Association of CYBA gene (-930 A/G and 242 C/T) polymorphisms with oxidative stress in breast cancer: a case-control study

Mohini A Tupurani 1, Chiranjeevi Padala 1, Kaushik Puranam 1, Rajesh K Galimudi 1, Keerthi Kupsal 1, Nivas Shyamala 1, Srilatha Gantala 1, Ramanjaneyulu Kummari 1, Sanjeeva K Chinta 2, Surekha R Hanumanth Corresponding Author: Surekha R Hanumanth Email address: surekharanih@gmail.com

1 Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
2 Department of Radiation Oncology, MNJ Institute of Oncology Regional Cancer, Hyderabad, Telangana, India

Background: Oxidative stress (OS) is a key characteristic feature in cancer initiation and progression. Among multiple cancers NADPH oxidase (NOX) dependent free radical production is implicated in oxidative stress. P22phox, a subunit of NADPH oxidase encoded by the CYBA gene has functional polymorphisms associated with various complex diseases. The present study was aimed to examine the importance and association of the functional polymorphisms of CYBA gene (-930 A/G and 242 C/T) with the oxidative stress in breast cancer (BC) development and progression. Materials and methods: We have performed a case-control study on 300 breast cancer patients and 300 healthy individuals as controls to examine the role of CYBA gene -930 A/G and 242 C/T single nucleotide polymorphisms (SNPs) using As-PCR and PCR-RFLP assays and its association with OS as measured by plasma MDA levels. Linkage disequilibrium (LD) plots were generated using Haploviewtool and Multifactor dimensionality reduction (MDR) analysis was applied to assess high-order interactions between the SNPs. The Insilco analysis has been performed to predict the effect of single nucleotide polymorphism on the gene regulation using online tools. Results: We have found that genotype frequencies of CYBA gene -930 A/G and 242 C/T polymorphism were significantly different between controls and BC patients (p<0.05). The haplotype combination -930G/242C and -930G/242T were associated with 1.44 & 1.56 folds increased risk for breast cancer respectively. Further, the MDA levels were higher in the patients carrying -930G/242C and -930G/242T haplotype (p<0.001). Our results have been substantiated by Insilco analysis. Conclusion: Results of the present study suggest that GG genotype of -930 A/G polymorphism, -930G/242C and -930G/242T haplotypes of CYBA gene polymorphisms have shown association with higher MDA levels in breast cancer patients, signify that elevated oxidative stress might aid in increased risk for breast cancer initiation and progression.
Association of CYBA gene (-930 A/G and 242 C/T) polymorphisms with oxidative stress in breast cancer: a case-control study

Mohini Aiyengar Tupurani, Chiranjeevi Padala, Kaushik Puranam, Rajesh Kumar Galimudi, Keerthi Kupsal, Nivas Shyamala, Srilatha Gantala, Ramanjaneyulu Kummari, Sanjeeva Kumari Chinta, Surekha Rani Hanumanth

1 Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
2 Department of Radiation Oncology, MNJ Regional Cancer Centre, Hyderabad, Telangana, India

Corresponding author:
Surekha Hanumanth
Hyderabad- 500007, Telangana, India
Email address: surekharanih@gmail.com

ABSTRACT

Background: Oxidative stress (OS) is a key characteristic feature in cancer initiation and progression. Among multiple cancers NADPH oxidase (NOX) dependent free radical production is implicated in oxidative stress. P22phox, a subunit of NADPH oxidase encoded by the CYBA gene has functional polymorphisms associated with various complex diseases. The present study was aimed to examine the importance and association of the functional polymorphisms of CYBA gene (-930 A/G and 242 C/T) with the oxidative stress in breast cancer (BC) development and progression. Materials and methods: We have performed a case-control study on 300 breast cancer patients and 300 healthy individuals as controls to examine the role of CYBA gene -930 A/G and 242 C/T single nucleotide polymorphisms (SNPs) using As-PCR and PCR-RFLP assays and its association with OS as measured by plasma MDA levels. Linkage disequilibrium (LD) plots were generated using Haploview tool and Multifactor dimensionality reduction (MDR) analysis was applied to assess high-order interactions between the SNPs. The Insilco analysis has been performed to predict the effect of single nucleotide polymorphism on the gene regulation using online tools. Results: We have found that genotype frequencies of CYBA gene -930 A/G and 242C/T polymorphism were significantly different between controls and BC patients (p<0.05). The haplotype combination -930G/242C and -930G/242T were associated with 1.44 & 1.56 folds increased risk for breast cancer respectively. Further, the MDA levels were higher in the patients carrying -930G/242C and -930G/242T haplotype (p<0.001). Our results have been substantiated by Insilco analysis. Conclusion: Results of the present study
suggest that GG genotype of -930 A/G polymorphism, -930G/242C and -930G/242T haplotypes of CYBA gene polymorphisms have shown association with higher MDA levels in breast cancer patients, signify that elevated oxidative stress might aid in increased risk for breast cancer initiation and progression.

INTRODUCTION

Breast cancer (BC) is one of the most frequent malignant tumors, and its morbidity and mortality rates have been increasing in developing countries such as, India (Gupta, Shridhar & Dhillon, 2015). The breast cancer etiology is complex, involves dynamic interactions of genetic and environmental factors (Abdulkareem, 2013).

Oxidative stress (OS) is a key risk factor for cancer initiation and progression (Jezierska-Drutel, Rosenzweig & Neumann, 2013) resulting from an imbalance between Reactive Oxygen Species (ROS) production and antioxidant defenses, contributes to cellular damage, apoptosis, lipid peroxidation and interferes with the body's normal metabolic activity, leading to the occurrence and development of diseases (Visconti & Grieco, 2009; Fiaschi & Chiarugi, 2012). Malondialdehyde (MDA) is one of the end products of lipid peroxidation and it is also formed as a product of the cyclooxygenase reaction in prostaglandin metabolism.

Intracellular compartments such as mitochondria, is the major site of ROS production (Poyton et al., 2009). Enzymes involved in ROS-generating chemical reactions are peroxidases, Nicotinamide adenine dinucleotide phosphate oxidase (NOX), xanthine oxidase (XO), lipoygenases (LOXs), glucose oxidase, myeloperoxidase (MPO), nitric oxide synthase, and cyclooxygenases (COXs) (Kulkarni, Kuppusamy & Parinandi, 2007).

The oxidation of NADPH to NADP+ catalyzed by NADPH oxidase generates superoxide radical from oxygen. NADPH oxidase enzyme present in cytoplasmic membrane of phagocytic cells was described first as an enzyme involved in the generation of reactive oxygen species in the phagocytic cells (Rossi & Zatti, 1964). This enzyme comprises two membrane-bound proteins (p22phox and gp91phox), three cytosolic proteins (p67phox, p47phox, and p40phox), and a small G-protein Rac. Gp91phox and p22phox form a heterodimer that is bound to the plasma membrane. The p22phox subunit is coded by the CYBA (cytochrome b245 alpha) gene, which is
mapped to chromosome 16q24.3 (Powell et al., 2002). Genetic factors might regulate NADPH-oxidase-driven O_2^- production. Several polymorphisms in the NADPH oxidase encoding gene have been described, some of which have been associated with increased (San José et al., 2004) or diminished NOX activity (Guzik et al., 2000), as well as reduced ROS generation (Schirmer et al., 2008; Bedard et al., 2009).

To date little is known about the association of -930 A/G polymorphism (rs9932581) located in the promoter and the 242 C/T polymorphism (rs4673) is located in the exon 4 of the CYBA gene, he and the level of oxidative stress in BC patients. Therefore, the present study was aimed to examine the importance and association of the functional polymorphisms of CYBA (-930 A/G and 242 C/T) with the oxidative stress in BC development and progression.

Materials and Methods:

Study Population

In our study, a total of 600 subjects were enrolled comprising of 300 histopathologically confirmed female patients with breast cancer and the control group included 300 unrelated healthy women with no self-reported history of any cancer. The study followed the Helsinki declaration and was approved by Institutional Ethics Committee, MNJ Institute of Oncology & Regional Cancer Centre. Patients with breast cancer were enrolled from the Department of Radiation Oncology, MNJ Regional Cancer Centre, Hyderabad from August 2013 to August 2017 and during the same time controls subjects were enrolled from the local population and women with any other cancer or other systemic inflammatory disease were excluded from the case and control group.

All subjects were explained about the purpose of the study and were ensured that the information collected from them would be confidential. Subsequently written informed consent to participate in the study was obtained from each individual. Each subject completed a questionnaire on their demographic characteristics, area of living, lifestyle habits such as tobacco use and alcohol consumption. Clinical characteristics such as tumor size, stage of the cancer, axillary lymph node involvement and metastasis were collected via medical records with the help of medical oncologist.
Sample collection

Following an overnight fast 4ml of blood sample was collected by antecubital venipuncture in EDTA vaccutainer from each individual for estimation of MDA & genomic DNA extraction.

Plasma MDA levels estimation

Lipid peroxidation, as evidenced by the formation of malondialdehyde (MDA), was assayed by the method described previously (Gavino et al., 1981; Rajesh et al., 2011). Briefly, to 0.5ml of freshly obtained plasma an equal volume of 0.9% saline and trichloroacetic acid (TCA) was added and incubated at 37°C for 20 minutes, and centrifuged for 10 minutes at 3000 rpm. To 1ml of protein free supernatant (TCA extract) 0.25ml of thiobarbituric acid (TBA) was added and the reaction mixture was heated for 60 min at 95°C till a faint pink color develops. After cooling, the color intensity was measured at 532 nm with eppendorf UV 240-Spectrophotometer. 1,1,3,3-Tetraethoxypropane(1-100 nmol/ml) was used as the standard. The lipid peroxidation activity was expressed in “nano moles” of MDA equivalents/ml of standard 1,1,3,3-Tetraethoxypropane.

Genomic DNA Extraction and Genotyping analysis

Genomic DNA was isolated from blood sample using a non-enzymatic method (Miller, Dykes & Polesky, 1988). Polymorphic regions in the CYBA gene were identified by Allele- specific polymerase chain reaction (PCR) and PCR- Restriction fragment length polymorphism (RFLP) assays for -930 A/G and 242 C/T polymorphisms respectively. Cases and controls were randomized during genotyping and 10% of the samples were genotyped in duplicate to assess the genotyping error rate. Concordance of genotypes was 100%.

Statistical analysis

Demographic, clinical, and biochemical variables are expressed as the mean±SD. All statistical tests were two-sided, a P-value lower than 0.05 was considered statistically significant. For comparison of continuous variables in demographic data between controls and breast cancer patients, Student’s t-test was performed. Observed genotype frequencies were tested for deviation from Hardy-Weinberg equilibrium with the chi-square goodness-of-fit test (χ^2). Risk
estimates were calculated for co-dominant, dominant and recessive genetic models using SNPStats. Odds ratios (OR) and their 95% confidence intervals (CI) were estimated using a univariate analysis. Linkage Disequilibrium (LD) plots were generated using Haploview (v.4.2) software. Multifactor dimensionality reduction (MDR) analysis was performed to identify high-order interaction models that were associated with BC risk using open-source MDR software (v.2.0 beta 8.4).

Bioinformatics analysis
Prediction of presumptive changes in transcription factor binding sites caused by nucleotide alterations in the promoter region was performed with AliBaba software2.1 (http://gene-regulation.com/pub/programs/alibaba2/index.html) (Grabe, 2002). Pre-mRNA secondary structure prediction of 242 C/T polymorphic variants was carried out using Vienna RNAfold webserver (http://rna.tbi.univie.ac.at/cgibin/RNAWebSuite/RNAfold.cgi) online tool (Zuker & Stiegler, 1981). The 3D models for CYBA wild type and variant protein with 242 C/T SNP were generated using homology modeling tool I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) (Roy, Kucukural & Zhang, 2010).

Results
The baseline/clinical characteristics are summarised in Table 1. In the present study, lifestyle habits such as, mixed diet (Non-vegetarian), habit of smoking and alcohol consumption were found to be associated with breast cancer risk (p<0.05).

The genotypic and allele frequency distribution of the CYBA -930 A/G polymorphism is represented in Table 2. In the present study the GG genotype was significantly higher in cases and was found to be associated with an increased risk of BC compared to homozygotic AA genotype carriers (OR 2.15, 95%CI 1.16-3.98, p=0.034). The allelic distribution has revealed that the prevalence of the G-allele was significantly higher in cases and conferred increased risk for breast cancer compared to A-allele (OR 1.27, 95% CI 1.01-1.6, p=0.035)

The genotype and allele frequency distribution of CYBA 242 C/T polymorphism among the controls and patients with breast cancer is presented in Table 3. Under the dominant model,
carriers of at least one minor allele T (CT+TT) were found to be associated with a significantly increased risk of BC compared to major allele homozygotes (CC) carriers (OR 1.42, 95% CI 1.02-1.98, p=0.036). The allelic association revealed that the minor allele T of 242 C/T polymorphism was associated with an increased risk of BC (OR 1.36, 95% CI 1.04-1.78, p=0.02).

We further have analysed the haplotype frequencies with respect to CYBA gene polymorphisms in association with risk of breast cancer. Our analysis has revealed a total of 4 haplotypes as shown in Table 4. Comparison of haplotype frequencies between controls and BC patients revealed a significant difference in haplotype frequencies, where -930G/242C and -930G/242T combinations were found to be significantly associated with an increased risk of breast cancer by more than 1.44 fold (95% CI 1.00–2.07; p<0.05) and 1.56 (95% CI 1.11 – 2.20; p<0.05) respectively compared with the common haplotype (-930A/242C).

Pairwise LD was computed for CYBA -930 A/G and 242 C/T polymorphism in cases and controls separately. LD plots revealed a moderate LD (D’=56) between the markers in BC patients and a weak LD (D’=31) between the markers in controls as shown in the Figure 1. Further, MDR analysis with respect to CYBA gene polymorphism has shown that 242C/T polymorphism was the best single locus model with a significant risk for breast cancer. The bivariate model showed strong interaction between -930 A/G and 242 C/T polymorphisms as seen in Figure 2.

Furthermore, the TFBS analysis with respect to -930 A/G promoter polymorphism has revealed that substitution of A nucleotide by G leads to a loss of C/EBPbeta site as depicted in Figure 3. The comparison of the wild type and variant pre-mRNA secondary structures with respect to 242 C/T polymorphism is given in Figure 4, wherein, the stability, as depicted by minimum free energy (MFE) change has revealed that the T-allelic structure had an MFE of -37.61 Kcal/mol and the C-allelic structure had an MFE of -37.91 Kcal/mol respectively. In addition, an altered 3D structure was also observed corresponding to loss of cavities with respect to variant structure when compared to wild type structure as seen in Figure 5 (Table 5).

The plasma MDA levels were measured in all the subjects in the present study, our results revealed that patients with breast cancer had significantly higher MDA levels (6.84±2.42...
nmoles/µl) compared to the control (2±0.69 nmoles/µl) group. Further, MDA levels were stratified with respect to CYBA genotypes, where we found that individuals with GG genotype of -930 A/G polymorphism had higher MDA levels compared to those with AA genotype. Furthermore, the MDA levels with respect to CYBA gene haplotypes has shown that -930G/242C haplotype combination was associated with higher MDA levels in breast cancer patients compared to other haplotypes at p<0.05 as summarized in Figure 6.

Discussion

Breast cancer is a common disease worldwide and also one of the leading cause of cancer death in India (Ferlay et al., 2015; Malvia et al., 2017). Breast carcinogenesis involves a cascade of multiple intracellular mechanisms such as genetic alterations, signal transduction pathways, etc, (Kurose et al., 2001). However, it also depends on the oxidative stress (OS) and the predominance of endogenous antioxidant system for manifestation of disease. Oxidative stress induces uncontrolled lipid peroxidation that produces aldehyde end-products, such as free fatty acids, malondialdehyde (MDA) might cause cell injury and death. In addition, cancer initiation and progression have also been shown to be associated with oxidative stress by causing DNA mutations or inducing DNA damage, genome instability, and cell proliferation (Srivastava et al., 2009; Visconti & Grieco, 2009; Wang et al., 2011; Wu et al., 2017).

In the present study, a higher frequency of breast cancer patients with habit of smoking and alcohol was observed. Multiple reports have also shown that habit of smoking and alcohol consumption were associated with increased risk for breast cancer as they are more exposed to free radicals leading to oxidative damage to lipids, proteins and DNA that may aid in cancer progression (Kumari et al., 2018; Scheideler & Klein, 2018). In contrast, several reports have been inconsistent, wherein no significant association was observed with respect to smoking and alcohol consumption in breast cancer patients (Byrne, Rockett & Holmes, 2002; Allen et al., 2009; Gathani et al., 2017).

Alteration in expression of enzyme system that produces ROS such as NADPH oxidase (NOX) has been shown to be an important susceptibility factor for cancer (Arcucci et al., 2016). The most significant sources of ROS are NOXs, which include two membrane-bound subunits Nox2 and p22phox. The p22phox encoded by the CYBA gene has several functional polymorphisms.
In view of the above, in this study we attempted to determine the association of oxidative stress with -930 A/G and 242 C/T polymorphisms of CYBA gene that encodes p22phox subunit of NADPH oxidase among controls and patients with breast cancer to understand its role in the development and progression of breast cancer. The -930 A/G functional SNP located at the promoter region in a dual-luciferase reported assay system has revealed that the G allele was found to be associated with a 30% increase in promoter activity. Furthermore, the frequency of the G allele was higher than the A allele in hypertensive individuals (Moreno et al., 2003). Recent large population study on -930 A/G polymorphism has also reported that the GG genotype confers susceptibility for hypertension (Kokubo et al., 2005). Therefore, we have investigated the association between this SNP in association with breast cancer risk. In the present population the G-allele was found to be significantly higher in breast cancer patients compared to healthy controls conferring a 1.27-fold risk towards breast cancer. The promoter region SNPs affects gene expression by altering promoter activity, transcription-factor binding, DNA methylation and histone modifications (Deng et al., 2017). Interactions between transcription factors (TFs) and target binding sites determine the expression of genes. Since the -930 A/G polymorphism has a potential binding site for C/EBP (CCAAT/enhancer-binding protein) transcription factors it has been speculated that it might modulate CYBA transcriptional activity (San José et al., 2004). Our insilco analysis on transcription-factor binding sites with respect to -930 A/G polymorphic variants revealed that the substitution of A by G results in the loss of repressor C/EBPbeta transcription factor site that might increase transcriptional activity.

The C242T polymorphism has been demonstrated to be related to multiple diseases (Guzik et al., 2000; San José et al., 2008; Vibhuti et al., 2010; Schreiber et al., 2011; Zhou & Zhao, 2015). Results of the present study had showed that individuals with the CT/TT genotype of 242 C/T polymorphism had a 1.42-fold higher risk for breast cancer compared to those with the CC genotype. Our finding was consistent with reports showing significant association with vascular disease (Ito et al., 2000). The C242T polymorphism located in exon 4 encodes a CAC→TAC codon change thus resulting in a non-conservative substitution of His72 for a tyrosine residue that may alter the haem-binding site of the p22phox protein (Tahara et al., 2008; Fu et al., 2016). Finding 3D structure of proteins is helpful in predicting the impact of SNPs on the structural level and in showing the degrees of alteration. Our analysis has shown an altered 3D structure
with a change of histidine residue in the variant protein that might contribute to functional
impairment.

MDA is a naturally occurring endogenous product of lipid peroxidation and prostaglandin
biosynthesis, but is mutagenic and carcinogenic. Oxidative stress as measured by an increase in
MDA levels was established in gastric, colorectal adenomas, prostate and oral cancer (Bakan et
al., 2002; Leuratti et al., 2002; Zhang et al., 2008; Chole et al., 2010). In this study we have also
demonstrated an increase in lipid peroxidation due to oxidative stress in breast cancer patients.
Previous studies have also reported increased levels of MDA in breast cancer patients compared
to healthy controls (Gönenç et al., 2001, 2006; Yeh et al., 2005) suggesting that elevated
oxidative stress contributes to increased risk for breast cancer development and progression.
Further, comparison of MDA levels with respect to CYBA gene haplotypes revealed that -
930G/242C and -930G/242T haplotype carriers in the patients with breast cancer showed higher
MDA levels than other haplotypes; this could be in line with observation that states presence of
G-allele could increase the transcriptional activity, elevating ROS production resulting in
oxidative stress in breast cancer patients.

There are several limitations in this study. The foremost limitation to our study concerns the use
of limited sample size, which prevented us from drawing causal relationships. Owing to its
importance as an oxidative stress indicator we have measured MDA levels in our study, however
it alone is not a sole indicator of oxidative stress and we have not directly quantified the NADPH
oxidase activity. Further more studies on CYBA gene polymorphisms/haplotypes along with
different oxidative stress markers should be done in a multicenter, multi-ethnic population and
with a large number of patients in the future to strengthen our findings.

Conclusion

In conclusion, our results suggest that the individuals with GG genotype of -930 A/G
polymorphism, -930G/242C and/or -930G/242T haplotypes of CYBA gene may predispose to
increased oxidative stress. Therefore, more attention should be paid to oxidative stress-related
pathological manifestations in individuals with the risk genotype/haplotype, as it plays an
important role in development and progression of breast cancer.

Acknowledgements: The authors would like to thank all the participants of the study.
References

Abdulkareem I. 2013. Aetio-pathogenesis of breast cancer. *Nigerian Medical Journal* 54:371. DOI: 10.4103/0300-1652.126284.

Allen NE., Beral V., Casabonne D., Kan SW., Reeves GK., Brown A., Green J. 2009. Moderate alcohol intake and cancer incidence in women. *Journal of the National Cancer Institute* 101:296–305. DOI: 10.1093/jnci/djn514.

Arcucci A., Ruocco MR., Granato G., Sacco AM., Montagnani S. 2016. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts. *BioMed Research International* 2016. DOI: 10.1155/2016/4502846.

Bakan E., Taysi S., Polat MF., Dalga S., Umudum Z., Bakan N., Gumus M. 2002. Nitric oxide levels and lipid peroxidation in plasma of patients with gastric cancer. *Japanese Journal of Clinical Oncology* 32:162–166. DOI: 10.1093/jjco/hyf035.

Bedard K., Attar H., Bonnefont J., Jaquet V., Borel C., Plastre O., Stasia MJ., Antonarakis SE., Krause KH. 2009. Three common polymorphisms in the CYBA gene form a haplotype associated with decreased ROS generation. *Human Mutation* 30:1123–1133. DOI: 10.1002/humu.21029.

Byrne C., Rockett H., Holmes MD. 2002. Dietary fat, fat subtypes, and breast cancer risk: lack of an association among postmenopausal women with no history of benign breast disease. *Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 11:261–5.

Chole R., Patil R., Basak A., Palandurkar K., Bhowate R. 2010. Estimation of serum malondialdehyde in oral cancer and precancer and its association with healthy individuals, gender, alcohol, and tobacco abuse. *Journal of Cancer Research and Therapeutics* 6:487. DOI: 10.4103/0973-1482.77106.

Deng N., Zhou H., Fan H., Yuan Y. 2017. Single nucleotide polymorphisms and cancer susceptibility. *Oncotarget* 8:231–239. DOI: 10.18632/oncotarget.22372.

Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin DM., Forman D., Bray F. 2015. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. *International Journal of Cancer* 136:E359–E386. DOI: 10.1002/ijc.29210.
Fiaschi T., Chiarugi P. 2012. Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. *International Journal of Cell Biology* 2012. DOI: 10.1155/2012/762825.

Fu Q., Qi F., Tian F., Ma G., Che F., Du Y., Gao N. 2016. Association of the p22phox polymorphism C242T with the risk of late-onset Alzheimer’s disease in a northern Han Chinese population. *International Journal of Neuroscience* 126:637–640. DOI: 10.3109/00207454.2015.1052877.

Gathani T., Barnes I., Ali R., Arumugham R., Chacko R., Digumarti R., Jivarajani P., Kannan R., Loknatha D., Malhotra H., Mathew BS., Ananthakrishnan R., Balasubramanian S., D’Cruz A., Doshi G., Foulkes M., Ganesan T., Gupta S., Chandramohan K., Mallandas M., Mehta S., Nair R., Sebastian P., Sharma A. 2017. Lifelong vegetarianism and breast cancer risk: A large multicentre case control study in India. *BMC Women’s Health* 17. DOI: 10.1186/s12905-016-0357-8.

Gavino VC., Miller JS., Ikharebha SO., Milo GE., Cornwell DG. 1981. Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. *Journal of lipid research* 22:763–769.

Gönenç A., Erten D., Aslan S., Akinci M., Şimşek B., Torun M. 2006. Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease. *Cell Biology International* 30:376–380. DOI: 10.1016/j.cellbi.2006.02.005.

Gönenç A., Ozkan Y., Torun M., Simşek B. 2001. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. *Journal of clinical pharmacy and therapeutics* 26:141–4. DOI: 10.1046/j.1365-2710.2001.00334.x.

Grabe N. 2002. AliBaba2: context specific identification of transcription factor binding sites. *In silico biology* 2:S1–S15.

Gupta A., Shridhar K., Dhillon PK. 2015. A review of breast cancer awareness among women in India: Cancer literate or awareness deficit? *European Journal of Cancer* 51:2058–2066. DOI: 10.1016/j.ejca.2015.07.008.

Guzik TJ., West NE., Black E., McDonald D., Ratnatunga C., Pillai R., Channon KM. 2000. Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. *Circulation* 102:1744–1747. DOI: 10.1161/01.CIR.102.15.1744.
Ito D., Murata M., Watanabe K., Yoshida T., Saito I., Tanahashi N., Fukuuchi Y. 2000. C242T polymorphism of NADPH oxidase p22 PHOX gene and ischemic cerebrovascular disease in the Japanese population. *Stroke; a journal of cerebral circulation* 31:936–939.

Jezierska-Drutel A., Rosenzweig SA., Neumann CA. 2013. Role of oxidative stress and the microenvironment in breast cancer development and progression. *Advances in Cancer Research* 119:107–125. DOI: 10.1016/B978-0-12-407190-2.00003-4.

Kokubo Y., Iwai N., Tago N., Inamoto N., Okayama A., Yamawaki H., Naraba H., Tomoike H. 2005. Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population--the Suita Study. *Circ. J.* 69:138–142. DOI: 10.1253/circj.69.624.

Kulkarni AC., Kuppusamy P., Parinandi N. 2007. Oxygen, the Lead Actor in the Pathophysiologic Drama: Enactment of the Trinity of Normoxia, Hypoxia, and Hyperoxia in Disease and Therapy. *Antioxidants & Redox Signaling* 9:1717–1730. DOI: 10.1089/ars.2007.1724.

Kumari K., Das B., Adhya A., Chaudhary S., Senapati S., Mishra SK. 2018. Nicotine associated breast cancer in smokers is mediated through high level of EZH2 expression which can be reversed by methyltransferase inhibitor DZNepA. *Cell Death and Disease* 9. DOI: 10.1038/s41419-017-0224-z.

Kurose K., Hoshaw-Woodard S., Adeyinka a., Lemeshow S., Watson PH., Eng C. 2001. Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. *Human molecular genetics* 10:1907–13. DOI: 10.1093/hmg/10.18.1907.

Leuratti C., Watson MA., Deag EJ., Welch A., Singh R., Gottschalg E., Marnett LJ., Atkin W., Day NE., Shuker DEG., Bingham SA. 2002. Detection of malondialdehyde DNA adducts in human colorectal mucosa: Relationship with diet and the presence of adenomas. *Cancer Epidemiology Biomarkers and Prevention* 11:267–273.

Malvia S., Bagadi SA., Dubey US., Saxena S. 2017. Epidemiology of breast cancer in Indian women. *Asia-Pacific Journal of Clinical Oncology* 13:289–295. DOI: 10.1111/ajco.12661.

Miller SA., Dykes DD., Polesky HF. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Research* 16:1215. DOI: 10.1093/nar/16.3.1215.

Moreno MU., San José G., Orbe J., Páramo JA., Beloqui O., Diez J., Zalba G. 2003. Preliminary
characterisation of the promoter of the human p22phox gene: Identification of a new polymorphism associated with hypertension. FEBS Letters 542:27–31. DOI: 10.1016/S0014-5793(03)00331-4.

Powell JA., Gardner AE., Bais AJ., Hinze SJ., Baker E., Whitmore S., Crawford J., Kochetkova M., Spendlove HE., Doggett NA., Sutherland GR., Callen DF., Kremmidiotis G. 2002. Sequencing, transcript identification, and quantitative gene expression profiling in the breast cancer loss of heterozygosity region 16q24.3 reveal three potential tumor-suppressor genes. Genomics 80:303–310. DOI: 10.1006/geno.2002.6828.

Poyton RO., Castello PR., Ball KA., Woo DK., Pan N. 2009. Mitochondria and hypoxic signaling: A new view. In: Annals of the New York Academy of Sciences. 48–56. DOI: 10.1111/j.1749-6632.2009.05046.x.

Rajesh KG., Surekha RH., Mrudula SK., Prasad Y., Sanjib KS., Prathiba N. 2011. Oxidative and nitrosative stress in association with DNA damage in coronary heart disease. Singapore Medical Journal 52:283–288.

Rossi F., Zatti M. 1964. Biochemical aspects of phagocytosis in poly-morphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 20:21–23. DOI: 10.1007/BF02146019.

Roy A., Kucukural A., Zhang Y. 2010. I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols 5:725–738. DOI: 10.1038/nprot.2010.5.

San José G., Fortuño A., Beloqui O., Díez J., Zalba G. 2008. NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases. Clinical science (London, England : 1979) 114:173–182. DOI: 10.1042/CS20070130.

San José G., Moreno MU., Oliván S., Beloqui O., Fortuño A., Diez J., Zalba G. 2004. Functional effect of the p22phox -930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension 44:163–9. DOI: 10.1161/01.HYP.0000134790.02026.e4.

Scheideler JK., Klein WMP. 2018. Awareness of the link between alcohol consumption and cancer across the world: A review. Cancer Epidemiology Biomarkers and Prevention 27:429–437. DOI: 10.1158/1055-9965.EPI-17-0645.

Schirmer M., Hoffmann M., Kaya E., Tzvetkov M., Brockmöller J. 2008. Genetic polymorphisms of NAD(P)H oxidase: Variation in subunit expression and enzyme activity.
Schreiber R., Ferreira-Sae MC., Ronchi J a., Pio-Magalhães J a., Cipolli J a., Matos-Souza JR., Mill JG., Vercesi AE., Krieger JE., Franchini KG., Pereira AC., Nadruz Junior W. 2011. The C242T polymorphism of the p22-phox gene (CYBA) is associated with higher left ventricular mass in Brazilian hypertensive patients. BMC medical genetics 12:114. DOI: 10.1186/1471-2350-12-114.

Srivastava A., Srivastava S., Natu S., Gupta A., Pal K., Singh U., Agarwal G., Singh U., Goel M. 2009. Lipid peroxidation and antioxidants in different stages of cervical cancer: Prognostic significance. Indian Journal of Cancer 46:297. DOI: 10.4103/0019-509X.55549.

Tahara T., Arisawa T., Shibata T., Nakamura M., Wang F., Yoshioka D., Okubo M., Maruyama N., Kamano T., Kamiya Y., Nakamura M., Fujita H., Nagasaka M., Iwata M., Takahama K., Watanabe M., Yamashita H., Nakano H., Hirata I. 2008. Genetic variant of the p22PHOX component of NADPH oxidase C242T and the incidence of gastric cancer in Japan. Hepatogastroenterology 55:2273–2276.

Vibhuti A., Arif E., Mishra A., Deepak D., Singh B., Rahman I., Mohammad G., Pasha MAQ. 2010. CYP1A1, CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD. Clinica Chimica Acta 411:474–480. DOI: 10.1016/j.cca.2009.12.018.

Visconti R., Grieco D. 2009. New insights on oxidative stress in cancer. Current opinion in drug discovery & development 12:240–245. DOI: 10.1111/j.1538-7836.2005.01370.x.

Wang D., Feng JF., Zeng P., Yang YH., Luo J., Yang YW. 2011. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocrine-Related Cancer 18:773–782. DOI: 10.1530/ERC-11-0230.

Wu R., Feng J., Yang Y., Dai C., Lu A., Li J., Liao Y., Xiang M., Huang Q., Wang D., Du XB. 2017. Significance of serum total oxidant/antioxidant status in patients with colorectal cancer. PLoS ONE 12. DOI: 10.1371/journal.pone.0170003.

Yeh C-C., Hou M-F., Tsai S-M., Lin S-K., Hsiao J-K., Huang J-C., Wang L-H., Wu S-H., Hou L.A., Ma H., Tsai L-Y. 2005. Superoxide anion radical, lipid peroxides and antioxidant status in the blood of patients with breast cancer. Clinica chimica acta; international journal of clinical chemistry 361:104–11. DOI: 10.1016/j.cccn.2005.05.002.

Zhang S., Qi L., Li M., Zhang D., Xu S., Wang N., Sun B. 2008. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer.
Jiang Y., Zhao YC. 2015. Association between the nicotinamide adenine dinucleotide phosphate oxidase p22phox gene -A930G polymorphism and intracerebral hemorrhage. Molecular Medicine Reports 11:3511–3516. DOI: 10.3892/mmr.2015.3154.

Zuker M., Stiegler P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9:133–148. DOI: 10.1093/nar/9.1.133.
Figure 1

Plot of pair-wise linkage disequilibrium (LD) analysis of SNPs of CYBA genes in controls and BC patients

(A) LD plot of controls (B) LD plot of Cases. D' values are shown in the plot. A value of 100 represents maximum possible linkage disequilibrium.
Figure 2

Multifactor dimensionality reduction (MDR) analysis of CYBA gene polymorphisms in association with breast cancer

(A) Univariate and (B) Bivariate analysis - In each block, the dark and light bars represent the number of cases and number of controls with that particular genotype, respectively. Dark and light backgrounds of the block represent a positive and negative association with breast cancer, respectively. (C) Interaction dendrogram - The interaction dendrogram was used to confirm, visualize, and interpret the interaction model. The colours used to depict the degree of synergy, ranging from red (highest information gain) to blue (highest information redundancy). Our analysis has revealed a synergistic interaction between SNPs (gain of information).
Figure 3

Effect of the CYBA -930 A/G polymorphism on transcription factor binding sites

CYBA -930 A-allele

```
seq( 60.. 119)  cggagggcagaaatgctggtttattccccatggccaccgggccc
Segments:
2.3.1.0   50  63  
2.3.1.0   61  70  
1.1.3.0   69  78  
1.3.1.0   85  94  
9.9.539   86  95  
2.3.1.0   95  107
```

CYBA -930 G-allele

```
seq( 60.. 119)  cggagggaggaatgctggtttattccccatggccaccgaggccc
Segments:
2.3.1.0   50  61  
2.3.1.0   61  70  
1.3.1.0   85  94  
9.9.539   86  95  
2.3.1.0   95  107`
```
Figure 4

Computational analysis of CYBA 242 C/T polymorphism based pre-mRNA secondary structures

Predicted minimal free energy based RNA structure of (A) major (C-allele) and (B) minor (T-allele) alleles of 242C/T polymorphism using the RNA fold program in the Vienna RNA package (Zuker algorithm). Structure colours encode base-pair probabilities and arrow denotes the location of polymorphism. The mountain plot is a XY -graph that represents a secondary structure including MFE structure, the thermodynamic ensemble of RNA structures (pf), and the centroid structure in a plot of height versus position. “mfe” represents minimum free energy structure; “pf” indicates partition function; “centroid” represents the centroid structure.
Figure 5

3D structures of CYBA 242 C/T polymorphic variants as predicted by I-TASSER

The 3D structures of the CYBA 242 C/T polymorphic variants were modeled on I-TASSER server. The left box (A) displays the wildtype structures and the right box (B) exhibits the relevant variant structure.

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
Figure 6

MDA levels in controls and breast cancer patients

(A) Malondialdehyde (MDA) levels in the control group and breast cancer patients (B) MDA levels with respect to CYBA polymorphic genotypes and (C) MDA levels with respect to CYBA gene haplotypes in controls and breast cancer patients
Table 1 (on next page)

Baseline characteristics of controls and breast cancer cases

OR, odds ratio, CI, Class interval * p-value by Student's ttest (continuous variables); χ² test (categorical variables).
Characteristics	Controls N (%)	Cases N (%)	OR (95% CI)	p^a
Age (years)	46.34±7.97	47.98±10.8	-	0.034
Lifestyle habits				
Vegetarian Diet	87 (29)	43 (14.34)		
Non-vegetarian Diet	213 (71)	257 (85.56)	2.44 (1.62- 3.67)	<0.005
Non-smokers	273 (91)	245 (81.66)		
Smoker	27 (9)	55 (18.34)	2.27 (1.38-3.71)	0.0004
Non-alcoholics	243 (81)	179 (59.6)		
Alcoholics	57 (19)	121 (40.4)	2.88 (1.99-4.16)	<0.001
Table 2 (on next page)

Distribution of genotype and allele frequencies of CYBA -930 A/G polymorphism in controls and breast cancer patients

χ² p-value <0.05 is considered statistically significant
Model	Genotype	Controls	Cases	OR (95% CI)	χ^2 p-value
Co-dominant	A/A	85 (28.3)	62 (20.7)	1.00	
	A/G	192 (64)	202 (67.3)	1.44 (0.98-2.11)	**0.034***
	G/G	23 (7.7)	36 (12)	2.15 (1.16-3.98)	
Dominant	A/A	85 (28.3)	62 (20.7)	1.00	
	A/G-G/G	215 (71.7)	238 (79.3)	1.52 (1.04-2.21)	**0.029***
Recessive	A/A-A/G	277 (92.3)	264 (88)	1.00	
	G/G	23 (7.7)	36 (12)	1.64 (0.95-2.85)	0.074
Over dominant	A/A-G/G	108 (36)	98 (32.7)	1.00	
	A/G	192 (64)	202 (67.3)	1.16 (0.83-1.62)	0.39
Log-additive	--	--	--	1.46 (1.09-1.94)	0.0094
Allele	A	362 (0.6)	326 (0.54)	1.00	
	G	238 (0.4)	274 (0.46)	1.27 (1.01-1.6)	**0.035***
HWE(p)	<0.0001	<0.0001			
Table 3 (on next page)

Distribution of genotype and allele frequencies of CYBA 242 C/T polymorphism in controls and breast cancer patients.

$\chi^2 p$-value < 0.05 is considered statistically significant
Model	Genotype	Controls N (%)	Cases N (%)	OR (95% CI)	\(\chi^2 \)	p-value
Co-dominant	C/C	197 (65.7)	172 (57.3)	1.00		
	C/T	82 (27.3)	99 (33)	1.38 (0.97-1.98)	0.1	
	T/T	21 (7)	29 (9.7)	1.58 (0.87-2.88)		
Dominant	C/C	197 (65.7)	172 (57.3)	1.00	1.42 (1.02-1.98)	0.036
	C/T-T/T	103 (34.3)	128 (42.7)			
Recessive	C/C-C/T	279 (93)	271 (90.3)	1.00	1.42 (0.79-2.55)	0.24
	T/T	21 (7)	29 (9.7)			
Over dominant	C/C-T/T	218 (72.7)	201 (67)	1.00	1.31 (0.92-1.86)	0.13
	C/T	82 (27.3)	99 (33)			
Log-additive	--	--	--	1.31 (1.02-1.68)	0.036	
Allele	C	476 (0.79)	443 (0.74)	1.00		
	T	124 (0.21)	157 (0.26)	1.36 (1.04-1.78)	0.02	
HWE(p)		0.16	**0.027**			
Table 4 (on next page)

Haplotype frequencies of CYBA -930 A/G and 242 C/T polymorphisms between Controls and BC patients

*Order of SNPs in CYBA gene haplotypes: -930 A/G, 242 C/T; OR-Odds ratio, CI-Class interval;
* Interactive Chi-Square p-value<0.05 is statistically significant
| Haplotype^a | Overall (N=600) | Controls (N=300) | Cases (N=300) | OR (95% CI) | p-value |
|-------------------|-----------------|-----------------|--------------|-------------|---------|
| A-C | 0.5116 | 0.547 | 0.4752 | 1.00 | --- |
| G-C | 0.2542 | 0.2463 | 0.2632 | 1.44 (1.00 – 2.07) | 0.05 |
| G-T | 0.1724 | 0.1503 | 0.1503 | 1.56 (1.11 – 2.20) | 0.011 |
| A-T | 0.0617 | 0.0563 | 0.0682 | 1.40 (0.75 - 2.59) | 0.29 |
Table 5 (on next page)

Cavity differences between the structures of CYBA 242C/T polymorphic variants
Cavity	Volume (Å³)		
	Wild Type	Variant Type	
1	53.248	132.09	
2	51.2	28.67	
3	22.01	17.92	
4	19.96	13.312	
5	18.94	--	