Multidrug Resistant Bacteria in Pediatric Patients: A Therapeutic Nightmare

Archana Chintaman Choure1*, Vaishali B. Dohe2, Swati S. Mudshingkar2, Meghana S. Palewar2 and Renu R. Bhardwaj2

1Department of Microbiology, Smt Kashibai Navale Medical College & General Hospital, Pune-411041, India
2Department of Microbiology B. J. Govt. Medical College Pune, India
*Corresponding author

ABSTRACT

Bacterial infections caused by multidrug resistant bacteria (MDR) are a constant challenge for physicians throughout the world. We processed 451 clinical samples (blood, urine, pus and body fluids) from pediatric patients during the period of July’11 to Oct’11 in Sassoon General Hospital, Pune. Objective is to identify the bacterial isolates from different clinical specimens and study their antibiotics susceptibility pattern. Bacterial infections could be detected in 155 (34.4%) patients. These bacteria were isolated from blood (61%), urine (23%), pus (14%) and body fluid (2%). 64.6% of the infections were from the ward and 35.5% from NICU. 88.4% were gram negative bacilli and 11.7% were gram positive cocci. The most common gram negative bacilli isolated were Pseudomonas aeruginosa (22%) followed by Escherichia coli (15.5%) and Klebsiella pneumoniae (15.5%). 62% of the isolates were MDR, of which 33% were carbapenemase producers. Among the non-fermenters 3.3% organisms were resistant to all drugs including colistin and polymyxin – B. Increasing drug resistant organisms emerging in health care settings is prolonging hospital stay and increasing the cost of health care. So there is an urgent need to formulate guidelines and rationalize the use of antibiotics curtail this pandemic of drug resistance.

Keywords
Multidrug resistant bacteria, Pediatric patients, Antibiotic

Article Info
Accepted: 18 September 2018
Available Online: 10 October 2018

Introduction

Patients admitted to NICU and PICU are at more risk to have infections with multi drug resistant bacteria. Infections caused by multidrug resistant (MDR) bacteria - constantly challenge physicians globally (Suchada Sritippayawan et al., 2009). MRSA and ESBL producers are continuously increasing with time due to development of different drug resistant mechanisms by bacteria. Carbapenemase producing organisms are increasing all over the world and unfortunately some bacteria are even resistant to polymyxin and colistin limiting treatment options (Grisaru-Soen et al., 2007; Asensio et al., 2000).

The main aim and objectives of this study includes to study the bacteriological profile of various infections in pediatric patients. And also to study the antimicrobial susceptibility patterns of bacterial isolates.
Materials and Methods

Period-July 2011 to October 2011.

Location-Pediatric ward and NICU of Sassoon General Hospital, Pune.

Specimens-451 clinical samples of pus, urine, blood & body fluids cultured.

Isolates were identified by standard microbiological procedures (Collee et al., 2012; Collee et al., 2012; Forbes et al., 2007; Forbes et al., 2007).

Antimicrobial susceptibility test done by Kirby Baur’s disc diffusion method as per CLSI 2011.

Results and Discussion

Overall culture positivity rate was 34.4% in our study, which was more than (Tsering et al., 2011) 22% and (Ramesh Bhat et al., 2011) 22.8%. Whereas in (Prasad Gunjal et al., 2012) study it was 51.69%.

In our study positive blood cultures were 61%, which is near to (Douglas et al., 2004) 52% but more than (Uslan et al., 2007) 38% and (Sucu et al., 2005) 46%.

Predominant isolate on culture in our study was Gram negative bacilli 88.4%, which is consistent with Tsering et al., (2011) 61%, Ramesh Bhat et al., (2011), 60% and Gunjal et al., (2012) 61.9%.

Among these bacteria Pseudomonas aeruginosa was the most common 21.9% whereas Enterobacter 15.38%, Klebsiella pneumoniae 26.66% and E. coli 44.6% were isolated Tsering et al., (2011), Ramesh Bhat et al., (2011) and Gunjal et al., (2012) respectively.

Among gram positive isolates MSSA was most common 6.45% followed by MRSA 1.93%.

Multi drug resistant isolates were 62% of which 33% were carbapenemase producers, 3.3% were Non-fermenter resistant to colistin and 1.93% were MRSA.

Prevalence of bacterial infection in pediatric patients was 34.4%.

Chart-1 Sample wise distribution of isolates (n=155)
Table.1 Distribution of all isolates (n=155)

Organism	No. of isolates	% of isolates
Gram negative bacilli	137	
Pseudomonas aeruginosa	34	21.93%
E.coli	24	15.5%
Klebsiella pneumoniae	24	15.5%
Acinetobacter spp.	23	14.83%
Citrobacter spp.	12	7.74%
Enterobacter spp.	10	6.45%
Proteus	7	4.51%
Non-fermenter	2	1.29%
Brevundimonas vesicularis	1	0.64%
Gram positive cocci	18	
MSSA	10	6.45%
MRSA	3	1.93%
Streptococcus spp.	3	1.93%
Enterococcus spp.	2	1.29%

Table.2 Distribution of drug resistance n=155

Organisms	% of isolates
MDR	62%
Carbapenemase producer	33%
Non-fermenter Resistant to Colistin	3.3%
MRSA	1.93%

MDR-Strain resistant to two or more group of antibiotics.
Carbapenemase producer-Strain resistant to Imipenem & or Meropenem.

Table.3 Sample wise distribution of MDR isolates n=155

Clinical sample	No. of MDR organisms	% of MDR organisms
Blood	55	35.48%
Urine	25	16.12%
Pus	10	6.45%
Body Fluids	3	1.93%

Antimicrobial resistance pattern

Enterobacteriaceae

Antibiotics	% of resistance
Cefepime	88.75%
Cotrimoxazole	73.2%
Cefotaxime	64.7%
Piperacillin + Tazobactam	61.96%
Non-fermenters

Antibiotic	% of resistance
Cefepime	84.4%
Cefoxitin	82%
Cotrimoxazole	77.6%
Ceftazidime	77.5%
Cefotaxime	72%

Gram positive cocci

Antibiotic	% of resistance
Penicillin	80%
Erythromycin	40%
Gentamycin	30%
Ciprofloxacin	30%
Tetracyclin	30%

Septicemia (61%) was the most common type of infection followed by urinary tract infections (23%).

Majority isolates were Gram negative bacilli (88.4%), among them *P. aeruginosa* was most common (21.93%).

MDR isolates were -62%. Among them Carbapenemase producers were 33%.

MRSA isolates were 1.93% and Non-fermenters resistant to colistin were 3.3%.

Increasing drug resistant organisms emerging in health care settings is prolonging hospital stay and increasing the cost of health care.

So there is an urgent need to formulate guidelines and rationalize the use of antibiotics to curtail this pandemic of drug resistance.

Acknowledgment

Authors are thankful to entire Dept. of Pediatrics for sending all specimens and giving clinical history of patients.

References

Asensio A, Oliver A, Gonzalez-Diego P, Baquero F, Pe´rez-Diaz JC, Ros P, et al., Outbreak of a multi-resistant Klebsiella pneumonia strain in an intensive care unit: antibiotic use as risk factor colonization and infection. Clin Infect Dis 2000; 30:55—60.

Collee, J.G., Marr, W., Fraser, A.G. 2012. Mackie and McCartney’s Practical Medical Microbiology. 14th edition. New York: Churchill Livingston; 1996: p95-111.

Collee, J.G., Marr, W., Fraser, A.G. 2012. Mackie and McCartney’s Practical Medical Microbiology. 14th edition. New York: Churchill Livingston; 1996: p113-129.

Dechen C. Tsering et al., Bacteriological profile of septicemia and the risk factors in neonates and infants in Sikkim. Journal of global infect Dis 2011; 3(1):42-45.

Douglas MW, Lum G, Roy J, Fisher DA, Anesty NM, Currie BJ. Epidemiology
of community-acquired and nosocomial bloodstream infections in tropical Australia: a 12-month prospective study. Trop Med Int Health 2004; 9(7):795-804.

Forbes BA, Sahm DF, Weissfeld AS, editors. Bacterial Identification flow charts & schemes: A guide to Part III. In: Bailey and Scott’s diagnostic microbiology. 12th edition Missouri: Mosby Elsevier; 2007. 251-253.

Forbes BA, Sahm DF, Weissfeld AS, editors. Bacterial Identification flow charts & schemes: A guide to Part III. In: Bailey and Scott’s diagnostic microbiology. 12th edition Missouri: Mosby Elsevier; 2007. 260-283

Grisaru-Soen G, Sweed Y, Lerner-Geva L, Hirsh-Yechezkel G, Boyko V, Vardi A, et al., Nosocomial bloodstream infections in a pediatric intensive care unit: 3-year survey. Med Sci Monit 2007; 13: CR251—7.

Prasad Gunjal et al., A Cross-Sectional study to determine the profile antibiotic resistance pattern of gram negative bacilli isolated from intensive care unit patients in tertiary care hospital in Ahmednagar, Maharashtra.

How to cite this article:

Archana Chintaman Choure, Vaishali B. Dohe, Swati S. Mudshingkar, Meghana S. Palewar and Renu R. Bhardwaj. 2018. “Multidrug Resistant Bacteria in Pediatric Patients: A Therapeutic Nightmare”. Int.J.Curr.Microbiol.App.Sci. 7(10): 2392-2396.
doi: https://doi.org/10.20546/ijemas.2018.710.277

International Journal of Biomedical and Advance Research. 2012; 03(05).

Ramesh Bhat Y et al., Early Onset of Neonatal Sepsis: Analysis of the Risk Factors and the Bacterial Isolates by Using the BacT Alert System. Journal of Clinical and Diagnostic Research. 2011 November (Suppl-2), Vol-5(7): 1385-1388.

Suchada Sritippayawan, Klaita Sri-Singh, Nuanchan Praphal, Rujipat Samransamruajkit, Jitladda Deerojanawong. Multidrug-resistant hospital-associated infections in a pediatric intensive care unit: a cross-sectional survey in a Thai university International Journal of Infectious Diseases (2009) 13, 506—512 hospital.

Sucu N, Caylan R, Aydin K, Yilmaz G, Aktoz B, Koksal I. Prospective evaluation of blood cultuers in medical faculty hospital of Blacksea Technical University. Mikrobiyoloji Bulteni 2005; 39: 455-64.

Uslan DZ, Crane SJ, Steckelberg JM, Cockerill FR, Sauver JL, Wilson WR, et al., Age- and sex-associated trends in bloodstream infection. Arch Intern Med 2007; 167: 834-39.