Observation of $B \to K^*\ell^+\ell^-$

A. Ishikawa, K. Abe, K. Abe, I. Adachi, Byoung Sup Ahn, H. Aihara, K. Akai, M. Akatsu, M. Akemoto, Y. Asano, T. Aso, V. Aulchenko, T. Aushev, A. M. Bakich, Y. Ban, A. Bay, I. Bizjak, A. Bondar, A. Bozek, M. Bračko, T. E. Browder, P. Chang, Y. Chao, K.-F. Chen, B. G. Cheon, R. Chistov, S.-K. Choi, Y. Choi, Y. K. Choi, A. Chuvikov, M. Danilov, L. Y. Dong, A. Drutskoy, S. Eidelman, V. Eiges, Y. Enari, J. Flanagan, C. Fukunaga, K. Furukawa, N. Gabysev, A. Garmash, T. Gershon, B. Golob, R. Guo, J. Haba, C. Hagner, S. H. Lee, S. Hagiwara, T. Hokuue, H. Hoshi, Y. Hsiung, H. Iwasaki, Y. Iwasaki, M. Iwasaki, T. Mimashi, Y. K. Miyake, K. Miyake, H. Miyake, H. Miyata, D. Mohapatra, T. Mori, T. Nagamine, Y. Nagasaka, T. Nakadaira, T. Nakamura, M. Nakao, H. Nakazawa, Z. Natkaniec, S. Nishida, O. Nitoh, T. Nozaki, S. Ogawa, Y. Ogawa, K. Ohmi, Y. Ohnishi, T. Ohshima, N. Ohuchi, T. Okabe, S. Okuno, W. Ostrowicz, H. Ozaki, H. Palka, C. W. Park, H. Park, N. Parslow, L. S. Peak, L. E. Piilonen, N. Root, H. Sagawa, S. Saiito, Y. Sakai, T. R. Sarangi, M. Satapathy, A. Satpathy, O. Schneider, J. Schümann, C. Schwanda, A. J. Schwartz, S. Semenov, K. Senyo, R. Seuster, M. E. Sevior, H. Shibuya, T. Shidara, V. Sidorov, J. B. Singh, N. Soni, S. Stanič, M. Starič, A. Sugiyama, K. Sumisawa, T. Sumiyoshi, S. Suzuki, S. Y. Suzuki, F. Takasaki, K. Tamai, N. Tamura, M. Tanaka, M. Tawada, G. N. Taylor, Y. Teramoto, T. Tomura, T. Tsuboyama, T. Tsukamoto, S. Uehara, K. Ueno, S. Uno, G. Varner, C. C. Wang, C. H. Wang, J. G. Wang, M.-Z. Wang, Y. Watanabe, E. Won, B. D. Yabsley, Y. Yamada, A. Yamaguchi, Y. Yamashita, M. Yamauchi, H. Yanai, J. Ying, M. Yoshida, Y. Yusa, Z. P. Zhang, V. Zhilich, and D. Žontar

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3University of Cincinnati, Cincinnati, Ohio 45221
4University of Frankfurt, Frankfurt

Belle Preprint 2003-13
KEK Preprint 2003-45
DPNU-03-18
Number	Institution and Location
1	Gyeongsang National University, Chinju
2	University of Hawaii, Honolulu, Hawaii 96822
3	High Energy Accelerator Research Organization (KEK), Tsukuba
4	Hiroshima Institute of Technology, Hiroshima
5	Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
6	Institute of High Energy Physics, Vienna
7	Institute for Theoretical and Experimental Physics, Moscow
8	J. Stefan Institute, Ljubljana
9	Kanagawa University, Yokohama
10	Korea University, Seoul
11	Kyungpook National University, Taegu
12	Institut de Physique des Hautes Énergies, Université de Lausanne, Lausanne
13	University of Ljubljana, Ljubljana
14	University of Maribor, Maribor
15	University of Melbourne, Victoria
16	Nagoya University, Nagoya
17	Nara Women’s University, Nara
18	National Kaohsiung Normal University, Kaohsiung
19	National Lien-Ho Institute of Technology, Miao Li
20	Department of Physics, National Taiwan University, Taipei
21	H. Niewodniczanski Institute of Nuclear Physics, Krakow
22	Nihon Dental College, Niigata
23	Niigata University, Niigata
24	Osaka City University, Osaka
25	Osaka University, Osaka
26	Panjab University, Chandigarh
27	Peking University, Beijing
28	Princeton University, Princeton, New Jersey 08545
29	RIKEN BNL Research Center, Upton, New York 11973
30	Saga University, Saga
31	University of Science and Technology of China, Hefei
32	Seoul National University, Seoul
33	Sungkyunkwan University, Suwon
34	University of Sydney, Sydney NSW
35	Tata Institute of Fundamental Research, Bombay
36	Toho University, Funabashi
37	Tohoku Gakuin University, Tagajo
38	Tohoku University, Sendai
39	Department of Physics, University of Tokyo, Tokyo
40	Tokyo Institute of Technology, Tokyo
41	Tokyo Metropolitan University, Tokyo
42	Tokyo University of Agriculture and Technology, Tokyo
43	Toyama National College of Maritime Technology, Toyama
44	University of Tsukuba, Tsukuba
45	Utkal University, Bhubaneswer
46	Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
47	Yokkaichi University, Yokkaichi
Abstract

We report the first observation of the flavor-changing neutral current decay $B \to K^* \ell^+ \ell^-$ and an improved measurement of the decay $B \to K \ell^+ \ell^-$, where ℓ represents an electron or a muon, with a data sample of 140 fb$^{-1}$ accumulated at the $\Upsilon(4S)$ resonance with the Belle detector at KEKB. The results for the branching fractions are $B(B \to K^* \ell^+ \ell^-) = (11.5^{+2.6}_{-2.4} \pm 0.8 \pm 0.2) \times 10^{-7}$ and $B(B \to K \ell^+ \ell^-) = (4.8^{+1.0}_{-0.9} \pm 0.3 \pm 0.1) \times 10^{-7}$, where the first error is statistical, the second is systematic and the third is from model dependence.

PACS numbers: 11.30.Hv, 13.20.He, 14.65.Fy, 14.40.Nd
Flavor-changing neutral current (FCNC) processes are forbidden at tree level in the Standard Model (SM); they only proceed at a low rate via higher-order loop diagrams. SM decay amplitudes for the FCNC processes $B \rightarrow X_s\gamma$ and $B \rightarrow X_s\ell^+\ell^-$, where X_s denotes inclusive hadronic final states with a strangeness $S = \pm 1$ and ℓ represents an electron or a muon, have been calculated with small errors \cite{1}. If additional diagrams with non-SM particles contribute to these FCNC processes, their amplitudes will interfere with the SM amplitudes, making these processes ideal places to search for new physics \cite{2}.

Measurements of the decay rate for $B \rightarrow X_s\gamma$ \cite{3} as well as the recent first exclusive and inclusive measurements by Belle for $B \rightarrow K\ell^+\ell^-$ \cite{4} and $B \rightarrow X_s\ell^+\ell^-$ have so far shown no disagreement with the SM predictions. Deviations due to non-SM amplitudes are often expressed in terms of the Wilson coefficients C_7, C_9 and C_{10}; a strong constraint on the magnitude of C_7 has been set by $B \rightarrow X_s\gamma$, and a large area of the C_9-C_{10} plane has been excluded by $B \rightarrow K\ell^+\ell^-$ and $B \rightarrow X_s\ell^+\ell^-$ \cite{5}. A complete determination of all three Wilson coefficients, including the sign of C_7, requires the measurement of the forward-backward asymmetry in $B \rightarrow K^*\ell^+\ell^-$ or $B \rightarrow X_s\ell^+\ell^-$; however, $B \rightarrow K^*\ell^+\ell^-$ has not been previously observed.

In this Letter, we report the first observation of the decay $B \rightarrow K^*\ell^+\ell^-$, using a data sample of 152 million B meson pairs, corresponding to 140 fb$^{-1}$ taken at the T(4S) resonance. We also report an improved measurement of $B \rightarrow K\ell^+\ell^-$, superseding our previous result based on 29 fb$^{-1}$ \cite{4}.

The data are produced in e^+e^- annihilation at the KEKB energy-asymmetric (3.5 on 8 GeV) collider \cite{7} and collected with the Belle detector \cite{8}. The Belle detector is a large-solid-angle spectrometer that includes a three-layer silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), time-of-flight (TOF) scintillation counters, and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to identify muons (KLM).

The event reconstruction procedure is similar to our previous report \cite{4}. We reconstruct the following final states: $B^0 \rightarrow K^{*0}\ell^+\ell^-$, $B^+ \rightarrow K^{*+}\ell^+\ell^-$, $B^0 \rightarrow K_S^0\ell^+\ell^-$ and $B^+ \rightarrow K^+\ell^+\ell^-$. Charge conjugate modes are implied throughout this Letter. The following decay chains are used to reconstruct the intermediate states: $K^{*0} \rightarrow K^+\pi^-$, $K^{*+} \rightarrow K_S^0\pi^+$ and $K^{*+} \rightarrow K^{+}\pi^0$, $K_S^0 \rightarrow \pi^+\pi^-$, and $\pi^0 \rightarrow \gamma\gamma$.

Charged tracks are classified as e, μ, K and π candidates by discriminating between the flavors for the pairwise combinations, using criteria which allow multiple classifications of an individual track. The e/h discriminant (where $h = K$ or π) is formed from the energy deposit in the ECL, the specific ionization measurements in the CDC, and the ACC light yield. The μ/h discriminant is based on the hits in the KLM. The K/π and K/μ discriminants use the CDC, ACC, and TOF information. Electrons, muons and kaons are selected using loose conditions on the e/h, μ/h and K/π discriminants, respectively. All tracks are classified as pions unless they satisfy tight conditions on e/h or K/π; the same e/h condition is required for kaons, and a similar K/μ condition is required for muons. To reduce the misidentification of hadrons as leptons, we require minimum momenta of 0.4 GeV/c and 0.7 GeV/c for electrons and muons, respectively. We apply a tight requirement for the muons below 1.0 GeV/c. Each of the charged tracks, except for the $K_S^0 \rightarrow \pi^+\pi^-$ daughters, is required to have an impact parameter with respect to the interaction point of less than 0.5 cm transverse to, and 5.0 cm along the positron beam axis. Photons are reconstructed...
within the ECL with a minimum energy requirement of 50 MeV.

Invariant masses for the \(\pi^0 \), \(K_S^0 \) and \(K^+ \) candidates are required to be within windows of \(\pm 10 \) MeV/\(c^2 \) (\(\sim 2 \sigma \)), \(\pm 15 \) MeV/\(c^2 \) (\(\sim 3.3 \sigma \)) and \(\pm 75 \) MeV/\(c^2 \) (1.5\(\sigma \)), respectively, around their nominal masses. We require a minimum momentum of 0.1 GeV/\(c \) for the \(\pi^0 \) candidates. We impose \(K_S^0 \) selection criteria based on the distance and the direction of the \(K_S^0 \) vertex and the impact parameters of daughter tracks. For \(K^{*+} \to K^+ \pi^0 \), \(\cos \theta_{\text{hel}} < 0.8 \) is required to reduce background from soft \(\pi^0 \)'s, where \(\theta_{\text{hel}} \) is the angle between the \(K^{*+} \) momentum in the \(B \) rest frame and the \(K^+ \) momentum in the \(K^{*+} \) rest frame.

We form \(B \) candidates by combining a \(K^{(*)} \) candidate and an oppositely charged lepton pair using two variables: the beam-energy constrained mass \(M_{bc} = \sqrt{(E_{\text{beam}}/c^2)^2 - |p_B/c|^2} \) and the energy difference \(\Delta E = E_B - E_{\text{beam}} \), where \(p_B \) and \(E_B \) are the measured momentum and energy, respectively, of the \(B \) candidate, and \(E_{\text{beam}} \) is the beam energy. Here and throughout this Letter, variables denoted with an asterisk are calculated in the \(\Upsilon(4S) \) rest frame. When multiple candidates are found in an event, we select the candidate with the smallest value of |\(\Delta E \)|.

The following five types of backgrounds are considered. 1) \textit{Charmonium} \(B \) decay background from \(B \to J/\psi X_s \) and \(B \to \psi' X_s \) decays is removed by vetoing lepton pairs whose invariant mass (\(M_{\ell\ell} \)) is near the \(J/\psi \) or \(\psi' \) mass [4]. In addition, we reject events that have a photon with energy less than 500 MeV within a 50 mrad cone around either the electron or positron direction (or a photon within each cone) and an \(e^+e^-\gamma(\gamma) \) invariant mass within the veto windows. For \(K^{(+)}\ell^+\ell^- \) modes, we reject the event if an unobserved photon along one of the lepton directions with an energy \(E_{\text{beam}}^* - E_K^* - E_{\ell\ell}^* \) can replace the pion, giving \(M_{\ell\ell}\) and \(M_{bc} \) consistent with \(B \to J/\psi K \). 2) We suppress background from photon conversions and \(\pi^0 \to e^+e^-\gamma \) by requiring the dielectron mass to satisfy \(M_{ee} > 0.14 \) GeV/\(c^2 \). This eliminates possible background from \(B \to K^{(*)}\gamma \) and \(B \to K^{(*)}\pi^0 \). 3) Background from continuum \(q\bar{q} \) (\(q = u, d, s, c \)) production is suppressed using a likelihood ratio \(R_{\text{cont}} \) formed from a Fisher discriminant, \(\cos \theta_B^* \), and, for \(K^{(*)}e^+e^- \) only, \(\cos \theta_{\text{sph}}^* \). The Fisher discriminant is calculated from the energy flow in 9 cones along the \(B \) candidate sphericity axis and the normalized second Fox-Wolfram moment \(R_2 \) [10]. The angles \(\theta_B^* \) and \(\theta_{\text{sph}}^* \) are the \(B \) meson angles with respect to the beam and the sphericity axes, respectively. 4) \textit{Semileptonic} \(B \) decay background is suppressed using another likelihood ratio \(R_{\text{sl}} \), formed from the missing energy of the event, \(E_{\text{miss}}^* \), and \(\cos \theta_B^* \). 5) \textit{Hadronic} \(B \) decay background, \(B \to K^{(*)}h^+h^- \), e.g., from \(B \to D\pi \), can contribute if both hadrons are misidentified as leptons. We find that other potential backgrounds are negligible.

For each decay mode, the selection criteria on the two likelihood ratios \(R_{\text{cont}} \) and \(R_{\text{sl}} \) are chosen to maximize \(N_S/\sqrt{N_S + N_B} \), where \(N_S \) is the expected signal yield and \(N_B \) is the expected background in the \(M_{bc} \) and \(\Delta E \) signal windows. The signal windows (\(\sim 2.5\sigma \)) are defined as |\(M_{bc} - M_B \)| < 0.007 GeV/\(c^2 \) for both lepton modes and \(-0.055(0.035) \) GeV < \(\Delta E < 0.035 \) GeV for the electron (muon) mode. A large Monte Carlo (MC) background sample of a mixture of \(b \to c \) decays and \(e^+e^- \to q\bar{q} \) events is used to estimate \(N_B \). The \(B \to K^{(*)}\ell^+\ell^- \) signal events are generated according to Ref. 6 to determine \(N_S \), and to estimate the efficiencies that are summarized in Table 11.

The signal yield is determined by a binned maximum-likelihood fit to the \(M_{bc} \) distribution for the events within the \(\Delta E \) signal window using a Gaussian signal plus three background functions. The area of this Gaussian function is the signal yield; the mean and width are determined using observed \(J/\psi K^{(*)} \) events. We find no dilepton mass dependence of the width and mean using a MC study. The first background function is for the semileptonic \(B \)
decays and, to a lesser extent, the continuum background, and is modeled with a threshold function \(\sigma \) whose shape parameter is determined using a large MC sample that contains oppositely charged leptons and whose normalization is allowed to float. This MC sample reproduces the background parametrization for \(B \to K^{(*)}e^+\mu^- \) data in which only combinatorial background is expected. The two other background functions account for the residual \(B \) to charmonium decays and hadronic \(B \) decays, and are modeled with separate combinations of a similar threshold function and an additional Gaussian component. The shape and the size of the charmonium background function are fixed from \(J/\psi \) and \(\psi' \) inclusive MC samples. We find the Gaussian component of the charmonium background contributes less than one event. The shape and the size of the hadronic background are evaluated using hadron enriched data by relaxing the lepton identification criteria. The Gaussian components of the hadronic background contribution, multiplied by the lepton misidentification probability (measured in bins of momentum and polar angle with respect to the positron beam), are then found to be 1.05 \(\pm \) 0.08 and 0.64 \(\pm \) 0.05 events for \(B \to K\ell^+\ell^- \) and \(B \to K^*\ell^+\ell^- \), respectively.

Figure 1 and Table I give the fit results. We observe 35.8\(^{+8.0}_{-7.3} \)(stat.)\(^{+1.0}_{-1.1} \)(syst.) \(B \to K^{(*)}\ell^+\ell^- \) signal events with a significance of 5.7, and 37.9\(^{+7.0}_{-6.0} \)(stat.)\(^{+1.0}_{-1.1} \)(syst.) \(B \to K\ell^+\ell^- \) signal events with a significance of 7.4. The error due to uncertainty in the fixed parameters is included in the systematic error. To evaluate the uncertainty in the signal function parametrization, the mean and width of the Gaussian function are changed by \(\pm 1 \) standard deviation (\(\sigma \)) from the values determined from \(J/\psi K^{(*)} \) events. The uncertainty in the semileptonic plus continuum background parametrization, which is the largest error source, is obtained by varying the parameter by \(\pm 1\sigma \) from the value determined with a large MC sample. The uncertainties of the hadronic (charmonium) background contributions are evaluated by changing the shape parameters and the normalizations of the Gaussian and threshold components by \(\pm 1\sigma \) \((\pm 100\%)\). The significance is defined as \(\sqrt{-2 \ln(\mathcal{L}_0/\mathcal{L}_{\text{max}})} \), where \(\mathcal{L}_{\text{max}} \) is the maximum likelihood in the \(M_{bc} \) fit and \(\mathcal{L}_0 \) is the likelihood of the best fit when the signal yield is constrained to be zero. In order to include the effect of systematic error in the significance calculation, we use the parameters simultaneously changed by \(1\sigma \) \((100\% \text{ for the charmonium background}) \) in the direction that reduces the resulting significance.

In addition to the systematic error in the signal yield, we consider the following experimental systematic errors in the efficiency determination. For each charged track, we estimate the systematic error due to reconstruction efficiency to be 1.0\%, and the systematic errors due to kaon, pion, electron and muon identification to be 1.0\%, 0.8\%, 0.5\% and 1.2\%, respectively. For each \(K^0_S \) candidate and \(\pi^0 \) candidate, we estimate the systematic errors due to reconstruction efficiencies to be 4.5\% and 2.7\%, respectively. The uncertainty in the background suppression is estimated to be 2.3\% using \(J/\psi K^{(*)} \) control samples. Systematic errors due to MC statistics range from 0.5\% to 2.2\%. All these errors are added in quadrature.

The uncertainty due to the theoretical model assumptions is evaluated by calculating the efficiency for signal MC samples generated using three form-factor models \([6, 12] \) and taking the maximum difference as the model-dependence error.

When calculating the branching fractions, we assume an equal production rate for charged and neutral \(B \) meson pairs, isospin invariance, lepton universality for \(B \to K\ell^+\ell^- \), and the branching ratio \(\mathcal{B}(B \to K^*e^+e^-)/\mathcal{B}(B \to K^*\mu^+\mu^-) = 1.33 \) \([3]\). The combined efficiency and
branching fraction are scaled to the muon mode. We find

\begin{align*}
B(B \to K^* \ell^+ \ell^-) &= (11.5^{+2.6}_{-2.4} \pm 0.8 \pm 0.2) \times 10^{-7}, \\
B(B \to K \ell^+ \ell^-) &= (4.8^{+1.6}_{-0.9} \pm 0.3 \pm 0.1) \times 10^{-7},
\end{align*}

where the first error is statistical, the second is systematic, and the third is from model dependence. This systematic error is a quadratic sum of the systematic errors in the yield and efficiency, and the uncertainty in \(B \) meson pair counting of 0.5 %. The results are consistent with the SM predictions \([6, 12, 13]\), our previous values \([4]\), and results recently reported by BaBar \([14]\). The complete set of results is given in Table I.

For the modes with a significance of less than 3, we set 90% confidence level upper limits. The upper limit on the yield, \(N \), is defined as \(\int_0^N L(n)dn = 0.9 \int_0^\infty L(n)dn \). The function \(L(n) \) is the likelihood for signal yield \(n \), using signal and background shape parameters that are modified by \(1\sigma \) of their errors in the direction to increase the signal yield. The upper limits for the branching fractions are then calculated by using the efficiencies reduced by \(1\sigma \) of their errors.

Figure 2 shows the measured \(q^2 = M_{\ell \ell}c^2 \) distributions for \(B \to K \ell^+ \ell^- \) and \(K^* \ell^+ \ell^- \). The signal yield is extracted in each \(q^2 \) bin from a fit to the \(M_{bc} \) distributions.

In summary, we have observed the decay \(B \to K^* \ell^+ \ell^- \) for the first time. This mode will provide a useful sample for a forward-backward asymmetry measurement. The \(B \to K \ell^+ \ell^- \) decay is also measured with improved accuracy. The measured branching fractions are in agreement with the SM predictions, and may be used to provide more stringent constraints on physics beyond the SM.

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

* on leave from Fermi National Accelerator Laboratory, Batavia, Illinois 60510
† on leave from Nova Gorica Polytechnic, Nova Gorica

[1] P. Gambino and M. Misiak, Nucl. Phys. B 611, 338 (2001) and references therein; C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B 567, 153 (2000); H. H. Asatrian, H. M. Asatrian, C. Greub and M. Walker, Phys. Lett. B 507, 162 (2001).
[2] For example, E. Lunghi, A. Masiero, I. Scimemi and L. Silverstrini, Nucl. Phys. B 568, 120 (2000); J. L. Hewett and J. D. Wells, Phys. Rev. D 55, 5549 (1997); T. Goto, Y. Okada, Y. Shimizu and M. Tanaka, Phys. Rev. D 55, 4273 (1997); G. Burdman, Phys. Rev. D 52, 6400 (1995); N. G. Deshpande, K. Panose and J. Trampetić, Phys. Lett. B 308, 322 (1993); W. S. Hou, R. S. Willey and A. Soni, Phys. Rev. Lett. 58, 1608 (1987).
TABLE I: Summary of the results: signal yields obtained from the M_{bc} fit and their significances, reconstruction efficiencies including the intermediate branching fractions, branching fractions (\mathcal{B}) and their 90% confidence level upper limits.

Mode	Signal yield \pmstat.\pmsyst.	Significance \pmsyst.\pmmodel	Efficiency [%] \pmstat.\pmsyst.\pmmodel	\mathcal{B} $\times 10^{-7}$	Upper Limit $\times 10^{-7}$
$K^{0}e^{+}e^{-}$	$10.2^{+4.3}_{-4.8} \pm 0.8$	2.8	$5.2 \pm 0.3 \pm 0.04$	$12.9^{+5.7}_{-4.9} \pm 1.1 \pm 0.1$	24
$K^{+}e^{+}e^{-}$	$5.3^{+3.3}_{-2.6} \pm 0.5$	1.9	$1.7 \pm 0.1 \pm 0.1$	$20.2^{+12.7}_{-10.1}^{+2.3}_{-2.4} \pm 0.7$	46
$K^{0}e^{+}e^{-}$	$15.6^{+5.4}_{-4.8} \pm 1.0$	3.5	$3.5 \pm 0.2 \pm 0.04$	$14.9^{+5.2}_{-4.6}^{+1.2}_{-1.3} \pm 0.2$	$-$
$K^{0}e^{+}e^{-}$	$0.0^{+1.6}_{-0.9}^{+0.2}_{-1.0}$	0.0	$5.0 \pm 0.3 \pm 0.1$	$0.0^{+2.0}_{-1.2}^{+0.3}_{-0.4} \pm 0.0$	5.4
$K^{+}e^{+}e^{-}$	$15.9^{+4.9}_{-4.2} \pm 0.6$	5.1	$16.6 \pm 0.7 \pm 0.4$	$6.3^{+1.9}_{-1.7} \pm 0.3 \pm 0.1$	$-$
$K_{e}^{+}e^{-}$	$15.9^{+5.1}_{-4.4} \pm 0.7$	4.5	$10.8 \pm 0.5 \pm 0.2$	$4.8^{+1.5}_{-1.3}^{+0.8}_{-0.9} \pm 0.3 \pm 0.1$	$-$
$K^{0}\mu^{+}\mu^{-}$	$17.1^{+8.9}_{-4.7} \pm 0.9$	4.2	$8.5 \pm 0.5 \pm 0.3$	$13.3^{+4.2}_{-3.7} \pm 1.0 \pm 0.5$	$-$
$K^{+}\mu^{+}\mu^{-}$	$2.8^{+2.9}_{-2.3} \pm 0.6$	0.8	$2.8 \pm 0.2 \pm 0.0$	$6.5^{+6.9}_{-5.3}^{+1.4}_{-1.4} \pm 0.4$	22
$K\mu^{+}\mu^{-}$	$20.0^{+6.0}_{-5.3} \pm 1.1$	4.2	$5.6 \pm 0.3 \pm 0.2$	$11.7^{+3.6}_{-3.1} \pm 0.9 \pm 0.5$	$-$
$K^{0}\tau^{+}\tau^{-}$	$5.7^{+3.0}_{-2.3}^{+0.2}_{-0.3}$	3.1	$6.7 \pm 0.4 \pm 0.3$	$5.6^{+2.9}_{-2.3} \pm 0.4 \pm 0.3$	$-$
$K^{+}\tau^{+}\tau^{-}$	$16.3^{+5.1}_{-4.5} \pm 0.7$	4.6	$23.6 \pm 1.1 \pm 0.6$	$4.5^{+1.4}_{-1.2} \pm 0.3 \pm 0.1$	$-$
$K\tau^{+}\tau^{-}$	$22.0^{+5.8}_{-5.1} \pm 0.8$	5.6	$15.2 \pm 0.7 \pm 0.5$	$4.8^{+1.2}_{-1.1}^{+0.8}_{-0.9} \pm 0.3 \pm 0.2$	$-$
$K^{0}\ell^{+}\ell^{-}$	$27.4^{+6.2}_{-6.1} \pm 1.3$	5.2	$7.7 \pm 0.4 \pm 0.2$	$11.7^{+2.8}_{-2.3} \pm 0.8 \pm 0.3$	$-$
$K^{+}\ell^{+}\ell^{-}$	$8.1^{+4.3}_{-3.3}^{+0.8}_{-0.9}$	2.1	$2.5 \pm 0.2 \pm 0.05$	$10.5^{+5.6}_{-4.3}^{+1.2}_{-1.1} \pm 0.2$	22
$K\ell^{+}\ell^{-}$	$35.8^{+8.9}_{-7.3} \pm 1.7$	5.7	$5.1 \pm 0.3 \pm 0.1$	$11.5^{+2.6}_{-2.1} \pm 0.8 \pm 0.2$	$-$
$K^{0}\ell^{+}\ell^{-}$	$5.7^{+3.4}_{-2.7}^{+0.4}_{-0.5}$	2.3	$5.9 \pm 0.4 \pm 0.2$	$3.2^{+1.9}_{-1.5} \pm 0.3 \pm 0.1$	6.8
$K^{+}\ell^{+}\ell^{-}$	$32.3^{+6.9}_{-6.2}^{+0.9}_{-1.0}$	7.0	$20.1 \pm 0.9 \pm 0.1$	$5.3^{+1.1}_{-1.0} \pm 0.3 \pm 0.04$	$-$
$K\ell^{+}\ell^{-}$	$37.9^{+7.6}_{-7.0}^{+1.0}_{-1.1}$	7.4	$13.0 \pm 0.6 \pm 0.2$	$4.8^{+1.0}_{-0.9}^{+0.8}_{-0.9} \pm 0.3 \pm 0.1$	$-$

[3] Belle Collaboration, K. Abe et al., Phys. Lett. B 511, 151 (2001); CLEO Collaboration, S. Chen et al., Phys. Rev. Lett. 87, 251807 (2001); ALEPH Collaboration, R. Barate et al., Phys. Lett. B 429, 169 (1998).

[4] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 88, 021801 (2002); A. Ishikawa, Ph.D. thesis (Nagoya Univ., Mar. 2002), http://belle.kek.jp/bdocs/theses.html.

[5] Belle Collaboration, J. Kaneko et al., Phys. Rev. Lett. 90, 021801 (2003).

[6] A. Ali, E. Lunghi, C. Greub and G. Hiller, Phys. Rev. D 66, 034002 (2002); E. Lunghi, arXiv:hep-ph/0210379.

[7] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. A 499, 1 (2003), and other papers included in this Volume.

[8] Belle Collaboration, A. Abashian et al., Nucl. Instrum. Meth. A 479, 117 (2002).

[9] R. A. Fisher, Ann. Eugen. 7, 179 (1936).

[10] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).

[11] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990).

[12] D. Melikhov, N. Nikitin and S. Simula, Phys. Lett. B 410, 290 (1997); P. Colangelo, F. De Fazio, P. Santorelli and E. Scrimieri, Phys. Rev. D 53, 3672 (1996), Erratum-ibid. D 57, 3186 (1998).

[13] For example, M. Zhong, Y. L. Wu and W. Y. Wang, Int. J. Mod. Phys. A 18, 1959 (2003);
A. Faessler et al., Eur. Phys. J. direct C 4, 18 (2002); T. M. Aliev, C. S. Kim and Y. G. Kim, Phys. Rev. D 62, 014026 (2000); W. Jaus and D. Wyler, Phys. Rev. D 41, 3405 (1990).

[14] BaBar Collaboration, B. Aubert et al., arXiv:hep-ex/0308042.
FIG. 1: M_{bc} distributions (histograms) for $K^{(*)}\ell^+\ell^-$ samples. Solid and dotted curves show the results of the fits and the background contributions, respectively.
FIG. 2: q^2 distributions of (a) $K^*\ell^+\ell^-$ and (b) $K\ell^+\ell^-$. Points with error bars show the data while the hatched boxes show the range of SM expectations from various models [6, 12]. Statistical and systematic errors are added in quadrature.