Descriptive study of plant resources in the context of the ethnomedicinal relevance of indigenous flora: A case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan

Muhammad Shoaib Amjad1,2*, Mirza faisal Qaeem2, Israr Ahmad1, Sami Ullah Khan1, Sunbai Khalil Chaudhari3, Nafeesa Zahid Malik3, Humaira Shaheen4, Arshad Mehmood Khan2

1 Department of Botany, Women University of Azad Jammu & Kashmir, Bagh, Pakistan, 2 Department of Botany, PMAS-University of Arid Agriculture, Rawalpindi, Pakistan, 3 Department of Botany Mirpur University of Science & Technology, Mirpur, Pakistan, 4 Department of Biosciences, COMSAT institute of Information Technology, Islamabad, Pakistan

* malikshoaib1165@yahoo.com

Abstract

Background

This paper presents the first quantitative ethnobotanical study of the flora in Toli Peer National Park of Azad Jammu and Kashmir, Pakistan. Being a remote area, there is a strong dependence by local people on ethnobotanical practices. Thus, we attempted to record the folk uses of the native plants of the area with a view to acknowledging and documenting the ethnobotanical knowledge. The aims of the study were to compile an inventory of the medicinal plants in the study area and to record the methods by which herbal drugs were prepared and administered.

Materials and methods

Information on the therapeutic properties of medicinal plants was collected from 64 local inhabitants and herbalists using open ended and semi-structured questionnaires over the period Aug 2013-Jul 2014. The data were recorded into a synoptic table comprising an ethnobotanical inventory of plants, the parts used, therapeutic indications and modes of application or administration. Different ethnobotanical indices i.e. relative frequencies of citation (RFC), relative importance (RI), use value (UV) and informant consensus factor (Fic), were calculated for each of the recorded medicinal plants. In addition, a correlation analysis was performed using SPSS ver. 16 to check the level of association between use value and relative frequency of citation.

Results

A total of 121 species of medicinal plants belonging to 57 families and 98 genera were recorded. The study area was dominated by herbaceous species (48%) with leaves (41%)...
as the most exploited plant part. The Lamiaceae and Rosaceae (9% each) were the dominant families in the study area. Among different methods of preparation, the most frequently used method was decoction (26 species) of different plant parts followed by use as juice and powder (24 species each), paste (22 species), chewing (16 species), extract (11 species), infusion (10 species) and poultice (8 species). The maximum Informant consensus factor (Fic) value was for gastro-intestinal, parasitic and hepatobiliary complaints (0.90). *Berberis lycium*, *Ajuga bracteosa*, *Prunella vulgaris*, *Adiantum capillus-veneris*, *Desmodium polycarpum*, *Pinus roxburghii*, *Albizia lebbeck*, *Cedrella serrata*, *Rosa brunonii*, *Punica granatum*, *Jasminum mesnyi* and *Zanthoxylum armatum* were the most valuable plants with the highest UV, RFC and relative importance values. The Pearson correlation coefficient between UV and RFC (0.881) reflects a significant positive correlation between the use value and relative frequency of citation. The coefficient of determination indicated that 77% of the variability in UV could be explained in terms of RFC.

Conclusion

Systematic documentation of the medicinal plants in the Toli Peer National Park shows that the area is rich in plants with ethnomedicinal value and that the inhabitants of the area have significant knowledge about the use of such plants with herbal drugs commonly used to cure infirmities. The results of this study indicate that carrying out subsequent pharmacological and phytochemical investigations in this part of Pakistan could lead to new drug discoveries.

Introduction

Ethnobotany describes the complete relationship between people and plants and explores both the traditional botanical knowledge of local people and how they exploit plants for a variety of purposes [1–2]. Ethnobotanical studies emphasize the dynamic relationships between botanical diversity and social and cultural systems [3–4] and ethnobotanists are increasingly focusing on the application of different quantitative and statistical approaches to understand and accumulate knowledge on valuable plants in certain communities [5].

Medicinal knowledge about plants is receiving increasing attention and is recognized as a valuable asset worldwide for health care practices and as a driver of the conservation of medicinal plants [6]. For example, ethnobotany and ethno-pharmacological knowledge is considered to be an integral part of the knowledge required for drug development. 'Ethnomedicine’ deals with cultural interpretations of health, disease and illness with a focus on different healing practices or processes concerned with gaining good health [7]. Based on traditional reports about the use and efficacy of plant-derived medicines, various plants are being screened in order to search for their active ingredients which may be employed in the development of novel drugs. According to the FAO, in the last few decades the number of known medicinal plants now reaches up to 50,000 different species which is 18.9% of the total world flora [8]. Despite the fact that traditional ethnomedical approaches may be considered to be outdated in comparison with modern westernised approaches to health care, the WHO report estimates that about 80% of the population in developing countries depend upon herbal medicines for curing ailments [9].

In Pakistan, the remote mountainous regions support a diversity of flora, with about 1572 plant genera and 5521 species [10]. In the mid-1990s, about 84% of the Pakistani population...
was reliant on herbal medication but now this traditional knowledge is confined only to remote areas of the country, particularly the mountainous regions. As indigenous knowledge is dynamic and changes with time, generation, culture and resources the accurate documentation of this knowledge is both timely and necessary [11]. The indigenous knowledge about medicinal plants among indigenous communities has been reported from various parts of the world [12–17] including Pakistan [18–27]. However, all these studies adapted qualitative approaches to document ethnomedical information [28–29], while the use of quantitative approaches can lead to better interpretation of ethnomedical data.

Azad Jammu and Kashmir is a lush mountainous area characterized by its diverse climate, soil and habitat types. A number of endemic medicinal plants of Pakistan are restricted to this area, while previous studies in different parts of Azad Jammu and Kashmir have revealed that the people possess a unique culture and have rich traditional knowledge [1, 30–32]. Toli Peer National Park supports some of the richest biodiversity in Kashmir. Most of the population in this area is rural with a low literacy rate. People lack modern health facilities and hence are dependent upon natural resources, especially plants, for healthcare and to compensate for low incomes. However, ethno-pharmacological studies specifically targeting the Toli Peer National Park are lacking, as is the validation of traditional uses of this area’s native plant species. This may be because the area is topographically challenging, comprising hills and steep slopes which make it difficult to access for research studies. In order to address this information gap, we undertook the present study with the aims of (i) compiling a complete inventory of the flora of the study area, and (ii) documenting the indigenous medicinal knowledge of these plants along with their methods of preparation and the folk recipes used by local herbalists. In addition, we also undertook various quantitative analyses in order to produce and compare relevant ethnomedical indices in order to explore relationships between plant frequency of occurrence and ethnomedical use.

Materials and methods

Study area (climate, geo-ethnography and socio-economic conditions)

Toli Peer National Park is located in one of the world’s biodiversity hotspots. It is a mountainous area in Tehsil Rawalakot, District Poonch of Azad Kashmir, Pakistan. It lies at an altitude of 2546 m, with latitude 33.89˚N and longitude 73.91˚E. The climate of this region is of the moist temperate type. The maximum rainfall recorded is 1018 mm while the minimum is 3 mm during the summer monsoon in August and in October respectively. The average lowest temperatures are recorded in January (11C˚) with temperature rising to maxima in June (average 34C˚) [33–34]. There is heavy snow between November and March especially at higher elevations. The vegetation in the area comprises a wide variety of trees, shrubs, herbs, grasses and climbers with ground cover comprising a diversity of angiosperms along with ferns and mosses [33–34]. (A map of the study area is given in Fig 1).

A high proportion of the indigenous people of this hilly district are nomads. During the early summer months, they move their livestock herds from the plains to the higher mountainous areas of the National Park, and stay there for the whole of the summer season. Prior to the onset of winter, they make their way back down to the plains. A number of the main occupations are associated with summer tourism, including rest house managers, tour guides, shop keepers, restaurant workers and jeep drivers. However, many are full or part-time farmers and shepherds.

There is no formal marketing of medicinal plant in Toli Peer which by implication benefits home grown agents (middle man). Thus poor collectors have no share in high profit earning business. The study area was badly affected by an earthquake in 2005 which had a
negative socioeconomic impact on the local population, including a rapid decline in the population sizes of some of the villages inside the National Park. The region is characterized by its remoteness, long distance from urban centers, difficult mountainous terrain, and a lack of government services, including modern health care facilities. As a result there is relatively high percentage of deaths among the more elderly members of the population as well as migration of many of the younger people away from the area to other safer and better developed centers. In the light of these demographic changes, it is vital to document the local knowledge of medicinal plant usage in this area before such information declines or is lost completely.
Data collection

Field trips were conducted during Aug 2014-Jul 2015 in four seasons following the method of Heinrich and coworker [35]. During the study, 64 informants were selected randomly via convenience sampling of which 39 were males and 25 females. For the collection of ethnobotanical data, a semi-structured questionnaire was used to undertake one-on-one interviews in addition to group discussions [36–37] with some key informants as reported by Ghorbani et al. [19] The questionnaire was developed following the method of Edwards et al. [38] and required the informants to provide information regarding the local names of the medicinal plants, the diseases treated by herbal remedies, the plant parts used, the methods of preparation and the mode of administration. These discussions comprised both mixed as well as single gender discussions and were conducted in the local language, Pharari (Pothohari). The age of the informants ranged from 35 to 70 years. They included several Hakeems (traditional doctors) who were interviewed in order to record the local household recipes for the preparation of medicinal plants. Detailed demographic data are provided in Table 1. The informed consent from participants is also obtained to participate in this research before obtaining information. The permission for conducting research, field surveys and plant collection in Toli Peer national park was taken from chief conservator forest Department, Azad Jammu & Kashmir, Pakistan.

Collection and identification of plants

Those plants in the study area that were identified as having a medicinal value were collected, pressed until dry, sprayed with a preservative 1% HgCl₂ solution and mounted on to herbarium sheets. Voucher specimens were gathered and prepared according to standard taxonomic methods recommended by Jain and Rao [39]. For taxonomic identification, the Flora of Pakistan (www.eflora.com) was followed [40–41], whereas the International Plant Name Index (IPNI) (www.ipni.org) was used to obtain botanical names. The confirmation of identified

Variable	Categories	No. of Persons	Percentage
Informant category	Traditional healer	11	17.19
	Indigenous people	58	90.63
Gender	Female	25	39.06
	Male	39	60.94
Age	35–50 years	23	35.94
	50–65 years	28	43.75
	More than 65 years	18	28.13
Education Level	Illiterate	21	32.81
	Completed five years of education	16	25.00
	Completed eight years of education	11	17.19
	Completed 10 years of education	8	12.50
	Completed 12 years of education	7	10.94
	Some undergraduate (16 year education)	4	6.25
	Graduate (Higher education)	2	3.13
Experience of the traditional health practitioners	Less than 2 years	2	18.18
	2–5 years	4	36.36
	5–10 years	3	27.27
	More than 20 years	2	18.18

Table 1. Demographic data of informants in Toli Peer National park.

doi:10.1371/journal.pone.0171896.t001
plant was done in the Herbarium of Pakistan (ISL) Quaid—i–Azam University Islamabad, Pakistan. The fully determined vouchers were deposited in the herbarium of the Department of Botany, PMAS- Arid Agriculture University Rawalpindi, Pakistan.

Quantitative ethnobotanical data analysis

For the validation and to test the homogeneity of the collected ethnobotanical data various quantitative indices were applied including use value (UV), relative frequency of citation (RFC), the informant consensus factor (Fic), and relative importance (RI). Association between indices was tested using correlation analysis.

Informant consensus factor (Fic). The informant consensus factor was derived in order to seek an agreement between the informants on the reported cures for each group of diseases [42].

\[
Fic = \frac{Nur - Nt}{(Nur - 1)}
\]

Where \(Nur\) is the number of use-reports in each disease category; \(Nt\) is number of species used.

Relative frequency of citation (RFC). The index of relative frequency of citation (RFC) was determined by using the following formula [43]

\[
RFC = \frac{FC}{N}
\]

Where FC is the number of informants reporting use of a particular species and N is the total number of informants.

Use value index. The use value was calculated by using the following formula [43].

\[
UV = \frac{\sum Ui}{N}
\]

where \(Ui\) is the number of uses mentioned by each informant for a given species and N is the total number of informants.

Relative importance. The relative importance was calculated by applying the following formula [44].

\[
RI = (\text{Rel PH} + \text{Rel BS}) \times \frac{100}{2}
\]

where PH is the pharmacological property of the given plant and Rel PH is the relative number of pharmacological properties ascribed to a single plant.

\[
\text{Rel PH} = \frac{\text{PH of a given Plant}}{\text{Maximum PH of all reported plant species}}
\]

BS is the number of body systems treated by a single species and Rel BS is the relative number of body systems treated by a single species

\[
\text{Rel BS} = \frac{\text{BS of a given Plant}}{\text{Maximum BS of all reported plant species}}
\]

Jaccard index (JI). To compare the study with already published work and to access similarity of knowledge among different communities, the Jaccard index [45] was calculated using
the following formula

\[JI = \frac{c \times 100}{(a + b) - c} \]

Where “a” is the number of species of the area A (our study area); “b” is the number of species of the neighboring area B; and “c” is the number of species common to both A and B.

Pearson correlation. Pearson Correlation analysis was carried out between the RFC and UV using SPSS ver. 16, the \(r^2 \) was also calculated to measure cross species variability in RFC explained by variance in UV.

Results and discussion

Family contribution and habit of ethnomedicinal flora

Altogether 121 medicinal plant species belonging to 98 genera and 57 families are reported (Table 2). Lamiaceae and Rosaceae (11 species each) are the dominant families of the study area followed by Asteraceae (10 species), Papilionaceae (6 species) and Ranunculaceae (6 species). The remaining families contribute \(\leq 5 \) species in the ethnomedicinal flora of the study.

Table 2. Distribution of medicinal plant species according to their family.

Family	No. of Species	%age contribution	Family	No. of Species	%age contribution
Lamiaceae	11	9.09	Borangniceae	1	0.83
Rosaceae	11	9.09	Buxaceae	1	0.83
Asteraceae	10	8.26	Companulaceae	1	0.83
Papilionaceae	6	4.96	Cucurbitaceae	1	0.83
Ranunculaceae	6	4.96	Dryopteridaceae	1	0.83
Fragaceae	5	4.13	Fumaricaceae	1	0.83
Adiantaceae	3	2.48	Gentianaceae	1	0.83
Apliaceae	3	2.48	Guttiferae	1	0.83
Caprifoliaceae	3	2.48	Hippocotonaceae	1	0.83
Pinaceae	3	2.48	Juglandaceae	1	0.83
Poaceae	3	2.48	Malvaceae	1	0.83
Dioscoreaceae	2	1.65	Melliaceae	1	0.83
Elaeagnaceae	2	1.65	Mimoaceae	1	0.83
Euphorbiaceae	2	1.65	Myrsinaceae	1	0.83
Liliaceae	2	1.65	Onagraceae	1	0.83
Moraceae	2	1.65	Plantaginaceae	1	0.83
Oleaceae	2	1.65	Podophyllaceae	1	0.83
Polygonaceae	2	1.65	Primulaceae	1	0.83
Rubiaceae	2	1.65	Pteridaceae	1	0.83
Rutaceae	2	1.65	Punicaceae	1	0.83
Salicaceae	2	1.65	Rhamnaceae	1	0.83
Violaceae	2	1.65	Sambucaceae	1	0.83
Acanthaceae	1	0.83	Sapindaceae	1	0.83
Aliaceae	1	0.83	Saxifragaceae	1	0.83
Anacardiaceae	1	0.83	Smilacaceae	1	0.83
Apocynaceae	1	0.83	Ulmaceae	1	0.83
Araliaceae	1	0.83	Urticaceae	1	0.83
Asclepiadaceae	1	0.83	Valerianaceae	1	0.83
Berberidaceae	1	0.83			

doi:10.1371/journal.pone.0171896.t002
area. The dominance of these families is attributed to the fact that they are abundant in the area and easily available to the local people. In addition, people of the area have a high knowledge about plants from these families, i.e. they have been using these plants for many generations and hence the members of these plant families are well known to them. This is probably due to the presence of secondary metabolites in important plant species of these families. A similar report was presented earlier by [46] where Lamiaceae, Moraceae, Astraceae, Mimosaceae, Apocynaceae and Liliaceae were documented as dominant ethnomedicinal plant families among a total of 25 families from Darra Adam Khel NWFP, Pakistan. The majority of the medicinal plant species identified in the study area are reportedly utilized to treat respiratory disorders, followed by gastrointestinal and other complaints (Tables 3 and 4). This result is also in agreement with previous studies. For example, Abbasi et al. [47] reported 89 ethnomedicinal plant species in 46 families from the Lesser Himalayas of Pakistan with the highest informant consensus factor reported for pathologies related to respiratory and reproductive disorders. Similarly, Kiyani et al. [48] reported use of 120 plant species from 51 plant families that were applied in the treatment of 25 different respiratory problems by the inhabitants of Gallies-Abbottaba in northern Pakistan. There is a particular prevalence of respiratory diseases in the study area due to the high altitude combined with low barometric pressure which limits the supply of oxygen (O₂) thereby impacting on lung function [49]. Most of the plant species in the area identified as having an ethnomedicinal value were herbaceous (58%), followed by trees (29%), shrubs (23%), ferns (5%), grasses (3%) and climbers (3%) (Fig 2). These results reflect the high altitude of the study area where the herbaceous flora is dominant with fewer shrubs and trees.

Plant part(s) used

Different plant parts are used differently in herbal medicines depending upon the cultural knowledge and availability of those parts to local inhabitants. In the present study, leaves (31%) were the most commonly used plant part utilized in herbal preparations followed by roots (15%), fruits (12%), bark and other aerial parts (11% each), and flowers and seeds (6% each) (Fig 3). Leaves are frequently used in herbal preparations due to their active secondary constituents. It is thought that leaves contain more easily extractable phytochemicals, crude drugs and many other mixtures which may be proven as valuable in phytotherapy [5, 50–51]. This may be the reason for several studies, including this one, reporting leaves as the most highly exploited plant part for medicinal uses [26, 52]. Besides leaves, roots are also favored parts in many cases possibly because they also contain higher concentrations of bioactive compounds than other plant parts [53–56]. In a few cases, the same plant parts are used to treat different diseases, for example, the roots of *Berberis lycium* are used internally for the treatment of chronic diarrhea, piles, diabetes, pustules and scabies while externally they are used to cure fractured bones and swellings. Similar uses of many other plants were also recorded (presented in Table 3).

Method of preparation and administration

The various plant parts were mostly used in decoctions (26 species) during herbal preparations, followed by juice and powder (24 species each), paste (22), chewing (16 species), extract (11 species), infusion (10 species) and poultice (8 species) (Fig 4), while considering the method of preparation and administration of herbal medicines, reports included decoction, paste, juice, powder or freshly taken. Decoctions are often found to be one of the major forms of preparation in ethnobotanical practice as they are easy to prepare by mixing with water, tea or soup [57]. The most frequent use of decoction might also be due to the fact that heating can
S#	Binomial/Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
Acanthaceae													
1	*Dictyota bupleuroides* Nees in Wall./mh-03	Kirch, somni, herb	Herb	Leaves	Paste	External	Wounds, eczema.	0.29	0.5	39.29	52	0.81	0.86
2	*Adiantum capillus-veneris* L./mh-04	Hansraj, Sraj fern	Fern	Leaves	Decoction	Internal	Boils, cough, asthma, jaundice, cold, diabetes, skin diseases, measles, eczema, chest pain	0.71	0.83	77.38	57	0.89	0.97
3	*Adiantum incisum* Foresk/mh-06	Sumbul, Hansraj fern	Fern	Leaves	Juice	Internal	Scabies, cough, fever, skin diseases	0.29	0.5	39.29	44	0.69	0.64
4	*Athyrium tenulifrons* Wall.apud Moore ex. R. Sim./mh-07	Fern	Fern	Root	Tea	Internal	Body pain	0.14	0.33	23.81	32	0.5	0.58
Alliaceae													
5	*Allium griffithianum* Boiss./mh-09	Piazi Herb	Aerial parts	Cooked	Internal	Carminative, used in dyspepsia, flatulence and colic	0.29	0.17	22.62	29	0.45	0.53	
Anacardiaceae													
6	*Pistacia chinensis* Bunge/mh-11	Kangar Tree	Stem gum Bark	Powder Paste	External	Wounds, cracked heels	0.21	0.33	27.38	43	0.67	0.91	
7	*Heracleum candicans* Wall ex. DC/mh-12	----	Herb	Aerial parts	Tea	Internal	Nerve disorders	0.07	0.17	11.9	12	0.19	0.14
8	*Pimpinella stewarti* Dunn. E. Nasir/mh-13	Tarpakki Herb	Fruit	Eaten	Internal	Stomach disorder	0.07	0.17	11.9	12	0.19	0.3	
Apiaceae													
9	*Heracleum cachemirica* C.B. Clarke/mh-14	Shrub	Shrub	Aerial parts	Juice	Internal	Nerve disorders	0.07	0.17	11.9	18	0.28	0.19
Apocynaceae													
10	*Nerium oleander* Linn./mh-15	Kanair Tree	Leave Bark	Paste Decoction	External	Cutaneous eruption	0.57	0.67	61.9	46	0.72	0.98	
			Roots	Powder	Internal	Skin diseases, leprosy	0.14	0.17	15.48	48	0.75	0.8	
						Wounds, swelling	0.14	0.17	15.48	48	0.75	0.8	
						Abortion	0.14	0.17	15.48	48	0.75	0.8	
						Scorpion sting, snake bite	0.14	0.17	15.48	48	0.75	0.8	
Araliaceae													
11	*Hedera nepalensis* K. Koch/mh-16	Harbumbal epiphyte	Leaves	Decoction	Internal	Diabetes	0.07	0.17	11.9	11	0.17	0.13	
Asclepiadaceae													
12	*Vincetoxicum hirundinaria* Medicres/mh-17	----	Herb	Aerial parts	Decoction	Internal	Boils, pimples	0.14	0.17	15.48	48	0.75	0.8
Asteraceae													
13	*Anaphalis adnata* D.C/mh-18	----	Herb	Leaves	Powder	External	Bleeding cuts and wounds	0.14	0.17	15.48	19	0.3	0.42
S#	Binomial /Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
----	--------------------------	------------	-------	--------------------	---------------------------------	---------------------	--	-------	-------	----	----	-----	----
14	*Artemisia absinthium* L./mh-19	Afsanthene	Herb	Leaves	Infusion, paste	Internal	Anthelmintic, stomach disorders, wounds and cuts	0.29	0.5	39.29	51	0.8	0.98
15	*Artemisia maritime* L./mh-21	Afsanthene	Herb	Leaves	Paste	External	Skin infections	0.14	0.33	23.81	41	0.64	0.77
16	*Artemisia dubia* Wall./mh-22	Afsanthene	Herb	Seeds	Cooked	Internal	Weakness after delivery	0.36	0.67	51.19	23	0.36	0.52
17	*Conyza bonariensis* L Cronquist/mh-24	Buti	Herb	Aerial parts	Infusion	Internal	Diarrhea and dysentery, bleeding piles	0.21	0.17	19.05	41	0.64	0.77
18	*Gerbera gossypina* (Royle) Beauverd/mh-25	Put potula	Herb	Aerial parts	Tea	Internal	Nerve disorders	0.07	0.17	11.9	12	0.19	0.14
19	*Parthenium hysterophorus* L./mh-27	Herbula	Herb	Root	Decoction	Internal	Skin disorders, dysentery	0.14	0.33	23.81	35	0.55	0.59
20	*Saussurea candelleana* Wall. ex. D.C Clarke/mh-29	Herb	Herb	Roots	Extract	Internal	Tonic	0.07	0.17	11.9	23	0.36	0.28
21	*Taraxacum officinale* F. H. Wigg/mh-31	Handth	Herb	Roots	Decoction	Internal	Jaundice	0.29	0.67	47.62	56	0.88	0.92
22	*Achillea millefolium* L./mh-32	Yarrow	Herb	Flower and shoots	Decoction	Internal	Swellings, diuretic, tonic	0.14	0.33	23.81	24	0.38	0.33
23	*Berberis lycium* Roy/mh-33	Sumblu	Shrub	Roots and shoots	Decoction	Internal	Tonic, eye lotion, skin disease, chronic diarrhea, piles, blood purifier, diabetes, pustules, scabies	0.64	1.33	98.81	59	0.92	0.98

Boraginaceae

| 24 | *Trichodesma indicum* L. R. Br/mh-35 | Handusi booti | Herb | Leaves | Boiling | Internal | Flu and cough | 0.14 | 0.17 | 15.48 | 31 | 0.48 | 0.48 |

Buxaceae

| 25 | *Sarcococa saligna* D. Don Muell/mh-37 | Bansathra | Shrub | Leaves and shoots | Decoction | Internal | Joint pain, laxative, blood purifier | 0.36 | 0.83 | 59.52 | 23 | 0.36 | 0.23 |

Caprifoliaceae

| 26 | *Viburnum nervosum* D. Don/mh-39 | Taliana | Shrub | Fruit | Eaten | Internal | Stomach ache, anemia | 0.14 | 0.33 | 23.81 | 15 | 0.23 | 0.3 |
| 27 | *Viburnum grandiflorum* Wall.ex DC/mh-40 | Guch, shrub | Shrub | Seed | Juice | Internal | Typhoid, whooping cough | 0.14 | 0.33 | 23.81 | 25 | 0.39 | 0.2 |
S#	Binomial /Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
28	*Viburnum cotinifolium* D. Don/mh-41	Taliana	Shrub	Fruit	Eaten	Internal	Laxative, blood purifier	0.21	0.5	35.71	31	0.48	0.33
				Leaves	Extract	Internal	Menorrhagia						
29	*Campanula benthamii* Wall./mh-42	Herb	Herb	Root	Chewing, earache	External	Strengthen heart, earache	0.14	0.33	23.81	19	0.3	0.36
	Compandraceae												
30	*Momordica dioica* Roxb. ex Willd/mh-43	Epiphyte	Epiphyte	Roots	Cooked	Internal	Piles, urinary problem	0.14	0.33	23.81	15	0.23	0.17
31	*Dioscorea bulbifera* L./ mh-45	Herb	Herb	Aerial parts	Juice	Internal	Contraceptive	0.07	0.17	11.9	41	0.64	0.81
32	*Dioscorea deltoidea* Wall. ex Kunth/mh-47	Herb	Herb	Rhizome	Eaten	Internal	Insect killer, snake bite	0.14	0.33	23.81	36	0.56	0.48
33	*Polystichum squarrosum* Don Fee/mh-49	Fern	Fern	Root	Decoction	Internal	Pyloric disease	0.07	0.17	11.9	13	0.2	0.3
	Dryopteridaceae												
34	*Elaeagnus angustifolia* Linn./mh-50	Ripe fruits	Fruit	Eaten	Boiled	Internal	Sore throat, high fever	0.29	0.5	39.29	29	0.45	0.66
35	*Elaeagnus umbellata* Thunb./mh-51	Russian olive, Tree	Leaves	Decoction	Internal	Cough	0.29	0.67	47.62	33	0.52	0.73	
	Euphorbiaceae												
36	*Euphorbia helioscopia* Linn./mh-53	Dhodhal, dandlion	Herb	Seeds	Juice	Internal	Cholera	0.14	0.17	15.48	49	0.77	0.72
				Roots	Paste	Internal	Anthelmintic						
37	*Euphorbia wallichii* Hk. f./mh-54	Dhodhal dandlion	Herb	Aerial parts	Latex	Internal	Laxative, purgative, digestive	0.36	0.33	34.52	42	0.66	0.91
				Aerial parts	Juice	Internal	Warts, skin infections						
38	*Castanea sativa* Mill./ mh-56	Chest nut	Tree	Leaves	Infusion	Internal	Fevers	0.14	0.33	23.81	21	0.33	0.38
				Leaves	Decoction	Internal	Sore throats						
39	*Dalbergia sissoo* Roxb./ mh-57	Tali	Tree	Stem bark	Juice	External	Skin allergy	0.21	0.5	35.71	39	0.61	0.77
				Crushed leaves	Juice	Internal	Blood purifier						
				Leaves	Washing	External	Increase hair length						
40	*Quercus baloot* Griff./ mh-59	Rein, Shah baloot, Oak	Tree	Bark	Powder	Internal	Asthma	0.29	0.33	30.95	43	0.67	0.86
				Nut	Decoction	Internal	Urinary problems, cough, cold						
S#	Binomial /Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
----	--------------------------	------------	-------	-----------	--------------------------------	-------------------	----------------	--------	-------	----	----	-----	-----
41	*Quercus dilatata* Royle/ mh-62	Oak, barungi	Tree	Fruit	Powder	Internal	Tonic	0.14	0.33	23.81	47	0.73	0.36
				Bark	Decoction	Internal	Dysentery						
42	*Quercus incana* Roxb./ mh-64	Rein, ban, rinji	Tree	Bark	Powder	Internal	Asthma, cough, fever, rheumatism and backache	0.36	0.5	42.86	41	0.64	0.95

Fumariaceae

| 43 | *Fumaria indica* (Haussk stan) Pugsley/ mh-66 | Papra | Herb | Aerial parts | Juice, paste | Internal | Fever, constipation, pimples, eruption, skin infections, purify blood | 0.43 | 0.67 | 54.76 | 48 | 0.75 | 0.84 |

Gentianaceae

| 44 | *Swertia ciliate* G. Don B. L. Burtt/mh-67 | Herb | Herb | Aerial part | Decoction | Internal | Cough cold and fever | 0.21 | 0.33 | 27.38 | 48 | 0.75 | 0.88 |

Guttiferae

| 45 | *Hypericum perforatum* L./mh-68 | Herb | Herb | Flowers | Infusion | Internal | Snake bite wounds, sores, swellings, ulcers, rheumatism | 0.36 | 0.5 | 42.86 | 47 | 0.73 | 0.61 |

Hippocotanaceae

46	*Aesculus indica* (Wall. Ex Camb.) Hook.f./mh-69	Bankhore, horsechestnut	Tree	Bark	Infusion	Internal	Tonic	0.29	0.67	47.62	33	0.52	0.5
				Fruits	Eaten	Internal	Colic, rheumatic pains						
				Seed	Powder	Internal	Leucorrhoea						

Juglandaceae

47	*Juglans regia* L./mh-70	Akhrot, khore	Tree	Leave	Decoction	External	Antispasmodic	0.36	0.67	51.19	51	0.8	0.92
				Bark	Rubbing	External	Gums and cleaning teeth, make lips and gums dye						
				Seeds	Oil	External	Rheumatic pain						
				Roots and leaves	Powder	External	Antiseptic						

Lamiaceae

48	*Isodon rugosus* Wall. ex Benth. Codd./mh-72	Khwangere	Shrub	Leaves	Decoction	Internal	Blood pressure, toothache, body temperature, rheumatism	0.29	0.67	47.62	37	0.58	0.75
49	*Ajuga bracteosa* Wall. ex Benth/mh-73	Ratti booti	Herb	Aerial parts	Extract	Internal	Blood purification, body inflammation, eruption, pimples	0.64	1	82.14	58	0.91	1
				Leaves	Extract	Internal	Earache, eye ache, boils, mouth gums, throat pain						
50	*Nepeta erecta* Royle ex. Benth Benth/mh-75	Herb	Herb	Flowers	Juice	Internal	Cough	0.43	0.67	54.76	53	0.83	0.78
				Leaves	Juice	Internal	Blood pressure, cold, fever, influenza, toothache						
51	*Nepeta laevigata* D. Don Hand/mh-77	Herb	Herb	Fruit	Infusion	Internal	Dysentery	0.07	0.17	11.9	17	0.27	0.22
52	*Mentha royleana* subsp. hymalaiensis Brij./mh-79	Podina	Herb	Leaves	Juice, Powder to make chattni	Internal	Stomach disorder, gas trouble, indigestion, vomiting, cholera, fever and cough	0.5	0.5	50	58	0.91	0.97

(Continued)
Table 3. (Continued)

S#	Binomial /Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
53	*Prunella vulgaris* L./mh-81	Herb	Herb	Seeds	Eaten	Internal	Laxative, antipyretic, tonic, diuretic, inflammation, heart disease difficult breathing, eye sight weakness	0.57	1	78.57	58	0.91	0.98
54	*Salvia hians* Royle/mh-82	Herb	Herb	Leaves	Juice	Internal	Cough, colds, anxiety	0.21	0.33	27.38	31	0.48	0.66
55	*Salvia lanata* Roxb./mh-83	Herb	Herb	Leaves	Poultice	External	Skin problems, wounds	0.14	0.33	23.81	27	0.42	0.48
56	*Salvia moorcroftiana* Wall. Ex Benth/mh-84	Kajari	Herb	Aerial parts	Juice	Internal	Diarrhea, gas trouble, stomach disorders, cough	0.29	0.33	30.95	51	0.8	0.89
57	*Thymus linianus* Benth. ex Beth./mh/85	Herb	Herb	Leaves and flowers	Powder	Internal	Strengthen teeth, gum infection, bleeding	0.29	0.5	39.29	32	0.5	0.64

Liliaceae

| 58 | *Asparagus filicinus* Ham. in D. Don/mh-87 | Herb | Herb | Root | Decoction | Internal | Diuretic, antipyretic, stomachic, nervous stimulant | 0.29 | 0.5 | 39.29 | 38 | 0.59 | 0.66 |
| 59 | *Polygonatum multiflorum* L. Smith/mh-88 | Herb | Herb | Leaf | Paste | External | Wounds | 0.07 | 0.17 | 11.9 | 17 | 0.27 | 0.19 |

Meliaceae

60	*Cedrela serrata* Royle/mh-89	Drawa	Tree	Stem and root bark	Paste	External	Round worms	0.5	1	75	54	0.84	0.83
				Leaves	Juice	Internal	Digestive problems, diabetes						
				Leaves	Decoction	External	Cooling agent, excellent hair washing						
				Bark	Poultice	Internal	Ulcers,						
				Bark	Powder	Internal	Chronic infantile dysentery						

Mimosaceae

61	*Albizia lebbeck* Linn. (Benth.)/mh-90	Shirin	Tree	Seeds	Powder	External	Inflammation, skin diseases, leprosy, leuconderma	1	0.5	75	57	0.89	0.83
				Bark	Powder	External	Strengthen spongy gums						
				Bark and seeds	Extract	Internal	Piles, diarrhea and dysentery						
				Flowers	Paste	External	Carbuncles, boils, swelling and other skin diseases						
				Seed	Oil	External	Snake bite, breathing problems						

Malvaceae

| 62 | *Malvastrum coromandelianum* Linn. (Garcke)/mh-91 | Herb | Herb | Aerial parts | Decoction | Internal | Kill worms, dysentery | 0.14 | 0.33 | 23.81 | 38 | 0.59 | 0.41 |

(Continued)
S#	Binomial /Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	R1	FC	RFC	UV	
Moraceae														
63	*Ficus palmate* Forssk./ mh-92	Phaghwar, anjir	Tree	Fruit	Eaten	Internal	Demulcent laxative, diseases of the lungs and the bladder, cooling agent, laxative	0.43	0.5	46.43	37	0.58	0.84	
							Aerial parts	Paste	External	Freckles				
							Latex	External	Skin problem					
64	*Ficus carica* L./mh-94.	Phagwar	Tree	Fruit	Eaten	Internal	Constipation, piles, urinary bladder problems, anemia, constipation	0.57	0.67	61.9	52	0.81	0.95	
							Leaves	Latex	External	Nail wound.				
							Latex	Rubbing	External	Extract spines from feet or other body organs				
Myrsinaceae														
65	*Myrsine africana* Linn./ mh-95	Gorkhan, chapra, bebrang	Shrub	Fruits	Powder	Internal	Analthelmintic, carminative, stomach tonic, laxative	0.36	0.5	42.86	49	0.77	0.84	
							Leaves	Decoction	Internal	Blood purifier				
Oleaceae														
66	*Jasminum mesnyi* Hance/mh-97	Pili chambali	Shrub	Leaves	Powder	External	Dandruff, muscular pains	0.5	0.83	66.67	51	0.8	0.67	
							Leaves	Chewing	Internal	Mouth ulcers				
							Leaves	Decoction	Internal	Pyorrhea				
							Branches	Ash	External	Migraine and small joint pain				
							Dried flower	Powder	Internal	Hepatic disorders				
67	*Ligustrum lucidum* W. T. Aiton/mh-99	Guliston	Shrub	Aerial parts	Extracts	Internal	Antitumor	0.07	0.17	11.9	23	0.36	0.5	
Onagraceae														
68	*Oenothera rosea* L. Her. ex Ait/mh-100	Buti	Herb	Leaves	Infusion	Internal	Hepatic pain, kidney disorders	0.14	0.33	23.81	45	0.7	0.64	
Papilionaceae														
69	*Sophora mollis* Royle Baker/mh-101	Shrub	Shrub	Flowers	Powder	External	Pimples, sun burns, swellings, wounds	0.29	0.5	39.29	21	0.33	0.36	
70	*Alysicarpus bupeirifolius* L. D.C./ mh-102	Herb	Herb	Leaves	Juice	Internal	Blood purification.	0.07	0.17	11.9	15	0.23	0.22	
71	*Mellotus alba* Desr/mh-104	Herb	Herb	Leaves	Paste	External	Joint inflammation	0.07	0.17	11.9	15	0.23	0.3	
72	*Robinia pseudo-acacia* L./mh-105	Kikar	Tree	Bark	Chewing	External	Toothache	0.07	0.17	11.9	31	0.48	0.8	
73	*Desmodium polycarpum* DC./mh-107	Shrub	Shrub	Roots	Juice	Internal	Fever, cardiac tonic, diuretic, loss of appetite, flatulence, diarrhea, dysentery, nausea, piles, helminthiasis, cough, fever	0.86	0.67	76.19	34	0.53	0.88	
S#	Binomial /Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel pH	RI	FC	RFC	UV	
----	--------------------------	------------	-------	----------	--------------------------------	-------------------	-----------------	--------	-------	----	----	-----	----	
74	*Lespedeza juncea* Linn. f./mh-108	Herb	Herb	Root	Juice	Internal	Diarrhoea and dysentery	0.14	0.17	15.48	26	0.41	0.38	
75	*Abies pindrow* Royle/mh-109	Partial, Paluderal silver fir	Tree	Leaf, Bark, Resin	Juice, Powder, Paste	External	Swelling	0.57	0.67	61.9	48	0.75	1.03	
76	*Pinus roxburgii* Roxb/mh-111	Chir	Tree	Leaves, Bark, Resin	Juice, Powder	Internal	Dysentery	0.5	1	75	58	0.91	1.13	
77	*Pinus wallichiana* A.B. Jackson/mh-112	Bihar, blue pine	Tree	Resin	Poultice	Internal	Cuts and wounds	0.14	0.17	15.48	42	0.66	0.84	
78	*Desmostachya bipinnata* L. Stapf./mh-115	Grass	Grass	Roots	Tea	Internal	Hypertension	0.07	0.17	11.9	14	0.22	0.17	
79	*Poa nepalensis* Walls ex. Duthie./mh-117	Grass	Grass	Leaves	Decoction mixed with water	External	Antilice	0.07	0.17	11.9	29	0.45	0.42	
80	*Themeda anantha* Nees ex Steud, Anderss./mh-118	Grass	Grass	Aerial parts	Poultice	External	Lumbago	0.14	0.33	23.81	41	0.64	0.5	
81	*Plantago lanceolata* L./mh-119	Ispgol	Herb	Leaves, Seeds	Paste, Extract	External	Wounds	0.36	0.5	42.86	53	0.83	0.91	
82	*Podophyllum emodi* Wall ex Royle/mh-122	Banhakri	Herb	Root	Extract	Internal	Purgative, stomach diseases, liver and bile diseases	0.36	0.5	42.86	48	0.75	0.83	
83	*Rumex hastatus* L./mh-124	Khatimal	Shrub	Roots	Juice	Internal	Asthma, cough, and fever, weakness in cattle	0.29	0.5	39.29	32	0.5	0.64	
84	*Rumex dentatus* L./mh-125	Jangli palak	Herb	Leaves, Roots	Paste, Extract	External	Wounds	0.14	0.33	23.81	41	0.64	0.59	
85	*Androsace rotundifolia* Hardwicke/mh-128	Herb	Herb	Rhizome, Leaves	Extract, Infusion	Internal	Ophthalmic diseases	0.21	0.5	35.71	25	0.39	0.67	

(Continued)
S#	Binomial / Voucher number	Local name	Habit	Part used	Method of preparation / property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
Punicaceae													
86	*Punica granatum* Linn./mh-129	Druna	Tree	Fruit	Eaten	Internal	Cough, tonic	0.5	0.83	66.67	52	0.81	1
86													
86													
86													
86													
Pteridaceae													
87	*Pteris cretica* L./mh-131	Fern	Fern	Leaves	Paste	External	Wounds	0.07	0.17	11.9	9	0.14	0.17
Ranunculaceae													
88	*Anemone tetrasepala* Royle/mh-132	Herb	Herb	Roots	Juice	External	Boils	0.07	0.17	11.9	12	0.19	0.34
89	*Aquilegia pubiflora* Wall ex Royle./mh-133	Herb	Herb	Root	Paste	External	Snake bite, emetic, toothache	0.36	0.5	42.86	37	0.58	0.45
90	*Caltha alba* Camb. var. alba/mh-136	Herb	Herb	Aerial parts	Juice	Internal	Antispasmodic, sedative	0.14	0.33	23.81	29	0.45	0.28
91	*Clematis buchananiana* DC./mh-139	Langi	Shrub	Leaves	Paste	External	Skin infection, chambal wounds	0.36	0.5	42.86	43	0.67	0.75
91													
91													
91													
92	*Clematis montana* Buch./mh-139	Langi, shrub	Shrub	Leaves	Extract	Internal	Diabetes	0.14	0.33	23.81	27	0.42	0.33
92													
92													
92													
93	*Ranunculus muricatus* L./mh-140	Herb	Herb	Aerial parts	Cooked	Internal	Asthma	0.07	0.17	11.9	14	0.22	0.19
Rhamnaceae													
94	*Ziziphus nummularia* (Burmf.) Wight & Am./mh-141	Ber	Tree	Fruit	Decoction	External	Dandruff	0.21	0.33	27.38	51	0.8	0.98
94													
94													
94													
Rosaceae													
95	*Eriobotrya japonica* Thumb. Lindler/mh-142	Loquat	Tree	Leaves	Poultice	External	Swellings	0.36	0.5	42.86	44	0.69	0.89
95													
95													
95													
96	*Prunus armeniaca* Linn./mh-144	Hari, khubani, apricot	Tree	Fruit	Eaten	Internal	Laxative	0.14	0.33	23.81	31	0.48	0.39
96													
96													
96													
97	*Prunus domestica* Linn./mh-145	Lucha, Alu bukhara	Tree	Fruit	Eaten	Internal	Irregular menstruation, debility, miscarriage, used for alcoholic beverages and liqueurs	0.43	0.33	38.1	34	0.53	0.84

(Continued)
S#	Binomial / Voucher number	Local name / Habit / Part used	Method of preparation/ property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV		
98	*Prunus persica* Linn. Batch/mh-146	Aru, peach Tree Leaves Juice	Internal	Gastritis, whooping cough and bronchitis, kill intestinal worms, remove maggots from wounds in cattle and dogs	0.36	0.5	42.86	44	0.69	0.88			
99	*Pyrus malus* L./mh-147	Saib Tree Fruit Juice, paste	Internal	Rheumatism, hypertension, tonic for vigorous body, strengthen bones, face spots	0.36	0.5	42.86	46	0.72	0.81			
100	*Pyrus pashia* Ham.ex D. Don/mh-148	Butangi Tree Fruit Eaten	Internal	Dark circles around the eyes, constipation	0.14	0.33	23.81	49	0.77	0.95			
101	* Rosa brunnii* Lindl./mh-151	Chal, tarni, musk rose Shrub Flower Decoction	Internal	Constipation	0.5	0.83	66.67	57	0.89	0.98			
					Flowers Powder	Internal	Diarrhea, heart tonic, skin and eye diseases	0.5	0.33	23.81	49	0.77	0.95
					Leaf Juice	External	Cuts, wounds	0.5	0.33	23.81	49	0.77	0.95
102	*Rubus fruticosus* Hk.f. non L/mh-153	Garachey Shrub Leaves Infusion	Internal	Diarrhea, fever	0.21	0.5	35.71	32	0.5	0.59			
103	*Rubus niveus* Thunb./mh-154	Garachey Shrub Leaves Extract	External	Urticaria	0.5	0.67	58.33	41	0.64	0.69			
					Leaves Powder	Internal	Diarrhea, fever, and diuretic	0.5	0.67	58.33	41	0.64	0.69
					Root Decoction	Internal	Dysentery, colic pains, whooping coughs	0.5	0.67	58.33	41	0.64	0.69
104	*Duchesnea indica* (Andreas) Teschem/mh-155	Budimewa Herb Fruit Juice	Internal	Eye infection, tonic	0.14	0.33	23.81	33	0.52	0.61			
105	*Fragaria nubicola* Lindl. ex Lacaita/mh-157	Budi meva, Wild Strawberry Herb Fruit Chewed	Internal	Laxative, purgative, mouth infection	0.21	0.33	27.38	35	0.55	0.5			
					Flowers Powder	Internal	Boils, hemia, fever and swelling of joints	0.36	0.67	51.19	51	0.8	0.98
					Branch Chewing	Internal	Stomach problems, toothache	0.36	0.67	51.19	51	0.8	0.98

Ethnobotany of Toli Peer National Park, Azad Jammu & Kashmir
Table 3. (Continued)

S#	Binomial / Voucher number	Local name	Habit	Part used	Method of preparation/property	Mode of application	Disease treated	Rel BS	Rel PH	RI	FC	RFC	UV
111	*Salix denticulate* Andersson/mh-166	Beens	Tree	Stem and root bark, Leaves, branches	Boiled, Paste	Internal	Fever, headache and paralysis	0.29	0.67	47.62	34	0.53	0.39
Sambucaceae													
112	*Sambucus wightiana* Wall. ex Wight & Am./mh-167	Gandala	Herb	Fruit	Eaten	Internal	Stomach problems, expel worms	0.14	0.33	23.81	19	0.3	0.5
Sapindaceae													
113	*Sapindus mukorossi* Gaertn./mh-168	Ritha, Soap nut	Tree	Seeds, Fruits	Powdered, Rubbing	External	Insect killer, Burns	0.14	0.33	23.81	47	0.73	0.77
Saxifragaceae													
114	*Bergenia ciliate* Haw. Sternb./mh-170	Zakhm-e-Hayat	Herb	Aerial parts, Leaves, Root	Powder, Juice, Juice	Internal	Urinary tract troubles, Earache, Cough and cold, kidney stones	0.36	0.5	42.86	29	0.45	0.39
Scrophulariaceae													
115	*Verbascum thapsus* L./mh-172	Gider tabacoo	Herb	Roots	Decoction	Internal	Toothache, cramps, convulsions	0.21	0.33	27.38	17	0.27	0.25
Smilicaceae													
116	*Smilax glauco phylla* Klotroch/mh-174	Epiphyte	Epiphyte	Aerial parts	Infusion	Internal	Flatulence, fever, dog bite and spasm	0.29	0.67	47.62	32	0.5	0.55
Ulmaceae													
117	*Celtis caucasica* Wild/mh-175	Batkaral	Tree	Aerial parts	Juice	Internal	Colic and amenorrhea	0.14	0.33	23.81	17	0.27	0.45
Urticaceae													
118	*Debregae sia salicifolia* D. Don Rendle/mh-178	Sandari	Shrub	Aerial parts	Paste	External	Skin rashes, dermatitis and eczema	0.21	0.17	19.05	15	0.23	0.41
Valerianaceae													
119	*Valeraina jatamansi* Joes./mh-179	Herb	Herb	Aerial parts	Oil	Internal	Constipation	0.07	0.17	11.9	19	0.3	0.41
Violaceae													
120	*Viola canescens* Wall. ex Roxb./mh-181	Banafsha	Herb	Leaves	Juice	Internal	Cough, cold, fever, jaundice	0.29	0.5	39.29	51	0.8	0.84
121	*Viola pilosa* Blume./mh-182	Banafsha	Herb	Leaves	Decoction	Internal	Pain, fever, stomach ulcer	0.21	0.5	35.71	47	0.73	0.81

Key words: Rel BS = Relative number of body system treated by a single species; Rel PH = Relative number of pharmacological properties for a single plant; RI = Relative importance, FC = Frequency of citation; RFC = relative frequency of citation; UV = Use Value. doi:10.1371/journal.pone.0171896.t003
cause acceleration of biological reactions resulting in the increased availability of many active compound [58–60]. Similar findings have also been reported by other studies. For example, among major forms of preparation in Madhupur forest area, Bangladesh, decoction was the most frequent (33%), followed by juice (24%), paste (18%), fruit (8%), oil (6%), vegetable (4%), latex (2%), powder (2%) and others (3%) [61]. Similar results are reported also from other parts of the world. Nondo et al. [62], for example, reported medicinal plants to treat malaria in the Kagera and Lindi regions of Tanzania. Among 108 plants most were taken orally or in the form of a decoction. Similarly Siew et al. [63] reported decoction as the main preparation method while documenting traditional uses of 104 plants from Singapore. The quantity and dosage of medicinal drugs is not fixed and differs with age, state of health of the patient and

Table 4. Informant consensus factor for different disease categories.

Disease Categories	Symptoms	Ntax	Nur	Fic	Most Commonly Used Plants
1 Musculoskeletal and nervous system	Nervous problem, weakness, muscular pains, sedative, cramps, colic, depression, paralysis	22	197	0.89	Hypericum perforatum, Juglans regia, Pyrus malus, Heracleum cachemirica, Heracleum candidans,
2 Gastro-intestinal, parasitic and hepatobiliary	Liver and bile diseases, jaundice, vomiting, dyspepsia, hepatic pain, dysentery, loss of appetite, anhelminthic, improve digestion, nausea, piles, intestinal parasites, stomach ache, constipation, flatulence, diarrhea, hernia, cholera, gas trouble	114	1162	0.90	Mentha royenea, Zanthoxylum armatum, Berberis lycium, Eriobotrya japonica, Punica granatum, Ziziphus numelaria, Artemisia absinthium
3 External injuries, bleeding	Swellings, wounds, rheumatism, nail wound, inflammations, joints pain, pain, burns, cuts and wounds, body inflammation, bone fracture, boils, burns, back pain, bleeding	65	552	0.88	Hypericum perforatum, Berberis lycium, Sapindus mukorossi, Adiantum venustum, Rumex dentatus
4 Urinogenital and venereal	Urinary problems, menorrhagia, miscarriage, abortion, amenorrhea, irregular menstruation, leucorrhoea, kidney stones, gonorrhoea, contraceptive, debility	16	91	0.83	Aesculus indica, Prunus domestica, Bergenia ciliata, Galium asperfolium, Oenothera rosea, Eriobotrya japonica,
5 Blood and lymphatic system	Anemia, Hypertension, blood purifier.	15	76	0.81	Dalbergia sissoo, Rosa brunonii, Berberis lycium, Viburnum nervosum,
6 Cardiovascular disease	Heart tonic	6	25	0.79	Rosa brunonii, Oenothera rosea, Viola censans, Adiantum capillus-veneris
7 Pulmonary disease	Respiratory problem, cough, difficult breathing, diseases of the lungs, chest pain, asthma, bronchitis, Flue	41	236	0.83	Mentha royenea, Polygonatum multiflorum, Punica granatum, Pyrus pashia, Salvia moorcroftiana, Prunella vulgaris
8 Dermatological	Skin problems, scabies, leukoderma, smallpox, warts, ulcers, urticaria, pimples, itching and allergy, freckles, cracked heels, measles, leprosy, dark circles around the eyes	47	306	0.85	Fumaria indica, Adiantum incisum, Euphorbia wallichii, Gallium asperfolium, Rosa brunonii
9 Oral, dental, Hair and ENT	Toothache, strengthen spongy gums, mouth infection, eye sight weakness, earache, flue and cough, sore throats, gum infection, pyorrhea, dandruff, hair tonic, headache	38	186	0.80	Rosa brunonii, Androsace rotundifolia, Bergenia ciliata,
10 Other (fever, tonic, cold, tumors)	Tonic, sun burns, tumors, typhoid, fevers, colds, tumors, cooling agent, demulcent laxative, soft drinks.	45	258	0.83	Fumaria indica, Adiantum incisum, Asparagus filicinus, Castanea sativa, Viola censans, Trichodesma indicum, Punica granatum, Berberis lycium, Lagustrum lucidam
11 Antidote	Snake bite, scorpion sting, dog bite	8	31	0.77	Nerium oleander, Dioscorea deltoidea, Hypericum perforatum
12 Insecticide	Anti lice, antiseptic, helminthiasis	9	27	0.69	Juglans regia, Poa nepalensis, Desmodium polycarpum
13 Diabetes	Diabetes	6	36	0.86	Berberis lycium, Clematis montana, Rubus fruticosus,

doi:10.1371/journal.pone.0171896.t004
the severity of the disease. Most of the plants were used on their own, but in some herbal preparations specific plant parts were mixed with other ingredients in order to treat an ailment, including milk, honey, oil or butter. A few species were used in combination with other herbs, for example, the leaves of Salix acmophylla were boiled with Robinia pseudoacacia and Cotula anthemoids to treat fever and hernia. Most of the herbal preparations were taken internally (68%) with a smaller number used externally (32%) (Fig 5).

![Fig 2. Life form contribution of ethnomedicinal-flora.](doi:10.1371/journal.pone.0171896.g002)

![Fig 3. Plant parts used in herbal recipes.](doi:10.1371/journal.pone.0171896.g003)
Informant consensus factor

The Informant consensus factor (Fic) depends upon the availability of plants within the study area to treat diseases. In the present study, the Fic values ranged from 0.90 to 0.69 with an average of 0.82 which reflects a high consensus among the informants about the use of plants to treat ailments. The ailments are classified into 13 different categories and the maximum Fic value is for gastro-intestinal, parasitic and hepatobiliary complaints and the most cited plants used under this category are *Mentha royleana*, *Zanthoxylum armatum*, *Berberis lycium*, *Eriobotrya japonica*, *Punica granatum*, *Ziziphus numelaria* and *Artemisia absinthium*. A plant with insecticidal properties has the lowest Fic value of 0.69 which indicates that there is less
awareness of people in the study area to use plants as insecticides (Table 4). Gastro-intestinal disorders were prevalent in the study area which can be attributed to limited availability of hygienic food and drinking water [64–65]. The plants frequently used to treat these disorders might contain active ingredients and thus were well known by locals. Among various classes of indigenous uses across the globe, various types of gastrointestinal disorders are predominant and a significant number of plant species have been discovered to cure such illnesses across different ethnic communities [66–67]. Ethnopharmaceutical studies have shown that in some parts of the world, gastrointestinal disorder is a first use category [37, 42, 68–70]. A high Fic for gastrointestinal disorders has also been reported by other studies [9, 71–72] although there had previously been no study conducted in our study region. Our findings generally agree with previous results [16, 19, 46] while particularly supporting the results of Bibi et al. [73] who reported that digestive problems were the dominant diseases in the Mastung district of Balochistan, Pakistan.

The high ICF values obtained in this study indicate a reasonably high reliability of informants on the uses of medicinal plant species [74], particularly for gastrointestinal complaints, while low ICF values for cardiovascular diseases and antidotes indicate less uniformity of informants’ knowledge. Frequently, a high ICF value is allied with a few specific plants with high use reports for treating a single disease category [75], while low values are associated with many plant species with an almost equal or high use reports suggesting a lower level of agreement among the informants on the use of these plant species to treat a particular disease category.

Relative frequency of citation and use value

The RFC shows the local importance of every species with reference to the informants who cited uses of these plant species [76]. In our work, RFC ranges from 0.94 to 0.14 (Table 3). *Berberis lycium, Ajuga bracteosa, Prunella vulgaris, Adiantum capillus-veneris, Desmodium polycarpum, Pinus roxburghii, Albizia lebbeck, Cedrela serrata, Rosa brunonii, Punica granatum, Jasminum mesnyi* and *Zanthoxylum armatum* were the most cited ethnomedicinal plant species. These plants are dominant in the study area and the people are, therefore, very familiar with them. Moreover, these species are native to the area and have been known to local cultures over a long time period. Thus their specific properties for curing different diseases have become popularized and well-established among the indigenous people. These results are important as they could form an important research baseline for subsequent evaluation of plant-derived medicinal compounds, potentially resulting in future drug discoveries [77]. The plant species having high RFC values should be subjected to pharmacological, phytochemical and biological studies to evaluate and prove their authenticity for development of marketable products [78]. These species should also be prioritized for conservation as their preferred uses may place their populations under threat due to over harvesting.

The use value (UV) is a measure of the types of uses attributed to a particular plant species. In the present study *Berberis lyceum, Ajuga bracteosa, Abies pindrow, Prunella vulgaris, Adiantum capillus-veneris, Desmodium polycarpum* and *Pinus roxburghii* were ascribed UV values of 1.13, 1.13, 1.03, 1.00, 1.00, 0.98, and 0.98 respectively. UV determines the extent to which a species can be used; thus species with a high UV are more exploited in the study area to cure a particular ailment than those with a low UV. It is found that plants having more use reports (UR) always have high UVs while those plants having fewer URs reported by informants have lower UV. It is also observed that plants which are used in some repetitive manner are more likely to be biologically active [79].

As the values for the UV and RFC are dynamic and change with location and with the knowledge of the people, so the values of UV and RFC may vary from area to area and even
within the same area. Plants with lower UV and RFC values are not necessarily unimportant, but their low values may indicate that the young people of the area are not aware about the uses of these plants and, therefore that the understanding of their use is at risk of not being transmitted to future generations, thus this knowledge may eventually disappear [80].

This was the first quantitative ethnobotanical investigation to be carried out in the study area; therefore we compared our results with similar quantitative studies carried out in other parts of the country [26, 50, 51]. This revealed that there were differences in most of the cited species and their quantitative values. In a study carried out by Abbasi et al. [26], Ficus carica and Ficus palmata were the most cited species, while Bano et al. [51] reported that Hippophae rhamnoides had the highest use value (1.64) followed by Rosa brunonii (1.47). These differences can be mostly likely accounted for by variations in the vegetation and geo-climate of the study areas and emphasizes the need for more quantitative studies in a wider range of locations, but particularly in the more remote, mountainous regions where there is still a strong reservoir of ethnomedicinal knowledge amongst the indigenous communities.

Relative importance

The species with high RI values are highly versatile and used to treat a number of diseases. The highest RI values were obtained for Berberis lyceum, Ajuga bracteosa, Prunella vulgaris, Adiantum capillus-veneris, Desmodium polycarpum, Pinus roxburghii, Albizia lebbeck, Cedrella serrata and Rosa brunonii, indicating that these plants are widely used in the study area. These plants have high RI values because they are used in treating various body systems, i.e. local people have considerable knowledge about these plants. The importance of a plant increases as it is used to treat more infirmities [81].

Jaccard index (Novelty index)

Due to differences in their origins and cultures, indigenous communities differ greatly in their ethno-botanical knowledge. Documenting and comparing this knowledge can reveal the considerable depth of knowledge among communities which can result in novel sources of drug development [82]. Such studies also point out the importance of indigenous knowledge on medicinal plants, with differences between regions arising as a result of historical [83], ecological [84], phytochemical and even organoleptic [85] differences. The results of the present study were compared with those from twelve national and international studies conducted in areas similar in terms of their cultural values and climatic conditions to the study area (Table 5). The data show that across 121 plant species, the similarity percentage ranges 16.5 from 0 while the dissimilarity percentage ranges from 22.5 to 1.05. The highest degree of similarity index was with studies by Khan et al. 2010 [86], Amjad et al. 2015 [30], Ahmed et al. 2013 [87] and Shahseen et al. 2012 [88] with JI values of 32.88, 26.19, 19.12, 18.70 respectively. These studies are all from areas in the vicinity of the study area where ethnic values, historical and ecological factors are similar. In addition, there are similar vegetation types and it is also possible that cross cultural exchange of knowledge could have occurred between indigenous communities, either recently or in the past, which also might provide a reason for the high similarity index values. The lowest JI values were for the studies conducted by Kichu et al. 2015 [89] and Bahar et al. 2013 [90]. These studies were carried out at a greater distance from our study location, and thereby reflect a greater difference in ethno-botanical knowledge due to differences in population size, species diversity and habitat structure. Furthermore there would be less chance of the exchange of cultural knowledge between the areas were these studies were conducted and our study location as the areas are isolated by mountain ranges and cultural variations. These findings are in agreement with studies carried out by Kyani and coworker [91] and Ijaz and his
This comparative analysis strengthens the value of the ethnobotanical knowledge from our study location by emphasizing the novelty of our findings, whilst also providing a basis for future studies.

Statistical analysis

The Pearson correlation coefficient between UV and RFC is 0.881 which reflects that there is a significant and positive correlation between the proportion of uses of a plant species within a sample of interviewed people and the number of times that a particular use of a species is mentioned by the informant (Table 6). This shows that with an increase in the number of informants the knowledge of the uses of a particular species also increases. These results indicate that the study can make a significant contribution to folk knowledge on the use of medicinal plants and further laboratory-based investigations could help in identifying the active

Table 5. Jaccard index comparing the present study with previous reports at regional, national and global scales.

Area	Study year	Number of recorded plant species	Plants with similar use	Plants with dissimilar use	Total species common in both area	Species enlisted only in aligned areas	Species enlisted only in study area	% of plant with similar uses	% of dissimilar uses	JI Citation
Poonch Valley, Azad Kashmir, Pakistan	2010	169	28	20	48	121	73	16.6	11.8	32.9
Pir Nasora National Park Azad Kashmir, Pakistan	2015	104	10	23	33	71	88	9.62	22.1	26.2
30Bana Valley, Azad Kashmir, Pakistan	2015	86	5	15	20	66	101	5.81	17.4	13.6
Bagh, Azad Kashmir, Pakistan	2012	71	7	16	23	48	98	9.86	22.5	18.7
Neelum valley, Azad Kashmir, Pakistan	2011	40	2	5	7	33	114	5	12.5	5
Leepa valley, Azad Kashmir Pakistan	2012	36	4	3	7	29	114	11.1	8.33	5.15
Patriata, New Muree, Pakistan	2013	93	8	18	26	67	95	8.6	19.4	19.1
Abbottabad, KPK, Pakistan	2016	74	6	8	14	60	107	8.11	10.8	9.15
Alpine and Subalpine region of Pakistan	2015	125	6	11	17	108	104	4.8	8.8	8.72
Naran valley, Pakistan	2013	101	9	18	27	74	94	8.91	14.87	13.85
Nagaland, India	2015	135	0	3	3	132	118	0	2.22	1.21
Madonie Regional Park, Italy	2013	174	0	3	3	171	118	0	1.72	1.05
Marmaris, Turkey	2013	64	0	3	3	61	118	0	4.69	1.7

doi:10.1371/journal.pone.0171896.t005
ingredients of the most commonly exploited plants. The coefficient of determination defined as r^2 determines the degree of variation among the data. In the present study the value of R^2 is 0.77 which means that 77% of the variability in UV can be explained in terms of the RFC [25, 59]. Fig 6 illustrates the positive correlation between the values of RFC and UV.

Conclusions

This paper reviews 121 species which are identified as being exploited by local people for their recognized importance in indigenous health care in the Toli Peer National Park. The most common plants in the study area with an ethnomedicinal value are *Berberis lycium*, *Ajuga bracteosa*, *Prunella vulgaris*, *Adiantum capillus-veneris*, *Desmodium polycarpum*, *Pinus roxburghii*, *Albizia lebbeck*, *Cedrella serrata*, *Rosa brunonii*, *Punica granatum*, *Jasminum mesnyi* and

Correlations	UV	RFC
UV Pearson Correlation	1	.881**
Sig. (2-tailed)	.000	
N	121	
RFC Pearson Correlation	.881**	1
Sig. (2-tailed)	.000	
N	121	

. Correlation is significant at the 0.01 level (2-tailed).

$R^2 = 0.77$

doi:10.1371/journal.pone.0171896.t006

Fig 6. Association between use value and relative frequency of citation.

doi:10.1371/journal.pone.0171896.g006
Zanthoxylum armatum, all of which have high UV, RFC and relative importance values. The Pearson correlation coefficient between UV and RFC is 0.881, with a p value < 1, which reflects a significant positive correlation between the use value and relative frequency of citation. The coefficient of determination value is 0.77 which means that 77% of the variability in the UV can be explained in terms of the RFC. The wild plant diversity in this remote National Park provides an effective and cheap source of health care for the local people. The plants employed in their indigenous herbal preparations could have great potential and should be subject to pharmacological screening, chemical analysis for bioactive ingredients and potential formulation as standard drug preparations to cure a range of ailments. The flora of the National Park is currently threatened by overgrazing, deforestation, and soil erosion which are the main causes of reduction of medicinal and other plants in the area. It is therefore essential to have a conservation strategy for the flora of the National Park, with special emphasis on species that are valued as medicinal plants.

Supporting information

S1 File. Interview guidelines followed during conducting field survey for obtaining ethnobotanical information.

(DOCX)

S2 File. Sample of Questionnaire used during field survey for obtaining ethnobotanical information.

(DOCX)

Acknowledgments

We are thankful to people of Toli Peer National Park who share their valuable information during the study. Taxonomic assistance provided by Dr. Mushtaq Ahmed and Muhammad Ilyas are also greatly acknowledged.

Author Contributions

Conceptualization: IA SUK.

Data curation: SKC.

Formal analysis: MSA MFQ.

Funding acquisition: MSA MFQ.

Investigation: MSA MFQ.

Methodology: MSA MFQ.

Project administration: MSA MFQ.

Resources: MSA MFQ.

Software: NZM AMK.

Supervision: NZM HS.

Validation: HS.

Visualization: MSA MFQ.

Writing – review & editing: MSA MFQ.
References

1. Amjad M.S., Arshad M., 2014. Ethnobotanical inventory and medicinal uses of some important woody plant species of Kotli, Azad Kashmir, Pakistan. Asian Pacific Journal of Tropical Biomedicine 4, 952–958.

2. Arshad M., Ahmad M., Ahmed E., Saboor A., Abbas A., Sadiq S., 2014. An ethnobiological study in Kaia Chitta hills of Pothwar region, Pakistan: multinomial logit specification. Journal of Ethnobiology and Ethnomedicine 10, 13. doi: 10.1186/1746-4269-10-13 PMID: 24467739

3. Husain S.Z., Malik R.N., Javaid M., Bibi S., 2008. Ethnobotanical properties and uses of medicinal plants of Morgah biodiversity park, Rawalpindi. Pakistan Journal of Botany 40, 1897–1911.

4. Mahmood A., Mahmood A., Tabassum A., 2011a. Ethnomedicinal survey of plants from District Sialkot, Pakistan. Journal of Applied Pharmacy 2, 212–220.

5. Ahmad M., Sultana S., Fazl-i-Hadi S., Ben Hadda T., Rashid S., et al. 2014. An Ethnobotanical study of Medicinal Plants in high mountainous region of Chail valley (District Swat-Pakistan). Journal of Ethnobiology and Ethnomedicine 10, 4269–4210.

6. Bialiok M.J., 1996. Transforming ethnobotany for the new millennium. Annals of the Missouri Botanical Garden, 58–66.

7. Thirumalai T., Beverly C.D., Sathiyaraj K., Senthilkumar B., David E., 2012. Ethnobotanical Study of Anti-diabetic medicinal plants used by the local people in Javadhu hills Tamilnadu, India. Asian Pacific Journal of Tropical Biomedicine 2, S910–S913.

8. Baydoun S., Chalak L., Dalleh H., Arnold N., 2015. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. Journal of Ethnopharmacology, 173, 139–156. doi: 10.1016/j.jep.2015.06.052 PMID: 26165826

9. Tangjitsaman K., Wongsawad C., Kamwong K., Sukkho T., Trisonthi C., 2015. Ethnomedicinal plants used for digestive system disorders by the Karen of northern Thailand. Journal of ethnobiology and ethnomedicine 11, 27. doi: 10.1186/s13002-015-0011-9 PMID: 25885534

10. Ali H., Qaiser M., 2009. The ethnobotany of Chitral valley, Pakistan with particular reference to medicinal plants. Pakistan Journal of Botany 41, 2009–2041.

11. Alam N., Shinwari Z., Ilyas M., Ullah Z., 2011. Indigenous knowledge of medicinal plants of Chagharzai valley, District Buner, Pakistan. Pakistan Journal of Botany 43, 773–780.

12. Kargoglu M., Cenkci S., Serteser A., Evliyaoglu N., Konuk M., Kok M.S., et al. 2008. An Ethnobotanical Survey of Inner-West Anatolia, Turkey. Human Ecology 36, 763–777.

13. Ratnam F., Raju I., 2008. An ethnobotanical study of medicinal plants used by the Nandi people in Kenya. Journal of Ethnopharmacology 116, 370–376. doi: 10.1016/j.jep.2007.11.041 PMID: 18215481

14. Jamila F., Mostafa E., 2014. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. Journal of Ethnopharmacology 154, 76 87. doi: 10.1016/j.jep.2014.03.016 PMID: 24685583

15. Safa O., Soltanipoor M.A., Rastegar S., Kazami M., Dehkhord K.N., Ghannadi A., 2012. An ethnobotanical survey on Harmozgan Province, Iran. Avicenna Journal of Phytomedicine 3 (1), 64–81.

16. Nasab K.F., Khosravi A.R., 2014. Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. Journal of Ethnopharmacology, 154, 190–197. doi: 10.1016/j.jep.2014.04.003 PMID: 24746480

17. Singh H., Husain T., Agnihotri P., Pande P.C., Khattoo S., 2014. An ethnobotanical study of medicinal plants used in sacred groves of Kumaon Himalaya, Uttarakhand. Indian Journal of Ethnopharmacology 154, 98–108. doi: 10.1016/j.jep.2014.03.026 PMID: 24685588

18. Bhatti G.R., Qureshi R., Shah M., 2001. Ethnobotany of Qadanwari of Nara Desert. Pakistan Journal of Botany, 801–812 (Special issue).

19. Qureshi R., 2002. Ethnobotany of Rohri Hills, Sindh, Pakistan. Hamdard Medicus 45 (3), 86–94.

20. Khan S.W., Khatoon S., 2004. Ethnobotanical studies in Haramosh and Bugrote Valleys (Gilgit). International Journal of Biotechnology 1 (4), 584–589.

21. Qureshi R., Bhatti G.R., 2008. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan. Fitoterapia 79, 468–473. doi: 10.1016/j.fitote.2008.03.010 PMID: 18539950

22. Shinwari Z.K., 2010. Medicinal plants research in Pakistan. Journal of Medicinal Plants Research 4 (3), 161–176.

23. Farooq S., Barki A., Yousaf Khan M., Fazall H., 2012. Ethnobotanical studies of the flora of Tehsil Birma in South Waziristan Agency, Pakistan. Pakistan Journal of Weed Science Research 18, 277–291.
24. Abbasi A.M., Mir A.K., Munir H.S., Mohammad M.S., Mushtaq A., 2013. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas-Pakistan. Journal of Ethnobiology and Ethnomedicine 9, 84.

25. Ahmad M., Sultana S., Fazl-i-Hadi S., Ben Hadda T., Rashid S., Zafar, et al. 2014. An Ethnobotanical study of Medicinal Plants in high mountainous region of Chail valley (District Swat-Pakistan). Journal of Ethnobiology and Ethnomedicine 10, 4269–4210.

26. Khan M.P.Z., Ahmad M., Zafar M., Sultana S., Ali M.I., Sun H., 2015. Ethnomedicinal uses of Edible Wild Fruits (EWFs) in Swat Valley, Northern Pakistan. Journal of ethnopharmacology 173, 191–203. doi: 10.1016/j.jep.2015.07.029 PMID: 26209297

27. Ijaz F., Iqbal Z., UrRahman I., Alam J., Khan S.M., Shah G.M., et al. 2016. Investigation of traditional medicinal floral knowledge of Sarban Hills, Abbottabad, KP, Pakistan. Journal of Ethnobiology and Ethnomedicine 10, 4269–4210.

28. Khan M.P.Z., Ahmad M., Zafar M., Sultan A., Ali M.I., Sun H., 2015. Ethnomedicinal uses of Edible Wild Fruits (EWFs) in Swat Valley, Northern Pakistan. Journal of ethnopharmacology 173, 191–203. doi: 10.1016/j.jep.2015.07.029 PMID: 26209297

29. Sadeghi Z., Kuhestani K., Abdollahi V., Mahmood A., 2014. Ethnopharmacological studies of indigenous medicinal plants of Saravan region, Baluchistan. Iranian Journal of Ethnopharmacology 153, 111–118.

30. Arif M.S., Arshad M., Qureshi R., 2015. Ethnobotanical inventory and folk uses of indigenous plants from Pir Nasroora National Park, Azad Jammu and Kashmir. Asian Pacific Journal of Tropical Biomedicine 5, 234–241.

31. Mahmood A., Qureshi R.A., Mahmood A., Sangi Y., Shaheen H., Ahmad I., et al. 2011b. Ethnobotanical survey of common medicinal plants used by people of district Mirpur, AJK, Pakistan. Journal of Medicinal Plants Research 5, 4493–4498.

32. Khan M.A., Khan M.A., Hussain M., 2012. Ethnoveterinary medicinal uses of plants of Poonch valley Azad Kashmir. Pakistan Journal of Weed Science Research 18, 495–507.

33. Khan, M.A. 2008. Biodiversity and Ethnobotany of Himalayan Region Poonch Valley, Azad Kashmir Pakistan. Ph.D Thesis. Quaid-i-Azam University Islamabad, Pakistan. 241pp.

34. Faiz A.H., Ghufarn M.A., Mian A., Akhtar T. 2014. Floral Diversity of Tolipir National Park (TNP), Azad Jammu and Kashmir, Pakistan. Biologia (Pakistan) 60 (1), 43–55.

35. Heinrich M., Edward S., Moerman D.E., Leonti M., 2009. Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. Journal of Ethnopharmacology 124 (1), 1–17. PMID: 19537298

36. Bruni A., Ballero M., Poli F., 1997. Quantitative ethnopharmacological study of the Campidano Valley and Urzulei district, Sardinia, Italy. Journal of Ethnopharmacology 57 (2), 97–124. PMID: 9254113

37. Ghorbani A., Langenberger G., Feng L., Sauerborn J., 2011. Ethnobotanical study of medicinal plants utilised by Hani ethnicity in Naban river watershed national nature reserve, Yunnan, China. Journal of Ethnopharmacology 134 (3), 651–667. doi: 10.1016/j.jep.2011.01.011 PMID: 21251966

38. Edwards S., Nebel S., Heinrich M., 2005. Questionnaire surveys: methodological and epistemological problems for field-based ethnopharmacologists. Journal of Ethnopharmacology 100 (1), 30–36.

39. Jain S.K., Rao R.R., 1977. A Handbook of Field and Herbarium Methods. Today and Tomorrow Printers and Publishers, New Delhi.

40. Nasir, E. and S.I. Ali (Eds.). 1970–1989. Flora of Pakistan, Islamabad, Karachi.

41. Ali, S.I. and M. Qaiser (Eds.). 1993–2015. Flora of Pakistan Nos. 194–220. Karachi.

42. Heinrich M., Ankli A., Frei B., Weimann C., Sticher O., 1998. Medicinal plants in Mexico: Healers' consensus and cultural importance. Social Science & Medicine 47, 1859–1871.

43. Vijayakumar S., Yabesh J.M., Prabhu S., Manikandan R., Muralidharan B., 2015. Quantitative ethnomedicinal study of plants used in the Nelliampathy hills of Kerala, India. Journal of ethnopharmacology 161, 238–254. doi: 10.1016/j.jep.2014.12.006 PMID: 25529616

44. Khan M.P.Z., Ahmad M., Zafar M., Sultana S., Ali M.I., Sun H., 2015. Ethnomedicinal uses of Edible Wild Fruits (EWFs) in Swat Valley, Northern Pakistan. Journal of ethnopharmacology 173, 191–203. doi: 10.1016/j.jep.2015.07.029 PMID: 26209297

45. Gonza T.M.R., Casares P.M., Sanchez R.C.P., Ramiro G.J.M., Molero M.J., Pieroni A., et al. 2008. Medicinal plants in the Mediterranean area: synthesis of the results of the project RUBIA. Journal of Ethnopharmacology 116, 341–357. doi: 10.1016/j.jep.2007.11.045 PMID: 18242025

46. Ullah R., Hussain Z., Iqbal Z., Hussain J., Khan F.U., Khan N., et al. 2010. Traditional uses of medicinal plants in Darra Adam Khel NWFP Pakistan. J Med Plants Res 17, 1815–1821.
47. Abbasi A.M., Khan S.M., Ahmad M., Khan M.A., Quave C.L., Pieroni A., 2013b. Botanical ethnoveterinary therapies in three districts of the Lesser Himalayas of Pakistan. Journal of ethnobiology and ethnomedicine 9, 84.

48. Kayani S., Ahmad M., Zafar M., Sultana S., Khan M.P.Z., Ashraf M.A., et al. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. Journal of ethnopharmacology 156, 47–60. doi: 10.1016/j.jep.2014.08.005 PMID: 25153021

49. Schoene R.B., 1999. Lung disease at high altitude, Hypoxia. Springer, pp. 47–56.

50. Bano A., Ahmad M., Hadda T.B., Saboor A., Sultana S., Zafar, et al. 2014. Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies–Abbottabad, Northern Pakistan. Journal of ethnopharmacology 156, 47–60. doi: 10.1016/j.jep.2014.08.005 PMID: 25153021

51. Bano A., Ahmad M., Zafar M., Sultana S., Rashid S., Khan M.A., 2014b. Ethnomedicinal knowledge of the most commonly used plants from Deosai Plateau, Western Himalayas, Gilgit Baltistan, Pakistan. Journal of Ethnopharmacology 155, 1046–1052.

52. Savikin K., Zdunic G., Menkovic N., Zivkovic J., Cujic N., Tereschenko, et al. 2013. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. Journal of ethnopharmacology 146, 803–810. doi: 10.1016/j.jep.2013.02.006 PMID: 23422337

53. Srithi K., Balslev H., Wangpakpa P., Srisanga P., Trisonthi C., 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. Journal of Ethnopharmacology 123 (2), 335–342. doi: 10.1016/j.jep.2009.02.035 PMID: 19429381

54. Han J., Ye M., Guo H., Yang M., Wang B.R., Guo D.A., 2007. Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MS. Journal of Pharmaceutical and Biomedical Analysis 44 (2), 430–438. doi: 10.1016/j.jpba.2007.02.023 PMID: 17391890

55. Islam M.K., Saha S., Mahmud I., Mohamad K., Awang K., Uddin S.J., et al. 2014. Ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh. Journal of ethnopharmacology 151, 921–930. doi: 10.1016/j.jep.2013.11.056 PMID: 24342778

56. Nondo R.S., Zofou D., Moshi M.J., Erasto P., Wanji S., Ngemenya M.N., et al. 2015. Ethnobotanical survey and in vitro antiplasmodial activity of medicinal plants used to treat malaria in Kagera and Lindi regions, Tanzania. Journal of Medicinal Plants Research 9, 179–192.

57. Siew Y.Y., Zarei-Sedehizadeh S., Seetoh W.G., Neo S.-Y., Tan C.-H., Koh H.-L., 2014. Ethnobotanical survey of usage of fresh medicinal plants in Singapore. Journal of ethnopharmacology 155, 1450–1466. doi: 10.1016/j.jep.2014.07.024 PMID: 25058874
69. Ghorbani A., 2005. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, North of Iran (Part1): general results. Journal of Ethnopharmacology 102, 58–68. doi: 10.1016/j.jep.2005.05.035 PMID: 16024194

70. M., Naghibi F., Moazzeni H., Pirani A., Esmaeili S., 2012. Ethnobotanical survey of herbal remedies traditionally used in Kohgiluyehva Boyer Ahmad province of Iran. Journal of Ethnopharmacology 141, 80–95. doi: 10.1016/j.jep.2012.02.004 PMID: 22366675

71. Malia B., Gauchan D.P., Chhetri R.B., 2015. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. Journal of ethnopharmacology 165, 103–117. doi: 10.1016/j.jep.2014.12.031 PMID: 25571849

72. Murad W., Azizullah A., Adnan M., Tariq A., Khan K.U., Waheed S., et al. 2013. Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. Journal of Ethnobiology and Ethnomedicine 9, 77 doi: 10.1186/1746-4269-9-77 PMID: 24267174

73. Bibi T., Ahmad M., Tareen R.B., Tareen N.M., Jabeen R., Rehman Saeed-Ur, et al. 2014. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. Journal of Ethnopharmacology. 157, 79–89. doi: 10.1016/j.jep.2014.08.042 PMID: 25260579

74. Lin J., Puckree T., Mvelase T.P., 2002. Anti-diarrhoeal evaluation of some medicinal plants used by Zulu traditional healers. Journal of Ethnopharmacology 79 (1), 53–56. PMID: 11744295

75. Madikizela B., Ndhlala A.R., Finnie J.F., Van Staden J., 2012. Ethnopharmacological study of plants from Pondoland used against diarrhoea. Journal of Ethnopharmacology 141 (1), 61–71. doi: 10.1016/j.jep.2012.01.053 PMID: 2338648

76. Vitalini S., Iriti M., Puricelli C., Ciuchi D., Segale A., Fico G., 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) an alpine ethnobotanical study. Journal of Ethnopharmacology 145, 517–529. doi: 10.1016/j.jep.2012.11.024 PMID: 23220197

77. Mukherjee P.K., Wahile A., 2006. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. Journal of Ethnopharmacology 133 (1), 25–35. doi: 10.1016/j.jep.2005.09.024 PMID: 16271286

78. Mukherjee P.K., Nema N.K., Venkatesh P., Debnath P.K., 2012. Changing scenario for promotion and development of Ayurveda–way forward. Journal of Ethnopharmacology 143 (2), 424–434. doi: 10.1016/j.jep.2012.07.036 PMID: 22885133

79. Trotter I.J.R.T., Logan M.H., 1986. Informant consensus: a new approach for identifying potentially effective medicinal plants. In: Plants in Indigenous Medicine and Diet: Biobehavioral Approaches. Redgrave Publishing Company, Bedford Hills, NY.

80. Camou-Guerrero A., Reyes-Garcia V., Martínez-Ramos M., Casas A., 2008. Knowledge and use value of plant species in a Rarámuri community: a gender perspective for conservation. Human Ecology 36, 259–272.

81. Albuquerque U.P., Lucena R.F., Monteiro J.M., Florentino A.T., Almeida C.d.F.C., 2006. Evaluating two quantitative ethnobotanical techniques. Ethnobotany Research and Applications, 4: 51–60.

82. Leonti M., 2011. The future is written: impact of scripts on the cognition, selection, knowledge and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. Journal of Ethnopharmacology 134 (3), 542–555. doi: 10.1016/j.jep.2011.01.017 PMID: 21255636

83. Moerman D., 1998. Native American Ethnobotany. Portland Timber Press, Oregon, Portland.

84. Leadley W., 2004. Ecology of Medicinal Plants and Drugs. In: Medical Plants. Cambridge University Press.

85. Ahmad E, Arshad M, Saboor A, Qureshi R, Mustafa G, Sadiq S, et al. 2013. Ethnobotanical appraisal and medicinal use of plants in Patriata, New Murree, evidence from Pakistan. Journal of Ethnobiology and Ethnomedicine 9: 13. doi: 10.1186/1746-4269-9-13 PMID: 23445756

86. Khan M.A., Hussain M, Mujtaba G., 2010. An Ethnobotanical Inventory of Himalayan Region Poonch Valley Azad Kashmir (Pakistan). Ethnobotany Research & Applications. 8: 107–123.

87. Ahmad E Arshad M Saboor A Qureshi R Mustafa G Sadiq S et al. 2013. Ethnobotanical appraisal and medicinal use of plants in Patriata, New Murree, evidence from Pakistan. Journal of Ethnobiology and Ethnomedicine 9: 13. doi: 10.1186/1746-4269-9-13 PMID: 23445756

88. Shaheen H, Shinwari Z.K., Qureshi R.A., Ullah Z., 2012. Indigenous plant resources and their utilization practices in village populations of kashmir himalayas. Pak J Bot. 44:739–745.

89. Chichu M., Malewska T., Akter K., Imchen I., Harrington D., Kohlen J., et al. 2015. An ethnobotanical study of medicinal plants in Chunghie village, Nagaland, India. Journal of Ethnopharmacology. 166,5–17. doi: 10.1016/j.jep.2015.02.053 PMID: 25747148

90. Bahar G., Sukran K., 2013. Ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey) Journal of Ethnopharmacology. 146 (2013) 113–126 doi: 10.1016/j.jep.2012.12.012 PMID: 23261486
91. Kayani S., Ahmad M., Sultana S., Shinwari Z.K., Zafar M., Yaseen G., et al. 2015. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. Journal of Ethnopharmacology 164 (2015) 186–202 doi: 10.1016/j.jep.2015.02.004 PMID: 25680839

92. Amjad M.S., 2015. Ethnobotanical profiling and floristic diversity of Bana Valley, Kotli (Azad Jammu and Kashmir), Pakistan. Asian Pacific Journal of Tropical Biomedicine 5(4), 292–299.

93. Mahmood A., Malik R.N., Shinwari Z.K., Mahmood A., 2011. Ethnobotanical survey of plants from Nielum Valley, Azad Jammu and Kashmir, Pakistan. Pak. J. Bot, 43: 105–110.

94. Ishtiaq M., Mumtaz A.S., Hussain T., Ghani A., 2012. Medicinal plant diversity in the flora of Leepa Valley, Muzaffarabad (AJK), Pakistan. African Journal of Biotechnology 11, 3087–3098.

95. Khan M., Page S., Ahmad H., Shaheen H., Ullah Z., Ahmad M., Harper D.M., 2013. Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan. Journal of Ethnobiology and Ethnomedicine 9:4. doi: 10.1186/1746-4269-9-4 PMID: 23302393