Correlating photovoltaic properties of PTB7-Th:PC71BM blend to photophysics and microstructure as a function of thermal annealing

Lethy Krishnan Jagadamma, Muhammad T. Sajjad, Victoria Savikhin, Michael F. Toney, Ifor D. W. Samuel

Supporting Information

Correlating photovoltaic properties of PTB7-Th:PC71BM blend to its photophysics and microstructure as a function of thermal annealing

Lethy Krishnan Jagadamma, M. Tariq Sajjad, Victoria Savikhin, Michael F. Toney, Graeme Cooke, Ifor D. W. Samuel

1Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, KY16 9SS (UK)
2Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, CA, USA
3Department of Electrical Engineering, Stanford University, Stanford, CA, USA

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
Figure S1. Atomic force microscopy height images of PTB7-Th:PC_{71}BM blends as a function of thermal annealing. Thermal annealing temperatures are given in inset.
Figure S2: Histogram of domain size distribution of PTB7-Th:CP22BM blend films estimated from AFM height images corresponding to two processing temperatures of (a) RT and (b) 150 °C.
Figure S3. (a) PL intensity comparison of the RT and 150 °C thermally annealed PTB7-Th:PC71BM blend films (b) Time-resolved PL decays of neat PTB7-Th (Blue dots) and PC71BM measured using excitation wavelength of 515 nm.
Figure S4: Absorption spectra of PTB7-Th:PC71BM blends measured at different emission wavelengths. The dotted lines shows the absorption spectra of the neat donor and acceptor films.
Figure S5. Fitted PL decay curves for the PTB7:PC71BM blends as a function of thermal annealing temperature (a) from 815 nm onwards and (b) 850 nm onwards.
Table S1: PL quenching efficiency of the PTB7-Th:PC71BM blend films annealed at different temperatures.

Thermal annealing temperature (°C)	Φ_0 (720nm) (%)	Φ_0 (820nm) (%)
RT	71.7±0.7	62.2±0.8
70	69.9±0.5	54.0±0.5
100	68.4±0.6	52.6±0.6
120	65.7±0.8	49.0±1.0
150	61.4±1.1	41.6±1.3

Table S2: Domain size of PC71BM and the exciton decay life times of PTB7-Th:PC71BM blend films at different emission wavelengths as a function of thermal annealing.

T (°C)	1/e t (ps)	1/e t (ps)	1/e t (ps)	Domain size of PC71BM (nm)
	\(\lambda_m \) (870-720 nm)	\(\lambda_m \) (815-900 nm)	\(\lambda_m \) (850-900 nm)	
RT	15.9±1.0	21.3±2.8	28.6±1.9	9.1±0.4
70	19.9±1.6	30.1±1.5	29.1±2.1	10.2±0.7
100	22±2	31.6±1.5	33.6±2.2	10.8±0.8
120	23±1.5	37.3±1.9	43.0±2.0	12.3±1.1
150	38±2	57.4±2.4	64.3±2.8	13.4±0.6

Figure S6: PL ratio of PC71BM in blend to pristine PC71BM. Black lines are best fit achieved using model described in the main paper with diffusion coefficient of 1.6×10⁻⁴ cm²/s.
Figure S7. Normalised 1D diffraction data of PTB7-Th:PC71BM blends as a function of different thermal annealing temperatures for (a) in plane (b) out of plane directions.
Figure S8: Device architectures used for (a) hole mobility and (b) electron mobility measurements.