Influence of Achilles tendon rupture site on surgical repair outcomes

Shengxuan Cao1, Zhaolin Teng1, Chen Wang1, Qian Zhou2, Xu Wang1 and Xin Ma1

Abstract
Purpose: This study aims to measure the distance between the common site of Achilles tendon rupture and calcaneal insertion through ultrasound and to compare the outcomes between proximal and distal rupture groups. Methods: We investigated the electronic medical records of 117 patients and preoperative ultrasound describing the rupture site. Among 88 patients, we compared the patient-reported outcome and re-rupture rate of proximal and distal rupture groups. Results: The mean rupture site of the 117 included subjects was 4.5 ± 1.3 cm. The rupture site had a weak negative correlation with body mass index (r = -0.230, P = 0.013). Furthermore, 77% of the patients with distal rupture reported good outcome (Achilles Tendon Rupture Score > 80) compared to 56% of the patients with proximal rupture (P = 0.041). Conclusion: Patients with proximal rupture had less satisfactory postoperative outcomes than those with distal rupture.

Keywords
Achilles tendon rupture, calcaneal insertion, surgical repair, ultrasound

Date received: 7 January 2021; Received revised 7 March 2021; accepted: 17 March 2021

Introduction
Achilles tendon rupture is a common injury with an incidence of 2.1–29.3 per 100,000 person-years.1–3 The pathogenesis of Achilles tendon rupture is insufficiently studied. Locating common rupture sites is crucial to the precise understanding of pathogenesis and important for clinical practitioners checking tenderness or dimpling on a patient with a possible Achilles tendon rupture.

Backer et al. reported that the average distance of the Achilles tendon rupture is 5.86 ± 2.66 cm from the calcaneal insertion.4 Park et al. observed that the average rupture site is 6.4 ± 1.5 cm proximal to the calcaneal insertion.5 These results contradicted previous reports on common rupture sites at 2–6 cm proximal to the calcaneal insertion; as such, objective imaging modalities, such as MRI or ultrasound, should be used to measure rupture sites. A study concluded that ultrasound and MRI are not interchangeable in the assessment of Achilles tendons.6 Ultrasound and clinical examination provide approximate results about the distance between rupture ends, but the distance measured through MRI is larger.7 However, studies have yet to use ultrasound to measure the common rupture site of the Achilles tendon.

The common site of Achilles tendon rupture is associated with avascularity.8 Pathological differences, such as avascularity, in different sections of the Achilles tendon may affect not only the possibility of rupture but also the healing process after an injury. However, studies have yet to determine whether the rupture site influences surgical repair outcomes.

1 Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
2 Department of Sonography, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China

Corresponding author:
Xin Ma, Huashan Hospital, Fudan University, No.12, Middle Wulumuqi Road, Jingan District 200040, Shanghai, People’s Republic of China.
Email: prof.xin.ma@qq.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
We hypothesized that the surgical outcomes of proximal and distal rupture groups are different. We aimed to measure the distance between the common rupture site of the Achilles tendon and the calcaneal insertion through ultrasound and to compare the outcomes between the proximal and distal rupture groups.

Methods and materials

Patients

This study was approved by the Institutional Review Board of our institution. The electronic medical records of patients who were hospitalized for Achilles tendon rupture in a regional foot and ankle surgery center from 2013 to 2020 were retrospectively investigated. A total of 123 patients were included. The inclusion criteria were as follows: patients who had Achilles tendon rupture and treated with surgical repair, had preoperative ultrasound describing the site of rupture, and performed daily activities not limited before injury (Ankle Activity Score not lower than 2). Exclusion criteria were: patients with incomplete information, open injury or with combined injury of lower extremities, and histories of lower extremity deformity or lower extremity fracture. Of the 123 patients, 6 were excluded because of incomplete information, or open injury. Finally, 117 patients were included for further analysis, and their medical records and ultrasound reports were carefully reviewed. The information about rupture site, gender, age, injured side, previous rupture history, height, weight, body mass index (BMI), Ankle Activity Score, injury occurring on a weekend, routine warm-up before sports, smoking, alcohol usage, and glucocorticoid usage were extracted from medical records. Eighty-eight patients with a follow-up of more than 1 year after surgical repair were included for further outcome analysis (Figure 1).

Ultrasound analysis

Ultrasound was performed in the same medical center within 2 days after a patient was hospitalized. All ultrasound examinations were performed by a senior radiologist. An ALT HDI 5000 US unit (Philips Medical Systems, Bothell, WA, USA) with high frequency (10–17 MHz) linear array transducers was used. The patients were instructed to lay prone on the examination table with their ankles at an approximate neutral position. The transducers were moved from the calcaneal insertion to the proximal part of the Achilles tendon over the skin with coupling gel. The straight distance from the most proximal point of the calcaneal insertion to the proximal end of the distal stump was measured (Figure 2). The rupture site that was longer than the length of a transducer was measured in separate frames and subsequently summed up.

Surgical repair and postoperative rehabilitation

All the 117 patients were surgically repaired. Under general anesthesia or spinal anesthesia, they were positioned to lay prone on a surgical table with a tourniquet around the root of the thigh. An incision was made over the posteromedial skin of the Achilles tendon. Repair was performed using the Krackow suture method. The paratenon was closed with 2-0 absorbable threads, and the skin was closed with interrupted sutures. The lower extremity was immobilized for 3 weeks. Then patients were allowed to begin partial weight-bearing in a walking cast 3–6 weeks postoperatively. They were subsequently instructed to have full weightbearing 6 weeks postoperatively in orthosis. They were allowed to walk without a supportive device 12 weeks postoperatively. Gentle jogging and single limb heel rises were also commenced. The postoperative rehabilitative regimen was supervised by the same senior physiotherapist.
Outcome measures

Eighty-eight patients with a follow-up of more than 1 year (average follow-up, 4.4 ± 2.4 years) after surgical repair were retrospectively surveyed using an Achilles Tendon Rupture Score questionnaire. This questionnaire included 10 questions, and a maximum of 100 points indicated the best possible outcome. A score of over 80 points was considered a good overall patient-reported outcome. Re-rupture events were also recorded at the time of the survey. The patients were categorized into a proximal rupture group if the distance between the rupture site and the calcaneal insertion was ≥4.5 cm and a distal rupture group if the distance was <4.5 cm.

Statistical analysis

The mean value, standard deviation, 10th percentile, and 90th percentile calculated in SPSS (version 19.0, SPSS Inc., USA) were used to describe the common rupture site of 117 subjects. Graphics were created using GraphPad Prism 6 software (GraphPad Software, USA). Correlations between the rupture site and continuous demographic data of the subjects were assessed with Pearson r. The rupture sites of the dichotomic groups of the subjects were compared via an independent t test. The outcomes of the proximal and distal rupture groups were compared using Chi-square test or Fisher’s exact test if one or more of the cell counts in a 2 × 2 table was <5. Odds ratios and 95% confidential intervals were applied to calculate the risk of less satisfied postoperative outcomes. P < 0.05 was regarded statistically significant.

Results

The 117 subjects had a mean age of 37.8 years (range, 16–66), a mean height of 173.7 cm (range, 156–191 cm), a mean weight of 75.7 kg (range, 49–105 kg), and a mean Ankle Activity Score of 6.0 (range, 2–9). Of these subjects, 91.4% (107 of 117) were injured during sports, and the most common sports were basketball (40 subjects), badminton (30 subjects), and soccer (27 subjects).

The distribution of the rupture site is illustrated in Figure 3. The rupture site had a mean value ± standard deviation of 4.5 ± 1.3 cm (range, 1.4–9.0 cm), with 10th to 90th percentile of 3.0–6.3 cm. The correlations between the rupture site and demographic data of the subjects are listed in Table 1. The rupture site was not significantly correlated with age, height, weight, and Ankle Activity Score, but it had a weak negative correlation with BMI ($r = -0.230$, $P = 0.013$, Figure 4). With the numbers available, no significant difference could be detected in the rupture site between different genders, sides, previous rupture histories, injury occurring on a weekend, routine warm-up before sports, smoking, alcohol drinking, or glucocorticoid usage.

The outcomes of the proximal and distal rupture groups are listed in Table 2. A good outcome was reported by 77% of patients with distal rupture (Achilles Tendon Rupture Score > 80). By comparison, a good outcome was observed in 56% of the patients with proximal rupture ($P = 0.041$).
The blood supply of the Achilles tendon is mainly from the posterior tibial, anterior tibial and peroneal arteries.8,11 The blood supply of the mid-section (4–7 cm above the calcaneal insertion) of the Achilles tendon is mainly from the peroneal artery, which is relatively avascular and thin.8 Carr and Norris reported that the part of the Achilles tendon 4 cm above the calcaneal insertion has the least blood supply and cross-sectional area.10 Recent studies have found reduced capillary oxygen saturation and microperfusion at 5 cm above the calcaneal tubercles compared with those at 1 cm above the calcaneal tubercles.12 These reports on the avascular region have indicated that the proximal Achilles tendon rupture has insufficient blood supply and serves as a risk factor affecting the surgical repair outcomes. However, the relation between proximal Achilles tendon rupture and unsatisfactory postoperative outcome has not been reported.13–15 Patients with proximal Achilles tendon rupture might benefit from an extended period of postoperative rehabilitation because of an insufficient blood supply.

Biomechanical features are not consistent among different sections of the Achilles tendon and may contribute to results of the common rupture site.16 Different biomechanical strengths may be related to various arrangement patterns of type I and type III collagens. Ruptured Achilles tendons have more type III collagens than healthy Achilles tendons, and this pathological feature is evident in regions adjacent to the rupture site.17,18

In the current study, the Achilles tendon rupture site had a weak negative correlation with BMI in the current study. In general, subjects with a high BMI may have a high cholesterol level,19 which is an important metabolic factor that likely affects the collagen arrangement pattern20 and the biomechanical feature of the Achilles tendon.21 However, studies have yet to determine whether the biomechanical change due to the metabolic factor in the Achilles tendon is region specific.

The findings of the present study differed from those of a previous report possibly because different points in the insertion footprint are defined as the distal end of the Achilles tendon.5 The most proximal point of the calcaneal insertion was used as the distal end of the measured Achilles tendon instead of the most distal fibers of the Achilles tendon at the calcaneal insertion. This difference may result in approximately 17.8 mm discrepancy in length.22 The most proximal point of the calcaneal insertion was chosen for the following reasons. First, the results acquired through this method were more similar to clinical situations where the rupture site is measured from the palpable posterosuperior margin of the calcaneal tuberosity.5 Second, the most distal fibers of the Achilles tendon at the calcaneal insertion may be continuous with the plantar fascia via the peristeum; consequently, locating the accurate point of the most distal fibers becomes difficult.22 Third, insertional ruptures rarely occur between the most proximal point of the calcaneal insertion and the most distal fibers.23 The rupture sites of the mid-substance ruptures are better reported as the distance from the most proximal point of the calcaneal insertion. Fourth, the most proximal points of the calcaneal insertion are widely used as an anatomic landmark in studies on Achilles tendons.11 Ultrasound may systemically differ from MRI in terms of assessing the Achilles tendons. Ernat et al. reported that

Table 2. Outcomes of proximal and distal rupture groups.

Proximal rupture group (n = 41)	Distal rupture group (n = 47)	P-value	
ATRS > 80, n (%)	23/41 (56%)	36/47 (77%)	0.041*
Re-rupture, n (%)	2/41 (5%)	2/47 (4%)	0.638

Data were listed as number of patients (percentage). *P < 0.05.
the distance between two rupture ends of the Achilles tendons measured through clinical examination and ultrasound has an average difference of 1.1 ± 1.4 cm from those measured through MRI. Kruse et al. reported that the cross-sectional areas of the Achilles tendons measured through ultrasound are 5.5% smaller than those measured through MRI. They suggested that this discrepancy is related to the pressure applied to the transducers during ultrasound measurement. Although ultrasound has the advantage of low cost, comparability with physical palpation, and dynamic assessment, this imaging modality has the deficiency of relatively low reliability and high dependence on the experience of operators.

This study should be cautiously interpreted because of several limitations. First, surgical treatment outcomes depended on several other factors because of the retrospective nature of this study. However, we tried to eliminate the confounding factors. The surgical technique and postoperative rehabilitation protocol were identical for all the included subjects. All ultrasound examinations were performed by the same senior radiologist. Second, the Achilles Tendon Rupture Score and postoperative re-rupture rate were evaluated in a small group of subjects only. As such, further studies with larger numbers of included subjects and objective outcome measurements, such as plantarflexion strength and heel rise height, should be performed.

Conclusions

The common site of the Achilles tendon rupture measured through ultrasound was 3.0–6.3 cm. The Achilles tendon rupture site had a weak negative correlation with BMI. Patients with distal Achilles tendon rupture reported better surgical outcomes than those with proximal rupture. Clinical practitioners should be aware that patients with proximal Achilles tendon rupture had less satisfactory outcomes after surgical repair. These findings are important for clinical practice and beneficial to the precise understanding of pathogenesis in the treatment of patients with Achilles tendon rupture.

Authors’ note

Shengxuan Cao, Zhaolin Teng, and Chen Wang contributed equally to this study.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Dr Xin Ma is currently receiving grants from National Natural Science Foundation of China (Grant No. 81772295).

ORCID iD

Shengxuan Cao https://orcid.org/0000-0003-4864-1993

Supplemental material

Supplemental material for this article is available online.

References

1. Lemme NJ, Li NY, DeFroda SF, et al. Epidemiology of achilles tendon ruptures in the United States: athletic and nonathletic injuries from 2012 to 2016. Orthop J Sports Med 2018; 6: 2325967118808238.
2. Sheth U, Wasserstein D, Jenkinson R, et al. The epidemiology and trends in management of acute Achilles tendon ruptures in Ontario, Canada: a population-based study of 27 607 patients. Bone Joint J 2017; 99-b: 78–86.
3. Lantto I, Heikkinen J, Flinkkilä T, et al. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports 2015; 25: e133–e138.
4. Backer HC, Wong TT and Vosseller JT. MRI assessment of degeneration of the tendon in achilles tendon ruptures. Foot Ankle Int 2019; 40: 895–899.
5. Park YH, Lim JW, Choi GW, et al. Quantitative magnetic resonance imaging analysis of the common site of acute achilles tendon rupture: 5 to 8 cm above the distal end of the calcaneal insertion. Am J Sports Med 2019; 47: 2374–2379.
6. Kruse A, Staffilidis S and Tilp M. Ultrasound and magnetic resonance imaging are not interchangeable to assess the Achilles tendon cross-sectional-area. Eur J Appl Physiol 2017; 117: 73–82.
7. Ernat JJ, Johnson JD, Anderson CD, et al. Does clinical exam and ultrasound compare with MRI findings when assessing tendon approximation in acute achilles tendon tears? A clinical study. J Foot Ankle Surg 2019; 58: 161–164.
8. Chen TM, Rozen WM, Pan WR, et al. The arterial anatomy of the Achilles tendon: anatomical study and clinical implications. Clin Anat 2009; 22: 377–385.
9. Halasi T, Kynsburg A, Tallay A, et al. Development of a new activity score for the evaluation of ankle instability. Am J Sports Med 2004; 32: 899–908.
10. Carr AJ and Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br 1989; 71: 100–101.
11. Wolff KS, Wibmer AG, Binder H, et al. The avascular plane of the Achilles tendon: a quantitative anatomic and angiographic approach and a base for a possible new treatment option after rupture. Eur J Radiol 2012; 81: 1211–1215.
12. Klos K, Gueorguiev B, Carow JB, et al. Soft tissue microcirculation around the healthy Achilles tendon: a cross-sectional study focusing on the Achilles tendon and dorsal surgical approaches to the hindfoot. J Orthop Surg Res 2018; 13: 142.
13. Ateschragh A, Körner D, Joisten K, et al. Incidence and risk factors for postoperative Achilles tendon calcifications after percutaneous repair. Arch Orthop Trauma Surg 2018; 138: 203–210.
14. Jildeh TR, Okoroha KR, Marshall NE, et al. Infection and rerupture after surgical repair of achilles tendons. *Orthop J Sports Med* 2018; 6: 2325967118774302.

15. Stavenuiter XJR, Lubberts B, Prince RM, 3rd, et al. Postoperative complications following repair of acute achilles tendon rupture. *Foot Ankle Int* 2019; 40: 679–686.

16. Wagner P, Wagner E, López M, et al. Proximal and distal failure site analysis in percutaneous achilles tendon rupture repair. *Foot Ankle Int* 2019; 40: 1424–1429.

17. Maffulli N, Longo UG, Maffulli GD, et al. Marked pathological changes proximal and distal to the site of rupture in acute Achilles tendon ruptures. *Knee Surg Sports Traumatol Arthrosc* 2011; 19: 680–687.

18. Maffulli N, Ewen SW, Waterston SW, et al. Tenocytes from ruptured and tendinopathic achilles tendons produce greater quantities of type III collagen than tenocytes from normal achilles tendons. An in vitro model of human tendon healing. *Am J Sports Med* 2000; 28: 499–505.

19. Wakabayashi I. Relationships of body mass index with blood pressure and serum cholesterol concentrations at different ages. *Aging Clin Exp Res* 2004; 16: 461–466.

20. de Sá A, Hart DA, Khan K, et al. Achilles tendon structure is negatively correlated with body mass index, but not influenced by statin use: a cross-sectional study using ultrasound tissue characterization. *PLoS One* 2018; 13: e0199645.

21. Steplewski A, Fertala J, Tomlinson R, et al. The impact of cholesterol deposits on the fibrillar architecture of the Achilles tendon in a rabbit model of hypercholesterolemia. *J Orthop Surg Res* 2019; 14: 172.

22. Ballal MS, Walker CR and Molloy AP. The anatomical footprint of the Achilles tendon: a cadaveric study. *Bone Joint J* 2014; 96-b: 1344–1348.

23. Schipper ON, Anderson RB and Cohen BE. Outcomes after primary repair of insertional ruptures of the Achilles tendon. *Foot Ankle Int* 2018; 39: 664–668.