra-continuous function \(h : X \to [0, 1] \) such that, \(h(G_1) = \{0\} \) (resp. \(h(G_2) = \{0\} \)) and \(h(X \setminus G_1) = \{1\} \) (resp. \(h(X \setminus G_2) = \{1\} \)). Hence, \(h^{-1}(0) = G_1 \) (resp. \(h^{-1}(0) = G_2 \)) and since \(G_2 \subseteq X \setminus G_1 \) (resp. \(G_1 \subseteq X \setminus G_2 \)), therefore \(h(G_2) = \{1\} \) (resp. \(h(G_1) = \{1\} \)). \[\square \]

Lemma 3.4. Suppose that \(X \) is a topological space such that every two disjoint semi-open and preopen subsets of \(X \) can be separated by closed subsets of \(X \). The following conditions are equivalent:

(i) For every two disjoint subsets \(G_1 \) and \(G_2 \) of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi-open, there exists a contra-continuous function \(h : X \to [0, 1] \) such that, \(h^{-1}(0) = G_1 \) (resp. \(h^{-1}(0) = G_2 \)) and \(h^{-1}(1) = G_2 \) (resp. \(h^{-1}(1) = G_1 \)).

(ii) Every preopen (resp. semi-open) subset of \(X \) is a closed subsets of \(X \).

(iii) Every preclosed (resp. semi-closed) subset of \(X \) is an open subsets of \(X \).
Proof. (i) ⇒ (ii) Suppose that G is a preopen (resp. semi-open) subset of X. Since \emptyset is a semi-open (resp. preopen) subset of X, by (i) there exists a contra-continuous function $h : X \to [0, 1]$ such that, $h^{-1}(0) = G$. Set $F_n = \left\{ x \in X : h(x) < \frac{1}{n} \right\}$. Then for every $n \in \mathbb{N}$, F_n is a closed subset of X and $\bigcap_{n=1}^{\infty} F_n = \{ x \in X : h(x) = 0 \} = G$.

(ii) ⇒ (i) Suppose that G_1 and G_2 are two disjoint subsets of X, where G_1 is preopen and G_2 is semi-open. By Lemma 3.3, there exists a contra-continuous function $f : X \to [0, 1]$ such that, $f^{-1}(0) = G_1$ and $f(G_2) = \{1\}$. Set $G = \left\{ x \in X : f(x) < \frac{1}{2} \right\}$, $F = \left\{ x \in X : f(x) = \frac{1}{2} \right\}$, and $H = \left\{ x \in X : f(x) > \frac{1}{2} \right\}$. Then $G \cup F$ and $H \cup F$ are two open subsets of X and $(G \cup F) \cap G_2 = \emptyset$. By Lemma 3.3, there exists a contra-continuous function $g : X \to \left[\frac{1}{2}, 1\right]$ such that, $g^{-1}(l) = G_2$ and $g(G \cup F) = \left\{\frac{1}{2}\right\}$. Define h by $h(x) = f(x)$ for $x \in G \cup F$, and $h(x) = g(x)$ for $x \in H \cup F$. Then h is well-defined and a contra-continuous function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to $[0, 1]$. Also, we have $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$.

(ii) ⇔ (iii) By De Morgan law and noting that the complement of every open subset of X is a closed subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets G_1 and G_2 of X, where G_1 is preopen (resp. semi-open) and G_2 is semi-open (resp. preopen), there exists a contra-continuous function $h : X \to [0, 1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$, then X has the strong cc-insertion property for (cpc, csc) (resp. (csc, cpc)).

Proof. Since for every two disjoint subsets G_1 and G_2 of X, where G_1 is preopen (resp. semi-open) and G_2 is semi-open (resp. preopen), there exists a contra-continuous function $h : X \to [0, 1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$, define...
Strong Insertion of a Contra-continuous Function …

\[F_1 = \left\{ x \in X : h(x) < \frac{1}{2} \right\} \quad \text{and} \quad F_2 = \left\{ x \in X : h(x) > \frac{1}{2} \right\}. \]

Then \(F_1 \) and \(F_2 \) are two disjoint closed subsets of \(X \) that contain \(G_1 \) and \(G_2 \), respectively. Hence by Corollary 3.4, \(X \) has the weak \(cc \)-insertion property for \((cpc, csc)\) and \((esc, cpc)\). Now, assume that \(g \) and \(f \) are functions on \(X \) such that \(g \leq f \), \(g \) is \(cpc \) (resp. \(csc \)) and \(f \) is \(cc \). Since \(f - g \) is \(cpc \) (resp. \(csc \)), therefore the lower cut set \(A(f - g, 2^{-n}) = \{ x \in X : (f - g)(x) \leq 2^{-n} \} \) is a preopen (resp. semi-open) subset of \(X \). Now setting \(H_n = \{ x \in X : (f - g)(x) > 2^{-n} \} \) for every \(n \in \mathbb{N} \), then by Lemma 3.4, \(H_n \) is an open subset of \(X \) and we have \(\{ x \in X : (f - g)(x) > 0 \} = \bigcup_{n=1}^{\infty} H_n \) and for every \(n \in \mathbb{N} \), \(H_n \) and \(A(f - g, 2^{-n}) \) are disjoint subsets of \(X \). By Lemma 3.2, \(H_n \) and \(A(f - g, 2^{-n}) \) can be completely separated by contra-continuous functions. Hence by Theorem 2.2, \(X \) has the strong \(cc \)-insertion property for \((cpc, cc)\) (resp. \((csc, cc)\)).

By an analogous argument, we can prove that \(X \) has the strong \(cc \)-insertion property for \((cc, csc)\) (resp. \((cc, cpc)\)). Hence, by Theorem 2.3, \(X \) has the strong \(cc \)-insertion property for \((cpc, csc)\) (resp. \((cpc, cpc)\)).

\[\blacksquare \]

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

[1] A. Al-Omari and M. S. Md. Noorani, Some properties of contra-\(b \)-continuous and almost contra-\(b \)-continuous functions, *European J. Pure. Appl. Math.* 2(2) (2009), 213-230.

[2] F. Brooks, Indefinite cut sets for real functions, *Amer. Math. Monthly* 78 (1971), 1007-1010. https://doi.org/10.1080/00029890.1971.11992929

[3] M. Caldas and S. Jafari, Some properties of contra-\(\beta \)-continuous functions, *Mem. Fac. Sci. Kochi. Univ.* 22 (2001), 19-28.

[4] H. H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8 (1964), 351-360. https://doi.org/10.1215/ijm/1256059678
[5] J. Dontchev, Characterization of some peculiar topological space via A- and B-sets, *Acta Math. Hungar.* 69(1-2) (1995), 67-71. https://doi.org/10.1007/BF01874608

[6] J. Dontchev, Contra-continuous functions and strongly S-closed space, *Internat. J. Math. Math. Sci.* 19(2) (1996), 303-310. https://doi.org/10.1155/S0161171296000427

[7] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets, *Questions Answers Gen. Topology* 15(2) (1997), 259-266.

[8] E. Ekici, On contra-continuity, *Annales Univ. Sci. Budapest* 47 (2004), 127-137.

[9] E. Ekici, New forms of contra-continuity, *Carpathian J. Math.* 24(1) (2008), 37-45.

[10] A. I. El-Maghrabi, Some properties of contra-continuous mappings, *Int. J. General Topol.* 3(1-2) (2010), 55-64.

[11] M. Ganster and I. Reilly, A decomposition of continuity, *Acta Math. Hungar.* 56(3-4) (1990), 299-301. https://doi.org/10.1007/BF01903846

[12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, *Iranian Int. J. Sci.* 2 (2001), 153-167.

[13] S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malaysian Math. Sc. Soc.* 25 (2002), 115-128.

[14] M. Katětov, On real-valued functions in topological spaces, *Fund. Math.* 38 (1951), 85-91.

[15] M. Katětov, Correction to, “On real-valued functions in topological spaces”, *Fund. Math.* 40 (1953), 203-205. https://doi.org/10.4064/fm-40-1-203-205

[16] E. Lane, Insertion of a continuous function, *Pacific J. Math.* 66 (1976), 181-190. https://doi.org/10.2140/pjm.1976.66.181

[17] E. Lane, PM-normality and the insertion of a continuous function, *Pacific J. Math.* 82 (1979), 155-162. https://doi.org/10.2140/pjm.1979.82.155

[18] N. Levine, Semi-open sets and semi-continuity in topological space, *Amer. Math. Monthly* 70 (1963), 36-41. https://doi.org/10.1080/00029890.1963.11990039

[19] S. N. Maheshwari and R. Prasad, On RO-spaces, *Portugal. Math.* 34 (1975), 213-217.

[20] H. Maki, Generalized A-sets and the associated closure operator, *The Special Issue in Commemoration of Prof. Kazuada IKEDA’s Retirement* (1986), 139-146.

[21] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, *Proc. Math. Phys. Soc. Egypt* 53 (1982), 47-53.
[22] M. Mirmiran and B. Naderi, Strong insertion of a contra-α-continuous function between two comparable real-valued functions, *Earthline J. Math. Sci.* 2(1) (2019), 223-239. https://doi.org/10.34198/ejms.2119.223239

[23] M. Mirmiran and B. Naderi, Insertion of a contra-α-continuous function, *Earthline J. Math. Sci.* 2(2) (2019), 383-393. https://doi.org/10.34198/ejms.2219.383393

[24] M. Mirmiran and B. Naderi, Insertion of a contra-continuous function between two comparable real-valued functions, *Earthline J. Math. Sci.* 3(1) (2020), 21-35. https://doi.org/10.34198/ejms.3120.2135

[25] M. Mrsevic, On pairwise R_0 and pairwise R_1 bitopological spaces, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* 30 (1986), 141-145.

[26] A. A. Nasef, Some properties of contra-γ-continuous functions, *Chaos Solitons Fractals* 24 (2005), 471-477. https://doi.org/10.1016/j.chaos.2003.10.033

[27] M. Powderly, On insertion of a continuous function, *Proceedings of the A.M.S.* 81 (1981), 119-120. https://doi.org/10.1090/S0002-9939-1981-0589151-7

[28] M. Przemski, A decomposition of continuity and α-continuity, *Acta Math. Hungar.* 61(1-2) (1993), 93-98. https://doi.org/10.1007/BF01872101