DreamShard: Generalizable Embedding Table Placement for Recommender Systems

Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun Kejariwal, Xia Hu

Rice University
Meta Platforms, Inc.
Texas A&M University
Distributed Recommender System

Combining data-parallelism and model-parallelism.
Embedding Table Placement Problem

• Problem Setting
 • We consider embedding table placement on GPU devices.
 • Embedding accounts for 48% and 65% of the computation and communication costs in production model.
Embedding Table Placement Problem

(a) Random placement

(b) The existing best human expert strategy

(c) DreamShard
Key Challenges

• Challenges

• Operation fusion, which uses a single operation to subsume multiple tables, makes it hard estimate cost.
• The adopted embedding tables and the available devices can change frequently (e.g., machine learning engineers may conduct experiments with various table combinations and numbers of devices).
Formulation of MDP

- Markov Decision Process

Step t=0: Unplaced Table
Action a_1: Device 1

Step t=1: Unplaced Table
Action a_2: Device 2

Step t=2: Table to be Placed
Action a_3: Device 2

Step t=3: Placed to Device 1
Action a_4: Device 1

... Final Placement

Step t=8: Placed to Device 2
Action a_8: Device 1
DreamShard Framework
Main Results

Observations
- DreamShard outperforms baselines significantly.
- DreamShard can generalize well (test performance is similar to train performance).

Task	No strategy	Human Experts	RL										
	Train	Test	Random	Size-based	Dim-based	Lookup-based	Size-lookup-based	RNN-based	DreamShard				
DLRM-20 (4)	Train 24.0±0.6	Test 23.0±0.5	22.7±0.0 (+5.7%)	21.3±0.0 (+12.7%)	19.1±0.0 (+25.7%)	19.1±0.0 (+25.7%)	22.4±0.5 (+7.1%)	18.6±0.2 (+29.0%)	17.6±0.2 (+30.7%)				
	Train 41.3±0.2	Test 41.1±0.5	39.6±0.0 (+4.3%)	37.4±0.1 (+10.4%)	35.6±0.0 (+22.9%)	35.6±0.0 (+22.9%)	39.2±0.7 (+5.4%)	32.8±0.3 (+25.9%)	32.8±0.3 (+26.9%)				
	Train 57.7±0.8	Test 58.1±0.6	56.6±0.1 (+1.9%)	59.6±0.1 (+2.5%)	53.7±0.0 (+8.2%)	49.2±0.1 (+17.3%)	49.3±0.2 (+17.0%)	55.1±0.9 (+4.0%)	47.6±0.4 (+21.2%)	47.7±0.3 (+21.9%)			
	Train 75.7±1.0	Test 74.5±0.8	76.0±0.0 (+0.4%)	77.7±0.2 (+1.1%)	69.9±0.4 (+6.6%)	64.8±0.0 (+16.8%)	64.1±0.2 (+16.2%)	65.3±0.1 (+15.9%)	73.2±1.7 (+3.4%)	62.2±0.2 (+21.7%)	62.7±0.3 (+18.8%)		
DLRM-100 (4)	Train 19.8±1.7	Test 94.5±6.5	94.1±0.3 (+2.4%)	94.7±0.0 (+0.9%)	86.7±0.3 (+5.9%)	84.7±0.4 (+11.6%)	81.2±0.4 (+13.1%)	82.2±0.2 (+11.7%)	94.5±1.0 (+7.2%)	94.8±1.0 (-0.3%)	78.4±0.6 (+17.1%)	77.8±0.8 (+21.5%)	
DLRM-40 (8)	Train 15.6±0.4	Test 15.2±0.2	14.1±0.0 (+10.6%)	13.4±0.1 (+16.4%)	9.8±0.0 (+59.2%)	9.9±0.0 (+57.6%)	16.2±0.8 (-3.7%)	9.5±0.0 (+60.0%)	9.9±0.0 (+59.2%)	9.4±0.5 (+61.7%)			
DLRM-80 (8)	Train 25.0±0.2	Test 25.2±1.3	24.0±0.0 (+4.2%)	25.6±0.5 (-1.6%)	21.7±0.0 (+15.2%)	17.1±0.0 (+46.2%)	16.7±0.2 (-50.9%)	17.5±0.0 (+42.9%)	16.9±0.1 (-49.1%)	51.4±3.9 (-51.4%)	53.4±4.6 (-52.8%)	16.1±0.3 (+55.3%)	16.1±0.4 (+56.5%)
DLRM-120 (8)	Train 34.0±0.3	Test 33.5±0.5	32.3±0.0 (+5.3%)	35.0±0.0 (-4.3%)	29.8±0.0 (+14.1%)	24.5±0.0 (+38.8%)	23.7±0.0 (+41.1%)	25.3±0.0 (+34.4%)	24.5±0.0 (+36.7%)	58.6±1.7 (-42.0%)	57.8±1.3 (-39.2%)	23.3±0.2 (+45.9%)	22.8±0.2 (+46.9%)
DLRM-160 (8)	Train 42.8±0.3	Test 41.1±0.0	41.6±0.0 (+2.9%)	42.4±0.0 (-3.1%)	39.0±0.0 (+9.7%)	36.4±0.0 (+12.9%)	32.0±0.0 (+33.7%)	32.7±0.0 (+30.9%)	31.6±0.0 (-30.1%)	58.3±3.5 (-26.6%)	59.5±3.4 (-50.7%)	30.3±0.2 (+41.3%)	29.6±0.2 (+38.9%)
DLRM-200 (8)	Train 51.5±1.2	Test 50.7±0.2	48.2±0.0 (+6.8%)	50.0±0.0 (+0.2%)	48.0±0.0 (+7.3%)	44.8±0.0 (+13.2%)	38.9±0.0 (+32.4%)	38.6±0.0 (+31.3%)	38.6±0.0 (+30.5%)	68.7±2.4 (-25.0%)	70.4±2.8 (-28.0%)	37.2±0.2 (+38.4%)	36.4±0.3 (+39.3%)
Prod-20 (2)	Train 41.3±0.7	Test 42.8±0.4	43.4±0.0 (+4.8%)	46.1±0.0 (-7.2%)	37.0±0.0 (+11.6%)	44.2±0.0 (+6.6%)	45.9±0.0 (-6.8%)	45.8±0.0 (+9.8%)	38.0±0.3 (+8.7%)	39.3±0.6 (+8.9%)	36.3±0.3 (+13.8%)	37.5±0.2 (+14.1%)	
Prod-40 (4)	Train 35.1±0.3	Test 38.3±0.3	39.4±0.0 (-10.9%)	43.6±0.0 (-12.2%)	31.3±0.0 (+12.1%)	35.0±0.0 (+3.6%)	37.4±0.0 (+2.4%)	38.8±0.0 (+9.5%)	40.1±0.0 (-4.5%)	33.9±2.5 (+35.4%)	36.7±2.3 (-24.4%)	28.3±0.3 (+24.0%)	30.4±0.7 (+26.0%)
Prod-80 (8)	Train 43.2±0.2	Test 47.7±0.4	44.3±0.0 (-2.5%)	53.9±0.0 (-11.5%)	39.0±0.0 (+10.8%)	43.7±0.0 (+1.1%)	46.1±0.0 (+3.5%)	49.3±0.0 (-12.4%)	49.6±0.0 (-3.8%)	56.6±0.8 (-23.7%)	55.2±0.8 (-35.5%)	33.6±0.9 (+28.6%)	35.2±0.8 (+35.5%)
Takeaways

• **Summary**
 - We explore embedding table placement/sharding, a direction that has been rarely explored.
 - We propose DreamShard, which learns estimated MDP and an RL agent.
 - DreamShard significantly outperforms heuristic baselines.

Paper

Code