Initial state and approach to equilibrium

MICHAL SPALIŃSKI

Physics Department, University of Białystok, 15-245 Białystok, Poland
and
National Center for Nuclear Research, 00-681 Warsaw, Poland

A possible resolution of the early thermalisation puzzle is provided by the notion of far-from-equilibrium attractors which arise due to the specific kinematics of heavy-ion collisions. Attractors appear in a wide variety of dynamical models, and it is plausible that they also occur in QCD. The physical implications of these observations depend on how robust this effect is when typically made symmetry restrictions are relaxed. I briefly review this line of research and its perspectives.

1. Introduction

Quark-gluon plasma created in heavy-ion collision experiments is initially in a highly complex nonequilibrium state, while by the time when hadrons appear it is thermal to a large degree. Much effort is being devoted to understanding which features of the initial state are imprinted on experimentally accessible observables and how this happens. A key role in the picture which has emerged is played by models formulated in the language of fluid dynamics. It is very natural to use such a description close to local equilibrium, but hydrodynamic simulations are initialized at much earlier times, when the system is very anisotropic. The successful application of hydrodynamic models in such far-from-equilibrium situations implies that the complexity of initial states is rapidly reduced within an interval of proper-time shorter than $1\, fm$ following the collision. Since this happens for all initial states, the system can be said to reach a far-from-equilibrium hydrodynamic attractor in a process referred to as hydrodynamisation. These words have been given a fairly precise meaning in many models describing conformal Bjorken flow.

Attractors occur in a number of situations in physics, such as in cosmology where the inflationary attractor can be linked with the interplay between

* Presented at Quark Mater 2022
Hubble expansion and the inflaton potential gradient. In models of conformal Bjorken flow, far-from-equilibrium attractors are a consequence of the special kinematics characteristic of ultrarelativistic heavy-ion collisions. In Ref. [1], this was succinctly phrased by saying “the main features of the dynamics of expanding plasmas are determined by the competition between the expansion itself, which is dictated by the external conditions of the collisions, and the collisions among the plasma constituents which generically tend to isotropize the particle momentum distribution functions”. Recently this point was amplified in Refs. [2, 3], where these two regimes were clearly distinguishable. The importance of recognising the kinematic origin of far-from-equilibrium attractors is that it explains their ubiquity. It suggests that the success of hydrodynamics in this context might not signal the need to revise the fundamentals of fluid mechanics, but instead could be a consequence of specific kinematical circumstances. The experience gained in studies of toy models may be directly relevant to the real-world problem, provided we understand how robust are the features of boost-invariant attractors when some symmetry requirements are relaxed. Ultimately, one would hope that a suitable hydrodynamic model may succeed in capturing essential features the QCD attractor, thanks to its reduced complexity [4].

2. Conformal Bjorken flow

The symmetries of Bjorken flow (which originate in the ultrarelativistic nature of the collision) are boost invariance along the collision axis and invariance under rotations and translations in the transverse plane. If in addition we assume conformal symmetry, so that the energy-momentum tensor is traceless, its expectation value takes the form

\[T_\mu^\nu = \text{diag} \{-\mathcal{E}(\tau), \mathcal{P}_L(\tau), \mathcal{P}_T(\tau), \mathcal{P}_T(\tau)\}, \tag{1} \]

where \(\tau \) is the proper time and

\[\mathcal{P}_L \equiv \frac{\mathcal{E}}{3} \left(1 - \frac{2}{3} \mathcal{A} \right), \quad \mathcal{P}_T \equiv \frac{\mathcal{E}}{3} \left(1 + \frac{1}{3} \mathcal{A} \right). \tag{2} \]

Here \(\mathcal{E}(\tau) \) is the energy density and \(\mathcal{A}(\tau) \) is the pressure anisotropy, which is a measure of distance from equilibrium. Introducing the off-equilibrium effective temperature by \(\mathcal{E} \sim T^3 \), it is very convenient to use dimensionless variables (\(\mathcal{A}, w \equiv \tau T \)). In terms of these, the conservation of energy-momentum can be written as

\[\frac{d\log T}{d\log w} = \frac{\mathcal{A} - 6}{\mathcal{A} + 12}. \tag{3} \]
This differential equation can be trivially integrated once the function \(A(w) \) is given; it determines the solution up to a single integration constant. In this way, the problem is reduced to determining \(A(w) \). For a perfect fluid \(A = 0 \) and the solution is Bjorken’s \(T \sim \tau^{-1/3} \).

Depending on the dynamical model, \(A(w) \) may involve complicated initial data, which is dissipated away in the course of equilibration, since asymptotically all solutions approach perfect fluid behaviour. The basic observation is that in many models there is a special “attractor solution” which is approached by all other solutions even when the system is still very anisotropic. To the extent that \(A(w) \) can be approximated by the attractor, the only remnant of the initial state is the integration constant arising from Eq. (3), which sets the overall energy scale of a given event.

3. Modelling the QCD attractor

The paradigmatic example of a hydrodynamic attractor appears in the MIS model, where the pressure anisotropy \(A(w) \) satisfies a first-order ODE

\[
C_{\tau \Pi} \left(1 + \frac{A}{12} \right) A' + \left(\frac{C_{\tau \Pi}}{3w} + \frac{C_{\lambda_1}}{8C_\eta} \right) A^2 = \frac{3}{2} \left(\frac{8C_\eta}{w} - A \right) .
\]

where \(C_\eta, C_{\tau \Pi} \) and \(C_{\lambda_1} \) are dimensionless transport coefficients. There is a unique solution, denoted below by \(A_\ast \), which is regular at \(w = 0 \)

\[
A_\ast(w) = 6 \sqrt{\frac{C_\eta}{C_{\tau \Pi}}} + O(w)
\]

and acts as an attractor. At early times, generic solutions approach it as \(A - A_\ast \sim w^{-4} \). This behaviour is independent of the transport coefficients, which suggests that it is a kinematical effect due to the longitudinal expansion. It is also significant that solutions whose pressure anisotropy is below the attractor at early times are initially driven away from equilibrium.

The regular value of the pressure anisotropy at \(w = 0 \) is related to the behaviour of the energy density at early times by the relation

\[
E \sim \tau^{-\beta} \iff A_\ast(0) = 6 \left(1 - 3\beta/4 \right)
\]

so that the attractor is free-streaming if \(A_\ast(0) = 3/2 \). This can be imposed by a choice of transport coefficients in Eq. (5), but is not required in general.

At late times, the asymptotic behaviour of any solution depends on the dynamics through the transport coefficients

\[
A(w) = \frac{8C_\eta}{w} + \frac{16C_\eta(C_{\tau \Pi} - C_{\lambda_1})}{3w^2} + O(1/w^3)
\]

and the energy density at early times by the relation
but it is independent of initial conditions up to exponentially-damped corrections. In reality, the deconfinement transition is reached before the system is fully in the asymptotic regime, so some such dependence on initial conditions should be present even in this idealized setting.

The series appearing in Eq. (7) can be interpreted as the hydrodynamic gradient expansion and has a vanishing radius of convergence, which is connected with the dissipative nature of the system. This property has recently been shown to hold for a large class of more general flows [5].

Far-from-equilibrium attractors are a typical feature of conformal Bjorken flow also in more general hydrodynamic models [6,7]. Such models are constructed to reproduce the asymptotics of microscopic theories near equilibrium; their solutions coincide only in the late time asymptotic region (see e.g. Ref. [8]). Some models are more complex than MIS, but may capture more information about the initial state. They may also try to mimic nontrivial nonhydrodynamic sectors appearing in microscopic theories or match the asymptotics to higher orders in gradients. Finally, they may also alleviate issues with causality violations discussed recently in Refs. [9,10].

In hydrodynamic models of conformal Bjorken flow, the attractor $A^\star(w)$ is a particular solution regular at the origin, and the relevant initial condition can be determined directly from the evolution equations. Identifying attractors in kinetic theory models is less direct. Early work considered collision kernels in the relaxation-time approximation (RTA), but recently attractors have been identified in a more realistic kinetic theory model involving the AMY collision kernel [11]. Other recent studies of attractors in kinetic theory include Refs. [12,13,14,15,16]. An important common feature of these attractors is that they are free-streaming at early times.

Strongly coupled $\mathcal{N} = 4$ supersymmetric Yang-Mills theory has been an important theoretical laboratory for studies of hydrodynamisation thanks to the AdS/CFT correspondence. The late time behaviour of its hydrodynamic attractor, set by the shear viscosity, can be extended to intermediate times by Borel summation of the gradient expansion [17] but its form at early times is less certain [2]. Clarifying this issue is a very interesting topic for further study. The problem is made more difficult by the high dimensionality of the relevant phase space, so the projection of the dynamics onto the (w,A) plane may be misleading. A simple illustration of such a situation appears in a much simpler context in Ref. [6].

4. Attractors and the initial state

Early-time attractors aim to provide a bridge between models of the initial energy deposition and hydrodynamic simulations. Given the partial loss of information as the attractor is approached, a key question is which
features of the initial state survive so as to be accessible to measurement. A possible description of prehydrodynamic evolution is provided by free streaming (see e.g. Ref. [18]). Free-streaming attractors provide a simple picture of hydrodynamisation which has recently been shown to be consistent with experiment assuming a specific model of the initial state [19]. However, while free streaming is a feature of early-time attractors in kinetic theory, it is not necessarily so in general. In particular, the early-time behaviour of attractors in hydrodynamic models is determined by the transport coefficients and need not be tuned to free streaming. In a recent study it was shown that consistency with experiment requires that the early-time behaviour of the attractor must match the model of the initial state [20].

5. Beyond conformal Bjorken flow

Up to this point we have reviewed various aspects of conformal Bjorken flow, emphasizing the decisive role of longitudinal dynamics in the process of hydrodynamisation. The key question is how robust are intuitions gleaned from such toy models once symmetry restrictions are lifted? The most important simplifications which need to be assessed are conformal invariance and suppression of transverse dynamics. As soon as any symmetry restrictions are relaxed the system has more degrees of freedom. A significant issue which arises is finding an advantageous choice of variables which would make attractor behaviour manifest.

Attractors in Bjorken flow without conformal symmetry were investigated in Refs. [21, 22, 23]. These articles focused on a particular nonconformal model of kinetic theory where the conformal symmetry is broken due to quasiparticles of nonvanishing mass. It was found that early-time attractors arise only in specific combinations of the dissipative currents. It was also found that the standard effective hydrodynamic description is able to capture this behaviour only if it is suitably modified. One would expect further studies aimed at clarifying how hydrodynamic models can capture early-time attractors in such nonconformal cases.

If the longitudinal expansion is dominant at early times, the attractor may retain its relevance even in the presence of transverse dynamics. The persistence of early-time attractors in such circumstances was studied in Ref. [2] in the case of kinetic theory in the RTA. It was found that with sufficiently early initialisation nontrivial transverse profiles had negligible effect on the early-time behaviour, with the attractor governing early-time dynamics. Only at late times were the effects of transverse structure visible. Effects of transverse dynamics were also the subject of Ref. [24], where kinetic theory in the RTA was compared with hydrodynamics and a transport model (BAMPS).
6. Attractors in phase space

In the case of conformal Bjorken flow we have seen that universal variables \((A, w)\) exist which are correlated even far from equilibrium, making attractor behaviour manifest. Once some symmetry restrictions are relaxed, the number of degrees of freedom increases and it is not known how to identify such variables in general. An approach to this problem was formulated in Ref. [3]. It tracks the behaviour of solutions on slices of phase space at constant proper time. If one starts out with a set of initial conditions spanning a \(D\)-dimensional region on the initial time slice, these solutions end up in a region of lower dimensionality \(d < D\) on slices at later times. The attractor phenomenon can thus be identified with this reduction of dimensionality of sets of solutions, as exemplified by the plots in Fig. 1. This framing of the problem makes it amenable to exploration using techniques of machine learning. Initially, this approach was tested only in some cases of Bjorken flow in hydrodynamic models and a model of kinetic theory in the RTA [3]. In this analysis the early, expansion-dominated phase was clearly
visible and quantified using Principal Component Analysis. More recently, this kind methodology was applied to Bjorken flow in the context of kinetic theory with the AMY kernel [25]. There appear to be no fundamental ob-
strections to applying it to general flows, since no special parameterisation of phase space is required.

7. Summary

Approximate boost-invariance at early times may be the key element of the early thermalisation puzzle, since it leads to far-from-equilibrium attractor behaviour identified in diverse dynamical settings which share the kinematic features characteristic of heavy-ion collisions. Recent studies suggest that such attractors exist also when some of the idealisations present in toy models are relaxed. However, new approaches will be needed to identify and make use of attractors in such situations due to the greater number of degrees of freedom.

Acknowledgements

MS is supported by the National Science Centre, Poland, under grants 2018/29/B/ST2/02457 and 2021/41/B/ST2/02909.

REFERENCES

[1] J.-P. Blaizot and L. Yan, Fluid dynamics of out of equilibrium boost invariant plasmas, Phys. Lett. B 780 (2018) 283–286 [arXiv:1712.03856].
[2] A. Kurkela, W. van der Schee, U. A. Wiedemann and B. Wu, Early- and Late-Time Behavior of Attractors in Heavy-Ion Collisions, Phys. Rev. Lett. 124 (2020), no. 10 102301 [arXiv:1907.08101].
[3] M. P. Heller, R. Jefferson, M. Spaliński and V. Svensson, Hydrodynamic Attractors in Phase Space, Phys. Rev. Lett. 125 (2020), no. 13 132301 [arXiv:2003.07368].
[4] M. P. Heller and M. Spaliński, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115 (2015), no. 7 072501 [arXiv:1503.07514].
[5] M. P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, Hydrodynamic Gradient Expansion Diverges beyond Bjorken Flow, Phys. Rev. Lett. 128 (2022), no. 12 122302 [arXiv:2110.07621].
[6] J. Noronha, M. Spaliński and E. Speranze, Transient Relativistic Fluid Dynamics in a General Hydrodynamic Frame, [arXiv:2105.01034].
[7] M. Alqahtani, N. Demir and M. Strickland, Nonextensive hydrodynamics of boost-invariant plasmas, [arXiv:2203.14968].
[8] H. Bantilan, Y. Bea and P. Figueras, Evolutions in first-order viscous hydrodynamics, [arXiv:2201.13359].
[9] C. Plumberg, D. Almaalol, T. Dore, J. Noronha and J. Noronha-Hostler, *Causality violations in realistic simulations of heavy-ion collisions*, arXiv:2103.15889.

[10] C. Chiu and C. Shen, *Exploring theoretical uncertainties in the hydrodynamic description of relativistic heavy-ion collisions*, Phys. Rev. C 103 (2021), no. 6 064901 arXiv:2103.09848.

[11] D. Almaalol, A. Kurkela and M. Strickland, *Nonequilibrium Attractor in High-Temperature QCD Plasmas*, Phys. Rev. Lett. 125 (2020), no. 12 122302 arXiv:2004.05195.

[12] S. Kamata, M. Martinez, P. Plaschke, S. Ochsenfeld and S. Schlichting, *Hydrodynamization and nonequilibrium Green’s functions in kinetic theory*, Phys. Rev. D 102 (2020), no. 5 056003 arXiv:2004.06751.

[13] X. Du and S. Schlichting, *Equilibration of weakly coupled QCD plasmas*, arXiv:2012.09079.

[14] X. Du and S. Schlichting, *Equilibration of the Quark-Gluon Plasma at finite net-baryon density in QCD kinetic theory*, arXiv:2012.09068.

[15] J.-P. Blaizot and L. Yan, *Analytical attractor for Bjorken flows*, Phys. Lett. B 820 (2021) 136478 arXiv:2006.08815.

[16] J.-P. Blaizot and L. Yan, *Attractor and fixed points in Bjorken flows*, Phys. Rev. C 104 (2021), no. 5 055201 arXiv:2106.10508.

[17] M. Spaliński, *On the hydrodynamic attractor of Yang–Mills plasma*, Phys. Lett. B 776 (2018) 468–472 arXiv:1708.01921.

[18] G. Nijs, W. van der Schee, U. Gürsoy and R. Snellings, *Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum*, Phys. Rev. C 103 (2021), no. 5 054909 arXiv:2010.15134.

[19] G. Giacalone, A. Mazeliauskas and S. Schlichting, *Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions*, Phys. Rev. Lett. 123 (2019), no. 26 262301 arXiv:1908.02866.

[20] J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, *Constraining the initial stages of ultra-relativistic nuclear collisions*, Phys. Rev. D 104 (2021), no. 7 074012 arXiv:2012.02184.

[21] C. Chattopadhyay, S. Jaiswal, L. Du, U. Heinz and S. Pal, *Non-conformal attractor in boost-invariant plasmas*, Phys. Lett. B 824 (2022) 136820 arXiv:2107.05500.

[22] S. Jaiswal, C. Chattopadhyay, L. Du, U. Heinz and S. Pal, *Nonconformal kinetic theory and hydrodynamics for Bjorken flow*, Phys. Rev. C 105 (2022), no. 2 024911 arXiv:2107.10248.

[23] Z. Chen and L. Yan, *Hydrodynamic attractor in the nonconformal Bjorken flow*, Phys. Rev. C 105 (2022), no. 2 024910 arXiv:2109.06658.

[24] V. E. Ambrus, S. Basuioch, J. A. Fotakis, K. Gallmeister and C. Greiner, *Bjorken flow attractors with transverse dynamics*, Phys. Rev. D 104 (2021), no. 9 094022 arXiv:2102.11785.

[25] X. Du, M. P. Heller, S. Schlichting and V. Svensson, *Exponential Approach to the Hydrodynamic Attractor in Yang-Mills Kinetic Theory*, arXiv:2203.16549.