Analysis of Cell Block and Cytology Specimen Preservation from Lung Aspiration Biopsy

Analisis Preservasi Spesimen Hapusan Sitologi dan Cell Block pada Bahan Biopsi Aspirasi Paru

Adinda Sandya P, Willy Sandhika, Vicky Sumarki B

1 Medical Study Program Faculty of Medicine Universitas Airlangga Surabaya
2 Department of Anatomical Pathology Faculty of Medicine Universitas Airlangga Surabaya
3 Department of Surgery Faculty of Medicine Universitas Airlangga Surabaya

ABSTRACT

Cytology smear technique is often used in Indonesia because the process is safe, simple, easy, fast, and cost effective. At present, several studies have found that smears with cell block techniques are of better quality than smears with cytology smear techniques. The aim of this study was to analyze whether the cytology smear technique can produce adequate specimens compared to cell block towards results of lung Fine Needle Aspiration Biopsy (FNAB). Lung FNAB specimens were divided into two parts: one part was processed with cytology and the other part with cell block technique. The specimens were observed under a microscope to count the number of inflammatory cells and the number of artifacts. The numbers of inflammatory cells and artifacts were scored 0–3. The inflammatory cells consisted of neutrophils, lymphocytes and plasma cells, also macrophages. The result showed no significant difference between the number of inflammatory cells in cytology and cell block (p neutrophils=0.543; p lymphocytes and plasma cells=0.192; p macrophages=0.487) in 38 samples. The artifact score comparison test result showed a significant difference between the number of artifacts in cytology and cell block (p=0.027) with more artifacts in cytology. The most common artifact in cytology was air bubble artifacts, while cell block was dominated by torn pieces artifacts. There was no significant difference between the number of inflammatory cells found in cytology and cell block techniques. Cell block technique has less artifacts than cytology, but artifacts found in cytology can be corrected so that the cytology smear technique is still an option.

Keywords: Artifacts, cytology, cell block, inflammatory cells

ABSTRAK

Teknik sitologi merupakan teknik pemeriksaan spesimen yang banyak digunakan di Indonesia sebab prosesnya mudah, cepat, dan murah. Beberapa penelitian saat ini menyatakan bahwa spesimen yang diproses dengan teknik cell block memiliki kualitas yang lebih baik dibandingkan sitologi. Penelitian ini bertujuan untuk menganalisis preservasi spesimen yang diproses dengan teknik sitologi dan cell block terhadap hasil biopsi aspirasi paru. Spesimen hasil FNAB paru dibagi menjadi dua bagian: satu bagian diproses dengan sitologi dan bagian lainnya dengan teknik cell block. Preparat diamati di bawah mikroskop untuk menghitung jumlah sel radang dan jumlah artefak. Selanjutnya dihitung jumlah sel radang yang terdiri dari neutrofil, limfosit dan sel plasma, serta makrofag dan jumlah artefak dalam skor 0–3. Hasil komparasi pada 38 sampel tidak ditemukan perbedaan yang bermakna antara jumlah sel radang pada sitologi dan cell block (p neutrofil=0,543; p limfosit dan sel plasma=0,192; p makrofag=0,487). Sedangkan pada hasil komparasi skor artefak didapatkan bahwa terdapat perbedaan yang bermakna antara jumlah artefak pada sitologi dan cell block (p=0,027) dengan jumlah artefak pada sitologi lebih banyak dibandingkan cell block. Jumlah artefak dominan pada sitologi adalah artefak gelembung udara, sementara pada cell block didominasi oleh artefak potongan sobek. Tidak ada perbedaan yang bermakna antara jumlah sel radang yang ditemukan pada teknik sitologi maupun cell block. Pada jumlah artefak, kualitas cell block lebih baik dibandingkan sitologi. Artefak pada sitologi dapat diperbaiki sehingga teknik sitologi masih menjadi pilihan terutama pada pusat kesehatan yang tidak memiliki peralatan yang memadai.

Kata Kunci: Artefak, cell block, sel radang, sitology

Correspondence: Adinda Sandya P. Medical Study Program Faculty of Medicine Universitas Airlangga Surabaya, Jl. Mayjen Prof. Dr. Moestopo No.47 Surabaya, Jawa Timur Tel. 085755799005 Email: adinda.sandya.poernomo-2016@fk.unair.ac.id

DOI: http://dx.doi.org/10.21776/ub.jkb.2020.031.01.5
INTRODUCTION

Cellular preservation is an important factor for provision of adequacy specimen evaluation (1). It was done by observing the morphology of inflammatory cells. Inflammatory cells are always found in every cytopathologic specimen and one of the criteria for cytopathologic specimen adequacy taken using Fine Needle Aspiration Biopsy (FNAB) in the thorax is by finding the inflammatory cell of alveolar macrophage type (2) so that the inflammatory cells are used as indicator of cell preservation.

Pre-operative analysis techniques for tumor cells currently used are cytology and cell block. Cytology smear technique is often used in Indonesia because the process is safe, simple, easy, fast, and cost effective (3). At present, several studies have found that smears with cell block techniques are of better quality than smears with cytology smear techniques because they are fixed immediately so as to avoid air drying artifacts (4). In Indonesia cell block smear technique is rarely used, although this technique is often considered to be superior to cytology because cell block technique has some disadvantages. Cell block processing requires a longer time than cytology (5). In addition, the processing requires special skills and adequate equipment so that it requires greater costs for equipment, human resources, and adds an extra cost to patient management (6), so that health centers that do not have adequate personnel and equipment rely solely on cytology as a specimen processing technique.

Cytology smear technique is currently the main choice in Dr. Soetomo Hospital, Surabaya, Indonesia because cytological smear result is of high-quality and it is a superior technique that is still used today. This is not in accordance with previous studies which found that smear with cell block technique has better quality than cytology in the aspects of the number of inflammatory cells and cellularity (7,8). However, those previous studies had the disadvantage that their specimens were only counted and compared in one visual field, while cytology and cell block techniques have different principles so they cannot be compared in only one visual field. In this study we converted the number of inflammatory cells in one visual field into scoring system so that it can represent the entire visual field.

We hypothesize that there is no significant difference between the number of inflammatory cells and artifact found in the lung FNAB examination using cytology and cell block techniques. Therefore, this study analyzed the preservation of cytology and cell block smear specimens to prove that the cytology smear technique is of comparable quality to cell block technique in lung biopsy aspiration specimens using indicators of the number of inflammatory cells and the number of artifacts.

METHODS

This study was an observational analytical study comparing the number and types of inflammatory cells in FNAB biopsy with cytology and cell block techniques. Sample population was the patients of Dr. Soetomo Hospital, Surabaya, Indonesia, suspected of lung cancer and underwent FNAB biopsy. Samples were taken with FNAB, where tissue or fluid samples were taken by aspiration using fine needle (no. 25). Thereafter, the sample was divided into two equal parts and processed using cytology and cell block techniques.

Samples were obtained from the patients at Dr. Soetomo Hospital, Surabaya, who underwent CT guided–FNAB procedure. In this study, the results of FNAB procedure from one and the same individual were divided into two parts: one part was processed with cytology method and the other part was processed with cell block method. The initial sample size in this study was 38 pairs of slides.

The preparations obtained were observed under a microscope, then the number of inflammatory cells, consisting of neutrophils, lymphocytes, macrophages, and plasma cells, was counted quantitatively from one visual field. Thereafter, the results were converted into scores before being processed statistically so that the data can represent the entire visual field. The author also performed qualitative calculations of artifacts in all visual fields using a scoring system 0-3.

Data Analysis for Inflammatory Cells

The number of inflammatory cells was observed microscopically in one visual field. In order to represent the entire visual field, the number of inflammatory cells were calculated quantitatively then converted into scoring system with this following criteria: (0). If x = 0; (1). If x < mean – ½ SD; (2). If x < mean – ½ SD ≤ x < mean + ½ SD; (3). If x ≥ mean + ½ SD.

Data Analysis for Artifacts

Each group had three artifact criteria. However, artifact criteria in cytology differed from artifacts in cell blocks. The types of artifacts in cytology were air bubbles, thick smear and crushing artifacts, while the types of artifacts in cell blocks included folded pieces, torn pieces and venetian blinds. The artifacts were observed in all visual field and calculated qualitatively using this following scoring criteria: (0). no artifacts found; (1). artifacts found < 10% of the entire visual field; (2). artifact with moderate finding (10-70% of the entire visual field); (3). artifact with high finding (>70% of the entire visual field).

Comparative Test for Inflammatory Cells and Artifacts

We conducted a normality test regarding the number of inflammatory cells as well as the number of artifacts found. Normally distributed data were tested with comparison test of paired t-test, while data that were not normally distributed were tested with Wilcoxon-signed rank comparison test. Data of this study were processed statistically using SPSS and Microsoft Office Windows software.

RESULTS

Statistical Test for Inflammatory Cells Counts

Mean and standard deviation of each type of inflammatory cells and score can be seen in Table 1.

Types of the inflammatory cells	Mean ± SD
Neutrophil	6.74±4.542
Lymphocytes + Plasma	4.55±13.268
Macrophage	10.34±18.533
Neutrophil	37.05±28.838
Table 1. Mean and standard deviation of each type of inflammatory cells in one visual field (Continued)

Types of the inflammatory cells	Mean ± SD
Cell Block	
Lymphocytes + Plasma	13.97±14.744
Macrophage	18.39±16.094
In cytology and cell block:	
Neutrophil	1.87±0.844
Lymphocytes + Plasma	1.39±1.054
Macrophage	1.55±1.005
Neutrophil	1.82±0.982
Cell Block	
Lymphocytes + Plasma	1.68±0.989
Macrophage	1.45±1.179

Table 2. Comparison test between inflammatory cells in cell block vs cytology

Types of the inflammatory cells	Mean (in one visual field)	SD
Cytology		
Neutrophil	6.74	4.542
Lymphocytes + Plasma	4.55	13.268
Macrophage	10.34	18.533
Neutrophil	37.05	28.838
Cell Block		
Lymphocytes + Plasma	13.97	14.744
Macrophage	18.39	36.094

DISCUSSION

Cytology and cell block are specimen processing methods currently used in the practice of anatomic pathology. In this study, the authors used a scoring system in processing observational data due to specimens’ quality between cytology and cell block. In cytology, the specimen obtained is processed to become thin and wide smear. While in cell blocks, specimen is compacted and immersed with paraffin blocks so they cannot be counted and compared by just observing one field of view.

Analysis of the Number of Inflammatory Cells

Inflammatory cells comparison test results showed no significant difference between the number of inflammatory cells in cytology or cell block. This is different from previous studies which found that cell block had a higher cellularity than cytology (5, 6). This was because the study did not observe the whole field of view and only observed one field of view. Specimens processed by cell block technique appear to have higher cellularity because in the cell block the specimen is compressed with paraffin blocks so that the cells are concentrated in one place. Then, it is found that cell block has another disadvantage. The specimen is cut with a microtome to a size of ±4-6μ (5), so the specimen becomes very small. Inflammatory cells and artifacts in the two samples obtained by the authors could not be evaluated because, due to the size of the specimen, the number was too small.

Analysis of the Number of Artifacts

Artifact is a structure that is not present in normal tissue and formed by tissue processing that can interfere with the process of cytopathological interpretation (8). Artifact can interfere with histopathological assessments by altering the appearance of a tissue, mimicking other tissues, or changing structures so that they are difficult to identify (9). On the results of artifacts comparison, the higher the score, the worse the preparation quality. Cytology artifacts use three criteria, i.e. air bubbles, thick smear and crushing artifacts. Whereas, cell blocks use three other criteria, i.e. folded pieces, torn pieces and venetian blinds. The maximum score of each inflammatory cell for artifacts is 9 (very poor quality) and a minimum of 0 (no artifacts at all). Based on statistical results, mean cytological artifacts score (4.52) was higher than mean cell block artifacts score (3.85).

Cytological artifact is defined as artificial structures or cellular changes due to external factors (8). In this study, it was found that cytology smear technique produced more artifacts than cell block. Other studies also obtained similar results, where the number of artifacts in cytology was higher than cell block (10-13). This was due to

Statistical Test of the Number of Artifacts

The percentage of cytological artifacts found were air bubbles (41%), thick smears (33%) and crushing artifacts (26%), while the percentage of cell block artifacts were folded pieces (32%), torn pieces (45%) and venetian blinds (23%). The most cytological artifacts were air bubbles (41%), while the most cell block artifacts were torn pieces (45%).

The scores for each number of artifacts were totaled, then the average score between cytological artifacts and cell blocks was calculated. The higher the scoring results, the worse the quality of the preparations. Mean and standard deviation of total scores of cytological and cell block artifacts can be seen in Table 3.

There was a significant difference between the total score of cytology and cell block artifacts. Comparative tests showed significant differences between the total score of cytological and cell block artifacts.
Cell block artifacts occur due to inappropriate specimen processing techniques. This technique has many stages so that the experience in specimen processing is required. Most cell block artifacts are torn pieces. This is because torn pieces can occur in the whole process, i.e. during the cutting, mounting, grossing, and processing, as well as improper attachment of the tissue. Blunt cutting blades, rough cutting, too soft embedding medium, poor flotation technique, careless removal of the specimen from the paraffin blocks, or poor specimen adhesion can cause specimens to be uplifted during staining (19).

This study found that there was no significant difference between the number of inflammatory cells in cytology and cell block specimens and that artifacts in cytological specimens can be solved so that cytology smear technique is still sufficiently standardized to establish the histopathological diagnosis. Our findings would suggest cell block technique is best used for immunohistochemistry or another further diagnosis rather than primary cytopathological diagnosis.

ACKNOWLEDGMENT

The authors thank the Faculty of Medicine, Universitas Airlangga and the Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, who had facilitated this research.

REFERENCES

1. Stone B and Reppas G. Cytology Sample Collection and Preparation for Veterinary Practitioners. (Online). http://www.vetqml.com.au/Portals/0/PDF/Publications/CytologySampleCollection.pdf [cited 1 November 2019].

2. Sahay K, Mehendiratta M, Rehani S, Kumra M, Sharma R, and Kardam P. Cytological Artifacts Masquerading Interpretation. Journal of Cytology. 2013; 30(4): 241-246.

3. Al-Abbadi M. Basics of Cytology. Avicenna Journal of Medicine. 2011; 1(1): 18-28.

4. Noda Y, Fujita N, Kobayashi G, Itoh K, Horaguchi J, Takasawa O et al. Diagnostic Efficacy of the Cell Block Method in Comparison with Smear Cytology of Tissue Samples Obtained by Endoscopic Ultrasound-Guided Fine-Needle Aspiration. Journal of Gastroenterology. 2010; 45(8): 868-875.

5. Prabhala S, Gangane N, and Sharma S. Utility of Cell Block Technique by Microwave Processing for Rapid Diagnosis in Fluids and Fine Needle Aspirates. Journal of Evolution of Medical and Dental Sciences. 2014; 3(60): 13393-13401.

6. Jain D, Mathur S, and Iyer V. Cell Blocks in Cytopathology: A Review of Preparative Methods, Utility in Diagnosis and Role in Ancillary Studies. Cytopathology. 2014; 25(6): 356-371.

7. Malukani K, Matejra S, Nandedkar S, Varma A, Saxena A, and Ajmera A. Comparison of Efficacy of Cell Block Versus Conventional Smear Study in Exudative Fluids. The Nigerian Postgraduate Medical Journal. 2017; 24(4): 245-249.

8. Suri J, Gandotra V, Abrol D, and Bhardwaj S. Analysis of Cell Block vs. Conventional Smear in Fluid Cytology. Journal of Evidence Based Medicine and Healthcare. 2015; 2(39): 6464-6471.

9. Mehrotra R, Gupta A, Singh M, and Ibrahim R. Application of Cytology and Molecular Biology in Diagnosing Premalignant or Malignant Oral Lesions. Molecular Cancer. 2012; 11(1): 57. [Retracted Article].

10. Koksal D, Demirag F, Bayiz H, et al. The Cell Block Method Increases the Diagnostic Yield in Exudative Pleural Effusions Accompanying Lung Cancer. Turkish Journal of Pathology. 2013; 29(3): 165-170.

11. Jing X, Li QK, Bedrossian U, and Michael CW. Morphologic and Immunocytochcmical Performances of Effusion Cell Blocks Prepared Using 3 Different Methods. American Journal of Clinical Pathology. 2013; 139(2): 177-182.

12. Ugurluoglu C, Kurtipek E, Unlu Y, Esme H, Duzgun N. Importance of the Cell Block Technique in Diagnosing Patients with Non-Small Cell Carcinoma Accompanied by Pleural Effusion. Asian Pacific Journal of Cancer Prevention. 2015; 16(7): 3057-3060.

13. Assawasaksakul T, Boonsarngsuk V, and Incharoen P. The Cell Block Method Increases the Diagnostic Yield in Exudative Pleural Effusions Accompanying Lung Cancer. Turkish Journal of Pathology. 2013; 29(3): 165-170.

14. Valente PT and Schantz HD. Iatrogenic Artifacts in Cytology. Pathology Case Reviews. 2003; 8(3): 126-133.

15. Kahwash SB. Artifacts, Contaminants, and Mimics in Cytology. Pediatric Cytopathology. Switzerland: Springer; 2017; pp. 231-244.
16. Xiang Y and Yang Z. Detachment of Methacrylate-Embedded Sections from Microscope Slides can be Prevented by Heating on Hotplate. Journal of Histology and Histopathology. 2014;1(1):1-4.

17. Microbehunter Microscopy. How to Prevent Air Bubbles in Wet Mounts. (Online) 2019. http://www.microbehunter.com/how-to-prevent-air-bubbles-in-wet-mounts/[cited 27 June 2019].

18. Pradhan P. Can Anyone Suggest Solutions to Avoid Air Bubbles Underneath the Cover Slips in the Slides with Sections 120 Microns? (Online) 2015. https://www.researchgate.net/post/Can_anyone_suggest_solutions_to_avoid_air_bubbles_under_the_cover_slips_in_the_slides_with_sections_120_microns? cited 4 June 2019.

19. Ekundina VO and Eze G. Common Artifacts and Remedies in Histopathology (A Review). African Journal of Cellular Pathology. 2015;4(1):6-12.