REVIEW ARTICLE

Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles

Rob A. Schmitz#, Stijn H. Peeters, Wouter Versantvoort$,
Nunzia Picone, Arjan Pol, Mike S. M. Jetten† and Huub J. M. Op den Camp*,‡

Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands

Corresponding author: Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. Tel: +31 24 3652657; E-mail: h.opdencamp@science.ru.nl

One sentence summary: This review discusses the metabolic versatility of verrucomicrobial methanotrophs regarding the acidic volcanic ecosystems they thrive in and a comparison is made with the canonical proteobacterial methanotrophs.

Editor: Jan Roelof van der Meer
†Mike S.M. Jetten, http://orcid.org/0000-0002-4691-7039
‡Huub J.M. Op den Camp, http://orcid.org/0000-0003-1990-9030
#Rob A. Schmitz, https://orcid.org/0000-0001-5145-991X
$Wouter Versantvoort, https://orcid.org/0000-0001-5418-2741

ABSTRACT

Methanotrophs are an important group of microorganisms that counteract methane emissions to the atmosphere. Methane-oxidising bacteria of the Alpha- and Gammaproteobacteria have been studied for over a century, while methanotrophs of the phylum Verrucomicrobia are a more recent discovery. Verrucomicrobial methanotrophs are extremophiles that live in very acidic geothermal ecosystems. Currently, more than a dozen strains have been isolated, belonging to the genera Methylacidiphilum and Methylacidimicrobium. Initially, these methanotrophs were thought to be metabolically confined. However, genomic analyses and physiological and biochemical experiments over the past years revealed that verrucomicrobial methanotrophs, as well as proteobacterial methanotrophs, are much more metabolically versatile than previously assumed. Several inorganic gases and other molecules present in acidic geothermal ecosystems can be utilised, such as methane, hydrogen gas, carbon dioxide, ammonium, nitrogen gas and perhaps also hydrogen sulfide. Verrucomicrobial methanotrophs could therefore represent key players in multiple volcanic nutrient cycles and in the mitigation of greenhouse gas emissions from geothermal ecosystems. Here, we summarise the current knowledge on verrucomicrobial methanotrophs with respect to their metabolic versatility and discuss the factors that determine their diversity in their natural environment. In addition, key metabolic, morphological and ecological characteristics of verrucomicrobial and proteobacterial methanotrophs are reviewed.

Keywords: verrucomicrobial methanotrophs; geothermal ecosystems; methane; proteobacterial methanotrophs; hydrogen gas; metabolism; comparative genomic analysis

INTRODUCTION

The atmospheric concentration of methane (CH₄) has been increasing rapidly over the past quarter millennium due to anthropogenic activities (Etheridge et al. 1998; Turner, Frankenberg and Kort 2019). Currently, the amount of methane emitted from sources exceeds the amount of methane taken up by sinks, resulting in an imbalanced carbon cycle (Saunois et al. 2020).
Consequently, the present atmospheric methane concentration (1.86 ppmv) is 2.6 times higher than the preindustrial concentration (Etheridge et al. 1998; Cai et al. 2016; Etminan et al. 2016; Saunois et al. 2020). Since methane is a powerful greenhouse gas, atmospheric methane is now estimated to contribute approximately 16% to global warming (Saunois et al. 2016). Moreover, an increase in global temperature can induce additional release of methane to the atmosphere, e.g. through permafrost thawing, causing positive climate feedback that results in an acceleration of climate change (Dean et al. 2018). Hence, it is important to understand the microbial sources and sinks of methane (Stein 2020).

Each year, 548 to 678 Tg (10^{12} g) CH₄ is emitted from various sources into the atmosphere, of which 33%–54% and 46%–67% are from natural and anthropogenic origin, respectively (Kirschke et al. 2013; Dean et al. 2018). The majority of these sources contain methanogenic archaea that catalyse the final step of the biological degradation of organic matter by producing methane (Balch et al. 1979; Conrad 2020). The largest sources of methane are wetlands, which are anoxic, water-logged soils in which methanogenic archaea are present and active (Angel, Claus and Conrad 2012; Bridgham et al. 2013; Evans et al. 2019). Other natural sources of biogenic methane are aquatic systems (e.g. lakes), marine systems (especially coastal sediments), termites and wild animals (Jensen 1996; Reeburgh 2007; Bastviken et al. 2008; Brune 2010; Dean et al. 2018; Evans et al. 2019). Additional microbial processes that are implicated in methane production include conversion of methylphosphonates by Thau-marchaeota in the ocean and by cyanobacteria in freshwater and terrestrial ecosystems (Metcalf et al. 2012; Bižič et al. 2020). Natural sources in which methane is not produced microbially but through abiotic processes include wildfires and methane hydrates (located inside ocean floors and permafrost) (Buffett 2000; Vasilevá and Moišenko 2013; Dean et al. 2018). In addition, various geothermal systems such as fumaroles, mud volcanoes and hydrothermal vents emit 40 to 60 Tg CH₄ annually (Etiope 2009). Methane released from these geothermal systems either has a thermogenic origin (e.g. formed through the thermogenic breakdown of organic matter over millions of years), an abiogenic origin (e.g. formed through the reduction of CO₂ at high temperature in the Earth’s crust) or even a biogenic origin, produced by methanogens in the deep subsurface (Sherwood Lollar, Lacrampe-Couloume and Slater 2006; Tassi et al. 2012; Stolper et al. 2015). As is the case for several natural sources, various man-made systems emit significant amounts of methane produced by methanogenic archaea. These sources include livestock (e.g. ruminants), landfills and rice paddies (Themelis and Ulloa 2007; Carlson et al. 2017; Dean et al. 2018; Chang et al. 2019). Other anthropogenic, non-biological sources are comprised of fossil fuels (through mining, combustion and industry) and biofuel/biomass (through combustion) (Hao and Ward 1993; Heede 2014; Hanaki and Portugal-Pereira 2018). The predominant sink of methane occurs chemically in the troposphere by hydroxyl radicals (•OH) and to a lesser extent by chlorine and oxygen radicals (Allan, Struthers and Lowe 2007; Rigby et al. 2017). In various ecosystems, methane is produced in deeper anoxic layers that are covered by more oxidised sediments or water columns. In oxidised zones such as those present in wetlands, and notably at the oxic-anoxic interface, methanotrophic prokaryotes consume a major part of methane as energy and carbon source, prior to emission to the atmosphere (Brune, Frenzel and Cypionka 2000; Conrad 2009). These microorganisms therefore act as a biofilter for emissions of this potent greenhouse gas (La et al. 2018). In addition, specialised high-affinity methanotrophs present in soil seem to oxidise methane from the atmosphere, although only present at a very low concentration (Holmes et al. 1999; Cai et al. 2016; Treeit et al. 2019). Considering the role methanotrophs play in mitigating methane emissions, they are an important topic of study in understanding and counteracting global warming.

METHANOTROPHIC MICROORGANISMS

Aerobic methanotrophs conserve energy by oxidising CH₄ with O₂ to CO₂. The first aerobic methanotrophs were discovered and isolated more than a century ago (Kaserer 1905; Söhngen 1906). In the remainder of the twentieth century, numerous novel isolates were described, all belonging to the Alpha- and Gammaproteobacteria (Whittenbury, Phillips and Wilkinson 1970; Hanson and Hanson 1996). Methanotrophy is not restricted to oxic environments, but can take place anaerobically as well. Already decades ago, methane consumption in anoxic, sulfate-rich marine sediments was observed, but the microorganisms responsible for this process remained elusive (Barnes and Goldberg 1976; Reeburgh 1976; Iversen and Jorgensen 1985). At the beginning of the current century, a marine consortium of methane-oxidising archaea and sulfate-reducing bacteria was discovered, mediating sulfate-dependent methane oxidation (Boetius et al. 2000). This finding was followed by the discovery of a consortium of Methylomirabilis bacteria and Methanop-eredens archaea, capable of coupling anaerobic methane oxidation to denitrification of nitrate and nitrite (Raghoebarsing et al. 2006). Hereafter it was shown that both the bacterium and the archaeon were capable of methane oxidation independently. Methanoperedens archaea are able to couple methane oxidation to the reduction of nitrate (Haroon et al. 2013), iron (Beal, House and Orphan 2009; Ettwig et al. 2016; Cai et al. 2018) and manganese (Beal, House and Orphan 2009; Ettwig et al. 2016; Leu et al. 2020), whereas Methylomirabilis bacteria (of the candidate phylum NC10) couple methane oxidation to the reduction of nitrite (Ettwig et al. 2008, 2010; He et al. 2016; Versantvoort et al. 2018). Remarkably, Methylomirabilis bacteria possess the complete aerobic methane oxidation pathway and are postulated to produce oxygen internally by reducing nitrite to nitric oxide, which is subsequently dismutated into O₂ and N₂ (Ettwig et al. 2010, 2012). Most aerobic and anaerobic methanotrophs live in environments with moderate temperature and circumneutral pH (Bowman et al. 1993). Exceptions are several aerobic proteobacterial methanotrophs of the genera Methylocaapsa, Methylocella, Methylocystis and Methylosinus (Dedysh et al. 1998; Dunfield and Dedysh 2010; Kip et al. 2011). These bacteria are moderate acidophiles growing in acidic peat environments with a pH as low as 4.2 and are frequently found as intracellular symbionts of Sphagnum mosses (Raghoebarsing et al. 2005; Kostka, Weston and Glass 2016; Kox et al. 2018). In addition, methanotrophs of the gammaproteobacterial genus Methylothermus are thermophiles, growing in hot springs at temperatures up to 72 °C (Bonodrossy et al. 1999; Hirayama et al. 2011; Houghton et al. 2019). In 2005, methane oxidation was observed in volcanic soils of the Solfatara volcano (Campi Flegrei, Pozzuoli, Italy) that are characterised by a high temperature (50 to 95 °C) and an extreme acidity (pH 1.0) (Castaldi and Tedesco 2005). Two years later, thermoacidophilic methanotrophs were isolated from hot and acidic volcanic ecosystems at the Solfatara volcano (near Naples, Italy), in the Uzon Caldera (Kamchatka, Russia) and in Hell’s gate (Tikitere, New Zealand) (Dunfield et al. 2007; Pol et al. 2007; Islam et al. 2008). Surprisingly, phylogenetic analyses revealed that these microbes belong to the phylum Verrucomicrobia, refuting
the dogma that all aerobic methanotrophs are part of the phyllum Proteobacteria.

METHANOTROPHS OF THE PHYLUM VERRUCOMICROBIA

The first isolated verrucomicrobial methanotrophs were classified in the novel genus *Methylacidiphilum* (Op den Camp et al. 2009). These methanotrophs were observed to have temperature optima of 50 to 60°C (Dunfield et al. 2007; Pol et al. 2007; Islam et al. 2008). Currently, five *Methylacidiphilum* strains have been isolated that differ enough, based on DNA-DNA hybridisation and on the analysis of 16S rRNA and housekeeping genes, to be classified as separate species (Erikstad et al. 2019). *Methylacidiphilum fumariolicum* SolV, *Methylacidiphilum infernorum* V4, *Methylacidiphilum kamchatense* Kam1, *Methylacidiphilum* sp. Yel and *Methylacidiphilum* sp. Phi (Table 1). The geothermal ecosystems they were isolated from have an extremely low pH, primarily as a result of the biogenic formation of sulfuric acid (H₂SO₄) from the oxidation of hydrogen sulfide (H₂S) (Schoen and Rye 1970; Quatrin and Johnson 2018). Accordingly, the pH optima of all isolated *Methylacidiphilum* strains range from pH 2.0 to 3.0. Still, the pH range in which these strains can grow is much broader (Table 1). *Methylacidiphilum fumariolicum* SolV was shown to grow up to pH 6 when it was slowly adapted to higher pH (Mommadi et al. 2017b). Moreover, this strain was shown to grow even below pH 1 (Pol et al. 2007) (Table 1). Through current culture-independent molecular methods, clones related to the isolated strains were found at geothermal sites across the globe, of which several could be novel species (Fig. 1).

Since all isolated *Methylacidiphilum* strains were found in hot and acidic geothermal habitats, the question arose whether verrucomicrobial methanotrophs could have a more widespread distribution in habitats with different physicochemical parameters (Dunfield et al. 2007). Therefore, Sharp et al. (2014) conducted pyrosequencing of 16S rRNA genes on samples derived from geothermal habitats, acidic peat bogs and fens with a temperature range of 6.3 to 81.6°C and a pH range of 1.8 to 8.6. Surprisingly, 16S rRNA gene sequences of verrucomicrobial methanotrophs were detected in the full range of 22.5 to 81.6°C, but only below pH 5.0 (Sharp et al. 2014). From a sediment sample of 22°C and pH 2.6, the novel verrucomicrobial strain LP2A was enriched and isolated when incubated with methane as the sole energy source (Sharp et al. 2014). Interestingly, the 16S rRNA sequence of this newly isolated strain was only 90.6% identical to that of *Methylacidiphilum infernorum* V4, isolated from hot and acidic soil sediment (Dunfield et al. 2007). The novel mesophilic strain LP2A was subsequently placed in the novel genus *Methylacidimicrobium* within the phylum Verrucomicrobia (Van Teeseling et al. 2014). That same year, three additional mesophilic strains within this genus were isolated from geothermal soil at the Solfatara in Italy: *Methylacidimicrobium* tarantophyax 4AC, *Methylacidimicrobium* fagopyrum 3C and *Methylacidimicrobium* cyclophantes 3B (Van Teeseling et al. 2014) (Fig. 1). These acidophiles have pH growth optima of 1.0 to 3.0, while strain 4AC can even grow at pH 0.5 (Van Teeseling et al. 2014) (Table 1). The major difference between *Methylacidiphilum* and *Methylacidimicrobium* strains was thought to be the growth temperature. *Methylacidimicrobium* strains were reported to be mesophiles, with temperature growth optima of 30 to 44°C and the apparent inability to grow at temperatures above 49°C (Sharp et al. 2014; Van Teeseling et al. 2014). However, recently, *Methylacidimicrobium* thermophilum AP8 was isolated from Pantelleria island (Italy) with a temperature optimum of 50°C (Picone 2020), questioning the clear temperature-based division between *Methylacidiphilum* and *Methylacidimicrobium* strains.

Apart from the strains isolated from geothermal soils in Italy, Russia and New-Zealand, 16S rRNA gene sequences belonging to strains of the *Methylacidimicrobium* genus were detected in hot springs and geothermal soil in other parts of the world (Fig. 1). In addition, a metagenome-assembled genome (MAG) representing a novel verrucomicrobial methanotroph genus and species, *Methylacidothermus pantelleriae* PQ17, was obtained through sampling of geothermal soil on Pantelleria island (Picone et al. 2020a). Interestingly, verrucomicrobial methanotrophs do not seem to be restricted to geothermal habitats (Pagaling, Yang and Yan 2014). Clones related to *Methylacidimicrobium* strains were abundantly present in biofilms in the crown of corroded concrete sewage pipes on Hawaii, which suggests that verrucomicrobial methanotrophs have adapted to man-made systems (Pagaling, Yang and Yan 2014) (Fig. 1). These sewage pipes are characterised by a low pH and the presence of methane and sulfur compounds (e.g. H₂S), which could explain the abundance of verrucomicrobial methanotrophs in this environment. Sequencing of samples from other acidic, methane-rich environments could reveal whether verrucomicrobial methanotrophs are present in other non-geothermal habitats.

Besides the importance of verrucomicrobial methanotrophs in the environment, they could also be relevant in biotechnology and industry, as they are capable of producing valuable molecules such as methanol, glycogen, polyhydroxybutyric acid, vitamins, compatible solutes and (thermostable) enzymes (Kalyuzhnaya, Puri and Lidstrom 2015; Strong, Xie and Clarke 2015; Bodelier et al. 2019). Although still in its infancy, notable examples of the biotechnological potential of verrucomicrobial methanotrophs are the recently shown improved methanol production (63% mole methanol produced per mole methane) by *Methylacidiphilum fumariolicum* SolV (Hogendoorn 2020; Hogendoorn et al. 2020) and the purification of a thermostable, high-affinity [NiFe] hydrogenase from the same bacterium (Schmitz et al. 2020a).

KEY SIMILARITIES AND DIFFERENCES BETWEEN VERRUCOMICROBIAL AND PROTEOBACTERIAL METHANOTROPHS

Proteobacterial methanotrophs can be found in diverse oxic environments in which methane is present, such as wetlands, soil, peat lands, marine sediments, landfills and rice paddies (Bodelier et al. 2019). On the contrary, verrucomicrobial methanotrophs are almost exclusively found in acidic (pH < 3.5) geothermal systems. Whether proteobacterial methanotrophs are present in such acidic habitats is unknown. However, phylogenetic analyses of pmoA genes present in acidic geothermal soil and mud pots show clustering with proteobacterial pmoA gene sequences (Pol et al. 2007; Gagliano et al. 2014). This finding suggests that verrucomicrobial and proteobacterial methanotrophs could share habitats, which could ultimately be proven by the isolation of a proteobacterial methanotroph from an acidic geothermal ecosystem where *Methylacidiphilum* or *Methylacidimicrobium* were isolated from. Although mostly living in vastly different habitats, they share their preference for the
Table 1. Summary of the pH and temperature optima, isolation location and verified growth substrates of the isolated verrucomicrobial methanotrophs discussed in this review.

Strain	pH optimum (and range)	T optimum (°C) (and range)	Verified growth substrates	Isolation location	References
Methylacidiphilum fumariolicum SolV	2 (0.8–6.0)	55 (40–65)	CH₄, H₂, methanol, propane, ethane	Acidic thermal mudpot, Solfatara, Italy	Pol et al. 2007; Mohammadi et al. 2017a; Picone et al. 2020
Methylacidiphilum infernorum V4	2–2.5 (1.0–6.0)	60 (40–60)	CH₄, methanol	Acidic thermal soil, Tikitere, New Zealand	Dunfield et al. 2007; Hou et al. 2008
Methylacidiphilum kamchatkense Kam1	2–2.5 (2.0–5.0)	55 (37–60)	CH₄, methanol	Acidic thermal spring, Kamchatka, Russia	Islam et al. 2008
Methylacidiphilum sp. Phi	3	55–65	CH₄	Acidic hot spring, Makiling, The Philippines	Erikstad et al. 2019
Methylacidiphilum sp. Yel	2.8	50	CH₄	Acidic hot spring, Yellowstone, USA	Erikstad et al. 2019
Methylacidimicrobium tartarophylax 4AC	1–3 (0.5–5.5)	38 (?–43)	CH₄, H₂, methanol	Acidic soil, Solfatara, Italy	Van Teeseling et al. 2014; Mohammadi et al. 2019
Methylacidimicrobium cyclopophantes 3B	1.5–3 (0.6–5.5)	44 (?–49)	CH₄, methanol	Acidic soil, Solfatara, Italy	Van Teeseling et al. 2014
Methylacidimicrobium fagopyrum 3C	1.5–3 (0.6–5.5)	35 (?–39)	CH₄, methanol	Acidic soil, Solfatara, Italy	Van Teeseling et al. 2014
Methylacidimicrobium sp. LP2A	3.1	30 (17–37)	CH₄	Acidic mud pool, Reporoa, New Zealand	Sharp et al. 2014
Methylacidimarcescens thermophilum AP8	3–5 (1.5–5.5)	50 (30–55)	CH₄, H₂	Acidic geothermal soil, Pantelleria island, Italy	Picone 2020

Figure 1. (A) Overview 16S rRNA gene phylogenetic tree of Verrucomicrobia, Lentisphaerae, Chlamydiae, Planctomycetes and methanotrophic Alpha- and Gammaproteobacteria. Blue shading indicates species that are methanotrophic. Accession numbers are indicated between brackets. 16S rRNA gene alignment was constructed using SINA v1.2.11 (Pruesse, Peplies and Glöckner 2012) and a tree that was constructed using FastTree v2.1 (Price, Dehal and Arkin 2010) with 1000 bootstraps and substitution model GTR-gamma. The tree was visualised using iTOL v5.5.1 (Letunic and Bork 2007). Bootstrap values are indicated as a proportion of 1000 re-samplings ranging from 1 to 100. (B) Detailed 16S rRNA gene tree of the verrucomicrobial methanotrophs. 16S rRNA gene alignment of verrucomicrobial methanotrophs together with an outgroup of Planctomycetes constructed using SINA v1.2.11 (Pruesse, Peplies and Glöckner 2012) and a tree that was constructed using FastTree v2.1 (Price, Dehal and Arkin 2010) with 1000 bootstraps and substitution model GTR-gamma. The tree was visualised using iTOL v5.5.1 (Letunic and Bork 2007). Bootstrap values are indicated as a proportion of 1000 re-samplings ranging from 1 to 100. Isolation location and accession number are indicated after each strain.
greenhouse gas methane. Besides this metabolic trait, several noteworthy differences exist between the two groups. Classically, an important property for the classification of proteobacterial methanotrophs is the type of intracytoplasmic membrane (ICM) structures they have in electron micrographs, either visible as membrane pairs or vesicular discs (Davies and Whittenbury 1970). In verrucomicrobial methanotrophs, ICM structures are mostly absent, although membrane stacks have been found in *Methylacidimicrobium fagopyrum* 3C and also in some cells of *Methylacidiphilum infernorum* V4 tubular membrane structures were observed (Dunfield et al. 2007; Van Teeseling et al. 2014). Another interesting difference between verrucomicrobial and proteobacterial methanotrophs are the phospholipid fatty acids (PLFAs) of their membranes (Bodelier et al. 2009; Op den Camp et al. 2009). Membranes of verrucomicrobial methanotrophs are almost exclusively made up of saturated fatty acids, whereas membranes of proteobacterial methanotrophs are mainly composed of unsaturated fatty acids (Bodelier et al. 2009; Op den Camp et al. 2009; Erikstad et al. 2019). Verrucomicrobial methanotrophs probably require a saturated membrane to minimise proton permeability in an extremely acidic environment (Siliakus, van der Oost and Kengen 2017).

Remarkably, the genome sizes of verrucomicrobial and proteobacterial methanotrophs differ significantly. The former typically have a genome size of 2.2 to 2.5 Mbp (Hou et al. 2008; Anvar et al. 2014; Kruse et al. 2019; Cremers et al. 2020) while the latter have larger genomes of 3.3 to 5.1 Mbp (Ward et al. 2004; Chen et al. 2010; Stein et al. 2010; Boden et al. 2011; Svenning et al. 2011; Vuilleumier et al. 2012). The larger genomes of proteobacterial methanotrophs could render them better adapted to more diverse environments in comparison with verrucomicrobial methanotrophs (Cobo-Simón and Tamames 2017). Interestingly, genome comparison of eleven verrucomicrobial methanotrophs reveals 317 core gene clusters that are shared by all these verrucomicrobial strains, whereas the same analysis of eleven proteobacterial methanotrophs reveals 74 core gene clusters shared by all these proteobacterial strains (Fig. 2). The smaller amount of core gene clusters shared by proteobacterial methanotrophs could be explained by the fact that these microbes are found in very distinct habitats under various circumstances. The verrucomicrobial methanotrophs, on the other hand, are adapted to a specific niche. The composition of Clusters of Orthologous Groups of proteins (COGs) of the core genomes of verrucomicrobial and proteobacterial methanotrophs show a similar distribution (Fig. 2). A notable example is the relatively large percentage unique gene clusters involved in cell wall/membrane/envelope biogenesis (COG group M) found in verrucomicrobial methanotrophs. This might be explained by the harsh environment in which these microbes thrive, which could require additional machinery to cope with acid stress.

Although verrucomicrobial methanotrophs have smaller genomes, genomic analyses suggest verrucomicrobial methanotrophs are metabolically quite versatile microorganisms. In this review, we discuss the physiological and biochemical knowledge that has been obtained on the key metabolic pathways of verrucomicrobial methanotrophs since their discovery 13 years ago. As such, a connection between the metabolic potential in the genome and experimental observations is made. Metabolic genes investigated in this review involved in the oxidation of methane, ammonia, hydrogen and sulfur compounds, nitrogen assimilation, the respiratory chain and the synthesis of tetrahydrofolate and menaquinone can be found in Table S1 (Supporting Information).

METABOLIC VERSATILITY OF VERRUCOMICROBIAL METHANOTROPHS

Initially, the first isolated strains appeared to be obligate methanotrophs, growing only on methane and methanol (CH₃OH) (Op den Camp et al. 2009). In fact, all described *Methylacidiphilum* and *Methylacidimicrobium* strains were isolated on methane (Dunfield et al. 2007; Pol et al. 2007; Islam et al. 2008; Sharp et al. 2014; Erikstad et al. 2019). However, after more than a decade of additional experimental research, we now know that verrucomicrobial methanotrophs are actually metabolically quite versatile microorganisms, able to metabolise a variety of compounds present in volcanic ecosystems, which together could influence methanotrophy.

Carbon and nitrogen assimilation

Similar to any other microorganism, methanotrophs need to assimilate carbon and nitrogen to generate biomass (Levican et al. 2008). Methanotrophs use either formaldehyde (CH₂O) or CO₂ as a carbon source to generate biomass (Hanson and Hanson 1996). In general, gammaproteobacterial methanotrophs assimilate formaldehyde via the ribulose monophosphate pathway, whereas alphaproteobacterial methanotrophs employ the serine pathway, in which both formaldehyde and CO₂ are used as a carbon source (Chistoserdova, Kalyuzhnaya and Lidstrom 2009). Verrucomicrobial methanotrophs lack a few essential genes for the complete serine cycle (i.e. hydroxypropionate reductase and malyl-CoA lyase) or ribulose monophosphate pathway (i.e. 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuliosomerase), but possess genes encoding the complete set of enzymes of the Calvin-Benson-Bassham (CBB) cycle (Khadem et al. 2011; Van Teeseling et al. 2014). In this cycle, the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) is involved and CO₂ is used as the sole carbon source. Several proteobacterial methanotrophs also harbour genes involved in the CBB cycle, although activity of this cycle has not yet been experimentally validated in these bacteria (Stein, Roy and Dunfield 2012; Khmelevina et al. 2018). Through ¹³C stable isotope measurements, *Methylacidiphilum fumarolicum* SolV and three *Methylacidimicrobium* strains were shown to indeed exclusively use CO₂ as carbon source, not methane-derived formaldehyde (Khadem et al. 2011; Van Teeseling et al. 2014). The autotrophic CO₂ fixation via the CBB cycle was also experimentally shown for the denitrifying methanotroph *Ca. Methylomirabilis oxyfera* (Rasigrf et al. 2014). In geothermal habitats, high concentrations of ammonium can be present (Khadem et al. 2010; Holloway et al. 2011; Mohammadi et al. 2017b). Although methanotrophs cannot use ammonium as a nitrogen source, this reduced form of fixed nitrogen is the preferred inorganic nitrogen source as it can be directly assimilated (Wang et al. 2016). Indeed, all known verrucomicrobial methanotrophs carry a gene encoding a highly-conserved ammonium transporter. Central molecules in nitrogen assimilation are glutamate and glutamine, from which other amino acids and purines and pyrimidines can be synthesised (Prusiner and Stadtman 1973; Zalkin and Smith 1998). Genes encoding glutamate dehydrogenase, glutamine synthetase and glutamate synthase are found in all isolated verrucomicrobial methanotrophs. The utilisation of these three enzymes for nitrogen assimilation has been validated experimentally in several proteobacterial methanotrophs (Murrell and Dalton 1983a; Lees, Owens and Murrell 1991).

Although ammonium is often present in the geothermal environment, exponentially growing microorganisms can
rapidly deplete this source of nitrogen from their direct surroundings (Van Heeswijk, Westerhoff and Boogerd 2013). If insufficient ammonium is present in the environment, many microorganisms have the possibility to take up nitrate or nitrite from the environment and invest energy to produce ammonium (Moreno-Vivián et al. 1999). All isolated Methylacidiphilum strains possess a gene encoding a transporter that could transport nitrate and/or nitrite across the membrane. In addition, they harbour a gene encoding a cytoplasmic NAD(P)H-dependent nitrate reductase that reduces nitrate to nitrite and a cytoplasmic NAD(P)H-dependent nitrite reductase that catalyses the 6-electron reduction to ammonium. The assimilatory reduction of nitrate to ammonium is catalysed at the expense of four NAD(P)H molecules and is therefore only used when ammonium in the environment is scarce. In several Methylacidimicrobium strains, the pathway for nitrate assimilation is unclear, or could be absent.

All isolated verrucomicrobial methanotrophs possess the nifHDK operon, indicating their ability to fix N2 from the atmosphere. Methylacidiphilum fumarolicum SolV and Methylacidiphilum kamchatkense Kam1 were experimentally shown to use N2 as nitrogen source (Islam et al. 2008; Khadem et al. 2010). Diazotrophy has also been shown for several proteobacterial methanotrophs (Murrell and Dalton 1983b; Khmelenina et al. 2018). Although the ability to obtain nitrogen from the atmosphere provides a major advantage in an environment devoid of fixed nitrogen molecules, the fixation of nitrogen gas is very energy-demanding, requiring 16 ATP molecules per N2 molecule fixed (Dixon and Kahn 2004). As a result, the maximum specific growth rate of Methylacidiphilum fumarolicum SolV with N2 as nitrogen source is 2.8 times slower than when supplied with ammonium (Khadem et al. 2010). The absence of fixed nitrogen in the environment might therefore lead to a reduction in growth of verrucomicrobial methanotrophs and therefore to increased methane emissions.

Oxidation of methane and other hydrocarbons

Significant amounts of methane are emitted from mud pools, hot springs and fumaroles in terrestrial geothermal systems (Etiope and Klusman 2002; Castaldi and Tedesco 2005; Kvenvolden and Rogers 2005). Typically, geothermal gas consists of 0.01 to 1% (v/v) methane, although much higher concentrations have been detected (Giggenbach 1995; Etiope and Klusman 2002; D’Alessandro et al. 2009; Dunfield and Dedysh 2010). Under suitable conditions, verrucomicrobial methanotrophs could represent a significant filter against emissions of methane to the atmosphere in these environments (Op den Camp et al. 2009; Venturi et al. 2019). Studying in which circumstances verrucomicrobial methanotrophs consume more methane than in others is worth investigating to elucidate which factors enhance or inhibit methane oxidation.

The first step in methane oxidation is the conversion of methane to methanol (CH3OH), which can be catalysed by two genetically unrelated enzymes: the membrane-bound copper-containing particulate methane monooxygenase (pMMO) and the cytosolic iron-containing methane monooxygenase (sMMO) (Ross and Rosenzweig 2017). Several proteobacterial methanotrophs harbour genes encoding both the soluble and the particulate methane monooxygenase (Semrau, DiSpirito and Yoon 2010). However, none of the verrucomicrobial methanotrophs carry a gene encoding sMMO. Methylacidiphilum strains possess
three complete but distinct pmoCAB operons and therefore in all probability oxidise methane to methanol via pMMO (Hou et al. 2008; Anvar et al. 2014; Van Teeseling et al. 2014; Kruse et al. 2019) (Figs 3 and 4). As exception, Methylacidiphilum sp. Yel only carries a single complete pmoCAB operon most closely related to the pmoCAB3 of the other Methylacidiphilum strains. All pMMOs characterised thus far show an α/$\beta$$_3$ oligomeric state, consisting of the two membrane-spanning subunits PmoC and PmoA and a predominantly periplasmic subunit PmoB, which is tethered to the membrane by two transmembrane helices (Lieberman and Rosenzweig 2005; Ross and Rosenzweig 2017). The enzyme activates O$_2$ to break the C-H bond of methane, producing methanol and water, via a yet unresolved mechanism (Ross and Rosenzweig 2017; Ross et al. 2019) (Fig. 4). Interestingly, similarities between two pmo operon structures of proteobacterial and verrucomicrobial methanotrophs indicate evolution from a common ancestor (Op den Camp et al. 2009; Van Teeseling et al. 2014). Besides, the most distant pmoCAB3 operon seems to be obtained through horizontal gene transfer from an unknown microorganism (Dunfield et al. 2007). In fact, a large variety of key metabolic genes of verrucomicrobial methanotrophs are thought to be derived via horizontal gene transfer, especially from Proteobacteria (Sharp et al. 2013).

In Methylacidiphilum fumarolicum SolV, the oxygen concentration seems to regulate the expression of the pmoCAB1 and pmoCAB2 operons (Khadem et al. 2012). Notably, the pmoCAB3 operon is barely expressed in Methylacidiphilum fumarolicum SolV when grown on methane (Khadem et al. 2012). Recently, Methylacidiphilum fumarolicum SolV was shown to grow on ethane and propane but not on butane (Picone et al. 2020b). pmoCAB3 could be specifically tuned towards the oxidation of alkanes, enabling Methylacidiphilum fumarolicum SolV to utilise gaseous hydrocarbons other than methane (Picone et al. 2020b). However, Methylacidiphilum sp. Yel only carries pmoCAB3 and is able to grow on methane, suggesting the enzyme encoded by this operon is at least also involved in the oxidation of methane (Erikstad et al. 2019). In contrast to Methylacidiphilum strains, Methylacidimicrobium strains and Ca. ‘Methylacidithermus pantelleriae’ PQQ17 possess a single pmoCAB operon, related to the closely related pmoCAB1 and pmoCAB2 types of Methylacidiphilum species. As exception, Methylacidimicrobium thermophilum AP8 and Methylacidimicrobium sp. LP2A possess two almost identical operons (Sharp et al. 2014).

For a long time, the well-studied calcium-dependent methanol dehydrogenase (MDH) MxaFI was thought to be the key enzyme for methanol oxidation in both methanotrophs and methylo trophs (Anthony 2004). This periplasmic enzyme contains a pyrroloquinoline quinone (PQQ) prosthetic group at the catalytic site and converts methanol to formaldehyde (CH$_2$O) (Anthony 2004; Keltjens et al. 2014). The alpha-proteobacterial methylo troph Methyllobacterium extorquens AM1 carries genes encoding MxaFI and an MDH homolog named XoxF (Nakagawa et al. 2012). A ΔmxaF mutant strain was unable to grow on methanol when supplied with calcium, but growth on methanol was restored when cells were supplied with the lanthanide lanthanum (La$^{3+}$) in the medium. Similarly, Methylacidiphilum fumarolicum SolV is only able to grow on methane when lanthanide-containing mud pot water (from the environment where the strain was isolated from) is added to the growth medium, or when the mineral medium contains micromolar concentrations of one or more lanthanides (Pol et al. 2014). These lanthanides are essential for verrucomicrobial methanotrophs when using methanol as an energy source, because they do not possess genes encoding the canonical calcium-dependent MxaFI, but a gene encoding the novel lanthanide-dependent MDH (XoxF) (Pol et al. 2014) (Fig. 3). Remarkably, the biological relevance of these rare earth elements was previously deemed unthinkable (Lim and Franklin 2004). Genomic analyses surprisingly revealed xoxF to be widespread in methylo trophs and methanotrophs, and is classified into five different clades (Chistoserdova 2011; Keltjens et al. 2014; Pol et al. 2014; Wu et al. 2015; Versantvoort et al. 2018; Kato et al. 2020). In fact, XoxF-type MDHs are actually much more abundant in nature than the MxaFI-type (Keltjens et al. 2014, Chistoserdova and Kalyuzhnaya 2018). The MxaF protein (large subunit) seems to have descended from a XoxF prototype (Keltjens et al. 2014) and all methylo trophs that harbour genes encoding MxaFI also possess a gene encoding the XoxF-type MDH (Chistoserdova and Kalyuzhnaya 2018). Dissolved lanthanide concentrations in most environments are very low (nM range) and its limitation may have driven the evolutionary adaptation of the proteobacterial methylo trophs towards an MDH variant that depends on calcium, present in excess. The discovery of lanthanide-dependent XoxF-type MDHs has led to a completely new field of research, including the differential regulation in bacteria containing both types of MDHs (Zheng et al. 2018; Daumann 2019; Good et al. 2019; Picone and Op den Camp 2019; Good et al. 2020; Yaniprat et al. 2020). As example, the alphaproteobacterium Methyllobacterium extorquens AM1 carries genes encoding both MDH types and was shown to upregulate xoxF expression already at a lanthanide concentration of 2.5 nM and downregulate mxaF expression at a lanthanide concentration of 25 nM or above (Yu et al. 2016; Daumann 2019).

Electrons yielded from methanol oxidation by XoxF are first transferred to a dedicated cytochrome partner (Zheng et al. 2018; Versantvoort et al. 2019) homologous to cytochrome c$_{558}$, the electron acceptor of MxaF-type MDH (Anthony 1992) (Fig. 4). In Methylacidiphilum strains, this cytochrome is a fusion protein of the cytochrome c protein XoxG and the periplasmic substrate binding protein XoxJ, but they also harbour a separate xoxF gene. In Methylacidimicrobium strains, XoxG and XoxJ are encoded by two separate genes. Methylacidiphilum strains possess only one XoxF enzyme, whereas Methylacidimicrobium strains carry genes encoding for a copy of both the XoxF1 and XoxF2 clade that are less than 50% identical, which suggests that they could be expressed differentially under different conditions (Chistoserdova 2011; Keltjens et al. 2014; Picone and Op den Camp 2019). In addition, Methylacidimicrobium sp. LP2A harbours two genes encoding XoxF1 that are 96% identical to each other, presumably as a result of a relatively recent gene duplication (Van Teeseling et al. 2014; Op den Camp et al. 2018).

Similar to MxaF-type MDH, XoxF-type MDH also contains a PQQ cofactor, and its overall structure is conserved in comparison with the MxaF-type MDH (Keltjens et al. 2014). From Methylacidiphilum fumarolicum SolV, cultivated on lanthanide-containing mud pot water, XoxF was crystallised as a homodimer with a cerium ion coordinating with the PQQ cofactor (PDB: 4MAE; Pol et al. 2014). In addition, XoxF-type MDHs with a europium or lanthanum ion in the active site were crystallised (Deng, Ro and Rosenzweig 2018; Jahn et al. 2018; Good et al. 2020). The lanthanide coordinating with the PQQ cofactor of XoxF seems to render this enzyme catalytically more efficient compared to MxaF, since lanthanides are stronger Lewis acids than calcium, facilitating the hydride transfer (Keltjens et al. 2014; Daumann 2019). MxaF-type MDHs produce formaldehyde from methanol oxidation, but XoxF was shown to produce formate (HCOOH) in vitro (Pol et al. 2014). Moreover, XoxF
Figure 3. 16S rRNA gene phylogenetic tree of verrucomicrobial methanotrophs and the presence or absence of genes involved in the oxidation of hydrocarbons, ammonia, hydrogen and sulfur compounds. Planctomycetes were used as an outgroup. Sequences were aligned using SINA v1.2.11 (Pruesse, Peplies and Glöckner 2012) and a tree was constructed using FastTree v2.1 (Price, Dehal and Arkin 2010) with 1000 bootstraps and substitution model GTR-GAMMA. The tree was visualised using iTOL v5.5.1 (Letunic and Bork 2007). Bootstrap values are indicated as a proportion of 1000 re-samplings ranging from 1 to 100. Presence of genes of interest was examined using BLASTp and of each hit the amino acid sequence was manually inspected for domains and identity. The result table was transformed to a binary iTOL dataset and both the 16S tree and the table were visualised using iTOL v5.5.1. pMMO: particulate methane monooxygenase; XoxF-MDH: lanthanide-dependent methanol dehydrogenase; FolD: methylene-tetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Ftl: formate-tetrahydrofolate ligase; FDH: formate dehydrogenase; HAO: hydroxylamine oxidoreductase; NOR: nitric oxide reductase; NIR: nitrite reductase; Hyd: type of [NiFe] hydrogenase (based on Søndergaard, Pedersen and Greening 2016); MTO: methanethiol oxidase; SQR: sulfide:quinone oxidoreductase.

Figure 4. Possible pathways for methane oxidation in verrucomicrobial methanotrophs. pMMO oxidises methane to methanol (CH₃OH), while an unknown electron donor is oxidised. The lanthanide-dependent XoxF methyl alcohol dehydrogenase (MDH) could subsequently oxidise methanol to either formate (HCOOH) or formaldehyde (CH₂O), while donating electrons to its redox partner XoxGJ. If formaldehyde is produced it could diffuse into the cytoplasm and be converted to CO₂ by the NAD⁺-dependent formate dehydrogenase (FDH). CO₂ is fixed into biomass via the Calvin-Benson-Bassham (CBB) cycle. Alternatively, if formaldehyde is produced, it could bind to tetrahydrofolate (H₄F) spontaneously or enzymatically by an unidentified enzyme, to form methylene-tetrahydrofolate (CH₂-H₄F). The enzyme FolD converts CH₂-H₄F to methylene-tetrahydrofolate (H₂CH₂-F), which is subsequently converted to formyl-tetrahydrofolate (CHO-H₄F). This product is then converted to H₄F and formate, while producing ATP. P: periplasm; C: cytoplasm.

from Methylacidiphilum fumariolicum SolV can oxidise formaldehyde with high affinity and MxaFI-type MDHs in general are also able to oxidise formaldehyde (Keltjens et al. 2014). However, recently the XoxF5 of the alpha proteobacterium Methylobacterium extorquens AM1 was shown to oxidise methanol to formaldehyde (CH₃OH), while donating electrons to its redox partner XoxGJ, if formaldehyde is produced it could diffuse into the cytoplasm and be converted to CO₂ by the NAD⁺-dependent formate dehydrogenase (FDH). CO₂ is fixed into biomass via the Calvin-Benson-Bassham (CBB) cycle. Alternatively, if formaldehyde is produced, it could bind to tetrahydrofolate (H₄F) spontaneously or enzymatically by an unidentified enzyme, to form methylene-tetrahydrofolate (CH₂H₂-F). The enzyme FolD converts CH₂-H₄F to methylene-tetrahydrofolate (CH₂H₂-F), which is subsequently converted to formyl-tetrahydrofolate (CHOH-F). This product is then converted to H₄F and formate, while producing ATP. P: periplasm; C: cytoplasm.
H$_4$F. All verrucomicrobial methanotrophs carry a gene encoding the bifunctional enzyme FolD (Fig. 3), which is known to convert methylene-H$_4$F to methenyl-H$_4$F, and produce NAD(P)H, similar to the methylene-H$_4$F dehydrogenase (Pawelek and MacKenzie 1998; Hou et al. 2008; Chistoserdova et al. 2011; Eadsworth, Maluf and Hunter 2012). Subsequently, FolD acts as a methenyl-H$_4$F cyclohydrolase, converting methenyl-H$_4$F to formyl-H$_4$F (Fig. 4). Ultimately, the enzyme formate-tetrahydroformate ligase Ftl, found in all verrucomicrobial methanotrophs, could convert formyl-H$_4$F to tetrahydrofolate and formate, while producing one ATP molecule (Marx, Laukel and Vorholt 2003). If this pathway oxidises formaldehyde instead of XoxF, fewer electrons are donated to the cytochrome c protein XoxGJ, which is postulated to donate its electrons to the terminal oxidase to fuel respiration (Versantvoort et al. 2019). Nevertheless, the production of formaldehyde instead of formate by XoxF seems logical since formaldehyde oxidation via the H$_4$F pathway provides valuable reducing equivalents in the form of NAD(P)H and ATP. Finally, in the last step of aerobic methane oxidation in verrucomicrobial methanotrophs, formate is oxidised to CO$_2$ (Pol et al. 2014). All verrucomicrobial methanotrophs possess one complete fdsDAG operon, encoding a cytosolic formate dehydrogenase that is thought to oxidise formate, while producing NADH needed for the generation of biomass (Op den Camp et al. 2018). CO$_2$ can ultimately be assimilated via the CBB cycle. The key enzyme RuBisCO found in verrucomicrobial methanotrophs forms a novel cluster within the form I RuBisCO phylogenetic tree and is most closely related to form IC RuBisCOs found in various Proteobacteria (Khadem et al. 2011).

Coping with toxic nitrogen compounds from ammonia oxidation

In the geothermal habitat where *Methylacidiphilum fumariolicum* SoIV was isolated from, high concentrations (1–28 mM) of ammonium (NH$_4^+$) are present (Khadem et al. 2010; Mohammadi et al. 2017b). Methane and ammonia (NH$_3$) are highly-reduced molecules with structural similarities. Nitrifying microorganisms make a living from the oxidation of ammonia, initiated via the oxidation of ammonia to hydroxylamine (NH$_2$OH, catalysed by ammonia monoxygenase (AMO) (Klotz and Stein 2008). AMO is a membrane-bound copper-dependent enzyme homologous to pMMO of methanotrophs (Tavormina et al. 2011). Consequently, many nitrifiers can oxidise methane and many methanotrophs can oxidise ammonia (Bédard and Knowles 1989). Methanotrophs use ammonium as nitrogen source; however, ammonia in the periplasm can also fortuitously be oxidised by pMMO to hydroxylamine, which is a toxic compound (Nyerges and Stein 2009). The affinity of pMMO for ammonia decreases with increasing CH$_4$ concentrations, which indicates competitive substrate inhibition (Nyerges, Han and Stein 2010). Hydroxylamine could impede various cellular processes by damaging proteins or DNA and strongly inhibit MDHs (Kaplan and Ciotti 1953; Duine and Frank 1980; Versantvoort et al. 2020). Therefore, verrucomicrobial and proteobacterial methanotrophs have developed mechanisms to balance the assimilation of ammonium and the detoxification of deleterious nitrogen compounds.

In order to detoxify hydroxylamine, many methanotrophs possess a gene encoding a hydroxylamine oxidoreductase (HAO), oxidising hydroxylamine to nitric oxide (NO) (Fig. 5) (Caranto and Lancaster 2017; Versantvoort et al. 2020). All known *Methylacidiphilum* strains carry a gene encoding an HAO (Fig. 3), as do many proteobacterial methanotrophs (Campbell et al. 2011; Stein and Klotz 2011; Versantvoort et al. 2020). In contrast, HAO is not found in any of the *Methylacidimicrobium* strains and as such, these strains might be more sensitive to ammonium (Stein 2018). Alternatively, *Methylacidimicrobium* strains could have developed a different strategy to deal with ammonia that does not require an HAO, analogous to the gammaproteobacterial methanotroph *Methylomonas* methanica. This methanotroph also lacks an HAO-like protein (Campbell et al. 2011) and was unable to oxidise ammonia to nitrite, although its methane oxidation rate was inhibited by ammonia (Nyerges and Stein 2009). This could indicate that its pMMO is unable to oxidise ammonia to hydroxylamine or the formed hydroxylamine is converted to a product by an unknown enzyme other HAO. In either case, an HAO-like protein is not necessary to deal with ammonia toxicity. In nitrifiers, electrons yielded from the oxidation of hydroxylamine are transferred to the quinone pool for energy conservation via the hydroxylamine:ubiquinone reductase module (Klotz and Stein 2008). However, methanotrophs are thought to lack this module. Still, per ammonia molecule oxidised, four electrons are yielded when ammonia is oxidised to nitrite (Fig. 5). Since two electrons are needed to activate O$_2$ for the oxidation of ammonia to hydroxylamine by pMMO, the remaining two electrons might be used at the terminal oxidase for energy conservation (Stein and Klotz 2011).

Nitric oxide produced by HAO is a toxic compound. However, when ammonia is oxidised by *Methylacidiphilum fumariolicum* SoIV under aerobic conditions, nitrite is observed as the main end product (Mohammadi et al. 2017b), similar to aerobic ammonia oxidisers and various proteobacterial methanotrophs (Nyerges, Han and Stein 2010; Campbell et al. 2011; Lehtovirta-Morley 2018). These cases necessitate an additional enzyme that oxidises the NO produced by HAO to nitrite. The nature of this nitric oxide-oxidising enzyme in methanotrophs and ammonia-oxidisers is unknown, although it is postulated that the copper-dependent nitrite reductase NirK could function in the opposite direction to oxidise NO to nitrite (Caranto and Lancaster 2017). In addition, NO can rapidly react with oxygen resulting in the formation of nitrate and nitrite in aqueous solutions (Udert, Larsen and Gujer 2005; Hughes 2008) and therefore the production of nitrite observed for *Methylacidiphilum fumariolicum* SoIV could also be non-enzymatic (Fig. 5). Under anoxic conditions, nitrite reduction rates in *Methylacidiphilum fumariolicum* SoIV are higher compared with rates under oxic conditions (Mohammadi et al. 2017b). As such, the alternative electron acceptor nitrite could be converted to NO by a nitrite reductase, of which one or two orthologues are present in most verrucomicrobial methanotrophs (Fig. 3). Nitric oxide can subsequently be reduced to N$_2$O, as was shown for the gammaproteobacterial methanotrophs *Methylomonas album* and *Methylomonas denitrificans* and for *Methylacidiphilum fumariolicum* SoIV (Nyerges, Han and Stein 2010; Kits, Klotz and Stein 2015; Mohammadi et al. 2017b). The membrane-bound nitric oxide reductase NorCB reduces NO to N$_2$O and is found in all known verrucomicrobial methanotrophs (Figs 3 and 5). It is therefore conceivable that verrucomicrobial methanotrophs detoxify nitric oxide to inert N$_2$O under anoxic or oxygen-limited conditions (Acton and Bags 2011; Bodelier and Steenbergh 2014). In addition, several proteobacterial methanotrophs were shown to produce N$_2$O without the initial formation of nitrite (Hoefman, van der Ha and Boon 2014). Since N$_2$O is strong greenhouse gas with a significant role in global warming, methanotrophs might not only have a mitigating effect on climate change by oxidising methane, but also aggravate this change by producing N$_2$O.
Figure 5. Ammonia (NH₃) oxidation by pMMO and fate of the reaction products. pMMO fortuitously oxidises ammonia to hydroxylamine. Subsequently, hydroxylamine oxidoreductase (HAO) oxidises hydroxylamine to nitric oxide, donating electrons to an unknown cytochrome c protein (indicated by the red diamond). Nitric oxide can be reduced to inert N₂O by the nitric oxide reductase (NOR), using an unknown electron donor. Alternatively, nitric oxide is converted chemically to nitrite in the presence of oxygen, or by an unknown enzyme (red arrow). Under anaerobic conditions, nitrite could be utilised as alternative electron acceptor. The nitrite reductase (NIR) could then reduce nitrite to nitric oxide, which is subsequently reduced to N₂O. P: periplasm; C: cytoplasm.

2011; Versantvoort et al. 2020). Altogether, the accidental oxidation of ammonia by pMMO results in the formation of various toxic compounds, for which Methylacidiphilum strains typically appear to have multiple detoxification pathways.

Oxidation of hydrogen gas

Multiple proteobacterial methanotrophs carry hydrogenase genes and were shown to consume H₂ (De Bont 1976; Csáki et al. 2001; Kelly, Anthony and Murrell 2005). These methanotrophs were proposed to use these hydrogenases to produce reducing equivalents to drive the energy-demanding conversion of methane to methanol by pMMO (Hanczár et al. 2002). Besides, various proteobacterial methanotrophs possess genes encoding both a hydrogenase and ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO), suggesting autotrophic growth for the genome is more than 98% complete and shows little contamination (Picone 2020). All isolated Methylacidiphilum strains carry genes encoding the group 1d [NiFe] hydrogenase, except for Methylacidiphilum spp. Yel. This membrane-bound enzyme has a relatively high O₂ tolerance compared to other hydrogenases and is involved in the aerobic respiration of H₂ (Greening et al. 2015). Both Methylacidiphilum spp. RTK17.1 and Methylacidiphilum fumaroliicum SoLV were experimentally shown to grow on H₂ using this hydrogenase under various oxygen concentrations (Carere et al. 2017; Mohammadi et al. 2017a).

All of the Methylacidimicrobium strains and none of the Methylacidiphilum strains possess genes encoding the oxygen-sensitive group 1b [NiFe] hydrogenase (Fig. 3) (Mohammadi et al. 2019). Methylacidimicrobium tartarophilax 4AC was shown to grow as an autotroph on H₂ using this enzyme under microoxic conditions (Mohammadi et al. 2019). The group 1b [NiFe] hydrogenase, typically found in Proteobacteria that perform anaerobic respiration (Greening et al. 2015), therefore enables Methylacidimicrobium strains to respire H₂ aerobically. In addition, all Methylacidimicrobium and Methylacidiphilum strains, except for Methylacidimicrobium thermophilum AP8, carry genes encoding a group 3b [NiFe] hydrogenase. This heterotetrameric cytosolic enzyme is known to couple the oxidation of NADPH to the production of H₂ during fermentation (Berney et al. 2014). However, in the verrucomicrobial methanotrophs it is hypothesised to oxidise H₂ and produce NADH for CO₂ fixation (Carere et al. 2017). This proposed catalysis was demonstrated by the group 3b [NiFe] hydrogenase of Hydrogenobacter thermophilus (Yoon et al. 1996).

Most hydrogen-oxidising microorganisms live in habitats with relatively high H₂ concentrations, such as animal guts and leguminous soils (Conrad and Seiler 1979; Pester and Brune 2007). In addition, several soil-inhabiting Actinobacteria were shown to consume H₂ present in the atmosphere (Constant, Poissant and Villemur 2008; Constant et al. 2010; Constant et al. 2011). Although the atmospheric H₂ concentration is very low
(0.53 ppmv H₂), soil systems are the largest sink of atmospheric H₂, consuming 75 Tg H₂ annually (Novelli et al. 1999). These H₂ scavengers possess genes encoding a putative high-affinity [NiFe] hydrogenase, of which the oxygen-tolerant group 1h [NiFe] hydrogenase seems to be dominant. Remarkably, this group 1h [NiFe] hydrogenase is also found in the genomes of *Methylacidiphilum fumarolicum* SoIV, *Methylacidiphilum kamchatkense* Kam1 and *Methylacidiphilum* sp. Phi (Fig. 3) (Mohammadi et al. 2017a; Kruse et al. 2019). In the related *Methylacidiphilum infernorum* V4, this gene may have been lost over time due to the movement of transposable elements in the genome (Kruse et al. 2019). *Methylacidiphilum fumarolicum* SoIV was shown to express both the group 1d and group 1h [NiFe] hydrogenase to grow on H₂ (Mohammadi et al. 2017a). At dissolved oxygen concentrations between 0.2 and 1.5%, only the group 1h [NiFe] hydrogenase supported growth, up to a growth rate of 0.03 h⁻¹, which is almost 40% of the growth rate on methane (Mohammadi et al. 2017a). The enzyme has a remarkable tolerance towards O₂, suggested to be the result of the unique coordination of the proximal [4Fe4S] clusters by three cysteines and an aspartate residue, instead of the usual coordination by four cysteine residues (Schäfer, Friedrich and Lenz 2013; Schäfer et al. 2016). The group 1h [NiFe] hydrogenase was purified from *Methylacidiphilum fumarolicum* SoIV and kinetic experiments revealed an unusually high affinity for H₂, enabling this methanotroph to oxidise atmospheric H₂ (Schmitz et al. 2020a). It is hypothesised that this hydrogenase in particular could aid verrucomicrobial methanotrophs to thrive in geothermal systems (Carere et al. 2017; Schmitz et al. 2020a).

Oxidation of sulfur compounds

A variety of inorganic sulfur compounds such as hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are present in or released from geothermal systems (Spiro, Jacob and Logan 1992; Vasilakos et al. 2005). Additionally, organic sulfur compounds such as methanethiol (CH₃SH) can be present, but data on its presence in terrestrial volcanic ecosystems are lacking. In seafloor hydrothermal systems, methanethiol is formed abiotically from CO₂, H₂S and H₂, derived from organic matter below the ocean floor (Rogers and Schulte 2012; Reeves et al. 2014). It is conceivable that in terrestrial mud volcanoes with comparable conditions, thermogenic production of methanethiol could occur as well. This compound could then be used by methylotrophs such as the verrucomicrobial methanotrophs as carbon and sulfur source, or even as energy source, as observed in the methylo trophic alphaproteobacterium *Hyphomicrobi um* sp. VS (Pol et al. 1994). Studying (organic) sulfur compounds and how microorganisms cope with these compounds is important, as several of these compounds have profound effects on the environment, which little is known, that could be involved in aerobic H₂S respiration (Marcia, Ermler and Peng 2010). The third product of methanethiol oxidation, hydrogen peroxide, is toxic and could be converted to water and oxygen by the enzyme catalase (Zamocky, Furtmüller and Ohinger 2008). A gene encoding catalase is only found in *Methylacidiphilum infernorum* V4 and all *Methylacidimicrobium* strains. However, several peroxidases have been found in the genomes that might substitute the catalase activity.

The effect of intracellular H₂S and methanethiol in methanotrophs is currently not well understood. In some microorganisms, methane oxidation seems to be enhanced or unaffected by the presence of methanethiol or hydrogen sulfide (Lee, Kim and Cho 2012), whereas in other strains methane oxidation is inhibited by these compounds (Börjeson 2001; Lee et al. 2015). Since all verrucomicrobial methanotrophs possess a gene encoding an SQG and because H₂S is generally emitted at high concentrations from geothermal systems (Chiodini et al. 2001), it is conceivable that also H₂S could be an important energy source for these microorganisms. Alternatively, sulfide-oxidising enzymes could be present as a means of detoxification. Future experiments have to resolve whether energy conservation from the oxidation of H₂S is indeed possible.

The electron transport chain and energy conservation

The main location for energy conservation in prokaryotic cells is the cytoplasmic membrane. Quinones inside the cytoplasmic membrane are essential parts of the electron transport chain and therefore essential to energy conservation (Kurosu and Begari 2010). Verrucomicrobial methanotrophs seem to synthesise menaquinones (MK) via an alternative pathway that involves the intermediate futalosine (Hiratsuka et al. 2008). However, the gene *mqnB* involved in menaquinone biosynthesis was not detected in any of the genomes of verrucomicrobial methanotrophs (Kruse et al. 2019), but pathway variations are known to exist (Arakawa et al. 2010).

All verrucomicrobial methanotrophs described in this review possess five different complexes involved in energy conservation (Fig. 6). The NADH:quinone oxidoreductase (Complex I) is a membrane-bound protein complex that oxidises NADH, transfers the freed electrons to the quinone pool, and couples this reaction to the translocation of protons across the membrane, contributing to a proton motive force (Friedrich and Scheide 2000). The bacterial enzyme typically consists of 14 subunits, which are all encoded by the verrucomicrobial methanotrophs (Berrisford, Baradaran and Sazanov 2016). Complex II, or succinate dehydrogenase, is involved in both the electron transport chain and the tricarboxylic acid (TCA) cycle (Cecchini et al. 2002). In this cycle, Complex II couples the oxidation of succinate to the reduction of quinone (Fig. 6). Whereas Complex I is also involved in the translocation of protons across the membrane, Complex II is only involved in electron transfer. The quinols produced from the reduction of quinones by both complexes are typically oxidised by the bc₁ complex (Complex III) (Trumpower 1990). In that case, electrons yielded from the oxidation of quinols are subsequently transferred via an additional cytochrome c protein to a cytochrome c oxidase (complex IV or terminal oxidase). However, the verrucomicrobial methanotrophs do not carry genes encoding Complex III. Instead, these
microorganisms possess genes encoding a structurally different protein complex with similar function: the Alternative Complex III (ACIII; Fig. 6) (Pereira et al. 2007; Refojo et al. 2010). The classical Complex III contributes to the proton motive force by translocating protons across the membrane for energy conservation is under debate (Refojo, Teixeira and Pereira 2012; Sun et al. 2018). Ultimately, Complex IV reduces the terminal electron acceptor O2 to water, with electrons retrieved from a c-type haem (Sun et al. 2018). All isolated verrucomicrobial methanotrophs, except for Ca. 'Methylacidithermus pantelleriae’ PQ17, possess genes encoding two ATP synthases (ATPases). One ATPase is related to ATPases of other Verrucomicrobia, while the other is related to the gammaproteobacterial ATPase (Hou et al. 2008; Kruse et al. 2019).

Verrucomicrobial Methanotrophs in the Environment

Verrucomicrobial methanotrophs are generally found in acidic volcanic ecosystems. Interestingly, global biogeographic distributions of closely related strains of verrucomicrobial methanotrophs suggest allopatric evolution over time (Erikstad et al. 2019). Additionally, evolutionary genomic analyses of verrucomicrobial methanotrophs revealed multiple horizontal gene transfer events (Sharp et al. 2013). Many genes have a relatively high similarity to those of the phylum Proteobacteria, but also to genes of Aquificae, Thermus/Deinococcus and archaea (Sharp et al. 2013; Schmitz et al. 2020b). Over the past 13 years, physiological and biochemical experiments have rendered valuable information that allows us to predict in which habitats we could encounter verrucomicrobial methanotrophs. Ecophylogenetic experiments could shed light on how verrucomicrobial methanotrophs interact with other microorganisms in the natural environment.

Acidic volcanic ecosystems are characterised by various morphological features. In general, these features are formed in places where mud, gas and water are expelled due to high fluid pressure from the subsurface, creating hot springs, mud pools and fumaroles (Cioni, Corazza and Marini 1984; Feyzullayev and Movsumova 2010; Benson et al. 2011). Where reduced sulfur

Figure 6. Schematic overview of the typical electron transport chain of verrucomicrobial methanotrophs. NADH generated through catabolic processes is oxidised by the NADH:quinone oxidoreductase (Complex I), transferring electrons to menaquinone (MQ) to form menaquinol (MQH2) while translocating protons across the membrane to generate a proton motive force. The succinate dehydrogenase (Complex II) oxidises succinate to fumarate as a part of the tricarboxylic acid cycle and transfers electrons to MQ to form MQH2. Alternative complex III oxidises MQH2 back to MQ, transferring electrons to a cytochrome c oxidase (Complex IV), either via an external periplasmic cytochrome c protein (cyt c) or directly. Whether protons are translocated during this electron transfer is unknown. Ultimately, electrons are used to reduce O2 to water, while protons are translocated over the membrane, contributing to the proton motive force that is used by an ATP synthase (Complex V) to synthesise ATP. Dashed lines indicate electron flow. Insert: transfer of oxidized and reduced quinones inside the bilayer (the quinone pool). C: cytoplasmic side of the membrane; P: periplasmic side of the membrane.
compounds are present, often sulfuric acid (H_2SO_4) is produced by (thermo)acidophilic microorganisms. The microbial production of sulfuric acid is environmentally important because it creates a low pH, which is characteristic for the Solfataras, several parts of Yellowstone National Park and various other geothermal ecosystems (Schoen and Rye 1970; Quartrini and Johnson 2018). A low pH seems to be a key determinant of verrucomicrobial methanotrophs to be present in geothermal habitats (Sharp et al. 2014). 16S rRNA and pmoA gene sequences of verrucomicrobial methanotrophs have so far not been detected in habitats with a pH > 5.0 and all isolates have a pH optimum around 3. Physicochemical parameters within geothermal habitats such as temperature and the oxygen concentration can differ locally within a few meters. Many of the thermophilic Methylacidiphilum strains were isolated from hot geothermal areas in close proximity to the moderate temperature geothermal areas where the Methylacidimicrobium strains were isolated from (Sharp et al. 2014). Although bogs and fens are also characterised by a high acidity (pH 3.3 to 4.9), no 16S rRNA or pmoA gene sequences of verrucomicrobial methanotrophs have been detected in these habitats, which may be explained by the relatively low concentration of lanthanides in peat bogs (Vodyanitskii et al. 2012; Sharp et al. 2014). Based on environmental sequencing and activity studies, the methanotrophic activity can be attributed to Proteobacteria, at a pH as low as 3.5 (Dunfield and Dedysk 2010). Proteobacteria such as strains of the genus Acidithiobacillus have been found at lower pH, but this does not include proteobacterial methanotrophs (CrognaIe et al. 2018). With current knowledge, methane-rich habitats below pH 3.5, including the aforementioned crown of rusted sewer pipes, seem to be better suited for verrucomicrobial methanotrophs than proteobacterial methanotrophs.

Methane and hydrogen gas are often emitted from geological habitats and these two compounds seem to be the major energy sources for verrucomicrobial methanotrophs. All verrucomicrobial methanotrophs were isolated on methane and several strains were shown to grow as autotrophs on H_2 (Carere et al. 2017; Mohammadi et al. 2017a; Mohammadi et al. 2019). Multiple verrucomicrobial methanotrophs possess more than one particulate methane monooxygenase. The three pmo operons within the Methylacidiphilum strains differ significantly in amino acid sequences, suggesting selection pressure for different functions and adaptation to changing environmental conditions (Op den Camp et al. 2009). In addition, short chain alkenes could be oxidised by one or more of the pMMOs found in Methylacidiphilum strains (Picone et al. 2020b). For methane oxidation to occur, a sufficient concentration of lanthanides must be present in the environment, because the verrucomicrobial methanotrophs only carry genes encoding the lanthanide-dependent XoxF-type methanol dehydrogenase. This does not necessarily mean that verrucomicrobial methanotrophs are only present in lanthanide-rich environments. If H_2 and oxygen are present at suitable concentrations, they could grow as Knallgas bacteria without the need for lanthanides (Carere et al. 2017; Mohammadi et al. 2017a; Mohammadi et al. 2019). The concentration of H_2 and O_2 in the environment could partially determine which strains of verrucomicrobial methanotrophs are present in the environment, because the different kinds of NiFe hydroxylamine oxidoreductase (SQR), indicating that verrucomicrobial methanotrophs might even grow in acidic ecosystems where H_2S is present and CH_4 and H_2 are absent.

The main difference between Methylacidiphilum and Methylacidimicrobium strains seems to be their growth temperature, with the former being thermophiles and the being latter mesophiles. However, the isolation of Methylacidimicrobium thermophilum AP8 with an optimum growth temperature of 50°C muddles this clear division (Picone 2020). Still, Methylacidiphilum and Methylacidimicrobium strains are often found within a few meters of each other, but at different temperatures (Sharp et al. 2014). In the environment, the concentration of ammonium could be a key factor in determining which verrucomicrobial methanotrophs are present. In general, ammonia is a competitive inhibitor of pMMO, potentially reducing methane oxidation rates. Additionally, high ammonium concentrations can reduce the methane oxidation rate of microorganisms that are unable to detoxify the oxidised products of ammonia oxidation (D’Alessandro et al. 2009; Nyerges, Han and Stein 2010). Since only Methylacidiphilum strains possess a gene encoding a hydroxylamine oxidoreductase, they are well-equipped to detoxify hydroxylamine, intracellularly produced through ammonia oxidation by pMMO. Consequently, Methylacidimicrobium strains are expected to be primarily found at moderate temperatures and habitats with relatively low ammonium concentrations. However, different pMMOs could have different affinities for ammonia, or could not be able to oxidise ammonia at all (Nyerges and Stein 2009).

Little is known about the interaction of verrucomicrobial methanotrophs with other microorganisms in their natural geothermal habitat. Through δ^{13}C analysis of CH_4, the origin of this gas in geothermal systems can be deduced, since CH_4 produced by archaea is relatively light compared to thermo- or abiotic methane (Op den Camp et al. 2009). Typically, methane emitted from geothermal ecosystems is from a non-microbial source, produced through a chemical reaction of H_2 and CO or by the non-microbial decomposition of buried organic matter (Giggenbach 1995; Etiope and Klusman 2002; Fiebig et al. 2007). However, methanogenic archaea have been found in anoxic parts of several geothermal ecosystems, but mostly at a pH of 5 or higher (Zeikus, Ben-Bassat and Hegge 1980; Berghuis et al. 2019). Remarkably, a metagenome-assembled genome (MAG) closely related to the methanogen Methanocella conradii was abundantly present in the metagenome of the hot, acidic, and methane-rich geothermal soil on the island Pantelleria, Italy (Picone et al. 2020a). This finding suggests that a larger part of methane emitted from hot and acidic geothermal ecosystems could be of microbial origin than initially thought (D’Alessandro et al. 2009). In contrast, H_2 utilised by verrucomicrobial methanotrophs does not seem to be produced by other microorganisms in their habitat, but rather through abiotic or thermogenic processes in the Earth’s crust (Aragno 1992; Lindsay et al. 2019).
CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Since the isolation of verrucomicrobial methanotrophs from hot and acidic geothermal ecosystems 13 years ago, significant progress has been made in our understanding of these microorganisms living in extreme environments. Verrucomicrobial methanotrophs are much more than their name suggests: these extremophiles are actually metabolically versatile microorganisms. In fact, the same could be true for their proteobacterial counterparts. Whereas several verrucomicrobial methanotrophs were shown to grow as Knallgas bacteria, hydrogen gas seems to be the main energy sources for verrucomicrobial methanotrophs, not of organic compounds, as was done for several proteobacterial methanotrophs. Originally thought to be obligate methanotrophs, a large variety of multi-carbon compounds such as acetate, succinate and ethanol were shown to be consumed by alphaproteobacterial methanotrophs (Dunfield and Dedys 2014). The first attempts to grow verrucomicrobial methanotrophs on several organic compounds such as glucose, citrate and malate were unsuccessful, but later Methylacidiphilum fumariolicum SoVW was shown to grow on ethane and butane (Op den Camp et al. 2009; Picone et al. 2020b). The major questions for future research regarding metabolism are whether proteobacterial methanotrophs can grow as Knallgas bacteria and whether verrucomicrobial methanotrophs can incorporate organic compounds into their diet.

Since multiple verrucomicrobial methanotrophs were shown to be excellent hydrogen-oxidisers, it would be worthwhile to see if new enrichment strategies using hydrogen gas, carbon dioxide and low oxygen would result in novel verrucomicrobial isolates. The exciting discovery of 16S rRNA genes related to verrucomicrobial methanotrophs outside of terrestrial volcanic ecosystems suggests a distribution outside of geothermal habitats. Several factors such as pH and temperature, but also the oxygen and ammonium concentration and the presence of methane, hydrogen gas, hydrogen sulfide and lanthanides could be used as parameters to predict the presence of verrucomicrobial methanotrophs. Methane and hydrogen gas seem to be the main energy sources for verrucomicrobial methanotrophs. In addition, hydrogen sulfide could be a potent energy source, but additional physiological and biochemical experiments are needed to clarify this. From soil it is known that up to 90% of methane produced in these systems is consumed before it reaches the atmosphere, thereby contributing significantly to the mitigation of greenhouse gas emissions from the biosphere (Oremland and Culbertson 1992; Singh et al. 2010). To what extent verrucomicrobial methanotrophs alleviate methane emissions from geothermal environments is unknown. With the annual seepage of 40 to 60 Tg methane from mud volcanoes, fumaroles and hydrothermal vents (Etiope 2009), it would be interesting to investigate verrucomicrobial methanotrophy in the environment, especially if the use alternative energy sources such as hydrogen gas and hydrogen sulfide could enhance this process.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSR online.

FUNDING

RS, NP and HOdC were supported by the European Research Council (ERC Advanced Grant project VOLCANO 669371). MSMJ was supported by the European Research Council (ERC Advanced Grant project EcoMoM 339880). WV was supported by the Netherlands Organisation for Scientific Research (NWO) grant VI.Vidi.192.001. SP was supported by the Netherlands Organisation for Scientific Research (NWO) grant ALWOP.308.

Conflicts of interest. None declared.

REFERENCES

Acton SD, Baggs EM. Interactions between N application rate, CH₄ oxidation and N₂O production in soil. Biogeochemistry 2011;103:15–26.
Allan W, Struthers H, Lowe DC. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. J Geophys Res 2007;112:D04306.
Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 2012;6:847–62.
Anthony C. The c-type cytochromes of methylo trophic bacteria. Biochim Biophys Acta 1992;1099:1–15.
Anthony C. The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 2004;428:2–9.
Anvar SY, Frank J, Pol A et al. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SoVW. BMC Genomics 2014;15:914.
Aragno M. Thermophilic, aerobic, hydrogen-oxidizing (Knallgas) bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds). The Prokaryotes. New York: Springer, 1992, 3917–33.
Araakawa C, Kuratsu M, Furihata K et al. Diversity of the early step of the fusafusone pathway. Antimicrob Agents Chemother 2010;55:913–6.
Balch WE, Fox GE, Magrum LJ et al. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–96.
Barnes RO, Goldberg ED. Methane production and consumption in anoxic marine sediments. Geology 1976;4:297–300.
Bastviken D, Cole JJ, Pace ML et al. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH₄ emissions. J Geophys Res Bioge 2008;113:G02024.
Baxter NJ, Hirt RP, Bodrossy L et al. The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 2002;177:279–89.
Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation. Science 2009;325:184–7.
Benson CA, Bizzoco RW, Lipson DA et al. Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents. FEMS Microbiol Ecol 2011;76:74–88.
Berghuis BA, Yu FB, Schulz F et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci USA 2019;116:5037–44.
Bermingham A, Derrick JP. The foliar acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 2002;24:637–48.
Berney M, Greening C, Hards K et al. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol 2014;16:318–30.
Berrisford JM, Baradaran R, Sazanov LA. Structure of bacterial respiratory complex I. Biochim Biophys Acta 2016;1857:892–901.

Büüt M, Klintszch T, Ionescu D et al. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv 2020;6: eaax5343.

Bodelier PLE, Gillissen MJ, Gordijk K et al. A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME J 2009;3:605–17.

Bodelier PLE, Pérez G, Veraart AJ et al. Methanotroph ecology, environmental distribution and functioning. In: Lee E (ed). Methanotrophs: Microbiology Fundamentals and Biotechnological Applications. Cham: Springer, 2019, 1–38.

Bodelier PLE, Steenbergh AK. Interactions between methane and the nitrogen cycle in light of climate change. Curr Opin Environ Sustain 2014;10:26–36.

Boden R, Cunliffe M, Scanlan J et al. Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 2011;193:7001–2.

Bodrossy L, Kovács KL, McDonald IR et al. A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol Lett 1999;170:335–41.

Boetius A, Ravenschlag K, Schubert CJ et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000;407:623–6.

Bowman JP, Sly LI, Nichols PD et al. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 1993;43:735–3.

Bridgham SD, Cadillo-Quiroz H, Keller JK et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 2013;19:1325–46.

Brune A, Frenzel P, Cypionka H. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 2000;24:691–710.

Brune A. Methanogens in the digestive tract of termites. In: Hackstein J (ed). (Endo)symbiotic Methanogenic Archaea. Heidelberg: Springer, 2010, 81–100.

Buffett BA. Clathrate Hydrates. Annu Rev Earth Planet Sci 2000;28:477–507.

Bécard C, Knowles R. Physiology, biochemistry, and specific inhibitor studies of CH₄, NH₄⁺, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 1989;53:68–84.

Börjesson G. Inhibition of methane oxidation by volatile sulfur compounds (CH₃SH and CS₂) in landfill cover soils. Waste Manag Res 2001;19:314–9.

Cai C, Leu AO, Xie G-J et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 2018;12:1929–39.

Cai Y, Zheng Y, Bodelier PLE et al. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Comm 2016;7:11728.

Campbell MA, Nyerges G, Kozlowski JA et al. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Let 2011;322:82–9.

Caranto JD, Lancaster KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc Natl Acad Sci USA 2017;114:8217–22.

Carere CR, Hards K, Houghton KM et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 2017;11:2599–610.

Carlson KM, Gerber JS, Mueller ND et al. Greenhouse gas emissions intensity of global croplands. Nat Clim Change 2017;7:63–8.

Castaldi S, Tedesco D. Methane production and consumption in an active volcanic environment of southern Italy. Chemosphere 2005;58:131–9.

Ceccini G, Schröder I, Gunsalus RP et al. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 2002;1553:140–57.

Chang J, Peng S, Ciais P et al. Revisiting enteric methane emissions from domestic ruminants and their δ¹³CCH₄ source signature. Nat Comm 2019;10:4320.

Chen Y, Crombie A, Rahman MT et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacterial 2010;192:3840–41.

Chioldini G, Frondini F, Cardellini C et al. CO₂ degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res Solid Earth 2001;106:16213–21.

Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. The expanding world of methylo trophic metabolism. Annu Rev Microbiol 2009;63:477–99.

Chistoserdova L, Kalyuzhnaya MG. Current trends in methy lotrophy. Trends Microbiol 2018;26:703–14.

Chistoserdova L. Modularity of methy lotrophy, revisited. Environ Microbiol 2011;13:2603–22.

Cioni R, Corazza E, Marinì L. The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegrean Fields (Italy). Bull Vulcanol 1984;47:295–302.

Cobo-Simón M, Tamames J. Relating genomic characteristics to environmental preferences and ubiquity in different microbial taxa. BMC Genomics 2017;18:499.

Conrad R, Seiler W. Field measurements of hydrogen evolution by nitrogen-fixing legumes. Soil Biol Biochem 1979;11:689–90.

Conrad R. Methane production in soil environments – anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020;8:881.

Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 2009;1:285–92.

Constant P, Chowdhury SP, Hesse L et al. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H₂-oxidizing bacteria. Appl Environ Microbiol 2011;77:6027–35.

Constant P, Chowdhury SP, Pratscher J et al. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol 2010;12:821–9.

Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H₂. ISME J 2008;2:1066–76.

Cremers P, Pol A, Jetten MSM et al. Draft genome sequences of two acidophilic, mesophilic verrucomicrobial methanotrophs contain only one pmoCAB operon. Microbiol Res Announc 2020;9:e00315–20.

Crognaile S, Venturi S, Tassi F et al. Microbiome profiling in extremely acidic soils affected by hydrothermal fluids: the case of the Solfatara Crater (Campi Flegrei, southern Italy). FEMS Microbiol Ecol 2018;94:fiy90.

Crowther GJ, Kosály G, Lidstrom ME. Formate as the main branch point for methylo trophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 2008;190:5057–62.
Csáki R, Hanczár T, Bodrossy L et al. Molecular characterization of structural genes coding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 2001;205:203–7.

D’Alessandro W, Bellomo S, Brusca L et al. Hydrothermal methane fluxes from the soil at Pantelleria island (Italy). J Volcanol Geotherm Res 2009;187:147–57.

Daumann U. Essential and ubiquitous: The emergence of lanthanane metallobiocimistry. Angew Chem Int Ed 2019;58:12795–802.

Davies SL, Whittenbury R. Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol 1970;61:227–32.

Dean JF, Middelburg JJ, Röckmann T et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys 2018;56:207–50.

De Bont JAM. Nitrogen fixation by methane-utilizing bacteria. Antonie Van Leeuwenhoek 1976;42:425–53.

Dedysn SN, Panikov NS, Liesack W et al. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 1998;282:281–4.

Deng YW, Ro SY, Rosenzweig AC. Structure and function of the 16S rRNA gene from Methylocalus methanotrophs. Nat Rev Microbiol 2018;16;1129.

Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation by an oxidized form of the enzyme. Biochem J 1980;187:213–9.

Dunfield PF, Dedysn SN. Acidic environments. In: Timmis KN (ed). Handbook of Hydrocarbon and Lipid Microbiology, Berlin, Heidelberg: Springer, 2010, 2181–92.

Dunfield PF, Dedysn SN. Methylloccula: a gourmand among methanotrophs. Trends Microbiol 2014;22:368–9.

Dunfield PF, Yuryev A, Senin P et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007;450:879–82.

Dodsforth TC, Maluf FV, Hunter WN. Acinetobacter baumannii FolD ligand complexes - potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571. FEBS J 2012;279:4350–60.

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–1.

Erikstad H-A, Ceballos RM, Smestad NB et al. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol 2019;10:1129.

Etheridge DM, Steele LP, Francey RJ et al. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. J Geophys Res 1998;103:15979–93.

Etope G, Klusman RW. Geologic emissions of methane to the atmosphere. Chemosphere 2002;49:777–89.

Etope G. Natural emissions of methane from geological seepage in Europe. Atmos Environ 2009;43:1430–43.

Etminan M, Mhyre G, Highwood EJ et al. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys Res Lett 2016;43:12614–23.

Ettwig KF, Butler MK, Le Paslier D et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010;464:543–8.

Ettwig KF, Shima S, van de Pas-Schoonen KT et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 2008;10:3164–73.

Ettwig KF, Speth DR, Reimann J et al. Bacterial oxygen production in the dark. Front Microbiol 2012;3:273.

Ettwig KF, Zhu B, Speth D et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA 2016;113:12792–96.

Evans PN, Boyd JA, Leu AO et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 2019;17:219–32.

Eyice Öz, Myronova N, Pol A et al. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME J 2018;12:145–60.

Feyziyayev AA, Movsumova UA. The nature of the isotopically heavy carbon of carbon dioxide and bicarbonates in the waters of mud volcanoes in Azerbaijan. Geochem Int 2010;48:517–22.

Fiebig J, Woodland AB, Spangenberg J et al. Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 2007;71:3028–39.

Friedrich T, Scheide D. The respiratory complex I of bacteria, archaea and eukaryae and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 2000;479:1–5.

Gagliano AL, D’Alessandro W, Tagliavia M et al. Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy). Biogeosciences 2014;11:5865–75.

Gao Y, Meyer B, Sokolova L et al. Heme-copper terminal oxidase using both cytochrome c and ubiquinol as electron donors. Proc Natl Acad Sci USA 2012;109:3275–80.

García-Horsman JA, Barquera B, Rumbley J et al. The superfamily of heme-copper respiratory oxidases. J Bacteriol 1994;176:5587–600.

Gigenbach WF. Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 1995;68:89–116.

Good NM, Fellner M, Demirer K et al. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. J Biol Chem 2020;295:8272–84.

Good NM, Moore RS, Suriano CJ et al. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Sci Rep 2019;9:4248.

Greening C, Biswas A, Carere CR et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 2015;10:761–77.

Hakobyan A, Zhu J, Glatter T. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng 2020;61:181–96.

Hanaki K, Portugal-Pereira J. The effect of biofuel production on greenhouse gas emission reductions. In: Takeuchi K, Shirayama H, Saito O, Matsuura M. (eds). Global methane feedbacks to greenhouse gas emission reductions. In: Takeuchi K, Shirayama H, Saito O, Matsuura M. (eds). Global methane feedbacks to greenhouse gas emission reductions. Tokyo: Springer, 2018, 53–71.

Hanczár T, Csáki R, Bodrossy L et al. Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Arch Microbiol 2002;177:167–72.

Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev 1996;60:439–71.

Hao WM, Ward DE. Methane production from global biomass burning. J Geophys Res 1993;98:20657–61.
Haroon MF, Hu S, Shi Y et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013;500:567–70.
Heede R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Clim Change 2014;122:229–41.
He H, Noor E, Ramos-Parras PA et al. In vivo rate of formaldehyde condensation with tetrahydrofolate. Metabolites 2020;10:65.
He Z, Cai C, Wang J et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 2016;6:32241.
Hiratsuka T, Furihata K, Ishikawa J et al. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 2008;321:1670–3.
Hirayama H, Suzuki Y, Abe M et al. Methylthermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 2011;61:2646–53.
Hoefman S, van der Haas D, Boon N. Nichedifferentiationinnitro- lum Verrucomicrobia.
Hogendoorn C. Isolation and characterization of formaldehyde with tetrahydrofolate.
Holmes AJ, Roslev P, McDonald IR. Characterization of formaldehyde with tetrahydrofolate.
Houghton KM, Carere CR, Stott MB et al. Methane oxidation coupled to nitrate reduction in a novel archaeal lineage. FEMS Microbiol Ecol 2019;17:4061–70.
Hou S, Makarova KS, Saw JHW et al. Nitrogen fixation by the verrucomicrobial methanotroph “Methylocystis fumariolicum” SolV. Microbiology 2010;156:1052–9.
Hudaczek AF, Pol A, Wieczorek A et al. Autotrophic methanotrophy in Verrucomicrobia: Methylocystis fumariolicum SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol 2012;3:266.
Hudaczek AF, Pol A, Wieczorek A et al. Metabolic regulation of “Ca. Methylocystis fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol 2012;3:266.
Iglesias MD, Almeida GS, Reichert R et al. The influence of oxygen and methane on the structure and activity of the methanotrophic community in a natural gas field. Environ Microbiol 2005;7:545–54.
Iversen N, Jorgensen BB. Methane oxidation at the sulfate-methane transition in marine sediments. FEMS Microbiol Ecol 2008;64:211–21.
Iversen N, Jorgensen BB. Methane oxidation at the sulfate-methane transition in marine sediments. FEMS Microbiol Ecol 2008;64:211–21.
Iversen N, Jorgensen BB. Methane oxidation at the sulfate-methane transition in marine sediments. FEMS Microbiol Ecol 2008;64:211–21.
Iversen N, Jorgensen BB. Methane oxidation at the sulfate-methane transition in marine sediments. FEMS Microbiol Ecol 2008;64:211–21.
Iversen N, Jorgensen BB. Methane oxidation at the sulfate-methane transition in marine sediments. FEMS Microbiol Ecol 2008;64:211–21.
Lees V, Owens NP, Murrell JC. Nitrogen metabolism in marine methanotrophs. Arch Microbiol 1991;157:60–5.

Lehtovirta-Morley LE. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett 2018;365:fny058.

Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007;23:127–8.

Leu AO, Cai C, Mcllorey SJ et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedaceae. ISME J 2020;14:1030–41.

Levícán G, Ugalde JA, Ehrenfeld N et al. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 2008;9:581.

Lieberman RL, Rosenzweig AC. Crystal structure of a membrane bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005;434:177–82.

Lim S, Franklin SJ. Lanthanide-binding peptides and the enzymes that Might Have Been. Cell Mol Life Sci 2004;61:2184–8.

Lindsay MR, Colman DR, Amenabar MJ et al. Probing the geologic and biological fate of hydrogen in Yellowstone hot springs. Environ Microbiol 2019;21:3816–30.

Lomans BP, Pol A, Op den Camp HJM. Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 2002;59:575–88.

Lubitz W, Ogata H, Rüdiger O et al. Hydrogenases. Chem Rev 2014;114:4081–148.

Marcia M, Ermler U, Peng G. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 2010;78:1073–83.

Marcz CJ, Laukel M, Vorholt JA. Purification of the formate-tetrahydrofolate ligase from Methylbacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 2003;185:7169–75.

Marcz CJ, van Dien SJ, Lidstrom ME. Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. PLoS Biol 2005;3:e16.

Metcalfe WW, Griffin BM, Cicchillo RM et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 2012;337:1104–7.

Mohammadi SS, Pol A, van Alen TA et al. Ammonia oxidation and nitrite reduction in the verrucomicrobial methanotroph Methylococcus fumaricicum SolV. Front Microbiol 2017b;8:1901.

Mohammadi SS, Pol A, van Alen TA et al. Methylococcus fumaricicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J 2017a;11:945–58.

Mohammadi SS, Schmitz RA, Pol A et al. The acidophilic methanotroph Methyloccoccus capsulatus (Bath) and other obligate methanotrophs. Microbiology 1983b;129:1197–206.

Murrell JC, Dalton H. Ammonia assimilation in Methylococcus capsulatus (Bath) and other obligate methanotrophs. Microbiology 1983a;129:3481–86.

Nakagawa T, Mitsu T, Tani A et al. A catalytic role of XoxF1 as La³⁺-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 2012;7:e50480.

Novelli PC, Lang FM, Masarie KA et al. Molecular hydrogen in the troposphere: Global distribution and budget. J Geophys Res Atmos 1999;104:30427–44.

Nyerges G, Han SK, Stein LY. Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 2010;76:5648–51.

Nyerges G, Stein LY. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 2009;297:131–6.

Op den Camp HJM, Islam T, Stott MB et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009;1:293–306.

Op den Camp HJM, Mohammad SS, Pol A et al. Verrucomicrobial methanotrophs. In: Kalyuzhnaya MG, Xing X-H (eds). Methane biocatalysis: Paving the way to sustainability. Cham: Springer, 2018, 43–55.

Oremland RS, Culbertson CW. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 1992;356:421-3.

Pagaling E, Yang K, Yan T. Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces. J Appl Microbiol 2014;117:50–64.

Pawelek PD, MacKenzie RE. Methylenetetrahydrofolate cyclohydrolase is rate limiting for the enzymatic conversion of 10-formyltetrahydrofolate to 5,10-methylenetetrahydrofolate in bifunctional dehydrogenase-cyclohydrolase enzymes. Biochemistry 1998;37:1109–15.

Pereira MM, Rejofo PN, Hreggvidsson GO et al. The alternative complex III from Rhodothermus marinus – A prototype of a new family of quinol:electron acceptor oxidoreductases. FEBS Lett 2007;581:4831–5.

Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 2007;1:551–65.

Picone N, Hogendoorn C, Cremera G et al. Geothermal gases shape the microbial community of the volcanic soil of Pantelleria, Italy mSystems 2020a;5:e00517–20.

Picone N, Mohammad SS, Waajen AC et al. More than a methanotroph: a broader substrate spectrum for Methylocapnocyclus fumaricium SolV. Front Microbiol 2020b;11:604485.

Picone N, Op den Camp HJM. Role of rare earth elements in methanol oxidation. Curr Opin Chem Biol 2019;49:39–44.

Picone N. Novel methane- and ammonia-oxidizing microorganisms from acidic environments. [dissertation]. Nijmegen, The Netherlands: Radboud University Nijmegen; 2020.

Pol A, Barends TRM, Dietl A et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 2014;16:255–64.

Pol A, Heijmans K, Harhangi HR et al. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007;450:874–8.

Pol A, Op den Camp HJM, Mees SG et al. Isolation of a dimethylsulfoxide-utilizing Hyphomicrobiaceae species and its application in biofiltration of polluted air. Biodegradation 1994;5:105–12.

Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490.

Pruess E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.

Prusiner S, Stadtman ER. The enzymes of glutamine metabolism. New York: Academic Press, Inc, 1973.
Quatrini R, Johnson DB. Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 2018;43:139–47.

Raghoebarsing AA, Pol A, van de Pas-Schoonen KT et al. A microbrial consortium couples anaerobic methane oxidation to denitrification. Nature 2006;440:1153–6.

Raghoebarsing AA, Smolders AJ, Schmid MC et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 2005;436:1153–6.

Rasigraf O, Kool DM, Jetten MS et al. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 2014;80:2451–60.

Reeburgh WS. Oceanic methane biogeochemistry. Chem Rev 2007;107:486–513.

Reeves EP, McDermott JM, Seewald JS et al. The origin of methanethiol in midocean ridge hydrothermal fluids. Proc Natl Acad Sci USA 2014;111:5474–9.

Refojo PN, Sousa FL, Teixeira M et al. The alternative complex III: A different architecture using known building modules. Biochim Biophys Acta 2010;1797:1869–76.

Refojo PN, Teixeira M, Pereira MM. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation. Biochim Biophys Acta 2012;1817:1852–9.

Rigby M, Montzka SA, Prinn RG et al. Role of atmospheric oxidation in recent methane growth. Proc Natl Acad Sci USA 2017;114:5373–7.

Rogers KL, Schulte MD. Organic sulfur metabolisms in hydrothermal environments. Geobiology 2012;10:320–32.

Ross MO, MacMillan F, Wang J et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 2019;364:566–70.

Ross MO, Rosenzweig AC. A tale of two methane monooxygenases. J Biol Inorg Chem 2017;22:307–19.

Saunois M, Jackson RB, Prinn RG et al. The growing role of methane in anthropogenic climate change. Environ Res Lett 2016;11:120207.

Saunois M, Stavert AR, Poulter B et al. The global methane budget 2000–2017. Earth Syst Sci Data 2020;12:1561–623.

Schmitz RA, Dietl A, Müller M et al. Structure of the 4-hydroxytetrahydropicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway. Acta Cryst F 2020b;76:199–208.

Schmitz RA, Pol A, Mohammadi SS et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes substrates chemically different from H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J 2020a;14:1223–32.

Schoen R, Rye RO. Sulfur isotope distribution in Solfataras, Yellowstone National Park. Science 1970;170:1082–4.

Schäfer C, Bommer M, Hennig SE et al. Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insights into O2-tolerant H2 oxidation. Structure 2016;24:285–92.

Schäfer C, Friedrich B, Lenz O. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase inRalstoniaeutropha. Appl Environ Microbiol 2013;79:5137–45.

Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev 2010;34:496–531.

Sharp CE, Op den Camp HJM, Tamás I et al. Unusual members of the PVC superphylum: the methanotrophic Verrucomicrobia genus “Methylacidiphilum”. In: Fuerst J (ed). Planctomycetes: cell structure, origins and biology. Berlin: Springer-Verlag, 2013, 211–27.

Sharp CE, Smirnova AV, Graham JM et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 2014;16:1867–78.

Sherwood Lollar B, Lalrampale-Couloume G, Slater GF. Unraveling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem Geol 2006;226:328–39.

Silikas MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017;21:651–70.

Singh BK, Bardgett RD, Smith P et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 2010;8:779–90.

Spido PA, Jacob DJ, Logan JA. Global inventory of sulfur emissions with 1 × 1° resolution. J Geophys Res 1992;97:6023–36.

Stein LY, Klotz MG. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 2011;39:1826–31.

Stein LY, Roy D, Dunfield PF. Aerobic methanotrophy and nitrification: processes and connections. eLS 2012; DOI: 10.1002/9780470015902.a0002213.

Stein LY, Yoon S, Semrau JD et al. Genome sequence of the obligate methanotroph Methylosinus trichosporum strain OB3b. J Bacteriol 2010;192:6497–9.

Stein LY. Proteobacterial methanotrophs, methylotrophs, and nitrogen. In: Kalyuzhnaya MG, Xing X-H (eds). Methane biocatalysis: Paving the way to sustainability. Cham: Springer, 2018, 57–66.

Stein LY. The long-term relationship between microbial metabolism and greenhouse gases. Trends in Microbiol 2020;28:500–11.

Stolper DA, Martini AM, Clog M et al. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochim Cosmochim Acta 2015;161:219–47.

Strong PJ, Xie S, Clarke WP. Methane as a resource: Can the methanotrophs add value? Environ Sci Technol 2015;49:4001–18.

Sun C, Benlekbir S, Venkatakrishnan P et al. Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 2018;557:123–6.

Suylen GMH, Large PJ, van Dijken JP et al. Metthyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobiurn EG. Microbiology 1987;133:2989–97.

Tavormina PL, Orphan VJ, Kalyuzhnaya MG et al. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 2011;3:91–100.
Taylor SC, Dalton H, Dow CS. Ribulose-1,5-bisphosphate carboxylase/oxygenase and carbon assimilation in Methylococcus capsulatus (Bath). Microbiology, 1981;122:89–94.

Themelis NJ, Ulloa PA. Methane generation in landfills. Renew Energy 2007;32:1243–57.

Trumpower BL. Cytochrome bc complexes of microorganisms. Microbiol Rev 1990;54:1–29.

Turner AJ, Frankenberg C, Kort EA. Interpreting contemporary trends in atmospheric methane. Proc Natl Acad Sci USA 2019;116:2805–13.

Van Teeseling MCF, Pol A, Harhangi HR et al. Widespread soil bacteria that oxidizes atmospheric methane. Proc Natl Acad Sci USA 2019;116:8515–24.

Van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: Putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013;77:628–95.

Van Teeseling MCF, Pol A, Harhangi HR et al. Expanding the verrucomicrobial methanotrophic world: Description of three novel species of Methyloccutilicicium gen. nov. Appl Environ Microbiol 2014;80:6782–91.

Vasilакos C, Maggos T, Bartzis JG et al. Determination of atmospheric sulfur compounds near a volcanic area in Greece. J Atmos Chem 2005;52:101–16.

Vasileva A, Moiseenko K. Methane emissions from 2000 to 2011 wildfires in Northeast Eurasia estimated with MODIS burned area data. Atmos Environ 2013;71:115–21.

Venturi S, Tassi F, Magi F et al. Carbon isotopic signature of interstitial soil gases reveals the potential role of ecosystems in mitigating geogenic greenhouse gas emissions: Case studies from hydrothermal systems in Italy. Sci Total Environ 2019;655:887–98.

Versantvoort W, Guerrero-Cruz S, Speth DR et al. Comparative genomics of Candidatus Methyloparabacteriibacterium species and description of Ca. Methyloparabacteriibacterium lanthamnophilopa. Front Microbiol 2018;9:1672.

Versantvoort W, Pol A, Daumann LJ et al. Characterization of a novel cytochrome c as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methyloparabacteriibacterium fumariciolicum SolV. Biochim Biophys Acta Protein Pro- teom 2019;1867:595–603.

Versantvoort W, Pol A, Jetten MSM et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proc Natl Acad Sci USA 2020;117:24459–63.

Vodyanitskii YN, Savichev AT, Trofimov SY et al. Accumulation of heavy metals in oil-contaminated peat soils. Eurasian Soil Sci 2012;45:977–82.

Vorholt JA, Marx CJ, Lidstrom ME et al. Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 2000;182:6445–50.

Vorholt JA. Cofactor-dependent pathways of formaldehyde oxidation in methylobacterial bacteria. Arch Microbiol 2002;178:239–49.

Vu HN, Subuyuj GA, Vijayakumar S et al. Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 2016;198:1250–9.

Vuilleumier S, Khmelenina VN, Bringel F et al. Genome sequence of the haloalkaliphilic methanotrophic bacterium Methyloparabacteriibacterium alcaliphilum 20Z. J Bacteriol 2012;194:551–2.

Wang J, Yan D, Dixon R et al. Deciphering the principles of bacterial nitrogen dietary preferences: a strategy for nutrient containment. mBio 2016;7:e00792–16.

Ward N, Larsen Ø, Sakwa J et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2004;2:e303.

Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiolology 1970;61:205–18.

Wu ML, Wessels H, Pol A et al. XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methyloparabacteriibacterium oxyfera”. Appl Environ Microbiol 2015;81:1442–51.

Yanpirat P, Nakatsuiji Y, Hiraga S et al. Lanthanide-dependent methanol and formaldehyde oxidation in Methylobacterium aquaticum strain 22A. Microorganisms 2020;8:822.

Yoon K-S, Ueda Y, Ishii M et al. Methylomirabilis species and Methylomirabilis lanthanidiphila. Front Microbiol 2018;9:1672.