Role of ABO Secretor Status in Mucosal Innate Immunity and H. pylori Infection

Sara Lindén¹,²,³, Jafar Mahdavi⁴, Cristina Semino-Mora¹,², Cara Olsen⁵, Ingemar Carlstedt⁶, Thomas Börén⁷*, Andre Dubois¹,²*

1 Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America, 2 United States Military Cancer Institute, Bethesda, Maryland, United States of America, 3 Mucosal Diseases Program, Mater Medical Research Institute, South Brisbane, Australia, 4 Division of Microbiology and Infectious Diseases, Queen’s Medical Centre, Nottingham, United Kingdom, 5 Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America, 6 Mucosal Biology Group, Department of Cell- and Molecular Biology, BMC, Lund University, Lund, Sweden, 7 Department of Medical Biochemistry and Biophysics, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden

The fucosylated ABH antigens, which constitute the molecular basis for the ABO blood group system, are also expressed in salivary secretions and gastrointestinal epithelia in individuals of positive secretor status; however, the biological function of the ABO blood group system is unknown. Gastric mucosa biopsies of 41 Rhesus monkeys originating from Southern Asia were analyzed by immunohistochemistry. A majority of these animals were found to be of blood group B and weak-secretor phenotype (i.e., expressing both Lewis a and Lewis b antigens), which are also common in South Asian human populations. A selected group of ten monkeys was inoculated with Helicobacter pylori and studied for changes in gastric mucosal glycosylation during a 10-month period. We observed a loss in mucosal fucosylation and concurrent induction and time-dependent dynamics in gastric mucosal sialylation (carbohydrate marker of inflammation), which affect H. pylori adhesion targets and thus modulate host–bacterial interactions. Of particular relevance, gastric mucosal density of H. pylori, gastritis, and sialylation were all higher in secretor individuals compared to weak-secretors, the latter being apparently “protected.” These results demonstrate that the secretor status plays an intrinsic role in resistance to H. pylori infection and suggest that the fucosylated secretor ABH antigens constitute interactive members of the human and primate mucosal innate immune system.

Citation: Lindén S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I, et al. (2008) Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathog 4(1): e2. doi:10.1371/journal.ppat.0040002

Introduction

In turbulent systems such as the oro-gastro-intestinal tract, adaptation to local niches requires microbial adherence properties to match host receptors and thereby stabilize microbial colonization or infection. H. pylori achieved this goal by developing the BabA and SabA adhesins, which bind to the host fucosylated blood group antigens (denoted the ABH antigens) and sialylated Lewis antigens, respectively [1–5]. These adhesins are relevant to H. pylori pathogenicity since BabA-positive strains are frequently present in both peptic ulceration and gastric cancer [5–8]. H. pylori infection and associated gastritis induce expression of mucosal sialylated receptors for the SabA adhesin that also attract peripheral neutrophils to local areas of inflammation [2,9]. In turn, H. pylori SabA adhesin acts as a “selectin-mimic” in mediating binding to both sialylated epithelial and to neutrophils [2,10].

The A, B, and H antigens are complex fucosylated carbohydrates expressed on erythrocytes of all individuals of blood group A, B, or O, respectively. The common denominator is the Fucα1,2-glycan presented by all three ABH antigens, because the bone marrow (from where the erythrocytes originate) express the common H-(fucosyl)transferase. Lack of fucosylated ABH antigens on erythrocytes in circulation (Bombay phenotype) is exceedingly rare. The ABH antigens are also expressed along the oro-gastro-intestinal (GI) mucosal lining in individuals of “positive secretor status” (secretor phenotype, Se) [11,12]. This is because Se individuals express the Secretor-(fucosyl)transferase, which is the enzyme that produces the Fucα1,2-glycan structure, the hallmark of ABH antigens in saliva, and gastrointestinal mucus secretions and epithelium (see Figure 1A for bg antigens). Due to the mucosal secretor-transferase, gastrointestinal epithelia of secretors express blood group O antigens [Lewis b (Leb) and H antigens], which can be extended by a GalNac- or Gal-residue into bg A or B antigens, respectively [12] (Figure 1). In contrast, individuals of non-secretor phenotype, Se⁰, lack the secretor-transferase altogether, and make the shorter Lewis a antigen (Lea) [13] (Figure 1). A third and most recently described human secretor phenotype, the weak-secretor phenotype, Se⁰w, is characterized by expression of both Lea and Leb antigens. The composite of Lea and Leb antigens is the consequence of a weak (mutated) form of the secretor transferase [11] (Figure 1B and Figure 1C).

PLoS Pathogens | www.plospathogens.org January 2008 | Volume 4 | Issue 1 | e2
Author Summary

The common ABO blood group antigen system was described in the early 20th century. In addition, it has been known for 60 years that the majority of individuals also express the corresponding ABO antigens (carbohydrate identity tags) in their saliva, tears, milk, and mucus secretions in the digestive tract. To this date, however, the biological function of the ABO blood group antigens has remained an enigma. Here, we show that the great majority of Rhesus monkeys are of blood group B and weak-secretors, i.e., are similar to the human populations in South Asia from where these monkeys originate. This observation suggests that an evolutionary adaptation in digestive tract mucosal carbohydrate patterns to local environmental selection has occurred. In addition, we demonstrate that long-term infection by the “peptic ulcer bacterium” *Helicobacter pylori* induces mucosal carbohydrate patterns that change according to the individual secretor phenotype. The common weak-secretor monkeys were apparently “protected,” as they had stable glycosylation, lower inflammation, and lower bacterial infection load, whereas the less common secretor animals had increased levels of inflammation-associated mucosal carbohydrate patterns and a transient decrease in the ABO blood group system type of carbohydrates. These novel observations suggest that the individual ABO blood group and secretor phenotype are part of human and non-human primate innate immunity against infectious disease.

A protective mucus layer comprised of mucus glycoproteins carrying multitudes of carbohydrate structures covers the mucosal surfaces. This glyco-mucus layer exhibits rapid turnover and is shed into the GI tract lumen together with scavenged and aggregated secretions, desquamated cells, and microorganisms. Mucins from both humans and Rhesus monkeys efficiently bind *H. pylori* via fucosylated carbohydrates [14,15]. Thus, fucosylated host secretions such as mucus, saliva, and milk, inhibit adherence of *H. pylori* and other microbial pathogens to the mucosal cell surfaces [16–18].

A majority of Caucasians (80%) are secretors, whereas 20% of them are non-secretors, and weak-secretor individuals are rare or not yet discovered. In contrast, weak-secretor individuals are common among Chinese, Japanese, Polynesians, Australian aborigines, and African-Americans [11]. The skewed prevalence in secretor phenotypes suggests selection in response to specific types of infections or other environmental conditions. Indeed, Se− individuals are more at risk for urinary tract infection [19,20]; Se− subjects also express higher inflammatory tract activity and sialylated host antigens to *H. pylori* infection, which may explain the higher prevalence of peptic ulcer disease observed in those subjects [21–23]. In contrast, Se− individuals are less likely to develop Norwalk virus–induced acute gastroenteritis due to the lack of mucosal Se-dependent ABH antigens that mediate mucosal adherence of virus particles in Se subjects [24].

Here, the dynamics of mucosal responses to *H. pylori* infection was studied in Rhesus monkeys because this animal is subject to natural *H. pylori* infection and exhibits human-like patterns of gastric glycosylation [15,25–27]. Furthermore, the complete description of the macaque genome is available for this important primate model [28]. After determining the ABO blood groups and secretor phenotypes of 41 Rhesus monkeys, we inoculated virulent *H. pylori* strains to representative secretor groups. During the persistent *H. pylori* infection that ensued, gastric mucosal fucosylation transiently decreased and sialylation reciprocally increased. *In vivo* *H. pylori* density, inflammation, and *in vitro* adherence of *H. pylori* to sialylated antigens were all lower among weak-secretors (the common Rhesus monkey phenotype) compared to regular secretors.

We propose that mucosal glycosylation on GI cell surfaces and secretions as determined by secretor status together influence the course of *H. pylori* infection as part of the primate innate immunity.

Results

Rhesus Monkey ABO Blood Groups and Secretor Phenotypes

Immunostaining of gastric biopsies from 41 Rhesus monkeys without *H. pylori* infection demonstrated that 28 animals (68%) were of bg B and 13 (32%) were of bg AB. Thus, mucosal bg B antigen was expressed in all 41 monkeys. The positive immunostaining of bg B and A antigens in the gastric epithelium also demonstrates that all animals were secretors (Se) of ABH-antigens and, hence, that non-secretors (Se− that lack ABH antigens in the GI mucosal lining) were not represented in this large group of monkeys (Figure 1). In addition, 34/41 (83%) animals expressed both Leb and Lea, an antigen combination that, in humans, is regarded as the characteristics of the weak-secretor phenotype (Sew). Only seven monkeys did not express mucosal Lea and they were identified as regular Se. Thus, Sew status with the weak form of secretor transferase appears to be the predominant secretor phenotype in the Rhesus monkey.

Secretor Phenotype Affects *H. pylori* Infection Density and Gastritis

A total of ten animals, 3/7 Se (bg B) and 7/34 Sew (bg B, Lea+/ Leb+) animals, were selected for *H. pylori* inoculation experiments, and two virulent CagA and VacA positive *H. pylori* strains became predominant in most animals after a few months [29]. We determined that these two strains could bind both ABH and sLea/ antigens (see Materials and Methods). Persistent high-grade infection was observed in 9/10 monkeys and only animal 86D02 (Sew) demonstrated low-grade infection (*H. pylori* score of 1, gastritis score ranging from 1 to 2, but negative cultures, Table S1).

H. pylori infection and associated gastritis developed similarly in the antrum (Figure 2A and 2C) and in the corpus (Figure S2A and S2C) starting at day 7 after infection. In both regions of the stomach, *H. pylori in vivo* density score was 2-fold higher in Se than in the dominant Sew phenotype from 4 to 10 months after inoculation (Figures 2B and S2B, *P* <0.05). Consistent with the higher infection load, secretors had increased levels of gastritis compared to weak-secretors but the difference was significant only in the corpus (Figures 2D and S2D). Interestingly, corpus gastritis scores increased significantly compared to pre-inoculation levels only in Sew monkeys but not in Sew animals (Figure S2D). Finally, *H. pylori* infection density and gastritis were strongly correlated (Table 1A).

Time-Dependent Suppression of Fucosylated Blood Group Antigens during Infection

In all seven Sew monkeys, both Leb and Lea antigens were expressed in surface epithelium before experimental infection...
At 1–4 weeks after inoculation, Le b (Figure 3B) and/or Le a expression (data not shown) transiently decreased in 5/7 monkeys. However, by 2–4 months, expression of Le b/Le a returned to pre-inoculation levels or higher (Figure 3C). Similarly, the fucosylated Lewis y (Le y) antigen expressed in the gastric glands of both Se and Se w non-infected animals initially decreased in response to inoculation, and then returned to baseline in 8/10 monkeys (data not shown). Thus, H. pylori infection causes general suppression of fucosylation in the gastric mucosa, as reflected by the alterations in the different Le a, Le b, and Le y antigens (this series of fucosylated Lewis antigens are described in Figure 1A).

Table 1. Correlation Coefficients for Parameters That Were Found to be Statistically Significant (See “Statistics” in Materials and Methods and in Protocol S1)

Variables	\(R_a\)	\(R_b\)	\(R_c\)	\(P\)		
A. H. pylori density and gastritis score	H. pylori density, A	Gastritis score, A	0.61	0.72	0.56	<0.001*
B. Sialylated Le antigens and H. pylori density/gastritis score	Sialyl-Le a, A, S	H. pylori density, A	0.45	0.93	0.13	<0.001*
	Sialyl-Le b, A, S	H. pylori density, A	0.38	0.38	0.38	0.002*
	Sialyl-Le y, A, S	Gastritis score, A	0.42	0.78	0.16	0.002*
	Sialyl-Le x, A, S	Gastritis score, A	0.56	0.59	0.54	<0.001*
C. In vitro adherence of H. pylori strains	In.v.ad. ΔbabA, A, S	In.v.ad. ΔbabA, A, S	0.42	0.55	0.32	0.003
D. In vitro adherence of H. pylori strains and H. pylori density/gastritis score	In.v.ad. ΔbabA, A, S	H. pylori density, A	0.42	0.79	0.13	0.001*
	In.v.ad. ΔbabA, A, S	H. pylori density, A	0.51	0.64	0.24	0.001*
	In.v.ad. ΔbabA, A, S	Gastritis score, A	0.44	0.62	0.23	0.002*
	In.v.ad. ΔbabA, A, S	Gastritis score, A	0.48	0.70	0.31	0.001*
E. In vitro adherence of H. pylori strains and sialylated Le antigens	In.v.ad. ΔbabA, A, S	Sialyl-Le a, A, S	0.54	0.79	0.24	<0.001*
	In.v.ad. ΔbabA, A, S	Sialyl-Le b, A, S	0.62	0.80	0.46	<0.001*

A = Antrum, C = Corpus, S = surface/foveolar epithelium, ΔbabA = babA1A2Δ, ΔbabA17875, and In.v.ad. = in vitro adherence. * Denotes P-values that remain below 0.05 after Bonferroni corrections.
doi:10.1371/journal.ppat.0040002.t001
Stable Expression of Gastric Type of Mucin Core Proteins during Infection

The observed shifts in glycosylation were not due to pre-dysplastic alterations of the gastric mucosa such as intestinal metaplasia, because the spatial distribution of expression patterns for the two common gastric mucins MUC5AC and MUC6 (Figure S3) were unchanged during the 10-month period of experimental infection, with no aberrant MUC2 or atypical sulfo-mucins being detected (data not shown).

The In Vitro Adherence Patterns Revealed by BabA and SabA Mutants Paralleled the Changes in Mucosal Fucosylation and Sialylation Observed during Infection In Vivo

The significant correlation between H. pylori density and gastritis and the similarity in time course (Figures 2A, 2C, S2A, and S2C) suggest that the higher level of mucosal inflammation is a consequence of the higher infection load. Because of the exclusive binding properties of BabA (for fucosylated antigens) and SabA (for sialylated antigens) mediated binding properties [3,30], H. pylori mutants were applied as lectin-like tools in an in vitro adherence assay to functionally map detailed shifts specific for secretor-dependent mucosal fucosylation and sialylation induced by H. pylori infection and the associated inflammatory responses. The ΔsabA (BabA+) mutant bound fucosylated, secretor-dependent ABH/Le[b] antigens (but not the shorter Le[a] or sialylated antigens), whereas the ΔbabA (SabA+) mutant bound inflammation-associated sialylated (but not fucosylated) antigens [2,5,31]. Representative adherence patterns of binding to Rhesus monkey biopsies by the ΔsabA (BabA+) and the ΔbabA (SabA+) mutants are shown in Figure S1. In histo-tissue sections of gastric mucosa, the ΔsabA (BabA+) mutant binds to the foveolar epithelium cell surfaces and intra cellular mucins and, in addition, to the secreted fucosylated mucus layer. These binding tests demonstrate that BabA positive bacteria co-localize with the MUC5AC mucin (compare Figure S3A and S3C). By comparison, the ΔbabA (SabA+) mutant does not bind to the surface epithelium of non-infected Rhesus monkey gastric mucosa, and SabA-mediated binding instead colocalizes with the sialylated MUC6 mucin expressed in the deeper located glandular region (compare Figures S3B and S3D). However, when the mucosa during infection has responded with expression of inflammation-associated antigens, the ΔbabA (SabA+) mutant binds to the sialylated foveolar epithelium and mucus layer (illustrated in Figure S1).

Importantly, in vivo, H. pylori binds to the intact apical cell surfaces and secreted extracellular mucins in mucus, whereas by the in vitro adherence assay and use of histo-tissue sections, the H. pylori bacterial cells also bind to intracellular mucins that have been exposed by histo sectioning of the mucosal cells and tissue. Thus, the in vitro adherence method provides an unique opportunity to investigate time-dependent changes in secretor-dependent mucosal glycosylation that occurs during H. pylori infection, i.e., using small pinch biopsies collected at regular intervals during an extended study period and without sacrificing the animals. In the basal state, the BabA-positive ΔsabA mutant adhered in vitro to the non-inflamed, non-infected gastric mucosa of all ten Rhesus monkeys (see Figures 4A and 3C), in accordance with the

Figure 2. Infection Density, Gastritis, and Mucosal Sialylation in Proximal Stomach (Antrum), in Response to H. pylori Infection (Means ± SEM)

The figure illustrates the time course of H. pylori infection density scores in biopsies from the ten monkeys (A) and in three Se and seven Se[w] individuals following inoculation (B). Also illustrated is the time course of gastritis scores in biopsies from the ten monkeys (C) and from the three Se and seven Se[w] individuals following inoculation (D). Finally, the mean percentages of sLe[a] positive (E) and sLe[x] positive surface epithelium (F) are shown in the ten monkeys following inoculation. * illustrates significant (P < 0.05) difference from pre-inoculation value and # illustrates significant (P < 0.05) difference between Se and Se[w].

doi:10.1371/journal.ppat.0040002.g002

Expression of Sialylated Lewis Antigens in Dynamic Response to Infection and Gastritis

The mean percentage of sialyl-Lewis a (sLe[a]) and sialyl-Lewis x (sLe[x]) positive surface epithelial cells rapidly increased in all monkeys with established H. pylori infection (Figure 2E and 2F in antrum and in Figure S2E and S2F in corpus). Sialyl expression is also illustrated in Figure 3D–3L. Expression of sLe[a] was stronger than that of sLe[x], and the percentage of sLe[a] positive cells rapidly increased 4-fold within a week of inoculation. Thus, a majority of surface epithelial cells (60%) express strong sLe[a] at 2 months both in antrum and corpus (Figures 2E and S2E). Similarly, expression of sLe[x] was strongest at 2 months (Figure 2F). Expression of sialylated antigens later decreased in seven monkeys (Figures 2E and S2E, and also illustrated in Figure 3F and 3L). Importantly, sLe[a] and sLe[x] expression in surface epithelium of antrum correlated with both H. pylori density and gastritis scores (see Table 1B).
mucosal expression of secretor-dependent bg B antigen in all monkeys. Following \textit{H. pylori} inoculation, the dynamics of glycosylation and inflammation were tightly correlated (see Table 1), as revealed by the rapid and transient decrease in BabA-mediated \textit{in vitro} adherence that paralleled the expression patterns of fucosylated antigens (Compare Figure 4A with Figure 3A–3C).

Expression of secretor-dependent mucosal fucosylation involved in \textit{H. pylori} adhesion remained strong and robust throughout the 10-month observation period in Sew subjects compared to the rapid initial decrease in fucosylation in Se individuals, as revealed by BabA-mediated \textit{in vitro} adherence to fucosylated bg antigens (Figure 4A). In addition, BabA-mediated \textit{in vitro} adherence to fucosylated mucosa was 1.7 times higher in Sew than in Se monkeys (\(P<0.001\)) and inversely correlated with \textit{in vivo} \textit{H. pylori} density, gastritis, and sLex expression (see Tables 1D and 1E, respectively). Thus, Sew with strong and robust expression of gastric fucosylation have both lower \textit{H. pylori} infection density and less gastritis compared to Se individuals (Figures 4A, 2B, and 2D).

The strong fucosylation in Sew monkeys, as revealed by the robust BabA-mediated \textit{in vitro} adherence, reflects the high density of fucosylated mucins in the Sew gastric mucosa. Indeed, gastric mucins purified from healthy, non-infected Rhesus monkey bind \textit{H. pylori} primarily via fucosylated structures (Figure S3E), similarly to human mucins binding to \textit{H. pylori} [4,14].

In contrast to BabA-mediated adherence, \textit{in vitro} adherence to sialylated glycoconjugates by the SabA positive \(\Delta\)babA mutant was absent in the surface epithelium of healthy, uninfected mucosa. However, SabA-mediated adherence rapidly increased in response to inoculation, thus demonstrating induction of mucosal sialylation. SabA-mediated \textit{in vitro} adherence to the surface epithelium correlated with both \textit{in vivo} \textit{H. pylori} density and gastritis (Table 1D) and with expression of the inflammation-associated sLea and sLex antigens (Table 1E). Furthermore, SabA-mediated \textit{in vitro} adherence to sialylated glycoconjugates was 1.9-fold higher in Se than in Sew monkeys (Figure 4B). The rapid induction of SabA-mediated binding to the sialylated surface epithelium of the gastric mucosa (Figure 4B) demonstrates that Se monkeys react with stronger inflammatory response and higher recruitment of inflammatory cells, i.e., gastritis, whereas the Sew animals with low grade infection and inflammation provides sparse mucosal sialylation and only modest recruitment of inflammatory cells. Fucosylation and sialylation levels follow opposite dynamics during the full 10-month observation period (fucosylation in Figures 4A and 3A–3C; sialylation in Figures 4B and 3D–3I; Table 1C). Thus, Sew individuals are more robust in mucosal fucosylation and balanced in sialylation, which confers lower inflammatory level, lower gastritis, and lower \textit{H. pylori} infection density as compared to Se individuals (Figures 2B, 2D, 2S, and 2S).

Discussion

The present study demonstrates that Sew individuals have robust mucosal fucosylation and lower mucosal inflammatory and sialylation responses to experimental \textit{H. pylori} infection. Therefore, Sew monkeys would be expected to better tolerate...
The ABO blood groups were discovered over a century ago [39], chemically described 50 year ago [40,41], and cloned almost 20 years ago [42]. Similarly, the secretor system was described 60 years ago [43], blood group antigens were characterized from human intestine over 30 years ago [44] and the Se transferase was cloned in 1995 [13], but the biological and functional role of the ABO system has remained an enigma [45]. Here, we show that secretor phenotype determines the dynamics of mucosal glycosylation in response to H. pylori infection and conditions the nature of the host response. Thus, H. pylori infection is associated with an increase in sialylated mucosal antigens and a concurrent decrease in fucosylated mucosal antigens. The loss of fucosylation during acute H. pylori infection is probably a consequence of the fast induction in expression of inflammation-associated sialyl-transferases and the resulting competition for carbohydrate chains by glycosyl (sialyl and fucosyl) transferases (Figure 1B). Competition between fucosyl- and sialyl-transferases for the same carbohydrate core chains was demonstrated by competition experiments where di-saccharides suppressed both sialylation and formation of selectin (endothelial cell adhesion) ligands on cancer cells [46]. The present series of results also reveals that, in contrast to Se monkeys, Sew individuals maintain strong and robust expression of fucosylated mucosal ABH antigens during H. pylori infection (Figure 4A). Interestingly, intestinal mucosal glycosylation also becomes fucosylated in response to establishment of conventional bacterial flora in gnotobiotic mice [47].

The combined results suggest that mucosal fucosylation could be a mixed blessing for H. pylori. Indeed, large mucin molecules with fucosylated high-affinity binding sites for BabA could be exploited by H. pylori as in vivo binding sites, but they may also act as scouts of the host glycan innate immunity system. Thus, the mucosal fucosylation represents a protective scavenger factor that reduces infection density, especially since H. pylori infection also increases gastric mucus secretion [48]. The present demonstration that mucosal fucosylation in response to H. pylori infection reduces bacterial density and associated inflammation and, in particular, impacts on infection in Sew monkeys due to stronger mucosal fucosylation phenotype, strongly suggests that ABH secretor-dependent mucosal glycosylation modulates innate immunity responses and may contribute to variable risk of gastric disease.

Materials and Methods

Experimental animals. The experiments were conducted according to the “Guide for the Care and Use of Laboratory Animals” [9]. All procedures involving animals were reviewed and approved by the USUHS animal care and use committee. The ancestors of 37 animals had been captured in India, while four were of mixed Chinese and Indian origin. The localization of Lewis antigens in these monkeys before H. pylori inoculation has been investigated [15]. H. pylori and H. heilmannii infection was eradicated in all monkeys 6 months before inoculation [29]. The ten male monkeys that were inoculated all originated from India and were 4–13 years old (mean 7.1). F754, 86D02, T4C, 8V5, F436, 82A49, and 8PZ animals were Sew, and 86D06, E6C, and 85D08 were Se.

Inoculation strains and cultures. Seven low-pass H. pylori strains were cultured, characterized (five were CagA+ and two were CagA−) (see Text S1), and inoculated to monkeys as reported [29]. Their binding properties were analyzed by RIA [31]: J170, J254, J166, and J258 bound both sLeX and LeX, J282 bound LeX, and J178 bound sLeX.

Immunohistochemistry. Genta-stained sections were used to
determine \textit{H. pylori} density scores and the Sydney system was used to
generate gastritis scores [29]. Sulfo-mucins were detected with high-
iron diamine stain [17]. Immunohistochemistry was performed as

described [15] (see Text S1). For quantitative histochemistry, tissue
sections were stained simultaneously. Non-sialylated carbohydrate
structures were quantified by visual estimation of intensity, whereas a
procedure by J. Czege, USUHS, was used for sialylated antigens. The
surface/foveolar epithelium, lamina propria and glands were sepa-

rately outlined and the percentage area stained was averaged from

three fields of view.

\textbf{H. pylori adherence in vitro.} The 1785LE mutant was referred to

as the \textit{AdaA} (BabA+) mutant or \textit{BabA-positive mutant}, and the

isogenic 1785LE mutant was referred to as \textit{AdaA} (BabA−) mutant or \textit{BabA-negative mutant} \cite{2,5}. In vitro

adherence was digitally quantified in a total of 1,200 mucosal zones

(120 biopsies, ten pits/biopsy) \cite{31} (see Text S1).

\textbf{adherence was digitally quantified in a total of 1,200 mucosal zones

\textit{babA}}

\textbf{as D}

\textit{isogenic 17875}

\textbf{1. Reagents

\textbf{Found at doi:10.1371/journal.ppat.0040002.sg003 (550 KB DOC).}

\textbf{Figure S3.}

\textbf{H. pylori Proximal Stomach in Response to

\textbf{Primate Gastric Mucosa

\textbf{H. pylori

\textbf{References

1. Boren T, Falk P, Roith KA, Larson G, Normark S (1993) Attachment of

\textit{Helicobacter pylori} to human gastric epithelium mediated by blood group

antigens. Science 259: 1892–1895.

2. Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L, et al. (2002)

\textit{Helicobacter pylori} SiaH adhesin in persistent infection and chronic

inflammation. Science 297: 573–578.

3. Aspahl-Hurtig M, Dailidé G, Lahmann M, Kalia A, Ilver D, et al. (2004)

Functional adaptation of BabA, the \textit{H. pylori} ABO blood group antigen

binding adhesin. Science 305: 519–522.

4. Lindén S, Nordman H, Hedenbro J, Hurtig M, Boren T, et al. (2002) Strain-

and blood group-dependent binding of \textit{Helicobacter pylori} to human gastric

MUC5AC glycoforms. Gastroenterology 123: 1923–1930.

5. Iver D, Armpist O, Ogren J, Frick DM, Kersslyte D, et al. (1998)

\textit{Helicobacter pylori} adhesin binding fucosylated histo-blood group antigens revealed by

retargeting. Science 279: 373–377.

6. Gerhard M, Lehn N, Neumayer N, Boren T, Rad R, et al. (1995) Clinical

expression of a candidate for the human Secretor blood group alpha(1,2)

sialic acid binding SabA adhesin binding to non-MUC5AC mucins. Biochim J 384: 263–270.

7. Linde´n S, Bore ´n T, Dubois A, Carlstedt I (2004) Rhesus monkey gastric

infection. Proc Natl Acad Sci U S A 101: 17807–17812.

8. Linden S, Mahdavi J, Hedenbro J, Boren T, Carlstedt I (2004) Effects of pH

on \textit{Helicobacter pylori} binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem J 384: 263–270.

9. Linden S, Boren T, Dubois A, Carlstedt I (2004) Rhesus monkey gastric

mucins: Oligomeric structure, glycoforms and \textit{Helicobacter pylori} binding. Biochem J 379: 765–775.

10. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS

(2003) \textit{Campylobacter jejuni} binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlicN-ac), and fucosyloligosaccharides of human milk inhibit its

binding and infection. J Biol Chem 278: 14112–14120.

11. Linden S, Mahdavi J, Hedenbro J, Boren T, Carlstedt I (2004) Effects of pH

on \textit{Helicobacter pylori} binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem J 384: 263–270.

12. Newburg DS, Ruiz-Palacios GM, Morrow AL (2005) Human milk glycans

protect infants against enteric pathogens. Annu Rev Nutr 25: 37–58.

13. Stapleton AE, Strout MR, Hakomori SI, Stamme W (1998) The globoseries

glycosphingolipid sialyl galactosyl globoside is found in urinary tract

structures and is a preferred binding receptor \textit{In vitro} for uropathogenic

Escherichia coli expressing pap-encoded adhesins. Infect Immun 66: 3856–

3861.

14. Lomberg H, Jodal U, Leffler H, De MP, Svanborg C (1992) Blood group

non-secretors have an increased inflammatory response to urinary tract

infection. Scand J Infect Dis 24: 77–83.

15. Aird I, Bentall HH, Mehgan JA, Roberts JA (1954) The blood groups in relation
to peptic ulcer and carcinoma of colon, rectum, breast, and bronchus; an association between the ABO groups and peptic ulceration. Br Med J 1883: 315–321.

16. Mentis A, Blackwell CC, Weir DM, Spiliadis C, Dailianas A, et al. (1991) ABO

Secretor Status Protects against Infection

4. \textit{H. pylori} binding to mucins in ELISA

5. Statistics

Found at doi:10.1371/journal.ppat.0040002.sd001 (34 KB DOC).

\textbf{Table S1. Individual Values of Gastritis Scores, \textit{H. pylori In Vivo Density, and Antral and Body sLea and sLeb Staining for Antrum and Body Mucosa in Fociylation and Sialylation Patterns Revealed by In Vivo Adherence Mediated by BabA and Saba, Respectively}

Found at doi:10.1371/journal.ppat.0040002.sd001 (266 KB DOC).

\textbf{Text S1. Supporting References

Found at doi:10.1371/journal.ppat.0040002.sd002 (46 KB DOC).

\textbf{Acknowledgments

We thank H. Clausen, J. Holgersson, D. Berg, B. E. Uhlin, and L. David

for critically discussing the manuscript. The opinions and assertions

are the private ones of the authors and are not to be construed as

official or reflecting the views of the Department of Defense or the

USUHS.

\textbf{Author contributions.} SL made initial observations and together

with JM performed main experiments and analyzed data. CSM performed IHC and determined ABO blood group and Se-pheno-

types. CO performed statistical analyses. SL, IC, TB, and AD wrote the

manuscript. All authors discussed the results and commented on the

manuscript.

\textbf{Funding.} This work was supported by grants from the Sixten

Gemzeus Stiftelse (SL); The Wenner-Gren Foundation (SL), the

Swedish Society for Medical Research (SL), and the Swedish

Foundation for Strategic Research (Glycoconjugates in Biological

Systems, SL/IC, TB); Osterlunds Stiftelse (IC); Swedish Medical

Research Council (11218TB and 7902IC) and was in part performed

within the Umeå Centre for Microbial Research (UCMR); the

Swedish Cancer Society (TB); the JC Kempe and Seth M Kempe Memorial

Foundation (TB); The Mizutani Foundation Glycoscience Award 2003

(TB). The James Tudor Foundation (JM), and the United States

National Institutes of Health (CA82312/AD).

\textbf{Competing interests.} The authors have declared that no competing

interests exist.
blood group, secretor status and detection of Helicobacter pylori among
patients with gastric or duodenal ulcers. Epidemiol Infect 106: 221–229.

23. Heneghan MA, Moran AP, Feeley KM, Ógán EL, Gouding J, et al. (1998)
Effect of host Lewis and ABO blood group antigen expression on
Helicobacter pylori colonisation density and the consequent inflammatory
response. FEMS Immunol Med Microbiol 29: 257–266.

24. Marionneau S, Ariaud F, Bovin NV, Pendu JL, Ruvoen-Clouet N (2005)
Influence of the combined ABO, FUT2, and FUT3 polymorphism on
susceptibility to Norwalk virus attachment. J Infect Dis 192: 1071–1077.

25. Dubois A, Fiala N, Heman-Ackah LM, Drazeck ES, Tarnawski A, et al. (1994)
Natural gastric infection with Helicobacter pylori in monkeys. A model for
human infection with spiral bacteria. Gastroenterology 106: 1405–1417.

26. Dubois A, Fiala N, Weichbrod RH, Ward GS, Nix M, et al. (1995)
Seroepizootiology of Helicobacter pylori gastric infection in nonhuman
primates housed in social environments. J Clinical Microbiol 33: 1492–
1495.

27. Apoil PA, Roubinet F, Despiau S, Mollicone R, Oriol R, et al. (2000)
Evolution of alpha 2-fucosyltransferase genes in primates: relation between
an intronic Alu-Y element and red cell expression of ABH antigens. Mol
Biol Evol 17: 337–351.

28. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. (2007)
Evolutionary and biomedical insights from the rhesus macaque genome. Science
316: 222–224.

29. Dubois A, Berg D, Incecik E, Fiala N, Heman Ackah L, et al. (1999) Host
specificity of Helicobacter pylori strains and host responses in experimentally
challenged nonhuman primates. Gastroenterology 116: 90–96.

30. Aspholm M, Olfat FO, Norden J, Sonden B, Lundberg C, et al. (2006) SabA
is the H. pylori hemagglutinin and is polymorphic in binding to sialylated
glycans. LoS Pathog 2: e110. doi:10.1371/journal.ppat.0020110

31. Aspholm M, Kalia A, Ruhl S, Schedin S, Arnqvist A, et al. (2006)
Helicobacter pylori adhesion to carbohydrates. Methods Enzymol 417: 293–339.

32. Mourant AE, Kopec AC, Domaniewska-Sobczak K (1976) The distribution
of the human blood groups and other polymorphisms. London: Oxford
University Press.

33. Malekasgar AM (2005) ABO blood group prevalence in spontaneously
repeated abortion. Turk J Haematol 21: 181–187.

34. Hernandez RD, Hubisz MJ, Wheeler DA, Smith DG, Ferguson B, et al. (2007)
Demographic histories and patterns of linkage disequilibrium in Chinese
and Indian rhesus macaques. Science 316: 240–243.

35. Malaviijitnond S, Sae-Low W, Hamada Y (2007) The human-ABO blood
groups of free-ranging long-tailed macaques (Macaca fascicularis) and
parapatric rhesus macaques (M. mulatta) in Thailand. J Med Primatol 37:
10.1111-1600-0684.

36. Seymour RM, Allan MJ, Pomiankowski A, Gustafsson K (2004) Evolution of
the human ABO polymorphism by two complementary selective pressures.
Proc Biol Sci 271: 1065–1072.

37. Glass RI, Holmgren J, Haley CE, Khan MR, Svennerholm AM, et al. (1985)
Predisposition for cholera of individuals with O blood group. Possible
evolutionary significance. Am J Epidemiol 121: 791–796.

38. Saitou N, Yamamoto F (1997) Evolution of primate ABO blood group genes
and their homologous motifs. Mol Biol Evol 14: 399–411.

39. Landsteiner K (1900) Zur Kenntnis der antifermentativen, lytischen und
agglutinierenden Wirkungen des Blutserums und der Lymph. Zentralblatt
Bakteriologie 27: 357–362.

40. Morgan WT, Watkins WM (1969) Genetic and biochemical aspects of
human blood-group A, B, H, Lea and Lel specificity. Br Med Bull 25: 30–34.

41. Kabat EA (1973) Immunological studies on the carbohydrate moiety of
water-soluble blood group A, B, H, Lea, and Leb substances and their
precursor i antigens. Carbohydrates in solution. Adv Chem Ser 117: 334–
361.

42. Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990) Molecular
genetic basis of the histo-blood group ABO system. Nature 345: 229–233.

43. Grubb R (1948) Correlation between Lewis blood group and secretor
character in man. Nature 162: 728.

44. Smith EL, Mckibbin JM, Karlsson KA, Pascher I, Samuelsson BE (1975)
Characterization by mass spectrometry of blood group A active glycolipids
from human and dog small intestines. Biochemistry 14: 2120–2124.

45. Greenwell P (1997) Blood group antigens: molecules seeking a function?
Glycoconj J 14: 159–173.

46. Brown JR, Fuster MM, Whisenant T, Esko JD (2003) Expression patterns of
alpha 2,3-sialyltransferases and alpha 1,3-flucosyltransferases determine
the mode of sialyl Lewis X inhibition by disaccharide decoys. J Biol Chem
278: 23552–23559.

47. Bry L, Falk PG, Middvedt T, Gordon JI (1996) A model of host-microbial
interactions in an open mammalian ecosystem. Science 273: 1380–1383.

48. Kang W, Rathinavelu S, Samuelson LC, Merchant JL (2005) Interferon
gamma induction of gastric mucous neck cell hypertrophy. Lab Invest 85:
702–715.

49. National Research Council (1996) Guide for the care and use of laboratory
animals. Washington (D.C.): National Academy Press.