weight was associated with an elevated risk among premenopausal women (OR = 1.7, 95% CI 1.1–2.5), but a nonsignificantly reduced risk among postmenopausal women (OR = 0.6, 95% CI 0.3–1.1) (Sanderson et al, 1996). Therefore, IGF-I as a potential explanation for the birth weight-breast cancer relationship cannot be ruled out.

REFERENCES
Ambrosone CB, Freudenheim JL, Thompson PA, Bowman E, Vena JE, Marshall JR, Graham S, Laughlin R, Nemoto T, Shields PG (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59: 602–606
Hodgson ME, Worley K, Winkel S, Tse CK, Eaton A, Harlan B, Millikan RC (2003) Maternal age, polymorphisms in two DNA repair genes and breast cancer in the Carolina Breast Cancer Study. Presented at the Research Molecular and Genetic Epidemiology of Cancer American Association for Cancer International Conference, Waikoloa, HI, January, 2003
Oberley TD, Oberley LW (1997) Antioxidant enzyme levels in cancer. Histol Histopathol 12: 525–535
Richard SM, Bailliet G, Paez GL, Bianchi MS, Peltomaki P, Bianchi NO (2000) Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res 60: 4231–4237
Sanderson M, Williams MA, Malone KE, Stanford JL, Emanuel I, White E, Daling JR (1996) Perinatal factors and risk of breast cancer. Epidemiology 7: 34–37
Yu H, Jin F, Shu XO, Li BD, Dai Q, Cheng JR, Berkel HR, Zheng W (2002) Insulin like growth factors and breast cancer risk in Chinese women. Cancer Epidemiol Biomark Prev 11: 705–712

Reply 2: Birth weight as a predictor of breast cancer:
a case–control study in Norway

LJ Vatten* and TIL Nilsen1,2
1Department of Community Medicine and General Practice, Norwegian University of Science and Technology, Medical Research Center, N-7489 Trondheim, Norway; 2The Norwegian Cancer Society, PO Box 5327 Majorstua, N-0304 Oslo, Norway

Sir,

We welcome the comments of van Noord concerning the different results for birth weight and breast cancer risk reported by ourselves (Vatten et al, 2002) and Sanderson et al (2002). He suggests that women’s breast cancer risk is influenced by the preconception viability of their mothers’ oocytes, particularly the quality of their mitochondria, since mitochondrial quality declines with age. Therefore, van Noord proposes that maternal age at birth is positively associated with breast cancer risk, suggesting that we reanalyse our data to test this hypothesis.

Reliable information on maternal age at birth was available in the Trondheim data, and hence this analysis is based on 186 breast cancer cases and 662 age-matched controls. We used conditional logistic regression to explore the association between the risk of breast cancer and maternal age at birth, and the estimated odds ratios are adjusted for age at first birth and parity. As shown in Table 1, we found no association with breast cancer risk over the four categories of maternal age at birth.

Although van Noord has proposed an interesting hypothesis, we found no evidence to support that maternal age at birth is positively associated with breast cancer risk. In light of our original findings, that both birth weight and birth length are positively associated with breast cancer risk, important mechanisms linking birth characteristics to breast cancer may be related to foetal growth. Recent research has shown that both birth weight and maternal pre-eclampsia are associated with adolescent growth and maturation (Vatten et al, 2003), and therefore, the intrauterine environment may initiate a tracking pattern of growth that ranges throughout childhood and adolescence. Ultimately, this may play a critical role in the development of breast cancer.

Table 1 Odds ratios (ORs) and 95% confidence intervals (CIs) of breast cancer associated with maternal age at birth

Variable	Case patients	Control subjects	ORa	95% CI
Maternal age at birth				
<25	56	196	1.0	Reference
25–29	60	212	1.0	0.7–1.5
30–34	41	155	1.0	0.6–1.5
≥35	29	99	1.0	1.6–1.6

P trend = 0.97

aORs are computed using conditional logistic regression with cases and controls matched on year of birth. bORs are adjusted for age at first birth and parity in the regression model.

*Correspondence: Dr LJ Vatten; E-mail: lars.vatten@medisin.ntnu.no

© 2003 Cancer Research UK
REFERENCES

Sanderson M, Shu XO, Jin F, Dai Q, Ruan Z, Gao YT, Zheng W (2002) Weight at birth and adolescence and premenopausal breast cancer risk in a low-risk population. *Br J Cancer* **86**: 84–88

Vatten LJ, Maehle BO, Lund Nilsen TI, Tretli S, Hsieh CC, Trichopoulos D, Stuver SO (2002) Birth weight as a predictor of breast cancer: a case–control study in Norway. *Br J Cancer* **86**: 89–91

Vatten LJ, Romundstad PR, Holmen TL, Hsieh CC, Trichopoulos D, Stuver SO (2003) Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at menarche in female offspring. *Obstet Gynecol* **101**: 529–533