PS1-10jh - a tidal disruption event with an extremely low disk temperature

Matias Montesinos Armijo and J.A. de Freitas Pacheco

1 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile
2 Departamento de Física, Universidade Federal do Espirito Santo, Vitoria, Brazil
3 Université de Nice-Sophia Antipolis, Observatoire de la Côte d’Azur, BP 4229, F-06304, Nice Cedex 4, France

emails: mmontesi@astro.puc.cl; pacheco@oca.eu

5 May 2014

1 INTRODUCTION

Different flare events have been detected either in X-rays (Bade et al. 1996; Komossa & Bade 1999; Donley et al. 2002; Esquej et al. 2007, 2008; Cappelluti et al. 2009; Makysym et al. 2010) or in the UV region (Gezari et al. 2002; Esquej et al. 2007, 2008; Cappelluti et al. 2009; Donley et al. 2012) reported an UV-optical flare that has occurred in a non-active galaxy at z = 0.1696 and which was probably originated in a tidal disruption event. This flare event discovered in the Pan-STARRS1 survey displays some particular characteristics like: a) the lack of hydrogen lines in the spectra and the presence of a broad HeII λ4686 Å emission line suggest that the disrupted star lost its outer envelope and can probably be identified with the He-rich core of an ancient red giant; b)
no detectable X-rays emission by Chandra; c) from the analysis of the continuum emission, the estimated disk temperature is considerably lower than those attributed to disks associated usually with X-ray flare events.

We report here the results obtained from a series of models computed with our code, aiming to reproduce the observed light curve in different wavelengths and to derive the main parameters characterizing the event.

2 THE MODEL

The hydrodynamic equations describing the disk evolution can be found in MP11A and MP11B respectively but, in a few words, we recall here the basic features. The code is based on an Eulerian formalism using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. Since the disks considered here are quite small, we have adopted an integration grid of 256 ring sectors instead of the original 1024 rings adopted in MP11A. The inner radius of the grid coincides with the last stable orbit while the external radius is defined by the tidal radius of the disrupted star and M_{bh} is the black hole mass. Notice that generally in the literature the parameter μ is taken to be equal to unity. In fact, the work by Luminet & Carter (1986) suggests that $\mu = 2.4$, which corresponds to the Roche limit for a fluid body in a circular orbit. More recent investigations of the fly-by problem for a viscous fluid body in a parabolic orbit suggest an effective Roche limit ($R_p = R_*$) with $\mu = 1.69$ (Sridhar & Tremaine 1992; Kosovichev & Novikov 1992). In particular, the latter authors considered the case in which the disturbing body is a massive black hole as in the present case. Thus, the value $\mu = 1.69$ will be adopted in our grid of models. This implies that in our models the most bound material returns to periastrse after a timescale t_{min} that is about 4.8 times higher than the case $\mu=1$. As we shall see later, this explains why Gezari et al. (2012) concluded that the disruption occurred only ~ 76 days before maximum light while our preferred model indicates a higher timescale, namely, 1.24 years. The original MP11A boundary conditions were also modified to allow an inflow of matter at the external ring, corresponding to the material that circularizes after shocks between converging streams.

Also as in MP11A, it was assumed that the gravitational field of the black hole is given by the approximate potential of Paczynski-Wiita (Paczynski & Wiita 1980) that gives correctly the position of the last stable orbit for the Schwarzschild geometry.

It should be emphasized that in the present model the angular momentum transfer is not described by the so-called “α”-model introduced by Shakura & Sunyaev (1973). The viscosity coefficient is that given by the approach of de Freitas Pacheco & Steiner (1976), i.e., $\eta = 2\pi r V_0 / \mathcal{R}$, where r is the radial distance to center of the disk, V_0 is the azimuthal velocity of the debris at that distance and \mathcal{R} is the critical Reynolds number characterizing the flow.

Another important aspect concerns the fallback rate. According to early investigations (Rees 1988; Evans & Kochanek 1989), in a first approximation, the fallback rate \dot{M}_{fb} is given by the relation

$$\dot{M}_{fb} = \frac{1}{3} \frac{m_*}{t_{\text{min}}} \left(\frac{t_{\text{min}}}{t} \right)^{5/3},$$

where

$$t_{\text{min}} = \frac{\pi}{\sqrt{2}} \frac{R_0^3}{(GM_{bh} R_0^2)^{1/2}}.$$

However, more detailed studies (Lodato et al. 2009) based on simulations indicate deviations from eq.(1) at early phases of the fallback process. In fact, only in the late evolutionary stages the fallback rate varies as $t^{-5/3}$. As in MP11B, we have attempted to include these deviations by modifying eq.(1) as

$$\dot{M}_{fb} = A \left(\frac{t}{t_{\text{min}}} \right)^{1/3} \left[a + \left(\frac{t}{t_{\text{min}}} \right)^2 \right].$$

In the above equation A is a normalization constant (see MP11A for details) and t_{min} is still given by eq.(2) Notice that the dimensionless parameter a permits to control the instant at which the maximum fallback rate occurs.

3 RESULTS

A series of models were computed in which the different parameters were varied, searching for a best representation of data, namely, the light curves of the flare in different wavelengths. In all models, we assumed that the disrupted star is a He-rich core of $0.23 M_\odot$ and a radius of $0.33 R_\odot$ as in Gezari et al. (2012). Our preferred model is characterized by a black hole of mass $6.3 \times 10^6 M_\odot$, a fallback parameter $a = 0.06$ and a critical Reynolds number $\mathcal{R} = 10^4$. Notice that this value is higher than those characterizing our previous models (MP11B) but is necessary to get a “colder” disk. A higher value of \mathcal{R} decreases the local dissipation of kinetic energy, producing lower temperatures and consequently, increasing the energy inflow by advection.

Contrary what is generally assumed in the literature, the beginning of the accretion process by the black hole does not coincide with the beginning of the circularization process or, in other words, with the beginning of the formation of the accretion disk. This is simply because it takes a finite time for the debris to be transported from the outer regions down to the inner region (last stable orbit) due to the angular momentum transfer mechanism. This is clearly seen in fig.1 where the evolution of the fallback rate is compared with the evolution of the accretion rate by the black hole. The very initial peak in the accretion rate occurs (for our preferred model) about 44.8 days after the onset of the circularization process and coincides also with the maximum in the light curve. The mass of the gravitationally bound debris is about $0.115 M_\odot$, corresponding to a half of the mass of the disrupted star, but a small fraction (about 15%) is not accreted by the black hole, escaping from the system and taking away the angular momentum stored in the disk.
The continuous emission of the flare is generally fitted by a black-body distribution characterized by an effective temperature. In reality, the local effective temperature varies along the disk surface with a radial profile that evolves in time. MP11B defined a suitable mean effective temperature, which corresponds to an effective energy flux that multiplied by the total disk surface gives the luminosity. Such a mean effective temperature is computed from the relation

\[< T^4 > = \frac{\int_{R_p}^{R_{lo}} rT^4(r)dr}{\int_{R_p}^{R_{lo}} rdr}. \] (4)

The evolution of the mean effective temperature is shown in fig. 2. The maximum value (~ 39400 K) coincides with maximum light (and maximum accretion rate by the black hole). After approximately 25 days the mean effective temperature of the disk drops to about 25000 K and then decreases more or less steadily at a rate of ~ 60K/day. The model predicts at maximum light and near the central region a “true” temperature around 65000 K. One month after maximum, in the inner region, the temperature has decreased to about 31000 K while in the outskirts of the disk it remains at a value around 20000 K. Figure 3 shows different snapshots of the temperature profile before, at and after maximum light.

In figure 4, the bolometric light curve is shown. As already mentioned, before maximum light the black hole is not yet accreting matter and the radiation comes from viscous dissipation in the disk that is still being formed. Integrating the bolometric luminosity over time allows an estimation for the total radiated energy, i.e., \(E_{rad} = 2.67 \times 10^{51} \) erg, in agreement with the lower limit estimated by Gezari et al. (2012), based on a black-body spectrum characterized by a temperature \(T_{BB} \geq 30000 \) K. Taking into account the total amount of mass accreted by the black hole, the mean efficiency for the energy conversion is \(\eta = E_{rad}/(Mc^2) \approx 0.015 \).

The resulting spectrum at maximum is shown in fig. 4.
Matias Montesinos Armijo and J.A. de Freitas Pacheco

Figure 5. Comparison between the “real” spectrum at the peak instant with the equivalent blackbody spectra characterized by the mean temperature of the disk at the peak.

As MP11B have shown, the black body approximation underestimates the emitted flux at short wavelengths ($\lambda \leq 1000$ Å) but predicts correctly fluxes at longer wavelengths.

The light curve in filters g_{P1}, r_{P1} and i_{P1} are shown respectively in the upper, middle and lower panels of figure 6. Data points are those given by Gezari et al. (2012). According to these authors, who have adopted the models by Lodato et al. (2009), systematic differences are present between data and theoretical light curves during the early rise and the late decay. The present model explains quite well both the raising part of the light curve and the early decay phase. The former is produced while the disk is still being formed and the black hole is not yet accreting mass. The early decay, just after maximum does not vary as $t^{-5/3}$ as usually claimed but varies faster, decreasing by about one magnitude per week. The late evolution of the theoretical light curve displays the aforementioned behaviour, i.e., $L \propto t^{-5/3}$ although data in the i_{P1} filter (lower panel) ∼ 40 days after maximum are slightly below the predicted values but still consistent taking into account the observational errors.

4 SUMMARY

The transient event discovered on 2010 May 28 by the Pan-STARRS1 (PS1) Medium Deep Survey was probably originated in a tidal disruption event. According to Gezari et al. (2012) the disrupted star was a helium-rich core resulting from the evolution of a red giant. We have used our hydrodynamic code (MP11A, MP11B) to compute the radiation of the bound debris during the phase in which a small accretion disk is formed and during which most of the flare energy is produced.

Our preferred model requires that the central black hole has a mass of $6.3 \times 10^6 \, M_\odot$ almost a factor 2.3 higher than that estimated by Gezari et al. (2012) but in good agreement with the relation between the black hole mass and the stellar mass of the host galaxy.

No significant X-ray emission related to the flare was detected, consistent with the temperature of ∼ 35 000 K estimated by Gezari et al. (2012) that is necessary to produce enough UV photons to ionize helium. Our model predicts at maximum and near the inner region of the disk a temperature of 65 000 K, which is a consequence of a high critical Reynolds number ($R = 10^4$) characterizing the turbulent state of the gas. This is about 20 times the R values defining our previous models (MP11B), in which an important X-ray emission is present. Notice that in our model the heating rate per unit volume ε due to viscosity is given by the equation

$$\varepsilon = \frac{2\pi}{R} \rho r^2 \Omega^3 \left(\frac{d\Omega}{dy} \right)^2$$

that shows why a higher critical Reynolds number or a lower viscosity decreases the heating rate and, consequently, the disk temperature.

Figure 6. Simulated light curves (solid continuous curves) compared with data from Gezari et al. (2012). Upper panel correspond to g_{P1} filter, middle panel to r_{P1}, and the lower one to i_{P1}.
The most important difference with the analysis by Gezari et al. (2012) concerns the chronology of the event, which results from the adopted value for the dimensionless parameter μ defining the tidal radius. If $\mu \simeq 1.69$ and not one, then the disruption of the star occurred about 1.24 yr before maximum light and the beginning of the circularization process, about 44.7 days before the peak. We emphasize once more that the beginning of circularization doesn’t coincide with the beginning of the accretion process by the black hole.

Contrary to the models adopted by Gezari et al. (2012), the present model provides a good representation of the initial rise of the light curve, when the black hole is not yet accreting and the disk is being filling up, as well as of the initial light decay, which evolves faster than $d \log L/d \log t = 0.6$.

Detailed analyses of tidal disruption events provide an excellent tool to study dormant black holes and the physics of non-steady accretion disk, in particular of the mechanisms responsible for the angular momentum transfer and energy dissipation.

ACKNOWLEDGMENTS

MMA acknowledges the support from FONDECYT through grant No. 3120101, and Basal (PFB0609). The authors are grateful to the referee for her/his valuable comments which have improved considerably this paper.

REFERENCES

Bade, N., Komossa, S. & Dahlem, M., 1996, A&A 309, L35
Cappelluti, N., Ajello, M., Rebusco, P., Komossa, S., Bongiorno, A., Clemens, C., Salvato, M., Esquej, P., Ackroft, T., Greiner, J. & Quintana, H., 2009, A&A 495, L9
de Freitas Pacheco, J.A. & Steiner, J.E., 1976, ApSS 39, 487
Donley, J.L, Brandt, W.N., Eracleous, M. & Boller, Th., 2002, AJ 124, 1308
Esquej, P., Saxton, R.D., Freyberg, M.J., Read, A.M., Altieri, B., Sánchez-Portal, M. & Hasinger, G., 2007, A&A 462, L49
Esquej, P., Saxton, R.D., Komossa, S., Read, A.M., Freyberg, M.J., Hasinger, G., García-Hernández, D.A., Lu, H., Rodríguez Zaurín, J., Sánchez-Portal, M. & Zhou, H., 2008, A&A 489, 543
Evans, C.R. & Kochanek, C.S., 1989, ApJ 346, L13
Gezari, S., Heckman, T., Denko, S.B. et al., 2009, ApJ 698, 1367
Gezari, S., Martin, D.C., Milliard, B. et al., 2006, ApJ 653, L25
Gezari et al., 2012, Nature, 485, 217
Komossa, S. & Bade, N., 1999, A&A 343, 775
Kosovichev, A.G. & Novikov, I.D., 1992, MNRAS 258, 715
Lodato, G., King, A.R. & Pringle, J.E., 2009, MNRAS 392, 332
Luminet, J.-P. & Carter, B., 1986, ApJS 61, 219
Maksym, P., Ulmer, M.P. & Eracleous, M., 2010, ApJ 722, 1035
Montesinos Armijo, M.A & de Freitas Pacheco, J.A., 2011, A&A 526, 146 (MP11A)
Montesinos Armijo, M.A & de Freitas Pacheco, J.A., 2011, ApJ, 736, 126 (MP11B)
Paczynski, B. & Wiita, P.J., 1980, A&A 88, 23

Rees, M.J., 1988, Nature 333, 523
Shakura, N.I. & Sunyaev, R.A., 1973, A&A 24, 337
Sridhar, S. & Tremaine, S., 1992, Icarus 95, 86