Erratum to: Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs

Janez Jenko1, Gregor Gorjanc1, Matthew A. Cleveland2, Rajeev K. Varshney3, C. Bruce A. Whitelaw1, John A. Woollams1 and John M. Hickey1*

After the publication of this work [1], we noticed that Figs. 1 and 2 were accidentally interchanged. The correct version order of Figs. 1 and 2 are provided here. The original article was corrected.

Author details
1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK.
2 Genus plc., 100 Bluegrass Commons Blvd., Suite 2200, Hendersonville, TN 37075, USA.
3 International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.

Received: 23 July 2015 Accepted: 23 July 2015
Published online: 11 September 2015

Reference
1. Jenko J, Gorjanc G, Cleveland MA, Varshney RK, Whitelaw CBA, Woollams JA, et al. Potential of promotion alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol. 2015;47:55.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

© 2015 Jenko et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Simulated scenarios for promotion of alleles by genome editing

Population	Generations	Mutation	Selection	PAGE
Historical evolution	100,000 years	2.5×10^{-5}	Random selection	-
Recent historical breeding	-20 to 0	-	Genomic selection 1000 candidates $500 \times 25 \sigma^2$ selected parents	-
Future breeding	1 to 20	-	Genomic selection 1000 candidates $500 \times 25 \sigma^2$ selected parents	Top 6 or 10, bottom 5 or all 25 selected sires 0, 1, 5, 10, 20, 25, 50 or 100 edits per sire

PAGE – promotion of alleles by genome editing.

Fig. 1 Simulated scenarios for promotion of alleles by genome editing
PAGE?

Yes

No

GS only

Number of edited sires?

Bottom 10

Top 5

Number of QTNe?

B10se 1QTNe

B10se 5QTNe

B10se 10QTNe

B10se 20QTNe

1

5

10

20

A25se 1QTNe

A25se 5QTNe

A25se 10QTNe

A25se 20QTNe

T10se 1QTNe

T10se 5QTNe

T10se 10QTNe

T10se 20QTNe

25

50

100

T5se 25QTNe

T5se 50QTNe

T5se 100QTNe

PAGE – promotion of alleles by genome editing; GS – genomic selection; QTNe – QTN being edited; B10se – the bottom 10 selected sires edited; A25se – all of the 25 selected sires edited; T10se – the top 10 selected sires edited; T5se – the top 5 selected sires edited

Fig. 2 Overall design of the simulation