Ethnozoological study of traditional medicinal appreciation of animals and their products among the indigenous people of Metema Woreda, North-Western Ethiopia

Fasil Adugna Kendie*, Sileshi Andualem Mekuriaw and Melkamu Andargie Dagnew

Abstract

Background: Using animals for different purposes goes back to the dawn of mankind. Animals served as a source of food, medicine, and clothing for humans and provided other services. This study was designed to undertake a cross-sectional ethnozoological field survey among the residents of Metema Woreda from November 2015 to May 2016.

Methods: Data were collected through studied questionnaires, interviews, and focus group discussions with 36 purposively selected respondents.

Results: Ethnozoological data were collected of the local name of the animals, part of the animal used, mode of preparation and administration, and of additional information deemed useful. A total of 51 animal species were identified to treat around 36 different ailments. Of the animals used therapeutically, 27 species were mammals, 9 were birds, 7 arthropods, 6 reptiles, and 1 species each represented fish and annelids. Furthermore, the honey of the bee *Apis mellifera* was used to relieve many ailments and scored the highest fidelity value ($n = 35.97\%$). The snake (*Naja naja*) and the teeth of crocodiles (*Crocodylus spp.*) had the lowest fidelity value ($n = 2.56\%$).

Conclusion: The results show that there is a wealth of ethnozoological knowledge to be documented which could be of use in developing new drugs. Hence, it is hoped that the information contained in this paper will be useful in future ethnozoological, ethnopharmacological, and conservation-related research of the region.

Keywords: Traditional medicine, Indigenous knowledge, Ethnozoology, Zootherapy

Background

Using animals for different purposes goes back to the dawn of mankind. Animals served as a source of food, medicine, and clothing for humans and provided other services [1]. The traditional medicinal knowledge of indigenous people across the globe has played an important role in identifying living organisms which are endowed with medicinal values important for treating human and livestock health problems. Since ancient times, animals and their products have been used in the preparation of traditional remedies in various cultures [2]. Human societies have accumulated a vast store of knowledge about animals through the centuries, which is closely integrated with many other cultural aspects, and this zoological knowledge is an important part of our human cultural heritage [3].

The cure for human ailments using therapeutics from animals is known as zootherapy [4]. It plays a significant role in the healing practices, magic rituals, and religious societies all over the world [5, 6]. In the modern era, zootherapy constitutes a major alternative among many other known therapeutic practices in the world. Wild as well as domestic animals and their by-products such as hooves, skins, bones, feathers, and tusks serve as important ingredients in the preparation of curative, protective, and preventive medicines [5, 7, 8].

Traditional medicines have been important in connection with drugs like digitoxin, reserpine, tubocurarine, and
ephedrine [9]. Of the 252 essential chemicals that have been selected by the World Health Organization, 8.7% come from animals [10].

Loss of traditional knowledge of indigenous communities has impacted the development of modern medicine. It is important to document the traditional knowledge of human communities, since the majority of such communities are losing their socioeconomic and cultural characteristics [10]. Animals and the products derived from their body organs constitute part of the inventory of medicinal substances which are used widely by the people since time immemorial, and such practices still exist in traditional medicines [10]. Traditional healing methods involving hundreds of insect and other invertebrate species are reviewed by Meyer-Rochow [11]. In South Africa, animals and plants are commonly used as traditional medicines for both the healing of ailments and for symbolic purposes such as improving relationships and attaining good fortune [12].

In Traditional Chinese Medicine, more than 1500 animal species had been recorded to be some medicinal use [13]. In Brazil, Alves and Rosa reported the medicinal use of 283 animal species for the treatment of various ailments [14–17].

In Ethiopia, 70% of human and 90% of livestock population depend on traditional medicine. Although Ethiopians are known for their widespread use of traditional medicines with various levels of sophistication within the indigenous medical lore, the vast knowledge of the traditional uses of animal species of therapeutic value is not well documented for the various regions of the country. Moreover, since most of the knowledge is conveyed along generations through word of mouth, the traditional knowledge as well as the products used by these people is under threat [18].

In Metema Woreda, there were a number of studies about ethnobotany and traditional medicine, diversity, and floristic compositions of plants. However, despite the great diversity of ethnic groups and cultures in this area, ethnozoological studies of traditional medicinal animals have not yet been sufficiently addressed. Metema Woreda is characterized by the presence of a mosaic of ethnic groups with deep rooted culture of using traditional medicinal plants and animals. Hence, this study is aimed to explore ethnozoology and preparations of animals and its products as traditional medicine used to cure different human and animal ailments.

Methods
Study area description
The study was conducted in Metema Woreda in the Amhara National Regional State. The Woreda is about 333 km to the North West of Bahir Dar, the Capital City of Amhara Regional State. Metema is one of the Woredas in the Semien Gondar Zone, bordered by Qwara in the south, Sudan in the west, Mirab Armachiho in the north, Tach Armachiho in the northeast, Chilga in the east, and Takusa in the southeast. The Woreda constitutes a total of 20 Peasant Kebele administrations, of which 18 are rural-based peasant administration areas [19, 20]. The Woreda is the home of many ethnic groups including Agaw, Tigrie, Oromo, Gumuz, and Amhara migrated from the different angles of the country for different reasons displaying a diversity of cultures and indigenous belief.

Selection of study sites
A preliminary study was conducted in November 2015 to select specific study sites in the Woreda and test data collection tools. The study was conducted in six kebeles of Metema Woreda (Birshign; Kokit; Mender 6, 7, and 8; Metema Yohannis; Aftit; and Meka) from November 2015 to May 2016. These kebeles were purposively selected based on the availability of many traditional healers, presence of different ethnic groups, and accessibility of the area.

Sampling and data collection
The ethnozoological data (local name of animals, mode of preparation and administration, and part of the animal used) were collected through questionnaires, interviews, and focus group discussion with selected residents of Metema Woreda. Purposively, 36 key informants were selected, and questionnaires, interviews, and focus group discussion were made within these informants [21]. These informants were local herbalists, traditional healers, farming experts, midwives, and spiritual intellectuals. The selections of key informants were based on their experience and recognition as knowledgeable members concerning traditional zootherapeutics (the so called expert by the local people) [22]. Different types of ethnozoological data were collected from each type of key informants.

Group discussion
Brief group discussions were made at each site prior to the distribution of detailed questionnaires on the importance of animals in traditional medicine and related issues with the selected informants of the study site. During the discussions, an attempt was made to encourage the healers in such a way that their cooperation would be of benefit to the country and at same time an informed consent was obtained before data collection.

Semi-structured interviews
A semi-structured checklist and interview questions were prepared in advance. The interviews were based on this checklist, and some issues were raised promptly depending on the responses of an informant. The interview was held in Amharic, the language of the people by the researchers. The place and time for the discussion was set based on the interest of the informants.
Informant consensus
During the course of the study, each informant was visited three times in order to confirm the reliability of the ethnozoological information. Consequently, the responses of an informant that were not in harmony with each other were rejected since they were considered as unreliable information.

Animal specimen collections and identifications
The local names and associated attributes of medicinal animals were recorded for each of the species. The specimens with its common name, photograph, dead skin, hair, fur, and some products were collected and taken to Bahir Dar University (BDU) for species identification. Identification of the medicinal animals was done in BDU, using Internet and animal key by comparison with collected plates and illustrations.

Basic information	Number of respondents	Percentage (%)
Sex		
Male	34	94.4
Female	2	5.6
Age		
35–44 years	6	16.7
45–60 years	20	55.5
> 60 years	10	27.8
Educational level		
Illiterate	15	41.7
Literate	21	58.3
Marital status		
Married	34	94.4
Single	1	2.8
Divorced	1	2.8

No. Questions	Choices	No. of respondents	Percentage (%)
1	Where did you learn traditional medicinal knowledge?	A) Family 16	44.4
		B) Books 4	11.1
		C) Surrounding society 12	33.3
		D) Experience 4	11.1
		Total 36	
2	How many times people use traditional medicines?	A) Sometimes 15	41.7
		B) Always 13	36.1
		C) Situational 8	22.2
		Total 36	
3	What was the reason that forces the people to use traditional medicines?	A) Economy 7	19.4
		B) Lack of modern medicine 10	27.8
		C) Effectiveness 19	52.8
		Total 36	
4	Which categories of people use traditional medicines in large quantity?	A) Ethnic group 5	13.9
		B) Nations 1	2.8
		C) Religion 5	13.9
		D) All 25	69.4
		Total 36	
5	What looks like the outlooks of people about use of traditional medicines?	A) Good 15	41.7
		B) Bad 1	2.8
		C) Intermediate 20	55.5
		Total 36	
6	Are there any conservation and documentation mechanisms of traditional medicinal animals?	A) Yes 3	8.3
		B) No 31	86.1
		C) Some 2	5.5
		Total 36	
Data analysis
The data obtained were summarized and analyzed using descriptive statistical methods. In the ethnozoological data that were obtained from the interviews on reported medicinal animals and associated knowledge, fidelity level (FL) was calculated as the percentage of respondents claiming the use of a certain animal species for the same ailments, for the most frequently reported diseases or ailments as

\[FL(\%) = \frac{N_p}{N} \times 100 \]

where \(N_p \) is the number of respondents that claim a use of a species to treat a particular disease and \(N \) is the number of respondents that use the animals as a medicine to treat any given disease [23]. The range of fidelity level (FL) is from 1 to 100%; high values indicate that this particular animal species is used by large number of people, while a low value shows that respondents disagree on the usefulness of a species in treating ailments.

Results
This study revealed the traditional medicinal knowledge of treating various kinds of ailments using different animals and their parts/products by local inhabitants of different kebeles of Metema Woreda (North-Western Ethiopia). Many people were found to lack formal schooling education, but they have knowledge about the use of local animal resources for traditional medicines.

Socio-demographic characteristics of the respondents such as sex, age, educational level, and marital status were collected and presented (Table 1).

Information regarding the way to acquire traditional medicinal knowledge, duration of time to use traditional medicine, the reason that forces the people to use traditional medicines, categories of people that use traditional medicine, the outlooks of people about the use of traditional medicine, conservation, and documentation mechanisms of traditional medicinal animals were gathered from all respondents (Table 2).

Fifty-one animal species (Table 5) were found to be used for the treatment of over 36 kinds of ailments. There were 27 species belonging to mammals, 9 to birds, 7 arthropods, 6 reptiles, and 1 each among the fish and annelid (Table 3). The animals and their parts/products were found to be used for the treatment of around 36 different kinds of ailments including rheumatism, malaria, wart, stomachache, toothache, herpes, headache, rabies, tuberculosis, anemia, trachoma, gastritis, asthma, paralysis, and cough. The animals were used as whole or their products like milk, blood, organ, meat, teeth, and honey for the treatment of various ailments (Table 8).

According to the data (Table 4), meat/fat was the most widely used medicinal parts/products of animals in traditional medicine, followed by visceral organs, products and bone/teeth, and external body parts with similar percentages. On the other hand, an animal’s whole body and excreta, and blood were found to be the least used medicinal parts/products of animals.

In the study area, different parts or products of animals were used to treat different types of ailments. The highest number of cow parts or products 8 (3.8%) used to treat 8 (4.5%) ailments. The second rank was occupied by common warthog (*Phacochoerus africanus*), porcupine (*Hystrix* spp.), spotted hyena (*Crocuta crocuta*), and elephant (*Elephas maximus*) with similar number of parts/products 5 (2.5%) and used to treat 8 (4.5%), 13 (7.

Table 3
Animal groups and number of species used for traditional medicine in the study area

No.	Animal groups	Number of species	Percentage (%)
1	Mammals	27	52.9
2	Birds	9	17.6
3	Reptiles	6	11.8
4	Fish	1	2
5	Arthropods	7	13.7
6	Annelid	1	2

Table 4
Animal parts or products used to traditional medicine in the study area

No.	Medicinal parts/products of animals	No. of parts/products used	Percentage (%)
1	Meat/fat	23	23.5
2	Visceral organ (liver, spleen, Bile, stomach/intestine)	21	21.4
3	Products (honey, venom, milk, butter)	13	13.3
4	Bone/teeth	12	12.2
5	External Body part (head, tail, leg, skin, horn, spine/thorn)	12	12.2
6	Excreta (stool and urine)	6	6.1
7	Whole body	6	6.1
8	Blood	5	5.1
Table 6 Medicinal animals and their parts/products used and number of ailments treated

Animal group	Common name	Local name	Scientific name	No. of parts/products used \(N\) (\%\)	No. of ailments treated \(N\) (\%)
Mammals	Wild boar	Ria	Sus scrofa	1 (0.5)	4 (2.2)
	Common warthog	Kerker	Phacochoerus africanus	5 (2.5)	8 (4.5)
	Cow	Lam	Bos taurus	8 (3.9)	8 (4.5)
	Cheetah	Aboshemane	Acinonyx jubatus	1 (0.5)	1 (0.6)
	Camel	Gimel	Camelus dromedaries	1 (0.50)	4 (2.2)
	Porcupine	Jart	Hystrix spp.	5 (2.5)	13 (7.3)
	Human	Sew	Homo sapiens	1 (0.5)	1 (0.6)
	Donkey	Ahiya	Equus africanus asinus L.	1 (0.5)	5 (2.8)
	Rat	Ayti	Rattus spp.	3 (1.5)	3 (1.7)
	Spotted hyena	Gib	Crocuta crocuta	5 (2.5)	11 (6.2)
	Gazelle	Agazen	Gazella spp.	2 (1.0)	2 (1.1)
	Goat	Fiyel	Capra aegagrus hircus L.	4 (2.0)	12 (6.7)
	Hippopotamus	Gumare	Hippopotamus amphibius	1 (0.5)	3 (1.7)
	Pigs	Asama	Sus scrofa domesticus	2 (1.0)	3 (1.7)
	Monitor lizard	Arjano	Varanus spp.	1 (0.5)	1 (0.6)
	Sheep	Beg	Ovis aries	1 (0.5)	1 (0.6)
	Olive baboon	Zingero	Papio anubis	3 (1.5)	4 (2.2)
	Cat	Dimet	Felis domesticus	1 (0.5)	1 (0.6)
	Elephant	Zihon	Elephas maximus	5 (2.5)	7 (3.9)
	Bear	Dib	Melursus ursinus	1 (0.5)	1 (0.6)
	Vervet monkey	Tota	Chlorocebus pygerythrus	1 (0.5)	2 (1.1)
	Common fox	Kebero	Canis spp.	2 (1.0)	5 (2.8)
	Giraffe	Kechine	Giraffa camelopardalis	2 (1.0)	1 (0.6)
	Dog	Wusha	Canis familiaris	1 (0.5)	1 (0.6)
	Ethiopian hare	Tinchel	Lepus fagani	3 (1.5)	4 (2.2)
	Groundhog	Shikaka	Marmota monax	1 (0.5)	1 (0.6)
	Bat	Yeelilet wof	Cynopterus sphinx	1 (0.5)	2 (1.1)
Birds	Vulture	Timb ansa	Gypss spp.	2 (1.0)	2 (1.1)
	Pigeon	Ergib	Columba livia	1 (0.5)	3 (1.7)
	Duck	Dackye	Duck spp.	1 (0.5)	1 (0.6)
	Ostrich	Segon	Struthio camelus	3 (1.5)	3 (1.7)
	Hen	Dero	Gallus gallus domesticus	3 (1.5)	4 (2.2)
Table 6 Medicinal animals and their parts/products used and number of ailments treated (Continued)

Animal group	Common name	Local name	Scientific name	No. of parts/products used	No. of ailments treated
				N (%)	**N (%)**
Osprey	Gedie	Pandion haliaetus	1 (0.5)	2 (1.1)	
Erckel’s francolin	Koki	Pternistis erckelli	2 (1.0)	2 (1.1)	
Red billed oxpecker	Arechi	Buphagus erythrorhynchus	1 (0.5)	1 (0.6)	
Bald eagle	Chilat	Haliaeetus leucocephalus	1 (0.5)	1 (0.6)	
Reptiles	Snake	Ebab	Naja naja	3 (1.5)	6 (3.4)
	Crocodile	Azo	Crocodylus spp.	3 (1.5)	5 (2.8)
	Python	Zendo	Python spp.	4 (2.0)	7 (3.9)
	Tortoise	Ali	Testudo graeca	1 (0.5)	2 (1.1)
	Chameleon	Esist	Chamaeleo chamaeleon	1 (0.5)	1 (0.6)
	Lizard	Enshilait	Lacertilia spp.	1 (0.5)	2 (1.1)
Fish	Fish	Assa	Any fish spp.	2 (1.0)	2 (1.1)
Arthropods	Scorpion	Ginti	Palamnaeus swammerdami	1 (0.5)	1 (0.6)
	Bees	Nib	Apis mellifera	2 (1.0)	13 (7.3)
	Termite (Queen)	Mist	All spp.	1 (0.5)	1 (0.6)
	Field cricket	Fenta	Gryllus campestris	1 (0.5)	1 (0.6)
	Gnat (small insect)	Tinign	All spp.	1 (0.5)	3 (1.7)
	Bomble bee	Tinizia	Bombus spp.	1 (0.5)	3 (1.7)
	Ticks	Meziger	All tick spp.	1 (0.5)	1 (0.6)
Annelid	Leeches	Alekit	All spp.	1 (0.5)	1 (0.6)
Preparations varied according to ailment and involved cooking, burning, crushing/grinding, wrapping, powdering, and drying or the use of fresh animal parts/products (Table 6).

The traditional medicines were administrated via different modes. Eating, followed by drinking, tying, anointing, banding and massaging and, fumigation and heating were the major modes of application (Table 7). Solids and liquids were administered orally, whereas banding, heating, anointing, and massaging materials were applied to the skin. Medicinal fumes were allowed to enter the body via the nose, while some parts of animals like bones, skin, and teeth were believed to serve a healing purpose by tying them on the neck or other parts of the body. Most of the remedies did not involve the addition of substances like sugar, water, butter, honey, teff and millet flour, salt, spice, milk, egg, and coffee, but there were cases in which such additives were used.

Fidelity levels (FL) demonstrate the percentage of respondents claiming the use of a certain animal or its product for the same ailments. The honey of bee species (Apis mellifera) used to relieve wart, asthma, diarrhea, throat pain, stomach ache, cough, and tuberculosis had the highest FL (n = 35, 97%) followed by meat of wild boar (Sus scrofa) to treat rheumatism, syphilis, stomach ache, and malaria (n = 32, 89%), milk of goat (Capra aegagrus hircus) to treat eye disease, gastritis, headache, measles, tuberculosis, vomiting, and rheumatism (n = 27, 75%), teeth of the common wart hog (Phacochoerus africanus) to treat tooth ache, wart, and rheumatism (n = 26, 72%), meat of the porcupine (Hystrix spp.) to treat swelling, tuberculosis, headache, AIDS, asthma, rheumatism, and gastritis (n = 24, 67%), and urine of Gazelle (Gazella spp.) to treat urination problems (n = 23, 64%). On the other hand, bile of common fox (Canis spp.) to cure eye problem and tooth ache (n = 2, 5.6%), the upper skin of the snake (Naja naja) to cure headache (n = 2, 5.6%), and the teeth of crocodile (Crocodylus spp.) to cure epilepsy (n = 2, 5.6%) have the lowest fidelity level value (Table 8).

Discussion

In Ethiopia, 70% of human and 90% of livestock population depend on traditional medicine [18]. In this study, 51 animal species and their products were collected and identified that were believed to be a cure/prevention of over 36 kinds of ailments. Other studies reported in Ethiopia showed that approximately 23 animals and/or their parts were identified to be used in traditional medicines in Degu tribes in Tigray region [22]. Sixteen species of medicinal animals were collected and identified for treating 18 different human ailments in the Kaffa-Humera District, Northern Ethiopia [24]. The study conducted by Borah and Prasad recorded a total of 44 different species of animals which are used for the treatments of 40 different ailments [21]. In South Africa, Whiting et al. identified 147 medicinal vertebrate species representing 60 mammal species, 33 reptile species, 53 bird species and 1 amphibian species [12]. Oliveira et al. also described 23 animal species that used as traditional medicines [25]. Of a total 36 vertebrate species used in the treatment of ailments and disease, mammals comprised 50%; they were birds, fishes, reptile, and amphibians [26].

The inhabitants of the study area were found to use different parts/products of animals for the treatment of different kinds of ailments. Animals and the products derived from their body organs constitute part of the inventory of medicinal substances [10]. Meyer-Rochow also reported different organs of invertebrate animals used as traditional medicines [11].

In this study, parts/products of medicinal animals were grouped under meat/fat, blood, visceral organ, whole body, excreta, bone/teeth, and product categories and these categories were similar to ones reported by Haileselasie [22]. Other researches also stated that wild and domestic animals and their by-products such as hooves, skins, bones, feathers, and tusks are important ingredients in the preparation of curative, protective, and preventive medicine [7-9].

Preparations varied according to ailment and involved cooking, burning, crushing/grinding, wrapping, powdering, and drying [11]. In this study, egg is considered as one of the products of animals. The egg of ostrich (Struthio camelus) was mentioned as a traditional medicine in Table 8. It is used to treat muscle strain, broken bone, and paralysis. Gidey Yirga et al. showed medicinal animals have various methods of preparation for different types of ailments like crushing, powdering, squeezing, direct use, and cooking [27]. Haileselasie reported that animals are used as whole or body parts or by-products like milk, blood, organ, flesh, antler, and feathers for the treatments of different kinds of human ailments including cough, asthma, tuberculosis, paralysis, earache, herpes, weakness, and muscular pain [22].

Table 7 Methods of preparation of traditional medicinal in the study area

No.	Types of preparation	No. of preparation	Percentage (%)				
1	Fresh	40	36.4				
2	Cooking	26	23.6				
3	Burning	15	13.6				
4	Crushing/grinding	8	7.3				
5	Wrapping	8	7.3				
6	Powdering	7	6.4				
7	Drying	6	5.4				
Animal group	Common name	Scientific name	Parts/product used	Ailments treated	No. of respondents claimed (n)	Fidelity level (FL)	Mode of applications
--------------	--------------	-----------------	--------------------	--	-------------------------------	--------------------	----------------------
Mammals	Wild boar	Sus scrofa	Meat	Rheumatism, syphilis, stomachache, and malaria	32	89	Eating
	Common warthog	Phacochoerus africanus	Teeth	Swelling, toothache, wart and rheumatism	26	72	Heating
			Blood	Malaria, asthma, and rheumatism	12	33	Drinking
			Skin	Herpes	4	11	Anointing
			Bile	AIDS	8	22	Drinking
			Horn	Swelling	4	11	Heating
	Cow	Bos taurus	Butter	Malaria and paralysis	8	22	Eating
			Milk	Rabies and TB	18	50	Drinking
			Urine	Malaria	4	11	Drinking
			Spleen	Anemia, malaria and trachoma	13	36	Eating
			Omasum	Gastritis	4	11	Eating
			Liver	Anemia	9	25	Eating
			Blood	Wart	10	28	Drinking
	Cheetah	Acinonyx jubatus	Skin	Hemorrhage	3	8	Tying
	Camel	Camelus dromedarius	Milk	Headache, rheumatism, malaria and diarrhea	20	56	Drinking
	Porcupine	Hystrix spp.	Meat	Swelling, TV, headache, AIDS, asthma, rheumatism, gastritis, and hypertension	24	67	Eating
			Bile	Asthma/diabetes, stomach scramble	11	31	Drinking
			Stomach/intestine	Diarrhea and diabetes	7	19	Eating
			Thorn/spine	Wound and broken leg	14	39	Tying
			Liver	Diabetes disease	3	8	Eating
	Human	Homo sapiens	Stool	Wart	3	8	Anointing
	Donkey	Equus africanus asinus L.	Milk	Measles, cough, trachoma/rabies, and internal problem	22	61	Drinking
	Rat	Rattus spp.	Meat	Intestinal disease	5	14	Eating
			Foot	Nightmare	4	11	Tying
			Blood	Wart	6	17	Anointing
	Spotted hyna	Crocuta crocuta	Bone	Epilepsy and bad spirit	12	33	Tying
			Skin	Protection from evil eye and during labor	9	25	Tying
			Bile	Erythroblastosis and nightmare	8	22	Tying
			Liver	Infection of skin	5	14	Banding
			Skin	For communicable diseases and bad spirit	11	31	Tying
			Meat	For swollen sex organ, epilepsy and anemia	5	14	Eating
	Gazelle	Gazella spp.	Urine	For urination problem	23	64	Drinking
Animal group	Common name	Scientific name	Parts/product used	Ailments treated	No. of respondents claimed (n)	Fidelity level (FL)	Mode of applications
-------------	-------------	-----------------	--------------------	------------------	-------------------------------	-------------------	---------------------
Goat	Capra aegagrus hircus L.	Bile	Syphilis	0	Drinking		
Goat	Capra aegagrus hircus L.	Milk	Eye disease, gastritis, wound, headache, measles, TB, eye disorder, vomiting, snake poison, and rheumatism	27	75	Drinking	
Goat	Capra aegagrus hircus L.	Fat	Wound and Toothache	16	44	Banding	
Goat	Capra aegagrus hircus L.	Liver	Trachoma	7	19	Massaging	
Goat	Capra aegagrus hircus L.	Butter	Headache and ear infection	8	22	Massaging	
Hippopotamus	Hippopotamus amphibius	Bone	Breast swelling, sunburn, and body fracture	6	17	Banding, drinking	
Pig	Sus scrofa	Meat	Rheumatism and headache	4	11	Eating	
Pig	Sus scrofa	Blood	Skin infection	4	11	Anointing	
Monitor lizard	Varanus spp.	Skin	Infant communicable disease	6	17	Tying	
Sheep	Ovis aries	Milk	Malaria	4	11	Drinking	
Olive baboon	Papio anubis	Hind skin/skin	Broken/misplaced bone and wound/burning	9	25	Tying	
Olive baboon	Papio anubis	Meat	Rabies prevention for dogs and HIV/AIDS	13	36	Eating	
Cat	Felis domesticus	Bile, meat	AIDS	6	17	Eating, drinking	
Cat	Felis domesticus	Skin	Spiritual problem	3	8	Tying	
Elephant	Elephas maximus	Bile	Kidney failure	3	8	Drinking	
Elephant	Elephas maximus	Bone	Herpes and diarrhea	6	17	Massaging	
Elephant	Elephas maximus	Ivory	Herpes	3	8	Anointing	
Elephant	Elephas maximus	Urine	Herpes, urination disorder	3	8	Drinking	
Elephant	Elephas maximus	Skin	Herpes, back pain, skin wound, and trachoma	6	17	Anointing	
Bear	Melursus ursinus	Bile	Epilepsy	4	11	Drinking	
Vervet monkey	Chlorocebus pygerythrus	Meat	For STDs, anemia for children	3	8	Eating	
Common fox	Canis spp.	Brain tissue and meat	Epilepsy, mental disorder	4	11	Eating/drinking	
Common fox	Canis spp.	Bile	Toothache, eye problem, and internal problem	2	5.6	Drinking	
Giraffe	Giraffa camelopardalis	Urine and milk	TB	3	8	Drinking	
Dog	Canis familiaris	Bone	Epilepsy	3	8	Tying	
Ethiopian hare	Lepus fagani	Excreta	Soars/wound	4	11	Anointing	
Ethiopian hare	Lepus fagani	Meat	Cattle disorder, epilepsy	8	22	Fumigation, drinking	
Ethiopian hare	Lepus fagani	Fat	Wart	5	14	Anointing	
Groundhog	Marmota monax	Meat	For coughing and fattening baby	7	19	Eating	
Bat	Cynopterus sphinx	Meat	Hepatitis, mental disorder	21	58	Eating	
Vulture	Gyps spp.	Leg	Epilepsy	3	8	Fumigation	
Vulture	Gyps spp.	Meat	Mental disorder	4	11	Eating	
Pigeon	Columba livia	Meat	Mental disorder, body fracture, and heart failure	12	33	Eating	
Animal group	Common name	Scientific name	Parts/product used	Ailments treated	No. of respondents claimed (n)	Fidelity level (FL)	Mode of applications
--------------	-------------	-----------------	-------------------	-----------------	--------------------------------	--------------------	---------------------
Duck	Duck spp.	Meat	TB	4	11	Eating	
Ostrich	Struthio camelus	Meat and egg	Muscle strain and broken bone and paralysis	4	11	Massaging, anointing	
Hen	Gallus gallus domesticus	Whole body	For physical injury and wound	9	25	Drinking	
		Liver and fat	Swelling wound, pneumonia	16	44	Eating	
Osprey	Pandion haliaetus	Bone	Epilepsy, body fracture	5	14	Tying	
Erckel’s francolin	Pternistis erckelli	Meat	Internal problem	3	8	Eating	
Red billed Oxpecker	Buphagus erythrorhynchus	Bile	STDS	3	8	Drinking	
Bald eagle	Haliaeetus leucocephalus	Blood	Skin fungus	4	11	Anointing	
Reptiles	Snake	Naja naja	Coat	2	5.6	Tying	
		Venom	Malaria and snake bite	4	11	Anointing	
		Head	Diarrhea, evil eye, and headache	6	17	Tying	
Crocodile	Crocodylus spp.	Bile	Coughing, TB, teeth rheumatism	4	11	Drinking, Anointing	
		Bone	Communicable disease	3	8	Tying	
		Teeth	Epilepsy	2	5.6	Tying	
Python	Python spp.	Bone	Rabies and swelling	3	8	Tying and Banding	
		Tail and bone	Cancer and swelling	3	8	Banding	
		Fat	Wound and ear disease	7	19	Banding, Anointing	
		Meat	Rabies, foot crack, and ear disorder	13	36	Eating, Anointing	
Tortoise	Testudo graeca	Teeth	Swelling	3	8	Heating	
		Shell	Trypanosomiasis, nose bleeding	6	17	Fumigation	
Chameleon	Chamaelea chamaeleon	Whole body	Cancer, body fattening	6	17	Tying	
Lizard	Lacertilia spp.	Whole body	Dry cough and anemia	3	8	Drinking	
Fish	Any fish spp.	Meat	Rheumatism	4	11	Eating	
		Bile	Eye disorder	3	8	Eating	
Arthropods	Scorpion	Palamnaeus swammerdami	Meat	Scorpion bite	6	17	Massaging
Bee	Apis mellifera	Honey	Wart, asthma, diarrhea, throat pain, stomachache, cough, TB, mumps, heart failure	35	97	Eating, drinking	
Termite (Queen)	All spp.	Larvae	Stomach disorder	3	8	Drinking	
Field cricket	Gryllus campestris	Whole body	Fattening of livestock	3	8	Eating	
Gnat (small insect)	All spp.	Whole body	Eye disease	3	8	Eating	
Bumble bee	Bombus spp.	Honey	Stomachache, eye disorder, and coughing	13	36	Eating	
Ticks	All tick spp.	Blood	Fungal disease on the skin	3	8	Anointing	
This study showed that traditional medicines were administrated by drinking, eating, anointing, tying, branding, fumigation, and massaging. The study conducted by Gidey Yirga et al. showed most of traditional medicines were administrated orally and through dermal. Fumigating materials such as smokes were also entering into the body using nasal opening to treat different ailments. Some parts of animals such as bones, skin, and teeth were believed to be medicine by tying on the neck or other parts of the body [27].

The majority of the remedy preparations did not have additive substance while the remaining had different additive substances like sugar, water, butter, honey, teff and millet flour salt, spice, milk, egg, and coffee. The result of this study is similar to research conducted by Gidey Yirga et al. [27]. Haileselasie stated that many animals were used for the treatment of multiple ailments singly or in combinations with other animal products or/and plants like seeds, flowers, latex (resins in some cases), and roots [22].

The honey of bee species (Apis mellifera) is known to relieve wart, asthma, diarrea, throat pain, stomachache, cough, and tuberculosis and achieves the highest fidelity level, whereas biles of common fox (Canis spp.) to cure eye problem and toothache, upper coats of snake (Naja naja) to cure headache, and teeth of crocodile (Crocodylus spp.) to cure epilepsy have the lowest fidelity level. On the other hand, Jaroli et al. stated that the uses of animals that are commonly known by the Garasiya informants have higher fidelity levels than less common known species [27]. He reported the cooked flesh of bat (Cynopterus sphinx) used to relieved cough and fever has the highest FL followed by blood of pigeon (Columba livia) to treat paralysis and urine of cow (Bos taurus) for wound healing, while the flesh of the pig (Sus scrofa) to relieve muscular pain and elephant (Elephas maximus) for pimples have the lowest fidelity level.

The finding of this study suggested that the traditional zootherapeutic remedies followed by the native people of Metema Woreda plays an important role in their primary healthcare. The documentation of this indigenous knowledge on animal-based medicines should be very helpful in the formulations of strategies for sustainable management and conservation of bio-resource as well as providing potential for novel drug discoveries [21].

Conclusions
The result shows that animals and their parts/products occupy key positions in the traditional medicine and medical practices to treat different ailments. Whole bodies or parts/products of traditional medicinal animals were used as a medicine. It was obvious that the members of the local communities studied possessed considerable knowledge related to preparation, administration, parts/products used, ingredients added, and other issues of traditional remedies. However, efforts to document, conserve, and manage the indigenous knowledge and skill were very scarce, and important indigenous knowledge is getting lost together with the elders and experts. Hence, it is important to document, conserve, and manage the indigenous knowledge, and further research should be done to test the products scientifically for product development.

Acknowledgements
We are very much grateful to all the respondents who shared their traditional zootherapeutic knowledge; without their contribution, this study would have been impossible. Furthermore, we would like to extend our gratitude to the College of Science, Bahir Dar University, which supplied laboratory room and required materials. We also thank Metema Woreda administrators and kebele leaders for their willingness to participate in the study. Finally, we would like to say thank you to both two reviewers for their insightful comments and suggestions for the improvements of this manuscript.

Availability of data and materials
The data used and analyzed during the current study is available from the corresponding author on a reasonable request, without disclosure of the interviewees.

Declarations
We confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Authors’ contributions
FA, SA, and MA proposed the research idea and collected the data from the respondents. FA organized the data in computer, did the analysis, interpretation, and identification, and wrote the manuscript. SA and MA revised the manuscript for scientific content and did the language check. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The ethics approval is not applicable. Written consent by the authors was obtained before the interviews. We explained the objectives of the research to each respondent, when we also had a chance to answer questions and clear doubts. We assured them that their information was anonymous and that it was only for research purposes.

Consent for publication
This manuscript does not contain any individual person’s data, and further consent for publication is not required.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

1. Lohani U, Rajbhandari K, Shakuntala K. Need for systematic ethnozological studies in the conservations of ancient knowledge systems of Nepal. Indian J Trad Knowl. 2008;7(4):634–7.
2. Lev E. Traditional healing with animals (zootherapy); medieval to present-day Levantine practice. J Ethnopharmacol. 2003;86:107–18.
3. Alves RRN, Souto WMS. Ethnozoology: a brief introduction. Ethnobiol Conserv. 2015;4:1–13.
4. Costa-Neto EM. Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources. Ann Brazilian Acad Sci. 2005;73:33–43.
5. Anegeletti LR, Agrimi U, Curia C, French D, Mariani-Costantini R. Healing rituals and sacred serpents. Lancet. 1992;340:223–5.
6. Roser F. Pigeons as a remedy (segulah) for jaundice. N Y State J Med. 1992;92:189–92.
7. Adeola MC. Importance of wild animals and their parts in the culture, religious festivals and traditional medicines of Nigeria. Environ Conserv. 1992;19:125–34.
8. Kang SP. Question of attitude; South Korea’s traditional medicine practitioners and wildlife conservation. Hong Kong: TRAFFIC East Asia; 2003.
9. Anyinam C. Ecology and ethnomedicine: exploring links between current environmental crisis and indigenous medical practices. Soc Sci Med. 1995;40:321–9.
10. Alves RRN, Rosa IL. Why study the use of animal products in traditional medicines? J Ethnobiol Ethnomed. 2005;10:1746–4269.
11. Meyer-Rochow VB. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. J Ethnobiol Ethnomed. 2017;13:9.
12. Whiting MJ, Williams VL, and Hibbits TJ. Animals traded for traditional medicine at the Faraday market in South Africa: species diversity and conservation implications. J zool. 2010;284:846–96.
13. CNCTHM (China National Corporation of Traditional and Herbal Medicine). In Materia medica commonly used in China. Beijing: Science Press; 1995.
14. Alves RR, Rosa IL. The use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol. 2007;113:541–55.
15. Costa-Neto EM. Implications and applications of folk zoo therapy in the state of Bahia, Northeastern Brazil. Sustain Dev. 2004;12(3):161–74.
16. Alves RR, Vieira WL, Santana GG. Reptiles used in traditional folk medicine: conservation implications. Biodivers Conserv. 2008;17(1):2037–49.
17. Alves RRN. Faun used in popular medicine in Northeast Brazil. J Ethnobiol Ethnomed. 2008;5:1–18.
18. Birhanu Z. Traditional use of medicinal plants by the ethnic groups of Gondar Zuria District, North-Western Ethiopia. J Nat Rem. 2013;13(1):2320–3358.
19. ILRI (International Livestock Research Institute). Initial draft report, Metema pilot learning site diagnosis and program design; 2005.
20. ARDO (Agricultural and Rural Development Office). The Woreda annual report: Shihedey; 2005.
21. Borah MP, Brasad SB. Ethnozoological study of animals based medicines used by traditional healers and indigenous inhabitants in the anointing area Gibbon Wildlife Sanctuary, Assam, India. J Ethnobiol Ethnomed. 2017;13:9.
22. Halielesasie T. Traditional zootherapeutic studies in Degu’a Tembien, Northern Ethiopia. Curr Res J Biol Sci. 2012;4(5):563–9.
23. Alexiades MN. Collecting ethnobotanical data. In: Alexiades MN, Sheldon JW, editors. Selected guideline for ethnobotanical research a field manual. New York: Bronex; 1996. p. 40–102.
24. Yirga G, Teferi M, Gebreslassie Y. Ethnozoological study of traditional medicinal animals used by the people of Kafta-Humera District, Northern Ethiopia. Int J Med Med Sci. 2011;3(10):316–20.
25. Oliveira ES, Torres DF, Brooks SE, Alves RRN. The medicinal animal markets in the metropolitan region of Natal City, Northeastern Brazil. J Ethnopharmacol. 2010;130:54–60.
26. Chakravorty J, Meyer-Rochow VB, Ghosh S. Vertebrates used for medicinal purpose by members of Nyishi and Galo tribes in Arunachal Pradesh (North-East India). J Ethnobiol Ethnomed. 2011;7:13.
27. Jarol DF, Mahawar HM, Vyas N. An ethnozoological study in the adjoining areas of Mount Abu wildlife sanctuary, India. J Ethnobiol Ethnomed. 2010;6:6.