Non-Noble Metal Photocatalysts for Hydrogen Production: A Step Ahead towards Practical Applications

Introduction

Hydrogen is an attractive sustainable clean energy carrier with water the only combustion product, provided it is generated from water splitting or other renewable resources using direct sunlight. After about 150 year’s exploitation and utilization of fossil fuels, their combustion products are causing the serious global problems, such as the greenhouse effect, ozone layer depletion, acid rain and environmental pollution. Hydrogen has a large specific energy density, easily convertible to electricity by fuel cells and produces more heat (122 MJ/Kg) than gasoline 44 (MJ/Kg), thus, rapidly emerging as a sustainable and the clean fuel for transportation and industrial utilities [1].

Development of visible-light-driven photocatalysts to produce hydrogen by water splitting using solar energy is an attractive and environment friendly method, which offers a way for capturing available solar energy and converting it into hydrogen. To date, many photocatalysts have been reported capable of producing hydrogen from water in the presence of sacrificial agent, with M/SC systems where M=Pd, Au or Pt and SC=TiO_2 or CdS generally showing the best and most stable performance [2-5]. In addition, currently, g-C_3N_4 has been emerging as new support for metal loadings. Photo catalysis relies on capturing the energy of incident photons with $E > E_G$ via excitation of electrons from the valence band of a semiconductor into the conduction band. Electrons and holes thus produced then drive oxidation and reduction reactions on semiconductor surface. However, semiconductors alone without metal co-catalyst are unable to produce hydrogen from water because of high over potential due to photogenerated charge recombination. Metal co-catalyst deposited over semiconductor surface draws out the electrons from the conduction band by forming rectifying shottky barrier formation which prevent the backflow of electrons. In addition metal provides a surface for the adsorption of proton and recombination of atomic hydrogen [6]. However, noble metals are expensive with low natural abundance, hence they are not especially practical for the design and development of industrial photocatalysts for hydrogen production. The identification of alternative low cost co-catalysts that enhance the photo catalytic activity of TiO_2 for hydrogen production is a priority.

Cu and Niin metallic state or in oxide and hydroxide form when present over semiconductors are particularly promising in this regard and represent cost-effective and efficient photocatalysts systems for solar hydrogen production. For instance, Yu and co-workers deposited Ni(OH)_2 nanoclusters on TiO_2, CdS and g-C_3N_4 by a simple precipitation method and observed a hydrogen production rate of 3.0 and 5.08 and 0.152 mmol g$^{-1}$ h$^{-1}$under UV and visible light excitation [7]. Hydrogen evolution was attributed to the more positive redox potential of Ni$^{3+}$/Ni couple compared to the conduction band of TiO$_2$, CdS and g-C$_3$N$_4$ resulting in the photo reduction of Ni(OH)$_2$ to Ni0 which served as active sites for the reduction of H$^+$ to H$_2$. Another group recently reported hydrogen production activity of 24.3 mmol g$^{-1}$ h$^{-1}$ in 95% ethanol water mixture over Ni/TiO$_2$ system greater than many noble metal supported TiO$_2$ systems. Albeit a very high concentration of ethanol was used in this study but this was highest rate of hydrogen production achieved so far over Ni/TiO$_2$ systems. This high rate of hydrogen production was attributed to the presence of Nickel as highly dispersed and exclusively in Ni (0) state in there synthesis technique. There are numerous studies in literature validating nickel as a future non noble metal co catalyst [8-11].

In concurrent with Ni, Cu in the form of Cu(0), Cu$_2$O and CuO is also emerging as excellent co-catalyst for hydrogen production. Cubic Cu$_2$O (E_G= 2.1 Ev) and the monoclinic CuO (E_G=1.2 Ev) for bulk CuO have broad perspectives for attractive utilization as active components in photocatalysts [12].The redox potential for (Cu(0)/Cu) is such that it is easily reduced to Cu by photo excited electrons in TiO$_2$, CdS and g-C$_3$N$_4$ [13]. While under the same conditions the potential of CuO/Cu is so that it remains as CuO. CuO loading is very sensitive to particle size. It is reported that with the increase of CuO particle size its conduction band potential becomes less negative than proton reduction potential and electrons flow to proton becomes unfavourable [12]. The conventional impregnation method is frequently used for the synthesis of CuO containing TiO$_2$ photocatalysts but it frequently results in increase of CuO particles size due to agglomerate formation during synthesis. Yu and co-workers fabricated Cu(OH)$_2$/TiO$_2$ photocatalysts deposition precipitation method, and reported a hydrogen production rate of 3.4 mmol g$^{-1}$ h$^{-1}$under UV. Chen and co-workers fabricated highly dispersed CuO nano part des by complex precipitation method reported elsewhere. They ascertained that the hydrogen production activity over CuO/TiO$_2$ system was dependent on the nominal CuO loading, with 1.25 wt.% CuO being optimal [H$_2$ production rate = 20.3 mmol g$^{-1}$ h$^{-1}$ in 80:20 EtOH:H$_2$O] [12]. Highly dispersed sub monolayer Cu(II) species
on TiO₂ surfaces, rather than supported CuO nanoparticles, were proposed as the active site for hydrogen production. There are many reports in literature demonstrating Cu as efficient metal cocatalyst for hydrogen production [14-17]. The above discussion confirmed that Cu is a promising alternative to noble metals in photocatalytic system. Considering that Ni is also an efficient cocatalyst in some photocatalysts, it can be deduced that the Cu-Ni bimetallic cocatalyst might have high reactivity in photocatalytic system due to synergistic effect. Tian and co-workers synthesized Ni-Cu co-modified TiO₂ by simple hydrothermal method and observed high hydrogen production activity (13.2 mmol h⁻¹ g⁻¹) [18]. Very recently, we have prepared Ni-Cu co-modified TiO₂ photocatalysts by simple precipitation method and observed very high hydrogen production rate of 22.5 mmol h⁻¹ g⁻¹ from very low glycerol concentration [19]. The work functions of Cu and Ni are 4.94 eV and 5.15 eV respectively. The work function of bimetallic Cu-Ni lies at the level intermediate between Cu and Ni. As a result, a more appropriate height of Schottky barrier is achieved than that between semiconductor and single metal.

As future perspective, the non noble metals Cu and Ni can be an excellent substitute of noble metals for semiconductor based photocatalysts, if their synthesis is properly tuned to achieve highly dispersed and catalytically active state of metal nanoparticles. Cu in the form of Cu and CuO is efficient cocatalyst for hydrogen production whereas Ni is found to active when exclusively present in Ni (0) state. Although Ni in the form of NiO is also reported to produce hydrogen at good rates but not high enough to compare with other state of art none noble metal photocatalysts [20]. Cu and Ni when co-deposited as Cu/Ni alloy due to highly synergistic electron transfer effect and optimized Schottky barrier height have been emerging as strong candidate to replace noble metals in future.

References

1. Momirlan M, T Veziroglu (1999) Recent directions of world hydrogen production. Renewable and Sustainable Energy Reviews 3(2-3): 219-231.
2. Chen WT, Andrew Chan, Zakjia HY, Aubrey G Dosado, Muhammad A Nadeem, et al. (2015) Effect of TiO₂ polymorph and alcohol sacrificial agent on the activity of Au/TiO₂ photocatalysts for H₂ production in alcohol-water mixtures. Journal of Catalysis 329: 499-513.
3. Dosado AG, Wan Ting Chen, Andrew Chan, Dongxiao Sun Waterhouse, Geoffrey IN (2015) Novel Au/TiO₂ photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titane nanotube precursors. Journal of Catalysis 330: 238-254.
4. Majeed L, Nadeem MA, Al Oufi M, Nadeem MA, Waterhouse GI N, et al. (2016) On the role of metal particle size and surface coverage for photocatalytic hydrogen production: A case study of the Au/Gd system. Applied Catalysis B: Environmental 182: 266-276.
5. Wang X, Chihao L, Dianpeng Q, Bowen Z, Wan Ru L, et al. (2014) Programmable Photo-Electrochemical Hydrogen Evolution Based on Multi-Segmented CdS-Au Nanorod Arrays. Advanced Materials 26(21): 3506-3512.
6. Joo JB, Robert Dillon, Ilkun Lee, Yadong Yin, Christopher J Bardeen, et al. (2014) Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H₂. Proceedings of the National Academy of Sciences 111(22): 7942-7947.
7. Yu JY Hai, B Cheng (2011) Enhanced photocatalytic H₂-production activity of TiO₂ by Ni(OH)₂ cluster modification. The Journal of Physical Chemistry C 115(11): 4953-4958.
8. Cao S, Chuan JW, Xiao J, Wen FF (2015) A highly efficient photocatalytic H₂ evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Applied Catalysis B: Environmental 162: 381-391.
9. Xiaoping Chen, Shu Chen, Guifang LI, Zhi Jiang, Wenfeng Shangguan, et al. (2015) NiBox/CdS photocatalyst prepared by flowerlike Ni/Nil (OH)₂ precursor for efficiently photocatalytic H₂ evolution. International Journal of Hydrogen Energy 40(2): 998-1004.
10. Wang H, Wei Chen, Jing Zhang, Cunping Huang, Lianjun Mao (2015) Nickel nanoparticles modified CdS-A potential photocatalyst for hydrogen production through water splitting under visible light irradiation. International Journal of Hydrogen Energy 40(1): 340-345.
11. Devi S, Prakash K, Achary SN, Gupta NM (2014) Genesis of enhanced photocactivity of CdS/Ni₃ nanocomposites for visible-light-driven splitting of water. International Journal of Hydrogen Energy 39(34): 19424-19433.
12. Chen WT, Vedran Joivc, Dongxiao Sun W, Hicham Idrissi, Geoffrey INW (2013) The role of CuO in promoting photocatalytic hydrogen production over TiO₂. International Journal of Hydrogen Energy 38(35): 15036-15048.
13. Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 82(1): 133-143.
14. Cheng WY, Tsung Hsuan Yu, Kang Ju Chao, Shih Yuan Lu (2013) Cu,0-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. International Journal of Hydrogen Energy 38(23): 9665-9672.
15. Yu Z, Jianling, Yang L, Yongdan (2013) Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO₂ nanocomposite photocatalyst. International Journal of Hydrogen Energy 38(36): 16649-16655.
16. Xu X, Jiawei Ng, Xiwong Zhang, Hongwei Bai, Darren Delai Sun (2010) Fabrication and comparison of highly efficient Cu incorporated TiO₂ photocatalyst for hydrogen generation from water. International Journal of Hydrogen Energy 35(11): 5254-5261.
17. Xu S, Aj du, Liu J, Jiawei Ng, Sun D. (2011) Highly efficient CuO incorporated TiO₂ nanotube photocatalyst for hydrogen production from water. International Journal of Hydrogen Energy 36(11): 6560-6568.
18. Tian H, Shi K, Xiangqiu L, Liusa Q, Min J, et al. (2015) Fabrication of an efficient noble metal-free TiO₂-based photocatalytic system using Cu-Ni bimetallic deposit as an active center of H₂ evolution from water. Solar Energy Materials and Solar Cells 134: 309-317.
19. Imran Majeed, A M A, Ejaz Hussain, Geoffrey IN, Al Amin Badshah, et al. (2016) On the Synergism between Cu and Ni for Photocatalytic Hydrogen Production and their Potential as Substitutes of Noble Metals. Chem Cat Chem 8(19): 3146-3155.
20. Fujita S, Hiroki K, Daisuke H, Hiroshi Y, Masahiko A (2016) Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO₂ catalysts: Effects of preparation and reaction conditions. Applied Catalysis B: Environmental 181: 818-824.