A CHAIN OF NUMERICAL RADIUS INEQUALITIES IN COMPLEX HILBERT SPACE

MOHAMMED AL-DOLAT*, AYAT DAGHER AND MARWAN ALQURAN

(Communicated by M. Krnić)

Abstract. In this paper, we implement the improvement of numerical radius inequalities that were produced by Alomari MW. [Refinements of some numerical radius inequalities for Hilbert space operators. Linear and Multilinear Algebra. 2019 Jun 4:1-6] and devise a new upper bound for 2×2 operator matrices on complex Hilbert space with many examples which show that our bound is sharper than the existing bounds proved by Bani-Domi W, Kittaneh F. [Norm and numerical radius inequalities for Hilbert space operators. Linear and Multilinear Algebra. 2020 Jul 28:1-2], Al-Dolat M, Jaradat I, Al-Husban B. A novel numerical radius upper bounds for 2×2 operator matrices. Linear and Multilinear Algebra. 2020 Apr 23:1-2], Shebrawi K. [Numerical radius inequalities for certain 2×2 operator matrices II. Linear Algebra and its Applications. 2017 Jun 15; 523:1-2] and Hirzallah O, Kittaneh F, Shebrawi K. [Numerical radius inequalities for 2×2 operator matrices. Studia Mathematica. 2012; 210:99-115].

1. Introduction

Let (H, \langle , \rangle) be a complex Hilbert space and let $B(H)$ be the Banach algebra of all bounded linear operators from H to H with identity I. For $T \in B(H)$, let

$$w(T) = \sup_{||x||=1} |\langle Tx, x \rangle|,$$

$$r(T) = \sup \{ |\lambda| : \lambda \in \sigma(T) \},$$

$$||T|| = \sup_{||x||=1} \langle Tx, Tx \rangle^{\frac{1}{2}},$$

denote the numerical radius, the spectral radius and the usual operator norm respectively.

It is known that the numerical radius and the usual operator norm are equivalent norms on $B(H)$ such that

$$\frac{1}{2} ||T|| \leq w(T) \leq ||T||,$$ \hspace{1cm} (1.1)

for all $T \in B(H)$.

Mathematics subject classification (2020): 47A12, 47A30, 47A63, 47B33.
Keywords and phrases: Numerical radius, spectral radius, operator matrix.

* Corresponding author.
In [2], Kittaneh provided a refinement to the upper bound of the inequality (1.1) by showing that
\[
\frac{1}{2} \|T\| + \|T^*\| \leq \frac{1}{2} \left(\|T\| + \|T^2\|^{1/2} \right),
\] (1.2)
for all \(T \in B(H) \).

Another improvement for the inequality (1.1) was given by the same author as follows:
\[
\frac{1}{4} \|T^* T + TT^*\| \leq w^2(T) \leq \frac{1}{2} \|T^* T + TT^*\|,
\] (1.3)
for every \(T \in B(H) \).

Precisely, the Numerical radius is not submultiplicative that is \(w(AB) \leq w(A)w(B) \) for all \(A, B \in B(H) \) is not true in general, so many authors are interested to estimate lower and upper bounds for \(w(AB) \) where \(A, B \in B(H) \). For example it is known that \(w(AB) \leq 4w(A)w(B) \); and if \(A, B \) commute, then \(w(AB) \leq 2w(A)w(B) \); also, if \(A, B \) are normal, then \(w(AB) \leq w(A)w(B) \).

Recently, in [3] the author gave a new upper bound for the numerical radius of product of operators, he proved that for \(A, B \in B(H) \) such that \(|A|B = B^*|A| \) and for nonnegative continuous functions \(f \) and \(g \) on \([0, \infty) \) satisfying \(f(t)g(t) = t \), \((t \geq 0) \),
\[
w(AB) \leq \frac{1}{2} r(B) \left(|f^2(|A|)| + g^2(|A^*|) \right),
\] (1.4)
where \(|A| = (A^*A)^{1/2} \) denotes the absolute value of \(A \).

Also, he proved if \(p \geq 1, \alpha \geq \beta > 1 \), with \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \) and \(\beta p \geq 2 \), then
\[
w^p(AB) \leq r^p(B) \left| \frac{1}{\alpha} f^{\alpha p}(|A|) + \frac{1}{\beta} g^{\beta p}(|A^*|) \right|,
\] (1.5)
and if \(|A^2|B^2 = (B^2)^*|A^2| \), then
\[
w^{2p}(AB) \leq \frac{1}{2} \left(\|AB\|^{2p} + r^p(B^2) \left| \frac{1}{\alpha} f^{\alpha p}(|A^2|) + \frac{1}{\beta} g^{\beta p}(|(A^2)^*|) \right| \right).
\] (1.6)

On the other hand, many authors are interested to estimate the numerical radius for the operator of matrices. In 2020, Al-Dolat, Jaradat and Al-Husban in [16] showed that if \(A, B, C, D \in B(H) \), then
\[
w \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq \frac{1}{2} \left(w^2(A) + 2w(D) + \sqrt{t^2w(A) + \|B\|^2 + \sqrt{(1-t)^2w^2(A) + \|C\|^2}} \right),
\]
for all \(t \in [0, 1] \).

In 2020, Bani-Domi and Kittaneh proved in [15] if \(A, B, C, D \in B(H) \), then

\[
w^2\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \leq \max\{w^2(A), w^2(D)\} + w^2\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right)
+w\left(\begin{bmatrix} 0 & BD^* \\ CA & 0 \end{bmatrix}\right) + \frac{1}{2} \max\{\lambda, \mu\},
\]

where \(\lambda = ||A||^2 + ||B^*||^2 \) and \(\mu = ||D||^2 + ||C^*||^2 \).

Let \(a, b \geq 0 \). Then we have

- The Power-Mean inequality:

\[
a^\alpha b^{1-\alpha} \leq \alpha a + (1-\alpha)b \leq (\alpha a^p + (1-\alpha)b^p)^{\frac{1}{p}}, \tag{1.7}
\]

for all \(\alpha \in [0, 1] \) and \(p \geq 1 \).

- Kittaneh and Manasrah [1] gave a refinement for (1.7) as follows:

\[
a^\alpha b^{1-\alpha} \leq \alpha a + (1-\alpha)b - r_0(\sqrt{a} - \sqrt{b})^2, \tag{1.8}
\]

for all \(\alpha \in [0, 1] \) where \(r_0 = \min\{\alpha, 1-\alpha\} \).

- The authors in [4] presented a generalization for (1.8) as follows:

\[
(a^\alpha b^{1-\alpha})^k \leq (\alpha a + (1-\alpha)b)^k - r_0^k(a^\frac{k}{2} - b^\frac{k}{2})^2, \tag{1.9}
\]

for all \(k \in \mathbb{N} \) and \(\alpha \in [0, 1] \) where \(r_0 = \min\{\alpha, 1-\alpha\} \).

- Recently, Choi [5] improved the Power-Mean inequality as follows:

\[
(a^\alpha b^{1-\alpha})^k \leq (\alpha a + (1-\alpha)b)^k - (2r_0)(\frac{(a+b)}{2})^k - (ab)^\frac{k}{2}, \tag{1.10}
\]

for all \(k \in \mathbb{N} \) and \(\alpha \in [0, 1] \) where \(r_0 = \min\{\alpha, 1-\alpha\} \).

- The Power-Young inequality:

\[
ab \leq \frac{a^\alpha}{\alpha} + \frac{b^\beta}{\beta} \leq \left(\frac{a^p}{\alpha} + \frac{b^p}{\beta}\right)^{\frac{1}{p}}, \tag{1.11}
\]

for all \(\alpha, \beta > 1 \) with \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \) and \(p \geq 1 \).

In this paper, we present some generalizations and refinements for the numerical radius inequalities. Further, new upper bounds for the numerical radius of 2 \(\times \) 2 operator matrices are given.

2. The main results

The aim of this section is to establish a generalizations and refinements for the numerical radius inequalities. To do this, we need the following sequence of lemmas. The first lemma is a result of the spectral Theorem together with Jensen’s inequality (see[7]).
Lemma 2.1. Let $T \in B(H)$ be a positive operator and let $x \in H$ be any vector. Then

a. $\langle Tx, x \rangle^s \leq ||x||^{2s-2} \langle T^s x, x \rangle$ for $s \geq 1;$

b. $\langle T^s x, x \rangle \leq ||x||^{2-2s} \langle Tx, x \rangle^s$ for $0 < s \leq 1.$

The second lemma gives an upper bound for the spectral radius which was obtained by Kittaneh [6].

Lemma 2.2. Let $A, B \in B(H).$ Then

$$r(AB) \leq \frac{1}{4} \left(||AB|| + ||BA|| + \sqrt{(||AB|| - ||BA||)^2 + 4 \min\{||A||||BAB||, ||B||||ABA||\}} \right).$$

In particular,

$$r(A) \leq \frac{1}{2}(||A|| + ||A^2||^{\frac{1}{2}}).$$

The next lemma is a consequence of the spectral Theorem [7].

Lemma 2.3. Let $A, B \in B(H)$ such that $|A|B = B^*|A|.$ If f, g are nonnegative continuous functions on $[0, \infty)$ satisfying $f(t)g(t) = t,$ where $t \geq 0,$ then

$$|\langle ABx, y \rangle| \leq r(B) ||f(|A|)x|| ||g(|A^*|)y||,$$

for every vectors $x, y \in H.$

Our first main result is the following improvement of (1.4).

Theorem 2.4. Let $A_i, B_i \in B(H)$ ($i = 1, 2, \ldots, n$) such that $|A_i|B_i = B_i^*|A_i|$ and let f and g be nonnegative continuous functions on $[0, \infty)$ such that $f(t)g(t) = t$ for all $t \in [0, \infty).$ Then for every $k \in \mathbb{N}$ and $p, q \geq k,$

$$w^n \left(\sum_{i=1}^{n} A_i B_i \right) \leq \frac{n^{p-k/q}}{2^{k/q}} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \left\| \sum_{i=1}^{n} \left(f^{2p/q}(|A_i|) + g^{2p/q}(|A_i^*|) \right) \right\|^{k/q}$$

$$- \inf_{||x||=1} \phi(x)$$

(2.1)

where $\phi(x) = \frac{n^{p-1}}{2^k} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^{n} \left(\langle f^{2p/k}(|A_i|)x, x \rangle^{k/2} - \langle g^{2p/k}(|A_i^*|)x, x \rangle^{k/2} \right)^2.$
Proof. Let $x \in H$ be any unit vector. Then

$$\left| \left\langle \sum_{i=1}^{n} A_{i}B_{i}x, x \right\rangle \right|^p$$

$$\leq \left(\sum_{i=1}^{n} \left| \left\langle A_{i}B_{i}x, x \right\rangle \right| \right)^p$$

$$\leq n^{p-1} \sum_{i=1}^{n} \left| \left\langle A_{i}B_{i}x, x \right\rangle \right|^p$$

(by convexity of t^p)

$$\leq n^{p-1} \sum_{i=1}^{n} (r(B_i) \| f(|A_i|)x \| \| g(|A_i^*|)x \|)^p$$

(by Lemma 2.3)

$$\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^{n} \left(\left\langle f^2(|A_i|)x, x \right\rangle^{p/2} \left\langle g^2(|A_i^*|)x, x \right\rangle^{p/2} \right)$$

$$\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^{n} \left(\left\langle f^{2p/k}(|A_i|)x, x \right\rangle^{1/2} \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle^{1/2} \right)^k$$

(by Lemma 2.1)

$$\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^{n} \left[\left(\frac{\left\langle f^{2p/k}(|A_i|)x, x \right\rangle^q + \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle^q}{2} \right)^{k/q} - \frac{1}{2^k} \left(\left\langle f^{2p/k}(|A_i|)x, x \right\rangle^{k/2} - \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle^{k/2} \right)^2 \right]$$

(by inequalities (1.9) and (1.7))

$$\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^{n} \left[\left(\frac{\left\langle f^{2p/k}(|A_i|)x, x \right\rangle + \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle}{2} \right)^{k/q} - \frac{1}{2^k} \left(\left\langle f^{2p/k}(|A_i|)x, x \right\rangle^{k/2} - \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle^{k/2} \right)^2 \right]$$

(by Lemma 2.1)

$$\leq n^{p-k/q} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \left(\sum_{i=1}^{n} \left\langle f^{2p/k}(|A_i|)x, x \right\rangle + \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle \right)^{k/q} x, x$$

$$\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^{n} \left(\left\langle f^{2p/k}(|A_i|)x, x \right\rangle^{k/2} - \left\langle g^{2p/k}(|A_i^*|)x, x \right\rangle^{k/2} \right)^2$$

(by concavity of $t^{k/q}$).
Thus,

\[
w^p \left(\sum_{i=1}^{n} A_i B_i \right) = \sup \left\{ \left\| \sum_{i=1}^{n} A_i B_i x, x \right\|^p : x \in H, \|x\| = 1 \right\}
\]

\[
\leq \frac{n^{p-k/q}}{2^{k/q}} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \left\| \sum_{i=1}^{n} \left(f^{2pq/k}(|A_i|) + g^{2pq/k}(|A_i^*|) \right) \right\|^{k/q} - \inf_{\|x\|=1} \phi(x).
\]

Choosing \(n = 1 \) in Theorem 2.4 then using Lemma 2.2 we obtain the following corollary.

Corollary 2.5. Let \(A, B \in B(H) \) such that \(|A|B = B^*|A|\) and let \(f \) and \(g \) be nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t \) for \(t \geq 0 \). Then for \(k \in \mathbb{N} \) and \(p, q \geq k \),

\[
w^p(AB) \leq \frac{r^p(B)}{2^k} \left\| f^{2pq/k}(|A|) + g^{2pq/k}(|A^*|) \right\| - \inf_{\|x\|=1} \phi(x)
\]

\[
\leq \frac{1}{2^{p+k/q}} (\|B\| + \|B^2\|^{1/2}) \left\| f^{2pq/k}(|A|) + g^{2pq/k}(|A^*|) \right\| - \inf_{\|x\|=1} \phi(x),
\]

where \(\phi(x) = \frac{r^p(B)}{2^k} \left(\left\| f^{2pq/k}(|A|)|x, x\rangle \right\|^2 - \left\| g^{2pq/k}(|A^*|)|x, x\rangle \right\|^2 \right)^{1/2} \).

The next result follows from Corollary 2.5 by setting \(p = q = k = 1 \) and \(f(t) = t^\alpha \), \(g(t) = t^{1-\alpha} \) for \(\alpha \in [0, 1] \).

Corollary 2.6. Let \(A, B \in B(H) \) such that \(|A|B = B^*|A|\). Then for \(\alpha \in [0, 1] \),

\[
w(AB) \leq \frac{r(B)}{2} \left\| |A|^{2\alpha} + |A^*|^{2(1-\alpha)} \right\| - \inf_{\|x\|=1} \phi(x)
\]

\[
\leq \frac{1}{4} (\|B\| + \|B^2\|^{1/2}) \left\| |A|^{2\alpha} + |A^*|^{2(1-\alpha)} \right\| - \inf_{\|x\|=1} \phi(x),
\]

where \(\phi(x) = \frac{r(B)}{2} \left(\left\| |A|^{\alpha} x, x\rangle \right\|^2 - \left\| |A^*|^{2(1-\alpha)} x, x\rangle \right\|^2 \right)^{1/2} \).

The next result is a simple form follows from Corollary 2.6 by letting \(\alpha = 1/2 \).

Corollary 2.7. Let \(A, B \in B(H) \) such that \(|A|B = B^*|A|\). Then

\[
w(AB) \leq \frac{r(B)}{2} \| |A| + |A^*| \| - \inf_{\|x\|=1} \phi(x)
\]

\[
\leq \frac{1}{4} (\|B\| + \|B^2\|^{1/2}) \| |A| + |A^*| \| - \inf_{\|x\|=1} \phi(x),
\]

where \(\phi(x) = \frac{r(B)}{2} \left(\left\| |A| x, x\rangle \right\|^2 - \left\| |A^*| x, x\rangle \right\|^2 \right)^{1/2} \).
The next lemma is a result of Shebrawi [8] that will be used in the proof of Corollary 2.9.

Lemma 2.8. Let \(A, B \in B(H) \) and let \(t \in [0, 1] \). Then

\[
\|A + B\| \leq \max(\|A\|, \|B\|) + \frac{1}{2} \left(\|\|A\|B\|^{1-t}\| + \|A^*B\|^{1-t}\| \right).
\]

Using Corollary 2.7, Lemma 2.8 with \(t = \frac{1}{2} \) and the fact \(\|\|A\|B\|^{1/2}\| \leq \|AB\|^{1/2} \) we obtain the following corollary.

Corollary 2.9. Let \(A, B \in B(H) \) such that \(\|A\|B\| = B^*\| \). Then

\[
w(AB) \leq \frac{1}{4} \left(\|B\| + \|B^2\|^{1/2} \right) \left(\|A\| + \|A^2\|^{1/2} \right) - \inf_{\|x\|=1} \phi(x),
\]

where \(\phi(x) = \frac{r(B)}{2} \left(\langle |A|x, x \rangle^{1/2} - \langle A^*|x, x \rangle^{1/2} \right)^2 \).

The following theorem gives a generalization for (1.5) which can be stated as follows.

Theorem 2.10. Let \(A_i, B_i \in B(H) \) \((i = 1, 2, \ldots, n)\) such that \(|A_i|B_i = B_i^*|A_i| \) and let \(f, g \) be nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t, \) \((t \geq 0). \) Then for \(\alpha \geq \beta > 1 \) with \(\frac{1}{\alpha} + \frac{1}{\beta} = 1, \) \(s \geq 1 \) and \(p \geq \max\{1, 2\beta\}, \)

\[
\begin{align*}
w^p \left(\sum_{i=1}^n A_i B_i \right) & \leq n^{p-1/s} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \left(\sum_{i=1}^n \left(\frac{1}{\alpha} f^{ps\alpha}(\|A_i\|) + \frac{1}{\beta} g^{ps\beta}(\|A_i^*\|) \right) \right)^1/s \\
& \leq \frac{n^{p-1/s}}{2^p} \sqrt{\max \left\{ \frac{1}{\alpha}, \frac{1}{\beta} \right\} \left(\max_{1 \leq i \leq n} (\|B_i\| + \|B_i^2\|)^p \right) } \\
& \times \left| \left\| \sum_{i=1}^n \left(f^{ps\alpha}(\|A_i\|) + g^{ps\beta}(\|A_i^*\|) \right) \right\|^{1/s} \right|
\end{align*}
\]

Proof. Let \(x \in H \) be any unit vector. Then, we have

\[
\left| \left\langle \sum_{i=1}^n A_i B_i x, x \right\rangle \right|^p \leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left(\langle f^2(|A_i|)x, x \rangle^{ps/2} \langle g^2(|A_i^*|)x, x \rangle^{ps/2} \right)^{1/s} \\
\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left(\frac{1}{\alpha} f^2(|A_i|)x, x \rangle^{ps\alpha/2} + \frac{1}{\beta} \langle g^2(|A_i^*|)x, x \rangle^{ps\beta/2} \right)^{1/s}
\]

(by inequality 1.11)
\[\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left(\frac{1}{\alpha} \langle f^{p\alpha}(A_i) | x, x \rangle + \frac{1}{\beta} \langle g^{p\beta}(A^*_i) | x, x \rangle \right)^{1/s} \]

(by Lemma 2.1)

\[= n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left(\frac{1}{\alpha} f^{p\alpha}(A_i) + \frac{1}{\beta} g^{p\beta}(A^*_i) \right) x, x \right)^{1/s} \]

\[\leq n^{p-1/s} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \left(\sum_{i=1}^n \left(\frac{1}{\alpha} f^{p\alpha}(A_i) + \frac{1}{\beta} g^{p\beta}(A^*_i) \right) x, x \right)^{1/s} \]

(by concavity of \(t^{1/s} \)).

Now, the first bound of Theorem 2.10 is obtained by taking the supremum over all unit vectors \(x \in H \). We obtain the second bound by applying Lemma 2.2 on the first inequality. \(\square \)

As a direct consequence of Theorem 2.10 we get the following result which can be considered as a generalization for the first bound of the inequality (1.2)

Corollary 2.11. Let \(A \in B(H) \). Then for all \(p, s \geq 1 \),

\[w^p(A) \leq \left| \frac{|A| |A^*|}{2} \right|^{1/s}. \]

Setting \(p = s = 1 \) in Corollary 2.11 we get the first bound in the inequality (1.2).

On the other hand the next result is obtained by letting \(n = 1 \) in Theorem 2.10.

Corollary 2.12. Let \(A, B \in B(H) \) such that \(|A|B = B^*|A| \). If \(f, g \) are nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t \ (t \geq 0) \). Then

\[w^p(AB) \leq r^p(B) \left| \frac{1}{\alpha} f^{p\alpha}(|A|) + \frac{1}{\beta} g^{p\beta}(|A^*|) \right|^{1/2}, \]

where \(\alpha \geq \beta > 1 \) with \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \), \(s \geq 1 \) and \(p \geq \max\{1, \frac{2}{s\beta} \} \).

A general refinement for the second bound of (1.3) will be given in the following theorem.

Theorem 2.13. Let \(A_i, B_i \in B(H) \ (i = 1, 2, \ldots, n) \) such that \(|A_i|B_i = B_i^*|A_i| \) and let \(f, g \) be nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t \ (t \geq 0) \). Then for \(\alpha \in [0, 1], \ q \geq 1, \ k \in \mathbb{N} \) and \(p \geq k \),

\[w^p \left(\sum_{i=1}^n A_iB_i \right) \leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left(\left| \| f^{2pq/\alpha k}(|A_i|) + (1 - \alpha) g^{2pq/(1-\alpha)k}(|A^*_i|) \right| \right)^{1/2} \]

\[- \inf_{|x|=1} \phi(x)^{1/2}, \]
where

\[
\phi(x) = (2 \min \{\alpha, 1 - \alpha\})^k \times \left(\left\langle \frac{f^{2p/\alpha k}(|A_i|)}{2} + g^{2p/(1-\alpha)k}(|A_i^+|) \right\rangle_x, x \right)^k
- \left(\left\langle f^{2p/\alpha k}(|A_i|)x, x \right\rangle \left\langle g^{2p/(1-\alpha)k}(|A_i^+|)x, x \right\rangle \right)^{k/2}.
\]

Proof. Let \(x \in H \) be a unit vector. Then, we have

\[
\left\langle \sum_{i=1}^n A_i B_i x, x \right\rangle^p
\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left\langle f^2(|A_i|)x, x \right\rangle^{p/2} \left\langle g^2(|A_i^+|)x, x \right\rangle^{p/2}
\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left[\left(\left\langle f^{2p/\alpha k}(|A_i|)x, x \right\rangle^{p\alpha/k} \left\langle g^{2/(1-\alpha)}(|A_i^+|)x, x \right\rangle^{p(1-\alpha)/k} \right)^{1/2} \right]
\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left[\left(\left\langle f^{2p/\alpha k}(|A_i|)x, x \right\rangle^{\alpha} \left\langle g^{2p/(1-\alpha)k}(|A_i^+|)x, x \right\rangle^{1-\alpha} \right)^{1/2} \right]
\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left[\left(\alpha \left\langle f^{2p/\alpha k}(|A_i|)x, x \right\rangle^q + (1 - \alpha) \left\langle g^{2p/(1-\alpha)k}(|A_i^+|)x, x \right\rangle^q \right)^{k/q}
- (2 \min \{\alpha, 1 - \alpha\})^k \left(\left\langle f^{2p/\alpha k}(|A_i|) + g^{2p/(1-\alpha)k}(|A_i^+|) \right\rangle_{x, x} \right)^k
- \left(\left\langle f^{2p/\alpha k}(|A_i|)x, x \right\rangle \left\langle g^{2p/(1-\alpha)k}(|A_i^+|)x, x \right\rangle \right)^{1/2} \right)^{1/2} \right]
\leq n^{p-1} \left(\max_{1 \leq i \leq n} r^p(B_i) \right) \sum_{i=1}^n \left[\left(\alpha f^{2pq/\alpha k}(|A_i|) + (1 - \alpha) g^{2pq/(1-\alpha)k}(|A_i^+|) \right) x, x \right]^q
- (2 \min \{\alpha, 1 - \alpha\})^k \left(\left\langle f^{2p/\alpha k}(|A_i|) + g^{2p/(1-\alpha)k}(|A_i^+|) \right\rangle_{x, x} \right)^k
- \left(\left\langle f^{2p/\alpha k}(|A_i|)x, x \right\rangle \left\langle g^{2p/(1-\alpha)k}(|A_i^+|)x, x \right\rangle \right)^{1/2} \right]^{1/2} \right]
\]

The desired bound is obtained by taking the supremum over all unit vectors \(x \in H \). \(\square \)

Choosing \(\alpha = \frac{1}{2}, n = p = q = k = 1, B = I \) and \(f(t) = g(t) = t^{1/2} \) in Theorem 2.13 we get the following corollary.
COROLLARY 2.14. Let $A \in B(H)$. Then

$$w^2(A) \leq \frac{1}{2}||A||^2 + ||A^*||^2 - \inf_{||x||=1} \phi(x),$$

where

$$\phi(x) = \left\langle \frac{||A||^2 + ||A^*||^2}{2} x, x \right\rangle - \left(\left\langle |A|^2 x, x \right\rangle \left\langle |A^*|^2 x, x \right\rangle \right)^{1/2}.$$

The next lemma is a result of Dragomir [9] that will be used in the proof of Theorem 2.16.

LEMMA 2.15. Let $x, y, e \in H$ such that $||x|| = 1$. Then

$$|\langle x, e \rangle \langle e, y \rangle| \leq \frac{1}{2} \left(|\langle x, y \rangle| + ||x|| ||y|| \right).$$

Let $A, B \in B(H)$ and let $u \in H$ be unit vector. Then for $e = u$, $x = ABu$ and $y = B^*A^*u$ in Lemma 2.15 we have

$$|\langle ABu, u \rangle|^2 \leq \frac{1}{2} \left(|\langle AB \rangle^2 u, u \rangle| + ||ABu|| ||B^*A^*u|| \right). \quad (2.2)$$

The next result provides a generalization for the inequality (1.6).

THEOREM 2.16. Let $A_i, B_i \in B(H) \ (i = 1, 2, \ldots, n)$ such that $A_iB_i = B_iA_i$ and $|A_i^2| |B_i^2| = (B_i^2)^*|A_i^2|$ and let f, g be nonnegative continuous functions on $[0, \infty)$ satisfying $f(t)g(t) = t$, $(t \geq 0)$. Then for $\alpha \geq \beta > 1$ with $1/\alpha + 1/\beta = 1$, $s \geq 1$ and $p \geq \max\{1, \frac{2}{s^p} \}$,

$$w^2p \left(\sum_{i=1}^{n} A_iB_i \right) \leq \frac{n^{2p-1}}{2} \sum_{i=1}^{n} ||A_iB_i||^{2p} + \frac{n^{2p-1/s}}{2} \left(\max_{1 \leq i \leq n} r^p(B_i^2) \right)$$

$$\times \left\| \sum_{i=1}^{n} \left(\frac{1}{\alpha} f^{p\alpha\beta}(|A_i^2|) + \frac{1}{\beta} g^{p\beta\alpha}(|A_i^2|^*) \right) \right\|^{1/s}$$

$$\leq \frac{n^{2p-1}}{2} \left(\sum_{i=1}^{n} ||A_iB_i|| + \frac{(||B_i^2|| + ||B_i^2||^{1/2})}{n^{-1+1/s}} \right)$$

$$\times \left\| \sum_{i=1}^{n} \left(\frac{1}{\alpha} f^{p\alpha\beta}(|A_i^2|) + \frac{1}{\beta} g^{p\beta\alpha}(|A_i^2|^*) \right) \right\|^{1/s}.$$

Proof. For any unit vector $x \in H$ we have

$$\left\| \sum_{i=1}^{n} A_iB_i x, x \right\|^{2p} \leq n^{2p-1} \sum_{i=1}^{n} |\langle A_iB_i x, x \rangle|^{2p} \quad \text{(by convexity of } t^{2p})$$

$$\leq n^{2p-1} \sum_{i=1}^{n} \left(\left\langle (A_iB_i)^2 x, x \right\rangle + ||A_iB_i|| ||B_i^*A_i^*|| \right)^{p} \quad \text{(by (2.2))}$$
\[\leq n^{2p-1} \sum_{i=1}^{n} \left(\left(\langle A_i B_i \rangle^2 x, x \right) \right)^{p} \leq \frac{1}{2} \left(\sum_{i=1}^{n} \left| A_i B_i \right|^2 + \left(\max_{1 \leq i \leq n} \frac{r}{p}(B_i^2) \right) \sum_{i=1}^{n} \left(\langle f^2 \left(|A_i|^2 \right), x, x \rangle \right)^{p/2} \right) \]

(by Lemma 2.3)

\[\leq n^{2p-1} \left(\sum_{i=1}^{n} \left| A_i B_i \right|^2 + \frac{\left(\max_{1 \leq i \leq n} \frac{r}{p}(B_i^2) \right)}{n^{-1} + 1/s} \right) \left(\sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{\alpha} f^{p\alpha}(|A_i|^2) + \frac{1}{\beta} g^{p\beta}(|(A_i^2)^*|) \right) \right) \]

(by Theorem 2.16)

The last inequality above is obtained by following the same steps of Theorem 2.10. The proof is finish by taking the supremum over all unit vectors \(x \in H \).

Corollary 2.17. Let \(A \in B(H) \), and let \(f, g \) be nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t, \ (t \geq 0) \). Then for \(\alpha \geq \beta > 1 \) with \(\frac{1}{\alpha} + \frac{1}{\beta} = 1 \) and \(p > \max\{\frac{2}{\alpha}, 1\} \),

\[w^{2p}(A) \leq \frac{1}{2} \left(\left| A \right|^2 + \left(\frac{1}{\alpha} f^{p\alpha}(|A|^2) + \frac{1}{\beta} g^{p\beta}(|(A|^2)^*) \right) \right)^{1/s} \]

The final result in this section is the following refinement of [[10], Theorem 3.3].

Theorem 2.18. Let \(A_i, B_i, X_i \in B(H), \ (i = 1, 2, \ldots, n) \) such that \(A_i, B_i \) positive for each \(i = 1, 2, \ldots, n \). Then for \(\alpha \in [0, 1], \ k \in \mathbb{N}, \ q \geq k \) and \(p \geq 2k \),

\[w^p \left(\sum_{i=1}^{n} A_i^\alpha X_i B_i^{1-\alpha} \right) \leq \left(\max_{1 \leq i \leq n} \left| X_i \right|^p \right) \min\{\lambda, \mu\}, \]

where

\[\lambda = n^{p-q/k} \left[\sum_{i=1}^{n} \left(\alpha A_i^{pq/k} + (1 - \alpha) B_i^{pq/k} \right) \right]^{k/q} - \inf_{\left| x \right| = 1} \phi(x), \]

and

\[\mu = n^{p-q/k} \left[\sum_{i=1}^{n} \left(\alpha A_i^{pq/k} + (1 - \alpha) B_i^{pq/k} \right) \right]^{k/q} - \inf_{\left| x \right| = 1} \phi(x), \]

where

\[\phi(x) = (2r_0)^k n^{p-1} \sum_{i=1}^{n} \left(\frac{A_i^{p/k} + B_i^{p/k}}{2} x, x \right)^k - \left(\frac{A_i^{p/k} x, x}{B_i^{p/k} x, x} \right)^{k/2} \]
and
\[\varphi(x) = n^{p-1} r_0^k \sum_{i=1}^{n} \left(\left| \left\langle A_i^{p/k} x, x \right\rangle \right|^{k/2} - \left| \left\langle B_i^{p/k} x, x \right\rangle \right|^{k/2} \right)^2, \]
where \(r_0 = \min \{ \alpha, 1 - \alpha \} \).

Proof. Let \(x \in H \) be any unit vector. Then by the Cauchy-Schwartz inequality, Lemma 2.3, Lemma 2.1 and the inequality (1.10) we have
\[
\left| \sum_{i=1}^{n} A_i^\alpha X_i B_i^{1-\alpha} x, x \right|^p
\leq n^{p-1} \left(\max_{1 \leq i \leq n} \left| A_i^\alpha \right| \right)^p \sum_{i=1}^{n} \left(\left| \left\langle A_i^{p/k} x, x \right\rangle \right|^{p/2k} \left| \left\langle B_i^{p/k} x, x \right\rangle \right|^{p/2k} \right)^k
\leq n^{p-1} \left(\max_{1 \leq i \leq n} \left| X_i \right| \right)^p \sum_{i=1}^{n} \left(\left| \left\langle A_i^{p/k} x, x \right\rangle \right|^{\alpha} \left| \left\langle B_i^{p/k} x, x \right\rangle \right|^{1-\alpha} \right)^k
\leq \left(\max_{1 \leq i \leq n} \left| X_i \right| \right)^p \left[\left(\sum_{i=1}^{n} \left(\alpha A_i^{p/k} + (1 - \alpha) B_i^{p/k} \right) \right)^{k/q} - (2r_0)^k n^{p-1} \sum_{i=1}^{n} \left(\left| A_i^{p/k} + B_i^{p/k} \right|_{x,x}^k - \left(\left| A_i^{p/k} x, x \right\rangle \right|^{k/2} \right) \right]^{k/q}
\right]
\]
The last inequality above is obtained by follows the same technique of Theorem 2.4 together with the inequalities (1.10) and (1.7). Taking the supremum over all unit vectors \(x \in H \), we get the first bound. Finally, by using (1.9), (1.7) and the same method that gave the first bound we get the second bound. □

Corollary 2.19. Let \(A, B, X \in B(H) \) such that \(A \) and \(B \) are positive. Then for \(\alpha \in [0, 1] \), \(k \in \mathbb{N} \) and \(p \geq 2k \),
\[w^p \left(A^\alpha X B^{1-\alpha} \right) \leq || X ||^p \min \{ \lambda, \mu \}, \]
where
\[\lambda = \| \alpha A^p + (1 - \alpha) B^p \| - \inf_{\| x \| = 1} \varphi(x) \]
and

\[\mu = \| \alpha A^p + (1 - \alpha)B^p \| - \inf_{\|x\|=1} \varphi(x), \]

where

\[\varphi(x) = (2r_0)^k \left(\left\langle \frac{A^{p/k} + B^{p/k}}{2}, x, x \right\rangle - \left(\left\langle \frac{A^{p/k}x}{k}, x \right\rangle \left\langle \frac{B^{p/k}x}{k}, x \right\rangle \right)^{k/2} \right), \]

and

\[\varphi(x) = r_0^k \left(\left\langle \frac{A^{p/k}x}{k}, x \right\rangle^{k/2} - \left\langle \frac{B^{p/k}x}{k}, x \right\rangle^{k/2} \right)^2, \]

where \(r_0 = \min\{\alpha, 1 - \alpha\} \).

3. New upper bounds for \(2 \times 2 \) operator matrices

In this section we will give new upper bounds for \(2 \times 2 \) operator matrices. To do this we need some facts about the spectral radius and the numerical radius. The first fact gives some basic properties for the spectral radius.

Lemma 3.1. Let \(A, B, C, D \in B(H) \). The following statements hold

a. If \(AB = BA \), then \(r(A + B) \leq r(A) + r(B) \) and \(r(AB) \leq r(A)r(B) \).

b. \(r(A^n) = r^n(A) \) for all \(n \in \mathbb{N} \).

c. \(r\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq r\left(\begin{bmatrix} \|A\| & \|B\| \\ \|C\| & \|D\| \end{bmatrix} \right) \).

d. \(r\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) = \sqrt{r(BC)} \).

e. If \(A \) is normal, then \(r(A) = w(A) = \|A\| \).

The second fact gives a useful form for the numerical radius (see [11]).

Lemma 3.2. Let \(T \in B(H) \). Then \(w(T) = \max_{\theta \in \mathbb{R}} \| \text{Re}(e^{i\theta}T) \| \).

Also, we need the following fact see [12] and [13] respectively.

Lemma 3.3. Let \(A, B, C, D \in B(H) \). Then

a. \(w\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \geq \max\left\{ w(A), w(B), w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \right\} \).

b. \(w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) = \frac{1}{2} \max_{\theta \in \mathbb{R}} \| e^{i\theta}B + e^{-i\theta}C^* \| \).

Our first estimate can be stated as follows
Theorem 3.4. Let $A, B, C, D \in B(H)$. Then

$$w^2\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \leq \frac{1}{4} \left(w(A) + \sqrt{w^2(A) + 4w^2(E)} \right)^2$$

$$+ \frac{1}{2} w^2(D) + \frac{1}{2} w(D) \sqrt{w^2(A) + 4w^2(E)},$$

where $E = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$.

Proof. Let $T = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ and let $X = e^{i\theta}A + e^{-i\theta}A^*$, $Z = e^{i\theta}D + e^{-i\theta}D^*$ and $Y = e^{i\theta}B + e^{-i\theta}C^*$ where $\theta \in \mathbb{R}$. Then

$$(2w(T))^2 = \max_{\theta \in \mathbb{R}} \left| 2\text{Re}(e^{i\theta}T) \right|^2$$

$$= \max_{\theta \in \mathbb{R}} \left| e^{i\theta}T + e^{-i\theta}T^* \right|^2$$

$$= \max_{\theta \in \mathbb{R}} \left| (e^{i\theta}T + e^{-i\theta}T^*)^2 \right|$$

$$= \max_{\theta \in \mathbb{R}} \left| TT^* + T^*T + 2\text{Re}(e^{2i\theta}T^2) \right|$$

$$= \max_{\theta \in \mathbb{R}} \left| \begin{bmatrix} X^2 + YY^* & XY + YZ \\ Y^*X + ZY^* & Z^2 + Y^*Y \end{bmatrix} \right|$$

$$\leq \max_{\theta \in \mathbb{R}} \left(r\left(\begin{bmatrix} X & Y \\ Y & 0 \end{bmatrix}^2 \right) + r\left(\begin{bmatrix} 0 & YZ \\ ZY^* & Z^2 \end{bmatrix} \right) \right) \quad \text{(by Lemma 3.1(e))}$$

$$= \max_{\theta \in \mathbb{R}} \left(r^2\left(\begin{bmatrix} X & Y \\ Y & 0 \end{bmatrix}^2 \right) + r\left(\begin{bmatrix} 0 & YZ \\ ZY^* & Z^2 \end{bmatrix} \right) \right) \quad \text{(by Lemma 3.1(b))}$$

$$= \max_{\theta \in \mathbb{R}} \left(r^2\left(\begin{bmatrix} ||X|| & ||Y|| \\ ||Y|| & 0 \end{bmatrix} \right) + r\left(\begin{bmatrix} 0 & ||YZ|| \\ ||YZ|| & ||Z^2|| \end{bmatrix} \right) \right) \quad \text{(by Lemma 3.1(c))}$$

$$= \max_{\theta \in \mathbb{R}} \left(\frac{1}{2} \left(||X|| + \sqrt{||X||^2 + 4||Y||^2} \right)^2 + \frac{1}{2} \left(||Z|| + \sqrt{||Z||^2 + 4||YZ||^2} \right) \right)$$

$$= \left(w(A) + \sqrt{w^2(A) + 4w^2(E)} \right)^2 + 2w^2(D) + 2w(D) \sqrt{w^2(D) + 4w^2(E)}.$$

Hence

$$w^2\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \leq \frac{1}{4} \left(w(A) + \sqrt{w^2(A) + 4w^2(E)} \right)^2$$

$$+ \frac{1}{2} w^2(D) + \frac{1}{2} w(D) \sqrt{w^2(D) + 4w^2(E)}. \quad \square$$
REMARK 3.5. 1. The inequality in Theorem 3.4 is sharper than the upper bound provided in [[14], Theorem 2.6], to see this take \(B = C = D = 0 \) which implies that the inequality in our theorem becomes equality while in [[14], Theorem 2.6] we obtain \(w(A) \leq ||A|| \).

2. In [[15], Theorem 2.2] if we choose \(A = D = 0 \) and \(B = C = I \), we obtain \(w^2 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 1.5 \) whereas in Theorem 3.4 we have \(w^2 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 1 \).

3. In [[16], Theorem 2.8] take \(A = B = C = D = I \) with \(t = 1 \) to obtain \(w \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq \frac{4+\sqrt{2}}{2} \approx 2.7 \), while in Theorem 3.4 we get \(w \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq \sqrt{2+\sqrt{5}} \approx 2.06. \)

4. In [8, Corollary 3.4] if we choose \(A = D = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \) and \(B = C = 0 \), we obtain \(w^2 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 16 \) while in Theorem 3.4 we obtain \(w^2 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 8. \)

The second estimate which concerns with certain \(2 \times 2 \) operator matrix will be given in the following theorem.

Theorem 3.6. Let \(X, Y \in B(H) \) and suppose \(f, g \) are nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t \) \((t \geq 0)\). Then

\[
w \left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \right) \leq \frac{1}{2} \left(1 + \sqrt{r(||X||Y||)} \right) \max \{ ||f^2(||X||) + g^2(||Y^*||)||, ||f^2(||Y||) + g^2(||X^*||)|| \}.
\]

Also,

\[
w(X||Y||) \leq \frac{1}{2} \left(1 + \sqrt{r(||X||Y||)} \right) \max \{ ||f^2(||X||) + g^2(||Y^*||)||, ||f^2(||Y||) + g^2(||X^*||)|| \}.
\]

\[
w(Y||X||) \leq \frac{1}{2} \left(1 + \sqrt{r(||X||Y||)} \right) \max \{ ||f^2(||X||) + g^2(||Y^*||)||, ||f^2(||Y||) + g^2(||X^*||)|| \}.
\]

Proof. Let \(A = \begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} I & |X| \\ |Y| & I \end{bmatrix} \). Then it is easy to see that \(|A|B = B^*|A| \) and so by Lemma 2.3 we have

\[
|\langle ABx,x \rangle| \leq r(B)||f(||A||)|x||g(||A^*||)|x|| \quad \text{(where } x \in H \oplus H) \]
\[
\leq r(B)\langle f^2(||A||)|x,x\rangle^{1/2}g^2(||A^*||)|x,x\rangle^{1/2} \]
\[
\leq \frac{1}{2}r(B)\langle (f^2(||A||) + g^2(||A^*||))|x,x\rangle.
\]
Thus,
\[
\begin{align*}
 w\left(\begin{bmatrix} X|Y| & X \\ Y & Y|X| \end{bmatrix}\right) &= w(AB) = \sup \left\{ |\langle ABx, x \rangle| : x \in H \oplus H, ||x|| = 1 \right\} \\
 &\leq \frac{1}{2} \left\| f^2(|A|) + g^2(|A^*|) \right\| r\left(\begin{bmatrix} I & |X| \\ |Y| & I \end{bmatrix}\right) \\
 &= \frac{1}{2} \left\| \begin{bmatrix} f^2(|Y|) + g^2(|X^*|) & 0 \\ 0 & f^2(|X|) + g^2(|Y^*|) \end{bmatrix} \right\| r\left(\begin{bmatrix} I & |X| \\ |Y| & I \end{bmatrix}\right) \\
 &= \frac{1}{2} \max \left\{ \left\| f^2(|X|) + g^2(|Y^*|) \right\|, \left\| f^2(|Y|) + g^2(|X^*|) \right\| \right\} \times \left(r\left(\begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}\right) + r\left(\begin{bmatrix} 0 & |X| \\ |Y| & 0 \end{bmatrix}\right) \right) \\
 &\leq \frac{1}{2} \max \left\{ \left\| f^2(|X|) + g^2(|Y^*|) \right\|, \left\| f^2(|Y|) + g^2(|X^*|) \right\| \right\} \times \left(1 + \sqrt{r(|X||Y|)} \right) \quad \text{(by Lemma 3.1(a))} \\
 &= \frac{1}{2} \max \left\{ \left\| f^2(|X|) + g^2(|Y^*|) \right\|, \left\| f^2(|Y|) + g^2(|X^*|) \right\| \right\} \times \left(1 + \sqrt{r(|X||Y|)} \right) \quad \text{(by Lemma 3.1(d))}.
\end{align*}
\]

Using the above inequality and Lemma 3.3(a) we get our bounds. \(\Box\)

By Theorem 3.6 and Lemma 2.8 we get the following result.

Corollary 3.7. Let \(X \in B(H) \). Then
\[
 w(X|X|) \leq \frac{1}{2} (1 + ||X|| ||X| + |X^*||) \leq \frac{1}{2} (1 + ||X|| (||X|| + ||X^2||)^{1/2}).
\]

References

[1] F. Kittaneh Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Appl. 361 (2010) 262–269.

[2] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003) 11–17.

[3] M. Alomri, Refinement of some numerical radius inequalities for Hilbert space operators, Linear Multilinear A. (2019), https://doi.org/10.1080/03081087.2019.1624682.

[4] Y. Manasrah, F. Kittaneh, A generalization of two refined Young inequalities, Positivity 19 (2015) 757–768.

[5] D. Choi, A generalization of Younge-type inequalities, Math. Inequal. Appl. 21 (2018) 99–106.

[6] F. Kittaneh, Spectral radius inequalities for Hilbert space operators, Proc. Am. Math. Soc. 134 (2) (2005) 385–390.

[7] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. I. Math. Sci. 24 (1988) 283–293.

[8] K. Shebrawi, Numerical radius inequalities for certain \(2 \times 2\) operator matrices II, Linear Algebra Appl. 523 (2017) 1–12.
[9] S. S. Dragomir, *Some refinements of Schwarz inequality*, Simposional de Math Si Appl. Polytechnical Inst Timisoara, Romania, 1–2, (1985) 13–16.

[10] M. Sattari, M. S. Moslehian, T. Yamazaki, *Some generalized numerical radius inequalities of Hilbert space operators*, Linear Algebr Appl. 470 (2015) 216–227.

[11] T. Yamazaki, *On upper and lower bounds of the numerical radius and an equality coditions*, Studia mathematica 178 (2007) 83–89.

[12] R. Bahtia, *Matrix analysis*, volume of Graduate texts in mathematics, 1997.

[13] O. Hirzallah, F. Kittaneh, K. Shebrawi, *Numerical radius inequality for certain 2 × 2 operator matrices*, Integral Equations Operator Theory 71 (1997) 129–149.

[14] O. Hirzallah, F. Kittaneh, K. Shebrawi, *Numerical radius inequalities for 2 × 2 operator matrices*, Studia Mathematica 15 (2012) 99–115.

[15] W. Bani-Domi, F. Kittaneh, *Norm and numerical radius inequalities for Hilbert space operators*, Linear and Multilinear Algebra (2020), https://doi.org/10.1080/03081087.2020.1798334.

[16] M. Al-Dolat, I. Jaradat, I. Al-Husbah, *A novel numerical radius upper bound for 2 × 2 operator matrices*, Linear and Multilinear Algebra (2020), https://doi.org/10.1080/03081087.2020.1756199.

(Received September 23, 2020)

Mohammed Al-Dolat
Department of Mathematics & Statistics
Jordan University of Science and Technology
P.O. Box 3030, Irbid 22110, Jordan
e-mail: maldolat@just.edu.jo

Ayat Dagher
Department of Mathematics & Statistics
Jordan University of Science and Technology
P.O. Box 3030, Irbid 22110, Jordan
e-mail: amdagher17@sci.just.edu.jo

Marwan Alquran
Department of Mathematics & Statistics
Jordan University of Science and Technology
P.O. Box 3030, Irbid 22110, Jordan
e-mail: marwan04@just.edu.jo