Definition and prevalence of familial short stature

Veronica Grigoletto
University of Trieste: Universita degli Studi di Trieste

Alessandro Agostino Occhipinti
Institute for Maternal and Child Health: IRCCS materno infantile Burlo Garofolo

Maria Chiara Pellegrin
Institute for Maternal and Child Health: IRCCS materno infantile Burlo Garofolo

Fabio Sirchia
Institute for Maternal and Child Health: IRCCS materno infantile Burlo Garofolo

Egidio Barbi
Institute for Maternal and Child Health: IRCCS materno infantile Burlo Garofolo

Gianluca Tomese
IRCCS materno infantile Burlo Garofolo
https://orcid.org/0000-0002-4395-3915

Research

Keywords: familial short stature, target height, genetics, measured, reported

DOI: https://doi.org/10.21203/rs.3.rs-128628/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective

A significant portion of familial short stature (FSS) cases may not be recognized in clinical practice if the parents’ height is not adequately investigated. This study aimed to verify the prevalence of different definition of FSS on a cross-sectional cohort of children referred for short stature (SS) when their height and that of both parents were measured.

Methods

We consecutively enrolled 65 individuals referred for SS when both parents were present. We defined “target height related short stature” (TH-SS) when child height SDS was ≤-2 and included in the range of TH (i.e. TH SDS ± 1.5) and “autosomal dominant short stature” (AD-SS) when child and at least one parent heights were ≤-2 SDS.

Results

On 65 children referred for SS, 48 individuals had a height ≤-2 SDS. Based on measured parents’ heights, 24 children had TH-SS and 16 children AD-SS; 12 children were identified by both TH-SS and AD-SS, while 12 children with TH-SS did not have any of parents with SS. When considering reported parents’ heights, 3 out of 24 children with TH-FSS and 9 out of 16 with AD-FSS would have been missed.

Conclusion

This study underlines that adequate measurement and consideration of both parents’ height should be part of the clinical evaluation of every children with SS and new definitions should be used to detect and adequately approach the cases of FSS, since the identification of a causative gene in AD-SS can support treatment and follow-up decisions.

Introduction

Short stature (SS) – defined as a height ≤-2 standard deviation score (SDS) – is the most common referral reason in pediatric endocrinology. ¹

In 23–37% of the cases, these children have a family history of SS and attain a final adult height that, despite being ≤-2 SDS, is consistent with their target height (TH): this condition is addressed as familial short stature (FSS) and has long been considered a normal variant of growth and is usually not investigated nor treated²⁻³.
However, genetic analysis's rapid progress and innovation enabled scientists to identify different monogenic gene defects causing SS, mainly with an autosomal-dominant inheritance, that may be not classified as FSS according to this definition when parents have a large difference between their height SDS. For this reason, some Authors believe that is more appropriate to consider FSS when at least one parent has height of \(\leq -2 \) SDS.\(^4\)–\(^6\)

Furthermore, a significant portion of FSS cases may not be recognized in clinical practice if the parents’ height is not adequately investigated. Family history may not be enough to identify all children having a parent with SS if we consider that parents – especially those of children referred for short stature – tend to overestimate their height.\(^7\)–\(^11\)

This study aimed to verify the prevalence of different definitions of FSS on a cross-sectional cohort of children referred for SS when their height and that of both parents were measured.

Material And Methods

We consecutively enrolled 65 individuals referred for SS to the Endocrine Unit of the Institute for Maternal and Child Health "Burlo Garofolo" when both parents were present. After explaining that an accurate estimate of their height was required for their children's evaluation, parents’ self-reported height was recorded (reported parent height, R-PHT). Parents and children were then measured (measured parent height, M-PHT, and child height, CHT, respectively) using a Harpenden stadiometer.

TH was calculated with the formula: \((\text{paternal height} + \text{maternal height})/2 - 6\) for females and \(+ 6\) for males using Growth Calculator 3 Software, as well as SDS for heights and TH according to Italian reference charts (Cacciari 2006).

We used the following definition for FSS:

- “target height related short stature” (TH-SS) when CHT SDS was \(\leq -2 \) and included in the range of TH (i.e. TH SDS \(\pm 1.5\));
- “autosomal dominant short stature” (AD-SS) when CHT and at least one PHt were \(\leq -2 \) SDS.

The prefixes R- and M- were added with reference to R-PHT or M-PHT, according to data used in the calculation.

The study was approved by the Institutional Review Committee (RC 33/18 Line 2).

Data were presented as percentages, median and interquartile ranges (IQRs). Mann-Whitney rank-sum tests and Two-tailed Fisher exact tests were performed to evaluate the relations between variables. A p-value \(< 0.05\) was considered statistically significant. Statistical analysis was conducted using JMP™ software (version 15.1.0, SAS Institute Inc.).
Results

Over 65 children referred for SS, 48 individuals (20 females) had a height ≤ -2 SDS (median children height SDS − 2.4 [IQR − 2.8; -2.1], median age 9.1 years [IQR 6.2; 12.4]), while 17 children (7 females) were not short (median children height SDS − 1.9 [IQR − 1.9; -1.8], median age 12.1 years [IQR 5.4; 14.3]).

When considering M-PHt, 24 children had TH-SS and 16 children AD-SS (Fig. 1). Overall 28 children were included in at least one of the two definition: 12 children were identified by both TH-SS and AD-SS, while 12 children with TH-SS did not have any of parents with SS (Fig. 2).

Children with TH-SS were significantly higher (median CHt SDS − 2.26 [IQR − 2.53; -2.15]) than other children with SS (median CHt SDS − 2.55 [IQR − 3.00; -2.31]) (p < 0.01), while children with AD-SS were shorter (median CHt SDS − 2.54 [IQR − 3.32; -2.17]) than other children with SS (median CHt − 2.44 [IQR − 2.67; -2.2]), with no statistical significance (p = 0.27).

When considering R-PHt, 3 out of 24 children with TH-FSS and 9 out of 16 with AD-FSS would have been missed (Fig. 1).

Discussion

In this study we verified that the prevalence of FSS among short children may vary according to the definition: only a third had at least one parent had a height ≤ -2 SDS (AD-SS), while half had a height consistent with TH (TH-SS) and a quarter had TH-SS without short parents. Moreover, we found that a relevant quote of FSS may be missed if clinicians only rely on reported parents’ height (56% of AD-SS and 13% of TH-SS).

Although this study refer to a small cohort in a single centre, it points the attention on the definition of FSS for its following management. We believe that the real FSS, intended as a normal variant of growth, with no need of specific investigation, should be defined as a TH-SS only when none of the parents’ heights is ≤ -2 SDS (25% of children with SS in this cohort). However, in half of TH-SS, a parent with short stature was present and, as in all cases of AD-SS (33% of children with SS in this cohort), a genetic evaluation should be required, in order to possibly investigate genetic mutation causing SS with an autosomal-dominant inheritance. In practical terms, a cut-off height for the definition of SS in parents can be identified, reducing the need for additional calculations during the medical evaluation (for instance, in the Italian population, -2 SDS height in adults corresponds to 150.9 cm for women and 164.1 cm for men).

Cases of AD-SS should not be missed, since the identification of a causative gene can support treatment decisions, allowing for a more accurate prediction of the specific response to growth hormone treatment, evaluating the recurrence risk in the family, and enabling the recognition of other features in case of a syndrome. 12
In conclusion, this study underlines that adequate measurement and consideration of both parents’ height should be part of the clinical evaluation of every children with SS and new definitions should be used to adequately detect and approach the cases of FSS, giving a concrete chance to characterize better and treat their condition.

Abbreviations

Abbreviation	Definition
AD-SS	autosomal dominant short stature
CHt	child height
FSS	familial short stature
IQR	interquartile range
M-	measured
PHt	parent height
R-	reported
SDS	standard deviation score
SS	short stature
TH	target height
TH-SS	target height related short stature

Declarations

Acknowledgments

The authors thank Martina Bradaschia for the English revision of the manuscript and Viviana Vidonis, Giada Vittori, and Nicoletta Grassi for their clinical support.

Funding

No funding was secured for this study.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, GT, upon reasonable request.

Ethics approval and consent to participate
The study was approved by the Institutional Review Committee (RC 33/18 Line 2). Informed consent was provided by patients’ parents.

Consent for publication

Not needed.

Competing interests

The authors have no conflicts of interest to report and no financial interests to disclose.

Authors’ contributions

VG and AAO concepted the work, helped in the acquisition of data and wrote the first draft; MCP, FS and EB have drafted the work and substantively revised it; GT concepted the work, performed the analysis have drafted the work and substantively revised it. All authors have approved the submitted version.

References

1. Bellotto E, Monasta L, Pellegrin MC, et al. Pattern and features of pediatric endocrinology referrals: a retrospective study in a single tertiary center in Italy. Front Pediatr. 2020;8:580588.
2. Sisley S, Vargas Trujillo M, Khoury J, et al. Low incidence of pathology detection and high cost of screening in the evaluation of asymptomatic short children. J Pediatr. 2013;163:1045–51.
3. ICPED Consortium. International Classification of Pediatric Endocrine Diagnoses. 1C.1 Familial idiopathic short stature. Available from: http://www.icped.org [Accessed 12 Dec 2020].
4. Dauber A. Genetic testing for the child with short stature – Has the time come to change our diagnostic paradigm? J Clin Endocrinol Metab. 2019;104:2766–9.
5. Tornese G. Letter to the Editor: “IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy”. J Clin Endocrinol Metab. 2019;104:5116–7.
6. Vasques GA, Jorge AAL. Response to Letter to the Editor: “IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy”. J Clin Endocrinol Metab. 2019;104:5118–9.
7. Cizmecioglu F, Doherty A, Paterson WF, et al. Measured versus reported parental height. Arch Dis Child. 2005;90:941–2.
8. Teitelbaum JE, Koreen S, Hightower K, et al. Inaccuracy of stated versus measured parental heights. Clin Pediatr (Phila). 2005;44:339–41.
9. Braziuniene I, Wilson TA, Lane AH. Accuracy of self-reported height measurements in parents and its effect on mid-parental target height calculation. BMC Endocrine Disorders. 2007;7:2.
10. Gozzi T, Flück C, L’allemand D, et al. Do centimetres matter? Self-reported versus estimated height measurements in parents. Acta Paediatr. 2010;99:569–74.
11. Ceconi V, Grigoletto V, Pellegrin MC, et al. Accuracy and consequences of reported target height. Acta Paediatr 2020 [Epub ahead of print].
12. Tornese G, Pellegrin MC, Barbi E, et al. Pediatric endocrinology through syndromes. Eur J Med Genet. 2020;63:103614.

Figures

Figure 1

Distribution of children referred for short stature (SS); those with actual SS (height ≤-2 SDS); children with familial short stature (FSS) based on definition (TH-FSS, target height related familial short stature, when child height was ≤-2 and included in the range of TH (i.e. TH SDS ± 1.5); AD-FSS, autosomal dominant familial short stature, when child height and at least one parent's height were <2 SDS) and on source of parents’ height data (R for referred, in grey; M for measured, in black).
Figure 2

Distribution of children with target height related familial short stature (TH-FSS, n=24) and autosomal dominant familial short stature (AD-FSS, n=16), based on measured parents’ heights (M-). Familial short stature (FSS, n=12) is defined as TH-SS without any short parent.