Extended Formulations for Polytopes of Regular Matroids

Rohit Gurjar1 and Nisheeth K. Vishnoi2

1Tel Aviv University, Israel
2École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

We present a simple proof of the fact that the base (and independence) polytope of a rank \(n\) regular matroid over \(m\) elements has an extension complexity \(O(mn)\).

1 Introduction

Consider a matroid \(M = (E, \mathcal{I})\) where \(E\) is a finite set of cardinality \(m\) and \(\mathcal{I} \subseteq 2^E\). Let \(\mathcal{B} \subseteq \mathcal{I}\) be the set of bases of \(E\), i.e., inclusionwise maximal sets in \(\mathcal{I}\). It is known that all the sets in \(\mathcal{B}\) have the same cardinality, which is called the rank of the matroid and we denote it by \(n\). For every \(I \in \mathcal{I}\), we can associate a vector \(1_I \in \{0,1\}^E\) that is its indicator vector. Let \(P(I) \subset \mathbb{R}^m\) denote the independence polytope of \(I\) that is obtained by taking the convex hull of the vectors \(1_I\) for all \(I \in \mathcal{I}\). Similarly, let \(P(\mathcal{B}) \subset \mathbb{R}^m\) denote the base polytope of \(I\) that is obtained by taking the convex hull of the vectors \(1_I\) for all \(I \in \mathcal{B}\). While the number of facets required to describe such polytopes is typically exponential, a question that has received a great deal of attention is for what matroids the extension complexity of \(P(I)\) is small. An extension of a polytope \(P\) is another polytope \(Q\) so that \(P\) is the image of \(Q\) under a linear map and the extension complexity of \(P\), denoted \(xc(P)\), is the smallest size extension of \(P\) where size is measured by the number of facets in the extension. [Rot13] gave an existential argument that there are matroids whose independence polytope has an exponential extension complexity. On the other hand, [KLWW16] proved that the independence polytopes of regular matroids have a polynomial extension complexity. In this paper we give a simple proof of this latter result. In particular we prove the following theorem.

Theorem 1.1 Let \(M = (E, \mathcal{I})\) be a regular matroid with \(|E| = m\) and rank \(n\). Then there is a polytope \(Q_M \subset \mathbb{R}^m \times \mathbb{R}^{2mn}\) such that

1. the number of facets in the description of \(Q_M\) is at most \(2mn + m\),
2. the number of equality constraints in the description of \(Q_M\) is \(n^2 + 1\), and
3. the projection of \(Q_M\) on to the first \(m\) coordinates is exactly \(P(\mathcal{B})\).

In other words, \(xc(P(\mathcal{B})) \leq 2mn + m\).

By a standard reduction, our result implies that the extension complexity of the independence polytope of a regular matroid is also \(O(mn)\) (see, for example, [KLWW16, Lemma 2.1]). Our proof is inspired by the construction of Wong [Won80] for the spanning tree polytope (presented in [Wol11]) and does not rely on the non-trivial decomposition theorem of Seymour [Sey80].

2 Proof of Theorem 1.1

We start with a well-known characterization of regular matroids: a matroid \(M = (E, I) \) is regular if and only if it can be realized by the columns of a totally unimodular matrix \(A_M \in \mathbb{R}^{n \times m} \). Recall that a totally unimodular matrix has all its minors 0, 1 or \(-1\). In particular this means that all the entries of \(A_M \) are from \{-1, 0, 1\} and the inverse of any of its (invertible) submatrices has entries from \{-1, 0, 1\}. For simplicity of notation, let \(A \) denote \(A_M \) and let \(E = \{1, 2, \ldots, m\} \). The collection of base sets \(\mathcal{B} \) is

\[
\mathcal{B} := \{ S \subseteq E \mid |S| = n \text{ and } \text{rank}(A_S) = n \},
\]

where \(A_S \) be the \(n \times n \) submatrix of \(A \) with columns indexed by \(S \).

We work with \(2mn \) variables \(\{y_{i,j}\} \) and \(\{z_{i,j}\} \) for \(1 \leq i \leq m, 1 \leq j \leq n \). Let \(Y = (y_{i,j}) \) and \(Z = (z_{i,j}) \) each be an \(m \times n \) matrix and \(I_n \) denote the \(n \times n \) identity matrix. Consider the polytope \(P \) defined by

\[
ya_{i,j}, z_{i,j} \geq 0 \quad \forall i, j \tag{1}
\]

\[
(A \ A) \begin{pmatrix} Y \\ -Z \end{pmatrix} = I_n. \tag{2}
\]

Claim 2.1 The polytope \(P \) has integral vertices.

Proof: For \(1 \leq j \leq n \), consider the polytope \(P_j \) in variables \(\{y_{1,j}, \ldots, y_{m,j}\} \) and \(\{z_{1,j}, \ldots, z_{m,j}\} \) defined by

\[
ya_{i,j}, z_{i,j} \geq 0 \quad \forall i, \tag{3}
\]

\[
(A \ A) \begin{pmatrix} Y_j \\ -Z_j \end{pmatrix} = e_j, \tag{4}
\]

where \(Y_j \) and \(Z_j \) are the \(j \)-th columns of \(Y \) and \(Z \), respectively, and \(e_j \) is the \(j \)-th elementary unit vector. We first claim that polytope \(P_j \) is integral. Observe that \((A \ A)\) is totally unimodular. To see this, consider any square submatrix of \((A \ A)\) – either the submatrix takes two copies of the same column from \(A \), in which case its determinant is zero. Or it takes at most one copy of each column, in which case it is a submatrix of \(A \) and has determinant 0, 1 or \(-1\).

Since \(P_j \subset \mathbb{R}^{2m} \), any vertex of \(P_j \) is obtained by intersecting \(2m \) bounding hyperplanes. That is, every vertex is obtained as a solution of the following: for some sets \(S, T \subseteq E \) with \(|S| + |T| = n \),

\[
(A_S \ A_T) \begin{pmatrix} Y_{S,j} \\ -Z_{T,j} \end{pmatrix} = e_j
\]

and, \(y_{i,j} = 0 \) for \(i \not\in S \) and \(z_{i,j} = 0 \) for \(i \not\in T \). The vector \(\begin{pmatrix} Y_{S,j} \\ -Z_{T,j} \end{pmatrix} \) is the \(j \)-th column of \((A_S \ A_T)^{-1}\), whose entries are from \{-1, 0, 1\}, since \((A \ A)\) is totally unimodular. Since \(P_j \) satisfies \(y_{i,j}, z_{i,j} \geq 0 \), together we obtain that all vertices of \(P_j \) come from \(\{0, 1\}^{2m} \).

Now, note that

\[
P = \{(y, z) \mid (y_j, z_j) \in P_j \text{ for all } 1 \leq j \leq n \}.
\]

We claim that any vertex of \(P \) projects to a vertex of \(P_j \). Let us say \((y, z)\) is a point in \(P \) with its projection \((y_j, z_j)\) not being a vertex of \(P_j \). Then \((y_j, z_j)\) can be written as a non-trivial convex
combination of two points \((a, b)\) and \((c, d)\) in \(P_{j}\). Define \((y', z')\) and \((y'', z'')\) which are same as \((y, z)\) except \((y'_j, z'_j) = (a, b)\) and \((y''_j, z''_j) = (c, d)\). Clearly, \((y, z)\) is a non-trivial convex combination of \((y'_j, z'_j)\) and \((y''_j, z''_j)\) which are in \(P\). Thus, \((y, z)\) cannot be a vertex of \(P\). Hence, vertices of \(P\) come from \(\{0, 1\}^{2mn}\).

Now, we introduce new variables \({x_i}_{i=1}^{m}\) and add the following constraints for \(1 \leq i \leq m, 1 \leq j \leq n\),

\[
x_i \geq y_{i,j} + z_{i,j}.
\]

(3)

Let the new polytope described by (1), (2) and (3) be \(Q\).

Claim 2.2 Any vertex of \(Q\) must project to a vertex of \(P\).

Proof: The only constraints where \(x_i\) appears are (3). Let \((x, y, z)\) be a vertex of \(Q\). Then it must be the case that \(x_i = y_{i,j} + z_{i,j}\) for some \(j\), for each \(i - \) if not then one can find a nonzero vector \(\varepsilon\) such that both \((x + \varepsilon, y, z)\) and \((x - \varepsilon, y, z)\) are in \(Q\), implying that \((x, y, z)\) is not a vertex. Now, suppose \((y, z)\) is a vector in \(P\) is not a vertex. Then it can be written as a non-trivial convex combination of two points in \(P\), say \((y', z')\) and \((y'', z'')\). Define \(x'\) and \(x''\) as \(x'_i = z'_{i,j} + y'_{i,j}\) and \(x''_i = z''_{i,j} + y''_{i,j}\) for each \(i\). Then \((x, y, z)\) is a non-trivial convex combination of \((x', y', z')\) and \((x'', y'', z'')\) and thus, is not a vertex.

Thus, \(Q\) also has integral vertices. Now, we argue that the vertices of \(Q\) come from full-rank sets.

Claim 2.3 Let \(S \subseteq E\) be a set with rank\((A_S) < n\) and \(x \in \mathbb{R}^m\) be a vector supported on \(S\). Then for any \((y, z) \in \mathbb{R}^{2mn}\), \((x, y, z) \notin Q\).

Proof: Let us say \((x, y, z) \in Q\). For any \(i \in \overline{S}\), \(x_i = 0\), which implies \(z_{i,j} = 0\) and \(y_{i,j} = 0\) for all \(j\) (from (3)). This means that in (2), only the columns of \(A_S\) can contribute. As rank\((A_S) < n\), we know rank\((A_S A_S)\) cannot be equal to the identity matrix.

Claim 2.4 Let \(T \subseteq E\) be a set with rank\((A_T) = n\) and \(|T| = n\). Let \(x \in \{0, 1\}^m\) be its indicator vector. Then there exists \((y, z) \in \mathbb{R}^{2mn}\) such that \((x, y, z) \in Q\).

Proof: Consider the matrix \(A_T^{-1}\), which has entries from \([-1, 0, 1]\), since \(A\) is totally unimodular. The rows of \(A_T^{-1}\) will be indexed by the elements in \(T\) and columns will be indexed by \(1 \leq j \leq n\). For each \(i \notin T\), assign \(y_{i,j} = 0\) and \(z_{i,j} = 0\) for all \(j\). For each \(i \in T\) and \(1 \leq j \leq n\), assign

\[
\begin{align*}
\text{if } A_T^{-1}(i, j) = 0 & \text{ then } y_{i,j} = 0, z_{i,j} = 0, \\
\text{if } A_T^{-1}(i, j) = 1 & \text{ then } y_{i,j} = 1, z_{i,j} = 0, \\
\text{if } A_T^{-1}(i, j) = -1 & \text{ then } y_{i,j} = 0, z_{i,j} = 1.
\end{align*}
\]

Now, let us verify that \((y, z)\) satisfies (2). As \(y_{i,j} = z_{i,j} = 0\) for \(i \notin T\). We can write the l.h.s. of (2) as

\[
(A_T A_T) \begin{pmatrix} Y_T \\ -Z_T \end{pmatrix} = A_T(Y_T - Z_T).
\]

But, note that \(A_T^{-1}(i, j) = Y_T(i, j) - Z_T(i, j)\). In other words, \(A_T^{-1} = Y_T - Z_T\) and thus,

\[
A_T(Y_T - Z_T) = I_n.
\]
Now, we verify that the vector x satisfies (3). Observe that $y_{i,j} + z_{i,j} \leq 1$ when $i \in T$ and $y_{i,j} + z_{i,j} = 0$ otherwise. As x is the indicator vector of T we can see that for each i, j

$$x_i \geq y_{i,j} + z_{i,j}.$$

Finally, we show that the base polytope $P(\mathcal{B})$ comes from a face of Q.

Claim 2.5 For any point $(x, y, z) \in Q$, $\sum_{i=1}^{m} x_i \geq n$.

Proof: It suffices to prove the claim for the vertices of Q. Let (x, y, z) be a vertex of Q, which we have seen is integral. From Claim 2.3 x has support at least n. Since, x is integral and $x \geq 0$, we get that $\sum_{i=1}^{m} x_i \geq n$. \qed

Claim 2.4 implies that there exist points $(x, y, z) \in Q$ with $\sum_{i=1}^{m} x_i = n$, namely when x is the indicator vector of a base set T. Thus from Claim 2.5 adding the following equation with Q gives us a face of Q.

$$\sum_{i=1}^{m} x_i = n. \quad (4)$$

To conclude the proof of Theorem 1.1 note that (1), (2), (3) and (4) describe the extension polytope, whose projection on to the x coordinates is the base polytope $P(\mathcal{B})$.

References

[KLWW16] Volker Kaibel, Jon Lee, Matthias Walter, and Stefan Weltge. Extended formulations for independence polytopes of regular matroids. *Graphs and Combinatorics*, 32(5):1931–1944, 2016.

[Rot13] Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formulations. *Math. Program.*, 142(1-2):255–268, 2013.

[Sey80] P.D Seymour. Decomposition of regular matroids. *Journal of Combinatorial Theory, Series B*, 28(3):305 – 359, 1980.

[Wol11] Laurence A. Wolsey. Using extended formulations in practice. *Optima*, 85:7–9, July 2011.

[Won80] R.T. Wong. Integer programming formulations of the traveling salesman problem. In *Proceedings of 1980 IEEE International Conference on Circuits and Computers*, pages 149–352, 1980.