Haemonchus contortus Acetylcholine Receptors of the DEG-3 Subfamily and Their Role in Sensitivity to Monepantel

Lucien Rufener¹,², Pascal Mäser²*, Isabel Roditi², Ronald Kaminsky¹

¹ Novartis Centre de Recherche Santé Animale, St. Aubin (FR), Switzerland, ² Institute of Cell Biology, University of Bern, Switzerland

Abstract

Gastro-intestinal nematodes in ruminants, especially *Haemonchus contortus*, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with *Caenorhabditis elegans* suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from *H. contortus* and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant *H. contortus* populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible *H. contortus* and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (*Hco-mptl-1*, formerly named *Hc-acr-23H*), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene *Hco-des-2H*, the same 135 bp insertion in the 5′ UTR created additional, out of frame start codons in 2 independent *H. contortus* AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes *Hco-mptl-1*, *Hco-des-2H* and *Hco-deg-3H* as quantified by real-time PCR. These results indicate that *Hco-MPTL-1* and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against *H. contortus* and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.

Introduction

Throughout the world, successful livestock production of ruminants is hampered by gastro-intestinal nematodes. *Haemonchus contortus* in particular is responsible for substantial losses to the global sheep industry [1]. *Haemonchus contortus* is a blood-feeding nematode that inhabits the abomasum of sheep, producing in acute infections, severe anemia that can lead to the death of infected animals.

Broad spectrum chemotherapy against gastro-intestinal nematodes is restricted to 3 anthelmintic classes: the benzimidazoles, such as albendazole and oxendazole, the imidazothiazolones, including levamisole and tetramisole and the macroyclic lactones (e.g. ivermectin, moxidectin, abamectin and doramectin). The increased usage of anthelmintics has contributed to the spread of resistant nematodes with increasing reports of nematodes insensitive to most if not all of the available classes of anthelmintics [2–10]. In some countries in the southern hemisphere, sheep farming is severely endangered by such populations [4], further increasing the need for a new class of anthelmintic [11].

Recently, a new class of compounds, the Amino-Acetonitrile Derivatives (AADs) was discovered [12] with good tolerability in mammals and promising activity against drug-resistant nematodes. The AADs are low molecular mass compounds bearing different aryloxy and aroyl moieties on an amino-acetonitrile core [13]. Further studies [14] have allowed the selection of a drug candidate, AAD-1566 (monepantel). In order to investigate the mode of action of this new class of compounds, AAD-resistant *Caenorhabditis elegans* mutagenesis strains were generated by EMS mutagenesis. Classical forward genetics revealed that the majority of recovered AAD-resistant mutants carried mutations in the gene *acr-23H*, a member of the nematode-specific DEG-3 subfamily of nicotinic acetylcholine receptor (nAChR) alpha subunits [12]. Preliminary data had already indicated an involvement of similar acetylcholine receptors in AAD action against *H. contortus* [12]. Here we report the identification of the gene monepantel-1 (*Hco-mptl-1*, formerly named *Hc-acr-23H*) and other members of the DEG-3 subfamily of ACR genes from *H. contortus*. A panel of different mutations, mis-splicing in particular, in *Hco-mptl-1* transcripts from AAD-resistant worms indicates that *Hco-MPTL-1* is a target for monepantel action against *H. contortus*.
Materials and Methods

Haemonchus contortus isolates

The drug-susceptible *H. contortus* CRA (*Hc-CRA*) was received in 1984 from the Veterinary Institute of Onderstepoort, Republic of South Africa and has since been passaged in sheep 75 times. The *H. contortus* Howick isolate (*Hc-Howick*) was received from the same institute in 2001. This is a multidrug-resistant isolate that is completely resistant to albendazole, rafoxanide, morantel, ivermectin and trichlorfon [6,15]. The isolate has been passaged in sheep 9 times since being received. The mutant lines *Hc-CRA* AADM and *Hc-Howick* AADM were selected from *Hc-CRA* and *Hc-Howick*, respectively, by in vitro exposure to increasing doses of AAD-1566 alternatively with propagation in sheep [12].

Collection of nematode eggs

Haemonchus contortus isolates were propagated in 3–6 month old sheep (‘Blanc des Alpes’), which had been experimentally infected with the nematode. The sheep were kept in groups of 4 and housed indoors off pasture to prevent natural infection. After 14 days, they were transferred to individual cages. Starting on day 21 after infection, eggs were collected from homogenized feces and filtered several times through a 32 µm sieve. Eggs were further purified by floating on 50% sucrose solution, rinsed with water and counted microscopically.

In vivo determination of drug sensitivity

Sheep studies were performed with approval of a Cantonal animal welfare committee (permit number FR 25A/05). Anthelmintic efficacy tests in sheep were performed according to the guidelines of the World Association for the Advancement of Veterinary Parasitology [16]. Each animal was infected intramuscularly on study day −21 with 3000 L₃-larvae of *H. contortus* (cultivated in coprocultures). On study day 0, the sheep were treated with single anthelmintics or combinations thereof as an oral drench at the recommended dose. A sheep was classified as ‘cured’ when no more eggs were counted in the feces and no adults were found in the abomasum at necropsy.

Recovery of adult *Haemonchus contortus* and isolation of nucleic acids

Adult worms were recovered from the abomasum of freshly euthanized sheep, washed in Hank’s Buffered Salt Solution (HBSS; Invitrogen) and immediately shock-frozen in liquid nitrogen. While frozen, the worms were crushed with a Kontes pellet pestle (Fisher Scientific). The powder was resuspended in 600 µl of lysis buffer (10 mM Tris pH 7.5, 1 mM EDTA, 100 mM NaCl, 0.5% SDS, 100 µg/ml RNase A) and incubated at 37°C for 1 hour. Pronase (100 µg/ml) was added to the mixture and the tubes were incubated at 37°C until the solution became clear. The samples were extracted with equal volumes of phenol:chloroform (1:1) and chloroform. The DNA was ethanol precipitated, washed and resuspended in 50 µl of Tris-Cl [pH 7.5]. For RNA extraction, worms were homogenized in TRizol and processed according to the instructions of the supplier (Invitrogen).

To remove DNA contamination, the RNA samples were treated with a TURBO DNA-free kit (Ambion). To generate cDNA, 1 µg of total RNA was reverse transcribed to cDNA using a d(T)₃₀ primer and a Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV RT; SMART cDNA library construction kit from Clontech).

Construction and screening of a *Haemonchus contortus* cDNA library

A total of 4 µg of mRNA was isolated from a mixture of male and female *Hc-CRA* using a Oligotex kit from Qiagen. A cDNA library was constructed with the ZAP-cDNA Cloning kit and Gigapack III Gold packaging kit. The library was screened at high stringency (hybridization at 65°C in 5 × SSC, 5 × Denhardt’s solution, 0.1% SDS, 0.1% sodium pyrophosphate, 100 µg/ml salmon sperm DNA; final wash at 60°C in 0.2 × SSC; 0.1% SDS) with a 3²P-labeled 456 bp fragment of *Hc-mptl-1*. This fragment had been amplified from cDNA with the primers *Hc-mptl-1_fwd3* and *Hc-mptl-1_rev1* and cloned into pCR[®]2.1-TOPO[®] (Invitrogen). Positive phages were taken through 3 rounds of plaque purification with this probe and the phagemid (pBluescript SK+). A DNA fragment was excised using the ExAssist helper phage in the E. coli SOLR strain. Inserts were sequenced in both directions with standard MI3 forward and reverse primers and the internal primers *Hc-mptl-1_fwd4* and *Hc-mptl-1_rev3*. The sequences were read and assembled using 4Peaks (by A. Griekspoor and T. Groothuis; http://mekentosj.com).

PCR

The primers used for PCR-amplification, real-time PCR or for cDNA first strand synthesis of *H. contortus* nAChR genes are summarized in Table S1. For nested PCR on cDNA with spiked leader (SL) primers, the primary products were diluted 50-fold and 2 µl were used for the second PCR with nested primers. The annealing temperature was fixed at 55°C for cDNA and 58°C for genomic DNA template. PCR products were gel purified using the NucleoSpin[®] ExtractII kit (Macherey-Nagel) and cloned into either pGEM-T easy (Promega) or pCR[®]2.1-TOPO[®] (Invitrogen). Plasmid DNA was purified using the QIAprep Spin Miniprep Kit (Qiagen) and sequenced using the standard primers MI3 forward and reverse primers and the internal primers *Hc-mptl-1_fwd4* and *Hc-mptl-1_rev3*. The sequences were read and assembled using 4Peaks (by A. Griekspoor and T. Groothuis; http://mekentosj.com).
was combined with splice leader sequence (1 or 2) to obtain the 5' UTR, or an internal forward primer combined with a poly-dT primer for the 3' UTR of the transcript.

For real-time PCR, 1 μg of total RNA from adult *H. contortus* was used to synthesize first-strand cDNA by random priming using Superscript II reverse transcriptase (Invitrogen) in a final volume of 20 μl following the manufacturer’s instructions. Reverse-transcribed material corresponding to 40 ng RNA was amplified in 25 μl MESA GREEN qPCR MasterMix Plus for SYBR Assay (Eurogentec) by using the ABI SDS7000 Sequence Detection System under the following conditions: 1 cycle of 95°C for 15 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. The primer pairs used for the amplification are listed in Table S1 and target the following genes: β-tubulin, *Hc-mptl-1*, *Hc-des-2H* and *Hc-deg-3H*. Three independent total RNA extractions were performed and each was tested in duplicate. Relative expression values were calculated according to Livak and Schmittgen [17]; a 136 bp region within the phosphoglucone isomerase gene was used for normalization, a 122 bp region within the β-tubulin gene was used as a (presumably) non-affected control, and no reverse transcriptase and no template reactions as negative controls. The specificity and identity of individual amplicons were verified by melt curve analysis and visualized on a 2% agarose gel.

Results

In vivo sensitivity of *Haemonchus contortus* AAD mutants

In order to study the mode of action of the AADs, we used 2 mutant isolates, *Hc-CRA AAD* and *Hc-Howick AAD* selected from parent *Hc-CRA* and *Hc-Howick* isolates, respectively. Both mutant isolates showed reduced sensitivity to AAD-1566 (monopanel) in vitro [12]. To test whether the observed loss of susceptibility to AAD-1566 in vitro was relevant for the situation in vivo, *Hc-CRA*, *Hc-Howick* and their AAD derivatives were challenged in vivo with single compounds or combinations thereof; AAD-1566 and the commercial compounds were applied at their recommended doses (Table 1). Thus the reduction of survival of *H. contortus* after a full simultaneous in vivo treatment with albendazole, levamisole, ivermectin and AAD-1566, administered at their recommended doses (Table 1). The transcript is trans-spliced as the splice leader 1 (SL1) is present at its 5' end. Interestingly, a start codon (AUG) is present in exon 1 but is followed after 8 amino acids by a stop codon in frame (UGA). This is a feature found in many other organisms [20–22] and it is assumed to play a role in the regulation of translation efficiency. In most cases, upstream AUGs decrease mRNA translation efficiency and have a strong, negative regulatory effect [23]. The longest open reading frame (ORF) in the *Hc-mptl-1* gene is obtained when the translation is initiated at the second AUG codon in exon 3 and extends over 1695 bases. Overlapping long range PCR was performed in order to estimate the total size of *Hc-mptl-1*. The gene was found to be approximately 18.5 kb long with a large intron (about 7 kb) between exons 3 and 4 (see below). The predicted *Hc-MPTL-1* protein consists of 564 amino acids and possesses motifs typical for Cys-loop ligand-gated ion channels, including an N-terminal signal peptide of 18 amino acids [24], 4 transmembrane domains and the Cys-loop (2 cysteines separated by 13 amino acids). Loops A to F, which are involved in ligand binding [25] are also present in the protein (Figure S1). In loop C, there are 2 adjacent cysteines, defining *Hc-MPTL-1* as a nACHr alpha subunit.

As determined by PCR with gene-specific primers on genomic DNA, *Hc-mptl-1* (Hc-mptl-1_frw6 and Hc-mptl-1_rev6), Hc-des-2H (Hc-des2_frw8 and Hc-des2_rev8) and Hc-deg-3H (Hc-deg3_frw1 and Hc-deg3_rev1) are present in the *Hc-CRA* and *Hc-Howick* parental isolates (Figure 2). Of the 3 products obtained for the *Hc-mptl-1* gene, the smallest one (1478 bp) corresponded to *Hc-mptl-1*. The same primers were used for reverse transcriptase PCR on total RNA, showing that all 3 genes were expressed and spliced in L3-larvae as well as in adult nematodes (Figure 2). The predicted *Hc-MPTL-1* protein shares 48.5% identity and 66.8% similarity with *C. elegans* ACR-23 and 60.2% identity and 70.7% similarity with *C. elegans* ACR-20. The novel *Hc-mptl-1* protein consists of 564 amino acid residues and is related to the AAD-1566 3'UTR of the transcript.

The *Haemonchus contortus* DEG-3 subfamily compared to related nematodes species

The putative target of the AADs in *C. elegans*, ACR-23, is a member of the nematode-specific DEG-3 family of nACHr alpha subunits. A tblastn search [19] with DEG-3 members against the (incomplete) *H. contortus* genome database (http://www.sanger.ac.uk/Projects/H_contortus) returned strong hits from different contigs, coding for a total of 6 different DEG-3 subfamily nACHr subunit homologues. However, the lack of overlap between the different contigs precluded the assembly of full length coding sequences. The predicted *H. contortus* proteins were named *Hc-MPTL-1* (accession number: contig_0024907; contig_0035952; contig_0087945; haem-240m02 qlk; contig_0053297; contig_0069357), *Hc-DES-2H* (contig_0064641), *Hc-DEG-3H* (contig_0075200; contig_0075201), *Hc-ACR-24H* (contig_0004382; contig_0064300), *Hc-ACR-5H* (contig_0106281; contig_0023143) and *Hc-ACR-17H* (contig_0101516; contig_0101514). For *Hc-MPTL-1*, *Hc-DES-2H* and *Hc-DEG-3H*, full-length coding sequences were obtained by cDNA library screening or RACE-PCR, respectively (see below). Figure 1 shows the position of the *H. contortus* sequences in a phylogenetic tree of the DEG-3 subfamily nACHr from *C. elegans*, *C. briggsae* and *Brugia malayi*. Note that an incomplete sequence of *Hc-MPTL-1* was previously named *Hc-ACR-23H* [12].
AADM, which produced a shorter product of 1650 bp (Figure 3B). 1800 bp was obtained for all isolates apart from the sequences amplified from cDNA from adults. A product of about 850 bp product turned out to lack both exon 2 and 1 and a reverse primer in the Hco-mptl-1 designed at each extremity of the ORF (susceptible isolates and their AAD-mutant progeny, primers were Hco-exon 3 while the 1 kb product lacked exon 4 (Figure 4, confirmed with primers flanking either exon 4 (exon 4 or exon 15 (Figure 4, Sequencing clones of the latter revealed that they lacked either CRA AADM but contained only silent mutations compared to MPTL-1-m1 and m2). The 1200 bp product was cloned from absence of a complete record of ACR paralogues from C. elegans phenotype Hco-mptl-1 mutations associated with the AAD-mutant phenotype

In order to compare the Hco-mptl-1 sequences from the AAD-susceptible isolates and their AAD-mutant progeny, primers were designed at each extremity of the ORF (Hco-mptl-1_5′_frw3 and Hco-mptl-1_3′_end_rev1) and the full length Hco-mptl-1 coding sequences amplified from cDNA from adults. A product of about 1800 bp was obtained for all isolates apart from the Hc-CRA AAD M mutants (Table S1) due to its apparent involvement in monepantel sensitivity. In the light of the full-length sequence, this nomenclature seems to be more closely related to C. elegans ACR-20 (Figure 1). In the absence of a complete record of ACR paralogues from H. contortus, and in analogy to levamisole-insensitive (le) mutants in C. elegans [26], we propose to name the gene monepantel-1 (Hco-mptl-1) due to its absence of a complete record of ACR paralogues from C. elegans.

In the absence of a complete record of ACR paralogues from H. contortus, and in analogy to levamisole-insensitive (le) mutants in C. elegans [26], we propose to name the gene monepantel-1 (Hco-mptl-1) due to its apparent involvement in monepantel sensitivity.

Table 1. In vivo sensitivity of adult stages of H. contortus CRA, CRA AAD M, Howick and Howick AAD M.

Isolates	Drug	Dose (oral drench)	Number of animals effectively treated/ number of animals treated
H. contortus CRA	Albendazole	3.8 mg kg⁻¹	4/4
	Ivermectin	0.2 mg kg⁻¹	2/2
H. contortus CRA AAD M	AAD-1566	2.5 mg kg⁻¹	3/3
	Albenzole	3.8 mg kg⁻¹	3/3
H. contortus Howick	AAD-1566	2.5 mg kg⁻¹	3/3
	Combination of:		
	Albenzole	3.8 mg kg⁻¹	0/3
	+Levamisole	7.5 mg kg⁻¹	0/3
	+Ivermectin	0.2 mg kg⁻¹	0/3
H. contortus Howick AAD M	AAD-1566	2.5 mg kg⁻¹	0/3
	Albenzole	3.8 mg kg⁻¹	0/2
	Combination of:		
	AAD-1566	2.5 mg kg⁻¹	0/2
	+Ivermectin	0.2 mg kg⁻¹	0/1

Sheep were treated orally with commercial compounds at the recommended doses. An animal was considered to have been effectively treated when no more eggs were counted in the feces and no adults were found in the abomasum at necropsy.

In the light of the full-length sequence, this nomenclature seems to have been premature since the Haemonchus nAChR turned out to be more closely related to C. elegans ACR-20 (Figure 1). In the absence of a complete record of ACR paralogues from H. contortus, and in analogy to levamisole-insensitive (le) mutants in C. elegans [26], we propose to name the gene monepantel-1 (Hco-mptl-1) due to its apparent involvement in monepantel sensitivity.

Hco-mptl-1 mutations associated with the AAD-mutant phenotype

In order to compare the Hco-mptl-1 sequences from the AAD-susceptible isolates and their AAD-mutant progeny, primers were designed at each extremity of the ORF (Hco-mptl-1_5′_frw3 and Hco-mptl-1_3′_end_rev1) and the full length Hco-mptl-1 coding sequences amplified from cDNA from adults. A product of about 1800 bp was obtained for all isolates apart from the Hc-CRA AAD M mutants, which produced a shorter product of 1650 bp (Figure 3B). Sequencing clones of the latter revealed that they lacked either exon 4 or exon 15 (Figure 4, Hco-MPTL-1-m2 and m3). This was confirmed with primers flanking either exon 4 (Hco-mptl-1_5′_frw2 and Hco-mptl-1_rev8; Figure 3C) or exon 15 (Hco-mptl-1_frw6 and Hco-mptl-1_rev6; Figure 3D). PCR with a SL1 forward primer and a reverse primer in the Hco-mptl-1 coding sequence (Hco-mptl-1_rev1, product of about 1200 bp; Figure 3A) also produced shorter products (1000 bp and 850 bp; Figure 3A) from Hc-CRA AAD M. The 850 bp product turned out to lack both exon 2 and exon 3 while the 1 kb product lacked exon 4 (Figure 4, Hco-MPTL-1-m1 and m2). The 1200 bp product was cloned from Hc-CRA AAD M but contained only silent mutations compared to Hc-CRA. Loss of exon 4 caused a frame-shift leading to a premature stop of translation and a predicted Hco-MPTL-1 protein truncated at amino acid 19 (Figure 4). Loss of exon 15 also led to a premature stop codon that truncated the Hco-MPTL-1 protein at amino acid 448 (Figure 4). The mutation Hco-MPTL-1-m1 (loss of exon 2 and 3) did not cause a frame-shift but the loss of the signal peptide and the first 39 amino acids of the extracellular loop.

Mutation cause mis-splicing of the Hco-mptl-1 transcript in Hc-CRA AAD M mutants

To understand the molecular basis of exon loss in the Hc-CRA AAD M isolate, PCR primers Hco-mptl-1_frw8 and Hco-mptl-1_rev6 (Table S1) were designed to flank the mis-spliced exon 15. PCR was performed using genomic DNA as a template. Sequencing of cloned PCR products revealed a 10 bp deletion upstream of exon 15 in the Hc-CRA AAD M mutant that encompasses the predicted splice acceptor site (UUUCAG; Figure 5). Presumably, the splicing machinery is not able to identify the end of intron 14 and uses the next splice acceptor site (intron 15). This would explain why exon 15 is skipped (Figure 4, Hco-MPTL-1-m3). Joining of exon 14 to exon 16 causes a frame-shift leading to a premature stop codon. With primers flanking exon 4 (Hco-mptl-1_frw10/gDNA and Hco-mptl-1_rev8; Table S1), a 323 bp deletion was detected consisting of the end of intron 3 (206 bp) and most of exon 4 (117 bp). Again, loss of the predicted splice acceptor site at the end of intron 3 may explain the observed loss of exon 4 (Figure 4, Hco-MPTL-1-m2), since the splicing machinery will use the next available splice acceptor site (intron 4), joining exon 3 and exon 5. The resulting frame-shift causes a premature stop at codon 19 (TGA), terminating translation after the signal peptide (Figure 4, Hco-MPTL-1-m2).
Detection of the Hco-mptl-1 E93* point mutation in the Hc-Howick AAD M nematodes

No obvious mutations such as mis-spliced exons were detected in the Hc-Howick AAD M isolates. When sequencing the Hco-mptl-1 coding regions (SL1 and Hco-mptl-1_rev6) from both susceptible and AAD-1566-mutant Howick isolates, a transversion from G277 to T in exon 6 of the Hco-mptl-1 gene was observed that led to a premature stop codon (E93*; Figure 6). Direct sequencing of RT-PCR products (using Hco-mptl-1_frw4 and Hco-mptl-1_rev1 primers) revealed that about 80% of the Hc-Howick AAD M cDNAs, as estimated from the electropherogram [27], carried a T at position 277 (Figure 6A). The point mutation underlying E93* creates a restriction site for the endonuclease BfrI (recognition site: CTTAAG) that lent itself for RFLP analysis. Only the PCR product amplified from cDNA of Hc-Howick AAD M was digested by BfrI (Figure 6B). As expected from the sequencing, a small proportion (about 20%) of the product was not cut, indicating that not all of the Hco-mptl-1 genes from Hc-Howick AAD M population carried the G277T mutation. When this BfrI-unrestricted product from Hc-Howick AAD M was excised from an agarose gel, cloned and sequenced, a further polymorphism was detected that led to skipping of exon 8 (Figure 4, Hco-MPTL-1-m6). As this exon is very short (22 bases), it was impossible to discriminate between mutant and parental wild type PCR products (Figure 3). Loss of exon 8 causes a frame-shift leading to a premature stop codon and a predicted Hco-MPTL-1 protein truncated at amino acid 166 (Figure 4). A minority of the Hco-mptl-1 PCR products obtained from Hc-Howick AAD M did not contain any major mutations. These sequences could come from AAD-susceptible individuals within the H. contortus Howick AAD M populations or from AAD-mutant individuals that carry other, yet to be identified mutations.

An insertion in the 5' UTR of the des-2 homologue of Haemonchus contortus AAD mutants

As the DEG-3 subfamily gene Hco-des-2H has also been implicated in AAD action in H. contortus [12], we cloned and sequenced the full-length Hco-des-2H coding sequence from H. contortus cDNA by RACE-PCR. Using primers NheI_des2_frw1 and XhoI_des2_rev1 (Table S1), 2 products were obtained from the four H. contortus isolates. Cloning and sequencing revealed the smaller transcript to lack 168 bases coding for part of the internal loop between TM3 and TM4, possibly indicating alternative splicing of the Hco-des-2H gene. The predicted protein (full version) consists of 534 amino acids and shows 69% identity and 80% similarity with C. elegans DES-2. Hco-DES-2H possesses motifs typical for Cys-loop ligand-gated ion channels (4 transmembrane domains, a Cys-loop and loops A to F) and the 2 adjacent cysteines in the C-loop, defining Hco-DES-2H as a nAChR alpha subunit (Figure S2).
Figure 2. Expression of DEG-3 subfamily members in *Haemonchus contortus*. Hco-mptl-1, Hco-des-2H and Hco-deg-3H are expressed in adult as well as L3-larvae stages of both the Hc-CRA and Hc-Howick parental reference isolates (AAD naïve) as determined by reverse transcriptase PCR. Genomic DNA (gDNA) was included as a control. doi:10.1371/journal.ppat.1000380.g002

Figure 3. Deletions in the *Hco-mptl-1* coding sequence. PCR products were amplified from cDNA of the mutant (AADΔ) and sensitive parental isolates. Different pairs of primers were tested in order to map the region where the deletions occurred. No apparent deletions were observed in Hc-Howick AADΔ mutants. Note the apparent absence of a full-length product for Hc-CRA AADΔ in panel B, where the primers encompass both critical exons 4 and 15 (Figure 4), indicating the absence of wild-type *Hco-mptl-1* transcripts in this mutant. doi:10.1371/journal.ppat.1000380.g003
Figure 4. The *Hc-mptl-1* locus, mRNA and protein (top) and mis-splicing mutations in the AAD mutants (bottom). Exons are represented by boxes, start codons by arrows. The 5' region of the genomic DNA is not drawn to scale (double parallel bars). No hits were found in the *H. contortus* genome project for the exons and introns shown in clear grey. The spliced leader is shown in violet and mis-spliced exons in red. The signal peptide is shown in yellow and the predicted transmembrane domains (TM) in blue.

doi:10.1371/journal.ppat.1000380.g004

H. contortus isolates

Hc-CRA AAD	**Intron 14**	**Exon 15**
Hc-CRA AAD	AATATTGACTGTGAAA----------TCAAGCAATACCCTACCAAAGA	
	AATATTGACTGTGAAA----------TCAAGCAATACCCTACCAAAGA	
Hc-CRA	GATATTGACTATGCAAACCTTCCACAAAGA	
	GATATTGACTATGCAAACCTTCCACAAAGA	
Hc-Howick	AATATTGACTATGCAAACCTTCCACAAAGA	
	AATATTGACTATGCAAACCTTCCACAAAGA	
Hc-Howick AAD	AATATTGACTGTGAACCTTCCACAAAGA	
	AATATTGACTGTGAACCTTCCACAAAGA	

Figure 5. *Hc-CRA AAD* mutants lack the splice acceptor site of intron 14. Sequencing of PCR products amplified from genomic DNA revealed a 10 bp deletion in the *Hc-CRA AAD* mutant that encompasses the predicted splice acceptor site (bold). The blue box corresponds to the end of intron 14 and the yellow box to the start of exon 15. Asterisks denote bases identical throughout all 12 sequenced clones.

doi:10.1371/journal.ppat.1000380.g005
6 kb was obtained for the 4 isolates confirming that *Hoa-des-2H* and *Hoa-deg-3H* are encoded on a single operon. However, the distance between the 2 genes is 10 times larger in *H. contortus* than in *C. elegans*.

Relative expression levels of acr genes in AAD mutant Haemonchus contortus

The steady-state mRNA levels of the DEG-3 subfamily acetylcholine receptor genes *Hoa-mptl-1*, *Hoa-des-2H* and *Hoa-deg-3H* were quantified by real-time PCR (Figure 7). For the *Hco-CRA* AAD^M isolate, a small, statistically not significant (p>0.05) decrease in the mRNA level was observed for *Hoa-mptl-1* (−21%) and *Hoa-des-2H* (−16%). In contrast, the relative mRNA level of the *Hoa-deg-3H* gene was higher (69%; p<0.01) in this mutant. For *Hco-Howick* AAD^M, a significant (p<0.01) down-regulation of the 3 measured DEG-3 subfamily members was observed: −70% for *Hoa-mptl-1*, −77% for *Hoa-des-2H* and −92% for *Hoa-deg-3H*. The relative expression level of the β-tubulin gene was measured in both mutant isolates as a presumably non-affected control. No statistically significant changes were observed.

Discussion

A new chemical class of synthetic anthelmintics, the AADs, was recently discovered [12]. The AADs exhibit excellent efficacy against various species of livestock-pathogenic nematodes and more importantly, can control nematodes resistant to the currently available anthelmintics [30,31]. To get insights into the mode of action of the new AADs, a classical ‘forward genetic’ screen for AAD-resistant *C. elegans* mutants was performed previously [12]. As a result, AADs were proposed to act through the nAChR ACR-23, a member of the nematode-specific DEG-3 subfamily [32]. By screening the currently available (but incomplete) *H. contortus* genome sequence for DEG-3 nAChR homologues, it was found that this subfamily is conserved between *C. elegans* and *H. contortus*. Six paralogous proteins out of 8 in *C. elegans* or *C. briggsae* were identified (Figure 1), in contrast to only 2 in the genome of *B. malayi* [33]. The AADs possess a unique mode of action: the nAChR subunits involved in AAD action are different from those targeted by imidazothiazoles [34,35] and there is no cross-resistance between the 2 chemical classes [12].

Two independent AAD-mutant *H. contortus* lines were used to screen for mutations in ACR genes of the DEG-3 subfamily. Two genes were found to be affected: The *H. contortus* des-2 homologue *Hoa-des-2H*, where all AAD-mutant *H. contortus* carried an insertion in the 5′ UTR introducing 2 additional, out-of-frame start codons, and the gene *monepantel-1* (*Hoa-mptl-1*), for which a panel of different mutations were detected in AAD-mutant (AAD^M) *H. contortus*. Apart from 1 nonsense mutation discovered in *Hco-Howick* AAD^M nematodes (*Hoa-MPTL-1-m5*; Figure 4), the detected mutations all involved mis-splicing resulting in loss of exon(s) from the mRNA as indicated by shortened reverse transcriptase-PCR products (Figure 3). This unusual mechanism has not been described before in *H. contortus*. In the genetic screen performed on AAD-resistant *C. elegans* [12], 2 mutants bearing a G-to-A transition of the conserved G nucleotide in the 3′ splice acceptor sites of either the second or third introns were described; these mutations are predicted to cause an increase in the size of the mRNA due to the lack of splicing of the affected intron. In another study [36], a single base pair change in the first intron of the lev-3 subunit gene was identified in a partially levamisole-resistant *C. elegans* mutant. This mutation leads to alternative splicing and introduction of a premature stop codon. In the case of mutations *Hoa-MPTL-1-m2* (loss of exon 4), *Hoa-MPTL-1-m3* (loss of exon

![Figure 6. Detection of a nonsense mutation in *Hc-Howick* AAD^M worms.](image-url)

When comparing *Hoa-des-2H* coding sequences (Table 2) obtained from *Hc-CRA* and *Hc-CRA-AAD^M* respectively *Hco-Howick* and *Hco-Howick-AAD^M* no mutation was found to correlate perfectly with AAD-susceptibility. Nevertheless, using the SL1 primer and 2 internal reverse primers (*Hco-AcRa_ko.1* and *Hco-AcRa_ko.2*) in a nested PCR experiment, an insertion of 135 bp was detected in the 5′ UTR of the *Hoa-des-2H* gene from the *Hc-CRA* AAD^M and *Hco-Howick* AAD^M isolates, creating 2 additional start codons. Both start codons are followed by an early stop codon in frame.

In the *C. elegans* genome, DES-2 and DEG-3 are encoded on the same operon and both subunits are co-expressed to form a functional channel [28,29]. Performing RACE-PCR on *H. contortus* (adults) cDNA we identified *Hoa-deg-3H* encoding a protein of 569 amino acids that shows 68.4% identity and 78% similarity to *C. elegans* DEG-3. Again, *Hoa-deg-3H* carried all the hallmarks of nAChR alpha subunits (Figure S3). No mutations were detected for *Hoa-deg-3H* in the AAD-mutant *H. contortus* isolates compared to the parental isolates. The *Hoa-deg-3H* mRNA carries a spliced leader type 2 (SL2) sequence at its 5′ end. To test whether *Hoa-des-2H* and *Hoa-deg-3H* are also on an operon in *H. contortus*, a long range PCR was performed using a forward primer designed at the end of *Hoa-des-2H* (*Hoa-des2_frw11*) and a reverse primer at the beginning of *Hoa-deg-3H* (*Hoa-deg3_2r*). A band of approximately
The mutations Hco-MPTL-1-m5 (loss of exon 8), exon skipping creates a frame-shift that leads to a premature stop codon in transcript (Figure 4). These mutations have less drastic effects on the predicted protein than those described here for H. contortus [15,45,46] and many more from phytopathogenic fungi [15,45,46,47]. Receptors are assembled in the endoplasmic reticulum (ER) [38] and interference with the signal peptide could result in mis-localization of the protein or in improper interactions with ER-resident, ACR-specific chaperones [25,39–41]. Furthermore, it is known that the expression, assembly and transport to the surface of ACR subunits is subject to stringent quality controls that guarantee the functional competence of the final product [42–44]. Truncated nAChR proteins are likely to be targeted to the lysozyme and degraded.

In summary, we have detected a large number of different mutations affecting the Hco-mptl-1 gene and transcript, respectively, from AAD mutant H. contortus (Table 2). For the benzimidazoles, a variety of different mutations in the target protein β-tubulin are associated with drug resistance, 3 so far from AAD mutant H. contortus [15,45,46] and many more from phytopathogenic fungi [47]. These are point mutations, that are thought to interfere with benzimidazole binding while preserving microtubular function. The mutations have less drastic effects on the predicted protein than those described here for Hco-mptl-1 of H. contortus. At present, we do not know whether Hco-mptl-1 is an essential gene in H. contortus, but our findings indicate that it may not be. There were no mutations in common between H. contortus CRA-AADM and

Table 2. Summary of H. contortus ACR genes and mutations occurring in the AAD mutant lines.

Gene	Source	Nature of mutation	gDNA (GenBank accessions)	cDNA (GenBank accessions)
Hco-mptl-1	H. contortus CRA	n.a.	FJ807291–293	FJ807280–282
Hco-mptl-1	H. contortus Howick	n.a.	FJ807298–300	FJ807287–288
Hco-mptl-1-m1	H. contortus AAD	Unknown mutation leads to loss of exons 2 and 3 in transcript.	n.d.	FJ807289–290
Hco-mptl-1-m2	H. contortus AAD	Deletion of 323 bp (end of intron 3 and most of exon 4) leads to loss of exon 4 in transcript.	FJ807294–296	FJ807297
Hco-mptl-1-m3	H. contortus AAD	Loss of splice acceptor site in intron 14 (10 bp deletion, Figure 5) leads to loss of exon 15 in transcript.	FJ807301–303	FJ807310–312
Hco-mptl-1-m4	H. contortus AAD	Unknown mutation(s) leading to partial loss of exons 4 and 15 in transcript.	n.d.	FJ807313
Hco-mptl-1-m5	H. contortus Howick AAD	Transversion in exon 6 from G to T that leads to a premature stop codon in transcript (Figure 6).	n.d.	FJ807315
Hco-mptl-1-m6	H. contortus Howick AAD	Unknown mutation leads to loss of exon 8 in transcript.	n.d.	FJ807316
Hco-des-2H	H. contortus CRA	n.a.	FJ807317–331	FJ807336–340
Hco-des-2H	H. contortus Howick	n.a.	FJ807332–335	FJ807346–347
Hco-des-2H	H. contortus AAD	Insertion of 135 bp in the 5’ UTR creating 2 additional start codons.	n.d.	FJ807341–345
Hco-des-2H	H. contortus Howick AAD	Insertion of 135 bp in the 5’ UTR creating 2 additional start codons.	n.d.	FJ807348–349
Hco-deg-3H	H. contortus CRA	n.a.	FJ807350–356	FJ807357–360
Hco-deg-3H	H. contortus Howick	n.a.	FJ807357–360	FJ807357–360

n.a. = not applicable; n.d. = not determined. The sequences are included in the file Text S1.
doi:10.1371/journal.ppat.1000380.t002
Howick-AADMM, indicating that the genetic screen was not saturated. However, for \textit{Hco-des-2H}, an insertion of 135 bp creating 2 additional start codons was present in the 5' UTR from both AADM isolates. While \textit{Hco-des-2H} mRNA levels were significantly lower in \textit{Hc-Howick} AADM (compared to \textit{Hc-Howick}), no effect was observed on \textit{Hco-des-2H} expression in \textit{Hc-CRA} AADM. It is interesting to note that in \textit{C. elegans}, mutant worms lacking a functional DES-2 did not exhibit any AAD resistance [12]. The in vitro protocol used to breed AAD-mutant \textit{H. contortus} is very focused using a large number of individuals and a borderline subcurative exposure concentrations over extended time period. This protocol is different from the situation in the field, e.g. after multiple generations exposed to subcurative treatment in sheep, we have so far not been able to obtain AAD-resistant \textit{H. contortus} (Pradervand and Kaminsky, unpublished data).

In conclusion, several independent mutations were found in the \textit{Hco-mptl-1} gene from \textit{H. contortus} mutants with reduced sensitivity for monepantel, implicating \textit{Hco-MPTL-1} as a likely target for AAD action against \textit{H. contortus}. However, this hypothesis is difficult to test since \textit{H. contortus} is not readily amenable to genetic manipulation [48]. The AADs are very well tolerated by sheep or cattle [14]. The absence of DEG-3 subfamily acetylcholine receptors in mammals might explain the selective toxicity of AADs to nematodes.

Supporting Information

\textbf{Figure S1} The full-length coding sequence of \textit{Hco-mptl-1}. The N-terminal signal sequence is shown in blue, transmembrane domains (TMD) are shaded in grey and the hallmarks of nicotinic acetylcholine receptor \textit{\alpha}-subunits are highlighted in green. Exons 4 and 15 are underlined. Found at: doi:10.1371/journal.ppat.1000380.s001 (1.22 MB TIF)

\textbf{Figure S2} The full-length coding sequence of \textit{Hco-des-2H}. The N-terminal signal sequence is shown in blue, transmembrane domains (TMD) are shaded in grey and the hallmarks of nicotinic acetylcholine receptor \textit{\alpha}-subunits are highlighted in green. Found at: doi:10.1371/journal.ppat.1000380.s002 (1.17 MB TIF)

\textbf{Figure S3} The full-length coding sequence of \textit{Hco-deg-3H}. The N-terminal signal sequence is shown in blue, transmembrane domains (TMD) are shaded in grey and the hallmarks of nicotinic acetylcholine receptor \textit{\alpha}-subunits are highlighted in green. Found at: doi:10.1371/journal.ppat.1000380.s003 (1.25 MB TIF)

\textbf{Table S1} Primers used for PCR amplification of \textit{deg-3} subfamily genes from \textit{Haemonchus contortus}. Found at: doi:10.1371/journal.ppat.1000380.s004 (0.07 MB DOC)

\textbf{Text S1} All the sequences as submitted to GenBank.
Acknowledgments

We are grateful to André Wenger, Estelle Pradervand, Simone Mullhaup and Yves Desaules for excellent technical assistance, Jacques Bouvier for constructive discussions during the work and the review of the manuscript, Marc Ruepp for help with the real-time PCR experiments, and Daniel Nilsson for help with Figure 1. We thank Barry Hosking, Andrew Little and Arild Redhaug for critical review of the manuscript.

Author Contributions

Conceived and designed the experiments: LR PM IR RK. Performed the experiments: LR IR. Analyzed the data: LR PM IR RK. Contributed reagents/materials/analysis tools: LR IR. Wrote the paper: LR PM RK.

References

1. McLeod RS (1995) Costs of major parasites to the Australian livestock industries. Int J Parasitol 25: 1363–1367.
2. Atanasio A, Boomker J, Sitoe C (2002) A survey on the occurrence of resistance to anthelmintics of gastrointestinal nematodes of goats in Mozambique. Onderstepoort J Vet Res 69: 215–220.
3. Conder GA, Campbell WC (1995) Chemotherapy of nematode infections of veterinary importance, with special reference to drug resistance. Adv Parasitol 35: 1–84.
4. Jackson F, Coop RL (2000) The development of anthelmintic resistance in sheep nematodes. Parasitology 120 Suppl: 895–907.
5. Prichard R (1994) Anthelmintic resistance. Vet Parasitol 54: 259–268.
6. van Wijk JA, Malan FS, Randles JL (1997) How long before resistance makes it impossible to control some field strains of Haemonchus contortus in South Africa with any of the modern anthelmintics? Vet Parasitol 70: 111–122.
7. Colos GC (2005) Anthelmintic resistance—looking to the future: a UK perspective. Res Vet Sci 78: 99–108.
8. Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20: 477–481.
9. Traversa D, Pasolini B, Otranto D, Miller J (2007) First report of multiple drug resistance in trichostrongylid affecting sheep under field conditions in Italy. Vet Parasitol 10: 1713–1716.
10. Waghorn TS, Leathwick DM, Rhodes AP, Lawrence KE, Jackson R, et al. (2006) Prevalence of anthelmintic resistance on sheep farms in New Zealand. N Z Vet J 54: 271–277.
11. Besier B (2007) New anthelmintics for livestock: the time is ripe. Trends Parasitol 23: 21–24.
12. Kaminsky R, Docray P, Jung M, Clover R, Rufenart L, et al. (2008) A new class of anthelmintics effective against drug-resistant nematodes. Nature 452: 176–180.
13. Docray P, Gauvry N, Pautrail F, Goebel T, Fruechtel J, et al. (2008) Discovery of amino-acetoniomirlone derivatives, a new class of synthetic anthelmintic compounds. Bioorg Med Chem Lett 18: 2935–2938.
14. Kaminsky R, Gauvry N, Schorched Weber S, Skripsy T, Bouvier J, et al. (2008) Identification of the amino-acetoniomirlone derivative monepantel (AAD 1366) as a new anthelmintic drug development candidate. Parasitol Res 103: 931–939.
15. Mioshi G, Kaminsky R, Masca P (2007) Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet Parasitol 144: 313–320.
16. Wood IB, Amaral NK, Bairden K, Duncan JL, Kasai T, et al. (1995) World Health Organization for the Advancement of Veterinary Parasitology (W.A.A.P.V) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet Parasitol 58: 101–213.
17. Livak KJ, Schnitten TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- Delta Delta C(T) Method. Methods 25: 402–408.
18. Hosking BC, Stein PA, Mosimann D, Seewald W, Strehaus G, et al. (2008) Dose determination studies for monepantel, an amino-acetoniomirlone derivative, against fourth stage gastrointestinal nematode larvae infecting sheep. Vet Parasitol 157: 72–80.
19. Absoluf SL, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
20. Shabalina SA, Wilkinson JS, Miller WF (1997) The deg-3/des-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol Cell Neurosci 17: 599–599.
21. Kaminsky R, Mosimann D, Sager H, Stein P, Hosking B (2009) Determination of the effective dose rate for monepantel (AAD 1366) against adult gastrointestinal nematodes in sheep. Int J Parasitol 39: 443–446.
22. Yassin L, Gillo B, Kahnah T, Hales E, Eshel M, et al. (2001) Characterization of the deg-3/des-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol Cell Neurosci 17: 599–599.