Perspective

The misallocation of climate research funding

Indra Overlanda,⁎, Benjamin K. Sovacoolb

a Center for Energy Research, Norwegian Institute of International Affairs (NUPI), Oslo, Norway
b Energy Policy, Science Policy Research Unit (SPRU), University of Sussex, Brighton, United Kingdom

A R T I C L E I N F O

Keywords:
Climate mitigation
Research funding
Social sciences
Natural sciences

A B S T R A C T

The window of opportunity for mitigating climate change is narrow. Limiting global warming to 1.5 °C will require rapid and deep alteration of attitudes, norms, incentives, and politics. Some of the key climate-change and energy transition puzzles are therefore in the realm of the social sciences. However, these are precisely the fields that receive least funding for climate-related research. This article analyzes a new dataset of research grants from 333 donors around the world spanning 4.3 million awards with a cumulative value of USD 1.3 trillion from 1950 to 2021. Between 1990 and 2018, the natural and technical sciences received 770% more funding than the social sciences for research on issues related to climate change. Only 0.12% of all research funding was spent on the social science of climate mitigation.

1. Introduction

The natural science of climate change, starting with early discoveries in the nineteenth century and bolstered by large investments over the last three decades, is mature and well established. Thus, 97% of climate scientists agree about the basics of anthropogenic climate change [1], and the International Panel on Climate Change has concluded that it is “extremely likely” that human influence is the dominant cause of ongoing global warming [2].

In tandem with growing knowledge about climate change, a set of technological mitigation options has been widely endorsed, including energy efficiency, wind and solar power, electrification of transport, and reforestation. Moreover, the cost of these solutions is falling rapidly through expanding economies of scale and incremental technological improvements [3]. For instance, from 1975 to 2012, the cost of solar panels fell by over 99%, and since then it has continued to fall [4].

However, one of the most urgent unsolved puzzles is how to get people to act on what they know, that is to say, how to alter society to mitigate climate change [5–7]. Because there is a limited carbon budget, the speed of reductions in annual greenhouse gas emissions is also critical [8,9]. Limiting global warming to 1.5 °C will require reaching 80% zero-emission energy by 2030 and 100% by 2050 [10]. While the impact of climate change and society’s adaptation to it will unfold over decades and centuries, there is only a narrow window of opportunity for mitigation. Mitigation is therefore an urgent priority [11,12].

Despite progress in some areas, ongoing changes are too shallow and too slow to reach such targets. Solar, wind, geothermal, and modern bioenergy combined still make up only 6.7% of the world’s total final energy consumption [13]. Meanwhile, in the decade from 2007 to 2017, oil, gas, and coal production grew by 13%, 25% and 8%, respectively and, consequently, CO2 emissions grew by almost 11% [14]. During the same period, three times more money was spent on oil, gas, and coal facilities than on all forms of renewable energy infrastructure, including hydropower and biofuels [15]. Deforestation and population growth also continue at a high pace [16].

Human habits are difficult to change; doing so requires altering attitudes, norms, incentives, ethics, and politics at the personal, community, and national levels [17]. Therefore, some of the key climate-change puzzles are in the realm of the social sciences broadly defined: anthropology, economics, education, international relations, human geography, development studies, legal studies, media studies, political science, psychology, and sociology [18]. Yet, as we find here, these are precisely the fields that receive least funding for climate research.

Others have made similar points before, but they have lacked comprehensive data to back them up [19,19–22]. To make our case, we therefore analyzed a new dataset of research grants from 1950 to 2021 spanning 4.3 million awards with a cumulative budget of USD 1.3 trillion. This includes funding awarded by 332 organizations, mostly national research councils, from 37 countries, including all major member states of the Organization of Economic Cooperation and Development (OECD) as well as Brazil, China, India, and Russia. The data were obtained by mining the new dimensions.ai database (see further information in the appendices). We examined the share of overall
research funding that went to research on decarbonization and climate-related topics, the share of this funding that went to the social sciences, and lastly the share of this funding that went to mitigation-related research.

2. Estimating funding allocations

There is no straightforward way to identify funding related to climate change research within such a large volume of data, so we developed alternative search strings: a short string with 9 climate-related keywords, such as “climate change” and “global warming”, and a long string with 89 keywords, all combined with the Boolean operator “OR” and applied to the titles and summaries of all research grants (see the full search strings in the appendices). By using two search strings, we were able to draw up lower and upper boundaries of the possible ranges of funding granted to different fields of research (see Fig. 1), a more cautious approach than trying to make an exact estimate. The two research strings can also be useful methodological tools for future research.

A limitation of our dataset is that it only covers competitive research grants. Much research funding, for example in China, France, and Germany, is still distributed in the form of basic grants and other non-competitive allocations where it can be difficult to know what research topics the funding was spent on. This limitation of our data should be acknowledged, while emphasizing that our aim is to map the prioritization of funding that is purposively allocated to climate research. Such funding reflects the intentions and priorities of policymakers and may be better than non-competitive funding for supporting policy-relevant and dynamic research. Furthermore, as noted in the literature, competitive research funding is a powerful tool for influencing the general research agenda.

3. The paucity of social science

Our data support several findings. The first is that hardly any social science research was conducted on climate change before 1990. We therefore truncated the data pre-1990 for the rest of our analysis.

The second observation is how little funding has gone into research on climate change overall since 1990, regardless of discipline. Depending on which search string one uses, climate research accounted for between 2.38 and 4.59% of the total amount of research funding during the period from 1990 to 2018. The higher estimate errs on the high side: very few projects that are really about climate change would not include any of the 89 keywords in the long search string, whereas numerous projects that happen to mention one of those words may not really be about climate change.

Third, out of the funding for climate research, the social sciences received a small share (see Fig. 1). From 1990 to 2018, the natural and physical sciences received a total of USD 40 billion compared to only USD 4.6 billion for the social sciences and humanities (based on the means of the short and long search string results). In other words, according to our estimates, the natural and technical sciences received around 770% more funding than the social sciences and humanities for research on climate change. Furthermore, the countries that spent the most on social science climate research in absolute terms according to Table 1—the UK, the USA, and Germany—in fact spent between 500% and 1200% more on climate research in the natural and technical sciences (based on the long search string).

However, even these numbers do not tell the whole story. Within the social sciences, there is also much research that is climate-related but not about climate change mitigation, for example research on adaptation to climate change, how to manage extreme weather events and recover from disasters, or the effects of past climate change on ancient civilizations. While this research is valuable, it does not tackle head-on the most urgent question: how to change society to mitigate climate change right now.

To determine how much social science research is specifically about the mitigation of climate change, we drew a random sample of 1500 climate change-related social science grants from our data using the short search string and assessed each of them. This led to our fourth and most important observation: a mere USD 393 million of funding went to social science research on the mitigation of climate change, equivalent to 5.21% of all funding for climate change research and 0.12% of all research funding.

4. The need to balance natural and social science research

Natural and technical climate-related research is important. There is still a need to better understand the physical causes, trajectory, and impact of climate change, as well as the technological means of mitigation. However, there is a striking imbalance between the growing knowledge about climate change and mitigation technologies and the failure to mobilize people to contribute to mitigation efforts. This indicates that research resources are not distributed optimally.

One might argue that the natural sciences need more funding because they employ more people or require more expensive equipment and materials. However, such arguments easily become circular. The numbers of researchers in different fields is as much a consequence as a cause of the availability of funding and there could simply be more high-cost research projects in the natural sciences because more funding is available for them. It would also be possible to spend large amounts of funding on social science research, for example nationally representative surveys of large numbers of countries, large-scale multi-location field experiments, the design and monitoring of living laboratories, or human coding of large volumes of text or video as a basis for machine-learning. It is therefore difficult to argue that the natural sciences are inherently more expensive. In any case, in our data there is not a significant difference between the average size of climate research projects in the natural and social sciences; in fact, the social science projects tend to be slightly larger.

One might also argue that the social sciences get less funding because they come up with fewer interesting ideas and solutions. But many social science ideas and solutions related to the mitigation of climate change have already been put forth, such as climate clubs, carbon taxes, or grassroots mobilization [25,26]. The question is whether sufficient research funding is available to develop these and other ideas properly.

The prioritization of natural science could also be related to a perceived need to overcome climate skepticism by proving that climate change is due to human greenhouse gas emissions. However, currently, climate skepticism has almost no voice in the scientific community [20] and even fossil fuel companies acknowledge anthropogenic climate change. There remains significant climate skepticism among laypeople, including prominent politicians; however, this is not a natural science problem but one of communication, vested interests, and politics—a gain the realm of the social sciences.

5. Solutions for advancing social science

Once one realizes how little funding is spent on the social science of climate mitigation, and the related social science side of energy studies, the question arises as to how the situation can be improved. Our main answer to this question is to spread awareness of how little funding is actually going into this field of research, and to contrast it with its urgency.

While our data and analysis cannot explain why funding is distributed the way it is, or exactly how it should be distributed, they still support some simple but important policy lessons which we present in the next subsections.
5.1. Funding for climate mitigation needs to match the magnitude of the threat

Funding agencies need to better secure and prioritize funding for climate change mitigation, across all disciplines. Global annual damages from climate change have already surpassed USD 10 to 40 billion from storm surge alone, and it could surpass USD 100 trillion over the next 80 years [27]. Funding for research on climate mitigation should be increased to address the magnitude of this threat and take into account the narrow window of opportunity for dealing with it.

Such research efforts cannot necessarily be guaranteed to reduce or contain the extent or distribution of climate change impacts, and we also fully appreciate that the magnitude of required research investment is almost unparalleled. By comparison, the entire cost of the United States space shuttle program, up until 2011 was estimated to cost USD 196 billion [28,29]. But individual research programs have been known to reach into the billions of dollars annually, with the United States federal government spending USD 34.8 billion per year on HIV/AIDS research and treatment in 2019 [30]. If similar efforts were invested into energy and climate social science, they could yield substantial dividends worldwide. A first important step could be a rigorous funding gaps and scoping analysis to determine precisely how much funding is needed, and for which challenges, themes, or problems.

Table 1.
Top countries and funding bodies supporting social science climate research (based on the long search string, USD).

Country	Projects	Bn $	Organization
UK	1414	2.1	European Commission
US	2979	1.8	US National Science Foundation, Directorate for Education & Human Resources
Germany	747	1.7	UK Engineering and Physical Sciences Research Council
France	464	1.6	Research Council of Norway
Spain	367	1.4	US National Science Foundation, Directorate for Social, Behavioral & Econ. Sciences
Netherlands	488	1.2	US National Science Foundation, Office of the Director
Italy	423	1.2	European Research Council
Belgium	448	1.1	US National Science Foundation, Directorate for Geosciences
Sweden	656	0.9	US National Science Foundation, Directorate for Engineering
Norway	700	0.85	US National Institute of Food and Agriculture

Source: Compiled by the authors.
5.2. Improved funding transparency and coordination

There is a need for better global coordination and oversight of funding for climate research. Our data provide an unprecedented overview of funding for climate research, yet they cover only a fraction of global research funding, much of which is distributed through non-competitive base grants for universities. The lack of oversight can cause significant overlaps in funding in some research areas, while other areas are neglected.

As a concrete fix to this problem, more research financing organizations need to make their portfolios available online with standardized tags for such things as project title, summary, and discipline. Better oversight could be facilitated by the United Nations Framework Convention on Climate Change, or United Nations Educational, Scientific and Cultural Organization, or a coalition of the willing, and could help increase the efficiency of the climate research effort. Some countries, especially those that have been critical of recent IPCC reports, such as Russia and Saudi Arabia, might not be willing to join such an effort, but such actors tend not to fund large sums of energy and climate mitigation research anyway, so their exclusion would not necessarily thwart progress.

Greater transparency of global research funding would give researchers and policymakers a better understanding of what is in the pipeline and help them efficiently allocate time and funding. It could reduce redundancy and serve as a mechanism for research teams to identify synergies and possible collaborators.

5.3. More rigorous social science research

While more funding is needed for social research on climate change, the social sciences also need to rise to the challenge. Firstly, social scientists need to do a better job of ensuring rigor and validity in their research. In their survey of the field of sustainability, for instance, Brandt et al. noted that methods were often chosen based on familiarity or specialization of the researchers involved, rather than their suitability for a given research question [31]. Moreover, in an examination of 15 years of energy research (1999–2013), it was found that almost one-third (29%) of 4,444 studies examined had no research design—or method—whatsoever [32]. Hamilton et al. similarly note that in the domain of energy efficiency and buildings, “analysis is often limited to small datasets and results are not applicable more broadly due to an absence of context or baselines” [33].

Secondly, some social science research is wissy-wasy, lacking an understanding of the natural sciences and the physical world [34]. Some is caught up in obscure theoretical debates—one assessment linked to pressing social challenges related to climate change mitigation and energy systems. This challenges-based approach to research has been relatively successful in other domains, notably national defense (the Defense Advanced Research Projects Agency, or DARPA) [38] and business (Mission Innovation) [39].

However, the problem, challenge, or mission-based approach is only just emerging as a platform to organizing energy and climate research. One example is the Global Challenges Research Fund in the United Kingdom, which asked “How can sustainable development be achieved for all while addressing global climate change?” The European Commission's Horizon 2020 framework program also structured its research agenda around questions such as “How can Europe achieve a resource, water efficient and climate change resilient economy and society?” and “In what way does social innovation contribute to making energy more secure, sustainable and affordable?” Putting research into the context of challenging questions in this manner can promote focused but interdisciplinary social science work and is an approach that could be replicated by other national, regional, and global funding bodies. One reason why there are not more such calls may be entrenched disciplinary divides, anchored in organizational structures. These will need to be tackled directly by leaders within universities—presidents, provosts, deans, vice deans, pro-vice chancellors, faculty senate members, department chairs, and tenure and promotion committees.

6. Conclusion

The funding of climate research appears to be based on the assumption that if natural scientists work out the causes, impacts, and technological remedies of climate change, then politicians, officials, and citizens will spontaneously change their behavior to tackle the problem. The past decades have shown that this assumption does not hold.

Although the natural and technical sciences often generate results that are, or are perceived to be, clearer and more concrete than the social sciences, they cannot handle issue areas—such as attitudes, norms, incentives, and politics—that are intrinsically social.
The solutions are to make more funding available for social science research on climate mitigation; improve global research funding coordination and transparency; prioritize and align key questions within the social sciences and increase the rigorousness of social science research. Framing climate change more as a global social challenge that cuts across disciplines will expand the scope of research, its ability to offer critical insights, and its social legitimacy among a broader base of stakeholders.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, apart from being social scientists and therefore having an interest in increased funding for social science.

Acknowledgements

We thank Camilla Bausch, Sander Chan, Aleh Cherp, Radoslav Dimitrov, Andreas Kraemer, Ulf Sverdrup, Seck Tan, and Emma C. Wilson for their contributions to the discussion that led up to this article and/or their comments on draft versions of this article. We also thank Harald Botha, Antje Klitkou, Susanne Lehmann Sundnes, Diana Rubiano, Abdyrakhman Sulaimanov, Kristoffer Tjernås, and Talgat Ilimbek uulu for their assistance with data gathering and processing. The authors remain responsible for any errors or weaknesses.

 Appendices A-H

A. Methodological and empirical specifications

Data were gathered from 11 Dec. 2018 to 20 Jan. 2019 by scraping the dimensions.ai database. Dimensions.ai uses a reverse-engineering technique based on machine learning, where a corpus of manually coded grants are examined and the manual codes applied are reproduced by the algorithm. This is then checked against actual codes, and changes are made to improve the algorithm. This makes it possible to classify very large numbers of research projects efficiently. Funding sums are automatically adjusted for the average exchange rate of the relevant year.

All our searches were done in titles and abstracts. For fields of research, dimensions.ai uses Australian and New Zealand Standard Research Classification (ANZSRC) because it has clear categories and a large corpus of manually coded grant descriptions that can be used for machine-learning purposes. ANZSR includes 157 research fields. For a full overview of fields, see http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/1297.0Contents12008?opendocument&tabname=

Summary&prodno=1297.0&issue=2008&num=&view=

In our research, all fields of research up to and including “Other built environment and design” (ANZSRC code 1299) were counted as natural and technical sciences, the rest as social sciences and humanities.

B. Handling of random sample and definition of mitigation

A random sample was drawn of 1500 social science climate change projects to identify which projects were about climate change mitigation, and which were about other things. The following definitions were applied:

(a) Mitigation – actions that reduce net carbon emissions and limit long-term climate change.
(b) Adaptation – actions that help human and natural systems to adjust to climate change.
(c) Research on new technologies, on institutional designs and on climate and impacts science, which should reduce uncertainties and facilitate future decisions.

These definitions were based on: ar4_3wg, p. 225, referring on to Richels et al., 2004; Caldeira et al., 2003; Yohe et al., 2004 [40–42]. Possible mitigation projects were found by reading through all titles and abstracts in the random sample as well as by carrying out searches for the terms “mitigat*”, “reduction”, “reduce”, “limit”, “curb”, “abate”, “emissions”, “decarbon*”.

Projects were allowed to have multiple / overlapping classifications, for example they could be classified as concerning both mitigation and adaptation.

We operated with two levels of certainty about whether projects concerned mitigation: “Mitigation” and “Maybe mitigation”. This fuzzy logic element enabled us to handle the ambivalence of some projects and ensured that the results were as balanced as possible. Both categories were included in the final count of social science mitigation grants for the article.

We did not assess whether we thought projects were good mitigation projects or not (e.g. wood pellets), just whether the people carrying out the projects present them as somehow contributing to mitigation of climate change.

Projects were not counted as mitigation projects if:

• They aimed at general enlightenment / education on climate change issues. Although enlightening people about the mechanisms behind climate change can lay the basis for mobilizing them to contribute to mitigation, it is not the same as working for mitigation per se.
• Mitigation was a small part of the project (less than 1/3 according to the assessment of the person doing coding). This also means that if research projects just seemed to be 50% about mitigation, they were counted as mitigation projects. This is one of several methodological choices that stack the data against our own arguments.

Projects on the following topics were classified as mitigation projects to ensure that our “mitigation” category was broad enough to capture all possible mitigation projects and again to stack the data against our own arguments: climate justice, a just energy transition, the consequences of mitigation, the financial consequences of mitigation, co-benefits of mitigation

After a pilot run of 300 projects categorized by the lead author, the rest of the random sample of 1500 was categorized by two research assistants. Projects they were in doubt about were discussed in plenary sessions.

Electronic copy available at: https://ssrn.com/abstract=3514503
C. Search string development

The purpose of the search strings was to capture all research projects related to climate change in the database. If one simply searches for “climate change” one will miss many projects focused on narrow climate change sub-topics.

We harvested possible keywords from several sources:

- word frequency analysis of IPCC reports
- climate vocabularies and dictionaries:
 - https://climatechange.ucdavis.edu/science/climate-change-definitions/
 - https://www.bbc.com/news/science-environment-11833685
 - https://en.wikipedia.org/wiki/Glossary_of_climate_change
 - https://app.dimensions.ai/discover/grant?search_text=%22climate+change%22+OR+%22climate+mitigation%22+OR+%22climateadaptation%22+OR+%22global+warming%22+OR+%22greenhouse+effect%22+OR+%22greenhouse+gas%22+OR+%22GHG%22+OR+%22CO2+emissions%22+OR+%22climate+policy%22

Each keyword was pre-tested separately and the most reliable ones were included in our search strings.

To be on the safe side, we developed two search strings: a short one with a small number of safe terms that are clearly relevant for climate change and neutral vis-à-vis social and natural sciences, and a long, comprehensive one to capture the broader range of projects including fields that are not directly about climate change, but directly relevant for it.

We sought to balance the number of keywords related to the natural and social sciences, to avoid biasing our results. The long search string is helpful in this regard as it is so comprehensive that there are very few climate-related projects of any kind that evade it.

The long search string includes both more words related to climate change and words related to other topics that are highly relevant for climate change, for example “renewable energy”. This is because climate change is the main driver for the development of renewable energy and cutting GHG emissions by changing energy production and consumption is one of the main ways to mitigate climate change. As we are particularly interested in mitigation in our analysis, it makes sense to include such key mitigation components in the long search string.

As natural science is the starting point and foundation for concern over climate change, many natural science terms are also used in descriptions of social science projects (but we still classify those projects as social science). There are also many words that occur in both natural science and social research. Thus, there is a considerable overlap between the vocabularies, which helps reduce the risk of bias somewhat.

An advantage of the long string is that each word becomes less decisive, as there are so many other words and many of them will occur together in a given project description. Thus, the difference in search results due to addition or removal of one word is small.

D. Short search string

“climate change” OR “climate mitigation” OR “climate adaptation” OR “global warming” OR “greenhouse effect” OR “greenhouse gas” OR “GHG” OR “CO2 emissions” OR “climate policy”

E. Long search string

“climate change” OR “climate mitigation” OR “climate adaptation” OR “global warming” OR “greenhouse effect” OR “greenhouse gas” OR “GHG” OR “CO2 emissions” OR “decarbonization” OR “carbon pricing” OR “climate policy” OR “UNFCCC” OR “IPCC” OR “Kyoto Protocol” OR “Paris Agreement” OR “nationally determined contribution” OR “INDC” OR “Bali roadmap” OR “climate negotiation” OR “climate action” OR “climate justice” OR “climate ethics” OR “climate skeptic” OR “climate denial” OR “climate redistribution” OR “climate migration” OR “climate refugees” OR “cap and trade” OR “emissions trading” OR “carbon finance” OR “carbon credit” OR “carbon tax” OR “carbon market” OR “carbon bubble” OR “CO2 equivalent” OR “carbon sequestration” OR “geological sequestration” OR “carbon capture and storage” OR “carbon sink” OR “radiative forcing” OR “climate feedback” OR “sea level rise” OR “anthropogenic aerosols” OR “carbon footprint” OR “carbon offset” OR “carbon neutral” OR “carbon intensity” OR “carbon price” OR “mitigation potential” OR “climate feedback” OR “climate model” OR “ocean acidification” OR “carbon cycle” OR “climate feedback” OR “climate sensitivity” OR “climate model” OR “carbon uptake” OR “CO2 concentration” OR “coral bleaching” OR “Greenland ice sheet” OR “Arctic sea ice” OR “ice core” OR “ice loss” OR “geoengineering” OR “renewable energy” OR “renewables” OR “wind turbine” OR “solar power” OR “geothermal energy” OR “landfill gas” OR “biofuel” OR “bioenergy” OR “tidal power” OR “solar power” OR “photovoltaic” OR “heat pump” OR “distributed generation” OR “passive house” OR “smart grid” OR “smart energy” OR “microgrid” OR “feed-in tariff” OR “grid storage” OR “demand response” OR “electric vehicle” OR “electric mobility”

F. Short string coded for use via API

The dimensions.ai database we scraped our data from has a cumbersome UI. However, we were able to use URL encoding with hexadecimal numerals via the API to carry out more complex searches more transparently. Here we exemplify this with the short search string limited to the social sciences:

https://app.dimensions.ai/discover/grant?search_text=%22climate+change%22+OR+%22climate+mitigation%22+OR+%22climate+adaptation%22+OR+%22global+warming%22+OR+%22greenhouse+effect%22+OR+%22greenhouse+gas%22+OR+%22GHG%22+OR+%22CO2+emissions%22+OR+%22climate+policy%22&search_type=kws&search_field=text_search&or_facet_for=3243&or_facet_for=3253&or_facet_for=3268&or_facet_for=3283&or_facet_for=3286&or_facet_for=3313&or_facet_for=3320&or_facet_for=3326&or_facet_for=3335&or_facet_for=3342&or_facet_for=3348&or_facet_for=3358&or_facet_for=3364&or_facet_for=3373&or_facet_for=3381&or_facet_for=3389&or_facet_for=3395&or_facet_for=3403&or_facet_for=3410&or_facet_for=3416&or_facet_for=3432&or_facet_for=3443&or_facet_for=3448&or_facet_for=3468&or_facet_for=3484&or_facet_for=3491&or_facet_for=3494&or_facet_for=3528&or_facet_for=3561&or_facet_for=3567&or_facet_for=3570&or_facet_for=3577&or_facet_for=3591&or_facet_for=3616&or_facet_for=3620&or_facet_for=3654&or_facet_for=3657&or_facet_for=3659&or_facet_for=3669&or_facet_for=3675&or_facet_for=3690&or_facet_for=3693&or_facet_for=3702&or_facet_for=3714&or_facet_for=3735&or_facet_for=3744
G. Categorization of fields of research as natural or social sciences

The dimensions.ai database applies the ANZSCR classification system for fields of research—because it is suitable to the machine learning approach that dimensions.ai uses to classify research projects. We divided the ANZSCR fields into natural and technical sciences on the one hand, and social sciences and humanities on the other, as shown in the following table below. For simplicity, we just refer to natural sciences and social sciences most of the time, subsuming technical sciences and humanities under them.

Fields classified as natural and technical sciences	Fields classified as social sciences and humanities
01 Mathematical Sciences	13 Education
0101 Pure Mathematics	1301 Education Systems
0102 Applied Mathematics	1302 Curriculum and Pedagogy
0103 Numerical and Computational Mathematics	1303 Specialist Studies In Education
0104 Statistics	1399 Other Education
0105 Mathematical Physics	14 Economics
02 Physical Sciences	1401 Economic Theory
0201 Astronomical and Space Sciences	1402 Applied Economics
0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics	1403 Econometrics
0203 Classical Physics	1499 Other Economics
0204 Condensed Matter Physics	15 Commerce, Management, Tourism and Services
0205 Optical Physics	1501 Accounting, Auditing and Accountability
0206 Quantum Physics	1502 Banking, Finance and Investment
0299 Other Physical Sciences	1503 Business and Management
03 Chemical Sciences	1504 Commercial Services
0301 Analytical Chemistry	1505 Marketing
0302 Inorganic Chemistry	1506 Tourism
0303 Macromolecular and Materials Chemistry	1507 Transportation and Freight Services
0304 Medicinal and Biomolecular Chemistry	16 Studies in Human Society
0305 Organic Chemistry	1601 Anthropology
0306 Physical Chemistry (incl. Structural)	1602 Criminology
0307 Theoretical and Computational Chemistry	1603 Demography
0399 Other Chemical Sciences	1604 Human Geography
04 Earth Sciences	1605 Policy and Administration
0401 Atmospheric Sciences	1606 Political Science
0402 Geochemistry	1607 Social Work
0403 Geology	1608 Sociology
0404 Geophysics	1699 Other Studies In Human Society
0405 Oceanography	17 Psychology and Cognitive Sciences
0406 Physical Geography and Environmental Geoscience	1701 Psychology
0499 Other Earth Sciences	1702 Cognitive Sciences
05 Environmental Sciences	1799 Other Psychology and Cognitive Sciences
0501 Ecological Applications	18 Law and Legal Studies
0502 Environmental Science and Management	1801 Law
0503 Soil Sciences	1899 Other Law and Legal Studies
0599 Other Environmental Sciences	19 Studies in Creative Arts and Writing
06 Biological Sciences	1901 Art Theory and Criticism
0601 Biochemistry and Cell Biology	1902 Film, Television and Digital Media
0602 Ecology	1903 Journalism and Professional Writing
0603 Evolutionary Biology	1904 Performing Arts and Creative Writing
0604 Genetics	1905 Visual Arts and Crafts
0605 Microbiology	1999 Other Studies In Creative Arts and Writing
0606 Physiology	20 Language, Communication and Culture
0607 Plant Biology	2001 Communication and Media Studies
0608 Zoology	2002 Cultural Studies
0699 Other Biological Sciences	2003 Language Studies
07 Agricultural and Veterinary Sciences	2004 Linguistics
0701 Agriculture, Land and Farm Management	2005 Literary Studies
0702 Animal Production	2099 Other Language, Communication and Culture
0703 Crop and Pasture Production	21 History and Archaeology
0704 Fisheries Sciences	2101 Archaeology
0705 Forestry Sciences	2102 Curatorial and Related Studies
0706 Horticultural Production	2103 Historical Studies
0707 Veterinary Sciences	2199 Other History and Archaeology
0799 Other Agricultural and Veterinary Sciences	22 Philosophy and Religious Studies
08 Information and Computing Sciences	2201 Applied Ethics
0801 Artificial Intelligence and Image Processing	2202 History and Philosophy of Specific Fields
0802 Computation Theory and Mathematics	2203 Philosophy
0803 Computer Software	2204 Religion and Religious Studies
0804 Data Format	2299 Other Philosophy and Religious Studies
0805 Distributed Computing	
0806 Information Systems	
0807 Library and Information Studies	
0899 Other Information and Computing Sciences	
09 Engineering	
0901 Aerospace Engineering	
0902 Automotive Engineering	
0903 Biomedical Engineering	
0904 Chemical Engineering	

Electronic copy available at: https://ssrn.com/abstract=3514503
0905 Civil Engineering
0906 Electrical and Electronic Engineering
0907 Environmental Engineering
0908 Food Sciences
0909 Geomatic Engineering
0910 Maritime Engineering
0912 Materials Engineering
0913 Mechanical Engineering
0914 Resources Engineering and Extractive Metallurgy
0915 Interdisciplinary Engineering
0999 Other Engineering

10 Technology
1001 Agricultural Biotechnology
1002 Environmental Biotechnology
1003 Industrial Biotechnology
1004 Medical Biotechnology
1005 Communications Technologies
1006 Computer Hardware
1007 Nanotechnology
1099 Other Technology

11 Medical and Health Sciences
1101 Medical Biochemistry and Metabolomics
1102 Cardiorespiratory Medicine and Haematology
1103 Clinical Sciences
1104 Complementary and Alternative Medicine
1105 Dentistry
1106 Human Movement and Sports Science
1107 Immunology
1108 Medical Microbiology
1109 Neurosciences
1110 Nursing
1111 Nutrition and Dietetics
1112 Oncology and Carcinogenesis
1113 Ophthalmology and Optometry
1114 Paediatrics and Reproductive Medicine
1115 Pharmacology and Pharmaceutical Sciences
1116 Medical Physiology
1117 Public Health and Health Services
1199 Other Medical and Health Sciences

12 Built Environment and Design
1201 Architecture
1202 Building
1203 Design Practice and Management
1204 Engineering Design
1205 Urban and Regional Planning
1299 Other Built Environment and Design

H. Research funding organizations covered

Funder	Country	Grants	Available Years
Japan Society for the Promotion of Science (JSPS)	Japan	879 197	1964 – 2018
Natural Sciences and Engineering Research Council (NSERC)	Canada	279 874	1991 – 2017
National Natural Science Foundation of China (NSFC)	China	199 966	1989 – 2016
National Research Foundation (NRF)	South Africa	175 584	1950 – 2018
Russian Foundation for Basic Research (RFBR)	Russia	174 499	1993 – 2018
German Research Foundation (DFG)	Germany	116 261	1964 – 2018
European Commission (EC)	Belgium	111 993	1981 – 2019
Directorate for Mathematical & Physical Sciences (NSF MPS)	United States	91 476	1963 – 2019
Social Sciences and Humanities Research Council (SSHRC)	Canada	76 282	1998 – 2017
Directorate for Engineering (NSF ENG)	United States	72 553	1958 – 2019
Swiss National Science Foundation (SNF)	Switzerland	69 774	1975 – 2019
National Science Foundation (NSF)	United States	64 854	1952 – 2018
National Endowment for the Humanities (NEH)	United States	64 676	1953 – 2019
Directorate for Geosciences (NSF GEO)	United States	62 715	1963 – 2019
Directorate for Biological Sciences (NSF BIO)	United States	62 226	1962 – 2019
National Research Foundation of Korea (NRF)	South Korea	60 511	2009 – 2015
National Cancer Institute (NCI)	United States	60 503	1963 – 2018
Directorate for Computer & Information Science & Engineering (NSF CISE)	United States	52 963	1960 – 2019
Canadian Institutes of Health Research (CIHR)	Canada	48 776	1986 – 2018
São Paulo Research Foundation (FAPESP)	Brazil	46 865	1989 – 2019
National Institute of Allergy and Infectious Diseases (NIAID)	United States	44 987	1974 – 2019
National Heart Lung and Blood Institute (NHLBI)	United States	42 893	1963 – 2018
Directorate for Education & Human Resources (NSF GOVERNMENT)	United States	39 993	1971 – 2019
National Institute of General Medical Sciences (NIGMS)	United States	36 215	1964 – 2018
Directorate for Social, Behavioral & Economic Sciences (NSF SBE)	United States	36 040	1964 – 2019
Ministry of Science and Higher Education (MniSW)	Poland	34 072	1994 – 2018

Electronic copy available at: https://ssrn.com/abstract=3514503
Organization	Country	Fiscal Year Range
National Aeronautics and Space Administration (NASA)	United States	1982 – 2019
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)	United States	1964 – 2018
The Research Council of Norway (RCN)	Norway	1988 – 2018
National Institute of Neurological Disorders and Stroke (NINDS)	United States	1968 – 2018
United States Department of Health and Human Services (HHS)	United States	1968 – 2018
National Institute of Mental Health (NIMH)	United States	1972 – 2018
National Institute of Food and Agriculture (NIFA)	United States	2007 – 2017
National Health and Medical Research Council (NHMRC)	Australia	1986 – 2019
United States Department of the Navy (DON)	United States	1982 – 2018
Australian Research Council (ARC)	Australia	2018 – 2018
Council for International Exchange of Scholars (CIES)	United States	2006 – 2019
Wellcome Trust (WT)	United Kingdom	1997 – 2018
United States Department of the Air Force (DAF)	United States	1982 – 2017
National Council for Scientific and Technological Development (CNPq)	Brazil	2012 – 2018
National Institute of Child Health Development (NICHD)	United States	1997 – 2019
Office of the Director (NSF OD)	United States	1957 – 2019
Engineering and Physical Sciences Research Council (EPSRC)	United Kingdom	2006 – 2019
Netherlands Organisation for Scientific Research (GOVERNMENT)	Netherlands	1993 – 2021
National Science Center (NSC)	Poland	2008 – 2018
National Institute on Aging (NIA)	United States	1975 – 2018
Belgian Federal Science Policy Office (BELSPO)	Belgium	1964 – 2018
Innovate UK (Innovate UK)	United Kingdom	1999 – 2018
Czech Science Foundation (GAČR)	Czechia	1993 – 2017
National Institute on Drug Abuse (NIDA)	United States	1971 – 2018
Congressionally Directed Medical Research Programs (CDMRP)	United States	1992 – 2017
Swedish Research Council (SRC)	Sweden	2006 – 2019
United States Department of the Army (DA)	United States	1982 – 2017
National Oceanic and Atmospheric Administration (NOAA)	United States	1996 – 2019
PWF Austrian Science Fund (FWF)	Austria	1965 – 2019
Biotechnology and Biological Sciences Research Council (BSBRC)	United Kingdom	2006 – 2019
VINNOVA (VINNOVA)	Sweden	2008 – 2019
Foundation for Science and Technology (FCT)	Portugal	1999 – 2017
National Agency for Research (ANR)	France	2007 – 2018
Department for Environment Food and Rural Affairs (DEGRA)	United Kingdom	1979 – 2018
University Grants Committee (UGC)	China	2001 – 2018
National Center for Advancing Translational Sciences (NCATS)	United States	1971 – 2018
Centers for Disease Control and Prevention (CDC)	United States	1974 – 2018
National Eye Institute (NEI)	United States	1973 – 2018
Academy of Finland (AITA)	Finland	2001 – 2018
Canada Foundation for Innovation (CFI)	Canada	1998 – 2018
Ministry of Education, Universities and Research (MIUR)	Italy	1999 – 2015
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)	United States	1973 – 2018
United States Department of Energy (DOE)	United States	1982 – 2015
National Institute of Environmental Health Sciences (NIEHS)	United States	1980 – 2019
Fonds de Recherche du Québec – Nature et technologies (FRQNT)	Canada	2002 – 2017
European Research Council (ERC)	Belgium	2008 – 2020
Medical Research Council (MRC)	United Kingdom	1973 – 2018
Environmental Protection Agency (EPA)	United States	1982 – 2018
Ministry of Education, Science, Research and Sport of the Slovak Republic (MŠVVaŠ SR)	Slovakia	2000 – 2017
Substance Abuse and Mental Health Services Administration (SAMSHA)	United States	1974 – 2017
Research Foundation – Flanders (FWO)	Belgium	1950 – 2013
Ministry of Education Youth and Sports (MSMT)	Czechia	1991 – 2017
Israel Science Foundation (ISF)	Israel	2000 – 2018
Zhejiang Provincial Natural Science Foundation (ZJNSF)	China	2000 – 2015
National Institute of Dental and Craniofacial Research (NIDCR)	United States	2015 – 2017
Irish Research Council (IRC)	Ireland	1999 – 2018
National Institute On Alcohol Abuse and Alcoholism (NIAAA)	United States	1975 – 2019
Natural Environment Research Council (NERC)	United Kingdom	2006 – 2021
National Institute of Justice (NIJ)	United States	1992 – 2017
Hungarian Scientific Research Fund (OTKA)	Hungary	1997 – 2018
Missile Defense Agency (MDA)	United States	1984 – 2017
Economic and Social Research Council (ESRC)	United Kingdom	2006 – 2020
Fonds de Recherche du Québec – Société et culture (FRQSC)	Canada	2000 – 2018
National Institute on Deafness and Other Communication Disorders (NIDCD)	United States	1977 – 2018
Health Resources and Services Administration (HRSA)	United States	1974 – 2017
Bill & Melinda Gates Foundation (BMGF)	United States	1998 – 2018
Slovenian Research Agency (ARRS)	Slovenia	1994 – 2018
Innovation and Technology Commission (ITC)	China	1994 – 2018
Arts and Humanities Research Council (AHRC)	United Kingdom	2006 – 2019
Biological and Environmental Research (BER)	United States	1982 – 2013
Danish Ministry of Higher Education and Science (UFM)	Denmark	2003 – 2018
Office of Science (DOE SC)	United States	1985 – 2018
Defense Advanced Research Projects Agency (DARPA)	United States	1982 – 2019
International Foundation for Science (IFS)	Sweden	2001 – 2016
Fonds de Recherche du Québec – Santé (FRQS)	Canada	2000 – 2017
Swedish Research Council for Health Working Life and Welfare (FORTE)	Sweden	2008 – 2019
Agency for Healthcare Research and Quality (AHRQ)	United States	1981 – 2018
Cancer Research UK (CRUK)	United Kingdom	2001 – 2018
Science and Technology Facilities Council (STFC)	United Kingdom	2003 – 2019
National Institute of Biomedical Imaging and Bioengineering (NIBIB)	United States	1976 – 2018

Electronic copy available at: https://ssrn.com/abstract=3514503
Funding Source	Country	Start Year	End Year
Spencer Foundation (Spencer)	United States	1984 – 2018	
Science Foundation Ireland (SFI)	Ireland	2001 – 2017	
Ministry of Industry and Trade (MPO)	Czechia	1991 – 2017	
Orthopaedic Research and Education Foundation (OREF)	United States	1956 – 2018	
Ministry of Health (MH)	Czechia	1991 – 2017	
National Institute of Nursing Research (NINR)	United States	1979 – 2018	
Russian Science Foundation (RSF)	Russia	2014 – 2018	
Ministry of Research, Innovation and Science (MIRIS)	Canada	2004 – 2017	
Science and Engineering Research Board (SERB)	India	2015 – 2016	
Fogarty International Center (FIC)	United States	1978 – 2018	
British Heart Foundation (BHF)	United Kingdom	1991 – 2019	
Ministry of Business, Innovation and Employment (MBIE)	New Zealand	2002 – 2018	
National Human Genome Research Institute (NHGRI)	United States	1976 – 2018	
United States Department of Veterans Affairs (DVA)	United States	2008 – 2018	
National Centre for Research and Development (NCRD)	Poland	2018 – 2018	
Juvenile Diabetes Research Foundation (JDRF)	United States	1997 – 2016	
Swedish Energy Agency	Sweden	2007 – 2017	
United States Department of Education (DoED)	United States	1982 – 2018	
United States National Library of Medicine (NLM)	United States	1976 – 2018	
Fisheries Research and Development Corporation (FRDC)	Australia	1971 – 2018	
Academy of Sciences of the Czech Republic (ASCR)	Czechia	1992 – 2009	
Estonian Research Council (ETAg)	Estonia	1996 – 2019	
NIHR Evaluation Trials and Studies Coordinating Centre (NETS)	United Kingdom	1995 – 2018	
National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR)	United States	2017 – 2017	
Office of the Director (OD)	United States	1975 – 2018	
United States Food and Drug Administration (USFDA)	United States	1980 – 2018	
United States Air Force (USAF)	United States	2014 – 2018	
Telethon Foundation (Telethon)	Italy	1991 – 2017	
Canadian Cancer Society (CCS)	Canada	1994 – 2018	
International Human Frontier Science Program Organization (HFSP)	France	2002 – 2017	
British Academy (BA)	United Kingdom	2011 – 2016	
United States-Israel Binational Science Foundation (BSF)	Israel	2000 – 2017	
Slovak Research and Development Agency (APVV)	Slovakia	2004 – 2016	
Technology Agency of the Czech Republic (TACR)	Czechia	2017 – 2017	
National Center for Complementary and Integrative Health (NCCIH)	United States	1997 – 2018	
Arthritis Research UK (ARCB)	United Kingdom	2005 – 2018	
Michael Smith Foundation for Health Research (MSHFHR)	Canada	2001 – 2019	
Swedish Research Council for Environment Agricultural Sciences and Spatial Planning (FORMAS)	Sweden	2008 – 2016	
United States Department of Defense (DOD)	United States	1997 – 2018	
Office of the Secretary of Defense (OSD)	United States	1992 – 2018	
Ministry of Education and Research (HM)	Estonia	1997 – 2018	
Alfred P. Sloan Foundation	United States	2008 – 2018	
United States Geological Survey (USGS)	United States	1999 – 2017	
Health Research Council of New Zealand (HRC)	New Zealand	2017 – 2018	
Arthritis Foundation (AF)	United States	1973 – 2018	
Ministry of Agriculture (eAGRI)	Czechia	1991 – 2017	
UC Discovery Grants (formerly IUCRP) (IUCRP)	United States	1997 – 2011	
Department of Science and Technology (DST)	India	2004 – 2018	
Royal Society (Royal Society)	United Kingdom	2018 – 2018	
NIHR Central Commissioning Facility (CCF)	United Kingdom	2000 – 2018	
Patient-Centered Outcomes Research Institute (PCORI)	United States	2012 – 2018	
National Institutes of Health Clinical Center (CLC)	United States	1975 – 2017	
Bank of Sweden Tercentenary Foundation (RJ)	Sweden	2008 – 2019	
United States Army (USA)	United States	2018 – 2018	
National Institute On Minority Health and Health Disparities (NIMHD)	United States	1993 – 2018	
St. Baldrick’s Foundation (SBF)	United States	2005 – 2019	
Arnold and Mabel Beckman Foundation (Beckman)	United States	1991 – 2018	
Alzheimer’s Association (ALZ)	United States	2005 – 2017	
Scottish Government Health and Social Care Directorates (SGHSC)	United Kingdom	2001 – 2018	
Defense Threat Reduction Agency (DTRA)	United States	1982 – 2019	
Craig H Neilsen Foundation (CHN)	United States	2004 – 2019	
United States Department of Transportation (USDOT)	United States	1982 – 2016	
California Institute for Regenerative Medicine (CIRM)	United States	2006 – 2017	
Saskatchewan Health Research Foundation (SHRF)	Canada	2019 – 2019	
John Templeton Foundation (Templeton)	United States	2011 – 2018	
United States Department of Homeland Security (DHS)	United States	2003 – 2016	
The Icelandic Centre for Research (RANNIS)	Iceland	2004 – 2017	
Cancer Prevention and Research Institute of Texas (CPRIT)	United States	2010 – 2018	
Research Manitoba (MBRC)	Canada	2010 – 2017	
Heart And Stroke Foundation (HSF)	Canada	1999 – 2002	
Organization	Country	Start Year	End Year
--	-------------	------------	----------
Internationale Stichting Alzheimer Onderzoek (ISAO)	Netherlands	1995	2014
Cure Alzheimer's Fund (CAF)	United States	2004	2017
Prostate Cancer UK (Prostate Cancer UK)	United Kingdom	2004	2017
United States Nuclear Regulatory Commission (NRC)	United States	1982	1995
Auckland Medical Research Foundation (AMRF)	New Zealand	2004	2017
United States Forest Service (USFS)	United States	2004	2017
Ministry of Labour and Social Affairs (MoLSA)	Czechia	1993	2011
NordForsk (NordForsk)	Norway	2004	2017
Ministry of Agriculture and Rural Development (MriRW)	Czechia	2004	2017
Centers for Medicare and Medicaid Services (CMS)	United States	2004	2017
World Health Organization (WHO)	Switzerland	2004	2017
Gulf of Mexico Research Initiative (GmRI)	Mexico	2004	2017
Melanoma Research Alliance (MRA)	United States	2004	2017
Children’s Tumor Foundation (CTF)	United States	2004	2017
Ministry of Labour and Social Affairs (MoraDA)	Czechia	2004	2017
US Forest Service (USFS)	United States	2004	2017
Multiple Sclerosis Society (MS)	United States	2004	2017
Office of Information and Resource Management (NSF OIRM)	United States	2004	2017
Dunhill Medical Trust (DHT)	United States	2004	2017
Foundation for Polish Science (FPN)	Poland	2004	2017
Center for Information Technology (CIT)	United States	2004	2017
National Psoriasis Foundation (NPF)	United States	2004	2017
Polish Academy of Sciences (PAN)	Poland	2004	2017
National Institutes of Health (NIH)	United States	2004	2017
Motor Neurone Disease Association (MND)	United States	2004	2017
Auckland Medical Research Foundation (AMRF)	New Zealand	2004	2017
United States Nuclear Regulatory Commission (NRC)	United States	2004	2017
Prostate Cancer UK (Prostate Cancer UK)	United States	2004	2017
Cure Alzheimer's Fund (CAF)	United States	2004	2017
Internationale Stichting Alzheimer Onderzoek (ISAO)	Netherlands	2004	2017
Defense Logistics Agency (DLA)	United States	2004	2017
