ON LINEAR CHAOS IN FUNCTION SPACES

JOHN M. JIMENEZ AND MARAT V. MARKIN

Abstract. We show that, in $L^p(0, \infty)$ ($1 \leq p < \infty$), bounded weighted translations as well as their unbounded counterparts are chaotic linear operators. We also extend the unbounded case to $C_0(0, \infty)$ and describe the spectra of the weighted translations provided the underlying spaces are complex.

1. Introduction
Extending the classical Rolewicz's result [1] and the results of [2] for the sequence spaces l_p ($1 \leq p < \infty$), we show that, in the space $L^p(0, \infty)$ ($1 \leq p < \infty$), the bounded weighted left translations
\[(T_{w,a}x)(t) = wx(t + a) \quad (|w| > 1, \ a > 0)\]
as well as their unbounded counterparts
\[(T_{w,a}x)(t) = w^t x(t + a)(w > 1, \ a > 0)\]
are chaotic linear operators (the latter forecasted in [2, Remark 3.1]).

The chaoticy of the bounded weighted left translations in $C_0(0, \infty)$ established in [3], we stretch the unbounded case from the sequence space c_0 [2] to the space $C_0[0, \infty)$ of real- or complex-valued functions continuous on $[0, \infty)$ and vanishing at infinity, which is Banach relative to the norm
\[C_0[0, \infty) \ni x \mapsto \|x\|_{\infty} := \sup_{t \geq 0} |x(t)|\]
(also forecasted in [2, Remark 3.1]) and describe the spectra of the weighted translations provided the underlying spaces are complex.

2. Preliminaries

2.1. Hypercyclicity and Chaoticity.
For a (bounded or unbounded) linear operator T in a (real or complex) Banach space X, a nonzero vector
\[x \in C^\infty(T) := \bigcap_{n=0}^{\infty} D(T^n)\]
($D(\cdot)$ is the domain of an operator, $T^0 := I$, I is the identity operator on X) is called hypercyclic if its orbit under T
\[\text{orb}(x,T) := \{T^n x\}_{n \in \mathbb{Z}_+}\]

2020 Mathematics Subject Classification. Primary 47A16, 47B37, 47B38; Secondary 47A10.

Key words and phrases. Hypercyclic vector, periodic point, hypercyclic operator, chaotic operator, spectrum.
(\mathbb{Z}_+ := \{0, 1, 2, \ldots\}) is the set of nonnegative integers) is dense in \(X\).

Linear operators possessing hypercyclic vectors are said to be hypercyclic.

If there exist an \(N \in \mathbb{N} \) (\(\mathbb{N} := \{1, 2, \ldots\}\) is the set of natural numbers) and a vector
\[x \in D(T^N) \quad \text{with} \quad T^N x = x, \]
such a vector is called a periodic point for the operator \(T\) of period \(N\). If \(x \neq 0\), we say that \(N\) is a period for \(T\).

Hypercyclic linear operators with a dense in \(X\) set \(\text{Per}(A)\) of periodic points are said to be chaotic.

See [4–6].

Remarks 2.1.

- In the definition of hypercyclicity, the underlying space is necessarily infinite-dimensional and separable (see, e.g., [9]).

- For a hypercyclic linear operator \(T\), the set \(HC(T)\) of all its hypercyclic vectors is necessarily dense in \(X\), and hence, the more so, is the subspace \(C^\infty(T) \supset HC(T)\).

- Observe that
\[\text{Per}(A) = \bigcup_{N=1}^{\infty} \text{Per}_N(A), \]
where
\[\text{Per}_N(A) = \ker(A^N - I), \quad N \in \mathbb{N} \]
is the subspace of \(N\)-periodic points of \(A\).

Prior to [6, 7], the notions of linear hypercyclicity and chaoticity had been studied exclusively for continuous linear operators on Fréchet spaces, in particular for bounded linear operators on Banach spaces (for a comprehensive survey, see [8, 9]).

In [1], S. Rolewicz provides the first example of hypercyclic bounded linear operators on Banach spaces (see also [9]), which on the (real or complex) sequence space \(l_p\) (\(1 \leq p < \infty\)) of \(p\)-summable sequences or \(c_0\) of vanishing sequences, the latter equipped with the supremum norm
\[c_0 \ni x := (x_k)_{k \in \mathbb{N}} \mapsto \|x\|_\infty := \sup_{k \in \mathbb{N}} |x_k|, \]
are the weighted backward shifts
\[T_w(x_k)_{k \in \mathbb{N}} := w(x_{k+1})_{k \in \mathbb{N}} \]
with \(w \in \mathbb{F} \) (\(\mathbb{F} := \mathbb{R}\) or \(\mathbb{F} := \mathbb{C}\)) such that \(|w| > 1\). Furthermore, Rolewicz’s shifts are established to be chaotic [5].

In [2] (see also [10]), it is shown that the weighted backward shifts
\[T_w x := (w^k x_{k+1})_{k \in \mathbb{N}} \]
with \(w \in F \) such that \(|w| > 1 \) and maximal domain in the (real or complex) sequence spaces \(l_p \ (1 \leq p < \infty) \) and \(c_0 \) are chaotic unbounded linear operators and, provided the underlying space is complex, each \(\lambda \in \mathbb{C} \) is a simple eigenvalue for \(T_w \).

When establishing hypercyclicity, we obviate explicit construction of hypercyclic vectors by applying the subsequent version of the classical Birkhoff Transitivity Theorem \([9, \text{Theorem 1.16}]\) or the following Sufficient Condition for Hypercyclicity \([6, \text{Theorem 2.1}]\), which is an extension of Kitai’s criterion \([11,12]\).

Theorem 2.1 (Birkhoff Transitivity Theorem).
A bounded linear operator \(T \) on a (real or complex) infinite-dimensional separable Banach space \(X \) is hypercyclic iff it is topologically transitive, i.e., for any nonempty open subsets \(U \) and \(V \) of \(X \), there exists an \(n \in \mathbb{Z}_+ \) such that
\[
T^n(U) \cap V \neq \emptyset.
\]
Cf. \([9, \text{Theorem 2.19}]\).

Theorem 2.2 (Sufficient Condition for Hypercyclicity).
Let \(X \) be a (real or complex) infinite-dimensional separable Banach space and \(T \) be a densely defined linear operator in \(X \) such that each power \(T^n \ (n \in \mathbb{N}) \) is a closed operator. If there exists a set
\[
Y \subseteq C^\infty(T) := \bigcap_{n=1}^{\infty} D(T^n)
\]
dense in \(X \) and a mapping \(S : Y \to Y \) such that
\begin{enumerate}
\item \(\forall x \in Y : TSx = x \) and
\item \(\forall x \in Y : T^n x, S^n x \to 0, \ n \to \infty, \)
\end{enumerate}
then the operator \(T \) is hypercyclic.

2.2. Resolvent Set and Spectrum.
For a linear operator \(T \) in a complex Banach space \(X \), the set
\[
\rho(A) := \{ \lambda \in \mathbb{C} \mid \exists (T - \lambda I)^{-1} \in L(X) \}
\]
(\(L(X) \) is the space of bounded linear operators on \(X \)) and its complement \(\sigma(T) := \mathbb{C} \setminus \rho(T) \) are called the resolvent set and the spectrum of \(T \), respectively.

The spectrum \(\sigma(T) \) of a closed linear operator \(T \) in a complex Banach space \(X \) is the union of the following pairwise disjoint sets:
\[
\sigma_p(T) := \{ \lambda \in \mathbb{C} \mid T - \lambda I \text{ is not injective, i.e., } \lambda \text{ is an eigenvalue of } T \},
\]
\[
\sigma_c(T) := \left\{ \lambda \in \mathbb{C} \mid T - \lambda I \text{ is injective, not surjective, and } R(T - \lambda I) = X \right\},
\]
\[
\sigma_r(T) := \left\{ \lambda \in \mathbb{C} \mid T - \lambda I \text{ is injective and } R(T - \lambda I) \neq X \right\}
\]
(\(R(\cdot) \) is the range of an operator, and \(\overline{\sigma} \) is the closure of a set), called the point, continuous and residual spectrum of \(T \), respectively (see, e.g., \([13,14]\)).
3. BOUNDED WEIGHTED TRANSLATIONS ON $L_p(0, \infty)$

Theorem 3.1 (Bounded Weighted Translations on $L_p(0, \infty)$).

On the (real or complex) space $L_p(0, \infty)$ ($1 \leq p < \infty$), the weighted left translation

$$(T_{w,a}x)(t) := wx(t + a), \quad x \in L_p(0, \infty), \quad t \geq 0,$$

with $w \in \mathbb{F}$ such that $|w| > 1$ and $a > 0$ is a chaotic bounded linear operator.

Furthermore, provided the underlying space is complex,

$$(3.1) \quad \sigma(T_{w,a}) = \{ \lambda \in \mathbb{C} \mid |\lambda| \leq |w| \}$$

with

$$(3.2) \quad \sigma_p(T_{w,a}) = \{ \lambda \in \mathbb{C} \mid |\lambda| < |w| \} \quad \text{and} \quad \sigma_c(T_{w,a}) = \{ \lambda \in \mathbb{C} \mid |\lambda| = |w| \}.$$

Proof. Let $1 \leq p < \infty$, $w \in \mathbb{F}$ such that $|w| > 1$, and $a > 0$ be arbitrary and, for the simplicity of notation, let $T := T_{w,a}$.

The linearity of T is obvious. Its boundedness immediately follows from the fact that

$$T = wB,$$

where

$$(Bx)(t) := x(t + a), \quad x \in L_p(0, \infty), \quad t \geq 0,$$

is a left translation operator with $\|B\| = 1$, and hence,

$$(3.3) \quad \|T\| = |w| \|B\| = |w|$$

(here and wherever appropriate, $\|\cdot\|$ also stands for the operator norm).

Suppose that

$$U, V \subseteq L_p(0, \infty)$$

are arbitrary nonempty open sets.

By the denseness in $L_p(0, \infty)$ of the equivalence classes represented by p-integrable on $(0, \infty)$ eventually zero functions (see, e.g., [15]), there exist equivalence classes

$$x \in U \quad \text{and} \quad y \in V$$

represented by such functions $x(\cdot)$ and $y(\cdot)$, respectively. Since the representative functions are eventually zero,

$$\exists N \in \mathbb{N} \forall t > Na : x(t) = 0 \quad \text{and} \quad y(t) = 0.$$

For an arbitrary $n \geq N$, the p-integrable on $(0, \infty)$ eventually zero function

$$z_n(t) := \begin{cases} x(t), & t \in [0, Na), \\ w^{-n}y(t - an), & t \in [na, Na + na), \\ 0, & \text{otherwise}, \end{cases}$$

represents an equivalence class $z_n \in L_p(0, \infty)$.

Observe that, for all $n \geq N$,

$$(T^n z_n)(t) = y(t), \quad t \geq 0,$$
and

\[\|z_n - x\|_p = |w|^{-n}\|y\|_p \to 0, \ n \to \infty \]

Hence, for all sufficiently large \(n \in \mathbb{N} \),

\[z_n \in U \quad \text{and} \quad T^n z_n = y \in V \]

(see Figure 1).

\[\text{Figure 1.} \]

By the Birkhoff Transitivity Theorem (Theorem 2.1), we infer that the operator \(T \) is hypercyclic.

To prove that \(T \) has a dense set of periodic points, let us first show that each \(N \in \mathbb{N} \) is a period for \(T \).

For an arbitrary \(N \in \mathbb{N} \), let

\[x \in \ker T^N \setminus \{0\} , \]

where

\[\ker T^N = \{ f \in L_p(0, \infty) \mid f(t) = 0, \ t > Na \} . \]

Then the \(p \)-integrable on \((0, \infty)\) function

\[x_N(t) := w^{-kN}x(t - kNa), \ t \in D_k := [kNa, (k + 1)Na), k \in \mathbb{Z}_+, \]

represents an \(N \)-periodic point \(x_N \) of \(T \).

Indeed, in view of \(|w| > 1\),

\[\int_0^\infty |x_N(t)|^p \, dt = \sum_{k=0}^\infty \int_{D_k} |w^{-kN}x(t - kNa)|^p \, dt = \sum_{k=0}^\infty (|w|^{-pN})^k \int_0^{Na} |x(t)|^p \, dt \]

\[= \sum_{k=0}^\infty (|w|^{-pN})^k \|x\|_p^p = \frac{1}{1 - |w|^{-pN}} \|x\|_p^p < \infty, \]

and hence, \(x_N \in L_p(0, \infty) \).

Further, since

\[(T^N x_N)(t) = w^N x_N(t + Na) = w^N w^{-kN} x(t + Na - kNa) \]

\[= w^{-k(k-1)N} y(t - (k-1)Na), \ t \in D_{k-1}, k \in \mathbb{N}, \]
we infer that

\[T^N x_N = x_N. \]

Suppose that \(x \in L_p(0, \infty) \) is an arbitrary equivalence class represented by a \(p \)-integrable on \((0, \infty)\) eventually zero function \(x(\cdot) \). Then

\[\exists M \in \mathbb{N} : x(t) = 0, \ t > Ma. \]

Let \(x_N \) be the periodic point of the operator \(T \) of an arbitrary period \(N \geq M \) defined based on \(x \) by (3.4). Then

\[\| x_N - x \|_p^p = \sum_{k=0}^{\infty} \int_{D_k} |x_N(t) - x(t)|^p \, dt = \sum_{k=1}^{\infty} \int_{D_k} \left| w^{-kN} x(t - kNa) \right|^p \, dt \]

\[= \sum_{k=1}^{\infty} \left(|w|^{-pN} \right)^k \int_0^{Na} |x(t)|^p \, dt = \sum_{k=1}^{\infty} \left(|w|^{-pN} \right)^k \| x \|_p^p \]

\[= \frac{|w|^{-pN}}{1 - |w|^{-pN}} \| x \|_p^p \to 0, \ N \to \infty. \]

By the denseness in \(L_p(0, \infty) \) \((1 \leq p < \infty)\) of the subspace

\[Y := \bigcup_{n=1}^{\infty} \ker T^n, \]

where

\[\ker T^n = \{ f \in L_p(0, \infty) \mid f(t) = 0, \ t > na \}, \ n \in \mathbb{N}, \]

of the equivalence classes represented by \(p \)-integrable on \((0, \infty)\) eventually zero functions, we infer that the set \(\text{Per}(T) \) of periodic points of \(T \) is dense in \(L_p(0, \infty) \) as well, and hence, the operator \(T \) is chaotic.

Now, assuming that the space \(L_p(0, \infty) \) is complex, let us prove (3.1) and (3.2).

In view of (3.3), by Gelfand’s Spectral Radius Theorem [14],

\[\sigma(T) \subseteq \{ \lambda \in \mathbb{C} \mid |\lambda| \leq |w| \}. \]

For an arbitrary \(\lambda \in \mathbb{C} \) with \(|\lambda| < |w| \), let

\[x \in \ker T \setminus \{ 0 \} \subseteq Y \setminus \{ 0 \}, \]

where

\[\ker T = \{ f \in L_p(0, \infty) \mid f(t) = 0, \ t > a \} \]

(see (3.6)).

Then the \(p \)-integrable on \((0, \infty)\) function

\[x_\lambda(t) := \left(\frac{\lambda}{w} \right)^k x(t - ka), \ t \in [ka, (k + 1)a), k \in \mathbb{Z}_+, \ (0^0 := 1) \]

is an eigenvector for \(T \) associated with \(\lambda \).

Indeed, in view of \(|\lambda| < |w|\),

\[0 < \| x_\lambda \|_p^p = \int_0^{\infty} |x_\lambda(t)|^p \, dt = \sum_{k=0}^{\infty} \int_{ka}^{(k+1)a} \left(\left(\frac{\lambda}{w} \right)^k x(t - ka) \right)^p \, dt \]
\[\begin{align*}
\sum_{k=0}^{\infty} \left(\frac{\lambda}{w} \right)^p & \left(\int_{ka}^{(k+1)a} |x(t-ka)|^p dt \right) = \sum_{k=0}^{\infty} \left(\frac{\lambda}{w} \right)^p \int_0^a |x(t)|^p dt \\
= \sum_{k=0}^{\infty} \left(\frac{\lambda}{w} \right)^p k |x|^p_p < \infty,
\end{align*} \]

and hence, \(x_{\lambda} \in L_p(0, \infty) \setminus \{0\} \).

Further,

\[(Tx_{\lambda})(t) = wx_{\lambda}(t + a) = w \left(\frac{\lambda}{w} \right)^k x(t + a - ka) \]

\[= \lambda \left(\frac{\lambda}{w} \right)^{k-1} x(t - (k-1)a), \ t \in [(k-1)a, ka), k \in \mathbb{N}, \]

which implies that (3.9)

\[Tx_{\lambda} = \lambda x_{\lambda}, \]

and hence, \(\lambda \in \sigma_p(T) \).

Conversely, let \(\lambda \in \sigma_p(T) \) be an arbitrary eigenvalue for \(T \) with an associated eigenvector \(x_{\lambda} \in L_p(0, \infty) \setminus \{0\} \). Then, for

\[x_k(t) := x_{\lambda}(t), \ t \in [ka, (k+1)a), \ k \in \mathbb{N}, \]

by (3.9), we have:

\[\lambda x_{k-1}(t) = wx_k(t + a), \ t \in [ka, (k+1)a) \pmod{\lambda_1}, \ k \in \mathbb{N}, \]

\((\lambda_1 \text{ is the Lebesgue measure on } \mathbb{R})\).

Whence,

\[x_k(t) = \left(\frac{\lambda}{w} \right)^k x_{\lambda}(t - ka), \ t \in [ka, (k+1)a) \pmod{\lambda_1}, \ k \in \mathbb{N}, \]

which, in view of \(x_{\lambda} \neq 0 \), implies that

\[0 < \int_0^a |x_{\lambda}(t)|^p dt \leq \int_0^{\infty} |x_{\lambda}(t)|^p dt = \|x_{\lambda}\|_p^p < \infty \]

and

\[\infty > \|x_{\lambda}\|_p^p = \int_0^\infty |x_{\lambda}(t)|^p dt = \sum_{k=0}^{\infty} \int_{ka}^{(k+1)a} \left(\frac{\lambda}{w} \right)^k x_{\lambda}(t - ka) |x_{\lambda}(t)|^p dt \]

\[= \sum_{k=0}^{\infty} \left(\frac{\lambda}{w} \right)^k \int_{ka}^{(k+1)a} |x_{\lambda}(t - ka)|^p dt = \sum_{k=0}^{\infty} \left(\frac{\lambda}{w} \right)^k \int_0^a |x_{\lambda}(t)|^p dt. \]

The convergence of the latter series implies that

\[\left(\frac{\lambda}{w} \right)^k \to 0, \ k \to \infty, \]

which, in its turn, means that

\[|\lambda| < |w|. \]
Thus, \(x_\lambda \) can be represented by a \(p \)-integrable on \((0, \infty)\) function \(x_\lambda(\cdot) \) of the form given by (3.8), where the corresponding \(x \in \ker T \setminus \{0\} \) is represented by
\[
x(t) := \chi_{[0,a]}(t)x_\lambda(t), \quad t \geq 0
\]
(\(\chi_\delta(\cdot) \) is the characteristic function of a set \(\delta \)).

The above proves that
\[
\sigma_p(T) = \{ \lambda \in \mathbb{C} \mid |\lambda| < |w| \}.
\]

Considering that \(\sigma(T) \) is a closed set in \(\mathbb{C} \) (see, e.g., [13, 14]), we infer from (3.7) and (3.10) that (3.1) holds.

Since, by [9, Lemma 2.53], the hypercyclicity of \(T \) implies the operator \(T - \lambda I \) has a dense range for all \(\lambda \in \mathbb{C} \), we infer that
\[
\sigma_r(T) = \emptyset
\]
(cf. [16, Proposition 4.1], [17, Lemma 1]), and hence, in view of (3.1) and (3.10), we conclude that
\[
\sigma_c(T) = \{ \lambda \in \mathbb{C} \mid |\lambda| = |w| \}.
\]

Thus, (3.2) holds as well.

\[\square\]

4. Unbounded Weighted Translations in \(L_p(0, \infty) \)

Lemma 4.1 (Closedness of Powers).

In the (real or complex) space \(L_p(0, \infty) \) \((1 \leq p < \infty)\), for the weighted left translation
\[
(T_{w,a}x)(t) := w^t x(t + a), \quad t \geq 0,
\]
with \(w > 1, a > 0, \) and domain
\[D(T_{w,a}) := \left\{ x \in L_p(0, \infty) \middle| \int_0^\infty |w^t x(t + a)|^p dt < \infty \right\},\]
each power \(T_{w,a}^n \) \((n \in \mathbb{N})\) is a densely defined unbounded closed linear operator.

Proof. Let \(1 \leq p < \infty, w > 1, a > 0, \) and \(n \in \mathbb{N} \) be arbitrary and, for the simplicity of notation, let \(T := T_{w,a}. \)

The linearity of \(T \) is obvious and implies that for \(T^n. \)

Inductively,
\[
(T^n x)(t) = w^t w^{t+a} \cdots w^{t+(n-1)a} x(t + na) = w^{nt + \frac{(n-1)na}{2}} x(t + na), \quad t \geq 0,
\]
and
\[
D(T^n) = \left\{ x \in L_p(0, \infty) \middle| \int_0^\infty |w^{nt + \frac{(n-1)na}{2}} x(t + na)|^p dt < \infty \right\}.
\]

By the denseness in \(L_p(0, \infty) \) \((1 \leq p < \infty)\) of the subspace
\[
Y := \bigcup_{m=1}^\infty \ker T^m,
\]
ON LINEAR CHAOS IN FUNCTION SPACES

(4.4) \[\ker T^m = \{ f \in L_p(0, \infty) \mid f(t) = 0, \; t > ma \}, \; m \in \mathbb{N}, \]

of the equivalence classes represented by \(p \)-integrable on \((0, \infty)\) eventually zero functions and the inclusion

(4.5) \[Y \subset C^\infty(T) := \bigcap_{m=1}^{\infty} D(T^m), \]

which follows from (4.2), we infer that the operator \(T^m \) is densely defined.

The unboundedness of \(T^n \) follows from the fact that, for the equivalence classes \(e_m \in L_p(0, \infty), \; m \in \mathbb{N}, \)

we have:

\[e_m(t) := \chi_{[m, m+1]}(t), \; m \in \mathbb{N}, \; t \geq 0, \]

we have:

\[e_m \in D(T^n). \; \|e_m\|_p = 1, \; m \in \mathbb{N}, \]

and, for all \(m \in \mathbb{N} \) sufficiently large so that \(m \geq na \), in view of \(w > 1 \),

\[\|T^n e_m\|_p = \left[\int_0^{\infty} \left| w^{nt + \frac{(n-1)na}{2}} e_m(t + na) \right|^p dt \right]^{1/p} \]

\[\geq u^{n(m-\frac{na}{2}) + \frac{(n-1)na}{2}} \rightarrow \infty, \; m \rightarrow \infty. \]

Let a sequence \((x_m)_{m \in \mathbb{N}}\) in \(L_p(0, \infty) \) be such that

\[D(T^n) \ni x_m \rightarrow x \in L_p(0, \infty), \; m \rightarrow \infty, \]

and

\[T^n x_m \rightarrow y \in L_p(0, \infty), \; m \rightarrow \infty. \]

The sequences \((x_m(\cdot))_{m \in \mathbb{N}}\) and \((T^n x_m)(\cdot))_{m \in \mathbb{N}}\) of the \(p \)-integrable on \((0, \infty)\) representatives of the corresponding equivalence classes converging in \(p \)-norm on \((0, \infty)\), also converge in the Lebesgue measure \(\lambda_1 \) on \((0, \infty)\), and hence, by the Riesz theorem (see, e.g., [15]), there exist subsequences \((x_{m(k)}(\cdot))_{k \in \mathbb{N}}\) and \((T^n x_{m(k)})(\cdot))_{k \in \mathbb{N}}\) convergent a.e. on \((0, \infty)\) relative to \(\lambda_1 \), i.e.,

(4.6) \[x_{m(k)}(t) \rightarrow x(t) \text{ on } (0, \infty) \; \text{ (mod } \lambda_1) \]

and

(4.7) \[(T^n x_{m(k)})(t) \rightarrow y(t) \text{ on } (0, \infty) \; \text{ (mod } \lambda_1). \]

By (4.6),

\[(T^n x_{m(k)})(t) = w^{nt + \frac{(n-1)na}{2}} x_{m(k)}(t + na) \]

\[\rightarrow w^{nt + \frac{(n-1)na}{2}} x(t + na) \text{ on } (0, \infty) \; \text{ (mod } \lambda_1), \]

which by (4.7), in view of the completeness of the Lebesgue measure (see, e.g., [15]), implies that

\[w^{nt + \frac{(n-1)na}{2}} x(t + na) = y(t) \; \text{ (mod } \lambda_1), \]
and hence,
\[x \in D(T^n) \quad \text{and} \quad T^n x = y. \]

By the **Sequential Characterization of Closed Linear Operators** (see, e.g., [14]) the operator \(T^n \) is closed. \(\square \)

Theorem 4.1 (Unbounded Weighted Translations in \(L_p(0, \infty) \)).

In the (real or complex) space \(L_p(0, \infty) \) (\(1 \leq p < \infty \)), the weighted left translation
\[(T_{w,a}x)(t) := w^t x(t + a), \quad t \geq 0, \]
with \(w > 1, \ a > 0 \), and domain
\[D(T_{w,a}) := \left\{ x \in L_p(0, \infty) \left| \int_0^{\infty} |w^t x(t + a)|^p \, dt < \infty \right. \right\} \]
is a chaotic unbounded linear operator.

Furthermore, provided the underlying space is complex,
\[\sigma(T_{w,a}) = \sigma_p(T_{w,a}) = \mathbb{C}. \]

Proof. Let \(1 \leq p < \infty, \ w > 1, \) and \(a > 0 \) be arbitrary and, for the simplicity of notation, let \(T := T_{w,a}. \)

For the dense in \(L_p(0, \infty) \) subspace \(Y \) of the equivalence classes represented by \(p \)-integrable eventually zero functions (see (4.3) and (4.4)), we have inclusion (4.5).

The mapping
\[Y \ni x \mapsto Sx \in Y, \]
where the equivalence class \(Sx \) is represented by
\[(Sx)(t) := \begin{cases} w^{-(t-a)}x(t-a), & t > a, \\ 0, & \text{otherwise}, \end{cases} \]
is well defined since the function \((Sx)(\cdot) \) is eventually zero and, in view of \(w > 1, \)
\[\int_0^{\infty} |(Sx)(t)|^p \, dt = \int_a^{\infty} \left| w^{-(t-a)p} x(t-a) \right|^p \, dt = \int_0^{\infty} w^{-tp} |x(t)|^p \, dt \]
\[\leq \int_0^{\infty} |x(t)|^p \, dt < \infty. \]

As is easily seen,
\[\forall x \in Y : \ T S x = x. \]

Let \(x \in Y \), represented by a \(p \)-integrable on \((0, \infty)\) eventually zero function \(x(\cdot) \), be arbitrary. Then
\[\exists M \in \mathbb{N} : \supp x := \{ t \in (0, \infty) \mid x(t) \neq 0 \} \subseteq [0, Ma]. \]

By (4.1),
\[\forall n \geq M : \ T^n x = 0, \]
and hence,
\[T^n x \to 0, \ n \to \infty. \]
Based on (4.9), inductively,

\[
(S^n x)(t) = \begin{cases}
0, & 0 \leq t < na, \\
w^{t-2a}w^{t-3a} \ldots w^{t-na}x(t-na), & t \geq na,
\end{cases}
\]

\[
= \begin{cases}
0, & 0 \leq t < na, \\
w^{-nt+\frac{n(n+1)\alpha}{2}}x(t-na), & t \geq na,
\end{cases}
\]

In view of \(w > 1\), we have:

\[
\|S^n x\|_p = \left[\int_0^\infty |(S^n x)(t)|^p \, dt \right]^{1/p} = \left[\int_{na}^\infty \left| w^{-nt+\frac{n(n+1)\alpha}{2}}x(t-na) \right|^p \, dt \right]^{1/p}
\]

\[
\leq w^{-n\alpha + \frac{n(n+1)\alpha}{2}} \left[\int_{na}^\infty |x(t-na)|^p \, dt \right]^{1/p} = w^{-\frac{n(n-1)\alpha}{2}}\|x\|_p, \quad x \in Y, n \in \mathbb{N}.
\]

Whence, since \(w > 1\) and \(a > 0\), we deduce that

\[
\forall x \in Y: \lim_{n \to \infty} \|S^n x\|_p^{1/n} = 0,
\]

or equivalently,

\[
(4.12) \quad \forall x \in Y, \forall \alpha \in (0, 1) \exists c = c(x, \alpha) > 0 \forall n \in \mathbb{N}: \|S^n x\|_p \leq c\alpha^n\|x\|_p,
\]

which implies

\[
\forall x \in Y: S^n x \to 0, \quad n \to \infty.
\]

From the above and the fact that, by the **Closedness of Powers Lemma** (Lemma 4.1), each power \(T^n (n \in \mathbb{N})\) is a closed operator, by the **Sufficient Condition for Hypercyclicity** (Theorem 2.2), we infer that the operator \(T\) is hypercyclic.

To prove that \(T\) has a dense set of periodic points, let us first show that each \(N \in \mathbb{N}\) is a period for \(T\).

Let \(N \in \mathbb{N}\) and

\[
(4.13) \quad x \in \ker T^N \setminus \{0\} \subseteq Y \setminus \{0\},
\]

where

\[
\ker T^N = \{f \in L_p(0, \infty) \mid f(t) = 0, \quad t > Na\},
\]

be arbitrary.

By estimate (4.12)

\[
(4.14) \quad x_N := \sum_{k=0}^{\infty} S^{kN} x \in L_p(0, \infty)
\]

is well defined and, in view of (4.11), is represented by the \(p\)-integrable on \((0, \infty)\) function

\[
x_N(t) := w^{-kNt+\frac{kN(kN+1)\alpha}{2}}x(t-kNa), \quad t \in D_k := [kNa, (k+1)Na), \quad k \in \mathbb{Z}_+.
\]
Since, in view of (4.13) and (4.10),
\[\sum_{k=0}^{\infty} T^N S^k x = \sum_{k=1}^{\infty} S^{(k-1)} x = x_N, \]
by the closedness of the operator T^N, we infer that
\[x_N \in D(T^N) \quad \text{and} \quad T^N x_N = x_N, \]
(see, e.g., [14]), and hence, x_N is an N-periodic point for T.
Suppose that $x \in Y$ is an arbitrary equivalence class represented by a p-integrable on $(0, \infty)$ eventually zero function $x(\cdot)$. Then
\[\exists M \in \mathbb{N} : x(t) = 0, \quad t > Ma. \]

Then, for an arbitrary period $N \geq M$, (4.13) holds and there exists an N-periodic point x_N for the operator T defined based on x by (4.14). By estimate (4.12),
\[\|x_N - x\| = c \sum_{k=1}^{\infty} \|S^k x\|_p \leq c \sum_{k=1}^{\infty} (\alpha^N)^k \|x\|_p \]
\[= c \frac{\alpha^N}{1 - \alpha^N} \|x\|_p \to 0, \quad N \to \infty. \]

Whence, in view of the denseness of Y in $L_p(0, \infty)$, we infer that the set $\text{Per}(T)$ of periodic points of T is dense in $L_p(0, \infty)$ as well, and hence, the operator T is chaotic.

Now, assuming that the space $L_p(0, \infty)$ is complex, let us prove (4.8).
Let $\lambda \in \mathbb{C}$ and
\[x \in \ker T \setminus \{0\} \subseteq Y \setminus \{0\}, \]
where
\[\ker T = \{ f \in L_p(0, \infty) \mid f(t) = 0, \quad t > a \}. \]
By estimate (4.12), for
\[\alpha := (|\lambda| + 1)^{-1} \in (0, 1), \]
we have:
\[\exists c = c(x, \alpha) > 0 \forall k \in \mathbb{N} : \|\lambda^k S^k x\|_p \leq |\lambda|^k c \alpha^k \|x\|_p = c(|\lambda| \alpha)^k \|x\|_p, \]
where $0 \leq |\lambda|^k \alpha^k = |\lambda|(|\lambda| + 1)^{-k} < 1$.
By estimate (4.16),
\[x_\lambda := \sum_{k=0}^{\infty} \lambda^k S^k x \in L_p(0, \infty) \]
is well defined and, in view of (4.11), is represented by the p-integrable on $(0, \infty)$ function
\[x_\lambda(t) := \lambda^k w^{kt} \frac{\lambda^{(k+1)a}}{\lambda^{a}} x(t - ka), \quad t \in [ka, (k + 1)a), \quad k \in \mathbb{Z}_+, \quad (0^0 := 1). \]
Since
\[\|x_\lambda\|^p = \int_0^\infty |x_\lambda(t)|^p \, dt \geq \int_0^a |x_\lambda(t)|^p \, dt = \int_0^a |x(t)|^p \, dt = \int_0^\infty |x(t)|^p \, dt = \|x\|^p > 0, \]
we infer that \(x_\lambda \neq 0 \).

Further, since, in view of (4.15) and (4.10),
\[\sum_{k=0}^\infty T(\lambda^k S^k x) = \lambda \sum_{k=1}^\infty \lambda^{k-1} S^{k-1} = \lambda x_\lambda, \]
by the *closedness* of the operator \(T \), we conclude that
\[x_\lambda \in D(T) \quad \text{and} \quad Tx_\lambda = \lambda x_\lambda, \]
(see, e.g., [14]).

Thus, \(\lambda \in \sigma_p(T) \) and \(x_\lambda \) is an eigenvector of \(T \) associated with \(\lambda \), which proves (4.8).

\[\square \]

5. **Bounded Weighted Translations on \(C_0[0, \infty) \)**

In [3, Theorem 2.3], it is shown that, on the (real or complex) space \(C_0[0, \infty) \), the bounded linear weighted left translation operator
\[(T_{w,a})x(t) := wx(t + a), \quad t \geq 0, \]
with \(|w| > 1 \) and \(a > 0 \) is chaotic and
\[\{ \lambda \in \mathbb{C} : 0 < |\lambda| < |w| \} \subseteq \sigma_p(T) \]
based on the simple fact that, for each \(\lambda \in \mathbb{C} \), \(\text{Re} \, \lambda < 0 \), the equation
\[T_{w,a}x = we^{a\lambda}x \]
is satisfied by the function
\[x(t) := e^{\lambda t}, \quad t \geq 0. \]

It is also stated (without proof) that one can show that
\[\sigma_p(T_{w,a}) = \{ \lambda \in \mathbb{C} : |\lambda| < |w| \}. \]

Here, we completely describe the spectrum of such operators.

Proposition 5.1 (Spectrum).

On the complex space \(C_0[0, \infty) \), for the bounded linear weighted left translation operator
\[(Tx)(t) := wx(t + a), \quad t \geq 0, \]
where \(w \in \mathbb{C} \) with \(|w| > 1 \) and \(a > 0 \),
\[\sigma(T) = \{ \lambda \in \mathbb{C} : |\lambda| \leq |w| \} \]
with
\[\sigma_p(T_{w,a}) = \{ \lambda \in \mathbb{C} : |\lambda| < |w| \} \quad \text{and} \quad \sigma_c(T_{w,a}) = \{ \lambda \in \mathbb{C} : |\lambda| = |w| \}. \]
Proof. Let \(w \in \mathbb{C} \) with \(w > 1 \) and \(a > 0 \) be arbitrary and, for the simplicity of notation, let \(T := T_{w,a} \).

Since \(T = wB \), where
\[
(Bx)(t) := x(t + a), \quad x \in C_0[0, \infty), \quad t \geq 0,
\]
is a left translation with \(\|B\| = 1 \), and hence,
\[
\|T\| = \|w\| \|B\| = \|w\|,
\]
by Gelfand’s Spectral Radius Theorem \([14] \),
\[
\sigma(T) \subseteq \{ \lambda \in \mathbb{C} \mid |\lambda| \leq |w| \}.
\]

Let \(\lambda \in \mathbb{C} \) with \(|\lambda| < |w| \) and a nonzero \(x \in C[0, a] \), with
\[
x(a) = \frac{\lambda}{w} x(0)
\]
be arbitrary. E.g., for \(0 < |\lambda| < |w| \),
\[
y(t) := e^{ct}, \quad t \in [0, a],
\]
with \(c := \frac{1}{a} \ln \frac{\lambda}{w} = \frac{1}{a} \left(\ln \left| \frac{\lambda}{w} \right| + i \text{Im} \frac{\lambda}{w} \right) \) (\(i \) is the imaginary unit).

Then, as is readily verified,
\[
x_\lambda(t) := \left(\frac{\lambda}{w} \right)^k x(t - ka), \quad t \in [ka, (k + 1)a), k \in \mathbb{Z}_+ , \quad (0^0 := 1)
\]
is a nonzero function continuous on \([0, \infty)\).

Since, in view of \(|\lambda/w| < 1 \), for any \(k \in \mathbb{Z}_+ \),
\[
\max_{ka \leq t \leq (k+1)a} |x_\lambda(t)| = \max_{ka \leq t \leq (k+1)a} \left| \left(\frac{\lambda}{w} \right)^k x(t - ka) \right| = \left| \frac{\lambda}{w} \right|^k \max_{0 \leq t \leq a} |x(t)| \to 0, \quad k \to \infty,
\]
we infer that \(x_\lambda \in C_0[0, \infty) \setminus \{0\} \).

Also,
\[
(T x_\lambda)(t) = wx(t + a) = w \left(\frac{\lambda}{w} \right)^k x(t + a - ka)
\]
\[
= \lambda \left(\frac{\lambda}{w} \right)^{k-1} x(t - (k - 1)a), \quad t \in [(k - 1)a, ka), k \in \mathbb{N},
\]
which implies that
\[
(T x_\lambda) = \lambda x_\lambda.
\]

Thus, \(\lambda \in \sigma_p(T) \).

Conversely, let \(\lambda \in \sigma_p(T) \) be an arbitrary eigenvalue for \(T \) with an associated eigenvector \(x_\lambda \in C_0[0, \infty) \setminus \{0\} \). Then, for
\[
x_k(t) := x_\lambda(t), \quad t \in [ka, (k + 1)a), k \in \mathbb{Z}_+ ,
\]
by (5.5), we have:
\[
\lambda x_{k-1}(t) = wx_k(t + a), \quad t \in [ka, (k + 1)a), k \in \mathbb{N}.
\]
Whence,
\[x_k(t) = \left(\frac{\lambda}{w} \right)^k x_\lambda(t - ka), \quad t \in [ka, (k+1)a), \quad k \in \mathbb{Z}_+, \]
which, in view of \(x_\lambda \neq 0 \), implies that
\[0 < \max_{0 \leq t \leq a} |x_\lambda(t)| \leq \sup_{t \geq 0} |x_\lambda(t)| < \infty. \]
Since
\[\lim_{t \to \infty} x_\lambda(t) = 0 \]
implies
\[\left| \frac{\lambda}{w} \right|^k \max_{0 \leq t \leq a} |x_\lambda(t)| \to 0, \quad k \to \infty, \]
which, in its turn, means that
\[|\lambda| < |w|. \]
Thus, \(x_\lambda \) is of the form given by (5.4), where \(x \) is the restriction to \([0, a]\) of \(x_\lambda \).

The above proves that
\[(5.6) \quad \sigma_p(T) = \{ \lambda \in \mathbb{C} \mid |\lambda| < |w| \}. \]

Considering that \(\sigma(T) \) is a closed set in \(\mathbb{C} \) (see, e.g., [13, 14]), we infer from (5.3) and (5.6) that (5.1) holds.

Since, by [9, Lemma 2.53], the hypercyclicity of \(T \) implies the operator \(T - \lambda I \) has a dense range for all \(\lambda \in \mathbb{C} \), we infer that
\[\sigma_c(T) = \emptyset \]
(cf. [16, Proposition 4.1], [17, Lemma 1]), and hence, in view of (5.1) and (5.6), we conclude that
\[\sigma_r(T) = \{ \lambda \in \mathbb{C} \mid |\lambda| = |w| \}. \]
Thus, (5.2) holds as well. \(\square \)

6. Unbounded Weighted Translations in \(C_0[0, \infty) \)

Lemma 6.1 (Closedness of Powers).
In the (real or complex) space \((C_0[0, \infty), \| \cdot \|_\infty) \), for the weighted left translation
\[(T_{w,a}x)(t) := w^t x(t + a), \quad t \geq 0, \]
with \(w > 1, a > 0 \), and domain
\[D(T_{w,a}) := \left\{ x \in C_0[0, \infty) \mid \lim_{t \to \infty} w^t x(t + a) = 0 \right\}, \]
each power \(T_{w,a}^n \) \((n \in \mathbb{N}) \) is a densely defined unbounded closed linear operator.

Proof. Let \(w > 1, a > 0 \), and \(n \in \mathbb{N} \) be arbitrary and, for the simplicity of notation, let \(T := T_{w,a} \).

The linearity of \(T \) is obvious and implies that for \(T^n \).
Inductively,
\[(6.1) \quad (T^n x)(t) = w^t w^{t+a} \ldots w^{t+(n-1)a} x(t + na) = w^{nt + \frac{(n-1)na}{2}} x(t + na), \quad t \geq 0,
\]
and
\[(6.2) \quad D(T^n) = \left\{ x \in C_0[0, \infty) \left| \lim_{t \to \infty} u^{nt + \frac{(n-1)na}{2}} x(t + na) = 0 \right. \right\}
\]
(cf. (4.1) and (4.2)).

By the denseness in $C_0[0, \infty)$ $(1 \leq p < \infty)$ of the subspace
\[(6.3) \quad Y := \bigcup_{m=1}^{\infty} \ker T^m,
\]
where
\[(6.4) \quad \ker T^m = \{ f \in C_0[0, \infty) \mid f(t) = 0, \quad t \geq ma \}, \quad m \in \mathbb{N},
\]
of the equivalence classes represented by p-integrable on $(0, \infty)$ eventually zero functions and the inclusion
\[(6.5) \quad Y \subset C^\infty(T) := \bigcap_{m=1}^{\infty} D(T^m),
\]
which follows from (6.2), we infer that the operator T^n is densely defined.

The unboundedness of T^n follows from the fact that, for
\[e_m(t) := \begin{cases}
1, & 0 \leq t < ma, \\
\frac{1}{w^{-t-ma}2}, & t \geq ma,
\end{cases} \quad m \in \mathbb{N},
\]
we have:
\[e_n \in D(T), \quad ||e_n||_\infty = 1, \quad m \in \mathbb{N},
\]
and, for all $m \geq n$, in view of $w > 1$,
\[||T^n e_m||_\infty = \sup_{t \geq 0} \left| w^{nt + \frac{(n-1)na}{2}} e_m(t + na) \right| \geq w^{nt + \frac{(n-1)na}{2}} e_m(t + na) \big|_{t=ma-na} \geq w^{n(ma-na) + \frac{(n-1)na}{2}} \to \infty, \quad m \to \infty.
\]

Let a sequence $(x_m)_{m \in \mathbb{N}}$ in $C_0[0, \infty)$ be such that
\[D(T^n) \ni x_m \to x \in C_0[0, \infty), \quad m \to \infty,
\]
and
\[T^n x_m \to y \in C_0[0, \infty), \quad m \to \infty.
\]

Then, for each $t \geq 0$,
\[(6.6) \quad x_m(t) \to x(t) \quad \text{and} \quad (T^n x_m)(t) \to y(t), \quad m \to \infty.
\]

By (6.6), for each $t \geq 0$,
\[\quad (T^n x_m)(t) = w^{nt + \frac{(n-1)na}{2}} x_m(t + ma) \to w^{nt + \frac{(n-1)na}{2}} x(t + na), \quad m \to \infty,
\]
and
\[w^{nt + \frac{(n-1)na}{2}} x(t + na) = y(t), \quad t \geq 0,
\]
which implies
\[x \in D(T^n) \quad \text{and} \quad T^n x = y. \]

Thus, by the Sequential Characterization of Closed Linear Operators (see, e.g., [14])
the operator \(T^n \) is closed. \(\square \)

Theorem 6.1 (Unbounded Weighted Translations in \(C_0(0, \infty) \)).

In the (real or complex) space \((C_0(0, \infty), \| \cdot \|_\infty) \), the weighted left translation
\[
(T_{w,a}x)(t) := w^t x(t + a), \quad t \geq 0,
\]
with \(w > 1 \), \(a > 0 \), and domain
\[
D(T_{w,a}) := \{ x \in C_0[0, \infty) \mid \lim_{t \to \infty} w^t x(t + a) = 0 \}
\]
is a chaotic unbounded linear operator.

Furthermore, provided the underlying space is complex,
\[
(6.7) \quad \sigma(T_{w,a}) = \sigma_p(T_{w,a}) = \mathbb{C}.
\]

Proof. Let \(w > 1 \) and \(a > 0 \) be arbitrary and, for the simplicity of notation, let \(T := T_{w,a} \).

For the dense in \(C_0[0, \infty) \) subspace \(Y \) of eventually zero functions (see (6.3) and (6.4)), we have inclusion (6.5).

The mapping
\[
Y \ni x \mapsto Sx \in Y,
\]
where
\[
(6.8) \quad (Sx)(t) := \begin{cases} \frac{x(0)}{a} t, & 0 \leq t < a, \\ w^{-(t-a)} x(t - a), & t \geq a, \end{cases}
\]
is well defined since the function \(Sx \) is eventually zero and, as is easily seen,
\[
(6.9) \quad \forall x \in Y : \ T S x = x.
\]

Let \(x \in Y \) be arbitrary. Then
\[
\exists M \in \mathbb{N} : \ \text{supp } x := \{ t \in [0, \infty) \mid x(t) \neq 0 \} \subseteq [0, Ma].
\]

By (6.1),
\[
\forall n \geq M : \ T^n x = 0,
\]
and hence,
\[
T^n x \to 0, \ n \to \infty.
\]
Based on (6.8), inductively,

\[
(S^n x)(t)
= \begin{cases}
 0, & 0 \leq t < (n-1)a, \\
 w^{-(t-a)} \cdots w^{-(t-(n-1)a)} x^{(0)}(t-(n-1)a), & (n-1)a \leq t < na, \\
 0, & 0 \leq t < (n-1)a, \\
 w^{-t+\frac{n(n+1)a}{2}} x(t-na), & t \geq na,
\end{cases}
\]

In view of \(w > 1\),

\[
\|S^n x\|_\infty = \sup_{t \geq 0} |(S^n x)(t)| \leq w^{-n-na+\frac{n(n+1)a}{2}} \|x\|_\infty = w^{-\frac{n(n-1)a}{2}} \|x\|_\infty, \quad x \in Y, n \in \mathbb{N}.
\]

Whence, since \(w > 1\) and \(a > 0\), we deduce that

\[
\forall x \in Y : \lim_{n \to \infty} \|S^n x\|_\infty^{1/n} = 0,
\]

or equivalently,

\[
(6.11) \quad \forall x \in Y, \forall \alpha \in (0, 1) \exists c = c(x, \alpha) > 0 \forall n \in \mathbb{N} : \|S^n x\|_\infty \leq c\alpha^n \|x\|_\infty,
\]

which implies

\[
\forall x \in Y : S^n x \to 0, \quad n \to \infty.
\]

From the above and the fact that, by the \textit{Closedness of Powers Lemma} (Lemma 6.1), each power \(T^n \ (n \in \mathbb{N})\) is a \textit{closed operator}, by the \textit{Sufficient Condition for Hypercyclicity} (Theorem 2.2), we infer that the operator \(T\) is \textit{hypercyclic}.

Based on estimate (6.11), proving that \(T\) has a dense set of periodic points, and hence, is \textit{chaotic} and that (6.7) holds is identical to proving the same parts in Theorem 4.1.

\(\Box\)

\section{Concluding Remarks}

The foregoing results are consistent with the recent findings of [16]. According to the latter, under the premises of Theorem 3.1, Theorem 4.1, [3, Theorem 2.3], or Theorem 6.1, not only is the operator \(T_{w,a}\) \textit{chaotic} but also its every power \(T^n_{w,a} \ (n \in \mathbb{N})\) and, furthermore,

\[
\dim \ker (T^n_{w,a} - \lambda I) = \dim \ker T^n_{w,a} = \dim \{f \in X \mid f(t) = 0, \ t > na\},
\]

where \(X := L_p(0, \infty) \ (1 \leq p < \infty)\) or \(X := C_0[0, \infty)\), holds in Theorem 3.1 and Proposition 5.1 for all \(n \in \mathbb{N}\) and \(\lambda \in \mathbb{C}\) with \(|\lambda| < |w|^n\) and in Theorems 4.1 and 6.1 for all \(n \in \mathbb{N}\) and \(\lambda \in \mathbb{C}\), i.e., all eigenvalues of \(T^n_{w,a}\) are of the same geometric multiplicity.
ON LINEAR CHAOS IN FUNCTION SPACES

References

[1] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22.
[2] M.V. Markin, On the chaoticity and spectral structure of Rolewicz-type unbounded operators, arXiv:1811.06640.
[3] R. M. Aron, J. B. Seoan-Sepúlveda, and A. Weber, Chaos on function spaces, Bull. Austral. Math. Soc. 71 (2005), 411-415.
[4] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, New York, 1989.
[5] G. Godefroy and J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229–269.
[6] J. Bés, K.C. Chan, and S.M. Seubert, Chaotic unbounded differentiation operators, Integral Equations Operator Theory 40 (2001), no. 3, 257–267.
[7] R. deLaubenfels, H. Emamirad, and K.-G. Grosse-Erdmann, Chaos for semigroups of unbounded operators, Math. Nachr. 261/262 (2003), no. 3, 47–59.
[8] F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009.
[9] K.-G. Grosse-Erdmann and A.P. Manguillot, Linear Chaos, Universitext, Springer-Verlag, London, 2011.
[10] M.V. Markin, On general construct of chaotic unbounded linear operators in Banach spaces with Schauder bases, arXiv:1812.02294.
[11] C. Kitai, Invariant Closed Sets for Linear Operators, Ph.D. Thesis, University of Toronto, 1982.
[12] R.M. Gethner and J.H. Shapiro, Universal vector for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281–288.
[13] N. Dunford and J.T. Schwartz with the assistance of W.G. Bade and R.G. Bartle, Linear Operators. Part I: General Theory, Interscience Publishers, New York, 1958.
[14] M.V. Markin, Elementary Operator Theory, De Gruyter Graduate, Walter de Gruyter GmbH, Berlin/Boston, 2020.
[15] M.V. Markin, Real Analysis. Measure and Integration, De Gruyter Graduate, Walter de Gruyter GmbH, Berlin/Boston, 2019.
[16] M.V. Markin, On sufficient and necessary conditions for linear hypercyclicity and chaos, arXiv:2106.14872.
[17] M.V. Markin and E.S. Sichel, On the non-hypercyclicity of normal operators, their exponentials, and symmetric operators, Mathematics 7 (2019), no. 10, Article no. 903, 8 pp.

Department of Mathematics
De Anza College
21250 Stevens Creek Blvd.
Cupertino, CA 95014, USA

Email address: jimenezmjohn@fhda.edu

Department of Mathematics
California State University, Fresno
5245 N. Backer Avenue, M/S PB 108
Fresno, CA 93740-8001, USA

Email address, corresponding author: mmarkin@csufresno.edu