Screening of plant collection of Cibodas Botanic Gardens, Indonesia with anticancer properties

RISHA AMILIA PRATIWΙ*, YATI NURLAENΙ**

Cibodas Botanic Gardens, Research Center for Plant Conservation and Botanical Garden, Indonesian Institute of Sciences. Jl. Kebun Raya Cibodas, Sindanglaya, Cipanas, Cianjur 43253, West Java, Indonesia Tel./fax.: +62 263 512233, *email: risha.amilia.pratiwi@lipi.go.id, **yati.nurlaeni@lipi.go.id

Abstract. Pratiwi RA, Nurlaeni Y. 2020. Screening of plant collection of Cibodas Botanic Gardens, Indonesia with anticancer properties. Biodiversitas 21: 5186-5229. Cancer is a life-threatening disease worldwide. One approach to developing effective treatments in fighting cancerous cells is to obtain anticancer drug candidates from natural resources, such as plants. This study aimed to inventory and categorize plant collections in Cibodas Botanic Gardens (CBG), West Java, Indonesia that has anticancer properties in a detailed and comprehensive manner. Literature research was conducted in international scientific databases using several keywords expressing anticancer properties to produce list of plant species potential for anticancer. The results of this research were then cross-checked with the plant collection database of CBG. List of plants exhibits anticancer activities were then categorized based on the IC50 values (an indicator of cytotoxicity). Our result showed 291 species from 90 families of CBG plant collection harbor anticancer properties. Among them, 93, 100, 36, and 62 species have IC50 values under Class I (strong), Class II (moderate), Class III (inactive), and Class IV (insufficient IC50 data), respectively. The families with the highest number of potential anticancer plants are Lauraceae, Leguminosae, Meliaceae, Myrtaceae, Moraceae, Cupressaceae, Asparagaceae, Euphorbiaceae, Compositae, Clusiaceae, Lamiaceae, Apocynaceae, Adoxaceae, Amaryllidaceae, and Elaeocarpaceae. Species that have strong anticancer activities include Acacia farnesiana, Aglaia edulis, A. elliptica, A. silvestris, Artocarpus elasticus, Bauhinia strychnifolia, Buxus microphylla, Calophyllum soulattri, Cerbera manghas, Cocculus orbiculatus, Cryptocarya chinensis, C. komishi, C. laevigata, Dalbergia paviliora, Diospyros discolor, Erythrina abyssinica, Etingera elatior, Ficus fistulosus, Garcinia x mangostana, Hemerocallis fulva, Jatropha gossypifolia, Panax ginseng, Podocarpus macrophyllus, Psidium cattleianum, Sansevieria ehrenbergii, Taccia chantrieri, Toona sinensis, Viburnum odoratissimum, and V. Sambucinum. Even Serenoa repens and Taxus sumatrana contain active compounds that have been commercialized as anticancer drugs. The data resulted from this study can serve as baseline information for further research in drug discovery and development for anticancer treatments using living plant specimens collected in CBG. CBG has a great prospect of medicinal plants that require further studies for formulating anticancer drug as an alternative natural resource.

Keywords: Anticancer property, Cibodas Botanic Gardens, inhibitory concentration, plant metabolite secondary

INTRODUCTION

Cancer is the second leading cause of mortality globally after cardiovascular diseases. The International Agency for Research on Cancer (IARC) (2018) estimated the global cancer burden has risen to 18.1 million new cases and 9.6 million deaths in 2018. Indonesian Ministry of Health research data (Riskesdas) (2018) shows that the prevalence of cancer in Indonesia has increased from 1.4 to 1.8 cases per thousand of population in 2015 and 2018. By 2030, it is projected that there will be 26 million new cancer cases with 17 million deaths per year (Thun et al. 2010).

Considering cancer as a life-threatening disease worldwide, there is a continuing demand for developing treatments that are effective in fighting cancerous cells with less harmful than existing therapies. Solid tumors can be removed surgically, or by radiation treatment and chemotherapy that painful and induce toxic effects to patients. Drugs can be used as treatment for certain types of cancer, such as biological drugs, Herceptin, against breast cancer. However, the drug is very costly while the effectiveness is limited to certain kinds of tumors. Furthermore, it was found in many cases that the tumor can develop resistance to various drugs. Covering the problems, one approach is to obtain the anticancer drug candidates from secondary metabolite of natural resources, such as plants (Fridlender et al. 2015).

Utilizing plant as new drug resources in cancer treatment provides many advantages, including it is more cost-effective than developing synthetic compounds, faster discovery of new drugs, offering a holistic approach that complements the “silver bullets” of modern drug, and synergistic effects between the various compounds of the herbs give promising better healing effects overall (Fridlender et al. 2015). The natural products are also expected to build co-evolution against cancer cells so that the incidence of cancer drug resistance is expected to be minimal (Wang et al. 2015).

More than 3000 species of plant over the world have been reported to have anticancer properties (Solowey et al. 2014). The promising sources of anticancer properties from plants belong to various groups of compound, such as alkaloids, diterpenes, diterpenoquinone, purine-based compounds, lactonic sesquiterpene, peptides, cyclic depsipeptide, proteins, macrocyclic polyethers, and so on (Lichota et al. 2018). In searching for anticancer properties...
in plant, there is a long journey involving several steps that generally need to go through. Initially, plant-derived substances are discovered by botanists or ethnobotanists, ethnopharmacologists, or plant ecologists. Then, phytochemists identify the potential therapeutic activities through the isolation of active compounds and biological screening assays. Finally, the mode of action and relevant molecular targets are proven through molecular biology research (Lichota et al. 2018).

A complex set of ethnobotanical methods such as initial investigations, sample collections, and detailed records of the use a society makes of plants has been the starting point for many successful novel drug discovery projects. Ethnobotanists make information about this local knowledge and cultural practices available to bioscientists. The discovery of the proven anticancer drug Vincristine is an interesting history to reflect on it. Catharanthus roseus or known as Madagascar periwinkle has, since a long time ago, been used to treat various diseases traditionally, from minor symptoms such as headache to diabetes remedy. In 1960, Robert Noble and Charles Beer have isolated alkaloid vincristine from these ornamental plants. Further assay revealed that these ayurvedic plants exhibit a cytotoxic effect by microtubule dynamic inhibition, causing the mitotic spindle damage. Consequently, it inhibits mitosis and leading cancer cells to apoptosis (Lichota et al. 2018).

Cibodas Botanic Gardens (CBG) located in West Java has plant collection of 237 families, consisting of 949 genera, 1978 species, and 11428 plant living specimens (Registration and Collection Unit of CBG 2020; unpublished data). Such species have the potentials to be developed for various uses, such as fruit crops (Normasiwi and Surya 2016), sources of timber (Wahyuni et al. 2008), exudates (Muhammad and Nurlaeni 2018), natural dyes (Effeni et al. 2017), ornamental plants (Putri et al. 2019, unpublished data), and medicinal plants (Nikmatullah et al. 2019). Several medicinal plants are known to have potential properties as anticancer drug, including Taxus sumatrana which contains paclitaxel (Muhaimin 2016); Mentha x piperita and Rotheca serrata (Lamiaceae) (Handayani 2015); Frullania sp., Heteroscyphus argutus, Pogonatum cirratum, and Marchantia paleacea (Bryophyte) (Nadighfah et al. 2018); Alnus japonica, Garcinia parviflora, Gnetum gnemonoides, Mangifera edulis, Syzygium cf. discophorum, and Talinum paniculatum from Medicinal Thematic Garden (Nikmatullah et al. 2019). However, until 2019 there has been no comprehensive exploration of the CBG collection that demonstrates anticancer properties.

This research was conducted to inventory and categorize plant collections in CBG that harbor anticancer properties in a detailed and comprehensive manner. The data resulted from this study is expected to serve as baseline information for further research to assess plant secondary metabolites for anticancer treatments, including phytochemical profiling and extraction method, in vitro assay to cancer cell models, in vivo assay to animal models, in silico assay as treatment simulation, or plant tissue culture for anticancer metabolite production.

MATERIALS AND METHODS

Study area

This research conducted in Cibodas Botanic Gardens (CBG) located at Cianjur District, West Java, Indonesia. CBG is a botanical garden managed by the Indonesian Institute of Sciences (LIPI). Besides having an ex-situ conservation role, CBG also has the function of research and utilization of tropical floras, especially wet plateau plants. Data investigation regarding the potential of plants cytotoxicity against cancer was carried out through online reference searches.

** Procedures**

In order to collect information about plant cytotoxicity against cancer, we used keywords: "plant cytotoxicity", "herbs for cancer", "phytotoxicity", "plant-derived chemoprevention", "medicinal plant for cancer", "anticancer natural drug", "plants secondary metabolite for anticancer", "plants with anticancer property", and "IC50 of plant metabolite" in international databases, such as ScienceDirect, PubMed, and Scopus, and database of natural products and fractional extracts for cancer treatment that has been established by previous researchers, such as NPACT (Mangal et al. 2013) and NPCARE (Choi et al. 2017). Searches were limited to articles in English and Indonesian language with the research interval period from 1990 to 2020. The scientific name of the plant species mentioned in the references were recorded and verified for their existence in the CBG through the garden collection data. The compilation of plant database of CBG with anticancer properties was developed by completing the following data: family of plant, scientific name of plant species, vernacular name, cancer cell line, extraction method, IC50, reference, anticancer activity category, plant origin, conservation status, and locality at CBG. IC50 (50 percent Inhibitory Concentration) selected as the cytotoxic parameter in in vitro assay; as the initial procedure for screening anticancer drug candidates.

Data analysis

Potential anticancer plants were classified into four categories based on National Cancer Institute guidelines: Class I for plants with strong activity against cancer cell line, Class II for moderate activity, Class III for inactive and Class IV for plants with insufficient IC50 data but mentioned has anticancer compound in literature (Jabir et al. 2009, Alabsi et al. 2016). Class I was divided into four subclasses to observe the selectivity index: LA for plants that their pure extract (sub-fraction method) have IC50 ≤ 4 µg/ml against at least three cancer line cells, LB for pure extracts that have IC50 ≤ 4 µg/ml against one or two cancer line cell(s), LC for plants that their crude extract has IC50 ≤ 10 µg/ml against at least three cancer line cells, and LD for crude extracts that have IC50 ≤ 10 µg/ml against one or two cancer line cell(s). Then, Class II is for plants that pure or crude extract that has 10 > IC50 > 100 µg/ml and class III for IC50 ≥ 100 µg/ml. Plant species belonged to Class LA and not listed as threatened species according to The IUCN
Red List of Threatened Species™ assessment were recommended for further studies.

RESULTS AND DISCUSSION

Family distribution of plant with anticancer properties

We found 90 families that consisted of 291 species of the collection of CBG that have anticancer properties according to the literature research we conducted (for detailed information, see Table 3 in appendix section). The families with the largest number of species are as follows: Lauraceae (21 species), Leguminosae (20 species), Meliaceae (17 species), Myrtaceae (13 species), Moraceae (13 species), Cupressaceae (11 species), Asparagaceae (10 species), Euphorbiaceae (10 species), Compositae (9 species), Clusiaceae (8 species), Lamiaceae (8 species), Apocynaceae (7 species), Adoxaceae (6 species), Amaryllidaceae (6 species), and Elaeocarpaceae (6 species). The other 75 families consisted of less than five species of plant per family. The distribution of plant families that have anticancer properties from CBG is shown in Figure 1.

Plant categories based on their cytotoxic activities (IC₅₀)

Our result showed that based on cytotoxic activities (IC₅₀), plants belonged to Class I, II, III, and IV consisted of 93, 100, 36, and 62 species, respectively, or 32%, 34%, 13%, and 21% in percentage, respectively. Class I is divided into four subclasses: 30 species as I.A, 27 species as I.B, 12 species as I.C, and 24 species as I.D. The categories of plants based on their cytotoxicity against cancer cells are displayed in Figure 2 and the species are listed in Table 1.

Discussion

Among plant collection in Cibodas Botanic Garden, Lauraceae is the family consisting of the largest number of species with anticancer potential resources, dominated by the genus Cinnamomum, i.e. C. burmanii, C. camphora, C. cassia, C. iners, C. subvenament, and C. zeylanicum; Cryptocarya, including C. chinensis, C. costata, C. crassinervia, C. konishii, C. laevigata, and C. strictifolia; and Litsea, including L. cubeba, L. elliptica, L. garciae, L. mappacea, and L. monopetala. Actually, CBG still has another species of Cinnamomum collections (i.e. C. sintok, C. heyneanum, C. cultilawan, C. rhynchophyllum, C. javanicum, C. porrectum, and C. eymae); Cryptocarya (C. affinis, C. ferea, C. densilora, C. gigantocarpa, and C. vulgaris); and Litsea (L. ferruginea, L. lanceolata, L. grandis, L. javanica, L. tomentosa, L. cassiaefolia, L. firma, L. oppositifolia, L. noronhae, L. umbellata, L. deccanensis, L. insignis, L. grisea, L. castanea, L. accendetoides, L. deccanensis, L. leefeana, L. ochraceae, and L. diversifolia).

Considering seven species of Cinnamomum, six species of Cryptocarya, and five species of Litsea have the potency as anticancer with strong and moderate categories, it is possible that other species within these families have similar properties. However, there are no references yet that tested the anticancer potency from these species. Shen et al. (2014) stated that Lauraceae is a potential resource for nontoxic compounds that activate the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway. Nrf2 plays a key role in binding with ARE sequences then activates the transcription of many cytoprotective genes. Nrf2/ARE pathway induction has been recognized as strategy for blocking or slowing cancer premalignant tumors, so-called chemoprevention as defense mechanism (Shen et al. 2014).

Figure 1. The distribution of plant families that have anticancer properties from CBG collection

Figure 2. Plant categories based on their IC₅₀
Table 1. Plant categories based on their cytotoxicity activities (IC₅₀)
Plant categories
I
Acacia farnesiana
Aglaia odorata
Aglaia eliptica
Artocarpus elasticus
Bauhinia variegata
Buxus microphylla
Calophyllum soulattri
Cocculus orbiculatus
Cryptocarya chinensis
Cryptocarya konishii
Cryptocarya laevigata
Dalbergia parviflora
Diospyros discolor
Erythrina abyssinica
Eltingera elatior
Ficus fistulosa
Gardenia celebica
Hernecollas falua
Jatropha gossypifolia
Panax ginseng
Podocarpus macrophyllus
Psidium cattleianum
Sansevieria ehrenbergii
Tacca chantrieri
Toona sinensis
Viburum odoratissimum
Viburum sambucinum
L.B
Acacia tenifolia
Aglaia argentea
Aglaia forbesii
Artocarpus lancifolius
Campotechea acuminata
Cananga odorata
Chisochetos patens
Cinnamomum cassia
Cinnamomum subavenium
Cinnamomum verum
Clausena excavata
Cryptocarya costata
Cryptomeria japonica
Dichroa febrifuga
Eriobotyra japonica
Euphorbia pulcherrima
Garcinia lateriflora
Hernandia nymphaefolia
Hibiscus syriacus
Hypericum aralum
Macaranga tanarius
Morus alba
Ochrosia elliptica
Olea europea
Pityrogramma calomelanos
Taxus sumatrana
Ziziphus jujuba
I.C
Alstonia scholaris
Crinum zeylanicum
Dillenia philippinensis
Enterolobium contortisiliquum
Glochidion zeylanicum
Goniolanthus macrophyllus
Hamelia patens
Juniperus virginiana
Melastoma malabathricum
Piper aduncum
Syrhoplocos cochinchenensis
Tabebuia hypoleuca

I.D
Agave americana
Agave salmiana
Caesalpinia sappan
Callistemon citrinus
Coix lacryma-jobi
Cola acuminata
Cola nitida
Crinum macowanii
Croton argyratus
Diplazium esculentum
Eucomis autumnalis
Ficus septica
Garcinia dulcis
Juniperus repens
Lobelia laxiflora
Melaleuca alternifolia
Schima wallichii
Schinus terebinthifolius
Schinus sonchifolius
Juniperus procera
Tabernaemontana macrocarpa
Thujopsis dolabrata
Tithonia diversifolia

Note: Class I for plants with strong activity against cancer cell line, Class II for moderate activity, Class III for inactive and Class IV for plants with insufficient IC50 data but mentioned has抗癌 cancer compound in literature (Jabit et al. 2009, Alabsi et al. 2016)

From Leguminosae family, several genera that have anticancer properties include Acacia, Bauhinia, Caesalpinia, Dalbergia, Derris, Enterolobium, Erythrina, Flemingia, Gleditsia, Pterocarpus, and Sophora. Meliaceae has Aglaia, Chisocheton, Sandoricum, and Toona. Even there are eleven species of Aglaia plant with anticancer properties, making it the genus with the largest number of species compared to the others. Several major families and other dominant genera are Myrtaceae (Callistemon, Eucalyptus, Eugenia, Decaspermum, Melaleuca, Psidium, Rhodanemia, and Syzygium); Moraceae (Artocarpus, Ficus, and Morus); Cupressaceae (Cryptomeria, Cupressus, Juniperus, Platycladus, Thuja, and Thuja); Asparagaceae (Agave, Dracaena, Eucomis, Sansevieria, and Yucca); and Euphorbiaceae (Europhorbia, Acalypha, Aleurites, Croton, Jatropha, and Macaranga). Several species of Ficus from Gunung Gede Pangrango National Park, which is located near CBG, have been observed as anticancer sources, such as F. laevigata, F. lepicerca, F. obscura, F. ribes, and F. variegata (Arbiastutie et al. 2017). The majority of plants with anticancer potentials in CBG were classified as having strong and moderate cytotoxic activities (Class I and II), with proportion of 32% and 34%, respectively. Even paclitaxel from Taxus sumatrana is already at the commercialization stage, sold under the brand name Taxol® since 1993 (Seca et al. 2017) and the extract from Serenoa repens has been formulated as Permixon®, a commercial drug for benign prostatic hyperplasia (BPH) treatment (Habib et al. 2005; Zhou et al. 2015). Our findings suggest that plant collection in CBG has a great potential to be further explored for natural-based drug discovery and development, particularly for anticancer. This is in line with the history of early development of CBG which was aimed for the domestication of medicinal plants, most notably quinine. Similar to botanical gardens in the world, such as Kew, Singapore, Peradeniya, Calcutta, and Sidney, their initial development was driven by the goal of domestication of industrial and medicinal plants such as rubber, tea, coffee, and quinine (Smith 2019).

The listed species in this study have a history of successful isolation of pure active compounds with strong activity against more than three model cancer cell lines (Class I.A) which are dominated by Aglaia, Cryptocarya, and Viburnum. The active rocalagol compound isolated
from various Aglaia was known to produce very high cytotoxicity compared to the positive control paclitaxel and camptothecin (Huspa 2009). Cryptocarya sinensis not only actively inhibits cancer cells but also the active compound dehydrophenanthroindolizidine contains a significant anti-HIV activity (T.S. Wu et al. 2012). C. laevigata contains the active compound (-) - neocarvamine which is also toxic to multidrug-resistant sublines through the double-strand breaks DNA induction mechanism (Suzuki et al. 2018).

Several plant secondary metabolites that have been widely studied as anticancer compounds include vincristine, viscosotoxin, paclitaxel, camptothecin, combrestatin, podophyllotoxin, geniposide, colchicine, artemesine, homoharringtonine, salicine, ellipiticine, roscovitine, maytanserine, thapsicinc acid, brucceantin, flavonols, crocetin, gingerol, lycopene, and ingenol mebutate (Seca et al. 2017; Iqbal et al. 2017; Lichota et al. 2018). Plants in CBG that contain these compounds include Taxus sumatrana (paclitaxel), Camptotetcha acuminate (camptotectin), Juniperus procumbens and Hernandia nymphaeifolia (podophyllotoxin), Gardenia jasminoides (geniposide or genipin), Buddleja davidii (colchicine), Salvia (salwine), Ochrosia elliptica (ellipticine), Dillenia serrata, Acacia farnesiana, and Eriobotrya japonica (betulinic acid), Capsicum annuum (capsaicin), Thuya occidentalis (flavonol), and Euphorbiaceae (ingenol mebutate). Combined sp. at CBG as a potential source of combrestatin, is not included yet in the database because it is not completely taxonomically identified, while Artemisia annua (artesunate) is not yet a CBG collection despite the related research was initiated at CBG's Medicinal Thematic Garden (unpublished data). In CBG, there are several Berberis species, however, there has been no research on the berberine content which has the potential as an anticancer. Unfortunately, there is no Catharanthus roseus (formerly Vinca rosea) that its vincristine isolate is approved for clinical purposes as a cancer treatment, Viscum album (source of viscotoxin), Cephalotaxus sinensis (roscovitine), Maytenus serrata (maytansine), Thapsia garganica (thapsigargin), Brucceantin (brucceantin), Crocus sativus or known as saffron (crocetin), Zingiber officinalis (gingerol) but another Zingiber was found at CBG; tomatoes, watermelons, and red carrots (lycopen). It could be a suggestion for CBG to collect these plants.

Some plants of CBG collection contain anticancer compounds, however, the extracts of these plants have not been tested against cancer line. These plants include Viburnum suspensum (contains vibsain), Agapanthus africanus (isoliquiritigenin), Hymenocalis speciosa (narciclasine (lycoricidinol) and panratcinatn), Aristolochia trilobata (isociminal and rubrabxanthone), Garcinia latissima (kaemferol), Achillea ptarmica (pellitorine), Alangium javanicum (javanicides and alangicides), Dillenia serrata (koetjapic acid and betulinic acid), Shorea platyclados (resveratrol), Diospyros celebica (plumbagin), Elaeocarpus petiolatus (cucurbitin), E. serratus (farnesol), E. sylvestris (brevifolin), Quercus acuta (chlorogenic acid), Pterocarya stenoptera (pterocarmin A), Mentha canadensis (rosmarinic acid and cathecin), Salvia splendens (quercetin), Phylllostachys edulis (tricin and 7-O-methyl-tricin), Ziziphus oenopolia (betulinic acid), Coffea canephora (kahweol, cafestol, 16-O-methylcafeisol), and Aloe ferox (aloe emodine, emodine, aloin). It is therefore suggested to further exploration of their anticancer activities.

Nature supply a huge number of compounds that provide new hope for medical uses, including cancer treatment. The trade-in plant-derived drugs generates astonishing economic value, which is estimated of US $ 100 billion at current state and still grows to US $ 5 trillion by 2050 (Greenwell et al. 2015). However, the availability of anticancer compounds in nature is limited and technically difficult to be isolated, makes it difficult to meet the demand of pharmaceutical industries. The solubility of natural anticancer compounds, such as paclitaxel and curcumin, is also low, makes it impractical for human cells to absorb. In the use of natural materials to become effective anticancer compounds, it is necessary to modify, formulate and manufacture semisynthetic or synthetic analogs, as well as a tissue culture approach for the massive production of secondary metabolites (Fridlender et al. 2015). Thanks to the advances in plant biotechnology, pharmacology, as well as nanotechnology that makes natural resource research for medicinal sources accelerating (Seca et al. 2017).

On the other hand, the exploitation of plant-derived drugs risks their existence in the wild in the long term, therefore proper management conservation strategies to fulfill demand for medicinal plants with the assurance of their sustainability becomes necessity (Seca et al. 2017). For example, Taxus sumatrana, Shorea javanica, Shorea platyclados, and Pterocarpus indicus are classified as endangered (EN) category of IUCN Red List. Dracaena draco, Kulanchoe beharenensis, Diospyros celebica, Aglata angustifolia, and Pinus merkusii are categorized as vulnerable (VU). Whereas T. sumatrana is a strong category of anticancer sources, A. angustifolia, K. beharenensis, and S. javanica have moderate anticancer properties. Instead of encouraging the massive utilization of them, better to find other resources because there are still many species listed here with strong anticancer potency but excluded from threatened plants.

It should be remembered that the development of natural-based anticancer drugs is a long, complicated, expensive, and uncertain process to be successful. The development of an anticancer drug is started from in vitro, in vivo, to clinical testing and it takes a long time. It is clear that in vitro testing is a preliminary stage only with all its limitations. However, there is no clinical trial without going through the preliminary testing stages. This study is limited by the categorization based on cytotoxicity to particular cancer cell lines, no discussed selectivity index among cell lines. Therefore we require further investigation to compare its activity in normal cells as an important aspect to be considered in drug formulation.
ACKNOWLEDGEMENTS

The authors thank all researchers and staff of registration and collection unit of the CBG for their kindness and help during the research.

REFERENCES

Abd Wahab W, Adzmi AN. 2017. The investigation of cytotoxic effect of Cinnamomum zeylanicum extracts on human breast cancer cell line (MCF7). Sci Heritage J 1 (2): 23-28.

Abdel-Mageed WM, Al-Wahaibi LH, Goudy YG, Al-Saleem MSM, El-Gamal AA, Basudan OA, Alsaid MS, Al-Massarani SM, Abdel-Kader MS. 2019. Contortiolisides H-M: Triterpenoid saponins from Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 139.

Abebe W. 2016. An overview of Ethiopian traditional medicinal plants used for cancer treatment. Eur J Med Plants 14 (4): 1-16.

Abida P, De Britto AJ, Antoney J, Raj TLS. 2016. Evaluation of in vitro antitumor activity of Symbiosis cochinchinensis (Lour.): S. Moore bark. Int J Herb Med Int 2015: 1-10.

Abou-Elella F, Morad R. 2015. Anticancer and antioxidant potential of ethanolic extracts of Phoenix dactylifera, Musa acuminata and Cucurbita maxima. Res J Pharm Biol Chem Sci 6 (1): 710-720.

Abu Bakar MF, Ahmad LN, Suleiman M, Rahmat A, Isia A. 2015. Garcinia dulcis fruit induced cytotoxicity and apoptosis in HepG2 liver cancer cell line. BioMed Res Int 2015: 1-8.

Abu-Dahab R, Kasabri V, Afifi FU. 2014. Evaluation of the volatilie oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae) on breast cancer cell line models. Rec Nat Prod 8 (2): 136-147.

Adnan M. 2019. Bioactive potential of essential oil extracted from the leaves of Eucalyptus globulus (Myrtaceae). J Pharmacog PhytoChem 8 (1): 213-216.

Afonso AF, Pereira OR, Fernandes ÁSF, Calhelha RC, Silva AMS, Alrokayan SA, Abu Bakar MF, Ahmad LN, Aisha AFA, Alrokayan SA, Abu Bakar MF, Ahmad LN, Aisha AFA, Alrokayan SA, Abu Bakar MF, Ahmad LN, Aisha AFA, Alrokayan SA, Abu Bakar MF, Ahmad LN. 2017. The investigation of cytotoxic activity of the leaf and potential of 14 atrophone an isolated compound from Dracaena cinnabari intitumor, anticancer and bioactive effects on T-47D cells correlated with apoptotic induction. Indones J Cancer Chemoprevention 4 (1): 450-456.

Aqil F, Gupta A, Munagala R, Jayapracak J, Kauras H, Sharma R, Singh IP, Gupta RC. 2012. Antioxidant and anti proliferative activities of anthocyanins/ellagittannin-enriched extracts from Syzygium cumini L. (Spanunnus, 'the Indian Blackberry'). Nutr Cancer 64 (3): 428-438.

Arbusutiy E. 2017. The Potential of understorey plants from Gunung Gede Pangrango National Park (West Java, Indonesia) as cervix anticancer agents. Biodiversitas 18 (1): 109-115.

Arbusutiy E. 2017. The Potential of understorey plants from Gunung Gede Pangrango National Park (West Java, Indonesia) as cervix anticancer agents. Biodiversitas 18 (1): 109-115.

Areas-Mallea AE. 1998. Tabebuia hypoleuca. The IUCN Red List of Threatened Species

Arullapan S, Muhamad S, Zakaria Z. Cytotoxic activity of the leaf and stem extracts of Hibiscus rosa-sinensis (Malvaceae) against leukemic cell line (K-562). Trop J Pharm Res 12 (5): 743-747.

Asep S, Henig G, Gema PS, Gigg G, Chicy Widya M, Sahdjin S. 2017. Anticancer activity of jatropha an isolated compound from Jatropha gossypifolia plant against hepatocellular cancer cell HepG2 1886. Biomed Pharmacol J 10 (02): 667-673.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.

Ashmawy N, Ashour M, Wink M, El-Kholy T. 2016. Polyphenols fro Enterolobium contortisiliquum and their biological activity. Ind Crops Prod 48: 374-379.
Barstow M. 2018. *Pterocarpus indicus*. The IUCN Red List of Threatened Species Barstow, M. 2018. *Sandoricum koetjape*. The IUCN Red List of Threatened Species.

Barstow M. 2018. *Toona ciliata*. The IUCN Red List of Threatened Species.

Barstow M. 2018. *Toona suneiri*. The IUCN Red List of Threatened Species. Barstow, M. 2019. *Toona sinensis*. The IUCN Red List of Threatened Species.

Bárcena CJ. 2018. *Cestrum nocturnum* leaf extracts for cancer chemotherapy. [Thesis]. University of.

Bhuyan DJ, Vuong QV, Bond DR, Chalmers AC, Bowyer MC, Scarlett CJ. 2018. *Eucalyptus microcarpa* leaf extract derived HPLC-fraction reduces the viability of MIA PaCa-2 cells by inducing apoptosis and arresting cell cycle. BioMed Pharmacotherapy 105 (2018): 449-460.

Bilz M. 2013. *Achillea ptarmica*. The IUCN Red List of Threatened Species Bilz, M. 2020. *Sambucus nigra*. The IUCN Red List of Threatened Species.

Bisi-Tezino MA, Obi CL, Hattori T, Oshima Y, Li S, Kambizi L, Elloff JN, Vasaikar SD. 2011. Evaluation of the antibacterial and antifungal activities of some South African medicinal plants. BMC Complement Altern Med 11 (1): 14-18.

Biswas SK, Warrington RJ, Waller DL, Kuo C, Kell PR, Fuller GC. 2011. Evaluation of antifungal activity of *Melaleuca alternifolia* (eucalyptus) on colon cancer cell line (HT29) - an in vitro study. J Adv Clin Res Insights 5 (4): 99-103.

Cahyana AH, Ardiyansah B. 2016. Antioxidative and cytotoxic effects of prenylated stilbene derivative-rich melinjo (*Gnetum gnemon L.*) fruit rind. AIP Conference Proceedings. Int Symposium on Current Progress in Mathematics and Sci.

Cai X-H, Wang Y-Y, Zhao P-J, Li Y, Luo X-D. 2010. Dolabellane diterpenoids from *Aglaia odorata*. Phytochem. 71 (8-9): 1020-1024.

Canteiro C, Lucas E. 2019. *Psidium guajava*. The IUCN Red List of Threatened Species.

Carter G, Farjon A. 2013. *Thuja standishii*. The IUCN Red List of Threatened Species Carter, G. 2013. *Thujaopsis dolabrata*. The IUCN Red List of Threatened Species.

Castañeda DM, Pombo LM, Urueña CP, Hernandez JF, Fiorentino S. 2012. A galantamin-rich fraction from *Caesalpinia spinosa* (Molina) Rolfe displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line. BMC Comp Altern Med 12: 38-47.

Chadbourn H, Davis AP. 2017. *Coffee canephora*. The IUCN Red List of Threatened Species.

Chadbourn H. 2012. *Bauhinia variegata*. The IUCN Red List of Threatened Species.

Chadbourn H. 2012. *Dalbergia papyrifera*. The IUCN Red List of Threatened Species.

Chadchouda H, Barreira JCM, Fernández-Ruíz V, Morales P, Calhelca RC, Flammí G, Sokovic M, Ferreira ICFR, Achour L. 2016. Bioactivity, proximate, mineral and volatile profiles along the flowering stages of *Opuntia microdasys* (Lemn): defining potential applications. Food Function 7 (3): 1458-1467.

Chanchal DK, Alok S, Rashii S, Bijniauxi RK, Yadav RD, Sabharwal M. 2017. Various medicinal plants used in the treatment of anticancer activity. Int J Pharm Sci Res 9 (4): 1424-1429.

Chang M-Y, Shieh D-E, Chen C-C, Yeh C-S, Dong H-P. 2015. *Linalool* induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CKDIs. Int J Mol Sci 16 (12): 28169-28179.

Cheek M. & Lawrence P. 2019. *Cola acuminata*. The IUCN Red List of Threatened Species.

Cheek M. & Lawrence P. 2019. *Cola nitida*. The IUCN Red List of Threatened Species.

Cheenpracha S, Karalai C, Rat-A-Pa Y, Ponglimamon C, Chanthrappoma K. 2004. New cytotoxic cardenolide glycoside from the seeds of *Cerbera manghas*. Chem Pharm Bull 52 (8): 1023-1025.

Chen C-C, Wu J-H, Yang N-S, Chang Y-J, Kuo C-C, Wang S-Y, Kao Y-H. 2010. Cytotoxic C 3 terpenoid cryptotrione from the bark of *Cryptomeria japonica*. Organic Lett 12 (12): 2786-2789.

Chen G, Xue J, Xu S-X, Zhang R-Q. 2007. Chemical constituents of the leaves of *Diospyros kaki* and their cytotoxic effects. J Asian Nat Prod Res 9 (4): 347-353.

Chen L-G, Huang W-T, Lee L-T, Wang C-C. 2009. *Ellagittannins from Terminalia calamansanii* induced apoptosis in HL-60 cells. Toxicology In vitro 23 (4): 603-609.

Cho ES. 2019. Isolation, Structure Elucidation and Cytotoxic Activity of *Cucurbitacin B* from *Elaeocarpus petiolatus* [Thesis]. University of Singapore Malaysian Campus. [Malaysia].

Choi H, Cho SY, Pak HJ, Kim Y, Choi J-Y, Lee YJ, Gong BH, Kang YS, Han T, Choi G, Choi Y, Lee S, Ryoo D, Park K. 2017. NPCARE: database of natural products and fractional extracts for cancer regulation. J Cheminform 9 (2): 1-9.

Choi SE, Kim KH, Kwon JH, Kim SB, Kim HW, Lee MW. 2008. Cytotoxic activities of dihydropyranoids from *Alnus japonica*. Arch Pharm Res 31 (10): 1287-1289.

Chopra MP, Mazumder PM, Sasmal D, Patro SK. 2016. Phytochemical, antioxidant and antimicrobial studies of *Salvia splendens* leaves. J Chem Pharm Res 7 (10): 724-728.
Energy Development Corporation (EDC) 2020. Dillenia philippinensis. The IUCN Red List of Threatened Species
Evangelene VK, Karthiga R. 2018. Chemo and bioinformatics resources for in silico drug discovery from Acalypha hispida beyond their traditional use. World Wide J Multidisciplinary Res Dev 4 (4): 120-129
Fadeyi SA, Fadeyi OO, Adejumo AA, Okoro C, Myles EL. 2013. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med 13 (1): 79-87
Falodun A, Engel N, Kragl U, Nebe B, Langer P. 2013. Novel anticancer alkene lactone from Persea americana. Pharm Res 31 (6): 700-706
Fan C, Jin H, Wu L, Zhang Y, Ye RD, Zhang W, Zhang Y. 2017. An exploration of traditional Chinese medicinal plants with anti-inflammatory activities. Evidence-Based Complement Altern Med (2017): 1-10
Farjon A, Carter G. 2013. Junipers procumbens. The IUCN Red List of Threatened Species.
Farjon A. 2013. Cupressus sempervirens. The IUCN Red List of Threatened Species.
Farjon A. 2013. Juniperus chinensis. The IUCN Red List of Threatened Species.
Farjon A. 2013. Juniperus procera. The IUCN Red List of Threatened Species.
Farjon A. 2013. Juniperus virginiana. The IUCN Red List of Threatened Species.
Farjon A. 2013. Pinus kesiya. The IUCN Red List of Threatened Species.
Farjon A. 2013. Pinus merkusii. The IUCN Red List of Threatened Species.
Farjon A. 2013. Platycladus orientalis. The IUCN Red List of Threatened Species.
Farjon A. 2013. Podocarpus macrophyllus. The IUCN Red List of Threatened Species.
Farjon A. 2013. Thuja occidentalis. The IUCN Red List of Threatened Species.
Fayad W, El-Hallouvy SM, Meky NH, EL-Menshawi BS, Wassel GM, Hasabo AA. 2015. Evaluation of anticancer activity of some Egyptian plants showed free radical scavenging activity. Int J Pharm Tech Res 8 (3): 387-393
Fayed SA. 2015. Chemical composition, antioxidant, anticancer properties and toxicity evaluation of leaf essential oil of Cupressus sempervirens. Notulae Bot Horti Agrobot Cluj-Napoca 43 (2): 320-326
Fayemi PO, Ozturk I, Ozcan S, Y a, C, Uwaya GE, Fayemi OE, Yetim H. 2019. Bioactivities of plants shiitake: biological and chemical investigation of certain Yucca species. Nat Prod Res 32 (21): 2617-2620
Fensham R, Collingwood T, Laffineur B. 2019. Eucalyptus globulus. The IUCN Red List of Threatened Species
Fensham R, Collingwood T, Laffineur B. 2019. Eucalyptus microcyclus. The IUCN Red List of Threatened Species.
Fensham R, Laffineur B, Collingwood T. 2019. Eucalyptus robusta. The IUCN Red List of Threatened Species.
Fort RS, Barneh JMT, Douron J, Colazzo M, Aguirre-Crespo FJ, Duhagon MA, Álvarez G. 2018. Isolation and structural characterization of bioactive molecules on prostate cancer from Mayan traditional medicinal plants. Pharmaceuticals 11:78
Fridlander M, Kapulnik Y, Koltai H. 2015. Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci 6: 799-808
Fu M, Qiu SX, Xu Y, Wu J, Chen Y, Wu Y, Xiao G. 2013. A new saponine from the pericarp of Gynura mangostana. Nat Prod Commun. 8 (12): 1733-1734
Fukuyama Y, Minami H, Fuji H, Tajima M. 2002. Triterpenoids from Viburnum suspensum. PhytoChem 60 (8): 765-768
Ganash M. 2019. Cytogenetic toxicity of Juniperus procera extract with silver nanoparticles against carcinoma colon (CaCo-2) cell line in vitro. Int J Pharmacol 15 (5): 576-585
Ganeson S, bin Abdul Jamil MM, Ambar RB, Wahab RA. 2018. Influence of Artocarpus altilis fruit extract on cancer cell. 2018 9th IEEE Control and System Graduate Res. Colloquium (ICSGRC): 240-243
Garcia-Mendoza AJ, Sandoval-Gutierrez D, Hernandez Sandoval L, Puente R, Zambudio S, Gonzalez-Elizondo M, Hernandez-Martinez M. 2019. Agave salmiana. The IUCN Red List of Threatened Species.
García-Mendoza AJ, Sandoval-Gutiérrez D, Hernández Sandoval L, Zamudio S. 2019. Agave americana. The IUCN Red List of Threatened Species.

García-Mendoza AJ, Sandoval-Gutiérrez D, Torres-Garcia L, Linares J. 2019. Agave attenuata. The IUCN Red List of Threatened Species.

Geetha D, Rajagwari M, Jayashree I. 2013. Chemical profiling of Elaeocarpus serratus L. by GC-MS. Asian Pacific J Trop BioMed 3 (12): 985-998.

Gerlach SL, Rathnakumar R, Chakravarty G, Göransson U, Wimley WC, Darwin SP, Mondal D. 2010. Anticancer and chemosensitizing abilities of cyclovioflavin O2 from Viola odorata and psye cyclotides from Psychotria leptothrysa. Biopolymers 94 (5): 61.

Ghalib RM, Hashim R, Sulaiman O, Mehdi SH, Anis Z, Rahman SZ, Ahamed BMK, Abdul Majid AMS. 2011. Phytochemical analysis, cytotoxic activity and constituents–activity relationships of the leaves of Cinnamomum iners (Reinw. Ex Blume-Lauraceae). Nat Prod Res 26 (14): 1222-1228.

Gherabia S, Belattar N, Abdel-Wahhab MA. 2020. HPLC analysis, antioxidant and cytotoxic activity of different extracts of Costus speciosus against HepG-2 cell lines. South Afr J Bot 131: 222-228.

Ghogue J-P. 2010. Acanthus montanus. The IUCN Red List of Threatened Species.

Gleisk M, Czapinska E, Wozniak M, Ceremuga I, Włodarczyk D. 2011. Compositions and biological activities of Litsea elliptica Blume. Med Aromatic Plants 7: 41.

Goulas V, Exarchou V, Troganis AN, Psomiadou E, Fotis T, Brasoius E, et al. Phytochemical in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol Nutr Food Res 53 (5): 600-608.

Greenwell M, Rahman PKSM. 2015. Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6 (10): 4103-4112.

Habib FK, Ross M, KH Ho C, Lyons V, Chapman K. 2005. Serenoa repens (Permixon®) inhibits the 5α-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int J Cancer 112 (2): 190-194.

Habib FK, Ross M, KH Ho C, Lyons V, Chapman K. 2005. Serenoa repens (Permixon®) inhibits the 5α-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int J Cancer 112 (2): 190-194.

Habib FK, Ross M, KH Ho C, Lyons V, Chapman K. 2005. Serenoa repens (Permixon®) inhibits the 5α-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int J Cancer 112 (2): 190-194.

Habib FK, Ross M, KH Ho C, Lyons V, Chapman K. 2005. Serenoa repens (Permixon®) inhibits the 5α-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int J Cancer 112 (2): 190-194.

Habab M, Ali AM, Lajis NH, Sukari MA, Yap YH, Kikuzaki H. 2005. Biological activities of Litsea elliptica Blume. Med Aromatic Plants 7: 41.

Hancaya A, Sakagami H, Konno K. 1989. Pine cone antitumor substances against T47D breast cancer cell line. Health Sci J Japan 37 (3): 325-335.

Hendayat AT, Nurulasari N, Abdullah FF, Harneti D, Maharanir R, Haikal K, Supratman U, Azmi MN. 2018. A new lignan derivative, lacosapone, from the stem bark of Chischooten its lacosapone (Meliaeaceae). Oriental J Chem 34 (4): 1956-1960.

Hilton-Taylor C. 1998. Catha edulis. The IUCN Red List of Threatened Species.

Ho C-L, Jie-Ping O, Liu Y-C, Hung C-P, Tsai M-C, Liao P-C, Wang EI-C, Chen Y-L, Su Y-C. 2010. Compositions and in vitro anticancer activities of the leaf and fruit oils of Litsea cubeba from Taiwan. Nat Prod Commun 5 (4): 617-620.

Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Aseni Z. 2019. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms. Cancer Cell Int 19 (1): 180-187.

Horgen FD, Edrada RA, de los Reyes G, Agcaoili F, Madulid DA, Wongsamych V, Angerother FK, Pezzuto JM. Soearjo DF, Darnsworth NR. 2001. Biological screening of rain forest plot trees from Palawan Island (Philippines). PhytoMed 8 (1): 71-81.

Hossan S, Rahman S, Al-Nahain A, Rahmatullah M. 2012. Rosmarinic acid: a review of its anticancer action. World J Pharmacy Pharm Sci 3 (9): 57-70.

Hossyar S, Mogahhez Z, Torabia N, Abolghasem A. 2015. Antitumor activity of aqueous extract of Ziziphus jujuba fruit in breast cancer: an in vitro and in vivo study. Asian Pac J Reprod 4 (2): 116-122.

Hsieh T-J, Chang F-R, Chia Y-C, Chen C-Y, Chen H-F, Wu Y-C. 2001. Cytotoxic constituents of the fruits of Canangia odorata. J Nat Prod 64 (5): 619-620.

Hsing WY, Abdul Kadir H. 2011. Leica indica ethyl acetate fraction induces growth-inhibitory effect in various cancer cell lines and apoptosis in Ca Ski human cervical epidermoid carcinoma cells. Evidence-Based Complement Altern Med (2011): 1-13.

Huang S, Wang S, Xue N-N, Li C, Guo H-H, Ren T-K, Zhan Y, Li W-B, Zhang J, Chen X-G, Han Y-X, Zhang J-L, Jiang D. 2019. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 9 (23): 6745-6763.

Huusa DP. 2009. Senyawa antikanker dan insektisida dari genus Aglaia. Unpud Press, Bandung. [Indonesian]

Hutagallop RP, Harneti D, Hidayat AT, Nurulasari N, Maharanir R, Katja DG, Supratman U, Awang K, Shiono Y. 2020. (22E,24S)-24-Propylcholest-5en-3α-acetate: A new steroid from the stem bark of Aglaia angustifolia (Miq.) (Meliaeaceae). Molbank 2020 (1): 1-6.

Hwang BY, Su B-N, Chai H, Mi Q, Kardon LBS, Afrissanti JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vitre GD, Rose WC, Farahnejad N, Cordella GA, Pezzuto JM, Swanson SM, Kinghorn AD. 2004. Silvestrol and episilvestrol, Potential anticancer roaglate derivatives from Aglaia silvestris. J Organic Chem 69 (10) 3350-3358.

Ikuta A, Tomayasu T, Miura T, Matsuda J, Motani T, Yoshimura K. 2003. Ursane and oleanane-type triterpenes from Ternstroemia gymnanthera callus tissues. J Nat Prod 66: 1051-1054.

Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahzab M, Tsouh Fokok PV, Umar Arshad M, Khan H, Guerrero SG, Martins N, Estevinho LM. 2019. Kaempferol: A key emphasis to its anticancer potential. Molecules 24 (12): 2277-2293.

Indonesian Ministry of Health. 2018. Hasil utama Riskesdas 2018. [Indonesian]

International Agency for Research on Cancer (IARC). 2018. Press release World Health Organization: Latest global cancer data: cancer burden rises to 18.1 million new cases and 9.6 million cancer. [https://www.who.int/cancer/PRGlobalcanFinal.pdf]

Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. 2017. Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed 7 (1): 1129-1150.

Irudayaraj V. 2011. Diplozium esculentum. The IUCN Red List of Threatened Species.

Ismiyati N, Putri DDP, Kusumastuti SA, Febrinsyah RH. 2012. Antiproliferative effect of ethanol extract Eugenia uniflora Lam. leaves on T47D Cells. Indonesian J Cancer Chemoprevention 3(2): 370-375.

IUCN SSC Global Tree Specialist Group & BGCI. 2019. Cananga odorata. The IUCN Red List of Threatened Species.

IUCN SSC Global Tree Specialist Group & BGCI. 2019. Dilenia serra. The IUCN Red List of Threatened Species.

IUCN SSC Global Tree Specialist Group & BGCI. 2019. Litsea mappacea. The IUCN Red List of Threatened Species.
Vaccinium varingiaefolium - N Red List of A from the root bark of A species. Pharm Biol 47 (11): 1019-1026.

Jabat MdL, Wahyuni FS, Khalid R, Israfil DA, Sharii K, Lajis N, Samsias 2009. Cytotoxic and nitro oxide inhibitory activities of methanol extracts of Garcinia species. Pharm Biol 47 (11): 1019-1026.

Jabat MdL, Wahyuni FS, Khalid R, Israfil DA, Sharii K, Lajis NH, Samsias J. 2009. Cytotoxic and nitro oxide inhibitory activities of methanol extracts of Garcinia species. Pharm Biol 47 (11): 1019-1026.

Jagetia GC, Baliga MS. 2006. Evaluation of anticancer activity of the alkaloid fraction of Alstonia scholaris (Saptaparna) in vitro and in vivo. Phytotherapy Res 20 (2): 103-109.

Jalil J, Sabandar C, Ahamat N, Jamal J, Jantan I, Aladudin N-A, Muhammad K., Buang F, Mohammad H, Sahidin I. 2015. Inhibitory effect of triterpenoids from Dillenia serrata (Dilleniaceae) on Prostaglandin E2 production and quantitative HPLC analysis of its koetjapic acid and betulinic acid contents. Molecules 20 (2): 3206-3220.

Jang DS, Cuendet M, Pawlus AD, Kardon C, Kawanishi K, Farnsworth NR, Fong HHS, Pezzuto JM, Kinghorn AD. 2004. Cancer potential cheomopreventive constituents of the leaves of Macaranga triloba. PhytoChem 65 (3): 345-350.

Jason K. Higa, Zhibin Liang, Philip G. Williams, Jun Panee. 2012. Phylostachys edulis compounds inhibit palmitic acid-induced monocyte chemotactic protein 1 (MCP-1) production. PLOS ONE 7 (9): e45082.

Jiang Z, Yaqiong P, Xiaobo Y, Suixia Z, Jun Q, Ning Z, Haiyan D, Qing S, Minliang K, Lee J. 2016. The paradigm-shifting idea and its practice: from traditional abortion Chinese medicine Murraya paniculata to safe and effective cancer metastatic cheomopreventives. Oncotarget 7 (16): 21699-21712.

Jin ML, Park SY, Kim YH, Park G, Lee SJ. 2014. Halofuginon ytochemical scal composition, C, E2: Their cytotoxic and tyrosine kinase inhibitory e i. Int J, Jova V, Kokleso 78: 85.

Jin ML, Park SY, Kim YH, Park G, Lee SJ. 2014. Cytotoxic flavaglines and bisamides from Artocarpus elasticus. J Nat Prod 68 (11): 1692-1695.

Kornienko A, Evidente A. 2008. Chemical, biological, and medicinal potential of narcilasine and its congeners. Chem Rev 108 (6): 1982-2014.

Kosasih K, Sumaryowo Y, Supriono A, Mudahikar D. 2017. Cytotoxicity of ethyl acetate extract of cantigi (Vaccinium varingiaefolium) (Blume) Miq. young leaves on Artemisia salina L. larvae, MCF7, T-47D, and vero cell lines. J Pharmacogn PhytoChem 8 (4): 24-33.

Krajarag A, Chulasiri M, Watanapakosin R. 2017. Etilerga elatior extract promotes cell death in B16 melanoma cells via downregulation of ERK and Akt signaling pathways. BMC Complement Altern Med 17: 415.

Kubatka P, Kello M, Kajo K, Samec M, Jasek K, Vrhovac D, Kuma T. 2011. The IUCN Red List of Threatened Species under CO and their Antimicrobial Effect. [Disertation]. University of Helsinki.

Kumar Y, Periyasamy L. 2016. GC-MS analysis and in vitro cytotoxic studies of Bixa orellana seed extract against cancer cell line. Int J Pharm Pharm Sci 8 (1): 408-413.

Kuo P-L, Ku E-Y, Sung S-C, Ni W-C, Lin T-C, Lin C-C. 2007. Induction of apoptosis in human breast adenocarcinoma MCF7 cells by percoracin A from the bark of Pterocarya stenoptera via the Fas-mediated pathway: Anti-Cancer Drugs 18 (5): 555-562.

Kumiaiwe F, Giulayawi LD, Syah YM, Ahmad SA, Hikam EH, Koyama K, Kinoshita K, Takahashi K. 2010. Phenolic compounds from Cryptocarya konishii: Their cytotoxic and tyrosine kinase inhibitory properties. J Nat Med 64 (2): 121-125.

Kusar S, Zühls S, Spitteler M. 2011. Chemometric evaluation of the anti-cancer pro-drug podophyllotoxin and Potential therapeutic analogues in Juniperus and Podophyllum species. PhytoChem Anal 22 (2): 128-143.

Kutus CJ, Yen KH, Serui NNU. 2012. Pharmacol. evaluation of Lutea garciae (Laureaceae). 2012 IEEE Business, Engineering and Industrial Applications Colloquium (BEIAC): 31-33.

Kwon H-J, Lee E-W, Hong Y-K, Yun H-J, Kim B-W. 2010. Widdrol from Juniperus chinensis induces apoptosis in human colon adenocarcinoma HT-29 Cells. Biotechnol Bioprocess Eng 15 (1): 167-172.

Lai HY, Lim YY, Kim KH. 2010. Blechnum orientale Linn - a fern with Potential as antioxidant, anticancer and antibacterial agent. BMC Complement Altern Med 10: 15-22.

Lai W-C, Tsai Y-T, Singab A, El-Shazy M, Du Y-C, Hwang T-L, Wu C-C, Yen M-H, Lee C-K, Hoo M-F, Wu Y-C, Chang F-R. 2013. Phyto- SERM constitutes from Fumaria esculenta. Int J Mol Sci 14 (8): 5578-5594.

Lai Y, Liu H, BCI & IUCN SSC Global Tree Specialist Group. 2019. Viburnum odoratissimum, The IUCN Red List of Threatened Species. Lansdown RV, Bentejui HJ. 2017. Eclipta prostrata (amended version of 2017 assessment). The IUCN Red List of Threatened Species. Lansdown RV. 2014. Acorus calamus. The IUCN Red List of Threatened Species.

Lansdown RV. 2018. Cyperus alternifolius. The IUCN Red List of Threatened Species.
Lansdown RV. 2018. Equisitum ramosissimum, The IUCN Red List of Threatened Species.

Lansdown RV. 2019. Centella asiatica. The IUCN Red List of Threatened Species.

Lee SK, Cui B, Mehta RR, Kinghorn AD, Pezzuto JM. 1998. Cytostatic mechanism and antitumor Potential of novel H.

Lee H, Eo H, Lee S-K, Seong Y, Kim Y, Chang H. 2015. Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull 63 (2): 137-143.

Leyrolle F, Loh D, Ribeiro R, Guest S, Leitao A, Parkin N, Schieven G, Wattiaux C. 2019. Anti-inflammation activity of sesquiterpenes and steroids from the flowers of Panax ginseng. Steroids 143: 1-5.

Li J, Wang Y, Zhang J, Han S, Zhu Y, Chen Y. 2018. Cytotoxic activity of saponins from aerial parts of Plantago asiatica L. on human colon adenocarcinoma and amelanotic melanoma cells. Bioactive natural product derived from the East African flora. Nat Prod Rep 26 (12): 1535-1554.

Mahy FD, Iovita A, Petrescu A, Bures A, Apuzescu A, Danciuc A, Cîmpeanu E, Săsăian M, Cojanu I. 2018. Anticancer activity of fractions from the leaves of Eucalyptus globulus Labill.against human colon adenocarcinoma and amelanotic melanoma cells: essential oils cytotoxicity. Cell Prolifera 51 (2): e12447.

Manga C, Sagar P, Singh H, Raghava GPS, Agarwal SM. 2013. NAPACT: naturally occurring plant-based anti-cancer compound activity-target database. Nucleic Acids Res 41: 1124-1129.

Manosroi A, Sainakham M, Chankhampan C, Manosroi W, Manosroi J. 2016. In vitro anti-cancer activities of Job’s tears (Coix lachryma-jobi Linn.) extracts on human colon adenocarcinoma. Saud J Biol Sci 23: 248-256.

Maoka T, Mochida K, Kozuka M, Ito Y, Fujiyara Y, Hashimoto K, Enjo F, Ogata M, Nobukuni Y, Tokuda H, Nishino H. 2001. Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L. Cancer Lett 172: 103-109.

Martinez Richart AI. 2019. Aloe arborescens. The IUCN Red List of Threatened Species.

Masono NA, Fannie JF, Van Staden J. 2014. Pharmacological Potential and conservation prospect of the genus Eucomis (Hyacinthaceae) endemic to southern Africa. J Ethnopharmacol 151: 44-53.

Mattib AA, Mohammed RS, Souda SSE, El-Halouzy SM, Gomaa EZ, Hassan AA. 2018. Phytochemical and biological studies on Enterolobium contortisiliquum (Vell.) Morong Pericarpis. J Mat Environ Sci 9 (10): 2768-2778.

Matsunaga H, Katano M, Yamamoto H, Fujita H, Mori M, Takata K. 1990. Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull 38 (12): 3480-3482.

Mbhaveng DS, Kuate CV, Mapunya BM, Beng VP, Nkengfack AE, Meyer JM, Lail N. 2011. Evaluation of four Cameroon medicinal plants for anticancer, antinorgorheal and antireverse transcriptase activities. African J Pharmacol 5: 1-7.

McDougall OM, Heenan PB, Perry NB, van Klink JW. 2018. Chemotaxonomy of kowhai: Leaf and seed flavonoids of New Zealand Sophora species. N Z J Bot 56 (3): 227-236.

Meyanto Y, Rahmi F, Riyanto S. 2007. Kutil batang cangkang (Erythrina fusca Lour) terhadap sel HeLa. Majalah Obat Tradisional 11 (41): 1-11.[Indonesian]

Mena- Rejon G, Camal-Puentes E, Cantillo-Cauz C, Cedillo-Rivera V, Flores-Guido J, Moo-Puc R. 2009. In vitro cytotoxic activity of nine plants used in Mayan traditional medicine. J Ethnopharmacol 121 (3): 462-465.

Menichi F, Tundis R, Loizzo MR, Monesi M, Provenzano E, de Candia B, Menichi F. 2010. In vitro photo-induced cytotoxic activity of Citrus bergamia and C. medicia L. cv. Diamante peel essential oils and identified active coumarins. Pharm Biol 48 (9): 1059-1065.

Mohammad K, Sevett T, Dumontet V, Paus M, Vantiri H, Awang K, Martin M. 1999. Damarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa. Phyto Chem 51 (8): 1031-1037.

Moirangthem DS, Talukdar NC, Bora U, Kasouj N, Das RK. 2013. Differential effects of Oroxylum indicum bark extracts: antioxidant, antimicrobial, cytotoxic and apoptotic study. Cytotechnology 65 (1): 13-25.

Monks NR, Bordingon SAL, Ferraz A, Menichini F, Bires PF, Ogata M, Nobukuni Y, Tokuda H, Nishino H. 2001. Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L. Cancer Lett 172: 103-109.

Murphy K, Counsell M, Murphy A, Young J. 2008. The IUCN Red List of Threatened Species. The IUCN Red List of Threatened Species.

Mukherjee A, Sikdar S, Bishayee K, Boujedaini N, Khuda-Bukhsh AR. 2014. Flavonol isolated from ethanolic leaf extract of Thuya occidentalis arrests the cell cycle at G2-M and induces ROS-independent apoptosis in A549 cells, targeting nuclear DNA. Cell Prolif 47 (1): 56-71.
bark extract nanoparticles as anti-cancer on HeLa cell lines. Vet World 12 (10): 1616-1623.

Promakra B, Daduang J, Khampitak T, Tavichkomtrakool R, Koraneekit A, Palasap A, Tangrassamesprasert R, Boonsiri P. 2017. Anticancer Potential of Cratoxylum formosum subsp. pruniflorum (Kurz) Gogel extracts against cervical cancer cell lines. Asian Pac J Cancer Prev 16 (14): 6117-6121.

Purbowati R, Ersam T. 2019. Exploration of phenolic compound from the stem bark of Garcinia lattissima Miq. Jurnal Sains dan Seni IFS 8 (2): 2337-3520. [Indonesian]

Putra WE, Rifa’i M. 2019. Immunomodulatory activities of Sambucus japonica extracts in DMBA exposed BALB/c mouse. Adv Pharm Bull 9 (4): 619-623.

Qi Y, Su J, Zhang Z-J, Li L-W, Fan M, Zha Y, Zhao Q-S. 2018. Two new anti-proliferative c18-nortriterpenes from the roots of Podocarpus macrophyllus. Chem Biodivers 15 (4).

Rabehevieira AD. 2019. Kalanchoe beharensis. The IUCN Red List of Threatened Species.

Rahmat A, Kumar V, Fong L-M, Endrini S, Sani HA. 2003. Determination of total antioxidant activity in three types of local vegetables shoots and the cytotoxic effect of their ethanolic extracts against different cancer cell lines. Asia Pac J Clin Nutr 12 (3): 292-295.

Rajkapoor B, Jayakar B, Murugesh N, Sakthisekaran D. 2006. Anticancer and anti-inflammatory activities of Clerodendron serratum stem bark of Podocarpus macrophyllus new anti-arthritic agent. Bull. Korean Chem. Soc. 27 (12): 1981-1985.

Rajkumar V, Gunjan G, Kumar RA, Lazar M. 2009. Evaluation of cytotoxicity of Acorus calamus rhizome. Ethnobot Leaflets 13: 832-39.

Ramp RN, Parthiban S, Srinithy B, Kumar VV, Anthony SP, Sangameshwar Muthuraman MS. 2015. Biogenic silver nanoparticles synthesis using the extract of the medicinal plant Clerodendron serratum and its in vitro anti-proliferative activity. Mater Lett 119: 1-7.

Rasul A, Milliomono FM, Ali Ehtayw W, Ali M, Li J, Li X. 2013. Phytochemical and biological studies of Melastoma malabathricum extracts in DMBA exposed BALB/c mouse. Adv Pharm Bull 3 (12): 407-409.

Rajkumar V, Gunjan G, Kumar RA, Lazar M. 2009. Evaluation of cytotoxic Potential of Acorus calamus thizome. Ethnobot Leaflets 13: 832-39.

Raman RP, Parthiban S, Srinithy B, Kumar VV, Anthony SP, Sangameshwar Muthuraman MS. 2015. Biogenic silver nanoparticles synthesis using the extract of the medicinal plant Clerodendron serratum and its in vitro anti-proliferative activity. Mater Lett 119: 1-7.

Rasul A, Milliomono FM, Ali Ehtayw W, Ali M, Li J, Li X. 2013. Phytochemical and biological studies of Melastoma malabathricum extracts in DMBA exposed BALB/c mouse. Adv Pharm Bull 3 (12): 407-409.

Rasul A, Milliomono FM, Ali Ehtayw W, Ali M, Li J, Li X. 2013. Phytochemical and biological studies of Melastoma malabathricum extracts in DMBA exposed BALB/c mouse. Adv Pharm Bull 3 (12): 407-409.

Rasul A, Milliomono FM, Ali Ehtayw W, Ali M, Li J, Li X. 2013. Phytochemical and biological studies of Melastoma malabathricum extracts in DMBA exposed BALB/c mouse. Adv Pharm Bull 3 (12): 407-409.
Shen YC, Shih-Sheng W, Pan YL et al. 2002. New taxane diterpenoids from the leaves and twigs of Taxus sumatrana. J Nat Prod 65 (12): 1848-1852.

Shi L-S, Wu C-H, Yang T-C, Yao C-W, Lin H-C, Chang W-L. 2014. Cytotoxic effect of triterpenoids from the root barks of Hibiscus syriacus and Nakagawa-Goto K. (1985) (–)-Nicocaryachromene, an antiproliferative pative alkald from Cryptocarya laevigata, induces DNA double-strand breaks. J Nat Prod 80 (1): 220-224.

Takeuchi S, Yoshi Kono H, Mizutani T, Maruyama K, Nakayama R, Hiraoka A, Suzuki Y, Watanabe R, Kawarada A, Adisewoo JS. 1986. A bioactive polyphenolic constituent in the bark of Pericarpus indicus Wildil. J. Isolation and Characterization. Agric Biol Chem 50 (3): 569-573.

Tanaka R. 2000. Cancer chemopreventive agents, labdane diterpenoids from the stem bark of Thuja standishii (Gord.) Carr. Cancer Lett 161 (2): 165-170.

Tanjung M, Mujahidin D, Hakim EH, Darmawan A, Syah YM. 2010. Geranylarnonol flavonoids from Macaranga rhizoides. Nat Prod Commun 12 (8): 1209-1211.

Tavares W, Seca A. 2018. The current status of the pharmacological potential of Juniperus L. metabolites. Medicines 5 (3): 81-104.

Thomas P, Katsuki T, Farjon A. 2013. Cryptomeria japonica. The IUCN Red List of Threatened Species.

Singh NK, Singh VP. 2014. Anticancer activity of the roots of Ichnocarpus frutescens R. Br. and isolated triterpenes. Pak J Pharm Sci 27 (1): 187-191.

Smith P. 2019. The challenge for botanic garden science. Plants People Planet 1: 38-43.

Smith-Kielland I, Dornish JM, Latif Z, Din L, Said IM. 2005. Metil linderon, senyawa calkon from leaves of Alstonia angustifolia. J Chem Sci 80 (3): 287-290.

Solowey E, Lichtenstein M, Saloum S, Paavilainen H, Solowey E, Soib HH, Ware I, Yaakob H, Mukrish H, Sarmidi MR. 2015. Antioxidant activity of the roots of Pityrogramma calomelanos (L.) and their metabolites. Medicines 5 (8): 1209-1211.

Song Y, Bao P, Wang EI, Shi L, Sun Y, Cong Y, Zhu J, Zhang P-T, Cheng X, Zhao Q-S. 2008. Six new dammarane triterpenoids from Vibrurnum cylindricum. Helvetica Chim Acta 91 (8): 1578-1587.

Tamura A, Bond DR, Vuong QV, Chalmers A, Beckett EL, Weidenhofer J, Scarlett CJ. 2020. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 47 (3): 2073-2084.

Twilly D, Langansoov L, Palaniswamy D, Lall N. 2017. Evaluation of traditionally used medicinal plants for anticancer, antioxidant, anti-inflammatory and anti-viral (HPV-1) activity. South Afr J Bot 112: 494-500.

Uddin MN, Ahmed M, Pathan S, Al-Amin Md. M, Rana Md. S. 2015. Antioxidant and cytotoxic activity of stems of Smilax zeylanica in vitro. Basic Clin Physiol Pharmacol.

Ukiya M, Kikuchi T, Tokuda H, Tabata K, Kimura Y, Arai T, Ezaki Y, Oseto O, Suzuki T, Akishia T. 2010. Antitumor-promoting effects and cytotoxic activities of dammar resin triterpenoids and their derivatives. Chem Biodivers 7 (8): 1871-1884.

Usman H, Hakim EH, Harlimal T, Jalaluddin MN, Syah YM, Achmad SA, Takayama H. 2006. Cytotoxic chalcones and flavonones from the tree bark of Cryptocarya costata. Zeitschrift Fur Naturforschung C 61 (3-4): 184-188.

Valente MJ, de Pinho PG, Henriques R, Pereira JA, Carvalho M. 2012. Further insights into chemical characterization through GC-MS and evaluation for anticancer potential of Dracaena draco leaf and fruit extracts. Food Chem Toxicol 50 (10): 3847-3852.

Valkute TR, Arakatla EK, Gupta NA, Ganga S, Santra MK, Bhattacharya AK. 2018. Synthesis and anticancer studies of Michael adducts and Heck arylation production of sesquiterpene lactones, zaluzadin D and zaluzadin C from Vernonia arboresca. RSC Adv 8 (67): 38289-38304.

Venkatesan T, Park E-J, Choi Y-W, Lee J, Kim Y-K. 2017. Anti-inflammatory activity of Ternstroemia gymnantherastem. Fitoterapia 96: 184-191.

Wahyu W, Wijaya L, Teresa L, Wargaseta, Bachtair I, Yellanty, Laksmiawati DR. 2013. Antioxidant, anticancer, and apoptosis-
inducing effects of piper extracts in HeLa cells. J Exp Integr Med 3 (3): 225-230.

Wahyuni I, Dwianto W, Amin Y, Darmawan T. 2008. Timber tree species in Cibodas Botanic Gardens. Jurnal Ilmu dan Teknologi Hasil Hutan 1 (2): 93-101. [Indonesian]

Wang P, Yang HL, Yang YJ, Wang L, Lee SC. 2015. Overcome cancer cell drug resistance using natural products. Evidence-Based Complement Alt Med 2015: 1-14.

Wang T, Wu X, Liu Y, Luo Y, Li X, Zhou Y, Yang A, Yan Z, Ye L, Chen S, Fu J, Jiao X. 2018. Chemical constituents from ethanol extract of Polysaltha runphiev branches and their cytotoxicity evaluation. Rev Brasileira farmacognosia 28 (2): 235-238.

Wang Y-Q, Tan J-J, Tan C-H, Jiang S-H, Zhu D-Y. (2003). Halophilos A and B, two new stilbenes from Iris halophila. Plant Med 69: 779-781.

Wattanapromsakul C, Wangsintaweekul B, Sanggrapun P, lhtarat A, Kawspradub N. 2005. Goniosthalian, a cytotoxic compound, isolated from Goniosthala macrophyllus (Blume) Hook. F. & Thomson var. Macrophyllus. Songklanakarin J Sci Technol 27 (2): 479-487.

Weerapreyakul, Nattapha, Sasipawan Machana and Sahapat Barusux. 2016. Synergistic effects of melphalan and Pinus kesuji Royle ex Gordon (Simaosong) extracts on apoptosis induction in human cancer cells. Chin Med 11 (1).

Weger A, Lorea Hernandez F, Contreras A, Tobon W, Mastretta-Yanes A. 2017. Persea americana (errata version published in 2018). The IUCN Red List of Threatened Species.

Wheeler L, Beecch E. 2019. Bixa orellana. The IUCN Red List of Threatened Species. World Conservation Monitoring Centre. 1998.

Wong FC, Woo CC, Hsu A, Tan BKH. 2013. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p35-independent pathways. PLoS ONE 8(10): 1-15.

World Conservation Monitoring Centre. 1998. Alangium javanicum. The IUCN Red List of Threatened Species. World Conservation Monitoring Centre. 1998. Astonia scholaris. The IUCN Red List of Threatened Species. World Conservation Monitoring Centre. 1998. Cratoxylum formosum. The IUCN Red List of Threatened Species. World Conservation Monitoring Centre. 1998. Diospyros celebica. The IUCN Red List of Threatened Species. World Conservation Monitoring Centre. 2018. Biancua sappan (amended version of 1998 assessment). The IUCN Red List of Threatened Species 2018.

Wu D-P, Lin T-Y, Lv J-Y, Chen W-Y, Bai L-R, Zhou Y, Huang J-L, Zhong Z-G. 2017. Ceunatum nocturnum flower extracts attenuate proliferation and induce apoptosis in malignant cells through inducing DNA damage and inhibiting topoisoaseme II activity. Evidence-Based Complement Altern Med 2017: 1-8.

Wu J, Yi W, Jin L, Hu D, Song B. 2012. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells. Cell Div 7: 20-10.

Wu L, Wu J, Chen S-P, Li Z-J, Zhang J, Yuan E, Ma G-Q, Jin L, Hu J-W. 2019. Chemical constituents of the twigs of Elaeocarpus sylvestris. Chem Nat Compd 55 (2): 324-326.

Wu Q, Yang X-W. 2009. The constituents of Cibotium barometz and their permeability in the human CaCo-2 monolayer cell model. J Ethnopharmacol 125 (3): 417-422.

Wu T-S, Su C-R, Lee K-H. 2012. Cytotoxic and Anti-HIV Phenanthroindolizidine alkaloids from Cryptocarya chinesis. Nat Prod Commun 7 (6): 725-727.
Family	Species	Common name	Cell line	Extraction method	IC₅₀ (μg/ml)	Reference	Anticancer activity category*	Origin	Cons. status	Location in CBG			
Acanthaceae	Acanthus montanus (Nees) T.Anderson	Daruju	BT-549; BT-20; PC-3	Crude	>200>200>200	(Fadeyi et al. 2013)	III	Trop. Africa	LC (Ghogu, 2010)	I.D.34; I.F.12.			
Acanthaceae	Strobilanthes cernua Blume	Bubukuan kembang bidas	HeLa	Crude	968.26	(Aribastutie 2017)	III	W. Java	N/A	V.A.77-77A; VII.B.171.			
Acoraceae	Acorus calamus L.	Jeringau	MDA-MB-435S Hep3B	Crude	13.71 ± 6.66	(Rajkumar et al. 2009)	II	S. Sumatra	LC (Lansdown, 2014)	XIV.A.99-99a.			
Adoxaceae	Sambucus javanica Blume	Sangitan	N/A	Crude	N/A	(Putra and Rifa’i 2019)	IV - Reduces necrotic cells incidence in lung samples of mice lung cancer	Java	LC (BGCI and IUCN, 2018)	IV.A.52; XILA.14-14a.			
Adoxaceae	Sambucus nigra L.	Eur. elderberry	MCF7; LOVO	Crude	16.9 ± 0.4; 12.9 ± 0.3	(Gleńska et al. 2017)	II	S. Sumatra	LC (Bilz, 2020)	N/A	VIE.119; XVIII.A.35, 43.XV.III.A.3 9-39a39b, 41, 61.		
Adoxaceae	Viburnum cylindricum Buch. Ham. ex D. Don	Tubeflower viburnum	HL-60	Subfraction	>100	(Tu et al. 2008)	III	W. Java	N/A	W. Java	XII.A.50.		
Adoxaceae	Viburnum odoratissimum Ker Gawl.	Sweet viburnum	HL-60; A549; SMMC-7721	Subfraction	0.069; 0.320; 0.190; 0.223	(Zhu et al. 2018; Y.-Y. Zhang et al. 2019)	I.A. Contains 15,18-O-diacetyl-15-O-methylvibsanin U, and in silico study	India, Japan, S. China	LC (Lai et al., 2019)	I.B.21; I.K.3-3a; I.D.18.			
Adoxaceae	Viburnum sambucinum Reinw. ex Blume	Buas-busas	KB; LU-1; Hep2; MCF7	Subfraction	2.09; 2.09; 2.04; 2.01	(T. T. Nguyen et al. 2017)	LA - Contains hupehenol A	W. Java	LC (Oldfield, 2020)	XVIII.A.17, 42-42a.			
Adoxaceae	Viburnum suspensum Lindl.	Sanandkwa	N/A	Subfraction	N/A	(Fukuyama et al. 2002)	IV - Contains vibsanin	Japan	N/A	IV.A.16.			
Altingiaceae	Liquidambar formosana Hance	Formosa sweet gum	OEC-M1 J5 A549	Subfraction	15.6; 32.1; 19.3	(Su and Ho 2017)	II - Contains T-μurolol	C. China, Formosa	LC (Crowley et al., 2018)	III.F.37-37a-37b; IV.C. 58-58a; V. B.36-36a; IX.A. 104b.			
Amaryllidaceae	Agapanthus africana (L.) Hoffmanns.	Blue african lily	N/A	Crude	N/A	(Chanchal et al. 2018)	IV - Contains isoliquiritigenin	S. Africa	N/A	S. Africa	I.H.50; III.D.20; VI.C.50.		
Family	Genus	Common Name	Plant Name	Plant Name Source	Plant Type	Smartphone	Anticancer Property	Anticancer Property Source	Country	Plant Type	Species Code	Geographic Location	
-------------------	---------------------------	------------------------------------	--------------------------------------	-------------------	------------	------------	---	-----------------------------	---------	-------------	---------------	-----------------------------	
Amaryllidaceae	*Crinum abyssinicum*	Swamp lily	Amaryllidaceae	Amaryllidaceae	Crude	12.5 - 25	Contains lycorine, crinine, narciclasine, 3-epihalmanthidine, crinamine, lycobetaine precirwells, crinamide, crinafolidine, crinasbetae, crinasadiene, crinasiatine and crinastine	(Abebe 2016)	Amaryllidaceae	Crude	N/A	N/A	IV. G.137.
Amaryllidaceae	*Crinum macowanii*	Common vlei-lily	Crinum macowanii	Pachyglottidaceae	Crude	13.78	Contains endophytes Acinetobacter guillouiae that displayed anticancer activity.	(Sebola et al. 2019)	Trop. Africa	N/A	I.D. C.13.7.	N/A	I.H.31.
Amaryllidaceae	*Crinum × powellii*	Cape lily	Crinum × powellii	Amaryllidaceae	Crude	17.22 ± 2.19	Contains crinine	(Shawky et al. 2018)	Hybrid Origin	N/A	I.D. C.13.7.	N/A	I.H.31.
Amaryllidaceae	*Crinum zeylanicum*	Ceylon swamp lily	Crinum zeylanicum	Amaryllidaceae	Crude	23.67 ± 1.97	Contains crinine	(Berkov et al. 2011; Kuete et al. 2013)	Africa, Trop. Asia	N/A	LC. C.13.7.	N/A	I.H.31.
Amaryllidaceae	*Hymenocallis speciosa*	Bakung air mancure, spider lily	Hymenocallis speciosa	Amaryllidaceae	N/A	30.29	Contains narciclasine (lycoricidinol) and pancratistatin	(Kornienko and Evidente 2008)	China	LC. C.13.7.	N/A	II. C.10.	
Anacardiaceae	*Pistacia chinensis*	Pistacia cina	Pistacia chinensis	Anacardiaceae	Crude	30.29		(Kirolos et al. 2019)	Brazil	N/A	IV. C.10; XV.B.11-11b.	N/A	I.C.13.7.
Anacardiaceae	*Schinus terebinthifolius*	Pink pepper	Schinus terebinthifolius	Anacardiaceae	Crude	1.56		(El-Nashar et al. 2019)	Brazil	N/A	IV. C.11; XIII.A.15a-15b.	N/A	I.D. C.10.
Anacardiaceae	*Schinus weinmannifolius*	N/A	Schinus weinmannifolius	Anacardiaceae	Crude	5		(Monks et al. 2002)	Brazil	N/A	IV. C.11; XIII.A.15a-15b.	N/A	I.D. C.10.
Family	Genus	Species/Strain	Plant Parts	Mechanism/Reference	Toxicity	IUCN and BGC	LC (IUCN and BGC, 2019)	VLD (IUCN and BGC, 2019)					
-----------------	------------------------------	---------------------------------------	-------------	--	--------------------	--------------	--------------------------	--------------------------					
Annonaceae	Cananga odorata (Lam.) Hook.f. and Thomson	Ylang-ylang, kenanga	HepG2, Hep2,2,15	Subfraction 0.01	(Hsieh et al. 2001)	LB	Java Aceh W. Java N. Sumatra	VLD.138-138a; VLD.146; VLD.142; VLD.165.					
Annonaceae	Goniothalamus macrophyllus (Blume) Hook.f. and Thomson	Ki Cantung	COR-L23 LS-174T MCF7	Crude 3.16 ± 0.14	(Wattanapiromsakul et al. 2005)	LC	W. Java C. Sulawesi N/A	VLD.115, 128, 145, 179; VLD.177.					
Annonaceae	Polyalthia rumphii (Blume ex Hensch.) Merr.	Mempisang	HeLa MCF7 A549	Subfraction 26.9	(T. Wang et al. 2018)	II	W. Java N/A	VLD.180.					
Annonaceae	Polyalthia subcordata Nona leuweung (Blume) Blume	HeLa	MDA-MB-231 HepG2	Subfraction 20.82	(Arbiastutie 2017)	III	Java N/A	VLD.60; VLD.192					
Apocynaceae	Alstonia angustifolia Wall. ex A.DC.	Red-leaved pulai	HeLa MCF7 A549	Subfraction 4.61	(Pan et al. 2014)	II	W. Sumatra LC (Sidiyasa, 1998)	VII.C.316-316a.					
Apocynaceae	Asclepias curassavica L.	Kapas cinde	HepG2 Raji	Subfraction 10.64	(Li et al. 2009; Iqbal et al. 2017)	III	France N/A	XII.B.32.					
Apocynaceae	Cerbera manghas L.	Bintaro	KB BC MCF7	Subfraction 0.05	(Cheempra-cha et al. 2004)	I.A.	W. Java LC (Yu et al., 2019)	VII.C.106-106a.					
Apocynaceae	Ichnocarpus frutescens (L.) W.T.Aiton	Black creeper	MCF7 BEL-7402 SPC-A1 SGC-7901	Crude 172.2 ± 3.9	(Singh and Singh 2014)	III	N/A N/A	CL.60.					
Family	Specific Name	Subfraction	MCF7 / MDA-MB-231	IC50 ± SE	LB	Kailman-tan	N/A	V.H.B. /b.					
-----------------------------	---	-------------	-------------------	----------------	------	-------------	-----	------------					
Apocynaceae	Ochrosia elliptica Labill.			0.11 ± 0.02	(El-shiekh et al. 2017)	Contains 9-methoxyellipticine	I.B	W. Java					
Apocynaceae	Tabernaemontana m. Lelutung Tokak crochet Jack	Crude	L1210	6.039 ± 7.145	(Prativi et al. 2014)	I.D	W. Sumatra						
Araliaceae	Panax ginseng C.A.Mey	Subfraction	MK-1 B16 L929	0.027 ± 0.00	(Matsunaga et al. 1990; K.-K. Li et al. 2019)	Contains panaxyol, panaxyl, panaxytriol, and 24(S)-floralginsenoside	III	C. Java					
Areceae	Areca vestiaria Giseke	Crude	T-47D	290.68	(Yudistira 2017)			N/A					
Areceae	Serenoa repens (W.Bartram) Small	Crude	U87 U251	1.0 ± 1.1	(Habib et al. 2005; Zhou et al. 2015)	Commercial cancer drug Permixon®	I.D	Nether-lands					
Aristolochiaceae	Aristolochia trilobata L.	Bejuco de santiago	N/A N/A N/A		(Santos et al. 2014; Chang et al. 2015)	IV	N/A						
Asparagaceae	Agave americana L. Lidah buaya america	Crude	MCF7	5	(Pandey et al. 2019)	Contains linalool	I.D	Mexico					
Asparagaceae	Agave attenuata Salm-Dyck	Crude		3.8 ± 1.3	(Santos-Zea et al. 2016)		I.D	Mexico					
Asparagaceae	Agave salmiana Otto ex Salm-Dyck	Giant agave	HT-29	3.8 ± 1.3	(Santos-Zea et al. 2016)		I.D	Mexico					
Asparagaceae	Dracaena draco (L.) ex Salm-Dyck	Crude	CaCo-2 A498	85.1 ± 6.9 176.2 ± 18.2	(Valente et al. 2012)		III	Canary Isl.					
Asparagaceae	Eucomis autumnalis (Mill.) Chitt.	Crude	Huh7	7.8	(Bisi-Johnson et al. 2011)		I.D	S. Africa					
Asparagaceae	Eucomis comosa (Houtt.) Wehrh.	Slender pineapple flower	N/A N/A N/A		(Masondo et al. 2014)	Inhibitor COX-1 and COX-2	IV	Africa					

Notes:
- MCF7 and MDA-MB-231 are two common breast cancer cell lines.
- IC50 values represent the concentration of the plant extract that inhibits 50% of the cell growth.
- LB indicates Subfraction.
- Kailman-tan refers to the author who performed the study.
- V.H.B. /b. indicates the volume of the study.
| Family | Genus | Species | Other Names | Extracted Compounds | Active on | Cell Lines | Reference | | |
|---|---|---|---|---|---|---|---|---|---|
| Asparagaceae | Sansevieria | ehrenbergii | Samurai sansevieria | Subfraction: BxPX-3, MCF7, SF-268, NCI-H460, KM20L2, DU-145, A549, HepG2, CaCo-2, MCF7 | Subfraction 0.93 | LA Contains sansevistatin 2 | (Magadula and Erasto 2009) |
| Asparagaceae | Yucca aloifolia L. | Spanish bayonet | Yuka, soapweed yucca | Crude: A549, HepG2, CaCo-2, MCF7 | Subfraction 271.5 | II S. America Mexico | (El Hawary et al. 2018) |
| Asparagaceae | Yucca glauca Nutt. | Yuka americana | HBL-100 | Crude: MCF7 | Subfraction >156.25 | III N/A | (Obaid et al. 2017) |
| Athyriaceae | Diplazium esculentum (Retz.) | Sw. Paku sayur | Crude: MDA-MB-231 | Crude: MCF7 | 1.62 | L.D N/A | (Rahmat et al. 2003) |
| Berberidaceae | Mahonia fortunei (Lindl.) Fedde | Ki koneng | Crude: MCF7 | Crude: MCF7 | >156.25 | III China | (Rezadoost et al. 2019) |
| Betulaceae | Alnus japonica (Thunb.) Steud | Alder | B16 | Subfraction: B16, SNU-1, SNU-354, SNU-C4 | 8.12 | II Contains oregonin, 1,7-bis-(3,4-dihydroxyphenyl)-heptane-3-Ô-ß-D-glucopyranosyl(1→3)-ß-D-xylopyranoside, and platyphyllside | (Choi et al. 2008) |
| Bignoniaceae | Oroxylum indicum (L.) Kurz | Bungli, pongporang | Crude: Hela | Crude: MCF7 | 112.3 ± 4.4 | III Kalimantan | (Moirang-them et al. 2013) |
| Bignoniaceae | Tabebuia hypoleuca (C. Wright ex Sauvalle) Urb. | Bungli tabebuya UACC-62 MCF7 | Crude: 786-0 | Crude: MCF7 | N/A | L.C. Due to Total growth inhibition (TGI), it was classified as potent activity to three assayed cell lines. | (Perera et al. 2019) |
| Family | Genus | Common Name | Species Code | Crude/Subfraction | IC50 | Species Code | Country | Threat Status | Notes |
|-------------------|--------------------------------|----------------------------------|--------------|--------------------|------|--------------|---------|---------------|-------|
| Bignoniaceae | *Tecoma stans* (L.) Juss. ex Kunth | Yellow elder, bunga terompet kuning | HT-29 | 90 | N/A | (Monks et al. 2002) | Trop. America | LC (BGCI and IUCN 2019) | XII.B.32-32a. |
| Bignoniaceae | *Hibiscus sabdariffa* L. | Rose of Sharon | NCI-H460 | 97 | (Kumar and Periyasamy 2016) | III | Australia | VLA.38a. |
| Bignoniaceae | *Tecoma stans* (L.) Juss. ex Kunth | Yellow elder, bunga terompet kuning | B16F10 | 121.60 ± 6.2 | (Kumar and Periyasamy 2016) | N/A | N/A | N/A | N/A |
| Bignoniaceae | *Hibiscus sabdariffa* L. | Rose of Sharon | HL-60 | 97 | (Monks et al. 2002) | II | Mexico | N/A | N/A |
| Bixaceae | *Bixa orellana* L. | Kesumba, prada, galuga | AS49 | 97 | (Bai et al. 2010) | II | N/A | N/A | N/A |
| Bixaceae | *Bixa orellana* L. | Kesumba, prada, galuga | MCF7 | 97 | (Bai et al. 2010) | II | N/A | N/A | N/A |
| Blechnaceae | *Blechnum orientale* L. | Paku leuncir, paku lubang | HT-29 | 27.5 ± 1.4 | (H. Y. Lai et al. 2010) | II | N/A | N/A | N/A |
| Buxaceae | *Buxus microphylla* Siebold and Zucc. | Japanese boxwood | HL-60 | 39.99 | (Saleem et al. 2019) | IV | China, N. Africa, S. Europe | N/A | N/A |
| Buxaceae | *Buxus microphylla* Siebold and Zucc. | Japanese boxwood | SMMC-7721 | 39.99 | (Saleem et al. 2019) | IV | China, N. Africa, S. Europe | N/A | N/A |
| Buxaceae | *Buxus papillosa* C.K.Schneid | Boxwood | HT-29 | 27.5 ± 1.4 | (H. Y. Lai et al. 2010) | II | N/A | N/A | N/A |
| Buxaceae | *Buxus papillosa* C.K.Schneid | Boxwood | MCF7 | 27.5 ± 1.4 | (H. Y. Lai et al. 2010) | II | N/A | N/A | N/A |
| Cactaceae | *Opuntia microdasys* (Lehm.) Pfeiff. | Kaktus bunny ears | HT-29 | 27.5 ± 1.4 | (H. Y. Lai et al. 2010) | II | N/A | N/A | N/A |
| Cactaceae | *Opuntia microdasys* (Lehm.) Pfeiff. | Kaktus bunny ears | CaCo-2 | 27.5 ± 1.4 | (H. Y. Lai et al. 2010) | II | N/A | N/A | N/A |
| Cactaceae | *Opuntia robusta* J.C. Wendel. | Wheel cactus | MCF7 | 97 ± 1 | (Chahdoura et al. 2016) | II | N/A | N/A | N/A |
| Cactaceae | *Opuntia robusta* J.C. Wendel. | Wheel cactus | MCF7 | 97 ± 1 | (Chahdoura et al. 2016) | II | N/A | N/A | N/A |
| Campanulaceae | *Lobelia laxiflora* Kunth | Lobelia meksiko | KB | 3.2 | (Alonso-Castro et al. 2011) | LD | Mexico | N/A | I.K.8; IV.A.80-80a-80b. V.A.62-62a-62b, 63-63a; V.A.67-67a. L.I.13. |
| Chloranthaceae | *Sarcandra glabra* (Thunb.) Nakai | Bone-knitted lotus | HL-60 | 58 | (W. Li et al. 2007) | II | W. Java Flores | N/A | N/A |
| Celastraceae | *Catha edulis* (Vahl) Endl. | Khat | MCF7 | 97 ± 1 | (Chahdoura et al. 2016) | II | N/A | N/A | N/A |
| Celastraceae | *Catha edulis* (Vahl) Endl. | Khat | A2780 | 39.99 | (Saleem et al. 2019) | IV | China, N. Africa, S. Europe | N/A | N/A |
| Cibotaceae | *Cibotium barometz* (L.) J.Sm. | Paku simpai | CaCo-2 | N/A | (Q. Wu and Yang, 2009) | IV | Antiinflammation | N/A | N/A |
| Cibotaceae | *Cibotium barometz* (L.) J.Sm. | Paku simpai | CaCo-2 | N/A | (Q. Wu and Yang, 2009) | IV | Antiinflammation | N/A | N/A |

Notes:
- **IC50**: Effective concentration of 50% inhibition of tumor growth.
- **Crude/Subfraction**: The type of sample used in the assay.
- **Country**: The country of origin of the plant.
- **Threat Status**: The threat status of the plant species, according to BGCI and IUCN 2019.
- **Notes**: Additional notes on the plant's uses or properties.
| Family | Species | Bintangor | SNU-1 | HeLa | Subfraction | I.A. | Jambi | LC | IX.B.67; IX.C.42a. |
|--------------|--------------------------------|---------------|----------------------|---------------|-------------|-----------------------|------------|---------------------|-------------------|
| Clusiaceae | Calophyllum soulattri | Bintangor | SNU-1 | HeLa | Subfraction | I.A. | Jambi | LC | IX.B.67; IX.C.42a. |
| | Burm.f. | | NCI-H23 HepG2 | K-562 | | Contents soulattrin, coloxanthone C | W. Java | (Steven 1998) | |
| Clusiaceae | Garcinia celebica L | Seashore | MCF | Crude | 87 | II | Aceh C | N/A | IX.C.9; IX.C.93. |
| | Garcinia dioica Blume | Mangosteen | N/A | N/A | N/A | IV | N/A | N/A | IX.C.32-32a. |
| Clusiaceae | Garcinia dalcis (Roxb.) Kurz | Mundu | HepG2 | Crude | 7.5 ± 2.52 | L.B. Contains morellic acid | Aceh | N/A | IX.C.33. |
| Clusiaceae | Garcinia lateriflora Blume | Gambohe | HT-29 | Subfraction | 0.36 | IV | W. Java | N/A | IX.C.54, 57. |
| Clusiaceae | Garcinia latissima Miq. | Kandis | N/A | N/A | N/A | I.A. | Papua | N/A | VII.B.133-133a. |
| Clusiaceae | Garcinia rostrata (Hassk.) Miq| Lulai, loli | MCF7 | Crude | 65 ± 40 | II | Bengkulu | N/A | IX.C.68. |
| Combrutaceae | Terminalia calamansanay Rolfe | Philippine | MCF7 | Subfraction | 2.93 | L.B. Contains morellic acid | W. Java | N/A | IX.C.54, 57. |
| | | Almond | A549 | Subfraction | 2.03 | I.A. | Karichalai | N/A | |
| Compositae | Achillea millefolium L | Yarrow, daun | MIA-PaCa2 | Crude | 28.8 ± 15.8 | II | S. Sulawesi| LC (BGCI and IUCN, 2019) | VIII.B.98. |
| Compositae | Achillea ptarmica L | Sneezewort | HPeLa | Subfraction | 141.05 | II | Asia C | LC (Maiz-Tome 2016) | L.G.69; IJ.I.1; III.D.12. |
| Compositae | Eclipta prostrata (L.) L | Karichalai, | HeLa | Subfraction | 50 | IV | Japan | LC (Bilz 2013) | L.J.J2; III.D.2. |
| Compositae | Gerbera jamesonii | Gerbera | A549 | N/A | N/A | IV | Africa | LC (Lands and Beentje H.J. 2017) | L.G.181. |
| | Bolus ex Hook.f. | | | | | | S. Africa | N/A | L.G.75; III.D.10. |

Notes:
- **I.A.** = I.A.
- **I.B.** = I.B.
- **I.C.** = I.C.
- **I.D.** = I.D.
- **I.E.** = I.E.
- **I.F.** = I.F.
- **I.G.** = I.G.
- **I.H.** = I.H.
- **I.I.** = I.I.
- **I.J.** = I.J.
- **II.** = II.
- **III.** = III.
- **IV.** = IV.
- **V.** = V.
- **VI.** = VI.
- **VII.** = VII.
- **IX.** = IX.
- **LC** = LC
- **W. Java** = W. Java
- **N/A** = N/A
| Family | Genus | Species | Plant Name | Cell Line(s) | Percentage (± Standard Deviation) | Region | Country | Location/Reference |
|------------|------------------------|-----------------------------------|-----------------------------|--------------|-----------------------------------|-----------|---------|-------------------|
| Compositae | Smallanthus sonchifolius | (Poepp.) H.Rob | Daun insulin, yakon | HepG2 | 58.2 ± 1.9 | II | Japan | N/A |
| | Taraxacum campylodes | G.E. Haglund | Anddelion | MCF7 | 190.5 | III | Europe | N/A |
| | Tithonia diversifolia | (Hems.l.) A.Gray | Bunga matahari meksiko | HeLa | 3.38 | I.D | C. America | N/A |
| | Vernonia amygdalina | Delile | Daun pahit, daun afrika | MCF7 | 56/46 | II | China | N/A |
| | Vernonia arborea | Buch. -Ham. | Merambung | MDA-MB-231 | 8.02/6.13/19.32 | | W. Sumatra | N/A |
| Cornaceae | Alangium chinense | (Lour.) Harms | Kicareuh | HeLa | >12.5 | II | China, Jambi | N/A |
| | Alangium javanicum | (Blume) Wangerin | Meranti putih | N/A | N/A | IV | Lampung | LC (World Conservation Monitoring Centre, 1998) |

Contains (3R,3aS,6aR,8S,9aR,9bS)-8-Hydroxy-6,9-dimethylene-3-(((R)-1-(naph-thalen-1-yl)ethyl)-amino)methyl)decahydroazuleno [4,5-b] furan-2(3H)-one and (3R,3aS,6aR,8S,9aR,9bS)-8-Hydroxy-6,9-di-methylene-3-(((R)-1-(naphthalen-1-yl)ethyl)amino)methyl)decahydroazuleno [4,5-b] furan-2(3H)-one.
Family	Genus	Species/Origin	Tissue/Region	Assay	Bioactivity	Status	Location/Ref.					
Cornaceae	*Camptotecha acuminata*	Decne. Pohon bahagia	MDA-MB-435S	Subfraction	0.74	LB	Contains camptothecin N/A N/A IV.E.38;					
Crassulaceae	*Cheilocostus speciosus*	(J.Koenig) Crepe ginger	HepG2	Crude	13.87 ± 1.4	II	W. Java N/A I.K.142.					
	Kalanchoe beharensis	Drake	HL-60	Essential oil	25.0 ± 0.6	II	N/A VU VLD.62, 144.					
Cupressaceae	*Cryptomeria japonica*	(Thumb. ex L.) D.Don	KB	Subfraction	3.43	LB	Contains crytotrione China, Japan NT (Thomas et al. 2013) I.I.15-15a; I.K.201-201a; II.B. 11; III.B.12-12a-12b; XIII.B.22; XIV.B.22-22a-22b; III.C.58-58a-58b; V.I.4; III.E.3; V.I.A.25; V.I.E.6-6a.					
	Cupressus lusitanica	Mill. Cemara meksiko	THP-1 DU-145	Crude	60.8 ± 5.8	II	Guatemala-l, Mexico N/A IV.E.8; V.I.35-35a.					
	Cupressus sempervirens	L. Cemara italia	NBA-4 H.Ela MCF7 HepG2	Essential oil	33.3 ± 7.4	III	Europe N. India, S. Europe, W. Asia LC (Farjon 2013) III.C.7; V.B.1-1a, 5a; V.I.A.1.					
	Juniperus chinensis	L. Cemara cina	HT-29 EACC C32	Subfraction	14.05	II	China, Himalaya LC (Farjon 2013) II.A.53; III.C.49-49a-49b; V.C.16-16a-16b; V.I.A.3-3a A.44; L.G.39-39a-39b; II.A.3; III.C.130-130a; XI.A.20-20a-20b.					
	Juniperus procera	Hochst. ex Endl.	CaCo-2	Crude	8.8	I.D	Kenya LC (Farjon 2013) I.D.44; L.G.39-39a-39b; II.A.3; III.C.130-130a; XI.A.20-20a-20b.					
	Juniperus procumbens	(Siebold ex Endl.) Miq.	Japanese juniper	N/A	N/A	IV	Contains deoxypodophyllotoxin W &S. Korea, S. Japan LC (Farjon and Carter 2013) I.G.12.					
Family	Species	Common Name	Collection	Essential oil	IC50 (μM)	Cell Line	LC	Country	Ref.			
-----------------	-----------------------------	------------------------	------------	---------------	-----------	-----------	------------	--------------	-----------------			
Cupressaceae	Juniperus virginiana L.	Red juniper, cemara angina kerucut	A549	Subfraction	9.2	HepG2	LC	N. America	(Yen et al. 2012)			
			Hep3B			Hep3B						
			A549			MCF7						
			MCF7			MDA-MB-231						
			NIH3T3									
Cupressaceae	Platyclus orientali: (L.) Franco	Cemara kipas	A549	Subfraction	7.6	MKN-45	LD	Hungary	(Mukherjee et al. 2014)			
			N/A									
Cupressaceae	Thuja occidentalis L.	White cedar	A549	Subfraction	0.002	N/A	N/A	N. America	(Nagata et al. 2016)			
Cupressaceae	Thuja standishii (Gord.) Carr	Cemara japang	A549	Subfraction	11.4	N/A	N/A	Japan	(Tanaka 2000)			
Cupressaceae	Thujopsis dolabrata (L.) Siebold and Zucc.	Hiba, asunaro	MKN-45	Essential oil	0.002	N/A	N/A	Japan	(Al-Garaawi et al. 2019)			
Cyperaceae	Cyperus alternifolius L.	Umbrella papyrus	A549	Subfraction	11.2	N/A	N/A	Japan	(Al-Garaawi et al. 2019)			
									(Dante et al. 2019)			
Dilleniaceae	Dillenia philippinensis Rolfe	Katmon	A549	Crude	11.92	N/A	N/A	Philippines	(Dante et al. 2019)			
					± 1.91							
					± 1.91							
					± 1.91							
					± 1.91							
Dilleniaceae	Dillenia serrata Thunb.	Simpur	A549	Crude	19.77	N/A	N/A	C. Sulawesi	(C. Sulawesi and BGCI 2019)			
					± 2.22							
					± 2.22							
					± 2.22							
Dioscoreaceae	Dioscorea bulbifera L.	Gadung, gembolo	A549	Crude	11.18	N/A	N/A	C. Sulawesi	(C. Sulawesi and BGCI 2019)			
					± 0.71							
					± 0.71							
					± 0.71							
					± 0.71							
Family	Genus	Species	Habitat	Subfraction	HG	L.A	Contains	I.D.	Location	Climate	I.D.	Climate
---------------------	--------------------------------	--------------------------------	------------------	-------------	----------	--------------	-------------------	------	----------------	---------	------	---------------
Dioscoreaceae	*Tacca chantrieri*	Andre	Bunga kelelawar hitam	Subfraction	0.81	0.79	(Ni et al. 2015)		Aceh	N/A		L.B.08-68a.
Dipterocarpaceae	*Shorea javanica*	Koord. and Valeton	Damar	Subfraction	4.7	7.5	(Ukiya et al. 2010)		Lampung	EN (Bars-tow 2018)		IX.C.52-52a, 56-56a, 61-61a.
Dipterocarpaceae	*Shorea platyclados*	Slooten ex Endert	Meranti merah	N/A	N/A	N/A	(Saroyobudiyono and Aisyah 2006; Honari et al. 2019)		Banten	EN (Ashton 1998)		IX.C.45-45a-45b.
Ebenaceae	*Diospyros celebica*	Bakh.	Black ebony	N/A	N/A	N/A	(Mallavadhani et al. 1998)		Sulawesi	VU (World Conservation Monitoring Centre 1998)		III.D.38, 54; III.D.41, 43.
Ebenaceae	*Diospyros discolor*	Willd.	Buah bisbul, samolo, butterfruit	Subfraction	0.8	12.1	(Su et al. 2015)		W. Java	N/A		IX.B.151-151a-151c.
Ebenaceae	*Diospyros kaki* L.f.		Kesmek, persimon	Subfraction	6.04	13.2	(G. Chen et al. 2007)		China, Japan	LC (Zhao, Yu, BGCI and IUCN, 2019)		LA.23-23a; III.D.37-37a, 39-39a-39b, 46, 48.
Elaeocarpaceae	*Elaeocarpus densiflorus*	Knuth	N/A	N/A	N/A	N/A	(Shah et al. 2011)		Papua	N/A		VII.C.328-328a-328b, 457-457a-457b, IX.B.33.
Elaeocarpaceae	*Elaeocarpus glaber*	Blume	Bengkinang	Crude	297	III	(Subarnas et al. 2012)		Jambi	N/A		
Elaeocarpaceae	*Elaeocarpus petiolatus*	(Jacq.) Wall.	Derumun babi	Subfraction	N/A	IV	(Cho, 2019)		S. Sumatra Jambi Lampung Bengkulu	LC (Zhao, Yu, BGCI and IUCN, 2019)		VII.C.384; IX.B.65; IV.A.141-141a; IV.A.142 VII.C.353-353a.
Elaeocarpaceae	*Elaeocarpus reticulatus*	Sm.	Blueberry ash	Crude	22.14	II	(Turner et al. 2020)		W. Sumatra	N/A		
Elaeocarpaceae	*Elaeocarpus serratus*	L.	Ceylon olive	N/A	N/A	IV	(Geetha et al. 2013)		W. Sumatra	N/A		
Elaeocarpaceae	*Elaeocarpus sylvestris*	(Lour.) Pott.	The woodland elaeocarpus	N/A	N/A	IV	(L. Wu et al. 2019)		W. Java	LC (BGCI and IUCN, 2019)		VII.C.249.
Family	Species	Plant Type	Plant Part	Assay	Plant Part Assay	Geographical Location	IC50 Values (µM)	References				
--------------	--	-------------	-----------------	-----------	------------------	------------------------	--------------------	---				
Ericaceae	*Vaccinium variegataefolium* (Blume) Miq	Cantigi	T-47D Crude		II	Malesia	75.23 (Kosasih et al. 2019)					
			MCF7	88.89		W. Java						
Euphorbiaceae	*Acalypha hispida* Burm.f.	Red hot cat’s tail	N/A Subfraction	N/A	IV	New Guinea	28.03 ± 6.44 (Lim et al. 2011)					
			U87-MG Crude	89.63 ± 2.12	II	Fiji Isl.						
Euphorbiaceae	*Acalypha wilkesiana* Müll.Arg.	Akalipa, daun renda	N/A Subfraction	N/A	IV	C. Sulawesi						
			U87-MG Crude			L. Willd.						
Euphorbiaceae	*Aleurites moluccanus* (L.) Willd.	Kemiri	N/A Subfraction	N/A	IV	LC						
Euphorbiaceae	*Croton argyrous* Blume	Calik angin	LU-1 Crude	1.7		Kodiak						
Euphorbiaceae	*Euphorbia milii* Des Moul.	Pakis giwang, bunga euphoria	N/A Subfraction	N/A	IV	Madagascar						
Euphorbiaceae	*Euphorbia pulcherrima* Willd. ε Klotzsch	Ehrlich ascites	Subfraction	3.32		Mexico						
Euphorbiaceae	*Jatropha gossypiifolia* L.	Jarak merah	HepG2-1886 Subfraction	0.99		S. E. Sulawesi (BGC and IUCN, 2019)						
			WIDR HeLa AGS	2.79								
			Subfraction	1.60								
				0.78								
Euphorbiaceae	*Macaranga rhizinoides* (Blume) Müll.Arg.	Awu	P388 Subfraction	4.97		Java						
Euphorbiaceae	*Macaranga tanarius* Parasol leaf tree (L.) Müll.Arg.	U87 A549	Subfraction	0.0144		W. Sumatra						
				0.09								
Euphorbiaceae	*Macaranga triloba* (Thunb.) Müll.Arg.	Mahang damar	Hepa 1c1c7 Subfraction	N/A	IV	W. Java						

IC50 Values (µM): The concentrations at which 50% of the maximum effect is achieved.

Geographical Location: The geographical location of the plant collection.

References: The references for the study and findings.

Assay: The type of assay used to determine the IC50 values.

Plant Part Assay: The specific plant part used in the assay.

Plant Part: The part of the plant used in the study.

Plant: The name of the plant species used in the study.
Family	Genus and Species	Plant Name	Coat No.	Coat No.2	Coating	Source Code	Source Code	Source Code	Source Code	Source Code	Source Code						
Equisetaceae	*Equisetum ramosissimum* Desf.	Branched Horsetail	A375	A375.S2	A2058	Crude	N/A	IV	Melanoma inhibitor	N/A	LC (Lansdown, 2018)	PT.169.					
Fagaceae	*Quercus acuta* Thunb.	Japanese green oak	N/A	N/A	Subfraction	25.5	IV	Contains chlorogenic acid	N/A	Japan	LC (BGCI and IUCN, 2019)	XIII.A.36; XIII.B.55.					
Gnetaceae	*Gnetum gnemon* L.	Melinjo	P388	N/A	Subfraction	2.08	II	Contains gnetol and (+)- lirioresinol B	N/A	LC (Baloch, 2011)	IX.A.14.						
Hernandiaceae	*Hernandia nymphaeifolia* (J.Presl) Kubitzki	Kampis tiongkok	KKU-M156	HepG2	Subfraction	1.68	N/A	LB. Contains ß- apopicropodo-phyllin, dehydro-podophyllotoxin, and (-)- maculatin	Papua	N/A	VII.C.142-142a, 143-143a.						
Hydrangeaceae	*Dichroa febrifuga* Lour.	Hidakagea	MDA-MB-231	HeLa	SiHa	Crude	0.08	143.18 ± 13	106.45 ± 16	130.95 ± 3.8	LC (World Conservation Monitoring Centre, 1998)	IV.D.12-12a; XII.A. 18-18a.					
					C-33A												
Hypericaceae	*Cratoxylon formosum* (Jacq.) Benth. and Hook.f. ex Dyer	Butun	MCF7	HeLa	SiHa	Crude	0.08	143.18 ± 13	106.45 ± 16	130.95 ± 3.8	LC (World Conservation Monitoring Centre, 1998)	IV.D.12-12a; XII.A. 18-18a.					
					C-33A												
Iridaceae	*Iris halophila* Pall.	Long leafed flag	KB	N/A	Subfraction	5.22	II	Contains halophilol A	Asia, Europe	N/A	I.J.I.22.						
	Iris pseudacorus L.	Yellow flag, yellow iris	N/A	N/A	Subfraction	6.79	IV	Contains irisinone A	America	LC (Song, et al., 2019)	IV.E.20.IV.E.49.						
Juglandaceae	*Pterocarya stenoptera* DC.	Chinese wingnut	MCF7	N/A	Subfraction	28.92	III	W. Java	N/A	L.D.81.							
Lamiaceae	*Clerodendrum trichotomum* Thunb.	Harlequin glorybower	HeLa	N/A	Subfraction	29.82	II	Contains (20R,22E,24R)-Stigmasta-5,22,25-trien-3b,7b-diol	China	N/A	IV.C.7-7a.						
Lamiaceae	*Rotheca serrata* (L.) Steane and Mabb.	Senggugu	EACC	EACC	Crude	>250	III	Myanmar, India	N/A	IV.C.7-7a.							
Family	Genus	Species	Country	Type	Culture Number	MDA-MB-231	MDA-MB-435	B16F10	CaCo-2	C6	SNB-75	N’gaman et al. 2014	LA	Jambi	LC (de Kok, 2019)	XVIII.B.55-55a	
------------	------------------------	--------------------------------	------------------	-----------------	----------------	-------------	-------------	---------	---------	----	--------	---------------------	----	-------	-------------------	----------------	
Lamiaceae	*Gnetina arborea*	Jati putih	MDA-MB-231	Crude	0.246	0.379	0.246	0.250	0.304	0.404	(N’gaman et al. 2014)						
			MDA-MB-435														
			B16F10														
			CaCo-2														
			C6														
			SNB-75														
Lamiaceae	*Leonurus cardiaca*	Motherwort	N/A	N/A	N/A	(Sadowska et al. 2017)	IV Immunomodulator and antioxidant	Europe	N/A	IV.B.2-2a.							
Lamiaceae	*Mentha canadensis*	American wild mint	N/A	N/A	N/A	(Kapp 2015; Hossan et al. 2014)	IV. Contains Rosmarinic acid, cathecin	Europe	N/A	I.G.180.							
Lamiaceae	*Mentha x piperita*	Peppermint	SPC-A1	Essential oil	10.89	16.16	38.76										
			K-562														
			SGC-7901														
Lamiaceae	*Salvia farinacea*	Salvia ungu	MCF7	Crude	59.8 ± 0.1	279.5 ± 10.1	77.8 ± 3.5	87.4 ± 5.4									
			NHII-H460														
			HeLa														
			HepG2														
Lamiaceae	*Salvia splendens*	Salvia merah	N/A	N/A	N/A	(Chopra et al. 2016)	IV Contains quercetin	Brazil	N/A	L.J.I.1.							
Lauraceae	*Cinnamomum burmannii*	Holim, cassia paandg	T-47D	Crude	75	(Anjarsari et al. 2013)	II					China, Japan	N/A				
Lauraceae	*Cinnamomum camphora*	Camphor	MCF7	Crude	71.2 ± 26.8	(Satyal et al. 2013; Bandopadhyaya et al. 2015)	II					China, Japan	N/A				
Family	Genus	Species	Common Name	Cell Line	Treatment	Subfraction	LC-MS/MS	Bioactivity	Source								
--------	-------	---------	-------------	-----------	-----------	-------------	---------	------------	--------								
Lauraceae	Cinnamomum	cassia (L), J.Presl	Casia cina	HL-60 A549	Subfraction	3.18	4.38	(Ngoc et al. 2014)	LB Contains Coumacassia [6,7-dimethoxy-8-O-(2',3'-dimethyloct-6-en-5-one-1-yl)coumarin]	S. Sumatra, W. Sumatra, China, Myanmar, Jambi	W. Java	N/A	II.A.62-62a; II.A.59-59c; VII.C.80; IX.B.108, 109; VII.C. 149; VIII.B. 81-81a; XIX.A.12-12a				
Lauraceae	Cinnamomum	iners Reinw. ex Blume	Huru geding, kayu tuha	HCT-116	Crude	31		(Ghalib et al. 2011)	II	W. Sumatra, W. Java	LC (de Kok, 2019)						
Lauraceae	Cinnamomum	subavenium Miq.	Sabal-sabal	A549 DU-145 LNCaP	Subfraction	2.24 ± 0.03	2.42 ± 0.01	7.01 ± 0.03	(R.-J. Lin et al. 2008)	Jambi	LC (de Kok, 2020)						
Lauraceae	Cinnamomum	verum J.Presl	True cinnamon	Hep3B	Crude	3.62		(Perng et al. 2016)	I.B. Contains 2-methoxycinnamaldehyde	Jambi, Bengkulu	N/A	N/A	VIII.B.34-34a; VIII.B.337.				
Lauraceae	Cinnamomum	verum J.Presl	True cinnamon	Hep3B	Crude	58		(Abd Wahab and Adzmi 2017; Kubatka et al. 2020)	II. In vivo study	N/A	N/A	N/A	VIII.B.337.				
Lauraceae	Cinnamomum	verum J.Presl	True cinnamon	Hep3B	Crude	>10		(Awang et al. 2008; Cortez et al. 2017)	I.A. Contains (-)neocaryachine	Formosa	N/A	XV.B.15-15a.					
Lauraceae	Cryptocarya	chinensis (Hance) Hems.	Cryptocarya cina	L1210 P388 A549 HCT-8 P388	Subfraction	0.1	0.002	0.001	(T.-S. Wu et al. 2012)	I.A. Contains (-) -antofine and dehydroantofine	Java, Sumatra	N/A	VLD.50.				
Lauraceae	Cryptocarya	costata Blume	N/A						(Usman et al. 2006)	I.B. Contains 2',4' -dihydroxy-5',6'-dimethoxychalcone	C. Java	LC (de Kok, 2020)	VIII.B.263.				
Lauraceae	Cryptocarya	crassinervia Miq.	Meandg batu	A549, MCF7, HT-29	Crude	>10		(Awang et al. 2008; Cortez et al. 2017)	II. Contains (-) Grandis	W. Sumatra	N/A	N/A	VII.C.307.				
Lauraceae	Cryptocarya	konishii Hayata	N/A	P388 HL-60 A549	Subfraction	0.01	0.55	1.98	4.28	(Kurniadewi et al. 2010)			Formosa	N/A	XV.B.15-15a.		
Lauraceae	Cryptocarya	laevigata Blume	Red-fruited laurel	A549	Subfraction	0.021	0.086	0.134	0.074	0.078	(Suzuki et al. 2018)			China, Myanmar, Lampung	W. Java	LC (BGCI and IUCN, 2018)	XIV.A.30-30a; IX.A.60; XV.B.27.
Lauraceae	Cryptocarya	strictifolia Kosterm.	N/A	A549 MDA-MB-231 MCF7 KB KB-VIN N/A	N/A	N/A		(Juliawaty et al. 2000; Rasul et al. 2013)	IV Contains pinocembrin	N. Sulawesi	N/A	VIII.A.32.					
Family	Species	Common Name	Cell Line	Concentration (IC₅₀)	Source/Reference	Region/Location											
-------------	--------------------------------	--------------------------------------	-----------	----------------------	--	-------------------------											
Lauraceae	Laurus nobilis L.	Bay leaf	MCF7	Crude 28 ± 12.3 ± 4.0	(Abu-Dahab et al. 2014)	Medit Reg.											
Lauraceae	Lindera polyantha Boerl.	Spicewood, spicebush, benjamin bush	N/A	Subfraction	N/A	W. Java											
Lauraceae	Litsea cubeba (Lour., Pers.)	Kilemo, krangean	J5	Crude 50 ± 100	(Ho et al. 2010)	W. Java, S. Sumatra, W. Sumatra											
Lauraceae	Litsea elliptica Blume	N/A	A549	Crude	N/A	W. Java Lampung											
Lauraceae	Litsea garciae Vidal	N/A	MCF7	Crude 66 ± 73	(Kutoi et al. 2012)	C. Sulawesi, S. Sumatra, W. Sumatra											
Lauraceae	Litsea mappacea Boerl.	Huru koneng	MCF	Crude 200 ± 66	(Subarnas et al. 2012)	W. Java, W. Sumatra											
Lauraceae	Litsea monopetala (Roxb.) Pers.	Alpukat	MCF7	Subfraction	20.48 ± 12.3	IV											
Leguminosae	Acacia caffra (Thunb.) Willd.	Hook thorn	HeLa	Crude 185.00 ± 0.4	(Twilley et al. 2017)	S. Africa											
Leguminosae	Acacia farnesiana (L.) Willd.	Kembang jepun	HepG2	Subfraction	1.87 ± 0.04	Trop. America											

Note: Concentrations are provided in μM or IC₅₀ values.
Family	Genus	Species	Source	Type	Subfraction	IC50 (µM)	Activity	Country	Location
Leguminosae	Acacia	Acacia tenuifolia (L.)	M109 A2780	Subfraction	1	13.0	LB	Venezuela	VII.A.62-62a.
		Willd.					Contains Albiziatrioside A 3-O-[a-D-xylono-pyranosyl-(1f2)-r-Larabinopyranosyl-(1f6)-2-acetamido-2-deoxy-a-D-glucopyranosyl]oleanolic acid, 3-O-[r-L-Arabino-pyranosyl-(1f2)-r-L-arabinopyranosyl-(1f6)-2-acetamido-2-deoxy-a-D-glucopyranosyl]oleanolic acid, Acacioside B and Acacioside C		
	Bauhinia	Bauhinia integrifolia	N/A	Crude			IV	Malaya & Sumatra	N/A
		Roxb.	Flame vine bauhinia				Antiangiogenic		III.C.54.
		Bauhinia strychnifolia	HT-29 HeLa/MCF7	Subfraction	0.00217	0.0927	LA	C. Sulawesi	N/A
		Craib	Yhanang andg		0.05857	0.000547	Contains 3,5,7,3′,5′-Pentahydroxyflavanonol-3-O-α-Lrhamnopyranoside		VII.B.220.
							Antiangiogenic		
	Bauhinia variegata	Bauhinia variegata L.	Crude HEP2 HBL-100		250	>300	III	Myanmar, E. India	LC (Chadburn, 2012)
			Camel’s foot tree						IL.D.7; IV.D.7.
	Caesalpinia	Caesalpinia gilliesii	MCF7	Crude	36.5		II	Australia	I.K.59-59a.
		(Hook.) D.Dietr.	Kembang merak						
	Caesalpinia	Caesalpinia sappan L.	4T1	Crude	13.1		I.D	Aceh	LC (World Conservation Monitoring Centre, 2018)
									IX.B.70.
	Caesalpinia spinosa	Caesalpinia spinosa	Divi-divi, tara	K-562	Subfraction	44.50 ± 4.05	II	Pantro-pical	N/A
	(Molina) Kuntze								IV.E.30b; XIV.A.47; XIV.B.4-4a
									XIX.A.16.
	Dalbergia	Dalbergia parviflora	KB/MCF7	Subfraction	4.18	5.37	LA	W. Java	LC (Chadburn, 2012)
	parviflora	Roxb.	Akar laka		3.47		Contains secundiflorol H		
	Deris	Deris elliptica	HCT-116 MCF7	Crude	37 ± 1.5	34 ± 0.8	II	Lampung	N/A
	elliptica	(Wall.) Benth.	Tuba						IX.B.103-103a.
Family	Genus	Species	Cell Line	Concentration	Source	LC	American Trop.	LC (BGCI and IUCN, 2019)	LC (BGCI and IUCN, 2019)
-------------------	--------------------------------	--------------------------------	-----------	---------------	---	------------------	-----------------	--------------------------	--------------------------
Leguminosae	*Enterolobium*	*contortisiliquum* (Vell.) Morong	HepG2	15.7	(Matloub et al. 2018; Abdel-Mageed et al. 2019)	LC	Contains contortisilioside E		
		Red-hot poker, coral tree	MCF7	12.3	(P. H. Nguyen et al. 2009)	LA	Contains erybredin B	E. Africa	
Leguminosae	*Erythrina*	*abbyssinica* DC.	MCF7/TAMR	4.61	(Abdel-Mageed et al. 2019)				
			MCF/ADR	2.42					
			MDA-MB-231	2.19					
				3.01					
Leguminosae	*Erythrina*	*crista-galli* L.	MCF7	23.3 ± 1.9	(Ashmawy et al. 2016)	II		Brazil	
Leguminosae	*Erythrina*	*fusca* Lour.	HeLa	76	(Meiyanto et al. 2007)	II		C. Java	
Leguminosae	*Flemingia*	*macrophylla* (Willd.) Merr.	MCF7	N/A	(W.-C. Lai et al. 2013)	IV	Contains flemiphilippinin D and flemichin-D	Africa, Asia	
		Chinese honey locust		19.54	(Yu et al. 2019)		II Contains gleditsiside F	China	
Leguminosae	*Pterocarpus*	*indicus* Wild.	N/A	N/A	(Takeuchi et al. 1986; J. Yang et al. 2020)	IV	Contains cinnamaldehyde (E)	Maluku	
Leguminosae	*Sophora*	*tetrapetra* J.F.Mill.	Kowhai	N/A	(Baskar et al. 2010; McDougal et al. 2018)	IV	Contains sophoraflavanone G	C. Sulawesi	
		Ki ucing	HSC-2	<8	(Shirata et al. 2001)			New Zealand	
			HSG	8				N/A	
				N/A					
Malvaceae	*Cola*	*acuminata* (P. Beauv.) Schott and Endl.	LNCaP DU-145	15	(Solipuram et al. 2009)	I.D		Borneo	
		Bissy, true kola		3.6				LC (Cheek and Lawrence 2019)	
Malvaceae	*Cola*	*nitida* (Vent.) Schott and Endl.	HepG2	6.5	(Endrini and Marsiati 2009)	I.D		W. Africa	
		Kola nut						LC (Cheek and Lawrence 2019)	
Malvaceae	*Hibiscus*	*rosasinensis* L.	K-562	30.90 ± 1.10	(Arullapan et al. 2013)	II		Japan: Sakarotsui	N/A
		Kembang sepatu						N/A	

Notes:
- The concentrations are typically reported as IC50 values.
- LC stands for Leukemia Cell.
- American Trop. refers to the American tropics.
- V.I. indicates the specific volume and index in the IUCN Red List classification.
| Family | Species Name | Common Name | GenBank Accession | Treatment | Concentration | Constituents | Location | Status | Notes |
|-----------------|-----------------------------------|------------------------------------|-------------------|-----------|---------------|---|-------------------------------|----------|---------------------------|
| Malvaceae | *Hibiscus syriacus* L. | Kembang sepaturi mawar | A549 | Subfraction | 2.59 | Contains betulin-3-ceaffeate | Syrian Arab Republic | N/A | VI.C.13; XXI.A.28. |
| Melastomataceae | *Melastoma malabathricum* L. | Rhododen-drone | MCF7 | Crude | 7.14 | Contain betulin-3-ceaffeate, propyl-5-en-3-acetate | Republic of India, Malaysia | N/A | IV.C.72; XIV.A.39, 62. |
| Meliaceae | *Aglia angustifolia* (Miq.) Miq. | Kembang sepatu mawar | MCF7 | Subfraction | 29.87 | Contains 2,24-(E)-propyl-5-en-3-acetate | Syria | N/A | VI.C.13; XI.A.28. |
| Meliaceae | *Aglia argentea* Blume | Bayur | LU-1 | Subfraction | 0.001 | Contains desmethylnocaglamid | India | I.C | IV.C.72; XIV.A.39, 62. |
| Meliaceae | *Aglia edulis* (Roxb.) Mamuara disik Wall. | | LU-1 | Subfraction | 0.001 | Contains 1-O-acetate | Malaysia | I.A | III.F.76; IX.A.154. |
| Meliaceae | *Aglia elliptica* (C.DC.) Blume | Kembang sepaturi mawar | LU-1 | Subfraction | 0.9 | Contains 2,24-(E)-propyl-5-en-3-acetate | Aceh | I.A | IX.C.39-39a.IX.165. |
| Meliaceae | *Aglia eximia* Miq. | P388 | Subfraction | 4.26 ± 0.09 | (Awang et al. 2012; Harneti et al. 2014) | N/A | II | VIII.B.8; III.F.75; IX.A.191; IX.A.179. |
| Meliaceae | *Aglia forbesii* | Langsat burung | KB | Subfraction | 0.006 | Contains dammar-20,25-diene-3b,24-diol and 24(E)-cycloart-24-ene-26-ol-3-one | Aceh | N/A | N/A |
| Meliaceae | *Aglia lawii* (Wight) C.J.Salandha | Karakil | N/A | N/A | N/A | Contains aglinin A, aglinin B, and rocaglaol | W. Java | N/A | N/A |
| Meliaceae | *Aglia odorata* Lour. | Pacar cina | Subfraction | 4.43 | (Cai et al. 2010) | N/A | IV | N/A |
| Meliaceae | *Aglia odoratissima* Blume | Kasai | P388 | Crude | N/A | Contains dolabellane diterpenoids | W. Java | N/A | IV.B.118 |
| Meliaceae | *Aglaia odoratissima* Blume | | | | | | | | |
| Family | Genus | Species | Culture | Subfraction | Concentration | Source | Country |
|------------|---------------------------|----------------------------------|------------------|-------------|---------------|--------------|---------------|
| Meliaceae | Aglaia silvestris | (M.Roem) Merr. | Asam mbawang | Lu1 | 1.5 N/A | LNCaP | W. Java |
| | | | LNCaP | 1.5 | | | NT |
| | | | MCF7 | 1.5 | | | III.F.79. |
| Meliaceae | Aglaia tomentosa Teijsm. and Binn. | Nirmula | N/A | N/A | N/A | N/A | N/A |
| | Chisocheton lasiocarpus (Miq.) Valeton | Lamboi, latupak | MCF7 | Subfraction | 1.82 | L.A | N/AAfrica |
| | | | | | | | N/ATropis |
| | Chisocheton patens Blume | | MCF7 | Subfraction | 15.05 | L.A | N/AC. Java |
| | | | | | | | N/A |
| | Sandoricum koetjape (Bur. f.) Merr. | Kecapi, mangga hutan | MCF7 | Subfraction | 44-48 | L.A | India to S. China & Malesia |
| | | | | | | | LC Lampung |
| | Toona ciliata M. Roem. | Cedar merah | Crude | >200 | | III | Papua |
| | | | | | | | LC Lampung |
| | Toona sinensis (Juss.) Surian, mahoni cina | MGc-803 PC-3 A549 MCF7 NIEF3 | Subfraction | 7.09 | 5.65 | L.A | India to S. China & Malesia |
| | | | | | 2.59 | | LC Lampung |
| | | | | | 4.15 | | | |
| | | | | | 2.48 | | | |
| | Toona sureni (Blume) Merr. | Suren | Crude | 31 | 31 | II | India to S. China & India |
| | | | | | 65 | | LC Lampung |
| | | | | | | | | |
| Menispermaceae | Cocculus orbiculatus (L.) DC. | Cincau cina | HepG2 Hep3B MCF7 | Subfraction | 0.6 0.75 2.0 1.2 | L.A | W. Sumatra |
| | | | | | | | N/A |
| Menispermaceae | Stephania hernandifolia (Wiild.) Walp. | Areuy geureung, tayungan | MDA-MB-231 KB | N/A | N/A | IV | N/AD. 70a-70b |
| Moraceae | Artocarpus altitis (Parkinson ex F.A.Zorn) | Sukun | Crude | 40 | | II | Papua |
| | | | | | | | N/A |

Note: Concentration values are given in micrograms per milliliter (µg/mL).
Moraceae	Artocarpus elasticus	Benda, bendho	A549 Hep3B HT-29 MCF7	Subfraction	1.1 3.2 3.1 2.7 35.27	(Ko et al. 2005) I.A Contains artelastoxanthone and artonol A Kaliman-tan W. Java Bengkulu C. Sulawesi Java N/A LC (BGCI and IUCN, 2018) VIII.C.18, 25; V.III.69; VII.C.5; VII.B.218; XL.I.8.	Moraceae	Artocarpus heterophyllus Lam. Nangka P388 Subfraction	1.7	(Ko et al. 2005) I.A Contains artelastoxanthone and artonol A Kaliman-tan W. Java Bengkulu C. Sulawesi Java N/A LC (BGCI and IUCN, 2018) VIII.C.18, 25; V.III.69; VII.C.5; VII.B.218; XL.I.8.
Moraceae	Artocarpus lanceifolius Roxb. Kaleang A549	3.2 3.1 2.7 133	(Subarnas et al. 2012) I.B. Contains Artoindonesiani n, artobiloxanthone, and cycloartobiloxanthone C. Sulawesi N/A LC (BGCI and IUCN, 2019) VI.C.76; XIII.A.43; XIII.B.53.	Moraceae	Ficus benjamina L. Beringin MCF	133	(Subarnas et al. 2012) I.B. Contains Artoindonesiani n, artobiloxanthone, and cycloartobiloxanthone C. Sulawesi N/A LC (BGCI and IUCN, 2019) VI.C.76; XIII.A.43; XIII.B.53.			
Moraceae	Ficus deltoidea Jack. Tabat barito DU-145	93.11	(Patel and Patel 2011) II. Contains oleanolic acid, friedelin, and epilupeol acetate W. Java N/A LC (BGCI and IUCN, 2018) VII.C.76; XIII.A.43; XIII.B.53.							
Moraceae	Ficus drupacea Thunb. Ara oklat-wol, kowang HeLa MCF7 Jurkat HT-29 T24	Subfraction	15.16±1.6 16.28±1.3 19.64±2.6 25.58±1.3 12.81±1.4	(Yessoufou 2015) II. Contains oleanol acid, friedelin, and epi-lupeol acetate W. Sumatra N/A LC (BGCI and IUCN, 2018) II.C.34.						
Moraceae	Ficus fistulosa Reinv. ex Blume Ara, beunying MDA-MB-468 MDA-MB-231 MCF7 MCF10A	0.015 0.191 0.362 4.299	(Al-Khdhairawi et al. 2017) I.A Contains (-) tengechlorenine Jambi Java, Sumatra W. Java N/A LC (Shao et al., 2019) II.C.45; VII.C.266-266a; VII.C.67-67a; VII.B.40-40a; X.B.8. II.C.49a-49b-49c.							
Moraceae	Ficus hirta Vahl. Gegedanganara HeLa	Crude	>1000	(Zeng et al. 2012) III. Contains albanol A China N/A LC (Shao et al., 2019) II.C.45; VII.C.266-266a; VII.C.67-67a; VII.B.40-40a; X.B.8. II.C.49a-49b-49c.						
Moraceae	Ficus religiosa L. Ara A549	N/A 200	(Subarnas et al. 2012) IV. Engineered with copper oxide nanoparticle Srilangka N/A LC (Shao et al., 2019) II.C.45; VII.C.266-266a; VII.C.67-67a; VII.B.40-40a; X.B.8. II.C.49a-49b-49c.							
Moraceae	Ficus septica Burm.f Awar-awar T-47D	9.3	(Nugroho et al. 2013) I.D Malesia W. Java, Sumatra China N/A LC (BGCI and IUCN, 2019) II.C.14; II.C.41; II.C.37; XV.A.25.							
Moraceae	Morus alba L. White mulberry HL-60 CRL1579 MCF7	Subfraction	0.95 5.56 575±15	(Kikuchi et al. 2010) LB Contains albanol A III Temp. Asia N/A LC (BGCI and IUCN, 2019) II.C.14; II.C.41; II.C.37; XV.A.25.						
Moraceae	Morus nigra L. Blackberry HEPG2 MCF7 EACC	Crude	58.06	(Abou-Elella and Mourad 2015; Salama et al. 2020) II W. Java N/A LA.90-90a, 107-107a, 108.	Musaceae	Musa acuminata Colla Pisang	Crude	58.06	(Abou-Elella and Mourad 2015; Salama et al. 2020) II W. Java N/A LA.90-90a, 107-107a, 108.	
Family	Genus	Species	Collection	Tissue	Assay	IC50 (μg/mL)	Location	Notes		
Myricaceae	Myrica esculenta	Bayberry, banyan	HepG2, Hela MDA-MB-231	Crude	>1000	(Shod and Shri 2018)	W. Java	N/A		
Myricaceae	Myrica rubra (Lour.)	Yangmei, bayberry	Ca-Co2	Subfraction	24.4 ± 2.4	(Ambrož et al. 2015)	China, Japan	N/A		
Myrtaceae	Callistemon citrinus	Sikat botol	MCF7	Crude	2.29	(Fayemi et al. 2019)	Australia	N/A		
Myrtaceae	Eucalyptus globulus	Gum biru selatan	A549	Crude	N/A	(Adnan 2019)	China	LC (Fensham et al. 2019)		
Myrtaceae	Eucalyptus microcorys	Kayu pohon	MIA-PaCa2	Crude	93.11 ± 3.43	(Bhuyan et al. 2018)	Australia	NT		
Myrtaceae	Eucalyptus robusta	HT-29 U87	A549	Crude	77 ± 2.0	(Vuong et al. 2015)	New S. Wales	NT		
Myrtaceae	Decaspermum fruticosum	Ipis kulit	HT-29	Crude	154	(Subarnas et al. 2012)	W. Java	N/A		
Myrtaceae	Eugenia uniflora L.	Dewandaru	T-47D DU-145	Crude	65	(Ismiyati et al. 2012; Alade-sanmi et al. 2019)	Trop. America	N/A		
Myrtaceae	Melaleuca alternifolia	Tea tree	HT-29	Crude	12.5	(Byahatti et al. 2018)	Australia	N/A		
Family	Genus	Species	Source	Type	Subfraction	IC50 (µM)	Source	Location	LC Code	
---------------	------------------------------	---------------------------	-----------------	--------------	-------------	-----------	-----------------	-------------------	------------------	
Myrtaceae	*Psidium cattleianum*	Strawberry guava	HepG2, AGS, HeLa, SNU-1, SNU-16	Subfraction	0.81	2.51	(Jun et al. 2011)	Brazil	N/A	
Myrtaceae	*Psidium guajava* L.	Jambu biji	KBM5 SCC4 U266	Crude	22.73 ± 2.55	22.82 ± 2.36	20.97 ± 4.39	(Ashraf et al. 2016)	Trop. America	I.K.10.
Myrtaceae	*Rhodamnia cinerea* Jack	Ki beusi	MCF7	Crude	150		(Subarnas et al. 2012)	W. Java		
Myrtaceae	*Syzygium cumini* (L.) Skeels	Black plum	A549	Crude	59 ± 4		(Aqil et al. 2012)	Java		
Myrtaceae	*Syzygium jambos* (L.) Alston	Jambu mawar, Malabar plum	HeLa A431 A375	Crude	56.20 ± 3.00	54.70 ± 0.60	198.00 ± 3.00	(Twilley et al. 2017)	Jambi W. Java	
Myrtaceae	*Syzygium polyanthum* (Wight) Walp.	Salam	4T1 MCF7	Crude	672.6 ± 59.4	126.1 ± 50.9		(Nordin et al. 2019)	W. Sumatra	
Oleaceae	*Olea europaea* L. Zaitun	Zaitun	T24 MCF7	Subfraction	4.09	2.59	(Goulas et al. 2009)	Libya	N/A	
Passifloraceae	*Passiflora suberosa* L.	Markisa, konyal	HCT-116 OVACAR-8 SF-295	Crude	N/A		(Amaral 2019)	Trop. America	N/A	
Pentaphylacaceae	*Ternstroemia gymnanthera* (Wight and Arn.) Sprague	N/A	N/A	N/A	N/A		(Ikuta et al. 2003; Venkatesan et al. 2017)	Java	IV.A.17.	
Phyllanthaceae	*Glochidion eriocarpum* Champ. Ex Benth.	N/A	HL-60 HT-29 MCF7 SK-OV-3	Subfraction	4.92	6.09	(Kiem et al. 2009)	Papua	N/A	
Phyllanthaceae	*Glochidion zeylanicum* (Gaertn.) A.Juss.	N/A	HEK293 HepG2 PC-3	Crude	66.6	2.99	(Sharma et al. 2011)	Jambi LC		
Phyllanthaceae	*Glochidion zeylanicum* (Gaertn.) A.Juss.	N/A	HEK293 HepG2 PC-3	Crude	66.6	2.99	(Sharma et al. 2011)	Jambi LC		
Family	Species	Common Name	Tumor Cell Line	Concentration	Country	IUCN Status	Other Information			
------------------	--	-------------	-----------------	---------------	--	-------------	--------------------			
Phyllanthaceae	*Phyllanthus emblica* L.	Kimalaka, malak, kemloko	MCF7	Crude 54	W. Java	N/A	VII.C.144-144a-144b, 271-271a, III.B.3a-3b; IV.F.2; XI. A.13-13a; XIII.B.23-23a; XIV.B.34.			
		Pinus khasi, pinus benguet, pinus tiga jarum	U937	Crude 299.0 ± 5.2 52.0 ± 5.8	(Weerapree-yakul et al. 2016)					
Pinaceae	*Pinus kesiya* Royle ex Gordon	Pinus khasi, pinus benguet, pinus tiga jarum	HepG2	Crude	(Ponraj and Kannan 2014)					
		HeLa	Crude	384.10	(Proboning-rat et al. 2019)	III				
Pinaceae	*Pinus merkusii* Jungh. & de Vriese	Pinus, tusam	HeLa	Crude	Aceh					
Pinaceae	*Pinus parviflora* Siebold & Zucc.	Japanese White Pine	L929	Subfraction	(Hanaoka at al., 1989)	IV				
Pinaceae	*Pinus yunnanensis* Franch.	Pinus yunnan	Hepa 6	Subfraction	(Lei et al., 2011)	III	Contains planchol E			
Piperaceae	*Piper aduncum* L.	Seuseureuhansirhan	HeLa	Crude	Peru		IV-A.27.			
Plantaginaceae	*Plantago lanceolata* L.	Toucan	MCF7	Crude 674	Europe		III.D.30.			
Poaceae	*Coxia lacryma-jobi* L.	Jali	HT-29	Crude 11.61 ± 0.95	(Manosroi et al. 2016)	LD	Trop. Asia	N/A	I.G.35.	
Poaceae	*Phyllostachys edulis* (Carriere) J.Houz.	Bambu	Hepa 6	Subfraction	China		IV. Contains tricin dan 7-O-methyl-tricin			
Poaceae	*Phyllostachys nigra* (Lodd. ex Lindl.) Muuro	Bambu hitam	A375	Subfraction	China	N/A	IV.C.31.			
Podocarpaceae	*Podocarpus macrophyllus* (Thunb.) Sweet	Luhansung, kusamak	HeLa	Subfraction	(Qi et al. 2018) I.A. Contains 2,3-dihydro-2β-hydroxydopodol, inumakilactone B, 2β-hydroxy-nagilactone F, and nagilactone F					
Family	Species	Common Name	Plant Name	Cell Line	Treatment	IC50 (μM)	IC50 (μM)	Publication		
-------------------	------------------------------	------------------------------	------------	-----------	-----------	-----------	-----------	--		
Polygonaceae	Coccoloba uvifera (L.) L.	MATA AM, CORAL BERRY	N/A	LNCaP	Crude	145 ± 13	N/A	(Fort et al., 2018)		
Primulaceae	Ardisia crenata Sims	MATA AM, CORAL BERRY	N/A	HepG2	Crude	54.98 ± 14.10	42.26 ± 1.82	(Nordin et al., 2017; 2018)		
Primulaceae	Ardisia crispa (Thunb.) A.D.C.	CHRISTMAS BERRY	N/A	MCF7 4T1	Crude	46.82 ± 2.41	44.62 ± 2.11	(Karimi et al., 2016)		
Primulaceae	Embelia ribes Burm.	KICEMANG BEURIT	N/A	P388	Subfraction	1.6	N/A	(Najihah et al., 2014; Suyatno et al., 2014)		
Rhamnaceae	Colletia paradoxa (Spreng.) Escal.	JUJUBE	N/A	HT-29	Crude	96	93	(Monks et al., 2002)		
Rhamnaceae	Ziziphus jujuba Mill	KUUK HEULANG	N/A	N/A	N/A	2.28	3.97	(Kikuchi et al., 2011)		
Rosaceae	Eriobotrya japonica (Thunb.) Lindl.	BIWA, LOQUAT	N/A	Subfraction	2.28	3.97	(Cuccioloni et al., 2012)			
Rubiaceae	Coffea canephora Pierre ex A. Froehnert	Kopi robusta	N/A	HT-29	Subfraction	N/A	N/A	(Choi et al., 2015; Mori et al., 2016)		
Family	Species	Herb/Derivative	Plant Part	IC_{50} Value	Source(s)	Contain/Effect	Location	Code		
------------	--------------------------------	-----------------	------------	---------------	---	--	---------------------------	--------		
Rubiaceae	*Gardenia jasminoides* J.Ellis	Kacapiring	MDA-MB-231	73.90	(Kim et al. 2011; Lichota and Gwozdzinski 2018)	II Contain genipin	E. Indies, China, Japan	N/A		
			Subfraction			Malesia	N/A			
	Hamelia patens Jacq.	Fire brush	MDA-MB-231	94 ± 1.7	(Menichini et al. 2010; Chanchal et al. 2018)	LC Contain genipin	Peru	N/A		
			Crude	13 ± 1.2		LC	LC			
				22 ± 1.1		Jambi	LC			
Rutaceae	*Citrus medica* L.	Jeruk sukade	A357	89.1	(Mena-Rejon et al. 2009)	II Contains excavatine	Jambi, W. Sumatra	N/A		
			Essential oil							
	Clausena excavata Burm.f.	Daun si cerek	A549	5.25	(Peng et al. 2013)	LB	Jambi, W. Sumatra	N/A		
			Crude	1.91						
Rutaceae	*Murraya paniculata* (L.) Jack	Kemuning	HT-29	7.91	(Jiang et al. 2016; Shao et al. 2016)	II Cancerous cell adhesion inhibition LD	Malesia to Trop. Asia	N/A		
			Subfraction							
Salicaceae	*Flacourtia rukam* Zoll. & Moritzi	Rukam	MCF	17	(Subarnas et al. 2012)		Java, W. Java Lampung	N/A		
Sapindaceae	*Dodonaea viscosa* (L.) Jacq.	Hopseed, cantigi, cengkeh laut Summer lilac	MCF7	19.4	(Shafek et al. 2015)	II Contains excavatine	E. Nusa Tenggara	N/A		
Scrophulariaceae	*Buddleja davidi* Franch.	Gadung cina	MCF7	15.49 ± 1.18	(Uddin et al. 2015)		Ceylon, Malesia C. Java W. Java Trop. America	N/A		
			Subfraction							
Smilacaceae	*Smilax zeylanica* L.	N/A	N/A	N/A	(Du et al. 2016)	IV Contains capsanthin, capsanthin 3'-ester, and capsanthin 3,30-diester	C. Java, N. Sumatra	N/A		
Solanaceae	*Capsicum annuum* L.	N/A	N/A	N/A	(Maoka et al. 2001)		LC			
			Subfraction				(Aguilar-Méndez et al., 2020)	L.7; L.53; III.C.56; IX.A.158-158a; XVIII.B.32; I.G.140.		
Solanaceae	*Cestrum nocturnum* L.	Arum dalu	CNE-2Z	17.50	(Wu et al. 2007)	II W. Indies	N/A			
			BEL-7402	18.71			LC (BGCI, IUCN and Meave, 2019)	L.D.41		
			HeLa	19.21						
Styracaceae	*Styrax benzoin* Dryand.	N/A	N/A	N/A	(Du et al. 2016)	IV	C. Java, N. Sumatra	N/A		
			N/A	N/A						
Family	Species	Source	Type	Concentration	Reference	LC	Region			
--------------	----------------------------------	-----------------	--------------------	----------------	---	-------------	--------------------------			
Symplocaceae	*Symplocos cochinchinensis* (Lour.) S. Moore	Kendong	U87 HepG2 MCF7	2-10 50-250	(Abida et al. 2016; Chanchal et al. 2018)	LC	Malay Pen. W. Java W. Sumatra N/A			
				10-50						
Taxaceae	*Taxus sumatrana* (Miq.) de Laub.	Cemara sumatra	KB Hepa 59T/VGH	Subfraction 0.56 0.10	(Shen et al. 2002) Contains taxuspine F and wallifoliol	LB	Sumatra Jambi W. Sumatra N/A			
Theaceae	*Camellia sinensis* (L.) Kuntze	Teh hijau	HT-29 Crude	87	(Hajiaghaali-pour et al. 2015; Chanchal et al. 2018)	II	Japan DD (Rivers and Wheeler 2018)			
Theaceae	*Schi mala wallichii* Choisy	Puspa	MCF7 Crude	20	(Diantini et al. 2012)	LD	Bangka Belitung W. Sumatra W. Java LC (Oldfield, 2018)			
Thymelaeceae	*Phaleria macrocarpa* Simalakamama (Scheff.) Boerl.	Simalakamama hkota dewa	HeLa 3T3 Subfraction	132 158	(Othman et al. 2014) III. Contains 2,6,4'-trihydroxy-4-methoxybenzophenone and 6,4'-dihydroxy-4-methoxybenzophenone-2-O-β-D-glucopyranoside	W. Java N/A				

V.D.65-65b. I.D. III.B.34-34a, 37 III.A.35-35a-35b; IIA.36-36a; VII.C.373-373a; III.D.65-65b.

VI.D.17-17a; VII.B.21-21a; II.A.55-55a, 61; III.C.79; V.B.16-16a-16b; V.L.D. 17-17a; VIII.B.242-242a.
Family	Genus	Species	Tissue	Cancer Line	Tissue	Cancer Line	Cancer Cell Line	Concentration (IC50)	Region	Authority	Notes
Verbenaceae	*Lantana camara* L.	Saliara, stekan	Huh7	Crude		II		24.8 (Bisi-Johnson et al. 2011; Arbiastutie et al. 2017; Chanchal et al. 2018)	II	Trop. America	IV.C.52; VI.B.13-13a
Verbenaceae	*Lantana camara* L.	L. Saliara, stekan	MCF7	Subfraction	9.96	II		(Gerlach et al. 2010) Contains cycloviolacinO2	II	Asia, Europe, N. Africa	N/A
Violaceae	*Viola odorata* L.	Bunga violet	MCF7	Subfraction		II		24.8 (Bisi-Johnson et al. 2011; Arbiastutie et al. 2017; Chanchal et al. 2018)	II	Trop. America	IV.C.52; VI.B.13-13a
Vitaceae	*Leea indica* (Burm. f.) Merr.	N/A	MCF7	KB	Crude	III		138.1 ± 19.2 146.9 ± 10.4 (Hsiung and Kadir, 2011) Contains cycloviolacinO2	III	C. Java	IX.A.78
Xanthorrhoeaceae	*Hemerocallis minor* Mill.	Small day lily	HeLa	Crude	N/A	IV		138.1 ± 19.2 146.9 ± 10.4 (Hsiung and Kadir, 2011) Contains cycloviolacinO2	IV	E. Asia	N/A
Xanthorrhoeaceae	*Hemerocallis fulva* (L.) L.	Daylily	MCF7	Subfraction	1.8 ± 0.2 2.4 ± 1.8 5.0 ± 0.3 3.8 ± 0.3 (Cichewizs, 2006) Contains kwanzouquinones A, B, C, and E	IV	E. Siberia, S. Japan	N/A			
Xanthorrhoeaceae	*Aloe arborescens* Mill.	N/A	N/A	N/A	N/A	IV		138.1 ± 19.2 146.9 ± 10.4 (Hsiung and Kadir, 2011) Contains cycloviolacinO2	IV	E. Asia	N/A
Xanthorrhoeaceae	*Aloe ferox* Mill.	Bitter aloe	HeLa	Crude	N/A	IV		138.1 ± 19.2 146.9 ± 10.4 (Hsiung and Kadir, 2011) Contains cycloviolacinO2	IV	E. Asia	N/A
Xanthorrhoeaceae	*Aloe vera* (L.) Burm.f.	Lidah buaya	HepG2	Crude	10.45 ± 0.31 (Shalabi et al. 2015)	II	N/A		II	Aceh	L.I.102
Zingiberaceae	*Etlingera elatior* (Jack) R.M.Sm.	Torch Ginger	CEM-SS	Crude	4 6.25 15 (Habsah et al. 2005; Krajarnng et al. 2017)	LA	Aceh		LA	Aceh	L.I.102
Zingiberaceae	*Hedychium coronarium* J.Koenig	Gandasuli, white ginger	LNCaP	Subfraction	20.42 17.39 (Enderinger et al. 2014) Contains ethoxycoronarin D and isocoronarin D	II	India		II	India	VI.C.6