Selection of reference genes for normalization of quantitative real-time PCR in organ culture of the rat and rabbit intervertebral disc

Dongrim Seol1,2, Hyeonghun Choe1,2, Hongjun Zheng1, Keewoong Jang1,2, Prem S Ramakrishnan*, Tae-Hong Lim2 and James A Martin1

Abstract

Background: The accuracy of quantitative real-time RT-PCR (qRT-PCR) is often influenced by experimental artifacts, resulting in erroneous expression profiles of target genes. The practice of employing normalization using a reference gene significantly improves reliability and its applicability to molecular biology. However, selection of an ideal reference gene(s) is of critical importance to discern meaningful results. The aim of this study was to evaluate the stability of seven potential reference genes (Actb, GAPDH, 18S rRNA, CycA, Hprt1, Ywhaz, and Pgk1) and identify most stable gene(s) for application in tissue culture research using the rat and rabbit intervertebral disc (IVD).

Findings: In vitro, four genes (Hprt1, CycA, GAPDH, and 18S rRNA) in rat IVD tissue and five genes (CycA, Hprt1, Actb, Pgk1, and Ywhaz) in rabbit IVD tissue were determined as most stable for up to 14 days in culture. Pair-wise variation analysis indicated that combination of Hprt1 and CycA in rat and the combination of Hprt1, CycA, and Actb in rabbit may most stable reference gene candidates for IVD tissue culture.

Conclusions: Our results indicate that Hprt1 and CycA are the most stable reference gene candidates for rat and rabbit IVD culture studies. In rabbit IVD, Actb could be an additional gene employed in conjunction with Hprt1 and CycA. Selection of optimal reference gene candidate(s) should be a pertinent exercise before employment of PCR outcome measures for biomedical research.

Background

Quantitative real-time RT-PCR (qRT-PCR) is a powerful tool for detection and quantification of gene expression owing to its high sensitivity, specificity and reproducibility [1]. However, the relevance and magnitude of absolute measures obtained from qRT-PCR are subject to inherent sample variations that usually lead to statistical uncertainty. Such outcomes may also lead to inferences that may be biologically obscure [2]. To this end, an appropriate normalization strategy is employed for reliable data interpretation and the most common method is the use of an internal reference or housekeeping gene [3]. A reference gene is weakly regulated in experimental conditions of interest along with comparable expression characteristics to target genes. Thus, selection process of an ideal reference gene is critical for applicability of PCR in research. However, commonly used reference genes for tissue and cell-based PCR normalization such as glyceraldehydes-3-phosphate dehydrogenase (GAPDH), β-actin (Actb) and 18S ribosomal RNA (18S rRNA) are frequently applied without appropriate validation for their gene expression stability [4-6].

Gene expression analyses are used as one of the major contemporary research tools in understanding the pathology of intervertebral disc (IVD) degeneration. Clinically termed as “Degenerative Disc Disease (DDD)”, the condition is believed to be a significant source of low back pain [7,8]. The clinical significance of understanding the onset and progress of DDD is well documented and there is increasing need to establish relevant experimental models to study this disease. Numerous studies on molecular level changes in disc...
biology have been reported by normalization using GAPDH [9–12] and Actb [13–15] without validation for their stability. Although the assumption of certain genes being constitutively expressed may be valid in certain cases, this assumption cannot be taken for granted under rapidly changing conditions such as growth, remodeling and disease.

The aim of this research was to evaluate the stability of seven potential reference genes (Actb, GAPDH, 18S rRNA, CycA, Hprt1, Ywhaz, and Pgk1) and select the most stable genes or a combination of stable genes for the purpose of normalization in IVD gene expression studying of rat and rabbit organ culture. The stability of selected reference genes under different experimental culture periods and species was analyzed using geNorm [6], NormFinder [5] and BestKeeper [16].

Results

Quantitative real-time RT-PCR

Seven candidate reference genes were selected from commonly used housekeeping genes which have different biologic function (Table 1). Their primer information was summarized in Table 2.

All RNA samples were examined for their purity. The absorbance ratio at A260/A280 nm of all samples was ranged from 1.86 to 2.09, indicating all the samples were pure during the RNA extraction procedure. For all the candidate reference genes, the melt curve analyses of PCR reactions were performed. The specificity and integrity of the products were confirmed by the presence of a single peak in dissociation curve (additional file 1). The standard curves were made by serial dilutions to determine PCR efficiencies. The qRT-PCR efficiency (E) of each primer pair was ranged from 1.901 to 2.141 (90.1% to 114.1%) with linear correlation coefficient (R²), making all assays suitable for quantitative analysis (Table 3). Figure 1 represents CT values of candidate reference genes from IVD organ culture of SD rat and NZW rabbit. CT values of reference genes obtained by the rat IVD were more variable with higher standard deviation than those of the rabbit IVD. To quantify the variation, C_T range was calculated by maximum and minimum values through four harvesting time points. Hprt1 was shown the most invariable expression between all samples for both rat (1.09) and rabbit (0.67). In rat, CycA (1.61) and GAPDH (1.88) were ranked as second and third gene, respectively. In rabbit, on the other hand, Pgk1 (1.02) and CycA (1.04) were ranked as second and third genes, respectively. This implies that Hprt1, CycA, and GAPDH in rat and Hprt1, Pgk1, and CycA are more potential reference genes compared to the others.

geNorm analysis

The gene expression stability of seven candidate reference genes over the organ culture of the rat and rabbit IVD was analyzed using the geNorm software applications. The analysis by geNorm showed that only four genes (GAPDH, CycA, Hprt1, and 18S rRNA) in the rat IVD reached a high expression stability with low M values, below the default limit of M = 1.5 [6] (Figure 2a). GAPDH and CycA were identified as the best pair of reference genes. On the other hand, all reference genes showed stable M value (M < 1.5), and Actb and Ywhaz were ranked as the most stable reference genes in rabbit (Figure 2b). CycA and Hprt1 were ranked as third and fourth genes, respectively. Similarly, CycA and Hprt1 were identified to be suitable for normalization in the combined analysis obtained from rat and rabbit (Figure 2c). To determine the optimal number of reference genes necessary for accurate normalization, calculation of the pair-wise variation (V_n/n+1) was evaluated (Figure 2d). The combination of two reference genes was suitable for normalizing gene expression data in rat and combined species, V_2/3 (0.238) and V_2/3 (0.316) respectively, which is close to the cutoff value 0.15. On the other hand, in rabbit samples, all pair-wise variations were close to cutoff value and three reference genes would be sufficient to normalize the target genes.

Table 1 Description of candidate reference genes for qRT-PCR

Abbreviation	Gene	Function
Actb	β-actin	Cytoskeletal structural protein
GAPDH	Glyceraldehydes-3-phosphate dehydrogenase	Carbohydrate metabolism
18S rRNA	18S ribosomal RNA	Cytosolic small ribosomal subunit, translation
CycA	Cyclophilin A	Catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides, accelerating folding
Hprt1	Hypoxanthine phosphoribosyltransferase 1	Metabolic salvage of purines in mammals
Ywhaz	Tyrosine 3-monooxygenase	Signal transduction by binding to phosphorilated serine residue on a variety of signaling molecules
Pgk1	Phosphoglycerate kinase 1	Transferase enzyme in the glycolysis
NormFinder and BestKeeper analysis

Analysis on the stability of the reference genes using NormFinder and BestKeeper showed different ranking order compared to geNorm analysis (Table 4). NormFinder indicated Hprt1 as the best stable gene in rat and combined species, followed by 18S rRNA, CycA, and GAPDH. All reference genes in rabbit showed better stability value compared to those of rat, and CycA ranked as best control gene with a stability value of 0.227. The BestKeeper calculated variations for all the reference genes based on geometric mean of the C_T values. Genes with standard deviation (SD) higher than 1 were defined as unstable. Similar to NormFinder, Hprt1 showed the lowest C_T value variation in rat and combined species, and GAPDH and CycA with lower than 1 (SD) were indicated as good candidate genes. In rabbit, all reference genes except GAPDH showed low SD values and Hprt1 which was second ranking order in NormFinder was calculated to be the most stable gene with a SD value of 0.23.

Overall ranking order and selection of the best genes

All results obtained from three programs showed different ranking order according to their different calculated algorithm. To find the combination of stable reference genes, we summarized the output results which were M value (geNorm), stability (NormFinder), and standard deviation (BestKeeper) and calculated the average and ranking order in Table 5. Based on the pair-wise variation analysis by geNorm, the number of stable reference genes was applied as two for rat and combined species and three for rabbit. The overall ranking order of SD rat was Hprt1, CycA, GAPDH, 18S rRNA, Actb, Ywhaz, and Pgk1 and the combination of Hprt1 and CycA were finally selected as best control genes. Similarly, the combination of Hprt1 and CycA were determined as the most stable housekeeping genes in analyzing of combined species. In experiments with rabbit intervertebral disc, however, the most preferred reference genes were CycA, Hprt1, and Actb.

Discussion

It has become increasingly clear in recent years that the accuracy of qRT-PCT analysis strongly depends on the choice of the normalization approach. Among current normalization approaches available, the use of housekeeping gene as an internal control is by far the most convenient to compute, provided the biological assumption of

Table 2 Primer information of reference genes for qRT-PCR

Sprague-Dawley rat	New Zealand White Rabbit					
Forward (5'-3')	**Reverse (5'-3')**	**Product size (bp)**	**Forward (5'-3')**	**Reverse (5'-3')**	**Product size (bp)**	
Actb	AGGCCAACCGTGAAAAGATG	ACCAGAGGCATACAGGGACAA	101 [33]	CTGGAACGGTGAAGGTGACA	CGGCCACATTGCAGAACTTT	73 [D]
GAPDH	GCCAGAGAGAGGCCCTCAG	TGGTAGGAGAGGCAGCACTTG	74 [18]	GGTTGTTGGGACCCCATGTTG	CGGTGTTGGGAGGGCTCTTCA	58 [D]
18S rRNA	ACGGACCAGACGCGAAGCAT	TGTCAATCTCTGCTCCGTGTC	310 [19]	TGCCGATCTGAACTGTAGC	ACCTGATGCTGCTGCCATCC	61 [D]
CycA	TATCTGCACTCCCAAGACTGATG	CTCTTGCGCTGGTCTGCAATC	126 [20]	TGGCGATCTGAACTGTAGC	ACCTGATGCTGCTGCCATCC	63 [D]
Hprt1	TGGTGTGATCGTACGGAAAGTG	ATTCACACCGCCTGCTGTTTA	66 [D]	GCAGACCTTGCTTCCTGTGTTG	GCAGGCTGCGACCTTGGAC	142 [28]
Ywhaz	TGGACGACAAGACCGAAGGT	GAAGTCATTGGCGGATACAGAA	136 [19]	GGTCTGCCCTTAACTTCTGCTGTGCTACA	GCCTGCTGCTTCCTGATACATCC	149 [28]
Pgk1	ATGCAAAGACTGGCCAAGCTAC	AGCCACACGCCTGCACATTTTC	104 [20]	TGTTGTCGCGGGCAAGCCAG	CAGTGCTGCTCACCACGCGATG	149 [28]

(D) designed primer

Table 3 Standard curve parameters for candidate reference genes

Genes	SD rat	NZW rabbit				
	Slope	Efficiency [E] [%]	Coefficient (R^2)	Slope	Efficiency [E]	Coefficient (R^2)
Actb	-3.024	2.141 [114.1]	0.992	-3.363	1.983 [98.3]	0.999
GAPDH	-3.222	2.043 [104.3]	0.995	-3.388	1.973 [97.3]	0.997
18S rRNA	-3.253	2.030 [103.0]	0.982	-3.584	1.901 [90.1]	0.994
CycA	-3.135	2.084 [108.4]	0.996	-3.091	2.106 [110.6]	0.999
Hprt1	-3.360	1.984 [98.4]	0.991	-3.411	1.964 [96.4]	0.990
Ywhaz	-3.043	2.131 [113.1]	0.994	-3.040	2.133 [113.3]	0.985
Pgk1	-3.078	2.113 [104.6]	0.992	-3.039	2.133 [113.3]	0.986

Seol et al. BMC Research Notes 2011, 4:162 http://www.biomedcentral.com/1756-0500/4/162 Page 3 of 8
the reference gene is fulfilled. Several studies have demonstrated that commonly used reference genes are regulated under various experimental conditions, indicating the requirement of reference gene validation as the first step before meaningful outcomes could be discerned. To further improve sensitivity, normalization with multiple reference genes is also proposed.

Rat and rabbit are preferred models for studying the pathogenesis of disc degeneration. Current knowledge suggests that mechanical stimulation may be a significant contributor to the biology of the IVD. To this end, our working hypotheses states that abnormal mechanical stimulation can induce pertinent biological cascades that may degenerate a healthy normal disc in

Figure 1 Cycle threshold (C\textsubscript{T}) values of candidate reference genes in intervertebral disc organ culture of Sprague-Dawley rat (a) and New Zealand White rabbit (b). C\textsubscript{T} values represent mean ± S.D. from three biological replicates. C\textsubscript{T} rang calculated from maximum and minimum is shown between parentheses in each reference genes.

Figure 2 Ranking of the reference genes and pair-wise variation by geNorm. Candidate reference genes were ranked according to the average expression stability in intervertebral disc organ culture of Sprague-Dawley rat (a), New Zealand White rabbit (b), and combined species (c). Pair-wise variations (V\textsubscript{n/n+1}) were calculated to determine the minimum number of reference genes. The cutoff value was set at 0.15. The optimal variation is marked with a star (*)
Table 4 Ranking order of candidate reference genes in the intervertebral disc of Sprague-Dawley (SD) rat and New Zealand White (NZW) rabbit

Rank	SD rat	NZW rabbit	rat & rabbit	SD rat	NZW rabbit	rat & rabbit
1	Hprt1	CycA	Hprt1	Hprt1	Hprt1	Hprt1
	(0.541)	(0.227)	(0.514)	(0.35)	(0.23)	(0.30)
2	18S rRNA	Hprt1	18S rRNA	GAPDH	CycA	CycA
	(0.755)	(0.371)	(0.596)	(0.66)	(0.36)	(0.68)
3	CycA	Pgk1	CycA	Pgk1	GAPDH	
	(0.788)	(0.374)	(0.636)	(0.69)	(0.43)	
4	GAPDH	Actb	Actb	Actb	18S rRNA	
	(0.931)	(0.478)	(0.658)	(1.05)	(1.00)	
5	Actb	Ywhaz	Ywhaz	Actb	Ywhaz	Pgk1
	(0.947)	(0.497)	(0.783)	(1.23)	(0.64)	
6	Pgk1	18S rRNA	Pgk1	Ywhaz	18S rRNA	
	(1.417)	(0.511)	(0.808)	(2.22)	(0.90)	
7	Ywhaz	GAPDH	GAPDH	Pgk1	18S rRNA	
	(1.482)	(0.699)	(0.956)	(2.25)	(1.12)	

Average: Stability in NormFinder and standard deviation in BestKeeper

Table 5 Overall ranking order of candidate reference genes based on the output values from three programs and selection of the best genes in the intervertebral disc of Sprague-Dawley (SD) rat and New Zealand White (NZW) rabbit

SD rat	Actb	GAPDH	18S rRNA	CycA	Hprt1	Ywhaz	Pgk1	Best genes
geNorm	1.515	0.498	1.268	0.498	0.664	2.040	2.406	Hprt1 and CycA
NormFinder	0.947	0.931	0.755	0.788	0.541	1.482	1.417	
BestKeeper	1.23	0.66	1.05	0.69	0.35	2.22	2.25	
Average	1.23	0.70	1.02	0.66	0.52	1.91	2.02	
Rank	5	3	4	2	1	6	7	

NZW rat

SD rat	Actb	GAPDH	18S rRNA	CycA	Hprt1	Ywhaz	Pgk1	Best genes
geNorm	0.414	0.903	0.803	0.484	0.565	0.414	0.698	Cya Hprt1 and Actb
NormFinder	0.478	0.699	0.511	0.227	0.371	0.497	0.374	
BestKeeper	0.53	1.12	0.90	0.36	0.23	0.64	0.43	
Average	0.47	0.91	0.74	0.36	0.39	0.52	0.50	
Rank	5	3	6	1	2	5	4	

rat & rabbit

SD rat	Actb	GAPDH	18S rRNA	CycA	Hprt1	Ywhaz	Pgk1	Best genes
geNorm	1.427	0.854	1.217	0.598	0.598	2.081	1.804	Hprt1 and CycA
NormFinder	0.658	0.956	0.596	0.636	0.514	0.783	0.808	
BestKeeper	0.97	0.85	1.23	0.68	0.30	1.12	1.01	
Average	1.02	0.89	1.01	0.64	0.47	1.33	1.21	
Rank	5	3	4	2	1	7	6	
based on the function of decreasing value of their outcome measures. Previously, Axtner et al. [17] identified the best combination of genes by mean rank derived from the three programs. We employed a different strategy by using the mean of three outcome measures and ranked the genes of interest as a function of their means with the lower means ranking better than their counterparts. We found this strategy to be more appropriate for the purpose of mathematical clarity.

In conjunction with GAPDH, Actb and 18S rRNA, our selection of other potential reference genes were based on demonstrated results of stability in previous investigations Xing et al. [18] demonstrated Hprt1 to be the best reference gene in rat partial hepatectomy model, which is experimental model for the study of liver regeneration. On the other hand, Ywhaz and CycA were the most stable genes in the brain tissue and asphyxia cardiac arrest model, respectively [19,20]. In the current study, combination of Hprt1 and CycA were identified to be suitable for normalization for rat and rabbit IVD culture studies. Although expression stability of reference genes may be influenced by multiple factors, our findings suggest that experimental conditions have a significant effect in this in vitro model.

GAPDH has been successfully employed as a reference gene in IVD organ culture studies [21,22] whereas our study indicates otherwise. The instability of GAPDH in our culture model could partly be the result of oxygen tension gradients in the IVD [23] that may result in regulation of HIF-1α [24]. Actb and 18S rRNA were also observed to be regulated in our culture model despite successful application in previous studies [25-27]. We analyzed matrix metalloproteinase-3 (MMP-3) expression which plays a major role in the disc degeneration process using Actb and combination of Hprt1 and CycA. MMP-3 expression normalized by Hprt1 and CycA showed 3.8-fold up-regulation at day 3, while Actb induced 73.7-fold up-regulation in the rat IVD tissue (additional file 2). Our comparative analysis emphasizes the critical requirement of reliable reference gene(s) to avoid erroneous and misrepresented results.

The delta-delta C_T algorithm is a convenient and standard method to analyze the relative changes in gene expression. This method requires the C_T values for a reference gene(s) to be reliably lower of that of a target gene. However, C_T values of rabbit Hprt1 were relatively higher than those of other optimal reference genes (CycA and Actb) in this study. Although the C_T values can be reduced by using increased amount of PCR templates, we first need to confirm the range of C_T values of target genes for accurate analysis of relative quantification.

Accurate normalization determines the sensitivity and reproducibility of a PCR measure making the selection process of a reference gene a very crucial step in validating the gene expression tool. It is also suggested by previous investigations that single control normalization may still lead to erroneous results, urging the need to use two or more reference genes to improve sensitivity and also maintain low expression variation [6]. It is also generally advised to maintain Ct values < 30 so that the initial abundance of the target gene is considered biologically consequential. We realized the significance of multiple reference genes and have reported two most stable genes for each individual small animal species. We believe the recommendations of this study are applicable for future investigations in IVD biology that use rat and rabbit disc tissues. Also, our inference is solely concerned with the experimental conditions stated in this investigation.

Conclusions

We evaluated the stability of seven potential reference genes (Actb, GAPDH, 18S rRNA, CycA, Hprt1, Ywhaz, and Pgk1) and attempted to identify the most stable control gene(s) for normalization of qRT-PCR data from rat and rabbit organ culture. Using geNorm, NormFinder, and BestKeeper, we determined that Hprt1 and CycA are ideal reference gene candidates in both the species of interest. Actb was also found suitable for normalization in the rabbit IVD whereas its stability is questionable in the rat model. GAPDH was found to be unsuitable for normalization in both rat and rabbit IVDs under our experimental constraints. Data presented in this work is the first of its kind focusing on the intervertebral disc and may facilitate improvement in reliability and sensitivity of qRT-PCR for IVD organ culture studies.

Methods

Intervertebral disc (IVD) organ culture

Young adult male Sprague-Dawley (SD) rats that were 9-weeks (280 g) old and New Zealand White (NZW) rabbits that were 18-weeks (3.6 kg) old were obtained from Harlan Sprague Dawley, Inc. (Indianapolis, IN, USA). The animals were used in accordance with a protocol approved by the University of Iowa Animal Care and Use Facilities. Under sterile condition, animals were sacrificed and lumbar IVD motion segments were dissected from consecutive levels (L1-L6). Posterior elements and soft tissues were removed and cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 14% fetal bovine serum (FBS), 50 μg/mL L-ascorbate, 100 U/mL penicillin, 100 μg/mL streptomycin, and 2.5 μg/mL Fungizone. After 0, 3, 7, and 14 days under standard culture conditions (37°C, 5% CO_2), randomly harvested IVDs were isolated from adjacent vertebral bodies and immediately frozen in liquid nitrogen. Three IVDs were pooled together and used for RNA isolation.
RNA isolation
Samples were homogenized with TRIzol® reagent (Invitrogen™ Life Technologies, Carlsbad, CA, USA) and total RNA was extracted by the homogenized tissues using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Total RNA was quantified using a NanoDrop® ND-1000 UV-Vis Spectrophotometer (Thermo Scientific, Waltham, MA, USA) at a 260 nm wavelength.

Candidate reference genes and primers for qRT-PCR
Candidate reference genes selected were classical reference genes which are most commonly used as internal control for gene expression studies (Actb, GAPDH, and 18S rRNA) and the others (CycA, Hprt1, Ywhaz, and Pgk1) based on previous reports [19,20,28]. Most primer information was obtained from previously published primer sequences. One rat (Hprt1) and five rabbit primers (Actb, GAPDH, 18S rRNA, CycA, and Hprt1) were designed using the Primer Express® 3.0 software (Applied Biosystems, Foster City, CA, USA) based on the sequences in the database [29].

Quantitative real-time RT-PCR (qRT-PCR)
qRT-PCR was performed with the SuperScript™ III Platinum® SYBR® Green One-Step qRT-PCR kit (Invitrogen™ Life Technologies) following the instructions with slight modification. For each sample, 50 ng total RNA was used in the assay for all reference genes except rat GAPDH (25 ng), rat 18S (1 ng), and rabbit Actb (25 ng) and all samples were run in triplicate on a 96-well optical reaction plate with the ABI PRISM 7700 Sequence Detection System (Applied Biosystems) with a Sequence Detection System (SDS) software version 2.3. The PCR Reactions were prepared in a total volume of 25 μl containing 1 μl diluted RNA, 0.5 μl forward and reverse primer (10 μM), 12.5 μl 2X SYBR® Green Reaction Mix, and 10 μl RNase-free water. The conditions for the PCR were as follows: reverse transcription at 50°C for 3 min, DNA polymerase activation and RT enzyme inactivation at 95°C for 5 min, followed by 40 cycles of denaturation at 95°C for 15 sec, primer annealing at 60°C for 30 sec, elongation at 40°C for 1 min. The quantification values were obtained from the threshold cycle (C_T) number at which the increase in signal associated with an exponential growth of PCR products using SDS software. At the end of the PCR reactions, amplification specificity was confirmed by analyzing dissociation curve. To calculate PCR efficiency for each gene, six points of 2-fold serial dilution were used to build standard curve.

Data analysis
To calculate the C_T values, the fluorescence threshold was manually set to 1 in SDS software and the results were directly imported into Microsoft Excel for BestKeeper (version 1.0) [30] data input. C_T values above 30 were excluded in this study. PCR efficiencies (E) were calculated from the slope of each standard curve with the equation,

\[E = 10^{-1/\text{slope}} \]

Relative quantities (Q) was then calculated from the C_T values and efficiencies for geNorm (version 3.5) [31] and NormFinder (version 19.0) [32] data input with the equation,

\[Q = E^{\text{Minimum C_T}} - C_T, (E = 2 \text{ for 100% efficiency}) \]

The gene expression stability was ranked from each program and the most stable reference gene or combination genes were calculated.

Additional material

Additional file 1: Melting curve analysis. Melting curve analysis of 7 candidate reference genes using ABI PRISM 7700 Sequence Detection System (Applied Biosystems) with a Sequence Detection System (SDS) software version 2.3.

Additional file 2: MMP-3 gene expression in the rat intervertebral disc. Relative expression level of MMP-3 in the rat intervertebral disc normalized by common used reference genes (Actb, GAPDH and 18S rRNA) and an optimal combination of reference genes (Hprt1 and CycA).

Acknowledgements
This study was supported by the Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa city, Iowa.

Author details
1Department of Orthopaedics and Rehabilitation, University of Iowa, 1182 ML, Iowa city, IA 52242, USA. 2Department of Biomedical Engineering, University of Iowa, 1402 SC, Iowa city, IA 52242, USA.

Authors’ contributions
DS harvested the intervertebral disc, performed qRT-PCR experiments and wrote the paper. HC designed primers and performed qRT-PCR. KJ participated in the data analysis. HZ advised all qRT-PCR process. TL and JAM supervised the study design and PSR helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 December 2010 Accepted: 26 May 2011
Published: 26 May 2011

References
1. Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 2002, 29(1):25-39.
2. Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25(2):169-193.
3. Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005, 6(4):279-284.
4. Ahn K, Huh JW, Park SJ, Kim DS, Ha HS, Kim YJ, Lee JR, Chang KT, Kim HS: Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol 2008, 9:78.
5. Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-5250.

6. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034.

7. Cavanaugh JM, Ozaktay AC, Yamashita T, Avramov A, Getchell TV, King AI: Mechanisms of low back pain: a neurophysiologic and neuroanatomic study. Clin Orthop Relat Res 1997, 335:166-180.

8. Sobajima S, Kim JS, Gilbertson LG, Kang JD: Gene therapy for degenerative disc disease. Gene Ther 2004, 11(4):390-401.

9. Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W, Carstens C, Kroeger M: Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine (Phila Pa 1976) 2005, 30(22):2510-2515.

10. Hutton WC, Elmer WA, Bryce LM, Kozlowska EE, Boden SD, Kozlowski M: Do the intervertebral disc cells respond to different levels of hydrostatic pressure? Clin Biomech (Bristol, Avon) 2001, 16(9):728-734.

11. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, Kang JD: Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 2005, 5(1):14-23.

12. Wang DL, Jiang SD, Dai LY: Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 2007, 32(23):2521-2528.

13. Chen J, Yan W, Setton LA: Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 2004, 22(7):573-583.

14. MacLean JJ, Lee CR, Alini M, Iatridis JC: Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 2004, 22(6):1195-1200.

15. MacLean JJ, Lee CR, Grad S, Ito K, Alini M, Iatridis JC: Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine (Phila Pa 1976) 2003, 28(10):973-981.

16. Pfaffl MW, Tichopad A, Prgomet C, Neuviens T: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 2004, 26(6):509-515.

17. Astner J, Sommer S: Validation of internal reference genes for quantitative real-time PCR in a non-model organism, the yellow-necked mouse, Apodemus flavicollis. BMC Res Notes 2009, 2:264.

18. Xing W, Deng M, Zhang J, Huang H, Dirsch O, Dahmen U: Quantitative evaluation and selection of reference genes in a rat model of extended liver resection. J Biomat Sci-Pol 2009, 20(2):109-115.

19. Bonsfeld BE, Ellguth B, Wegener G: Reference genes for normalization: a study of rat brain tissue. Syncpe 2008, 6(4):302-309.

20. Langnasre K, John R, Schweizer H, Ebmeyer U, Keilhoff G: Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 2008, 9:53.

21. Haschtmann D, Staynov J, Eittinger L, Nolte LP, Ferguson SJ: Establishment of a novel intervertebral disc/endplate culture model: analysis of an ex vivo in vitro whole-organ rabbit culture system. Spine (Phila Pa 1976) 2006, 31(25):2918-2925.

22. Risbud MV, Izzo MW, Adams CS, Arnold WW, Hillibrand AS, Voskovic EC, Vaccaro AR, Albert TJ, Shapiro IM: An organ culture system for the study of the nucleus pulposus: description of the system and evaluation of the cells. Spine (Phila Pa 1976) 2003, 28(24):2652-2658, discussion 2658-2659.

23. Bibby SR, Jones DA, Ripley RM, Urban JP: Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine (Phila Pa 1976) 2005, 30(9):947-956.

24. Ha KY, Koh U, Kipalani PA, Kim YJ, Cho YK, Khang GS, Han OW: The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs. Spine (Phila Pa 1976) 2006, 31(12):1309-1313.

25. Gantenbein B, Grunhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K: An in vitro organ culture system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine (Phila Pa 1976) 2006, 31(23):2665-2673.

26. Junger S, Gantenbein-Ritter B, Lezou P, Alini M, Ferguson SJ, Ito K: Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine (Phila Pa 1976) 2009, 34(12):1264-1271.

27. Korecki CL, MacLean JJ, Iatridis JC: Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Phila Pa 1976) 2008, 33(13):1403-1409.

28. Mamo S, Gal AB, Polgar Z, Dinnyes A: Expression profiles of the plupotential marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Mol Biol 2008, 9:67.

29. GenBank. [http://www.ncbi.nlm.nih.gov/GenBank/].

30. BestKeeper Software. [http://www.gene-quantification.de/bestkeeper.html].

31. geNorm Software. [http://medgen.ugent.be/~jvdesomp/genorm/].

32. NormFinder Software. [http://www.mda.dk/publications/normfinder.html].

33. Yang LP, Sun HL, Wu LM, Guo XJ, Dou HL, Tso MO, Zhao L, Li SM: Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci 2009, 50(5):2319-2327.

doi:10.1186/1756-0500-4-162
Cite this article as: Seol et al.: Selection of reference genes for normalization of quantitative real-time PCR in organ culture of the rat and rabbit intervertebral disc. BMC Research Notes 2011 4:162.