Effect of COVID-19 on Ulnar Collateral Ligament Reconstruction in Major League Baseball Pitchers

Ryan W. Paul,*† BS, Ali Omari,† MD, Brian Fliegel,‡ DO, Meghan E. Bishop,† MD, Brandon J. Erickson,† MD, and Frank G. Alberta,†§ MD

Investigation performed at the Rothman Orthopaedic Institute, New York, New York, USA

Background: The coronavirus disease of 2019 (COVID-19) pandemic led to the suspension and shortening of the 2020 Major League Baseball (MLB) season from 162 to 60 regular season games. The effect of this disruption on injury rates, specifically injury to the ulnar collateral ligament (UCL), has not been quantified.

Purpose/Hypothesis: The purpose of this study was to compare the rate of UCL reconstruction (UCLR), surgery timing, and pitching workload in MLB pitchers from before and after the COVID-19 pandemic lockdown. We hypothesized that UCLR rates relative to games played would be increased and pitching workload would be decreased in 2020 compared with previous seasons.

Study Design: Cohort study; Level of evidence, 3.

Methods: An extensive online search using publicly available data was conducted to identify all MLB pitchers who underwent UCLR between January 1, 2017, and December 31, 2020. Only pitchers who were competing at the MLB level when undergoing reconstruction were included. Player characteristics and surgery date, as well as career and season of surgery pitching workload, were collected for all included pitchers. All data were compared as a pooled sample (2017-2019 vs 2020).

Results: A similar number of pitchers underwent UCLR during or after the 2020 regular season (n = 18) compared with the 2017-2019 seasons (n = 16, 20, and 16, respectively). However, after accounting for the decrease in games played during the 2020 regular season, an MLB pitcher was 2.9 times more likely to undergo surgery per game after the COVID-19 lockdown compared with the previous years (P < .001). MLB pitchers who underwent surgery in 2020 threw fewer preseason innings than did pitchers who underwent surgery between 2017 and 2019 (5.98 vs 9.39; P = .001).

Conclusion: MLB pitchers were almost 3 times more likely to undergo UCLR per game after the COVID-19 lockdown. A decreased preseason pitching workload because of the COVID-19 lockdown may have had an effect on per game UCLR rates.

Keywords: ulnar collateral ligament; reconstruction; MLB; COVID-19
supraspinatus testing were associated with in-season throwing injury in baseball pitchers. Similarly, Camp et al. found that preseason deficits in shoulder external rotation and flexion are independent risk factors for future elbow injuries. Although these studies have provided valuable information for athletes and teams, it is unclear whether this information can be applied to such a unique and shortened MLB season.

To our knowledge, only 1 study has analyzed injury rates after the COVID-19 lockdown, demonstrating that German soccer players were 3.1 times more likely to be injured after the lockdown, with adjustment for games played. Although anecdotally and throughout the media there have been reports of increased UCLR rates after the resumption of MLB play, there has been no formal analysis. The purpose of this study was to compare the UCLR rate in MLB pitchers relative to the number of games played before and after the COVID-19 pandemic lockdown. A secondary purpose was to compare UCLR timing and pitching workload between MLB pitchers before and after the COVID-19 lockdown. We hypothesized that UCLR rates would be increased and pitching workload would be decreased in 2020 compared with previous seasons.

METHODS

An extensive online search using publicly available data was conducted by 3 of the authors (R.W.P., A.O., B.F.) to identify all MLB pitchers who underwent UCLR between the dates of January 1, 2017, and December 31, 2020. Only pitchers who were competing at the MLB level when undergoing UCLR were included. Excluded were Minor League Baseball pitchers, pitchers who underwent UCL repair with or without internal brace augmentation, pitchers who underwent any other surgery not specific to UCLR, and pitchers who underwent surgery before January 1, 2017, or after December 31, 2020.

Publicly available data were collected using Excel 2016 (Microsoft Corp) from the following sources: www.MLB.com, www.baseball-reference.com, game summaries, play-by-play documents, weekly injury reports, press releases, newspaper archives, and player profiles. UCLR was confirmed using 2 sources; for example, if UCLR was indicated for a pitcher on his player profile, a search using his name and either “Tommy John” or “ulnar collateral ligament” was conducted, and search results were read to either adjust or confirm the surgical intervention.

RESULTS

Overall, 106 MLB players, 95 of whom were pitchers, underwent UCLR between January 1, 2017, and December 31, 2020. There were 21 pitchers who underwent UCLR in 2017, 25 in 2018, 18 in 2019, and 31 in 2020 (P = .150) (Figure 1). After isolating pitchers who underwent UCLR during or after the regular season, 16 pitchers were included in the quantitative workload analysis in 2017; 20 pitchers, in 2018; 16 pitchers, in 2019; and 18 pitchers, in 2020 (P = .840).

Statistical Analysis

Proportion testing was used to compare the number of pitchers who underwent UCLR per year. Chi-square analysis was performed to compare UCLR rates per 162-game season, with the 2020 rate calculated based on the observed UCLR rate over the 60-game season. To minimize outliers, a quantitative workload analysis was only performed on pitchers who underwent UCLR during or after the regular season. Independent-samples t tests were used to compare descriptive and workload data from 2017-2019 versus 2020. Mean, standard deviation, and 95% confidence interval were presented for all continuous variables, and categorical variables were presented as percentages. Injury rates were presented as number of UCLRs per MLB game. Statistical significance was set at P < .05. All statistical analysis was performed with R studio software (Version 3.6.3, Vienna, Austria).
No significant characteristic differences or pitcher type (starting vs relief pitching) differences were observed between pitchers who underwent UCLR in 2017-2019 compared with 2020 (Table 1). Career pitching workloads before UCLR did not differ based on year of surgery. Preseason games pitched and relative workload (IP per game and pitches thrown per game) during the season of injury also did not differ based on year of surgery. However, pitchers who underwent UCLR in 2020 threw significantly fewer preseason innings than did pitchers from previous seasons ($P = .001$). Pitchers who underwent UCLR in 2020 also had significantly fewer IP, games played, and pitches thrown (all $P < .001$) compared with pitchers in 2017-2019.

Characteristics and career workloads were similar between starting pitchers who underwent UCLR in 2017-2019 versus 2020. Starting pitchers who underwent UCLR in 2020 did have significantly fewer preseason IP, regular season IP, regular season games, and regular season pitches thrown compared with 2017-2019 starting pitchers ($P < .001$).

Characteristics	2017-2019 (n = 52)	2020 (n = 18)	P
Age, y	27 ± 2.69 (26.2-27.7)	27.4 ± 3.4 (25.7-29.1)	.650
BMI	27.6 ± 2.01 (27.2-28.2)	27.9 ± 2.1 (26.9-28.9)	.622
Prior UCLR, %	11.5	22.2	.268
Starting pitcher, %	55.8	44.4	.578
Career workload			
Total IP	671 ± 414 (556-787)	703 ± 630 (389-1016)	.847
Total games	233 ± 137 (195-271)	257 ± 155 (180-334)	.565
Total MLB pitches thrown	4658 ± 5880 (3021-6295)	5782 ± 11,032 (295-11,268)	.684
IP per game	3.43 ± 1.73 (2.94-3.91)	3.10 ± 1.78 (2.22-3.98)	.507
Season of UCLR workload			
Preseason IP	9.39 ± 5.22 (7.93-10.8)	5.98 ± 2.5 (4.73-7.23)	.001
Preseason games	5.23 ± 2.43 (4.55-5.91)	4.39 ± 1.97 (3.41-5.37)	.152
Regular season IP	43.94 ± 30.12 (35.75-52.12)	12.49 ± 12.80 (6.58-18.40)	<.001
Regular season games played	19.06 ± 16.15 (14.67-23.45)	6.47 ± 5.30 (4.02-8.92)	<.001
Regular season pitches thrown	730 ± 491 (596-863)	203 ± 195 (113-293)	<.001
Regular season IP per game	2.45 ± 1.56 (2.01-2.89)	1.81 ± 1.31 (1.16-2.47)	.101
Regular season pitches thrown per game	25.5 ± 21.4 (18.2-32.9)	20.9 ± 20.9 (9.34-32.4)	.478

*Data are presented as mean ± SD (95% CI) unless otherwise indicated. Bolded P values indicate statistically significant differences between groups ($P < .05$). BMI, body mass index; IP, innings pitched; MLB, Major League Baseball; UCLR, ulnar collateral ligament reconstruction.
rates has not been well defined. Our hypotheses were
2020 MLB season, and the effect of the pandemic on injury
COVID-19 presented a unique set of challenges during the
DISCUSSION
Pitchers underwent UCLR more frequently in 2020
than in 2017-2019 (2.2% of 2385 pitchers in 486 games
in 2017-2019 vs 2.4% of 735 pitchers in 60 games in 2020;
P < .001). After adjusting for games played instead of
comparing the per game UCLR rate, it was found that an MLB
pitcher was 2.88 times more likely to undergo UCLR per
game after the COVID-19 lockdown compared with previous
years (P < .001) (Figure 2).
No MLB pitchers underwent UCLR during April or May
2020, as players were sent home in March and no organized
training or practices occurred between April and June (Figure
3). Six MLB pitchers then underwent UCLR in July 2020,
as the preseason training began on July 1 and the
regular season began on July 23. More pitchers underwent
UCLR in 2020 compared with previous years in July (6 vs
3), August (5 vs 3.33), and September (7 vs 2.33). These
trends were consistent when comparing the timing of
UCLRs between all four years (2017-2020) individually
and can be viewed in Appendix Figure A1.
Pitchers underwent UCLR during similar times of the reg-
ular season when comparing 2017-2019 to 2020 (Figure 4).
However, significantly more pitchers underwent UCLR
after the 2020 regular season compared with previous
years (7 vs 1.33; P = .004).

COVID-19 presented a unique set of challenges during the
2020 MLB season, and the effect of the pandemic on injury
rates has not been well defined. Our hypotheses were
confirmed, as the per game UCLR rate was higher in
2020—MLB pitchers were 2.9 times more likely per game
to undergo UCLR after the COVID-19 lockdown compared
with previous years. Preseason and regular season work-
loads were significantly lower after the COVID-19 lock-
down compared with previous years, as expected because
of the shortened season. Interestingly, many more UCLRs
were performed after the 2020 regular season than after
the 2017-2019 regular seasons, potentially because of
players’ attempts to play through injury in a shortened
2020 season.
Annual UCLR rates should be compared cautiously
because of the frequency of nonoperative treatment. Chau-
han et al14 evaluated 977 professional baseball players who
were diagnosed with a UCL injury and found that 544
(56%) of these players attempted nonoperative treatment,
with about half of these players experiencing failed nonop-
erative treatment and electing to undergo UCLR. Return to
play rates after nonoperative treatment range from 54% to
93%, suggesting that nonoperative treatment is a viable
option for professional players to return to play while avoid-
ing the risks of surgery.14,20,24 Thus, a player who sustains
a UCL injury and attempts nonoperative treatment may
not undergo UCLR until the following year. Without know-
ing the date of initial UCL injury, one cannot conclude that
a UCLR is because of a UCL injury from that same year. To
minimize this problem, we only quantitatively assessed
players who underwent UCLR after the start of the regular
season, as surgeries performed during or after the regular
season are more likely to be because of the effects of that
season.
Multiple authors have published recommendations to
guide training and return to sports after the COVID-19
lockdown by applying traditional training and return to
play principles.2,5,10,36,42 They highlight the importance of
maintaining physical health and body composition while
away from structured team practice. Athletes who do not
train adequately on their own may be at an increased risk of
musculoskeletal injury when they fully return to play, as
their body may not be prepared to handle the high forces
and demands.2,5,42 Throughout the COVID-19 lockdown,
athletes may not have been able to perform their recom-
ended sport-specific training and did not have full access
to coaching and sports medicine personnel (athletic trai-
ners, strength and conditioning coaches, etc).12,28,34 How-
ever, only 1 other study has evaluated injury rates after the
COVID-19 lockdown. Seshadri et al39 compared injury
rates from before (August 16–March 13) and after (May
16–June 27) the COVID-19 lockdown in an elite German
soccer league. After adjusting for games played, players
were 3.1 times more likely to sustain an injury after the
COVID-19 pandemic. Several factors can contribute to
increased injury rates after an absence of competition, such
as suboptimal training conditions, a decrease in training
duration and frequency, and a lack of preparation at a com-
petitive level.37,41 A study evaluating Achilles tendon inju-
ries after the 14-week 2011 National Football League
lockout suggested that biomechanical and neuromuscular
deficits may also result from poor preseason conditioning,
which also likely played a large role after the COVID-19 lockdown.30 Baseball pitchers are a particularly vulnerable group, as it also takes time for their arms to get ready for game competition. Pitchers often require several weeks, or even months, to develop their “arm strength” before the regular season, which requires throwing and pitching. Six weeks of MLB spring training, with about 4 weeks of semicompetitive games, helps pitchers develop their arm strength; however, professional pitchers have lately begun preparing for the season even earlier, with pitchers often arriving at spring training having been throwing for several weeks already. In 2020, MLB suspended spring training after about 3 weeks and sent players home until organized team training returned on July 1. During the COVID-19 lockdown, pitchers may not have had the ability or resources to throw and/or pitch before joining their teams on July 1. Players then only had about 3 weeks to prepare for the regular season, as opposed to the usual ≥ 6 weeks. Even if a player maintained his body composition and strength, his arm strength entering the 2020 MLB regular season was likely diminished unless he had the resources at home to pitch.

To limit the injury risk during a lockdown, clinicians can provide at-home exercises to develop rotator cuff strength and tissue tolerance.22,25,31-33,38 Maintaining shoulder range of motion and external rotation strength should be the main focus of upper extremity at-home exercises, while maintaining/developing leg and core strength is also valuable for developing an effective kinetic chain. Also, clinicians should talk to their athletes frequently throughout a lockdown to track their training progress and potentially identify injury risks without in-person physical evaluation. Finally, monitoring and potentially

Figure 3. Number of Major League Baseball (MLB) pitchers who underwent ulnar collateral ligament reconstruction (UCLR) during each month, the mean of 2017-2019 vs 2020.

Figure 4. Annual number of MLB pitchers who underwent UCLR during different times of the MLB season, 2017-2019 vs 2020. Only MLB pitchers who underwent UCLR during or after the regular season were included. 0-20 represents the first one-fifth of the regular season, 40-60 represents the middle of the regular season, and 80-100 represents the last one-fifth or the end of the regular season. MLB, Major League Baseball; UCLR, ulnar collateral ligament reconstruction.
limiting workload throughout the beginning of the regular season can promote proper arm strength and tissue tolerance development, as seen by the decreased IP per game during 2020.

Limitations

This study has several limitations. First, the use of publicly available data may decrease the validity of our analysis, as the data collected were only as accurate as the information provided. Also, the timing of UCLR may have been affected by the pandemic lockdown restrictions, particularly during the spring, when elective surgeries were halted in many states. Plus, if any MLB pitchers underwent UCLR that was not publicly reported, they would not have been included in this study. The inaccuracy of pitch counts in the lower levels of Minor League Baseball is another limitation of our workload analysis, as we could not properly evaluate pitching workload throughout the full professional career. Finally, this study is observational; thus, the causation of UCLR rate and workload changes cannot be determined.

CONCLUSION

In this study, MLB pitchers were almost 3 times more likely to undergo UCLR per game after the COVID-19 lockdown. A decreased preseason pitching workload because of the COVID-19 lockdown may have had an effect on per game UCLR rates.

REFERENCES

1. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-128. doi:10.1056/NEJMoa2019432
2. Asif IM, Chang CJ, Diamond AB, Raukar N, Zaremski JL. Returning athletes back to high school sports in the COVID-19 era: preparing for the fall. Sports Health. 2020;12(6):518-520. doi:10.1177/1941738120958358
3. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: possible mechanisms. Life Sci. 2020;253:117723. doi:10.1016/j.lfs.2020.117723
4. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020;14(3):247-250. doi:10.1016/j.dems.2020.03.013
5. Bisciotti GN, Eirale C, Corsini A, Baudot C, Saillant G, Chalabi H. Collateral ligament reconstruction in Major and Minor League Baseball pitchers: comprehensive report of 1429 cases. Am J Sports Med. 2020;48(11):2608-2612. doi:10.1177/0363546520947090
6. Conte SA, Fleisig GS, Dines JS, et al. Prevalence of ulnar collateral ligament surgery in professional baseball players. Am J Sports Med. 2015;43(7):1764-1769. doi:10.1177/0363546515580792
7. Conte S, Requa RK, Barr J, Chalmers PN, Vellios E, Altchek DW. Ulnar collateral ligament tear location may affect return-to-sports rate but not performance upon return to sports after ulnar collateral ligament reconstruction surgery in professional baseball players. Am J Sports Med. 2019;47(13):3107-3119. doi:10.1177/0363546519876305
8. Conte S, Camp CL, Dines JS. Injury trends in Major League Baseball over 18 seasons: 1998-2015. Am J Orthop (Belle Mead NJ). 2016;45(3):116-123.
9. Conte S, Sgori T, Chalmers PN, et al. The impact of fatigue on throwing arm fatigue in elite adolescent male baseball players. J Strength Cond Res. 2014;28(10):2325967114553916.
10. Erickson BJ, Carr J, Chalmers PN, Vellios E, Altchek DW. Ulnar collateral ligament reconstruction in Major and Minor League Baseball pitchers: comprehensive report of 1429 cases. Am J Sports Med. 2010;38(7):1375-1382.
11. Erickson BJ, Carr J, Chalmers PN, Vellios E, Altchek DW. Ulnar collateral ligament tear location may affect return-to-sports rate but not performance upon return to sports after ulnar collateral ligament reconstruction surgery in professional baseball players. Am J Sports Med. 2014;42(3):536-543. doi:10.1177/0363546513510890
12. Erickson BJ, Carr J, Chalmers PN, Vellios E, Altchek DW. Ulnar collateral ligament reconstruction in Major and Minor League Baseball pitchers: a retrospective study from 2007 to 2014. Orthop J Sports Med. 2016;4(2):2325967115627126.
13. Erickson BJ, Harris JD, Tetreault M, Bush-Joseph C, Cohen M, Romeo AA. Is Tommy John Surgery performed more frequently in Major League Baseball pitchers from warm weather areas? Orthop J Sports Med. 2014;2(10):2325967115627126.
14. Ford GM, Genuario J, Kinkartz J, Githens T, Noonan T. Return-to-play outcomes in professional baseball players after medial unlar collateral ligament injuries: comparison of operative versus nonoperative treatment based on magnetic resonance imaging findings. Am J Sports Med. 2016;44(3):723-728. doi:10.1177/0363546515621756
15. Fredroda SF, Kriz PK, Hall AM, Zurakowski D, Fadale PD. Risk stratification for unlar collateral ligament injury in Major League Baseball players: a prospective study. Am J Sports Med. 2014;42(2):310-319. doi:10.1177/0363546513510890
16. Frangiamore SJ, Lynch TS, Vaughn MD, et al. Magnetic resonance imaging predictors of failure in the nonoperative management of ulnar collateral ligament tears. Am J Sports Med. 2001;29(4):431-436. doi:10.1177/03635465010290040801
17. Frangiamore SJ, Lynch TS, Vaughn MD, et al. Magnetic resonance imaging predictors of failure in the nonoperative management of ulnar collateral ligament tears. Am J Sports Med. 2014;42(3):536-543. doi:10.1177/0363546513510890
18. Frangiamore SJ, Lynch TS, Vaughn MD, et al. Magnetic resonance imaging predictors of failure in the nonoperative management of ulnar collateral ligament injuries in professional baseball pitchers. Am J Sports Med. 2014;42(3):536-543. doi:10.1177/0363546513510890
19. Erickson BJ, Carr J, Chalmers PN, Vellios E, Altchek DW. Ulnar collateral ligament reconstruction in Major and Minor League Baseball pitchers: comprehensive report of 1429 cases. Am J Shoulder Elbow Surg. 2019;27(3):871-878. doi:10.1016/j.jse.2018.01.024
20. Camp CL, Dines JS, van der List JP, et al. Summative report on time out of play for Major and Minor League Baseball: an analysis of 49,955 injuries from 2011 through 2016. J Sports Med. 2018;46(7):1727-1732. doi:10.1016/j.ortho.2018.01.024
21. Camp CL, Zajac JM, Pearson DB, et al. Decreased shoulder external rotation and flexion are greater predictors of injury than internal rotation deficits: analysis of 132 pitcher-seasons in professional baseball.
The Orthopaedic Journal of Sports Medicine

Effect of COVID-19 on UCLR in the MLB

APPENDIX

TABLE A1

Characteristics and Workloads Between SPs Who Underwent UCLR: 2017-2019 Seasons Versus 2020 Season

Characteristics	2017-2019 (n = 29 SP)	2020 (n = 8 SP)	P
Age, y	26.4 ± 2.4 (25.6 to 27.3)	27.4 ± 4.3 (24.4 to 30.3)	.558
BMI	27.5 ± 2.3 (26.7 to 28.4)	28 ± 2.1 (26.5 to 29.5)	.616
Prior UCLR, %	17.2	12.5	>.999

Career workload

Total IP	802 ± 459 (635 to 969)	969 ± 874 (363 to 1575)	.616
Total games	162 ± 80 (133 to 192)	187 ± 122 (102 to 272)	.607
Total MLB pitches thrown	5803 ± 7192 (3185 to 8421)	9446 ± 16,234 (-1804 to 20,695)	.554
IP per game	4.87 ± 0.55 (4.67 to 5.07)	4.88 ± 0.87 (4.28 to 5.48)	.967

Season of UCLR workload

Presession IP	11.97 ± 5.24 (10.06 to 13.87)	6.67 ± 3.31 (4.37 to 8.96)	.003
Presession games	4.48 ± 1.45 (3.95 to 5.01)	3.13 ± 1.81 (1.87 to 4.38)	.081
Regular season IP	57.32 ± 30.31 (46.28 to 68.35)	17.71 ± 15.21 (7.17 to 28.24)	<.001
Regular season games played	13.20 ± 7.54 (10.45 to 15.95)	5.75 ± 4.27 (2.79 to 8.71)	.003
Regular season pitches thrown	944 ± 500 (763 to 1126)	260 ± 222 (119 to 441)	<.001
Regular season IP per game	3.53 ± 1.27 (3.06 to 3.99)	2.87 ± 1.36 (1.93 to 3.82)	.248
Regular season pitches thrown per game	37.19 ± 23.21 (28.74 to 45.63)	32.19 ± 23.43 (15.96 to 48.43)	.620

*Data are presented as mean ± SD (95% CI) unless otherwise indicated. Bolded P values indicate statistically significant differences between groups (P < .05). BMI, body mass index; IP, innings pitched; MLB, Major League Baseball; SP, starting pitcher; UCLR, ulnar collateral ligament reconstruction.
TABLE A2
Characteristics and Workloads Between RPs Who Underwent UCLR: 2017-2019 Seasons Versus 2020 Season

Characteristics	2017-2019 (n = 23 RP)	2020 (n = 10 RP)	P
Age, y	27.7 ± 2.9 (26.5-28.9)	27.4 ± 2.8 (25.7-29.1)	.786
BMI	27.7 ± 1.5 (27-28.3)	27.8 ± 2 (26.5-29)	.885
Prior UCLR, %	4.4	30	.073

Career workload

Total IP	507 ± 278 (393-621)	489 ± 202 (364-614)	.840
Total games	322 ± 143 (264-381)	314 ± 161 (214-414)	.883
Total MLB pitches thrown	3215 ± 3225 (1897-4533)	2851 ± 1858 (1699-4002)	.687
IP per game	1.60 ± 0.59 (1.36-1.85)	1.68 ± 0.55 (1.33-2.02)	.741

Season of UCLR workload

Preseason IP	7.17 ± 3.08 (5.91-8.43)	5.43 ± 1.62 (4.43-6.44)	.043
Preseason games	6.57 ± 2.48 (5.55-7.58)	5.40 ± 1.51 (4.47-6.33)	.109
Regular season IP	27.21 ± 20.39 (18.88-35.54)	6.52 ± 5.89 (2.87-10.18)	.001
Regular season games played	26.38 ± 20.83 (17.86-34.89)	7.29 ± 6.55 (3.23-11.35)	.003
Regular season pitches thrown	462 ± 327 (328-595)	116 ± 94 (58-174)	.001
Regular season IP per game	1.14 ± 0.50 (0.94-1.35)	0.97 ± 0.12 (0.90 -1.04)	.132
Regular season pitches thrown per game	11.73 ± 4.51 (9.89-13.57)	7.95 ± 2.76 (6.24-9.66)	.024

aData are presented as mean ± SD (95% CI) unless otherwise indicated. Bolded P values indicate statistically significant differences between groups (P < .05). BMI, body mass index; IP, innings pitched; MLB, Major League Baseball; RP, relief pitcher; UCLR, ulnar collateral ligament reconstruction.

Figure A1. Number of MLB pitchers who underwent UCLR during each month, 2017-2020. MLB, Major League Baseball; UCLR, ulnar collateral ligament reconstruction.