Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals

Article (Published Version)

Ignat, Radu, Nguyen, Luc, Slastikov, Valeriy and Zarnescu, Arghir (2014) Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals. SIAM Journal on Mathematical Analysis, 46 (5). pp. 3390-3425. ISSN 0036-1410

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/53358/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
UNIQUENESS RESULTS FOR AN ODE RELATED TO A GENERALIZED GINZBURG–LANDAU MODEL FOR LIQUID CRYSTALS

RADU IGNAT†, LUC NGUYEN‡, VALERIY SLASTIKOV§, AND ARGHIR ZARNESCU¶

Abstract. We study a singular nonlinear ordinary differential equation on intervals \([0, R]\) with \(R \leq +\infty\), motivated by the Ginzburg–Landau models in superconductivity and Landau–de Gennes models in liquid crystals. We prove existence and uniqueness of positive solutions under general assumptions on the nonlinearity. Further uniqueness results for sign-changing solutions are obtained for a physically relevant class of nonlinearities. Moreover, we prove a number of fine qualitative properties of the solution that are important for the study of energetic stability.

Key words. singular differential equations, nodal solutions, uniqueness, maximum principle, Ginzburg–Landau, liquid crystals

AMS subject classifications. 34B15, 34B40, 34C12, 35Q56

DOI. 10.1137/130948598

1. Introduction. We consider the ordinary differential equation (ODE)

\[
\begin{align*}
&u''(r) + \frac{p}{r} u'(r) - \frac{q}{r^2} u(r) = F(u(r)) \quad \text{in } (0, R), \\
&u(0) = 0, \quad u(R) = s_+,
\end{align*}
\]

where \(R \leq +\infty\), \(p\) and \(q\) are constants satisfying

\[
p, q \in \mathbb{R}, \quad q > 0,
\]

and \(F : \mathbb{R} \to \mathbb{R}\) is a \(C^1\) function which vanishes at 0 and at \(s_+ > 0\) (see Figure 1). In (1.2), we use the standard convention \(u(+\infty) := \lim_{r \to +\infty} u(r) = s_+\) if \(R = +\infty\).

The ODE (1.1) is the Euler–Lagrange equation of the energy functional

\[
E[u; I] = \frac{1}{2} \int_I \left[r^p |u'(r)|^2 + q r^{p-2} u^2(r) + r^p h(u(r)) \right] dr,
\]

where \(I \subset [0, +\infty)\) is an arbitrary interval and

\[
h(t) := 2 \int_0^t F(s) \, ds, \quad t \in \mathbb{R}.
\]
The main goal of this paper is to study the existence, uniqueness, and qualitative properties of solutions to the boundary value problem (1.1), (1.2). The main difficulty in exploring the ODE satisfied by \(u \) is the general type of nonlinearity \(F(u) \) on the right-hand side. For example, existing techniques for dealing with equations of type (1.1) in [10, 17, 24] are not applicable in our setting. One way of appreciating the effect of the nonlinearity is by noting that for \(u \in [0, s_+] \), the function \(F \) does not, in general, satisfy the Krasnosel’skiĭ condition (see, e.g., [9, 20]), unlike in the standard Ginzburg–Landau case [24]. Furthermore, the Pohozaev-type approach frequently used for proving uniqueness fails in this case.

We start by stating our existence and uniqueness result in the class of nonnegative solutions, which was announced in [19].

Theorem 1.1. Assume that \(p, q \) are given constants satisfying (1.3) and \(F : \mathbb{R} \to \mathbb{R} \) is a \(C^1 \) function satisfying

\[
\begin{align*}
F(0) &= F(s_+) = 0, \quad F'(s_+) > 0, \\
F(t) &< 0 \quad \text{if} \quad t \in (0, s_+), \quad F(t) \geq 0 \quad \text{if} \quad t \in (s_+, +\infty).
\end{align*}
\]

Then there exists a nonnegative solution \(u \) of the boundary value problem (1.1) and (1.2), which is unique in the class of nonnegative solutions. Moreover, this solution is strictly increasing.

If in addition we restrict the class of nonlinearities, we can show variational properties of the solution.

Corollary 1.2. Assume that \(p, q \) are given constants satisfying (1.3) and that \(F : \mathbb{R} \to \mathbb{R} \) is a \(C^1 \) function satisfying (1.6) and

\[
F_{\text{even}}(t) := \frac{F(t) + F(-t)}{2} \leq 0 \quad \text{for} \quad t \geq 0.
\]

Then the solution \(u \) in Theorem 1.1 is locally energy minimizing with respect to the energy \(E \) in (1.4), i.e.,

\[
E[u; \omega] \leq E[u + \varphi; \omega] \quad \text{for any} \quad \omega \subset [0, +\infty) \quad \text{compact interval and} \quad \varphi \in C_0^\infty(\omega).
\]

Conversely, if a function \(u \in H^1_{\text{loc}}(0, R) \) is locally energy minimizing with respect to \(E \) and satisfies \(u(R) = s_+ \), then \(u \) is necessarily the nonnegative solution of (1.1) and (1.2) obtained in Theorem 1.1.

The proof of Theorem 1.1 is split into two parts: existence and uniqueness. The existence part is done by constructing energy-minimizing solutions on finite intervals.
and letting the length of the interval tend to infinity in the case \(R = +\infty \). Fine local estimates of the behavior of \(u \) near the origin combined with an energy argument ensure the nonflattening of the solution obtained in this limit. The uniqueness part is more delicate to prove. To do this, we construct comparison barriers through a scaling argument and use suitable versions of the maximum principle together with a detailed understanding of the asymptotics at the origin and at infinity (in the case \(R = +\infty \)).

One can further ask if the uniqueness result holds for nodal solutions (i.e., solutions that may change signs). In general, if one assumes only (1.6), then in addition to a nonnegative solution there might exist sign-changing solutions; see Proposition 5.2. However, under additional assumptions, relevant to the physical problem detailed in subsection 1.1, we prove the following uniqueness result for nodal solutions.

Theorem 1.3. Assume that \(p > 0, q > 0 \) are given constants and \(F : \mathbb{R} \to \mathbb{R} \) is a \(C^1 \) function satisfying (1.6). Assume in addition that there exists \(s_- \in (-s_+, 0) \) such that

\[
\begin{aligned}
F(t) &\leq 0 \text{ if } t \in (-\infty, s_-), \\
F(t) &\geq 0 \text{ if } t \in (s_-, 0), \\
\frac{F(t_1)}{t_1} + \frac{F(-t_2)}{t_2} &\leq 0 \text{ if } 0 < t_1 \leq t_2 \leq |s_-|.
\end{aligned}
\]

Then there exists a unique solution \(u \) of the boundary value problem (1.1) and (1.2).

Remark 1.1. We also prove the above uniqueness result when \(p = 0 \) under additional assumptions on nonlinearity \(F \): either we assume in addition that \(F \) is a \(C^2 \) function (see Remark 3.2), or we impose a stronger version of (1.8) for the \(C^1 \) function \(F \); namely, there exists \(\alpha > 1 \) such that

\[
\frac{F(t_1)}{t_1} + \alpha^2 \frac{F(-t_2)}{t_2} \leq 0 \text{ for every } 0 < t_1 \leq t_2 \leq |s_-|
\]

(see Remark 3.3). For \(p < 0 \), numerical simulations (see Figure 4) suggest that the uniqueness result in Theorem 1.3 does not hold in general (see Remark 3.4).

Remark 1.2. The physically relevant nonlinearity (see section 1.1) of the form

\[
F(t) = -a^2 t - \frac{b^2}{3} t^2 + \frac{2c^2}{3} t^3, \quad t \in \mathbb{R},
\]

satisfies (1.6) and (1.8) if \(a^2, c^2 > 0 \) and \(b^2 \geq 0 \). See Figure 2. In particular, for \(F(t) = -t + t^3 \) (\(t \in \mathbb{R} \)) and \(p = 1 \) and \(q = n^2, n \in \mathbb{Z} \setminus \{0\} \) in (1.1), we recover the uniqueness result for nodal solutions of the standard Ginzburg–Landau model shown in [17].

1.1. Physical relevance and fine qualitative properties. Our analysis of the boundary value problem (1.1)–(1.2) is motivated by the study of the energetic (in)stability of the radially symmetric solution for a system of partial differential equations used for modeling nematic liquid crystals. This article is the first one in a series of two papers addressing this issue. In the current paper we prove the existence, uniqueness, and fine qualitative properties of the radially symmetric solution that is completely determined by the scalar solution \(u \) of (1.1)–(1.2), as explained in the remainder of this subsection. These properties will play an important role in our second paper [18], which focuses on proving the energetic stability.
Let us consider the energy functional

\[F(Q; \Omega) = \int_{\Omega} \left[L_1 |\nabla Q|^2 + L_2 \nabla_j Q_{ik} \nabla_k Q_{ij} + L_3 \nabla_j Q_{ij} \nabla_k Q_{ik} + f_{\text{bulk}}(Q) \right] \, dx, \]

where \(Q \in H^1(\Omega, \mathcal{S}_0), \Omega \subset \mathbb{R}^3, \) with

\[\mathcal{S}_0 \overset{\text{def}}{=} \{ Q \in \mathbb{R}^{3 \times 3}, Q = Q^t, \text{tr}(Q) = 0 \} \]

denoting the set of the so-called \(Q \)-tensors (here and in the following we assume summation over the repeated indices \(i, j, k = 1, 2, 3 \)). The Euler–Lagrange equations associated to the above energy are

\[2L_1 \Delta Q_{ij} + (L_2 + L_3) (\nabla_j \nabla_k Q_{ik} + \nabla_i \nabla_k Q_{jk}) - \frac{2}{3} (L_2 + L_3) \nabla_i \nabla_k Q_{ik} \delta_{ij} = -\left(\frac{\partial f_{\text{bulk}}(Q)}{\partial Q} \right)_{ij} + \frac{\delta_{ij}}{3} \text{tr} \left(\frac{\partial f_{\text{bulk}}(Q)}{\partial Q} \right), \quad i, j, l, k = 1, 2, 3. \]

In general the bulk potential \(f_{\text{bulk}}(Q) \) is required to satisfy the physical invariance \(f_{\text{bulk}}(Q) = f_{\text{bulk}}(RQ R^t) \) with \(R \in SO(3) \); hence it is a function of the principal invariants of \(Q \) (see [5]), which are \(\text{tr}(Q^2) \) and \(\text{tr}(Q^3) \) (taking into account that \(\text{tr}(Q) = 0 \) in our case). A typical form of the potential often used in the literature is

\[f_{\text{bulk}}(Q) = -\frac{a^2}{2} |Q|^2 - \frac{b^2}{3} \text{tr}(Q^3) + \frac{c^2}{4} |Q|^4, \]

where \(a^2, c^2 > 0, b^2 \geq 0, \) and \(|Q|^2 \overset{\text{def}}{=} \text{tr}(Q^2) \) (see, e.g., [23] and references therein).

We are interested in studying a radially symmetric solution on balls \(\Omega = B_R(0) \subset \mathbb{R}^3 \) with \(R \in (0, +\infty) \) (with the convention that \(\Omega = \mathbb{R}^3 \) if \(R = +\infty \)). This solution is relevant in the study of topological defects in liquid crystals (see [23]). More precisely we say that a matrix-valued measurable map \(Q : \Omega \to \mathcal{S}_0 \) is radially symmetric if

\[Q(Rx) = R Q(x) R^t \]

for any \(R \in SO(3) \) and a.e. \(x \in \Omega. \)

(For other types of symmetry in Ginzburg–Landau setting, see [3].)

The above definition of symmetry provides a solution which is invariant with respect to coordinate rotations. It is a natural definition of radial symmetry,
similar to the one considered in the case of the Ginzburg–Landau equation in arbitrary dimension (see, for instance, [16]). This radially symmetric solution has a particular relevance to the study of point defects in liquid crystals. It is a prototypical type of point defect that is encountered in similar forms in several competing theories of liquid crystals. Moreover, numerical results indicate that such a radially symmetric solution is a local minimizer of the Landau–de Gennes energy (1.11) in a suitable physical regime [27].

It will be shown in Appendix A that such a solution of (1.12), called the melting hedgehog, can be written as

\[
H(x) = u(|x|) \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3} \mathbf{I} \right).
\]

In the case of the potential (1.13), \(u : \mathbb{R}^+ \to \mathbb{R} \) —the scalar profile of the melting hedgehog—is a solution of (1.1) with \(p = 2, q = 6 \) and

\[
F(u(r)) = \frac{1}{\alpha} \left(-a^2 u(r) - \frac{b^2}{3} u(r)^2 + \frac{2c^2}{3} u(r)^3 \right), \quad r > 0,
\]

where \(\alpha = 2L_1 + \frac{4(L_2^2 + L_3^2)}{3} \); see [11] and [22].

As a direct consequence of Theorem 1.3, we obtain the following result, which is new for the liquid crystal community: the uniqueness of radially symmetric solution of (1.12) is proved in the general class of nodal scalar profiles.

Theorem 1.4. Assume that \(\alpha = 2L_1 + \frac{4(L_2^2 + L_3^2)}{3} > 0 \), Consider (1.12) with the bulk potential (1.13) on the domain \(\Omega = B_R(0) \) with the boundary condition

\[
Q(x) = s_+ \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3} \mathbf{I} \right) \quad \text{for} \ x \in \partial B_R(0),
\]

where \(s_+ := \frac{\sqrt{\lambda_3 + \sqrt{\lambda_1^2 + 24\lambda_3 \lambda_2}}}{12\sqrt{\lambda_2}} \). Then there exists a unique radially symmetric solution of the above problem.

One of the important physical questions is related to the stability of this radially symmetric solution as a critical point of the energy (1.11). Corollary 1.2 shows that the melting hedgehog is locally energy minimizing within the class of radially symmetric tensors, under suitable assumptions on the nonlinearity. The corresponding question of local energy minimality for the melting-hedgehog solution (1.15) with respect to arbitrary perturbations (with respect to the general energy (1.11)) is a considerably more challenging task and the main motivation for the current work. For the case of physically relevant potential (1.13) and \(\Omega = \mathbb{R}^3 \), it was shown in [13] that for \(a^2 \) large enough the melting hedgehog is not locally stable (hence not locally minimizing) and was conjectured, based on numerical evidence, that for \(a^2 \) small the melting hedgehog is locally stable. In our forthcoming paper [18] we prove this conjecture. The crucial step for obtaining the result in [18] has been a thorough understanding of the fine qualitative properties of the unique solution \(u \) of (1.1)–(1.2). In particular, in [18] we extensively use the following result, which we prove in section 4.

Theorem 1.5. Let \(u \) be the unique solution of (1.1) and (1.2) where \(R = +\infty \), \(p = 2, q = 6 \), and the right-hand side \(F(u) \) is given by (1.10). If we denote \(w(r) :=

\[
\text{The boundary condition is } \lim_{|x| \to +\infty} |Q(x) - s_+ \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3} \mathbf{I} \right)| = 0 \text{ if } R = +\infty \text{ (i.e., } \Omega = \mathbb{R}^3).}
UNIQUENESS FOR A GINZBURG–LANDAU-TYPE MODEL

(1.17) \(u(r) > u_0(r) \),
where \(u_0 \) solves (1.1)–(1.2) with \(F \) given by (1.10) and \(a^2 = 0 \),
(1.18) \(u'(0) = 0 \) and \(u''(0) \geq u''_0(0) > 0 \),
(1.19) \(u'' + \left(\frac{3u'}{u} + \frac{5}{r} \right) u' \geq 0 \),
(1.20) \(2a^2 + \frac{b^2}{3}u > -\frac{2}{w}f(u) \),
(1.21) \(\frac{3}{r^2}(w-2)(w+1) < f(u) < \frac{1}{r^2}(w-2)(2w+3) < 0 \),
(1.22) \(0 < w(r) < 2 \),
(1.23) \(\frac{1}{w(r)} > \frac{u''(0)}{4s_+r^2} \).

1.2. Related literature and organization of the paper. Let us now review
the existing mathematical literature where similar problems were considered. The
differential equation (1.1) is a generalization of the equation that describes scalar
profiles for Ginzburg–Landau-type equations, as analyzed, for instance, in [10, 17, 24].
This type of equations was extensively studied in the last twenty years. Below we
mention only a few of the papers that are most relevant to our study.

One of the first results about existence and uniqueness of the solution of Ginzburg–
Landau-type profiles was obtained in [17]. The authors considered the 2D case of
the Ginzburg–Landau-type equation (1.1) with the nonlinearity \(F(u) = -u(1 - u^2) \) and
\(p = 1, q = n^2 \) for integers \(n \geq 1 \). Using the shooting method and the maximum
principle, they obtained existence and uniqueness of the solution for the problem.
The generalization to higher-dimensional cases was studied in [12], taking
\(p = n - 1, q = k(n - 2) \) for integers \(n \geq 3 \) and \(k \geq 1 \). Both papers [17] and [12] investigate
nodal solutions.

For general nonlinearity \(F(u) \), existence and uniqueness of positive solutions are
shown in a recent work (see [2]) only for the case \(p = 1 \). The authors turn the differential
equation into a suitable fixed point equation and use fixed point methods and
a sliding method to show existence and uniqueness of the positive solution. Moreover
they also obtain some results on a qualitative behavior of the solution.

The profile of the radially symmetric solution for the Landau–de Gennes prob-
lem has been recently studied in [21]. Using Pohozaev-type arguments, the author
showed the monotonicity and uniqueness of the energy-minimizing solution of (1.1)
in bounded domains for \(F(u) \) of type (1.10).

In this paper we consider the equation (1.1) with \(p, q \in \mathbb{R}, q > 0 \) and general non-
linearity \(F(u) \) on bounded and unbounded domains. We show existence and uniqueness
of positive solutions with very light and natural restrictions on \(F(u) \). Moreover, we also show uniqueness of general nodal solutions for \(p \geq 0 \) under more restricted
assumptions on nonlinearity \(F(u) \). Using the mountain pass theorem, we provide a
counterexample to uniqueness of nodal solutions when \(F(u) \) does not satisfy these
assumptions. Finally, we investigate fine properties of the solution corresponding to the
radially symmetric profile of the melting hedgehog in the Landau–de Gennes model
of liquid crystals. These fine properties are of utter importance in the investigation of
the stability of the melting hedgehog that we perform in the forthcoming paper [18].
The paper is organized as follows. In sections 2 and 3 we gather the arguments for proving Theorem 1.1 on the existence and uniqueness of positive solutions to (1.1)–(1.2). The proof of Theorem 1.1 is provided at the end of section 3. Corollary 1.2 on locally energy-minimizing solutions is shown in section 3.2, where we also prove Theorem 1.3 on the uniqueness of nodal solutions. Theorem 1.5 is proved in section 4, where certain refined properties of the solution corresponding to the nonlinearity (1.10) are studied. Section 5 is devoted to proving the existence of a sign-changing solution of (1.1)–(1.2) for certain types of nonlinearities (see Proposition 5.2). In Appendix A we provide some properties of radially symmetric Q-tensors. Finally, in Appendix B we present versions of the maximum principle that are needed in the body of the paper.

2. Existence and behavior near 0 and $+\infty$. In this section we prove the existence of solutions of problem (1.1)–(1.2) under (1.3). When R is finite, this is done via an energy minimization procedure. The case $R = +\infty$ is obtained by a limiting process. A delicate issue will be to ensure that the solution thus obtained in the limit does not become trivial and has the desired asymptotic behaviors at 0 and $+\infty$.

2.1. Existence on finite domains. For $F : \mathbb{R} \rightarrow \mathbb{R}$ with (1.6) we associate $\tilde{F} : \mathbb{R} \rightarrow \mathbb{R}$ to be any C^1 function such that

\begin{equation}
\tilde{F}(t) = F(t) \quad \text{for } t \geq 0 \text{ and } \tilde{F}_{\text{even}}(t) \text{ satisfies (1.7)}.
\end{equation}

(For example, we can define \tilde{F} by $\tilde{F}(-t) = -F(t)$ for $t > 0$.) Let

\begin{equation}
\tilde{h}(t) = 2 \int_0^t \tilde{F}(s) \, ds.
\end{equation}

Note that, by (2.1), we have

\begin{equation}
\tilde{h}(-|t|) \geq \tilde{h}(|t|) \quad \forall t \in \mathbb{R},
\end{equation}

and so, by (1.6), \tilde{h} is bounded from below.

Consider, instead of the energy E defined by (1.4), the following modified energy:

\begin{equation}
\tilde{E}[u; (0, R)] = \frac{1}{2} \int_0^R \left[r^{p/2} u'(r)^2 + q r^{p-2} u(r)^2 + r^p \tilde{h}(u(r)) \right] \, dr.
\end{equation}

Since $\tilde{F} \equiv F$ in $[0, +\infty)$, all nonnegative critical points of \tilde{E} coincide with nonnegative critical points of E, and vice versa, as can be seen by looking at the corresponding Euler–Lagrange equations. In other words, if we are interested in positive solutions of (1.1), we can always assume that F satisfies (1.7).

Lemma 2.1. Assume (1.3), (1.6), and (2.1). Then for every $R \in (0, +\infty)$, there exists a global energy minimizer u_R of \tilde{E} over

\[\mathcal{M}_R := \{ u : (0, R) \rightarrow \mathbb{R} : r^{p/2} u', r^{p/2-1} u \in L^2(0, R), \quad u(R) = s_+ \}. \]

Moreover u_R satisfies (1.1) and $0 \leq u_R(r) \leq s_+$ for all $r \in (0, R)$.

Proof. We split the proof into several steps.

Step 1: Reduction from \mathcal{M}_R to \mathcal{M}_R^+, where

\[\mathcal{M}_R^+ := \{ u \in \mathcal{M}_R : 0 \leq u(r) \leq s_+, \quad r \in (0, R) \} \subset \mathcal{M}_R. \]
We claim that
\[\inf_{\mathcal{M}_R} \tilde{E} = \inf_{\mathcal{M}'_R} \tilde{E}. \]

To this end let us take \(u \in \mathcal{M}_R \setminus \mathcal{M}'_R \). Set
\[\bar{u}(r) = |u|(r), \quad r \in (0, R). \]

Then \(\bar{u} \in \mathcal{M}_R \), and by (2.2),
\[\tilde{E}[\bar{u}; (0, R)] \leq \tilde{E}[u; (0, R)]. \]

We now define
\[\hat{u}(r) = \min(\bar{u}(r), s_+). \]

Then \(\hat{u} \in \mathcal{M}'_R \), and thanks to the fact that \(q > 0 \) and \(\tilde{h}'(t) = 2\tilde{F}(t) = 2F(t) \geq 0 \) for \(t > s_+ \) (by (1.6)) so \(\tilde{h}(\hat{u}) \geq \tilde{h}(\bar{u}) \) in \((0, R) \), we have
\[\tilde{E}[\hat{u}; (0, R)] \leq \tilde{E}[\bar{u}; (0, R)]. \]

The claim follows from (2.4) and (2.5).

Step 2: \(\inf_{\mathcal{M}_R} \tilde{E} > -\infty \). Indeed, if \(q > -1 \), this step is clear since \(\tilde{h} = h \) is bounded in the interval \([0, s_+]\) and the function \(r \mapsto r^p \) is integrable on \((0, R)\). In the general case, for \(p \in \mathbb{R} \), we argue as follows. Since \(F(0) = 0 \) and \(|F'| \leq C_1 \) on \([0, s_+]\) with \(C_1 > 0 \), we have \(|F(t)| \leq C_1 t \) for \(0 \leq t \leq s_+ \). Hence
\[(2.6) \quad |h(t)| \leq C_1 |t|^2 \quad \text{for} \quad t \in [0, s_+]. \]

Moreover, by (1.6), we have for \(t \in [0, s_+] \)
\[(2.7) \quad 0 \geq h(t) = 2 \int_0^t F(s) \, ds \geq 2 \int_0^{s_+} F(s) \, ds. \]

Set \(u \in \mathcal{M}'_R \). For \(0 < r \leq R_0 = (\frac{q}{2C_1})^{1/2} \), by (2.6), we have \(r^p h(u(r)) \geq -\frac{q}{2} r^{p-2} u^2(r)^2 \), while for \(R_0 \leq r \leq R \), we have by (2.7)
\[r^p h(u(r)) \geq 2 \max(R_0^p, R^p) \int_0^{s_+} F(s) \, ds =: -C_2, \]
with \(C_2 > 0 \). It follows that
\[r^p h(u(r)) \geq -\frac{q}{2} r^{p-2} u^2(r) - C_2 \quad \forall r \in (0, R). \]

Thus, the function
\[(2.8) \quad T(u)(r) := r^p h(u(r)) + qr^{p-2} u^2(r) + C_2 \geq 0, \quad r \in (0, R), \]
is positive, and therefore we have \(\tilde{E}(u) \geq -C_2 R/2 > -\infty \) for every \(u \in \mathcal{M}'_R \), which finishes Step 2. Note that \(\inf_{\mathcal{M}'_R} \tilde{E} < \infty \) since every configuration \(u \in \mathcal{M}'_R \) with \(u \equiv 0 \) near \(r = 0 \) has finite energy \(\tilde{E}(u) < \infty \).
Step 3: Existence of a minimizer of \mathcal{E} over \mathcal{M}'_R. Indeed, by (2.8), the direct method of calculus of variations using Sobolev’s embedding and Fatou’s lemma establishes the existence of a minimizer of \mathcal{E} over \mathcal{M}'_R. We omit the details. \[\square\]

Remark 2.1. Let us point out that since the potential \tilde{F} satisfies the condition (1.7), we can use the uniqueness result given by Corollary 1.2 (to be proved in the next section) and show that $\text{argmin} \mathcal{M}'_R \tilde{E} = \text{argmin} \mathcal{M}'_R E$ and it contains one single element.

To complete the proof of the existence in the case of a finite domain, we need to show that $u_R(0) = 0$. In fact, we prove stronger asymptotic estimates in the next subsection.

2.2. Local behavior near the origin. Note that the homogeneous linear equation associated with (1.1) is a Fuchsian ODE at $r = 0$; see, e.g., [8]. Let γ_\pm denote the solutions of the indicial equation, i.e.,

$$\gamma_\pm := \frac{1 - p \pm \sqrt{(p-1)^2 + 4q}}{2}.$$

As $q > 0$, we have that $\gamma_+ > 0 > \gamma_-$. Thus, if u is a bounded solution of (1.1), then we expect that u “behaves like r^{γ_+}” at the origin.

Proposition 2.2. Assume that condition (1.3) holds and F is a C^1 function satisfying $F(0) = 0$. Let u be a (nodal) solution of (1.1) on $(0, R)$ with $R \in (0, +\infty)$ such that u is bounded near the origin.

(i) Then the function $v(r) := \frac{u(r)}{r^{\gamma_+}}$ is differentiable up to 0 and $v'(0) = 0$. In particular $u(0) = 0$.

(ii) If, in addition, F satisfies (1.6) and $u \geq 0$ in $(0, R)$ and $u(R) \in (0, s_+]$, then $0 < u < s_+$ on $(0, R)$. Moreover v is decreasing and, in particular,

$$u'(r) < \frac{\gamma_+ u(r)}{r} \text{ on } (0, R).$$

Note that if F satisfies (1.6) and the first condition in (1.8), then every solution u of (1.1) with $u(R) = s_+$ is bounded (i.e., $s_- \leq u \leq s_+$ in $(0, R)$ by the maximum principle), and therefore Proposition 2.2 implies that u satisfies (1.2).

Proof. Assume that $|u(r)| \leq M$ for $r \in (0, \delta_0)$ for some $\delta_0 \in (0, R]$. Standard regularity result for ODEs implies that $u \in C^2(0, R)$.

Step 1: We first show that

$$|u| \leq C r^{\gamma_+} \text{ in } (0, \delta_0)$$

with $C > 0$ depending only on M. Indeed, denoting $u_{\pm} := \max\{0, \pm u\}$, we prove (2.11) for both u_{\pm}. Since F is C^1 with $F(0) = 0$, we have $|F(t)| \leq \tilde{C}|t|$ for $t \in [-M, M]$, with the constant $\tilde{C} \geq \|F'\|_{L^\infty(-M, M)} \geq 0$ depending only on M; in particular,

$$F(-u_-) \leq \tilde{C} u_- \quad \text{and} \quad -F(u_+) \leq \tilde{C} u_+ \quad \text{in } (0, \delta_0).$$

Then, by (1.1), we deduce

$$Lu_+ := -u''_+ - \frac{p}{r} u'_+ + \left(\frac{q}{r^2} - \tilde{C}\right) u_+ \leq 0 \quad \text{in the sense of measures in } (0, \delta_0).$$

By the theory of ODEs with a regular singular point (see, for instance, [8]), there exist functions w_1, w_2 such that $w_1(r) = r^{\gamma_+} + o(r^{\gamma_+})$ and $w_2(r) = r^{\gamma_-} + o(r^{\gamma_-})$ as
$r \to 0$, and $Lw_1 = Lw_2 = 0$. By choosing $\delta_0 > 0$ smaller if necessary we can assume that $w_1, w_2 > 0$ on $(0, \delta_0]$ and $\frac{\mu}{\omega} \geq \hat{C}$ on $(0, \delta_0]$. Note now that for any constant μ it holds that

$$L(\mu \omega_1 - u_+) \geq 0 = Lw_2.$$
Choosing $\mu > 0$ such that $\mu \omega_1(\delta_0) \geq M \geq u_+(\delta_0)$ we can apply Lemma B.1 and obtain $\mu \omega_1 \geq u_+ + (0, \delta_0)$. The estimate for u_- follows by the same argument (since $Lu_- \leq 0$ in the sense of measures on $(0, \delta_0)$). Noting that μ depends only on M (and not on u), we obtain the claimed (2.11). In particular, $u(0) = 0$.

Step 2: We prove that v is differentiable up to $r = 0$. In view of (2.11), we deduce from (1.1) that

$$\left| u'' + \frac{p}{r} u' - \frac{q}{r^2} u \right| = |F(u)| \leq \hat{C}|u| \leq \hat{C} r^{\gamma_+} \text{ in } (0, \delta_0).$$

Denote

$$L_0 u = -u'' - \frac{p}{r} u' + \frac{q}{r^2} u.$$
Then we have

$$-\hat{C} r^{\gamma_+} \leq L_0 u \leq \hat{C} r^{\gamma_+} \text{ in } (0, \delta_0).$$

Note that $L_0 r^{\gamma_+} = 0$ and $L_0 (r^{\gamma_+ + 2}) = -2(2 \gamma_+ + p + 1) r^{\gamma_+}$ with $2 \gamma_+ + p + 1 > 0$. Set $\tilde{u}^\pm := u \pm \frac{\hat{C}}{2(2 \gamma_+ + p + 1)} r^{\gamma_+ + 2}$. Then $L_0 \tilde{u}^+ \leq 0$ and $L_0 \tilde{u}^- \geq 0$ in $(0, \delta_0)$. Let $s \in (0, \delta_0)$, and note that we are in the framework of Lemma B.1 (with $u_0 = r^{\gamma_-}$) applied to

$$L_0(\mu \pm r^{\gamma_+} \mp \tilde{u}^\pm) \geq 0 \text{ on } (0, s),$$

where $\mu \pm = \mu_{\pm}(s) \in \mathbb{R}$ is determined by $\mu \pm s^{\gamma_+} := \pm \tilde{u}^\pm(s)$. We deduce that

$$\pm \tilde{u}^\pm(r) \leq \frac{\pm \tilde{u}^\pm(s)}{s^{\gamma_+}} r^{\gamma_+}, \quad 0 < r < s.$$
It follows that

$$\left| \frac{u(r)}{r^{\gamma_+}} - \frac{u(s)}{s^{\gamma_+}} \right| \leq O(s^2 - r^2) \quad (2.12)$$

for $0 < r < s$. Since s was arbitrarily chosen in $(0, \delta_0)$, we have that (2.12) implies the existence of a limit of v at the origin. Dividing (2.12) by $s - r$ and passing to the limit $r \to 0$, followed by $s \to 0$, we obtain $v'(0) = 0$. Since u is C^2 away from 0, we conclude that v is differentiable up to the origin, which ends the proof of (i).

Step 3: Proof of (ii). Assume that the stronger hypothesis in (ii) holds. First, by (1.6), we note that $L_0 u \geq 0$ in $(0, R)$ and $u \geq 0$ in $(0, R)$; thus, by the strong maximum principle, if u achieves the value 0 inside the interval $(0, R)$, it must be identically zero, which would violate $u(R) > 0$. So, $u > 0$ in $(0, R)$. Second, note that $u \leq s_+$ in $(0, R)$, because otherwise u would achieve a local maximum at some $r_0 \in (0, R)$ where $u(r_0) > s_+$ and

$$0 > -L_0 u(r_0) = u''(r_0) + \frac{p}{r_0} u'(r_0) - \frac{q}{r_0^2} u(r_0) = F(u(r_0)) \quad (1.6)$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
which is absurd. Third, note that \(L_0 u + F(u) = 0 \leq L_0(s_+) + F(s_+) \). Therefore, we obtain
\[
M(s_+ - u) := L_0(s_+ - u) + a(r)(s_+ - u) \geq 0,
\]
where \(M \) is a linear elliptic operator with \(a \) a bounded continuous function defined by \(a(r) = \frac{F(s_+)}{s_+ - u(r)} \) if \(u(r) \neq s_+ \) and \(a(r) = F'(s_+) \) otherwise. As above, the strong maximal principle applied for \(M \) and \(s_+ - u \geq 0 \) implies that \(u < s_+ \) on \((0, R)\) (because of \(u(0) = 0 \), which prevents \(u \) from being identically constant to \(s_+ \)).

It remains to show that \(v \) decreases. For that, note first that \(v \) satisfies
\[
(r^{2\gamma_+ + p}v')' = r^{2\gamma_+ + p}\left(v'' + \frac{2\gamma_+ + p}{r}v'\right) = r^{2\gamma_+ + p}\left(u'' + \frac{p}{r}u' - \frac{q}{r^2}u\right) = r^{2\gamma_+ + p}F(u).
\]
Using (1.6), we obtain \((r^{2\gamma_+ + p}v')' < 0 \) on \((0, R)\) because \(0 < u < s_+ \) on \((0, R)\), meaning that \(r^{2\gamma_+ + p}v' \) is decreasing on \((0, R)\). Noting that \(2\gamma_+ + p > 0 \) and \(v'(0) = 0 \) (by step 2), we obtain
\[
\lim_{r \to 0} r^{2\gamma_+ + p}v'(r) = 0.
\]
Therefore, it follows that \(r^{2\gamma_+ + p}v' < 0 \) on \((0, R)\). So we conclude that \(v' < 0 \), i.e., \(v \) is decreasing on \((0, R)\). Estimate (2.10) is now straightforward.

Corollary 2.3. Assume (1.3) and (1.6). For every \(R \in (0, +\infty) \), there exists a nonnegative solution \(u \) of (1.1)–(1.2) that is a minimizer of the energy \(E \) defined in (1.4) over the set of nonnegative configurations \(\{v \in \mathcal{M}_R : v(r) \geq 0, r \in (0, R)\} \), where \(\mathcal{M}_R \) is defined in Lemma 2.1. Moreover, \(0 < u < s_+ \) in \((0, R)\) and \(u \) is increasing on \((0, R)\).

Proof. The first part of the statement is a direct consequence of Lemma 2.1 and Proposition 2.2 since the energy \(E \) coincides with the energy \(\tilde{E} \) for nonnegative configurations in \(\mathcal{M}_R \). The fact that \(u \) is increasing is a consequence of Lemma 3.7, whose statement and proof are postponed to section 3.

2.3. Existence on infinite domain.

Let us now prove the existence of the solution to (1.1)–(1.2) in the case \(R = +\infty \).

Proposition 2.4. Assume (1.3) and (1.6). For \(R = +\infty \), there exists a nonnegative increasing solution \(u \) to (1.1)–(1.2). Furthermore, \(0 < u < s_+ \) in \((0, R)\) and \(u \) is locally minimizing with respect to the energy \(\tilde{E} \) defined in (2.3).

Proof. We proceed in several steps.

Step 1: Constructing a solution of (1.1) on \((0, +\infty)\). We denote by \(u_n \) a global energy minimizer of the energy \(\tilde{E} \) obtained in Lemma 2.1 on the interval \((0, n)\) and in the space \(\mathcal{M}_n \) that satisfies \(u_n \in [0, s_+] \). We extend \(u_n \) to the function \(\tilde{u}_n \) on \((0, +\infty)\) by letting
\[
\tilde{u}_n(r) = \begin{cases}
 u_n(r) & \text{if } r \in (0, n), \\
 s_+ & \text{if } r > n.
\end{cases}
\]

Obviously, the sequence \((\tilde{u}_n)_{n \in \mathbb{N}}\) is uniformly bounded in \(L^\infty(0, +\infty) \). Let \(I \subset (0, +\infty) \) be a compact interval and let \(n_0 \in \mathbb{N} \) so that \(I \subset (0, n_0) \). By standard regularity arguments for the ODE (1.1), one can show that \((\tilde{u}_n)_{n \geq n_0}\) is uniformly bounded on \(C^3(I) \). Since \(I \) is arbitrarily chosen, by the Arzelà–Ascoli theorem, we deduce that \((\tilde{u}_n)\) converges (up to a subsequence) in \(C^2_{loc}(0, +\infty) \) to some \(u_\infty \in C^2(0, +\infty) \), which satisfies (1.1) and \(u_\infty \in [0, s_+] \).
Step 2: Behavior of u_∞ at 0. Since u_∞ satisfies (1.1) and $u_\infty \in [0, s_+]$, Proposition 2.2 implies that $\frac{\partial u_\infty}{\partial r}$ is differentiable up to the origin. In particular $u_\infty(0) = 0$.

Step 3: Behavior of $u_\infty(r)$ as $r \to +\infty$. We know that \bar{u}_n are nondecreasing functions on $(0, +\infty)$ by Corollary 2.3. Then the limit function u_∞ is also nondecreasing. Since $0 \leq u_\infty \leq s_+$, then there exists

$$s_\infty := \lim_{r \to +\infty} u_\infty(r) \in [0, s_+] .$$

Claim. $s_\infty \in \{0, s_+\}$.

Proof. Assume by contradiction that $0 < s_\infty < s_+$. Recall that

$$\frac{1}{r^p} (r^p u_\infty')' = q \frac{u_\infty}{r^2} + F(u_\infty) .$$

As $r \to +\infty$ we have $u_\infty(r) \to s_\infty, F(u_\infty(r)) \to F(s_\infty) < 0$; hence, for $\varepsilon > 0$ small enough there exists $R_0 > 0$ so that

$$\frac{1}{r^p} (r^p u_\infty')' \leq -\varepsilon \text{ for } r \geq R_0 .$$

If $p = -1$, we integrate the above inequality on (R_0, r) to obtain

$$\frac{u_\infty'(r)}{r} \leq \frac{u_\infty'(R_0)}{R_0} - \varepsilon (\log r - \log R_0) \to -\infty \text{ as } r \to +\infty .$$

We deduce that $u_\infty'(r) < 0$ for r large enough, which contradicts the fact that u_∞ is nondecreasing. Consider now $p \neq -1$. As before, integrating on (R_0, r), we obtain

$$r^p u_\infty'(r) \leq R_0^p u_\infty'(R_0) - \frac{\varepsilon}{p+1} (r^{p+1} - R_0^{p+1}) .$$

We now have two cases.

Case $p > -1$. As before, $r^{p+1} \to +\infty$ as $r \to +\infty$ and (2.15) implies $r^p u_\infty'(r) < 0$ for r large enough, obtaining again a contradiction.

Case $p < -1$. Relation (2.15) implies

$$u_\infty'(r) \leq \frac{R_0^{p+1}}{r^p} \left(\frac{u_\infty'(R_0)}{R_0} + \frac{\varepsilon}{p+1} \right) - \frac{\varepsilon}{p+1} r .$$

By Proposition 2.2, we deduce that $u_\infty'(r) < \frac{\gamma u_\infty(r)}{r} < \frac{2 s_\infty}{r}$ on $(0, R)$. Therefore, we choose now R_0 large enough such that

$$0 \leq \frac{u_\infty'(R_0)}{R_0} \leq -\frac{\varepsilon}{2(p+1)} .$$

Then $\frac{R_0^{p+1}}{r^p} \left(\frac{\varepsilon}{p+1} \right) - \frac{\varepsilon}{p+1} r \to -\infty$ as $r \to +\infty$, and we obtain again $u_\infty'(r) < 0$ for r large enough, which contradicts the fact that u_∞ is nondecreasing. In all the cases, we obtain that $s_\infty \in \{0, s_+\}$, which concludes the claim.

Step 4: u_∞ is locally minimizing with respect to energy \tilde{E}. Let $\omega \subset (0, +\infty)$ be a compact interval and let $n_0 \in \mathbb{N}$ so that $\omega \subset (0, n_0)$. Since u_n is a global minimizer for $\tilde{E}[: (0, n)]$, we have for any $n \geq n_0$ that $\tilde{E}[u_n ; \omega] \leq \tilde{E}[u_n + \varphi ; \omega]$ for any $\varphi \in C^\infty(\omega)$. As $u_n \to u_\infty$ in $C^3(\omega)$, we can pass to the limit in the above inequality and obtain that u_∞ is locally energy minimizing.
Step 5: Showing that $u_\infty \neq 0$ and $s_\infty = s_+$. We assume by contradiction that $u_\infty \equiv 0$. Since it is locally minimizing, we have for any compact interval $\omega \subset (0, +\infty)$ that

\begin{equation}
E[0; \omega] = 0 \leq \tilde{E}[\varphi; \omega] \text{ for any } \varphi \in C^\infty_0(\omega).
\end{equation}

Let us pick an arbitrary $\varphi \in C^\infty_0(0, 1)$ with $\varphi \neq 0$ and $\varphi \in [0, s_+]$. Set $\varphi_n(r) := \varphi\left(\frac{r}{n}\right)$ for every $r > 0$ so that $\varphi_n \in C^\infty_0(0, n)$. We have

\begin{equation}
2\tilde{E}[\varphi_n; (0, n)] = 2E[\varphi_n; (0, n)] = \int_0^n \left[n^p \left(\frac{r}{n} \right)^2 + qr^{p-2} r^2 + r^p h\left(\frac{r}{n}\right) \right] \, dr
\end{equation}

However, $\int_0^1 h(\varphi(t)) \, dt < 0$ as $h < 0$ on $(0, s_+)$, so

\begin{equation}
\frac{1}{n^2} \left(\int_0^1 \left(t^p \left(\frac{r}{n} \right)^2 + qr^{p-2} r^2 \right) \, dt \right) < \left| \int_0^1 t^p h(\varphi) \, dt \right| \text{ for } n \text{ large enough.}
\end{equation}

This implies $E[\varphi_n; (0, n)] < 0$ for n large, which contradicts (2.16). So, $u_\infty \neq 0$. Since u_∞ is nondecreasing, it means that $s_\infty > 0$, so that by Step 3 we conclude that $s_\infty = s_+$.

Finally, by Proposition 2.2, we deduce that $u_\infty \in (0, s_+) \text{ on } (0, R)$, and by Lemma 3.7 we conclude that u_∞ is increasing on $(0, R)$. \qed

2.4. Local behavior near infinity. On infinite domains, we study the asymptotic behavior of a solution u near $R = +\infty$.

Proposition 2.5. Assume (1.3) and (1.6). If u is a nonnegative solution of (1.1)–(1.2) with $R = +\infty$, then

\begin{equation}
u(r) = s_+ - \frac{\beta}{r^2} + o(r^{-2}) \text{ as } r \to +\infty,
\end{equation}

where

\begin{equation}\beta = \frac{qs_+}{F'(s_+)}.
\end{equation}

Remark 2.2. If we assume (2.17), then the value of β in (2.18) can be formally computed by matching the powers of $\frac{1}{r}$ in (1.1) as $r \to +\infty$.

Proof. We divide the proof into several steps.

Step 1. A change of variables. Define

\begin{equation}\psi(\tau) = s_+ - u\left(\frac{1}{\tau}\right) \quad \forall \tau > 0.
\end{equation}

Then $\psi(\tau) \in (0, s_+)$ for $\tau > 0$ since $u \in (0, s_+)$ on $(0, R)$ by Proposition 2.2. A straightforward computation shows that $\psi(\tau)$ satisfies the equation

\begin{equation}-\psi''(\tau) + \frac{p-2}{\tau} \psi'(\tau) + \frac{q}{\tau^2} \psi(\tau) = \frac{qs_+}{\tau^2} \frac{F'(s_+) + z(\psi(\tau))}{\tau^4} \psi(\tau), \quad \tau > 0,
\end{equation}

where

\begin{equation}z(s) := \frac{F(s_+) - F(s_+ - s)}{s} - F'(s_+), \quad s \in (0, s_+).
\end{equation}
Obviously, \(\lim_{s \to 0} z(s) = 0 \) and \(\lim_{\tau \to 0} \psi(\tau) = 0 \) (by (1.2)). We will prove that \(\psi(\tau)/\tau^2 \) converges as \(\tau \to 0 \).

Step 2. Upper bound of \(\psi(\tau)/\tau^2 \). We denote

\[
\varepsilon(\delta) := \max_{\tau \in [0, \delta]} |q\tau^2 + z(\psi(\tau))|.
\]

By Step 1, we have \(\lim_{\delta \to 0} \varepsilon(\delta) = 0 \). Then, by (1.6), there exists a \(\delta_0 > 0 \) so that

\[
|6 - 2p| < \frac{F'(s_+) - \varepsilon(\delta)}{\delta^2} \quad \forall \delta \in (0, \delta_0).
\]

Now fix \(\delta \in (0, \delta_0) \) and set

\[
L \psi := -\psi'' + \frac{p - 2}{\tau} \psi' + \frac{\psi}{\tau^4} (F'(s_+) - \varepsilon(\delta)).
\]

Then (2.19), (2.20), and \(\psi \geq 0 \) imply that

\[
L \psi(\tau) \leq \frac{qs_+}{\tau^2} \quad \forall 0 < \tau < \delta.
\]

An upper bound on \(\psi \) is provided by means of a suitable comparison function and the weak maximum principle in Lemma B.1 applied to \(L \) (see also Remark B.1). We take

\[
\phi(\tau) = D\tau^2 \quad \text{for} \quad D = D(\delta) := \max \left\{ \frac{qs_+}{F'(s_+) - \varepsilon(\delta) - |6 - 2p|\delta^2}, \frac{\psi(\delta)}{\delta^2} \right\} > 0.
\]

Then, by (2.21),

\[
L \phi(\tau) = D(-6 + 2p + \frac{F'(s_+) - \varepsilon(\delta)}{\tau^2}) \geq \frac{qs_+}{\tau^2} \geq L \psi(\tau) \quad \forall 0 < \tau < \delta.
\]

Also, by (2.23), \(\phi(\delta) \geq \psi(\delta) \). The weak maximum principle in Lemma B.1 applied to the operator \(L \) and \((\phi - \psi) \) implies that

\[
\psi(\tau) \leq \phi(\tau) = D\tau^2 \quad \forall \tau \in (0, \delta).
\]

Step 3. Lower bound of \(\psi(\tau)/\tau^2 \). Analogously, we have

\[
\tilde{L} \phi(\tau) := -\phi'' + \frac{p - 2}{\tau} \phi' + \frac{\phi}{\tau^4} (F'(s_+) + \varepsilon(\delta)) \geq \frac{qs_+}{\tau^2} \quad \forall \tau \in (0, \delta).
\]

Thus, if we denote \(\tilde{\phi}(\tau) = \tilde{D}\tau^2 \) with \(\tilde{D} = \tilde{D}(\delta) := \min \left\{ \frac{qs_+}{F'(s_+) + \varepsilon(\delta) + |6 - 2p|\delta^2}, \frac{\psi(\delta)}{\delta^2} \right\} \) so that

\[
\tilde{L} \tilde{\phi}(\tau) = -2\tilde{D} + 2\tilde{D}(p - 2) + \frac{\tilde{D}(F'(s_+) + \varepsilon(\delta))}{\tau^2} < \frac{qs_+}{\tau^2} \quad \forall \tau \in (0, \delta),
\]

then we can apply Lemma B.1 to arrive at

\[
\psi(\tau) \geq \tilde{\phi}(\tau) = \tilde{D}\tau^2 \quad \forall \tau \in (0, \delta).
\]

Together with Step 2, we conclude that

\[
\tilde{D}(\delta) \leq \frac{\psi(\tau)}{\tau^2} \leq D(\delta) \quad \forall 0 < \tau < \delta < \delta_0.
\]
Step 4. We prove that the limit \(\lim_{\tau \to 0} \frac{\psi(\tau)}{\tau^2} \) exists. We denote
\[
\beta := \liminf_{\tau \to 0} \frac{\psi(\tau)}{\tau^2} \quad \text{and} \quad \overline{\beta} := \limsup_{\tau \to 0} \frac{\psi(\tau)}{\tau^2}.
\]
We let \(p_k \to 0 \) and \(P_k \to 0 \) be sequences such that \(\lim_{k \to 0} \frac{\psi(p_k)}{p_k^2} = \beta \) and \(\lim_{k \to 0} \frac{\psi(P_k)}{P_k^2} = \overline{\beta} \). We assume without loss of generality that \(p_{k+1} < P_k < p_k \) for all \(k \in \mathbb{N} \). Replacing \(\tau = P_k \) and \(\delta = p_k \) in (2.24) and letting \(k \to +\infty \), we obtain
\[
(2.25) \quad \overline{\beta} \leq \max \left\{ \frac{q s_+}{F'(s_+)}, \beta \right\}.
\]
Likewise we have
\[
(2.26) \quad \min \left\{ \frac{q s_+}{F'(s_+)}, \beta \right\} \leq \beta.
\]
One can easily see that (2.25) and (2.26) imply \(\overline{\beta} = \beta \), thus proving our claim that the limit \(\beta := \lim_{\tau \to 0} \frac{\psi(\tau)}{\tau^2} \) exists.

Step 5. We prove (2.18). If we know in addition that \(\tau^2 \psi'' \) or \(\tau \psi' \) converges to zero as \(\tau \to 0 \), (2.18) can be derived immediately from (2.19). Since we do not assume such convergence, we proceed as follows. Let us denote \(\tau_k := 2^{-k} \) and observe that by the mean value theorem there exists \(\sigma_k \in (\tau_{k+1}, \tau_k) \) so that
\[
(2.27) \quad \psi'(\sigma_k) = \frac{\psi(\tau_k) - \psi(\tau_{k+1})}{\tau_k - \tau_{k+1}} = 2 \tau_k \frac{\psi(\tau_k)}{\tau_k^2} - \frac{\psi(\tau_{k+1})}{\tau_{k+1}^2} \to 0 \quad \text{as} \quad k \to +\infty,
\]
where we used Step 4. We multiply (2.19) by \(\tau^2 \) and integrate over \([\sigma_{k+2}, \sigma_k] \) and by parts, obtaining
\[
(2.28) \quad -\psi'(\sigma_k) \tau^2 \bigg|_{\sigma_{k+2}}^{\sigma_k} + p \psi'(\tau) \bigg|_{\sigma_{k+2}}^{\sigma_k} + \int_{\sigma_{k+2}}^{\sigma_k} \left(q - p + \frac{z(\psi(\tau))}{\tau^2} \right) \psi(\tau) d\tau
= \int_{\sigma_{k+2}}^{\sigma_k} \left(q s_+ - \frac{F'(s_+)}{\tau^2} \psi(\tau) \right) d\tau.
\]
Dividing (2.28) by \(\sigma_k - \sigma_{k+2} \), using (2.27), the existence of \(\beta = \lim_{\tau \to 0} \frac{\psi(\tau)}{\tau^2} \) and \(\lim_{\tau \to 0} \frac{z(\tau)}{\tau} = 0 \) and then letting \(k \to +\infty \), we obtain \(q s_+ - F'(s_+) \beta = 0 \).

3. Uniqueness and monotonicity.

3.1. Uniqueness under positivity assumption. In our argument, it is more convenient to consider solutions to (1.1)–(1.2) which satisfy in addition that
\[
(3.1) \quad u \geq 0 \text{ in } (0, R).
\]
See subsection 3.2 for a discussion on this condition.

The following result gives a statement regarding the range of \(u \).

Lemma 3.1. Assume (1.3) and (1.6). If \(u \) is a solution of (1.1)–(1.2) and \(u \) satisfies (3.1), then
\[
(3.2) \quad 0 < u < s_+ \text{ in } (0, R).
\]
Proof. The proof was done in Step 3 of Proposition 2.2.

A key ingredient in our argument is a comparison principle for the nonlinear ODE (1.1). We adopt the following definition for sub-/supersolutions of (1.1).

Definition 3.2. A locally Lipschitz, piecewise C^2 function ψ defined on a nonempty interval I is said to be a supersolution (or subsolution) of (1.1) if it satisfies in I

$$\psi''(r) + \frac{p}{r} \psi'(r) - \frac{q}{r^2} \psi(r) \leq F(\psi(r))$$

(3.1)

or

$$\psi''(r) + \frac{p}{r} \psi'(r) - \frac{q}{r^2} \psi(r) \geq F(\psi(r))$$

(3.2)

wherever it is C^2, and if, whenever the first derivative of ψ jumps, say at $r_0 \in I$, it holds that

$$\psi'(r_0^-) > \psi'(r_0^+) \quad (\text{or } \psi'(r_0^-) < \psi'(r_0^+)).$$

We prove the following proposition.

Proposition 3.3. Assume (1.3) and (1.6). Assume that \overline{u} is a locally Lipschitz, piecewise C^2 supersolution of (1.1) and \underline{u} is a locally Lipschitz, piecewise C^2 subsolution of (1.1) in $[0, \infty)$. Assume furthermore that

$$0 \leq \overline{u}, \underline{u} \leq s_+,$$

$$\overline{u} = \overline{u} r^{\gamma_+} + o(r^{\gamma_+}), \quad \underline{u} = \underline{u} r^{\gamma_+} + o(r^{\gamma_+}) \text{ as } r \to 0,$$

$$\overline{u} = s_+ - \beta r^{-2} + o(r^{-2}) , \quad \underline{u} = s_+ - \beta r^{-2} + o(r^{-2}) \text{ as } r \to \infty,$$

where $\overline{\beta} > 0$, $\beta > 0$ and

$$\beta \geq \overline{\beta}. \quad (3.3)$$

Then

$$\overline{u} \geq \underline{u} \text{ in } (0, \infty). \quad (3.4)$$

Moreover, if equality happens somewhere in $[0, \infty)$, then $\overline{u} \equiv \underline{u}$.

Proof. Step 1. We first prove the result under an additional assumption that

$$\overline{u} \geq \underline{u}. \quad (3.4)$$

We will use the logarithmic sliding method, a variant of the method of moving planes, developed through the works of Alexandrov [4], Serrin [26], Gidas, Ni, and Nirenberg [14, 15], and Berestycki and Nirenberg [6, 7]. Before we begin, we note that, by the argument that led to (3.2),

$$\overline{u} > 0 \quad \text{and} \quad \underline{u} < s_+ \text{ in } (0, \infty). \quad (3.5)$$

For any $\theta > 0$ we define

$$\overline{u}_\theta(r) = \overline{u}\left(\frac{r}{\theta}\right).$$

Using $0 \leq \overline{u} \leq s_+$, it is easy to check that, for $\theta < 1$, \overline{u}_θ is a supersolution to (1.1). In fact, by (1.6) and (3.5), for $\theta < 1$, \overline{u}_θ is a strict supersolution in the sense that

$$\overline{u}'_\theta(r) + \frac{p}{r} \overline{u}_\theta(r) - \frac{q}{r^2} \overline{u}_\theta(r) < F(\overline{u}_\theta(r))$$

(3.6)

wherever \overline{u}_θ is C^2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Our aim is to show that \(\overline{\theta} \geq \underline{u} \) for any \(\theta \in (0, 1) \). As a consequence, one has \(\overline{\theta} \geq \underline{u} \).

Step 1(a). We prove that there exists \(\theta_0 > 0 \) such that \(\overline{\theta} > \underline{u} \) in \((0, \infty)\) for any \(0 < \theta < \theta_0 \). By the hypotheses, for any \(0 < \rho < \min(\overline{\theta}, \underline{\theta}) \), there exists \(\delta_0 = \delta_0(\rho) > 0 \) such that

\[
(3.7) \quad \overline{\theta}(r) \geq (\overline{\theta} - \rho) r^{\gamma^+} \quad \text{and} \quad \underline{u}(r) \leq (\alpha + \rho) r^{\gamma^+} \quad \text{for} \ r < \delta_0 ,
\]

\[
(3.8) \quad \overline{\theta}(r) \geq s_+ - (\overline{\beta} + \rho) r^{-2} \quad \text{and} \quad \underline{u}(r) \leq s_+ - (\beta - \rho) r^{-2} \quad \text{for} \ r > \frac{1}{\delta_0} .
\]

Replacing \(\delta_0 \) by some smaller \(\delta_0 < \delta_0 \) if necessary, we can further assume that

\[
(3.9) \quad \delta_0^2 < \frac{1}{4}, \quad \max \{ \overline{\theta} - \rho, \alpha + \rho \} \delta_0^{\gamma^+} + (\overline{\beta} + \rho) \delta_0^2 \leq s_+.
\]

From now on, we fix \(\rho \) (and so \(\delta_0 \)). For \(\delta \in (0, \delta_0] \), define

\[
\mathcal{E}(\delta) = \inf_{r \in (\delta, \frac{1}{\delta}]} \overline{\theta}(r).
\]

Fig. 3. A schematic graph of \(\overline{\theta} \).

Since \(\overline{\theta} \) is locally Lipschitz, (3.5) implies that

\[
(3.10) \quad \mathcal{E}(\delta) > 0 \quad \text{for any} \ \delta \in (0, \delta_0].
\]

Using (3.7), (3.8), and (3.9), one has

\[
(3.11) \quad \mathcal{E}(\delta) \geq \min \left(\mathcal{E}(\delta_0), (\overline{\theta} - \rho) \delta^{\gamma^+}, s_+ - (\overline{\beta} + \rho) \delta_0^2 \right) = \min \left(\mathcal{E}(\delta_0), (\overline{\theta} - \rho) \delta^{\gamma^+} \right) \quad \forall \delta \leq \delta_0.
\]

Claim 1. There exists \(\theta_0 \) such that, for \(0 < \theta < \theta_0 \), there holds \(\overline{\theta} > \underline{u} \) in \((0, \infty)\).

In fact,

\[
(3.12) \quad \theta_0 := \min \left(\delta_0^2, \left(\frac{\overline{\theta} - \rho}{\alpha + \rho} \right)^{1/\gamma^+}, \left(\frac{\overline{\alpha} - \rho}{\alpha + \rho} \right)^{2/\gamma^+}, \left(\frac{\beta - \rho}{\beta + \rho} \right)^{1/2}, \left(\frac{\mathcal{E}(\delta_0)}{\overline{\theta} - \rho} \right)^{2/\gamma^+}, \left(\frac{\mathcal{E}(\delta_0)}{\overline{\alpha} + \rho} \right)^{2/\gamma^+}, \frac{s_+}{\beta + \rho} \sup_{r \in (0, \delta_0^{-1})} \underline{u}(r) \right).
\]

(Note that \(\theta_0 > 0 \) thanks to (3.5).)

Proof. Let \(\theta = \delta^2 \). We check the inequality \(\overline{\theta} > \underline{u} \) on different intervals:
For \(r \in (0, \delta^3) \), we have \(\frac{\epsilon}{\delta} \in (0, \delta) \), and so (3.7) and (3.12) give
\[
\bar{u}_\theta(r) = \bar{u}(\frac{r}{\theta}) \geq (\bar{\alpha} - \rho) \frac{r^\gamma}{\delta^\gamma} > (\bar{\alpha} + \rho) r^\gamma \geq u(r).
\]

For \(r \in [\delta^3, \delta^2) \), we have \(\frac{\epsilon}{\delta} \in [\delta, 1) \), and so by (3.7), (3.11), and (3.12),
\[
\bar{u}_\theta(r) = \bar{u}(\frac{r}{\theta}) \geq \mathcal{E}(\delta) \geq \min \left(\mathcal{E}(\delta_0), (\bar{\alpha} - \rho) \delta^\gamma \right) > (\bar{\alpha} - \rho) \delta^\gamma \geq (\bar{\alpha} + \rho) \delta^\gamma \geq u(r).
\]

For \(r \in [\delta^2, \delta) \), we have \(\frac{\epsilon}{\delta} \in [1, \frac{1}{\delta}) \), and so by (3.8) and (3.9),
\[
\bar{u}_\theta(r) = \bar{u}(\frac{r}{\theta}) \geq \min \left(\mathcal{E}(\delta_0), s_+ - (\bar{\beta} + \rho) \frac{\theta^2}{r^2} \right) > (\bar{\alpha} + \rho) \theta^2 \geq u(r).
\]

Finally, for \(r \in (\frac{1}{\delta^2}, \infty) \) we have \(\frac{\epsilon}{\delta} > \frac{1}{\delta} \), and so by (3.8) and (3.12),
\[
\bar{u}_\theta(r) = \bar{u}(\frac{r}{\theta}) \geq s_+ - (\bar{\beta} + \rho) \frac{\theta^2}{r^2} > s_+ - (\bar{\beta} - \rho) \frac{\theta^2}{r^2} \geq u(r).
\]

We have thus shown that \(\bar{u}_\theta > u \) for any \(\theta \in (0, \theta_0) \), which ends the proof of Step 1.

\[\Box \]

Step 1(b). Define
\[
\bar{\theta} = \sup\{ \theta < 1 : \bar{u}_\sigma \geq u \text{ in } (0, \infty) \forall 0 < \sigma \leq \theta \}.
\]

Evidently, \(\bar{\theta} \) is well-defined, \(\theta_0 \leq \bar{\theta} \leq 1 \), and \(\bar{u}_\bar{\theta} \geq u \) in \((0, \infty) \). To complete the proof, we need to show that \(\bar{\theta} = 1 \).

Claim 2. If \(\bar{\theta} < 1 \), then there exists \(r_0 \in (0, \infty) \) such that \(\bar{u}_\theta(r_0) = u(r_0) \).

Proof. Arguing indirectly, assume that \(\bar{u}_\bar{\theta} > u \) on \((0, \infty) \). To get a contradiction, we show that there exists \(\mu_0 > 0 \) such that \(\bar{u}_{\bar{\theta} + \mu} \geq u \) for any \(0 < \mu < \mu_0 \). Select \(\varepsilon > 0 \) and \(0 < \mu_1 < 1 - \bar{\theta} \) such that
\[
(3.13) \quad \frac{\bar{\alpha} - \varepsilon}{(\bar{\theta} + \mu_1)^{\gamma_+}} > \bar{\alpha} + \varepsilon \quad \text{and} \quad (\bar{\beta} + \varepsilon)(\bar{\theta} + \mu_1)^2 < \bar{\beta} - \varepsilon.
\]

Such \(\varepsilon \) exists thanks to (3.3) and because \(\bar{\theta} < 1 \). By (3.7), we have for \(0 < r < \bar{\theta} \delta_0(\varepsilon) \) and \(0 < \mu < \mu_1 \) that
\[
\bar{u}_{\bar{\theta} + \mu}(r) = \bar{u}(\frac{r}{\bar{\theta} + \mu}) \geq (\bar{\alpha} - \varepsilon) \frac{r^{\gamma_+}}{(\bar{\theta} + \mu)^{\gamma_+}} > (\bar{\alpha} + \varepsilon)(\bar{\theta} + \mu_1)^{\gamma_+} \geq u(r).
\]

Likewise, by (3.8), we have for \(r > \frac{1}{\delta_0(\varepsilon)} \) and \(0 < \mu < \mu_1 \) that
\[
\bar{u}_{\bar{\theta} + \mu}(r) = \bar{u}(\frac{r}{\bar{\theta} + \mu}) \geq s_+ - (\bar{\beta} + \varepsilon) (\bar{\theta} + \mu_1) \frac{r^2}{r^2} > s_+ - (\bar{\beta} - \varepsilon) \frac{1}{r^2} \geq u(r).
\]
On the other hand, since \(\bar{\theta}_0 > u \) in \([\bar{\theta}_0(e), \frac{1}{\alpha(e)}]\), which is compact, we can select \(\mu_2 > 0 \) sufficiently small such that for any \(0 < \mu < \mu_2 \) it holds that \(\bar{\theta}_0 + \mu > u \) in \([\bar{\theta}_0(e), \frac{1}{\alpha(e)}]\). Altogether, we just showed that if \(0 < \mu < \mu_0 = \min(\mu_1, \mu_2) \), then

\[
\bar{\theta}_0 + \mu > u \text{ in } (0, \infty).
\]

This contradicts the maximality of \(\bar{\theta} \). Therefore, there exists \(r_0 \in (0, \infty) \) such that \(\bar{\theta}_0(r_0) = u(r_0) \). \(\blacksquare \)

Claim 3. If \(\theta \leq 1 \) and there exists \(r_0 \in (0, \infty) \) such that \(\bar{\theta}_0(r_0) = u(r_0) \), then \(\tilde{\theta} = 1 \).

Proof. Recalling the definition of super-/subolutions, the equality \(\bar{\theta}_0(r_0) = u(r_0) \) forces the first derivatives of \(\bar{\theta}_0 \) and \(u \) to be continuous across \(r_0 \). Consider the function \(w = \bar{\theta}_0 - u \). Then \(w \) has a local minimum at \(r_0 \), is \(C^1 \)-continuous at \(r_0 \), and possesses left and right second derivatives at \(r_0 \). In addition, as \(\bar{\theta}_0 \) is a supersolution while \(u \) is a subsolution, we deduce that \(w''(r_0) \leq 0 \). This forces \(w''(r_0) = 0 \). Hence \(w \) is \(C^2 \) across \(r_0 \) and so in a neighborhood, say \((r_-, r_+)\), of \(r_0 \). Observe that \(w \) satisfies

\[
w'' + \frac{p}{r}w' - \frac{q}{r^2}w \leq c(x)w, \quad w \geq 0 \text{ in } (r_-, r_+) \text{ and } w(r_0) = 0,
\]

where \(c(x) = \frac{F(u) - F(\bar{\theta}_0)}{\bar{\theta}_0 - u} \). The strong maximum principle then implies that \(w \equiv 0 \) in \((r_-, r_+)\). In other words, \(\bar{\theta}_0 \equiv u \) in \((r_-, r_+)\). It is readily seen that this statement implies that \(\bar{\theta}_0 \equiv u \) in \((0, \infty)\). In particular, \(\bar{\theta}_0 \) is a solution of \((1.1)\) in \((0, \infty)\). Recalling \((3.6)\), it follows that \(\tilde{\theta} = 1 \). This ends the proof of Claim 3.

By Claims 2 and 3, we deduce that \(\bar{\theta} \geq u \) in \((0, \infty)\). The rigidity statement follows from the proof of Claim 3. We have thus proved the assertion when \((3.4)\) holds.

Step 2. To complete the proof, we prove \((3.4)\). Assume by contradiction that \(\tilde{\theta} < \alpha \). Define \(\bar{\theta}_0(r) = u(r/\tilde{\theta}) \) as above. We have seen that, for \(0 < \theta \leq 1 \), \(\bar{\theta}_0 \) is a supersolution.

Select \(\theta \) such that \(\bar{\theta}_0 = \alpha \). Applying the result obtained in Step 1 for \(\tilde{u} := \bar{\theta}_0 \) and \(u \), we obtain \(\tilde{u} \geq u \).

Let \(v = \tilde{u} - u \geq 0 \). Then \(v \) satisfies

\[
v'' + \frac{p}{r}v' - \frac{q}{r^2}v + c(r)v \leq 0 \quad \text{and} \quad \lim_{r \to 0} \frac{v}{r^{\gamma_+}} = 0,
\]

where \(c \) is some function which is continuous in \([0, \infty)\). Let \(w = \frac{v}{r^{\gamma_+}} \); then \(w \) satisfies

\[
w'' + \frac{p + 2\gamma_+}{r}w' + c(r)w \leq 0 \quad \text{and} \quad w(0) = 0.
\]

Since \(w \geq 0 \) and \(p + 2\gamma_+ > 1 \), Lemma B.2 implies that \(w \equiv 0 \), i.e., \(\tilde{u} \equiv u \). This forces \(\theta = 1 \), and so \(\bar{\theta} \equiv u \equiv \bar{\theta}_0 \), which contradicts the assumption that \(\tilde{\theta} < \alpha \). We have thus proved \((3.4)\) and completed the proof of the proposition. \(\blacksquare \)

Remark 3.1. The conclusion of Proposition 3.3 remains valid if one replaces the condition

\[
\bar{\theta} = s_+ - \beta r^{-2} + o(r^{-2}) \text{ as } r \to \infty
\]

by the condition

\[
\limsup_{r \to \infty} \bar{\theta} < s_+.
\]
As a consequence of the argument in Step 2 of the proof, we have the following Hopf-type lemma.

Corollary 3.4. Assume that \overline{u} is a supersolution of (1.1) and \underline{u} is a subsolution of (1.1) in $[0, R)$ for some $0 < R < \infty$ such that both can be factored as a product of r^{γ^+} and a continuous function at $r = 0$. If $\overline{u} \geq \underline{u}$ in $(0, R)$, then

$$\lim_{r \to 0} \frac{\overline{u}}{r^{\gamma^+}} > \lim_{r \to 0} \frac{\underline{u}}{r^{\gamma^+}} \text{ or } \overline{u} \equiv \underline{u}.$$

The following results are variants of the previous comparison principle on different intervals.

Proposition 3.5. Assume (1.3) and (1.6). Assume that \overline{u} is a locally Lipschitz, piecewise C^2 supersolution of (1.1) and \underline{u} is a locally Lipschitz, piecewise C^2 subsolution of (1.1) on some interval $I \subseteq (0, \infty)$.

(i) Assume that $I = (0, R)$ with $R < \infty$. Furthermore assume that

$$0 \leq \overline{u}, \underline{u} \leq s_+,$$

$$\overline{u} = \overline{u} r^{\gamma^+} + o(r^{\gamma^+}), \quad \underline{u} = \underline{u} r^{\gamma^+} + o(r^{\gamma^+}) \text{ as } r \to 0,$$

$$\overline{u}(R) = s_+, \quad \underline{u}(R) \leq s_+,$$

where $\overline{u} > 0$. Then

$$\overline{u} \geq \underline{u} \text{ in } (0, R).$$

(ii) Assume that $I = (r_1, \infty)$ with $0 \leq r_1 < \infty$. Furthermore assume that

$$0 \leq \overline{u}, \underline{u} \leq s_+,$$

$$\overline{u}(r_1) \geq 0, \quad \underline{u}(r_1) = 0,$$

$$\overline{u} = s_+ - \beta r^{-2} + o(r^{-2}), \quad \underline{u} = s_+ - \beta r^{-2} + o(r^{-2}) \text{ as } r \to \infty,$$

where β and $\overline{\beta}$ satisfy (3.3). Then

$$\overline{u} \geq \underline{u} \text{ in } (r_1, \infty).$$

Moreover, in either case we have that if equality happens somewhere in I, then $\overline{u} \equiv \underline{u}$.

Proof. (i) The proof goes exactly the same as, but simpler than, that of Proposition 3.3. The key difference is that $\overline{u}_\theta(0 < \theta < 1)$ is defined by

$$\overline{u}_\theta(r) = \begin{cases} \overline{u}(\frac{r}{\theta}) & \text{for } 0 \leq r < \theta R, \\ s_+ & \text{for } \theta R \leq r \leq R. \end{cases}$$

We omit the details.

(ii) Again the proof is a variant of that of Proposition 3.3. First extend \underline{u} by setting

$$\underline{u}(r) = 0 \text{ for } 0 < r < r_1.$$

Note that the extended function \underline{u} is a subsolution of (1.1) on the whole interval $(0, \infty)$. Next, define

$$\overline{u}_\theta(r) = \overline{u}(\frac{r}{\theta}) \text{ for } \theta r_1 \leq r < \infty.$$
Then \overline{u}_θ is a supersolution of (1.1) in $(\theta r_1, \infty)$ for all $\theta \in (0, 1)$. The proof of Proposition 3.3 can now be applied to reach the conclusion. We omit the details.

Combining Propositions 2.2, 2.5, 3.3, and 3.5 we obtain the following uniqueness statements.

Proposition 3.6. Assume that p and q satisfy (1.3) and F satisfies (1.6). For any $0 < R \leq \infty$, there is at most one nonnegative solution u to the BVP (1.1)–(1.2).

To conclude the section, we turn to monotonicity properties for solutions of (1.1)–(1.2).

Lemma 3.7. For any $0 < R \leq \infty$, if u is a solution of (1.1)–(1.2), and $r_1 \in [0, R)$ is the last zero of u (i.e., $u(r_1) = 0$ and $u(r) > 0$ for $r \in (r_1, R)$), then u is strictly increasing in (r_1, R).

Proof. Let us consider first the case when $r_1 = 0$ and $R = \infty$. By Proposition 2.2, u can be expressed as a product of r^γ and a continuous function at $r = 0$. Recalling (3.2), we can apply Corollary 3.4 to obtain

$$\lim_{r \to 0} \frac{u}{r^\gamma} > 0.$$

Now, for any $\theta > 0$ we define

$$u_\theta(r) = u\left(\frac{r}{\theta}\right).$$

Using (3.2), it is easy to check that u_θ is a supersolution of (1.1) for $0 < \theta < 1$. Keeping in mind Proposition 2.5, we can apply the comparison principle in Proposition 3.3 to $\overline{u} = u_\theta$ and $\underline{u} = u$ to conclude that

$$u_\theta(r) > u(r)$$

for any $0 < r < \infty$ and $0 < \theta < 1$.

In particular, for $0 < r < s < \infty$,

$$u(r) < u_\theta(r) = u(s).$$

This completes the proof for the case $R = \infty$.

The proof in the case $r_1 = 0$ and $R < \infty$ is similar: One applies the comparison principle in Proposition 3.5 to $\overline{u} = u$ and $\underline{u} = u_\theta$, where this time u_θ is defined by

$$u_\theta(r) = \begin{cases} u\left(\frac{r}{\theta}\right) & \text{for } 0 \leq r < \theta R, \\ s_+ & \text{for } \theta R \leq r \leq R. \end{cases}$$

We omit the details.

Assume now that $r_1 > 0$. We present the proof for the case $R = \infty$. The case $R < \infty$ can be done similarly.

For any $\theta \in (0, 1)$ we define

$$u_\theta(r) = u\left(\frac{r}{\theta}\right)$$

for $r \geq \frac{r_1}{\theta}$.

Then u_θ is a supersolution of (1.1) in $(r_1/\theta, \infty)$. On the other hand, if we set

$$\underline{u}(r) = \begin{cases} 0 & \text{for } r \in (0, r_1), \\ u(r) & \text{for } r \in [r_1, \infty), \end{cases}$$

then \underline{u} is a subsolution of (1.1) in $(0, \infty)$. We can then apply Proposition 2.5 and the comparison principle in Proposition 3.5 to $\overline{u} = u_\theta$ and \underline{u} to conclude the proof.

\[\square\]
We can now gather previously developed arguments to present the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence of the solution for the case $R < \infty$ is a consequence of Lemma 2.1, where the solution is obtained as a global energy minimizer of the modified energy \tilde{E} defined in (2.3). In Corollary 1.2, whose proof is provided in the next section, it will be noted that if the nonlinearity F satisfies condition (1.7), then the solutions thus obtained are global energy minimizers of the standard energy (1.4).

In the case of infinite domain, $R = \infty$, the existence of the solutions is obtained in Proposition 2.4 as the limit of solutions obtained for finite R, as $R \to \infty$. The most delicate part is to ensure that the solution thus obtained satisfies the boundary conditions at 0 and ∞. In order to study the behavior at 0 we use Proposition 2.2, while in order to study the asymptotics at ∞ we use the monotonicity results of Lemma 3.7 together with an energy argument that also shows that the solution thus obtained is locally energy minimizing.

In order to prove uniqueness we first show in Lemma 3.1 that a nonnegative solution is actually positive and stays away from s_+, and we use this in the study of subsolutions and supersolutions in Lemma 3.3. Combining this last lemma with the detailed behavior at 0 obtained in Proposition 2.2 and the one at ∞ obtained in Proposition 2.5, we obtain the uniqueness of positive solutions stated in Proposition 3.6.

3.2. Uniqueness without positivity assumption. In this section we consider two different types of additional assumptions under which we can obtain the uniqueness of solutions for (1.1) and (1.2) without the positivity requirement on u.

The first condition is imposed on the solution, while the second one is a condition on the nonlinearity. In either case we show that in fact a nodal solution must necessarily be positive, and then the uniqueness result in the class of positive solutions will provide us with the more general uniqueness result.

We start by noting that positivity is implied by the requirement of local energy minimization, as stated in Corollary 1.2. We now show the proof of the corollary.

Proof of Corollary 1.2. We claim that assumption (1.7) implies that the solution u obtained in Theorem 1.1 is locally energy minimizing. Indeed, as in section 2.1, since F satisfies (2.1), then Lemma 2.1 provides the claim in the case of bounded domains $(0, R)$, $R < \infty$. In the case of unbounded domain, the solution u_∞ obtained in the proof of Proposition 2.4 is locally energy minimizing.

We consider now the converse: we take $u \in H^1_{\text{loc}}(0, R)$, which is a locally energy minimizing solution of (1.1) with respect to the energy (1.4) and satisfies $u(R) = s_+$.

Arguing similarly as in the proof of Lemma 2.1, we have that u and $|u|$ are both minimizers for E on $(0, R')$ for all sufficiently large $R' < R$ such that $u(R') > 0$. Thus $|u|$ is a nonnegative solution of (1.1). As shown in Step 3 of the proof of Proposition 2.2, this implies that $|u| > 0$ in $(0, \infty)$, and, as u has a constant sign, we have $u > 0$ in $(0, \infty)$.

We also claim that $u < s_+$ in $(0, R)$. Indeed, if $u(R') \geq s_+$ for some $0 < R' < R$, let

$$\hat{u}(r) = \min(u(r), u(R'))$$

As in the proof of Lemma 2.1, the fact that $F > 0$ in (s_+, ∞) implies that $E[\hat{u}; (0, R')] \leq E[u; (0, R')]$, where equality holds if and only if $u \equiv u(R')$ in $(0, R')$. Since u is...
minimizing in \((0, R')\) this implies that \(u \equiv u(R')\) in \((0, R')\), which is impossible in view of (1.1). The claim is proved.

We have proved that \(0 < u < s_+\) in \((0, R)\). Since \(u\) is bounded, then Proposition 2.2 implies \(u(0) = 0\). The uniqueness part in Theorem 1.1 now shows that \(u\) in fact coincides with the solution of (1.1)–(1.2) obtained therein. \(\square\)

Moving on to imposing conditions on the nonlinearity, we note first that a simple condition on the behavior of the nonlinearity on \((-\infty, 0]\) allows us to deduce the positivity of any solution of (1.1) and (1.2). Indeed, if \(F\) satisfies \(F(t) < 0\) for \(t < 0\), then (3.1) can be proved using the maximum principle. However, this is not satisfied for the physical potential \(F\) of the form (1.10). To obtain conditions for showing the positivity of solutions for the physical type of nonlinearities \(F\), we need to impose more constraints on \(F\), namely, the ones in (1.8). We now show the proof of Theorem 1.3.

Proof of Theorem 1.3. We present an argument that is reminiscent of the one in Proposition 3 in [17]. For simplicity, we will only present a proof when \(R = \infty\). The other case requires only minor modifications. By Step 3 in the proof of Proposition 2.2, we show that \(u < s_+\) in \((0, \infty)\). Using the first line of (1.8), the same argument shows that \(u > s_-\) in \((0, \infty)\). We claim that \(u > 0\) on \((0, \infty)\), and therefore, by Theorem 1.1, \(u\) is unique. Arguing by contradiction, let us assume that \(u\) is negative somewhere. Since \(u(r) \to s_+\) as \(r \to \infty\), there is some \(r_1 \in (0, \infty)\) such that

\[
u(r_1) = 0 \quad \text{and} \quad u(r) > 0 \quad \text{for} \quad r > r_1.\]

In particular, \(u'' + \frac{q}{r} u' - \frac{q}{r} u = F(u(r)) < 0\) in \((r_1, \infty)\). By the Hopf lemma, we have

\[
u(r_1) > 0.\]

Hence there exists \(r_0 \in (0, r_1)\) such that \(u(r_0) = 0\) and \(u(r) < 0\) for \(r \in (r_0, r_1)\).

We now define \(r_2 = 2r_1 - r_0\) and \(\psi(r) := -u(2r_1 - r)\) for \(r \in (r_1, r_2)\). Then \(\psi\) is positive in \((r_1, r_2)\), \(\psi(r_1) = \psi(r_2) = 0\) and \(\psi\) satisfies the ODE

\[
\psi'' - \frac{p}{2r_1 - r} \psi' + \frac{q}{(2r_1 - r)^2} \psi = -F(-\psi), \quad r \in (r_1, r_2).
\]

In addition,

\[
\psi(r_1) = u(r_1) = 0, \quad \psi'(r_1) = u'(r_1) > 0, \quad \psi''(r_1) = -u''(r_1) = \frac{p}{r_1} u'(r_1) > 0.
\]

Thus, for some \(\varepsilon \in (0, r_1 - r_0)\), we have \(\psi > u\) on \((r_1, r_1 + \varepsilon)\). Let \(r_3 \in (r_1, r_2)\) be the maximal point where \(\psi > u\) on \((r_1, r_3)\), so that \(\psi(r_3) = u(r_3)\) (this is possible because \(\psi(r_2) = 0 < u(r_2)\)). On \((r_1, r_3)\) we have

\[
(u' \psi - u \psi')' = u \psi \left[\frac{q}{r} - \frac{q}{(2r_1 - r)^2} \right] + \frac{F(u)}{u} + \frac{F(-\psi)}{\psi} \leq 0 \quad \text{by (1.8)}
\]

\[
\leq \frac{p}{2r_1 - r} (u' \psi - u \psi'),
\]

where for the last inequality we used that \(u' > 0\) (see Lemma 3.7), \(\psi, u \geq 0\) on \((r_1, r_3)\), and \(p > 0\). If we denote \(\zeta(r) := u'(r) \psi(r) - u(r) \psi'(r)\) and \(f(r) := \frac{p}{2r_1 - r}\), then (3.15) implies \(\zeta'(r) \leq f(r) \zeta(r)\) on \((r_1, r_3)\). Noting that \(f\) is integrable on \((r_1, r_3)\)
and \(\zeta(r_1) = 0 \), we have by Gronwall’s inequality that \(\zeta \leq 0 \) on \((r_1, r_3) \). We obtain thus that \(\frac{u}{\psi} \) is nonincreasing on \((r_1, r_3) \). This leads to a contradiction since \(\frac{u}{\psi} < 1 \) in \((r_1, r_3) \), while \(u(r_3) = \psi(r_3) > 0 \). \(\square \)

Remark 3.2. Let us point out the modifications needed in the previous argument if \(p = 0 \). We now assume that \(F \) is of class \(C^2 \), and we note that this together with (1.8) implies
\[
\frac{F'(u) + F'(-u) - 2F(0)}{u} \leq 0 \quad \text{for} \quad t \text{ small enough},
\]
then, following the previous proof, we first note that \(\psi''(r_1) = -u''(r_1) = 0 \). In order to compare the behaviors of \(\psi \) and \(u \) at 0, we need to compute higher order derivatives as 0. We have \(\psi''(r_1) = u''(r_1) = 0 \) and \(\psi^{(4)}(r_1) = -u^{(4)}(r_1) = -\left[-\frac{4}{r_1^2} u'(r_1) + F''(0)|u'|^2 \right] > 0 \). The proof continues similarly as before.

Remark 3.3. We point out an alternative approach for dealing with the case \(p = 0 \) under a different assumption on the nonlinearity. Namely, in addition to (1.6) we require that there exists \(\alpha > 1 \) such that (1.9) holds. Then in the proof of Theorem 1.2 we take a different definition of \(\psi \), namely, \(\psi(r) := -u((\alpha + 1)r_1 - \alpha r) \). We denote \(r_2 := \frac{1}{\alpha}[(\alpha + 1)r_1 - r_0] \) and observe that \(\psi(r_2) = 0 \). We obtain that \(\psi \) satisfies the equation
\[
\psi'' - \frac{\alpha p \psi'}{((\alpha + 1)r_1 - \alpha r)} - \frac{q \alpha^2 \psi}{((\alpha + 1)r_1 - \alpha r)^2} = -\alpha^2 F(-\psi)
\]
and \(\psi(r_1) = u(r_1), \psi'(r_1) = \alpha u'(r_1) > 0 \); hence \(\psi'(r_1) > u'(r_1) \), and thus \(\psi > u \) on some maximal interval \((r_1, r_3)\). Moreover we have
\[
(u'\psi - w\psi')' = u\psi \left[\frac{q}{r^2} - \frac{\alpha^2 q}{((\alpha + 1)r_1 - \alpha r)^2} + \frac{F(u)}{u} + \frac{\alpha^2 F(-\psi)}{\psi} \right] \leq 0 \quad \text{on} \quad (r_1, r_3),
\]
and this shows that \(u/\psi \) is nonincreasing of \((r_1, r_3)\). We thus reach a contradiction because \(u/\psi < 1 \) on \((r_1, r_3)\) and \(u(r_3)/\psi(r_3) = 1 \).

Remark 3.4. If \(p < 0 \), numerical explorations show that there can be several sign-changing solutions. See Figure 4.

![Fig. 4. A plot of several different solutions for \(F(u) = -u + \frac{4}{3}u^3 \) and \(p = -1, q = 3 \).](image-url)
In particular, $u(r)$ is the unique solution of (1.1)–(1.2) and $w(r) = \frac{ru'(r)}{u(r)}$.

Define
\[f(u) := \frac{F(u)}{u} = -a^2 - \frac{b^2}{3}u + \frac{2c^2}{3}u^2, \]
\[\hat{f}(u) := f'(u)u + f(u) = -a^2 - \frac{2b^2}{3}u + 2c^2u^2. \]

Then
\[u'' + \frac{2}{r}u' - \frac{6}{r^2}u = uf(u), \]
\[u''' + \frac{2}{r}u'' - \frac{8}{r^3}u' + \frac{12}{r^4}u = \hat{f}(u)u'. \]

Note that, by Proposition 2.2, $v(r) = \frac{u(r)}{r}$ is decreasing on the interval $r \in (0, \infty)$ and as a consequence the function $w(r)$ satisfies $0 < w(r) < 2$ for all $r \in (0, \infty)$.

Lemma 4.1. For the function $w(r)$ defined in (4.1) the following inequalities hold:
\[2w(w - 2) < rw' < w(w - 2) < 0 \text{ in } (0, \infty). \]

In particular, $w(r)$ and $\frac{2}{u(r)}$ are decreasing and $\frac{2}{w(r)}$ is strictly increasing on $(0, \infty)$.

Proof. We first show that w is decreasing. Straightforward calculations using (4.2) and (4.3) give
\[w' = -\frac{1}{r}(w - 2)(w + 3) + rf(u), \]
\[w'' = \frac{2}{r^2}(w - 2)(w + 1)(w + 3) + (\hat{f}(u) - 3f(u))w, \]
\[w''' = \frac{w'}{w}w'' + \frac{4}{r^2}w'w + w' + \frac{w''}{w}w' - \frac{4}{r^3}(w - 2)(w + 1)(w + 3) + \frac{b^2}{3}u'w. \]

Since $0 < w < 2$ we see that on $(0, \infty)$ the function $w'(r)$ satisfies
\[(w')'' - p(r)(w')' - q(r)w' \geq -\frac{4}{r^3}(w - 2)(w + 1)(w + 3) > 0, \]
where $p(r) = \frac{w}{w'}$ and $q(r) = \frac{4}{r^3}w^3 + \frac{w^2 + 3}{w^2} > 0$.

By Proposition 2.2, $\frac{w}{w'}$ is decreasing and differentiable up to $r = 0$ and its derivative at 0 is 0. Thus
\[\lim_{r \to 0} \frac{u(r)}{r^2} = \alpha > 0 \text{ and } 0 = \lim_{r \to 0} \left[\frac{u(r)}{r^2} \right]' = \lim_{r \to 0} \frac{u(r)(w(r) - 2)}{r} \]
It follows that
\[\lim_{r \to 0} w(r) = 2 \text{ and } \lim_{r \to 0} w'(r) = 0. \]
Also, using definition of w and (2.17), we derive that
\[\lim_{r \to \infty} w'(r) = 0. \]

We can then apply the maximum principle to (4.7) to conclude that $w' < 0$ on $(0, \infty)$.

We now want to show the upper bound for $rw'(r)$,
\[\chi(r) := rw' - w(w - 2) < 0. \]

The idea of the proof is essentially the same as before: we find the differential inequality for $\chi(r)$ and employ the maximum principle. A calculation gives
\[
\begin{align*}
\chi' &= rw'' + 3w' - 2ww', \\
\chi'' &= rw'' + 4w'' - 2ww'' - 2|w'|^2 \\
&\geq (rp + 2(2 - w))w'' + rq w' - 2|w'|^2 - \frac{4}{r^2}(w - 2)(w + 1)(w + 3) \\
&= \frac{rp + 2(2 - w)}{r} \chi' + \left[-\frac{3w'}{rw} + \frac{3(5w^2 - 2w + 4)}{r^2w} \right] \chi + \frac{11}{r^2}w(w - 2)^2,
\end{align*}
\]

where in the first inequality we have used (4.7). Recalling that $w' < 0$ and $0 < w < 2$ on $(0, \infty)$, we see that χ satisfies
\[\chi'' - \tilde{p} \chi' - \tilde{q} \chi \geq \frac{11}{r^2}w(w - 2)^2 > 0, \]

where $\tilde{p} = \frac{rp + 2(2 - w)}{r}$ and $\tilde{q} = -\frac{3w'}{rw} + \frac{3(5w^2 - 2w + 4)}{r^2w} \geq 0$. In addition, by (2.17), (4.8), and the expression for w' we have $\lim_{r \to 0} \chi(r) = 0 = \lim_{r \to \infty} \chi(r) = 0$. Applying the maximum principle we obtain $\chi(r) < 0$ on $(0, \infty)$.

Finally, we show that
\[\tilde{\chi} := rw' - 2w(w - 2) > 0. \]

We compute
\[
\begin{align*}
\tilde{\chi}' &= rw'' + 5w' - 4ww', \\
\tilde{\chi}'' &= (rp + 2(3 - 2w))w'' + rq w' - 4|w'|^2 - \frac{4}{r^2}(w - 2)(w + 1)(w + 3) + \frac{b^2}{3}ru'w.
\end{align*}
\]

Recalling the definitions of $f(u)$ and $\hat{f}(u)$ and the equation for w'', we have
\[
\frac{b^2}{3}ru'w = \frac{b^2}{3}w^2 \leq [\hat{f}(u) - 3f(u)]w^2 = w w'' - \frac{2}{r^2}w(w - 2)(w + 1)(w + 3).
\]

Using the above inequality and combining the terms, we obtain
\[
\begin{align*}
\tilde{\chi}'' &\leq (rp + 3(2 - w))w'' + rq w' - 4|w'|^2 - \frac{2}{r^2}(w - 2)(w + 1)(w + 3)(w + 2) \\
&= \frac{rp + 3(2 - w)}{r} \tilde{\chi}' + \left[\frac{5w'}{rw} + \frac{8w^3 - 33w^2 + 10w - 12}{r^2w} \right] \tilde{\chi} \\
&\quad - \frac{6}{r^2}(w - 2)^2(3w^2 - 3w + 1).
\end{align*}
\]

Recalling that $0 < w < 2$ and an upper bound for w', we see that
\[\tilde{\chi}'' - \tilde{p} \tilde{\chi}' - \tilde{q} \tilde{\chi} \leq -\frac{6}{r^2}(w - 2)^2(3w^2 - 3w + 1) < 0, \]
where \(\hat{p} = r p + 2 (3 - 2w) \) and \(\hat{q} = -\frac{5w'}{w'^2} - \frac{8u^3 - 33u^2 + 10w - 12}{w^2} > 0 \). As in the previous case we also have \(\lim_{r \to 0} \hat{\chi}(r) = 0 = \lim_{r \to \infty} \hat{\chi}(r) \), and so the maximum principle gives \(\hat{\chi} > 0 \) on \((0, \infty)\). \(\square \)

Remark 4.1. From the estimate for \(w' \), we see that on \((0, \infty)\)

\[
\frac{3}{r^2} (w - 2)(w + 1) < f(u) = \frac{1}{r} w' + \frac{1}{r^2} (w - 2)(w + 3) < \frac{1}{r^2} (w - 2)(2w + 3) < 0.
\]

Lemma 4.2. The function \(\frac{ru'}{u'} - \frac{2(s_+-u)}{s_+ u} \) is strictly decreasing and the function \(\frac{ru'}{u'} - \frac{2(s_+-u^2)}{s_+ u^2} \) is strictly increasing. In particular, \(\frac{2u(s_+-u)}{s_+ r} > u' > \frac{2u(s_+-u)}{s_+ r} \).

Proof. Let us define \(\psi = w - \frac{2(s_+-u)}{s_+ u} = w - 2 + \frac{2u}{s_+} \). Using the upper bound on \(u' \), we have

\[
\psi' = \frac{w'}{w} + \frac{2u}{s_+} \left(-\frac{1}{r} w + 2 \frac{u'}{s_+} = \frac{u'}{u} (\psi - \frac{2u}{s_+}) + \frac{2u}{s_+} = \frac{u'}{u} \psi.
\]

It follows that \(\frac{\psi}{u} \) is decreasing. It is clear that \(\psi(\infty) = 0 \) and therefore \(\frac{\psi}{u} > 0 \). Since \(u > 0 \) we have

\[
u' > \frac{2u(s_+-u)}{rs_+}.
\]

The monotonicity of the other function and upper bound on \(u' \) can be proved similarly. \(\square \)

Lemma 4.3. The following inequality holds:

\[
\hat{f}(u) - 3f(u) > 0 = \frac{2}{w} f(u).
\]

Proof. Let us define

\[
\psi = w' + \frac{2}{r} w' - \frac{2}{r^2} w(w - 2)(w + 3) = (\hat{f}(u) - 3f(u)) w + 2 f(u).
\]

In the proof we will frequently use (4.4), (4.5), and (4.6) without explicitly mentioning them. A simple calculation gives

\[
\psi' = \left[\frac{w'}{w} + \frac{2}{r} \right] w'' - \frac{2}{r^2} \frac{w^3 - 5w - 6}{w} w' - \frac{4}{r^3} (w - 2)(w + 3) + \frac{b^2}{3} w'.
\]

Using the inequality

\[
\frac{b^2}{3} r u' w = \frac{b^2}{3} w^2 \leq [\hat{f}(u) - 3f(u)] w^2 = w w'' - \frac{2}{r^2} w(w - 2)(w + 1)(w + 3),
\]

we have

\[
\psi' \leq \left[\frac{w'}{w} + \frac{2}{r} \right] \left(\psi - \frac{2}{r} w' + \frac{2}{r^2} w(w - 2)(w + 3) \right) - \frac{2}{r^2} \frac{w^3 - 5w - 6}{w} w' - \frac{2}{r^3} (w - 2)(w + 3)(w^2 + w + 2)
\]

\[
= \left[\frac{w'}{w} + \frac{2}{r} \right] \psi - \frac{2 |w'|^2}{r^2} w - \frac{6 w - 2}{r^2} w' + \frac{2}{r^3} (w - 2)^2 (w + 3)
\]

\[
< \left[\frac{w'}{w} + \frac{2}{r} \right] \psi - \frac{2w'}{r^2} w(w + 3)(w - 2) + \frac{2}{r^3} (w - 2)^2 (w + 3)
\]

\[
< \left[\frac{w'}{w} + \frac{2}{r} \right] \psi,
\]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
where we used \(w' < w(w - 2) < 0 \) in the last two estimates. Recalling that \(w = \frac{w'}{u'} \), we see that
\[
\psi' < \left[\frac{w'}{w} + \frac{2}{r} + \frac{u'}{u} \right] \psi, \quad \text{or equivalently} \quad \frac{d}{dr} r^2 w u < 0.
\]

It follows that \(\frac{\psi}{r^2 w u} \) is a decreasing function. Since \(\frac{\psi}{r^2 w u} \to 0 \) as \(r \to \infty \), we conclude that \(\psi \) is positive. The statement of the lemma follows.

As a consequence of the above results, we have the following lower and upper bounds for the solution.

Corollary 4.4. Assume that \(u(r) = \alpha r^2 + o(r^2) \) as \(r \to 0 \) and \(u(r) = s_+ - \beta r^{-2} + o(r^{-2}) \) as \(r \to \infty \). Then \(u(r) \) has the following upper and lower bounds:

\[
\begin{align*}
(4.9) & \quad u(r) \geq \frac{s_+ \alpha r^2}{\alpha r^2 + s_+}, \\
(4.10) & \quad u(r) \leq \frac{s_+ \alpha r^2}{s_+ r^2 + \beta}, \\
(4.11) & \quad u(r) \leq \frac{\alpha}{\sqrt{\alpha^2 r^4 + s_+^2}}.
\end{align*}
\]

Proof. Using Remark 4.1 we have
\[
u'' + \frac{2}{r} u' - 6 \frac{u'}{r^2} u = u f(u) \leq 2 \frac{|u'|^2}{u} - \frac{1}{r} u' - \frac{6}{r^2} u.
\]

It follows that \(u'' + \left(-\frac{2u'}{u} + \frac{3}{r}\right) u' \leq 0 \), which is equivalent to \(\frac{d}{dr} \frac{r^3 u'}{u} \leq 0 \). Integrating this inequality and using the fact that
\[
\lim_{r \to 0} \frac{r^3 u'}{u^2} = \frac{2}{\alpha} \quad \text{and} \quad \lim_{r \to \infty} \frac{r^3 u'}{u^2} = \frac{2 \beta}{s_+^2},
\]
we obtain

\[
(4.12) \quad \frac{2 \beta}{s_+^2} \leq \frac{r^3 u'}{u^2} \leq \frac{2}{\alpha}.
\]

The second inequality in (4.12) implies that \(\frac{d}{dr} \left(\frac{1}{u} - \frac{1}{\alpha r^2} \right) \geq 0 \), and integrating it from \(r \) to \(\infty \), we obtain \(\frac{1}{u} - \frac{1}{\alpha r^2} \leq \frac{1}{s_+^2} \), which implies (4.9). Similarly, the first inequality in (4.12) implies that \(\frac{d}{dr} \left(\frac{1}{u} - \frac{\beta}{s_+^2 r^2} \right) \leq 0 \), which leads to (4.10).

To prove (4.11), we again use Remark 4.1. We have
\[
u'' + \frac{2}{r} u' - 6 \frac{u'}{r^2} u = u f(u) \geq 3 \frac{|u'|^2}{u} - 3 \frac{u'}{r^2} - \frac{6}{r^2} u.
\]

It follows that
\[
(4.13) \quad u'' + \left(-\frac{3u'}{u} + \frac{5}{r} \right) u' \geq 0,
\]
which is equivalent to \(\frac{d}{dr} \frac{u'}{u^3} \geq 0 \). Using the same argument as before, we obtain
\[
\frac{r^5 u'}{u^3} \geq \frac{2}{\alpha^2}, \quad \text{i.e.,} \quad \frac{d}{dr} \left(\frac{1}{u^2} - \frac{1}{\alpha^2 r^4} \right) \leq 0.
\]
Consequently \(\frac{1}{u} - \frac{1}{a r^2} \geq \frac{1}{s_+^2} \), which implies (4.11). □

In Corollary 4.4, the lower bound of \(u \) depends on \(u''(0) \), which is a priori unknown. The following result gives a lower bound that is independent of \(u''(0) \).

Lemma 4.5. There holds
\[
u(r) > u(r) := \frac{b^2}{2c^2} \frac{r^6}{(r^2 + \frac{36 a^2 r^2}{4c^2})(r^4 + \frac{12 a^4 r^4}{b^2})} \text{ for } r \in (0, \infty).
\]

Proof. Let \(u_0 \) denote the positive solution of (1.1) corresponding to \(a = 0 \). Let us observe first that we have
\[
u_0(r) < u(r) \quad \forall r > 0.
\]
This follows from the comparison principle in Proposition 3.3, Remark 3.1, the fact that \(u_0 \) is a subsolution of (1.1) for \(a > 0 \) (in the sense of Definition 3.2), and
\[
u(\infty) = s_+ = \frac{b^2 + \sqrt{b^4 + 24 a^2 c^2}}{4c^2} > \frac{b^2}{2c^2} = u_0(\infty) \text{ whenever } a > 0.
\]

Therefore, it suffices to show that \(u_0 \geq u \). Using Remark 1.2 in the introduction, it suffices to check this for, e.g., \(b = c = 1 \). In that case, a lengthy computation shows that
\[
u'' + \frac{2 - 6}{r^2} \nu - \frac{f_0(\nu)}{u} = \frac{36 r^4}{(r^2 + 36)(r^4 + 124)^2} \times (278628139008 + 9029615616 r^2 + 85100544 r^4 - 373248 r^6 - 5184 r^8 + 41 r^{10}),
\]
where \(f_0(u) = -\frac{1}{4} u + \frac{2}{3} u^2 \). It is straightforward to check that
\[
278628139008 + 9029615616 r^2 + 85100544 r^4 - 373248 r^6 - 5184 r^8 + 41 r^{10} > 0 \text{ on } (0, \infty).
\]
In other words the function \(\nu \) is a subsolution of (1.1) with \(a = 0 \).

Notice that
\[
u(r) = \frac{1}{2} - \frac{18}{r^2} + o(r^{-2}) \quad \text{and} \quad u_0(r) = \frac{1}{2} - \frac{18}{r^2} + o(r^{-2}) \text{ as } r \to \infty,
\]
where we have used Proposition 2.5. Taking into account the behavior of \(\nu \) at 0, we can apply again Proposition 3.3 to obtain that \(\nu(r) \leq u_0(r) \) for all \(r > 0 \). □

To close the section we give the proof of Theorem 1.5.

Proof of Theorem 1.5. First, (1.17), (1.18), and (1.23) are consequences of (4.14), Lemma 4.5, and Proposition 2.2. Second, (1.20) and (1.21) are the content of Lemma 4.3 and Remark 4.1, respectively. Next, estimate (1.19) is precisely (4.13). Finally, inequality (1.23) is a consequence of the second inequality in (4.12) and the fact that \(u < s_+ \). □

5. **Existence of sign-changing solutions.** In section 3, we show that, for \(F \) satisfying (1.6), the problem (1.1)–(1.2) has a unique positive solution. Furthermore, under more stringent conditions on \(F \), that solution is the unique solution of the problem (1.1)–(1.2). The goal of this section is to give examples of nonlinearities \(F \) (which satisfy (1.6)) such that, for any finite interval \((0, R) \), the problem (1.1)–(1.2) has another solution besides the positive solution. This additional solution is necessarily sign-changing (in view of Theorem 1.1) and is of mountain pass type.
For simplicity, we set

\[p = 2 \quad \text{and} \quad q = 6. \]

The problem (1.1)–(1.2) becomes

\[
\begin{align*}
\frac{u''}{r} + \frac{2}{r} u' - \frac{6}{r^2} u &= F(u) \quad \text{in} \ (0, R), \\
u(0) &= 0, \quad u(R) = s_+.
\end{align*}
\]

Let \(u_* \) be the positive solution obtained in Theorem 1.1.

5.1. Minimizing properties

We have seen in Corollary 1.2, proved in section 3.2, that if \(F \) satisfies (1.7), then for \(R \in (0, \infty) \) the function \(u_R \) (the solution of (1.1)–(1.2) obtained in Theorem 1.1) is actually a global minimizer of the energy \(E \) defined in (1.4) in the introduction. It is natural to ask if \(u_R \) is actually a global minimizer for \(E \) when \(F \) does not necessarily satisfy (1.7). In general the answer is negative. For example, for the nonlinearity \(F(u) = u^4 - u \), the energy \(E \) is unbounded from below. However, we prove the following lemma.

Lemma 5.1. Assume \(p = 2, q = 6 \), \(R \in (0, \infty) \), and that \(F \) satisfies (1.6). Let \(u_* \) be the positive solution in Theorem 1.1. Then \(u_* \) is a strictly stable local minimizer for \(E[\cdot; (0, R)] \).

Proof. Consider the second variation of \(E \) at \(u_* \):

\[
Q[v] := \int_0^R \left[r^2 |v'|^2 + 6v^2 + r^2 F'(u_*) v^2 \right] dr,
\]

where \(v \) belongs to

\[
\mathcal{M}_0 := \left\{ v : (0, R) \to \mathbb{R} \left| rv' \in L^2(0, R), v(R) = 0 \right. \right\}.
\]

It suffices to prove that, for some \(\delta > 0 \),

\[
Q[v] \geq \delta \int_0^R r^2 |v'|^2 \, dr =: \delta \|v\|^2 \quad \forall v \in \mathcal{M}_0.
\]

By a standard density argument, it suffices to prove the above for \(v \in C_c^\infty(0, R) \).

To this end, note that \(u_* \) satisfies

\[
(u_*')'' + \frac{2}{r} (u_*')' - \frac{8}{r^2} u_* + \frac{12}{r^2} u_* = F'(u_*) u_* \quad \text{in} \ (0, R).
\]

Furthermore, by Lemma 3.7, \(u_* \) is nonnegative.

Fix \(v \in C_c^\infty(0, R) \) and write \(v = u_*' w \). We have

\[
Q[v] = \int_0^R \left[r^2 |(u_* w')'|^2 + 6 |u_*'|^2 w^2 + r^2 F'(u_*) |u_*'|^2 w^2 \right] dr \\
= \int_0^R \left[r^2 |(u_* w')'|^2 + 6 |u_*'|^2 w^2 + \left((r^2 u_*')' - 8u_* + \frac{12}{r} u_* \right) u_* w^2 \right] dr \\
= \int_0^R \left[r^2 |u_*|^2 |w'|^2 - 2 |u_*|^2 |w|^2 + \frac{12}{r} u_* u_* w^2 \right] dr.
\]
Recalling (2.10) and noting that $\gamma_+ = 2$, we obtain
\[
Q[v] \geq \int_0^R \left[r^2|u'|^2|w'|^2 + 4|u|^2w^2 \right] dr \geq \int_0^R 4v^2.
\]

Since $0 \leq u_* \leq s_+$, $F'(u_*) \geq -C_0$ for some C_0 depending only on F. It thus follows that
\[
||v||^2 \leq Q[v] - \int_0^R r^2 F'(u_*) v^2 dr \leq Q[v] + C_0 R^2 \int_0^R v^2 \leq \frac{1}{4}(4 + C_0 R^2)Q[v],
\]
as desired. \(\square\)

5.2. Mountain pass solutions. In this subsection we obtain a mountain pass solution for the BVP (1.1)–(1.2) on finite domains when the nonlinearity F satisfies a certain growth condition.

Proposition 5.2. Assume $p = 2$, $q = 6$, $R \in (0, \infty)$. Assume that F satisfies (1.6) and, for some $\lambda > 0$, $0 \leq \lambda < 4$, and $C > 0$, we have $F(t) = \lambda t^4 + \hat{F}(t)$ with \hat{F} satisfying
\[
|\hat{F}(t)| \leq C(1 + |t|^\lambda) \text{ for } t \in \mathbb{R}.
\]

Then besides the positive solution obtained in Theorem 1.1, the problem (1.1)–(1.2) admits a sign-changing solution.

For example, we note that the nonlinearities $F(u) = u^4 + 2u^3 - u^2 - 2u$ and $F(u) = u^4 - u^3$ satisfy all hypotheses of Proposition 5.2.

Proof. Let us consider the set
\[
\mathcal{M} := \left\{ u : (0, R) \rightarrow \mathbb{R} : ru', u \in L^2(0, R), \text{ } u(R) = s_+ \right\}.
\]

It is easy to check that $u \in \mathcal{M}$ is a critical point for E if and only if $v = u_* - u \in \mathcal{M}_0$ is a critical point of
\[
I[v] = \frac{1}{2} \int_0^R \left[r^2|v'|^2 + 6v^2 + r^2(2F(u_*)v + h(u_* - v) - h(u_*)) \right] dr,
\]
where h is given by (1.5).

Note that \mathcal{M}_0 is a Hilbert space with respect to the inner product $\langle v_1, v_2 \rangle = \int_0^R r^2 v_1' v_2' dr$. The (Fréchet) derivative of I is given by
\[
\langle I'[v], \varphi \rangle = \int_0^R \left[r^2v'\varphi' + 6v\varphi + r^2(F(u_*) - F(u_* - v))\varphi \right] dr.
\]

By Lemma 5.1, 0 is a strictly stable local minimizer of I and $I[0] = 0$. In addition, for $v \geq 0$ and $v \neq 0$, we have $I[v] \rightarrow -\infty$ as $t \rightarrow \infty$ thanks to (5.1). We would like to find a second critical point of I via the mountain pass theorem (see, e.g., [25]). To this end, it remains to show that I satisfies the Palais–Smale condition. More precisely, we need to show that if v_n is a sequence in \mathcal{M}_0 satisfying
\[
I[v_n] \leq C \text{ and } I'[v_n] \rightarrow 0,
\]
then v_n has a convergent subsequence. Note that, by standard elliptic estimates, it suffices to show that the sequence v_n is bounded in \mathcal{M}_0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Appendix A. Lifting for radially symmetric Q-tensors. In this appendix, we classify radially symmetric matrix-valued maps by using only one degree of freedom, the scalar $u(|x|)$, also called lifting.

Lemma A.1. If $Q : B_R(0) \to \mathcal{S}_0$ is a radially symmetric measurable map, then there exists a measurable function $u : (0, R) \to \mathbb{R}$ such that

\begin{equation}
Q(x) = u(|x|) \overline{H}(x) \quad \text{for a.e. } x \in B_R(0),
\end{equation}

where $\overline{H}(x) := \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3} \text{Id} \right)$. The function u is given by

\begin{equation}
\left. u(|x|) \right| = \frac{3}{2} \overline{H}(Q(x) \overline{H}(x)) \quad \text{a.e. in } B_R(0).
\end{equation}

If the origin 0 is a Lebesgue point of Q, then it is also a Lebesgue point of u, and $Q(0) = 0$, $u(0) = 0$. Moreover, if Q is continuous on $B_R(0)$, then u is also a continuous function on $[0, R]$ with $u(0) = 0$.

Proof. Fix a point $x \in B_R(0)$ where (1.14) holds. Write $x = rp$ for some $p \in S^2$ and $r \geq 0$. Assume for now $x \neq 0$. Let G_x denote the subgroup of rotation matrices in $SO(3)$ that fixes x, i.e., $R \cdot x = x$ for all $R \in G_x$. By the definition of radial symmetry for tensors, we have

\begin{equation}
Q(x) = Q(Rx) = \mathcal{R} Q(x) \mathcal{R}^t \quad \text{for any } \mathcal{R} \in G_x.
\end{equation}

Observe that for \(x \neq 0 \), Spec(\(\Phi(x) \)) = \(\{-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}\} \) and the eigenspaces corresponding to the eigenvalues \(-1/3\) and \(2/3\) of \(\Phi(x) \) are given by the plane \((\mathbb{R}x)^\perp\) and the line \(\mathbb{R}x\), respectively. In view of (A.1), it is then natural to prove the following claim.

Claim 4. \(Q(x) \) cannot have three distinct eigenvalues. Moreover, \(Q(x) = u(x)\Phi(x) \) for some \(u(x) \in \mathbb{R} \).

Proof. First, observe that

(A.4) if \(v \) is an eigenvector of \(Q(x) \), then \(Rv \) is also an eigenvector of \(Q(x) \)
\[\forall R \in G_x \text{ (with the same eigenvalue)}. \]

Indeed, \(Q(x)v = \lambda v \) in view of (A.3) implies
\[Q(x)Rv = RQ(x)R^t v = \lambda Rv. \]

To prove our claim, we distinguish the following two cases (since \(Q(x) \) is a symmetric matrix, \(\mathbb{R}^3 \) is a direct sum of eigenspaces of \(Q(x) \)).

Case 1. \(Q(x) \) has an eigenvector \(v \) which is neither parallel nor perpendicular to \(x \). Then (A.4) implies that the whole \(\mathbb{R}^3 \) is an eigenspace of \(Q(x) \) corresponding to a single eigenvalue. Since \(Q(x) \) is traceless we deduce that \(Q(x) = 0 \), i.e., all eigenvalues of \(Q(x) \) are zero.

Case 2. \(Q(x) \) has an eigenvector \(v \) which is parallel to \(x \) and two linear independent eigenvectors \(v_2 \) and \(v_3 \) which are perpendicular to \(x \). Let \(\lambda_1, \lambda_2, \lambda_3 \) be the corresponding eigenvalues. Then (A.4) implies that \(\lambda_2 = \lambda_3 \). By tracelessness of \(Q(x) \), \(\lambda_2 = \lambda_3 = -\frac{1}{2}\lambda_1 \). Furthermore, \(Q(x) \) has the same eigenspaces as \(\Phi(x) \) so that \(Q(x) = u(x)\Phi(x) \) for some \(u(x) \in \mathbb{R} \) (here, \(u(x) = -3\lambda_2 \)).

In both cases, we obtain the representation \(Q(x) = u(x)\Phi(x) \), which proves our claim. \(\square\)

To finish the proof of our lemma, notice that \(\Phi(Rx) = R\Phi(x)R^t \) for all \(R \in SO(3) \) and (1.14) also holds at every point \(\tilde{x} = Rx \) for every rotation \(R \in SO(3) \) (since (1.14) holds at \(x \) by our assumption). Combined with Claim 4, it follows that \(u(x) = u(Rx) \) for all \(R \in SO(3) \), which entails that \(u \) is indeed a function of \(|x| \), i.e., (A.1) holds at \(x \). From here, it is easy to see that (A.2) also holds at \(x \).

Assume now that \(x = 0 \) is a Lebesgue point of \(Q \), i.e., there exists a matrix \(Q^* \) such that
\[\lim_{r \to 0} \frac{1}{B_r(0)} \int_{B_r(0)} |Q(x) - Q^*| \, dx = \lim_{r \to 0} \frac{1}{B_r(0)} \int_{B_r(0)} |Q(Rx) - Q^*| \, dx = 0 \]
by the change of variable \(\tilde{x} := Rx \) for some \(R \in SO(3) \). Since for a.e. \(x \in B_R(0) \), \(Q(x) \in \mathcal{S}_0 \) we deduce that \(Q^* \in \mathcal{S}_0 \). Since (1.14) holds a.e. in \(B_R(0) \), we deduce that
\[\lim_{r \to 0} \int_{B_r(0)} |Q(x) - R^t Q^* R| \, dx = 0, \]
so that \(Q^* = R^t Q^*_R R \) for all \(R \in SO(3) \). Since \(Q^* \) is a traceless symmetric matrix, it implies that \(Q^* = 0 \). Relation (A.2) allows us to obtain that \(0 \) is also a Lebesgue point for \(u \) and \(u(0) = 0 \). For the last assertion, assume that \(Q \) is continuous. Obviously, (1.14) holds everywhere in \(B_R(0) \). By (A.2), since \(\Phi \) is continuous away from 0 and bounded near 0, the continuity of \(u \) on \((0, R)\) immediately follows. Since \(Q \) is assumed...
to be continuous at 0, by (A.2), we deduce that \(u \) can be continuously extended to \(u : [0, R) \to \mathbb{R} \) by setting \(u(0) = 0 \).

Appendix B. Some maximum principles. In this appendix, we present some maximum principles which were needed in the body of the paper.

Lemma B.1. For \(R \in (0, \infty) \), \(p, q \in C(0, R) \) with \(q(r) \geq 0 \) for all \(r \in (0, R) \) we denote

\[
Lw := -w'' - p(r)w' + q(r)w.
\]

Assume that there exists a nonnegative function \(w_0 \in C^2(0, R) \) with \(Lw_0 \geq 0 \) and \(\lim_{r \to 0} w_0(r) = \infty \). If \(w \in W^{1, \infty}(0, R) \cap L^\infty(0, R) \) and \(Lw \geq 0 \) in the sense of distributions (or measures) in \((0, R) \) with \(\lim \inf_{r \to R} w(r) \geq 0 \), then

\[
w(r) \geq 0 \quad \forall r \in (0, R).
\]

Proof. The result of the lemma and its proof are well known to experts, but we provide the proof here for completeness. We pick an arbitrary \(\epsilon > 0 \). There exists \(\delta_0(\epsilon), M_0(\epsilon) \in (0, R) \) so that

\[
(B.1) \quad w(\delta) \geq -\epsilon w_0(\delta) > -\epsilon w_0(\delta) - \epsilon \quad \text{and} \quad w(M) > -\epsilon \geq -\epsilon w_0(M) - \epsilon
\]

for all \(0 < \delta < \delta_0(\epsilon) \) and \(M_0(\epsilon) < M < R \). Hence, by the usual weak maximum principle applied to \(L \) on the interval \((\delta, M) \) we get \(w \geq -\epsilon w_0 - \epsilon \) in \((\delta, M) \) for any \(0 < \delta < \delta_0(\epsilon) \) and \(M_0(\epsilon) < M < R \). Indeed, if we denote by \(v := w + \epsilon w_0 + \epsilon \) we obtain that \(L v \geq 0 \) in the sense of distributions in \((0, R) \). Set \(v_- := \max\{0, -v\} \) and let \(P \in C^1(0, R) \) be a primitive of \(p \), i.e., \(P' = p \) on \((0, R) \). Noting that \(0 \leq e^P v_- \in C_c((\delta, M)) \) (due to \(B.1 \)), and using it as a test function, we obtain

\[
0 \geq \int_{\delta}^{M} \left((v_-')^2 + q(r)(v_-)^2 \right) e^{P(r)} \, dr
\]

and conclude that \(v_- \equiv 0 \) on \((\delta, M) \). Since we can choose any \(\delta \in (0, \delta_0(\epsilon)) \) and \(M \in (M_0(\epsilon), R) \), we have in fact \(w \geq -\epsilon w_0 - \epsilon \) in \((0, R) \). Since \(\epsilon > 0 \) was arbitrary we can let \(\epsilon \to 0 \) and obtain the conclusion. \(\Box \)

Remark B.1. The above maximum principle was used in two specific cases:

- For \(p(r) = \frac{4}{r}, q(r) = \frac{4}{r} \) with \(w_0(r) = r^{\gamma_-} \), where \(\gamma_- \) is the negative Fuchsian index of \((1.1)\) (see \((2.9)\)).

- For \(p(r) = -\frac{4}{r^2}, q(r) = \frac{A}{r^2}, A > 0 \), with \(w_0(r) = r^B I_B(\frac{\sqrt{r}}{B^2}) \), where \(B = (p - 1)/2 \) and \(I_B \) is the modified Bessel function (see, for instance, [1, p. 375, 9.6.10 and p. 377, 9.7.1]) that satisfies the modified Bessel’s equation

\[
I_B''(t) + \frac{1}{t} I_B'(t) - \left(\frac{1}{t} + \frac{B^2}{t^2} \right) I_B(t) = 0, \quad t > 0,
\]

and has exponential growth at infinity.

Lemma B.2. Assume that \(w \in C^2(0, R) \cap C[0, R) \) satisfies

\[
Lw(r) := w''(r) + \frac{a}{r} w'(r) + c(r) w(r) \leq 0 \quad \text{in} \quad (0, R)
\]

for some constant \(a \geq 1 \) and some function \(c \in C[0, R) \). If \(w \geq 0 \) in \((0, R) \) and \(w(0) = 0 \), then \(w \equiv 0 \).

Remark B.2. The conclusion is not true for \(0 < a < 1 \). For example, take \(w(r) = r^{1-a} \) and \(c \equiv 0 \).
Proof. Arguing by contradiction, assume that \(w \neq 0 \). By the standard strong maximum principle, \(w > 0 \) in \((0, R)\).

For some small positive \(\epsilon \), consider the function
\[
\psi(r) = \epsilon^2 - (\epsilon - r)^2.
\]
We have, for \(0 < \delta < \epsilon \),
\[
L(\psi - \delta) = -2 + \frac{2a(\epsilon - r)}{r} + c(r)[\epsilon^2 - (\epsilon - r)^2].
\]
Since \(a > 0 \), there exists some \(\epsilon > \lambda > 0 \) independent of \(\delta \) such that \(L\psi > 0 \) in \([0, \lambda]\).

Pick \(\mu > 0 \) such that \(\mu \psi(\lambda) < w(\lambda) \). Clearly there exists some \(0 < \lambda' < \lambda \) which might depend on \(\delta \) such that \(w \geq \mu(\psi - \delta) \) in \([0, \lambda']\). By the maximum principle, \(w \geq \mu(\psi - \delta) \) in \([0, \lambda]\). It follows that \(w \geq \mu\psi(0) \), which implies that \(w \geq \mu\psi \) in \([0, \lambda]\). Since \(w(0) = \psi(0) = 0 \), this implies that
\[
\liminf_{r \to 0} \frac{w(r)}{r} = 2 \mu \epsilon > 0.
\]
In particular, there exists a sequence \(r_k \to 0 \) such that \(w'(r_k) \geq \mu\epsilon > 0 \).

Recall that \(w \) and \(c \) are continuous up to \(r = 0 \) and \(w(0) = 0 \). Thus, we can choose some \(\eta > 0 \) such that \(|c(r)w(r)| < \frac{(a+1)\epsilon}{2\eta} \) for \(0 < r < \eta \). Thus, as \(Lw \leq 0 \),
\[
(r^a w')' \leq \frac{(a+1)\mu\epsilon}{2\eta} r^a \text{ for } 0 < r < \eta.
\]
Fix some \(r_k < \eta \). Then
\[
w'(r) \geq \frac{1}{r^a} \left[r_k^a w'(r_k) - \frac{\mu\epsilon}{2\eta} r_k^{a+1} \right] \geq \frac{\mu\epsilon r_k^a}{2} \text{ for } 0 < r < r_k.
\]
Since \(a \geq 1 \), this implies that
\[
\lim_{r \to 0} w(r) = -\infty,
\]
contradicting our hypothesis that \(w \) is continuous up to \(r = 0 \) and \(w(0) = 0 \).

Acknowledgments. The authors gratefully acknowledge the hospitality of Hausdorff Research Institute for Mathematics, Bonn, where part of this work was carried out. They are also grateful to the referees for useful suggestions and comments.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, 1974.
[2] M. Aguareles and I. Baldomá, Structure and Gevrey asymptotic of solutions representing topological defects to some partial differential equations, Nonlinearity, 24 (2011), pp. 2813–2847.
[3] V. Akopian and A. Farina, Sur les solutions radiales de l’équation \(-\Delta u = u(1 - |u|^2)\) dans \(\mathbb{R}^N \) (\(N \geq 3 \)), C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), pp. 601–604.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
UNIQUENESS FOR A GINZBURG–LANDAU-TYPE MODEL

[4] A. D. Alexandrov, Uniqueness theorems for surfaces in the large, Vestnik Leningrad. Univ., 13 (1958), pp. 5–8.
[5] J. M. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J., 51 (1984), p. 699–728.
[6] H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), pp. 237–275.
[7] H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 115–164.
[8] G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4th ed., John Wiley & Sons Inc., New York, 1989.
[9] H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), pp. 55–64.
[10] X. Chen, C. M. Elliott, and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), pp. 1075–1088.
[11] T. A. Davis and E. C. Gartland, Jr., Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals, SIAM J. Numer. Anal., 35 (1998), pp. 336–362.
[12] A. Farina and M. Guedda, Qualitative study of radial solutions of the Ginzburg-Landau system in \(\mathbb{R}^N \) \((N \geq 3)\), Appl. Math. Lett., 13 (2000), pp. 59–64.
[13] E. C. Gartland and S. Mkaddem, Instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models, Phys. Rev. E, 59 (1999), pp. 563–567.
[14] B. Gidas, W. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), pp. 209–243.
[15] B. Gidas, W. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}^N \), in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud. 7A, L. Nachbin, ed., Academic Press, New York, London, 1981, pp. 369–402.
[16] S. Gustafson, Symmetric solutions of the Ginzburg-Landau equation in all dimensions, Internat. Math. Res. Notices, (1997), pp. 807–816.
[17] R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), pp. 427–440.
[18] R. Ignat, L. Nguyen, V. Slastikov, and A. Zarnescu, On stability of the radially symmetric solution in a Landau-de Gennes model for liquid crystals, Arch. Ration. Mech. Anal., to appear.
[19] R. Ignat, L. Nguyen, V. Slastikov, and A. Zarnescu, Stability of the vortex defect in Landau-de Gennes theory of nematic liquid crystals, C.R. Acad. Sci. Paris, 351 (2013), pp. 533–537.
[20] M. A. Krasnosel’skiı̆, Positive Solutions of Operator Equations, translated from the Russian by R. E. Flaherty and L. F. Boron, ed., P. Noordhoff Ltd., Groningen, 1964.
[21] X. Lamy, Some properties of the nematic radial hedgehog in the Landau-de Gennes theory, J. Math. Anal. Appl., 397 (2013), pp. 586–594.
[22] L. Longa, D. Monnealedan, and H. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals, Liq. Crys., 2 (1987), pp. 769–796.
[23] A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), pp. 227–280.
[24] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), pp. 334–344.
[25] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, Conference Board of the Mathematical Sciences, Washington, D.C., AMS, Providence, RI, 1986.
[26] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), pp. 304–318.
[27] A. Sonnet, A. Kilian, and S. Hess, Alignment tensor versus director: Description of defects in nematic liquid-crystals, Phys. Rev. E, 52 (1995), pp. 718–722.