DNA methylation changes were involved in inhibiting ethylene signaling and delaying senescence of tomato fruit under low temperature

Tianye Chen1 · Wenhui Duan1

Received: 28 March 2022 / Accepted: 21 September 2022 / Published online: 5 October 2022
© The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS) 2022

Abstract
To comprehend the epigenetic mechanism of low temperature in delaying senescence of fruit, the changes of DNA methylation patterns of genes related to ethylene biosynthesis and signaling were analyzed in tomato fruit. In the present results, the expression level of SlEIN3, SlERF-A1 and SlERT10 decreased, and the expression level of SlCTR1 increased in tomato fruit stored at the low temperature of 11 °C. Meanwhile, the DNA methylation level of CpG island of SlEIN3, SlERF-A1 and SlERT10 increased, and the DNA methylation level of CpG island of SlCTR1 decreased in tomato fruit, respectively. The low temperature suppressed ethylene signaling via changing DNA methylation and gene expression, and delayed senescence of tomato fruit. The present study offered valuable information for understanding the role of DNA methylation in senescence of fruit, and provided a foundation for genetic modifying the epigenetic target sites and controlling fruit senescence.

Keywords DNA methylation · Ethylene signaling · Fruit senescence · Tomato

Introduction
The cold chain is a supply chain of perishable products, which are stored and transported in a low temperature environment and a specific range of humidity conditions (Bogataj et al. 2005). In the food supply system, the cold chain has the capacity to maintain the quality and safety of food and reduce food loss, which was diffusely applied to delay fruit senescence and rot (Hu et al. 2019). Fruit senescence was aggravated through all kinds of internal and external factors, such as the insufficient energy supply, damage of membrane system, mechanical injury (Chen et al. 2020). In general, a decrease in product temperature by 10 °C from environmental conditions doubles the shelf life, because the product’s metabolism and accompanying physiological processes are slowed (Wu et al. 2019). On the premise of maintaining normal life activities of agricultural products, the low temperature weakens postharvest physiological processes such as respiratory intensity and energy dissipation, delays fruit senescence, reduces postharvest losses; besides, the low temperature decreases the rate of biochemical reactions, such as browning reactions, lipid oxidation and pigment degradation; and inhibits growth and propagation of microorganisms (James and James 2010; Macheka et al. 2017). Fresh agricultural products are necessities for the daily lives of people and have a steady large-scale demand. In practice, postharvest losses are a primary obstacle in achieving sustainable fresh produce chains (Hodges et al. 2011).

DNA methylation is an epigenetic modification which adds a methyl group to cytosine bases (Schuebeler 2015). The DNA methylation participated in the regulation of gene expression during plant development and stress, and increased the adaptation of plants to various abiotic and biotic factors (Zhang et al. 2010; Marfil et al. 2019). The effect of external factors, such as low temperature, exogenous hormone and environmental stress, induced variation of DNA methylation and influenced gene expression (Klebaner et al. 2016). DNA methylation of nuclear genomes involved a more widespread range of methylation sites in plants than that in animals (Vanyushin and Ashapkin 2011). The CG, CHG, and CHH (H is A, T or C) are common target sites of cytosine DNA methylation in plant genomes (Dubrovina and Kiselev 2016). In plants, DNA methylation of promoter regions ordinarily restrains transcription,
but methylation in coding regions frequently either no affect the gene expression, or only has a medium influence (Zilberman et al. 2007). It had revealed that fruit senescence was under epigenetic control mediated by changes of DNA methylation and distribution, besides genetic and hormonal controls (Gapper et al. 2013). The changes of DNA methylation played an important role in the regulation of the tomato fruit softening and ripening (Zhong et al. 2013).

Tomato is among the most popular vegetables in the worldwide range. As the typical respiratory climacteric fruit, tomato can release ethylene to accelerate the senescence during storage and transportation stages. It is commonly harvested at the early mature stage, and supplies various regions by cold chain logistics (Tigist et al. 2013). Understanding the epigenetic mechanism of low temperature in delaying senescence of tomato fruit may provide valuable information for reducing postharvest fruit losses. Receptor and CTR1 (constitutive triple reaction) perform a negative regulatory function in the ethylene signal transduction pathway (Kieber et al. 1993; Huang et al. 2003); EIN3 is the primary transcription factor, which can then start the expression of the secondary transcription factor ERF (ethylene response factor), which can then start the expression of genes related to ethylene response. EIN2 activates the transcription factor, and EIN3 is the primary transcription factor (Chen et al. 2005). In the present study, the changes of DNA methylation patterns of CpG islands of genes related to ethylene biosynthesis and signaling responded to low temperature in tomato fruit were analyzed.

Materials and methods

Plant material

Tomato (Lycopersicon esculentum Mill. cv. Fen Gui Fei 455) fruit were harvested from modern agricultural science and technology demonstration park (Weifang, Shandong province, China) and transported to the laboratory, they were selected based on medium-size and green maturity (about 21.7 firmness). All fruit were sorted by means of size without physical injuries or infections, and were put in a plastic box to retain relative humidity (85–90%), then stored at 11 °C and 25 °C for 0, 3, 6, 9 and 12 d, respectively. The pericarp tissues were collected with well mixed to freeze in liquid nitrogen, and then were stored at −80 °C.

Measurement of the content of total chlorophyll and lycopene

Frozen pericarp tissues were ground into powder in the liquid nitrogen, then weighed 0.5 g powdered and dissolved in 1.5 mL phosphate-buffered saline. Following the manufacturer’s instructions, the content of total chlorophyll and lycopene was measured via Plant Total Chlorophyll ELISA Kit (Jining Biological Technology Co. Ltd., Shanghai, China) and Plant Lycopene ELISA Kit (Jining Biological Technology), respectively. Each sample was performed three replications, and the OD value was measured by spectrophotometer at a wavelength of 450 nm.

Measurement of the content of vitamin C and soluble solid, the activities of Polygalacturonase (PG) and Cellulase

The firmness was measured according to Shao et al. (2022). The ethylene production was measured according to Shan et al. (2020). The content of Vitamin C was measured by Plant Vitamin C ELISA Kit (Jining Biological Technology) as per the manufacturer’s recommendations. The content of the soluble solid of tomato fruit was measured with a saccharimeter (WY032R). The activities of PG and cellulase were discovered by Plant Polygalacturonase ELISA Kit and Plant Cellulase ELISA Kit (Jingkang Biotechnology Co. Ltd., Shanghai, China), respectively. Each sample was performed three replications, and the OD value was measured by spectrophotometer at a wavelength of 450 nm.

Measurement of energy status

The extract of tomato fruit was measured by HPLC (Waters e2695, America) equipped with a C18 inverting column (5 μm × 250 mm × 4.6 mm) and UV (254 nm) detector via the method of Liu et al. (2006). The contents of ATP, ADP, and AMP were calculated through the external standard method and were denoted mg kg⁻¹ basis on fresh weight. EC was calculated as: EC = (ATP + 0.5 × ADP) / (ATP + ADP + AMP).

Measurement of the activities of methylase and demethylase

The activities of DNA methylase and demethylase was measured through the method of Pu et al. (2020).

Gene expression assay by RT-qPCR

The sequence of SIACS10 (XM_010327144.3), SICTR1 (NM_001247401.2), SIEIN3 (NM_001247617.2), SIERT10 (NM_001247224.2), SIERSF-A1 (XM_004245758.4), SIPSY1 (NM_001347838.1) and SIPDS (NM_001247166.2) genes (Supplementary) were inquired by NCBI web (https://www.ncbi.nlm.nih.gov/). The forward and reverse primers were devised according to the sequence of genes (Table 1). The reaction system was measured applying the iCycler iQ real-time PCR detection system (Bio-Rad, Berkeley, CA, USA) in three replicates and GAPDH was used as an internal reference. Following to the way of Livak and Schmittgen (2001), the relative expression level of the gene was calculated.
DNA methylation level analysis by bisulfite sequencing PCR (BSP)

DNA was purified by SDS solubilization and phenol-chloroform extraction. The primers were designed according to the sequence of the CpG island of genes (Table 2). Bisulfite mix reagent was added to high-quality DNA, transformed on a circulating heater and completed DNA modification. After PCR reaction, product cloning was connected and converted in Trans-T1 Phage Resistant competent cell, and selectively grew on LB agar plate contain Ampicillin. Plasmids sequenced by Instrument (3730XL DNA analyzer, ABI Company).

Statistical analysis

The data were statistically analyzed using SPSS Statistics 17.0 software (SPSS Inc., Chicago, IL) and the graphs draw by GraphPad Prism 9 (GraphPad, San Diego, CA, USA). The value of mean and standard deviation (SD) was calculated. Two-way ANOVA and statistically significant differences (Tukey’s HSD) for all data were executed. Differences at $P < 0.05$ (*), $P < 0.01$ (**), $P < 0.001$ (***), or $P < 0.0001$ (****) were deemed as significant, and ns expressed no significant difference.

Results

Changes of fruit phenotype

Compared with the control fruit, low temperature treatment significantly delayed senescence of tomato fruit. The color of the control fruit became red at 3 d. However, the color in low temperature treated fruit became red only until the 9 d (Fig. 1A, B, C).

The content of total chlorophyll and lycopene

The content of chlorophyll decreased with fruit senescence, and it was higher in low temperature treated fruit than those in control. The content of chlorophyll in low temperature treated fruit reduced from 33.13 to 27.56 mg kg$^{-1}$ during storage from 3 to 12 d, while the chlorophyll content in the control fruit reduced from 27.83 to 7.9 mg kg$^{-1}$ (Fig. 1D).

Simultaneously, the low temperature treated fruit had lower lycopene content compared with that in the control fruit. The content of lycopene in the control fruit was 2.11 times that of the low temperature treated fruit after stored for 3 d. The lycopene content in low temperature treated fruit raised to 8.40 mg kg$^{-1}$ after stored for 9 d, while the control fruit only increased to 4.52 mg kg$^{-1}$ (Fig. 1E).

The contents of vitamin C and soluble solid

The content of vitamin C decreased with fruit senescence, and it was higher in low temperature treated fruit. The content of vitamin C in low temperature treated fruit reduced from 112.22 to 83.68 mg kg$^{-1}$, while the control fruit reduced from 104.90 to 73.38 mg kg$^{-1}$ (Fig. 2A). The content of soluble solid in control fruit decreased from 3.70% to 3.00% with fruit senescence during storage from 3 to 12 d. The content of soluble solid in the control fruit was 2.05 times that of the low temperature treated fruit after stored for 3 d. The soluble solid in low temperature treated fruit increased from 3.70% to 4.65% after stored for 9 d, while the control fruit only increased to 3.25% (Fig. 2B).
Fig. 1 Senescence changes of tomato fruit. (A) Senescence phenotypic characterization of the exterior of tomato fruit. (B) Senescence phenotypic characterization of the flank of tomato fruit. (C) Senescence phenotypic characterization of the interior of tomato fruit. (D) Total chlorophyll content. (E) Lycopene content. Vertical bars represent standard deviations of the means, \(n = 3 \). Asterisks indicate statistical difference of the values at \(P < 0.05 \) (*), \(P < 0.01 \) (**), \(P < 0.001 \) (***) or \(P < 0.0001 \) (****), and ns = no significant.
storage from 3 to 12 d, but increased from 3.47% to 3.88% in low temperature treated fruit (Fig. 2B). The contents of vitamin C and soluble solid are different after fruit senescence was initiated, where they are generally higher in low-temperature fruits than control fruits.

The firmness and ethylene production

The firmness decreased with fruit senescence from 3 to 12 d. The firmness in the low temperature treated fruit reduced from 18.8 to 5.4 kg cm\(^{-2}\), while the control fruit reduced from 16.5 to 2.7 kg cm\(^{-2}\) (Fig. 2C). However, whether ethylene production in low temperature treated fruit and control fruit were increased from 3 d to 6 d, and decreased from 6 d to 12 d. On 6 d, ethylene production in the low temperature treated fruit was 0.66 μL kg\(^{-1}\) h\(^{-1}\), while the control fruit was 0.50 μL kg\(^{-1}\) h\(^{-1}\) (Fig. 2D).

The activities of PG and Cellulase

The activities of PG and cellulase increased significantly with fruit senescence. In low temperature treated fruit, the activities of PG and cellulase were both lower than those in control fruit. The PG activity in low temperature treated fruit raised from 313.03 to 479.43 U kg\(^{-1}\) during storage from 3 to 12 d, and raised from 376.93 to 628.61 U kg\(^{-1}\) in control fruit (Fig. 2E). The activity of cellulase in low temperature treated fruit enhanced from 56.52 to 114.30 mU kg\(^{-1}\) during storage from 3 to 12 d, and enhanced from 72.57 to 143.56 mU kg\(^{-1}\) in control fruit (Fig. 2F).
Energy status

The contents of ATP in the low temperature treated fruit changed slightly over the entire storage, while decreased from 33.39 to 25.71 mg kg⁻¹ in the control fruit (Fig. 3A). The ADP content of both groups displayed an enhanced trend. ADP content was 18.83 mg kg⁻¹ in control fruits after stored for 12 d, but low temperature treatment was 15.45 mg kg⁻¹ (Fig. 3B). The low temperature treatment effectively prevented the increase of AMP content. The AMP content of the control fruit raised from 7.28 to 43.36 mg kg⁻¹ during the whole storage, while the low temperature treatment only was 9.35 mg kg⁻¹ at the end of storage (Fig. 3C). The AMP content in the low temperature is more constant during the whole storage. According to the variations of ATP, ADP and AMP content, EC in tomato fruit reduced with prolonging storage time. The EC value of the low temperature treatment was 1.75 times that of the control after stored for 12 d (Fig. 3D).

The activities of DNA methylase and demethylase

The activity of DNA methylase in low temperature treated fruit reached a maximum after stored for 6 d, which was 551.33 U kg⁻¹, and then decreased to 341.33 U kg⁻¹ after stored for 12 d. The activity of DNA methylase in the control
fruit increased from 291.33 to 784.67 U kg$^{-1}$ during storage from 6 to 12 d (Fig. 4A). The activity of DNA demethylase in low temperature treated fruit was lower than those in control fruit. The activity of demethylase in low temperature treated and control fruit reached the maximum of 459.78 and 644.57 U kg$^{-1}$ after stored for 12 d, respectively (Fig. 4B). Although the DNA methylase activity of low temperature fruit was lower, it has an earlier peak (highest value) on the 6 d, compared to the 12 d in the controls.

Genes expression and DNA methylation levels

The expression level of the $SlACS10$ gene decreased with fruit senescence. During storage from 6 to 12 d, the expression level of $SlACS10$ in low temperature treated fruit reduced from 0.32 to 0.13, while the control fruit reduced from 0.45 to 0.23 (Fig. 5A). Moreover, the methylation level of $SlACS10$ only appeared at 12 d, and the methylation level of the control fruit was 4.29 times that of those in low temperature treatment (Fig. 5B, C).

The expression level of $SlCTR1$ in the control fruit was 0.55 after stored for 6 d. While the expression level of $SlCTR1$ in the low temperature treated fruit enhanced and then reduced at the whole storage period, reached a maximum value of 1.29 at 6 d, and reduced to 1.05 at 12 d (Fig. 6A). The DNA methylation level of CpG island of $SlCTR1$ in the low temperature treated fruit both were 0.6% at 6 and 12 d, while DNA methylation level of CpG island of $SlCTR1$ in control fruit merely arose at 6 d (Fig. 6B).

The expression of $SlEIN3$ in low temperature treated fruit was down-regulated. The expression level of $SlEIN3$ of control fruit was 22.21 times than those in low temperature treatment after stored for 12 d (Fig. 6C). The DNA methylation rate of $SlEIN3$ in the low temperature treated fruit was higher than those in the control. The DNA methylation rate of $SlEIN3$ in low temperature treatment was 1.61 times than those in control after stored for 12 d (Fig. 6D).

The expression level of $SlERT10$ in the low temperature treated fruit was significantly lower than those in the control. The expression level of $SlERT10$ in low temperature treated fruit reduced from 0.24 to 0.10 during storage from 6 to 12 d, while the control fruit reduced from 0.48 to 0.15 (Fig. 6G). The DNA methylation level of CpG island of $SlERT10$ in the low temperature treated fruit was higher than those in control. The methylation rate of CpG island of $SlERT10$ in low temperature treated fruit increased to 1.7% after stored for 12 d, while DNA methylation was not located in the control (Fig. 6H).

The expression level of $SlPSY1$ and $SlPDS$ in the control fruit were 1.6 and 1.73 after stored for 6 d. While the expression level of $SlPSY1$ and $SlPDS$ in the low temperature treated fruit enhanced and then reduced at the whole
storage period, reached a maximum value of 1.35 and 1.55 at 6 d, and reduced to 1.02 and 1.21 at 12 d (Fig. 7A, B).

Discussion

In cold chain logistics, low temperature plays an important role in transporting perishable foods from production to consumption while ensuring the quality and safety of foods. Low temperature storage could significantly reduce the expression level of numerous genes related to the aroma volatiles synthesis during the storage of tomato fruit (Zou et al. 2018). The postharvest fruit, as independent existence, infinitely depleted nutrient to result in irreversible senescence until death (Wang et al. 2021a). In the present study, the low temperature (11 °C) treatment effectively delayed the senescence of tomato fruit (Fig. 1A-C). The content of total chlorophyll in the low temperature treated fruit was higher than that in the control fruit, and the lycopene content in the low temperature treated fruit was lower than those in control fruit, which cause a noticeable color difference on tomato fruit peel (Fig. 1D and E).

The fruit ripening and senescence connected with degradation of the cell wall, which the enhancement of water-soluble pectin and the reduction cellulose gradually caused fruit to soften (Wang et al. 2021a). Cellulose, as the main component of plant cell walls, can maintain the strength of the cell wall (Wang et al. 2021b). PG was the major hydrolysis enzyme of modifying pectin, which can further decompose pectin acid-generating from that pectin methylesterase (PME) catalyzed pectin demethylation, finally resulting in the structure of cell wall loosening, fruit softening and firmness decreasing (Rugkong et al. 2010). The better fruit quality was maintained by lower fruit softening enzyme activity (Adhikary et al. 2020). Besides, the release of ethylene plays an important role in the ripening of climacteric fruits (Pu et al. 2020). In this study, the firmness in low temperature treated fruit was higher than those in control fruit, ethylene production, PG and cellulase activities in the low temperature treated fruit were also lower than those in the control fruit (Fig. 2C, D, E, F) which indicated that low temperature effectively restrained pectin degradation, cell wall injures and ethylene production to delay senescence and soften of tomato fruit.

Fig. 5 Expression level and DNA methylation rate of SlACS10 in tomato fruit. (A) Relative expression level. (B) DNA methylation rate. (C) Changes of DNA methylation sites. Each line represents 1 clone, and 1 circle represents 1 CpG site. The black circle represents the methylated CG, and the white circle represents the unmethylated CG. Vertical bars represent standard deviations of the means, n = 3. Asterisks indicate statistical difference of the values at *P < 0.05*, **P < 0.01**, ***P < 0.001*** or ****P < 0.0001****, and ns = no significant.
Fig. 6 Expression level and DNA methylation rate of *LeCTR1*, *LeEIN3*, *SlERF-A1* and *LeERT10* in tomato fruit. (A) Relative expression level of *LeCTR1*. (B) DNA methylation rate of CpG island of *LeCTR1*. (C) Relative expression level of *LeEIN3*. (D) DNA methylation rate of CpG island of *LeEIN3*. (E) Relative expression level of *SlERF-A1*. (F) DNA methylation rate of CpG island of *SlERF-A1*. (D) Relative expression level of *LeERT10*. (E) DNA methylation rate of CpG island of *LeERT10*. Asterisks indicate statistical difference of the values at $P < 0.05$ (*), $P < 0.01$ (**), $P < 0.001$ (***) or $P < 0.0001$ (****), and ns = no significant.

Fig. 7 Expression level and DNA methylation rate of *SlPSY1* and *SlPDS* in tomato fruit. (A) Relative expression level of *SlPSY1*. (B) Relative expression level of *SlPDS*. Vertical bars represent standard deviations of the means, $n = 3$. Asterisks indicate statistical difference of the values at $P < 0.05$ (*), $P < 0.01$ (**), $P < 0.001$ (****) or $P < 0.0001$ (****), and ns = no significant.
Similarly, the higher energy consumption can cause the increase of respiratory rate in postharvest fruit to accelerate the development of senescence and disease (Li et al. 2020). ATP was the center of energy conversion within cells, which produce chemical energy through catabolic and anabolic that was used immediately in plant (Vichaiya et al. 2020). The membrane system integrity was connected with cellular energy status. The continuous consumption of cellular energy may lead to membrane damage, while higher-level ATP content can preserve the membrane potential and maintain the membrane system integrity, to delay fruit senescence and to retain qualities (Aghdam et al. 2018). The higher accumulation of energy-matter in kiwifruit could keep an integral cell membrane (Wang et al. 2020). In this study, low temperature treated fruit retained higher ATP content and EC level compared with the control fruit (Fig. 3), which may be contributing to restraining the activities of PG and CE, to delay the fruit senescence. Previous reports showed that MeJA treatment delays the postharvest softening of blueberry and pineapple fruit by altering cell wall modification and energy metabolism (Boonyaritthongchai and Supapvanich 2017). The senescence process of the litchis (Tang et al. 2020), longans (Li et al. 2020) and broccoli (Huang et al. 2021) accompany the reduction of ATP, ADP content and EC level, and the enhancement of AMP.

The process of fruit ripening and senescence is closely related to the biosynthetic and signaling pathway of ethylene. ACS and ACO enzymes are encoded by multigene families in the metabolic pathways upstream of ethylene. They were differentially expressed in various tissues at different developmental phases (Nakatsuka et al. 1998). The ETR and CTR1 both are negative regulatory elements in the ethylene signaling pathway, which can activate the positive regulatory factor EIN2, pass the downstream EIN3/EILs, promote the expression of the transcription factor ERF and transcript ERT, and ultimately express ethylene-related response genes (Trentmann 2000; Hu et al. 2012; Guo et al. 2018). DNA methylation and demethylation were requested for both the activation of ripening induced genes and the suppression of ripening repressed genes (Lang et al. 2017).

As one of the key enzymes, ACS tightly regulated ethylene biosynthesis (Barry and Grierson, 2000). Among the ACS genes that have been cloned from tomato, SIACS2 and SIACS4 are mainly expressed during the climacteric phase of tomato fruit, resulting in a large amount of ethylene and a characteristic of auto-catalytic ethylene of system II (Anugerah et al. 2015). During the natural ripening of watermelon, the expression of two ACS isoforms, Cla022653 and Cla011522, were significantly up-regulated in 97,103 flesh, which play an important role in ethylene biosynthesis and ripening control in watermelon flesh (Zhou et al. 2016). Here, low temperature treatment reduced the expression of the SIACS10 gene (Fig. 5), which might involve inhibiting the ethylene biosynthesis and delaying the senescence of tomato fruit. The DNA methylation level of the CpG island of SIACS10 in low temperature treated fruit was reduced compared with control, the changes of seven DNA methylation sites in the CpG island of SIACS10 might have no critical importance on its expression.

CTR1 is a negative regulator of ethylene signaling, and its interaction with ETR1 is required for the negative regulation of ethylene signaling (Kieber et al. 1993). SICTR1 silenced tomato plants induce the expression of ethylene-responsive genes, such as ERF5, EIN2, and EIN3 (Chandan et al. 2019). The amino acid sequence of MhCTR1 showed 55% homology to SICTR1, as well as the changes of MhCTR1 expression in the pulp were closely related to the regulation of the banana senescence process (Hu et al. 2012). Here, the DNA methylation level of CpG island of SICTR1 in the low temperature treated fruit decreased than those in control fruit at 6 d, and by which raised the expression of the SICTR1 gene (Fig. 6A and B), and might suppress ethylene signaling. These may be one of the mechanisms of low temperature delayed senescence of tomato fruit.

ERF5 is a key to activate the ethylene transcription factors ERF. EIN3 proteins bind directly to primary ethylene response element (PERE) motifs to regulate gene expression (Solano et al. 1998). In Arabidopsis, EIN3, ORE1 and CCG work together to regulate ethylene-mediated chlorophyll degradation during leaf senescence (Qiu et al. 2015). CpEIN3a was found to increase and participate in carotenoid accumulation during fruit ripening and senescence in papaya (Fu et al. 2017). Compared with the control, low temperature treatment raised the DNA methylation level of SIEIN3 in tomato fruit, reduced the expression of SIEIN3 (Fig. 6C and D), and suppressed ethylene signaling. The increased DNA methylation of SIEIN3 may be involved in low temperature delaying senescence of tomato fruit.

ERFs are DNA-binding proteins belonging to the AP2/ERF family, and coordinate transcription of diverse ethylene-responsive genes (Gu et al. 2002). The expression levels of the four ERF genes in pear increased significantly during fruit senescence. Pb Phó2024.1 responded to the ethylene signal, and the P브022708.1 can be induced by ethylene and is the only ethylene response factor that regulates fruit senescence (Hao et al. 2017; Xu et al. 2018). In tomato, overexpression of SIERF1 accelerated fruit senescence (Li et al. 2007). SIERF2 is induced by ethylene and suppressed in ripening inhibited mutants (Wu et al. 2002). Here, compared with that in control fruit, the DNA methylation levels of SIERF-A1 in low temperature treated fruit reached maximum at 6 d, the expression of SIERF-A1 gene was significantly decreased at 6 and 12 d (Fig. 6E and F), and by which the ethylene signaling might be suppressed. These may be one of the mechanisms of low temperature delayed tomato fruit senescence.

ERF encodes transcripts that regulate ethylene transcription regulation, and participates in the cascade of constitutive cellular factors related to ethylene signal transduction (Trentmann 2000). 49 putative ethylene-responsive transcripts (ERTs) were isolated from etiolated seedlings of Arabidopsis, and
ethylene-regulated nuclear protein (ERN) was isolated and cloned from ERT2. Evidence had shown that ERN1 encoded downstream targets of EIN3 protein as did ERF1 (Solano et al. 1998). Hot water treatment delayed the ripening of tomato fruit, which process accompanies the reduction of the expression level of SIERT10 and increase of methylation level (Pu et al. 2020). In the present study, the low temperature treatment enhanced the DNA methylation level of SIERT10 and significantly reduced the expression of the SIERT10 gene in tomato fruit (Fig. 6G and H), and suppressed ethylene signaling. The enhanced DNA methylation level of SIERT10 may be involved in low temperature delaying senescence of tomato fruit.

Conclusion

The low temperature changed the DNA methylation levels of CpG island of SICTRI, SIEIN3, SIERF-A1 and SIERT10 in tomato fruit, impacted their expression and suppressed ethylene signaling, by which delayed fruit senescence. The study offered useful information for comprehending the role of DNA methylation for fruit senescence, and provided a foundation for genetically modifying the epigenetic target sites and controlling fruit senescence.

Funding This study was supported by the National Natural Science Foundation of China (31872160).

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

Adhikary T, Gill P, Jawandha SK, Bhardwaj RD, Anurag RK (2020) Efficacy of postharvest sodium nitroprusside application to extend storability by regulating physico-chemical quality of pear fruit. Food Chem 346(2):128934. https://doi.org/10.1016/j.foodchem.2020.128934

Aghdam MS, Jannatizadeh A, Luo Z, Paliyath G (2018) Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci Technol 76:67–81. https://doi.org/10.1016/j.tifs.2018.04.003

Anugerah PR, Dwivany F, Eswanty RR (2015) Expression study of LeGAPDH, LeACO1, LeACS1A, and LeACS2 in tomato fruit (Solanum lycopersicum). Hayati J Biosci 22:191–196. https://doi.org/10.1016/j.hjb.2016.01.004

Barry CS, Grierson LT (2000) The regulation of 1-Aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from System-1 to System-2 ethylene synthesis in tomato. Plant Physiol 123:979–986. https://doi.org/10.1104/pp.123.3.979

Bogataj M, Bogataj L, Vodopivec R (2005) Stability of perishable goods in cold logistic chains. Int Prod Econ 93-94:345–356. https://doi.org/10.1016/j.ijpe.2004.06.032

Boonyaritthongchai P, Supapvanich S (2017) Effects of methyl jasmonate on physicochemical qualities and internal browning of ‘Queen’ pineapple fruit during cold storage. Hortic Environ Biotechnol 58:479–487. https://doi.org/10.1007/s11659-017-0362-3

Chandan RK, Singh AK, Patel S, Swain DM, Tuteja N, Jha G (2019) Silencing of tomato CTR1 provides enhanced tolerance against tomato leaf curl virus infection. Plant Signal Behav 14:1–7. https://doi.org/10.1080/15592324.2019.1565595

Chen Y, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95(6):901–915. https://doi.org/10.1093/aob/mci100

Chen Y, Sun J, Lin H, Lin M, Lin Y, Wang H, Yen-Con H (2020) Salicylic acid reduces the incidence of Phomopsis longanae chi infection in harvested longan fruit by affecting the energy status and respiratory metabolism. Postharvest Biol Technol 160:111035. https://doi.org/10.1016/j.postharvbio.2019.111035

Dubrovina AS, Kiselev KV (2016) Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biol 18:185–196. https://doi.org/10.1111/plb.12375

Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytone levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19(10):3194–3211. https://doi.org/10.1105/tpc.106.049817

Fray R, Grierson D (1993) Identification and genetic analysis of normal and mutant phytone synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22(4):589–602. https://doi.org/10.1007/BF00047400

Fu C, Han Y, Kuang J, Chen J, Lu W (2017) Papaya CpeIN3a and CpeNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening. Plant Cell Physiol 58:2155–2165. https://doi.org/10.1093/pcp/pcx149

Gapper NE, Mcquinn RP, Giovanni JJ (2013) Molecular and genetic regulation of fruit ripening. Plant Mol Biol 82:575–591. https://doi.org/10.1007/s11103-013-0050-3

Gu Y, Wildermuth MC, Chakravarty S, Loh YT, Yang CM, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831. https://doi.org/10.1105/tpc.000794

Guo X, Zhang Y, Tai Y, Wang Y, Cheng W, Yang Y (2018) Overexpression of an EIN3-binding F-box protein2-like gene caused elongated fruit shape and delayed fruit development and ripening in tomato. Plant Sci 272:131–141. https://doi.org/10.1016/j.plantsci.2018.04.016

Hao P, Wang G, Cheng H, Ke Y, Qi K, Gu C, Zhang S (2017) Transcriptome analysis unravels an ethylene response factor involved
in regulating fruit ripening in pear. Physiol Plantarum 163:124–135. https://doi.org/10.1111/plp.12671

Hodges RJ, Buzby JC, Bennett B (2011) Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J Agric Sci 149:37–45. https://doi.org/10.1017/S0021859610000936

Hu H, Do Y, Huang P (2012) Expression profiles of a MhCTR1 gene in relation to banana fruit ripening. Postharvest Biol Technol 56:47–55. https://doi.org/10.1016/j.postharvbio.2012.04.001

Hu G, Mu X, Xu M, Miller SA (2019) Potentials of GHG emission reductions from cold chain systems: case studies of China and the United States. J Clean Produc 239:118053. https://doi.org/10.1016/j.jclepro.2019.118053

Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33(2):221–233. https://doi.org/10.1046/j.1365-313x.2003.01620.x

Huang H, Wang D, Belwal T, Dong L, Lu L, Zou Y, Li L, Xu Y, Luo Z (2021) A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chem 356:129704. https://doi.org/10.1016/j.foodchem.2021.129704

James SJ, James C (2010) The food cold-chain and climate change. Food Res Int 43:1944–1956. https://doi.org/10.1016/j.foodres.2010.02.001

Kieber JJ, Rothenberg M, Roman G, Feldman KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441. https://doi.org/10.1016/0092-8674(93)90119-B

Klebaner D, Huang Y, Hui Q, Taylor JY, Goldberg J, Vaccarino V, Sun Y (2016) X chromosome-wide analysis identifies DNA methylation sites influenced by cigarette smoking. Clin Epigenetics 8:20. https://doi.org/10.1186/s13148-016-0189-2

Lang Z, Wang Y, Tang K, Tang D, Datsenko T, Cheng J, Zhan Y, Handa AK, Zhu J (2017) Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. P Natl Acad Sci USA 114:4511–4519. https://doi.org/10.1073/pnas.1705233114

Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y, Shan Y, Luo Y (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008. https://doi.org/10.1007/s00299-007-0394-8

Li M, Zheng Q, Lin H, Lin M, Chen Y, Lin Y, Fan Z, Wang H (2020) The influence of ATP treatment on energy dissipation system in postharvest longan fruit during senescence. Postharvest Biol Technol 164:111115. https://doi.org/10.1016/j.postharvbio.2020.111115

Liu H, Jiang Y, Luo Y, Jiang W (2006) A simple and rapid determination of ATP, ADP and AMP concentrations in pericarp tissue of litchi fruit by high performance liquid chromatography. Food Technol Biotechnol 44:531–534. https://doi.org/10.1016/j.fm.2005.11.001

Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8(1):28–39. https://doi.org/10.1016/j.molp.2014.11.006

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Macheka L, Spelt E, Vorst JG, Luning PA (2017) Exploration of logistics and quality control activities in view of context characteristics and postharvest losses in fresh produce chains: a case study for tomatoes. Food Control 77:221–234. https://doi.org/10.1016/j.foodcont.2017.02.037

Marfil C, Ibañez V, Alonso R, Varela A, Bottini R, Masuelli R, Fontana A, Berli F (2019) Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiol Biochem 135:278–294. https://doi.org/10.1016/j.plaphy.2018.12.021

Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305. https://doi.org/10.1104/pp.118.4.1295

Pu H, Shan S, Wang Z, Duan W, Tian J, Zhang L, Li J, Song H, Xu X (2020) Dynamic changes of DNA methylation induced by heat treatment were involved in ethylene signal transmission and delayed the postharvest ripening of tomato fruit. J Agric Food Chem 68:8976–8986. https://doi.org/10.1021/acs.jfcf.0c02971

Qiu K, Li Z, Yang Z, Chen J, Wu S, Zhu X, Gao S, Gao J, Ren G, Kuai B, Zhou X (2015) EIN3 and ORE1 accelerate deregressing during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet 11:e1005399. https://doi.org/10.1371/journal.pgen.1005399

Rugkong A, Rose JKC, Lee SJ, Giovannoni JJ, O’Neill MA, Watkins CB (2010) Cell wall metabolism in cold-stored tomato fruit. Postharvest Biol Technol 57:106–113. https://doi.org/10.1016/j.postharvbio.2010.03.004

Schuebeler D (2015) Function and information content of DNA methylation. Nature 517:321–326. https://doi.org/10.1038/nature14192

Shan S, Wang Z, Pu H, Duan W, Song H, Li J, Zhang Z, Xu X (2020) DNA methylation mediated by melatonin was involved in ethylene signal transmission and ripening of tomato fruit. Sci Hortic 291:110566. https://doi.org/10.1016/j.scienta.2021.110566

Shao Z, Chen H, Hu S, Liu H, Meng F, Li S, Zhang B, Zhu C, Wang G, Liu L, Wang Q (2022) Chitosan oligosaccharide treatment improves quality attributes of tomato fruit stored under room temperature. Postharvest Biol Technol 189:111914. https://doi.org/10.1016/j.postharvbio.2022.111914

Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-SENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714. https://doi.org/10.1101/gad.12.23.3703

Tang R, Zhou Y, Chen Z, Zeng J, Huang H, Jiang Y, Qu H, Zhu H (2020) Involvement of mRNA-mediated anthocyanin and energy metabolism in the storability of litchi fruit. Postharvest Biol Technol 165:111200. https://doi.org/10.1016/j.postharvbio.2020.111200

Tigist M, Workneh TS, Woldetsadik K (2013) Effects of variety on the quality of tomato stored under ambient conditions. J Food Sci Technol 50:477–486. https://doi.org/10.1007/s13197-011-0378-0

Trentmann SM (2000) ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis. Plant Mol Biol 44:11–25. https://doi.org/10.1023/A:1006438343219

Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. BBA-Gene Regul Mech 1809:360–368

Vichaiya T, Uthaibutra J, Saengnil K (2020) Gaseous chlorine dioxide application for delayed senescence and delayed the postharvest ripening-repressed genes in tomato fruit. Sci Hortic 276:109752. https://doi.org/10.1016/j.scienta.2020.109752
Wang D, Ma Q, Li D, Li W, Li L, Aalim H, Luo Z (2021b) Moderation of respiratory cascades and energy metabolism of fresh-cut pear fruit in response to high CO2 controlled atmosphere. Postharvest Biol Technol 172:111379. https://doi.org/10.1016/j.postharvbio.2020.111379

Wu K, Tian L, Hollingworth J, Brown DCW, Miki B (2002) Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol 128:30–37. https://doi.org/10.1104/pp.010696

Wu W, Beretta C, Cronje P, Hellweg S, Defraeye T (2019) Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment. Appl Energy 254:113586. https://doi.org/10.1016/j.apenergy.2019.113586

Xu H, Chen Y, Wang L, Xie Z, Gu C, Zhang S (2018) Transcriptome analysis reveals a regulation of ethylene-induced post-harvest senescence in pear fruit. Sci Hortic 240:585–591. https://doi.org/10.1016/j.scienta.2018.05.019

Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 37:1–12. https://doi.org/10.1016/S1673-8527(09)60020-5

Zhong S, Fei Z, Chen Y, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gappel N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methyloomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159. https://doi.org/10.1038/nbt.2462

Zhou M, Guo S, Zhang J, Zhang H, Li C, Tang X, Ren Y, Gong G, Xu Y (2016) Comparative dynamics of ethylene production and expression of the ACS and ACO genes in normal-ripening and non-ripening watermelon fruits. Acta Physiol Plant 38:228. https://doi.org/10.1007/s11738-016-2248-x

Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69. https://doi.org/10.1038/ng1929

Zou J, Chen J, Tang N, Gao Y, Hong M, Wen W, Cao H, Jian W, Li N, Deng W, Li Z (2018) Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biol Technol 135:57–67. https://doi.org/10.1016/j.postharvbio.2017.08.017

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.