Laparoscopic Exirpation of Adrenal Gland Ganglioneuroma Incidentally Diagnosed during Evaluation for Patchy Alopecia Areata in an Adolescent Boy

Zlatan Zvizdic a, Emir Haxhija c, Adisa Chikha b, Emir Milisic a, Asmir Jonuzi a, Semir Vranic d

a Department of Pediatric Surgery, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina; b Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina; c Department of Pediatric and Adolescent Surgery, Medical University Graz, Graz, Austria; d College of Medicine, QU Health, Qatar University, Doha, Qatar

Significance of the Study

- The association between alopecia and adrenal gland ganglioneuroma has not been previously reported. Alopecia, in a 17-year-old boy with adrenal ganglioneuroma, resolved following the removal of the tumor and vitamin D supplements. However, alopecia recurred despite normal serum vitamin D levels and no tumor recurrence.

Keywords
Ganglioneuroma · Adrenal gland · Alopecia areata · Laparoscopy

Abstract

Objective: We present a 17-year-old boy with an incidentally diagnosed left adrenal ganglioneuroma during the diagnostic workup of alopecia areata. Clinical Presentation and Intervention: Laboratory investigations revealed vitamin D deficiency. Laparoscopic adrenalectomy was performed and ganglioneuroma was confirmed histologically. At follow-up, the vitamin D supplements improved the vitamin D levels followed by a gradual regression of alopecia areata. However, it recurred 18 months later despite the normal levels of serum vitamin D and no tumor recurrence. Conclusion: Further studies should reveal the relationship between alopecia areata and ganglioneuroma as well as the role of vitamin D in alopecia areata.

Introduction

Ganglioneuroma (GN), a well-differentiated benign neoplasm, belongs to the group of neuroblastic tumors originating from neural crest cells that comprise a spectrum of both benign (e.g., GN) and malignant tumors (e.g., neuroblastoma). The reported incidence of GN is approximately one per million in the general population [1]. GNs occur in all age groups but are more common in older children and young adults, without gender pref-
agnostic assessment for patchy alopecia areata (AA), which
17-year-old boy, incidentally diagnosed during the diag-
cases [1].
GNs, with an excellent outcome in the vast majority of
alysis [6]. Surgery is a preferred mode of treatment for
ity and lack of specific radiological findings, the diagno-
sis difficult. The differential diagnosis of an inci-
dental adrenal mass comprises various primary (benign
and malignant) and metastatic tumors. The majority of
the incidental adrenal masses (“adrenal incidentalo-
mas”) are nonfunctional, benign lesions (82.5% of cases)
and among them, the most common ones are adrenal
cortical adenomas, myelolipomas, and adrenal cysts,
while the rarest ones are GNs [4]. GNs are mostly spo-
radic but can also be associated with neurofibromatosis
type 1 and multiple endocrine neoplasia type 2 syn-
dromes [5]. With the widespread use of radiological
studies such as ultrasonography, computed tomography
(CT), and magnetic resonance imaging (MRI), the inci-
dental detection of GN has become more common [6].
Although CT and MRI can successfully characterize the
nature of the adrenal lesion, these radiological means are
insufficient for the final diagnosis of GNs. Due to its rar-
ity and lack of specific radiological findings, the diagno-
sis is confirmed by postoperative histopathological anal-
ysis [6]. Surgery is a preferred mode of treatment for
GNs, with an excellent outcome in the vast majority of
cases [1].

We present here a rare case of an adrenal GN in a
17-year-old boy, incidentally diagnosed during the diag-
nostic assessment for patchy alopecia areata (AA), which
also revealed a deficiency in vitamin D. The tumor was
successfully treated by laparoscopic adrenalectomy. To
the best of our knowledge, this is the first report that de-
scribes the coexistence of adrenal GN and AA in a young
patient presenting a dilemma of whether it is a true asso-
ciation or a coincidence.

Case Report

A 17-year-old adolescent boy with a diagnosis of AA at the nape
of the scalp (Fig. 1) was referred to the Department of Pediatric
Surgery from the primary healthcare unit for further evaluation of
the left adrenal mass. The adrenal mass was incidentally detected
during the diagnostic workup of AA.

Laboratory investigations for complete blood count, serum
electrolytes, immunoglobulins, and urine were normal. Endocrine
tests including cortisol, adrenocorticotropic hormone levels, and
24-hour urinary catecholamines were within normal ranges. Rou-
tine tumor markers were all negative. Blood pressure was within
the normal range. Only vitamin D levels were lower: 12.6 ng/mL
and 27 ng/mL (measured twice preoperatively).

Physical examination revealed no abnormalities. Ultrasonog-
raphy of the abdomen revealed a heterogeneous, well-defined
mass, measuring $3 \times 2.5 \times 3$ cm, located in the topography of
the left adrenal gland. An MRI of the abdomen showed a well-defined
encapsulated heterogeneously enhancing left adrenal mass, meas-
suring 3×2.8 cm, free from surrounding structures, with a low
signal intensity on T1-weighted images and a high signal intensity
on T2-weighted images (Fig. 2a). The right adrenal gland was nor-
mal, and lymphadenopathy was not observed. A diagnosis of non-
functioning, probably benign, left adrenal tumor was presumed.
Due to the absence of precise diagnosis of adrenal lesion after di-
gnostic workup, an operative treatment was indicated. The pa-
tient underwent laparoscopic left adrenalectomy through a trans-
abdominal lateral approach. Four 10-mm trocars were placed in
the midclavicular, anterior axillary, midaxillary, and posterior ax-
illary lines. Splenic flexure of transverse colon and spleen were mo-
bilized from their retroperitoneal attachments and incision of ret-
roperitoneum was made along the lateral side of the spleen. After
exposure of the adrenal gland, a harmonic scalper was used to dis-
sect the tissue surrounding the gland. By blood vessel dissection,
the adrenal gland along with the tumor was removed completely
(Fig. 2b). The surgical sample was submitted for histopathologic
evaluation. Histomorphologic findings of the mass (Fig. 3a, b; mi-
croscopic description provided below the image), consistent with
a GN, were further supported by S-100 and CD56-positive tumor
cells by immunohistochemistry (Fig. 3c, d).

The postoperative course was uneventful, and the patient was
discharged on the fifth day. One-year follow-up consisted of visits
every 3 months till the end of the first year after the operation
and revealed no recurrence of the tumor. Serum and urine cortisol, ad-
renocorticotropic hormone, and catecholamines were within nor-
mal values. The patient was also treated with vitamin D supple-
ments to correct the vitamin D deficiency. Gradual regrowth of
hair at the site of patchy alopecia at 6 months was observed, but
AA recurred 18 months later. The treatment with vitamin D sup-
plements improved the serum vitamin D levels to normal values
(last check and follow-up: November 2018).

Fig. 1. Clinical presentation of patchy alopecia areata at the nape
of the scalp.
Fig. 2. a Coronal section of MRI T2-weighted image showed a well-defined encapsulated left adrenal mass (white arrow). b Intraoperative image of the left adrenal mass in situ.

Fig. 3. a, b Hematoxylin and eosin slides showing a well-demarcated, encapsulated mass; note the presence of normal adrenal cortical tissue adjacent to the tumor capsule (upper part of panel a; 10×). The tumor was composed of mature ganglion cells and Schwann cells, arranged in fascicles; immature cells were absent (b; 20×). Tumor cells were diffusely and strongly positive for S-100 (c) and CD56 (d; ×20).
The family history was negative for cancers and autoimmune diseases. No genetic testing or counselling were offered to the patient and his family as these were not available at our hospital.

Discussion

Although the exact mechanism underlying its pathogenesis is not clear, AA is a T lymphocyte-mediated autoimmune condition that affects genetically susceptible individuals. It is characterized by a patchy nonscarring hair loss, usually on the scalp, eyebrows, eyelashes, beard, or mustache, with a lifetime prevalence of 1–2% in the general population. Recent studies also revealed an important role for vitamin D and its receptor in maintaining skin homeostasis including hair follicles [7]. Therefore, vitamin D deficiency has been linked to AA [7]. In our case, the patient had hypovitaminosis D, which improved with vitamin D supplementation. However, a patchy AA recurred despite the treatment and normal serum vitamin D levels, so it remains unclear whether hypovitaminosis D was an underlying mechanism of AA.

An association between GNs and genetic/autoimmune diseases is a topic that has recently been explored. Thus, Lora et al. [8] reported two pediatric cases with multiple endocrine neoplasia type 2 syndromes due to the point mutations in the \textit{RET} proto-oncogene, and adrenal GNs. The authors concluded that GNs are a rare, but not unexpected, component of the multiple endocrine neoplasia type 2 syndromes. Although much less frequent than pheochromocytoma, GNs have been reported in patients with an autosomal dominant disorder known as neurofibromatosis type 1 or von Recklinghausen disease [8]. In addition, AA has been described as a paraneoplastic phenomenon called primary neoplastic alopecia. Paraneoplastic forms of AA have been described in association with benign and malignant entities arising in the scalp [9]. We have not found any published reports in PubMed/MEDLINE on the potential relationship between GNs or other adrenal tumors (benign or malignant) and AA; thus, the mechanism and potential relationship (if any) remain to be elucidated and require further research at both basic and translational level.

A recent study by Chen et al. [10] analyzed cancer risk in patients with AA. The authors found that three cancer types have elevated risk in AA patients including female breast cancer, kidney and bladder cancer, as well as malignant lymphomas. They concluded that cancer risk in AA patients is organ specific and is not associated with the underlying autoimmune disorders, suggesting that patients with AA and the mentioned cancers share an aberrant molecular activation of the JAK/STAT signaling pathway. The JAK/STAT pathway may be a key molecular driver involved in the pathogenesis of both AA and associated cancers [10]. However, further studies should reveal whether this or some other signaling pathways might be involved in the association between the AA and Gn.

Unlike the complete lack of understanding of the possible relationship between GNs and AA, the treatment of GNs in the form of complete surgical excision is well established as the preferred therapeutic modality. Since the early 1990s, laparoscopic adrenalectomy has replaced open adrenalectomy as the gold standard for the surgical removal of most benign adrenal tumors, with a decreased blood loss, shorter hospital stay, shorter convalescence, and diminished patient morbidity in comparison with the open surgery. In contrast, the surgical treatment of adrenal cortical carcinomas is more complex and various factors (e.g., location of the cancer, infiltration of surrounding structures) should be considered when deciding the optimal surgical approach.

Conclusion

We report for the first time a co-occurrence of an adrenal GN and AA. Alopecia was also associated with vitamin D deficiency but recurred despite the treatment and normal serum vitamin D levels, Further studies should explore the relationship between GN and AA, as well as AA and hypovitaminosis D. In addition, we confirm laparoscopic surgery as a safe and effective method for the treatment of adrenal GNs.

Statement of Ethics

This study has been performed in accordance with the ethical standards from the 1964 Declaration of Helsinki. The study was shared with the local ethical committee, which, however, has the policy not to review case reports.

Disclosure Statement

The authors declare no conflict of interest.
Adrenal Ganglioneuroma in a Patient with Alopecia Areata

References

1. Spinelli C, Rossi L, Barbetta A, Ugolini C, Strambi S. Incidental ganglioneuromas: a presentation of 14 surgical cases and literature review. J Endocrinol Invest. 2015 May;38(5):547–54.
2. Zhou Y, Liang Q, Ou WT, Li ZY, Liu QL. Laparoscopic resection of primary adrenal ganglioneuroma: A case report and review of the literature. Oncol Lett. 2015 May;9(5):2167–70.
3. Jacobone M, Torresan F, Citton M, Schiavone D, Viel G, Favia G. Adrenal ganglioneuroma: The Padua Endocrine Surgery Unit experience. Int J Surg. 2017 May;41 Suppl 1:S103–8.
4. Baltzer P, Clauser P, Klatte T, Walz J. Work-up of the Incidental Adrenal Mass. Eur Urol Focus. 2016 Feb;1(3):217–22.
5. De Bernardi B, Gambini C, Haupt R, Granata C, Rizzo A, Conte M, et al. Retrospective study of childhood ganglioneuroma. J Clin Oncol. 2008 Apr;26(10):1710–6.
6. Mylona BS, Schizas D, Economopoulos KP. Adrenal ganglioneuroma: what you need to know. World J Clin Cases. 2017 Oct;5(10):373–7.
7. Gerlowski A, Chyl-Surdacka K, Krassowska D, Chodorowska G. The Role of Vitamin D in Non-Scarring Alopecia. Int J Mol Sci. 2017 Dec;18(12):E2653.
8. Lora MS, Waguespack SG, Moley JF, Walvoord EC. Adrenal ganglioneuromas in children with multiple endocrine neoplasia type 2: a report of two cases. J Clin Endocrinol Metab. 2005 Jul;90(7):4383–7.
9. Geraci AP, de Csepel J, Shlasko E, Wallace SA. Ganglioneuroblastoma and ganglioneuroma in association with neurofibromatosis type I: report of three cases. J Child Neurol. 1998 Jul;13(7):356–8.
10. Chen CC, Chang YT, Liu HN, Chen YJ. Cancer risk in patients with alopecia areata: a nationwide population-based matched cohort study. Cancer Med. 2018 May;7(5):2153–9.