Geometric Scattering Monodromy

Richard Cushman

Received: 18 September 2022 / Accepted: 27 April 2023 / Published online: 25 May 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
In this paper we give geometric conditions so that the integral mapping of a Liouville integrable Hamiltonian system with a focus-focus equilibrium point has scattering monodromy. Using a complex version of the Morse lemma, we show that scattering monodromy is the same as the scattering monodromy of the standard focus-focus system.

Keywords Scattering monodromy · Complex Morse lemma

Mathematics Subject Classification 70H06

Introduction
In [1] the hyperbolic oscillator integrable Hamiltonian system $(u, v, \mathbb{R}^4, \Omega = d\xi_1 \wedge d\xi_2 - d\eta_1 \wedge d\eta_2)$, where

$$u : \mathbb{R}^4 \to \mathbb{R} : (\xi, \eta) \mapsto \xi_1 \eta_1 + \xi_2 \eta_2 = h$$

and

$$v : \mathbb{R}^4 \to \mathbb{R} : (\xi, \eta) \mapsto \frac{1}{2} (\xi_1^2 + \xi_2^2 - \eta_1^2 - \eta_2^2) = \ell$$

was shown to have scattering monodromy. Geometrically this means that a motion in \mathbb{R}^4 of the hyperbolic oscillator of energy h and angular momentum ℓ projects onto a branch of a hyperbola in the (ξ_1, ξ_2) plane, whose outgoing asymptote forms an angle $\tan^{-1} \frac{h}{\ell}$ with its incoming asymptote. This angle is called the scattering angle of the hyperbolic motion. As (h, ℓ) traverses a circle in the energy-momentum plane
centered at the origin, the scattering angle of a hyperbolic motion, which starts at a point in the image of a section of the bundle formed by the integral map, increases by 2π. This is the scattering monodromy of the hyperbolic oscillator system.

In [3] it was shown that the quantum Kepler problem has scattering monodromy. The references in [5] list all the contributors to the proof of the toral geometric monodromy theorem. In [4] the relation of scattering monodromy to the geometric monodromy of a toral fibration was treated using rotation forms. However, a geometric scattering monodromy theorem was not formulated. This paper remedies this omission.

Our formulation of the geometric scattering monodromy theorem follows that of the geometric (toral) monodromy theorem given in [5]. Our proof follows the line of argument for the proof of the toral geometric monodromy theorem given in [2] with all reasoning involving compactness being avoided. We use a complex version of the Morse lemma, inspired by [6], to reduce the proof of the geometric scattering monodromy theorem to the computation of the scattering monodromy of the complexified standard focus-focus system $(q_1, q_2, \mathbb{R}^4, \omega = dx \wedge dp_x + dy \wedge dp_y)$, where

\[q_1 : \mathbb{R}^4 \to \mathbb{R} : (x, y, p_x, p_y) \mapsto xp_x + yp_y \]
\[\text{and} \]
\[q_2 : \mathbb{R}^4 \to \mathbb{R} : (x, y, p_x, p_y) \mapsto xp_y - yp_x. \]

We now state the geometric scattering monodromy theorem.

The origin 0 of \mathbb{R}^4 is a focus-focus equilibrium point of the Liouville integrable system $(h_1, h_2, \mathbb{R}^4, \omega = dx \wedge dp_x + dy \wedge dp_y)$ if and only if

1. The complete vector fields X_{h_1} and X_{h_2} vanish at 0, that is, 0 is an equilibrium point of X_{h_1} and X_{h_2}.

2. The space spanned by the linearized Hamiltonian vector fields $DX_{h_1}(0)$ and $DX_{h_2}(0)$ is conjugate by a real linear symplectic mapping of (\mathbb{R}^4, ω) into itself to the Cartan subalgebra of $\mathfrak{sp}(4, \mathbb{R})$ spanned by X_{q_1} and X_{q_2}, where $q_1 = xp_x + yp_y$ and $q_2 = xp_y - yp_x$.

From point 2 we may assume that $h_i = q_i + r_i$ for $i = 1, 2$, where r_i is a smooth function on \mathbb{R}^4, which is flat to 2nd order at 0, that is, $r_i \in O(2)$.

The remainder of this paper is devoted to proving

Theorem (Geometric Scattering Monodromy). Let $(h_1, h_2, \mathbb{R}^4, \omega)$ be a Liouville integrable system with a focus-focus equilibrium point at $0 \in \mathbb{R}^4$. Consider the integral map

\[F : \mathbb{R}^4 \to \mathbb{R}^2 : z \mapsto (h_1(z), h_2(z)) = (c_1, c_2), \]

where $F(0) = (0, 0)$. Suppose that F has the following properties.

1. There is an open neighborhood U of the origin $(0, 0)$ in \mathbb{R}^2 such that $(0, 0)$ is the only critical value of the integral map F in U.

2. For every \(c \in U^x = U \setminus \{(0, 0)\} \) the fiber \(F^{-1}(c) \) is noncompact and connected. The fibration \(\rho = F | F^{-1}(U^x) : F^{-1}(U^x) \to U^x \) is trivial.

3. The singular fiber \(F^{-1}(0, 0) \) is noncompact and connected. For every \(z \in F^{-1}(0, 0) \setminus \{0\} \) the rank of \(DF(z) \) is 2. Then the fibration \(\hat{\rho} = F | F^{-1}(C) : F^{-1}(C) \to C \) over the smooth circle \(C \) in \(U^x \) encircling \((0, 0) \) is trivial. So \(F^{-1}(C) = C \times (S^1 \times \mathbb{R}) \). There is an integral \(I \) of the vector field \(X_{h_1} \) whose flow \(\varphi^I_t \) is periodic on \(F^{-1}(C) \). Also there is a connection 1-form \(\theta \) on \(F^{-1}(C) \) which is invariant under the flow \(\varphi^I_t \) of \(X_I \). For each \(c \in C \subseteq U^x \), the curve \(t \mapsto \Gamma_{\sigma(c)}(t) = \varphi^h_{t1}(\sigma(c)), \) where \(\sigma \) is a global section of the bundle \(\hat{\rho} \), has scattering phase \(\Theta(c) = \arg c + \int_{\Gamma_{\sigma(c)}} \theta. \) The degree of the map \(\Theta : U^x \to S^1 : c \mapsto \Theta(c) \) is 1. This is the scattering monodromy of the focus-focus system.

The main idea of the proof is to construct a smooth local isotopy from the focus-focus system to the standard focus-focus system, which pulls back the connection 1-form to a connection 1-form so that we can compute the scattering phase of the curve \(\Gamma_{\sigma(c)} \).

1 The Singular Fiber

In this section we show that the singular fiber \(F^{-1}(0, 0) \) of the integral mapping \(F(3) \) is homeomorphic to a once pinched cylinder.

Let \(\varphi^h_{t1} \) and \(\varphi^h_{u2} \) be the flows of the vector fields \(X_{h_1} \) and \(X_{h_2} \), respectively. The hyperbolicity of \(X_{h_1} \) at 0 implies that there is an open ball \(B \) in \(\mathbb{R}^4 \) (with the Euclidean inner product) centered at 0 having radius \(r \) such that the local stable \(W_s^B(0) \) and unstable \(W_u^B(0) \) manifolds of 0 in \(B \) are smooth connected manifolds, whose tangent space at 0 is the \(\mp 1 \) eigenspace of the linear mapping \(X_{\theta_1} \), respectively. The global stable manifold \(W_s(0) \) is \(\bigcup_{t>0} \varphi^h_{t1}(W_s^B(0)) \); while the global unstable manifold \(W_u(0) \) is \(\bigcup_{t>0} \varphi^h_{t2}(W_u^B(0)) \). When \(w \in W_{s,u}(0) \) as \(t \to \infty, -\infty \) we have \(F(w) = F(\varphi^h_{t1}(w)) \to F(0) = (0, 0) \). Thus \(W_{s,u}(0) \subseteq F^{-1}(0, 0) \).

Claim 1.1 \(F^{-1}(0, 0) \setminus \{0\} = (W_s(0) \setminus \{0\}) \coprod (W_u(0) \setminus \{0\}) \).

Proof Since \(F^{-1}(0, 0) \) is locally invariant under the flow \(\varphi^h_{t1} \), it is globally invariant. Thus \(\varphi^h_{t1} | F^{-1}(0, 0) \) is defined for every \(t \in \mathbb{R} \). Because of hypothesis 3, the set \(F^{-1}(0, 0)^x = F^{-1}(0, 0) \setminus \{0\} \) is a smooth 2-dimensional submanifold of \(\mathbb{R}^4 \). So \(\varphi^h_{t1}(W_{s,u}^B(0)) \setminus \{0\} \) is an open subset of \(F^{-1}(0, 0)^x \). Thus \(W_{s,u}(0)^x = W_{s,u}(0) \setminus \{0\} = \bigcup_{t\ge0} \varphi^h_{t1}(W_{s,u}^B(0) \setminus \{0\}) \). The set \(F^{-1}(0, 0) \) is invariant under the flow \(\varphi^h_{t2} \). Because \((h_1, h_2) = 0 \), the flows \(\varphi^h_{t1} \) and \(\varphi^h_{t2} \) commute. Thus \(F^{-1}(0, 0) \) is invariant under the \(\mathbb{R}^2 \)-action

\[
\Xi : \mathbb{R}^2 \times \mathbb{R}^4 \to \mathbb{R}^4 : (t, v, w) \mapsto (\varphi^h_{t1} \circ \varphi^h_{t2})(w).
\]

So the \(\mathbb{R}^2 \)-action \(\Psi_{(t, v)} = \Xi_{(t, v)} | F^{-1}(0, 0) \) on \(F^{-1}(0, 0) \) is defined. Because \((0, 0) \in \mathbb{R}^2 \) is an isolated critical value of \(F \) by hypothesis 1, it follows that \(0 \in \mathbb{R}^4 \) is an isolated
equilibrium point of X_{h_1} and X_{h_2}. Thus 0 is an isolated fixed point of the \mathbb{R}^2-action $\Psi_{(t,v)}$ on $F^{-1}(0,0)$. If $w \in W_{s,u}(0)$, then $\varphi_t^{h_1}(\varphi_v^{h_2}(w)) = \varphi_v^{h_2}(\varphi_t^{h_1}(w)) \to \varphi_v^{h_2}(0) = 0$ when $t \to \infty$, $-\infty$. So $W_{s,u}(0)$ is invariant under the flow $\varphi_v^{h_2}$. Because 0 is a fixed point of the \mathbb{R}^2-action $\Psi_{(t,v)}$ on $F^{-1}(0,0)$, it follows that $W_{s,u}(0) \times = W_{s,u}(0) \setminus \{0\}$ is invariant under both flows $\varphi_t^{h_1}$ and $\varphi_v^{h_2}$. By hypothesis 2 the vector fields X_{h_1} and X_{h_2} are linearly independent at each point of $F^{-1}(0,0)^\times$. Consequently, every orbit O of the \mathbb{R}^2-action $\Psi_{(t,v)}$ on $F^{-1}(0,0)^\times$ is open. Because the complement of O in a connected component of $F^{-1}(0,0)^\times$ is the union of other \mathbb{R}^2 orbits of $\Psi_{(t,v)}$, it is also open. Thus O is a connected component of $F^{-1}(0,0)^\times$. A similar argument shows that $W_{s,u}(0)^\times$ is an \mathbb{R}^2-orbit in $F^{-1}(0,0)^\times$. The orbit O is open and closed in $F^{-1}(0,0)^\times$, which implies that it is open in $F^{-1}(0,0) = F^{-1}(0,0)^\times \cup \{0\}$. If 0 is not in the closure of O in \mathbb{R}^4, then O is closed in $F^{-1}(0,0)$. Hence O is a connected component of $F^{-1}(0,0)$. But $0 \in F^{-1}(0,0)$, which is a contradiction. So $O \cup \{0\}$ is a closed subset of \mathbb{R}^4.

Thus 0 is the unique limit point in $\mathbb{R}^4 \setminus O$ of the \mathbb{R}^2-orbit O. For any O in $F^{-1}(0,0)^\times$, we know that the closure of O in \mathbb{R}^4 is $O \cup \{0\}$. In particular, this holds when $O = W_{s,u}(0)^\times$. If O is an orbit of the \mathbb{R}^2-action $\Psi_{(t,v)}$ on $F^{-1}(0,0)$ and $w \in O$, then the mapping $(t,v) \mapsto \varphi_t^{h_1}(\varphi_v^{h_2}(w))$ induces a diffeomorphism of \mathbb{R}^2/J_w onto O, where $J_w = \{(t,v) \in \mathbb{R}^2 \mid \varphi_t^{h_1}(\varphi_v^{h_2}(w)) = w\}$ is the isotropy group of w. J_w is an additive subgroup of \mathbb{R}^2, which does not depend on w, because O is connected. Therefore we will write J_O instead of J_w. Suppose that O is an \mathbb{R}^2-orbit of the action $\Psi_{(t,v)}$ on $F^{-1}(0,0)^\times$ and that $J_O \cap (\mathbb{R} \times \{0\}) \neq \emptyset$. Then the flow $\varphi_t^{h_1}$ of X_{h_1} would be periodic with period $T > 0$. Because periodic integral curves of X_{h_1}, which lie in O and start near 0 leave a fixed neighborhood of 0, have an arbitrarily large period, we deduce that a periodic solution of X_{h_1}, which starts near 0, must stay close to 0. Because X_{h_1} is hyperbolic at 0 it does not have any periodic solutions which remain close to 0 other than 0. This is a contradiction. So $J_O \cap (\mathbb{R} \times \{0\}) = \emptyset$.

Combined with the fact that 0 is the only limit point in $\mathbb{R}^4 \setminus O$ of O and that O is contained in a connected component of $F^{-1}(0,0)$ of \mathbb{R}^4, it follows that for every $w \in O$ we have $\varphi_t^{h_1}(w) \to 0$ as $t \to \infty$ or as $t \to -\infty$. In other words, $w \in W_s(0)^\times$ or $W_u(0)^\times$. Because $W_{s,u}(0)^\times$ are \mathbb{R}^2-orbits of the action $\Psi_{(t,v)}$ on $F^{-1}(0,0)^\times$, it follows that $F^{-1}(0,0)^\times = W_s(0)^\times \sqcup W_u(0)^\times$. Here the notation \sqcup means disjoint union. So $F^{-1}(0,0) = W_s(0) \cup W_u(0)$ and the connected components of $F^{-1}(0,0)^\times$ are $W_{s,u}(0)^\times$.

We now prove

Claim 1.2 In a suitable open neighborhood of 0 in $(\mathbb{R}^4, \omega = -d\alpha = -d(p_x dx + p_y dy))$ there is a Hamiltonian function I, which equals $h_2 + O(2)$, whose associated Hamiltonian vector field X_I has a periodic flow φ_t^I, and I Poisson commutes with the Hamiltonians h_1 and h_2.

To construct the function I we prove

Lemma 1.3 There is a local diffeomorphism $\tilde{\Phi}$ of \mathbb{R}^4, which fixes the origin, is near the identity, and is isotopic to the identity map, such that $\tilde{\Phi}^* h_i = q_i$ for $i = 1, 2$.

Proof We will use a complex version of the Morse lemma, which is proved in the appendix, to construct the desired local diffeomorphism. Introduce complex coordinates \((z_1, z_2) = (x - iy, px + ipy)\) on \(\mathbb{R}^4\). Then

\[t : \mathbb{R}^4 \to \mathbb{C}^2 : (x, y, px, py) \mapsto (z_1, z_2) \]

is an invertible real linear mapping. The integral map

\[F : \mathbb{R}^4 \to \mathbb{R}^2 : (x, y, px, py) \mapsto (xp_x + ypy + r_1(x, y, px, py), xp_y - ypx + r_2(x, y, px, py)) \]

becomes the differentiable function

\[\mathcal{H} : \mathbb{C}^2 \to \mathbb{C} : (z_1, z_2) \mapsto z_1z_2 + R(z_1, z_2), \tag{5} \]

where \(R(z_1, z_2) = (r_1 + ir_2)(t^{-1}(z_1, z_2))\). Because \(r_i\) is flat to second order at 0 for \(i = 1, 2\), the function \(R\) is flat to second order at \((0, 0)\). We have \(\mathcal{H} = j \circ F \circ t^{-1}\), where \(j : \mathbb{R}^2 \to \mathbb{C} : (x, y) \mapsto x + iy\). Check: \((F \circ t^{-1})(z_1, z_2) = F(x, y, px, py)\).

So

\[j((F \circ t^{-1})(z_1, z_2)) = \left((xp_x + ypy) + i(xp_y - ypx) + (r_1 + ir_2)(x, y, px, py)\right) = z_1z_2 + R(z_1, z_2). \]

Since \(D^2\mathcal{H}(0, 0) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\) is invertible, \((0, 0)\) is a nondegenerate critical point of \(\mathcal{H}\). By the complex Morse lemma, there is an open neighborhood \(U\) of \((0, 0)\) in \(\mathbb{C}^2\) and a complex diffeomorphism \(\varphi^U_1 : U \to U\), which fixes \((0, 0)\), is near \(id_U\), and is isotopic to \(id_U\), such that for every \((z_1, z_2) \in U\)

\[(\mathcal{H} \circ \varphi^U_1)(z_1, z_2) = \frac{1}{2} D^2\mathcal{H}(0, 0)(z_1, z_2) = \tilde{\mathcal{H}}(z_1, z_2), \]

where \(\tilde{\mathcal{H}} : U \subseteq \mathbb{C}^2 \to \mathbb{C} : (z_1, z_2) \mapsto z_1z_2\). In real terms \(\tilde{\mathcal{H}}\) is the integral map

\[\tilde{F} = j^{-1} \circ \tilde{\mathcal{H}} \circ t, \]

where

\[\tilde{F} : \tilde{U} = t^{-1}(U) \subseteq \mathbb{R}^4 \to \mathbb{R}^2 : (x, y, px, py) \mapsto (xp_x + ypy, xp_y - ypx) = (q_1, q_2), \tag{6} \]

is the integral map of the standard focus-focus system \((q_1, q_2, \mathbb{R}^4, \omega)\). Also in real terms, the complex local diffeomorphism \(\varphi^U_1\) corresponds to the real local diffeomorphism \(\Phi = t^{-1} \circ \varphi^U_1 \circ t\) of \(\tilde{U}\) into itself, which fixes \(0\), is near the identity, that is, \(\Phi = id_{\tilde{U}} + O(2)\), and is isotopic to the identity. Since \(\tilde{F} = j^{-1} \circ (\mathcal{H} \circ \varphi^U_1) \circ t = F \circ \Phi\), we obtain \(\Phi^*h_i = q_i\) for \(i = 1, 2\). Warning: \(\Phi\) is not a symplectic diffeomorphism of \((\tilde{U}, \omega|\tilde{U})\) into itself. \(\square\)

We now begin the construction of the function \(I\) in claim 1.2. Let \(B\) be a ball of radius \(r\) in \(\mathbb{R}^4\) centered at 0, which is contained in the open set \(\tilde{U}\). Let \(Y\) be the vector
field \(\tilde{\Phi}^* X_{q_2} \) whose flow is \(\psi_s = \tilde{\Phi}^{-1} \circ \varphi_{q_2}^s \circ \tilde{\Phi} \). Hence the integral curve \(\Gamma_w \) of \(Y \) starting at \(w = \tilde{\Phi}^{-1}(w') \in B \setminus \{0\} \) is periodic of period \(2\pi \), because

\[
\Gamma_w(s) = \psi_s(w) = \tilde{\Phi}^{-1}(\varphi_{q_2}^s(\tilde{\Phi}(w))) = \tilde{\Phi}^{-1}(\gamma_{w'}(s)),
\]

where \(\gamma_{w'} \) is an integral curve of \(X_{q_2} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} - p_y \frac{\partial}{\partial p_x} + p_x \frac{\partial}{\partial p_y} \) starting at \(w' \neq 0 \), which is periodic of period \(2\pi \). Since

\[
L_y h_i = L_{\tilde{\Phi}^* X_{q_2}} h_i = \tilde{\Phi}^* (L_{X_{q_2}} (\tilde{\Phi}^{-1})^* h_i) = \tilde{\Phi}^* (L_{X_{q_2}} q_i) = 0,
\]

the flow \(\psi_s \) of \(Y \) preserves the level sets of the integral map \(F(3) \).

For \(w \in B \setminus \{0\} \) let

\[
I : B \setminus \{0\} \subseteq \mathbb{R}^4 \to \mathbb{R} : w \mapsto I(w) = \frac{1}{2\pi} \int_{\Gamma_w} \alpha.
\]

(7)

Then \(I = \tilde{\Phi}^* K \), where

\[
K : \tilde{\Phi}(B) \setminus \{0\} \subseteq \mathbb{R}^4 \to \mathbb{R} : w' \mapsto \frac{1}{2\pi} \int_{\gamma_{w'}} (\tilde{\Phi}^{-1})^* \alpha.
\]

(8)

Proof We compute

\[
I(w) = \frac{1}{2\pi} \int_{\Gamma_w} \alpha = \frac{1}{2\pi} \int_0^{2\pi} \left(\alpha \bigg| \frac{d\psi_t}{dt} \right)(\Gamma_w(t)) \, dt
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \langle \alpha(\psi_t(w)) \big| Y(\psi_t(w)) \rangle \, dt
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \left(\alpha(\tilde{\Phi}^{-1}(\varphi_{q_2}^t(w'))) \big| T\tilde{\Phi} X_{q_2}(\varphi_{q_2}^t(w')) \right) \, dt, \text{ since } Y = \tilde{\Phi}^* X_{q_2}
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} (\tilde{\Phi}^{-1})^* \alpha \big| X_{q_2}(\varphi_{q_2}^t(w'))) \, dt
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \left((\tilde{\Phi}^{-1})^* \alpha \bigg| \frac{d\varphi_{q_2}^t}{dt} \right)(w') \, dt
\]

\[
= \frac{1}{2\pi} \int_{\gamma_{w'}} (\tilde{\Phi}^{-1})^* \alpha = K(w') = K(\tilde{\Phi}(w)).
\]

\[\square \]

Next we show that \(I \) (7) is smooth near 0.

Proof Let \(z_1 = x - iy \) and \(z_2 = p_x + ip_y \). Then \(q_2 = \text{Im} \, z_1 z_2 \) and the flow \(\varphi_{q_2}^t \) of \(X_{q_2} \) is \((t, (z_1, z_2)) \mapsto (e^{it} z_1, e^{-it} z_2) \). Let \(D = \{ \zeta \in \mathbb{C} \mid |\zeta| \leq 1 \} \) with boundary \(\partial D = S^1 = \{ \zeta \in \mathbb{C} \mid |\zeta| = 1 \} \). Let

\[
k : D \times \mathbb{C}^2 \to \mathbb{C}^2 : (\zeta, (z_1, z_2)) \mapsto (\zeta z_1, \zeta^{-1} z_2)
\]
with \(k_z : D \to \mathbb{C}^2 : \zeta \mapsto (\zeta z_1, \zeta^{-1} z_2) \). Using Stokes’ theorem we have

\[
K(\zeta^{-1} z) = \int_{\partial D} k_z^*((\tilde{\Phi}^{-1})^*\alpha) = -\int_D k_z^*((\tilde{\Phi}^{-1}(\omega))).
\] (9)

Since \(D \) is compact and \(\omega, k_z \) are smooth, it follows that \(K \) is smooth near 0. Thus \(I = \tilde{\Phi}^*K \) is smooth near 0. \(\square \)

Claim 1.4 The function \(I (7) \) has the following properties.

1. The function \(I \) Poisson commutes with \(h_i \) for \(i = 1, 2 \) on \(F^{-1}(c) \), where \(c \) is a regular value of the integral map \(F (3) \).
2. For all values of \(c \) close to but not equal to 0 and for all \(w \in F^{-1}(c) \), the tangent vectors \(X_I(w) \) and \(X_{h_1}(w) \) to \(F^{-1}(c) \) at \(w \) are linearly independent.
3. For all \(c \) close to but not equal to 0, the flow \(\varphi^t_I \) of \(X_I \) on \(F^{-1}(c) \) is periodic of period \(T_c \).

Proof 1. We compute. \(\{ I, h_i \} = L_{X_{h_i}} I = \int_{\Gamma_w} L_{X_{h_i}} \alpha \), because we can move \(\Gamma_w \) by a homotopy in \(F^{-1}(c) \) without changing the integral, the new integral does not depend on \(w \). Thus we can take the Lie derivative under the integral sign. But

\[
\int_{\Gamma_w} L_{X_{h_i}} \alpha = \int_{\Gamma_w} X_{h_i} \underbrace{\alpha}_{\underbrace{\text{d} \alpha}_{\underbrace{1}} + \underbrace{\text{d}(X_{h_i} \alpha)}_{\underbrace{\text{d}(-h_i + X_{h_i} \alpha)}_{\underbrace{0}}}} = 0, \text{ since } \Gamma_w \text{is a closed curve.}
\] (10)

2. Since \(\tilde{\Phi} = \text{id}_U + \mathcal{O}(1)^2 \), we get \(\tilde{\Phi}^{-1} = \text{id}_U + \mathcal{O}(1)^2 \). So \((\tilde{\Phi}^{-1})^*\alpha = \alpha + \mathcal{O}(1)\), which gives

\[
K(w) = \frac{1}{2\pi} \int_{\gamma_w} (\tilde{\Phi}^{-1})^*\alpha = \left(\frac{1}{2\pi} \int_{\gamma_w} \alpha \right) + \mathcal{O}(2) = q_2 + \mathcal{O}(2).
\] (11)

Therefore

\[
I = \tilde{\Phi}^* K = \tilde{\Phi}^* q_2 + \mathcal{O}(2) = h_2 + \mathcal{O}(2).
\] (12)

Since the vector fields \(X_{h_1} \) and \(X_{h_2} \) are linearly independent on \(F^{-1}(c) \) for \(c \) near, but not at the origin, the vector fields \(X_I \) and \(X_{h_1} \) are also.
3. For all \(c \in \mathbb{R}^2 \) near but not at 0, there are smooth functions \(a(c) \) and \(b(c) \) such that

\[
X_I = a(c) X_{h_1} + b(c) X_{h_2}
\]
on \(F^{-1}(c) \). Thus \(\varphi^t_I = \varphi^t_{a(c)} \circ \varphi^t_{b(c)} \) is defined for all \(t \in \mathbb{R} \), since the vector fields \(X_{h_i} \) for \(i = 1, 2 \) are complete. Hence the vector field \(X_I \) on \(F^{-1}(c) \) is complete. Since \(\tilde{\Phi}^* I = K \), the vector field \(\tilde{X}_K \) on \((\mathbb{R}^4, \tilde{w} = \tilde{\Phi}^* \omega) \), which equals \(\tilde{\Phi}^* X_I \), is complete. From \(0 = \{ I, h_i \} = \{ \tilde{\Phi}^* K, \tilde{\Phi}^* q_i \} = \tilde{\Phi}^* \{ \{ K, q_i \} \} \), where \(\{ \{ , \} \} \) is the Poisson
bracket on \((R^4, \omega)\), it follows that the vector fields \(\tilde{X}_K\) and \(\tilde{X}_{q_1}\) on \((R^4, \omega)\) commute. So their flows \(\tilde{\varphi}_u^K\) and \(\tilde{\varphi}_u^{q_1}\) commute. Recall that \(\tilde{F} : R^4 \to R^2 : z \mapsto (q_1(z), q_2(z))\). The flow \(\tilde{\varphi}_u^K\) on \(\tilde{F}^{-1}(c)\) is periodic for every \(c \in R^2\) close to but not at 0. To see this we argue as follows. We have an \(R^2\) action
\[
\Lambda : R^2 \times \tilde{F}^{-1}(c) \to \tilde{F}^{-1}(c) : ((u, t), w) \mapsto (\tilde{\varphi}_u^K \circ \tilde{\varphi}_t^{q_1})(w).
\]
For any \(\tilde{w} \in \tilde{F}^{-1}(c)\) the isotropy group \(\Lambda_{\tilde{w}} = \{(u, t) \in R^2 | \Lambda(u, t, \tilde{w}) = \tilde{w}\}\) is a rank 1 lattice, since \(R^2 / \Lambda_{\tilde{w}} = \tilde{F}^{-1}(c) = S^1 \times R\). Let \((u_0, t_0) \in \Lambda_{\tilde{w}}\). Then
\[
(\tilde{\varphi}_{u_0}^K \circ \tilde{\varphi}_{t_0}^{q_1})(\tilde{w}) = \tilde{w}.
\]
Suppose that there is \(t' > 0\) such that \((u_0, t_0 + t') \in \Lambda_{\tilde{w}}\). Then
\[
(\tilde{\varphi}_{u_0}^K \circ \tilde{\varphi}_{t_0 + t'}^{q_1})(\tilde{w}) = \tilde{w}.
\]
So \(\tilde{\varphi}_{t'}(\tilde{w}) = \tilde{\varphi}_u^K(\tilde{w})\), since \(\tilde{\varphi}_u^K\) and \(\tilde{\varphi}_t^{q_1}\) commute. Thus \(\tilde{\varphi}_t^{q_1}(\tilde{\varphi}_{t'}^{q_1}(\tilde{w})) = \tilde{\varphi}_t^{q_1}(\tilde{w})\), which implies that the integral curve \(t \mapsto \tilde{\varphi}_t^{q_1}(\tilde{w})\) of \(\tilde{X}_{q_1}\) is periodic of period \(-t'\). Since the diffeomorphism \(\Phi\) is isotopic to the identity map, each integral curve of \(\tilde{X}_{q_1}\) is homotopic to an integral curve of \(X_{q_1}\), because the symplectic form \(\omega\) is homotopic to the symplectic form \(\tilde{\omega}\). See lemma 4.3. But \(X_{q_1}\) has no periodic integral curves. Thus \(t' = 0\). Since the rank of \(\Lambda_{\tilde{w}}\) is 1, there is a \(u' > 0\) such that \((u_0 + u', t_0) \in \Lambda_{\tilde{w}}\), that is, \((\tilde{\varphi}_{u_0}^K \circ \tilde{\varphi}_u^K)(\tilde{w}) = \tilde{w}\). So \(\tilde{\varphi}_{u'}(\tilde{w}) = \tilde{w}\), since \(\tilde{\varphi}_u^K\) and \(\tilde{\varphi}_t^{q_1}\) commute. Thus the integral curve \(u \mapsto \tilde{\varphi}_u^K(\tilde{w})\) of \(\tilde{X}_K\) is periodic of period \(u\). Since \(\tilde{w}\) is an arbitrary point of \(\tilde{F}^{-1}(c)\), the flow \(\tilde{\varphi}_u^K\) of \(\tilde{X}_K\) on \(\tilde{F}^{-1}(c)\) is periodic of period \(T_\epsilon = u\). Thus the flow of \(X_I\) on \(F^{-1}(c)\) is periodic of period \(T_\epsilon\), because \(I = \Phi^* K\). This proves 3 and completes the proof of claim 1.4.

\[\square\]

This completes the proof of claim 1.2.

\[\square\]

Claim 1.5 \(F^{-1}(0, 0)\) is homeomorphic to a pinched cylinder, that is, a cylinder \(S^1 \times R\) with one of its generating circles pinched to the origin 0. The singular fiber \(F^{-1}(0, 0)\) has two transverse tangent planes at 0.

Proof Since the action \(I\) Poisson commutes with the integrals \(h_i\) for \(i = 1, 2\), the flow \(\varphi_u^I\) of \(X_I\) leaves the fiber \(F^{-1}(0, 0) \cap V\) invariant. Here \(V \subseteq B\) is an open neighborhood of 0, which is invariant under the \(S^1\)-action generated by \(\varphi_u^I\). Note that \(W_{s,u}(0) \cap V\) is invariant under the flow \(\varphi_u^I\).

We now extend the \(S^1\)-action \(\varphi_u^I(V_{s,u}(0) \cap V)\) to all of \(W_{s,u}(0)\). Let \(p \in W_s(0)\) or \(W_u(0)\). Then there is an open neighborhood \(V_p\) of 0 in \(R^4\) and a time \(t_p > 0\) such that \(\varphi_{t_p}^I(V_p) \subseteq V\). For every \(\tilde{p} \in V_p\) let \(\tilde{\varphi}_u^I(\tilde{p}) = (\varphi_{t_p}^I \circ \varphi_u^I)(\tilde{p})\), where \(\{t_p \in W_s(0): t_p \in W_u(0)\}\). Then \(\tilde{\varphi}_u^I\) defines an \(S^1\)-action on an open neighborhood \(\tilde{V} = \bigcup_{p \in W_s(0)} V_p \cup \bigcup_{p \in W_u(0)} V_p\) of \(F^{-1}(0, 0) = W_s(0) \cup W_u(0)\). Therefore we have an \(R^2\)-action on \(\tilde{V}\) defined by
\[
\tilde{\Lambda} : R^2 \times \tilde{V} \to \tilde{V} : ((u, t), \tilde{w}) \mapsto (\tilde{\varphi}_u^K \circ \tilde{\varphi}_t^{q_1})(w).
\]

Note that \(F^{-1}(0, 0)\) is invariant under the action \(\tilde{\Lambda}\) and that 0 is the only fixed point of the flow \(\varphi_u^I\) on \(F^{-1}(0, 0)\). So we have an \(R^2\)-action \(\tilde{\Lambda}(u, t) = (u, t)\). Let \(J_O\) be the isotropy group for the \(R^2\)-orbit \(O = W_s(0)\) or \(W_u(0)\). Because \(F^{-1}(0, 0)\) is not compact, the rank of the lattice \(J_O\) can not be equal to 2. But \(J_O \neq \emptyset\). So
is a smooth surjective submersion, which defines a trivial fibration whose fiber
of the

In this section we study the fibers of the integral map F (3), which are close to the singular fiber $F^{-1}(0, 0)$. We prove

Claim 2.1 There is an open neighborhood W of $F^{-1}(0, 0)$ in \mathbb{R}^4, which is invariant under the flows $\phi_t^{h_1}$ and ϕ_t^{I}, and an open neighborhood U of $(0, 0)$ in \mathbb{R}^2 such that

$$F\lfloor (W \setminus F^{-1}(0, 0)) : W \setminus F^{-1}(0, 0) \to U \setminus \{(0, 0)\} : p \mapsto (h_1(p), I(p))$$

is a smooth surjective submersion, which defines a trivial fibration whose fiber $F^{-1}(c) \cap W$ for each $c \in U \setminus \{(0, 0)\}$ is a smooth cylinder $S^1 \times \mathbb{R}$, that is, an orbit of the action

$$\hat{\Sigma} : \mathbb{R}^2 \times W \to W : ((u, t), p) \mapsto (\phi_t^{I} \circ \phi_t^{h_1})(p).$$

Proof Let B be an open ball in \mathbb{R}^4 centered at 0 whose radius is small enough that ∂B intersects $F^{-1}(0, 0)$ in two circles $W_{s,u}^B(0) \cap \partial B$. We can arrange that all of the orbits of the \mathbb{R}^2 action

$$\tilde{\Sigma} : \mathbb{R}^2 \times \mathcal{V} \to \mathcal{V} : ((u, t), w) \mapsto (\phi_t^{I} \circ \phi_t^{h_1})(w),$$

where \mathcal{V} is an open neighborhood of $F^{-1}(0, 0)$ in \mathbb{R}^4, which is invariant under the flow ϕ_t^{I}, are 2 dimensional, and all of its orbits near 0 intersect ∂B in two circles, which are close to the circles $W_{s,u}(0) \cap \partial B$.

Consider the local \mathbb{R}^2 action $\tilde{\Sigma}_{(u,t)}|B$. Let W be the union of \mathbb{R}^2-orbits which intersect $\mathcal{V} \cap \partial B$ or $\{0\}$. The union of $\tilde{\Sigma}$ orbits in \overline{B} which intersect of $\mathcal{V} \cap \partial B$, is an open subset of \overline{B}, which contains a small neighborhood V of 0 in \mathbb{R}^4. This follows because by hyperbolicity of the integral curves of X_{h_1} at a distance $\delta > 0$ from 0 enter and leave B at points on ∂B, which are at a distance $O(\delta)$ from $W_{s,u}(0) \cap \partial B$. Thus W is an open neighborhood of $F^{-1}(0, 0)$ in \mathbb{R}^4 such that $F^{-1}(c) \cap W$ is equal to the $\tilde{\Sigma}$ orbit in \overline{B} through $F^{-1}(c) \cap \partial B$ for every $c \in U \setminus \{(0, 0)\}$. Hence the smooth mapping $F\lfloor W : W \to U \setminus \{(0, 0)\}$ is surjective with connected fibers. The invariance of F under the local \mathbb{R}^2 action $\tilde{\Sigma}_{(u,t)}|\overline{B}$, together with the fact that at every $z \in \mathcal{V} \cap \partial B$
the rank of $DF(z)$ is 2, implies that at each point w on an \mathbb{R}^2-orbit which intersects $V \cap \partial B$, the rank of $DF(w)$ is 2. Thus the map (14) is a surjective submersion, which defines a fibration with connected fibers. By hypothesis 2 this fibration is trivial.

We now show that each fiber of the fibration (14) is a smooth cylinder. Since the flows $\varphi_i^{p_i}$ and φ_u leave the fibers $F^{-1}(c) \cap W$ invariant, they define an \mathbb{R}^2-action

$$\Xi : \mathbb{R}^2 \times (W \setminus F^{-1}(0, 0)) \to W \setminus F^{-1}(0, 0) : ((u, t), w) \mapsto (\varphi_u \circ \varphi_i^{p_i})(w)$$

on $W \setminus F^{-1}(0, 0)$. Because the vector fields X_{h_1} and X_I are linearly independent at each point of $W \setminus F^{-1}(0, 0)$, an \mathbb{R}^2 orbit O is an open subset of $W \setminus F^{-1}(0, 0)$. Since $W \setminus F^{-1}(0, 0)$ is connected, it follows that $O = W \setminus F^{-1}(0, 0)$. Now O is diffeomorphic to \mathbb{R}^2/J_O and O is not compact. Thus J_O is a rank 1 lattice in \mathbb{R}^2. Hence O is a smooth cylinder $S^1 \times \mathbb{R}$.

Let Σ_{ξ} be the image of a smooth local section $\sigma : U \setminus \{(0, 0)\} \to W \setminus F^{-1}(0, 0)$ of the fibration (14) at $\xi \in W \setminus F^{-1}(0, 0)$, which is invariant under the flow φ_u of X_I. Because T_c is the period of the flow φ_u, it is the period of every integral curve $u \mapsto \varphi_u^I(\xi')$ for every $\xi' \in \Sigma_{\xi} \cap F^{-1}(c)$ with $c \in U \setminus \{(0, 0)\}$. Thus for every $c \in U \setminus \{(0, 0)\}$ we have $(T_c, 0) \in J_{\xi'}$.

Let $\xi \in W_s^B(0)$ and $\eta \in W_u^B(0)$. Let $\Sigma_{\xi, \eta}$ be the image in B of a smooth local section of the fibration (14) at ξ, η, which is invariant under the S^1 action φ_u on W. For each $c \in U \setminus \{(0, 0)\}$, it follows that $F^{-1}(c) \cap (W \cap \Sigma_{\xi, \eta})$ is diffeomorphic to a circle $C_{\xi, \eta}(c)$, which is an orbit of the S^1 action φ_u. For each $\xi(c) \in C_{\xi}(c)$ there is a smallest positive time $\tau(c)$ such that the integral curve $t \mapsto \varphi_u^{h_1}(\xi(c))$ lies in $C_\eta(c)$. In other words, $\eta(c) = \varphi_{\tau(c)}(\xi(c)) \in C_\eta(c)$. As $\xi(c)$ traces out $C_{\xi}(c)$ once, $\eta(c)$ traces out $C_{\eta}(c)$ once. Thus the circles $C_{\xi, \eta}(c)$ bound a subset of $F^{-1}(c)$, which is diffeomorphic to a compact cylinder $S^1 \times [0, 1]$.

3 Holomorphic Focus-Focus System

In this section we give a complex variables treatment of the standard focus-focus system $(q_1, q_2, \mathbb{R}^4, \omega)$, see (1) and (2).

Let $(z_1, z_2) = (x - iy, p_x + i p_y)$ be coordinates on \mathbb{C}^2. Let $\sigma = dz_1 \wedge dz_2$ be a complex symplectic form on \mathbb{C}^2. Consider the holomorphic Hamiltonian

$$\mathcal{H} : \mathbb{C}^2 \to \mathbb{C} : (z_1, z_2) \mapsto z_1 z_2 = (xp_x + y p_y) + i(x p_y - y p_x) = q_1 + i q_2.$$

The complex Hamiltonian vector field on (\mathbb{C}^2, σ) associated to \mathcal{H} is

$$X_{\mathcal{H}} = \frac{\partial \mathcal{H}}{\partial z_2} \frac{\partial}{\partial z_1} - \frac{\partial \mathcal{H}}{\partial z_1} \frac{\partial}{\partial z_2} = z_1 \frac{\partial}{\partial z_1} - z_2 \frac{\partial}{\partial z_2},$$

since

$$X_{\mathcal{H}}(dz_1 \wedge dz_2) = z_1 dz_1 + z_2 dz_2 = d(z_1 z_2) = d\mathcal{H}.$$
The complex integral curves of $X_{\mathcal{H}}$ satisfy
\[\frac{dz_1}{d\tau} = z_1 \quad \text{and} \quad \frac{dz_2}{d\tau} = -z_2. \]

Here τ is complex time parameter. The complex flow of $X_{\mathcal{H}}$ on \mathbb{C}^2 is
\[\varphi_{\mathcal{H}} : \mathbb{C} \times \mathbb{C}^2 \to \mathbb{C}^2 : (\tau, (z_1, z_2)) \mapsto (e^{\tau} z_1, e^{-\tau} z_2). \]

Let
\[\tilde{\Sigma} : \mathbb{C}^\times = \mathbb{C} \setminus \{0\} \to \mathbb{C}^2 : c \mapsto (c, 1). \quad (15) \]

Since $\mathcal{H}(\tilde{\Sigma}(c)) = c$ for every $c \in \mathbb{C}^\times$, it follows that $\tilde{\Sigma}(c) \in \mathcal{H}^{-1}(c)$ for every $c \in \mathbb{C}^\times$. Thus $\tilde{\Sigma}$ is a global section of the bundle
\[\widehat{\rho} = \mathcal{H} \vert_{\mathcal{H}^{-1}(\mathbb{C}^\times)} : \mathcal{H}^{-1}(\mathbb{C}^\times) \to \mathbb{C}^\times : (z_1, z_2) \mapsto \mathcal{H}(z_1, z_2). \quad (16) \]

Lemma 3.1 The bundle $\widehat{\rho}$ is trivial.

Proof Consider the map
\[\tau : \mathcal{H}^{-1}(\mathbb{C}^\times) \subseteq \mathbb{C}^2 \to \mathbb{C}^\times \times \mathcal{H}^{-1}(1) : (z_1, z_2) \mapsto (z_1 z_2, (z_1, z_2(z_1 z_2)^{-1})), \]
whose inverse is
\[\tau^{-1} : \mathbb{C}^\times \times \mathcal{H}^{-1}(1) \to \mathcal{H}^{-1}(\mathbb{C}^\times) : (c, (w, w^{-1})) \mapsto (w, cw^{-1}). \]

Check:
\[(\tau \circ \tau^{-1})(c, (w, w^{-1})) = \tau(w, cw^{-1}) = (c, (w, cw^{-1})(wcw^{-1})^{-1}) = (c, (w, w^{-1})) \]
and
\[(\tau^{-1} \circ \tau)(z_1, z_2) = \tau^{-1}(z_1 z_2, (z_1, z_2(z_1 z_2)^{-1})) = (z_1, (z_1 z_2)z_2(z_1 z_2)^{-1}) = (z_1, z_2). \]

Thus the map τ trivializes the bundle $\widehat{\rho}$. \qed

In real terms, the function $\mathcal{H} : \mathbb{C}^2 \to \mathbb{C}$ is the energy momentum map
\[\tilde{F} : \mathbb{R}^4 \to \mathbb{R}^2 : w = (x, y, p_x, p_y) \mapsto (q_1(w), q_2(w)) \]
of the standard focus-focus system. Here $\tilde{F} = j \circ \mathcal{H} \circ t^{-1}$, where $j : \mathbb{C} \to \mathbb{R}^2 : z \mapsto (\text{Re } z, \text{Im } z)$.
In real terms the section $\tilde{\Sigma} : \mathbb{C}^\times \to \mathbb{C}^2 : c \mapsto (c, 1)$ (15) of the bundle $\hat{\rho}$ is the map

$$\Sigma : (\mathbb{R}^2)^\times = \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^4 : (c_1, c_2) \mapsto t^{-1} \circ \tilde{\Sigma} \circ j^{-1} = (c_1, -c_2, 1, 0). \quad (17)$$

Using the fact that Σ is a global section we obtain

Corollary 3.1A The fibration

$$\tilde{F}^{-1}(R) : \tilde{F}^{-1}(R) \subseteq \mathbb{R}^4 \to R = (\mathbb{R}^2)^\times \subseteq \mathbb{R}^2 : w \mapsto (q_1(w), q_2(w))$$

is trivial.

In real terms the complex flow φ^H_t of the Hamiltonian vector field X^H_t is $t^{-1} \circ \varphi^H_t \circ t$, where $t = t + is$. We compute.

$$
(t^{-1} \circ \varphi^H_t \circ t)(x, y, p_x, p_y) \\
= t^{-1} \left(e^{t + is}(x - iy), e^{-t - is}(p_x + ip_y) \right) \\
= t^{-1} \left(e^t \left[(x \cos s + y \sin s) + i(x \sin s - y \cos s) \right], \right.

\begin{align*}
& e^{-t} \left[(p_x \cos s + p_y \sin s) + i(-p_x \sin s + p_y \cos s) \right] \\
& = (e^t (x \cos s + y \sin s), e^{-t} (-x \sin s + y \cos s), \\
& e^{-t} (p_x \cos s + p_y \sin s), e^{-t} (-p_x \sin s + p_y \cos s) \\
& = \varphi^{q_1}_{t} \left(\begin{pmatrix} \cos s & \sin s \\ -\sin s & \cos s \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} \cos s & \sin s \\ -\sin s & \cos s \end{pmatrix} \begin{pmatrix} p_x \\ p_y \end{pmatrix} \right) \\
& = (\varphi^{q_1}_{t} \circ \varphi^{q_2}_{-s})(x, y, p_x, p_y).
\end{align*}
$$

Fix $\varepsilon > 0$ and let $c \in \mathbb{C}$. Look at the circles

$$\xi_s : \mathbb{R} \to \mathcal{H}^{-1}(c) : s \mapsto \left(\frac{c}{e^{-is} \varepsilon}, e^{-is} \varepsilon \right) \quad (18a)$$

and

$$\eta_s : \mathbb{R} \to \mathcal{H}^{-1}(c) : s \mapsto \left(e^{is} \varepsilon, \frac{c}{e^{is} \varepsilon} \right). \quad (18b)$$

Lemma 3.2 For every $s \in \mathbb{R}$ the point $\xi_s(0) = (0, e^{-is} \varepsilon)$ lies on the stable manifold $W_s(0)$ of the vector field X^H_q on \mathbb{R}^4, while the point $\eta_s(0) = (e^{is} \varepsilon, 0)$ lies on the unstable manifold $W_u(0)$ of the vector field X^H_q for every $s \in \mathbb{R}$.

Proof We compute.

$$\varphi^{H}_{t+iu}(0, e^{-is} \varepsilon) = (0, e^{-(t+iu)}(e^{-is} \varepsilon)) = (0, e^{-t}(e^{-i(s+u)} \varepsilon)).$$

So $\lim_{t \to \infty} \varphi^{H}_{t+iu}(0, e^{-is} \varepsilon) = (0, 0)$, that is, $(0, e^{-is} \varepsilon) \in W_s(0)$, since φ^{H}_{t+iu} is $\varphi^{q_1}_{t} \circ \varphi^{q_2}_{-s}$ in real terms. Similarly, $(e^{is} \varepsilon, 0) \in W_u(0)$.

\Box
Lemma 3.3 With \(c \neq 0 \) the circle \(C_u = \{ \eta_s(c) \mid s \in \mathbb{R} \} \) in \(\mathcal{H}^{-1}(c) \) is a cross section for the flow \(\varphi_t^H(c_1, z_2) \) on \(\mathcal{H}^{-1}(c) \). In other words, every complex integral curve of \(X_H \) on \(\mathcal{H}^{-1}(c) \) intersects \(C_u \).

Proof To show that the complex integral curve \(\tau \mapsto \varphi_t^H(c_1, z_2) \) intersects \(C_u \) we need to show that there is \((e^{iv}, \frac{c}{e^{iv}}) \in C_u \) and a \(\tau = t + is \) such that

\[
(e^{iv}, \frac{c}{e^{iv}}) = \varphi_t^H(c_1, z_2) = (e^{t+is}, e^{-t-is} z_2).
\]

It is enough to solve

\[
e^{t+is} z_1 = e^{iv}, \tag{19}\]

because equation (19) implies \(e^{-t-is} z_2 = \frac{c}{e^{iv}} \) since \(z_1^0z_2^0 = c \) and \(c \neq 0 \). Write \(z_1^0 = |z_1^0| e^{i\arg z_1^0} \). Then (19) reads

\[
e^{t+is+\arg z_1^0}|z_1^0| = e^{iv}. \tag{20}\]

So \(s = v - \arg z_1^0 \) and \(t = \ln \frac{s}{|z_1^0|} \) solves (20). Here \(v \) may be chosen freely.

\[\Box\]

Lemma 3.4 Fix \(c \neq 0 \). Let \(C_s \) be the circle \(\{ \xi_s(c) \mid s \in \mathbb{R} \} \) in \(\mathcal{H}^{-1}(c) \). The points \(\xi_s(c) \in C_s \) and \(\eta_s(c) \in C_u \) lie on the same complex integral curve of \(X_H \).

Proof Set \(\tau = -\ln \frac{\xi}{\varepsilon} \). Then

\[
\varphi^H_\tau(\xi_s(c)) = \left(e^{-\ln \frac{\xi}{\varepsilon}} \left(\frac{c}{e^{-iv}} \right), e^{\ln \frac{\xi}{\varepsilon}} \left(e^{-iv} \right) \right) = (e^{iv}, \frac{c}{e^{iv}}) = \eta_s(c).
\]

\[\Box\]

Since Re \(\tau = 2 \ln \varepsilon - \text{Re} \ln c \), we get \(-\text{Im} \tau = \text{Im} \ln c \). Thus \(-\text{Im} \tau \) depends only on \(c \neq 0 \) and not on the choice of the circles \(C_s, u \) on \(\mathcal{H}^{-1}(c) \) or on the choice of points \(\xi_s(c) \in C_s \) or \(\eta_s(c) \in C_u \). Hence \(-\text{Im} \tau \) is an intrinsic property of the flow of \(\varphi^H_t \) of the vector field \(X_H \) on \(\mathcal{H}^{-1}(c) \).

We look at the map

\[\Theta : \mathbb{C}^\times \to S^1 : \xi \mapsto \Theta(\xi) = -\text{Im} \tau(\xi) = \text{Im} \ln c. \]

Claim 3.5 The winding number of the map \(\Theta \) is 1, which is the scattering monodromy of the standard focus-focus system.

Proof We now verify this last assertion. On \(\mathbb{C}^\times \) with coordinate \(z_1 \) we have a real 1-form \(\vartheta = \text{Im} \frac{dz_1}{z_1} = \text{Im} d \ln z_1 \). So

\[
\vartheta = \text{Im} \frac{dz_1}{z_1} = \text{Im} \left(\frac{dx - i\,d y}{x - iy} \right) = (x^2 + y^2)^{-1} \text{Im}[(x + i y)(d x - i\,d y)] = (x^2 + y^2)^{-1}(y\,d x - x \,d y) = d \left(\tan^{-1} \frac{x}{y} \right).
\]
Let $\pi : \mathbb{C}^\times \times \mathbb{C} \to \mathbb{C}^\times : (z_1, z_2) \mapsto z_1$ be the projection map on the first factor. Set $\theta = \pi^*(-\theta)|\mathcal{H}^{-1}(\mathbb{C}^\times)$. Then θ is a closed 1-form on $\mathcal{H}^{-1}(\mathbb{C}^\times)$ since $d\theta = d\pi^*(-\theta)|\mathcal{H}^{-1}(\mathbb{C}^\times) = (\pi^*(-d\theta))|\mathcal{H}^{-1}(\mathbb{C}^\times) = 0$. Because
\[
X_{\Im \mathcal{H}} \theta = X_{q_2} \theta = \left(-y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} - p_y \frac{\partial}{\partial p_x} + p_x \frac{\partial}{\partial p_y} \right) \theta = (x^2 + y^2)^{-1}(y^2 + x^2) = 1,
\]
θ is a connection 1-form on the bundle $\mathcal{H}^{-1}(\mathbb{C}^\times) \mapsto \mathbb{C}^\times$ (16). Since $-\Im \left[\frac{de^{i\theta z_1}}{e^{iz_1}} \right] = -\Im \frac{dz_1}{z_1}$, the connection 1-form θ is invariant under the flow of $X_{\Im \mathcal{H}}$ on $\mathcal{H}^{-1}(\mathbb{C}^\times)$.

Let
\[
\Sigma^\vee = \tilde{\Sigma}|S^1_r \subseteq \mathbb{C}^\times \to \mathcal{H}^{-1}(S^1_r) : s \mapsto (s, 1)
\]
be a smooth section of the bundle $\tilde{\rho}$. Consider the real curve $\Gamma_{\Sigma^\vee(s)}$ on $\mathcal{H}^{-1}(S^1_r)$, where $\Gamma_{\Sigma^\vee(s)}(t) = \varphi^\Re(t)\mathcal{H}(\Sigma^\vee(s))$. We have
\[
(z_1(t), z_2(t)) = \Gamma_{\Sigma^\vee(s)}(t) = \varphi^q_t(s, 1) = (e^t s, e^{-t}).
\]

Thus for each $s \in S^1_r$ the scattering phase $\Theta(s)$ of $\Gamma_{\Sigma^\vee(s)}$ with respect to the connection 1-form θ is given by $\Theta(s) = \Im \ln s + \int_{\Gamma_{\Sigma^\vee(s)}} \theta$. We have
\[
\int_{\Gamma_{\Sigma^\vee(s)}} \theta = \int_{\Gamma_{\Sigma^\vee(s)}} \theta \frac{d\Gamma_{\Sigma^\vee(s)}}{dt} dt = \int_{-\infty}^{\infty} \langle \theta | X_{q_1} \rangle dt
\]
\[
= \int_{-\infty}^{\infty} d\theta = \langle \Gamma_{\Sigma^\vee(s)}(t) \rangle dt, \quad \text{by definition of infinitesimal elevation, see [1, p.436]}
\]
\[
= -\int_{-\infty}^{\infty} \frac{d}{dt} \left(\Im \ln z_1(t) \right) dt = -\Im \ln z_1(t) |_{-\infty}^{\infty} = 0.
\]

Thus $\Theta(s) = \Im \ln s$. This verifies the assertion.

\begin{center}
\textit{4 Connection 1-Form}
\end{center}

In this section we construct a connection 1-form on $(\mathbb{R}^4, \tilde{\omega} = \tilde{\Phi}^*\omega)$, which is invariant under the flow of \tilde{X}_K, where K is given by (8).

\begin{lemma}
Let γ_w be an integral curve of the vector field $X_{q_2} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} - p_y \frac{\partial}{\partial p_x} + p_x \frac{\partial}{\partial p_y}$ on $(\mathbb{R}^4, \omega = -d\alpha = -d(p_x dx + p_y dy))$ starting at $w = (x, y, p_x, p_y)$. Then
\[
q_2(w) = \frac{1}{2\pi} \int_{\gamma_w} \alpha.
\]
\end{lemma}
Proof. We compute. By definition
\[
\frac{1}{2\pi} \int_{\gamma_w} \alpha = \frac{1}{2\pi} \int_{0}^{2\pi} \langle \alpha | \frac{d\varphi_t^{q_2}}{ds}(w) \rangle \, ds = \frac{1}{2\pi} \int_{0}^{2\pi} \langle \alpha | X_{q_2} \rangle \left(\varphi_t^{q_2}(w) \right) \, ds.
\]
But \(\langle \alpha | X_{q_2} \rangle = X_{q_2} \cdot \alpha = -yp_x + xp_y = q_2 \). So
\[
\frac{1}{2\pi} \int_{\gamma_w} \alpha = \frac{1}{2\pi} \int_{0}^{2\pi} q_2(\varphi_t^{q_2}(w)) \, ds = q_2(w),
\]
since \(q_2 \) is an integral of \(X_{q_2} \).

Let \(\Phi_t = \iota^{-1} \circ \varphi_t^X \circ \iota \), where \(\varphi_t^X \) for \(t \in [0, 1] \) is the flow of the vector field \(X \) constructed in the proof of the complex Morse lemma for the complex function \(\hat{f} \)
(28) on \([0, 1] \times \mathbb{C}^2\).

Lemma 4.2 For \(t \in [0, 1] \) let
\[
K_t(w) = \frac{1}{2\pi} \int_{\gamma_w} \alpha_t = \frac{1}{2\pi} \int_{\gamma_w} (\Phi_t^{-1})^* \alpha.
\]
Then \(K_t = (\Phi_t^{-1})^* q_2 \). Since \(\Phi_1 = \tilde{\Phi} \), it follows that \(K_1 = K \).

Proof. We compute. From lemma 4.1 we obtain
\[
((\Phi_t^{-1})^* q_2)(w) = \frac{1}{2\pi} \int_{\gamma_w} \alpha = \frac{1}{2\pi} \int_{\gamma_w} (\Phi_t^{-1})^* \alpha = \frac{1}{2\pi} \int_{\gamma_w} \alpha_t = K_t(w).
\]

Lemma 4.3 For \(t \in [0, 1] \) let \(\omega_t = (\Phi_t^{-1})^* \omega \). Since \(\Phi_1 = \tilde{\Phi} \), it follows that \(\omega_1 = (\tilde{\Phi})^* \omega = \tilde{\omega} \). Then \(X_{K_t} = (\Phi_t^{-1})^* X_{q_2} \).

Proof. We compute. By definition
\[
X_{K_t} \cdot \omega_t = dK_t = d((\Phi_t^{-1})^* q_2), \text{ by lemma 4.2}
\]
\[
= (\Phi_t^{-1})^* dq_2 = (\Phi_t^{-1})^* (X_{q_2} \cdot \omega)
\]
\[
= (\Phi_t^{-1})^* X_{q_2} \cdot ((\Phi_t^{-1})^* \omega) = (\Phi_t^{-1})^* X_{q_2} \cdot \omega_t.
\]
So \(X_{K_t} = (\Phi_t^{-1})^* X_{q_2} \), since \(\omega_t \) is nondegenerate.

Let \(\theta = \pi^* \left(-d \tan^{-1} \frac{w_2}{w_1} \right) \). Then \(\theta \) is a connection 1-form on \((\mathbb{R}^4, \omega)\), because \(\theta \) is closed and \(X_{q_2} \cdot \theta = 1 \). \(\theta \) is \(\varphi_t^{q_2} \)-invariant.

Claim 4.4 For \(t \in [0, 1] \) let \(\theta_t = (\Phi_t^{-1})^* \theta \). Then \(\theta_t \) is a connection 1-form on \((\mathbb{R}^4, \omega_{1-t}) = (\Phi_{1-t}^{-1})^* \omega \). In particular, since \(\Phi_0 = \text{id}_{\mathbb{R}^4} \), we obtain \(\theta_1 = \theta \), which is a connection 1-form on \((\mathbb{R}^4, \omega)\). Also \(\theta_0 = (\Phi_1^{-1})^* \theta \) is a connection 1-form on \((\mathbb{R}^4, \omega_1 = \tilde{\omega})\).
We are able to prove the geometric scattering monodromy theorem.

5 Geometric Monodromy Theorem

We are able to prove the geometric scattering monodromy theorem.

For each $t \in [0, 1]$ consider the integrable Hamiltonian system $\left(\Phi_t^{-1}\right)^* q_1, K_t, \mathbb{R}^4, \left(\Phi_t^{-1}\right)^* \omega)$, where $K_t = \left(\Phi_t^{-1}\right)^* q_2$. For $t = 0$ this system is $(q_1, q_2, \mathbb{R}^4, \tilde{\omega})$; while for $t = 1$ the system is the focus-focus system $(h_1, h_2, \mathbb{R}^4, \omega)$, since $\omega = \tilde{\Phi}_s \omega = (\Phi_1)_s \omega$ and $\tilde{\Phi}_s h_j = (\Phi_1)_s h_j = q_j$ for $j = 1, 2$.

Let S_r^1 be a circle of radius r in $U \setminus \{(0, 0)\} \subseteq \mathbb{R}^2$. Consider the bundle

$$\widehat{\rho}_t = \widehat{F}_t|\widehat{F}_t^{-1}(S_r^1) : \widehat{F}_t^{-1}(S_r^1) \subseteq \mathbb{R}^4 \to S_r^1 \subseteq U \setminus \{(0, 0)\} : w \mapsto \left(\left(\Phi_t^{-1}\right)^* q_1(w), K_t(w)\right).$$

Note that $\widehat{F}_1 = F$ (3) and $\widehat{F}_0 = \tilde{F}$ (6). The bundle $\widehat{\rho}_t$ has a section

$$\Sigma_t : S_r^1 \subseteq \mathbb{R}^2 \to F_t^{-1}(S_r^1) : s \mapsto (\Phi_0 \circ \tilde{\Sigma})(s),$$

where

$$\tilde{\Sigma} = t^{-1} \circ \Sigma \circ j : S_r^1 \subseteq \mathbb{R}^2 \to \tilde{F}_0^{-1}(S_r^1) \subseteq \mathbb{R}^4$$

and $\tilde{\Sigma}$ is given by (15). Note that $\Sigma_0 = \tilde{\Sigma}$. For each $s \in S_r^1$ consider the curve

$$\widehat{\Gamma}_{\Sigma_t(s)} : \mathbb{R} \to \widehat{F}_t^{-1}(S_r^1) \subseteq \mathbb{R}^4 : v \mapsto \varphi_v^{K_t}(\Sigma_t(s)),$$
Claim 5.1 The degree of the scattering phase map \(s \mapsto \Theta_0(s) \) associated to the curve \(\tilde{\Gamma}_{\Sigma_0(s)} \) on \(F^{-1}(S^1_r) \) contained in \((\mathbb{R}^4, \omega) \) is equal to the degree of the scattering phase map \(s \mapsto \Theta_1(s) \) associated to the curve \(\tilde{\Gamma}_{\Sigma_1(s)} \) on \(F^{-1}(S^1_r) \) contained in \((\mathbb{R}^4, \tilde{\omega}) \).

Proof We compute.

\[
\int_{\tilde{\Gamma}_{\Sigma_1^{-1}\Theta_1^{-1}}(s)} \theta_1 = \int_{\tilde{\Gamma}_{\Sigma_1^{-1}\Theta_1^{-1}}(s)} \Phi_t^{-1}*\theta = \int_{\Phi_t^{-1}\tilde{\Gamma}_{\Sigma_1^{-1}\Theta_1^{-1}}(s)} \theta = \int_{\tilde{\Gamma}_{\Sigma_1}(s)} \theta. \tag{23}
\]

The second to last equality above follows because

\[
\tilde{\Gamma}_{\Sigma_1^{-1}\Theta_1^{-1}}(v) = \varphi_u^K(\Sigma_t(s)) = (\Phi_t \circ \varphi_u^q \circ \Phi_t^{-1})(\Sigma_t(s)), \quad \text{because } X_{K_1} = (\Phi_t^{-1})^* X_{q_2}
\]

\[
= \Phi_t(\varphi_u^q(\Sigma_t(s))), \quad \text{since } \Sigma_t = \Phi_t \circ \Sigma
\]

\[
= \Phi_t(\tilde{\Gamma}_{\Sigma_0(s)}(v)), \quad \text{since } \Sigma_0 = \tilde{\Sigma}.
\]

Let \(\arg \Sigma_t(s) = \arg \pi_1(\Phi_t \circ \tilde{\Gamma}_{\Sigma_0(s)}) \). Here we have

\[
\pi_1 : \mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 : (x, y, p_x, p_y) \mapsto (x, y),
\]

where \(\pi = t^{-1} \circ \pi_1 \circ t^{-1} : \mathbb{C} \times \mathbb{C} \to \mathbb{C} \) is projection on the first factor. So the scattering phase map \(s \mapsto \Theta_t(s) \) associated to the curve \(\tilde{\Gamma}_{\Sigma_1^{-1}\Theta_1^{-1}}(s) \) is

\[
\Theta_t(s) = \arg \Sigma_t(s) + \int_{\tilde{\Gamma}_{\Sigma_1^{-1}\Theta_1^{-1}}(s)} \theta_1 = \arg \Sigma_t(s) + \int_{\tilde{\Gamma}_{\Sigma_1}(s)} \theta, \quad \text{using equation (23)}
\]

\[
= \arg \Sigma_t(s) - \arg \Sigma_1(s) + \Theta_1(s).
\]

Since \(\Phi_t \) with \(t \in [0, 1] \) is an isotopy of \(\Phi_1 \) to the identity map, the degree of the map \(s \to \Theta_1(s) \) is equal to the degree of \(s \mapsto \Theta_0(s) \).

To finish the proof of the geometric scattering theorem we show that

Claim 5.2 The degree of the scattering phase map \(s \mapsto \Theta_0(s) = \arg \tilde{\Gamma}_{\Sigma_0(s)} + \int_{\tilde{\Gamma}_{\Sigma_0(s)}} \theta \) associated to the curve

\[
\tilde{\Gamma}_{\Sigma_0(s)} : \mathbb{R} \to F^{-1}(S^1_r) : v \mapsto \varphi_u^q(\Sigma_0(s)) \tag{24}
\]

in \((\mathbb{R}^4, \tilde{\omega}) \) is equal to the degree of the scattering phase map \(s \mapsto \Theta(s) = \arg \Gamma_{\Sigma_1(s)} = \text{Im } \ln s \) associated to the curve

\[
\Gamma_{\Sigma(s)} : \mathbb{R} \to F^{-1}(S^1_r) : v \mapsto \varphi_u^q(\tilde{\Sigma}(s)). \tag{25}
\]

in \((\mathbb{R}^4, \omega) \).
We have \(\tilde{\omega} = \tilde{\Phi}_* \omega \), where \(\tilde{\Phi} \) is a near identity diffeomorphism. More precisely, \(\tilde{\Phi} = \text{id}_{\tilde{U}} + \Psi \), where \(\Psi \) is flat to order 2. Shrinking \(\tilde{U} \) if necessary the map \(\tilde{\Phi}^\epsilon = \text{id}_{\tilde{U}} + (1 - \epsilon) \Psi \) on \([0, 1]\) is an isotropy of \(\tilde{\Phi} \) to \(\text{id}_{\tilde{U}} \). Let

\[
\Sigma^\epsilon : S^1_r \to \tilde{F}^{-1}_\epsilon(S^1_r) : s \mapsto \tilde{\Phi}^\epsilon \circ \tilde{\Sigma}(s).
\]

Then \(\Sigma^\epsilon \) is a section of the bundle

\[
\tilde{F}^\epsilon \big| (\tilde{F}^\epsilon)^{-1}(S^1_r) : (\tilde{F}^\epsilon)^{-1}(S^1_r) \to S^1_r,
\]

where

\[
\tilde{F}^\epsilon : \mathbb{R}^4 \to \mathbb{R}^2 : w \mapsto \big((\tilde{\Phi}^\epsilon)_* q_1(w), (\tilde{\Phi}^\epsilon)_* q_2(w)\big).
\]

Let

\[
\Gamma_{\Sigma^\epsilon(s)} : \mathbb{R} \to (\tilde{F}^\epsilon)^{-1}(S^1_r) : w \mapsto \varphi^K_\epsilon \big(\Sigma^\epsilon(s)\big),
\]

where \(K^\epsilon = (\tilde{\Phi}^\epsilon)_* q_2 \) on \((\mathbb{R}^4, \omega^\epsilon = (\tilde{\Phi}^\epsilon)_* \omega)\). Let \(\theta^\epsilon = (\tilde{\Phi}^\epsilon)_* \theta \). A calculation similar to the one which verified equation (23) shows that

\[
\int_{\Gamma_{\Sigma^\epsilon(s)}} \theta^\epsilon = \int_{(\tilde{F}^\epsilon)^{-1}(S^1_r)} \theta = \int_{\Gamma_{\Sigma^1(s)}} \theta,
\]

since \(\Gamma_{\Sigma^\epsilon(s)} = \tilde{\Phi}^\epsilon \circ \Gamma_{\Sigma^1(s)} \). Here \(\Sigma^1(s) = \tilde{\Sigma}(s) \). Next define \(\arg \Sigma^\epsilon(s) = \pi_1(\tilde{\Phi}^\epsilon \circ \Gamma_{\Sigma^1(s)}) \). Then the scattering phase map \(\Theta^\epsilon \) associated to the curve \(\Gamma_{\Sigma^\epsilon(s)} \) is

\[
\Theta^\epsilon(s) = \arg \Sigma^\epsilon(s) + \int_{\Sigma^\epsilon(s)} \theta^\epsilon
= \arg \Sigma^\epsilon(s) + \int_{\Gamma_{\Sigma^1(s)}} \theta, \text{ using equation (26)}
= \arg \Sigma^\epsilon(s) - \arg \Sigma^1(s) + \Theta^1(s).
\]

Since \(\tilde{\Phi}^\epsilon \) is an isotopy of \(\tilde{\Phi} \) to \(\text{id}_{\tilde{U}} \), the degree of the mapping \(s \mapsto \Theta^0(s) = \Theta^1(s) \) is equal to the degree of the mapping \(s \mapsto \Theta^1(s) = \Theta(s) = \text{Im} \ln s \) by the proof of claim 3.5. Hence the degree of \(\Theta^0(s) \) is 1.

Using claim 5.1 we have proved

Theorem 5.3 (Geometric scattering) The focus-focus integrable system \((h_1, h_2, \mathbb{R}^4, \omega)\) has scattering monodromy.

Proof The scattering phase map \(\Theta : s \to \Theta^1(s) \) associated to the curve \(\tilde{\Sigma}(s) \) in \(F^{-1}(S^1_r) \) contained in \((\mathbb{R}^4, \omega)\) has degree 1. \(\square\)
Acknowledgements The author would like to thank the referees for their careful reading of the manuscript and their comments which pointed out errors in the text.

Funding The author received no funding for this research.

Declarations

Human and animal rights This research involved no animals or humans and neither generated nor used any computer programs or data.

6 Appendix

In this appendix we prove a complex version of the Morse lemma. Our proof was inspired by the proof of the focus-focus Morse lemma in [6].

Lemma A1 (Morse lemma). Let
\[\hat{\mathcal{H}} : [0, 2] \times \mathbb{C}^2 \to \mathbb{C} : (t, z) \mapsto \mathcal{H}_t(z) = Q(z) + tR(z), \tag{27} \]
where \(Q \) is a nondegenerate homogeneous quadratic polynomial and \(R \) is a smooth function, which is flat to second order at the origin \((0, 0)\). Then there is an open neighborhood \(U \) of \((0, 0)\) in \(\mathbb{C}^2 \) and a diffeomorphism \(\Phi \) of \(U \) into itself with \(\Phi(0, 0) = (0, 0) \) such that \(\Phi^* \mathcal{H}_1 = Q \) on \(U \). Moreover, \(\Phi \) is isotopic to \(\text{id}_U \).

Proof By a complex linear change of coordinates we may assume that \(Q(z) = z_1z_2 \). We want to find a time dependent vector field \(X_t = X_t + \frac{\partial}{\partial t} \) on \((0, 2) \times \mathbb{C}^2 \) whose flow \(\varphi^X_t \) satisfies
\[(\varphi^X_t)^* \mathcal{H}_t = Q, \text{ for every } t \in [0, 1]. \tag{28} \]

Differentiating (28) gives \(0 = (\varphi^X_t)^* (\frac{\partial \hat{\mathcal{H}}}{\partial t} + L_{X_t} \mathcal{H}_t) \). Since \(\frac{\partial \mathcal{H}}{\partial t} = R \), we need to find a vector field \(X_t \) on \(\mathbb{C}^2 \) such that
\[d\mathcal{H}_t(z)X_t(z) = -R(z) \text{ for all } t \in [0, 1]. \tag{29} \]

Now \(d\mathcal{H}_t(z) = (z_2 + t \frac{\partial R}{\partial z_1}(z)) \, dz_1 + (z_1 + t \frac{\partial R}{\partial z_2}(z)) \, dz_2 \). For some smooth functions \(A \) and \(B \) on \((0, 2) \times \mathbb{C}^2 \)
\[X_t(z) = A(t, z) \frac{\partial}{\partial z_1} + B(t, z) \frac{\partial}{\partial z_2}. \tag{30} \]

Since \(R(0) = 0 \), by the integral form of Taylor’s theorem \(R(z) = G_1(z)z_1 + G_2(z)z_2 \), where \(G_j \) are smooth functions with \(G_j(0) = \frac{\partial R}{\partial z_j}(0) \) for \(j = 1, 2 \). Since \(R \) is flat to second order at 0, we get \(G_j(0) = 0 \). Thus (29) can be written as
\[-G_1(z)z_1 - G_2(z)z_2 = A(t, z) \left(z_2 + t \frac{\partial R}{\partial z_1}(z) \right) + B(t, z) \left(z_1 + \frac{\partial R}{\partial z_2}(z) \right). \tag{31} \]
Again by Taylor’s theorem, \(\frac{\partial R}{\partial z_j}(z) = F_j(z)z_1 + E_j(z)z_2 \) for \(j = 1, 2 \), where \(F_j(0) = \frac{\partial^2 R}{\partial z_1 \partial z_j}(0) \) and \(E_j(0) = \frac{\partial R}{\partial z_2 \partial z_j}(0) \). Since \(R \) is flat to second order at 0, it follows that \(F_j(0) = 0 \) and \(E_j(0) = 0 \). Thus equation (31) becomes

\[
-G_1(z)z_1 - G_2(z)z_2 = A(t, z)\left(z_2 + t(F_1(z)z_1 + E_1(z)z_2)\right) + B(t, z)\left(z_1 + t(F_2(z)z_1 + E_2(z)z_2)\right).
\]

Equating the coefficients of \(z_1 \) and \(z_2 \) in the equation above, we get

\[
\begin{pmatrix} G_1(z) \\ G_2(z) \end{pmatrix} = \begin{pmatrix} tF_1(z) & 1 + tF_2(z) \\ 1 + tE_1(z) & tE_2(z) \end{pmatrix} \begin{pmatrix} A(t, z) \\ B(t, z) \end{pmatrix} = \mathcal{A}(t, z)\begin{pmatrix} A(t, z) \\ B(t, z) \end{pmatrix}.
\]

So

\[
|\det \mathcal{A}(t, z)| = |t + t(E_1(z) + F_2(z)) + t^2(E_1(z)F_2(z) - E_2(z)F_2(z))| \\
\geq 1 - |t| \cdot |(E_1(z) + F_2(z)) + t^2(E_1(z)F_2(z) - E_2(z)F_2(z))|.
\]

Let \(U \) be an open neighborhood of \(0 \in \mathbb{C}^2 \) such that for \(i = 1, 2 \)

\[
|E_i(z)| < \frac{1}{16} \quad \text{and} \quad |F_i(z)| < \frac{1}{16}.
\]

Then

\[
|t| \cdot |(E_1(z) + F_2(z)) + t^2(E_1(z)F_2(z) - E_2(z)F_2(z))| \\
\leq |t| \cdot |E_1(z)| + |F_2(z)| + |t| \cdot \left(|E_1(z)||F_2(z)| + |E_2(z)||F_1(z)|\right) \\
< 2 \left[\frac{1}{16} + \frac{1}{16} + 2 \left(\frac{1}{16} \cdot \frac{1}{16} + \frac{1}{16} \cdot \frac{1}{16} \right) \right], \quad \text{using (32) and } t \in [0, 2]
\]

\[
= \frac{17}{64}.
\]

Thus the matrix \(\mathcal{A}(t, z) \) is invertible for all \(z \in U \) and all \(t \in [0, 2] \). With \(\begin{pmatrix} A(t, z) \\ B(t, z) \end{pmatrix}^{-1} \begin{pmatrix} G_1(z) \\ G_2(z) \end{pmatrix} \) we have determined the vector field \(X_t \) (30) on \((0, 2) \times \mathbb{C}^2 \) which solves equation (29).

Because \(X_t(0, 0) = (0, 0) \) we can shrink \(U \) if necessary so that the flow \(\varphi_t^X \) of the vector field \(X \) sends \([0, 1] \times U \) to \(U \). Set \(\Phi = \varphi_t^X \). Then \(\Phi^* \mathcal{H}_t = (\varphi_t^X)^* \mathcal{H}_t = Q \) on \(U \). The diffeomorphism \(\Phi \) is isotopic to \(\text{id}_U \), since it is the time 1 map of a flow. \(\square \)

References

1. Bates, L., Cushman, R.: Scattering monodromy and the A1 singularity. Cent. Eur. J. Math. 5, 429–451 (2007)
2. Cushman, R.H., Bates, L.M.: Global aspects of classical integrable systems, 2nd edn. Birkhäuser, Basel (2015)
3. Dullin, H.R., Waalkens, H.: Nonuniqueness of the phase shift in central scattering due to monodromy. Phys. Rev. Lett. 101, 070405 (2008)
4. Efstathiou, K., Giacobbe, A., Mardešić, P.: Rotation forms and local monodromy. J. Math. Phys 58, 022902 (2017)
5. Martynchuk, N., Broer, H.W., Efstathiou, K.: Hamiltonian monodromy and Morse theory. Comm. Math. Phys. 375, 1373–1392 (2020)
6. Vu Ngoc, S., Wacheux, C.: Smooth normal forms for integrable Hamiltonian systems near a focus-focus singularity. Acta. Math. Vietnam 38, 107–122 (2013)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.