Phytochemical profile of *Paulownia tomentosa* (Thunb.) Steud.

Kristýna Schneiderová · Karel Šmejkal

Received: 25 April 2014 / Accepted: 2 August 2014 / Published online: 29 August 2014
© Springer Science+Business Media Dordrecht 2014

Abstract *Paulownia tomentosa*, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of *P. tomentosa* plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like peptidase. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidase. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure–activity relationships that have been worked out for them.

Keywords *Bignonia tomentosa* · Flavonoid · Lignan · *Paulownia tomentosa* · Paulowniaceae · Phenolic glycosides

Introduction

The plant *Paulownia tomentosa* (Thunb.) Siebold & Zucc. ex Steud. is a very adaptable and extremely fast-growing timber tree native to central and western China traditionally used in Chinese Medicine. This deciduous tree is now grown in many areas worldwide, mostly as a decorative ornamental tree (Erbar and Gülden 2011; Zhu et al. 1986).

Two related varieties of *P. tomentosa* have been described—var. *tsinlingensis* has a round to shallowly cordate leaf base and a glabrous or sparsely hairy lower leaf surface, whereas var. *tomentosa* is characterized by a cordate leaf base and an abaxial surface that is densely hairy when mature (Hong et al. 1998).

Paulownia was named *paulownia* in honour of Anna Paulowna (1795–1865), queen consort of The Netherlands and a daughter of Tsar Paul I of Russia. Nowadays, it is commonly known under its synonym *Bignonia tomentosa* (Zhu et al. 1986) or as the princess-tree, empress-tree, foxglove tree, royal paulownia, kiri, or mao pao tong (yuan bian zhong) (Erbar and Gülden 2011; Hong et al. 1998).

The genus *Paulownia* was first assigned to family Bignoniaceae by Swiss botanist Thunberg (1781). It was then transferred to the Scrophulariaceae family by the Dutch scholars Zuccarini and Siebold (1835) (Zhu et al. 1986). At last, Paulownia has been categorized as a family of its own, Paulowniaceae, based on data from the latest molecular phylogenetic studies. This
Table 1 Non-prenylated flavonoid aglycones isolated from *P. tomentosa*

Name of compound and ID	Isolation source	Biological activity	Chemical structure
Matteucinol (syn. 4’-O-methylfarrerol) (1) (25)	Leaves (Zhu et al. 1986)	Weak cytotoxic activity in vitro against human leukaemia (HL-60) and human hepatoma (SMMC-7721) cell lines (Zhao et al. 2012); no α-glucosidase inhibitory effect (Zhao et al. 2009); weak aldose-reductase inhibitory activity (Kadota et al. 1994); moderate inhibitory effect on human immunodeficiency virus-1 protease (Lee et al. 2008); no activity against lipopolysaccharide (LPS)-induced NO production in RAW 264.7 macrophages (Li et al. 2011)	![Chemical structure](image)
Apigenin (2)	Leaves (Zhao et al. 2012), flowers (Chen et al. 2009; Jiang et al. 2004)	Antioxidant (Prince Vijeya Singh et al. 2004); antibacterial, anti-inflammatory, antispasmodic, antidiarrhoeic, antiproliferative, vasorelaxant (Jiang et al. 2004); neuroprotective (Losi et al. 2004); cardioprotective (Psotová et al. 2004); chemopreventive activity against skin cancer (Chen et al. 2009); activity reviewed by Shukla and Gupta (2009) and Patel et al. (2007)	R1 H R2 H R3 OH R4 H R5 OH
Kaempferol (3)	Leaves (Si et al. 2008a)	Cytotoxic, pro-apoptotic (suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells) (Chen et al. 2013); antioxidant (e.g., attenuates bladder hyperactivity caused by potassium chloride after protamine sulphate-induced bladder injury) (Huang et al. 2014); impact on human health and cancer chemoprevention reviewed by Chen and Chen (2013), and Calderon-Montano et al. (2013)	OH R1 H OH R2 H OH
Compound	Source	Activity	
------------------------	--	--	
Luteolin (4)	Leaves (Si et al. 2008a; Zhang and Li 2011)	Memory-improving (Yoo et al. 2013); inhibition of α-amylase activity (Funke and Melzig 2005); cytotoxic (BGC-823 gastric carcinoma xenografts in nude mice) (Lu et al. 2013); vascular protective (Si et al. 2013); biological activity reviewed by Lopez-Lazaro (2009)	
Quercetin (5)	Bark (Si et al. 2011b), leaves (Si et al. 2008a)	Antifibrotic (Yoon et al. 2012); antioxidant, antiproliferative, anti-inflammatory, cardioprotective (Chen et al. 2013); neuroprotective (Ghosh et al. 2013); anti-diabetic [dose-dependent inhibition of both Na+/K+ ATPase and sodium hydrogen exchanger in type 2 diabetic erythrocytes (Mishra and Rizvi 2012); inhibition of PI3K (Koch et al. 2013)]; antiviral [anti HCV (Khachatoorian et al. 2012); HCMV (Cotin et al. 2012)]; no anti-HIV activity in vitro tested on H9 cells in the absence of toxicity (Tang et al. 1994); review of bioactivities by Russo et al. (2012)	
7,3′-Dimethylquercetin	Leaves, green immature fruit (Wollenweber et al. 2008)	Antimicrobial activity, poor antifungal effect (Omosa et al. 2014); low antimicrobial activity, low toxicity against human lymphocytes and monocytes, antioxidant/anti-inflammatory activity (Martini et al. 2004; Pelzer et al. 1998); low affinity to acetylcholinesterase (Remya et al. 2012); low inhibitory effect on NO production in RAW264.7 cells (Sudsai et al. 2013); no activity against HSV-1, low toxicity against Vero cells (Tian et al. 2009); no antioxidant activity (Takamatsu et al. 2003); no trypanocidal activity (Grael et al. 2000); activity against lipid peroxidation in rat liver microsomes (Yun et al. 2000); cytotoxicity against TK-10, MCF-7 and UACC-62 cells (Lopez-Lazaro et al. 2000); no inhibition of glycolysis in various tumor cells (Suolimna et al. 1975)	
Compound	R1 R2 R3 R4 R5	Function	
--------------------------------	--	---	
7,3',4'-Trimethylquercetin (7)	OH OMe OMe H OMe	Thrombin inhibition (Shi et al. 2012); inhibition of IL-4 synthesis in basophils (Hirano et al. 2006); weak trypanocidal activity (Jordao et al. 2004); weak inhibition of NO production in LPS-activated mouse peritoneal macrophages (Matsuda et al. 2003); weak inhibition of degranulation of RBL-2H3 cells (Mastuda et al. 2002); inhibition of Pgp activity (Scambia et al. 1994); no inhibition of glycolysis in a variety of tumor cells (Suolinna et al. 1975)	
7,3',4'-Trimethylmyricetin (8)	OH OMe OMe OH OMe	Weak inhibition of NO production in LPS-activated mouse peritoneal macrophages (Matsuda et al. 2003); weak inhibition of degranulation of RBL-2H3 cells (Mastuda et al. 2002)	
7,3',4',5'-Tetramethylmyricetin (9)	OH OMe OMe OMe OMe		

Compound	R1 R2 R3 R4 R5	Function
(+)-Catechin (10) (2R, 3S)	OH H OH OH OH	Antiviral (HCV) (Khachatoorian et al. 2012); antimicrobial (Mankovskaia et al. 2013); antioxidant, e.g., adjunctive therapy for the treatment of Parkinson’s disease (Teixeira et al. 2013); osteogenic (Wei et al. 2011); anti-proliferative, anti-inflammatory, antifibrotic (GRX cells) (Bnaganca de Moraes et al. 2012); activity reviewed, for example, by Bansal et al. (2013)
Dihydrotricin (11) (2S)	H OMe OH OMe OMe	Antioxidant, vasorelaxant, low anti-platelet aggregation activity (Chang et al. 2010)
Table 1 continued

Compound	Source	Activities	Structure	R₁	R₂	R₃	R₄	R₅
(−)-Epicatechin (12) (2R, 3R)	Leaves (Si et al. 2008a)	Antifungal (Betts et al. 2013); improves muscle mitochondrial structure (Taub et al. 2012); antioxidant, cardioprotective (Paneerselvam et al. 2010); cytotoxic (HT29 human colon adenocarcinoma cells) (Sánchez-Tena et al. 2013); anti-inflammatory (Fu et al. 2013); activity reviewed, for example, by Fraga and Oteiza (2011)	OH	H	OH	OH	OH	
Homoeriodictyol (syn. hesperetin) (13) (2S)	Leaves (Zhang and Li 2011)	Major flavonoid of citrus, activity reviewed by Khan and Zill-E-Huma (2014)	H	H	OH	OMe	OH	
Naringenin (14) (2S)	Bark (Si et al. 2011b), leaves (Si et al. 2008a)	Anti-diabetic (inhibition of PI3K) (Koch et al. 2013); antiviral [anti HCV (Khachatoorian et al. 2012), HCMV (Cotin et al. 2012)]; antimicrobial (de Aguiar et al. 2013); anti-inflammatory (Jayaraman et al. 2012); antioxidant (Wang et al. 2012); cytotoxic (ERα-transfected HeLA cells, ERα-containing HepG2 cells) (Bulzomi et al. 2010); no antiparasitic activity against *Leishmania* spp. (*major, chagasi, braziliensis, amazonensis*), *Trypanosoma cruzi* (Grecco Sdos et al. 2012); major flavonoid of citrus, activity reviewed by Khan and Zill-E-Huma (2014)	H	H	OH	H	OH	
Taxifolin (15) (2R, 3R)	Leaves (Si et al. 2008a)	Inhibition of β-amyloid aggregation (Sato et al. 2013); potential for atopic dermatitis treatment (blocks hERG K⁺ channels) (Yun et al. 2013); cytotoxic, pro-apoptotic (DU145 human prostate carcinoma cells) (Zhang and Coultas 2013); hypertensive (ACEI), anti-inflammatory, antioxidant (diminished 5-lipoxygenase and NADPH oxidase activity) (Arutyunyan et al. 2012); activity reviewed by Weidmann (2012)	OH	OH	OH	H	OH	
Compound Description	Source(s)	Activity/Effect	R₁	R₂	R₃	R₄	R₅	
---	--	---	-----	----	----	----	----	
5,4'-Dihydroxy-7,3'-dimethoxyflavanone (16) (2S)	Flowers (Chen et al. 2009; Jiang et al. 2004; Kim et al. 2010a, b)	Inactive against glutamate-induced neurotoxicity studied in primary-cultured rat cortical cells (Kim et al. 2010a, b); no trypanocidal activity (Grael et al. 2000)	H	H	OH	OMe	OMe	
5-Hydroxy-7,3',4'-trimethoxyflavanone (17) (2S)	Flowers (Kim et al. 2010a, b)	Inactive against glutamate-induced neurotoxicity studied in primary-cultured rat cortical cells (Kim et al. 2010a, b); inhibition of inflammation by induction of synovial apoptosis of fibroblast-like synoviocytes through caspase 3 activation in rats with adjuvant arthritis (Li et al. 2010, 2013); inhibition of JAK2-STAT3 signal pathway in rats (Li et al. 2012); inhibition of phosphodiesterase 4 (Yang et al. 2011); low toxicity on B16F10 and SK-MEL-1 melanoma cells (Rodriguez et al. 2002); antimutagenic activity (Miyazawa et al. 2000)	H	H	OMe	OMe	OMe	
7-Caffeoyl-acacetin (syn. 7-caffeoyl-4'-methoxyapigenin) (18)	Stem bark (Si et al. 2009)							
family includes only one genus and between six and ten species. It was originally introduced in 1949 by the research of Nakai (Erbar and Gülden 2011).

Biological activity and traditional uses of \textit{P. tomentosa} extracts

According to both legends and records, people were already using Paulownia for various purposes about 2,600 years ago. Chinese herbal medicine has used \textit{P. tomentosa} traditionally to relieve bronchitis, especially by reducing coughing, asthma, and phlegm (Zhu et al. 1986). It has also been used to treat conjunctivitis, dysentery, enteritis, coryza, gonorrhea, hemorrhoids, parotitis, traumatic bleeding, and tonsillitis (Jiang et al. 2004; Si et al. 2009). Solutions prepared from the leaves and fruit extracted in water have been used in daily applications to promote the healthy growth of hair and turn grey hair dark. An extract prepared from the wood and leaves may relieve swollen feet. Pharmacological experiments have shown that extracts from the fruit can reduce blood pressure. Nowadays, injections and tablets prepared from \textit{Paulownia} flowers and fruit are used for the herbal treatment of chronic bronchitis and other kinds of inflammation (Zhu et al. 1986).

More than 130 physiologically active constituents have been isolated from different parts of the \textit{Paulownia} plant. Their biological activity has been tested using both the isolated compounds and different types of extracts. For example, \textit{n}-butanol, EtOAc, and MeOH extracts obtained from the fruit have displayed antiradical activity in anti-DPPH and peroxynitrite assays, due to mainly the presence of flavonoids and phenolic glycosides, but not of all compounds present in these extracts have been identified (Šmejkal et al. 2007b). An MeOH extract obtained from the fruit inhibited hAChE (IC$_{50}$ = 1.44 mg/ml) and BChE (IC$_{50}$ = 0.97 mg/ml) significantly more strongly than CHCl$_3$ and water extracts (possibly due to the content of phenolic glycosides and C-prenylated dihydrofлавonols and flavanones) (Cho et al. 2012). Significant concentration-dependent anti-inflammatory properties of EtOH extracts of the bark of the tree have also been observed recently using a lipopolysaccharide (LPS)-induced nitric oxide production inhibition model in the murine macrophages cell line RAW264.7 (Si et al. 2011a). Kim et al. (2010a, b) showed potential of aqueous extract of \textit{P. tomentosa} to suppress glutamate

![Fig. 1](image_url) Schematic of the pathways of the biosynthesis of geranylated flavonoids
induced toxicity in primary cultured rat cortical cells (with possible sesquiterpene lactone as active substance). The bio-activities of individual compounds and, where possible, the structure–activity relationships are in Tables 1, 2, 3 and 4 and discussed in separate chapters.

P. tomentosa flavonoids and their biological activity

Flavonoids represent the most numerous group of secondary metabolites isolated from *P. tomentosa*. They can be divided into simple non-prenylated flavonoids 1–18 (Table 1), C-prenylated and C-geranylated flavonoids 19–59 (Tables 2, 3, respectively), and flavonoid glycosides 60–65. Compounds 16, 17, 19, 20, 25–31, 33–36, 38–59 have never been isolated from any other species. Most of the isolated flavanones are characterized by a 2S configuration in contrast to the dihydroflavonols, for which 2R, 3R isomer is often observed.

Some of the flavonoid compounds found in *P. tomentosa* have been categorized as dietary flavonoids. Consuming these compounds is believed to deliver health benefits. The activities of these flavonoids are frequently been reviewed, for example in the papers of Romano et al. (2013), Marzocchella et al. (2011), Ross and Kasum (2002), and Havsteen (2002). Some simple flavonoid substances isolated from fruit of *P. tomentosa* are commonly observed as the lipophilic components of different plant exudates. Flavonoids 1–18 show broad-spectrum pharmacological activities (Table 1). Many papers report their potential role as anticancer compounds for use against human cervical and breast (Bulzomi et al. 2010, 2012), hepatoma, leukemic (Zhao et al. 2012), osteosarcoma (Chen et al. 2013), gastric carcinoma (Lu et al. 2013), colon adenocarcinoma (Sánchez-Tena et al. 2013), or prostatic (Zhang and Coutlas 2013) cancer cell lines. Their antioxidant properties could explain their promising cardioprotective (Paneerselvam et al. 2010; Psotová et al. 2004) and neuroprotective effects (Losi et al. 2004). Antimicrobial (Betts et al. 2013; Jiang et al. 2004; Mankovskaia et al. 2013) and antiviral (Khachatoorian et al. 2012) bio-activities against different pathogens have also been discovered. In some cases, no specific biological activity has been observed (Kim et al. 2010a, 2010b; Tang et al. 1994).

Paulownia tomentosa is also a rich source of prenylated and geranylated flavonoids (19–59), whose occurrence is limited to relatively a few plant families (Yazaki et al. 2009). There are sometimes misunderstandings in the naming of these compounds. A compound containing both a phenolic skeleton and a terpenoid side chain is often designated as a “prenylated” phenolic substance, even though it contains not a prenyl, but rather a geranyl or other type of terpenoid side-chain. Prenylated flavonoids are biosynthesized by a combination of several pathways: the acetate, shikimate, and mevalonate pathways. The connection of terpenoid and flavonoid biosynthetic...
Table 3 C-geranylated flavonoids isolated from *P. tomentosa*

Name of compound and ID	Isolation	Biological activity	Chemical structure
Mimulone (syn. 6-geranylnaringenin, bonannione A) (21) (25)	Flowers (Chen et al. 2009; Jiang et al. 2004; Kim et al. 2010a, b), fruit (Asai et al. 2008; Cho et al. 2012, 2013; Lee et al. 2014; Šmejkal et al. 2007a, 2008b)	Antioxidant (Šmejkal et al. 2007b; Zima et al. 2010), antioxidant and anti-inflammatory properties in vitro in S100B-induced human monocytes (Lin et al. 2011), anti-inflammatory activity in LPS-activated THP-1 cells (Peluso et al. 2010); antimicrobial against seven Gram-positive bacteria, no antimicrobial activity against three types of Gram-negative bacteria or yeast (Šmejkal et al. 2008b), antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA 6975, MRSA 630, MRSA 62059) (Navrátilová et al. 2013); cytotoxic [epithelioid cell line WB344 (Šmejkal et al. 2007b), human erythro-leukaemia cell line K562 (Šmejkal et al. 2008a), human ovarian cancer cell line A2780 (Murphy et al. 2005, 2006; Yoder et al. 2007), KB, KB-VIN, A549, DU145 (Rosselli et al. 2011), low activity against T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Šmejkal et al. 2010)]; SARS-CoV PLpro activity (Cho et al. 2013); hAChE, BChe inhibitor (Cho et al. 2012); significant inhibitory effects against *Cp*-NanI (a sialidase from *C. perfringens* (Lee et al. 2014); weak estrogenic, no progestogenic and androgenic activity (Milligan et al. 2000); inactive against glutamate-induced neurotoxicity studied in primary-cultured rat cortical cells (Kim et al. 2010a, b)	R1 H R2 H R3 OH R4 H
R₁	R₂	R₃	R₄
----	----	----	----
HO	HO	H	HO

Table 3 continued

Flowers (Chen et al. 2009, 2012; Kim et al. 2010a, b)	Fruit (Asai et al. 2008; Cho et al. 2012, 2013; Lee et al. 2014; Smejkal et al. 2007a, 2008b)
Diplacone (syn. propolin C, nymphaeol A) (22-S)	Antioxidant (Kumazawa et al. 2007; Asai et al. 2008; Trusheva et al. 2011; prooxidant and anti-inflammatory (Kobayashi et al. 2008; antiherbivore activity against Gram-negative bacteria or yeast (Smejkal et al. 2008b); antimicrobial against S. aureus, various methicillin-resistant strains of S. aureus (MRSA 287, MRSA 62059—most potent together with 31 (Navratilova et al. 2013) and methicillin-susceptible S. aureus strain.
	Anti-MRSA, inactive against P. aeruginosa (Raghakumar et al. 2010); antiphlogistic (TNF-α, similar to indomethacin) (Hoshek et al. 2010), but no anti-inflammatory effect was observed in COX-2 inhibition assay (Phommart et al. 2005); cytotoxic (epithelioid cell line WB344 (Smejkal et al. 2007a), T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Smejkal et al. 2010), human erythro-leukaemia cell line K562 (Smejkal et al. 2008a), KB human oral carcinoma, human breast cancer, human small cell lung cancer NCI-H181, human small cell lung cancer NCI-H87 (Phommart et al. 2005), induction of apoptosis via caspase activation, bid and cytochrome c release in human melanoma cell line A375, human ovarian cancer cell line IGROV1, human stomach cancer cell line NCI-N87, human small cell lung cancer NCI-H169 (Kim et al. 2004), human ovarian cancer cell line HJK (Smejkal et al. 2010); selective docking to Leishmania major N-myristoyltransferase (Ogungbe et al. 2014); antileishmanial activity (L. donovani amastigotes) (Salem et al. 2011); inactive against glutamate-induced neurotoxicity studied in primary-cultured rat cortical cells (Kim et al. 2010a, b))
Table 3 continued

Compound	Source	Description	Structures			
Diplacol (23) (2R, 3R)	Fruit (Asai et al. 2008), flowers, leaves (Kobayashi et al. 2008)	Antioxidant (Asai et al. 2008); cytotoxic (human ovarian cancer cell line A2780) (Murphy et al. 2006; Yoder et al. 2007), low activity against T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Šmejkal et al. 2010)	OH OH OH H			
3'-O-methyldiplacol (24)	Fruit (Asai et al. 2008; Cho et al. 2012, 2013; Lee et al. 2014; Šmejkal et al. 2007a, 2008b), flowers and leaves (Kobayashi et al. 2008)	Antioxidant (Šmejkal et al. 2007a; Yazaki et al. 2009); SARS-CoV PLpro activity (Cho et al. 2013); weak hAChE, BChE inhibitor (Cho et al. 2012); significant inhibitory effects against Cp-NanI (a sialidase from C. perfringens) (Lee et al. 2014); strong docking energy to L. major pteridine reductase 1, selective docking to glycerol-3-phosphate dehydrogenase (Ogungbe et al. 2014), antileishmanial activity (L. donovani amastigotes) (Salem et al. 2011); activity against lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Šmejkal et al. 2010), human erythro-leukaemia cell line K562 (Šmejkal et al. 2008a); weak antimicrobial activity against seven Gram-positive bacteria, no antimicrobial activity against three types of Gram-negative bacteria or yeast (Šmejkal et al. 2008b), weak antimicrobial activity against S. aureus, various methicillin resistant strains of S. aureus (MRSA 287, MRSA 4211, MRSA, 6975, MRSA 630, MRSA 62059) (Navrátilová et al. 2013)	H OMe OH H			
3'-O-methyldiplacol (syn. diplacol 3'-O-methylether) (25) (2R, 3R)	Flowers (Kobayashi et al. 2008), fruit (Asai et al. 2008; Cho et al. 2012, 2013; Šmejkal et al. 2008b)	Antioxidant (Asai et al. 2008; Yazaki et al. 2009), antimicrobial against seven Gram-positive bacteria, no antimicrobial activity against three types of Gram-negative bacteria or yeast (Šmejkal et al. 2008b), antimicrobial against S. aureus and various methicillin resistant strains of S. aureus (MRSA 287, MRSA 4211, MRSA, 6975, MRSA 630, MRSA 62059)—most potent together with 27 (Navrátilová et al. 2013); cytotoxic (human erythro-leukaemia cell line K562) (Šmejkal et al. 2008a), low activity against T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Šmejkal et al. 2010); SARS-CoV PLpro activity (Cho et al. 2013); hAChE, BChE inhibitor (Cho et al. 2012); antileishmanial activity (L. donovani amastigotes) (Salem et al. 2011), selective docking to L. major methionyl tRNA synthetase (Ogungbe et al. 2014)	OH OMe OH H			
Compound	Source	Biological Activity				
----------	--------	---------------------				
3′-O-methyl-5′-O-methyl diplacone (syn. 6-geranyl-4′,5,7-trihydroxy-3′,5′-dimethoxyflavanone) (26) (25)	Fruit (Asai et al. 2008; Cho et al. 2012, 2013; Smejkal et al. 2008b)	Antioxidant (Yazaki et al. 2009), antimicrobial against seven Gram-positive bacteria, no antimicrobial activity against three types of Gram-negative bacteria or yeast (Smejkal et al. 2008b), antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA 6975, MRSA 630, MRSA 62059) (Navratilova et al. 2013); cytotoxic (multiple myeloma RPMI 8226 and U266 cell lines, human cervical cancer cells HeLa, BJ human fibroblast cell line (Smejkal et al. 2010), human erythro-leukaemia cell line K562) (Smejkal et al. 2008a); SARS-CoV PLpro activity (Cho et al. 2013); hAChE, BChE inhibitor (Cho et al. 2012)				
3′-O-methyl-5′-hydroxy diplacone (syn. 6-geranyl-4′,5,5′,7-tetrahydroxy-3′-methoxyflavanone) (27) (25)	Immature fruit (Asai et al. 2008), fruit (Smejkal et al. 2008b), leaves (Kobayashi et al. 2008)	Antioxidant (Asai et al. 2008; Yazaki et al. 2009; Zima et al. 2010); antimicrobial activity against seven Gram-positive bacteria, no antimicrobial activity against three types of Gram-negative bacteria or yeast (Smejkal et al. 2008b), antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA 6975, MRSA 630, MRSA 62059) (Navratilova et al. 2013); cytotoxic (human erythro-leukaemia cell line K562) (Smejkal et al. 2008a), activity against T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Smejkal et al. 2010)				
3′-O-methyl-5′-methoxy diplaconol (28) (racemic mixture of 2R,3R and 2S,3S)	Fruit (Smejkal et al. 2007a)	OH OMe OH OMe				
6-Geranyl-5,7-dihydroxy-3′,4′-dimethoxyflavanone (29) (25)	Immature fruit (Asai et al. 2008)	Antioxidant (Asai et al. 2008)				
6-Geranyl-3′,5,7-tri-hydroxy-4′-methoxyflavanone (syn. 4′-O-methyl diplacone) (30) (25)	Immature fruit (Asai et al. 2008), fruits (Cho et al. 2012, 2013; Lee et al. 2014)	Antioxidant (Asai et al. 2008); SARS-CoV PLpro activity (Cho et al. 2013); hAChE, BChE inhibitor (Cho et al. 2012); significant inhibitory effects against *Cp*-NanI (a sialidase from *C. perfringens*) (Lee et al. 2014); antileishmanial activity (*L. donovani* amastigotes) (Salem et al. 2011)				
6-Geranyl-3,3′,5,7-tetrahydroxy-4′-methoxyflavanone (syn. 4′-O-methyl diplacol) (31) (2R, 3R)	Immature fruit (Asai et al. 2008), fruit (Cho et al. 2012, 2013)	Antioxidant (Asai et al. 2008); SARS-CoV PLpro activity (Cho et al. 2013); hAChE, BChE inhibitor (Cho et al. 2012)				
Schizolaenone C (32) (2S)	Fruit (Smejkal et al. 2010)	OH H OMe OMe				
		Cytotoxic (T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, human cervical cancer cells HeLa, BJ human fibroblast cell line) (Smejkal et al. 2010), cytotoxic (human ovarian cancer cell line A2780) (Murphy et al. 2006; antioxidant (Zima et al. 2010)				
R1	R2	R3	R4	Compounds	Properties	
------------	------------	-------	-------------	---	---	
OH	OH	OMe	OH	6-Geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavanone (33) (2R, 3R)	Fruit (Cho et al. 2012) hAChE, BChE inhibitor (Cho et al. 2012)	OH
H	OH	OMe	OH	6-Geranyl-3,3',5,5',7-tetrahydroxy-4'-methoxyflavanone (34) (2S)	Fruits (Šmejkal et al. 2008b)	H
H	OH	OMe	OH	Tomentodiplacone B (35) (2S)	Antioxidant (Yazaki et al. 2009; Zima et al. 2010); low direct cytotoxicity (human erythro-leukemia cell line K562) (Šmejkal et al. 2008a); low direct activity against T-lymphoblastic leukaemia CEM, multiple myeloma RPMI 8226 and U266 cell lines, BJ human fibroblast cell line (Šmejkal et al. 2010), effect on cell cycle (THP-1 human monocytic leukaemia cells) (Kollár et al. 2011); antimicrobial against S. aureus and various methicillin resistant strains of S. aureus (MRSA 287, MRSA 4211, MRSA, 6975, MRSA 630, MRSA 62059) (Navrátilová et al. 2013), no antimicrobial activity on Gram-negative bacteria or yeast and on seven Gram-positive bacteria (Navrátilová et al. 2013; Šmejkal et al. 2008b)	
R						
OH				3,3',4', 5,7-Pentahydroxy-6-[7-hydroxy-3,7-dimethyl-2(E)octenyl] flavanone (36) (2R, 3R)	Immature fruit (Asai et al. 2008) Antioxidant (Asai et al. 2008)	OH
H				Prokinawan (37) (2S)	Flowers (Kobayashi et al. 2008), immature fruit (Asai et al. 2008)	H
Table 3 continued	R1	R2	R3			
-----------------------	----	----	----			
Tomentodiplacone (38) (2S)	Fruit (Šmejkal et al. 2008b)	Antioxidant (Yazaki et al. 2009); antimicrobial against seven Gram-positive bacteria, no antimicrobial activity against three types of Gram-negative bacteria or yeast (Šmejkal et al. 2008b), weak erythroid differentiation activity (Šmejkal et al. 2008a)	H	OMe	H	
Tomentodiplacol (39) (2R, 3R)	Fruit (Šmejkal et al. 2007a)	Antioxidant (Šmejkal et al. 2007a)	OH	OMe	H	
4’,5,5’,7-Tetrahydroxy-6-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]-3’-methoxyflavanone (40) (2S)	Immature fruit (Asai et al. 2008)	Antioxidant (Asai et al. 2008)	H	OMe	OH	
3,3’,4’,5,7-Pentahydroxy-6-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]flavanone (41) (2R, 3R)	Immature fruit (Asai et al. 2008)	Antioxidant (Asai et al. 2008)	OH	OH	H	
Tanariflavanone D (42) (2S)	Immature fruit (Asai et al. 2008), fruit (Schneiderová et al. 2013)	Antioxidant (Asai et al. 2008, Phommart et al. 2005); cytotoxic (human breast cancer cell line BC) (Phommart et al. 2005); no anti-inflammatory effect in COX-2 inhibition assay (Phommart et al. 2005)	H	H	OH	
Tomentomimulol (43) (2R, 3R)	Fruit (Schneiderová et al. 2013)	OH	H	H		
Mimulone B (44) (2S)	Fruit (Schneiderová et al. 2013)	H	H	H		
Compound	Source	Activity Description				
---------------------------	-------------------------------	--				
Tomentodiplacone C (45)	Fruit (Navrátilová et al. 2013)	Antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA 6975, MRSA 630, MRSA 62059), no antimicrobial activity on Gram-negative bacteria, minor ability to affect the initiation of eukaryotic translation via dual-luciferase reported assay (firefly and renilla) in comparison with anisomycin (Navrátilová et al. 2013)				
Mimulone E (46)	Fruit (Navrátilová et al. 2013)					
Tomentodiplacone D (47)	Fruit (Navrátilová et al. 2013)	Antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA 6975, MRSA 630, MRSA 62059), no antimicrobial activity on Gram-negative bacteria, no ability to affect the initiation of eukaryotic translation via dual-luciferase reported assay (firefly and renilla) (Navrátilová et al. 2013)				
Tomentodiplacone E (48)	Fruit (Navrátilová et al. 2013)					
Tomentodiplacone F (49)	Fruit (Navrátilová et al. 2013)					
Tomentodiplacone G (50)	Fruit (Navrátilová et al. 2013)	Antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA 6975, MRSA 630, MRSA 62059), no antimicrobial activity on Gram-negative bacteria, no ability to affect the initiation of eukaryotic translation via dual-luciferase reported assay (firefly and renilla) (Navrátilová et al. 2013)				
Tomentodiplacone H (51)	Fruit (Navrátilová et al. 2013)					
Tomentodiplacone I (52)	Fruit (Navrátilová et al. 2013)					
Compound	Source	Activity Description	Structures			
-------------------	-------------------------	---	------------			
Mimulone C (53)	Fruit (Navrátilová et al. 2013)	Antimicrobial against *S. aureus* and various methicillin resistant strains of *S. aureus* (MRSA 287, MRSA 4211, MRSA, 6975, MRSA 630, MRSA 62059), no antimicrobial activity on Gram-negative bacteria, 53 has no ability to affect the initiation of eukaryotic translation via dual-luciferase reported assay (firefly and renilla) (Navrátilová et al. 2013)	![Structure](image1)			
Mimulone D (54)	Fruit (Navrátilová et al. 2013)		![Structure](image2)			
Tomentin A (55)	Fruit (Cho et al. 2013)	Activity against Severe acute respiratory syndrome corona virus (SARS-CoV PLpro, a reversible inhibitor 63 was the most potent compound tested (Cho et al. 2013)	![Structure](image3)			
Tomentin B (56)	Fruit (Cho et al. 2013)		![Structure](image4)			
Tomentin C (57)	Fruit (Cho et al. 2013)		![Structure](image5)			
Tomentin D (58)	Fruit (Cho et al. 2013)		![Structure](image6)			
Tomentin E (59)	Fruit (Cho et al. 2013)		![Structure](image7)			
Table 4 Phenolic glycosides isolated from *P. tomentosa*

Name of compound and ID	Isolation	Biological activity	Chemical structure		
Coniferin (syn. abietin, coniferosid, laricin) (69)	Bark (Sticher and Lahloub 1982; Zhu et al. 1986)	Antiphlogistic (Choi et al. 2004), low COX-2/1 and 5-LOX inhibition (Wang et al. 2013; Díaz Lanza et al. 2001); low antioxidant activity in vitro (DPPH) (She et al. 2013); stimulation osteoblastic bone formation in vitro (Ding et al. 2010); concentration-dependent contractions in rat aortic rings (Deliorman et al. 2000); inhibition of ADP-induced platelet aggregation (Panossian et al. 1998); hypotensive in rats (Matsubara et al. 1991)	H		
Syringin (syn. eleutherosid B) (70)	Bark (Sticher and Lahloub 1982; Zhu et al. 1986)	Antidepressant (Kurkin et al. 2006), antiphlogistic, antinociceptive (Choi et al. 2004); peroxyl radical scavenging capacity (Kim et al. 2010a, b), inhibition of NO production in LPS-induced RAW 264.7 cells (Lee et al. 2009); enhances memory in aged rats (Huang et al. 2013a, b); protective effects against Aβ(25–35)-induced atrophies of axons and dendrites (Bai et al. 2011; Tohda et al. 2008); immunomodulatory activity in PMN phagocytic function test (Sharma et al. 2012); hepatoprotective in mice (Gong et al. 2014); adiponectin receptor 2 agonist (Sun et al. 2013); low COX and 5-LOX inhibition (Díaz Lanza et al. 2001); concentration-dependent contractions in rat aortic rings (Deliorman et al. 2000); inhibition of ADP-induced platelet aggregation (Panossian et al. 1998; Iizuka et al. 2005); moderate in vitro cytotoxic activities against A549 and HL-60 (Yang et al. 2012); antitumour activity in sarcoma S180 transplanted mice (Zhang et al. 2007); weak inhibition of snake PDE I (Chai et al. 2007); hypoglycemic effect (Liu et al. 2008; Niu et al. 2008a, b; Niu et al. 2007); adaptogenic activity reviewed by Panossian and Wagner (2005)	OMe		
Compound	Source	Structures	R1	R2	R3
---	--------	--	----	-----	-----
Acteoside (syn. verbascoside) (71)	Bark (Si et al. 2011b; Sticher and Lahloub 1982; Zhu et al. 1986), wood (Si et al. 2008d), sapwood (Ota et al. 1993), fruit (Smejkal et al. 2007b), leaves (Schilling et al. 1982), young plant (Damtoft and Jensen 1993)	Antioxidant, anti-inflammatory (Lin et al. 2006; Smejkal et al. 2007b); antihepatotoxic (Xiong et al. 1998), antimicrobial (Kurkin 2003), antiviral (Kim et al. 2001); immuno-modulatory (Akbay et al. 2002); antihypertensive (Ahmad and Rizwani 1995); neuroprotective (Koo et al. 2005); cytotoxic (e.g., human erythro-leukemia cell line K562 (Smejkal et al. 2008a), antiestrogen in breast cancer cells MCF7 and osteoblast without any effect on endometrial cancer cells Ishikawa (Papoutsi et al. 2006), bioactivities reviewed by He et al. (2011)	OH	OH	H
b-Oxoacteoside (syn. tomentoside A) (72)	Antioxidant (Tozuka et al. 2005)	OH	OH	=O	
Martynoside (73)	Stem (Kang et al. 1994)	Antioxidant (Jimenez and Riguera 1994); antihypertensive (Kang et al. 2003); cytotoxic (antiestrogen in breast cancer cells MCF7 via the ER-pathway, osteoblasts KS483, endometrial cancer cells Ishikawa) (Papoutsi et al. 2006)	OMe	OMe	H
Campneoside I (74)	Wood (Si et al. 2008d), stem (Kang et al. 1994)	Antibacterial against *Staphylococcus* and *Streptococcus* species (MIC 150 μg/ml) (Kang et al. 1994)	OH	OH	OMe
Campneoside II (syn. b-hydroxy-acteoside) (75)	Bark (Si et al. 2011b), wood (Si et al. 2008b)	Antibacterial, anti-inflammatory (Jimenez and Riguera 1994), anticomplement (Si et al. 2008b)	OH	OH	OH
Ilicifolioside A (76)	wood (Si et al. 2008b)	Anticomplement (Si et al. 2008b)	OH	OH	OEt
Table 4 continued					
-----------------------	-----------------				
Isoacteoside (syn. isoverbascoside) *(77)*	Bark (Si et al. 2011b), wood (Si et al. 2008d), sapwood (Ota et al. 1993), fruit (Šmejkal et al. 2007b), leaves (Schilling et al. 1982), young plant (Damtoft and Jensen 1993)	Antioxidant (Šmejkal et al. 2007b), xanthine oxidase inhibition (Kong et al. 1999); suppression of glutamate induced neurotoxicity (Koo et al. 2005); antioxidant, immunosuppressive (Jiménez and Riguera 1994); cytotoxic (e.g., human erythro-leukemia cell line K562) (Šmejkal et al. 2008a)	H		
Isocampneoside I *(78)*	Wood (mixture of R- and S-epimers) (Si et al. 2008d)	Inhibition of D-galactosamine induced cytotoxicity in primary cultured mouse hepatocytes (Pan et al. 2010)	OMe		
Isocampneoside II *(79)*	Bark (Si et al. 2011b), wood (Si et al. 2008b)	Aldose reductase inhibitor (potential against diabetic complications) (Kim et al. 2011); anticomplement (Si et al. 2008b); antioxidant, neuro-protective on hydrogen peroxide-induced oxidative injury in PC12 cells (Si et al. 2013).	OH		
Isotilicifolioside A *(80)*	Wood (Si et al. 2008b)	Anticomplement (Si et al. 2008b)	OEt		
Cistanoside F *(81)*	Bark (Si et al. 2011b)	Antioxidant (Xiong et al. 1996); vasorelaxant (Yoshikawa et al. 2006); interaction with bovine serum albumin (Wu et al. 2012)			

![Chemical structure of Cistanoside F](image-url)
pathways is provided by prenyltransferases (Šmejkal 2014; Andersen and Markham 2006; Kuzuyama et al. 2005). The side chain can later be converted into different moieties by several reactions. It is unclear, whether the described modifications of the prenyl side-chain are natural—sunlight, the presence of oxygen and an elevated temperature can all affect the terpenoid metabolism—or are artefacts of isolation. Some of the changes in the prenyl moiety have been observed after treatment of an extract, or during the separation of a mixture in the acidic environment of silica gel (Navrátilová et al. 2013; Šmejkal 2014) (Fig. 2).

Most of the prenylated flavonoids isolated from *P. tomentosa* belong to C-geranylated group of flavonoids (21–52). Some of them have their side-chain further modified by hydroxylation (35–44, 50, 51, 53–59), methoxylation (45–47, 49, 50), oxidation (47, 48, 52), cyclization (51, 53–59), or reduction (19, 20, 47–52). Interestingly, these compounds have been isolated from the leaves, flowers and fruit, but they are most commonly isolated from the roots, root bark, or bark of different plants (Botta et al. 2005). Compounds 23, 24, and 28 have been found in the yellow dendritic trichomes on the adaxial side of the *P. tomentosa* leaves. On the other hand, no significant detected concentration of secondary metabolites has been detected in the white dendritic trichomes on the adaxial side of the leaves or the brown dendritic trichomes on the flower buds (Kobayashi et al. 2008). Glandular hairs found on the young reproductive organs of *P. tomentosa* are rich in flavonoids, with concentrations over 1,000 times greater than those on the surfaces of the young leaves (Kobayashi et al. 2008). Some seasonal variations in the appropriate time for harvesting the fruit have been discovered. Autumn is the best time to obtain high concentrations of flavonoids whereas early summer is better for phenylpropanoid glycosides (Holubová and Šmejkal 2011).

The antioxidant (Asai et al. 2008; Šmejkal et al. 2007a, b; Zima et al. 2010), antibacterial (Navrátilová et al. 2013; Šmejkal et al. 2008b), antiphlogistic (Hošek et al. 2010), cytotoxic (Kollár et al. 2011; Šmejkal et al. 2007a, 2008a, 2010), and severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) activities (Cho et al. 2013) of isolated geranylated flavonoids have been described recently, together with their inhibitory effect on both human acetylcholinesterase and butyrylcholinesterase (Cho et al. 2012). The great ability of several geranylated flavanones to interact with bacterial sialidase isolated from *Clostridium perfringens* (*Cp*-NanI), a bacterium causing various gastrointestinal diseases, has recently been reported (Lee et al. 2014).

Possible relationships between structure and activity have been proposed for each of these biological activities. Nevertheless, it is difficult to evaluate real structure–activity relationships only by comparing the published studies, because the study conditions and the assays employed are often different. Generally, the
addition of an isoprenoid chain renders the derivate molecule more pharmacologically effective than the parent compound, probably because the prenyl group increases the lipophilicity and confers a strong affinity for biological membranes (Botta et al. 2005; Epifano et al. 2007; Chen et al. 2014).

Interestingly, neither the geranyl side-chain nor its substitution affects the antioxidant activity of flavonoids. The spatial arrangement of the substitution of the flavanone skeleton is more important. For example, the antiradical activity is increased by 2′-hydroxyl substitution of the ring B, whereas 4′-methoxyl substitution diminishes it. The general rules postulated for the antioxidant activity of flavonoids in vitro are applicable (Havsteen 2002; Chen et al. 2002), there are many review publications that touch on this topic, and it is not aim of this paper to delve deeply into this (Plaza et al. 2014). The type of antioxidant assays used for the experiment could also be a factor that significantly affects this activity (Zima et al. 2010).

Numerous reports about structure related antimicrobial activity have been published, but comparison shows the results to be widely conflicting (Cushnie and Lamb 2005). Based on several studies, it has been postulated that hydroxylation at position C-5 or C-7 of ring A and positions C-2′ or C-4′ of ring B increases the antibacterial activity (Šmejkal et al. 2008b; Navrátilová et al. 2013). However, contrary to this assumption, 45 and 50 had no significant antibacterial activity (Navrátilová et al. 2013). Interestingly, some C-geranylated flavonoids do not able inhibit the growth of Gram-negative bacteria (21, 22, 25–27, 35, 38, 45, 47–48, 50, 53, and 54). Resistance to these compounds is probably due to the more complex structure and hydrophilic nature of G-cell walls (Navrátilová et al. 2013; Šmejkal et al. 2008b). Furthermore, substitution of the geranyl side-chain with carbonyl, hydroxyl or methoxyl groups diminishes the antibacterial activity in a manner similar to what is seen when the geranyl substituent at C-6 forms a ring by reacting with the hydroxyl group at C-7. Compounds 45, 47, 48, 50, 53, and 54 exhibit some degree of activity in the range of the concentrations tested on the Gram-positive bacteria Staphylococcus aureus and various methicillin resistant strains of S. aureus. The level of activity varied in depending on both the structure and the bacterial strain used in the assay. Flavonoid structures like 24 are more effective in protecting plants from water loss because of their reduced polarity (Kobayashi et al. 2008; Navrátilová et al. 2013). Compounds 45, 47, 48, 50, and 53 were also tested for their ability to affect the initiation of the endosomal translation via dual-luciferase reported assay (firefly and renilla), but only 45 showed a modest activity in comparison with anisomycin (Navrátilová et al. 2013).

The cytotoxicity of the prenylated flavonoids obtained from P. tomentosa has been tested in more than 20 different cell lines. The type of prenylation strongly affects the cytotoxicity of a flavonoid in the traditional P-388 murine leukemia model. The unmodified 3-prenyl group and the presence of corresponding ortho-dihydroxy or trihydroxy substitution of the flavonoid ring B are crucial to its activity against P-388 as compared with other prenyl substituents (Hakim et al. 1999, 2002, 2006). Similar findings have been observed for modified C-6 geranyl groups and the substitution of the ring B for other cell lines tested (Šmejkal et al. 2010). However, replacing the para-hydroxy group of the ring B of a C-8 prenylated flavanone with several different acyl substituents resulted in greater cytotoxicity (Aniol et al. 2012; Šmejkal 2014). It has also been found that cytotoxic activity is diminished by the presence of a C-3 hydroxyl substituent on the ring C, 4′-methoxy substitution of the ring B or a para-hydroxy substituted ring B (Šmejkal et al. 2008a). For this reason, it is important to emphasize that the relative importance of the substitution of ring B can differ according to the cell line used. Modification of a prenyl or geranyl side-chain can not only change the direct cytotoxicity, but it may also affect the proliferation cells or trigger apoptosis (Kollár et al. 2011; Šmejkal et al. 2007a, 2008a, 2010; Šmejkal 2014).

Prenylated flavonoids 55–59, modified with an unusual 3,4-dihydro-2H-pyran moiety, have been found to inhibit the severe acute respiratory syndrome corona virus PLpro enzyme more effectively than their parent compounds, the precursors from which were they derived (Cho et al. 2013).

The presence of a geranyl group at the C-6 position (21, 22, 24–26, 30, 31, 33, and 34) seems to be crucial for the hAChE and BChE inhibitory effects. The most effective inhibitor was 22. All of the geranylated flavonoids, apart from 26, inhibited hAChE dose-dependently. It appears that greater inhibition is observed when ring B of the flavanone bears free hydroxyl groups (Cho et al. 2012).
The crystal structure of the bacterial sialidase \(Cp\)-NanI catalytic domain in a complex with the geranylated flavonoid diplacone (22) provides structural insights into the binding mode of natural flavonoid-based inhibitors at atomic resolution. It shows how the geranyl and C-3 hydroxyl groups of 22 contribute to the stability of the enzyme-inhibitor complex. Time-dependent competitive inhibition patterns have been observed. Structural comparison of the human sialidases Neu1–Neu4 with the \(Cp\)-NanI–diplacone (22) complex suggests that the interaction between human sialidases and 22 is likely to be unfavourable because of polar or ionic repulsion (Lee et al. 2014).

Six flavonoid glycosides have been extracted from the stem bark 60–62 (Si et al. 2009) and flowers 63–66 (Scogin 1980) of \(P.\) tomentosa. Apigenin-7-\(O\)-\(\beta\)-D-glucopyranoside (synonym: cosmosiin) (Kurkina et al. 2011) (60) shows anti-HIV activity in vitro on H9 cells (Tang et al. 1994) and enhances the secretion of adiponectin, the phosphorylation of the tyrosine residue of insulin receptor-\(\beta\), and the translocation of GLUT5 (Rao et al. 2011). Compound 60 shows no significant hepatic Glc-6-phosphatase inhibitory activity in vitro (Kumar et al. 2010). Apigenin-7-\(O\)-\(\beta\)-D-glucuronopyranoside (61) was more potent than apigenin (2) and omeprazole in an assay analysing the inhibition of reflux esophagitis and gastritis promoted surgically and by application of indomethacin in rats (Min et al. 2005). No information about the biological activity of apigenin-7-\(O\)-\(\beta\)-D-glucuronopyranosyl (1 \(\to\) 2)-\(O\)-\(\beta\)-D-glucuronopyranoside (62) has been found in the literature. Delphinidin-3-\(O\)-glucoside (synonym: myrtillinn) (63) protects microglia from inflammation-induced stress signaling (Carey et al. 2013), is cytotoxic against the MCF-7 (breast) cancer cell line (Vareed et al. 2006), and has an the affinity for the estrogenic ER\(\beta\) receptor (Hidalgo et al. 2012). Delphinidin-3,5-di-\(O\)-glucoside (64) and cyanidin-3,5-di-\(O\)-glucoside (65) are potent antioxidants (Lee et al. 2011; Tanaka et al. 2013). Compounds 63 and 65 are potent ACE inhibitors in vitro (Hidalgo et al. 2012; Persson et al. 2009).

\(P.\) tomentosa lignans and their biological activity

Only three lignans: (+)-paulownin (66), (+)-sesamin (67), (+)-piperitol (68) have been isolated from the wood of \(P.\) tomentosa (Ina et al. 1987; Takahashi and Nakagawa 1966; Zhu et al. 1986) (Fig. 3). Several reports have described their pharmacological effects (Zhang et al. 2014; Pan et al. 2009). Compound 66 is a promising antifungal agent that acts against the basidiomycetes \(Fomitopsis\) palustris and \(Trametes\) versicolor (Kawamura et al. 2004). Sesamin (67) has been previously isolated from the wood of \(P.\) tomentosa, and \(P.\) kawakami and the hybrid of \(P.\) elongata \(\times\) \(P.\) fortunei (Takahashi and Nakagawa 1966; Zhu et al. 1986). Compound 67 is the major lignan in sesame, and has various biological activities, such as antioxidant, angiogenic (Chung et al. 2010), antiphlogistic (Chatrattanakunchai et al. 2000), antihypertensive (Nakano et al. 2006), insecticidal (Nascimento et al. 2004), neuroprotective (Khan et al. 2010), and anticarcinogenic (Yasuda and Sakaki

\[\text{R1} = \text{H, R2} = \text{OH} \]

\[\text{R1} = \text{R2} = \text{H} \]

\[66 \quad 67 \]

\[\text{Fig. 3} \quad \text{Lignans} \]
However, this compound showed no significant ability to reduce the formation of atherosclerotic lesions in the ApoE (−/−) gene-knockout mouse, whereas specific dietary polyphenols, especially quercetin and theaflavin were more active (Loke et al. 2010). It has been suggested that some of the biological effects attributed to sezamine (67) may, in fact, be caused by its metabolites and that 67 may be acting as a proactive substance in the body (Yasuda and Sakaki 2012). The metabolism of sesamim (67) by cytochrome P450 and UDP-glucuronosyltransferase has been found remarkably different in humans as compared to other animals. Further investigation into the safety of taking sesamin (67) with therapeutic drugs that are metabolised by CYP2C9 is also needed (Yasuda and Sakaki 2012).

P. tomentosa phenolic glycosides and their biological activity

A total of thirteen phenylpropanoid glycosides (69–81) with multifarious bioactivities, natural compounds derived biosynthetically from the amino acid phenylalanine, have been isolated from different parts of the *P. tomentosa* plant (Table 4) (Damtoft and Jensen 1993; Kang et al. 1994; Ota et al. 1993; Schilling et al. 1982; Si et al. 2008b, d, Si et al. 2011b; Sticher and Lahloub 1982; Šmejkal et al. 2007b; Zhu et al. 1986). Phenylpropanoids are of great interest for fabricating effective tonic, anticancer, hepatoprotective, immunostimulating, antimicrobial, and anti-inflammatory phytopreparations (Kurkin 2003; Galvez et al. 2006; Panossian and Wagner 2005; Fu et al. 2008; Pan et al. 2003).

P. tomentosa quinones and their biological activity

A new furanoquinone, methyl-5-hydroxy-dinaphthol [1,2–2’,3’]furan-7,12-dione-6-carboxylate (MHDDC) (82) (Fig. 4) identified in *P. tomentosa* stem bark (MeOH extract) has been shown to possess antiviral activity against poliovirus types 1 and 3, using HeLa cells in vitro (Kang et al. 1999). Its cathepsin K and L inhibitory activities in vitro have recently been discovered. The 5-OH functional group may have a favourable effect on this reduction potential which prevents the degradation of bone the matrix carried out by osteoclasts (Park et al. 2009).

![Fig. 4 Quinones](image)

The naphtoquinone plumbagin (83) has been detected in the leaves and fruit of *P. tomentosa* (Babula et al. 2006). It has been used in traditional systems of medicine since ancient times (Pile et al. 2013). It has exhibited promising antimalarial activity in vitro with IC$_{50}$ of 580 (270–640) nM and 370 (270–490) nM, respectively, against 3D7 chloroquine-sensitive *P. falciparum* and K1 chloroquine-resistant *P. falciparum* clones, using an assay based on SYBR Green I. Toxicity testing indicated relatively low toxicity at dose levels up to 100 mg/kg body weight (for a single oral dose) and 25 mg/kg (for daily dose given for consecutive 14 days) for acute and subacute toxicity, respectively. Based on the results of in vivo antimalarial testing, plumbagin administered at a the dose of 25 mg/kg of body weight for 4 consecutive days exhibited moderate to weak antimalarial activity with regard to its ability to reduce parasitaemia and prolong survival time (Sumsakul et al. 2014). Other published studies of plumbagin (83) described effects such as antifungal, antibacterial, cytotoxic (Krishnaswamy and Purushothaman 1980), anticoagulant (Santhakumari et al. 1978), anthelmintic (antischistosomal) (Zhang and Coultas 2013) and an anti-inflammatory effect on the amelioration of experimental ulcerative colitis in mice at a dose of 8–10 mg/kg (Pile et al. 2013).

P. tomentosa terpenoids and their biological activity

Six iridoids: 7-β-hydroxyharpagide (84), paulownioside (85), catalpol (86), aucubin (87), tomentoside (88) and 7-hydroxytomentoside (89) have been isolated from the leaves of *P. tomentosa* (84–87) (Adriani et al. 1981; Franzyk et al. 1999), the bark of the trunk and
roots (86) (Plouvier 1971) and parts of the young plant (85, 86, 88, and 89) (Damtoft and Jensen 1993) (Fig. 5). Compound 86 shows neuroprotective activity (Li et al. 2004), a cardioprotective effect against myocardial infarction—specifically reperfusion damage (Hung et al. 2013a, b), and radioprotective effects (Chen et al. 2013). It also increases glucose utilization by increasing the secretion of β-endorphin from the adrenal gland (Shieh et al. 2011). Compounds 86 and 87 possess antispasmodic activity (Deurbina et al. 1994). Aucubin (87) had antioxidant and pancreas-protective effects on streptozotocin-induced diabetes in rats (Jin et al. 2008) and it may improve obesity-induced atherosclerosis by attenuating the TNF-α-induced inflammatory response (Park 2013). A weak antibacterial effect (against Streptococcus pneumoniae and MG-hemolytic streptococcus, MIC 28.946 mg/ml) (Zheng et al. 2012) and neuroprotective effects of 87 on diabetes and diabetic encephalopathy (Xue et al. 2012) have also been observed.

The sesquiterpenic lacton isoatriplicolide tiglate (90) has been isolated from P. tomentosa flowers. It has neuroprotective effects against glutamate-induced neurotoxicity (Kim et al. 2010a, 2010b) and cytotoxic activity against several cancer cell lines: A549 lung carcinoma; SK-OV-3 adenocarcinoma; SK-Mel-2 malignant melanoma; XF498 central nervous system tumors; HCT15 colon adenocarcinoma, against which its effect is comparable to that of reference substance adriamycin (Moon and Zee 2001); human breast cancers MDA-MB-231, MCF7, HS578T, and T47D; and the HeLa, SiHa and C33A cervical cancer cell lines (Jung et al. 2012).

Seven phytosterols have been isolated from P. tomentosa leaves: ursolic acid (91) (Zhu et al. 1986; Zhang and Li 2011), 3-epiursolic acid (92), pomolic acid (93), corosolic acid (94), maslinic acid (95), β-sitosterol (96), and daucosterol (97) (Zhang and Li 2011). Most of these show various biological activities, e.g., 91 is a potentially useful for treating Alzheimer’s disease (because of its ability to block the interactions of the amyloid β-CD36) (Wilkinson et al. 2011). It can prevent the recruitment of the monocytes that accelerate atherosclerosis, a major complication of diabetes, in mice (Ullevig et al. 2011), and it also possesses antibacterial (Wong et al. 2012), anti-trypanosomal, and anti-leishmanial properties (Bero et al. 2011). Compound 91 has also shown cytotoxic effects against K562 and K562/ADR human chronic myelogenous leukaemia, HL60 and HL60/ADR human acute myelocytic leukaemia cancer cells, and the human colon cancer cell lines SW480 and SW620 (Shan et al. 2011). Compounds 93–96 also show promising cytotoxic potential, e.g., 93 is effective against the human chronic myelogenous leukaemia cell line 562 and also against cells derived from chronic myeloid leukaemia patients (Vasconcelos et al. 2007). Compound 94 shows cytotoxic effects against osteosarcoma MG-63 cells (Cai et al. 2011) and immunosuppressive activity on myeloid-derived suppressor cells in the murine sarcoma model (Horland et al. 2013). Compound 95 is effective against HT29 human colon cancer cells (Reyes-Zurita et al. 2011) and 96 promotes apoptosis in various cancer cells (Hac-Wydro 2013). Anti-inflammatory activities have been revealed for compounds 91, 92, and 96 (Deepak and Handa 2000), and 93 (Schinella et al. 2008). An immunomodulatory effect of 97 in protecting mice against candidiasis disseminated by the CD4+ Th1 immune response has been seen (Lee et al. 2007). Other recently discovered pharmacological effects include antimalarial (95) (Moneriz et al. 2011), hypotensive and endothelium-dependent vasorelaxant effects (93) (Estrada et al. 2011). Compound 95 is potentially useful for treating cerebral ischemic injuries (Guan et al. 2011), and 94 has promising antiidiabetic effects (Sivakumar et al. 2009).

P. tomentosa glycerides and their biological activity

Thirty acylglycerols (98–127) belonging to 1,3-di-O-acetyl-2-O-((acyl)-glycerols, 1-O-acetyl-2-O-(acyl)-sn-glycerols and 2-O-(acyl)-glycerols, including only five known compounds (99, 106, 108, 114, and 119), have been identified in the exudates secreted from the glandular trichomes on the leaves: 1,3-di-O-acetyl-2-O-[(3R,6S)-3-(acyloxy)-6-hydroxyeicosanoyl]glycerol (98), 1-O-acetyl-2-O-[(3R)-3-(acyloxy)octadecanoyl]-sn-glycerol (99), 1-O-acetyl-2-O-[(3R,7R)-3,7-bis(acyloxy)octadecanoyl]-sn-glycerol (100), 1-O-acetyl-2-O-[(3R,6S)-3-(acyloxy)-6-hydroxyoctadecanoyl]-sn-glycerol (101), 2-O-[((3R,7R)-3,7-diacyloxy)-6-hydroxyeicosanoyl]-glycerol (102), 2-O-[(3R,6S)-3,6-diacyloxyeicosanoyl]-glycerol (103), 2-O-[(3R,8R)-3,8-diacyloxyeicosanoyl]-glycerol (104), 2-O-[(3R,8R)-
9R)-3,9-dihydroxy-eicosanoyl]-glycerol (105), 1-O-acetyl-2-O-[(3R)-3-(acetyloxy) eicosanoyl]-sn-glycerol (106), 1-O-acetyl-2-O-[(3R,6S)-3,6-bis(acetyloxy)eicosanoyl]-sn-glycerol (107), 1-O-acetyl-2-O-[(3R,7R)-3,7-bis(acetyloxy)eicosanoyl]-sn-glycerol (108), 1-O-acetyl-2-O-[(3R,8R)-3,8-bis(acetyloxy)eicosanoyl]-sn-glycerol (109), 1-O-acetyl-2-O-[(3R,9R)-3,9-bis(acetyloxy)eicosanoyl]-sn-glycerol (110), 1-O-
Fig. 6 Glycerides
acetyl-2-O-\{(3R,6S)-3-(acetyloxy)-6-hydroxyeicosanoyl\}sn-glycerol (111), 1-O-acetyl-2-O-\{(3R,8R)-3-(acetyloxy)-8-hydroxyeicosanoyl\}sn-glycerol (112), 1-O-acetyl-2-O-\{(3R,9R)-3-(acetyloxy)-9-hydroxyeicosanoyl\}sn-glycerol (113), 2-O-\{(3R)-3-(acetyloxy)octadecanoyl\}glycerol (114), 2-O-\{(3R,6S)-3-(acetyloxy)-6-hydroxy-octadecanoyl\}glycerol (115), 2-O-\{(3R,7R)-3-(acetyloxy)-7-hydroxy-octadecanoyl\}glycerol (116), 2-O-\{(3R,8R)-3-(acetyloxy)-8-hydroxy-octadecanoyl\}glycerol (117), 2-O-\{(3R,9R)-3-(acetyloxy)-9-hydroxy-octadecanoyl\}glycerol (118), 2-O-\{(3R,7R)-3,7-bis(acetyloxy)octadecanoyl\}glycerol (119), 2-O-\{(3R,8R)-3,8-bis(acetyloxy)octadecanoyl\}glycerol (120), 2-O-\{(3R)-3-(acetyloxy)eicosanoyl\}glycerol (121), 2-O-\{(3R,6S)-3-(acetyloxy)-6-hydroxy-eicosanoyl\}glycerol (122), 2-O-\{(3R,7R)-3-(acetyloxy)-7-hydroxy-eicosanoyl\}glycerol (123), 2-O-\{(3R,8R)-3-(acetyloxy)-8-hydroxy-eicosanoyl\}glycerol (124), 2-O-\{(3R,9R)-3-(acetyloxy)-9-hydroxy-eicosanoyl\}glycerol (125), 2-O-\{(3R,8R)-3,8-bis(acetyloxy)eicosanoyl\}glycerol (126), 2-O-\{(3R,9R)-3,9-bis(acetyloxy)eicosanoyl\}glycerol (127). The relatively most abundant constituents were 111 (20 % of the total glycerides), 126 (14 %), and 120 and 127 (12 %) (Asai et al. 2009). Another analysis of the secretions of the glandular hairs on the leaves of both bud flushes and adult trees as well as the flowers of adult trees showed that these secretions contain ten glycerides (106, 108–110, 118, 122, 124–127). These compounds showed sticky character, but they were not toxic to several insects. Therefore, the glandular hairs on the leaves and flowers may serve only to physically deter herbivores (Kobayashi et al. 2008) (Fig. 6).

Miscellaneous \textit{P. tomentosa} compounds and their biological activity

Six known phenolic acids, namely \textit{p}-hydroxybenzoic acid (128), vanillic acid (129), gallic acid (130), cinnamic acid (131), \textit{p}-coumaric acid (132), and caffeic acid (133) have been identified in the leaves of \textit{P. tomentosa} (128–133), bark (130 and 131) and wood (133) (Ota et al. 1993; Si et al. 2008c, 2011b), and \textit{p}-ethoxybenzaldehyde (134) is present in flowers (Yuan et al. 2009). The 5,7-dihydroxy-6-geranylcromone (135) isolated from fruits shows only moderate cytotoxic activity against a suspension culture of \textit{Nicotiana tabacum} cv. Bright Yellow (BY-2), which confirms that ring B of the flavonoid skeleton is important for this activity (Šmejkal et al. 2008a). A large group of essential oil substances found in the flowers of \textit{P. tomentosa} have also been identified (Oprea et al. 2004; Ibrahim et al. 2013) (Fig. 7).

Conclusions

Plants are still highly esteemed all over the world as rich sources of therapeutic agents. In this context, traditional Chinese herbal medicines, such as \textit{Paullownia} continue to influence a modern healthcare. It has been estimated that approximately 420,000 plant species exist on Earth, but little is known about the phytochemical or therapeutic qualities of most of them. Thanks to the development of the spectral and other analytical methods used in modern phytochemistry, many of the principal physiologically active...
secondary metabolites have been identified and researched in detail. The accumulated knowledge of traditional medicine is therefore, playing an important role in enhancing the success of drug discovery in herbal medicine. Approximately 80% of the currently known antimicrobial, cardiovascular, immuno-suppressive, and anticancer drugs are of plant origin (Pan et al. 2013).

As mentioned in this review, *P. tomentosa* is a rich source of multifarious secondary metabolites, mainly prenylated flavonoids. As of today 135 compounds, including flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and other miscellaneous compounds have been isolated from various extracts of this plant.

Of increasing interest are the isolation and identification of *P. tomentosa* prenylated flavonoids, as they have shown promising pharmacological effects. In the first experiments, their antioxidant, antibacterial, antiprolifogistic, cytotoxic, and SARS-CoV PL activities have been discovered along with inhibitory effects on human acetylcholinesterase, butyrylcholinesterase, and bacterial neuraminidases. More than 40 compounds with modified prenol or geranyl side-chains attached at C-6 of the flavonoid skeleton have been isolated from the flowers, fruit, and leaves of *P. tomentosa*. Only two of these compounds have shown the presence of a five-carbon side-chain; for the others a ten-carbon side-chain is typical. Further, only a few compounds have shown a geranyl moiety modified by hydroxylation at C-6′ or C-7′. Some compounds have a geranyl group modified by forming a heterocyclic moiety, which is also unusual. Most of them have never been isolated from any other plant species. However, further in vivo pharmacology studies are needed to precisely elucidate biological mechanism of action, efficacy, and toxicity of these promising therapeutic agents. Elucidation of the structure–activity relationships is also crucial for their further total syntheses and introduction into medical practice. For these reasons, the study of *P. tomentosa* as a source of biologically active metabolites is significant and future interest in this plant is ensured.

References

Adriani C, Bonini C, Iavarone C et al (1981) Isolation and characterization of paulownioside, a new highly oxygenated iridoid glucoside from *Paulownia tomentosa*. J Nat Prod 44:739–744

Ahmad M, Rizwani GH (1995) Acteoside: a new antihypertensive drug. Phytother Res 9:525–527

Akbay P, Calis I, Ünderge Ü et al (2002) *In vitro* immunomodulatory activity of verbascoside from *Nepeta ucrainica* L. Phytother Res 16:593–595

Andersen OM, Markham KR (2006) Flavonoids: chemistry, biochemistry, applications. CRC Press, Boca Raton

Aniol M, Stompor M et al (2012) Antiproliferative activity and synthesis of 8-prenyllinarigenin derivatives by demethylation of 7-O- and 4′-O-substituted isoxanthohumols. Med Chem Res 21:4230–4238

Arutyunyan TV, Korystova AF, Kublik LN et al (2012) Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with nitric oxide synthase inhibitor and dexamethasone. Age 35:2089–2097

Asai T, Hara N, Kobayashi S et al (2008) Geranylated flavonones from the secretion on the surface of the immature fruits of *Paulownia tomentosa*. Phytochemistry 69:1234–1241

Asai T, Hara N, Kobayashi S et al (2009) Acylglycerols (=glycerides) from the glandular trichome exudate on the leaves of *Paulownia tomentosa*. Helv Chim Acta 92:1473–1494

Babula P, Mikelová R, Adam V et al (2006) Chromatografické stanovení naftochinonů v rostlinách (Chromatographic evaluation of naphtochinones in plants). Chem Listy 100:271–276

Bai Y, Tohda C, Zhu S et al (2011) Active components from Siberian ginseng (*Eleutherococcus senticosus*) for protection of amyloid β(25-35)-induced neutritic atrophy in cultured rat cortical neurons. J Nat Med 65:417–423

Bansal S, Vyas S, Bhattacharya S et al (2013) Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep 30(11):1438–1454

Bero J, Haanert V, Chataigne G et al (2011) *In vitro* antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. J Ethnopharmacol 137:998–1002

Betts JW, Wareham DW, Haswell SJ et al (2013) Antifungal synergy of theaflavin and epicatechin combinations against *Candida albicans*. J Microbiol Biotechnol 23:1322–1326

Botta B, Vitali A, Menendez P (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:713–739

Braganca de Moraes CM, Melo DA, Santos RC et al (2012) Antiproliferative effect of catechin in GRX cells. Biochem Cell Biol 90:575–584

Bulzomi P, Bolli A, Galluzzo P et al (2010) Naringenin and 17β-estradiol coadministration prevents hormone-induced human cancer cell growth. IUBMB Life 62:51–60

Bulzomi P, Bolli A, Galluzzo P et al (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol A background. IUBMB Life 64:690–696

Cai X, Zhang H, Tong D et al (2011) Corosolic acid triggers mitochondria and caspase-dependent apoptotic cell death in osteosarcoma MG-63 cells. Phytother Res 25:1354–1361

© Springer
flavanones from *Baccharis retusa* DC. (Asteraceae). *Exp Parasitol* 130:141–145

Guau T, Qian Q, Tang X et al (2011) Maslinic acid, a natural inhibitor of glycogen phosphorylase, reduces cerebral ischemic injury in hyperglycaemic rats by GLT-1 up-regulation. *J Neurosci Res* 89:1829–1839

Hac-Wydro K (2013) Studies on β-sitosterol and ceramide-induced alterations in the properties of cholesterol/sphingomyelin/ganglioside monolayers. *Biochim Biophys Acta* 1828:2460–2469

Hakim EH, Fahriyati A, Kau MS et al (1999) Artoidendosinains A and B, two new prenylated flavones from the root of *Artocarpus champeidan*. *J Nat Prod* 62:613–615

Hakim EH, Asnizar Y, Aimi N et al (2002) Artoidendosinain P, a new prenylated flavone with cytotoxic activity from *Artocarpus lanceifolius*. *Fitoterapia* 73:668–673

Hakim EH, Achmad SA, Juliawaty LD et al (2006) Prenylated flavonoids and related compounds of the Indonesian *Artocarpus* (Moraceae). *J Nat Med* 60:161–184

Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. *Pharmacol Ther* 96:67–202

He J, Hu XP, Zeng Y et al (2011) Advanced research on acteoside for chemistry and bioactivities. *J Asian Nat Prod Res* 13:449–464

Hidalgo M, Martin-Santamaria S, Recio I et al (2012) Potential anti-inflammatory, anti-adhesive, anti-estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. *Genes Nutr* 7:295–306

Hirano T, Higa S, Arimitsu J et al (2006) Luteolin, a flavonoid, inhibits AP-1 activation by basophils. *Biochem Biophys Res Commun* 340(1):1–7

Holubová P, Šmejkal K (2011) Changes in the level of bioactive compounds in *Paulownia tomentosa* fruits. *J Liq Chromatogr Relat Technol* 34:276–288

Hong D, Yang H, Jin C et al (1998) Scrophulariaceae through Gesneriaceae. *Flora China* 18:8–10

Horland H, Fujiwara Y, Takemura K et al (2013) Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. *Mol Nutr Food Res* 57(6):1046–1054

Hošek J, Závalová V, Šmejkal K et al (2010) Effect of diplacone on LPS-induced inflammatory gene expression in macrophages. *Folia Biol (Praha)* 56:124–130

Hošek J, Tioniolo A, Neuwirth O et al (2013) Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. *J Nat Prod* 76(9):1586–1591

Huang C, Cui Y, Ji L et al (2013a) Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult. *Pharm Biol* 51:463–473

Huang D, Hu Z, Yu Z (2013b) Eleutheroside B or E enhances learning and memory in experimentally aged rats. *Neural Regen Res* 8:1103–1112

Huang YB, Lin MW, Chao Y et al (2014) Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol. *Int J Urol* 21(1):94–98

Ibrahim NA, El-Hawary SS, Mohammed MMD et al (2013) Chemical composition, antimicrobial activity of the essential oil of the flowers of *Paulownia tomentosa* (Thunb.) Steud. growing in Egypt. *J Appl Sci Res* 9(4):3228–3232

Iizuka T, Nagai M, Moriyama H et al (2005) Antiplatelet aggregatory effects of the constituents isolated from the flower of *Carthamus tinctorius*. *Nat Med (Tokyo, Jpn)* 59:241–244

Ina H, Ono M, Sashida Y et al (1987) (-)-Piperitol from *Paulownia tomentosa*. *Planta Med* 53:504

Jayaraman J, Jesudoss VA, Menon VP et al (2012) Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. *Toxicol Mech Methods* 22:568–576

Jiang TF, Du X, Shi YP et al (2004) Determination of flavonoids from *Paulownia tomentosa* (Thunb) Steud. by micellar electrokinetic capillary electrophoresis. *Chromatographia* 59:255–258

Jiménez C, Riguera R (1994) Phenylethanoid glycosides in plants: structure and biological activity. *Nat Prod Rep* 11:591–606

Jin L, Xue HY, Jin LJ et al (2008) Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. *Eur J Pharmacol* 582:162–167

Jordao CO, Vichnewski W, Petto de Souza GE et al (2004) Trypanocidal activity of chemical constituents from *Lycnhophora salicifolia* Mart. *Phytother Res* 18(4):332–334

Jung S, Moon HI, Ohk J et al (2012) Inhibitory effect and mechanism on antiproliferation of isatoiapilcide tigate (PCAC) from *Paulownia coreana*. *Molecules* 17:5945–5951

Kadota S, Basnet P, Hase K et al (1994) Matteucierianate A and B, two new and potent aldose reductase inhibitors from *Matteuccia orientalis* (Hook.) Trev. *Chem Pharm Bull* 42(8):1712–1714

Kang KH, Jang SJ, Kim BK et al (1994) Antibacterial phenylpropanoid glycosides from *Paulownia tomentosa* Steud. *Arch Pharm Res* 17:470–475

Kang KH, Huh H, Kim BK et al (1999) An antiviral furanquinone from *Paulownia tomentosa* Steud. *Phytother Res* 13:624–626

Kang DG, Lee YS, Kim HJ et al (2003) Angiotensin converting enzyme inhibitory phenylpropanoid glycosides from *Clerodendrum trichotomum*. *J Ethnopharmacol* 89:151–154

Kawamura F, Ohara S, Nishida A (2004) Antifungal activity of constituents from the heartwood of *Gmelina arborea*: part I. Sensitive antifungal assay against Basidiomycetes. *Holzforschung* 58:189–192

Khachatourian R, Arumugaswami V, Raychaudhuri S et al (2012) Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. *Virology* 433:346–355

Khan MK, Zill-E-Huma DO (2014) A comprehensive review on antiviral agents. *J Ethnopharmacol* 164:207–217

Khan MM, Ishrat T, Ahmad A et al (2010) Sesamin, attenuates behavioural, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. *Chem Biol Interact* 183:255–263

Kim HJ, Woo ER, Shin CG et al (2001) *HIV-1* integrase inhibitory phenylpropanoid glycosides from *Clerodendron trichotomum*. *Arch Pharm Res* 24:286–291

Kim SJ, Kwon DY, Kim YS et al (2010a) Peroxyl radical scavenging capacity of extracts and isolated components
from selected medicinal plants. Arch Pharm Res 33:867–873

Kim SK, Cho SB, Moon HI et al (2010b) Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytother Res 24:1898–1900

Kim JK, Lee YS, Kim SH et al (2011) Inhibition of aldose reductase by phenylethanoid glycoside isolated from the seeds of Paulownia coreana. Biopharm Bull 34:160–163

Kobayashi S, Asai T, Fujimoto Y et al (2008) Anti-herbivore structures of Paulownia tomentosa: morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann Bot 101:1035–1047

Koch CE, Ganjam GK, Steger J et al (2013) The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr 109:1040–1051

Kollár P, Bárta T, Závalová V et al (2011) Geranylated flavone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br J Pharmacol 162(7):1534–1541

Kong LD, Wolfender JL, Cheng CH et al (1999) Xanthine oxidase inhibitors from Brandisiana hancei. Planta Med 65:744–746

Koo KA, Sung SH, Park JH et al (2005) In vitro neuroprotective activities of phenylethanoid glycosides from Callicarpa dichotoma. Planta Med 71:778–780

Krishnaswamy M, Purushothaman KK (1980) Plumbagin: a study of its anticancer, antibacterial and antifungal properties. Indian J Exp Biol 18:876–877

Kumar M, Rawat P, Khan MF et al (2010) Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity. Fitoterapia 81:475–479

Kumazawa S, Ueda R, Hamasaka T et al (2007) Antioxidant activity of some phytopharmaceuticals and phenylethanoids. Pharm Chem J 40:614–619

Kolla´r P, Ba´rta T, Za´valova´ V et al (2011) Geranylated flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling. Br J Nutr 109:1040–1051

Kollár P, Bárta T, Závalová V et al (2011) Geranylated flavone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br J Pharmacol 162(7):1534–1541

Kong LD, Woffender JL, Cheng CH et al (1999) Xanthine oxidase inhibitors from Brandisiana hancei. Planta Med 65:744–746

Koo KA, Sung SH, Park JH et al (2005) In vitro neuroprotective activities of phenylethanoid glycosides from Callicarpa dichotoma. Planta Med 71:778–780

Krishnaswamy M, Purushothaman KK (1980) Plumbagin: a study of its anticancer, antibacterial and antifungal properties. Indian J Exp Biol 18:876–877

Kumar M, Rawat P, Khan MF et al (2010) Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity. Fitoterapia 81:475–479

Kumazawa S, Ueda R, Hamasaka T et al (2007) Antioxidant activity of some phytopharmaceuticals and phenylethanoids. Pharm Chem J 40:614–619

Kurkin VA (2003) Phenylpropanoids from medicinal plants: distribution, classification, structural analysis, and biological activity. Chem Nat Compd 39:123–153

Kurkin VA, Dubischchev AV, Ezhkov VN et al (2006) Antide-}

Kurkin VA (2003) Phenylpropanoids from medicinal plants: distribution, classification, structural analysis, and biological activity. Chem Nat Compd 39:123–153

Kurkin VA, Dubischchev AV, Ezhkov VN et al (2006) Antidepressant activity of some phytopharmaceuticals and phenylpropanoids. Pharm Chem J 40:614–619

Kurkina AV, Khusainova AL, Davva ED et al (2011) Flavonoids from Tanacetum vulgare flowers. Chem Nat Compd 47:284–285

Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435:983–987

Lee JH, Lee YJ, Park JH et al (2007) Immuno regulatory activity of daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 25:3834–3840

Lee JS, Miyashiro H, Nakamura N et al (2008) Two new triterpenes from the rhizome of Dryopteris crassirhizoma, and inhibitory activities of its constituents on human immunodeficiency virus-1 protease. Chem Pharm Bull 56:711–714

Lee S-H, Jung MJ, Heo S-J et al (2009) Anti-inflammatory effect and HPLC analysis of extract from edible Cirsium setidens. J Korean Soc Appl Biol Chem 52:437–442

Lee JH, Lee HJ, Choung MG (2011) Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrid cv. Noblered). Food Chem 129:272–278

Lee Y, Ryu YB, Youn H-S et al (2014) Structural basis of sialidase in complex with geranylflavonoids as potent natural inhibitors. Acta Cryst D70:1357–1365

Li DQ, Duan YL, Bao YM et al (2004) Neuroprotection of catalpol in transient global ischemia in gerbils. Neurosci Res 50:169–177

Li R, Cai L, Xie X-f et al (2010) 7,3'-Dimethoxy hesperetin induces apoptosis of fibroblast-like synoviocytes in rats with adjuvant arthritis through caspase 3 activation. Phytother Res 24(12):1850–1856

Li Y-L, Wu L, Ouyang D-W et al (2011) Phenolic Compounds of Abies nephrolepis and their NO production inhibitory activities, Chem Biodivers 8(12):2299–2309

Li R, Cai L, Ren D-y et al (2012) Therapeutic effect of 7,3'-dimethoxy hesperetin on adjuvant arthritis in rats through inhibiting JAK2-STAT3 signal pathway. Int Immunopharmacol 14(2):157–163

Li R, Cai L, Xie X-f et al (2013) 7,3'-dimethoxy hesperetin inhibits inflammation by inducing synovial apoptosis in rats with adjuvant-induced arthritis. Immunopharmacol Immunotoxicol 35(1):139–146

Lin LC, Wang YH, Hou YC et al (2006) The inhibitory effect of phenylpropanoid glycosides and iridoid glucosides on free radical production and B2-integrin expression in human leucocytes. J Pharm Pharmacol 58:129–135

Lin J-A, Fang S-C, Wu C-H et al (2011) Anti-inflammatory effect of the 5,7,4'-Trihydroxy-6-geranylflavonone isolated from the fruit of Arctocarpus commuits in S100B-induced human monocytes. J Agric Food Chem 59(1):105–111

Liu KY, Wu Y-C, Liu I-M et al (2008) Release of acetylcholine by syringin, an active principle of Eleutherooccus senticosus, to raise insulin secretion in Wistar rats. Neurosci Lett 434:195–199

Loke WM, Proudfoot JM, Hodgson JM et al (2010) Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 30:749–757

Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9(1):31–59

Lopez-Lazaro M, Martin-Cordero C, Cortes F et al (2000) Cytotoxic activity of flavonoids and extracts from Retama sphaerocarpa. Boiss. Z Naturforsch C (J Biosci) 55(1/2):40–43

Losi G, Puia G, Garzon G et al (2004) Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur J Pharmacol 502:41–46

Lu XY, Li YH, Xiao XW, Li XB (2013) Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its mechanism. Zhonghua Yi Xue Za Zhi 93:142–146

Mankovskaia A, Lévesque CM, Prakki A (2013) Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. J Appl Oral Sci 21:203–207

Martini ND, Katerere DRP, Eloff JN (2004) Biological activity of five antibacterial flavonoids from Combretum
830 Phytochem Rev (2015) 14:799–833

Mishra N, Rizvi SI (2012) Quercetin modulates Na

Matsubara Y, Yusa T, Sawab A et al (1991) Studies on physi-

Marzocchella L, Fantini M et al (2011) Dietary flavonoids:

Miyazawa M, Okuno Y, Nakamura S-I et al (2000) Antimuta-

Moon HI, Zee OP (2001) Anticancer compound of

Paulownia

Moneriz G, Mestres J, Bautista JM et al (2011) Multi-targeted

Matsuda H, Morikawa T, Ueda K et al (2002) Structural require-
ments of flavonoids for inhibition of antigen-

induced degranulation, TNF-α and IL-4 production from

RBL-2H3 cells. Bioorg Med Chem 10(10):3123–3128

Matsubara Y, Yusa T, Sawab A et al (1991) Studies on physi-

ologically active substances in citrus fruit peel. Part XX.

Structure and physiological activity of phenyl propanoid
glycosides in lemon (Citrus limon Burn. f.) peel. Agric

Biol Chem 55(3):647–650

Matsuda H, Morikawa T, Ando S et al (2003) Structural

requirements of flavonoids for nitric oxide production

inhibitory activity and mechanism of action. Bioorg Med

Chem 11(9):1995–2000

Milligan SR, Kalita JC, Pocock V et al (2000) The endocrine

activities of 8-prenylpsearinogen and related hop (Humulus

lupulus L.) flavonoids. J Clin Endocrinol Metab

85(12):4912–4915

MinYS,YimSH,BailKL etal(2005)Theeffects of apigenin-

7-O-β-D-glucuronopyranoside on reflux oesophagitis and
gastritis in rats. Auton Autocoid Pharmacol 25:85–91

Mishra N, Rizvi SI (2012) Quercetin modulates Na/K ATP-

ase and sodium hydrogen exchanger in type 2 diabetic

erthrocytes. Cell Mol Biol 58(1):148–152

Miyazawa M, Okuno Y, Nakamura S-I et al (2000) Antimuta-

genic activity of flavonoids from Pogostemon cablin.

J Agric Food Chem 48(3):642–647

Moneriz G, Mestres J, Bautista JM et al (2011) Multi-targeted

activity of maslinic acid as an antimalarial natural com-
pound. FEBS J 278:2951–2961

Moon HI, Zee OP (2001) Anticancer compound of Pauleo-
nia tomentosa. Nat Prod Sci 7:21–22

Murphy BT, Cao S, Norris A et al (2005) Cytotoxic flavanons

of Schizolaena hystrix from the Madagascar rainforest.

J Nat Prod 68:417–419

Murphy BT, Cao S, Norris A et al (2006) Cytotoxic compounds

of Schizolaena hystrix from the Madagascar rainforest.

Planta Med 72(13):1235–1238

Nakano D, Kwak CJ, Fuji K et al (2006) Sesamin metabolites

induce an endothelial nitric oxide-dependent vasorelaxa-
tion through their antioxidative property-independent

mechanisms: possible involvement of the metabolites in

the antihypertensive effect of sesamin. J Pharmacol Exp

Ther 318:328–335

Nascimento IR, Murata AT, Bortoli SA et al (2004) Insecticidal

activity of chemical constituents from Aristolochia pu-

bescens against Anticarsia gemmatalis larvae. Pest Manag

Sci 60:413-416

Navrátílová A, Schneiderová K, Veselá D et al (2013) Minor C-
geranylflavonans from Paulownia tomentosa fruits with

MRSA antibacterial activity. Phytochemistry

89:104–113

Niu H-S, Hsu F-L, Liu I-M et al (2007) Increase of β-endorphin

secretion by syringin, an active principle of Eleuther-

ococcus senticosus, to produce antihyperglycemic action

in type 1-like diabetic rats. Hormone Metab Res 39:894–898

Niu H-S, Hsu F-L, Liu I-M (2008a) Role of sympathetic tone in

the loss of syringin-induced plasma glucose lowering

action in conscious Wistar rats. Neurosci Lett 445:113–116

Niu H-S, Liu I-M, Cheng J-T et al (2008b) Hypoglycemic effect

of syringin from Eleutherococcus senticosus in streptozo-
tocin-induced diabetic rats. Planta Med 74:109–113

Ogungbe IV, Erwin WR, Setzer WN (2014) Antileishmanial

phytochemical phenolics: molecular docking to potential

protein targets. J Mol Graph Model 48:105–117

Omosa L, Amugune B, Ndunga B et al (2014) Antimicrobial

flavonoids and diterpenoids from Dodonaea angustifolia.

S Afr J Bot 91:58–62

Oprea E, Radulescu V, Chiliment S (2004) The analysis of the

volatile and semi-volatile compounds of the Paulownia
tomentosa flowers by gas chromatography coupled with

mass spectrometry. Revista de chimi 55:410–412

Ota M, Azuma T, Onodera S et al (1993) The chemistry of color

changes in kiri wood (Paulownia tomentosa Steud.) III. A

new caffeic acid sugar ester from Kiri wood. Mozukai

Gakkaishi 39:479–485

Pan J, Yuan C, Lin C et al (2003) Pharmacological activities and

mechanisms of natural phenylpropanoid glycosides. Phar-
mazie 58:767–775

Pan J-Y, Chen S-L, Yang M-H et al (2009) An update on lign-

ans: natural products and synthesis. Nat Prod Rep

26(10):1251–1292

Pan Y, Morikawa T, Ninomiya K et al (2010) Bioactive con-

stituents from Chinese natural medicines. XXXVI. Four

new acylated phenylethanoid oligoglycosides, Kankano-
sides J1, J2, K1, and K2, from stems of Cistanchie
tubulosa. Chem Pharm Bull 58:575–578

Pan SY, Zhou SF, Gao SH et al (2013) New perspectives on how
to discover drugs from herbal medicines: CAM’s out-

standing contribution to modern therapeutics. Evid Based

Complement Altern Med 2013:1–25, doi: 10.1155/2013/

627375

Paneerselvam M, Kawaraguchi Y, Horikawa YT et al (2010)

Effect of epicatechin and naloxone on cardioprotective

phenotype. FASEB J 24 (Meeting Abstract Supplement)

1029.8

Panossian A, Wagner H (2005) Stimulating effect of adapto-
gens: an overview with particular reference to their efficacy

following single dose administration. Phytother Res

19:819–838

Panossian A, Kozarian A, Matinian K et al (1998) Pharma-

cological activity of phenylpropanoids of the mistletoe,

Viscum album. J Med Plants Res 30(1):233–245

© Springer
Peluso MR, Miranda CL, Hobbs DJ et al (2010) Xanthohumol
and related prenylated flavonoids inhibit inflammatory
cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in Silico binding to
myeloid differentiation protein-2 (MD-2). Planta Med
76(14):1536–1543
Pelzer LE, Guardia T, Juarez AO et al (1998) Acute and chronic
antiinflammatory effects of plant flavonoids. Farmaco
53(6):421–424
Persson IA, Persson K, Andersson RG (2009) Effect of
Vaccinium myrtillus and its polyphenols on angiotensin-con-
verting enzyme activity in human endothelial cells. J Agric
Food Chem 57:4626–4629
Phommsart S, Sutthiviyakit P, Chimmoi N et al (2005) Con-
stituents of the leaves of Macaranga tanarius. J Nat Prod
68:927–930
Pile JE, Navalta JW, Davis CD et al (2013) Interventional
effects of plumbagin on experimental ulcerative colitis in
mice. J Nat Prod 76:1001–1006
Plaza M, Pozzo T, Liu J et al (2014) Substituent effects on
in vitro antioxidizing properties, stability, and solubility in
flavonoids. J Agric Food Chem 62(15):3321–3333
Plouvier V (1971) The heterosides of Catalpa bignonioides
Walt. (Bignoniaceae). Comp Rend Acad Sci 272(D):1443–
1446
Prince Vijeya Singh J, Selvendiran K, Mumtaz Banu S et al
(2004) Protective role of apigenin on the status of lipid
peroxidation and antioxidant defense against hepatocarci-
nogenesis in Wistar albino rats. Phytomedicine 11:309–
314
Ptosová J, Chloupcíkova S, Miketova P et al (2004) Chemopre-
ventive effect of plant phenolics against anthracycline-
induced toxicity on rat cardiomyocytes. Part III. Apigenin,
bacalaine, kaempferol, luteolin and quercetin. Phytother
Res 18:516–521
Raghukumar R, Vali L, Watson D et al (2010) Antimethicillin-
resistant Staphylococcus aureus (MRSA) activity of
“pacific propolis” and isolated prenyllflavanones. Phyto-
ther Res 24:1181–1187
Rao YK, Lee MJ, Chen K et al (2011) Insulin-mimetic action of
tobacco and a cyanogenic glycoside from Balanophora invo-
rancula leaves: enhanced adiponectin secretion and insulin
receptor phosphorylation in 3T3-L1 cells. Evid Based
Complement Altern Med 2011:1–9, doi:10.1093/ecom/jep291
Remya C, Dileep KV, Tintu I et al (2012) Design of potent
inhibitors of acetylcholinesterase using morin as the starting
compound. Front Life Sci 6(3–4):107–117
Reyes-Zurita FJ, Pachón-Peña G, Lizárraga D et al (2011) The
natural triterpene maslinic acid induces apoptosis in HT29
colon cancer cells by a JNK-p53-dependent mechanism.
BMC Cancer 11:154
Rodriguez J, Yanez J, Vicente V et al (2002) Effects of several
flavonoids on the growth of B16F10 and SK-MEL-1 melanoma
cell lines: relationship between structure and activity,
Melanoma Res 12(2):99–107
Romano B, Pagano E et al (2013) Novel insights into the
pharmacology of flavonoids. Phytother Res 27(11):1588–
1596
Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability,
metabolic effects, and safety. Annu Rev Nutr 22:19–34
Rosselli S, Bruno M, Maggio A et al (2011) Cytotoxic gera-
nylflavonoids from Bononia graeca. Phytochemistry
72:942–945
Russo M, Spagnuolo C et al (2012) The flavonoid quercetin in
disease prevention and therapy: facts and fancies. Biochem
Pharmacol 83(1):6–15
Salem MM, Capers J, Rito S et al (2011) Antiparasitic activity of
C-geranyl flavonoids from Mimulus bigelovii. Phytother
Res 25(8):1246–1249
Sánchez-Tena S, Alcarráz-Vizán G, Martín S et al (2013) Epi-
catechin gallate impairs colon cancer cell metabolic pro-
ductivity. J Agric Food Chem 61:4310–4317
Santhakumar G, Rathinam K, Seshadri C (1978) Angicoagulant
activity of plumbagin. Indian J Exp Biol 16:485–487
Sato M, Murakami K, Uno M et al (2013) Site-specific inhibi-
tory mechanism for amyloid β42 aggregation by catechol-
type flavonoids targeting the Lys residues. J Biol Chem
288(32):23212–23224
Scambia G, Ranelliti FO, Panici P et al (1994) Quercetin
potentiates the effect of Adriamycin in a multidrug-resis-
tant MCF-7 human breast-cancer cell line: P-glycoprote
as a possible target. Cancer Chemother Pharmacol
34(6):459–464
Schilling G, Hügel M, Mayer W (1982) Verbasconsid and
isoverbasconsid from Paulownia tomentosa Steud. Zeit
Naturforsch 37(B):1633–1635
Schinella G, Aquila S, Dade M et al (2008) Anti-inflammatory
and apoptotic activities of pomolic acid isolated from
Cecropia pachystachya. Planta Med 74:215–220
Schneiderová K, Slapetová T, Hrabal R et al (2013) Tomento-
mulol and mimulone B: two new C-geranylated flavo-
noids from Paulownia tomentosa fruits. Nat Prod Res
27:613–618
Scogin R (1980) Anthocyanins of the Bignoniaceae. Biochem
Syst Ecol 8:273–276
Shan JZ, Xuan YY, Ruan SQ et al (2011) Proliferation-inhib-
ing and apoptosis-inducing effects of ursolic acid and
oleanolic acid on multi-drug resistance cancer cells
in vitro. Chin J Integr Med 17:607–611
Sharma U, Bala M, Kumar N et al (2012) Immunomodulatory
active compounds from Tinospora cordifolia. J Ethno-
pharmacol 141:918–926
She G-M, Zhang Y-J, Yang C-R (2013) A new phenolic constit-
tuent and a cyanogenic glycoside from Paulownia tomentosa
roots of Rehmannia glutinosa. In: Preedy VR (ed) Beer in health and disease prevention and therapy: facts and fancies. Biochem
72:942–945
Shieh JP, Cheng KC, Chung HH et al (2011) Plasma glucose
lowering mechanisms of catalpol, an active principle from
Rehmannia glutinosa. J Agric Food Chem 59:3747–3753
Shukla S, Gupta S (2009) Role of apigenin in human health and
disease. In: Preedy VR (ed) Beer in health and disease
prevention, Academic Press, San Diego, pp e202–e216
Si C, Deng X, Liu Z (2008a) Structure and activity relationship
of antioxidant flavonoids from leaves of Paulownia tomen-
tosa var. tomentosa. In: 2nd international papermaking
and environment conference, Tianjin University of Science
and Technology, Tianjin, pp 263–266
Si CL, Deng XJ, Liu Z et al (2008b) Studies on the phenylethanoid glycosides with anti-complement activity from *Paulownia tomentosa* var. *tomentosa* wood. J Asian Nat Prod Res 10:1003–1008

Si C, Deng X, Xu Q et al (2008c) Characterization of phenolic acids and antioxidant activities of *Paulownia tomentosa* var. *tomentosa* leaves. In: Proceedings of the international conference on pulping, papermaking and biotechnology, pp 31–33

Si CL, Liu Z, Kim JK et al (2008d) Structure elucidation of phenylethanoid glycosides from *Paulownia tomentosa* Steud. var. *tomentosa* wood. Holzforschung 62:197–200

Si CL, Wu L, Zhu ZY et al (2009) Apigenin derivatives from *Paulownia tomentosa* Steud. var. *tomentosa* stem barks. Holzforschung 63:440–442

Si CL, Lu YY, Hu HY et al (2011a) Evaluation of total phenolics, flavonoids and anti-inflammatory property of ethanolic extracts of *Paulownia tomentosa* var. *tomentosa* bark. Planta Med 77:SL53

Si CL, Lu YY, Qin PP et al (2011b) Phenolic extracts with chemotaxonomic significance from the bark of *Paulownia tomentosa* var. *tomentosa*. BioResources 6:5086–5098

Si CL, Shen T, Jiang YY et al (2013) Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food Chem Toxicol 59:145–152

Sivakumar G, Vail DR, Nair V et al (2009) Plant-based corosolic acid: future anti-diabetic drug? Biotechnol J 4:1704–1711

Šmejkal K (2014) Cytotoxic potential of C-prenylated flavonoids. Phytochem Rev 13:245–275

Šmejkal K, Grycová L, Marek R et al (2007a) Antiradical activity of *Paulownia tomentosa* Fruits. J Nat Prod 70:1244–1248

Šmejkal K, Holubová P, Zima A et al (2007b) Antiradical activity of *Paulownia tomentosa* (Scrophulariaceae) extracts. Molecules 12:1210–1219

Šmejkal K, Babula P, Šlapetová T et al (2008a) Cytotoxic activity of C-geranyl compounds from *Paulownia tomentosa* fruits. Planta Med 74:1488–1491

Šmejkal K, Chudík P, Klouček P et al (2008b) Antibacterial C-geranylflavonoids from *Paulownia tomentosa* (Scrophulariaceae) fruits. J Nat Prod 71:706–709

Šmejkal K, Svačinová J, Šlapetová T et al (2010) Cytotoxic activities of several geranyl-substituted flavanones. J Nat Prod 73:568–572

Sticher O, Lahloub MF (1982) Phenolic glycosides of *Paulownia tomentosa* bark. Planta Med 46:145–148

Sudais T, Wattanapiromsakul C, Tewtrakul S (2013) Inhibition of nitric oxide production by compounds from *Boesenbergia longiflora* using lipopolysaccharide-stimulated RAW264.7 macrophage cells. Songklanakarin J Sci Technol 35(3):317–323

Sumisakul W, Prueungsriyakarn T, Chaijaroenkul W et al (2014) Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 14:15

Sun Y, Zang Z, Zhong L et al (2013) Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLoS One 8(5):e63354

Suolinna EM, Buchsbaum RN, Racker E (1975) Effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res 35(7):1865–1872

Takahashi K, Nakagawa T (1966) Studies on constituents of medicinal plants. VII. The stereochemistry of paulownin and isopaulownin. Chem Pharm Bull 14:641–647

Takamatsu S, Galal AM, Ross SA et al (2003) Antioxidant effect of flavonoids on DCF production in HL-60 cells. Phytother Res 17(8):963–966

Tanaka J, Kadekaru T, Ogawa K et al (2013) Maqui berry (*Aristotelia chilensis*) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. Food Chem 139:129–137

Tang R, Chen K, Cosentino M et al (1994) Apigenin-7-O-beta-D-glucopyranoside, an anti-HIV principle from *Kummerowia striata*. Bioorg Med Chem Lett 4:455–458

Taub PR, Ramirez-Sanchez I, Ciarialdi TP et al (2012) Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatchin rich cocoa. Clin Transl Sci 5(1):43–47

Teixeira MD, Souza CM, Menezes AP et al (2013) *Catechin* attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav 110:1–7

Tian L-W, Pei Y, Zhang Y-J et al (2009) 7-O-methylkaempferol and -quercetin glycosides from the whole plant of *Nervilia fordii*. J Nat Prod 72(6):1057–1060

Tohda C, Ichimura M, Bai Y et al (2008) Inhibitory effects of Eleutherococcus senticosus extracts on amyloid β(25–35)-induced neuritic atrophy and synaptic loss. J Pharmacol Sci 107:329–339

Touzka H, Ota M, Kojukova H et al (2005) Synthesis of dihydroxyphenacyl glycosides for biological and medicinal study: beta-oxyacetoside from *Paulownia tomentosa*. J Wood Sci 51:48–59

Trusheva B, Popova M, Koendhori EB et al (2011) Indonesian propolis: chemical composition, biological activity and botanical origin. Nat Prod Res 25:606–613

Ullevig SL, Zhao Q, Zamora D et al (2011) Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis 219:409–416

Vareed SK, Reddy MK, Schutzki RE (2006) Anthocyanins in *Paulownia tomentosa* bark. Planta Med 46:145–148

Vasconcelos FC, Gattass CR, Rumjanek VM et al (2007) Pombolic-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile. Invest New Drugs 25:525–533

Wang J, Yang Z, Lin L et al (2012) Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res 146:354–359

Wang Y-M, Xu M, Wang D et al (2013) Anti-inflammatory compounds of “Qin-Jiao”, the roots of *Gentiana dahurica* (Gentianaceae). J Ethnopharmacol 147(2):341–348

Wei YJ, Tsai KS, Lin LC et al (2011) Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporos Int 22(5):1469–1479

Weidmann AE (2012) Dihydroquercetin: more than just an impurity? Eur J Pharmacol 684(1–3):19–26
Wilkinson K, Boyd JD, Glicksman M et al (2011) A high-content drug screen identifies ursolic acid as an inhibitor of amyloid-β interactions with its receptor CD36. J Biol Chem 286:34914–34922

Wollenweber E, Wehde R, Christ M et al (2008) Surface flavonoids in Catalpa ovata, Greyia sutherlandii and Paulownia tomentosa. Nat Prod Commun 3:1285–1287

Wong KC, Haq Ali DM, Boey PL (2012) Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat Prod Res 26:609–618

Wu A, Lin C, Zhao X et al (2012) Spectroscopic study on interaction between cistanoside F and bovine serum albumin. Zhongguo Zhong Yao Za Zhi 37:1392–1398

Xiong Q, Kadota S, Tani T et al (1996) Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol Pharm Bull 19:1580–1585

Xiong QB, Hase K, Tezuka Y et al (1998) Hepatoprotective activity of phenylethanoids from Cistanche deserticola. Planta Med 64:120–125

Xue HY, Lu YN, Fang XM et al (2012) Neuroprotective properties of aucubin in diabetic rats and diabetic encephalopathy rats. Mol Biol Rep 39:9311–9318

Yang Y-L, Hsu H-T, Wang K-H et al (2011) Hesperetin-7,3′-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio. J Biomed Sci (Lond, UK) 18:84

Yang X, Yuan J, Wan J (2012) Cytotoxic phenolic glycosides from Boschniakia himalaica. Chem Nat Comp 48(4):555–558

Yasuda K, Sakaki T (2012) How is sesamin metabolised in the human liver to show its biological effects? Expert Opin Drug Metab Toxicol 8:93–102

Yazaki K, Sasaki K, Tsurumaru Y (2006) Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorg Med Chem 14:7468–7475

Yuan ZL, Luo L, Zang AM et al (2009) Isolation and bioassay of herbicidal active ingredient from Paulownia tomentosa. Chin J Pestic Sci 2:239–243

Yun B-S, Lee I-K, Kim J-P et al (2000) Lipid peroxidation inhibitory activity of some constituents isolated from the stem bark of Eucalyptus globulus. Arch Pharm Res 23(2):147–150

Yun J, Bae H, Choi SE et al (2013) Taxifolin glycoside blocks human ether-a-go-go related gene K(+) channels. Korean J Physiol Pharmacol 17(1):37–42

Zhang SM, Coutts KA (2013) Identification of plumbagin and sanquinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Res 3:28–34

Zhang DL, Li XQ (2011) Studies on the chemical constituents from the leave of Paulownia tomentosa. Zhong Yao Cai 34:232–234

Zhang W, Zhang W-D, Zhang C et al (2007) Antitumor activities of extracts and compounds from the roots of Daphne tangutica Maxim. Phytother Res 21(11):1113–1115

Zhang J, Chen J, Liang Z et al (2014) New lignans and their biological activities. Chem Biodivers 11(1):1–54

Zhao J, Zhou X-W, Chen X-B et al (2009) α-Glucosidase inhibitory constituents from Toona sinensis. Chem Nat Compd 45:244–246

Zhao J, Ding HX, Wang CM (2012) Isolation, modification and cytotoxic evaluation of flavonoids from Rhododendron hainanense. J Pharm Pharmacol 64:1785–1792

Zheng J, Liu D, Zhao SQ et al (2012) Enzymatic extraction and antibacterial activity from Eucommia ulmoides leaves. Zhong Yao Cai 35:304–306

Zhu ZH, Chao CJ, Lu XY et al (1986) Paulownia in China: cultivation and utilization. Asian Network for Biological Science and International Development Research Centre, Chinese Academy of Forestry, Beijing. http://hdl-bnc.idrc.ca/dspace/bitstream/10625/8226/1/71235.pdf. (Cited 13 Mar 2013)

Zima A, Hošek J, Treml J et al (2010) Antiradical and cytoprotective activities of several C-geranyl-substituted flavonones from Paulownia tomentosa. Fruit. Molecules 15:6035–6049