Genome sequence of the white-rot fungus *Irpex lacteus* F17, a type strain of lignin degrader fungus

Mengwei Yao¹², Wenman Li¹², Zihong Duan¹², Yinliang Zhang¹² and Rong Jia¹²*

Abstract

Irpex lacteus, a cosmopolitan white-rot fungus, degrades lignin and lignin-derived aromatic compounds. In this study, we report the high-quality draft genome sequence of *I. lacteus* F17, isolated from a decaying hardwood tree in the vicinity of Hefei, China. The genome is 44,362,654 bp, with a GC content of 49.64% and a total of 10,391 predicted protein-coding genes. In addition, a total of 18 snRNA, 842 tRNA, 15 rRNA operons and 11,710 repetitive sequences were also identified. The genomic data provides insights into the mechanisms of the efficient lignin decomposition of this strain.

Keywords: Short genome report, Genome sequence, *Irpex lacteus* F17, White-rot fungus, Hardwood tree, Lignin decomposition

Introduction

Irpex lacteus, a white-rot fungus with biotechnological potential, is currently considered the most important lignocellulose-degrading organism because of its potential to degrade lignin and bioremediate other lignin-related pollutants (such as industrial dyes and aromatic pollutants) [1–3]. Lignocellulose, which is the most abundant renewable biomass in terrestrial environments, is composed of three major components: cellulose, hemicellulose, and lignin [4]. Among them, lignin is a highly irregular and heterogeneous biopolymer, which makes it recalcitrant to degradation. Compared with other wood-decay fungi, *I. lacteus* plays an important role in the efficient enzymatic conversion of renewable biomass, and it shows remarkable resistance to pollutant toxicity in water and soil environments [5]. *I. lacteus* is known to remove various aromatic compounds, including endocrine disruptors, synthetic dyes, and polycyclic aromatic hydrocarbons [1, 6], and it can also be used to obtain ethanol via the biological pre-treatment of lignocellulose [7].

I. lacteus is a cosmopolitan species that is widespread in Europe, North America, and Asia [8–10]. The fungus produces hydrolases, such as exo- and endo-cellulases, and extracellular oxidative enzymes, such as LiP, MnP, as well as Lac [11, 12], thereby showing a pattern of ligninolytic enzymes that is typical of white-rot fungi. Starting in the 1960’s, several studies by Japanese researchers mainly focused on the activities of the exo- and endo-cellulases, as well as an exo-cellulase gene, from *I. lacteus* [13]. Subsequently, the LiP and MnP of *I. lacteus* were isolated and characterized, and the biotechnological applicability of this fungus has drawn considerable interests in recent years [5]. Recently, we have degraded and detoxicated the synthetic dyes by using manganese peroxidase isolated from *I. lacteus* F17 [14, 15]. However, the genome sequence of *I. lacteus* has not been reported. Thus, the genomic traits of *I. lacteus* are required to reveal and elucidate the ligninolytic potential of the type strain of white-rot fungi. Here, the genome sequence of *I. lacteus* F17 is presented. To the best of our knowledge, this is the first high-quality draft genome sequence of *I. lacteus* available so far.

* Correspondence: ahdxjiaorong@126.com
1School of Life Sciences, Economic and Technology Development Zone, Anhui University, 111 Juulong Road, Hefei, Anhui 230601, People’s Republic of China
2Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, People’s Republic of China

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Organism information
Classification and features

The sequenced strain of *I. lacteus* F17 was isolated from a decaying hardwood tree in May 2009 in the vicinity of Hefei, China (Table 1). Figure 1a shows the growth status of *I. lacteus* F17 which was cultured on PDA medium (200 g/L of potato extract, 20 g/L of glucose, and 20 g/L of agar) after 5 days at 28 °C. The strain grew faster and formed a white colony with a diameter of 6.8 cm. The micrograph of *I. lacteus* F17 mycelia grown on PDA after 3 days was obtained by OLYMPUS BX51 (Fig. 1b). The mycelia were picked up from an agar plate using a tiny tweezer, mounted on glass slides, and then stained with an appropriate amount of fungal staining solution mixed with lactic acid, carbollic acid and cotton blue (lactic acid 10 mL, carbollic acid 10 g, glycerol 20 mL, cotton blue 0.02 g, distilled water 10 mL) for light microscopic examination (400×).

I. lacteus F17 resides in the Eukaryota, in the Fungal Kingdom, and it belongs to the family Polyporaceae, order Polyporales, class Basidiomycetes, Phylum Basidiomycota. Several other white-rot fungi with important biological function are members of the Polyporales, including *Phanerochaete chrysosporium*, *Dichomitus squalens*, *Trametes versicolor*, *Polyporus brumalis*, and *Ceriporiopsis subvermispora*. *I. lacteus* F17 has been identified and classified based on its Internal Transcribed Spacer region in our previous study [14]. The 18S rRNA gene data of *I. lacteus* F17 and several other Polyporales species were aligned using ClustalW [16]. Phylogenetic analysis based on the nearest neighbor joining method was performed using the MEGA6 package [17]. The confidence levels for the individual branches were determined by bootstrap analysis with 1000 replicates. The final phylogenetic tree was visualized with TreeView [18]. *I. lacteus* F17 is phylogenetically closely related to *C. subvermispora* (Fig. 2).

Table 1 Classification and general features of *Irepex lacteus* F17 [19]

MIGS ID	Property	Term	Evidence codea
	Classification	Domain Fungi	TAS [5]
		Phylum Basidiomycota	TAS [5]
		Class Basidiomycetes	TAS [5]
		Order Polyporales	TAS [5]
		Family Polyporaceae	TAS [5]
		Genus Irpex	TAS [14]
		Species *I. lacteus*	TAS [14]
		Strain: F17	TAS [14]
	Gram stain	n/a	n/a
	Cell shape	Filaments	TAS [5]
	Motility	Non-motile	TAS [5]
	Sporulation	Basidiospore	NAS
	Temperature range	Not reported	n/a
	Optimum temperature	28 °C	NAS
	pH range; Optimum	Not reported	n/a
	Carbon source	Potato, Glucose	TAS [14, 15]
MIGS-6	Habitat	Dead wood, hardwood tree	TAS [5, 14]
MIGS-6.3	Salinity	Not reported	n/a
MIGS-22	Oxygen requirement	Aerobic	TAS [14, 15]
MIGS-15	Biotic relationship	Free-living	TAS [5]
MIGS-14	Pathogenicity	Not reported	n/a
MIGS-4	Geographic location	Mountain Dashu, Hefei, China	TAS [14, 15]
MIGS-5	Sample collection	May 2009	TAS [14]
MIGS-4.1	Latitude	31.85	NAS
MIGS-4.2	Longitude	117.27	NAS
MIGS-4.4	Altitude	284 m	NAS

aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [33]
Genome sequencing information

Genome project history

I. lacteus F17 was selected for sequencing due to its bio-remediation of organic pollutants and application to enzymatic biotechnologies. The genome of this strain was sequenced by SMRT technology, and genome assembly and annotation were performed at the Beijing Novogene Bioinformatics Technology Co., Ltd. (Beijing, China). The whole genome shotgun project was started in May 2016, finished in August 2016 and has been submitted to NCBI under the accession number of MQVO00000000. Table 2 summarized the project data. The project information was in compliance with MIGS version 2.0 [19].

Growth conditions and genomic DNA preparation

I. lacteus F17 was deposited at the CCTCC under the accession number of CCTCC AF 2014020. The strain was grown on PDA slants for 5 days at 28 °C, at which time the mycelia were scraped from the medium and lysed by liquid nitrogen grinding. The genomic DNA was extracted using the sodium dodecyl sulfate method. The harvested DNA was analyzed by agarose gel electrophoresis and purified using AMPure PB magnetic beads and then quantified by a Qubit ® 2.0 fluorometer (Thermo Scientific, USA). In the end, the total amount of 28 μg DNA with a final concentration higher than 50 ng/μL and a A260/A280 ratio of 1.9 was placed in dry ice and sent to the sequencing.

Genome sequencing and assembly

A fungal survey by Illumina massively parallel sequencing technology was first used to make an evaluation for the fine mapping and assembly optimization of the fungal genome preassembling. Then the genome of *I. lacteus* F17 was grown on PDA medium for 5 days at 28 °C, at which time the mycelia were scraped from the medium and lysed by liquid nitrogen grinding. The genomic DNA was extracted using the sodium dodecyl sulfate method. The harvested DNA was analyzed by agarose gel electrophoresis and purified using AMPure PB magnetic beads and then quantified by a Qubit ® 2.0 fluorometer (Thermo Scientific, USA). In the end, the total amount of 28 μg DNA with a final concentration higher than 50 ng/μL and a A260/A280 ratio of 1.9 was placed in dry ice and sent to the sequencing.
was sequenced by using PacBio’s SMRT technology. For the Illumina sequencing, the genome was sequenced using a single 350 bp insert genomic DNA library that was generated on a HiSeq 4000 PE150 system (Illumina, San Diego, CA, USA). For the PacBio sequencing, the genomic DNA was sheared into 20 kb fragments using a g-TUBE (Covaris, Woburn, MA, USA), and it was sequenced on an RSII system (PacBio, Menlo Park, CA, USA) after constructing the SMRT Bell library. The average sequencing depth of the 350 bp library was 20x, whereas the depth of the PacBio library was 70x.

Two assembly strategies were used respectively after filtering low-quality reads. A fungal survey produced 1564 Mb of clean data from 1700 Mb of raw data using SOAP denovo technology [20]. The PacBio subreads which were assembled into a primary assembly were completed with the Hierarchical Genome Assembly Process (Pacific Biosciences). A total of 3494 Mb of clean data were detected from the genome of *I. lacteus* F17 using samtools to fix the errors from the PacBio. The low quality reads were filtered by the SMRT 2.3.0 technology [21]. The filtered reads were assembled to generate one contig without gaps. A total of 317 contigs with an N50 of 1.15 Mb were generated from *I. lacteus* F17 genome. Finally, a 44.36 Mb draft genome of *I. lacteus* F17 was obtained. In addition, we used BUSCO [22] to assess the completeness of *I. lacteus* F17 genome and the genome has an estimated completeness of 86.9%, which indicated that we obtained a high-quality genome assembly in this study.

Table 2 Project information

MIGS ID	Property	Term	
MIGS 31	Finishing quality	High-quality draft	
MIGS-28	Libraries used	Illumina350 bp small fragment library	
		PacBio: 20 kb SMRT Bell library	
MIGS 29	Sequencing platforms	Illumina HiSeq PE150	
		PacBio RSII	
MIGS 31.2	Fold coverage	Illumina: 20x	
		PacBio: 70x	
MIGS 30	Assemblers	SOAP denovo SMRT 2.3.0	
MIGS 32	Gene calling method	PASA/Cufflinks/Augustus 2.7	
Locus Tag		BSQ47	
Genbank ID		MQVD00000000	
Genbank Date of Release		February 06, 2017	
GOLD ID		NA	
BIOPROJECT		PRJNA354901	
MIGS 13	Source Material Identifier		F17
	Project relevance	Biotechnology, mycology	

Genome annotation

By combining three types of genotype calling, including de novo PASA prediction of Transdecoder/Glimmer/Snap based on transcriptome data, Cufflinks prediction based on transcriptome data and de novo Augustus (version 2.7) [23], a total number of 10,391 protein coding genes were predicted. The interspersed repetitive sequences were predicted using the RepeatMasker [24]. The tandem repeats were analyzed by the Tandem Repeats Finder [25] and the tRNA genes were predicted by the tRNAscan-SE [26]. The rRNA genes were analyzed by the rRNAmer [27] and the snRNA were predicted by BLAST against the Rfam [28, 29] database. In the end, 18 snRNA, 842 tRNA, 15 rRNA operons and a total of 11,710 repetitive sequences were identified in the genome. Seven databases, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, COG, Non-Redundant Protein Database, Transporter Classification Database, Swiss-Prot, and Pfam database were employed to predict gene functions. A whole genome BLAST search (E-value less than 1e-5, minimal 2 alignment length percentage larger than 40%) was performed against above seven databases. All putative proteins were compared to the entries in the CAZy database using a BLAST search. Secreted proteases were predicted with SignalP 4.1 [30] and TMHMM 2.0 [31], respectively. Other proteins that are important in wood-decay (oxidoreductases) and connected to fungal secondary metabolism were also predicted, according to a previously published method [4, 32].

Genome properties

The draft genome sequence was based on an assembly of 317 contigs amounting to 44,362,654 bp, with a GC content of 49.64% (Table 3). From the genome, 875 RNAs (including 18 snRNA, 842 tRNA, and 15 rRNA operons), as well as 11,710 repetitive sequences, were detected. In addition, a total of 10,661 genes were predicted, of which 10,391 are protein coding genes. Table 4 presented the distribution of genes into COGs functional categories. Of the last, 2065 genes (19.37%) were assigned to COG functional categories, the most abundant of them lies in the COG category named “Post-translational modification, protein turnover, chaperones” (245 proteins) followed by “Translation, ribosomal structure and biogenesis” (215 proteins), “General function prediction only” (211 proteins), “Energy production and conversion” (168 proteins), “Nucleotide transport and metabolism” (144 proteins), “RNA processing and modification” (121 proteins), and “Intracellular trafficking and secretion” (116 proteins).

A total of 320 CAZyme-encoding genes were identified, including 53 CBMs, 161 GHs, 30 glycosyl transferases, four polysaccharide lyases, 64 AAs, and eight carbohydrate...
In conclusion, *I. lacteus* F17 possesses more CAZy families than other fungi (Additional file 2: Table S2), especially in the families AA3 (17 copies), AA9 (21 copies), CBM1 (34 copies), and GH5 (24 copies), which are all involved in plant cell wall degradation.

Insights from the genome sequence

Until now, this is the first draft genome sequence of the genus *Irpex*. The phylogenetic analysis based on the 18S rRNA gene data confirms its closest relationship of *I. lacteus* F17 to *C. subvermispora*. Annotation of the *I. lacteus* F17 genome indicates that this strain possesses 320 carbohydrate-active enzymes, 191 lignin-related oxidoreductases, 568 secreted proteases, and six secondary metabolism gene clusters (Additional file 3: Table S3), all of which confirm its high lignin decomposition ability. Fifteen enzymes were classified as probable ligninolytic enzymes, including a Lac, an LiP, and 13 MnPs, one of which was identified previously [14]. Interestingly, both *I. lacteus* F17 and *C. subvermispora* have the largest number of MnPs, even greater than that of *P. chrysosporium* (five MnPs), as determined by comparing 34 basidiomycetes, including 26 fungal species belonging to the Polyporales, as well as eight species in Agaricales, Russulales, Hymenochaetales, and Corticiales, respectively (Additional file 4: Table S4). A high number of MnP isozymes suggest that *I. lacteus* F17 has a good ability to degrade lignin and other organic pollutants.

Conclusions

In this study, we characterized the genome of *I. lacteus* F17 that was isolated from a decaying hardwood tree in the vicinity of Hefei, China. Notably, this is a first discovered sequenced strain, and we found it has lots of lignocellulose decomposition related genes. The genome sequencing information not only revealed its ligninolytic enzyme diversity, but also contributed to a better understanding of the efficient lignin decomposition of this strain. In summary, *I. lacteus* F17 has become one of model ligninolytic basidiomycetes whose availability of genomic sequences will facilitate future genetic engineering to degrade lignin and other organic pollutants.

Additional files

- **Additional file 1**: Table S1. Total CAZy families in *I. lacteus* F17. (XLSX 17 kb)
- **Additional file 2**: Table S2. Selection of the CAZy families involved in plant cell wall degradation. (XLS 40 kb)
- **Additional file 3**: Table S3. Gene contents in oxidoreductases, secreted proteases and secondary metabolism in the genomes of *I. lacteus* F17. (DOCX 15 kb)
Additional file 4: Table S4. Comparison of the number of MnPs from 34 fungal species belonging to the Polyporales and eight other fungi. (XLS 38 kb)

Abbreviations
AA: Auxiliary activity; BLAST: Basic local alignment search tool; CAZY: Carbohydrate-active enzymes; CBBM: Carbohydrate-binding modules; CCTCC: China Center for Type Culture Collection; COG: Clusters of orthologous groups; GH: Glycoside hydrolases; Lac: Laccase; LiP: Lignin peroxidase; MnP: Manganese peroxidase; PacBio: Pacific Bioscience; PDA: Potato dextrose agar; SMRT: Single Molecule Real-Time

Funding
This research was supported by the National Natural Science Foundation of China (31570102, 31070109).

Authors’ contributions
MWY participated in the sequence alignment and drafted the manuscript. WML carried out the laboratory experiments. ZHD participated in the design of the study. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 March 2017 Accepted: 8 September 2017

References
1. Kasinath A, Novotny C, Svobodova K, Patel K, Šešek V. Decolorization of synthetic dyes by Ipex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb Tech. 2003;32:167–73.
2. Šešek V, Novotny C, Vampola P. Screening for efficient organophilic fungal degraders by decolorization. Czech Mycol. 1998;50:303–11.
3. Song HG. Biodegradation of aromatic hydrocarbons by several white-rot fungi. J Microbiol. 1997;35:66–71.
4. Morin E, Kohler A, Baker A, Fouloungne M, Lomard V, Nagy L, Ohm R, Patyshakuliyeva A, Burn A, Aerts A, Bailey A, Billette L, Coutinho P, Deakin G, Deflauziere H, D’Amour D, Drummond J, Edwards K, Ekman A, Eddy S, Eker G, Eklund E, Estrada Eastwood D, Foster G, Sonnenberg D, Cullent D, Vries L, Riedel T, Hibbert D, Henriress B, Burton K, Kerriant R, Challen M, Grigoriev L, Martin F. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A. 2012;109:17501–6.
5. Novotny C, Caijthaml T, Svobodova K, Sulas M, Šešek V. Ipex lacteus, a white-rot fungus with biotechnological potential—review. Folia Microbiol. 2009;54(5):375–90.
6. Babarov P, Mader M, Baldrian P, Caijthaml K, Caijthaml T. Purification of a new manganese peroxidase of the white-rot fungus Ipex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol. 2006;157(3):248–53.
7. García M, López-Abeliegas M, Lu-Chau TA, Lema J. Fungal pretreatment of agricultural residues for bioethanol production. Ind Crop Prod. 2016;89:496–92.
8. Kellner H, Luis P, Pecyna M, Barbi F, Kapturkova D, Kruger D, Ráz D, Marmessier R, Marmessier R, Vandenbol M, Hofrichter M. Widespread occurrence of expressed fungal secretory enzymes in forest soils. PLoS One. 2014;9(4):e95557.
9. Novotny C, Erbanova P, Caijthaml T, Dosoretz RC, Sasek V. Ipex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biot. 2000;54(6):850–3.
10. Qin X, Zhang J, Zhang X, Yang Y. Induction, purification and characterization of a new manganese peroxidase from Ipex lacteus CD2 and its application in the decolorization of different types of dye. PLoS One. 2014;9(11):e113282.
11. Kanda T, Wakabayashik N. Purification and properties of an endocellular of avicelase type from Irpex lacteus (Polyergus pulriferae). J Biochem. 1976;79(5):977–80.
12. Caijthaml T, Erbanova P, Kollmann A, Novotny C, Sasek V, Mougin C. Degradation of PAHs by ligninolytic enzymes of Ipex lacteus. Folia Microbiol. 2008;53(5):289–94.
13. Nisizawa K, Hashimoto Y. Cellulose-splitting enzymes. VI. Difference in the specificities of cellulase and β-glucosidase from Ipex lacteus. Arch Biochem Biophys. 1959;11(1):211–22.
14. Chen WT, Zheng LL, Jia R, Wang N, Cloning and expression of a new manganese peroxidase from Ipex lacteus F17 and its application in decolorization of reactive black S. Process Biochem. 2015;50(11):1748–59.
15. Yang XT, Zheng JZ, Lu YR. Jia R. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Ipex lacteus F17. Environ Sci Pollut Res. 2016;23(10):9585–97.
16. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. CLUSTAL W and CLUSTAL X 2.0. Bioinformatics. 2007;23(21):2947–54.
17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetic analysis version 6.0. Mol Biol Evol. 2013;30:722–7.
18. Page RDM. TreeView: an application to display phylogenetic trees on personal computer. Applic Bioin. 1996;12(4):357–8.
19. Field D, Ganty G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–7.
20. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265–72.
21. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. Assembling large genomes with single-molecule sequencing and locally-sensitive hashing. Nat Biotechnol. 2015;33(6):623–30.
22. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
23. Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24(5):637–44.
24. Saha S, Bridges S, Magbanua ZV, Peterson DG. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008;36(7):2284–94.
25. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):517.
26. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
27. Lagesen K, Hallin P, Randland EA, Stærfeldt HH, Rogens T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
28. Gardner PP, Daub J, Tate GS, Navrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A. Rfam: updates to the RNA families database. Nucleic Acids Res. 2009;37(Database issue):136–40.
29. Navrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: Inference of RNA alignments. Bioinformatics. 2009;25(10):1335–7.
30. Petersen TN, Brunak S, Von HN, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat Meth. 2011;8:785–95.
31. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
32. Floudas D, Binder M, Riley R, Bany K, Blanchette RA, Heinrichs B, Martinez AE, Oltiar R, Spatafora JW, Yadvav JS, Aerts A, Benoit J, Boyd A, Carlson AS, Copeland A, Coutinho PM, Heme RP, Ferreira P, Findley K, Foster B, Gaskell J, Goltert D, Geocédri P, Hetteman J, Hesse C, Hori C, Igoori I, Iversen J, Kallen N, Kenet D, Kohler A, Kuees LI, TKA K, Kuo A, Labatou K, Larondof LF, Lindqulst E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, DJ ML, Morgenstem L, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FS, Sabat G, Salomov AM, Samej MA, Schutz M, Jialock JC, John FN, Sterlil J, Sun H, Sun S, Syed K, Tian S, Waebenga A, Yipasao A, Eastwood DC, Martin F, Cullen D, Grigoriev NV, Hibbet DS. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2014;343(6175):1751–5.
33. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.