The assessment of need for suturing following maxillary third molar extractions

Sathvika K1, Senthil Murugan P*2, Leelavathi L3

1 Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamil Nadu, India
2 Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamil Nadu, India
3 Department of Public Health Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-600077, Tamil Nadu, India

Article History:
Received on: 01 Nov 2020
Revised on: 05 Dec 2020
Accepted on: 08 Dec 2020

ABSTRACT
Maxillary third molar extractions (MTME) are one of the most common procedures done in maxillofacial surgery. Nevertheless, there are general complications that arise with every surgery. In our study, we have aimed to understand why suturing had been done following MTME and to observe a predilection in age and gender. By attempting to do so, we may establish when suturing is required and if age and gender have a role to play. A retrospective cross-sectional study was conducted after reviewing and analysing the data from 86,000 patient records between June 2019 and March 2020. Patients with an established record of MTME were selected from the age group of (20-60) years. The females of the study population had a larger frequency for having undergone MTME (52.7%) compared to the males (47.3%) and lastly transgenders (0.1%). The highest incidence of MTME was found in the age group of (31-40) years with 30.6% followed by (20-30) and (41-50) years with 26.9% each. (51-60) years had the least MTME done (15.6%). There was a higher incidence of extracted 28’s than 18’s (52.1% > 47.9%). Sutures were placed only in 1.6% of the total cases due to tuberosity fractures that had occurred as a complication of MTME. The placement of a suture following exodontia is not always mandatory, but when a complication such as a maxillary tuberosity fracture arises, suturing must be done. It is imperative to be equipped with the knowledge on how to manage possible complications, because even simple exodontias can prove to have fatal outcomes. Thus, further studies must be done to confirm our findings and to test other geographical locations and ethnicities.

INTRODUCTION
Exodontia is the removal of a tooth from the dental alveolus in the alveolar bone. A tooth may be removed from the oral cavity for a variety of reasons such as tooth decay, infection, periodontitis, pericoronitis, prosthetics, cosmetics and in the past for prophylaxis (Nice, 2000; APHA, 2008; Zadik et al., 2008; Hollins, 2019). Molar teeth are the most frequently extracted teeth (Mosha and Lema, 1991) and the third molar is the most com-
The patient records of 86,000 patients who underwent treatment at Saveetha Dental College from June 2019 to March 2020 were analysed and were used to identify 1836 patients in the hospital database who had undergone maxillary third molar extractions. Relevant data such as patient age, sex, tooth number extracted, complications and suture placement were recorded. Repeated patient records, incomplete entries and extractions with no history of reviews were excluded. The data obtained was then verified by an external reviewer.

Statistical Analysis

Data was recorded in Microsoft Excel 2016 (Microsoft Office 10) and was later exported to the Statistical Package for the Social Sciences for Windows. (Version 20.0, SPSS, Inc., Chicago, USA) and was subjected to statistical analysis.

RESULTS AND DISCUSSION

The final dataset consisted of 1836 patients, predominantly of South Indian origin who had undergone left, right or both maxillary third molar extractions. There was a clear female predilection with the females having undergone 52.7% of the extractions, followed by males (47.3%) and finally 0.1% of transgenders as inferred from Figure 2. The most number of maxillary third molar extractions was seen in the age group of (31-40) years with 30.6% of all the total extractions, followed by the age groups of (20-30) years and (41-50) years with 26.9% of the extractions each and lastly, 15.6% of the extractions in the age group of (51-60) years. There was also a predominance of tooth number where upper left third molars (28) were more commonly extracted than upper right third molars (18) 52.1% > 47.9%. Sutures were placed only in 1.6% of the total cases to contain the complication of maxillary tuberosity fractures (1.6%).

The data for this retrospective study was based on residents of South Indian cities seeking treatment at Saveetha Dental College, Chennai, India. Currently there are no studies directly seeking to identify the same — to assess the need for suturing following maxillary third molar extractions. (Kumar and Snenia, 2016; Abhinav et al., 2019; Jesudasan et al., 2015) Since there was no filtration process involved, this study mostly remains free of bias in regard to the selection of patients – except for the exclusion of patients below the age of 20 years and above the age of 60 years, those with mental and physical disabilities and extractions left unreviewed which was classified as incomplete data. According to most studies, females are reported to have a higher inci-
Evidence of third molar extractions when compared to males (Quek et al., 2003; Alsadat-Hashemipour et al., 2013; Nejat et al., 2014). This is in accordance to our findings, where 52.7% of the total study population undergoing maxillary third molar extractions were females, followed by 47.3% of males and 0.1% of transgenders.

In a study conducted by Marimuthu et al. (2018), They found a subject incidence of 57.3% of the study population to be females (Susarla and Dodson, 2005), which is comparable to our result of 52.7%. To identify the incidence of the highest number of maxillary third molar extractions with respect to age, the patients of our study population aged (20-60) years were divided into four smaller age subsets: (20-30) years, (31-40) years, (41-50) years and (51-60) years. As inferred from Figure 1, the highest incidence of maxillary third molar extractions was seen in the age group of (31-40) years with 30.6% of the total extractions, followed by the age groups of both (20-30) years and (41-50) years with 26.9% each and lastly by the age group of (51-60) years with 15.6% of the total extractions. This data suggests that maxillary third molar extractions are commonly undergone between the age of 31 years and 40 years.

This is inconsistent with a study performed by Sayed et al. (2019) where they concluded that (20-29) years is the most common age for third molar extractions. This contrast could be an attribute to the difference in number of individuals in each group in both the studies. But in this same study, they have suggested that the incidence of tuberosity fracture as a complication was 1.2% (Sayed et al., 2019), which is in line with our finding of 1.6% for the same.
Table 1: Cross tabulation between suture placement and complications

Count	Complications	Total	P Value	
	Tuberosity Fracture	Nil	29	0.000
Suture Placement	Yes	29	0	29
No	0	1807	1807	
Total	29	1807	1836	

Venkateshwar et al., 2011, can even result - on rare occasions – in torrential haemorrhage due to its close proximity with significant blood vessels and other life-threatening complications (Bertram et al., 2011).

In our study population, 1.6% of the total extractions were sutured because the same 1.6% of the cases had maxillary tuberosity fractures as complications of exodontia. The remaining 98.4% were left unsutured because of the absence of complications. When comparing the incidence of extractions between the right (18) and left (28) maxillary third molars, 28 seemed to be more frequently extracted (52.1%) when compared to 18 (47.9%). Thus, our results pointed to a female predilection with a commonly affected age group of (31-40) years with 28 being more frequently extracted than 18 and maxillary tuberosity fractures (complications) caused the need for suturing following maxillary third molar extractions. (Marimuthu et al., 2018; Kumar and Rahman, 2017)

Within the limits of our study, there is a need for suturing only when complications such as maxillary tuberosity fractures are present, otherwise it is acceptable for it to even remain sutureless, with better prognosis, in fact. This is assuming that the individual undergoing the exodontia is not systemically compromised or prone to secondary health problems. Since the study does pose with certain limitations such as geographical barriers that lower the study’s generalizability, further research must be done while actively trying to nullify said limitations.

CONCLUSIONS
ACKNOWLEDGEMENT

The authors of this study would like to express their gratitude towards everyone who facilitated and enabled us to carry out this study successfully. We would also thank the institute for helping us to have access to all the case records for collecting the required cases for conducting this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Abhinav, R. P., et al. 2019. The Patterns and Etiology of Maxillofacial Trauma in South India. Annals of Maxillofacial Surgery, 9(1):114–117.

Alesia, et al. 2013. Reasons for and patterns relating to the extraction of permanent teeth in a subset of the Saudi population. Clinical, cosmetic and investigational dentistry, 30(5):51–56.

Alsadat-Hashemipour, M., et al. 2013. Incidence of impacted mandibular and maxillary third molars-a radiographic study in a Southeast Iran population. Medicina Oral Patología Oral y Cirugia Bucal, 18(1):e140–e145.

APHA 2008. Opposition to Prophylactic Removal of Third Molars (Wisdom Teeth).

Bertram, A. R., et al. 2011. Maxillary tuberosity fracture: a life-threatening haemorrhage following simple exodontia. Australian dental journal. Wiley Online Library, 56(2):212–215.

Brauer, H. U., et al. 2013. Complications During and After Surgical Removal of Third Molars. Oral Health.

Bui, C. H., Seldin, E. B., Dodson, T. B. 2003. Types, frequencies, and risk factors for complications after third molar extraction. J Oral Maxillofac Surg, 61(12):1379–1389.

Christabel, A., et al. 2016. Comparison of pterygomaxillary dysjunction with tuberosity separation in isolated Le Fort I osteotomies: a prospective, multi-centre, triple-blind, randomized controlled trial. International journal of oral and maxillofacial surgery, 45(2):180–185.

Hashemi, H. M., Beshkar, M., Aghajani, R. 2012. The effect of sutureless wound closure on postoperative pain and swelling after impacted mandibular third molar surgery. British Journal of Oral and Maxillofacial Surgery, 50(3):256–258.

Hollins, C. 2019. Levison’s Textbook for Dental Nurses. In and others, editor; Wiley-Blackwell, page 784. John Wiley & Sons.

Jain, S. V., et al. 2019. Evaluation of Three-Dimensional Changes in Pharyngeal Airway Following Isolated LeFort One Osteotomy for the Correction of Vertical Maxillary Excess: A Prospective Study. Journal of Maxillofacial and Oral Surgery, 18(1):139–146.

Jerjes, W., et al. 2006. Experience versus complication rate in third molar surgery. Head & face medicine, 2:14.

Jesudasan, J. S., et al. 2015. Effectiveness of 0.2% chlorhexidine gel and a eugenol-based paste on postoperative alveolar osteitis in patients having third molars extracted: a randomised controlled clinical trial. British Journal of Oral and Maxillofacial Surgery, 53(9):826–830.

Kandasamy, S., et al. 2009. The wisdom behind third molar extractions. Australian Dental Journal, 54(4):284–292.

Kim, J. C., et al. 2006. Minor complications after mandibular third molar surgery: type, incidence, and possible prevention. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 102(2):4–11.

Kumar, M. S. 2017a. Relationship between dental anxiety and pain experienced during dental extractions. Asian J Pharm Clin Res, 10(3):458–461.

Kumar, M. S. 2017b. The emerging role of botulinum toxin in the treatment of orofacial disorders: literature update. Asian J Pharm Clin Res, 10(9):21–29.

Kumar, M. S., Rahman, R. 2017. Knowledge, awareness, and practices regarding biomedical waste management among undergraduate dental students. Asian J Pharm Clin Res, 10(8):341–345.

Kumar, S., Snena, S. 2016. Knowledge and awareness regarding antibiotic prophylaxis for infective endocarditis among undergraduate dental students. Asian J Pharm Clin Res, 9(2):154–159.

Marimuthu, M., et al. 2018. Canonical Wnt pathway gene expression and their clinical correlation in oral squamous cell carcinoma. Indian journal of dental research, 29(3):291–297.

Mosha, H. J., Lema, P. A. 1991. Reasons for tooth extraction among Tanzanians. East African medical journal, 68(1):10–14.

Nejat, A., et al. 2014. Pattern of mandibular third molar impaction: A cross-sectional study in northeast of Iran. Nigerian Journal of Clinical Practice, 17(6):673–677.

Nice 2000. Guidance on the extraction of wisdom.
teeth. National Institute for Clinical Excellence.

Packiri, S., et al. 2017. Management of Paediatric Oral Ranula: A Systematic Review. *Journal of Clinical And Diagnostic Research*, 11(9):6–9.

Patil, S. B., et al. 2017. Comparison of Extended Nasolabial Flap Versus Buccal Fat Pad Graft in the Surgical Management of Oral Submucous Fibrosis: A Prospective Pilot Study. *Journal of maxillofacial and oral surgery*, 16(3):312–321.

Patturaja, K., Pradeep, D. 2016. Awareness of Basic Dental Procedure among General Population. *Research Journal of Pharmacy and Technology*, 9(9):1349–1351.

Quek, S. L., et al. 2003. Pattern of third molar impaction in a Singapore Chinese population: a retrospective radiographic survey. *International Journal of Oral and Maxillofacial Surgery*, 32(5):548–552.

Rahman, R., Kumar, M. S. 2017. Knowledge, attitude, and awareness of dental undergraduate students regarding human immunodeficiency virus/acquired immunodeficiency syndrome patients. *Asian J Pharm Clin Res*, 10(5):175–180.

Rao, T. D., Kumar, M. P. 2018. Analgesic Efficacy of Paracetamol Vs Ketorolac after Dental Extractions. *Journal of pharmacy research. indianjournals.com. Available*, 11(8):3375–3379.

Reich, E., Hiller, K.-A. 1993. Reasons for tooth extraction in the western states of Germany. *Community Dentistry and Oral Epidemiology*, 21(6):379–383.

Sayeed, N., et al. 2019. Complications of Third Molar Extraction: A retrospective study from a tertiary healthcare centre in Oman. *Sultan Qaboos University medical journal*, 19(3):230–235.

Susarla, S. M., Dodson, T. B. 2005. How well do clinicians estimate third molar extraction difficulty? *J Oral Maxillofac Surg*, 63(2):191–199.

Sweta, V. R., et al. 2019. Role of virtual reality in pain perception of patients following the administration of local anesthesia. *Annals of Maxillofacial Surgery*, 9(1):110–113.

Venkateshwar, G. P., et al. 2011. Complications of exodontia: A retrospective study. *Indian Journal of Dental Research*, 22(5):633–633.

Zadik, Y., et al. 2008. Analysis of factors related to extraction of endodontically treated teeth. 106(5):31–36.