Admissible operators and \mathcal{H}_∞ calculus

Hans Zwart*

September 8, 2011

Abstract

Given a Hilbert space and the generator A of a strongly continuous, exponentially stable, semigroup on this Hilbert space. For any $g(-s) \in \mathcal{H}_\infty$ we show that there exists an infinite-time admissible output operator $g(A)$. If g is rational, then this operator is bounded, and equals the “normal” definition of $g(A)$. In particular, when $g(s) = 1/(s + \alpha)$, $\alpha \in \mathbb{C}_0^+$, then this admissible output operator equals $(\alpha I - A)^{-1}$.

Although in general $g(A)$ may be unbounded, we always have that $g(A)$ multiplied by the semigroup is a bounded operator for every (strictly) positive time instant. Furthermore, when there exists an admissible output operator C such that (C, A) is exactly observable, then $g(A)$ is bounded for all g’s with $g(-s) \in \mathcal{H}_\infty$, i.e., there exists a bounded \mathcal{H}_∞-calculus. Moreover, we rediscover some well-known classes of generators also having a bounded \mathcal{H}_∞-calculus.

AMS classification: 47A60, 93C25

1 Introduction

Functional calculus is a sub-field of mathematics with a long history. It started in the thirties of the last century with the work by von Neumann for self-adjoint operators [III], and was further extended by many researchers,
see e.g. [8] and [3]. For an overview, see the book by Markus Haase, [7]. The basic idea behind functional calculus for the operator A is to construct a mapping from an algebra of (scalar) functions to the class of (bounded) operators, such that

- The function identically equals to one is mapped to the identity operator;
- If $f(s) = (s - a)^{-1}$, then $f(A) = (sI - A)^{-1}$;
- Furthermore, the operator associated to $f_1 \cdot f_2$ equals $f(A)f_2(A)$.

Before we explain the contribution of this paper, we introduce some notation. By X we denote separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, and by A we denote an unbounded operator from its domain $D(A) \subset X$ to X. We assume that A generates an exponentially stable semigroup on X, which we denote by $(T(t))_{t \geq 0}$.

By \mathcal{H}_∞ we denote the space of all bounded, analytic functions defined on the half-plane $\mathbb{C}^- := \{ s \in \mathbb{C} \mid \text{Re}(s) < 0 \}$. It is clear that this function class is an algebra under pointwise multiplication and addition. Hence this could serve as a class for which one could build a functional calculus. However, it is known that there exists a generator of exponential stable semigroup, which does not have a functional calculus with respect to \mathcal{H}_∞. For proof of this and many more we refer to [1], [7], and the references therein. Although a bounded functional calculus is not possible, an unbounded functional calculus is always possible.

Theorem 1.1 Under the assumptions stated above, we have that for all $g \in \mathcal{H}_\infty$ there exists an operator $g(A)$ which is bounded from the domain of A to X, and which is admissible, i.e.,

$$
\int_0^\infty \| g(A)T(t)x_0 \|^2 dt \leq \gamma_A \| g \|_\infty^2 \| x_0 \|^2, \quad x_0 \in X.
$$

The mapping $g \mapsto g(A)$ satisfies the conditions of a functional calculus. Furthermore, for all $t > 0$, we have that $g(A)T(t)$ can be extended to a bounded operator, and

$$
\| g(A)T(t) \| \leq \frac{\gamma}{\sqrt{t}}.
$$
Apart from proving this theorem, we shall also rediscover some classes of generators for which \(g(A) \) is bounded for all \(g \in \mathcal{H}_\infty^- \), i.e., for which there is a bounded functional calculus.

For the proof of the above result, we need beside the Hardy space \(\mathcal{H}_\infty^- \) also the Hardy spaces \(\mathcal{H}_2(X) \) and \(\mathcal{H}_2^+ (X) \).

\(\mathcal{H}_2(X) \) and \(\mathcal{H}_2^+ (X) \) denote the Laplace transform, \(\mathcal{L} \), of functions in \(L^2((0, \infty), X) \) and \(L^2((\infty, 0), X) \), respectively. It is known that this transformation is an isometry. Every function in \(\mathcal{H}_\infty^-, \mathcal{H}_2(X) \) and \(\mathcal{H}_2^+ (X) \) has a unique extension to the imaginary axis on which these functions are bounded, and square integrable, respectively. Furthermore, the norm of \(g \in \mathcal{H}_\infty^- \) equals the (essential) supremum over the imaginary axis of the boundary function.

Let \(f(t) \) be a function in \(L^2((0, \infty), X) \) with Laplace transform \(F(s) \), and let \(f_{\text{ext}}(t) \) be the function in \(L^2((\infty, \infty), X) \) defined by

\[
 f_{\text{ext}}(t) = \begin{cases} f(t) & t \geq 0 \\ 0 & t < 0 \end{cases}
\]

Then the Fourier transform \(\hat{f}_{\text{ext}} \) of \(f_{\text{ext}}(t) \) satisfies \(\hat{f}_{\text{ext}}(\omega) = F(i\omega) \), for almost all \(\omega \in \mathbb{R} \). Here \(F(i\cdot) \) denote the boundary function of the Laplace transform \(F(s) \).

We define the following Toeplitz operator on \(L^2((0, \infty); X) \)

Definition 1.2 Let \(g \) be an element of \(\mathcal{H}_\infty^- \). Associated to this function we define the mapping \(M_g \) as

\[
 M_g f = \mathcal{L}^{-1} (\Pi (gF)) , \quad f \in L^2((0, \infty), X),
\]

where \(F \) denotes the Laplace transform of \(f \). \(\Pi \) denotes the projection onto \(\mathcal{H}_2(X) \).

It is clear that this is a linear bounded map from \(L^2((0, \infty); X) \) into itself, and

\[
 \| M_g \| \leq \| g \|_{\infty}.
\]

Furthermore, it follows easily from (1) that if \(K \) is a bounded mapping on \(X \), then its commutes with \(M_g \), i.e.,

\[
 KM_g = M_g K.
\]

It is easy to see that \(\mathcal{H}_\infty^- \) is an algebra under the multiplication and addition. In particular \(g_1g_2 \in \mathcal{H}_\infty^- \) whenever \(g_1, g_2 \in \mathcal{H}_\infty^- \). Furthermore, we have the following result.
Lemma 1.3 Let g_1 and g_2 be elements of \mathcal{H}_∞. Then
\[M_{g_1 g_2} = M_{g_1} M_{g_2}. \] (4)

In particular, if g is invertible in \mathcal{H}_∞, then M_g is (boundedly) invertible and $(M_g)^{-1} = M_{g^{-1}}$.

Proof We use the fact that any $g \in \mathcal{H}_\infty$ maps \mathcal{H}_2^\perp into \mathcal{H}_2^\perp.

\[M_{g_1} M_{g_2} f = \mathcal{L}^{-1} (\Pi g_1 (\Pi (g_2 F))) \]
\[= \mathcal{L}^{-1} (\Pi (g_1 g_2 F)) + \mathcal{L}^{-1} (\Pi (g_1 (I - \Pi) (g_2 F))) \]
\[= \mathcal{L}^{-1} (\Pi (g_1 g_2 F)) + 0, \]

where we have used the above mentioned fact that $g_1 (I - \Pi)$ maps into \mathcal{H}_2^\perp, and so $\Pi g_1 (I - \Pi) = 0$. Since by definition $\mathcal{L}^{-1} (\Pi (g_1 g_2 F))$ equals $M_{g_1 g_2} f$, we have proved the first assertion.

The last assertion follows directly, since $M_1 = I$. \square

By σ_τ we denote the shift with $\tau \geq 0$, i.e.,
\[(\sigma_\tau f)(t) = f(t + \tau), \quad t \geq 0. \] (5)

This is also a linear bounded map from $L^2((0, \infty); X)$ into itself. This mapping commutes with M_g as is shown next.

Lemma 1.4 For all $\tau > 0$ and all g in \mathcal{H}_∞, we have that
\[\sigma_\tau (M_g f) = M_g (\sigma_\tau f), \quad f \in L^2((0, \infty), X). \] (6)

Proof We use the following well-known equality. If h is Fourier transformable, then the Fourier transform of $h(\cdot + \tau)$ equals $e^{i \omega \tau} \hat{h}(\omega)$, where \hat{h} denotes the Fourier transform of h.

Let $h \in L^2((0, \infty); X)$, then
\[\mathcal{L}(\sigma_\tau h) = \overline{(\sigma_\tau h)} = \overline{\sigma_\tau h} - \hat{q} = e^{i \omega \tau} \overline{\hat{h}} - \hat{q} = e^{i \omega \tau} \mathcal{L}(h) - \hat{q}, \] (7)
with $q \in L^2((-\infty, 0); X)$. In particular, we find for every $h \in L^2(0, \infty); X)$ that
\[\mathcal{L}(\sigma_\tau h) = \Pi (\mathcal{L}(\sigma_\tau h)) = \Pi (e^{i \omega \tau} \mathcal{L}(h)) = 0 = \mathcal{L}(M_{e^{i \omega \tau}} h), \] (8)
where we have used that $e^{i \omega \tau}$ is the boundary function corresponding to $e^{i \omega \tau} \in \mathcal{H}_\infty$.

4
Using (7) we see that
\[M_g(\sigma \tau f) = L^{-1} \left(\Pi \left(ge^{i\tau L(f)} \right) \right) - L^{-1} \left(\Pi \left(g\hat{q} \right) \right) = L^{-1} \left(\Pi \left(ge^{i\tau L(f)} \right) \right) , \quad (9) \]
since \(\hat{q} \in H^1_2(X) \), and since \(g \in H^\infty \). Using Lemma [1.3] we find that
\[M_g(\sigma \tau f) = L^{-1} \left(\Pi \left(ge^{i\tau L(f)} \right) \right) = M_{e^{i\tau}g} f = M_{e^{i\tau}M_g f}. \quad (10) \]
Now using (8), we see that
\[M_g(\sigma \tau f) = \sigma \tau (M_g f). \quad (11) \]
\[\square \]

2 Output maps and admissible output operators

In this section we study admissible operators which commute with the semigroup. We begin by defining well-posed output maps.

Definition 2.1 Let \((T(t))_{t \geq 0} \) be a strongly continuous semigroup on the Hilbert space \(X \), and let \(Y \) be another Hilbert space. We say that the mapping \(O \) is a well-posed (infinite-time) output map if

- \(O \) is a bounded linear mapping from \(X \) into \(L^2((0, \infty); Y) \), and
- For all \(\tau \geq 0 \) and all \(x_0 \in X \), we have that \(\sigma_\tau O x_0 = O(T(\tau)x_0) \).

Closely related to well-posed output mappings are admissible operators, which are defined next.

Definition 2.2 Let \((T(t))_{t \geq 0} \) be a strongly continuous semigroup on the Hilbert space \(X \). Let \(D(A) \) be the domain of its generator \(A \). A linear mapping \(C \) from \(D(A) \) to \(Y \), another Hilbert space, is said to be an (infinite-time) admissible output operator for \((T(t))_{t \geq 0} \) if \(CT(\cdot)x_0 \in L^2((0, \infty), Y) \) for all \(x_0 \in D(A) \) and there exists an \(m \) independent of \(x_0 \) such that
\[\int_0^\infty \|CT(t)x_0\|^2_Y dt \leq m\|x_0\|^2_X. \quad (12) \]
If C is (infinite-time) admissible, then for all $x_0 \in X$ we can uniquely define an $L^2((0, \infty), X)$-function. We denote this function by $CT(\cdot)x_0$. Hence $O : X \to L^2((0, \infty); Y)$ defined by $Ox_0 = CT(\cdot)x_0$ is a well-posed output map. From [12] we know that the converse holds as well.

Lemma 2.3 If O is a well-posed output mapping, then there exists a (unique) linear bounded mapping from $D(A)$ to Y, C, such that $Ox_0 = CT(\cdot)x_0$ for all x_0.

In the sequel of this section we concentrate on admissible output operators which commute with the semigroup, i.e., C a linear operator from $D(A)$ to X and

$$CT(t)x_0 = T(t)Cx_0 \quad \text{for all } t \geq 0 \text{ and } x_0 \in D(A). \quad (13)$$

For these operators we have the following results.

Lemma 2.4 Let C be the admissible output operator associated with the well-posed output map O. Then (13) holds if and only if for all $t \geq 0$ there holds $OT(t) = T(t)O$.

Theorem 2.5 Let C be a bounded linear operator from $D(A)$ to X, which is admissible for the exponentially stable semigroup $(T(t))_{t \geq 0}$ and which commutes with this semigroup. Then the following holds

1. For all $x_0 \in D(A)$, we have that $CA^{-1}x_0 = A^{-1}Cx_0$.

2. For all $t > 0$, the operator $CT(t) : D(A) \to X$ can be extended to a bounded operator on X. Furthermore, $\|CT(t)\| \leq \gamma t^{-1/2}$ for some γ independent of t.

Proof The first assertion follows easily from (13) by using Laplace transforms. We concentrate on the second assertion.
Let $x_0 \in D(A)$ and $x_1 \in X$, then for $t > 0$ we have that
\[
t\langle x_1, CT(t)x_0 \rangle = \int_0^t \langle x_1, CT(t)x_0 \rangle d\tau = \int_0^t \langle x_1, CT(\tau)T(t-\tau)x_0 \rangle d\tau = \int_0^t \langle x_1, T(\tau)CT(t-\tau)x_0 \rangle d\tau = \int_0^t \langle T(\tau)^*x_1, CT(t-\tau)x_0 \rangle d\tau \leq \sqrt{\int_0^t \|T(\tau)^*x_1\|^2 d\tau} \sqrt{\int_0^t \|CT(t-\tau)x_0\|^2 d\tau}.
\]

Using the fact that the semigroup, and hence its adjoint, are uniformly bounded, and the fact that C is (infinite-time) admissible, we find that
\[
t\langle x_1, CT(t)x_0 \rangle \leq \sqrt{tM\|x_1\|m\|x_0\|}.
\]

Since this holds for all $x_1 \in X$, we conclude that
\[
t\|CT(t)x_0\| \leq \sqrt{tmM\|x_0\|}.
\]

This inequality holds for all $x_0 \in D(A)$. The domain of a generator is dense, and hence we have proved the second assertion. \(\square\)

From Theorem 2.5 it is clear that if the semigroup is surjective, then any admissible C which commutes with the semigroup is bounded. However, this does not hold for a general semigroup as is shown in the following example. Furthermore, this example also shows that the estimate in the previous theorem cannot be improved.

Example 2.6 Let $\{\phi_n, n \in \mathbb{N}\}$ be an orthonormal basis of X, and define for $t \geq 0$ the operator
\[
T(t) \sum_{n=1}^N \alpha_n \phi_n = \sum_{n=1}^N e^{-n^2t} \alpha_n \phi_n.
\]

It is not hard to show that this defines an exponentially stable C_0-semigroup on X. The infinitesimal generator A is given by
\[
A \sum_{n=1}^N \alpha_n \phi_n = \sum_{n=1}^N -n^2 \alpha_n \phi_n.
\]
with domain

\[D(A) = \{ x = \sum_{n=1}^{\infty} \alpha_n \phi_n \in X \mid \sum_{n=1}^{\infty} |n^2 \alpha_n|^2 < \infty \} \]

We define \(C \) as the square root of \(-A\), i.e.

\[C \sum_{n=1}^{N} \alpha_n \phi_n = \sum_{n=1}^{N} n \alpha_n \phi_n \quad (15) \]

with domain

\[D(C) = \{ x = \sum_{n=1}^{\infty} \alpha_n \phi_n \in X \mid \sum_{n=1}^{\infty} |n \alpha_n|^2 < \infty \} \]

A straightforward calculation gives that for \(x_0 = \sum_{n=1}^{N} \alpha_n \phi_n \), we have that

\[\int_{0}^{\infty} \|CT(t)x_0\|^2 dt = \int_{0}^{N} \sum_{n=1}^{N} |ne^{-n^2 t} \alpha_n|^2 dt = \frac{1}{2} \sum_{n=1}^{N} |\alpha_n|^2 = \frac{1}{2} \|x_0\|^2. \]

Since the finite sums lie dense, we conclude that \(C \) is admissible. It is easy to see that \(C \) commutes with the semigroup, and thus from Theorem 2.3 we have that

\[\|CT(t)\| \leq \frac{\gamma}{\sqrt{t}}. \quad (16) \]

for some \(\gamma \) independent of \(t \).

Next choose \(x_0 = \phi_n \) and \(t = n^{-2} \). Using (14) and (15) we see that

\[CT(t)x_0 = ne^{-1} \phi_n = e^{-1} \frac{1}{\sqrt{t}} x_0, \]

and thus the estimate (16) cannot be improved.

The Lebesgue extension of an admissible operator is defined by

\[C_L x = \lim_{t \to 0} \frac{1}{t} C \int_{0}^{t} T(\tau)xd\tau, \]

where

\[D(C_L) = \{ x \in X \mid \text{limit exists} \}. \]
A similar extension can be define using the resolvent. The Lambda extension of an admissible operator is defined by

\[C_\Lambda x = \lim_{\lambda \to \infty} \lambda C(\lambda I - A)^{-1}x, \]

where

\[D(C_\Lambda) = \{ x \in X \mid \text{limit exists} \}. \]

The relation between these extension is still not completely understood, but for admissible operators which commute with the semigroup, we have that both extensions are closed operators.

Lemma 2.7 Let \(C \) be an admissible operator which commutes with the semigroup, then the same holds for its Lebesgue and Lambda extension. Furthermore, these extensions are closed operators.

Proof Since \(A^{-1} \) and \(CA^{-1} \) are bounded, we find for \(x_0 \in D(C_L) \)

\[
A^{-1}C_Lx_0 = A^{-1}\lim_{t \downarrow 0} \frac{1}{t} \int_0^t T(\tau)x_0 d\tau = \lim_{t \downarrow 0} \frac{1}{t} A^{-1}C \int_0^t T(\tau)x_0 d\tau
\]

\[
= \lim_{t \downarrow 0} \frac{1}{t} CA^{-1} \int_0^t T(\tau)x_0 d\tau = CA^{-1} \lim_{t \downarrow 0} \frac{1}{t} \int_0^t T(\tau)x_0 d\tau
\]

\[= CA^{-1}x_0 = C_LA^{-1}x_0, \]

where we have used that \(\int_0^t T(\tau)x_0 d\tau \in D(A) \) and \(C \) commutes with \(A^{-1} \). This proves the first assertion.

Using once more that \(CA^{-1} \) and \(A^{-1} \) are bounded, we have for \(x_0 \in D(C_L) \)

\[
CA^{-1} \int_0^t T(\tau)x_0 d\tau = \int_0^t CA^{-1}T(\tau)x_0 d\tau
\]

\[
= \int_0^t T(\tau)CA^{-1}x_0 d\tau
\]

\[= \int_0^t T(\tau)A^{-1}C_Lx_0 d\tau = A^{-1} \int_0^t T(\tau)C_Lx_0 d\tau. \]

Let \(x_n \) be a sequence in \(D(C_L) \) which converges to \(x \in X \), such that \(C_Lx_n \) converges to \(z \in X \). Then by the above we find that

\[CA^{-1} \int_0^t T(\tau)x d\tau = A^{-1} \int_0^t T(\tau)z d\tau \quad (17) \]
Since \(\int_0^T \tau \, d\tau \in D(A) \), we find that
\[
A^{-1} \int_0^t T(\tau) z \, d\tau = CA^{-1} \int_0^t T(\tau) x \, d\tau = A^{-1} C \int_0^t T(\tau) x \, d\tau.
\] (18)

Hence we have that
\[
\int_0^t T(\tau) z \, d\tau = C \int_0^t T(\tau) x \, d\tau.
\]

Since \(t^{-1} \int_0^t T(\tau) z \, d\tau \) converges to \(z \) for \(t \downarrow 0 \), we conclude from the above equality that \(x \in D(C_L) \) and \(C_L x = z \).

The proof for \(C_{\lambda} \) goes very similarly. Basically in the above proof, \(\int_0^t T(\tau) x \, d\tau \) is replaced by \((\lambda I - A)^{-1} x \).

By Weiss [14] we have that \(C_{\lambda} \) is an extension of \(C_L \). We claim that for admissible \(C \)'s which commute with the semigroup they are equal.

3 \(\mathcal{H}_\infty \)-calculus

For \(g \in \mathcal{H}_\infty \) we define the following mapping from \(X \) to \(L^2((0, \infty); X) \)
\[
\mathcal{D}_g x_0 = M_g (T(t) x_0).
\] (19)

Hence we have taken in Definition [1,2] \(f(t) = T(t) x_0 \).

It is clear that \(\mathcal{D}_g \) is a linear bounded operator from \(X \) into \(L^2((0, \infty); X) \). Furthermore, from (9) we have that
\[
\sigma (\mathcal{D}_g x_0) = M_g (\sigma (T(t) x_0)) = M_g T(t+\tau) x_0 = \mathcal{D}_g (T(\tau) x_0),
\] (20)

where we have used the semigroup property. Hence \(\mathcal{D}_g \) is a well-posed output map, and so by Lemma [2,3] we conclude that \(\mathcal{D}_g \) can be written as
\[
\mathcal{D}_g x_0 = g(A) T(t) x_0
\] (21)

for some infinite-time admissible operator \(g(A) \) which is bounded from the domain of \(A \) to \(X \).

Since for all \(t, \tau \in [0, \infty) \) there holds \(T(\tau) T(t) = T(t) T(\tau) \), we conclude from (19) and (3) that
\[
\mathcal{D}_g T(t) = T(t) \mathcal{D}_g, \quad t \geq 0.
\]
Hence by (21), we see that $g(A)$ is an admissible operator which commutes with the semigroup. Theorem 2.5 implies that for $t > 0$, $g(A)T(t)$ can be extended to a bounded operator and

$$\|g(A)T(t)\| \leq \frac{\gamma}{\sqrt{t}}. \quad (22)$$

Note that for $t \in [0, 1]$ this γ can be chosen as $\sup_{t \in [0,1]} \|T(t)\| \cdot \|g\|_{\infty}$.

The Laplace transform of D_g equals $g(A)(sI - A)^{-1}$. Combining this with the definition of D_g, implies that

$$\|g(A)(sI - A)^{-1}\| \leq \frac{\|g\|_{\infty}}{\sqrt{\text{Re}(s)}} \|x_0\|, \quad (23)$$

where we have taken the norm in X, see also Weiss [13].

Since we have written this admissible operator as the function g working on the operator A, there is likely to be a relation with functional calculus. This is shown next.

Lemma 3.1 If $g \in H_{\infty}$ is the inverse Fourier transform of the function h, with $h \in L^1(-\infty, \infty)$ with support in $(-\infty, 0)$, then $g(A)$ is bounded

$$g(A)x_0 = \int_0^\infty T(t)h(-t)x_0 dt, \quad (24)$$

and so $g(A)$ corresponds to the classical definition of the function of an operator.

So if g is the Fourier transform of an absolutely integrable function, then $g(A)$ is bounded. We would like to know when it is bounded for every g. For this, we extend the definition of D_g.

Let C be an admissible output operator for the semigroup $(T(t))_{t \geq 0}$. By definition, we know that $CT(\cdot)x_0 \in L^2((0, \infty); Y)$ for all $x_0 \in X$. We define

$$(C \circ D_g)x_0 = M_g(CT(t)x_0) \quad (25)$$

It is clear that this is a bounded mapping from X to $L^2((0, \infty); Y)$.

As before we have that

$$\sigma_{\tau}(C \circ D_g) (x_0) = (C \circ D_g) (T(\tau)x_0). \quad (26)$$

And so we can write $(C \circ D_g)x_0$ as $\tilde{C}_g T(\cdot)x_0$ for some infinite-time admissible \tilde{C}_g. We have that
Lemma 3.2 The infinite-time admissible operator \(\tilde{C}_g \) satisfies
\[
\tilde{C}_g x_0 = C g(A) x_0, \quad \text{for } x_0 \in D(A^2).
\]

Proof For \(x_0 \in D(A^2) \), we introduce \(x_1 = A x_0 \). Then the following equalities hold in \(L^2((0, \infty); Y) \).
\[
\tilde{C}_g T(t)x_0 = (C \circ \Omega_g)x_0 = M_g (CT(t)x_0) = M_g (CT(t)A^{-1}x_1) = M_g (CA^{-1}T(t)x_1) = CA^{-1}g(A)T(t)x_1 = \tilde{C}_g A^{-1}g(A)T(t)x_1 = C g(A)T(t)x_0,
\]
where we have used (3). Since both functions are continuous at zero, we find that (27) holds. □

Based on this result, we denote \(\tilde{C}_g \) by \(C \circ g(A) \).

Using this, we can prove the following theorems.

Theorem 3.3 The mapping \(g \mapsto g(A) \) forms a (unbounded) \(\mathcal{H}_\infty \)-calculus.

Proof It only remains to show that \((g_1 g_2)(A) = g_1(A) g_2(A)\). By Lemma 1.3 we have that
\[
\Omega_{g_1 g_2} x_0 = M_{g_1 g_2} (T(t)x_0) = M_{g_1} M_{g_2} (T(t)x_0).
\]
For \(x_0 \in D(A) \) the last expression equals \(M_{g_1} (g_2(A)T(t)x_0) \), see (21). Since \(g_2(A) \) commutes with the semigroup, we find that
\[
\Omega_{g_1 g_2} x_0 = M_{g_1} (T(t)g_2(A)x_0).
\]
Using (21) twice, we obtain
\[
(g_1 g_2)(A)T(t)x_0 = \Omega_{g_1 g_2} x_0 = g_1(A)T(t)g_2(A)x_0
\]
This is an equality in \(L^2((0, \infty); X) \). However, if we take \(x_0 \in D(A^2) \), then this holds point-wise, and so for \(x_0 \in D(A^2) \).
\[
(g_1 g_2)(A)x_0 = g_1(A) g_2(A)x_0
\]
This concludes the proof. □
Theorem 3.4 If there exists an admissible C such that (C,A) is exactly observable, i.e., there exists an $m_1 > 0$ such that for all $x_0 \in X$ there holds

$$\int_0^\infty \|CT(t)x_0\|^2 dt \geq m_1 \|x_0\|^2$$

then $g(A)$ is bounded for every $g \in \mathcal{H}_\infty^-$. Furthermore, if m_2 is the admissibility constant, see equation (12), then

$$\|g(A)\| \leq \sqrt{\frac{m_2}{m_1}} \|g\|_\infty.$$ \hspace{1cm} (28)

Proof Let $x_0 \in D(A^2)$

$$m_1 \|g(A)x_0\|^2 \leq \|CT(t)g(A)x_0\|_{L^2((0,\infty);Y)}^2 \leq \|g\|_\infty^2 \|CT(t)x_0\|_{L^2((0,\infty);Y)}^2 \leq m_2 \|g\|_\infty^2 \|x_0\|^2.$$

Since $D(A^2)$ is dense, we obtain the result. \hfill \Box

As a corollary we obtain the well-known von Neumann inequality. Recall that the operator A is dissipative if

$$\langle x_0, Ax_0 \rangle + \langle Ax_0, x_0 \rangle \leq 0 \quad \text{for all } x_0 \in D(A).$$ \hspace{1cm} (29)

Corollary 3.5 If A is a dissipative operator and its corresponding semigroup is exponentially stable, then A has a bounded \mathcal{H}_∞^- calculus and for all $g \in \mathcal{H}_\infty^-$

$$\|g(A)\| \leq \|g\|_\infty.$$ \hspace{1cm} (30)

Proof Since A is dissipative and since its semigroups is exponentially stable, we have that A^{-1} is bounded and dissipative. We define Q via

$$\langle x_1, Qx_2 \rangle = -\langle A^{-1}x_1, x_2 \rangle - \langle x_1, A^{-1}x_2 \rangle, \quad x_1, x_2 \in X.$$ \hspace{1cm} (31)
It is easy to see that Q is bounded, self-adjoint and by the dissipativity of A^{-1} we have that $Q \geq 0$. Define on the domain of A the operator C as $C = \sqrt{QA}$, then from (31) we find that

$$-\langle Cx_1, Cx_2 \rangle = \langle x_1, Ax_2 \rangle + \langle Ax_1, x_2 \rangle, \quad x_1, x_2 \in D(A). \quad (32)$$

Combining this Lyapunov equation with the exponential stability, gives that for all $x_0 \in D(A)$

$$\int_0^\infty \|CT(t)x_0\|^2 dt = \|x_0\|^2. \quad (33)$$

Thus we see that the constants m_1 and m_2 in Theorem 3.4 can be chosen to be one, and so (28) gives the results. \square

If A generates an exponentially stable semigroup and if there exists an admissible C for which (C, A) is exactly observable, then it is not hard to show that the semigroup is similar to a contraction semigroup. Using this, one can also obtain the above result by Theorem G of [1]. The following result has been proved by McIntosh in [10].

Theorem 3.6 Assume that A generates an exponentially stable semigroup. If $(-A)^{\frac{1}{2}}$ is admissible for $(T(t))_{t \geq 0}$ and $(-A^*)^{\frac{1}{2}}$ is admissible for the adjoint semigroup $(T(t^*))_{t \geq 0}$, then $g(A)$ is bounded for every $g \in \mathcal{H}_{-\infty}$. Thus this semigroup has a bounded $\mathcal{H}_{-\infty}$-calculus.

Proof Since $A^{1/2}$ is admissible, Lemma 3.2 gives that $A^{1/2} \circ g(A)$ is also
admissible. Consider for \(x_1 \in D(A^*) \) and \(x_0 \in D(A^2) \) the following

\[
\langle x_1, g(A)x_0 \rangle - \langle x_1, g(A)T(t)x_0 \rangle
\]

\[
= \int_0^t \langle x_1, (-A)T(\tau)g(A)x_0 \rangle d\tau
\]

\[
= \int_0^t \langle (-A^*)^{\frac{1}{2}}x_1, (-A)^{\frac{1}{2}}g(A)T(\tau)x_0 \rangle d\tau
\]

\[
= \int_0^t \langle (-A^*)^{\frac{1}{2}}T(\frac{T}{2})^*x_1, g(A)(-A)^{\frac{1}{2}}T(\frac{T}{2})x_0 \rangle d\tau
\]

\[
\leq \sqrt{\int_0^t \| (-A^*)^{\frac{1}{2}}T(\frac{T}{2})^*x_1 \|^2 d\tau} \sqrt{\int_0^t \| g(A)(-A)^{\frac{1}{2}}T(\frac{T}{2})x_0 \|^2 d\tau}
\]

\[
\leq \sqrt{\int_0^t \| (-A^*)^{\frac{1}{2}}T(\frac{T}{2})^*x_1 \|^2 d\tau} \| g \|_\infty \sqrt{\int_0^\infty \| (-A)^{\frac{1}{2}}T(\frac{T}{2})x_0 \|^2 d\tau}
\]

\[
\leq m_1 \| x_1 \| m_2 \| g \|_\infty \| x_0 \|
\]

where \(m_1 \) and \(m_0 \) are the admissibility constant of \((-A^*)^{\frac{1}{2}}\) and \((-A^*)^{\frac{1}{2}}\), respectively. Furthermore, we used (2).

Since the sets \(D(A^*) \) and \(D(A^2) \) are dense in \(X \), we obtain that

\[
\| g(A) \| \leq m_1 m_2 \| g \|_\infty + \| g(A)T(t) \|. \tag{34}
\]

By Theorem 2.5 we know that \(g(A)T(t) \) is bounded, and so we conclude that \((T(t))_{t \geq 0}\) has a bounded \(H_\infty \)-calculus.

In McIntosh [10] the above theorem was proved using square function estimates. The admissibility of \((-A)^{\frac{1}{2}}\) can be written as

\[
m \| x_0 \|^2 \geq \int_0^\infty \| (-A)^{\frac{1}{2}}T(t)x_0 \|^2 dt = \int_0^\infty \| (-tA)^{\frac{1}{2}}T(t)x_0 \|^2 \frac{dt}{t}.
\]

The latter is the “square function estimate” for \(\psi(s) = (-s)^{\frac{1}{2}}e^s \), and so the admissibility condition can be seen as a square function estimate. The other condition used in [10] is that the operator \(A \) is sectorial on a sector larger than the sector on which the scalar functions are defined. Since we have as function class \(\mathcal{H}_\infty \) and since our operators \(A \) are assumed to generate an
exponential semigroup, this condition seems not to satisfied. However, the admissibility assumptions made in the theorem imply that A generates a bounded analytic semigroup, and so the condition of McIntosh is satisfied.

Lemma 3.7 Let A generate an exponentially stable semigroup and let $(-A)^{\frac{1}{2}}$ and $(-A^*)^{\frac{1}{2}}$ be admissible operators for for $(T(t))_{t \geq 0}$ and $(T(t^*))_{t \geq 0}$, respectively. Then A generates a bounded analytic semigroup.

Proof The proof is similar to the proof of Theorem 2.3. Let $x_1 \in D(A^*)$ and $x_0 \in D(A)$. Then for $t > 0$ we find

$$t \langle x_1, AT(t)x_0 \rangle = \int_0^t \langle x_1, AT(t)x_0 \rangle d\tau$$

$$= - \int_0^t \langle (-A^*)^{\frac{1}{2}} x_1, (-A)^{\frac{1}{2}} T(t)x_0 \rangle d\tau$$

$$= - \int_0^t \langle (-A^*)^{\frac{1}{2}} T(\tau^*) x_1, (-A)^{\frac{1}{2}} T(t - \tau)x_0 \rangle d\tau$$

$$\leq \sqrt{\int_0^t \| (-A^*)^{\frac{1}{2}} T(\tau^*) x_1 \|^2 d\tau} \sqrt{\int_0^t \| (-A)^{\frac{1}{2}} T(t - \tau)x_0 \|^2 d\tau}$$

$$\leq m_1 \| x_1 \| m_2 \| x_0 \|,$$

where we used that $(-A)^{\frac{1}{2}}$ and $(-A^*)^{\frac{1}{2}}$ are admissible. Since the domain of A^* and A are dense, we obtain that

$$\| AT(t) \| \leq \frac{M}{t}, \quad t > 0$$

By Theorem II.4.6 of [4], we conclude that generates a bounded analytic semigroup. □

From [10] we know that if the conditions of Theorem 3.6 hold, then is the semigroup similar to a contraction (or $(-A)^{\frac{1}{2}}$ is exactly observable). We show this next.

Lemma 3.8 Under the condition of Theorem 3.6 we have that $(-A)^{\frac{1}{2}}$ is exactly observable, and thus $(T(t))_{t \geq 0}$ is similar to a contraction.
Proof In idea the proof is the same as that of Theorem 3.6. Let $x_1 \in D(A^*)$ and $x_0 \in D(A)$ We have that

$$\langle x_1, x_0 \rangle = \int_0^\infty \langle x_1, (-A)T(\tau)x_0 \rangle d\tau$$

$$= \int_0^\infty \langle (-A^*)^{\frac{1}{2}} x_1, (-A)^{\frac{1}{2}} T(\tau)x_0 \rangle d\tau$$

$$= \int_0^\infty \langle (-A^*)^{\frac{1}{2}} T(\frac{\tau}{2})^* x_1, (-A)^{\frac{1}{2}} T(\frac{\tau}{2}) x_0 \rangle d\tau.$$ (35)

Hence

$$|\langle x_1, x_0 \rangle| \leq \sqrt{\int_0^\infty \| (-A^*)^{\frac{1}{2}} T(\frac{\tau}{2})^* x_1 \|^2 d\tau \int_0^\infty \| (-A)^{\frac{1}{2}} T(\frac{\tau}{2}) x_0 \|^2 d\tau }$$

$$\leq m_1 \| x_1 \| \sqrt{\int_0^\infty \| (-A)^{\frac{1}{2}} T(\frac{\tau}{2}) x_0 \|^2 d\tau }.$$ (36)

Since the domain of A^* is dense we conclude that

$$\| x_0 \| = \sup_{x_1 \neq 0} \frac{|\langle x_1, x_0 \rangle|}{\| x_1 \|} \leq m_1 \sqrt{\int_0^\infty \| (-A)^{\frac{1}{2}} T(\frac{\tau}{2}) x_0 \|^2 d\tau }.$$ (36)

Thus $(-A)^{\frac{1}{2}}$ is exactly observable. \square

We remark that with the above result, Theorem 3.6 follows also from Theorem 3.4. However, we decided to present this independent proof.

Acknowledgement

The author want to thank Markus Haase, Bernhard Haak, and Christian Le Merdy whom have helped him to understand functional calculus.

References

[1] D. Albrecht, X. Duong and A. McIntosch, Operator theory and harmonic analysis, appeared in: Workshop on Analysis and Geometry, 1995, Part III, Proceedings of the Centre for Mathematics and its Applications, ANU, Canberra, 34, pp. 77-136, 1996.
[2] R.F. Curtain and H. Zwart, *An Introduction to Infinite-Dimensional Linear Systems Theory*. Texts in Applied Mathematics, Volume 21, Springer-Verlag, 1995.

[3] N. Dunford and J.T. Schwartz, *Linear Operators, Part III: Spectral Operators*, Wiley, 1971.

[4] K.-J. Engel and R. Nagel, *One-parameter Semigroups for Linear Evolution Equations*, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.

[5] J.B. Garnett, *Bounded Analytic Functions*, Revised first edition, Springer, 2007.

[6] M. Haase, A decomposition theorem for generators of strongly continuous groups on Hilbert spaces, *J. Operator Theory*, 52, pp. 21–37, 2004.

[7] M. Haase, *The Functional Calculus for Sectorial Operators*, Operator Theory, Advances and Applications, Vol. 169, Birkhäuser, Basel, 2006.

[8] E. Hille and R.S. Phillips, *Functional Analysis and Semi-Groups*, AMS, 1957.

[9] C. Le Merdy, The Weiss conjecture for bounded analytic semigroups, *J. London Math. Soc.*, 67, pp. 715–738, 2003.

[10] A. McIntosh, Operators which have an H_∞ functional calculus, *Mini-conference on Operator Theory and Partial Differential Equations, Proceedings of the Centre for Mathematical Analysis, Australian National University*, 14, pp. 220-231, 1986.

[11] J. von Neumann, *Mathematische Grundlagen der Quantummechanic*, zweite Aulage, Springer Verlag, reprint 1996.

[12] G. Weiss, Admissible observation operators for linear semigroups, *Israel Journal of Mathematics*, 65-1, pp. 17–43, 1989.

[13] G. Weiss, Two conjectures on the admissibility of control operators, in *Estimation and control of distributed parameter systems (Vorau, 1990)*, Internat. Ser. Numer. Math., Vol. 100, pp. 367–378, Birkhäuser, Basel, 1991
[14] G. Weiss, Transfer functions of regular linear systems. Part I: characterizations of regularity, *Transactions of the American Mathematical Society*, 342-2, pp. 827–854, 1994.