Communication

6-Amino-3-(prop-2-en-1-yl)-9H-purin-3-ium Tetracopper(I) Hexabromide: Synthesis and X-ray Structure Determination

Oleksiy V. Pavlyuk 1, Yurii I. Slyvka 1,*, Evgeny A. Goreshnik 2 and Marian G. Mys’kiv 1

1 Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine; oleksiy.pavlyuk@lnu.edu.ua (O.V.P.); marian.myskiv@lnu.edu.ua (M.G.M.)
2 Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; evgeny.goreshnik@ijs.si

* Correspondence: yurii.slyvka@lnu.edu.ua

Abstract: 6-Amino-3-(prop-2-en-1-yl)-9H-purin-3-ium tetracopper(I) hexabromide [(C5H5N5(C3H5))2Cu4Br6] (1) is synthesized in this paper. The title compound is characterized by Raman spectroscopy and single crystal X-ray diffraction: monoclinic, Sp.gr. P21/c, Z = 2, unit cell dimensions: a = 8.6870(3), b = 9.7447(2), c = 16.4418(4) Å, β = 100.681(3)°, V = 1367.72(7) Å3 at 150 K. The peculiarities of the metal coordination and distribution of weak interactions are analyzed. The significant role of hydrogen bonds in the construction of 1 crystal structure is shown.

Keywords: adenine; allyl derivative; crystal structure; intermolecular interaction

1. Introduction

Both metallic copper and copper compounds are widely used in many branches of modern science and technology [1]. In turn, copper-containing complexes with unsaturated olefin ligands are attractive as catalysts in fine organic synthesis [2,3] in terms of their unique biochemical role [4] and interesting physical properties [5], as well as productive tools in the crystal engineering of coordination compounds [6,7], etc. In recent years, close attention has been paid to the crystal structure and properties of Cu(I) π-complexes with allyl-substituted heterocyclic ligands due to the possibility of the synchronous coordination of one metal atom with several organic linkers and the subsequent emergence of unique topological units [8–10].

However, adenine as a purine base is directly involved in the construction of nucleotides of nucleic acids (DNA and RNA). The mentioned heterocyclic nucleus incorporated in various derivatives, primarily attracts the attention of researchers due to its indirect participation in the transmission of hereditary information [11], its possible control of microorganisms, and the therapeutic effect of these microorganisms in medical practice [12,13]. Moreover, due to the presence of several coordination centers, the adenine nucleus is very interesting in the context of implementing diverse possibilities for coordination with metal ions. It is possible for all donor N atoms of N3-substituted adenine to act as Lewis bases and to form bonds with metal ions. However, in the coordination compounds of copper(II), cobalt(III) and other d-metal ions with N3-substituted adenine ligands, the coordination of the metal atom is involved only in the N7 atom of the heterocyclic nucleus [14,15]. A modification of the adenine ring by the allyl group would also significantly extend its coordination behavior regarding Cu(I), forming a strongly directed Cu(I)–(C=C) interaction.

Based on the above, in the present work, we focus on the structural characterization of the product of copper(I) bromide coordination with the adenine derivative 6-amino-3-(prop-2-en-1-yl)-9H-purin-3-ium (3-allyladenine) bromide ([AllAd]Br) (Scheme 1).
Scheme 1. Synthesis of compound 1.

2. Results and Discussion

The Cu1 atom in the crystal structure of \([\text{I}2\text{Cu}_2\text{Br}_6]\) (1) is located in a planar–trigonal coordination environment built from a nitrogen atom of a five-membered heterocyclic core of adenine ligands (distance Cu-N 1.978(4) Å), C=C bond of the allyl group of the same cation (Cu–C distances are 2.039(4)–2.059(5) Å, Cu–m-1.932(1) Å (m-midpoint of C=C bond of allyl group), Table 1), and bromine atoms (Cu–Br-2.321(1) Å). Another crystallographically independent Cu2 metal atom forms a slightly deformed tetrahedral environment (\(\tau_{4}^1 = 0.93, [16]\)) from the bromine atoms (Cu–Br-2.462(1)–2.499(1) Å).

Table 1. Selected geometric parameters (Å, °) of \([\text{I}2\text{Cu}_2\text{Br}_6]\).

| Bond                  | \(d\), Å | Angle                     | \(\omega\), ° |
|-----------------------|----------|---------------------------|---------------|
| Cu(1)–N(1)            | 1.978(4) | N(1)–Cu(1)–Br(1)          | 113.3(1)      |
| Cu(1)–C(7)            | 2.039(4) | N(1)–Cu(1)–C(7)           | 93.7(2)       |
| Cu(1)–C(8)            | 2.059(5) | N(1)–Cu(1)–C(8)           | 131.5(2)      |
| Cu(1)–Br(1)           | 2.321(1) | C(7)–Cu(1)–C(8)           | 38.9(2)       |
| Cu(1)–Br(3) \(i\)    | 1.932(1) | Br(1)–Cu(2)–Br(3)          | 111.03(3)     |
| Cu(2)–Br(1)           | 2.484(1) | Br(2)–Cu(2)–Br(1)          | 102.54(3)     |
| Cu(2)–Br(2)           | 2.462(1) | Br(2)–Cu(2)–Br(3)          | 106.31(3)     |
| Cu(2)–Br(3)           | 2.478(1) | Br(2)–Cu(2)–Br(3)          | 109.25(3)     |
| Cu(2)–Br(3) \(i\)    | 2.499(1) | Br(3)–Cu(2)–Br(3)          | 111.27(3)     |
| Cu(2)–Br(3) \(i\)    | 2.499(1) | Br(3)–Cu(2)–Br(3)          | 115.50(2)     |

\(^{1}\) Symmetry code: \((\) \(-x + 2, -y + 1, -z + 1.\)

The linkage role of the two halogen atoms Br(3) causes the formation of dimers \([\text{Cu}_2\text{Br}_6]\). This is quite common among inorganic fragments in copper halide coordination compounds. These units occur as isolated anions of the same composition [17] or as part of polyanions (for example, linear \([\text{CuBr}_2]_n^-\) [18], or more complex 2D, or even 3D skeletons [19]). The arrangement of metal coordination tetrahedra in these kind of building blocks, in our opinion, depends mainly on steric hindrances. In the case of isolated anions \([\text{Cu}_2\text{Br}_6]^{2-}\), the copper polyhedra are as far apart as possible and the torsion angle Br–Cu–Br–Cu is 0° (the same value is observed in the structure of the discussed compound). Instead, the inclusion of \([\text{Cu}_2\text{Br}_6]\) as the topological block in the three-dimensional framework slightly shifts the tetrahedra relative to each other (the value of the torsion angle increases, for example, to about 15° in the complicated fragment \([\text{Cu}_9\text{Cl}_{16}]\) [20]).

Another halogen atom—Br(1)—acts as a bridge between the polyhedra of the crystallographically independent Cu(1) and Cu(2) atoms. As a result, the topological unit of the composition \([\text{I}2\text{Cu}_2\text{Br}_6]\) (Figure 1) plays a key role in constructing the crystal structure of the discussed compound.
A somewhat similar copper(I) halide fragment has previously been observed only in the crystal structure of \([\text{[(C}\,5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))_2\text{Cu}_4\text{Br}_6]}\) described by us previously. The Hirschfield surface analysis confirms the conclusion that they play an important role in the formation of polyhedra (for example, linear \(\{\text{CuBr}_2\}\) \(_{n=1}\)) of coordination compounds. These units occurs as isolated anions of the same composition \([17]\) or as part of larger polyhedra depending on the chemistry of the system.

Figure 1. Dimeric topological unit \([\text{[AllAdCu}_2\text{Br}_3]_2]\) in crystal structure of \([\text{[(C}_5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))_2\text{Cu}_4\text{Br}_6]}\). Thermal ellipsoids are drawn at the 50% probability level.

Isolated topological units with formal stoichiometry \(\text{L}_2\text{Cu}_4\text{Hal}_6\) are also common among coordination compounds of copper and, for example, were observed in the structure of the \([\text{[(3,2-pyrazypym)]}_2(\text{Cu}_4\text{L}_6)]_n\) compound \([21]\) based on 1-methyl-3- (1-(pyridin-2-yl)-1H-pyrazol-3-yl)pyridin-1-ium. However, according to the Cambridge Structural Database \([22]\), compound 1 is the first known example of a structure with the \([\text{Cu}_4\text{Hal}_6]\) motif, which is \(\pi\)-attached (through the \(\text{Cu}^1\)-(C=C) interaction) to the olefin group of the \(\pi,\sigma\)-ligand. A somewhat similar copper(I) halide fragment has previously been observed only in \(\pi\)-ligands, such as \(\text{N-allylpiperazinium}\) \([23]\) and \(\text{N-propargylammonium}\) \([24]\).

Based on the presence in the crystal structure of the compound \([\text{[AllAd}_2\text{Cu}_4\text{Br}_6]\] isolated topological units with \([\text{[(C}_5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))\text{Cu}_2\text{Br}_3]_2]\) composition are important to explore the supramolecular interactions that bind these blocks in a three-dimensional framework. The analysis of the geometry of hydrogen contacts (Table 2) displays the presence of quite noticeable interactions where the acceptors are nitrogen (of the adenine nucleus of the ligand) and carbon atoms (from the allyl group of the ligand), and donor–bromine anions. The corresponding bonds are formed both within the \([\text{[(C}_5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))\text{Cu}_2\text{Br}_3]_2]\) dimer and between individual topological blocks by connecting them into a three-dimensional grid. The Hirschfield surface analysis confirms the conclusion that they play an important role in the construction of the structure, since the total contribution to the surface area for \(\text{X–H}\cdots\text{Br}\) contacts is 39.2% (Figure 2).

Table 2. Selected hydrogen bonds’ geometric parameters (Å, °) of \([\text{[(C}_5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))_2\text{Cu}_4\text{Br}_6]}\).

| Bond | \(d(\text{D–H})\), Å | \(d(\text{H–A})\), Å | \(d(\text{D–A})\), Å | \(\omega\) (D–H–A), ° |
|------|----------------|----------------|----------------|----------------|
| N(2)–H(2)…Br(2) \(^{1,1}\) | 0.89(7) | 2.34(7) | 3.215(4) | 168(6) |
| N(5)–H(5A)…Br(2) \(^{2}\) | 0.88(6) | 2.60(6) | 3.460(5) | 166(5) |
| N(5)–H(5B)…Br(3) \(^{3}\) | 0.73(7) | 2.79(7) | 3.521(5) | 174(6) |
| C(4)–H(4)…Br(1) \(^{4}\) | 0.99(5) | 2.76(6) | 3.624(5) | 146(4) |

\(^{1}\) Symmetry codes: 
\(^{(1)}\) 1 – x, 1 – y, 1 – z; 
\(^{(2)}\) 1 – x, –y, 1 – z; 
\(^{(3)}\) x, –1 + y, z.

\(^{2}\) Symmetry codes: 
\(^{(4)}\) 1 – x, 1 – y, 1 – z; 
\(^{(5)}\) 1 – x, –y, 1 – z; 
\(^{(6)}\) x, –1 + y, z.

\(^{3}\) Symmetry codes: 
\(^{(7)}\) 1 – x, 1 – y, 1 – z; 
\(^{(8)}\) 1 – x, –y, 1 – z; 
\(^{(9)}\) x, –1 + y, z.
was constructed using the Crystal Explorer software package [32]. Crystal data for \((\text{C}_5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))^2\text{Cu}_4\text{Br}_6\): M = 1086.04 g/mol, monoclinic crystal system, space group \(P2_1/c\), \(Z = 2\), unit cell dimensions: \(a = 8.6870(3)\) Å, \(b = 9.7447(2)\) Å, \(c = 16.4418(4)\) Å, \(\beta = 100.681(3)\) °, \(V = 1367.72(5)\) Å³ at 150 K; \(\rho_{\text{calc}} = 2.637\) g/cm³, \(R(F^2 > 2\sigma(F^2)) = 0.036\) for 3016 reflections and \(wR(F_2) = 0.096\) for all 3417 reflections. These data have been deposited at the Cambridge Crystallographic Data Centre as CCDC 2176152, including the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

Raman spectrum from 1 (see supplementary materials) was recorded with a Horiba Jobin–Yvon LabRAM HR spectrometer with the use of the 632.81 nm excitation line of a He-Ne laser (17 mW). Before data recording, the instrument scale was calibrated using a silicon polycrystalline plate (a characteristic band at 521 cm⁻¹).

Supplementary Materials: The following supporting information can be downloaded online. Figure S1. Raman spectrum of \([\text{C}_5\text{H}_5\text{N}_5(\text{C}_3\text{H}_5))^2\text{Cu}_4\text{Br}_6]\).
Author Contributions: O.V.P., investigation, software, writing—original draft; Y.I.S., conceptualization, methodology, investigation; E.A.G., software, investigation; M.G.M., software, investigation. All authors have read and agreed to the published version of the manuscript.

Funding: The authors thank the Ministry of Education and Science of Ukraine for financial support of this project (Grant No. 0120U102028) and the Slovenian Research Agency (research core funding No. P1–0045; Inorganic Chemistry and Technology).

Data Availability Statement: The X-ray data are deposited at CCDC as stated above.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bellussi, G.; Bohnet, M.; Bus, J.; Drauz, K.; Greim, H.; Jackel, K.-P.; Karst, U.; Kleemann, A.; Kreysa, G.; Laird, T.; et al. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Chichester, UK, 2011.

2. Wang, X.-S.; Zhao, H.; Li, Y.-H.; Xiong, R.-G.; You, X.-Z. Olefin-Copper(I) Complexes and their Properties. Top. Catal. 2005, 35, 43–61. [CrossRef]

3. Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. Directed Copper-Catalyzed Intermolecular Heck-Type Reaction of Unactivated Olefins and Alkyl Halides. J. Am. Chem. Soc. 2018, 140, 16929–16935. [CrossRef] [PubMed]

4. Bender, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [CrossRef] [PubMed]

5. Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Photochemistry and photophysics of coordination compounds: Copper. In Photochemistry and Photophysics of Coordination Compounds I; Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–115.

6. Rickerby, J.; Steinke, J.H.G. Current Trends in Coordination with Copper. Chem. Rev. 2002, 102, 1525–1550. [CrossRef]

7. Zhang, J.; Xiong, R.-G.; Chen, X.-T.; Xue, Z.; Peng, A.S.-M.; You, X.-Z. Two-Dimensional Luminescent Rectangular Molecular Grids Containing Copper(I)–Olefin Bonds as Bridging Spacers. Organometallics 2002, 21, 235–238. [CrossRef]

8. Slyvka, Y.; Goreshnik, E.; Pavlyuk, A.; Mys’Kiv, M. Copper(I) π-complexes with allyl derivatives of heterocyclic compounds: Structural survey of their crystal engineering. Open Chem. 2013, 11, 1875–1901. [CrossRef]

9. Fedorchuk, A.; Slyvka, Y.; Kinzhybalov, V.; Lis, T.; Mys’Kiv, M. An unusual diverse coordination of silver(I) with N-allylhydantoin ligand in the presence of benzene- and p-toluenesulfonate anions. Inorg. Chim. Acta 2019, 484, 79–86. [CrossRef]

10. Hordichuk, O.; Slyvka, Y.I.; Kinzhybalov, V.V.; Goreshnik, E.A.; Bednarchuk, T.; Bednarchuk, O.; Jedryka, J.; Kityk, I.; Mys’Kiv, M. Construction of heterometalic and mixed-valence copper(I/II) chloride π-complexes with 1,2,4-triazole allyl-derivative. Inorg. Chim. Acta 2019, 495, 119012. [CrossRef]

11. Ryu, S.-M.; Koo, T.; Kim, K.; Lim, K.; Baek, G.; Kim, S.-T.; Kim, H.S.; Kim, D.-E.; Lee, H.; Chung, E.; et al. Adenine base editors in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 2018, 36, 536–539. [CrossRef]

12. Heithoff, D.M.; Sinzheimer, R.L.; Low, D.A.; Mahan, M.J. An Essential Role for DNA Adenine Methylation in Bacterial Virulence. Science 1999, 284, 967–970. [CrossRef]

13. Gaudelli, N.M.; Lam, D.K.; Rees, H.A.; Solá-Esteves, N.M.; Barrera, L.A.; Born, D.A.; Edwards, A.; Gehrke, J.M.; Lee, S.-J.; Liquori, A.J.; et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 2020, 38, 892–900. [CrossRef] [PubMed]

14. Sorrell, T.; Epps, I.A.; Kirstenmacher, T.J.; Marzilli, L.G. Transition metal complexes of N(3)-alkylated 6-aminopurines. Synthesis and unusually high stability of bis(acetylamidato)(nitro)(N(3)-alkylated 6-aminopurine)cobalt(III) complexes. Crystal and molecular structure of the triacanthine complex. J. Am. Chem. Soc. 1978, 100, 5756–5763. [CrossRef]

15. Pérez-Yáñez, S.; Castillo, O.; Cepeda, J.; García-Terán, J.P.; Luque, A.; Román, P. Supramolecular architectures of metal–oxalato complexes containing purine nucleobases. Inorg. Chim. Acta 2011, 365, 211–219. [CrossRef]

16. Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamidine ligands: Structural analysis with a new four-coordinate geometry index, \( \tau_4 \). Dalton Trans. 2007, 955–964. [CrossRef]

17. Willett, R.D. Crystal structure of bis(N-methylhexahydropicramidum) hexabromodicuprate(I). Inorg. Chim. Acta 2004, 357, 1579–1582. [CrossRef]

18. Pavlyuk, A.; Davydov, V.N.; Mys’Kiv, M. Copper(I) Complexes with N-Allylquinolinolium Bromide \([\text{Cu}_2\text{H}_2\text{N}(\text{C}_5\text{H}_3)\text{Cl}]\text{Br}_2\) and \([\text{Cu}_2\text{H}_2\text{N}(\text{C}_5\text{H}_3)\text{Cl}]\text{Br}_2\): Synthesis and Crystal Structure. Russ. J. Coord. Chem. 2003, 29, 199–202. [CrossRef]

19. Peng, R.; Li, M.; Li, D. Copper(I) halides: A versatile family in coordination chemistry and crystal engineering. Coord. Chem. Rev. 2010, 254, 1–18. [CrossRef]

20. Martin, J.D.; Dattelbaum, A.M.; Thornton, T.A.; Sullivan, R.M.; Yang, J.; Peachey, M.T. Metal Halide Analogues of Chalcogenides: A Building Block Approach to the Rational Synthesis of Solid-State Materials. Chem. Mater. 1998, 10, 2699–2713. [CrossRef]

21. Xue, J.-Y.; Li, J.-C.; Li, H.-X.; Li, H.-Y.; Lang, J.-P. Chan–Lam cross-coupling reactions promoted by anionic copper(I)/iodide species with cationic methyl-((pyridinyl-)-pyrazolyl)-pyridin-1-ium. Tetrahedron 2016, 72, 7014–7020. [CrossRef]

22. Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Crystallogr. Eng. Mater. 2016, 72, 171–179. [CrossRef]
23. Shkurenko, A.A.; Davydov, V.N.; Mys’Kiv, M. Synthesis and Crystal Structure of Copper(I) Chloride π-Complexes with N-Allyl- and N,N′-Diallylpiperazinium Dichlorides: [C3H5NH(CH2)4NH2]Cu2Cl4 and [C3H5NH(CH2)4NHC3H5]0.5CuCl2. Russ. J. Coord. Chem. 2003, 29, 445–450. [CrossRef]

24. Noshtchenko, G.; Kinzhybalo, V.; Lis, T.; Mykhalitchko, B. π-Complexes of Copper(I) with Terminal Alkynes. Synthesis and Crystal Structure of [(HC≡CCH2NH3)(Cu2Br3)] π-Complex. Z. Anorg. Allg. Chem. 2007, 633, 306–309. [CrossRef]

25. Eder, E.; Lutz, D.; Jörns, M. Allylic compounds bind directly to DNA: Investigation of the binding mechanisms in vitro. Chem. Interact. 1987, 61, 97–108. [CrossRef]

26. Slyvka, Y.; Pokhodylo, N.T.; Goreshnik, E.; Pavlyuk, O.; Mys’Kiv, M. Syntheses and crystal structures of two copper(I)–halide π,σ-coordination compounds based on 2-[(prop-2-en-1-yl)sulfanyl]pyridine. Acta Crystallogr. 2021, 77, 1180–1184. [CrossRef] [PubMed]

27. Rigaku CrysAlisPro Software System; Version 1.171.40.57a; Rigaku Oxford Diffraction (Tokyo, Japan): 2019. Available online: http://www.rigaku.com (accessed on 1 September 2019).

28. Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [CrossRef]

29. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [CrossRef]

30. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [CrossRef]

31. Spek, A.L. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr. 1990, 46, 34. [CrossRef]

32. Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [CrossRef]