The case of referential gestural signaling

Where next?

Simone Pika*
Humboldt Research Group “Comparative Gestural Signalling”; Max Planck Institute for Ornithology; Seewiesen, Germany

Keywords: communication, gestures, cognition, primates, corvids

Referential acts play a crucial part in our everyday communication since human language is, in its essence, a referential system. Reference can be made via icons, indices and signs but also via ostensive/inferential communication, in which the behavior of the actor directs the attention of the recipient to particular aspects of the environment. The earliest uses of ostensive/inferential gestural communication can be observed in human children around the age of nine to 12 months. However, what about comparable gestures in our closest living relatives, the nonhuman primates or other animal taxa? The present paper aims to provide a brief overview of the state of the art to encourage future research into the evolutionary origins and uses of referential gestural signaling.

Human language is, in its essence, a referential system, which involves cooperation of three subjects: a sign, its referent, and its interpretant. Signs vary in the way they relate to their referents involves cooperation of three subjects: a sign, its referent, and its interpretant. Signs vary in the way they relate to their referents in which the behavior of the actor directs the attention of the recipient to particular aspects of the environment. The earliest uses of ostensive/inferential gestural communication can be observed in human children around the age of nine to 12 months. However, what about comparable gestures in our closest living relatives, the nonhuman primates or other animal taxa? The present paper aims to provide a brief overview of the state of the art to encourage future research into the evolutionary origins and uses of referential gestural signaling.

An additional interesting property of ostensive/inferential communication is that it can occur even without the signaler having the intention to communicate (the recipient can discover the raven in the tree by simply following the signaler’s gaze). However, it is frequently identified with “intentional communication” to underscore the fact that it is especially powerful when subject to the intentional control of signalers. Intentional communication or illocutionary behavior are behaviors, “in which the sender is aware a priori of the effect that a signal will have on his listener, and he persists in that behaviour until the effect is obtained or failure is clearly indicated.”

Interestingly, the onset of intentional ostensive/inferential behavior can be observed in pre-linguistic human children around the age of nine to 12 months. Human children start to use gestures such as giving (for example, food objects), offering, pointing and showing, to coordinate attention toward a social partner and an object of mutual interest. These gestures create a referential triangle between signaler, recipient and a third entity and are used either to make requests (imperatives, for example, ‘take this’) or as a means to obtain ‘attention’ in the form of “laughter, comment, smiles and eye contact” (declaratives, for example, ‘look at this’).

Since the use of intentionally produced referential gestures (hereafter referential gestures) has been viewed as the foundation to engage in symbolically mediated conversations, a considerable amount of research attention has been focusing on referential gestural abilities of other animals, especially our closest living relatives, the nonhuman primates. Surprisingly however, observations of referential gestures in nonhuman primates are relatively rare and mainly concern “language trained” great apes and/or occur in interactions between apes and their human caretakers.

The most compelling evidence of referential gestures in natural environments so far stems from adult chimpanzees (Pan troglodytes) males at the Ngogo community, Kibale National Park, Uganda, who use so-called directed scratches, to indicate distinct spots on their bodies to be groomed. Recipients of these gestures understand the conveyed message and respond to it in appropriate ways by grooming the indicated spot after a directed scratch (Fig. 1).

These gesture types are of special importance, because they represent, due to their two-tiered intentional structure (combining social intention to get something done and the ‘referential’ intention to draw the attention of the recipient to some
To investigate these two hypotheses, we therefore instigated a study on natural referential gestural skills of ravens (*Corvus corax*), which (i) live similarly to chimpanzees in a highly complex social system, and (ii) engage in complex behaviors (e.g., preening, see Figure 2) to initiate and/or strengthen social bonds.

Natural communicative interactions of individually marked members of a wild raven community were filmed in Grünau, Northern Alps, Austria during three field seasons outside the courtship and breeding season. We observed that ravens performed two distinct referential signals, showing (see Figure 3) and offering of non-edible items to recipients, which led to

Figure 1. Use of the gesture directed scratch and response to the gesture. ©MPIO/Claßen.
degree of behavioral plasticity. Interestingly, Gwinner also noted that the degree of gestural flexibility might significantly differ between ravens and other corvid species such as rooks (*Corvus frugilegus*) and magpies (*Pica pica*).

However, since the gestural domain and its underlying cognitive complexity and plasticity has so far been widely neglected in communicative studies of birds and other non-primate vertebrates, the absence of referential signaling and gestural flexibility in other species (but see refs. 30–31) might merely reflect a paucity of data, rather than a lack of gestural abilities on behalf of the animals. Future research is needed to understand in much more detail how referential gestural signaling systems have evolved and which key traits shaped their development, variation, distribution and their underlying cognitive complexity.

Acknowledgments

I am grateful to the late Eberhard Gwinner and Bernd Heinrich for inspiring this new research avenue. For helpful discussion and support, I thank the whole team of the KLF, Tobias Deschner, Thomas Bugnyar, Wolfgang Wickler, Lucie Salwiczek and one anonymous reviewer. I thank Dorothee Claßen for the drawing of the directed scratch and Claudia Wascher for sharing her pictures with me. This project was supported by a Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation.
References

1. Peirce CS. The philosophy of Peirce: Selected writings. New York: Harcourt, 1956.
2. Sperber D, Wilson D. Relevance: Communication and cognition. Cambridge, Massachusetts: Harvard University Press, 1986.
3. Sperber D. Understanding verbal understanding. In: Khalifa J, ed. What is intelligence. Cambridge, Massachusetts: Cambridge University Press, 1994:179-88.
4. Camaioni L. The development of intentional communication: A re-analysis. In: Nadel J, Camaioni L, eds. New Perspectives in Early Communicative Development. London: Routledge, 1993:82-96.
5. Gomez J. C. Shared attention in ontogeny and phylogeny: SAM, TOM, Gaze, and the great apes. Curr Psychol Cogn 1994: 14:590-8.
6. Bates E, Benigni L, Bretherton I, Camaioni L, Volterra V. The Emergence of Symbols: Cognition and Communication in Infancy. New York: Academic Press, 1979.
7. Werner H, Kaplan B. Symbol formation. New York: Wiley, 1972.
8. Bates E, Camaioni L, Volterra V. The acquisition of performative acts prior to speech. Merrill-Palmer Quarterly 1975: 21:205-26.
9. Bruner J. The ontogenesis of speech acts. J Child Lang 1975: 2:1-19; http://dx.doi.org/10.1017/S0305000900000866.
10. Ladygina-Kohts NN. Infant Chimpanzee and Human Child. A Classic 1935 Comparative Study of Ape Emotions and Intelligence. New York: Oxford University Press, 1935.
11. Gardner RA, Gardner BT. Teaching sign language to a chimpanzee. Science 1969: 165:664-72; PMID:5793972; http://dx.doi.org/10.1126/science.165.3894.664.
12. Miles HL. The cognitive foundations for reference in a signing orangutan. In: Parker ST, Gibson KR, eds. Language and Intelligence in Monkeys and Apes. Cambridge: Cambridge University Press, 1990:511-39.
13. Savag-Rumbaugh S, Rumbaugh DM, McDonald K. Language learning in two species of apes. Neurosci Biobehav Rev 1985: 9:653-65; PMID:4080283; http://dx.doi.org/10.1016/0149-7634(85)90012-0.
14. Leavens DA, Hopkins WD, Bard KA. Indexical and referential pointing in chimpanzees (Pan troglodytes). J Comp Psychol 1996: 110:346-53; PMID:8956506; http://dx.doi.org/10.1037/0735-7036.110.4.346.
15. Pika S, Mitani JC. Referential gesturing in wild chimpanzees (Pan troglodytes). Curr Biol 2006; 16:191-2;
16. Pika S, Mitani JC. Referential gestures in chimpanzees in the wild: Precursors to symbolic communication? In: Smith ADM, Smith K, i Cancho RF, eds. The evolution of language: Proceedings of the 7th International Conference (Evolang7). London: World Scientific Publishing, 2008:478-9.
17. Tomasello M. Origins of Human Communication. Cambridge, Massachusetts: MIT Press, 2008.
18. Vén JJ, Schuster-P. J. Spontaneous pointing behaviour in the wild pygmy chimpanzee (Pan paniscus). Folia Primatol (Basel) 1998: 69:289-90; PMID:9751833; http://dx.doi.org/10.1159/000021640.
19. Pika S. Chimpanzee’s grooming gestures and grooming sounds: What might they tell us about how language evolved? In: Dor D, Knight C, Lewis J, eds. The Social Origins of Language: Early Society, Communication and Polymodality. Oxford: Oxford University Press, in press.
20. von Blotzheim UN. Handbuch der Vögel Mitteleuropas, Band 13-III. Wiesbaden: Aula Verlag, 2001.
21. Heinrich B. Mind of the raven. New York: Harper-Collins, 1991.
22. Gwinner E. Untersuchungen über das Ausdrucks- und Sozialverhalten des Kolkraben (Corvus corax L.). Z Tierpsychol 1964; 21:657-748; http://dx.doi.org/10.1111/j.1439-0310.1964.tb01212.x.
23. Heinrich B. Food sharing in the raven, Corvus corax. In: Slobodchikoff CN, ed. The Ecology of Social Behavior. San Diego: Academic Press, 1988:285-311.
24. Pika S, Bugnyar T. The use of referential gestures in ravens (Corvus corax) in the wild. Nat Commun 2011: 2:560; PMID:22127056; http://dx.doi.org/10.1038/ncomms1567.
25. Pika S. What is the nature of the gestural communication of great apes? In: Zlatev J, Racine T, Sinha C, Eikonen E, eds. The Shared Mind. Amsterdam, the Netherlands: John Benjamins Publishing Company, 2008:165-86.
26. Armstrong EA. The ethology of bird display and bird behavior. New York: Dover Publications, INC., 1965.

27. Marler P, Evans CS, Hauser MD. Animal signals: Motivational, referential or both? In: Papousek H, Jürgens S, Papousek M, eds. Nonverbal vocal communication: Comparative and developmental approaches. Cambridge: Cambridge University Press, 1992:66-86.

28. Jarvis ED. Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci 2004; 1016:749-77; PMID:15315804; http://dx.doi.org/10.1196/annals.1298.038.

29. Cacchione CK, Slater PJB. Bird song: Biological themes and variation. Cambridge: Cambridge University Press, 1995.

30. East ML, Hofer H, Wickler W. The erect ‘penis’ is a flag of submission in a female-dominated society: Greetings in Serengeti spotted hyenas. Behav Ecol Sociobiol 1993; 33:355-70; http://dx.doi.org/10.1007/BF00170251.

31. Kaplan G. Pointing gesture in a bird- merely instrumental or a cognitively complex behavior? Current Zoology 2011; 57:453-67.