Resultados de uma técnica modificada de reconstrução assistida por artroscopia para instabilidade lateral do tornozelo

Outcomes of a Modified Arthroscopic-assisted Reconstruction Technique for Lateral Ankle Instability

Carlos A. Sánchez1, Ignacio Briceño2, Jaime Robledo3

1 Departamento de Ortopedia e Traumatologia, Pontificia Universidad Javeriana, Bogotá, D.C., Colômbia
2 Departamento de Ortopedia e Traumatologia, Pontificia Universidad Javeriana, Bogotá, D.C., Colômbia
3 Departamento de Ortopedia e Traumatologia, Hospital Universitario San Ignacio, Bogotá, D.C., Colômbia

Objetivo O presente estudo avalia os resultados de uma técnica cirúrgica minimalmente invasiva para o manejo da instabilidade aguda e crônica do tornozelo.

Métodos O presente estudo de uma série de casos avaliou retrospectivamente 40 pacientes submetidos à reconstrução percutânea assistida por artroscopia do ligamento do tornozelo entre 2013 e 2019.

Resultados O estudo incluiu 17 homens e 23 mulheres com idade média de 38,3 anos. O acompanhamento pós-intervenção utilizou a pontuação American Orthopaedic Foot and Ankle Society (AOFAS, na sigla em inglês). As pontuações do tornozelo-retropé identificaram melhora > 30 pontos na função e no controle da dor. As lesões associadas mais frequentes foram as osteocondrais (35%). Nenhum paciente precisou de reintervenção ou teve infecção durante o acompanhamento.

Conclusão A técnica do presente estudo é fácil e consegue resultados satisfatórios para a função e o controle da dor.

Nível de Evidência IV.

Palavras-chave ► articulação do tornozelo ► artroscopia ► instabilidade articular ► ligamentos articulares ► articulação subtalar ► tendões

Rev Bras Ortop 2022;57(4):577–583.

Resumo

Endereço para correspondência Carlos Alberto Sánchez Correa, MD, Orthopedics and Traumatology, Pontificia Universidad Javeriana, Carrera 18 #88-10, Apt. 501, Bogotá, D.C., Colômbia (e-mail: carsan.ortoinv@gmail.com).

Trabalho desenvolvido no Departamento de Ortopedia e Traumatologia, Pontificia Universidad Javeriana, Bogota, D.C., Colombia.

DOI https://doi.org/10.1055/s-0041-1741446.

ISSN 0102-3616.

© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. All rights reserved.

This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda., Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Técnica de reconstrução assistida por artroscopia para instabilidade do tornozelo

Sánchez et al.

Abstract

Objective: The present study assesses the results of a minimally invasive surgical technique for acute and chronic ankle instability management.

Methods: The present case series study retrospectively evaluated 40 patients undergoing arthroscopic-assisted percutaneous ankle ligament reconstruction from 2013 to 2019.

Results: The present study included 17 males and 23 females with an average age of 38.3 years old. Postintervention follow-up using American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot scores identified improvement of >30 points in function and pain control. The most frequently occurring associated injuries were osteochondral (35%). No patient required reintervention or had infection during follow-up.

Conclusion: The technique in the present study is easy and achieves satisfactory results for function and pain control.

Keywords

- ankle joint
- arthroscopy
- joint instability
- ligaments, articular
- subtalar joint
- tendons

Introdução

A entorse lateral do tornozelo é um motivo relevante para consulta na ortopedia. A gestão conservadora da lesão aguda, incluindo a reabilitação, geralmente resulta em excelente recuperação da estabilidade e função do tornozelo.1–5 Ainda assim, mesmo com o manejo adequado, entre 20 e 40% dos pacientes persistem com instabilidade no tornozelo, o que aumenta o risco de entorses recorrentes que deterioram a qualidade e a função das articulações.6–8 Esta condição, conhecida como instabilidade lateral do tornozelo (ILT), pode ser ainda classificada em aguda ou crônica e vem com um amplo debate. O conceito de ILT evoluiu desde 1965 a partir do “déficit proprioceptivo” descrito por Freeman para a consolidação de conceitos em 2013.4,9–11 Apesar disso, ainda há algumas discrepâncias quanto à causa específica para a ILT. Alguns autores descrevem que a perda de propriocepção (reação neuromuscular/força/controle) poderia predispor à instabilidade mecânica.1–3,8,12 Isto causou grande controvérsia. Outros consideram que a falta de resposta à gestão conservadora dentro do conceito de ILT, no entanto, não é uma parte definitiva de seu diagnóstico.4,9,13 Além disso, o conceito de microinstabilidade descrito por Vega et al. ganhou popularidade.14 Este afirma que a deficiência do ligamento talofibular anterior (LTFA) pode ser responsável não só pela instabilidade, mas também pela dor crônica e lesões associadas.

A ILT inevitavelmente altera a biomecânica da marcha. Estudos de marcha demonstram que a lesão do ligamento talofibular anterior favorece o deslocamento do teto anterior, especialmente em flexão plantar.8 Este deslocamento eventualmente limita a dorsiflexão do tornozelo e desencadeia uma sequência de eventos que levam ao desenvolvimento precoce da artrose.1,4,5,9,13–16 A estabilização do complexo do ligamento lateral do tornozelo é fundamental para evitar o desenvolvimento desta condição.

A literatura descreve >80 técnicas cirúrgicas após estudos iniciais de Bröstrom na década de 1950.2–5,17 A técnica cirúrgica de Bröstrom foi modificada por Gould, e o procedimento de Bröstrom-Gould (BG) continua sendo o padrão de cuidado hoje.3,13,17–19 Com o desenvolvimento da artroscopia, surgiram técnicas menos invasivas para estabilização do tornozelo. Vários autores descreveram diferentes abordagens, mas com resultados adequados, com o objetivo de reproduzir o procedimento BG.20–25 Até o momento, nenhum relatório estabeleceu a superioridade da técnica cirúrgica aberta em comparação com as fechadas assistidas por artroscopia, e parece não haver diferença funcional além de 5 anos de acompanhamento.5,13,18,26 Estudos retrospectivos e séries de casos relatam consistentemente resultados funcionais satisfatórios com técnicas cirúrgicas abertas e fechadas.5,7,14–17,27–29

O presente estudo avaliou os resultados de uma técnica cirúrgica minimamente invasiva para o manejo da instabilidade aguda e crônica do tornozelo.

Métodos

Trata-se de um estudo descritivo, observacional, de uma série de casos realizado em pacientes com ILT aguda ou crônica submetidos à técnica modificada percutânea assistida por artroscopia, realizada por um cirurgião, entre 2013 e 2019.

O estudo incluiu 40 pacientes >18 anos tratados cirurgicamente em uma instituição de ensino e na prática privada do cirurgião. Pacientes com osteotomia prévia para deformidades angulares, pacientes com doenças reumáticas e pacientes sem acompanhamento nos primeiros 90 dias pós-operatórios foram excluídos do estudo.

Os pacientes do estudo receberam acompanhamento pós-operatório por pelo menos 1 ano. Os autores avaliaram a função pré- e pós-operatória utilizando a pontuação American Orthopaedic Foot and Ankle Society (AOFAS, na sigla em inglês) tornozelo-retopé. A coleta, a tabulação e a codificação de dados foram realizadas por meio de REDCap e do software R (R Foundation, Viena, Áustria) para análise de informações.
A descrição das variáveis quantitativas incluiu medidas de tendência central (média e mediana) e dispersão (desvio padrão [DP] e intervalo). A descrição das variáveis qualitativas utilizou frequências absolutas e relativas.

Foi feita uma análise descritiva bivariada para comparação de variáveis clínicas na cirurgia e no acompanhamento. Além disso, os escores de AOFAS de tornozelo-retropé na cirurgia e no acompanhamento foram comparados usando um diagrama de caixa.

O presente estudo foi aprovado pelo comitê de ética da instituição e obteve consentimento informado de cada paciente.

Técnica Cirúrgica

A técnica cirúrgica foi desenvolvida pelo cirurgião sênior. Todos os pacientes apresentaram uma lesão LTFA completa considerada irreparável. A técnica é realizada, utilizando anestesia geral ou regional, na seguinte sequência: o cirurgião verifica pela primeira vez a instabilidade anterior do tornozelo utilizando um teste de gaveta anterior orientado por imagem («Figura 1»). Em seguida, o paciente é posicionado em supino, com torniquete pneumático a 250 mmHg e um dispositivo de tração para ampliar o espaço articular («Figura 2»). O cirurgião delinea as zonas de segurança (de acordo com as técnicas descritas na literatura20–25), incluindo o ramo lateral do nervo fibular superficial, e marca os locais para portais anteriores e posteriores. Através da marca anteromedial, o cirurgião infiltra a articulação com 20 cc de solução salina e introduz o artroscópio de ângulo de 4.0 mm de 30°, protegendo a cartilagem articular de danos. Vendo diretamente do portal anteromedial, o cirurgião usa uma agulha estéril para criar um portal anterolateral e, em seguida, avalia as superfícies articulares da tíbia, do talo e da fibula, juntamente com os recessos laterais e medial. A avaliação se concentra na busca por lesões osteocondrais e recesso lateral. Uma sinovectomia, usando radiofrequência e uma lâmina de barbear, expõe o recesso lateral onde a âncora deve ser inserida. Um testador articular examina a sarjeta lateral para instabilidade («Figura 3»). Durante a visualização direta do portal anteromedial, o cirurgião coloca uma âncora de sutura Twinfix de 3,5 mm (Smith and Nephew) a 1 cm da extremidade distal da fibula através do portal anterolateral. Uma vez fixada a âncora, o cirurgião recupera as suturas através do portal anterolateral e puxa as suturas para provar a fixação adequada da âncora. Uma incisão de 0,5 cm é realizada 1,5 cm distal e 1,5 cm anterior da borda distal do maléolo lateral. Após disseção contundente, um transeunte de sutura Bird-Beak (Arthrex) é introduzido através da última incisão, em uma direção distal à proximal, agarrando o retináculo extensor em direção ao portal anterolateral. Duas suturas brancas

Fig. 1 Teste radiológico de gaveta anterior. Observe o deslocamento talar para a frente na imagem à direita.

Fig. 2 Posicionamento do paciente com dispositivo de tração.

Fig. 3 (A) Identificação e remoção da lesão condral com radiofrequência. (B) Remoção sinovial com lâmina. (C-D). Avaliação lateral de instabilidade com testador articular, deslocando a fibula lateralmente na articulação tibiofibular distal no recesso lateral (Esquerda: talo. Direito: fibula. Para cima: tíbia). (E-F). Fixação de âncora em um ponto previamente marcado através do portal auxiliar anterolateral.
são recuperadas através da incisão inicial do portal anterolateral. Uma nova incisão é realizada, 2 cm medial à incisão anterior, no mesmo plano, também direcionada para o portal anterolateral, e o mesmo procedimento é repetido para recuperar as suturas restantes (Figura 4). Finalmente, todas as suturas são recuperadas com o BirdBeak em direção à incisão lateral e cinco nós são amarrados com um empurrão de nó enquanto mantém o tornozelo em eversão. A estabilidade do tornozelo é provada no intraoperatório para garantir a reconstrução adequada.

Resultados
O presente estudo acompanhou 40 pacientes com ILT submetidos à técnica cirúrgica descrita no presente artigo. A Tabela 1 exibe suas principais características.

A idade média na intervenção cirúrgica foi de 38,3 anos (DP: 14,2), e o tempo médio de seguimento foi de 2,3 anos (DP: 1,5). Apenas 2 casos (5%) necessitaram de osteotomia posterior adicional para corrigir a deformidade do varo do pé traseiro. As lesões osteocondrais foram a lesão associada mais frequente (presente em 35% dos casos), seguida por choque no tornozelo em 12,5%. A maioria dos casos correspondeu à instabilidade crônica, exceto por dois casos de instabilidade aguda. Estes dois casos foram de atletas de alto rendimento que exigem um retorno antecipado ao esporte.

As Tabelas 2 e 3 apresentam características do paciente antes e depois da cirurgia. Nenhum caso teve infecção, lesão superficial do nervo fibular ou reintervenção cirúrgica.

Discussão
Existem muitos relatórios sobre técnicas abertas e próximas para a gestão da ILT. Com o advento da artroscopia do tornozelo, cresce o número de estudos sobre reparo assistido por artroscopia. Uma revisão da literatura atual produz um certo número de estudos observacionais. A maioria é, como o presente estudo, retrospectiva. A maioria destes estudos foi sobre não atletas, exceto para o estudo de Russo et al., que foi o único realizado exclusivamente em atletas. A idade média da cirurgia é < 50 anos em todos os artigos. Da mesma forma, no presente estudo, a idade média foi de 38,3 ± 14 anos.

Tabela 1 Descrição da população estudada

Ano de cirurgia inicial	Geral (n = 40)
2013	1 (2,5%)
2014	1 (2,5%)
2015	3 (7,5%)
2016	1 (2,5%)
2017	8 (20%)
2018	11 (27,5%)
2019	15 (37,5%)

Anos após a cirurgia inicial	Média (DP)	Mediana (min, máx)
	2,33 (1,49)	2,0 [1,0, 7,0]

Idade no momento da cirurgia	Média (DP)	Mediana (min, máx)
	38,3 (14,2)	38 [17, 64]

Gênero biológico

Lateralidade de lesão	Direita	Esquerda
	22 (55%)	18 (45%)

Lesão associada

Lesão osteocondral	14 (35%)
Corpos soltos	–
Choque	5 (12,5%)
Outro	4 (10%)
Nenhum	17 (42,5%)

Tempo de lesão para cirurgia	Dias	Meses	Anos
	2 (5%)	16 (40%)	22 (55%)

Abreviação: DP, desvio padrão.
O seguimento médio na literatura varia bastante, de 29 meses a 15 anos. A grande variabilidade no seguimento, juntamente com a diversidade de técnicas, dificulta a comparação válida entre estudos. No entanto, os resultados são positivos, o que reflete o sucesso de técnicas artroscópicas abertas e minimamente invasivas.

Estudos comparando técnicas abertas com técnicas minimamente invasivas assistidas por artroscopia medidas pelo escore AOFAS também mostram recuperação funcional satisfatória com ambas as abordagens.

Mesmo assim, a abordagem minimamente invasiva tem vantagens teóricas para o paciente, incluindo um período de recuperação pós-operatório reduzido com retomada da atividade em um período mais curto, feridas cirúrgicas menores e redução do risco de infecção.

A chance de avaliação da superfície articular em uma busca por lesões associadas que potencialmente afetam o prognóstico também é um valor agregado da abordagem assistida por artroscopia.

O aprimoramento de 38,3 pontos nos escores AOFAS de pacientes no presente estudo é consistente com a melhora >30 pontos em outros estudos de técnicas cirúrgicas assistidas por artroscopia.

Na literatura, similarmente aos resultados do presente estudo, os escores finais da AOFAS em cirurgias assistidas por artroscopia são geralmente >90 pontos, enquanto as pontuações para técnicas abertas são >80 pontos. Independente da técnica, parece que os resultados para procedimentos cirúrgicos para tratar a ILT são mais satisfatórios. Além disso, os desfechos são estáveis ao longo do tempo (Figura 5).

Tabela 2 Condição clínica antes e depois da cirurgia

	Antes da cirurgia (n = 40)	Após a cirurgia (n = 40)
Dor		
Nenhuma	1 (2,5%)	23 (57,5%)
Leve/ocasional	4 (10%)	15 (37,5%)
Moderada/diária	25 (62,5%)	2 (5%)
Severa/quase sempre presente	10 (25%)	-
Limitação de atividade, requisitos de suporte		
Sem limitação/sem necessidade de suporte	-	24 (60%)
Não há limitação de atividades diárias, limitações de atividades recreativas, sem apoio	14 (35%)	14 (35%)
Atividades diárias limitadas e recreativas, bengala	23 (57,5%)	2 (5%)
Severa limitação de atividades diárias e recreativas, andador, muletas, cadeira de rodas, aparelho	3 (7,5%)	-
Anormalidade da marcha		
Nenhuma, leve,	27 (67,5%)	40 (100%)
Óbvio	9 (22,5%)	-
Marcado	4 (10%)	-
Movimento sagital (Flexão mais extensão)		
Restrição normal ou leve (≥ 30°)	12 (30%)	33 (82,5%)
Restrição moderada (15-29°)	24 (60%)	7 (17,5%)
Restrição severa (< 15°)	4 (10%)	-
Tornozelo - estabilidade do retropé (anteroposterior, varo - valgo)		
Estável	-	40 (100%)
Definitivamente instável	40 (100%)	-
Pontuação AOFAS		
Média (DP)	55,4 (14,4)	93,7 (6,71)
Mediana [min, máx]	59 [23 - 85]	96 [74 - 100]

Abreviação: DP, desvio padrão.

1-6,10,15,18,27-30
Tabela 3 Características da população do estudo após o acompanhamento

Distância máxima de caminhada (quadril)	Geral (n = 40)
> 6	40 (100%)
4 a 6	–
1 a 3	–
< 1	–

Superfície de caminhada

Nenhuma dificuldade em nenhuma superfície	34 (85%)
Alguma dificuldade em terrenos irregulares, escadas, inclinações	6 (15%)
Dificuldade severa em terrenos irregulares, escadas, inclinações	–

Movimento do retropé (inversão mais eversão)

Restrição normal ou leve (75–100%)	39 (97,5%)
Restrição moderada (25–74% normal)	1 (2,5%)
Restrição marcada (< 25% do normal)	–

Alinhamento do pé

Bom, pé plantigrado, tornozelo-retropé bem alinhado	40 (100%)
Justo, pé plantigrado, algum mal alinhamento tornozelo-retropé observado, sem sintomas	–
Ruim, não plantigrado, maligno severo, sintomas	–

Fig. 5 Evolução da pontuação AOFAS após a cirurgia.

pontuação AOFAS com técnicas assistidas por artroscopia pode ser devido à redução da dor pós-operatória, como relatado em vários estudos.1–3,5,6,15,17,18,27,30 Isto também é consistente com os achados do presente estudo (Figura 6).

Como outras publicações, o presente estudo tem várias limitações. Sendo uma série de casos da técnica utilizada por apenas um cirurgião, é difícil extrapolar resultados para outras populações, assim como aplicar quaisquer estatísticas inferenciais. Os achados apresentados na presente série de casos não devem ser considerados como uma verdade absoluta e apenas refletem os resultados desta técnica. Além disso, a falta de um grupo de comparação técnica aberta e a seleção da amostra do estudo representam um importante viés de seleção.

Fig. 6 Dor relatada pelos pacientes antes e depois da cirurgia.
Conclusão

A técnica cirúrgica do presente estudo alcança resultados pós-operatórios satisfatórios para pacientes com ILT com recuperação funcional medida pelo escore AOFAS e um importante impacto positivo no manejo da dor. Os autores recomendam o uso desta técnica cirúrgica fácil e reprodutível para resultados positivos em pacientes com ILT.

Suporte Financeiro

O presente estudo não recebeu nenhum tipo de financiamento.

Conflito de Interesses

Os autores declaram não haver conflito de interesses.

Referências

1. Miklović TM, Donovan L, Protzuk OA, Kang MS, Feger MA. Acute lateral ankle sprain to chronic instability: a pathway of dysfunction. Phys Sportsmed 2018;46(01):116–122
2. Al-Mohrej OA, Al-Kenani NS. Chronic ankle instability: Current perspectives. Avicenna J Med 2016;6(04):103–108
3. Guillo S, Bauer T, Lee JW, et al. Consensus in chronic ankle instability: aetiology, assessment, surgical indications and place for arthroscopy. Orthop Traumatol Surg Res 2013;99(Suppl)S411–S419
4. Sá Caron AK, Heyrani N, Giza E, Kreulen C. Lateral Ankle Sprain and Chronic Ankle Instability. Foot Ankle Orthop; 2019
5. Rodríguez-Merchan EC. Chronic ankle instability: diagnosis and treatment. Arch Orthopa Trauma Surg 2012;132(02):211–219
6. Russo A, Giacché P, Marcantoni A, Arrighi A, Molfetta L. Treatment of chronic lateral ankle instability using the Bröstrom-Gould procedure in athletes: long-term results. Joints 2016;4(02):94–97
7. Araujo I, De Cesar Netto C, Cone B, Hudson P, Sahranavard B, Shah A. Results of lateral ankle ligament repair surgery in one hundred and nineteen patients: do surgical method and arthroscopy timing matter? Int Orthop 2017;41(11):2289–2295
8. de Vries JS, Kingma I, Blankevoort L, van Dijk CN. Difference in balance measures between patients with chronic ankle instability and patients after an acute ankle inversion trauma. Knee Surg Sports Traumatol Arthrosc 2010;18(05):601–606
9. Webster KA, Gribble PA. Functional rehabilitation interventions for chronic ankle instability: a systematic review. J Sport Rehabil 2010;19(01):98–114
10. Al Adal S, Pourkazemi F, Mackey M, Hiller CE. The prevalence of pain in people with chronic ankle instability: A systematic review. Int J Athl Train 2019;54(06):662–670
11. Freeman MA, Dean MR, Hanham IW. The etiology and prevention of functional instability of the foot. J Bone Joint Surg Br 1965;47(04):678–685
12. Simpson JD, Stewart EM, Macias DM, Chander H, Knight AC. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review. Phys Ther Sport 2019;37:210–219
13. Thompson C, Schabrun S, Romero R, Bialocerkowski A, van Dieen J, Marshall P. Factors Contributing to Chronic Ankle Instability: A Systematic Review and Meta-Analysis of Systematic Reviews. Sports Med 2018;48(01):189–205
14. Vega J, Peña F, Golánó P. Minor or occult ankle instability as a cause of anterolateral pain after ankle sprain. Knee Surg Sports Traumatol Arthros 2016;24(04):1116–1123
15. Matheny LM, Johnson NS, Liechti DJ, Clanton TO. Activity Level and Function After Lateral Ankle Ligament Repair Versus Reconstruction. Am J Sports Med 2016;44(05):1301–1308
16. Mabit C, Tourné Y, Besse JL, et al. Sofcot (French Society of Orthopedic and Traumatologic Surgery) Chronic lateral ankle instability surgical repairs: the long term prospective. Orthop Traumatol Surg Res 2010;96(04):417–423
17. Arroyo-Hernández M, Mellado-Romero M, Páramo-Díaz P, García-Lamas I, Vilá-Rico J. Chronic ankle instability: Arthroscopic anatomical repair. Rev Esp Cir Ortop Traumol 2017;61(02):104–110
18. Song YJ, Hua YH. Similar Outcomes at Early Term After Arthroscopic or Open Repair of Chronic Ankle Instability: A Systematic Review and Meta-Analysis. J Foot Ankle Surg 2019;58(02):312–319
19. Feger MA, Glaviano NR, Donovan L, et al. Current trends in the management of lateral ankle sprain in the United States. Clin J Sport Med 2017;27(02):145–152
20. Hawkins RB. Arthroscopic stapling repair for chronic lateral instability. Clin Podiatr Med Surg 1987;4(04):875–883
21. Acevedo JL, Mangone P. Ankle instability and arthroscopic lateral ligament repair. Foot Ankle Clin 2015;20(01):59–69
22. Drakos M, Behrens SB, Mulcahey MK, Paller D, Hoffman E, DiGiovanni CW. Proximity of arthroscopic ankle stabilization procedures to surrounding structures: an anatomic study. Arthroscopy 2013;29(06):1089–1094
23. Kushuk KB, Landsman AS, Werd MB, Hanft JR, Roberts M. Arthroscopic lateral ankle stabilization. Clin Podiatr Med Surg 1994;11(03):407–423
24. Corte-Real NM, Moreira RM. Arthroscopic repair of chronic lateral ankle instability. Foot Ankle Int 2009;30(03):213–217
25. Vega J, Golánó P, Pellegrino A, Rabat E, Peña F. All-inside arthroscopic lateral collateral ligament repair for ankle instability with a knotless suture anchor technique. Foot Ankle Int 2013;34(12):1701–1709
26. Cao Y, Hong Y, Xu Y, Zhu Y, Xu X. Surgical management of chronic lateral ankle instability: a meta-analysis. J Orthop Surg Res 2018;13(01):159
27. Mota Garcia Moreno MV, de Souza Guimarães J, Torres Gomes MJ, Marçal Vieira TE, Souza Jalil V, Júnior FH. SNG. Avaliação funcional anatomical repair. Rev Esp Cir Ortop Traumol 2019;61(02):104–110
28. Freeman MA, Dean MR, Hanham IW. The etiology and prevention of functional instability of the foot. J Bone Joint Surg Br 1965;47(04):678–685
29. Simpson JD, Stewart EM, Macias DM, Chander H, Knight AC. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review. Phys Ther Sport 2019;37:210–219
30. Thompson C, Schabrun S, Romero R, Bialocerkowski A, van Dieen J, Marshall P. Factors Contributing to Chronic Ankle Instability: A Systematic Review and Meta-Analysis of Systematic Reviews. Sports Med 2018;48(01):189–205