A Bibliometric Analysis of the Top-Cited Articles on Diabetic Foot Ulcers

Jiaxing You, MSc1,*, Chao Liu, MD, PhD1,*, Yixin Chen, MD2, Weifen Zhu, MD2, Hongye Li, MD1, and Lin Li, MD2

Abstract
The aim of this study was to determine the top-cited articles in the field of diabetic foot ulcer (DFU) research. A cross-sectional bibliometric analysis was conducted in January 2021 by using Boolean search terms in the Scopus and the Web of Science databases. The 50 top-cited articles that met the inclusion criteria were ranked and evaluated for several characteristics, including year of publication, country of origin, authorship, publishing journal, topic categories, publishing type, and level of evidence. The median number of citations per article in the list was 442 (interquartile range [IQR], 320-520), with a median of 21.8 citations (IQR, 16.5-34.5) per year since publication. The publication years ranged from 1986 to 2017, with 1998 accounting for the greatest number of studies (n = 7). The citation classics were published in 20 journals and originated from institutions in 9 countries. The majority of the studies were clinical, of which expert opinion/review with Level V evidence and clinical studies with Levels I and II evidence comprised the greater proportion in the list. This study provides useful insights into the history and development of DFU research. The top-cited list may serve as a quick reference for education curriculums and clinical practice, in addition to providing a foundation for further studies on this topic.

Keywords
diabetic foot ulcers, lower extremity wound, bibliometric, citation, analysis, top-cited articles

Introduction
Diabetic foot ulcer (DFU) is a common and much-feared complication of diabetes. Currently, there are 463 million adults living with diabetes worldwide, and ~6.3% of them may suffer from foot ulcers.1 At the initial presentation, more than half of DFUs are clinically infected, leading to substantial morbidity, a significantly impaired quality of life, and prolonged hospitalization, and preceding 80% of all nontraumatic lower-extremity amputations.2,3 The health care expenditures associated with the management of DFUs are also considerably high, consuming about one-third of the total cost of diabetic care.4 Abundant studies have been conducted and published over the past decades given the serious consequence and huge burden of DFUs on patients, their families, and society. However, such a rapid growth of the DFU literature would be challenging not only with regard to acquainting novice researchers with the most salient topics, but also concerning the thorough identification of this field to guide future studies.

Citation analysis is a quantitative bibliometric method for appraising the impact of academic publications in a particular discipline. Although the number of citations is not the only surrogate for determining the quality of scholarly works, it provides valuable data to determine classics that have shaped medical practice, fostered new research ideas, and predicted emerging trends and hotspots.5-7 Several citation analyses have been conducted regarding various medical specialties and subspecialties, including diabetes8-10 and podiatric medicine.11-13 While studies on the diabetic foot comprise over a quarter of the top-cited publications in the field of foot and ankle surgery,12 only a single bibliometric review has specifically addressed DFU to date.14 However, that citation analysis was limited to few articles retrieved within a short time span from 2007 to 2018, which would be insufficient to reflect the evolution of the DFU research.14 Therefore, we performed the current study to compile a comprehensive list of the most cited works that have

1Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
2Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
3Jiaxing You and Chao Liu contributed equally to this work.

Corresponding Author:
Lin Li, Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, #3 E. Qingchun Rd, Hangzhou 310016, China.
Email: 3312012@zju.edu.cn
made key contributions to DFU over the past several decades. With this information, we intend to provide a historical perspective of scientific progress, determine the status quo of research, and highlight future trends in the field of DFU.

Materials and Methods

Institutional review board approval was not required given the publicly available nature of the data without protected health information. In January 2021, a search of the Scopus (www.scopus.com) and the Web of Science (www.webofknowledge.com) databases was conducted as described in previous studies.\(^{15-17}\) To yield the broadest results, articles were queried in each database by using the following Boolean search phrase: (“diabet* foot” OR [infection AND foot AND “diabetes mellitus”] OR [osteomyelitis AND foot AND “diabetes mellitus”] OR [“foot ulcer*” AND “diabetes mellitus”]). No restrictions were placed in terms of language, publication date, or journal. All publications were organized in descending order according to the number of citations. The 2 authors independently evaluated each manuscript to determine whether the contents were dedicated to the diagnosis, therapy, prognosis, or economic analysis of DFU. Since infection and osteomyelitis are progressive and deteriorative conditions associated with DFU, relevant studies on diabetic foot infection and diabetic foot osteomyelitis were also enrolled. Articles were excluded if their primary focus was not DFU, even if the topic was peripherally discussed. Furthermore, publications such as editorials, letters to the editor, commentaries, and meeting abstracts were excluded. This process was repeated until the 50 most-cited articles on DFU were retrieved, and any discrepancies between authors were resolved by consensus. The methodology is illustrated as a flowchart in Figure 1.

The following details were recorded for each of the top-cited articles that met the inclusion criteria: authorship, year of publication, publishing journal, country and institution of origin, study design (randomized controlled trial, cohort study, case–control study, case series, case report, etc.).

![Figure 1. Study flow diagram.](image-url)
systematic review, expert opinion/review, or basic science), and research area. The country of the affiliation was identified based on the geographic location of the corresponding author. If the contact author had 2 or more affiliations from different countries, the first 1 was recorded. The research areas were sorted according to the Web of Science categories/classification. The level of evidence for clinical studies was assigned on a scale of I to V based on the Journal of Bone & Joint Surgery-American Volume guidelines. Specifically, the level of evidence for systematic reviews was determined by that of the literature analyzed, whereas review articles in a nonsystematic fashion were coded into the expert-opinion category. Citation density, defined as the number of citations per year, was also extracted for the identified articles.

Results

The initial search yielded 28,049 and 23,594 preliminary results in Scopus and Web of Science, respectively. Table 1 provides a list of the top-cited articles in descending order according to the number of citations in Scopus. This list actually consisted of 56 articles because 6 unique articles were retrieved from each database.

The top 3 articles were each cited more than 1000 times, and the median number of citations per article in the list was 442 (interquartile range [IQR], 320-520). The citation density spanned from 181.3 to 12.6, with a median of 21.8 citations per year since publication (IQR, 16.5-34.5). The publication years ranged from 1986 to 2017, and the greatest number of studies were published in 1998 (n = 7). Twenty journals were represented by the citation classics, with Diabetes Care having the highest number of publications (n = 24; Table 2). Accordingly, the majority of the top-cited articles were published in specialty periodicals, and Endocrinology/Metabolism was the most popular Web of Science research category with 33 studies. There were 10 articles published in the nonspecialty journals with the highest impact factors, including Lancet, JAMA, and New England Journal of Medicine.

Although all the studies were published in the English language, there was some diversity in terms of the country of origin. More than half of the articles originated from the United States (n = 35), followed by the United Kingdom (n = 11), the Netherlands (n = 3), and Sweden (n = 2). China, Germany, Italy, Korea, and Portugal each contributed 1 article to the list. The University of Washington Veterans Affairs Puget Sound Healthcare System was the most prolific institution for the topic of interest with 8 studies, whereas the Manchester Royal Infirmary/University of Manchester produced 6 articles and was the most prominent institution from outside the United States.

Regarding the corresponding authors, 12 researchers authored 2 or more of the top-cited articles. Professor Andrew J M Boulton was the most productive contact author with 5 publications, followed by David G Armstrong and Aristidis Veves, who were the corresponding authors in 4 and 3 articles, respectively. The authorships also included 9 committees and panels, of which the Infectious Diseases Society of America, the American Diabetes Association, and the Diabetic Ulcer Study Group each developed 2 articles.

The majority of the studies were clinical, with 6 papers representing some type of basic science research. Among the top clinical articles, expert-opinion/review publications (n = 15), cohort studies (n = 14), and randomized controlled trials (n = 12) were the most prevalent study design (Table 3). Accordingly, the most common level of evidence was V. Second to this were Levels I and II, with 13 studies each falling into the categories (Figure 2).

Discussion

In this study, we queried the Scopus and Web of Science databases to rank the top-cited articles with respect to DFU research. Most of the articles were published in specialty journals and originated from academic institutions in the United States. Expert opinion/review with Level V evidence and clinical studies with Levels I and II evidence comprised a majority of the publications in the list.

Currently, several public and commercial databases are available for citation analysis, but none is considered superior. Web of Science was the first of its kind and is the most commonly used bibliometric resource, while Scopus covers more expanded scientific fields and focuses on contemporary publications. Therefore, both databases were queried in this study to ensure comprehensive article coverage. We found that the number of citations per article returned by Scopus was generally greater than that returned by Web of Science, and each contained unique citation classics in the list. A previous analysis also revealed that 80% of the top-cited articles dedicated to obstetrics and gynecology were acquired from both resources. This observation can be explained by the different contents covered and documents cited between the 2 databases. It has been proposed that Scopus indexes a wider journal range than Web of Science and retrieves a greater proportion of citations from non-English language sources.

The first 3 articles in this list, each passing the 1000-citation mark, were comprehensive reviews published in nonspecialty journals, whereas a total of 6 consensus statements by different expert committees were released in specialty ones. Our findings may imply that nonspecialty periodicals have a broader readership and a greater potential to be cited, while specialty ones cater to the specialized needs of audiences within the field. We also found a diversity of Web of Science categories for these specialty periodicals, including Endocrinology/Metabolism, Infectious Diseases/Microbiology, Orthopedics, and Peripheral Vascular
Table 1. Top 50 Cited Articles on Diabetic Foot Ulcers According to the Number of Citations in Scopus.

Citations, Scopus, n (citation density)*	Citations, Web of Science, n (citation density)*	Authors	Title	Journal	Year	Study type
1661 (110.7)	1510 (100.7)	Singh et al²	Preventing foot ulcers in patients with diabetes	*JAMA*	2005	Systematic review
1297 (86.5)	1208 (80.5)	Boulton et al²⁰	The global burden of diabetic foot disease	*Lancet*	2005	Expert opinion/ review
1207 (80.5)	1171 (78.1)	Falanga²¹	Wound healing and its impairment in the diabetic foot	*Lancet*	2005	Basic science study
795 (99.4)	762 (95.3)	Lipsky et al¹⁹	2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections	*Clin Infect Dis*	2012	Expert opinion/ review
782 (37.2)	685 (62.3)	Ramsey et al²²	Incidence, outcomes, and cost of foot ulcers in patients with diabetes	*Diabetes Care*	1999	Cohort study
758 (47.4)	637 (39.8)	Lipsky et al²³	Diagnosis and treatment of diabetic foot infections	*Clin Infect Dis*	2004	Expert opinion/ review
720 (34.3)	628 (29.9)	Reiber et al²⁴	Causal pathways for incident lower extremity ulcers in patients with diabetes from 2 settings	*Diabetes Care*	1999	Case series
694 (31.5)	600 (27.3)	Armstrong et al²⁵	Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation	*Diabetes Care*	1998	Case series
660 (36.7)	553 (30.7)	Abbott et al²⁶	The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort	*Diabet Med*	2002	Cohort study
655 (43.7)	576 (38.4)	Armstrong and Lavery²⁷	Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomized controlled trial	*Lancet*	2005	Randomized controlled trial
588 (34.6)	546 (32.1)	Jeffcoate and Harding²⁸	Diabetic foot ulcers	*Lancet*	2003	Expert opinion/ review
561 (21.6)	419 (16.1)	Caputo et al²⁹	Assessment and management of foot disease in patients with diabetes	*N Engl J Med*	1994	Expert opinion/ review
544 (181.3)	524 (174.7)	Armstrong et al³	Diabetic foot ulcers and their recurrence	*N Engl J Med*	2017	Expert opinion/ review
520 (27.4)	487 (25.6)	Veves et al³⁰	Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial	*Diabetes Care*	2001	Randomized controlled trial
518 (15.2)	369 (10.9)	Edmonds et al³¹	Improved survival of the diabetic foot: the role of a specialized foot clinic	*Q J Med*	1986	Case series
511 (23.2)	433 (16.7)	Wieman et al³²	Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study	*Diabetes Care*	1998	Randomized controlled trial
511 (18.3)	417 (14.9)	Veves et al³³	The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study	*Diabetologia*	1992	Cohort study

(continued)
Citations, Scopus, n (citation density*)	Citations, Web of Science, n (citation density*)	Authors	Title	Journal	Year	Study type
497 (19.1)	421 (16.2)	Young et al	The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study	Diabetes Care	1994	Cohort study
492 (41.0)	427 (35.6)	Boulton et al	Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists	Diabetes Care	2008	Expert opinion/review
483 (20.1)	401 (16.7)	Steed et al	Effect of extensive debridement and treatment on the healing of diabetic foot ulcers	J Am Coll Surg	1996	Randomized controlled trial
481 (40.1)	455 (37.9)	Prompers et al	Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The Eurodiale study	Diabetologia	2008	Cohort study
475 (33.9)	337 (24.1)	Frykberg et al	Diabetic foot disorders. A clinical practice guideline (2006 revision)	J Foot Ankle Surg	2006	Expert opinion/review
473 (18.9)	403 (16.1)	Steed	Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers	J Vasc Surg	1995	Randomized controlled trial
466 (27.4)	430 (25.3)	Marston et al	The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial	Diabetes Care	2003	Randomized controlled trial
464 (22.1)	363 (17.3)	Boyko et al	A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study	Diabetes Care	1999	Cohort study
460 (18.4)	339 (13.6)	Grayson et al	Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients	JAMA	1995	Cohort study
458 (35.2)	411 (31.6)	Prompers et al	High prevalence of ischemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study	Diabetologia	2007	Cohort study
442 (22.1)	382 (19.1)	Pham et al	Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial	Diabetes Care	2000	Cohort study
442 (21.0)	124 (5.9)	American Diabetes Association	Consensus Development Conference on Diabetic Foot Wound Care: 7-8 April 1999, Boston, Massachusetts. American Diabetes Association	Diabetes Care	1999	Expert opinion/review
406 (21.4)	329 (17.3)	Armstrong et al	Off-loading the diabetic foot wound: a randomized clinical trial	Diabetes Care	2001	Randomized controlled trial
383 (27.4)	363 (25.9)	Lavery et al	Risk factors for foot infections in individuals with diabetes	Diabetes Care	2006	Cohort study
360 (30.0)	347 (28.9)	Choi et al	In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF)	Biomaterials	2008	Basic science study

(continued)
Citations, Scopus, n (citation density*)	Citations, Web of Science, n (citation density*)	Authors	Title	Journal	Year	Study type
360 (20.0)	334 (18.6)	Lobmann et al	Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and nondiabetic patients	Diabetologia	2002	Basic science study
352 (20.7)	311 (18.3)	Moulik et al	Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology	Diabetes Care	2003	Case series
352 (16.0)	266 (12.1)	Reiber et al	The burden of diabetic foot ulcers	Am J Surg	1998	Expert opinion/review
341 (12.6)	287 (10.6)	Apelqvist et al	Long-term prognosis for diabetic patients with foot ulcers	J Intern Med	1993	Cohort study
340 (17.9)	299 (15.7)	Oyibo et al	A comparison of 2 diabetic foot ulcer classification systems: the Wagner and the University of Texas wound classification systems	Diabetes Care	2001	Case–control study
334 (19.6)	330 (19.4)	Sheehan et al	Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial	Diabetes Care	2003	Cohort study
329 (13.2)	265 (10.6)	McNeely et al	The independent contributions of diabetic neuropathy and vasculopathy in foot ulceration. How great are the risks?	Diabetes Care	1995	Case–control study
326 (13.6)	272 (11.3)	Gentzkow et al	Use of Dermagraft, a cultured human dermis, to treat diabetic foot ulcers	Diabetes Care	1996	Randomized controlled trial
322 (21.5)	284 (18.9)	Cavanagh et al	Treatment for diabetic foot ulcers	Lancet	2005	Expert opinion/review
322 (15.3)	285 (13.6)	Sniell et al	Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of 4 randomized studies	Wound Repair Regen	1999	Randomized controlled trial
319 (14.5)	251 (11.4)	Lavery et al	Practical criteria for screening patients at high risk for diabetic foot ulceration	Arch Intern Med	1998	Case–control study
318 (26.5)	325 (27.1)	Dowd et al	Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)	Plos One	2008	Basic science study
316 (14.4)	239 (10.9)	Frykberg et al	Role of neuropathy and high foot pressures in diabetic foot ulceration	Diabetes Care	1998	Cohort study
315 (22.5)	326 (23.3)	Blakney and Jude	The molecular biology of chronic wounds and delayed healing in diabetes	Diabet Med	2006	Basic science study
311 (14.1)	256 (11.6)	Abbott et al	Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration	Diabetes Care	1998	Cohort study
310 (12.9)	246 (10.3)	Faglia et al	Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study	Diabetes Care	1996	Randomized controlled trial
309 (14.0)	263 (12.0)	Mayfield et al	Preventive foot care in people with diabetes	Diabetes Care	1998	Expert opinion/review
307 (43.9)	311 (44.4)	Moura et al	Recent advances in the development of wound dressings for diabetic foot ulcer treatment—a review	Acta Biomater	2013	Basic science study

(continued)
Disease. This multidisciplinary nature of publishing journals is in accordance with the modern algorithm for the management of DFU. The deployment of diabetic foot teams has been widely advocated to improve outcomes and processes in patient care.19 Since these teams are composed of professionals in a variety of disciplines, each member may focus on and preferentially obtain citations from a few reputable journals in their respective fields of expertise.10,76

Although 79% of adults with diabetes live in developing countries, academic institutions in developed countries have exerted overwhelming influence on diabetes-related research.8,10 Our geographic analysis, consistent with previous studies of endocrinology and metabolism topics,77,78 demonstrated that the United States was the most prolific country by a significant margin with respect to citation classics. A plausible reason for this dominance may be the large size of the US scientific community (eg, the American Diabetes Association), its abundant research budget and output, and a tendency for American authors to cite material from their own country.79 Interestingly, we also observed that 9 consortiums contributed to 12 top-cited articles in the list, including 6 clinical practice guidelines, 5 randomized controlled trials, and 1 prospective community-based cohort study. Owing to the interdisciplinary and miscellaneous approaches in the management of DFU, international and regional collaboration is efficient for conducting high-quality research with a large population, in addition to providing robust conclusions and recommendations. It is generally believed that these well-designed studies and the latest consensus documents could become heavily cited in the literature.

Preclinical research provides insights into pathophysiological mechanisms and allows the rigorous evaluation of pilot studies in experimental models, which is important for expanding knowledge about a disease. Prior bibliometric analyses revealed a substantial contribution of basic science works in top lists, accounting for 24% to 42% of citation classics in diabetes,10 osteoporosis,80 and orthopedic surgery.81,82 In contrast, there were only 6 nonclinical articles in our investigation, including 3 exhaustive reviews on the molecular biology of DFU healing and recent advances in wound dressing, in addition to 2 in vitro and 1 in vivo study. The explanation for this observation is unknown, but it is probably attributed to the specific locations of the different types of studies. Nolan et al76 identified 659 different journals that had published at least 1 relevant report pertaining to diabetic foot disease in 2012, and found that 17.3% of them were classified into the “basic science/research” category for specialty or primary readership. The value would fall to 3.85% if journals with at least 10

Table 1. (continued)

Citations, Scopus, n (citation density)	Citations, Web of Science, n (citation density)	Authors	Title	Journal	Year	Study type
306 (15.3)	264 (13.2)	Apelqvist and Larsson67	What is the most effective way to reduce incidence of amputation in the diabetic foot?	Diabetes Metab Res Rev	2000	Expert opinion/review
298 (14.2)	272 (13.0)	Margolis et al68	Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis	Diabetes Care	1999	Systematic review
283 (31.4)	279 (31.0)	Lu et al69	Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial	Diabetes Res Clin Pract	2011	Randomized controlled trial
263 (32.9)	269 (33.6)	Bakker et al70	Practical guidelines on the management and prevention of the diabetic foot 2011	Diabetes Metab Res Rev	2012	Expert opinion/review
254 (15.9)	331 (20.7)	Boulton et al71	Neuropathic diabetic foot ulcers	N Engl J Med	2004	Expert opinion/review
231 (19.2)	347 (28.9)	Blume et al72	Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial	Diabetes Care	2008	Randomized controlled trial

*The number of citations per year.
relevant articles were enrolled. This published volume discordance between clinical and nonclinical articles highlights the potential requirements for much development of basic science research in future.

Limitations

This citation analysis has inherent limitations that require consideration. Similar to previously described methods, the first and possibly the most significant is that we were unable to account for self-citations, citations in textbooks and lectures, and authors’ predilection to cite articles from journals where they sought to publish. The second weakness is related to 2 biases in citation practice, namely “obliteration by incorporation phenomenon” and the “snowball effect.” The main idea behind the former is that classic papers are gradually being cited less as their substances become integrated into current knowledge, and the latter indicates a tendency to cite articles because of an abundance of previous citations. Third, a query for 50 articles, as within any other number, is arbitrary and may exclude other influential works from the list. However, some authors believed that 50 represent a reasonable number of articles to offer a framework for physicians, researchers, and trainees in a specific subject area. Finally, this cross-sectional study acquired the count profiles at a time point, and the most recent articles

Table 2. Journal of Origin.

Journal	Web of Science categories/classification	Number of articles
Diabetes Care	Endocrinology & Metabolism	24
Lancet	General & Internal Medicine	5
Diabetologia	Endocrinology & Metabolism	4
The New England Journal of Medicine	General & Internal Medicine	3
Clinical Infectious Diseases	Immunology; Infectious Diseases; Microbiology	2
Diabetes/Metabolism Research and Reviews	Endocrinology & Metabolism	2
Diabetic Medicine	Endocrinology & Metabolism	2
JAMA-Journal of the American Medical Association	General & Internal Medicine	2
Wound Repair and Regeneration	Cell Biology; Dermatology; Research & Experimental Medicine; Surgery	1
Diabetes Research and Clinical Practice	Endocrinology & Metabolism	1
Acta Biomaterialia	Engineering; Materials Science	1
Biomaterials	Engineering; Materials Science	1
Archives of Internal Medicine	General & Internal Medicine	1
Journal of Internal Medicine	General & Internal Medicine	1
QJM: An International Journal of Medicine	General & Internal Medicine	1
Journal of Foot & Ankle Surgery	Orthopedics; Surgery	1
Plos One	Science & Technology—Other Topic	1
American Journal of Surgery	Surgery	1
Journal of the American College of Surgery	Surgery	1
Journal of Vascular Surgery	Surgery; Cardiovascular System & Cardiology	1

Table 3. Articles Classified by Study Type.

Study type	Number of articles
Basic science	6
Randomized controlled trial	12
Cohort study	14
Case–control study	3
Case series	4
Case report	0
Systematic review	2
Expert opinion/review	15

Figure 2. Total number of articles by level of evidence.
were at a disadvantage because of the clear time effect in bibliometric analysis.90 Therefore, it would be necessary to update this list as the field continues to progress. Since the primary aim of our study was to rank highly influential works on DFU research by using total citation counts, these limitations should not significantly affect our conclusions.

Conclusions

This study identified the top-cited DFU articles and provided useful insights into the history and development of DFU research. This list could serve as a quick reference for educational purposes and clinical practice, in addition to providing a foundation for further studies on this topic.

Author Contributions

Concept and design: Lin Li; Acquisition, analysis, or interpretation of data: Jiaxing You, Chao Liu, Yixin Chen, Weifen Zhu; Drafting of the manuscript: Jiaxing You, Chao Liu; Tables and Figures construction: Yixin Chen, Weifen Zhu, Hongye Li; Supervision: Hongye Li, Lin Li.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Lin Li https://orcid.org/0000-0003-3344-9421

References

1. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. \textit{Ann Med.} 2017;49(2):106-116.
2. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. \textit{JAMA.} 2005;293(2):217-228.
3. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. \textit{N Engl J Med.} 2017;376(24):2367-2375.
4. Driver VR, Fabbri M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. \textit{J Vasc Surg.} 2010;52(3 Suppl):17S-22S.
5. Badhivala JH, Nassiri F, Witiv CD, et al. Highly cited works in spinal disorders: the top 100 most cited papers published in spine journals. \textit{Spine (Phila Pa 1976).} 2018;43(24):1746-1755.
6. Brandt JS, Hadaya O, Schuster M, Rosen T, Sauer MV, Ananth CV. A bibliometric analysis of top-cited journal articles in obstetrics and gynecology. \textit{JAMA Netw Open.} 2019;2(12):e1918007.
7. Kantek F, Yesilbas H. Conflict in nursing studies: a bibliometric analysis of the top 100 cited papers. \textit{J Adv Nurs.} 2020;76(10):2531-2546.
8. Zhao X, Guo L, Lin Y, et al. The top 100 most cited scientific reports focused on diabetes research. \textit{Acta Diabetol.} 2016;53(1):13-26.
9. Geaney F, Scutaru C, Kelly C, Glynn RW, Perry IJ. Type 2 diabetes research yield, 1951–2012: bibliometrics analysis and density-equalizing mapping. \textit{PLoS One.} 2015;10(7):e0133009.
10. Shuaib W, Costa JL. Anatomy of success: 100 most cited articles in diabetes research. \textit{Ther Adv Endocrinol Metab.} 2015;6(4):163-173.
11. Bayley M, Brooks F, Tong A, Harirhan K. The 100 most cited papers in foot and ankle surgery. \textit{Foot (Edinb).} 2014;24(1):11-16.
12. DeHeer PA, Adams W, Grebenyuk FR, et al. Top 100 cited foot and ankle-related articles. \textit{J Am Podiatr Med Assoc.} 2016;106(6):387-397.
13. Karhade AV, Kwon JY. Trends in foot and ankle studies published in high-impact general medical journals: a systematic review. \textit{J Foot Ankle Surg.} 2019;58(3):540-544.
14. Zha ML, Cai JY, Chen HL. A bibliometric analysis of global research production pertaining to diabetic foot ulcers in the past ten years. \textit{J Foot Ankle Surg.} 2019;58(2):253-259.
15. Sochacki KR, Jack RA2nd, Nauert R, Harris JD. Correlation between quality of evidence and number of citations in top 50 cited articles in rotator cuff repair surgery. \textit{Orthop J Sports Med.} 2018;6(6):2325967118776635.
16. Berlinberg A, Bilal J, Riaz IB, Kurtzman DJB. The 100 top-cited publications in psoriatic arthritis: a bibliometric analysis. \textit{Int J Dermatol.} 2019;58(9):1023-1034.
17. Yadava SM, Patrick HS, Ananth CV, Rosen T, Brandt JS. Top-cited articles in the journal: a bibliometric analysis. \textit{Am J Obstet Gynecol.} 2019;220(1):12-25.
18. Marx RG, Wilson SM, Swiontkowski MF. Updating the assignment of levels of evidence. \textit{J Bone Joint Surg Am.} 2015;97(1):1-2.
19. Lipsky BA, Berendt AR, Cornia PB, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. \textit{Clin Infect Dis.} 2012;54(12):e132-e173.
20. Boulton AJM, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. \textit{Lancet.} 2005;366(9498):1719-1724.
21. Falanga V. Wound healing and its impairment in the diabetic foot. \textit{Lancet.} 2005;366(9498):1736-1743.
22. Ramsay SD, Newton K, Blough D, et al. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. \textit{Diabetes Care.} 1999;22(3):382-387.
23. Lipsky BA, Berendt AR, Deery HG, et al. Diagnosis and treatment of diabetic foot infections. \textit{Clin Infect Dis.} 2004;39(7):885-910.
24. Reiber GE, Vileikyte L, Boyko EJ, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. \textit{Diabetes Care.} 1999;22(1):157-162.
25. Armstrong DG, Lavery LA, Harkless LB. Validation of a diabetic wound classification system. The contribution of depth,
infection, and ischemia to risk of amputation. *Diabetes Care.* 1998;21(5):855-859.

26. Abbott CA, Carrington AL, Ashe H, et al. The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. *Diabet Med.* 2002;19(5):377-384.

27. Armstrong DG, Lavery LA, Diabetic Foot Study Consortium. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. *Lancet.* 2005;366(9498):1704-1710.

28. Jeffcoate WJ, Harding KG. Diabetic foot ulcers. *Lancet.* 2003;361(9368):1545-1551.

29. Caputo GM, Cavanagh PR, Ulbrecht JS, Gibbons GW, Karchmer AW. Assessment and management of foot disease in patients with diabetes. *N Engl J Med.* 1994;331(13):854-860.

30. Veves A, Falange V, Armstrong DG, Sabolinski ML, Apligraf diabetic foot ulcer study. Graffskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. *Diabetes Care.* 2001;24(2):290-295.

31. Edmonds ME, Blundell MP, Morris ME, Thomas EM, Cotton LT, Watkins PJ. Improved survival of the diabetic foot: the role of a specialized foot clinic. *Q J Med.* 1986;60(232):763-771.

32. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (beacaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. *Diabetes Care.* 1998;21(5):822-827.

33. Veves A, Murray HJ, Young MJ, Boulton AJ. The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study. *Diabetologia.* 1992;35(7):660-663.

34. Young MJ, Breddy JL, Veves A, Boulton AJ. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study. *Diabetes Care.* 1994;17(6):557-560.

35. Boulton AJM, Armstrong DG, Albert SF, et al. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. *Diabetes Care.* 2008;31(8):1679-1685.

36. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. *J Am Coll Surg.* 1996;183(1):61-64.

37. Prompers L, Schaper N, Apelqvist J, et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The Eurodiabe Study. *Diabetologia.* 2008;51(5):747-755.

38. Frykberg RG, Zgonis T, Armstrong DG, et al. Diabetic foot disorders. A clinical practice guideline (2006 revision). *J Foot Ankle Surg.* 2006;45(Suppl):S1-S66.

39. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. *J Vasc Surg.* 1995;21(1):71-78.

40. Marston WA, Hanft J, Norwood P, Pollak R, Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. *Diabetes Care.* 2003;26(6):1701-1705.

41. Boyko EJ, Ahroni JH, Stensel V, Forsberg RC, Davignon DR, Smith DG. A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study. *Diabetes Care.* 1999;22(7):1036-1042.

42. Grayson ML, Gibbons GW, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients. *JAMA.* 1995;273(9):721-723.

43. Prompers L, Huijbers M, Apelqvist J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. *Diabetologia.* 2007;50(1):18-25.

44. Pham H, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A. Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. *Diabetes Care.* 2000;23(5):606-611.

45. American Diabetes Association. Consensus Development Conference on Diabetic Foot Wound Care: 7–8 April 1999, Boston, Massachusetts. *American Diabetes Association. Diabetes Care.* 1999;22(8):1354-1360.

46. Armstrong DG, Nguyen HC, Lavery LA, van Schie CH, Boulton AJ, Harkless LB. Off-loading the diabetic foot wound: a randomized clinical trial. *Diabetes Care.* 2001;24(6):1019-1022.

47. Lavery LA, Armstrong DG, Wunderlich RP, Mohler MJ, Wendel CS, Lipsky BA. Risk factors for foot infections in individuals with diabetes. *Diabetes Care.* 2006;29(6):1288-1293.

48. Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). *Biomaterials.* 2008;29(5):587-596.

49. Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. *Diabetologia.* 2002;45(7):1011-1016.

50. Moulik PK, Mtonga R, Gill GV. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. *Diabetes Care.* 2003;26(2):491-494.

51. Reiber GE, Lipsky BA, Gibbons GW. The burden of diabetic foot ulcers. *Am J Surg.* 1998;176(2A Suppl):S3-S10S.

52. Apelqvist J, Larsson J, Agardh CD. Long-term prognosis for diabetic foot ulcers. *J Intern Med.* 2003;26(6):1879-1882.

53. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. *Diabetes Care.* 2003;26(6):1879-1882.

54. McNeely MJ, Boyko EJ, Ahroni JH, et al. The independent contributions of diabetic neuropathy and vasculopathy in foot ulceration. How great are the risks? *Diabetes Care.* 1995;18(2):216-219.
56. Gentzkow GD, Iwasaki SD, Hershon KS, et al. Use of Dermagraft, a cultured human dermis, to treat diabetic foot ulcers. *Diabetes Care*. 1996;19(4):350-354.
57. Cavanagh PR, Lipsky BA, Bradbury AW, Botek G. Treatment for diabetic foot ulcers. *Lancet*. 2005;366(9498):1725-1735.
58. Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. *Wound Repair Regen*. 1999;7(5):335-346.
59. Lavery LA, Armstrong DG, Vela SA, Quebedeaux TL, Fleischli JR, Jude E. The molecular biology of chronic diabetic foot ulceration. *Arch Intern Med*. 1998;158(2):157-162.
60. Dow SE, Wolcott RD, Sun Y, McKeenan T, Smith E, Rhoads D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag-encoded FLX amplicon pyrosequencing (bTETAP). *PLoS One*. 2008;3(10):e3326.
61. Frykberg RG, Lavery LA, Pham H, Harvey C, Harkless L, Veves A. Role of neuropathy and high foot pressures in diabetic foot ulceration. *Diabetes Care*. 1998;21(10):1714-1719.
62. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. *Diabet Med*. 2006;23(6):594-608.
63. Abbott CA, Vileikyte L, Williamson S, Carrington AL, Boulton AJ. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. *Diabetes Care*. 1998;21(7):1071-1075.
64. Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. *Diabetes Care*. 1996;19(12):1338-1343.
65. Mayfield JA, Reiber GE, Sanders LJ, Janisse D, Pogach LM. Preventive foot care in people with diabetes. *Diabetes Res Clin Pract*. 1998;302(10):1092-1096.
66. Moura LIF, Dias AMA, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. *Acta Biomater*. 2013;9(7):7093-7114.
67. Apte, Larsson J. What is the most effective way to reduce incidence of amputation in the diabetic foot? *Diabetes Metab Res Rev*. 2000;16(Suppl 1):S75-S83.
68. Margolis DJ, Kantor J, Berlin JA. Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis. *Diabetes Care*. 1999;22(5):692-695.
69. Lu D, Chen B, Liang Z, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. *Diabetes Res Clin Pract*. 2011;92(1):26-36.
70. Bakker K, Apte, Larsson J, Schaper NC, International Working Group on Diabetic Foot Editorial Board. Practical guidelines on the management and prevention of the diabetic foot 2011. *Diabetes Metab Res Rev*. 2012;28(Suppl 1):225-231.
71. Boulton AJM, Kirsner RS, Vileikyte L. Neuropathic diabetic foot ulcers. *N Engl J Med*. 2004;351(1):48-55.
72. Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. *Diabetes Care*. 2008;31(4):631-636.
73. Bakkalbasi N, Bauer K, Glover J, Wang L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. *Biomed Digit Libr*. 2006;3(7).
74. Falagas ME, Pitsouni EI, Maltzietis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. *FASEB J*. 2008;22(2):338-342.
75. Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. *JAMA*. 2009;302(10):1092-1096.
76. Nolan CK, Spiess KE, Meyr AJ. Where art thou diabetic foot disease literature? A bibliometric inquiry into publication patterns. *J Foot Ankle Surg*. 2015;54(3):295-297.
77. Zhao X, Ye R, Zhao L, et al. Worldwide research productivity in the field of endocrinology and metabolism—a bibliometric analysis. *Endokrynol Pol*. 2015;66(5):434-442.
78. Zheng S, Shi S, Hu Y. One hundred top-cited articles in endocrinology and metabolism: a bibliometric analysis. *Endocrine*. 2016;54(2):564-571.
79. Campbell FM. National bias: a comparison of citation practices by health professionals. *Bull Med Libr Assoc*. 1990;78(4):376-382.
80. Holzer LA, Leithner A, Holzer G. The most cited papers in osteoporosis and related research. *J Osteoporos*. 2015;2015:638934.
81. Kelly JC, Glynn RW, O’Brien DE, Felle P, McCabe JP. The 100 classic papers of orthopaedic surgery: a bibliometric analysis. *J Bone Joint Surg Br*. 2010;92(10):1338-1343.
82. Lefaivre KA, Shadgan B, O’Brien PJ. 100 Most cited articles in orthopaedic surgery. *Clin Orthop Relat Res*. 2011;469(5):1487-1497.
83. Seglen PO. Why the impact factor of journals should not be used for evaluating research. *Br Med J*. 1997;314(7079):498-502.
84. Mishra S, Fegley BD, Diesner J, Torvik VI. Self-citation is the hallmark of productive authors, of any gender. *JAMA*. 2018;319(13):e195773.
85. Garfield E. 100 Citation classics from the Journal of the American Medical Association. *JAMA*. 1987;257(1):52-59.
86. Kuhn TS. Historical structure of scientific discovery. *Science*. 1962;136(3518):760-764.
87. Namdari S, Baldwin K, Kovatch K, Huffman GR, Glaser D. What is the most cited articles in orthopedic cartilage surgery. *Cartilage*. 2016;7(3):238-247.
88. Callaham M, Wears RL, Weber E. Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals. *JAMA*. 2002;287(21):2847-2850.