Composition and Antimicrobial Activity of Essential Oils from Leaves and Twigs of *Magnolia hookeri* var. *longirostrata* D.X.Li & R. Z. Zhou and *Magnolia insignis* Wall. in Ha Giang Province of Vietnam

Chu T. T. Ha1,2 *, Dinh T. T. Thuy1,3, Vu Q. Nam4, Nguyen K. B. Tam5 and William N. Setzer6,7

1Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam
2Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi, Vietnam
3Institute of Natural Product Chemistry, VAST, 18 Hoang Quoc Viet, Ha Noi, Vietnam
4Vietnam National University of Forestry, Xuan Mai, Chuong My, Ha Noi, Vietnam
5VNU, University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi 10053, Vietnam
6Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
7Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

(Received October 08, 2020; Revised November 10, 2020; Accepted November 13, 2020)

Abstract: The essential oils from leaves and twigs of *Magnolia hookeri* var. *longirostrata* D.X.Li & R.Z.Zhou and *Magnolia insignis* Wall., growing wild in Ha Giang Province of Vietnam, were obtained by hydrodistillation and analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The respective yields of the *M. hookeri* var. *longirostrata* leaf and twig oils were 0.14% and 0.05% (v/w), and of the *M. insignis* leaf and twig oils were 0.16% and 0.05% (v/w), calculated on a dry weight basis. Major components of the oils of *M. hookeri* var. *longirostrata* were: Linalool (21.3%), (E)-nerolidol (12.2%) and neo-intermedeol (13.5%) (leaf oil); 1,8-cineole (13.3%) and linalool (17.1%) (twig oil). Major components of the oils of *M. insignis* were: Linalool (21.3%), geraniol (14.9%) and (E)-nerolidol (22.5%) (leaf oil); 1,8-cineole (9.5%) and linalool (26.9%) (twig oil). The essential oils from *M. insignis* showed stronger inhibitory effects on the seven test microorganisms than those from *M. hookeri* var. *longirostrata*. *Candida albicans* and *Lactobacillus fermentum* were more sensitive to the essential oils than the other tested microorganisms. This is the first time information on essential oils of *M. hookeri* var. *longirostrata* leaves and twigs and of *M. insignis* twigs are reported.

Keywords: *Magnolia hookeri* var. *longirostrata*; *Magnolia insignis*; antimicrobial activity; essential oil. © 2020 ACG Publications. All rights reserved.
1. Plant Source

The leaves and twigs of M. hookeri var. longirostrata were collected in Tung Vai Commune, Quan Ba District, Ha Giang Province (23°07′16.6″N, 104°55′26.5″E, 1088m a.s.l), Vietnam in September 2019. The leaves and twigs of M. insignis were collected in Du Gia Nature Reserve, Du Gia Commune, Yen Minh District, Ha Giang Province (22°52′49.6″N, 105°13′38.1″E, 1631m a.s.l), Vietnam in November 2019. Botanical identification were performed by Assoc. Prof. Dr. Vu Quang Nam (at the Vietnam National University of Forestry, Ha Noi) and the voucher specimens (HG1919 and HG1932) were deposited at the Herbarium of Institute of Ecology and Biological Resources (HN), Vietnam Academy of Science and Technology.

2. Previous Studies

The two species are large evergreen trees belonging to Magnolia genus. M. hookeri var. longirostrata is a new variety that was found in China [1] and recorded later in Vietnam [2]. M. insignis distributes in Nepal, India, China, Burma, Myanmar, Thailand, and Vietnam [3-5] with different synonyms (syn. Magnolia insignis var. angustifolia, Magnolia insignis var. latifolia, Magnolia shanpaensis, Manglietia insignis, Manglietia insignis var. angustifolia, Manglietia insignis var. latifolia, Manglietia maguanica, Manglietia rafisyncarpa, Manglietia yunnanensis) [6]. In traditional medicine, M. insignis is used for treating chest and abdominal pain, indigestion, asthma, and dysentery [7]. Some phytochemical studies on chemical composition, structure, and bioactivity of compounds isolated from leaves and/or twigs of M. insignis have been presented in the literature [8,9]. Studies on the essential oil of these two Magnolia species are limited except the composition and antibacterial and antitumor activities of essential oil distilled from leaves of M. insignis [10,11].

3. Present Study

Hydrodistillation of fresh leaves and twigs of two Magnolias produced light yellow oils. Essential oil yields of 0.14 ± 0.01% and 0.05 ± 0.01% (v/w, leaves and twigs of M. hookeri var. longirostrata), and 0.16 ± 0.01% and 0.05 ± 0.01% (v/w, leaves and twigs of M. insignis) calculated on a dry weight basis were obtained, respectively. Table 1 presents the identified compounds in order of their elution on the HP-5MS column used for the GC-MS analysis.

A total of 35 and 59 compounds representing 96.5% and 97.4% of the compositions were identified in the leaf and twig essential oils, respectively, of M. hookeri var. longirostrata. These were comprised of monoterpene hydrocarbons (1.9% and 7.1%), monoterpenoids (41.5% and 45.1%), sesquiterpene hydrocarbons (13.5% and 11.1%), sesquiterpenoids (39.6% and 33.9%) of the respective leaf and twig oils. In the leaf oil, the major constituents were linalool (21.3%), (E)-nerolidol (12.2%) and neo-intermedeol (13.5%). Additionally, the most abundant minor components of the leaf oil were geraniol (8.4%) and α-selinene (5.5%). In the twig oil, the major constituents were 1,8-cineole (13.3%) and linalool (17.1%). In addition, significant quantities of β-eudesmol (5.7%), α-eudesmol (5.7%), and bulnesol (6.8%) were also present in the twig oil (Table 1).

On the other hand, 54 and 56 compounds representing 96.6% and 95.2% of the compositions were identified in the leaf and twig essential oils of M. insignis, respectively. These consisted of monoterpene hydrocarbons (3.8% and 9.3%), monoterpenoids (46.5% and 56.3%), sesquiterpene hydrocarbons (7.6% and 5.2%), sesquiterpenoids (38.1% and 24.4%) of the leaf and twig oils, respectively. The major components of the leaf oil were linalool (24.1%), geraniol (14.9%) and (E)-nerolidol (22.5%). In the twig oil, 1,8-cineole (9.5%) and linalool (26.9%) were the major components. In addition, geraniol (8.5%) had significant amount in the twig oil (Table 1).

The common feature of these oil samples was that linalool was the predominant component of the oils. In addition, all of four analyzed oil samples contained higher amount of terpenoids than those of hydrocarbons. The high contents of compounds containing oxygen in the essential oils of these two species are in agreement with the oil of some Magnoliaceae samples [12] but are different from oil constituents of some others [13]. The main compounds in the oils of two Magnolia species in the present study were different to those of other Magnolias, for example, (Z)-β-ocimene (36.5%), (E)-β-ocimene (30.8%) and germacrene A (9.6%) were the main compounds of M. acuminata leaf oil; β-pinene (64.4% and 37.4%) of
M. calophylla and M. virginiana leaf oils; (Z)-β-ocimene (15.2%), germacrene A (12.9%) and β-bisabolene (13.3%) of M. grandiflora leaf oil [13].

The present results of leaf oil of M. insignis are different from data in previous reports [10,11]. In this study, 54 compounds were identified in the oil with linalool (24.1%), geraniol (14.9%) and (E)-nerolidol (22.5%) as main components. While, in the previous study, among 16 constituents, (E)-nerolidol (38.8%), 2,2-dicyclohexylpropanedinitrile (the identification of this compound is doubtful; the compound is not found in the Dictionary of Natural Products (2019)) [14] (13.2%), δ-cadinene (7.8%), geraniol (6.4%) were the main compounds of the oil [10]. In another report, 53 constituents were identified in the oil with germacrene B (7.7%), α-cadinol (6.7%), (E)-nerolidol (6.1%) and globulol (5.6%) were its main components [11].

Table 1. Essential oil composition (%) of the leaves and twigs of M. hookeri var. longirostrata (HG1919) and M. insignis (HG1932)

Compounds	RI²	RI²	M. hookeri var. longirostrata	M. insignis		
	Leaves	Twigs	Leaves	Twigs		
α-Pinene	938	939	0.1	0.7	0.6	1.9
Camphene	955	954	-	0.3	0.4	1.4
β-Pinene	984	982²	-	0.1	0.3	0.5
Myrcene	991	991	-	0.2	0.2	0.4
2,3-Dehydro-1,8-cineol	995	993²	-	0.1	-	-
α-Terpinene	1021	1017	-	-	-	0.4
p-Cymene	1029	1026	1.1	3.4	0.4	1.5
Limonene	1033	1029	0.7	2.3	0.5	1.9
β-Phellandrene	1035	1030	-	-	-	0.2
1,8-Cineole	1037	1038²	4.4	13.3	2.8	9.5
(E)-β-Ocimene	1048	1050	-	-	1.3	0.2
γ-Terpinene	1063	1060	-	-	0.1	0.4
trans-Linalool oxide (furand)	1076	1073	0.2	0.1	-	0.3
p-Cymenone	1094	1094²	-	0.1	-	-
Terpinolene	1094	1095²	-	-	-	0.5
Linalool	1102	1097²	21.3	17.1	24.1	26.9
Hotrienol	1106	1109²	-	-	-	0.2
(E)-4,8-Dimethylnona-1,3,7-triene	1117	1116²	-	-	0.1	-
endo-Fenchol	1121	1119²	-	0.1	-	-
Camphor	1155	1156²	-	-	-	0.2
Camphene hydrate	1158	1157²	-	0.2	-	0.4
iso-Isopulegol	1164	1160	-	-	-	0.1
δ-Terpinol	1173	1173²	-	0.1	-	-
Borneol (=endo-Borneol)	1174	1176²	-	-	0.6	1.1
Terpinien-4-ol	1185	1184²	1.8	3.3	0.6	1.8
α-Terpinol	1197	1196²	4.6	7.9	0.3	0.8
Methyl salicylate	1202	1203²	-	-	0.2	-
Citronellol	1228	1226	0.3	-	1.6	1.5
Nerol	1231	1230	0.2	0.2	0.2	0.2
Neral	1245	1244²	-	-	0.2	0.3
Geraniol	1256	1253	8.4	2.3	14.9	8.5
Piperitone	1263	1263²	-	-	0.2	0.5
Geranial	1273	1273²	-	-	0.4	0.5
Bornyl acetate	1293	1292²	-	0.2	0.5	2.8
Geranyl acetate	1383	1383²	0.3	0.2	0.1	0.7
α-Ylangene	1384	1377²	-	0.4	-	-
α-Copaene	1389	1387²	-	0.3	-	-
(E)-Caryophyllene	1436	1433²	-	0.3	0.9	0.8
α-trans-Bergamotene	1445	1436²	-	0.4	-	-
α-Guaicene	1451	1448²	-	0.2	-	-
Aromadendrene	1456	1449²	-	-	0.8	0.6
(Z)-β-Farnesene	1459	1457²	-	0.3	0.2	-
β-Barbatene	1464	1458²	-	-	-	0.1
Essential oil of two Magnolia species

Compound	Molecular Formula	Retention Index	Relative Abundance
α-Humulene	C19H26O	1471	1465
β-Chamigrene	C19H24O	1488	1490
γ-Murolene	C19H28O	1489	1485
ar-Curcumene	C18H24O	1490	1488
α-Amorphene	C18H22O	1493	1488
α-Zingiberene	C19H22O	1497	1497
β-Selinene	C19H28O	1503	1498
δ-Selinene	C18H26O	1504	1504
trans-Muurola-4(14),5-diene		1510	1494
α-Selinene	C19H28O	1512	1504
α-Murolene	C19H26O	1513	1514
β-Bisabolene	C19H24O	1517	1517
α-Bulnesene (=δ-Guaiene)	C19H24O	1520	1526
γ-Cadinene	C19H24O	1529	1528
δ-Cadinene	C19H24O	1535	1530
trans-Calamenene	C19H22O	1537	1532
α-Calacorene	C20H30O	1558	1550
Elemicin	C18H20O	1559	1560
(E)-Nerolidol	C15H24O	1569	1560
Dendrolasin	C18H26O	1582	1581
Caryophyllenyl alcohol	C15H22O	1590	1572
Spathulenol	C18H24O	1595	1590
Viridiflorol	C18H24O	1603	1598
Caryophyllene oxide	C15H22O	1603	1601
Guaiol (=Champacol)	C18H24O	1612	1603
Cubeab-11-ol	C18H24O	1613	1601
Rosifoliol	C15H22O	1620	1615
epí-Cedrol	C16H22O	1625	1619
Humulene epoxide II	C19H26O	1630	1616
1,10-di-epí-Cubenol	C17H24O	1633	1623
Dill apiole	C15H20O	1635	1634
10-epí-γ-Eudesmol	C15H22O	1641	1629
1-epí-Cubenol	C16H22O	1645	1629
γ-Eudesmol	C17H22O	1649	1647
epí-α-Cadinol (=α-Cadinol)	C17H22O	1657	1659
epí-α-Murolol (=α-Murolol)	C17H22O	1659	1660
α-Murolol (=δ-Cadinol)	C17H22O	1662	1654
β-Eudesmol	C17H22O	1671	1667
α-Cadinol	C17H22O	1672	1673
α-Eudesmol	C17H22O	1673	1670
neo-Intermedeol	C18H22O	1676	1670
Bulnesol	C18H24O	1684	1678
Cadalen	C17H22O	1692	1692
epí-α-Bisabolol	C17H22O	1695	1692
α-Bisabolol	C17H22O	1696	1696
(E,E)-Farnesol	C18H24O	1727	1727
Benzyl benzoate	C17H18O	1779	1774

| Total identified | 96.5 | 97.4 | 96.6 | 95.2 |

Note: *Retention order on HP-5MS column; Retention indices on HP-5MS column; *"*Literature retention indices [15]; [16]; Standard deviation were insignificant and excluded from the Table to avoid congestion; () Not identified.

The essential oil samples were then subjected to microbroth dilution assays [17-18] to determine the minimum inhibitory concentration (MIC) and median inhibitory concentration (IC₅₀) values using 7 strains.
of microorganisms: Staphylococcus aureus, Bacillus subtilis, and Lactobacillus fermentum, Salmonella enterica, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The results of the assay obtained after 16-24 hours of incubation are presented in Table 2. The leaf and twig essential oils from *M. insignis* showed stronger inhibitory effects on the seven test microorganisms than those from *M. hookeri* var. *longirostrata*. MIC values of the *M. insignis* leaf and twig oils were from 512 to 4096 µg/mL. IC50 values of the *M. insignis* leaf and twig oils ranged from 9.2 to 825 µg/mL and from 25 to 951 µg/mL, respectively. The oil from *M. hookeri* var. *longirostrata* twigs had the lowest inhibitory effects on test microorganisms with MIC and IC50 values were from 2048 to more than 8192 µg/mL and from 491 to 3662 µg/mL, respectively. *C. albicans* and *L. fermentum* were more sensitive to the essential oils than the other tested microorganisms (Table 2).

Table 2. MIC and IC50 of essential oils from leaves and twigs of *M. hookeri* var. *longirostrata* (HG1919) and *M. insignis* (HG1932)

Essential oil samples	*M. hookeri* var. *longirostrata* leaves	*M. hookeri* var. *longirostrata* twigs	*M. insignis* leaves	*M. insignis* twigs				
Value (µg/mL)	IC50	MIC	IC50	MIC	IC50	MIC	IC50	MIC
S. aureus	994	4096	1896	8192	582	1024	750	2048
B. subtilis	452	2048	924	4096	161	1024	304	1024
L. fermentum	278	1024	491	2048	37	512	62	512
S. enterica	1536	8192	3288	> 8192	819	4096	941	4096
E. coli	1399	4096	2003	8192	647	2048	805	4096
P. aeruginosa	1831	8192	3662	> 8192	825	4096	951	4096
C. albicans	896	4096	1920	8192	9.2	512	25	512

In the previous study, leaf oil of *M. insignis* had some antibacterial activities to *Rhodotorula glutinis*, but had no inhibition against *E. coli* and *S. aureus* [10]. The antimicrobial activity of essential oils varying on different microorganisms can be derived from their main compounds or the synergism of many of their components. Linalool, 1,8-cineole, geraniol, (E)-nerolidol, and neo-intermedeol being main components of essential oil samples in the present study may contribute the great role in antimicrobial activities because they belong to group of oxygenated terpenes as previously attributed [19]. In the past, antimicrobial activities of linalool and 1,8-cineole against some tested microbial strains were shown with their MIC values from 4 to 7 µg/mL [19] and from lower than 90 to 380 µg/mL [20]. Other researches indicated that the respective MIC values of geraniol and (E)-nerolidol against some tested microbial strains were from 30 to 70 µg/mL [21] and from 125 to 500 µg/mL [22]. The research results of antimicrobial activity of essential oils, especially leaf oil of *M. insignis* can be the basis for future applied research on adding to food as flavoring and preservative agents.

As a conclusion, The present study is the first of its kind that provided information on the chemical composition and antimicrobial activity of the essential oils from leaves and twigs of *M. hookeri* var. *longirostrata* and from twigs of *M. insignis*. Among 59 and 59 compounds identified in of the oils of *M. hookeri* var. *longirostrata*, major components consisted of: Linalool (21.3%), (E)-nerolidol (12.2%) and neo-intermedeol (13.5%) (leaf oil); 1,8-cineole (13.3%) and linalool (17.1%) (twig oil). Major components of the oils of *M. insignis* were: Linalool (24.1%), geraniol (14.9%) and (E)-nerolidol (22.5%) among 54 compounds of the leaf oil; 1,8-cineole (9.5%) and linalool (26.9%) among 56 compounds of the twig oil. The leaf essential oil from *M. insignis* had the strongest inhibitory effects on the seven test microorganisms with respective IC50 and MIC values from 9.2 to 825 µg/mL and from 512 to 4096 µg/mL. The results of present study can be the basis for future research on the field of food industry as flavoring and preservative agents.

Acknowledgments

This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 106.03-2019.16.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products

Ha et al., *Rec. Nat. Prod.* (202X) XX.XX-XX
References

[1] M. X. Hu, Q. W. Zeng and L. Fu (2012). *Magnolia hookeri* var. *longirostrata* (Magnoliaceae), a new taxon from Yunnan, China, *Ann. Bot. Fennici* 49, 417-421.

[2] B. N. Tu, Q. H. Nguyen and T. H. Nguyen (2015). Five new records of Magnoliaceae Juss. for the flora of Vietnam. Proceedings of the 6th National conferences on ecology and biological resources; Oct 21», Hanoi, Vietnam. Institute of Ecology and Biological Resources, 243-248.

[3] B. L. Chen and H. P. Nooteboom (1993). Notes on Magnoliaceae III: The Magnoliaceae of China, *Ann. Missouri Bot. Gard.* 80(4), 999-1104.

[4] H. H. Pham (2003). An Illustrated Flora of Vietnam, vol. I. Tre Publishing House, 991 pp.

[5] Q. N. Vu (2011). Taxonomic revision of the family Magnoliaceae from Vietnam. Dissertation, Graduate University of The Chinese Academy of Sciences, Guangzhou, 241 pp.

[6] The plant list (2020). http://www.theplantlist.org/tpl1.1/record/kew-117652, (retrieved Nov. 6, 2020).

[7] V. C. Vo (2012). Medicinal Plant Dictionary, vol. I, Medicine Publishing House, 1675 pp.

[8] S. Z. Shang, L. M. Khong, L. P. Yang, J. Jiang, J. Huang, H. B. Zhang, Y. M. Shi, W. Zhao, H. L. Li, H. R. Luo, Y. Li, W. L. Xiao and H. D. Sun (2013). Bioactive phenolics and terpenoids from *Magnolia insignis*, *Fitoterapia* 84, 58-63.

[9] T. N. Pham, T. T. H. Ly, T. T. H. Chu, H. T. Tran, D. H. Phan, V. L. Tran and T. P. T. Tran (2020). Study on the chemical constituents of *Magnolia insignis* collected in Tuyen Quang Province, Vietnam, *Vietnam J. Chem.* 58(1), 133-137.

[10] Q. Cao, S. Yang, Y. Zhang and C. Liu and F. Chen (2008). The chemical components and their biological activity of *Magnolia yuyanensis*, *J. Chinese Urban For.*, 03 (Abstract in English).

[11] M. Liu, J. Lin, L. Jiang, H. Don and K. Zhu (2016). Chemical study on essential oil of *Magnolia maguicana* and *Magnlietiastrum sinicum* Law., *Guangzhou Chem. Ind.* 44(21), 31-33.67.

[12] M. É. A. Stefanello, M. J. Salvador, I. Y. Ito, Jr. A. Wisniewski, E. L. Simionatto and R. Mello-Silva (2008). Chemical composition, seasonal variation and evaluation of antimicrobial activity of essential oils of *Talauma ovata* A. St. Hil. (Magnoliaceae), *J. Essent. Oil Res.*, 20(6), 565-569.

[13] M. A. Farag, R. S. E. Din and S. Fahmy (2015). Headspace analysis of volatile compounds coupled to chemometrics in leaves from the Magnoliaceae Family, *Rec. Nat. Prod.*, 9(1), 153-158.

[14] *Dictionary of Natural Products on DVD*, v. 28.2. CRC Press, Boca Raton, Florida, USA, 2019.

[15] R. P. Adams (2001). Identification of essential oil components by gas chromatography, quadrupole mass spectroscopy. Carol Stream, Ill.: Allured Publishing Corporation; 3rd edition. ISBN: 0931710855, 456 pp.

[16] P. J. Linstrom and W. G. Mallard (2020). NIST chemistry webbook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg M. D., 20899, (retrieved June 2, 2020).

[17] F. Hadace and H. Gregor (2000). Testing of antifungal natural products methodologies, comparability of result and assay choice. *Phytochem. Anal.*, 11, 137-147.

[18] P. Cos, A. J. Vlietinck, D. V. Berghé, L. Maes (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. *J. Ethnopharmacol.* 106(3), 290-302.

[19] M. Soković, J. Glaščič, P. D. Marin, D. Brkić and L. J. L. van Griensven (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model, *Molecules* 15, 7532-7546.

[20] T. Thongchai, J. Jakkrith, M. Nuttphol and S. P. Waya (2018). Major compounds from *Ocimum basilicum* L. and their antimicrobial activity against methicillin-resistant *Staphylococcus aureus*, *Biomed J. Sci&Tech. Res.* 3(3), 3315-3323.

[21] A. C. Guimarães, L. M. Meireles, M. F. Lemos, M. C. C. Guimarães, D. C. Endringer, M. Fronza and R. Scherer (2019). Antibacterial activity of terpenes and terpenoids present in essential oils, *Molecules* 24, 2471.

[22] W. K. Chan, L. T. H. Tan, K. G. Chan, L. H. Lee and B. H. Goh (2016). Nerolidol: A sesquiterpene alcohol with multifaceted pharmacological and biological activities, *Molecules* 21, 529.