Boundary of the action of Thompson’s group F on dyadic numbers

Pavlo Mishchenko*

June 15, 2018

Abstract

We prove that the Poisson boundary of a simple random walk on the Schreier graph of action $F \curvearrowright D$, where D is the set of dyadic numbers in $[0,1]$, is non-trivial. This gives a new proof of the result of Kaimanovich: Thompson’s group F doesn’t have Liouville property. In addition, we compute growth function of the Schreier graph of $F \curvearrowright D$.

1 Introduction

Let G be a group equipped with a probability measure μ. A right random walk on (G, μ) is defined as a Markov chain Z with the state space G and transitional probabilities $P(Z_{n+1} = g|Z_n = h) = \mu(h^{-1}g)$. Specifying initial measure θ (distribution of Z_0), we obtain a probability measure P^μ_θ on the space of trajectories $(Z_i)_{i \geq 0} \in G^{\mathbb{Z}_+}$. Usually one takes $\theta = \delta_e$ - Dirac measure at the group identity. The Poisson boundary of the pair (G, μ) can be defined as the space of ergodic components of the time shift on the (G^N, P^μ_δ) [7]. For more equivalent definitions of the boundary one can look at [6]. A pair (G, μ) is said to have Liouville property if the corresponding Poisson boundary is trivial, or, equivalently, when the space of bounded μ-harmonic functions on G is 1-dimensional, i.e. consists of constant functions. A group G has Liouville property iff for every symmetric, finitely supported μ the pair (G, μ)

*Ecole Normale Supérieure de Lyon, supported by Labex Milyon
does. For a recent survey and results on Liouville property and Poisson boundaries see [2], [3] and [4].

In this note we prove that Richard Thompson’s group F doesn’t have Liouville property. A survey on Thompson’s groups is presented in [1]. Here we only mention that question of amenability of F is one of the major open problems now.

2 Main results

Consider a simple random walk on a locally finite graph $G = (V, E)$. Fix a starting point x_0. This enables trajectory space $V^\mathbb{Z}_+$ with a probability measure P. The notion of the boundary is easily adapted to this case: it is the space of ergodic components of the time shift on the $(V^\mathbb{Z}_+, P)$. We’ll use electrical networks formalism as it appears in [5]. Throughout the paper, $d(\cdot, \cdot)$ will denote standard graph distance. Let $B(x, n) = \{y \in V : d(x, y) \leq n\}$ - ball centered at x of radius n. Define also $\partial B(x, n) = \{y \in V : d(x, y) = n\}$.

Theorem 2.1. Suppose a locally-finite graph G is given. Fix any vertex x_0. Let $\Upsilon(x_0)$ be the set of geodesics starting at x_0. Define $gd(x, n) = \#\{\gamma = [x_0, ..., x_m] \in \Upsilon(x_0) : x \in \gamma$ and $d(x, x_m) = n\}$. Suppose there exist some real numbers $c, C > 0$ and $q > 1$ such that the following conditions are satisfied:

$$gd(n, x) \leq Cq^n \text{ for every } x \in X$$

$$cq^n \leq gd(x_0, n)$$

Then $\text{cap}(x_0) > 0$.

Remark 2.2. For example, it’s easy to see that conditions[1] are obviously satisfied for a regular m-tree, with $q = m$.

Proof. We have to show that if $f \in D_0(N)$, $f(x_0) = 1$ then it’s Dirichlet norm is bounded from below by some positive constant. Let n be such that $\text{supp} f \subseteq B(x_0, n - 1)$. All resistances are equal to 1 in our case, so we may
write

\[D(f) = \sum_{e \in E} (f(e^+) - f(e^-))^2 \geq \sum_{k=0}^{n-1} \sum_{x \in \partial B(x_0,k)}^{y \in \partial B(x_0,k+1)} (f(x) - f(y))^2 = \]

\[\sum_{\gamma \in \Upsilon(x_0)}^{[x_0,\ldots,x_n]=\gamma} \sum_{k=0}^{n-1} \frac{(f(x_k) - f(x_{k+1}))^2}{\text{gd}(x_{k+1}, n - k - 1)} \geq \sum_{\gamma \in \Upsilon(x_0)}^{[x_0,\ldots,x_n]=\gamma} \frac{\left(\sum_{k=0}^{n-1} f(x_k) - f(x_{k+1})\right)^2}{\sum_{k=0}^{n-1} \text{gd}(x_{k+1}, n - k - 1)} \geq \frac{c(q-1)}{C} \]

For the first inequality, we cancel edges which connect vertices which connect vertices at the same distance from \(x_0\). For the second equality, we consider geodesics from \(x_0\) to points at the distance \(n\) and sum quantities \(\frac{(f(x_k) - f(x_{k+1}))^2}{\text{gd}(x_{k+1}, n - k - 1)}\) over them, getting \((f(x_k) - f(x_{k+1}))^2\) by definition of \(\text{gd}\). We use next Cauchy-Schwartz and finiteness of support of \(f\): \(f \equiv 0\) outside of \(B(x_0, n - 1)\). Thus we have

\[D(f) \geq \frac{c(q-1)}{C} \]

for every finitely-supported \(f\), hence \(\text{cap}(x_0) > 0\) \(\square\)

This implies, by theorem (2.12) from [5], that simple random walk on \(G\) is transient. Now we are going to establish a theorem which connects transience of certain random walks to non-triviality of boundary. Following [6], we call subset \(A \subset G\) a trap, if \(\lim_n \mathbbm{1}(Z_n \in A)\) exists for almost all trajectories \(Z \in G^\mathbb{N}\). We call a graph transient if the simple random walk on it is transient.

Theorem 2.3. Let \(T\) be a tree with a root vertex \(v\) such that for each descendant \(v_1, \ldots, v_n\) of \(v\) \((n \geq 2)\) a subtree \(T_i\) rooted at \(v_i\) is transient. Then the boundary of simple random walk on \(T\) is nontrivial.

Proof. Take any \(T_i\). Almost surely, every trajectory hits \(v\) only finitely many times. The only way to move from \(T_i\) to \(T_j\) is to pass by \(v\). Therefore, for any \(i\), we’ll stay inside or outside of \(T_i\) from some moment. This means that \(T_i\) is a trap. Let’s prove that it is nontrivial, i.e. random walk will stay at \(T_i\)
with positive probability. If this is true for each \(i \), then every \(T_i \), \(1 \leq i \leq n \), is a nontrivial trap, so boundary is indeed nontrivial. Consider the following set of trajectories of the simple random walk on \(T \):

\[
A = \{ Z : Z_1 = v_i, \forall k \geq 2 \ Z_k \neq v_i \}.
\]

In addition, consider the set of trajectories of the simple random walk on \(T_i \):

\[
A' = \{ Z' : Z'_0 = v_i, \forall i \geq 1 \ Z'_i \neq v_i \}.
\]

Collecting the following facts:
- simple random walk on \(T \) goes to \(v_i \) with probability \(1/n \);
- probability of going from \(v_i \) not to \(v \) is \(\frac{\text{deg}(v_i) - 1}{\text{deg}(v_i)} \);
- \((Z_{k+1})_{k \geq 0} \in A' \), and transition probabilities are the same for \(Z_{i+1} \) and \(Z'_i \) for \(i \geq 1 \)

we obtain

\[
\mathbb{P}(A) = \frac{1}{n} \frac{\text{deg}(v_i) - 1}{\text{deg}(v_i)} \mathbb{P}(A').
\]

This shows us that indeed \(\mathbb{P}(A) > 0 \), as \(\mathbb{P}(A') > 0 \) due to transience.

Proposition 2.4. Let \(H \) be a graph which is formed by adding a set of graphs \(G_v \) with pairwise disjoint sets of vertices to each vertex \(v \) in \(T \). Then the boundary of simple random walk on \(H \) is nontrivial.

Proof. Boundary of \(T \) is nontrivial, so we have non-constant bounded harmonic function \(h \) on \(T \). We can extend it to the whole \(H \) by setting

\[
\hat{h}(x) = \begin{cases}
 h(x), & \text{if } x \in T \\
 h(v), & \text{if } x \in G_v
\end{cases}
\]

This way we get non-constant bounded harmonic function \(\hat{h} \) on \(H \), so boundary is non-trivial.

Recall that Richard Thompson’s group \(F \) is defined as the group of all continuous piecewise linear transformations of \([0, 1]\), whose points of non-differentiability belong to the set of dyadic numbers and derivative, where it exists, is an integer power of 2. It is known to be 2-generated. Now we are ready to prove the main theorem.

Theorem 2.5. Thompson’s group \(F \) does not have Liouville property.
Figure 1: Schreier graph \mathcal{H} of the action of F on the orbit of $1/2$

Proof. First of all, we observe that if action $G \curvearrowright X$ is non-Liouville, i.e. there are bounded non-constant harmonic functions on the Schreier graph of this action, then G itself is non-Liouville. Required harmonic function on G is just a pullback of a harmonic function h on X: $h'(g) = h(g.x)$. Obviously, h' is harmonic if h is. We consider the action of F on the set of all dyadic numbers in $[0,1]$. We use presentation of its Schreier graph \mathcal{H} constructed by D. Savchuk in [8]. It is illustrated on the Figure 1. We look at the tree T rooted at 101 formed by grey vertices and white which are connected with the grey ones. We need to verify that T satisfies condition [1]. Take x_0 to be the point $3/8 = 101$. For grey vertices x we have $gd(n,x) = |\partial B(x_0,n)|$, and for white y we have $gd(n,y) = |\partial B(x_0,n-1)|$. In fact, $|\partial B(x_0,n)|$ may be calculated explicitly (T is a famous Fibonacci tree), and value $q = \frac{1+\sqrt{5}}{2}$
works. Hence, we can apply consequently 2.1, 2.3 and 2.4 to see that there are non-constant bounded harmonic functions on \mathcal{H}, so, by the remark in the beginning of the proof, on the Thompson’s group F.

Remark 2.6. The fact that simple random walk on the Thompson’s group F has nontrivial boundary is first proven by Kaimanovich in [9].

3 Growth function of \mathcal{H}

In [10] different types of growth functions for groups are defined. We adapt these definitions to Schreier graphs of group actions. We’ll compute growth function of \mathcal{H}. Suppose we have a Schreier graph of action of a group G on set X. Fix some starting point $p \in X$. A cone type of a vertex x is defined as follows:

$$C(x) = \{ g \in G : \text{if } w \text{ is a geodesic from } p \text{ to } x, \text{ then } wg \text{ is a geodesic from } p \text{ to } g(p) \}.$$

Complete geodesic growth function is defined as

$$L(z) = \sum_{g \in G : g \text{ is a geodesic for } g(p)} g z^{|g|}.$$

Geodesic growth function is defined by sending all group elements to 1, namely

$$l(z) = \sum_{g \in G : g \text{ is a geodesic for } g(p)} z^{|g|}.$$

Orbit growth function is defined as

$$\hat{l}(z) = \sum_{n=0}^{\infty} \# \{ x \in X : \exists g \in G - \text{geodesic : } |g| = n, g(p) = x \} z^n.$$

Now consider \mathcal{H}. We are interested in geodesics starting at point $p = 1/2(100...)$. Then we have 5 cone types of vertices:

- Type 0: point 1 (which corresponds to 1/2);
- Type 1: black vertices;
- Type 2: grey vertices excluding 1;
- Type 3: white vertices on the tree;
Type 4: white vertices not on the tree.

Let’s write $\Lambda_i^n = \sum_{g \in C_i, |g| = n} g$, where C_i is the i-th cone type. Then one gets recurrent relations:

$$\begin{align*}
\Lambda_0^n &= \Lambda_1^{n-1}a + \Lambda_3^{n-1}a^{-1} \\
\Lambda_1^n &= \Lambda_1^{n-1}a \\
\Lambda_2^n &= \Lambda_1^{n-1}a + \Lambda_2^{n-1}b + \Lambda_3^{n-1}a^{-1} \\
\Lambda_3^n &= \Lambda_2^{n-1}b + \Lambda_4^{n-1}(a^{-1} + b^{-1}) \\
\Lambda_4^n &= \Lambda_4^{n-1}(a^{-1} + b^{-1})
\end{align*}$$

(2)

Denote L_i^n the number of geodesics of length n starting from a vertex of type i, leading to different points, i.e. $L_i^n = \partial B(x_i, n)$ for x_i being a vertex of type i. Then recurrent relations are:

$$\begin{align*}
L_0^n &= L_1^{n-1} + L_3^{n-1} \\
L_1^n &= L_1^{n-1} \\
L_2^n &= L_1^{n-1} + L_2^{n-1} + L_3^{n-1} \\
L_3^n &= L_2^{n-1} + L_4^{n-1} \\
L_4^n &= L_4^{n-1}
\end{align*}$$

(3)

Let $\Lambda^n = (\Lambda_0^n, \Lambda_1^n, \Lambda_2^n, \Lambda_3^n, \Lambda_4^n)^T$ and $L^n = (L_0^n, L_1^n, L_2^n, L_3^n, L_4^n)^T$. We compute

$$\tilde{L}(z) = \sum_{n=0}^{\infty} \Lambda^n z^n$$

- extended complete geodesic growth function and

$$\hat{L}(z) = \sum_{n=0}^{\infty} L^n z^n$$

- geodesic orbit growth function (if two geodesics lead to the same point, they are counted as one). By recurrent formulas, we have

$$\tilde{L}(z) = \sum_{n=0}^{\infty} A^n A_0 z^n = (I_5 - Az)^{-1} \tilde{\Lambda}_0 \quad \text{and} \quad \hat{L}(z) = (I_5 - Bz)^{-1} L_0,$$

where $\tilde{\Lambda}_0 = (e, e, e, e)^T$, $L_0 = (1, 1, 1, 1)^T$ and transition matrices A, B, A are obtained from recurrent relations 2, 3. In particular, geodesic growth function is given by the first coordinate of vector-function

$$\tilde{l}(z) = (I_5 - Az)^{-1} \Lambda_0,$$

where $\Lambda_0 = L_0 = (1, 1, 1, 1)^T$. Performing calculations, one gets

$$\tilde{l}(z) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 - 2z & 1 - z & 1 - 3z + 2z^2 & 1 - 3z + 2z^2 & 1 - 2z \end{pmatrix}.$$
So, $\frac{1}{1-z}$ is the geodesic growth function for our Schreier graph. Also we get

$\tilde{L}(z) = \left(\frac{1+z}{1-z-z^2}, \frac{1}{1-z}, \frac{1+z}{1-2z+z^3}, \frac{1}{1-2z+z^3}, \frac{1}{1-z} \right)$.

Finally, we see that we’ve obtained $l(z) = \frac{1}{1-2z}$ and $\tilde{l}(z) = \frac{1+z}{1-z-z^2}$.

$\tilde{l}(z) = \frac{1+z}{1-z-z^2} = \frac{\varphi^2}{\sqrt{5}(1-\varphi z)} - \frac{\hat{\varphi}^2}{\sqrt{5}(1-\hat{\varphi} z)}$,

where $\varphi = \frac{\sqrt{5}+1}{2}$, $\hat{\varphi} = \frac{\sqrt{5}+1}{2}$. So, $L_n = |\partial B(p, n)| = \frac{\varphi^{n+2} - \hat{\varphi}^{n+2}}{\sqrt{5}}$. $|B(p, n)| = \sum_{k \leq n} L_k = \frac{\varphi^{n+3} - \varphi^3}{\sqrt{5}(\varphi-1)} - \frac{\hat{\varphi}^{n+3} - \hat{\varphi}^3}{\sqrt{5}(\hat{\varphi}-1)}$.

Acknowledgements

The author would like to thank his advisor Kate Jushchenko for her guidance and insightful discussions. The author would like to acknowledge Labex Milyon for funding the research.

References

[1] Cannon, James W., William J. Floyd, and Walter R. Parry. "Introductory notes on Richard Thompson’s groups.” Enseignement Mathématique 42 (1996): 215-256.

[2] Erschler, Anna. "PoissonFurstenberg boundaries, large-scale geometry and growth of groups.” Proceedings of the International Congress of Mathematicians. Vol. 2. 2010.

[3] Juschenko, Kate, et al. "Extensive amenability and an application to interval exchanges.” arXiv preprint arXiv:1503.04977 (2015).

[4] Bon, Nicolas Matte. "Subshifts with slow complexity and simple groups with the Liouville property.” Geometric and Functional Analysis 24.5 (2014): 1637-1659.

[5] Woess, Wolfgang. Random walks on infinite graphs and groups. Vol. 138. Cambridge university press, 2000.
[6] Kaimanovich, Vadim A., and Anatoly M. Vershik. ”Random walks on
discrete groups: boundary and entropy.” The annals of probability
(1983): 457-490.

[7] Kaimanovich, Vadim A., and Howard Masur. ”The Poisson boundary
of the mapping class group.” Inventiones mathematicae 125.2 (1996):
221-264.

[8] Savchuk, Dmytro. ”Schreier graphs of actions of Thompson's group F
on the unit interval and on the Cantor set.” Geometriae Dedicata 175.1
(2014): 355-372.

[9] Kaimanovich, Vadim A. Boundary behavior of Thompson's group, Un-
published manuscript.

[10] Grigorchuk, Rostislav, and Tatiana Nagnibeda. ”Complete growth func-
tions of hyperbolic groups.” Inventiones mathematicae 130.1 (1997):
159-188.