THE UNIVERSAL THETA DIVISOR OVER THE MODULI SPACE OF CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. By computing the class of the universal antiramification locus of the Gauss map, we obtain a complete birational classification of the universal theta divisor \(\Theta_g \) over the moduli space of curves.

The universal theta divisor over the moduli space \(A_g \) of principally polarized abelian varieties of dimension \(g \) is the divisor \(\Theta_g \) inside the universal abelian variety \(X_g \to A_g \), characterized by two properties: (i) \(\Theta_g \mid [A, \Theta] = \Theta \), for every ppav \([A, \Theta] \in A_g \), and (ii) the restriction \(s^*(\Theta_g) \) along the zero section \(s : A_g \to X_g \) is trivial on \(A_g \). The study of the geometry of \(\Theta_g \) mirrors that of \(A_g \) itself. Thus it is known that \(\Theta_g \) is unirational for \(g \leq 4 \); the case \(g \leq 3 \) is classical, for \(g = 4 \), we refer to [Ve1]. Whenever \(A_g \) is of general type (that is, in the range \(g \geq 7 \), cf. [Fr], [Mum], [T]), one can use Viehweg's additivity theorem [Vi] for the fibre space \(\Theta_g \to A_g \), to conclude that \(\Theta_g \) is of general type as well. Our first result concerns the birational type of \(\Theta_5 \):

Theorem 0.1. The universal theta divisor \(\Theta_5 \) is uniruled.

By making use of the generically finite Prym map \(P : R_6 \to A_5 \), we show that the pull-back of the universal theta divisor over the Prym moduli space \(R_6 \), that is,

\[
\Theta^P_5 := \Theta_5 \times_{A_5} R_6
\]

is uniruled. We sketch the idea of the proof and refer to Section 4 for details.

We fix a general element \([C, \eta] \in R_6\) inducing an étale double cover \(f : \tilde{C} \to C \). The canonical curve \(C \subset \mathbb{P}^5 \) can be viewed as a quadratic section of a smooth quintic del Pezzo surface \(S \subset \mathbb{P}^5 \). A general element \(L \) on the theta divisor \(\Xi(C, \eta) \) of the Prym variety \(P(C, \eta) \) is a line bundle \(L \) on \(\tilde{C} \) such that \(\text{Nm}_f(L) = K_C \) and \(h^0(\tilde{C}, L) = 2 \). We associate to this data a rank 3 quadric \(Q_L \in \text{PSym}^2 H^0(K_C) \) everywhere tangent to the canonical curve \(C \subset \mathbb{P}^5 \) along a Prym canonical divisor, that is,

\[
C \cdot Q_L = 2d_L,
\]

where \(d_L \in |K_C \otimes \eta| \). The pencil in \(|-2K_S| \) generated by the curves \(C \) and \(S \cdot Q_L \) induces a rational curve in the universal Prym theta divisor \(\Theta^P_5 \).

Next we obtain a complete birational classification of the universal theta divisor

\[
\mathcal{Th}_g := M_g \times_{A_g} \Theta_g
\]

over the moduli space of curves. If \([C] \in M_g\) is a smooth curve, the Abel-Jacobi map \(C_{g-1} \to \text{Pic}^{g-1}(C) \) provides a resolution of singularities of the theta divisor \(\Theta_C \) of the Jacobian of \(C \). Thus one may regard the degree \(g - 1 \) universal symmetric product

\[
\mathcal{M}_{g,g-1} := M_{g,g-1}/\mathcal{E}_{g-1}
\]

as a birational model of \(\mathcal{Th}_g \) (having only finite quotient singularities), and ask for the place of \(\mathcal{Th}_g \) in the classification of varieties. We provide a complete answer to this question. For small genus, \(\mathcal{Th}_g \) enjoys rationality properties:
Theorem 0.2. \mathcal{H}_g is unirational for $g \leq 9$ and uniruled for $g \leq 11$.

The first part of the theorem is a consequence of Mukai’s work [M1, M2] on representing canonical curves with general moduli as linear sections of certain homogeneous varieties. When $g \leq 9$, there exists a Fano variety $V_g \subset P^{N_g}$ of dimension $n_g := N_g - g + 2$ and index $n_g - 2$, such that general 1-dimensional complete intersections of V_g are canonical curves $[C] \in \mathcal{M}_g$ having general moduli. The correspondence

$$\Sigma := \{((x_1, \ldots, x_{g-1}), \Lambda) \in V_g^{g-1} \times G(g, N_g + 1) : x_i \in \Lambda, \text{ for } i = 1, \ldots, g - 1\}$$

maps dominantly onto \mathcal{H}_g via the map $((x_1, \ldots, x_{g-1}), \Lambda) \mapsto [V_g \cap \Lambda, x_1 + \cdots + x_{g-1}]$. Since Σ is a Grassmann bundle over the rational variety V_g^{g-1}, it follows that \mathcal{H}_g is unirational in the range $g \leq 9$. The cases $g = 10, 11$ are settled by the observation that in this range the space $\overline{\mathcal{M}}_{g, g-1}$ is uniruled, see [FP], [FV2].

For the remaining genera, we achieve a complete classification. This is the main result of the paper:

Theorem 0.3. The universal theta divisor \mathcal{H}_g is a variety of general type for $g \geq 12$.

We also have a birational classification theorem for the universal degree n symmetric product $\overline{\mathcal{C}}_{g,n} := \overline{\mathcal{M}}_{g,n}/S_n$ for all $1 \leq n \leq g - 2$, and refer to Section 3 for details. Our results are complete in degree $g - 2$ and less precise as n decreases. Similarly to Theorem 0.3, the nature of $\overline{\mathcal{C}}_{g,g-2}$ changes when $g = 12$:

Theorem 0.4. The universal degree $g - 2$ symmetric product $\overline{\mathcal{C}}_{g,g-2}$ is uniruled for $g < 12$ and a variety of general type for $g \geq 12$.

The proof of Theorem 0.3 relies on the calculation of the universal antiramification divisor class of the Gauss map. For a curve C of genus g, let $\gamma : C_{g-1} \dasharrow (P^{g-1})^\vee$ be the Gauss given by $\gamma(D) := \langle D \rangle$ for $D \in C_{g-1} - C_{g-1}^1$. The branch divisor $\text{Br}(\gamma) \subset (P^{g-1})^\vee$ is the dual of the canonical curve $C \subset P^{g-1}$. The closure in C_{g-1} of the ramification divisor $\text{Ram}(\gamma)$ is the locus of divisors $D \in C_{g-1}$ such that $\text{supp}(D) \cap \text{supp}(K_C(-D)) \neq \emptyset$. The antiramification divisor $\text{Antram}(\gamma)$, defined by the following equality of divisors

$$\gamma^*(\text{Br}(\gamma)) = \text{Antram}(\gamma) + 2 \cdot \text{Ram}(\gamma),$$

splits into the locus of non-reduced divisors $\Delta_C := \{2p + D : p \in C, D \in C_{g-3}\}$ and the locus of divisors $D \in C_{g-1}$ such that $K_C(-D)$ has non-reduced support. Globalizing this construction over \mathcal{M}_g, we are lead to consider the universal antiramification divisor $\overline{\text{Antram}}_g := \{[C, x_1, \ldots, x_{g-1}] \in \mathcal{M}_{g,g-1} : \exists p \in C \text{ with } H^0(K_C(-x_1 - \cdots - x_{g-1} - 2p)) \neq 0\}$.

We have the following formula for the class of $\overline{\text{Antram}}_g$:

Theorem 0.5. The closure in $\overline{\mathcal{M}}_{g,g-1}$ of the antiramification locus is linearly equivalent to,

$$[\overline{\text{Antram}}_g] = -4(g - 7)\lambda + 4(g - 2) \sum_{i=1}^{g-1} \psi_i - 2\delta_{\text{irr}} - (12g - 22)\delta_{0:2} - \sum_{i=0}^{g-1} \sum_{s=0}^{i-1} \left(2i^3 - 5i^2 - 3i + 4g - 4i^2 s + 14si - 6gs - s + 2s^2 g - 3s^2 + 2\right)\delta_{i:s} \in \text{Pic}(\overline{\mathcal{M}}_{g,g-1}).$$

\[\text{The description of the ramification divisor of the Gauss map given in [ACGH] p. 247 is erroneous.}\]
The universal theta divisor over the moduli space of curves

By construction, \(\text{Attrib} \) is \(\mathcal{S}_{g-1} \)-invariant, thus it descends to an effective divisor \(\mathcal{E}_g \) on \(\overline{\mathcal{C}}_{g,g-1} \) which, as it turns out, spans an extremal ray of the cone \(\text{Eff}(\overline{\mathcal{C}}_{g,g-1}) \). The universal theta divisor is equipped with the involution \(\tau : \overline{\mathcal{C}}_{g,g-1} \rightarrow \overline{\mathcal{C}}_{g,g-1} \),

\[
\tau([C, x_1 + \cdots + x_{g-1}]) := [C, y_1 + \cdots + y_{g-1}],
\]

where \(\mathcal{O}_C(y_1 + \cdots + y_{g-1} + x_1 + \cdots + x_{g-1}) = K_C \). Then \(\mathcal{E}_g \) is the pull-back of the boundary divisor \(\Delta_{0:2} \subset \overline{\mathcal{C}}_{g,g-1} \) under this map. Since the extremality of \(\Delta_{0:2} \) is easy to establish, the following result comes naturally:

Theorem 0.6. The effective divisor \(\mathcal{E}_g \) is covered by irreducible curves \(\Gamma_g \subset \overline{\mathcal{C}}_{g,g-1} \) such that \(\Gamma_g : \mathcal{E}_g < \mathcal{C}_g \) in particular \(\mathcal{E}_g \in \text{Eff}(\overline{\mathcal{C}}_{g,g-1}) \) is a non-movable extremal effective divisor.

The curves \(\Gamma_g \) have a simple modular construction. One fixes a general linear series \(A \in W^2_{g+1}(C) \), in particular \(A \) is complete and has only ordinary ramification points. The general point of \(\Gamma_g \) corresponds to an element \([C, D] \in \overline{\mathcal{C}}_{g,g-1} \), where \(D \in \mathcal{C}_{g-1} \) is an effective divisor such that \(H^0(C, A \otimes \mathcal{O}_C(-2p - D)) \neq 0 \), for some point \(p \in C \), that is, \(D \) is the residual divisor cut out by a tangent line to the degree \(g+1 \) plane model of \(C \) given by \(A \). We refer to Section 2 for details.

The proofs of Theorems 0.3 and 0.4 rely on two ingredients. First, we use our result \([FV2]\), stating that for \(g \geq 4 \), the singularities of \(\mathcal{C}_{g,n} \) impose no adjoint conditions, that is, plurcanonical forms defined on the smooth locus of \(\overline{\mathcal{C}}_{g,n} \) extend to a smooth model of the symmetric product. Precisely, if \(\epsilon : \overline{\mathcal{C}}_{g,n} \rightarrow \mathcal{C}_{g,n} \) denotes any resolution of singularities, then for any \(\ell \geq 0 \), there is a group isomorphism

\[
\epsilon^* : H^0((\mathcal{C}_{g,n})_{\text{reg}}, K^{\otimes \ell}_{\mathcal{C}_{g,n}}) \xrightarrow{\sim} H^0(\overline{\mathcal{C}}_{g,n}, K^{\otimes \ell}_{\overline{\mathcal{C}}_{g,n}}).
\]

In particular, \(\mathcal{H}_g \) is of general type when the canonical class \(K_{\overline{\mathcal{C}}_{g,g-1}} \in \text{Pic}(\overline{\mathcal{C}}_{g,g-1}) \) is big. This makes the problem of understanding the effective cone of \(\overline{\mathcal{C}}_{g,g-1} \) of some importance. If \(\pi : \overline{\mathcal{M}}_{g,g-1} \rightarrow \overline{\mathcal{C}}_{g,g-1} \) is the quotient map, the Hurwitz formula implies

\[
\pi^*(K_{\overline{\mathcal{C}}_{g,g-1}}) \equiv K_{\overline{\mathcal{M}}_{g,g-1}} - \delta_{0:2} \in \text{Pic}(\overline{\mathcal{M}}_{g,g-1}).
\]

The sum \(\sum_{i=1}^{g-1} \psi_i \in \text{Pic}(\overline{\mathcal{M}}_{g,g-1})^{\text{reg}} \) of cotangent tautological classes descends to a big and nef class on \(\overline{\mathcal{C}}_{g,g-1} \) (cf. Proposition 1.2), thus in order to conclude that \(\mathcal{H}_g \) is of general type, it suffices to exhibit an effective divisor \(\mathcal{D} \in \text{Eff}(\overline{\mathcal{C}}_{g,g-1}) \), such that

\[
\pi^*(K_{\overline{\mathcal{C}}_{g,g-1}}) \in \mathbb{Q}_{>0}\left(\sum_{i=1}^{g-1} \psi_i \right) + \phi^*\text{Eff}(\overline{\mathcal{M}}_g) + \mathbb{Q}_{\geq 0}\left(\lambda, \pi^*([\mathcal{D}]), \delta_{i,c} : i \geq 0, c \geq 2 \right).
\]

In this formula, \(\phi : \overline{\mathcal{M}}_{g,g-1} \rightarrow \overline{\mathcal{M}}_g \) denotes the morphism forgetting the marked points, and refer to Section 1 for the standard notation for boundary divisor classes on \(\overline{\mathcal{M}}_{g,n} \). Comparing condition (2) against the formula for \(K_{\overline{\mathcal{C}}_{g,g-1}} \) given by (1), if one writes

\[
\pi^*(\mathcal{D}) \equiv a\lambda - b_{\text{irr}}\delta_{\text{irr}} + c \sum_{i=1}^{g-1} \psi_i - \sum_i b_{i,c} \delta_{i,c} \in \text{Pic}(\overline{\mathcal{M}}_{g,g-1}),
\]

the following inequality

\[
3c < b_{0:2}
\]

is a necessary condition for the existence of a divisor \(\mathcal{D} \) satisfying (2). It is straightforward to unravel the geometric significance of the condition (3). If \([C] \in \mathcal{M}_g \) is a general curve, there is a rational map \(u : C_{g-1} \rightarrow \overline{\mathcal{C}}_{g,g-1} \) given by restriction. Denoting by
Antram, M.

that all moduli spaces \(\mathcal{D} \) can be chosen to be a Brill-Noether divisor.

Corollary 0.7. The closure inside \(\mathcal{M}_{g,g-1} \) playing this role is precisely \(\mathfrak{Intram}_g \).

We explain briefly how Theorem 0.5 implies the statement about the Kodaira dimension of \(\mathcal{M}_{g,g-1} \). We choose an effective divisor \(D \equiv a\lambda - \sum i b_i \delta_i \in \text{Eff}(\mathcal{M}_g) \) on the moduli space of curves, with \(a, b_i > 0 \), having slope \(s = s(D) := \frac{a}{\min b_i} \) as small as possible. Then note that the following linear combination

\[
\pi^*(K_{\mathcal{M}_{g,g-1}}) - \frac{1}{6g-11} (\frac{3}{2} [\mathfrak{Intram}_g] - (12g-25)\phi^*(D) - \sum_{i=1}^{g-1} \psi_i - ((84g-185) - (12g-25)s) \lambda)
\]

is expressible as a positive combination of boundary divisors on \(\mathcal{M}_{g,g-1} \). Since, as already pointed out, the class \(\sum_{i=1}^{g-1} \psi_i \in \text{Pic}(\mathcal{M}_{g,g-1}) \) descends to a big class on \(\overline{\mathcal{M}}_{g,g-1} \), one obtains the following:

Corollary 0.7. For all \(g \) such that the slope of the moduli space of curves satisfies the inequality

\[
s(\mathcal{M}_g) := \inf_{D \in \text{Eff}(\mathcal{M}_g)} s(D) < \frac{84g-185}{12g-25},
\]

the universal theta divisor \(\Theta_g \) is of general type.

The bound appearing in Corollary 0.7 holds precisely when \(g \geq 12 \); for \(g \) such that \(g + 1 \) is composite, the inequality \(s(\mathcal{M}_g) \leq 6 + 12/(g + 1) \) is well-known, and \(D \) can be chosen to be a Brill-Noether divisor \(\mathcal{M}_{g,d} \) corresponding to curves with a \(g_d \), when the Brill-Noether number \(\rho(g, r, d) = -1 \), cf. [FH1]. When \(g + 1 \) is prime and \(g \neq 12 \), then in practice \(g = 2k - 2 \geq 16 \), and \(D \) can be chosen to be the Gieseker-Petri \(\mathcal{G}^1 \) consisting of curves \(C \) possessing a pencil \(A \in W^1_k(C) \) such that the Petri map \(\mu_0(C, A) : H^0(C, A) \otimes H^0(C, K_C \otimes A) \to H^0(C, K_C) \) is not an isomorphism. When \(g = 12 \), one has to use the divisor constructed on \(\mathcal{M}_{12} \) in [FV1]. Finally, when \(g \leq 11 \) it is known that \(s(\mathcal{M}_g) \geq 6 + 12/(g + 1) \) and inequality (1.7) is not satisfied. In fact, as already pointed out \(\kappa(\Theta_g) = -\infty \) in this range.

The proof of Theorem 0.4 proceeds along similar lines, and relies on finding an explicit \(\mathfrak{G}_{g-2} \)-invariant extremal ray of the cone of effective divisors on \(\mathcal{M}_{g,g-2} \). A representative of this ray is characterized by the geometric condition that the marked points appear in the same fibre of a pencil of degree \(g - 1 \). One can construct such divisors on all moduli spaces \(\mathcal{M}_{g,n} \) with \(1 \leq n \leq g - 2 \), cf. Section 3.

Theorem 0.8. The closure inside \(\mathcal{M}_{g,g-2} \) of the locus

\[
\mathcal{F}_{g,1} := \{ [C, x_1, \ldots, x_{g-2}] \in \mathcal{M}_{g,g-2} : \exists A \in W^1_g(C) \text{ with } H^0(C, A(-\sum_{i=1}^{g-2} x_i)) \neq 0 \}
\]
is a non-movable, extremal effective divisor on \(\mathcal{M}_{g,g-2} \). Its class is given by the formula:

\[
\mathcal{F}_{g,1} \equiv -(g-12)\lambda + (g-3) \sum_{i=1}^{g-2} \psi_i - \delta_{\text{int}} - \frac{1}{2} \sum_{s=2}^{g-2} s(g-4+sg-2s) \delta_{0,s} - \cdots \in \text{Pic}(\mathcal{M}_{g,g-2}).
\]
Note that again, inequality (3) is satisfied, hence $\mathcal{F}_{g,1}$ can be used to prove that $K_{\mathcal{M}_{g,g-2}}$ is big. Moreover, $\mathcal{F}_{g,1}$ descends to an extremal divisor $\mathcal{F}_{g,1} \in \operatorname{Eff}(\mathcal{M}_{g,g-2})$. In fact, we shall show that $\mathcal{F}_{g,1}$ is swept by curves intersecting its class negatively.

1. Cones of divisors on universal symmetric products

The aim of this section is to establish certain facts about boundary divisors on $\mathcal{M}_{g,n}$ and $\mathcal{C}_{g,n}$, see [AC] for a standard reference. We follow the convention set in [FV2], that is, if \mathcal{M} is a Deligne-Mumford stack, we denote by \mathcal{M} its coarse moduli space.

For an integer $0 \leq i \leq [g/2]$ and a subset $T \subset \{1, \ldots, n\}$, we denote by $\Delta_{i:T}$ the closure in $\mathcal{M}_{g,n}$ of the locus of n-pointed curves $[C_1 \cup C_2, x_1, \ldots, x_n]$, where C_1 and C_2 are smooth curves of genera i and $g-i$ respectively meeting transversally in one point, and the marked points lying on C_1 are precisely those indexed by T. We define $\delta_{i:T} := [\Delta_{i:T}]_\mathbb{Q} \in \operatorname{Pic}(\mathcal{M}_{g,n})$. For $0 \leq i \leq [g/2]$ and $0 \leq s \leq g$, we set $\Delta_{i:s} := \sum_{#(T) = s}\delta_{i:T}$, $\delta_{i:s} := [\Delta_{i:s}]_\mathbb{Q} \in \operatorname{Pic}(\mathcal{M}_{g,n})$.

By convention, $\delta_{0:s} := \emptyset$, for $s < 2$, and $\delta_{i:s} := \delta_{g-i:n-s}$. If $\phi: \mathcal{M}_{g,n} \to \mathcal{M}_g$ is the morphism forgetting the marked points, we set $\lambda := \phi^*(\lambda)$ and $\delta_{\text{irr}} := \phi^*(\delta_{\text{irr}})$, where $\delta_{\text{irr}} := [\Delta_{\text{irr}}] \in \operatorname{Pic}(\mathcal{M}_g)$ denotes the class of the locus of irreducible nodal curves. Furthermore, $\psi_1, \ldots, \psi_n \in \operatorname{Pic}(\mathcal{M}_{g,n})$ are the cotangent classes corresponding to the marked points. The canonical class of $\mathcal{M}_{g,n}$ is computed via Kodaira-Spencer theory:

\begin{equation}
K_{\mathcal{M}_{g,n}} = 13\lambda - 2\delta_{\text{irr}} + \sum_{i=1}^n \psi_i - 2 \sum_{T \subset \{1, \ldots, n\}} \delta_{i:T} - [\delta_{1:0}] \in \operatorname{Pic}(\mathcal{M}_{g,n}).
\end{equation}

Let $\mathcal{C}_{g,n} := \mathcal{M}_{g,n}/\mathcal{S}_n$ be the universal symmetric product and $\pi: \mathcal{M}_{g,n} \to \mathcal{C}_{g,n}$ (respectively $\varphi: \mathcal{C}_{g,n} \to \mathcal{M}_g$) the projection (respectively the forgetful map), so that $\phi = \varphi \circ \pi$. We denote by $\bar{\lambda}, \bar{\delta}_{\text{irr}}, \bar{\delta}_{i:c} := [\bar{\Delta}_{i:c}] \in \operatorname{Pic}(\mathcal{C}_{g,n})$ the divisor classes on the symmetric product pulling-back to the same symbols on $\mathcal{M}_{g,n}$. Clearly, $\pi^*(\bar{\lambda}) = \lambda$, $\pi^*(\bar{\delta}_{\text{irr}}) = \bar{\delta}_{\text{irr}}$, $\pi^*(\bar{\delta}_{i:c}) = \bar{\delta}_{i:c}$; in the case $i = 0, c = 2$, this reflects the branching of the map π along the divisor $\bar{\Delta}_{0:2} \subset \mathcal{C}_{g,n}$. Following [FV2], let L denote the line bundle on $\mathcal{C}_{g,n}$, having fibre $L[C, x_1 + \cdots + x_n] := T^{\psi}_{x_1}(C) \otimes \cdots \otimes T^{\psi}_{x_n}(C)$, over a point $[C, x_1 + \cdots + x_n] := \pi([C, x_1, \ldots, x_n]) \in \mathcal{C}_{g,n}$. We set $\bar{\psi} := c_1(L)$, and note:

\begin{equation}
\pi^*(\bar{\psi}) = \sum_{i=1}^n (\psi_i - \sum_{i \in T \subset \{1, \ldots, n\}} \delta_{0:T}) = \sum_{i=1}^n \psi_i - \sum_{s=2}^n s \delta_{0:s} \in \operatorname{Pic}(\mathcal{M}_{g,n}).
\end{equation}

Proposition 1.1. For $g \geq 3$ and $n \geq 0$, the morphism $\pi^*: \operatorname{Pic}(\mathcal{C}_{g,n})_\mathbb{Q} \to \operatorname{Pic}(\mathcal{M}_{g,n})_\mathbb{Q}$ is injective. Furthermore, there is an isomorphism of groups $\operatorname{Pic}(\mathcal{C}_{g,n})_\mathbb{Q} \xrightarrow{\cong} N^1(\mathcal{C}_{g,n})_\mathbb{Q}$, coupled with the commutativity of the obvious diagrams relating the Picard and Néron-Severi groups of $\mathcal{M}_{g,n}$ and $\mathcal{C}_{g,n}$ respectively.

\begin{proof}
The first assertion is an immediate consequence of the existence of the norm morphism $\operatorname{Nm}_\pi: \operatorname{Pic}(\mathcal{M}_{g,n}) \to \operatorname{Pic}(\mathcal{C}_{g,n})$, such that $\operatorname{Nm}_\pi(\pi^*(L)) = L^{\otimes \deg(\pi)}$, for every $L \in \operatorname{Pic}(\mathcal{C}_{g,n})$. The second part comes from the isomorphism $\operatorname{Pic}(\mathcal{M}_{g,n})_\mathbb{Q} \xrightarrow{\cong} N^1(\mathcal{M}_{g,n})_\mathbb{Q}$, coupled with the commutativity of the obvious diagrams relating the Picard and Néron-Severi groups of $\mathcal{M}_{g,n}$ and $\mathcal{C}_{g,n}$ respectively.
\end{proof}
One may thus identify \(\text{Pic}(\tilde{\mathcal{C}}_{g,n})_\mathbb{Q} \cong \text{Pic}(\overline{\mathcal{M}}_{g,n})_\mathbb{Q} \). The Riemann-Hurwitz formula applied to the branched covering \(\pi : \overline{\mathcal{M}}_{g,n} \to \tilde{\mathcal{C}}_{g,n} \) yields,

\[
\pi^*(K_{\tilde{\mathcal{C}}_{g,n}}) = K_{\overline{\mathcal{M}}_{g,n}} - \delta_{0:2} \equiv 13\lambda + \sum_{i=1}^{n} \psi_i - 2\delta_{\text{irr}} - 3\delta_{0:2} - 2 \sum_{s=3}^{n} \delta_{0:s} - \cdots .
\]

As expected, the sum of cotangent classes descends to a big line bundle on \(\tilde{\mathcal{C}}_{g,n} \).

Proposition 1.2. The divisor class \(N_{g,n} := \tilde{\psi} + \sum_{s=2}^{n} s\delta_{0:s} \in \text{Eff}(\tilde{\mathcal{C}}_{g,n}) \) is big and nef.

Proof. The class \(N_{g,n} \) is characterized by the property that \(\pi^*(N_{g,n}) = \sum_{i=1}^{n} \psi_i \). This is a nef class on \(\overline{\mathcal{M}}_{g,n} \), in particular, \(N_{g,n} \) is nef on \(\tilde{\mathcal{C}}_{g,n} \). To establish that \(N_{g,n} \) is big, we express it as a combination of effective classes and the class \(\kappa_1 \in \text{Pic}(\tilde{\mathcal{C}}_{g,n}) \), where

\[
\pi^*(\kappa_1) = \kappa_1 = 12\lambda + \sum_{i=1}^{n} \psi_i - \delta_{\text{irr}} - \sum_{i=0}^{[g/2]} \delta_{i:1} \in \text{Pic}(\overline{\mathcal{M}}_{g,n}).
\]

Since \(\pi^*(\kappa_1) \) is ample on \(\overline{\mathcal{M}}_{g,n} \), it follows that \(\kappa_1 \) is ample as well. To finish the proof, we exhibit a suitable effective class on \(\overline{\mathcal{M}}_{g,n} \) having negative \(\lambda \)-coefficient. For that purpose, we choose \(\mathcal{W}_{g,n} \subset \tilde{\mathcal{C}}_{g,n} \) to be the locus of effective divisors having a Weierstrass point in their support. For \(i = 1, \ldots, n \), we denote by \(\sigma_i : \overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,1} \) the morphism forgetting all but the \(i \)-th point, and let

\[
\mathcal{W} \equiv -\lambda + \left(\frac{g+1}{2} \right) \psi - \sum_{i=1}^{g-1} \left(\frac{g+i+1}{2} \right) \delta_{i:1} \in \text{Eff}(\overline{\mathcal{M}}_{g,1}),
\]

be the class of the divisor of Weierstrass points on the universal curve. Then one finds

\[
\pi^*(\mathcal{W}) = \sum_{i=1}^{n} \sigma_i^*(\tilde{\mathcal{W}}) = -n\lambda + \left(\frac{g+1}{2} \right) \sum_{i=1}^{n} \psi_i - \left(\frac{g+1}{2} \right) \sum_{s=2}^{n} s\delta_{0:s} - \cdots \in \text{Pic}(\overline{\mathcal{M}}_{g,n}),
\]

and \(\mathcal{W}_{g,n} \equiv -g\lambda + \left(\frac{g+1}{2} \right) \tilde{\psi} - \sum_{i=1}^{[g/2]} \sum_{s=2}^{\lfloor g/s \rfloor} b_{i:s} \delta_{i:s} \), where \(b_{i:s} > 0 \). One checks that \(N_{g,n} \) can be written as a \(\mathbb{Q} \)-combination with positive coefficients of the ample class \(\kappa_1 \), the effective class \([\mathcal{W}_{g,n}] \) and other boundary divisor classes. In particular, \(N_{g,n} \) is big. \(\square \)

2. THE UNIVERSAL ANTIRAMIFICATION LOCUS OF THE GAUSSEN MAP

We begin the calculation of the divisor \(\overline{\text{Antram}}_{g} \), and for a start we consider its restriction \(\overline{\text{Antram}}_{g} \) to \(\mathcal{M}_{g,g-1} \). Recall that \(\overline{\text{Antram}}_{g} \) is defined as the closure of the locus of pointed curves \([C, x_1, \ldots, x_{g-1}] \in \mathcal{M}_{g,g-1} \), such that there exists a holomorphic form on \(C \) vanishing at \(x_1, \ldots, x_{g-1} \) and having an unspecified double zero.

Let \(u : \mathcal{M}_{g,g-1}^{(1)} \to \mathcal{M}_{g,g-1} \) be the universal curve over the stack of \((g-1) \)-pointed smooth curves and we denote by \(([C, x_1, \ldots, x_{g-1}], p]) \in \mathcal{M}_{g,g-1}^{(1)} \) a general point, where \([C, x_1, \ldots, x_{g-1}] \in \mathcal{M}_{g,g-1} \) and \(p \in C \) is an arbitrary point. For \(i = 1, \ldots, g-1 \), let \(\Delta_{ip} \subset \mathcal{M}_{g,g-1}^{(1)} \) be the diagonal divisor given by the equation \(p = x_i \). Furthermore, for \(i = 1, \ldots, g-1 \) we consider as before the projections \(\sigma_i : \mathcal{M}_{g,g-1}^{(1)} \to \mathcal{M}_{g,1} \) (respectively \(\sigma_p : \mathcal{M}_{g,g-1}^{(1)} \to \mathcal{M}_{g,1} \), obtained by forgetting all marked points except \(x_i \) (respectively
and have the following exact sequence:

\[
\begin{array}{ccccc}
X & \xrightarrow{q} & M_{g,1}^{(1)} & \xrightarrow{f} & M_{g,1} \\
\downarrow & & \downarrow & & \\
M_{g,1} & \xrightarrow{\phi} & M_g
\end{array}
\]

in which all the morphisms are smooth and \(\phi \) (hence also \(q \)) is proper. For \(1 \leq i \leq g-1 \) there are tautological sections \(r_i : M_{g,1}^{(1)} \to X \) as well as \(r_p : M_{g,1}^{(1)} \to X \), and set \(E_i := \text{Im}(r_i), E_p := \text{Im}(r_p). \) Thus \(\{E_i\}_{i=1}^{g-1} \) and \(E_p \) are relative divisors over \(q \).

For a point \([(C, x_1, \ldots, x_{g-1}), p] \in M_{g,1}^{(1)} \), we denote \(D := \sum_{i=1}^{g-1} x_i + 2p \in C_{g+1} \), and have the following exact sequence:

\[
0 \to \frac{H^0(O_C(D))}{H^0(O_C)} \to H^0(O_D(D)) \xrightarrow{\alpha} H^1(O_C) \to H^1(O_C(D)) \to 0.
\]

In particular, the morphisms \(\alpha_D \) globalize to a morphism of vector bundles over \(M_{g,1}^{(1)} \)

\[
\alpha : A := q_* \left(O_X \left(\sum_{i=1}^{g-1} E_i + 2E_p \right) / O_X \right) \to R^1 q_* O_X.
\]

The subvariety \(Z := \{(C, x_1, \ldots, x_{g-1}), p) \in M_{g,1}^{(1)} : H^0(K_C(-2p - \sum_{i=1}^{g-1} x_i)) \neq 0 \} \) is the non-surjectivity locus of \(\alpha \) and \(\text{Anstram}_g := u_*(Z) \subset M_{g,1}^{(1)} \). The class of \(Z \) is equal to

\[
[Z] = c_2 \left(A^\vee - (R^1 q_* O_X)^\vee \right) = c_2 \left(-q_* O_X \left(\sum_{i=1}^{g-1} E_i + 2E_p \right) \right) \in A^2(M_{g,1}^{(1)}),
\]

where the last term can be computed by Grothendieck-Riemann-Roch:

\[
\chi_q \left(q_* O_X \left(\sum_{i=1}^{g-1} E_i + 2E_p \right) \right) = q_* \left[\left(\sum_{k=0}^{g-1} \frac{(\sum_{i=1}^{g-1} E_i + 2E_p)^k}{k!} \right) \cdot \left(1 - \frac{c_1(\omega_q)}{2} + \frac{c_2(\omega_q)}{12} + \cdots \right) \right],
\]

and we are interested in evaluating the terms of degree 1 and 2 in this expression. The result of applying GRR to the morphism \(q \), can be summarized as follows:

Lemma 2.1. One has the following relations in \(A^*(M_{g,1}^{(1)}) \):

(i)

\[
\chi_1 \left(q_* (O_X \left(\sum_{i=1}^{g-1} E_i + 2E_p \right)) \right) = \lambda - \sum_{i=1}^{g-1} K_i - 3K_p + 2 \sum_{i=1}^{g-1} \Delta_{ip}.
\]

(ii)

\[
\chi_2 \left(q_* (O_X \left(\sum_{i=1}^{g-1} E_i + 2E_p \right)) \right) = \frac{5}{2} K_p^2 + \frac{1}{2} \sum_{i=1}^{g-1} K_i^2 - 2 \sum_{i=1}^{g-1} (K_i + K_p) \cdot \Delta_{ip}.
\]

Proof. We apply systematically the push-pull formula and the following identities:

\[
E_i^2 = -E_i \cdot q^*(K_i), \quad E_p^2 = -E_p \cdot q^*(K_p), \quad E_i \cdot c_1(\omega_q) = E_i \cdot q^*(K_i), \quad E_p \cdot c_1(\omega_q) = E_p \cdot q^*(K_p),
\]

\[
E_i \cdot E_j = 0 \text{ for } i \neq j, \quad E_i \cdot E_p = E_i \cdot q^*(\Delta_{ip}), \quad \text{and } q_* (c_1^2(\omega_q)) = 12 \lambda.
\]
Proposition 2.2. One has $[\text{Antram}_g] = -4(g - 7)\lambda + (4g - 8)\sum_{i=1}^{g-1} \psi_i \in \text{Pic}(M_{g,g-1})$.

Proof. We apply the results of Lemma 2.1 as well as the formulas from [HM] p. 55, in order to estimate the push-forward under u of the degree 2 monomials in tautological classes. Setting $F := q_* (O_C(\sum_{i=1}^{g-1} E_i + 2E_p))$, we obtain that

$$u_* (\text{ch}_1^2(F)) = -(8g - 116)\lambda + (8g - 24)\sum_{i=1}^{g-1} \psi_i,$$

and $u_* (\text{ch}_2(F)) = 30\lambda - 4\sum_{i=1}^{g-1} \psi_i$, hence $[\text{Antram}_g] = u_* (\text{ch}_1^2(F) - 2\text{ch}_2(F))/2$, and the claimed formula follows at once.

We proceed now towards proving Theorem 0.5 and expand the class $[\text{Antram}_g]$ in the standard basis of the Picard group, that is,

$$[\text{Antram}_g] = a\lambda + c\sum_{i=1}^{g-1} \psi_i - b_{irr}\delta_{irr} - \sum_{i=0}^{g-1} b_{i:s}\delta_{i:s}. $$

We have just computed $a = -4(g - 7)$ and $c = 4(g - 2)$. The remaining coefficients are determined by intersecting $[\text{Antram}_g]$ with curves lying in the boundary of $\overline{M}_{g,g-1}$ and understanding how $[\text{Antram}_g]$ degenerates. We begin with the coefficient $b_{0:2}$:

Proposition 2.3. One has the relation $(4g - 6)c - (g - 2)b_{0:2} = (4g - 2)(g - 2)$. It follows that $b_{0:2} = 12g - 22$.

Proof. We fix a general pointed curve $[C, x_1, \ldots, x_{g-2}] \in \mathcal{M}_{g,g-2}$ and consider the family

$$C_{x_{g-1}} := \{ [C, x_1, \ldots, x_{g-2}, x_{g-1}] : x_{g-1} \in C \} \subset \overline{M}_{g,g-1}.$$

The curve $C_{x_{g-1}}$ is the fibre over $[C, x_1, \ldots, x_{g-2}]$ of the morphism $\overline{M}_{g,g-1} \to \overline{M}_{g,g-2}$ forgetting the point labeled by x_{g-1}. Note that $C_{x_{g-1}} \cdot \psi_i = 1$ for $i = 1, \ldots, g - 2$ and $C_{x_{g-1}} \cdot \psi_{g-1} = 3g - 4 = 2g - 2 + (g - 2)$. Obviously $C_{x_i} \cdot \delta_{0:2} = g - 2$ and the points in the intersection correspond to the case when x_{g-1} collides with one of the fixed points x_1, \ldots, x_{g-2}. The intersection of C_{x_i} with the remaining generators of $\text{Pic}(\overline{M}_{g,g-1})$ is equal to zero. We set $A := K_C \otimes O_C(-x_1 - \cdots - x_{g-2}) \in W^1_2(C)$. By the generality assumption, $h^0(C, A) = 2$, and all ramification points of A are simple. Pointed curves in the intersection $C_{x_{g-1}} \cdot [\text{Antram}_g]$ correspond to points $x_{g-1} \in C$, such that there exists a (ramification) point $p \in C$ with $H^0(C, A \otimes O_C(-2p - x_{g-1})) \neq 0$. The pencil A carries $4g - 2$ ramification points. For each of them there are $g - 2$ possibilities of choosing $x_{g-1} \in C$ in the same fibre as the ramification point, hence the conclusion follows.

Next we determine the coefficient b_{irr}. First we note that the relation

$$a - 12b_{irr} + b_{1:0} = 0$$

holds. Indeed, the divisor $[\text{Antram}_g]$ is disjoint from the curve in $\Delta_{1:0} \subset \overline{M}_{g,g-1}$, obtained from a fixed pointed curve $[C, x_1, \ldots, x_{g-1}, q] \in \overline{M}_{g-1,g}$, by attaching at the point q a pencil of plane cubics along a section of the pencil induced by one of the 9 base points.

Proposition 2.4. One has the relation $b_{irr} = 2$.

Proof. We fix a general curve \([C, q, x_1, \ldots, x_{g-1}] \in \mathcal{M}_{g-1,g}\) and we define the family

\[C_{\text{irr}} := \{ [C/t \sim q, x_1, \ldots, x_{g-1}] : t \in C \} \subset \mathcal{M}_{g-1,g-1}. \]

Then \(C_{\text{irr}} \cdot \psi_i = 1\) for \(i = 1, \ldots, g - 1\), \(C_{\text{irr}} \cdot \delta_{i1} = -(\deg(K_C) + 2) = -2g + 2\), and finally \(C_{\text{irr}} \cdot \delta_{10} = 1\). All other intersection numbers with generators of \(\text{Pic}(\mathcal{M}_{g-1,g})\) equal zero.

We fix an effective divisor \(D \in C_e\) of degree \(e \geq g\) (for instance \(D = q + \sum_{i=1}^{g-1} x_i\)). For each pair of points \((t, p) \in C \times C\), there is an exact sequence on \(C\)

\[0 \rightarrow H^0(C, K_C(q + t - 2p - \sum_{i=1}^{g-1} x_i)) \rightarrow H^0(C, K_C(D + q + t - 2p - \sum_{i=1}^{g-1} x_i)) \rightarrow \]

\[H^0(D, K_C(D + q + t - 2p - \sum_{i=1}^{g-1} x_i)) \rightarrow H^1(C, K_C(q + t - 2p - \sum_{i=1}^{g-1} x_i)) \rightarrow 0. \]

The intersection \(C_{\text{irr}} \cdot \mathfrak{Antram}_g\) corresponds to the locus of pairs \((t, p) \in C \times C\) such that the map \(\beta_{t,p}\) is not injective. On the triple product of \(C\), we consider two of the projections \(f : C \times C \times C \rightarrow C \times C\) and \(p_1 : C \times C \times C \rightarrow C\) given by \(f(x, t, p) = (t, p)\) and \(p_1(x, t, p) = x\), then set \(A := K_C(q - \sum_{i=1}^{g-1} x_i) \in \text{Pic}^{g-2}(C)\). We denote by \(\Delta_{12}, \Delta_{13} \subset C \times C \times C\) the corresponding diagonals, and finally, introduce the line bundle on \(C \times C \times C\)

\[\mathcal{F} := p_1^*(A) \otimes O_{C \times C \times C}(\Delta_{12} - 2\Delta_{13}). \]

Applying the Porteous formula, one can write

\[C_{\text{irr}} \cdot \mathfrak{Antram}_g = c_2(R^1 f_* \mathcal{F} - R^0 f_* \mathcal{F}) = \frac{\text{ch}_1^2(f_* \mathcal{F}) + 2\text{ch}_2(f_* \mathcal{F})}{2} \in A^2(C \times C). \]

We evaluate \(\text{ch}_i(f_* \mathcal{F})\) using GRR applied to the morphism \(f\), that is,

\[\text{ch}(f_* \mathcal{F}) = f_* \left[\left(\sum_{a \geq 0} \left(\frac{p_1^*(A) + \Delta_{12} - 2\Delta_{13}}{a!} \right) \cdot \left(1 - \frac{1}{a} p_1^*(K_C) \right) \right) \right]. \]

Denoting by \(F_1, F_2 \in H^2(C \times C)\) the class of the fibres, after calculations one finds that

\[\text{ch}_1(f_* \mathcal{F}) = -(g - 2) F_1 - 4(g - 2) F_2 - 2 \Delta_C \in H^2(C \times C, \mathbb{Q}), \]

\[\text{ch}_2(f_* \mathcal{F}) = -(2g - 2) \in H^4(C \times C, \mathbb{Q}), \]

that is, \(c_2(R^1 f_* \mathcal{F} - R^0 f_* \mathcal{F}) = 4(g - 2)(g - 1)\). Coupled with (6), this yields \(b_{\text{irr}} = 2\).

We are left with the task of determining the coefficient of \(\delta_{i,s}\). This requires solving a number of enumerative geometry problems in the spirit of de Jonquières’ formula. We fix integers \(0 \leq i \leq g\) and \(s \leq i - 1\) as well as general pointed curves \([C, x_1, \ldots, x_s] \in \mathcal{M}_{i,s}\) and \([D, q, x_{s+1}, \ldots, x_{g-1}] \in \mathcal{M}_{g-i,g-s}\), then construct a pencil of stable curves of genus \(g\), by identifying the fixed point \(q \in D\) with a variable point, also denoted by \(q\), on the component \(C\):

\[C_{i,s} := \{ [C \cup_q D, x_1, \ldots, x_s, x_{s+1}, \ldots, x_{g-1}] : q \in C \} \subset \Delta_{i,s} \subset \mathcal{M}_{g,g-1}. \]

We summarize the non-zero intersection numbers of \(C_{i,s}\) with generators of \(\text{Pic}(\mathcal{M}_{g,g-1})\):

\[C_{i,s} \cdot \psi_1 = \cdots = C_{i,s} \cdot \psi_s = 1, \ C_{i,s} \cdot \delta_{i,s-1} = i, \ C_{i,s} \cdot \delta_{i,s} = 2i - 2 + s. \]
Theorem 2.5. We fix integers $0 \leq i \leq g$ and $0 \leq s \leq i - 1$. Then, the following formula holds:

$$b_{i,s} = 2i^3 - 5i^2 - 3i + 4g - 4i^2 s + 14si - 6gs - s + 2s^2 g - 3s^2 + 2.$$

In the proof an essential role is played by the following calculation:

Proposition 2.6. Let i, s be integers such that $0 \leq s \leq i - 1$, and $[C, x_1, \ldots, x_s] \in \mathcal{M}_{i,s}$ a general pointed curve. The number of pairs $(q, p) \in C \times C$ such that

$$H^0(C, K_C \otimes \mathcal{O}_C(-x_1 - \cdots - x_s - (i - s - 1)q - 2p)) \neq 0,$$

is equal to $a(i, s) := 2(i - s - 1)(2i^3 - 5i^2 - 2i^2 s + 3i s)$.

Remark 2.7. By specializing, one recovers well-known formulas in enumerative geometry. For instance, $a(3, 0) = 56$ is twice the number of bitangents of a smooth plane quartic, whereas $a(4, 0) = 324$ equals the number of canonical divisors of type $3g + 2p + x \in |K_C|$, where $|C| \in \mathcal{M}_4$. This matches de Jonquières’ formula, cf. [ACGH] p.359.

Proof of Theorem 2.5 We fix a general point $[C \cup_q D, x_1, \ldots, x_{g-1}] \in C_{i,s} \cdot \mathcal{Antram}_{q}$ corresponding to a point $q \in C$. We shall show that q is not one of the marked points x_1, \ldots, x_s on C, then give a geometric characterization of such points and count their number. Let

$$\omega_D \in H^0(D, K_D \otimes \mathcal{O}_D(2iq)) \quad \text{and} \quad \omega_C \in H^0(C, K_C \otimes \mathcal{O}_C(2g - 2i)q)$$

be the aspects of the section of the limit canonical series on $C \cup_q D$, which vanishes doubly at an unspecified point $p \in C \cup D$ as well as along the divisor $x_1 + \cdots + x_{g-1}$. The condition $\text{ord}_q(\omega_C) + \text{ord}_q(\omega_D) \geq 2g - 2$, comes from the definition of a limit linear series. We distinguish two cases depending on the position of the point p. If $p \in D$ then,

$$\text{div}(\omega_C) \geq x_1 + \cdots + x_s, \quad \text{div}(\omega_D) \geq x_{s+1} + \cdots + x_{g-1} + 2p.$$

Since the points $q, x_{s+1}, \ldots, x_{g-1} \in D$ are general, we find that $\text{ord}_q(\omega_D) \leq i + s - 2$. Moreover, $K_D \otimes \mathcal{O}_D(i - s + 2q - x_{s+1} - \cdots - x_{g-1}) \in W^1_{q-i+1}(D)$ is a pencil, and $p \in D$ is one of its (simple) ramification points. The Hurwitz formula gives $4(g - i)$ choices for such $p \in D$.

By compatibility, $\text{ord}_q(\omega_C) \geq 2g - i - s$. A parameter count implies that equality must hold. The condition $H^0(C, K_C \otimes \mathcal{O}_C(-x_1 - \cdots - x_s - (i - s)q)) \neq 0$, is equivalent to asking that $q \in C$ be a ramification point of $K_C \otimes \mathcal{O}_C(- \sum_{j=1}^s x_j) \in W^1_{2i - 2s - 1}(C)$. Since the points $x_1, \ldots, x_s \in C$ are chosen to be general, all ramification points of this linear series are simple and occur away from the marked points. From Plücker’s formula, the number of ramification points equals $(i - s)(i^2 - 1 - is)$. Multiplying this with the number of choices for $p \in D$, we obtain a total contribution of $4(g - i)(i - s)(i^2 - is - 1)$ to the intersection $C_{i,s} \cdot \mathcal{Antram}_{q}$, stemming from the case when $p \in D$. The proof that each of these points of intersection is to be counted with multiplicity 1 is standard and proceeds along the lines of [EH2] Lemma 3.4.

We assume now that $p \in C$. Keeping the notation from above, it follows that $\text{ord}_q(\omega_D) = i + s - 1$ and $\text{ord}_q(\omega_C) = 2g - i - s - 1$, therefore

$$0 \neq \sigma_C \in H^0(C, K_C \otimes \mathcal{O}_C(- \sum_{j=1}^s x_j - (i - s - 1)q - 2p)).$$
The section $ω_D$ is uniquely determined up to multiplication by scalars, whereas there are $a(i, s)$ choices on the side of C, each counted with multiplicity 1.

In principle, the double zero of the limit holomorphic form could specialize to the point of attachment $q ∈ C ∩ D$, and we prove that this would contradict our generality hypothesis. One considers the semistable curve $X := C ∪ q_1 E ∪ q_2 D$, obtained from $C ∪ D$ by inserting a smooth rational component E at q, where $\{q_1\} := C ∩ E$ and $\{q_2\} := D ∩ E$. There also exist non-zero sections

$$\omega_D ∈ H^0(D, K_D(2i_q2)), \quad ω_E ∈ H^0(E, O_E(2g_2 – 2)), \quad ω_C ∈ H^0(C, K_C((2g_2 – 2)i_1)), $$

satisfying $\text{ord}_{q_1}(ω_C) + \text{ord}_{q_1}(ω_E) ≥ 2g_2 – 2$ and $\text{ord}_{q_2}(ω_E) + \text{ord}_{q_2}(ω_D) ≥ 2g_2 – 2$. Furthermore, $ω_E$ vanishes doubly at a point $p ∈ \{q_1, q_2\}^c$. Since $ω_C$ (respectively $ω_D$) also vanishes along the divisor $x_1 + \cdots + x_s$ (respectively $x_{s+1} + \cdots + x_{g_2 – 1}$), it follows that $\text{ord}_{q_1}(ω_C) ≤ 2g_2 – i – s$ and $\text{ord}_{q_2}(ω_D) ≤ i + s – 1$, hence by compatibility, $\text{ord}_{q_1}(ω_C) + \text{ord}_{q_2}(ω_D) ≥ 2g_2 – 3$. This rules out the possibility of a further double zero and shows that this case does not occur.

To summarize, keeping in mind that the $ψ$-coefficient of $[\text{Anstram}_{g}]$ is equal to $4g_2 – 8$, we find the relation

$$(7) \quad (2i_2 – 2s)b_{i_2} – sb_{i_2} + s(4g_2 – 8) = 4(g_i – i)(s_i – 2s) + a(i, s).$$

For $s = 0$, we have by convention $b_{i_2} = 0$, which gives $b_{i_2} = 2i^2 – 5i^2 – 3i + 4 + 1$. By induction, we find using recursion (7) the claimed formula for $b_{i, s}$. □

As already explained, having calculated the class $[\text{Anstram}_{g}] ∈ \text{Pic}(\overline{M}_{g, g – 1})$ and using known bound on the slope $s(M_g)$, one derives that \mathcal{T}_g is of general type when $g ≥ 12$. We discuss the last cases in Theorem 0.2 and thus complete the birational classification of \mathcal{T}_g:

\textit{End of proof of Theorem 0.2} We noted in the Introduction that for $g ≤ 9$ the space \mathcal{T}_g is unirational, being the image of a variety which is birational to a Grassmann bundle over the rational Mukai variety $V^{g_2 – 1}_g$. When $g ∈ \{10, 11\}$, the space $\overline{M}_{g, g – 1}$ is uniruled [FP]. This implies the uniruledness of \mathcal{T}_g as well. □

3. The Kodaira Dimension of $\overline{C}_{g,n}$

In this section we provide results concerning the Kodaira dimension of the symmetric product $\overline{C}_{g,n}$, where $n ≤ g – 2$. There are two cases depending on the parity of the difference $g – n$. When $g – n$ is even, we introduce a subvariety inside $\overline{C}_{g,n}$ consisting of divisors $D ∈ C_n$ which appear in a fibre of a pencil of degree $(g + n)/2$ on a curve $[C] ∈ M_g$. We set integers $g ≥ 1$ and $1 ≤ m ≤ g/2$, then consider the locus

$$\mathcal{F}_{g,m} := \{[C, x_1, \ldots, x_{g – 2m}] ∈ \overline{M}_{g,g – 2m} : ∃ A ∈ W^1_{g – m}(C) \text{ with } H^0(C, A(– \sum_{j=1}^{g–2m} x_j)) ≠ 0\}.$$

A parameter count shows that $\mathcal{F}_{g,m}$ is expected to be an effective divisor on $\overline{M}_{g,g – 2m}$. We shall prove this, then compute the class of its closure in $\overline{M}_{g,g – 2m}$.

□
Theorem 3.1. Fix integers $g \geq 1$ and $1 \leq m \leq g/2$, then set $n := g - 2m$ and $d := g - m$. The class of the compactification inside $\overline{M}_{g,g-2m}$ of the divisor $\mathcal{F}_{g,m}$ is given by the formula:

$$
\mathcal{F}_{g,m} = \left(\frac{10n}{g-2} \left(\frac{g-2}{d-1} \right) - \frac{n}{g} \left(\frac{g}{d} \right) \right) \lambda + \frac{n-1}{g-1} \left(\frac{g-1}{d-1} \right) \sum_{j=1}^{n} \psi_j - \frac{n}{g-2} \left(\frac{g-2}{d-1} \right) \delta_{irr} - \sum_{s=2}^{n} \left(\frac{s(n^2 - g + sgn - sn)}{2(g-1)(d-g)} \right) \left(\frac{g-1}{d} \right) \delta_{0.s} - \cdots \in \text{Pic}(\overline{M}_{g,n}).
$$

Proof. We fix a general curve $[C] \in M_g$ and consider the incidence correspondence

$$
\Sigma := \{ (D, A) \in C_{g-2m} \times W_{g-m}(C) : H^0(C, A \otimes \mathcal{O}_C(-D)) \neq 0 \},
$$

together with the projection $\pi_1 : \Sigma \to C_{g-2m}$. It follows from [F1] Theorem 0.5, that Σ is pure of dimension $g - 2m - 1 = \rho(g,1,g-m) + 1$. To conclude that $\mathcal{F}_{g,m}$ is a divisor inside $\overline{M}_{g,g-2m}$, it suffices to show that the general fibre of the map π_1 is finite, which implies that $\phi^{-1}([C]) \cap \mathcal{F}_{g,m}$ is a divisor in $\phi^{-1}([C])$; we also note that the fibre $\phi^{-1}([C])$ is isomorphic to the n-th Fulton-Macpherson configuration space of C. We specialize to the case $D = (g - 2m) \cdot p$, where $p \in C$. One needs to show that for a general curve $[C] \in M_g$, there exist finitely many pencils $A \in W_{g-m}(C)$ with $h^0(C, A \otimes \mathcal{O}_C(-(g-m)p)) \geq 1$, for some point $p \in C$. This follows from [HM] Theorem B, or alternatively, by letting C specialize to a flag curve consisting of a rational spine and g elliptic tails, in which case the point p specializes to a $(g-2m)$-torsion points on one of the elliptic tails (in particular it can not specialize to a point on the spine). For each of these points, the pencils in question are in bijective correspondence to points in a transverse intersection of Schubert cycles in $G(2, g-m+1)$. In particular their number is finite.

In order to compute the class $[\mathcal{F}_{g,m}]$, we expand it in the usual basis of $\text{Pic}(\overline{M}_{g,n})$

$$
\mathcal{F}_{g,m} \equiv a \lambda + c \sum_{i=1}^{g-2m} \psi_i - b_{irr} \delta_{irr} - \sum_{i,s \geq 0} b_{i,s} \delta_{i,s},
$$

then note that the coefficients a, c and b_{irr} respectively, have been computed in [F2] Theorem 4.9. The coefficient $b_{0,2}$ is determined by intersecting $\mathcal{F}_{g,m}$ with a fibral curve

$$
C_{x_n} := \{ [C, x_1, \ldots, x_{n-1}, x_n] : x_n \in C \} \subset \overline{M}_{g,n},
$$

corresponding to a general $(n-1)$-pointed curve $[C, x_1, \ldots, x_{n-1}] \in \overline{M}_{g,n-1}$. By letting the points $x_1, \ldots, x_{n-1} \in C$ coalesce to a point $q \in C$, points in the intersection $C_{x_n} \cap \mathcal{F}_{g,m}$ are in $1:1$ correspondence with points $x_n \in C$, such that $h^0(C, A(-(n-1)q - x_n)) \geq 1$. This number equals $(g - 2m - 1) \binom{g}{m}$, see [HM] Theorem A, that is,

$$
(2g + 2n - 4)c - (n - 1)b_{0,2} = C_{x_n} \cdot \mathcal{F}_{g,m} = (m + 1) \# \left\{ A \in W_{g-m}(C) : h^0(C, A \otimes \mathcal{O}_C(-(g-2m-1)q)) \geq 1 \right\} = (g - 2m - 1) \binom{g}{m},
$$

which determines $b_{0,2}$. The coefficients $b_{0,s}$ are computed recursively, by exhibiting an explicit test curve $\Gamma_{0,s} \subset \Delta_{0,s}$ which is disjoint from $\mathcal{F}_{g,m}$. We fix a general element
\[[C, q, x_{s+1}, \ldots, x_n] \in \overline{M}_{g,n+1-s} \] and a general \(s \)-pointed rational curve \([\mathbf{P}^1, x_1, \ldots, x_s] \in \overline{M}_{0,s}\). We glue these curves along a moving point \(q \) lying on the rational component:
\[
\Gamma_{0,s} := \{ [\mathbf{P}^1 \cup q, C, x_1, \ldots, x_s, x_{s+1}, \ldots, x_n] : q \in \mathbf{P}^1 \} \subset \Delta_{0,s} \subset \overline{M}_{g,n}.
\]
Clearly, \(\Gamma_{0,s} \cdot \mathcal{F}_{g,m} = sc + (s - 2) b_{0,s} - s b_{0,s-1} \). We claim \(\Gamma_{0,s} \cap \mathcal{F}_{g,m} = \emptyset \). Assume that on the contrary, one can find a point \(q \in \mathbf{P}^1 \) and a limit linear series \(g_{ds} \) on \(\mathbf{P}^1 \cup q, C \),
\[
l = ((A, V_C), (O_{\mathbf{P}^1}(d), V_{\mathbf{P}^1})) \in G^1_d(C) \times G^1_d(\mathbf{P}^1),
\]
together with sections \(\sigma_C \in V_C \) and \(\sigma_{\mathbf{P}^1} \in V_{\mathbf{P}^1} \), satisfying \(\text{ord}_q(\sigma_C) + \text{ord}_q(\sigma_{\mathbf{P}^1}) \geq d \) and
\[
\text{div}(\sigma_C) \geq x_{s+1} + \cdots + x_n, \quad \text{div}(\sigma_{\mathbf{P}^1}) \geq x_1 + \cdots + x_s.
\]
Since \(\sigma_{\mathbf{P}^1} \neq 0 \), one finds that \(\text{ord}_q(\sigma_{\mathbf{P}^1}) \leq g - m - s \), hence by compatibility, \(\text{ord}_q(\sigma_C) \geq s \). We claim that this is impossible, that is, \(H^0(\mathcal{C}, A \otimes \mathcal{O}_C(-sq - x_1 - \cdots - x_n)) \neq 0 \), for every \(\mathcal{C} \in W^1_{g,m}(C) \). Indeed, by letting all points \(x_{s+1}, \ldots, x_n, q \in C \) coalesce, the statement \(H^0(\mathcal{C}, A \otimes \mathcal{O}_C(-(g - 2m) \cdot q)) = 0 \), for a general \([C, q] \in \overline{M}_{g,1}\) is a consequence of the “pointed” Brill-Noether theorem as proved in [EH1] Theorem 1.1. This shows that \(0 = \Gamma_{0,s} \cdot \mathcal{F}_{g,m} = sc + (s - 2)b_{0,s} - sb_{0,s-1} \),
for \(3 \leq s \leq n \), which determines recursively all coefficients \(b_{0,s} \). The remaining coefficients \(b_{0,i} \) with \(1 \leq i \leq \lfloor g/2 \rfloor \) can be determined via similar test curve calculations, but we skip these details. \(\square \)

Keeping the notation from the proof of Theorem 3.1, a direct consequence is the calculation of the class of the divisor \(\mathcal{F}_{g,m}[C] := \pi_1(\Sigma) \) inside \(C_{g-2m} \). This offers an alternative proof of [Mus] Proposition III; furthermore the proof of Theorem 3.1 answers in the affirmative the question raised in loc.cit., concerning whether the cycle \(\mathcal{F}_{g,m}[C] \) has expected dimension, and thus, it is a divisor on \(C_{g-2m} \).

We denote by \(\theta \in H^2(C_{g-2m}, \mathbb{Q}) \) the class of the pull-back of the theta divisor, and by \(x \in H^2(C_{g-2m}, \mathbb{Q}) \) the class of the locus \(\{ p_0 + D : D \in C_{g-2m-1} \} \) of effective divisors containing a fixed point \(p_0 \in C \). For a very general curve \([C] \in \mathcal{M}_g \), the group \(N^1(C_{g-2m}, \mathbb{Q}) \) is generated by \(x \) and \(\theta \), see [ACGH].

Let \(\overline{\mathcal{F}}_{g,m} \) be the effective divisor on \(\mathcal{C}_{g,g-2m} \) to which \(\mathcal{F}_{g,m} \) descends, that is, \(\pi^*(\overline{\mathcal{F}}_{g,m}) = \mathcal{F}_{g,m} \). The class of \(\overline{\mathcal{F}}_{g,m} \) is completely determined by Theorem 3.1.

Corollary 3.2. Let \([C] \in \mathcal{M}_g \) be a general curve. The cohomology class of the divisor
\[
\mathcal{F}_{g,m}[C] := \{ D \in C_{g-2m} : \exists A \in W^1_{g,m}(C) \text{ such that } H^0(C, A \otimes \mathcal{O}_C(-D)) \neq 0 \}
\]
is equal to \((1 - \frac{2m}{g})(g \theta - \frac{a}{g-2m} x) \). In particular, the class \(\theta - \frac{a}{g-2m} x \in N^1(C_{g-2m}, \mathbb{Q}) \) is effective.

Proof. Let \(u : C_{g-2m} \dashrightarrow \mathcal{C}_{g,g-2m} \) be the rational map given by
\[
u(x_1 + \cdots + x_{g-2m}) = [C, x_1 + \cdots + x_{g-2m}].
\]
Note that \(u \) is well-defined outside the codimension 2 locus of effective divisors with support of length at most \(g - 2m - 2 \). We have that \(u^*(\overline{\delta}_{0,2}) = \delta_C \), where \(\delta_C := [\Delta_C]/2 \) is the reduced diagonal. Its class is given by the MacDonald formula, cf. [K1] Lemma 7:
\[
\delta_C \equiv -\theta + (2g - 2m - 1)x.
\]
Furthermore, \(u^*(\tilde{\psi}) \equiv \theta + \delta_C + (2m - 1)x \), see [K2] Proposition 2.7. Thus \(\mathcal{F}_{g,m}[C] \equiv u^*(\mathcal{F}_{g,m}) \), and the conclusion follows after some calculations. \(\square \)

The divisor \(\tilde{\mathcal{F}}_{g,m} \) is defined in terms of a correspondence between pencils and effective divisors on curves, and it is fibred in curves as follows: We fix a complete pencil \(A \in W_{g-m}^1(C) \) with only simple ramification points. The variety of secant divisors

\[
V_{g-2m}^1(A) := \{ D \in C_{g-2m} : H^0(C, A \otimes \mathcal{O}_C(-D)) \neq 0 \}
\]
is a curve (see [F1]), disjoint from the indeterminacy locus of the rational map \(u : C_{g-2m} \rightarrow \mathcal{T}_{g,g-2m}^n \). We set \(\Gamma_{g-2m}(A) := u(V_{g-2m}^1(A)) \cap \mathcal{T}_{g,g-2m}^n \). By varying \([C] \in \mathcal{M}_g \) and \(A \in W_{g-m}^1(C) \), the curves \(\Gamma_{g-2m}(A) \) fill-up the divisor \(\tilde{\mathcal{F}}_{g,m} \). It is natural to test the extremality of \(\tilde{\mathcal{F}}_{g,m} \) by computing the intersection number \(\Gamma_{g-2m}(A) \cdot \tilde{\mathcal{F}}_{g,m} \). To state the next result in a unified form, we adopt the convention \(\binom{a}{b} := 0 \), whenever \(b < 0 \).

Proposition 3.3. For all integers \(1 \leq m < g/2 \), we have the formula:

\[
\Gamma_{g-2m}(A) \cdot \tilde{\mathcal{F}}_{g,m} = (m-1) \binom{g-m-2}{m} \binom{g}{m}.
\]

In particular, \(\Gamma_{g-2}(A) \cdot \tilde{\mathcal{F}}_{g,1} = 0 \), and the divisor \(\tilde{\mathcal{F}}_{g,1} \in \text{Eff}(\mathcal{T}_{g,g-2}) \) is extremal.

Proof. This is an immediate application of Corollary 3.2. The class \([V_{g-2m}^1(A)]\) can be computed using Porteous’ formula, see [ACGH] p.342:

\[
[V_{g-2m}^1(A)] \equiv \sum_{j=0}^{g-2m-1} \binom{-m-1}{j} \frac{x^j \cdot g^{g-2m-j-1}}{(g-2m-1-j)!} \in H^{2(g-2m-1)}(C_{g-2m}, \mathbb{Q}).
\]

Using the push-pull formula, we write \(\Gamma_{g-2m}(A) \cdot \tilde{\mathcal{F}}_{g,m} = \mathcal{F}_{g,m}[C] \cdot [V_{g-2m}^1(A)] \), then estimate the product using the identity \(x^k g^{g-2m-k} = g!/((2m+k)! \in H^{2(g-2m)}(C_{g-2m}, \mathbb{Q}) \) for \(0 \leq k \leq g-2m \). For \(m = 1 \), observe that \(\Gamma_{g-2}(A) \cdot \tilde{\mathcal{F}}_{g,1} = 0 \). Since the curves of type \(\Gamma_{g-2}(A) \) cover \(\tilde{\mathcal{F}}_{g,1} \), this implies that \(\tilde{\mathcal{F}}_{g,1} \) is extremal. \(\square \)

We can use Theorem 3.1 to describe the birational type of \(\overline{\mathcal{C}}_{g,n} \) when \(12 \leq g \leq 21 \) and \(1 \leq n \leq g-2 \). We recall that when \(g \leq 9 \), the space \(\overline{\mathcal{C}}_{g,n} \) is uniruled for all values of \(n \). The transition cases \(g = 10, 11 \), as well as the case of the universal Jacobian \(\overline{\mathcal{C}}_{g,g} \), are discussed in detail in [EV2]. Furthermore \(\overline{\mathcal{C}}_{g,n} \) is uniruled when \(n \geq g+1 \); in this case the symmetric product \(C_n \) of any curve \([C] \in \mathcal{M}_g \) is birational to a \(\mathbb{P}^{n-1} \)-bundle over the Jacobian \(\text{Pic}^n(C) \). Our main result is that, in the range described above, \(\overline{\mathcal{C}}_{g,n} \) is of general type in all the cases when \(\mathcal{M}_{g,n} \) is known to be of general type, see [Log], [F2]. We note however that the divisors \(\mathcal{F}_{g,m} \) only carry one a certain distance towards a full solution. The classification of \(\overline{\mathcal{C}}_{g,n} \) is complete only when \(n \in \{ g-1, g-2, g \} \).

Theorem 3.4. For integers \(g = 12, \ldots, 21 \), the universal symmetric product \(\overline{\mathcal{C}}_{g,n} \) is of general type for all \(f(g) \leq n \leq g-1 \), where \(f(g) \) is described in the following table.

\(g \)	12	13	14	15	16	17	18	19	20	21
\(f(g) \)	10	11	10	10	9	9	7	6	4	
Proof. The strategy described in the Introduction to prove that $K_{\Theta_{g, g-1}}$ is big, applies to the other spaces $\bar{C}_{g,n}$ with $1 \leq n \leq g-2$ as well. To show that $\bar{C}_{g,n}$ is of general type, it suffices to produce an effective class on $\bar{C}_{g,n}$ which pulls back via π to $a \lambda + c \sum_{i=1}^{n} \psi_{i} - b_{ir} \delta_{ir} - \sum_{i,s} b_{i,s} \delta_{i,s} \in \text{Eff}(\bar{M}_{g,n})^{3},$ such that the following conditions are fulfilled:

$$\frac{a + s(\bar{M}_{g})}{13c}(2c - b_{ir}) < 1 \quad \text{and} \quad \frac{b_{0,2}}{3c} > 1.$$

When $g - n$ is even, we write $g - n = 2m$, and for all entries in the table above one can express $K_{\bar{C}_{g,n}}$ as a positive combination of $\sum_{i=1}^{n} \psi_{i} \cdot [\bar{C}_{g,m}], \varphi^{*}(D)$, where $D \in \text{Eff}(\bar{M}_{g})$, and other boundary classes.

If $g - n = 2m + 1$ with $m \in \mathbb{Z}_{\geq 0}$, for each integer $1 \leq j \leq n + 1$, we denote by $\phi_{j} : \bar{M}_{g,n+1} \to \bar{M}_{g,n}$ the projection forgetting the j-th marked point and consider the effective \mathbb{G}_{n}-invariant effective \mathbb{Q}-divisor on $\bar{M}_{g,n}$

$$E := \frac{1}{n + 1} \sum_{j=1}^{n+1} \psi_{j}(\bar{C}_{g,m} : \delta_{0 : \{j,n+1\}}) \in \text{Eff}(\bar{M}_{g,n}).$$

Using Theorem 3.1 as well as elementary properties of push-forwards of tautological classes, $K_{\bar{C}_{g,n}}$ is expressible as a positive \mathbb{Q}-combination of boundaries, $[E]$, a pull-back of an effective divisor on \bar{M}_{g}, and the big and nef class $\sum_{i=1}^{n} \psi_{i}$ precisely in the cases appearing in the table. \hfill \Box

Remark 3.5. When $g \notin \{12, 16, 18\}$, the bound $s(\bar{M}_{g}) \leq 6 + 12/(g + 1)$, emerging from the slope of the Brill-Noether divisors, has been used to verify (8). In the remaining cases, we employ the better bounds $s(\bar{M}_{12}) = 4415/642 < 6 + 12/13$ (see [FV1]), and $s(\bar{M}_{16}) = 407/61 < 6 + 12/17$ see [F2], coming from Koszul divisors on \bar{M}_{12} and \bar{M}_{16} respectively. On \bar{M}_{18}, we use the estimate $s(\bar{M}_{18}) \leq 302/45$ given by the class of the Petri divisor $P_{18,10}^{P}$, see [EH1]. Improvements on the estimate on $s(\bar{M}_{g})$ in the other cases, will naturally translate in improvements in the statement of Theorem 3.4.

4. THE UNIVERSAL Prym Theta DIVISOR IN GENUS 6

The aim of this last section is to establish the uniruledness of the universal theta divisor $\sigma : \Theta_{6} \to \mathcal{R}_{6}$, over the moduli space \mathcal{R}_{6} classifying pairs $[C, \eta]$, where C is a smooth curve of genus 6 and $\eta \in \text{Pic}^{0}(C)$ is a non-trivial 2-torsion point. It is proved in [DS] that the Prym map $P : \mathcal{R}_{6} \to A_{5}$ is generically finite of degree 27, thus in order to conclude that Θ_{5} is uniruled it suffices to establish the same conclusion for Θ_{6}.

For a point $[C, \eta] \in \mathcal{R}_{g}$, we denote by $f : \tilde{C} \to C$ the unramified double cover induced by η and by $i : \tilde{C} \to \bar{C}$ the involution interchanging the sheets of f. Setting $P := PH^{0}(K_{\tilde{C}})^{\vee}$, we view $P^{+} := PH^{0}(K_{C})^{\vee}$ as a subset of P. If

$$\text{Nm}_{f} : \text{Pic}^{2g-2}(\tilde{C}) \to \text{Pic}^{2g-2}(C)$$

is the norm map, then $P(C, \eta) := \text{Nm}_{f}^{-1}(K_{C})^{+}$ and one has the following realization for the Prym theta divisor:

$$\Xi(C, \eta) := \{ L \in \text{Pic}^{2g-2}(\tilde{C}) : \text{Nm}_{f}(L) = K_{C}, h^{0}(\tilde{C}, L) \geq 2, h^{0}(\bar{C}, L) \text{ is even} \}.$$

The universal Prym theta divisor Θ_{6}^{P} is the parameter space of triples $[C, \eta, L]$, where $[C, \eta] \in \mathcal{R}_{g}$ and $L \in \Xi(C, \eta)$ and $\sigma([C, \eta, L]) = [C, \eta]$.
We fix a general element \([C, \eta, L] \in \Theta_p^6\), where \(h^0(\tilde{C}, L) = 2\). The set of divisors
\[
\{ f_*(D) : D \in |L| \} \subset |K_C|
\]
can be viewed as a conic in a \((g - 1)\)-dimensional projective space. Following \[Ve2\], to this conic one can associate its dual hypersurface \(Q_L \in \text{PSym}^2 H^0(K_C)\) which is a rank 3 quadric. Alternatively, viewing \(L \in W_{2g-2}(\tilde{C})\) as a singular point of the Riemann theta divisor \(\Theta_{\tilde{C}}\), we consider the projectivized tangent cone \(\hat{Q}_L \supset \tilde{C}\) of \(\Theta_{\tilde{C}}\) at the point \(\tilde{L}\), and then \(Q_L := \hat{Q}_L \cap P^6\). In coordinates, if \((s_1, s_2)\) is a basis of \(H^0(\tilde{C}, L)\), we have the following concrete description of the two quadrics:
\[
\hat{Q}_L : (s_1 \cdot \iota^*(s_1)) \cdot (s_2 \cdot \iota^*(s_2)) - (s_1 \cdot \iota^*(s_2))^2 = 0
\]
and
\[
Q_L : 4(s_1 \cdot \iota^*(s_1)) \cdot (s_2 \cdot \iota^*(s_2)) - (s_1 \cdot \iota^*(s_2) + s_2 \cdot \iota^*(s_1))^2 = 0.
\]
We summarize the properties of \(Q_L\), and refer to \[Ve2\] for details:

Proposition 4.1. For a general point \([C, \eta, L] \in \Theta_p^6\), there exists a rank 3 quadric \(Q_L \subset \P H^0(K_C)^2\) satisfying the following properties:

(i) The rulings of \(Q_L\) cut out the pencils \(L\) and \(\iota^*(L)\) on the curve \(\tilde{C}\).

(ii) \(Q_L : C = 2d_L\), for some Prym canonical divisor \(d_L \in |K_C \otimes \eta|\).

(iii) The divisor \(\iota^*(d_L)\) consists of points \(\tilde{x} \in \tilde{C}\) such that \(h^0(\tilde{C}, L(-\tilde{x} - \iota(\tilde{x})) = 1\).

(iv) For a general divisor \(d \in |K_C \otimes \eta|\), there exists \(L \in \mathcal{E}(C, \eta)\) such that \(d = \iota^*(d_L)\).

Specializing to the case \(g = 6\), we are in a position to prove that \(\Theta_p^6\) is uniruled.

Proof of Theorem 0.1. We fix a general point \([C, \eta, L] \in \Theta_p^6\). There exists a smooth del Pezzo surface \(S \subset P^5\) containing the canonical image of \(C\) and such that \(C \subset |-2K_S|\). Using Proposition 4.1 to \(L \in \mathcal{E}(C, \eta)\), one associates a Prym canonical divisor \(d_L \in |K_C \otimes \eta|\) and a quadric \(Q_L \subset P^5\). The curve \(C_L := S \cap Q_L\) is a smooth curve of genus 6; since it lies on a rank 3 quadric it is endowed with a vanishing theta-null induced from the ruling of \(Q_L\). Let \(P_L \subset |O_S(2)|\) be the pencil spanned by \(C\) and \(C_L\), or equivalently, the pencil on \(S\) that on the curve \(C\) cuts out the divisor \(2d_L\).

For each smooth curve \(C' \in P_L\), the fixed divisor \(d_L \in \text{Div}(C')\) can be viewed as belonging to the linear system \(|K_{C'} \otimes \eta'|\), for a certain point of order two \(\eta' \in \text{Pic}^0(C')[2]\). This induces a point \([C', \eta'] \in R_6\). Furthermore, if \(f' : \tilde{C}' \rightarrow C'\) is the induced covering, since \(\tilde{C}' \subset \hat{Q}_L\), the rulings of \(\hat{Q}_L\) cut out a line bundle \(L' \in \text{Pic}(\tilde{C}')\) such that \(\text{Nm}_{f'}(L') = K_{C'}\) and \(h^0(\tilde{C}', L') \geq 2\). Furthermore, \(h^0(\tilde{C}', L')\) is even, because the parity of line bundles with canonical norm do not mix in deformations, hence \(L' \in \mathcal{E}(C', \eta')\). It follows that the family of elements \([C', \eta', L']\) defines a rational curve in \(\Theta_p^6\) passing through a general point of the moduli space.

References

[AC] E. Arbarello and M. Cornalba, *The Picard groups of the moduli spaces of curves*, Topology 26 (1987), 153-171.

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, *Geometry of algebraic curves*, Grundlehren der mathematischen Wissenschaften 267, Springer.

[DS] R. Donagi and R. Smith, *The structure of the Prym map*, Acta Mathematica 146 (1981), 25-102.

[EH1] D. Eisenbud and J. Harris, *The Kodaira dimension of the moduli space of curves of genus 23*, Inventiones Math. 90 (1987), 359-387.
[EH2] D. Eisenbud and J. Harris, *Irreducibility of some families of linear series with Brill-Noether number −1*, Annales Scientifique École Normale Supérieure 22 (1989), 33-53.

[F1] G. Farkas, *Higher ramification and varieties of secant divisors on the generic curve*, Journal of the London Mathematical Society 78 (2008), 418-440.

[F2] G. Farkas, *Koszul divisors on moduli spaces of curves*, American Journal of Math. 131 (2008), 819-869.

[FP] G. Farkas and M. Popa, *Effective divisors on \(\overline{M}_g \), curves on K3 surfaces and the Slope Conjecture*, Journal of Algebraic Geometry 14 (2005), 151-174.

[FV1] G. Farkas and A. Verra, *The geometry of the moduli space of odd spin curves*, arXiv:1004.0278.

[FV2] G. Farkas and A. Verra, *The classification of the universal Jacobian over the moduli space of curves*, arXiv:1005.5354, to appear in Commentarii Math. Helvetici.

[Fr] E. Freitag, *Die Kodairadimension von Körpren automorpher Funktionen*, J. reine angew. Mathematik 296 (1977), 162-170.

[HM] J. Harris and D. Mumford, *On the Kodaira dimension of \(\overline{M}_g \)*, Inventiones Math. 67 (1982), 23-88.

[K1] A. Kouvidakis, *Divisors on symmetric products of curves*, Transactions American Math. Soc. 337 (1993), 117-128.

[K2] A. Kouvidakis, *On some results of Morita and their application to questions of ampleness*, Math. Zeitschrift 241 (2002), 17-33.

[Log] A. Logan, *The Kodaira dimension of moduli spaces of curves with marked points*, American Journal of Math. 125 (2003), 105-138.

[M1] S. Mukai, *Fano 3-folds*, in: Complex Projective Geometry (Trieste/Bergen 1989), London Math. Society Lecture Notes Series 179, 255-263.

[M2] S. Mukai, *Curves and symmetric spaces I*, American Journal of Math. 117 (1995), 1627-1644.

[Mum] D. Mumford, *On the Kodaira dimension of the Siegel modular variety*, in: Algebraic Geometry-Open problems (Ravello 1982), Lecture Notes in Mathematics 997 (1983), 348-375.

[Mus] Y. Mustopa, *Kernel bundles, syzygies and the effective cone of \(C_{g−2} \)*, International Math. Research Notices 2010, doi:10.1093/imrn/rnn119.

[T] Y.S. Tai, *On the Kodaira dimension of the moduli space of abelian varieties*, Inventiones Math. 69 (1982), 425-439.

[Ve1] A. Verra, *On the universal principally polarized abelian variety of dimension 4*, in: Curves and abelian varieties (Athens, Georgia, 2007) Contemporary Mathematics 465 (2008), 253-274.

[Ve2] A. Verra, *The degree of the Gauss map for a general Prym theta divisor*, Journal of Algebraic Geometry 10 (2001), 219-246.

[Vi] E. Viehweg, *Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs*, J. reine angew. Mathematik, 330 (1982), 132-142.