Transcriptome and metabolomic analysis to reveal the browning spot formation of ‘Huangguan’ pear

Qi Wang†, Xinyi Wu†, Li Liu†, Daozhi Yao, Jinchao Li, Jie Fang, Xiaonan Chen, Liwu Zhu, Pu Liu,
Zhenfeng Ye, Bing Jia*, Wei Heng†

College of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, P.R. China

* Correspondence author

Tel: +86-0551-65786607; e-mail: hengwei@ahau.edu.cn; jb1977@ahau.edu.cn

† Qi Wang, Xinyi Wu and Li Liu should be regarded as joint first authors.
Abstract:

Background: Browning spot (BS) disorders seriously affect the appearance quality of ‘Huangguan’ pear and cause economic losses. Many studies on BS have mainly focused on physiological and biochemical aspects, and the molecular mechanism is unclear.

Result: In the present study, the structural characteristics of ‘Huangguan’ pear with BS were observed with SEM, the water loss and brown spot were evaluated, and transcriptome and metabonomics analyses were conducted to reveal the molecular mechanism of ‘Huangguan’ pear skin browning disorder. The results showed that the occurrence of BS was accompanied by a decrease in the wax layer and an increase in lignified cells. It appears that genes related to wax biosynthesis were down-regulated in BS, resulting in the decrease of wax layer in BS. Genes related to lignin were up-regulated at transcriptional level, resulting in upregulation of metabolites related to phenylpropanoid biosynthesis. Expression of calcium-related genes were upregulated in BS. The cold-induced genes *CS120, LTI65* and *RCI2B* may be the key genes that induce BS. In addition, the results demonstrated that exogenous NaH₂PO₄·2H₂O and ABA treatment could inhibit the incidence of BS during harvest and storage time by increasing the expression of wax-related genes and calcium-related genes and increasing plant resistance, whereas GA₃ may accelerate the incidence and index of BS in transcriptomics.

Conclusions: The results of this study would provide a basis for the molecular mechanism of BS formation and clarify the effects of different treatments on the incidence and molecular regulation of BS.

Keywords: ‘Huangguan’ pear, browning disorder, transcriptome, metabolomic, molecular mechanism
1. Background

‘Huangguan’ pear (*Pyrus bretschneideri × Pyrus pyrifolia*) is an early- and medium-maturing cultivar widely planted in northern China that has a high-quality and exquisite appearance after bagging[1]. However, browning spot (BS) disease often occurs at the surface of ‘Huangguan’ pear fruits after bagging before harvest or during storage[2]. The symptom of BS is a brown spot at first, and then the brown spot spreads irregularly from the disease spot to the surroundings and becomes darker during fruit maturation[2, 3]. Whole fruit browning may occur in the later stages of this disease. It's interesting that this disorder only affects the exocarp of pear fruit, and the flesh and core are not affected[4]. Multiple lesions are connected into a round, irregular shape or chicken claw shape. Therefore, BS disorder is also known as chicken-claw disease by orchardman in China, which causes a significant decrease in the commercial value of fruit for fruit farmers[5].

BS was first discovered in Xinji City, Hebei Province, in 1996. This disease mainly occurs on ‘Huangguan’ pears. However, a small number of green pear varieties, such as ‘Lvbaoshi’ (*P. pyrifolia* Nakai), ‘Suisho’ (*P. pyrifolia* Nakai), ‘Xuehua’ (*P. bretschneideri* Rehd.) and ‘Xueqing’ (*P. pyrifolia* Nakai), also experience BS[6]. It was reported that BS disease of ‘Huangguan’ pear is an important physiological disorder[7–9] that mainly occurs in bagged fruits at the mature stage and after low-temperature storage[10–12]. In general, BS disorder of ‘Huangguan’ pear is affected by many factors, such as environmental factors (continuous rainfall and low temperature weather[10], the use of chemical fertilizers[13]), preharvest factors (bagging times, type of fruit bags[3, 14], the use of swelling agents[15]), and postharvest factors (the duration of cooling period[10–12, 16], the storage temperature and the concentrations of CO₂ and O₂ [17–19]).
Some researchers believe that the thinning of the wax layer and skin cell wall of pears caused by bagging is the main cause of BS[14]. The adaptability of fruit exocarp to severe environmental changes is reduced, and the development of fruit exocarp is delayed after bagging. It has been reported that BS is closely related to calcium deficiency and phenolic dysregulation in pericarp tissue[7, 17, 20]. To date, research on BS disease has mainly focused on mineral nutrition (such as Ca[1, 3, 7, 9, 15, 21-25], Mg[3, 7], K[3, 7] and B[21]) and physiology and biochemistry[26, 27]. Additionally, the use of swelling agents may be one of the causes of BS[15]. Exogenous treatment with ethylene[2, 28], methyl jasmonate (MeJA)[29], 1-methylcyclopene (1-MCP)[16] and CaCl₂[30] has been reported to affect the browning of postharvest ‘Huangguan’ pear. Recent reports have demonstrated that SA treatment can inhibit BS during cold storage. In addition, it has been reported that rapid postharvest cooling tends to increase BS, while slow cooling inhibits BS[10]. However, there are few studies on the exogenous treatment of phytohormones and molecular mechanisms that regulate BS processes in ‘Huangguan’ pear.

This study observed the changes at the site of BS and analyzed the molecular mechanism of BS at the transcriptomic and metabolomic levels. The incidence of BS after treatment with exogenous reagents [NaH₂PO₄·2H₂O (P), abscisic acid (ABA), gibberellin A₃ (GA₃)] during harvest and storage was investigated. The key genes involved in exocarp formation were also analyzed after treatment, which would provide a basis for the molecular mechanism of BS and clarify the influence of different treatments on the molecular regulation of BS.

Results

Phenotype characteristics of BS disease of ‘Huangguan’ pear
Compared with the normal pear skin (Fig. 1A) of ‘Huangguan’ pear, the BS-infected skin exhibits an irregular chicken claw shape, and the location of the disease is not fixed (Fig. 1B). BS is a physiological disease with slight depression in the affected area. Paraffin section observation revealed that the degree of lignification of the exocarp cells of BS parts was significantly higher than that of the normal parts (Fig. 1B). C, D). Scanning electron microscopy (SEM) revealed a thick cuticular layer on the skin of the normal ‘Huangguan’ pear, but the BS part of ‘Huangguan’ pear skin consisted of layers of dead cells, and exocarp cells were more densely arranged (Fig. 1B). E, F). Therefore, the occurrence of BS may be caused by necrosis of the exocarp and hypodermal cortical tissues.
Fig. 1 Phenotypes of normal ‘Huangguan’ pear (A) and ‘Huangguan’ pear with BS disease (B).

Observation of the paraffin sections of the normal part (C) and BS disease part (D) of ‘Huangguan’ pear. SEM analysis of the normal part (E) and BS disease part (F) of ‘Huangguan’ pear.

Alternatively, we found many cracks on the fruit surface, while the cracks on the BS part disappeared (Additional file 1: Figure. S1). Thus, the experiment to detect RWL between CK and BS was conducted. After 10 d of storage at room temperature (25°C), the RWLs of the three groups of ‘Huangguan’ pear and ‘Huangguan’ pear with BS disease were calculated. The results showed that the RWLs of two groups (#1 and #3) of ‘Huangguan’ pear fruits were significantly higher than that of ‘Huangguan’ pear with BS disease (Fig. 2). The average RWLs of the CK and BS groups were 3.49% and 3.19%, respectively. This means that BS lesions could inhibit water loss, which may be regulated by the layers of densely arranged dead cells at the fruit surface.

Fig. 2 RWL of CK and BS of ‘Huangguan’ pear at 10 days of storage under room conditions after harvest. The vertical bar indicates the standard error. The reported value is the mean ± SEM (p > 0.05).

The ordinate represents three different groups, and each group has 10 fruits.
Transcriptome and metabolome profiles of ‘Huangguan pear’ exocarp

RNA-Seq generated 6.24 gigabytes (GB) of clean data of each sample from the 5 complementary DNA (cDNA) libraries. A total of 30,596 expressed genes were identified, including 1,212 new genes that were initially identified in this study. Successfully mapped reads ranged between 69.91% and 72.68%, and the average was 71.29% (Additional file 2: Table S1).

To compare control group (CK) and BS-infected group (BS) metabolites of ‘Huangguan’ pears, datasets obtained from a Xevo G2 XS QTOF high-resolution tandem mass spectrometer (Waters) in electrospray ionization positive ion mode (ESI+) and negative ion mode (ESI−) were subjected to principal component analysis (PCA). The results showed that metabolites from CK and BS were clearly separated in the score plots, where the first principal component (PC1) was plotted against the second principal component (PC2). (Additional file 1: Figure S2 A, B). PLS-DA (Plots from partial least squares discriminant) analyses were further used to check the metabolite differences between CK and BS (Additional file 1: Figure S2 C, D). These results showed significant biochemical differences between CK and BS.

Transcriptome and metabolome differences between CK and BS

Transcript analysis of the two comparison groups by DESeq2[31] identified 6299 DEGs, including 4854 induced and 1445 repressed DEGs in the BS pear exocarp (Fig. 3A). To classify the functions of DEGs between CK and BS, the assembled unigenes were annotated by using different protein databases (GO, KEGG) for homologous alignment. In the GO categories, DEGs were annotated in 1212 GO terms with 1480 unigenes in biological process, 1906 unigenes in cellular component, and 1609 unigenes in molecular function, which included terms such as metabolic process, membrane and
catalytic activity (Additional file 1: Figure S3). KEGG pathway annotation analysis showed that global and overview maps, carbohydrate metabolism, signal transduction and environmental adaptation were overrepresented (Additional file 1: Figure S4). KEGG enrichment analysis was further used to assess DEGs between CK and BS. We found seven significant pathways, including the MAPK signaling pathway (245), flavonoid biosynthesis (72), plant-pathogen interaction (267), carotenoid biosynthesis (38), porphyrin and chlorophyll metabolism (37), plant hormone signal transduction (216) and brassinosteroid biosynthesis (17) (Fig. 3B). To further identify the functions of BS-related genes, we analyzed gene expression in those significantly enriched pathways. The numbers of up- and downregulated genes are listed in Table 1.

Fig. 3 Significant DEG and DEM analysis between CK and BS. (A) Column chart of DEGs; red represents upregulated DEGs, and blue represents downregulated DEGs. (B) KEGG enrichment
analysis of DEGs between CK and BS. The number of genes in each pathway is equal to the dot size. The dot color represents the q-value. The smaller the q-value, the redder the dot. (C) Numbers of upregulated (red) and downregulated (blue) metabolites. (D) KEGG enrichment analysis of differential metabolites. The number of DEMs in each pathway is equal to the dot size. The dot color represents the P-value. A redder point represents a smaller P-value.

Table 1 The top 7 enriched pathways of DEGs in BS

Pathway name	Type	Down Pathway ID	Q-value	
MAPK signaling pathway - plant	Environmental Information Processing	34	ko04016	4.86E-12
Flavonoid biosynthesis	Metabolism	21	ko00941	1.47E-06
Plant-pathogen interaction	Organismal Systems	22	ko04626	1.14E-05
Carotenoid biosynthesis	Metabolism	12	ko00906	0.001625608
Porphyrin and chlorophyll metabolism	Metabolism	13	ko00860	0.008369283
Plant hormone signal transduction	Environmental Information Processing	71	ko04075	0.008369283
Brassinosteroid biosynthesis	Metabolism	3	ko00905	0.02783563

These were selected with an FDR adjusted Q-value< 0.05

We characterized the exocarp of ‘Huangguan’ pear metabolomic changes in the BS disease part. A total of 8829 and 8646 ions were identified in ESI+ and ESI− modes, respectively. After filtering low-quality ions that had RSD > 30%, 8432 and 7887 ions were retained in ESI+ and ESI− modes, respectively. Then, we identified differential metabolites between CK and BS, and we detected 1742 and 1555 differential icons in BS, including 1348 and 1173 upregulated icons and 394 and 382
downregulated icons in ESI+ and ESI− modes, respectively (Fig. 3C). In addition, 1581 and 781
differentiated metabolites were categorized into 96 and 74 KEGG pathways in ESI+ and ESI− mode,
respectively (Additional file 3: Table S2). KEGG enrichment analysis of differentiated metabolites
(removing the duplicated ions in ESI+ and ESI− mode) showed that the pathways biosynthesis of
secondary metabolites, porphyrin and chlorophyll metabolism, cutin suberin and wax biosynthesis,
phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and brassinosteroid biosynthesis were
the most abundant (Fig. 3D). In addition, the up- and downregulation of differential metabolites are
listed in Table 2.

Table 2 Enriched KEGG pathways of differential metabolites between CK and BS

Pathway	Count	Up	Down	Pathway ID
Biosynthesis of secondary metabolites	228	173	55	map01110
Phenylpropanoid biosynthesis	31	22	9	map00940
Porphyrin and chlorophyll metabolism	29	21	8	map00860
Flavonoid biosynthesis	18	16	2	map00941
Brassinosteroid biosynthesis	17	15	2	map00905
Carotenoid biosynthesis	16	13	3	map00906
Linoleic acid metabolism	16	14	2	map00591
alpha-Linolenic acid metabolism	13	12	1	map00592
Cutin, suberin and wax biosynthesis	11	11	0	map00073

Analysis of DEGs and DEMs between CK and BS

The phenotypic characteristics and metabonomics analysis of the pericarp indicated that the cutin
suberin and wax biosynthesis pathway and lignin biosynthesis may be involved in the formation of BS.
The fatty acid elongation pathway is upstream of cutin suberin and wax biosynthesis[32]. At the
transcriptome level, we found that 10 DEGs in the fatty acid elongation pathway were downregulated
in BS, including KCS11, KCS4, KCS19, KCS1, KCS6, OCR1, ECR, PAS2, KCS10 and KCS20 (Fig. 4A).

Additionally, in the cutin suberin and wax biosynthesis pathways, 9 DEGs were downregulated, including CYP94A1, HHT, CYP86A22, HTH, CYP704C1, FAR, WSD1, CYP86A6, and FAR3, while 11 DEMs in this pathway were all upregulated. (Fig. 4B, Table 2). Six genes involved in lignin biosynthesis were upregulated, including 4CL2, CAD1, CYP84A1, 4CL1, CYP98A2, and COMT1, and two genes were downregulated, including CAD6 and CCRI (Fig. 4C), resulting in the upregulation of the metabolites in the phenylpropanoid biosynthesis pathway (Table 2).

Fig. 4 Significant DEGs between CK and BS. Heatmap of DEGs involved in fatty acid elongation (A), cutin suberin and wax biosynthesis (B), lignin biosynthesis (C), plant-pathogen interaction (D), plant-pathogen interaction and MAPK signaling pathway (E), and MAPK signaling pathway (F).
Transcriptome analysis revealed that plant-pathogen interactions (PPI) and the MAPK signaling pathway (MAPK) are also key pathways associated with BS. We detected 12 DEGs involved in both PPI and MAPK, including PGIP, LSH10, CML45 and 9 WRKY family TFs (Fig. 4D). In the PPI pathway, we found that 10 genes were upregulated in BS, including three calcium-related proteins, CaM, CML42, and CaLP7; two WRKY family TFs, WRKY40 and WRKY22; two pathogenesis-related genes, PTI5 and PTI6; and three CDPK family genes, CDPK28, CDPK2 and CDPK13. In the MAPK signaling pathway, we found that Calp2, MMK2 WRKY45, PP2C37, Calp3, MAPK3, and PP2C51 were upregulated, and PYR1, CLP1, CLP2, MLP423, MAPK9, and ECP were downregulated. Detailed information is listed in Additional file 4: Table S3.

Through metabolomics, we found that there was no significant difference in auxin (IAA) content between CK and BS. In and cytokinin (CTK), it appears that N6-Dimethylallyladenine and zeatin were reduced in BS, while gibberellin (GA), abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) were all up-regulated in BS. In addition, we identified 216 DEGs involved in plant hormone signal transduction transcriptome analysis (Fig. 5). In the auxin, CTK and GA pathways related to cell growth and division, we identified 55, 15, and 37 DEGs, respectively. Our results indicated that BS-related pathways interact with auxin regulation through the transcription of AUX/IAA, IAA4, IAA27, IAA26, IAA16, IAA14, AUX28 and AUX22D and were downregulated in BS. In the CTK pathway, two genes were upregulated in CER1, including HK5 and HK2, and four genes were upregulated in B-APR, including EFM, APRR2, ORR24 and PCL1. In the GA pathway, GID1C and CES15 were upregulated...
in GID1, and seven genes were upregulated in DELLA, including SCL21, SCL22, SCL4, SCL14, SCL33, SCL30, and SCL11. Additionally, nine TFs in the bHLH family were identified, of which six were upregulated and three were downregulated. In the ABA, JA and SA pathways related to the stress response, 18, 23 and 12 DEGs were identified, respectively. In the ABA pathway, three genes upregulated in PP2C were identified, including PP2C37, PP2C51, and PP2C24. In the JA pathway, four genes upregulated in MYC2, including EGL1, EMB1444, bHLH92, and bHLH041, were identified. In the SA pathway, four NPR1 genes, four TGA genes and the PR-1 gene were also upregulated in BS. Detailed information on all genes involved in plant hormone signal transduction is listed in Additional
file 4: Table S4.

Fig. 5 Significant DEGs and DEMs involved in plant hormone signal transduction between CK and BS. Red represents upregulation, and blue represents downregulation.

It has been reported that BS is associated with a sudden drop in temperature. Cold exercise or slow cooling are commonly used in production to reduce the incidence of BS [10-12]. We identified three cold-shock protein CS120-like (CS120) genes (gene ID: 103937809, 103937810, 103937807) and one low-temperature-induced 65 kDa protein-like isoform X1 (LTI65, gene ID: 103940885) that were significantly upregulated in BS (Fig. 6). Hydrophobic protein RCI2B (RCI2B, gene ID: 103955844)
has been proven to be a cold-induced gene[33] that is upregulated in BS. Aquaporin is a membrane
protein that was originally characterized as a water channel through which H₂O could permeate
biological membranes[34]. Four DEGs in aquaporin PIP (gene ID: 103946629, 103942423, 103937187,
103956770), PIP1-4 and PIP2-8 were upregulated, while PIP2-2 and PIP2-5 were downregulated in
BS.

![Graph showing transcript abundance of significant DEGs between CK and BS.](image)

Gene ID	Annotation
103937807	cold-shock protein CS120-like
103937809	cold-shock protein CS120-like
103937810	cold-shock protein CS120-like isoform X1
103940885	low-temperature-induced 65 kDa protein-like isoform X1
103955844	hydrophobic protein RC12B
103942423	probable aquaporin PIP1-4
103946629	probable aquaporin PIP2-8
103956770	aquaporin PIP2-2
103937187	probable aquaporin PIP2-5

Fig. 6 Transcript abundance of significant DEGs between CK and BS. The error bars are the means ± SEM of three biological repeats.

Transcription factors (TFs) involved in BS formation

TFs are important regulators that activate or repress the expression of both coding and noncoding
genes to influence or control many biological processes[35]. In our analysis of the transcriptome data,
we detected 423 differentially expressed TFs between CK and BS, including 341 upregulated and 82 downregulated TFs. The AP2-EREBP, MYB and WRKY families were the most abundant TF families between CK and BS, followed by the bHLH, NAC, C2H2, and HSF families (Table 3).

Table 3 Differentially expressed transcription factors (TFs) between CK and BS

TF family	Number	Up	Down	Description
AP2-EREBP	53	40	13	Ethylene-responsive transcription factor
MYB	49	43	6	MYB-related protein
WRKY	46	44	2	WRKY DNA-binding domain
bHLH	35	21	14	Helix-loop-helix DNA-binding domain
NAC	26	24	2	NAC domain-containing protein
C2H2	17	16	1	Zinc finger protein
HSF	16	16	0	Heat stress transcription factor
GRAS	15	15	0	scarecrow-like protein
LOB	13	10	3	LOB domain-containing protein
MADS	10	8	2	SRF-type transcription factor
G2-like	10	9	1	myb-related protein
C3H	9	8	1	Zinc finger CCCH domain-containing protein
mTERF	9	8	1	mTERF domain-containing protein
C2C2-Dof	9	6	3	dof zinc finger protein
TCP	7	5	2	Circadian rhythm - plant
FHA	7	5	2	FHA domain-containing protein
C2C2-GATA	7	4	3	GATA-binding protein
Tify	7	5	2	jasmonate ZIM domain-containing protein
C2C2-CO-like	7	6	1	zinc finger protein CONSTANS
ABI3VP1	6	3	3	B3 domain-containing protein
Trihelix	6	5	1	trihelix transcription factor
OFP	6	3	3	isoleucyl-tRNA synthetase
FAR1	5	5	0	zinc finger SWIM domain-containing protein
ARF	5	3	2	auxin response factor
Coexpression network of BS-related genes

In our transcriptome analysis, we found that genes associated with wax, lignin, calcium, plant hormone signal transduction, as well as cold-induced gens. were the key genes for BS formation. We performed coexpression network analysis to illuminate the collaboration between those genes. Coexpression network analyses with transcriptome data showed that GA signal and IAA signal genes were classified into different coexpression clusters with wax, lignin biosynthesis and calcium-related genes (Fig. 7). We found that bHLH137, bHLH128, IAA14 and IAA27 were coexpressed with multiple genes involved in fatty acid elongation, cutin, suberin and wax biosynthesis, lignin biosynthesis, MAPK and PPI. This indicates that the formation of BS may be regulated by plant hormone signals, especially IAA and GA signals.

Fig. 7 Coexpression network of genes involved in BS formation. Detailed information on the genes

other TFs	43	29	14
total	423	341	82
is listed in Additional file 4: Table S3 and Table S4.

Combined analysis of the metabolome and transcriptome

MixOmics[31] multifunctions were used for multivariable dimensionality reduction to explore the relationship between transcriptomics and metabolomics (Fig. 8A). The block.splsda function in mixOmics was used to analyze differential genes and differential metabolites, and plotVar and circosPlot functions were used to visualize the results. We found that there was a closely related correlation between DEGs and DEMs. Regularized canonical correlation analysis (rCCA)[36] was used to measure the degree of correlation between genes and metabolites (Fig. 8B). Approximately 75% of DEGs and DEMs had a positive correlation, and approximately 25% of them had a negative correlation.

Fig. 8 Combined analysis of the metabolome and transcriptome between CK and BS. (A) Concentric diagram of the correlation of DEGs and DEMs between CK and BS. Each point in the circle represents a gene, and each square represents a metabolite. If the angle between the DEG and DEM is an acute angle, the correlation is positive. If the angle is the deltoid angle, it is negatively
correlated. In general, variables far away from the center of the circle are more closely related. (B)

Heatmap cluster of DEGs and DEMs. Each row represents a DEM, and each column represents a DEG.

Blue represents a negative correlation, and red represents a positive correlation.

Effects of P, ABA and GA₃ treatments on BS

Treatments with P, ABA, and GA₃ were performed to investigate their effects on the BS of ‘Huangguan’ pear (Fig. 9A, B). P and ABA treatments can significantly reduce the incidence and index of BS. The incidence and index of BS treated with GA₃ was higher than those of other treatments. The results showed that P treatment has the best inhibitory effect on BS disorder, and ABA also has a certain inhibitory effect on BS, while GA₃ treatment was able to promote the occurrence of BS.

In addition, we investigated the BS incidence of ‘Huangguan’ pears with different treatments during storage (Fig. 9C, D, E). We found that P treatment effectively inhibited BS at 4 and 5 months of storage (Fig. 9C, D). ABA treatment inhibited BS at 5 months of storage, while there was no significant difference in other time periods compared with CK (Fig. 9D). The incidence of BS was higher after GA₃ treatment during storage, indicating that GA₃ may cause the occurrence of BS after
low-temperature storage (Fig. 9C, D, E).

Fig. 9 The incidence of BS disorder after different treatments in ‘Huangguan’ pears. (A) Incidence of BS disorder treated with exogenous P, ABA, and GA3. (B) Index of BS disorder treated with exogenous P, ABA, and GA3. Incidence of BS disorder with different treatments after 4 (C), 5 (D), and 6 (E) months of storage. The error bars are the means ± SEM of three biological repeats. \(P \leq 0.05 \).

Transcriptomics analysis of pear exocarp after P, ABA, and GA3 treatments

We analyzed the changes at the transcription level of pear exocarp to explore the effects of different treatments on the occurrence of BS. After P treatment, 2363 DEGs were identified, including 2115 upregulated genes and 248 downregulated genes. A total of 3104 DEGs occurred after treatment with ABA, including 2354 upregulated genes and 750 downregulated genes. GA3 treatment caused 1566 DEGs, including 1052 upregulated genes and 514 downregulated genes (Fig. 10A). To classify the functions of DEGs after different treatments, KEGG annotation analysis was carried out and showed that global and overview maps, carbohydrate metabolism, signal transduction and environmental adaptation were overrepresented (Fig. 10C). Furthermore, we identified expression of genes involved in BS formation (Fig 10B). We found that the expression of wax biosynthesis related genes were upregulation after P treatment, such as *KCS10, KCS19, KCS11, FAR3, WSD1, CER1.* Similarly, ABA treatment also increased the expression of wax related genes, including *KCS11,* *KCS20, KCS4, FAR3.* What's more, treatment with P and ABA increased the expression of many genes involved in PPI and MAPK, including calcium-related genes (*CaM, CaLP3, CaLP2, CaLP7, CML42, CML45*) and WRKY TFs (*WRKY71, WRKY11, WRKY24, WRKY75, WRKY53, WRKY26, WRKY22,*
which may improve the plant's resistance to disease. However, the effect of GA3 treatment was not obvious. These results are consistent with the previous incidence of BS after three treatments.

Fig. 10 Significant DEGs between the CK-BS, CK-P, CK-ABA, and CK-GA3 comparison groups. (A) Column chart of DEGs. (B) The up- and downregulation of genes involved in BS-related pathways. (C) KEGG annotation of DEGs. (D) Expression of genes involved in BS related pathway after treatments. Red represents upregulation, and blue represents downregulation.

Gene expression analysis by q-RT-PCR after treatment

Previous studies have shown that reduction of the wax layer may be one of the causes of BS.

Therefore, we analyzed the expression of five wax-related genes in the pericarp of ‘Huangguan’ pear after different treatments (Fig. 11). We found that KCS11, FAR3, WSD1, and CER1 were upregulated.
after P treatment. ABA treatment improved the expression of KCS11 and CER1. The expression of OCR1 was downregulated after P and ABA treatment. However, there was no significant difference of those genes after GA3 treatment. In addition, it is reported that BS is related to calcium deficiency in the peel[1, 7, 20]. We identified five calcium-related genes, including CaLP2, CaLP3, CaLP7, CML45, and CML42, which were all upregulated after P and ABA treatment. However, there was no significant change after GA3 treatment (Fig. 11). Additionally, we detected five genes involved in both PPI and MAPK that can be activated by various biological and abiotic stresses[11], including PGIP, LSH10 and three WRKY family TFs: WRKY53, WRKY71, WRKY33. Among them, the expression of LSH10, WRKY53, WRKY71, and WRKY33 increased to different degrees after P and ABA treatment. The expression of PGIP was increased after ABA treatment. However, GA3 treatment did not affect the expression of these genes and even had a persistent effect (Fig. 11). These results are consistent with transcriptome data.

Furthermore, the expression of five cold-induced genes were detected, including CS120-1 (gene ID: 103937807), CS120-2 (gene ID: 103937809), CS120-3 (gene ID: 103937810), LTI65 and RCI2B. Results show that ABA treatment could increase the expression of CS120-1, CS120-2 and LTI65, while CS120-1 and LTI65 were downregulated after P treatment. The expression of RCI2B was decreased after all tree treatments. The results show that ABA treatment may improve the adaptability of fruit to chilling injury, while the effect of P and ABA treatment on the expression of cold-related genes was not obvious.
Fig. 11 q-RT-PCR verification of genes related to BS after different treatments. The error bars are the means ± SEM of three biological repeats.

The regulatory network of BS formation

According to our investigation and research, we believe that many factors result in BS, especially the low temperature. The possible regulatory network is shown in Fig. 12. The development of fruit exocarp is delayed, and the concentration of Ca\(^{2+}\) is reduced after bagging. The fragile peel cannot withstand swelling when the fruit enlarges. The peel is stretched when the temperature drops, cracks
appear, and the expression of low temperature-induced genes is increased, which causes a series of defensive reactions through PPI and MAPK pathways. In addition, the high humidity conditions in bags cause cuticular thinning of the pear exocarp, which may cause cracks on the fruit surface. Then, dead cells accumulate near those cracks, which ultimately become BS.

Fig. 12 A proposed model of BS formation in ‘Huangguan’ pear fruits. The red color represents upregulation and green color represents downregulation. The detailed gene information can be viewed in Additional file 4: Table S3, Table S4 and Fig. 6. IAA, Auxin; GA, gibberellic acid; CTK, cytokinin; ABA, abscisic acid; JA, jasmonic acid; SA, Salicylic acid.

Discussion

The influencing factors of BS of ‘Huangguan’ pear

BS disease is the main disease of ‘Huangguan’ pear and primarily occurs in bagged fruits at the
mature stage. However, a small amount of BS disorder has also been found on unbagged fruits, although the shape of the disease is mostly circular and not consistent with that of bagging (Additional file 1: Figure S5). Therefore, bagging may not be the only cause of BS. We observed that the onset of BS was characterized by a close arrangement of lignified dead cells accompanied by a significant reduction in epidermal wax (Fig. 1). Through transcriptomic analysis, it appears that the expression of wax-related genes in BS was decreased, while the expression of lignin-related genes was increased (Fig. 4), which was consistent with the observed phenotypic phenomenon. However, the cause of this phenomenon is still unclear.

It has been reported that BS is associated with sudden cold temperatures[10, 11, 16]. BS has been considered as a chilling injury symptom in cold-stored ‘Huangguan’ pear[28]. Studies have shown that ‘Huangguan’ pear are susceptible to BS disorder a few days after low temperature storage[2]. It has been reported that MeJA can improve chilling resistance of eggplant (Solanum melongena L.), which also can inhibit browning disorder[29, 37, 38]. It indicated that BS may cause by low temperature. We detected four low temperature-induced genes by transcriptomics that were highly expressed in BS but barely expressed in the normal pericarp, including three CSI20, LTI65 and RCI2B genes (Fig. 6). It was reported that most protein synthesis is inhibited when the temperature drops abruptly, which is significantly lower than its normal physiological temperature, while cold-shock proteins (CSPs) increase dramatically[39]. LTI65 and RCI2B were proven to be induced by low temperature in Arabidopsis thaliana[33, 40]. Li. et al.[11] studied the effect of cold exercise treatment on ‘Huangguan’ pear, and the results showed that cold exercise effectively inhibited fruit peel brown spot and had no obvious effect on storage quality. Based on these findings, low temperature is indeed one of the causes
Calcium deficiency in the pericarp is also responsible for BS[1, 3, 7, 9, 15, 21-25]. Studies have shown that the water-soluble and total Ca\(^{2+}\) contents in both the skin and flesh tissue and the total Ca\(^{2+}\) content only in the skin of fruits with BS were significantly lower than those of fruits without BS[1]. Alternatively, stress can not only induce calcium signaling but also induce the expression of calcium-binding proteins in plant [41]. Ferguson believes that the imbalance of Ca\(^{2+}\) contents lead to metabolic disorders, resulting in physiological diseases[42]. In our study, the expression of calcium-related genes in the pericarp of the infected and unaffected pericarp was analyzed by transcriptome analysis. We detected six calcium-related genes that were upregulated in BS, including CaLP2, CaLP3, CML45, CML42, CaLP7, and CaM. They were involved in PPI and the MAPK pathways. In addition, studies have shown a close relationship between Ca\(^{2+}\) and aquaporin (AQP) activity[43]. The regulation of Ca\(^{2+}\) on AQP activity is mainly achieved through CDPK[44]. Certain environmental factors, such as drought, low temperature, light exposure and nutritional deficiency, can promote the expression of the AQP gene[45, 46]. We detected four AQP genes that showed differential expression, including PIP1-4, PIP2-8, PIP2-2, and PIP2-5 (Fig. 6). The AQP genes may affect BS by regulating the calcium concentration.

The MAPK signaling pathway was the most significantly enriched pathway in the CK-BS comparison group. It is associated with various physiological, developmental and hormonal responses[47]. Molecular and biochemical studies have revealed that MAPK activation correlates with stimulatory treatments such as low temperature, drought, wounding, pathogen infection, hyper and hypo-osmolarity, and reactive oxygen species[48-52]. Genes involved in both PPI and MAPK...
pathways have been detected. *PGIP* was proven to change the composition of the degradation products in the cell wall of pear fruit and increase the content of pectin monomer to induce the disease resistance of plants[53], which was upregulated in BS. WRKY family TFs have been proven to be involved in the plant defense response[54]. We detected 12 WRKY family TFs that showed differential expression (Fig. 4). Therefore, BS disease may be a manifestation of fruit responses to adverse environments.

Plant hormone signal transduction also plays a critical role in the formation of BS. Hormonal cues regulate many aspects of plant growth and development, facilitating the ability of plant to respond to environmental changes systemically[55]. We found that genes involved in IAA were downregulated, while genes involved in GA and CTK were upregulated. It has been proven that cold temperatures inhibit plant growth by reducing auxin accumulation[56]. Alternatively, a study has shown that low temperature induces an increase in GA$_3$ sensitivity[57]. We predict that low temperature causes the differential expression of plant hormone signaling pathway genes, which indicates that low temperature might be the most important cause of BS.

Furthermore, the humidity in fruit bags may also be a factor affecting BS. Studies have shown that wax is influenced by temperature, light intensity and humidity[58]. Additionally, it was reported that high humidity inhibits wax synthesis[59]. In addition to wax, there are reticular or strip cracks on the fruit surface, which are caused by the continuous expansion of flesh cells during the development stage, leading to epidermal expansion and cracking. Some studies have found that these cracks are easily affected by external environmental factors[60]. These cracks may be the cause of BS. Under the action of AQP, brown spots are formed in pear fruits. Humidity may be a critical impact factor on BS formation.
Effects of different treatments on BS of ‘Huangguan’ pear

Key differentially expressed genes in BS were screened by transcriptome analysis. With different treatments, it was found that P and ABA significantly inhibited the incidence of BS. Then, the expression of key genes at the transcriptional level after treatments was analyzed. The results showed that P treatment could improve the expression of the wax-related genes *WSD1* and *FAR*, resulting in the thicker cuticle. The expression of calcium-related genes *CaLP3*, *CML45*, *CML42*, *CaLP7*, and *CaM*, were upregulated, which could alleviate calcium deficiency in the fruit exocarp. Additionally, P treatment improved the expression of genes involved in both PPI and MAPK pathways, including *LSH10*, *WRKY53*, *WRKY71*, *WRKY33*, *WRKY31*, *WRKY26*, and *WRKY11*, which improved the adaptability of fruit in response to adverse environments, which inhibiting the incidence of BS.

ABA treatment also had a certain inhibitory effect on BS. ABA has been reported to control the expression of wax synthesis genes and prevent leaf water loss[61]. However, it is a major hormone involved in the plant response to stress. In our results, we found that ABA treatments can increase the expression of the calcium-related genes *CaLP2*, *CaLP3*, *CML45*, *CML42*, and *CaLP7*, and adaptability of fruits might be improved by increasing the expression of *PGIP*, *LSH10*, *WRKY53*, *WRKY71*, *WRKY75*, *WRKY33*, *WRKY31*, *WRKY26*, *WRKY24*, and *WRKY11*. In general, ABA treatment may roughen the exocarp and improve the disease resistance of the fruit.

Conclusion

This study describes the occurrence of BS was accompanied by the reduction of the wax layer and the tight accumulation of dead cells with lignification. At the transcriptional level, genes related to wax synthesis were greatly down-regulated, genes related to suberin and lignin biosynthesis were greatly
up-regulated, genes related to calcium and low temperature were up-regulated. In addition, the difference of endogenous hormone content between CK and BS was the decrease of CTK and the increase of ABA, JA, GA and SA, which was consistent with the expression trend of their signaling transduction related genes except CTK. We also found that P and ABA treatments inhibited BS to varying degrees while GA3 treatment may promote it. The expression levels of key genes involved in BS formation after different treatments were consistent with the morbidity results. Those results provide a theoretical basis for the molecular mechanism of ‘Huangguan’ pear browning spot disease.

Methods

Plant materials and treatment

Ripe ‘Huanguan’ pears (CK) and ‘Huangguan’ pears with BS disorder (BS) were harvested from an orchard in the gardening field of Dangshan County, Suzhou City, Anhui Province, during the harvest season in 2018. Treatments were carried out by spraying NaH2PO4·2H2O (0.2%, Sigma 04269), ABA (100 μM, Sigma A1049), and GA3 (300 mg/L, Sigma G8040) on ‘Huangguan’ pears at 10, 20, and 30 days after full bloom (DAFB). The reagent treatments are all commonly used in fruit bags during production. Each treatment had three biological replicates, and each tree contained approximately 120 treated fruits.

Pears were immediately transported to the laboratory at Anhui Agricultural University (Hefei, China) after harvest. The 0.5 mm thickness exocarp was dissected from the fruit skin with a double-sided blade. Six biological replicates for metabolic profiling were collected randomly from the CK and BS of ‘Huangguan’ pear exocarp. Three biological replicates of CK, BS and different hormone treatments were used for RNA sequencing (RNA-Seq). The collected fruit samples were frozen in
liquid nitrogen immediately and then stored at -80°C.

Observation of paraffin sections and scanning electron microscopy of pear exocarp

After removing the dirt on the fruit surface, a 0.6 cm × 0.7 cm piece was cut on the pear surface with a double-sided blade and then fixed in FAA solution immediately. A 3 mm tissue block was cut with a sharp blade and then fixed in electron microscope fixing solution. The preparation of paraffin sections and electron microscope sections were conducted at Servicebio (WUHAN) Biotechnology Co., Ltd.

Pear postharvest water loss measurement

‘Huangguan’ pear fruits with BS disease of the same size stored at room conditions at 25°C were used in the experiment, and normal ‘Huangguan’ pear fruits were used as a control. The rate of water loss (RWL) was calculated using the formula \(\text{RWL} \% = \frac{(FW_{t1} - FW_{t2})}{FW_{t1}} \times 100\% \) (\(FW_{t1} = \) weight of the fruit at a certain storage time \(t1 \), and \(FW_{t2} = \) weight of the fruits at a certain storage time \(t2 \))[32]. Each group had 10 fruits, and three independent biological replicates were performed.

Evaluation of brown spot disorder

According to the coverage rate of spots on the surface of pears, the incidence is divided into 4 levels[29]: 0 for no browning, 1 for 1~10%, 2 for 11%~20%, 3 for 21%~30%, and 31%~100%. The index of BS was calculated based on the formula \(\text{index} = \frac{\sum_{\text{fruit}} \text{number \times level}}{\text{total fruit number} \times 4} \).

Metabolite statistical analysis

An advanced Xevo G2-XS QTOF mass spectrometer (Waters, UK) was used for data acquisition, and commercial software Progenesis QI (version 2.2) (Waters, UK) and the BGI metabolomics
software package metaX[62] were used for mass spectrometry data analysis (Filtering out ions with relative standard deviation (RSD) greater than 30%), while identification was based on the KEGG database. The project uses variable importance in projection (VIP) values of the first two principal components in the multivariate PLS-DA model, combined with fold change (FC) and q-values of univariate analysis to choose differentially expressed metabolites (DEMs) (VIP > 1 and FC >1.2 or < 0.833 and with an adjusted q-value < 0.05 were considered significant).

Transcriptome analysis of the pear exocarp

Total RNA was purified from plant tissues by ethanol precipitation and CTAB-PBIOZOL reagent according to the instructions. DNA nanoballs were loaded into the patterned nanoarray, and single-end 50-base reads were generated on the BGISEq500 platform (BGI-Shenzhen, China). Reads with low quality, connector contamination and a proportion of N > 5% were removed before data analysis to ensure the reliability of the results. The selected clean reads were mapped to the reference genome of Chinese white pear (Pyrus bretschneideri)[63]. Gene expression level was calculated based on the fragments per kilobase of transcript per million mapped reads (FPKM), which were further used to analysis the differentially expressed genes (DEGs)[64]. Transcripts with fold change (FC) values > -2 (upregulated) or < -2 (downregulated) and with an adjusted P-value <0.001 were considered significant.

Gene expression analysis by qRT-PCR

Quantitative real-time PCR (qRT-PCR) was applied to evaluate the transcription levels of genes associated with BS under different treatments. Total RNAs were extracted from collected plant materials using the Trizol kit (TIANGEN) as instructed by the manufacturer. qRT-PCR was conducted
with the SYBR Green (TOYOBO, SHANGHAI) and carried out in an optical 48-well plate using an ABI PRISM 7300 Sequence Detection System (Applied Biosystems, Foster City, California). Three biological replicates were performed to ensure the reliability of the data.

Additional file 1: Figure S1: show the pericarp surface differences between CK and BS. Figure S2: show the PCA score plot derived from metabolite ions. Figure S3: show the GO enrichment analysis of DEGs between CK and BS. Figure S4: KEGG enrichment analysis of DEGs between CK and BS. Figure S5: show the phenotypes of BS in unbagged ‘Huangguan’ pear.

Additional file 2: list the number of reads based on RNA-Seq data.

Additional file 3: list the number of Differential metabolites between CK and BS.

Additional file 4: list the detailed information of genes involved in BS formation.

List of abbreviations

BS: Browning spot; MeJA: Methyl jasmonate; 1-MCP: 1-methylecyclopropene; P: NaH2PO4·2H2O; ABA: Abscisic acid; GA3: gibberellin A3; CTK: Cytokinin; SEM: Scanning electron microscopy; IAA: Auxin; GA: gibberellin; JA: Jasmonic acid; SA: Salicylic acid; DAFB: Days after full bloom; DEG: Differentially expressed gene; DEM: Differentially expressed metabolite; FPKM: Fragments per kilobase of transcript per million mapped reads; FC: Fold change; RWL: The rate of water loss; PCA: Principal component analysis; PLS-DA: Plots from partial least squares discriminant; ESI+: Electrospray ionization positive ion mode; ESI−: Electrospray ionization negative ion mode; TFs: Transcription factors; VIP: Variable importance in projection; PPI: Plant-pathogen interactions; MAPK: MAPK signaling pathway; AQP: Aquaporin; qRT-PCR: Quantitative real-time PCR
Acknowledgements

The authors wish to thank Kang Huang (BGI) for assistance with data analyses.

Author’s contributions

QW and WH conceived and designed the study. XNC and DZY conducted treatments experiment. JF and JCL collected fruits and prepared for RNA. LWZ, PL and ZFY contributed to the data analysis. XYW, BJ and LL prepared the figures and tables. XYW conducted the qRT-PCR verification. WQ wrote the manuscript and HW revised the manuscript. All authors read and approved the final manuscript.

Conflict of interest

The authors declare that they have no competing interests

Funding

This project was supported by the National Natural Science Foundation of China (31972985)

Availability of data and materials

Data sets supporting the results of this article (BioProject: PRJNA682706) is currently being submitted to the National Center for Biotechnology Information and additional information will be added once available. (https://www.ncbi.nlm.nih.gov/sra/PRJNA682706)

Ethics approval and consent to participate

Not applicable.

Consent for publication

33
Reference

1. Dong Y, Guan JF, Ma SJ, Liu LL, Feng YX, Cheng YD: Calcium content and its correlated distribution with skin browning spot in bagged Huangguan pear. *Protoplasma* 2015, 252(1):165-171.

2. Ma Y, Yang M, Wang J, Jiang CZ, Wang Q: Application of exogenous ethylene inhibits postharvest peel browning of 'Huangguan' pear. *Front Plant Sci* 2016, 7:2029.

3. Guan JF: Effects of fruit-bag kinds on browning spot and nutrition of Ca, Mg and K in *Huangguan* Pear. *J Auhui Agr Sci* 2008, 36(05):1758-1759.

4. Liu P, Xue C, Wu TT, Heng W, Jia B, Ye ZF, Liu L, Zhu L: Molecular analysis of the processes of surface brown spot (SBS) formation in pear fruit (*Pyrus bretschneideri* Rehd. cv. *Dangshansuli*) by de novo transcriptome assembly. *PLoS ONE* 2013, 8(9):e74217.

5. Guan JF: Influencing factors and occurrence mechanism of fruit brown spot on bagged “Huangguan” pear fruit. *Deciduous Fruits* 2008, 5:15-18.

6. Zhao SB, Wang YH, Han ZT, Geng LF, Du YM: Analysis of the pathogenesis and preventive measures of ‘Jizhua’ disease of *Huangguan* Pear. *Hebei Fruits* 2005(03):17-18.

7. Guan JF, Ji H, Feng YX, Li LM, Sun YL, Si JL: The correlation of peel browning spot with nutrition of Ca, Mg, K in ‘Huangguan’ pears. *Acta Agr Boreali Sin* 2006, 21(03):125-128.

8. Wang YT, Li X, Li Y, Li LL, Zhang SL: Effect of bagging on distribution of polysaccharide and lipid in ‘Huangguan’ pear fruit. *J Fruit Sci* 2011, 28(06):959-963.

9. Wang YT, Li X, Li Y, Li LL, Zhang SL: Effects of bagging on browning spot incidence and content of different forms of calcium in ‘Huangguan’ pear fruits. *Acta Hortic Sin* 2011, 38(08):1507-1514.

10. Wang JJ, Wang QG: Effect of cold conditioning on postharvest fruit quality of ‘Huangguan’ pear. *Food Ferment Ind* 2011, 37(07):235-239.

11. Li LM, Guan JF, Ji H, Feng YX, Sun YL, Gong XM: Effects of precooling on the storage quality and peel browning of ‘Huangguan’ pear. *Acta Agr Boreali Sin* 2008, 23(06):156-160.

12. Dan L, Cheng YD, Dong Y, Shang ZL, Guan JF: Effects of low temperature conditioning on fruit quality and peel browning spot in ‘Huangguan’ pears during cold storage. *Postharvest Bio Tec* 2017, 131:68-73.

13. Ma W, Fan QY, Huang LJ, Rui Ping L, Zhou ZF: Investigation on the occurrence of Jizhua disease of ‘Huangguan’ pear. *J Heb Agr Sci* 2007, 11(01):29-31.

14. Han JH, Hong KH, Jang HI, Jo IH, Lee HJ: Effect of characteristics of the bags and microclimate in the bags on russet of ‘Whangkeumbae’ pear fruit. *Korea J Hort Sci Technol* 2002, 20(1):32-37.

15. Guan JF, Wenhui M, Hua JJ, Yunxiao F, Limei Li, Yulong S, Liqin L: Effects of bagging and fruit-expander on Ca, pectin content and the quality of ‘Huangguan’ pear fruits. *Sci Tec Rev* 2008(21):73-76.

16. Xu FX, Zhang KX, Liu SY: Evaluation of 1-methylcyclopropene (1-MCP) and low temperature conditioning (LTC) to control brown of *Huangguan* pears. *Sci Hort* 2020, 259:108738.
17. Guan JF, Hua JI, Yun-Xiao F, Li-Mei LI, Yu-Long S, Jian-Li S: The correlation of peel browning spot with phenolics metabolism in 'Huangguan' pears. Acto Agr Boreali Sin 2005, 20(06):80-83.

18. Galvis-Sánchez AC, Fonseca SC, Gil-Izquierdo Á, Gil MI, Malcata FX: Effect of different levels of CO₂ on the antioxidant content and the polyphenol oxidase activity of 'Rocha' pears during cold storage J Sci Food Agric 2006, 86(4).

19. Oh KS, Lee UY, Wang MH, Hwang YS, Chun JP: Increased carbon dioxide may accelerate skin browning disorder in 'Chuwhangbae' pear. Hortic Abstracts 2013.

20. Chengl GW, Crisosto CH: Browning potential, phenolic composition, and polyphenoloxidase activity of buffer extracts of peach and nectarine skin tissue. J Amer Soc Hort Sci 1995, 120(5):835-838.

21. Gong XM, Guan JF, Feng YX, Li LM, Sun YL: Effects of calcium and boron on quality and browning spot disease of Huangguan pear. Plant Nutrition and Fertilizer ence 2009, 15(04):942-947.

22. Fernández V, Diaz A, Blanco Á, Val J: Surface application of calcium-containing gels to improve quality of late maturing peach cultivars. J Sci Food Agr 2010, 89(13):2323-2330.

23. Zhang SM, Wang XG, Niu GC, Cheng-Wen Z: Approach to the cause of fruit lenticel Pit disease of pingguo pear — its relationship to calcium nutrient. Northern Fruits 2001(01):9-10.

24. Liu TZ, Li XY, Li Y, Liu GS, Wang JT, Wang YB, Fu YL, Han YX: Effect of calcium treatment during production on quality of stored 'Huangguan' pear fruit Agr Biotech 2019, 8(02):188-190.

25. Li JX, Zhou Q, Zhou X, Wei B, Ji S: Calcium treatment alleviates pericarp browning of 'Nanguo' pears by regulating the GABA shunt after cold storage. Front Plant Sci 2020, 11:580986.

26. Franck C, Lammertyn J, Ho QT, Verboven P, Verlinden B, Nicolaï BM: Browning disorders in pear fruit Postharvest Biol Tec 2007, 43(1):1-13.

27. Zhang Y, Ning X, Sun LC, Xu TF, Pang HG, Zhai ZH, Zhao YX, Xu JF, Zhang YX: Analysis of the content of mineral elements in 'Huangguan' pears of Jizhua disease. J Fruit Sci 2018, 35(S1):131-134.

28. Wei CQ, Ma LH, Cheng YD, Guan YQ, Guan JF: Exogenous ethylene alleviates chilling injury of 'Huangguan' pear by enhancing the proline content and antioxidant activity. Sci Hort 2019, 257.

29. Xing DD, Mu WL, Wang QG: Effect of methyl jasmonate on peel browning of postharvest 'Huangguan' pear. Food Ferment Technol 2013, 49(02):20-24.

30. Gong XM, Guan JF, Zhang JS: Effects of postharvest 1-MCP and calcium treatments on the quality and skin browning spot incidence of 'Huangguan' pear fruit. Acta Hortic Sin 2010, 37(03):375-382.

31. González I, Cao KAI, Davis MJ, Déjean S: Visualising associations between paired 'omics' data sets. BioData Min 2012, 5(3):19.

32. Wang YZ, Dai MS, Cai DY, Shi ZB: Proteome and transcriptome profile analysis reveals regulatory and stress-responsive networks in the russet fruit skin of sand pear. Hortic Rec 2020, 7:16-32.

33. Medina J, Catalá R, Salinas J: Developmental and stress regulation of RCI2A and RCI2B, two
cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol 2001, 125(4).

34. SD T, HJ B, C M, E S, JAC S: Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 1999, 50.

35. Wang YZ, Zhang SJ, Dai MS, Shi ZB: Pigmentation in sand pear (Pyrus pyrifolia) fruit: biochemical characterization, gene discovery and expression analysis with exocarp pigmentation mutant. Plant Mol Biol 2014, 85(1-2).

36. Rohart F, Gautier B, Singh A, Cao K-AL: mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput Biol 2017, 13(11).

37. Sangprayoon P, Supapvanich S, Youryon P, Wongseree C, Boonyaritthongchai P: Efficiency of salicylic acid or methyl jasmonate immersions on internal browning alleviation and physicochemical quality of Queen pineapple cv. "Sawi" fruit during cold storage. J Food Biochem 2019, 43(12):1-11.

38. See J, Yi G, Lee JG, Choi JH, Lee EJ: Seed browning in pepper (Capsicum annuum L.) fruit during cold storage is inhibited by methyl jasmonate or induced by methyl salicylate. Postharvest Biol Tec 2020, 166:111210.

39. Welker C, Böhm G, Schurig H, Jaenicke R: Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. Protein Sci 1999, 8(2):394-403.

40. Nordin K, Vahala T, Palva ET: Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana. Plant Mol Biol 1993, 21(4).

41. Ller-Uri M, F.: Novel plant Ca-binding protein expressed in response to abscisic acid and osmotic stress. J Biol Chem 1996, 271(1):343.

42. S.F. EH, Ibrahim FM: Calcium: physiological function, deficiency and absorption. Chem Tech Res 2015, 8(12):196-202.

43. Cabañero FJ, Martínez-Ballesta MC, Teruel JA, Carvajal M: New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants. Plant cell physiol 2006, 47(2):224-233.

44. Maurel C, Verdoucq L, Luu D-T, Santoni V: Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 2008, 59.

45. Li HM, Wan XR, He SG: Advances in plant aquaporins. Prog Biochem Biophys 2010, 37(01):29-35.

46. Hanba YT, Mineo S, Yasuyuki H, Takahiko H, Kunihiko K, Ichiro T, Maki K: Overexpression of the barley aquaporin HvPIP2/1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 2004(5):521-529.

47. Al MGKIE, Ichimura K, Shinozaki K, Tena G, Walker JC: Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 2002, 7(7).

48. Jagodziñ P, Zielinska MT, Ciesla A, Marczak M, Ludwikow A: Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 2018, 9.

49. Zhang S, Klessig DF: MAPK cascades in plant defense signaling. Trends Plant Sci 2001, 6(11).

50. Romeis T: Protein kinases in the plant defence response. Curr Opin Plant Biol 2001, 4(5).

51. Morris PC: MAP kinase signal transduction pathways in plants. New Phytol 2001, 151(1).

52. Kumar K, Raina SK, Sultan SM: Arabidopsis MAPK signaling pathways and their cross talks in...
abiotic stress response. J Plant Biochem Biot 2020, 29:700-714.

53. Sharrock KR, Labavitch JM: Polygalacturonase inhibitors of Bartlett pear fruits: differential effects on Botrytis cinerea polygalacturonase isozymes, and influence on products of fungal hydrolysis of pear cell walls and on ethylene induction in cell culture. Physiol Mol Plant P 1994, 45(4):305-319.

54. Sharrock KR, Labavitch JM: Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 2003, 51(1):21-37.

55. Tal L, Gil M, Guercio A, Shabek N: Structural aspects of plant hormone signal perception and regulation by ubiquitin ligases. Plant Physiol 2020, 182(4):1537-1544.

56. Zhu J, Zhang K, Wang W, Gong W, Liu W, Chen H, Xu H, Lu Y: Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol 2015, 56:727-736.

57. Paleg SLG: Low temperature-induced GA3 sensitivity of wheat: II. Changes in lipids associated with the low temperature-induced GA3 sensitivity of isolated aleurone of kite. Plant Physiol 1984, 76(1):143-147.

58. Shepherd T, Griffiths DW: The effects of stress on plant cuticular waxes. New Phytol 2010, 171(3):469-499.

59. Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C: Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot 2006, 56(1):1-9.

60. Isabel L, Burcu B, F. GL: The fruit cuticle as a modulator of postharvest quality. Postharvest Bio Tec 2014, 87:103-112.

61. Cui FQ, Brosch M, Lehtonen Mikko T, Amiryousefi A, Xu E: Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol Plant 2016, 9(6):926-938.

62. Wen B, Mei ZL, Zeng CW, Liu SQ: metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics 2017, 18(1).

63. Jun W, Wang ZW, Zebin S, Shu Z, Ray M, Shilin Z, Awais KM, Shutian T, S KS, Hao W et al: The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 2013, 23(2):396-408.

64. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5).