CHARACTERISTIC CLASSES OF
FLAGS OF FOLIATIONS AND
LIE ALGEBRA COHOMOLOGY

A. S. KHOROSHKIN

Laboratory of
Mathematical Physics
National Research University
Higher School of Economics
Vavilova 7, Moscow 101990, Russia

and

ITEP
Bolshaya Cheremushkinskaya 25
Moscow 117259, Russia

akhoroshkin@hse.ru

Abstract. We prove the conjecture by Feigin, Fuchs, and Gelfand describing the Lie
algebra cohomology of formal vector fields on an \(n \)-dimensional space with coefficients
in symmetric powers of the coadjoint representation. We also compute the cohomology
of the Lie algebra of formal vector fields that preserve a given flag at the origin. The
latter encodes characteristic classes of flags of foliations and was used in the formulation
of the local Riemann–Roch Theorem by Feigin and Tsygan.

Feigin, Fuchs, and Gelfand described the first symmetric power and to do this they
had to make use of a fearsomely complicated computation in invariant theory. By the
application of degeneration theorems of appropriate Hochschild–Serre spectral sequences,
we avoid the need to use the methods of FFG, and moreover, we are able to describe all
the symmetric powers at once.

Contents

1. Main results
2. Motivations: formal geometry
3. Outline of the paper
4. Acknowledgments
1. Notations and recollections
1. Lie algebras of formal vector fields and their subalgebras
Extension by g-valued functions
Vector fields preserving foliation structures
Vector fields that are linear in the normal direction to
the leaves of a foliation
2. Lie algebra cohomology
3. Weil algebra
Relative case

2. Relative chains and truncated Weil algebras
1. Known results
2. Main theorems
3. Absolute case
4. Characteristic classes of flags of foliations

3. The core of the proof
1. Parabolic subalgebra
2. Degeneration of Hochschild–Serre spectral sequences
3. Final conclusions

4. Particular computations
1. Dimension series for absolute cohomology of $W(1,\ldots,1)$.
2. Formulas for cocycles in the case of a line ($n = 1$)

A. Chains on the Lie algebra W_n and gl-invariants
1. gl-decompositions
2. Graphs representing chains on W_m
 Chains on $WL(m|g)$
3. Formulas for cocycles

B. Relative cohomology of parabolic Lie subalgebra
1. Notation
2. Applications of BGG resolution
 Particular case of matrices with two blocks

Introduction

1. Main results
The main result of this paper is a computation of the homology of the Lie algebra W_n of formal vector fields on an n-dimensional space:

$$W_n := \left\{ \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i} \mid f_i \in \mathbb{k}[[x_1,\ldots,x_n]] \right\}.$$

In the early 1970’s B. Feigin, D. Fuchs, and I. Gelfand stated a conjectural description of its cohomology with coefficients in symmetric powers of the coadjoint representation. They described applications of this conjecture to formal geometry, Gelfand–Fuchs cohomology, and the theory of foliations. This problem was formulated at the famous Gelfand seminar at Moscow State University. In [GFF] the same authors confirmed their conjecture for the particular case of the first symmetric power of the coadjoint representation. Later on, in 1989, this cohomological conjecture was offered as a proposition\(^2\) by B. Feigin and B. Tsygan in

\(^2\)without a proof