On Fuchsian loci of $\text{PSL}_n(\mathbb{R})$-Hitchin components of a pair of pants

稲垣 友介 (Yusuke Inagaki)*
大阪大学大学院理学研究科数学専攻

本レポートでは Anosov 表現，Hitchin 成分について紹介した後に筆者の計算について簡単に述べる．本論の前にいくつか準備を行う，有限生成群 Γ と Lie 群 G があったとき Γ から G への表現全体の成す空間

$$\mathcal{R}(\Gamma, G) = \text{Hom}(\Gamma, G)$$

を表現多様体 (representation variety) と呼ぶ．表現多様体には G が代数的な場合自然に代数的集合の構造を入れ，特に Γ が n 元生成であるとき $\mathcal{R}(\Gamma, G) \subset G^n$ であり関係子が定義方程式を定める．表現多様体には G

が共役により作用している，この作用に対する商空間

$$\mathcal{X}(\Gamma, G) = \mathcal{R}(\Gamma, G) / G$$

を指標多様体 (character variety) と呼ぶ．ここで商は GIT 商を考えている．

指標多様体と多様体の幾何構造の関係の例として Teichmüller 空間を思い出．向き付けられた閉曲面 S の

Teichmüller 空間 $\mathcal{T}(S)$ とは S 上の完備で有限体積を与え曲率が至る所 -1 である Riemann 計量全体 $\text{Hyp}(S)$ の微分同相群の単位元を含む成分 $\text{Diff}_0(S)$ による商空間 $\mathcal{T}(S) = \text{Hyp}(S)/\text{Diff}_0(S)$ である．計量に関する議論により $\mathcal{T}(S)$ は (標識付き) 複素構造，共形構造の空間に一致していて様々な観点で研究されている歴史の深い対象である．Teichmüller 空間の元を以下 S 上の双曲構造と呼ぶ．双曲構造 m に対して S

の普遍被覆 \tilde{S} から双曲空間 \mathbb{H}^2 への m に付随する等長写像が存在することが知られている．この同一視で基本群による被覆変換を \mathbb{H}^2 上の等長変換に読み替えることで次が言える．即ち双曲構造 m

の与えられた曲面 S_m に対して \mathbb{H}^2 の等長変換群 $\text{Isom}^+(\mathbb{H}^2) \cong \text{PSL}_2(\mathbb{R})$ の離散部分群 Γ が存在して Γ は基本群 $\pi_1(S)$

と同型で S_m と \mathbb{H}^2 / Γ は等長である．離散的な埋め込み $\pi_1(S) \rightarrow \Gamma \subset \text{PSL}_2(\mathbb{R})$ は離散で忠実な表現

$$\rho : \pi_1(S) \rightarrow \text{PSL}_2(\mathbb{R})$$

を与える．この表現のことをよくホロノミー表現と呼ぶ．ここでホロノミー表現は同一視 $S = \mathbb{H}^2 / \rho(\pi_1(S))$ が向きを保つようにとることにする．ホロノミー表現の共役類は双曲構造 m

に対して一意的に定まるので $\mathcal{T}(S)$ の $\mathcal{X}(\pi_1(S) , \text{PSL}_2(\mathbb{R}))$ への埋め込みが構成される．従って Teichmüller 空間は指標多様体の部分集合と統一視される．

一般に多様体上の幾何構造とその変形の理論は上の議論のようにある特徴的な基本群の表現や指標多様体の

理論に帰着される．その一つの例として近年研究されているのが Anosov 表現と呼ばれている表現である．

*e-mail: y-inagaki@cr.math.sci.osaka-u.ac.jp
1 Anosov 表現

Anosov 表現を定義する。向き付けられた種数 $g \geq 2$ の閉曲面を S で表し S 上の双曲構造を任意に固定する。単位接木 $T^1 S$ の測地流を ϕ_t で表しまた $\pi_1(S)$-被覆を $T^1 \tilde{S}$ で表す。実半単純 Lie 群 G を考えその放物部分の組 (P^+, P^-) で横断的なものを任意に固定する。ここで (P^+, P^-) が横断的であるとはその交わり $L = P^+ \cap P^-$ が解約であるときにいう。$F^+ = G/P^+, F^- = G/P^-$ とおくとき G/L は $F^+ \times F^-$ の軌道空間として標準的に埋め込まれていることに注意する。表現 $\rho : \pi_1(S) \to G$ に対して $T^1 S$ 上の平坦振れ束を $E_\rho = T^1 \tilde{S} \times_{\rho} G/L$ で表す。接木 TG/L を積構造 $F^+ \times F^-$ に沿って分解することで F^\pm 向方に沿った G/L 上の接分布 E^\pm を定義する。

定義 1.1 (Guichard-Wienhard による定義 [7])。表現 ρ が (P^+, P^-)-Anosov であるとは E_ρ のある切断 σ が存在し次を満たす。

(i) σ は ϕ_t に沿って平坦である。
(ii) σ による誘導束 $\sigma^* E^+, \sigma^* E^-$ たちが ϕ_t の作用に関して dilating, contracting property をもつときにいう。

定義の (ii) は次のことを意味する：ある連続的な $\sigma^* E^+$ (resp. $\sigma^* E^-$) のファイバー上の計量の族と定数 $a, A > 0$ が存在して、任意の $t \geq 0$ と、任意の $p \in T^1 N$ 上のファイバーに属する全ての $v \in \sigma^* E^+$ (resp. $\sigma^* E^-$) に対して

$$||\phi_{-t}(v)||_{\phi_{-t}(p)} \leq Ae^{-at}||v||_p, \quad (\text{resp. } ||\phi_t(v)||_{\phi_t(p)} \leq Ae^{at}||v||_p).$$

注意 1.2。Anosov 表現は等曲率多様体の基本群に対しても定義される。より一般に Gromov 双曲群に対しても定義されるがその場合単位接木の代わりに Gromov の flow space が用いられる。また表現先の Lie 群に関しても複素半単純の場合や簡略 Lie 群の場合にも定義することができる。これら議論については [3], [7], [6] を参照して頂きたい。

Anosov 表現の研究に用いられる極限曲線 (limit curve) について触れておく。この曲線は例えば脇 Fuchs 表現の極限集合の類似である。定義 1.1 の条件から $T^1 \tilde{S}$ に持ち上げられた測地流 ϕ_t の各軌道は F^\pm のただ一つの元に対応する。一方で測地線の集合は $\pi_1(S)$ の Gromov 境界の点の組と同一視される。これら事実に考察を加えることで写像 $\xi_\rho : \partial_\infty \pi_1(S) \to F^+$ が得られる。この写像は連続であり Anosov 表現に対して一意的に定まることが知られている。曲線 ξ_ρ を極限曲線や Anosov 写像、旗曲線と呼ぶ。

注意 1.3。極限曲線は Anosov 表現の幾何学的意味を大いに反映した対象であり逆に極限曲線の存在を Anosov 表現の定義とすることもできる。この定義については [7], [11] を参照せよ。

以下横断的放物部分群のまとして Borel 群からなるものを考えその組を記号 (B^+, B^-) で表すことにする。曲面群 $\pi_1(S)$ の $\text{PSL}_n(\mathbb{R})$ への (B^+, B^-)-Anosov 表現 ρ に限ればその力学系の性質から次のような良い特徴を持つ振れ束を誘導することが Labourie により示されている。ρ のリフト $\rho' : \pi_1(S) \to \text{SL}_n(\mathbb{R})$ をひとつとする。

定理 1.4 (Labourie [12])。単位接木 $T^1 S$ 上の ρ' に付随する平坦振れ ρ''-束を E で表す。
(i) E は T^1S 上の連続な直線束 V_1, \ldots, V_n の和に分解し各 V_i は ϕ_t の与える軌道に沿って平行である。
(ii) ϕ_t の平坦接続による持ち上げによる $V_i^+ \otimes V_j (i \neq j)$ への作用は contracting である。

先に述べた極限曲線 ξ_ρ はこの直線束への分解に大きく依存している。E の部分束 E_i^+ を次で定義する。

$$E_i^+ = \oplus_{1 \leq j \leq n} V_j, \quad E_i^- = \oplus_{n-i+1 \leq j \leq n} V_j$$

また単位接束は $T^1S = \partial_\infty \pi_1(S)^{(3)} \setminus \Delta$ のように同一視されることは注意する。ここで Δ は

$$\Delta = \{(x_1, x_2, x_3) \in \partial_\infty \pi_1(S)^{(3)} \mid x_i = x_j (i \neq j)\}$$

で定義される。横断的放物成分群として Borel 群を選んでいるので ξ_ρ の像は旗の成す空間 $\text{flag}(\mathbb{R}^n)$ と同一視できる。量子流による $p \in T^1S$ の軌道の吸い込み点を $x_p^+ \in \partial_\infty \pi_1(S)$ で表すとき次が成立することが定理 1.4 から示される。ここで $(E_i^+)_p$ は束 E_i^+ の p 上のファイバーであり E のファイバーである \mathbb{R}^n の i 次部分空間を与えている。

$$\xi_\rho(x_p^+) = \{(E_i^+)_p, i \in \text{flag}(\mathbb{R}^n)\}$$

この曲線 ξ_ρ は次で定義される超凸 Frenet 曲線であることが知られている。

定義 1.5 ([12]) 曲線 $\xi : S^1 \to \text{flag}(\mathbb{R}^n)$ が超凸 Frenet であるとは次を満たすときにいう。ここで像 $\xi(x)$ に対して $\xi(x)^{(p)}$ は旗 $\xi(x)$ に属する p 次元部分空間を指す。

(i) $n_1 + \cdots + n_k \leq n$ を満たす正整数列と異なる点の組 (x_1, \ldots, x_k) に対して $\xi(x_1)^{(n_1)} + \cdots + \xi(x_k)^{(n_k)}$ は直和

(ii) 任意の点 $x \in S^1$ に対して $n_1 + \cdots + n_k \leq n$ を満たす正整数列を固定したとき異なる点の組 (x_1, \ldots, x_k) を x へ近づける極限により

$$\odot_{i=1}^{k} \xi(x_1)^{(n_1)} \to \xi^{(n_1 + \cdots + n_k)}(x)$$

ここで極限は x_t たちが互いに異なり続けるような極限である。

以下超凸 Frenet 曲線を単に超凸曲線と呼ぶ。Labourie は $\text{PSL}_n(\mathbb{R})$ への (B^+, B^-)-Anosov 表現から定義される超凸曲線に関する議論を用いて Anosov 表現の像がこれまで研究されてきた双曲等長変換群の離散部分群とよく似た振舞を示した。

定理 1.6 (Labourie [12]) 曲面群 $\pi_1(S)$ の $\text{PSL}_n(\mathbb{R})$ への (B^+, B^-)-Anosov 表現は離散的で忠実であり、$
\pi_1(S)$ の非自明元 $\gamma \in \pi_1(S)$ に対して $\rho(\gamma)$ は純粋航的，すなわち相異なる 1 でない固有値を持つ。

2 Hitchin 成分

Hitchin 成分とは Teichmüller 空間 $\mathcal{T}(S)$ のある種の一般化である。冒頭にあるように $\mathcal{T}(S)$ は指標多様体の部分集合と同一視される。以下 S の $\text{PSL}_n(\mathbb{R})$-指標多様体を $\mathcal{X}_n(S)$ で表す。そこで標準的に得られる $\text{SL}_2(\mathbb{R})$ の既約 $\text{SL}_n(\mathbb{R})$-表現から導かれる準同型 $\iota_n : \text{PSL}_2(\mathbb{R}) \to \text{PSL}_n(\mathbb{R})$ を考え、この既約表現は指標多様体の間の写像 $(\iota_n)_* : \mathcal{X}_2(S) \to \mathcal{X}_n(S)$ を定義し $\mathcal{T}(S)$ を $\text{Fuch}_n(S) = (\iota_n)_*(\mathcal{T}(S))$ へ写す。

定義 2.1. 指標多様体 $\mathcal{X}_n(S)$ の $\text{Fuch}_n(S)$ を含む連結成分を Hitchin 成分と呼ぶ。Hitchin 成分を $\text{Hit}_n(S)$ で表し Hitchin 成分に属する元を Hitchin 表現と呼ぶ。部分集合 $\text{Fuch}_n(S)$ は Fuchs 跡 (Fuchsian locus)、Fuchs 跡に属する元は n-Fuchs 表現と呼ばれる。
Hitchin 成分が研究についての歴史的背景を簡単に述べ、もともと曲面群の指標多様体は冒頭にあるように Riemann 面上の双曲幾何との関連で研究されていたがその連結成分に関わる研究に関しては Goldman による仕事が有名である。

定理 2.2 (Goldman [5])，表現多様体 \(R(\pi_1(S), PSL_d(\mathbb{R})) \) の連結成分の個数は \(4g - 3 \) であり \(\mathcal{X}_2(S) \) には Teichmüller 空間と同相な成分が向いて依存して 2 つ存在する。特に Fuch_2(S) は \(\mathcal{X}_2(S) \) の連結成分である。

Hitchin はこの結果の一般化を与えた。彼は Higgs 束の理論を用いて \(\mathcal{X}_n(S) \) を調べ次のような結果を与えた。

定理 2.3 (Hitchin [9])，\(n \geq 3 \) に対して \(\mathcal{X}_n(S) \) の連結成分は \(n \) が奇数のとき 3 つ，\(n \) が偶数のとき 6 つ存在する。

特に Hitchin は連結成分の中で Teichmüller 空間と関連する成分を見出しこの連結成分を Teichmüller 成分と呼び相関を決定した。この成分が上に定義された Hitchin 成分である。

定理 2.4 (Hitchin [9])，\(\text{Hit}_n(S) \) は \((2g - 3)(n^2 - 1) \) 次元 Euclid 空間と同相である。

Hitchin 成分は現在様々な文脈で研究されているが，(位相) 幾何の文脈で研究が盛んになった大きな転機としては Labourie による幾何学的特徴付けが挙げられる。第１節で述べた Anosov 表現は歴史的には Labourie が Hitchin 表現の幾何学的特徴付けを与えるべく定義した表現である。（その後 [7], [6], [11] により様々な定式化を与えられている。）

定理 2.5 (Labourie [12])，Hitchin 表現は \((B^+, B^-)-\text{Anosov} \) である。

一方で Fock-Goncharov による Cluster 代数を用いた特徴づけも興味深い。彼らは Cluster 代数と球空間の配置空間の理論を利用して Hitchin 表現を特徴づけた。

定理 2.6 (Fock-Goncharov [4])，Hitchin 表現は positive 表現である。

Hitchin 成分は多様体上の幾何構造，特に射影幾何構造と呼ばれる幾何構造のモジュライと密接に関わっている。

定義 2.7. \(m \) 次元多様体 \(M \) が実射影幾何構造を持つとは次で特徴づけるアトラスが存在するときにいう。

(i) \(M \) の開被覆 \(\bigcup U_i \) と各 \(U_i \) から \(\mathbb{R}P^{m} \) への上への同相写像 \(\phi_i \) が存在する。
(ii) 座標変換は射影変換の制限，すなわち \(\text{PGL}_{m+1}(\mathbb{R}) \) の元の制限で与えられる。

多様体 \(M \) が実射影幾何構造をもつとき \(\text{PGL}_{m+1}(\mathbb{R}) \) の離散部分群 \(\Gamma \) と \(\Gamma \) が正規不連続かつ自由に作用する \(\mathbb{R}P^{m} \) の開領域 \(\Omega \) が存在し \(\Gamma \setminus \Omega = M \) と同相なる。正規不連続領域が凸，すなわちその領域を含む射影空間の affine patch の意味で凸であるとき \(M \) は凸実射影幾何構造 (convex real projective structure) をもつという。Teichmüller 空間が Riemann 面上の双曲構造のモジュライ空間に相当していたのと同様に Hitchin 成分については次のような結果がある。

定理 2.8 (Choi-Goldman [2])，\(\text{Hit}_3(S) \) は曲面 \(S \) 上の凸実射影幾何構造の変形空間に一致する。

定理 2.9 (Guichard-Wienhard [8])，\(\text{Hit}_4(S) \) は単位接束 \(T^1S \) 上の葉層構造付き凸実射影幾何構造の変形空
3 Hitchin 分成上の座標系と主結果

本節で主結果について述べる。Hitchin 分成の位相構造が Euclid 空間であることは定理 2.4 で見だがここではより具体的なパラメータ付けについて考えたい。筆者の知る限り Hitchin 分成のパラメータ付けは本質的には 2 つしか知られていない。一つは Fock-Goncharov による高次元 Teichmüller 理論からのもの [4] でもう一つが Bonahon-Dreyer によるもの [1] である。ここでは Bonahon-Dreyer の座標に注目する。

S 上に双曲構造を一つ固定し p を Hitchin 表現 (の代表元) とする。S の普通被覆 ととして双曲構造に付随するものをとり固定しておく。また S 上の有限数の宇から成る極大な有向測地的ラミネーション L を一つ選ぶ。このとき L は S の理想三角形分割 T を与える。Bonahon-Dreyer は Hitchin 表現に付随する極限曲線 ξ_p を用いて Hitchin 表現に対して定まる次元の 2 種類の不変量を構成した。

1. Triangle 不変量：理想三角形分割 T で得られる各理想三角形 T に注目する。T の普通被覆への持ち上げをとったときその理想頂点は視境界 ∂S_0 の 3 つ組 (x_T, y_T, z_T) を与える。Triangle 不変量は各理想三角形に対して定まり特に $(\xi_p(x_T), \xi_p(y_T), \xi_p(z_T))$ の Fock-Goncharov の triple ratio の対数をとすることで定義される。

2. Shearing 不変量：無限に伸びる葉 h に対して持ち上げ \tilde{h} を一つ選ぶ。また h に隣り合う理想三角形 T_1, T_2 を h に隣り合うように持ち上げて \tilde{T}_1, \tilde{T}_2 で表す。\tilde{h} の無限遠点のうち h の向きに吸い込み方の点を x, 浮き出し点の点を y とする。更に \tilde{T}_1, \tilde{T}_2 の頂点で x, y でないものを z, z' とおく。ここに x, z, y, z' の順に並ぶように z, z' を与える。Shearing 不変量はラミネーションの葉に対して定まり $(\xi_p(x), \xi_p(y), \xi_p(z), \xi_p(z'))$ の Fock-Goncharov の double ratio の対数をとることで定義される。閉じた葉に対しても同様に定義するのだが上記のような無限遠点の組を選ぶときに議論が必要でありここでは省略する。

Triangle 不変量, Shearing 不変量はともに実数値不変量であり極限曲線の超凸性を用いることで Hitchin 表現の代表元の取り方に依らずに定まることが確かめられる。また Fock-Goncharov の各 ratio の対数をとるときの ratio が正であることが必要であることがで定理 2.6 が用いられる。即ち positive 表現とは対応する極限曲線の上記の ratio たちが正であるような表現のことを指す。

Bonahon-Dreyer の結果は次のようにまとめられる。

定理 3.1 (Bonahon-Dreyer [1]). $\text{Hit}_n(S)$ の元に定義されるすべての Triangle 不変量と Shearing 不変量の値を対応させる写像を

$$\Phi_L : \text{Hit}_n(S) \to \mathbb{R}^N$$

で表す。このとき Φ_L は解析的な上への同相写像でありその像は Euclid 凸胞の内側である。

筆者の主結果はパンツと呼ばれる位相的には球面から 3 つの非交な開円板を除いて得られる曲面 (Figure1) の Hitchin 分成における Bonahon-Dreyer の座標系を用いた Fuchs 輯の具体的なパラメータ付けである。主張は次のようになる。

定理 3.2 (I. [10]). パンツ P に下図のような极大ラミネーション L を固定する。このとき $[\rho_n] \in \text{Fuch}_n(P)$ に対して Bonahon-Dreyer の座標 $\Phi_L(\rho_n)$ は計算可能で、パンツの全測地境界長さと n による具体的な計算公式を与えることができる。
図1 パンツ P とその上のラミネーション L。

参考文献

[1] F. Bonahon and G. Dreyer, Parameterizing Hitchin components, Duke Math. J. 163(2014), no. 15, 2935-2975.
[2] S. Choi and W. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118(1993), no. 2, 657-661.
[3] D. Dumas and A. Sanders, Geometry of compact complex manifolds associated to generalized quasi-Fuchsian representations, arXiv:1704.01091.
[4] V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. No. 103(2006) 1-211.
[5] W. Goldman, Topological components of spaces of representations, Invent. Math. 93(1988), no. 3, 557-607.
[6] F. Guéritaud, O. Guichard, F. Kassel and A. Wienhard, Anosov representations and proper actions, Geom. Topol. 21(2017), no. 1, 485-584.
[7] O. Guichard and A. Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190(2012), no. 2, 357-438.
[8] O. Guichard and A. Wienhard, Convex foliated projective structures and the Hitchin component for $\text{PSL}_4(\mathbb{R})$, Duke Math. J. 144(2008), no. 3, 381-445.
[9] N. Hitchin, Lie groups and Teichmüller space, Topology 31(1992), no. 3, 449-473.
[10] Y. Inagaki, On Fuchsian loci of $\text{PSL}_n(\mathbb{R})$-Hitchin components of a pair of pants, in preparation.
[11] M. Kapovich, B. Leeb and J. Porti, Morse actions of discrete groups on symmetric space, arXiv:14037671.
[12] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165(2006), no. 1, 51-114.