Adjuvant Iodine-125 Brachytherapy for Hepatocellular Carcinoma after Complete Hepatectomy: A Randomized Controlled Trial

Kaiyun Chen¹*, Yong Xia²*, Hanning Wang¹, Fanglian Xiao¹, Guoan Xiang¹*, Feng Shen²*

¹ Department of General Surgery, the Second Provinicial People’s Hospital of Guangdong Province, Guangzhou, P. R. China, ² Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China

Abstract

Background: Tumor recurrence is a major problem after curative resection of hepatocellular carcinoma (HCC). The current study evaluated the effects of adjuvant iodine-125 (¹²⁵I) brachytherapy on postoperative recurrence of HCC.

Methodology/Principal Findings: From July 2000 to June 2004, 68 HCC patients undergoing curative hepatectomy were randomly assigned into a ¹²⁵I adjuvant brachytherapy group (n = 34) and a group of best care (n = 34). Patients in the ¹²⁵I adjuvant brachytherapy group received ¹²⁵I seed implantation on the raw surface of resection. Patients in the best care control group received identical treatments except for the ¹²⁵I seed implantation. Time to recurrence (TTR) and 1-, 3- and 5-year overall survival (OS) were compared between the two groups. The follow-up ended in January 2010, and lasted for 7.7–106.4 months with a median of 47.6 months. TTR was significantly longer in the ¹²⁵I group (mean of 60.0 months vs. 36.7 months in the control). The 1-, 3- and 5-year recurrence-free rates of the ¹²⁵I group were 94.12%, 76.42%, and 73.65% vs. 88.24%, 50.00%, and 29.41% compared with the control group, respectively. The ¹²⁵I brachytherapy decreased the risk of recurrence (HR = 0.310) and the risk of death (HR = 0.364). Most frequent adverse events in the ¹²⁵I group included nausea, vomiting, arrhythmia, decreased white blood cell and/or platelet counts, and were generally mild and manageable.

Conclusions/Significance: Adjuvant ¹²⁵I brachytherapy significantly prolonged TTR and increased the OS rate after curative resection of HCC.

Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12610000081011.

Introduction

Partial hepatectomy is a potentially curative treatment for patients with hepatocellular carcinoma (HCC) [1]. However, the outcome after the surgery remains disappointing, mainly due to recurrence, which occurs in 40–80% of the patients within 5 years [2,3]. Prevention of postoperative recurrence is pivotal in the improvement of surgical prognosis. Certain forms of adjuvant therapies, including transarterial lipiodol chemoembolization [4,5], α-interferon [6], adoptive immunotherapy [7] and oral acyclic retinoid acid [8], have been reported as attempts to decrease the recurrence rate, but debates still remain.

Brachytherapy with radioactive seed implantation for the treatment of malignant tumors has been used for many years [9]. Radioactive seeds (e.g., cobalt-60 and radium-226) used in the early stage are nuclides that emit high-energy gamma rays. The high-energy irradiation prevented these agents from widespread use. Irradiation using low-energy chemicals (e.g., iodine-125 and palladium-103) has gained popularity in the past three decades [10]. Brachytherapy with interstitial implantation of radioactive seeds could achieve a high dose within the target area but the irradiation attenuates quickly over distance. In addition, brachytherapy is not affected by the body position and respiratory movements, thereby minimizing the possibility of geographic miss. The treatment has been recently used for a variety of cancers, including pancreatic cancer, pulmonary carcinoma, oral and maxillofacial tumors, and head and neck malignant neoplasms [11–16]. Therapeutic efficacy has been reported to be promising, particularly for prostate cancer [17,18]. Treatment of liver metastasis from colorectal cancer with ¹²⁵I implant has also been...
reported [19,20]. To the best of our knowledge, no report of 125I implant as adjuvant treatment for HCC after surgery has been published in the English literature, although a preliminary study reported its use for inoperative HCC [21].

We conducted a randomized phase 2/3 clinical trial to examine whether adjuvant 125I brachytherapy could reduce tumor recurrence rate and increase overall survival (OS) rate in HCC patients after curative resection. Adverse reaction of this treatment was also examined.

Methods

The protocol for this trial and supporting CONSORT checklist are available as supporting information; see Checklist S1 and Protocol S1.

Participants

This is a single-center, open-label, randomized trial at a teaching hospital affiliated to a medical university. All patients were between 18 and 70 years of age, and had a chest x-ray, abdominal ultrasound and contrast computed tomography (CT) or magnetic resonance imaging (MRI) of the abdomen prior to the enrollment. The laboratory blood tests included hepatitis B and C virus antigen/antibodies, serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), serum albumin (Alb), serum total bilirubin (Tbil), alanine aminotransferase (ALT) and prothrombin time (PT). The preoperative diagnosis of HCC was made by at least two radiological images showing characteristic features of HCC, or one radiological image showing characteristic features of HCC plus serum AFP at >400 ng/ml. Reserve liver function was estimated using Child-Pugh classification. HCC staging was determined according to the BCLC and 6th TNM staging systems. Performance status was assessed with Karnofsky performance score (KPS).

The eligibility criteria included: (1) HCC patients who underwent curative hepatectomy; (2) KPS score >70; (3) Child-Pugh class A; (4) adequate bone marrow (white blood cell (WBC) count ≥4.0×10^9/L, platelet (PTL) count ≥50×10^9/L) and renal function (serum creatinine <1.5 mg/dL); (5) normal major organ (heart and lung) function; and (6) no previous anticancer treatment prior to the surgery. Curative hepatectomy for HCC was defined as: (1) complete tumor resection confirmed by intraoperative ultrasound and the clear resection margin verified by histological examination; (2) no gross tumor thrombus in the portal vein (main trunk or two major branches), hepatic veins or bile duct; (3) the number of tumor nodules ≤3; and (4) no extrahepatic metastasis. The patients were excluded if they had active thyroid disease, serious concurrent medical illnesses, histologically proved non-HCC tumors or they were pregnant or breastfeeding. The last follow-up was conducted on January 31st, 2010.
Table 1. Patient characteristics.

Factors	Control group (n = 34)	^{125}I group (n = 34)	p value
Male/Female	24/10	25/9	0.787
HBs-Ag Positive (%)	31 (91.2%)	26 (76.5%)	0.100
HBe-Ag Positive (%)	12 (35.3%)	14 (41.2%)	0.618
HCV-Ab Positive (%)	5 (14.7%)	6 (17.6%)	0.742
Liver cirrhosis (%)	20 (58.8%)	18 (52.9%)	0.625
Age (years) mean (SD)	48.91 (7.30)	50.79 (6.79)	0.275
Total bilirubin (µmol/L) mean (SD)	13.97 (3.44)	14.07 (3.10)	0.903
Albumin (g/L) mean (SD)	42.21 (3.91)	41.29 (3.16)	0.294
ALT (U/L) mean (SD)	24.65 (9.32)	26.18 (9.18)	0.498
AFP (ug/L) mean (SD)	579.26 (298.46)	611.97 (265.94)	0.635
Prothrombin time (second) mean (SD)	14.30 (9.8)	14.17 (1.06)	0.595
Child-Pugh Class A/B	34/0	34/0	1.000
Mean tumor size (cm) mean (SD)	5.65 (2.52)	6.24 (2.55)	0.342
Number of tumors			0.690
single (%)	31 (91.2%)	30 (88.2%)	
multiple (%)	3 (8.8%)	4 (11.8%)	
Tumor encapsulation			0.120
absent (%)	8 (23.5%)	14 (41.2%)	
present (%)	26 (76.5%)	20 (58.8%)	
BCLC stage	0.690		
0-A	31 (91.2%)	30 (88.2%)	
B	3 (8.8%)	4 (11.8%)	
TNM stage	0.873		
I (%)	20 (58.8%)	18 (52.9%)	
II (%)	11 (32.4%)	13 (38.2%)	
III a (%)	3 (8.8%)	3 (8.8%)	
Microscopic vascular invasion	0.465		
no (%)	20 (58.8%)	17 (50.0%)	
yes (%)	14 (41.2%)	17 (50.0%)	
Edmondson-Steiner's grade	0.988		
I (%)	10 (29.4%)	9 (26.5%)	
II (%)	13 (38.2%)	13 (38.2%)	
III (%)	6 (17.6%)	7 (20.6%)	
IV (%)	5 (14.7%)	5 (14.7%)	
Surgical procedure	0.702		
wedge resection (%)	0	1 (2.9%)	
Subsegmentectomy (%)	1 (2.9%)	1 (2.9%)	
Segmentectomy (%)	25 (73.5%)	22 (64.7%)	
Lobectomy (%)	8 (23.5%)	10 (29.4%)	
Surgical margin	1.000		
<2 cm (%)	5 (14.7%)	5 (14.7%)	
≥2 cm (%)	29 (85.3%)	29 (85.3%)	
No. transfusion (%)	5 (14.7%)	9 (26.5%)	0.230
Blood loss (ml) median (range)	400 (200–800)	350 (100–700)	0.478
Blood transfusion (ml) median (range)	0 (0–400)	0 (0–400)	0.284

doi:10.1371/journal.pone.0057397.t001
Ethics Statement
The study was approved by the Institutional Ethics Committee of the Second Provincial People's Hospital of Guangdong Province. The protocol was explained to eligible patients, and informed consent was obtained from all subjects before surgery. All participants were voluntary to enter the study and gave informed consent in writing.

Hepatectomy
The surgical procedure was determined according to tumor size, anatomic location, reserve liver function and the estimated remnant liver volume/function. Standard operation included hemihepatectomy, lobectomy, segmental hepatectomy and wedge resection. Liver resection was carried out using a clamp-crushing method, and at least 1 cm surgical margin was retained. Intraoperative ultrasound was routinely employed. No operative death (death within the surgery or from complication within 30 days after the resection) occurred.

Randomization
Randomization was performed in the operating room immediately after the curative resection. Eligible patients, who gave their consent to participate in the study, were randomly allocated into the adjuvant 125I brachytherapy group and the control group at 1:1 ratio. The randomization procedure was done by computer-generated random numbers between 0 and 1 without stratification. Patients with odd number at the first decimal point were assigned to the 125I adjuvant brachytherapy group. Patients with even values (including zero) at the first decimal point were assigned to the control group. The allocation sequence was generated by Yong Xia. The participants were enrolled by Kaiyun Chen and Hanning Wang. Group assignment was carried out by Fanglian Xiao.

Implantation of 125I Seeds
In the adjuvant 125I brachytherapy group, the wound was carefully stanched, the wound surface area was measured, and the data were recorded into the computer to determine the quantity and dose of seed implantation. The 125I seeds (0.8 mm in diameter and 4.5 mm in length) were enclosed in a NiTinol capsule (China Institute of Atomic Energy, Beijing). These seeds produce 27.4–31.5 keV X-ray and 35.5 keV y ray, with a half-life of 59.6 days. The radioactivity per seed ranged from 0.5 to 0.6 millicuries (mCi). The megatemperature-sterilized seeds were implanted into the non-tumorous liver tissue adjacent to the cut surface with 1-cm intervals. The wound surface was covered by biological fibrin glue, followed by gelatin sponge or hemostatic gauze after saturation and fixation to prevent displacement of the 125I seeds. A median of 25 125I seeds per patient (range: 18–34 seeds) were implanted, with a median activity of 0.5 mCi for a median total implanted activity of 12.5 mCi (range: 9.0–20.4 mCi). The implant volume ranged from 3–27 cm3 (median, 9 cm3). The estimate of volume in surface implants was performed by arbitrarily assuming a 1-cm thickness. The procedure in the control group was identical except that no 125I seed was implanted. Postoperative treatment was identical in the two groups.

Follow-up and Outcome Measures
The follow-up included serum AFP assay, liver function test, abdominal ultrasound and chest x-ray every 2 months during the first 2 years after the surgery, and every 3 months afterwards. CT or MRI examination was performed every 3 months. If recurrence

Table 2. Adverse events.
Adverse events
Fever
Nausea
Vomiting
Diarrhea
Hair loss
Sinus tachycardia
Premature atrial contraction
Premature ventricular contraction
Decreased WBC and/or platelets
Dermatitis

doi:10.1371/journal.pone.0057397.t002

Figure 2. Time to recurrence curves. Time to recurrence in patients in the adjuvant 125I brachytherapy vs. in the control group, log-rank, X² = 7.04, p = 0.008.
doi:10.1371/journal.pone.0057397.g002
Table 3. Univariate analyses of the recurrence- and OS-related factors.

Factors	Number of cases with recurrence (%)	p value: log-rank test for recurrence	Number of death (%)	p value: log-rank test for OS
Gender				
male (n = 49)	26 (53.1)	0.912	27 (55.1)	0.780
female (n = 19)	10 (52.6)		12 (63.2)	
Age				
<55 years (n = 49)	26 (53.1)	0.952	27 (55.1)	0.643
≥55 years (n = 19)	10 (52.6)		12 (63.2)	
Intervention				
125I (n = 34)	12 (35.3)	0.008	15 (44.1)	0.026
control (n = 34)	24 (70.6)		24 (70.6)	
HBs-Ag				
negative (n = 11)	3 (27.3)	0.115	4 (36.4)	0.163
positive (n = 57)	33 (57.9)		35 (61.4)	
HBe-Ag				
negative (n = 42)	22 (52.4)	0.894	24 (57.1)	0.870
positive (n = 26)	14 (53.8)		15 (57.7)	
HCV-Ab				
negative (n = 57)	29 (50.9)	0.420	32 (56.1)	0.557
positive (n = 11)	7 (63.6)		7 (63.6)	
Liver cirrhosis				
no (n = 30)	11 (36.7)	0.033	13 (43.3)	0.049
yes (n = 38)	25 (65.8)		26 (68.4)	
Total bilirubin level				
≤17.1 μmol/L (n = 55)	28 (50.9)	0.291	30 (54.5)	0.224
>17.1 μmol/L (n = 13)	8 (61.5)		9 (69.2)	
Prothrombin time				
≤15s (n = 55)	29 (52.7)	0.927	30 (54.5)	0.224
>15s (n = 13)	7 (53.8)		9 (69.2)	
AFP				
<400 ng/mL (n = 21)	8 (38.1)	0.250	10 (47.6)	0.456
≥400 ng/mL (n = 47)	28 (59.6)		29 (61.7)	
Tumor size				
≤5.0 cm (n = 32)	17 (53.1)	0.717	17 (53.1)	0.402
>5.0 cm (n = 36)	19 (52.8)		22 (61.1)	
Tumor number				
single (n = 61)	32 (52.5)	0.230	34 (55.7)	0.103
multiple (n = 7)	4 (57.1)		5 (71.4)	
Tumor encapsulation				
absent (n = 22)	8 (36.4)	0.133	10 (45.5)	0.265
present (n = 46)	28 (60.9)		29 (63.0)	
BCLC stage				
0-A (n = 61)	32 (52.5)	0.230	34 (55.7)	0.103
B (n = 7)	4 (57.1)		5 (71.4)	
TNM stage		0.050	0.013	
I (n = 38)	17 (44.7)		18 (47.4)	
II (n = 24)	15 (62.5)		16 (66.7)	
III a (n = 6)	4 (66.7)		5 (83.3)	
Microscopic vascular invasion				
no (n = 37)	18 (48.6)	0.240	19 (51.4)	0.139
yes (n = 31)	18 (58.1)		20 (64.5)	
Sample Size and Statistical Analysis

The median recurrence-free time or the median TTR after hepatectomy for HCC from July 2000 to June 2004 were screened. We excluded 141 cases for a variety of reasons (Figure 1). The remaining 68 patients were equally and randomly assigned into the two groups. Table 1 shows the clinical and pathological characteristics of these participants. The median follow-up duration was 47.6 months (range: 7.7–106.4 months), with no patient lost to the follow-up.

Table 3. Cont.

Factors	Number of cases with recurrence (%)	\(\rho\) value: log-rank test for recurrence	Number of death (%)	\(\rho\) value: log-rank test for OS
Edmondson-Steiner’s grade				
I (n = 19)	9 (47.4)	0.623	10 (52.6)	0.427
II (n = 26)	14 (53.8)			
III (n = 13)	8 (61.5)			
IV (n = 10)	5 (50.0)			
Hepatectomy procedure				
minor resection (n = 50)	26 (52.0)	0.545	27 (54.0)	0.259
major resection (n = 18)	10 (55.6)			
Surgical margin				
<2 cm (n = 10)	4 (40.0)	0.295	5 (50.0)	0.411
≥2 cm (n = 58)	32 (55.2)			
Blood transfusion				
no (n = 54)	31 (57.4)	0.300	32 (59.3)	0.623
yes (n = 14)	5 (35.8)			

Adverse events of all subjects were generally mild (Table 2). Most frequent adverse events in the adjuvant \(^{125}\)I brachytherapy group included: nausea in four patients (including two with vomiting), arrhythmia in six patients (four with sinus tachycardia, one with frequently premature atrial contraction and one with premature ventricular contraction), and decreased WBC count (<3\(\times10^9\)/L) and/or decreased PTI count (<40\(\times10^9\)/L) in three patients. Nausea dissipated after symptomatic treatment. The patients with decreased WBC and/or PTI count were treated with 20 mg 2-(a-phenylethylacetate)-4-carboxylthiazolidine and 50 mg bencilalcohol (three times a day). The WBC and/or PTI count restored to the normal range within one week. Tachyarrhythmia usually occurred within 1–5 postoperative days in patients, and dissipated after about 1 week of symptomatic treatment. No hepatic failure was observed prior to tumor recurrence in any patient.

Results

Participant Flow and Baseline Characteristics

A total of 209 consecutive patients receiving curative liver resection for HCC from July 2000 to June 2004 were screened. Excluded 141 cases for a variety of reasons (Figure 1). The remaining 68 patients were equally and randomly assigned into the two groups. Table 1 shows the clinical and pathological characteristics of these participants. The median follow-up duration was 47.6 months (range: 7.7–106.4 months), with no patient lost to the follow-up.

Adverse Events

Adverse events of all subjects were generally mild (Table 2). Most frequent adverse events in the adjuvant \(^{125}\)I brachytherapy group included: nausea in four patients (including two with vomiting), arrhythmia in six patients (four with sinus tachycardia, one with frequently premature atrial contraction and one with premature ventricular contraction), and decreased WBC count (<3\(\times10^9\)/L) and/or decreased PTI count (<40\(\times10^9\)/L) in three patients. Nausea dissipated after symptomatic treatment. The patients with decreased WBC and/or PTI count were treated with 20 mg 2-(a-phenylethylacetate)-4-carboxylthiazolidine and 50 mg bencilalcohol (three times a day). The WBC and/or PTI count restored to the normal range within one week. Tachyarrhythmia usually occurred within 1–5 postoperative days in patients, and dissipated after about 1 week of symptomatic treatment. No hepatic failure was observed prior to tumor recurrence in any patient.
Tumor Recurrence

At recurrence, the tumor was within the liver, with no extrahepatic recurrence in all cases. TTR in the adjuvant 125I brachytherapy group had a mean of 60.0 months (vs. 36.7 months in the control group). The rate of postoperative recurrence was 35.29% (12/34 patients) in the adjuvant 125I brachytherapy group as opposed to 70.59% (24/34 patients) in the control group (Figure 2). The 1-, 3- and 5-year recurrence-free rates of the 125I group were 94.12%, 76.42% and 73.65% vs. 88.24%, 50.00% and 29.41% of that in the control group (log-rank test, \(p = 0.008 \)), respectively. There were two recurrence-free deaths in the adjuvant 125I brachytherapy group, which were also included and censored on the date of death in the Kaplan-Meier plot for the recurrence-free rate. The comparison of recurrence-free rate between the adjuvant 125I brachytherapy group and control group is presented in Figure 2.

Upon univariate analysis, pTNM stage, liver cirrhosis and adjuvant 125I brachytherapy were prognostic factors that affected the recurrence. Multivariate analysis indicated that pTNM stage and adjuvant 125I brachytherapy are independent prognostic factors. The risk of recurrence in the adjuvant 125I brachytherapy group was lower than that in control group (HR = 0.310, [95% confidence intervals (CI), 0.145–0.662], Cox proportional hazards regression model, \(p = 0.002 \)) (Table 3 and Table 4).

Overall Survival

Fifteen and 24 patients (44.11% and 70.59%) died in the adjuvant 125I brachytherapy and the control groups, respectively. Major causes of death included hepatic and renal failure as well as cachexia resulting from tumor recurrence, with the exception of cerebrovascular accidents and coronary heart disease in two cases in the adjuvant 125I brachytherapy group. The mean OS was 63.6 months and 38.9 months in the adjuvant 125I brachytherapy group and the control group, respectively. The 1-, 3- and 5-year OS rates of the adjuvant 125I brachytherapy group and control group were 94.12%, 73.53% and 55.88% vs. 88.24%, 52.94% and 29.41% (Kaplan-Meier, log-rank test, \(p = 0.026 \)), respectively. The OS rate of the adjuvant 125I brachytherapy group was significantly higher than that of the control group. Univariate analysis showed that pTNM stage, liver cirrhosis and adjuvant 125I brachytherapy significantly affected the OS. A multivariate analysis showed that pTNM stage and adjuvant 125I brachytherapy are independent prognostic factors that affected the OS. Tables 3 and 4 show that HR for death of the adjuvant 125I brachytherapy group was 0.364 relative to that in the control group (95% CI, 0.178–0.741, Cox proportional hazards regression model, \(p = 0.005 \)).

Discussion

Results from the current study indicated that 125I brachytherapy could increase TTR and OS in HCC patients receiving curative resection. The risk of tumor recurrence was also significantly decreased by the 125I brachytherapy (HR = 0.310). The risk of death in the adjuvant 125I brachytherapy group was significantly lower than that in the control group (HR = 0.364). Considering the relatively mild adverse events, 125I brachytherapy is a useful treatment option for HCC patients at recurrence.

Table 4. Multivariate analyses of the recurrence- and OS-related factors.

Independent factors	B	SE	Wald	Significance	HR	95.0% CI for HR
					Lower	Upper
Recurrence						
125I brachytherapy	-1.71	0.387	9.167	0.002	0.310	0.145–0.662
pTNM stage			10.201	0.006		
pTNM II vs I*	0.563	0.355	1.755	0.875	3.523	
pTNM IIIa vs I*	1.911	0.614	6.758	2.209	22.515	
Overall survival						
125I brachytherapy	-1.012	0.364	7.742	0.005	0.364	0.178–0.741
pTNM stage			13.010	0.001		
pTNM II vs I*	0.609	0.345	1.839	0.936	3.613	
pTNM IIIa vs I*	1.984	0.561	7.274	2.421	21.857	

*the HR is the ratio of brachytherapy to control.

\(\text{b, c, e, f} \) the HR is the ratio of higher to lower stage.

* TNM was a categorical variable that was assessed using dummy variables with stage I as the reference.

doi:10.1371/journal.pone.0057397.t004

Figure 3. Overall survival curves. OS in patients in the adjuvant 125I brachytherapy vs. in the control group, log-rank, \(X^2 = 4.97, p = 0.026 \).

doi:10.1371/journal.pone.0057397.g003
and safe adjuvant therapy after curative resection of HCC in our opinion. Previous attempts to improve the long-term outcome with adjuvant therapy after curative resection for HCC have been generally disappointing [26]. Systemic and regional chemotherapies failed to show significant survival benefit in randomized trials [4,27]. Other adjuvant modalities, including subcutaneous interferon injection, oral acyclic retinoic acid, intra-arterial lipiodol-iodine-131 and adoptive immunotherapy, have shown promising results [6–8,24,25], but remain controversial for HCC [26]. 125I seeds have been used for a variety of tumors, including prostatic carcinoma, pancreatic carcinoma, lung cancer, oral and maxillofacial malignant tumors, and malignant tumors of the head and neck [12,16,17,29]. Some studies reported prolonged survival after implanting 125I seed into the tumor tissue or tumor bed in patients with metastatic liver cancer [19]. For advanced unresectable HCC, CT-guided 125I seed intrahepatic implantation may achieve higher rate of complete and partial remission [21]. TACE in combination with portal vein stent and 125I implantation may be safe and effective for HCC with tumor thrombus in the main portal vein [30,31]. To the best of our knowledge, no study of adjuvant brachytherapy for resectable HCC has been published in the English literature.

Implantation of permanent radioactive 125I seeds offers the advantage of intraoperative placement under direct vision. The seeds could produce radiation to the remaining cancer cells from a very short distance. The irradiation decreases sharply from the center to the periphery, with only 1% dosage at 5 cm from the source (relative to 1 cm from the source) [32], thus limiting the exposure to other vital organs. Previous studies have also indicated that radioisotopes are cell cycle dependent, and cells in the G2/M phase are more radioresponsive [33]. Continuous irradiation at low dose, such as obtained with 125I seeds, enhances the radioisotopes by inducing the accumulation of cells in a more radioresponsive cell cycle phase (G2/M) and results in more tumor cell destruction [34]. A previous study from this laboratory showed that 125I implantation stimulates the anti-tumor immune response in HCC patients by increasing CD3+ and CD4+ immunocytes and promoting Th2/Th1 deviation [35]. Together, these findings suggested that 125I brachytherapy could target tumor cells more effectively and minimize damage to healthy tissues, including the remaining liver.

Adverse events of adjuvant brachytherapy are generally related to exposure to radioactive material, but are generally mild and manageable. Similar to the previous studies [19,20], most frequent adverse events in the 125I group included nausea/vomiting, leukopenia and thrombocytopenia. Cardiac arrhythmias occurred in a few patients but spontaneously dissipated with no treatment. The result suggested that cardiac and pulmonary function need to be evaluated vigorously. However, this study is limited in several aspects. First, the sample size is relatively small. Second, we did not attempt stratified analysis that could be obvious to the readers (such as based on tumor size). Thirdly, the multiple testing was not adjusted. Multiple testing without adjustment increases the probability of finding a statistically “significant” change by chance alone.

In conclusion, 125I implant into the cut surface of remnant liver is an effective adjuvant modality for HCC patients after the radical hepatectomy. Our results demonstrated that 125I brachytherapy is a safe and could delay postoperative tumor recurrence. Multi-center, randomized controlled trials of larger scale are essential to verify these findings.

Supporting Information

Checklist S1 The checklist that items pertain to the context of the Title, Abstract, Introduction, Methods, Results, Discussion, and Other information. Details of these items, as found in the CONSORT 2010 Explanation and Elaboration document, can be browsed using the menu on the left.

Protocol S1 A copy of the trial protocol as approved by the ethics committee.

(PDF)

Acknowledgments

We are grateful to Professor Hong Meng for her assistance in statistical analyses.

Author Contributions

Conceived and designed the experiments: KY XG FS. Performed the experiments: KY XG FS. Analyzed the data: KY XG FS. Contributed reagents/materials/analysis tools: HW FX. Wrote the paper: KY GX FS.

References

1. Lopez PM, Villanueva A, Llovet JM (2006) Systematic review: evidence-based management of hepatocellular carcinoma—an updated analysis of randomized controlled trials. Aliment Pharmacol Ther 23: 1535–1547.
2. Chang CH, Chau GY, Lui WY, Tsay SH, King KL, et al. (2004) Long-term results of hepatic resection for hepatocellular carcinoma originating from the nontumorous liver. Arch Surg 139: 320–325, 326.
3. Ting-Ping PK, Fan ST, Wong J (2009) Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg 232: 10–24.
4. Lo CM, Fan ST, Liu CL, Wong J (1998) Postoperative adjuvant chemotherapy after curative resection of hepatocellular carcinoma: a randomized controlled trial. Arch Surg 133: 163–168.
5. Takenaka K, Yoshida K, Nishizaki T, Korenaga D, Hiroshige K, et al. (1995) Postoperative prophylactic lipiodolization reduces the intrahepatic recurrence of hepatocellular carcinoma. Ann Surg 220: 1521–1526.
6. Lo CM, Liu CL, Chan SC, Lam CM, Poon RT, et al. (2007) A randomized, controlled trial of postoperative adjuvant interferon therapy after resection of hepatocellular carcinoma: A randomised controlled trial. Lancet Oncol 8: 546–553.
7. Takayama T, Sekine T, Maknuchi M, Yamasaki S, Kusuge T, et al. (2000) Adoptive immunotherapy to lower post-surgical recurrence rates of hepatocellular carcinoma: a randomized trial. Lancet 356: 802–807.
8. Moto Y, Moriwaki H, Nounoiya M, Adachi S, Saito A, et al. (1996) Prevention of second primary tumors by an acyclic retinoid, polyprenoic acid, in patients with hepatocellular carcinoma. Hepatoma Prevention Study Group. N Engl J Med 334: 1561–1567.
9. Aronowitz JN (2002) Buried emanation; the development of seeds for permanent implantation. Brachytherapy 1: 167–178.
10. Wuo CS, Kiasuga P, Zeider M, Amols H (1996) Microdosimetric evaluation of relative biological effectiveness for 103Pd, 125I, 241Am, and 192Ir brachytherapy sources. Int J Radiat Oncol Biol Phys 36: 683–697.
11. Huang K, Syed FK, Kunwar S, Kruger A, Larson DA, et al. (2009) Surgical resection and permanent iodine-125 brachytherapy for brain metastases. J Neurooncol 91: 83–93.
12. Horvitz EM, Frazier AJ, Vicini FA, Clarke DH, Edmundson GR, et al. (1997) The impact of temporary iodine-125 interstitial implant boost in the primary management of squamous cell carcinoma of the oropharynx. Head Neck 19: 219–226.
13. Horvitz EM, Frazier AJ, Martinez AA, Reidan RD, Clarke DH, et al. (1996) Excellent functional outcome in patients with squamous cell carcinoma of the base of tongue treated with external irradiation and interstitial iodine 125 boost. Cancer 78: 948–957.
14. Goertz SR, Ali MM, Parker GA (1990) Local management of pancreatic carcinoma: implants of iodine 125 and combination of iodine 125 with chemotherapy after curative resection of hepatocellular carcinoma. Clin Oncol (R Coll Radiol) 2: 22–26.
15. Suen YH, Arianis S (1985) Intraoperative adjuvant radiotherapy for advanced cancers of the head and neck. Preliminary report. Am J Surg 150: 480–484.
16. Zhang FJ, Li CX, Wu PH, Wu YX, Jiao DC, et al. (2007) [CT guided radioactive 125I seed implantation in treating localized advanced pulmonary carcinoma]. Zhonghua Yi Xue Za Zhi 87: 3272–3275.
17. Heysek RV (2007) Modern brachytherapy for treatment of prostate cancer. Cancer Control 14: 238–243.
18. Ragde H, Blasko JC, Grimm PD, Kenny GM, Sylvester JE, et al. (1997) Interstitial iodine-125 radiation without adjuvant therapy in the treatment of clinically localized prostate carcinoma. Cancer 80: 442–453.

19. Martinez-Monge R, Nag S, Nieroda CA, Martin EW (1999) Iodine-125 brachytherapy in the treatment of colorectal adenocarcinoma metastatic to the liver. Cancer 85: 1218–1225.

20. Armstrong JG, Anderson LL, Harrison LB (1994) Treatment of liver metastases from colorectal cancer with radioactive implants. Cancer 73: 1800–1804.

21. Nag S, DeHaan M, Scroggs G, Mayo N, Martin EW (2006) Long-term follow-up of patients of intrahepatic malignancies treated with iodine-125 brachytherapy. Int J Radiat Oncol Biol Phys 64: 736–744.

22. Cha C, Fong Y, Jarnagin WR, Blumgart LH, DeMatteo RP (2003) Predictors and patterns of recurrence after resection of hepatic adenocarcinoma. J Am Coll Surg 197: 753–758.

23. Covey AM, Maluccio MA, Schubert J, BenPorat L, Brody LA, et al. (2006) Particle embolization of recurrent hepatocellular carcinoma after hepatectomy. Cancer 106: 2181–2189.

24. Lau WY, Leung TW, Ho SK, Chan M, Machin D, et al. (1999) Adjuvant intraarterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 353: 797–801.

25. Sun HC, Tang ZY, Wang L, Qin LN, Ma ZC, et al. (2006) Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J Cancer Res Clin Oncol 132: 458–465.

26. Schwartz JD, Schwartz M, Mandeli J, Sung M (2002) Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomized clinical trials. Lancet Oncol 3: 593–603.

27. Ono T, Yamanoi A, Nazmy EAO, Kohno H, Nagase N (2001) Adjuvant chemotherapy after resection of hepatocellular carcinoma causes deterioration of long-term prognosis in cirrhotic patients: metaanalysis of three randomized controlled trials. Cancer 91: 2378–2385.

28. Samuel M, Chow PK, Chan SE, Machin D, Soo KC (2009) Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Cochrane Database Syst Rev: D1199.

29. Joyce J, Dachman AH, Snover D (1990) Ultrasonically guided percutaneous implantation of iodine-125 seeds in pancreatic carcinoma. Int J Radiat Oncol Biol Phys 19: 1049–1052.

30. Chuan-Xing L, Xu H, Bao-Shan H, Yong L, Pei-Jian S, et al. (2011) Efficacy of therapy for hepatocellular carcinoma with portal vein tumor thrombus: chemoembolization and stent combined with iodine-125 seed. J Cancer 12: 863–871.

31. Liao J, Van Z, Liu Q, Qi X, Wang J (2011) Endovascular placement of iodine-125 seed strand and stent combined with chemoembolization for treatment of hepatocellular carcinoma with tumor thrombus in main portal vein. J Vasc Interv Radiol 22: 479–489.

32. Nath R, Anderson LL, Lixton G, Weaver KA, Williamson JF, et al. (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys 22: 209–234.

33. Strasser-Wozak EM, Hartmann BL, Gley S, Sponc B, Bock G, et al. (1998) Irradiation induces G2/M cell cycle arrest and apoptosis in p53-deficient lymphoblastic leukemia cells without affecting Bcl-2 and Bax expression. Cell Death Diff 5: 687–693.

34. Zhong HQ, Wang JJ, Liao AY, Wang JD, Zhao Y (2009) The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells. J Exp Clin Cancer Res 28: 12.

35. Xiang GA, Chen KY, Wang HN, Xiao JF (2010) [Immunological influence of iodine-125 implantation in patients with hepatocellular carcinoma resection]. Nan Fang Yi Ke Da Xue Xue Bao 30: 292–294.