The unicellular eukaryotic parasite *Toxoplasma gondii* hijacks the migration machinery of mononuclear phagocytes to promote its dissemination

Einar B. Ölafsson and Antonio Barragan

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden

Toxoplasma gondii is an obligate intracellular protozoan with the ability to infect virtually any type of nucleated cell in warm-blooded vertebrates including humans. *Toxoplasma gondii* invades immune cells, which the parasite employs as shuttles for dissemination by a *Trojan horse* mechanism. Recent findings are starting to unveil how this parasite orchestrates the subversion of the migratory functions of parasitised mononuclear phagocytes, especially dendritic cells (DCs) and monocytes. Here, we focus on how *T. gondii* impacts host cell signalling that regulates leukocyte motility and systemic migration in tissues. Shortly after active parasite invasion, DCs undergo mesenchymal-to-amoeboid transition and adopt a high-speed amoeboid mode of motility. To trigger migratory activation – termed hypermigratory phenotype – *T. gondii* induces GABAergic signalling, which results in calcium fluxes mediated by voltage-gated calcium channels in parasitised DCs and brain microglia. Additionally, a TIMP-1-CD63-ITGB1-FAK signalling axis and signalling via the receptor tyrosine kinase MET promotes sustained hypermigration of parasitised DCs. Recent reports show that the activated signalling pathways converge on the small GTPase Ras to activate the MAPK Erk signalling cascade, a central regulator of cell motility. To date, three *T. gondii*-derived putative effector molecules have been linked to hypermigration: Tg14-3-3, TgWIP and ROP17. Here, we discuss their impact on the hypermigratory phenotype of phagocytes. Altogether, the emerging concept suggests that *T. gondii* induces metastasis-like migratory properties in parasitised mononuclear phagocytes to promote infection-related dissemination.

Introduction

Toxoplasma gondii is a common infectious agent in humans and animals worldwide and also a model to study intracellular parasitism (Sibley, 2004; Pappas et al., 2009). The invasive tachyzoite stage of *T. gondii* is obligate intracellular. Thus, host cell invasion is essential for parasite survival. Gliding parasite motility mediates invasion of host cells but likely also interstitial movement in the microenvironment in tissues and ability to cross biological barriers (Barragan and Sibley, 2003; Sibley, 2004). Tachyzoites actively invade host cells propelled by their own actin-myosin motor with an implication of the host cell cytoskeletal machinery (Dobrovolski and Sibley, 1996; Bichet et al., 2016; Pavlou et al., 2018). The invasion process encompasses the discharge of secretory organelles.
in the host cell and results in the generation of an intracellular parasitophorous vacuole (PV; recently reviewed in Clough and Frickel, 2017). Mounting evidence show that, shortly after invasion and from within its intracellular replicative niche, the parasite secretes proteins into the host cell cytosol and nucleus, which modulate a number of host cell functions, for example, immune responses (recently reviewed in Hakimi et al., 2017).

Thus, from the parasite's entry in the ileum (recently reviewed in Delgado Betancourt et al., 2019) to its entry into the central nervous system across the blood–brain barrier with subsequent development of chronic bradyzoite-containing cysts (recently reviewed in Schluter and Barragan, 2019), the parasites invade a number of cell types, including immune cells. Early studies in rodents revealed infection of leukocytes in the intestine following oral infection and rapid presence of tachyzoites in blood and peripheral organs (Derouin and Garin, 1991; Dubey, 1997a, 1997b; Znener et al., 1998). It was subsequently demonstrated that parasitised mononuclear phagocytes transported *T. gondii* from the intestinal mucosa into the lymphatic and systemic blood circulation (Courret et al., 2006) and that the altered migratory properties of parasitised dendritic cells (DCs) promoted parasite dissemination in mice (Lambert et al., 2006).

The mononuclear phagocyte system comprises families of immune cells of diverse ontogenic origin (Guilliams et al., 2014). These include monocyte-derived cells, hematopoietic stem cell derived common dendritic cell (DC) precursors and embryonic-derived macrophages, and also microglia (Ginhoux et al., 2010). Here, we focus on (i) the cytoskeletal and migratory alterations that parasitised human and murine DCs and other mononuclear phagocytes undergo upon *T. gondii* infection, and (ii) how they impact on parasite dissemination and, ultimately, pathogenesis.

The hypermigratory phenotype

The principal features of the hypermigratory phenotype exhibited by DCs parasitised by *T. gondii* tachyzoites have been previously reviewed (Weidner and Barragan, 2014). Briefly, standardised cellular assays define (i) enhanced motility in assays using two-dimensional (D) confinements, (ii) enhanced transmigration in transwell systems in presence or absence of endothelial cell monolayers, (iii) maintained or elevated chemotactic properties in chemotaxis assays and (iv) cytoskeletal morphological changes, for example, dissolution of actin-rich adhesion structures known as podosomes (Figure 1). More recent studies have extended these features to hypermigration in 3D matrix confinements (Kanatani et al., 2015) and revealed impaired matrix degradation and membrane redistribution of integrins in parasitised DCs (Weidner et al., 2013; Olafsson et al., 2018). In mice, adoptively transferred parasitised DCs confer exacerbated dissemination with elevated parasite loads (Lambert et al., 2006; Fuks et al., 2012; Kanatani et al., 2017). Hypermigratory responses of mononuclear phagocytes (DCs, monocytes, macrophages, microglia) appear to be a conserved feature across host species (human, mouse, bovine) and are also induced by the related coccidian *Neospora caninum* (Collantes-Fernandez et al., 2012; Garcia-Sanchez et al., 2019). Yet, while hypermigration in DCs/macrocytes/microphages/microglia is induced by all *T. gondii* and *N. caninum* strains tested to date, measurable differences exist between parasite strains/lineages in the magnitude of induction of the hypermigratory phenotype, as defined in vitro. For *T. gondii*, type I, II and III lines induce hypermigration of parasitised DCs in a genotype-related fashion in vitro (Lambert et al., 2009). In vitro in mice, findings suggest that type II strains efficiently exploited DC migration for dissemination, compared with type I strains. Similarly, differences among *N. caninum* strains were also observed in mice (Collantes-Fernandez et al., 2012). Altogether, the data suggest that shuttling of tachyzoites by parasitised DCs impacts dissemination in a strain-dependent fashion.

In addition to DCs, other mononuclear phagocytes exhibit altered migration when infected by *T. gondii*. Monocytes and macrophages exhibit hypermigratory features, hypermotility being the most pronounced (Lambert et al., 2011; Harker et al., 2013; Cook et al., 2018). Interestingly, while *T. gondii* infection upregulates the transmigration capacity of DCs and macrophages, exacerbated transmigration seems to be absent in parasitised monocytes (Lambert et al., 2011; Ueno et al., 2014; Drewry et al., 2019). Similarly, *in vitro* studies did not detect significantly elevated transmigration of T, B and NK cells upon *T. gondii* infection (Lambert et al., 2011). Yet because
T cells, NK cells, neutrophils and macrophages become infected in vivo, they probably contribute to systemic dissemination of *T. gondii* (Da Gama et al., 2004; Persson et al., 2007; Chtanova et al., 2009; Persson et al., 2009; Coombes et al., 2013). DCs can perform transmigration and reverse transmigration in vitro (D’Amico et al., 1998). In vivo, migration out of gut tissue and the peritoneal cavity involves a process of transmigration across lymphatic (or vascular) endothelium. The contribution of the different leukocyte populations is unclear, despite the relative abundance of monocytic cells in the blood compared to DCs and higher relative numbers of infected monocytic cells (Courret et al., 2006). Thus, the relative contribution of different leukocyte subtypes to each phase of *T. gondii* dissemination remains to be clarified.

Because toxoplasmosis has its most severe manifestations in the central nervous system (Schluter and Barragan, 2019), the *in vitro* hypermigratory features exhibited by parasitised primary cortical microglia are especially interesting, as these cells come into contact with *T. gondii* in the brain parenchyma (Dellacasa-Lindberg et al., 2011). In contrast, hypermigratory features were absent in primary astrocytes. It has been suggested that microglia may serve transportation functions for tachyzoites within the brain parenchyma (Dellacasa-Lindberg et al., 2011; Bhandage et al., 2019).

Toxoplasma gondii infection promotes migratory mesenchymal-to-ameboid transition in DCs and monocytes

Early observations of migrating leukocytes detailed changes in cell shape, which were termed ‘amoeboïd’ based on similarities with motile amöebas (de Bruyn, 1946). In contrast to other migration modes,
amoeboid motility is particularly suited for rapid locomotion in tissues and is utilised by metastasising cancer cells and rapidly migrating leukocytes (Friedl and Wolf, 2003b, 2010; Calle et al., 2006). Thus, mesenchymal-to-ameboid transition (MAT) facilitates rapid transit through interstitial tissues and also passage across biological barriers (Friedl and Wolf, 2003b; Alvarez et al., 2008; Lammermann et al., 2008). Ameboid migration of DCs is primarily integrin independent and relies chiefly on the protrusive flow of the actin cytoskeleton at the leading edge, which drives locomotion (Lammermann et al., 2008, 2009). However, DCs can also perform mesenchymal migration in the interstitial matrix by maintenance of podosomes (see Definition), irrespective of maturation status (Cougoule et al., 2018).

Dramatic morphological changes accompany T. gondii invasion of DCs. One such feature is the rapid and permanent dissolution of podosome structures (Weidner et al., 2013), which normally mediate adhesion to matrix via integrins and also concentrate matrix metalloproteinase (MMPs) for proteolytic degradation of extracellular matrix (ECM) (Figure 1). Podosome dissolution is accompanied by a redistribution of β1 (ITGB1) and β2 integrins at the cell surface of parasitised DCs (Weidner et al., 2013; Kanatani et al., 2015; Olafsson et al., 2019) and is mediated by the parasite-derived protein TgWIP, which is secreted into the host cell cytosol and interacts with the actin-regulating WAVE complex (Sangare et al., 2019). Consequently, parasitised DCs round-up, acquire an amoeboid shape and exhibit decreased adhesion in 2D and 3D matrix confinements (Kanatani et al., 2015). Importantly, this is accompanied by elevated tissue inhibitor of metalloproteinases-1 (TIMP-1) secretion (but not TIMP-2, -3, -4), which has the dual effect of inhibiting MMP activity (Olafsson et al., 2018) and activating a TIMP-1-CD63-ITGB1-FAK motogenic axis discussed below (Olafsson et al., 2019). Altogether, parasitised DCs undergo morphological and functional changes consistent with MAT and acquire features of high-speed amoeboid migration consistent with those described for activated leukocytes (Lammermann et al., 2008) and reminiscent of those described for metastatic cancer cells (Friedl and Wolf, 2003a, 2010; Lambert et al., 2017).

Major cell signalling axes of the hypermigratory phenotype

The onset of the hypermigratory phenotype in DCs is rapid (minutes after invasion) and depends on live intracellular tachyzoites and the discharge of parasite secretory organelles. Further, Toxoplasma-induced hypermigration is independent of TLR-MyD88 signalling and chemotaxis (Lambert et al., 2006; Fuks et al., 2012; Weidner et al., 2013; Olafsson et al., 2018). Instead, mounting evidence shows that intracellular T. gondii tachyzoites activate non-canonical motogenic signalling pathways as well as canonical signalling in parasitised DCs, which jointly promote migration (Table 1). In addition to neuronal cells, immune cells including DCs and T cells can express a functional GABAergic system (Jin et al., 2013; Barragan et al., 2015). GABAergic signalling in DCs and microglia is necessary for the induction of the hypermigratory phenotype and was recently reviewed in Bhandage and Barragan (2019). Briefly, in parasitised DCs, it was shown that T. gondii induced secretion of the neurotransmitter gamma–aminobutyric acid (GABA) and activation of its ionotropic receptor GABA(A) (Fuks et al., 2012) lead to calcium (Ca^{2+}) fluxes mediated chiefly by the voltage-gated calcium channel (VGCC) subtype CaV1.3 (Kanatani et al., 2017), which triggers hypermotility. However, signalling downstream of GABA/VGCC activation has remained elusive and is discussed below.

VGCC-mediated Ca^{2+} influx activates the Ras-Raf-Mek-Erk MAPK cascade

As laid out above, autocrine GABAergic signalling is activated in parasitised DCs (Fuks et al., 2012), which in turn triggers VGCC-mediated Ca^{2+} influx (Kanatani et al., 2017). More recent data revealed that Ca^{2+} influx via the VGCC subtype CaV 1.3 mediates activation of the small GTPase Ras via calmodulin (CaM) and CaM kinase II (CaMkII) signalling (Olafsson et al., 2020) (Figure 2). Ras activation ultimately leads to Erk1/2 phosphorylation via Raf-Mek. Further, Ras–Erk signalling was activated downstream of the receptor tyrosine kinase (RTK) MET, situating Ras as a central signalling node and point of convergence for VGCC and MET signalling (Olafsson et al., 2020). These data are in line with paradigms in neuronal cells, where VGCC-dependent CaM activity regulates cytoskeleton organisation and cell migration via Ras-Erk signalling (Rosen et al., 2020).
Non-canonical migratory activation of phagocytes

Table 1 | Molecular cell signalling components linked to the hypermigratory phenotype of DCs and monocytes parasitised by *T. gondii*

Host cell/parasite	Effector molecule(s)	Signalling pathway	Function/phenotype	References
Host cell	GABA	GABA synthesis and secretion, GABA(A) receptor activation	VGCC activation via membrane depolarization	Fuks et al. (2012)
Host cell	Ca²⁺	VGCC/CaV1.3 subtype activation	Influx of Ca²⁺ activates Ras GTPase via CaM-CaM kinase II	Kanatani et al. (2017); Olafsson et al. (2020)
Host cell	MMPs	Transcriptional modulation M, MMP inhibition Activates CD63-ITGB1-FAK	ECM degradation Reduced EOM proteolysis Migratory activation	Olafsson et al. (2018); Olafsson et al. (2018, 2019)
Host cell	MET kinase	Activates Ras GTPase	Migratory activation by phosphorylation of Raf-Mek-Erk	Olafsson et al. (2020)
Host cell	Ras GTPase	Converges signal from CaM-CaM kinase II and MET		
Host cell	Erk1/2	MAPK	Regulation of migratory activation	Olafsson et al. (2020)
Host cell	Integrins/ITGB1	Adhesion Signal transduction	Reduced adhesion Cytoskeletal rearrangements Transmigration	Kanatani et al. (2015); Olafsson et al. (2019); Cook et al. (2018)
Host cell	CCR7	Signal transduction in response to CCL19/21	Chemotaxis (in conjunction with hypermigration) Sequestration of host 14-3-3 to PVM	Fuks et al. (2012); Weidner et al. (2013)
Parasite	Tg14-3-3	Putative action on host cell MAPK	Modulation of MAPK activity	Sangare et al. (2019)
Parasite	TgWIP	Putative action on WAVE complex and SHP2 phosphatase	Modulation of actin dynamics	
Parasite	ROP17	Putative action on Rho-ROCK phosphorylation	Modulation of actin dynamics	Drewry et al. (2019)

CaM, calmodulin; CCL, chemokine (C-C motif) ligand; CCR, chemokine receptor; ECM, extracellular matrix; Erk, extracellular signal regulated kinase; FAK, focal adhesion kinase; GABA, gamma-aminobutyric acid; GTPase, guanosine triphosphate hydrolase; ITGB1, beta 1 integrin; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; PVM, parasitophorous vacuole membrane; ROCK, Rho-associated kinase; SHP2, Src homology domain phosphatase 2; TIMP, tissue inhibitor of metalloproteinases; VGCC, voltage-gated calcium channel; WASP, family verprolin homologous protein.

Further, in lymphocytes, VGCC antagonism and agonism blocked and stimulated Erk phosphorylation, respectively (Kotturi et al., 2003), indicating the existence of this signalling axis in lymphocytes. Thus, VGCC/CaV1.3-mediated Erk activation promotes migratory activation of DCs and likely other leukocytes when parasitised by *T. gondii*.

A role for MET signalling in DC hypermotility

The RTK MET, also known as c-MET, scatter factor receptor or hepatocyte growth factor receptor, has been associated with cancer metastasis but also more recently with DC/Langerhans cell migration in skin immunity (Baek et al., 2012). It was recently reported that MET is activated in DCs upon *T. gondii* infection with an impact on DC hypermotility (Olafsson et al., 2020). Interestingly, secretion of METs only known ligand hepatocyte growth factor (Hgf) was not significantly elevated upon *T. gondii* infection, while inhibition of integrin (ITGB1)-linked tyrosine kinases (FAK, PYK2) led to reduced Erk activation. Phosphorylation of MET likely occurs through both Hgf ligation and transactivation via FAK/PYK2, which are activated by the TIMP-1/CD63/ITGB1/FAK axis (Olafsson et al., 2019). MET and VGCC signalling converge on Ras GTPase, which activates the Raf-Mek-Erk signalling cascade (Figure 2).
Figure 2 | Signaling pathways that mediate migratory activation of phagocytes parasitised by *T. gondii*. (1) *T. gondii* actively invades phagocytes and resides in a parasitophorous vacuole (PV). Within minutes of invasion, *T. gondii* induces a hypermigratory phenotype in host phagocytes, which is characterised by cytoskeletal reorganization and migratory activation (Weidner et al., 2013). (2) *T. gondii* infection triggers GABAergic signalling in DCs and in monocytes (Fuks et al., 2012), which leads to influx of Ca\(^{2+}\) via VGCCs (mainly CaV1.3) (Kanatani et al., 2017) and downstream activation of Ras GTPase via CaM-CaMkII signalling (Olafsson et al., 2020). ‘P’ indicates protein phosphorylation. (3) Infection leads to elevated TIMP-1 secretion, which blocks pericellular proteolysis of extracellular matrix (ECM) via the inhibition of matrix metalloproteinases (MMPs) (Olafsson et al., 2018). (4) Secreted TIMP-1 activates CD63-ITGB1-FAK-Src/Pi3k signalling leading to cytoskeletal rearrangements and shifts the cell into a hypermotile state that facilitates dissemination (Olafsson et al., 2019). (5) The receptor tyrosine kinase (RTK) Met is rapidly activated upon *T. gondii* infection, partly through cytoplasmic transactivation via FAK and Pyk2 (Olafsson et al., 2020). (6) The VGCC-CaM-CaMkII and Met signalling pathways converge on the activation of Ras GTPase (Olafsson et al., 2020). (7) Activation of Ras GTPase leads to phosphorylation of Erk1/2 MAPK via Raf-Mek. Erk1/2 phosphorylates substrate proteins in the cytoplasm and nucleus that maintain hypermotility. (8) In the nucleus of the parasitised phagocyte, transcriptional upregulation/modulation of genes implicated in hypermigration takes place. (9) Podosomes are rapidly dissolved in infected phagocytes leading to reduced ECM degradation and adhesion. (10) The infected phagocyte undergoes MAT, exhibiting integrin-independent amoeboid hypermigration. Inset images (I, II, III) represent putative parasite-derived effector molecules with attributed roles in the hypermigratory phenotype of parasitised phagocytes. The precise modes of action of these three effector molecules or of associated molecules of the secretory machinery of *T. gondii* remain to be elucidated: (I) Host 14-3-3, which regulates Ras-Raf-Mek signalling, is sequestered to the PV membrane (PVM) and *T. gondii* 14-3-3 (Tg14-3-3) localizes to the perivacuolar space (Weidner et al., 2016). (II) ROP17 regulates Rho-ROCK-dependent amoeboid migration via putative interactions with RhoGEFs (Drewry et al., 2019). (III) TgWip modulates Arp2/3-mediated F-actin branching through the WAVE complex (Sangare et al., 2019).
Non-canonical migratory activation of phagocytes

Ras-Erk MAPK signalling governs hypermigration of parasitised DCs
The mitogen-activated protein kinase (MAPK) extracellular signal regulated kinase 1/2 (p44/p42, Erk) plays central roles in cell migration through phosphorylating nuclear and cytoplasmic targets (Huang et al., 2004). The Ras-Erk signalling axis constitutes an important regulator of metazoan cell migration and its aberrant signalling is associated to cancer cell metastasis (Ehlen, 2018). Ras activates the Raf-Mek-Erk signalling cascade that regulates cell migration. As a central signalling node, an array of extracellular stimuli converge on Ras activation, including VGCC-mediated Ca$^{2+}$ influx, RTKs signalling and integrin-mediated signalling (Rosen et al., 1994; Schlaepfer et al., 1994; Giehl et al., 2000). While p38 MAPK signalling non-significantly impacts hypermigration (ten Hoeve et al., 2019), it was recently shown that Ras-Erk signalling is central to the migratory activation of parasitised DCs (Olafsson et al., 2020) (Figure 2). Moreover, a dependency on the phosphorylation of both Erk isoforms (Erk1 and Erk2) was shown, indicating a tight regulation of DC hypermigration by this signalling pathway. The Erk-dependent arm of hypermotility likely involves nuclear translocation of Erk with modulation of host transcription after the first hours of infection. However, because Erk phosphorylation coincides with the rapid onset of hypermotility, it is plausible that cytosolic Erk or Ras substrates that modulate actin dynamics, such as FAK, RhoGEFs, RhoGAPs and WAVE proteins (Wu et al., 2014; Tanimura and Takeda, 2017), sustain hypermotility shortly after invasion.

A TIMP-1-CD63-ITGB1-FAK signalling axis drives amoeboid hypermotility
The data to date show that upon Toxoplasma infection, DCs undergo MAT with reduced integrin-mediated adhesion through the dissolution of podosomes, redistribution of integrins and abrogated pericellular proteolysis (Weidner et al., 2013; Kanatani et al., 2015; Olafsson et al., 2018). Yet, secreted and membrane-bound MMPs still play a role for specific steps of the hypermigratory phenotype, such as transmigration. Consequently, MMP inhibition reduced transmigration and, to some extent, hypermotility in collagen (Olafsson et al., 2018). Seemingly paradoxical, the observed reduced matrix degradation (proteolysis) by parasitised DCs was accompanied by a significant by-stander effect on non-parasitised DCs. This effect was mediated by an elevated secretion of TIMP-1 by parasitised DCs (Olafsson et al., 2018). Further, it was shown that secreted TIMP-1 drives a motogenic CD63-ITGB1-FAK signalling axis, which promotes amoeboid hypermotility (Olafsson et al., 2019) (Figure 2). Because systemic TIMP-1 is elevated in T. gondii infected mice (Tomasik et al., 2016) with a possible impact on parasite loads in the brain (Clark et al., 2011), TIMP-1 dysregulation may have implications for immune cell responses and inflammation during toxoplasmosis. Thus, from the parasite’s perspective, host TIMP-1 upregulation may facilitate both dissemination via shuttling DCs and reduced tissue pathology, which may dampen the inflammatory effects of encephalitis.

Dual effects of integrins/ITGB1 in hypermotility and transmigration
Shortly after parasite invasion, cytoskeletal and morphological alterations take place in infected DCs with increased rounding-up, accentuated membrane veils/ruffles and, markedly, irreversible dissolution of podosome structures (Weidner et al., 2013). These changes are accompanied by a redistribution of β2 integrins (CD18, CD11c) (Weidner et al., 2013), which altogether likely contribute to reduced integrin-dependent adherence (Kanatani et al., 2015), reduced matrix proteolysis (Olafsson et al., 2018) and facilitate MAT of parasitised DCs (Olafsson et al., 2019). Similarly, in monocytic cells a dysregulation of β1 integrin (ITGB1, CD29) modulates cell surface interactions and transmigration (Harker et al., 2013; Ueno et al., 2014; Cook et al., 2018). Further, activation of CaMkII by Ca$^{2+}$ influx inhibits β1 integrin-mediated focal adhesion in osteoblasts (Millon-Fremillon et al., 2013), consistent with reduced adhesion of mononuclear phagocytes upon infection by T. gondii. Independently of adhesion, ITGB1 also mediates signal transduction in a motogenic axis promoting cell displacement, as discussed above (Olafsson et al., 2019). Thus, the data to date indicate that integrins have dual functions in the hypermigratory phenotype. Additionally, contrary to amoeboid motility, which is integrin independent in leukocytes (Lamermann et al., 2008), transmigration is considered an integrin-dependent process. Consistent with this, integrin- or intercellular cell
adhesion molecule 1 (ICAM-1) blockade inhibited transmigration of parasitised monocytes across human umbilical vein cell (HUVEC) monolayers (Ueno et al., 2014). Altogether, the data indicate that different integrins may mediate different functions related to hypermotility or transmigration, or that integrins are sequentially activated upon transmigration. This needs to be addressed in further studies in order to understand the impact of *T. gondii* infection on the transmigration of leukocytes.

Chemotactic responses by hypermigratory Toxoplasma-infected DCs

Early studies indicated that the onset of the hypermigratory phenotype in DCs was independent of CCR7, CCR5 and TLR-MyD88 signalling (Hitziger et al., 2005; Lambert et al., 2006). Later, it was reported that hypermotile parasitised DCs upregulate CCR7 and readily chemotax in CCL19 gradients (Fuks et al., 2012). Furthermore, CCR7 upregulation occurred in parasitised DCs in the absence of a measurable effect on by-stander non-infected DCs (Weidner et al., 2016). This indicated a dependence on live intracellular parasites for CCR7 chemotaxis and was in contrast to CCR5 downregulation, which occurred in both parasitised and non-parasitised DCs upon challenge with *T. gondii* (Weidner et al., 2013). Thus, in addition to motogenic GABAergic activation (Fuks et al., 2012; Kanatani et al., 2017), parasitised DCs undergo canonical activation and maturation events (Lambert et al., 2006). Interestingly, in this context maturation is downmodulated via sustained expression of the transcription factor early growth response-1 (Egr-1) (ten Hoeve et al., 2019). Thus, hypermigration and chemotaxis are not antithetical and may, in fact, cooperatively potentiate the migratory potential of parasitised phagocytes, and therefore also the dissemination of *T. gondii*. While a parasite-derived modulator of CCR5 has been identified (Aliberti et al., 2003), the putative *T. gondii* effector(s) that mediate CCR7 upregulation in parasitised DCs remain uncharacterised and await further investigation.

Parasite-derived effector molecules implicated in the modulation of host cell migration

As delineated above, the hypermigratory phenotype implicates multiple host cell signalling pathways for which the cognate parasite effectors remain unknown (Bhandage and Barragan, 2019). To date, three putative effector molecules have been implicated in the modulation of the migratory functions of parasitised phagocytes (DCs, macrophages, monocytes and microglia) (Figure 2).

Tg14-3-3 is a cytoplasmic and secreted protein with multiple functions in Apicomplexa (Assoussou et al., 2004; Zhou et al., 2005; Lorestan et al., 2012). Heterologous expression of Tg14-3-3 in primary DCs and microglia induced hypermotility (Weidner et al., 2016). Interestingly, a prominent recruitment of host cell 14-3-3 was observed around the PV in infected DCs, suggesting sequestration of host cell 14-3-3 (Weidner et al., 2016). Note that 14-3-3 regulates multiple signalling pathways by molecular sequestration in the cytosol (Hermeking, 2003). Because Ras-Raf-Mek-Erk MAPK signalling is central to hypermigration (Olafsson et al., 2020) and 14-3-3 proteins modulate this signalling axis (Rajalingam and Rudel, 2005; Yin et al., 2019), it is likely that the abundant concentration of 14-3-3 to the PV impacts on MAPK signalling. Additionally, because 14-3-3 has been shown to regulate GABA receptor function (Laffray et al., 2012), Tg14-3-3 may be involved in the regulation of GABAergic signalling in parasitised DCs. Along these lines, in *N. caninum*, Nc14-3-3 was recently associated to modulation of host immune cell responses via MAPK signalling (Li et al., 2019). TgWIP was recently identified as a rhoptry protein secreted into the host cell cytosol upon parasite invasion of DCs (Sangare et al., 2019). TgWIP interacts with the host WAVE regulatory complex and SHP2 phosphatase, both of which regulate actin dynamics. TgWIP impacts the morphology of DCs and mediates the dissolution of podosome structures, which DCs use to adhere to ECM. Further, TgWIP enhances the motility and transmigration of parasitised DCs, likely explaining its impact on systemic dissemination. *In vivo*, TgWIP-deficient parasites exhibited dramatically reduced dissemination and reduced numbers of cysts in mouse brains.

ROP17 tyrosine kinase was first identified as a secreted molecule mediating parasite survival in macrophages by phosphorylating immunity-related GTPases in conjunction with two other rhoptry proteins (ROP5, ROP18) (Etheridge et al., 2014). A recent study showed that monocytes parasitised with ROP17-deficient *T. gondii* exhibited reduced tissue
migration compared with wild-type parasites and presented an early dissemination delay (Drewry et al., 2019). It was postulated that ROP17 enhanced tissue migration of monocytes by phosphorylating Rho guanine nucleotide exchange factors (GEFs), which regulate actin nucleation via Rho-ROCK signalling. While Rho-GTPase signalling regulates cell contractility and polarity in amoeboid migration (Sit and Manser, 2011), its role in *T. gondii*-mediated hypermotility awaits further investigation.

Concluding remarks

The evolutionary arms race between intruding microorganisms and the immune systems of their hosts has equipped leukocytes with an arsenal of molecular mechanisms to counter pathogens. Therefore, the study of host-microbe interactions has emerged as a powerful approach to gain insight into basic cell and molecular biology. In this context, the hypermigratory phenotype implies a reprogramming of migratory functions in parasitised leukocytes and implicates a tight regulation of several signalling pathways for which the cognate parasite effectors remain unknown. Recently identified parasite-derived effectors have allowed a closer characterisation of how *T. gondii* orchestrates the hijacking of migration in parasitised cells. The conservation of the phenotype in the related species *N. caninum* and in natural host species (human, mouse, bovine) advocates for a conserved strategy by coccidian parasites. Thus, infecting immune cells and hijacking or even exacerbating their migratory properties promotes coccidian parasite dissemination. Similarly, the apicomplexan *Theileria* hijacks MAPK signalling and conveys immortalisation and altered migratory properties to infected leukocytes (Tretina et al., 2015; Latre De Late et al., 2019).

The data to date show that *T. gondii* orchestrates a migratory activation in parasitised phagocytes by acting both on central signalling nodes that regulate cell motility and on the regulation of actin dynamics. The Ras-Erk MAPK pathway plays a central role, integrating signalling from GABA/VGCC activation, tyrosine kinase signalling and integrin signalling. Thus, a signalling milieu which is consonant with paradigms in cell metastasis is starting to appear (Lambert et al., 2017). In summary, the emerging concept suggests that *T. gondii* transforms invaded mononuclear phagocytes into shuttles with metastasis-like migratory properties. The invader is transported across tissues and into the systemic circulation to facilitate pervasive dissemination to distal tissues, including the central nervous system.

Definitions

Tachyzoite: Tachyzoites are the fast-replicating stage of *T. gondii* and are associated with disease in vertebrates. In the host cell, *T. gondii* tachyzoites reside and replicate inside a parasitophorous vacuole (PV).

Mononuclear phagocytes: These are immune cells that constitute the mononuclear phagocyte system (MPS). Dendritic cells (DCs), monocytes, macrophages, and also microglia in the brain are members of the MPS and mediate multiple, partly overlapping, functions during immune responses (Guilliams et al., 2014).

MAT: Mesenchymal-to-ameboid transition occurs when cells switch between different motility modes. Cells migrating in a mesenchymal fashion typically exhibit an elongated, spindle-like shape and exert traction on their substrates via focal adhesions associated with actin-rich protrusions (lamellipodia, filopodia). In contrast, cells undergoing amoeboid migration adopt round or irregular shapes.

Podosomes: These are actin-rich structures found on the outer surface of the cellular membrane. Podosomes serve as sites of attachment and degradation along the ECM.

WAVE: The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites.

Acknowledgements

We thank all members of the Barragan laboratory for critical input.
Conflict of interest statement
The authors have declared no conflict of interest.

References
Aliberti, J., Valenzuela, J.G, Carruthers, V.B, Hiency, S., Andersen, J., Charest, H., CR, E.S., Fairlamb, A., Ribeiro, J.M, and Sher, A. (2003) Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat. Immunol. 4(5), 485–490
Alvarez, D., Vollmann, E.H, and von Andrian, U.H. (2008) Mechanisms and consequences of dendritic cell migration. Immunity, 29, 325–342
Assousou, O., Besson, F., Rouault, J.P, Persat, F., Ferrandiz, J., Mayencon, M., Peyron, F., and Picot, S. (2004) Characterization of an excreted/secerted antigen form of 14-3-3 protein in Toxoplasma gondii tachyzoites. FEMS Microbiol. Lett. 234, 19–25
Baek, J.H., Birchmeier, C., Zenke, M., and Hieronymus, T. (2012) The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J. Immunol. 189, 1699–1707
Barragan, A., and Sibley, L.D. (2003) Migration of Toxoplasma gondii across biological barriers. Trends Microbiol. 11, 426–430
Barragan, A., Weidner, J.M, Jin, Z., Korpi, E.R, and Birnir, B. (2015) GABAergic signalling in the immune system. Acta. Physiol. 213, 819–827
Bhandage, A.K. and Barragan, A. (2019) Calling in the CaValry-Toxoplasma gondii hijacks GABAergic signaling and voltage-dependent calcium channel signaling for Trojan horse-mediated dissemination. Front. Cell. Infect. Microbiol. 9, 61
Bhandage, A.K., Kanatani, S., and Barragan, A. (2019) Toxoplasma-induced hypermigration of primary cortical microglia implicates GABAergic signaling. Front. Cell. Infect. Microbiol. 9, 73
Bichet, M., Touquet, B., Gonzalez, V., Florent, I., Meissner, M., and Tardieux, I. (2016) Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces. BMC Biol. 14, 97
Calle, Y., Carragher, N.O, Thrasher, A.J, and Jones, G.E. (2006) Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. J. Cell. Sci. 119, 2375–2385
Chitanova, T., Han, S.J, Schaeffer, M., van Dooren, G.G, Herzmark, P., Striepen, B., and Robey, E.A. (2009) Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity, 31, 342–355
Clark, R.T., Nance, J.P, Noor, S., and Wilson, E.H. (2011) T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain. ASN Neuro, 3, e00049
Clough, B. and Frickel, E.M. (2017) The Toxoplasma parasitophorous vacuole: an evolving host-parasite frontier. Trends. Parasitol. 33, 473–488
Collantes-Fernandez, E., Arrighi, R.B, G. Alvarez-Garcia, Weidner, J.M, Regidor-Cerrillo, J., Boothroyd, J.C, Ortega-Mora, L.M., and Barragan, A. (2012) Infected dendritic cells facilitate systemic dissemination and transplacental passage of the obligate intracellular parasite Neospora caninum in mice. PLoS One. 7, e32123
Cook, J.H., Ueno, N., and Lodoen, M.B. (2018) Toxoplasma gondii disrupts beta1 integrin signaling and focal adhesion formation during monocyte hypermotility. J. Biol. Chem. 293, 3374–3385
Coombes, J.L., Charsar, B.A, Han, S.J, Halkias, J., Chan, S.W, Koshy, A.A, Striepen, B., and Robey, E.A. (2013) Motile invaded neutrophils in the small intestine of Toxoplasma gondii-infected mice reveal a potential mechanism for parasite spread. Proc. Natl. Acad. Sci. U.S.A. 110, E1913–E1922
Cougoule, C., Lastrucci, C., Guiet, R., Mascara, R., Meunier, E., Lugo-Villarino, H., Neyrolles, O., Poincloux, R., and Maridonneau-Parini, I. (2018) Podosomes, but not the maturation status, determine the protease-dependent 3D migration in human dendritic cells. Front. Immunol. 9, 846
Cournet, N., Darce, S., Sonigo, P., Milton, G., Buzoni-Gatel, D., and Tardieux, I. (2006) CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 107, 309–316
D’Amico, G., Bianchi, G., Bernasconi, S., Bersani, L., Piemonti, L., Sozzani, S., Mantovani, A., and Allavera, P. (1998) Adhesion, transendothelial migration, and reverse transmigration of in vitro cultured dendritic cells. Blood 92, 207–214
Da Gama, L.M., Ribeiro-Gomes, F.L, Guimaraes, U., Jr., and Arnholdt, A.C. (2004) Reduction in adhesiveness to extracellular matrix components, modulation of adhesion molecules and in vivo migration of murine macrophages infected with Toxoplasma gondii. Microbes. Infect./Institut. Pasteur. 6, 1287–1296
de Bruyn, P.P.H. (1946) The amoeboid movement of the mammalian leukocyte in tissue culture. Anat. Rec. 95, 117–192
Delgado Betancourt, E., Hamid, B., Fabian, B.T, Klotz, C., Hartmann, S., and Seeber, F. (2019) From entry to early dissemination-Toxoplasma gondii’s initial encounter with its host. Front. Cell. Infect. Microbiol. 9, e46
Delacasa-Lindberg, I., Fuks, J.M, Arrighi, R.B, Lambert, H., Wallin, R.P, Chambers, B.J, and Barragan, A. (2011) Migratory activation of primary cortical microglia upon infection with Toxoplasma gondii. Infect. Immun. 79, 3046–3052
Derouin, F. and Garin, Y.J.F. (1991) Toxoplasma gondii: blood and tissue kinetics during acute and chronic infections in mice. Exp. Parasitol. 73, 460–468
Dobrowolski, J.M. and Sibley, L.D. (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell, 84, 933–939
Drewry, L.L., Jones, N.G, Wang, Q., Onken, M.D, Miller, M.J, and Sibley, L.D. (2019) The secreted kinase ROP17 promotes Toxoplasma gondii dissemination by hijacking monocyte tissue migration. Nat. Microbiol. 4, 1951–1963
Dubey, J.P. (1997a) Bradyzoite-induced murine toxoplasmosis: stage conversion pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. J. Eukaryot. Microbiol. 44, 592–602
Dubey, J.P. (1997b) Distribution of tissue cysts in organs of rats fed Toxoplasma gondii oocysts. J. Parasitol. 83, 755–757
Ebben, S.T. (2018) Extracellular-regulated kinases: signaling from Ras to ERK substrates to control biological outcomes. Adv. Cancer. Res. 138, 99–142
Etheridge, R.D., Alaganan, A., Tang, K., Lou, H.J, Turk, B.E, and Sibley, L.D. (2014) The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell. Host. Microbe. 15, 537–550
Friedl, P. and Wolf, K. (2003a) Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem. Soc. Symp. 70, 277–285
Friedl, P. and Wolf, K. (2003b) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer. 3, 362–374
Friedl, P. and Wolf, K. (2010) Plasticity of cell migration: a multiscale tuning model. J. Cell. Biol. 188, 11–19
Fuks, J.M., Arrighi, R.B, Weidner, J.M, S. Kumar Mundu, Jin, Z., Wallin, R.P, Reithi, B., Birnir, B., and Barragan, A. (2012) GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii. PLOS Pathog. 8, e1003051
Garcia-Sanchez, M., L. Jimenez-Pelayo, Horcajo, P., J. Regidor-Cerrillo, Olafsson, E.B, Bhandage, A.K, Barragan, A., Werling, D., Ortega-Mora, L.M., and Collantes-Fernandez, E. (2019) Differential responses of bovine monocyte-derived macrophages to infection by Neospora caninum isolates of high and low virulence. Front. Immunol. 10, 915
Non-canonical migratory activation of phagocytes

Giehl, K., Skrpiczynski, B., Mansard, A., Menke, A., and Gierschik, P. (2000) Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene. 19, 2930–2942

Ginhoux, F., Greter, M., Lebeerz, E., Nandi, S., See, P., Gokhan, S., Mehler, M.F, Conway, S.J, Ng, L.G, Stanley, E.R, Samokhvalov, I.M, and Merad, M. (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–844

Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S.H, Onai, N., Schraml, B.U, Segura, E., Tussiwand, R., and Yona, S. (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578

Hakimi, M.A., Olias, P., and Sibley, L.D. (2017) Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 30, 615–645

Harker, K.S., Ueno, N., Wang, T., Bonhomme, C., Liu, W., and Lodoen, M.B. (2013) Toxoplasma gondii modulates the dynamics of human monocyte adhesion to vascular endothelium under fluidic shear stress. J. Leukoc. Biol. 93, 789–800

Hermet, I.M, (2003) The 14-3-3 cancer connection. Nat. Rev. Cancer. 3, 931–943

Hitziger, N., Dellacasa, I., Albiger, B., and Barragan, A. (2005) Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell. Microbiol. 7, 837–848

Huang, C., Jacobson, K., and Schaller, M.D. (2004) MAP kinases and cell migration. J. Cell. Sci. 117, 4619–4628

Jin, Z., Menden, S.K, and Simir, B. (2013) GABA is an effective immunomodulatory molecule. Amino. Acids. 45, 87–94

Kanatani, S., Fuks, J.M, Olafsson, E.B, Westermark, L., Chambers, B., Varas-Godoy, M., Uhlen, P., and Barragan, A. (2017) Voltage-dependent calcium channel signaling mediates GABA receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii. PLoS Pathog. 13, e1006739

Kanatani, S., Uhlen, P., and Barragan, A. (2015) Infection by Toxoplasma gondii induces amoeboid-like migration of dendritic cells in a three-dimensional collagen matrix. PLoS One. 10, e0139104

Kotturi, M.F, Carlow, D.A, Lee, J.C, Zilinter, H.J, and Jefferies, W.A. (2004) Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J. Biol. Chem. 278, 46949–46960

Laffray, S., Bouali-Bennazzouz, Papon, MA, Favereaux, A., Jiang, Y., Holm, T., Spriet, C., Desbarats, P., Fossat, P., Y. Le Feuvre, Decossas, M., Heliot, L., Langel, U., Nagy, F., and Landry, M. (2012) Impairment of GABAB receptor dimer by endogenous (CaMKII)-mediated intramolecular opening of integrin cytoplasmic domain-associated protein-1 (ICAP-1alpha) negatively regulates beta1 integrins. J. Biol. Chem. 288, 20248–20260

Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M., and Barragan, A. (2015) Toxoplasma gondii GPI (GlycosylPhosphatidylInositol)-anchored surface protein p104. Microbes. Infect./Institut. Pasteur. 17, 96–102

Lambert, H., Ivey, F.D, Thirugnanam, S., Busby, M.A, Marsh, G.T, Cheeseman, I.M, and Gubbel, M.J. (2012) Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORCN1. Cytoskeleton (Hoboken) 69, 1069–1085

Millon-Fremillon, A., Brunner, M., Abed, N., Colombe, E., Ribba, A.S, Block, M.R, Albigez-Rizo, C., and Bouvard, D. (2013) Calcium and Caldwellin-dependent serine/threonine kinase type II (CaMKII)-mediated intramolecular opening of integrin cytoplasmic domain-associated protein-1 (ICAP-1alpha) negatively regulates beta1 integrins. J. Biol. Chem. 288, 20248–20260

Olafsson, E.B., Ross, E.C, Varas-Godoy, M., and Barragan, A. (2019) TIMP-1 promotes hypermigration of Toxoplasma-infected primary dendritic cells via CD63-ITGB1-FAK signaling. J. Cell. Sci. 132. https://doi.org/10.1242/jcs.225193

Persson, C.M., Lambert, H., Vutova, P.P, I. Dellacasa-Lindberg, Nederby, J., Yagita, H., Ljunggren, H.G, Grandien, A., Barragan, A., and Chambers, B.J. (2009) Transmission of Toxoplasma gondii from infected dendritic cells to natural killer cells. Infect. Immun. 77, 970–976

Persson, E.K., Agnarson, A.M, Lambert, H., Hitziger, N., Yagita, H., Chambers, B.J, Barragan, A., and Grandien, A. (2007) Death receptor ligation or exposure to perforin trigger rapid egress of the intracellular parasite Toxoplasma gondii. J. Immunol. 179, 8357–8365

Pappas, G., Roussos, N., and Falagas, M.E. (2009) Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 39, 1385–1394

Pavlu, G., Biesaga, M., Touquet, B., Lagal, V., Balland, M., Dufour, A., Hakimi, M.A, and Tardieux, I. (2018) Toxoplasma parasite twisting motion mechanically induces host cell membrane fission to complete invasion within a protective vacuole. Cell. Host. Microbe. 24, 81–96

Persson, C.M., Vutova, P.P, Adams, P.C, Uhlen, P., and Barragan, A. (2009) Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect. Immun. 77, 1679–1688

Persson, E.K., Agnarson, A.M, Lambert, H., Hitziger, N., Yagita, H., Chambers, B.J, Barragan, A., and Grandien, A. (2007) Death receptor ligation or exposure to perforin trigger rapid egress of the intracellular parasite Toxoplasma gondii. J. Immunol. 179, 8357–8365

Rajalingam, K., and Rudel, T. (2005) Ras-Raf signaling needs PTPs. Cell. Cycle. 4, 1503–1505

Rosen, L.B., Ginty, D.D, Weber, M.J, and Greenberg, M.E. (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron. 12, 1207–1221

Sangare, L.O., Olafsson, E.B, Wang, Y., Yang, N., Julien, L., Camejo, A., Pesavento, P, Sidik, S.M, Lourido, S., Barragan, A., and Saeij, D.R., Fassler, R., and Sixt, M. (2008) Rapid leukocyte migration by integrin-independent flow and squeezing. Nature 453, 51–55

Lammermann, T., Renkawitz, J., Wu, X., Hirsch, K., Brakebusch, C., and Sixt, M. (2009) Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113, 5703–5710

Latre De Late, P., Haidar, M., Ansari, H., Tajeri, S., Szarka, E., Alexa, A., Woods, K., Renemey, A., Pain, A., and Langsley, G. (2019) Theileria highjacks JNK2 into a complex with the macroscizenten GPI (GlycosylPhosphatidylinositol)-anchored surface protein p104. Cell. Microbiol. 21, e12973

Li, S., Gong, P., Zhang, N., Li, X., Tai, L., Wang, X., Yang, Z., Yang, J., Zhu, X., Zhang, X., and Li, J. (2019) 14-3-3 Protein of Neospora caninum modulates host cell innate immunity through the activation of MAPK and NF-kappaB pathways. Front. Microbiol. 10, 37
E. B. Ólafsson and A. Barragan

J.P.J. (2019) In vivo CRISPR screen identifies TgWIP as a Toxoplasma modulator of dendritic cell migration. Cell. Host. Microbe. 26, 478–492
Schlaepfer, D.D., Hanks, S.K., Hunter, T., and van der Geer, P. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786–791
Schluter, D. and Barragan, A. (2019) Advances and challenges in understanding cerebral toxoplasmosis. Front. Immunol. 10, 242
Sibley, L.D. (2004) Intracellular parasite invasion strategies. Science 304, 248–253
Sit, S.T. and Manser, E. (2011) Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell. Sci. 124, 679–683
Tanimura, S. and Takeda, K. (2017) ERK signalling as a regulator of cell motility. J. Biochem. 162, 145–154
ten Hoeve, A.L., Hakimi, M.-A., and Barragan, A. (2019) Sustained Egr-1 response via p38 MAP kinase signaling modulates early immune responses of dendritic cells parasitized by Toxoplasma gondii. Front. Cell. Infect. Microbiol. 9, 349
Tomasik, J., Schultz, T.L., Kluge, W., Yolken, R.H., Bahn, S., and Carruthers, V.B. (2016) Shared immune and repair markers during experimental toxoplasma chronic brain infection and schizophrenia. Schizophr. Bull. 42, 386–395
Tretina, K., Gotia, H.T., Mann, D.J., and Silva, J.C. (2015) Theileria-transformed bovine leukocytes have cancer hallmarks. Trends. Parasitol. 31, 306–314
Ueno, N., Harker, K.S., Clarke, E.V., McWhorter, Liu, W.F., Tenner, A.J., and Lododo, M.B. (2014) Real-time imaging of Toxoplasma-infected human monocytes under fluidic shear stress reveals rapid translocation of intracellular parasites across endothelial barriers. Cell. Microbiol. 16, 580–595
Weidner, J.M. and Barragan, A. (2014) Tightly regulated migratory subversion of immune cells promotes the dissemination of Toxoplasma gondii. Int. J. Parasitol. 44, 85–90
Weidner, J.M., Kanatani, S., Hernandez-Castaneda, M.A., Fuks, J.M., Rethi, B., Wallin, R.P., and Barragan, A. (2013) Rapid cytoskeleton remodelling in dendritic cells following invasion by Toxoplasma gondii coincides with the onset of a hypermigratory phenotype. Cell. Microbiol. 15, 1735–1752
Weidner, J.M., Kanatani, S., Uchtenhagen, H., Varas-Godoy, M., Schulte, T., Engelberg, K., Gubbes, M.J., Sun, H.S., Harrison, R.E., Achour, A., and Barragan, A. (2016) Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14–3–3 protein. Cell. Microbiol. 18, 1537–1550
Wu, S.K., Gomez, G.A., Michael, M., Verma, S., Cox, H.L., Lefevre, J.G., Parton, R.G., Hamilton, N.A., Neufeld, Z., and Yap, A.S. (2014) Cortical F-actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. Nat. Cell. Biol. 16, 167–178
Yin, Q., Han, T., Fang, B., Zhang, G., Zhang, C., Roberts, E.R., Izumi, V., Zheng, M., Jiang, S., Yin, X., Kim, M., Cai, J., Haura, E.B., Koome, J.M., Smalley, K.S.M., and Wan, L. (2019) Kinetics of the dissemination in the host tissues during the acute phase of infection in rats and mice. Exp. Parasitol. 90, 86–94
Zhou, X.W., Kafsack, B.F., Cole, R.N., Beckett, R., Shen, R.F., and Carruthers, V.B. (2005) The opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins. J. Biol. Chem. 280, 34233–34244

Received: 10 January 2020; Revised: 14 April 2020; Accepted: 27 April 2020; Accepted article online: 2 May 2020