W/Z and diboson production at hadron colliders

Sara Bolognesi on behalf of ATLAS, CDF, CMS and D0 collaborations

Johns Hopkins University and CERN

A general review of the latest results about single and double vector boson production in the multipurpose experiments at LHC (ATLAS [1], CMS [2]) and at Tevatron (CDF [3] and D0 [4]) will be presented. The review will focus on boson production, while a more detailed report about W and Z properties can be found elsewhere [5]. Only leptonic decays into electrons and muons will be considered.

1. Introduction

In the complex environment of hadron colliders, W and Z events with leptonic decays have a clear signature and the processes of boson production and decay are relatively well known. For these reasons, they are heavily exploited for detector commissioning in the early stage of data taking. W and Z are also the main handles to perform precision Standard Model (SM) measurements which are important as input to the Global Electroweak fit [6] and to constraint the Parton Distribution Functions [7, 8]. At the present hadron colliders the rate of single boson production is huge: about 1 (3) Millions of $W \rightarrow l\nu$ are produced per fb$^{-1}$ in each experiment at LHC (Tevatron), the rate for $Z \rightarrow ll$ events being about 1/10 of that. The main challenge is the control of systematics in presence of pile-up events and given an initial state not completely known.

Single boson production in association with jets and diboson production are the main backgrounds for most of the Higgs channel and generic New Physics searches. It is of fundamental importance to control these backgrounds with very good precision. They also play a crucial role as benchmark test to establish the analysis techniques to search for Higgs and/or New Physics.

After a brief review, in Section 2 about the bosons signature and recent inclusive cross-section measurements, Section 3 will focus on measurements sensitive to higher perturbative α_S orders (NLO, NNLO) in the boson production process, like Z transverse momentum (p_T) distribution and W/Z production in association with jets (first measurements in association with heavy-flavor jets will also be reported). The production of a boson in association with a photon will be reviewed in Section 4. Finally, latest measurements of diboson production (WW, WZ, ZZ) will be reported in Section 5.

2. W and Z signatures and inclusive cross sections

W (Z) events are characterized by the presence of one (two) isolated lepton with relatively high p_T, which is exploited to trigger the event on-line. In case of W events, the undetected neutrino gives rise to an unbalancing in the total transverse energy (E_T^{miss}). On top of this typical features, additional hadronic activity due to pile-up and underlying event, as well as hard jets due to NLO contributions, are present. The W signal is usually extracted from a fit to the E_T^{miss} distribution (or the transverse mass distribution built with E_T^{miss} and lepton p_T), while Z signal is easily identifiable thanks to the invariant mass peak of the two leptons. The main background is due to QCD processes with one (or two) real leptons from heavy-flavor decays and/or fake leptons. The QCD background is rejected by requiring the leptons to be well identified and isolated (i.e., far away from any hadronic activity). The remaining QCD contamination is measured from control regions in data (e.g., an anti-isolated sample), since its simulation with simple LO and Parton Shower (PS) Monte Carlo (MC) is not reliable and the lepton fake rate is very much dependent on the details of the detector. The remaining background for W is due to Electroweak processes (e.g., Z, double top, diboson, tau decays of W), where part of the event is not reconstructed correctly or it falls outside the detector acceptance. These processes are relatively well known and their contribution is extracted from simulation.

An inclusive W and Z signal extraction has been performed on the first data by CMS [11] and ATLAS [12]. The measured cross sections are in good agreement with theoretical prediction at NNLO based on recent parton distribution functions. With 35 pb$^{-1}$, the statistical error is already negligible (few $\%$). With the exception of the luminosity uncertainty (4%), the other experimental systematic uncertainties (which are dominated by the E_T^{miss} resolution and the
lepton efficiencies) are lower (≥1%) than the theoretical uncertainty (≤3%). Part of the theoretical error is due to higher perturbative orders (computations are available up to QCD NNLO and EWK NLO) and to Initial and Final State Radiation (ISR and FSR). This theoretical uncertainty can be further investigated with differential cross section measurements, as will be shown in Section 3. The other contribution to the theoretical uncertainty is due to PDF. On the other hand, the argument can be reversed and the cross section measurement inside the fiducial region can be exploited to constrain further the PDF. Useful measurements, in this regard, are the ratio between W^+ and W^- cross sections and the rapidity distribution of the bosons [12, 13, 14]. More details about PDFs and the latest related measurements from LHC and Tevatron can be found in [15].

3. Beyond Leading Order: transverse momentum distribution and production in association with jets

At LO the boson is produced with null p_T while at higher perturbative orders the boson gets boosted recoiling against additional produced jets. More precisely, two p_T regions may be identified: the low p_T region, which is dominated by non-perturbative effects and multiple soft gluon radiation and the high p_T region, dominated by hard gluon emission well described by perturbative QCD. ATLAS and CMS have measured the Z p_T [13, 16] with $35 fb^{-1}$, as shown in Fig. 1. On the top the sensitivity to the Underlying Event tune in the low p_T region is shown, on the bottom the comparison between data and various theoretical prediction is shown. As can be seen, the NLO predictions (MC@NLO [17], POWHEG [18]) fail at high p_T while the NNLO prediction (ResBos [19]) shows good agreement with data. Including also Next-to-Next-to-Leading-Log resummation, ResBos is able to describe the data down to very low p_T. Another theoretical approach consists in describing the LO contribution with Matrix Element at different jet multiplicities and matching this computation to a PS MC for the description of the soft radiation. This matching procedure is implemented in Alpgen [20], Madgraph [21] and Sherpa [22] which are able to describe well the full boson p_T spectrum, as well as, the jet multiplicity.

Experimentally, the uncertainty on the p_T measurement is dominated by the lepton scale. To improve the sensitivity, D0 has developed a new technique which is based on the measurement of pure angular variables [23]; once identified the Z p_T component most sensitive to the production mechanism, this is divided by the dilepton invariant mass to remove the dependence on the energy scale. This analysis allows to reach the maximum sensitivity with minimal experimental systematic uncertainty. The results are shown...
in Fig. 2 interesting discrepancies with respect to ResBos prediction are visible.

Measurement of additional jets recoiling against the boson is, instead, a direct probe of the higher perturbative orders but at the expense of much higher systematics uncertainties related with jet reconstruction (mainly due to jet energy scale and pile-up removal). LHC experiments have already acquired a very good control of these uncertainties, as can be seen in the measurement [24] shown in Fig. 3 allowing a first successful test of ME-PS matching tools in contrast with the failing predictions from pure PS MC. The high statistics available at LHC allowed to reach high jet multiplicity and to perform differential measurements. On the other hand measurements at low jet p_T are still limited by systematic uncertainties, even at Tevatron [25, 26]. Again, focusing on angular variables guarantees to keep the experimental uncertainty much smaller than the theoretical uncertainty [27]. Another way to minimize the experimental systematic uncertainties is to measure ratios between rates [28], as can be seen in Fig. 4. This approach has the advantage that also many of the theoretical uncertainties cancel out, therefore any deviation from the expected behavior is a direct hint of New Physics.

For similar reasons, the measurement of boson production in association with heavy-flavor jets is usually reported as ratio with respect to the flavor-inclusive measurement, such that the only remaining systematic error comes from the heavy-flavor tagging. The estimation of b-tag efficiency and fake rate are extracted from data and the level of control of these systematic uncertainties at LHC is already very good, allowing to perform first measurement of $Z + b$ [29, 30], $W + b$ [31] and $W + c$ [32]. These measurement are particularly interesting to constraint PDF for non-valence quarks (respectively, b and s quarks). Moreover they constitute an important background, as well as benchmark analyses, for Higgs searches in SM channels like $ZH \rightarrow llbb$ or SuperSymmetric channels like ϕbb. This interest motivates also recent measurements performed at Tevatron [33, 34, 35, 36].

4. Single vector boson production in association with a photon

The production of a boson in association with a photon may come through ISR or FSR or through Triple Gauge Coupling (TGC), the $ZZ\gamma$ and $Z\gamma\gamma$ vertices being null at LO in SM. This last contribution is the most interesting one for a stringent test of SM.

The photon is reconstructed as an isolated deposit
jets) \[\text{pb} \]

\[W^+ + \text{jets} \]

\[\text{ATLAS Preliminary} \]

\[\int L dt = 33 \text{ pb}^{-1} \]

Figure 3: \(W + \text{jets} \) cross section results from ATLAS as a function of jet multiplicity in electron channel. For the data, the statistical uncertainties are shown by the vertical bars and the combined statistical and systematic uncertainties are shown by the black-hashed regions. Several theoretical predictions are compared. The theoretical uncertainties are shown only for MCFM (NLO prediction for \(N_{\text{jet}} \leq 2 \) and a LO prediction for \(N_{\text{jet}} = 3 \)) and BLACKHAT-SHERPA (NLO prediction for \(N_{\text{jet}} \leq 3 \) and LO prediction for \(N_{\text{jet}} = 4 \)).

in the electromagnetic calorimeter with the expected showering shape and no track associated. Usually photons of low transverse energy (\(< 10 \text{ GeV} \)) and near to a lepton are rejected to avoid the divergence of the LO cross section. Moreover, photons are required to be isolated to remove the ones coming from hadron fragmentation. Measurement done at LHC \[37, 38\] and Tevatron \[39, 40\] are in good agreement with SM expectations, as can be seen, for instance, in Fig. 5.

5. Diboson production

The production of a couple of vector bosons (\(VV = WW, ZZ, ZW \)) may happen at LO from \(gg \) initial state through exchange of a quark into t-channel or through TGC. Again, since the TGC is completely fixed by the Electroweak gauge structure of the theory, any deviation from SM expectations in the \(VV \) spectrum is a direct hint of New Physics in the gauge bosons sector. At NLO also the \(VV \) production from \(gg \) initial state through a quark box is allowed. The contribution is only a few % but with large (\(\sim 50\% \)) theoretical uncertainty. The precise knowledge of \(VV \) production is very much relevant since this is the main irreducible background to Higgs production at high mass. The \(VV \) analyses are therefore benchmark tests to establish the Higgs search techniques in this region.

Considering the fully leptonic final states, the highest production rate is in the channel \(WW \rightarrow l\nu l\nu \). This is a complex analysis since no mass peak is available and many different backgrounds need to be subtracted. The smallest contributions come from other diboson final states and are estimated from simulation. The highest backgrounds are \(W + \text{jets} \), top and
Drell-Yan processes which may be rejected, respectively, by the tight lepton quality requirements, by the (b-)jet veto and by requiring large E_T^{miss}. The remaining contributions from these processes are estimated from data in control regions. It is mandatory to have a good control on jet veto and leptonic efficiency and on E_T^{miss} uncertainty to keep the systematic uncertainties on signal acceptance low. This objective has been reached at LHC, as can be seen by the very good agreement of data and MC in Fig. 6, and the measured WW cross section is in good agreement with NLO expectations.

Figure 6: Missing transverse energy distributions in ATLAS dimuon events selected for WW analysis.

Similar results have been obtained at LHC for WZ $\rightarrow l\nu ll$ cross section measurements\cite{42, 43}. This final state is basically background free and it is particularly interesting since, being charged, is accessible only at hadron colliders. Recent measurement has been performed by Tevatron with very sophisticated analysis techniques. While the expected cross-section at Tevatron is 6 times smaller than LHC, D0 has been able to keep the signal statistics at half of the LHC results\cite{43}. Moreover, while at LHC diboson analyses are, for now, mainly based on simple cut-and-count techniques, CDF, for instance, uses a shape analysis with a fit to a Neural Network output to extract the WZ cross-section\cite{45}. Tevatron experiments have also measured semileptonic final states like WW/WZ $\rightarrow l\nu jj$ \cite{44} and WZ/ZZ $\rightarrow l\nu p\bar{p}b\bar{b}$ \cite{46, 47} which have a huge background coming from W/Z+jets. Again, to boost the sensitivity CDF and D0 exploit sophisticated analysis strategies like, ME methods, Boosted Decision Trees and Neural Networks. All the results are in agreement with NLO expectations.

Finally the final state with the lowest statistics but also the smallest background is ZZ $\rightarrow 4l$. This channel is the most powerful one for the Higgs search at intermediate and high mass. At this moment LHC and Tevatron experiments each expect of order 10 ZZ events from electroweak continuum\cite{42, 49}. The results are in agreement with NLO expectations and strongly limited by the statistical uncertainty ($\sim 30\%$). The most precise measurement of ZZ cross section\cite{50} comes from the combination of 4l and 2l2ν final states done at D0. CDF has also looked to the semileptonic final state 2lν as well as the 2l2ν final state\cite{51} where the signal is overwhelmed by the huge Z+jets process.

In Table II a list of the recent VV cross section measurement from the different experiments is reported.

6. Conclusions

The latest results from Tevatron and LHC for single vector boson production, also in association with jets or with a photon, and for double vector boson production have been reviewed.

Tevatron experiments have today analyzed almost all the statistics available (usually the analyses rely on 5-7 fb$^{-1}$, while of the order of 10 fb$^{-1}$ are available), CDF and D0 have the best possible control of the experimental uncertainties and results are extracted with the most innovative techniques (angular analyses, ME methods, etc.).

LHC has just released the first set of results: the single boson measurement, even in association with jets or with a photon, and for double vector boson production have been reviewed.

The latest results from Tevatron and LHC for single vector boson production, also in association with jets or with a photon, and for double vector boson production have been reviewed.

The W and Z measurements described in this report are paving the road to the Higgs or New Physics discovery in the VV scattering spectrum.

References

[1] L. Evans and P. Bryant, JINST 3, S08001 (2008).
[2] ATLAS Collaboration, G. Aad et al., JINST 3, S08003 (2008).
[3] CMS Collaboration, R. Adolphi et al., JINST 3, S08004 (2008).
[4] R. R. Wilson, Phys. Today 30N10, 23 (1977).
[5] CDF-II Collaboration, R. Blair et al., (1996), The CDF-II detector: Technical design report.
[6] D0 Collaboration, V. Abazov et al., Nucl.Instrum.Meth. A565, 463 (2006), physics/0507191.
Table I Summary of the most recent VV cross section measurements

Experiment: channel	Cross section measurement (pb)	NLO expectation (pb)
ATLAS: WW → lνlν	55.3 ± 3.3(stat) ± 6.9(syst) ± 3.3(lumi)	43 ± 2
CMS: WW → lνlν	48.2 ± 4.0(stat) ± 6.4(syst) ± 1.8(lumi)	46 ± 3
ATLAS: WZ → lνlνlν	21.1±1.3(stat) ± 1.2(syst) +0.9−0.8(lumi)	17.2±1.2−0.8
CMS: WZ → lνlνlν	17.0 ± 2.4(stat) ± 1.1(syst) ± 1.0(lumi)	18.75±1.1−0.8
D0: WZ → lνlνlν	3.90+1.09−0.90	3.25 ± 0.19
CDF: WZ → lνlνlν	3.9+0.6−0.5(stat) ± 0.9(syst)	3.46 ± 0.21
CDF: WZ/WW → lνlνlν	16.0 ± 3.3	16.1 ± 0.9
CDF: WZ/ZZ → lνlν/ννbb	5.8±3.6−3.0	5.1
D0: WZ/ZZ → lνlν/ννbb	6.9 ± 1.3(stat) ± 1.8(syst)	4.6
ATLAS: ZZ → llll	8.4±2.7−2.3(stat) ±0.4(syst) ±0.3(lumi)	6.5±0.3
CMS: ZZ → llll	3.8±1.5−1.2(stat) ±0.2(syst) ±0.2(lumi)	6.4±0.3
CDF: ZZ → llll	2.8±1.8−1.2(stat) ±0.3(syst)	1.4 ± 0.1
D0: ZZ → lllll	1.40±0.43−0.37(stat) ±0.14(syst)	1.4 ± 0.1
CDF: ZZ → llll	1.45±0.45−0.42(stat) ±0.41(syst)	1.21±0.05−0.04(scale)±0.04(PDF)

[7] ATLAS Collaborations, CDF Collaborations, CMS Collaborations, D0 Collaborations, LHCb Collaborations, A. Mehitchouk, CDF, CMS, and D0, (2011), 1111.2840, * Temporary entry *.
[8] M. Baak et al., (2011), hep-ph/1107.0975.
[9] F. Chlebana, AIP Conf.Proc. 792, 380 (2005).
[10] G. Watt, JHEP 1109, 069 (2011), hep-ph/1106.5788.
[11] CMS Collaboration, S. Chatrchyan et al., JHEP 1110, 132 (2011), 1107.4789.
[12] ATLAS Collaboration, G. Aad et al., (2011), hep-ex/1109.5141.
[13] CMS Collaboration, (2011), hep-ex/1110.4973.
[14] CDF Collaboration, J. Han, (2011), hep-ex/1110.0153.
[15] R. Placakyte, (2011), hep-ph/1111.5452.
[16] ATLAS Collaboration, G. Aad et al., (2011), hep-ex/1107.2381.
[17] S. Frixione and B. R. Webber, JHEP 0206, 029 (2002), hep-ph/0204244.
[18] S. Frixione, P. Nason, and C. Oleari, JHEP 0711, 070 (2007), hep-ph/0709.2092.
[19] C. Balazs and C. Yuan, Phys.Rev. D56, 5558 (1997), hep-ph/9704258.
[20] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, JHEP 0307, 001 (2003), hep-ph/0206293.
[21] J. Alwall et al., JHEP 0709, 028 (2007), hep-ph/0706.2334.
[22] T. Gleisberg et al., JHEP 0902, 007 (2009), hep-ph/0811.4622.
[23] D0 Collaboration, V. M. Abazov et al., Phys.Rev.Lett. 106, 122001 (2011), hep-ex/1010.0262.
[24] ATLAS Collaboration, G. Aad et al., Phys.Lett. B698, 325 (2011), hep-ex/1012.5382.
[25] D0 Collaboration, V. M. Abazov et al., Phys.Lett.B (2011), hep-ex/1106.1457.
[26] CDF collaboration, (2010), CDF Conference Note 10216.
[27] D0 Collaboration, V. M. Abazov et al., Phys.Lett. B682, 370 (2010), hep-ex/0907.4286.
[28] CMS Collaboration, (2011), hep-ex/1110.3226.
[29] ATLAS Collaboration, G. Aad et al., (2011), hep-ex/1109.1403.
[30] CMS collaboration, (2010), CMS PAS EWK-10-015.
[31] ATLAS Collaboration, G. Aad et al., (2011), hep-ex/1109.1470.
[32] CMS collaboration, (2011), CMS PAS EWK-11-013.
[33] D0 Collaboration, V. M. Abazov et al., Phys.Rev. D83, 031105 (2011), hep-ex/1010.6203.
[34] D0 Collaboration, V. Abazov et al., Phys.Lett. B666, 23 (2008), hep-ex/0803.2259.
[35] CDF collaboration, (2011), CDF Conference Note 10594.
[36] CDF collaboration, (2011), CDF Public Note.
[37] CMS Collaboration, S. Chatrchyan et al., Phys. Lett. B705, 355-355 (2011), hep-ex/1105.2758.
[38] ATLAS Collaboration, G. Aad et al., (2011), hep-ex/1106.1592.
[39] The D0 Collaboration, V. M. Abazov et al., (2011), hep-ex/1109.4432.
[40] CDF Collaboration, T. Aaltonen et al., Phys.Rev.Lett. 107, 051802 (2011), hep-ex/1103.2990.
[41] ATLAS Collaboration, H. Yang, (2011), hep-ex/1109.2576.
[42] CMS collaboration, (2011), CMS PAS EWK-11-010.
[43] ATLAS collaboration, (2011), ATLAS-CONF-
2011-099.

[44] D0 Collaboration, V. M. Abazov et al., Phys.Lett. B695, 67 (2011), hep-ex/1006.0761.
[45] CDF collaboration, (2011), CDF Note 10176.
[46] CDF Collaboration, T. Aaltonen et al., Phys.Rev.Lett. 104, 101801 (2010), hep-ex/0911.4449.
[47] D0 Collaboration, V. Abazov et al., Phys.Rev.Lett. 104, 071801 (2010), hep-ex/0912.5285.
[48] CDF Collaboration, T. Aaltonen et al., Phys.Rev.Lett. (2011), hep-ex/1108.2060.
[49] ATLAS Collaboration, G. Aad et al., (2011), hep-ex/1110.5016.
[50] D0 Collaboration, V. M. Abazov et al., Phys.Rev. D84, 011103 (2011), hep-ex/1104.3078.
[51] CDF collaboration, (2011), CDF/PUB/EXOTICS/PUBLIC/10603.