Phylogeny of Hydrothermal-Vent–Endemic Gaztopods *Alviniconcha* spp. from the Western Pacific Revealed by Mitochondrial DNA Sequences

S. KOJIMA1,2*, R. SEGAWA2, Y. FIJIWARA3, K. FUJIKURA3, S. OHTA1, AND J. HASHIMOTO3

1Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan;
2Department of Biology, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0364, Japan; and 3Japan Marine Science and Technology Center, 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan

Abstract. Mitochondrial genes for cytochrome oxidase I (COI) from hydrothermal-vent–endemic gastropods of the genus *Alviniconcha* were sequenced to determine the phylogenetic relationships among specimens from three areas in the western Pacific. Individuals of *Alviniconcha hessleri* were collected at two vent fields (depths 1470 m and 3600 m) in the Mariana Trough. Specimens collected in the North Fiji Basin could be divided into two genetically distinct groups, both of which also differed from *A. hessleri* from the Mariana Trough. None of the specimens of the genus *Alviniconcha* collected in the Manus Basin differed genetically from the dominant group from the North Fiji Basin. We suggest that the specimens of the genus *Alviniconcha* analyzed in the present study can be tentatively classified into *A. hessleri* and two undescribed species.

Introduction

Since the late 1970s, various biological communities supported by chemosynthetic energy have been discovered in deep-sea reducing environments, such as hydrothermal vent fields and seep areas (Sibuet and Olu, 1998; Van Dover, 2000). The elucidation of dispersion, isolation, and speciation of endemic species is one of the most important issues of deep-sea biology (Vrijenhoek, 1997). Comparative studies of the genetic structure of their populations will provide useful information about such evolutionary processes.

The population structures of some dominant endemic species in deep-sea reducing environments have been analyzed by electrophoretic examination of allozymes (Vrijenhoek, 1997). Analyses based on DNA sequences would reveal more details of the structures of such populations. To date, population analyses using DNA markers have been reported for just a few species (for review, see Tyler and Young, 1999). In addition, most population genetic studies of organisms in deep-sea reducing environments have been performed on specimens collected in the eastern Pacific and the Atlantic. The accumulation of genetic information about endemic species in deep-sea reducing environments in the western Pacific, where the chemosynthesis-based communities have unique species composition (Tunnicliffe et al., 1998), should provide more clues to the processes and mechanisms of evolution of fauna in deep-sea reducing environments.

Gastropods of the genus *Alviniconcha*, which live in symbiosis with chemosynthetic bacteria (Stein et al., 1988; Endow and Ohta, 1989), are one of the most dominant groups in the chemosynthesis-based communities at some hydrothermal vent sites in the western Pacific backarc basins, namely, the Mariana Trough (Craig et al., 1987; Hessler and Lonsdale, 1991; Fujikura et al., 1997), the Manus Basin (Both et al., 1986; Tufer, 1990; Auzende et al., 1997; Hashimoto et al., 1999), the North Fiji Basin (KAIYO 87 Shipboard Party, 1988; Desbruyères et al., 1994), and the Lau Basin (NAUTILAU Group, 1990; Desbruyères et al., 1994) (Fig. 1).

Received 16 June 2000; accepted 12 February 2001.
*To whom correspondence should be addressed. E-mail: kojima@ori.u-tokyo.ac.jp.
Okutani and Ohta (1988) described the species *Alviniconcha hessleri* on the basis of specimens collected in the hydrothermal fields along the spreading axis of the central Mariana Trough (3650 m depth). Further populations of *A. hessleri* were discovered in a vent area at a shallower site on the southern Mariana Ridge, at a depth of 1470 m (Johnson et al., 1993). No distinct morphological differences were apparent in the specimens from these two vent sites (Hasegawa et al., 1997).

Populations of *Alviniconcha* gastropods have also been discovered at the hydrothermal vents in the Manus Basin, the North Fiji Basin, and the Lau Basin. On the basis of slight differences in the radula and the shell, Beck (1991) proposed that *Alviniconcha* in the Manus Basin might be a subspecies of *A. hessleri*. Because distinctive morphological characteristics are scarce, information at the molecular level is necessary to establish exact taxonomic relationships among species of the genus *Alviniconcha*. To date, only one molecular analysis of this genus has been published (Denis et al., 1993). In that study, an electrophoretic analysis of 12 enzymes showed that the populations of *Alviniconcha* gastropods in the North Fiji Basin and the Lau Basin are genetically distinct from one another. Molecular analysis of populations in the other hydrothermal vent sites will provide a useful basis for judgments about the taxonomic status of each population. In the present study, we used nucleotide sequences of mitochondrial DNA to analyze the phylogenetic relationships among populations of the genus *Alviniconcha* in the Mariana Trough, the North Fiji Basin, and the Manus Basin.

Materials and Methods

During dives of the submersibles *Shinkai 2000* and *Shinkai 6500* of the Japan Marine Science and Technology Center (JAMSTEC) and *Nautilie* of Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), 40 specimens of *Alviniconcha hessleri* and 35 of the genus *Alviniconcha* were collected, as summarized in Table 1.

Mitochondrial DNA (mtDNA) was extracted from the deep-frozen head-foot region of each individual by a modified version of the method of Komm et al. (1982). In the case of some damaged samples, which had been collected in the North Fiji Basin in 1990 and stored at −20°C, total DNA was extracted by grinding the tissue, digestion with sodium dodecyl sulfate (SDS) and proteinase K, and extraction with phenol and chloroform.

A fragment (about 450 bp) of the mitochondrial gene for cytochrome oxidase I (COI) was amplified by the polymerase

Table 1

Species	Sampling site	Depth (m)	Submersible	Dive #	Sample #
Alviniconcha hessleri	Alice Springs, Central Mariana Trough	3600	*Shinkai 6500*	D153	CMT-92-1-20
	Forecast Vent, Southern Mariana Ridge	1470	*Shinkai 6500*	D186	SMR-93-1-11
Alviniconcha spp.	PACMANUS site, Manus Basin	1630	*Shinkai 6500*	D914	MB-96-1-20
	White Lady site, North Fiji Basin	1970	*Nautilie*	D12	NFB-90-4-4
	STARMER II site, North Fiji Basin	1980	*Nautilie*	D20	NFB-90-7-9
ase chain reaction (PCR) with universal metazoan primers. COI-3, 5'-GTNTGRGCNCAYCAYATRTTYACNGT-3', and COI-6, 5'-GGRTARTCNWRTANCNCGNG-GYAT-3' (Shimayama et al., 1996). The conditions for PCR were as follows: 94°C for 60 s; then 30 to 40 cycles at 92°C for 40 s, 40°C for 60 s, and 72°C for 90 s. Gene-releaser (BioVenture Inc., Murfreesboro, TN) was used to sequester products of cell lysis that might have inhibited the polymerase. The nucleotide sequences (306 bp) were determined for both strands of PCR products by the dideoxynucleotide chain-termination method using a Sequenase PCR product sequencing kit (United States Biochemical Coop., Cleveland, OH) and primers COI-3 and COI-6.

A longer fragment (about 960 bp) of COI, which contains the region mentioned above, was amplified by PCR using Gene-releaser and primers COI-B, 5'-GGATGAACNGT-NTAYCCNCC-3' (Hasegawa et al., 1996) and COI-6. The conditions for PCR were as follows: 94°C for 60 s; then 30 to 40 cycles at 92°C for 40 s, 50°C for 60 s, and 72°C for 90 s. The nucleotide sequences within the upper region of this fragment were determined bidirectionally by a sequencer DSQ-2000L (Shimazu Corp., Kyoto, Japan) using primers Gastro-3, 5'-TTAGCTGCTTCNCTATYY-TNGG-3' (Kojima et al., 2000) and TW-2, 5'-ACTACRTARTANGTRCRTG-3 (Kojima et al., 1997b). A nucleotide sequence of a single specimen of A. hessleri from the South Mariana Ridge (No. CMT-92-1) was reported in a previous paper (Kojima et al., 2000). Amino acid sequences of COI were deduced by reference to the modified genetic code of molluscan mtDNA (Shimayama et al., 1990; Hoffmann et al., 1992).

The genetic distances between haplotypes were calculated by Kimura's two-parameter method (Kimura, 1980). Phylogenetic trees were constructed by the neighbor-joining method (Saitoh and Nei, 1987) using MEGA (Kumar et al., 1993) and the maximum parsimony method using the heuristic search approach of the computer program PARSI-MONY, which was provided by Dr. K. Tamura of Tokyo Metropolitan University. Ifereria nautilae, a hydrothermal-vent—endemic gastropod species closely related to Alviniconcha (Beck, 1991; Warén and Bouchet, 1993), was used as an outgroup for phylogenetic analysis (Kojima et al., 2000).

Differences in frequencies of haplotypes between populations were examined by the exact test of population differentiation (Raymond and Rousset, 1995) using ARLEQUIN (Schneider et al., 1996) and the randomized chi-squared test of independence (Raff and Bentzen, 1989). Chi-squared values were generated from 1000 simulated random samplings of the data. An unbiased fixation index, F_{ST} (Weir and Cockerham, 1984), was estimated, and the significance of the indices was tested by a nonparametric permutation approach using ARLEQUIN (Schnider et al., 1996).

Results

Partial sequences (696 bp) of mitochondrial genes for COI were determined from 40 specimens of Alviniconcha hessleri and 35 specimens of Alviniconcha spp. Sequences of all individuals of the genus Alviniconcha collected in the North Fiji Basin and the Manus Basin were distinct from those of A. hessleri from the Mariana Trough. In addition, the sequences of three specimens of the genus Alviniconcha collected during a single dive (Dive 20 of Nautil) at the STARMER II site in the North Fiji Basin were very different from those of other specimens from the same area. These other North Fiji Basin specimens included two from the STARMER II site and 10 from the White Lady site. The STARMER II site is only 120 m southwest of the White Lady site in the North Fiji Basin. Individuals with mitochondrial DNA of the dominant type and those with DNA of the less frequent type are referred to hereafter as Alviniconcha spp. type 1 and Alviniconcha spp. type 2, respectively. Figure 2 shows nucleotide sequences from Alviniconcha hessleri, Alviniconcha spp. type 1, and Alviniconcha spp. type 2. A single amino acid substitution was detected between Alviniconcha spp. type 1 and the others (Fig. 2). Within the sequences from each of A. hessleri, Alviniconcha spp. type 1, and Alviniconcha spp. type 2, no amino acid substitutions were detected.

Twenty-seven, thirteen, and three haplotypes were obtained for A. hessleri, Alviniconcha spp. type 1, and Alviniconcha spp. type 2, respectively. Figure 3 shows the phylogenetic relationships among the specimens of the genus Alviniconcha. Specimens of A. hessleri, Alviniconcha spp. type 1, and Alviniconcha spp. type 2 formed separate monophyletic clusters. There were greater genetic variations among the three clusters of Alviniconcha than within each cluster. The monophyly of A. hessleri, Alviniconcha spp. type 1, and type 2 was supported by high bootstrap probabilities (93%, 100%, and 100%, respectively). Alviniconcha hessleri, Alviniconcha spp. type 1, and type 2 formed monophyletic groups in all maximum parsimony trees as well (data not shown).

Three of 27 haplotypes of A. hessleri were discovered in the specimens from both the central Mariana Trough and the southern Mariana Ridge (Fig. 3). Statistical analysis by the exact test of population differentiation (Raymond and Rousset, 1995) and the randomized chi-squared test of independence (Raff and Bentzen, 1989) showed a genetic difference between the populations in the central Mariana Trough and on the southern Mariana Ridge ($P = 0.035$ and $P = 0.023$, respectively). In the case of Alviniconcha spp. type 1, four haplotypes were discovered among the specimens from both the North Fiji
A1	ATT	ACT	GCA	GAA	TTA	TAA	TTA	TCT	TTA	CCA	GGT	GCT	ATT	ACA	ATG	CTT	TTA	ACA	GAT	GGA
A2

A1	AAT	TTY	AAT	ACT	GCT	GCT	TTC	TTT	GAC	CCA	GCT	GGA	GGT	GGT	GAT	GCA	ATT	TTA	TAY	GAA	CAT	TTA	TTT	TTA	TGC
A2			

A1	TTT	GGG	CAC	GCA	GAA	GGT	ATT	TTA	ATT	TCT	CTT	GCT	GGC	TTT	GGA	ATG	ATT	TCT	CAT	ATT	GTT	AGA	CAT	CAT
A2		

| A1 | TCA | GGC | AAG | AAA | ACG | TTC | GTC | ACG | AAT | GAA | CTT | GCA | ACT | ATG | ATA | GCA | ATT | GGT | TTA | TTA | GTT |
|-----|
| A2 | ... |

A1	ATT	GTA	TGA	GCT	CAT	ATG	TTC	GTC	TTA	ACT	TGA	ATG	GAT	GTA	CAT	ACT	GCT	GCT	TAY	TTC	ACA	GCA	GGC	ACT
A2			

A1	ATA	ATT	ATT	GGT	CTA	ACT	GGA	ATT	AAG	GTY	TTC	AGY	TGA	CTY	GGC	ACA	ATT	CAT	AGT	GCA	AAA	ATC	AAG
A2		

| A1 | TAT | GAA | ACT | ATG | CTT | TGA | GCT | TTA | GGR | TTT | ATT | TTC | TTT | ATT | CTA | GGA | GGT | TTA | ACT | GCA | ATT | GTT |
|-----|
| A2 | ... |

A1	CTT	TCT	AAT	TGY	TCA	GAT	ATT	ATG	ATG	CAY	ACT	TAC	TAT	GTA	GCT	TTT	ATT	TTC	TTG	TTC	ACT	GCA	GCT	ATG
A2			

A1	TCA	ATR	GGR	GCA	GTC	TTY	GCC	YTA	TTT	GCA	GCT	TTT	AAC	TAT	TGA	TTY	CTA	AAA	TAT	AGR	AGA	GGG	GTA
A2		

A1	CAC	TCT	CGT	TGA	ACA	AAA	GCT	CAT	TTT	TAT	ATR	TTT	ATY	GGR	GTA
A2	

Figure 2. Nucleotide sequences of mitochondrial genes for cytochrome oxidase 1 from *Alviniconcha hessleri* (Ah). *Alviniconcha* spp. type 1 (A1), and *Alviniconcha* spp. type 2 (A2). Dots indicate nucleotides identical to those in Ah. An underlined codon encodes an amino acid different from that in Ah. R denotes G or A; Y is T or C; S is G or C.

Basin and the Manus Basin (Fig. 3), and there was no genetic difference between the two populations ($P = 0.705$ for the randomized chi-squared test of independence). Although the F_{ST} value between the two populations of *A. hessleri* was significant ($P < 0.05$) and
estimated to be 0.047, that of Alviniconcha spp. type 1 was not significant ($P > 0.05$).

Discussion

In the present study, we analyzed the phylogenetic relationships among populations of the Alviniconcha gastropods in hydrothermal areas in the western Pacific. Both the neighbor-joining (NJ) method and the maximum parsimonious (MP) method showed that the 43 haplotypes identified among 80 specimens of the genus Alviniconcha formed three monophyletic clusters (Fig. 3). In the NJ tree, the monophyly of each of the three clusters was supported by a high bootstrap probability. The three clusters of Alviniconcha were distinct from one another, with a smaller range of sequence variations within clusters than among clusters. Therefore, we suggest tentatively that the specimens of the genus Alviniconcha analyzed in the present study should be classified as A. hessleri and two undescribed species.

Although the habitat on the southern Mariana Ridge is much shallower than the type locality of A. hessleri (the central Mariana Trough), all haplotypes identified from specimens collected at two vent sites formed a single cluster (Fig. 3). Although the exact test of population differentiation, a randomized chi-squared test, and the test of significance of the F_{ST} value showed that a genetic difference between the two populations was significant at the 5% level, they shared three haplotypes. From the pairwise F_{ST} value, the absolute number of migrants exchanged between these
two populations was estimated to be 10.2. These results suggest that these two populations are conspecific and might be connected by significant gene flow. The present results are consistent with the absence of distinct morphological differences between these populations (Hasegawa et al., 1997). The distribution of conspecific populations in the bathyal zone and the abyssal zone is in marked contrast with the strict depth zonation exhibited by endemic groups that inhabit the seep areas off central Japan, namely, bivalves of the genus Calyptogena (Kojima and Ohta, 1997) and vestimentiferans (Kojima et al., 1997b). This difference might be due to environmental factors, such as water currents and the topography of the sea floor, or to differences in biological characteristics among groups.

The absence of genetic differences between the populations of Alviniconcha spp. type 1 in the Manus Basin and in the North Fiji Basin provides a typical example of the active interchange of fauna between western Pacific back-arc basins, which was first noted by Hessler and Lonsdale (1991). For Ifremeria nautili, which is related to Alviniconcha spp., Kojima et al. (2000) reported that no haplotype was shared between the Manus Basin and the North Fiji Basin and concluded that the two populations should be considered to be conspecific populations that are isolated geographically from one another. The morphology of the larval shell of Alviniconcha is suggestive of planktonic development, whereas the larval type of Ifremeria remains unclear (Warén and Bouchet, 1993). The difference in degree of genetic differentiation between I. nautili and Alviniconcha spp. type 1 might be attributed to differences in the larval type (Kojima et al., 2000).

Denis et al. (1993) reported significant genetic differences between a population of Alviniconcha in the North Fiji Basin and one in the Lau Basin, and they proposed that individuals in these two populations should be treated as separate species. The North Fiji Basin is situated near the Lau Basin (Fig. 1); thus Alviniconcha spp. type 2 might be conspecific with the Lau Basin species proposed by Denis et al. (1993). Unfortunately, samples from the Lau Basin are not available, so we have been unable to test this hypothesis. To clarify the taxonomic status of these putative species, detailed morphological examination and further molecular analysis are required.

The dominance of gastropods of the family Provannidae offers one of the prominent features in some chemosynthetic-basin-based communities in the back-arc basins in the western Pacific. This study and our previous ones (Kojima et al., 2000) revealed the population structures of some species in the two representative genera of this family, namely Alviniconcha and Ifremeria. Although many other endemic taxa have been reported from the western Pacific (Desbruyères and Segonzac 1997; Miura et al., 1997; Okutani et al., 1999; Fujikura et al., 2000), information about their population structures is still limited (Kojima et al., 1997a, b). Information about the population structures of many endemic species in deep-sea reducing environments will be needed to reveal details of the evolution in such environments in the western Pacific and to compare those with those in other oceans.

Acknowledgments

The authors thank the shipboard parties of the STARMER cruises, the Y96-13 cruise, and the BIOACCESS-Manus ’96 cruise, the operation teams of the submersibles Shinkai 2000, Shinkai 6000, and Nautil, and the officers and crew of the tender ships Natsushima, Yoshukas, and Naider for their help in collecting samples. Dr. U. Tsunogai graciously provided specimens of A. hessleri collected during Dive 355 of the submersible Shinkai 6000. Dr. K. Tamura kindly provided the computer program PARSIMONY. Thanks are also extended to Dr. I. Hayashi and two anonymous reviewers for comments that improved manuscripts. Part of this study was supported by grants from the Science Technology Agency of Japan and from the Ministry of Education, Science, Sports and Culture of Japan (no. 12NP0201).

Literature Cited

Azuende, J.-M., J. Hashimoto, A. Fiala-Médioni, S. Ohta, and l’Équipe Bioaccess, 1997. Étude géologique et biologique in situ de deux zones hydrothermales du bassin de Manus (Papouasie Nouvelle-Guinée). C. R. Acad. Sci. Série II 325: 585–591 (in French with English abstract and abridgment).

Beck, L. A. 1991. Oligochaeta fafari n. gen. et n. sp.—a new mesogastropod (Gastropoda: Prosobranchia) from hydrothermal vents in the Manus back-arc basin (Bismarck Sea, Papua New Guinea). Ann. Naturhist. Mus. Wien. 92B: 277–287.

Both, R., K. Crook, B. Taylor, S. Brogan, B. Chappell, E. Frankel, L. Lui, J. Sinton, and D. Tiffen, 1986. Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea. EOS Trans. AGU 67: 489–490.

Craig, H., Y. Horibe, K. A. Farley, J. A. Welham, K.-R. Kim, and R. N. Hey, 1987. Hydrothermal vents in the Mariana Trough: results of the first Alvin dives. EOS Trans. AGU 68: 1531.

Denis, F., D. Jollivet, and D. Moraga, 1993. Genetic separation of two allopatric populations of hydrothermal snail Alviniconcha sp. (Gastropoda) from two South Western Pacific back-arc basins. Biochem. Syst. Ecol. 21: 431–440.

Desbruyères, D., and M. Segonzac (eds.), 1997. Handbook of Deep-Sea Hydrothermal Vent Fauna. IFREMER, Brest. 279 pp.

Desbruyères, D., A.-M. Alayse-Danet, S. Ohta, and Scientific parties of BIOLAU and STARMER Cruises, 1994. Deep-sea hydrothermal communities in Southwestern Pacific back-arc basins (the North Fiji and Lau Basins): composition, microdistribution and food web. Mar. Ecol. 116: 227–242.

Endow, K., and S. Ohta, 1989. The symbiotic relationship between bacteria and a mesogastropod snail, Alviniconcha hessleri, collected from hydrothermal vents of the Mariana back-arc Basin. Bull. Jpn. Soc. Microb. Ecol. 3: 73–82.

Fujikura, K., T. Yamazaki, K. Hasegawa, U. Tsunogai, R. J. Stern, H. Ueno, H. Yamamoto, Y. Maki, S. Tsukida, T. Kodera, H. Yamamoto, C. Sun, and T. Okutani, 1997. Biology and earth
scientific investigation by the subsurface “Shinkai 6500” system of
deep-sea hydrothermalism and lithosphere in the Mariana back-arc Basin. *JAMSTEC J. Deep Sea Res.* 13: 1–20 (in Japanese with English abstract).

Fujikura, K., S. Kojima, Y. Fujiwara, J. Hashimoto, and T. Okutani. 2006. New distribution records of vesicomyid bivalves from deep-sea chemosynthesis-based communities in Japanese waters. *Venus Jpn. J. Malacol.* 59: 103–121.

Hasegawa, T., T. Yamaguchi, S. Kojima, and S. Ohta. 1996. Phylogenetic analysis among three species of intertidal barnacles of the genus *Tetraclita* (Cirripedia: Balanomorpha) by nucleotide sequences of a mitochondrial gene. *Benthos Res.* 51: 33–39 (in Japanese with English abstract).

Hasegawa, K., K. Fujikura, and T. Okutani. 1997. Gastropod fauna associated with hydrothermal vents in the Mariana back-arc Basin: summary of the results of 1996 “Shinkai 6500” dives. *JAMSTEC J. Deep Sea Res.* 13: 69–83.

Hashimoto, J. S. Ohta, A. Flia, Medione, J. -M. Azende, S. Kojima, M. Segonzac, Y. Fujiwara, J. C. Hunt, K. Gen, T. Miura, T. Kikuchi, T. Yamaguchi, T. Toda, H. Chiba, S. Tsuchida, J. Ishibashi, K. Henry, M. Zbinden, A. Pruski, A. Inoue, H. Kobayashi, J. – J. Birringer, J. Naka, T. Yamanaka, C. Laporte, K. Nishimura, C. Yeats, S. Malagon, P. Kia, M. Oyaizu, and T. Katayama. 1999. Hydrothermal vent communities in the Mariana back-arc Basin, Papua New Guinea: Results of the BIOACCESS cruises ‘96 and ‘98. *InterRidge News* 8(2): 12–18.

Hessler, R. R., and P. Lonsdale. 1991. Biogeography of Mariana Trough hydrothermal vent communities. *Deep-Sea Res.* 38: 185–199.

Hoffmann, R. J., J. L. Boore, and W. M. Brown. 1992. A novel mitochondrial genome organization for the blue mussel, *Mytilus edulis*. *Genetics* 131: 397–412.

Johnson, L. H., F. Fryer, H. Matsuda, T. Ishii, and T. Gamo. 1993. Hydrothermal deposits and two magma sources for volcanoes near 13°20’N in the Mariana backarc: a view from Shinkai 6500. *EOS Trans. AGU Fall Meet. Suppl.* 74: 681.

KAIYO 87 Shipboard Party. 1988. Rift system in the North Fiji Basin: Results of Japan-France cooperative research on board KAIYO 87. *La Mer* 26: 36–46 (in Japanese with English abstract).

Kimura, K. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequence. *J. Mol. Evol.* 16: 111–120.

Kojima, S., and S. Ohta. 1997. Bathymetric distribution of the species of the genus *Calyptopgena* in the Nankai Trough. *Venus Jpn. J. Malacol.* 56: 293–297.

Kojima, S., K. Fujikura, J. Hashimoto, and S. Ohta. 1997a. Distribution and genetic structure of *Calyptopgena sovae* complex. *JAMSTEC J. Deep Sea Res.* 13: 691–696 (in Japanese with English abstract).

Kojima, S., R. Segawa, J. Hashimoto, and S. Ohta. 1997b. Molecular phylogeny of vestimentiferan collected around Japan revealed by the nucleotide sequences of mitochondrial DNA. *Mar. Biol.* 127: 505–513.

Kojima, S., R. Segawa, Y. Fujiwara, J. Hashimoto, and S. Ohta. 2000. Genetic differentiation of populations of a hydrothermal vent-endemic gastropod, *Hyremia nautica*, between the North Fiji Basin and the Manus Basin revealed by nucleotide sequences of mitochondrial DNA. *Zool. Sci.* 17: 1167–1174.

Komm, B., A. Michaels, and J. Linton. 1982. Isolation and characterization of the mitochondrial DNA from the Florida spiny lobster, *Panulirus argus*. *Comp. Biochem. Physiol.* 73B: 923–929.

Kumar, S., K. Tamura, and M. Nei. 1993. *MEGA: Molecular Evolutionary Genetics Analysis Ver. 1.0*. The Pennsylvania State University, University Park, PA.

Miura, T., J. Tsukahara, and J. Hashimoto. 1997. *Lanellibrachia satsumae*, a new species of vestimentiferan worms (Annelida: Pogonophora) from a shallow hydrothermal vent in Kagoshima Bay, Japan. *Proc. Biol. Soc. Wash.* 110: 447–456.

NAUTILAU Group. 1990. Hydrothermal activity in the Lau Basin. First results from the NAUTILAU Cruise. *EOS Trans. AGU* 71: 678–679.

Okutani, T., and S. Ohta. 1988. A new gastropod mollusk associated with hydrothermal vents in the Mariana back-arc basin, Western Pacific. *Venus Jpn. J. Malacol.* 47: 1–9.

Okutani, T., K. Fujikura, and S. Kojima. 1999. Two new hadal bivalves of the family Thyasiridae from the plate convergent area of the Japan Trench. *Venus Jpn. J. Malacol.* 58: 49–54.

Raff, D. A., and P. Bentzen. 1989. The statistical analysis of mitochondrial DNA polymorphisms and the problem of small samples. *Mol. Biol. Evol.* 6: 539–545.

Raymond, M., and F. Rouset. 1995. An exact test for population differentiation. *Evolution* 49: 1280–1283.

Saitoh, N., and M. Nei. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 10: 406–425.

Schneider, S., J-M. Kuefler, D. Roessli, and L. Excoffier. 1996. *ARLEQUIN*, a Software Package for Population Genetics. Genetics and Biometry Lab., Dept. of Anthropology, University of Geneva, Geneva.

Shimayama, T., H. Himeno, J. Sasuga, S. Yokohori, T. Ueda, and K. Watanabe. 1990. The genetic code of a squid mitochondrial gene. *Nucleic Acids Symp. Ser.* 22: 77–78.

Sibaetz, M., and K. Olu. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. *Deep-Sea Res.* 45: 517–567.

Stein, J. L. S. C. Cary, R. R. Hessler, S. Ohta, R. D. Vetter, J. J. Childress, and H. Felbeck. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. *Biol. Bull.* 174: 373–378.

Tufar, W. 1990. Modern hydrothermal activity, formation of complex massive sulfide deposits and associated vent communities in the Manus Back-Arc Basin (Bismarck Sea, Papua New Guinea). *Mitt. Osterr. Geol. Ges.* 82: 183–210.

Tunnell, E. A., G. McArthur, and D. McHugh. 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna. *Adv. Mar. Biol.* 34: 351–442.

Tyler, P. A., and C. M. Young. 1999. Reproduction and dispersal at vents and cold seeps. *J. Mar. Biol. Assoc. UK* 79: 193–208.

Van Duver, C. I. 2000. *The Ecology of Deep-Sea Hydrothermal Vents*. Princeton University Press, Princeton, NJ. 424 pp.

Vrijenko, C. R. 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. *J. Hered.* 88: 285–293.

Warén, A., and P. Bouchez. 1993. New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. *Zool. Scr.* 22: 1–90.

Weir, B. S., and C. C. Cockermak. 1984. Estimating F-statistics for the analysis of population structure. *Evolution* 38: 1358–1370.