Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia

Tri Muji Susantoro1,2,3, Ketut Wikantika2,3,4, Asep Saepuloh2,4, Agus Handoyo Harsolumakso3

1Research and Development Center for Oil and Gas Technology”LEMIGAS” Indonesia
2Center for Remote Sensing, Bandung Institute of Technology (ITB), Indonesia
3Faculty of Earth Sciences and Technology, Bandung Institute of Technology (ITB), Indonesia
4ForMIND Institute (Indonesian Young Researcher Forum)

E-mail: trimuji_s@yahoo.com

Abstract: Selection of vegetation indices in plant mapping is needed to provide the best information of plant conditions. The methods used in this research are the standard deviation and the linear regression. This research tried to determine the vegetation indices used for mapping the sugarcane conditions around oil and gas fields. The data used in this study is Landsat 8 OLI/TIRS. The standard deviation analysis on the 23 vegetation indices with 27 samples has resulted in the six highest standard deviations of vegetation indices, termed as GRVI, SR, NLI, SIPI, GEMI and LAI. The standard deviation values are 0.47; 0.43; 0.30; 0.17; 0.16 and 0.13. Regression correlation analysis on the 23 vegetation indices with 280 samples has resulted in the six vegetation indices, termed as NDVI, ENDVI, GDVI, VARI, LAI and SIPI. This was performed based on regression correlation with the lowest value R^2 than 0.8. The combined analysis of the standard deviation and the regression correlation has obtained the five vegetation indices, termed as NDVI, ENDVI, GDVI, LAI and SIPI. The results of the analysis of both methods show that a combination of two methods needs to be done to produce a good analysis of sugarcane conditions. It has been clarified through field surveys and showed good results for the prediction of microseepages.

1. Introduction
The vegetation indices is an important algorithm used to extract the information of vegetation condition [1]. Many vegetation indices have been published but only small of them have the important biophysical fundamental for plant monitoring and have been tested systematically [2]. Vegetation indices are employed to enhance the vegetation conditions and they represent a single value for converting the reflectance spectrum for measuring vegetation characteristics [2]. Vegetation characteristics, in general, can be distinguished into three categories: structure, biochemistry and plant physiology or stress condition [2].

For the past two decades, the normalized difference vegetation index (NDVI) is used as the important algorithm to analyze and map the spatial distribution of vegetation. Generally, NDVI is calculating based on the ratio of the near-infrared reflectance and red reflectance [4]. NDVI is the
popular index that corresponds to the photosynthetic rate and the capability to absorb energy in the vascular plants [5]. NDVI also is related to the plant cover linearly [6] and has a significant positive relationship to the Landscape function analysis (LFA) [7].

Similar to NDVI, many vegetation indices were developed to analyze the vegetation characteristics successfully. These indices include EVI which was designed to optimize the vegetation signal in regions of leaf area index [8], GARI is demonstrated to sense the concentration of chlorophyll, to measure the rate of photosynthesis and to monitor plant stress [9], GNDVI is calculating based on the ratio of near-infrared and green spectrum. This index was found more sensitive to the chlorophyll concentration in wide range variation and enabled precise assessment of pigment concentration [10], GRVI tested showed significant linear relationships with biomass [11]. The purpose of this study is to select the related vegetation indices for mapping the sugarcane conditions around the oil and gas field. The results of the vegetation indices selection are expected to identify vegetation anomalous due to the impact of hydrocarbon seepages.

2. Data and Methods

2.1 Study sites
The study site is located at Jatituhu sugarcane plantation in Indramayu and Majalengka Regency. Jatituhu sugarcane plantation area is the largest sugar producer in West Java Province. Jatituhu plantation has been operating since 1975 based on Agriculture Minister Decree No. 795/Mentan/VI/1975 regarding Principle License of Establishment of Jatituhu Sugar Company [12]. This area also covers active oil and gas fields operated by Pertamina. Several wells have been drilled since 1979 [13]. Hence we choose this site for our study. The study site is located approximately ±32 km from Indramayu and Majalengka [14]. The study site can be seen in figure 1.

![Study site map overlay with oil and gas wells in red dot and boundary of oil and gas field in brown lines.](image)

Figure 1. Study site map overlay with oil and gas wells in red dot and boundary of oil and gas field in brown lines.

2.2 Data and Processing
To choose and select the vegetation indices for mapping of sugarcane conditions around oil and gas field, we employed Landsat 8 with an acquisition date on September 25, 2015, and path/row 121/165.
Landsat 8 started recording of the earth surface changes after Landsat 5 discontinued and Landsat 7 has the SLC problem [15]. Comparing with Landsat 7 ETM+, Landsat 8 has higher near-infrared band values in the vegetation land cover and lower values in non-vegetation cover. Landsat 8 also has lower values for shortwave infrared (2.11-2.29) and had higher values in shortwave infrared (1.57-1.65) in all land cover types [17].

Radiometric calibration is a multi-step process to convert 8-bit digital numbers to satellite reflectance [18]. The atmospheric radiometric correction is conducted by using the FLAASH. This correction is based on the MODTRAN4 model. It is one of the most accurate preprocessing for remote sensing data in atmospheric radiometric correction [19]. The geometric correction is conducted using an image to image correction. The process of registration converts each pixel of Landsat 8 into a new coordinate system. Landsat 8 is corrected and registered using Universal Transverse Mercator (UTM) projection Zone 49 South. The process of registration is following the cubic convolution technique. The root means squares (RMS) error of this registration is 0.345 pixel.

2.3 Analysis

For the purpose of this research, 23 vegetation indices were evaluated. The spectral band combination and vegetation indices used in the analysis are in table 1. These vegetation indices have been used extensively in the vegetation properties studies. The vegetation indices were evaluated using the standard deviation and the linear regression to select the vegetation indices. The analysis to select the vegetation indices was conducted to map sugarcane conditions in three stages. In the first stage, the vegetation indices were selected using standard deviation. The standard deviation is a measure of spreading a set of data from its mean. In this research, we used 27 samples that had similar vegetation features near the oil and gas field (figure 2). The high values indicated that the data points are spread out over a wider range of values. Its mean there was an anomaly in the vegetation.

Vegetation Indices	Formulas	Ref.
Enhanced Vegetation Index	EVI = 2.5 x (NIR - Red)/(NIR + (6 x Red) - (7.5 x Blue) + 1)	[8]
Green Difference Vegetation Index	GDVI = NIR - Green	[11]
Green Ratio Vegetation Index	GRVI = NIR/Green	[11]
Atmospherically Resistant Vegetation Index	ARVI = (NIR - (Red - γ(Blue-Red)))/(NIR + (Red - γ(Blue-Red)))	[20]
Difference Vegetation Index	DVI = NIR - Red	[21]
Global Environmental Monitoring Index	GEMI = \(\eta \times (1 - 0.25 \times \eta) + \frac{(\text{Red} - 0.125)}{(1 - \text{Red})} \)	[22]
GNDVI = \(\eta = \frac{2(NIR^2 - \text{Red}^2) + 1.5 \times \text{NIR} + 0.5 \times \text{Red}}{\text{NIR} + \text{Red} + 0.5} \)	[10]	
Green Normalized Difference Vegetation Index	GARI = (NIR-[Green-γ(Blue-Red)])/(NIR+[Green-γ(Blue-Red)])	[10]
Green Atmospherically Resistant Index	GVI = (-0.2848xTM\(_1\)) + (-0.2435xTM\(_2\)) + (-0.5436xTM\(_3\)) + (0.7243xTM\(_4\)) + (0.0840xTM\(_5\)) + (-0.18xTM\(_7\))	[23]
Infrared Percentage Vegetation Index	IPVI = NIR/(NIR+Red)	[24]
Table 1. Continued

Vegetation Indices	Formulas	Ref.
Leaf Area Index	LAI = 3.618 x EVI – 0.118	[25]
Modified Non Linear Index	MNLI = (((NIR^2-Red) x(1+L))/(NIR^2+Red+L))	[26]
Modified Simple Ratio	MSR = ((NIR/Red)-1)/(√(NIR/Red)+1)	[27]
Non Linear Index	NLI = (NIR^2 – Red)/(NIR^2 + Red)	[28]
Normalized Difference Vegetation	NDVI = (NIR-Red)/(NIR + Red)	[29]
Index		
Optimized Soil Adjusted Vegetation	OSAVI = (NIR-Red)/(NIR+Red+0.16)	[30]
Index		
Renormalized Difference Vegetation	RDVI = (NIR-Red)/√(NIR+Red)	[31]
Index		
Soil Adjusted Vegetation Index	SAVI = (1.5 x (NIR-Red))/(NIR+Red+0.5)	[32]
Simple Ratio	SR = NIR/Red	[33]
Visible Atmospherically Resistant	VARI = (Green – Red)/(Green + Red - Blue)	[34]
Index		
Transformed Difference Vegetation	TDVI = √(0.5 + (NIR-Red)/(NIR+Red))	[35]
Index		
Structurally Independent Pigment	SIPI = (NIR-Blue)/(NIR – Red)	[36]
Index		
Enhanced Normalized Difference	ENDVI = ((NIR+Green)-(2xBlue))/((NIR+Green)+(2xBlue))	[37]
Vegetation Index		

Figure 2. Samples of vegetation indices values for standard deviation analysis in red dot and linear regression analysis in yellow lines overlaid with Landsat 8 OLI/TIRS 432 RGB.

In the second stage, the method employed to select the vegetation indices is the linear regression. In this research, we used 280 samples to create the linear regression. The samples on the image of vegetation indices are taken out continuously cross the oil and gas field with the south-north direction (figure 2). The correlation analysis between vegetation indices is done by the coefficient of determination (R^2) method on linear regression results of each vegetation indices. The coefficient of
determination (R^2) is a statistical calculation showing of how well the regression line approaches the real data points. The limit of R^2 in this research is 0.8. The correlation results between vegetation indices are expected to obtain the indices used for this research.

In the third stage, the final analysis is done by combining the standard deviation analysis results and the linear regression correlation to choose the vegetation indices employed. This analysis is done based on the role of each index to map the effect of oil and gas field on sugarcane conditions. The result of its combination is expected to obtain the vegetation indices that can map the sugarcane plantation conditions due to the influence of oil and gas fields.

3. Results and Discussion

The results of standard deviation analysis of 23 vegetation indices algorithm showed the values range from 0.03 to 0.47 (figure 3). The standard deviation is a description of the spread of data and how widely it spreads from the mean. Smaller standard deviations show the data clustered near the mean. A larger one indicates that the data are scattered. This indicates that the vegetation indices can differentiate vegetation conditions in more detail. So it can illustrate the health of vegetation and the changes that occur in leaf structure. Based on these results, the vegetation indices used for the next analysis are GRVI, SR, NLI, LAI, SIPI and GEMI. The standard deviation values are 0.47, 0.43, 0.30, 0.18, 0.17 and 0.16. The vegetation indices are used with large standard deviation values as to map anomalous sugarcane conditions that are influenced by the oil and gas seepages.

NO	VEGETATION INDICES	STANDARD DEVIATION
1	GRVI	0.47
2	SR	0.43
3	NLI	0.30
4	LAI	0.18
5	SIPI	0.17
6	GEMI	0.16
7	OSAVI	0.12
8	ENDVI	0.10
9	ARVI	0.10
10	TDVI	0.09
11	NDVI	0.09
12	GARI	0.09
13	ENNDVI	0.09
14	GSAVI	0.08
15	RNDVI	0.07
16	MSR	0.07
17	GDVI	0.07
18	DVI	0.06
19	EVI	0.06
20	MNLI	0.05
21	JPVI	0.05
22	VARI	0.04
23	GVI	0.04

Figure 3. Standard deviation values of 23 vegetation indices.

The impact of oil and gas below the earth has resulted anomalous in the surface conditions. This phenomenon occurs due to the hydrocarbon seepages reaches the surface. This has an impact on the health conditions of vegetation, changes in clay mineral content, iron oxide, carbon delta and soil gas [38]. The condition occurs because of oil and gas seepage either in the form of microseepage and macroseepage [39]. Vegetation anomalies that occur are usually by vegetation stress characterized by slow growth and reduced chlorophyll [40]; low vegetation density and reduced oxygen in the soil [42]; the leaves tend to be yellowish [43]. In the internal leaf, there will be an increase in carotenoids [44].

The regression correlation results on 23 vegetation indices with the coefficient of determination limit (R^2) = 0.8 obtained NDVI, GDVI, ENNDVI, VARI, LAI, SIPI. The results of correlation based on the coefficient of determination are as follows:
1. NDVI correlates with TDVI \((R^2 = 1)\), SAVI \((R^2 = 0.8619)\), RDVI \((R^2 = 0.8829)\), MSR \((R^2 = 0.9976)\), MNLI \((R^2 = 0.8497)\), IPVI \((R^2 = 1)\), GNDVI \((R^2 = 0.8002)\), GARI \((R^2 = 0.9467)\), EVI \((R^2 = 0.8715)\), ARVI \((R^2 = 0.9585)\), GRVI \((R^2 = 0.8308)\), SR \((R^2 = 0.9244)\), LAI \((R^2 = 0.8715)\) and OSAVI \((R^2 = 0.9518)\).

2. GDVI correlates with GVI \((R^2 = 0.8564)\), DVI \((R^2 = 0.9202)\), GEMI \((R^2 = 0.8475)\) and, NLI \((R^2 = 0.9384)\).

3. ENVI correlated with SAVI \((R^2 = 0.8516)\), RDVI \((R^2 = 0.8394)\), GVI \((R^2 = 0.8348)\), GNDVI \((R^2 = 0.8244)\), DVI \((R^2 = 0.8226)\), GRVI \((R^2 = 0.8074)\), NLI \((R^2 = 0.8526)\) and OSAVI \((R^2 = 0.8114)\).

4. LAI correlated with TDVI \((R^2 = 0.8715)\), SAVI \((R^2 = 0.9909)\), RDVI \((R^2 = 0.9925)\), NDVI \((R^2 = 0.8715)\), MSR \((R^2 = 0.8836)\), MNLI \((R^2 = 0.8903)\), IPVI \((R^2 = 0.8715)\), GVI \((R^2 = 0.9634)\), GNDVI \((R^2 = 0.8108)\), EVI \((R^2 = 1)\), DVI \((R^2 = 0.9441)\), GRVI \((R^2 = 0.9076)\), SR \((R^2 = 0.8840)\), NLI \((R^2 = 0.9057)\) and OSAVI \((R^2 = 0.9719)\).

5. VARI and SIPI are not correlated well with other vegetation indices on the \(R^2 = 0.8\).

The results of selecting the vegetation indices based on the standard deviation and the linear regression obtained the 10 vegetation indices, namely GRVI, SR, NLI, SIPI, GEMI, LAI, NDVI, GDVI, ENDVI dan VARI. Further analysis is needed to minimize the number of vegetation indices used for mapping. The combination of the regression analysis and the Standard deviation showed that GRVI correlated with NDVI, ENDVI and LAI; SR correlated with NDVI and LAI; NLI correlated with GDVI, ENDVI and LAI; and GEMI correlated with GDVI. Based on these correlations, GRVI, SR, NLI and GEMI can be represented with NDVI, GDVI, LAI and ENDVI. Based on the final analysis result, the mapping of sugarcane vegetation condition can be done with 6 vegetation indices, that is NDVI, ENDVI, GDVI, VARI, LAI and SIPI. Although LAI correlates well with NDVI, it is still used in this study. LAI is required for analyzing the leaf area index. It is important to know the influence of hydrocarbon microseepages in the leaf cover.

Visual analysis showed that NDVI, ENDVI and GDVI were used to assess vegetation anomalies suspected to be in the south to the east of the study site. The anomaly is described as lower index values around the oil and gas field area. It is confirmed using LAI and SIPI results. The LAI results provide the information that at the location of the anomalous vegetation results still have vegetation with the rare condition. The SIPI results indicate that the location of the suspected vegetation anomaly has a higher SIPI value compared to its vicinity. These SIPI values indicate that the carotenoids in sugarcane vegetation increase, while the chlorophyll of leaves is reduced as a sign of stress vegetation [45]. VARI is less able to provide a significant picture of anomalies in sugarcane crops. A low standard deviation score (0.04) is thought to cause the result of VARI value in relatively uniform, so the anomalous does not appear well.

Survey results in March 2017 provide the confidence in the existence of microseepages in the south to the east of the oil and gas field. In this site, the sugarcane plant is not growing well. This indication is clearly visible with the small number of sugarcane clumps, ie between 2 - 7 trees and the height of the trees are less than 2 meters including leaves. This is a very different to the normal vegetation, where the clumps of sugarcane range from 11 to 20 trees. Surveys in August 2017 showed that sugarcane crops died at the site of the anomalous vegetation. NDVI, ENDVI, GDVI, LAI, SIPI and VARI images showed in figure 4.
Figure 4. Maps of vegetation indices were extracted from Landsat 8 as the selection results for mapping sugarcane condition around of oil and gas field, (a) NDVI; (b) ENDVI; (c) GDVI; (d) LAI; (e) SIPI and (f) VARI.

4. Conclusion
The selection of vegetation indices to map the sugarcane conditions around the oil and gas field can be done with the combination of the standard deviation and the linear regression methods with the value of the coefficient of determination of (R^2) > 0.8. The combination of both obtained six vegetation indices for mapping the sugarcane vegetation conditions around the oil and gas field, namely NDVI, ENDVI, GDVI, LAI and SIPI. The NDVI, ENDVI and GDVI provide an overview of vegetation conditions around the oil and gas fields. The vegetation anomalies in the oil and gas fields are characterized by the low value of the three vegetation indices. The LAI describes the vegetation cover conditions while the SIPI describes the stress vegetation conditions with increasing index values as an illustration of increased carotenoids and decreased chlorophyll.

Acknowledgements
We would like to express our thanks to Head of Remote Sensing and GIS Group, Head of Exploration Division in the Research and Development Center for Oil and Gas Technology “LEMIGAS”, Center
for Remote Sensing and Faculty of Earth Sciences and Technology which has facilitated this research. We would like to thank the LISAT Symposium organizers who have given the opportunity to present the results of this research.

5. References
[1] Salas E A L and Henebry G M 2014 A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the moment distance method Remote sensing 6 pp 20-41
[2] Pettorelli N 2013 The Normalized Difference Vegetation Index First Edition (United Kingdom: Oxford University Press) p 193
[3] Roberts D A, Roth K L and Perroy R L 2011 Hyperspectral Vegetation Indices Chapter 14, eds Thenkabail P S, Lyon J G and Huete A 2011 Hyperspectral Remote Sensing of Vegetation p 782 (United States: CRC Press Taylor & Francis Group)
[4] Brantley S T, Zinnert J C and Young D R 2011 Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies Remote Sensing of Environment 115 pp 514-523
[5] Tucker C J, Townshend J R and Goff T E 1985 African land-cover classification using satellite data Science 227 pp 369–375
[6] Paruelo J, Garbulsky M F, Guerschman J P and Jobbagy E G 2004 Two decades of normalized difference vegetation index changes in South America: identifying the imprint of global change Int. J. Remote Sens. 25 pp1–14
[7] Gomez M G and Maestre F T 2011 Remote sensing data predict indicators of soil functioning in semi arid steppes, Central Spain. Short Communication Ecological Indicators 11 pp 1476-1481
[8] Huete A, Didan K, Miura T and Ferreira L G 2002 Overview of the radiometric and biophysical performance of the MODIS vegetation indices Remote Sensing of Environment 83 pp 195–213
[9] Gitelson A A, Kaufman Y and Merzylak M 1996 Use of a green channel in remote sensing of global vegetation from EOS-MODIS Remote Sensing of Environment 58 pp 289-298
[10] Gitelson A A and Merzylak M N 1998 Remote sensing of chloropyll concentration in higher plant leaves Adv. Space Res. 22 No. 5 pp 689-692
[11] Sriprada R P, Heinigerb R W, Whitec J G and Meijer A D 2006 Aerial color infrared photography for determining early in-season nitrogen requirements in corn Agronomy Journal 98 pp 968-977
[12] Rohman T L 2007 Decision Support for Product Diversification of Sugarcane in PT PG. Rajawali II PG, Jatitujuh Unit Majalengka-West Java Thesis Undegraduate Program Faculty of Agriculture Technology, Bogor Agriculture University
[13] Pertamina 1994 Exploitation Wells Drilling Proposal Year 1995-1996 (Jakarta, Geological Production Pertamina Unit EP III)
[14] Lohjayanti A 2007 Performance and Decision Support System of Sugarcane Process Control in PT. Rajawali II Unit Pabrik Gula Jatitujuh Majalengka Thesis Undergraduate Program Faculty of Agriculture Technology, Bogor Agriculture University
[15] Teillet P M and Ren X 2008 Spectral band difference effects on vegetation indices derived from multiple satellite sensor data Canadian Journal Remote Sensing 2008 34 pp 159–173
[16] Chen X Vogelmann J E, Chander G, Ji L, Tolk B, Huang C and Rollins M 2013 Cross-sensor comparisons between Landsat 5 TM and IRS-P6 AWiFS and disturbance detection using integrated Landsat and AWiFS time-series images International Journal Remote Sensing 34 pp 2432–2453
[17] Li P, Jiang L and Feng Z 2014 Cross-comparison of vegetation indices derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensor Remote Sensing 6 pp 310-329
[18] Schroeder T A, Cohen W B, Song C, Canty M J and Yang Z 2006 Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in Western Oregon Remote Sensing of Environment 103 pp 16-26
[19] Jiapaer G, Chen X and Bao A 2011 A comparison of methods for estimating fractional vegetation cover in Arid regions Agric. For. Meteorol. 151 pp 1698-1710
[20] Kaufman Y and Tanre D 1992 Atmospherically resistant vegetation index (ARVI) for EOS-MODIS IEEE Transactions on Geoscience and Remote Sensing 30 No 2 pp 261-270
[21] Tucker C 1979 Red and photographic infrared linear combinations for monitoring vegetation Remote Sensing of Environment 8 pp 127–150
[22] Pinty B and Verstraete M 1992 GEMI: a non-linear index to monitor global vegetation from satellites Vegetation 10 pp 15-20
[23] Kauth R and Thomas G 1979 The tasselled cap-A graphic description of the spectral-temporal development of agricultural crops as seen By Landsat Symposium of Machine Processing of Remotely-Sensed Data: Proc. of the LARS (Purdue University, West Lafayette, Indiana, 29 June – 1 July 1979) pp 4B41-4B51
[24] Crippen R 1990 Calculating the vegetation index faster Remote Sensing of Environment 34 pp 71-73
[25] Boegh E, Soegaard H, Broge N, Hasager C, Jensen N, Schelde K and Thomsen A 2002 Airborne multi-spectral data for quantifying leaf area index, nitrogen concentration and photosynthetic efficiency in agriculture Remote Sensing of Environment 81 no 2-3 pp 179-193
[26] Yang Z, Willis P and Mueller R 2008 Impact of band-ratio enhanced AWIFS image to crop classification accuracy Remote Sensing Symposium: Proc. of the Pecora 17 (Denver Colorado, United States, 18-20 November 2008) pp 18-20
[27] Chen J 1996 Evaluation of vegetation indices and modified simple ratio for boreal applications Canadian Journal of Remote Sensing 22 pp 229-242
[28] Goel N and Qin W 1994 Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation Remote Sensing Reviews 10 pp 309-347
[29] Rouse J, Haas R, Schell J and Deering D 1973 Monitoring vegetation systems in the great plains with ERTS Third ERTS Symposium NASA (United States, 10 – 14 December 1993) pp 309-317
[30] Rondeaux G, Steven M and Baret F 1996 Optimization of soil-adjusted vegetation indices Remote Sensing of Environment 55 pp 95-107
[31] Roujean J and Breon F 1995 Estimating PAR absorbed by vegetation from bidirectional reflectance Measurements Remote Sensing of Environment 51 pp 375-384
[32] Huete A 1988 A soil-adjusted vegetation index (SAVI) Remote Sensing of Environment 25 pp 295-309
[33] Birth G and McVey G 1968 Measuring the color of growing turf with a reflectance spectrophotometer Agronomy Journal 60 640-643
[34] Gitelson A A, Strark R, Grits U, Rundquist D, Kaufman and Derry D 2002 Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction International Journal of Remote Sensing 23 pp 2537–2562
[35] Bannari A, Asalhi H and Teillet P 2002 Transformed difference vegetation index (TDVI) for vegetation cover mapping IGARSS 2002: Proc. of the Geoscience and Remote Sensing Symposium (Canada, 24 – 28 June 2002) (IEEE International vol 5) pp 3053-3055
[36] Penuelas J, Baret F and Filella I 1995 Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance Photosynthetica 31 pp 221-230
[37] Maxmax 2015 Enhanced Normalized Difference Vegetation Index (ENDVI) Available online https://www.maxmax.com/endvi.htm (accessed on 4 December 2015)
[38] Yang H 1999 Imaging spectrometry for hydrocarbon microseepage Dissertation (Negara: TU Delft) Master of Science in Geology ITC (Publication Number 76)

[39] Clarke R H and Cleverly R W 1991 Petroleum seepage and post-accumulation migration Petroleum Migration (Geological Society Special Publication N 59) ed England W A and Fleet A J (London: Geological Society of London) pp 265–271

[40] Noomen M F 2007 Hyperspectral Reflectance of Vegetation Affected by Underground Hydrocarbon Dissertation (The Netherlands: International Institute for Geo-information Science & Earth Observation Enschede)

[41] Lakkaraju V R, Zhou X, Apple M E, Chunningham A and Dobeck L M 2010 Studying the vegetation response to simulated leakage of sequestered CO₂ using spectral vegetation indices Economic Informatics 5 pp 379-389

[42] Werff H M A V D, Noomen M F, Meijde V D and Meer F D V D 2006 Remote sensing of onshore hydrocarbon seepage: Problems and solutions Geological Society London Special Publication 283 pp 125-133

[43] Susantoro T M, Wikantika K, Saepuloh A and Harsolumakso A H 2017 Utilization of vegetation indices to interpret the possibility of oil and gas microseepages at ground surface Paper Presented at the 1st UPI International Geography Seminar (Bandung, Indonesia, 8 August 2017)

[44] Strachan I B, Pattey E and Boisvert J B 2002 Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance Remote Sensing of Environment 80 pp 213-224

[45] Blackburn G A 1998 Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of hyperspectral approaches Remote Sensing Environmental 66 pp 273-285