We report the isolation of a novel mouse voltage-gated Shaker-related K\(^+\) channel gene, \textit{Kv1.7} (\textit{Kcnq7}/\textit{KCNA7}). Unlike other known \textit{Kv} family genes that have intronless coding regions, the protein-coding region of \textit{Kv1.7} is interrupted by a 1.9-kilobase pair intron. The \textit{Kv1.7} gene and the related \textit{Kv3.3} (\textit{Kcnq3}/\textit{KCNC3}) gene map to mouse chromosome 7 and human chromosome 19q13.3, a region that has been suggested to contain a diabetic susceptibility locus. The mouse \textit{Kv1.7} channel is voltage-dependent and rapidly inactivating, exhibits cumulative inactivation, and has a single channel conductance of 21 pS. It is potently blocked by noxiustoxin and stichodactyla-toxin, and is insensitive to tetraethylammonium, kalian-toxin, and charybdotoxin. Northern blot analysis reveals ~3-kilobase pair \textit{Kv1.7} transcripts in mouse heart and skeletal muscle. \textit{In situ} hybridization demonstrates the presence of \textit{Kv1.7} in mouse pancreatic islet cells. \textit{Kv1.7} was also isolated from mouse brain and hamster insulinoma cells by polymerase chain reaction.

Ion channels that exhibit a variety of gating patterns and ion selectivity are critical elements that transduce signals in diverse cell types (1). Voltage-gated potassium-selective (\textit{Kv}) channels represent the largest family within this class of proteins (2), and perform many vital functions in both electrically excitable and nonexcitable cells. Following initiation of an action potential in nerve and muscle cells, \textit{Kv} channels play the important role of repolarizing the cell membrane (1). \textit{Kv} channels can also modulate hormone secretion, for example insulin release from pancreatic islet cells (3–6), and regulate calcium signaling during mitogen-stimulated activation of lymphocytes (7).

\textit{Kv} channels in mammalian cells are encoded by an extended family of at least nineteen genes (2). The largest subfamily, \textit{Ko1}, is related to the fly \textit{Shaker} gene and contains six members, \textit{Ko1.1–Ko1.6} (2). The \textit{Shaker} gene has 21 exons, which can be alternatively spliced to generate at least five functionally distinct transcripts (8, 9). In contrast, the protein-coding regions of each of the six known mammalian \textit{Ko1} genes and the three known \textit{Xenopus} homologues are contained in a single exon (2, 10), precluding alternative splicing as a means of generating functionally different proteins. The evolutionary significance of this pattern of organization remains a puzzle.

Here we report the identification of a novel mammalian gene, \textit{Kv1.7} (\textit{Kcnq7}/\textit{KCNA7}), that has a genomic organization distinct from the other members of the vertebrate \textit{Ko1} subfamily. We have defined the chromosomal location of this gene in the mouse and human genome, determined its tissue distribution, and characterized the biophysical and pharmacological properties of the cloned channel.

EXPERIMENTAL PROCEDURES

\textit{Isolation and Characterization of mKo1.7, hKo1.7, hKo3.3, and hKo3.4 DNA Clones—Three overlapping genomic clones (KC225, KC254, and KC256) were isolated from an AKR/J mouse genomic library screened with a mixture of mKo1.1 and mKo1.5 cDNA probes, as described previously (10), and mapped by multiple and partial restriction endonuclease digests, and by deoxy sequencing. mKo1.7 cDNAs were amplified by the polymerase chain reaction (PCR) from mouse brain and from the hamster insulinoma cell line, HIT-T15, using intron-flanking primers (5'–TCTCCCTACTCTATCCTTG3' within S1 and 5'–AAATGGTGTCCACCCGGTC3' on the 3' side of S5). The resulting 588-bp PCR fragments were sequenced. Cosmid clones encoding hKo1.7 and hKo3.3 (11) were isolated from a human chromosome 19-enriched library, Library F (12), screened with mKo1.7 and mKo3.3 probes. A 1.9-kb cDNA fragment of the \textit{Shaw} family gene, hKo3.4, was isolated from a human pancreas library (13) screened with a mixture of \textit{Ko3.3} (0.9-kb XbaI/HindIII), \textit{hKo3.3} (1.4-kb PstI/ EcoRI), and mKo3.4 (0.9-kb HindIII/EcoRI) probes at a final stringency of 11% SDS at 55 °C (8 × 10\(^{-5}\) M phage screened). The isolated clone spans the region from S1 through the 3' end of the coding region (0.6 kb), and 1.3 kb of the 3'-noncoding region. Mice—Pancreatic tissue sections were obtained from 9–16-week-old diabetic-prone (db/db) and healthy (\textit{db+}) C57BL/KsJ mice. Mice ho-
mozygous for the autosomal recessive diabetic susceptibility gene db, a mutated form of the leptin receptor (14, 15) on chromosome 4, develop diabetes beginning at about 6 weeks of age (16).

Mapping Mouse and Human Chromosomal Locations of Kv1.7 and Kv3.3—Interspecific backcross progeny were generated by mating (C57BL/6J × Mus spretus)F1 females and (C57BL/6J) males, and a total of 205 N2 mice were used to map the two mouse genes, mKv1.7/Kcnq7 and mKv3.3/Kcnq3, as described previously (11, 17–20). The probe for mKv1.7 was the entire 6.4-kb EcoRI fragment shown in Fig. 1, and that for mouse Kv3.3 was a 4-kb genomic HindIII fragment containing the entire 3′-exon (11). Although 155 mice were analyzed for all markers and this segregating data set, up to 188 mice were typed for some pairs of markers. Recombination frequencies were calculated as described (11, 17–20) using the computer program SPRETUS (Boehringer Mannheim Random Primed DNA labeling kit). The RNA blot was hybridized at 60 °C for 18 h, washed at a final stringency of 0.2 M NaOH, 0.1% SDS at 60 °C for 1 h, and exposed to x-ray film at 80 °C with an intensifying screen for 3 days.

In Situ Hybridization—RNA probes labeled with α-35S-labeled UTP (1300 Ci/mmol) were alkaline-denatured to an average size of 100 nucleotides and used for in situ hybridization on pancreatic frozen sections (6–10 μm thick) from db/db mice. Briefly, sections were hybridized overnight at 42 °C. RNase treated, washed five times in 0.5 × SSC at 65 °C, coated with Ilford K5 photographic emulsion, and exposed at 4 °C for varying times. After development, the sections were counterstained with hematoxylin and eosin. A Leitz Aristoplan microscope equipped with reflected polarized light to visualize silver grains in dark field. The probes used for hybridization were as follows: insulin, 1.6-kb human insulin gene including the 5′- and 3′-flanking sequences (ATCC no. 57399); mKv3.3, a 1.6-kb cDNA fragment spanning S1 through the 3′-end of the coding region (0.6 kb), and 1.3 kb of the 3′-noncoding region. mKv1.7, 540-bp PvuII or SacI fragment containing 29 bp of C-terminal coding sequence and 511 bp of 3′-noncoding sequence.

Electrophysiological Studies—To make a mKv1.7 expression construct we amplified a 688-bp fragment from mouse brain cDNA spanning the region encoded by the two Kv1.7 exons using reverse transcriptase PCR (5′-primer, 5′-CTCCGTACTGCCTCCCGTCGCAAG; 3′-primer, 5′-AAATGGGTGTCCACCGTGTC-3′). Exon 1 (860-bp BglII/BspHI fragment), a 283-bp BspHI/BglII fragment of our 588-bp PCR product, and exon 2 (747-bp BglII/HindIII), were ligated together at BglII and BspHI sites to generate “fragment I” (1880 bp). Fragment I was blunt-ended at the 5′ end and cloned into the PBluescript vector at Smal/HindIII sites. To remove the 5′-NCR from fragment I, and for the purpose of cloning this fragment into the pBSTA expression vector, we introduced a unique BamHI site just upstream of the initiation methionine using PCR: 5′-primer, 5′-AACAAAGCTTTCAATGACTACAA-GAAAAGCT-3′; and 3′-primer: 5′-AAGCCGCAATCGCCCGCAACG-3′. The resulting PCR product (corresponding to the first 233 nucleotides of the coding region) was ligated into fragment I at the NcoI site, and the 1870-nucleotide fragment was ligated to the pBSTA vector.

mKv1.7 cDNA was transcribed in vitro (Ambion Kit, Austin, TX) and diluted in a 0.1–0.5% fluorescein-dextran (M, 10,000, Molecular Probes, Eugene, OR) in 100 mM KCl. Rat basophilic leukemia (RBL) cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum (HyClone, Logan, UT) and glutamine, and were plated onto glass coverslips one day prior to use for electrophysiological experiments. RBL cells were injected with cRNA using pre-pulled injection capillaries (Femtotip) in combination with an Eppendorf micro-injection system (micromanipulator S171 and transjector 5242; Madison, WI) as described previously (23). Four to six hours later, fluorescent cRNA-injected cells were evaluated electrophysiologically.

All membrane currents were recorded at room temperature (22–26 °C) with a LIST EPC-7 amplifier (Heka Elektronik, Germany). Series resistance compensation was employed if the current exceeded 2 nA, and the command input was controlled by a PDP 11/73 computer via a digital-to-analog converter. Capacitive and leak currents were subtracted using a P/8 procedure and the holding potential in all experiments was −80 mV. When membrane currents exceeded 2 nA 80% series resistance compensation was used.

RESULTS

The Protein-coding Region of mKv1.7 Contains an Intron Unlike Its Vertebrate Homologues

A restriction map of a 6.4-kb EcoRI DNA fragment containing the entire mouse Kv1.7 coding region is shown in Fig. 1. The coding region is contained in two exons separated by a 1.9-kb intron. The upstream exon encodes the entire N terminus, S1, and part of the S1–S2 loop. The downstream exon contains the region extending from the S1–S2 loop to the C-terminal end of the protein. The intron-exon splice sites were determined by comparing the genomic sequence with cDNA sequences obtained from the hamster insulinoma cell line, HIT-T15, and from mouse brain (Fig. 1).

The complete coding sequence of the mKv1.7 is shown in Fig. 2. The mKv1.7 sequence is identical in the N terminus from bp 52 to 996 with the mouse EST sequence AA021711. Betsholtz et al. (24) amplified a short segment of Kv1.7 cDNA spanning the S5/S6 region from mouse (MK-6), rat (RK-6), and hamster (HaK-6) insulin-producing cells using PCR. Our sequence is identical to their MK-6 sequence, except for four nucleotide changes.

The deduced mKv1.7 protein consists of 532 amino acids and contains six putative membrane-spanning domains, S1–S6 (Fig. 2). The hydrophobic core of this protein shares considerable sequence similarity with other Shaker family channels, while the intracellular N and C termini and the external loops between S1/S2 and S3/S4 show little conservation. The protein contains conserved sites for post-translational modifications as indicated in Fig. 2. As do all other Shaker-related channels, mKv1.7 has a potential tyrosine kinase phosphorylation site (RPSFDALY) in its N-terminal region (2); the proline-rich stretch within the N terminus (see residues 29–42) may be a binding site for SH3 domains of tyrosine kinases. Two protein kinase C consensus sites (Ser/Thr-X-Arg/Lys) are present in the cytoplasmic loop between S4 and S5 of mKv1.7; at least one
of these sites is present in all members of the Kv1 family (2). mKv1.7, like Kv1.6, lacks an \(N\)-glycosylation site in the extracellular loop linking the S1 and S2 transmembrane segments; this consensus sequence is conserved in all other Kv1 family genes.

![Fig. 3. Proposed phylogenetic relationship of mouse Kv1.7 and other Shaker-related \(K\) channel genes. This tree is based on parsimony analysis of nucleotide sequence alignments using the program PAUP (25). The scale bar at the upper left represents 100 substitutions. m, mouse; h, human; x, Xenopus; APLK, Aplysia; SHAKER, Drosophila Shaker.](image)

Kv1.7, a Novel Voltage-gated Potassium Channel Gene

The mKv1.7/Kcnal7 gene resides on mouse chromosome 7 (Fig. 4A), −0.5 centimorgan telomeric to the Shaw-related \(K\) channel gene, mKv3.3/Kcnal3, and −3.4 centimorgans centromeric to MyoD1 (myoblast differentiation factor). The mouse species of this marker in this study was Gpi1 (glucose phosphate isomerase 1), which was mapped 6.1 centimorgans centromeric to mKv3.3/Kcnal3.

The interval on mouse chromosome 7 containing mKv1.7/Kcnal7 and mKv3.3/Kcnal3 shares a region of homology with human chromosomes 19q13 and 11p15, and the human homologues of these \(K\) channel genes may therefore be expected to reside on one of these chromosomes. Confirming this prediction, we mapped both genes to human 19q13.3 using fluorescent in situ hybridization. The idiogram of human chromosome 19 shown in Fig. 4B, and a more detailed map shown in Fig. 4C, indicate that hKv1.7/KCNA7 is located 1.3 Mbase telomeric of hKv3.3/KCNC3. The genes for both muscle glycogen synthase (\(GYS1\)) and the histidine-rich calcium protein (\(HRC\)) also map to this region; Kv1.7/KCNA7 lies 25 kb telomeric to \(GYS1\) and 200 kb centromeric to \(HRC\).
Kv1.7, a Novel Voltage-gated Potassium Channel Gene

Interestingly, a putative diabetes susceptibility gene has been suggested to be present at 19q13.3 (26, 27), especially in Finnish families with associated hypertension and difficulties in insulin-stimulated glucose storage. This region has also been suggested to contain a modifier locus for cystic fibrosis (28).

Biophysical and Pharmacological Characterization of Kv1.7 Channels

We carried out a detailed characterization of mKv1.7 channels expressed in RBL cells which express no native Kv currents (29, 30). The mKv1.7 gene expressed in Xenopus oocytes produced currents (data not shown) similar to those obtained in RBL cells (Fig. 5).

Voltage Dependence—Patch clamp studies were performed in the whole-cell mode. Fig. 5A shows a family of outward currents elicited by a 200 ms depolarizing pulse from a holding potential of −80 mV in RBL cells injected with mKv1.7 cRNA; no outward currents were detected in control cells (data not shown). The currents activate rapidly, and from the conduc-
tance-voltage curve shown in Fig. 5B we determined that the 1/2 activation potential ($V_{1/2}$) is −20 mV.

Inactivation and Deactivation—Inactivation of mKv1.7 channels was rapid following a 200 ms depolarizing pulse from −80 to 40 mV (Fig. 5A). The rate of inactivation, measured by fitting the data to a single exponential function, yielded a time constant (τ_i) of 14 ± 2.1 ms (S.E., $n = 7$). As shown in Fig. 5C, the current becomes progressively smaller following repeated depolarizing pulses at 1-s intervals. This phenomenon, termed “cumulative inactivation,” is due to the accumulation of channels in the inactivated state which are then unavailable for opening. The related channels, Kv1.3 (7) and Kv1.4 (31), also display this behavior.

The kinetics of channel closing (deactivation) was determined by first opening the channels with a 15 ms conditioning depolarizing pulse, and then forcing the channels to close by repolarizing to different potentials (Fig. 5D). The time constant, τ_{tail}, of the resulting “tail” current was 5.1 and 5.3 ms at −60 mV in two cells.

Single-channel Conductance—We measured single-channel currents in an outside-out patch by applying 450-ms voltage ramps from −90 to 80 mV every second (Fig. 5E). Single channel events were seen at potentials more positive than −15 mV. The single-channel conductance of 21 pS was estimated from the slope of the current recorded during an opening (Fig. 5E).

Pharmacology—We determined the pharmacological sensitivity of the mKv1.7 channel using methods described previously (30, 32), IC$_{50}$ values in each case being determined when block reached steady-state. The channel was blocked by several non-peptide small molecule antagonists, 4-aminopyridine (IC$_{50}$ = 245 µM), capsaicin (25 µM), cromakalim (450 µM), and resiniferatoxin (20 µM). Surprisingly, the dihydroquinoline compound, CP-339,818, that blocks rapidly inactivating Kv1 channels in non-peptide small molecule antagonists, 4-aminopyridine (IC$_{50}$ = 245 µM), capsaicin (25 µM), cromakalim (450 µM), and resiniferatoxin (20 µM). Surprisingly, the dihydroquinoline compound, CP-339,818, that blocks rapidly inactivating Kv1 channels in the nanomolar range (30), had little effect on mKv1.7 (IC$_{50}$ = 10 µM). The channel was insensitive to externally applied tetraethylammonium (C$_{50}$ = 86 mM), probably because the residue at the tetraethylammonium-binding site, Ala-441 (Fig. 2), is hydrophobic.

The mKv1.7 channel is also potently blocked by a peptide (ShK toxin) obtained from sea anemone Stichodactyla helianthus (IC$_{50}$ = 13 nM), and by the scorpion toxins, noxiustoxin (IC$_{50}$ = 18 nM) and margatoxin (IC$_{50}$ = 116 nM). The channel was resistant to charybdotoxin (IC$_{50}$ >1000 nM) and kaliotoxin (IC$_{50}$ >1000 nM).

Expression of mKv1.7 Transcripts in Different Tissues

Northern blot assays using a mKv1.7-specific probe revealed strongly hybridizing 3-kb bands in heart and skeletal muscle; faint bands of similar size were visible in liver and lung (together with larger 7–8-kb bands), but none were seen in spleen, kidney, testis, or brain (Fig. 6). We were able to isolate mKv1.7 transcripts from mouse brain by PCR (see Fig. 1). mKv1.7 is also expressed in placenta, since the mouse EST AA021711 was derived from this tissue.

PCR analysis demonstrated the presence of haKv1.7 mRNAs.
in hamster insulinoma cells (Fig. 1). We verified the presence of mKv1.7 mRNA in pancreatic islet cells obtained from 9–16-week-old diabetic db/db mice by in situ hybridization (Fig. 7C) using a mKv1.7-specific antisense probe (12–14); mKv1.7 mRNA was also present in islets from normal db/+ mice (data not shown). Scattered acinar cells outside the islets also showed mKv1.7 hybridization (Fig. 7C). In contrast, mKv3.4 mRNA was found in acinar cells surrounding islets, but not in islets, of both db/db (Fig. 7B) and db/+ mice (data not shown). As a control, insulin mRNA was detected in both normal and diabetic islets, but not in acinar cells (Fig. 7A). A Kv1.5-specific probe did not show appreciable hybridization to islets (data not shown), despite a report of Kv1.5 cDNA having been cloned from human insulinoma cells (33).

DISCUSSION

Unlike all other known mammalian Shaker-related genes (Kv1.1–Kv1.6) that have intronless coding regions (2, 9), the protein-coding region of mKv1.7 is interrupted by a single 1.9-kb intron. The fly Shaker gene also contains an intron in the S1-S2 loop, raising the possibility that the intron in Kv1.7 may be ancient, predating the divergence of flies and mammals. Both the mouse Kv.1.7 and the fly Shaker intron are placed between codons, i.e. they are “phase 0” introns. While this is consistent with having a common origin it may also be fortuitous, since there are only three possible “phases.” Although we favor the idea that Kv introns were lost in the vertebrate lineage before their expansion by gene duplication (in which case the Kv1.7 intron would represent a more recent insertion), the evolutionary history of this complex gene family remains to be elucidated.

Since Kv1.7 mRNA is expressed in the mouse heart, we searched the literature for native cardiac A-type Kv currents with properties resembling those of Kv1.7. The Kv1.7 homotetramer shares many properties with the rapidly inactivating transient outward (I_t) current in cardiac Purkinje fibers, but not the I_av current in atrial and ventricular myocytes. Kv1.7 and the Purkinje I_t currents activate at negative potentials (−30 to −20 mV), exhibit cumulative inactivation, are blocked by micromolar concentrations of 4-aminopyridine, and are resistant to >20 mM tetra-

Fig. 5. Kv1.7 currents. A, family of mKv1.7 currents. The holding potential was −80 mV and depolarizing pulses were applied every 30 s. The test potential was changed from −50 to 50 mV in 10-mV increments. B, peak K⁺ conductance-voltage relation for currents shown in A. The line through the points was fitted with the Boltzmann equation:

\[g_k(E) = \frac{g_{k\text{max}}}{1 + \exp[\frac{(E - E_{1/2})}{k}\] ,

with parameter values \(g_{k\text{max}} = 20 \) nS and \(k = −8 \) mV. C, cumulative inactivation of Kv1.7 currents. Currents were elicited by a train of six depolarizing voltage steps (200-ms duration) to 40 mV every second from a holding potential of −80 mV. The current amplitude decreases significantly during this train of pulses from the largest (first trace) to the smallest (last). D, kinetics of deactivation of Kv1.7 currents. Tail currents were elicited by voltage steps from −100 to −40 mV after a 15-ms depolarizing prepulse to 40 mV. The tail current-decay time constants, \(\tau_t \), were measured by fitting single-exponential functions to the decay of the K⁺ current during repolarization. E, single-channel currents of Kv1.7 in an outside-out patch. The broken line shows the slope conductance.

Fig. 6. Expression of Kv1.7 mRNA in tissues. Northern blot assay.
Kv1.7, a Novel Voltage-gated Potassium Channel Gene

Probes	A	B	C	
Sense	A	hKv3.4	C	mKv1.7
Anti-sense	A	B	C	

FIG. 7. In situ hybridization of mouse pancreas from diabetic db/db mice showing expression of Kv1.7, Kv3.4, and insulin. A–C, pancreatic sections from a db/db mouse hybridized with probes specific for insulin (A), Kv3.4 (B), or Kv1.7 (C). Top, sense probe, dark field; middle, antisense probe, dark field; bottom, antisense probe, bright field, showing the same field as the middle row. Filled arrow, pancreatic islet; open arrow, acinar cells that hybridized with Kv1.7 antisense probe. A, sense and antisense probes, 0.1 ng/ml, 10 days of exposure; B, sense probe, 0.1 ng/μl, 10 days of exposure, and antisense probe, 0.5 ng/μl, 7 days of exposure; C, sense and antisense probes, 0.5 ng/μl, 1 month of exposure. Magnification: A and B, ×425; C, ×312.

Recent studies suggest an important role for Kv channels in regulating islet cell function, specifically in repolarizing the membrane potential following each action potential during the glucose-induced bursting phase associated with insulin secretion (3–6). Despite these interesting findings, the genes encoding Kv genes in β-cells have not been identified. Although the Kv1.5 gene was isolated from human insulinoma cells (33), we did not detect Kv1.5 mRNA in normal or diseased islets. We have, however, demonstrated the presence of Kv1.7 mRNA in these cells. Unlike the nonactivating Kv channels in pancreatic β-cells (3, 4), the Kv1.7 homotetramer exhibits rapid C-type inactivation. Since Kv1.7 mRNA is expressed in pancreatic islets, it is possible that heteromultimers composed of Kv1.7 and other Kv1 subunits constitute the native Kv channels in β-cells. Enhanced levels of such Kv channels would biophysically and pharmacologically similar to the Purkinje fiber I_K current, and transcripts are expressed in the heart, skeletal muscle, brain, placenta, and pancreatic β-cells. This channel is biophysically and pharmacologically similar to the Purkinje fiber I_K current, and the gene may contribute at least one subunit to heteromultimeric Kv channels in pancreatic β-cells.

Acknowledgments—The assistance of F. Glaser, S. Plummer, B. Dethlefs, S. Hoffman, M. Christensen, T. Wymore, C. Chandy, and D. J. Gilbert is gratefully acknowledged. We are obliged to Dr. J. Aiyar for reading and improving our manuscript.

REFERENCES
1. Hille, B. (1993) Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer, Sunderland, MA
2. Chandy, K. G., and Gutman, G. A. (1995) in Handbook of Receprors and Channels: Ligand and Voltage-gated Ion Channels (North, A., ed) pp. 1–72, CRC Press, Boca Raton, FL
3. Smith, P. A., Bokvist, K., Arkhammar, P., Berggren, P. O., and Rorsman, P. (1996) J. Gen. Physiol. 95, 1041–1059
4. Smith, P. A., Ashcroft, F. M., and Rorsman, P. (1996) FEBS Lett. 361, 187–190
5. Philipson, L. H., Rosenberg, M., Kuznetsova, A., Lancaster, M. E., Worley, J. F., III, Roe, M. W., and Dukel, J. D. (1994) J. Biol. Chem. 269, 27787–27790
6. Roe, M. W., Worley, J. F., III, Mittal, A. A., Kuznetsova, A., DasGupta, S., Mertz, R. J., Witherspoon, S. M., 3rd, Blair, N., Lancaster, M. E., McIntyre, M. S., Sheehy, W. R., Dukes, I. D., and Philipson, L. H. (1996) J. Biol. Chem. 271, 32241–32246
7. Lewis, R. S., and Cahalan, M. D. (1995) Annu. Rev. Immunol. 13, 623–653
8. Pongs, O., Keesekenthny, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kitz, H. H., Canal, I., Llamazares, S., and Ferrus, A. (1988) EMBO J. 7, 1087–1099
9. Schwarz, T. L., Papazian, D. M., Carett, R. C., Jan, Y. N., and Jan, L. Y. (1988) Nature 331, 137–142
10. Chandy, K. G., Williams, C. B., Spencer, R. H., Aguilar, B. A., Ghanshani, S., Tempel, B. L., and Gutman, G. A. (1996) Science 247, 973–975
11. Ghanshani, S., Pak, M., McPherson, J. D., Strong, M., Dethlefs, B., Wasmuth, J. J., Saltiff, L., Gutman, G. A., and Chandy, K. G. (1992) Genomics 12, 190–196
12. de Jong, P. J., Yokohata, K., Chen, C., Lohman, F., Pederson, L., McNinch, J., and van Dilla, M. (1990) Cytogenet. Cell Genet. 51, 895
13. Permutt, M. A., Kerzoi, L., Keller, K., Lucy, P. E., Scharp, D. W., and Mueckler, M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 8688–8692
14. Chen, H., Charlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breibart, R. E., Dayk, G. M., Tepper, R., and Morgenstern, J. P. (1996) Cell 84, 491–495
15. Lee, G. H., Proenca, H., Montez, J. M., Carroll, K. M., Darvishzadeh, J. G., Lee, J. J., and Friedman, J. M. (1996) Nature 379, 632–635
16. Shafir, E. (1992) Diabetes Metab. Rev. 8, 179–208

ethyrammonium (34–36) (this study). In contrast, the I_K current in atrial and ventricular muscle, a product of the Kv4.3 gene, does not exhibit cumulative inactivation (36). These studies suggest that at least part of the Purkinje fiber I_K might be encoded by the Kv1.7 gene, although more extensive biophysical and pharmacological studies are required to confirm the link, and the presence of Kv1.7 mRNA and/or protein has yet to be demonstrated in these fibers. The abundant expression of Kv1.7 mRNA in mouse heart suggests that this channel is also likely to be present in ventricular and/or atrial muscle where it may co-assemble with other Kv1 family channels to form heterotramers.
17. Green, E. L. (1981) in *Genetics and Probability in Animal Breeding Experiments*, pp 77–113, Oxford University Press, New York
18. Jenkins, N. A., Copeland, N. G., Taylor, B. A., and Lee, B. K. (1982) *J. Virol.* 43, 26–30
19. Saunders, A. M., and Seldin, M. F. (1990) *Genomics* 8, 525–535
20. Copeland, N. G., and Jenkins, N. A. (1991) *Trends Genet.* 7, 113–118
21. Brandriff, B. F., Gordon, L. A., Tynan, K. T., Olsen, A. S., Mohrenweiser, H. W., Fertitta, A., Carrano, A. V., and Trask, B. J. (1992) *Genomics* 12, 773–779
22. Trask, B., Fertitta, A., Christensen, M., Youngblom, J., Bergmann, A., Copeland, A., de Jong, P., Mohrenweiser, H., Olsen, A., Carrano, A., and Tynan, K. (1993) *Genomics* 15, 133–145
23. Ikeda, S. R., Soler, F., Zühlke, R. D., Lewis, D. L. (1992) *Pflueg. Arch. Eur. J. Physiol.* 422, 201–203
24. Betsholtz, C., Baumann, A., Kenna, S., Ashcroft, F. M., Ashcroft, S. J., Berggren, P. O., Grupe, A., Pongs, O., Rorsman, P., Sandblom, J., and Welch, M. (1990) *FEBS Lett.* 263, 121–126
25. Swafford, D. L. (1993) PAUP: Phylogenetic analysis using parsimony. Version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, IL
26. Groop, L. C., Kankuri, M., Schalin-Jantti, C., Ekstrand, A., Nikula-Ijas, P., Widen, E., Kuismanen, E., Eräes, J., Franssila-Kallunki, A., Saloranta, C., and Koskimies, S. (1993) *N. Engl. J. Med.* 328, 10–14
27. Elbein, S. C., Hoffman, M., Ridinger, D., Otterud, B., and Leppert, M. (1994) *Diabetes* 43, 1061–1065
28. Estivill, X. (1996) *Nat. Genet.* 12, 348–350
29. McCluskey, M., and Cahalan, M. D. (1990) *J. Gen. Physiol.* 95, 208–222
30. Nguyen, Q.A., Kao, J., Hanson, D. C., Bigger, M. S., Canniff, P. C., Donovan, C. R., Mather, R. J., Bruno, M. J., Rauer, H., Aiyar, J., Legle-Kiendza, A., Gutman, G. A., Grissmer, S., Cahalan, M. D., and Chandy, K. G. *Mol. Pharmacol.* 50, 1673–1679, 1996
31. Wymore, R., Korenberg, J. R., Coyle, C., Chen, X.N., Hustad, C., Copeland, N. G., Gutman, G. A., Jenkins, N. A., Chandy, K. G. (1994) *Genomics* 20, 191–202
32. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., Karmilowicz, M. J., Auperin, D. D., and Chandy, K. G. (1994) *Mol. Pharmacol.* 45, 1227–1234
33. Philipson, L. H., Hiee, R. E., Schaefer, K., LaMendola, J., Bell, G. I., Nelson, D. J., and Steiner, D. F. (1991) *Proc. Natl. Acad. Sci. U. S. A.* 88, 53–57
34. Reder, R. F., Miura, D. S., Danilo, P., Jr., and Rosen, M. R. (1981) *Circ. Res.* 48, 658–668
35. Gintant, G. A., Cohen, I. S., Datyner, N. B., and Kline, R. P. (1992) in *The Heart and Cardiovascular System* (Fozzard, H., ed) 2nd Ed., pp. 1122–1166, Raven Press, New York
36. Dixon, J. E., Shi, W., Wang, H. S., McDonald, C., Yu, H., Wymore, R. S., Cohen, I. S., and McKinnon, D. (1996) *Circ. Res.* 79, 659–668
37. Ashworth, L. K., Batzer, M. A., Brandriff, B., Branstrom, E., de Jong, P., Garcia, E., Gurney, J. A., Gordon, L. A., Lamerdin, J. E., Lennon G., Mohrenweiser, H., Olsen, A. S., Slezak, T., and Carrano, A. V. (1995) *Nat. Genet.* 11, 422–427