Multidrug-resistant bacterial infections after liver transplantation: An ever-growing challenge

Guilherme Santoro-Lopes, Erika Ferraz de Gouvêa

Abstract

Bacterial infections are a leading cause of morbidity and mortality among solid organ transplant recipients. Over the last two decades, various multidrug-resistant (MDR) pathogens have emerged as relevant causes of infection in this population. Although this fact reflects the spread of MDR pathogens in health care facilities worldwide, several factors relating to the care of transplant donor candidates and recipients render these patients particularly prone to the acquisition of MDR bacteria and increase the likelihood of MDR infectious outbreaks in transplant units. The awareness of this high vulnerability of transplant recipients to infection leads to the more frequent use of broad-spectrum empiric antibiotic therapy, which further contributes to the selection of drug resistance. This vicious cycle is difficult to avoid and leads to a scenario of increased complexity and narrowed therapeutic options. The lack of appropriate treatment may contribute to the high mortality occurring in transplant recipients with MDR infections. Furthermore, high therapeutic failure rates have been observed in patients infected with extensively-resistant pathogens, such as carbapenem-resistant Enterobacteriaceae, for which optimal treatment remains undefined. In such a context, the careful implementation of preventive strategies is of utmost importance to minimize the negative impact that MDR infections may have on the outcome of liver transplant recipients. This article reviews the current literature regarding the incidence and outcome of MDR infections in liver transplant recipients, and summarizes current preventive and therapeutic recommendations.

Core tip: Infections caused by multidrug-resistant bacteria have been a growing cause of concern for those involved in the care of solid organ transplant recipients all over the world. The emergence of various pathogens with extensive antibiotic resistance creates a challenging scenario. This article presents an overview of the available epidemiological and clinical data on the most common multidrug-resistant bacterial infections among liver transplant recipients. Currently recommended therapeutic and preventive interventions are also summarized.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Multidrug resistance; Bacterial infections; Organ transplantation; Methicillin-resistant Staphylococcus aureus; Liver transplantation
INTRODUCTION

Bacterial infections are a leading cause of morbidity and mortality in patients receiving solid organ transplants (SOT)[8-10]. Although infections can occur at any time after transplantation[11], their incidence is highest in the first postoperative month[12,13] due to factors such as clinical severity of the underlying illness at the time of transplantation, breaches in the muco-cutaneous barrier resulting from surgery and the use of different invasive devices, technical complications of the surgery and immunosuppression. Studies specifically addressing the risk after liver transplantation have associated the incidence of bacterial infections with age, length of preoperative hospital stay, duration of surgery, retransplantation, volume of transfused blood products, biliary enteric anastomosis, technical complications such as biliary leakage and hepatic artery thrombosis, reoperation, length of intensive care unit (ICU) stay, hyperglycemia, preoperative Child-Pugh and model for end-stage liver disease (MELD) scores, dialysis, graft dysfunction and cytomegalovirus infection[14-18].

Over the last two decades, a succession of various multidrug-resistant (MDR) pathogens causing relevant morbidity and mortality among transplant recipients has emerged[19-23]. This fact reflects the emergence and spread of MDR bacteria in health care facilities all over the world, especially among patients admitted to the ICU. Nevertheless, several studies have suggested that SOT recipients are particularly prone to MDR bacterial infections[20,24-30]. The early postoperative care of transplant recipients is associated with the frequent manipulation of the patients and use of invasive devices, factors which increase the probability for cross-transmission of MDR pathogens[26,29,31-37]. Additionally, the awareness of this high vulnerability leads to the frequent use of empiric broad-spectrum antibiotic therapy[14,19,36], which further contributes to the selection of drug-resistant pathogens. This vicious cycle is difficult to avoid and leads to a scenario of increased complexity and narrowed therapeutic options.

Preoperative factors also influence the risk of post-transplantation MDR infections. Pre-transplant colonization with MDR bacteria occurs with variable frequency in liver transplant candidates and contributes to a higher risk of postoperative infection[39-42]. Pre-transplant colonization likely results from frequent hospital admissions and antibiotic usage in patients with high pre-transplant clinical severity, factors that have also been associated with increased incidence of post-transplant MDR infections[39,43,44]. The colonized transplant candidate may thus become the dissemination source of MDR pathogens for other patients, a fact that must be considered when designing routines for the control of MDR bacterial infections in transplant units[23].

Occasionally, the source of transmitted MDR organisms is the transplanted graft[46-48]. Published data indicate that the transmission of bacterial infection from donor to recipient is an uncommon event provided that the recipient receives appropriate antibiotic prophylaxis. However, the emergence and dissemination of extensively drug-resistant or pandrug-resistant bacteria, for which the optimal therapy has not been established or is not available, may increase the risk for donor-transmitted bacterial infections and may negatively affect graft and recipient survival.

Infections with MDR bacteria have been associated with high mortality rates among transplant recipients[13,16,49-54]. In general, the outcome of bacterial infections in these patients is influenced by the net state of immunosuppression and the clinical severity at the time of infection. Additional factors may also negatively impact the outcome of MDR infections. Failure to start appropriate empiric antimicrobial therapy occurs more frequently in these cases and may contribute to the higher mortality rate[52,34]. Furthermore, high therapeutic failure rates have also been observed in patients with infections caused by extensively resistant pathogens[49], such as carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae, for which optimal treatment is still undefined[15,56].

MAIN MDR INFECTIONS AFTER LIVER TRANSPLANTATION

Methicillin-resistant Staphylococcus aureus

Numerous studies from various centers have demonstrated a high prevalence of methicillin resistance in Staphylococcus aureus (\textit{S. aureus}) isolates from infections of liver transplant recipients[2,21,22,41,50]. The most common sources of infections are catheter-related bloodstream infections, surgical wounds, the intra-abdominal space and lungs[22,57]. Most methicillin-resistant \textit{Staphylococcus aureus} (MRSA) infections are diagnosed within 30 d after liver transplantation[21], with preoperative colonization as the most consistently reported risk factor[20,40,42,58]. Postoperative colonization has been found to occur in 6.7%-22% of recipients[40,59] and is associated with subsequent infection[60]. Other risk factors include a long operation time (> 16 h), preoperative use of antibiotics and post-operative apheresis[21]. Infections with methicillin-resistant \textit{S. aureus} can originate from nasal carriage[61], invasive device colonization[21,62], or community-acquired infections[20,63]. One risk factor identified by some authors includes diabetes[20,62]. Infections with MRSA are associated with increased mortality rate[52,54]. In general, the outcome of bacterial infections and may negatively affect graft and recipient survival.

Vancocin is the primary treatment for severe MRSA infections[62]. Teicoplanin is another glycopeptide with a similar spectrum of activity. Results of a meta-analysis of 24 clinical trials suggest that while teicoplanin and vancocin have comparable efficacies, teicoplanin is associated with a lower incidence of adverse events, such as nephrotoxicity[63]. Nevertheless, among patients with endocarditis, a higher rate of therapeutic failure was reported with teicoplanin, despite adequate plasma
levels\(^{[6]}\). Due to the higher risk of therapeutic failure, an alternative antimicrobial therapy should be used when the minimum inhibitory concentration (MIC) is \(\geq 1.5\) \(\mu\)g/mL for vancomycin, or \(\geq 2.0\) \(\mu\)g/mL for teicoplanin\(^{[63-67]}\). Daptomycin is a bactericidal drug that has been approved for the treatment of MRSA bacteremia, right-sided endocarditis and complicated skin and soft tissue infections\(^{[82]}\), though it is not recommended for the treatment of pneumonia as it is inactivated by the lung surfactant. Linezolid, a synthetic oxazolidinone that has bacteriostatic activity against \(S.\) aureus, has also been recommended for skin and soft tissue infections and pneumonia caused by MRSA\(^{[83]}\). Results of a clinical trial suggest that linezolid may have a higher efficacy than vancomycin for the treatment of MRSA pneumonia\(^{[84]}\). Quinupristin-dalfopristin, a combination of two streptogramins, has been recommended for the treatment of complicated skin and soft tissue infections. Its use has been limited by the frequent occurrence of adverse events such as severe arthralgia, myalgia, nausea and infusion related reactions. Other therapeutic options that may be used in patients with skin and soft tissue infections caused by MRSA include tigecycline, doxycycline, minocycline, telavancin, clindamycin and co-trimoxazole. The latter two agents may be also used for the treatment of ostearticular infections. Rifampicin can be used in combination with other anti-staphylococcal agents for the treatment of infections associated with prosthetic devices. Interaction of rifampicin with calcineurin inhibitors and sirolimus results in reduction of the serum concentrations of these immunosuppressive drugs, necessitating close monitoring of blood levels\(^{[89]}\).

Vancomycin-resistant enterococci

The incidence of vancomycin-resistant enterococci (VRE) infections varies widely among centers. Most infections occur within two months of a liver transplantation and the predominant sites of VRE isolation are the blood, peritoneal fluid, bile and urine\(^{[40]}\). Similar to what has been described for MRSA, patients colonized with VRE are at a high risk for infection\(^{[9]}\). The prevalence of preoperative VRE colonization in liver transplant candidates ranges from 0% to 18%\(^{[60-73]}\), with postoperative colonization rates as high as 14%-44%\(^{[87-90]}\). Once acquired, colonization may persist for months to years\(^{[74,75]}\). The factors most consistently associated with VRE infections include complications or procedures related to the biliary tract\(^{[48-51]}\), as well as surgical re-expansion, longer hospital stays and prior antibiotic use\(^{[23,49,76]}\).

There are limited therapeutic options for VRE infection. High doses of ampicillin should be used in cases with documented \textit{in vitro} susceptibility. Although ampicillin susceptibility is an uncommon feature for \textit{Enterococcus faecium} (\textit{E. faecium}), it is frequently found in vancomycin-resistant \textit{Enterococcus faecalis} (\textit{E. faecalis}) isolates. Linezolid, which has bacteriostatic activity against \textit{E. faecalis} and \textit{E. faecium}, can be used to treat infections caused by vancomycin-resistant strains of both species. However, resistance to linezolid has been described in up to 20% of VRE isolates\(^{[77]}\). Daptomycin has \textit{in vitro} bactericidal activity against enterococci, though its clinical effectiveness has not been established. In two retrospective studies, daptomycin and linezolid had comparable clinical and microbiological cure rates\(^{[78,79]}\). Quinupristin-dalfopristin has bacteriostatic activity restricted to \textit{E. faecium} isolates and thus, cannot be used to treat infections caused by other enterococcal species. Interactions of these streptogramins with calcineurin inhibitors and mTOR inhibitors can result in increased levels in the blood. Tigecycline may be an option for the treatment of clinically stable, non-bacteremic patients with abdominal and skin and soft tissue infections. VRE infection has been associated with higher mortality of liver transplant recipients\(^{[84-88]}\). This finding may possibly reflect the lower effectiveness of the therapeutic options used in older studies. Nevertheless, in a case series of organ transplant recipients treated with linezolid, mortality associated with VRE infection was still approximately 40%\(^{[80]}\).

Extended-spectrum beta-lactamase-producing Enterobacteriaceae

Several studies have reported a high prevalence of extended-spectrum beta-lactamase-producing \textit{Enterobacteriaceae} (ESBLE) isolates in infections from SOT recipients\(^{[81,83]}\). In such cases, the most commonly isolated ESBLE-producing species are \textit{Klebsiella pneumoniae} and \textit{Escherichia coli}. The incidence of ESBLE infection is higher in renal transplant recipients in whom they are important etiologic agents for urinary tract infection\(^{[83]}\). Nevertheless, ESBLE infection is not unusual among liver transplant recipients, with reported incidences of 5%-7%\(^{[88]}\). In addition, preoperative fecal carriage, re-operation and a MELD score > 25 have been associated with a higher risk for infection with these MDR organisms\(^{[88]}\).

Several studies examining the outcome of ESBLE infection among SOT recipients report mortality rates ranging from 5% to 20%\(^{[23,83,84]}\). However, these studies included a large proportion of non-bacteremic patients with urinary tract infections. A preliminary analysis carried out at our center (unpublished data) has shown that the 30-d mortality rate of liver transplant recipients with bacteremia caused by ESBLE was 41%, similar to what has been described in other groups of patients\(^{[83,84]}\).

Carbapenems are the most reliable class of drugs for the treatment of ESBLE infections. Of this class, imipenem and meropenem are the most clinically utilized\(^{[87]}\). Limited clinical data suggest that the efficacy of doripenem is similar to that observed with the former two drugs\(^{[88]}\). Accordingly, the results of a few studies suggest that ertapenem, in cases with proven susceptibility, has comparable effectiveness\(^{[89,90]}\). However, as a considerable proportion of ESBLE show resistance to ertapenem\(^{[91]}\), it is not considered a reliable first-line therapeutic option for patients who present with severe sepsis. Ceftimef and piperacillin-tazobactam are associated with a higher probability for clinical failure even when \textit{in vitro} susceptibility is documented\(^{[87,92]}\). Thus, these drugs should be...
considered as an alternative treatment only to patients who are not severely ill, especially when the primary site of infection is the urinary tract[90]. There are few reports of the effectiveness of other drugs, such as aminoglycosides and quinolones, for the treatment of ESBL infections.

MDR Pseudomonas aeruginosa

A reported 18% of nosocomial pneumonia cases following liver transplantation are caused by MDR *Pseudomonas aeruginosa* (P. aeruginosa)[94]. Furthermore, MDR *P. aeruginosa* has been isolated in up to 9% of bloodstream infections in liver transplant patients[14,45]. Studies on specific risk factors for MDR *P. aeruginosa* among liver transplant recipients are not available. Bloodstream MDR *P. aeruginosa* infections were found to be more frequent in subjects who had hospital-acquired bacteremia or who had been admitted to an ICU in the previous year in a study population in which half of the analyzed SOT recipients had received a liver graft[23].

Optimal treatment for MDR *P. aeruginosa* is not established. In a recent review on this issue[93], it was pointed out that most experts caring for transplant patients generally recommend the use of a combination of two or three drugs from different classes. Antimicrobial drug classes that are usually combined in these regimens include beta-lactams, aminoglycosides, polymyxins and a quinolone[94,95]. There is also data to suggest that the combination of aerosolized antibiotics with intravenous antimicrobial therapy may be beneficial for patients with nosocomial pneumonia due to *P. aeruginosa* and other multidrug-resistant Gram-negative pathogens[96].

Carbapenemase-producing Enterobacteriaceae

Carbapenemase-producing *Enterobacteriaceae* (CRE) infections are associated with a high mortality of SOT recipients[15,97,98]. In a study of liver transplant recipients, the survival rate of subjects with CRE infection was 29.6%, compared to an 86% survival rate in those without[15]. This study also found that CRE infection and a preoperative MELD score > 30 were independently associated with mortality. The impact of preoperative colonization on the rates of CRE infection and mortality after liver transplantation remains undefined. Nonetheless, a study including other groups of critically ill patients demonstrated a high incidence of CRE infection among colonized individuals[99].

The high mortality observed with these infections reflects the very limited therapeutic options currently available. Furthermore, the failure of currently used automated systems to detect carbapenem resistance may delay the start of appropriate antibiotic therapy and contribute to the increased mortality of these infections[99]. Most CRE isolates have *in vitro* susceptibility to polymyxins, tigecycline and fosfomycin, and a considerable proportion retain susceptibility to aminoglycosides. Data from a few studies carried out in non-transplant patients suggest that combination therapy may improve survival[100,101]. The use of a carbapenem in these combination antimicrobial regimens may be beneficial if the MIC to these drugs is \(\leq 4 \text{ mg/L}[102] \). Aminoglycoside monotherapy is effective for the treatment of urinary tract infections, with higher microbiological clearance as compared with monotherapy with polymyxin B or tigecycline[103]. Control of the source of infection (removal of intravascular catheters, drainage of abscesses) is of essential importance and is associated with lower mortality[103].

Carbapenem-resistant Acinetobacter baumannii

Carbapenem-resistant *Acinetobacter baumannii* (CR-Ab) infections are associated with a high mortality of SOT recipients[15,32,34,104]. Although risk factors for these infections are not well defined, the outcomes of CR-Ab-infected SOT recipients are influenced by clinical severity when the infection is diagnosed, the delay to start appropriate therapy[15,54] and the therapeutic regimen used[105]. Recurrence or persistence of infection despite therapy with drugs with proven *in vitro* susceptibility has also been described[16,46,53]. Infections caused by CR-Ab strains that retain *in vitro* susceptibility to sulbactam may be treated with ampicillin-sulbactam or amoxicillin-sulbactam. However, most isolates are extensively resistant, being susceptible only to polymyxins and, with variable frequency, a drug of another antimicrobial class, such as an aminoglycoside or tigecycline. However, monotherapy with a polymyxin has been associated with the emergence of resistant strains[97]. Conflicting results have been reported regarding the effectiveness of combined colistin and rifampicin treatment in non-transplant patients with CR-Ab infections[106,107]. There are also limited data on the effectiveness of the combination colistin-tigecycline, with indications that it is associated with a high rate of treatment failure and emergence of resistance[108,109]. On the other hand, a single-center retrospective study reported a significantly higher survival rate in transplant recipients treated with the combination colistin-carbapenem (doripenem in most cases)[100].

PREVENTION

Although some components of the preventive strategy should be adapted according to the local epidemiology, several general measures can be recommended to reduce the risk of acquiring MDR bacterial pathogens. Continuous education of strict hand hygiene should be implemented concerning contact with contaminated surfaces and before and after contact with a patient. Medical equipment and patient care surfaces should be cleaned and disinfected. Contact isolation precautions must be used for patients with known pathogen colonization. Invasive devices should only be used for a minimum duration, as necessary. Moreover, to minimize the selective pressures favoring the emergence of MDR pathogens, the rational use of antibiotics must be constantly promoted through antibiotic stewardship programs. Although the universal screening of asymptomatic transplant candidates and recipients with surveillance cultures is not generally recommended[93,94,112], it is war-
ranted during outbreaks, in high prevalence areas and for patients with known risk factors for colonization with a given MDR pathogen[9,9,113]—such as patients with recent hospital admissions. In these settings, pre- or perioperative screening of high-risk transplant candidates may help with the timely implementation of contact isolation precautions and to guide empiric antibiotic selection for septic patients while the results of cultures are pending[9]. For patients colonized with MRSA who do not have open wounds, intranasal mupirocin and chlorhexidine cleansing should be attempted[114]. Cleansing with chlorhexidine may also help to limit the cross-transmission of VRE[115]. Two recent studies suggest that selective digestive decontamination with unabsorbable antibiotics may be a suitable strategy for selected groups of patients colonized with CRE[116,117]. However, in other studies, this intervention has also been associated with the rapid emergence of isolates-resistant to colistin and aminoglycosides[118,119]. Several studies have shown that the implementation of a variable set of these preventive strategies in endemic settings or during outbreaks effectively curtails the transmission of MDR bacterial pathogens to transplant recipients[23,26,34,37,76,113].

While cases of unfavorable outcomes resulting from donor-derived MDR infections have been reported[46–48], there are also several reports of good short-term outcomes from SOT using organs from donors with CRE colonization or infection[120,724]. Thus, the criteria defining the eligibility of transplant organs from donors infected or colonized with extensively resistant organisms, such as CR-Ab and CRE, are not established and solely based on expert opinion. Potential donors with bloodstream infections caused by these agents should not be accepted[121]. However, for donors without bacteremia, the decision to accept organ donation should take into account the organ to be transplanted and the source of positive donor cultures, provided that there is adequate antibiotic therapy for the isolated organism[9,111].

REFERENCES

1. Snyder JJ, Israni AK, Peng Y, Zhang L, Simon TA, Kasiske BL. Rates of first infection following kidney transplant in the United States. Kidney Int 2009; 75: 317-326 [PMID: 19020531 DOI: 10.1038/ki.2008.580].
2. Losada I, Cuervas-Mons V, Millán I, Dámaso D. Early infection in liver transplant recipients: incidence, severity, risk factors and antibiotic sensitivity of bacterial isolates. Enferm Infecc Microbiol Clin 2002, 20: 422-430 [PMID: 12425875].
3. Kusne S, Dummer JS, Singh N, Iwatsuki S, Makowka L, Esquivel C, Tzakis AG, Starzl TE, Ho M. Infections after liver transplantation. An analysis of 101 consecutive cases. Transplantation 1991; 51: 132–143 [PMID: 1600494].
4. Aberg F, Másikal H, Höckerstedt K, Isoniemi H. Infectious complications more than 1 year after liver transplantation: a 3-decade nationwide experience. Am J Transplant 2011; 11: 287-295 [PMID: 21219571 DOI: 10.1111/j.1600-6143.2010.03384.x].
5. Avkan-Oguz V, Ozkardesler S, Unak T, Ozbilgin M, Akan M, Firuzan E, Kose H, Astarcigolu I, Karademir S. Risk factors for early bacterial infections in liver transplantation. Transplant Proc 2013; 45: 993-997 [PMID: 23622606 DOI: 10.1016/j.transproceed.2013.02.067].
6. Freire MP, Soares Oshiro IC, Bonazzi PR, Guimarães T, Ramos Figueira ER, Bacchella T, Costa SF, Carneiro D’Albuquerque LA, Abdala E. Surgical site infections in liver transplant recipients in the model for end-stage liver disease era: an analysis of the epidemiology, risk factors, and outcomes. Liver Transpl 2013; 19: 1011-1019 [PMID: 23744748 DOI: 10.1002/lt.23682].
7. Li C, Wen TF, Mi K, Wang C, Yan LN, Li B. Analysis of infections in the first 3-month after living donor liver transplantation. World J Gastroenterol 2012; 18: 1975-1980 [PMID: 22563180 DOI: 10.3748/wjg.v18.i6.1975].
8. Nafady-Hego H, Elgendy H, Moghazy WE, Fukuda K, Uemoto S. Pattern of bacterial and fungal infections in the first 3 months after pediatric living donor liver transplantation: an 11-year single-center experience. Liver Transpl 2011; 17: 976-984 [PMID: 21786404 DOI: 10.1002/lt.22278].
9. Iida T, Kaido T, Yagi S, Yoshizawa A, Hata K, Mizumoto M, Mori A, Ogura Y, Oike F, Uemoto S. Posttransplant bacteremia in adult living donor liver transplant recipients. Liver Transpl 2010; 16: 1379-1385 [PMID: 21117247 DOI: 10.1002/lt.22165].
10. Reid GE, Grim SA, Sankary H, Benedetti E, Oberholzer J, Clark NM. Early intra-abdominal infections associated with orthotopic liver transplantation. Transplantation 2009; 87: 1706-1711 [PMID: 19502964 DOI: 10.1097/TP.0b013e3181a60338].
11. Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Kokudo N, Makuchii M. Pseudomonas aeruginosa infection after living-donor liver transplantation in adults. Transplant Infect Dis 2009; 11: 11-19 [PMID: 18811632 DOI: 10.1111/j.1399-3062.2008.00341.x].
12. Asensio A, Ramos A, Cuervas-Mons V, Cordero E, Sánchez-Turrión V, Blanes M, Cervera C, Gavalda J, Aguado JM, Torre-Cisneros J. Effect of antibiotic prophylaxis on the risk of surgical site infection in orthotopic liver transplantation. Liver Transpl 2008; 14: 799-805 [PMID: 18508358 DOI: 10.1002/lt.21435].
13. Said A, Safdar N, Lacey MR, Knechtle SJ, D’Alessandro A, Musat A, Pirsch J, Kalayoglu M, Maki DG. Infected biliomas in liver transplant recipients, incidence, risk factors and implications for prevention. Am J Transplant 2004; 4: 574-582 [PMID: 15023150 DOI: 10.1111/j.1660-6143.2004.00374.x].
14. Bodro M, Sabé N, Tubau F, Llado L, Bilaiellàs C, Roca J, Cruzado JM, Carratalà J. Risk factors and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in solid-organ transplant recipients. Transplantation 2013; 96: 843-849 [PMID: 23885973 DOI: 10.1097/TP.0b013e3182ae0486].
15. Kalpoe JS, Sonnenberg E, Factor SH, del Rio Martin J, Schiano T, Patel G, Huprikar S. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl 2012; 18: 468-474 [PMID: 22467548 DOI: 10.1002/lt.23374].
16. Shields RK, Clancy CJ, Gillis LM, Kwak EJ, Silveira FP, Masih RC, Eschenauer GA, Potoski BA, Nguyen MH. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. Transplantation 2013; 96: e52349 [PMID: 23285002 DOI: 10.1371/journal.pone.0052349].
17. Liu CC, Lin TL, Tseng SP, Huang YT, Wang JT, Chang SC, Teng LJ, Wang JT, Hsueh PR. Pelvic abscess caused by New Delhi metallo-ß-lactamase-1-producing Klebsiella oxytoca in Taiwan in a patient who underwent renal transplantation in China. Diagn Microbiol Infect Dis 2011; 71: 474-475 [PMID: 22083982 DOI: 10.1016/j.diagmicrobio.2011.09.004].
18. Linares L, García-Goez JF, Cervera C, Almelma M, Sánchez-Cabeza G, Cofan F, Ricart MJ, Navasa M, Moreno A. Early bacteremia after solid organ transplantation. Transplant Proc 2009; 41: 2262-2264 [PMID: 19713892 DOI: 10.1016/j.transproceed.2009.06.079].
SHI SH, Kong HS, Xu J, Zhang WJ, Jia CK, Wang WL, Shen Y, Zhang M, Zheng SS. Multidrug resistant gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. *Transplant Infect Dis* 2009; 11: 405-412 DOI: 10.1111/j.1963-9996.2009.00210.x

Johnson LE, D’Agata EM, Paterson DL, Clarke L, Qureshi ZA, Potoski BA, Peleg AY. Pseudomonas aeruginosa bacteremia over a 10-year period: multidrug resistance and outcomes in transplant recipients. *Transplant Infect Dis* 2009; 11: 227-234 DOI: 10.1111/j.1963-9996.2007.00253.x

Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Moriya K, Koike K, Makuchii M. Methicillin-resistant Staphylococcus aureus infection after living-donor liver transplantation in adults. *Transplant Infect Dis* 2008; 10: 110-116 DOI: 10.1111/j.1963-9996.2007.00253.x

Santoro-Lopes G, et al. Outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a pediatric intensive care unit transplant population. *Pediatr Transplant* 2002; 6: 224-230 DOI: 10.1038/sj.pt.1002477

Papanicolau GA, Meyers BR, Meyers J, Mendelson MH, Zapletal C, Wullstein C, Golling M, Bechstein WJG. www.wjgnet.com 2003-2004. Euro Surveill 2003; 18: 852-855 DOI: 10.1016/j.eursgene.2003.11.002

Daviski BA, Taminato M, Godoy-Martinez P, Freitas MC, Belasco A, Sessa R, Pacheco-Silva A, Pignataro AC, Barbosa D. Cross-transmission of vancomycin-resistant Enterococcus faecium in patients undergoing dialysis and kidney transplantation. *Braz J Med Biol Res* 2010; 43: 115-119 DOI: 10.1590/S0100-879X2010000200014

Pazik J, Durlik M, Ciszek M, Paczek L, Chmura A, Mlynarczyk A, Mlynarczyk A. The dominant sequence types of vancomycin-resistant Enterococcus faecium among transplantation ward patients. *Transplant Proc* 2011; 43: 3132-3134 DOI: 10.1016/j.transproceed.2011.08.005

Hammami S, Boutiba-Ben Boubaker I, Ghozzi R, Saidani M, Amine S, Ben Redjeb S. Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-β-lactamase in a kidney transplantation unit. *Diaq Pathol* 2011; 6: 106 DOI: 10.1001/j.transproceed.2011.08.005

Romaneli RM, Clemente WT, Lima SS, Rezende EM, Singh N, Rihs JD, Squier CR, Rihs BL, Muder RK, van Duin D. Staphylococcus aureus bacteremia in solid organ transplant recipients. *Transplant Infect Dis* 2008; 10: 227-234 DOI: 10.1111/j.1963-9996.2007.00253.x

Green M. Infection in liver transplant recipients. *Clin Infect Dis* 2000; 30: 322-327 DOI: 10.1086/313658

Meyers BC, Meyers J, Mendelson MH, Zapletal C, Wullstein C, Golling M, Bechstein WJG. Outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a liver transplant centre in France, 2003-2004. *Euro Surveill* 2003; 18: 108-112 DOI: 10.1016/S1228-6222(03)00074-7

Bert F, Larroque B, Paugam-Burtz C, Dondoro F, Durand F, Marcon E, Belgihiti J, Moreau R, Nicolas-Chanoine MH. Pre-transplantecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae and infection after liver transplantation. *Liver Transplant* 2005; 11: 1547-1551 DOI: 10.1002/lt.20619

Mathers AJ, Cox HL, Bonatti H, Kitchel B, Brassinga AK, Wispelwy B, Sawyer RG, Pruett TL, Hazen KC, Patel JB, Sifri CD. Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant recipients. *Transplant Infect Dis* 2009; 11: 257-265 DOI: 10.1111/j.1963-9996.2007.00253.x

Paterson DL, Singh N, Rihs JD, Squier C, Rihs BL, Muder RR. Control of an outbreak of infection due to extended-spectrum beta-lactamase-producing Enterococci coli in a liver transplantation unit. *Clin Infect Dis* 2001; 33: 126-128 DOI: 10.1086/320882

Liu ZG, Hong HY, Zhou JD, Zhang HY. Analysis of antibiotic treatment in 86 cases of liver transplant recipients. *Zhonghua Ganzang Zazhi* 2009; 17: 852-855 DOI: 10.3969/j.issn.1673-4567.2009.07.018

Bert F, Larroque B, Paugam-Burtz C, Dondoro F, Durand F, Marcon E, Belgihiti J, Moreau R, Nicolas-Chanoine MH. Pre-transplantecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae and infection after liver transplantation. *Liver Transplant* 2005; 11: 1093-1099 DOI: 10.1002/lt.20491

Chang FY, Singh N, Gayowski T, Drenning SD, Wagener MM, Marino IR. Staphylococcus aureus nasal colonization and association with infections in liver transplant recipients. *Liver Transplant* 2005; 11: 1059-1064 DOI: 10.1002/lt.20491

Zhong L, Men TY, Li H, Peng ZH, Gu Y, Ding X, Xing TH, Fan JW. Multidrug-resistant gram-negative bacterial infections after liver transplantation - spectrum and risk factors. *J Infect* 2012; 64: 299-310 DOI: 10.1016/j.jinf.2011.12.005

Woeste G, Zapletal C, Wullstein C, Golling M, Bechstein WO. Influence of methicillin-resistant Staphylococcus aureus carrier status in liver transplant recipients. *Transplant Proc* 2005; 37: 1710-1712 DOI: 10.1016/j.transpro-
Martins N, Martins IS, de Freitas WV, de Matos JA, Magalhães AC, Girão VB, Dias RC, de Souza TC, Pellegrino FL, Costa LD, Borroquevisque CH, Nourê SA, Riley LW, Santoro-Lopes G, Moreira BM. Severe infection in a liver transplant recipient caused by donor-transmitted carbapenem-resistant Acinetobacter baumannii. Transpl Infect Dis 2012; 14: 316-320 [PMID: 2268176 DOI: 10.1111/j.1399-3062.2011.00701.x]

Centers for Disease Control and Prevention (CDC). Transmission of multidrug-resistant Escherichia coli through kidney transplantation — California and Texas, 2009. MMWR Morb Mortal Wkly Rep 2010; 59: 1642-1646 [PMID: 21178948]

Johnston L, Chui L, Chang N, Macdonald S, McKenzie M, Kennedy W, Haldane D, Bethune R, Taylor G, Hanakowski L, Kennedy W, Haldane D, Bethune R, Taylor G, Hanakowski L. Cross-Canada spread of methicillin-resistant Staphylococcus aureus in live organ transplant candidates and recipients: a prospective surveillance study. Transplantation 2010; 81: 850-854 [PMID: 21305251 DOI: 10.1097/TP.0b013e3181b879e0]

Santoro-Lopes G, de Gouveia EF, Monteiro RC, Branco RC, Rocco JR, Halpern M, Ferreira AL, de Araújo EG, Basto ST, Silveira VG, Ribeiro-Filho J. Colonization with methicillin-resistant Staphylococcus aureus after liver transplantation. Liver Transpl 2012; 18: 237-241 [PMID: 22189105DOI: 10.1002/lt.22620]

Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsu Y, Togashi J, Moriya K, Kooike K, Mukuchi M. Acquisition of methicillin-resistant Staphylococcus aureus after live donor liver transplantation: a retrospective cohort study. BMC Infect Dis 2008; 8: 155 [PMID: 19014465 DOI: 10.1186/1471-2334-8-155]

Santoro-Lopes G, de Gouveia EF, Monteiro RC, Branco RC, Rocco JR, Halpern M, Ferreira AL, de Araújo EG, Basto ST, Silveira VG, Ribeiro-Filho J. Colonization with methicillin-resistant Staphylococcus aureus after liver transplantation. Liver Transpl 2012; 18: 237-241 [PMID: 22189105DOI: 10.1002/lt.22620]

Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsu Y, Moriya K, Kooike K, Mukuchi M. Impact of new methicillin-resistant Staphylococcus aureus carriage postoperatively after living donor liver transplantation. Transplant Proc 2007; 39: 3271-3275 [PMID: 18089369 DOI: 10.1016/j.transproceed.2007.09.093]

Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Tanal DA, Chambers HF. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011, 52: e18-e55 [PMID: 21208910 DOI: 10.1093/cid/ciq146]

Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 2009; 53: 4069-4079 [PMID: 19596875 DOI: 10.1128/AAC.00341-09]

Duncan CJ, Barr DA, Ho A, Sharp E, Semple L, Seaton RA. Risk factors for failure of outpatient parental antibiotic therapy (OPAT) in infective endocarditis. J Antimicrob Chemother 2013; 68:1650-1654 [PMID: 23478647DOI: 10.1093/jac/dkt106]

van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis 2012; 54: 755-771 [PMID: 22302374 DOI: 10.1093/cid/ciq935]

Chen KY, Chang HJ, Hsu PC, Yang CC, Chia JH, Wu TL, Huang CT, Lee MH. Relationship of teicoplanin MICs to treatment failure in teicoplanin-treated patients with methicillin-resistant Staphylococcus aureus pneumonia. J Microbiol Immunol Infect 2013; 46: 210-216 [PMID: 22999099 DOI: 10.1016/j.jmii.2012.06.010]

Chang HJ, Hsu PC, Yang CC, Siu LK, Kuo AJ, Chia JH, Wu TL, Huang CT, Lee MH. Influence of teicoplanin MICs on treatment outcomes among patients with teicoplanin-treated methicillin-resistant Staphylococcus aureus bacteraemia: a hospital-based retrospective study. J Antimicrob Chemother 2012; 67: 736-741 [PMID: 22169187 DOI: 10.1093/jac/dkr531]

Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunell MJ, Baruch A, McGee WT, Reisman A, Chastre J, Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 2012; 54: 621-629 [PMID: 22247123 DOI: 10.1093/cid/cir895]

Garzoni C, Vergidis P. Methylene-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus infections in solid organ transplantation. Am J Transplant 2013; 13 Suppl 4: S50-S58 [PMID: 23464998 DOI: 10.1111/ajt.12098]

McNeil SA, Malani PN, Chenoweth CE, Fontana RJ, Magee JC, Punch JD, Macklin ML, Kauffman CA. Vancomycin-resistant enterococcal colonization and infection in liver transplant candidates and recipients: a prospective surveillance study. Clin Infect Dis 2006; 42: 195-203 [PMID: 16355329 DOI: 10.1086/498903]

de Gouvea EF, Castelo Branco R, Monteiro RC, Halpern M,
Santoro-Lopes G et al. MDR bacterial infection after transplantation

May 28, 2014 | Volume 20 | Issue 20 | 6208
pneumonia acquisition in lung transplant recipients. Clin Transplant 2012; 26: E388-E394 [PMID: 22882693 DOI: 10.1111/j.1399-0012.2012.01671.x]

98 Bergamasco MD, Barbiero Bottigio M, de Oliveira Garcia D, Cipullo R, Moreira JC, Bui C, Barbosa V, Abboud CS. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in solid organ transplantation. Transpl Infect Dis 2012; 14: 198-205 [PMID: 22093103 DOI: 10.1111/j.1399-0012.2011.00688.x]

99 Calfee D, Jenkins SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol 2008; 29: 966-968 [PMID: 18754738 DOI: 10.1086/590661]

100 Tumbarello M, Viale P, Viscotti C, Trecarichi EM, Tumietto F, Marchese A, Spanu T, Ambretti S, Ginochio F, Cristini F, Losito AR, Tedeschi S, Cauda R, Bassetti M. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2012; 55: 943-950 [PMID: 22752516 DOI: 10.1093/cid/cis888]

101 Qureshi ZA, Paterson DL, Potski BA, Kiyako MC, Sandovsky G, Sordello E, Polsky B, Adams-Haduch JM, Doi Y. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination anti-microbial regimens. Antimicrob Agents Chemother 2012; 56: 2108-2113 [PMID: 22258216 DOI: 10.1128/AAC.0268-11]

102 Zarkotou O, Pourmaras S, Tsiolioti P, Dragoumanos V, Pitsigia V, Ranellou K, Prekates A, Themeli-Digalaki K, Tsakris A. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 2011; 17: 1798-1803 [PMID: 21595793 DOI: 10.1111/j.1469-0691.2011.03514.x]

103 Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: when might we still consider treating with carbapenems? Clin Microbiol Infect 2011; 17: 1135-1141 [PMID: 21635665 DOI: 10.1111/j.1469-0691.2011.03553.x]

104 Satlin MJ, Kubin CJ, Blumenthal JS, Cohen AB, Furuya EY, Wilson SJ, Jenkins SG, Calfee DP. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for the treatment of mortality of in patients with bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2011; 17: 1798-1803 [PMID: 21595793 DOI: 10.1111/j.1469-0691.2011.03514.x]

105 Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: when might we still consider treating with carbapenems? Clin Microbiol Infect 2011; 17: 1135-1141 [PMID: 21635665 DOI: 10.1111/j.1469-0691.2011.03553.x]

106 Satlin MJ, Kubin CJ, Blumenthal JS, Cohen AB, Furuya EY, Wilson SJ, Jenkins SG, Calfee DP. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for the treatment of mortality of in patients with bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 2011; 17: 1798-1803 [PMID: 21595793 DOI: 10.1111/j.1469-0691.2011.03514.x]

107 Reddy P, Zemboower TR, Ison MG, Baker TA, Stosor V. Carbapenem-resistant Acinetobacter baumannii infections after organ transplantation. Transpl Infect Dis 2010; 12: 87-93 [PMID: 19735384 DOI: 10.1111/j.1399-0012.2009.00445.x]

108 Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance and colistin following selective digestive decontamination using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen. Dagens Mikrobiol Infekt Dis 2011; 70: 246-252 [PMID: 21353436 DOI: 10.1111/j.1399-3062.2010.01203.x]

109 Patel G, Snyderman DR. Vancomycin-resistant Enterococcus infections in solid organ transplantation. Am J Transplant 2013; 13 Suppl 1: S1-44 [PMID: 16581155 DOI: 10.1016/j.ajt.2006.01.001]

110 Sherman MO, Hayden MK, Trick WE, Hayes RA, Blom DW, Weinstein RA. Chlorhexidine gluconate to cleanse patients in a medical intensive care unit: the effectiveness of source control to reduce the bioburden of vancomycin-resistant enterococci. Arch Intern Med 2006; 166: 306-312 [PMID: 16476870 DOI: 10.1001/archinte.166.3.306]

111 Saidel-Odes L, Polacheck H, Peled N, Riesenberg K, Schlaeffter F, Travelsi Y, Eskira S, Yousef B, Smolykov R, Codish S, Borer A. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol 2012; 33: 14-19 [PMID: 22173517 DOI: 10.1086/663206]

112 Zuckerman T, Benyamini N, Sprecher H, Fineeman R, Finkelstein R, Rowe JM, Oren I. SFT in patients with carbapenem-resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant 2011; 46: 1226-1230 [PMID: 21057549 DOI: 10.1038/bmt.2010.279]

113 Lubbert C, Faucheux S, Becker-Rux D, Laudi S, Dirrbeck A, Busch T, Gastmeier P, Eckmanns T, Rodloff AC, Kaisers UX. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013; 42: 565-570 [PMID: 24100228 DOI: 10.1016/j.ijantimicag.2013.08.021]

114 Halaby T, Al Naiemi N, Klymutians J, van der Palen J, Van denBroucke-Grauls CM. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother 2013; 57: 3224-3229 [PMID: 23629703 DOI: 10.1128/AAC.02634-12]

115 Goldberg E, Bishara J, Lev S, Singer P, Cohen J. Organ transplantation from a donor colonized with a multidrug-resistant associated pneumonia. Epidemiol Infect 2013; 141: 1214-1222 [PMID: 22954403 DOI: 10.1017/S095026881200194X]

116 K K, Pogue JM, Mohosho J, Bheemreddy S, Wang Y, Bhargava A, Campbell M, Khandker N, Leaphart PR, Chopra T, Hayakawa K, Martin EJ, Abreu-Lanfranco O, Dhar S, Kaye KS, Marchaim D. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am J Infect Control 2012; 40: 983-987 [PMID: 22440526 DOI: 10.1016/j.ajic.2011.12.014]

117 Shields RK, Kwak EJ, Potski BA, Doi Y, Adams-Haduch JM, Silviera FP, Toyoda Y, Filewski JM, Crespo M, Pasculle AW, Clancy CJ, Nguyen MH. High mortality rates among solid organ transplant recipients infected with extensively drug-resistant Acinetobacter baumannii: using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen. Dagens Mikrobiol Infekt Dis 2011; 70: 246-252 [PMID: 21353436 DOI: 10.1111/j.1399-3062.2010.01203.x]
organism: a case report. *Transpl Infect Dis* 2012; 14: 296-299 [PMID: 22176504 DOI: 10.1111/j.1399-3062.2011.00697.x]

122 Bishara J, Goldberg E, Lev S, Singer P, Ashkenazi T, Cohen J. The utilization of solid organs for transplantation in the setting of infection with multidrug-resistant organisms: an expert opinion. *Clin Transplant* 2012; 26: 811-815 [PMID: 22831178 DOI: 10.1111/j.1399-0012.2012.01693.x]

123 Ariza-Heredia EJ, Patel R, Blumberg EA, Walker RC, Lewis R, Evans J, Sankar A, Williams MD, Rogers J, Milano C, Razonable RR. Outcomes of transplantation using organs from a donor infected with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. *Transpl Infect Dis* 2012; 14: 229-236 [PMID: 22624726 DOI: 10.1111/j.1399-3062.2012.00742.x]
