Supporting Information

Expanding the ambient-pressure phase space of CaFe$_2$O$_4$-type sodium post-spinel host–guest compounds

Justin C. Hancock1,2, Kent J. Griffith1,2, Yunyeong Choi2,3, Christopher J. Bartel2,3, Saul H. Lapidus2,4, John T. Vaughey2,5, Gerbrand Ceder2,3,6, Kenneth R. Poeppelmeier1,2*

1Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
2Joint Center for Energy Storage Research, Argonne National Laboratory, Argonne, IL 60439, USA.
3Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
4X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
5Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
6Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Table S1 Compositions that did not form a CF structure

Target compound	Starting materials	Applied temperature (s) (°C)	Atmosphere	Major phases
NaYZrO4	NaHCO3, Y2O3, ZrO2	1050 1200	Air	Na2ZrO3, Y2O3, cubic Y-substituted ZrO2
NaInZrO4	NaHCO3, In2O3, ZrO2	950 1100	Air	NaInO2, ZrO2, NaInO3, In2O3, ZrO2
NaScRuO4	NaHCO3, Sc2O3, RuO2	950	Air	Na2xSc3RuO9 (Sc-substituted?), Sc2O3
NaMnRuO4	NaHCO3, Mn2O3, RuO2	950	Air	RuO2, Na3Mn2O2, NaMn2O2
NaRhRuO4	NaHCO3, Rh2O3, RuO2	950	Air	RuO2, unknown- possibly Na3(Rh,Ru)O2
NaAlSnO4	NaHCO3, Al2O3, SnO2	950	Air	SnO2, NaAlO2
NaGaSnO4	NaHCO3, Ga2O3, SnO2	950 1200	Air	NaGaO2, SnO2, NaGaO2, SnO2, NaGaO2, SnO2
NaYSnO4	NaHCO3, Y2O3, SnO2	1200	Air	Y2Sn2O7, Y2O3
NaRhSnO4	NaRhO2, SnO2	1000	Air	SnO2, NaRhO2
NaMn0.5Ti1.5O4	NaHCO3, MnO, TiO2	875 950	Argon	Na2TiO7, MnTiO3, unknown
NaCu0.5Ti1.5O4	NaHCO3, CuO, TiO2	925	Air	Na2TiO7, NaCu2,5Ti6,5O18, CuO
NaZn0.5Ti1.5O4	NaHCO3, ZnO, TiO2	900	Air	Na2TiO7, ZnO
NaMn0.5Zr1.5O4	NaHCO3, MnO, ZrO2	1000	Argon	ZrO2, MnO, Na2ZrO3
NaCo0.5Zr1.5O4	NaHCO3, Co3O4, ZrO2	950	Air	ZrO2, Na2ZrO3, CoO
NaCd0.5Zr1.5O4	NaHCO3, CdO, ZrO2	1000	Air	Na2ZrO3, ZrO2, CdO
NaNi0.5Ru1.5O4	NaHCO3, NiO, RuO2	950	Air	RuO2, unknown- possibly mixture of Na3(Ni,Ru)O2 phases
NaCr1.5Sb0.5O4	NaHCO3, Cr2O3, NaSbO3	900 950	Argon	Na0.58Cr0.79Sb0.21O2, NaSbO3
NaMn1.5Sb0.5O4	NaHCO3, Mn2O3, Sb2O3	1000	Air	NaSbO3, unknown
NaRh1.5Sb0.5O4	NaHCO3, Rh2O3, Sb2O3	950	Air	NaSbO3, unknown
NaSc1.5Ta0.5O4	NaHCO3, Sc2O3, Ta2O5	950	Air	NaTaO3, Sc2O3
NaCoSbO4	NaHCO3, Co3O4, Sb2O3	1200	Air	NaSbO3, Co2,3Sb0.67O4
Figure S1 Rietveld refinement for NaCrTiO$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaCrTiO$_4$ peaks.

Figure S2 Rietveld refinement for NaRhTiO$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaRhTiO$_4$ peaks.
Figure S3 Rietveld refinement for NaCrSnO$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF-NaCrSnO$_4$ peaks, and the magenta tick marks indicate the location of NaCrO$_2$ peaks.

Figure S4 Rietveld refinement for NaMnSnO$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaMnSnO$_4$ peaks. The inset is included to show that the peak at 3.7° is an unknown impurity and too far away from the calculated angle of the (1 0 1) peak. Thus, cation site preference is either very weak or nonexistent in NaMnSnO$_4$.
Figure S5 Rietveld refinement for NaInSnO$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaInSnO$_4$ peaks.

Figure S6 Rietveld refinement for NaMg$_{0.5}$Sn$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaMg$_{0.5}$Sn$_{1.5}$O$_4$ peaks.
Figure S7 Rietveld refinement for NaCo$_{0.5}$Sn$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF-NaCo$_{0.5}$Sn$_{1.5}$O$_4$ peaks, and the magenta tick marks indicate the location of SnO$_2$ peaks.

Figure S8 Rietveld refinement for NaNi$_{0.5}$Sn$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF-NaNi$_{0.5}$Sn$_{1.5}$O$_4$ peaks, and the magenta tick marks indicate the location of SnO$_2$ peaks.
Figure S9 Rietveld refinement for NaCu$_{0.5}$Sn$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF-NaCu$_{0.5}$Sn$_{1.5}$O$_4$ peaks, and the magenta tick marks indicate the location of SnO$_2$ peaks.

Figure S10 Rietveld refinement for NaZn$_{0.5}$Sn$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaZn$_{0.5}$Sn$_{1.5}$O$_4$ peaks.
Figure S11 Rietveld refinement for “NaSc$_{1.5}$Sb$_{0.5}$O$_4$.” Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF- NaSc$_{1.5}$Sb$_{0.5}$O$_4$ peaks, and the magenta tick marks indicate the location of Sc$_2$O$_3$ peaks.

Figure S12 Rietveld refinement for Na$_{1.16}$In$_{1.18}$Sb$_{0.66}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF- Na$_{1.16}$In$_{1.18}$Sb$_{0.66}$O$_4$ peaks.
Figure S13 Rietveld refinement for NaFe$_{0.5}$Ti$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaFe$_{0.5}$Ti$_{1.5}$O$_4$ peaks.

Figure S14 Rietveld refinement for NaMn$_{0.5}$Sn$_{1.5}$O$_4$. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, and the red tick marks indicate the location of the CF-NaMn$_{0.5}$Sn$_{1.5}$O$_4$ peaks.
Figure S15 Rietveld refinement for NaFe\textsubscript{0.5}Sn\textsubscript{1.5}O\textsubscript{4}. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF-NaFe\textsubscript{0.5}Sn\textsubscript{1.5}O\textsubscript{4} peaks, and the magenta tick marks indicate the location of SnO\textsubscript{2} peaks.

Figure S16 Rietveld refinement for NaCd\textsubscript{0.5}Sn\textsubscript{1.5}O\textsubscript{4}. Blue crosses are the observed intensities, the green curve is the fitted pattern, the black curve is the difference pattern, the red tick marks indicate the location of the CF-NaCd\textsubscript{0.5}Sn\textsubscript{1.5}O\textsubscript{4} peaks, and the magenta tick marks indicate the location of SnO\textsubscript{2} peaks.
Figure S17 23Na Multiple-quantum MAS NMR spectrum of Na$_{1.16}$In$_{1.18}$Sb$_{0.66}$O$_4$ recorded with a z-filtered pulse sequence at 14 kHz MAS and 9.4 T. Cross sections, extracted parallel to δ_2, are shown on the right. Distinct quadrupolar lineshape features are not visible for any of the sodium environments.
Table S2 Table of Na-O bond lengths for selected compounds

	Na$_{0.99}$Cr$_{0.99}$Ti$_{1.01}$O$_4$	NaNi$_{0.5}$Sn$_{1.5}$O$_4$	Na$_{0.96}$In$_{0.96}$Sn$_{1.04}$O$_4$
Na1-O2 (×2)	2.378(1) Å	2.444(2) Å	2.472(2) Å
Na1-O4 (×2)	2.390(1) Å	2.458(2) Å	2.484(2) Å
Na1-O3	2.507(1) Å	2.606(3) Å	2.674(3) Å
Na1-O3	2.533(1) Å	2.642(3) Å	2.701(3) Å
Na1-O1 (×2)	2.568(1) Å	2.644(2) Å	2.728(3) Å

Figure S18 23Na Solid-state NMR of diamagnetic CF structures at 12.5 kHz MAS and 9.4 T.