Revisiting Classifier: Transferring Vision-Language Models for Video Recognition

Wenhao Wu1,2 \hspace{1cm} Zhun Sun2 \hspace{1cm} Wanli Ouyang1,3

1The University of Sydney \hspace{1cm} 2Baidu Inc. \hspace{1cm} 3Shanghai AI Laboratory
Task: What is Video Recognition?

Video Recognition: classify the short clip or untrimmed video into pre-defined class.
Task: What is Video Recognition?

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions
Video Recognition Pipeline

- Sample RGB frames or Optical Flows or RGB Diff
- 2D CNN or 3D CNN or Transformer with temporal modeling
- Video-level representation

classifier
backstroke
CLIP: A Web-scale Pre-trained Vision-Language Model

1. Contrastive pre-training

2. Create dataset classifier from label text

3. Use for zero-shot prediction

400M image-text pairs for pre-training

Radford, Alec, et al. “Learning transferable visual models from natural language supervision.” *International Conference on Machine Learning*. PMLR, 2021.
How to transfer CLIP model for video recognition?

1. The typical vision-only transferring framework

Efficient Training but limited performance, especially on zero/few shot scenario
How to transfer CLIP model for video recognition?

2. The recent vision-language transferring framework

CLIP Pre-trained Textual Encoder

- Textual Encoder
 - a video of a person {CLS}

CLIP Pre-trained Visual Encoder

- Visual Encoder
 - Videos

Good performance but:
- More parameters
- Require large batch size for contrastive learning
- More training time for convergence
How to transfer CLIP model for video recognition?

3. Our efficient vision-language transferring framework

Efficient but not effective

Existing transferring paradigm for video recognition

(a) Standard vision-only tuning paradigm

Efficient

(b) Vision-language tuning paradigm

Effective but not efficient
How to transfer CLIP model for video recognition?

3. Our efficient vision-language transferring framework

Key Observations: Revisiting Classifier

Figure. Inter-class correlation maps of “embeddings of class labels” for 20 categories on Kinetics-400. **Left:** The extracted textual vectors of class labels, **Right:** The “embeddings” from learned classifier.
How to transfer CLIP model for video recognition?

3. Our efficient vision-language transferring framework

Revisiting Classifier: *From a frozen classifier perspective*

Q: How to obtain inter-class correlation?
How to transfer CLIP model for video recognition?

3. Our efficient vision-language transferring framework

Revisiting Classifier: From a frozen classifier perspective

Q: How to obtain inter-class correlation?

A1: Transferring visual statistic knowledge.

A2: Transferring textual semantic knowledge.

(c) Revisiting the classifier for efficient tuning
How to transfer CLIP model for video recognition?

3. Our efficient vision-language transferring framework

Existing transferring paradigm for video recognition

Efficient but not effective

(a) Standard vision-only tuning paradigm

Efficient

(b) Vision-language tuning paradigm

Effective but not efficient

Revisiting Classifier: From a frozen classifier perspective

Q: How to obtain inter-class correlation?

A1: Transferring visual statistic knowledge.

A2: Transferring textual semantic knowledge.

(c) Revisiting the classifier for efficient tuning
Comparisons with SOTAs

Method	Input	Pre-train	Top-1	Top-5	FLOPs×Views	Param
NL I3D-101 [58]	128×224²	IN-1K	77.7	93.3	359×10×3	61.8
MVFNet₄₄₉ [60]	24×224²	IN-1K	79.1	93.8	188×10×3	-
SlowFast NL101 [14]	16×224²	Scratch	79.8	93.9	234×10×3	59.9
X3D-XXL [13]	16×440²	Scratch	80.4	94.6	144×10×3	20.3
MViT-B, 64×3 [11]	64×224²	Scratch	81.2	95.1	455×3×3	36.6

Methods with large-scale pre-training

Method	Input	Pre-train	Top-1	Top-5	FLOPs×Views	Param
TimeFormer-L-2 [2]	96×224²	IN-21K	80.7	94.7	2380×1×3	121.4
ViViT-L/16×2 [1]	32×320²	IN-21K	81.3	94.7	3992×4×3	310.8
VideoSwin-L [36]	32×384²	IN-21K	84.9	96.7	2107×10×5	200.0
ip-CSN-152 [51]	32×224²	IG-65M	82.5	95.3	109×10×3	32.8
ViViT-L/16×2 [1]	32×320²	JFT-300M	83.5	95.5	3992×4×3	310.8
ViViT-H/16×2 [1]	32×224²	JFT-300M	84.8	95.8	8316×4×3	647.5
TokLearner-L/100 [44]	32×224²	JFT-300M	85.4	96.3	4076×4×3	450
MTV-H [66]	32×224²	JFT-300M	85.8	96.6	3706×4×3	-
CoVeR [71]	16×448²	JFT-300M	86.3	-	-×1×3	-
Florence [69]	32×384²	FLD-900M	86.5	97.3	-×4×3	647
CoVeR [71]	16×448²	JFT-3B	87.2	-	-×1×3	-
VideoPrompt ViT-B/16 [25]	16×224²	WIT-400M	76.9	93.5	-	-
ActionCLIP ViT-B/16 [57]	32×224²	WIT-400M	83.8	96.2	563×10×3	141.7

| Ours ViT-L/14 | 32×224² | WIT-400M | 87.1 | 97.4 | 1662×4×3 | 230.7 |
| Ours ViT-L/14 | 32×336² | WIT-400M | 87.8 | 97.6 | 3829×1×3 | 230.7 |

Results on ActivityNet dataset

Method	Top-1	mAP
ListenToLook [16]	-	89.9
MARL [61]	85.7	90.1
DSANet [62]	-	90.5
TSQNet [63]	88.7	93.7
NSNet [64]	90.2	94.3
Ours ViT-L	**92.9**	**96.5**
Ours ViT-L (336↑)	**93.3**	**96.9**

Results on Kinetics-400 dataset

Method	Top-1	mAP
ListenToLook [16]	-	89.9
MARL [61]	85.7	90.1
DSANet [62]	-	90.5
TSQNet [63]	88.7	93.7
NSNet [64]	90.2	94.3
Ours ViT-L	**92.9**	**96.5**
Ours ViT-L (336↑)	**93.3**	**96.9**

Results on UCF101 & HMDB51 dataset

Method	UCF-101	HMDB-51
ARTNet [55]	94.3%	70.9%
I3D [6]	95.6%	74.8%
R(2+1)D [52]	96.8%	74.5%
S3D-G [65]	96.8%	75.9%
TSM [33]	95.9%	73.5%
STM [24]	96.2%	72.2%
TEINet [35]	96.7%	72.1%
MVFNet [60]	96.6%	75.7%
TDN [56]	97.4%	76.4%
Ours ViT-L	**98.1%**	**81.3%**
Ours ViT-L (336↑)	**98.2%**	**81.3%**
Comparison with Few-shot SOTAs

Method	shot	HMDB	UCF	ANet	K400
VideoSwin [36]	2	20.9	53.3	-	-
VideoPrompt [25]	5	56.6	79.5	-	58.5
X-Florence [40]	2	51.6	84.0	-	-
Ours ViT-L					
	0	53.8	71.9	75.6	61.0
	1	**72.7**	**96.4**	**89.0**	**75.8**
	2	**73.5**	**96.6**	**90.3**	**78.2**
All		80.1	96.9	91.1	84.7

Table 3. Comparisons with SOTAs on few-shot action recognition.
Comparison with Zero-shot SOTAs

Method	UCF* / UCF	HMDB* / HMDB	ANet*/ANet	Kinetics-600
GA [38]	17.3±1.1 / -	19.3±2.1 / -	-	-
TS-GCN [15]	34.2±3.1 / -	23.2±3.0 / -	-	-
E2E [3]	44.1 / 35.3	29.8 / 24.8	26.6 / 20.0	-
DASZL [27]	48.9±5.8 / -	- / -	-	-
ER [7]	51.8±2.9 / -	35.3±4.6 / -	-	42.1±1.4
ResT [32]	58.7±3.3 / 46.7	41.1±3.7 / 34.4	32.5 / 26.3	-
Ours	**85.8±3.3 / 79.6**	**58.1±5.7 / 49.8**	**84.6±1.4 / 77.4**	**68.9±1.0**

Table 4. Comparisons with SOTAs on zero-shot video recognition. We directly evaluate our method without any additional training on cross-dataset video recognition. ANet is in short for ActivityNet. * means half classes evaluation.
Some Ablation Studies

Comparisons with vision-only framework

Paradigm	Batch Gather	Textual Encoder	Top-1	V100-days
Vision-Only	✓	online	81.2	6.7 (10*)
Vision-Text	✓	offline	80.7	6.6
Ours	✓	offline	81.5	3.3

Comparisons with contrastive-based framework

Method	Top-1	FLOPs	Params	Throughput
ViViT-L/16-320 [1]	81.3	3992G	310.8M	4.2 vid/s*
Ours ViT-B/32	78.5	23.7G	71.6M	322.5 vid/s
Ours ViT-B/16	81.5	90.3G	69.9M	126.5 vid/s
Ours ViT-L/14	85.4	415.4G	230.4M	35.5 vid/s

Exploration of different frozen classifiers

Analysis on inference efficiency
Conclusion

• A simple yet effective transferring method from a **frozen classifier** perspective

• *Improving both the performance and the convergence speed of visual classification*

• *Superior performance on both general and zero-shot/few-shot recognition*

• *Codes & models have be available*
 https://github.com/whwu95/Text4Vis
THANKS

🔥 Codes & Models
https://github.com/whwu95/Text4Vis

👩‍💋‍👦 Contact
Wenhao Wu
Email: whwu.ucas@gmail.com
Homepage: https://whwu95.github.io