Application of soil amendments as a strategy for water holding capacity in sandy soils

A Herawati¹*, Mujiyo¹, J Syamsiyah¹, S K Baldan² and I Ariffin²
¹Soil Science Department, Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, Kentingan, Surakarta, 57126, Indonesia
²Undergraduate Program of Soil Science Department, Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, Kentingan, Surakarta, 57126, Indonesia
*Corresponding author: aktavia_h@staff.uns.ac.id

Abstract. Global warming will affect the pattern of precipitation, evaporation, water run-off, soil moisture, and climate variations so that it can threaten food production. High evaporation and unpredictable precipitation will cause drought. Sandy soils have low water holding capacity, high infiltration, and high runoff. The application of soil amendments able to improve the soil’s physical properties through increasing the water holding capacity to increase crop productivity. The research aimed to determine the effect of the application of soil amendments to water holding capacity in sandy soils. The method used was a randomized complete design with one single factor, the type of soil amendments consisting of 7 treatments: P0 (control/without amendment), P1 (cow dung 60 tons ha⁻¹), P2 (rice husk biochar 10 tons ha⁻¹), P3 (clay-soils 10 tons ha⁻¹), P4 (cow dung 60 tons ha⁻¹ + rice husk biochar 10 tons ha⁻¹), P5 (cow dung 60 tons ha⁻¹ + clay-soils 10 tons ha⁻¹), P6 (rice husk biochar 10 tons ha⁻¹ + clay-soils 10 tons ha⁻¹). The results showed that the interaction of rice husk biochar 10 tons ha⁻¹ + clay-soils 10 tons ha⁻¹ significant to increase soil moisture and decrease soil permeability. Combination of cow dung 60 tons ha⁻¹ and rice husk biochar 10 tons ha⁻¹ more increase soil aggregate stability index up to 1.87 times than control.

1. Introduction
Climate change is referred to as a global warming phenomenon, where there is a rise in greenhouse gases in the atmosphere. Climate change and global warming are caused by various factors including the effect of greenhouse gases, damage to the ozone layer, damage to forest functions, uncontrolled use of chlorine carbon (CFC), and industrial exhaust gases. Carbon dioxide, methane, and nitrous oxide are gases that absorb and emit radiation energy, causing a greenhouse effect. Effects of global warming on crops are increasing temperatures, crop damage from extreme heat, increasing moisture stress, and increasing drought. Global warming also will affect the various pattern of precipitation, evaporation, water run-off, and soil moisture. High evaporation and unpredictable precipitation will cause drought.

Indonesia has a very large area of sandy soil with great potential for use as an alternative land for agriculture. However, sandy soil has limiting factors in the water holding capacity, high infiltration, high evapotranspiration, very high soil surface temperature (26–40 °C), very low organic matter, and soil moisture [1], making it less productive for plant growth [2]. The key to improving sandy soil is the addition of soil amendments that the function is to improve soil aggregate, increase water holding capacity, and increase water and air circulation. The material of amendments can be found in the form of cow dung, biochar, and clay-soil. Adding biochar in agricultural soils has been shown as a strategic
solution for mitigating greenhouse gas emissions and also benefits to improve soil characteristics such as water retention, particularly in sandy soils.

Abdala et al. [3] reported that the application of poultry manure on the surface of sandy soil is effectively stabilized the sand particles and increased soil water retention, which was impacted to improved soil structure by the increasing of SOC [4]. Lehman [5], biochar application can increase water holding capacity, CEC, as well as provide nutrients in improving nutrient uptake by plants. The addition of biochar decrease the soil’s bulk density, increases total pore volume, as well as, increases water content at the permanent wilting point [6], and increases soil water repellency [7]. Application of biochar amendment increased water retention capacity, micropore volume, and improved sandy soil structure [8]. Rahayu et al. [9] reported that adding biochar 5 tons Ha\(^{-1}\) is the best result for plant height and number of the tuber of shallot in sandy soil. Addition of biochar 0.5; 2.5; 5.0; and 10 tons tons Ha\(^{-1}\) tend to increase soil C-organic (%) in Ultisols [10].

Clay-soil is reported to be able to affect the organic C sequestration and the water and nutrients holding capacity in sandy soils. However, the effect of clay-soil depends on the properties of clay such as cation exchange capacity (CEC), percentage of clay soil and OC content. Riaz [11] reported that adding clay soil to sandy soil resulted in the largest OC sequestration if the added clay had high clay and CEC content but low OC content. In sandy soils, clay-soil amendments showed higher organic carbon sequestration in all treatments compared to those that were not amended [12] and the addition of subsoil clay to sandy soils has the potential to increase carbon sequestration by increasing the soil organic carbon concentration through adsorption [13]. Therefore, the application of soil amendments in sandy soil is expected to be able to increase the water holding capacity so that the water supplied to the soil will be available for longer, that plant growth is more optimal. Water loss through evaporation and percolation processes will be reduced. The aim of this research was to determine the effect of the application of soil amendments (cow dung, rice husk biochar, clay-soil) to increase water holding capacity in sandy soils.

2. Materials and methods
The research was a pot experiment that carried out in Sukasari, Jumantono, Karanganyar, Indonesia, using a randomized complete design with one single factor, the type of soil amendments consisting of 7 treatments: P0 (control/without amendment), P1 (cow dung 60 tons ha\(^{-1}\)), P2 (rice husk biochar 10 tons ha\(^{-1}\)), P3 (clay-soils 10 tons ha\(^{-1}\)), P4 (cow dung 60 tons ha\(^{-1}\) + rice husk biochar 10 tons ha\(^{-1}\)), P5 (cow dung 60 tons ha\(^{-1}\) + clay-soils 10 tons ha\(^{-1}\)), P6 (rice husk biochar 10 tons ha\(^{-1}\) + clay-soils 10 tons ha\(^{-1}\)). All treatments are replied three times. The material sandy soil that was used from the south coast in Bantul Regency, Yogyakarta. The results of the initial analysis showed in Table 1. The soil was sieved to be homogeneous by separating plant roots and gravel, and then the soil was weighed at 10 kilograms and put into a polybag. Mixed the soil with the soil amendments according to the treatment and incubated for about four weeks. During the incubation period, watering was done every two days and at the end of period incubation (one month), the seedling of chili (Capsicum annum L.) was planted. To ensure the quality of soil amendments, all of the soil amendments were analyzed include soil moisture, pH, organic C, C/N ratio, and soil texture for clay-soil (Table 2). At a depth of 0-20 cm at the end of the research, soil samples were taken and analyzed soil properties such as soil aggregate stability with wet sieving method [14], soil permeability with constant head permeameter method [14], soil moisture, and soil porosity [14]. Data were analyzed using SPSS 23.0, by one-way ANOVA test (F) 5% to compare between treatments, to determine the significant difference between means at a significance level of p <0.05 used DMRT test and Pearson correlation test to determine the relationship between variables.

3. Results and discussion
3.1. Initial analysis of soil characteristics and soil amendments
The results of the initial soil analysis obtained a soil moisture content value of 0.45%, indicating that sandy soil has a low water-holding capacity, water is prone to infiltration and percolation because of its
sand texture with a sand fraction (92.23%), silt fraction (6.81%) and clay fraction (0.96%). The results of the analysis also show that sandy soils have very low organic C (0.18%), very low total nitrogen (0.015%), C / N ratio 14.34, low of available phosphor (7.34 mg kg⁻¹) and available potassium (0.27 cmol kg⁻¹) and very low CEC (4.43 cmol kg⁻¹).

According to Budiyanto [15], coastal sand land is a land that has a soil texture with a sand fraction > 70%, total soil porosity <40%, low water, and nutrient retention capacity because the soil fraction is dominated by macro pores, low soil colloid content so that aeration is fine, aggregate stability index is low, as a result, when it rains, water and nutrients will be easily lost through the process of moving the water down.

Table 1. Initial analysis of sandy soil.

Parameters	Method	Value	Assessment*
pH H₂O (1 : 2.5)	-	7.12	Neutral
Soil moisture (%)	Gravimetric	0.45	-
Organic carbon (%)	Walkey and Black	0.18	Very low
Total nitrogen (%)	Kjeldahl	0.015	Very low
C/N Ratio	-	14.34	-
Available P (mg kg⁻¹)	Olsen	7.34	Low
Available K (cmol kg⁻¹)	NH₄OAc 1 N saturation	0.27	Low
CEC (cmol kg⁻¹)	NH₄OAc 1 N saturation	4.43	Very low

Texture:
- Sand (%): 92.23
- Silt (%): 6.81
- Clay (%): 0.96

Note. *: Based on the assessment of Balai Penelitian Tanah 2009. Data source: Soil Analysis.

Table 2. Characteristics of soil amendments.

Soil Amendment	Parameters	Value	Unit
Cow dung	Soil moisture	26.96	%
	pH H₂O (1:2.5)	7.88	-
	Organic carbon	16.62	%
	Total nitrogen	0.634	%
	C/N Ratio	26.39	-
Rice husk biochar	Soil moisture	8.11	%
	pH H₂O (1:2.5)	6.14	-
	Organic carbon	18.07	%
	Total nitrogen	0.541	%
	C/N Ratio	33.3	-
Clay-soil	Soil moisture	0.58	%
	pH H₂O (1:2.5)	7.10	-
	Organic carbon	2.13	%
	Total nitrogen	0.202	%
	C/N Ratio	10.7	-
	Texture: Silty clay		
	Sand	8	(%)
	Silt	43	(%)
	Clay	49	(%)
Utilization of soil organic amendments on sandy soil can improve moisture content, diversity of soil microorganisms, and soil fertility [16]. Naimnule [17], rice husk biochar can improve the chemical, physical, and biological characteristics of soil, increase carbon sequestration in the soil [18][19], reduce nutrient leaching [20], increase CEC [19][21], and increase water holding capacity [22], especially when applied to sandy soils [19]. Various studies have shown that giving rice husk biochar has a positive effect on soil properties and plant productivity.

3.2. The effects of soil amendments on soil moisture, aggregate stability index, porosity and permeability of sandy soil after harvesting

Moisture level measurements were carried out using a Soil Humidity Meter, every day for seven days after harvest. The purpose of measuring moisture content is to determine the best treatment for maintaining soil moisture. The combination of rice husk biochar and clay-soil (P6) was able to increase the best water storage capacity compared to other treatments (Figure 1).

![Figure 1. The effect of soil amendments on soil moisture a week after harvesting.](image1)

![Figure 2. The effect of soil amendments on soil porosity after harvesting.](image2)
The combination of rice husk biochar with clay soil (P6) decreased the permeability value 2.74 times than control (P0) (Figure 3). Giving clay soil to sandy soil requires a long time for incubation so that an increase in aggregation reaction occurs which can reduce the rate of soil permeability which is classified as very fast. The combination of cow dung and rice husk biochar was able to increase soil aggregate stability, 1.87 times compared to control. The addition of straw equivalent to 3.1 tons ha$^{-1}$ and 12.4 tons ha$^{-1}$ was able to increase the soil aggregation up to 100% and 250%, respectively, compared to the control [23] (Figure 4).

This statement is evidenced by the Pearson correlation test value, soil moisture has a strong correlation with aggregate stability ($r = 0.272 \ast$, $P = 0.031$), with increasing soil aggregate increasing soil moisture (Figure 5). Soil aggregation is caused by the addition of clay soil which functions as a binder between particles, making it easier to form sand soil aggregation. This increase was due to the plasticity of the clay soils which increased the cohesion between soil particles. Clay-soils with high plasticity are able to bind between soil particles to form sandy soil aggregates.
Figure 5. Correlation between soil aggregate stability index and soil moisture a week after harvesting

Figure 6. Correlation between soil porosity and soil moisture average a week after harvesting

Figure 6 showed the strong correlation between soil moisture (Figure 1) and soil porosity (Figure 2) \((r = 0.310 \ast, P = 0.0012)\). Rice husk biochar and clay-soil are able to reduce infiltration and thus retain water from leaching [24]. Rice husk biochar can reduce infiltration rate and soil permeability [25]. The small size of the rice husk biochar particles fills the pores between the sand grains and partially closes the soil drainage, thereby affecting groundwater retention by reducing inter-particle macropores (interpora) and increasing micro-pores [26]. When the addition of high biochar, biochar particles can form new drainage channels.
Adding a certain dose of biochar is useful for slowing the infiltration rate to the vertical direction, but excessive addition increases vertical infiltration [25]. The increase in soil porosity affects the decrease in the value of soil permeability as evidenced by the negative correlation between soil porosity and soil permeability ($r = 0.257 \ast, P = 0.041$). High soil porosity can hold water more so that it can reduce the permeability rate (Figure 7). Sandy soils with low organic carbon content have a high level of sensitivity to water retention if there is a change in organic matter content. Increased organic matter content leads to increased water retention in sandy soils [27]. Biochar plays an important role because biochar is chemically able to stabilize nutrients and physically increase the capacity of the soil to hold water and nutrients in soil solution [28]. Global warming has an impact on increasing soil temperature, evaporation, and transpiration which affects water soil availability. The addition of soil amendment in sandy soil in the form of rice husk biochar can increase soil moisture content so that water availability for plants is fulfilled. This shows that the soil amendment can reduce water loss due to evaporation.

4. Conclusion
Global warming increases precipitation, evaporation, water run-off, and decrease soil moisture, and unpredictable precipitation will cause drought. This is not beneficial for agricultural land, especially on coastal sand, which has the characteristics of low water retention, high infiltration, high evapotranspiration, very high soil surface temperature (26-40 °C), very low organic matter, and soil moisture. Application of clay-soils 10 tons ha$^{-1}$ (P2) gave the highest soil moisture value after incubation of 17.59%, an effective increase of 122.69% compared to control. The interaction of rice husk biochar 10 tons ha$^{-1}$ and clay-soils 10 tons ha$^{-1}$ (P6) was able to increase levels of organic carbon after incubation, 2 times compared to control, increase the best water holding capacity after harvesting and decrease soil permeability 2.74 times of control. Cow dung treatment 60 tons ha$^{-1}$ and clay-soils 10 tons ha$^{-1}$ (P5) was able to provide the best soil porosity and cow dung treatment 60 tons ha$^{-1}$ and rice husk biochar 10 tons ha$^{-1}$ (P4) was able to increase soil aggregate stability, 1.87 times compared to controls. There is a strong correlation between soil moisture and aggregates stability and soil porosity, with an increase in aggregate and soil porosity will increase the value of soil moisture. There is a negative correlation between soil porosity and soil permeability, high soil porosity can hold more water so that it can reduce the permeability rate.

References
[1] Herawati A and Syukur A 2011 Pengaruh takaran pupuk phonska zeoneem terhadap ketersediaan
N, P, K di dalam tanah dan serapannya oleh bibit jeruk di lahan pasir Pantai Bugel, Kulonprogo [online] available http://etd.repository.ugm.ac.id/home/detail_pencarian/51817.

[2] Saloimain Z and Hirata H 1995 Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes Soil Science and Plant Nutrition 41 505–14

[3] Abdalla M A, Endo T, Maegawa T, Mamedov A and Yamanaka N 2020 Effectiveness of organic amendment and application thickness on properties of a sandy soil and sand stabilization Journal of Arid Environments 183 104273

[4] Zhou H, Chen C, Wang D, at al. 2020 Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol Soil and Tillage Research, 202 104663 https://doi.org/10.1016/j.still.2020.104663

[5] Lehmann J and Joseph S 2012 Biochar for environmental management: Science and technology (London: Routledge)

[6] Abel S, Peters A, Trinks S, Schonsky H, Facklam M and Wessolek G 2013 Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil Geoderma 202–203 183–91

[7] Głał T, Palmowska J, Zaleski T and Gondek K 2016 Effect of biochar application on soil hydrological properties and physical quality of sandy soil Geoderma 281 11–20

[8] Carvalho M L, de Moraes M T, Cerri C E P and Cherubin M R 2020 Biochar amendment enhances water retention in a tropical sandy soil Agriculture 10 62

Sales B K, Bryla D R, Tripe K M, Weiland J E, Scagel C F, Strik B C and Sullivan D M 2020 Amending sandy soil with biochar promotes plant growth and root colonization by mycorrhizal fungi in highbush blueberry HortScience 55 353–61

[9] Rahayu R, Syamsiyah J, Cahyani V R and Fauziah S K 2019 The effects of biochar and compost on different cultivars of shallots (Allium ascalonicum L.) growth and nutrient uptake in sandy soil under saline water Sains Tanah - Journal of Soil Science and Agroclimatology 16 216 – 28

[10] Winarso S, Mandala M, Sulistiyowati H, Romadona S, Hermiyanto B and Subchan W 2020 The decomposition and efficiency of NPK-enriched biochar addition on Ultisols with soybean Sains Tanah - Journal of Soil Science and Agroclimatology 17 35–41

[11] Riaz M and Marschner P 2020 Sandy soil amended with clay soil: effect of clay soil properties on soil respiration, microbial biomass, and water extractable organic C J. Soil Sci. Plant Nutr. 20 2465–70

[12] Schapel A, Marschner P and Churchman J 2018 Clay amount and distribution influence organic carbon content in sand with subsoil clay addition Soil and Tillage Research 184 253–60

[13] Schapel A, Marschner P and Churchman J 2019 Influence of clay clod size and number for organic carbon distribution in sandy soil with clay addition Geoderma 335 123–32

[14] Kurnia U, F Agus, Adimihardja A and Dariah A 2006 Sifat fisik tanah dan metode analisinya (Bogor, Indonesia: Badan Penelitian dan Pengembangan Pertanian)

[15] Budiyanto G 2014 Manajemen sumber daya lahan (Yogyakarta, Indonesia: LP3M UMY)

[16] Berek F N and Neonbeni E Y 2018 Effect of biochar type and cow manure dosage on growth and yield of mung beans (Vigna radiata L.) Savana Cendana 3 53–57

[17] Naimmule M A 2016 Effect of dosage of husk charcoal and cow manure on growth and yield of mung beans (Vigna radiata L.) Savana Cendana 1 118–20

[18] Lehmann J 2007 Bio-energy in the black Frontiers in Ecology and the Environment 5 381–7

[19] Wang D, Fonte S J, Parikh S J, Six J and Scow K M 2017 Biochar additions can enhance soil structure and the physical stabilization of C in aggregates Geoderma 303 110–7

[20] Laird D, Fleming P, Wang B, Horton R and Karlen D 2010 Biochar impact on nutrient leaching from a Midwestern agricultural soil Geoderma 158 436–42

[21] Liang B, Lehmann J, Solomon D, at el. 2006 Black Carbon increases cation exchange capacity in soils Soil Science Society of America Journal 70 1719–30
[22] Kammann C, Ratering S, Eckhard C and Müller C 2012 Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils Journal of Environmental Quality 41 1052–66

[23] Wagner S, Cattle S R and Scholten T 2007 Soil-aggregate formation as influenced by clay content and organic-matter amendment Plant Nutrition and Soil Science 170 173–80

[24] Xu J, Niu W Q, Li Y, et al. 2015 Effects of biochar addition on soil water movement under moistube-irrigation Water Saving Irrigation 12 64–8 (in Chinese)

[25] Pu S, Li G, Tang G, Zhang Y, Xu W, Li P, Feng G and Ding F 2019 Effects of biochar on water movement characteristics in sandy soil under drip irrigation Journal of Arid Land 11 740–53

[26] Liu Z, Dugan B, Masiello C A and Gonnermann H M 2017 Biochar particle size, shape, and porosity act together to influence soil water properties PLoS ONE 2017 12 e0179079

[27] Sohi S P, Krull E, Lopez-Capel E and Bol R 2010 A review of biochar and its use and function in soil Advances in Agronomy 105 47–82

[27] Rawls W J, Pachepsky Y A, Ritchie J C, Sobecki T M and Bloodworth H 2003 Effect of soil organic carbon on soil water retention Geoderma 116 61–76

Acknowledgments
The author would like to thank Sebelas Maret University who has supported the research funding through the PNBP Grant 2020 Superior Research Scheme with contract number: 452/UN27.21/PN/2020.