A new role for P2X4 receptors as modulators of lung surfactant secretion

Pika Miklavc, Kristin E. Thompson and Manfred Frick*

Institute of General Physiology, University of Ulm, Ulm, Germany

*Correspondence: Manfred Frick, Institute of General Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany. e-mail: manfred.frick@uni-ulm.de

In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca\(^{2+}\) influx and elevation of the intracellular Ca\(^{2+}\) concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca\(^{2+}\) entry (FACE) in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca\(^{2+}\) influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air–liquid interphase thereby “activating” it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.

Keywords: P2X4 receptor, lamellar body, alveolar epithelial cell, exocytosis, calcium, cellular secretion, pulmonary surfactant

INTRODUCTION

In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion in a wide variety of organs including the lungs (Burnstock et al., 2012). P2X receptors are membrane cation channels that are activated by extracellular adenosine triphosphate (ATP), the molecular and functional properties of which have been reviewed in detail elsewhere (Surprenant, 1996; North, 2002; Khakh and North, 2006; Burnstock and Kennedy, 2011; Kaczmarek-Hajek et al., 2012). ATP has been known to stimulate cellular secretion for several decades (Rodriguez Candela and Garcia-Fernandez, 1963; Diamant and Kruger, 1967). One of the earliest indications for involvement of P2X receptors in stimulating secretion came from the studies of Cockcroft and Gomperts (1979a,b, 1980). They found that ATP triggers degranulation and histamine release in mast cells via activation of P2Z (Cockcroft and Gomperts, 1980), which later turned out to be P2X7 (Surprenant et al., 1996). Since the first cloning of P2X receptor subunits in 1994 (Brake et al., 1994; Valera et al., 1994), P2X receptors have been found to stimulate and modulate various cellular secretion pathways, including fluid secretion in exocrine glands and epithelia (Novak, 2011), secretion of cytokines via release of plasma-derived microvesicles (Solini et al., 1999; MacKenzie et al., 2001) or exosomes (Qu et al., 2007; Qu and Dubyak, 2011) and exocytic response in parotid acinar cells (Bhattacharya et al., 2012). In line with these findings, several studies proposed a role for P2X4 receptors in exocytosis that is mediated via an increase in the intracellular Ca\(^{2+}\) concentration. P2X4 receptors have a relatively slow desensitization (5–10 s) and a high Ca\(^{2+}\) permeability, Ca\(^{2+}\) contributes 8% of the whole current in human P2X4 (Wang et al., 1996; Garcia-Guzman et al., 1997; North, 2002; Egan and Khakh, 2004). Hence, activation of P2X4 receptors can generate sufficient increases in [Ca\(^{2+}\)]\(_i\), to stimulate regulated exocytosis. Indeed, insulin secretion from pancreatic islets (Ohtani et al., 2011) and exocytic response in parotid acinar cells (Bhattacharya et al., 2012) following stimulation with ATP were augmented in the presence of ivermectin, a selective potentiator of P2X4 receptor currents (Khakh and North, 1999, 2004). P2X4 activation was also found to modulate glutamate and gamma-aminobutyric acid (GABA) release in hypotalamic neurons (Viera et al., 2013) and brain-derived neurotrophic factor (BDNF) in microglial cells (Ifrag et al., 2009).
VESICULAR P2X RECEPTORS PROMOTE SURFACANT SECRETION VIA FACE — “FUSION-ACTIVATED Ca2+-ENTRY”

Apart from regulating secretion via adjusting the number of fusing vesicles that fuse with the plasma membrane, depending on the cell type and the shape of the Ca2+ signal, the rise in [Ca2+]cyt then results in a transient, non-selective, inward-rectifying cation current at the site of the fused vesicle causing a local increase in Ca2+ around the fused vesicle (2). The local increase in Ca2+ promotes fusion pore expansion (3a) in addition, the inward-rectifying cation current on the apical side results in vectorial ion transport across ATII cells, which in turn promotes fluid reabsorption and thereby facilitates adsorption of newly released surfactant into the air-liquid interface (3b). ASL = alveolar surface liquid.

In all of these systems, activation of P2X receptors adjusts the secretory output predominantly by modulating the number of vesicles that fuse with the plasma membrane. Depending on the cell type and the shape of the Ca2+ signal, the rise in [Ca2+]cyt then results in a transient, non-selective, inward-rectifying cation current at the site of the fused vesicle (Miklavc et al., 2011; Thompson et al., 2013) (Figure 1). The relatively high Ca2+ permeability of P2X4 receptors (North, 2002) causes a local, transient rise of [Ca2+]cyt around the fused vesicle which promotes fusion pore expansion (Miklavc et al., 2011). In ATII cells, vesicle content (i.e., surfactant) release is tightly regulated via Ca2+-dependent fusion pore expansion (Haller et al., 2001) and it has been demonstrated that FACE via P2X4 receptors on LBs directly facilitates surfactant release in the alveolus (Miklavc et al., 2011).

Ca2+ channels localized in the membranes of the secretory vesicles that respond to changes in the membrane potential or extracellular agonists upon fusion are ideally suited for generating a localized rise in Ca2+ and selectively affect the individual fused vesicle. Yet, so far such mechanisms have only been known in invertibrates (Smith et al., 2006; Yao et al., 2009; Miklavc and Frick, 2011) and P2X4 receptors on LBs resemble the first analog mechanism in mammals. It will be interesting to see whether a similar role for P2X receptors is present in other secretory cells. Similar to LBs in ATII cells, many different cell types harbor secretory lysosomes or lysosome-related organelles to store for secretory products that are released via exocytosis of these organelles (Dell’Angelica et al., 2000; Blott and Griffiths, 2002; Iuzio et al., 2007). Many of these contain rather bulky, macromolecular vesicle contents and release is modulated via the exocytic post-fusion phase (Thor, 2009). In addition, it is well established that P2X receptors, in particular P2X4, are predominantly located within lysosomal compartments and inserted into the cell surface upon exocytosis (Qureshi et al., 2007; Toyosimitsu et al., 2012).

VESICULAR P2X RECEPTORS FACILITATE “ACTIVATION” OF SURFACANT

Following release into the alveolar hypophase surfactant maintains its compact organization, constituting lamellar body-like particles (LBPs; Haller et al., 2004). To gain its vital function of reducing the surface tension within alveoli, it needs to be inserted...
into the air–liquid interface. Freshly released LBPs disintegrate when they contact an air–liquid interface, leading to instantaneous spreading and insertion of surfactant material at this interface (Dietl and Haller, 2005). Thompson et al. (2013) demonstrated that, in addition to facilitating fusion pore dilation, FACE via P2X4 also drives fluid resorption from the alveolar lumen. The P2X4-mediated inward-rectifying cation current on the apical side results in vectorial ion transport across ATII cells, which in turn promotes apical to basolateral fluid transport (Thompson et al., 2013) (Figure 1). FACE-dependent transepithelial fluid resorption is a rather transient process which requires the presence of luminal ATP or other P2X agonists and hence it is unlikely that it is a major contributor to regulation of alveolar liquid homeostasis under physiological conditions (Follecson and Matthey, 2006). However, it has been suggested that this localized alveolar fluid resorption results in temporary thinning of the alveolar hypophase which in turn promotes contact between LBPs and the interphase and facilitates adsorption of newly released surfactant into the air–liquid interface (Thompson et al., 2013). Hence, activation of P2X4 and FACE (which in order to embrace the true nature of FACE should now be referred to as “fusion-activated cation entry”) facilitates surfactant release via fusion pore opening and contributes to “activation” or “functionalising” of surfactant. Such a temporal and local coordination of surfactant secretion and reduction of alveolar lining fluid could constitute a powerful mechanism for fine-tuning surfactant replenishment – the integrators being vesicular P2X4 receptors and extracellular ATP.

ATP as Integrator for Surfactant Secretion and “Activation”

It is intriguing that extracellular ATP plays multiple functions for surfactant secretion in the alveolus. Apart from P2X4 receptors, ATII cells also express P2X7 receptors (Garcia-Verdugo et al., 2008; Dietl et al., 2012) and activation thereof is one of the most potent stimuli for LB exocytosis and surfactant secretion (Rice and Singleton, 1987; Frick et al., 2001; Andreuva et al., 2007; Dietl et al., 2010). Hence, ATP is integrating the entire secretion process from stimulating LB exocytosis to facilitating surfactant release and “activating” surfactant during the post-fusion phase. Despite this importance of ATP for lung function, the origins of ATP in the alveoli are still elusive. It has been reported that ATP is present in the pulmonary hypophase (Patel et al., 2005), however, the estimated concentration under resting conditions is in the low mM range (Bover et al., 2010), well below the EC50 values for P2X4 activation (Nordi, 2002) or P2Y2 activation (Lazarowski et al., 1995; Brunsweiger and Muller, 2006).

Cell stretch during deep inflation is considered the most potent if not only physiologically relevant stimulus for surfactant secretion (Wirtz and Dobbs, 2008; Dietl et al., 2004, 2010; Frick et al., 2004) and stretch-induced ATP release from alveolar epithelial cells (Patel et al., 2005; Mishra et al., 2011) could represent a key regulatory element (Dietl et al., 2010). Several possible pathways for ATP release have been described in the respiratory epithelia. ATP can either be released into the hypophase via regulated exocytosis from secretory cells (Kroda et al., 2010; Okada et al., 2011), or in a conductive way via pannexin hemichannels (Ramsford et al., 2009; Seminario-Vidal et al., 2011) or P2X7 receptors (Mishra et al., 2011). In particular, local ATP release within individual alveoli may provide an ideal mechanism to gradually adapt local surfactant secretion to local demands. The alveolar epithelium consists of only two cell types: besides surfactant secreting ATII cells, flat alveolar type 1 (ATI) cells cover most of the alveolar surface. In contrast to primary ATII cells that only express P2X4 receptors (Miklavc et al., 2011) ATII cells express P2X4 and P2X7 receptors (Weinhold et al., 2010; Burnstock et al., 2012). P2X7 knock-out mice fail to increase surfactant secretion in response to hyper-ventilation and substantial evidence suggests that ATP release via P2X7 receptors on ATII cells maintains alveolar surfactant homeostasis in response to increased alveolar distension by stimulating P2Y2 receptors on ATII cells (Mishra et al., 2011) and, in light of our recent findings, possible activation of P2X7 receptors in ATII cells (Miklavc et al., 2011; Thompson et al., 2013). In addition to responding to mechanical distension of alveoli, alveolar epithelial cells also respond to increased tension forces at the air–liquid interface with exocytic release of ATP (e.g., upon local depletion of surfactant or when coming in close proximity to the air–liquid interphase following a decrease in alveolar hypophase height; Raminsh et al., 2011).

Whether ATII cells also release ATP to act in an autocrine feedback loop, is still unknown. Many secretory vesicles, including lysosome-related organelles, have been found to contain significant amounts of ATP (Bodin and Burnstock, 2001; Praetorius and Leipizger, 2009; Lazarowski et al., 2011) and it has been reported that ATP is released from ATII-like A549 cells, likely via exocytosis (Tatur et al., 2008; Raminsh et al., 2011). It is tempting to speculate that LBs contain ATP and hence provide the ligand for the P2X4 receptors themselves. In such a scenario, the high degree of pH sensitivity of this receptor (Clarke et al., 2000; Zsembery et al., 2005; Goddou et al., 2011) could prevent intravesicular activation of the receptor in the presence of vesicular ATP (pH of LB is <6.1; Chander et al., 1986).

Also, under pathophysiological conditions resulting from many chronic lung diseases, release of purine nucleotides from respiratory epithelia is significantly increased (Adriaensen and Timmermans, 2004; Lommatsch et al., 2010). It has been demonstrated that trauma-induced damage of the alveolus leads to substantial ATP release and that extracellular ATP is a key player to rescue alveolar function following damage, including regulation of surfactant secretion (Retoux et al., 2010; Bérée et al., 2011). In addition, several studies have demonstrated up-regulation of P2X receptors in various cell types during pathological conditions including inflammation, tumor growth, and injury (Burnstock and Kennedy, 2011) and it has been hypothesized that chronic extracellular ATP may be responsible (Kessler et al., 2013). Such a mechanism could be particularly relevant in the lung, and P2X receptors may play an even greater role in many pathological conditions with chronically increased extracellular ATP levels. Initial evidence came from studies indicating that smoke-induced lung inflammation leads to increased levels of ATP in broncho-alveolar fluid and up-regulation of P2X7 expression (Lommatsch et al., 2010; Lucattelli et al., 2011). A similar role for P2X4 receptors under pathophysiological conditions is still to be confirmed. However,
it is becoming increasingly evident that purinergic signaling is taking center stage in regulating secretion of pulmonary surfactant and adapting it to local demands under physiological and diseased conditions. P2X receptors on LBs provide an ideal mechanism for fine-tuning surfactant secretion via ATP levels in the alveolar hypophase.

Despite recent advances in our understanding how purinergic signaling in the alveolus, in particular activation of vesicular P2X receptors, modulates LB exocytosis, surfactant secretion and activation of released surfactant, several important questions still remain to be answered: What is the physiological relevance of such a complex regulatory mechanism? What are the sources of ATP and where is it produced in the healthy lung? What are the physiological roles, messengers and mechanisms? Are the ATP receptors on LBs involved in such a complex regulatory mechanism?”

REFERENCES

Adriaensen, D., and Timmermans, J. (2006). Purinergic signaling in the lung: important in asthma and COPD. Curr. Opin. Pharmacol. 6, 207–214. doi: 10.1016/j.coph.2006.04.008
Andreu, A. V., Kutuzov, M. A., and Vnyo-Veaseyndrea, T. A. (2007). Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L239–L271. doi:10.1152/ajplung.00128.2007
Balestra, H. A., Hubmayr, R. D., Wang, S., Bodin, P., and Burnstock, G. (2001). Activation of released surfactant, several important questions still
Khakh, B. S., Proctor, W. R., Dunwiddie, T. V., Labarca, C., and Lester, H. A. (1999). Allosteric control of P2X receptors as cell-surface ATP sensors in health and disease. Nature 402, 527–532. doi: 10.1038/442527a0

Khakh, B. S., and North, R. A. (2001). Purinergic P2X7 receptor signaling in the pathogenesis of inflammatory disorders. Annu Rev Immunol. 19, 585–618. doi: 10.1146/annurev.immunol.19.1.585

Kaczmarek-Hajek, K., Lorinczi, E., Hobi, N., Wittekindt, O. H., Dietl, P., Kranz, C., De Cunto, G., Carcea, O., Rodriguez-Diaz, M., Cabrera, O., and Frick, M. (2011). Vesicular P2X4 modulates surfactant secretion in neonatal mouse olfactory epithelia. J. Neurosci. 31, 13654–13661. doi: 10.1523/JNEUROSCI.3596-11.2011

Jacques-Silva, M. C., Correa-Medina, Y. A., Stone, L. M., Pereira, E. S. M., Hecht, E., Hobi, N., Wittekindt, O., Dietl, P., Kranz, C., De Cunto, G., Carcea, O., Rodriguez-Diaz, M., Cabrera, O., and Frick, M. (2011). Vesicular P2X4 modulates surfactant secretion – recent progress and persisting challenges. J. Physiol. 588, 2255–2267. doi: 10.1113/jphysiol.2010.201006

Khesin, B., Jin, Y., Wang, X., King, J. F., Kuan, Y., Younesi, E., and Ranganathan, L. (2012). Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelia. BMC Neurosci. 13:55. doi: 10.1186/1471-2202-13-55

Khan, A. M., Qureshi, O. S., Paramasivam, A., Yu, J. C., and Murthi-Lagnado, B. D. (2007). Regulation of P2X7 receptors by lysosomal targeting, gлицan protection and exocytosis. J. Cell Sci. 120, 3838–3849. doi: 10.1242/jcs.035048

Kohli et al. Vascular P2X4 modulates surfactant secretion
Vesicular P2X4 modulates surfactant secretion

Kaczmarek, L. K., et al. (2006).
Endocytic insertion of calcium channels constrains compensatory endocytosis to sites of exocytosis. J Cell Biol. 174, 755–767. doi: 10.1016/j.jcb.2006.09.002

Solin, A., Chiovetti, P., Mondelli, A., Follin, R., and De Virgiliis, F. (1999). Human primary fibroblasts in vitro express a putative P2X7 receptor coupled to iron fluxes, microvillus formation and IL-8 release. J Cell Sci. 112(Pt 5), 297–305.

Smallford, T. C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547. doi: 10.1146/anurev.neuro.27.040203.174412

Surprenant, A. (1996). Functional properties of native and cloned P2X receptors. Ciba Found. Symp. 198, 209–219; discussion 219–222.

Surprenant, A., Benevent, R., Kounnas, E., North, R. A., and Budil, G. (1996). The cytosolic P2X receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 732–735. doi: 10.1126/science.272.5262.735

Tomin, S., Koeli, S., Larzowski, E., and Greggeryy, B. (2008). Calcium-dependent release of adenosine and uridine nucleotides from ANP cells. Pfluegers Arch. 458, 139–146. doi: 10.1007/s00424-007-0599-9

Thompson, K. E., Kortmacher, J. P., Hecht, E., Rohs, N., Wirtzfeld, O. H., Dohl, P., et al. (2013). Ionomycin-activated cation entry (FACE) via P2X4 couples surfactant secretion and abscopal fluid transport.FASEB J. 27, 1772–1783. doi: 10.1096/fj.2012-220353

Thorn, P. (2009). New insights into the control of secretion. Compt. Rend. Cell. Mol. Life Sci. 8, 101–110. doi: 10.1007/s11302-011-9286-4

Tzeng, T., Begg, S., Wun, X., and Sakurada, M. (2009). P2X4 receptor-mediated synthetic and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p78ominogen-activated protein kinase activation. J. Neurosci. 29, 3518–3528. doi: 10.1523/JNEUROSCI.1523-09.2009

Urmans, L., Hatch, J. P., Hughes, I. P., Chalmers, S., Groves, P. J., Compton, F., et al. (2008). Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J. Neurosci. 28, 11283–11298. doi: 10.1523/JNEUROSCI.2208-08.2008

Valera, S., Hussy, N., Evans, R. J., Adami, A., North, R. A., and Surprenant, A., et al. (1994). A new class of ligand-gated ion channel defined by P2x receptors. Proc. Natl. Acad. Sci. USA 91, 516–519. doi: 10.1073/pnas.91.2.516

Verra, V., Bhattacharya, A., and Zenkova, H. (2011). Facilitation of glutamate and GABA release by P2X receptor activation in supraspinal neurons from forelimb-isolated rat brain slices. Neuroscience. 188, 1–12. doi: 10.1016/j.neuroscience.2011.04.052

Wang, C. Z., Namba, N., Gosei, T., Inagaki, N., and Seino, S. (1999). Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. J. Pharmacol. Exp. Ther. 290, 196–202. doi: 10.1096/jpet.1998.285

Weinhold, K., Krause-Buchholz, U., Red, G., Kappel, M., and Barth, K. (2010). Interaction and interrelation of P2X2 and P2X4 receptor complexes in mouse lung epithelial cells. Cell. Mol. Life Sci. 67, 2631–2642. doi: 10.1007/s00018-010-0355-1

Witney, B. R., and Dobbs, L. G. (2006). The effects of mechanical forces on lung function. Respir. Physiol. Neurosci. 119, 1–17. doi: 10.1016/j.resp.2005.08.004

Yao, C. K., Lin, Y. Q., Ly, C. V., Ohyama, T., T., Haueter, C. M., Moiseenkova-Bell, M., and Frick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or license are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction in any medium is permitted which does not comply with these terms.