Empirical verification of evolutionary theories of aging

Pavlo Kyryakov1*, Alejandra Gomez-Perez2*, Anastasia Glebov1, Nimara Asbah1, Luigi Bruno1, Carolynne Meunier1, Tatiana Iouk1, Vladimir I. Titorenko1

1Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
* Equal contribution

Correspondence to: Vladimir I. Titorenko; email: vladimir.titorenko@concordia.ca
Keywords: yeast, aging, longevity, evolution, ecosystems
Received: August 31, 2016 Accepted: October 11, 2016 Published: October 25, 2016

ABSTRACT

We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.

INTRODUCTION

In theory, living organisms can avoid age-related death for a potentially unlimited period of time [1, 2]. This is because from the point of view of thermodynamics living organisms are open self-organizing systems, i.e. they can use exogenous energy to resist a progressive increase in entropy and the resulting molecular damage and disorder as they age [1, 2]. Yet, it is well known that organismal lifespan 1) has a limit that is unique to each species; and 2) varies drastically between different species [3-6]. Since late XIX century, numerous evolutionary theories of aging have been proposed in an attempt to resolve this paradox [1-6]. Theories of programmed aging postulate that the evolutionary force actively restricts organismal lifespan at a certain age distinctive for each species [2, 5-17], whereas theories of non-programmed aging assume that lack of such evolutionary force passively restrains organismal lifespan at a species-specific age [2, 4-6, 15-17]. These two groups of evolutionary aging theories are discussed below.

The first evolutionary theory of aging, known as the theory of programmed death, was developed by August Weismann. According to this theory, natural selection resulted in the preferential reproduction of those members of a particular species that are able to die when they reach a certain age, which is unique to this species [5, 6, 17, 18]. By undergoing a “programmed” death at such species-specific age, older members of this species are eliminated from a competition with their younger counterparts for natural resources [5, 6, 17, 18]. In the programmed death theory, the evolutionary advantage to having a limited lifespan at a species-specific age consists in providing a benefit to survival of a group of individuals by creating a disadvantage to those individuals within the group that has reached such an age [5, 6, 17, 18].

Recent advances in the understanding of molecular mechanisms underlying cellular aging and organismal longevity marked a Renaissance period in developing evolutionary theories of programmed aging and age-
related death [1, 2, 4, 5-17]. These relatively recently developed theories include the following: 1) group selection theory [5, 6, 15, 17]; 2) kin selection theory [5, 6, 15, 17, 19]; 3) evolvability theory [5, 6, 15, 17, 20]; 4) phenoptosis theory [6 - 9, 21]; and 5) altruistic aging theory [12-14, 22-25]. Akin to the theory of programmed death developed by August Weismann [5, 6, 17, 18], all these contemporary evolutionary theories of programmed aging are based on the notion that natural selection resulted in preferential reproduction of those members of various species that have evolved certain active mechanisms for limiting their lifespans in a species-specific fashion and upon reaching a species-specific age [5-9, 12, 15, 17, 19-21].

Recent studies have provided evidence favoring evolutionary theories of programmed aging and age-related death. In particular, it has been shown that cellular aging can be delayed and organismal longevity can be extended by some genetic, dietary and pharmacological interventions that attenuate certain pro-aging signaling pathways that control the rate of aging [26-59]. These pro-aging signaling pathways operate as active mechanisms that (according to evolutionary theories of programmed aging) can limit organismal lifespan at a specific age. It is conceivable therefore that these pathways have evolved to restrict organismal lifespan at a particular age characteristic of each group of evolutionarily distant organisms.

One of the key features of all contemporary evolutionary theories of programmed aging and age-related death is that longevity-extending genetic traits attenuating different pro-aging signaling pathways may or may not reduce early-life fitness; is has been proposed that early-life fitness can only be decreased by those genetic traits that impair the pro-aging signaling pathways essential for the development of fitness early in life [12, 60-73]. Early-life fitness is known to include the following features: 1) metabolic rate under various environmental conditions; 2) growth rate and, in yeast, the ability to utilize alternative carbon sources; 3) physical activity; 4) fecundity - i.e. the efficacies of mating and reproduction (including sporulation in yeast); 5) resistance to fluctuations in temperature, light, humidity and other environmental factors (such as osmolarity fluctuations in yeast); and 6) susceptibility to environmental toxins [12, 60-73]. Until now the effects of various longevity-extending genetic traits on early-life fitness have been analyzed mainly under laboratory conditions in which long-lived mutants of a certain species were growing and undergoing aging alone, in the absence of "wild-type (WT)" individuals of the same species; these WT individuals do not carry any longevity-extending genetic traits and thus do not have lifespan extended beyond a species-specific age [26 - 51, 53-55, 74, 75]. However, these laboratory conditions do not mimic the process of natural selection within a mixed population of individuals of the same species. Under such conditions of natural selection, different individuals within the population 1) possess different longevity-defining genetic backgrounds; 2) have lifespans at a species-specific age and above it; and 3) compete for nutrients and other environmental resources [73, 76-81].

Unlike the evolutionary theories of programmed aging and age-related death, all evolutionary theories of non-programmed aging posit that organismal lifespan is limited at an age characteristic of each species due to lack of the evolutionary force [2, 4-6, 15-17]. These theories include the following: 1) the mutation accumulation theory [5, 6, 15, 17, 82, 83] and its modified version known as the late-life mortality plateau theory [5, 6, 15, 17, 84]; and 2) the antagonistic pleiotropy theory [5, 6, 15, 17, 85] and its contemporary version called the disposable soma theory [5, 6, 15, 17, 86 - 88]. Both, the mutation accumulation theory and the late-life mortality plateau theory, postulate that natural selection favours alleles of a gene that are beneficial early in organismal life over alleles of the same gene that provide an advantage late in life of this organism [5, 6, 15, 17, 82-84]. Thus, by eliminating gene alleles that are beneficial late in life, natural selection will diminish its power with age of an organism and will limit its lifespan at an age that is unique to each species [5, 6, 15, 17, 82-84]. In contrast, the antagonistic pleiotropy theory and the disposable soma theory assume that alleles of certain genes that are beneficial in early life of an organism exhibit detrimental effects in its late life [5, 6, 15, 17, 85-88]. Because different alleles of these genes display age-related antagonistic effects on several fitness-defining traits of an organism, these genes are called pleiotropic genes. According to both the antagonistic pleiotropy theory and the disposable soma theory, natural selection limits organismal lifespan at an age unique to each species by actively retaining only those alleles of pleiotropic genes that increase early-life fitness and thus reduce fitness at old age [5, 6, 15, 17, 85-88].

Noteworthy, contemporary evolutionary theories of programmed aging and age-related death postulate that organisms of all species possess mechanisms that have been evolved to actively limit their lifespans at a species-specific age [5, 6, 7-9, 12, 15, 17, 19-21]. In contrast, evolutionary theories of non-programmed aging assume that such mechanisms cannot exist, just because organismal lifespan is limited at a species-specific age passively - i.e. due to lack of the evolutionary force [5, 6, 15, 17, 82-88]. It was therefore concluded that the demonstrated ability of certain
genetic, dietary and pharmacological interventions to extend lifespan in evolutionarily distant species by targeting mechanisms that actively limit organismal lifespan at a species-specific age [26-59] validates evolutionary theories of programmed aging and invalidates evolutionary theories of non-programmed aging [5 - 17]. However, in all these cases the ability of genetic, dietary and pharmacological interventions to prolong organismal lifespan has been revealed under laboratory conditions. As discussed above, these conditions do not imitate the process of natural selection within a mixed population of same-species individuals having different longevity-defining genetic backgrounds [73, 76–81]. But none of the evolutionary theories of non-programmed aging assumes that in the absence of natural selection (i.e. under laboratory conditions) longevity-extending mutant gene alleles decreasing early-life fitness cannot exist; all these theories only proclaim that such mutant gene alleles will be eliminated from the gene pool of a species under the pressure of natural selection (i.e. in the wild or under field-like laboratory conditions) [5, 6, 15, 17, 82-88]. Furthermore, it seems impossible in the wild or under field-like laboratory conditions to impose any of the currently known longevity-extending dietary or pharmacological interventions (such as caloric restriction [CR], dietary restriction [DR] or aging-delaying chemical compounds) only on some individuals of the same species; thus, it is unlikely that such non-genetic interventions can be used for empirical verification of evolutionary theories of programmed or non-programmed aging.

We have recently conducted the experimental evolution of long-lived yeast species by a lasting exposure to exogenous lithocholic bile acid (LCA) (Gomez-Perez et al., submitted). We selected 3 long-lived mutants capable of sustaining their greatly extended chronological lifespans (CLS) after numerous passages in medium without LCA (Gomez-Perez et al., submitted). The extended longevity of each of these yeast mutants is a dominant polygenic trait caused by mutations in more than two genes (Gomez-Perez et al., submitted). The objective of this study was to use these long-lived yeast mutants for the empirical verification of evolutionary theories of programmed or non-programmed aging. To attain this objective, we investigated if the dominant polygenic trait extending longevity of each of these mutants affects key features of early-life fitness when each mutant grows and ages alone – i.e. in the absence of a parental WT strain. The following key features of early-life fitness were measured: the exponential growth rate and efficacy of post-exponential growth, fecundity, and resistance to apoptotic and liponecrotic forms of programmed cell death.

We first assessed if the long-lived mutant strains 3, 5 and/or 12 exhibit altered exponential growth rate and/or efficacy of post-exponential growth in media containing 1) a fermentable carbon source - i.e. glucose at the initial concentration of 0.2% [CR conditions] or 2% [non-CR conditions]; and 2) a non-fermentable carbon source - i.e. ethanol at the initial concentration of 1% or glycerol at the initial concentration of 3%. In these experiments, we used the single-gene-deletion mutant strains rpp2BΔ and dhb3Δ as controls. Each of these mutant strains is known to exhibit extended replicative lifespan (RLS) and reduced growth rate on 2% glucose [73], dhb3Δ is also known to have prolonged CLS [89]. rpp2BΔ lacks a gene encoding ribosomal protein P2 beta, whereas dhb3Δ lacks a gene encoding a DEAD-box family protein involved in ribosomal biogenesis [73]. By monitoring the OD600 of cell cultures recovered at different time points as a measure of cell growth, we found that the long-lived mutant strains 3, 5 and 12 do not differ from the parental WT strain BY4742 in the exponential growth rates and post-exponential growth efficacies in medium initially containing 0.2% glucose, 2% glucose, 1% ethanol or 3% glycerol (Figures 1A, 1B, 1C and 1D, respectively). Of note, the control strain rpp2BΔ exhibited a reduced growth rate in medium initially containing any of these four carbon sources, whereas the control strain dhb3Δ displayed a decreased growth rate in medium initially containing 0.2% glucose or 2.0% glucose (Figure 1). Moreover, the control strain rpp2BΔ exhibited a significantly reduced efficiency of post-exponential growth in medium initially containing 3% glycerol (Figure 1D).
We then elucidated if the long-lived mutant strains 3, 5 and/or 12 exhibit altered efficacy of their sexual reproduction by mating, one of the measures of fecundity. In these experiments, yeast cells of mating type MATα (i.e. the haploid WT strain BY4741) and mating type MATα (i.e. the haploid WT strain BY4742 or the selected long-lived haploid mutant strains 3, 5 or 12, all in the BY4742 genetic background) were pre-grown separately to mid-logarithmic phase in YP medium initially containing 0.2% glucose or 1% ethanol. The efficiency of mating was measured as described in the "Materials and methods" section; it was calculated as the number of colonies of MATα/MATα diploids divided by the sum of MATα/MATα diploids.
plus haploid colonies. Crosses between two WT strains of opposite mating types (i.e. the haploid strain BY4741 \([MATa \, his3ΔI \, leu2Δ0 \, met15Δ0 \, ura3Δ0]\) and the haploid strain BY4742 \([MATa \, his3ΔI \, leu2Δ0 \, lys2Δ0 \, ura3Δ0]\)) were used as controls. We found that the long-lived mutant strains 3, 5 and 12 do not differ from the parental WT strain BY4742 in efficacy of their sexual reproduction by mating if pre-grown in medium initially containing 0.2% glucose or 1% ethanol (Figures 2A and 2B, respectively).

We then investigated if the long-lived mutant strains 3, 5 and/or 12 display altered efficacy of their sexual reproduction by sporulation, another measure of fecundity. In these experiments, each of the four diploid strains formed between cells of the haploid WT strain BY4741 \((MATa \, his3ΔI \, leu2Δ0 \, met15Δ0 \, ura3Δ0)\) and cells of the haploid WT strain BY4742 \((MATa \, his3ΔI \, leu2Δ0 \, lys2Δ0 \, ura3Δ0)\) or cells of each of the selected long-lived haploid mutant strains 3, 5 or 12 (each in the BY4742 genetic background) were pre-grown to mid-logarithmic phase in YP medium initially containing 0.2% glucose or 1% ethanol. The efficiency of sporulation of each of the four diploid strains was then measured at various time points since the beginning of a sporulation assay as described in the "Materials and methods" section; it was calculated as the percentage of tetrads and dyads produced by a diploid strain, relative to the total number of cells. We found that the long-lived mutant strains 3, 5 and 12 do not differ from the parental WT strain BY4742 in efficacy of their sexual reproduction by sporulation when cells of the hybrid each of them formed with the haploid WT strain BY4741 of opposite mating type were pre-grown in medium initially containing 0.2% glucose or 1% ethanol (Figures 3A and 3B, respectively).

Figure 2. The long-lived mutant strains 3, 5 and 12 do not differ from the parental WT strain in efficacy of their sexual reproduction by mating, a measure of fecundity and a key trait of early-life fitness. Yeast cells of mating type \(MATa\) (i.e. the haploid WT strain BY4741) and mating type \(MATa\) (i.e. the haploid WT strain BY4742 or the selected long-lived haploid mutant strains 3, 5 or 12, each in the BY4742 genetic background) were pre-grown separately to mid-logarithmic phase in YP medium initially containing 0.2% glucose (a fermentable carbon source; CR conditions) (A) or 1% ethanol (a non-fermentable carbon source) (B). The efficiency of mating was measured as described in the "Materials and methods" section; it was calculated as the number of colonies of \(MATa/MATa\) diploids divided by the sum of \(MATa/MATa\) diploids plus haploid colonies. Data are presented as means ± SEM (n = 3; ns, not significant difference).
We also assessed if the dominant polygenic trait that extends longevity of each of the 3 long-lived mutant strains affects two other essential aspects of early-life fitness, namely 1) cell susceptibility to a mitochondria-controlled apoptotic form of death triggered by a brief exposure to exogenous hydrogen peroxide [48, 90 - 99]; and 2) cell susceptibility to a "liponecrotic" form of death elicited by a short-term exposure to exogenous palmitoleic acid [48, 100 - 103]. We found that the long-lived mutant strains 3, 5 and 12 exhibit enhanced susceptibilities to 1) mitochondria-controlled apoptotic death of yeast cells pre-grown in media initially containing 0.2% glucose or 1% ethanol (Figures 4A and 4B, respectively); and 2) liponecrotic death of yeast cells pre-grown in media initially containing 0.2% glucose or 1% ethanol (Figures 5A and 5B, respectively).

Of note, our recent study revealed that the long-lived mutant strains 3, 5 and 12 show enhanced resistance to chronic oxidative, thermal and osmotic stresses (Gomez-Perez et al., submitted). Akin to cell susceptibility to apoptotic and liponecrotic forms of cell death, such resistance to acute stresses is one of the key traits of early-life fitness [12, 48, 58, 61, 65, 99, 100, 104 - 109].
In sum, findings presented in this section and elsewhere (Gomez-Perez et al., submitted) imply that the dominant polygenic traits extending longevities of the long-lived mutant strains 3, 5 and 12 do not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity. Moreover, these longevity-extending polygenic traits enhance such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death.

Figure 4. The long-lived mutant strains 3, 5 and 12 exhibit enhanced (as compared to the parental WT strain) susceptibilities to a mitochondria-controlled apoptotic form of cell death, one of the traits of early-life fitness. The parental WT strain BY4742 and long-lived mutant strains 3, 5 and 12 (each in the BY4742 genetic background) were cultured in YP medium initially containing 0.2% glucose (a fermentable carbon source; CR conditions) (A) or 1% ethanol (a non-fermentable carbon source) (B). Cell aliquots were recovered from various growth phases and then treated for 2 h with 2.5 mM hydrogen peroxide to induce mitochondria-controlled apoptosis. The % of viable cells was calculated as described in the "Materials and methods" section. D, diauxic growth phase; L, logarithmic growth phase; PD, post-diauxic growth phase; ST, stationary growth phase. Data originate are presented as means ± SEM (n = 3; *p < 0.05; **p < 0.01; ***p < 0.001).
Development and validation of a quantitative assay for assessing the relative fitness of a long-lived mutant strain that competes for nutrients with a parental WT strain

To investigate if the dominant polygenic trait that extends longevity of each of the 3 selected long-lived yeast mutants influences the relative fitness of the mutant when it competes for nutrients and other environmental resources with a parental WT strain, we developed a direct competition assay. In this assay (Figure 6), the WT strains BY4739 (MATa leu2Δ0 lys2Δ0 ura3Δ0) and BY4742 (MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0), the single-gene-deletion mutant strain dbp3Δ (MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 dbp3Δ::kanMX4) in the BY4742 genetic background,
and the long-lived mutant strains 3, 5 and 12 (each in the BY4742 genetic background) were grown separately in the liquid nutrient-rich YP medium initially containing 0.2% glucose, 2% glucose or 1% ethanol as carbon source until mid-exponential phase. The single-gene-deletion mutant strain \(\text{dbp3} \Delta \) carbon source until mid-exponential phase. The single-gene-deletion mutant strain \(\text{dbp3} \Delta \) was used as a control mutant strain because it is known to exhibit 1) extended CLS [89] and RLS [73]; 2) a decreased growth rate on 0.2% glucose, 2% glucose [73] and 1% ethanol (see above); and 3) a reduced relative fitness when it is co-cultured with a parental WT strain in liquid YP medium initially containing 0.2% glucose, 2% glucose [73] and 1% ethanol [89] and RLS [73]; 2) a decreased growth rate on 0.2% glucose (see above), 2% glucose [73] and 1% ethanol (hereafter it is called a "His" plate), whereas the other plate contained leucine, lysine and uracil (hereafter it is called a "His" plate). After 2 days of incubation at 30°C, the number of CFU on "His" and "His" plates was counted. The relative fitness of each His strain (i.e. the BY4742, \(\text{dbp3} \Delta, \) 3, 5 or 12 strain) in direct competition with the His strain BY4739 was calculated as \(\log_2 \left[\frac{\text{CFU}_{\text{mutant}}}{\text{CFU}_{\text{WT}}} \right] \), where: CFU\(^{\text{mutant}} \) is the colony count at the end of week x, whereas CFU\(^{0} \) is the colony count at initial inoculation of a mixed culture.

Figure 6. Quantifying the relative fitness of a long-lived mutant strain in a direct competition assay with a parental WT strain. His" and His" strains used in the direct fitness competition experiment are first cultured separately in the complete YP medium rich in amino acids, nucleotides and other nutrients until mid-exponential phase. Cells of the His" strain are then mixed with the same number of cells of the His" strain in liquid YP medium. After culturing the cell mixture for 7 days, an aliquot of cell suspension was diluted and plated on solid YP medium supplemented with 2% glucose. Following 2 days of incubation, colonies on each plate were replicated onto plates with the synthetic minimal YNB medium without amino acids and nucleotides supplemented with 2% glucose. One of these plates contained leucine, lysine, uracil and histidine (hereafter it is called a "His" plate), whereas the other plate contained leucine, lysine and uracil (hereafter it is called a "His" plate). After 2 days of incubation at 30°C, the number of CFU on "His" and "His" plates was counted. The relative fitness of each His strain (i.e. the BY4742, \(\text{dbp3} \Delta, \) 3, 5 or 12 strain) in direct competition with the His strain BY4739 was calculated as \(\log_2 \left[\frac{\text{CFU}_{\text{mutant}}}{\text{CFU}_{\text{WT}}} \right] \), where: CFU\(^{\text{mutant}} \) is the colony count at the end of week x, whereas CFU\(^{0} \) is the colony count at initial inoculation of a mixed culture. The direct competition step of culturing a cell mixture for 7 days in liquid YP medium was repeated 6 times.
initial inoculation of a mixed culture (Figure 6). In every experiment for measuring relative fitness, the direct competition step of culturing a cell mixture for 7 days in liquid YP medium was repeated 6 times.

Figure 7. Validation of the developed assay for quantifying the relative fitness of a long-lived mutant strain in direct competition with a parental WT strain. The WT strains BY4742 (His') and BY4739 (His', but otherwise isogenic to BY4742) were cultured separately in the complete YP medium containing 0.2% glucose, 2% glucose or 1% ethanol glucose until mid-exponential phase. Another pair of strains whose relative fitness was measured, namely the long-lived mutant strain dbp3Δ (His'; isogenic to BY4742) and the WT strain BY4739 (His'), was also cultured separately in YP medium containing 0.2% glucose 2% glucose or 1% ethanol glucose until mid-exponential phase. Cells of the His' strain were mixed with the same number of cells of the His' strain and then co-cultured for 7 days in liquid YP medium initially containing different carbon sources. Cells of the His' and His' strains pre-cultured separately on 0.2% glucose were subjected to direct fitness competition by being cultured together on 0.2% glucose (A) or 1% ethanol (C). Cells of the His' and His' strains pre-cultured separately on 2% glucose were subjected to direct fitness competition by being cultured together on 2% glucose (B) or 1% ethanol (D). Cells of the His' and His' strains pre-cultured separately on 1% ethanol were subjected to direct fitness competition by being cultured together on 1% ethanol (E). After culturing the cell mixture for 7 days, an aliquot of cell suspension was used to measure the relative fitness of the His' strain in direct competition with the His' strain (as described in "Materials and Methods"). The direct fitness competition step of culturing a cell mixture for 7 days in liquid YP medium was repeated 6 times.
Figure 8. Dominant polygenic trait extending longevity of the long-lived yeast mutant 3 decreases its relative fitness in medium initially containing 1% ethanol. The WT strains BY4742 (His-) and BY4739 (His\(^+\)) but otherwise isogenic to BY4742 were cultured separately in the complete YP medium containing 0.2% glucose, 2% glucose or 1% ethanol glucose until mid-exponential phase. Another pair of strains whose relative fitness was measured, namely the long-lived mutant strain 3 (His\(^-\); selected during lasting exposure of BY4742 to LCA) and the WT strain BY4739 (His\(^+\)), was also cultured separately in YP medium containing 0.2% glucose 2% glucose or 1% ethanol glucose until mid-exponential phase. Cells of the His\(^-\) strain were mixed with the same number of cells of the His\(^+\) strain and then co-cultured for 7 days in liquid YP medium initially containing different carbon sources. Cells of the His\(^-\) and His\(^+\) strains pre-cultured separately on 0.2% glucose were subjected to direct fitness competition by being cultured together on 0.2% glucose (A) or 1% ethanol (C). Cells of the His\(^-\) and His\(^+\) strains pre-cultured separately on 2% glucose were subjected to direct fitness competition by being cultured together on 2% glucose (B) or 1% ethanol (D). Cells of the His\(^-\) and His\(^+\) strains pre-cultured separately on 1% ethanol were subjected to direct fitness competition by being cultured together on 1% ethanol (E). After culturing the cell mixture for 7 days, an aliquot of cell suspension was used to measure the relative fitness of the His\(^-\) strain in a direct competition with the His\(^+\) strain (as described in "Materials and Methods"). The direct fitness competition step of culturing a cell mixture for 7 days in liquid YP medium was repeated 6 times.
Figure 9. Dominant polygenic trait extending longevity of the long-lived yeast mutant 5 decreases its relative fitness in medium initially containing 1% ethanol. The WT strains BY4742 (His⁻) and BY4739 (His⁺), but otherwise isogenic to BY4742) were cultured separately in the complete YP medium containing 0.2% glucose, 2% glucose or 1% ethanol glucose until mid-exponential phase. Another pair of strains whose relative fitness was measured, namely the long-lived mutant strain 5 (His⁻; selected during lasting exposure of BY4742 to LCA) and the WT strain BY4739 (His⁺), was also cultured separately in YP medium containing 0.2% glucose 2% glucose or 1% ethanol glucose until mid-exponential phase. Cells of the His⁻ strain were mixed with the same number of cells of the His⁺ strain and then co-cultured for 7 days in liquid YP medium initially containing different carbon sources. Cells of the His⁻ and His⁺ strains pre-cultured separately on 0.2% glucose were subjected to direct fitness competition by being cultured together on 0.2% glucose (A) or 1% ethanol (C). Cells of the His⁻ and His⁺ strains pre-cultured separately on 2% glucose were subjected to direct fitness competition by being cultured together on 2% glucose (B) or 1% ethanol (D). Cells of the His⁻ and His⁺ strains pre-cultured separately on 1% ethanol were subjected to direct fitness competition by being cultured together on 1% ethanol (E). After culturing the cell mixture for 7 days, an aliquot of cell suspension was used to measure the relative fitness of the His⁺ strain in a direct competition with the His⁻ strain (as described in "Materials and Methods"). The direct fitness competition step of culturing a cell mixture for 7 days in liquid YP medium was repeated 6 times.
To validate this assay in a control experiment, we compared the fitness of the WT strain BY4742 (His\(^-\); the parental strain of the long-lived mutant strains 3, 5 and 12) to that of the WT strain BY4739 (His\(^+\), but otherwise isogenic to BY4742). We found that even after 6 consecutive 7-days incubations BY4742 (His\(^-\)) exhibits similar relative fitness in a direct competition assay with BY4739 (His\(^+\)) co-cultured in YP medium initially containing the following carbon source: 1) 0.2% glucose, after cell transfer from 0.2% glucose (Figure 7A); 2) 2% glucose, after cell transfer from 2% glucose (Figure 7B); 3) 1% ethanol, after cell transfer from 0.2% glucose (Figure 7C); 4) 1% ethanol, after cell transfer from 2% glucose (Figure 7D); or 5) 1% ethanol, after cell transfer from 1% ethanol (Figure 7E). Based on these findings, we concluded that the developed direct competition assay outlined in Figure 6 accurately reproduces the expected equal fitness of each of the two WT strains used, i.e. BY4739 (His\(^+\)) and BY4742 (His\(^-\)). Moreover, this assay also accurately reproduces the reduced fitness [73, 89] of the mutant strain \(dhp3\Delta\) (which is isogenic to the WT strain BY4742) in direct competition with the parental WT strain BY4739 (His\(^+\)) (Figure 7).

Dominant polygenic trait extending longevity of each of the 3 long-lived yeast mutants decreases its relative fitness under some laboratory conditions

We used the developed direct competition assay to measure the relative fitness of the long-lived mutant strain 3, 5 or 12 in direct competition with a parental WT strain. Cells of each of these mutant strains were first cultured separately in liquid YP medium containing different concentrations of glucose or ethanol. Cells of each mutant strain were then mixed with the same number of cells of the WT strain BY4739 (His\(^+\), but otherwise isogenic to the parental WT strain BY4742) and underwent 6 consecutive 7-days incubations together. We found that the dominant polygenic trait extending longevity of the long-lived mutant strain 3, 5 or 12 does not alter its relative fitness in a direct competition assay with the parental WT strain co-cultured in medium initially containing one of the following carbon sources: 1) 0.2% glucose, after cell transfer from 0.2% glucose (Figures 8A, 9A and 10A, respectively); or 2) 2% glucose, after cell transfer from 2% glucose (Figures 8B, 9B and 10B, respectively). In contrast, the dominant polygenic trait extending longevity of the long-lived mutant strain 3, 5 or 12 decreased its relative fitness in a direct competition assay with the parental WT strain co-cultured in medium initially containing 1% ethanol, after cell transfer from any of the following carbon sources: 1) 0.2% glucose (Figures 8C, 9C and 10C, respectively); 2) 2% glucose (Figures 8D, 9D and 10D, respectively); or 3) 1% ethanol (Figures 8E, 9E and 10E, respectively).

Our findings revealed that the conditions of pre-culturing of any of the 3 long-lived mutant strains do not influence the extent of its decreased relative fitness during the subsequent co-culturing with the parental WT strain in medium initially containing 1% ethanol (Figures 8C-8E, 9C-9E, 10C-10E). We therefore concluded that none of these long-lived mutant strains keeps a “memory” of conditions under which it has been grown prior to being mixed with the parental WT strain in medium supplemented with 1% ethanol for fitness competition.

DISCUSSION

Using the 3 long-lived mutant strains selected during experimental evolution under laboratory conditions (Gomez-Perez et al., submitted) in this study we empirically verified evolutionary theories programmed or non-programmed aging. We demonstrate that the dominant polygenic trait extending longevity of each of these mutants does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth, and fecundity (which was assessed by measuring the efficacies of mating and sporulation). These findings provide evidence in support of evolutionary theories of programmed aging and invalidate evolutionary theories of non-programmed aging and age-related death. Indeed, all evolutionary theories of non-programmed aging and age-related death predict that any longevity-extending genetic trait must decrease early-life fitness of an organism if it grows and ages alone, in the absence of WT individuals of the same species; these WT individuals do not carry longevity-extending mutations and thus do not have lifespan extended beyond a species-specific age [2, 4-6, 15-17, 82-88].

This study and our recent findings (Gomez-Perez et al., submitted) show for the first time that a longevity-extending genetic trait can enhance such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. We have observed this enhancement of some early-life fitness features in the 3 long-lived mutant strains when each of them was growing and undergoing chronological aging in the absence of the parental WT yeast strain (i.e. in the absence of natural selection).

In this study, we also developed and validated a direct competition assay for the measurement of relative fitness under laboratory conditions. This assay mimics the process of natural selection within a mixed population of yeast cells that 1) exhibit different
longevity-defining genetic backgrounds; 2) differ in their lifespans if grow as a genetically homogenous cell population; and 3) compete for nutrients and other environmental resources. Using this assay, we found

Figure 10. Dominant polygenic trait extending longevity of the long-lived yeast mutant 12 decreases its relative fitness in medium initially containing 1% ethanol. The WT strains BY4742 (His⁻) and BY4739 (His⁺), but otherwise isogenic to BY4742 were cultured separately in the complete YP medium containing 0.2% glucose, 2% glucose or 1% ethanol glucose until mid-exponential phase. Another pair of strains whose relative fitness was measured, namely the long-lived mutant strain 12 (His⁺; selected during lasting exposure of BY4742 to LCA) and the WT strain BY4739 (His⁺), was also cultured separately in YP medium containing 0.2% glucose 2% glucose or 1% ethanol glucose until mid-exponential phase. Cells of the His⁻ strain were mixed with the same number of cells of the His⁺ strain and then co-cultured for 7 days in liquid YP medium initially containing different carbon sources. Cells of the His⁻ and His⁺ strains pre-cultured separately on 0.2% glucose were subjected to direct fitness competition by being cultured together on 0.2% glucose (A) or 1% ethanol (C). Cells of the His⁻ and His⁺ strains pre-cultured separately on 2% glucose were subjected to direct fitness competition by being cultured together on 2% glucose (B) or 1% ethanol (D). Cells of the His⁻ and His⁺ strains pre-cultured separately on 1% ethanol were subjected to direct fitness competition by being cultured together on 1% ethanol (E). After culturing the cell mixture for 7 days, an aliquot of cell suspension was used to measure the relative fitness of the His⁺ strain in a direct competition with the His⁻ strain (as described in "Materials and Methods"). The direct fitness competition step of culturing a cell mixture for 7 days in liquid YP medium was repeated 6 times.
that in a population of mixed cells grown on 1% ethanol the dominant polygenic trait extending longevity of each of the 3 long-lived yeast mutants decreases the relative fitness of the mutant strain in direct competition with the parental WT strain BY4742. These findings imply that under laboratory conditions that imitate the process of natural selection within an ecosystem composed of yeast cells having different longevity-defining genetic backgrounds, each of the 3 long-lived mutants is forced out of the ecosystem by the parental WT strain exhibiting shorter lifespan. It seems conceivable therefore that 1) yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age; and 2) these mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast lifespan within ecosystems. We speculate that these mechanisms may consist in the ability of the parental WT strain to secrete into growth medium certain compounds (small molecules and/or proteins) that can slow down growth and/or kill long-lived yeast mutants. The challenge for the near future is to identify these compounds responsible for the maintenance a finite yeast lifespan within ecosystems.

MATERIALS AND METHODS

Yeast strains and growth conditions

The haploid WT strains BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and BY4742 (MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) of the yeast S. cerevisiae, the long-lived mutant strains 3, 5 and 12 (each in the BY4742 genetic background), as well as the single-gene-deletion mutant strains rpp2BΔ (MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 rpp2BΔ::kanMX4) and dbp3Δ (MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 dbp3Δ::kanMX4) (each in the BY4742 genetic background) were used in this study. All strains were from Open Biosystems. Cells were grown in YP medium (1% yeast extract, 2% peptone; non-CR conditions) or 1% ethanol (a non-fermentable carbon source). Equal numbers (5 × 10^6) of cells of each mating type were mixed and then collected on a 0.45-μm pore, 25-mm diameter nitrocellulose (NC) filter. The filters were placed on the surface of a YEPD (1% yeast extract, 2% peptone, 2% glucose, 2% agar) plate and incubated at 30°C for 5 hours. The filters were then transferred to Eppendorf tubes and resuspended in 1 ml of a liquid synthetic minimal YNB medium (0.67% Yeast Nitrogen Base without Amino Acids) with 2% glucose. The suspensions were used for making serial 10-fold dilutions. 100-μl aliquots of each dilution were spread on 1) a synthetic minimal YNB medium plate (0.67% Yeast Nitrogen Base without Amino Acids, 2% glucose, 2% agar) without supplements; and 2) a synthetic minimal YNB medium plate supplemented with 20 mg/l L-histidine, 30 mg/l L-leucine and 20 mg/l uracil. These plates were incubated at 30°C for 2 days. The numbers of diploid cells (N_d) were counted on synthetic minimal YNB medium plates without supplements, whereas the total numbers of cells (N_t) were counted on synthetic minimal YNB medium plates supplemented with 20 mg/l L-histidine, 30 mg/l L-leucine and 20 mg/l uracil. The efficiency of mating was calculated as the number of colonies of MATa/MATa diplonds (N_d) divided by the sum of MATa/MATa diplonds plus haploid colonies (N_t). Crosses between two WT strains of opposite mating types (i.e. the haploid strain BY4741 [MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0]) and the haploid strain BY4742 [MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0] were used as controls. All tests were carried out in triplicate in 3 independent experiments.

Quantitative sporulation assay

A small patch of cells of the haploid WT strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was applied to the surface of a master YEPD (1% yeast extract, 2% peptone, 2% glucose, 2% agar) plate. 10^6 cells of mating type MATa (i.e. the haploid WT strain BY4742 [MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0] or the selected long-lived haploid mutant strains 3, 5 or 12) were spread on the surface of a separate crossing plate with YEPD medium. The master plate was replica plated onto a lawn of cells on each of the four crossing plates; different velvet was used for each crossing plate. The crossing plates were incubated overnight at 30°C. Each of the four crossing plates was then replica plated onto a synthetic minimal YNB medium plate (0.67% Yeast Nitrogen Base without Amino Acids, 2% glucose, 2% agar) supplemented with 20 mg/l L-histidine, 30 mg/l L-leucine and 20 mg/l uracil. These plates were incubated overnight at 30°C. A positive mating reaction between
cells of the haploid WT strain BY4741 (MATα *his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and cells of the haploid WT strain BY4742 (MATα *his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) or cells of each of the selected long-lived haploid mutant strains 3, 5 or 12 resulted in confluent growth of diploid cells on a YNB plate (supplemented with L-histidine, L-leucine and uracil) at the position of a patch of haploid BY4741 cells. To measure sporulation efficiency, cells of each of the four recovered diploid strains were first grown to mid-logarithmic phase in YP medium (1% yeast extract, 2% peptone) initially containing 0.2% glucose (a fermentable carbon source; CR conditions) or 1% ethanol (a non-fermentable carbon source). The cell cycle of these cells was then synchronized by growing them in YPA medium (1% yeast extract, 2% peptone, 2% potassium acetate) from a starting optical density at 600 nm (OD₆₀₀) of 0.2 to final OD₆₀₀ of 1.0; cells were cultured at 30°C with rotational shaking at 200 rpm in Erlenmeyer flasks at a "flask volume/medium volume" ratio of 10:1. 2 × 10⁷ of cells from this synchronized culture were then incubated in liquid SPO (0.1% yeast extract, 1% potassium acetate, 0.05% glucose) medium supplemented with 20 mg/l L-histidine, 30 mg/l L-leucine and 20 mg/l uracil at 30°C for the duration of the experiment. At various time points, aliquots of cells were examined for sporulation efficiency by differential interference contrast (DIC) microscopy with an Olympus BX microscope with a ×100 oil immersion objective. Sporulation efficiency was measured as the percentage of tetrads and dyads produced by a strain, relative to the total number of cells. All tests were carried out in triplicate in 3 independent experiments.

Cell viability assay for monitoring the susceptibility of yeast to an apoptotic mode of cell death induced by palmitoleic acid

A sample of cells was taken from a culture at a certain time-point. A fraction of the sample was diluted in order to determine the total number of cells using a hemacytometer. 2 × 10⁷ cells were harvested by centrifugation for 1 min at 21,000 × g at room temperature and resuspended in 2 ml of YP medium containing 0.2% glucose as carbon source. Each cell suspension was divided into 2 equal aliquots. One aliquot was supplemented with palmitoleic acid (#P9417; Sigma) from a 50 mM stock solution (in 10% chloroform, 45% hexane and 45% ethanol); the final concentration of palmitoleic acid was 0.15 mM (in 0.03% chloroform, 0.135% hexane and 0.135% ethanol). Other aliquot was supplemented with chloroform, hexane and ethanol added to the final concentrations of 0.03%, 0.135% and 0.135%, respectively. Both aliquots were then incubated for 2 h at 30°C on a Labquake rotator set for 360° rotation. Serial dilutions of cells were plated in duplicate onto plates containing YP medium with 2% glucose as carbon source. After 2 d of incubation at 30°C, the number of CFU per plate was counted. The number of CFU was defined as the number of viable cells in a sample. For each aliquot of cells exposed to palmitoleic acid, the % of viable cells was calculated as follows: (number of viable cells per ml in the aliquot exposed to palmitoleic acid/number of viable cells per ml in the control aliquot that was not exposed to palmitoleic acid) × 100.

Quantifying the relative fitness of a long-lived mutant strain in a direct competition assay with a parental WT strain

The WT strains BY4739 (MATα leu2Δ0 lys2Δ0 ura3Δ0) and BY4742 (MATα *his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0), the single-gene-deletion mutant strain *dbp3Δ* (MATα *his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 *dbp3Δ::kanMX4*) in the BY4742 genetic background (all from Open Biosystems), and the long-lived mutant strains 3, 5 and 12 (all 3 in the BY4742 genetic background) were grown separately in YP medium (1% yeast extract, 2% peptone) initially containing 0.2% glucose, 2% glucose or 1% ethanol as carbon source until mid-exponential phase. Cells were cultured at 30°C with rotational shaking at 200 rpm in Erlenmeyer flasks at a "flask volume/medium volume" ratio of 10:1.
volume/medium volume” ratio of 5:1. The single-gene-deletion mutant strain dbp3Δ lacks a gene encoding a DEAD-box family protein involved in ribosomal biogenesis [73]. dbp3Δ was used as a control mutant strain because it is known to exhibit 1) an extended replicative lifespan (as compared to the parental WT strain BY4742) [73]; 2) a reduced growth rate on 0.2% glucose, 2% glucose, and 1% ethanol (this study); and 3) a reduced relative fitness when is co-cultured with a parental WT strain in medium initially containing 2% glucose [73]. 2.5 × 10⁶ cells of the WT strain BY4739 (MATα leu2Δ0 lys2Δ0 ura3Δ0) were mixed with the same number of cells of the BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0), dbp3Δ (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 dbp3Δ::kanMX4), 3, 5 or 12 strain in 50 ml of YP medium initially containing 0.2% glucose, 2% glucose or 1% ethanol as carbon source. After culturing the cell mixture at 30°C for 7 days, an aliquot of cell suspension was diluted and plated on a solid YP medium supplemented with 2% glucose. Following 2 days of incubation at 30°C, colonies on each plate were replicated onto 2 plates with solid YNB (Yeast Nitrogen Base) medium without amino acids supplemented with 2% glucose; one of these plates contained leucine, lysine, uracil and histidine [hereafter called a “His+” plate], whereas the other plate contained leucine, lysine and uracil [hereafter called a "His−" plate]. After 2 days of incubation at 30°C, the number of CFU on "His+" and "His−" plates was counted. The relative fitness of each His+ strain (relative to the His− strain BY4739 [MATα leu2Δ0 lys2Δ0 ura3Δ0]) was calculated as log₂{[CFU x mutant/CFU x wt]/(CFU 0 mutant/CFU 0 wt)}, where: CFU x is the colony count at the end of week x, whereas CFU 0 is the colony count at initial inoculation of a mixed culture.

Statistical analysis

Statistical analysis was performed using Microsoft Excel’s (2010) Analysis ToolPack-VBA. All data on cell survival are presented as mean ± SEM. The p values for comparing the means of two groups (using an unpaired two-tailed t test) were calculated with the help of the GraphPad Prism statistics software.

ACKNOWLEDGEMENTS

We are grateful to current and former members of the Titorenko laboratory for discussions. We acknowledge the Centre for Structural and Functional Genomics at Concordia University for outstanding service.

CONFLICTS OF INTEREST

The authors have no conflict of interests to declare.

FUNDING

This study was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada and Concordia University Chair Fund. P.K. was supported by the Fonds québécois de la recherche sur la nature et les technologies Doctoral Research Fellowship Award. V.I.T. is a Concordia University Research Chair in Genomics, Cell Biology and Aging.

REFERENCES

1. Mitteldorf J. Aging is not a process of wear and tear. Rejuvenation Res. 2010; 13:322–26. doi: 10.1089/rej.2009.0967
2. Trindade LS, Aigaki T, Peixoto AA, Balduino A, Mânika da Cruz IB, Heddele JG. A novel classification system for evolutionary aging theories. Front Genet. 2013; 4:25. doi: 10.3389/fgene.2013.00025
3. Kirkwood TB. Comparative life spans of species: why do species have the life spans they do? Am J Clin Nutr. 1992 (Suppl); 55:11915–955.
4. Ljubuncic P, Reznick AZ. The evolutionary theories of aging revisited—a mini-review. Gerontology. 2009; 55:205–16. doi: 10.1159/000200772
5. Goldsmith T. Aging by Design. Azinet Press, Annapolis, 2011; ISBN 0-9788709-3-X.
6. Kowald A, Kirkwood TB. Can aging be programmed? A critical literature review. Aging Cell. 2016; Epub ahead of print. doi: 10.1111/acel.12510
7. Skulachev VP. Phenoptosis: programmed death of an organism. Biochemistry (Mosc). 1999; 64:1418–26.
8. Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med. 1999; 20:139–84. doi: 10.1016/S0098-2997(99)00008-4
9. Skulachev VP. The programmed death phenomena, aging, and the Samurai law of biology. Exp Gerontol. 2001; 36:995–1024. doi: 10.1016/S0531-5565(01)00109-7
10. Skulachev VP. Programmed death phenomena: from organelle to organism. Ann N Y Acad Sci. 2002; 959:214–37. doi: 10.1111/j.1749-6632.2002.tb02095.x
11. Skulachev VP. Programmed death in yeast as adaptation? FEBS Lett. 2002; 528:23–26. doi: 10.1016/S0014-5793(02)03319-7
12. Longo VD, Mitteldorf J, Skulachev VP. Programmed and altruistic ageing. Nat Rev Genet. 2005; 6:866–72. doi: 10.1038/nrg1706
13. Skulachev VP, Longo VD. Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann N Y Acad Sci. 2005; 1057:145–64. doi: 10.1196/annals.1356.009

14. Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP. Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2008; 1783:1350–53. doi: 10.1016/j.bbamcr.2008.02.001

15. Goldsmith TC. On the programmed/non-programmed aging controversy. Biochemistry (Mosc). 2012; 77:729–32. doi: 10.1134/S000629791207005X

16. Mitteldorf JJ. Adaptive aging in the context of evolutionary theory. Biochemistry (Mosc). 2012; 77:716–25. doi: 10.1134/S0006297912070036

17. Goldsmith T. The Evolution of Aging 3rd ed. Azinet Press, Annapolis, 2013; ISBN: 0978870905.

18. Weismann A. Über die Dauer des Lebens. Fisher, Jena, 1882.

19. Libertini G. An adaptive theory of increasing mortality with increasing chronological age in populations in the wild. J Theor Biol. 1988; 132:145–62. doi: 10.1016/S0022-5193(88)80153-X

20. Goldsmith TC. Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies. J Theor Biol. 2008; 252:764–68. doi: 10.1016/j.jtbi.2008.02.035

21. Skulachev VP. Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis. Biochemistry (Mosc). 1997; 62:1191–95.

22. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD. Superoxide is a mediator of an atavistic aging program in Saccharomyces cerevisiae. J Cell Biol. 2004; 166:1055–67. doi: 10.1083/jcb.200404002

23. Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F. Chronological aging leads to apoptosis in yeast. J Cell Biol. 2004; 164:501–07. doi: 10.1083/jcb.200310014

24. Váčová L, Palková Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol. 2005; 169:711–17. doi: 10.1083/jcb.200410064

25. Büttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol. 2006; 175:521–25.

doi: 10.1083/jcb.200608098

26. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425:191–96. doi: 10.1038/nature01960

27. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006; 5:493–506. doi: 10.1038/nrd2060

28. Powers RW 3rd, Kaehlerlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006; 20:174–84. doi: 10.1101/gad.1381406

29. Dasgupta B, Milkbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA. 2007; 104:7217–22. doi: 10.1073/pnas.0610068104

30. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of aging signals? Nat Rev Mol Cell Biol. 2007; 8:722–28. doi: 10.1038/nrm2240

31. Greer EL, Brunet A. Signaling networks in aging. J Cell Sci. 2008; 121:407–12. doi: 10.1242/jcs.021519

32. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008; 77:727–54. doi: 10.1146/annurev.biochem.77.061206.171059

33. Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008; 69:277–85. doi: 10.1111/j.1365-2958.2008.06292.x

34. Armour SM, Baur JA, Hsieh SN, Land-Bracha A, Thomas SM, Sinclair DA. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging (Albany NY). 2009; 1:515–28. doi: 10.18632/aging.100056

35. Blagosklonny MV. Inhibition of S6K by resveratrol: in search of the purpose. Aging (Albany NY). 2009; 1:511–14. doi: 10.18632/aging.100059

36. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325:201–04. doi: 10.1126/science.1173635

37. Demidenko ZN, Blagosklonny MV. At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence. Cell Cycle. 2009; 8:1901–04. doi: 10.4161/cc.8.12.8810

www.aging-us.com 2585 AGING (Albany NY)
38. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009; 11:1305–14. doi: 10.1038/ncb1975

39. Finley LW, Haigis MC. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev. 2009; 8:173–88. doi: 10.1016/j.arr.2009.03.003

40. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009; 460:392–95.

41. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009; 122:3589–94. doi: 10.1242/jcs.051011

42. Narasimhan SD, Yen K, Tissenbaum HA. Converging pathways in lifespan regulation. Curr Biol. 2009; 19:R657–66. doi: 10.1016/j.cub.2009.06.013

43. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Eriech VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, et al. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta. 2009; 1787:437–61. doi: 10.1016/j.bbapap.2008.12.008

44. Anderson RM, Weindruch R. Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab. 2010; 21:134–41. doi: 10.1016/j.tem.2009.11.005

45. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010; 11:35–46. doi: 10.1016/j.cmet.2009.11.010

46. Blagosklonny MV. Rapamycin and quasi-programmed aging: four years later. Cell Cycle. 2010; 9:1859–62. doi: 10.4161/cc.9.10.11872

47. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010; 328:321–26. doi: 10.1126/science.1172539

48. Goldberg AA, Richard VR, Kryukov P, Bourque SD, Beach A, Burstein MT, Glebov A, Koupaki O, Boukh-Viner T, Gregg C, Juneau M, English AM, Thomas DY, Titorenko VI. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging (Albany NY). 2010; 2:393–414. doi: 10.18632/aging.100168

49. Kaebelerin M. Lessons on longevity from budding yeast. Nature. 2010; 464:513–19. doi: 10.1038/nature08981

50. Kenyon CJ. The genetics of ageing. Nature. 2010; 464:504–12. doi: 10.1038/nature08980

51. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, Poroshina TE. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY). 2011; 3:148–57. doi: 10.18632/aging.100273

52. Titorenko VI, Terlecky SR. Peroxisome metabolism and cellular aging. Traffic. 2011; 12:252–59. doi: 10.1111/j.1600-0854.2010.01144.x

53. Longo VD, Shadel GS, Kaebelerin M, Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012; 16:18–31. doi: 10.1016/j.cmet.2012.06.002

54. Smoliga JM, Vang O, Baur JA. Challenges of translating basic research into therapeutics: resveratrol as an example. J Gerontol A Biol Sci Med Sci. 2012; 67:158–67. doi: 10.1093/gerona/glr062

55. Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol. 2013; 75:621–44. doi: 10.1146/annurev-physiol-030212-183712

56. Leonov A, Titorenko VI. A network of interorganellar communications underlies cellular aging. IUBMB Life. 2013; 65:665–74. doi: 10.1002/iub.1183

57. Arli‐Ciocomo A, Leonov A, Piano A, Svistkova V, Titorenko VI. Cell‐autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. Microb Cell. 2014; 1:164–78. doi: 10.15698/mic2014.06.152

58. Leonov A, Arli‐Ciocomo A, Piano A, Svistkova V, Lutchman V, Medkour Y, Titorenko VI. Longevity extension by phytochemicals. Molecules. 2015; 20:6544–72. doi: 10.3390/molecules20046544

59. Lutchman V, Dakik P, McCaulley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget. 2016; 7; Epub ahead of print.

60. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993; 366:461–64. doi: 10.1038/366461a0
61. Parsons PA. Inherited stress resistance and longevity: a stress theory of ageing. Heredity (Edinb). 1995; 75:216–21. doi: 10.1038/hdy.1995.126

62. Zwaan BJ, Bijlsma R, Hoekstra RF. Direct selection on lifespan in Drosophila melanogaster. Evolution. 1995; 49:649–59. doi: 10.2307/2410318

63. Brown-Borg HM, Borg KE, Melissa CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996; 384:33. doi: 10.1038/384033a0

64. Partridge L, Prowse N, Pignatelli P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc Biol Sci. 1999; 266:255–61. doi: 10.1098/rspb.1999.0630

65. Buck S, Vettraine J, Force AG, Arking R. Extended longevity in Drosophila is consistently associated with a decrease in developmental viability. J Gerontol A Biol Sci Med Sci. 2000; 55:B292–301. doi: 10.1093/gerona/g55.6.B292

66. Stearns SC, Ackermann M, Doebeli M, Kaiser M. Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci USA. 2000; 97:3309–13. doi: 10.1073/pnas.97.7.3309

67. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of lifespan by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001; 292:104–06. doi: 10.1126/science.1057991

68. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001; 292:107–10. doi: 10.1126/science.1057987

69. Marden JH, Rogina B, Montooth KL, Helfand SL. Conditional tradeoffs between aging and organellar performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA. 2003; 100:3369–73. doi: 10.1073/pnas.0634985100

70. Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mcl1 increases cellular fitness and lifespan in mice. Genes Dev. 2005; 19:2424–34. doi: 10.1101/gad.1352905

71. Partridge L, Gems D. Beyond the evolutionary theory of ageing, from functional genomics to evo-gero. Trends Ecol Evol. 2006; 21:334–40. doi: 10.1016/j.tree.2006.02.008

72. Giannakou ME, Goss M, Jacobson J, Vinti G, Leevers SJ, Partridge L. Dynamics of the action of dFOXO on adult mortality in Drosophila. Aging Cell. 2007; 6:429–38. doi: 10.1111/j.1474-9726.2007.00290.x

73. Delaney JR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M. Quantitative evidence for early life fitness defects from 32 longevity-associated alleles in yeast. Cell Cycle. 2011; 10:156–65. doi: 10.4161/cc.10.1.14457

74. Beach A, Titorenko VI. In search of housekeeping pathways that regulate longevity. Cell Cycle. 2011; 10:3042–44. doi: 10.4161/cc.10.18.16947

75. Kryukov P, Beach A, Richard VR, Burstein MT, Leonov A, Levy S, Titorenko VI. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration. Front Physiol. 2012; 3:256. doi: 10.3389/fphys.2012.00256

76. McColl G, Jenkins NL, Walker DW, Lithgow GJ. Testing evolutionary theories of aging. Ann N Y Acad Sci. 2000; 908:319–20. doi: 10.1111/j.1749-6632.2000.tb06663.x

77. Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ. Evolution of lifespan in C. elegans. Nature. 2000; 405:296–97. doi: 10.1038/35012693

78. Marden JH, Rogina B, Montooth KL, Helfand SL. Conditional tradeoffs between aging and organellar performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA. 2003; 100:3369–73. doi: 10.1073/pnas.0634985100

79. Jenkins NL, McColl G, Lithgow GJ. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci. 2004; 271:2523–26. doi: 10.1098/rspb.2004.2897

80. Anderson JL, Reynolds RM, Morran LT, Tolman-Thompson J, Phillips PC. Experimental evolution reveals antagonistic pleiotropy in reproductive timing but not life span in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2011; 66:1300–08. doi: 10.1093/gerona/glr143

81. Qian W, Ma D, Xiao C, Wang Z, Zhang J. The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Reports. 2012; 2:1399–410. doi: 10.1016/j.celrep.2012.09.017

82. Medawar PB. An Unsolved Problem of Biology. 1952, London, HK Lewis.

83. Charlesworth B. Fisher, Medawar, Hamilton and the evolution of aging. Genetics. 2000; 156:927–31.

84. Charlesworth B. Patterns of age-specific means and genetic variances of mortality rates predicted by the mutation-accumulation theory of ageing. J Theor Biol. 2001; 210:47–65. doi: 10.1006/jtbi.2001.2296

85. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957; 11:398–411. doi: 10.2307/2406060
86. Kirkwood TB. Evolution of ageing. Nature. 1977; 270:301–04. doi: 10.1038/270301a0
87. Kirkwood TB, Holliday R. The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci. 1979; 205:531–46. doi: 10.1098/rspb.1979.0083
88. Kirkwood TB, Austad SN. Why do we age? Nature. 2000; 408:233–38. doi: 10.1038/35041682
89. Garay E, Campos SE, González de la Cruz J, Gaspar AP, Jinich A, Deluna A. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet. 2014; 10:e1004168. doi: 10.1371/journal.pgen.1004168
90. Madeo F, Herker E, Maldener C, Wissig S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU. A caspase-related protease regulates apoptosis in yeast. Mol Cell. 2002; 9:911–17. doi: 10.1016/S1097-2765(02)00501-4
91. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol. 2004; 166:1055–67. doi: 10.1083/jcb.200404002
92. Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissig S, Büttner S, Fehr M, Sigrist S, Madeo F. Chronological aging leads to apoptosis in yeast. J Cell Biol. 2004; 164:501–07. doi: 10.1083/jcb.200310014
93. Wissig S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich KU, Manns J, Candé C, et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol. 2004; 166:969–74. doi: 10.1083/jcb.20040138
94. Mazzoni C, Herker E, Palermo V, Jungwirth H, Eisenberg T, Madeo F, Falcone C. Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep. 2005; 6:1076–81. doi: 10.1038/sj.embor.7400514
95. Allen C, Büttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol. 2006; 174:89–100. doi: 10.1083/jcb.200604072
96. Li W, Sun L, Liang Q, Wang J, Mo W, Zhou B. Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell. 2006; 17:1802–11. doi: 10.1091/mbc.E05-04-0333
97. Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollosner M, Fröhlich KU, Sigrist S, Madeo F. Endonuclease G regulates budding yeast life and death. Mol Cell. 2007; 25:233–46. doi: 10.1016/j.molcel.2006.12.021
98. Fabrizio P, Longo VD. Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta. 2008; 1783:1280–85. doi: 10.1016/j.bbamcr.2008.03.017
99. Goldberg AA, Bourque SD, Kyryakov P, Gregg C, Boukh-Viner T, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Cyr D, Milijevic S, Titorenko VI. Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp Gerontol. 2009; 44:555–71. doi: 10.1016/j.exger.2009.06.001
100. Burstein MT, Kyryakov P, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Leonov A, Levy S, Noohi F, Titorenko VI. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Cell Cycle. 2012; 11:3443–62. doi: 10.4161/cc.21754
101. Sheibani S, Richard VR, Beach A, Leonov A, Feldman R, Mattie S, Khelghatybana L, Piao A, Greenwood M, Vali H, Titorenko VI. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from “liponecrosis”, a previously unknown form of programmed cell death. Cell Cycle. 2014; 13:138–47. doi: 10.4161/cc.26885
102. Richard VR, Beach A, Piao A, Leonov A, Feldman R, Burstein MT, Kyryakov P, Gomez-Perez A, Arlia-Ciomm A, Baptista S, Campbell C, Goncharov D, Pannu S, et al. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle. 2014; 13:3707–26. doi: 10.4161/15384101.2014.965003
103. Arlia-Ciomm A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget. 2016; 7:5204–25. 10.18632/oncotarget.6440
104. Goldberg AA, Kyryakov P, Bourque SD, Titorenko VI. Xenohormetic, hormetic and cytostatic selective forces driving longevity at the ecosystemic level. Aging (Albany NY). 2010; 2:461–70. doi: 10.18632/aging.100186
105. Calabrese EJ, Mattson MP. Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal. 2011; 5:25–38. doi: 10.1007/s12079-011-0119-1
106. Burstein MT, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Goldberg AA, Kyryakov P, Bourque SD, Glebov A, Titorenko VI. Interspecies chemical signals released into the environment may create xenohormetic, hormetic and cytostatic selective...
forces that drive the ecosystemic evolution of longevity regulation mechanisms. Dose Response. 2012; 10:75–82. doi: 10.2203/dose-response.11-011.

107. Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2012; 1822:753–83. doi: 10.1016/j.bbadis.2011.11.002

108. Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle. 2014; 13:3336–49. doi: 10.4161/15384101.2014.965063

109. Lutchman V, Medkour Y, Samson E, Arlia-Ciommo A, Dakik P, Cortes B, Feldman R, Mohtashami S, McAuley M, Chancharoen M, Rukundo B, Simard É, Titorenko VI. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget. 2016; 7:16542–66.