Review

The Genus Ochrobactrum as Major Opportunistic Pathogens

Michael P. Ryan 1,2 and J. Tony Pembroke 2,*

1 Department of Applied Sciences, Limerick Institute of Technology, Moylish, V94 EC5T Limerick, Ireland; michaelpryan1983@gmail.com
2 Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, V94 T9PX2 Limerick, Ireland
* Correspondence: tony.pembroke@ul.ie

Received: 22 October 2020; Accepted: 13 November 2020; Published: 16 November 2020

Abstract: Ochrobactrum species are non-enteric, Gram-negative organisms that are closely related to the genus Brucella. Since the designation of the genus in 1988, several distinct species have now been characterised and implicated as opportunistic pathogens in multiple outbreaks. Here, we examine the genus, its members, diagnostic tools used for identification, data from recent Ochrobactrum whole genome sequencing and the pathogenicity associated with reported Ochrobactrum infections. This review identified 128 instances of Ochrobactrum spp. infections that have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Ochrobactrum spp. outbreaks if these bacteria are clinically isolated in more than one patient and that Ochrobactrum spp. are more important pathogens than previously thought.

Keywords: Ochrobactrum; nosocomial infection; environmental bacteria

1. Introduction

Gram-negative, non-fermenting bacteria are an emergent worry in medical situations and are becoming a growing cause of severe infections. Pathogens of this type are opportunistic and include many different bacterial species, such as Ralstonia spp., Pseudomonas aeruginosa, Sphingomonas paucimobilis and Brevundimonas spp. [1–5]. Gram-negative, non-fermenting bacteria can infect both patients undergoing treatments and individuals outside of a clinical setting with various underlying conditions or diseases. Another type of these bacteria are the members of the α-proteobacterial genus Ochrobactrum [6].

Ochrobactrum spp. are found in a wide variety of environments including water, aircraft water, soil, plants and animals [6–12]. Several Ochrobactrum spp. have been investigated for their potential to degrade xenobiotic pollutants and for heavy metal detoxification under a variety of environmental conditions [13–16]. Ochrobactrum spp. are very closely related to brucellae, and even though they are considered to be of low virulence, they have increasingly been found to cause infections (some serious including endocarditis and septicaemia) in immunocompetent hosts [17,18].

Investigation of the scientific/medical literature presented a wide variety of infections resultant from Ochrobactrum spp. and these were resistant to wide variety of antibiotics. Our data point to the genus being a more common pathogen than previously supposed, with many of the infections/conditions caused by Ochrobactrum spp. being aggressive and debilitating. The overall aim of this work is to present a summary of the types of Ochrobactrum spp. infections, any underlying disorders/illnesses in patients that accompany these infections and the potential treatments that can be used in the management of infections to support medical specialists.
2. Genus Ochrobactrum

The genus Ochrobactrum emerged from what was previously categorised as the CDC group VD1-2. The type species Ochrobactrum anthropi had previously been called Achromobacter VD based on the Special Bacteriology Section of the US Center for Disease Control [19]. Initial results indicate members of the group grew on MacConkey agar producing catalase, oxidase and urease; strains could be Gram-negative to variable [20]. However, the taxonomic position of Achromobacter became complicated and the name Achromobacter and related CDC group VD were no longer accepted by Bergeys Manual [19] leading to a new classification and the emergence of the genus Ochrobactrum [21]. Ochrobactrum spp. are phylogenetically related to members of the alpha-2 subdivision of Proteobacteria. They are catalogued on the Brucella rRNA branch of rRNA superfamily IV. Thus, from the previous CDC group Vd, a novel genus and a new species, Ochrobactrum anthropi, was proposed [21,22]. The type strain was Gram-negative, aerobic, rod shaped, non-pigmented and motile. It produced acid from a selection of carbohydrates and reduced both nitrate and nitrite and possessed a GC ratio between 56 to 59% [21]. Almost all 56 strains categorised as CDC Group Vd that were used to support the new genus Ochrobactrum came from various human clinical specimens. Since the initial description of O. anthropi, several other species have since been described (Table 1 and Figure 1). Certain Ochrobactrum spp. can be opportunistic pathogens especially in a hospital environment with the majority of reported cases due to hospital-acquired infections in patients with indwelling and invasive medical devices, including central venous catheters and drainage tubes [23]. In addition, the organism shows widespread resistance to penicillins and other antibiotics that cause clinical management issues with immunocompromised hosts [24,25]. The phylogenetic relationship between all described Ochrobactrum spp can be seen in Figure 1.

Table 1. List of current accepted Ochrobactrum species.

Species	Isolation	Genome Sequences	Reference
Ochrobactrum anthropi	Clinical isolate	Strain: OAB; Size: 4.9 Mbp; Ref Genome:	
		GCA_000742955.1 (41 genomes)	[22]
Ochrobactrum ciceri	Nodules of Cicer	No Genome	[26]
Ochrobactrum cytisi	Cystisus nodules	Strain: IPA7.2; Size: 5.96 Mbp; Ref Genome:	
		GCA_001876955.1 (1 genome)	[27]
Ochrobactrum daejeonense	Sludge	Strain: JCM 16234; Size: 4.8 Mbp; Ref Genome:	
		GCA_012103095.1 (1 genome)	[28]
Ochrobactrum endophyticum	Roots of Glycyrrhiza	No Genome	[29]
Ochrobactrum gallinaeacis	Chicken faeces	Strain: ISO196; Ref Genome: GCF_006476605.1; Size: 3.74 Mbp (1 genome)	[11]
Ochrobactrum grignonense	Wheat Roots	Strain: OgA9a; Size: 4.84 Mbp; Ref Genome: NZ_NNRL00000000.1 (1 genome)	[9]
Ochrobactrum haemophilum	Clinical Isolate	Strain: LIIsuc1; Size: 4.91 Mbp; Ref Genome: GCA_003550135.1 (3 genomes)	[30]
Ochrobactrum intermedium	Human blood	Strain: NCTC12171; Size: 4.73 Mbp; Ref Genome: GCA_900454225.1 (18 genomes)	[22]
Ochrobactrum lupini	Lupinus albus	Strain: LUP21; Size: 5.5 Mbp; Ref Genome: GCA_002252535.1 (2 genomes)	[31,32] *
Ochrobactrum orgae	Rice rhizosphere	Strain: OA447; Size: 4.47 Mbp; Ref Genome: NZ_PTRC00000000.1 (1 genome)	[33]
Ochrobactrum pecoris	Farm Animals	Strain: 08RR263; Size: 5.06 Mbp; Ref Genome: GCA_006376675.1 (1 genome)	[34]
Ochrobactrum pitutosum	Industrial Environment	Strain: AA2 Size: 5.47 Mbp; Ref Genome: GCA_002025625.1 (4 genomes)	[35]
Ochrobactrum pseudintermedium	Clinical isolate	Strain: CCUG34735; Size: 4.39 Mbp; Ref Genome: GCA_008932435.1 (1 genome)	[36]
Ochrobactrum pseudogrignonense	Clinical isolate	Strain: K8; Size: 4.99 Mbp; Ref Genome: GCA_001652485.1 (6 genomes)	[30]
Ochrobactrum quorumnocens	Potato rhizosphere	Strain: A44; Size: 5.5 Mbp; Ref Genome: GCA_002278035.1 (2 genomes)	[37]
Ochrobactrum rhizosphaerae	Potato rhizosphere	Strain: PR17; Size: 4.9 Mbp; Ref Genome: GCF_002252475.1 (2 genomes)	[38]
Ochrobactrum soli Cattle farm soil Strain: BO-7; Size: 45 Mbp; Ref Genome: GCA_003664555.1 (3 genomes)
Ochrobactrum thiophenivorans Industrial Environment Strain: DSM 7216; Size: 4.4 Mbp; Ref Genome: GCA_002252445.1 (2 genomes)
Ochrobactrum teleogrylli insect Telogryllus occipitalis root soil No Genome
Ochrobactrum tritici wheat rhizosphere root soil Strain: DSM 13340; Size: 5.5 Mbp; Ref Genome: GCA_012395245.1 (6 genomes)

* First described as Ochrobactrum lupini by Trujillo et al. [31] and later reclassified as Ochrobactrum anthropi by Volpiano et al. [32] following whole-genome sequence analysis.

Figure 1. Phylogenetic structure of the genus Ochrobactrum along with the genus Brucella. (a) The tree based on partial 16S rRNA gene sequences obtained using neighbour joining with Maximum Composite Likelihood method (MEGA package). GenBank accession numbers are given with the species name. Numbers at nodes are bootstrap values based on 1000 resamplings. Bar, 0.0050 substitutions per site [41,42].

3. Identification of Ochrobactrum spp.

Ochrobactrum species are Gram-negative and composed of short rods that are straight or slightly curved with one end flame shaped. They are generally motile and do not produce haemolysis on blood agar [43].
3.1. Biochemical Identification

Biochemical identification can be carried out using biochemical-testing kits such as the API 20NE or Vitek-2 (BioMérieux, France). When biochemical testing is carried out, it is normal to test isolates against Brucella agglutinating sera to prevent misdiagnosis with Brucella its close neighbour [44]. It has been shown that commercial kits are generally unsuitable for identification or differentiation amongst Ochrobactrum [45]. Analysis of 103 clinically relevant Ochrobactrum strains indicated that biochemical reaction profiles of the API and BD Phoenix™ 100 systems for identifying Ochrobactrum isolates can only be used at the genus level [46]. Care is required when identifying Ochrobactrum in clinical situations as misidentification has occurred with Brucella melitensis [47].

For identification of Ochrobactrum spp., it was proposed that the isolation of non-fastidious, non-fermenting, oxidase-positive, Gram-negative rods that are resistant to Beta-lactams (except imipenem) indicates the isolate is from the genus Ochrobactrum [43]. The API 20NE will confirm the identification to genus level for the majority of strains (Table 2). In addition, it has been proposed that urease activity, the mucoidy of the colonies and growth at 45 °C on tryptic soy agar coupled to susceptibility to colistin, tobramycin and netilmicin should be used as differentiating characteristics in the determination of O. anthropi and O. intermedium to the species level [43].

In many clinical situations, the Microscan Walkaway system is used for primary identification and any unusual non-fermentative bacteria are analysed via biochemical analysis methods such as the RapID NF Plus system. This strategy has been shown to generally perform very well [48]. There have been cases of misdiagnosis of Ochrobactrum anthropi (subsequently confirmed by VITEK) as Shewanella putrefaciens [48]. Of course, the opposite has also been reported where a Brucella suis bacteraemia was mistakenly identified as Ochrobactrum anthropi by the VITEK 2 system [49,50]. These studies underscore the difficulty encountered in identifying unusual Gram-negative, non-fermentative bacteria such as Ochrobactrum.

Using the API 20E, API 20NE, Biolog GN 1	Reaction
Indole	-ve
Catalase	+ve
Cytochrome oxidase	+ve
H₂S	-
Acetoin	-ve
Citrate utilisation	-ve
Carbohydrate fermentation	-ve
Adipate assimilation	-ve
Detection Arginine dihydrolase	-ve
Detection Lysine decarboxylase	-ve
Detection Ornithine decarboxylase	-ve
Detection Beta galactosidase	-ve
Detection Gelatinase	-ve
Urease O. anthropi	+ve
O. intermedium	variable
O. grignonense	-ve
O. tritici	-ve
O. gallinafacis	-ve
Assimilation glucose, arabinose, mannose, N-acetylglucosamine, maltose and malate	+ve

3.2. Fatty Acid Analysis

Use of fatty acid analysis as a differentiation marker using the Sherlock System and comparison with the Sherlock database provided the identification result for O. anthropi with an ID score of 0.556, indicating its poor utility for differentiation at the species level [45].
3.3. Molecular Identification

Molecular tools have long been applied to the typing of Ochrobactrum species. Early studies utilised pulsed-field gel electrophoresis and rep-PCR for the epidemiological analysis [52] followed by AFLP (Amplified Restriction Fragment Length Polymorphism) to confirm the relatedness of O. anthropi and O. intermedium with its Brucella relatives [53] using a limited number of isolates. The molecular diversity of a larger number of Ochrobactrum strains were investigated by comparing environmental isolates from soil and the rhizosphere and comparing these to a number of clinical isolates [12]. Rep-PCR using a combination of BOX and REP primers were used to profile the isolates. The isolates used in this study clustered according to their species designation [12] indicating that rep-PCR profiling offered a good tool for species delineation.

However, the differentiation of species is somewhat difficult because of their phenotypic similarity and indeed confusion amongst 16s rDNA sequences [45]. Errors still occur such as in the case of bacteraemia where the causative agent was recognised as Ralstonia paucula by the Microscan Walkaway system but later following DNA sequencing was identified as O. anthropi [54].

16s rDNA sequence similarity between O. anthropi and O. intermedium ranged from 97.9% to 98.7% depending on the strains compared [43] suggesting a higher genetic deviation in O. intermedium than is found in O. anthropi. The genetic structure of a collection of 65 isolates (37 clinical, 11 environmental and 17 from culture collections) illustrative of the known natural distribution of O. intermedium was analysed by MLSA (Multi-Locus Sequence Analysis) [53].

A recA-PCR RFLP (Restriction Fragment Length Polymorphism) assay was also developed to study interspecies variability within Ochrobactrum using recA sequences from known isolates including 38 O. anthropi strains and type strains of O. intermedium, O. tritici and O. lupini and comparing these with closely related Brucella strains [54]. It was concluded that recA-sequence analysis provided a reliable molecular subtyping tool for Ochrobactrum at both the inter- and intraspecies level. Subsequently, a sensitive recA gene-based multi-primer single-target PCR assay has been created to differentiate O. anthropi, O. intermedium and Brucella that had been reported to cause diagnostic difficulty (Table 3) [55–57]. Teyssier et al. used 35 clinical isolates and the type strains of all known Ochrobactrum species (all confirmed as Ochrobactrum species by 16s rDNA sequencing) to examine comparative identification techniques ranging from commercial kits to biochemical and ribotyping [43].

Table 3. Molecular methods applied to identify Ochrobactrum spp. [57].

Method	Target	Sequence	Amplicon (bp)	Species
PCR	recA	Anth-f GCAAGCTGGTGCTCGATCTGG	544	Ochrobactrum anthropi
		Anth-r TTTCGACGCCACCGCCTTTTA		
		Inter-f CGCGTTGGTGCTGCTTCAA	402	Ochrobactrum intermedium
		Inter-r GGAACGAGAGATAGACGGGTAT		

3.4. MALDI-TOF MS

MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionisation–Time-of-Flight) was initially used to identify Ochrobactrum intermedium from a range of difficult to identify strains as an alternative to Vittek, API or 16s rDNA sequencing in a large validation screen with some 204 genera showing discordant results from different identification methods [58]. The method has since found utility for evaluation within the Ochrobactrum genus. The utility of automated rep-PCR (DiversiLab™ system, BioMèrieux, France) and MALDI-TOF MS analysis was compared for typing of 23 O. anthropi clinical isolates (bacteraemias) [44]. MALDI-TOF MS evaluation clustered the 23 strains of O. anthropi into a single group containing four distinct subgroups at close distance, indicating a high similarity between the isolates but also its accuracy in identification [44]. The technique of MALDI-TOF MS is gaining widespread usage in clinical situations and is increasingly utilised for Ochrobactrum identification in the clinic [59].
4. Ochrobactrum spp. Virulence

Ochrobactrum spp. are considered to be of low virulence. A study carried out by Yagel et al. into the virulome of Ochrobactrum spp. looked at the genomes of 130 isolates [60]. These isolates were taken from clinical, environmental, animal and plant settings. The study identified a limited number of virulence factors in the majority of these isolates. They found lipid A biosynthesis genes in all genomes analysed. They also found other virulence-associated genes in the majority of isolates such as genes associated with fatty acid biosynthesis (fabZ), carbohydrate metabolism (pgm and cgs), cell wall biosynthesis (wbpL) and biofilm formation (ricA, 95%). Genes for other more widespread Gram-negative virulence-associated proteins were not found in these genomes [60].

5. Ochrobactrum spp. Outbreaks

5.1. Outbreak Identification

All obtainable publications (journal articles, case reports and conference proceedings) discussing Ochrobactrum spp. infections were recovered using the PubMed, Web of Knowledge and Google Scholar search databases from 1980 to April 2020. The terms “CDC group VD1-2”, “Ochrobactrum”, “Ochrobactrum spp.”, “Ochrobactrum anthropi” and “Ochrobactrum intermedium” as well as all species names listed in Table 1 were searched. Any publications that discussed infection were set aside. These papers/abstracts were then read and the required information extracted from them. This information included year, geographic location, patient information (age, sex and any underlying medical conditions), antimicrobial testing, treatment and patient outcomes where available. The references cited from these publications were also checked for any publications/reports that may not have been found during the database searches.

5.2. Outbreak Analysis

The results of the investigations of the literature can be seen in Tables 4 and 5. The tables summarise year, geographic location, patient information (age, sex and any underlying medical conditions), antimicrobial testing, treatment and patient outcome. One hundred seventeen separate instances of Ochrobactrum anthropi infection (277 individual cases) were identified along with a further eleven instances (twelve cases) of Ochrobactrum intermedium, Ochrobactrum oryzae, Ochrobactrum pseudogrignonense, Ochrobactrum pseudointermedium and Ochrobactrum tritici infection. The major breakdown of O. anthropi related conditions were as follows: forty-six instances of bacteraemia (42%) from which three were described as “bloodstream infections” that were usually associated with catheters, fourteen instances of sepsicaemia/sepsis/septic shock (12%) and two further instances of biliary sepsis (2%), nine instances of endophthalmitis, eight instances of peritonitis, four instances of pneumonia (8%) and two instances each of endocarditis (2%). Other infections included two cases of keratitis (2%), four of various types of abscess (neck, pelvic, pancreatic and retropharyngeal) (3%) and one instance each of “hand infection” and brain empyema (1%). There have also been multiple reported instances of Ochrobactrum spp. infection that have caused two or more conditions. These include bacteraemia and necrotising fasciitis, bacteraemia and pneumonia, sepsicaemia and peritonitis and two instances of septic shock and endocarditis. Ten cases of death associated to Ochrobactrum spp. infection (all O. anthropi) have also been reported in the literature, four with sepsis/sepsicaemia (one with endocarditis), two with peritonitis and one each with a bloodstream infection, pyrogenic infection, endocarditis and infection of transjugular intrahepatic portosystemic shunt.

6. Factors linked with Ochrobactrum spp. Infection

6.1. Underlying Conditions/Illness

The bulk of Ochrobactrum related infections (Tables 4 and 5) had an associated underlying disorder or disease that increased patient susceptibility to infection. Multiple patients, who were
afflicted with a variety of different cancers or those with kidney failure (caused by diabetes mellitus), contracted *Ochrobactrum*-related bacteraemia/septicaemia due to a catheter/undergoing dialysis. These demonstrate how *Ochrobactrum* acts as an opportunistic pathogen in immunocompromised individuals. Infections were both hospital and community acquired. This is of interest as opportunistic pathogens such as *Ochrobactrum* spp. are mostly contracted in clinical environments. It was also interesting that a high level of instances of infection, 23 separate instances, occurred where patients had no underlying health conditions.

6.2. *Pseudo--Outbreaks*

To date, six pseudo-outbreaks have been described with *Ochrobactrum* spp. (Table 4 and Table 5). These may be challenging as they may lead to unessential/unneeded treatments such as needless courses of antibiotics or patient interventions (e.g., the removal of indwelling devices including various catheter types) and can waste both time and resources in both the clinical laboratory and treatment ward settings. Pseudo-outbreaks have many possible causes including contaminated water or materials used in the clinical testing laboratory or contaminated medical solutions such as saline. Montaña et al. described how *O. anthropi* was the reason for a pseudo-outbreak in a general treatment ward in an Argentinean hospital due to contaminated collection tubes [61]. No symptoms connected with bacterial infection were observed in any patients, even though *O. anthropi* was identified in microbiological testing. The recovered bacteria were carbapenem-resistant.
Table 4. Incidences of *Ochrobactrum anthropi* infection from 1980 to 2020. Main characteristics of the case reports.

Author (Ref)	Year	Sex/Age	Country	Co-morbidity	Type of Infection	Susceptible to*	Resistance to*	Treatment	Outcome
Appelbaum and Campbell [62]	1980	M/75 years old	USA	COPD, MI, CVA	Pancreatic abscess	Gentamicin, TMP-SMZ	Amikacin, Chloramphenicol, Tetracycline, Tobramycin	Gentamicin	Died of respiratory failure
Kish [63]	1984	F/21 years old	USA	Astrocytoma	Bacteraemia (catheter related)	Amikacin, Gentamicin, Imipenem, Moxalactam, Gentamicin, Tetracycline, TMP-SMZ, Amikacin, Gentamicin	Chloramphenicol, Netilmicin, Rifampin, Tobramycin	TMP-SMZ, Gentamicin	Complete Recovery
Barson et al. [20]	1987	M/14 years old	USA	Puncture wound of the foot	Osteochondritis	Imipenem, Moxalactam, Gentamicin, Rifampin Tetracycline, TMP-SMZ	Chloramphenicol, Netilmicin, Tobramycin	TMP-SMZ, Gentamicin	Complete Recovery
Van Horn [64]	1989	F/23 years old	USA	Hodgkin’s disease, had undergone bone marrow transplantation	Bacteraemia (catheter related), Urinary Tract Infection	Amikacin, Norfloxacin, Tetracycline, TMP-SMZ	Ampicillin, Aztreonam, Carbenicillin, Cefoperazone, Cefoxitin, Ceftazidime, Cephalothin, Chloramphenicol, Gentamicin, Mezlocillin, Piperacillin, Ticarcillin, Tobramycin, Norfloxacin (400 mg orally twice a day), TMP-SMZ (320/1600 mg orally every 6 h), Amikacin (500 mg intravenously every 12 h)	Norfloxacin, TMP-SMZ, Gentamicin, Vancomycin, Ceftazidime Followed by Amikacin and TMP-SMZ, Ciprofl oxacin, Gentamicin, Imipenem	Complete Recovery
Cieslak et al. [65]	1992	F/3 years old	USA	Retinoblastoma	Bacteraemia (catheter related)	Amikacin, Ciprofl oxacin, Gentamicin, Imipenem, Polymyxin E, TMP-SMZ, Amikacin, Aztreonam, Cefoxitin, Ceftazidime, Ceftriaxone, Cephalothin, Mezlocillin, Rifampin, Tobramycin, Tobramycin Amoxicillin, Amoxicillin–clavulanate, Azlocillin, Aztreonam Cefuroxime, Cefotaxime, Cefoxitin, Ceftazidime, Ticarcillin Trimethoprim	Vancomycin and Ceftazidime Followed by Amikacin and TMP-SMZ, Ciprofl oxacin, Gentamicin, Imipenem	Ampicillin, Aztreonam, Cefoxitin, Ceftazidime, Ceftriaxone, Cephalothin, Mezlocillin, Rifampin, Tobramycin, Tobramycin Amoxicillin, Amoxicillin–clavulanate, Azlocillin, Aztreonam Cefuroxime, Cefoxitin, Ceftriaxone, Ceftazidime, Ticarcillin Trimethoprim	Complete Recovery
Gransden et al. [66]	1992	Multiple (7 cases)	UK	Multiple	Sepsis (catheter related)	Amikacin, Ciprofl oxacin, Gentamicin, Imipenem, TMP-SMZ, Tobramycin	Ciprofl oxacin, Gentamicin, Imipenem	Ciprofl oxacin, Gentamicin, Imipenem	5 complete Recovery, 2 deaths unrelated to infection
Brivet et al. [67]	1993	F/74 years old	France	Alcoholism	Necrotising fasciitis, bacteraemia and	Amikacin, Ceftazidime, Cefotaxime, Ciprofl oxacin, Imipenem, Pefloxacin, Amoxicillin, Amoxicillin–clavulanate acid, Carbenicillin, Amoxicillin–clavulanate acid and amikacin. Followed by Imipenem	Amoxicillin, Amoxicillin–clavulanate acid and amikacin. Followed by Imipenem	Amoxicillin, Amoxicillin–clavulanate acid and amikacin. Followed by Imipenem	Complete Recovery
Authors	Year	Country	Diagnosis	Treatment					
-------------------------	------	---------------	--------------------------	---					
Kern et al. [68]	1993	USA	Leukaemia	Bacteraemia (catheter related) Ciprofloxacin, TMP-SMZ Cephalothin, Colimycin, Piperacillin					
Klein & Eppes 1993 [69]	1993	USA	Leukaemia	Bacteraemia (catheter related) Ciprofloxacin, Ceftriaxone, Gentamicin, Imipenem, TMP-SMZ, Tobramycin					
Ainsor et al. 1994 [70]	1994	Denmark	Crohn’s disease, Gastric ulcer	Septicaemia Peritonitis (catheter related) Ciprofloxacin, Gentamicin, Imipenem, Tobramycin					
Ezzedine et al. 1994 [71]	1994	Austria	Leukaemia	Bacteraemia in rabbit anti-thymocyte globulin (RATG) infusion vials Amikacin, Imipenem, Ofloxacin					
Haditsch et al. 1994 [72]	1994	Austria	Leukaemia	Bacteraemia Amikacin, Polymyxin B, Imipenem, Norfloxacin, Tetracycline					
Braun et al. 1996 [73]	1996	Germany	Cataract surgery	Endophthalmitis after cataract surgery Amikacin, Ciprofloxacin, Imipenem, Tetracycline					
Chang et al. 1996 [74]	1996	USA	Neurosurgery Patients	Meningitis Ciprofloxacin, Gentamicin, Imipenem–cilastatin, Tetracycline					
Cieslak et al. 1996 [75]	1996	USA	Hypertension, hypothyroidism, Renal insufficiency, Pyogenic Infection	N/A	N/A	Died			
Study/Year	Sex	Age/Year(s)	Country	Primary Diagnosis	Cause of Infection	Initial Antibiotics	Additional Treatments	Outcome	
------------	------	-------------	---------	------------------	--------------------	---------------------	----------------------	---------	
Cieslak et al. [75]	M	66 years old	USA	Small cell carcinoma	Pyogenic Infection	Aztreonam, Ceftazidime, Vancomycin After failure TMP-SMZ	Complete Recovery		
Cieslak et al. [75]	M	29 years old	USA	None	Pyogenic Infection	Cephradine	Complete Recovery		
Ramos et al. [76]	F	26 years old	Spain	Cancer	Bacteraemia (catheter related)	Ciprofloxacin (oral for 10 days)	Complete Recovery		
Ramos et al. [76]	F	62 years old	Spain	Cancer	Bacteraemia (catheter related)	Gentamicin and Catheter removal	Complete Recovery		
Berman et al. [77]	F	74 years old	USA	Pneumonia	Endophthalmitis with indwelling catheters for venous access	Ciprofloxacin (Oral 500 mg twice daily for 2 weeks)	Complete Recovery		
Christenson et al. [78]	Multiple (3 Cases)	USA	Various	Meningitis (pericardial allograft tissue)	Ciprofloxacin, Gentamicin, Imipenem, Tetracycline	Removal of tissue allograft implants	Complete Recovery		
Earhart et al. [79]	F	40 years old	USA	Rheumatic heart disease	Infection of retained pacemaker leads	Ciprofloxacin, Rifampin Vancomycin, TMP-SMZ for 6 weeks Followed by Ciprofloxacin TMP-SMZ for 4 1/2 months	Complete Recovery		
Gill et al. [80]	M	45 years old	USA	Coronary artery disease	Intravenous line infection	None Administered	Complete Recovery		
Torres et al. [81]	N/A	Spain	AIDS	Bacteraemia	None	None	N/A		

Cite: Microorganisms 2020, 8, 1797
Authors	Year	Age	Gender	Country	Diagnosis	Infections and Antimicrobials	Outcome		
Yu et al. [82]	1998			China	Various	Bacteraemia (3 catheter related) Amikacin, Ceftriaxone, Cefoperazone, Gentamicin, Imipenem	Aminoglycoside		
Jelveh & Cunha 1999 [6]	1999	M/33	Month	USA	Osteomyelitis	Bacteraemia Gentamicin Levofloxacin, TMP-SMZ Amikacin, Ciprofloxacin, Gentamicin, Meropenem	N/A		
Hay & Lo 1999 [83]	1999	F/Neona		UK	Neonate Meningitis	Amikacin, Ciprofloxacin, Gentamicin, Tobramycin, TMP-SMZ Amikacin, Cefmetazole, Cefbuperazone, Gentamicin Imipenem, Levofloxacin, Minocycline, Tobramycin Amikacin, Ciprofloxacin, Gentamicin, Meropenem, Tobramycin, Cefpodoxime Flomoxef	Gentamicin		
Inoue et al. 1999 [84]	1999	M/64 Yr		Japan	None	Endophthalmitis Amikacin, Cefmetazole, Cefbuperazone, Gentamicin, Imipenem, Levofloxacin, Tobramycin, Amikacin, Cefpodoxime Flomoxef	Aminoglycoside		
Manfredi et al. 1999 [85]	1999	M/41 years		Italy	HIV Septicaemia	Aztreonam, Ceftazidime, Tobramycin Meropenem (3 g/day)	Complete Recovery		
Manfredi et al. [85]	1999	M/35 years		Italy	HIV Septicaemia	Aztreonam, Ticarcillin–Clavulanate, Tobramycin	Complete Recovery		
Mastroianni et al. [86]	1999	M/47 years		Italy	None	Bacteraemia Cephalosporins, Imipenem, Tobramycin	Aminoglycoside		
Saavedra et al. [87]	1999	M/4 Yr		Spain	Neuroblastoma Bacteraemia (catheter related)	N/A Amikacin, TMP-SMZ Imipenem (14 days)	Complete Recovery		
Reference	Year	Location	Age/Status	Diagnosis/Complications	Bacteremia/Antibiotics	Treatment	Outcome		
---------------------------------	------	----------	------------	--	--	---	---		
Stiakaki et al. [88]	1999	Greece	Cancer	Bacteraemia (7 cases—catheter related)	β-lactam antibiotics	Imipenem, Ciprofloxacin or catheter removal (2 cases)	Complete Recovery		
Chertow 2000 [89]	2000	USA	Renal Failure	Bacteraemia (catheter related-Haemodialysis)	Aminoglycosides, Ciprofloxacin, Quinolones	Penicillins, Cephalosporins, TMP-SMZ	Complete Recovery		
Deliere et al. [90]	2000	France	Leukaemia	Sepsis (catheter related)	Ciprofloxacin, Colistin Imipenem, Rifampicin	Ciprofloxacin (500 mg daily) and Tobramycin (40 mg intravenously)	Complete Recovery		
Esteban et al. [91]	2000	Spain	Diabetic nephropathy	Peritonitis in CAPD patient	Amikacin, Gentamicin, Imipenem, Meropenem, TMP-SMZ	Gentamicin (1 mg/kg 8-hourly)	Complete Recovery		
Mahmood et al. [92]	2000	Pakistan	Asthmatic and non-insulin dependent diabetic	Infective Endocarditis and Septic Embolization	Ciprofloxacin, Gentamicin, Imipenem, Meropenem, Ofloxacin, TMP-SMZ	Ampicillin, Cefotaxime, Piperacillin-Tazobactam, Ticarcillin	Died (Unrelated to infection)		
Peltroche-Llacahuang a et al. [93]	2000	Germany	End-stage renal disease	Peritonitis in CAPD patient	Amikacin, Ciprofloxacin, Colistin Gentamicin, Imipenem, Meropenem, Ofloxacin, TMP-SMZ	Ampicillin, Cefotaxime, Piperacillin-Tazobactam, Ticarcillin	Complete Recovery		
Shelly and Mortensen [94]	2000	USA	None	Infection	Ampicillin, Gentamicin	Cefuroxime, Ceftriaxone, TMP-SMZ	Cefazolin Followed by Ampicillin-Subactam	Complete Recovery	
El-Zimaity et al. [95]	2001	UK	None	Pseudobacteraemia	N/A	N/A	N/A	N/A	
Greven et al. [96]	2001	USA	N/A	Chronic postoperative endophthalmitis	N/A	N/A	N/A	N/A	
Daxboeck et al. [97]	2002	Austria	Chronic renal failure resulting from diabetic nephropathy	Bacteraemia (haemodialysis patients)	Amikacin, Ciprofloxacin, Gentamicin, Imipenem	β-lactam antibiotics, TMP-SMZ	One patient recovered, one died due to MI		
Author et al.	Year	Case Details	Location	Antibiotics	Outcome				
--------------	------	--------------	----------	-------------	---------				
Galanakis et al. [98]	2002	Multiple (11 Cases—All less than 7 years old)	Greece	Bacteraemia	Amikacin, Ciprofloxacin, Gentamicin, Imipenem, Naldixic acid, Ofloxacin, Perflaxin, Netilmicin, Norfloxacine, Streptomycin, TMP-SMZ, Tobramycin, Ampicillin, Amoxicillin, Amoxicillin–Clavulanic acid, Aztreonam, Cefalothin, Cefoxime, Cefotaxime, Cefuroxime, Piperacillin, Piperacillin–Tazobactam, Ticarcillin, Ticarcillin–Clavulanate	N/A			
Stiakaki et al. [99]	2002	Multiple (11 Cases)	Greece	Bacteraemia (catheter related)	Aminoglycosides, Colistin, Imipenem, Quinolones, TMP-SMZ	Various different treatments in all 11 cases	N/A		
Wheen et al. 2002 [100]	2002	F/62 years old	New Zealand	Osteomyelitis (vertebral)	Aminoglycosides, Amoxicillin, Cephalosporins, Fluoroquinolones, TMP-SMZ	Ceftriaxone (intravenously for 6 weeks) followed by Ciprofloxacin (orally for 6 weeks)	Complete Recovery		
Gascón et al. [101]	2003	M/3 years old CA	Spain	Bacteraemia	Aminoglycosides, Ciprofloxacin, Imipenem, TMP-SMZ	Gentamicin TMP-SMZ	Complete Recovery		
Hill [102]	2003	N/A	UK	Pseudobacteraemia	N/A	N/A	N/A		
Kettaneh et al. [17]	2003	F/30 years old	France	Septic Shock	Amikacin, Gentamicin, Imipenem, Netilmicin, Perflaxin, Tobramycin, TMP-SMZ	Gentamicin infusion (infusion of 240 mg once), Ofloxacin (200 mg infusion twice a day for 11 days)	Complete Recovery		
Oliver [48]	2003	30 years old	USA	Infection	N/A	N/A	N/A		
Name	Year	Age/Gender	Location	Disease/Medication	Antimicrobial Therapy	Outcome			
----------------------	------	------------	----------	---	--	----------------------------------			
Romero Gomez et al.	2004	F/65 years	Spain	Hypertension and rheumatic heart disease	Aminoglycosides, Meropenem, Quinolones	Complete Recovery			
Oliver et al.	2005	M/30 years	USA	Bacteraemia (gunshot wound)	Aztreonam, Cefepime, Cefotaxime, Ceftazidime, Ceftiaxone, Piperacillin, Piperacillin–Tazobactam	Complete Recovery			
Cho et al.	2006	F/69 years	Korea	Hypertension (associated with medicinal plants)	Colistin, Imipenem, Meropenem, Tetracycline	Imipenem Complete Recovery			
Ozdemir et al. [18]	2006	F/42 years	Turkey	Endocarditis and septic shock	Amikacin, Ciprofloxacin, Gentamicin, Imipenem, β-lactams (Excluding Carbapenases)	Meropenem (500 mg Twice daily)			
Vaidya et al.	2006	M/49 years	USA	Pelvic Abscess	Gentamicin, Imipenem, Levofloxacin, Tetracycline	Vancomycin (500 mg Twice daily)			
Aly et al.	2007	F/2 years		Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency	Ciprofloxacin, Levofloxacin, Piperacillin–Tazobactam	Cefotaxime Complete Recovery			
Laborca et al.	2007	Multiple	Chile	Pseudo-bacteraemia	N/A	N/A			
Lee et al.	2007	M/80 years	Korea	intrahepatic duct carcinoma	Bacteraemia	N/A			
Name et al.	Year	Age/Region	Symptoms	Microorganisms	Treatment	Outcome			
-------------	------	------------	----------	----------------	-----------	---------			
Song et al. [110]	2007	Multiple (9 Cases) Korea	Chronic pseudophakic endophthalmitis	Ciprofloxacin, Imipenem, Ofloxacin, TMP-SMZ, Amikacin, Ciprofloxacin	N/A	Complete Recovery			
Yu et al. [111]	2007	M/62 years old CA Korea	Liver cirrhosis Peritonitis	Gentamicin, Imipenem, Levofloxacin, Meropenem, TMP-SMZ, Tobramycin	β-lactams	Died			
Arora et al. [112]	2008	M/64 years old India	Hypertension, Diabetes, Coronary artery disease	Ciprofloxacin, Cefoperazone– Sulbactam, Imipenem, Tobramycin	Amikacin, Aztreonam, Cefotaxime, Cefoperazone, Gentamicin, Piperacillin, Ticarcillin	Died			
Battaglia et al. [113]	2008	M/17 years old USA	None	Septic arthritis	N/A	Complete Recovery			
Javaid et al. [114]	2008	M/84 years old UK	Acute renal failure	Bacteraemia (catheter related)	Ciprofloxacin, Meropenem	Complete Recovery			
Menuet et al. [115]	2008	F/17 years old France	Cystic Fibrosis. Diabetes	Pneumonia	Amikacin, Ciprofloxacin, Gentamicin, Imipenem, Isepsamicin, Rifampicin, TMP-SMZ, Tobramycin	Aminoglycosides, Cefazidime, Ceftazidime, Ceftriaxone, Colistin, Ticarcillin, Ticarcillin–Clavulanate, Piperacillin–Tazobactam	Complete Recovery		
Chiang et al. [116]	2009	M/75 years old Taiwan	MI Endophthalmitis (Cataract surgery)	N/A	N/A	Ciprofloxacin	Complete Recovery		
Study, Year, Region, Age	Clusters	Infection Site	Bacteremia Type	Antibiotics	Duration/Outcome				
-------------------------	----------	----------------	----------------	-------------	-----------------				
Duran et al. [117], 2009	M/Neonate, Turkey	Neonate (meconium peritonitis)	Bacteraemia (catheter related)	Ciprofloxacin, Gentamicin, Imipenem	Died (Unrelated to Ochrobactrum infection)				
Kim et al. [118], 2009	F/46 years old, Korea	Ovarian cancer	Bacteraemia (catheter related)	Amikacin, Colistin, Ciprofloxacin, Gentamicin, Netilmicin, Pefloxacin, TMP-SMZ	Complete Recovery				
Ospina et al. [119], 2009	F/49 years old, M/51 years old, Colombia	Alcoholism	Bacteraemia	Carbapenem, Amikacin-Sulbactam	Complete Recovery				
Rihova et al. [120], 2009	Belgium, Chronic kidney disease	Peritonitis (CAPD patient)	Ciprofloxacin, Imipenem, Meropenem, TMP-SMZ	Amikacin, Ceftazidime, Cefepime, Gentamicin, Piperacllin-Tazobactam	Complete Recovery				
Soloaga et al. [25], 2009	M/69 years old, Argentina	Type 2 diabetes	Bacteraemia (catheter related)	Amikacin, Ampicillin, Ceftriaxone, Chloramphenicol, Gentamicin, Ofloxacin, TMP-SMZ, Ciprofloxacin	Complete Recovery				
Adeyemi et al. [121], 2010	N/A, Nigeria	HIV	Bloodstream infections	Ceftazidime, Cefotaxime, Nalidixic acid	N/A				
Quintela et al. [122], 2010	F/50 years old, Spain	Terminal chronic renal failure	Peritonitis (peritoneal dialysis)	N/A	PD catheter removal				
Saveli et al. [123], 2010	M/33 years old, USA	Gout, Alcoholism	Septic arthritis	N/A	Complete Recovery				
Sepe et al. [124], 2010	M/71 years old, Italy	Type 2 diabetes	Peritonitis (automated peritoneal dialysis)	N/A	Cefotaxime (1 g), Gentamicin (80 mg intraperitoneal)				
Starr [125], 2010	N/A, USA	N/A	N/A	Amikacin, Ciprofloxacin, Gentamicin, Imipenem	N/A				
Wi & Peck [126], 2010	Multiple (12 Cases), Korea	Cancer (11 cases) and Liver Cirrhosis (1 case)	Biliary sepsis (8 Cases), peritonitis (1 case), catheter-	Ciprofloxacin, Gentamicin, Imipenem, Meropenem, TMP-SMZ, Amikacin, Ceftriaxone, Cefotaxime, Piperacillin-Tazobactam,	Various Died (11 cases) Died (1 case)				
Author(s)	Year	Age/Gender	Country	Diagnosis	Infection Type	Treatments	Outcome		
-----------------------------------	------	------------	-------------	---	-------------------------------------	--	------------------------------		
Woo Nho et al. [127]	2010	M/66 yr	Korea	Diabetes mellitus	Related infection (3 cases)	Amikacin, Ciprofloxacin, Colistin, Gentamicin, Minocycline, TMP-SMZ, Tobramycin	Complete Recovery		
Yagüe-Muñoz et al. [128]	2010	M/8 yr	Spain	Cystic fibrosis	Bacteraemia	Amikacin, Ciprofloxacin, Colistin, Gentamicin, Imipenem, Levofloxacin, Meropenem, Netilmicin, TMP-SMZ Tobramycin	Complete Recovery		
Obando et al. [129]	2011	F/19 yr	Chile	Hypothyroidism, end-stage chronic renal failure	Bacteraemia	Amikacin, Gentamicin, Imipenem Levofloxacin, Meropenem	Complete Recovery		
Shivaprakasha et al. [130]	2011	M/75 yr	India	Aortic valve replacement	Endocarditis (prosthetic aortic valve endocarditis)	N/A	Died		
Chan & Holland [131]	2012	F/21 yr	USA	Asthma, hypertension, gastric reflex	Endophthalmitis (Boston type 1 keratoprosthesis implantation) Bloodstream infection (Haemodialysis associated)	N/A	Complete Recovery		
Shrishrimal [132]	2012	M/78 yr	USA	Diabetes mellitus type 2, peripheral vascular disease	N/A	Aminoglycosides, Ciprofloxacin	Complete Recovery		
Alparslan et al. [133]	2013	M/12 yr	Turkey	End stage renal disease	Peritonitis (peritoneal dialysis infection)	N/A	Complete Recovery		
Study	Year	Age	Country	Associated Conditions	Primary Diagnosis	Initial Empirical Therapy	Additional Treatments	Outcome	
-------------------------------	------	--------------	------------	------------------------	---------------------------	---	--	-----------------------	
Chiu & Wang [134]	2013	M/34 years	Singapore	None	Septic arthritis	Gentamicin, Meropenem, TMP-SMZ	Ceftazidime, Piperacillin, Piperacillin–Tazobactam, Aztreonam, Cefazidime, Cefepime, Ciprofloxacin Levofloxacin, Gentamicin, TMP-SMZ	Complete Recovery	
Hagiya et al. [51]	2013	M/85 years	Japan	Hepatocellular carcinoma, Liver cirrhosis	Bacteraemia	Amikacin, Colistin, Imipenem, Meropenem, Minocycline	Cefcapene pivoxil (Oral)	Complete Recovery	
Kumar et al. [135]	2013	M/45 days	India	Neonate (congenital abnormalities)	Septicaemia and pneumonia	Amikacin, Gentamicin, Imipenem, Meropenem, Piperacillin–Tazobactam	Meropenem	Complete Recovery	
Mattos et al. [136]	2013	Multiple (12 Cases)	Brazil	Various	Endophthalmitis (Tubing following cataract surgery)	N/A	N/A	N/A	Complete Recovery
Mudshingka r et al. [137]	2013	M/Neonate	India	Neonate	Septicaemia	Amikacin, Imipenem, Meropenem	Ceftazidime, Cefepime, Gentamicin	Died	
Mudshingka r et al. [137]	2013	M/Neonate	India	Neonate	Septicaemia	Amikacin, Imipenem, Meropenem	Ceftazidime, Cefepime, Gentamicin	Complete Recovery	
Naik et al. [138]	2013	M/45 years	USA	Hypotensive and Hypoxic	Pneumonia	Ciprofloxacin, Gentamicin, Meropenem, Tobramycin	Ciprofloxacin, Ceftazidime, Piperacillin–Tazobactam, TMP-SMZ	Complete Recovery	
Siti Rohani et al. [139]	2013	M/60 years	Malaysia	Ischaemic heart disease, diabetes mellitus type 2, hypertension and end stage renal failure	Bacteraemia (catheter related)	Amikacin, Cefepime, Ciprofloxacin, Gentamicin Imipenem, Meropenem, TMP-SMZ	Ceftazidime, Piperacillin–Tazobactam Polymyxin-B	Complete Recovery	
Al-Naami et al. [140]	2014	M/15 years	Australia	None	Retropharyngeal abscess	Amikacin, Cefepime, Ciprofloxacin, Gentamicin, Imipenem	N/A	Complete Recovery	
Hernández-Torres et al. [141]	2014	M/73 years	Spain	COPD, Hypertension, ischemic heart disease and	Pneumonia	Ciprofloxacin, Doxycycline, Meropenem, Levofloxacin, TMP-	Amikacin, Aztreonam, Cephalosporins Piperacillin–Tazobactam	Complete Recovery	
Authors	Year	Gender	Age	Country	Comorbidity	Cause of Infection	Antibiotics	Outcome	
-------------------------------	-----------------------	--------	-------------	---------	---	---	---	--	
Hernández-Torres et al. [141]	2014	M/38y	Spain	None	Chronic renal failure	Bacteraemia (catheter related)	Amikacin, Aztreonam, Ciprofloxacin, Ceftazidime, Cefepime, Doxycycline Imipenem, Levofloxacin, MEROPENEM, TEICOPOLIN	Complete Recovery	
Hernández-Torres et al. [141]	2014	F/49y	Spain	Diabetes mellitus type 2 Adenocarcinoma	Biliary sepsis	Ciprofloxacin, Gentamicin, Imipenem, Levofloxacin, Meropenem Amikacin, Cefepime, Ciprofloxacin, Colistin, Gentamicin, Imipenem, Levofloxacin, Meropenem, Minocycline, Tigecycline, TMP-SMZ, Tobramycin	Amikacin, Ceftazidime, PIPERACILLIN-TAZOBACTAM, Meropenem	Complete Recovery	
Hernández-Torres et al. [141]	2014	M/61y	Spain	Liver cirrhosis	Transjugular intrahepatic portal systemic shunt device infection	Ciprofloxacin, Gentamicin, Imipenem, Levofloxacin, Meropenem Amikacin, Cefepime, Ciprofloxacin, Colistin, Gentamicin, Imipenem, Levofloxacin, Meropenem, Minocycline, Tigecycline, TMP-SMZ, Tobramycin	Meropenem	Died	
Hernández-Torres et al. [141]	2014	F/56y	Spain	Acute myeloblastic leukaemia	Catheter-related infection	Ciprofloxacin, Gentamicin, Imipenem, Levofloxacin, Meropenem, TMP-SMZ	Aminoglycosides, Aztreonam, Cephalosporins, PIPERACILLIN-TAZOBACTAM, Meropenem	Complete Recovery	
Hernández-Torres et al. [141]	2014	5 Mths	Spain	None	Pseudobacteraemia	Amikacin, Carbapenems, Colistin, Doxycycline, TMP-SMZ	Meropenem	Complete Recovery	
Khan et al. [142]	2014	F/53y	India	Chronic kidney disease, diabetes mellitus	Sepsis (catheter related)	Imipenem, TMP-SMZ	Aminoglycosides, β-lactams, Colistin, Quinolones	N/A	Died
Menezes et al. [143]	2014	F/Neona	Brazil	Neonate with Cystic Fibrosis	Bacteraemia (catheter related)	Amikacin, Meropenem, TMP-SMZ	Cefazidime	N/A	Died
Mrozek et al. [144]	2014	M/28y	France	Brain Trauma	Brain empyema	Carbapenems, Ciprofloxacin, Levofloxacin	Ciprofloxacin, Meropenem (IV for 6 weeks)	Complete Recovery	
Study	Year	Cases/Type	Country	Age	Condition	Initial Antibiotics	Adj. Antibiotics	Outcome	
----------------	------	---------------------------	---------	-------	--	--	--	-----------------------	
Quirino et al.	2014	Multiple (19 Cases)	Italy	N/A	Bacteraemia	Amikacin, Ciprofloxacin, Gentamicin, Imipenem, Levofloxacin, TMP-SMZ	Tazobactam, Tobramycin, TMP-SMZ, Ampicillin, Moxolillin–Sulbactam, Cefazolin, Cefepime, Cefotaxime, Ceftriaxone, Nitrofurantoin, Piperacillin–Tazobactam	N/A N/A	
Qasimyar et al.	2014	M/Neonate	USA	Neonate	Sepsis (catheter related)	Amikacin, Levofloxacin, Meropenem, Amikacin, Ciprofloxacin, Gentamicin, Imipenem, Levofloxacin, Sulfamethoxazole, Tetracycline Cefepime, Gentamicin, Imipenem, Meropenem, Piperacillin–Tazobactam, Ampicillin–Sulbactam, Aminocillin–clavulanic acid, Aztreonam, Cefazidime, Cefotaxime, Piperacillin, Piperacillin–Tazobactam	Amikacin Meropenem (IV) B-lactams	Complete Recovery	
Wu et al.	2014	M/35 years old	China	None	Neck abscess	Cefotaxime, Cefazidime, Ceftriaxone	Levofoxacin	Complete Recovery	
Cenkçi et al.	2015	F/13 months old	Turkey	None	Bacteraemia, pneumonia	Cefotaxime, Cefazidime, Ceftriaxone	Ceftriaxone	Complete Recovery	
Hindilerden et al.	2015	N/A	N/A	N/A	Bacteraemia	N/A	N/A	N/A	
Patra et al.	2015	M/54 years old	India	Guillaun Barre Syndrome	Septicaemia	Aminoglycosides, Carbapenems, Aminocillin, Aztreonam, Cefazidime, Cefotaxime, Piperacillin–Tazobactam	Piperacillin–Tazobactam, vancomycin Followed by Meropenam	Complete Recovery	
Ashraf	2016	F/58 years old	USA	None	Septic shock, Infective endocarditis	N/A	N/A	Piperacillin–Tazobactam, vancomycin Followed by Meropenam	Complete Recovery
Haviari et al.	2016	Multiple (3 Cases)	France	None	Bacteraemia (1 case)	Aminoglycosides, Carbapenems, Aminocillin, Aztreonam, Cefazidime, Cefotaxime, Ceftriaxone, Ceftriaxone (1 g/day intravenously for 2/3)	Complete Recovery	Complete Recovery	
Authors	Year	Age	Gender	Location	Diagnosis	Initial Treatment	Follow-up Treatment	Outcome	
-------------------------	------	-------	--------	----------	-----------------------------------	---	--	-------------------------------	
Jimenez and Antony, 2016	2016	M/40	USA		Osteomyelitis and liver cirrhosis	Ciprofloxacin, Rifampin, Tigecycline, TMP-SMZ	Ofloxacin (200 mg 2×/day orally for 10/21 days)	Complete Recovery	
Kanjee et al, 2016	2016	F/60	USA		None	Amikacin, Levofoxacin	Levofloxacin	Complete Recovery	
Venkateswaran et al.	2016	F/57	USA		Herpetic keratitis and persistent central neurotrophic ulcer	N/A	Tobramycin	Eye evisceration	
Gigi et al. [155]	2017	M/18	Israel		Osteomyelitis in the (Foot puncture)	Amikacin, Imipenem, Meropenem, Piperacillin–Tazobactam	Ciprofloxacin (Oral 750 mg 2/day) Clindamycin	Complete Recovery	
Khasawneh & Yusef, 2017	2017	F/Neonate	Jordan	Neonate	Sepsis (catheter related)	Ceftazidime, Cefipime, Gentamicin	Imipenem (25 mg/kg twice daily) Amikacin (15 mg/kg)	Complete Recovery	
Rastogi & Mathur, 2017	2017	M/58	India		Severe head injury	Septicaemia with meningitis (catheter related)	Ceftazidime–Tazobactam (1.12 gm) Amikacin (400 mg) (injection every 12 h)	Complete Recovery	
Torres Aguilera et al.	2017	F/88	Spain		Diabetic and hypertensive, with significant vascular disease	Bacteraemia (catheter related)	Cefepime–Tazobactam	Complete Recovery	
Torres Aguilera et al.	2017	M/84	Spain	HA	Diabetic nephropathy	Bacteraemia (catheter related)	Initial treatment	Complete Recovery	
Authors	Year	Country	Age	Diagnosis	Clinical Features	Pathogen	Treatment	Outcomes	
-------------------------------	------	---------	-----	------------------------------------	--	-----------------------------------	---	--	
Cipolla et al. [158]	2018	Argentina	N/A	Bacteraemia	Argentina	N/A	N/A	N/A	
Hafeez et al. [159]	2018	USA	M/64 years old	Alcohol abuse, Hypertension	N/A	N/A	Ciprofloxacin followed by Meropenem	Complete Recovery	
Montaña et al. [61]	2018	Argentina	N/A	Pseudobacteraemia	Argentina	N/A	N/A	N/A	
Zhu et al. [160]	2018	China	Multiple (11 Cases)	Various	Bloodstream infection (catheter related)	Ciprofloxacin, Levofloxacin, Imipenem, TMP-SMZ	Various	N/A	
Caroleo et al. [161]	2019	Italy	Multiple (4 Cases)	Cancer	Catheter-related bloodstream infections	N/A	N/A	N/A	
Grabowska-Markowska et al. [162]	2019	Poland	M/13 years old	Neurodegenerative disorder	Bacteraemia	Imipenem, Meropenem	Ceftazidime, Pipercillin-Tazobactam, Amoxicillin, Ampicillin, Benzylpenicillin, Cefepime, Ceftazidime, Ceftriaxone, Imipenem, Pipercillin Ampicillin, Amoxicillin, Amoxicillin-Clavulanate, Aztreonam, Cefepime, Cefotaxime, Cefixime, Cefotaxime, Ceftriaxone, Imipenem, Pipercillin Pipercillin, Pipercillin-Tazobactam Ticarcillin–Clavulanate	Complete Recovery	
Kang et al. [163]	2019	Korea	F/53 years old	None	Keratitis	Ciprofloxacin, Gentamicin	Gentamicin	Complete Recovery	
Roussotte et al. [164]	2019	France	F/53 years old	Facial oedema	Catheter-related infection associated with superior vena cava	Amikacin, Ciprofloxacin, Ertapenem Gentamicin, Imipenem, Meropenem, Moxifloxacin, TMP-SMZ, Tobramycin	Imipenem–Cilastine, Ciprofloxacin Catheter removal	Complete Recovery	
Arimuthu and Seong Lim [165]	2020	Malaysia	M/24 years old	Dengue viral fever	Bacteraemia (catheter related)	Ciprofloxacin, Gentamicin, Imipenem, Meropenem, Tigecycline	Ceftazidime, Cefepime, Pipercillin–Tazobactam, Polymyxin B, TMP-SMZ	Complete Recovery	

Note: HA = Hospitalized, N/A = Not available.
Authors	Year	Age	Country	Underlying Conditions	Complication	Initial Treatment	Outcome		
Arimuthu and Seong Lim [165]	2020	M/64 years old HA	Malaysia	Diabetes, end stage renal disease, Hypertension, Ischemic dilated cardiomyopathy	Bacteraemia (catheter related)	Ciprofloxacin, TMP-SMZ	N/A	Ciprofloxacin	Complete Recovery
Bratschi et al. [166]	2020	M/70 years old CA	Switzerland	None	Hand infection	N/A	N/A	Surgical debridement Amoxicillin-clavulanic acid (empirically) Cefepime (2 g 3 times/day intravenously for 15 days) Co-trimoxazole (960 mg 3 times/day orally for 2 weeks)	Complete Recovery
Ko et al. [167]	2016-2020	Multiple (5 cases)	Korea	Various (Pneumonia, Hypertension, Diabetes mellitus)	Various	Ciprofloxacin, Levofloxacin, TMP-SMZ Aztreonam, Cefepime, Cefotaxime; Ceftazidime, Piperacillin, Piperacillin-Tazobactam Ticacillin-Clavulanic acid	Complete Recovery in 3 patients Death in 2 patients		

M, Male; F, Female; N/A, Not Available; CA, Community Acquired; HA, Hospital Acquired; TMP-SMZ, Trimethoprim–sulfamethoxazole. *Antibiotic susceptibility testing was carried out using a variety of methods including disk diffusion testing, agar and broth dilution testing and E-testing methods.
7. Treatment of *Ochrobactrum* spp. Infections

Treatment of *Ochrobactrum* spp. infections is often problematic, due to their resistance to different families of antibiotics such as β-lactams (penicillins, cephalosporins and emerging cases of carbapenem resistance). The antibiotic susceptibility profiles of some 103 typed strains of *Ochrobactrum* were analysed using the E-test™ for 19 clinically relevant antimicrobials [46]. In general, strains were highly resistant to β-lactam antibiotics, susceptible to ciprofloxacin, and 97.1% of the strains tested were susceptible to trimethoprim/sulfamethoxazole. This suggests that ciprofloxacin and/or trimethoprim/sulfamethoxazole in combination may be useful for empirical treatment of *Ochrobactrum* infections [46]. In the majority of outbreaks described in Table 4, aminoglycoside, fluoroquinolone, carbapenem or trimethoprim/sulfamethoxazole antibiotics were used in patient treatment. In the majority of cases, these treatments were successful in curing infections. However, as can be seen in Table 4, resistance was observed in various different outbreaks to all these antibiotics. An example of this is reported in a case of *O. anthropi* bacteraemia in a patient in Japan in 2013 where susceptibility testing showed the organism to be resistant to aztreonam, ceftazidime, cefepime, ciprofloxacin, gentamicin, levofloxacin, piperacillin, piperacillin–tazobactam and trimethoprim–sulfamethoxazole [51]. There have been no controlled trials of antibiotic therapies for *Ochrobactrum* spp. infections in humans therefore treatment should be based upon the results of in vitro susceptibility testing on the isolated clinical strains. Resistance to β-lactam antibiotics (cephalosporins, cephemycins and β-lactamase inhibitors) is due to a chromosomal gene (*bla*och) that is similar to the Ambler class C β-lactamase gene. This gene encodes an AmpC-like enzyme that is called OCH [168]. In addition, a plasmid-borne *bla*oxa-181 gene has been found in some *Ochrobactrum intermedium* strains giving resistance to carbapenems [169]. Three *Ochrobactrum* spp. strains isolated from birds in Pakistan harboured aminoglycoside (*aadB, aadA2, aac6-Ib and strA, strB*) β-lactam (*bla*och2 and *carb2*), tetracycline (*tetG*), chloramphenicol (*floR*), sulphonamide (*sulf*) and trimethoprim (*dfrA10*) resistance genes [170].
Table 5. Incidences of *Ochrobactrum* spp. (excluding *Ochrobactrum anthropi*) infection from 1998–2020. Main characteristics of the case reports.

Author (Ref)	Bacteria	Year	Sex/Age	Country	Co-Morbidity	Type of Infection	Susceptible to*	Resistance to*	Treatment	Outcome
Möller et al. [8]	*Ochrobactrum intermedium*	1999	F/45 years old	The Netherlands	Liver transplant patient	Bacteraemia	Ciprofloxacin, Imipenem, TMP-SMZ	Amoxicillin, Cefuroxime, Cefotaxime, Cefazidime, Colistin, Piperacillin, Polymyxin B, Tobramycin	Imipenem, Tobramycin	Complete Recovery
Apisarnthanarak et al. [171]	*Ochrobactrum intermedium*	2005	M/74 years old	Thailand	Bladder cancer	Bacteraemia	Aminoglycosides, Carabapemems, Fluoroquinolones, TMP-SMZ	N/A	Ciprofloxacin, Imipenem	Complete Recovery
Vaidya et al. [106]	*Ochrobactrum intermedium*	2006	M/49 years old	USA	None	Pelvic abscess	Ciprofloxacin, Gentamicin, Nalidixic acid, Ofloxacin, Pefloxacin, Rifampicin	Cefepime, Tobramycin	Levofloxacin, Metronidazole	Complete Recovery
Teyssier et al. [36]	*Ochrobactrum pseudintermedium*	2007	Multiple (2 cases)	France	ICU patient	Fosfomycin	N/A	N/A	N/A	
Dharne et al. [172]	*Ochrobactrum intermedium*	2008	M/	India	N/A	Stomach isolate from non-ulcer dyspeptic patient	N/A	N/A	N/A	
Jacobs et al. [173]	*Ochrobactrum intermedium*	2013	M/34 years old	USA	None	Endophthalmitis (metallic intraocular foreign body contamination)	Ciprofloxacin, Levofloxacin, TMP-SMZ	Amikacin, Ampicillin, Ampicillin–Sulbactam, Cefazidime, Ceftriaxone, Gentamicin, Piperacillin–Tazobactam, Tobramycin	Moxifloxacin	Complete Recovery
S. No.	Authors and Year	Species	Age (years)	Gender	Country	Underlying Disease(s)	Antibiotics Used	Outcomes		
--------	------------------	---------	-------------	--------	---------	-----------------------	-----------------	----------		
1	Hirai et al. 2016 [59] Ochrobactrum intermedium	2016 M/86 years old Japan	N/A Pneumonia (catheter related)	Amikacin, Ciprofloxacin, Imipenem, Levofloxacin, Meropenem, Minocycline Aztreonam, Cefazidime	Ampicillin–Sulbactam followed by Meropenem (2 g/day)	Complete Recovery				
2	Borges et al. [174] Ochrobactrum oryzae	2016 M/86 years old Brazil	Hypertension, type II diabetes mellitus, dyslipidaemia, end stage renal disease Bloodstream infection	Ciprofloxacin, Imipenem, Meropenem, Polymyxin B	Imipenem	Complete Recovery				
3	Hong et al. [175] Ochrobactrum tritici	2016 M/70 years old Korea	Cholangiocellular carcinoma, Cholecystitis	N/A	Ceftriaxone, Cefepime, Ticarcillin	Complete Recovery				
4	Bharucha et al. [176] Ochrobactrum intermedium	2019 M/23 years old UK Undergoing haemodialysis	Endocarditis (catheter related)	Ertapenem, Meropenem, Tigecycline	Ciprofloxacin, Colistin, Fosfomycin	Complete Recovery				
5	Cho et al. [177] Ochrobactrum pseudogrignonense	2020 M/44 years old Korea	Hypertension, diabetes mellitus, dilated cardiomyopathy	Aztreonam, Piperacillin, Piperacillin–Tazobactam	Vancomycin and Piperacillin–Tazobactam Followed by Meropenem	Complete Recovery				

M, Male; F, Female; N/A, Not Available; CA, Community Acquired; HA, Hospital Acquired; TMP-SMZ, Trimethoprim–sulfamethoxazole. *Antibiotic susceptibility testing was carried out using a variety of methods including disk diffusion testing, agar and broth dilution testing and E-testing methods.

8. Conclusions.
Microorganisms 2020, 8, 1797

Ochrobactrum spp. are not presently thought of as major pathogens. Nevertheless, as a result of our literature search, it can be seen that there have been 128 separate outbreaks of Ochrobactrum spp. infections reported. Thus, the consideration that they may be innocuous should in our opinion be reconsidered based on these findings. Although the genus is considered of low virulence and of lower risk compared to other non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa, we feel it must not be ignored as a potential cause of infections (nosocomial or otherwise) and should be included in routine screening programs in hospitals.

Author Contributions: Conceptualisation, M.P.R.; methodology, M.P.R and J.T.P.; formal analysis, M.P.R and J.T.; investigation, M.P.R and J.T.; data curation, M.P.R and J.T.P.; writing—original draft preparation, M.P.R and J.T.; writing—review and editing, M.P.R and J.T.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ryan, M.P.; Adley, C.C. Ralstonia spp.: Emerging global opportunistic pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 291–304.
2. Ryan, M.P.; Pembroke, J.T.; Adley, C.C. Ralstonia pickettii: A persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 2006, 62, 278–284.
3. Ryan, M.P.; Adley, C.C. Sphingomonas paucimobilis: A persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 2010, 75, 153–157.
4. Coughlan, A.; Ryan, M.P.; Cummins, N.M.; Towler, M.R. The response of Pseudomonas aeruginosa biofilm to the presence of a glass polyalkenoate cement formulated from a silver containing glass. J. Mater. Sci. 2011, 46, 285–287.
5. Ryan, M.P.; Pembroke, J.T. Brevundimonas spp: Emerging global opportunistic pathogens. Virulence 2018, 9, 480–493.
6. Jelveh, N.; Cunha, B.A. Ochrobactrum anthropi bacteremia. Hear. Lung J. Acute Crit. Care 1999, 28, 145–146.
7. Handschuh, H.; Ryan, M.P.; O'Dwyer, J.; Adley, C.C. Assessment of the bacterial diversity of aircraft water: Identification of the frequent fliers. PLoS ONE 2017, 12, e0170567.
8. Möller, L.V.M.; Arends, J.P.; Harmsen, H.J.M.; Talens, A.; Terpstra, P.; Slooff, M.J.H. Ochrobactrum intermedium infection after liver transplantation. J. Clin. Microbiol. 1999, 37, 241–244.
9. Lebuhn, M.; Achouak, W.; Schloter, M.; Berge, O.; Meier, H.; Barakat, M.; Hartmann, A.; Heulin, T. Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 2207–2223.
10. Goris, J.; Boon, N.; Lebbe, L.; Verstraete, W.; De Vos, P. Diversity of activated sludge bacteria receiving the 3-chloroaniline-degradative plasmid pC1grp. FEMS Microbiol. Ecol. 2003, 46, 221–230.
11. Kämper, P.; Buczolits, S.; Albrecht, A.; Busse, H.J.; Stackebrandt, E. Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifacess sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 893–896.
12. Bathe, S.; Achouak, W.; Hartmann, A.; Heulin, T.; Schloter, M.; Lebuhn, M. Genetic and phenotypic microdiversity of Ochrobactrum spp. FEMS Microbiol. Ecol. 2006, 56, 272–280.
13. El-Sayed, W.S.; Ibrahim, M.K.; Abu-Shady, M.; El-Beih, F.; Ohmura, N.; Saiki, H.; Ando, A. Isolation and Identification of a Novel Strain of the Genus Ochrobactrum with Phenol-Degrading Activity. J. Biosci. Bioeng. 2003, 96, 310–312.
14. Sultan, S.; Hasnain, S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour. Technol. 2007, 98, 340–344.
15. Wu, Y.; He, T.; Zhong, M.; Zhang, Y.; Li, E.; Huang, T.; Hu, Z. Isolation of marine benzo(a)pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. J. Environ. Sci. 2009, 21, 1446–1451.
16. Zhang, X.H.; Zhang, G.S.; Zhang, Z.H.; Xu, J.H.; Li, S.P. Isolation and characterization of a dichlorvos-degrading strain DDV-1 of Ochrobactrum sp. Pedosphere 2006, 16, 64–71.
17. Kettaneh, A.; Weill, F.X.; Poilane, I.; Fain, O.; Thomas, M.; Herrmann, J.L.; Hocqueloux, L. Septic shock caused by Ochrobactrum anthropi in an otherwise healthy host. J. Clin. Microbiol. 2003, 41, 1339–1341.
18. Oszmianska, D.; Szymonska, Z.; Subi, Z.; Senc, I. Ochrobactrum anthropi endocarditis and septic shock in a patient with no prosthetic valve or rheumatic heart disease: Case report and review of the literature. *Jpn. J. Infect. Dis.* 2006, 59, 264–265.
19. Chester, B.; Cooper, L.H. Achromobacter species (CDC group Vd): Morphological and biochemical characterization. *J. Clin. Microbiol.* 1979, 9, 425–436.
20. Barson, W.J.; Cromer, B.A.; Marcon, M.J. Puncture wound osteocondritis of the foot caused by CDC group Vd. *J. Clin. Microbiol.* 1987, 25, 2014–2016.
21. Holmes, B.; Popoff, M.; Kiredjian, M.; Kersters, K. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. *Int. J. Syst. Bacteriol.* 1988, 38, 406–416.
22. Velasco, J.; Romero, C.; López-Goñi, I.; Leiva, J.; Díaz, R.; Moriyón, I. Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. *Int. J. Syst. Bacteriol.* 1998, 48, 759–768.
23. Rastogi, N.; Mathur, P. Ochrobactrum anthropi: An emerging pathogen causing meningitis with sepsis in a neurotrauma patient. *J. Infect. Dev. Ctries.* 2017, 11, 733–735.
24. Nadjar, D.; Labia, R.; Cerqueu, C.; Bizet, C.; Philippon, A.; Arlet, G. Molecular characterization of chromosomal class C β-lactamase and its regulatory gene in Ochrobactrum anthropi. *Antimicrob. Agents Chemother.* 2001, 45, 2324–2330.
25. Soleaga, R.; Carrión, N.; Pidone, J.; Guelfand, L.; Margari, A.; Altieri, R. Bacteremia relacionada a cateter por Ochrobactrum anthropi. *Medicina (Buenos Aires)* 2009, 69, 655–657.
26. Imran, A.; Hafeez, F.Y.; Fröhling, A.; Schumann, P.; Malik, K.A.; Stackebrandt, E. Ochrobactrum ciceri sp. nov., isolated from nodules of *Cicer arietinum*. *Int. J. Syst. Evol. Microbiol.* 2010, 60, 1548–1553.
27. Zurdo-Piñeiro, J.L.; Rivas, R.; Trujillo, M.E.; Vizcaíno, N.; Carrasco, J.A.; Chamber, M.; Palomares, A.; Mateos, P.F.; Martínez-Molina, E.; Velázquez, E. Ochrobactrum cytisi sp. nov., isolated from nodules of *Cytisus scoparius* in Spain. *Int. J. Syst. Evol. Microbiol.* 2007, 57, 784–788.
28. Woo, S.G.; Ten, L.N.; Park, J.; Lee, M. Ochrobactrum daceiense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. *Int. J. Syst. Evol. Microbiol.* 2011, 61, 690–2696.
29. Li, L.; Li, Y.Q.; Jiang, Z.; Gao, R.; Nimaichand, S.; Duan, Y.Q.; Egamberdieva, D.; Chen, W.; Li, W.J. Ochrobactrum endophyticum sp. nov., isolated from roots of *Glycyrrhiza uralensis*. *Arch. Microbiol.* 2016, 198, 171–179.
30. Kämpfer, P.; Scholz, H.C.; Huber, B.; Falsen, E.; Busse, H.J. Ochrobactrum haematophilum sp. nov. and *Ochrobactrum pseudogrignonense* sp. nov., isolated from human clinical specimens. *Int. J. Syst. Evol. Microbiol.* 2007, 57, 2513–2518.
31. Trujillo, M.E.; Willems, A.; Abril, A.; Plancheuño, A.M.; Rivas, R.; Ludeña, D.; Mateos, P.F.; Martínez-Molina, E.; Velázquez, E. Nodulation of *Lupinus albus* by Strains of *Ochrobactrum lupini* sp. nov. *Appl. Environ. Microbiol.* 2005, 71, 1318–1327.
32. Volpio, C.G.; Sant’anna, F.H.; Ambrosini, A.; Lisboa, B.B.; Vargas, L.K.; Passaglia, L.M.P. Reclassification of *Ochrobactrum lupini* as a later heterotypic synonym of *Ochrobactrum anthropi* based on whole-genome sequence analysis. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 2312–2314.
33. Tripathi, A.K.; Verma, S.C.; Chowdhury, S.P.; Lebuhm, M.; Gattinger, A.; Schloter, M. *Ochrobactrum oryzae* sp. nov., an endophytic bacterial species isolated from deep-water rice in India. *Int. J. Syst. Evol. Microbiol.* 2006, 56, 1677–1680.
34. Kämpfer, P.; Huber, B.; Busse, H.J.; Scholz, H.C.; Tomaso, H.; Hotzel, H.; Melzer, F. *Ochrobactrum pecoris* sp. nov., isolated from farm animals. *Int. J. Syst. Evol. Microbiol.* 2011, 61, 2278–2283.
35. Huber, B.; Scholz, H.C.; Kämpfer, P.; Falsen, E.; Langer, S.; Busse, H.J. *Ochrobactrum putitiusum* sp. nov., isolated from an industrial environment. *Int. J. Syst. Evol. Microbiol.* 2010, 60, 321–326.
36. Teyssier, C.; Marchandin, H.; Jean-Pierre, H.; Masnou, A.; Dusart, G.; Jumas-Bilak, E. *Ochrobactrum pseudointermedium* sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. *Int. J. Syst. Evol. Microbiol.* 2007, 57, 1007–1013.
37. Krzyżanowska, D.M.; Maciąg, T.; Ossowicki, A.; Rajewska, M.; Kaczyński, Z.; Czerwicka, M.; Rąbalski, Ł.; Czaplewski, P.; Jafra, S. *Ochrobactrum quorumnocens* sp. Nov., a quorum quenching bacterium from the potato rhizosphere, and comparative genome analysis with related type strains. *PLoS ONE* 2019, 14, e0210874.
38. Kämpfer, P.; Sessitsch, A.; Schlöter, M.; Huber, B.; Busse, H.J.; Scholz, H.C. Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. Int. J. Syst. Evol. Microbiol. 2008, 58, 1426–1431.

39. Choi, G.M.; Kim, K.M.; Yun, C.S.; Lee, S.Y.; Kim, S.Y.; Wee, J.H.; Im, W.T. Ochrobactrum soli sp. nov., isolated from a Korean cattle farm. Curr. Microbiol. 2020, 77, 1104–1110.

40. Hu, M.; Li, X.; Li, Z.; Liu, B.; Yang, Z.; Tian, Y. Ochrobactrum teleogrylli sp. nov., a pesticide-degrading bacterium isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int. J. Syst. Evol. Microbiol. 2020, 70, 2217–2225.

41. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549.

42. Ryan, M.P.; Adley, C.C.; Pembroke, J.T. The use of MEGA as an educational tool for examining the phylogeny of antibiotic resistance genes. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2013; Volume 4 pp. 736–743.

43. Teyssier, C.; Marchandin, H.; Jean-Pierre, H.; Diego, I.; Darbas, H.; Jeannot, J.L.; Gouby, A.; Jumas-Bilak, E. Molecular and phenotypic features for identification of the opportunist pathogens Ochrobactrum spp. J. Med. Microbiol. 2005, 54, 945–953.

44. Quirino, A.; Pulciano, G.; Rametti, L.; Puccio, R.; Marascio, N.; Catania, M.R.; Matera, G.; Liberto, M.C.; Focà, A. Typing of Ochrobactrum anthropi clinical isolates using automated repetitive extragenic palindromic-merase chain reaction DNA fingerprinting and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. BMC Microbiol. 2014, 14.

45. Kämpfer, P.; Citron, D.M.; Goldstein, E.J.C.; Scholz, H.C. Difficulty in the identification and differentiation of clinically relevant Ochrobactrum species. J. Med. Microbiol. 2007, 56, 1571–1573.

46. Thoma, B.; Straube, E.; Scholz, H.C.; Al Dahouk, S.; Zöller, L.; Pfeffer, M.; Neubauer, H.; Tomaso, H. Identification and antimicrobial susceptibilities of Ochrobactrum spp. Int. J. Med. Microbiol. 2009, 299, 209–220.

47. Elsaghir, A.A.F.; James, E.A. Misidentification of Brucella melitensis as Ochrobactrum anthropi by API 20NE. J. Med. Microbiol. 2003, 52, 441–442.

48. Oliver, J.W. Ochrobactrum anthropi misidentified as Shewanella putrefaciens. J. Clin. Microbiol. 2003, 41, 4486.

49. Trêpa, J.; Mendes, P.; Gonçalves, R.; Chaves, C.; Brás, A.M.; mesa, A.; Ramos, I.; Sá, R.; da Cunha, J.G.S. Brucella vertebral osteomyelitis misidentified as an Ochrobactrum anthropi infection. IDCases 2018, 11, 74–76.

50. Vila, A.; Pagella, H.; Bello, G.V.; Vicente, A. Brucella suis bacteremia misidentified as Ochrobactrum anthropi by the VITEK 2 system. J. Infect. Dev. Ctries. 2016, 10, 432–436.

51. Hagiya, H.; Ohnishi, K.; Maki, M.; Watanabe, N.; Murasec, T. Clinical Characteristics of Ochrobactrum anthropi Bacteremia. J. Clin. Microbiol. 2013, 51, 1330–1333.

52. van Dijck, P.; Delmée, M.; Ezzedine, H.; Deplano, A.; Struelens, M.J. Evaluation of pulsed-field gel electrophoresis and rep-PCR for the epidemiological analysis of Ochrobactrum anthropi strains. Eur. J. Clin. Microbiol. Infect. Dis. 1995, 14, 1099–1102.

53. Leal-Klevézas, D.S.; Martinez-De-La-Vega, O.; Ramirez-Barba, E.J.; Osterman, B.; Martinez-Soriano, J.P.; Simpson, J. Genotyping of Ochrobactrum spp. by AFLP analysis. J. Bacteriol. 2005, 187, 2537–2539.

54. Ayoulat, F.; Romano-Bertrand, S.; Masnou, A.; Marchandin, H.; Jumas-Bilak, E. Niches, population structure and genome reduction in Ochrobactrum intermedium: Clues to technology-driven emergence of pathogens. PLoS ONE 2014, 9, e83376.

55. Scholz, H.C.; Tomaso, H.; Dahouk, S.A.; Witte, A.; Schlöter, M.; Kämpfer, P.; Falsen, E.; Neubauer, H. Genotyping of Ochrobactrum anthropi by recA-based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis. FEMS Microbiol. Lett. 2006, 257, 7–16.

56. Scholz, H.C.; Al Dahouk, S.; Tomaso, H.; Neubauer, H.; Witte, A.; Schlöter, M.; Kämpfer, P.; Falsen, E.; Pfeffer, M.; Engel, M. Genetic diversity and phylogenetic relationships of bacteria belonging to the Ochrobactrum-Brucella group by recA and 16S rRNA gene-based comparative sequence analysis. Syst. Appl. Microbiol. 2008, 31, 1–16.

57. Scholz, H.C.; Pfeffer, M.; Witte, A.; Neubauer, H.; Dahouk, S.A.; Wernery, U.; Tomaso, H. Specific detection and differentiation of Ochrobactrum anthropi, Ochrobactrum intermedium and Brucella spp. by a multi-primer PCR that targets the recA gene. J. Med. Microbiol. 2008, 57, 64–71.
58. Bizzini, A.; Jaton, K.; Romo, D.; Bille, J.; Prod’hom, G.; Greub, G. Matrix-assisted laser desorption ionization - Time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J. Clin. Microbiol. 2011, 49, 693–696.

59. Hirai, J.; Yamagishi, Y.; Sakanashi, D.; Koizumi, Y.; Suematsu, H.; Mikamo, H. A case of bacteraemia caused by Ochrobacterium intermedium. Kansenshogaku Zasshi. 2016, 90, 129–133.

60. Yagel, Y.; Sestito, S.; Motro, Y.; Shnaiderman-Torban, A.; Khalifin, B.; Sai, O.; Navon-Venezia, S.; Steinman, A.; Moran-Gilad, J. Genomic characterization of antimicrobial resistance, virulence, and phylogeny of the genus Ochrobactrum. Antibiotics 2020, 9, 177.

61. Montañá, S.; Fernandez, J.S.; Barenboim, M.; Hernandez, M.; Kayriyama, C.; Carulla, M.; Iriarte, A.; Ramirez, M.S.; Almuzara, M. Whole-genome analysis and description of an outbreak due to carbapenem-resistant Ochrobactrum anthropi causing pseudo-bacteraemias. New Microbes New Infect. 2018, 26, 100–106.

62. Appelbaum, P.C.; Campbell, D.B. Pancreatic abscess associated with Achromobacter group Vd biovar 1. J. Clin. Microbiol. 1980, 12, 282–283.

63. Kish, M.A.; Buggy, B.P.; Forbes, B.A. Bacteremia caused by Achromobacter species in an immunocompromised host. J. Clin. Microbiol. 1984, 19, 947–948.

64. Van Horn, K.G.; Gedris, C.A.; Ahmed, T.; Wormser, G.P. Bacteremia and urinary tract infection associated with CDC group Vd biovar 2. J. Clin. Microbiol. 1989, 27, 201–202.

65. Cieslak, T.J.; Robb, M.L.; Drabick, C.J.; Fischer, G.W. Catheter-associated sepsis caused by Ochrobactrum anthropi: Report of a case and review of related non-fermentative bacteria. Clin. Infect. Dis. 1992, 14, 902–907.

66. Gransden, W.R.; Eykyn, S.J. Seven cases of bacteremia due to Ochrobactrum anthropi. Clin. Infect. Dis. 1992, 15, 1068–1069.

67. Brivet, F.; Guibert, M.; Kiredjian, M.; Dormont, J. Necrotizing Fasciitis, bacteremia, and multiorgan failure caused by Ochrobactrum anthropi. Clin. Infect. Dis. 1993, 17, 516–517.

68. Kern, W.V.; Oethinger, M.; Marre, R.; Kaufhold, A.; Rozdzinski, E. Ochrobactrum anthropi bacteremia: Report of four cases and short review. Infection 1993, 21, 306–310.

69. Klein, J.D.; Eppe, S.S. Ochrobactrum anthropi bacteremia in a child. Del. Med. J. 1993, 65, 493–495.

70. Alnor, D.; Frimodt-Møller, N.; Espersen, F.; Frederiksen, W. Infections with the unusual human pathogens agrobacterium species and Ochrobacterium anthropi. Clin. Infect. Dis. 1994, 18, 914–920.

71. Ezzedine, H.; Mourad, M.; Van Ossel, C.; Logghe, C.; Squiffilet, J.P.; Renault, F.; Wauters, G.; Gigí, J.; Wilmotte, L.; Haxhe, J.J. An outbreak of Ochrobactrum anthropi bacteremia in five organ transplant patients. J. Hosp. Infect. 1994, 27, 35–42.

72. Haditsch, M.; Binder, L.; Tschurtschtenthaler, G.; Watschinger, R.; Zauner, G.; Mittermayer, H. Bacteremia caused by Ochrobactrum anthropi in an immunocompromised child. Infection 1994, 22, 291–292.

73. Braun, M.; Jonas, J.B.; Schonherr, U.; Naumann, G.O.H. Ochrobactrum anthropi endophthalmitis after uncomplicated cataract surgery. Am. J. Ophthalmol. 1996, 122, 272–273.

74. Chang, H.J.; Christenson, J.C.; Pavia, A.T.; Bobrin, B.D.; Bland, A.L.; Carson, L.A.; Arduino, M.J.; Verma, P.; Aguero, S.M.; Carroll, K.; et al. Ochrobactrum anthropi meningitis in pediatric pericardial allograft transplant recipients. J. Infect. Dis. 1996, 173, 656–660.

75. Cieslak, T.J.; Drabick, C.J.; Robb, M.L. Pyogenic infections due to Ochrobactrum anthropi. Clin. Infect. Dis. 1996, 22, 845–847.

76. Ramos, J.M.; Román, A.; Fernández-Roblas, R.; Cabello, A.; Soriano, F. Infection caused by Ochrobactrum anthropi. Clin. Microbiol. Infect. 1996, 1, 214–216.

77. Berman, A.J.; Del Priore, L.V.; Fischer, C.K. Endogenous Ochrobactrum anthropi endophthalmitis. Am. J. Ophthalmol. 1997, 123, 560–562.

78. Christenson, J.C.; Pavia, A.T.; Seskin, K.; Brockmeyer, D.; Korgenski, E.K.; Jenkins, E.; Pierce, J.; Daly, J.A. Meningitis due to Ochrobactrum anthropi: An emerging nosocomial pathogen. Pediatr. Neurosurg. 1997, 27, 218–221.

79. Earhart, K.C.; Boyce, K.; Bone, W.D.; Wallace, M.R. Ochrobactrum anthropi infection of retained pacemaker leads. Clin. Infect. Dis. 1997, 24, 281–282.

80. Gill, M.V.; Ly, H.; Mueenuddin, M.; Schoch, P.E.; Cunha, B.A. Intravenous line infection due to Ochrobactrum anthropi (CDC group Vd) in a normal host. Hear. Lung J. Acute Crit. Care. 1997, 26, 335–336.

81. Torres, L.; Arazo, P.; Seoane, A.; Marco, M.L. Bacteriemia por Ochrobactrum anthropi en un paciente con sida Ochrobactrum anthropi bacteremia in a patient with AIDS. Med. Clin. 1998, 111, 318.
82. Yu, W.L.; Lin, C.W.; Wang, D.Y. Clinical and microbiologic characteristics of *Ochrobactrum anthropi* bacteremia. *J. Formos. Med. Assoc.* 1998, 97, 106–112.

83. Hay, A.J.; Lo, T.Y. *Ochrobactrum anthropi* meningitis in a pre-term neonate. *J. Infect.* 1999, 38, 134–135.

84. Inoue, K.; Numaga, J.; Nagata, Y.; Sakurai, M.; Aso, N.; Fujino, Y. *Ochrobactrum anthropi* endophthalmitis after vitreous surgery. *Br. J. Ophthalmol.* 1999, 83, 501b.

85. Manfredi, R.; Nanetti, A.; Ferri, M.; Chiido, F. Nosocomial sepsis due to *Ochrobactrum anthropi* in HIV positive patients: Two case reports. *Infez. Med.* 1999, 7, 119–124.

86. Mastroianni, A.; Cancellieri, C.; Montini, G. *Ochrobactrum anthropi* bacteremia: Case report and review of the literature. *Clin. Microbiol. Infect.* 1999, 5, 570–573.

87. Saavedra, J.; Garrido, C.; Folgueira, D.; Torres, M.J.; Ramos, J.T. *Ochrobactrum anthropi* bacteremia associated with a catheter in an immunocompromised child and review of the pediatric literature. *Pediatr. Infect. Dis. J.* 1999, 18, 658–660.

88. Stiakaki, E.; Bolonaki, I.; Maraki, S.; Samonis, G.; Kambourakis, A.; Tselentis, I.; Kalmanti, M. *Ochrobactrum anthropi* bacterena in children with central venous catheters. *J. Pediatr. Hematol. Oncol.* 1999, 21, 338.

89. Blecker Shelly, D.; Mortensen, J.E. A pediatric case report and review of infections caused by *Ochrobactrum anthropi*. *Clin. Microbiol. Newsl.* 2000, 22, 45–47.

90. Chertow, G.M. *Ochrobactrum anthropi* bacteremia in a patient on hemodialysis. *Am. J. Kidney Dis.* 2000, 35, e30-1.

91. Delière, E.; Vu-Thien, H.; Lévy, V.; Barquins, S.; Schlegel, L.; Bouvet, A. Epidemiological investigation of *Ochrobactrum anthropi* strains isolated from a haematology unit. *J. Hosp. Infect.* 2000, 44, 173–178.

92. Esteban, J.; Ortiz, A.; Rollan, E.; Reyero-Lopez, A.; Soriano, E. Peritonitis due to *Ochrobactrum anthropi* in a patient undergoing continuous ambulatory peritoneal dialysis. *J. Infect.* 2000, 40, 205–206.

93. Pelcroche-Llacahuanga, H.; Brandenburg, V.; Riehl, J.; Haase, G. *Ochrobactrum anthropi* peritonitis in a CAPD patient. *J. Infect.* 2000, 40, 299–301.

94. Saeed Mahmood, M.; Sarwari, A.R.; Khan, M.A.; Sophie, Z.; Khan, E.; Sami, S. Infective endocarditis and septic embolization with *Ochrobactrum anthropi*: Case report and review of literature. *J. Infect.* 2000, 40, 287–290.

95. El-Zimaity, D.; Harrison, G.A.J.; Keen, A.P.; Price, S.; Evans, S.E.; Lewis, A.M.; Thomas, I.; Bevan, V.; Djemal, K. *Ochrobactrum anthropi* pseudobacteremia. *J. Infect.* 2001, 43, 217–218.

96. Greven, C.M.; Nelson, K.C. Chronic postoperative endophthalmitis secondary to *Ochrobactrum anthropi*. *Retina* 2001, 21, 279–280.

97. Daxboeck, F.; Zitta, S.; Assadian, O.; Krause, R.; Wenisch, C.; Kovarik, J. *Ochrobactrum anthropi* bloodstream infection complicating hemodialysis. *Am. J. Kidney Dis.* 2002, 40, e17.1–e17.4.

98. Galanakis, E.; Bitsori, M.; Samonis, G.; Christidou, A.; Georgiladakis, A.; Sbyrakis, S.; Tselentis, Y. *Ochrobactrum anthropi* bacteremia in immunocompetent patients. *Scand. J. Infect. Dis.* 2002, 34, 800–803.

99. Stiakaki, E.; Galanakis, E.; Samonis, G.; Christidou, A.; Maraka, S.; Tselentis, Y.; Kalmanti, M. *Ochrobactrum anthropi* bacteremia in pediatric oncology patients. *Pediatr. Infect. Dis. J.* 2002, 21, 72–74.

100. Wheen, L.; Taylor, S.; Godfrey, K. Vertebral osteomyelitis due to *Ochrobactrum anthropi*. *Intern. Med. J.* 2002, 32, 426–428.

101. Gascón, F.; Zafría, M.; Castaño, M.; Valle, M.; Sánchez, I. Neumonia extrahospitalaria con bacteremia por *Ochrobactrum anthropi* en un niño inmunocompetente. *Rev. Diagn. Biol.* 2002, 51, 69–70.

102. Hill, S. *Ochrobactrum anthropi* bacteremia. *Scand. J. Infect. Dis.* 2003, 35, 913.

103. Romero Gómez, M.P.; Peinado Esteban, A.M.; Sobrino Daza, J.A.; Sáez Nieto, J.A.; Alvarez, D.; Peña García, P. Prosthetic mitral valve endocarditis due to *Ochrobactrum anthropi*: Case report. *J. Clin. Microbiol.* 2004, 42, 3371–3373.

104. Oliver, J.W.; Stapenhorst, D.; Warraich, I.; Griswold, J.A. *Ochrobactrum anthropi* and *Delftia acidovorans* to bacteremia in a patient with a gunshot wound. *Infect. Dis. Clin. Pract.* 2005, 13, 78–81.

105. Cho, S.-S.; Cheun, J.-W.; Jeun, C.-B.; Park, S.-M.; Soo-Kin Jang, D.-S.M.; Park, Y.-J. A case of *Ochrobactrum anthropi* infection after using medicinal plants. *Korean J. Clin. Lab. Sci.* 2006, 38, 22–25.

106. Vaidya, S.A.; Citron, D.M.; Fine, M.B.; Murakami, G.; Goldstein, E.J.C. Pelvic abscess due to *Ochrobactrum anthropi* in an immunocompetent host: Case report and review of the literature. *J. Clin. Microbiol.* 2006, 44, 1184–1186.

107. Aly, N.Y.A.; Salmeen, H.N.; Joshi, R.M. *Ochrobactrum anthropi* bacteremia in a child with inborn error of mitochondrial fatty acid oxidation. *Med. Princ. Pract.* 2007, 16, 463–465.
complicating hemodialysis. Shrishrimal, K. Recurrent cornea ophthalmitis due to Ochrobactrum anthropi.

Shapiro, P.S.; Cho, J.H.; Kim, H.S.; Kim, T.S.; Ha, C.O.; Kim, J.S.; Kang, H.J. A case of Ochrobactrum anthropi bacteremia. Korean J. Nosocomiol. Inflamm. 2007, 12, 65–68.

Song, S.; Ahn, J.K.; Lee, G.H.; Park, Y.G. An epidemic of chronic pseudophakic endophthalmitis due to Ochrobactrum anthropi: Clinical findings and managements of nine consecutive cases. Ocul. Immunol. Inflamm. 2007, 15, 429–434.

Yu, M.W.; Sohn, K.M.; Rhee, J.Y.; Won, S.O.; Kyong, R.P.; Nam, Y.L.; Song, J.H. Spontaneous bacterial peritonitis due to Ochrobactrum anthropi: A case report. J. Korean Med. Sci. 2007, 22, 377–379.

Arora, U.; Kaur, S.; Devi, P. Ochrobactrum anthropi septicemia. Indian J. Med. Microbiol. 2008, 26, 81–83.

Battaglia, T.C. Ochrobactrum anthropi septic arthritis of the acromioclavicular joint in an immunocompetent 17 year old. Orthopedics 2008, 31, 1–3.

Javaid, M.M.; Rumjon, A.; Cubbon, M. Ochrobactrum anthropi bacteremia in a non-diabetic, immunocompetent hemodialysis patient. Dial. Transplant. 2008, 37, 452–453.

Menuet, M.; Bittar, F.; Stremler, N.; Dubus, J.C.; Sarles, J.; Raoult, D.; Rolain, J.M. First isolation of two colistin-resistant emerging pathogens, Brevundimonas diminuta and Ochrobactrum anthropi, in a woman with cystic fibrosis: A case report. J. Med. Case Rep. 2008, 2, 373.

Chiang, C.C.; Tsai, Y.Y.; Lin, J.M.; Chen, W.L. Chronic endophthalmitis after cataract surgery secondary to Ochrobactrum anthropi. Eye 2009, 23, 1237–1238.

Duran, R.; Vatansever, Ü.; Acunaş, B.; Başaran, Ü.N. Ochrobactrum anthropi bacteremia in a preterm infant with meconium peritonitis. Int. J. Infect. Dis. 2009, 13, e61–e63.

Kim, G.; Jin, S.; Yoo, J.; Kim, C.; Choi, J.; Kim, J.; Song, Y. A Case of Meropenem-Resistant Ochrobactrum anthropi Bacteremia. Infect. Chemother. 2009, 41, 62–64.

Ospina, S.; Muñoz, S.A.; Zapata, J. Bacteremia por Ochrobactrum anthropi en paciente con obstrucción de la vía biliar. Infectio 2009, 13, 293–295.

Rihova, Z.; Mascart, G.; Dratwa, M. Ochrobactrum anthropi peritonitis in an Immunocompetent CAPD Patient. Perit. Dial. Int. 2009, 29, 675–676.

Adeyemi, A.I.; Sulaiman, A.A.; Solomon, B.B.; Chinedu, O.A.; Victor, I.A. Bacterial bloodstream infections in HIV-infected adults attending a lagos teaching hospital. J. Health Popul. Nutr. 2010, 28, 318–326.

Quintela Obregón, E.; Palomar Fontanet, R.; Salas, C.; Rodrigo Calabia, E.; Arias Rodríguez, M. Ochrobactrum anthropi y peritonitis polimicrobiana en diálisis peritoneal: Un predictor de resistencia. Nefrologia 2010, 30, 591–592.

Saveli, C.C.; Levi, M.; Koepppe, J. Ochrobactrum anthropi septic arthritis: Case report and implications in orthopedic infections. Infect. Dis. Rep. 2010, 2, 5–6.

Sepe, V.; Esposito, P.; Sacco, L.; Ceci, A.; Magrassi, A.; Negri, M.T.; Libetta, C.; Canton, A.D. Peritonitis in type 2 diabetes mellitus due to Ochrobactrum anthropi complicating automated peritoneal dialysis. Acta Diabetol. 2010, 47, 341–344.

Starr, N. Pseudo-outbreak of Ochrobactrum anthropi in post-operative tissue: Cultures. Am. J. Infect. Control 2010, 38, e139–e140.

Wi, Y.M.; Peck, K.R. Biliary sepsis caused by Ochrobactrum anthropi. Jpn. J. Infect. Dis. 2010, 63, 444–446.

Woo Nho, K.; Chae, J.D.; Sung, S.-A.S. Case report: A case of continuous ambulatory peritoneal dialysis related peritonitis caused by Ochrobactrum anthropi. Kidney Res. Clin. Pract. 2010, 29, 839–841.

Yagüe-Muñoz, A.; Gregori-Roig, P.; Valls-López, S.; Pantoja-Martínez, J. Bacteriemia por Ochrobactrum anthropi en un niño con fibrosis quística. Enferm. Infecc. Microbiol. Clin. 2010, 28, 137–138.

Nicolás Obando, M.; Marta Badilla, S. Bacteriemia por Ochrobactrum anthropi en paciente en hemodiálisis por catéter tunelizado permanente. Caso clínico. Rev. Med. Chil. 2011, 139, 1344–1346.

Shivaparakasha, S.; Rajdev, S.; Singh, H.; Velivala, S. Prosthetic aortic valve endocarditis due to Ochrobactrum anthropi. Indian J. Med. Sci. 2011, 65, 69–72.

Chan, C.C.; Holland, E.J. Infectious endophthalmitis after boston type 1 keratoprosthesis implantation. Cornea 2012, 31, 346–349.

Shrishrimal, K. Recurrent Ochrobactrum anthropi and Shewanella putrefaciens bloodstream infection complicating hemodialysis. Hemodial. Int. 2012, 16, 113–115.
133. Alparslan, C.; Yavasca, O.; Kose, E.; Sanlioglu, P.; Aksu, N. An opportunistic pathogen in a peritoneal dialysis patient: *Ochrobactrum anthropi*. *Indian J. Pediatr.* 2013, 80, 72–74.

134. Chiu, L.Q.; Wang, W. A case of unusual Gram-negative bacilli septic arthritis in an immunocompetent patient. *Singap. Med. J.* 2013, 54, e164–e168.

135. Kumar, S.; Kapoor, S.; Chapda, S.; Sahgal, S.R. *Ochrobactrum anthropi* septicemia and pneumonia in a preterm, small for gestational age infant with multiple congenital anomalies. *Indian J. Pathol. Microbiol.* 2013, 56, 317–318.

136. Mattos, F.B.; Saraiva, F.P.; Angotti-Neto, H.; Passos, A.F. Outbreak of *Ochrobactrum anthropi* endophthalmitis following cataract surgery. *J. Hosp. Infect.* 2013, 83, 337–340.

137. Mudshingkar, S.; Choure, A.; Palewar, M.; Dohe, V.; Kagal, A. *Ochrobactrum anthropi*: An unusual pathogen: Are we missing them? *Indian J. Med. Microbiol.* 2013, 31, 306–308.

138. Naik, C.; Kulkarni, H.; Darabi, A.; Bhanot, N. *Ochrobactrum anthropi*: A rare cause of pneumonia. *J. Infect. Chemother.* 2013, 19, 162–165.

139. Siti Rohani, A.H.; Tzar, M.N. *Ochrobactrum anthropi* catheter-related bloodstream infection: The first case report in Malaysia. *Med. J. Mala.* 2013, 68, 267–268.

140. Al-naami, A.Q.; Ali Khan, L.; Ali Athlawy, Y.; Sun, Z. *Ochrobactrum anthropi* induced retroperitoneal abscess with mediastinal extension complicating airway obstruction: A case report. *J. Med. Radiat. Sci.* 2014, 61, 126–129.

141. Hernández-Torres, A.; Ruiz Gomez, J.; García-Vázquez, E.; Gómez-Gómez, J. *Ochrobactrum anthropi* bacteremia: Report of six cases and review of the literature. *Intern. Med. Open Access* 2014, 4, 134.

142. Khan, I.D.; Mukherjee, T.; Gupta, S.; Haleem, S.; Sahni, A.K.; Banerjee, S.; Konar, J. *Ochrobactrum anthropi* sepsis in intensive tertiary care. *J. Basic Clin. Med.* 2014, 3, 18–20.

143. Menezes, F.G.; Abreu, M.G.B.; Kawagoe, J.Y.; Warth, A.N.; Deutsch, A.D.; Dornaus, M.F.P.S.; Martino, M.D.V.; Correa, L. *Ochrobactrum anthropi* bacteremia in a preterm infant with cystic fibrosis. *Braz. J. Microbiol.* 2014, 45, 559–561.

144. Mrozek, S.; Dupuy, M.; Hoarau, L.; Lourtet, J.; Martin-Blondel, G.; Geeraerts, T. Brain empyema due to *Ochrobactrum anthropi*. *Med. Mal. Infect.* 2014, 44, 128–129.

145. Qasimyar, H.; Hoffman, M.A.; Simonsen, K.A. Late-onset *Ochrobactrum anthropi* sepsis in a preterm neonate with congenital urinary tract abnormalities. *J. Perinatol.* 2014, 34, 489–491.

146. Wu, X.; Zhu, W.; Fu, Z.Y.; Ai, Q.; Yang, L.X. A case report of a neck abscess caused by *Ochrobactrum anthropi* in a previously healthy person. *Rev. Med. Microbiol.* 2014, 25, 77–79.

147. Cenkçi, K.; Kamit Can, F.; Can, E.; Yilmaz Hanca, S.; Anıl, A.B.; Anıl, M. *Ochrobactrum anthropi* bacteremia and pneumonia in a previously healthy child. *Turkish J. Pediatr.* Emerg. Intensive Care Med. 2015, 2, 137–140.

148. Hindlerden, F.; Ozeroğlu, T.; Koculu, S.; Goksoy, H.S.; Guvenc, S.; Diz Kucukkaya, R. *Ochrobactrum anthropi* bacteremia after allogeneic stem cell transplantation: Report of a newly emerging pathogen. *Bone Marrow Transplant.* 2015, 50, S554–S562.

149. Patra, N.; Raju, R.; Prakash, M.R.; Mustare, V.K. Septicaemia due to *Ochrobactrum anthropi* in a patient with Guillain Barre Syndrome. *JMS J. Med. Soc.* 2015, 29, 182–184.

150. Ashraf, F. A case of *Ochrobactrum anthropi*-induced septic shock and infective endocarditis. *Rhode Isl. Med. J.* 2016, 99, 27–28.

151. Haviari, S.; Cassier, P.; Dananché, C.; Hulin, M.; Dauwalder, O.; Rouvière, O.; Bertrand, X.; Ferraud, M.; Bénet, T.; Vanhems, P. Outbreak of *Achromobacter xylosoxidans* and *Ochrobactrum anthropi* infections after prostate biopsies, France, 2014. *Emerg. Infect. Dis.* 2016, 22, 1412–1419.

152. Jimenez, G.; Antony, S. *Ochrobactrum anthropi*: An unusual cause of line related sepsis. Current knowledge of the epidemiology and clinical features of this pathogen. *Br. J. Med. Med. Res.* 2016, 18, 1–7.

153. Kanjee, R.; Koreishi, A.F.; Tanna, A.P.; Goldstein, D.A. Chronic postoperative endophthalmitis after cataract surgery secondary to vancomycin-resistant *Ochrobactrum anthropi*: Case report and literature review. *J. Ophthalmic Inflamm. Infect.* 2016, 6, 1–5.

154. Venkateswaran, N.; Wozniak, R.A.F.; Hindman, H.B. *Ochrobactrum anthropi* keratitis with Focal Descemet’s Membrane Detachment and Intracorneal Hypopyon. *Case Rep. Ophthalmol.* Med. 2016, 2016, 1–4.

155. Gigi, R.; Flusser, G.; Kadar, A.; Salai, M.; Elias, S. *Ochrobactrum anthropi*-caused osteomyelitis in the foot mimicking a bone tumor: Case report and review of the literature. *J. Foot Ankle Surg.* 2017, 56, 851–853.

156. Khasawneh, W.; Yusef, D. *Ochrobactrum anthropi* fulminant early-onset neonatal sepsis, A case report and review of literature. *Pediatr. Infect. Dis. J.* 2017, 36, 1167–1168.

Microorganisms 2020, 8, 1797
157. Torres Aguilera, E.; Verde Moreno, E.; Muñoz, P.; Valerio, M.; Luño, J. Nuevo microorganismo en la bacteriemia asociada a catéter? Nefrologia 2017, 37, 98–100.

158. Cipolla, L.; Gañete, M.; Serra, D.; Sampere, C.; Santillan, P.; Dinerstein, E.; Sztokhamer, D.; Perez, M.; Prieto, M.; Togneri, A. Identification and molecular epidemiology of a nosocomial outbreak of Ochrobactrum anthropi bacteriemia. First report in Argentina. Int. J. Infect. Dis. 2018, 73, 298.

159. Hafeez, Z.; Ohar, J.; Ahmad, M.I.; Zeeshan, A.; Sunkara, P.R.; Marupudi, S.; Usman, S.; Malik, A. Ochrobactrum anthropi pneumonia: A rare cause of acute respiratory distress syndrome (ARDS). Am. J. Respir. Crit. Care Med. 2018, 197, A5332.

160. Zhu, M.; Zhao, X.; Zhu, Q.; Zhang, Z.; Dai, Y.; Chen, L.; Liang, Z. Clinical characteristics of patients with Ochrobactrum anthropi bloodstream infection in a Chinese tertiary-care hospital: A 7-year study. J. Infect. Public Health 2018, 11, 873–877.

161. Caroleo, B.; Malandrino, P.; Liberto, A.; Condorelli, D.; Patanè, F.; Maiese, A.; Casella, F.; Geraci, D.; Ricci, P.; Di Mizio, G. Catheter-related Bloodstream Infections: A root cause analysis in a series of simultaneous Ochrobactrum anthropi infections. Curr. Pharm. Biotechnol. 2019, 20, 609–614.

162. Grabowska-Markowska, J.; Pawłowska, I.; Ziolkowski, G.; Wójkowska-Mach, J. Bacteraemia caused by Ochrobactrum anthropi - unusual behavior. Wiad. Lek. 2019, 72, 489–492.

163. Kang, J.Y.; Song, J.H.; Nam, K.Y.; Lee, S.U.; Lee, S.J. Polymicrobial keratitis of Pseudomonas aeruginosa, Acinetobacter baumannii, and Ochrobactrum anthropi. J. Korean Ophthalmol. Soc. 2019, 60, 474–479.

164. Roussotte, M.; Gerfaud-Valentin, M.; Perpoint; T.; Dauwalder, O.; Sève, P. Ochrobactrum anthropi catheter-related infection associated with superior vena cava syndrome. Med. Mal. Infect. 2019, 49, 551–553.

165. Arimuthu, D.A.; Seong Lim, C.T. Ochrobactrum anthropi bacteremia with variable clinical course: Report of two cases. Malays. J. Med. Health Sci. 2020, 16, 339–341.

166. Bratschi, C.; Ly, T.; Weber, A.; Meuli-Simmen, C.; Conen, A.; Mauler, F. Ochrobactrum anthropi Infection of the Hand. J. Hand Surg. Glob. Online 2020, In press.

167. Ko, H.M.; Jo, J.N.; Baek, H.G. Effective Identification of Ochrobactrum anthropi Isolated from Clinical Specimens. Korean J. Clin. Lab. Sci. 2020, 52, 221–228.

168. Higgins, C.S. Characterization, cloning and sequence analysis of the inducible Ochrobactrum anthropi AmpC beta-lactamase. J. Antimicrob. Chemother. 2001, 47, 745–754.

169. Shanthini, T.; Manohar, P.; Samna, S.; Srividya, R.; Bozdogan, B.; Rameshpathy, M.; Ramesh, N. Emergence of plasmid-borne bla_sps-181 gene in Ochrobactrum intermedium: First report from India. Access Microbiol. 2019, 1, e000024.

170. Sharma, P.; Killmaster, L.F.; Volkningen, J.D.; Cardenas-Garcia, S.; Wajid, A.; Rehmani, S.F.; Basharat, A.; Miller, P.I.; Afonzo, C.L. Draft genome sequences of three Ochrobactrum spp. isolated from different avian hosts in Pakistan. Genome Announc. 2018, 6, e00269-18.

171. Apisarnthanarak, A.; Kiratisin, P.; Mundy, L.M. Evaluation of Ochrobactrum intermedium bacteremia in a patient with bladder cancer. Diagn. Microbiol. Infect. Dis. 2005, 53, 153–155.

172. Dharne, M.S.; Misra, S.P.; Misra, V.; Dwivedi, M.; Patole, M.S.; Shouche, Y.S. Isolation of urease-positive Ochrobactrum intermedium in the stomach of a non-ulcer dyspeptic patient from north India. J. Microbiol. Immunol. Infect. 2008, 41, 183–186.

173. Jacobs, D.J.; Grube, T.J.; Flynn, H.W.; Greven, C.M.; Pathengay, A.; Miller, D.; Sanke, R.F.; Thorman, J. Intravitreal moxifloxacin in the management of Ochrobactrum intermedium endophthalmitis due to metallic intraocular foreign body. Clin. Ophthalmol. 2013, 7, 1727–1730.

174. Borges, L.S.B.; Monteiro, J.; Miglioli, L.; Inoue, F.; Coelho, F.; Barbosa, V.; Cortez, D.; Vasconcelos, E.; Souza, E.; Abboud, C. Identification of Ochrobactrum oryzae in Bloodstream Primary Infection in a Dialysis Patient: Can it be an Emerging Pathogen? J. Microbiol. Infect. Dis. 2016, 6, 128–131.

175. Hong, D.J.; Kim, K.H.; Kim, J.O.; Hong, J.S.; Jeong, S.H.; Lee, K. First case report of human infection with Ochrobactrum tritici causing bacteremia and cholecystitis. Ann. Lab. Med. 2016, 36, 278–280.
176. Bharucha, T.; Sharma, D.; Sharma, H.; Kandil, H.; Collier, S. *Ochrobactrum intermedium*: An emerging opportunistic pathogen—Case of recurrent bacteraemia associated with infective endocarditis in a haemodialysis patient. *New Microbes New Infect.* **2017**, *15*, 14–15.

177. Cho, H.W.; Byun, J.H.; Kim, D.; Lee, H.; Yong, D.; Lee, K.W. The first case of *Ochrobactrum pseudogrignonense* bacteremia in Korea. *Ann. Lab. Med.* **2020**, *40*, 331–333.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).