Naturally acidified habitat selects for ocean acidification–tolerant mussels

Jörn Thomsen,1* Laura S. Stapp,2,3 Kristin Haynert,1,4 Hanna Schade,1 Maria Danelli,1 Gisela Lannig,2 K. Mathias Wegner,5 Frank Melzner1

Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated P\textsubscript{CO2} (partial pressure of CO\textsubscript{2}) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F\textsubscript{1} generation, and survival was drastically decreased in the highest, yet realistic, P\textsubscript{CO2} treatment. Selection of CO2-tolerant F\textsubscript{1} animals resulted in higher calcification performance of F\textsubscript{2} larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.

INTRODUCTION

Ocean acidification, caused by rising atmospheric CO2 concentrations due to excess fossil fuel burning, severely affects many marine organisms (1). Calcifying organisms are especially affected by the change of ocean chemistry because their ability to form calcified structures is reduced. Bivalves are among the most vulnerable taxonomic groups because their CaCO\textsubscript{3}-containing shells protect the animal from predation. In particular, their larval stages suffer from substantial reductions in growth and survival under elevated P\textsubscript{CO2} (partial pressure of CO\textsubscript{2}) (2–5). This is likely a consequence of the high calcification rates during the formation of the first larval shell (6, 7). Although the benthic life stage is able to compensate for the negative impact even of highly elevated P\textsubscript{CO2} (~3000 \textmu atm) when food supply is abundant, early larval development is completely fueled by the limited energy provided by the egg and thus represents an important ecological bottleneck (6, 7). Bivalves of the genus Mytilus have important ecological roles in boreal, benthic ecosystems and can contribute by up to 90% to epibenthic biomass in coastal habitats (8). In addition, their high economic value for aquaculture has stimulated a number of recent studies to estimate their adaptation potential to future ocean conditions (4, 9–11). However, the relatively long generation time of bivalve species complicates multigenerational (MG) studies. Consequently, most studies until now have estimated evolutionary potential by quantifying variation of fitness–relevant traits such as growth during early development within and between locally adapted populations (10, 12, 13) or assessed transgenerational phenotypic plasticity (10). These studies did not provide a uniform picture on the potential of bivalves to adapt to ocean acidification. Modeling the rate of adaptation in a single population based on larval shell size variations within the first 60 hours of development under elevated P\textsubscript{CO2} (1000 \textmu atm) suggested a low potential for adaptation when extrapolated over 50 generations (8). To capture longer time periods, comparison of populations naturally experiencing differing carbonate system conditions offers useful proxies for estimating adaptation [space–for–time substitution (14)]. In one study, the growth response of field–collected juvenile mytilid mussels originating from two populations differed under elevated P\textsubscript{CO2}, indicating local adaptation (12). In another, larval shell development of two Mytilus species was similar during exposure to varying carbonate system treatments, although one species originated from a habitat that encounters upwelling events associated with elevated P\textsubscript{CO2} (13). Although these studies suggested that bivalves can potentially adapt to rising P\textsubscript{CO2}, they lack a formal estimation of genetic versus nongenetic sources of variation. For example, transgenerational acclimation to elevated P\textsubscript{CO2} can substantially modulate fitness of offspring as observed in fish (15). In the oyster Saccostrea glomerata, a 5-week exposure of parental animals to elevated P\textsubscript{CO2} during gametogenesis enhanced the development and growth rates of F\textsubscript{1} and even F\textsubscript{2} offspring under acidified conditions (9, 16). Selective breeding for aquaculture purposes substantially increased the productivity of S. glomerata and resulted in 25% improved growth within two to four generations (17). The higher developmental rates of this breeding line were also maintained under elevated P\textsubscript{CO2} compared to wild-type oysters (10). Therefore, rapid evolutionary responses in bivalves may enable adaptation to ocean acidification, but these MG selection studies using continuously elevated P\textsubscript{CO2} as selective agent are lacking so far.

To fill this gap, we performed a 3–year MG experiment to test whether the blue mussel Mytilus edulis can successfully adapt to ocean acidification and to estimate which mechanisms contribute to rapid evolutionary responses. The tested population inhabits the seasonally acidified Kiel Fjord, western Baltic Sea, which is characterized by low pH and elevated P\textsubscript{CO2} levels during the reproductive period of the species.
(18, 19). This experiment was supported by field monitoring of carbonate chemistry variation in relation to mussel settlement patterns. In addition, we compared the Baltic population in a common garden experiment to the response of mussels from the North Sea, which is characterized by less variable pH conditions and higher seawater alkalinity due to higher salinity (20).

To investigate the time scale of adaptation to ocean acidification, we conducted two experiments to compare long-term adaptation between populations and processes of short-term adaptation within a population. We hypothesized that Baltic mussels have already adapted to high-\(\text{CO}_2\) seawater and would better tolerate simulated ocean acidification than North Sea mussels. Furthermore, we hypothesized that selection for ocean acidification–tolerant specimens would increase the fitness of their offspring when exposed to acidified conditions.

RESULTS

Field carbonate chemistry monitoring and larval settlement (Baltic Sea)

Monitoring of pH in Sylt and Kiel Fjord revealed higher and more stable pH in the North Sea habitat compared to the habitat of the Baltic population (fig. S1). Monthly mean pH in Sylt remained above 8, with maximum values recorded during spring bloom in April (Fig. 1A). In contrast, mean pH values declined to about 7.7 during the upwelling period in summer and autumn in Kiel Fjord. Our monitoring of mussel settlement on weekly deployed panels and continuously logged seawater \(\text{CO}_2\) revealed that bivalve larvae survived and settled in Kiel Fjord, which is characterized by elevated and fluctuating \(\text{CO}_2\). The hourly averaged \(\text{CO}_2\) was 1087 ± 537 \(\text{µatm}\) and ranged between 266 and 2861 \(\text{µatm}\) over the whole monitoring period from mid-July to mid-September 2012 (Fig. 1B). Despite such high and fluctuating environmental \(\text{CO}_2\), Baltic mussels settled successfully, with a peak of more than 1000 larvae settled per panel in early August (Fig. 1C) at elevated \(\text{CO}_2\) levels similar to those predicted for the average surface ocean of 2100. Because \(\text{CO}_2\) fluctuated rapidly due to upwelling events in Kiel Fjord, environmental conditions experienced by different larval cohorts differed significantly (fig. S2). Earlier settlers of the July cohort experienced only moderately elevated \(\text{CO}_2\) because larvae avoided the first pronounced upwelling peak at the beginning of August (Fig. 1C) (mean \(\text{CO}_2, 826 \text{µatm}\); range, 266 to 1502 \(\text{µatm}\)). In contrast, larvae that settled at the end of August experienced \(\text{CO}_2\) levels between 443 and 2861 \(\text{µatm}\) (mean, 1191 \(\text{µatm}\)) during a calculated 27-day larval phase (Fig. 1C). Larvae settling in mid-September were again exposed to lower and more stable \(\text{CO}_2\) levels (larval phase, 25 days; mean, 859 \(\text{µatm}\); range, 427 to 2225 \(\text{µatm}\)) (Fig. 1C). The number of days August and September cohorts were exposed to daily mean \(\text{CO}_2\) values above 1000 \(\text{µatm}\) differed, with 17 and 5 days corresponding to 63 and 20% of their estimated whole planktonic life phase, respectively.

Population comparison experiment (Baltic Sea versus North Sea)

The formation of the first larval shell [prodissoconch I (PD I)] (fig. S3) (21) was strongly delayed in both North Sea and Baltic Sea populations at high \(\text{CO}_2\), which resulted in significantly reduced shell length compared to larvae from the control \(\text{CO}_2\) [two-way analysis of variance (ANOVA); population: \(F = 1.6, P > 0.05\); \(\text{CO}_2\): \(F = 112.1, P < 0.01\)]. However, Baltic mussel larvae were less affected and showed a smaller shell length reduction compared to North Sea larvae at elevated \(\text{CO}_2\) (24%) (Baltic Sea) versus 38% (North Sea) shell length compared to respective controls; population × \(\text{CO}_2\): \(F = 6.5, P < 0.05\) (Fig. 2A).

Growth patterns translated well into observed survival. Here, survival at 390-\(\text{µatm}\) \(\text{CO}_2\) did not differ between the two populations, but Baltic larval survival was higher at elevated \(\text{CO}_2\) (two-way ANOVA: population: \(F = 0.8, P > 0.05\); \(\text{CO}_2\): \(F = 10.9, P < 0.01\); population × \(\text{CO}_2\): \(F = 6.9, P < 0.05\)) (Fig. 2C and table S1). Subsequent shell growth rates were similar in Baltic larvae exposed to 390- and 2400-\(\text{µatm}\) \(\text{CO}_2\) (Fig. 2B; no data for North Sea larvae at 2400-\(\text{µatm}\) \(\text{CO}_2\) because of high mortality).

Three-year MG experiment (Baltic Sea) \(F_0\) and \(F_1\) generation (2012).

The MG experiment utilized controlled genetic crosses of mussels collected from the more \(\text{CO}_2\)-tolerant Baltic Sea population to select for \(\text{CO}_2\)-tolerant and \(\text{CO}_2\)-sensitive families, which were used to elucidate the relative contribution of genetic and nongenetic environmental factors enabling adaptation to ocean acidification (Fig. 3B). PD I size was strongly reduced in \(F_1\) larvae exposed to elevated \(\text{CO}_2\) and declined...
from 112 ± 6 μm at 390 μatm to 94 ± 7 μm and 78 ± 8 μm at 1120 and 2400 μatm, respectively (ANOVA: $P_{CO2} F = 165.1, P < 0.001$) (Fig. 4A). Family-specific PD I shell length varied substantially, and the calculated heritability for this trait was 0.56 [confidence interval (CI), 0.27 to 0.81], 0.47 (CI, 0.24 to 0.81), and 0.53 (CI, 0.23 to 0.83) at 390-, 1120-, and 2400-μatm P_{CO2}, respectively. Subsequently, larvae from all P_{CO2} treatments grew at comparable rates and thus reached similar sizes at the end of the planktonic phase (Fig. 4C). Because of the large variance in final larval survival between families, our study showed no significant difference in larval survival between 390- and 1120-μatm P_{CO2}, but did reveal a drastic reduction at 2400 μatm (Fig. 4E and table S2). Similarly, larvae from all families successfully settled at the two lower P_{CO2} levels, but only the offspring of five families (classified as “tolerant” families A2, B1, B2, C4, and D3) metamorphosed into juveniles at 2400 μatm (Fig. 3B). Successful metamorphosis and thus tolerance correlated positively with PD I size because shell length was slightly larger in tolerant compared to sensitive families at 2400 μatm (82 ± 5 μm versus 76 ± 8 μm) (two-way ANOVA: sensitive versus tolerant: $F = 1.5, P > 0.05$; P_{CO2}: $F = 365.7, P < 0.001$; sensitive versus tolerant × P_{CO2}: $F = 5.5, P < 0.05$) (Fig. 4A).

Following settlement, juveniles of all families were transferred into a flow-through experimental system and raised for 1 year (2012–2013) at the respective P_{CO2} until the next spawning season (Table 1). During that time, no mortality was observed and F1 juveniles from all families grew to shell sizes of about 25 mm within 1 year irrespective of P_{CO2} treatment or family type [390 μatm, 24.7 ± 3.7 mm; 1120 μatm, 26.0 ± 2.7 mm; and 2400 μatm, 24.8 ± 3.0 mm (tolerant families only)] (ANOVA: $F = 0.216, P > 0.05$).

First F2 generation (2013).

Crosses of F1 specimens were carried out to test (i) whether developmental acclimation of F1 families conferred environment-specific benefits in relation to offspring P_{CO2} (that is, transgenerational plasticity) and (ii) whether tolerance has a genetic component that could be crossed into the genetic background of sensitive families (Fig. 3B). Maternal investment, measured as egg production of F1 dams and egg diameter, did not change under elevated P_{CO2} (fig. S4). Fertilization success was not significantly affected by P_{CO2} levels, irrespective of whether it was assayed in tolerant or sensitive families. In crosses between tolerant F1 parents (T×T), PD I size of F2 larvae was similar at control P_{CO2}, irrespective of parental rearing history. However, at high P_{CO2}, PD I sizes were larger for offspring from tolerant F1 families raised at elevated P_{CO2} compared to larvae from control P_{CO2}-treated parents (see parental P_{CO2} × offspring P_{CO2} interaction effects in table S2). Shell size of offspring from F1 dams selected...
and raised under 2400-μatm P_{CO_2} increased by 11.9 μm or 17% compared to that of offspring of 390-μatm acclimated F1 dams (Fig. 4B and table S2). In contrast to the F1 generation, F2 larval growth rates in general were slower and particularly reduced at high P_{CO_2} and additionally declined when raised from F1 exposed to elevated P_{CO_2} during long-term acclimation (Fig. 4D and table S2). Furthermore, larger PD I size of F2 larvae at 2400-μatm P_{CO_2} had no positive effect on larval survival, in contrast to observations in the F1 generation (Fig. 4F and table S2). Selection of tolerant phenotypes in the F1 generation thus partly recovered in tolerant (T×T) but not sensitive (S×T) F2 offspring (Fig. 4B and table S2). Selection of tolerant phenotypes in the F1 generation thus partly recovered in tolerant (T×T) but not sensitive (S×T) F2 offspring (Fig. 4B and table S2).

Second F2 generation (2014).

The observed responses for fecundity, PD I, larval growth rates, and survival were largely confirmed when generating the second F2 generation from the same F1 animals in the subsequent year (Fig. 3B and fig. S5). When kept for another year in the experimental system at their respective P_{CO_2} treatment (2013–2014), fecundity and egg sizes were affected neither by parental P_{CO_2} treatment nor by family type (sensitive/tolerant F1 families; figs. S4, B and D, and SSA). F2 offspring from high P_{CO_2}-selected parental F1 animals showed a nonsignificant trend toward larger PD I size (fig. SSB and table S3). Shell growth rates were reduced in all high P_{CO_2}-treated larvae but were again affected neither by parental acclimation P_{CO_2} treatment nor by family type (fig. SSC). Similarly, survival of larvae was negatively affected by elevated P_{CO_2} and not improved by selection of tolerant F1 parents (T×T) or the prolonged high-P_{CO_2} acclimation of F1 animals (fig. SSD and table S3).

DISCUSSION

The high sensitivity of bivalve larvae to elevated P_{CO_2} (3, 4) suggests that selective pressures should be strong and populations should rapidly adapt to the prevailing local P_{CO_2} levels. However, evidence for this hypothesis is circumstantial (9, 12, 13). We used two different approaches to study the adaptation potential of mussels to ocean acidification. First, we performed a population comparison (PC) experiment to test for existing differences in tolerance to ocean acidification. Second, we assessed how rapidly tolerance can be acquired by selection of tolerant phenotypes or transgenerational plasticity in an MG experiment.

Population comparison experiment (Baltic Sea versus North Sea)

In an experimental common garden approach, larval performance of North Sea mussels under low and elevated P_{CO_2} was compared to that of larvae from the Baltic Sea population. On the phenotypic level, adaptation to elevated P_{CO_2} in Baltic mussels was indicated by increased survival under elevated P_{CO_2} and higher capacity to maintain PD I formation rates compared to the more sensitive North Sea mussels. The experiment revealed that naturally and locally deviating ocean carbonate chemistry characteristics influence the responses of blue mussel populations to experimental ocean acidification, most likely reflecting local adaptation to prevailing environmental conditions on longer time scales (22–24). In general, larval calcification was strongly impaired by elevated P_{CO_2}; this impairment was even more pronounced than reported at comparable P_{CO_2} for fully marine populations (5, 25). This reflects our choice of the highly selective environment in the brackish Baltic Sea, where conditions for calcification are less favorable (7). Calcification of bivalve larvae is not directly affected by P_{CO_2} but is sensitive to lowered pH and availability of inorganic carbon (HCO$_3^-$; C_T) as a substrate for calcification, which correlates with seawater Ω (calcium carbonate saturation state (5, 7, 26)). The low alkalinity and thus low C_T concentrations of the Baltic Sea result in lowered carbon availability and Ω and therefore synergistically enhance the negative effects of elevated P_{CO_2} on larval calcification (7). As a result of this intensified selection pressure, Baltic mytilid mussels have successfully adapted to adverse conditions for calcification.

Calcification of PD I coincides with the highest relative calcification rates of all bivalve life stages, which makes this ontogenetic stage most vulnerable to external carbonate system perturbations (5–7). The correlation of higher calcification rates and survival of tolerant Baltic mussels suggests that PD I calcification is mechanistically linked to survival and therefore directly to fitness. PD I sizes were similar in both populations under control P_{CO_2} when the external carbonate chemistry did not limit calcification; thus, growth and development were potentially limited by...
other physiological processes. Because PD I is formed before development of the larval feeding apparatus, a substantial fraction of the limited energy stored in the bivalve egg is needed for shell formation even under favorable carbonate system conditions (6,27). Because calcification generates protons, which need to be excreted by means of an active transport process, disproportional up-regulation of shell formation could challenge the larval energy budget. A more efficient energy allocation into PD I formation may thus explain larger and maintained PD I size under transport process, disproportional up-regulation of shell formation could erates protons, which need to be excreted by means of an active favorable carbonate system conditions (\textit{energy stored in the bivalve egg is needed for shell formation even under...

\textbf{Table 1. Carbonate chemistry during the larval experiments and the long-term acclimation.} pH on total scale and \(C_T\) were measured \((n = 163)\), and \(A_r\), \(P_{CO_2}\), \([CO_3^{2-}]\), and \(\Omega_{Aragonite}\) were calculated using CO2SYS. NBS, National Bureau of Standards.}

Time	Temperature (°C)	Salinity (g kg\(^{-1}\))	\(P_{CO_2}\) treatment (µatm)	\(C_T\) (µmol kg\(^{-1}\))	pH (total scale)	Measured pH (NBS scale)	\(A_r\) (µmol µatm)	\(P_{CO_2}\) (µatm)	\([CO_3^{2-}]\) (µmol kg\(^{-1}\))	\(\Omega_{Aragonite}\)
F\(_1\) larvae 2012	17.7 ± 0.1	15.5 ± 0.3	390	1802 ± 46	7.97 ± 0.02	8.17 ± 0.07	1884 ± 51	508 ± 14	76.6 ± 4.9	1.23 ± 0.08
F\(_1\) larvae 2013	17.1 ± 0.2	16.0 ± 0.4	390	1916 ± 86	8.03 ± 0.20	8.16 ± 0.07	2026 ± 90	476 ± 18	99.8 ± 14.8	1.60 ± 0.24
F\(_2\) larvae 2014	11.2 ± 0.1	16.0 ± 0.2	390	1875 ± 12	8.05 ± 0.03	8.19 ± 0.03	1989 ± 17	440 ± 24	99.6 ± 5.3	1.62 ± 0.09
Long-term acclimation (2012–2014)	11.4 ± 0.3	15.1 ± 2.1	390	2044 ± 125	7.84 ± 0.07	8.02 ± 0.06	2064 ± 122	734 ± 108	46.2 ± 12.1	0.71 ± 0.20
PC	15.5 ± 0.1	28.5 ± 0.2	390	2160 ± 14	8.02 ± 0.02	8.16 ± 0.01	2334 ± 26	462 ± 26	136.0 ± 6.0	2.14 ± 0.09

In our MG experiment performed with the Baltic Sea population, we observed a large variance in response to elevated \(P_{CO_2}\) among the CO2-sensitive and CO2-tolerant families. Our high-resolution environmental \(P_{CO_2}\) monitoring in the habitat of the population revealed rapidly fluctuating \(P_{CO_2}\). Thus, different cohorts of larvae can be exposed to either high or low \(P_{CO_2}\) during the sensitive planktonic larval phase, indicating that not all individuals from the Kiel Fjord population were selected in a high-\(P_{CO_2}\) environment. It is likely that this environmental heterogeneity selects for maintenance of variance of \(CO_2\) tolerance and genetic diversity in this population. The role of temporal heterogeneity of selection pressures for maintaining genetic diversity has historically been underestimated, although the scaling of phenotypic change with time strongly suggests that fluctuating selection pressures are the rule rather than the exception (29). Especially when generations overlap and selection pressures vary across life stages, fixation of alleles by selective sweeps becomes unlikely (30). The high sensitivity of larvae to elevated \(P_{CO_2}\) compared to adult mussels along with several yearly cohorts observed in the fjord fits this condition for maintaining genetic diversity. The low predictability of selective environmental \(P_{CO_2}\) levels in the Baltic population makes tracking of these fluctuations by heritable trait changes unlikely and should rather select for bet hedging (31) or mechanisms of...
plasticity, particularly for transgenerational plasticity with the early life stages that are affected here (10, 32).

In both experiments (the MG and PC experiments), selection for tolerance to high P_{CO_2} correlated with a higher capacity to reach larger PD I sizes in the F_1 generation. Calculated heritabilities for this trait (0.23 to 0.83) were within the range of values previously reported for mytilid larvae [0.09 to 0.8 (3, 33)]. The relatively larger PD I size of tolerant compared to sensitive families was also passed on to the F_2 generation, thus showing a heritable component. This suggests that the ability to form the PD I shell even under adverse environmental conditions can be an important fitness trait. Although transgenerational plasticity could partly compensate the negative effects of elevated P_{CO_2} levels for PD I formation rates within one generation (Fig. 4B), the absence of an effect on F_2 survival implies that PD I size alone cannot be used as a trait for reliable modeling of the evolutionary response of population mean fitness (9). Similar results were obtained for oysters when selection of larvae under 856-μm P_{CO_2} did not improve the survival of their F_2 offspring under the same P_{CO_2} treatment (16). Increased performance observed in marine organisms under moderately elevated P_{CO_2} can probably be attributed to transgenerational phenotypic plasticity (TGP). TGP has been suggested to function as a short-term buffering mechanism to alleviate the effects of adverse environments before genetic adaptation can fill the fitness deficit. TGP has been shown to exist over several generations in a range of species (10, 15, 34, 35). TGP can manifest itself in altered animal performance with beneficial effects on growth and fecundity (34–37) or, in the case of bivalves, via modification of shell formation processes (38). More specifically, TGP can modulate, for example, respiratory capacity (aerobic scope) by acting upon mitochondrial properties. TGP thereby enables animals to adjust crucial physiological processes to the changed environment (35–37, 39). Maternal effects can play a central role in passing TGP from one generation to the next (35, 37). The rapid recovery of the PD I size of offspring from high P_{CO_2}–treated dams under acidified conditions (Fig. 4A) could result from such maternally driven TGP as well. In contrast, the absence of a positive effect on F_2 survival suggests that F_1 larval fitness is dependent on specific combinations of genotypes and nonheritable components.

Although significant adaptive responses may not necessarily be detectable on the whole-organism level within the three generations investigated in this study, they likely have contributed to the higher fitness of the Kiel Fjord population compared to North Sea mussels over longer time scales. Although high-CO_2 fluctuations in this habitat have increased only within recent decades as a result of eutrophication, adverse conditions for calcification due to lower alkalinity compared to the North Sea have prevailed for thousands of years (20, 40). The high mortality of bivalves during the sensitive larval phase and the very high effective population size of mussels in the Baltic Sea (41) should have efficiently selected for beneficial mutations that increased population fitness. In support of this view, changed allele frequencies in response to elevated P_{CO_2} have been observed in sea urchin larvae within only 7 days of exposure (24). In our study, selection of tolerant F_1 specimens did not improve F_2 survival, which corresponds to findings obtained with oysters (16). However, selective breeding of high-yield oysters for aquaculture purposes resulted in significantly improved ocean acidification tolerance as a side effect within just four generations (10, 17). The absence of a beneficial effect of selection in our study could be due to the small number of individuals used for the genetic crosses, which reduced the standing genetic variation present in the F_1 generation. However, a large standing variation is needed as a prerequisite for selection (24). Consequently, future experiments would need to use a larger number of individuals or families to lower the risk of detrimental genetic drift to more closely resemble the genetic variability present in populations, enabling rapid adaptation (42). This is particularly important for coastal habitats such as Kiel Fjord, which are characterized by large abiotic variability that could lead to high genetic variation within a single population.

In conclusion, several lines of evidence suggest a potential of Mytilus populations to adapt to elevated CO_2. This conclusion is supported by (i) the different sensitivity of Baltic Sea and North Sea populations in response to a natural P_{CO_2} gradient and (ii) a heritable component of calcification performance in early larval development observed in the MG experiment. Mussel larvae from the Baltic were characterized by higher CO_2 tolerance than those from the North Sea, which corresponds to findings obtained with oysters (10). Selection for tolerant F_1 phenotypes and long-term acclimation of F_1 specimens in our MG study did not significantly improve F_2 offspring survival. Consequently, prediction of adaptation potential based on short-term experiments and single traits within a population and generation appears to be highly speculative. Future experiments need to be performed over multiple generations to obtain a detailed understanding of the rate of adaptation and the underlying mechanisms to predict whether adaptation will enable marine organisms to overcome the constraints of ocean acidification.

MATERIALS AND METHODS

Kiel Fjord seawater P_{CO_2} was continuously monitored using a HydroC CO_2 sensor [Kongsberg Maritime AS (43)] mounted on a floating platform in about 1-m water depths. Abundance of settled bivalve larvae was assessed weekly on 5 cm × 5 cm manually roughed, replicated polystyrene panels (n = 4) suspended in the fjord in about 50-cm water depth.

For the PC experiment, *M. edulis* from Kiel Fjord (Baltic Sea) were transferred to List/Sylt (North Sea) and suspended in net cages along with North Sea specimens to acclimate to North Sea conditions. Acclimation lasted from December 2013 to April 2014 when all specimens were transferred back to Kiel and used for spawning the next day.

For the MG experiment, adult *M. edulis* were collected in Kiel Fjord in 2012 and kept overnight in a flow-through seawater setup under control conditions. Spawning was induced by a moderate heat shock (5°C) using heaters. Parental (F_0) animals (eight dams, A to H; eight sires, 1 to 8) were crossed pairwise in a reduced North Carolina I cross under control conditions to generate 16 half-sib families within four half-sib groups. Embryos were transferred into three experimental P_{CO_2} levels (390, 1120, or 2400 μatm). All families with successful settlement at 2400-μatm P_{CO_2} were considered as tolerant (5 of 16), and the remaining families (11 of 16) were termed “sensitive.” Juveniles were transferred to a flow-through setup under constant P_{CO_2} until the next spawning season. The setup consisted of a header tank, which steadily supplied the experimental aquaria with seawater from Kiel Fjord. A Rhodomonas suspension was pumped into the header using a peristaltic pump and provided food to the experimental aquaria. Each aquarium was separately aerated with pressurized air with a P_{CO_2} of either 390, 1120, or 2400 μatm. Animals grew to average sizes of about 25 mm and sexual maturity within 1 year.

In 2013, individual crosses of F_1 specimens were carried out within tolerant families (dams: A2, B1, C4 × sires: D3) and between tolerant and sensitive families (tolerant dams: A2, B1, C4 × sensitive sires: E6; sensitive dams: F5, G7, H8 × tolerant sires: D3). The sex bias in mussels...
and 2013, larvae were fed daily with Kiel Fjord. Weekly, 60% of the water volume was exchanged. In 2012, the response of 390- or 2400-µatm acclimated tolerant families was compared. For fertilization, excess sperm was added, which does not allow testing for effects of PCO2 on fertilization success. After assessing fertilization success in replicated measurements, embryos were transferred into the experimental units at an initial density of 10 larvae ml⁻¹. Experimental units were filled with 0.2-µm filtered seawater from Kiel Fjord. Weekly, 60% of the water volume was exchanged. In 2012 and 2013, larvae were fed daily with Isochrysis and Rhodomonas (days 7 to 21) or with Rhodomonas only (2014) cultured in F/2 or Provasoli enriched seawater (PES) medium, respectively. Larval survival and shell growth were assessed on days 2, 7, 14, and 21 after fertilization. Samples were immediately fixed, or living specimens were collected individually using a pipette, counted and subsequently fixed in 4% paraformaldehyde, and buffered with 4 mM NaHCO₃. Pictures of eggs and larvae were taken under a stereomicroscope with a MicroPublisher 3.3 RTV camera and analyzed for shell length using the Image-Pro Plus 5.0.1 software.

Monitoring of pHNBS, salinity, and temperature was carried out twice or once a week in the larval experiments and the juvenile long-term acclimation, respectively. Weekly, water samples were analyzed for CT using an AICRTA CT analyzer (Mariana) or for AT using a Metrom 862 Compact Titrosampler. Sample pH was determined on NBS or total scale using seawater buffers. Carbonate system speciation was calculated using the CO2SYS program using published KHSO₃, K₁, and K₂ dissociation constants (45–47).

Statistical tests are based on replicate means and were analyzed by ANOVA using R. Genetic variation of size was based on individual measurements and was analyzed by generalized linear mixed models (GLMMs) containing animal and replicate tank as random effects. See the Supplementary Materials for a detailed method description.

SUPPLEMENTARY MATERIALS

Supplementary Material for this article is available at http://advances.sciencemag.org/cgi/suppl/advances/1/2/1602411.DC1

REFERENCES AND NOTES

1. K. J. Kroeker, R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, J.-P. Gattuso, Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).

2. H. Kurihara, T. Asai, S. Kato, A. Ishimatsu, Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat. Biol. 4, 225–223 (2008).

3. S. C. Talmage, C. J. Gobler, Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Natl. Acad. Sci. U.S.A. 107, 17246–17251 (2010).

4. F. Gazeau, L. M. Parker, S. Corneau, J.-P. Gattuso, W. A. O’Connor, S. Martin, H.-O. Pörtner, P. M. Ross, Impacts of ocean acidification on marine shell moults. Mar. Biol. 160, 2207–2245 (2013).

5. G.G. Waldbusser, B. Hales, C. J. Langdon, B. A. Haley, P. Schneider, L. M. Gray, C. A. Miller, I. Gimenez, Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2014).

6. G. G. Waldbusser, E. L. Brunner, B. A. Haley, B. J. Langdon, F. G. Prah, A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys. Res. Lett. 40, 2171–2176 (2013).

7. J. Thomsen, K. Haynert, K. M. Wegner, F. Melzner, Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences 12, 4209–4220 (2015).

8. P. Enderlein, M. Wahl Dominance of blue mussels versus consumer-mediated enhancement of benthic diversity. J. Sea Res. 51, 145–155 (2004).

9. J. M. Sunday, R. N. Crim, C. D. G. Harley, M. W. Hart, Quantifying rates of evolutionary adaptation in response to ocean acidification. PLOS ONE 6, e22881 (2011).

10. L. M. Parker, P. M. Ross, W. A. O’Connor, L. Borysko, D. A. Raftos, H.-O. Pörtner, Adult exposure influences offspring response to ocean acidification in oysters. Glob. Chang. Biol. 18, 82–92 (2012).

11. J. M. Sunday, P. Calosi, S. Dupont, P. L. Munday, J. H. Stillman, T. B. H. Reusch, Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

12. C. Duarte, J. M. Navarro, K. Acua, R. Torres, P. H. Manriquez, M. A. Lardies, C. A. Vargas, N. A. Lagos, V. Aguillera, Intraspecific variability in the response of the edible mussel Mytilus chilensis (Hureau) to ocean acidification. Estuaries Coasts 38, 590–598 (2015).

13. G.G. Waldbusser, B. Hales, C. J. Langdon, B. A. Haley, P. Schneider, E. L. Brunner, M. W. Gray, C. A. Miller, I. Gimenez, G. Hutchinson, Ocean acidification has multiple modes of action in bivalve larvae. PLOS ONE 10, e0128376 (2015).

14. T. B. H. Reusch, Climate change in the oceans: Evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).

15. G.M. Miller, S.-A. Watson, J. M. Doneelson, M. I. McCormick, P. L. Munday, Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858–861 (2012).

16. L. M. Parker, W. A. O’Connor, D. A. Raftos, H.-O. Pörtner, P. M. Ross, Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLOS ONE 10, e0132276 (2015).

17. J. A. Nett, B. Perkins, Evaluation of progeny of fourth generation Sydney rock oyster Saccostrea glomerata (Gould, 1850) breeding lines. Aquicult. Res. 36, 753–757 (2005).

18. J. Thomsen, M. A. Gutowska, J. Saphörster, A. Heinemann, K. Trübenbach, J. Fietzke, C. Hiebenthal, A. Eisenhauer, A. Körtzinger, M. Wahl, F. Melzner, Califying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7, 3879–3891 (2010).

19. C. Parrish, I. Schaub, J. Havenden, M. Wahl, Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Glob. Chang. Biol. 20, 765–777 (2014).

20. J. Beldowski, A. Löffler, B. Schneider, L. Joensuu, Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea. Mar. Ecol. Prog. Ser. 81, 252–259 (2010).

21. T. R. Waller, Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné. Smithsonian. Contrib. Zool. 328, 1–70 (1981).

22. P. Calosi, S. P. Sastrick, C. Lombardi, H. J. de Guzman, L. Davidson, M. Jahnke, A. Giangrande, J. D. Hardege, A. Schulze, J. I. Spicer, M.-C. Gambi, Adaptation and acclimatization to ocean acidification in marine ectotherms: An in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. Trans. R. Soc. B 368, 20120444 (2013).

23. M. W. Kelly, J. L. Padilla-Gamiño, G. E. Hofmann, Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Stronglylocentrotus purpuratus. Glob. Chang. Biol. 19, 2536–2546 (2013).

24. R. P. Palumbi, D. J. Barshis, N. Trylor-Knowles, R. A. Bay, Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

25. R. K. Bechmann, I. C. Taban, S. Westerlund, B. F. Godal, M. Anberg, S. Vingen, A. Ingvarsdottir, T. Baussant, Effects of ocean acidification on early life stages of shrimp.
27. A. Lucas, C. Rangel, Detection of the first larval feeding in Crassostrea gigas, using the epifluorescence microscope. *Aquaculture* 30, 369–374 (1983).

28. S. A. Foo, M. Byrne, Acclimatization and adaptive capacity of marine species in a changing ocean. *Adv. Mar. Biol.* 74, 69–116 (2016).

29. P. W. Messer, S. P. Ellner, N. G. Hairston Jr., Can population genetics adapt to rapid environmental change? *Am. Nat.* 143, 403–417 (1994).

30. S. Ellner, N. G. Hairston Jr., Role of overlapping generations in maintaining genetic variation in a fluctuating environment. *Am. Nat.* 143, 403–417 (1994).

31. L. N. S. Shama, Bet hedging in a warming ocean: Predictability of maternal environment shapes offspring size variation in marine sticklebacks. *Glob. Chang. Biol.* 21, 4387–4400 (2015).

32. K. Ghalmambor, J. K. McKay, S. P. Carroll, D. N. Reznick, Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. *Funct. Ecol.* 21, 394–407 (2007).

33. J. E. Toro, L. I. Paredes, Heritability estimates of larval shell length in the Chilean blue mussel *Mytilus chilensis*, under different food densities. *Aquat. Living Resour.* 9, 347–350 (1996).

34. A. Rodriguez-Romero, M. D. Jarrold, G. Massamba-N’Siala, J. I. Spencer, P. Calosi, Multi-generational responses of a marine polychaete to a rapid change in seawater pCO2. *Evol. Appl.* 9, 1082–1095 (2015).

35. L. N. S. Shama, A. Strobel, F. C. Mark, K. M. Wegner, Transgenerational plasticity in marine sticklebacks: Maternal effects mediate impacts of a warming ocean. *Funct. Ecol.* 28, 1482–1493 (2014).

36. P. Thor, S. Dupont, Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. *Glob. Chang. Biol.* 21, 2261–2271 (2015).

37. T. Reusch is acknowledged for his comments on an earlier version of the manuscript.

Acknowledgments: We would like to thank U. Panknin for algae culturing and monitoring of mussel cultures during the 3-year experimental period; A. Sukhotin, P. Leopold, Q. Zhou, and T. Reusch for assisting during the larval experiment; and R. Asmus (AWI Sylt), V. Saderne, and C. Hiebenthal (Kiel Marine Research Programme) for providing additional data related to this paper. Additional data related to this paper may be requested from the authors.

Funding: This work was supported by the German Federal Ministry of Education and Research (BMBF) – funded project BIOACID II [subproject 3.7 (FKZ03F0655B) and subproject 3.4 (FKZ 03F0655A)] and is a contribution to the PACES (Polar regions and coasts in a changing earth system) funded project BIOACID II [subproject 3.7 (FKZ03F0655B) and subproject 3.4 (FKZ 03F0655A)]. Internal funding is provided by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. Additional data related to this paper may be requested from the authors.

Submitted 30 September 2016
Accepted 28 February 2017
Published 26 April 2017
10.1126/sciadv.1602411

Citation: J. Thomsen, L. S. Stapp, K. Haynert, H. Schade, M. Danelli, G. Lannig, K. M. Wegner, F. Melzner, Naturally acidified habitat selects for ocean acidification–tolerant mussels. *Sci. Adv.* 3, e1602411 (2017).
Naturally acidified habitat selects for ocean acidification–tolerant mussels
Jörn Thomsen, Laura S. Stapp, Kristin Haynert, Hanna Schade, Maria Danelli, Gisela Lannig, K. Mathias Wegner and Frank Melzner

Sci Adv 3 (4), e1602411.
DOI: 10.1126/sciadv.1602411