Island Cotton Gbve1 Gene Encoding A Receptor-Like Protein Confers Resistance to Both Defoliating and Non-Defoliating Isolates of Verticillium dahliae

Baolong Zhang1,#, Yuwen Yang1,#, Tianzi Chen1, Wengui Yu1, Tingli Liu2, Hongjuan Li2, Xiaohui Fan1, Yongzhe Ren1, Danyu Shen2, Li Liu2, Daolong Dou2, Youhong Chang1*

1 Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 2 College of Plant Protection, Nanjing Agricultural University, Nanjing, China

Abstract

Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.

Citation: Zhang B, Yang Y, Chen T, Yu W, Liu T, et al. (2012) Island Cotton Gbve1 Gene Encoding A Receptor-Like Protein Confers Resistance to Both Defoliating and Non-Defoliating Isolates of Verticillium dahliae. PLoS ONE 7(12): e51091. doi:10.1371/journal.pone.0051091

Copyright: © 2012 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported to B.Z. by grants from the National Natural Science Foundation of China (No. 30971830), fund for Independent Innovation of Agricultural Sciences in Jiangsu Province (No. cx(12) 2023) and National Science and Technology Major Project for Transgenic Breeding (No. 2009ZX08005-003B), and D.D. by grants Natural Science Foundation of Jiangsu Province (BK2009308) and Doctoral Fund of Ministry of Education of China (20090097110032). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhlz2248@yahoo.com.cn (BZ); cyhl@jaas.ac.cn (YC)
These authors contributed equally to this work.

Introduction

Verticillium dahliae Kleb is a soil-borne fungus that penetrates the vascular system of the plant and causes vascular wilt disease. This pathogenic fungus survives in the soil for long periods as microsclerotia, tiny structures produced in the plant tissue. It infects hundreds of economically important crops and trees, but unfortunately, no currently available fungicides are able to effectively control the disease [1]. Verticillium wilt in cotton has been reported in most cotton-growing areas, and it has become a stronger pathogenic capacity. BP2 and V991 are two widely spread V. dahliae isolates found in China and represent medium aggressive non-defoliating and highly aggressive defoliating isolates, respectively [5,6].

Efforts made to utilize genetic engineering to obtain transgenic cotton resistant to V. dahliae have had varying results. Genes used for these studies have included GbV [7], Arabidopsis NPR1 [8,9], anti-apoptotic gene Hpa1Xoo [10], HR-induced Hpa1Xoo [11] and some antifungal genes, including chitinase [12], D4E1 [13], lipid transfer proteins [14] and gastrodianin [15]. The resistance levels of transgenic seedlings range from the complete inhibition of Verticillium growth in engineered plant extracts [12,13], to enhanced disease resistance in field trials [7,10,11,15] or increased resistance to only weak pathogen varieties [9]. For example, the number of germinating V. dahliae conidia was significantly reduced in plant extracts from transgenic cotton overexpressing a synthetic antimicrobial peptide, D4E1 [13]. AtNPR1-transgenic cotton
exhibited significant resistance against non-defoliating isolates but remained susceptible to the defoliating isolates of *V. dahliae* [8].

Effective control of *Verticillium* wilt has been reported in specific crops exhibiting race-specific resistance. The *Vr* locus of tomato is the only cloned locus that is responsible for resistance against race 1 strains of *V. dahliae* and *V. albo-atrum*. This locus includes two proteins named *Ve1* and *Ve2*, leucine-rich repeat class of receptor-like proteins ([eLRR-RLPs]) [16]. Both genes confer resistance when expressed in the close relative potato, while only *Ve1* provides resistance in both tomato [17] and in transgenic *Arabidopsis* [18]. The eLRR-RLPs class proteins differ from receptor-like kinases in that they lack a cytoplasmic kinase domain and carry only a short cytoplasmic tail that lacks obvious signaling motifs [19,20]. This class of race-specific R proteins also includes Cf proteins conveying *Cladosporium fulvum* resistance in tomato [21] and *HcrVf* proteins that convey resistance against *Verticillium albo-atrum* [22]. *Ve1*-mediated resistance signaling is activated by the effector *AvrVe1*. *AvrVe1* is encoded by race 1 strains of *V. dahliae* and is homologous to a widespread family of plant natriuretic peptides [23]. Genetic analysis has shown that this signaling pathway in tomato requires *EDS1* (Enhanced Disease Susceptibility 1), *NDR1* (Non-race-specific Disease Resistance 1), *BAK1* (BRI1-Associated Kinase 1), *MEK2* (*MKK2*, MAP kinase kinase 2), and only partially overlaps with signaling mediated by Cf proteins [17]. *Ve1*-mediated resistance involves several short- and long-term defensive mechanisms, including the onset of hydrogen peroxide (H$_2$O$_2$) production, activities of peroxidase and PAL (Phenylalanine ammonia lyase), and the synthesis of lignins [24].

Four species of the *Gossypium* genus are cultivated in agriculture, including two allotetraploids (*G. hirsutum* and *G. barbadense*) and two diploids (*G. herbaceum* and *G. arboreum*). Island cotton possess higher resistance toward *Verticillium* wilt than upland cotton [3], which produces more than 95% of the annual cotton crop worldwide [25]. However, cross-breeding between island and upland cotton is a challenging work. Silencing *NDR1*, *MEK2*, or *Ve1*-like genes in *Gossypium hirsutum* compromises resistance to *Verticillium* wilt [26], indicating that *Ve1*-mediated resistance signaling is conserved between tomato and cotton, and required for resistance to *V. dahliae* infection. These findings suggest that resistant seedlings of upland cotton may be obtained by expressing a *Ve1*-like gene from *Gossypium barbadense*, which has been confirmed by a recent report in which a *GhVe1* was cloned and enhanced resistance to *Verticillium* wilt in transgenic *Arabidopsis* plantlets [7].

Here, a *Ve* homologous gene, *GhVe1*, which conferred resistance to both defoliating and non-defoliating isolates of *V. dahliae* in cotton, was verified. qRT-PCR revealed that the *GhVe1* gene was induced by *V. dahliae*. GUS stain analysis indicated that the *GhVe1* gene driven by its promoter was specifically expressed in the vascular bundles of roots and stems. Silencing of *GhVe1* in *Verticillium* wilt-resistant cotton H7124 compromised cotton resistance to *V. dahliae*. Furthermore, transgenic *Arabidopsis* and cotton exhibiting overexpression of the *GhVe1* gene displayed strong resistance to *V. dahliae*.

Materials and Methods

Plant Materials, *Verticillium dahliae* and Culture Conditions

Verticillium wilt-resistant island cotton cv. H7124 (*G. barbadense*) and susceptible upland cotton cv. Yumian 1 (*G. hirsutum*) were cultured at the conditions of temperatures ranging from 20°C to 25°C, under a 16/8 h photoperiod and at 80% relative humidity. *A. thaliana* ecotype Columbia-0 were germinated on the half strength MS medium and transferred into pots containing vermiculite soil in the plant incubator with temperature at 25°C day and 20°C night, 60–70% relative humidity, and light intensity of 200 nmol/m2/sec$^{-1}$ on a 16 h light/8 h dark cycle.

Highly aggressive defoliating isolate V991 and non-defoliating isolates BP2 of *Verticillium dahliae* were freshly isolated from infected cotton plants and maintained on potato dextrose agar (PDA) at 25°C for 7 d, followed by inoculation into CaZepek’s medium in 1 liter of distilled water. These two *V. dahliae* isolates were used to the inoculation of *A. thaliana* and cotton. Before *V. dahliae* inoculation, the conidia were counted and the conidia suspension was adjusted to a needed density with distilled water.

Gene Cloning, Bioinformatics and Expression Analysis of *GhVe1*

Genomic DNA was extracted from plant tissues by the CTAB method [27]. While total RNA was extracted from plant tissues with an RNAiso Kit (TaKaRa) according to the manufacturer’s protocol, then subjected to RNase-free DNase I (TaKaRa) digestion and purification. An aliquot of 2 μg RNA were used to synthesize the first-strand cDNA using a Primerscript RT-PCR kit (TaKaRa) according to the manufacturer’s instructions.

The primers EST- V/EST- R specific to a cotton EST (*TC121094*) in gene index [http://compbio.dfci.harvard.edu/tgi/plant.html], which was highly homologous to the tomato *Fv1* gene, were used to amplify the genomic DNA of H7124. The amplified sequence was subsequently used as probe to screen a *G. hirsutum* cv. Maxxa BAC library [28]. A clone containing a full open reading frame homologous to tomato *ve1* (named *GhVe1*) was further analyzed in this study. The specific primers Vdr2-c/F/ Vdr2-c-R were designed according the *GhVe1* gene and used to amplify its homology in *G. barbadense* with genomic DNA and cDNA of *H7124* and *Yumian1*, respectively. The upstream sequence of *GhVe1* gene was obtained by genome walking according to the GenomeWalker™ (Clontech) instruction with two pairs of primers AP1/GSP1 and AP2/GSP2. All the PCR products were cloned into pGEM-T Easy vector (Promega), transformed into *E. coli* DH5α and sequenced.

Nucleotide sequences and deduced amino acid sequences of *GhVe1* gene were compared using DNAman software (Lynnon Biosoft). The putative motif and domains were identified with SMART, TMHMM and SignalP 3.0 tools and software packages. The flanking sequence of *GhVe1* gene was analyzed with the PLACE database at the Advanced Biosciences Computing Center [29]. Multiple sequence alignments were made using Muscle 3.8 [30] under the default settings. The phylogenetetic tree of *Ve1* like genes was constructed using MEGA 4.1 [31] with Neighbor-Joining method. The bootstrap analyses were performed with 1000 replications.

At 2-leaf-stage, cotton plants were challenged by *V. dahliae* by soil drenching [32], pouring 10 ml conidial suspension (1×107 conidia/ml) in the soil beside the plants in 750 ml pots. For hormone treatment, seedlings at 4-leaf-stage were sprayed with 10 mM salicylic acid (SA), ethylene released from 5 mM ethephon (ETH), 100 μM abscisic acid (ABA) and 100 μM methyl jasmonate (MeJA), followed by covering with plastic bags to keep 100% humidity. Stem tissues from *V. dahliae* infected plants and leaf tissues from hormone treated plants were harvested at an appropriate time for RNA extraction.

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for *GhVe1* gene was conducted using a SYBR Premix ExTaqTM II Kit (TaKaRa) with cotton poly-ubiquitin 14 (UBQ14) gene [33] as the internal standard. The PCR program contained an initial denaturation step of 1 min at 95°C, followed by denaturation for 15 s at 95°C, annealing for 20 s at 60°C, and
extension for 20 s at 72°C for 40 cycles. The real-time PCR thermal cycler qTOWER 2.0/2.2 (Analytik jena, Germany) was used to obtain relative expression levels of each sample. All qRT-PCR expression assays were independently performed and analyzed three times under identical conditions. All the primers used in this paper were listed in Table S2.

VIGS in Cotton

The vectors for virus-induced gene silencing (VIGS) in cotton were obtained from Dr. Xueping Zhou in Zhejiang University. Briefly, the constructs containing *Gbve1* gene were generated from the *genus* cotton leaf crumple virus (CLCrV) vectors [34] and modified for agrobacterium mediated infection method. *Agrobacterium* cultures containing CLCrV-A- *Gbve1* and CLCrV-B were mixed with a 1:1 ratio and infiltrated into two fully expanded cotyledons using a needle-less syringe. After agroinfection, the cotton plantlets were kept in incubator with temperature 25°C and relative humidity 80%. The *Odh* gene, which encodes one unit of the chloroplast enzyme magnesium chelatase required for chlorophyll biosynthesis, was used as control, since a visible phenotype of yellow-colored leaves was observed when the *Odh* gene of cotton was targeted by VIGS [34]. 15–20 d post agroinfection, all the VIGS treated plantlets were checked the replication of CLCrV by PCR with specific primers Clcrv-F and Clcrv-R using genomic DNA as template, and positive plantlets were then subjected to *V. dahliae* inoculation by soil drenching with 30 ml conidial suspension (1 x 10⁶ conidia/ml) for each pot (250 ml). Foliar damage was evaluated by rating the symptom on the cotyledon and leaf of inoculated plant according to the following disease grades: 0 = healthy plant, 1 = yellowing or necrosis of 1–2 cotyledons, 2 = yellowing or necrosis of 1 true leaf, 3 = more than 2 wilted or necrotic leaves, 4 = no leaf left or dead plant. The disease index was calculated according to the following formula: disease index = (\sum disease grades x number of infected) / (total checked plants x 4) x 100. VIGS experiments were repeated three times with more than 15 plants each time.

Generation and Analysis of Transgenic Arabidopsis

The full open reading frame of *Gbve1* was amplified with primer pairs *Gbve1*-SmalF/*Gbve1*-SacIR, and cloned into the pCAMBIA2301 vector. The promoter fragment of *Gbve1* gene was amplified with primers Pro-F/Pro-R, and introduced into the pBI101.1 binary vector to drive the GUS gene [35]. Both constructs were confirmed by sequencing before transformation into *Agrobacterium tumefaciens* strain LBA4404. The Arabidopsis transformation was carried out with floral dip [36], and transgenic plants were selected on MS medium containing 50 mg/l kanamycin and 300 mg/l cefotaxime.

To assess the *V. dahliae* resistance of transgenic *Arabidopsis* with *Gbve1* gene, *Arabidopsis* plants in pots (200 ml) were subjected to soil drench inoculation with 10 ml conidial suspension (1 x 10⁶ conidia/ml). Plants in the control group received same amount of sterile water. The degree of *V. dahliae* infection was divided into five disease grades with disease scores ranging between 0 and 4: 0 = healthy plants, no fungal infection, 1 = 25% of the leaves showing yellowing or abnormal yellow spots, 2 = 25 to 50% of the leaves showing yellow spots, 3 = 50 to 75% of the leaves showing brown spots and curled leaf edges with some leaves dropping, 4 = 75% of the leaves produce yellow or yellow irregular spots between the main vein of leaves. The disease index was calculated as the method described formula above. At least 16 T3 individual plants per line were subjected to resistant analysis and each experiment was set 3 times.

To investigate the resistance mechanism of *Gbve1* gene in transgenic *Arabidopsis*, *Arabidopsis* leaves were inoculated with the 10 μl spore drop of *V. dahliae* (1 x 10⁷ conidia/ml) and then incubated at 25°C in a moist incubator for 2 days, the infected leaves were then stained with Lactophenol-Trypan Blue [37] and examined by the Olympus IX71 invert microscope. Moreover, the expression of four internal defense related genes *PR1*, *PR5*, *EDSI* and *GST1* genes [38] were compared by qRT-PCR between transgenic *Gbve1* gene *Arabidopsis* and the wild type, with *TUB* gene as the internal standard. Histochemical localization of GUS activity in transgenic *Arabidopsis* with *Gbve1* promoter construct was performed according to Jefferson [35].

Results

Isolation of a Receptor-like Protein Gene from Cotton

To clone the tomato *Vh* homologous gene in cotton, we screened the cotton BAC libraries using a cotton EST that shares 48% similarity in protein with tomato Ve1 protein. A gene was obtained from a total of 40 independent positive clones. Sequence analysis showed that this gene was 76% homologous to the original EST. Then, we amplified the gene allele from the island cotton cultivar H7124, which is resistant to Verticillium wilt, an upland cotton cultivar Yumian1, which is sensitive, and an upland cotton cultivar Chaneleng, which is moderately resistant. These three genes were designated as *Ghve1*, *Gbve1* and *Ghve1-2*, respectively. Comparing the sequence amplified by DNA and cDNA indicated that *Gbve1* has no introns. The *Gbve1* gene was predicted to encode a protein with 1138 amino acids and it shared many similarities with tomato Ve1 and Ve2 proteins, and other Ve-like proteins in cotton [7,26], *Solanum lycopersicoides* [40], and *Solanum torvum* [41]. Each of these proteins contained the predicted signal peptide (domain A), multiple copy LRR domain B, neutral/acidic amino acid-rich domain C, membrane-associated hydrophobic domain D, and a positively charged cytoplasmic domain E. The predicted C-terminus of *Gbve1* protein also contained the predicted signal peptide (domain A), multiple copy LRR domain B, neutral/acidic amino acid-rich domain C, membrane-associated hydrophobic domain D, and a positively charged cytoplasmic domain E. The predicted C-terminus of *Gbve1* protein also contained the predicted signal peptide (domain A), multiple copy LRR domain B, neutral/acidic amino acid-rich domain C, membrane-associated hydrophobic domain D, and a positively charged cytoplasmic domain E. The predicted C-terminus of *Gbve1* protein also contained the predicted signal peptide (domain A), multiple copy LRR domain B, neutral/acidic amino acid-rich domain C, membrane-associated hydrophobic domain D, and a positively charged cytoplasmic domain E. The predicted C-terminus of *Gbve1* protein also contained the predicted signal peptide (domain A), multiple copy LRR domain B, neutral/acidic amino acid-rich domain C, membrane-associated hydrophobic domain D, and a positively charged cytoplasmic domain E.
Gbve1 gene in H7124 reached a peak at 4 dpi (days post inoculation) and then dropped to a similar level to that of untreated tissue at 8 dpi. In contrast, induction patterns in Yumian1 were much slower and weaker and with a peak appearing at 10 dpi. Also, induction levels of the defoliating isolate (V991) were more intense than those of the non-defoliating isolates (BP2) in the resistant cultivar H7124.

The promoter region (1.5 kb upstream) of the Gbve1 gene was cloned and sequenced. Bioinformatic analysis revealed many regulated elements related to pathogen infection and defense response, including SA-responsive elements, ETH activation sites, elicitor or wounding responsive transcription elements, MYB transcriptional factor recognition, or ABA-responsive sites (Table S1). These results indicate that expression of the Gbve1 gene may be induced by defense signaling molecules in addition to pathogen infection. Therefore, we examined the Gbve1 expression profiles upon treatment with SA, ETH, and MeJA. The Gbve1 transcripts were induced by all the three tested hormones. The highest level of transcript was shown at 4, 8, and 12 h after treatment with MeJA, ETH, and SA, respectively. The induced transcript levels of Gbve1 were 11.3–16.2-fold higher than those of untreated tissue. In a control of induction by ABA, the maximum amount of Gbve1 transcripts appeared after 12 h, and transcript levels were only 3-fold higher than the untreated control (Figure 2B).

Furthermore, we investigated the expression patterns of the Gbve1 gene in Arabidopsis using transgenic plant lines that were modified to have the promoter region of the Gbve1 gene fused to the GUS gene. The leaves and petioles were faintly blue, while roots and stems always showed high GUS activity (Figure 3A). Microscopic analysis revealed that GUS activity was found exclusively in the vascular bundles of roots and stems (Figure 3B). Thus, this gene may be induced by defense signaling molecules and infection by V. dahliae in the vascular regions of roots and stems. The induction was more rapid and dramatic in the resistant cultivar than in the susceptible cultivar.

Gbve1’s Necessity in Verticillium Wilt Resistance in Island Cotton

Since virus-induced gene silencing (VIGS) has been successfully used in the cotton previously [26,34,42], we used this approach to further investigate the roles of Gbve1 in resistance to Verticillium wilt. The cotton chid gene was used as a control to monitor the efficiency of VIGS in cotton [54]. Two to three weeks after agroinfiltration with the chid gene, leaves displayed the yellow phenotype (Figure 4A). We evaluated the levels of V. dahliae resistance in the Gbve1- deficient cotton lines and used the infiltration of CLCuV-A empty vector as a control. In general, more than 80% of the Gbve1 VIGS plants were severely infected by the two tested isolates of V. dahliae (Figure 4B), causing all the leaves to wilt in some cases. The average disease indices of Gbve1 VIGS plants were 75 and 70 by V991 and BP2, respectively. Average disease indices of the control plants were 33 and 30 (Figure 4C). The silencing efficiencies of the Gbve1 gene were further confirmed by qRT-PCR analysis using RNA isolated from leaves of VIGS and control plants. Considering that the GbVe gene shared many similarities with the Gbve1 gene [7], we simultaneously measured the expression levels of the GbVe genes. Figure 4D showed that the expression level of both genes dropped approximately 81–89% in VIGS plants compared to the control. As expected, Gbve1- silencing plants and plants infected with the empty vector exhibited the similar growth phenotypes as the wilt phenotype (Figure S2). Therefore, VIGS assays confirmed that Gbve1 and/or GbVe genes are important components in island cotton resistance to V. dahliae infection.

Gbve1 Conferred Verticillium wilt Resistance in Transgenic Arabidopsis

To further explore the function of Gbve1 in V. dahliae resistance, the coding sequence of this gene was inserted into the plant expression vector pCAMBIA2301 and transformed into a V. dahliae-susceptible Arabidopsis genotype Columbia. Seventeen independent transgenic lines were obtained by kanamycin-resistance...
selection and confirmed by PCR verification. RT-PCR analysis further confirmed that Gbve1 was successfully expressed in 12 transgenic lines (Figure 5A). Four-week-old seedlings of a T3 generation were used to analyze Verticillium wilt resistance by soil drenching methods. At 15 dpi, the disease index of 12 transgenic lines ranged from 0 to 12 due to V991 infection and from 0 to 8.75 because of BP2 infection, with no disease symptoms observed from V991 infection in three lines and no disease symptoms observed from BP2 infection in seven lines. In contrast, a disease index of 54 was scored for V991 infection, and 25 for BP2 infection (Figure 5A). At 30 dpi, the disease index in WT plants increased to 95 and 80 from V991 and BP2 infection, respectively, while the index in transgenic lines varied from 20 to 65 due to V991 infection and 16.7 to 55 because of BP2 infection. Transgenic lines R5 and R2 at 30 dpi showed excellent Verticillium wilt resistance with a disease index of less than 30 under either V991 or BP2 inoculation (Figure 5A, 5B). The resistance levels of transgenic Arabidopsis to V. dahliae were highly correlated with the expression levels of the Gbve1 gene in these transgenic lines (Figure 5A).

We observed the cell death development under microscope and found that the V. dahliae hypha in wild type leaves were easy to extend to adjacent cells and none cell death was shown at 2 days. In contrast, the Gbve1 transgenic lines exhibited strong hypersensitive response (HR) cell death, and it restricted the extension of V. dahliae hypha (Figure 5C). We also analyzed some genes reported to be involved in pathogen resistance in transgenic Arabidopsis and WT plants. Among the four tested genes, PR1 was confirmed to increase about 20-fold in the Gbve1 transformed plants compared to WT plants. The expression level of EDS1 and GST1 in the Gbve1 overexpressed plants was nearly double that of the WT, whereas no difference in PR5 was observed between Gbve1 overexpressed plants and WT plants (Figure 5D).

Gbve1 Conferred Verticillium Wilt Resistance in Transgenic Upland Cotton

The same vector carrying Gbve1 was also transformed into the genome of G. hirsutum var. WC by Agrobacterium-mediated transformation of embryogenic calli. Twelve independent T0 trans-
formed plants were generated under kanamycin selection and transplanted into pots for greenhouse maturation (Figure S3). All of these putative transgenic cotton plants had similar phenotypes to the non-transformed negative controls with respect to growth, leaf shape, and flowering (Figure S3). The integration of the Gbve1 construction into the cotton genome was confirmed by PCR analysis and Southern blotting with the DIG-labeled NPTII gene as the probe (Figure S4). According to the Southern blot result, T1 plants of four transgenic lines (1, 4, 5 and 6) were subjected to further analysis. The expression of the Gbve1 gene was measured by qRT-PCR. The transgenic line 1 yielded the highest expression of Gbve1 at 822-fold than the wild type, while the transgenic line 6, 4 and 5 showed 233-, 20-, and 2-fold expression, respectively, compared to the WT control (Figure 6A). Two single-copy transgenic lines (1 and 6) with high expression of GbVe1 gene, were further applied to analyze the resistance to V. dahliae isolate V991 and BP2. Disease evaluation showed that these two transgenic lines displayed disease indices significantly lower than those of the WT throughout the developmental stages. The resistance of the line 1 and 6 to V. dahliae was both comparable with that in G. hirsutum H7124 (Figure 6B, 6C). The disease index of transgenic lines to defoliating isolate V991 was slightly higher than that of H7124 (Figure 6B).

Figure 4. The Gbve1 gene endowed Verticillium wilt resistance in cotton. (A). The cotton chlI gene was used as a positive control with a phenotype of yellow-colored leave after VIGS in cotton (Left: 3 weeks; Right: blossom stage). (B). The phenotypes of H7124 under infection by V. dahliae isolates V991 and BP2 after VIGS with CLCrV containing a fragment of Gbve1 gene. Photos were taken at 42 d after V. dahliae inoculation (55 d after VIGS). (C). The disease indices Gbve1 gene-silence lines. The results were presented as means±SE from three replications with at least 25 plants per replication. (D). Expression levels of the Gbve1 gene and its homolog (the Gbve gene) in the silenced lines. doi:10.1371/journal.pone.0051091.g004

Discussion

Many island cotton cultivars are resistant or near immune to Verticillium wilt [3], while most upland cotton cultivars are sensitive to this notorious disease [43]. A single dominant Ve locus that encodes Ve1 and Ve2 genes confers resistance to race 1 Verticillium strains and has been widely used in tomato breeding [16,44]. However, no race-specific resistant gene has been identified in cotton. Here, we cloned a Ve1-like gene, GbVe1, from island cotton by screening the BAC library and presented several lines of evidence to support that the GbVe1 gene might be an important component in protecting island cotton from Verticillium wilt. Importantly, we found that the levels of resistance to V. dahliae isolates of two testing transgenic lines were equivalent to that of island cotton.

Several Ve1/Ve2 like genes have been cloned from *S. lycopersicoides* [40], *S. toscum* [41], *G. hirsutum* [26], and *G. barbadense* [7]. Those proteins share high sequence similarity with each other and contain almost identical domains (Figure 1). Gene silencing of the GbVe1 gene by VIGS in cotton seedlings increased its sensitivity to V. dahliae [26], which is consistent with the results of the GbVe1 gene used in this study (Figure 4). The cotton genome might encode several Ve1/Ve2 homologues that share high sequence similarity with each other. Thus, functional analysis by VIGS suggests that this gene family is necessary for resistance against Verticillium wilt. Since *Arabidopsis* is also a host for *V.
dahliae, it serves a good model plant to analyze Ve-relevant genes. Transgenic Arabidopsis lines with Ve1 gene [18] and GbVe gene [7] had improved resistance levels to non-defoliating isolates of V. dahliae. Here, we showed that GbVe1-mediated strong resistance to both defoliating and non-defoliating isolates of V. dahliae in Arabidopsis and upland cotton. We also cloned GbVe1 alleles from both susceptible and tolerant upland cotton. Transcriptional analysis showed that the response times, and induction levels, were dramatically different between incompatible and compatible interactions. From these results, we inferred that GbVe1 conferred high resistance to the defoliating and non-defoliating isolates of V. dahliae.

Ve1-mediated resistance in tomato is activated by an avirulence protein (Avr1) encoded by race 1 V. dahliae strains. A homolog of the Avr1 gene was also found in the bacterial plant pathogen Xanthomonas axonopodis and in several other plant pathogenic fungi [23], but not in the tested V. dahliae strains that are responsible for cotton Verticillium wilt [45]. GbVe1-mediated resistance in Arabidopsis and cotton might be triggered by other unknown pathogen-associated molecular patterns (PAMPs) or effectors that are encoded by the tested V. dahliae strains. Our results also indicate that the expression of the GbVe1 gene is activated by SA, ETH, and JA treatment (Figure 2). Those signaling molecules play important roles in basal plant defense responses as well as in gene-for-gene-mediated defense [46], and are also crucial in Verticillium wilt resistance [47]. We suggest that Verticillium wilt resistance may be part of a complex, multi-hormone signal network, and the expression of the GbVe1 gene in cotton might be partially through signaling molecules after infection by V. dahliae. Regardless of what are the resistance mechanisms and downstream signaling components for the GbVe1 protein, we have demonstrated here that the GbVe1 from Island cotton confers the resistance to V. dahliae in cotton and Arabidopsis. Our results support the recent findings that a GbVe1 allele, GbVe, from G. barbadense also contributes resistance to V. dahliae when it is over-expressed in Arabidopsis [7].

Currently, the best way to prevent Verticillium diseases is the use of resistant cultivars. As noted above, highly resistant cultivars are usually absent in upland cottons, and different strategies to develop transgenic cotton with increased levels of Verticillium resistance have been tested. However, the resistance level of the transgenic plant is usually limited and not sufficient to generate durable resistance. For example, NPR1-transgenic cotton seedlings increase resistance only to the weak pathogens [8], and the resistance levels of transgenic seedlings were evaluated only in a naturally infested Verticillium wilt nursery, with information on...
Cotton GbVe1 Gene for Verticillium Wilt Resistance

pathogens not being included [7,10,11,15]. Here, we measured the transgenic cotton lines in a greenhouse and found that the GbVe1 gene dramatically increased the resistance level to both defoliating and non-defoliating isolates of V. dahliae. We suggest that both GbVe1 and Gbve genes might be useful in the breeding of cotton varieties resistant to Verticillium wilt.

Supporting Information

Figure S1 Primary structures of the five Ve related proteins.

Figure S2 Phenotypes of gene silenced lines of *Gossypium barbadense*. WT: without agroinfection treatment, CLCrV-A-vdr2+ CLCrV-B: agroinfection with vector CLCrV-A-vdr2 and CLCrV-B, CLCrV-A+ CLCrV-B: agroinfection with empty vector CLCrV-A and CLCrV-B

Figure S3 The transformation of cotton embryogenic calli with Agrobacterium. (A). Embryogenic calli for *Agrobacterium* transformation. (B). Kanamycin resistant embryogenic calli after selective culture. (C). Embryogenesis of kanamycin resistant embryogenic calli. (D). Regenerated plantlets in culture. (E). Regenerated plantlets transferred in pots. (F). Transgenic plants in greenhouse.

Figure S4 PCR analysis and Southern blot of transgenic cotton plants. (A). PCR analysis of independent T0 transgenic cotton plants with the region of CaMV35S and the GbVe1 gene

Figure 6. Gbve1 confers Verticillium wilt resistance in transgenic upland cotton. (A). Relative expression level of Gbve1 genes in T1 transgenic cotton lines. (B). The disease indices of T1 transgenic cotton lines with infection by V. dahliae defoliating isolate V991 (upper panel) and non-defoliating isolate BP2 (down panel). Results were presented as means±SE from three replications with at least 10 plants per replication. (C). The phenotypes of transgenic cotton lines with infection by V. dahliae isolates. doi:10.1371/journal.pone.0051091.g006
(1013 bp). M: DL2000 marker; P: plasmid DNA; H: H2O2 1–4%; independent regenerated cotton plants. (B). Southern blot of independent T0 transgenic cotton plants. M: lambda-independent regenerated cotton plants. (B). Southern blot of digest DNA marker; WT: untransformed plant control; NT: non-transformed cotton plants confirmed by PCR analysis. Line 1 and 6 showed a single-copy integration, line 4 had at least six bands, line 5 may pose two hybridization signals, while line 2 and 3 may be NPTII negative lines.

Table S1 The characterized domains in the promoter of GbVe1 gene.

Table S2 The used primers in this study.

Primer Name	Sequence (5’–3’)
Ve-R1	5’-GCTGCTGGTAGTCAAATTCTG-3’
Ve-R2	5’-GGAGCAAGCGAACTCTTTCA-3’
Ve-R3	5’-AGCTTGGTCTTCTTGATGCT-3’
Ve-R4	5’-CGATGATGATGATGATGATG-3’

Acknowledgments

We gratefully acknowledge Prof. Xueping Zhou (Zhejiang University, China) for sharing the unpublished protocols and constructs for VIGS in cotton.

Author Contributions

Conceived and designed the experiments: BZ YC. Performed the experiments: YY TC TL. Analyzed the data: BZ DD YC. Contributed reagents/materials/analysis tools: HF YD DS LL. Wrote the paper: BZ YY TZ DD.

###References

1. Klosterman S, Atallah Z, Vallad G, Subbarao K (2009) Diversity, pathogenicity and management of Verticillium species. Ann Rev Phytopathol 47: 39–62.
2. Cai Y, Xiaohong H, Mo J, Sun Q, Yang J, et al. (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton. A review. Asian J Biotechnol 8: 7263–7372.
3. Zhang J, Sanogo S, Flynn R, Baral JB, Bajaj S, et al. (2011) Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to upland cotton (G. hirsutum). Euphytica DOI: 10.1007/s10681-011-9949-0.
4. Daayf F, Nicole M, Geiger JP (1995) Differentiation of Verticillium populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol 101: 69–79.
5. Xu L, Zha I, Tu I, Liu I, Yuan D, et al. (2011) Lipid metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62: 5607–5621.
6. Yang C, Gao W, Li G, Gao F, Lin S, et al. (2000) QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci 174: 290–296.
7. Zhang Y, Wang X, Yang S, Chi J, Zhang G, et al. (2011) Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep 30: 2085–2096.
8. Parkhi V, Kumar V, Campbell LM, Bell AA, Rathore KS (2010) Expression of Arabidopsis NPR1 in transgenic cotton confers resistance to non-folating isolates of Verticillium dahliae but not the defoliating isolates. J Phytopathol 158: 1022–1025.
9. Parkhi V, Kumar V, Campbell LM,Bell AA, Shah J, et al. (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19: 959–975.
10. Tian J, Zhang X, Liang B, Li S, Wu Z, et al. (2010) Expression of baculovirus anti-apoptotic genes b32 and s32 in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium wilt. PLoS One 5: e14218.
11. Miao W, Wang X, Li M, Song C, Wang Y, et al. (2010) Genetic transformation of cotton with a harpin-expressing gene hpaN.Rno confers an enhanced defence response against different pathogens through a priming mechanism. BMC Plant Biol 10: 67.
12. Toluidar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tiss Org Cult 83: 83–96.
13. Rajasekaran K, Cai J, Jaynes J, Cleveland T (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3: 545–554.
14. Munir M, Tu L, Deng F, Tan J, Xu L, et al. (2010) A thiamine-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 393: 38–44.
15. Wang Y, Chen D, Wang D, Huang Q, Yao Z, et al. (2004) Over-expression of Gustodina antifungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding 123: 454–459.
16. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, et al. (2001) Tomato Ve disease resistance genes encode cell-surface-like receptors. Proc Natl Acad Sci USA 98: 6151–6155.
17. Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CDM, Nazar RN, et al. (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150: 320–332.
18. Fradin E, Abd-El-Haim A, Masini L, Van den Berg G, Joosten M, et al. (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156: 2255–2265.
19. Fritz-Laylin LK, Krishnamurthy N, Tor M, Spjander KV, Jones JDG (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138: 1–63.
42. Idris AM, Tuttle JR, Robertson D, Haigler CH, Brown JK (2010) Differential cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds. Physiol Mol Plant Pathol 75: 13–22.

43. Göre ME, Caner oK, AlihN, Aydin MH, Ergogan O, et al. (2009) Evaluation of cotton cultivars for resistance to pathotypes of Verticillium dahliae. Crop Protect 28: 215–219.

44. Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley S (1999) Mapping of Ee in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98: 315–319.

45. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, et al. (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Path 7: e1002137.

46. Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis.Curr Opin Immunol 13: 63–68.

47. Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7: 71–86.