Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation

Yunbing Ran1, Zheyi Zou2, Bo Liu1, Da Wang1, Bowei Pu1, Penghui Mi4, Wei Shi1, Yajie Li1, Bing He3, Ziheng Lu5, Xia Lu6, Baihai Li7 and Siqi Shi1,8✉

The electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li0.75CoO2, Li0.8333CoO2, and Li0.8571CoO2 phases and report a new Li0.875CoO2 ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stabllest Li0.9625C6 dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li3La2/3−xTiO3 (0 < x < 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry.

npj Computational Materials (2021)7:184 ; https://doi.org/10.1038/s41524-021-00653-y

INTRODUCTION

The ever-growing demands for electrical energy storage have led to the higher performance requirements for rechargeable batteries1-5. Tremendous efforts have been devoted to the study of (i) high voltage or capacity cathodes (e.g., Li[Ni1−x−y−z, MnxCyDy]O2, NMC compounds)6-7, (ii) solid electrolytes (e.g., garnet, perovskite, and NASICON family)8-15, and (iii) post-lithium battery chemistries (e.g., Na, K, and Mg batteries)16-22. A key commonality of the above electrolytes and electrodes is that their properties (e.g., ionic conductivity for electrolytes, phase stability, and voltage for electrodes) are closely linked to the concentrations of mobile ions and the corresponding ordered ground states during either the preparation or ion-intercalation process. Unfortunately, it is difficult to determine the ordered ground states in these systems because of the low sensitivity of current spectroscopic techniques to the light elements (e.g., H and Li)23. For example, even neutron scattering cannot detect the precise occupation of Li+ in Li-containing compounds, only giving a “disordered” distribution of these ions in an averaged manner. Thus, it is difficult to directly obtain the precise arrangements of mobile ions at the atomic scale. For example, the exact ordered ground states of the lithium graphite intercalation compounds (LGICs), a commercially successful graphite anode, at their dilute limit (viz., LiC6 with 0 < x < 0.5) and the accurate arrangements of Li/Na/vacancy in Li1−xLa2/3−xTiO2 (LTO, 0 < x < 0.167), a solid electrolyte, are still under debate24,25. Therefore, it is critical to resolving the ordered ground states of the electrodes or solid electrolytes during the operation with the help of foresighted calculations.

In this context, the theoretical lattice-gas model (LGM)26,27 is widely used to determine the Li+ occupation ordering in guest-host intercalation electrochemical systems, where the host is an ordered-sites containing network and each site can be occupied by a guest or vacancy. Various configurations associated with rechargeable battery chemistries can be obtained by enumerating possible mobile ion/vacancy arrangements on the given supercell, which is produced by replication of the unit cell with a specified integer number27-29. To overcome the enormous configurational space challenge or avoid the large-scale first-principles calculations, several so-called “parameter-constructing” methods, including sampling-based Metropolis Monte Carlo and fitting effective-cluster-interaction-based cluster expansion, etc., have been developed30-33. The most representative method is the cluster expansion (CE). It sets up a mathematical framework where the energy is expanded as a series of cluster basis functions that can be multiplied by effective cluster interactions (ECIs). However, prediction errors will inevitably occur when a large lattice mismatch among configurations and small training sets of configurations are encountered34-36.

The problem of the ordered arrangements of alkali-ion/vacancy in alkali-ion batteries mentioned above can be treated as a group–subgroup transformation (viz., reducing symmetry from the parent structure) since all possible arrangements can be classified into one of the subgroups. Different from supercells which are determined ad hoc, structures obtained by group—subgroup transformation have their lattices which are determined by the transformation matrix. Thus, all possible supercells can be included. Moreover, unlike randomizing or enumerating the arrangements of alkali-ion/vacancy, group—subgroup transformation assigns alkali-ion/vacancy into distinct subsets of Wyckoff positions in each subgroup to avoid enumeration34-36. Therefore, ordered phases within diverse supercells and dilute concentrations can be formulated rigorously.
Previously, this method has been employed to find the relationship among the high symmetric original structures in existing ordered phases. In this context, we describe a prediction framework based on such a group–subgroup transformation for generating possible ordered phases of electrolyte/electrodes with variable concentrations of mobile ions during the typical preparation/ion-intercalation process. High-precision first-principles formation energies are further employed to determine the ordered ground states. Potential variation, e.g., stacking of the host lattice, is also included for comparison. By searching through a comprehensive range of supercells, we identify the commonly accepted ordered ground states of Li$_x$CoO$_2$ and propose Li$_{0.875}$CoO$_2$ as a new ordered ground state at $x > 0.75$. Moreover, utilizing the Wyckoff position splitting approach to reduce the number of configurations, the extremely dilute Li$_{0.0625}$Co$_6$ phase can be identified. By extending our group–subgroup transformation method to uncover the joint ordering of Li/vacancies with immobile La in the solid electrolyte Li$_3$La$_{2/3}$TiO$_3$, we reveal that the Li-ion diffusion anisotropy is caused by the blocking effect of La ions.

RESULTS

Constructing convex hull of Li$_x$CoO$_2$ within transformed lattices

Because the ordered ground states in Li$_x$CoO$_2$ determine the 0 K equilibrium voltage, understanding the ordering of Li/vacancy in Li-de-intercalated phases is important for tailoring this material to the specific electrochemical application. In the exploration of Li$_x$CoO$_2$ ordered ground states during the charging/discharging process, the first and most important step is to determine the possible configurations. To cover as many configurations as possible, the most common method is to search within several ad hoc supercells. However, the results may conflict with each other when different supercells are used. For example, Van der Ven et al. concluded that Li$_{0.8333}$CoO$_2$ is one of the ordered ground states predicted by the cluster-expansion method, whereas Wolverton et al. suggested that Li$_{0.875}$CoO$_2$ is the ordered ground state. This discrepancy might stem from the use of different sets of supercells. Herein, using the group–subgroup transformation method, the ordering of Li/vacancy in Li$_x$CoO$_2$ is studied by searching for configurations with different Li concentrations via enumerating different sizes of supercells and obtaining ordered phases from transformed lattices, thus avoiding possibly missing stable configurations. In principle, the group–subgroup transformation method should enable us to obtain diverse supercells based on the symmetry reduction and lattice transformation for Li$_x$CoO$_2$, where different Li concentrations are examined.

It is worth noting that the rearrangement of the LiCoO$_2$ host structure occurs by altering the stacking sequences of oxygen during charge and discharge. The only difference between the original and rearranged structures is how the O–Co–O slabs of LiCoO$_2$ relate to each other across the Li planes. Because ordered phases are determined within a specific host structure, we must consider these different host structures as an additional variable in addition to the Li concentrations. Experimentally, three hosts have been confirmed. The first is O3, which has ABC oxygen stacking while the second is O1 and has an ABAB oxygen stacking. The stability of the O1 host is demonstrated to be restricted to zero Li concentration. The third is referred to as $H1-3$, which features the characteristics of both O3 and O1. Li is assumed to prefer the octahedral sites of O3 to those of O1. Thus, the maximum Li concentration that can be obtained in this host with $x = 0.5$ in Li$_x$CoO$_2$. Supplementary Table 1 presents the detailed structural information of these hosts. The group–subgroup transformation method is applied to each of these hosts. Motivated by the experimental observations, we only consider trigonal and monoclinic candidate subgroups. Finally, formation energies of 377 nonidentical configurations are used to determine the ordered ground states.

As illustrated in Fig. 1, the O1-CoO$_2$ host is more stable with lower formation energy (60 meV per f.u.) than that of the O3 host at zero Li concentration. This result is in good agreement with the previously reported values of 4037 and 50 meV38. This is why in electrochemical experiments, it is difficult to obtain single O3—CoO$_2$ with 0 Li in the structure. Several ground states at various Li concentrations are identified, as indicated by the convex hull formed by seven stable phases at $x = 0.1667$, 0.3333, 0.5, 0.6667, 0.75, 0.8333, and 0.875. Detailed structural information is provided in Supplementary Table 2. Our computation reveals that the O3 host is stable above $x = 0.3333$. Below such a value, the $H1-3$ host is stable, and an ordered ground state is observed at $x = 0.1667$.

Fig. 1 Convex hull of Li$_x$CoO$_2$ (0 < x < 1). a Formation energies (per formula unit, ΔE) of Li$_x$CoO$_2$. Ordered ground states at $x = b$ 0.875, c 0.8333, d 0.75, e 0.6667, 0.3333, f 0.5, g 0.1667. Energies greater than 10 meV are discarded. The green and gray balls represent Li atoms and vacancies, respectively.
In the following section, we describe each stable ordered phase obtained by the group–subgroup transformation method in detail.

To ensure the validity of the group–subgroup transformation method, we present the ordering pattern of Li/vacancies in Li0.5CoO2, which has in-plane 2 × 1 ordering with the Li-ions arranged in rows and separated by rows of vacancies (Supplementary Table 2). This arrangement was initially proposed by Reimers and Dahn based on in situ X-ray powder-diffraction measurements43 and was later confirmed by Shao–Horn based on electron diffraction experiments 35. Van der Ven et al. 37 also obtained this arrangement using the cluster-expansion method and confirmed this ordering. In our work, this arrangement is obtained by subgroup P2/m with lattice transformation of 2/3a + 1/3b − 2/3c, a, b, c. In this subgroup, the Li sites (3a) split into 1a and 1e subsets, and one of them is extracted. The ordered phases at x = 0.1667, 0.3333, and 0.6667 are also verified. They have the same √3 × √3 ordering in the √3 × √3 trilongal lattice with space group P3112 (Supplementary Fig. 1), which is consistent with the theoretical prediction and experimental observation at −170 °C35,37,38. Numerous arrangements within different supercells are compared, and they all indicate that √3 × √3 ordering is the most stable one (Supplementary Table 3). This provides a reasonable explanation for why these orderings are successfully confirmed in different works.

It is worth noting that at x > 0.75, there is no consensus on whether x = 0.8333 or x = 0.8571 is the ground state37,38. This inconsistency results from the differences in the sizes of ad hoc supercells. Here, ordered phases in different supercells with sizes up to eight times of the primitive cell are conducted for the systematic investigation. The ordered phases at x = 0.8333 and 0.8571 mentioned above are completely included in √3 × √3 × √7 supercells within k6 and k7 subgroups, respectively (Supplementary Table 4). Figure 1 shows that the ordered ground states are Li0.8333CoO2 and Li0.875CoO2. The energy of Li0.8571CoO2 slightly leaves the tie line between x = 0.75 and x = 0.875 with a value of 3 meV.
Figure 2 shows the transformation from LiCoO$_2$ to the Li$_{0.875}$CoO$_2$ within a $2 \times 2 \times 2$ supercell. This structure is obtained by isomorphic enlargement of the O3-LiCoO$_2$ with a k-index of 8.

First, the cell is transformed using the lattice transformation $-2b, 2a + 2b, c$ in the ab plane (Fig. 2b). Then, the 2c transformation is applied, as shown in Fig. 2c. In this subgroup structure, the Li can occupy the 9a (0, 0, 0), 9d (0.83333, 0.6667, 0.1667), 3a (0.6667, 0.3333, 0.3333), and 3b (0, 0, 0.5) positions, respectively. Comparison of the positions of lithium in both LiCoO$_2$ and Li$_{0.875}$CoO$_2$ indicates that the phase transition occurs after the extraction of Li at 3a (0, 0, 0) or 3b (0, 0, 0.5), which also confirms the suitability of this method for determining the ordered ground states with different Li concentrations in different supercells.

We also investigate the ordered ground state at $x = 0.75$, where phases with 2×2 and 2×4 ordering have been reported previously. By considering different supercells, both orderings are obtained by the group–subgroup transformation. Our calculation shows that the 2×2 ordering phase is less stable with an energy of 20 meV per f.u. higher than that of the most stable one. Thus, the 2×4 ordering is the ground state.

Figure 3 shows the subgroup evolution of the supercell of 2×4 ordering. Starting from the O3-LiCoO$_2$, we obtained C2/m from space group R$3m$ by a t-index of 3 due to the loss of the -3 symmetry operation. Subsequently, a loss of C-centering leads to the formation of the P2/m structure with a k-index of 2. Finally, isomorphic enlargement with an index of 2 is applied. The final lattice transformation can be $-1/3a - 2/3b - 2/3c, 2a, c$, and the reduced cell is adapted. This transformation leads the Wyckoff position of Li splitting to change from 3a (0, 0, 0) to 2i (0, 0.75, 0), 1g (0.5, 0, 0.5), and 1h (0.5, 0.5, 0.5). Each of the positions can be occupied by a vacancy. In this structure, the arrangement of lithium and vacancies has been selected in agreement with the previously predicted ordering by Van der Ven et al. and Wolverton et al.

Identifying of the dilute ordered Li$_x$C$_6$ phases

The intercalation process of lithium in the layered materials often results in the formation of “stages”, such as LGIC. These stages describe the 2D stacking sequence of the lithium layers between the graphene layers, e.g., stage n contains n empty graphene layers between each Li-filled layer. Similarly, different stages have
also been observed in LiFePO 4, KC 8, etc. using XRD and electrochemical techniques 44,45. However, detailed structural information on stages with different Li concentrations from both experimental and theoretical studies is still scarce, leading to a non-unified description of such stages, especially for extremely dilute Li concentrations46–48. For example, the precise arrangement of atoms in each stage has rarely been reported either computationally or experimentally.

To evaluate the thermodynamic stability of the LGIC with various concentrations and stages, sequences with AA and AB stacking have been considered because of the relative gliding during charge and discharge processes49. For the former, graphene layers have a stacking order of –A–A–A–A–, while another stacking pattern is formed by shifting to a zigzag shape (–A–B–A–B–) (Supplementary Table 5). In the current work, we aim to use the group–subgroup transformation method and first-principles calculations to (1) search for the ordered ground states as a function of Li concentrations in the Li,C 6 (0 < x < 1) system, (2) reproduce the experimental and theoretical studies on the stages of LGIC, and (3) obtain a clear picture of the ordered phases for dilute Li concentrations.

Firstly, we use group–subgroup transformation to search for possible configurations in the Li,C 6 (0 < x < 1) system. Then, formation energies of 585 nonidentical configurations are obtained to determine the ordered ground states through first-principles calculations. Figure 4 shows that the transition

Table 1: Group–Subgroup Transformations

Step 1	Step 2	Step 3-1	Step 3-2
P2\(\text{II}(\text{no.150})\)	P2\(\text{II}(\text{no.150})\)	P3 (no.143)	P3 (no.143)
\(a=4.29950\ \text{\AA}\)	\(b=4.29950\ \text{\AA}\)	\(a=7.44695\ \text{\AA}\)	\(a=7.44695\ \text{\AA}\)
\(c=7.20000\ \text{\AA}\)	\(c=7.20000\ \text{\AA}\)	\(c=14.40000\ \text{\AA}\)	\(c=14.40000\ \text{\AA}\)
Atom Wyck. x y z			
Li 2d -0.67 -0.33 1.76	Li1 2d 0.33 0.67 0.13	Li1 1b 0.33 0.67 0.87	Li1 1b 0.33 0.67 0.87
	Li2 2d 0.67 0.33 0.37	Li2 1c 0.67 0.33 0.87	Li3 1c 0.67 0.33 0.37
			Li4 1b 0.33 0.67 0.63

Figure 4: Convex Hull of Li,C 6 (0 < x < 1).

(a) Formation energies (per formula unit, \(\Delta E\)) of Li,C 6 as a function of Li composition. Ordered ground states determined by the convex hull at \(x = b\) 0.0625, c 0.1667, d 0.3333, e 0.5. Energies larger than 50 meV are discarded.

Figure 5: Illustration of Li,C 6 ordered phases with 0.0625, 0.0833, 0.167 Li.

(a) Parent structure of AB stacking LiC 6. (b) Isomorphic enlargement by a, b, c. (c) P3 subgroup is obtained with \(t\)-index of 2. (d) Li_{0.0833}C 6 and Li_{0.1667}C 6 are obtained by a–b, a + 2b, c. (e) Li_{0.0625}C 6 is obtained by 2a, 2b, c.
from AB stacking to AA stacking is facilitated by increasing the Li concentration, and the transition of stages occurs in the sequence of stage IV, stage II, and terminal LiC₆ with a stage of I. The composition-induced stages occur at well-defined x values of approximately 0.0625, 0.1667, 0.3333, and 0.5. Detailed information on these stages is provided in Supplementary Table 6.

Of these ordered ground states, the experimentally and computationally reported Li₀.₃₃₃₃C₆ compound is well known for its stage II ordering. Using the group–subgroup transformation, we can compare the arrangements in several different supercells nearing the convex hull, such as \(\sqrt{3} \times \sqrt{3} \times 2 \), \(\sqrt{3} \times \sqrt{3} \times 3 \), and \(1 \times 1 \times 4 \), \(1 \times 1 \times 6 \). Results indicate that stage II is more energetically preferred than the other arrangements. It is generally accepted that phases with concentrations between 0.5 and 1 are coexisting phases (stage I and stage II), even at realistic. In previous research, the most stable dilute phase with concentration \(x = 0.0625 \) is well known for its stage II ordering. Using the group–subgroup transformation, we can compare the arrangements in several different supercells nearing the convex hull, such as \(\sqrt{3} \times \sqrt{3} \times 2 \), \(\sqrt{3} \times \sqrt{3} \times 3 \), and \(1 \times 1 \times 4 \), \(1 \times 1 \times 6 \). Results indicate that stage II is more energetically preferred than the other arrangements. It is generally accepted that phases with concentrations between 0.5 and 1 are coexisting phases (stage I and stage II), even at temperatures up to \(\sim 200 \) °C.

In the dilute concentrations, because research on LGIC leads to a large number of configurations, brute force computation is not realistic. In previous research, the most stable dilute phase with AB stacking was observed at Li₀.₃₃₃₃C₆, which has a stage of IV within a \(\sqrt{3} \times \sqrt{3} \times 2 \) supercell. This phase is verified by our group–subgroup transformation when the 1c site is occupied in the P3 subgroup with the transformation matrix of \(a \perp b, a \perp 2b, 2c \) (green color in Fig. 5d). With group–subgroup transformation, the total configurational space is in hundreds, avoiding the search for the ordered ground states in a space of more than \(10^4 \) configurations within the dilute region (Supplementary Fig. 2). Apart from this dilute phase at Li₀.₃₃₃₃C₆, we identify that a more dilute phase occurs at Li₀.₀₆₂₅C₆ with a stage of IV.

The ordered ground state of Li₀.₀₆₂₅C₆ has a subgroup of P3 (no. 143) with transformation matrix \(2a, 2b, 2c \). During this process, the site of Li in the parent structure splits from 2d to 3d, 1c, 1b, 3d, and 3d sites of the subgroup structure (Fig. 5e), and only the 1c site is occupied by Li. It should be noted that the number of configurations obtained by group–subgroup transformation is greatly smaller than that obtained by enumeration, as illustrated in Supplementary Fig. 2. To understand the interaction between Li atoms in Li₀.₀₆₂₅C₆ and Li₀.₃₃₃₃C₆, we calculate the charge–density differences using the \(2 \times 1 \times 1 \) supercell (Supplementary Fig. 3). The charge–density difference profile shows that the blue isosurfaces only reside around a single Li atom in Li₀.₀₆₂₅C₆, which suggests that the Li-atom interaction disappears in Li₀.₀₆₂₅C₆. These findings confirm that the Li₀.₀₆₂₅C₆ with extremely low Li concentration is the final extremely dilute concentration phase during the charging/discharging process.

We also note that there is non-consensus on the ground state at a Li concentration of \(x = 0.3333 \), i.e., stage II, stage III, and stage II–IV have been proposed in various studies for this concentration. Using group–subgroup transformation, possible arrangements under different stages for Li₀.₃₃₃₃C₆ are determined within different supercells as shown in Fig. 6. Compared with the formation energies of stage III and stage II–IV, the value of stage II is lower by 30 and 40 meV per C₆, respectively, indicating that the stage II phase of the Li₀.₃₃₃₃C₆ compound is more stable. This computational observation is consistent with the experimental results of Yazami et al. When comparing with the stage II structure of Li₀.₅C₆, the Li layers of stage II are not fully occupied. Similar conflicts also appear at Li₀.₁₆₆₇C₆. This phase has the same subgroup as Li₀.₃₃₃₃C₆, with another 1a site occupied (blue color in Fig. 5d). Moreover, when comparing with the stage II phase mentioned in previous work, stage IV has lower formation energy of 20 meV per C₆, which indicates that a higher stage is preferred in dilute Li concentrations.
phases within transformed lattices, the group was needed. Inspired by the effectiveness in predicting ordered Li ordering rigorously, an effective guiding tool is the Li-vacancy ordering for Li-stuffed garnets. Here, the starting structures are employed to determine the blocking effect of La on the migration pathway. In this work, we present that ordered ground states formed either during the preparation or the ion-intercalation process in several rechargeable battery materials, especially with transformed lattices or dilute alkali-ion concentrations, could be predicted using group–subgroup transformation. In $LiCoO_2$, we solve the ordering problem for different sizes and shapes of supercells, including confirming the ordered ground states at $x = 0.1667$ and 0.3333, 0.5, and 0.6667 and resolving the previous conflict.

DISCUSSION

In this work, we present that ordered ground states formed either during the preparation or the ion-intercalation process in several rechargeable battery materials, especially with transformed lattices or dilute alkali-ion concentrations, could be predicted using group–subgroup transformation. In $LiCoO_2$, we solve the ordering problem for different sizes and shapes of supercells, including confirming the ordered ground states at $x = 0.1667$, 0.3333, 0.5, and 0.6667 and resolving the previous conflict.

Table 1. BVSE energy barriers (eV) of $Li_xLa_{2/3-x}TiO_3$ along with different directions.

x	a	b	c
0.125	0.234	0.830	9.268
0.2	0.205	0.840	8.965
0.25	0.102	0.840	0.215
0.3125	9.277	0.293	0.205
0.35	9.0527	0.293	0.293

Identifying Li/La/vacancy orderings in $Li_3La_{2/3-x}TiO_3$ Solid electrolytes have been widely studied because they are applicable in energy-dense solid-state batteries and other electrochemical devices. The elementary process of ionic transport is known to be strongly affected by the distribution of local conductor (such as lithium silicate) into the grain boundary. As discussed above, lithium-ion diffusion is two dimensional below 127 °C. As discussed above, lithium-ion diffusion for all the $Li_3La_{2/3-x}TiO_3$ systems is strongly anisotropic owing to the blocking effect of La. To eliminate the effect of diffusion anisotropy, it is useful to introduce another fast ion conductor (such as lithium silicate) into the grain boundary.
concerning the ordered ground states of Li\(_{x}\)CoO\(_2\) at \(x\) = 0.75, 0.8333, 0.8571. And an entirely new Li\(_{0.875}\)CoO\(_2\) ground state is identified at \(x > 0.75\). In LiC\(_6\), utilizing the Wyckoff splitting rule, we identify the new stable Li\(_{0.0625}\)C\(_6\) with a stage IV structure as the most dilute phase, which has not been previously demonstrated in experimental and computational studies. Besides, this method also reveals the blocking effect of La on the diffusion anisotropy of Li. This method has also been successfully applied in the prediction of ordered phases in K\(_{x}\)Mn\(_{7/9}\)Ti\(_{2/9}\)O\(_2\)\(_{70}\). Moreover, partial replacement, such as substituting Co\(^{3+}\) with Ni\(^{2+}\) and Mn\(^{4+}\) in Li(Ni\(_x\)Mn\(_y\)Co\(_{1-x-y}\))O\(_2\) layered oxides (coined NMC) would be an interesting topic for further investigation.

Fig. 8 Ordered ground states of Li\(_{3x}\)La\(_{2/3-x}\)TiO\(_3\). \(3x = a\) 0.125, b 0.2, c 0.25, d 0.3125, and e 0.35. Li-ion diffusion is anisotropic because of the blocking effect of La.

Fig. 9 Application of group–subgroup transformation for prediction of the ordered ground states. a Determination of subgroups and corresponding transformation matrix of the parent space group according to CELLSUB. b Subgroup structures are obtained by TRANSTRU with transformation matrix as an input. The splitting of Li position is illustrated by different colors. Vacancy and Li can occupy independent sites (illustrated by Li\(_{x}\)C\(_6\)). c Formation energies are obtained by first-principles calculations, and ordered ground states are determined by the convex hull.
applied to other areas such as ferroelectrics and other charge-ordering-related materials.

METHODS

Determining subgroups

Group–subgroup transformation starts from a space group of a highly symmetrical parent structure (G). The extraction of alkali-ions from the host structure results in the breaking of symmetry from either the point group (PG) or the translation group (T(0)) to maximal r-subgroups or k-subgroups, respectively (H). Maximal k-subgroups are further classified into Loss of centering translations, Non-isomorphism, and Isomorphism. An example of these maximal subgroups is shown in Supplementary Methods. Then, each of the subgroups further acts as a new highly symmetrical parent group and has its maximal r-subgroups or k-subgroups. Therefore, the group–subgroup relations can eventually be divided into a number of steps: G → H1 → H2 → ... → H, with each involving either a maximal r-subgroup or k-subgroup, as illustrated in Fig. 9a. Thus, the parent structure can be consecutively degenerated to lower symmetry subgroups. The reduction factor in the translation group is further characterized by the k-index (Eq. 1), which should be a divisor of the order of P(G) ([PG]). The reduction factor in the translation group is further characterized by the k-index (Eq. 2), which should be a divisor of the order of T(G) ([T(G)]).

\[
\begin{align*}
t & = \text{index} = \frac{|P(G)|}{|P(H)|} \quad (1) \\
k & = \text{index} = \frac{|T(G)|}{|T(H)|} \quad (2)
\end{align*}
\]

For each step, the transformation matrix that determines new lattices of the subgroup is compiled in the International Table of Crystallography, and can also be accessed by the Bilbao Crystallographic Server. Finally, H transforms into the triclinic group P1, corresponding to the removal of all symmetry and enumeration of all possible configurations. Given that such a low symmetry causes a large number of configurations, it is necessary to constrain the search to certain crystal systems that are detected by experiments and an upper limit of k-index (k-index also indicates the multiplication factor relating the volume of the primitive structure of the subgroup to that of the original prototype structure). In addition, the transformation of the lattice may occur because symmetry operations in the subgroup inevitably change. In each of the transformation matrix–column pairs (P, p), the 3 × 3 square matrix P transforms the conventional basis (a, b, c) denoted as G into another conventional basis H (Eq. 3). The column p of coordinates of the origin O of H is referred to the coordinate system of G and is called the origin shift. Splitting of Wyckoff position for each pair G > H

In the parent structure with high symmetry, atoms are symmetrically equivalent if they share the same Wyckoff position under the manipulation of symmetry. However, in the subgroup, because of the reduction of symmetry, these atoms may become non-equivalent. This allows the high-symmetry Wyckoff position of alkali-ion which corresponds to the high-symmetry group of the prototype to split into different sets of positions in the subgroup (Fig. 9b and Supplementary Fig. 6e). Each subset can then be occupied independently by an alkali-ion or a vacancy, resulting in subgroup configurations with different alkali-ion contents. The theoretical relation of the Wyckoff positions for a group–subgroup pair G > H has been demonstrated by Wondratschek et al.74.

Ground states determination

After configurations are obtained by assigning alkali-ion/vacancy to the independent sets of positions, the StructureMatcher utility in Pymatgen is employed to exclude identical arrangements. It compares two structures by reducing them to primitive cells and evaluates whether the maximum root mean square displacement is less than a predefined tolerance cutoff. This method can effectively distinguish the nonidentical structures and has proven useful in many previous works. First-principles calculations are then performed to obtain the formation energies and determine the ordered ground states (for calculation details, see Supplementary Methods). Taking the Li$_2$CoO$_2$ compound as an example, the formation energy of a given Li/vacancy configuration with content x in Li$_x$CoO$_2$ is defined as

\[
\Delta E_r(Li_xCoO_2) = E(Li_xCoO_2) - xE(LiCoO_2) - (1 - x)E(\text{CoO}_2)
\]

where E(Li$_x$CoO$_2$) is the total energy of the configuration per Li$_2$CoO$_2$ formula unit, and E(LiCoO$_2$) and E(\text{CoO}_2) are the energies of Li$_2$CoO$_2$ and CoO$_2$ in the O$_3$ host, respectively. The formation energy reflects the relative stability of that structure concerning phase separation into a fraction x of Li$_2$CoO$_2$ and a fraction (1 – x) of CoO$_2$.

PROCEDURES

Procedures of group–subgroup transformation and bond valence site energy calculations are implemented in the high-throughput computational platform for battery materials.

DATA AVAILABILITY

The authors declare that the main data (3779 and 5811 ordered phases, obtained by group–subgroup transformation, during ion-intercalation/extraction processes of Li$_2$CoO$_2$ (0 ≤ x ≤ 1) and Li$_x$Cu$_3$ (0 ≤ x ≤ 1), respectively, and the nonidentical sorts of these ordered phases) supporting the findings of this study are available within the article and Supplementary Tables 12 and 13. All source files (CIF and POSCAR) of all ordered phases are uploaded to the repository: https://github.com/shuhu/gingo.

CODE AVAILABILITY

All source codes of the method that are implemented in Python are uploaded to the repository: https://github.com/shuhu/gingo.

Received: 22 March 2021; Accepted: 21 October 2021; Published online: 12 November 2021

REFERENCES

1. Nguyen, V. H. & Kim, Y. H. Recent advances in cathode and anode materials for lithium ion batteries. Appl. Chem. Eng. 29, 635–644 (2018).
2. Kim, T., Song, W. D., Son, Y., Ono, L. K. & Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, 2942–2964 (2019).
3. Islam, M. S. & Fisher, C. A. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion, and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).
4. Zu, C. X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energ. Environ. Sci. 4, 2614–2614 (2011).
5. Kganyago, K. A. Ab initio calculation of the voltage profile for LiC$_6$. Solid State Ion. 159, 21–23 (2003).
6. He, P., Yu, H., Li, D. & Zhou, H. Layered lithium transition metal oxide cathodes toward high energy lithium-ion batteries. J. Mater. Chem. 42, 3680–3695 (2012).
7. Roderer, P. & Tarascon, J. M. Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015).
8. Liu, Y. et al. Monoclinic phase Na$_3$Fe$_2$(PO$_4$)$_3$: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain. Chem. Eng. 5, 1306–1314 (2016).
9. Deng, Y. et al. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON) solid electrolytes. Chem. Mater. 30, 2618–2630 (2018).
10. Roy, S. & Kumar, P. P. Influence of cationic ordering on ion transport in NASICONs: molecular dynamics study. Solid State Ion. 253, 217–222 (2013).
11. Roy, S. & Kumar, P. P. Influence of Si/P ordering on Na$_x$ transport in NASICONs. Phys. Chem. Chem. Phys. 15, 4965–4969 (2013).
12. Kabbir, H., Cailiot, D., Colmont, M., Masquelier, C. & Mentre, O. α-Na$_3$M$_2$PO$_4$(PO$_4$)$_3$ (M=Ti,Fe): absolute cationic ordering in NASICON-type phases. J. Am. Chem. Soc. 133, 11900–11901 (2011).
13. Kozinsky, B. et al. Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes. Phys. Rev. Lett. 116, 055901 (2016).
14. Lu, Z. et al. Modulating nonohomogeneity at electrode–solid electrolyte interfaces for dendrite-proof solid-state batteries and life-long memristors. Adv. Energy Mater. 11, 203811 (2021).
15. Xu, M. et al. Mechanisms of Li$^+$ transport in garnet-type cubic Li$_{13}$La$_4$Mg$_{18}$O$_{37}$ (M= Te, Nb, Zr). Phys. Rev. B 85, 052301 (2012).
16. Kim, H. et al. Investigation of potassium storage in layered P3-type K$_3$SnMoO$_2$ cathode. Adv. Energy Mater. 29, 1702480 (2017).
17. Hwang, J. Y., Kim, J., Yu, T. Y. & Sun, Y. K. A new P2-type layered oxide cathode with extremely high energy density for solid-ion batteries. Adv. Energy Mater. 9, 1803346 (2019).

18. Vaalma, C., Giffin, G. A., Buchholz, D. & Passerini, S. Non-aqueous K-ion battery based on layered K0.3Mo2O4 and hard carbon/carbon black. J. Electrochem. Soc. 163, A1295–A1299 (2016).

19. Chen, B., Gautham, G. S., Huang, W. & Ceder, G. First-principles study of the voltage profile and mobility of Mg intercalation in a chromium oxide spinel. Chem. Mater. 30, 153–162 (2018).

20. Meng, Y. S., Hinuma, Y. & Ceder, G. An investigation of the sodium pattering in Na2CoO3 (0.5 ≤ x ≤ 1) by density functional theory methods. J. Chem. Phys. 128, 104708 (2008).

21. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2- Na2CoO2 phase diagram. Nat. Mater. 10, 74–80 (2011).

22. Xu, J. et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K) Al-ion batteries. Adv. Sci. 4, 1700146 (2017).

23. Sun, Y. et al. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. J. Solid State Chem. 136, 1373–1378 (2000).

24. Lu, Z. & Ciucci, F. Anti-perovskite cathodes for lithium batteries. J. Mater. Chem. A 6, 5185–5192 (2018).

25. Hart, G. L. W. & Forcade, R. W. Generating derivative structures from multilattices: algorithm and application to hcp alloys. Phys. Rev. B 80, 014120 (2009).

26. Kim, S. et al. First-Principles study of lithium cobalt spinel oxides: Correlating structure and electrochemistry. ACS Appl. Mater. Inter. 10, 13479–13490 (2018).

27. Wu, Q., He, B., Carlier, D. & Delmas, C. Electrochemical investigation of the P2– Na2CoO2 phase diagram. Nat. Mater. 10, 74–80 (2011).

28. Lu, Z., Zhu, B., Shires, B. W. B., Scanlon, D. O. & Pickard, C. J. Ab initio random structure searching for battery cathode materials. J. Chem. Phys. 154, 174111 (2021).

29. Sendek, D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energ. Environ. Sci. 10, 306–320 (2017).

30. Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

31. Yahia, H. B., Shikano, M. & Kobayashi, H. Phase transition mechanisms in Li2−xLa2/3TiO3. J. Solid State Chem. 127, 283–294 (1996).

32. Wu, J. et al. A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li1−xLa2/3TiO3. J. Power Sources 165, 173002 (2007).

33. Okumura, T. et al. Effect of average and local structures on lithium ion conductivity in Li2−xLa2/3TiO3. J. Mater. Chem. B 3, 10195–10205 (2015).

34. Inaguma, Y., Katsumata, T., Itoh, M., Morii, Y. & Tsurui, T. Structural investigations of migration pathways in lithium-ion conducting Li2−xLa2/3TiO3 perovskites. Solid State Ion. 177, 3037–3040 (2006).

35. Garciamartin, S., Alariofranco, M. A., Ehrenberg, H., Rodriguezcarvajal, J. & Amador, O. Crystal structure and microstructure of some La2−xLiTiO3 oxides: an example of the complementary use of electron diffraction and microscopy and synchrotron X-ray diffraction to study complex materials. J. Am. Chem. Soc. 126, 3587–3596 (2004).

36. Chen, C. & Du, J. Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J. Am. Ceram. Soc. 98, 534–542 (2015).

37. Tu, Y. et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors. Acta Mater. 203, 116490 (2021).

38. He, B. et al. CAVD, toward better characterization of void space for ion transport analysis. Sci. Data 7, 153 (2020).

39. Maruyama, Y., Ogawa, H., Kamimura, M., Ono, S. & Kobayashi, M. Dynamical properties and electronic structure of [LiAl]TiO3 conductors. Ionics 14, 357–361 (2008).

40. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

41. Chen, C. & Du, J. Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J. Am. Ceram. Soc. 98, 534–542 (2013).

42. Xu, Y. et al. Enabling reversible phase transition on K0.9Mn0.7Ti2O7 for high performance potassium-ion batteries cathodes. Energy Storage Mater. 31, 20–26 (2020).

43. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

44. Seidel, S. & Poteggen, R. Group-subgroup schemes for MoNb3O9, Nb2O5, KFe2S2, ScNi5S8, PdCl2,NbCl3, and Csl2Cu5: 15 superstructures of 14/m allowing atom, charge or vacancy ordering. Z. Kristal. Cryst. Mater. 212, 29–39 (2000).

45. Aroyo, M. I. et al. Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Kristal. Cryst. Mater. 22, 11–25 (2006).

46. Hahn, T., Smueli, U., Arthur, J. W. (eds) International Tables for Crystallography, Vol. 1 (Reidel, 1983).

47. Közön, B. Transport in frustrated and disordered solid electrolytes. In: Andreoni W., Yip, S. (eds) Handbook of Materials Modeling: Applications: Current and Emerging Materials, Springer International Publishing, Cham, pp. 1–20 (2018).

48. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).

49. Li, A., Bueno-Perez, R., Wiggin, S. & Fairen-Jimenez, D. Enabling efficient exploration of metal–organic frameworks in the Cambridge Structural Database. CrystEngComm 22, 7152–7161 (2020).
ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (Nos. 11874254, 51622207) and the National Key Research and Development Program of China (No. 2017YFB0701600). All the computations are performed on the high-performance computing platform provided by the High-Performance Computing Center of Shanghai University.

AUTHOR CONTRIBUTIONS

Y.R. prepares the manuscript and analyzes the data. D.W., Z.Z., B.P., and Z.L. help to perform the analysis with constructive discussions. B.L., Y.R., and W.S perform the first-principles calculations and check the data. P.M. and B.H. develop the BVSE tool. Y.L., Z.L., X.L., and B.H.L. help to revise the manuscript. S.S. is the leader in this manuscript and contributes to the conception of the study. All authors participate in discussing the results and comments on the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41524-021-00653-y.

Correspondence and requests for materials should be addressed to Siqi Shi.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2022