Role of Admission Tests in Predicting Perinatal Outcome: A Prospective Study

Subrat Panda, Ananya Das*, Hossein Md. Nowroz and A Santa Singh

Department of Obstetrics and Gynaecology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Meghalaya, India

Abstract

Background: Predicting adverse outcome is important in low risk pregnancies also. We tried to determine the role of admission test on foetal and maternal outcome of pregnant women attending labour room as a part of promotion of institutional delivery.

Methods: It is a prospective study conducted for a period of 1 year 6 months, where 100 pregnant women attending labour room with gestational age between 37-42 weeks in early or pre labour are selected randomly. Admission tests were performed in them and the results were statistically analysed.

Results: For predicting the outcome in low risk pregnancy, we adopted combined admission tests, i.e., NST, AFI and Umbilical artery Doppler in low risk pregnant women. In our study NST shows a sensitivity of 57.89% and a specificity of 96.30%, while, Positive Predictive Value and Negative Predictive Value is 78.57% and 90.70%, respectively. This study indicates NST is a test with high specificity and negative predictive value, with diagnostic accuracy of 89%.

Conclusion: NST, AFI, Umbilical Artery Doppler can be done altogether as an admission test on pregnant patients, for prediction of perinatal outcome.

Keywords: Admission test; Perinatal outcome; Non-stress test; Amniotic fluid index; Umbilical artery doppler

Abbreviations: NST: Non-Stress Test; AFI: Amniotic Fluid Index; UA Doppler: Umbilical Artery Doppler; PPV: Positive Predictive Value; NPV: Negative Predictive Value; DA: Diagnostic Accuracy; LR: Likelihood Ratio; NICU: Neonatal Intensive Care Unit

Introduction

Pregnancy with no high risk constitutes a major part of the pregnant population and it is equally important to predict and prevent adverse events in them. For predicting the outcome in low risk pregnancy, we adopted admission test, in the form of combined tests of NST (Non stress test), AFI (Amniotic Fluid Index) and (UA) Umbilical Artery Doppler. NST is a non-invasive, easily performed, interpreted, and readily accepted by the patients. The test looks for the presence of temporary acceleration of the Foetal Heart Rate associated with fetal movement that involves the cerebral cortex and is affected by physiologic or pathologic influences on the foetal brain. Freeman (1975) and Lee and colleague [1] introduced the NST to describe the foetal heart rate acceleration in response to foetal movement, as a sign of foetal health. Suddenly diagnosed oligohydramnios in a low risk mother tells us the probability of meconium aspiration syndrome, neonatal death, and foetal malformation. Chronic severe placental insufficiency can cause oligohydramnios and in turn can lead to cord compression and foetal distress. The role of Doppler in the evaluation of the foetuses at high risk for poor outcome has been adequately assessed in randomized clinical trials, and the method has been found to be useful (a) in complementing other methods of foetal surveillance such as the NST or the Biophysical profile to determine more precisely the degree of foetal compromise (b) as a follow up test when other tests of foetal wellbeing give ambiguous results or the clinical conditions of the mother or the foetus is unstable (c) to determine with more precision the need to delivery (d) to identify a group of women at high risk of placental insufficiency and low risk for foetal complications, and (e) to evaluate the presence and severity of foetal anae mia. The evidence supporting the role of UA Doppler in surveillance of high risk pregnancy is robust. Randomized clinical trials and meta-analysis have conclusively demonstrated that the use of UA Doppler in high risk pregnancies results in an approximately 1/3rd decrease in perinatal mortality [2-4]. Studies have also demonstrated a strong relationship between the results of UA velocimetry and the presence of foetal academia in blood samples obtained by cordocentesis or at the time of cesarean [5,6].

Aims and Objective

a. To determine the role of admission test on foetal and maternal outcome of pregnant women attend labour room as a part of promotion of institutional delivery.

b. To find out the implication of these tests on mode of delivery and perinatal outcome.

c. To find out the predictive power of these tests on perinatal outcome.

Materials and Methods

It is a prospective study conducted for a period of 1 year 6 months, where 100 pregnant women attending labour room with gestational age between 37-42 weeks in early or pre labour are selected randomly. Admission tests were performed in them.

Inclusion criteria

- Gestational age between 37-42 weeks.

*Corresponding author: Dr. Ananya Das, Department of Obstetrics and Gynaecology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong, Meghalaya, India, Tel: 91-9436163382; E-mail: mailmedrananyadas@rediffmail.com

Received: May 27, 2015; Accepted: June 25, 2015; Published: June 29, 2015

Citation: Panda S, Das A, Nowroz HM, Singh AS (2015) Role of Admission Tests in Predicting Perinatal Outcome: A Prospective Study. J Preg Child Health 2: 171. doi:10.4172/2376-127X.1000171

Copyright: © 2015 Panda S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
• Singleton pregnancy.
• Cephalic presentation.

Exclusion criteria

Known case of high risk pregnancies like:
• Hypertensive disorders of pregnancy.
• Other medical disorders.
• Patients for elective cesarean section.
• Multiple pregnancies.
• Malpresentation.
• Ante partum hemorrhage
• Congenital anomalies

Study technique

1. Case selection according to inclusion criteria.
2. Informed consent taken.
3. Perfora of history and examination.
4. Admission Tests (NST + AFI + UA Doppler).
5. Follow up for Immediate and delayed perinatal outcome.

The data were analysed using SPSS version 17.0. Chi-square test was applied to compare the nominal and ordinal variables with Yates correction wherever necessary.

Informed consent was obtained from the subjects. Detailed history and examination findings were recorded on a performa. Non-stress test was performed and results were interpreted as non-reassuring and ominous (put in abnormal group) and reassuring (put in normal group). After NST, we did AFI estimation. A value of less than 5 cm has been taken as oligohydramnios. Last of all, we did umbilical artery Doppler, where the waveforms were studied. UA S/D ratio should be under 3 after 30 weeks of pregnancy.

Results and Observations

The data collected were statistically analysed. Out of 100 cases, 86 had normal NST and 14 had abnormal NST. AFI was found <= 5 cm in 32 cases and 68 had AFI > 5 cm. UA Doppler was analysed in terms of systolic diastolic ratio and diastolic flow resistance. Abnormal UA Doppler was found in 17 and 83 had normal Doppler (Table 1).

Discussion

For predicting the outcome in low risk pregnancy, we adopted combined admission tests, i.e., NST, AFI and Umbilical artery Doppler in low risk pregnant women. In our study NST shows a sensitivity of 57.89% and a specificity of 96.30%, while, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) is 78.57% and 90.70%, respectively. This study indicates NST is a test with high specificity and negative predictive value, with Diagnostic Accuracy (DA) of 69%. In a study by Kulkarni and Shruti, [7] on predictive utility of Admission tests for perinatal outcome in High-risk labours, the incidence of operative delivery for foetal distress in reactive group is 5.17% which is 10.46% in our study and 28.5% in ominous group, which is 78.57% in our study (Table 1). The results differ because of the difference in study population, individualization of Institutional policy on operative intervention. Moreover, in our study low risk patients are selected, whereas they selected high risk patients. They have perinatal morbidity of 6.89% in the reactive group and 85.71% in ominous group, which closely resembles our study and in both studies, it is statistically significant. In another study by Sandhu et al. [8], they screened high risk obstetrics patients at admission. They found 33% NICU admission from Abnormal NST group and most of them had APGAR score between 4-5 (<6 in 1 Minute). In our study NICU admission from abnormal NST group is 78.57% because of less number of patients in abnormal group. In their study PPV came to 73.3% which matched with

NST	VAGINAL DELIVERY	LOWER SEGMENT CAESAREAN SECTION	STATISTICAL ANALYSIS
NORMAL 86	77 (89.53%)	9 (10.46%)	Chi-Square = 30.78
ABNORMAL 14	3 (21.42%)	11 (78.57%)	P < 0.001 RR = 0.2393
AFI			95% CI = 0.087-0.951
AFI <= 5 (32)	18 (58.25%)	14 (43.75%)	Chi-Square = 16.59
AFI > 5 (68)	62 (19.17%)	6 (8.82%)	P < 0.001 RR = 0.61
UA DOPPLER			95% CI = 0.45-0.84
Abnormal UA (17)	4 (23.52%)	13 (76.47%)	Chi-Square=36.68
Normal UA (83)	76 (91.56%)	7 (8.43%)	P < 0.001 RR = 0.25
			95% CI = 0.108-0.607

Table 1: Mode of delivery and admission tests.

NST	CLEAR	MECONIUM STAINING	STATISTICAL ANALYSIS	
NORMAL (86)	82 (95.34%)	4 (4.65%)	Chi-Square = 52.99 P < 0.001 RR = 0.1498 95% CI = 0.041-0.541	
ABNORMAL (14)	2 (14.28%)	12 (85.71%)		
AFI	CLEAR	MECONIUM STAINING		
AFI <= 5 (32)	22 (68.75%)	10 (31.25%)	Chi-Square = 8.14 P < 0.01 RR = 0.75 95% CI = 0.59-0.98	
AFI > 5 (68)	62 (91.17%)	6 (8.82%)		
UA DOPPLER	CLEAR	MECONIUM STAINING		
ABNORMAL (17)	3 (17.64%)	14 (82.35%)	Chi-Square = 61.27 P < 0.001 RR = 0.18 95% CI = 0.064-0.505	
NORMAL (83)	81 (97.59%)	2 (2.40%)		
our study (78.57%). Amena Khatun et al. [9] reports 82% caesarean rate from abnormal NST group which is 78.57% in our study and in both study it was statistically significant. Normal Vaginal Delivery rate was 18% from abnormal NST group which is 21.42% in our study. They got statistically non-significant data in abnormal NST and meconium staining liquor which is statistically significant in our study (P < 0.001) (Table 2). In perinatal outcome they have 42% of NICU admission for abnormal group and 76% required immediate resuscitation from abnormal group with a statistically non-significant P value for resuscitation. From normal group immediate resuscitation was required in 54% cases which are quite high in comparison to our study (9.30%) which might be because of inclusion of high risk pregnant patient also (Table 3). But NICU admission form normal CTG group is quite similar (10% vs. 9.3%). Sudip Dutta et al. [10] studied the role of admission NST in predicting foetal outcome in high risk obstetric patients. They found vaginal delivery of 64.2% from reacting group and 78.6% caesarean from ominous group (P < 0.001) which closely resembles our study (P < 0.001). They found 8.9% meconium stained liquor, 6.5% NICU admission and 6.5% with APGAR <7 at 5 minutes form reactive group. In our study 4.65% have meconium stained liquor, 9.30% NICU admission, 3.48% (APGAR <7 at 5 minutes) from reactive group. From abnormal group, incidence of meconium staining is 71.4%, NICU admission 57.1%, APGAR <7 at 5 minutes 64.3% (Table 4). In our study Meconium Staining is 85.71%, NICU admission 21.42% and APGAR <7 at 5 minutes is 28.57% from abnormal NST group (Table 5). But in both study p value was statistically significant. Dwarkanath L et al. [11] studied the efficacy of admission CTG to predict obstetrics outcome, in which they found incidence of vaginal delivery and caesarean from reactive group is respectively 90.5% and 7.2% which is 89.53% and 10.46%, respectively in our study. While discussing the efficacy of admission test they got sensitivity of 75.8%, specificity of 76.9% PPV of 95.6%, NPV of 32.25% but in our study we got sensitivity of 57.89%, specificity of 96.30% PPV of 78.57%, NPV of 90.70% (Table 6).

In study of Maha M Al-Bayatti [13] on Amniotic fluid index predictor of perinatal outcome in patients with prolonged pregnancy, they found 27% case of caesarean belong to AFI <5 cm group with meconium staining in 42% case and 5 minutes APGAR of <7 in 16% case with NICU admission in 16% cases. Out of these findings meconium staining in AFI <5 cm is statistically significant (P = 0.004) other parameter are not statistically significant. In our study 43.75% from group I (AFI <5 cm) underwent caesarean, (Table 1) at a significant P value of less than 0.001 [RR = 8.446] other parameter are not statistically significant. In our study 43.75% from group I (AFI <5 cm) underwent caesarean (Table 1), which is statistically significant (P < 0.01) [RR = 8.44], incidence of meconium staining is close to above study (31.25%) in group I (Table 2).

J M Morris et al. [14], found AFI <5cm was associated with severe adverse outcome in their study AFI had the sensitivity for predicting an adverse outcome of 28% ,specificity of 91.9% and likelihood ratio of 3.5 in our study we got a sensitivity of 36.84% specificity of 69.14% and likelihood ratio of 1.19 (Table 6). The probable reason behind this difference is that they have a study population of 1584 patients and

NST	RESUSCITATION	NO RESUSCITATION	STATISTICAL SIGNIFICANCE
NORMAL (86)	8 (9.30%)	78 (90.69%)	Chi-Square = 15.64 95% CI = 2.314-12.485
ABNORMAL (14)	7 (50%)	7 (50%)	Chi-Square = 1.74 95% CI = 0.3-4.68
AFI	RESUSCITATION	NO RESUSCITATION	STATISTICAL SIGNIFICANCE
AFI < 5 (32)	7 (21.87%)	25 (78.12%)	Chi-Square = 1.74 95% CI = 0.3-4.68
AFI > 5 (68)	8 (11.76%)	60 (88.23%)	Chi-Square = 11.007 95% CI = 1.79-10.19
UA DOPPLER	RESUSCITATION	NO RESUSCITATION	STATISTICAL SIGNIFICANCE
Abnormal (17)	7 (41.17%)	10 (58.82%)	Chi-Square = 6.173 95% CI = 6.173-10.19
Normal (83)	8 (9.6%)	75 (90.36%)	Chi-Square = 6.173 95% CI = 6.173-10.19

NST	YES	NO	STATISTICAL ANALYSIS
NORMAL (86)	8 (9.30%)	78 (90.69%)	Chi-Square = 33.17 95% CI = 4.134-17.259
ABNORMAL (14)	11 (78.57%)	3 (21.42%)	Chi-Square = 33.17 95% CI = 4.134-17.259
AFI	YES	NO	STATISTICAL SIGNIFICANCE
AFI < 5 (32)	7 (21.87%)	25 (78.12%)	Chi-Square = 0.252 95% CI = 0.3-4.68
AFI > 5 (68)	12 (17.64%)	56 (82.35%)	Chi-Square = 0.252 95% CI = 0.3-4.68
UA DOPPLER	YES	NO	STATISTICAL SIGNIFICANCE
AFI	YES	NO	STATISTICAL SIGNIFICANCE
AFI < 5 (32)	7 (21.87%)	25 (78.12%)	Chi-Square = 0.252 95% CI = 0.3-4.68
AFI > 5 (68)	12 (17.64%)	56 (82.35%)	Chi-Square = 0.252 95% CI = 0.3-4.68
are quite similar to our study (Table 6).

They got a sensitivity of 45.1% specificity of 87.13%, PPV = 35.2%, NPV is close to our study (specificity = 69.14%, NPV = 82.35%) .

In another study by Nighat Sultana et al. [16], they did AFI in oligohydramnios group, incidence of meconium staining is 31% (P < 0.05) which is closely related to our study.

Alfirevic Z, Neilson JP (1995) Doppler ultrasonography in high-risk pregnancies: Systematic review with meta-analysis. Am J Obstet Gynecol 172: 1379-1387.

Vintzileos AM, Fleming AD, Scorza WE, Wolf EJ, Balducci J, et al. (1991) Relationship between foetal biophysical activities and umbilical cord blood gas values. Am J Obstet Gynecol 165: 707-713.

Yoon BH, Romero R, Roh CR, Kim SH, Ager JW, et al. (1993) Relationship between the foetal biophysical profile score, umbilical artery Doppler velocimetry, and foetal blood acid-base status determined by cordocentesis. Am J Obstet Gynecol 169: 1586-1594.

Divon MY (1996) Umbilical artery Doppler velocimetry: Clinical utility in high-risk pregnancies. Am J Obstet Gynecol 174: 10-14.

Freeman RK (2008) Antepartum testing in patients with hypertensive disorders in pregnancy. Semin Perinatol 32: 271-273.

Goffinet F, Paris J, Nisand I, Bréart G (1997) Clinical value of umbilical Doppler. Results of controlled trials in high risk and low risk populations. J Gynecol Obstet Biol Reprod (Paris) 26: 16-26.

In a study by Razek and Mohey EI-Din [18] studied the role of labour admission tests in the prediction of the perinatal outcome in high risk pregnancy. They got a sensitivity of 45.1% specificity of 87.13%, PPV = 35.2%, NPV of 91.6% and diagnostic accuracy of 82%. Except PPV, all other findings are quite similar to our study (Table 6).

Table 5: APGAR and admission tests.

TEST	SENSITIVITY	SPECIFICITY	PPV	NPV	LR+	LR-	DA
NST	57.89%	69.14%	21.88%	82.35%	1.19	0.91	63%
AFI	47.84%	86.93%	64.71%	90.36%	7.82	0.45	82%

Table 6: Comparison between 3 tests in respect to predictive values.

Conclusion

NST, AFI, Umbilical Artery Doppler can be done altogether as an admission test on pregnant patients, for prediction of perinatal outcome. NST can be done as a single best test among these three, with high specificity and high negative predictive value, particularly in poor resource settings.

References

1. Freeman RK (2008) Antepartum testing in patients with hypertensive disorders in pregnancy. Semin Perinatol 32: 271-273.
2. Alfirevic Z, Neilson JP (1995) Doppler ultrasonography in high-risk pregnancies: Systematic review with meta-analysis. Am J Obstet Gynecol 172: 1379-1387.
3. Divon MY (1996) Umbilical artery Doppler velocimetry: Clinical utility in high-risk pregnancies. Am J Obstet Gynecol 174: 10-14.
4. Goffinet F, Paris J, Nisand I, Bréart G (1997) Clinical value of umbilical Doppler. Results of controlled trials in high risk and low risk populations. J Gynecol Obstet Biol Reprod (Paris) 26: 16-26.
5. Vintzileos AM, Fleming AD, Scorza WE, Wolf EJ, Balducci J, et al. (1991) Relationship between foetal biophysical activities and umbilical cord blood gas values. Am J Obstet Gynecol 165: 707-713.
6. Yoon BH, Romero R, Roh CR, Kim SH, Ager JW, et al. (1993) Relationship between the foetal biophysical profile score, umbilical artery Doppler velocimetry, and foetal blood acid-base status determined by cordocentesis. Am J Obstet Gynecol 169: 1586-1594.
7. Kulkarni AA, Shrotri AN (1998) Admission test: a predictive test for foetal distress in high risk labour. J Obstet Gynaecol Res 24: 255-259.
8. Sandhu GS, Raju R, Bhattacharyya TK, Shaktivelvanth (2008) Admission tests in predicting perinatal outcome: Systematic review with meta-analysis. J Gynecol Obstet Biol Reprod (Paris) 26: 16-26.
Cardiotocography Screening of High Risk Obstetric patients. Medical Journal Armed Forces India 64:43-45.

9. Amena Khatun, Nurun Nahar Khanam, Fahmida Nazir (2009) Role of Elaborate cardiotocography (CTG) in Pregnancy in Pregnancy management. BSMMU J 2: 18-24.

10. Rahman H, Renjhen P, Dutta S, Kar S (2012) Admission cardiotocography: Its role in predicting foetal outcome in high-risk obstetric patients. Australas Med J 5: 522-527.

11. Dwarakanath L, Lakshmikantha G, Chaitra SK (2013) Efficacy of Admission Cardiotocography (Admission Test) To Predict Obstetric Outcome. Journal of Evolution of Medical and Dental Sciences 2: 418-421.

12. Rose Jophy, Annamma Thomas, Prabha Jairaj (2002). J Obstet and Gynae of India 52: 26-29.

13. Maha M Al-Bayatti (2008) Amniotic fluid Index as a Predictor of Perinatal outcome in Patients with Prolonged Pregnancy. Iraqi J Comm Med 3: 216-218.

14. JM Morris, K Thompson, J Srithey, G Gaffrey (2003) The usefulness of Ultrasound assessment of amniotic fluid in Predicting adverse outcome in Prolonged Pregnancy: A Prospective blinded Observational Study. Br J Obstet Gynecol 110: 989-994.

15. Assavari Ashok Bachhav, Majushri R Waikar (2013) Low Amniotic Fluid Index at Term as a Predictor of Adverse Perinatal Outcome. Journal of Evolution of Medical and Dental Sciences 2: 7221-7226.

16. Nighat Sultana, Malhiqa Maqsud, Fuad Hameed Rai (2009) Oligohydramnios is associated with poor pregnancy outcome. Pakistan Journal of Medical and Health Sciences 3: 100-103.

17. Masoome Mirteymouri, Maryam Khooshideh, Shahrokhkhizadi, Ali Shahriari (2009) The Predictive value of ultrasound assessment of amniotic fluid index, biophysical profile score, non-stress test and foetal movement chart for meconium stained amniotic fluid in Prolonged Pregnancies. Journal of Pakistan Medical Association 59: 471-473.

18. Abdel Razek, M Mohey El-Din (2005) The Role of Some Labour Admission Tests in the Prediction of the Perinatal Outcome in High-Risk Pregnancies. El-Minia Medical Bulletin 16: 26-38.