Aetiology of auditory dysfunction in amusia: a systematic review

Daniel AJ Casey

Abstract

Background: Amusia, a music-specific agnosia, is a disorder of pitch interval analysis and pitch direction change recognition which results in a deficit in musical ability. The full range of aetiological factors which cause this condition is unknown, as is each cause’s frequency. The objective of this study was to identify all causes of amusia, and to measure each of their frequencies.

Methods: Design: systematic review was conducted by search of multiple databases for articles related to the aetiology of amusic auditory dysfunction. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting of systematic reviews were followed, utilizing the PRISMA checklist and PRISMA flowchart methodology. Setting: Retrospective medical database review. Main outcome measures: evidence yielded from the systematic review process.

Results: The initial search protocol identified 5723 articles. Application of a classification review filter and exclusion of irrelevant or duplicates led to the initial identification of 56 relevant studies which detailed 301 patients. However, these studies were of poor quality. Because of this, synthesis and statistical analysis were not appropriate.

Conclusion: Although initially a large number of relevant studies were identified, and might point in future to potential diagnostic categories, it was not appropriate to synthesise and analyse them due to poor quality, considerable heterogeneity and small numbers. This suggests that large, high quality studies focussed directly on understanding the aetiology of amusia are required.

Keywords: Amusia, Aetiology, Auditory agnosia, Otology, Neurology

Background

Amusia is a music-specific auditory agnosia consisting of neurological deficit in musical ability [1]. Knoblauch’s definition is ‘the loss of a musical ability, such as the comprehension of music, the production of music, or the ability to read or write musical notation’ [2].

However, a grey area lies between ‘amusia’ and auditory agnosias which impair auditory function related to pitch processing, interval analysis, timbre, rhythm or the emotional components of music but with sparing of gross musical ability [3]. This study will focus on studies in which there is a clear loss of musical ability and thus satisfy Knoblauch’s definition.

Fry estimates that 4.2% of the UK adult population may be amusic [4]. As music and melody form a fundamental part of human experience, amusia is associated with significant distress, especially for musical professionals. Removal of a stimulus which in some instances can activate neuroanatomical regions associated with intense pleasure can represent a severe handicap [5].

Thus, a systematic examination of the aetiology of amusia may be of considerable importance in forming a differential diagnosis in the clinic and in informing prevention strategies. Understanding the aetiological factors behind amusia can also shed light on musical auditory function and aid in deficit prediction. The neural basis of music is a matter of intense investigation.

However, no such aetiological categorization has yet been conducted. Here, a systematic review of the causes of amusia is performed.

Method

This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
initial search protocol
Systematic review was conducted by search of multiple databases for articles related to the aetiology of amusic auditory dysfunction (Medline and The Cochrane Library). Key Terms used to identify the concept of amusic auditory dysfunction included amusia (sensory and motor), dysmusia, tone deaf(ness), tune deaf(ness), pitch processing deficit and note deaf(ness). Keywords used to identify aetiological frequency included aetiology, etiology, aetiologic(al) factor(s), etiol*, etiol*, pathophysiology identification, risk factor(s) and cause(s). Aetiological keywords were combined with those specific to amusic auditory dysfunction. A secondary search was then conducted, and the grey literature was also searched.

filter procedure
Initial search using the amusic key-terms, with and without aetiological key-term modifiers, yielded 5723 articles for assessment. Articles to form part of the systematic review were then filtered based on a classification review filter. Studies to be included had to be directly relevant to amusia, contain a definition of amusia consistent with the current literature (i.e. music specific auditory agnosia), and provide a full aetiological explanation for all subjects with accompanying diagnostic evidence.

After elimination of irrelevant articles and application of the above criteria, results were narrowed to 56 papers containing 301 patients ranging from 1878 to 2012, including articles in English, German, Spanish, French, Italian, Russian and Japanese (non-English language articles were translated into English).

However, 40 of these 56 were single case reports; the remaining studies also contained small patient numbers (and/or had amusia as a secondary concern within the paper). This meant that the quality of evidence found was very poor. Due to this, no studies found were appropriate for synthesis and analysis.

results
The PRISMA flow diagram (Figure 1) summarizes the article selection process. The initial search protocol identified 5723 articles. Application of the classification review filter and exclusion of irrelevant or duplicates led to the initial identification of 56 relevant studies [7-62]. These studies contained 301 patients. Articles had been published from 1878 to 2012 and included papers in English, German, Spanish, Italian, French, Russian and Japanese (non-English language articles were translated into English).

However, none were suitable for synthesis and further analysis because they were poor quality with regards to small numbers. In addition, considerable heterogeneity precluded synthesis.

discussion
Although initially a large number of relevant studies were identified, and might point in future to potential diagnostic categories, it was not possible to synthesise them due to poor quality, considerable heterogeneity and small numbers.

40 of the 56 initially identified studies were single case reports: clearly, drawing conclusions from a synthesis of these would not be appropriate. The remaining studies
also contained relatively small patient numbers. In addition, these studies were extremely heterogeneous. Studies came from a wide range of time periods, with different reporting methods.

On this basis, to answer the question of amusia aetiology, it is necessary in the future to design and implement large, high quality studies with agreed diagnostic criteria.

Implications for research and future hypotheses
Understanding and quantifying amusia aetiology would be useful for assessment of this condition in a clinical setting. This paper suggests that this will not be possible until relevant high quality evidence is produced.

Before this evidence becomes available, it is interesting to think of the possible diagnostic categories which might emerge – classification of the 56 ‘low quality’ (with respect to performing a systematic review) studies identified above suggests the following possibilities: vascular, congenital, iatrogenic, neoplastic, epilepsy-associated, degenerative, traumatic and idiopathic (Figure 2). Of course, which of these possibilities, if any, are relevant, awaits further investigation.

We might hypothesize that some cause of neural damage to key brain regions is required for the onset of amusia. Although it is inappropriate to draw any type of quantitative conclusion from the initial 56 studies identified above, categorization of the neuroanatomical areas involved suggests a host of possible key areas

![Figure 2: Potential future diagnostic categories: classification of amusia aetiologies in 301 patients.](image)

This figure is simply a record of the aetiologies identified in studies which were not suitable for analysis or synthesis but nonetheless contained amusic patients. Speculatively, some of these aetiological categories might be important when a full systematic review is possible in the future.

![Figure 3: Possible future diagnostic categories: neuroanatomical sites involved in 301 amusic patients.](image)
Conclusion

In conclusion, due to the infrequent and irregular nature of the evidence related to amusia aetiology, all relevant studies suffer from small numbers and considerable heterogeneity. This, in addition to the other problems outlined above, suggests that large, high quality studies focussed directly on understanding the aetiology of amusia are required before a synthesis and analysis can take place.

Competing interests

The author declare that he has no competing interests.

Authors’ contributions

DC was the sole author.

Received: 10 December 2012 Accepted: 19 April 2013

Published: 24 April 2013

References

1. Pearce JM: Selected observations on amusia. Eur Neurol 2005, 54(3):145-148.
2. Knoebel A: Über Störungen der musikalischen Leistungsfähigkeit infolge von Gehirnläsionen. Deutsch Arch Klin Med 1888, 48:331–352.
3. Stewart L, von Kriegstein K, Warren JD, Griffiths TD: Music and the brain: disorders of musical listening. Brain 2006, 129(Pt 10):2533–2553.
4. Kalmus H, Fry DB: On tune deafness (Dysmelodia); frequency, development, genetics and musical background. J Neurol Neurosurg Psychiatry 1980, 43(4):369–382.
5. Blood AJ, Zatorre RJ: Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Nat Acad Sci USA 2001, 98(20):11818–11823.
6. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009, 339:b2535.
7. Allen C: Note-deafness. Mind 1878, 10:157–167.
8. Anonymous: Amusia. Br Med J 1894, 2(1773):1441–1442.
9. Smith PB: Auditory Aphasia with Amusia. Br Med J 1897, 11(1892):842–843.
10. Köhl GF, Tschabitscher H: A case of amusia. Wien Z Nervenheilkd Grenzgeb 1953, 62(2):319–230.
11. Schöler W: A case of pure word deafness with amusia. Monatsschr Ohrenheilkd Logoparonofo 1955, 82(2):106–109.
12. Fukuda K, Hasegawa T: A case of visual agnosia with amusia (author's trans). Seishin Shinkeigaku Zasshi 1976, 78(5):417–430.
13. Mazzucchi A, Marchini C, Buzza R, Parma M: A case of receptive amusia with prominent timbre perception defect. J Neurol Neurosurg Psychiatry 1982, 45(7):644–647.
14. Botez M, Wertheim N: Expressive aphasias and amusia following right frontal lesion in a right-handed man. Brain 1959, 82:196–202.
15. Wertheim N, Botez M: Receptive aghnosia: a clinical analysis. Brain 1961, 84:19–30.
16. Ulrich G: The syndrome of auditory agnosia: A case report and an attempt of neuropsychological qualification (author’s trans). Arch Psychiatr Nervenkr 1977, 224(3):221–233.
17. Haguenauer JP, Schott B, Michel F, Dubreuil C, Romanet P: Three case histories of cortical and sub-cortical auditory lesions. Audiological and tomodensimetric confrontations (author’s trans). Ann Otalaryngol Chir Cervicofac 1979, 96(3):185–196.
18. Traugott NN, Belkadarov AV, Vasematin LL, Galunov VI, Donofeeva SA: Clinico-experimental study of auditory-speech agnosia (case with anatomico-histologic verification. Zh Nevropatol Psikhiatr Im S S Korsakov 1980, 80(12):1700–1708.
19. Mavlova L: Amusia due to rhythm agnosia in a musician with left hemisphere damage: a non-auditory supramodal defect. Cortex 1980, 16(2):331–338.
20. Buscaino GA, Grossi D, Orefice G: Pure verbal deafness with amusia. Approaches to a case. Acta Neurol (Napoli) 1981, 31(1):265–269, 15.
21. McFarland HR, Fortin D: Amusia due to right temporoparietal infarct. Arch Neurol 1982, 39(11):725–727.
22. Takeda K, Bandou M, Nishimura Y: Motor amusia following a right temporal lobe hemorrhage—a case report. Rinsho Shinkigaku 1990, 30(1):78–83. Review.
23. Sridri J-L, Feldmann E: Transient ischemic attacks presenting with a loss of pitch perception. Cortex 1990, 26(3):469–471.
24. Griffiths TD, Rees A, Witton C, Cross PM, Shakir RA, Green GG: Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. Brain 1997, 120(Pt 5):785–794.
25. Perez I, Belleville S, Fontaine S: Dissociations between music and language functions after cerebral resection: A new case of amusia without aphasia. Can J Exp Psychol 1997, 51(4):354–368.
26. Estano B, Méndez A: A case of cortical amusia in a patient with musical ability. Rev Neurol 1998, 26(152):612–615.
27. Schon D, Semenza C, Dienes G: Naming of musical notes: a selective deficit in one musical clef. Cortex 2001, 37(3):407–421.
28. Kohlmetz C, Altenmüller E, Schuppert M, Wieringa BM, Münke TF: Deficit in automatic sound-change detection may underlie some music perception deficits after acute hemispheric stroke. Neuropsychologia 2005, 43(11):1211–1214.
29. McChesney-Atkins S, Davies KG, Montours GD, Silver JT, Menkes DL: Amusia after right frontal resection for epilepsy with singing seizures: case report and review of the literature. Epilepsy Behav 2003, 4(3):343–347.
30. Di Pietro M, Lagano M, Leemann B, Schneider A: Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia 2004, 42(7):866–877.
31. Satoh M, Takeda K, Murakami Y, Onouchi K, Inoue K, Kuzuhara S: A case of amusia caused by the infarction of anterior portion of bilateral temporal lobes. Cortex 2005, 41(1):77–83.
32. Satoh M, Takeda K, Kuzuhara S: A case of auditory agnosia with impairment of perception and expression of music: cognitive processing of tonality. Eur Neurol 2007, 58(2):70–77.
33. Lechevalier B, Rumbach L, Platel H, Lambert J: Pure amusia reawakening an ischaemic lesion of right temporal planum. Participation of the right temporal lobe in perception of music. Bull Acad Natl Med 2006, 190(8):1697–1709. discussion.
34. Perez I, Cummings S, Dubé MP: The genetics of congenital amusia (tone deafness): a family-aggregation study. Am J Hum Genet 2007, 81(5):583–588. Epub 2007 Jul 20.
35. Hyde KL, Lerch JP, Zatorre RJ, Evans AC, Perez I: Cortical thickness in congenital amusia: when less is better than more. J Neurosci 2007, 27(47):13028–13034.
36. Buklina SB, Skvortsova VB: Amusia and its topic specification. Zh Nevrol Psikhiatr Im S S Korsakov 2007, 107(9):4–10.
37. Särkämö T, Tenanieti M, Soimia S, Autti T, Silvennoinen HM, Laine M, Hietanen M: Cognitive deficits associated with acquired amusia after stroke: a neuropsychological follow-up study. Neuropsychologia 2009, 47(12):2642–2651. Epub 2009 Jun 3.
38. Hyde KL, Zatorre RJ, Perez I: Functional MR evidence of an abnormal neural network for pitch processing in congenital amusia. Cereb Cortex 2011, 21(2):292–299. Epub 2010 May 20.
39. Barquero S, Gómez-Tortosa E, Baron M, Rabano A, Munoz DG, Jimenez-Escrig A: Amusia as an early manifestation of frontotemporal dementia caused by a novel progranulin mutation. J Neurosci 2010, 30(7):475–477.
40. Phillipps-Silver J, Toivinen P, Gosselin N, Piché O, Nozaradan S, Palmer C, Perez I: Born to dance but beat deaf: a new form of congenital amusia. Cogn Neurosci 2011, 4(2):96–109.
41. Botez M, Wertheim N: Expressive aphasias and amusia following right frontal lesion in a right-handed man. Brain 1959, 82:196–202.
42. Wertheim N, Botez M: Receptive aghnosia: a clinical analysis. Brain 1961, 84:19–30.
43. Ulrich G: The syndrome of auditory agnosia: A case report and an attempt of neuropsychological qualification (author’s trans). Arch Psychiat Nervenkr 1977, 224(3):221–233.
44. Haguenauer JP, Schott B, Michel F, Dubreuil C, Romanet P: Three case histories of cortical and sub-cortical auditory lesions. Audiological and tomodensimetric confrontations (author’s trans). Ann Otalaryngol Chir Cervicofac 1979, 96(3):185–196.
45. Traugott NN, Belkadarov AV, Vasematin LL, Galunov VI, Donofeeva SA: Clinico-experimental study of auditory-speech agnosia (case with
44. Ayotte J, Peretz I, Hyde K: Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 2002, 125(Pt 2):238–251.
45. Wilson SJ, Pressing JL, Wales RI: Modelling rhythmic function in a musician post-stroke. Neuropsychologia 2002, 40(8):1494–1505.
46. Bautista RE, Campetti MZ: Expressive aprosody and amusia as a manifestation of right hemisphere seizures. Epilepsia 2003, 44(3):466–467.
47. Russell SM, Gollinios JG: Amusia following resection of a Heschl gyrus glioma. Case report. J Neurosurg 2003, 98(5):1109–1112.
48. Murayama J, Shihiwagi T, Kishiwagi A, Mimura M: Impaired pitch production and preserved rhythm production in a right brain-damaged patient with amusia. Brain Cogn 2004, 56(1):36–42.
49. Terao Y, Mizuno T, Shinohi M, Sakurai Y, Ugaawa Y, Kobayashi S, Naga C, Furubayashi T, Arai N, Okabe S, Mochizuki H, Hanajima R, Tsuchi S: Vocal amusia in a professional tango singer due to a right superior temporal cortex infarction. Neuropsychologia 2006, 44(3):479–488.
50. Peretz I, Brattico E, Tervaniemi M: Abnormal electrical brain responses to pitch in congenital amusia. Ann Neurol 2005, 58(3):478–482.
51. Hyde KI, Zatorre RJ, Griffiths TD, Lerch JP, Peretz I: Morphometry of the amusia brain: a two-site study. Brain 2006, 129(Pt 10):2562–2570.
52. Hoffmann M: Isolated right temporal lobe stroke patients present with Geschwind Gastaut syndrome, frontal network syndrome and delusional misidentification syndromes. Behav Neurol 2008, 20(3):83–89.
53. Vanstone AD, Cuddy LL, Duffin JM, Alexander E: Exceptional preservation of memory for tunes and lyrics: case studies of amusia, profound deafness, and Alzheimer’s disease. Ann N Y Acad Sci 2009, 1169:291–294.
54. Tillmann B, Bunham D, Nguyen S, Grimault N, Gosnell N, Peretz I: Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages. Front Psychol 2011, 2:120.
55. Hochman MS, Abrams KJ: Amusia for Pitch Caused by Right Middle Cerebral Artery Infarct. J Stroke Cerebrovasc Dis 2012. http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.06.016.
56. Geschwind N: The brain of a learning-disabled individual. Ann Dyslexia 1984, 34:319–327.
57. Lebrun MA, Moreau P, McNalt-Gagnon A, Mignault Goulet G, Peretz I: Congenital amusia in childhood: a case study, Cortex 2012, 48(6):683–688.
58. Eustache F, Lechevalier B, Tailly F, Lambert J: Identification and discrimination disorders in auditory perception: a report on two cases. Neuropsychologia 1990, 28(3):257–270.
59. Hattiangadi N, Pillon JP, Slimone B, Christensen J, Trovato MK, Speedie LJ: Characteristics of auditory agnosia in a child with severe traumatic brain injury: a case report. Brain Lang 2005, 92(1):12–25.
60. Johannes S, Jobges ME, Dengler R, Munter TF: Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials. Behav Neurol 1998, 11(1):55–73.
61. Mazzoni M, Moretti P, Pardosso L, Vista M, Muratorio A, Puglioli M: A case of music imperception. J Neurol Neurosurg Psychiatry 1993, 56(3):322.
62. Peretz I, Kolinsky R, Tramo M, Labrecque R, Hublet C, De neurisse G, Belleville S: Functional dissociations following bilateral lesions of auditory cortex. Brain 1994, 117(1):283–1301.
63. Penagos H, Melcher Jr, Oxenham AJ: A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 2004, 24:6810–6815.