Abstract: In this paper, we use the mean value theorem of Dirichlet L-functions, the properties of Gauss sums and Dedekind sums to study the hybrid mean value problem involving Dedekind sums and the two-term exponential sums, and give an interesting identity and asymptotic formula for it.

Keywords: Dedekind sums, The two-term exponential sums, Hybrid mean value, Identity, Asymptotic formula

MSC: 11L03, 11F20

1 Introduction

Let q be a natural number and h an integer prime to q. The classical Dedekind sums

$$S(h, q) = \sum_{a=1}^{q} \left(\frac{a}{q} \right) \left(\frac{ah}{q} \right),$$

where

$$\left(\frac{x}{y} \right) = \begin{cases} x - \lfloor x \rfloor - \frac{1}{2}, & \text{if } x \text{ is not an integer;} \\ 0, & \text{if } x \text{ is an integer}, \end{cases}$$

describes the behaviour of the logarithm of the eta-function (see [1, 2]) under modular transformations. The various arithmetical properties of $S(h, q)$ were investigated by many authors, who obtained a series of results, see [3–10]. For example, W. P. Zhang and Y. N. Liu [10] studied the hybrid mean value problem of Dedekind sums and Kloosterman sums

$$K(m, n; q) = \sum_{a=1}^{q} e \left(\frac{ma + n\overline{a}}{q} \right),$$

where $q \geq 3$ is an integer, $\sum_{a=1}^{q}$ denotes the summation over all $1 \leq a \leq q$ with $(a, q) = 1$, $e(y) = e^{2\pi i y}$, and \overline{a} denotes the multiplicative inverse of $a \mod q$. They proved the following results:

Theorem A. Let p be an odd prime, then one has the identity

$$\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |K(a, 1; p)|^2 \cdot |K(b, 1; p)|^2 \cdot S(a \cdot \overline{b}, p) = \begin{cases} \frac{1}{12} \cdot p^2 \cdot ((p - 1)(p - 2) - 12 \cdot h_p^2), & \text{if } p \equiv 3 \mod 4; \\ \frac{1}{12} \cdot p^2 \cdot ((p - 1)(p - 2), & \text{if } p \equiv 1 \mod 4, \end{cases}$$

where h_p denotes the class number of the quadratic field $\mathbb{Q}(\sqrt{-p})$.

Chang Leran: School of Mathematics, Northwest University, Xi’an, Shaanxi, China
*Corresponding Author: Li Xiaoxue: School of Mathematics, Northwest University, Xi’an, Shaanxi, China, E-mail: lxx20072012@163.com
Theorem B. Let p be an odd prime, then one has the asymptotic formula
\[
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |K(a, 1; p)|^2 \cdot |K(b, 1; p)|^2 \cdot S^2(a \cdot \overline{b}, q) = \frac{1}{24} p^5 + O \left(\frac{p^4 \cdot \exp \left(\frac{3 \ln \ln p}{\ln p} \right)}{p} \right),
\]
where \(\exp(y) = e^y \).

On the other hand, W. P. Zhang and D. Han [11] studied the sixth power mean of the two-term exponential sums, and proved that for any prime \(p > 3 \) with \((3, p - 1) = 1 \), one has the identity
\[
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} e \left(\frac{n^3 + an}{p} \right)^6 = 5p^4 - 8p^3 - p^2.
\]
It is natural that one will ask, for the two-term exponential sums
\[
E(r, s) = \sum_{n=0}^{p-1} e \left(\frac{rn^3 + sn}{p} \right),
\]
whether there exists an identity (or asymptotic formula) similar to Theorem A (or Theorem B). The answer is yes.

The main purpose of this paper is to show this point. That is, we shall use the mean value theorem of Dirichlet \(L \)-functions, the properties of Gauss sums and Dedekind sums to prove the following similar conclusions:

Theorem 1.1. Let \(p > 3 \) be an odd prime with \((3, p - 1) = 1 \), then we have the identity
\[
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S \left(a \cdot \overline{b}, p \right) = \begin{cases}
\frac{1}{12} (p - 2)(p - 1)p^2, & \text{if } p \equiv 1 \mod 4; \\
\frac{1}{12} (p - 2)(p - 1)p^2 - p^2 h_p^2, & \text{if } p \equiv 3 \mod 4,
\end{cases}
\]
where \(h_p \) denotes the class number of the quadratic field \(\mathbb{Q}(\sqrt{-p}) \).

Theorem 1.2. Let \(p > 3 \) be a prime with \((3, p - 1) = 1 \), then we have the asymptotic formula
\[
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S^2 \left(a \cdot \overline{b}, p \right) = \frac{1}{24} p^5 + O \left(\frac{p^4 \cdot \exp \left(\frac{3 \ln \ln p}{\ln p} \right)}{p} \right).
\]
It is very interesting that the results in our paper are exactly the same as in reference [10]. This means that there is close relationship between Kloosterman sums and two-term exponential sums. In fact, some close relationships can be found in W. Duke and H. Iwaniec [12].

2 Several lemmas

To complete the proof of our theorems, we need to prove several lemmas. Hereinafter, we shall use some properties of characters mod \(q \) and Dirichlet \(L \)-functions, all of these can be found in reference [13], so they will not be repeated here.

Lemma 2.1. Let \(p \) be an odd prime, \(a \) be any integer with \((a, p) = 1 \). For any non-principal character \(\chi \mod p \), we have the identity
\[
\sum_{n=0}^{p-1} \chi \left(an^2 + bn + c \right) = \frac{\chi(4) \tau(\chi_2) \tau(\chi \overline{\chi}_2)}{\tau(\chi)} \chi \left(\frac{4ac - b^2}{p} \right) \left(\frac{4ac - b^2}{p} \right).
\]
where \(\chi_2 = \left(\frac{2}{p} \right) \) denotes the Legendre symbol mod \(p \).
Proof. From the definition and properties of Gauss sums we have
\[
\sum_{n=0}^{p-1} \chi(an^2 + bn + c) = \frac{1}{\tau(\chi)} \sum_{r=1}^{p-1} \tau(r) \sum_{n=0}^{p-1} e\left(\frac{ran^2 + bn + c}{p}\right).
\]
\[
= \frac{\tau(\chi)}{\tau(\chi)} \sum_{r=1}^{p-1} \tau(r) e\left(\frac{4rc - r^2b^2}{p}\right) \sum_{n=0}^{p-1} e\left(\frac{ra(2n + b\bar{a})^2}{p}\right).
\]
\[
= \frac{\tau(\chi)}{\tau(\chi)} \sum_{r=1}^{p-1} \tau(r) e\left(\frac{r(4c - b^2\bar{a})}{p}\right) \sum_{n=0}^{p-1} e\left(\frac{ran^2}{p}\right).
\]
(1)

For any integer \(a\) with \((a, p) = 1\), from Theorem 7.5.4 of [14] we know that
\[
\sum_{n=0}^{p-1} e\left(\frac{an^2}{p}\right) = \left(\frac{a}{p}\right) \cdot \tau(\chi_2).
\]
(2)

Combining (1) and (2) we have the identity
\[
\sum_{n=0}^{p-1} \chi(an^2 + bn + c) = \frac{\tau(\chi_2) \tau(\chi_2)}{\tau(\chi)} \left(\frac{a}{p}\right) \sum_{r=1}^{p-1} \tau(r) \left(\frac{r}{p}\right) e\left(\frac{r(4c - b^2\bar{a})}{p}\right).
\]
This proves Lemma 2.1.

Lemma 2.2. Let \(p\) be an odd prime. Then for any non-principal character \(\chi\) mod \(p\) with \(\chi^3 \neq \chi_0\) (the principal character mod \(p\)), we have the identity
\[
\sum_{a=1}^{p-1} \chi(a) \left| \sum_{n=0}^{p-1} e\left(\frac{an^3 + n}{p}\right) \right|^2 = \chi(4)\chi_2(3)\tau(\chi_2)\tau(\chi_2)\tau(\chi^3).
\]

Proof. From Lemma 2.1, the definition and properties of Gauss sums we have
\[
\sum_{a=1}^{p-1} \chi(a) \left\| \sum_{n=0}^{p-1} e\left(\frac{an^3 + n}{p}\right) \right\|^2
\]
\[
= \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \chi(a) e\left(\frac{a(m^3 - n^3) + m - n}{p}\right)
\]
\[
= \tau(\chi) \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \tau(m^3 - n^3) e\left(\frac{m - n}{p}\right)
\]
\[
= \tau(\chi) \sum_{m=0}^{p-1} \tau^3(m) e\left(\frac{m}{p}\right) + \tau(\chi) \sum_{m=0}^{p-1} \sum_{n=1}^{p-1} \tau(m^3 - n^3) e\left(\frac{m - n}{p}\right)
\]
\[
= \tau(\chi) \sum_{m=0}^{p-1} \tau^3(m) e\left(\frac{m}{p}\right) + \tau(\chi) \sum_{m=0}^{p-1} \tau(m^3 - 1) \sum_{n=1}^{p-1} \tau^3(n) e\left(\frac{n(m - 1)}{p}\right)
\]
\[
= \tau(\chi) \tau(\chi^3) + \tau(\chi) \tau(\chi^3) \sum_{m=0}^{p-1} \chi((m - 1)^3) \tau(m^3 - 1)
\]
\[
= 2\tau(\chi) \tau(\chi^3) + \tau(\chi) \tau(\chi^3) \sum_{m=2}^{p-1} \chi((m - 1)^3) \tau(m^3 - 1)
\]
\[
= 2\tau(\chi) \tau(\chi^3) + \tau(\chi) \tau(\chi^3) \sum_{m=1}^{p-2} \chi(m^3) \tau(m^3 + 3m^2 + 3m)
\]
\[= 2\tau(\chi)\tau(\chi^3) + \tau(\chi)\tau(\chi^3) \sum_{m=1}^{p-2} \chi(1 + 3m^2 + 3m) \]

\[= 2\tau(\chi)\tau(\chi^3) + \tau(\chi)\tau(\chi^3) \sum_{m=1}^{p-2} \chi(3m^2 + 3m + 1) \]

\[= \tau(\chi)\tau(\chi^3) \sum_{m=0}^{p-1} \chi(3m^2 + 3m + 1) \]

\[= \chi(4)\chi_Z(3)\tau(\chi_Z)\tau(\chi^3). \]

This proves Lemma 2.2. \qed

Lemma 2.3. Let \(q > 2 \) be an integer. Then for any integer \(a \) with \((a, q) = 1 \), we have the identity

\[S(a, q) = \frac{1}{\pi^2 q} \sum_{d \mid q} d^2 \phi(d) \sum_{\chi \bmod d \atop \chi(-1)=-1} \chi(a)|L(1, \chi)|^2, \]

where \(L(1, \chi) \) denotes the Dirichlet \(L \)-function corresponding to character \(\chi \bmod d \).

Proof. See Lemma 2 of [9]. \qed

Lemma 2.4. For any odd prime \(p \), we have the asymptotic formula

\[\sum_{\chi \bmod p \atop \chi(-1)=-1} |L(1, \chi)|^4 = \frac{5}{144} \pi^4 \cdot p + O\left(\exp\left(\frac{3\ln p}{\ln p} \right) \right). \]

Proof. See Lemma 6 of [15]. \qed

3 Proof of the theorems

In this section, we shall complete the proof of our theorems. First we prove Theorem 1.1. From Lemma 2.3 with \(q = p \) (an odd prime) we have

\[S(a, p) = \frac{1}{\pi^2 p} \cdot \frac{p}{p-1} \cdot \sum_{\chi \bmod p \atop \chi(-1)=-1} \chi(a)|L(1, \chi)|^2 \quad \text{(3)} \]

and

\[\sum_{\chi \bmod p \atop \chi(-1)=-1} |L(1, \chi)|^2 = \frac{\pi^2(p-1)}{p} \sum_{a=1}^{p-1} \left(\frac{a}{p} - \frac{1}{2} \right)^2 = \frac{\pi^2}{12} \cdot \frac{(p-1)^2(p-2)}{p^2}. \quad \text{(4)} \]

It is clear that if \((3, p-1) = 1 \), then for any odd character \(\chi \bmod p \), we have \(\chi^3 \neq \chi_0 \), the principal character \(\bmod p \). Note that \(|\tau(\chi)| = \sqrt{p} \), if \(\chi \neq \chi_0 \). So from (3) and Lemma 2.2 we have

\[\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S \left(a \cdot \overline{b}, p \right) \]

\[= \frac{1}{\pi^2} \cdot \frac{p}{p-1} \cdot \sum_{\chi \bmod p \atop \chi(-1)=-1} \left| \chi(4)\chi_Z(3)\tau(\chi_Z)\tau(\chi^3) \right|^2 \cdot |L(1, \chi)|^2 \]
\[|\tau(\chi \chi_2)|^2 \cdot |L(1, \chi)|^2. \]

(5)

If \(p \equiv 1 \mod 4 \), then \(\chi \chi_2 \neq \chi_0 \) for all odd character \(\chi \mod p \). This time, from (4) and (5) we have

\[
\begin{align*}
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S \left(a \cdot \mathfrak{b}, p \right)
&= \frac{1}{\pi^2} \cdot \frac{p^4}{p-1} \cdot \sum_{\chi \mod p} \sum_{\chi(-1)\equiv -1} |L(1, \chi)|^2 \\
&= \frac{(p-2)(p-1)p^2}{12} - \frac{p^3}{\pi^2} |L(1, \chi_2)|^2 \\
&= \frac{(p-2)(p-1)p^2}{12} - p^2 \cdot h^2_p.
\end{align*}
\]

(6)

If \(p \equiv 3 \mod 4 \), then \(\chi_2(-1) = -1 \). This time we have \(|\tau(\chi_2 \chi_2)| = 1 \) and \(|\tau(\chi \chi_2)| = \sqrt{p} \), \(\chi \neq \chi_2 \). Combining (5) and (6) we obtain

\[
\begin{align*}
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S \left(a \cdot \mathfrak{b}, p \right)
&= \frac{1}{\pi^2} \cdot \frac{p^4}{p-1} \cdot \sum_{\chi \mod p} \sum_{\chi(-1)\equiv -1} |L(1, \chi)|^2 + \frac{1}{\pi^2} \cdot \frac{p^3}{p-1} |L(1, \chi_2)|^2 - \frac{1}{\pi^2} \cdot \frac{p^4}{p-1} |L(1, \chi)|^2 \\
&= \frac{(p-2)(p-1)p^2}{12} - \frac{p^3}{\pi^2} |L(1, \chi_2)|^2 \\
&= \frac{(p-2)(p-1)p^2}{12} - p^2 \cdot h^2_p.
\end{align*}
\]

(7)

where we have used the identity \(L(1, \chi_2) = \pi h_p / \sqrt{p} \).

Combining (6) and (7) we may immediately deduce Theorem 1.1.

Now we prove Theorem 1.2. From (3) we have

\[
\begin{align*}
\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S^2 \left(a \cdot \mathfrak{b}, p \right)
&= \frac{1}{\pi^4} \cdot \frac{p^2}{(p-1)^2} \cdot \sum_{\chi \mod p} \sum_{\eta \mod p} \left(\sum_{a=1}^{p-1} \chi(a) \eta(a) |E(a, 1)|^2 \right)^2 \\
&\times \left(\sum_{h=1}^{p-1} \overline{\mathfrak{b}(h)|E(h, 1)|^2} \right) |L(1, \chi)|^2 \cdot |L(1, \eta)|^2 \\
&= \frac{1}{\pi^4} \cdot \frac{p^2}{(p-1)^2} \cdot \sum_{\chi \mod p} \sum_{\eta \mod p} \left(\sum_{a=1}^{p-1} \chi(a) \eta(a) |E(a, 1)|^2 \right)^2 |L(1, \chi)|^2 \cdot |L(1, \eta)|^2 \\
&+ \frac{1}{\pi^4} \cdot \frac{p^2}{(p-1)^2} \cdot \left(\sum_{a=1}^{p-1} |E(a, 1)|^2 \right)^2 \sum_{\chi \mod p} \sum_{\chi(-1)\equiv -1} |L(1, \chi)|^4 \\
&= R_1 + R_2.
\end{align*}
\]

(8)

Now we estimate \(R_1 \) and \(R_2 \) in (8) respectively. Note that the identity

\[
\sum_{a=1}^{p-1} |E(a, 1)|^2 = p^2.
\]
from Lemma 2.4 we have the asymptotic formula

$$R_2 = \frac{1}{\pi^2} \cdot \frac{p^6}{(p-1)^2} \left(\frac{5\pi^4}{144} \cdot p + O \left(\exp \left(\frac{3 \ln \ln p}{\ln p} \right) \right) \right) = \frac{5}{144} \cdot p^5 + O \left(p^4 \cdot \exp \left(\frac{3 \ln \ln p}{\ln p} \right) \right). \tag{9}$$

If \(p \equiv 1 \mod 4 \), then there exist two odd characters \(\chi \) and \(\eta \) such that \(\chi \eta \chi_2 = \chi_0 \). This time, we have the estimate

$$\sum_{\chi \mod p} \sum_{\eta \mod p} |L(1, \chi)|^2 \cdot |L(1, \eta)|^2 = \sum_{\chi \mod p} |L(1, \chi)|^2 \cdot |L(1, \chi \chi_2)|^2 = O(p).$$

So for any prime \(p > 3 \), from (4), Lemma 2.2 and Lemma 2.4 we also have the asymptotic formula

$$R_1 = \frac{1}{\pi^2} \cdot \frac{p^5}{(p-1)^2} \sum_{\chi \mod p} \sum_{\eta \mod p} |L(1, \chi)|^2 \cdot |L(1, \eta)|^2$$

$$+ \frac{1}{\pi^4} \cdot \frac{p^4}{(p-1)^2} \sum_{\chi \mod p} \sum_{\eta \mod p} |L(1, \chi)|^2 \cdot |L(1, \eta)|^2$$

$$- \frac{1}{\pi^5} \cdot \frac{p^5}{(p-1)^2} \sum_{\chi \mod p} \sum_{\eta \mod p} |L(1, \chi)|^2 \cdot |L(1, \eta)|^2$$

$$= \frac{1}{\pi^4} \cdot \frac{p^5}{(p-1)^2} \left(\sum_{\chi \mod p} |L(1, \chi)|^2 \right)^2$$

$$+ O \left(p^4 \right)$$

$$= \frac{1}{\pi^4} \cdot \frac{p^5}{(p-1)^2} \cdot \frac{\pi^4 \cdot (p-1)^2}{144} \cdot \frac{p^2}{p^2} + O \left(p^4 \right)$$

$$= \frac{1}{144} \cdot p^5 + O \left(p^4 \right). \tag{10}$$

Combining (8), (9) and (10) we have the asymptotic formula

$$\sum_{a=1}^{p-1} \sum_{b=1}^{p-1} |E(a, 1)|^2 \cdot |E(b, 1)|^2 \cdot S^2 \left(a \cdot b, p \right)$$

$$= \frac{1}{144} \cdot p^5 + \frac{5}{144} \cdot p^5 + O \left(p^4 \cdot \exp \left(\frac{3 \ln \ln p}{\ln p} \right) \right)$$

$$= \frac{1}{24} \cdot p^5 + O \left(p^4 \cdot \exp \left(\frac{3 \ln \ln p}{\ln p} \right) \right).$$

This completes the proofs of our results.

Competing interests

The authors declare that they have no competing interests.

Acknowledgement: The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper.

This work is supported by N.S.F. (11371291) of P.R. China and G.I.C.F. (YZZ15009) of Northwest University.
References

[1] Rademacher H., On the transformation of $\log \eta (\tau)$, J. Indian Math. Soc., 1955, 19, 25-30.
[2] Rademacher H., E. Grosswald, Dedekind Sums, Carus Mathematical Monographs, Math. Assoc. Amer., Washington D.C., 1972.
[3] Apostol T. M., Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1976.
[4] Carlitz L., The reciprocity theorem for Dedekind sums, Pacific J. Math., 1953, 3, 523-527.
[5] Conrey J. B., Eric Fransen, Robert Klein and Clayton Scott, Mean values of Dedekind sums, J. of Number Theory, 1996, 56, 214-226.
[6] Jia C. H., On the mean value of Dedekind sums, J. of Number Theory, 2001, 87, 173-188.
[7] Mordell L. J., The reciprocity formula for Dedekind sums, Amer. J. Math., 1951, 73, 593-598.
[8] Zhang W. P., A note on the mean square value of the Dedekind sums, Acta Math. Hung., 2000, 86, 275-289.
[9] Zhang W. P., On the mean values of Dedekind Sums, J. Théor. Nombr. Bordx., 1996, 8, 429-442.
[10] Zhang W. P., Liu Y. N., A hybrid mean value related to the Dedekind sums and Kloosterman sums, Sci. China Math., 2010, 53, 2543-2550.
[11] Zhang W. P., Han D., On the sixth power mean of the two-term exponential sums, J. of Number Theory, 2014, 136, 403-413.
[12] Duke W., Iwaniec H., A relation between cubic exponential and Kloosterman sums, Contemporary Mathematics, 1993, 143, 255-258.
[13] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[14] Hua L. K., Introduction to Number Theory, Science Press, Beijing, 1979.
[15] Zhang W. P., Yi Y., He X. L., On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, J. of Number Theory, 2000, 84, 199-213.