Adiabatic versus isocurvature non-Gaussianity

Chiaki Hikage, Dipak Munshi, Alan Heavens and Peter Coles

1Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
2Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ
3School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA

Accepted 2010 January 14. Received 2009 November 26; in original form 2009 July 2

ABSTRACT

We study the extent to which one can distinguish primordial non-Gaussianity (NG) arising from adiabatic and isocurvature perturbations. We make a joint analysis of different NG models based on various inflationary scenarios: local-type and equilateral-type NG from adiabatic perturbations and local-type and quadratic-type NG from isocurvature perturbations together with a foreground contamination by point sources. We separate the Fisher information of the bispectrum of cosmic microwave background temperature and polarization maps by l for the skew spectrum estimator introduced by Munshi and Heavens to study the scale dependence of the signal-to-noise ratio of different NG components and their correlations. We find that the adiabatic and the isocurvature modes are strongly correlated, though the phase difference of acoustic oscillations helps to distinguish them. The correlation between local- and equilateral-type is weak, but the two isocurvature modes are too strongly correlated to be discriminated.

Point source contamination, to the extent to which it can be regarded as white noise, can be almost completely separated from the primordial components for $l > 100$. Including correlations among the different components, we find that the errors of the NG parameters increase by 20–30 per cent for the Wilkinson Microwave Anisotropy Probe 5-year observation, but $\simeq 5$ per cent for Planck observations.

Key words: methods: analytical – methods: statistical – cosmic microwave background – early Universe.

1 INTRODUCTION

The statistical properties of fluctuations in the early Universe can be used to probe the very earliest stages of its history, and provide valuable information on the mechanisms which ultimately gave rise to the existence of structure within it. This may include evidence for the cosmic inflationary expansion. With the recent claim of a detection of non-Gaussianity (NG; Yadav & Wandelt 2008) in the Wilkinson Microwave Anisotropy Probe (WMAP) sky maps, interest in primordial NG has obtained a tremendous boost.

NG from the simplest inflationary models based on a single slowly rolling scalar field is typically very small (Salopek & Bond 1990; Falk et al. 1993; Gangui et al. 1994; Acquaviva et al. 2003; Maldacena 2003; Bartolo, Matarrese & Riotto 2006). Variants of the simple inflationary models can lead to much higher levels of NG, such as multiple fields (Linde & Mukhanov 1997; Lyth, Ungarelli & Wands 2003), modulated reheating scenarios (Dvali, Gruzinov & Zaldarriaga 2004), warm inflation (Gupta et al. 2002; Moss & Xiong 2007) and ekpyrotic model (Buchbinder, Khoury & Ovrut 2007; Creminelli & Senatore 2007; Koyama et al. 2007).

Different forms are proposed to describe primordial NG. Much interest has focused on local-type f_{NL}, by which the NG of Bardeen’s curvature perturbations is locally characterized (Gangui et al. 1994; Verde et al. 2000; Wang & Kamionkowski 2000; Komatsu & Spergel 2001; Babich & Zaldarriaga 2004):

$$\Phi(x) = \phi(x) + f_{NL}[\phi^2(x) - \langle \phi^2(x) \rangle],$$

where ϕ is the linear Gaussian part of Φ. This form is motivated by the single-field inflation scenarios and then many models predict NG in terms of f_{NL} (Bartolo et al. 2004a). Optimized estimators of the bispectrum, which is the leading correlation term in the local form, are introduced by Heavens (1998) and have been successively developed to the point where an estimator for f_{NL} saturates the Cramér–Rao bound for partial sky coverage and inhomogeneous noise (Komatsu, Spergel & Wandelt 2005; Cabella et al. 2006; Creminelli et al. 2006; Medeiros & Contaldi 2006; Smith & Zaldarriaga 2006; Creminelli, Senatore & Zaldarriaga 2007; Liguori et al. 2007; Komatsu et al. 2009; Smith, Senatore & Zaldarriaga 2009).

The local-type f_{NL} is sensitive to the bispectrum with squeezed-configuration triangles ($k_1 \ll k_2 \simeq k_3$). Several models including the inflation scenario with non-canonical kinetic terms (Seery & Lidsey 2005; Chen, Easther & Lim 2007), Dirac–Born–Infeld models (Alishahiha, Silverstein & Tong 2004) and Ghost

E-mail: hikage@astro.princeton.edu
inflation (Arkani-Hamed et al. 2004) predict large NG signals in equilateral configuration triangles ($\ell_1 \approx \ell_2 \approx \ell_3$), which is well described with equilateral-type f_{NL} (Babich, Creminelli & Zaldarriaga 2004).

NG arising from primordial isocurvature (entropy) perturbations has been discussed in the context of NG field potentials (Linde & Mukhanov 1997; Peebles 1999; Boubekeur & Lyth 2006; Suyama & Takahashi 2008), the curvaton scenario (Lyth et al. 2003; Bartolo, Matarrese & Riotto 2004b; Beltran 2008; Moroi & Takahashi 2009), modulated reheating (Boubekeur & Creminelli 2006), baryon asymmetry (Kawasaki, Nakayama & Takahashi 2009) and the axion (Kawasaki et al. 2008). Hikage et al. (2009) first put observational limits on the isocurvature NG using WMAP 3-year data.

In this paper, we make a joint analysis of the different NG models to estimate the extent to which one can decode each NG information from cosmic microwave background (CMB) temperature (T) and E polarization (E) maps obtained by WMAP and Planck. We separate Fisher information of the CMB bispectrum by different ranges of l to study at which angular scale each NG parameter has large signal-to-noise ratio (S/N) and correlations among different NG components weak. This idea is based on a new estimator called skew spectrum, which Munshi & Heavens (2010) have introduced to measure a scale dependence of NG parameters, while the commonly used single skewness parameter (Komatsu et al. 2005) gives a single value averaged over all scales. The advantage of the new estimator is that it retains information on the source of the NG, which the commonly used one does not.

For our analysis, we adopt a set of cosmological parameters at the maximum likelihood values for a power-law Λ cold dark matter (ACDM) model from the WMAP 5-year data only fit (Dunkley et al. 2009): $O_0 = 0.0432$, $O_{CDM} = 0.206$, $\Omega_{b} = 0.7508$, $H_{0} = 72.4 \, \text{km s}^{-1} \, \text{Mpc}^{-1}$, $\tau = 0.089$, $n_{s} = 0.961$. The amplitude of the primordial power spectrum is set to be 2.41×10^{-9} at $k = 0.002 \, \text{Mpc}^{-1}$. The spectra of isocurvature perturbations are assumed to be scale-invariant. The radiation transfer functions for adiabatic and isocurvature perturbations are computed using the publicly available CMBFAST code (Seljak & Zaldarriaga 1996).

This paper is organized as follows. Different NG models from primordial adiabatic and isocurvature perturbations are introduced in Section 2. Section 3 presents a Fisher matrix analysis of these parameters in which we estimate the corresponding error expected from WMAP and Planck observations. Section 4 devotes to a summary.

2 MODELS OF PRIMORDIAL NON-GAUSSIANITY

We consider various forms to describe primordial NG from adiabatic and isocurvature perturbations, and then provide explicit expressions for the bispectra.

2.1 Local-type adiabatic component

The bispectrum in the local-type NG form (equation 1) is written as (e.g. Verde et al. 2000; Komatsu & Spergel 2001)

$$B_{NL}^{Adi, Loc}(k_1, k_2, k_3) = 2 \frac{f_{NL}^{Adi, Loc}}{2} \left[P_{0}(k_1) P_{0}(k_2) + P_{0}(k_2) P_{0}(k_3) + P_{0}(k_1) P_{0}(k_3) + P_{0}(k_1) P_{0}(k_2) \right].$$

where we rewrite f_{NL} in equation (1) as $f_{NL}^{Adi, Loc}$. The CMB angular bispectra for T, E and their cross-terms are given by

$$b_{NL}^{Adi, Loc}(\theta, \phi) = 2 f_{NL}^{Adi, Loc} \int d^{2} \theta \left[\beta_{X1i}^{Adi}(\theta) \beta_{Y1j}^{Adi}(\theta) \alpha_{Z1i}^{Adi}(\theta) + \beta_{X1i}^{Adi}(\theta) \alpha_{Y1j}^{Adi}(\theta) \beta_{Z1i}^{Adi}(\theta) + \alpha_{X1i}^{Adi}(\theta) \beta_{Y1j}^{Adi}(\theta) \beta_{Z1i}^{Adi}(\theta) \right],$$

where X, Y and Z denote T or E, and α_{Z1i}^{Adi} and β_{Z1i}^{Adi} are defined with the adiabatic radiation transfer function g_{Adi}^{X} as

$$\alpha_{X1i}^{Adi}(\theta) = \frac{2}{\pi} \int k^{2} d\xi g_{Adi}^{X}(\xi) j_{0}(kr).$$

The CMB angular bispectra in this form are given by

$$b_{NL}^{Adi, Eq}(k_1, k_2, k_3) = 6 f_{NL}^{Adi, Eq} \left\{ - P_{0}(k_1) P_{0}(k_2) - P_{0}(k_2) P_{0}(k_3) - P_{0}(k_3) P_{0}(k_1) - 2 \left[P_{0}(k_1) P_{0}(k_2) P_{0}(k_3) \right]^{2/3} + \left[P_{0}(k_1) P_{0}(k_2) P_{0}(k_3) \right]^{1/3} \right\}.$$
2.3.1 Local-type isocurvature component

We consider two different forms for isocurvature NG. One is the same local form as the adiabatic one (equation 1):

\[S(\text{Lin}) = \eta + f_{NL}^{\text{iso,loc}} (\eta^2 - (\eta^3)), \]

(12)

where \(\eta \) is the linear Gaussian part. The bispectrum is given by

\[B_{\text{iso,loc}}(k_1, k_2, k_3) = 2 f_{NL}^{\text{iso,loc}} \left[P_g(k_1) P_g(k_2) \right. \]

\[+ P_g(k_3) \left. + P_g(k_3) P_g(k_1) \right]. \]

(13)

The amplitude of the bispectrum is proportional to \(f_{NL}^{\text{iso,loc}} f_S^{2}\), where \(f_{S(\text{Lin})} \) represents the fractional isocurvature perturbation in the local form:

\[f_{S(\text{Lin})} = \frac{f_{S(\text{Lin})}}{f_S} f_S. \]

(14)

We obtain the CMB bispectrum as

\[b_{XYZ,l_{i,j,l}}^{\text{iso,loc}} = 2 f_{NL}^{\text{iso,loc}} \int d^2 \vartheta \left[\beta_{\text{iso}}^{(l_1)}(r) \beta_{\text{iso}}^{(l_2)}(r) \varphi_{\text{iso}}(r) \right. \]

\[+ \left. P_g(k_{l_3}) \right] \frac{d}{d \theta} \int d^2 \vartheta \left[\varphi_{\text{iso}}(r) \beta_{\text{iso}}^{(l_2)}(r) \right. \]

\[\left. + \alpha_{\text{iso}}^{(l_1)}(r) \beta_{\text{iso}}^{(l_2)}(r) \right] \beta_{\text{iso}}^{(l_3)}(r), \]

(15)

where \(\alpha_{\text{iso}}^{(l_1)} \) and \(\beta_{\text{iso}}^{(l_2)} \) are defined with the isocurvature transfer function \(g_{\text{iso}}^{(l_2)} \) as

\[\alpha_{\text{iso}}^{(l_1)}(r) = \frac{2}{\pi} \int k^2 d k \varphi_{\text{iso}}^{(l_1)}(k) j_l(k r), \]

(16)

\[\beta_{\text{iso}}^{(l_2)}(r) = \frac{2}{\pi} \int k^2 d k P_g(k) g_{\text{iso}}^{(l_2)}(k) j_l(k r). \]

(17)

2.3.2 Quadratic-type isocurvature component

When the linear Gaussian term is negligible compared with the quadratic term, the isocurvature perturbation has a \(\chi^2 \) from (e.g. Linde & Mukhano 1997):

\[S(\text{Quad}) = \sigma^2 - (\sigma^2), \]

(18)

where \(\sigma \) obeys Gaussian statistics. This form has been studied in the context of axion (Kawasaki et al. 2008) and curvaton scenarios (Langlois, Vernizzi & Wands 2008). The bispectra are calculated as (Komatsu 2002)

\[B_{\text{iso,quad}}(k_1, k_2, k_3) = \frac{8}{3} \int L_{\text{box}}^{-3} \frac{d^3 p}{(2\pi)^3} P_g(p) \]

\[\times \left[P_g(k_1 + p) P_g(k_2 + p) P_g(k_3 + p) \right. \]

\[+ P_g(k_1 + p) P_g(k_2) P_g(k_3) \]

\[+ P_g(k_1) P_g(k_2 + p) P_g(k_3) \]

\[+ P_g(k_1) P_g(k_2) P_g(k_3 + p) \right], \]

(19)

where a finite box-size \(L_{\text{box}} \) gives an infrared cut-off. To avoid assumptions at scales far beyond the present horizon \(H_0^{-1} \), we set \(L_{\text{box}} = 30 \text{ Gpc} \). Equation (19) is approximately given by Hikage et al. (2009) as

\[b_{XYZ,l_{i,j,l}}^{\text{iso,quad}} = 2 \int d^2 \vartheta \left[\beta_{\text{iso}}^{(l_1)}(r) \beta_{\text{iso}}^{(l_2)}(r) \right. \]

\[+ \left. \left. \alpha_{\text{iso}}^{(l_3)}(r) \beta_{\text{iso}}^{(l_2)}(r) \right] \beta_{\text{iso}}^{(l_3)}(r), \]

(20)

where

\[\beta_{\text{iso}}^{(l_2)}(r) = \frac{2}{\pi} \int L_{\text{box}}^{-1} \frac{d^2 k}{(2\pi)^2} P_g(k) g_{\text{iso}}^{(l_2)}(k) j_l(k r), \]

(21)

\[\beta_{\text{iso}}^{(l_3)}(r) = \frac{2}{\pi} \int L_{\text{box}}^{-1} \frac{d^2 k}{(2\pi)^2} P_g(k) g_{\text{iso}}^{(l_3)}(k) j_l(k r). \]

(22)

The NG is proportional to \(f_{S(\text{Quad})}^{3/2} \) where \(f_{S(\text{Quad})} \) is the fractional isocurvature perturbation in the quadratic form:

\[f_{S(\text{Quad})} = \frac{f_{S(\text{Quad})}}{f_S} f_S. \]

(23)

2.4 Point source component

Unmasked point sources (e.g. radio galaxies) generate an additional NG in observed CMB maps. Assuming them to be Poisson distribution, \(b_{XYZ,l_{i,j,l}}^{\text{PS}} \) is a constant.

3 FISHER INFORMATION ANALYSIS FOR SKEW SPECTRUM

We make Fisher information analysis of the different NG components introduced in the previous section to estimate the error expected from WMAP, Planck and noiseless ideal observations.

The Fisher matrix for the CMB bispectrum in the weakly non-Gaussian, all-sky limit is written as (Babich & Zaldarriaga 2004; Yadav, Komatsu & Wandelt 2007)

\[F_{ij} = \sum_{l_{i,j,l}} F_{ij}^{(l_{i,j,l})}, \]

(24)

\[F_{ij}^{(l_{i,j,l})} = \sum_{2 \leq l_1, l_2, l_3 \leq l} \sum_{XYZ, PQR} I_{i,j,l_{i,j,l}} b_{XYZ,l_{i,j,l}}^{(l_{i,j,l})} \]

\[\times b_{XYZ,l_{i,j,l}}^{(l_{i,j,l})}(\text{Cov}^{-1})_{XYZ,PQR} b_{PQR,l_{i,j,l}}^{(l_{i,j,l})}, \]

(25)

where \(i \) and \(j \) denote each NG component and the factor \(I_{i,j,l_{i,j,l}} \) is defined as

\[I_{i,j,l_{i,j,l}} = \frac{1}{(2l_1 + 1)(2l_2 + 1)(2l_3 + 1)} \left[\begin{array}{ccc} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{array} \right]. \]

(26)

The sums over XYZ and PQR are just TTT when using CMB temperature maps only (TT only), but are eight combinations (TTT, TTE, TET, ETE, EEE, EET, ETE, EEE) when both CMB temperature and E polarization maps are used (T&E). The Fisher matrix at each \(l \), \(F_{ij}^{(l_{i,j,l})} \), is associated with the skew spectrum estimator for the \(i \)th NG component, \(S_{i,j,l}^{\text{prim}} \) (Komatsu et al. 2005) is

\[S_{i,j,l}^{\text{prim}} = \sum_{l} (2l + 1) S_{i,j,l}^{(l_{i,j,l})}. \]

(28)

When NG is small, the covariance matrix is approximately given by

\[\text{Cov}_{i,j,l}^{XYZ,PQR} \approx \Delta_{i,j,l} C_{l}^{X} C_{l}^{Y} C_{l}^{Z}, \]

(29)

where \(\Delta_{i,j,l} \) is 6 (\(l_1 = l_2 = l_3 \)), 2 (\(l_1 = l_2, l_2 = l_3 \) or \(l_1 = l_3 \)) and 1 (\(l_1 \neq l_2 \neq l_3 \)) and \(C_{l}^{X} \) represents the CMB power spectrum from purely adiabatic perturbations including observational noise \(N_{i,l}^{X} \):

\[C_{l,j}^{Y} = \frac{1}{4\pi} \int k^2 d k P_{g}(k) g_{X}^{(l)}(k) g_{Y}^{(l)}(k) + N_{l}^{X}. \]

(30)

We consider three different noise/beam functions: an ideal case without noise/beam (‘Ideal’); WMAP 5-year V-W band co-added map (‘WMAP5’); Planck’s expectations after two full sky surveys.
for 14 months (‘Planck’) using all of nine frequency channels. Noise is assumed to be homogeneous white noise and $N_{\text{sky}}^2 = 0$ when $X \neq Y$. Noise/beam is co-added at each l with the inverse weight of the noise variance in each frequency band or differential assembly. Planck’s noise/beam information is obtained from http://www.rssd.esa.int/Planck. The fraction of sky f_{sky} is set to be 1 in this analysis.

Fig. 1 shows the diagonal component of the Fisher matrix F_{ll}^i (equation 25). It represents the square of S/N [(S/N)2] for ith NG component at l without correlations among different NG components. The local adiabatic component increases in proportion to l at $l > 20$. The equilateral one is more flat using temperature spectrum only, while it grows more rapidly including E polarization. The results can be explained as follows: the local-type adiabatic NG is sensitive to the bispectrum with squeezed-shape triangles ($l_1 \ll l_2 \sim l$). As the bispectrum $b(l_1, l_2, l_3)$ is roughly proportional to $C_{l_1}C_{l_2}C_{l_3}$, the ($S/N)^2$ of a squeezed-shape bispectrum is $b(l_1, l_2, l_3)^2/C_{l_1}C_{l_2}C_{l_3}$, which is insensitive to l. The number of squeezed triangles significantly contributing to ($S/N)^2$ increases very slowly by l. Actually 80 per cent of ($S/N)^2$ come from the bispectrum with l_1 less than 20 for $l = 500$, 22 for $l = 1000$ and 25 for $l = 1500$. In consequence, F_l increases with the factor $l_{\text{sky}}^{2.3}$, which is proportional to l. The equilateral-type NG is sensitive to the equilateral-shape bispectrum, the ($S/N)^2$ of which changes as $b_{ll1}^2/C_{l_1}^3 \propto C_l$. The temperature spectrum C_{TT}^l is roughly proportional to l^{-2} at small l and more steeply decreases as $\propto l^{-4}$ at $l > 1000$. The decrement is well cancelled in F_l because the number of triangles increases in proportion to l^2 and the factor $l_{\text{sky}}^{2.3} \propto l$. Including the E polarization spectrum, which has different scale dependence as $C_{TE}^l \propto l^{-1}$ and C_{EE}^l is nearly constant at $l < 1000$, F_l grows more rapidly.

The isocurvature NGs are sensitive to squeezed-shape bispectra as the local-type adiabatic one, but the ($S/N)^2$ becomes $b_{ll1}^2/\left(C_{l_1}^{1.5}/C_{l_2}^{0.5}/C_{l_3}^{0.5}\right)^2 \propto (C_{l_1}^{1.5}/C_{l_2}^{0.5}/C_{l_3}^{0.5})^2$, which decreases as l^{-4}. Including the scale dependence of the factor $l_{\text{sky}}^{2.3} \propto l$, F_l of isocurvature modes is proportional to l^{-3} as shown in Fig. 1. The majority of the signal of the isocurvature components in temperature maps come from the large-angular scale ($l < 100$), where isocurvature perturbations produce larger CMB fluctuations than adiabatic perturbations. A phase difference in acoustic oscillations between adiabatic and isocurvature modes produces a different signature seen around $l \sim 300$, which is important particularly when polarization maps are included.

Table 1 lists the values of the diagonal components of the Fisher matrix summed over l up to 2500, at which Planck estimates are

![Figure 1. Diagonal components of the Fisher matrix F_{ll}^i (equation 25). From top to bottom, the local-type adiabatic (Adi,Loc), the equilateral-type adiabatic (Adi,Eq), the local-type isocurvature (Iso,Loc) and the quadratic-type isocurvature (Iso,Quad) components are plotted. Left-hand panels are for T map only, but right-hand panels are for $T&E$ maps. Noise/Beam is for Ideal (solid), WMAP5 (dotted) and Planck observations (dashed).](https://academic.oup.com/mnras/article-abstract/404/3/1505/1052471)
enough saturated. The result of the adiabatic local NG from temperature only maps is consistent with the previous work by Komatsu & Spergel (2001), which has $3.4 \times 10^{-3} f_{2, \text{NL}}$ for WMAP and $3.8 \times 10^{-2} f_{2, \text{NL}}$ for Planck (the details depend on the assumed cosmology and beam/noise properties). When the information of E polarization is included, the total Fisher matrix $F = (S/N)^2$ becomes four times larger in the ideal case. This is consistent with the result of Babich & Zaldarriaga (2004) showing that S/N is twice better with E polarization included.

Fig. 2 shows the cross-correlation coefficient r_l defined as $r_l = F_{ij}^{2} / (F_{ii}^{2} F_{jj}^{2})^{1/2}$. The local-type adiabatic and isocurvature components are strongly correlated, but the phase difference of acoustic

![Figure 2](https://example.com/image2.png)

Figure 2. Cross-correlation coefficients $r_{ij}^{2} = F_{ij}^{2} / (F_{ii}^{2} F_{jj}^{2})^{1/2}$ where i and j denote the local-type adiabatic (Adi,Loc), the local-type isocurvature (Iso,Loc), the equilateral-type adiabatic (Adi,Eq), the quadratic-type isocurvature (Iso,Quad) and the point source (PS) components. The left of each panel is temperature T only; the right is $T&E$, including E polarization. Noise/Beam is for Ideal (solid), WMAP5 (dotted) and Planck observations (dashed).
oscillations weakens the correlation, as seen especially around \(l \sim 200 \). The correlation between the local-type and the equilateral-type components becomes weak at \(l > 100 \). The two isocurvature components with scale-invariant spectra are almost completely correlated at all scales. This is explained as follows: if all of the spectra of \(\eta \) (equation 12), \(\sigma \) (equation 18) and \(S\text{(Quad)} \) are scale-invariant, their isocurvature bispectra (equations 15 and 20) have same configuration dependence and thereby their cross-correlation coefficient is unity. When \(\sigma \) is assumed to be scale-invariant spectrum, the power spectrum of \(S\text{(Quad)} \) has an additional scale-dependent factor \(\log (kL_{\text{box}}) \) (see equation 38 in Hikage et al. 2009). The effect is, however, very small and \(r \) is still close to unity.

The correlation with the point source component is very weak for \(l > 100 \).

Fig. 3 shows 1\(\sigma \) error contours (Cramér–Rao bound) for a pair of NG parameters for WMAP5 (T only), Planck (T only) and Planck (T&E). The errors expected from WMAP5 (T&E) is almost same as those from WMAP5 (T only). The rest of NG parameters other than the two plotted are fixed to be zero. The local-type adiabatic and isocurvature components are correlated with the correlation coefficient \(r = 0.43 \) for WMAP5, \(r = 0.23 \) for Planck T only, \(r = 0.20 \) for Planck T&E when \(l \) is summed up to 2500. We see that the local-type and the quadratic-type scale-invariant isocurvature components are difficult to be differentiated even using Planck data. The local-type and the equilateral-type adiabatic components are weakly correlated (\(r = 0.12 \) for WMAP5, \(r = 0.17 \) for Planck T only, \(r = 0.22 \) for Planck T&E), which is consistent with the previous work (Babich et al. 2004). The point source component is almost uncorrelated with the other primordial components (\(r < 0.08 \) for WMAP5 and \(r < 0.03 \) for Planck), which is consistent with the previous work (Komatsu & Spergel 2001). Table 2 lists the errors of the NG parameters without and with correlations among all of other parameters except for the quadratic-type isocurvature component. Polarization maps are found to be very important to constrain the isocurvature NG as well as adiabatic NG. The increase of the errors due to the correlations mainly between adiabatic and isocurvature modes is 20–30 per cent for WMAP5, but less than 5 per cent for Planck observations.

![Figure 3](https://academic.oup.com/mnras/article-abstract/404/3/1505/1052471)

Figure 3. 1\(\sigma \) error contours of a pair of NG parameters expected from WMAP5 T only (solid circles), Planck T only (dotted circles) and Planck T&E (dashed circles). The isocurvature fraction is a non-negative value and thereby the area with negative values of \(f_{S\text{(Quad)}} \) is shaded. The rest of NG parameters other than the two plotted are fixed to be zero.
Table 2. 1σ errors of each NG parameter from the joint analysis of all of the NG components except for the quadratic-type isocurvature components. The values without parentheses denote the limits with other parameters fixed, but those with parentheses denote the limits including the correlations such that the other parameters are marginalized.

	WMAP5	Planck	
	T only	T only	T&E
ΔM_{NL}^{Adi,Loc}	19 (23)	5.2 (5.5)	4.1 (4.3)
Δf_{NL}^{Iso,Loc}	59 (82)	57 (62)	34 (35)
ΔM_{NL}^{Adi,Eq}	117 (149)	66 (71)	46 (48)
Δf_{NL}^{2} [10^{-28}]	438 (441)	0.13 (0.13)	0.024 (0.024)

4 SUMMARY

We have presented a detailed analysis of the possibility of extracting information about NG from various inflationary models. We consider four different types of primordial NG models: local-type adiabatic, equilateral-type adiabatic, local-type isocurvature and quadratic-type isocurvature models together with point source contamination. The adiabatic and the isocurvature modes are correlated, but the difference in the phase of the corresponding acoustic oscillations breaks the degeneracy. The local-type and quadratic-type scale-invariant isocurvature components are difficult to separate even using Planck data. The correlation between the local-type and the equilateral-type adiabatic modes is weak. The point source (white noise) contamination does not pose a threat as it is uncorrelated with any of the f_{NL} parameters, although a high-resolution experiment will be more suited to get rid of such contamination. Our results are based on noise models from WMAP and Planck and we compare them to ideal noise-free and all-sky reference observations. The increase of the error for the non-Gaussian parameters due to the correlations is 20–30 per cent for WMAP5 and 5 per cent for Planck.

Secondary anisotropies other than point sources can contaminate the estimation of primordial NG. The cross-contamination of various inflationary contributions against secondaries such as Sunyaev–Zeldovich effect or integrated Sachs–Wolfe effect which are potentially observable with Planck data will be present elsewhere.

ACKNOWLEDGMENTS

CH acknowledges support from a Japan Society for the Promotion of Science (JSPS) fellowship. DM acknowledges financial support from an STFC rolling grant at the University of Edinburgh.

REFERENCES

Acquaviva V., Bartolo N., Matarrese S., Riotto A., 2003, Nuclear Phys. B, 667, 119
Alishahiha M., Silverstein E., Tong T., 2004, Phys. Rev. D, 70, 123505
Arkani-Hamed N., Creminelli P., Mukohyama S., Zaldarriaga M., 2004, J. Cosmology Astropart. Phys., 4, 1
Babich D., Zaldarriaga M., 2004, Phys. Rev. D, 70, 083005
Babich D., Creminelli P., Zaldarriaga M., 2004, J. Cosmology Astropart. Phys., 8, 9
Bartolo N., Komatsu E., Matarrese S., Riotto A., 2004a, Phys. Rep., 402, 103

This paper has been typeset from a TeX file prepared by the author.