Marginal dimensions for multicritical phase transitions

M. Dudkaa, R. Folkb, Yu. Holovatcha, G. Moserc

aInstitute for Condensed Matter Physics, Svientsitskii str. 1, UA–79011 Lviv, Ukraine
bInstitut für theoretische Physik, Johannes Kepler Universität Linz, A–4040 Linz, Austria
cInstitut für Physik und Biophysik, Universität Salzburg, A–5020 Salzburg, Austria

The field-theoretical model with $O(n_1) \oplus O(n_2)$ symmetry is known to describe multicritical phase transitions in different physical systems like magnets, superconductors and 4He (see [1]). The phases are described by two order parameters (OPs), a n_1-component one coupled to another one with n_2 components. Within renormalization group (RG) approach scaling properties of the critical properties of the model are governed by one of three fixed points (FPs) (isotropic Heisenberg FP of $O(n_1+n_2)$ symmetry, decoupled FP at which OPs are ordering separately, and biconical FP). Their stability depend on the OPs dimensions n_1, n_2 and the space dimension d. We are interested in the surfaces in the $n_1−n_2−d$ space that separate the stability regions of these FPs. Applying resummation techniques to the known two-loop RG functions for $O(n_1) \oplus O(n_2)$ model found in minimal subtraction scheme [2] we obtain these surfaces in $n_1−n_2−d$ space from the stability exponents. Special attention was paid to the stability surface $n_{1,2}^F(n_1, d)$, which we calculate as series in $\epsilon=4−d$ up to ϵ^4 and for the case $d=3$ as series in pseudo-ϵ parameter τ up to τ^5 using results for $O(n)$-symmetric model [3,4]. We analyze the obtained results by resummation methods. We also consider the dependence on the space dimension d of another stability surface $n_{1,2}^T(n_1, d)$ as well as of the multicritical behavior for the $O(1) \oplus O(2)$ symmetric model relevant for anisotropic antiferromagnets in an external magnetic field.

[1] A. Aharony, J. Stat. Phys. 110, 659 (2003); H. Matsuda, T. Tsuneto, Prog. Theor. Phys. 40, 411 (1970).
[2] R. Folk, Yu. Holovatch, and G. Moser, Phys. Rev. E 78, 041124 (2008).
[3] H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin, and S.A. Larin, Phys. Lett. B 272, 39 (1991).
[4] S. A. Antonenko, A. I. Sokolov, Phys.Rev. E 51, 1894 (1995).