The performance measure of GS-DG MOSFET: an impact of metal gate work function

S K Mohapatra, K P Pradhan, P K Sahu and M R Kumar

Nano Electronics Laboratory, Department of Electrical Engineering, National Institute of Technology (NIT), Rourkela, 769008, Odisha India

E-mail: skmctc74@gmail.com, kp2.etc@gmail.com, pksahu@nitrkl.ac.in and madhu.raj3456@gmail.com

Received 13 December 2013, revised 24 January 2014
Accepted for publication 4 March 2014
Published 26 March 2014

Abstract

The quantitative assessment of the nanoscale gate stack double gate (GS-DG) MOSFET performance values are numerically calculated with different gate metal work functions ($\Phi_m = 4.52 \text{ eV}, 4.6 \text{ eV}, 4.7 \text{ eV}$). The effect of electrostatic control on dc, analog and RF figures of merit (FOMs) which includes subthreshold slope (SS), drain induced barrier lowering (DIBL), transconductance generation factor (TGF), early voltage (V_{EA}), intrinsic gain (A_V), cut off frequency (f_T) and transconductance frequency product (TFP), gain frequency product (GFP) and gain transconductance frequency product (GTFP) have been investigated for the model GS-DG MOSFET. Higher TGF and A_V was achieved with $\Phi_m = 4.6 \text{ eV}$ for the device. For a better comparison among the analog/RF FOMs, the threshold voltage (V_{th}) is maintained at a constant value for different work function cases. To achieve a constant V_{th}, the channel doping (N_A) and source/drain doping (N_D) is tuned accordingly for all device cases. Superior f_T which is due to higher transconductance (g_m) and lower output conductance (g_d), was observed for the device. In addition, better gain performances i.e. GFP and GTFP were achieved resulting from improved g_m. Thus, the device structure modelled with Φ_m of 4.6 eV can be considered as a better candidate for analog and RF circuit applications.

Keywords: DG-MOSFET, gate stack, SCEs, HKMG, analog/RF FOMs
Classification numbers: 2.07, 3.02, 6.01

1. Introduction

The progress of semiconductor electronic devices has made a rapid improvement of performance and low cost application. The advancement in complexity of complementary metal-oxide-semiconductor (CMOS) design has been achieved by scaling geometric dimensions of the metal oxide semiconductor field-effect-transistor (MOSFET). The scaling of MOSFET in electronic circuits has led to an increase in the performance in electronic systems with more features and higher processing speed, while performance-to-cost ratio is also rising. This process has been successful for almost fifty years. Research is still going on to find devices that work in high frequencies, with low power consumption at nanometer dimension [1–4].

According to ITRS-2011 [5], a precisely controlled process flow for the incorporation of new technologies is becoming crucial for deep sub-micron devices. Among the possible solutions, unconventional metal-oxide-semiconductor (MOS) structures employing asymmetric structures have been proposed to overcome the short channel effects (SCEs). Also, double gate (DG) structures fabricated on silicon-on-insulator (SOI) wafers have been utilized in CMOS technology due to their excellent scaling capability, outstanding SCEs immunity, high current drivability (I_{on}) and transconductance (g_m) and lower leakage current (I_{off})
compared to the bulk MOSFETs [6–11]. Also, the body thickness is made much less, by which the centroid of the inversion charge moves from the interface to the middle. The electric field in the middle of the body combined with the volume inversion, which enhances the mobility.

Recently, the market demand has tremendously increased for ultralow power applications. MOSFETs operated in subthreshold region have created a lot of interest for such applications. MOSFETs in the subthreshold region of operation have an advantage of having significant high gain due to exponential behavior of the drain current which gives rise to higher transconductance generation factor \((g_{m}/I_D) \) in the subthreshold regime [12–16]. Sharma et al [17] provide a detailed analysis about many analog/RF figures of merit (FOMs) for different type of structures on double gate platform. Quite a few reports [18] are available on the adjustment of metal work function for suitable applications. However, there are no such reports available to explore the impact of work function on analog and RF performances of GS-DG MOSFET.

In this paper extensive simulations have been carried out to study various important electrostatic and dynamic parameters of DG-MOSFET with high-k metal gate (HKMG) technology by varying the work function of the gate metal. To find out the proper metal for HKMG technology, the investigation is carried out for a variable metal work function by keeping in mind constant threshold voltage. Along with the introduction, section 2 describes the device description that includes all the dimensions, materials and doping concentrations of HKMG DG-MOSFET. Section 3 gives the physical principles of the device under study. It also describes the mutual dependence between the physical parameters presented in the simulation results. Section 4 analyses the physics of the device using device numerical simulations and models activated for simulation. Section 5 comprises the analog and RF performance matrices of the device. Including SCEs such as SS and DIBL, various important analog and RF figures of merit (FOMs) such as transconductance generation factor (TGF), early voltage \((V_{EA}) \), intrinsic gain \((A_\text{v}) \), cut off frequency \((f_T) \) and transconductance frequency product (TFP), gain frequency product (GFP) and gain transconductance frequency product (GTFP) have been closely observed by varying the gate metal work function for different configurations. Finally, the concluding remarks in section 6 substantiate the novelty of the paper.

Table 1. Device parameters under study.

Metal gate work function \(\Phi_m \) or WF (eV)	Channel doping \(N_A \) (cm\(^{-3}\))	Channel doping \(N_D \) (cm\(^{-3}\))
4.52 (Ag)	1.5 \times 10^{18}	1.0 \times 10^{20}
4.6 (Mo)	1.0 \times 10^{16}	1.0 \times 10^{20}
4.7 (Au)	1.0 \times 10^{15}	9.0 \times 10^{21}

2. Basic device dimension

A planar symmetric GS-DG MOSFET has been considered whose schematic structure is shown in figure 1. An ultrathin SOI MOSFET requires film thickness just one fourth of the channel length for better control of transistor electrostatics [6]. So the silicon film thickness \((t_{Si}) \) is considered as 10 nm. For a better comparison of analog/RF FOMs, the threshold voltage \((V_{th}) \) is maintained at a constant value of 0.2 V while varying the work function at \(V_{DS} = 0.1 \text{ V} \).

The channel doping \((N_A) \) and source/drain doping \((N_D) \) are changed to maintain the constant \(V_{th} \) which is tabulated in table 1. Source and drain extensions are 60 nm long from the edges of the gates, with metal contacts vertically placed at their ends. The channel length of the device is fixed at 40 nm. For the HKMG technology, the gate stack configuration has been considered with hafnium dioxide (HfO\(_2\)) sandwiched over silicon dioxide (SiO\(_2\)) layer. The interfacial layer (SiO\(_2\)) thickness \((t_{hk}) \) and above this high-k oxide layer \((t_{hk}) \) are fixed at 0.6 nm, 0.5 nm (equivalent thickness of high-k), respectively, so to achieve equivalent oxide thickness (EOT) of 1.1 nm.

3. Physical principle of device

The threshold voltage \((V_{th}) \) can be defined quantitatively as the gate voltage at which the minimum carrier charge density reaches certain value to achieve turn on condition. This definition is equivalent to the constant drain current \((I_D) \) method of \(V_{th} \) extraction, which is widely used in numerical simulation and experimental measurements [19].

The threshold voltage can be expressed as

\[
V_{th} \propto \Phi_m + \Phi_{bi},
\]

where \(\Phi_{bi} \) is the potential in the channel. To achieve a constant threshold voltage with the variation of metal gate work function, the doping concentrations \((N_A, N_D) \) are tuned, which change the built in potential \((V_{bi}) \) of the device given as
In symmetric DG-MOSFET with Pao-Sah’s gradual channel approximation, the generalized behaviour of the device for all regions of operation reported by Taur et al [20] is determined by the following equation

\[V_{bi} = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}. \]

(2)

Figure 2. (a) Drain current \((I_D) \) in both linear and log scale as a function of gate to source voltage \((V_{GS}) \). (b) Output conductance \((g_d) \) and drain current \((I_D) \) with respect to drain to source voltage \((V_{DS}) \) for different work functions.

According to equation (3) with constant \(V_{tn} \), the current \(I_D \) needs to be constant for all cases. However, the mobility decreases when the channel doping increases to maintain a constant \(V_{th} \) in case of lower metal gate work functions. Depending on the variation of current, the analog/RF performances are analysed in section 5.

4. Simulation procedure

The 2-D numerical device simulator [21], ATLAS is employed to simulate the n-channel planner DG-MOSFET with high-k metal gate. According to ITRS the drain bias has been fixed at \(V_{DD} = 1.0 \) V [5]. To study the analog performance the simulation is carried out with drain to source voltage \(V_{DS} = 0.5 \) V (which is half of the supply voltage i.e., \(V_{DD}/2 \)) [22] with a variable gate to source voltage \(V_{GS} = 0 \) V to 1.0 V. Threshold voltage \((V_{th}) \) is extracted using constant current \((I_D = 10^{-6} A \mu m^{-1}) \) definition from the \(I_D-V_{GS} \) transfer characteristic at \(V_{DS} = 0.1 \) V. The threshold voltage is used to find out the gate overdrive voltage \((V_{GT} = V_{GS} - V_{th}) \). The gate overdrive voltage is an important property of amplifier circuit as it decides the region of operation. The increment of \(V_{GT} \) increases drain current until saturation. Hence, in our investigation all the analog and RF analysis has been done against \(V_{GT} \) [23, 24]. To enhance the accuracy in the results, for MOSFET simulation the inversion-layer Lombardi constant voltage and temperature mobility model has been used. The Shockley–Read–Hall generation and recombination parameters simulating the leakage currents that exist due to thermal generation are incorporated in the simulation. The model Fermi–Dirac uses a rational Chebyshev approximation that gives results close to the exact values. The Auger recombination models for minority carrier recombination have been activated. In this simulation all the junctions of the structure are assumed as abrupt and the biasing conditions are considered at room temperature. Furthermore, two numerical techniques Gummel and Newton have been chosen to obtain solutions [21].

5. Results and discussion

Table 2. Electrostatic and analog performances for different values of work function, \(V_D = 0.5 \) V.

Work function (eV)	DIBL (mV V^{-1})	SS (mV decade^{-1})	Transconductance, \((g_m) \) (S)	Output conductance, \((g_d) \) (S)	Early voltage, \(V_{EA} \) (V)	Gain, \(A_V \) (dB)	TGF (V^{-1})
4.52	20.43	62.58	2.56E-03	3.45E-05	9.71	37.42	39.395
4.6	19.96	62.06	3.04E-03	2.12E-05	17.81	43.12	41.173
4.7	21.48	63.23	3.28E-03	2.11E-05	8.46	43.81	41.186

\[I_D = \mu C_W \frac{W}{L} \left((V_{GS} - V_{th})^2 - (V_{GS} - V_{th} - V_{DS})^2 \right). \]

(3)

\[V_{th} = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}. \]

(2)

Figure 2(a) shows drain current \((I_D) \) in both linear and log scale as a function of gate to source voltage \((V_{GS}) \) for different gate work function at drain bias \((V_{DS}) \) of 0.5 V. The drain current is dependent on the mobility \((\mu) \) of carriers which is controlled by the doping concentrations. Here in the low work function metal gate device the channel doping \((N_A) \) is kept high which results a lower drain current \((I_D) \) then the device having higher \(N_A \), because the mobility is directly...
proportional to the current as shown in equation (3). We found that the drain current increases with the increase of work function.

The sub threshold slope (SS) is the major parameter for calculating the off state current. Furthermore, SS is calculated by the formula

$$SS = \frac{\partial V_{GS}}{\partial \log I_D}.$$ \hspace{1cm} (4)

The value of drain induced barrier lowering (DIBL) is calculated by using the relation: DIBL = $\Delta V_{th}/\Delta V_{DS}$. The DIBL calculation is performed for V_{th} at $V_{DS}=0.1$ V and $V_{DS}=1.0$ V. Both the extracted value of SS and calculated value of DIBL for different work functions are tabulated in table 2. From figure 2(a), the on current increases as work function of the device increases and reaches maximum at 4.7 eV. The off current is quite constant for all device cases as V_{th} is maintained constant. Output conductance (g_{d}) and drain current (I_D) with respect to drain to source voltage (V_{DS}) for different work functions are plotted in figure 2(b). From the figure, output current is maximum for 4.6 eV device case and lowest for 4.7 eV device case.

As far as analog circuits are concerned, the most important parameters are the transconductance (g_{m}), output conductance (g_{d}), early voltage (V_E), transconductance-to-drain-current ratio (g_{m}/I_D), intrinsic gain (g_{m}/g_{d}), terminal capacitances, i.e., gate-to-source capacitance (C_{gs}) and gate-to-drain capacitance (C_{gd}), and cutoff frequency (f_T). The g_{m}–V_{GT} and TGF–V_{GT} characteristics have been compared for various work functions in figure 3(a). In references [12, 15, 24] it was shown that

$$g_m = \frac{\partial I_D}{\partial V_{GS}},$$ \hspace{1cm} (5)

$$\text{TGF} = \frac{g_m}{I_D}.$$ \hspace{1cm} (6)

The g_{m}/I_D ratio demonstrates how efficiently the current is used to achieve a certain value of transconductance. The advantage of high transconductance-to-drain ratio is the realization of circuits operating at low supply voltage. From the analysis, the structure having work function of 4.7 eV shows high drain current. According to the above relation it is clear that both g_m and TGF are directly dependent on the drain current. So, the structure having work function of 4.7 eV gives rise to higher values of transconductance and TGF when compared with others. Early voltage (V_E) and intrinsic gain (A_V) as functions of gate over drive voltage (V_{GT}) for different work functions are presented in figure 3(b). An improvement is observed in V_E for work function of 4.6 eV when compared to others. The intrinsic gain of the device, which is the ratio of transconductance and output conductance for various gate work functions is also displayed against gate over drive voltage (V_{GT}) for $V_{DS}=0.5$ V in figure 3(b). The simulated results for subthreshold slope (SS), maximum value of transconductance and maximum value of output conductance are outlined in table 2. By comparing these values while work function varying from 4.52 eV to 4.6 eV, SS value is decreased by 0.83%, DIBL value is decreased 2.3% and g_d is decreased by 62.73%. In analog/RF figures of merit transconductance (g_m) is increased by 18.75%, transconductance-to-drain-current ratio g_{m}/I_D is improved by 4.51%, intrinsic gain g_{m}/g_{d} increases by 15.23%, and early voltage V_E is increased by 83.41% while coming from 4.52 eV to 4.6 eV device case. By comparing the device having 4.6 eV provides better values in case of V_E, gain and TGF as compared to 4.52 eV case and nearly equal values with 4.7 eV case.

Figure 4 shows the intrinsic capacitances (gate to source capacitance C_{gs} and gate to drain capacitance C_{gd}) as a function of V_{GT} for both subthreshold or weak inversion and super threshold or strong inversion regions. As shown in figure, in the subthreshold regime, the intrinsic capacitance parameters have low values which increase slowly; however, in the super threshold region, they increase swiftly. This is because of the increase in the fringing field lines emanating from the gate edges. The device having work function 4.7 eV shows high value for C_{gs} and device having 4.52 eV gives high C_{gd} when compared to others. However, in the case of

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{(a) Transconductance generation factor (TGF) and transconductance (g_m) as a function of gate over drive voltage (V_{GT}). (b) Early voltage (V_E) and intrinsic gain (A_V) as a function of gate over drive voltage (V_{GT}) for different work functions.}
\end{figure}
4.6 eV, both the intrinsic capacitance values are least which in turn leads to high cutoff frequency.

Cutoff frequency f_T is one of the most important parameters for evaluating the RF performance of the device. Generally, f_T is the frequency when the current gain is unity:

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})}.$$ \hspace{1cm} (7)

From figure 5(a), the variations of cut off frequency (f_T) and gain transconductance frequency product (GTFP) can be observed with respect to V_{GT} for different values of work function. Here, the value of f_T obtained for the device having high work function i.e. 4.7 eV is higher as compared to its counterparts. This is because, the g_m value is high for work function of 4.7 eV and is low for the 4.52 eV case. To compromise these aspects of analog/RF circuit design, a unique figure of merit, $\text{GTFP} \left(GTFP = \left(\frac{g_m}{g_s}\right)\left(\frac{g_m}{I_D}\right)f_T \right)$ is analyzed. The variation of GTFP with gate over drive voltage (V_{GT}) for different work functions is also shown in figure 5(a). It is interesting to see that as the gate work function increases, the GTFP also increases and it is highest for the device having work function of 4.7 eV. This is due to the reduction in peak electric field, lower output conductance of the device having work function of 4.7 eV.

In figure 5(b) gives the gain frequency product ($GFP = \left(\frac{g_m}{g_s}\right)f_T$) against gate overdrive voltage (V_{GT}) for different values of work function. From the figure, the value of GFP increases as work function increases and reaches utmost for the device having work function of 4.7 eV. The product of g_m/I_D and f_T represents a trade-off between power and bandwidth and is utilized in moderate to high speed designs. Transconductance frequency product (TFP) as a function of V_{GS} for different values of work function is also plotted in figure 5(b). From the figure, it is clear that the device having higher work function gives higher TFP values than others. This is due to the high frequency values for higher work function devices.

These simulated results may be slightly higher than those of the experimental results, since, some considered parasitic parameters may be smaller than those of the real case, such as gate-to-source/drain capacitance, source/drain contact

Work function (eV)	C_{gs} (fF)	C_{gd} (fF)	f_T (GHz)	GFP (GHz)	TFP(GHz V$^{-1}$)	GTFP (GHz V$^{-1}$)
4.52	0.673	0.297	547.262	1.98E + 04	5.98E + 03	1.32E + 05
4.6	0.690	0.222	624.471	2.58E + 04	8.56E + 03	2.34E + 05
4.7	0.745	0.240	674.428	2.87E + 04	9.98E + 03	3.08E + 05
resistance. Cutoff frequency \(f_T \), transconductance frequency product \(TFP = (g_m/I_d)f_T \) and gain transconductance frequency product \(GTFP = (g_m/g_s)(g_m/I_d)f_T \) are compared for various gate work functions.

All the extracted values for analog/RF FOMs are tabulated in table 3. Similarly, as work function increases from 4.52 eV to 4.6 eV, GFP of the device increases by 30.33%, cutoff frequency \((f_T) \) increases by 14.10%, TFP increases by 43.14% and GTFP is increased by 77.27%.

6. Conclusion

A GS-DG MOSFET is explored in nanoscale regime by using device design guidelines. The impact of different gate metal work function \((\Phi_m) \) on the device performance has been carried out in terms of dc, analog and RF application by keeping in mind a constant threshold voltage. Our calculated and simulated results show that the optimized value of gate work function will be 4.6 eV for the chosen device dimension. The selection of \(\Phi_m \) was made with a trade-off between SS and DIBL in dc analysis. In connection with analog and RF application the device needs to be operated in sub-threshold regime and the performance values were optimized for gate metal work function 4.6 eV. When gate metal work function was raised from 4.52 eV to 4.6 eV, the SS and DIBL were decreased by 0.83% and 2.3%, respectively. Similarly, the output conductance \((g_d) \) is decreased by 62.73%, and \(A_V \) is increased by 15.23% in 4.6 eV case. These results enhance the important FOMs of the technology, i.e. TGF by 4.51%, \(f_T \) by 14.10%, TFP by 43.14%, GFP by 30.3% and GTFP by 77.27% for the 4.6 eV device case as compare to its counterpart the 4.52 eV case. The result also shows that all the discussed parameters are more sensitive to the gate metal work function of the device. Depending on the requirement of the application, the performance of nanoscale DG-MOSFET can be improved by tuning the other device parameters with the device design guideline.

References

[1] Yan R-H, Ourmazd A and Lee K F 1992 IEEE Trans. Electron Dev. 39 1704
[2] Suzuki K, Tosaka Y, Tanaka T, Horie H and Arimoto Y 1993 IEEE Trans. Electron Dev. 40 2326
[3] Thompson S, Packan P and Bohr M 1998 Intel Technol. J. 2 1
[4] Chang L, Choi Y-K, Ha D, Ranade P, Xiong S, Bokor J, Hu C and King T-J 2003 Proc. IEEE 91 1860
[5] The International Technology Roadmap for Semiconductors 2011 online available at http://public.itrs.net/
[6] Colinge J P 2004 Solid State Electron. 48 897
[7] Wann C, Noda K, Tanaka T, Yoshida M and Hu C 1996 IEEE Trans. Electron Dev. 43 1742
[8] Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y and Wong H 2001 Proc. IEEE 89 259
[9] Wong H S P 2002 IBM J. Res. Dev. 46 133
[10] Cellera G K and Cristoloveanu S 2003 J. Appl. Phys. 93 4955
[11] Chaudhry A and Kumar M J 2004 IEEE T. Dev. Mater. Reliab. 4 99
[12] Kilchytska V et al 2003 IEEE Trans. Electron Dev. 50 577
[13] Kranti A, Chung T M, Flandre D and Raskin J P 2004 Solid State Electron. 48 947
[14] Mohankumar N, Syamal B and Sarkar C K 2010 IEEE Trans. Electron Dev. 57 820
[15] Sharma R K, Gupta M and Gupta R S 2011 IEEE Trans. Electron Dev. 58 2936
[16] Sarkar A, Das A K, De S and Sarkar C K 2012 Microelectron. J. 43 873
[17] Sharma R K and Bucher M 2012 IEEE Trans. Nanotechnol. 5 992
[18] Lin R, Lu Q, Ranade P, King T-J and Hu C 2002 IEEE Electron Device Lett. 23 49
[19] Tsompatzoglou A, Dimitriadis C A, Clerc R, Pananakakis G and Ghibaudo G 2008 IEEE Trans. Electron Dev. 55 2512
[20] Taur Y, Liang X, Wang W and Lu H 2004 IEEE Electron Device Lett. 25 107
[21] ATLAS User’s Manual 2008(Santa Clara, CA: SILVACO International)
[22] Chakraborty S, Mallik A and Sarkar C K 2008 IEEE Trans. Electron Dev. 55 827
[23] Mallik A and Chattopadhyay A 2012 IEEE Trans. Electron Dev. 59 888
[24] Mohankumar N, Syamal B and Sarkar C K 2009 Microelectron. Reliab. 49 1491