A Systematic Review of Validated Screening Tools for Anxiety Disorders and PTSD in Low to Middle Income Countries

CURRENT STATUS: UNDER REVISION

Anisa Mughal
University of Pittsburgh

Jackson Devadas
University of North Carolina at Chapel Hill

Eric Ardman
University of Miami School of Medicine

Brooke Levis
McGill University

Vivian F Go
University of North Carolina at Chapel Hill

Bradley N Gaynes
bradley_gaynes@med.unc.edu
Corresponding Author
ORCiD: 0000-0002-8283-5030

DOI:
10.21203/rs.3.rs-15809/v1

SUBJECT AREAS
Psychiatry

KEYWORDS
Anxiety, post-traumatic stress disorder, screening tool, validation, low-to-middle income countries
Abstract

Background: Anxiety and post-traumatic stress disorder (PTSD) contribute significantly to disability adjusted life years in low- to middle-income countries (LMICs). Screening has been proposed to improve identification and management of these disorders, but little is known about the validity of screening tools for these disorders. We conducted a systematic review of validated screening tools for detecting anxiety and PTSD in LMICs.

Methods: MEDLINE, EMBASE, Global Health and PsychINFO were searched (inception-January 10, 2019). Eligible studies (1) screened for anxiety disorders and/or PTSD; (2) reported sensitivity and specificity for a given cut-off value; (3) were conducted in LMICs; and (4) compared screening results to diagnostic classifications based on a reference standard. Screening tool, cut-off, disorder, region, country, and clinical population were extracted for each included study. We asessed quality using a modified version of Greenhalgh’s ten item checklist. Accuracy results were organized based on screening tool, cut-off, and specific disorder. Accuracy estimates for the same cut-off for the same screening tool and disorder were combined via meta-analysis.

Results

Of 5343 unique citations identified, 57 articles including 75 screening tools were included. There were 44, 20 and 11 validations for anxiety, PTSD, and combined depression and anxiety, respectively. Continentally, Asia had the most validations (34). Regionally, South Asia (10) had the most validations, followed by West Asia (9) and South Africa (9). The Kessler-10 (7) and the Generalized Anxiety Disorder-7 item scale (GAD-7) (6) were the most commonly validated tools for anxiety disorders, while the Harvard Trauma Questionnaire (3) and Posttraumatic Diagnostic Scale (3) were the most commonly
validated tools for PTSD. Most studies (27) had the lowest quality rating (unblinded) followed by good (21). Due to incomplete reporting, we combined only two sets of accuracy values in meta-analysis (GAD-7 cut-off ≥10; sensitivity: 76%, specificity: 64%).

Conclusion

Use of brief screening instruments can bring much needed attention and research opportunities to various at-risk LMIC populations, yet many have been validated in inadequately designed studies. Locally validated screening tools for anxiety and PTSD need further evaluation and well-designed studies, including clinical trials, to determine whether their use can reduce the burden of disease.

PROSPERO registry number: CRD42019121794

Introduction

Mental health disorders, including anxiety and post-traumatic stress disorder (PTSD) are among the leading contributors to global disability adjusted life years, comprising five of the top twenty contributing disorders [1]. The World Health Organization International Classification of Disease (ICD-11) defines anxiety as a disorder in which there is an extreme and excessive focus on an “anticipated threat” and defines PTSD as a disorder that results from exposure to one or more “horrific events” [2]. The global prevalence for both anxiety disorders and PTSD is sizeable, 7.3% and 2.1–2.3% respectively. [3–4]. Both anxiety and PTSD are widespread common mental disorders (CMDs) that have been shown to cause significant negative health outcomes within various populations and contribute to a large portion of the global disease burden [5–6]. There are noteworthy discrepancies in quality of life between people diagnosed with anxiety and/or PTSD and those who are not diagnosed with either, such as increased years lived with disability and decreased life
expectancy [7-9]. Additionally, there is evidence suggesting that the presence of an anxiety disorder or PTSD increases the likelihood of comorbidity with other severe health conditions, such as major depressive disorder and substance use disorder [10-11].

Anxiety and PTSD are common in low to middle income countries (LMICs) and are traditionally overlooked and especially stigmatized. Prevalence of these disorders is higher within LMICs; roughly 83% of people with mental illnesses globally are living within LMICs [12]. In many LMICs, there is no robust mental healthcare system in place and the number of mental health professionals is sparse [13]. Assessment and diagnosis of psychiatric illnesses thus often falls to primary care and general practitioners who have little training in mental health [13]. Use of brief screening tools have been proposed as a way to improve identification and management of mental health problems, and may be useful in LMICs, especially among populations with elevated risk (e.g., pregnant women, refugees/displaced persons, and youth) within LMIC communities [14-16].

Despite multiple screening instruments for CMDs, there are significantly fewer screening instruments for anxiety and PTSD that have been validated in LMIC populations. Screening instruments that have been validated exclusively in high-income countries may not perform equivalently in LMIC populations, as anxiety and PTSD often present differently in different cultural contexts. For example, in sub-Saharan Africa, anxiety and PTSD are described through somatic symptoms as well as spiritual descriptions [17]. Furthermore, differences in clinical presentation may render screening tools less accurate in LMICs. Thus, optimum cut-off scores validated in high income populations may not apply in LMIC populations. For instance, in a sample of 75 participants from Tajikistan [18], the optimal cut-off of 1.88 for the Harvard Trauma Questionnaire (HTQ), a measure of PTSD, was substantially lower than the standard cut-off score of 2.5 that has been recommended in previous studies in high-income countries [19]. Failure to apply suitable cut-off scores
may lead to an imbalance of positive and negative screening results. If chosen cutoffs are too high, actual cases of anxiety and PTSD may not reach the threshold for further assessment and diagnosis; thus, cases will be missed. Conversely, if chosen cutoffs are too low, there may be a very large number of positive screens requiring substantial resources for further assessment, and healthcare systems may not be able to manage the load.

Although there has been an increasing interest in studying mental health within LMICs, there are still large gaps related to screening tools to assess mental health disorders, especially anxiety and PTSD. The most recent systematic review investigating screening tools for CMDs in LMICs was published in 2016 [20]. Of the 273 validations included, 236 were validated tools for CMDs or depressive disorders while only 24 and 13 validated tools for anxiety and PTSD, respectively. Therefore, the objective of this study was to conduct a systematic review of screening tools for anxiety and PTSD within LMIC populations.

Methods

Aim: To validate screening tools for anxiety disorders and PTSD in LMICs

We published a study protocol in advance in the PROSPERO registry (CRD42019121794).

Search Strategy and Study Selection

We systematically searched four databases (MEDLINE, EMBASE, Global Health and PsychINFO) from inception to January 10, 2019 (see Fig. 1).

Inclusion Criteria

Our eligibility criteria required that studies: (1) screen specifically for anxiety (generalized anxiety disorder or anxiety disorders not otherwise specified) and/or PTSD; (2) provide estimates of sensitivity and specificity for a given cut-off value for one of the included disorders; (3) were conducted in a LMIC (based on the World Bank Classification) [21]; and (4) compare screening results to a validated reference standard. Reference standards
included unstructured clinical diagnostic interviews as well as structured clinical interviews including the Mini International Neuropsychiatric Interview (MINI and MINI-KID) [22], Structured Clinical Interview for DSM (SCID, SCID-1 and NetSCID) [23–24], Composite International Diagnostic Interview (CIDI and CIDI-PHCV) [25], Clinical Interview Schedule-Revised (CIS-R) [26], Psychiatric Assessment Schedule (PAS) [27], Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS and K-SADS-PL) [28] and Clinician-Administered PTSD Scale (CAPS and CAPS-5) [29–30]. LMIC populations residing in a LMIC at the time of study were included. No search restrictions were put on age, gender or comorbidities.

Exclusion Criteria

We excluded papers that did not report sensitivity, specificity and cut-off value; that were not published in English; and that involved populations originally from an LMIC residing outside a LMIC at the time of the study. Persons from an LMIC residing in another LMIC at the time of the study were included (e.g., refugee populations and displaced persons).

Literature Review

Abstracts returned from the search were reviewed separately by two independent reviewers for inclusion, with any discrepancies resolved by discussion and use of a third senior reviewer as needed. For abstracts meeting inclusion criteria, full-text articles were retrieved and reviewed by two separate reviewers for final inclusion, with discrepancies resolved by discussion and use of a third senior reviewer as needed. We also searched the reference lists of relevant systematic reviews for additional articles to add to our full-text review.

Quality Appraisal

To assess study quality, we used a modified version of Greenhalgh’s ten item checklist
previously used in a study by Ali et al [20] Elements of the quality checklist are provided in Fig. 2. Credit was given for translation if a previously validated translated version of the tool or reference standard was used, or if the tool was administered in English. Studies of ‘very good quality’ fulfilled all the quality criteria. Studies deemed ‘good’ quality fulfilled criteria 1 through 3 in addition to at least one other criterion from 4 to 5. ‘Fair’ quality studies did not avoid work-up bias and ‘acceptable’ quality studies did not perform receiver operating characteristic curve (ROC) analysis to determine a normal range from the results. ‘Unblinded’ studies include studies that reported the interviewers were not blinded to the screening results or did not specify whether the screening tool administrators and interviewers were blinded to each other’s results.

Data abstraction and analysis

Numerical data was abstracted by one reviewer and checked by a separate reviewer to ensure quality extraction. Data abstraction sheets included extraction of the screening tool and disorder, number of participants, DSM version, screening tool administrator, language, region, population study characteristics and age, country, gold standard, area under the curve (AUC), cut-off score, sensitivity and specificity. If multiple screening tools and/or cut-offs were used, data was extracted for each cutoff, for each tool, separately. If values were split by population, the value most representative of the total was chosen (e.g., community values for data split by hospital inpatient unit). If multiple cut-offs were given without AUC, we extracted the set of values for the cutoff that maximized Youden’s J [31]. Results were presented separately by disorder, screening tool and cutoff-value. As anxiety and depression were combined in many screening tools, a third category of mixed anxiety and depression was included.

For validations of screening tools for the same disorder that used identical cut-off values, bivariate random-effects meta-analytic models were fitted to provide estimates of pooled
sensitivity and specificity for the cut-off value.

Results

Study Selection

Of 5343 unique citations identified from the database search, 5236 were excluded after title and abstract review and five additional papers from the reference lists of relevant systematic reviews were added. Of 113 included for full-text review, 56 were excluded, leaving 57 eligible articles inclusive of 75 screening tools (see Figure 3). The most common reasons for exclusion were not screening for the disorder of interest, not comparing to a gold standard, and failing to provide either sensitivity/specificity data or a threshold for screening.

Quality Appraisal

Two studies met all the criteria of the modified Greenhalgh's ten item checklist and deemed ‘very good’ quality while 21 studies were deemed to be ‘good’ quality, due to lack of reporting the confidence intervals for sensitivity, specificity or AUC. Two studies were ‘fair’ quality for not avoiding work-up bias and five were deemed ‘acceptable’ for failing to perform ROC analysis. A total of 28 studies were labelled ‘unblinded’ for failing to specify if they blinded the researchers or for explicitly stating they were not blinded (see Table 1).

Description of included studies

The final 57 studies selected included a total of 75 screening tools. There were 44 validations of screening tools for anxiety disorders, 20 for PTSD and 11 for anxiety and depression (see Table 2).

A minority of studies accounted for children and adolescent validations (9) despite a relatively young demographic present in LMICs [32]. The majority of validations studied adults (42), with a select few including adolescents and adults (6) (see Table 3).
Particularly well-represented groups included the general population and clinical outpatients (13), perinatal populations (9), psychiatric patients (7) and those with another psychiatric comorbidity (7) (see Table 3). Of the 20 validations for PTSD, only four studied children and adolescents.

The majority of screening tool validations were in Asia (34) followed by Africa (22), the Americas (8) and Europe (1) (see Table 4). The best represented regions include South and West Asia, as well as South and East Africa, with a noticeable gap in Middle and Northern Africa. There were no studies from the Oceanic region.

The most commonly used tools to screen for generalized anxiety disorder were the Kessler-10 (K-10) and the Generalized Anxiety Disorder-7 item scale (GAD-7), totaling seven and six validations respectively. The Hopkins Symptom Checklist-25 item scale (HSCL-25), Hospital Anxiety and Depression Scale (HADS) and Hospital Anxiety and Depression Scale anxiety subscale (HADS-A) were validated almost equally while the majority of tools only had one validation (see Table 5). PTSD had far fewer validations (20) with a wide range of tools receiving between one and three validations, similar to the screening tools validated for both anxiety and depression.

The sensitivity, specificity and cut-off for each disorder and its respective screening tool are shown in Table 6.

Discussion

This review aimed to examine the screening tools that have been validated to detect anxiety and PTSD in LMICs. The most commonly validated tools were the K-10 and GAD-7 for anxiety and the HTQ and the Posttraumatic Diagnostic Scale (PDS) for PTSD. It is difficult to recommend one screening tool for anxiety and PTSD respectively, as sensitivities and specificities varied based on region, country and screening tool. Future research is needed to evaluate whether locally validated tools can be used to improve
detection and management of anxiety and PTSD.

A total of 44 validated screening tools were found for anxiety disorders. The most common tool used to screen for anxiety disorders was the Kessler-10 followed by the GAD-7, which had wide ranges of sensitivities (57%-94%) and specificities (53%-94%) varying by region and sample size. While previously the HADS-A was recommended [20], our updated review found that it was not as widely validated as the GAD-7 and Kessler-10, although it had consistent specificities (72%-79%) with a range of sensitivities (38%-86%). The Kessler may have an added time-efficiency component, as it is possible to screen for multiple common mental disorders, whereas screening tools such as the HADS-A target anxiety specifically. The GAD-7 reported some of the highest sensitivities for detection of generalized anxiety disorder. Other anxiety disorders, including agoraphobia, panic disorder and social anxiety disorder were less commonly validated. Our results are consistent with a previous systematic review [20] and indicate using the GAD-7, K-10 or HAD-A yield good sensitivities and specificities while taking population-specific characteristics into account. Future research is needed to validate screening tools for these anxiety disorders in more regions.

The number of validations for PTSD increased from 10 to 20 since 2013 [20]. The HTQ and PDS were the most commonly validated tools for PTSD, and sensitivities were generally high. Our findings add that in addition to the previously recommended HTQ, the PDS should be considered in screening for PTSD [20]. Unfortunately, many tools were validated only once, preventing our combining them for analytic purposes. Only four PTSD validations describe children and adolescents, despite a recent events that have displaced thousands of youth [34]. The prevalence of PTSD remains high in LMICs and is expected to rise given increasing civil unrest and war [35, 36]. The year 2018 saw the highest recorded number of displaced persons globally leading the authors to emphasize more
attention into detection and treatment of PTSD [37].

Anxiety and depression had the fewest validations across our search [11] though were not the target of our validation given the existing literature on depression alone [20]. All tools with the exception of the HSCL-25 had only one validation. The only independently developed screening tool of all the studies was for anxiety and depression, developed in Zambia. These disorders commonly occur together and further research is needed to determine which tools are best suited to a region’s mental health screening needs.

We searched four databases with a robust library of psychiatric publications available. We also placed minimal exclusion criteria on our searches so as to maximize the number of studies returned, and we additionally reviewed relevant systematic reviews for additional relevant papers. At every stage of the process from title/abstract screen to data abstraction, two reviewers assessed each article and numerical data point to reduce human error. Our search strategy and protocol were published in PROSPERO and were not altered from the time of submission, with the exception that we did not calculate diagnostic odds ratios (DORs), as they provide no guidance to clinicians on what screening tool and cutoff threshold would be most appropriate to use in clinical practice. Rather, we reported sensitivity and specificity of each screening tool and cutoff separately, to better describe the accuracies of individual tools and cutoffs.

Our extraction was limited by the individual papers’ specific data reporting. The majority of studies did not provide sensitivities and specificities for multiple cut-off values. Reporting multiple cut-off values and their respective sensitivity and specificity estimates would allow providers to decide which cut-off they would choose to optimize screening for their setting. A lower cut-off with a higher sensitivity may be desired if cases are not to be missed and false negatives reduced. A higher cut-off with a higher specificity may be desired if false positives are to be minimized. Furthermore, reporting multiple cut-off
values and their respective sensitivity and specificity estimates would also allow researchers to better synthesize accuracy results across multiple studies in meta-analysis. In the present study, only two validations with identical cut-off scores for the GAD-7 could be combined via meta-analysis as no other validations of the same disorder with identical cut-off values provided sufficient information to conduct a meta-analysis (i.e., 2 x 2 table numbers).

Our review was also limited by the available publications on mental health screenings in LMICs. The entire region of Middle and North Africa, constituting over 300 million people, was not represented by a single validation while other regions such as South-East Asia were fairly well-represented. Cultural and linguistic factors may influence screening tool validation yet further discussion may be best served for individual validation papers. Most studies were rated in the lowest quality category of the modified Greenhalgh scale as they were unblinded. This is a severe limitation in the design of studies that may impact validation results; future studies should ensure adequate blinding in addition to the remainder of the quality checklist.

Our study did not look at CMDs or depression specifically, although we did consider anxiety and depression when screened for together. We chose to focus on anxiety and PTSD as they are less well-represented in the realm of LMIC validated screening tools. Additionally, anxiety and PTSD are becoming more important with the current displacement of millions of people due to civil unrest, socioeconomic upheaval and war.

The number of validated screening tools for mental health disorders as a whole has increased since 2013[20]. However, no large increase in the number of validations for specific disorders was seen, and most screening tools from our search were validated only once. We advise researchers and providers to refer to Table 6 for a summary of validations for locations and disorders of interest.
Conclusions And Future Research

Mental health disorders are highly prevalent yet are frequently stigmatized and disregarded as medical diseases. Validated screening tools for anxiety and PTSD in LMIC have made considerable progress, with validations for both disorders almost doubling since the prior systematic review completed in December 2013 [20]. The increase in validated screening tools generally followed a regional pattern, with more emerging in countries already represented. For example, more tools have been validated in South Africa without an increase in validations in Botswana, Lesotho, Namibia or Swaziland. Middle and Northern Africa were also not well-represented by either anxiety or PTSD screening tools. The authors recognize that it may be near impossible to validate screening tools in areas of intense conflict and instability but acknowledge the need to evaluate screening tools in these areas.

The age distribution among screening tools was heavily biased towards the adult population. Children and adolescents accounted for only four of 20 validations for PTSD and six of 55 for anxiety and anxiety and depression. Given that age is skewed towards a younger population in LMICs [32], it is imperative that more research focuses on identifying anxiety and PTSD disorders in a pediatric population, especially in areas of increased civil war and conflict.

Use of brief screening instruments can bring much needed attention and research opportunities to various at-risk populations in LMICs. Many screening tools for anxiety and PTSD have been validated in LMICs, but there remain regions and subgroups of individuals for which more research is needed. Locally validated screening tools for anxiety and PTSD should be further evaluated in clinical trials to determine whether their use can reduce the burden of disease.
Declarations

Funding: The Doris Duke International Clinical Research Foundation funded the primary author for the design of the study and collection, analysis, and interpretation of data and in writing the manuscript through a Doris Duke International Clinical Research Fellowship.

Competing interests: The authors declare that they have no competing interests.

Availability of data and materials: All data generated or analysed during this study are included in this published article [and its supplementary information files].

Competing interests: The authors declare that they have no competing interests.

Funding

The Doris Duke Clinical Research Foundation funded the primary author for the design of the study and collection, analysis, and interpretation of data and in writing the manuscript through a Doris Duke International Clinical Research Fellowship.

Authors’ contributions

All authors listed below have read and approved the manuscript.

1. AM: Design of systematic review, search criteria and primary reviewer, wrote manuscript
2. JD: Primary reviewer, aided in introduction and editing of manuscript
3. EA: Primary reviewer, aided in manuscript writing and editing
4. BL: Data analysis, aided in manuscript writing and editing
5. VFG: Manuscript writing and editing
6. BNG: Design of systematic review, development of methods, manuscript writing and editing

Acknowledgements

Rebecca McCall (search strategy aid), UNC Chapel Hill
Research Fellowship provided funding for submission fees.

Abbreviations

Post-traumatic stress disorder (PTSD); Low to middle income countries (LMICs); Common mental disorders (CMDs); Mini International Neuropsychiatric Interview (MINI and MINI-KID); Structured Clinical Interview for DSM (SCID, SCID-1 and NetSCID); Composite International Diagnostic Interview (CIDI and CIDI-PHCV); Clinical Interview Schedule-Revised (CIS-R); Psychiatric Assessment Schedule (PAS); Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS and K-SADS-PL); Clinician-Administered PTSD Scale (CAPS and CAPS-5); Area under the curve (AUC); Receiver operating characteristic curve (ROC); Diagnostic odds ratios (DORs); HADS: Hospital Anxiety and Depression Scale; DASS: Depression Anxiety Stress Scales; Zung SAS: Zung Self-Rating Anxiety Scale; STAI: State Trait Anxiety Inventory; EPDS: Edinburgh Postnatal Depression Scale; HAM-A: Hamilton Anxiety Rating Scale; K10/K6: Kessler 10/6; GAD: Generalized Anxiety Test; HDRS: Hamilton Depression Rating Scale; HSCL: Hopkins Symptom Checklist; MINI-SPIN: Mini-Social Phobia Inventory; PHC: Primary Health Care Screening Tool; GHC: General Health Questionnaire; SCARED: Screen for Child Anxiety Related Disorders; PASS: Perinatal Anxiety Screening Scale; RCADS: Revised Children’s Anxiety and Depression Scales; BAI: Beck Anxiety Inventory; HTQ: Harvard Trauma Questionnaire; CL: ; PDS: Posttraumatic Diagnostic Scale; PCL-C: PTSD Checklist-Clinician Version; CPSS: Child PTSD Symptom Scale; TSSC: Traumatic Stress Symptom Scale; CAPS: Clinician-Administered PTSD Scale; YSR: Youth Self-Report; AKUADS: Aga Khan University Anxiety and Depression; SRQ: Self-Reporting Questionnaire; AYMH: Arab Youth Mental Health Scale; HEI: Huaxi Emotional-Distress Index

References
1. Vos, T., Barber, R. M., Bell, B., Bertozzi-Villa, A., Biryukov, S., Bolliger, I., ... Murray, C. J. L. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386(9995), 743–800. https://doi.org/10.1016/S0140-6736(15)60692-4

2. WHO. International Classification of Diseases 11th Revision. Geneva: World Health Organisation; 2018.

3. Baxter, A. J., Scott, K. M., Vos, T., & Whiteford, H. A. (2013). Global prevalence of anxiety disorders: A systematic review and meta-regression. Psychological Medicine, 43(5), 897–910. https://doi.org/10.1017/S003329171200147X

4. Koenen, K. C., Ratanatharathorn, A., Ng, L., McLaughlin, K. A., Bromet, E. J., Stein, D. J., ... Kessler, R. C. (2017). Posttraumatic stress disorder in the World Mental Health Surveys. Psychological Medicine, 47(3), 2260–2274. https://doi.org/10.1017/S0033291717000708.

5. Atwoli, L., Stein, D. J., Koenen, K. C., Mclaughlin, K. A., Health, M., & Africa, S. (2015). Epidemiology of posttraumatic stress disorder: prevalence, correlates and consequences. Current Opinion Psychiatry, 28(4), 307-311. https://doi.org/10.1097/YCO.0000000000000167.Epidemiology

6. Bitsko, R. H., Holbrook, J. R., Ghandour, R. M., Blumberg, S. J., Visser, S. N., Perou, R., ... Disabilities, D. (2019). Epidemiology and impact of health care provider-diagnosed anxiety and depression among US children, 39(5), 395-403. https://doi.org/10.1097/DBP.0000000000000571.Epidemiology

7. Walker, E. R., McGee, R. E., & Druss, B. G. (2015). Mortality in Mental Disorders and Global Disease Burden Implications. JAMA Psychiatry, 72(4), 334. https://doi.org/10.1001/jamapsychiatry.2014.2502
8. Whiteford, H. A., Ferrari, A. J., Degenhardt, L., Feigin, V., & Vos, T. (2015). The global burden of mental, neurological and substance use disorders: An analysis from the global burden of disease study 2010. *PLoS ONE, 10*(2), 1-14. https://doi.org/10.1371/journal.pone.0116820

9. Forbes, D., McFarlane, A. C., Silove, D., Bryant, R. A., O'Donnell, M. L., & Creamer, M. (2015). The Lingering Impact of Resolved PTSD on Subsequent Functioning. *Clinical Psychological Science, 4*(3), 493-498. https://doi.org/10.1177/2167702615598756

10. Brady, K., Killeen, T., Brewerton, T., & Lucerini, S. (2000). Comorbidity of psychiatric disorders and posttraumatic stress disorder. *Journal of Clinical Psychiatry, 61*, 22-32.

11. Sheffler, J. L., Rushing, N. C., Stanley, I. H., & Sachs-Ericsson, N. J. (2016). The long-term impact of combat exposure on health, interpersonal, and economic domains of functioning. *Aging and Mental Health, 20*(11), 1202-1212. https://doi.org/10.1080/13607863.2015.1072797

12. World Health Organization. (2004). The global burden of disease 2004. *Update, World Health Organization*, 146.

13. Nadkarni, A., Hanlon, C., Bhatia, U., Fuhr, D., Ragoni, C., de Azevedo Perocco, S. L., ... Patel, V. (2015). The management of adult psychiatric emergencies in low-income and middle-income countries: A systematic review. *The Lancet Psychiatry, 2*(6), 540-547. https://doi.org/10.1016/S2215-0366(15)00094-2

14. Giacco, D., Laxhman, N., & Priebe, S. (2018). Prevalence of and risk factors for mental disorders in refugees. *Seminars in Cell and Developmental Biology, 77*, 144-152. https://doi.org/10.1016/j.semcdb.2017.11.030

15. Honikman, S., Tomlinson, M., Field, S., van Heyningen, T., Myer, L., & Onah, M. N. (2017). Prevalence and predictors of anxiety disorders amongst low-income pregnant women in urban South Africa: a cross-sectional study. *Archives of Women’s Mental...*
16. Yatham, S., Sivathasan, S., Yoon, R., da Silva, T. L., & Ravindran, A. V. (2018). Depression, anxiety, and post-traumatic stress disorder among youth in low and middle income countries: A review of prevalence and treatment interventions. *Asian Journal of Psychiatry, 38*(August 2017), 78-91. https://doi.org/10.1016/j.ajp.2017.10.029

17. Lloyd, K., Simunyu, E., Mann, A., Patel, V., & Gwanzura, F. (2009). The phenomenology and explanatory models of common mental disorder: a study in primary care in Harare, Zimbabwe. *Psychological Medicine, 25*(06), 1191. https://doi.org/10.1017/s003329170003316x

18. Hollander, A. C., Ekblad, S., Mukhamadiev, D., & Muminova, R. (2007). The validity of screening instruments for posttraumatic stress disorder, depression, and other anxiety symptoms in Tajikistan. *Journal of Nervous and Mental Disease, 195*(11), 955-958. https://doi.org/10.1097/NMD.0b013e318159604b

19. Mollica, R., Caspi-Yavin, Y., Bollini, P., Truong, T., Tor, S., & Lavelle, J. (1992). The Harvard Trauma Questionnaire: Validating a cross-cultural instrument for measuring torture, trauma, and posttraumatic stress disorder in indochinese refugees. *The Journal of Nervous and Mental Disease, 180*(2), 111-116.

20. Ali, G. C., Ryan, G., & De Silva, M. J. (2016). Validated screening tools for common mental disorders in low and middle income countries: A systematic review. *PLoS ONE, 11*(6), 1-14. https://doi.org/10.1371/journal.pone.0156939

21. The World Bank. World Bank Country and Lending Groups Website. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-worldbank-country-and-lending-groups. Accessed December 3, 2018.

22. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., . . .
Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. *The Journal of Clinical Psychiatry, 59*(Suppl 20), 22-33.

23. Spitzer, R., Williams, J., Gibbon, M., & First, M. (1992). The structured clinical interview for DSM-III-R (SCID). *Arch Gen Psychiatry, 49*, 624-629.

24. Brodey, B. B., First, M., Linthicum, J., Haman, K., Sasiela, J. W., & Ayer, D. (2016). Validation of the NetSCID: An automated web-based adaptive version of the SCID. *Comprehensive Psychiatry, 66*, 67-70. https://doi.org/10.1016/j.comppsych.2015.10.005

25. Robins, L., Wing, J., Wittchen, H. U., Helzer, J., Babor, T., Burke, J., ... Towle, L. (1988). The composite international diagnostic interview (CIDI). *Arch Gen Psychiatry, 45*, 1069-1077. https://doi.org/10.1142/9789814440912_0056

26. Lewis G, Pelosi, A., Araya, R., & Dunn, G. (1992). Measuring psychiatric disorder in the community: a standardized assessment for use by lay interviewers. *Psychological Medicine, 22*(May), 465-486.

27. Moss, S., Patel, P., Prosser, H., Goldberg, D., Simpson, N., Rowe, S., & Lucchino, R. (1993). Psychiatric morbidity in older people with moderate and severe learning disability. I: Development and reliability of the patient interview (PAS-ADD). *British Journal of Psychiatry, 163*(OCT.), 471-480. https://doi.org/10.1192/bjp.163.4.471

28. Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., ... Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. *Journal of the American Academy of Child and Adolescent Psychiatry, 36*(7), 980-988. https://doi.org/10.1097/00004583-199707000-00021

29. Blake, D. D., Weathers, F., Nagy, L., Kaloupek, D., Gusman, F., Charney, D., & Keane,
T. (1995). The development of a clinician-administered PTSD scale. *Journal of Traumatic Stress, 8*(1), 75–90.

30. Weathers, F., Bovin, M., Lee, D., Sloan, D., Schnurr, P., Kaloupek, D., ... Marx, B. (2018). The clinician-administered PTSD scale for DSM-5 (CAPS-5): development and initial psychometric evaluation in military veterans. *Psychological Assessment, 30*(3), 383–395. https://doi.org/10.1037/pas0000486

31. Ruopp, M., Perkins, N., Whitcomb, B., & Schisterman, E. (n.d.). Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. *Biom J, 50*(3), 419–430. https://doi.org/10.1002/bimj.200710415

32. Sudharsanan, N., & Bloom, D. (2018). The demography of aging in low- and middle-income countries: chronological versus functional perspectives. In M. Hayward & M. Majmundar (Eds.), *Future Directions for the Demography of Aging* (pp. 322–351). Washington, DC: The National Academies Press. https://doi.org/10.17226/25064

33. Goldberg, D. P., Reed, G. M., Robles, R., Minhas, F., Razzaque, B., Fortes, S., ... Saxena, S. (2017). Screening for anxiety, depression, and anxious depression in primary care: A field study for ICD-11 PHC. *Journal of Affective Disorders, 213*(February), 199–206. https://doi.org/10.1016/j.jad.2017.02.025

34. Vossoughi, N., Jackson, Y., Gusler, S., & Stone, K. (2018). Mental Health Outcomes for Youth Living in Refugee Camps: A Review. *Trauma, Violence, and Abuse, 19*(5), 528–542. https://doi.org/10.1177/1524838016673602

35. Kessler, R. C., Aguilar-Gaxiola, S., Alonso, J., Benjet, C., Bromet, E. J., Cardoso, G., Degenhardt, L., de Girolamo, G., Dinolova, R. V., Ferry, F., Florescu, S., Gureje, O., Haro, J. M., Huang, Y., Karam, E. G., Kawakami, N., Lee, S., Lepine, J., Levinson, D., Navarro-Mateu, F., Pennel, B., Piazza, M., Posada-Villa, J., Scott, K. M., Stein, D. J., Zaslavsky, A. M., Koenen, K. C. (2017). Trauma and PTSD in the WHO World Mental
Health Surveys. *European journal of psychotraumatology, 8*(sup5), 1353383.

https://doi.org/10.1080/20008198.2017.1353383

36. Yatham, S., Sivathasan, S., Yoon, R., da Silva, T. L., & Ravindran, A. V. (2018). Depression, anxiety, and post-traumatic stress disorder among youth in low and middle income countries: A review of prevalence and treatment interventions. *Asian Journal of Psychiatry, 38*(August 2017), 78-91.

https://doi.org/10.1016/j.ajp.2017.10.029

37. UNHCR: Global Trends: the world at war. In.; 2018.

Tables

Table 1. Quality rating statistics

Quality Rating	Number of Studies
Very good	2
Good	21
Fair	2
Acceptable	5
Unblinded	27
Total	57

Table 2. Screening tool validation by disorder category
Disorder Category	Specific disorders	Total
Anxiety Disorders		
Generalized Anxiety Disorder		44
Panic Disorder		
Social Anxiety Disorder		
Anxiety Disorder NOS		
PTSD	PTSD	20
Anxiety and Depression		11
Generalized Anxiety Disorder		
Major Depressive Disorder		
Total		75

Table 3. Distribution by age a population characteristic

Population Descriptors	Number of studies
Adults (42)	
Outpatients	5
General population	7
Medical comorbidity (7)	
HIV	4
Other	3
Psychiatric patient	7
Conflict area/refugee	5
Students	1
Perinatal (9)	
HIV	1
Other	8
Children and Adolescents (9)	
Psychiatric patient	2
Trauma survivor	2
Other	5
Adults and Adolescents (6)	
Survivor of natural disaster	2
Other	4
Table 4. Number of Studies by Region and Country

Continent	Region	Country (Number of Studies)	LMICs with no studies
Africa (19)	North	None	6 (Sudan, Algeria, Morocco, Tunisia)
	Middle	None	9 (Angola, Cameroon, Democratic Republic, Central African Republic, Congo, Democratic Republic, Equatorial Guinea, Gabon, São Tome and Principe)
East (8)	Zimbabwe (2), Somalia (1), Uganda (1), Burundi (1), Tanzania (1), Zambia (1), Kenya, Madagascar	10 (Comoros, Djibouti, ...)	
Region	Disorder	Screenings Tool	Number of Validations
--------------	----------	-----------------	-----------------------
Africa	Anxiety disorders	HADS-A	3
		HADS	3

*The country total is 60 instead of 57 as one study [33] involved four countries (Mexico, China, Brazil and Pakistan)

Table 5. Screening Tool by Disorder and Number of Validations
DASS-A	1
Zung SAS	2
STAI	1
EPDS	2
HAM-A	1
K10	7
K6	3
GAD-7	6
HDRS	1
HSCL-25	4
MINI-SPIN	1
PHC	1
GHQ-12	2
SCARED/SCARED-C/-P	1/1/1
PASS	1
RCADS-GAD scale	1
BAI	1
Total	44

PTSD

HTQ/-R	1
HTQ	3
CL	1
K10	2
PDS	3
PCL-C/-5	1/2
CPSS	2
TSSC	1
UCLA PTSD Index	1
PTSD Screening Tool	2
CAPS	1
Total	20

Anxiety and Depression

HSCL-25	2
Independently developed (Zambia)	1
YSR	1
HADS	2
AKUADS	1
SRQ-20	1
AYMH	1
Disorder Type	Screening Tool	Gold Standard	Subregion	Country	No. Participants	Cut-Off Score	Sensitivity
BAI	DSM-IV criteria	Asia South	Nepal	363	≥14		
DASS-A	SCID	Asia South East	Vietnam	221	≥10		
EPDS	MINI	Africa South	South Africa	376	≥5		
EPDS-anxiety subscale	NetSCID	Africa South	South Africa	145	≥7		
GAD-2	MINI	Africa South	South Africa	376	≥2		
GAD-7	CIDI	Asia South East	Malaysia	895	≥8		
GAD-7	Interview	Asia West	Lebanon	186	≥10		
GAD-7	SCID	Africa East	Zimbabwe	264	≥10		
GAD-7*	NA	NA	NA	NA	≥10		
GAD-7	CIDI	South America	Peru	956	≥7		

Abbreviations: HADS: Hospital Anxiety and Depression Scale; HADS-A: Hospital Anxiety and Depression Scale Anxiety subscale; DASS: Depression Anxiety Stress Scales; Zung SAS: Zung Self-Rating Anxiety Scale; STAI: State Trait Anxiety Inventory; EPDS: Edinburgh Postnatal Depression Scale; HAM-A: Hamilton Anxiety Rating Scale; K10/K6: Kessler 10/6; GAD: Generalized Anxiety Test; HDRS: Hamilton Depression Rating Scale; HSCL: Hopkins Symptom Checklist; MINI-SPIN: Mini-Social Phobia Inventory; PHC: Primary Health Care Screening Tool; GHC: General Health Questionnaire; SCARED: Screen for Child Anxiety Related Disorders; PASS: Perinatal Anxiety Screening Scale; RCADS: Revised Children’s Anxiety and Depression Scales; BAI: Beck Anxiety Inventory; HTQ: Harvard Trauma Questionnaire; CL: ; PDS: Posttraumatic Diagnostic Scale; PCL-C: PTSD Checklist-Clinician Version; CPSS: Child PTSD Symptom Scale; TSSC: Traumatic Stress Symptom Scale; CAPS: Clinician-Administered PTSD Scale; YSR: Youth Self-Report; AKUADS: Aga Khan University Anxiety and Depression; SRQ: Self-Reporting Questionnaire; AYMH: Arab Youth Mental Health Scale; HEI: Huaxi Emotional-Distress Index

Table 6. Screening tool by disorder and region with sensitivity, specificity and cut-off value
Instrument	Mini	Region	Country	Total	Threshold	
GAD-7	MINI	Asia East	China	213	≥6	
GHQ-12	CIDI	Africa West	Nigeria	1590	≥3	
GHQ-12	CIDI-PHCV	Asia West	Turkey	65	≥5	
HADS	Interview	Asia South	India	70	≥7	
HADS	Interview	Asia West	Kuwait	135	≥13	
HADS	CIDI-PHCV	Asia West	Turkey	65	≥12	
HADS-A	MINI	Africa South	South Africa	70	≥11	
HADS-A	MINI	Asia East	China	80	≥6	
HADS-A	MINI	Asia East	China	100	≥6	
HAM-A	MINI	Africa South	South Africa	70	≥22	
HDRS	DSM-IV criteria	Asia South East	Malaysia	120	≥9	
HSCL	PAS	Asia South	Afghanistan	116	≥2	
HSCL-25	Interview	Asia Central	Tajikistan	75	≥1.6	
HSCL-25	CIDI	Asia South	Nepal	290	≥1.75	
HSCL-25	MINI	Asia South	India	290	≥1.75	
K-10 (agoraphobia)	MINI	Africa South	South Africa	429	≥26	
K-10	MINI	Africa South	South Africa	376	≥11	
K-10	MINI-KID	Asia South East	Indonesia	196	≥18	
K-10	MINI	Africa South	South Africa	429	≥30	
K-10	MINI	Africa South	South Africa	429	≥30	
K-10	MINI	Africa South	South Africa	429	≥28	
K-10 (SAD)	MINI	Africa South	South Africa	429	≥30	
K-6	MINI	Africa South	South Africa	376	≥8	
K-6	CIDI	Africa West	Nigeria	1590	≥4	
K-6	MINI-KID	Asia South East	Indonesia	197	≥12	
MINI-SPIN (SAD)	SCID	America South	Brazil	2320	≥6	
PASS	SCID-1	Asia West	Turkey	312	≥16	
PHC	CIS-R	South America, Asia South, Asia East, Central America	Brazil, Pakistan, China, Mexico	1488 (all countries)	≥3	
RCADS-						
Anxiety disorders	GAD scale	K-SADS	Asia West	Turkey	483	≥7.5
-------------------	-----------	--------	-----------	--------	-----	------
SCARED	K-SADS-PL	Asia South	India	500	≥21	
SCARED-C	Interview	Asia West	Lebanon	82	≥26	
SCARED-P	Interview	Asia West	Lebanon	82	≥24	
STAI	MINI	Africa South	South Africa	70	≥40	
Zung SAS	Interview	Asia South East	Vietnam	364	≥38	
Zung SAS	Interview	Asia South East	Vietnam	231	≥36	
CAPS	SCID	South America	Brazil	98	≥46	
CL	CIDI	Asia South	Nepal	290	≥50	
CPSS	K-SADS-PL	Africa East	Burundi	65	≥26	
CPSS	K-SADS	Asia South	Nepal	162	≥20	
HTQ	SCID	Europe Southern	Bosnia and Herzegovina	180	≥2.06	
HTQ	MINI	Africa South	South Africa	465	≥62	
HTQ	SCID	Asia South East	Thailand	118	≥2	
HTQ-R	Interview	Asia Central	Tajikistan	75	≥1.73	
K-10	MINI	Africa South	South Africa	429	≥29	
K-10	MINI	Africa South	South Africa	429	≥29	
PCL-5	CAPS-5	Africa East	Zimbabwe	204	≥33	
PCL-5	DSM 5 interview	Asia West	Iraq	206	≥23	
PCL-C	CAPS	South America	Peru	3289	≥26	
PDS	CIDI	Africa East	Somalia	6073	≥3	
PDS	CAPS	Africa East	Uganda	68	≥16	
PDS	CIDI	Africa South	South Africa	85	≥15	
PTSD screening tool	DSM-IV PTSD criteria	Asia East	China	27267	≥3	
PTSD screening tool	DSM-IV PTSD criteria	Asia East	China	135 (62 for CIDI)	≥14	
PTSD screening tool	DSM-IV PTSD criteria	Asia East	China	27267	≥3	
TSSC	CAPS	Asia West	Turkey	130	≥2	
UCLA PTSD	Interview	Asia South	Iran	50	≥38	
AKUADS	Interview	Asia South	Pakistan	487	≥19	
AYMH	Interview	Asia West	Lebanon	153	≥39	
Anxiety and depressive disorders	HADS	Interview	Africa West	Nigeria	1078	≥8
-----------------------------------	------	-----------	-------------	---------	------	----
HEI	MINI	Asia East	China	763	≥11	
HSCL	PAS	Asia South	Afghanistan	116	≥2	
HSCL-25	SCID	Africa East	Tanzania	100	≥1.06	
K-10	CIDI	Africa South	South Africa	4077	≥16	
K-6	CIDI	Africa South	South Africa	4077	≥10	
self-made	Interview	Africa East	Zambia	575	≥17	
SRQ-20	MINI	Africa South	South Africa	200	≥5	
YSR	Interview	Africa East	Ethiopia	134	≥6.5	

*Pooled GAD-7 accuracy values were based on data from the bolded values

Italicized rows contain the same data published separately in more than one study

Abbreviations: HADS: Hospital Anxiety and Depression Scale; DASS: Depression Anxiety Stress Scales; Zung SAS: Zung Self-Rating Anxiety Scale; STAI: State Trait Anxiety Inventory; EPDS: Edinburgh Postnatal Depression Scale; HAM-A: Hamilton Anxiety Rating Scale; K10/K6: Kessler 10/6; GAD: Generalized Anxiety Test; HDRS: Hamilton Depression Rating Scale; HSCL: Hopkins Symptom Checklist; MINI-SPIN: Mini-Social Phobia Inventory; PHC: Primary Health Care Screening Tool; GHC: General Health Questionnaire; SCARED: Screen for Child Anxiety Related Disorders; PASS: Perinatal Anxiety Screening Scale; RCADS: Revised Children’s Anxiety and Depression Scales; BAI: Beck Anxiety Inventory; HTQ: Harvard Trauma Questionnaire; CL:; PDS: Posttraumatic Diagnostic Scale; PCL-C: PTSD Checklist-Clinician Version; CPSS: Child PTSD Symptom Scale; TSSC: Traumatic Stress Symptom Scale; CAPS: Clinician-Administered PTSD Scale; YSR: Youth Self-Report; AKUADS: Aga Khan University Anxiety and Depression; SRQ: Self-Reporting Questionnaire; AYMH: Arab Youth Mental Health Scale; HEI: Huaxi Emotional-Distress Index

Figures
Figure 1

Search strategy

1. Was expectation bias avoided?
 (Were people administering the diagnostic interview blind to the results of the screening tool, and vice versa?)

2. Was work-up bias avoided?
 (Did positive and negative screens have an equal chance of receiving the full diagnostic interview?)

3. Was a sensible 'normal range' derived from the results?
 (Was ROC analysis used to identify the most appropriate cut-off point?)

4. Was the tool appropriately translated, adapted and/or designed for the study setting and population?
 (If using an existing tool, did authors employ the standardized WHO translation protocol?)

5. Were confidence intervals given for AUC, sensitivity, specificity and other psychometric features of the test?

6. Was the tool shown to be reproducible both within and/or between observers?
 (Was test-retest and/or inter-rater reliability assessed?)

Figure 2

A modified Greenhalgh's ten item checklist, adapted from Ali et al [20]
5343 papers returned from four database searches and included for title and abstract review. A total of 107 papers from the search included for full-text review after initial screening.

An additional 5 papers included from the reference section of included systematic reviews

113 studies included for full-text review

Excluded an additional 55 studies
Unable to access 2 articles
6 unavailable in English
4 not conducted in LMIC
9 no sensitivity/specificity or cutoff
11 were not assessed against gold standard
3 systematic reviews
20 did not screen for disorder of interest

A final count of 57 studies/75 screening tools included for data abstraction

Figure 3
Flow chart of study selection

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.

Appendix File 1 Systematic Review.xlsx
PRISMA checklist Systematic Review Mughal et al.docx