Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
long-distance entanglement distribution has become increasingly important, which is essential in the improvement of many quantum technologies, such as quantum key distribution\(^1\) and quantum internet\(^2\). It is also helpful in the examination of the foundation problems in quantum mechanics, for example, the Bell inequality test\(^3\). However, this task is not easy to perform, because of the photon loss during the fibre transmission. One proposal to overcome this issue is to use quantum repeaters\(^4\). In this architecture, the entire distance is divided into several shorter elementary links, and for each link, entanglement between quantum memories can be established independently. Next, the elementary links are joined using entanglement swapping to create an entangled pair over the entire distance.

The first concrete quantum repeater proposal is the well-known Duan–Lukin–Cirac–Zoller (DLCZ) protocol\(^5\), in which the atomic ensembles are used as the quantum memories and the photon sources. However, the entanglement-distribution rate is still quite low in this scheme. To solve this problem, many improved architectures of quantum repeaters have been proposed\(^6–10\). Of these proposals, the main approaches include the single-photon source\(^7\) (or the single entangled photon-pair source) and the multimode quantum memory\(^6,9\) and so on. Using a single-photon source, the multiphoton errors can be eliminated, which makes the photon emission rate greatly enhanced, thus improving the entanglement-distribution rate. Meanwhile, the multimode memory protocol has been estimated to be the most efficient protocol among all the quantum repeater architectures\(^11\).

On one hand, quantum dots (QDs) are attracting increasing interest in the quantum memory research community, and notable recent work includes the slowing-down experiment of QD emissions in the hot atomic ensemble\(^12\), and the absorption of QD emissions in a single ion\(^13\). This increasing interest is primarily because of the potential of QDs to be a good source of deterministic single photons\(^14,15\) and also a good source of deterministic entangled photon pairs\(^16\). On the other hand, multimode quantum-memory protocols are being intensively studied. Many degrees of freedom of the photons, such as time bins\(^17–21\), frequencies\(^9\), polarizations\(^21–25\), spatial directions\(^26\) and orbital angular momentum modes\(^27\), can be used to multiplex the memory and the communication channel. Time bins are one type of the most-used modes. Rare-earth (RE)-ion-doped solids have the advantage of broad inhomogeneous absorption, which provides a large memory bandwidth for these solid-state quantum memories\(^18\), and enables them to be used for temporal multimode operations.

In this work, we experimentally demonstrate two points. The first point is the storage of deterministic single photons (with no multi-photons in principle) emitted from a semiconductor self-assembled QD in a solid-state polarization-maintaining quantum memory\(^24\), which is based on Nd\(^3+:\text{YVO}_4\) crystals. The QD and the RE-ion-doped crystals are separated by 5 m on two separate optical tables and are connected via a 10-m fibre (see Fig. 1). The second point is the realization of the temporal multiplexed quantum memory with QD-based narrow single-photon pulses. 1, 20 and 100 temporal modes are respectively stored in the quantum memory, with at most one photon present in each mode. Both of these points will be helpful in the development of quantum repeaters. Moreover, both sub-systems in our experiment are solid state, which will make this configuration more stable and convenient.

Figure 1 | Experimental set-up. This experiment is performed on two separated optical tables connected by a 10-m-long optical fibre. The QD sample and the Nd\(^3+:\text{YVO}_4\) crystals are spaced 5 m apart. A single QD embedded in a planar DBR microcavity is excited by a 633-nm laser, and a 910-nm laser is used to shift the wavelength of the QD emission using the local-heating effect. The QD emission is precisely shifted to the 4I\(_{9/2}\) transition of Nd\(^3+\)-ions with the calibrated etalon. The 879.7-nm laser, which is modulated by AOM2 and electro-optic modulator (EOM) both in intensity and in frequency, is used to pump the Nd\(^3+:\text{YVO}_4\) crystals to create a frequency comb according to the AFC protocol. The single photons are then stored in the crystals and retrieved after a time \(T_{\text{storage}}\). An SSPD with a low dark count is used to detect the single photons. PBS1, HWP1, PBS2, HWP2 and the phase plate are used to prepare and measure the polarization qubit when the qubit-memory experiment is performed. The arrows indicate the directions of the light beams. The AOMs (or EOM used for modulating excitation light) and the choppers are synchronized to an electrical-pulse generator to create the time sequence for this experiment. The inset shows the energy levels of the QD and the Nd\(^3+\)-ions. The QD, which can contain an exciton, biexciton or a trion, emits a single photon, which is then sent to the quantum memory via a fibre, and is subsequently absorbed by the ion ensemble with a frequency comb. After the storage time, the photon is re-emitted by the ions. \(|g\rangle\), \(|e\rangle\) and \(|\text{aux}\rangle\) denote the ground, excited and auxiliary levels of Nd\(^3+\)-ions, respectively.
Results

Wavelength matching between QD and the quantum memory.

The absorption line of the Nd$^{3+}$:YVO$_4$ crystal is located at 879.7 nm, with a narrow memory bandwidth of hundreds of MHz, whereas the emission lines of InAs/GaAs QDs are random, depending on the dot size and the chemical composition in a wide range of approximately 900–1,200 nm. 879.7 nm is an embarrassing wavelength because it is far away from the emission range of QDs. Moreover, the wetting-layer emission of the InAs/GaAs QD sample is located at ~860 nm, with a full width at half maximum of tens of nanometres, and is much more intense than the signal photons. This emission represents a strong noise source at 879.7 nm. To solve this problem, we employ three steps, including QD sample fabrication with a special design (blue-shift the QD emissions to around the memory band, see Methods and Supplementary Note 1 for details), and the sample structure is shown in Supplementary Fig. 1), QD selection (select an emission nearest to the memory band, see Methods) and local heating of the selected QD with a strong laser (finely tune the QD emission to the memory band, see Methods), to derive a QD emission that matches the memory band of the quantum memory.

Figure 2 shows the experimental results. Figure 2a is the photoluminescence spectrum of a QD, which is sifted out from hundreds of QDs on this specially designed QD sample, namely, the result of the first and second steps. The reason for selecting this QD is that its emission line is at the wavelength of 879.5 nm, which is slightly shorter than the wavelength of the memory band. However, no other lines are detected in the region. This result may be caused by the unbalanced carrier capture (this process may cause the generation of trion, which can be examined by the vanish of fine structure splitting28,29) and the filtering effect of the planar distributed Bragg reflector (DBR) microcavity (see Supplementary Note 2; Supplementary Fig. 2 for details). Figure 2b shows the local-heating spectrum for this QD (see Supplementary Note 3 for local heating, and the sketch of the local heating and some additional data are shown in Supplementary Fig. 3). When the power of the 910-nm heating laser reaches 24 mW, the emission line can be finely red-shifted to 879.7 nm (Ref. 30), that is, the memory band. The autocorrelation of this emission line is measured to be $g^{(2)}(0) = 0.14$, which demonstrates that the photons were emitted from a good-quality single-photon source.

Storage for single photons. In our experiment, the quantum memory is based on the atomic frequency comb (AFC) protocol, according to which the absorption band of the Nd$^{3+}$:YVO$_4$ ensemble in the crystals (see Methods for the details of the quantum-memory sample) must be tailored into a frequency comb. The period of the frequency comb (denoted as Δ) determines the storage time of the single photons (T_{storage}), and the range of the frequency comb determines the memory bandwidth. The details about the AFC quantum memory technique are presented in the Methods and in Supplementary Note 4, and a sketch is shown in Supplementary Fig. 4.

Figure 3b shows the experimental result of the storage of the single photons. To obtain this time spectrum, the storage and retrieval period (T_{period}) and the pulsewidth of the excitation pulse (T_{pulse}, which is related to the signal pulsewidth) are set to be 400 and 10 ns, respectively. The storage time is $T_{\text{storage}} = 40$ ns, and the integration time is 2.8 h. The peak at 0 ns corresponds to the single photons that are not absorbed as well as some background wetting-layer light, the peak at 40 ns corresponds to the single photons that are stored and retrieved and the peak at 80 ns is the second-order retrieved single photons. The second peak is relatively small compared with the first peak. This result is related to another merit of the quantum memory, which can be used as a good narrow-bandwidth filter31. The single photons are filtered by the filter and etalon (Fig. 1) before they are sent to the quantum memory. However, the background wetting-layer light can pass through the etalon from its other transmission peaks (although every copy of the leaked wetting-layer light is little, there are many copies of them). Next, we use the quantum memory itself as a filter to make the single photons clear. Therefore, the retrieved signal contains only single photons, and the memory efficiency is not as low as that shown in this figure; this point will be discussed later. The signal-to-noise ratio (SNR) of the stored photons is estimated to be 9:1. Approximately 25% of the noise stems from the dark counts of the superconducting single-photon detector (SSPD), 25% comes from the pump laser and 50% stems from the ambient light.

Our sandwich-like quantum memory has been demonstrated to be polarization-maintaining. Process tomography has shown that its fidelity can reach 0.999 ± 0.002 using the attenuated laser24. Here, we take a typical case as an example to show the preservation of quantum coherence during the storage and retrieval process, which is important in quantum applications (including quantum repeater). Figure 3c shows the experimental result. The error bars in these data are due to the counting statistics. The deterministic single photons are encoded with a quantum state of $|H + V\rangle$ by PBS1 (polarizing beamsplitter) and HWP1 (half-wave plate, see Fig. 1; the phase plate is used to
During the preparation time, the pump pulses with different frequencies, wait time, a 10-ms storage and retrieval time and another 1-ms wait time. A 2-ns window is chosen for the retrieved single photons. The peak at 0 ns corresponds to the single photons that are not absorbed without wetting-layer light, the peak at 40 ns corresponds to the single photons that are stored and the peak at 80 ns is the second-order retrieved single photons. An additional set of filter and etalon (with a different free spectral range) are inserted in the beam path here to filter the single photons more clearly. In this situation, the second peak is almost as high as the first peak. In Fig. 4b, 20 single-photon pulses are stored in the quantum memory with $T_{\text{storage}} = 400 \text{ ns}$ and $T_{\text{storage}} = 100 \text{ ns}$. The integration time is 7.5 h, and the separation between the neighbouring modes is 4.8 ns. Twenty peaks are clearly seen in the range of 100 ~ 200 ns, which are the stored single-photon temporal modes. The peaks in the ranges of 0 ~ 100 and 200 ~ 300 ns are the transmitted light and the second-order retrieved light, respectively.

We also examine the situation of 100 modes with $T_{\text{period}} = 1,000 \text{ ns}$ and $T_{\text{storage}} = 500 \text{ ns}$, as shown in Fig. 4c. The integration time and the separation between the neighbouring modes are 46.1 h and 4.8 ns, respectively. The peaks in the ranges of 0 ~ 500 and 500 ~ 1,000 ns are the transmitted light and the retrieved single photons, respectively. In fact, the efficiency of quantum memory is related to the storage time. In the present situation, the efficiency is $\sim 7\%$, whereas this value is estimated to be 20 and 13% in the situations of $T_{\text{storage}} = 40 \text{ ns}$ and $T_{\text{storage}} = 100 \text{ ns}$, respectively. In spite of the decrease in the memory efficiency, we can still clearly observe 100 small peaks from the retrieved photons. Figure 4d shows the details of the peaks in the blue rectangle in Fig. 4c and those in the pink rectangle with the time coordinate subtracted by $T_{\text{storage}} = 500 \text{ ns}$. Each of these peaks corresponds well to each other one by one. This phenomenon shows the reliability of our experimental results.

Discussion

In our work we demonstrate the storage of QD-based deterministic single-photon pulse trains. Both the sub-quantum systems in this configuration, namely, the QD and the RE-ion-doped crystals, are solid-state materials. Moreover, we demonstrate that the polarization states of the single photons can be well preserved. Therefore, both the polarization states and the time bins can be used to encode the qubits. Notably, although the single-photon case is described here, the QD also has the potential to be a high-quality deterministic entangled photon-pair source or a solid spin qubit that is entangled with a single photon32. In these situations, our configuration could be conveniently utilized. All of these characteristics make our configuration more suitable for the construction of the efficient quantum repeaters.
transmitted and stored signals correspond to each other well. This result comparing these two groups of peaks, we find that each of the peaks in the pink peaks correspond to the stored-photon signals in the pink rectangle, correspond to the transmitted-photon signals in the blue rectangle, and the a factor 4. (Supplementary Note 1; Supplementary Fig. 1). The InAs QDs are then grown on a 20-nm-thick Al0.2Ga0.8As layer and a 10-nm-thick GaAs layer overlying it (see Fig. 1). The InAs QDs have nonuniform emission wavelengths and emission strength. To find a indistinguishable deterministic entangled photon-pair source16. Therefore, our work makes us one step closer to this high-efficiency quantum repeater architecture. Moreover, the determinacy property of the QD emissions also plays a crucial role for the improvement of the entanglement-distribution rate in this protocol, which has been calculated in detail in further work by Guha et al.33.

Another example of the application of our configuration is the quantum repeater protocol based on single-photon sources2, which improves upon the DLCZ protocol by replacing the photon-pair sources (an equivalent protocol as the DLCZ one) with single-photon sources. In the former case, to avoid the errors caused by the multi-photon-pair emissions, the emission rate of the photon pairs must be greatly limited, whereas in the latter case, this problem is eliminated. Therefore, the entanglement-distribution rate can be improved. In our work, the single-photon storage can be utilized in this protocol (when spin-wave AFC memory is integrated), and furthermore, by combining the multi-temporal-mode quantum memory3, the quantum repeater can be faster and more robust.

Our work can probably be used in other quantum technologies, for example, the quantum networks2,3,34,35 and so on. Although the quantum information flowing between QD and the quantum memory is not demonstrated here, the quantum channel between them has been demonstrated, and the polarization information can be preserved. The generation of photon-spin entanglement has been demonstrated to be realizable in the QD32. Therefore, the exchange of quantum information between the QD and the quantum memory can be in principle achieved.

To conclude, we achieve the storage of deterministic single photons emitted from a QD in a sandwich-like Nd3+:YVO4, quantum memory, which can preserve the polarization states of the input photons. We have also demonstrated the temporal multimode operation of the quantum memory with 1, 20 and 100 narrow single-photon pulses. Only one photon exists in a single pulse at most. Our work paves the way towards the construction of high-speed quantum repeaters based on solid-state devices and can also be used in other quantum technologies.

Methods

QD fluorescence collection. A 633-nm laser is used to excite the QD, as shown in Fig. 1. After being reflected by a dichroic mirror, the laser is focused onto the sample by an aspheric lens (Lens 1). The same lens, with a high numerical aperture (NA) of 0.68 and a working distance of 1.76 mm (placed inside the cryostat), is used to collect the fluorescence emitted from the QD. Moreover, the QDs are grown in a planar microcavity comprising a 10-pair Al0.3Ga0.7As/GaAs DBR on top and a 32-pair DBR on bottom. This microcavity can greatly enhance the collection efficiency of the fluorescence33,34. The fluorescence is then filtered by the dichroic mirror and a 20-nm bandwidth filter (99% transmission at 879.7 nm and 10−7 at 910 nm). When the QD spectra are detected, the fluorescence is sent to a spectrometer (not shown) equipped with a 908-grooves-per-mm grating and a Peltier-cooled InGaAs detector array; when the autocorrelation function is measured, the fluorescence is sent to a picosecond time analyzer (not shown). Otherwise, the fluorescence is sent to the subsequent optical elements in Fig. 1.

Steps for wavelength matching. During the QD sample growth, an AlGaAs layer is grown under the InAs QD because AlAs has a broader energy gap than GaAs, which can blue-shift the QD emissions, as well as the wetting-layer emission. However, problemsatically, the InAs QD tends to disappear and the quantum efficiency is also substantially reduced when it meets the aluminium-containing layer. Here, we design a special structure of the QD sample, which contains a 20-nm-thick Al0.3Ga0.7As layer and a 10-nm-thick GaAs layer overlying it (see Supplementary Note 1; Supplementary Fig. 1). The InAs QDs are then grown on the GaAs layer using the molecular beam epitaxy technique. With this special design, the emission lines of QDs are blue-shifted to ~879.7 nm, and the emissions have a relatively high quantum efficiency and a high SNR. The QD emissions roughly coincide with the 3I0 → 2F2 transition of Nd3+ in the YVO4 crystal24.

QDs have nonuniform emission wavelengths and emission strength. To find a QD with an emission at a wavelength that is slightly shorter than 879.7 nm (the wavelength can only be red-shifted for several 0.1 nm in the following fine-tuning process) and with a high brightness, we place the QD sample on a three-axis nano.
positioner with the travel ranges of several millimetres, and the entire set-up is then placed in a low-vibration liquid-helium-free cryostat, where the sample is cooled to 8 K (Montana Instruments). Next, we scan the nano-positioner in the xy-plane to detect the QD spectra. After scanning, we compare hundreds of QDs and then identify a single emission line located at the wavelength of 879.5 nm.

To tune this emission line to the Nd\(^{3+}\) ion transition exactly, we use a 910-nm laser to perform local heating in the vicinity of the selected QD (see Supplementary Note 3 and Supplementary Fig. 3a). This laser is focused to the cleaved edge of the DBR microcavity using a 50× long-working-distance objective (see Fig. 1). The microcavity acts as a waveguide for the laser and directs it to the vicinity of the selected Nd\(^{3+}\) ion. The principle geometry of the quantum dot filter compensates for the residual local-heating laser. Compared with global heating, local heating can induce less noise and less inconvenience due to heat expansion. The heating effect can red-shift the emission line of the QD continuously by several 0.1 nm (ref. 30).

During this process, a solid etalon (see Fig. 1), which is calibrated by the pump laser of the quantum memory (at 879.7 nm), is used to set the target wavelength of the single photons directly. This method prevents signal loss during the generation of the time sequence. Fourth, in the quantum-memory experiment, we use a non-collinear configuration for the pump light and the signal photons. This configuration prevents the single-photon loss that occurs during the combination of the signal light beam and the pump light beam, which is required in the collinear configuration. Moreover, the spot size of the focused pump light is four times that of the single photons, allowing the memory efficiency in the non-collinear configuration to be as high as that in the collinear configuration. The non-collinear configuration also greatly suppresses the noise induced by the pump laser. Finally, an SSPD is used instead of a silicon single-photon avalanche diode. The dark count rate of the SSPD can be as low as 1.5 s\(^{-1}\).

Quantum memory sample. The sample that we use for the quantum memory is composed of two pieces of nearly identical Nd\(^{3+}\)-YVO\(_4\) crystals with a 45°-wide waveplate sandwiched between them (see Fig. 1). Each crystal is 3 mm long along the a axis and has a doping level of 5 ppm.\(^{22}\) This sample is cooled to 1.5 K in a liquid-helium-free cryostat (Oxford Instruments, SpectromagPT) with a superconducting magnetic field of 0.3 T parallel to the crystal c axis (the axes of these two crystals are parallel). The \(4\text{Fe}^{2+} \rightarrow \text{Fe}^{3+}\) transition (\(\sim 879.7\) nm) of the crystals is used for the quantum memory here, as mentioned earlier. In this transition, the absorption of the [\(\text{Fe}^{3+}\)]-polarized photons in the crystals is much stronger than that of the [\(\text{Fe}^{2+}\)]-polarized photons, with [\(\text{Fe}^{3+}\)] denoting the horizontal (vertical) direction, that is, the direction parallel (perpendicular) to the crystals’ c axis. This sandwich-like structure has been demonstrated to have the ability of maintaining the polarization characteristic of the stored photons, thus enabling the high-fidelity memory of the polarization-based qubit\(^{24}\).

Time sequence and quantum memory set-up. The time sequence is shown in Fig. 3a. During the 11.5-ms preparation time, the frequency of the pump laser ([\(\text{Fe}^{3+}\) + \(\text{V}^{2+}\)]) polarized so that both crystals can be pumped, see the 879.7-nm laser in Fig. 1) is modulated by AOM2 and an electro-optic modulator to generate a comb-like profile with a bandwidth of \(\sim 500\) MHz and a programmable comb period \(\Delta\) (see Supplementary Note 4 for details). Next, this pump laser is passed through chopper 1, and then focused on the Nd\(^{3+}\)-YVO\(_4\) crystals by lens 2 (f = 250 mm) to prepare the 500-MHz-width AFC. Subsequently, the laser is collimated by lens 3 in the same site as the pump laser to be absorbed by the frequency-tailored ions. The free spectral range and the bandwidth of the etalon are maximized when Figs 3b and 4 are measured. HWP1 does not affect the maximum value of the photon count, but affects that at which angle of HWP2 the maximum count will appear.

Brief summary about the SNR improvement. First, the QD is grown in a 4\(\mu\)m planar DBR microcavity. The vertical mode of this microcavity is centred on \(\sim 879.7\) nm (see Supplementary Notes 1 and 2 for details). This structure makes the QD preferentially emit vertically, where the single photons are collected, in contrast with the 4\(\mu\)m solid-angle emission corresponding to a free QD\(^{30}\). Second, we use a high-NA (0.68) aspheric lens (lens 1) placed in the cryostat to collect the single photons instead of a long working-distance objective, which has a typical NA of 0.01. The spot size of the pump light is \(\sim 10\) \(\mu\)m, which will not detect the maximum value of the photon count, and affects that at which angle of HWP2 the maximum count will appear.

References

1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

3. Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964).

4. Briegel, H.-J., Dürr, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

5. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

6. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

7. Sangouard, N. et al. Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76, 050301 (2008).

8. Sangouard, N. et al. Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008).

9. Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

10. Krovi, H. et al. Practical quantum repeaters with parametric down-conversion sources, Preprint at http://arxiv.org/abs/1505.03470 (2015).

11. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 83–80 (2011).

12. Akopian, N., Wang, L., Radulov, A., Schmitt, O. G. & Zwiller, V. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photon. 5, 233–230 (2011).

13. Meyer, H. M. et al. Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015).

14. Tang, J.-S. et al. Realization of quantum Wheeler’s delayed-choice experiment. Nat. Photon. 6, 600–604 (2012).

15. He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

16. Müller, M., Bounoura, S., Jöns, K. D., Gläss, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

17. Usmani, L., Arefilus, M., de Riedmatten, H. & Gisin, N. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun. 1, 12 (2010).

18. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

19. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

20. Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

21. Tiranov, A. et al. Storage of hyperentanglement in a solid-state quantum memory. Optics 2, 279–287 (2015).

22. Claussen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in bifringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).

23. Gündoğan, M., Ledingham, P. M., Almasi, A., Cristiani, M. & de Riedmatten, H. Quantum storage of a photonic qubit in a solid. Phys. Rev. Lett. 108, 190504 (2012).

24. Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).
Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants Nos 61490711, 11274289, 11304305, 11325419, 61327961 and 91323133), the National Basic Research Program of China (Grants Nos 2011CB922100 and 2013CB933304), the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (Grant No. XDB01030300), the Fundamental Research Funds for the Central Universities (No. WK247000011) and the China Postdoctoral Science Foundation funded project (Grant No. 2012M521229).

Author contributions

C.-F.L., J.-S.T. and Z.-Q.Z. planned and designed the experiment. J.-S.T. carried out the quantum-dot part of the experiment assisted by Y.-T.W. and G.C. Z.-Q.Z. carried out the quantum-memory part of the experiment assisted by X.L. and Y.-L.H. Y.Z. and Y.-N.S. designed the computer programs. S.W. and D.-Y.H. operated the SSPD. Y.Y., M.-F.L., G.-W.Z., H.-Q.N. and Z.-C.N. grew the quantum-dot sample. Y.-L.L. fabricated the quantum-dot sample. J.-S.T. and Z.-Q.Z. analysed the experimental results. J.-S.T. wrote the manuscript with the help of C.-F.L., Z.-Q.Z. and Y.Y. G.-C.G. and C.-F.L. supervised the project. All authors discussed the experimental procedures and results.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Tang, J.-S. et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun. 6:8652 doi: 10.1038/ncomms9652 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/