Tackling the challenge of peer learning in hybrid and online universities

Adrián Mendieta-Aragón1,2 · Raquel Arguedas-Sanz3 · Luis Manuel Ruiz-Gómez4 · Julio Navío-Marco4

Received: 1 September 2022 / Accepted: 5 October 2022 / Published online: 20 October 2022
© The Author(s) 2022

Abstract
Peer learning is not fully developed or researched in online and hybrid higher education. This research analyses a peer learning experience in the asynchronous part of hybrid teaching, in one of the largest blended universities in Europe, promoting students to act as teachers of their peers, by preparing digital content (videos) for the course. This article studies whether there are behaviour patterns and different perceptions associated between students who act as teachers, and those who only act as students. The results indicate, among other findings, that students demand this type of activities, and value them very positively. Specifically, the “teachers” consider that this activity increases their motivation for the subject and their performance; they also consider that it significantly improves their creativity and communication skills, and they would definitely participate in the project again. The assessment of the students who merely view the materials is also very positive, and they prefer a learning method through classmate videos than the traditional learning method with printed materials. The research is also a boost to finding ways to promote learning among equals in non-classroom teaching in digital environments.

Keywords Peer learning · Blended learning · Learner-generated content · Online teaching · Hybrid university

1 Introduction

The Covid-19 pandemic has led to a huge expansion in hybrid (blended, semi-remote, mixed) and online learning, arousing considerable interest in better understanding its peculiarities and possibilities, lending particular momentum to research in this regard (Aretio, 2021; Chandra & Palvia, 2021; Okoye et al., 2021; Zhou et al., 2022). Alongside the discussion as to the virtues of such types of teaching,
questions arise as to how online teaching can support many of the established benefits of an in-person learning environment, including student participation and peer interaction (Dunford and Miller, 2018; McDonald et al., 2021; Muir et al., 2019; Tang et al., 2022).

It becomes particularly important to guarantee learner participation (Kaur, 2013) and to promote student self-regulatory processes in such remote environments (Pool et al., 2017), fostering the development of their own learning environments, networks and communities. Boelens et al. (2017) suggest giving them greater responsibility, promoting active involvement and introducing a problem-based focus.

Rasheed et al. (2021), in their recent review of the challenges of blended learning, and in particular the online element, consider that peer learning regulation strategies have not yet been provided. They stress that online peer learning is one of the main challenges in hybrid learning instruction, and is closely linked to the involvement of students and co-production of knowledge (Cullen, 2020).

This research contributes to an attempt to mitigate such shortcomings, proposing a peer learning experience in the asynchronous (digital) part of hybrid teaching. The proposed learning method encourages university students to act as the teachers of their fellow learners, preparing digital material (videos in this case) to explain content and resolve new problems and examples of the subject. This serves to generate a stock of problems solved, which helps their fellow students in their learning, fosters the creation of a learning community, and serves to drive the motivation and engagement of the students themselves, as they “teach” their peers. Furthermore, as this involves the creation of videos from which the other students learn, they must be fully familiar with the contents of the subject to be delivered, and, as they are dealing with other students, this mitigates the isolation that they may feel in such educational settings.

The specific research question raised in this paper is whether there are behavioural patterns and different associated perceptions among students who act as teachers, and those who act only as students. The research thus helps to establish a better understanding of peer learning mechanisms, and the creation of digital content by learners in remote settings. It furthermore constitutes an invitation to disseminate and promote this approach.

The article is structured as follows: after this introduction, Section 2 presents the theoretical framework, while Sections 3 and 4 contain the description of the sample, the methodology, the empirical analysis and the results. Lastly, the article ends with the conclusions, which likewise include the limitations and future avenues of research.

2 Theoretical framework

In this section, we will explore in greater depth the underlying principles of peer learning, and, in particular, research into this phenomenon in hybrid and online teaching environments, as well as student-generated content, above all in the digital world.
2.1 Peer learning in hybrid and online teaching

Over the years, many researchers have studied the concept of peer learning (Gamlath, 2021; Ion et al., 2016; Latifi et al., 2021). One of the pioneers was Topping (1996), who defined peer learning as the process which takes place when people with similar background, but who are not educators, work together and teach one another in order to understand certain topics. Mazur (1997) developed the concept and popularised it in his teaching at Harvard in the 1990s. In general, peer learning refers to the capacity among students to work with their fellows and support one another in learning (Lim et al., 2020).

Peer instruction is an active learning strategy which underpins learning, promotes a deeper engagement and also fosters conceptual understanding through instruction outside the classroom (Mazur, 1997; Nerantzzi, 2020; Schell & Mazur, 2015). Peer learning helps to create an audience, drives students’ knowledge as to their own strengths and weaknesses, and offers opportunities for collaborative learning (Xiao & Lucking, 2008). Furthermore, as indicated by Chandra and Palvia (2021), by valuing cooperation rather than competition within the group, it helps foster mutual respect with regard to the gender, age and cultural background of the participants.

In hybrid and online settings, where interactions between students and the teaching staff and content may be made more difficult by the involvement of technology, one of the major challenges is to maintain the benefits of interaction and learning among students (Solórzano-García & Navío-Marco, 2019; Nerantzzi, 2020) is of the opinion that although its potential is recognised for in-person courses, it is likewise of use for hybrid and completely online settings. The classroom may, in this case, be a live or synchronous online session bringing together the students and teacher, while the asynchronous activities, or those followed at their own pace, could include peer learning. In considering the use of digital environments, one may refer to “digital peer learning” (Sannino et al., 2021), to emphasise the role of the technology used.

This type of educational strategy incorporates the postulates of constructivist theories, and in particular the social constructivism of Vygotsky (1962; 1978), which considers that learning takes place when individuals participate in social activities such as interaction and collaboration. It is through social interaction that individuals are able to develop cooperation and mutual respect until they achieve autonomy (Barvinski et al., 2019). The learning communities to which students belong form a relevant part of this environment. These theoretical fundamentals may therefore be interlinked with the concepts of Communities of Practice (CoP), which have been used to understand the social aspects of training in learning communities to create bonds and foster learner interaction (Bozkurt & Keefer, 2017; Wenger, 1998). Meanwhile, Contributing Student Pedagogy, CSP (Collis & Moonen, 2005; Falkner & Falkner, 2012) emphasises the role of engaging students in the educational process, by adopting an active role as co-creator of resources for learning, and the exchange of content. Ultimately, one may establish a relationship with learning ecologies, understood as the set of contexts to be found in physical or virtual settings, which offer opportunities for learning, with each context made up of a particular configuration of activities, resources, relationships and the interactions that emerge from them.
(Barron, 2006; Peters et al., 2021; Sangrá et al., 2019). Within such contexts, there must be a place for peer interactions and student-generated content.

2.2 Student-recorded videos

One strand of research focuses on Learner-Generated Digital Media (LGDM), where such digital content developed by the students demonstrates their learning (Reyna et al., 2021; Navio-Marco et al., 2022). This is an original focus to improve research capabilities and active learning (Anuradha & Rengaraj, 2017; Hoban et al., 2015), but has not yet been the subject of much analysis, particular regarding its use in higher education (Hakkarainen, 2009; Potter & McDougall, 2017; Reyna & Meier, 2018). Research in this regard focuses in general on in-person studies, and in particular the flipped classroom (Engin, 2014; González Fernández & Huerta Gaytán, 2019). It may be seen that in producing digital content, students show a greater level of refinement of thought and in-depth analysis, which in many cases results in greater academic performance, and has a positive effect on learning outcomes (Bates et al., 2012; Bryson & Hand, 2007; Fellenz 2004; Hardy et al., 2014).

In particular, the production of videos involves greater understanding and higher levels of cognitive processing in order to create contents, teach and evaluate (Engin, 2014; Gerbaudo et al., 2021).

3 Methodology

To provide a response to our research question, 78 engineering students on the course Economics and Business volunteered to take part in the project over the academic years 2020/21 and 2021/22 in the different roles of the learning community: Student-Teacher (those who recorded videos to support the learning of their peers) and Student-Learner (those who simply used their fellow students’ videos in their studies). The teaching team distributed topics with problems for application in the field of economics. Then, the students proposed examples of resolved problems, explaining their approach and solution through videos. The videos were first supervised by the teaching team, and then made available to the students as a bank of problems solved, while the students who produce them cleared up queries in the forums.

Once the project had ended, the participants completed a survey to ascertain their sociological and professional profile, as well as their opinion on the functioning of the activity. The opinion responses were structured by means of a Likert scale from 1 to 5, with 1 indicating that the respondent did not agree at all, and 5 that they completely agreed with the proposition.

In accordance with the purpose of the analysis and the nature of the data, univariate descriptive techniques were first used to ascertain the sociological and professional characteristics of the students involved in the project, as well as the overall evaluation of the activity. Bivariate inferential statistical techniques are then used to
identify possible differences between the participants in the learning communities, in terms of their evaluation of and satisfaction with the activity.

The data analysis employs the Kruskal-Wallis or H test (Kruskal & Wallis, 1952). This test is extensively used in educational projects to compare and contrast the hypothesis that the different sample groups were drawn from the same population (Atik & Yalçin, 2010). This test was chosen for two main reasons: it is a non-parametric test which can be used to conduct an analysis with a smaller sample size (Grech & Calleja, 2018); and it is an effective test to analyse items on a Likert scale of independent groups (Nipa & Kermanshachi, 2020).

The Kruskal-Wallis H statistic was obtained as:

\[H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N - 1) \]

(1)

where \(N \) represents the total observations; \(k \) indicates the number of groups; \(R \) indicates the range of the group; and \(n_i \) the number of observations of group \(i \).

When the Kruskal-Wallis test considers that there are significantly different effects in categories with three or more groups, a post-hoc comparison will be conducted between pairs by means of the Dunn test, to precisely determine which groups are different. To avoid an increase in the type I error, the level of significance is adjusted by means of the Bonferroni method, which makes the analysis more robust, as it is one of the strictest adjustment methods.

4 Empirical analysis and results

4.1 Descriptive analysis

The information gathered by means of the questionnaires was processed using STATA v.17 software. The Alpha-Cronbach test confirms the reliability and consistency of the questionnaire measurements (\(\alpha = 0.9530 \)).

Table 1 shows the sociological and professional profile of the students participating in the project. The results highlight the greater presence of men, with the majority age range being between 30 and 45 years. One of the main advantages of remote universities is the greater flexibility that they offer students in combining their university studies with a job (part-time or full-time). This characteristic of semi-remote students is clearly reflected in our sample, with 80.7% of students combining their studies with full-time employment. Lastly, the distribution of participants across the learning communities reveals 71.8% in the role of Student-Learner, and 28.2% in the role of Student-Teacher.

Figure 1 shows the overall satisfaction with the project to prepare and assimilate the subject content. The graph shows the high rating given by the students to the creation of videos to pass the subject, indicating that there is a demand for this type of activity among the students. In quantitative terms, 88.2% of the respondents gave a high score of 4–5, while just 3.9% of participants gave a low score (1–2).
In this section, we present the results of the bivariate analysis using the H statistic of the Kruskal-Wallis test to detect possible statistically significant differences among the different student profiles and the mean evaluation of the items presented.

Table 2 shows the mean of each category in each item and the H statistic, from the perspective of the student creating content in the learning community. The empirical results show that the proposed activity increases motivation for the subject (item 1a) and student performance (item 1b). Furthermore, the students in the Student-Teacher role consider that there is a significant improvement in their creativity (item 1d) and communication skills (item 1f), which is an important aspect to convey knowledge among peers.

4.2 Inferential analysis

In this section, we present the results of the bivariate analysis using the H statistic of the Kruskal-Wallis test to detect possible statistically significant differences among the different student profiles and the mean evaluation of the items presented.

Table 2 shows the mean of each category in each item and the H statistic, from the perspective of the student creating content in the learning community. The empirical results show that the proposed activity increases motivation for the subject (item 1a) and student performance (item 1b). Furthermore, the students in the Student-Teacher role consider that there is a significant improvement in their creativity (item 1d) and communication skills (item 1f), which is an important aspect to convey knowledge among peers.
Table 2 Student-Teacher activities: Inferential analysis

Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL											
	Man	Woman	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test						
1			[18–30)	[30–45)	[45-over)											
a.	Increases my motivation	4.33	4.75	2.67	4.50	4.44	4.33	0.50	4.00	4.52	4.25	0.73	4.29	4.50	0.18	4.25
b.	Increases my performance	4.33	4.63	1.25	4.40	4.38	4.67	0.31	4.00	4.43	4.50	0.33	4.14	4.50	0.99	4.41
c.	Increases my responsibility for learning	4.38	4.38	0.09	4.40	4.56	3.33	1.38	3.50	4.43	4.50	0.42	4.57	4.32	0.08	4.38
d.	Increases creativity	4.29	4.50	0.24	4.40	4.50	3.33	2.18	4.00	4.30	4.75	2.02	3.57	4.59	4.55**	4.34
e.	Builds useful and significant knowledge	4.24	4.50	0.24	4.40	4.44	3.33	4.08	3.50	4.39	4.25	3.08	4.14	4.36	0.42	4.31
f.	Develops my communication and knowledge transfer skills	4.33	4.50	0.66	4.20	4.56	4.00	2.93	3.00	4.52	4.25	6.21**	3.86	4.55	3.72*	4.38
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL											
------	--------	-----	----------------------	------	-------											
	Man	Woman	H-test	[18–30)	[30–45)	[45-over)	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test		
2	The capacity to produce digital content helped me:															
	a. Fix content in the learning process	4.30	4.88	3.49*	4.78	4.44	3.67	5.46*	5.00	4.48	4.25	1.60	4.33	4.50	0.29	4.46
	b. Summarise the key aspects of the problem	4.40	4.63	0.55	4.67	4.44	4.00	3.17	4.00	4.48	4.50	0.82	4.50	4.45	0.00	4.46
	c. Improve oral presentational skills about an economic topic	4.35	4.38	0.09	4.22	4.50	4.00	1.04	2.00	4.39	4.75	4.11	4.50	4.32	0.009	4.36
	d. Improve results in evaluation of the subject	4.45	4.25	0.20	4.56	4.31	4.33	1.02	3.00	4.48	4.25	3.62	4.67	4.32	1.11	4.39
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL											
------	--------	-----	----------------------	------	-------											
	Man	Woman	H-test	[18–30)	[30–45)	[45-over)	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test		
3	Involvement in the project allowed me to:															
	a. Trust in my skills to face new learning challenges	3.95	3.56	0.76	4.00	3.81	3.33	1.18	2.33	3.96	4.25	6.66**	3.50	3.95	0.95	3.83
	b. Improve my problem-solving capacity	4.00	3.89	0.01	4.09	4.00	3.33	3.11	3.00	4.04	4.25	4.02	3.88	4.00	0.01	3.97
	c. Develop information search and management skills	4.14	3.75	0.72	4.10	4.06	3.67	0.79	3.00	4.09	4.25	1.98	4.14	4.00	0.05	4.03
4	The skills acquired by producing and recording the video allowed me to:															
	a. Improve my ability to analyse and summarise	3.95	4.00	0.01	4.11	3.94	3.67	0.71	3.00	4.00	4.00	1.56	4.17	3.91	0.51	3.96
Table 2 (continued)

Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL											
	Man	Woman	H-test	[18–30)	[30–45)	[45-over)	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test		
b. Improve how I manage information	4.05	4.13	0.07	4.33	4.00	3.67	2.36	4.00	4.09	4.00	0.06	4.33	4.00	0.95	4.07	
c. Increase my autonomy	3.85	3.88	0.01	4.22	3.81	3.00	1.66	2.00	3.83	4.50	3.03	4.50	3.68	1.99	3.86	
d. Foster active learning	4.10	4.50	1.80	4.44	4.25	3.33	5.25*	4.00	4.17	4.50	0.86	4.17	4.23	0.03	4.21	
e. Improve oral communication	4.20	4.00	0.29	4.33	4.00	4.33	1.19	3.00	4.13	4.50	2.56	4.50	4.05	1.35	4.14	
5 I believe that content production fosters skills focused on employability	4.05	3.89	0.08	4.18	3.88	4.00	0.74	4.00	3.87	4.75	3.66	4.13	3.95	0.17	4.00	
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL											
------	--------	-----	-----------------------	------	-------											
	Man	Woman	H-test	[18–30)	[30–45)	[45-over)	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test		
6	In favour of including the video in a repository for the virtual subject course	4.80	4.63	0.09	4.56	4.81	5.00	0.80	2.00	4.87	4.75	6.59**	4.83	4.73	0.01	4.75
7	In favour of sharing the video recorded with:	3.81	3.29	1.36	4.11	3.44	3.67	0.95	4.00	3.55	4.25	0.44	3.50	3.73	0.54	3.68
	a. Fellow students studying the subject this academic year	4.38	4.25	0.03	4.20	4.56	3.67	0.69	2.00	4.52	4.50	6.38**	3.57	4.59	6.06**	4.34
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL											
---	--------	-----	----------------------	------	-------											
	M	F	H-test													
	18–30	30–45	45-over													
	H-test	Part time	Full time	Not working	H-test											
c. Students on the same degree course	3.48	2.86	0.96	3.44	3.38	2.67	0.52	3.00	3.18	4.25	1.80	3.33	3.32	0.05	3.32	
	d. Students enrolled at the UNED	3.62	3.63	0.00	3.10	4.06	3.00	2.52	1.00	3.74	4.25	5.42*	3.00	3.82	1.85	3.62
8 Degree of acceptance of disseminating the digital contents on social media	3.24	3.63	0.49	3.00	3.75	2.33	3.23	2.00	3.39	3.75	0.52	3.32	3.32	0.05	3.32	
9 Which social media platforms would they use to share the recording?																
a. Facebook	2.25	1.00	1.13	2.31	2.00	2.09	1.25	0.98	1.40	2.05	0.61	1.93				
b. Instagram	2.11	1.86	2.13	2.00	0.05	2.00	2.05	2.00	0.56	1.00	2.30	3.18*	2.04			
c. YouTube	3.33	3.25	0.00	3.60	3.25	2.67	0.40	3.29	3.32	0.04	3.31					
d. Twitter	2.37	1.00	1.88	2.07	2.00	1.60	2.00	2.55	2.24	2.55	2.00					
e. LinkedIn	2.63	2.43	0.10	2.56	2.71	2.00	0.49	4.00	2.40	2.75	1.00	2.33	2.65	0.25	2.58	
Table 2 (continued)

Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL										
	Man	Woman	H-test	[18–30)	[30–45)	[45-over)	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test	
f. Other	1.81	1.00	2.62	1.43	1.54	2.00	0.46	1.00	1.68	1.00	0.46	1.40	1.61	1.26	1.57
10 Stages of the activity involving the greatest effort:															
a. Selecting the information	3.45	2.86	1.02	3.22	3.27	3.67	0.41	3.00	3.45	2.50	2.26	3.80	3.18	2.05	3.30
b. Structuring and summarising content	3.85	3.86	0.12	3.33	4.13	4.00	2.63	4.00	4.05	2.75	2.75	3.60	3.91	0.01	3.85
c. Generating content	3.35	3.86	1.74	3.00	3.80	3.33	2.59	4.00	3.73	2.00	**7.13**	3.40	3.50	0.00	3.48
d. Learning about the tool to record the digital content	2.40	2.43	0.18	2.56	2.53	1.33	3.74	3.00	2.32	2.75	0.82	2.60	2.36	0.38	2.41
e. Recording the video	3.00	2.67	0.28	2.89	2.93	3.00	0.03	2.00	2.90	3.25	0.93	3.00	2.90	0.07	2.92
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL										
------	--------	-----	----------------------	------	-------										
	Man	Woman	H-test	Man	Woman	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test		
f. Adapting the content and recording to available time	3.35	2.00	0.35	2.89	3.67	2.33	3.26	2.00	3.50	2.25	3.48	3.00	3.32	0.20	3.26
g. Producing an educational resource to facilitate collaborative environments	3.40	3.00	0.40	3.22	3.33	3.33	0.01	3.00	3.45	2.50	2.29	3.40	3.27	0.51	3.30
11 Would take part in video content generation again	4.76	5.00	1.70	4.82	4.80	5.00	0.95	4.33	4.86	5.00	1.90	4.57	4.91	1.85	4.83

Note: The values in bold indicate significant differences at 10%(*), 5%(**), and 1%(**). Homoscedasticity of data is assumed.
Subject-matter creation enables the students to improve their capacity to fix content in the learning process (item 2a) and to summarise the fundamental concepts of the exercise (item 2b). Regarding this first aspect, the Kruskal-Wallis and Dunn tests detect significant differences between students aged 18 to 30 and those over 45 (Dunn \(p \)-value = 0.02). Therefore, creating videos has a greater effect in helping to fix content in the learning process within the group of individuals belonging to Generations Z and Y, considered to be digital natives. Furthermore, recording the videos facilitates active learning among the students (item 3d), particularly among the younger age groups (Dunn \(p \)-value = 0.034).

Meanwhile, a high average score is given to the inclusion of the recorded videos in a repository for future students of the subject (item 5), which fosters active learning through the creation of virtual learning forums developed by the students themselves. It also drives collective cooperation in subsequent academic years. However, the content creators prove more averse to the videos recorded being distributed beyond this virtual learning forum, in particular on platforms such as Facebook, Twitter or Instagram. Presentation on YouTube obtained a more favourable response.

With regard to the stage involving the greatest effort for the participants in performing the activities, we would highlight the stages corresponding to the preparation of content, such as structuring and summarisation (item 10b) and content generation (item 10c). In this latter regard, significantly greater effort was seen in the case of students working full time, compared with students who are not in work (Dunn \(p \)-value = 0.0043), who reveal greater limitations on their study time.

Lastly, the generation of content by those students in the role of teacher was highly satisfactory, with an average score of 4.83 out of 5 indicating that they would take part in the project again (item 11). It also demonstrates that the creation of collaborative digital environments in a hybrid university strengthens skills and the learning process of the students playing an active part in the peer teaching communities.

Table 3 presents the results obtained from the mean score given to the activity proposed on the part of students in the learner role. One may emphasise the high degree of satisfaction among students as to the benefits derived from using videos to pass the subject, as well as the creation of collaborative environments during the learning process.

The participants specifically emphasised that the videos recorded by their peers help them to better understand the concepts of the subject (item 12a), and to supplement the teaching materials of the subject, particularly among women. Significant differences are furthermore found in favour of students not only using the videos, but also producing them, thereby facilitating a mutual context of cooperation, benefitting the creation of teaching materials for the learning community. The proposed activity was viewed favourably by the participants, in giving them greater flexibility in their study and the self-regulation of their learning, an essential characteristic in hybrid university teaching. This characteristic was significantly better rated by students in the age range 30 to 45 (Dunn \(p \)-value = 0.0207). Meanwhile, there was an improvement in the performance in the subject within this same group of students, who represent the majority in hybrid university teaching (Dunn \(p \)-value = 0.08).
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL										
	Man	Woman	H-test	[18–30]	[30–45]	[45-over]	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test	
12	The videos recorded by other students helped them to:														
a. understand the theoretical and practical concepts															
	4.03	4.35	3.69*	4.00	4.24	3.94	2.10	4.13	4.08	4.33	0.34	4.04	4.29	2.07	4.11
b. Supplement the teaching materials for the subject															
	4.03	4.35	3.91**	4.00	4.24	3.94	2.12	4.00	4.10	4.33	0.34	4.02	4.33	3.47*	4.11
c. Plan their learning better															
	3.58	3.94	1.89	3.86	3.76	3.18	3.78	3.38	3.68	3.38	0.35	3.55	3.95	2.26	3.66
d. Give them greater self-regulation of their learning															
	3.78	3.76	0.07	3.76	4.00	3.29	6.17**	3.38	3.80	4.00	0.88	3.73	3.90	0.57	3.77
e. Improve their performance in the subject															
	3.90	3.94	0.91	3.67	4.16	3.65	5.15*	3.75	3.92	4.00	0.26	3.84	4.10	1.23	3.91
Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL										
------	--------	-----	----------------------	------	-------										
	Man	Woman	H-test	[18–30]	[30–45]	[45-over]	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test	
13	4.22	4.29	0.00	4.29	4.18	4.29	0.27	4.50	4.19	4.33	0.81	4.31	4.05	2.01	4.24
	They believe that they have the digital skills to search for and distinguish useful information														
14	3.95	4.00	0.19	4.10	4.13	3.41	4.51	4.13	3.90	4.33	1.07	3.93	4.05	0.44	3.96
	The proposed activity allowed them to develop skills that are more difficult to achieve with other traditional methodologies on offer.														
Table 3 (continued)

Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL										
	Man	Woman	H-test	[18–30]	[30–45]	[45-over]	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test	
15	4.39	4.47	0.93	4.52	4.45	4.18	2.32	4.75	4.35	4.50	1.71	4.35	4.57	2.69	4.41
	They found learning through the content videos more effective than printed materials														
16	4.08	4.24	1.39	4.33	4.08	3.94	1.60	4.75	4.05	4.00	6.01**	3.98	4.48	5.78**	4.12
	The inclusion of digital learning resources serves to:														
	a. Improve information retention														
	b. Make the educational content more permanent														
	c. Provide feedback about learning														
	d. Reuse and improve the content														
Table 3 (continued)

Item	GENDER	AGE	EMPLOYMENT SITUATION	ROLE	TOTAL										
	Man	Woman	H-test	[18–30]	[30–45]	[45-over]	H-test	Part time	Full time	Not working	H-test	Student-Learner	Student-Teacher	H-test	
17	4.41	4.65	**4.47**	4.62	4.47	4.24	1.35	4.75	4.42	4.50	1.26	4.38	4.67	1.45	4.46
	They see it as important to facilitate models in which information circulates horizontally, generating user networks which create collaborative learning environments.														

Note: The values in bold indicate significant differences at 10%(*), 5%(**), and 1% (**). Homoscedasticity of data is assumed.
The results also show that the proposed learning method improves skills that would be more difficult to develop in traditional learning systems (item 14). Similarly, the high mean rating given to item 15 clearly confirms that the students prefer a learning method using videos with content created by their peers, rather than the traditional learning method using printed materials.

Meanwhile, the benefits derived from the use of digital learning resources include better retention of information (item 16a), particularly those also playing the role of teacher. Furthermore, students who work part time reveal a significant improvement in their capacity to retain information, compared with students who do not have a job (Dunn \(p \)-value = 0.058). Lastly, one of the most relevant results of this study is the high value placed by students on facilitating collaborative learning environments, where information circulates horizontally, generating user networks among their peers. This demonstrates the potential demand for the implementation of this learning method on the part of students themselves.

5 Conclusion

Digital content production on the part of students, and strategies to facilitate peer learning, are aspects that still have to be developed, and have seen little research in hybrid and online university teaching. This study represents a genuine contribution in establishing the theoretical framework and better understanding the perceptions and profiles of the students who generate such content with the aim of teaching their peers, as well as those students who learn through such digital content.

The students show a demand for this type of activity, which they rate very highly. Specifically, the students acting as “teachers” believe that this activity increases their motivation for the subject and their performance, while likewise feeling that it makes a significant improvement to their creativity and communication skills. They would definitely repeat the project, indicating their high degree of satisfaction. Those students who merely view the materials likewise have a very positive perspective of this type of initiative with their peers, and prefer a learning method using content videos created by their fellow students, to traditional learning with printed materials.

Another original finding is that recording the videos facilitates active learning among the students, in particular in the younger age groups. Furthermore, in terms of preparing the subject, it was found that the students that generated the digital material managed to fix and retain the content better and summarise the fundamental concepts of the exercise, representing a key additional benefit for the student-teachers. As for the distribution of the material, it would seem preferable to confine this to the educational context, although some creators suggested the use of YouTube as a social media platform, perhaps because it is more aligned with tutorials and support videos for a wide range of learning.

This type of educational experiment could have a notable role to play in improving hybrid and online teaching, if used properly. It could serve as a way of facilitating student motivation towards novel media, giving them greater responsibility and facilitating their involvement, or developing a problem-based focus, as indicated by
Campbell et al. (2020). We furthermore agree with Belt and Lowenthal (2021) and with Rodríguez-Illera and Escofet-Roig (2006): the videos created by students lead to greater collaboration and skills development (in other words, technological capabilities) among the learners. This also promotes the construction of deeper mental models and understandings (Dyson & Frawley, 2018).

The pedagogical design of this experiment highlights a constructivist approach from the perception of the student, who takes on a more active role, even acting as teacher. And also in terms of interaction with other students, where we recognise the social nature of learning, as social constructivism theorises, postulating that learners build their understanding by interacting with a teacher and more advanced fellow students. This ties in with Vygotsky’s theory of the Zone of Proximal Development, in which “the level of potential development is determined through problem-solving under adult guidance or in collaboration with more capable peers” (Vygotsky, 1978, p. 86). In remote learning environments, it would be desirable to create the kind of Zone of Proximal Development that may arise through in-person teaching, or as Sangrà (2001) postulates, to promote learning networks, at all times placing students centre-stage in their learning, and in relation to their peers.

Size could constitute the main limitation of the research, although the sample does not differ from that used in other similar student-recorded video experiments (Dart et al., 2020). In any event, the original findings presented here could steer certain lines of development for learning in remote teaching. While also opening up new avenues of research for the better use of peer teaching and digital content in remote teaching.

Authors’ contributions Adrián Mendieta-Aragón: Conceptualization, Methodology, Formal Analysis, Writing. Raquel Arguedas-Sanz: Data curation, Visualization, Investigation. Luis Manuel Ruiz-Gómez: Data curation, Draft preparation, Investigation. Julio Navío-Marco: Supervision, Writing, Reviewing and Editing.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability The datasets generated during and analyzed during the current study are not publicly available because individual privacy could be compromised, but are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors have no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
References

Anuradha, V., & Rengaraj, M. (2017). Storytelling: Creating a Positive Attitude Toward Narration Among Engineering Graduates. *IUP Journal of English Studies, 12*(1), 32–38.

Aretio, L. G. (2021). COVID-19 y educación a distancia digital: preconfinamiento, confinamiento y posconfinamiento. *RIED Revista Iberoamericana de Educación a Distancia, 24*(1), 9–32. https://doi.org/10.5944/ried.24.1.28080

Atik, G., & Yağçın, I. (2010). Counseling needs of educational sciences students at the Ankara University. *Procedia - Social and Behavioral Sciences, 2*(2), 1520–1526. https://doi.org/10.1016/J.SBSPRO.2010.03.228

Barvinski, C., Ferreira, G., Machado, L., Longhi, M., & Behar, P. (2019). Construction of a socio-emotional profile model of students in a virtual learning environment. En V.L. Uskov, R.J. Howlett, y L.C. Jain, (Ed.), *Smart Education and e-Learning 2019* (pp. 159–168). Springer.

Bates, S. P., Galloway, R. K., & McBride, K. L. (2012). Student-generated video content: Using PeerWise to enhance engagement and outcomes in introductory physics courses. *AIP Conference Proceedings, 1413*(1), 123–126. https://doi.org/10.1063/1.3680009

Barron, B. (2006). Interest and self-sustained learning as catalysts of development: A learning ecology perspective. *Human Development, 49*, 193–224. https://doi.org/10.1159/000094368

Belt, E. S., & Lowenthal, P. R. (2021). Video use in online and blended courses: A qualitative synthesis. *Distance Education, 42*(3), 410–440. https://doi.org/10.1080/01587919.2021.1954882

Boelens, R., De Wever, B., & Voet, M. (2017). Four key challenges to the design of blended learning: A systematic literature review. *Educational Research Review, 22*, 1–18. https://doi.org/10.1016/j.edurev.2017.06.001

Bozkurt, A., & Keefer, J. (2017). Participatory learning culture and community formation in connectivist MOOCs. *Interactive Learning Environments, 26*(6), 776–788. https://doi.org/10.1080/10494820.2017.1412988

Bryson, C., & Hand, L. (2007). The role of engagement in inspiring teaching and learning. *Innovations in Education and Teaching International, 44*(4), 349–362. https://doi.org/10.1080/14703290701602748

Campbell, L. O., Heller, S., & Pulse, L. (2020). Student-created video: An active learning approach in online environments. *Interactive Learning Environments, 1–10*. https://doi.org/10.1080/10494820.2020.1711777

Chandra, S., & Palvia, S. (2021). Online education next wave: peer to peer learning. *Journal of Information Technology Case and Application Research, 23*(3), 157–172. https://doi.org/10.1080/15228053.2021.1980848

Collis, B., & Moonen, J. C. (2005). An on-going journey: Technology as a learning workbench. University of Twente. https://research.utwente.nl/en/publications/an-on-going-journey-technology-as-a-learning-workbench. Accessed 12 July 2022

Cullen, J. (2020). Prosumerism in Higher Education—Does It Meet the Disability Test? In R. H. Kinshuk, M. Jenni, N. Chen, J. M. Spector (Ed.), *Lecture Notes in Educational Technology* (pp. 105–121). Springer.

Dart, S., Pickering, E., & Dawes, L. (2020). Worked example videos for blended learning in undergraduate engineering. *AEE Journal, 8*(2), 1–22. https://doi.org/10.18260/3-1-1153-36021

Dyson, L. E., & Frawley, J. K. (2018). A student-generated video careers project: understanding the learning processes in and out of the classroom. *International Journal of Mobile and Blended Learning, 10*(4), 32–51. https://doi.org/10.4018/IJMBL.2018100103

Dumford, A. D., & Miller, A. L. (2018). Online learning in higher education: exploring advantages and disadvantages for engagement. *Journal of Computing in Higher Education, 30*(3), 452–465. https://doi.org/10.1007/s12528-018-9179-z
Engin, M. (2014). Extending the flipped classroom model: Developing second language writing skills through student-created digital videos. *Journal of the Scholarship of Teaching and Learning, 14*(5), 12–26. https://doi.org/10.14434/josotlv1415.12829

Falkner, K., & Falkner, N. J. G. (2012). Supporting and structuring “contributing student pedagogy” in Computer Science curricula. *Computer Science Education, 22*(4), 413–443. https://doi.org/10.1080/08993408.2012.727713

Fellenz, M. R. (2004). Using assessment to support higher level learning: The multiple choice item development assignment. *Assessment and Evaluation in Higher Education, 29*(6), 703–719. https://doi.org/10.1080/0260293042000227245

Gamlath, S. (2021). Peer learning and the undergraduate journey: a framework for student success. *Higher Education Research & Development, 1–15*. https://doi.org/10.1080/07294360.2021.1877625

Gerbaudo, R., Gaspar, R., & Gonçalves Lins, R. (2021). Novel online video model for learning information technology based on micro learning and multimedia micro content. *Education and Information Technologies, 26*(5), 5637–5665.

González Fernández, M. O., & Huerta Gaytán, P. (2019). Experiencia del aula invertida para promover estudiantes prosumidores del nivel superior. *RIED Revista Iberoamericana de Educación a Distancia, 22*(2), 245. https://doi.org/10.5944/ried.22.2.23065

Grech, V., & Calleja, N. (2018). WASP (Write a Scientific Paper): Parametric vs. non-parametric tests. *Early Human Development, 123*, 48–49. https://doi.org/10.1016/j.earhumdev.2018.04.014

Hakkarainen, K. (2009). A knowledge-practice perspective on technology-mediated learning. *International Journal of Computer-Supported Collaborative Learning, 4*(2), 213–231. https://doi.org/10.1007/s11412-009-9064-x

Hardy, J., Bates, S. P., Casey, M. M., Galloway, K. W., Galloway, R. K., Kay, A. E., Kirso, P., & McQueen, H. A. (2014). Student-Generated Content: Enhancing learning through sharing multiple-choice questions. *International Journal of Science Education, 36*(13), 2180–2194. https://doi.org/10.1080/09500693.2014.916831

Hoban, G., Nielsen, W., & Shepherd, A. (2015). Student-generated digital media in science education: Learning, explaining and communicating content. Routledge.

Ion, G., Barrera-Corominas, A., & Tomás-Folch, M. (2016). Written peer-feedback to enhance students’ current and future learning. *Int Journal of Educational Technology in Higher Education, 13*(1), 1–11. https://doi.org/10.1186/s41239-016-0017-y

Kaur, M. (2013). Blended Learning - Its Challenges and Future. *Procedia - Social and Behavioral Sciences, 93*, 612–617. https://doi.org/10.1016/j.sbspro.2013.09.248

Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. *Journal of the American Statistical Association, 47*(260), 583. https://doi.org/10.2307/2280779

Lim, C. L., Ab Jail, H., Ma´ruf, A. M., & Saad, W. Z. (2020). Self-Regulated Learning as a Mediator in the Relationship between Peer Learning and Online Learning Satisfaction: A Study of a Private University in Malaysia. *Malaysian Journal of Learning and Instruction, 17*(1), 51–75.

Latifi, S., Noroozi, O., & Talaee, E. (2021). Peer feedback or peer feedforward? Enhancing students’ argumentative peer learning processes and outcomes. *British Journal of Educational Technology, 52*(2), 768–784. https://doi.org/10.1111/bjet.13054

Mazur, E. (1997). *Peer Instruction: A User’s Manual*. Prentice Hall series in educational innovation.

McDonald, A., McGowan, H., Dollinger, M., Naylor, R., & Khosravi, H. (2021). Repositioning students as co-creators of curriculum for online learning resources. *Australasian Journal of Educational Technology, 37*(6), 102–118. https://doi.org/10.14742/ajet.6735

Muir, T., Milthorpe, N., Stone, C., Dymt, J., Freeman, E., & Hopwood, B. (2019). Chronicling engagement: Students’ experience of online learning over time. *Distance Education, 40*(2), 262–277. https://doi.org/10.1080/01587919.2019.1600367

Navio-Marco, J., Ruiz-Gómez, L. M., Arguedas-Sanz, R., & López-Martín, C. (2022). The student as a prosumer of educational audio–visual resources: a higher education hybrid learning experience. *Interactive Learning Environments, 1–18*. https://doi.org/10.1080/10494820.2022.2091604

Neranzi, C. (2020). The use of peer instruction and flipped learning to support flexible blended learning during and after the COVID-19 Pandemic. *International Journal of Management and Applied Research, 7*(2), 184–195. https://doi.org/10.18646/2056.72.20-013

Nipa, T. J., & Kermanshachi, S. (2020). Assessment of open educational resources (OER) developed in interactive learning environments. *Education and Information Technologies, 25*(4), 2521–2547. https://doi.org/10.1007/S10639-019-10081-7
Okoye, K., Rodriguez-Tort, J. A., Escamilla, J., & Hosseini, S. (2021). Technology-mediated teaching and learning process: A conceptual study of educators’ response amidst the Covid-19 pandemic. Education and Information Technologies, 26(6), 7225–7257.

Peters, M., Guijert-Catáusí, M., & Romero, M. (2021). Student learning ecologies in online higher education: a model to support connected learning across contexts. Higher Education Research & Development, 1–17. https://doi.org/10.1080/07294360.2021.2014408

Pool, J., Reitsma, G., & Van den Berg, D. (2017). Revised Community of Inquiry: Examining Learning Presence in a Blended Mode of Delivery. Online Learning, 21(3), 153–165. https://doi.org/10.24059/olj.v21i3.866

Potter, J., & McDougall, J. (2017). Digital media, culture and education: Theorising third space literacies. Palgrave McMillan.

Rasheed, R. A., Kamsin, A., & Abdullah, N. A. (2021). An Approach for Scaffolding Students Peer-Learning Self-Regulation Strategy in the Online Component of Blended Learning. IEEE Access: Practical Innovations, Open Solutions, 9, 30721–30738. https://doi.org/10.1109/ACCESS.2021.3059916

Reyna, J., & Meier, P. (2018). Using the Learner-Generated Digital Media (LGDM) framework in tertiary science education: A pilot study. Education Sciences, 8(3), 106. https://doi.org/10.3390/eduisci8030106

Reyna, J., Hanham, J., Vlachopoulos, P., & Meier, P. (2021). A systematic approach to designing, implementing, and evaluating learner-generated digital media (LGDM) assignments and its effect on self-regulation in tertiary science education. Research in Science Education, 51(6), 1501–1527.

Rodríguez-Illera, J. L., & Escofet-Roig, A. (2006). Aproximación centrada en el estudiante como productor de contenidos digitales en cursos híbridos. RUSC Universities and Knowledge Society Journal, 3(2), 20–28.

Sangrà, A. (2001). Enseñar y aprender en la virtualidad. Educar, 28, 117–131. https://doi.org/10.5565/rev/educar.394

Sangrà, A., Raffaghelli, J. E., & Guijert-Catáusí, M. (2019). Learning ecologies through a lens: Ontological, methodological and applicative issues. A systematic review of the literature. British Journal of Educational Technology, 50(4), 1619–1638. https://doi.org/10.1111/bjet.12795

Sannino, A., Engeström, Y., & Jokinen, E. (2021). Digital peer learning for transformative professional agency: The case of homelessness practitioners in Finland. British Journal of Educational Technology, 52(4), 1612–1628. https://doi.org/10.1111/bjet.13117

Schell, J., & Mazur, E. (2015). Flipping the chemistry classroom with peer instruction. In E. J. García-Martínez, E. Serrano-Torregrosa, & P. Atkins (Eds.), Chemistry Education: Best Practices, Opportunities and Trends (pp. 319–344). Wiley.

Solórzano-García, M., & Navío-Marco, J. (2019). Developing social entrepreneurs through distance education: The value of commitment and interactivity with the learning community. International Journal of Mobile Learning and Organisation, 13(1), 30–50. https://doi.org/10.1504/IJMLO.2019.096466

Tang, Y. M., Lau, Y. Y., & Chau, K. Y. (2022). Towards a sustainable online peer learning model based on student’s perspectives. Education and Information Technologies. https://doi.org/10.1007/s10639-022-11136-y

Topping, K. J. (1996). The effectiveness of peer tutoring in further and higher education: A typology and review of the literature. Higher Education, 32(3), 321–345.

Vygotsky, L. S. (1962). Thought and language. Cambridge University Press.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Wenger, E. (1998). Communities of practice: Learning as a social system. Systems Thinker. https://thesystemsthinker.com/communities-of-practice-learning-as-a-social-system/. Accessed 17 July 2022

Xiao, Y., & Lucking, R. (2008). The impact of two types of peer assessment on students’ performance and satisfaction within a Wiki environment. The Internet and Higher Education, 11(3–4), 186–193. https://doi.org/10.1016/j.ihedu.2008.06.005

Zhou, M., Dzingirai, C., Hove, K., Chitata, T., & Mugandani, R. (2022). Adoption, use and enhancement of virtual learning during COVID-19. Education and Information Technologies, 27, 8939–8959. https://doi.org/10.1007/s10639-022-10985-x

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

Adrián Mendieta-Aragón¹,² · Raquel Arguedas-Sanz³ · Luis Manuel Ruiz-Gómez⁴ · Julio Navío-Marco⁴

Raquel Arguedas-Sanz
rarguedas@cee.uned.es

Luis Manuel Ruiz-Gómez
lruiz@cee.uned.es

Julio Navío-Marco
jnavio@cee.uned.es

¹ Department of Economic Analysis, National University of Distance Education (UNED), Madrid, Spain

² Facultad de Económicas, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey, 11, 28040 Madrid, Spain

³ Department of Business Economics and Accounting, National University of Distance Education (UNED), Madrid, Spain

⁴ Department of Business Organization, National University of Distance Education (UNED), Madrid, Spain