Shape Analysis of HBT Correlations at STAR

D. Kincses* (for the STAR Collaboration)
Eötvös Loránd University, Budapest, 1117 Hungary
*e-mail: kincses@ttk.elte.hu

Received September 20, 2019; revised October 28, 2019; accepted November 10, 2019

Abstract—To study the nature of the quark-hadron phase transition, it is important to investigate the space-time structure of the hadron-emitting source in heavy-ion collisions. Measurements of HBT correlations have proven to be a powerful tool to gain information about the source. In these proceedings, we report the current status of the analysis of source parameters obtained from Lévy fits to the measured one-dimensional two-pion correlation functions in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

DOI: 10.1134/S106377962003017X

1. INTRODUCTION

Quantum-statistical (also called Bose–Einstein or HBT) correlations of identical bosons are used to explore the properties of the hot and dense matter created in heavy-ion collisions [1]. These correlations can provide information on the space-time geometry of the particle-emitting source in heavy-ion collisions.

Description of the shape of correlation function requires the knowledge of the source function which can be tested. Recent studies at different experiments [2–4] showed that to properly describe the shape of the measured quantum-statistical correlation functions it is necessary to go beyond the Gaussian approximation. One possibility is to use Lévy-stable distributions. There could be multiple (competing) reasons behind the appearance of such sources, like anomalous diffusion [5, 6], jet fragmentation [7] or the proximity of the critical endpoint [8]. The definition of the one-dimensional Lévy-stable distribution is the following [9]:

$$L_\alpha (x; \alpha, \beta, \mu) = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{i x q} \Phi{\alpha, \beta, \mu}dq,$$

where the characteristic function is defined as:

$$\Phi{\alpha, \beta, \mu} = \exp\left(i \alpha \mu - \beta |q| (1 + \log |q|)\right),$$

$$\Phi = \begin{cases} \tan\left(\frac{-\pi \alpha}{2}\right), & \alpha \neq 1, \\ -\frac{2}{\pi} \log |q|, & \alpha = 1. \end{cases}$$

The four main parameters are the index of stability, α, the skewness parameter, β (the distribution is symmetric if $\beta = 0$), the scale parameter, R, and the location parameter, μ. The latter is also the median of the distribution, and in case of $\alpha > 1$ it equals to the mean as well. The most important property of this distribution is that it retains the same α and β under convolution of random variables, and any moment greater than α is not defined. In case of $\alpha < 2$ the distribution exhibits a power-law behavior, while the $\alpha = 2$ case corresponds to the Gaussian distribution. If we assume that the source is a centered, spherically symmetric Lévy distribution ($S(x) = f(x; \alpha, 0, R, 0)$) and neglect any final state interaction, the one-dimensional two-particle correlation function takes the following form:

$$C(Q) = 1 + \lambda \frac{|\tilde{S}(Q)|^2}{|\tilde{S}(0)|^2} = 1 + \lambda \exp\left(-RQ^\alpha\right),$$

where \tilde{S} denotes the Fourier transform of the source, Q is the one-dimensional relative momentum variable, defined as the absolute value of the three-momentum difference in the longitudinal co-moving system (for details see [2]), and λ is the strength of the correlation function.

2. RESULTS AND DISCUSSIONS

In this analysis, we have used Au + Au data at $\sqrt{s_{NN}} = 200$ GeV recorded by the STAR experiment. We measured one-dimensional two-pion HBT correlation functions for like-sign pairs. For the experimental construction of the correlation functions we
used the event-mixing technique. We applied the necessary event-, track-, and pair-cuts, similar to those used in Ref. [10]. To incorporate the effect of the final-state Coulomb interaction, we used the Bowler–Sinyukov procedure [1]:

$$C^{\text{Coul}}(Q) = 1 - \lambda + \lambda K(Q; \alpha, R) \left(1 + \exp\left(-\frac{Q}{Q^*}\right)\right).$$ (5)

For the Coulomb correction, $K(Q; \alpha, R)$, a parametrized formula from [11] was used. Fits of the correlation functions were performed using the ROOT Minuit2Minimizer [12].

As a first check we investigated the Gaussian fits (with fixed $\alpha = 2$) to the data. The example is shown on Fig. 1. The value of χ^2 is very high ($\chi^2 / \text{NDF} \sim 10$), the data are not described well by these fits. The magnitude of the Lévy scale R is compatible with the magnitude of the HBT radii extracted from three-dimensional Gaussian fits in [10]. Releasing the index of stability, α, the χ^2 values drop by a factor of 3–5, and the description highly improves in the $Q \simeq 25$ MeV/c region. Figure 2 shows the fit example with the α parameter released. An interesting observation is that the correlation function behavior at very low Q is not described well by these kind of fits. Our investigations showed that this observation stands when varying the analysis cuts, and even in case of measuring the correlation function as a function of a different relative-momentum variable other than Q.

3. SUMMARY AND OUTLOOK

In these proceedings, we presented the first Lévy-type HBT studies at STAR. We showed that indeed the Gaussian fits are not compatible with the measured data in case of one-dimensional two-particle correlation functions. The Lévy fits provide a higher quality description of the data at $Q \simeq 25$ MeV/c, although the low Q behavior is currently not clear. To understand the reason behind this observation, more detailed investigations are needed. These will include the detailed m_T and centrality dependence, a thorough investigation of systematic uncertainties, and possibly the use of different expansion methods as suggested in [13].

4. FUNDING

This research was supported by the ÚNKP-19-3 New National Excellence Program of the Hungarian Ministry of Human Capacities, as well as the NKFIH grant FK 123842.
SHAPE ANALYSIS OF HBT CORRELATIONS AT STAR

Fig. 2. Example Lévy fit of a Bose–Einstein correlation function of $\pi^-\pi^-$ pairs with a mean average transverse mass of $\langle m_T \rangle = 0.395$ GeV/c^2. The blue points correspond to the measured raw correlation function while the red curve is the fit function introduced in Eq. (5), complemented with a linear background.

REFERENCES

1. M. A. Lisa et al., Ann. Rev. Nucl. Part. Sci. 55, 357 (2005).
2. PHENIX Collab., Phys. Rev. C 97, 064911 (2018).
3. CMS Collab., Phys. Rev. C 97, 064912 (2018).
4. B. Pórfy for the NA61/SHINE Collab., Acta Phys. Polon. B 12, 451 (2018).
5. R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563 (1999).
6. M. Csanád, T. Csörgő, and M. Nagy, Braz. J. Phys. 37, 1002 (2007).
7. T. Csörgő et al., Acta Phys. Polon. B 36, 329 (2005).
8. T. Csörgő et al., Eur. Phys. J. C 36, 67 (2004).
9. J. P. Nolan, Stat. Probab. Lett. 38, 187–195 (1998).
10. STAR Collab., Phys. Rev. C 92, 014904 (2015).
11. M. Csanád, S. Lökös, and M. I. Nagy, Universe 5, 133 (2019).
12. F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).
13. M. B. De Kock, H. C. Eggers, and T. Csörgő, PoS WPCF 2011, 033 (2011).