Influence of mouth breathing on atopic dermatitis risk and oral health in children: A population-based cross-sectional study

Dae-Woo Lee, Jae-Gon Kim, Yeon-mi Yang

Department of Pediatric Dentistry and Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea

Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea

Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea

Received 14 May 2020; Final revision received 15 June 2020
Available online 22 June 2020

Keywords: Allergic rhinitis; Asthma; Atopic dermatitis; Dental caries; Mouth breathing

Abstract Background/purpose: Previous studies have suggested that mouth breathing has harmful effects on atopic dermatitis (AD) and oral health in children, but the evidence has been insufficient. To investigate the association of mouth breathing with AD and oral health in Korean schoolchildren aged 8–11 years.

Materials and methods: Cross-sectional data were obtained from March to April 2016. A questionnaire was used to investigate children’s mouth breathing habits and personal/family histories related to allergic disease. Oral health status was determined through a clinical oral examination. Data were analyzed with multivariable logistic regression.

Results: In total, 1507 children were included. A moderate relationship was observed between mouth breathing and AD (adjusted odds ratio, 1.05; 95% confidence interval, 1.00–1.10; p-value, 0.035), whereas no association was found between mouth breathing and dental caries in children. Mouth breathing during sleep (MBS) was closely related to allergic diseases and other respiratory diseases. Furthermore, mouth breathing was associated with child’s tonsillitis and was identified as a possible risk factor for class II dental malocclusion.

Conclusion: We confirmed the positive association between mouth breathing (especially during sleep) and allergic diseases, including the AD in school-aged children. The influence of mouth breathing on dental caries remains uncertain. An intervention trial is required to evaluate whether the prevention of mouth breathing can reduce the risk of allergic diseases.

© 2020 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Recently, mouth breathing has been reported as a risk factor for immune diseases such as atopic dermatitis (AD; synonyms: atopic eczema and childhood eczema). However, the mechanism whereby mouth breathing is associated with AD has not been elucidated, and there is not enough evidence that mouth breathing is associated with an increased risk of AD in children. AD is a chronic, recurrent, inflammatory skin disease that starts in infancy or childhood and is accompanied by pruritus, dry skin, and eczema. AD is increasing worldwide and is reported to affect 20% of the population. This disease cannot be explained by a single cause; instead, environmental factors, genetic predisposition, immunological reactions, and skin barrier abnormalities are considered to be the major causes. Recently, mutations in the genes that produce filaggrin are involved in the development of AD.2 Also, according to the hygiene hypothesis, the immune system can better tolerate exposure to allergens in the environment at an early age. In this respect, there has been controversy over whether oral pathogens can influence the risk of allergic diseases.3 Some studies have investigated oral pathogens or periodontal disease as potential mitigators of allergic disease,4,5 but the results have been inconsistent.6,7

Simply, oral breathing can be considered a consequence of being unable to perform nasal breathing. However, if oral breath continues, complex problems can arise. Especially in animal experiments, such as those involving rat models, forced mouth breathing has been found to affect respiratory function.8 Human infants are sometimes considered obligate nasal breathers,9 but healthy humans can generally perform mouth breathing and nasal breathing simultaneously during functional activities such as eating, exercising, and blowing into an instrument. Oral and nasal breathing have different quantitative and qualitative effects on the respiratory system.8,10,11 If mouth breathing becomes chronic, the saliva will evaporate due to the change in humidity in the oral cavity. Thus, the saliva will not be able to maintain the homeostatic function of filtering foreign substances and controlling the humidity, temperature, and pH.12,13

In the mouth, saliva is essential for immune defense, food digestion and lubrication, taste, and remineralization of the teeth. In particular, antimicrobial agents such as secretory IgA and lysozyme are essential for protection. Furthermore, saliva is supersaturated by several ions that maintain the pH in the oral cavity between 6.2 and 7.4, which is vital for the prevention of dental caries. Patients with significantly reduced saliva due to Sjogren’s syndrome or xerostomia are susceptible to infection due to changes in homeostasis and become vulnerable to allergic diseases and dental diseases such as dental caries and periodontitis.13,14

There have been some prospective cohort studies examining whether mouth breathing influences allergic diseases such as asthma and AD,15–18 but clinical studies have been limited to date. Therefore, we investigated the association of mouth breathing with oral health and allergic diseases, including AD among schoolchildren. To the best of our knowledge, this is the first study to evaluate the effects of mouth breathing on the prevalence of AD in schoolchildren aged 8–11 years.

Material and methods

Study approval

This study was approved by the Jeonbuk National University Institutional Review Board (2016-12-037-002). Informed consent was obtained from parents (or guardians), and permission was obtained from the children. Written consent forms were collected and securely stored at the Jeonbuk National Hospital. The study design conformed to the Helsinki Declaration of Human Rights for human observation studies.

Study population, data collection, and examiner training and calibration

Four elementary schools in Jeonju were randomly selected and visited from March to April 2016. Questionnaires and oral examinations were conducted for 1831 elementary school students aged 8–11 years. Oral examinations were carried out by two trained team members (one dentist and one recorder). The questionnaire was distributed to each child’s parents one week before the oral examination and was collected after the oral exam. The survey was completed by the parents based on their observations of the child’s condition. The questionnaire was only sent if the parents agreed that it could be used as part of a clinical study.

A pilot study was conducted on 50 elementary school students before the study began. Two dental examiners (D.W and Y.M) were trained by one experienced investigator (J.G) from the Pediatric Department of Jeonbuk National University. Through preliminary testing, the reliability of the test was determined with ten volunteers, and the intra-observer reliability was assessed with Cohen’s kappa score. Cohen’s weighted kappa scores for the Brodsky and Mallampati classification were 0.95 and 0.84, respectively. Cohen’s weighted kappa scores for the dental caries indices (DI) and malocclusion indices (MI) ranged from 0.85 to 0.93. Regarding the inter-observer reliability, the kappa score was 0.81 for the Brodsky classification and 0.83 for the Mallampati classification. The MI were evaluated as Cohen’s unweighted kappa score between 0.87 and 0.95. The kappa score was 0.81 for the DI.

Outcome measures

Questionnaire items

A questionnaire was used to investigate the children’s mouth breathing habits, personal and family histories related to allergic disease, and basic information. The survey included three questions each to evaluate mouth breathing in the daytime (MBD) and mouth breathing during sleep (MBS). The inquiries related to MBD were as follows:

Q.1 Does the child breathe through his mouth? Q.2 Is the child’s mouth ordinarily open? Q.3 Does the child open his mouth when chewing? The questions related to MBS were as follows:

Q.1 Does the child snore? Q.2 Does the child open his mouth? Q.3 Is the child’s mouth dry in the morning? Scores were assigned for each question to grade the severity of mouth breathing (Supplemental Appendix Table 1).
The questionnaire item was modified through the methods described by Yamaguchi et al. (17). The MBD and MBS scores were the sum of three items, each with a minimum score of 3 and a maximum score of 11. The TMB score was defined as the sum of the MBD and MBS scores.

Oral examination items
All examinations were performed by two trained examiners (one dentist and one recorder). The examiner used a mirror and an air syringe under a light source, with an average time of one minute per exam. Three categories of oral examination items were used in this study: the caries experience index of deciduous teeth (dft) and permanent teeth (DMFT), Mallampati and Brodsky classifications, and the malocclusion index (MI). To investigate the prevalence of dental caries, the dentist evaluated the dft and DMFT in terms of the decayed, missing, and filling status of each tooth. The dental caries index (DI) was defined as the sum of the dft and DMFT indices. Mallampati classification (grades 1 to 4) and Brodsky classification (grades 1 to 5) were used to evaluate the size of the tongue and the palatal tonsil, respectively. These were assessed while the children were seated in a chair without phonation, with the tongue being maximally exposed, and were measured twice for reliability. The tonsil size index (TSI) was defined as the sum of the Brodsky and Mallampati classifications. The MI was defined as the sum of the values of the occlusal relationship of the first permanent molars, overjet of central incisors and overbite of incisors, midline deviation of permanent incisors, and presence of lip competency at rest. Occlusion was evaluated in the state of the centric occlusion. If the first molar or permanent incisors were missing or had not erupted, the subject was excluded from the survey. The overjet and overbite of incisors were classified into three categories (<0, 0–4, >4 mm) using Vernier calipers. The occlusal relationship of both first permanent molars was assessed by angle classification (class I/II/III). Midline deviation (yes, >1 mm) and lip competency were scored as binary parameters (1 = no, 0 = yes).

Data analysis
The results from the questionnaires and oral examinations were analyzed with SAS (version 9.3, SAS Inc., Cary, NC, USA). Pearson’s chi^2 test was used to investigate the relationships of the mouth breathing indices with continuous variables such as age, sex, BMI, and oral examination indices. An independent two-sample t-test was performed to compare the mean values of the mouth breathing indices with categorical variables, including personal and family histories. We also conducted a multivariable logistic regression analysis to determine the factors affecting each child’s history as dependent variables. The stepwise selection was used by analyzing the factors affecting the history of the child, with correcting only the significant factors to determine the influence of mouth breathing. Bonferroni correction was used for posthoc analysis. Furthermore, receiver operating characteristic (ROC) curve analysis was performed to assess the degree of mouth breathing associated with children’s allergic diseases. To determine the cut-off points, we used the point at which the Youden Index J (Sensitivity + Specificity - 1) was maximized. All statistical analyses were performed with a p-value of 0.05.

Results
The questionnaires were distributed to 1831 elementary school children aged 8–11 years, and 1567 surveys were collected, for a response rate of 82.3%. We excluded 31 questionnaires that were missing basic information such as height and weight and 29 questionnaires that were missing answers to one or more questions. Thus, we included a total of 1507 questionnaires in this study.

The overall characteristics of the 1507 elementary school children are shown in Table 1. The male to female ratio was 1:0.94. There were no significant differences in the mouth breathing indices according to age and BMI, but a significant difference according to gender was observed (p < 0.05). Table 1 also displays the children’s respiratory disease histories, family histories, and oral examination indices according to mouth breathing indices. Allergic rhinitis (47.5%) was the most common child’s respiratory disease, followed by nasal congestion (32.7%) and otitis media (26.1%). AD was observed in 16.0% of the children. Personal histories of all diseases except otitis media were significantly associated with TMB (p < 0.05) and MBS (p < 0.05), whereas only allergic rhinitis, AD, sinusitis, and otitis media were associated with MBD (p < 0.05). Allergic rhinitis, sinusitis, tonsillitis, and nasal congestion were associated with the most statistically significant differences in MBS (p < 0.001). Regarding family history, allergic rhinitis, sinusitis, and nasal obstruction were associated with TMB (p < 0.05) and MBS (p < 0.05), while only tonsillitis was associated with MBD (p < 0.05). In terms of the oral examination, only overjet and Brodsky classification were significantly associated with MBS (p < 0.01).

When the relationships between MBD, MBS, and TMB scores were analyzed, statistically significant correlations were observed between each pair of variables (p < 0.001) (Table 2). MBD and MBS exhibited a moderate correlation, with a correlation coefficient of r = 0.42.

In Table 3, multivariable linear regression was used to identify factors influencing each child’s mouth breathing pattern (the dependent variable). There was a gender difference in MBS and TMB scores. Regarding MBD scores, only the child’s history (allergic rhinitis, atopic dermatitis, sinusitis) showed a statistically significant difference. Concerning MBS scores, child’s history (allergic rhinitis, tonsillitis), family history (allergic rhinitis, sinusitis), and tonsil size index showed a statistically significant difference.

Multivariable logistic regression was used to identify factors influencing AD (the dependent variable). In Table 4, the adjusted odds ratio (AOR) of MBD, MBS and TMB score for AD were 1.08, 1.09, 1.05 (all p-value < 0.05), respectively. And the AORs of family history tonsillitis (AOR: 2.24, 95% CI: 1.35–3.74) and family AD (AOR: 5.35, 95% CI: 3.87–7.38) for the child’s AD was even higher. Among children’s medical history, allergic rhinitis and asthma were not significantly associated with AD. Mallampati classification was related to mouth breathing (TMB score; AOR: 1.18, 95% CI: 1.01–1.39).

Table 5 displays the cut-off points, specificity, sensitivity, and AUC values from the ROC curve analysis. The analysis was performed for allergic rhinitis, AD, tonsillitis, ...
Table 1 Characteristics of all subjects and the relationships of age, sex, BMI, child’s respiratory disease history, family history, and oral examination indices to oral breathing indices.

	Total	MBD	p Value	MBS	p Value	TMBI	p Value		
	N (%) or Mean ± SD	Mean ± SD or Pearson r		Mean ± SD or Pearson r		Mean ± SD or Pearson r			
Age (Y)	8	34 (2.26)	4.88 ± 2.21	0.999	6.47 ± 1.52	0.413	11.35 ± 3.02	0.799	
	9	570 (37.82)	4.89 ± 2.01	0.999	6.39 ± 1.80	0.413	11.28 ± 3.23	0.799	
	10	476 (31.59)	4.88 ± 2.07	0.999	6.24 ± 1.74	0.413	11.11 ± 3.20	0.799	
	11	427 (28.33)	4.90 ± 1.98	0.999	6.23 ± 1.73	0.413	11.14 ± 3.13	0.799	
Sex	Female	730 (48.44)	4.84 ± 1.98	0.320	6.15 ± 1.77	0.002**	10.98 ± 3.19	0.015	
	Male	777 (51.56)	4.94 ± 2.06	0.320	6.44 ± 1.73	0.002**	11.38 ± 3.17	0.255	
BMI			0.436		0.285				
Child’s History									
	Atopic dermatitis	Yes	715 (47.45)	5.16 ± 2.08	<0.001***	6.69 ± 1.67	<0.001***	11.84 ± 3.18	<0.001***
		No	792 (52.55)	4.65 ± 1.95	<0.001***	5.95 ± 1.76	<0.001***	10.59 ± 3.07	<0.001***
	Asthma	Yes	239 (15.97)	5.17 ± 2.12	0.021	6.54 ± 1.72	0.021	12.16 ± 3.50	0.009**
		No	1268 (84.03)	4.84 ± 2.00	0.021	6.25 ± 1.76	0.021	11.09 ± 3.17	0.009**
	Sinusitis	Yes	57 (3.78)	5.35 ± 2.18	0.080	6.82 ± 1.67	0.022	12.18 ± 3.43	0.017
		No	1450 (96.22)	4.87 ± 2.02	0.080	6.28 ± 1.76	0.022	11.15 ± 3.17	0.017
	Tonsillitis	Yes	157 (10.42)	5.38 ± 2.25	0.004**	6.78 ± 1.79	<0.001***	12.16 ± 3.50	<0.001***
		No	1350 (89.58)	4.83 ± 1.99	0.004**	6.24 ± 1.75	<0.001***	11.07 ± 3.13	0.008**
	Nasal congestion	Yes	493 (32.71)	5.01 ± 2.01	0.104	6.58 ± 1.68	<0.001***	12.16 ± 3.50	0.001**
		No	1014 (67.29)	4.83 ± 2.03	0.104	6.16 ± 1.78	<0.001***	11.09 ± 3.17	0.001**
	Otitis media	Yes	393 (26.08)	5.12 ± 2.07	0.009**	6.63 ± 1.76	0.741	11.75 ± 3.28	<0.001***
		No	1114 (73.92)	4.81 ± 2.00	0.009**	6.18 ± 1.74	0.741	10.99 ± 3.13	<0.001***
Family History									
	Atopic dermatitis	Yes	962 (63.84)	4.88 ± 2.01	0.839	6.47 ± 1.73	<0.001***	11.35 ± 3.14	0.010
		No	545 (36.16)	4.90 ± 2.06	0.839	6.00 ± 1.76	<0.001***	10.90 ± 3.25	0.010
	Asthma	Yes	219 (14.53)	5.09 ± 2.10	0.121	6.36 ± 1.74	0.580	11.45 ± 3.17	0.189
		No	1288 (85.47)	4.86 ± 2.01	0.121	6.29 ± 1.76	0.580	11.14 ± 3.19	0.189
	Sinusitis	Yes	31 (2.06)	5.10 ± 2.26	0.567	6.68 ± 1.99	0.227	11.77 ± 3.86	0.299
		No	1476 (97.94)	4.89 ± 2.02	0.567	6.29 ± 1.75	0.227	11.17 ± 3.17	0.299
	Tonsillitis	Yes	98 (6.5)	5.3 ± 2.36	0.079	7.03 ± 1.68	<0.001***	12.33 ± 3.42	<0.001***
		No	1409 (93.5)	4.86 ± 2.00	0.079	6.25 ± 1.75	<0.001***	11.11 ± 3.15	<0.001***
	Nasal congestion	Yes	85 (5.64)	5.42 ± 2.38	0.035*	6.53 ± 1.69	0.215	11.95 ± 3.44	0.215
		No	1422 (94.36)	4.86 ± 2.00	0.035*	6.29 ± 1.76	0.215	11.14 ± 3.16	0.215
	Oral Examination	MI 5	1.37 ± 1.24	0.021	0.414	0.0389	0.134	0.0363	0.159
	Posterior occlusal relationship	Class I	1019 (72.9)	4.87 ± 2.01	0.626	8.09 ± 1.89	0.659	10.49 ± 3.23	0.568

(continued on next page)
and otitis media, which were associated with mouth breathing. The results of this analysis indicated that most of the AUC values were less than 0.6.

Discussion

Fig. 1 outlines the relationship of the mouth breathing indices with personal or family histories of allergic diseases and oral examination indices in this study. The mouth breathing indices exhibited significant correlations with the children’s allergic disease histories. The MBS was more closely related to the children’s allergic diseases than the MBD. Furthermore, among the oral examination indices, the Brodsky classification and overjet of maxillary central incisors were related to mouth breathing indices. However, neither personal nor family allergic disease history was associated with oral examination indices. Most items in the children’s allergic disease histories had strong relationships with the family histories, but there were weak correlations among the oral examination indices (data not shown).

This study revealed that children with mouth breathing were at significantly higher risk for AD (TMB score; AOR: 1.05, 95% CI: 1.00–1.10) and children’s AD risk had a high correlation with parental AD history (TMB score; AOR: 5.3, 95% CI: 3.87–7.38). Although there have been few studies reporting the relationship between AD and mouth breathing, our findings are consistent with the results of a previous study of 468 preschool children aged 2–6 years suggesting that mouth breathing may be a risk factor for AD.17,18 According to the hygiene hypothesis, the allergy epidemic is the result of reduced microbial exposure.

Table 1 (continued)	Total	MBD	p Value	MBS	p Value	TMBI	p Value
	N (%): Mean ± SD	p Value	Mean ± SD	p Value	Mean ± SD	p Value	
Class II	302 (21.6)	4.84 ± 2.03	8.13 ± 1.98	11.57 ± 3.40			
Class III	75 (5.3)	5.09 ± 2.27	8.29 ± 1.95	13.07 ± 3.61			
Overjet of incisors	>4 mm: 1243 (82.4)	4.86 ± 2.01	8.03 ± 1.90	12.90 ± 3.25			
	0–4 mm: 226 (14.9)	5.06 ± 2.12	8.49 ± 2.05	13.56 ± 3.59			
	<0 mm: 38 (2.5)	4.23 ± 1.63	8.21 ± 1.78	12.44 ± 2.79			
Overbite of incisors	>4 mm: 1406 (93.2)	4.87 ± 2.01	8.10 ± 1.92	12.97 ± 3.29			
	0–4 mm: 83 (5.5)	5.08 ± 2.12	8.04 ± 1.93	13.13 ± 3.53			
	<0 mm: 18 (1.1)	4.61 ± 1.97	8.88 ± 2.13	13.50 ± 3.20			
Asymmetry	Yes: 531 (35.24)	4.93 ± 2.04	6.34 ± 1.79	11.27 ± 3.29			
	No: 976 (64.76)	4.87 ± 2.02	6.28 ± 1.74	11.14 ± 3.13			
Lip competency	Yes: 489 (32.45)	4.96 ± 2.12	6.38 ± 1.76	11.35 ± 3.35			
	No: 1018 (67.55)	4.86 ± 1.98	6.26 ± 1.75	11.11 ± 3.10			
TSI	4.44 ± 1.48	0.034	0.193	0.086	0.001**	0.070	0.007**
Mallampati	2.25 ± 0.89	0.013	0.608	0.016	0.540	0.019	0.464
Brodsky	2.19 ± 1.09	0.048	0.063	0.081	0.002**	0.080	0.002**
DI	3.49 ± 2.92	0.015	0.574	0.043	0.092	0.031	0.223
dft	2.53 ± 2.5	0.013	0.628	0.021	0.396	0.022	0.382
DMFT	0.95 ± 1.44	0.038	0.141	0.010	0.676	0.024	0.337

Independent two-sample t-test, Analysis of Variance (ANOVA)*, and Pearson correlation test$ were used to calculate p values. MBD: mouth breathing index in the daytime, MBS: mouth breathing index during sleep, TMBI: total mouth breathing index, SD: standard deviation, MI: malocclusion index, TSI: tonsil size index, DI: dental caries index. *p < 0.05, **p < 0.01, ***p < 0.001.

In order to determine the correlations between MBD, MBS, and TMBI, p values were calculated using Pearson’s 2 test. MBD: mouth breathing index in the daytime, MBS: mouth breathing index during sleep, TMBI: total mouth breathing index. *p < 0.05, **p < 0.01, ***p < 0.001.
salivary IgA levels are related to early day-care attendance microflora. This is in line with recent findings that high indicating the importance of homeostasis in the human dobacteria are observed in traditional culture methods, with a history of AD, and that fewer Lactobacilli and Bifidobacteria are more common in the intestinal flora of children have been reports that Staphylococcus aureus of symbiotic bacteria in the oral cavity is critical. There conflicting opinions, it can be inferred that the homeostasis influence the risk of allergic diseases. Although there are some research has indicated that oral pathogens can infections, vaccinations, and antibiotics. In this context, endotoxin exposure, Helminth parasites, childhood infections, vaccinations, and animals, as basic hygiene, daycare, farm environments and animals, and less atopy in Australian children, and that slow salivary secretory IgA maturation may be related to low microbial pressure and allergic symptoms in sensitized children. Several environmental factors related to microbial exposure have been studied for their association with AD, such as basic hygiene, daycare, farm environments and animals, endotoxin exposure, Helminth parasites, childhood infections, vaccinations, and antibiotics. In this context, some research has indicated that oral pathogens can influence the risk of allergic diseases. Although there are conflicting opinions, it can be inferred that the homeostasis of symbiotic bacteria in the oral cavity is critical. There have been reports that Staphylococcus aureus and coliforms are more common in the intestinal flora of children with a history of AD, and that fewer Lactobacilli and Bifidobacteria are observed in traditional culture methods, indicating the importance of homeostasis in the human microflora. This is in line with recent findings that high salivary IgA levels are related to early day-care attendance

Gender (reference = male)	MBD score	B (SE)	p Value	MBS score	B (SE)	p Value	TMB score	B (SE)	p Value
Child History	0.425 (0.106)	<0.001	−0.557 (0.096)	<0.001	1.04 (0.176)	<0.001			
Allergic rhinitis	0.263 (0.142)	0.065	0.189 (0.12)	0.116	0.424 (0.221)	0.056			
Sinusitis	0.348 (0.174)	0.045	0.133 (0.151)	0.379	0.427 (0.276)	0.122			
Tonsillitis	0.352 (0.141)	0.013	0.262 (0.265)	0.323					
Otitis media	0.218 (0.119)	0.067	0.494 (0.188)	0.009					
Family History	0.218 (0.097)	0.025	−0.05 (0.178)	0.792					
Allergic rhinitis	0.492 (0.185)	0.008	0.768 (0.337)	0.023					
Oral Examination	0.104 (0.03)	0.001	0.165 (0.054)	0.002					

Each mouth breathing score were the dependent variable, and the following variables showing p < 0.05 in each univariate analysis were included as independent variables; gender, child history (allergic rhinitis, atopic dermatitis, asthma, sinusitis, tonsillitis), family history (allergic rhinitis, sinusitis), and oral examination (Brodsky classification). MBD: mouth breathing in the daytime, MBS: mouth breathing during sleep, TMB: total mouth breathing. MBD, MBS, and TMB were the dependent variable, and the following variables showing p < 0.05 in each univariate analysis were included as independent variables; gender, child history (allergic rhinitis, atopic dermatitis, asthma, sinusitis, tonsillitis), family history (allergic rhinitis, atopic dermatitis, tonsillitis), and oral examination (Mallampati classification). MBD: mouth breathing index in the daytime, MBS: mouth breathing index during sleep, TMBI: total mouth breathing index, AOR: adjusted odds ratio, 95% CI: 95% confidence interval. *p < 0.05, **p < 0.01, ***p < 0.001.
breathing. However, habitual mouth breathing without accompanying anatomical problems cannot be identified by this method. Therefore, questionnaires are the easiest and most widely used method of diagnosing mouth breathing. However, surveys have limitations, in that the results differ according to the researchers’ standards for categorizing and analyzing categorical data. Therefore, in this study, we calculated the mouth breathing index as a continuous rather than a categorical variable, since the clinical standpoint for diagnosing mouth breathing is an arbitrary criterion and so is not clear. Regarding the ROC curve analysis, the sensitivity and specificity should generally be higher than 70%, and it is accepted that a diagnostic test is meaningful when the AUC is more significant than 0.7, which means that questionnaire surveys alone cannot accurately predict disease. This is because mouth breathing is a risk factor, not a cause of disease. However, questionnaires are non-invasive and cost-effective so that they can be useful supplements in predictions of allergic disease risk.

In this study, we employed the widely-used Brodsky and Mallampati classifications to measure the sizes of the tonsils and tongue, respectively. In general, the tonsils of a growing child are twice as large as those of an adult and decrease in size after puberty.26 However, when the increase in tonsil size exceeds the average level, the inner diameter of the upper airway decreases, which can markedly increase the air resistance (compared to that in adults) and induce mouth breathing. Therefore, some studies have reported that the frequency of mouth breathing was reduced and the quality of sleep was improved by adenotonsillectomy.27 In modern society, pediatric dentists observe tonsillar hypertrophy frequently in clinical practice and are interested in its relationship with immune disease. This study also indicated that the size of the palatine tonsil was related to mouth breathing. However, we cannot conclude whether mouth breathing is the cause or effect of tonsillar hypertrophy because nasal septum deviation or lower turbinate hypertrophy can also cause significant nasal obstruction. In conclusion, this study demonstrated that mouth breathing is a risk factor for AD development, especially in children with a genetic family history of AD, and can be a risk factor for tonsillitis (tonsillar hypertrophy) and class II dental malocclusion. Furthermore, mouth breathing during sleep (MBS) was closely related to allergic diseases and other respiratory diseases. Therefore, MBS is expected to be more harmful to children than MBD.

Declaration of Competing Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper was supported by research funds of Jeonbuk National University in 2018. This work was partially supported by the Biomedical Research Institute, Jeonbuk National University Hospital.

Table 5 Cut-off points were calculated with the Youden Index J = (Sensitivity + Specificity - 1) for continuous variables (mouth breathing indices) that affected the dichotomous variables (children’s respiratory diseases).

Allergic Rhinitis	Tonsillitis	Otitis media				
MBD	**MBS**	**MBS**	**TMBI**	**MBS**	**TMBI**	
Cut-off	<4, ≥4	<7, ≥7	<7, ≥7	<11, ≥11	<7, ≥7	<11, ≥11
Specificity	45.076	61.995	55.049	52.020	57.002	47.666
Sensitivity	68.531	55.385	56.471	62.937	55.471	62.850
AUC	0.568	0.587	0.558	0.575	0.562	0.553

When the mouth breathing index was used as an independent variable and the child’s respiratory disease was used as a dependent variable, multiple logistic regression analysis indicated that allergic rhinitis, tonsillitis, and otitis media were associated with mouth breathing. The AUC was calculated by plotting the ROC curve on these, and the cut-off point was calculated with the Youden Index J. AUC: area under the curve, MBD: mouth breathing index in the daytime, MBS: mouth breathing index during sleep, TMBI: total mouth breathing index.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jds.2020.06.014.

References

1. Flohr C, Mann J. New insights into the epidemiology of childhood atopic dermatitis. Allergy 2014;69:3–16.
2. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006;38:441–6.
3. Arbes Jr SJ, Matsui EC. Can oral pathogens influence allergic disease? J Allergy Clin Immunol 2011;127:1119–27.
4. Stensson M, Wendt LK, Koch G, Oldaeus G, Birkhed D. Oral health in pre-school children with asthma. Int J Paediatr Dent 2008;18:243–50.
5. Mehta A, Sequeira PS, Sahoo RC, Kaur G. Is bronchial asthma a loss-of-function in mice.
6. Friedrich N, Vo¨lzke H, Schwahn C, et al. Inverse association between periodontitis and respiratory allergies. Clin Exp Allergy 2006;36:495–502.
7. Mehta A, Sequeira PS, Sahoo RC, Kaur G. Is bronchial asthma a risk factor for gingival diseases? A control study. N Y State Dent J 2009;75:44–6.
8. Stensson M, Wendt LK, Koch G, Oldaeus G, Birkhed D. Oral health in pre-school children with asthma—followed from 3 to 6 years. Int J Paediatr Dent 2010;20:165–72.
9. Xie J, Xi Y, Zhang Q, Lai K, Zhong N. Impact of short term forced oral breathing induced by nasal occlusion on respiratory function in mice. Respir Physiol Neurobiol 2015;205:37–41.
10. Trabalon M, Schaal B. It takes a mouth to eat and a nose to breathe: abnormal oral respiration affects neonates’ oral competence and systemic adaptation. Int J Pediatr 2012;2012:207605. https://doi.org/10.1155/2012/207605.
11. Daimon S, Yamaguchi K. Changes in respiratory activity induced by mastication during oral breathing in humans. J Appl Physiol 2014;116:1365–70.
12. Choi JE, Waddell JN, Lyons KM, Kieser JA. Intraoral pH and temperature during sleep with and without mouth breathing. J Oral Rehabil 2016;43:356–63.
13. Ellasson L, Carlén A, Almståhl A, Wikström M, Lingström P. Dental plaque pH and micro-organisms during hyposalivation. J Dent Res 2006;85:334–8.
14. Kitaba S, Matsui S, Iimuro E, et al. Four cases of atopic dermatitis complicated by Sjögren’s syndrome: link between dry skin and autoimmune anhidrosis. Allergol Int 2011;60:387–91.
15. Laurikainen K, Kuusisto P. Comparison of the oral health status and salivary flow rate of asthmatic patients with those of nonasthmatic adults—results of a pilot study. Allergy 1998;53:316–9.
16. Stensson M, Wendt LK, Koch G, Oldaeus G, Birkhed D. Oral health in preschool children with asthma. Int J Paediatr Dent 2008;18:243–50.
17. Yamaguchi H, Tada S, Nakanishi Y, et al. Association between mouth breathing and atopic dermatitis in Japanese children 2–6 years old: a population-based cross-sectional study. PloS One 2015;10:e0125916. https://doi.org/10.1371/journal.pone.0125916.
18. Barros J, Becker H, Pinto JA. Evaluation of atopy among mouth-breathing pediatric patients referred for treatment to a tertiary care center. J Pediatr 2006;82:458–64.
19. Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010;160:1–9.
20. Watanabe S, Narisawa Y, Arase S, et al. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J Allergy Clin Immunol 2003;111:587–91.
21. Kalliomäki M, Kirjavainen P, Erola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107:129–34.
22. Ewing P, Otczyn DC, Occhipinti S, Kyd JM, Gleeson M, Cripps AW. Developmental profiles of mucosal immunity in preschool children. Clin Dev Immunol 2010;2010:196785. https://doi.org/10.1155/2010/196785.
23. Fagerärs M, Tomičić S, Voor T, Björkstén B, Jenmalm MC. Slow salivary secretory IgA maturation may relate to low microbial pressure and allergic symptoms in sensitized children. Pediatr Res 2011;70:572–7.
24. Dawes C. How much saliva is enough for avoidance of xerostomia? Caries Res 2004;38:236–40.
25. Weiler RM, Fisberg M, Barroso AS, Nicolau J, Simi R, Siqueira Jr WL. A study of the influence of mouth-breathing in some parameters of unstimulated and stimulated whole saliva of adolescents. Int J Pediatr Otorhinolaryngol 2006;70:799–805.
26. Leboulanger N. Nasal obstruction and mouth breathing: the ENT’s point of view. Orthod Fr 2013;84:185–90.
27. Othman MN, Abdul Latif H. Impact of adenotonsillectomy on the quality of life in children with sleep disordered breathing. Int J Pediatr Otorhinolaryngol 2016;91:105–7.