Original article
Scand J Work Environ Health 2005;31(1):65-74
doi:10.5271/sjweh.850

Assessment of exposure to wheat flour and the shape of its relationship with specific sensitization
by Peretz C, de Pater N, de Monchy J, Oostenbrink J, Heederik D

Affiliation: Institute for Risk Assessment Sciences, University of Utrecht, PO Box 80176, Utrecht, The Netherlands. c.peretz@iras.uu.nl

Key terms: atopy; baker; exposure; exposure-response; model; occupational exposure; sensitization; variance component; wheat flour

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/15751621
Assessment of exposure to wheat flour and the shape of its relationship with specific sensitization

by Chava Peretz, PhD,1, 2 Nettie de Pater, MSc,1, 3 Jan de Monchy, MD,4 Joke Oostenbrink, MD,4 Dick Heederik, PhD 1

Peretz C, de Pater N, de Monchy J, Oostenbrink J, Heederik D. Assessment of exposure to wheat flour and the shape of its relationship with specific sensitization. Scand J Work Environ Health 2005;31(1):65–74.

Objectives Dust and wheat-allergen exposure were assessed among bakers, flour millers, and bakery-ingredient producers, and the risk for sensitization was studied.

Methods About 520 inhalable dust and wheat-allergen measurements were made among 270 Dutch workers. Data on sensitization to wheat and common allergens (atopy) were also available. Exposure was estimated according to the sector of industry, job title, and tasks. The shape of the relationship between sensitization and exposure was studied using a two-stage modeling approach: semi-parametric generalized additive modeling and, consequently, a simple description of the relationship using a parametric logistic model. To reduce the effect of exposure measurement errors (attenuation), a combination of the actual measured exposure and variance-weighted estimates of exposure was used.

Results The effect of exposure to both inhalable dust and wheat allergens on sensitization was described best by a linear relationship in three industries and a quadratic relationship in one industry. The relation for the whole study population was best described as quadratic, and the probability of sensitization increased with exposure up to ∼2.7 mg/m³ for inhalable dust and ∼25.7 µg EQ/m³ for wheat allergens. The risk decreased at higher exposures (P=0.0121 and P=0.0731 for dust and wheat, respectively). Atopy and sector of industry modified the sensitization risk significantly in all the analyses. Using a variant-weighted estimator to calculate exposures corrected for the bias and resulted in almost the same point risk estimators.

Conclusions Exposure–response relationships for allergens may be nonlinear and differ between industries. A threshold is not indicated on which to base occupational exposure standards; alternatively, other approaches, such as benchmarking, seem warranted.

Key terms atopy; bakers; exposure–response; models; occupational exposure; variance components.
Exposure to wheat flour and sensitization

Dust and allergen exposure measurement

Personal inhalable dust samples were collected in the worker’s breathing zone during full-shift periods of 6–8 hours using PAS6 sampling heads (TNO, Delft, The Netherlands) at a flow rate of 2 l/min. Dust levels (milligrams per cubic meter) were measured by weighing in a preconditioned weighing room before and after the measurements. Wheat allergens were recovered from the filters by extraction using a buffer solution (phosphate buffered saline), and the wheat-allergen concentrations were measured in the extract by inhibition immunoassay, using a pool of human immunoglobulin (Ig) G, polyclonal antibodies, as described earlier and expressed in the microgram equivalent per cubic meter (µg EQ/m³) (7). For the 270 workers, 335 personal inhalable dust samples were collected, and, of these, 298 wheat-allergen exposure measurements were made.

Repeated exposure measurements

Of the 270 bakers, 208 (77%) had one exposure measurement, 59 (22%) had two repeated measurements, and 3 (1%) had three repeated measurements. The measurements were repeated within a 2- to 6-week period with randomly selected workers from the four sectors. We repeated the measurements so that we could make an additional assessment of the day-to-day variability of exposure in a subset of workers.

Health outcomes

Wheat-specific sensitization. Venous blood samples were analyzed for the presence of specific IgE antibodies against wheat-flour allergens using the Pharmaca Diagnostics Uni CAP assay. Workers with levels of class 1 or higher were considered positive.

Atopy. Sera were also analyzed for the presence of IgE against common allergens such as house dust mite and grasses. The workers were considered atopic if any of the common allergens had a level of class 1 or higher.

Statistical analyses

The statistical analyses were performed using SAS software (11, 12). Exposure values below the detection limit were replaced by two-thirds of this limit. Some extremely high exposure levels were replaced by the 98th percentile (ie, 100 mg/m³ for inhalable dust and 400 µg EQ/m³ for the wheat-allergen level. The exposure distributions for both inhalable dust and wheat allergens were found to be log-normal (7), and, therefore, natural log-transformation was used in the statistical analysis.

Study population and methods

Study population

The data originated from a survey among Dutch bakers including a medical part and a hygiene part, carried out between August 2000 and July 2001. We limited our study to 270 workers who were included in both the hygiene and medical surveys in 83 companies. The following four sectors of industry were studied: traditional bakeries, industrialized bakeries, flour mills, and the bakery-ingredient industry.

Occupational factors

The occupational factors studied included industry sector, job title within a sector, and tasks performed within a job title, referred to as exposure determinants. Each sector comprised several jobs. [See appendix I for details.] About 30 jobs within the sectors were observed. In addition, about 80 tasks were distinguished. Most of the tasks involved short-term peak exposures to dust (eg, emptying bags, weighing, cleaning), and because these tasks were performed in different sectors and with different technology, 80 were distinguished. Overall, 108 combinations of industrial sector, job title, and task were considered. This number is considerably less than the maximal number of combinations because of the nested structure of the data.
Exposure assessment. Linear mixed effects models, which account for the correlation between the repeated measurements, were used for estimating (SAS-proc mixed) the exposure to inhalable dust and wheat allergens. All the models had a log exposure level as the dependent variable. We included sector of industry, job title, and 80 tasks as covariates to identify tasks associated with exposure. Only the tasks with at least borderline statistical significance (P ≤ 0.10) on the level of either inhalable dust or wheat-allergen exposure were included in the additional analysis. Variance components between and within workers were estimated. Simpler models were analyzed (ignoring task, only industry and job title included), but they have not been presented because they were clearly suboptimal.

The following three exposure assessment approaches were considered: (i) measured exposure for each individual worker, (ii) estimated exposure based on the aforementioned model (which accounts for sector of industry, job title, and tasks performed), and (iii) a combination of the previous two approaches, referred to as the variance-weighted estimator of exposure, based on measured and estimated exposure. (See appendix II.) The variance-weighted estimator is a modification of the approach proposed by Seixas & Sheppard (13), in which estimated exposure and actual measurements are combined, with weights based on the variance between and within workers. It reduces negative effects of grouping strategies (described in relation to Berkson error).

Modeling exposure–response relationships. The relationship between sensitization (no, yes) and exposure to inhalable dust and wheat allergens was first evaluated by calculating the sensitization prevalence among categories of exposure, sector of industry, and atopic status (SAS-proc freq/univariate).

To explore the shape of the relationship between sensitization and exposure, we fit a semi-parametric generalized additive model for each industry and the whole population and adjusted for the following parametric effects: atopy (no, yes) and sector of industry (4 categories) as the linear predictors of the parametric part of the model and log concentration as an additive predictor as the nonparametric part of the model. The term for the additive predictor was fit using a spline as a smoother (14). The model is a generalized model since the probability distribution of the dependent variable sensitization (binary: no, yes) is binomial and the relationship with the predictors is through a nonlinear link function [logit = p/(1-p)]. The degrees of freedom for the additive predictor were selected with the use of a generalized cross-validation method that indicates the degree of the polynomial that represents the data (SAS-proc GAM). We used scatter plots (not shown) to present the relationship of the logged concentration and the smoothed dust and wheat exposure.

After inspecting the semi-parametric curve and interpreting the cross-validation parameter that is given by the generalized additive model analysis, we chose a parametric model—a generalized linear model (with distribution = binomial and link = logit), in which the dependent variable was the logit of sensitization and the independent variables were atopy, sector of industry, and linear and quadratic terms of the logged concentration. Odds ratios and confidence limits of exposure, atopic status, and sector of industry were estimated for sensitization with this logistic model (SAS-proc genmod). The goodness-of-fit of the model was evaluated according to the deviance. The semi-parametric model and the parametric model were applied with the three different exposure assessment approaches, measured exposure, estimated exposure based on sector of industry, job title and tasks performed (three covariates), and a variance-weighted estimator of measured and estimated exposure.

Results

Exposure assessment

Table 1 presents the summary statistics for the measured exposure within the various sectors, ignoring the dependence between repeated measures. The highest mean exposure level, for both inhalable dust and wheat allergens, was observed for the flour mills (geometric means:

Sector	Workers (N)	Inhalable dust (mg/m³)	Wheat allergens (µg EQ/m³)				
	Measurements (N)	GM	GSD	Measurements (N)	GM	GSD	
Traditional bakeries	70	80	1.71	2.99	65	8.63	7.45
Industrialized bakeries	72	91	1.03	3.72	83	2.14	14.07
Flour mills	73	94	2.72	4.07	85	9.41	9.32
Bakery-ingredient industry	55	70	1.16	4.42	65	2.66	11.03
Total	270	335	1.56	3.98	298	4.64	11.38
Exposure to wheat flour and sensitization

Table 2. Variance components and 95% confidence intervals (95% CI) of exposure to inhalable dust (mg/m³) and to wheat allergens (µg EQ/m³). [EQ = equivalent (in comparison with an arbitrary wheat allergen mixture standard)]

Exposure determinants	Dust	Wheat allergens								
	Between-worker variance	95% CI	Within-worker variance	95% CI	Reduction of between-worker variance	Between-worker variance	95% CI	Within-worker variance	95% CI	Reduction of between-worker variance
None	1.16	0.86–1.64	0.74	0.54–1.07	0	4.00	3.03–5.51	1.88	1.30–2.96	0
Sector, job, task	0.25	0.10–1.57	0.78	0.55–1.20	78	1.75	1.08–3.31	1.62	1.06–2.79	56

a Exposure was expressed in logged concentrations.
b Estimation was based on mixed-effects models.
c (1.16–0.25) × 100/1.16 = 78%.

Table 3. Prevalence of sensitization among categories of exposure to inhalable dust, exposure to wheat allergens, industrial sector, and atopy.

Category	Workers (N)	Sensitization (%)	
Exposure to inhalable dust			
0.01–0.59 mg/m³	54	18.5	
0.59–1.14 mg/m³	54	33.3	
1.14–2.06 mg/m³	54	29.6	
2.06–4.70 mg/m³	54	27.7	
4.70–100.00 mg/m³	54	20.4	
Exposure to wheat allergens			
0.03–0.34 µg EQ/m³	54	10.6	
0.34–4.84 µg EQ/m³	54	25.5	
4.84–15.18 µg EQ/m³	54	34.0	
15.18–47.39 µg EQ/m³	54	29.8	
47.39–400 µg EQ/m³	54	27.1	
Atopy			
No	193	16.1	
Yes	77	50.6	
Sector			
Traditional bakeries	70	37.1	
Industrialized bakeries	72	34.7	
Bakery-ingredient industry	55	16.4	
Flour mills	73	13.7	
Sector & atopy			
Traditional bakeries			
No	42	19.0	
Yes	28	64.3	
Industrialized bakeries			
No	52	26.9	
Yes	20	55.0	
Bakery-ingredient industry			
No	45	8.9	
Yes	10	50.3	
Flour mills			
No	54	9.3	
Yes	19	26.3	
Total	270	25.9	

2.72 mg/m³ and 9.41 µg EQ/m³, respectively) while the mean exposure level was the lowest, both to inhalable dust and wheat allergens, in the industrialized bakeries (geometric means 1.03 mg/m³ and 2.14 µg EQ/m³, respectively).

Table 2 presents the variance components of exposure for the models with or without the exposure determinants. When sector, job, and task were accounted for, the variance between the workers was reduced, as expected, by 78% for inhalable dust and by 56% for wheat allergens.

Modeling exposure–response relationships

Table 3 presents the prevalence of sensitization among the various categories of exposure (quartiles), sector of industry, and atopic status. The results of a generalized additive model stratified by sector of industry are presented in figure 1, together with the results from an earlier-published independent study among traditional and industrial bakers (7). The results suggest almost linear relationships for three sectors of industry and an almost quadratic relationship for one sector of industry, with different intercepts for each industry. We then fit a semi-parametric generalized additive model to discover the
appropriate shape of the relationship between sensitization and measured exposure using all the data, and the results of this model for exposure to dust and wheat allergens are given in Table 4. The effect of exposure using a smoothing spline was at least borderline significant for inhalable dust and wheat allergens ($P=0.0462$ and $P=0.0941$, respectively) (Table 4). The relationship between log exposure and sensitization seemed to be quadratic from the scatter-plot of logged exposure and the partial prediction by the smoother. Consequently, we applied a parametric model (ie, a generalized linear model with binominal distribution and logit link), in which the dependent variable was the logit of sensitization and the independent variables were atopy, sector of industry, and the linear and quadratic terms of log exposure.

Table 5 shows the results of the quadratic logistic regression model. Figure 2 depicts the quadratic relationship between exposure and the probability of sensitizing in terms of the different sectors among atopic and nonatopic persons.

The probability of sensitizing increased with greater exposure until it reached $\sim 2.7 \text{ mg/m}^3$ for inhalable dust and $\sim 25.7 \mu\text{g EQ/m}^3$ for wheat allergens (Figure 2). It later decreased, possibly indicating either a healthy worker effect or development of tolerance. Likewise, the odds ratios for the logged concentrations were at least borderline significant, $1.41 (P=0.0329)$ for inhalable dust and $1.31 (P=0.0142)$ for wheat allergens (Table 5). For the squared logged concentrations, the risks were at least borderline significant, $0.84 (P=0.0087)$ for inhalable dust and $0.96 (P=0.1539)$ for wheat allergens.

Table 4. Effects of exposure to inhalable dust (mg/m3) and wheat allergens (μg EQ/m3), industrial sector, and atopy on sensitization, according to a semi-parametric generalized additive model with a smoothing spline. [df = degrees of freedom, NS = not significant ($P>0.10$), SE = standard error]

	Inhalable dust	Wheat allergens				
	Estimate	SE	P-value	Estimate	SE	P-value
Regression model (parametric part)						
Intercept	-2.62	0.18	<0.0001	-2.86	0.23	<0.0001
Traditional bakeries	1.22	0.34	0.0004	1.25	0.39	0.0015
Industrialized bakeries	1.45	0.38	0.0002	1.48	0.36	<0.0001
Bakery-ingelligent industry	0.56	0.54	NS	0.71	0.53	NS
Flour mills						
Atopy						
Log concentration	0.11	0.17	0.0824	0.15	0.09	0.0824
Smoothing model (nonparametric part)						
Spline log concentration	0.0462	0.0941				

* Reference group.

A linear term of log concentration.

Selected by a generalized cross-validation method.

Table 5. Effects of exposure to inhalable dust (mg/m3) and wheat allergens (μg EQ/m3) and atopy on sensitization, according to a quadratic logistic regression model (k=270) based on three types of exposure (industrial sector). [Risk = risk exponent (estimate), VWE = variant-weighted estimator, 95% LRCI = 95% likelihood ratio confidence interval]

	Inhalable dust	Wheat allergens				
	Risk a	95% LRCI	P-value	Risk a	95% LRCI	P-value
Measured exposure						
Log concentration a	1.41	1.03–2.01	0.0329	1.31	1.05–1.67	0.0142
Log concentrationa2	0.64	0.72–0.96	0.0087	0.96	0.90–1.02	0.1539
Atopy	6.12	3.26–11.79	<0.0001	5.49	2.87–10.75	<0.0001
Industrial sector						
Traditional bakeries	3.28	1.36–8.34	0.0004	3.46	1.42–8.86	0.0015
Industrialized bakeries	4.40	1.80–11.54	0.0002	4.57	1.85–12.06	0.0001
Bakery-ingelligent industry	1.78	0.61–5.28	0.0049	2.00	0.66–5.84	0.0040
Flour mills c	1.00	..	0.0049	1.00	..	0.0040
Estimated exposure according to sector, job title and tasks						
Log concentration a	1.24	0.83–1.98	0.33	1.50	1.10–2.18	0.0185
Log concentrationa2	0.62	0.43–0.83	0.0039	0.87	0.79–0.95	0.0037
Atopy	5.90	3.23–11.00	<0.0001	5.90	3.23–10.99	<0.0001
VWE exposure (a weighted average of measured exposure and estimated exposure)						
Log concentration a	1.44	1.01–2.15	0.0047	1.42	1.09–1.89	0.0074
Log concentrationa2	0.77	0.60–0.93	0.0042	0.93	0.86–1.00	0.0055
Atopy	6.19	3.29–11.95	<0.0001	5.56	2.91–10.91	<0.0001
Sector						
Traditional bakeries	2.99	1.24–7.62	0.0074	3.31	1.37–8.46	0.0001
Industrialized bakeries	4.23	1.72–11.11	0.0001	4.54	1.84–11.98	0.0001
Bakery-ingelligent industry	1.67	0.56–4.92	0.0044	1.90	0.65–5.58	0.0044
Flour mills c	1.00	..	0.0074	1.00	..	0.0044

* Log concentration = linear term of log-transformed concentration.

a Reference category.

Scand J Work Environ Health 2005, vol 31, no 1
Atopy was a highly significant risk factor for sensitization, with a risk of ∼6 (P<0.0001) in models with both exposures (6.12 and 5.49 for inhalable dust and wheat allergens, respectively). Overall, the probability for sensitization was much higher among the atopic workers when compared with the nonatopic ones. As for the sectors, the risks for the industrialized bakeries were about 4.5 times higher than for both the flour mills and the bakery-ingredient industry for both exposures (figure 2). There were no significant differences in the risks between traditional and industrialized bakeries or between the bakery-ingredient industry and flour mills.

The risks based on estimated exposures according to sector, job title, and tasks (table 5) did not markedly differ. Table 5 also lists the risks based on exposure according to the variance-weighted estimator, which is a weighted average of the actual exposure and the exposure estimator according to the three covariates of sector of industry, job title, and tasks. The point risk estimators were similar to those based on measured exposure, but they were more accurate. They had almost the same precision and, in exposure to wheat allergens, the quadratic term which was not significant in model a (P=0.1539) turned out to be much more significant in model d (P=0.0555).

We assumed that for each industrial sector the exposure–response relationship was the same. When modeling the exposure–response relationships separately for each sector, we found evidence of a positive linear relationship in all sectors up to an exposure level of around 2.7 mg/m³ for inhalable dust or 25 µg EQ/m³ for wheat allergens. Only in the group of flourmill workers did the risk significantly decrease with increasing exposure. The quadratic relationship for the whole population as a result seems strongly driven by data from the flour mills.

Discussion

The aims of our study were to assess exposure to inhalable dust and wheat allergens among bakers within different sectors and jobs in the baking industry and to evaluate the shape of the relationship with specific sensitization for risk assessment purposes.

Exposure assessment

Our study cohort was composed of bakers from four industrial sectors, two of which have hardly been studied...
earlier, namely, flour mills and the bakery-ingredient industry. These two sectors were found to have higher significant exposure to both inhalable dust and wheat allergens (P<0.001) when compared with traditional and industrialized bakeries. Certain jobs, particularly weighing, filling of bags, and “dumping of additives” in the bakery-ingredient industry, contributed to high levels of exposure. We found that grouping by sector of industry and job title explained the differences in exposure to a great extent, given the relatively low exposure variance between workers within a given job category (14). Accounting for tasks resulted in a lower variance between workers and a better fit of the model that associated exposure with its determinants. Our estimated exposures based on grouping strategy by sector of industry and job title were found to be more precise than the individually measured ones. Moreover, the estimated exposure values accounting also for the performed tasks were more valid and more informative for exposure to both inhalable dust and wheat allergens.

Our study did not involve a complete repeated-measurement design. However, the number of repeats (≈20%) was large enough to give an impression of the day-to-day variability in exposure and was larger than the 10% often used as a ballpark figure in reliability studies.

Exposure–response relationship

We studied the shape of the exposure sensitization relationship since there are too few available epidemiologic data on quantitative exposure–response investigations among bakers for risk assessment purposes. The studies in which a monotonic exposure–response relationship was tested had two main disadvantages (15). First, they imposed an a priori choice of cut-off. This approach may result in bias and even raise concern that investigators may select cutoff values that produce a desired result. Second, they made a restrictive assumption of a parametric model of linear shape on the logit scale and applied a linear logistic model. This restrictive assumption was not tested even though the conclusions from these tests depended on their validity. Only one study (7) considered the shape of the relationship using a flexible GAM method without the aforementioned restrictive assumption. The results from our present study and the previous one are strikingly similar. Any GAM model has the disadvantage that, even if it successfully fits the data, it is difficult to obtain estimates of the variability of the parameters or risk factors in order to assess their significances (nonrobustness–nonstability). Therefore, parametric models are preferable over nonparametric ones due to the inferential statistics. We used smoothing as an intermediate step, as an exploratory tool, leading to the desired parametric model. The smoothing analysis showed that the nonlinear relationship can best be approximated by a quadratic one. Consequently, we could assume that the parametric form of the model was a quadratic logistic regression.

We used two exposure assessment approaches, based on either actual exposure measurements or on estimated exposures. Both approaches showed that nonlinear models fit the data best. In this case, we concluded that a quadratic dose–response relationship between exposure to inhalable dust and wheat allergens and sensitization (P<0.05 in comparison with a model without exposure terms) gave the best results, although we recognize that other families of untested models may yield a reasonable description of the data as well. Based on actual measured exposure levels, the relationship was found to be monotonic up to a value of ~2.7 µg/m³ for inhalable dust and ~25.7 µgEQ/m³ for wheat allergens, namely, the higher the exposure the higher the risk. The decline at higher exposures may indicate some kind of tolerance in a specific group of workers, as was suggested to play a role in the exposure of children to domestic allergens (3, 16), or a healthy worker effect (7). The latter might be accounted for to some extent by comparing models with present and cumulative or past exposure. However, earlier analyses did not show large improvements and changes in the shape of the exposure–response relationship (7). Longitudinal data are required to explore this in a correct manner. The phenomenon of the flattening of the exposure response, especially the underlying (biological) mechanisms, requires further exploration. However, the heterogeneity in the shape of the exposure–response relationships between the four industries seems to argue against the development of tolerance.

Atopy was found to be a significant modifier in our exposure–response relationship. It is a known risk factor for sensitization (7, 11), and the atopic workers had a sixfold higher risk than the nonatopic ones when the exposure level and the sector of industry were accounted for. It was found to be a weaker modifier (a factor of 2 in prevalence ratio) in the Heederik & Houba study (7), perhaps due to their lower exposure levels or modeling procedure. The industry sector was found to be a significant factor in the exposure–response relationship for both inhalable dust and wheat allergens. Workers in the industrialized bakeries had a four times higher risk of becoming sensitized at the same exposure level as workers in the flour mills and a twice as high risk as workers in the bakery-ingredient industry. Therefore, the sector of industry may serve as a proxy for the kind of dust mixture to which workers are exposed, as well as for the local environment (eg, temperature, degree of use of ventilation devices) or may represent individual characteristics (other than age, gender, or cigarette
Exposure to wheat flour and sensitization

smoking, such as atopy (17), which contribute to the differences between industries. The difference in the prevalence in atopy between the industries seems to be a key explanatory variable. A remarkable difference in the prevalence of atopy among the four industrial sectors was observed. This difference may point to a strong bias (healthy worker effect), but the exact reason for the difference in atopy prevalence between industries remains obscure.

We have assumed that the shape of the relationship between sensitization and exposure is the same within each industry, but this difference can be questioned. However, regardless of the assumption about the shape of the exposure–response curve, the curve is monotonically increasing, up to intermediate exposure levels. Only at very high exposure levels does the curve flatten or decrease. However, one should be aware that such high levels are not encountered by a substantial number of workers and that they do not occur regularly. Especially for risk assessment purposes, this part of the curve, at high exposure levels, is of less relevance.

In the combined model for all the industries, we observed differences in the probability for sensitization between the sectors of industry at the same exposure levels. This finding seemed to corroborate the atopy prevalence in each subpopulation, and it makes sense, since atopy is a strong modifier, and it considerably determines the sensitization risk with respect to work-related allergens in addition to the exposure.

Previous studies involving linear exposure–response relationships found that there was attenuation when individual exposure data were used instead of exposure-group means, either obtained directly by grouping or by using statistical models (14, 15, 18). This finding is in agreement with statistical theory that shows that the performance of individual exposure estimates in exposure–response studies is sensitive to the effect of day-to-day variability. In our study, quadratic logistic regression with the estimated exposure instead of the actual measured value led to almost the same point estimators of the risk factors. However, the precision of the estimated exposure response relationship differed and was better when modeled exposure was used in the exposure–response analysis. As in our previous study (19), the random within-worker variability of exposure was highly reduced when tasks that varied from day to day were accounted for. Based on actual measured exposure, the risk estimators for wheat allergens were found to be marginally attenuated in comparison with those estimated according to three exposure determinants. The new four-stage approach for assessing exposure combines actual and estimated exposure to avoid bias in both the point and range estimation of the risk for an illness. The idea of a combined estimate was offered earlier (13), but it was modified by us and showed the most precise results in the exposure–response models.

Implications of this study for an occupational health standard

The development of an exposure–response curve based on human health effects is important for promulgating occupational standards (20). However, in previous studies involving linear exposure–response relationships, the use of individual exposure data instead of exposure-group means was associated with attenuation. Our approach tried to overcome this problem, and therefore our conclusions seem to be more valid. Our curves do not suggest a true zero response (ie, the dose with which a zero response is associated) cannot be defined; instead, only a dose associated with a preset increase in risk (benchmarking) can be calculated.

Acknowledgments

We thank Professor L Freedman from the Bar Ilan University, Israel, for his statistical assistance with respect to the variant-weighted estimator.

References

1. American Conference of Governmental Industrial Hygienists. In documentation of the threshold limit values. Cincinnati (OH): American Conference of Governmental Industrial Hygienists; 1980. p 374–5.
2. American Conference of Governmental Industrial Hygienists. In documentation of the threshold limit values. Cincinnati (OH): American Conference of Governmental Industrial Hygienists; 1999.
3. Heederik D, Thorne PS, Doekes G. Health-based exposure occupational exposure limits for high molecular weight sensitizers: how long is the road we must travel? Ann Occup Hyg 2002;46:175–85.
4. Tikkainen U, Louhelainen K, Nordman H. The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, 111: industrial enzymes. Solna: Arbetslivsinstitutet; 1996. Arbete Och Hälsa 27.
5. Brisman J. The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, 120:Flour dust. Solna: Arbetslivsinstitutet; 1996. Arbete Och Hälsa, 28.
6. Cullinan P, Lowson D, Nieuwenhuijsen MJ, Sandiford C, Tee RD, Venables KM, et al. Work related symptoms, sensitisation, and estimated exposure in workers not previously exposed to flour. Occup Environ Med 1994;51:579–83.
7. Heederik D, Houba R. An exploratory quantitative risk assessment for high molecular weight sensitization: wheat flour. Ann Occup Hyg 2001;45:175–85.
8. Houba R, Heederik D, Doekes G, van Run PEM. Exposure-sensitization relationship for α-amylase allergens in the baking industry. Am J Respir Crit Care Med 1996;154:130–6.
9. Musk AW, Venables KM, Crook B, Nunn AJ, Hawkins R, Crook GD, et al. Respiratory symptoms, lung function, and sensitisation to flour in a British bakery. Br J Ind Med 1989;46:636–42.
10. Platts-Mills TAE, Vaughan J, Squillace S, Woodfolk JA, Sporik R. Sensitization, asthma and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 2001;357:752–6.
11. SAS Institute. SAS/STAT user’s guide, version 8. Cary (NC): SAS Institute; 2000.
12. SAS Institute. SAS/STAT software; changes and enhancements, release 8.1. Cary (NC): SAS Institute; 2001.
13. Seixas NS, Sheppard L. Maximizing accuracy and precision using individual and grouped exposure assessments. Scand J Work Environ Health 1996;22:94–101.
14. Heederik D, Attfield M. Characterization of dust exposure for the study of chronic occupational lung disease—a comparison of different exposure assessment strategies. Am J Epidemiology 2000;151:982–90.
15. Leuraud K, Benichou J. A comparison of several methods to test for the existence of a monotonic dose-response relationship in clinical and epidemiological studies. Stat Med 2001;20:3335–51.
16. Platts-Mills TAE, Perzanowski M, Woodfolk JA, Lundback B. Relevance of early or current pet ownership to the prevalence of allergic disease. Clin Exp Allergy 2002;32:335–8.
17. Cullinan P, Cook A, Nieuwenhuijsen MJ, Sandiford C, Tee RD, Venables KM, et al. Allergen and dust exposure as determinants of work-related symptoms and sensitization in a cohort of flour-exposed workers: a case-control analysis. Ann Occup Hyg 2001;45(2):97–103.
18. Nieuwenhuijsen MJ. Exposure assessment in occupational epidemiology: measuring present exposures with an example of a study of occupational asthma. Int Arch Occup Environ Health 1997;70:295–308.
19. Peretz C, Goren A, Smid T, Kromhout H. Application of mixed effects models for exposure assessment. Ann Occup Hyg 2002;46:69–77.
20. Seeley MR, Tonner-Navarro LE, Beck BD, Deskin R, Feron VJ, Gunnar J, et al. Procedures for health risk assessment in Europe. Regul Toxicol Pharmacol 2001;34:153–69.

Received for publication: 15 May 2003

Appendix I

Sectors and job titles

Sector	Job title
Traditional bakeries	1 Bread baker
	2 Confectioner
	3 Mixed baker (both bread and confectionery)
	4 Oven worker
Industrialized bakeries	5 Bread baker
	5.1 Dough maker
	5.2 Control baker (quality assurance)
	5.3 Cleaning worker
	6 Confectioner
	7 Oven worker
	8 Slicers, packers and transport workers
	9 Warehouse worker (additives)
	10 Production manager
	11 Maintenance worker
Flour mills	12 Wheat (grain handler)
	13 Operator, all-round
	13.1 Operator, silo
	13.2 Operator, flour mill
	13.3/13.5 Operator, wheat cleaning
	14 Worker involved in filling of bags
	15 Manager
	16 Cleaning worker
	17 Lorry (truck) driver
	18 Analyst
	19 Maintenance worker
	21 Mixer additives
	22 Control baker (quality control)
	23 Warehouse worker (additives, eg, transport)
Bakery-ingredient	24 Weighing
industry	25 Filling of bags
	26 Dumping of additives
	27 Operator all round
	28 Stacking of filled bags
	29 Warehouse worker (additives, eg, transport)
	30 Control baker (quality control)
	31 Office worker
	32 Operator (almond paste, fats)
	33 Maintenance worker

Scand J Work Environ Health 2005, vol 31, no 1
Exposure to wheat flour and sensitization

Appendix II

Calculating variance-weighted average exposure

[v = exposure level on a 1-day basis, subject to high day-to-day variability (within-worker variability); χ = average exposure level over a period]

The basis of the calculation is the replacement of v by E(x/v), written here as \(\mu_{x/v} \). In our quadratic logistic model, we replace v and \(v^2 \) by estimates \(\mu_{x/v} \) and \(\mu_{x^2/v} \).

(a) Estimation of \(\mu_{x/v} \)

In general: \(v = x + \delta \) [\(\delta \) = “measurement error” due to day-to-day variability, independent of \(x \), with E(\(\delta \))=0]. This implies that:

\[
x = \alpha + \beta x + \epsilon \quad (\epsilon = \text{random error})
\]

(equation 1)

(\(v \) and \(x \) have means of \(\mu_v \), \(\mu_x \) and variances of \(\sigma_v^2 \), \(\sigma_x^2 \), respectively, and the covariances \(\sigma_{v,x} \), \(\delta \) and \(\epsilon \) have zero means and variances of \(\sigma_{\delta}^2 \), \(\sigma_{\epsilon}^2 \), respectively), where:

\[
\beta = \frac{\sigma_{v,x}}{\sigma_x^2 + \sigma_{\delta}^2}
\]

\[
\alpha = \mu_x - \beta \mu_x = (1 - \beta) \mu_x \quad (\text{since } \mu_v = \mu_x).
\]

Hence:

\[
x = (1 - \beta) \mu_x + \beta v + \epsilon
\]

\(\mu_{x/v} = (1 - \beta) \mu_x + \beta v \) (equation 2)

For the \(i \)-th worker, \(z_i \) is the exposure estimator based on the exposure determinants of worker \(i \) (stage 1), \(s_b^2 \) and \(s_w^2 \) are the estimated variance components of \(z_i \), which are the same for all workers (stage 2), \(n_i \) is the number of repeated measures of worker \(i (= 1,2,3) \), and \(\bar{v}_i \) is the mean actual measured exposure for worker \(i \), based on one to three repetitions. Then:

\[
\hat{\mu}_i = \frac{z_i}{s_b^2 + s_w^2 / n_i} ;
\]

\[
\hat{\mu}_{x/v} = (1 - \lambda_i) z_i + \lambda_i \bar{v}_i \quad \text{(the variance-weighted estimator (VWE) exposure for the } i \text{-th worker)}
\]

(b) Estimation of \(\mu_{x^2/v} \)

In general:

\[
\mu_{x^2/v} = \sigma_{x,v}^2 + [\mu_{x,v}]^2 = \sigma_v^2 + [\mu_{x,v}]^2 \quad \text{(from equation 1)}
\]

\[
\sigma_v^2 = \beta^2 \sigma_x^2 + \sigma_{\delta}^2 \Rightarrow \sigma_v^2 = \sigma_x^2 - \beta^2 \sigma_x^2
\]

Hence:

\[
\mu_{x^2/v} = \sigma_x^2 - \beta^2 \sigma_x^2 + [(1 - \beta) \mu_x + \beta v]^2
\]

(equation 2)

For the \(i \)-th worker:

\[
\hat{\mu}_{x^2/v} = s_b^2 - \lambda_i^2 (s_b^2 + s_w^2 / n_i) + [(1 - \lambda_i) z_i + \lambda_i \bar{v}_i]^2
\]