Livestock-associated *Staphylococcus aureus* (LA-SA) has emerged among pigs raised in industrial hog operations (IHOs) and persons who work on or live near IHOs globally, including in the United States (1–4). IHO workers who are occupationally exposed to pigs are at increased risk for intranasal carriage of *S. aureus*, including methicillin-resistant *S. aureus* (MRSA), multidrug-resistant *S. aureus* (MDRSA), and LA-SA (3,5). Furthermore, persons exposed to LA-SA are at risk of developing mild-to-severe infections, including skin and soft tissue infections (SSTIs), pneumonia, endocarditis, osteomyelitis, and bacteremia (5–8). Recent evidence supports emergence of diverse clones associated with IHOs. *S. aureus* clonal complex 9 (CC9), for example, has been reported as a dominant LA-SA lineage in Asia and has been described as an emerging clone in some areas with intensive industrial livestock production in the United States (9–11).

The population structure and transmission dynamics of emerging LA-SA CC9 strains in the United States remains poorly understood. Previous epidemiologic studies in the top 10 pig-producing counties in North Carolina, the second leading US pig-producing state, showed a high prevalence of LA-SA CC9 nasal carriage among IHO pigs and IHO workers (3,12). Epidemiologic findings provide support for potential transmission of LA-SA CC9 between IHO workers and their household contacts, including minor children (<18 years of age; IHO minors), based on nasal carriage of LA-SA CC9 with concordant *spa* types at the same time point (3). Epidemiologic studies have also identified instances of LA-SA CC9 nasal carriage among community residents with no known exposure to livestock in high-density IHO areas of North Carolina (2). Whole-genome sequencing (WGS) analysis provides an opportunity to characterize the population structure and transmission dynamics of LA-SA CC9 in the United States. The objectives of this study were to use WGS and phylogenetic analyses to elucidate the population structure of *S. aureus* CC9 from various regions in North America, South America,
Europe, and Asia and to investigate potential transmission of antimicrobial-resistant LA-SA CC9 among IHO pigs and humans who work on or live near IHOs in North Carolina.

Methods

Sources of S. aureus Isolates from Humans and from Pigs Raised on IHOs in North Carolina

S. aureus isolates from IHO pigs were collected from a convenience sample of a single IHO in North Carolina (IHO-1), as described previously (12). We collected additional pig samples by hanging a length of undyed, unbleached cotton rope in pig pens of 20 IHOs in North Carolina (IHO-2–IHO-21) (Appendix). Pig isolates were recovered from IHO-2, IHO-3, IHO-4, IHO-5, and IHO-6 for a total of 6 IHOs (IHO-1–IHO-6). Isolates from IHO-2–IHO-6 have not been published previously. The spa type for all IHO pig isolates was characterized, as previously described (12), and used to assign each isolate to a putative multilocus sequence type (MLST).

S. aureus isolates from humans were collected from participants who were previously enrolled into 1 of 3 separate epidemiologic studies (study 1, study 2, and study 3) and screened for nasal carriage of S. aureus (Appendix, https://wwwnc.cdc.gov/EID/article/27/3/19-1775-App1.pdf). Sample collection, sample processing, and S. aureus isolation methods were described previously (1–3). MLST was previously determined for all study 1 isolates (1). The spa type was previously characterized for study 2 and study 3 isolates and used to assign a putative MLST based on previously published associations between spa types and MLSTs (2,3).

Selection of S. aureus CC9 Isolates for WGS Analysis

A total of 236 putative or MLST-confirmed S. aureus CC9 isolates were recovered from IHO pigs (n = 91) and humans (n = 145) in North Carolina during 2011–2016 (Appendix). For this study, a convenience sample of 49 isolates from North Carolina were subjected to WGS analysis, including 10 isolates from pigs raised on 4 different IHOs, 34 isolates from 25 IHO workers, 1 isolate each from 3 IHO minors, and 1 isolate each from 2 community resident adults (Appendix). For comparative purposes, we also included an international collection of 32 S. aureus CC9 genomes available as of August 1, 2018, from the National Center for Biotechnology Information (NCBI) Reference Sequence Database (http://www.ncbi.nlm.nih.gov/RefSeq), which included information on source, geographic location, and collection year.

WGS and Bioinformatic Analyses

We prepared DNA for multiplexed, paired-end sequencing by preparing libraries using either the Nextera XT DNA Library Preparation Kit (Illumina, Inc.), according to manufacturer instructions, or the Kapa Hyper Prep Kit (Kapa Biosystems, Inc.; https://www.sigmaaldrich.com) and uniquely barcoded adaptors from NEXTFLEX-96 Unique Dual Index barcodes (BioScientific, https://www.bioscientific.com). We prepared equimolar pools of S. aureus libraries at a concentration of 2 nmol and sequenced on a MiSeq (Illumina, Inc.; https://www.illumina.com) at 2 × 300 bp. WGS data are available in the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov; BioProject no. PRJNA574434).

We used SPAdes (13) to generate de novo assemblies and compared these against the S. aureus MLST database (14) to assign MLSTs. We used ABRicate (https://github.com/tseemann/abricate) to search the ResFinder database for antimicrobial-resistance (AMR) genes (15). We used BLASTN (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to detect genes in the phage-associated immune evasion cluster (IEC), including scn, chp, sak, sea (GenBank accession no. NC_009641), and sep (GenBank accession no. BA000018) (16).

We used the NASP pipeline (17) to map sequence reads against the de novo-assembled genome of North Carolina isolate IHOW6.1 (BioProject accession no. PRJNA574434) and to perform single-nucleotide polymorphism (SNP) calling, as described previously (8). We used Gubbins version 2.3.1 (18) to remove recombination from the SNP alignment and used the remaining SNPs in the core genome to construct a midpoint-rooted maximum-likelihood tree by using PhyML (19) with a general time-reversible model of nucleotide substitution and 100 bootstrap replicates (20). We used the same methods to perform a separate SNP analysis of the cluster containing the North Carolina isolates (clade 3) to improve the resolution of the transmission analysis. We calculated pairwise SNP differences by using MEGA5 (21). To define a SNP-based threshold for assigning isolates into putative transmission clusters, we used the maximum within-farm pairwise SNP distance among S. aureus CC9 isolates from IHO-1, in which all isolates were collected from the same IHO at the same sampling time.

Antimicrobial Susceptibility Testing

Isolates in the North Carolina collection previously were assessed for susceptibility to a panel of antimicrobial drugs by using the Phoenix Automated Microbiology System (Becton Dickinson, https://www.
isolates resistant to several antimicrobial classes among C3 isolates, including tetracyclines in 50% (25/50), macrolides in 56% (28/50), and aminoglycosides in 62% (31/50) of C3 isolates (Figure 2; Appendix Table 4). Among LA-SA CC9 clades, 50% (25/50) of C3 isolates were uniquely enriched for *erm(A)* genes, 16% (8/50) for *vga(A)*, 42% (21/50) for *lnu(A)*, and 54% (27/50) for *spc* (Figure 1; Appendix Table 4). The *mecA* gene was absent from C3 but common among C1 and C2 isolates.

Discussion

Our WGS analysis suggests that the clonal expansion of LA-SA CC9 in North Carolina is distinct from that in Asia and Europe and that LA-SA CC9 from IHO pigs and humans in high-density pig-producing counties of North Carolina come from a common pool. Considering the high degree of phylogenetic relatedness among intermingled IHO pig and human
Transmission of *S. aureus* between Pigs and Humans

Figure 1. Maximum-likelihood tree demonstrating population structure of *Staphylococcus aureus* clonal complex (CC) 9 isolates from humans and livestock in North Carolina, USA, and reference sequences. A total of 81 *S. aureus* CC9 isolates from human and livestock specimens were included in this midpoint-rooted maximum-likelihood phylogeny based on 3,847 core genome single-nucleotide polymorphisms. *S. aureus* isolates belonged to 3 phylogeographically distinct clades (C1–C3). All the North Carolina collection isolates were included in C3. IEC genes are shown in columns 1, *scn*; 2, *sak*; and 3, *chp*. MRSA is shown in column 4. AMR genes are shown in columns 5, *mecA*; 6, *tet(K)*; 7, *tet(L)*; 8, *tet(T)*; 9, *erm(A)*; 10, *erm(B)*; 11, *erm(C)*; 12, *vga(A)_{LC})*; 13, *lnu(A)*; 14, *lnu(B)*; 15, *str*; 16, *spc*; 17, *aadD*; 18, *aac(6)*; 19, *ant(6)-1a*; 20, *dfrG*; and 21, *dfrK*. Scale bar indicates nucleotide substitutions per site. AMR, antimicrobial resistance; Chick, chicken; COO, country of origin; IEC, immune evasion cluster; MRSA, methicillin-resistant *S. aureus*; MSSA, methicillin-susceptible *S. aureus*; NA, not applicable.
isolates in putative transmission clusters, the results of this study support potential transmission of antimicrobial-resistant LA-SA CC9 between IHO pigs and humans in the United States.

Our results also provide evidence of household-level transmission of LA-SA CC9 between IHO workers and minors and suggest that potential LA-SA CC9 transmission is not limited to the occupational setting. Dissemination of LA-SA CC9 into the general human population represents a public health concern for 2 reasons. Globally, communities include a higher proportion of children, the elderly, and probably immunocompromised persons, who are at higher risk of developing invasive staphylococcal infections, compared with IHO workers who are predominantly healthy adults of working age. Our analysis revealed an 11-year-old child and an IHO worker residing in the same household who were carrying identical

Figure 2. High-resolution population structure of clade 3 livestock-associated *Staphylococcus aureus* clonal complex (CC) 9 isolates from humans and livestock in North Carolina, USA, and reference isolates. A subset of 50 livestock-associated *S. aureus* CC9 isolates that were collected from IHO pigs, IHO workers, IHO minors, and CR adults were included in this midpoint-rooted maximum-likelihood phylogeny based on 1,198 core genome single-nucleotide polymorphisms. A single subclade, denoted as the IHO pig cluster, included only pig isolates from IHO-1 and was used to set a threshold of 43 SNPs for identifying transmission clusters; clusters of IHO pig and human isolates separated by <43 SNPs are considered transmission clusters. Two subclades included intermingled human and IHO pig isolates with a high degree of phylogenetic relatedness and were considered transmission clusters. IEC isolates are shown in columns 1, 2, and 3. AMR genes are shown in columns 4, 5, 6, 7, 8, 9, and 10. MDRSA is shown in column 14. Antimicrobial drug resistance is shown in columns 15, 16, 17, 18, and 19. Scale bar indicates nucleotide substitutions per site. AMR, antimicrobial resistance; CR, community resident; IHO, industrial hog operation; MDRSA, multidrug resistant *S. aureus*; SSTI, skin and soft tissue infection.
LA-SA CC9 isolates (0 SNP differences) at the same sampling time, which provides strong evidence of household transmission of LA-SA CC9 between IHO workers and their children. Second, clinical implications might arise regarding treatment regimens for LA-MDRSA CC9 colonization and infection. Most (63.3%; 31/49) LA-SA CC9 isolates from North Carolina were multidrug-resistant and carried multiple genes conferring resistance to antimicrobial drug classes critical for human medicine (23). Of note, the single LA-SA CC9 isolate from an IHO worker who reported a recent SSTI belonged to a putative transmission cluster, displayed an MDRSA phenotype, and previously was reported to display a high degree of pathogenicity compared with a hypervirulent community-associated MRSA strain, USA300 (GenBank accession no. CP000255), in a mouse model of SSTI (24).

Our results support potential transmission of LA-SA CC9 between IHO pigs and humans, and between humans and other humans, in the top 10 pig-producing counties in North Carolina. These findings are consistent with previous publications on LA-SA CC9 and other lineages of LA-SA. First, a separate analysis of LA-MRSA CC9 recovered from IHO pigs in China suggested potential transmission of LA-MRSA CC9 between pigs, humans, and cows (11). Second, an abundance of previous epidemiologic and WGS analyses support transmission of diverse lineages of LA-SA from pigs to humans, which can result in human SSTI and bloodstream infections (8,10,25). Last, prior WGS analyses and epidemiologic studies have provided support for household transmission of LA-SA CC9 and CC398 between persons based on spatial, temporal, and genotypic overlap (2,3,26). In our analysis, the exact transmission pathway remains unclear because we did not ascertain the direction of transmission or whether transmission occurred through direct or indirect contact.

Previous studies have suggested a S. aureus mutation rate of 5–10 SNPs per year per genome (27–30), but our threshold of 43 SNPs was justified for 2 reasons. First, our empirically derived SNP threshold was consistent with SNP-based thresholds used by others to identify suspected transmission of MRSA in clinical settings (31) and previous measures of within-person S. aureus diversity (32). The robustness of our findings was supported when we used the median (32 SNPs), rather than maximum (43 SNPs), pairwise SNP distance among IHO pig cluster isolates as the SNP threshold for identification of putative transmission clusters. We excluded only 1 isolate from an IHO worker from putative transmission clusters, and the excluded isolate was not the SSTI-associated isolate (data not shown). Second, the aim of this study was to clarify whether any SNP-based evidence of transmission between IHO pig and human populations in North Carolina exists, rather than provide evidence of recent or incident transmission or to identify specific pathways of transmission. Using 43 SNPs as the threshold enabled us to observe potential direct or indirect transmission that might not be observed by using epidemiologic data alone. Investigations of S. aureus transmission conventionally combine epidemiologic and strain typing data, but these methods can fail to identify transmission links in cases in which spatial and temporal overlap is lacking (31). Using the epidemiologic data that were available to us, such as multiple S. aureus CC9 isolates from the same IHO, household, or individual, we observed SNP-based evidence of S. aureus CC9 clustering that would be expected biologically (Appendix Table 5).

Since 2016, tetracyclines have been the most heavily used antimicrobial drug class in the US pig production system, followed distantly by macrolides, lincosamides, aminoglycosides, streptogramins, and fluoroquinolones (33,34). If antimicrobial-resistant CC9 strains were enriched through selective pressure, antimicrobial use in pig production possibly has played a role in the clonal expansion of LA-SA CC9 in North Carolina and other regions of the world. Of note, resistance to several of these antimicrobial drug classes was conferred by different AMR genes in C1, C2, and C3 (Figure 1; Appendix Table 4), highlighting different evolutionary pathways for adaptation to antimicrobial selection pressures in different regions of the world. Continued surveillance of IHO pigs and humans, including during and after regulatory and policy restrictions on antimicrobial use in animal agriculture, could provide critical insight into the potential contribution of antimicrobial use in the clonal expansion of LA-SA CC9 and its associated AMR genes in the United States.

The strengths of our study included using SNP-based analyses to examine the population structure and transmission dynamics of LA-SA CC9 among pigs and humans in a region of North Carolina with the highest density of IHOs in the United States (35), a region in which residents and IHO workers are actively expressing concerns about IHO-related exposures (36). Second, our study used SNP distance to classify human isolates closely related to IHO pig isolates, which is an improvement on previous studies that used spa-typing, MLST typing, absence of IEC genes (specifically sci), phenotypic AMR determination, or combinations of these techniques, to classify S. aureus isolates as livestock-associated (2,3,12).
Third, the use of a SNP-based definition for cluster analysis can capture the potential for transmission between animal and human populations that would have been missed by using more conventional epidemiologic methods alone (31).

Limitations of our study included that we were not able to provide evidence for directionality of transmission. We rooted our high-resolution phylogenetic tree at the midpoint; therefore, we are unsure if the most ancestral clade of S. aureus CC9 is of human or animal origin. In addition, whereas the SNP-based evidence for pig-to-human transmission could have been strengthened by spatial or temporal data linking pigs and workers at the same IHO, these data were not available because of efforts to protect the privacy of participants enrolled in the epidemiologic studies and because of limited access to IHOs in the United States (37). In contrast to countries in Europe, the lack of access to IHOs prevents us from assessing the generalizability of our results in the United States. We hypothesize that we would see even closer genetic relatedness between IHO worker and IHO pig LA-SA CC9 isolates collected from the same IHO at the same time. Last, our collection of S. aureus CC9 isolates was limited. The North Carolina collection was a convenience sample that identified S. aureus CC9 isolates from only 6 IHOs, which does not represent the full population of IHOs or pigs in North Carolina. Also, we excluded many isolates selected for WGS from SNP-analysis because they did not pass our quality control criteria (Appendix), potentially introducing bias into the studied isolate sample. Additional S. aureus CC9 isolates likely are available now in the NCBI Reference Sequence Database, but publicly available LA-SA CC9 sequence data were limited when we accessed the database for this study. A more representative dataset could provide more refined estimates on frequency of transmission in North Carolina and other regions of the world.

Despite these limitations, our results show a high degree of phylogenetic relatedness between IHO pig and human LA-SA CC9 isolates in the top 10 pig-producing counties in North Carolina. The presence of a highly pathogenic SSTI-associated LA-SA CC9 isolate with an MDRSA phenotype in a putative transmission cluster warrants future investigations into the disease burden associated with these strains in the United States. Future research could further improve or build on our findings by including environmental isolates and considering WGS analysis in conjunction with spatial and temporal data analysis to investigate the frequency of transmission, environmental exposure routes, and geographic extent of LA-SA CC9. Our reference dataset might be useful in future investigations of worker and community health concerns related to LA-SA CC9 dissemination and acquisition, both in North Carolina and in other regions of the United States with high densities of IHOs.

Acknowledgments
The authors thank Aaron Milstone for intellectual contributions to the manuscript drafts; the Rural Empowerment Association for Community Help (REACH) for their assistance with participant enrollment and collection of human nasal samples; and William Flowers, Sarah Blacklin, Asher Wright, Alexis Brown, Haley Keller, and Ralph A. Tripp for their assistance with collection of samples from pigs in North Carolina.

This study was funded by the Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases Discovery Program at the Johns Hopkins University, School of Medicine, Department of Medicine, Division of Infectious Diseases (award no. 018HEA2013); a gift from the GRACE Communications Foundation; the National Institute for Occupational Safety and Health (NIOSH) pilot award from the Johns Hopkins NIOSH Education and Research Center (grant no. T42OH008428); and NIOSH grant no. K01OH010193 and National Science Foundation (NSF) grant no. 1316318 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program. P.R.R. was supported by NIOSH (grant no. T42OH008428) and a gift from the GRACE Communications Foundation. J.L., L.B.P., and M.A. received funding support from the National Institute of Allergy and Infectious Diseases (NIAID; grant no. R01AI101371). C.D.H. received funding from NIOSH (grant no. R01OH010193). E.W. received funding from “AI” Thrasher Award 10287; a gift from the GRACE Communications Foundation; the National Institute of Environmental Health Sciences (grant no. R01ES026973); NIAID (grant nos. R21AI139784, R43AI141265, and R01AI130066); and the National Science Foundation (grant no. 1316318), as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program. M.L.N. received funding support as part of a Royster Society fellowship and a US Environmental Protection Agency Science to Achieve Results fellowship. M.F.D. received funding support from NIH (grant no. K01OD019918). L.S.M received funding support from NIH (grant nos. R01AR069502 and R01AR073665). D.C.L. received funding support through a grant from the John’s Hopkins Center for Environmental Health Sciences and because of limited access to IHOs and collection of human nasal samples; and William Flowers, Sarah Blacklin, Asher Wright, Alexis Brown, Haley Keller, and Ralph A. Tripp for their assistance with collection of samples from pigs in North Carolina.

This study was funded by the Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases Discovery Program at the Johns Hopkins University, School of Medicine, Department of Medicine, Division of Infectious Diseases (award no. 018HEA2013); a gift from the GRACE Communications Foundation; the National Institute for Occupational Safety and Health (NIOSH) pilot award from the Johns Hopkins NIOSH Education and Research Center (grant no. T42OH008428); and NIOSH grant no. K01OH010193 and National Science Foundation (NSF) grant no. 1316318 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program. P.R.R. was supported by NIOSH (grant no. T42OH008428) and a gift from the GRACE Communications Foundation. J.L., L.B.P., and M.A. received funding support from the National Institute of Allergy and Infectious Diseases (NIAID; grant no. R01AI101371). C.D.H. received funding from NIOSH (grant no. K01OH010193). E.W. received funding from “AI” Thrasher Award 10287; a gift from the GRACE Communications Foundation; the National Institute of Environmental Health Sciences (grant no. R01ES026973); NIAID (grant nos. R21AI139784, R43AI141265, and R01AI130066); and the National Science Foundation (grant no. 1316318), as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program. M.L.N. received funding support as part of a Royster Society fellowship and a US Environmental Protection Agency Science to Achieve Results fellowship. M.F.D. received funding support from NIH (grant no. K01OD019918). L.S.M received funding support from NIH (grant nos. R01AR069502 and R01AR073665). D.C.L. received funding support through a gift from the GRACE Communications Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
D.H. is the program manager and co-founder of the Rural Empowerment Association for Community Help (REACH), a 501(c)(3) not-for-profit organization located in Duplin County, North Carolina, and was a complainant in a Title VI administrative complaint against the North Carolina Department of Environmental Quality related to its statewide hog operation lagoon and spray field liquid waste management permitting system; D.H. has no potential personal financial gain from this administrative complaint, which is not directly related to the research described in this manuscript and is not a lawsuit or litigation.

L.S.M. is a full-time employee of Janssen Pharmaceuticals and may hold Johnson & Johnson stock and stock options. He performed all work at his prior affiliation at Johns Hopkins University School of Medicine; has received prior grant support from AstraZeneca, Pfizer, Boehringer Ingelheim, Regeneron Pharmaceuticals, and Moderna Therapeutics; was a paid consultant for Armirall and Janssen Research and Development; was on the scientific advisory board of Integrated Biotherapeutics; and is a shareholder of Noveome Biotherapeutics, which are all developing therapeutics against infections, including S. aureus and other pathogens, and inflammatory conditions. All other authors declare that they have no actual or potential competing financial interests.

About the Author
Dr. Randad is a postdoctoral fellow in the department of Environmental Health and Engineering at Johns Hopkins University Bloomberg School of Public Health. His research focuses on infectious disease epidemiology and diagnostic development.

References
1. Rinsky JL, Nadimpalli M, Wing S, Hall D, Baron D, Price LB, et al. Livestock-associated methicillin and multidrug-resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One. 2013;8:e67641. https://doi.org/10.1371/journal.pone.0067641
2. Hatcher SM, Rhodes SM, Stewart JR, Silbergeld E, Pisanic N, Larsen J, et al. The prevalence of antibiotic-resistant Staphylococcus aureus nasal carriage among industrial hog operation workers, community residents, and children living in their households: North Carolina, USA. Environ Health Perspect. 2017;125:560–9. https://doi.org/10.1289/EHP35
3. Nadimpalli ML, Stewart JR, Pierce E, Pisanic N, Love DC, Hall D, et al. Face mask use and persistence of livestock-associated Staphylococcus aureus nasal carriage among industrial hog operation workers and household contacts, USA. Environ Health Perspect. 2018;126:127005. https://doi.org/10.1289/EHP3453
4. Casey JA, Curriero FC, Cosgrove SE, Nachman KE, Schwartz BS. High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern Med. 2013;173:1980–90. https://doi.org/10.1001/jamainternmed.2013.10408
5. Wardyn SE, Forshey BM, Farina SA, Kates AE, Nair R, Quick MK, et al. Swine farming is a risk factor for infection with and high prevalence of carriage of multidrug-resistant staphylococcus aureus. Clin Infect Dis. 2015;61:59–66. https://doi.org/10.1093/cid/civ234
6. Wardyn SE, Stromer M, Price LB, Smith TC. Whole-genome analysis of recurrent Staphylococcus aureus t571/ST398 in farmer, Iowa, USA. Emerg Infect Dis. 2018;24:153–4. https://doi.org/10.3201/eid2401.161184
7. Nadimpalli M, Stewart JR, Pierce E, Pisanic N, Love DC, Hall D, et al. Livestock-associated, antibiotic-resistant Staphylococcus aureus nasal carriage and recent skin and soft tissue infection among industrial hog operation workers. PLoS One. 2016;11:e0165713. https://doi.org/10.1371/journal.pone.0165713
8. Larsen J, Petersen A, Larsen AR, Sieber RN, Stegger M, Koch A, et al.; Danish MRSA Study Group. Emergence of livestock-associated methicillin-resistant Staphylococcus aureus bloodstream infections in Denmark. Clin Infect Dis. 2017;65:1072–6. https://doi.org/10.1093/cid/cix504
9. Butaye P, Argudín MA, Smith TC. Livestock-associated MRSA and its current evolution. Curr Clin Microbiol Rep. 2016;3:19–31. https://doi.org/10.1007/s40858-016-0031-9
10. Chuang Y-Y, Huang Y-C. Livestock-associated methicillin-resistant Staphylococcus aureus in Asia: an emerging issue? Int J Antimicrob Agents. 2015;45:334–40. https://doi.org/10.1016/j.ijantimicag.2014.12.007
11. Zhou W, Li X, Osmundson T, Shi L, Ren J, Yan H. WGS analysis of ST9-MRSA-XII isolates from live pigs in China provides insights into transmission among porcine, human and bovine hosts. J Antimicrob Chemother. 2018;73:2652–61. https://doi.org/10.1093/jac/dky245
12. Davis MF, Pisanic N, Rhodes SM, Brown A, Keller H, Nadimpalli M, et al. Occurrence of Staphylococcus aureus in swine and swine workplace environments on industrial and antibiotic-free hog operations in North Carolina, USA: a One Health pilot study. Environ Res. 2018;163:88–96. https://doi.org/10.1016/j.envres.2017.12.010
13. Bankovich A, Nirk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/ijb.2012.0021
14. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–15. https://doi.org/10.1128/JCM.38.3.1008-1015.2000
15. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4. https://doi.org/10.1093/jac/dks261
16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)08360-2
17. Sahl J, Esser H, Lemmer D, Travis J, Schupp JM, Gilleo JD, Azi M, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom. 2016;2:e000074. https://doi.org/10.1099/mgen.0.000074
18. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Jeane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences
using Gubbins. Nucleic Acids Res. 2015;43:e15–15. https://doi.org/10.1093/nar/gku1196

19. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010

20. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. https://doi.org/10.1080/10635150390235520

21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. https://doi.org/10.1093/molbev/msr121

22. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–91. https://doi.org/10.1111/j.1469-0691.2011.03570.x

23. World Health Organization. Critically important antimicrobials for human medicine, 6th revision. Geneva: The Organization; 2018 [cited 2020 Dec 18]. https://www.who.int/foodsafety/publications/antimicrobials-sixth

24. Randad PR, Dillen CA, Ortines RV, Mohr D, Aziz M, Price LB, et al. Author correction: comparison of livestock-associated and community-associated Staphylococcus aureus pathogenicity in a mouse model of skin and soft tissue infection. Sci Rep. 2019;9:12811. https://doi.org/10.1038/s41598-019-46940-z

25. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio. 2012;3:e00305–11. https://doi.org/10.1128/mBio.00305-11

26. Bosch T, Verkade E, van Luit M, Landman F, Kluymans J, Scholtes LM. Transmission and persistence of livestock-associated methicillin-resistant Staphylococcus aureus among veterinarians and their household members. Appl Environ Microbiol. 2015;81:124–9. https://doi.org/10.1128/AEM.02803-14

27. Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK, Chantratita N, et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327:469–74.

28. Nübel U, Dordel J, Kurt K, Strommenger B, Westh H, Shukla SK, et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. https://doi.org/10.1371/journal.ppat.1000855

29. Smyth DS, McDougal LK, Grant FW, Manoharan A, Enright MC, Song J-H, et al. Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS One. 2010;5:e8582. https://doi.org/10.1371/journal.pone.0008582

30. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H, Votintseva AA, et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A. 2012;109:4550–5. https://doi.org/10.1073/pnas.1113219109

31. Price JR, Golubchik T, Cole K, Wilson DJ, Crook DW, Thwaites GE, et al. Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clin Infect Dis. 2014;58:609–18. https://doi.org/10.1093/cid/cit807

32. Golubchik T, Batty EM, Miller RR, Farr H, Young BC, Larner-Svensson H, et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One. 2013;8:e61319. https://doi.org/10.1371/journal.pone.0061319

33. US Food and Drug Administration. 2016 summary report on antimicrobials sold or distributed for use in food-producing animals [cited 2020 Dec 18]. https://www.fda.gov/media/109457/download

34. US Food and Drug Administration. 2017 summary report on antimicrobials sold or distributed for use in food-producing animals [cited 2020 Dec 18]. https://www.fda.gov/media/119332/download

35. US Department of Agriculture, North Carolina Department of Agriculture and Consumer Services. 2018 North Carolina agricultural statistics [cited 2020 Dec 18]. https://quickstats.nass.usda.gov

36. Cole D, Todd L, Wing S. Concentrated swine feeding operations and public health: a review of occupational and community health effects. Environ Health Perspect. 2000;108:685–99. https://doi.org/10.1289/ehp.00108685

37. Ceryes CA, Heaney CD. “Ag-Gag” laws: evolution, resurgence, and public health implications. NEW Solut. 2019:28:664–82. https://doi.org/10.1177/1048291118808788

Address for correspondence: Pranay R. Randad, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolf St, Baltimore, MD 21205, USA; email: prandad1@jhmi.edu
Transmission of Antimicrobial-Resistant *Staphylococcus aureus* CC9 between Pigs and Humans, United States

Appendix

Sources of *Staphylococcus aureus* clonal complex 9 Isolates from Humans and from Pigs Raised in Industrial Hog Operations, North Carolina

We collected *Staphylococcus aureus* clonal complex 9 (CC9) isolates from industrial hog operation (IHO) pigs from a convenience sample of a single IHO in North Carolina (IHO-1), as described previously (1), and from hanging a length of undyed, unbleached cotton ropes in pig pens at IHO-2–IHO-21 (Appendix Table 1). Isolates collected from IHO2–IHO-21 have not been published previously. For IHO-1 pig isolates, we used Copan E-swabs for sample collection. Each pig was swabbed in the right nares, right side of mouth, skin behind the right ear, right perineal mucosa, and any observed skin lesion. The swabs were subjected to broth enrichment culture, as previously described (1).

For IHO-2–IHO-21, we collected samples of oral fluids from pigs in pens by hanging ropes. The ropes were hung in pens away from feed or water and the pigs could chew on the rope, which collected oral fluids in the cotton material. We extracted oral fluids from the ropes by squeezing the rope contents into a centrifuge tube, centrifuging at 500 RCF for 10 min, and transferring the supernatant (eluate) into a clean tube. IHO pig oral secretion eluates were processed for *S. aureus* following the procedures for detection of *S. aureus* from human nasal swabs (2,3). The *spa* type for all IHO pig isolates was characterized, as previously described (1), and used to assign each isolate to a putative multilocus sequence type (MLST).

For human isolates, we used *S. aureus* isolates collected from participants who were previously enrolled into 1 of 3 separate epidemiologic studies (study 1, study 2, and study 3) and screened for nasal carriage of *S. aureus* (Appendix Table 1) (2–4). Sample collection, sample
processing, and \textit{S. aureus} isolation methods were described previously (2–4). Study 1 was cross-sectional and surveyed 99 industrial livestock operation workers and their household contacts and 105 workers from antibiotic-free livestock operations and their household contacts for \textit{S. aureus} nasal carriage at a single time point (4). Study 2 was longitudinal and followed 183 IHO workers and their adult and minor (7–17 years of age) household contacts for 4 months and assessed \textit{S. aureus} nasal carriage at baseline and 8 biweekly (once every 2 weeks) time points (3). Study 3 was cross-sectional and assessed \textit{S. aureus} nasal carriage among 800 participants living in one of the top 10 pig-producing counties of North Carolina, including 198 households with 1 IHO worker and 1 IHO minor <7 years of age and 202 households with 1 community resident adult and 1 community resident minor <7 years of age who had no known exposure to livestock (2). MLST was previously determined for all study 1 isolates (4). The \textit{spa} type was previously characterized for study 2 and study 3 isolates and used to assign a putative MLST based on previously published associations between \textit{spa} type and MLST (2,3).

Selection of \textit{S. aureus} CC9 Isolates for Whole-Genome Sequencing Analysis

We attempted to select a representative subset of CC9 isolates recovered from 21 IHOs in North Carolina. From IHO-1, we selected ≥1 isolate per pig life stage per barn, resulting in 11 putative CC9 isolates selected for whole-genome sequencing (WGS). For IHO-2–IHO-21, \textit{S. aureus} was recovered from 5 hanging rope samples from 5 different IHOs (IHO-2, IHO-3, IHO-4, IHO-5, and IHO-6). \textit{S. aureus} CC9 isolates representing each identified CC9-related \textit{spa} type (1 isolate per \textit{spa} type) from a given IHO were selected, resulting in 5 putative \textit{S. aureus} CC9 isolates from 4/5 \textit{S. aureus} positive IHOs being subjected to WGS.

In study 1, 3 putative \textit{S. aureus} CC9 isolates were recovered from 3 IHO workers, which were all selected for WGS. In study 2, 126 putative \textit{S. aureus} CC9 isolates were recovered, including 123 from 38 IHO-workers and 1 each from 3 IHO minors. To evaluate persistent colonization and potential evidence for household transmission of CC9, we focused our selection of putative CC9 isolates on IHO workers carrying putative CC9 isolates at a minimum of 2 time points; IHO workers and their household contacts carrying putative CC9 isolates at the same time point; and household contacts of IHO workers. This resulted in 63 CC9 isolates being selected for WGS from study 2. In study 3, 16 putative \textit{S. aureus} CC9 isolates were recovered
from humans. Because we were interested in evaluating evidence for potential transmission of CC9 between pigs, IHO workers, and community residents living near IHOs, we focused our selection of isolates on putative CC9 isolates from community residents and IHO workers residing in those communities. Three putative CC9 isolates were identified in 2 community residents and 1 IHO worker, which were all selected for WGS. In total, this isolate selection framework resulted in a collection of 16 putative CC9 isolates from IHO pigs and 69 putative CC9 isolates from humans.

After performing WGS, we applied a stringent quality control threshold defined as <5% unclassified reads (minimal contamination) and >2.0 ×10⁶ bp at 25× coverage, which removed 6 IHO pig isolates and 30 human isolates from subsequent analysis. We were not able to resequence these isolates because of financial constraints, resulting in 49 isolates in the final North Carolina collection. The final North Carolina collection used in SNP analysis consisted of 10 isolates from pigs raised on 4 different IHOs, 34 isolates from 25 IHO workers, 3 isolates from 3 IHO minors, and 2 isolates from 2 adult community residents (Appendix Table 1).

References

1. Davis MF, Pisanic N, Rhodes SM, Brown A, Keller H, Nadimpalli M, et al. Occurrence of Staphylococcus aureus in swine and swine workplace environments on industrial and antibiotic-free hog operations in North Carolina, USA: a One Health pilot study. Environ Res. 2018;163:88–96. PubMed https://doi.org/10.1016/j.envres.2017.12.010

2. Hatcher SM, Rhodes SM, Stewart JR, Silbergeld E, Pisanic N, Larsen J, et al. The prevalence of antibiotic-resistant Staphylococcus aureus nasal carriage among industrial hog operation workers, community residents, and children living in their households: North Carolina, USA. Environ Health Perspect. 2017;125:560–9. PubMed https://doi.org/10.1289/EHP35

3. Nadimpalli ML, Stewart JR, Pierce E, Pisanic N, Love DC, Hall D, et al. Face mask use and persistence of livestock-associated Staphylococcus aureus nasal carriage among industrial hog operation workers and household contacts, USA. Environ Health Perspect. 2018;126:127005. PubMed https://doi.org/10.1289/EHP3453
4. Rinsky JL, Nadimpalli M, Wing S, Hall D, Baron D, Price LB, et al. Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One. 2013;8:e67641. PubMed
https://doi.org/10.1371/journal.pone.0067641

Appendix Table 1. Selection of putative and MLST-confirmed *Staphylococcus aureus* CC9 isolates from North Carolina, United States*

Group	Source	IHO pig isolates, no. (%)	Human isolates, no. (%)								
		IHO-1	IHO-2	IHO-3	IHO-4	IHO-5	IHO-6	Study 1	Study 2	Study 3	
IHO pig		6/37 (16)	0/9 (0)	0/13 (0)	1/10 (10)	2/10 (20)	1/12 (8)	--	--	--	
IHO worker		--	--	--	--	--	--	3/3 (100)	30/123 (24)	1/12 (8)	34/138 (25)
IHO minor		--	--	--	--	--	--	--	3/3 (100)	0/1 (0)	3/4 (75)
CR adult		--	--	--	--	--	--	--	--	2/2 (100)	2/2 (100)
CR minor		--	--	--	--	--	--	--	--	0/1 (0)	0/1 (0)

*MLST, multilocus sequence type; CC9, clonal complex 9; IHO, industrial hog operation; CR, community resident; --, no isolates.

Appendix Table 2. Antimicrobial drug susceptibility testing methods and guidelines used for interpreting phenotypic antimicrobial resistance*

Source	Method	CLSI guideline, y
Study 1	Kirby-Bauer disk diffusion	2010
Study 2	Kirby-Bauer disk diffusion	2013
Study 3	Phoenix Automated Microbiology System†	2015
IHO-1	Kirby-Bauer disk diffusion	2012, 2014
IHO-2 to IHO-21	Kirby-Bauer disk diffusion	2015

*CLSI, Clinical and Laboratory Standards Institute; IHO, industrial hog operation.
†Becton Dickinson Diagnostic Systems, https://www.bd.com.

Appendix Table 3. Epidemiologic characteristics of *Staphylococcus aureus* CC9 isolates*

Characteristic	C1	C2	C3	C1–C3	Other, no. (%)	Total, no. (%)
Source						
Human	10 (77)	4 (29)	39 (78)	53 (69)	2 (50)	55 (68)
Pig	2 (15)	3 (21)	11 (22)	16 (21)	0	16 (20)
Chicken	0	3 (21)	0	3 (3.9)	0	3 (4)
Cow	1 (8)	1 (7)	0	2 (2.6)	0	2 (2)
Unknown	0	3 (21)	0	3 (3.9)	2 (50)	5 (6)
Country						
United States	0	0	49 (98)	49 (64)	1 (25)	50 (62)
Colombia	0	0	1 (2)	1 (1)	0	1 (1)
Germany	0	10 (71)	0	10 (13)	0	10 (12)
Netherlands	1 (8)	3 (21)	0	4 (5)	0	4 (5)
Denmark	0	1 (7)	0	1 (1)	0	1 (1)
China	6 (46)	0	0	6 (8)	0	6 (7)
Taiwan	6 (46)	0	0	6 (8)	2 (50)	8 (10)
United Kingdom	0	0	0	1 (25)	1 (1)	
Collection						
North Carolina	0	0	49 (98)	49 (64)	0	49 (60)
Reference	13 (100)	14 (100)	1 (2)	28 (36)	4 (100)	32 (40)

*CC9, clonal complex 9.
Technical Appendix Table 4. Molecular characteristics of Staphylococcus aureus CC9 isolates*

Gene	C1, n = 13	C2, n = 14	C3, n = 50	C1–3, n = 77	C1–2, n = 27	Other, n = 4	Total, n = 81	C1–C3 vs. other, p value†	C1–C2, p value†
Immune evasion cluster									
scn	0	1 (2)	1 (1)	0	4 (100)	5 (6)	0.0001	–	
sak	0	0	0	0	3 (75)	3 (4)	0.0001	–	
chp	0	0	0	0	4 (100)	4 (5)	0.0001	–	
Methicillin resistance									
mecA	11 (85)	10 (71)	0	21 (27)	21 (78)	2 (50)	23 (28)	–	0.0001
Tetracycline resistance									
tet(K)	2 (15)	1 (7.1)	12 (24)	15 (19)	3 (11)	0	15 (19)	–	–
tet(L)	12 (92)	9 (64)	13 (26)	34 (44)	21 (78)	0	34 (42)	–	0.0001
tet(T)	0	0	2 (4)	2 (3)	0	0	2 (3)	–	–
≥1 gene	12 (92)	10 (71)	25 (50)	47 (61)	22 (81)	0	47 (58)	0.028	0.008
Macrolide resistance									
erm(A)	0	0	25 (50)	25 (32)	0	0	25 (31)	–	0.0001
erm(B)	0	7 (50)	0	7 (9)	7 (26)	0	7 (3)	–	0.0001
erm(C)	5 (38)	0	5 (10)	10 (13)	5 (19)	3 (75)	13 (16)	0.012	–
≥1 gene	5 (38)	7 (50)	28 (56)	40 (52)	12 (44)	3 (75)	43 (53)	–	–
Streptogramin B resistance									
vga(A), c‡	0	0	8 (16)	8 (10)	0	0	8 (10)	–	0.045
Lincosamide resistance									
lnu(A)	0	0	21 (42)	21 (27)	0	0	21 (26)	–	0.0001
lnu(B)	12 (92)	0	12 (16)	12 (44)	0	12 (15)	–	–	0.0001
≥1 gene	12 (92)	0	21 (42)	33 (43)	12 (44)	0	33 (41)	–	–
Aminoglycoside resistance									
str	3 (23)	1 (7)	0	4 (5)	4 (15)	0	4 (5)	–	0.013
ant(6)-la	13 (100)	0	13 (17)	13 (48)	0	13 (16)	–	0.0001	–
aac(6)-	13 (100)	0	10 (20)	23 (30)	13 (48)	0	23 (28)	–	0.018
aph(2)	0	0	27 (54)	27 (35)	0	0	27 (33)	–	0.0001
SpcR resistance									
srl	12 (92)	0	4 (8)	16 (21)	12 (44)	1 (25)	17 (21)	–	0.0001
≥1 gene	13 (100)	1 (7)	31 (62)	45 (58)	43 (56)	1 (25)	46 (57)	–	–
Trimethoprim resistance									
dfrG	13 (100)	0	0	13 (17)	13 (48)	0	13 (16)	–	0.0001
dfrK	0	9 (64)	0	9 (12)	9 (33)	0	9 (11)	–	0.0001
≥1 gene	13 (100)	9 (64)	0	22 (29)	22 (81)	0	22 (27)	–	0.0001

*CC9, clonal complex 9.
†Only p<0.05 are shown; –, p>0.05
‡Also encodes lincosamide and pleuromutilin resistance.

Appendix Table 5. Maximum pairwise SNP distances in Staphylococcus aureus between within-farm, within-household, and within-person isolates*

Setting	No. isolates	Maximum pairwise SNP distance, no.
Within-farm		
IHO-1	6	43
Within-household		
Household A	2	1
Household B	2	4
Household C	2	93
Household D	3	0
Within-person		
Participant A	2	6
Participant B	2	0
Participant C	2	1
Participant D	4	21
Participant E	2	0
Participant F	3	2

SNP, single-nucleotide polymorphism; IHO, industrial hog operation.