On a Family of Laurent Polynomials Generated by 2×2 Matrices

Victor Katsnelson

Received: 17 December 2015 / Accepted: 20 May 2016 / Published online: 31 May 2016
© Springer International Publishing 2016

Abstract To 2×2 matrix G with complex entries, the sequence of Laurent polynomial $L_n(z, G) = \text{tr} \left(G \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} G^* \right)^n$ is related. It turns out that for each n, the family $\{L_n(z, G)\}_G$, where G runs over the set of all 2×2 matrices, is a three-parametric family. A natural parametrization of this family is found. The polynomial $L_n(z, G)$ is expressed in terms of these parameters and the Chebyshev polynomial T_n. The zero set of the polynomial $L_n(z, G)$ is described.

Keywords 2×2-matrices · Laurent polynomials · Chebyshev polynomials · Entire functions with real ± 1-points

Mathematics Subject Classification 11C08 · 11C20 · 26C10 · 33C47

- \mathbb{R} stands for the set of all real numbers.
- \mathbb{C} stands for the set of all complex numbers.
- If $z \in \mathbb{C}$, $z = x + iy$, $x, y \in \mathbb{R}$, then $\overline{z} = x - iy$ is the complex conjugate number.
- If $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ is a matrix, then $M^* = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ is the Hermitian conjugate matrix.
- For a matrix $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$, $\text{tr} \ M$ stands for the trace of M: $\text{tr} \ M = m_{11} + m_{22}$, $\det \ M$ stands for the determinant of M.

Communicated by Bernd Kirstein.

Victor Katsnelson
victor.katsnelson@weizmann.ac.il; victorkatsnelson@gmail.com

1 Department of Mathematics, The Weizmann Institute, 76100 Rehovot, Israel
1 Laurent Polynomials Generated by 2×2 Matrices

Let

$$G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$

(1.1)

be a 2×2 matrix with complex entries. For $z \in \mathbb{C}$, let us define

$$S(z, G) = G \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} G^*,$$

(1.2a)

$$L_n(z, G) = \text{tr}(S(z, G))^n.$$

(1.2b)

Lemma 1.1 Considered as a function of z, $L_n(z, G)$ is a Laurent polynomial:

$$L_n(z, G) = \sum_{-n \leq k \leq n} c_{k,n}(G)z^k.$$

(1.3)

The “leading” coefficients $c_{\pm n,n}(G)$ are:

$$c_{-n,n}(G) = (|g_{12}|^2 + |g_{22}|^2)^n, \quad c_{n,n}(G) = (|g_{11}|^2 + |g_{21}|^2)^n.$$

(1.4)

Proof The 2×2 matrix function $S(z, G)$ can be presented as a linear combination:

$$S(z, G) = P_1(G)z + P_{-1}(G)z^{-1},$$

(1.5)

where

$$P_1(G) = \begin{bmatrix} g_{11} \\ g_{21} \end{bmatrix} \begin{bmatrix} g_{11} & g_{21} \end{bmatrix}, \quad P_{-1}(G) = \begin{bmatrix} g_{12} \\ g_{22} \end{bmatrix} \begin{bmatrix} g_{12} & g_{22} \end{bmatrix}.$$

(1.6)

Since $(S(z, G))^n = (P_1(G)z + P_{-1}(G)z^{-1})^n$, it is clear that

$$(S(z, G))^n = (P_1(G))^n z^n + \cdots + (P_{-1}(G))^n z^{-n}.$$

(1.7)

The matrices $(P_1(G))^n$, $(P_{-1}(G))^n$ and their traces can be calculated easily:

$$(P_1(G))^n = \begin{bmatrix} g_{11} \\ g_{21} \end{bmatrix} (|g_{11}|^2 + |g_{21}|^2)^{n-1} \begin{bmatrix} g_{11} & g_{21} \end{bmatrix},$$

$$(P_{-1}(G))^n = \begin{bmatrix} g_{12} \\ g_{22} \end{bmatrix} (|g_{12}|^2 + |g_{22}|^2)^{n-1} \begin{bmatrix} g_{12} & g_{22} \end{bmatrix},$$

$$\text{tr}(P_1(G))^n = (|g_{11}|^2 + |g_{21}|^2)^n, \quad \text{tr}(P_{-1}(G))^n = (|g_{12}|^2 + |g_{22}|^2)^n.$$

(1.8)

Since the value $\text{tr} M$ is linear with respect to 2×2 matrix M, the equality (1.4) follows from the definition (1.2b) and from (1.8).

Let us “normalize” the polynomial $L_n(z, G)$.
Definition 1.2 We say that the matrix \(G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \) is generic if the condition

\[
(|g_{11}|^2 + |g_{21}|^2)(|g_{12}|^2 + |g_{22}|^2) \neq 0
\]

holds.

For a generic matrix \(G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \), let us define

\[
R_1(G) = (|g_{11}|^2 + |g_{21}|^2)^{\frac{1}{2}}, \quad R_2(G) = (|g_{12}|^2 + |g_{22}|^2)^{\frac{1}{2}},
\]

\[
H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} (R_1(G))^{-1} & 0 \\ 0 & (R_2(G))^{-1} \end{bmatrix}
\]

The matrix \(H \) satisfies the normalizing condition

\[
|h_{11}|^2 + |h_{21}|^2 = 1, \quad |h_{12}|^2 + |h_{21}|^2 = 1.
\]

Lemma 1.3 The Laurent polynomials \(L_n(., H) \) and \(L_n(., G) \) are related by the equality

\[
L_n(z, G) = R^n L_n(\rho z, H),
\]

where

\[
R = R_1(G)R_2(G), \quad \rho = R_1(G)/R_2(G),
\]

\(R_1(G), R_2(G) \) are defined by (1.10).

Lemma 1.4 Let \(H \) be an arbitrary \(2 \times 2 \) matrix with complex entries and \(F \) be the nonnegative square root of the matrix \(H^*H \):

\[
F^2 = H^*H, \quad F \geq 0.
\]

Then the Laurent polynomials \(L_n(z, H) \) and \(L_n(z, F) \) coincides:

\[
L_n(z, H) \equiv L_n(z, F).
\]

Proof According to the definitions (1.2a) and (1.2b),

\[
L_n(z, H) = \text{tr} \left(H \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} H^* \cdot H \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} H^* \cdot \cdots \cdot H \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} H^* \cdot H \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} H^* \right)
\]

(1.17)
Permuting the matrices H and
\[
\begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix}
\]
$H^* \cdot H \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} H^* \cdots H \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} H^* .
\]
$H \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} H^*$, we obtain
\[
L_n(z, H) = \text{tr}\left(\left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] H^* H \cdot \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] H^* H \cdots \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] H^* H \cdot \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] H^* H \right).
\]
Taking into account (1.15), we obtain
\[
L_n(z, H) = \text{tr}\left(\left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F^2 \cdot \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F^2 \cdots \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F^2 \cdot \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F \cdot F \right).
\]
Permuting the matrices $\begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} F^2 \cdot \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F^2 \cdots \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F^2 \cdot \left[\begin{array}{cc}
 z & 0 \\
 0 & z^{-1}
\end{array} \right] F$ and F, we obtain
\[
L_n(z, H) = \text{tr}\left(F \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} F \cdot F \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} F \cdots F \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} F \cdot F \begin{bmatrix}
 z & 0 \\
 0 & z^{-1}
\end{bmatrix} F \right)
\]
(1.18)
According to the definitions (1.2a) and (1.2b), the function in the right hand side of (1.18) is the polynomial $L_n(z, F)$.

We apply Lemma 1.4 to the normalized matrix H of the form (1.10)-(1.11). In view of (1.12), the matrix $H^* H$ is of the form
\[
H^* H = \begin{bmatrix}
 1 & \gamma \\
 \bar{\gamma} & 1
\end{bmatrix}, \quad \text{where} \quad \gamma \in \mathbb{C}, \quad |\gamma| \leq 1.
\]
(1.19)
Let $F = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$ be the non-negative square root of the matrix $H^* H$. Since $F \geq 0$, the conditions
\[
f_{11} \geq 0, \quad f_{22} \geq 0, \quad f_{12} = \overline{f_{21}}
\]
(1.20)
hold. In particular,
\[
|f_{12}| = |f_{21}|
\]
(1.21)
From (1.19) and from the equality $F^2 = H^* H$ it follows that
\[
(f_{11})^2 + |f_{12}|^2 = 1, \quad |f_{21}|^2 + (f_{22})^2 = 1.
\]
(1.22)
Since $f_{11} \geq 0, \ f_{22} \geq 0$, from (1.21) and (1.22) it follows that
\[
f_{11} = f_{22}.
\]
(1.23)
From (1.22), (1.23) and $f_{12} = \overline{f_{21}}$ it follows that there exist $\theta \in [0, \pi/2]$ and $a \in \mathbb{C}, |a| = 1$ such that $f_{11} = f_{22} = \cos \theta, f_{12} = a \sin \theta, f_{21} = \sin \theta \overline{a}$. Since $F \geq 0$,
the inequality \(\det F \geq 0 \) holds. Therefore actually \(\theta \in [0, \pi/4] \). It is evident that such \(\theta \) and \(a \) are unique.

Thus the following result is obtained:

Lemma 1.5 Let \(H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \) be an arbitrary \(2 \times 2 \) matrix with complex entries which satisfy the normalizing condition (1.12). Let \(F \) be the non-negative square root of the matrix \(H^*H \).

Then \(F \) is of the form \(F = F_{\theta,a} \), where

\[
F_{\theta,a} = \begin{bmatrix} \cos \theta & a \sin \theta \\ \sin \theta \overline{a} & \cos \theta \end{bmatrix},
\]

whith \(\theta \in [0, \pi/4] \), \(a \in \mathbb{C} \), \(|a| = 1 \).

According to Lemma 1.4, the Laurent polynomials \(L_n(z, H) \) and \(L_n(z, F_{\theta,a}) \) coincide:

\[
L_n(z, H) = L_n(z, F_{\theta,a}), \quad n = 1, 2, 3, \ldots
\]

Let us relate the matrix \(U_a \) to the number \(a \in \mathbb{C} \):

\[
U_a = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}.
\]

If \(|a| = 1 \), then the matrix \(U_a \) is unitary: \(U_a U_a^* = U_a^* U_a = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). For \(|a| = 1 \), the equalities

\[
F_{\theta,a} = U_a F_{\theta} U_a^*, \quad U_a \begin{bmatrix} z & 0 \\ 0 & \overline{z} \end{bmatrix} U_a^* = \begin{bmatrix} z & 0 \\ 0 & \overline{z} \end{bmatrix}.
\]

hold, where

\[
F_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.
\]

Therefore

\[
S(z, F_{\theta,a}) = U_a S(z, F_{\theta}) U_a^*, \quad \forall a \in \mathbb{C} : |a| = 1,
\]

and for any \(n = 1, 2, 3, \ldots \),

\[
(S(z, F_{\theta,a}))^n = U_a (S(z, F_{\theta}))^n U_a^*, \quad \forall a \in \mathbb{C} : |a| = 1,
\]

If \(M \) is an arbitrary matrix and \(U \) is an unitary matrix, then \(\text{tr } U M U^* = \text{tr } M \). In particular, \(\text{tr } U_a (S(z, F_{\theta}))^n U_a^* = \text{tr}(S(z, F_{\theta}))^n. \) Thus

\[
L_n(z, F_{\theta,a}) = L_n(z, F_{\theta}), \quad \forall a \in \mathbb{C} : |a| = 1.
\]

Comparing (1.25) and (1.30), we obtain the following result:
Theorem 1.6 Let \(H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \) be an arbitrary \(2 \times 2 \) matrix with complex entries which satisfies the normalizing condition (1.12). Then there exists an unique \(\theta \in [0, \pi/4] \) such that

\[
L_n(z, H) = L_n(z, F_\theta), \quad n = 1, 2, 3, \ldots,
\]

where the matrix \(F_\theta \) is defined by (1.28).

Let us summarize the above consideration.

Theorem 1.7 Let \(G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \) be a \(2 \times 2 \) matrix with complex entries. We assume that \(G \) is generic, that in no-one of two columns \(\begin{bmatrix} g_{11} \\ g_{21} \end{bmatrix} \) and \(\begin{bmatrix} g_{12} \\ g_{22} \end{bmatrix} \) vanishes. Let the Laurent polynomial \(L_n(z, G) \) is defined by (1.2).

Then

1. There exists the number \(\theta \in [0, \pi/4] \) such that the Laurent polynomial \(L_n(., G) \) generated by the matrix \(G \) can be expressed in terms of the Laurent polynomial \(L_n(., F_\theta) \) generated by the matrix \(F_\theta \):

\[
L_n(z, G) \equiv R^n L_n(\rho z, F_\theta), \quad z \in \mathbb{C},
\]

for every \(n = 1, 2, 3, \ldots \), where the matrix \(F_\theta \) is defined by (1.28), the numbers \(R \) and \(\rho \) are the same that appears in (1.14).

2. The parameters \(\theta \) is determined by the matrix \(G \) uniquely. In particular \(\theta \) does not depend on \(n \).

3. The parameter \(\theta \) takes the value \(\theta = 0 \) if and only if the columns \(\begin{bmatrix} g_{11} \\ g_{21} \end{bmatrix} \) and \(\begin{bmatrix} g_{12} \\ g_{22} \end{bmatrix} \) of the matrix \(G \) are orthogonal, that is \(g_{11} \overline{g_{12}} + g_{21} \overline{g_{22}} = 0 \).

The parameter \(\theta \) takes the value \(\theta = \pi/4 \) if and only if the columns \(\begin{bmatrix} g_{11} \\ g_{21} \end{bmatrix} \) and \(\begin{bmatrix} g_{12} \\ g_{22} \end{bmatrix} \) of the matrix \(G \) are proportional, that is the matrix \(G \) is of rank one.

2 Properties of the Polynomials \(L_n(z, F_\theta) \).

Theorem 2.1 Let the Laurent polynomial \(L_n(z, F_\theta), n = 1, 2, 3, \ldots \), be defined as

\[
L_n(z, F_\theta) = \text{tr} \left(S(z, F_\theta) \right)^n.
\]

where

\[
S(z, F_\theta) = F_\theta \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} F_\theta,
\]

the matrix \(F_\theta \) is defined by (1.28), and \(\theta \in [0, \pi/4] \).
Then

1. The Laurent polynomial $L_n(z, F_\theta)$ is of the form

$$L_n(z, F_\theta) = z^n + z^{-n} + \sum_{-(n-1) \leq k \leq (n-1)} p_{k,n}(\theta) z^k,$$

$$p_{k,n}(\theta) = p_{-k,n}(\theta).$$ \hfill (2.2)

2. For $\theta \in (0, \pi/4)$, the coefficients $p_{k,n}(\theta)$ vanish if $k \neq n \mod 2$ and are strictly positive if $k = n \mod 2$:

$$p_{k,n}(\theta) = 0, \quad -(n - 1) \leq k \leq n - 1, \quad k \neq n \mod 2,$$

$$p_{k,n}(\theta) > 0, \quad -(n - 1) \leq k \leq n - 1, \quad k = n \mod 2.$$ \hfill (2.3a, 2.3b)

3. For $\theta \in [0, \pi/4]$, the Laurent polynomial $L_n(z, F_\theta)$ can be expressed in terms of the Chebyshev polynomial $T_n, T_n(\zeta) = \cos(n \arccos \zeta)$:

$$L_n(z, F_\theta) = 2(\cos 2\theta)^n \cdot T_n\left(\frac{z + z^{-1}}{2\cos 2\theta}\right).$$ \hfill (2.4)

Remark 2.2 For $\theta = 0$,

$$L_n(z, F_0) = z^n + z^{-n}.$$ \hfill (2.5)

So, all coefficients $p_{k,n}(0)$ of the Laurent polynomial $L_n(z, F_0)$ vanish:

$$p_{k,n}(0) = 0, \quad -(n - 1) \leq k \leq n - 1.$$ \hfill (2.6)

For $\theta = \pi/4$,

$$L_n(z, \pi/4) = \left(z + z^{-1}\right)^n,$$ \hfill (2.7)

so

$$p_{k,n}\left(\pi/4\right) = 0 \quad \text{if} \quad k \neq n \mod 2, \quad p_{k,n}\left(\pi/4\right) = \left(\frac{n}{2\cos \pi/2}\right) \quad \text{if} \quad k = n \mod 2.$$ \hfill (2.8)

Proof of Theorem 2.1. 1. The equalities (2.1) are the equalities (1.2) for the matrix $G = F_\theta$.

2. It is clear that $S(z, F_\theta) = z P_1(\theta) + P_{-1}(\theta) z^{-1}$, where

$$P_1(\theta) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix}, \quad P_{-1}(\theta) = \begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix} \begin{bmatrix} \sin \theta & \cos \theta \end{bmatrix}.$$ \hfill (2.9)

Thus

$$(S(z, F_\theta))^n = \sum_{\epsilon} z^{\epsilon(\theta)} P_{\epsilon_1}(\theta) \cdot P_{\epsilon_2}(\theta) \cdot \cdots \cdot P_{\epsilon_n}(\theta),$$ \hfill (2.10)
the sum in (2.10) runs over all combinations of subscripts with either \(\varepsilon_k = 1 \) or \(\varepsilon_k = -1 \), \(v(\varepsilon) = \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_n \).

It is clear that

\[
v(\varepsilon) = n - 2v_-(\varepsilon) = 2v_+ (\varepsilon) - n,
\]

where

\[
v_+ (\varepsilon) = \#\{ k : \varepsilon_k = +1 \}, \quad v_- (\varepsilon) = \#\{ k : \varepsilon_k = -1 \}.
\] (2.11)

Therefore

\[
v(\varepsilon) = n \pmod{2} \quad \forall \varepsilon = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n).
\] (2.12)

Regrouping summands in (2.10), we obtain

\[
(S(z, F_\theta))^n = \sum_{-n \leq k \leq n} z^k \left(\sum_{\varepsilon : v(\varepsilon) = k} P_{\varepsilon_1}(\theta) \cdot P_{\varepsilon_2}(\theta) \cdot \cdots \cdot P_{\varepsilon_n}(\theta) \right).
\] (2.13)

Thus the coefficients \(p_{k,n}(\theta) \) of the polynomial \(L_n(z, F_\theta) \), (2.2), are:

\[
p_{k,n}(\theta) = \sum_{\varepsilon : v(\varepsilon) = k} \text{tr} \left(P_{\varepsilon_1}(\theta) \cdot P_{\varepsilon_2}(\theta) \cdot \cdots \cdot P_{\varepsilon_n}(\theta) \right), \quad -(n - 1) \leq k \leq n - 1,
\] (2.14)

the sum in (2.14) runs over the set \(\{ \varepsilon : v(\varepsilon) = k \} \).

According to (2.12), if \(k \neq n \pmod{2} \), then the set \(\{ \varepsilon : v(\varepsilon) = k \} \) is empty. Thus the sum in (2.14) vanishes if \(k \neq n \pmod{2} \). In other words, the condition (2.3a) holds.

If an integer \(k \) satisfies the conditions

\[
k = n \pmod{2}, \quad -(n - 1) \leq k \leq (n - 1),
\] (2.15)

then the set \(\{ \varepsilon : v(\varepsilon) = k \} \) is not empty. The equality \(v(\varepsilon) = k \) means that

\[
v_+ (\varepsilon) = \frac{n+k}{2}, \quad v_- (\varepsilon) = \frac{n-k}{2}.
\]

Moreover if an integer \(k \) satisfies the condition (2.15), then

\[
\#\{ \varepsilon : v(\varepsilon) = k \} = \binom{n}{\frac{n+k}{2}} = \binom{n}{\frac{n-k}{2}}.
\] (2.16)

For \(\theta \in (0, \pi/2) \), all entries each of the matrices \(P_{\varepsilon_j}(\theta) \) are strictly positive. Hence all the entries each of the matrices \(P_{\varepsilon_1}(\theta) \cdot P_{\varepsilon_2}(\theta) \cdot \cdots \cdot P_{\varepsilon_n}(\theta) \) are strictly positive. All the more \(\text{tr} \left(P_{\varepsilon_1}(\theta) \cdot P_{\varepsilon_2}(\theta) \cdot \cdots \cdot P_{\varepsilon_n}(\theta) \right) > 0 \). Therefore the condition (2.3b) holds.

\[1\] There are \(2^n \) such combinations.
3. For a 2×2 matrix $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$, let $\lambda_1(M)$ and $\lambda_2(M)$ be the eigenvalues of M, that is the roots of the characteristic equation $\det \left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - M \right) = 0$. For any power M^n of the matrix M, $n = 1, 2, 3, \ldots$, the equalities

$$\lambda_1(M^n) = (\lambda_1(M))^n, \quad \lambda_2(M^n) = (\lambda_2(M))^n$$

hold. In particular, the trace $\operatorname{tr} M^n$ of the matrix M^n can be expressed in terms of the eigenvalues of the matrix M:

$$\operatorname{tr} M^n = (\lambda_1(M))^n + (\lambda_2(M))^n, \quad n = 1, 2, 3, \ldots$$ \hspace{1cm} (2.17)

We apply (2.17) to the matrix $M = S(z, F_\theta)$. Taking into account (2.1a), we come to the equality

$$L_n(z, F_\theta) = (\lambda_1(S(z, F_\theta)))^n + (\lambda_2(S(z, F_\theta)))^n, \quad z \in \mathbb{C}. \hspace{1cm} (2.18a)$$

The eigenvalues of the matrix $S(z, F_\theta)$ can be found explicitly:

$$\lambda_1(S(z, F_\theta)) = \frac{z + z^{-1}}{2} + \sqrt{\left(\frac{z + z^{-1}}{2}\right)^2 - \cos^2 2\theta}, \hspace{1cm} (2.18b)$$

$$\lambda_2(S(z, F_\theta)) = \frac{z + z^{-1}}{2} - \sqrt{\left(\frac{z + z^{-1}}{2}\right)^2 - \cos^2 2\theta}. \hspace{1cm} (2.19b)$$

The Chebyshev polynomial $T_n(\zeta)$ can be represented as

$$T_n(\zeta) = \frac{1}{2} \left((\mu_1(\zeta))^n + (\mu_2(\zeta))^n \right), \hspace{1cm} (2.19a)$$

where

$$\mu_1(\zeta) = \zeta + \sqrt{\zeta^2 - 1}, \quad \mu_2(\zeta) = \zeta - \sqrt{\zeta^2 - 1}. \hspace{1cm} (2.19b)$$

Comparing (2.18b) with (2.19b), we conclude that

$$\lambda_1(S(z, F_\theta)) = \cos 2\theta \mu_1 \left(\frac{z + z^{-1}}{2\cos 2\theta} \right), \quad \lambda_2(S(z, F_\theta)) = \cos 2\theta \mu_2 \left(\frac{z + z^{-1}}{2\cos 2\theta} \right),$$

$$\theta \in [0, \pi/4), \quad z \in \mathbb{C}\backslash\{0\}. \hspace{1cm} (2.20)$$

Comparing (2.18a), (2.19a) and (2.20), we obtain (2.4). \hfill \Box

Remark 2.3 Since $2T_n \left(\frac{z + z^{-1}}{2} \right) = z^n + z^{-n}$, the equality (2.5) is the special case of the equality (2.4) corresponding to the value $\theta = 0$.

Since $T_n(\zeta) = 2^{n-1} \zeta^n + o(|\zeta|^n)$ as $|\zeta| \to \infty$, the equality (2.7) is the limiting case of the equality (2.4) corresponding to the “value” $\theta = \frac{\pi}{4} - 0$.

Remark 2.4 Applying the binomial formula, we derive from (2.19) that

\[T_n(\zeta) = \sum_{0 \leq j \leq n} \binom{n}{j} \zeta^{n-2j} (\zeta^2 - 1)^j. \]

(2.21)

Substituting \(\zeta = \frac{z + z^{-1}}{2 \cos 2\theta} \) into (2.21) and taking into account (2.4), we obtain the equality

\[L_n(z, F_\theta) = 2^{-(n-1)} \sum_{0 \leq j \leq n} \binom{n}{j} (z + z^{-1})^{n-2j} \left(z^2 + z^{-2} + 2(1 - \cos 2\theta) \right)^j. \]

(2.22)

From (2.22) it is evident that

\((-1)^n L_n(-z, F_\theta) = L_n(z, F_\theta). \)

Hence the condition (2.3a) holds. The condition (2.3b) can be derived from (2.22). The coefficients \(p_{k,n}(\theta) \) of the Laurent polynomial \(L_n(z, F_\theta) \) majorize the coefficients of the Laurent polynomial \(2^{-(n-1)}(z + z^{-1})^n. \)

Notation Let \(f : \mathbb{C} \to \mathbb{C} \) be a mapping and \(E \subset \mathbb{C} \) be a subset of \(\mathbb{C}. \) By \(f^{-1}(E) \) we denote the preimage of the set \(E \) with respect to the mapping \(f: \)

\[f^{-1}(E) = \{ \zeta \in \mathbb{C} : f(\zeta) \in E \}. \]

Lemma 2.5 Let \(T_n \) be the Chebyshev polynomial of degree \(n, n = 1, 2, 3, \ldots. \) Then

\[T_n^{-1}([-1, 1]) = [-1, 1]. \]

(2.23)

Proof a. If \(\zeta \in [-1, 1], \) then \(T_n(\zeta) \in [-1, 1]. \) Thus \(T_n^{-1}([-1, 1]) \supseteq [-1, 1]. \)

b. If \(s \in [-1, 1], \) then the equation \(T_n(\zeta) = s \) has \(n \) roots \(\zeta_1(s), \ldots, \zeta_n(s) \) located within the interval \([-1, 1]. \) (If \(s \in (-1, 1) \) these roots are even different.) Since the polynomial \(T_n \) is of degree \(n, \) the equation \(T_n(t) = s \) has no other roots. Thus, if \(s \in [-1, 1], \) then \(T_n^{-1}([s]) \subset [-1, 1]. \) Thus \(T_n^{-1}([-1, 1]) \subseteq [-1, 1]. \) \(\Box \)

Let us introduce the mapping \(\Psi_\theta : \mathbb{C}\backslash 0 \to \mathbb{C}: \)

\[\Psi_\theta(z) = \frac{z + \frac{1}{z}}{2 \cos 2\theta}, \]

(2.24)

\(\theta \in [0, \frac{\pi}{4}) \) is considered as a parameter. The mapping \(\Psi_\theta \) is related to the Joukowski mapping \(Jo : \mathbb{C}\backslash 0 \to \mathbb{C}: \)

\[Jo(z) = \frac{z + \frac{1}{z}}{2}. \]
Concerning the Joukowski mapping, see for example [2, Section I.5, pp. 67–68.]

From properties of the Joukowski mapping we derive the following

Properties of the mapping Ψ_θ:

1. $\Psi_\theta^{-1}([-1, 1]) = T^\circ_\theta \cup T^-_\theta$, $\Psi_\theta^{-1}((-1, 1)) = T^\circ_\theta \cup T^-_\theta$, (2.25)

where

$$
T^+_\theta = \{ z \in \mathbb{C} : |z| = 1, 2\theta \leq \arg z \leq \pi - 2\theta \},
$$

$$
T^-_\theta = \{ z \in \mathbb{C} : |z| = 1, 2\theta \leq -\arg z \leq \pi - 2\theta \},
$$

$$
T^\circ_\theta = \{ z \in \mathbb{C} : |z| = 1, 2\theta < \arg z < \pi - 2\theta \},
$$

$$
T^-_\theta = \{ z \in \mathbb{C} : |z| = 1, 2\theta < -\arg z < \pi - 2\theta \}.
$$

2. Ψ_θ maps T^+_θ onto $[-1, 1]$ homeomorphically, and $\Psi_\theta'(z) \neq 0$ for $z \in T^+_\theta$.

3. Ψ_θ maps T^-_θ onto $[-1, 1]$ homeomorphically, and $\Psi_\theta'(z) \neq 0$ for $z \in T^-_\theta$.

Theorem 2.6 For each $\theta \in [0, \frac{\pi}{4})$ and for each $n = 1, 2, 3, \ldots$, all roots of the Laurent polynomial $L_n(z, F_\theta)$ are located within the set $T^\circ_\theta \cup T^-_\theta$ and are simple (i.e. of multiplicity one).

Proof We consider the function $T_n \left(\frac{z+z^{-1}}{2\cos 2\theta} \right)$ which appears in (2.4) as a composition $T_n \circ \Psi_\theta$ of the Chebyshev polynomial T_n and the function Ψ_θ defined by (2.24). The roots of the polynomial T_n form the set $T_n^{-1}(\{0\})$. Since $\{0\} \in (-1, 1)$ and $\Psi_\theta^{-1}((-1, 1)) = T^\circ_\theta \cup T^-_\theta$, all roots of the function $T_n \left(\frac{z+z^{-1}}{2\cos 2\theta} \right)$ lie within the set $T^\circ_\theta \cup T^-_\theta$. Since all roots of T_n are simple and the derivative $\Psi_\theta'(z)$ does not vanish for $z \in T^\circ_\theta \cup T^-_\theta$, all roots of the function $T_n \left(\frac{z+z^{-1}}{2\cos 2\theta} \right)$ are simple. Now Theorem 2.6 is a consequence of the statement 3 of Theorem 2.1. (See the equality (2.4).) \Box

Remark 2.7 Since

$$
L_n(z, F_\theta) = (-1)^n L_n(-z, F_\theta), \quad L_n(\bar{z}, F_\theta) = \overline{L_n(z, F_\theta)} \quad \forall z \in \mathbb{C} \setminus 0,
$$

the set of all roots of the Laurent polynomial $L_n(z, F_\theta)$ is symmetric both with respect to the real axis and with respect to the imaginary axis.

3 The Parametrization of the Set $\{L_n(z, G)\}_G$ of Laurent Polynomials by Free Parameters

Theorem 3.1 For each $n = 2, 3, \ldots$, the family of Laurent polynomials $\{L_n(z, G)\}_G$, where G runs over the set of all generic 2×2 matrices with complex entries, is a three-parametric family. The representation (1.32) is a parametrization of this family by free parameters R, ρ, θ:
1. Given a generic 2×2 matrix G with complex entries, then for every $n = 1, 2, 3, \ldots$ the Laurent polynomial $L_n(z, G)$ is representable in the form

$$L_n(z, G) = R^n L_n(\rho z, F_\theta), \quad z \in \mathbb{C}, \quad (3.1)$$

with some $R \in (0, \infty)$, $\rho \in (0, \infty)$, $\theta \in [0, \pi/4]$.

2. Given a triple (R, ρ, θ) of numbers which satisfy the condition

$$R \in (0, \infty), \quad \rho \in (0, \infty), \quad \theta \in [0, \pi/4], \quad (3.2)$$

then there exists the generic matrix $G_{R, \rho, \theta}$ such that the equalities

$$L_n(z, G_{R, \rho, \theta}) = R^n L_n(\rho z, F_\theta) \quad (3.3)$$

hold for every $n = 1, 2, 3, \ldots$

3. If the triples (R_1, ρ_1, θ_1) and (R_2, ρ_2, θ_2) satisfy the condition (3.2) and the functions $R^n_1 L_n(\rho_1 z, F_{\theta_1})$ and $R^n_2 L_n(\rho_2 z, F_{\theta_2})$ of variable z coincide for some $n \geq 2$, then $R_1 = R_2$, $\rho_1 = \rho_2$, and $\theta_1 = \theta_2$. If the functions $R^n_1 L_1(\rho_1 z, F_{\theta_1})$ and $R^n_2 L_1(\rho_2 z, F_{\theta_2})$ coincide, then $R_1 = R_2$, $\rho_1 = \rho_2$, but θ_1, θ_2 can be arbitrary.

Proof 1. The statement 1 of Theorem 3.1 coincides with the statement 1 of Theorem 1.7.

2. Given a triple (R, ρ, θ), we define

$$r_1 = \sqrt{R \cdot \rho}, \quad r_2 = \sqrt{R/\rho}, \quad G_{R, \rho, \theta} = F_\theta \begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix}. \quad (3.4)$$

Then

$$G_{R, \rho, \theta} \begin{bmatrix} z & 0 \\ 0 & z^{-1} \end{bmatrix} G^*_{R, \rho, \theta} = R F_\theta \begin{bmatrix} \rho z & 0 \\ 0 & (\rho z)^{-1} \end{bmatrix} F_\theta.$$

In other words,

$$S(z, G_{R, \rho, \theta}) = R \cdot S(\rho z, F_\theta).$$

Finally

$$\text{tr} \left(S(z, G_{R, \rho, \theta})^n \right) = R^n \cdot \text{tr} \left(S(\rho z, F_\theta)^n \right).$$

Thus the equality (3.3) holds.

3. We assume that

$$R^n_1 L_n(\rho_1 z, F_{\theta_1}) = R^n_2 L_n(\rho_2 z, F_{\theta_2}) \quad \forall z \in \mathbb{C} \setminus 0 \quad (3.5)$$
by some n. According to (2.2), the equality (3.5) implies that

$$R_1^n \left((\rho_1 z)^n + (\rho_1 z)^{-n} + \sum_{-(n-1) \leq k \leq -(n-1)} p_k(\theta_1)(\rho_1 z)^k \right) = R_2^n \left((\rho_2 z)^n + (\rho_2 z)^{-n} + \sum_{-(n-1) \leq k \leq -(n-1)} p_k(\theta_2)(\rho_2 z)^k \right).$$

Comparing the coefficients by the leading terms z^n and z^{-n} we see that

$$R_1^n \rho_1^n = R_2^n \rho_2^n, \quad R_1^n \rho_1^{-n} = R_2^n \rho_2^{-n}.$$

From these equalities it follows that $R_1 = R_2$ and $\rho_1 = \rho_2$. Now the equality (3.5) is reduced to the equality

$$L_n(z, F_{\theta_1}) = L_n(z, F_{\theta_2}) \quad \forall z \in \mathbb{C}\setminus\{0\}.$$

In particular,

$$L_n(1, F_{\theta_1}) = L_n(1, F_{\theta_2}).$$

According to the statement 2 of Theorem 2.1, the value $L_n(1, F_\theta)$ increases strictly monotonically in the interval $\theta \in [0, \pi/4]$ if $n \geq 2$. Therefore $\theta_1 = \theta_2$. The Laurent polynomial $L_1(z, F_\theta) = z + z^{-1}$ does not depend on θ. \qed

4 Trigonometric Polynomials Generated by 2×2 matrices

The formula (2.4) suggests to relate the family of trigonometric polynomials $\tau_{n,\theta}(t)$ to the family of Laurent polynomials $L_n(z, \theta)$:

Definition 4.1 For $\theta \in [0, \pi/4)$ and $n = 1, 2, 3, \ldots$, we define the function $\tau_{n,\theta}(t)$ of variable $t \in \mathbb{C}$:

$$\tau_{n,\theta}(t) \overset{\text{def}}{=} \frac{1}{2(\cos 2\theta)^n} \cdot L_n(e^{it}, F_\theta),$$

(4.1)

where the function $L_n(z, F_\theta)$ was defined by (2.1).

Lemma 4.2 The function $\tau_{n,\theta}(t)$ is an even trigonometric polynomial of degree n:

$$\tau_{n,\theta}(t) = \frac{1}{(\cos 2\theta)^n} \cos nt + \sum_{0 \leq k \leq (n-1)} \tau_{k, n}(\theta) \cos kt,$$

(4.2)

where the coefficients $\tau_{k, n}(\theta)$ are related to the coefficients $p_{k, n}(\theta)$ of the Laurent polynomial $L_n(z, F_\theta)$, (2.2), by the equalities

$$\tau_{0, n}(\theta) = \frac{p_{0, n}(\theta)}{2(\cos 2\theta)^n}, \quad \tau_{k, n}(\theta) = \frac{p_{k, n}(\theta)}{(\cos 2\theta)^n}, \quad 1 \leq k \leq n - 1.$$
In particular,
\[
\tau_{k,n}(\theta) = 0, \quad -(n-1) \leq k \leq n-1, \quad k \neq n \pmod{2},
\]
\[\tau_{k,n}(\theta) > 0, \quad -(n-1) \leq k \leq n-1, \quad k = n \pmod{2}.
\]

The following result is an immediate consequence of Theorem 2.1, statement 3:

Theorem 4.3 The trigonometric polynomial \(\tau_n(t, \theta)\) and the Chebyshev polynomial \(T_n(\zeta)\) are related by the equality
\[
\tau_{n,\theta}(t) = T_n\left(\cos t \cos 2\theta\right), \quad t \in \mathbb{C}, \quad \theta \in [0, \frac{\pi}{4}).
\]

Let \(\Phi_\theta : \mathbb{C} \to \mathbb{C}\) be the mapping defined as
\[
\Phi_\theta(t) = \frac{\cos t}{\cos 2\theta},
\]
where \(\theta \in [0, \frac{\pi}{4})\) is considered as a parameter.

Lemma 4.4 For \(\theta \in \left[0, \frac{\pi}{4}\right]\), the function \(\Phi_\theta\) possesses the following properties:

1. \(\Phi_\theta^{-1}([-1, 1]) = \mathcal{P}\), \(\Phi_\theta^{-1}((-1, 1)) = \mathcal{P}\),

where
\[
\mathcal{P} = \bigcup_{-\infty < p < \infty} [p\pi + 2\theta, (p+1)\pi - 2\theta],
\]
\[
\mathcal{P} = \bigcup_{-\infty < p < \infty} (p\pi + 2\theta, (p+1)\pi - 2\theta),
\]
are periodic systems of closed or open intervals respectively.

2. For each \(p\), the function \(\Phi_\theta\) maps the interval \([p\pi + 2\theta, (p+1)\pi - 2\theta]\) onto the interval \([-1, 1]\) homeomorphically.

3. For each \(p\),
\[
\Phi_\theta'(t) \neq 0 \quad \forall t \in (p\pi + 2\theta, (p+1)\pi - 2\theta).
\]

Proof 1. Let \(\mathcal{S} = \{t \in \mathbb{C} : \cos t \in \mathbb{R}\}\). Then \(\mathcal{S}\) is the union of the real axis and the countable set of vertical lines:
\[
\mathcal{S} = \mathbb{R} \cup \left(\bigcup_{-\infty < q < \infty} t_q + i\mathbb{R} \right), \quad t_q = \frac{\pi}{2} (1 + 2q).
\]

If \(s \in \mathbb{R}\setminus0\), then \(|\cos(t_q + is)| > 1\). Therefore, \(t \in \mathbb{R}\) if \(\Phi_\theta(t) \in [-1, 1]\). Thus (4.6) holds.

2. On each interval \([p\pi + 2\theta, (p+1)\pi - 2\theta]\), the function \(\Phi_\theta(t)\) behaves strictly monotonically. It decreases if \(p\) is even and increases if \(\pi\) is odd.
3.

\[(−1)^{p−1} \Phi_0'(t) = \frac{|\sin t|}{\cos 2\theta} > 0 \quad \forall \ t \in (p\pi + 2\theta, (p+1)\pi - 2\theta).\]

\(\square\)

According to Theorem 4.3, the mapping \(\tau_{n,\theta}\) is a composition of the mappings \(\Phi_\theta\) and \(T_n\): \(\tau_{n,\theta} = T_n \circ \Phi_\theta\). Therefore the following result holds:

Lemma 4.5 For each \(n = 1, 2, 3, \ldots\) and \(\theta \in \left[0, \frac{\pi}{4}\right]\), the preimage \(\tau_{n,\theta}^{-1}([-1, 1])\) of the interval \([-1, 1]\) with respect to the mapping \(\tau_{n,\theta}\) is the system \(\mathcal{P}\) of intervals that appears in (4.6b):

\[
\tau_{n,\theta}^{-1}([-1, 1]) = \mathcal{P}. \tag{4.8}
\]

Theorem 4.6 For each \(n = 1, 2, 3, \ldots\) and \(\theta \in \left[0, \frac{\pi}{4}\right]\):

1. All roots of the equation

\[
\tau_{n,\theta}(t) = 0 \tag{4.9}
\]

are real and simple. Moreover the roots of the equation (4.9) are located within the set \(\mathcal{P}\).

2. All roots of the equation

\[
(\tau_{n,\theta}(t))^2 = 1 \tag{4.10}
\]

are real.

Proof 1. For each \(n = 1, 2, 3, \ldots\),

\[
T_n^{-1}(\{0\}) \subset (-1, 1).
\]

Since \(\tau_{n,\theta} = T_n \circ \Phi_\theta\),

\[
\tau_{n,\theta}^{-1}(\{0\}) \subset \Phi_\theta^{-1}((-1, 1)).
\]

In view of (4.6a),

\[
\tau_{n,\theta}(\{0\}) \subset \mathcal{P}.
\]

In particular,

\[
\tau_{n,\theta}^{-1}(\{0\}) \subset \mathbb{R}.
\]

All roots of the Chebyshev polynomial are simple. Since \(\Phi_\theta'(t) \neq 0 \ \forall \ t \in \mathcal{P}\), all roots of the trigonometric polynomial \(\tau_{n,\theta} = T_n \circ \Phi_\theta\) are simple as well.
2. The set of roots of the equation (4.10) is the set
\[\tau_{n,\theta}^{[-1]}((-1) \cup (+1)) \subset \tau_{n,\theta}^{[-1]}((-1, 1)) = \mathcal{P} \subset \mathbb{R}. \]

We denote by \(\mathfrak{F} \) the class of all real entire functions \(f(z) \) having the property (F): all roots of the equation \(f^2(z) - 1 = 0 \) are real.

Functions of the class \(\mathfrak{F} \) arise in matters:

1. Stability theory of linear differential equations with periodic coefficients, [3];
2. Spectral theory of linear differential equations with periodic coefficients, [4].
3. Approximation theory, [5,6].

Functions belonging to the class \(\mathfrak{F} \) admit a description in terms of comb functions. A comb function is a function which effect a conformal mapping of the open upper half-plane onto a comb region. See [1].

The comb domain related to the function \(\tau_{n,\theta}(t) \) is shown in Fig. 1, where
\[\cosh h = \frac{1}{\cos 2\theta}. \]

The function\(^2\)
\[u_\theta(t) = i \ln \left(\frac{\cos t}{\cos 2\theta} + \sqrt{\frac{\cos t}{\cos 2\theta}}^2 - 1 \right) \]
effects the conformal mapping of the upper half-plane \(\{ t \in \mathbb{C} : \text{Im} \ t > 0 \} \) onto the comb domain shown in Fig. 1. The normalizing conditions are:
\[u_\theta(0) = ih, \quad \lim_{t \to i\infty} t^{-1} u_\theta(t) = 1. \]

\(^2\) Here \(\ln z = 0 \) for \(z = 1 \) and \(\sqrt{z^2 - 1} > 0 \) for \(z \in (1, +\infty) \).
Figure 2 illustrates the boundary correspondence by the mapping \(t \rightarrow u_\theta(t) \).

The function \(\tau_{n,\theta}(t) \) is representable in the form

\[
\tau_{n,\theta}(t) = \cos n u_\theta(t).
\]

References

1. Eremenko, A., Yuditskii, P.: Comb functions. Contemp. Math. 578, 99–118 (2012)
2. Freitag, E., Busam, R.: Complex Analysis. Springer, Berlin (2005)
3. Krein, M.G.: The basic properties of the theory of \(\lambda \)-zones of stability of a canonical systems of linear differential equations with periodic coefficients. In memory of Aleksandr Aleksandrovich Andronov, pp. 413–498. Izdat. Akad. Nauk SSSR, Moscow (1955) (Russian) (Reprinted. In: M.G.Krein. Selected Works. Vol. 3, pp. 139–257. Institute of Mathematics Ukrainian Acad. of Science, Kyiv, 1997. English transl.in: M.G.Krein. Topics in Differential and Integral Equations and Operator Theory. Operator Theory: Advances and applications. OT 7. Springer, Basel, 1983. pp. 1–105)
4. Marchenko, V.A., Ostrovskii, I.V.: A characterization of the spectrum of the Hill operator. Math. Sbornik 97(4), 540–606 (1975). (In Russian) (English translation: Math. USSR-Sb. 26 (1975), no. 4, 493–554 (1977))
5. Sodin, M., Yuditskii, P.: Functions that deviate least from zero on closed subsets of the real axis. Algebra i Analis 4(2), 1–61 (1992) (Russian). (English translation in St. Petersburg Math. J. 4:2 (1993), 209–241)
6. Yuditskii, P.: A special case of de Brange’s theorem on the inverse monodromy problem. Integr. Equ. Oper. Theory 39, 229–252 (2001)