Polymorphisms of Vitamin D Signaling Pathway Genes and Calcium-Sensing Receptor Gene in respect to Survival of Hemodialysis Patients: A Prospective Observational Study

Alicja E. Grzegorzewska,1 Monika K. Świderska,2 Adrianna Mostowska,3 Wojciech Warchol,4 and Paweł P. Jagodziński3

1 Chair and Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
2 Student Nephrology Research Group, Chair and Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
3 Chair and Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland
4 Chair and Department of Biophysics, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland

Correspondence should be addressed to Alicja E. Grzegorzewska; alicja_grzegorzewska@yahoo.com

Received 27 April 2016; Revised 27 June 2016; Accepted 23 July 2016

Academic Editor: Xiangbing Wang

Copyright © 2016 Alicja E. Grzegorzewska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We evaluated in the 7-year prospective study whether variants in vitamin D pathway genes and calcium-sensing receptor gene (CASR) are determinants of mortality in hemodialysis (HD) patients (n = 532). HRM analysis was used for GC rs2298849, GC rs1155563, RXRA rs10776909, RXRA rs10881578, and CASR rs7652589 genotyping. GC rs7041, RXRA rs749759, VDR rs2228570, and VDR rs1544410 were genotyped using PCR-RFLP analysis. The minor allele in GC rs2298849 was associated with all-cause mortality in univariate analysis (HR 1.330, 95% CI 1.046–1.692, P = 0.020). Bearers of the minor allele in GC rs2298849 demonstrated higher infection/neoplasm mortality than major allele homozygotes also in multivariate analysis (HR 2.116, 95% CI 1.096–4.087, P = 0.026). Cardiovascular mortality was associated with major homozygosity (CC) in VDR rs2228570 (HR 1.896, 95% CI 1.163–3.091, P = 0.010). CC genotype patients were more often dyslipidemic than TT genotype subjects (46.1% versus 31.9%, P = 0.047). Dyslipidemics showed higher frequency of rs1544410(rs2228570 haplotype AC than nondyslipidemics (26 versus 18%, Pcorr = 0.005), whereas TT genotype patients were at lower risk of dyslipidemia compared with CC/CT genotype patients (HR 0.59, 95% CI 0.37–0.96, P = 0.04). In conclusion, GC rs2298849 and VDR rs2228570 SNPs are associated with survival on HD. VDR-related cardiovascular mortality may occur due to connections of rs2228570 with dyslipidemia.

1. Introduction

Patients who undergo renal replacement therapy (RRT) due to end-stage renal disease (ESRD) have higher prevalence of comorbidities and increased adjusted mortality risk compared with healthy population [1]. Cardiovascular diseases, infections, and cancers are the most common causes of death in this group of patients [1, 2].

Vitamin D (VD) deficiency is a mortality risk factor in hemodialysis (HD) patients [3, 4]. Associations between low VD status and neoplasms [5–7], diabetes mellitus [8, 9], cardiovascular disease [10], myocardial infarction [11], bone fractures [12], and others have been discovered in recent years. What is more, VD is an important immunoregulator [13] and might play a key role in susceptibility to autoimmune disorders [13–15]. Lower plasma concentrations of VD binding protein were also associated with increased mortality risk in a 4-year prospective follow-up of nondiabetic HD patients [16].

Polymorphisms of VD signaling pathway genes influencing VD status and proper VD utilization include group-specific component protein (VD binding protein) gene (GC),
VD receptor gene (VDR), and downstream mediator of VD signaling, retinoid X receptor alpha gene (RXRA) [17–19]. Calcium-sensing receptor, encoded by specific gene (CASR), controls calcium homeostasis along with VD through the regulation of parathyroid hormone (PTH) production [20]. In secondary hyperparathyroidism, there is downregulation of vitamin D receptor, calcium-sensing receptor, and retinoid X receptor in parathyroid cells [21].

To date, few studies have investigated the effects of VD signaling pathway gene polymorphisms on survival of ESRD patients. Marco et al. [22] have found that BsmI polymorphism of VDR influenced survival of HD patients in a 4-year prospective study. However, VDR polymorphisms (BsmI and FokI) showed no impact on ninety-day survival rate of acute kidney injury patients [23]. GC, VDR, and RXRA polymorphisms were not associated with risk of death in patients on RRT in our retrospective analysis [2]. CASR polymorphic variants had no impact on all-cause and cardiovascular mortalities in HD patients as well as on the occurrence of cardiovascular events and all-cause mortality in renal transplant recipients in retrospective studies [24, 25].

As retrospective analyses have drawbacks, including biases in the selection of patients, long-term prospective studies may yield more promising results in evaluation of associations between mentioned polymorphisms and survival of HD patients, as seems to be confirmed by the Marco et al. study [22].

The aim of this 7-year prospective study was to evaluate whether single nucleotide polymorphisms (SNPs) of vitamin D signaling pathway genes and CASR are determinants of survival in HD patients.

2. Material and Methods

2.1. Enrolment of Patients. HD patients living in the Greater Poland District, Poland, were enrolled into the prospective observational study in January, 2009. Known status in respect to hepatitis B virus (HBV) susceptibility or infection was an inclusion criterion for our study, because the ability to produce antibodies to HBV surface antigen (anti-HBs) was one of parameters investigated as a predictor of survival. Therefore, the ability to produce anti-HBs antibodies had to be known at the start of the study. An exclusion criterion was renal transplantation prior to enrolment. Patients were in stable clinical condition for at least one month prior to enrolment. Characteristics of enrolled patients (n = 532) are shown in Table 1.

Coronary artery disease (CAD) was diagnosed based on a medical history, electrocardiograms, exercise stress test, and, in some cases, coronary angiography or computed tomography. Dyslipidemia was diagnosed according to the recommendations of the National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (KDOQI) clinical practice guidelines [26].

2.2. Follow-Up. Patients were followed from January 30, 2009, to January 30, 2016. Results concerning 6-year survival (to January 30, 2015) of the same group of patients in respect to their ability to produce anti-HBs antibodies are presented in our earlier study [27].

The immediate cause of death was reported by a physician who declared death basing on medical evidence prior to death. Patients were mainly dying at hospital, and a nephrologist responsible for dialysis was usually arranging a patient hospitalization. Deaths that occurred outside medical facilities (at home, during outdoor activities) were declared by first aid physicians. Medical records of a deceased patient were available in each such case. The causes of death were recorded and categorized as cardiac (reported as myocardial infarction, sudden cardiac death, severe arrhythmias, cardiomyopathies, or cardiac failure), vascular (reported as cerebrovascular events, cerebral stroke, or generalized atherosclerosis), infectious (reported as sepsis, pneumonia, limb necrosis, pyonephrosis, or acute abdomen with peritonitis), neoplasms, or other/unknown.

Characteristics of HD patients at the end of a 7-year prospective study are shown in Table 2.

2.3. Genotyping. Genotyping of vitamin D signaling pathway genes (VDR rs2228570, VDR rs1544410, RXRA rs10776909, RXRA rs10881578, RXRA rs749759, GC rs2298849, GC rs7041, and GC rs115563) was performed as previously described [2, 24, 28–31].

In brief, genomic DNA for a genotype analysis was isolated from peripheral blood lymphocytes by a salt-out extraction procedure. High-resolution melting curve (HRM) analysis was used for GC rs2298849, GC rs115563, RXRA rs10776909, RXRA rs10881578, and CASR rs7652589 genotyping. GC rs7041, RXRA rs749759, VDR rs2228570, and VDR rs1544410 were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The characteristics of analyzed polymorphisms are described in Supplementary Table 1 in Supplementary Material available online at http://dx.doi.org/10.1155/2016/2383216. Primer sequences and conditions for PCR-RFLP and HRM analyses are presented in Supplementary Table 2. Approximately 10% of the randomly chosen samples were re-genotyped. Samples that failed the genotyping were excluded from further statistical analyses.

Genotyping of tested SNPs was performed in groups of 435–472 patients (Table 3).

2.4. Statistical Methods. The results are presented as numbers and percentages for categorical variables. Medians and ranges for continuous variables are shown as data sets were nonnormally distributed by the Shapiro-Wilk test in the majority of subgroups.

The Hardy-Weinberg equilibrium (HWE) was analyzed to compare the observed genotype frequencies to the expected ones using the Chi-square test (P > 0.01 with df = 1 for equilibrium).

Survival analyses were conducted using the Kaplan-Meier method with the log rank test or with calculation of multiple P value when more than two groups were compared. The Cox proportional hazard model was applied to show whether and to what extent the effect of a unit increase in a covariate was multiplicative with respect to the hazard rate of death.
Table 1: Demographic, clinical, and laboratory characteristics of hemodialysis patients at enrolment into a prospective study (n = 532) and their association with all-cause mortality.

Parameter	Value	Association with all-cause mortalitya,b,c
Demographic data		
Male gender, n, % of all	297 (56.0)	0.360
Age at the beginning of the study, years	61.2 (14.6–89.3)	<0.00001
RRT vintage prior to the study onset, years	2.2 (0.0–24.7)	0.309
Cause of ESRD		
Diabetic nephropathy, n, % of all	137 (25.8)	0.0002
Chronic glomerulonephritis, n, % of all	96 (18.0)	0.016
Hypertensive nephropathy, n, % of all	86 (16.2)	0.512
Chronic tubulointerstitial nephritis, n, % of all	67 (12.6)	0.981
Polycystic kidney disease, n, % of all	31 (5.8)	0.014
Kidney cancer, n, % of all	8 (1.5)	—
Urological diseases other than kidney cancer, n, % of all	28 (5.3)	—
Myeloma multiplex, n, % of all	6 (1.1)	—
Amyloidosis, n, % of all	7 (1.3)	—
Lupus nephritis, n, % of all	2 (0.4)	—
Autoimmune connective tissue disorders other than lupus nephritis, n, % of all	9 (1.7)	—
Systemic vasculitis, n, % of all	4 (0.8)	—
Rare, n, % of all	24 (4.5)	—
Unknown, n, % of all	27 (5.1)	—
Clinical data		
Coronary artery disease, n, % of all	212 (39.8)	<0.00001
Dyslipidemia, n, % of all	218 (41.0)	0.063
History of HBV infection (anti-HBc positivity), n, % of all	128 (24.1)	0.303
History of HCV infection (anti-HCV positivity), n, % of all	59 (11.1)	0.712
HBsAg positivity, n, % of all	15 (2.8)	0.397
HCV RNA positivity, n, % of all	36 (6.8)	0.664
Positive anti-HBs, n, % of all	457 (85.9)	0.013
Type of RRT		
LF-HD, n, % of all	277 (52.0)	0.853
HF-HD, n, % of all	217 (40.8)	0.390
HDF, n, % of all	38 (7.1)	0.201
HF-HD/HDF, n, % of all	255 (47.9)	0.853
PD as the first modality of RRT, n, % of all	17 (3.2)	0.165
Laboratory data		
ALT, IU/L	13.0 (2.0–131.0)	0.863
AST, IU/L	14.0 (3.0–177.0)	0.125
GGT, IU/L	26.0 (1.0–682)	0.089
ALP, U/L	97.0 (38.3–1684)	0.861
PTH, pg/mL	406 (12.7–3757)	0.0001
Ca, mg/dL	8.9 (5.4–11.7)	0.089
P, mg/dL	5.0 (2.2–11.3)	0.052

a The Kaplan-Meier analysis was conducted only for uniform parameters exceeding 10 individual reports.

b A multiple P value or a P value calculated using the log rank test, as appropriate.

c Associations were tested in relation to the tertiles of continuous variables.

ALT: alanine aminotransferase, ALP: alkaline phosphatase, AST: aspartate aminotransferase, ESRD: end-stage renal disease, GGT: gamma-glutamyl transferase, HBsAg: surface antigen of hepatitis B virus, HBV: hepatitis B virus, HCV: hepatitis C virus, HDF: hemodiafiltration, HF-HD: high flux hemodialysis, LD-HD: low flux hemodialysis, PD: peritoneal dialysis, PTH: parathyroid hormone, RNA: ribonucleic acid, and RRT: renal replacement therapy.

Conversion factors to SI units are as follows: for alanine aminotransferase, 1 U/L = 0.0167 µkat/L, for alkaline phosphatase, 1 U/L = 0.0167 µkat/L, for aspartate aminotransferase, 1 U/L = 0.0167 µkat/L, for calcium, 1 mg/dL = 0.25 mmol/L, for gamma-glutamyltransferase, 1 U/L = 0.0167 µkat/L, for parathyroid hormone, 1 pg/mL = 1 ng/L, and for phosphorus, 1 mg/dL = 0.323 mmol/L.
Table 2: Characteristics of hemodialysis patients at the end of a 7-year prospective study.

Parameter	Value
Demographic data	
Total RRT vintage, years	7.4 (0.5–28.3)
RRT vintage on the prospective study, years	4.5 (0.1–7.0)
Movement to a noncollaborating dialysis center, n, % of all	7 (1.3)
Renal transplantation, n, % of all	66 (12.4)
Causes of death	
All, n, % of all	317 (59.6)
Cardiovascular, n, % of all	203 (38.2)
Cardiac, n, % of all	141 (26.5)
Sepsis/infection, n, % of all	39 (7.3)
Neoplasms, n, % of all	30 (5.6)
Rare/unknown, n, % of all	45 (8.5)

*Death rates are calculated in respect to all patients enrolled in the study (n = 532). Outcomes of 66 transplant recipients and 7 patients moving to other centers are not included.
RRT: renal replacement therapy.

Table 3: Statistical significance of differences in all-cause mortality evaluated by the Kaplan-Meier analysis for vitamin D signaling pathway genes and CASR in hemodialysis patients undergoing the 7-year prospective study.

Tested polymorphism	N	Major homozygotes versus heterozygotes versus minor homozygotes	Dominant model of inheritance	Recessive model of inheritance	Additive model of inheritance
GC rs7041	458	GG versus GT versus TT	TT + GT versus GG	TT versus GT + GG	TT versus GG
		P = 0.692		P = 0.822	P = 0.320
GC rs1155563	472	TT versus CT versus CC	CC + CT versus TT	CC versus CT + TT	CC versus TT
		P = 0.342		P = 0.420	P = 0.275
GC rs2298849	472	TT versus CT versus CC	CC + CT versus TT	CC versus CT + TT	CC versus TT
		P = 0.136		P = 0.024	P = 0.829
RXRA rs10881578	472	AA versus AG versus GG	GG + AG versus AA	GG versus AG + AA	GG versus AA
		P = 0.252		P = 0.151	P = 0.587
RXRA rs10776909	472	CC versus CT versus TT	TT + CT versus CC	TT versus CT + CC	TT versus CC
		P = 0.848		P = 0.672	P = 0.908
RXRA rs749759	464	GG versus AG versus AA	AA + AG versus GG	AA versus AG + GG	AA versus GG
		P = 0.516		P = 0.263	P = 0.942
VDR rs1544410	461	GG versus AG versus AA	AA + AG versus GG	AA versus AG + GG	AA versus GG
		P = 0.555		P = 0.372	P = 0.471
VDR rs2228570	449	CC versus CT versus TT	TT + CT versus CC	TT versus CT + CC	TT versus CC
		P = 0.863		P = 0.677	P = 0.470
CASR rs7652589	435	GG versus AG versus AA	AA + AG versus GG	AA versus AG + GG	AA versus GG
		P = 0.255		P = 0.200	P = 0.352

CASR: calcium-sensing receptor gene, GC: group-specific component gene, RXRA: retinoic X receptor alpha gene, and VDR: vitamin D receptor gene.

*Multiple-sample test P.

**Log rank test P.
Cox proportional hazard model was also applied in multivariate analyses assessing the contribution of demographics and clinical measures to mortality.

Abovementioned statistical analyses were performed using Graph-Pad InStat 3.10, 32 bits for Windows (GraphPad Software, Inc., San Diego, California, United States) and Statistica version 12 (Stat Soft, Inc., Tulsa, Oklahoma, United States).

Haplotype frequencies were estimated using the Haploview 4.2 software (http://www.broad.mit.edu/mpg/haplovview/). Statistical significance was assessed using the 1000-fold permutation test.

Epistatic interactions were analyzed using the logistic regression and epistasis option in the PLINK software (http://pngu.mgh.harvard.edu/purcell/plink/).

A P value of less than 0.05 was considered significant. Borderline significance was defined as a P value between 0.05 and 0.10.

2.5. Ethics Approval of Research. The study design was approved by the Institutional Review Board of Poznan University of Medical Sciences, Poland. The written informed consent was obtained from all study participants.

3. Results

At the beginning of the study, distributions of tested polymorphisms were consistent with HWE.
There were no significant associations between infection-related (Supplementary Table 3) or neoplasm-related (Supplementary Table 4) mortalities and tested polymorphisms except those already mentioned above for GC rs2298849. RXRA rs10776909 and CASR rs7652589 yielded a borderline significance in respect to infection-related mortality in the dominant model of inheritance (Supplementary Table 3).

3.2. Multivariate Analyses of Survival

Variables that yielded significance in univariate analyses of survival (age at the beginning of the study, diabetic nephropathy, polycystic kidney disease and chronic glomerulonephritis as causes of ESRD, CAD, the ability to develop antibodies to HBV surface antigen in response to HBV vaccination or infection, and serum PTH concentration) as well as RRT vintage prior to the study onset were used in multivariate analyses together with each polymorphic variant being also solely shown as involved in survival (GC rs2298849 and VDR rs2228570).

In the Cox model including 8 abovementioned variables and GC rs2298849, significant predictors of 7-year all-cause mortality were age at the beginning of the study (HR 1.016, 95% CI 1.006–1.026 per each 1-year increase, \(P = 0.004 \)), RRT vintage prior to the study onset (HR 1.055, 95% CI 1.017–1.094 per each 1-year increase, \(P = 0.004 \)), serum PTH concentration (HR 1.032, 95% CI 1.004–1.060 per each 100 pg/mL decrease, \(P = 0.045 \)), and CAD (HR 1.653, 95% CI 1.285–2.127).

Table 4: Statistical significance of differences in cardiovascular mortality evaluated by the Kaplan-Meier analysis for vitamin D signaling pathway genes and CASR in hemodialysis patients undergoing the 7-year prospective study.

Tested polymorphism	N	Major homozygotes versus heterozygotes versus minor homozygotes\(^a \)	Dominant model of inheritance\(^b \)	Recessive model of inheritance\(^b \)	Additive model of inheritance\(^b \)
GC rs7041	458	GG versus GT versus TT \(P = 0.329 \)	TT + GT versus GG \(P = 0.475 \)	TT versus GT + GG \(P = 0.648 \)	TT versus GG \(P = 0.513 \)
GC rs1155563	472	TT versus CT versus CC \(P = 0.316 \)	CC + CT versus TT \(P = 0.542 \)	CC versus CT + TT \(P = 0.992 \)	CC versus TT \(P = 0.846 \)
GC rs2298849	472	TT versus CT versus CC \(P = 0.906 \)	CC + CT versus TT \(P = 0.797 \)	CC versus CT + TT \(P = 0.921 \)	CC versus TT \(P = 0.956 \)
RXRA rs10881578	472	AA versus AG versus GG \(P = 0.778 \)	GG + AG versus AA \(P = 0.617 \)	GG versus AG + AA \(P = 0.391 \)	GG versus AA \(P = 0.516 \)
RXRA rs10776909	472	CC versus CT versus TT \(P = 0.294 \)	TT + CT versus CC \(P = 0.176 \)	TT versus CT + CC \(P = 0.595 \)	TT versus CC \(P = 0.647 \)
RXRA rs749759	464	GG versus AG versus AA \(P = 0.705 \)	AA + AG versus GG \(P = 0.899 \)	AA versus AG + GG \(P = 0.416 \)	AA versus GG \(P = 0.429 \)
VDR rs1544410	461	GG versus AG versus AA \(P = 0.760 \)	AA + AG versus GG \(P = 0.098 \)	AA versus AG + GG \(P = 0.976 \)	AA versus GG \(P = 0.286 \)
VDR rs2228570	449	CC versus CT versus TT \(P = 0.217 \)	TT + CT versus CC \(P = 0.067 \)	TT versus CT + CC \(P = 0.206 \)	TT versus CC \(P = 0.043 \)
CASR rs7652589	435	GG versus AG versus AA \(P = 0.119 \)	AA + AG versus GG \(P = 0.781 \)	AA versus AG + GG \(P = 0.090 \)	AA versus GG \(P = 0.168 \)

\(^a \) Multiple-sample test \(P \).

\(^b \) Log rank test \(P \).

CASR: calcium-sensing receptor gene, GC: group-specific component gene, RXRA: retinoic X receptor alpha gene, and VDR: vitamin D receptor gene.
Log rank test $P = 0.041$

Survival function

Parameter estimate	Standard error	χ^2 test	P value	95% lower CL	95% upper CL	Hazard ratio	95% hazard ratio lower CL	95% hazard ratio upper CL
−0.315	0.140	5.050	0.025	−0.589	−0.040	0.333	0.308	0.923

Figure 2: Infection-related and neoplasm-related mortality in hemodialysis patients in respect to GC rs2298849 polymorphic variant.

Log rank test $P = 0.043$

Survival function

Parameter estimate	Standard error	χ^2 test	P value	95% lower CL	95% upper CL	Hazard ratio	95% hazard ratio lower CL	95% hazard ratio upper CL
0.224	0.112	4.006	0.045	0.005	0.443	1.565	1.009	2.426

Figure 3: Cardiovascular mortality in hemodialysis patients in respect to VDR rs2228570 polymorphic variant.
higher in subjects showing this haplotype (OR 1.640, 95% CI 1.151–2.338, \(P = 0.006 \)). \(VDR \) rs1544410 and \(VDR \) rs2228570 showed also a significant epistatic interaction (FDR-adjusted \(P = 0.027 \)) (Supplementary Table 12).

4. Discussion

\(VD \) deficiency [3, 4] and lower plasma concentrations of \(VD \) binding protein [16] were already associated with increased mortality risk in HD patients. \(VDR \) rs1544410 was shown as influencing survival of Catalanian HD patients in a 4-year prospective study [22]. Our 7-year prospective study on Greater Poland HD subjects did not confirm results of this previous study in respect to \(VDR \) rs1544410 polymorphism. We have revealed that \(GC \) rs2298849 polymorphic variant showed association with together analyzed infection-related and neoplasm-related causes mortality; whereas \(VDR \) rs2228570 was associated with cardiovascular mortality in prevalence HD patients.

In our retrospective studies, there were no associations between \(GC \) rs2298849 and age at RRT onset [32], gender [33], and survival evaluated either since the start of RRT or since birth [2]. \(GC \) rs2298849 was also not associated with chronic glomerulonephritis [29] or type 2 diabetic nephropathy [30] as causes of ESRD. CAD in HD patients dialedyed due to type 2 diabetic nephropathy was not found to be associated with \(GC \) rs2298849 [30] and a response to HBV vaccination was not influenced by \(GC \) rs2298849 [28]. In this prospective study, the minor allele in \(GC \) rs2298849 was recognized as the risk allele for shorter survival on regular HD therapy. The Linkage Disequilibrium (LD) plot of HapMap SNPs within the \(GC \) region showed that the rs2298849 variant, located within the second LD block, was in perfect LD (\(r^2 = 1 \)) with the intronic variant, rs1352845 [31]. However, this variant was up today associated only with total hip bone mineral density in postmenopausal Thai women [34]. We could not find associations between \(GC \) rs2298849 and phenotypes characterizing HD groups categorized by \(GC \) rs2298849 genotypes. However, the present study indicates that associations could be searched among infection and neoplasm diseases. The Kaplan–Meier survival curves demonstrate higher infection-cause and neoplasm-cause mortalities in HD patients bearing the C allele in \(GC \) rs2298849; however, the independent association of this allele with both mentioned causes of death was not shown in statistical analyses, maybe due to a relatively small number of HD patients dying from infections or neoplasms. As the C allele in \(GC \) rs2298849 seemed to be associated with increased mortality due to infections as well as due to neoplasms, a combined analysis, increasing a number of analyzed patients, yielded statistical significance. Recent data show that \(GC \) rs2298849 may be involved in the risk of ovarian cancer among noncarriers of BRCA1/BRCA2 mutations [35]. There is also a possibility that \(GC \) rs2298849 may be associated with infections or neoplasms through its influence on \(VD \) status. It is documented that \(VD \) deficiency contributes to neoplasm disease [5–7] and infections [36–38]. On the other hand, data on \(GC \) rs2298849 in association with \(VD \) status are controversial [31, 39–41]. Larger studies evaluating \(VD \)
status, VD associated genes, and specific causes of mortality are needed to show independent associations between tested variables.

GC rs2298849, significantly associated with all-cause mortality in univariate analysis, remained only on borderline level of significance in the Cox multivariate analysis. As our study was performed on prevalent HD patients, bearers of the minor allele in GC rs2298849 appeared to be approximately 6 months longer on RRT prior to the study than homozygotes of the major allele. The study on incidence HD patients could be helpful in avoiding this possible confounding variable.

In Han Chinese adults with normal renal function, the minor allele in VDR rs2228570 was associated with CAD, whereas the major allele homozygosity in VDR rs2228570 was connected with higher plasma HDL-cholesterol concentrations in CAD patients [42]. Our study showed that the major allele homozygosity in VDR rs2228570 polymorphism was a predictor of cardiovascular mortality in prevalent HD patients. Our study also revealed that VDR rs1544410 and VDR rs2228570 are in epistatic interaction, and the VDR rs1544410 rs2228570 haplotype AC is associated with dyslipidemia in HD patients. Interestingly, López-Mejías et al. [43] recently demonstrated an association of VDR GATG haplotype with atherosclerotic disease in rheumatoid arthritis. The allele T of this haplotype is the minor allele in VDR rs1544410 and the allele G of this haplotype denotes the major allele in VDR rs2228570. This finding is in logical concordance with our observation showing more dyslipidemic patients among the group presenting the major allele homozygosity in VDR rs2228570 or the VDR rs1544410 rs2228570 haplotype AC. Dyslipidemia, occurring in 46.1% of the major homozygotes in VDR rs2228570, could contribute to generalized atherosclerosis, CAD, cerebral events, and finally to death. However, death rates due to myocardial infarction or cerebral stroke were not related to the major allele homozygosity in VDR rs2228570. On the other hand, sudden cardiac death, which was shown to be associated with the CC genotype in our study, was also attributed to CAD [44] and abnormal plasma lipids [45], both present in at least 50% of affected patients.

We were not able to show direct associations of tested polymorphisms with infection-related mortality. However, GC rs2298849, RXRA rs10776909, and CASR rs7652589 yielded a borderline significance in the dominant model of inheritance. In this finding study [24], there was an epistatic interaction between CASR rs7652589 and rs1024611 in the chemokine (C-C motif) ligand 2 gene (CCL2) in nephrolithiasis-related ESRD. The promoter polymorphism of CCL2 was involved in viral [46] and bacterial [47] infections. In this study, 39 patients (7.3%) died due to infection. Larger group of studied patients or prolongation of the study for further years may clarify this borderline findings.

Neoplasm-related mortality occurred in 5.6% HD patients and was caused by cancers of various organs (gastrointestinal tract, kidney, bone marrow, and others). This diversity together with low number of affected patients could be a reason why we did not show any associations of tested polymorphisms with a mortality risk due to neoplasms, although such connections were described [35, 48, 49].

Mortality rate in HD patients is still high. In the study by Buargub [50], 51.4% patients expired during the 5-year follow-up. In this study, at least 59.6% patients died during 7-year period (outcomes of 66 transplant recipients and 7 patients moving to other centers are not included). Therefore, to recognize factors associated with mortality in this group is of great importance. Knowledge of appearance of risk polymorphisms in HD subjects may be helpful in choosing therapeutic strategies. It might be a challenge for the future to find out what outcome after renal transplantation occurs in patients showing the risk polymorphisms in GC rs2298849 or VDR rs2228570.

4.1. Study Limitations. Circulating 25(OH)D was determined in only 70 patients at the start of the study; therefore sample power was too small for analyses of survival (Supplementary Figure 4). However, determination of total and free vitamin D could be relevant, particularly that serum PTH concentration is so fg greatly important. Knowledge of apparent risk polymorphisms in HD subjects may be helpful in choosing therapeutic strategies. It might be a challenge for the future to find out what outcome after renal transplantation occurs in patients showing the risk polymorphisms in GC rs2298849 or VDR rs2228570.

5. Conclusions

(1) GC rs2298849 polymorphic variant is independently associated with infection/neoplasm mortality, whereas VDR rs2228570 is associated with cardiovascular mortality in prevalent HD patients.

(2) Dyslipidemia occurs more frequently in the major than in the minor homozygotes of VDR rs2228570, and major homozygosity contributes to increased risk of cardiovascular mortality.

(3) The VDR rs1544410 rs2228570 haplotype AC is associated with dyslipidemia in HD patients, whereas the TT genotype in VDR rs2228570 seems to have a protective role against dyslipidemia.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors would like to express our gratitude to the physicians of the dialysis centers for their consent in collecting the participants’ data. This study was funded in part by the scientific grant of the Baxter company allocated by the Chapter of the Polish Society of Nephrology as the blindly reviewed award winning project, Grant no. 504-04-0225363-00013-03071. Additional funding was provided by the Poznan University of Medical Sciences, Poznani, Poland, Grant nos. 502-01-0225363-03679 and 502-01-01124182-07474.

References

[1] United States Renal Data System, 2015 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md, USA, 2015.
[2] M. Świderska, A. Mostowska, and A. E. Grzegorzewska, “T helper cell related cytokine gene polymorphisms and vitamin D pathway gene polymorphisms as predictors of survival probability in patients on renal replacement therapy,” Polskie Archiwum Medycyny Wewnętrznej, vol. 125, pp. 511–520, 2015.

[3] G. Jean, B. Charras, and C. Chazot, “Vitamin D deficiency and associated factors in hemodialysis patients,” Journal of Renal Nutrition, vol. 18, no. 5, pp. 395–399, 2008.

[4] A. Schiller, F. Gadalean, O. Schiller et al., “Vitamin D deficiency—prognostic marker or mortality risk factor in end stage renal disease patients with diabetes mellitus treated with hemodialysis—a prospective multicenter study,” PLoS ONE, vol. 10, no. 5, Article ID e0126586, 2015.

[5] C. J. Narvaez, D. Matthews, E. LaPorta, K. M. Simmons, S. Beaudin, and J. Welsh, “The impact of vitamin D in breast cancer: genomics, pathways, metabolism,” Frontiers in Physiology, vol. 5, article 213, pp. 158–167, 2014.

[6] V. Fedirko, E. Riboli, A. Tjønneland et al., “Prediagnostic 25-hydroxyvitamin D, VDR and CASR polymorphisms, and survival in patients with colorectal cancer in western European populations,” Cancer Epidemiology Biomarkers & Prevention, vol. 21, no. 4, pp. 582–593, 2012.

[7] S. Meeker, A. Seamons, J. Paik et al., “Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer,” Cancer Research, vol. 74, no. 16, pp. 4398–4408, 2014.

[8] E. Hypponen, E. Lääri, A. Reunanen, M.-R. Jarvelin, and S. M. Virtanen, “Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study,” The Lancet, vol. 358, no. 9292, pp. 1500–1503, 2001.

[9] U. Kampmann, L. Moskilde, C. Juhl et al., “Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency—a double-blind, randomized, placebo-controlled trial,” Metabolism: Clinical and Experimental, vol. 63, no. 9, pp. 1115–1124, 2014.

[10] J. A. Ford, G. S. MacLennan, A. Avenell, M. Holland, A. Grey, and M. Witham, “Cardiovascular disease and vitamin D supplementation: trial analysis, systematic review, and meta-analysis,” The American Journal of Clinical Nutrition, vol. 100, no. 3, pp. 746–755, 2014.

[11] M. Karakas, B. Thorand, A. Zierer et al., “Low levels of serum 25-hydroxyvitamin D are associated with increased risk of myocardial infarction, especially in women: results from the MONICA/KORA Augsburg case-cohort study,” Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 1, pp. 272–280, 2013.

[12] Y. Sato, T. Asoh, I. Kondo, and K. Satoh, “Vitamin D deficiency and risk of hip fractures among disabled elderly stroke patients,” Stroke, vol. 32, no. 7, pp. 1673–1677, 2001.

[13] H. Wen and J. F. Baker, “Vitamin D, immunoregulation, and rheumatoid arthritis,” Journal of Clinical Rheumatology, vol. 17, no. 2, pp. 102–107, 2011.

[14] L. L. Ritterhouse, S. R. Crowe, T. B. Niewold et al., “Vitamin D deficiency is associated with an increased autoimmune response in healthy individuals and in patients with systemic lupus erythematosus,” Annals of the Rheumatic Diseases, vol. 70, no. 9, pp. 1569–1574, 2011.

[15] O. Eviłayqılu, M. Acar, B. Özçahi et al., “Vitamin D deficiency and hashimoto’s thyroiditis in children and adolescents: a critical vitamin D level for this association?” Journal of Clinical Research in Pediatric Endocrinology, vol. 7, no. 2, pp. 128–133, 2015.
clinical course of chronic glomerulonephritis," Medical Science Monitor, vol. 21, article A497, pp. 3671–3681, 2015.

[30] A. E. Grzegorzekwa, G. Ostromecki, P. Zielińska, A. Mostowska, and P. P. Jagodziński, "T-Cell cytokine gene polymorphisms and vitamin D pathway gene polymorphisms in end-stage renal disease due to type 2 diabetes mellitus nephropathy: comparisons with health status and other main causes of end-stage renal disease," Journal of Diabetes Research, vol. 2014, Article ID 120317, 17 pages, 2014.

[31] A. E. Grzegorzekwa, G. Ostromecki, A. Mostowska, A. Sowińska, and P. P. Jagodziński, "Clinical aspects of vitamin D-binding protein gene polymorphisms in hemodialysis patients," Polskie Archiwum Medycyny Wewnętrznej, vol. 125, no. 1-2, pp. 8–17, 2015.

[32] A. E. Grzegorzekwa, G. Ostromecki, A. Mostowska et al., "Vitamin D pathway genes in relation to age at renal replacement therapy onset," in Proceedings of the ASN Kidney Week, Philadelphia, Pa, USA, November 2014, Journal of the American Society of Nephrology, vol. 25, abstract supplement, 565A, 2014.

[33] A. E. Grzegorzekwa, G. Ostromecki, A. Mostowska et al., "Clinical aspects of vitamin D pathway gene polymorphism in hemodialysis women and men," in Proceedings of the 35th ERA-EDTA Congress, Amsterdam, The Netherlands, May-June 2014, Nephrology Dialysis Transplantation, vol. 29, supplement 3, pp. iii505–iii506, 2014.

[34] C. Chupeerach, A. Tungtrongchitr, B. Phonrat, F. J. Schweigert, R. Tungtrongchitr, and S. Preutthipan, "Association of Thr420Lys polymorphism in DBP gene with fat-soluble vitamins and low radial bone mineral density in postmenopausal Thai women," Biomarkers in Medicine, vol. 6, no. 1, pp. 103–108, 2012.

[35] A. Mostowska, S. Sajdak, P. Pawlik, M. Lianeri, and P. P. Jagodziński, "Polymorphic variants in the vitamin D pathway genes and the risk of ovarian cancer among non-carriers of BRCA1/BRCA2 mutations," Oncology Letters, vol. 11, no. 2, pp. 1811–1816, 2016.

[36] J. Yang, G. Chen, D. Wang, M. Chen, C. Xing, and B. Wang, "Low serum 25-hydroxyvitamin D level and risk of urinary tract infection in infants," Medicine, vol. 95, no. 27, Article ID e4137, 2016.

[37] M. Haliloglu, B. Bilgili, O. Haliloglu, D. Gogas Yavuz, and I. Cinel, "Vitamin D level is associated with mortality predictors in ventilator-associated pneumonia caused by Acinetobacter baumannii," The Journal of Infection in Developing Countries, vol. 10, no. 6, pp. 567–574, 2016.

[38] A. Zittermann, J. Kuhn, J. B. Ernst et al., "Circulating 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D Concentrations and postoperative infections in cardiac surgical patients: the CALCITOP-study," PLoS ONE, vol. 11, no. 6, Article ID e0158532, 2016.

[39] J. Ahn, K. Yu, R. Stolzenberg-Solomon et al., "Genome-wide association study of circulating vitamin D levels," Human Molecular Genetics, vol. 19, no. 13, pp. 2739–2745, 2010.

[40] W. Xu, J. Sun, W. Wang et al., "Association of genetic variants of vit D binding protein (DBP/GC) and of the enzyme catalyzing its 25-hydroxylation (DCYP2R1) and serum vit D in postmenopausal women," Hormones, vol. 13, no. 3, pp. 345–352, 2014.

[41] L. Foucan, F.-L. Velayoudom-Céphise, L. Larifla et al., "Polymorphisms in GC and NADSYN1 Genes are associated with vitamin D status and metabolic profile in Non-diabetic adults," BMC Endocrine Disorders, vol. 13, article 36, 2013.

[42] L. He and M. Wang, "Association of vitamin D receptor-a gene polymorphisms with coronary heart disease in Han Chinese," International Journal of Clinical and Experimental Medicine, vol. 8, no. 4, pp. 6224–6229, 2015.

[43] R. López-Mejias, F. Genre, S. Remuzgo-Martinez et al., "Vitamin D receptor GATG haplotype association with atherosclerotic disease in patients with rheumatoid arthritis," Atherosclerosis, vol. 245, pp. 139–142, 2016.

[44] R. J. Myerburg and M. J. Junttila, "Sudden cardiac death caused by coronary heart disease," Circulation, vol. 125, no. 8, pp. 1043–1052, 2012.

[45] A. Tsuji, N. Ikeda, and T. Nakamura, "Plasma lipids, lipoproteins and apolipoproteins and sudden cardiac death," International Journal of Legal Medicine, vol. 112, no. 3, pp. 151–154, 1999.

[46] L. P. Byung, J. K. Yoon, S. C. Hyun et al., "Association of common promoter polymorphisms of MCPI with hepatitis B virus clearance," Experimental and Molecular Medicine, vol. 38, no. 6, pp. 694–702, 2006.

[47] Y. Zhang, J. Zhang, L. Zeng et al., "The -2518A/G polymorphism in the MCP-1 gene and tuberculosis risk: a meta-analysis," PLoS ONE, vol. 7, no. 7, Article ID e38918, 2012.

[48] W. Maneečhay, T. Boonpittanapong, S. Kanngunr, P. Puttawibul, S. L. Geater, and S. Sangkhathat, "Single nucleotide polymorphisms in the Gc gene for vitamin D binding protein in common cancers in Thailand," Asian Pacific Journal of Cancer Prevention, vol. 16, no. 8, pp. 3339–3344, 2015.

[49] S. Jeong, J. H. Kim, M. G. Kim et al., "Genetic polymorphisms of CASR and cancer risk: evidence from meta-analysis and HuGe review," OncoTargets and Therapy, vol. 9, pp. 655–669, 2016.

[50] M. A. Buarqub, "5-Year mortality in hemodialysis patients: a single center study in Tripoli," Saudi Journal of Kidney Diseases and Transplantation, vol. 19, no. 2, pp. 268–273, 2008.