Quantum \mathbb{F}_{un}: the $q = 1$ limit of Galois field quantum mechanics, projective geometry and the field with one element

Lay Nam Chang1, Zachary Lewis1, Djordje Minic1 and Tatsu Takeuchi1,2

1Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
2Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa-shi, Chiba-ken 277-8583, Japan

E-mail: laynam@vt.edu, dminic@vt.edu and takeuchi@vt.edu

Received 18 June 2014, revised 5 August 2014
Accepted for publication 26 August 2014
Published 23 September 2014

Abstract
We argue that the $q = 1$ limit of Galois field quantum mechanics, which was constructed on a vector space over the Galois field $\mathbb{F}_q = GF(q)$, corresponds to its ‘classical limit’, where superposition of states is disallowed. The limit preserves the projective geometry nature of the state space, and can be understood as being constructed on an appropriately defined analogue of a ‘vector’ space over the ‘field with one element’ \mathbb{F}_1.

Keywords: field with one element, quantum mechanics, classical mechanics, projective geometry, Galois field
PACS numbers: 03.65.Aa, 03.65.Ta, 03.65.Ud

1. Introduction—the classical limit of quantum mechanics

How deterministic classical mechanics (CM) emerges from probabilistic quantum mechanics (QM) is a conundrum which is yet to be resolved. As first noticed by Dirac [1], the Poisson brackets of CM can be considered the $\hbar \to 0$ limit of commutators in QM, and the Heisenberg equation goes over to Hamilton’s equation in that limit

$$\frac{d\hat{A}}{dt} = \frac{1}{i\hbar} \{ \hat{A}, \hat{H} \} \quad \xrightarrow{\hbar \to 0} \quad \frac{dA}{dt} = \{ A, H \}. \quad (1)$$

Despite this formal correspondence, however, it is far from clear how the full classical theory would be recovered from QM in such a limit. In particular, what happens to the Hilbert space
of QM in the $\hbar \to 0$ limit is a difficult question\(^3\). Also, \hbar being a dimensionful quantity, the limit $\hbar \to 0$ itself is not particularly well-defined\(^4\).

In order to see the CM ↔ QM correspondence more clearly, several attempts have been made to make CM look more like QM via the introduction of wave-functions, operators, and probability distributions. The WKB approximation\(^3–5\) to the Schrödinger equation has been reinterpreted as the wave-function of CM by van Vleck\(^6\) and subsequently by Schiller\(^7–9\), with observables represented by commuting hermitian operators with continuous eigenvalues. However, utilizing the rewriting of the Schrödinger equation by de Broglie in his pilot-wave theory\(^10\), which was later elaborated on by Bohm to discuss a hidden variable interpretation of QM\(^11, 12\), Rosen has shown that taking the $\hbar \to 0$ limit of the Schrödinger equation does not necessarily recover the Hamilton–Jacobi equation for superpositions of states\(^13–15\).

Koopman\(^16\) and von Neumann\(^17, 18\), and later Sudarshan\(^19\), developed a complete formulation of CM on a Hilbert space, which was again characterized by commuting Hermitian operators as observables. Recent work on extending the Koopman–von Neumann–Sudarshan formalism with the introduction of path integrals, etc include\(^20–24\). It should be emphasized that the Koopman–von Neumann–Sudarshan theory is not the $\hbar \to 0$ limit of QM. Indeed, the operators that correspond to position and momentum in their formalism commute with each other without the taking of any limit, and respectively have canonically conjugate operators with which they do not commute but are deemed unobservable. The superposition of states also correspond to ensembles of classical states, and not macroscopic Schrödinger-cat like states. Thus, though the Koopman–von Neumann–Sudarshan theory is a formulation of CM on a Hilbert space, it does not (yet) provide much insight on how CM can emerge from QM, or vice versa.

Given the apparent absence of macroscopic Schrödinger-cat like states, they must somehow vanish in the classical limit. Several approaches have been used to address this problem, the most prominent being that of ‘environmental decoherence’ reviewed in\(^25, 26\) by Zurek. There, the system under observation and its environment (rest of the Universe) are both treated quantum mechanically, and it has been shown that the interaction between the two suppresses the off-diagonal terms in the density matrix in a preferred basis. The statistical nature of the theory remains, however, and leads to the many-worlds interpretation of QM developed from the pioneering work of Everett\(^27\). Other approaches to the system-environment interaction problem treat the environment classically, and the interaction with the quantum system leads to classical-quantum ‘hybrid’ theories, the properties of which are still under investigation\(^5\).

Thus, despite impressive developments in our understanding of QM during the past century, the CM/QM divide remains and bridging that gap is still an intense area of investigation. What seems probable is that recovering CM from QM would require more than taking the $\hbar \to 0$ limit of QM in some yet to be discovered way, or the rewriting of CM or QM to look more like the other in some fashion. A more generic theory which encompasses both CM and QM may be necessary to understand the CM ↔ QM correspondence.

As with any difficult problem, finding a toy analog which simplifies the situation while maintaining the essence of the quandary is often instructive. In\(^40\) and\(^41\) we constructed a toy analog of N-level QM on the vector space \mathbb{F}_q^4, where $\mathbb{F}_q = GF(q)$ is the Galois field of the

\(^3\) The singularity of the $\hbar \to 0$ limit has been emphasized in an illuminating review by Berry\(^2\).

\(^4\) Given the dimensionfulness of \hbar, the $\hbar \to 0$ limit should be understood as $\hbar \ll S$ where S is the classical action that is used to describe the quantum formulation as, say, in the path integral approach.

\(^5\) See for instance\(^19, 28–32, 34–39\) and references therein.
order \(q = p^n \), with \(p \) prime and \(n \in \mathbb{N} \), which we dubbed ‘Galois field quantum mechanics’ (GQM)\(^6\). GQM was necessarily different from canonical QM in many ways, due to the vector space \(\mathbb{F}_q^N \) not possessing an inner product. Consequently, observables were not represented by operators, Hermiticity being difficult to define without an inner product\(^7\), and without operators there were no commutators, or \(\hbar \) for that matter. However, in it, physical states were still represented by elements of a projective geometry, and the theory still predicted probabilities of the outcomes of a measurement which could not be mimicked by any hidden variable theory. Thus GQM, despite being constructed on a discrete and finite vector space \(\mathbb{F}_q^N \) without an inner product, nevertheless captured some of the quantum-ness of canonical QM. A natural question to ask then is: Does GQM have a ‘classical’ limit in which this quantum-ness is lost and replaced by classical-ness? An answer to this could help us understand how canonical QM becomes CM also.

In this paper, we present the observation that even though GQM does not have an \(\hbar \) in its formulation, its ‘classical’ limit can still be defined by taking the limit \(q \to 1 \). In that limit, the Galois field \(\mathbb{F}_q \) can be expected to become \(\mathbb{F}_1 \), aka \(\mathbb{F}_0^\infty \), the ‘field with one element,’ an exotic and somewhat nebulous mathematical concept first suggested by Tits in 1957 [58]. \(\mathbb{F}_q \) in turn can be considered the ‘quantum’-deformation of \(\mathbb{F}_1 \) [59]. Though dormant for many decades, the study of \(\mathbb{F}_q \), and efforts to actually define what it is, has intensified since the 1990s\(^9\) under the expectation that it would lead to a proof of the Riemann hypothesis\(^10,11\).

This paper is organized as follows. In section 2 we review how GQM is constructed on \(\mathbb{F}_q^N \). We will look at what happens to the theory if we let \(q = 1 \) for the case \(N = 2 \), and discuss its ‘classical’ properties. In section 3 we review the notion of \(\mathbb{F}_1 \), the ‘field with one element,’ following the treatment of Kurokawa and Koyama, [85] and show that the \(q = 1 \) limit of GQM can be constructed directly on the ‘vector’ space \(\mathbb{F}_1^N \). The resulting state space is a projective geometry, just as with GQM and canonical QM. The theory on \(\mathbb{F}_1^N \) also prohibits the superposition of states, precisely the property one expects in a ‘classical’ theory. Discussion on what this teaches us is given in section 4.

2. GQM

2.1. The model

Since the details of GQM can be found in [40] and [41], here we only present the basic outline.

Consider the vector space \(\mathbb{F}_q^N \). Vectors in \(\mathbb{F}_q^N \) represent states of the model system, while dual vectors in the dual vector space \(\mathbb{F}_q^{N^*} \) represent possible outcomes of measurements. The probability of obtaining the outcome represented by the dual-vector \(\langle x \rangle \in \mathbb{F}_q^{N^*} \) when a measurement is performed on the state represented by the vector \(\langle \psi \rangle \in \mathbb{F}_q^N \) is given by

\(^6\) See also [42–55].

\(^7\) It is possible to define analogs of Hermitian operators using biorthogonal systems. See [51, 56, 57].

\(^8\) Denoting \(\mathbb{F}_q \) as \(\mathbb{F}_0^\infty \) is a French–English bilingual pun. See, e.g. [75, 76].

\(^9\) See, for instance [60–84].

\(^10\) According to Kurokawa and Koyama in [85], the proof for the analogue of the Riemann hypothesis on projective algebraic varieties over \(\mathbb{F}_q \) is known (one of the Weil conjectures proved by Deligne in 1974). The hope is that reinterpreting the integers \(\mathbb{Z} \) as a projective algebraic variety over \(\mathbb{F}_1 \) will lead to a proof of the Riemann hypothesis utilizing similar techniques. In a separate popular book [86], Kurokawa and Koyama state that Mochizuki’s recent work on the ABC conjecture [87] also uses ideas based on \(\mathbb{F}_1 \).

\(^11\) See also [88] for a quantum mechanical approach to the Riemann hypothesis.
\[P(x|\psi) = \frac{|\langle x|\psi \rangle|^2}{\sum_y |\langle y|\psi \rangle|^2}, \]

where the sum in the denominator runs over all the dual vectors \((y) \) in a basis of \(\mathbb{F}^N_q \) which includes \((x) \). The choice of basis of \(\mathbb{F}^N_q \) corresponds to an observable, each dual vector in the basis representing a different outcome.

The absolute value function in the above expression converts elements of \(\mathbb{F}^N_q \) into either zero or one in \(\mathbb{F} \):

\[|k| = \begin{cases} 0 & \text{if } k = 0, \\ 1 & \text{if } k \neq 0. \end{cases} \]

Here, underlined numbers and symbols represent elements of \(\mathbb{F}^N_q \), to distinguish them from elements of \(\mathbb{R} \) or \(\mathbb{C} \). Since \(\mathbb{F}^N_q \) is a cyclic multiplicative group, this assignment of ‘absolute values’ is the only one consistent with the requirement that the map from \(\mathbb{F}^N_q \) to non-negative \(\mathbb{F} \) be product preserving, that is: \(|k||l| = |k||l| \). Since the same absolute value is assigned to all non-zero brackets, all outcomes \((x|y) \) for which the bracket with the state \(\psi \) is non-zero are given equal probabilistic weight.

Note also that the multiplication of \(|\psi \rangle \) with a non-zero element of \(\mathbb{F}^N_q \) will not affect the probability. Thus, vectors that differ by non-zero multiplicative constants are identified as representing the same physical state, and the state space is endowed with the finite projective geometry \([89–92]\)

\[PG(N - 1, q) = \left(\mathbb{F}^N_q \setminus \{0\} \right) / \left(\mathbb{F}^N_q \setminus \{0\} \right), \]

where each ‘line’ going through the origin of \(\mathbb{F}^N_q \) is identified as a ‘point,’ in close analogy to the complex projective geometry \(CP^{N-1} \) of canonical \(N \)-level QM defined on \(\mathbb{C}^N \).

2.2. An example

To give a concrete example of our proposal, let us construct a two-level system, analogous to spin, on \(\mathbb{F}^2_q \) for which the state space is \(PG(1, q) \). This geometry consists of \(q + 1 \) ‘points,’ which can be represented by the vectors

\[|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad |r\rangle = \begin{bmatrix} a^{r-1} \\ 1 \end{bmatrix}, \]

where \(a \) is the generator of the multiplicative group \(\mathbb{F}^N_q \setminus \{0\} \) with \(a^{q-1} = 1 \).

The number \(q + 1 \) results from the fact that of the \(q^2 - 1 \) non-zero vectors in \(\mathbb{F}^2_q \), every \(q - 1 \) are equivalent, thus the number of inequivalent vectors is \((q^2 - 1)/(q - 1) = (q + 1) \). Similarly, the \(q + 1 \) inequivalent dual-vectors can be represented as

\[\ldots |r\rangle = \begin{bmatrix} a^{r-1} \\ 1 \end{bmatrix}, \]

\[r = 2, 3, \ldots, q, \] where \(a \) is the generator of the multiplicative group \(\mathbb{F}^N_q \setminus \{0\} \) with \(a^{q-1} = 1 \).
\[\begin{align*}
\langle 0 | &= [0, -1], \\
\langle 1 | &= [1, 0], \\
\langle r | &= [1, -q^{r-1}], \quad r = 2, 3, \ldots, q,
\end{align*} \]

where the minus signs are dropped when the characteristic of \(F_q \) is two\(^{13} \). From these definitions, we find

\[\langle r | s \rangle = \begin{cases}
0 & \text{if } r = s, \\
\neq 0 & \text{if } r = s,
\end{cases} \]

and

\[| r \rangle s \rangle = \begin{cases}
0 & \text{if } r = s, \\
1 & \text{if } r = s.
\end{cases} \]

Observables are associated with a choice of basis of \(F_q^2 \):

\[A_{rs} \equiv \{ \langle r |, \langle s | \} \quad r \neq s. \]

We assign the outcome \(+1\) to the first dual-vector of the pair, and the outcome \(-1\) to the second to make these observables spin-like. This assignment implies \(A_{rt} = -A_{ts} \). The indices \(rs \) can be considered as indicating the direction of the ‘spin,’ and the interchange of the indices as indicating a reversal of this direction.

Applying equation (2) to this system, it is straightforward to show that

\[P(A_{rs} = +1 \mid r) = 0, \quad P(A_{rs} = -1 \mid r) = 1, \]

\[P(A_{rs} = +1 \mid s) = 1, \quad P(A_{rs} = -1 \mid s) = 0, \]

\[P(A_{rs} = \pm 1 \mid t) = \frac{1}{2}, \quad \text{for } t \neq r, s, \]

and thus,

\[\langle A_{rs} \rangle_r = -1, \]

\[\langle A_{rs} \rangle_s = +1, \]

\[\langle A_{rs} \rangle_t = 0, \quad \text{for } t \neq r, s. \]

So for each ‘spin’ \(A_{sr} \) there exist two ‘eigenstates’: \(|s \rangle \) for \(+1\) (‘spin’ up) and \(|r \rangle \) for \(-1\) (‘spin’ down). For all other states the two outcomes \(\pm 1 \) are equally probable.

2.3. Spin correlations

A two-‘spin’ system can be constructed on the tensor product space \(F_q^2 \otimes F_q^2 = F_q^4 \). The number of non-zero vectors in this space is \(q^4 - 1 \), of which every \(q - 1 \) are equivalent, so the number of inequivalent states is \((q^4 - 1)/(q - 1) = q^3 + q^2 + q + 1 \). Of these, \((q + 1)^2 \) are product states, leaving \((q^3 + q^2 + q + 1) - (q + 1)^2 = q(q^2 - 1) \) that are entangled. Of these, there exists an analog of the spin-singlet state given by

\(^{13}\) The ‘characteristic’ of a field is the smallest non-negative integer \(m \) such that \(\frac{1}{m} + \frac{1}{m} + \cdots + \frac{1}{m} = 0 \), where \(\frac{1}{m} \) is the multiplicative unit and \(0 \) is the additive unit. For example, the characteristic of \(F_q \) with \(q = p^n \) is the prime \(p \). The characteristics of \(\mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are defined to be zero.
for any two states $|r\rangle$ and $|s\rangle$ up to a multiplicative constant. If the characteristic of \mathbb{F}_q is two, the minus sign is replaced by a plus sign.

Products of the ‘spin’ observables are defined as

$$A_{rs}A_{rt} = \{ \langle r | \otimes \langle i |, \langle r | \otimes \langle a |, \langle s | \otimes \langle i |, \langle s | \otimes \langle a | \} ,$$

the four tensor products representing the outcomes $++$, $+-$, $-+$, and $--$, and the expectation value giving the correlation between the two ‘spins.’ The probabilities of the four outcomes are particularly easy to calculate for the state $|S\rangle$ since

$$|S\rangle = |r\rangle \otimes |s\rangle - |s\rangle \otimes |r\rangle , \quad r \neq s,$$

(12)

and we obtain the probabilities and correlations listed in table 1. It is straightforward to show that these probabilities cannot be reproduced by any classical hidden variable theory [40, 41]. Thus, GQM is ‘quantum’ in this sense.

Observable	++	+−	−+	−−	E.V.
$A_{rs}A_{rt}$	0	$\frac{1}{2}$	$\frac{1}{2}$	0	−1
$A_{rs}A_{rt}$	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	−$\frac{1}{3}$
$A_{rs}A_{st}$	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	+$\frac{1}{3}$
$A_{rs}A_{tu}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0

It should be noted, though, that GQM also has a common feature with CM when we look at the Clauser–Horne–Shimony–Holt (CHSH) version of Bell’s inequality [93, 94]. The CHSH bound [95] is the upper bound of the absolute value of the following combination of correlators:

$$\langle \langle r | \otimes \langle s | \rangle |S\rangle \rangle = 0 \quad \text{if } r = s ,$$

$$\neq 0 \quad \text{if } r \neq s ,$$

(14)

thus

$$\left| \langle \langle r | \otimes \langle s | \rangle |S\rangle \rangle \right| = 1 - \delta_{rs} ,$$

(15)

and we obtain the CHSH bound of 2. This bound is independent of the value of q chosen for our Galois field \mathbb{F}_q and is thus also independent of the

14 The largest possible value of the CHSH bound is 4 [98]. See [51] for a model which saturates this bound.
size of the vector space $F_q^2 \otimes F_q^2 = F_q^4$ [40, 41]. So the limitation on the correlations is not due to the limited number of ‘spin’ direction available in the model. This GQM example shows that the absence of hidden variable mimics does not necessarily guarantee the violation of the classical CHSH bound.

2.4. The $q = 1$ limit

The Galois fields F_q are only defined for $q = p^n$, that is, the order q must be a power of a prime p. Thus, setting $q = 1$ is illegitimate from the Galois field point of view. Indeed, F_q consists of q elements so taking the naive $q = 1$ limit, one expects F_1 to consist of only one element (which could be denoted by either 0 or 1) with no distinction between addition and multiplication. Such an object is obviously not a ‘field.’ In other words, a ‘field with one element,’ in the usual sense of the term, does not and cannot exist. However, a different and more interesting picture emerges if instead of trying to define F_1 first, we set $q = 1$ directly in the $N = 2$ ‘spin’ model we constructed above.

First, the number of states given in equation (5) will be reduced to $q + 1 = 2$,

$$\left| \uparrow \right> \equiv |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \left| \downarrow \right> \equiv |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(17)
as are the possible outcomes listed in equation (6)

$$\langle \downarrow | \equiv \langle 0 | = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad \langle \uparrow | \equiv \langle 1 | = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$ (18)

The sole observable of the system, equation (9), will be

$$A \equiv A_{10} = - A_{01} = \{ \langle 1 |, \langle 0 | \} = \{ \langle \uparrow |, \langle \downarrow | \}.$$ (19)

for which $\downarrow \uparrow \rangle$ and $\downarrow \downarrow \rangle$ are ‘eigenstates’

$$\langle A \rangle_\uparrow = 1, \quad \langle A \rangle_\downarrow = -1.$$ (20)

Thus, a measurement of A on $\uparrow \rangle$ will always yield $+1$, while that on $\downarrow \rangle$ will always yield -1. No superpositions of these states exist, so the system reduces to a ‘classical’ one where each state has a definite outcome upon measurement.

The ‘two’-spin system will reduce to $q^2 + q^2 + q + 1 = 4$ states, of which $q(q^2 - 1) = 0$ are entangled. These four are the product states

$$\left| \uparrow \uparrow \right> \equiv | \uparrow \rangle \otimes | \uparrow \rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \left| \uparrow \downarrow \right> \equiv | \uparrow \rangle \otimes | \downarrow \rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},$$

$$\left| \downarrow \uparrow \right> \equiv | \downarrow \rangle \otimes | \uparrow \rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \left| \downarrow \downarrow \right> \equiv | \downarrow \rangle \otimes | \downarrow \rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$ (21)

The sole product observable, equation (13), is

$$AA = \{ \langle \uparrow |, \langle \uparrow |, \langle \downarrow |, \langle \downarrow | \},$$ (22)
where
\[
\begin{align*}
\langle \uparrow \uparrow | &= \langle \uparrow | \otimes \langle \uparrow | = [1 0 0 0], \\
\langle \uparrow \downarrow | &= \langle \uparrow | \otimes \langle \downarrow | = [0 1 0 0], \\
\langle \downarrow \uparrow | &= \langle \downarrow | \otimes \langle \uparrow | = [0 0 1 0], \\
\langle \downarrow \downarrow | &= \langle \downarrow | \otimes \langle \downarrow | = [0 0 0 1].
\end{align*}
\] (23)

The four states are all ‘eigenstates’ of AA with definite outcomes when AA is measured. Thus, the system is ‘classical’ and its CHSH bound is trivially 2.

This discussion can be easily generalized to generic N-level GQM, in which the \(q = 1 \) case reduces to a situation where all surviving states are simultaneous ‘eigenstates’ of all surviving observables. What this exercise shows is that the \(q = 1 \) limit of GQM, though admittedly fairly trivial, does make sense as a ‘classical’ theory. Note, however, that in letting \(q = 1 \) we have retained the formalism of GQM as is from the ‘quantum’ \(q \neq 1 \) cases. The only thing that has changed is the value of \(q \), which changes the number field over which the state space is constructed, formally, from \(\mathbb{F}_q \) to \(\mathbb{F}_1 \). But what is \(\mathbb{F}_1 \)?

3. The field with one element \(\mathbb{F}_1 \)

3.1. The observation of Tits

The concept of \(\mathbb{F}_1 \) first appeared in a 1957 paper by Tits [58] as the ‘corps de caractéristique 1.’ The main objective of the Tits paper was to use projective geometries to define the then recently discovered Chevalley groups geometrically. To each Dynkin diagram and choice of finite field \(\mathbb{F}_q \) a projective geometry was associated, and the Chevalley group identified with the group of projective transformations on the geometry. For instance, the projective geometry \(PG(N - 1, q) \) is associated with the Dynkin diagram for \(A_{N-1} \), and the corresponding Chevalley group is the projective linear group \(PGL(N, q) \). Towards the end of the paper, Tits argues that the \(q = 1 \) limit of \(PG(N - 1, q) \) actually makes sense as a projective geometry, and that the corresponding group of projective transformations is \(S_N \).

To see this, let us first list a few properties of \(PG(N - 1, q) \) for \(q \neq 1 \):

- The number of points in the geometry \(PG(N - 1, q) \) is
 \[
 \left[\begin{array}{c}
 N \\
 1 \\
 \end{array} \right]_q = \left[N \right]_q = \frac{q^{N-1}}{q - 1} = 1 + q + q^2 + \cdots + q^{N-1}.
 \] (24)

 (See chapter 9 of [101].) Here, the notation is
 \[
 \left[\begin{array}{c}
 N \\
 M \\
 \end{array} \right]_q = \frac{[N]_q!}{[M]_q![N - M]_q!},
 \] (25)

 with

 15 Note that the vector space \(\mathbb{F}_q^N \) has \(q^N - 1 \) non-zero vectors, of which every \(q - 1 \) of them are physically equivalent in GQM. Thus, the number of physically distinct states is \((q^N - 1)/(q - 1) = [N]_q \), which reduces to \(N \) in the \(q = 1 \) limit.

 16 Chevalley originally used purely algebraic methods in his definition [99].

 17 With a minor modification to the axioms. See [100].
\[[N]_q \equiv 1 + q + q^2 + \cdots + q^{N-1} = \frac{q^N - 1}{q - 1}, \]
\[[N]_q! \equiv [N]_q[N - 1]_q\cdots[2]_q[1]_q. \] (26)

Equation (25) is known as the Gaussian binomial coefficient, \([N]_q\) the \(q\)-analogue of the natural number \(N\), and \([N]_q!\) the \(q\)-factorial.

- The number of \(k\)-dimensional subspaces (points, lines, planes, etc) in \(PG(N - 1, q)\) are

\[
\begin{bmatrix} N \\ k + 1 \end{bmatrix}_q = \frac{[N]_q[N - 1]_q\cdots[N - k]_q}{[k + 1]_q[k]_q\cdots[1]_q} = \frac{(q^N - 1)(q^{N-1} - 1)\cdots(q^{N-k} - 1)}{(q^{k+1} - 1)(q^k - 1)\cdots(q - 1)}. \] (27)

Each subspace contains

\[[k + 1]_q = \frac{q^{k+1} - 1}{q - 1} = 1 + q + q^2 + \cdots + q^k \] (28)

points.

In the limit \(q \rightarrow 1\), the \(q\)-analog \([N]_q\) reduces to \(N\), the \(q\)-factorial to the usual factorial, and the Gaussian binomial coefficients to the usual binomial coefficients. So the ‘projective’ space \(PG(N - 1, 1)\) should be a space consisting of \(N\) ‘points,’ and the number of \(k\)-dimensional subspaces should be \(NC_{k+1}\), each consisting of \(k + 1\) points. This would simply be a set consisting of \(N\) elements, and all the subsets consisting of \(k + 1\) elements are the \(k\)-dimensional subspaces. The group of all possible transformations, projective or not, for a set with \(N\) elements is obviously \(S_N\).

For instance, say \(N = 3\): \(PG(2, 1)\) would consist of three ‘points.’ Let us call them \(a\), \(b\), and \(c\). The ‘lines’ in this geometry would be \(\{a, b\}, \{b, c\}, \text{ and } \{c, a\}\), and the ‘plane’ would be the entire space \(\{a, b, c\}\). There is a nice discussion in [100] on how this definition of ‘geometry’ satisfies all the required axioms. All possible ways to map the three points onto themselves form the group \(S_3\).

Now, recalling that \(PG(N - 1, q)\) was obtained by identifying the lines through the origin of \(F_q^N\) as points, Tits argues that the ‘projective geometry’ \(PG(N - 1, 1)\) should be interpretable as

\[PG(N - 1, 1) = \frac{F_q^N \setminus \{0\}}{F_q \setminus \{0\}}, \] (29)

where \(F_1\) is the ‘corps de caractéristique 1,’ aka the field with one element.

3.2. \(F_1\) according to Kurokawa and Koyama

Taken literally, ‘corps de caractéristique 1’ implies\(^{18}\)

\[1 = 0, \] (30)

that is, the multiplicative unit and the additive unit are the same number, so it may seem that \(F_1 = \{1\} = \{0\}\), where

\(^{18}\) See footnote 13.
\[1 \times 1 = 1, \quad 1 + 1 = 1. \] \hspace{1cm} (31)

Such an object would not have any structure to speak of and it is difficult to envision how one could construct any geometry, projective or otherwise, on it. Thus, a more sophisticated definition of \(F_1 \) is called for.

Various definitions of \(F_1 \) and \(F_1 \)-geometries exist in the literature, which endeavor to make sense of these concepts, a survey of which can be found in [74] by Lorscheid and Lopez-Pena. Here, we adopt the definition of \(F_1 \) by Kurokawa and Koyama in [85] who argue that \(F_1 \) should be interpreted as the set \(F_1 = \{ 1 \} + \{ 0 \} \) on which only multiplication is defined. Note that \(1 \) is the multiplicative unit, and \(0 \) is the multiplicative zero, that is

\[1k = k1 = k, \quad 0k = k0 = 0, \quad k = 0 \text{ or } 1. \] \hspace{1cm} (32)

This is different from \(F_2 = \{ 0, 1 \} \) in that addition is not allowed\(^{19} \). This is the reason for the unfamiliar notation \(\{ 1 \} + \{ 0 \} \): \(\{ 1 \} \) is the multiplicative group by itself, and \(\{ 0 \} \) is the multiplicative zero (but not the additive unit since there is no addition) which is tacked on. Thus, \(F_1 \) is not really a field but what is known as a ‘monoid.’

Since addition is not allowed, ‘vector’ spaces over \(F_1^{\mathbb{N}} \) are not truly ‘vector’ spaces in the usual sense of the term. However, lacking a better alternative, let us use vector space terminology anyway. Since \(F_1^{\mathbb{N}} \) is an \(\mathbb{N} \)-dimensional space, it will have \(N \) basis vectors, which we denote

\[|1\rangle, |2\rangle, \ldots, |N\rangle. \] \hspace{1cm} (33)

The linear combinations of these basis vectors are of the form

\[\sum_{i=1}^{N} c_i |i\rangle, \quad c_i \in F_1, \] \hspace{1cm} (34)

but since we should have no addition, only one of the \(c_i \)'s is allowed to be non-zero at a time. So the \(N \) basis vectors are the only (non-zero) vectors in this space. They will each be represented by column vectors with only one \(1 \), the remaining elements being all \(0 \). Note that these are precisely the states we obtained in taking the limit \(q = 1 \) in GQM.

Linear transformations on \(F_1^{\mathbb{N}} \) must not lead to addition of the basis vectors. So the only allowed transformations are those for which the \(N \times N \) matrix representation has at most one \(1 \) in each row. The non-singular ones, i.e. the automorphisms, are the ones in which there is one \(1 \) in each row and each column. These are simply the matrices that permute the \(N \) basis vectors. Since \(F_1 \setminus \{ 0 \} = \{ 1 \} \), the projective space \(PG(N - 1, 1) \) will simply consist of the non-zero vectors in \(F_1^{\mathbb{N}} \). There are \(N \) of these, as required for \(PG(N - 1, 1) \). The projective linear group \(PGL(N, 1) \) would be \(S_N \).

Linear maps from \(F_1^{\mathbb{N}} \) to \(F_1 \), i.e. the dual vectors, must also satisfy the no-addition requirement, so they would be \(N \times 1 \) row-vectors, each with only one \(1 \), the remaining elements all \(0 \). These are precisely the dual vectors representing outcomes in the \(q = 1 \) limit of GQM.

Thus, the Kurokawa–Koyama approach matches well with the GQM construction, and the \(q = 1 \) ‘classical’ limit can be constructed directly on \(F_1^{\mathbb{N}} \) defined in this fashion. The resulting state space has the projective geometry \(PG(N - 1, 1) \). Note, particularly, that the prohibition of addition in Kurokawa–Koyama leads to the lack of superposition of states in

\(^{19} \) It may be more precise to say that only the addition of \(0 \) is allowed; \(1 + 1 \) is prohibited. Another definition referred to in the literature [62, 82–84] defines \(1 + 1 = 1 \) with all other additions and multiplications among \(0 \) and \(1 \) defined in the usual way, see equation (31).
the ‘classical’ limit of GQM. Therefore, the \(q = 1 \) limit of GQM can be considered to be ‘classical’ due to this very special feature of \(\mathbb{F}_1 \).

4. Summary and discussion

Illuminating the precise relation between CM and QM remains one of the outstanding problems in the foundations of physics. In this note we point out that a simple discrete toy model sheds new light on this important problem.

In order to compare the two seemingly disparate formalisms of physics, first, one needs a unifying mathematical language for such a comparison. This idea, that classical theory should be rewritten using the mathematics of QM goes back at least to Koopman \([16]\) and von Neumann \([17, 18]\). In our proposal this unifying mathematical language is provided by the projective spaces of GQM \([40, 41]\).

We have demonstrated that GQM defined on \(\mathbb{F}_q^N \) becomes ‘classical’ in the limit \(q = 1 \). The field with one element \(\mathbb{F}_1 \), over which this limit can be constructed, have all the ‘classical’ properties of consisting only of zero and one, and addition being prohibited. In other words, the ‘classical-ness’ of \(q = 1 \) GQM can be traced to the ‘classical-ness’ of \(\mathbb{F}_1 \). This way of achieving ‘classicality’ from ‘quantum’-ness is quite different from the usual methodology of taking \(\hbar \to 0 \), in the limit of which operators become commuting. In GQM, there is no \(\hbar \) and there are no operators.

Our result suggests that the pathway from a ‘quantum’ theory to a ‘classical’ one may not be unique. Looking at canonical QM, taking the \(\hbar \to 0 \) limit (in some yet unknown pathway) may not be the only way for the theory to become classical. Perhaps replacing \(\mathbb{C} \) with some other mathematical structure, perhaps a continuous analog of \(\mathbb{F}_1 \), though there is no telling such an entity exists, could lead to a theory which is ‘classical’ in some new way.

The basic premise of this paper is that the relation between CM and QM lies in the differences in the structure and geometry of the underlying number fields upon which the descriptions are predicated. While we have not discussed the limit \(q \to 1 \) within the context of the biorthogonal quantum mechanics we defined in \([51]\), the premise is quite apparent there as well. The approach there was an alternative method of constructing a quantum-like theory on \(\mathbb{F}_q^N \). The CHSH bound on ‘spin’ systems defined on \(\mathbb{F}_q^3 \times \mathbb{F}_q^3 \) in this approach is \(q \)-dependent. We were able to demonstrate that this bound takes on the classical value of 2 for \(q = 3 \), and the super-quantum value of 4 for \(q = 9 \). Once again, it is the differences in the structure of the underlying number fields \(\mathbb{F}_1 \) and \(\mathbb{F}_0 = \mathbb{F}_1[\sqrt{3}] \), the latter of which accommodates the analog of the imaginary unit \(i \), and their associated geometries, that presage classical, quantum, and super-quantum correlations\(^{20}\).

QM is our current fundamental framework of physics. As such it has passed all available observational tests. And yet our understanding of QM remains limited. In particular, one would still like to understand if QM follows from few elementary axioms, in analogy what happens in the special theory of relativity. Also, one would like to understand in more detail the precise relation between QM and its classical limit, the problem addressed in this paper.

Finally, could QM be part of a larger framework, the way CM appears as a formal limit of QM (or in another context, similar to the way the special theory of relativity can be naturally generalized to the general theory of relativity)? It is very difficult to answer all three questions within the framework of canonical QM of the real world as we understand it today, so a simpler model was called for. This was the main motivation of our effort to build a toy model

\(^{20}\) See also \([48–50]\).
of QM using Galois fields. Surprisingly, all three questions can be addressed in this context. In our previous publications on this subject [40, 41] we have constructed the precise mathematical rules of the game in this toy world, and we have shed light on the nature of quantum correlations, on the nature of super-quantum correlations [51] (which generalize the usual quantum framework) as well as on the difference between classical and quantum correlations. In this paper, we complete this picture by addressing the subtle question of the ‘classical’ limit in the context of GQM. Understandably enough, our toy world is not the real world. However, for the first time, the two known theories of the real world (the classical and quantum theory) as well as the conjectured third theory (based on stronger than quantum, or super-quantum, correlations) can be addressed in one coherent theoretical framework, that is simple yet illuminating. And this is where we find the most useful lessons of our work.

Acknowledgements

We would like to thank Chia Hsiung Tze and Cosmas Zachos for helpful discussions. DM was supported in part by the US Department of Energy, grant DE-FG02-13ER41917, task A. TT is grateful for the hospitality of the Kavli-IPMU during his sabbatical year from fall 2012 to summer 2013 where the initial stage of this work was completed, and where TT was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

References

[1] Dirac P A M 1930 The Principles of Quantum Mechanics 1st edn (Oxford: Oxford University Press) currently available edition 1982
[2] Berry M V 2001 Chaos and the semiclassical limit of quantum mechanics (is the moon there when somebody looks?) Quantum Mechanics: Scientific Perspectives on Divine Action (CTNS-Vatican Observatory Book Series) ed R J Russell, P Clayton, K Wegter-McNelly and J Polkinghorne pp 41–54 (www.phy.bris.ac.uk/people/berry_mv/the_papers/berry337.pdf)
[3] Wentzel G 1926 Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik Z. Phys. 38 518–29
[4] Kramers H A 1926 Wellenmechanik und halbzahlige Quantisierung Z. Phys. 39 828–40
[5] Brillouin L 1926 La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives C. R. Acad. Sci. 183 24–26
[6] van Vleck J H 1928 The correspondence principle in the statistical interpretation of quantum mechanics Proc. Natl. Acad. Sci. USA 14 178–88
[7] Schiller R 1962 Quasi-classical theory of the nonspinning electron Phys. Rev. 125 1100–8
[8] Schiller R 1962 Quasi-classical transformation theory Phys. Rev. 125 1109–15
[9] Schiller R 1962 Quasi-classical theory of the spinning electron Phys. Rev. 125 1116–23
[10] Bacciagaluppi G and Valentini A 2013 Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference (Cambridge: Cambridge University Press) (arXiv:quant-ph/0609184)
[11] Bohm D 1952 A suggested interpretation of the quantum theory in terms of ‘hidden’ variables I Phys. Rev. 85 166–79
[12] Bohm D 1952 A suggested interpretation of the quantum theory in terms of ‘hidden’ variables II Phys. Rev. 85 180–93
[13] Rosen N 1964 The relation between classical and quantum mechanics Am. J. Phys. 32 597–600
[14] Rosen N 1964 Mixed states in classical mechanics Am. J. Phys. 33 146–50
[15] Rosen N 1986 Quantum particles and classical particles Found. Phys. 16 687–700
[16] Koopman B O 1931 Hamiltonian systems and transformations in Hilbert space Proc. Natl. Acad. Sci. USA 17 315–8
[17] von Neumann J 1932 Zur Operatorenmethode in der klassischen Mechanik Ann. Math. 33 587–642
[18] von Neumann J 1932 Zusätze zur Arbeit ‘zur Operatorenmethode...’ Ann. Math. 33 789–91
[19] Sudarshan E C G 1976 Interaction between classical and quantum systems and the measurement of quantum observables Pramana 6 117–26
[20] Gozzi E and Mauro D 2002 Minimal coupling in Koopman–von Neumann theory Ann. Phys. 296 152–86
[21] Mauro D 2002 On Koopman–von Neumann waves Int. J. Mod. Phys. A 17 1301–25
[22] Mauro D 2013 Topics in Koopman–von Neumann theory (arXiv:quant-ph/0301172)
[23] Gozzi E and Mauro D 2004 On Koopman-von Neumann waves 2 Int. J. Mod. Phys. A 19 1475–94
[24] Carta P, Gozzi E and Mauro D 2006 Koopman–von Neumann formulation of classical yang-mills theories I Ann. Phys. 296 152–86
[25] Zurek W H 2007 Decoherence and the transition from quantum to classical—revisited Quantum Decoherence Poincaré Seminar 2005 (Progress in Mathematical Physics vol 48) ed B Duplantier, J-M Raimond and V Revasseau (Berlin: Springer) pp 1–31 (arXiv:quant-ph/0306072)
[26] Zurek W H 2003 Decoherence, einselection, and the quantum origins of the classical Rev. Mod. Phys. 75 715
[27] Everett H 1957 Relative state formulation of quantum mechanics Rev. Mod. Phys. 29 454
[28] Sherry T N and Sudarshan E C G 1978 Interaction between classical and quantum systems: a new approach to quantum measurement I Phys. Rev. D 18 4580
[29] Sherry T N and Sudarshan E C G 1979 Interaction between classical and quantum systems: a new approach to quantum measurement: II. Theoretical considerations Phys. Rev. D 20 857
[30] Gautam S R, Sherry T N and Sudarshan E C G 1979 Interaction between classical and quantum systems: a new approach to quantum measurement: III. Illustration Phys. Rev. D 20 3081
[31] Peres A and Terno D R 2001 Hybrid classical-quantum dynamics Phys. Rev. A 63 022101
[32] Terno D R 2006 Inconsistency of quantum classical dynamics and what it implies Found. Phys. 36 102
[33] Alonso J L, Castro A, Clemente-Gallardo J, Cuchí J C, Echenique P and Falceto F 2010 Geometry and statistics of Ehrenfest dynamics (arXiv:1010.1494 [quant-ph])
[34] Elze H-T 2012 Linear dynamics of quantum-classical hybrids Phys. Rev. A 85 052109
[35] Elze H-T 2012 Four questions for quantum-classical hybrid theory J. Phys. Conf. Ser. 361 012004
[36] Elze H-T 2013 Quantum-classical hybrid dynamics a summary J. Phys. Conf. Ser. 442 012007
[37] Jauslin H R and Signy D 2010 Dynamics of mixed classical-quantum systems, geometric quantization and coherent states Mathematical Horizons for Quantum Physics (Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore vol 20) ed H Araki, B-G Englert, L-C Kwek and J Suzuki (Singapore: World Scientific) (arXiv:1111.5774 [quant-ph])
[38] Salcedo L L 2012 Statistical consistency of quantum-classical hybrids Phys. Rev. A 85 022127
[39] Barcelo C, Carballo-Rubio R, Garay L J and Gomez-Escalante R 2012 Hybrid classical-quantum formulations ask for hybrid notions Phys. Rev. A 86 042120
[40] Chang L N, Lewis Z, Minic D and Takeuchi T 2013 Galois field quantum mechanics Mod. Phys. Lett. B 27 1350064
[41] Chang L N, Lewis Z, Minic D and Takeuchi T 2013 Spin and rotations in galois field quantum mechanics J. Phys. A: Math. Theor. 46 065304
[42] Schumacher B and Westmoreland M D 2012 Modal quantum theory Found. Phys. 42 910–25
[43] Schumacher B and Westmoreland M D 2010 Non-contextuality and free will in modal quantum theory (arXiv:1010.5452 [quant-ph])
[44] Westmoreland M D and Schumacher B 2012 Possibility, probability and entanglement: non-contextuality in modal quantum mechanics Proc. Foundations of Probability and Physics 6 (FPP6) (Växjö, Sweden, 13–16 June 2011) AIP Conf. Proc. 1424 364–8
[45] Schumacher B and Westmoreland M D 2012 Almost quantum theory (arXiv:1204.0701 [quant-ph])
[46] James R P, Ortiz G and Sabry A 2011 Quantum computing over finite fields (arXiv:1101.3764 [quant-ph])
[47] Willcock J and Sabry A 2011 Solving UNIQUE-SAT in a modal quantum theory (arXiv:1102.3587 [quant-ph])
[48] Hanson A J, Ortiz G, Sabry A and Willcock J 2011 The power of discrete quantum theories (arXiv:1104.1630 [quant-ph])
[49] Hanson A J, Ortiz G, Sabry A and Tai Y-T 2013 Geometry of discrete quantum computing J. Phys. A: Math. Theor. 46 185301

[50] Hanson A J, Ortiz G, Sabry A and Tai Y-T 2014 Discrete quantum theories J. Phys. A: Math. Theor. 47 115305

[51] Chang L N, Lewis Z, Minic D and Takeuchi T 2013 Biorthogonal quantum mechanics: super-quantum correlations and expectation values without definite probabilities J. Phys. A: Math. Theor. 46 485306

[52] Takeuchi T, Chang L N, Lewis Z and Minic D 2012 Some mutant forms of quantum mechanics Proc. Quantum Theory: Reconsideration of Foundations 6 (QTRF6) (Växjö, Sweden, 11–14 June 2012); AIP Conf. Proc. pp 502–6 (arXiv:1208.5544 [quant-ph])

[53] Chang L N, Lewis Z, Minic D and Takeuchi T 2013 Proc. Conf. Honour of the 90th Birthday of Freeman Dyson (Institute of Advanced Studies at Nanyang Technological University, Singapore, 26–29 August 2013) pp 26–29 (arXiv:1312.0645 [quant-ph])

[55] Ellerman D 2013 Quantum mechanics over sets (arXiv:1310.8221 [quant-ph])

[56] Curtright T and Mezincescu L 2007 Biorthogonal quantum systems

[57] Chang L N, Lewis Z, Minic D and Takeuchi T 2014 Biorthogonal quantum mechanics: super-quantum correlations and expectation values without definite probabilities J. Phys. A: Math. Theor. 46 185306

[58] Tits J 1957 Sur les analogues algebriques des groupes semi-simple complexes Colloque

[59] Chang L N, Lewis Z, Minic D and Takeuchi T 2014 Int. J. Mod. Phys. A 29 1430006

[60] Ellerman D 2014 Partitions and objective indefiniteness in quantum mechanics (arXiv:1401.2421 [quant-ph])

[61] Curtright T and Mezincescu L 2007 Biorthogonal quantum systems J. Math. Phys. 48 092106

[62] Soulé C 2012 Lectures on algebraic varieties over one element (arXiv:0906.3146v1 [math.NT])

[63] Soulé C 2004 Les variétés sur le corps à un élément

[64] Soulé C 2012 Lectures on algebraic varieties over one element (arXiv:0906.3146v1 [math.NT])

[65] Manin Y I 1995 Lectures on zeta functions and motives (according to Deninger and Kurokawa) Astérisque 228 121–63

[66] Chang L N, Lewis Z, Minic D and Takeuchi T 2013 Quantum mechanics over sets (arXiv:1310.8221 [quant-ph])

[67] Chang L N, Lewis Z, Minic D and Takeuchi T 2014 Int. J. Mod. Phys. A 29 1430006

[68] Weisstein E W q-Analog from MathWorld—a Wolfram Web Resource (http://mathworld.wolfram.com/q-Analog.html)

[69] Deitmar A 2008 Remarks on zeta functions and K-theory over F_1 Proc. Japan Acad. Ser. A 82 081301

[70] Deitmar A 2008 F_1-schemes and toric varieties Contrib. Algebr. Geom. 49 517–25

[71] Deitmar A, Koyama S and Kurokawa N 2008 Absolute zeta functions Proc. Japan Acad. Ser. A 84 138–42

[72] Borger J 2009 A-rings and the field with one element (arXiv:0906.3146v1 [math.NT])

[73] Lorscheid O 2012 Algebraic groups over the field with one element Math. Z. 271 117–38

[74] Lorscheid O 2012 Algebraic groups over the field with one element Math. Z. 271 117–38

[75] le Bruyn L 2009 (Non)commutative F_1-geometry (arXiv:0909.2522v1 [math.RA])

[76] Kurokawa N, Ochiai H and Wakayama M 2003 Absolute derivations and zeta functions Documenta Mathematica Extra Volume: Kazuya Kato’s Fiftieth Birthday pp 565–84 (www.math.uiuc.edu/documenta/vol-kato/vol-kato-eng.html)

[77] le Bruyn L 2009 (Non)commutative F_1-geometry (arXiv:0909.2522v1 [math.RA])

[78] Deitmar A 2006 Remarks on zeta functions and K-theory over F_1 Proc. Japan Acad. Ser. A 82 081301

[79] Deitmar A 2008 F_1-schemes and toric varieties Contrib. Algebr. Geom. 49 517–25

[80] Deitmar A, Koyama S and Kurokawa N 2008 Absolute zeta functions Proc. Japan Acad. Ser. A 84 138–42

[81] Borger J 2009 A-rings and the field with one element (arXiv:0906.3146v1 [math.NT])

[82] Lorscheid O 2012 Algebraic groups over the field with one element Math. Z. 271 117–38

[83] López Peña J and Lorscheid O 2012 Mapping F_1-land: an overview of geometries over the field with one element Noncommutative Geometry, Arithmetic, and Related Topics (Proc. 21st Meeting of the Japan-US Mathematics Institute) ed C Consani and A Connes (Baltimore, MD: John Hopkins University Press) pp 225–40

[84] Deitmar A 2005 Schemes over F_1 Proc. Japan Acad. Ser. A 81 180–4

[85] Koyama S and Kurokawa N 2012 Absolute zeta functions and absolute tensor products Noncommutative Geometry, Arithmetic, and Related Topics (Proc. 21st Meeting of the Japan-US Mathematics Institute) ed C Consani and A Connes (Baltimore, MD: John Hopkins University Press) pp 225–40

[86] Deitmar A 2006 Remarks on zeta functions and K-theory over F_1 Proc. Japan Acad. Ser. A 82 081301

[87] Deitmar A 2008 F_1-schemes and toric varieties Contrib. Algebr. Geom. 49 517–25

[88] Deitmar A, Koyama S and Kurokawa N 2008 Absolute zeta functions Proc. Japan Acad. Ser. A 84 138–42

[89] Borger J 2009 A-rings and the field with one element (arXiv:0906.3146v1 [math.NT])

[90] Lorscheid O 2012 Algebraic groups over the field with one element Math. Z. 271 117–38

[91] López Peña J and Lorscheid O 2012 Mapping F_1-land: an overview of geometries over the field with one element Noncommutative Geometry, Arithmetic, and Related Topics (Proc. 21st Meeting of the Japan-US Mathematics Institute) ed C Consani and A Connes (Baltimore, MD: John Hopkins University Press) pp 241–66 (arXiv:0809.0069v1 [math.AG])

[92] Connes A, Consani C and Marcolli M 2008 Fun with F_1 (arXiv:0806.2401v1 [math.AG])

[93] Connes A and Consani C 2011 On the notion of geometry over F_1 J. Algebr. Geom. 20 525–57
[78] Connes A and Consani C 2009 Schemes over \(\mathbb{F}_1 \) and Zeta functions (arXiv:0903.2024v3 [math.AG])
[79] Connes A and Consani C 2012 Characteristic 1, entropy and the absolute point Noncommutative Geometry, Arithmetic, and Related Topics (Proc. 21st Meeting of the Japan-US Mathematics Institute) ed C Consani and A Connes (Baltimore, MD: John Hopkins University Press) pp 75–140 (arXiv:0911.3537v1 [math.AG])
[80] Connes A and Consani C 2010 From monoids to hyperstructures: in search of an absolute arithmetic (arXiv:1006.4810v1 [math.AG])
[81] Connes A 2010 The witt construction in characteristic one and quantization (arXiv:1009.1769v1 [math.QA])
[82] Lescot P 2009 Algèbre absolue Ann. sci. math. Québec 33 63–82
[83] Lescot P 2011 Absolute algebra II—ideals and spectra J. Pure Appl. Algebra 215 1782–90
[84] Lescot P 2012 Absolute algebra III—the saturated spectrum J. Pure Appl. Algebra 216 1004–15
[85] Kurokawa N and Koyama S 2010 Absolute Mathematics (Tokyo: Nippon Hyōron Sha) (in Japanese)
[86] Kurokawa N and Koyama S 2013 Introduction to the ABC conjecture (Tokyo: PHP Institute) (in Japanese)
[87] S. Mochizuki www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html
[88] Berry M V and Keating J P 1999 \(\mathbb{H} \)xp and the Riemann zeros Supersymmetry and Trace Formulae: Chaos and Disorder (NATO Science Series B vol 370) ed I V Lerner, J P Keating and D E Khmelnitskii (Berlin: Springer)
[89] Hirschfeld J W P 1998 Projective Geometries over Finite fields 2nd edn (Oxford: Oxford University Press)
[90] Hirschfeld J W P, Korchmáros G and Torres F 2008 Algebraic Curves over a Finite field (Princeton, NJ: Princeton University Press)
[91] Arnold V I 2011 Dynamics, Statistics and Projective Geometry of Galois fields (Cambridge: Cambridge University Press)
[92] Ball S and Weiner Z An introduction to finite geometry (www-ma4.upc.es/~simeon/IFG.pdf)
[93] Bell J S 1964 On the Einstein–Podolsky–Rosen paradox Physics 1 195
[94] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[95] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Proposed experiment to test local hidden variable theories Phys. Rev. Lett. 23 880
[96] Cirel’son B S 1980 Quantum generalizations of Bell’s inequality Lett. Math. Phys. 4 93
[97] Landau L J 1987 On the violation of Bell’s inequality in quantum theory Phys. Lett. A 120 52
[98] Popescu S and Rohrlich D 1994 Nonlocality as an axiom Found. Phys. 24 379
[99] Chevalley C 1955 Sur certains groups simples Tōhoku Math. J. 7 14–66
[100] Cohn H 2004 Projective geometry over \(\mathbb{F}_1 \) and the Gaussian binomial coefficients Am. Math. Mon. 111 487–95
[101] Cameron P J 1994 Combinatorics: Topics, Techniques, Algorithms (Cambridge: Cambridge University Press)
[102] Penrose R 1971 Angular momentum: an approach to combinatorial space-time Quantum Theory and Beyond, Essays and Discussions Arising from a Colloquium ed T Bastin (Cambridge: Cambridge University Press) (http://math.ucr.edu/home/baez/penrose/Penrose-AngularMomentum.pdf)
[103] Penrose R 1972 On the nature of quantum geometry Magic Without Magic: John Archibald Wheeler ed J R Klauder (San Francisco: Freeman) (http://math.ucr.edu/home/baez/penrose/Penrose-OnTheNatureOfQuantumGeometry.pdf)