Antimagic Labeling for Unions of Graphs with Many Three-Paths

Angel Chavez† Parker Le‡ Derek Lin§ Daphne Der-Fen Liu¶ Mason Shurman‖
November 28, 2022

Abstract

Let G be a graph with m edges and let f be a bijection from $E(G)$ to $\{1, 2, \ldots, m\}$. For any vertex v, denote by $\phi_f(v)$ the sum of $f(e)$ over all edges e incident to v. If $\phi_f(v) \neq \phi_f(u)$ holds for any two distinct vertices u and v, then f is called an antimagic labeling of G. We call G antimagic if such a labeling exists. Hartsfield and Ringel [9] conjectured that all connected graphs except P_2 are antimagic. Denote the disjoint union of graphs G and H by $G \cup H$, and the disjoint union of t copies of G by tG. For an antimagic graph G (connected or disconnected), we define the parameter $\tau(G)$ to be the maximum integer such that $G \cup tP_3$ is antimagic for all $t \leq \tau(G)$. Chang, Chen, Li, and Pan showed that for all antimagic graphs G, $\tau(G)$ is finite [3]. Further, Shang, Lin, Liaw [17] and Li [13] found the exact value of $\tau(G)$ for special families of graphs: star forests and balanced double stars, respectively. They did this by finding explicit antimagic labelings of $G \cup tP_3$ and proving a tight upper bound on $\tau(G)$ for these special families. In the present paper, we generalize their results by proving an upper bound on $\tau(G)$ for all graphs. For star forests and balanced double stars, this general bound is equivalent to the bounds given in [17] and [13] and tight. In addition, we prove that the general bound is also tight for every other graph we have studied, including an infinite family of jellyfish graphs, cycles C_n with $3 \leq n \leq 9$, and the double triangle $2C_3$.

*Partially supported by the National Science Foundation grant DMS 1600778.
†California State University Los Angeles. Current address: University of Minnesota Twin Cities. Email: chave389@umn.edu.
‡California State University Los Angeles. Email: plea31@calstatela.edu.
§California State University Los Angeles. Email: dlin4@calstatela.edu
¶Corresponding author. California State University Los Angeles. Email: dliu@calstatela.edu.
‖Current Address: University of California, Irvine. Email: mshurman@uci.edu.
1 Introduction

The graphs considered in this article are not necessarily connected, unless otherwise indicated. Let G be a graph with m edges. For a bijection $f : E(G) \rightarrow \{1,2,\ldots,m\}$ and for any vertex v, denote by $\phi_f(v)$ the sum of $f(e)$ over all edges e incident to v. We call f an antimagic labeling of G if for any pair of vertices u and v, $\phi_f(u) \neq \phi_f(v)$. A graph is antimagic if it admits an antimagic labeling. When f is clear in context, we shorten $\phi_f(v)$ to $\phi(v)$ and call it the ϕ-value of v.

Antimagic labeling was introduced by Hartsfield and Ringel [9], in which the following conjecture was posed:

Conjecture 1. [9] Every connected graph except P_2 is antimagic.

Conjecture 1 has received much attention in the past years (cf. [1, 7, 11]), and many families of graphs are known to be antimagic. Alon, Kaplan, Lev, Roditty, and Yuster [1] proved that dense graphs are antimagic. Precisely, the authors showed that graphs of order n with minimum degree $\delta(G) \geq c \log n$ for some constant c or with maximum degree $\Delta(G) \geq n - 2$ are antimagic. Other families of graphs known to be antimagic include regular graphs [2, 5, 6], trees with at most one vertex of degree two and their subdivisions [11, 12], caterpillars [7, 15, 16], spiders [18], and double spiders [4].

While Conjecture 1 has been studied extensively, antimagic labelings for disconnected graphs have received less attention. It is known that there exist nontrivial disconnected non-antimagic graphs. For instance, it is easy to see that the union of two copies of P_3 is not antimagic (Figure 1).

![Figure 1: The graph 2P3 is not antimagic. The graphs above exhaust all possible labelings, and prove that none are antimagic. Circled numbers are \(\phi\)-values and uncircled numbers are edge labels. Twice circled \(\phi\)-values are identical.](image)

Further, it is clear that a graph containing P_2 as a component is not antimagic: both vertices adjacent to the isolated edge will have the same ϕ-value. Similarly, a graph containing two isolated vertices as components is not antimagic: both vertices will have a ϕ-value of 0. A graph containing exactly one isolated vertex as a component will be antimagic if and only if the graph induced by deleting that vertex is antimagic. Therefore, this paper will focus on graphs that do not contain isolated edges (P_2) or isolated vertices as components.

Throughout the paper, we denote the union of disjoint graphs G and H by $G \cup H$, and the union of t copies of G by tG. Chang, Chen, Li, and Pan (Theorem 3.5, [3]) showed that for any graph G, $G \cup tP_3$ is not antimagic for a sufficiently large t. It is natural to consider the following parameter for a graph G:
Definition 1. If G is antimagic, define $\tau(G)$ as the maximum non-negative integer t such that $G \cup tP_3$ is antimagic for all $0 \leq t' \leq t$. If G is not antimagic, define $\tau(G) = -\infty$.

The aim of this article is to investigate

Question 1. What is $\tau(G)$ for a graph G?

The main result of this paper is the following general upper bound of $\tau(G)$. An edge is internal if both of its ends are non-leaf vertices; otherwise it is a pendant edge.

Theorem 1. Let G be a graph with n vertices and m edges including k internal edges. Assume G does not contain isolated vertices nor P_2 as a component. Let t' be the number of components of G isomorphic to P_3. If $G \cup tP_3$ is antimagic, then

$$t \leq \min \left\{ (3 + 2\sqrt{2})(m - n) + (1 + \sqrt{2})(m + \frac{1}{2}), \ 2m + 5(k - t') + 1 \right\}.$$

Denote the floor of the right-side of the inequality in Theorem 1 by $\beta(G)$:

$$\beta(G) := \left\lfloor \min \left\{ (3 + 2\sqrt{2})(m - n) + (1 + \sqrt{2})(m + \frac{1}{2}), \ 2m + 5(k - t') + 1 \right\} \right\rfloor.$$

Corollary 2. Let G be a graph with n vertices and m edges including k internal edges. Assume G does not contain isolated vertices nor P_2 as a component. Let t' be the number of components of G isomorphic to P_3. Then $\tau(G) \leq \beta(G)$. Moreover, if $\tau(G) = \beta(G)$, then the converse also holds. That is, $G \cup tP_3$ is antimagic if and only if $t \leq \tau(G)$.

The proof of Theorem 1 is presented in Section 2. As mentioned above, a result in [3] implies that $\tau(G) \leq 8m + 1$, where $m = |E(G)|$. Theorem 1 implies $\tau(G) \leq 7m + 1$.

The bound of Theorem 1 is sharp for many graphs. An n-star S_n, $n \geq 3$, is a tree with a center vertex v and n pendant edges incident to v. A star forest is a forest whose components are stars. All edges in a star forest are pendant edges, so $k = 0$ in Theorem 1. A double star $S_{a,b}$ is a tree created by adding an edge between the centers of stars S_a and S_b. That is, $S_{a,b}$ has $a + b + 1$ edges where only one is internal ($k = 1$). By Theorem 1, we obtain the following:

Corollary 3. Let F be a non-trivial forest with m edges, q components, t' components isomorphic to P_3, and k internal edges, where each component has at least two edges. Then

$$\tau(F) \leq \min \left\{ -q(3 + 2\sqrt{2}) + (1 + \sqrt{2})(m + \frac{1}{2}), \ 2m + 5(k - t') + 1 \right\}.$$

Corollary 4. If G is a star forest with m edges, q components and each component has at least three edges, then

$$\tau(G) \leq \min \{ -q(3 + 2\sqrt{2}) + (1 + \sqrt{2})(m + \frac{1}{2}), \ 2m + 1 \}.$$
Corollary 5. The double star $S_{a,b}$, $a, b \geq 1$, has
\[
\tau(S_{a,b}) \leq \min\{-3(2\sqrt{2}) + (1 + \sqrt{2})(a + b + \frac{3}{2}), 2(a + b + 4)\}.
\]
Shang, Lin, and Liaw [17] and Li [13] proved bounds for $\tau(G)$ when G is a star forest and when G is a double star, respectively. Their bounds for those graphs coincide with Corollary 4 and Corollary 5 respectively, but with different expressions.

By providing desired valid antimagic labelings, the authors of [17] and [13] also showed the reverse direction of this inequality for star forests and balanced double stars, giving us:

Theorem 6. [17] A star forest G where each component has at least three edges has $\beta(G) = \tau(G)$.

Theorem 7. [13] For any $a \geq 2$, $\beta(S_{a,a}) = \tau(S_{a,a})$.

In [13, 17], the authors studied antimagic labelings of $G \cup tP_3$ for special trees and forests which contain no cycles. In Section 3 and Section 4, we explore families of graphs that do contain cycles: jellyfish graphs and 2-regular graphs.

For positive integers r and k with $k \geq 3$, the jellyfish graph $J(C_k, r)$ is obtained by taking a cycle C_k and adding r pendant edges (with leaves) to each vertex on C_k. By Theorem 1, we have:

Corollary 8. If $J(C_k, r) \cup tP_3$ is antimagic, then
\[
t \leq \min\left\{\left(1 + \sqrt{2}\right) \left(kr + k + \frac{1}{2}\right), 2kr + 7k + 1\right\}.
\]
Consequently, if $r \geq 11$, then $\tau(J(C_3, r)) \leq 6r + 22$.

We prove in Section 3 that the bound of Theorem 1 is sharp for infinitely many jellyfish graphs:

Theorem 9. For $r \geq 11$, $J(C_3, r) \cup tP_3$ is antimagic if and only if $t \leq 6r + 22$. Equivalently, $\beta(J(C_3, r)) = \tau(J(C_3, r))$, provided $r \geq 11$.

In Section 3 and the works discussed above, it seems simpler to find antimagic labelings for $G \cup tP_3$ for all $t \leq \tau(G)$ when the second bound in Theorem 1 is smaller. This occurs when G has many leaves and few internal edges. On the other hand, it is more difficult to find such labelings when the first bound is smaller: so far to our knowledge these labelings have only been found for finitely many graphs.

Because $\tau(G)$ has not been well studied in graphs where the first bound in Theorem 1 is smaller, in Section 4, we investigate 2-regular graphs, where because $m = n = k$, the first bound is always smaller. We start by proving some general recursive properties for antimagic labelings of $G \cup tP_3$ for any graph G. These properties prove especially useful when G is 2-regular. With these results, we show that the bound in Theorem 1 is sharp for $2C_3$ and C_n, $3 \leq n \leq 9$, and we conjecture this holds for all C_n. In Section 5, we ask whether the bound on $\tau(G)$ in Theorem 1 is tight and raise other questions for future research.
2 Proof of Theorem 1

Before we introduce Lemma 10, the main lemma in the proof of Theorem 1, we establish necessary notations. Let G be a graph with n vertices and m edges. Let t be a non-negative integer. Suppose f is an antimagic labeling for $G' = G \cup tP_3$. Then G' has $m' = m + 2t$ edges. Denote the centers (degree-2 vertices) of the 3-paths by $\{w_1, w_2, \ldots, w_t\}$.

Denote the sum of all the labels we can use, $[1, m' = m + 2t]$, by:

$$s(G, t) := \sum_{e \in E(G)} f(e) + \sum_{i=1}^{t} \phi_f(w_i) = \sum_{i=1}^{m+2t} i = 2t^2 + (2m + 1)t + \frac{m(m+1)}{2}. \quad (1)$$

Denote $V^*(G') = V(G) \cup \{w_1, w_2, \ldots, w_t\}$. For every $u \in V^*(G')$, $\phi_f(u) \leq m + 2t$ if and only if $\phi_f(u) = f(e)$ for some $e \in E(G)$. Because $|V^*(G')| = n + t$ and $|E(G)| = m$, it must be that at least $t + n - m$ vertices $u \in V^*(G')$ have $\phi_f(u) \geq m + 2t + 1$. Denote the least total vertex sums for these vertices by:

$$l(G, t) := \sum_{i=1}^{t+n-m} (m + 2t + i) = \frac{(t + n - m)(5t + n + m + 1)}{2}. \quad (2)$$

When G and t are clear in the context, we simply denote $s(G, t)$ and $l(G, t)$ by s and l, respectively.

Lemma 10. Let G be a graph with n vertices and m edges. If $G \cup tP_3$ is antimagic for some non-negative integer t, then $s \geq 1$.

Proof. Let f be an antimagic labeling of $G' = G \cup tP_3$. Then G' has $m' = m + 2t$ edges. For each vertex $v \in V(G)$, either $\phi(v) \geq m' + 1$ or $\phi(v) = f(e)$ for some $e \in E(G)$.

When $t \geq 1$, denote the degree-2 vertices of the t 3-paths by w_i, $1 \leq i \leq t$, so that $\phi(w_1) < \phi(w_2) < \phi(w_3) < \ldots < \phi(w_t)$. Define the following:

$$B := \{v \in V(G) \mid \phi(v) \geq m' + 1\},$$
$$B' := \{v \in V^*(G') \mid \phi(v) \geq m' + 1\},$$
$$S := \{v \in V(G) \mid \phi(v) \leq m'\},$$
$$W := \{e \in E(G) \mid f(e) = \phi(w_i) \text{ for some } w_i\},$$
$$E(S) := \{e \in E(G) \mid f(e) = \phi(v) \text{ for some } v \in S\},$$
$$R := E(G) \setminus (W \cup E(S)).$$

If $t = 0$, then $W = \emptyset$ and $B = B'$. Observe that $W \cup E(S) \cup R$ is a partition of $E(G)$. Hence $m = |W| + |E(S)| + |R|$. Note that $n = |B| + |S|$ and $|S| = |E(S)|$. Therefore, we obtain $|B| = n - m + |W| + |R|$ and

$$\sum_{v \in B} \phi(v) + \sum_{v \in S} \phi(v) = 2 \sum_{e \in E(G)} f(e) = \sum_{e \in E(G)} f(e) + \sum_{e \in E(S)} f(e) + \sum_{e \in W} f(e) + \sum_{e \in R} f(e) = \sum_{e \in E(G)} f(e) + \sum_{v \in S} \phi(v) + \sum_{e \in W} f(e) + \sum_{e \in R} f(e).$$
Simplifying the above, we obtain
\[\sum_{e \in E(G)} f(e) = \sum_{v \in B} \phi(v) - \sum_{e \in W} f(e) - \sum_{e \in R} f(e). \]

Note that \(|B'| = |B| + t - |W| = n - m + |W| + |R| + t - |W| = n - m + t + |R|.

Substituting the above into Eq. (1) and by Eq. (2) we get:
\[s = \sum_{v \in B} \phi(v) + \sum_{i=|W|+1}^{t} \phi(w_i) - \sum_{e \in R} f(e) \]
\[= \sum_{v \in B'} \phi(v) - \sum_{e \in R} f(e) \]
\[\geq \sum_{i=1}^{t+m+n-t-|R|} (m' + i) - \sum_{e \in R} f(e) \]
\[\geq \sum_{i=1}^{t+n-m} (m' + i) + |R|(m' + 1) - |R|m' \]
\[\geq l. \] (3)

Hence, the proof is complete. ■

Proof of the First Bound in Theorem 1 By Lemma 10, if \(G \cup tP_3 \) is antimagic we have \(s(G, t) \geq l(G, t) \), which is a quadratic inequality in \(t \). Solving this inequality, we find that:
\[t \leq \left(4m - 3n + \frac{1}{2}\right) + \sqrt{(3\sqrt{2}m - 2\sqrt{2}n + \frac{1}{\sqrt{2}})^2 - \frac{1}{4}} \]
\[= \left(4m - 3n + \frac{1}{2}\right) + \left(3\sqrt{2}m - 2\sqrt{2}n + \frac{1}{\sqrt{2}}\right) + O\left(\frac{1}{n + m}\right). \]

Proposition 11. For any integers \(m \) and \(n \), we have
\[\left\lfloor \sqrt{(3\sqrt{2}m - 2\sqrt{2}n + \frac{1}{\sqrt{2}})^2 - \frac{1}{4}} \right\rfloor = \left\lfloor 3\sqrt{2}m - 2\sqrt{2}n + \frac{1}{\sqrt{2}} \right\rfloor. \]

Proof. Suppose to the contrary there exists an integer \(x \) such that
\[\sqrt{(3\sqrt{2}m - 2\sqrt{2}n + \frac{1}{\sqrt{2}})^2 - \frac{1}{4}} < x \leq 3\sqrt{2}m - 2\sqrt{2}n + \frac{1}{\sqrt{2}}. \]

Square both sides and simplify to yield \(\frac{1}{4} < x^2 - (18m^2 + 8n^2 - 24mn - 4n + 6m) \leq \frac{1}{2} \), which is impossible since \(m \) and \(n \) are integers. This completes the proof of Proposition 11. ■

By Proposition 11, \(t \leq (3 + 2\sqrt{2})(m - n) + (1 + \sqrt{2})(m + \frac{1}{2}) \), completing the proof of the first bound in Theorem 1.

6
Theorem 1. We start with the following lemma:

Proof of the Second Bound in Theorem 1. Next we prove the second bound, \(\tau(G) \leq 2m + 5(k-t')+1 \). Suppose \(G' = G \cup tP_3 \) is antimagic. If \(t + t' \leq k \), then \(t \leq k - t' \leq 2m + 5(k-t')+1 \). Assume \(t + t' > k \). Let \(f \) be an antimagic labeling for \(G' \). Since \(G \) contains \(k \) internal edges, at least \((t + t' - k) \) 3-paths must have \(\phi(w_i) \geq m'+1 = m + 2t + 1 \). Denote by \(y \) the sum of \(\phi(w_i) \) for these \((t + t' - k) \) paths. Then we can bound \(y \) below by using the fact that every \(\phi(w_i) \) is distinct, and we can bound \(y \) above by using the fact that all the edges are given different labels:

\[
\sum_{i=1}^{t+t'-k} (m' + i) \leq y \leq \sum_{i=1}^{2(t+t'-k)} (m' + 1 - i).
\]

As \(m' = m + 2t \), using direct calculation and solving the above inequalities, we obtain \(t \leq 2m + 5(k-t')+1 \). This completes the proof of Theorem 1. \(\square \)

Our next result shows that \(\beta(G) \geq 0 \) if every component of \(G \) has at least 3 edges.

Proposition 12. Let \(G \) be a graph without isolated vertices and having no \(P_2 \) as a component. If \(\beta(G) < 0 \), then \(G \) contains at least one \(P_3 \) as a component and \(G \) is not antimagic.

Proof. We first prove that \(\beta(G) \geq 0 \) if \(G \) does not contain \(P_3 \) as a component. Assume \(G \) does not have \(P_3 \) as a component. Then every component of \(G \) contains at least 3 edges. If \(G \) has \(q \) components, then \(m - n \geq -q \), and \(m \geq 3q \). Therefore the first bound of \(\beta(G) \) is non-negative. As the second bound of \(\beta(G) \) is always positive, \(\beta(G) \geq 0 \). If \(G \) is antimagic, then \(\beta(G) \geq \tau(G) \geq 0 \). Hence, the second conclusion holds. \(\square \)

In general, there is no simple way to determine which of the two bounds in Theorem 1 is better (smaller), but we can make some estimates. Suppose \(m \to \infty \). Without loss of generality, suppose the graph does not contain \(P_3 \) as a component. Because \(k \leq m \), the second bound is smaller if \(\frac{k}{m} < 3(5\sqrt{2} - 7) \approx 0.21 \). Furthermore, if \(k \approx m \) then the second bound is better if and only if \(\frac{k}{m} < 3(5\sqrt{2} - 7) \approx 0.21 \). This ratio is derived by substituting \(m \) for \(k \) in the second bound and solving. Note that this if and only if statement does not hold without the assumption that \(k \approx m \). For example, in star forests, where \(k = 0 \neq m \), even though \(\frac{k}{m} \approx 1 > 3(5\sqrt{2} - 7) \), the second bound is smaller for sufficiently large \(m \). For the cases when \(n \approx m \), such as in trees, the second bound is smaller if and only if roughly \(\frac{k}{m} < \frac{\sqrt{2} - 1}{5} \approx 0.08 \). This ratio is derived by substituting \(n \) for \(m \) in the first bound. Note that in 2-regular graphs, \(\frac{k}{m} = 1 \), so the first bound is always smaller.

3 Proof of Theorem 9

Recall a jellyfish graph \(J(C_k, r) \) is established by attaching \(r \) pendant edges to every vertex of a \(k \)-cycle \(C_k \). Throughout this section we denote the \(k \) internal vertices on the jellyfish by \(v_i, i \in [1, k] \), and the \(t \) internal vertices on the 3-paths in the graph \(J(C_k, r) \cup tP_3 \) by \(w_i, i \in [1, t] \).

To prove Theorem 9, we start with the following lemma:
Lemma 13. Let k, n be positive integers, where n and k are not both even. Let a_1, a_2, \ldots, a_n be integers, and define sets of consecutive integers by $A_i = [a_i, a_i + k - 1]$, $i \in [1, n]$. Let S be the multi-set-union $\cup_{i=1}^n A_i$ where repetitions are allowed (if the A_i's are disjoint, then $S = \cup_{i=1}^n A_i$). Then S can be partitioned into multi-sets S_1, S_2, \ldots, S_k so that each S_j contains exactly one element from each A_i, $i \in [1, n]$ and the set $\{\sum S_j : j \in [1, k]\}$ consists of k consecutive integers, where $\sum S_j$ is the sum of elements in S_j. Formally,

$$\sum S_j = \sum_{x \in S_j} x = a_1 + j - 1 + \frac{1}{k} \left(\sum_{y \in S \setminus A_1} y \right).$$

Proof. We write S as an $n \times k$ matrix M, where the i^{th}-row are numbers from $A_i = [a_i, a_i + k - 1]$. For each odd row M_{2i+1} we write the elements from A_{2i+1} in increasing order while for each even row M_{2i} we write the elements from A_{2i} in decreasing order. Observe that the column sums of the sub-matrix formed by any two consecutive rows M_i and M_{i+1} are identical. Explicitly, this means for any column index j, $M_{ij} + M_{i+1,j} = a_i + a_{i+1} + k - 1$.

Thus, if n is odd, the column sums of M form a set of consecutive k integers, and the proof is complete by letting S_j be the elements in the j^{th} column, $j \in [1, k]$.

Now assume n is even. By our assumption, k must be odd. We re-arrange the numbers in the second row M_2 to be:

$$M_2' = (a_2 + \frac{k+1}{2}, a_2 + \frac{k+3}{2}, \ldots, a_2 + k - 1, a_2, a_2 + 1, \ldots, a_2 + \frac{k-1}{2}).$$

The column sums of the sub-matrix formed by M_1 and M_2' are a set of consecutive k integers, $[a_1 + a_2 + \frac{k+1}{2}, a_1 + a_2 + k - 1 + \frac{k-1}{2}]$.

By the above discussion, the column sums of the remaining $n - 2$ rows (if $n \geq 4$) are identical. Hence, the column sums of M' (where M_2 is replaced by M_2') form a set of consecutive k integers. The proof is complete by letting S_j be the elements in the j^{th} column of M', $j \in [1, k]$.

Proof of Theorem 9) By Corollary 8 it suffices to show that $G' = J(C_3, r) \cup tP_3$ is antimagic for $t \leq 6r + 22$. Note $|E(G')| = m' = 3r + 2t + 3$.

Assume $t \leq 2$. Label the internal edges on the jellyfish with m', $m' - 1$, $m' - 2$, so that the internal vertices on the jellyfish have partial sums $[2m' - 3, 2m' - 1]$. If $t = 1$ or $t = 2$, label a 3-path with $m' - 3$ and $m' - 4$. If $t = 2$, label the remaining 3-path with $m' - 5$ and $m' - 6$. We then proceed to label the remaining edges of the jellyfish by applying Lemma 13 to the collection $[2m' - 3, 2m' - 1] \cup [1, 3r] = [2m' - 3, 2m' - 1] \cup [1, 3] \cup [4, 6] \cup \cdots \cup [3r - 2, 3r]$ to obtain three sets with distinct sums. Assign the numbers in the set containing $2m' - 3$ to the edges incident to the vertex on the cycle with a partial sum $2m' - 3$. Do the same for $2m' - 1$ and $2m' - 2$. This will ensure the vertex sums of the three internal vertices of the jellyfish are distinct. Because $r \geq 11$, the resulting labeling is antimagic as $\phi(v_1), \phi(v_2), \phi(v_3) > \phi(w_i) > m'$ for any w_i. This completes the proof for $t \leq 2$.

Assume $t \geq 3$. In the following three steps, we (1) assign labels to the edges of the cycle C_3 and three 3-paths, (2) assign labels to the pendant edges of the jellyfish, and (3) assign labels to the unlabeled 3-paths.
(1) Edges on C_3 and three 3-paths: Regardless of t, we first fix the labels of three 3-paths with labels $\{2, 6\}, \{4, 5\},$ and $\{3, 7\}$ to obtain ϕ-values $[8, 10]$ for the internal vertices of the three 3-paths. Next, we assign $8, 9, 10$ to $E(C_3)$ on the jellyfish, which gives us the partial ϕ-values of v_1, v_2, v_3 as $[17, 19]$, as shown in Figure 2.

![Figure 2: Fixed labels for $J(C_3, r) \cup tP_3$. Circled numbers are (partial) ϕ-values and other numbers are labels on edges.](image)

(2) Pendant edges on the jellyfish: This step is split into two cases. First, suppose that t is even or $t = 3$. Label four pendant edges using labels in $\{1\} \cup [11, 21]$ to each v_i as shown in Figure 3.

![Figure 3: Fixed labels for $J(C_3, r) \cup tP_3$, where t is even or $t = 3$.](image)

As the sum of the four pendant edges incident to each v_i is 59, the partial vertex sums of v_i on the jellyfish are: $[76, 78]$. We then label the remaining pendant edges on the jellyfish by applying Lemma 13 with the sums $[76, 78]$ and the unused consecutive labels $[22, 3r + 9] = [22, 24] \cup [25, 27] \cup \cdots \cup [3r + 7, 3r + 9]$ such that the vertex sums of the 3 internal vertices of the jellyfish remain consecutive integers. If $t = 3$, the resulting labeling is antimagic because $\phi(v_1), \phi(v_2), \phi(v_3) > m'$ as 76, 77, and 78 are in different S_j’s. If $t \geq 4$ and t is even, we calculate this set of vertex sums as:

$$76 + \frac{1}{3} \sum_{i=22}^{3r+9} i, \quad 78 + \frac{1}{3} \sum_{i=22}^{3r+9} i = \left[\frac{1}{2}(3r^2 + 19r + 28), \quad \frac{1}{2}(3r^2 + 19r + 32) \right]. \quad (4)$$

Next, suppose t is odd and $t \neq 3$. We label the pendant edges of the jellyfish by applying Lemma 13 to $[17, 19] \cup [11, 3r + 10] = [17, 19] \cup [11, 13] \cup [14, 16] \cdots \cup [3r + 8, 3r + 10]$ so that
the vertex sums of the three internal vertices of the jellyfish are the consecutive integers:

\[
\left[17 + \frac{1}{3} \left(\sum_{i=11}^{3r+10} i \right), \ 19 + \frac{1}{3} \left(\sum_{i=11}^{3r+10} i \right) \right] = \left[\frac{1}{2}(3r^2 + 21r + 34), \ \frac{1}{2}(3r^2 + 21r + 38) \right]. \quad (5)
\]

(3) Remaining 3-paths: In steps (1) and (2), we have used the labels in \([2, 3r + 10]\) if \(t\) is odd and \(t \neq 3\), and labels in \([1, 3r + 9]\) if \(t\) is even or \(t = 3\).

In this step, if \(t\) is odd and \(t \neq 3\), we first label one of the remaining 3-paths by \(\{1, m'\}\). Then for all cases, there are an odd number of unlabeled 3-paths. The unused labels are:

\[
\begin{cases}
[3r + 11, 3r + t + 6] \cup [3r + t + 7, 3r + 2t + 2] & \text{if } t \text{ is odd and } t \neq 3; \\
[3r + 10, 3r + t + 6] \cup [3r + t + 7, 3r + 2t + 3] & \text{if } t \text{ is even or } t = 3.
\end{cases}
\]

Applying Lemma 13, we partition the above unused labels into pairs to the edges of the remaining 3-paths, so that their internal vertices have consecutive vertex sums as:

\[
\left[6r + t + 15 + \left\lceil \frac{t}{2} \right\rceil, \ 6r + 2t + 11 + \left\lfloor \frac{t}{2} \right\rfloor \right]. \quad (6)
\]

To show that \(f\) is an antimagic labeling, it suffices to verify:

(i) \(\phi(w_i) > m\) for \(i \in [4, t]\), and

(ii) \(\phi(w_i) < \min\{\phi(v_j)\}\) for \(i \in [1, t]\) and \(j \in [1, 3]\).

Inequality (i) is true since by Eq. (6) and the assumptions that \(r \geq 11\) and \(t \leq 6r + 22\), we have:

\[6r + t + 15 + \left\lceil \frac{t}{2} \right\rceil \geq m' + 1 = 3r + 2t + 4.\]

Inequality (ii) is true since by the assumptions \(r \geq 11\) and \(t \leq 6r + 22\) together with Eq. (4), Eq. (5), and Eq. (6), we obtain:

\[6r + 2t + 11 + \left\lfloor \frac{t}{2} \right\rfloor < \begin{cases} \frac{1}{2}(3r^2 + 21r + 34) & \text{if } t \text{ is odd}; \\ \frac{1}{2}(3r^2 + 19r + 28) & \text{if } t \text{ is even}. \end{cases}\]

This completes the proof of Theorem 9. ■

We remark here that it has been shown in [14] that the bound in Corollary 8 is also tight for other jellyfish graphs \(J(C_k, r)\), including the following cases: (i) \(k = 3\) and \(r = 10\), (ii) \(k \leq 7\) and \(r \geq 11\), (iii) \(k \geq 8\) and \(r \geq 12\).

4 Two-Regular Graphs

In this section, we discuss the values of \(\tau(G)\) for 2-regular graphs, which are disjoint unions of cycles of lengths at least 3. For a 2-regular graph \(G\) with \(m\) edges we have \(m = n = k\) in Theorem 1, implying that the first bound in Theorem 1 is always smaller than the second.

Corollary 14. Let \(G\) be a 2-regular graph with \(n\) vertices. Then

\[\tau(G) \leq \left(1 + \sqrt{2}\right)(n + \frac{1}{2}).\]
In this section, we prove that the above bound is tight for C_n, $3 \leq n \leq 9$, and for $2C_3$. To this end, we start by establishing some general recursive properties for antimagic labelings of $G \cup tP_3$ for any graph G.

Remark. Recall $s = s(G, t)$ and $l = l(G, t)$ defined in Eq. (1) and Eq. (2) in the proof of Theorem 1. The calculation in Eq. (3) indeed shows that s is at least the sum of the $t + n - m$ largest ϕ-values of $V(G \cup tP_3)$. This fact can be used to prove the following results.

Theorem 15. Let G be an m-edge n-vertex graph. Assume f is an antimagic labeling for $G' = G \cup tP_3$ for some t. Then $\max\{\phi(v) : v \in V(G')\} \leq n + 3t + s - l$, where $s = s(G, t)$ and $l = l(G, t)$ are defined in Eq. (1) and Eq. (2).

Proof. Assume to the contrary that there exists some vertex $v \in V(G')$ with $\phi(v) \geq n + 3t + s - l + 1$. By Lemma 10, $s \geq l$. From the calculation of Eq. (3) the following contradiction emerges (recall $m' = m + 2t$):

\[
\begin{align*}
 s &= \sum_{v \in B'} \phi(v) - \sum_{e \in R} f(e) \\
 &\geq (n + 3t + s - l + 1) + \sum_{i=1}^{t+n-1} (m' + i) + |R|(m' + 1) - |R|m' \\
 &\geq (n + 3t + s - l + 1) + l - (m + 2t + t + n - m) \\
 &= s + 1.
\end{align*}
\]

Thus, the proof is complete. ■

Lemma 16. Let p be a positive integer. Let G' be an m'-edge graph that has a degree-2 vertex v which is incident to edges $e_{m'}$ and $e_{m'-1}$. Let G^* be the graph obtained by subdividing $e_{m'}$ into p edges. If G' admits an antimagic labeling f such that $f(e_{m'}) = m'$, $f(e_{m'-1}) = m' - 1$, and $\phi_f(u) \leq 2m' - 1$ for all $u \in V(G')$, then there exists an antimagic labeling for G^*.

Proof. We prove the result by induction on p. Assume $p = 2$. Let f be an antimagic labeling of G' such that $f(e'_m) = m'$, $f(e'_{m'-1}) = m' - 1$, and $\phi(v) = 2m' - 1 = \max\{\phi(u) : u \in V(G')\}$. Let G^* be obtained from G' by subdividing e_m into two edges, called $e_{m'}$ and $e_{m'+1}$, where $e_{m'+1}$ is incident to $e_{m'-1}$. Let f' be a labeling for G^* defined by $f'(e) = f(e)$ if $e \notin e_{m'+1}$, and $f'(e_{m'+1}) = m' + 1$. By the assumption, all vertices u not incident to $e_{m'+1}$ have $\phi_f(u) \leq 2m' - 1$, while the two vertices incident to $e_{m'+1}$ have distinct vertex sums and both are greater than $2m' - 1$. Thus, f' is an antimagic labeling for G^*.

Furthermore, under f', the vertex incident to $e_{m'+1}$ and $e_{m'}$ is a degree-2 vertex in G^* which is incident to the largest labels m' and $m'+1$ and has the maximum ϕ-value. Therefore, the result follows by induction on p. ■

Lemma 17. Let $p \geq 2$ and $t \geq 0$ be integers. Let G be an m-edge n-vertex graph that has a degree-2 vertex v, where e_m and e_{m-1} are the edges incident to v. Let $s = s(G, t)$ and $l = l(G, t)$, as defined in Eq. (1) and Eq. (2). Let G^* be the graph obtained by subdividing e_m into p edges. If $m \geq n$ and $G \cup tP_3$ admits an antimagic labeling f such that $f(e_m), f(e_{m-1}) \geq t + s - l$, then $G^* \cup tP_3$ is antimagic.
Proof. Assume \(p = 2 \). Let \(f \) be an antimagic labeling of \(G \cup tP_3 \) such that \(f(e_m), f(e_{m-1}) \geq t + s - l \). Let \(G^* \) be obtained from \(G \) by subdividing \(e_m \) into two edges, \(e_m \) and \(e_{m+1} \), where \(e_{m+1} \) is incident to \(e_{m-1} \). Let \(f^* \) be a labeling for \(G^* \cup tP_3 \) defined by \(f^*(e) = f(e) \) if \(e \neq e_{m+1} \), and \(f^*(e_{m+1}) = m + 2t + 1 \). By Theorem 15 all vertices \(u \) not incident to \(e_{m+1} \) have \(\phi(u) \leq n + 3t + s - l \). Since \(m \geq n \), the two degree-2 vertices \(v \) and \(w \) incident to \(e_{m+1} \) have \(\phi(v), \phi(w) > n + 3t + s - l \) and \(\phi(v) \neq \phi(w) \).

Assume \(p = 3 \). Let \(G^* \) be obtained from \(G^* \) by subdividing \(e_{m+1} \) into two edges, \(e_{m+1} \) and \(e_{m+2} \), where \(e_{m+2} \) is incident to \(e_{m-1} \). Let \(f^{**} \) be a labeling for \(G^{**} \) defined by \(f^{**}(e) = f^*(e) \) if \(e \neq e_{m+2} \), and \(f^{**}(e_{m+2}) = m + 2t + 2 \). Similar to the above, it is not difficult to show that \(f^{**} \) is an antimagic labeling for \(G^{**} \). In addition, under \(f^{**} \) the degree-2 vertex incident to \(e_{m+2} \) and \(e_{m+1} \) is incident to the largest labels, \(m + 2t + 1 \) and \(m + 2t + 2 \), and has the maximum \(\phi \)-value. By applying Lemma 16 to \(G^{**} \), Lemma 17 follows.

After establishing the above two recursive results for general graphs, in the remaining of this section we shall focus on 2-regular graphs. Denote a cycle \(C_n \) by \(V(C_n) = \{v_1, \ldots, v_n\} \) and \(E(C_n) = \{e_1, e_2, \ldots, e_n\} \), where \(e_i = v_iv_{i+1} \) for \(1 \leq i \leq n - 1 \), and \(e_n = v_nv_1 \).

Lemma 18. There exist antimagic labelings for \(C_n \cup tP_3 \), \(0 \leq t \leq 6 \) and \(n \geq 3 \), such that the two largest labels, \(2t + n \) and \(2t + n - 1 \), are assigned to incident edges on \(C_n \). Consequently, for all \(n \geq 3 \), \(\tau(C_n) \geq 6 \).

Proof. By Lemma 16, it suffices to show the existence of antimagic labelings for \(C_3 \cup tP_3 \), \(0 \leq t \leq 6 \), such that the two largest labels, \(2t + 3 \) and \(2t + 2 \), are assigned to incident edges on \(C_3 \). Such labelings are given in Table 1. In the table, for each \(t \), the labeling \(f_t \) consists of a 3-tuple \((f_t(e_1), f_t(e_2), f_t(e_3)) \) for \(E(C_3) \) (where the two largest labels, \(2t + 3 \) and \(2t + 2 \), are underlined) and \(t \) pairs of labels for the 3-paths. An example is illustrated in Figure 4.

\(t \)	\(f_t(e_1, e_2, e_3) \)	Pairs of labels on \(P_3 \) with their sums
0	\{1, 2, 3\}	(1, 2, 3)
1	\{3, 4, 5\}	(1, 2, 3)
2	\{4, 6, 7\}	(1, 3, 4)
3	\{5, 8, 9\}	(1, 4, 5)
4	\{6, 10, 11\}	(1, 5, 6)
5	\{6, 12, 13\}	(1, 5, 6)
6	\{13, 14, 15\}	(1, 2, 3)

Table 1: Antimagic labelings for \(C_3 \cup tP_3 \), \(0 \leq t \leq 6 \).

Remark. Consider the graph \(G \cup tP_3 \) where \(G \) is a 2-regular graph with \(n \) vertices. Then \(|E(G)| = n \) and \(m' = |E(G \cup tP_3)| = n + 2t \). Suppose the assumptions of Lemma 16 hold for \(G \cup tP_3 \), that is, there exists an antimagic labeling \(f \) for \(G \cup tP_3 \). Let \(\phi(v) = 2m' - 1 = 2n + 4t - 1 \). By Theorem 15, \(\phi(v) \leq n + 3t + s - l \) where \(s = s(G, t) \) and \(l = l(G, t) \). Hence, we obtain \(s - l + 1 \geq n + t \), a quadratic inequality in \(t \) with a positive solution:

\[
t \leq n - \frac{1}{2} + \sqrt{(\sqrt{2n} - \frac{1}{\sqrt{2}})^2 + \frac{7}{4}}
\]
Figure 4: An antimagic edge labeling of $C_3 \cup 6P_3$. Circled numbers are ϕ-values while other numbers are edge labels. The two largest labels are underlined.

\[f = (1 + \sqrt{2})(n - \frac{1}{2}) + O\left(\frac{1}{n}\right). \]

Now suppose the assumptions of Lemma 17 hold for $G \cup tP_3$. Then there exist an antimagic labeling f for $G \cup tP_3$ and an edge $e \in E(G)$ with $t + s - l + 1 \leq f(e) \leq n + 2t$, where $s = s(G, t)$ and $l = l(G, t)$. We then obtain $t + s - l + 1 \leq n + 2t$, the reverse of Eq. (7). Note that when the equality in Eq. (7) holds then $m' = t + s - l + 1$, implying the assumptions of Lemma 17 and Lemma 16 are equivalent. In conclusion, for a 2-regular graph G, to investigate possible t values, $0 \leq t \leq \beta(G) = (1 + \sqrt{2})(n + \frac{1}{2})$, one might consider the following two sub-intervals:

\[[0, (1 + \sqrt{2})(n - \frac{1}{2})] = [0, (1 + \sqrt{2})(n - \frac{1}{2})] \cup [(1 + \sqrt{2})(n - \frac{1}{2}), (1 + \sqrt{2})(n + \frac{1}{2})]. \]

In the first sub-interval, $0 \leq t \leq (1 + \sqrt{2})(n - \frac{1}{2})$, it might be possible to find a labeling satisfying the conditions of Lemma 16 (i.e., the largest two labels are assigned to incident two edges). Likewise for the second sub-interval it might be possible to find a labeling satisfying the conditions of Lemma 17.

From the above discussion, for a 2-regular graph G, if there exists an antimagic labeling f for $G \cup tP_3$ satisfying the assumptions of Lemma 17, then $t \geq (1 + \sqrt{2})(n - \frac{1}{2})$. In the following result we prove that the converse of this also holds for small values of n.

Lemma 19. Let n and t be integers such that $3 \leq n \leq 9$ and

\[(1 + \sqrt{2})(n - \frac{1}{2}) \leq t \leq (1 + \sqrt{2})(n + \frac{1}{2}). \]

Then $C_n \cup tP_3$ admits an antimagic labeling such that there exist two incident edges on C_n receiving labels that are at least $t + s - l$, where s and l are defined in Eq. (1) and Eq. (2), respectively.

Proof. For $3 \leq n \leq 9$ and $(1 + \sqrt{2})(n - \frac{1}{2}) \leq t \leq (1 + \sqrt{2})(n + \frac{1}{2})$, we give a list of such labelings in Table 2 in the Appendix. These labelings were constructed with computer assistance. For each n and t, the labeling f_t consists of an n-tuple $(f_t(e_1), f_t(e_2), \cdots, f_t(e_n))$ for $E(C_n)$ (where two adjacent labels greater than or equal to $t + s - l$ are underlined) and t pairs of labels for the 3-paths. See Figure 5 as an example.

Combining Lemma 17, Lemma 18, and Lemma 19, we obtain:
Corollary 20. Let \(n \) and \(t \) be integers such that \(t \leq \min\{22, \lfloor (1 + \sqrt{2})(n + \frac{1}{2}) \rfloor \} \). Then \(C_n \cup tP_3 \) is antimagic.

As \(\beta(C_9) = 22 \), Corollary 20 implies:

Theorem 21. For \(3 \leq n \leq 9 \), \(\tau(C_n) = \beta(C_n) \). Equivalently, for \(3 \leq n \leq 9 \), \(C_n \cup tP_3 \) is antimagic if and only if

\[
0 \leq t \leq \left\lfloor (1 + \sqrt{2})(n + \frac{1}{2}) \right\rfloor.
\]

We conjecture that the result of Theorem 21 holds for all \(n \).

Conjecture 2. For any \(n \), \(\tau(C_n) = \beta(C_n) \).

To confirm Conjecture 2 for \(n \geq 10 \), it is sufficient to extend Lemma 19 for all \(n \).

We conclude this section with the following two results.

Theorem 22. Let \(G \) be a 2-regular graph. If \(G \cup tP_3 \) is antimagic, then \(C_q \cup G \cup tP_3 \) is also antimagic for any \(q \geq 3 \).

Proof. Suppose \(q = 3 \) and let \(G \) be a 2-regular graph with \(n \) vertices. Let \(f \) be an antimagic labeling of \(G \cup tP_3 \). Since the degree of every vertex \(v \) in \(V(G \cup tP_3) \) is at most 2, and \(m' = |E(G \cup tP_3)| = n + 2t \), we have \(\phi(v) \leq 2n + 4t - 1 \). We extend \(f \) to \(C_3 \cup G \cup tP_3 \) by assigning the largest three labels, \(n + 2t + i \), \(1 \leq i \leq 3 \), to \(E(C_3) \) and keeping the same labels for other edges. Then we have \(\phi(v) > 2n + 4t \) for every \(v \in V(C_3) \). Therefore, \(f \) is an antimagic labeling for \(C_3 \cup G \cup tP_3 \). As the largest two labels are assigned to incident edges on \(C_3 \), the result for \(q \geq 4 \) follows by Lemma 16.

Theorem 23. For any \(n \geq 3 \), \(\tau(C_n \cup C_3) \geq 15 \). Moreover, \(\tau(2C_3) = \beta(2C_3) = 15 \).
Proof. Combining Theorem 22 with the antimagic labelings for \(C_3 \cup tP_3 \), \(0 \leq t \leq 8 \), given in Table 1, we obtain \(\tau(C_n \cup C_3) \geq 8 \) for \(n \geq 3 \). In addition, Table 3 gives antimagic labelings for \(2C_3 \cup tP_3 \) for \(9 \leq t \leq 15 \), where the labelings satisfy the following properties:

- For each \(9 \leq t \leq 13 \), the labeling assigns the two largest labels, \(m' \) and \(m' - 1 \), to incident edges on \(C_3 \), satisfying the hypotheses of Lemma 16.

- For each \(t = 14, 15 \), the labeling assigns two labels greater than or equal to the value of \(t + s - l \) to incident edges on \(C_3 \), satisfying the hypotheses of Lemma 17.

Thus, \(C_n \cup C_3 \cup tP_3 \) is antimagic for \(n \geq 3 \) and \(9 \leq t \leq 15 \), implying \(\tau(C_n \cup C_3) \geq 15 \) for \(n \geq 3 \). The “moreover” part follows by Corollary 14, which shows \(\tau(2C_3) \leq 15 \). ■

See Figure 6 for an example.

![Figure 6: An antimagic labeling of 2C3 ∪ 13P3.](image_url)

5 Open Problems and Future Work

To study the general properties of \(\tau(G) \), the triangle inequality emerges:

Conjecture 3. For any antimagic graphs \(G \) and \(H \), it holds that \(\tau(G \cup H) \leq \tau(G) + \tau(H) \).

We partially confirm Conjecture 3 with additional conditions. Let \(G \) be a graph with \(m_G \) edges and \(n_G \) vertices. Denote the first bound in Theorem 1 by \(b_G^1 = (3 + 2\sqrt{2})(m_G - n_G) + (1 + \sqrt{2})(m_G + 1/2) \), and define \(\Delta_G^1 = b_G^1 - \tau(G) \). If \(G \) and \(H \) are graphs with \(\Delta_G^1 + \Delta_H^1 \leq \frac{1 + \sqrt{2}}{2} \), then \(\tau(G \cup H) \leq \tau(G) + \tau(H) \). By Theorem 1,

\[
\tau(G \cup H) \leq b_{G\cup H}^1
= b_G^1 + b_H^1 - \frac{1 + \sqrt{2}}{2} \quad (\because m_{G\cup H} = m_G + m_H \text{ and } n_{G\cup H} = n_G + n_H)
= \tau(G) + \Delta_G^1 + \tau(H) + \Delta_H^1 - \frac{1 + \sqrt{2}}{2}
\leq \tau(G) + \tau(H) \quad (\because \Delta_G^1 + \Delta_H^1 \leq \frac{1 + \sqrt{2}}{2})
\]
A similar statement can be made using the second bound of Theorem 1. Let G be a graph with n_G vertices, m_G edges, k_G internal edges, and t'_G components isomorphic to P_3. Denote the second bound of Theorem 1 by $b^2_G = 2m_G + 5(k_G - t'_G) + 1$, and denote $\Delta^2_G = b^2_G - \tau(G)$. If G and H are graphs with $\Delta^2_G + \Delta^2_H \leq 1$, then $\tau(G \cup H) \leq \tau(G) + \tau(H)$.

For a graph G, we have established in Theorem 1 upper bounds $\beta(G)$ for $\tau(G)$, and we have shown that many graphs have $\tau(G) = \beta(G)$. On the other hand, if there exists a graph G satisfying the hypotheses in Theorem 1 but has $\tau(G) < \beta(G)$, then for any positive integer t, where $\tau(G) < t \leq \beta(G)$, it remains to determine whether $G \cup tP_3$ is antimagic or not. We conjecture that $G \cup tP_3$ is not antimagic for those values of t if they exist:

Conjecture 4. For a graph G, $G \cup tP_3$ is antimagic if and only if $t \leq \tau(G)$. That is, $\tau(G)$ is the maximum integer t such that $G \cup tP_3$ is antimagic.

Conjecture 4 is equivalent to the following statement: If $G \cup tP_3$ is antimagic for some positive integer t, then $G \cup (t - 1)P_3$ is antimagic.

Thus far, we have not found a graph with $\tau(G) \neq \beta(G)$. Therefore, we ask if our bound is always tight:

Question 2. Does there exist a graph G without isolated vertices nor P_2 as components with $\beta(G) \geq 0$ and $\tau(G) < \beta(G)$?

With computer aid, we checked various small graphs, and found the following graphs have $\tau(G) = \beta(G)$: the clique K_4, the graph induced by deleting an edge from K_4, and C_3 with at most one pendant edge extended from each of three the vertices on C_3.

Because $\beta(G) \geq 0$ when every component of G has at least 3 edges, a weaker question arises:

Question 3. Are all graphs without isolated vertices nor P_2 nor P_3 as components antimagic?

An affirmative answer to Question 3 or a negative answer to Question 2 would imply that Conjecture 1 is true.

Acknowledgement. The authors would like to thank the three anonymous referees for their careful reading of the manuscript and for their insightful suggestions.

References

[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty, and R. Yuster, Dense graphs are antimagic, J. Graph Theory, 47 (2004), 297–309.

[2] K. Bérezi, A. Bernáth, and M. Vizer, Regular graphs are antimagic, Electric Journal of Combinatorics, 22 (2015), paper P3.34.

[3] F.-H. Chang, H.-B. Chen, W.-T. Li, and Z. Pan, Shifted-antimagic labelings for graphs, Graphs and Combinatorics, 37 (2021), 1065–1182.
[4] F.-H. Chang, P. Chin, W.-T. Li and Z. Pan, The strongly antimagic labelings of double spiders, Indian J. Discrete Math., 6 (2020), 43–68.

[5] F.-H. Chang, Y.-C. Liang, Z. Pan, X. Zhu, Antimagic labeling of regular graphs, J. Graph Theory, 82 (2016), 339–349.

[6] D. W. Crasen, Regular bipartite graphs are antimagic, J. Graph Theory, 60 (2009), 179–182.

[7] K. Deng, Y. Li, Caterpillars with maximum degree 3 are antimagic, Discrete Math., 342 (2019), 1799–1801.

[8] K. D. E. Dhanajaaya, and W.-T. Li, Antimagic labeling of forests with sets of consecutive integers, Discrete Applied Math., 309 (2022), 75–84.

[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, INC, Boston, 1990, pp. 108–109, Revised version 1994.

[10] T.-Y. Huang, Antimatic Labeling on Spiders, Master’s Thesis, Department of Mathematics, National Taiwan University, 2015.

[11] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math., 309 (2009), 2010–2014.

[12] Y. Liang, T. Wong and X. Zhu, Anti-magic labeling of trees, Discrete Math., 331 (2014), 9–14.

[13] C. H. Li, The Antimagic Labeling of Balanced Double Star Union cP_3, Master Thesis, National Chung Hsing University, Taiwan, 2019.

[14] D. Lin, Antimagic and strongly antimagic labeling for sea urchins, Master Thesis, California State University Los Angeles, May 2022.

[15] A. Lozano, M. Mora, and C. Seara, Antimatic labeling of caterpillars, Applied Math and Computation, 347 (2019), 734–740.

[16] A. Lozano, M. Mora, C. Seara, and J. Tey, Caterpillars are antimagic, Mediterr. J. Math., 18 (2): Paper No. 29 (2021).

[17] J.-L. Shang, C. Lin, S.C. Liaw, On the antimagic labeling of star forests, Util. Math. 97 (2015), 373–385.

[18] J.-L. Shang, Spiders are antimagic, Ars Combinatoria, 118 (2015), 367–372.

[19] T. Wong and X. Zhu, Antimagic labelling of vertex weighted graphs, J. Graph Theory, 70 (2012), 348–350.
Appendix

n	t	m'	$t + s - l$	$P_{(e_1, e_2, \ldots, e_n)}$ \{ $\phi(V(C_n))$ \}	Pairs of labels on P_3 and their sums																															
3	7	17	13	\{6, 13, 17\}, \{19, 23, 30\}	(2, 4	6)	(1, 12	13)	(7, 10	17)	(3, 15	18)	(9, 11	20)	(5, 16	21)	(8, 14	22)																		
4	9	22	19	\{12, 7, 19\}, \{16, 26, 39\}	(3, 4	7)	(2, 10	12)	(5, 15	20)	(1, 22	23)	(6, 18	24)	(9, 16	25)	(13, 14	27)	(11, 17	28)	(8, 21	29)														
6	14	34	28	\{12, 32, 8, 20, 28, 30\}, \{28, 40, 42, 44, 48, 58\}	(1, 7	8)	(3, 9	12)	(2, 18	20)	(4, 26	30)	(5, 27	32)	(6, 29	35)	(13, 23	36)	(15, 22	37)	(17, 21	38)	(14, 25	39)	(10, 31	41)										
8	19	46	36	\{15, 16, 17, 19\}, \{31, 33, 36, 50, 52, 64, 69, 73\}	(1, 14	15)	(3, 13	16)	(5, 12	17)	(8, 11	19)	(2, 35	37)	(4, 34	43)	(10, 38	47)	(19, 26	45)	(12, 34	46)	(18, 29	47)	(10, 38	48)	(41, 39	50)								
9	22	53	34	\{18, 3, 21, 24, 22, 30, 23, 45, 46\}, \{21, 24, 45, 46, 52, 53, 64, 69, 71\}	(1, 2	3)	(6, 12	18)	(4, 30	34)	(7, 47	54)	(9, 40	59)	(5, 16	21)	(8, 14	22)	(27, 32	59)	(26, 34	60)	(25, 36	61)	(19, 43	62)	(21, 42	63)	(24, 40	64)	(29, 37	66)	(28, 39	67)	(30, 41	71)

Table 2: Antimagic labelings for Lemma 19.
t	m'	$t + s - l$	$g_t(E(2C_3)), \{\phi_{2C_3}(V(2C_3))\}$	Pairs of labels on P_3 and their sums															
9	24	48	(20, 23, 21), (12, 7, 19), (19, 26, 31, 43, 44, 47)	(3, 4	7) (2, 10	12) (5, 15	20) (1, 22	23) (6, 18	24) (9, 16	25) (13, 14	27) (11, 17	28) (8, 21	29)						
10	26	46	(8, 25, 20), (15, 16, 24), (31, 33, 34, 39, 40, 51)	(1, 7	8) (2, 23	25) (3, 12	15) (4, 22	26) (5, 11	16) (6, 18	24) (9, 19	28) (10, 20	30) (13, 14	27) (17, 21	38)					
11	28	43	(3, 27, 25), (11, 23, 26), (30, 31, 34, 37, 49, 55)	(1, 2	3) (4, 24	28) (5, 6	11) (7, 20	27) (8, 15	23) (9, 17	26) (10, 19	29) (12, 21	33) (13, 22	35) (14, 18	32) (16, 25	41)				
12	30	39	(3, 29, 30), (11, 23, 26), (32, 33, 34, 37, 49, 59)	(1, 2	3) (4, 25	29) (5, 6	11) (7, 19	26) (8, 22	30) (9, 14	23) (10, 28	38) (12, 24	36) (13, 27	40) (15, 16	31) (17, 18	35) (20, 21	41)			
13	32	34	(3, 31, 32), (15, 16, 17), (31, 32, 33, 34, 35, 63)	(1, 2	3) (4, 11	15) (5, 12	17) (6, 10	16) (7, 29	36) (8, 30	38) (9, 28	37) (13, 26	39) (14, 27	41) (18, 22	40) (19, 23	42) (20, 24	44) (21, 25	46)		
14	34	28	(10, 18, 34), (6, 28, 29), (28, 34, 35, 44, 52, 57)	(2, 4	6) (1, 9	10) (3, 16	18) (7, 22	29) (5, 31	36) (16, 21	37) (11, 27	38) (13, 26	39) (17, 23	40) (8, 33	41) (12, 30	42) (19, 24	43) (20, 25	45) (14, 32	46)	
15	36	21	(5, 9, 35), (14, 21, 30), (14, 35, 40, 44, 50, 57)	(1, 4	5) (2, 7	9) (3, 18	21) (6, 30	36) (8, 29	37) (10, 28	38) (11, 31	42) (12, 27	39) (13, 33	46) (15, 34	49) (16, 32	48) (17, 24	41) (19, 26	45) (20, 23	43) (22, 25	47)

Table 3: Antimagic labelings g_t of $2C_3 \cup tP_3$ when $9 \leq t \leq 15$. The underlined numbers for $9 \leq t \leq 13$ are m' and $m' - 1$ (satisfying the hypotheses of Lemma 16); while for $t = 14, 15$, they are labels greater than or equal to $t + s - l$ (satisfying the hypotheses of Lemma 17).