Single-chain factor XII exhibits activity when complexed to polyphosphate

R. ENGEL,*† C. M. BRAIN,* J. PAGET,† A. S. LIONIKIENE† and N. J. MUTCHT†
*Faculty of Biological Sciences, University of Leeds, Leeds; and †Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

To cite this article: Engel R, Brain CM, Paget J, Lionikiene AS, Mutch NJ. Single-chain factor XII exhibits activity when complexed to polyphosphate. J Thromb Haemost 2014; 12: 1513–22.

Summary. Background: The mechanism underpinning factor XII autoactivation was originally characterized with non-physiological surfaces, such as dextran sulfate (DS), ellagic acid, and kaolin. Several ‘natural’ anionic activating surfaces, such as platelet polyphosphate (polyP), have now been identified. Objective: To analyze the autoactivation of FXII by polyP of a similar length to that found in platelets (polyP70). Methods and results: PolyP70 showed similar efficacy to DS in stimulating autoactivation of FXII, as detected with amidolytic substrate. Western blotting revealed different forms of FXII with the two activating surfaces: two-chain FXIIa was formed with DS, whereas single-chain FXII (scFXII; 80 kDa) was formed with polyP70. Dissociation of scFXII from polyP70 abrogated amidolytic activity, suggesting reversible exposure of the active site. Activity of scFXII–polyP70 was enhanced by Zn2+ and was sensitive to NaCl concentration. A bell-shaped concentration response to polyP70 was evident, as is typical of surface-mediated reactions. Reaction of scFXII–polyP70 with various concentrations of S2302 generated a sigmoidal curve, in contrast to a hyperbolic curve for scFXIIa, from which a Hill coefficient of 3.67 was derived, indicative of positive cooperative binding. scFXII–polyP70 was more sensitive to inhibition by H-D-Pro-Phe-Arg-chloromethylketone and corn trypsin inhibitor than scFXIIa, but inhibition profiles for C1-inhibitor were similar. Active scFXII–polyP70 was also able to cleave its physiological targets FXI and prekallikrein to their active forms. Conclusions: Autoactivation of FXII by polyP, of the size found in platelets, proceeds via an active single-chain intermediate. scFXII–polyP70 shows activity towards physiological substrates, and may represent the primary event in initiating contact activation in vivo.

Keywords: blood coagulation; factor XII; hemostasis; polyphosphates; zymogens.

Introduction

Activation of the contact pathway occurs upon reciprocal proteolytic cleavage of factor XII and prekallikrein (PK) to their active forms, FXIIa and kallikrein, in the presence of a negatively charged surface. In turn, FXIIa cleaves FXI that is tethered to an anionic or membrane surface, generating active FXIa. FXIa initiates a series of ordered cleavages that feed into the prothrombinase complex and ultimately generate thrombin. FXI and PK require a non-enzymatic cofactor, high molecular weight kininogen (HK), to facilitate binding of these proteins to the activating surface, whereas FXII directly associates with the surface via the fibronectin domains in the heavy chain [1–4]. Zinc ions induce conformational changes in FXII [5–9] and HK [10–12], enhancing the interaction of these proteins with the anionic surface.

The function of FXII as a coagulation factor was contested for many years, as a deficiency in humans is not associated with a bleeding diathesis. It has now been hypothesized, through the use of mouse models, that FXII-driven coagulation is not essential for normal hemostasis, but mediates pathophysiological thrombus formation [13,14]. More recently, monoclonal antibodies (mAbs) directed against FXII have been shown to inhibit thrombus formation in primate thrombosis models [15]. These studies have redefined the function of FXII in vivo and highlighted it as a target for novel anticoagulant agents that could potentially prevent nascent thrombus growth with minimal bleeding complications. In addition

Correspondence: Nicola J. Mutch, School of Medicine & Dentistry, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK.
Tel.: +44 1224 437492.
E-mail: n.j.mutch@abdn.ac.uk

†Now at the Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the AMC, Amsterdam, the Netherlands.

Received 11 March 2014
Manuscript handled by: R. Camire
Final decision: P. H. Reitsma, 7 July 2014

© 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
to its role in coagulation, FXII is likely to function in innate immunity [16], and indeed several lines of evidence indicate that these processes are inextricably linked [17–19]. A second question concerning the function of FXII in vivo was the absence of a suitable charged surface to stimulate activation. Several potential ‘natural’ activators, including platelet polypolyphosphate (polyP) [20,21], microparticles derived from platelets and erythrocytes [22], RNA [23], misfolded proteins [24], collagen [25] and mast cell heparin [26], have now been identified. PolyP is an anionic polymer of phosphate residues that is secreted from the dense granules of human platelets upon activation by agonists such as thrombin, ADP, and collagen [21,27]. Platelet polyP is of a defined size of 60–100 phosphate units in length [21], unlike the extremely long polymers found in bacteria [28]. Platelet polyP has been found to stimulate FXII-driven procoagulant activity in vitro [20,29] and in vivo [21] and to upregulate bradykinin-driven inflammation [21].

Binding of FXII to an anionic surface induces autoactivation, via cleavage at Arg353–Val354. This generates the active protease FXIIa, an 80-kDa enzyme consisting of a heavy and a light chain linked by a disulfide bond. Further proteolytic cleavage at Arg334–Asn335 generates βFXIIa, a solution-phase derivative largely composed of the protease domain. βFXIIa cleaves PK, but has negligible activity towards FXI, whether surface-bound or in solution [30]. The mechanism of FXII autoactivation was characterized prior to the identification of physiological surfaces that were able to support this reaction [5,31,32]. The aim of this study was to define the ability of polyP, of similar chain length to that found in platelets, to stimulate autoactivation of FXII under physiological conditions. We show that autoactivation of FXII on a ‘natural’ activating surface proceeds via an active single-chain intermediate that is capable of cleaving both synthetic and physiological targets.

Materials and methods

Materials

FXII, αFXIIa, FXI, PK, kallikrein, horseradish peroxidase (HRP)-conjugated polyclonal antibody against FXII, HRP-conjugated antibody against FXI and HRP-conjugated antibody against PK were from Enzyme Research Laboratories (Swansea, UK). PolyP of average chain length 65 (polyP65) and C1-inhibitor (C1-Inh) were from Sigma-Aldrich (Irvine, Scotland). Dextran sulfate (DS) with an average Mₐ of 500 000 and EDTA were from Fisher Scientific (Loughborough, UK). 1-Pyr-Pro-Arg-p-nitroanilide (L-2145) and H-D-Pro-Phe-Arg-chloromethylketone (PCK) were from Bachem AG (Bubendorf, Switzerland), and H-D-Pro-Phe-Arg-pNA-2HCl (S2302) was from Quadrature (Epsom, UK). Corn trypsin inhibitor (CTI) was from Haematological Technologies (Vermont, NE, USA). NuPAGE 4–12% Bis-Tris gels, NuPAGE LDS sample buffer, reducing agent and Mops running buffer were from Life Technologies (Paisley, UK). Pierce spin cups with cellulose acetate filters were from Fisher-Scientific, Loughborough, UK. Unless otherwise stated, the buffer used throughout was 50 mm Tris-HCl (pH 7.4) and 100 mm NaCl. Polymethacrylate beads (Sepabeads EC-HA) were a kind gift from Residion SRL (Milan, Italy). Experiments were performed with either polyP₆₅ or polyP₇₀ (a kind gift from BK Giulini). Comparable results were obtained with both preparations of polyP, which, for simplicity, will be described as polyP₇₀ throughout the article. The concentration of polyP₇₀ is expressed in terms of monomer concentration throughout the article [20,33].

Chromogenic assays

FXII autoactivation FXII (50 nm) was added to 96-well microtitre plates (Greiner, Stonehouse, UK) alone or in the presence of either polyP₇₀ (70 µm) or DS (1.5 µg mL⁻¹) with or without 10 µm ZnCl₂ and with or without 1 mm EDTA. This assay was performed in 50 mm Tris-HCl (pH 7.4) buffer containing either 100 mm or 140 mm NaCl. The chromogenic substrate S2302 (0.5 mm) was added, and generation of activity was monitored at 405 nm every 30 s for 2 h at 37 °C in an ELx 808 plate reader (Bio-Tek, Potton, UK). Experiments were performed over a range of polyP₇₀ (0–2 mm), NaCl (0–1 M) and ZnCl₂ (0–100 µM) concentrations. A discontinuous assay for FXII autoactivation was performed by incubating FXII (50 nm) alone, with polyP₇₀ (70 µm) or with DS (1.5 µg mL⁻¹) at 37 °C. At various time points (0–120 min), the reaction was stopped by the addition of 1 M NaCl, and FXII activity was quantified with S2302 (0.5 mm) as described above. Gradients from the initial linear sections of absorbance vs. time graphs were calculated and plotted against the inhibitor, polyP₇₀, NaCl or ZnCl₂ concentrations with GRAPHPAD PRISM 5.03 (La Jolla, CA, USA). Data were analyzed by linear regression, and accurate line-fitting was established by analysis of residual data.

For western blot analysis of FXII autoactivation, FXII (50 nm) was incubated alone or in the presence of 70 µm polyP₇₀ or 1.5 µg mL⁻¹ DS with or without 10 µm ZnCl₂ for 60 min at 37 °C. Reducing sample buffer was added, and samples were boiled for 10 min prior to being resolved on 4–12% NuPAGE gels and transferred to a poly(vinylidene difluoride) membrane. FXII was detected with a polyclonal antibody conjugated to HRP (Enzyme Research Laboratories). A commercial preparation of αFXIIa (50 nm) was included in the western blot as a positive control.

FXII binding studies PolyP₇₀ was immobilized on primary amine-containing polymethacrylate beads by the use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as previously described [34]. FXII (2 µg) in binding buffer (50 mm Tris-HCl, pH 7.4, 100 mm NaCl, 0.1% bovine

© 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
serum albumin [BSA]) was incubated with polyP70-labeled beads or BSA-labeled (control) beads for 30 min before centrifugation in Pierce spin cups at 1677 × g for 30 s to collect the flow-through. The beads were washed twice in binding buffer before elution with a high-salt buffer (50 mM Tris-HCl, pH 7.4, 1 M NaCl, 0.1% BSA). Samples were then separated on 4–12% gels and subjected to western blot analysis as described above.

Single-chain FXII (scFXII)–polyP70 and aFXIIa activity

FXII (50 nm) was incubated with polyP70 (70 μM) in the presence of increasing concentrations of S2302 substrate (0–500 μM). The activity of scFXIIa (50 nm) was monitored under comparable conditions. From the raw data, the slope of the linear portion of the reaction was derived with GRAPHPAD PRISM 5.03 by linear regression, and plotted against the substrate concentration. The data were then fitted to an allosteric sigmoidal model of enzyme kinetics in the case of scFXII–polyP70, or the classic Michaelis–Menten equation in the case of aFXIIa [35].

Inhibition studies

FXII (50 nm) in the presence of polyP70 (70 μM) or aFXIIa (50 nm) was incubated with various concentrations of CTI (0–500 nm), PCK (0–5 μM), or C1-Inh (0–400 nm), and activity was monitored with S2302 (0.5 mM). Gradient values were derived and normalized to activity in the absence of inhibition. Data were then analyzed by non-linear regression (log[inhibitor] vs. normalized response variable slope), allowing the IC₅₀ values to be determined.

FXI activation

FXI (35 nm) was incubated with or without FXII (50 nm) and with or without polyP70 (70 μM), and activity was quantified with a chromogenic substrate, L-2145. Additional samples were removed at 100 min, and western-blotted with an HRP-conjugated polyclonal antibody against FXI.

PK activation

PK (50 nm) was incubated with or without FXII (3 nm) and with or without polyP70 (70 μM), and activity was quantified with S2302. Both kallikrein and aFXIIa cleave S2302; to control for this, the activating concentration of FXII (3 nm) was included with or without polyP70 (70 μM). Samples were removed at 60 min and western-blotted with an HRP-conjugated polyclonal antibody against PK.

Data analysis

All data were analyzed with GRAPHPAD PRISM 5.03. Experiments were performed in triplicate, and results are presented as the mean ± standard deviation of at least three separate repeats. Statistical analyses were performed with t-tests, with P < 0.05 considered to be statistically significant.

Results

scFXII shows enzymatic activity when bound to polyP70

PolyP70 (70 μM) was found to be a potent stimulator of FXII autoactivation, as determined in a continuous reaction with a chromogenic substrate (Fig. 1A). Autoactivation of FXII was analyzed at 60 min by SDS-PAGE under reducing conditions and western blotting with an antibody against FXII (Fig. 1B). DS generated a two-chain active enzyme, composed of a 50-kDa chain and a 30-kDa chain; the bands observed were of the same molecular masses as those obtained with a commercial preparation of aFXIIa. In contrast, although FXII incubated with polyP70 was capable of cleaving an amidolytic substrate, it was detected as a single band at 80 kDa. We performed a second chromogenic reaction under discontinuous conditions (Fig. 1C), in which FXII was incubated with polyP70 or DS for various times (0–100 min). The reaction was stopped with NaCl (1 M) to disrupt binding of FXII(a) to the activating surface. FXII incubation with DS resulted in substantial cleavage of S2302, but, in contrast, no FXIIa activity was detected in preparations of FXII and polyP70. To confirm dissociation of the scFXII–polyP70 complex by high salt concentrations, we performed binding assays in which polyP70 was directly coupled to polymethacrylate beads (Fig. 1D). FXII was depleted in the flow-through fraction, reflective of binding to immobilized polyP70, and was subsequently eluted with 1 M NaCl. No binding of FXII to control beads was observed. The transition metal ion Zn²⁺ is known to enhance the association of FXII with activating surfaces such as DS [5,36]. We analyzed the contribution of Zn²⁺ to the interaction of FXII and polyP70 by performing the continuous assay in the absence and presence of 10 μM Zn²⁺ and 1 mM EDTA. Zn²⁺ dramatically accelerated the activity generated by scFXII–polyP70, and this effect was negated by EDTA (Fig. 1E). No significant differences in activity were noted with EDTA alone or when EDTA included in the reaction containing Zn²⁺. The accelerated reaction in the presence of Zn²⁺ did not drive formation of the two-chain aFXIIa by polyP70, as shown by western blotting (Fig. 1C). The activity of scFXII–polyP70 was compromised at 140 mM NaCl, but, interestingly, the effect of NaCl was overcome by addition of Zn²⁺ (Fig. 1E). These results suggest that the two activating surfaces, polyP70 and DS, induce FXII activity by different mechanisms. They indicate that association of polyP70 with FXII generates an active single-chain intermediate with substantial activity towards an amidolytic substrate in the absence of proteolytic cleavage to aFXIIa.

© 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
The optimal polyP70 polymer concentration for efficient autoactivation of FXII was 70–140 \(\mu M \) (Fig. 2), as determined with the continuous assay described above. As shown in Fig. 1E, the concentration of NaCl in the reaction had a dramatic impact on autoactivation of FXII by polyP70. We investigated this more comprehensively, and found maximal autoactivation of FXII by polyP70 at low NaCl concentrations (10–50 mM); however, considerable activity was still detectable at physiological NaCl concentrations (Fig. 2). The strong dependence on the concen-
tration of NaCl reflects the ionic nature of the interaction between FXII and polyP 70, as shown in Fig. 1D. We found that the optimal Zn 2+ concentration for enhancing autoactivation of FXII by polyP 70 was 10 μM (Fig. 2).

The presence of physiological concentrations of Zn 2+ enhances the generation of scFXII–polyP70 activity and can diminish the effect of NaCl on the reaction.

Comparison of scFXII–polyP70 activity with αFXIIa activity

We next conducted a set of experiments to investigate the kinetics of the reaction of scFXII–polyP70 with S2302 in comparison with a commercial preparation of αFXIIa. αFXIIa produced a classic hyperbolic curve that, when analyzed by use of the Michaelis–Menten equation, gave a \(K_m \) of 77 μM (Fig. 3). In contrast, a sigmoidal curve was obtained with scFXII–polyP70 over a range of S2302 concentrations (10–400 μM) (Fig. 3), from which it was impossible to derive a \(K_m \). The data were fitted to sigmoidal substrate velocity curves (GRAPHPAD PRISM), and the Hill coefficient determined to be 3.67, indicative of positive cooperative binding of polyP70 to FXII.

Sensitivity of scFXII–polyP70 to inhibition

We then studied inhibition of scFXII–polyP70 by a peptidyl inhibitor (PCK), a small protein inhibitor (CTI) and a physiological inhibitor (C1-Inh) of FXIIa. FXII and polyP70 (70 μM) or αFXIIa were incubated with increasing concentrations of inhibitors (Fig. 4). Activity was quantified with S2302 at each inhibitor concentration tested. We found that scFXII–polyP70 was inhibited substantially faster by CTI than the two-chain form, αFXIIa (IC 50 of 23.1 ± 0.06 nM vs. 304.4 ± 0.06 nM, respectively). Similar results were obtained with PCK, with lower IC 50 values for scFXII–polyP70 than for αFXIIa (IC 50 of 533.8 ± 0.08 nM vs. 2212 ± 0.03 nM). Interestingly, no difference was noted in the inhibition of scFXII–polyP70 and αFXIIa by C1-Inh (IC 50 of 113 ± 0.1 nM vs. 104.4 ± 0.09 nM).
scFXII–polyP70 cleaves physiological substrates

We tested the ability of scFXII–polyP70 to cleave its physiological targets, FXI and PK. FXI with or without FXII and with or without polyP70 (70 μM) was incubated with a chromogenic substrate for FXI, and the activity was quantified over a period of 2 h. Very little FXIa activity was observed upon incubation of zymogen FXI and FXII, but inclusion of polyP70 dramatically accelerated activation (Fig. 5A). Western blotting revealed the presence of FXIa when FXI was incubated with FXII and polyP70 but not when it was incubated with FXII alone. In the absence of FXII, polyP70 was unable to directly stimulate autoactivation of FXI, consistent with previous observations [21].

Similar experiments conducted with PK showed generation of kallikrein activity when PK was incubated with FXII, indicating reciprocal activation of these proteases even in the absence of an activating surface (Fig. 5B). Inclusion of polyP70 dramatically accelerated the cleavage of PK, and bands of kallikrein at 50 kDa and 38/35 kDa were detected by western blotting. Interestingly, polyP70 was not efficient at stimulating PK autoactivation, but these experiments were conducted in the absence of the cofactor HK, which facilitates binding of PK to an activating surface. The chromogenic substrate S2302 can be cleaved by both kallikrein and FXIIa. We therefore examined cleavage of S2302 at various FXII concentrations; minimal cleavage of S2302 was observed until the concentration of FXII exceeded 25 nM in the presence of polyP70 (data not shown). These data clearly show that scFXII–polyP70 has the capacity to cleave downstream physiological targets in addition to amidolytic substrates.

Discussion

FXII is known to autoactivate when bound to negatively charged surfaces. The mechanism of autoactivation has been studied with several non-physiological surfaces, such as DS [31,37], ellagic acid [38], and kaolin [39]. These studies provided valuable insights into the mechanism underpinning FXII autoactivation, but the surfaces were included at relatively high concentrations, and experiments were performed at low ionic strength. In this study, we analyzed autoactivation of FXII by the ‘natural’ surface polyP at physiological pH and ionic strength. It has been established that longer-chain polyP, such as those found in bacteria, are substantially more efficient at stimulating contact activation [33]. However, the aim of this study was to evaluate the ability of polyP of approximately the size found in platelets to activate FXII [21,27]. We have shown that autoactivation of FXII by polyP70 generates an active single-chain intermediate form of FXII (scFXII), presumably by inducing a conformational change in FXII that allows the active site of the enzyme to open. If the interaction of polyP70 and FXII is disrupted by high salt concentrations, enzymatic activity is lost, indicating that the conformational change in scFXII–polyP70 is reversible. scFXII–polyP70 is capable of cleaving synthetic and physiological targets, specifically FXI and PK, to their active forms, indicating that it may participate in biological reactions and could provide the initial stimulus for generating two-chain zFXIIa in vivo.

FXII is classified as a coagulation protein, but it closest homolog is hepatocyte growth factor [40], and it is also structurally analogous to the fibrinolytic proteins tissue-type plasminogen activator (t-PA) and single-chain urokinase plasminogen activator [41]. Interestingly, t-PA is not considered to be a ‘true zymogen’, as it shows catalytic activity, ~8% of that of the two-chain form, as a single-chain protein (single-chain t-PA [sc-tPA]) [42–44]. Fibrin functions as a cofactor for sc-t-PA, accelerating its intrinsic enzymatic activity to such a degree that the cleaved and uncleaved forms are indistinguishable [45]. ‘Zymogen activation’ can therefore be...
achieved by direct cleavage of sct-PA by plasmin or by binding of sct-PA to fibrin [45]. The results presented here indicate that a similar mechanism may exist for activation of zymogen FXII. The enzymatic activity of FXIIa is 4200-fold higher than that of FXII [46]. However, our data reveal that, when FXII is bound to its ‘cofactor’, polyP70, there is a substantial increase in enzymatic activity, roughly equivalent to that of the same concentration of cleaved FXIIa. The hypothesis that FXII could show amidolytic activity in its single-chain form was first proposed by Ratnoff and Saito [32], after they exposed FXII to Sephadex–ellagic acid. They found that cleavage of FXII was minimal, but that coagulant and amidolytic properties could be detected. This suggests that binding of FXII to a negatively charged surface, at least to ellagic acid and polyP70, is sufficient to induce a conformational change that exposes the active site of the protein.

The FXII heavy chain contains two surface binding regions, one in the fibronectin type I domain between Thr134 and Arg153 [2], and one at an N-terminal site located between Glu5 and Glu15 [1]. By use of a series of FXII deletion mutants, an additional discontinuous region (Pro313–Arg334, Leu334–Arg353) was identified that can participate in surface binding [4]. Autoactivation of FXII and cleavage by kallikrein is also enhanced by binding of a mAb to the kringle domain of FXII, indicating that multiple mechanisms may promote FXII activation [47]. The cooperative binding kinetics observed for FXII autoactivation by polyP70 may be explained by the

Fig. 5. Single-chain FXII–polyphosphate (polyP)70 cleaves its physiological targets FXI and prekallikrein (PK). (A) FXI (35 nM) was incubated alone, with FXII (50 nM), with polyP70 (70 µM) or with both in the presence of the chromogenic substrate L-2145 (0.5 mM), and the reaction was monitored at 405 nm. Data are expressed as mean ± standard deviation (SD); n = 3. Samples from the 120 min time point were separated under reducing conditions and western-blotted with an antibody against FXI. (B) PK (50 nM) was incubated with FXII (3 nM), with polyP70 (70 µM) or with both in the presence of S2302 (0.5 mM). FXII (3 nM) with or without polyP70 (70 µM) was included as a control. Data are expressed as mean ± SD; n = 3. Samples from the 60 min time point were western-blotted with an antibody against PK.
existence of multiple binding sites for anionic surfaces, and require further studies to define the number and location of these sites.

Generation of scFXII–polyP70 activity was dependent on the concentration of activating surface, with an optimal concentration of 70–130 \(\mu \)M polyP70. Higher concentrations of polyP70 were inhibitory, consistent with a template mechanism of activation. Substantial amidolytic activity was detected at low ionic strength (50 mM), but even at physiological salt concentrations, scFXII–polyP70 showed significant activity. These observations are consistent with our previous reports on polyP activation of FXII in plasma [20,21]. Zinc ions bind to FXII, and are known to enhance autoactivation by several surfaces, including DS [5] and phosphatidylinositol phosphate [36]. FXII has the capacity to bind a maximum of four zinc ions, with high affinity (0.6 \(\mu \)M), to a single class of independent, non-interacting binding sites [36]. In plasma, the concentration of \(Zn^{2+} \) is 5–20 \(\mu \)M; the majority is bound to albumin, with only 0.25–1 \(\mu \)M being available as free ion [48]. However, the concentration of \(Zn^{2+} \) in platelets is 30–60-fold higher [49], and is sensitive to changes in the extracellular concentration [50]. It has been suggested that concentrations of \(\sim 10 \mu \)M free \(Zn^{2+} \) could be readily achieved in the circulation following platelet activation [51,52], and concomitant release of polyP and \(Zn^{2+} \) from activated platelets may facilitate FXII activation in vivo. In line with previous reports on autoactivation of FXII by DS [5], our experiments indicate that, in the presence of \(Zn^{2+} \), the impact of NaCl on the interaction of FXII and polyP70 activity is diminished.

It has previously been shown that autoactivation of FXII can be induced by low molecular mass polysaccharides, but the rate is dramatically accelerated with polysaccharides of 10 000 Da and above [31]. The increased level of autoactivation is explained by the existence of multiple binding sites for FXII on larger polysaccharide chains. In this study, we used polyP of an average chain length of 70. By assuming a P–O bond length of 1.5 Å, we can derive the length of polyP70 as \(~ 20 \) nm. The diameter of FXII is 5–6 nm (\(M_r = 80 000 \)), based on the assumption that the protein molecule is approximately spherical [31]. These calculations are approximate; however, they imply that up to four FXII molecules could bind per chain of polyP70, which may account for the levels of autoactivation and activity observed.

scFXII–polyP70 was markedly more sensitive to inhibition by CTI and PCK than two-chain αFXIIa. Interestingly, there was no difference in the inhibition of scFXII–polyP70 and αFXIIa by the serpin C1-Inh. It is interesting to speculate on the differences in inhibition of scFXII–polyP70 by these inhibitors, which are markedly different in structure and mode of inhibition. It is possible that, in the case of C1-Inh, the polyanion binding site negates the effect of polyP70, whereas with PCK a charge interaction may occur between the arginine of the peptide-based inhibitor PCK and polyP70, drawing it into the active site and facilitating inhibition. CTI is a unique inhibitor, which is relatively specific for trypsin and FXIIa, however, like PCK the reactive site region of CTI has a net positive charge due to an abundance of arginine residues [53]. The positive charge associated with the reactive sites of CTI and PCK could help to explain the rapid inhibition of scFXII–polyP70 by these inhibitors.

These results are the first to document the mechanism of autoactivation of FXII by a ‘natural’ surface under physiological conditions. Our data indicate that when FXII is in complex with its cofactor, polyP70, it can show enzymatic activity in the absence of proteolytic cleavage. These data provide novel insights into the subtleties that regulate FXII autoactivation by naturally occurring anionic surfaces. It remains to be established whether binding of other physiological activators of FXII, such as RNA and misfolded proteins, induces similar enzymatic activity in the single-chain form of FXII. Complex formation between polyP released during platelet activation and plasma FXII may provide the initiating event to stimulate reciprocal activation of PK, subsequently leading to generation of αFXIIa by kallikrein.

Addendum

R. Engel performed research and analyzed data. C. Brain performed research and analyzed data. J. Paget performed research and analyzed data. A. S. Lionikiene performed research and analyzed data. N. J. Mutch designed research, analyzed and interpreted data, and wrote the manuscript.

Acknowledgements

The authors thank F. Macrae for his preliminary studies on PK cleavage by FXIIa during his undergraduate studies. This work was funded by the British Heart Foundation (PG/07/122/24195 and FS/11/2/28579).

Disclosure of Conflict of Interests

The authors state that they have no conflict of interest.

References

1. Clarke BJ, Cote HC, Cool DE, Clark-Lewis I, Saito H, Pixley RA, Colman RW, MacGillivray RT. Mapping of a putative surface-binding site of human coagulation factor XII. J Biol Chem 1989; 264: 11497–502.
2. Pixley RA, Stumpo LG, Birkmeyer K, Silver L, Colman RW. A monoclonal antibody recognizing an icosapeptide sequence in the heavy chain of human factor XII inhibits surface-catalyzed activation. J Biol Chem 1987; 262: 10140–5.
3. Samuel M, Samuel E, Villanueva GB. Histidine residues are essential for the surface binding and autoactivation of human
coagulation factor XII. Biochem Biophys Res Commun 1993; 191: 110–17.

4. Citarella F, Ravan DM, Pascucci B, Felici A, Fantoni A, Hack CE. Structure/function analysis of human factor XII using recombinant deletion mutants. Evidence for an additional region involved in the binding to negatively charged surfaces. Eur J Biochem 1996; 238: 240–9.

5. Shore JD, Day DE, Bock PE, Olson ST. Acceleration of surface-dependent autocalytic activation of blood coagulation factor XII by diverant metal ions. Biochemistry 1987; 26: 2250–8.

6. Schousboe I. The inositol-phospholipid-accelerated activation of prekallikrein by activated factor XII at physiological ionic strength requires zinc ions and high-Mr kinogen. Eur J Biochem 1990; 193: 495–9.

7. Schousboe I. The surface-dependent acceleration of factor XII activation by zinc ions. II. Direct binding and fluorescence studies. J Biol Chem 1993; 268: 12477–83.

8. Schousboe I. The surface-dependent acceleration of factor XII activation by zinc ions. I. Kinetic characterization of the metal ion rate enhancement. J Biol Chem 1993; 268: 12468–76.

9. Shimada T, Kato H, Iwanaga S. Accelerating effect of zinc ions on the surface-mediated activation of factor XII and prekallikrein. J Biochem 1987; 102: 913–21.

10. Greengard JS, Griffin JH. Receptors for high molecular weight kininogen on stimulated washed human platelets. Biochemistry 1984; 23: 6863–9.

11. Zini JM, Schmaier AH, Cines DB. Bradykinin regulates the expression of kininogen binding sites on endothelial cells. Blood 1993; 81: 2936–46.

12. Herwald H, Morgelin M, Svensson HG, Sjobring U. Zinc-dependent conformational changes in domain D5 of high molecular mass kininogen modulate contact activation. Eur J Biochem 2001; 268: 396–404.

13. Renne T, Pozgajova M, Gruener S, Schuh K, Pauer HU, Burfeind P, Gailani D, Niewandt B. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271–81.

14. Kleinschmit C, Stoll G, Bendzus M, Schuh K, Pauer HU, Burfeind P, Renne C, Gailani D, Niewandt B, Renne T. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203: 513–18.

15. Matafonov A, Leung PY, Gailani AE, Grach SL, Puy C, Cheng Q, Sun MF, McCarty OJ, Tucker EI, Kataoka H, Renne T, Morrissey JW, Gruber A, Gailani D. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014; 123: 1739–46.

16. Joseph K, Kaplan AP. Formation of bradykinin: a major contributor to the innate inflammatory response. Adv Immunol 2005; 86: 159–208.

17. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khanda- gale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner KT, Engelmann B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16: 887–96.

18. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13: 34–45.

19. Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost 2011; 9(Suppl 1): 182–8.

20. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphates mediate blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 2006; 103: 903–8.

21. Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Sprok HM, Schmidbauer S, Gahl WA, Morrissey JH, Renne T. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139: 1143–56.

22. van der Meijden PE, van Schilfgaarde M, van Oerle R, Renne T, ten Cate H, Sprok HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10: 1355–62.

23. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Gunther A, Engelmann B, Preisser K. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA 2007; 104: 6388–93.

24. Maas C, Govers-Riemsdal JW, Bouma B, Schiks B, Haazen BP, Lokhorst HM, Hammarstrom P, ten Cate H, de Groot PG, Bouma BN, Gebbink MF. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008; 118: 3208–18.

25. van der Meijden PE, Muninx JC, Auger JM, Govers-Riemsdal JW, Cosemens JM, Kuijpers MJ, Sprok HM, Watson SP, Renne T, Heemskerk JW. Dual role of collagen in factor XII-dependent thrombus formation. Blood 2009; 114: 881–90.

26. Oschatz C, Maas C, Lecher B, Jansen T, Bjorkqvist J, Trudler T, Seldemeier R, Burfeind P, Ciechon S, Hammerschmidt S, Muller-Esterl W, Willemia WA, Nilsson G, Renne T. Mast cell increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34: 258–68.

27. Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004; 279: 44250–7.

28. Kornberg A, Rao NN, Ault-Riche D. Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 1999; 68: 89–125.

29. Nickel KF, Sprok HM, Mutch NJ, Renne T. Time-dependent degradation and tissue factor addition mask the ability of platelet polyphosphates in activating factor XII-mediated coagulation. Blood 2013; 122: 3847–9.

30. Revak SD, Cochrane CG, Bouma BN, Griffin JH. Surface and fluid phase activities of two forms of activated Hageman factor produced during contact activation of plasma. J Exp Med 1978; 147: 719–29.

31. Silverberg M, Diehl SV. The autoactivation of factor XII (Hageman factor) induced by low-Mr heparin and dextran sulphate. The effect of the Mr of the activating polyanion. Biochem J 1987; 248: 715–20.

32. Ratnoff OD, Saito H. Amidolytic properties of single-chain activated Hageman factor. Proc Natl Acad Sci USA 1979; 76: 1461–3.

33. Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, Morrissey JH. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 2010; 116: 4353–9.

34. Choi SH, Collins JN, Smith SA, Davis-Harrison RL, Rienstra CM, Morrissey JH. Phosphoramidate end labeling of inorganic polyphosphates: facile manipulation of polyphosphate for investigating and modulating its biological activities. Biochemistry 2010; 49: 9935–41.

35. Tankersley DL, Finlayson JS. Kinetics of activation and autoactivation of human factor XII. Biochemistry 1984; 23: 273–9.

36. Rojkjaer R, Schousboe I. The surface-dependent autoactivation mechanism of factor XII. Eur J Biochem 1997; 243: 160–6.

37. Citarella F, Willemia WA, Lubbers YT, Hack CE. Initiation of contact system activation in plasma is dependent on factor XII autoactivation and not on enhanced susceptibility of factor XII for kallikrein cleavage. Br J Haematol 1997; 99: 197–205.

38. Bock PE, Srinivasan KR, Shore JD. Activation of intrinsic blood coagulation by ellagic acid: insoluble ellagic acid–metal ion complexes are the activating species. Biochemistry 1981; 20: 7258–66.
39 Wiggins RC, Cochrane CC. The autoactivation of rabbit Hageman factor. J Exp Med 1979; 150: 1122–33.
40 Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura N. Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 1993; 268: 10024–8.
41 Ponczek MB, Gailani D, Doolittle RF. Evolution of the contact phase of vertebrate blood coagulation. J Thromb Haemost 2008; 6: 1876–83.
42 Madison EL, Kobe A, Gething MJ, Sambrook JF, Goldsmith EJ. Converting tissue plasminogen activator to a zymogen: a regulatory triad of Asp-His-Ser. Science 1993; 262: 419–21.
43 Boose JA, Kuismanen E, Gerard R, Sambrook J, Gething MJ. The single-chain form of tissue-type plasminogen activator has catalytic activity: studies with a mutant enzyme that lacks the cleavage site. Biochemistry 1989; 28: 635–43.
44 Ranby M, Bergsdorf N, Nilsson T. Enzymatic properties of the one- and two-chain form of tissue plasminogen activator. Thromb Res 1982; 27: 175–83.
45 Tachias K, Madison EL. Variants of tissue-type plasminogen activator which display substantially enhanced stimulation by fibrin. J Biol Chem 1995; 270: 18319–22.
46 Silverberg M, Kaplan AP. Enzymatic activities of activated and zymogen forms of human Hageman factor (factor XII). Blood 1982; 60: 64–70.
47 Ravon DM, Citarella F, Lubbers YT, Pascucci B, Hack CE. Monoclonal antibody F1 binds to the kringle domain of factor XII and induces enhanced susceptibility for cleavage by kallikrein. Blood 1995; 86: 4134–43.
48 Cunningham BC, Bass S, Fuh G, Wells JA. Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 1990; 250: 1709–12.
49 Gorodetsky R, Mou X, Blankenfeld A, Marx G. Platelet multielemental composition, lability, and subcellular localization. Am J Hematol 1993; 42: 278–83.
50 Marx G, Korner G, Mou X, Gorodetsky R. Packaging zinc, fibrinogen, and factor XIII in platelet alpha-granules. J Cell Physiol 1993; 156: 437–42.
51 Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 2002; 99: 3585–96.
52 Schousboe I. Rapid and cooperative binding of factor XII to human umbilical vein endothelial cells. Eur J Biochem 2001; 268: 3958–63.
53 Mahoney WC, Hermodson MA, Jones B, Powers DD, Corfman RS, Reeck GR. Amino acid sequence and secondary structural analysis of the corn inhibitor of trypsin and activated Hageman Factor. J Biol Chem 1984; 259: 8412–16.