Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges

Eric Vornholt1,2,3 | John Drake4 | Mohammed Mamdani1 | Gowon McMichael1 | Zachary N. Taylor1 | Silviu-Alin Bacanu1,5 | Michael F. Miles1,6,7,8 | Vladimir I. Vladimirov1,3,9,10,11,12

1Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
2Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA
3Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
4Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, Texas, USA
5Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
6VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
7Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
8Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
9Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
10Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
11School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
12Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, USA

Correspondence
Eric Vornholt, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Biotech One, Suite 100, Richmond, VA 23219, USA.
Email: eric.vornholt@mssm.edu

Funding information
National Institute of Mental Health, Grant/Award Number: R01MH118239; National Institute on Alcohol Abuse and Alcoholism, Grant/Award Numbers: F31AA028180, PS0AA022537, R21AA022749

Abstract
Our lab and others have shown that chronic alcohol use leads to gene and miRNA expression changes across the mesocorticolimbic (MCL) system. Circular RNAs (circRNAs) are noncoding RNAs that form closed-loop structures and are reported to alter gene expression through miRNA sequestration, thus providing a potentially novel neurobiological mechanism for the development of alcohol dependence (AD). Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc) from 32 AD-matched cases/controls. Significant circRNAs (unadj. \(p \leq 0.05 \)) were identified via regression and clustered in circRNA networks via weighted gene co-expression network analysis (WGCNA). CircRNA interactions with previously generated mRNA and miRNA were detected via correlation and bioinformatic analyses. Significant circRNAs (\(N = 542 \)) clustered in nine significant AD modules (FWER \(p \leq 0.05 \)), within which we identified 137 circRNA hubs. We detected 23 significant circRNA–miRNA–mRNA interactions (FDR \(\leq 0.10 \)). Among these, circRNA-406742 and miR-1200 significantly interact with the highest number of mRNA, including genes associated with neuronal functioning and alcohol addiction.
1 | INTRODUCTION

Alcohol is among the most readily available and commonly abused recreational drugs worldwide with substantial socioeconomic and public health implications.\(^1\) The shift from recreational alcohol use to problematic drinking resulting in alcohol use disorder (AUD) is dependent upon genetic and environmental factors.\(^2\) AUD is moderately heritable (\(\sim 49\%\))\(^3\); however, the genetic mechanisms underlying this heritability are poorly understood. Although the alcohol dehydrogenase cluster on Chromosome 4 has been among the most consistently replicated genetic loci associated with AUD,\(^4\) molecular studies from the mesocorticolimbic (MCL) system of human postmortem brains and animal models have implicated additional AUD risk genes involved in neurosignaling, synaptogenesis, and immune response.\(^5,6\) The limited overlap between molecular and genetic studies\(^7\) has hindered our understanding of the link between AUD-associated genetic loci and gene expression changes in the brain. Broadly, the human transcriptome can be divided into coding and noncoding, with the noncoding transcriptome (represented by a large set of noncoding RNA [ncRNA] species characterized by their minimal or complete lack of protein-coding abilities and gene regulatory functions\(^8,9\)) being a largely unexplored domain of the human genome with a potentially substantial impact on the neuropathology of AUD. Among these, a particular class of ncRNA, termed circular RNA (circRNA), have been implicated in the development of alcoholic hepatitis in mouse models.\(^10,11\)

CircRNAs are abundantly and dynamically expressed throughout the mammalian central nervous system (CNS).\(^12,13\) They primarily arise from pre-mRNA splicing events in which the 5' and 3' ends of introns or alternatively spliced exons are covalently linked to form closed-loop structures.\(^14\) Although several hypotheses have been proposed to explain the mechanisms by which circRNAs regulate gene expression,\(^15\) a commonly accepted one, based on experimental observations, is the miRNA sponge hypothesis.\(^16\) MiRNAs regulate gene expression mainly through binding to the 3' untranslated regions (UTRs) of their target genes, leading to translational repression and mRNA degradation.\(^17\) CircRNAs serve as competing endogenous RNAs (ceRNA) for miRNA by competing with miRNA response elements (MREs) in the 3' UTRs of mRNA. This leads to miRNA sequestration by circRNA and decreased miRNA-target interactions, effectively increasing gene expression as a result.\(^18\) More importantly, circRNA's ability to function as miRNA sponges has shown to be emerging biomarkers for both neurodegenerative and neuropsychiatric disorders.\(^19–21\)

With their varied spatiotemporal expression in the brain, circRNAs were implicated in the etiology of neurodegenerative and neuropsychiatric disorders.\(^13,22,23\) To test whether these recent observations also extend to alcohol dependence (AD), we assessed the genome-wide expression of circRNA, miRNA, and mRNA in the nucleus accumbens (NAc) from subjects with AD followed by weighted gene co-expression network (WGCNA) and bioinformatic and statistical analyses (Figure 1). We assess the functional impact of circRNA expression in NAc based on (1) its role as part of the reward pathway central to the neuropathology of addiction, (2) availability of miRNA and mRNA data generated in NAc on the same subjects, and (3) the known characteristic of the NAc as a hub for adult neurogenesis,\(^24\) an important neurobiological process believed to be partially regulated circRNA interactions.\(^25\) Finally, we applied an expression quantitative trait loci (eQTL) analysis to identify genetic elements affecting circRNA expression and the ability to interact with miRNA and mRNA. With this study, our main goals were to identify the potential regulatory mechanisms by which circRNAs affect the expression of risk AUD genes and provide a methodological framework for exploring circRNA, miRNA, and mRNA interactions in future postmortem brain studies. This is the first study to examine the effect of circRNA on mRNA expression via miRNA sponge interactions in NAc from chronic alcohol abusers to the best of our knowledge.

2 | METHODS AND MATERIALS

2.1 | Tissue processing and RNA extraction

Postmortem NAc from 42 AD cases and 42 controls was provided by the Australian Brain Donor Programs of New South Wales Tissue Resource Centre (NSW TRC) under the support of the University of...
Sydney, National Health and Medical Research Council of Australia, Schizophrenia Research Institute, National Institute on Alcohol Abuse and Alcoholism, and the New South Wales Department of Health. As part of a previous study, several criteria were used to exclude samples with (1) agonal state, (2) substantial brain damage, (3) history of infectious disease, and (4) postmortem interval (PMI) > 48 h (Table S1). Samples were further matched for RNA integrity number (RIN) (mean $= 6.9, \pm 0.84$), sex (all male), ethnicity (100% Caucasian), brain pH, and postmortem interval to minimize covariates’ effect on expression, resulting in 18 matched case–control pairs ($n = 36$).

Total RNA from flash-frozen NAc was extracted and purified via mirVANA-PARIS kit (Life Technologies, Carlsbad, CA) following the manufacturer’s protocol. RNA integrity (RIN) and concentrations were assessed via Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA) and Quant-iT Broad Range RNA Assay kit (Life Technologies), respectively.

2.2 Microarrays and expression normalization

Genome-wide circRNA, miRNA, and mRNA expression was assessed on three different platforms: (1) Arraystar Human Circular RNA Array spanning 13,617 circRNA probes, (2) Affymetrix GeneChip miRNA 3.0 Array spanning 1733 mature miRNAs, and (3) Affymetrix GeneChip Human Genome U133A 2.0 array containing 22,214 probe sets spanning ~18,400 unique mRNAs. Raw expression data from each assay were background corrected, log$_2$ transformed, and quantile normalized via Partek Genomics Suite v6.23 (PGS; Partek Inc., St. Louis, MO) and the limma package (Version 4.0) in R. To exclude outliers that could impact downstream analyses, three samples were removed from the circRNA normalized dataset, leaving 17 cases and 16 controls ($n = 33$), and one sample was removed from both the miRNA and mRNA normalized datasets, resulting in 17 cases and 18 controls ($n = 35$). Here, we validate only the circRNA array by assessing the expression of three randomly selected circRNA from the entire microarray at the Arraystar facilities via quantitative PCR (qPCR) because the mRNA and miRNA expression arrays were validated previously.

The assessed genes showed a high mean correlation (Kendall tau $r = 0.87 \pm 0.021$) between the two platforms (Figure S1).

2.3 Identifying differential transcript expression

We assessed the relationship between transcript expression and AD status in RStudio (ver. 1.2.1335). Differential circRNA expression was assessed via robust linear regression in the MASS package (v.7.351.5) with smoking and RIN included as covariates in the model as these were shown to have a greater impact on circRNA expression, compared with other demographic and postmortem covariates.

Differentially expressed miRNA and mRNA were previously identified via a bidirectional stepwise regression adjusting for demographic and postmortem covariates in the Stats package (v.3.6.1).

2.4 WGCNA

To better capture the system-wide network interactions between the circRNA and increase power to detect circRNAs associated with AD,
we partition the nominally significant \((p \leq 0.05) \) circRNAs into co-expression networks using WGCNA in RStudio (v.1.69). Our criteria to include nominally significant genes were based on retaining genes with (1) smaller effect sizes, albeit true positive signals; (2) exclude genes not likely associated with AD (i.e., reduce the noise); and (3) provide a sufficient number of genes for the network analysis. A detailed description of WGCNA is outlined in literature27,33,34 and in Methods S1. The module eigengenes (MEs), a single aggregate expression value for each gene module, were correlated to AD case status and available demographic/biological covariates. To validate the gene networks associated with AD in WGCNA, we performed a bootstrap resampling of 100 iterations with replacement (Figure S2).

2.5 | CircRNA hub gene prioritization

CircRNA hubs representing potential drivers of expression for entire modules were identified from the absolute value of Pearson’s correlation coefficient between MEs and individual gene expression. This value of intramodular connectedness, denoted as module membership (MM), was used to define circRNA hubs as transcripts significantly correlated with AD \((p \leq 0.05) \) and a MM \(\geq 0.70 \) within the significant AD modules.

2.6 | Correlations analysis between circRNA, miRNA, and mRNA

To test the miRNA sponge hypothesis framework, we first explored correlations between the differentially expressed mRNA, miRNA, and circRNA hubs. We used only subjects with complete data across all three expression platforms (i.e., 17 AD cases and 15 controls). The circRNA–miRNA–mRNA correlations were based on Pearson’s product moment generated in the miRLAB package (ver. 1.14.3) in RStudio. All significant circRNA–miRNA, negative miRNA–mRNA, and positive circRNA–mRNA correlations, respectively, were extracted at a false discovery rate (FDR) of 10% and retained for follow up analyses.

2.7 | Computational prediction of circRNA–miRNA interactions

Next, the correlation analyses were supplemented with bioinformatic predictions to further increase the reliability of our findings by identifying circRNA, miRNA, and mRNA pairs with converging evidence for interaction from both the correlation and in silico analyses. Thus, the circRNA–miRNA correlations were complemented with computational predictions using STarMir in the Sfold application suite (http://sfold.wadsworth.org/cgi-bin/index.pl).35 STarMir calculates probability scores for binding predictions of shared seed sequences between circRNA and miRNA36 based on logistic regression models developed from crosslinking immunoprecipitation (CLIP) studies.37 Based on STarMir’s recommendations, the logarithm of odds for predicted binding (logit probability score) \(\geq 0.50 \) was considered significant.35

2.8 | Prediction of miRNA–mRNA target interactions

Similarly, the miRNA–mRNA correlations complemented miRNA target predictions from the multiMiR package (v.1.6.0) in Rstudio. MultiMiR is a curated database of miRNA–mRNA target predictions that integrates both computational prediction algorithms (DIANA-microT-CDS, EIMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, and TargetScan) and experimentally validated miRNA–target interactions (miRecords, miRTarBase, and TarBase).38

2.9 | Moderation analysis

To test whether miRNA expression moderates the relationship between circRNA and target mRNAs we utilized the Stats package in RStudio. Within the linear regression model that included mRNA expression as the independent variable, moderation was modelled as the interaction \((\text{circRNA} \times \text{miRNA}) \) term effect on gene expression adjusting for smoking and RIN’s confounding effects.39 Significance was based on an FDR \(\leq 0.10 \) threshold. For a more detailed methodological explanation, see Methods S2.

2.10 | Gene-set enrichment analyses

To determine the biological function of genes that participate in our identified circRNA–miRNA–mRNA interactions, we performed a GO biological processes gene-set enrichment via ShinyGO (v.0.61) at each stage in our analyses. ShinyGO utilizes a hypergeometric distribution to determine significant enrichment at an FDR \(\leq 0.10 \).40

2.11 | CircRNA eQTL analysis and enrichment in genome-wide association study of substance abuse

To explore if known AUD-associated genetic variants impact the expression of differentially expressed circRNA hubs, an eQTL analysis was performed, followed by a genome-wide association study (GWAS) enrichment analysis. The postmortem sample was genotyped as part of a larger GWAS study.27 Monomorphic single nucleotide polymorphisms (SNPs) and those with excessive missingness (>20%) were filtered out. Only local, cis-eQTLs within 500 kb of each circRNA hub’s start/stop position were mapped, and variants in linkage disequilibrium (LD) \((R^2 \geq 0.7) \) were subsequently pruned via Plink v1.9.41 We utilized the MatrixEQTL package (ver. 2.3) in RStudio to perform two cis-eQTL analyses using a linear regression framework after adjusting for relevant covariates. Firstly,
we utilized the “modelLINEAR” argument to identify significant eQTLs irrespective of AD case status. Secondly, we incorporated the “modelLINEAR_CROSS,” which introduces a (SNP × AD) interaction term to assess whether any significant eQTL impacts circRNA expression in a disease dependent manner. The overlap (i.e., enrichment) was tested between our eQTLs and recent GWAS of substance abuse, including alcohol and smoking, using two mutually complementing tests [Cauchy combination [CC] and Simes42,43] adjusting for multiple testing and LD ($R^2 ≥ 0.50$). For more details, see Methods S3.

3 | RESULTS

3.1 | CircRNAs are organized in networks associated with AD

At the nominal $p ≤ 0.05$, our gene expression analysis revealed 542 differentially expressed circRNAs between AD cases and controls (Figure 2A), with none of them achieving significance at FDR $≤ 0.10$. The lack of significant circRNA detected at the FDR of 10% can be attributed to low power (even in the presence of rigorous case–control matching) due to the relatively low expression of individual circRNA transcripts.25 Among others, low circRNA expression could lead to increased within-group variance due to purely stochastic events.44 Thus, to detect potential circRNA drivers of the AD phenotype, we employed WGCNA, which aggregates individual transcripts into co-expressed modules. In addition to increased statistical power, WGCNA also highlights network interactions at a system level. Except for one module (M3), the nominally significant circRNAs clustered in 10 modules, nine of which significantly correlated with AD (Bonferroni adj. $p ≤ 0.05$) (Figure 2B). Of the significant modules, M1, M2, M4, and M5 were positively correlated, whereas M6–M10 were negatively correlated with AD status. From these modules, we identified 137 hub genes, which were selected for downstream statistical and bioinformatic analyses against mRNA ($n = 3575$) and miRNA ($n = 264$) significantly associated with AD at FDR $≤ 0.10$ as a part of a previous study on the same subjects (Figure 2A).5 Please see (1) Table S2 for regression models and coefficients, (2) Figures S2 and S3 for circRNA regression QQplots and top differentially expressed transcripts, and (3) Table S3 for WGCNA results.

FIGURE 2 Differentially expressed transcripts and circRNA WGCNA results. (A) Volcano plots describing the relationship between regression estimates and $-\log_{10}(p)$ for each transcript level in our analysis (circRNA, miRNA, and mRNA). Dashed lines correspond with the significance threshold of $p ≤ 0.05$ and FDR $≤ 0.10$. (B) WGCNA module clustering dendrogram from our nominally AD significant ($p ≤ 0.05$) circRNA transcripts. (C) Heat plot comparing the correlation (Pearson’s) of our identified circRNA module MEs to AD diagnosis and all other available covariates. In respect to AD diagnosis, the top value represents the correlation coefficient, and the bottom value represents uncorrected p-values. For covariates: *$p ≤ 0.05$ and **$p ≤ 0.005$
3.2 | CircRNA–miRNA–mRNA show complex interaction patterns that are associated with AD

We tested the circRNA ability to interact with miRNA and thus indirectly affect the miRNA target’s expression in a disease-dependent manner. Assuming circRNAs act as miRNA sponges to impact mRNA expression, we posit that the most relevant downstream biological interactions will be represented by negative miRNA–mRNA and positive circRNA–mRNA correlations. We also include negative circRNA–miRNA correlations to capture the predicted inverse relationship between circRNA–miRNA expression as previously described.\(^{45,46}\) Thus, we first performed three independent correlation analyses (circRNA–miRNA, miRNA–mRNA, and circRNA–mRNA) followed by tests to identify the intersection between the significant correlations corrected at FDR of 10%. In the circRNA–miRNA (circRNA \(n = 137;\) miRNA \(n = 264\)) analysis, we identified 48 significant negative circRNA–miRNA correlations. The miRNA–mRNA (miRNA \(n = 264;\) mRNA \(n = 3,575\)) analysis revealed 46,501 significant negative correlations. Finally, the circRNA–mRNA (circRNA \(n = 137;\) mRNA \(n = 3575\)) analysis revealed 2221 significant positive correlations. From the intersection of these analyses, we identified a total of 2480 overlapping correlations, which were then used in all subsequent follow-up analyses. For a full list of correlation coefficients, see Table S4.

3.3 | Binding predictions supplement intersecting circRNA–miRNA–mRNA correlations

To reinforce and complement our correlation analyses, the 2480 overlapping circRNA–miRNA–mRNA correlations were further screened computationally to identify predicted circRNA–miRNA and miRNA–mRNA interacting pairs. Based on STarMir’s algorithm, no circRNA–miRNA binding predictions with a score greater than our significance threshold (logit probability \(\geq 0.50\)) were detected when circRNA–miRNA correlations were considered in isolation. However, by expanding the circRNA–miRNA–mRNA trios with intersecting negative miRNA–mRNA correlations, positive circRNA–mRNA correlations, and predicted circRNA–miRNA binding, we further narrow down the 365 interactions via selecting the best miRNA–mRNA target predictions to identify the most reliable 47 circRNA, miRNA, and mRNA participating in a three-way interaction. For a complete list of binding predictions, see Table S5.

3.4 | Moderation analysis reveals circRNA impact mRNA expression via potential miRNA sequestration

The impact of miRNA sequestration on mRNA expression from these 47 circRNA, miRNA, and mRNA was formally tested in a linear regression model adjusting for AD status and controlling for covariate effects (RIN and smoking history). The miRNA sequestration by circRNA was assessed by introducing a \((\text{circRNA} \times \text{miRNA})\) interaction term in the model. At FDR \(\leq 0.10\), we identified 23 interactions that show a significant moderation effect on mRNA expression (Table 1). Interestingly, among these 23 interactions, circRNA-406702–miR-1200 stood out by affecting the expression of the largest set of mRNA (\(n = 17\)), the four most significant of which (HRAS, PRKCB, HOMER1, and PCLO) that have been linked to chronic alcohol abuse in previous studies are highlighted in Figure 3. For full moderation regression coefficients, see Table S6.

3.5 | CircRNAs interact with genes associated with neuronal function

At each stage of our analyses, we consistently identified significant enrichment (FDR \(\leq 0.10\)) of genes involved in cellular localization, synaptic transmission, neural development, and response to organic stimuli gene sets (Figure 4). The 22 circRNA–miRNA–mRNA interactions also revealed significant enrichment (FDR \(\leq 0.10\)) for GO biological processes associated with regulation of DNA metabolism, anatomical structure homeostasis, regulation of biosynthesis, dendritic spine organization, and anterograde transsynaptic signaling. For full gene-set enrichment, see Table S7.

3.6 | Genetic variants potentially impact circRNA expression

Our linear eQTL analysis revealed three significant circRNA eQTLs at an FDR \(\leq 0.10\) (Figure 5A). When we repeated the eQTL analysis taking into consideration the interaction \((\text{AD} \times \text{genotype})\) term, we detect seven additional significant eQTLs (FDR \(\leq 0.10\)) independent from our main analysis, which were associated with one circRNA (circRNA-080252). After expanding our original linear eQTL analysis to incorporate results at a more relaxed significance threshold (unadj. \(p \leq 0.002\)), we identify an additional 96 eQTLs used in the downstream enrichment analysis. Among these, we identified multiple circRNAs that participated in significant circRNA–miRNA–mRNA interactions at various stages in our multistep analyses (Figure 5B,C). For full eQTL results, see Table S8.

3.7 | CircRNA-associated SNPs are enriched within AUD and smoking GWAS

We employed the CC and Simes\(^{42,43}\) tests to detect eQTLs \((n = 96)\) and SNPs in LD with them \((r^2 \geq 0.50; n = 1558)\) that were enriched among the significant \((p \leq 5E-4)\) loci from recent GWAS of AUD and smoking (GWAS & Sequencing Consortium of Alcohol and Nicotine Use (GSCAN)\(^{47}\) and Psychiatric Genetics Consortium AUD GWAS (PGC-AUD)\(^{48}\)). Adjusting for multiple testing and background enrichment, we observed significant enrichment for our eQTLs in...
circRNA	miRNA	mRNA	miRNA-mRNA Cor	circRNA-mRNA Cor	Circ x mi interaction	circRNA-miRNA binding	miRNA-mRNA target Predic
ASERP3011575	hsa-miR-1200	ACTR2	-0.4251	0.0909	0.5044	0.0998	0.8127 0.0898 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	ASTN1	-0.5425	0.0260	0.5057	0.0987	2.0620 0.0070 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	ATP2B2	-0.5330	0.0293	0.6079	0.0440	2.5879 0.0077 0.6955 offset-6mer X
ASERP3001917	hsa-miR-4310	CELF1	-0.4440	0.0773	0.5324	0.0812	0.6517 0.0898 0.7029 7mer-m8 X X
ASERP3011575	hsa-miR-1200	E2F3	-0.5165	0.0394	0.5530	0.0708	0.9043 0.0913 0.6955 offset-6mer X
ASERP3001917	hsa-miR-1200	GPD2	-0.5295	0.0307	0.5681	0.0622	-0.7690 0.0380 0.6087 7mer-A1 X
ASERP3011575	hsa-miR-1200	HOMER1	-0.5717	0.0169	0.6755	0.0237	1.7868 0.0077 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	HRAS	-0.4523	0.0715	0.6014	0.0470	1.8261 0.0077 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	IMP4	-0.5091	0.0394	0.5483	0.0739	1.5305 0.0008 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	IPCEF1	-0.5550	0.0218	0.5356	0.0801	2.0946 0.0086 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	LDB2	-0.4212	0.0939	0.6082	0.0440	3.5155 0.0076 0.6955 offset-6mer X
ASERP3005132	hsa-miR-665	MLEC	-0.5167	0.0361	0.5433	0.0762	-0.6227 0.0134 0.6796 6mer X
ASERP3011575	hsa-miR-1200	NDST3	-0.5663	0.0185	0.5400	0.0779	2.7353 0.0096 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	NEK7	-0.5016	0.0430	0.6356	0.0342	2.2585 0.0898 0.7444 offset-6mer X X
ASERP3011575	hsa-miR-571	NR3C1	-0.4644	0.0639	0.5547	0.0697	-1.5579 0.0550 0.7044 offset-6mer X X
ASERP3011575	hsa-miR-1200	OSBPL8	-0.5532	0.0223	0.5434	0.0761	1.9161 0.0077 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	PCLO	-0.5141	0.0371	0.5592	0.0677	2.5603 0.0070 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	PRKCB	-0.5650	0.0188	0.5873	0.0535	5.3517 0.0009 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	RAB11FIP2	-0.5455	0.0250	0.5758	0.0583	0.9061 0.0104 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	RANBP2	-0.4977	0.0450	0.5858	0.0543	0.8803 0.0368 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	RFC2	-0.4256	0.0906	0.5162	0.0915	0.8356 0.0380 0.6955 offset-6mer X
ASERP3011575	hsa-miR-1200	SSX2IP	-0.7589	0.0001	0.5269	0.0847	2.0238 0.0009 0.6955 offset-6mer X

Note: Significant circRNA–miRNA–mRNA interactions that survive all of our bioinformatic and statistical tests (i.e., negative miRNA–mRNA correlation, positive circRNA–mRNA correlation, circRNA–miRNA predicted binding, miRNA–mRNA target prediction, and moderation regression).
GSCAN cigarettes per day (CC $p = 1.41E-05$; Simes $p = 2.74E-05$), GSCAN smoking initiation (CC $p = 0.025$), and PGC-AUD European ancestry (CC $p = 0.034$).

4 | DISCUSSION

In recent years, circRNAs have become increasingly relevant for the study of neuropsychiatric and neurodegenerative disorders as potential regulators of the brain's complex and unique transcriptome. Here, we examined the intersection between the pathological characteristics of AD (aberrant neurogenesis and accelerated neurodegeneration) and circRNA's predicted role in regulating neurobiological processes within the context of circRNA–miRNA–mRNA interactions.

Our study relied upon a series of experimental, statistical, and bioinformatics tests to narrow down well over a billion possible interactions between circRNA, miRNA, and mRNA to highly specific three-way interactions within the miRNA sponge hypothesis that survive several layers of correction for multiple testing. Among our most significant circRNA–miRNA interacting pairs (i.e., circRNA-406702–miR-1200), we observed a unique set of genes negatively correlated with miR-1200 and positively correlated with circRNA-406702. Some of these (such as HRAS, PRKCB, HOMER1, PCLO, and ASTN1) are enriched within gene sets associated with synaptic transmission/development, highlighting their potential importance to the neuropathology of AD. HRAS, a small GTP-binding protein, interacts with downstream PI3K, AKT, and mTORC1 as part of a neurosignaling pathway (“Go” pathway) believed to be important for promoting neuroadaptations associated with excessive alcohol consumption and

FIGURE 3 CircRNA-406702–miR-1200 interacting transsynaptic signaling-associated genes. (A) Boxplot showing relative microarray expression differences between AD cases and controls for miR-1200. (B) Diagram of predicted binding loci between circRNA-406702 and miR-1200. (C) Boxplot showing relative expression differences between AD cases and controls for circRNA-406702. (D) Correlation plots displaying the significant negative relationship between miR-1200 and interacting transsynaptic signaling-associated genes (HRAS $r^2 = -0.45$; PRKCB $r^2 = -0.57$; HOMER1 $r^2 = -0.57$; PCLO $r^2 = -0.51$). (E) Correlation plot displaying significant positive relationship between circRNA-406702 and select genes (HRAS $r^2 = 0.61$; PRKCB $r^2 = 0.59$; HOMER1 $r^2 = 0.68$; PCLO $r^2 = 0.56$). (F) Boxplots for differential mRNA expression between AD cases and controls and diagram of miRNA predicted binding to the 3' UTR of target genes.
relapse. This is supported by studies showing that HRAS expression is increased among mice strains consuming alcohol in high quantities, as well as in the NAc of rats with an extended history of excessive consumption followed by periods of abstinence. However, in contrast to the animal-based studies, in our sample, we observed decreased HRAS expression in AD subjects. A possible explanation would be that the ligand-gated ion channels mediating HRAS activity become desensitized due to chronic receptor activation after years of alcohol abuse, which cannot be easily replicated in animal models.

PRKCB (protein kinase C beta), another gene implicated in our study, is an isoform of the protein kinase C (PKC) family. This set of proteins is shown to be essential for the development of AD through their interaction with CREB-BDNF neurosignaling pathway, which was reported to be associated with synaptic plasticity. More importantly, genetic variants nearby PRKCB have been significantly associated with comorbid bipolar disorder, substance use disorder (SUD), and alcohol cue-elicited brain activation.

Among the other genes interacting with circRNA-406702-miR-1200 are HOMER1 and PCLO, which encode for proteins playing an important role at the synapse. HOMER1 encodes for one of the Homer scaffolding proteins (Homer1/2), which link metabotropic glutamate receptors (mGlut1/5) to the postsynaptic density. Both HOMER1 and one of the mGlu receptor, GRM5, have been consistently implicated as potential therapeutic targets for the treatment of AD due to their role in regulating alcohol-facilitated neuroplasticity. Additionally, it has been shown that a polymorphism (rs7713917) in the regulatory region of HOMER1 can help predict increased alcohol consumption in adolescents years later. PCLO codes for the Piccolo protein, a scaffolding protein at the active zone of the presynaptic cytomatrix, an area where neurotransmitters are released. Functional studies have suggested that these polymorphisms may play an active role in emotional memory processing, and previous research has indicated that deficits in emotional processing is a hallmark of AD. This deficit then may lead to enhanced emotional reactivity to positive and negative stimuli during periods of drinking and periods of withdrawal, effectively

FIGURE 4 Identification of significant circRNA–miRNA–mRNA interactions and GO biological processes enrichment. (A) Breakdown of the number of significant circRNA–miRNA–mRNA interactions and unique genes at each step in our analysis (overlapping positive circRNA–mRNA and negative miRNA–mRNA correlations [Step 1], circRNA–miRNA binding predictions [Step 2], miRNA–mRNA binding predictions [Step 3], and moderation regression [Step 4]) ending with circRNA-406702-miR-1200 interacting mRNA. (B) GO biological processes enrichment for each set of unique genes at each step in our analysis. The genes or the number of genes from our list is presented within each histogram of the associated gen-set.
Some of the miRNAs implicated at various steps in our circRNA analysis, although not all of them directly associated with AD, show significant associations with alcoholic liver disease, brain function, and neuropsychiatric disorders. Among the several miRNAs identified from our significant circRNA–miRNA interactions, miR-665 is significantly upregulated in the prefrontal cortex (PFC) of alcoholics, and miR-361-5p shows increased expression in the PFC of early-stage AD mouse models. The maternal expression of another miRNA from our study (miR-3119) was shown to increase following alcohol consumption during pregnancy. Two other miRNAs (miR-1200 and miR-3187-3p) have been implicated in various neurobiological processes relevant to AD etiology. Of these, miR-1200 has been predicted to regulate neuronal connexins 36, 45, and 57 in humans, mice, and rats. Connexins (Cx) are essential for gap junction function at electrical synapses, with Cx36 shown to be associated with various rewarding effects of alcohol intoxication in knockout (KO) mice. Another report has suggested that miR-3187-3p expression changes modify the neuronal cell response to oxidative stress. Increased oxidative stress is a well-known consequence of alcohol's neurotoxic effects in the brain with multiple studies from our group and others identifying increased expression of immune and stress response genes in the postmortem brains of chronic alcohol users. Finally, miR-571 has shown to be an important biomarker for alcohol-related liver disease. We further show that miR-571 interacts significantly with NR3C1, a highly pleiotropic glucocorticoid receptor necessary for stress response and reported to be significantly associated with AD.

In respect to our cis-eQTL analysis, we identify genetic variants that impact the expression of our circRNA hubs. Though no specific polymorphisms at the genome-wide significance level ($p \leq 5E-8$) in GWAS of AUD were replicated among our eQTLs, we observed significant enrichment at a lower significance threshold ($p \leq 5e-4$) using two separate genomic enrichment tests using recent GWAS of AUD and smoking. Possible explanations for this observation are (1) the limited power of our postmortem brain sample, (2) different methods for phenotypic classification between our study and GWAS, and (3) GWAS of AUD that are still underpowered. However, most likely, with increased postmortem brain sample sizes and deep phenotyping of subjects with chronic alcohol abuse, we may begin to see a meaningful overlap between the results from these two methods. Nevertheless, the importance of identifying eQTL enrichment among GWAS signals from our eQTL analysis is threefold: first, help validate the clinical relevance of these large association studies by providing a functional explanation for AUD associated GWAS signals; second, reinforce such identified eQTLs and SNPs in LD as likely candidates for future, more targeted, follow-up analyses; and third, provide limited genetic context for the causal relationship between gene expression changes and AUD. Our study also highlights a potentially novel neurobiological mechanism of alcohol addiction by demonstrating that alcohol abuse may impact known AD risk genes by altering circRNA expression and circRNA’s ability to act as miRNA sponges. Our circRNA eQTL study further suggests that we must be careful when interpreting GWAS signals given that genetic variants impacting the expression of proximal circRNA can alter the expression of other genes.

![Figure 5](image.png)

FIGURE 5 Significant circRNA cis-eQTLs. (A) eQTLs that survive FDR ≤ 0.10 significance threshold. (B) eQTLs from circRNA–miRNA–mRNA trios with negatively correlated miRNA–mRNA, positively correlated miRNA–mRNA, predicted circRNA–miRNA binding, and miRNA–mRNA predicted interactions. (C) eQTLs for circRNA that participate in circRNA–mRNA–mRNA interactions that survive all our bioinformatics and statistical tests.
of distal genes through epistatic interaction between circRNA and miRNA.

4.1 Limitations and future direction

Our study does also have a few limitations. First, it is possible that by focusing solely on the circRNA and miRNA interactions, we may have overlooked other molecular mechanisms (i.e., epigenetic factors) that potentially can also affect the functions of risk AD loci. Second, although the use of male subjects only can be perceived as a limitation, this was a deliberate choice in order to increase our statistical power by removing sex-based variability. Genetic epidemiological studies have shown that male and female subjects have a similar genetic predisposition to alcohol abuse.94 Also, we acknowledge our limited ability to differentiate between expression changes that represent the neuropathological consequence of chronic alcohol abuse or predictive factors for the development of AUD. However, this does not diminish the scientific and clinical relevance of our findings because identifying genes and gene networks that promote or maintain problematic drinking behaviors can inform novel therapeutic treatments for AUD. We also integrate genetic information via eQTL in order to tease apart the relationship between predictive genetic factors, AUD, and expression.95,96

To the best of our knowledge, ours is the first to specifically investigate the effect of circRNA and miRNA interactions on gene expression in NAc from subjects with AD. We are confident that this pilot study will facilitate and promote future studies to corroborate our findings by experimentally validating these results and further exploring them in the context of increased and more diverse experimental settings. Future studies might include exploring the relationship between circRNA–miRNA–mRNA interactions and other alcohol-related traits such as alcohol consumption. Including alcohol consumption is beyond the scope of this study given that our samples are obtained from individuals diagnosed with chronic and severe AUD and that the genetic correlation between consumption and severe AUD is relatively weak.97 We do feel alcohol consumption would be an important factor to include when exploring more intermediate/moderate drinking phenotypes in future studies. It is also important to acknowledge the relevant crossover between the identified genes participating in circRNA–miRNA–mRNA interactions and genes implicated in studies from animal models of AUD. Much of the functional neurobiological work has been performed in animal models,98 whereas large-scale GWAS have attempted to identify heritable genetic variants associated with AUD and other addictive behaviors in human populations.99,100 However, the translation between human genetic studies and functional animal studies has been limited.101 This is most likely due to the complex nonlinear relationships between environmental and genetic factors in humans that are difficult to recapitulate in animal models of AD and the increased transcriptome complexity in the human brain relative to animal brains and other tissues.49,102 Thus, follow-up functional studies in animal models or proxy tissues are necessary to corroborate these findings. Moreover, we believe that our study will be the steppingstone on which future studies will expand our integrative analytical approach to incorporate other brain regions and psychiatric phenotypes.

ACKNOWLEDGEMENTS

This work was supported by the National Institute on Alcohol Abuse and Alcoholism and National Institute of Mental Health (F31AA028180 to Eric Vornholt, R21AA022749 and R01MH118239 to Dr. Vladimirov, and P50AA022537 to Dr. Miles). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

CONFLICT OF INTEREST

The authors report no biomedical financial interests or potential conflicts of interest.

ORCID

Eric Vornholt https://orcid.org/0000-0001-8406-1158

REFERENCES

1. Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananont Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet Lond Engl. 2009;373(9682):2223-2233.
2. Heath AC, Bucholz KK, Madden PAF, et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med. 1997;27(6):1381-1396.
3. Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol Med. 2015;45(5):1061-1072.
4. Tawa EA, Hall SD, Lohoff FW. Overview of the genetics of alcohol use disorder. Alcohol Alcohol. 2016;51(5):507-514.
5. Vornholt E, Drake JM, Mamdani M, et al. Network preservation reveals shared and unique biological processes associated with chronic alcohol abuse in NAc and PFC. PLoS ONE. 2020;15(12):e0243857.
6. Farris SP, Arasappan D, Hunick–Smith S, Harris RA, Mayfield RD. Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry. 2015;20(11):1438-1447.
7. Hart AB, Kranzler HR. Alcohol dependence genetics: lessons learned from genome-wide association studies (GWAS) and post-GWAS analyses. Alcohol Clin Exp Res. 2015;39(8):1312-1327.
8. Fabbri M, Girmita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019;29(9):1377-1388.
9. Mayfield RD. Emerging roles for ncRNAs in alcohol use disorders. Alcohol. 2017;60:31-39.
10. Dou X, Feng L, Ying N, et al. RNA sequencing reveals a comprehensive circular RNA expression profile in a mouse model of alcoholic liver disease. Alcohol Clin Exp Res. 2020;44(2):415-422.
11. Meng H, Wang L, You H, Huang C, Li J. Circular RNA expression profile of liver tissues in an EtOH-induced mouse model of alcoholic hepatitis. Eur J Pharmacol. 2019;862:172642.
12. Qu S, Yang X, Li X, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141-148.
13. Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186:101746.
14. Ebbesen KK, Hansen TB, Kjems J. Insights into circular RNA biology. RNA Biol. 2017;14(8):1035-1045.
15. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. *Pharmacol Ther*. 2018;187:31-44.

16. Salzman J. Circular RNA: Expression: its potential regulation and function. *Trends Genet*. 2016;32(5):309-316.

17. Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. *Nat Genet*. 2002;30(4):363-364.

18. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. *Nature*. 2013;495(7441):384-388.

19. Ren S, Lin P, Wang J, et al. Circular RNAs: promising molecular biomarkers of human aging-related diseases via functioning as an miRNA sponge. *Mol Ther - Methods Clin Dev*. 2020;18:215-229.

20. Zimmerman AJ, Hafez AK, Amoah SK, et al. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. *Mol Psychiatry*. 2020;25(11):2712-2727.

21. Li Z, Liu S, Li X, Zhao W, Li J, Xu Y. Circular RNA in schizophrenia and depression. *Front Psych*. 2020;11:392. https://doi.org/10.3389/fpsyg.2020.00392

22. Lukiw W. Circular RNA (circRNA) in Alzheimer's disease (AD). *Front Genet*. 2013;4:307. https://doi.org/10.3389/fgene.2013.00307

23. Zimmerman AJ, Hafez AK, Amoah SK, et al. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. *Mol Psychiatry*. 2020;1-16.

24. García-González D, Dumitru I, Zuccotti A, et al. Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. *Mol Psychiatry*. 2020;1-17.

25. Gokool A, Loy CT, Halliday GM, Voineagu I. Circular RNAs: the brain transcriptome comes full circle. *Trends Neurosci*. 2020;43(10):752-766.

26. Harper C, Dixon G, Sheedy D, Garrick T. Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre. *Prog Neuropsychopharmacol Biol Psychiatry*. 2003;27(6):951-961.

27. Mamdani M, Williamson V, McMichael GO, et al. Integrating mRNA and miRNA weighted gene co-expression networks with eQTLs in the nucleus accumbens of subjects with alcohol dependence. *PLoS ONE*. 2015;10(9):e0137671.

28. Heller R, Manduchi E, Small DS. Matching methods for observational microarray studies. *Bioinformatics*. 2009;25(7):904-909.

29. Vornholt E, Luo D, Ou W, et al. Postmortem brain tissue as an underutilized resource to study the molecular pathology of neuropsychiatric disorders across different ethnic populations. *Neurosci Biobehav Rev*. 2019;102:195-207.

30. Rochow H, Franz A, Jung M, et al. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality. *Theranostics*. 2020;10(20):9268-9279.

31. Zeng N, Wang T, Chen M, et al. Cigarette smoke extract alters genome-wide profiles of circular RNAs and miRNAs in primary human small airway epithelial cells. *J Cell Mol Med*. 2019;23(8):5532-5541.

32. Liu Z, Ran Y, Tao C, Li S, Chen J, Yang E. Detection of circular RNA expression and related quantitative trait loci in the human dorsolateral prefrontal cortex. *Genome Biol*. 2019;20(1):1-16.

33. Zeng N, Wang T, Chen M, et al. Cigarette smoke extract alters genome-wide profiles of circular RNAs and miRNAs in primary human small airway epithelial cells. *J Cell Mol Med*. 2019;23(8):5532-5541.

34. Liu Z, Ran Y, Tao C, Li S, Chen J, Yang E. Detection of circular RNA expression and related quantitative trait loci in the human dorsolateral prefrontal cortex. *Genome Biol*. 2019;20(1):1-16.

35. Vornholt E, Mamdani M, Drake J, et al. Network preservation reveals shared and unique biological processes associated with chronic alcohol use in NAC and PFC. *bioRxiv*. 2020;2020.05.21.108621.

36. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. *Stat Appl Genet Mol Biol*. 2005;4(1):17.

37. Rennie W, Liu C, Carmack CS, et al. STARMir: a web server for prediction of microRNA binding sites. *Nucleic Acids Res*. 2014;42(W1):W114-W118.

38. Riffó-Campos ÁL, Riquelme I, Brebi-Mievile P. Tools for sequence-based miRNA target prediction: what to choose? *Int J Mol Sci*. 2016;17(12):1987. https://doi.org/10.3390/ijms17121987

39. Liu C, Mallick B, Long D, et al. CLIP-based prediction of mammalian microRNA binding sites. *Nucleic Acids Res*. 2013;41(14):e138-e138.

40. Ru Y, Keichris KJ, Tabakoff B, et al. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. *Nucleic Acids Res*. 2014;42(17):e133-e133.

41. Hayes AF, Little TD. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. http://www.dawsonera.com/depp/reader/protected/external/AbstractView/59781462534678. 2018. Accessed 29 March 2021.

42. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. *Bioinforma Oxf Engl*. 2020;36(8):2628-2629.

43. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet*. 2007;81(3):559-575.

44. Liu Y, Xie J. Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. *J Am Stat Assoc*. 2020;115(529):393-402.

45. Li M-X, Gui H-S, Kwan JSH, Sham PC. GATES: a rapid and powerful gene-based association test using extended Simes procedure. *Am J Hum Genet*. 2011;88(2):283-293.

46. de Jong TV, Moskhn YM, Guryev V. Gene expression variability: the other dimension in transcriptome analysis. *Physiol Genomics*. 2019;51(5):145-158.

47. Chen Y-J, Chen C-Y, Mai T-L, et al. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. *Genome Res*. 2020;30(3):375-391.

48. Guo L, Zheng L, Zhao Y, Wang Q. Profiling and bioinformatic analyses indicate differential circRNA and miRNA/isomiR expression and interactions. *Biomed Res Int*. 2018;2018:e8518563.

49. Chang L-H, Couvy-Duchene B, Liu M, et al. Association between polygenic risk for tobacco or alcohol consumption and liability to licit and illicit substance use in young Australian adults. *Drug Alcohol Depend*. 2019;197:271-279.

50. Walters RK, Polimanti R, Johnson EC, et al. Transcendental GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. *Nat Neurosci*. 2018;21(12):1656-1669.

51. Kang HJ, Kawasawa YI, Cheng F, et al. Spatio-temporal transcriptome of the human brain. *Nature*. 2011;478(7370):483-489.

52. Ron D, Barak S. Molecular mechanisms underlying alcohol-drinking behaviours. *Nat Rev Neurosci*. 2016;17(9):576-591.

53. Crews FT, Collins MA, Dlugos C, et al. Alcohol-induced neurodegeneration: when, where and why? *Alcohol Clin Exp Res*. 2004;28(2):350-364.

54. Roberto M, Varodayan FP. Synaptic targets: chronic alcohol actions. *Neuropharmacology*. 2017;122:85-99.

55. Mulligan MK, Ponomarev I, Hitzemann RJ, et al. Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. *Proc Natl Acad Sci U S A*. 2006;103(16):6368-6373.

56. Ben Hamida S, Neasta J, Lasek AW, et al. The small G protein H-Ras in the mesolimbic system is a molecular gateway to alcohol-seeking and excessive drinking behaviors. *J Neurosci off J Soc Neurosci*. 2012;32(45):15849-15858.

57. Jin Z, Bhandage AK, Bazov I, et al. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics. *Front Cell Neurosci*. 2014;8:288. https://doi.org/10.3389/fncel.2014.00288

58. Dopico AM, Lovinger DM. Acute alcohol action and desensitization of ligand-gated ion channels. *Pharmacol Rev*. 2009;61(1):98-114.
57. Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci. 2014; 35(7):317-323.
58. Newton PM, Ron D. Protein kinase C and alcohol addiction. Pharmacol Res. 2007;55(6):570-577.
59. Chen J, Hutchison KE, Calhoun VD, et al. CREB-BDNF pathway influences alcohol cue-elicited activation in drinkers. Hum Brain Mapp. 2015;36(8):3007-3019.
60. Dalvie S, Fabbri C, Ramesar R, Serretti A, Stein DJ. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis. 2016;31(1):183-189.
61. Castelli V, Brancato A, Cavallaro A, Lavanco G, Cannizzaro C. Homer2 and Alcohol: a mutual interaction. Front Psych. 2017;8:268. https://doi.org/10.3389/fpsyg.2017.00268
62. Goodward S, Saternos H, Alasmari F, Sari Y. Metabotropic and ionotropric glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev. 2017;77:14-31.
63. Meyers JL, Salling MC, Almli LM, et al. Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways. Transl Psychiatry. 2015;5(6):e586-e586.
64. Heinrich A, Müller KU, Banaschewski T, et al. Prediction of alcohol drinking in adolescents: personality-traits, behavior, brain responses, and genetic variations in the context of reward sensitivity. Biol Psychol. 2016;118:79-87.
65. Fenster SD, Chung WJ, Zhai R, et al. Piccolo, a presynaptic zinc finger protein structurally related to Bassoon. Neuron. 2000;25(1):203-214.
66. Sullivan PF, de Geus EJC, Willemsen G, et al. Genotype–environment associations with emotion regulation difficulties. Transl Psychiatry. 2012;2(4):e99-e99.
67. Woudstra S, van Tol M-J, Bochdanovits Z, et al. Modulatory effects of the Piccolo genotype on emotional memory in health and depression. PLoS ONE. 2013;8(4):e61494.
68. Woudstra S, Bochdanovits Z, van Tol M-J, et al. Piccolo genotype modulates neural correlates of emotion processing but not executive functioning. Transl Psychiatry. 2012;2(4):e99-e99.
69. Dvorak RD, Sargent EM, Kilwein TM, Stevenson BL, Kuvasa NJ, Williams TJ. Alcohol use and alcohol-related consequences: associations with emotion regulation difficulties. Am J Drug Alcohol Abuse. 2014;40(2):125-130.
70. Curtin JJ, Patrick CJ, Lang AR, Cacioppo JT, Birbaumer N. Alcohol affects emotion through cognition. Psychol Sci. 2001;12(6):527-531.
71. Volkow ND, Wang G-J, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52(1):321-336.
72. Tapocik JD, Solomon M, Flanigan M, et al. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence. Pharmacogenomics J. 2013;13(3):286-296.
73. McBride WJ. Gene expression in CNS regions of genetic rat models of alcohol abuse. In: Watson RR, Zibadi S, eds. Beyond genome-wide significance: integrative approaches to the interpretation and extension of GWAS findings for alcohol use disorder. Addict Biol. 2011;16(3):510-513.
74. Gatta E, Grayson DR, Ault J, et al. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1) gene polymorphisms and onset of alcohol abuse in adolescents. Addict Biol. 2011;16(3):510-513.
75. Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci. 2014; 35(7):317-323.
76. Wilson PM, Fryer RH, Fang Y, Hatten ME. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J Neurosci. 2010;30(25):8529-8540.
77. Hill SY, Weeks DE, Jones BL, Zezza N, Stiffler S. ASTN1 and alcohol dependence: family-based association analysis in multiplex alcohol dependence families. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(4):445-455.
78. Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD. Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res. 2011;35(11):1928-1937.
79. Nunez YO, Truitt JM, Gorini G, et al. Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics. 2013; 14(1):725.
80. Gardiner AS, Gutierrez HL, Luo L, et al. Alcohol use during pregnancy is associated with specific alterations in microRNA levels in maternal serum. Alcohol Clin Exp Res. 2016;40(4):826-837.
81. Higa GSV, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH. MicroRNAs in neuronal communication. Mol Neurobiol. 2014;49(3):1309-1326.
82. Steffensen SC, Bradley KD, Hansen DM, et al. The role of connexin-36 gap junctions in alcohol intoxication and consumption. Synap N Y N. 2011;65(8):695-707. https://doi.org/10.1002/syn.20885
83. Pallarés-Albanell J, Zomeño-Abellán MT, Escaramís G, et al. A high-throughput screening identifies microRNA inhibitors that influence neuronal maintenance and/or response to oxidative stress. Mol Ther - Nucleic Acids. 2019;17:374-387.
84. Haorah J, Ramírez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med. 2008;45(11):1542-1550.
85. Kapoor M, Wang J-C, Farris SP, et al. Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. Transl Psychiatry. 2019;9:1-11.
86. McClintick JN, Xuei X, Tschiefeld JA, et al. Stress–response pathways are altered in the hippocampus of chronic alcoholics. Alcohol. 2013; 47(7):505-515.
87. Roderburg C, Mollnow T, Bongaerts B, et al. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS ONE. 2012;7(3):e32999.
88. Desrivères S, Lourdusamy A, Müller C, et al. Glucocorticoid receptor (NR3C1) gene polymorphisms and onset of alcohol abuse in adolescents. Addict Biol. 2011;16(3):510-513.
89. Gatta E, Grayson DR, Ault J, et al. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1) gene polymorphisms and onset of alcohol abuse in adolescents. Addict Biol. 2011;16(3):510-513.
90. Gatta E, Grayson DR, Ault J, et al. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1) gene polymorphisms and onset of alcohol abuse in adolescents. Addict Biol. 2011;16(3):510-513.
91. Asif H, Alley-Rodriguez N, Keedy S, et al. GWAS significance thresholds for deep phenotyping studies can depend upon minor allele frequencies and sample size. Mol Psychiatry. 2020;1-8.
92. Kendler KS, Prescott CA, Myers J, Neale MC. The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Arch Gen Psychiatry. 2003;60(9):929-937.
93. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469-476.
96. Uher R. The role of genetic variation in the causation of mental illness: an evolution-informed framework. Mol Psychiatry. 2009;14(12):1072-1082.

97. Kranzler HR, Zhou H, Kember RL, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019;10(1):1499.

98. Goltseker K, Hopf FW, Barak S. Advances in behavioral animal models of alcohol use disorder. Alcohol. 2019;74:73-82.

99. Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including novel risk loci. Mol Psychiatry. 2014;19(1):41-49.

100. Walters RK, Palimonte R, Johnson EC, et al. Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21(12):1656-1669.

101. Barkley-Levenson AM, Crabbe JC. Bridging animal and human models: translating from (and to) animal genetics. Alcohol Res. 2012;34(3):325-335.

102. Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci. 2010;107(28):12698-12703.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Vornholt E, Drake J, Mamdani M, et al. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addiction Biology. 2021;26(6):e13071. https://doi.org/10.1111/adb.13071