Scattering length monitoring at the SNO+ detector

To cite this article: S. Langrock et al 2017 J. Phys.: Conf. Ser. 888 012053

View the article online for updates and enhancements.
Scattering length monitoring at the SNO+ detector

S. Langrock1, J. Lidgard2, E. Turner2, L. Segui2, A. Reichold2, J. R. Wilson1 on behalf of SNO+ collaboration

1Queen Mary University of London, UK, 2University of Oxford, UK

E-mail: s.langrock@qmul.ac.uk, jeffrey.lidgard@physics.ox.ac.uk

Abstract.

SNO+ is a neutrinoless double beta decay and low energy neutrino experiment located in Sudbury, Canada. To improve our understanding of the detector energy resolution and systematics, calibration systems have been developed to continuously monitor the optical properties of the detector, such as absorption, reemission and scattering. This poster provides an overview of the scattering calibration system: the Scattering Module of the Embedded LED/Laser Light Injection Entity (SMELLIE), designed to measure the scattering length \textit{in situ}, over a wavelength range of 375nm – 700nm. We present analyses for both water and scintillator filled detector states.

1. Introduction

The primary goal for the SNO+ experiment is to search for neutrinoless double-beta decay (0\textit{\nu}\textit{\beta\beta}) in 130Te, however, the detector will also be sensitive to: low energy solar neutrinos, geo-neutrinos, reactor neutrinos, supernova neutrinos and other exotic physics searches [1], making it a truly multi-purpose detector. The detector will use 780 tonnes of liquid linear alkyl-benzene (LAB) scintillator (doped with diphenyloxazole, PPO) in which the Tellurium will be dissolved [2]. The infrastructure of the SNO experiment [3] is used, the 12m diameter acrylic vessel holds the scintillator mixture, while the 9300+ 8-inch photomultiplier tubes detect the scintillation light. Some changes of the SNO infrastructure were required in order to use scintillator [4]. The low energy threshold of the scintillator, which enables the new physics goals also requires new, upgraded data acquisition electronics [5] and calibration systems [6][7]. This poster discusses one of these calibration systems, designed to measure scattering effects in the detector. This calibration system is named SMELLIE (Scattering Module of the Embedded LED/Laser Light Injection Entity). The calibration of scattering effects will aid event reconstruction and Monte Carlo models of the detector, as both depend on these optical properties. Initially, the detector will be temporarily filled with water (currently underway). The scattering processes in water are weak and well known, so during this phase the measurements made by SMELLIE can be checked. Shortly after, the next phase will begin with the water being displaced by scintillator and SMELLIE will begin monitoring the scattering in scintillator.

2. Hardware

The SMELLIE system uses an arrangement of lasers coupled to fibres to deliver mildly collimated light into the detector. The scattering at all wavelengths of interest (i.e. wavelengths measurable by the PMTs) is produced by: four narrow linewidth, short pulsed diode lasers, with wavelengths
of 375nm, 405nm, 450nm, 550nm, and a broadband ‘supercontinuum’ laser plus monochromator which has a wavelength range spanning 400nm – 700nm from which pulses can be produced with spectral bandwidth from 10nm to 100nm.

Laser light is delivered to the detector via 12 collimated optical fibres terminated with graded-index lens collimators and installed on the PMT Support Structure surrounding the acrylic vessel, at 4 different locations. At each of these locations, the collimators are pointed at 3 different angles, thereby achieving beams with a range of optical path lengths in the different detector media. This allows a detailed in situ measurement of both the angular and wavelength dependence of scattering. The system has been optimised to produce light pulses with a duration on the order of 0.1ns to 1ns to enable the reconstruction of scattering events using timing techniques. Diagnostic hardware monitors the intensity and spectrum of the laser light for later use in analysis. A trigger system is used to initiate the detector acquisition systems based on the time of the laser pulses. All hardware is remotely controllable via software.

3. Analysis Strategy
In order to maximise the performance of event reconstruction algorithms and keep systematic uncertainties low, the optical properties of the detection materials need to be determined. The first physics runs will be carried out in a water-filled detector. An analysis strategy was developed to measure the scattering length of a water-filled detector. For each SMELLIE fibre, a set of timing and spatial cuts were defined, separating direct beam photons and scattered photons from photons originating from other optical interactions within the detector, see figure 1. These cuts were verified using the Monte Carlo truth information from the history of the photon tracks and by varying the detector geometry to study the reflection effects when the detector geometry varies slightly. The analysis procedure used to determine the scattering length given data is as follows. Firstly, the same set of cuts are applied to several sets of simulated data of various scattering lengths (control samples) and to the measured data. The scattering lengths in the simulation data sets are altered using a scaling factor, which is applied to the nominal scattering length of water. The photons selected in the direct beam region and in the scattering region are divided by the total number of photons detected over the entire run. These ratios are plotted against the scaling factor used for each simulation. Applying a linear fit to these distributions and comparing the ratios extracted from the data runs to these fits yields the equivalent scattering length scaling factor of the data.

4. Adapting for Scintillator
The solar neutrino measurements, as well as 0νββ studies, are carried out with the acrylic vessel filled with the scintillator cocktail. In scintillator, photons can be absorbed and isotropically re-emitted at lower energy: a process which looks similar to scattering. The scattering analysis strategy for a water-filled detector can be adapted for a scintillator phase by re-defining the timing and spatial cuts to accommodate for this additional process. Some contamination from re-emission in the scattering cut selection is unavoidable; however, reconstructing the angular distribution of photons leading to hits in the scattering region allows further discrimination between scattered and re-emitted photons. This will allow for characterisation of the scattering process.

5. Water Quality Scans
SMELLIE will also be used to provide an in situ measurement of the quality of the detection medium as well as the scattering properties, by using the supercontinuum laser to detect wavelength dependent effects such as scattering or absorption from possible contaminants in the medium. SMELLIE causes multiple beamspots in the detector, each associated with a different path length through the detector medium, making different beamspots more or less
Figure 1. Timing and spacial profile of categorized PMT events, in simulation.

sensitive to possible contaminants. This analysis would therefore be conducted by taking the ratio of hits in a beamspot with the number expected from simulation and dividing this by the same ratio for a different beamspot. This double ratio can account for the expected attenuation of the detector medium and, as a function of wavelength, should be sensitive to wavelength dependent attenuation from a contaminant. This analysis was attempted during the water fill of the detector, using the beamspots caused by total internal reflection from the water surface and reflections from the nearside of the acrylic vessel. However, a number of wavelength and angular dependent effects specific to the partially air-filled detector makes this a particularly challenging analysis.

6. Summary
In this poster, the Scattering Module for the Embedded LED/Laser Light Injection Entity has been presented. This calibration system aims to measure and characterise the scattering properties of the detector media of the SNO+ detector. The hardware and analysis strategy for water-fill has been outlined, along with the method for extending the analysis to a scintillator-filled detector and measuring wavelength dependent effects from possible contaminants in the detector medium.

References
[1] Andringa S et al. 2016, Current status and future prospects of the SNO+ experiment, Adv. High Energy Phys. 2016:6194250.
[2] Biller S and Manecki S, A new technique to load 130Te in liquid scintillator for neutrinoless double beta decay experiments, these Proceedings.
[3] Boger J et al. 2000, The sudbury neutrino observatory, Nucl. Instr. Meth. A449:172-207.
[4] Bialek A et al. 2015, A rope-net support system for the liquid scintillator detector for the SNO+ experiment, Nucl. Instr. Meth. A827:152-160.
[5] Caden E and Coulter I, Commissioning the SNO+ detector, these Proceedings.
[6] Alves R et al 2015, The calibration system for the photomultiplier array of the SNO+ experiment, J. Inst. 55:P03002.
[7] Maneira J, Falk E, Leming E, Peeters S, Calibration of the SNO+ experiment, these Proceedings.