Relation between secondhand smoke exposure and cardiovascular risk factors in never smokers

Sehun Kimᵃ,ᵇ, Si-Hyuck Kangᵃ,ᵇ, Donghoon Hanᵃ, Sun-Hwa Kimᵃ, Hee-Jun Kimᵇ, JIN-Joo Parkᵃ, Youngjin Choᵃ, Yeonyee E. Yoonᵃ, Kyung-Do Hanᶜ, Il-Young Ohᵇ, Chang-Hwan Yoonᵃ, Jung-Won Suhᵃ, Hae-Young Leeᵈ, Young-Seok Choᵃ, Tae-Jin Younᵇ, Goo-Yeong Choᵃ, In-Ho Chaeᵃ, Dong-Ju Choiᵇ, and Cheol-Ho Kimᵃ

See editorial comment on page 1952

Objective: Secondhand smoke exposure (SHSE) in nonsmokers has been associated with premature cardiovascular mortality and ischemic heart disease. We conducted a cross-sectional, population-based study evaluating the relationship between SHSE, measured by subjective and objective methods, and conventional cardiovascular risks such as blood pressure, lipid profiles, and fasting glucose.

Methods: We extracted information on 7376 healthy adults who had never smoked, for whom there were available urine cotinine levels, from the Korea National Health and Nutrition Examination Survey 2008–2011. SHSE was defined using self-report questionnaires and urine cotinine levels. The main outcomes included SBP and DBP, serum lipid profiles, and fasting glucose.

Results: The mean age of the study population was 45.4 ± 0.4 years and 75.2% were women. Self-reported SHSE had no significant association with study outcomes except for DBP, which had marginally positive relationships (P = 0.060). Unadjusted analysis showed higher cotinine levels were associated with lower SBP, total cholesterol, LDL cholesterol, and triglyceride. All associations lost statistical significance after multivariable adjustment. Fasting glucose had a positive relationship with urine cotinine in quartiles but not with logarithm-transformed cotinine.

Conclusion: Although SHSE is associated with increased risk of cardiovascular mortality and morbidity, we did not find any consistent relationship among SHSE and blood pressure, lipid, or fasting glucose levels in this cross-sectional study. Using objective measurements of urine cotinine did not alter this relationship. Further long-term prospective studies are needed to evaluate the effect of SHSE as a cardiovascular risk factor.

Keywords: blood pressure, cardiovascular risk factors, fasting glucose, Korea National Health and Nutrition Examination Survey, lipid profiles, secondhand smoke exposure, self-report questionnaires, urine cotinine

Abbreviations: CHD, coronary heart disease; KNHANES, Korea National Health and Nutrition Examination Survey; SHSE, secondhand smoke exposure

INTRODUCTION

Smoking is a leading cause of death [1]. Growing evidence suggests that the harm from smoking tobacco is not confined to ‘active’ smokers. Passive smoking, also known as secondhand smoke exposure (SHSE), is the inhalation of smoke by persons other than the intended ‘active’ smoker, and it is estimated to cause 331,000 deaths worldwide [2,3].

Cardiovascular disease is the main cause of premature death associated with SHSE [4]. Two-thirds of all deaths attributable to SHSE were caused by ischemic heart disease [5]. Studies have shown that SHSE increases the risk of coronary heart disease (CHD) by 25–30% [6,7]. There are several explanations for the link between SHSE and cardiovascular effects, including impaired autonomic regulation, impaired diastolic function, and increased inflammation [8]. However, there is a paucity of data regarding the effects of SHSE on cardiovascular risk factors such as hypertension, diabetes, dyslipidemia, and fasting glucose [9].

SHSE is usually assessed using self-report questionnaires. However, this subjective method is prone to various sources of bias and cotinine levels can be used as objective markers [10,11]. Cotinine, the main metabolite of nicotine, can be measured in serum, urine, and saliva [12]. It has a long half-life and is useful in quantifying not only active but

Journal of Hypertension 2017, 35:1976–1982

⁎Internal Medicine, College of Medicine, Seoul National University and Seoul National University Bundang Hospital, Seongnam-si. †Department of Internal Medicine, Chung-Ang University College of Medicine. ‡Department of Biostatistics, College of Medicine, The Catholic University of Korea and ‡Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea. Correspondence to Tae-Jin Youn, MD, PhD, Professor, Seoul National University School of Medicine Cardiovascular Center, Seoul National University Bundang Hospital, 82, Gun-dong 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea. Tel: +82 31 787 7031; fax: +82 31 787 4051; e-mail: ytjun@snubh.org

⁎Sehun Kim and Si-Hyuck Kang contributed equally to the article.

Received 18 October 2016 Revised 18 April 2017 Accepted 5 May 2017

J Hypertens 35:1976–1982 Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

DOI:10.1097/HJH.0000000000001426
also passive exposure to tobacco smoke [13]. In this study, we evaluated the relationship of SHSE with cardiovascular risk factors, such as blood pressure (BP), lipid, or fasting glucose levels, in healthy Korean adults who had never smoked. The status of SHSE was assessed subjectively by self-report questionnaires as well as objectively by urine cotinine concentrations, quantifying the amount of passive exposure to tobacco smoke.

METHODS

We performed a cross-sectional study using data from the Korea National Health and Nutrition Examination Survey (KNHANES) from 2008 to 2011. In brief, KNHANES is a nationwide representative survey in Korea using a complex, stratified, multistage, clustered-sampling design, which is used to examine the general health and nutritional status of the entire Korean population [14]. We extracted data on 7376 men and women who had never smoked and whose urine cotinine levels were available from the 37,753 individuals in the database. Exclusion criteria included those aged 18 years or younger (n = 9376), currently pregnant (n = 54), who had a history of CHD or stroke (n = 212), or who had urine cotinine levels higher than 100 ng/ml (n = 306) (Fig. 1) [15–17]. Baseline characteristics of the participants included in this study were compared with those who were excluded are shown in Supplement Table 1, http://links.lww.com/HJH/A789.

SHSE status was assessed subjectively using a self-report questionnaire and objectively using results from a urinary cotinine assay. Information on age, sex, alcohol intake, income, education level, and cigarette smoking habits was obtained using standardized questionnaires during a home interview performed by trained medical personnel. BMI was categorized as normal (≥18.5 and <25 kg/m²), overweight (≥25 kg/m²), or obese (≥30 kg/m²). Educational attainment was categorized as not being a high school graduate (lower) or being a high school graduate or above (higher). Income status was categorized into quartiles according to medical insurance premiums that are closely correlated with an individual’s yearly income status. Alcohol consumption was categorized as never, mild-to-moderate (two to four drinks per month), or heavy drinking (two to three drinks per week). Regular physical activity was defined as performing vigorous physical activity more than three times per week.

Health examination procedures were performed based on standardized protocols by trained medical personnel. All equipment was calibrated periodically. Height and body weight were measured using digital scales. BP was measured three times on the right arm using an appropriately sized arm cuff and mercury sphygmomanometer (Baumanometer; WA Baum Co., New York, New York, USA) after the study participant was at rest in a seated position for at least 5 min. The final BP value was obtained by averaging the second and third measurements [18].

Blood and urine samples were collected from participants to obtain laboratory tests [14]. Blood samples were collected from the antecubital vein after 10–12 h of fasting. All biochemical analyses were performed within 2 h of blood sampling, and laboratory performance was monitored regularly by a data quality control program. Total cholesterol (TC), HDL cholesterol, LDL cholesterol, triglyceride, and glucose were measured with enzymatic methods using a Hitachi 7600 automatic analyzer (Hitachi Instruments Inc, Tokyo, Japan) or COBAS 8000 C702 (Roche, Mannheim, Germany) [18]. Urine cotinine level was measured with gas chromatography–mass spectrometry using the Perkin Elmer Clarus 600T (PerkinElmer, Turku, Finland) [19]. Urine cotinine levels were treated as both continuous variables and categorical variables. As a categorical variable, urine cotinine levels were coded into quartiles (Q1: 0.009–0.71 ng/ml, Q2: 0.72–3.90 ng/ml, Q3: 3.91–12.00 ng/ml, and Q4: 12.01–99.52 ng/ml); the lowest quartile was considered the reference. When treated

FIGURE 1 Study flow. KNHANES, Korean National Health and Nutrition Examination Survey.
as a continuous variable, urine cotinine levels were log-transformed because of their skewed distribution.

The outcome variables were SBP, DBP, lipid profiles including TC, HDL cholesterol, LDL cholesterol, triglyceride levels, and fasting glucose. Hypertension was defined as SBP at least 140 mmHg, DBP at least 90 mmHg, or taking antihypertensive drugs. Dyslipidemia was defined as HDL cholesterol less than 40 mg/dl, LDL cholesterol at least 160 mg/dl, triglyceride at least 200 mg/dl, or taking cholesterol-lowering drugs. Diabetes was defined as fasting glucose level at least 126 mg/dl, use of antidiabetic medication or insulin, or diagnosis of diabetes by physicians.

Data were presented as mean ± standard error (SE) or % (SE). Geometric means as log transformed are shown in Table 1. None of the individuals included in this study were active or former smokers. The mean age of our population was 45.4 ± 0.4 years, 75.2% were women and 6.6% of population had diabetes mellitus.

RESULTS

Baseline characteristics of the study population are shown in Table 1. None of the individuals included in the analysis were active or former smokers. The mean age of our population was 45.4 ± 0.4 years, 75.2% were women and 6.6% of population had diabetes mellitus.

The mean calorie intake, sodium consumption, and fat proportion among total calories of this study population were 1790.0 ± 12.7 kcal, 4489.5 ± 43.7 mg, and 12.7 ± 0.2, respectively. The mean SBP and DBP were 115.3 ± 0.3 and 75.3 ± 0.2 mmHg, respectively. The mean TC, HDL, LDL, and triglyceride were 186.0 ± 0.6, 50.0 ± 0.2, 113.8 ± 0.5, and 94.0 (92.4–96.0) mg/dl, respectively. The differences in baseline characteristics between individuals included in this study and those who were excluded are described in Supplement Table 1, http://links.lww.com/HJH/A789.

The status of SHSE was assessed subjectively and objectively. Table 2 describes the results of SHSE when assessed subjectively by self-report questionnaires. For most dependent variables, no significant associations were observed except for DBP, which had marginally positive associations (P = 0.060). When dependent variables were coded binomially, that is, hypertension, low HDL, high LDL, high triglyceride, dyslipidemia, and diabetes mellitus, there were still no significant associations with subjectively assessed SHSE (Supplemental Table 2, http://links.lww.com/HJH/A789).

Table 3 shows the results of the unadjusted and adjusted models in which participants were divided into quartiles according to their urine cotinine levels. Unadjusted analysis showed that higher cotinine levels were significantly associated with lower SBP, TC, LDL cholesterol, and triglyceride. After multivariable adjustment, all associations lost statistical significance, whereas increasing cotinine showed a positive relationship with higher fasting glucose. When the analysis was performed stratified according to sex, the results were similar among women (Supplemental

TABLE 1. Baseline characteristics	Characteristics	Values
Total sample size		7376
Age (years)		45.4 ± 0.4
Male sex (%)		24.8 (0.7)
Diabetes (%)		6.6 (0.3)
Hyperlipidemia (%)		31.1 (0.7)
Education of high school or above (%)		69.7 (0.8)
Alcohol consumption (%)		0.1 (0.1)
Never drinking		30.6 (0.7)
Mild-to-moderate drinking		66.4 (0.7)
Heavy drinking		3.0 (0.3)
Regular physical activity (%)		21.5 (0.8)

Data are presented as mean ± SE or % (SE). Geometric means as log transformed are presented for triglyceride. GFR, glomerular filtration rate.
The image contains a table showing the association of self-reported secondhand smoke exposure status with blood pressure, lipid profiles, and fasting glucose levels. The table includes data for SBP, DBP, cholesterol, HDL cholesterol, LDL cholesterol, triglyceride, and fasting glucose. The table is structured in a tabular format with columns for each variable and rows for different categories of exposure status. The data are presented as mean ± SE, with geometric means as log-transformed for triglyceride. Adjusted models were used to control for age, sex, BMI, education, smoking status, alcohol consumption, physical activity, sodium intake, total calorie intake, and fat proportion. Sensitivity analyses were conducted without excluding participants taking medications that could affect blood pressure or triglyceride levels.

Table 3, http://links.lww.com/HJH/A789. Among male participants, no relationship was statistically significant. Analyses were also performed using logarithm-transformed urine cotinine levels treated as a continuous variable (Table 4). None of the dependent variables were significantly associated with urine cotinine levels in the unadjusted model. After multivariable adjustment, serum triglyceride has a negative relationship with urine cotinine. However, after further analysis with adjusted model 2, the relationship lost statistical significance. When stratified according to sex, LDL cholesterol was positively correlated with urine cotinine among men. SBP, cholesterol, LDL cholesterol, and triglyceride showed a significant relationship with logarithm-transformed cotinine among women, but lost statistical significance after multivariable adjustment (Supplemental Table 4, http://links.lww.com/HJH/A789).

Sensitivity analysis was performed without excluding participants who were taking medications that can affect the values of dependent variables and with adjustment for medication status. They showed mostly similar results with the main analysis. When urine cotinine was divided into quartiles, SBP decreased with higher cotinine, whereas fasting glucose had no significant relationship (Supplemental Table 5, http://links.lww.com/HJH/A789). Log-transformed cotinine was not associated with any

TABLE 2. Association of self-reported secondhand smoke exposure status with blood pressure, lipid profiles, and fasting glucose levels

n	SBP	DBP	Cholesterol	HDL cholesterol	LDL cholesterol	Triglyceride	Fasting glucose	
No	4913	114.5 ± 0.4	74.5 ± 0.2	190.1 ± 1.1	49.7 ± 0.3	117.6 ± 0.9	96.5 (94.0–99.1)	93.0 ± 0.3
Yes	2463	115.2 ± 0.5	75.2 ± 0.4	190.1 ± 1.3	49.9 ± 0.4	117.0 ± 1.1	99.3 (95.8–102.9)	93.4 ± 0.4
P values	0.203	0.060	0.990	0.574	0.665	0.219	0.442	

TABLE 3. Association of urine cotinine level in quartiles with cardiovascular risk factors

SBP	DBP	Cholesterol	HDL cholesterol	LDL cholesterol	Triglyceride	Fasting glucose		
No	6197	114.7 ± 0.4	74.8 ± 0.2	190.3 ± 1.0	49.8 ± 0.2	117.7 ± 0.8	96.7 (94.6–98.9)	93.0 ± 0.3
Yes	1179	114.6 ± 0.6	74.6 ± 0.5	189.1 ± 2.0	49.3 ± 0.6	115.9 ± 1.6	100.1 (95.0–105.4)	93.7 ± 0.6
P values	0.909	0.797	0.590	0.394	0.309	0.255	0.215	

Data are presented as mean ± SE. Geometric means as log transformed are presented for triglyceride. Linear regression adjusted with age, sex, BMI, education (high versus low), low income status, alcohol consumption, regular physical activity, sodium intake, total calorie intake, and fat proportion among total calories.
TABLE 4. Association of logarithm-transformed urine cotinine levels with cardiovascular risk factors

	\(\beta \)	Standard error	\(P \) value
SBP	−0.412	0.229	0.073
DBP	−0.048	0.167	0.775
Cholesterol	−0.532	1.002	0.595
HDL cholesterol	0.140	0.373	0.708
LDL cholesterol	−0.119	0.869	0.892
Triglyceride	−0.024	0.013	0.068
Fasting glucose	0.055	0.083	0.512

Adjusted model 1

	\(\beta \)	Standard error	\(P \) value
SBP	−0.404	0.232	0.082
DBP	−0.053	0.172	0.758
Cholesterol	−0.206	0.963	0.830
HDL cholesterol	0.228	0.349	0.514
LDL cholesterol	0.265	0.847	0.755
Triglyceride	−0.028	0.013	0.030
Fasting glucose	0.128	0.077	0.093

Adjusted model 2

	\(\beta \)	Standard error	\(P \) value
SBP	0.010	0.098	0.917
DBP	0.009	0.069	0.900
Cholesterol	−0.048	0.245	0.695
HDL cholesterol	−0.069	0.072	0.335
LDL cholesterol	0.108	0.203	0.596
Triglyceride	−0.005	0.004	0.203
Fasting glucose	0.129	0.076	0.090

Adjusted model 1 was analyzed with the use of linear regression model adjusted for age, and BMI. Adjusted model 2 was adjusted for age, BMI, education (high versus low), low income status, alcohol drinking, regular physical activity, sodium intake, total calorie intake, and fat proportion among total calories.

Dependent variables after adjustment (Supplemental Table 6, http://links.lww.com/HJH/A789). The effects of SHSE did not change remarkably when study participants were stratified by exposition at home or at work (Supplemental Tables 7–10, http://links.lww.com/HJH/A789).

DISCUSSION

In this cross-sectional population-based study, we evaluated the relationship between SHSE and conventional cardiovascular risk factors in the general Korean population using the urine cotinine level, a well established, major proximate metabolite of nicotine [20,21]. This study found no significant adverse relationship between any dependent variables and SHSE as assessed by self-report questionnaires. Quantitative assessment of SHSE using urine cotinine levels did not alter this relationship.

There is strong and consistent evidence that SHSE increases the risk of morbidity and mortality, specifically cardiovascular mortality and ischemic heart disease. Studies have shown that SHSE increases the risk of CHD by 25–30% [6,8]. A number of studies have shown that SHSE not only increases the risk of CHD but also impacts morbidity and mortality associated with acute coronary syndrome [22–24]. Several mechanisms have been proposed such as platelet and endothelial dysfunction, increased arterial stiffness, atherosclerosis, increased oxidative stress and inflammation, and decreased energy metabolism [25]. Aside from chronic effects, acute effects have been proposed, including an increase in resting heart rate (HR), BP, blood level of carboxyhemoglobin, and carbon monoxide, and a marked reduction in microcirculatory flow and HR variability [26,27].

Hypertension and dyslipidemia are established cardiovascular risk factors. Active smoking has been shown to have adverse effects on BP and lipid profiles [28–31]. However, for SHSE, there is a paucity of data regarding its association with cardiovascular risk factors. There are a few studies that have shown the association between SHSE and hypertension. Makris et al. [32] found that passive smoking is associated with masked hypertension in a dose-related manner in 790 normotensive nonsmokers who were self-referred to an outpatient hypertensive clinic. Li et al. [31] also found that passive smoking was a significant risk factor for hypertension in 392 Chinese nonsmoking women. Alshaarawy et al. [9] revealed higher SHSE, measured objectively by serum cotinine levels, was associated with BP and hypertension. Regarding blood lipid levels, a previous study showed deteriorations in lipid profiles with higher cotinine levels among nonsmokers [33]. However, another study found no significant differences according to subjectively assessed SHSE [32]. In summary, there have been limited studies with inconsistent results.

In this study, we failed to find any consistent and meaningful changes in BP, cholesterol, and fasting glucose levels attributable to SHSE. One potential explanation is publication bias. Studies lacking statistically significant associations tend not to be published. Second is a difference in the study population. Previous studies focused on a specific subset of the population, whereas our study participants were from the general population [31–33]. Finally, the source for measuring cotinine levels differed. Urine cotinine levels were used in this study, whereas previous studies measured serum or salivary levels [7,33]. To our knowledge, however, there is no evidence that urinary cotinine measurements are less precise than other measurements [21,34].

There were several findings that were statistically significant in this study. Some were in the opposite direction than what was expected. A higher cotinine level was linked to lower SBP and triglyceride levels. However, those relationships were not consistently observed. For example, triglyceride had a negative relationship with log-transformed cotinine but had no significant relationship with cotinine in quartiles. Subjectively assessed SHSE was associated with higher DBP, whereas objectively assessed SHSE was not. Thus, false positivity that can be caused by multiple testing should be considered.

The current study suggested a possible increase in fasting blood glucose levels with SHSE, although the relationship was not consistent. The relationship was NS with the unadjusted model, but became significant after multivariable adjustment, when cotinine was stratified into quartiles. The linear regression model using logarithm-transformed urine cotinine showed a similar pattern, but the statistical significance was only marginal. Previous studies have also suggested increased risk of type 2 diabetes with SHSE [35,36]. A previous study using the US nationally representative National Health and Nutrition Examination Surveys showed that serum cotinine levels were positively associated with diabetes mellitus [37]. However, the association

www.jhypertension.com
Secondhand smoke exposure and cardiovascular risk factors

Author contributions: S.K., S.-H.K., and T.-J.Y. were responsible for conception and design of the study, D.H., S.-H.K., H.-J.K., K.-D.H., and I.-Y.O. were contributed to data collection and analysis. J.J.P., Y.C., Y.E.Y., C.-H.Y., J.-W.S., and H.-Y.L. were contributed to data interpretation. Y.-S.C., G.-Y.C., I.-H.C., and D.-J.C. gave advice on the first draft. S.K. and S.-H.K. wrote the first draft of the article. T.-J.Y. accept responsibility for the final content of the article; all of the authors approved the study before submission.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. World Health Organization. WHO global report: mortality attributable to tobacco. Geneva: World Health Organization; 2012.
2. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386:2287–2323.
3. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2224–2260.
4. Institute of Medicine. Secondhand smoke exposure and cardiovascular effects, making sense of the evidence. Washington, DC: National Academies Press; 2010.
5. Oberg M, Jaekola MS, Woodward A, Peruga A, Pruss-Ustun A. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet 2011; 377:139–146.
6. He J, Vupputuri S, Allen K, Pertoet MR, Hughes J, Whelton PK. Passive smoking and the risk of coronary heart disease – a meta-analysis of epidemiologic studies. N Eng J Med 1999; 340:920–926.
7. Whincup PH, Gilg JA, Emberson JR, Jarvis MJ, Feyerabend C, Bryant A, et al. Passive smoking and risk of coronary heart disease and stroke: prospective study with cotinine measurement. BMJ 2004; 329:200–205.
8. Dunbar A, Gotsis W, Frishman W. Second-hand tobacco smoke and cardiovascular disease risk: an epidemiological review. Cardiol Res 2013; 21:94–100.
9. Alshaarawy O, Xiao J, Shankar A. Association of serum cotinine levels and hypertension in never smokers. Hypertension 2013; 61:304–308.
10. Kim Y, Choi YJ. Oh SW, Joh HK, Kwon H, Um YJ, et al. Discrepancy between self-reported and urine-cotinine verified smoking status among Korean male adults: analysis of health check-up data from a single private hospital. Korean J Fam Med 2016; 37:171–176.
11. Aurelkoettea JJ, Murcia M, Rebuhliato M, Lopez MJ, Castilla AM, Santa-Marina L, et al. Determinants of self-reported smoking and misclassification during pregnancy, and analysis of optimal cut-off points for urinary cotinine: a cross-sectional study. BMJ Open 2013; 3:e002054.
12. Florescu A, Ferrence R, Elmarson T, Selby P, Soldin O, Koren G. Methods for quantification of exposure to cigarette smoking and environmental tobacco smoke: focus on developmental toxicity. Ther Drug Monit 2009; 31:14–30.
13. Cronin EM, Kearney PM, Kearney PP, Sullivan P, Perry JJ. Impact of a national smoking ban on hospital admission for acute coronary syndromes: a longitudinal study. Clin Cardiol 2012; 35:205–209.
14. Kweon S, Kim Y, Jung MJ, Kim Y, Kim K, Choi S, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014; 43:69–77.
15. Kim S, Jung A. Optimum cutoff value of urinary cotinine distinguishing South Korean adult smokers from nonsmokers using data from the KNHANES (2008–2010). Nicotine Tob Res 2015; 15:1608–1616.
16. Kang YH, Lee YJ, Kim HK, Yun YH, Jeong SY, Lee JS, Park JG. Usefulness of urinary cotinine test to distinguish smokers from nonsmokers. Korean J Lab Med 2005; 25:92–97.

ACKNOWLEDGEMENTS

The authors thank all of the staff involved in this research. The authors are also grateful to Cheol-Ho Kim, MD for his valuable comments and suggestions.
Among contributions, the finding of unexpected lack of significant results for most relations analyzed in the context of limited number of studies on this issue with generally positive results.

Among limitations, the cross-sectional design of the study, which indicate that further prospective studies are needed to clarify this interesting issue.