Infection risks associated with the 2022 FIFA World Cup in Qatar

Jaffar A. Al-Tawfiq
Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA and Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA

Philippe Gautret
Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France and IHU-Méditerranée Infection, Marseille, France

Patricia Schlagenhauf
WHO Collaborating Centre for Travellers’ Health, Institute for Epidemiology, Biostatistics and Prevention, University of Zürich Centre for Travel Medicine, MilMedBiol Competence Centre, University of Zurich, Switzerland

Keywords: FIFA World Cup, Mass gatherings, Qatar
Article published online: 22 November 2022

The FIFA World Cup, a football tournament that attracts global attention, will be held in Qatar from November 20th to December 18th 2022. Teams and spectators from all continents will converge for this sporting spectacle. Apart from “football fever” what are the potential infectious disease risks for the players, the fans, the local hosting population and the countries of origin of the teams. To look at the spectrum of possible infectious disease risks, it is important to see the context of this event as a Mass Gathering (MG). There are two main types of MGs: planned or unplanned MGs which could be recurrent or spontaneous [1]. These events require a well conducted risk assessment and advanced planning to avoid the spread of emerging and endemic infectious diseases [2]. The most studied MGs is the annual Hajj and Umrah in Saudi Arabia [2,3]. And best examples of risk assessments are those conducted in 2020 and 2021 with delays of the Olympic games and the significant reduction in the number of pilgrims at the Hajj and cancelling Umrah during the early phases of COVID-19 pandemic [4–6]. But with the development of effective vaccines and significant decline of the global number of COVID-19 cases a gradual re-escalation of such events took place [4,7].

The Fifa World Cup in the last two decades took place in Japan and South Korea (2002), Germany (2006), South Africa (2010), Brazil (2014), and Russia (2018). This sporting event is one example of recurring mass gatherings that occur at different places around the world and an epidemiological look at infectious disease risks in geographic and temporal context can be useful [8]. Like other MGs, the FIFA World Cup unavoidably poses potential infectious disease risks to the host country (Qatar) and also to neighboring countries and other countries due to the risk of importation and subsequent exportation and also local acquisition of infectious diseases. MGs had been associated with the occurrence of outbreaks of infectious diseases particularly viral respiratory infections.

Qatar will host the FIFA World Cup from November 20 to December 18, 2022. Qatar is one of the six Gulf Cooperation Council (GCC) states with a population of 2.8 million, and expects to receive 1.2 million international visitors [9]. The FIFA World Cup 2022 will be hosted at the time when two Public Health Emergencies of International Concern (PHEIC) are concurrent. These are the COVID-19 pandemic and the monkeypox outbreak 2022. With respect to COVID-19, the number of the cases in Qatar continued to be reported at an average of 321 daily cases in November 2022 (Fig. 1). The emergence of the SARS-CoV-2 infection in 2019 resulted in another sports MG, the Tokyo 2020 Olympics, being postponed for 2021 [6] and had a major impact on annually occurring MGs such as the Hajj with subsequent gradual escalation of the Hajj pilgrimage [4,5,10]. There are limited data on the occurrence of respiratory tract infection outbreaks during sports events such as the Olympics [6]. For example, during the Pyeong Chang Winter Olympics in South Korea, respiratory tract illnesses were the most common cause of illness [11,12]. This is in contrast to the well-studied Hajj pilgrimage with
multiple studies showing respiratory tract infections as the major infectious diseases [13–15]. The Qatar ministry of health (QMoH) had released COVID-19 guidance and indicated that “currently there will be no vaccination requirement” [16]. Visitors are also not required to have pre-departure SARS-CoV-2 testing. The availability of effective COVID-19 vaccines and boosters should be utilized by visitors to Qatar to prevent the occurrence of COVID-19 during mass gatherings, at least in at risk attendees. However, the emergence of variants of SARS-CoV-2 for which vaccine efficacy might be reduced, is seen as a major threat to ending the COVID-19 pandemic and points to the occurrence of outbreaks in MGs. Previous successful Qatari experience in organizing a major football match held outside during the pandemic (Amid Cup Football Final of Qatar) under strict control is reassuring [17]. Another possible respiratory tract illness is the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). MERS-CoV had caused multiple hospital outbreaks in Saudi Arabia [18] and had caused limited number of cases in Qatar and the pattern was sporadic [19]. Epidemiologic data from Qatar showed the occurrence of of 28 cases of MERS (incidence of 1.7 per 1,000,000 population) and most cases had a history of contact with camels [20]. Thus, people with greater risk of developing severe disease are advised to avoid contact with dromedary camels, drinking raw camel milk or camel urine, or eating meat that has not been properly cooked [21].

FIG. 1. Daily New Cases of COVID-19 in Qatar.

FIG. 2. Confirmed Monkeypox Cases per the WHO [23] https://www.amhsr.org/articles/fifa-world-cup-2022-in-qatar-health-advice-and-safety-issues-for-travelling-attendees.pdf.
Another infectious disease risk challenge at this time, is the occurrence of a multi-state monkeypox virus outbreak around the globe with the potential implication for MGs [22]. The number of reported cases to WHO is 79,641 as of 16 Nov 2022 [23]. One major difficulty with this virus is the difficulty in rapid detection of suspected cases, isolation of infected individuals and management of cases and contacts especially in large uncontrolled crowds [22]. To date, the State of Qatar had not reported any cases of monkeypox. However, in the neighboring countries there had been limited number of cases (8 cases in Saudi Arabia, and 16 cases in United Arab Emirates) (Fig. 2) [24]. The main transmission mode of the disease in the current outbreak is through close contacts, including notably sexual relations and the respiratory route plays a less important role if any [25]. Thus, it is important to avoid situations that put the individuals at risk of acquisition of monkeypox.

The occurrence of vector-borne diseases in Qatar is rare. For example, cutaneous leishmaniasis was previously a common disease in the neighboring Al-Hasa region, Saudi Arabia [26], autochthonous cases of cutaneous leishmaniasis had not been reported from Qatar [27]. Other vector-borne diseases such as malaria had not been reported in Qatar. Dengue incidence is low in Qatar and mostly reported in migrants [28]. In Qatar, Aedes aegypti was reported in 1999, but not in recent surveys, suggesting no risk of local transmission in the country. In 2018, a fox and a camel were found rabid in Qatar demonstrating that rabies virus is still present in Qatar, at least in rural areas [29]. Other possible infectious disease risks include measles, hepatitis A and B, travellers’ diarrhoea and possible acquisition of multi-drug resistant bacteria (MDR) [30], with possible dissemination of MDR bacteria in MG [31]. To mitigate the afore-mentioned risks, visitors to the tournament should be up to date with their routine vaccinations and observe the rules for safe consumption of food and drinks.

In conclusion, the infectious disease risks associated with the FIFA World Cup 2022 this year in Qatar are dominated by the global concern about the ongoing COVID-19 pandemic with emergence of new variants and the threat of vaccine escape [32,33] and the occurrence of multi-state outbreak of monkeypox. Although in recent months, the trajectory of monkeypox cases points to decreasing numbers, this risk is still a significant challenge in the context of a football World Cup and possible sexual encounters. Qatar, the hosting country, had made the health sector in the country ready for such occurrence. Continued surveillance and studies of the effect of MGs on the transmission of infectious disease continue to be an important aspect of MGs. Novel technologies such as illness tracking Apps can [34] be considered for this and other large sporting and cultural events and should be employed to provide useful data for future MGs and enable recommendations for infectious disease prevention.

Funding

This work received no funding.

Ethical approval

Not applicable.

Declaration of competing interest

The authors declare that they have no competing interests. JAT is an associate editor of NMNI and PS is EIC, NMNI.

References

[1] Memish ZA, Zumla A, Alhakeem RF, Assiri A, Turkestani A, Al Harby KD, et al. Hajj infectious disease surveillance and control. Lancet 2014;383:2073–82. https://doi.org/10.1016/S0140-6736(14)60381-0.
[2] Al-Tawfiq JA, Memish ZA. Mass gathering medicine: 2014 Hajj and Umra preparation as a leading example. Int J Infect Dis 2014;27:26–31. https://doi.org/10.1016/j.ijid.2014.07.001.
[3] Al-Tawfiq JA, Memish ZA. The Hajj 2019 vaccine requirements and possible new challenges. J Epidemiol Glob Health 2019;9:147–52. https://doi.org/10.2991/jegh.k.190705.001.
[4] Al-Tawfiq JA, Kattan RF, Memish ZA. Escalating the 2022 Hajj during the third year of the COVID-19 pandemic. J Travel Med 2022;29. https://doi.org/10.1093/jtm/taac059.
[5] Gautret P, Al-Tawfiq JA, Hoang VT, Covid 19: will the 2020 hajj pilgrimage and Tokyo olympic games be cancelled? Travel Med Infect Dis 2020;34:101622. https://doi.org/10.1016/j.tmaid.2020.101622.
[6] Hoang VT, Al-Tawfiq JA, Gautret P. The Tokyo olympic games and the risk of COVID-19. Curr Trop Med Rep 2020;7:126–32. https://doi.org/10.1007/s40475-020-00217-y.
[7] Ahmed Q, Memish ZA. Hajj 2022 and the post pandemic mass gathering: epidemiological data and decision making. New Microbe. New Infect 2022;49(50):101033. https://doi.org/10.1016/j.nmni.2022.101033.
[8] Pohonichnaya N, Petersen E, Patel D, Gautret P, Schlagenhauf P. Football fever in Russia: infectious disease risks and the FIFA world cup 2018. Travel Med Infect Dis 2018;24:4–6. https://doi.org/10.1016/j.tmaid.2018.06.010.
[9] Sah R, Alshahrani NZ, Shah P, Mohanty A, Rouniyar R, Shah S, et al. FIFA World Cup 2022 in Qatar: mitigating the risk of imported infections amid the COVID-19 pandemic, monkeypox outbreak and other emerging diseases. Travel Med Infect Dis 2022;50. https://doi.org/10.1016/j.tmaid.2022.102450.
[10] Al-Tawfiq JA, Memish ZA, Zumla A. Mass religious gatherings events and COVID-19 – easing of COVID-19 restrictions and a staged
approach to scaling up the Umrah pilgrimage. Travel Med Infect Dis 2021;40. https://doi.org/10.1016/j.tmid.2021.101968.

[11] Kim DS, Lee YH, Bae KS, Baek GH, Lee SY, Shim H, et al. Pyeong-Chang 2018 Winter Olympic Games and athletes’ usage of a € polyclinic’ medical services. BMJ Open Sport Exerc Med 2019;5. https://doi.org/10.1136/bmjsem-2019-000548.

[12] Kim K, Jang JY, Moon G, Shim H, Jung PY, Kim S, et al. Experiences of the emergency department at the pyeongchang polyclinic during the 2018 pyeongchang winter olympic games. Yonsei Med J 2019;60:474–80. https://doi.org/10.3349/ymj.2019.60.5.474.

[13] Al-Tawfiq JA, El-Kafrawy SA, McCloskey B, Ashar El. COVID-19 and other respiratory tract infections at mass gathering religious and sporting events. Curr Opin Pulm Med 2022;28:192–8. https://doi.org/10.1097/MCP.0000000000001059.

[14] Al-Tawfiq JA, Memish ZA. Mass gatherings and infectious diseases. Prevention, detection, and control. Infect Dis Clin North Am 2012;26:725–37. https://doi.org/10.1016/j.idc.2012.05.005.

[15] Gautret P, Benkouiten S, Al-Tawfiq JA, Memish ZA. Hajj-associated viral respiratory infections: a systematic review. Travel Med Infect Dis 2016;14:92–109. https://doi.org/10.1016/j.medin.2015.12.008.

[16] Qatar Ministry of Public Health. FIFA world CUP Qatar 2022 TM COVID-19 protocol 2022.

[17] Dergaa I, Varma A, Tabben M, Malik RA, Sheik S, Vedasalam S, et al. Organising football matches with spectators during the COVID-19 pandemic: what can we learn from the Amir Cup Football Final of Qatar 2020? A call for action. Biol Sport 2021;47:26. https://doi.org/10.1016/j.bios.2021.03.018.

[18] Al-Tawfiq JA, Awaerter PG. Healthcare-associated infections: the hallmark of Middle East respiratory syndrome coronavirus with review of the literature. J Hosp Infect 2019;101:20–9. https://doi.org/10.1016/j.jhin.2018.05.021.

[19] Mostafavi E, Ghasemian A, Abdinasir A, Mahani SAN, Rawf S, Vaziri MS, et al. Emerging and Re-emerging infectious diseases in the WHO eastern mediterranean region, 2001-2018. Int J Heal Policy Manag 2021;11:286–300. https://doi.org/10.34172/ijphpm.2021.13.

[20] Ben Abid F, El-Maki F, Alsoub H, Al Masalmani M, Al-Khal A, Valentine Coyle P, et al. Middle East respiratory syndrome coronavirus infection profile in Qatar: an 8-year experience. IDCases 2021;24. https://doi.org/10.1016/j.idc.2021.e01161.

[21] World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)/?gclid=EAIaIQobChMIyI3xvoaL5gIVVwRDyChF5wbHEAYASAAEfgLx_D_BwE. [Accessed 19 November 2022].

[22] Al-Tawfiq JA, Kattan RF, Memish ZA. Mass gatherings and emerging infectious diseases: monkeypox is the newest challenge. J Epidemiol Glob Health 2022;12:215–8. https://doi.org/10.1017/s41197-022-00059-z.

[23] World Health Organization (WHO). 2022 monkeypox outbreak: global trends. https://worldhealth.org.shinyapps.io/mpx_global/#section-fsn2. [Accessed 17 November 2022].

[24] CDC. 2022 monkeypox outbreak global map. https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html. [Accessed 27 August 2022].

[25] Mitja O, Ogoina D, Titanji BK, Galvan C, Mouyembe T-J, Marks M, et al. Monkeypox Lancet. 2022. https://doi.org/10.1016/S0140-6736(22)02075-X.

[26] Al-Tawfiq JA, Abukhamsin A. Cutaneous leishmaniasis: a 46-year study of the epidemiology and clinical features in Saudi Arabia (1956-2002). Int J Infect Dis 2004;8:244–50. https://doi.org/10.1016/j.ijid.2003.10.006.

[27] World Health Organization (WHO). Leishmaniasis. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html. [Accessed 17 November 2022].

[28] Farag EA, Jaffrey S, Daraan F, Al-Shamali MHMA, Khan FY, Coyle PV, et al. Dengue epidemiology in Qatar from 2013-2021: a retrospective study. Trop Med Infect Dis 2022;7:329. https://doi.org/10.3390/trropicalmed7110329.

[29] Oude Munnink BB, Farag EABA, GeurtsvanKessel C, Schapendonk C, van der Linden A, Kohn R, et al. First molecular analysis of rabies virus in Qatar and clinical cases imported into Qatar, a case report. Int J Infect Dis 2020;96:323–6. https://doi.org/10.1016/j.ijid.2020.04.070.

[30] Al-Saleh A, Shahid M, Farid E, Bindasyn K. Trends in meticillin-resistant Staphylococcus aureus in the Gulf Cooperation Council countries: antibiotic resistance, virulence factors and emerging strains. East Mediterr Heal J 2022;28:434–43. https://doi.org/10.26719/emhj.22.042.

[31] Al-Tawfiq JA, Memish ZA. The emergence, persistence, and dissemination of antimicrobial-resistant bacteria in environmental hajj settings and implications for public health. Trop Med Infect Dis 2021;6. https://doi.org/10.3390/tropicalmed6010033.

[32] Colson P, Parola P, Raoult D. The emergence, dynamics and significance of SARS-CoV-2 variants. New Microbe. New Infect 2022;45. https://doi.org/10.1016/j.nmni.2022.100962.

[33] Schildgen V, Lusebrink J, Schildgen F. Symptomatic SARS-CoV-2 breakthrough with delta variant after 3rd mRNA vaccine shot (booster). New Microbe. New Infect 2022;47. https://doi.org/10.1016/j.nmni.2022.100987.

[34] Lovey T, Bielecki M, Gültekin N, Stettbacher A, Muggli F, Stanga Z, et al. Illness tracking in SARS-CoV-2 tested persons using a smartphone app: a non-interventional, prospective, cohort study. New Microbe. New Infect 2022;46. https://doi.org/10.1016/j.nmni.2022.100967.