Feedback, scatter and structure in the core of the PKS 0745–191 galaxy cluster

J. S. Sanders, A. C. Fabian, J. Hlavacek-Larrondo, H. R. Russell, G. B. Taylor, F. Hofmann, G. Tremblay and S. A. Walker

1Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany
2Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA
4Department of Physics, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA
5Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
6Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
7European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany

ABSTRACT
We present Chandra X-ray Observatory observations of the core of the galaxy cluster PKS 0745–191. Its centre shows X-ray cavities caused by AGN feedback and cold fronts with an associated spiral structure. The cavity energetics imply they are powerful enough to compensate for cooling. Despite the evidence for AGN feedback, the Chandra and XMM-RGS X-ray spectra are consistent with a few hundred solar masses per year cooling out of the X-ray phase, sufficient to power the emission line nebula. The coolest X-ray emitting gas and brightest nebula emission is offset by around 5 kpc from the radio and X-ray nucleus. Although the cluster has a regular appearance, its core shows density, temperature and pressure deviations over the inner 100 kpc, likely associated with the cold fronts. After correcting for ellipticity and projection effects, we estimate density fluctuations of ~4 per cent, while temperature, pressure and entropy have variations of 10–12 per cent. We describe a new code, MBPROJ, able to accurately obtain thermodynamical cluster profiles, under the assumptions of hydrostatic equilibrium and spherical symmetry. The forward-fitting code compares model to observed profiles using Markov Chain Monte Carlo and is applicable to surveys, operating on 1000 or fewer counts. In PKS 0745, a very low gravitational acceleration is preferred within 40 kpc radius from the core, indicating a lack of hydrostatic equilibrium, deviations from spherical symmetry or non-thermal sources of pressure.

Key words: galaxies: clusters: individual: PKS 0745–191 – X-rays: galaxies: clusters.
filamentary nebula, the luminosity of which is on the extreme end of the distribution of values observed in clusters (Crawford et al. 1999). Salomé & Combes (2003) have also detected CO(1–0) and CO(2–1) emission lines in PKS 0745, implying an H$_2$ mass of 4×10^9 M$_\odot$. Hicks & Mushotzky (2005) found a UV excess from the central galaxy of $\sim 12 \times 10^{33}$ erg s$^{-1}$. This is clearly an interesting object where heating is not matching cooling.

The very unusual and interesting radio source in PKS 0745 was studied in detail by Baum & O’Dea (1991). The radio jets appear to have been disrupted on small scales so that the large-scale structure is amorphous. This is seen in just a few other radio galaxies in dense environments (e.g. 3C317 in A2052, Zhao et al. 1993; and PKS 1246–410 in the Centaurus cluster, Taylor, Fabian & Allen 2002).

PKS 0745 is one of the nearest galaxy clusters to exhibit strong gravitational lensing (Allen, Fabian & Kneib 1996a). The zeroth-order image of a Chandra HETGS observation of the cluster was examined by Hicks et al. (2002), finding a central temperature of 4–5 keV. The properties of the ICM in PKS 0745 have been measured to beyond the virial radius (George et al. 2009) using Suzaku, showing a considerable flattening of the entropy profile. Walker et al. (2012) have improved on this analysis with the aid of further observations to better understand the X-ray background contribution. They find that at radii beyond 1.9 Mpc, the cluster is not in hydrostatic equilibrium or there is significant non-thermal pressure support.

At the redshift of the cluster, 1 arcsec on the sky corresponds to 1.9 kpc, assuming that $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$. In this paper, the relative solar abundances of Anders & Grevesse (1989) were used. North is to the top and east is to the left in images, unless otherwise indicated. The Galactic hydrogen column density towards PKS 0745 is high, around 4.2×10^{21} cm$^{-2}$, weighting the nearest 0.695 pixels in the Leiden/Argentine/Bonn (LAB) survey (Kalberla et al. 2005).

However, these pixels show large variation with a standard deviation of 4×10^{20} cm$^{-2}$.

2 CHANDRA IMAGES

We examined two Chandra observations of PKS 0745 using the S-array of the Advanced CCD Imaging Spectrometer (ACIS) detector, with observation identifiers of 12 881 (exposure time of 118.1 ks) and 2427 (exposure time of 17.9 ks). We did not examine observation 507 which contained extensive flares. We reprocessed the observations to filter background events using VFAINT mode. To remove flares, we used an iterative σ-clipping algorithm on light curves from the CCD S1, which is back-illuminated like ACIS S3, in the 2.5–7 keV band. No additional flares were seen in a higher energy band. The total cleaned exposure of the observations was 135.5 ks. The total exposure-corrected and background-subtracted image of the cluster is shown in Fig. 1. For the background subtraction, we used blank-sky-background event files. Separate backgrounds were used for each observation with the exposure time in each CCD adjusted so that the count rate in the 9–12 keV band matched the respective observation. The background event files were reprojected to match the observations. The background images for each observation and CCD were divided by the ratio of the background to observation exposure times, before subtracting from the observation image. A monochromatic exposure map at 1.5 keV was then used for exposure correction.

Due to the bright central peak, it is difficult to look for structure in the X-ray image. The features are seen more easily by looking at the residuals of a model fit or by using unsharp masking. The top panel of Fig. 2 shows the residuals from an elliptical β-model fit to the surface brightness. The centre panel shows a closer view of the central region, but using unsharp masking to remove the larger scale emission. The bottom panel shows the residuals to an ELFIT model made up by logarithmically interpolating between 20 ellipses fitted to logarithmically spaced contours of surface brightness (Sanders & Fabian 2012). In all residuals, a spiral morphology can be seen. In addition, there is a sharp drop in surface brightness ~ 1 arcmin to the west of the core, some of which is modelled out by the ELFIT procedure. The centre of the cluster contains two central depressions in surface brightness to the north-west and south-east (see white arrows in bottom panel). The depressions are around 20 per cent fainter than the surrounding material. There are other possible features in the central region, but many of these appear to be related to the swirling spiral feature. The negative spiral residuals are around 10 per cent in magnitude.

Fig. 3 shows the centre of the cluster in soft, medium and hard bands. The image shows that there is soft X-ray emission in the rims of the surface brightness depressions. In addition, there is an extended bright region of soft X-ray emission a few arcsec to the west of the central nucleus, seen as a point source. We examine this in more detail in Section 3.

3 NUCLEAR REGION

The brightest central galaxy (BCG) was observed by the Hubble Space Telescope (HST) in 1999 using the Wide Field Planetary Camera 2 (WFPC2) instrument with F184W and F555W filters, with exposure times of 3×600 and 3×700 s, respectively. At the redshift of PKS 0745, the F814W band contains the H$_\alpha$+NII emission lines. In Fig. 4, we show the F814W image of the centre of the cluster. A number of strong lensing arcs can be seen in the image. We have marked possible arcs with arrows. The strongest arc is 18 arcsec to the west-north-west (WNW) of the core. Another arc 12 arcsec to the east is also clearly seen. Allen et al. (1996a) noted three arcs, which were the strong arc to the WNW, the other south of that, plus another further south. We do not see this final arc, but see three further candidates to the east. An emission line nebula is present in...
Looking deeply into PKS 0745−191

Figure 2. Top panel: fractional residuals of β-model fit to 0.5–7 keV exposure-corrected and background-subtracted data. Centre panel: unsharp masked image, showing fractional residuals between data smoothed by a Gaussian of σ = 2 and 16 pixels (1 and 8 arcsec). Bottom panel: fractional difference between data (smoothed by 2 pixels) and ELFIT multi-elliptical model. Note that the lower two panels are zoomed in compared to the top panel. The white arrows in the bottom panel show the location of two depressions. ‘×’ marks the location of the central radio source.

Figure 3. Unsharp-masked images in the different spectral bands. Each image is the raw image smoothed by a Gaussian with σ = 1 pixel, subtracting 0.5 times the image smoothed by 8 pixels. ‘×’ marks the location of the central radio source.

Figure 4. HST F814W image of the centre of the cluster. Positions of possible strong lensing arcs are marked by arrows and ‘×’ shows the central radio source position. The image was created from WFPC2 data sets U59N0101R, U59N0102R and U59N0103R.

The X-ray image of the region around the nucleus can be seen in the top panel of Fig. 5. The point source associated with the nucleus is observed to the east of a brighter region of emission. Fig. 6 shows the spectrum of the nucleus extracted from a 1-arcsec-radius region, using a background region from 1 to 2.4 arcsec radius. We fit the spectrum between 0.5 and 7 keV, minimizing the C-statistic. It can be fitted with either a power law or a thermal model. Assuming that there is no additional absorption above Galactic values (using the value of 4.2×10^{21} cm$^{-2}$; Kalberla et al. 2005), the best-fitting temperature is 5.1 keV. The more physical power-law model gives a photon index of 1.8 ± 0.2 and has a 2–10 keV luminosity in the inner 20 kpc, but is difficult to see against the continuum of the galaxy in this image.

An X-ray image of the region around the nucleus can be seen in the top panel of Fig. 5. The point source associated with the nucleus is observed to the east of a brighter region of emission. Fig. 6 shows the spectrum of the nucleus extracted from a 1-arcsec-radius region, using a background region from 1 to 2.4 arcsec radius. We fit the spectrum between 0.5 and 7 keV, minimizing the C-statistic. It can be fitted with either a power law or a thermal model. Assuming that there is no additional absorption above Galactic values (using the value of 4.2×10^{21} cm$^{-2}$; Kalberla et al. 2005), the best-fitting temperature is 5.1 keV. The more physical power-law model gives a photon index of 1.8 ± 0.2 and has a 2–10 keV luminosity in the inner 20 kpc, but is difficult to see against the continuum of the galaxy in this image.

An X-ray image of the region around the nucleus can be seen in the top panel of Fig. 5. The point source associated with the nucleus is observed to the east of a brighter region of emission. Fig. 6 shows the spectrum of the nucleus extracted from a 1-arcsec-radius region, using a background region from 1 to 2.4 arcsec radius. We fit the spectrum between 0.5 and 7 keV, minimizing the C-statistic. It can be fitted with either a power law or a thermal model. Assuming that there is no additional absorption above Galactic values (using the value of 4.2×10^{21} cm$^{-2}$; Kalberla et al. 2005), the best-fitting temperature is 5.1 keV. The more physical power-law model gives a photon index of 1.8 ± 0.2 and has a 2–10 keV luminosity in the inner 20 kpc, but is difficult to see against the continuum of the galaxy in this image.

An X-ray image of the region around the nucleus can be seen in the top panel of Fig. 5. The point source associated with the nucleus is observed to the east of a brighter region of emission. Fig. 6 shows the spectrum of the nucleus extracted from a 1-arcsec-radius region, using a background region from 1 to 2.4 arcsec radius. We fit the spectrum between 0.5 and 7 keV, minimizing the C-statistic. It can be fitted with either a power law or a thermal model. Assuming that there is no additional absorption above Galactic values (using the value of 4.2×10^{21} cm$^{-2}$; Kalberla et al. 2005), the best-fitting temperature is 5.1 keV. The more physical power-law model gives a photon index of 1.8 ± 0.2 and has a 2–10 keV luminosity in the inner 20 kpc, but is difficult to see against the continuum of the galaxy in this image.
Figure 5. Top panel: X-ray count image of the nuclear region of the cluster between 0.5 and 7 keV. The smaller contours show 8.4 GHz VLA-detected radio emission (Taylor, Barton & Ge 1994), logarithmically spaced between 5×10^{-5} and 0.05 Jy beam$^{-1}$. The larger contours show 1.4 GHz emission with eight contours between 0.0003 and 0.66 Jy beam$^{-1}$. Centre panel: X-ray temperature map in keV from spectral fitting of regions with a signal-to-noise ratio of 20 (around 400 counts per bin). Bottom panel: HST F814W image after subtraction of a smooth model.

Figure 6. Power-law fit to the spectrum of the nucleus. Assuming Galactic absorption, the photon index of 1.8 ± 0.2 and its luminosity is $(6.2 \pm 1.2) \times 10^{41}$ erg s$^{-1}$ between 2 and 10 keV. The spectrum is rebinned for display to have a minimum signal-to-noise ratio of 3 in each spectral bin.

of $(6.2 \pm 1.2) \times 10^{41}$ erg s$^{-1}$. Hlavacek-Larrondo & Fabian (2011) found a luminosity of $(7.5 \pm 3.0) \times 10^{41}$ erg s$^{-1}$ by spectral fitting a power law to the previous short Chandra observation, assuming no additional absorption.

As part of this programme, we performed observations between 1 and 2 GHz with the newly upgraded Very Large Array (VLA). The observations lasted for 5 h on 2012 October 21 and consisted of 16 spectral windows of 64 MHz each covering the entire 1–2 GHz band. In Fig. 5, we show contours of the 1376 MHz radio emission, derived from a single spectral window. The data were calibrated and imaged in AIPS using standard procedures. Results from a full multifrequency synthesis using the entire band will be presented in a future paper.

We constructed an X-ray temperature map using regions with a signal-to-noise ratio of 20 (around 400 counts per bin). The regions were selected using the contour binning algorithm of Sanders (2006), using a maximum ratio between the length and width of the bins of 2, and creating bins by following the surface brightness on a 0.5–7 keV image smoothed with a kernel adjusted to have a signal-to-noise ratio of 15 (225 counts). Spectra were extracted from each of the observations and combined. We created response and ancillary response matrices for each bin, weighting the response regions by the number of counts in the 0.5–7 keV band. Background spectra were extracted from standard background event files, reprojected to match the foreground observations. The background event files exposure times were adjusted to match the count rate in the foreground observations in the 9–12 keV band. The background spectra for the different observations were added, throwing away photons from the shorter observation background spectra to maintain the ratio of effective exposure time between the observations foregrounds and backgrounds. When spectral fitting, the Galactic absorption was fixed at 4.4×10^{21} cm$^{-2}$ and the metallicity was frozen at 0.44 Z$_\odot$ (an average value of the centre taken from maps created with higher signal-to-noise ratio per bin). We used the APEC thermal spectral model (Smith et al. 2001) with PHABS photoelectric absorption (Balucinska-Church & McCammon 1992), fitting between 0.5 and 7 keV.

It can be seen that the coolest X-ray emitting gas lies a few kpc to the west of the nucleus (Fig. 5 centre panel). The minimum projected temperature drops to around 2.1 keV. The radio source at 1.4 and 8.4 GHz shows a complex morphology. The coolest X-ray emitting material lies close to the western extension of the radio source, but
there is little cool material in other directions. This coolest material does not have a significantly different metallicity from nearby gas (0.38 ± 0.05 Z⊙). If we allow the metallicity to be free when fitting the map spectra, we do not see any regions with anomalously low or high metallicity.

Fig. 4 showed an HST image of the cluster (see Section 2). In Fig. 5 (bottom panel), we reveal the Hα emitting filaments by subtracting a smooth model. This was an ELFIT elliptical model fitted to 20 surface brightness contours, excluding other bright sources. The filaments to the north-west appear to follow the 1.4 GHz contours. This is where the bulk of the emission is concentrated and is coincident with the coolest X-ray emitting gas. However, other filaments (e.g. the radial filaments to the west) are not coincident with currently detected radio emission.

4 CENTRAL SPECTRA

We extracted the Chandra spectrum from within a radius of 1.0 arcmin, where the mean radiative cooling time is less than 7.7 Gyr (see Section 6), the time since z = 1. We fitted this spectrum between 0.5 and 7 keV by minimizing the χ² statistic in XSPEC (Arnaud 1996), after grouping it to have a minimum of 20 counts per spectral bin. Models (listed in Table 1) with 1, 2 and 3 APEC thermal components were fitted, assuming that the components have the same metallicity and are absorbed by the same PHABS Galactic photoelectric absorption. We also fitted the spectrum with a model with a single thermal component plus a cooling flow model (Fabian 1994), which assumes that the plasma is radiatively cooling from an upper temperature to a lower temperature at a certain rate in M⊙ yr⁻¹. In this model, we use the same temperature for the thermal component as the upper temperature of the cooling flow model and allow the lower temperature to be free. All of these models give similar values for the metallicity (~0.4 Z⊙) and the absorbing column density (~0.4 × 10²² cm⁻²).

The models support a wide range in temperature within the examined region. We can examine the temperature distribution in more detail by fitting the data with multiple cooling flow models in consecutive sets of temperature intervals. This model parametrizes the distribution of gas temperature in terms of the rate of matter which would need to be radiatively cooling in particular temperature bands to give rise to the spectrum observed. If all matter was radiatively cooling, this would give a constant value as a function of temperature. Fig. 7 shows the distribution obtained with either five or nine different ranges in temperature. In these fits, each component was assumed to have the same metallicity and was absorbed by the same column density (shown in Table 1). The error bars were obtained from the output chain of a Markov Chain Monte Carlo (MCMC) analysis of the spectral fit, using EMCEE (Foreman-Mackey et al. 2012) with 200 walkers and a 2000 iterations after a burn period of 500 iterations. EMCEE uses the affine invariant MCMC sampler of Goodman & Weare (2010). The average acceptance fraction was 43 per cent and the mean autocorrelation time in the chain was 24 iterations, indicating that our results had converged.

The cluster was also observed by XMM–Newton for 28.3 ks using its reflection grating spectrometer (RGS) instruments in observation 0105870101. We extracted spectra using a cross-dispersion range containing 90 per cent of the point spread function (PSF) width (equivalent to a strip approximately 50 arcsec wide across the cluster) and 90 per cent of the pulse-height distribution. Spectra were extracted in wavelength space. After removing flares using a cut of 0.2 counts s⁻¹ on CCD 9, with flag values of 8 or 16 and an absolute cross-dispersion angle of less than 1.5 × 10⁻³, we obtained an exposure time of 21.6 ks. We used a background region using the spatial region beyond 98 per cent of the cross-dispersion PSF. Data for the two detectors were merged using RMSCOMBINE.

The spectra were jointly fit, minimizing the C-statistic in XSPEC. We fit the first-order spectrum between 7 and 20 Å and the second-order spectrum between 7 and 17 Å. Due to the relatively poor quality of the spectra, we fixed the metallicity when fitting to 0.4 Z⊙, the value obtained in the Chandra analyses. We show the results for

Table 1. Best-fitting values in spectral fits to the Chandra data extracted from the central 1.0 arcmin region, where the cooling time is less than 7.7 Gyr. The results are for models from one to three thermal components (APEC), with photoelectric absorption applied (PHABS). We also examine a cooling flow model MKCFLOW, which assumes the gas is radiatively cooling between two temperatures at a certain mass deposition rate (M). Shown are the absorbing column densities (n₁), temperatures (T), metallicities (Z) and model normalizations (Norm, measured in XSPEC normalization units). In these fits, we assumed that each component had the same metallicity. For the cooling flow model, we tied the temperature of the APEC component to the upper temperature of the MKCFLOW model.

Model	Parameter	Value
PHABS(APEC)	n₁ (10⁻²² cm⁻²)	0.372 ± 0.002
	Z (Z⊙)	0.40 ± 0.01
	T (keV)	6.38 ± 0.05
	Norm (10⁻¹⁻)	377 ± 1
	χ²	1.32 = 579/440
PHABS(APEC+APEC)	n₁ (10⁻²² cm⁻²)	0.398 ± 0.004
	Z (Z⊙)	0.40 ± 0.01
	T₁ (keV)	10.9 ± 0.8
	T₂ (keV)	4.8 ± 0.2
	T₃ (keV)	0.64 ± 0.03
	Norm 1 (10⁻¹⁻)	140 ± 15
	Norm 2 (10⁻¹⁻)	246 ± 16
	Norm 3 (10⁻¹⁻)	9.7 ± 1.2
	χ²	1.11 = 485/436
PHABS(APEC+MKCFLOW)	n₁ (10⁻²² cm⁻²)	0.393 ± 0.003
	Z (Z⊙)	0.40 ± 0.01
	Tₘ (keV)	6.65 ± 0.06
	Tᵣ (keV)	0.17 ± 0.03
	Norm (10⁻¹⁻)	350 ± 5
	M (M⊙ yr⁻¹)	112 ± 20
	χ²	1.19 = 522/438
PHABS(5 × MKCFLOW)	n₁ (10⁻²² cm⁻²)	0.446 ± 0.005
	Z (Z⊙)	0.41 ± 0.01
	M (T)	See Fig. 7
	χ²	1.24 = 540/437
PHABS(9 × MKCFLOW)	n₁ (10⁻²² cm⁻²)	0.438 ± 0.008
	Z (Z⊙)	0.43 ± 0.01
	M (T)	See Fig. 7
	χ²	1.10 = 477/433

1 Our code to use EMCEE with XSPEC is available at https://github.com/jeremysanders/xspec_emcee.
5 CENTRAL SPECTRAL MAPS

We now examine the properties of the ICM in the inner 390×260 kpc. We fitted the spectra from bins with a signal-to-noise ratio of 66 (~ 4350 counts). In these fits, the absorbing column density and metallicity were allowed to be free parameters. In Fig. 8 (top panel), we show the fractional difference between the β-model fit to the cluster surface brightness (see Fig. 2) and an adaptively smoothed image of the cluster. The image was adaptively smoothed with a top-hat kernel dynamically adjusted to contain a signal-to-noise ratio of 30 (900 counts). The contours from this map are also plotted on this and the other panels. The middle panel shows the best-fitting temperature. The uncertainties in this map range from 10 per cent per bin in the centre to 30 per cent in the hottest regions.

The surface brightness of the image is proportional to the integral of the density-squared along the line of sight (with a weak temperature factor, depending on the X-ray band chosen). If we bin the surface brightness into our spectral fitting regions, take the square root and multiply by the temperature, this gives a pseudo-pressure, related to an average of the pressure with a line-of-sight factor (bottom panel of Fig. 8). The pressure is asymmetric in the inner arcmin, with a difference in pressure of ~ 30 per cent between the north-west and south-east.

The central temperature map shows some features in common with the spiral structures seen in the residuals from the β model. For instance, there is a cool blob of material to the west of the core coincident with the brightest region of X-ray emission (Fig. 3). This region has lower pressure than other regions at similar radius. At larger radii beyond this western region is an edge in surface brightness, which we examine in more detail in Section 6.3. There is another smaller region of cooler material to the east, coincident with a smaller region of enhanced X-ray emission and lower thermal pressure.

6 RADIAL PROFILES

We investigate the radial profiles of several thermodynamic quantities. We compare the results of a new method, using multiband surface brightness projection against more conventional methods.

6.1 Multiband surface brightness projection

Our multiband surface brightness projection method (called MultiBand PROjector or MBPRO) builds on the well-known surface brightness deprojection method of Fabian et al. (1981). It is similar to the recently published multiband projection method of Humphrey & Buote (2013) which analyses surface brightness profiles assuming functional forms for the mass distribution and entropy profile, inferring the density and temperature assuming hydrostatic equilibrium. Our technique differs by using a non-parametric density profile instead of a parametric entropy profile (although a parametric density profile can be used) and solves hydrostatic equilibrium by integrating the pressure inwards to the centre of the cluster. The aim of the method is to compute cluster thermodynamic property profiles from count profiles, without having to do spectral fitting and allowing high-spatial resolution. As the code is forward fitting, matching a model to observed data, we call this a projection method, rather than a deprojection method.

The data used by the procedure are count or surface brightness profiles in several energy bands. In our data analysis, we used three bands. These bands should be chosen to contain sufficient counts and to be sensitive to temperature variation. For simplicity...
in this procedure, we assume that the surface brightness profiles are extracted from contiguous 2D annuli on the sky which have the same radii as the 3D shells in the cluster for which we model the thermodynamic properties. In addition, we assume constant values for the metallicity and Galactic absorption. The metallicity requirements can be broken by introducing parameters into the model representing its profile.

We assume the gravitational potential (excluding the contribution from X-ray gas mass) has a particular form, the cluster is in hydrostatic equilibrium and is spherical. To start our analysis, we take this potential (with initial parameters), an outer log pressure and an initial log electron density profile, assuming the density is constant within each shell. A separate density can either be given for each shell or generated parametrically, for example using a β model. We then compute the surface brightness profile in several energy bands. This procedure is as follows.

(i) The outer pressure and outermost density value is used to compute an outermost temperature.

(ii) The temperature, metallicity and density are converted into an emissivity for the outermost shell in the cluster in several energy bands. This calculation is done using XSPEC with the APEC spectral model, given a response matrix and ancillary response matrix. For purposes of efficiency, the temperature to emissivity conversion is pre-calculated using a grid of temperature values for each band for unit emission measure. The calculation is done with zero and solar metallicity, using interpolation to calculate the results using other metallicity values. The effects of Galactic photoelectric absorption are included in the emissivities, although this prevents modelling variation across the source.

(iii) We now consider the next innermost shell. We compute a pressure for this shell from the sum of the previous pressure plus the contribution from the hydrostatic weight of the atmosphere, i.e. \(\delta P = \delta \rho \rho \ g \), where \(\delta r \) is the radial spacing and \(\rho \) is the mass density. \(g \) is the gravitational acceleration computed from the potential in the shell plus a contribution to the acceleration from the gas mass of interior shells. \(g \) for the potential is calculated at the gas-mass-weighted-average radius for the shell, assuming constant gas density

\[
 r_{\text{weighted}} = \frac{3}{4} \frac{(r_{\text{in}} + r_{\text{out}})(r_{\text{in}}^2 + r_{\text{out}}^2)}{r_{\text{in}}^2 + r_{\text{out}}^2}, \tag{1}
\]

where \(r_{\text{in}} \) and \(r_{\text{out}} \) are the interior and exterior radii of the shell. To calculate the gas mass contribution to \(g \), we calculate the total gravitational force on the shell from the mass of interior shells \(M_{\text{int}} \) and from the shell itself, at constant density \(\rho \). This is then divided by the total mass within the shell to compute an average acceleration,

\[
g_{\text{gas}} = \frac{G}{r_{\text{in}}^2 + r_{\text{out}}^2} \frac{3 M_{\text{int}} + \rho (r_{\text{out}} - r_{\text{in}})(r_{\text{out}}^2 + r_{\text{in}}^2)}{r_{\text{in}}^2 + r_{\text{out}}^2}. \tag{2}
\]

(iv) Taking this pressure and the density value in this shell, we compute its emissivity in the several bands.

(v) We go back to step (iii) until we reach the innermost shell.

(vi) Given the emissivities for each shell, we compute the projected surface brightness in each band by multiplying by the volumes of each shell projected on to annuli on the sky and summing along the line of sight. We include the sky background by adding a constant on to each surface brightness profile.

Once we have the surface brightness profiles in each band for our choice of parameters (parameters of the gravitational potential, outer pressure and temperature profile), we can compare them to the...
observed surface brightness profiles. The projected surface brightness profiles are multiplied by the areas on the sky of each annulus and the exposure time of the observation to create count profiles. The exposure times can also include an additional factor from the average difference in an exposure map between the annuli and where the response matrices are defined, to account for detector features and vignetting. If sectors are examined within the cluster, rather than full annuli, this can be included within the area calculation, along with the negative contribution of any excluded point sources. To assess how well the model fits the data, we calculate the logarithm of the likelihood of the model for Poisson statistics (Cash 1979) with

$$\log L = \sum_i \left[d_i \log m_i - m_i - \log \Gamma(d_i + 1) \right],$$

where d_i and m_i are the observed and predicted number of counts, respectively. i indexes over each annulus in each band.

To obtain the initial density profile, we add the surface brightness profiles from all the energy bands and deproject the surface brightness profile assuming a particular temperature value (here 4 keV) and spherical symmetry. The initial outer pressure is the outer density times the temperature value. We then fit the complete set of parameters, including the potential parameters, by maximizing $\log L$ using a least-squares minimization routine. The basin-hopping algorithm (Wales & Doye 1997) is then employed to help ensure that the fit is not in a local minimum.

We start an MCMC analysis to obtain a chain of parameter values after a burn-in period. We again use EMCEE for the MCMC analysis. The initial parameters for the walkers are set to be tightly clustered around the best-fitting parameters. Flat priors are used on all parameters. After the run, uncertainties on the parameters can be obtained by computing the marginalized posterior probabilities from the chain for each parameter. To compute radial profiles of other thermodynamic quantities, we take sets of parameters from the chain and compute the quantity for each set of parameters and examine the distribution of these output values. We compute the electron density, electron pressure, electron entropy (defined as $K_e = n_e T^{-2/3}$), cumulative gas mass, cumulative luminosity, mean radiative cooling time, cumulative mass deposition rate in the absence of heating (accounting for the gravitational contribution; Fabian 1994), gravitational acceleration, total cumulative mass and gas mass fraction.

6.1.1 Rebinning input profiles

The sizes of the input annular bins must be chosen in some way. When fitting for separate densities in each shell, there is one density parameter per shell. To reduce the uncertainties on the densities, the input profiles need to be binned. In principle, if a functional form is assumed for the density profile then the input profiles do not need binning, but in practice to get a good initial density estimate, some binning is required.

A second code, MBAUTOREBIN, is used to rebin the profiles before analysis. We take initial count profiles for each band, computed using pixels. The profiles are added to give a total count profile. The method works inwards from the outside of the profile. Radial annular bins are combined until the fractional uncertainty on the emissivity in the respective 3D shell drops below a threshold and the total number of counts in the shell is greater than a second threshold. Once the threshold is reached, we then consider the next innermost bin.

The emissivity in a shell is computed by deprojecting the counts in each annulus assuming spherical symmetry. To be precise, to calculate the emissivity, the projected contributions from the background and already binned 3D shells are subtracted from the count rate for the annulus, and this rate is then divided by the volume of the shell within the annulus. Monte Carlo realizations of the count rate in the shell and those shells outside are used to estimate the uncertainty.

For the central remaining bin after this process, we combine it with the next innermost bin if the uncertainty on the emissivity is substantially below the threshold.

There may be some form of bias generated from this procedure if the number of counts is very low. Bin sizes may depend on the radius of particular counts. In the low-count regime (a few hundred counts or less), we used an alternative version of this code which fits a β model to the surface brightness profile. The bin radii are adjusted to give the same fractional uncertainty on the deprojected emissivity in each bin, based on realizations of the β model.

6.1.2 Null potential case

The above procedure can be modified to compute thermodynamic profiles without the assumption of hydrostatic equilibrium. We term this adaptation of the model the Null potential case. Here, we add parameters for the temperature in each shell and do not use the gravitational potential. Rather than calculating the pressure assuming hydrostatic equilibrium, we multiply the temperature and density values. This variation of the model is in essence a low-spectral resolution version of spectral fitting projection models, such as PROJCT. It provides a useful check to ensure that the thermodynamic profiles are not being biased by the choice of gravitational potential or by parts of the cluster being out of hydrostatic equilibrium.

6.2 Complete radial profiles

To examine the average cluster profiles, we extracted count profiles for the cluster from images in the 0.5–1.2, 1.2–2.5 and 2.5–6 keV bands out to a radius of 4.55 arcmin (516 kpc). The profiles were extracted on a pixel-by-pixel basis and the areas calculated by summing numbers of pixel. A 0.5–7 keV exposure map was used to correct the areas for bad pixels and other detector features. We restricted the analysis to region covered by the ACIS-S3 CCD for the 12 881 observation, excluding point sources. In addition to using standard background event files to obtain the X-ray and particle backgrounds, we account for out-of-time events which occur during detector readout using the MAKE_READOUT_BG script of M. Markert-vitch to generate out-of-time event files. Out-of-time events would otherwise lead to regions along the readout direction being contaminated with emission from the centre of the cluster. PKS 0745 has a bright central core, making this problem more obvious. We extracted surface brightness profiles from both background event files, combining them. The foreground and background input profiles were rebinned to obtain a maximum deprojected emissivity error of 4 per cent. This gives around 20 000 projected counts per radial bin over most of the radial range, reducing to around 10 000 near the outskirts.

Several different potential models were examined using MBPROJ, with the results shown in Fig. 9. The central lines show the median parameter values taken from the chain, with shaded bar showing the uncertainties taken from the 15.9 and 84.1 percentiles, equivalent to 1σ errors. The potentials used were an NFW model (Navarro, Frenk & White 1996), a King model (King 1962), the null potential and an arbitrary potential, Arb4, where we parametrized the mass density...
Figure 9. Complete radial profiles, comparing analysis methods. Shown are the results for spectral fitting using DSDEPROJ and PROJCT, and MBPROJ with several mass models, including a King, an NFW, a 4 bin parametrization (Arb4) and a null potential (fitting densities instead). The quantities shown include the temperature \(T \), electron density \(n_e \), electron pressure \(P_e \), electron entropy \(K_e \), mean radiative cooling time \(t_{\text{cool}} \), cumulative mass deposition rate \(\dot{M} \), gravitational acceleration \(g \) and cumulative gas mass \(M_{\text{gas}} \). In the \(g \) and total mass plots, we also show the results for an NFW model which only examines the data outside 0.5 arcmin radius. For the total mass panel, we show the mass profile obtained from Suzaku data by Walker et al. (2012).
at four logarithmically spaced radii over the radial range and used linear interpolation and integration to compute the gravitational acceleration. We assumed a metallicity of $0.4\,Z_\odot$ and an absorbing column density of $3.78 \times 10^{24} \, \text{cm}^{-2}$, based on an average of values from fitting bins over the cluster core. For the null potential model, we show the results where there is a single temperature parameter in each shell and one where the temperatures in each pair of bins is assumed to be the same (bin 2).

The details of the MCMC analysis are shown in Table 3. We show log likelihoods for the best-fitting parameters, the number of walkers used, the burn period, the length of the final chain. The acceptance fraction of the chain is shown. Ideally this should be between 0.2 and 0.5 (Foreman-Mackey et al. 2012). Low values, as seen in the null potential model with a single temperature parameter for each bin, may indicate multimodal parameter values which are difficult for the MCMC analysis to sample.

For models with more parameters (the Null and Arb4 models), we increased the number of walkers in the analysis. Table 3 also shows the mean and maximum autocorrelation periods (τ) for parameters from individual walkers in the chain. To properly sample parameter values so that the chain has converged, the chain should be ~ 10 times longer than this period (Foreman-Mackey et al. 2012). This is the case on our analyses. The null models have long autocorrelation periods, likely due to the multivalued temperatures at larger radii, and so required much longer chain lengths. The derived marginalized posterior probabilities for the mass models are given in Table 4.

To compare the results from our analysis, we also examined the results of spectral fitting using two different methods for account for projection effects. The first method was to use the DSDEPROJ code to deproject projected spectra (Sanders & Fabian 2008). We also used the PROJCT model in XSPEC, which projects spectra. The radii of the annuli chosen were the surface brightness deprojection bins, but binned up by a factor of 3 (Fig. 10). We note that for these spectral fits, we fixed the column density to the same value as the surface brightness deprojection. The metallicity of each shell, however, was free in the spectral fits. The spectra were fitted between 0.5 and 7 keV. For PROJCT, all the spectra were fitted simultaneously to minimize the total χ^2 (the reduced χ^2 was 1.02 = 6447/6321).

The spectral results are compared with the data in Fig. 9. There appears to be good agreement between the spectral fitting results and our deprojection code. However, there is a discrepancy in the temperature and pressure results at small and large radius between the NFW analysis and the other results. Examining the gravitational acceleration, g, the Arb4 gravitational model appears to match the King model fairly well except at small radii, but matches the NFW model poorly. If we exclude the central region from the data and only fit the data beyond 0.5 arcmin radius, the NFW model matches the other models much better in that region (bottom-left two panels of Fig. 9).

Similar results to the Arb4 model are also found with a model where the gravitational acceleration is parametrized in six logarithmic radial intervals, using linear interpolation to calculate intermediate values. In this case, the gravitational acceleration is unconstrained inside 10 kpc radius, but g is similar to the Arb4 model elsewhere.

We also note that the null potential model shows different mass deposition rates (M) compared to the other models because it does not include the gravitational contribution. Both the spectral and projection methods have anomalous values in their outer bins. This is due to cluster emission outside these radii not being taken into account.

6.3 Surface brightness edges

In the western half of the cluster, there are two edges visible in the X-ray surface brightness (Fig. 2). We have analysed the thermodynamic properties across these edges by spectral fitting and by applying MBPROJ. The sectors we used for the spectral fitting are shown in Fig. 10. The same azimuthal and radial ranges were used for the surface brightness analysis. The edges of the spectral extraction regions were chosen to match the edges in surface brightness as closely as possible. We analysed the data similarly to Section 6.2 but using a column density of $4.27 \times 10^{21} \, \text{cm}^{-2}$. This increased

Table 3.

Details of the MCMC analysis of the various data and samples. Shown are the data analysed, the potential used, the maximum log likelihood, number of walkers used, burn length used, sample length used, acceptance fraction, mean autocorrelation period (τ) and maximum autocorrelation period (max τ).

Region	Potential	max log \mathcal{L}	Walkers	Burn	Length	Acceptance	τ	max τ
Full	NFW	-941.7	200	1000	4000	0.18	134	311
	King	-865.8	200	1000	4000	0.18	131	302
	Arb4	-861.7	400	2000	8000	0.18	214	591
Null	$r > 0.5'$	-638.8	200	1000	4000	0.20	118	282
Null	$r > 0.5'$	-367.0	200	1000	4000	0.21	116	295
West	NFW	-451.4	200	1000	4000	0.22	110	294
	King	-448.8	200	1000	4000	0.22	102	277
East	NFW	-445.7	200	1000	4000	0.21	113	297
	King	-445.0	200	1000	4000	0.21	109	291

Table 4.

Derived marginalized posterior probabilities for the parameters on the potentials from the surface brightness analysis. For the Arb4 model, the density units are $\log_{10} 10^{-24} \, \text{g cm}^{-3}$.

Potential	Parameters	$H_0 = (2.70 \pm 0.06)$ Mpc
NFW	$\rho = (769 \pm 2) \, \text{km s}^{-1} \, \text{kpc}$	
King	$\rho = (83 \pm 2) \, \text{kpc}$	
Arb4	$\rho = (0.05 \pm 0.005)$ Mpc	
Poker	$\rho = (0.05 \pm 0.005)$ Mpc	
Arb4	$\rho = (0.03 \pm 0.005)$ Mpc	
King	$\rho = (0.02 \pm 0.005)$ Mpc	

Sanders & Fabian 2008). We also used the PROJCT model in XSPEC, which projects spectra. The radii of the annuli chosen were the surface brightness deprojection bins, but binned up by a factor of 3 (Fig. 10). We note that for these spectral fits, we fixed the column density to the same value as the surface brightness deprojection. The metallicity of each shell, however, was free in the spectral fits. The spectra were fitted between 0.5 and 7 keV. For PROJCT, all the spectra were fitted simultaneously to minimize the total χ^2 (the reduced χ^2 was 1.02 = 6447/6321).

The spectral results are compared with the data in Fig. 9. There appears to be good agreement between the spectral fitting results and our deprojection code. However, there is a discrepancy in the temperature and pressure results at small and large radius between the NFW analysis and the other results. Examining the gravitational acceleration, g, the Arb4 gravitational model appears to match the King model fairly well except at small radii, but matches the NFW model poorly. If we exclude the central region from the data and only fit the data beyond 0.5 arcmin radius, the NFW model matches the other models much better in that region (bottom-left two panels of Fig. 9).

Similar results to the Arb4 model are also found with a model where the gravitational acceleration is parametrized in six logarithmic radial intervals, using linear interpolation to calculate intermediate values. In this case, the gravitational acceleration is unconstrained inside 10 kpc radius, but g is similar to the Arb4 model elsewhere.

We also note that the null potential model shows different mass deposition rates (M) compared to the other models because it does not include the gravitational contribution. Both the spectral and projection methods have anomalous values in their outer bins. This is due to cluster emission outside these radii not being taken into account.

6.3 Surface brightness edges

In the western half of the cluster, there are two edges visible in the X-ray surface brightness (Fig. 2). We have analysed the thermodynamic properties across these edges by spectral fitting and by applying MBPROJ. The sectors we used for the spectral fitting are shown in Fig. 10. The same azimuthal and radial ranges were used for the surface brightness analysis. The edges of the spectral extraction regions were chosen to match the edges in surface brightness as closely as possible. We analysed the data similarly to Section 6.2 but using a column density of $4.27 \times 10^{21} \, \text{cm}^{-2}$. This increased
value was necessary due to the westward rise in column density (Section 7) and was obtained as the best-fitting value from the PROJ analysis. The surface brightness profiles were rebinned in radius to have a minimum uncertainty on the emissivity of 6 per cent. We used both King and NFW mass models in our MBPROJ analysis.

The profiles in this sector are shown in Fig. 11. The results show that there are two obvious breaks in density, temperature and entropy at the locations of these edges. The MBPROJ results suggest that the breaks have finite width, although any perturbations in the shape of the edge relative to our extraction region will broaden its measured width. The spectral fitting results indicate that there may be a break in pressure at the innermost edge. Using the MBPROJ method, there can never be a discontinuity in pressure as a hydrostatic atmosphere is assumed. The spectral fitting pressure inside the edge is enhanced with respect to the smooth curves. Considering only the two points either side of the edge, the pressure jump relative to the smooth curves is around 2σ in significance. However, if power-law models were fitted inside and outside the edge, then the significance of the break would increase. The metallicity profile in the centre is remarkably flat at 0.4Z⊙ within 300 kpc radius.

We similarly examined the properties of the cluster in the eastern direction across the surface brightness edges (Fig. 12). This is more difficult because the edges are not smooth or centred on the cluster nucleus. They appear to look rather kinked (Fig. 2), similar to those seen in seen in Abell 496 (Roediger et al. 2012). We have therefore examined the deprojected profiles using a sector with a centre offset around 40 kpc south-west from the core of the cluster (Fig. 10), so that the circular sectors better match the surface brightness features. This introduces systematic geometric error into the analysis. The radial features, however, are also seen in projected profiles. We repeated the same spectral and MBPROJ analyses as in the western sector, but rebinning the input profiles to give a minimum uncertainty of 10 per cent on the emissivity.

We again see density, temperature and entropy jumps across the two edges (although the outer temperature jump is less significant). The pressure does not appear to jump at the edges. Fig. 10 shows a further reduction with surface brightness near the edge of our sector (at radii of ~240 kpc from the cluster core) associated with the spiral structure. Unfortunately, this edge lies close to the boundary...
between two neighbouring CCDs, making it difficult to examine both in terms of surface brightness and spectrally.

7 LARGER SCALE MAPS

Fig. 13 shows larger scale maps of the properties of the ICM in the cluster. To produce these maps, we fitted spectra from bins with a signal-to-noise ratio of 101 (10 200 counts). We use a single component APEC model, allowing the temperature, metallicity, normalization and absorbing column density to be free in the fits. In addition to extracting background spectra from standard-background-event files, spectra were extracted from the out-of-time-event files for each bin, combining the data sets. In XSPEC, they were loaded as a correction file during spectral fitting for each bin. Input spectra were grouped to have a minimum of 20 counts per spectral bin. We fit the spectra between 0.5 and 7 keV, minimizing the χ^2 of the fit. The resulting maps show that there is considerable variation in absorbing column density across the image. The variation is in the direction of Galactic latitude, with stronger absorption towards the Galactic plane. As PKS 0745 is near the Galactic plane, this suggests that the variation could be real, as implied by the large standard deviation of the nearby LAB values. Alternatively, the variation could be due to calibration, for example uncorrected contaminant on the ACIS detector. Analysis of XMM data would confirm whether it is real.

There are also non-radial variations in temperature and pressure, which we examine further in the following section.

7.1 Fluctuations in quantities

The energy in turbulent fluctuations, generated during the growth of a cluster, is predicted to increase from a few per cent of the thermal energy density in the centre of a relaxed cluster to tens of per cent in its outskirts (Lau, Kravtsov & Nagai 2009; Vazza et al. 2009, 2011). Unrelaxed objects, such as those which have previously undergone a merger, have more turbulent energy at all radii, but particularly in the central region where it may reach tens of per cent. In addition, the central AGN may generate motions (Brüggen, Hoeft & Ruszkowski 2005; Heinz, Brüggen & Morsony 2010). With current instrumentation, it is possible to directly measure or place limits on turbulent motions in some cases (see Sanders & Fabian 2013). However, the spectra of fluctuations in surface brightness and therefore density can be measured from images and used as an indirect probe of turbulence (Churazov et al. 2012; Sanders & Fabian 2012; Zhuravleva et al. 2014). By the choice of energy band for particular temperature ranges, it is possible to examine pressure fluctuations using surface brightness (Sanders & Fabian 2012). Simulations indicate that density variations can be used to infer the magnitude of turbulence (Gaspari et al. 2014).

Here, rather than purely relying on surface brightness, we use spectral information to measure the non-radial dispersion of various interesting thermodynamic quantities (temperature, density, pressure and entropy) as a function of radius relative to smooth models. Measuring these quantities directly provides useful constraints on turbulence without assuming the results from simulations.

In Fig. 14 are shown the values of the temperature (T), metallicity (Z), pseudo-density (n_{pseudo}), pseudo-pressure (P_{pseudo}) and pseudo-entropy (K_{pseudo}) for each bin as a function of the average radius of the bin. We exclude two large bins in the outskirts which cover a very large radial range. Pseudo-density is the square root of the surface brightness, which is roughly proportional to density times a line-of-sight length. We define the pseudo-pressure and pseudo-entropy as $P_{\text{pseudo}} = T n_{\text{pseudo}}$ and $K_{\text{pseudo}} = T n_{\text{pseudo}}^2$, respectively. The solid lines show radial model fits to the data points, obtained by minimizing the χ^2 statistic. For the temperature profile, we fitted the ‘universal’ temperature profile of Allen, Schmidt & Fabian (2001). A simple linear function was fitted to the metallicity, a β model to the pseudo-density and pseudo-pressure, and a β model with a negative index to the pseudo-entropy. It can be seen that there are large amounts of scatter at each radius in some of these quantities, although the error bars on the metallicities are large. To demonstrate this, we plot the fractional residuals of each fit to the data in Fig. 15 and quote the χ^2 of the fit.

The points will contain some spread due to measurement errors and a contribution from the intrinsic fluctuations in the cluster at each radius. We can calculate the intrinsic dispersion, assuming that the points follow the fitted radial models. We make Monte Carlo simulations of the quantities assuming that points have the error bars measured in the data plus an additional fractional dispersion, added in quadrature. The fraction of simulations which have a fit statistic better than the real fit statistic is calculated as a function of...
Looking deeply into PKS 0745−191

Figure 13. Maps of the temperature in keV (top-left), pseudo-pressure (top-right), absorbing column density in 10^{22} cm$^{-2}$ (bottom-left) and metallicity in solar units (bottom-right) on large scales. The cluster was binned to have regions with a signal-to-noise ratio of 101 (\sim105 counts).

7.2 Correcting for surface brightness ellipticity with ELFIT

The cluster has an elliptical morphology (Fig. 2). This will give rise to some of the azimuthal variation of the quantities, even if the data points were intrinsically smooth. To examine the effect of the ellipticity, centroid shifts and isophotal twisting, we again applied the same ELFIT model with a series of 20 ellipses fitted to the contours in surface brightness at logarithmic surface brightness contours. We first created a corrected radius map, where for each pixel in the image we calculated the smallest distances to the nearest two ellipses and calculated the pixel radius by linearly interpolating between the average radii of those ellipses. Given this radius image, we gave each bin in the spectral map a radius from the average radius of the bin pixels in the corrected radius map. This procedure reduces the effects of isophotal twisting and edges from the data points.

Fig. 16 shows the residuals from the fits after correcting the bin radii for elliptical variations. The scatter on all the quantities except pressure is significantly reduced after this correction (Table 5). For the density fit, a second β-model component was added to the fit.
to remove significant radial residuals. The radial profiles of scatter are again rather flat, but the density plot shows low scatter (∼2 per cent with projection) in the middle of the radial range, with larger deviations in the centre. The central deviations are likely to be due to the AGN activity.

7.3 Pressure and density correction with elliptical β models

If the cluster is in hydrostatic equilibrium, the pressure map is unaffected by local density or temperature perturbations. Therefore, the pressure map may better indicate the morphology of the cluster potential than the density or surface brightness. To investigate whether

Figure 14. Profiles generated from the maps in Fig. 13. The value of the bin is plotted against the mean bin position. The radial error bars show the bin extents. The quantities are temperature (first panel), metallicity (second panel), pseudo-density (third panel), pseudo-pressure (fourth panel) and pseudo-entropy (fifth panel).

Figure 15. Fractional residuals to the best-fitting models in Fig. 14 with the intrinsic dispersion of the points shown. The numeric value shown is the reduced-χ² of the fit. The intrinsic dispersion is shown for all points (finely hatched region) and using four radial bins containing equal numbers of points (coarse hatched region), except for the metallicity plot which shows no significant dispersion when split into separate regions. The dispersion shows the range of additional dispersion which is consistent with Monte Carlo realizations of the best-fitting models.

the scatter in the thermodynamic quantities is reduced after correcting for the pressure map, we fitted the projected pressure map by an elliptical β model. We minimized the χ² between our model and the data assigning an uncertainty to each pixel of the total for that bin, divided by √n_pix, where n_pix is the number of pixels in the bin. The outermost very large bins were excluded.

We obtain an ellipticity for the pressure map of 0.25 ± 0.03 (i.e. a ratio between the minor and major axes is 0.75) and find the major axis is inclined 17° ± 3° north from the west. The centre
of the model is offset by about 6 arcsec from the nucleus to the south-east. The pseudo-density map has a similar ellipticity of 0.27, inclined northwards by 13°. By comparing the ellipticity of the pressure and density, if the cluster is in hydrostatic equilibrium, it would be possible to estimate the ellipticity of the dark matter potential. Fixing the ellipticity and angle in the pressure fit to the best-fitting density values increases the χ^2 by only 2.4, showing that the difference is not significant. We do not see any evidence for an elliptical dark matter potential. However, a gravitational potential is much more symmetric than the underlying matter density, so measuring this difference is difficult.

Similarly for the elliptical surface brightness correction, we can adjust the radii of pixels to correct for the ellipticity of the pressure distribution. Table 5 (under Pressure, β) shows that the pressure fluctuations are reduced to around 3 per cent. The density fluctuations also appear to be reduced compared to the spherically symmetric case, but the temperature and entropy variations are increased.

However, we cannot compare the fluctuations from the pressure β modelling to the surface brightness ELFIT results, because the β correction is relatively crude. It does not, for example, remove isophotal twisting, centroid shifts or a changing ellipticity as a function of radius. If we repeat the analysis, fitting the density map with an elliptical β model and doing the radial correction, we obtain exactly the same results as with the pressure map (Table 5 under Density, β). This confirms that the density and pressure ellipticities are very similar.

Table 5

Correction	Quantity	Dispersion
No	T	0.07 ± 0.01
	Z	<0.1
	n_{pseudo}	0.11 ± 0.01
	P_{pseudo}	0.07 ± 0.01
	K_{pseudo}	0.13 ± 0.02
SB (ELFIT)	T	0.05 ± 0.01
	Z	<0.1
	n_{pseudo}	0.018 ± 0.002
	P_{pseudo}	0.05 ± 0.01
	K_{pseudo}	0.06 ± 0.01
Pressure (β)	T	0.10 ± 0.01
	Z	<0.1
	n_{pseudo}	0.069 ± 0.006
	P_{pseudo}	0.03 ± 0.01
	K_{pseudo}	0.16 ± 0.02
Density (β)	T	0.10 ± 0.01
	Z	<0.1
	n_{pseudo}	0.069 ± 0.006
	P_{pseudo}	0.03 ± 0.01
	K_{pseudo}	0.16 ± 0.02

7.4 Dependence on bin size

The magnitude of the fluctuations will have some dependence on the bin size, as features below the bin size will be smoothed out. We investigated using bins using a signal-to-noise ratio of 66 instead of 100 (around 70 per cent of the linear dimension). The computed additional fluctuations were consistent with each other.

7.5 Projection effects

The measured dispersions are projected quantities. The intrinsic dispersion in the cluster itself will be larger, as fluctuations are...
spectrum inside this radius, we find it consistent with XMM-Newton observations. We note that the picture of a complete cut-off in the X-ray temperature distribution is incorrect. There are many cases now showing clusters with cool X-ray emitting gas embedded in a hotter medium, associated with emission line filaments, including Centaurus (Sanders et al. 2008), Abell 2204 (Sanders, Fabian & Taylor 2009a), 2A 0335+096 (Sanders, Fabian & Taylor 2009b), Abell 2052 (de Plaa et al. 2010), M87 (Werner et al. 2010), Sérsic 159 (Werner et al. 2011), Abell 262 and Abell 3581 (Sanders et al. 2010) and in several elliptical galaxies (Werner et al. 2014).

With Chandra we are able to resolve the coolest X-ray emitting material in the core of the cluster (Fig. 5), finding it to consist of a 10-kpc-wide 2.5-keV-average-temperature blob of material to the west of the cluster core. Radial profiles (Fig. 9) confirm the central temperature. These give a central radiative cooling time and entropy of around 500 Myr and 10 keV cm$^{-2}$, respectively.

The central galaxy of the cluster is observed to be blue and to contain ionized line-emitting gas extended over around 7 kpc from the core of the central galaxy (Fabian et al. 1985; McNamara &...
O’Connell (1992). This coolest material is coincident with some of the brightest parts of the ionized line-emitting nebula (Fig. 5 bottom panel). Vibrationally excited molecular hydrogen was observed in the PKS 0745 using HST (Donahue et al. 2000), with a morphology similar to the ionized line-emitting material. Cold molecular gas, as seen using CO emission, has been observed from the cluster (Salomé & Combes 2003). O’Dea et al. (2008) and Hoffer et al. (2012) measured a star formation rate of 17–18 M⊙yr⁻¹. Using Spitzer infrared photometry, Donahue et al. (2011) obtained a value of 11 M⊙yr⁻¹. Much higher rates of 130–240 M⊙yr⁻¹ were obtained using ultraviolet XMM optical monitor observations (Hicks & Mushotzky 2005). However, this UV emission may have a different origin from star formation.

In PKS 0745, we are clearly observing a region around the core where there are a wide range of different temperature phases. The X-ray spectra are consistent with several hundred M⊙yr⁻¹ cooling out of the X-ray band. Close feedback could be operating, reducing the star formation rate to a few per cent of the X-ray cooling rate. However, Fabian et al. (2011) propose that the emission line filaments in the centres of clusters are powered by secondary electrons generated by the surrounding hot gas, explaining their peculiar low-excitation spectrum. Here, the gas cooling accretion rate, M, is related to the luminosity of the cool or cold gas, in units of 10¹⁹ erg s⁻¹, L₄₄, and temperature in 1⁰ K, T₄, by M ≈ 70 L₄₄ T⁻⁴₄ M⊙yr⁻¹. The Hz emission is 3 × 10¹² erg s⁻¹ (Heckman et al. 1989), but the total luminosity should be 10–20 times larger. The luminosity is therefore consistent with rates of several hundred M⊙yr⁻¹ cooling. The X-ray gas could cool to 0.5–1 keV and then merge with the cool gas, producing the bright Hz emission in this object.

One of the notable aspects of the cooling in this object is that the coolest X-ray emitting gas and emission line nebula is offset from the nucleus. Such an offset has been seen before in several other well-known clusters, including Abell 991, Abell 3444 and Ophiuchus (Hamer et al. 2012) and Abell 1795 (Crawford, Sanders & Fabian 2005). Hamer et al. (2012) suggest that offsets occur in 2–3 per cent of systems and present some possible mechanisms for the gas–galaxy displacement, including sloshing of the gas in the potential well, which seems a likely candidate here given the strong cold front in this cluster.

Although there is apparently cooling taking place, there are at least two central X-ray surface brightness depressions indicating AGN feedback. These are likely to be cavities filled with bubbles of radio emitting plasma which are displacing the ICM, as seen in many other clusters (McNamara & Nulsen 2012). They are one of the means by which AGN appear to be able to inject energy which is lost by cooling (Fabian 2012). We do not observe the corresponding radio emission here, but the central radio source extends in the direction of the cavities (Fig. 5). In PKS 0745, these cavities are around 5 and 3 arcsec in radius (or 17 and 9.8 kpc). The central total thermal pressure is around 0.6 keV cm⁻³. Therefore, the total bubble enthalpy, assuming 4Pᵣ, is 3 × 10⁶⁰ erg (Fig. 9). If the bubble rises at the sound speed (assuming 4 keV material), this would give a time-scale of around 20 Myr using a radius of 17 kpc. The heating power of these bubbles is therefore around 5 × 10⁴⁶ erg s⁻¹. Therefore, the energetics of these bubbles would be sufficient to offset cooling in the core of this cluster, although this is an order of magnitude estimate given the messy central morphology. As the star formation is a few per cent of the mass deposition rate, the feedback is almost complete, or the cooling energy goes to power the nebula as suggested above.

It is interesting to compare PKS 0745 to the Phoenix cluster (McDonald et al. 2012), the most extreme star-forming cluster currently known, which lies at a redshift of 0.596 and has the highest known cluster X-ray luminosity (8.2 × 10³⁵ erg s⁻¹ between 2 and 10 keV). Phoenix has a classical mass deposition rate of ∼1900 M⊙yr⁻¹ (McDonald et al. 2013b) and the central galaxy has a current star formation rate of ∼800 M⊙yr⁻¹ (McDonald et al. 2013a). The total Hz luminosity from the Phoenix cluster is 8 × 10³³ erg s⁻¹ (McDonald et al. 2014), compared to 3 × 10³⁵ erg s⁻¹ for PKS 0745. The H₂ molecular gas mass in Phoenix is 2.2 × 10¹⁰ M⊙, compared to 4 × 10¹⁰ M⊙ yr. Examining the ratios of quantities between PKS 0745 and Phoenix, the classical mass deposition rate ratio is ∼0.4, the molecular gas mass ratio is ∼0.2, the Hz luminosity ratio is ∼0.04 and the star formation rate ratio is ∼0.015. PKS 0745 has a comparable mass deposition rate to Phoenix and its molecular mass ratio is consistent, but the resulting star formation rate and Hz luminosity is much lower. Phoenix is clearly converting molecular material to stars much more rapidly than PKS 0745. A major difference between the two objects is the highly luminous obscured central AGN in Phoenix. In addition, molecular material can survive for Gyr time-scales in clusters before it forms stars (e.g. Canning et al. 2014). It is therefore surprising that the Phoenix cluster is forming stars so rapidly that it will exhaust its molecular material in 30 Myr, unless replenished (McDonald et al. 2014).

8.2 Cluster profiles

In Section 6, we use a new code to extract cluster thermodynamic properties from surface brightness profiles. The results from this code match those from conventional spectral fitting. The advantages of this technique over spectral methods is that it does not require spectral extraction and fitting, it can examine smaller spatial bins, it gives confidence regions on the mass profile of the cluster and it can operate on data sets containing only a few hundred counts.

We examined the gas properties across the four edges in surface brightness to the east and west of the cluster core (Section 6.3, Fig. 11). The profiles are consistent with continuous pressure across the edges. This indicates that they are cold fronts (Markovitch & Vikhlinin 2007), i.e. contact discontinuities. There is some indication of a jump in pressure across the innermost western edge, which could be a weak shock associated with AGN feedback, as seen for example in Perseus (Fabian et al. 2003), Virgo (Forman et al. 2007) and A2052 (Blanton et al. 2011). The swirling morphology in surface brightness and temperature (Figs 2 and 8) is similar to that seen in simulations where the cluster gas is sloshing in the potential well. However, the 2D map shows that a simple cold front is probably too simple a description in this case, with high and low pressures in the northern and southern halves of the edge, respectively. This may contribute to the finite width of the western edges, although this could be because they are not perfectly in the plane of the sky or it could be due to a mismatch between the shape of our extraction regions and the edge. The kinked shapes of the cold fronts to the east of the core suggest that Kelvin–Helmholtz instabilities are operating there (Roediger et al. 2012).

When examining the radial profiles for the whole cluster, the King mass model gives a better fit to the data than the NFW model. The NFW model appears to incorrectly model the gravitational acceleration (g) in the centre of the cluster. The King and Arb4 models suggest that g declines to small central values. If the NFW model is fitted to the outskirts, its g values agree with the King and Arb4 models there. The NFW model parameters for the full data range gives a small concentration of 3.9 and a mass of
$M_{200} = 1.3 \times 10^{15} M_\odot$. Fitting the outer profile gives a large concentration of 9.2 and $M_{200} = 3.6 \times 10^{14} M_\odot$. These compare to values of $5.3^{+0.9}_{-0.9}$ and $9.8^{+1.0}_{-1.0} \times 10^{14} M_\odot$ calculated from a Suzaku analysis to the virial radius and beyond (Walker et al. 2012). Our analysis is only able to probe to radii of around 500 kpc and has difficulties fitting the data inside 40 kpc, which is likely biasing the obtained parameters. Our agreement of the mass profile over our outer range with Walker et al. (2012) is very good (lower-left panel of Fig. 9).

With the King and Arb4 models, our method finds low values of ρ within 40 kpc. The projection method self-consistently includes the dark matter and gas mass, but does not include the central galaxy or its supermassive black hole. However, including the galaxy or black hole could only increase the central values of ρ. Our modelling prefers low values of ρ, where there would be no significant dark matter in the central regions, ρ, however, is essentially driven by the pressure gradient. The very flat pressure profile seen both spectrally and using MBPROJ would imply very low central mass densities in the cluster given hydrostatic equilibrium. We have confirmed that the spectral pressure profiles agree with the values of ρ we obtain with MBPROJ. However, the assumptions of the model may be broken. There could be a strong lack of spherical symmetry, the ICM may not be in hydrostatic equilibrium or there could be strong non-thermal contributions to the central pressure.

There is structure within the inner part of the cluster, indicating significant non-spherical variation. Within 40 kpc are the strongest signs of cooling and the cavities within the X-ray emission (Fig. 2). The two cold fronts seen to the west and two to the east of the cluster core could indicate that the gas is sloshing within the potential well. This may disturb hydrostatic equilibrium giving velocities of a few hundred km s$^{-1}$ (Ascasibar & Markevitch 2006). The inner cold fronts are on the same scales as where the mass model becomes unrealistic. In addition, the feedback from the central AGN could induce similar velocities in the ICM (Brüggen et al. 2005; Heinz et al. 2010). Other non-thermal sources of pressure may include cosmic rays and magnetic fields and may be associated with the central radio source. We note that there are indications of a pressure jump at the location of the inner western cold front, suggesting the cluster is not in hydrostatic equilibrium there. It is possible that there is a weak shock surrounding the central cavities. The central temperature obtained without assuming hydrostatic equilibrium is 8×10^{-10} erg cm$^{-3}$. If we calculate the central pressure obtained assuming the NFW mass model fitted beyond 0.5 arcmin radius (Fig. 9), this yields a central pressure of 1.6×10^{-5} erg cm$^{-3}$. If the flat pressure profile is due to a non-thermal source of pressure, it has the same magnitude as the thermal pressure. The implied magnetic field strength is 140μG if the non-thermal pressure is magnetic. Taking a central density of 0.1 cm$^{-3}$ and a path length of 10 kpc, gives a rotation measure of 10^5, implying that the radio source should be completely depolarized on kpc scales. Indeed, Baum & O’Dea (1991) found that the source is strongly depolarized.

Allen et al. (1996b) used strong gravitational lensing to measure the projected mass in the centre of the cluster. They obtained a projected mass of $3 \times 10^{13} M_\odot$ within the critical radius of 45.9 kpc, or $2.5 \times 10^{13} M_\odot$ with a more sophisticated analysis. These values are for a cosmology using $H_0 = 50$ km s$^{-1}$ Mpc$^{-1}$, $\Omega = 1$ and $\Lambda = 0$. In our cosmology, the projected mass within 34.4 kpc radius is $1.8 \times 10^{13} M_\odot$, if we scale the value from the more sophisticated analysis using their equation (3). Taking our NFW and King best-fitting models and projecting the mass inside this radius on the sky, we obtain 1.2×10^{13} and $8.1 \times 10^{12} M_\odot$, respectively. These values confirm that our models are missing a substantial mass in the central region. This is likely because of the low g values we obtain and the lack of a central galaxy in our mass modelling.

8.3 Sloshing energetics

If the cold fronts are caused by the sloshing of the gas in the potential well, a large amount of energy may be stored in this motion. To estimate the potential energy, we take the radial electron density profile in the western sector and compare it to the profile for the complete sector (both profiles are shown in Fig. 11). The mass of extra material in the west, for a shell at radius r with width δr is

$$\Delta M(r) = \left(n_e, \text{west} - n_e, \text{complete}\right) \mu m_H Y \Omega r^2 \delta r,$$

where the electron densities in the complete and western sector are $n_e, \text{complete}$ and n_e, west, respectively, μ is the mean molecular weight, m_H is the mass of a hydrogen atom and Y is a factor to convert from electron to total number density. We assume that the sloshed region occupies a solid angle Ω \sim 1.8 (a cone with an opening angle of 90°). The derived total excess gas mass in the western direction is $1 \times 10^{11} M_\odot$ between 14 and 200 kpc radius (we note that the excess mass outside this radius is larger, however).

To estimate the potential energy for a particular shell and radius, we take its density and find the radius in the complete cluster profile which has the same density. This radial shift is then converted to a difference in cluster potential using the best-fitting King model (NFW results are consistent), assuming it has simply shifted between these radii without a change in density. The shell excess mass (δM) and the potential difference are multiplied to calculate an estimate of the potential energy of the sloshing for that shell. By adding the energy of the shells between radii of 14 and 200 kpc, we estimate that the total potential energy of the sloshed gas in the western sector is 3×10^{49} erg. In the eastern sector there are also cold fronts, so a similar amount of energy may be stored there. Unfortunately, a similar analysis is difficult there because the eastern sector is not centred on the cluster centre due to the cold front morphology.

The lifetimes of cold fronts in simulations are of the order of Gyr (Ascasibar & Markevitch 2006; ZuHone, Markevitch & Johnson 2010). If the gas sloshing potential energy could be converted to heat over this period, it only represents a heating source of $\sim 10^{48}$ erg s$^{-1}$, much weaker than the central AGN. However, the dark matter potential energy contribution could be larger.

ZuHone et al. (2010) suggest that sloshing can contribute to the heating in clusters, although the mechanism in their simulations is that hot gas and cooler material are brought together and mixed. In addition, the cluster core can be expanded, reducing the radiative cooling. The effectiveness of the heat flux is reduced if the ICM is viscous. However, recent simulations by ZuHone et al. (2014) including Braginskii viscosity or Spitzer viscosity and magnetic fields, find that these effects can significantly change the development of instabilities and turbulence, which is likely to affect the amount of hot and cold gas mixing.

8.4 Thermodynamic fluctuations

In the central region, we see significant deviations from spherical symmetry in projected surface brightness (~20, or 10 per cent in density), 20 per cent in temperature and 15 per cent in pressure (Section 5).

In Section 7, we measured the additional fractional variations (assuming Gaussian deviations) required to the data points consistent with...
with the smooth fitted profiles. Projected fluctuations of 7 per cent in temperature, less than 10 in metallicity, 11 per cent in density, 7 per cent in pressure and 13 per cent in entropy were measured (Fig. 16 and Table 5). As in the Perseus cluster (Sanders et al. 2004), we find that the scatter in temperature and density conspires to give a smaller fractional scatter in pressure than would be expected if they were uncorrelated. Projection effects mean that the intrinsic variations are larger. The intrinsic variations of temperature, metallicity and density are around four times larger in the centre (Fig. 17) to twice as large at 300 kpc.

However, Fig. 2 shows that much of the surface brightness (or pseudo-density) variation comes from the non-spherical nature of the cluster and the cold fronts. We corrected for this by moving the points radially, by comparison to the positions of ellipses fitted to surface brightness contours using ELFIT. This reduces the dispersions in temperature and density to 5 and 2 per cent, respectively. The variations in pressure are reduced to 5 per cent. Some of the remaining density variation appears to be systematic (likely the spiral morphology remaining in Fig. 2). After this correction, we observe similar variations in temperature, pressure, but smaller density variations. Projection effects likely increase the 3D density variation to around 4 per cent.

A 4 per cent density variation was also inferred in AWM 7 (Sanders & Fabian 2012), where we compared observed fluctuations to models including a 3D turbulent spectrum. In addition, there were regions in that cluster with only 2 per cent inferred fluctuations. In the more disturbed Coma cluster, Churazov et al. (2012) found 7–10 per cent density variations, reducing to 5 per cent on 30 kpc scales.

The pressure variation does not reduce as strongly as the density variation after correcting for the surface brightness with ELFIT. This suggests that the pressure does not closely follow the surface brightness variations. It is likely closer to a hydrostatic atmosphere in nature with additional pressure fluctuations. Correcting for the overall ellipticity of the pressure or density maps with an elliptical β model reduces the pressure fluctuations from 3 per cent (where it is 7 per cent in the spherical case or 5 per cent in the ELFIT-corrected case), supporting the idea of a hydrostatic atmosphere. Therefore, the temperature and density show structure beyond simple ellipticity (such as centroid-shifts, radial ellipticity variation and twisting isophotes) which do not correspond with those seen in the pressure distribution. The density, temperature and entropy are strongly correlated with the more structured surface brightness structure. It should be noted that the size of the bins examined increases as a function of radius. If the size of the structures being examined does not increase in the same way, we will differentially smooth features as a function of radius.

In this cluster, we do not observe significant non-statistical scatter in projected metallicity, after correcting the bin radii for the elliptical morphology, although 20 per cent deprojected scatter is allowed by the data. In several clusters, high-metallicity blobs of material have been found embedded in lower metallicity material (e.g. Perseus, Sanders & Fabian 2007; Abell 85, Durret, Lima Neto & Forman 2005; NGC 4636, O’Sullivan, Vrtilek & Kempner 2005; Abell 2204, Sanders et al. 2009a and Sérsic 159, Werner et al. 2011).

Simulations by Gaspari & Churazov (2013) and Gaspari et al. (2014) suggest that the fractional density variation should be close to the 1D Mach number and so it is interesting to compare our results to theirs. However, we are limited in our comparison because we measure projected fluctuations and currently do not measure the size of projections as a function of length-scale.

The results we obtain depend strongly on whether we correct for asymmetries in the cluster. If we use the assumption of radial symmetry, we obtain density variations of around 20 per cent (after correcting by a factor of 2 for projection). Temperature variations are around 20 per cent, pressure fluctuations 12 per cent and entropy variations 30 per cent (Table 5). The density variations imply 1D Mach numbers of around 20 per cent (~300 km s\(^{-1}\) at 8 keV). In this lower Mach number regime, Gaspari et al. (2014) suggest that density and pressure variations should be similar. Entropy variations should be larger than these and the pressure smaller. This is what we find in our data assuming spherical symmetry.

If we instead correct our data for ellipticity in the surface brightness, removing much of the sloshing structure using the ELFIT model, the density variations become much smaller (4 per cent). This implies velocities of the order of only 70 km s\(^{-1}\). In this analysis, the entropy fluctuations are reduced to be the same as the pressure fluctuations, which differs from the Gaspari et al. (2014) results. Correcting for pure overall pressure or density ellipticity reduces the density variations from the spherical case to around 14 per cent. The entropy fluctuations, however, are not reduced.

Therefore, comparison with theory depends on what is considered to be the underlying model on which the fluctuations are measured. If the sloshing morphology is seen as part of the turbulent cascade, then it should remain in the analysis. It, however, dominates the calculation of the density, temperature and entropy fluctuations.

8.5 Application of MBPROJ to the low-count regime

In this paper, we applied the MBPROJ method to very good quality data. However, the technique can operate in the low-count regime, as demonstrated in Fig. 18, which shows results from analysing three realizations of the PKS 0745 surface brightness profiles, with 1000, 500 and 250 cluster counts in total. We assume zero background in these simulations. The method is able to reproduce the full density profile and gas mass profile in each case. Reasonable temperature and pressure profiles are obtained with 1000 and 500 count profiles. The total mass profiles are also consistent with the full case, although the uncertainties are large in fractional terms (~50 per cent for the 1000 count data set). In this analysis, we assume flat priors on the core radius (between 1 kpc and 2.5 Mpc) and on the velocity dispersion (between 10 and 2000 km s\(^{-1}\)). It is likely that improved priors on the mass model will reduce these uncertainties, although the outer pressure is one of the main uncertainties.

This simple simulation does not include the effects of background or the telescope PSF and only examines a single realization of a single object, but it shows that the modelling method is likely to be useful in examining data from current and future X-ray cluster surveys (e.g. using eROSITA; Predehl et al. 2010; Merloni et al. 2012). Such a technique would extract the maximum available information from each object and could be a useful improvement over scaling relations. The analysis of better simulations and existing cluster surveys will test the usefulness of the technique for surveys. Indeed, the technique may work better in lower mass objects as it is difficult to measure temperatures using three bands at temperatures of ~10 keV.

9 CONCLUSIONS

We present a new technique, MBPROJ, for the analysis of thermodynamic cluster profiles without the use of spectral fitting. It assumes hydrostatic equilibrium, spherical symmetry and a dark matter mass...
Figure 18. Results from MBPROJ King model analyses of realizations of PKS 0745 surface brightness profiles with short exposure times. Shown are results for clusters with 1000, 500 and 250 counts. For each realization, we show the results assuming independent densities in each bin and assuming a β model.

model and uses MCMC to deduce the uncertainties on the various thermodynamic quantities. In this cluster, the low obtained gravitational acceleration suggests that the assumptions of hydrostatic equilibrium or spherical symmetry are invalid or that there are additional non-thermal sources of pressure. The code works in the low-count regime, suggesting it will be very useful for the analysis of cluster survey data.

The analysis of new Chandra and XMM observations of the PKS 0745 galaxy cluster suggest that there is at least a factor of 20 in X-ray gas temperature in this object (from 10 to at least 0.5 keV). There is no sharp cut-off in X-ray temperature. It appears, despite the evidence for feedback in the form of central cavities, that cooling of the ICM is occurring at the rate of a few hundred solar masses per year. As found in several other clusters, the coolest material X-ray emitting material and line-emitting nebula is offset from the central AGN.

There are two sets of cold front to either side of the nucleus. This suggests sloshing of the gas in the potential well, which would also explain the offset of the coolest material. We investigate the azimuthal variation of projected thermodynamic quantities in the cluster. If the cluster were spherical, we find projected variations of 7 per cent in temperature and pressure and 11 per cent in density. The entropy variation is 13 per cent. If we correct for the shifting isophotes in the cluster, the density variation reduces to 2 per cent and the temperature and entropy variation to 5 and 6 per cent, respectively. Projection effects are likely to increase these by around a factor of 2. The magnitude of the fluctuations depends strongly on how the signal from the underlying cluster is subtracted and so should be considered when comparing to theoretically predicted values.

ACKNOWLEDGEMENTS

ACF, HRR and SAW acknowledge support from ERC Advanced Grant FEEDBACK. JHL is supported by NASA through the Einstein Fellowship Program, grant number PF2-130094. GBT acknowledges the support provided by the National Aeronautics and Space Administration through Chandra Award Numbers GO1-12156X and GO4-15121X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. The scientific results reported in this article are based on observations made by the Chandra X-ray Observatory. This article contains results based on observations obtained with XMM–Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. We thank an anonymous referee for providing a helpful report.

REFERENCES

Allen S. W., Fabian A. C., Kneib J. P., 1996a, MNRAS, 279, 615
Allen S. W., Fabian A. C., Edge A. C., Bautz M. W., Furuzawa A., Tawara Y., 1996b, MNRAS, 283, 263
Allen S. W., Schmidt R. W., Fabian A. C., 2001, MNRAS, 328, L37
Anders E., Grevesse N., 1989, Geochim. Cosmochim. Acta, 53, 197
Arnould K. A., 1996, in Jacoby G. H., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac., San Francisco, p. 17
Ascasibar Y., Markevitch M., 2006, ApJ, 650, 102
Balucinska-Church M., McCammon D., 1992, ApJ, 400, 699
Baum S. A., O’Dea C. P., 1991, MNRAS, 250, 737
Blanton E. L., Randall S. W., Clarke T. E., Sarazin C. L., McNamara B. R., Douglass E. M., McDonald M., 2011, ApJ, 737, 99
Brüggen M., Hoeft M., Ruszkowski M., 2005, ApJ, 628, 153
Canning R. E. A. et al., 2014, MNRAS, in press
Cash W., 1979, ApJ, 228, 939
Churazov E. et al., 2012, MNRAS, 421, 1123
Crawford C. S., Allen S. W., Ebeling H., Edge A. C., Fabian A. C., 1999, MNRAS, 306, 857
Crawford C. S., Sanders J. S., Fabian A. C., 2005, MNRAS, 361, 17
de Paia J., Werner N., Simionescu A., Kaasstra J. S., Grange Y. G., Vink J., 2010, A&A, 523, A81
Donahue M., Mack J., Voit G. M., Sparks W., Elston R., Maloney P. R., 2000, ApJ, 545, 670
Donahue M., de Messier G. E., O’Connell R. W., Voit G. M., Hoffer A., McNamara B. R., Nulsen P. E. J., 2011, ApJ, 732, 40
Durret F., Lima Neto G. B., Forman W., 2005, A&A, 432, 809
Edge A. C., Stewart G. C., Fabian A. C., Arnaud K. A., 1990, MNRAS, 245, 559
Fabian A. C., 1994, ARA&A, 32, 277
Fabian A. C., 2012, ARA&A, 50, 455
Fabian A. C., Hu E. M., Grindlay J., 1981, ApJ, 248, 47
Fabian A. C. et al., 1985, MNRAS, 216, 923
Fabian A. C., Sanders J. S., Allen S. W., Crawford C. S., Iwasawa K., Johnstone R. M., Schmidt R. W., Taylor G. B., 2003, MNRAS, 344, L43
Fabian A. C., Sanders J. S., Williams R. J. R., Lazarian A., Ferland G. J., Johnstone R. M., 2011, MNRAS, 417, 172
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2012, PASP, 125, 306
Forman W. et al., 2007, ApJ, 665, 1057
Gaspari M., Churazov E., 2013, A&A, 559, A78
Gaspari M., Churazov E., Nagai D., Lau E. T., Zhuravleva I., 2014, preprint (arXiv:1404.5302)
George M. R., Fabian A. C., Sanders J. S., Russell H. R., 2009, MNRAS, 395, 657
Goodman J., Weare J., 2010, Commun. Appl. Math. Comput. Sci., 5, 65
Hamer S. L., Edge A. C., Swinbank A. M., Wilman R. J., Russell H. R., Fabian A. C., Sanders J. S., Salomé P., 2012, MNRAS, 421, 3409
Heckman T. M., Baum S. A., van Breugel W. J. M., McCarthy P., 1989, ApJ, 338, 48
Heinz S., Brüggen M., Morsony B., 2010, ApJ, 708, 462
Hicks A. K., Mushotzky R., 2005, ApJ, 635, L9
Hicks A. K., Wise M. W., Houck J. C., Canizares C. R., 2002, ApJ, 580, 763
Hlavacek-Larrondo J., Fabian A. C., 2011, MNRAS, 413, 313
Hoffer A. S., Donahue M., Hicks A., Barthelemy R. S., 2012, ApJS, 199, 23
Humphrey P. J., Buote D. A., 2013, MNRAS, 436, 2879
Johnstone R. M., Fabian A. C., Nulsen P. E. J., 1987, MNRAS, 224, 75
Kalberla P. M. W., Burton W. B., Hartmann D., Armal E. M., Bajaja E., Morras R., Füppel W. G. L., 2005, A&A, 440, 775
King I., 1962, AJ, 67, 471
Lau E. T., Kravtsov A. V., Nagai D., 2009, ApJ, 705, 1129
McDonald M. et al., 2012, Nature, 488, 349
McDonald M., Benson B., Veilleux S., Bautz M. W., Reichardt C. L., 2013a, ApJ, 765, L37
McDonald M. et al., 2013b, ApJ, 774, 23
McDonald M. et al., 2014, ApJ, 784, 18
McNamara B. R., Nulsen P. E. J., 2012, New J. Phys., 14, 055023
McNamara B. R., O’Connell R. W., 1992, ApJ, 393, 579
Markevitch M., Vikhlinin A., 2007, Phys. Rep., 443, 1
Merloni A. et al., 2012, preprint (arXiv:1209.3114)
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
O’Dea C. P. et al., 2008, ApJ, 681, 1035
O’Sullivan E., Vrtilek J. M., Kemper J. C., 2005, ApJ, 624, L77
Predehl P. et al., 2010, in Monique A., Murray S. S., Tadayuki T., eds, Proc. SPIE Conf. Ser. Vol. 7732, Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray. SPIE, Bellingham, p. 10
Roediger E., Lovisari L., Dupke R., Ghizzardi S., Brüggen M., Kraft R. P., Machacek M. E., 2012, MNRAS, 420, 3632
Russell H. R., Sanders J. S., Fabian A. C., 2008, MNRAS, 390, 1207
Salomé P., Combes F., 2003, A&A, 412, 657
Sanders J. S., 2006, MNRAS, 371, 829
Sanders J. S., Fabian A. C., 2007, MNRAS, 381, 1381
Sanders J. S., Fabian A. C., 2012, MNRAS, 421, 726
Sanders J. S., Fabian A. C., 2013, MNRAS, 429, 2727
Sanders J. S., Fabian A. C., Allen S. W., Schmidt R. W., 2004, MNRAS, 349, 952
Sanders J. S., Fabian A. C., Allen S. W., Morris R. G., Graham J., Johnstone R. M., 2008, MNRAS, 385, 1186
Sanders J. S., Fabian A. C., Taylor G. B., 2009a, MNRAS, 393, 71
Sanders J. S., Fabian A. C., Taylor G. B., 2009b, MNRAS, 396, 1449
Sanders J. S., Fabian A. C., Frank K. A., Peterson J. R., Russell H. R., 2010, MNRAS, 402, 127
Smith R. K., Brickhouse N. S., Liedahl D. A., Raymond J. C., 2001, ApJ, 556, L91
Taylor G. B., Barton E. J., Ge J., 1994, AJ, 107, 1942
Taylor G. B., Fabian A. C., Allen S. W., 2002, MNRAS, 334, 769
Vazza F., Brunetti G., Kritsuk A., Wagner R., Gheller C., Norman M., 2009, A&A, 504, 33
Vazza F., Brunetti G., Gheller C., Brunino R., Brüggen M., 2011, A&A, 529, A17
Wales D. J., Doye J. P. K., 1997, J. Phys. Chem. A, 101, 5111
Walkers S. A., Fabian A. C., Sanders J. S., George M. R., 2012, MNRAS, 424, 1826
Werner N. et al., 2010, MNRAS, 407, 2063
Werner N. et al., 2011, MNRAS, 415, 3369
Werner N. et al., 2014, MNRAS, 439, 2291
Zhao J.-H., Sumi D. M., Burns J. O., Duric N., 1993, ApJ, 416, 51
Zhuravleva I. et al., 2014, ApJ, 788, L13
ZuHone J. A., Markevitch M., Johnson R. E., 2010, ApJ, 717, 908
ZuHone J. A., Kunz M. W., Markevitch M., Stone J. M., Biffi V., 2014, preprint (arXiv:1406.4031)

This paper has been typeset from a TeX/LaTeX file prepared by the author.