FUNCTIONS WITH LARGE ADDITIVE ENERGY SUPPORTED ON A HAMMING SPHERE

JAMES AARONSON

Abstract. In this note, we prove that, among functions f supported on a Hamming Sphere in \mathbb{F}_2^n with fixed ℓ^2 norm, the additive energy is maximised when f is constant. This answers a question asked by Kirshner and Samorodnitsky.

1. Introduction

For a function $f : \mathbb{F}_2^n \to \mathbb{R}$, we define its Gowers u_2 norm to be

$$||f||_{u_2} = \left(\mathbb{E}_{a_1, a_2, a_3, a_4 \in \mathbb{F}_2^n} f(a_1)f(a_2)f(a_3)f(a_4) \right)^{1/4}. \tag{1.1}$$

This is also called the additive energy of f. This agrees with the usual notion of energy for sets (up to a scaling), in the sense that $||1_A||_{u_2}^4 = \frac{E(A)}{N^3}$, where $N = 2^n$ is the size of \mathbb{F}_2^n. Similarly, we will define the ℓ^2 norm to be

$$||f||_2 = \left(\mathbb{E}_{a \in \mathbb{F}_2^n} f(a)^2 \right)^{1/2}.$$

For a set $A \subseteq \mathbb{F}_2^n$, define $\mu(A)$ by

$$\mu(A) = \max_{f : \mathbb{F}_2^n \to \mathbb{R}} \frac{||f||_{u_2}^4}{||f||_2}, \tag{1.2}$$

where $\text{supp}(f)$ denotes the support of f. Let the Hamming Sphere $S(n, k) \subseteq \mathbb{F}_2^n$ consist of those vectors of weight k; in other words, $S(n, k)$ consists of those vectors with exactly k ones.

In [2], Kirshner and Samorodnitsky made the following conjecture:

Conjecture (Conjecture 1.9 from [2]). Let $A = S(n, k)$. Then, $\mu(A) = \frac{1}{N} \frac{E(A)}{|A|^2}$.

In other words, the ratio $\frac{||f||_{u_2}^4}{||f||_2}$ achieves its maximum when f is constant.

The purpose of this note is to establish this conjecture.

Theorem 1.1. Let $A = S(n, k)$. Then, $\mu(A) = \frac{1}{N} \frac{E(A)}{|A|^2}$.

Remark. Kirshner and Samorodnitsky define $\mu(A)$ as the maximal value of $\frac{||f||_{u_2}^4}{||f||_2}$ among functions whose Fourier transform is supported on A. However, it can easily be seen that these two formulations are equivalent (up to normalisation) by taking a Fourier transform, and using Parseval’s identity and the relation that $||f||_{u_2}^4 = ||\hat{f}||_{u_2}^4$.

\[\text{arXiv:1805.05295v1 [math.CO]} 14 \text{ May 2018.} \]
2. Proof of Theorem 1.1

Throughout the proof, let e_1, \ldots, e_n denote the standard basis for \mathbb{F}_2^n, so that any element of \mathbb{F}_2^n may be written $\sum_i \varepsilon_i e_i$, where $\varepsilon_i \in \{0, 1\}$. If $v, w \in \mathbb{F}_2^n$, let $\langle v, w \rangle$ denote the standard inner product of v and w. In other words,

$$\left\langle \sum_i \varepsilon_i^{(1)} e_i, \sum_i \varepsilon_i^{(2)} e_i \right\rangle = \sum_i \varepsilon_i^{(1)} \varepsilon_i^{(2)}.$$

Our approach for proving Theorem 1.1 relies on the following lemma about compressions.

Definition 2.1. For a function $f : \mathbb{F}_2^n \to \mathbb{R}$ and $i < j \leq n$, define the i, j compression $f^{(ij)}$ as follows:

$$f^{(ij)}(x) = \begin{cases} f(x) & \langle x, e_i + e_j \rangle = 0 \\ \sqrt{\frac{f(x)^2 + f(x + e_i + e_j)^2}{2}} & \text{otherwise}, \end{cases}$$

In other words, let $\pi_{ij} : \mathbb{F}_2^n \to \mathbb{F}_2^{(n-2)}$ denote the projection given by ignoring the coefficients of e_i and e_j. Then, $f^{(ij)}(x)$ is the ℓ^2-average of f over elements of the coset of $\ker \pi_{ij}$ containing x, which have the same Hamming weight as x.

The proof of Theorem 1.1 relies on the following lemma about compressions.

Lemma 2.2. Let $A = S(n, k)$, and suppose that f is supported on A.

- (1) $f^{(ij)}$ is also supported on A.
- (2) $\|f^{(ij)}\|_2 = \|f\|_2$.
- (3) $\|f^{(ij)}\|_{w_2} \geq \|f\|_{w_2}$.
- (4) $\|f^{(ij)}\|_{w_2} > \|f\|_{w_2}$ unless $f = f^{(ij)}$.

Proof. The proofs of (1) and (2) follow immediately from Definition 2.1.

For (3), observe that we may rewrite (1.1) as follows.

$$\|f\|_{w_2}^4 = \frac{1}{4^3} \sum_{b_1, b_2, b_3, b_4 \in \pi_{ij}(\mathbb{F}_2^n)} \left(\sum_{a_1 \in \pi_{ij}^{-1}(b_1) \cap A} f(a_1) f(a_2) f(a_3) f(a_4) \right), \quad (2.1)$$

where the outer expectation is over cosets of $\ker \pi_{ij}$, and the factor of $\frac{1}{4^3}$ comes from the fact that we have renormalised the inner expectation to be a summation. Our strategy will be to prove that each bracketed term on the right hand side of (2.1) does not decrease when we pass from f to $f^{(ij)}$.

Observe that, if f is supported on A, then the outer expectation of (2.1) may be restricted to terms such that each b_i has Hamming weight either $k, k-1$ or $k-2$, and the size of $\pi_{ij}^{-1}(b_i) \cap A$ depends on whether b_i has weight $k-1$ or not. Thus, we split naturally into three cases.

Case 1: None of b_1, b_2, b_3 or b_4 has Hamming weight $k-1$. In this case, the bracketed term is a sum over exactly one term, and is unchanged as we pass from f to $f^{(ij)}$.

Case 2: Exactly two of b_1, b_2, b_3 and b_4 have Hamming weight $k-1$. Without loss of generality, it is b_1 and b_2 which have Hamming weight $k-1$. Then, there are two
possibilities for the bracketed term, depending on how many of b_3 and b_4 have weight $k - 2$. If neither or both of them do, then we may write the bracketed term as
\[f(b_1 + e_i)f(b_2 + e_i)f(a_3)f(a_4) + f(b_1 + e_j)f(b_2 + e_j)f(a_3)f(a_4),\]
where a_3 denotes the unique element of $\pi^{-1}_{ij}(b_3) \cap A$ (and likewise for a_4). The conclusion then follows from the assertion that
\[f(b_1 + e_i)f(b_2 + e_i) + f(b_1 + e_j)f(b_2 + e_j) \leq 2f^{(ij)}(b_1 + e_i)f^{(ij)}(b_2 + e_i),\]
which is a consequence of the Cauchy Schwarz inequality. A similar argument applies if exactly one of b_3 and b_4 have weight $k - 2$.

Case 3: All four of b_1, b_2, b_3 and b_4 have Hamming weight $k - 1$. In this case, the bracketed term is now a sum of eight terms. One of the terms is
\[f(a_1)f(a_2)f(a_3)f(a_4) = f(b_1 + e_i)f(b_2 + e_i)f(b_3 + e_i)f(b_4 + e_i),\]
and the others can be obtained by replacing two or four of the e_i with e_j.

Group the terms into four pairs, according to the values of a_3 and a_4. If $a_3 = b_3 + e_1$ and $a_4 = b_4 + e_1$, for example, then we have
\[f(b_1 + e_i)f(b_2 + e_i)f(a_3)f(a_4) + f(b_1 + e_j)f(b_2 + e_j)f(a_3)f(a_4) \leq f^{(ij)}(a_1)f^{(ij)}(a_2)f(a_3)f(a_4),\]
as in case 2. The conclusion then follows from the fact that
\[f(b_3 + e_i) + f(b_3 + e_j) \leq 2f^{(ij)}(a_3),\]
which follows from Cauchy-Schwarz.

Finally, it remains to prove (1). But this is easy to do. Suppose that $f \neq f^{(ij)}$; in other words, there is some vector v of weight $k - 1$, such that $f(v + e_i) \neq f(v + e_j)$. Then, consider the term of (2.1) coming from $b_1 = b_2 = b_3 = b_4 = v$. It is easy to see that equality will not hold in the relation
\[\sum f(a_1)f(a_2)f(a_3)f(a_4) \leq 8f^{(ij)}(a_1)f^{(ij)}(a_2)f^{(ij)}(a_3)f^{(ij)}(a_4).\]

We can now complete the proof of Theorem 1.1. By compactness, there must exist some function f achieving the maximal value of $\|f\|_{u_2}$, for fixed $\|f\|_2$. Suppose that this maximal value is achieved for a function f which is not constant.

Consider the Hamming Sphere as a graph, where we join two elements v and w with an edge if and only if $w = v + e_i + e_j$ for some i and j. Then, the Hamming Sphere is connected. Thus, there must be two adjacent elements v and w for which $f(v) \neq f(w)$.

Thus, if $w = v + e_i + e_j$, then $f \neq f^{(ij)}$, and so Lemma 2.2 (1) tells us that $\|f\|_{u_2} < \|f^{(ij)}\|_{u_2}$, contradicting the maximality of $\|f\|_{u_2}$.

Therefore, f must be constant, yielding Theorem 1.1.

References

[1] Ben Green and Terence Tao. Freiman’s theorem in finite fields via extremal set theory. *Combin. Probab. Comput.*, 18(3):335–355, 2009. ISSN 0963-5483. doi: 10.1017/S0963548309009821. URL https://doi.org/10.1017/S0963548309009821.

[2] Naomi Kirshner and Alex Samorodnitsky. On $\ell_4 : \ell_2$ ratio of functions with restricted fourier support. *arXiv preprint arXiv:1801.08507*, 2018.

E-mail address: james.aaronson@maths.ox.ac.uk