Exactly solvable models through the empty interval method, for more-than-two-site interactions

M. Khorrama,d, A. Aghamohammadib,d & M. Alimohammadic,d

a Institute for Advanced Studies in Basic Sciences, P. O. Box 159, Zanjan 45195, Iran.
b Department of Physics, Alzahra University, Tehran 19834, Iran.
c Physics Department, University of Tehran, North Karegar Avenue, Tehran, Iran.
d Institute of Applied Physics, IUST, P. O. Box 16845-163, Tehran, Iran.

Abstract

Single-species reaction-diffusion systems on a one-dimensional lattice are considered, in them more than two neighboring sites interact. Constraints on the interaction rates are obtained, that guarantee the closedness of the time evolution equation for $E_n(t)$’s, the probability that n consecutive sites are empty at time t. The general method of solving the time evolution equation is discussed. As an example, a system with next-nearest-neighbor interaction is studied.

\textbf{PACS numbers:} 05.40.-a, 02.50.Ga

\textbf{Keywords:} reaction-diffusion, empty interval method, next-nearest-neighbor interactions
1 Introduction

In contrast to equilibrium systems, which are best analyzed using standard equilibrium statistical mechanics, there is no general approach to study the systems far from equilibrium. People are motivated to study the non-equilibrium systems in one dimension, since these are in principle easier. Different methods have been used to study stochastic models in one dimension, including analytical and asymptotic methods, mean-field methods, and large-scale numerical methods. Some models solved using these methods, are studied for example in [1–11].

There is no universal meaning for the term exactly solvable. For example in [12–14], solvability means that the evolution equation of n-point functions contains only n- or less-point functions. In [15, 16], solvability means that the S-matrix of the N-particle system is factorized into products of 2-particle S-matrices. This means that the S-matrices should satisfy the Yang-Baxter equation. Another meaning of integrability is that the time evolution equation for $E_n(t)$, the probability that n consecutive sites are empty at time t, is closed, that is it can be expressed in terms of other $E_m(t)$’s. This method of solving the integrable models is called the empty interval method (EIM).

The empty interval method has been used to analyze the one dimensional dynamics of diffusion-limited coalescence [17–20]. Using this method, the functions $E_n(t)$ have been calculated. For the cases of finite reaction-rates, some approximate solutions have been obtained. EIM has been also generalized to study the kinetics of the q-state one-dimensional Potts model in the zero-temperature limit [21].

In [22], all one dimensional reaction-diffusion models with nearest-neighbor interactions, exactly-solvable through EIM, have been studied. In [23], EIM has also been used to study a specific model with next-nearest-neighbor interaction. In [24], the conventional EIM has been extended to a more generalized form. Using this extended version, a model not solvable by conventional EIM has been studied.

In this article, we consider systems, in them more than two neighboring sites interact. We consider the most general systems with k-site interactions. Some constraints are imposed on the interaction rates, so that the time evolution equation for $E_n(t)$ is closed. The general method of solving the time evolution equation is also discussed. Finally, as an example, a system with next-nearest-neighbor interactions has been considered in more detail.

2 Models solvable through the empty interval method

Consider a general one-species reaction-diffusion model on a one-dimensional periodic lattice with $L + 1$ sites, with a k-neighboring-site interaction. We want to find criteria on the interaction rates, that guarantee the solvability of
the system via EIM, that is, the closedness of the evolution equation for the probability that \(n \) consecutive sites are empty, \(E_n \).

Suppose that the initial condition of the system is translationally-invariant. Any configuration of \(k \) neighboring sites is denoted by \(a = (a_1, a_2, \ldots, a_k) \), where \(a_i = \circ \) or \(\bullet \). \(\circ (\bullet) \) is used to denote an empty (occupied) site. The rate of transition from a configuration \(a \) to \(b \) is denoted by \(\lambda_{b}^{a} \). Similar to [22], the interactions with \(k \) empty sites as initial or final configuration are not considered here. In other words for any \(a \),

\[
\lambda_{b}^{a} = \lambda_{a}^{0} = 0. \tag{1}
\]

Excluding these interactions from the \(2^{k}(2^{k} - 1) \) possible interactions, \((2^{k} - 1)(2^{k} - 1) \) interactions remain to be considered. We want to impose restrictions on \(\lambda_{b}^{a} \)'s in such a way that the evolution equation for \(E_n(t) \)'s be closed. As we will see, the form of evolution equation generally will be different for \(n \geq k - 1 \) and \(n < k - 1 \), and also will be different for \(n + k > L + 2 \) and \(n + k \leq L + 2 \). So we will treat each case separately.

2.1 The case \(n \geq k - 1 \) and \(n + k \leq L + 2 \)

To obtain evolution equation for \(E_n(t) \), one should first recognize the source and sink terms. There are two cases. In the first case, the intersection of the empty block and the interacting block is in the left-hand side of the empty block. In the other case, this intersection is in the right-hand side of the empty block. For the first case, the source terms come from

\[
a'_{1} \cdots a'_{l} c_{1} \cdots c_{k-l} \circ \cdots \circ \rightarrow b_{1} \cdots b_{l} \circ \cdots \circ, \tag{2}
\]

where \(c \neq 0 \). Here \(0 \) stands for a block of adjacent empty sites. One also has \(l \leq k - 1 \). \(\lambda_{0}^{a} = 0 \) leads to \(l \geq 1 \). So the left source for \(E_n \) is

\[
S_{L} = \sum_{l=1}^{k-1} \sum_{a'_{1},b_{1},c_{1}} \lambda_{n-c}^{b_{0}} P(a'_{1}c_{1} \cdots \circ \cdots \circ). \tag{3}
\]

Now consider the expansion

\[
\sum_{n'} \lambda_{n',c}^{f} = \sum_{a_{1}} \lambda_{a_{1} \circ}^{f} + \sum_{a_{2}} \lambda_{a_{2} \bullet}^{f} + \cdots + \sum_{a'} \lambda_{a' b}^{f} = \sum_{l'=1}^{k-1} \sum_{a} \lambda_{a \bullet b}^{f}, \tag{4}
\]

where in the last equality, \(a \) is an \(l' \)-dimensional vector and \(\bullet \) is \((k - l' - 1) \)-dimensional. So,

\[
S_{L} = \sum_{l=1}^{k-1} \sum_{l'=l}^{k-1} \sum_{a,b} \lambda_{n-b}^{b0} P(a \bullet b_{l'} \cdots \circ). \tag{5}
\]
If
\[\Lambda_L^{ll'} := \sum_{b} \lambda_{a_1 \ldots a_{l}, 0} b_{l} \ldots b_{0}, \quad 1 \leq l \leq k - 1, \quad l \leq l' \leq k - 1, \quad (6) \]
is independent of \(\mathbf{a} \), then one can sum up \(P(\mathbf{a} \bullet \circ \ldots \circ) \) on the index \(\mathbf{a} \). Then
\[S_L = \sum_{l=1}^{k-1} \sum_{l'=l}^{k-1} \Lambda_L^{ll'} P(\bullet \circ \ldots \circ) \]
\[= \sum_{l=1}^{k-1} \sum_{l'=l}^{k-1} \Lambda_L^{ll'} \left(E_{n+l-l'-1} - E_{n+l'-l} \right). \quad (7) \]

One can do similar calculations for the case that the intersection of the interaction block and the empty block is in the right-hand side of the empty block. Defining
\[\Lambda_R^{ll'} := \sum_{b} \lambda_{0 \ldots 0, a_1 \ldots a_{l'}} b_{l} \ldots b_{0}, \quad 1 \leq l \leq k - 1, \quad l \leq l' \leq k - 1, \quad (8) \]
and assuming that it is independent of \(\mathbf{a} \), the source term for this case is
\[S_R = \sum_{l=1}^{k-1} \sum_{l'=l}^{k-1} \Lambda_R^{ll'} P(\circ \ldots \circ \bullet). \quad (9) \]

Putting these together, the source term is
\[S = \sum_{l=1}^{k-1} \sum_{l'=l}^{k-1} \left(\Lambda_L^{ll'} + \Lambda_R^{ll'} \right) \left(E_{n+l-l'-1} - E_{n+l'-l} \right). \quad (10) \]

Now, lets consider the sink terms. Again we will treat interactions of left- and right-hand sides separately. First consider the left ones. The interactions which contribute to sink terms come from
\[a_1' \ldots a_{l'} \circ \ldots \circ \rightarrow b_{l} \ldots b_{1} c_{1} \ldots c_{k-l} \circ \ldots \circ, \quad (11) \]
where \(\mathbf{c} \neq \mathbf{0} \). The sink term from the left interactions is
\[R_L = -\sum_{l=1}^{k-1} \sum_{a', c, l' \neq 0}^{k-1} \lambda^{bc}_{a_0} P(\mathbf{a}' \circ \ldots \circ \mathbf{c}). \quad (12) \]
\(\lambda^{bc}_{a_0} = 0 \) leads to \(l \geq 1 \). One also has \(l \leq k - 1 \). \(\lambda^{bc}_{a} \) is the transition rate, so it is defined only for \(\mathbf{a} \neq \mathbf{b} \). But one can extend this definition and define the diagonal terms in such a way that
\[\sum_{b,c} \lambda^{bc}_{a_0} = 0. \quad (13) \]
Then it is seen that
\[\sum_{b \neq 0} \lambda_{ad} b = - \sum_{b} \lambda_{ad} b. \]
(14)

Using this, one arrives at the following equation for \(R_L \)
\[R_L = \sum_{l=1}^{k-1} \sum_{a', b} \lambda_{a'0} b P(a' \circ \cdots \circ b). \]
(15)

This again recasts to a simpler form, using the following expansion
\[\sum_{a'} \lambda_{a'1 \cdots a'\circ 0} = \sum_{a'} \lambda_{a'1 \cdots a'\circ 0} + \sum_{a'} \lambda_{a'1 \cdots a'\circ 0} + \cdots + \lambda_{a'0}. \]
(16)

Putting these together, one arrives at
\[R_L = \sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'} P(\bullet \circ \cdots \circ b), \]
(17)

where
\[\Lambda_{ll'} := \sum_{b} \lambda_{a'1 \cdots a'\circ 0}, \quad 1 \leq l \leq k-1, \quad 0 \leq l' \leq l-1, \]
(18)

and it is assumed that \(\Lambda_{ll'} \) is independent of \(\textbf{a} \).

It is seen that the conditions we have obtained for the source and sink terms for the left interactions, eqs. (6) and (18), are similar, except for the range of \(l' \). Performing similar calculations for the right interactions, all the conditions coming from the source and sink terms can be summarized as this. The following quantities should be independent of \(\textbf{a} \).
\[\Lambda^L_{ll'} := \sum_{b} \lambda_{a'1 \cdots a'\circ 0}, \quad 1 \leq l \leq k-1, \quad 0 \leq l' \leq l-1, \]
(19)

\[\Lambda^R_{ll'} := \sum_{b} \lambda_{0 b_1 \cdots b_l \circ a_1 \cdots a_l'}, \quad 1 \leq l \leq k-1, \quad 0 \leq l' \leq k-1. \]
(20)

Defining \(\Lambda_{ll'} := \Lambda^L_{ll'} + \Lambda^R_{ll'} \), the time evolution equation of \(E_n(t) \), for \(n \geq k-1 \) and \(n + k \leq L + 2 \), takes the following form
\[\frac{dE_n(t)}{dt} = \sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'} (E_{n+l-l'} - E_{n+l}). \]
(21)

Note that in this equation, \(E_0 \) is defined through
\[E_0 := 1. \]
(22)
2.2 The case \(n < k - 1 \) and \(n + k \leq L + 2 \)

Now, we want to derive time evolution equation of \(E_n(t) \)'s when \(n < k - 1 \). Two cases may occur. The first one, is that the \(n \) adjacent sites which we are focused on, are among the \(k \) interacting sites, and in the second case a block of these sites is outside those \(k \) sites. The result for the second case is similar to that of the preceding subsection, \(n \geq k - 1 \). For that case, we only quote the results. However, we study the first case in more detail.

The source terms come from

\[
a_1' \cdots a_p' c_1 \cdots c_n e_1' \cdots e_q' \rightarrow b_1 \cdots b_p \odot \cdot \cdot \cdot \odot d_1 \cdots d_q, \tag{23}
\]

where \(\mathbf{c} \neq 0 \), \(p + q + n = k \), and \(p, q \geq 1 \). Then the source term is

\[
S = \sum_{p, q = 1}^{n - 1} \sum_{a, e} \sum_{e, d = 0}^{n - 1} \lambda_{a e}^{b d} P(a' ce'). \tag{24}
\]

Similar to the previous cases, one can rearrange the sum of the rates in the following form.

\[
\sum_{a, e} \sum_{e, d = 0}^{n - 1} \lambda_{a e}^{f d} = \sum_{n'}=0^{n - 1} \sum_{n''}=0^{q - 1} \sum_{n''=0}^{n'} \lambda_{a e}^{f d} + \sum_{n'}=0^{n - 1} \sum_{a} \lambda_{a e}^{f 0}, \tag{25}
\]

where we have used the fact that \(\mathbf{c} \neq 0 \) and so at least one of the \(c_i \)'s should be \(\bullet \). In the above equation, \(\mathbf{a} \) is a \((p + n - n' - 1)\)-dimensional vector and \(\mathbf{e} \) is a \((q - n'' - 1)\)-dimensional vector. In the first term on the right-hand side of the above equation, the left \(\bullet \) is the the first \(\bullet \) in \(\mathbf{c} \) from the right, and the right \(\bullet \) is the first \(\bullet \) in \(\mathbf{e}' \) from the left. In the second term, the \(\bullet \) is the the first \(\bullet \) in \(\mathbf{c} \) from the right, and \(\mathbf{e}' \) is \(0 \). Arranging all these together, one arrives at the following equation for the source term.

\[
S = \sum_{p, q = 1}^{n - 1} \sum_{n'=0}^{n - 1} \left[\sum_{n''=0}^{q - 1} \sum_{a, e} \sum_{b, d} \lambda_{a e}^{f b d} P(a \bullet 0 \bullet e) + \sum_{a, d} \lambda_{a 0}^{b d} P(a \bullet 0) \right]. \tag{26}
\]

Defining

\[
\Lambda_{pq,p'q'} := \sum_{b, d} \lambda_{a1 \cdots d}^{b1 \cdots d}, \tag{27}
\]

and

\[
\Lambda_{Lpq,p'} := \sum_{b, d} \lambda_{a1 \cdots d}^{b1 \cdots d}, \tag{28}
\]

where \(p \leq p' \leq p + n - 1, 0 \leq q' \leq q - 1, p + q = k - n \), and \(p, q \geq 1 \). Assuming that \(\Lambda_{pq,p'q'} \) is independent of \(\mathbf{a} \) and \(\mathbf{e} \) and \(\Lambda_{Lpq,p'} \) is independent of \(\mathbf{a} \), one can
sum up the terms in (26):

\[
S = \sum_{p,q=1}^{n-1} \sum_{n'=0}^{n-1} \left[\sum_{p'+q'=k-n}^{q-1} \Lambda_{pq,p'q'} P(a_0 e_1 \cdots a_q e') + \Lambda_{pq,p'}^{L} P(a_0 e_1 \cdots e_q) \right],
\]

or in terms of \(E_n\)’s,

\[
S = \sum_{p,q=1}^{n-1} \sum_{n'=0}^{n-1} \left[\sum_{p'+q'=k-n}^{q-1} \Lambda_{pq,p'q'} (E_{n'+n'} + E_{n'+n'+2} - 2E_{n'+n'+1}) \right.
\]

\[+ \Lambda_{pq,p'}^{L} (E_{q+n'} - E_{q+n'+1}) \]

The independency of \(\Lambda_{pq,p'q'}\) with respect to \(a\) and \(e\), and \(\Lambda_{pq,p'}^{L}\) with respect to \(a\) is sufficient to guarantee that the above source term is expressible in terms of \(E_n\)’s, but is not necessary. For example, in (24) one can decompose the blocks \(c\) and \(a'\) instead of \(c\) and \(e'\), which leads to another set of sufficient conditions on the rates.

Now, lets consider the sink terms for \(n < k - 1\):

\[
a_1' \cdots a_p' \circ \cdots \circ e_1' \cdots e_q' \rightarrow b_1 \cdots b_p c_1 \cdots c_n d_1 \cdots d_q.
\]

The above interaction produces a sink term:

\[
R = - \sum_{p,q=1}^{n-1} \sum_{p+q=k-n}^{q-1} \Lambda_{pq,p'q'} (E_{q+n'} + E_{q+n'+2} - 2E_{q+n'+1}) \]

\[+ \Lambda_{pq,p'}^{L} (E_{q+n'} - E_{q+n'+1}) \]

Using the expansion

\[
\sum_{a',e'}^{q-1} \Lambda_{a'0e'}^{f} = \sum_{a,e}^{q-1} \sum_{p'=0}^{p-1} \lambda_{a_1 \cdots a_p \circ e_1 \cdots e_q}^{f} + \sum_{e}^{q-1} \sum_{p'=0}^{p-1} \lambda_{0 \circ e_1 \cdots e_q}^{f} + \sum_{a}^{p-1} \sum_{p'=0}^{p-1} \lambda_{a_1 \cdots a_p \circ 0}^{f}
\]

\[
(34)
\]
R can be written in the form

$$R = \sum_{p, q \equiv 1 \atop p + q \equiv k - n} \left[\sum_{q' = 0}^{q - 1} \sum_{p' = 0}^{p - 1} \Lambda_{pq,p'q'} (E_{k-p'-q'} - E_{k-p'-q' - 2} + E_{k-p'-q' - 2} - 2E_{k-p'-q' - 1}) \right. \\
+ \left. \sum_{q' = 0}^{q - 1} \Lambda^R_{pq,q'} (E_{k-q' - 1} - E_{k-q'}) \right. \\
+ \left. \sum_{p' = 0}^{p - 1} \Lambda^L_{pq,p'} (E_{k-p' - 1} - E_{k-p'}) \right],$$

(35)

where we have used the definition (27) and (28) for $\Lambda_{pq,p'q'}$ and $\Lambda^L_{pq,p'}$ but with an extension of the range of p' and q' to $0 \leq p' \leq p + n - 1$ and $0 \leq q' \leq q - 1$. It has been also assumed that $\Lambda_{pq,p'q'}$ is independent of a and e, and $\Lambda^L_{pq,p'}$ is independent of e. $\Lambda^R_{pq,q'}$ is defined through

$$\Lambda^R_{pq,q'} := \sum_{b,d} \lambda_{b_0 \ldots b_{2}\ldots c_{q'}}^{b_1 \ldots b_q \ldots a_{p,q}}, \quad p + q = k - n, \quad 0 \leq q' \leq q - 1,$$

(36)

and it is assumed that it is independent of e. Considering (30), (35), and the source- and sink-terms corresponding to the previous subsection, and noting that in these latter terms, one should replace $1 \leq l \leq k - 1$ in the right-hand side of (24) with $k - n \leq l \leq k - 1$, one arrives (for $n < k - 1$ and $n + k \leq L + 2$) at

$$\frac{dE_{n}(t)}{dt} = \sum_{l=k-n}^{k-1} \sum_{l'=0}^{k-1} \Lambda^L_{n+l-l'-1} (E_{n+l-l'-1} - E_{n+l-l'}) \left. \\
+ \sum_{p,q \equiv k-n} \left[\sum_{n' = 0}^{p - 1} \sum_{n'' = 0}^{q - 1} \Lambda_{pq,(p+n-n'-1)+(q-n''-1)} \right. \\
\times (E_{n+n''} + E_{n+n''+2} - 2E_{n+n''+1}) \\
+ \left. \Lambda^L_{pq,p-n-n'-1} (E_{q+n''} - E_{q+n''+1}) \right] \right. \\
+ \left. \sum_{n' = 0}^{p - 1} \sum_{n'' = 0}^{q - 1} \Lambda_{pq,n''n'} (E_{k-n'-n''-2} + E_{k-n'-n''-2} - 2E_{k-n'-n''-1}) \right. \\
+ \left. \sum_{n' = 0}^{p - 1} \sum_{n'' = 0}^{q - 1} \Lambda^L_{pq,n'} (E_{k-n'-1} - E_{k-n'}) \right. \\
+ \left. \sum_{n'' = 0}^{q - 1} \Lambda^R_{pq,n''} (E_{k-n''-1} - E_{k-n''}) \right].$$

(37)
2.3 The case \(n + k > L + 2 \)

The last case to be considered is the case with \(n + k > L + 2 \). Normally the case of large \(L \) and finite \(k \) is of interest, in which one also has \(n > k \). We assumed periodic boundary condition for the system. Then the intersection of the \(k \) interacting sites and the block of \(n \) sites may consist of two disconnected parts, of lengths \(l \) and \(l' \). So, one has, in addition to the source terms similar to those of subsection 2.1, a source term coming from

\[
a'_1 \cdots a'_n \circ \cdots \circ b'_1 \cdots b'_l \ c'_1 \cdots c'_{k-l-1} \to 0d_1 \cdots d_{k-1-l}. \tag{38}\]

This leads to a source term

\[
S = \sum_{l,l'=1}^{n+l'} \sum_{b'_l, c'_{l'}} a'_{a'_l} a'_{b'_l} c'_{c'_{l'}} \lambda_{b'_l c'_{l'}}^{040} P(a'_1 \cdots \circ b'_l c'_{l'}). \tag{39}\]

Using

\[
\sum_{a'/b'/c'/} \lambda_{b'_l c'_{l'}}^{l'0} a'_{a'_l} a'_{b'_l} c'_{c'_{l'}} = \sum_{p=0}^{l-1} \sum_{c} \lambda_{b'_l c'_{l'}}^{l'0} P(a'_1 \cdots \circ c_{l'} \cdots \circ), \]

\[
+ \sum_{q=0}^{l'-1} \sum_{c} \lambda_{b'_l c'_{l'}}^{l'0} c_{c'_{q}} \cdots \circ, \]

\[
+ \sum_{p=0}^{l-1} \sum_{q=0}^{l'-1} \sum_{c} \lambda_{b'_l c'_{l'}}^{l'0} c_{c'_{q}} \cdots \circ_{c_{l'} \cdots \circ}, \tag{40}\]

it is seen that if the quantities

\[
\Lambda_{ll',pq}^{ll'} := \sum_{d} \lambda_{d_{d_{l'}} \cdots d_{d_{l'}} \circ \cdots \circ}, \quad 0 \leq p \leq l-1, \quad 0 \leq q \leq l'-1 \]

\[
\Lambda_{ll',p}^{ll'} := \sum_{d} \lambda_{d_{d_{l'}} \cdots d_{d_{l'}} \circ \cdots \circ}, \quad 0 \leq p \leq l-1 \]

\[
\Lambda_{ll',q}^{ll'} := \sum_{d} \lambda_{d_{d_{l'}} \cdots d_{d_{l'}} \circ \cdots \circ}, \quad 0 \leq q \leq l'-1 \] \tag{41}
are independent of \(c \), then the source term corresponding to (38) is

\[
S = \sum_{l, l' = 1}^{l - 1} \left\{ \sum_{p=0}^{l' - 1} \sum_{q=0}^{l - 2} \Lambda_{l', pq}(-2E_{n+p+q-l-l'+1} + E_{n+p+q-l-l'} + E_{n+p+q-l-l'+2}) + \sum_{p=0}^{l - 1} \Lambda_{l', p}^L(E_{n+p-l} - E_{n+p-l+1}) + \sum_{q=0}^{l' - 1} \Lambda_{l', q}^R(E_{n+q-l'} - E_{n+q-l'+1}) \right\}. \tag{42}
\]

Now let’s consider the sink terms. Again there are terms similar to of subsection 2.1, and a new sink term, which is

\[
R = - \sum_{l, l' = 1}^{l - 1} \sum_{a, b, c, d} \Lambda_{a, b, c, d} \sum_{l' = n+k-L}^{k-l'-1} \sum_{l'=n+k-L}^{k-l'-1} \sum_{p=0}^{l' - 1} \sum_{q=0}^{l - 1} \sum_{a' = 0}^{l - 1} \sum_{b' = 0}^{l' - 1} \sum_{c' = 0}^{l - 1} \sum_{d' = 0}^{l' - 1} P(a', b', c', d'). \tag{43}
\]

Using

\[
\sum_{a, b, c, d} \Lambda_{a, b, c, d} = - \sum_{c} \Lambda_{a, b, c, d} \tag{44}
\]

\(R \) can be written as

\[
R = \sum_{l, l' = 1}^{l - 1} \sum_{a, c} \Lambda_{a, c} \sum_{l' = n+k-L}^{k-l'-1} \sum_{l'=n+k-L}^{k-l'-1} \sum_{p=0}^{l' - 1} \sum_{q=0}^{l - 1} \sum_{a' = 0}^{l - 1} \sum_{b' = 0}^{l' - 1} \sum_{c' = 0}^{l - 1} \sum_{d' = 0}^{l' - 1} P(a', b', c', d'). \tag{45}
\]

Since \(a' \neq 0 \) (eq. (1)), one has expansion

\[
\sum_{a'} \Lambda_{a'} = \sum_{q=0}^{l - 1} \sum_{a} \Lambda_{a} \sum_{a' = 0}^{l - 1} \sum_{b' = 0}^{l' - 1} \sum_{c' = 0}^{l - 1} \sum_{d' = 0}^{l' - 1} \sum_{a'} = 0. \tag{46}
\]

If

\[
\Lambda_{l', p}^{L} := \sum_{c} \Lambda_{a', b', c, d} \sum_{p=0}^{l' - 1} \sum_{q=0}^{l - 1} \sum_{a' = 0}^{l - 1} \sum_{b' = 0}^{l' - 1} \sum_{c' = 0}^{l - 1} \sum_{d' = 0}^{l' - 1} P(a', b', c', d'). \tag{47}
\]

is independent of \(a \), then the above sink term becomes

\[
R = \sum_{l, l' = 1}^{l - 1} \sum_{p=0}^{l'+n+k-L} \sum_{a, b, c, d} \Lambda_{a, b, c, d} \sum_{l' = n+k-L}^{k-l'-1} \sum_{l'=n+k-L}^{k-l'-1} \sum_{p=0}^{l' - 1} \sum_{q=0}^{l - 1} \sum_{a' = 0}^{l - 1} \sum_{b' = 0}^{l' - 1} \sum_{c' = 0}^{l - 1} \sum_{d' = 0}^{l' - 1} P(a', b', c', d'). \tag{48}
\]
Note that here too, this condition on $\Lambda'_{L'}$ is a sufficient condition for the EIM-solvability of the model. Using (42), (48), and the source- and sink-terms corresponding to those of subsection 2.1, one arrives at

$$
\frac{dE_n}{dt} = \sum_{l=1}^{L-n-2} \sum_{l'=0}^{k-1} \Lambda_{ll'}(E_{n+l-l'-1} - E_{n+l-l'})
$$

$$
+ \sum_{l+l'\equiv n+k-L-1}^{k-l'-1} \left[\sum_{p=0}^{t-1} \Lambda_{l',pq}(E_{L-k+p+q+1} + E_{L-k+p+q+3} - 2E_{L-k+p+q+2})
$$

$$
+ \sum_{p=0}^{k-l'-1} \Lambda_{l',p}(E_{n+p-l} - E_{n+p+1-l})
$$

$$
+ \sum_{q=0}^{l'-1} \Lambda_{l',q}(E_{n+q-l'} - E_{n+q+1-l'}) \right] \quad (49)
$$

for $n+k > L+2$ (and $n > k$). Note that the summation limits in the terms corresponding to the source and sink terms coming from the processes investigated in subsection 2.1, have been properly modified.

3 General method of the solution

In the previous section, the evolution equation of E_n’s were obtained, eqs. (21), (37), and (49). Investigating (37) and (49), one can see that these equations can be rewritten in the general form of (21), provided one defines E_n’s for $n < 0$, and $n > L+1$ properly. Doing this, one arrives at

$$
\frac{dE_n(t)}{dt} = \sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'}(E_{n+l-l'-1} - E_{n+l-l'}), \quad (50)
$$

for any n, with the following constraints (which are actually definitions).

$$
\sum_{s=r}^{k-1} M_{rs}(E_s - E_{s+1}) = 0, \quad -k + 2 \leq r \leq -1, \quad (51)
$$

and

$$
\sum_{s=L+2-k}^{r} N_{rs}(E_{s-1} - E_s) = 0, \quad L + 2 \leq r \leq L + k - 1. \quad (52)
$$

In addition to these, there are two other boundary conditions

$$
E_0 = 1, \quad (53)
$$

10
and

\[E_{L+1} = 0. \] (54)

This last condition comes from the fact that if the lattice is initially nonempty, it will never become empty (as it is seen from (51)). So, excluding the empty lattice (which remains empty) there will always be at least one particle on the lattice. Equations (51) to (54) are 2k − 2 boundary condition for the difference equation (50), which is of the same order 2k − 2. To solve these equations, first consider the stationary solution. This solution \(E^p_n \) satisfies

\[\sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'} (E^p_{n+l-l'-1} - E^p_{n+l-l'}) = 0, \] (55)

with the same boundary conditions (51) to (54). The solution to (55) is

\[E^p_n = \sum_{p=1}^{2k-2} \alpha_p z^n_p, \] (56)

where \(z_p \)'s are the solutions of

\[\sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'} (z^{l-l'-1} - z^{l-l'}) = 0. \] (57)

This equation has 2k − 2 roots, one of them is 1. The coefficients \(\alpha_p \) can be determined using the constraints (51) to (54):

\[\sum_{s=r}^{k-1} \sum_{p=1}^{2k-2} M_{rs} \alpha_p (z^s_p - z^{s+1}_p) = 0, \quad -k+2 \leq r \leq -1, \]

\[\sum_{s=L+2-k}^{L} \sum_{p=1}^{2k-2} N_{rs} \alpha_p (z^{s-1}_p - z^s_p) = 0, \quad L+2 \leq r \leq L+k-1, \]

\[\sum_{p=1}^{2k-2} \alpha_p = 1, \]

\[\sum_{p=1}^{2k-2} \alpha_p z^p_{L+1} = 0. \] (58)

The full solution is of the form

\[E_n(t) =: E^p_n + F_n(t), \] (59)

where \(F_n(t) \) satisfies an equation similar to (51) but with homogeneous bound-
ary conditions:

\[
\frac{dF_n(t)}{dt} = \sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'}(F_{n+l-l'-1} - F_{n+l'-1}),
\]

\[
\sum_{s=r}^{k-1} M_{rs}(F_s - F_{s+1}) = 0, \quad -k + 2 \leq r \leq -1,
\]

\[
\sum_{s=L+2-k}^{r} N_{rs}(F_{s-1} - F_s) = 0, \quad L + 2 \leq r \leq L + k - 1,
\]

\[
F_0 = 0,
\]

\[
F_{L+1} = 0.
\] (60)

To solve this, one writes \(F_n\) as

\[
F_n(t) = \sum_{\epsilon} e^{\epsilon t} F_{\epsilon,n},
\] (61)

where \(F_{\epsilon,n}\) satisfies

\[
\epsilon F_{\epsilon,n} = \sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'}(F_{\epsilon,n+l-l'-1} - F_{\epsilon,n+l'-1}),
\]

\[
\sum_{s=r}^{k-1} M_{rs}(F_{\epsilon,s} - F_{\epsilon,s+1}) = 0, \quad -k + 2 \leq r \leq -1,
\]

\[
\sum_{s=L+2-k}^{r} N_{rs}(F_{\epsilon,s-1} - F_{\epsilon,s}) = 0, \quad L + 2 \leq r \leq L + k - 1,
\]

\[
F_{\epsilon,0} = 0,
\]

\[
F_{\epsilon,L+1} = 0.
\] (62)

\(F_{\epsilon,n}\) can be written as

\[
F_{\epsilon,n} = \sum_{p=1}^{2k-2} \beta_{\epsilon,p} z_{\epsilon,p}^n
\] (63)

where \(z_{\epsilon,p}\)'s should satisfy

\[
\sum_{l=1}^{k-1} \sum_{l'=0}^{k-1} \Lambda_{ll'}(z^{l-l'-1} - z^{l'-l}) = \epsilon.
\] (64)
This equation has $2k - 2$ roots. The coefficients $\beta_{\epsilon,p}$ satisfy

$$
\sum_{s=r}^{k-2} \sum_{p=1}^{2k-2} M_{rs} \beta_{\epsilon,p} (z_{\epsilon,p}^s - z_{\epsilon,p}^{s+1}) = 0, \quad -k + 2 \leq r \leq -1,
$$

$$
\sum_{s=L+2-k}^{r} \sum_{p=1}^{2k-2} N_{rs} \beta_{\epsilon,p} (z_{\epsilon,p}^{s-1} - z_{\epsilon,p}^s) = 0, \quad L + 2 \leq r \leq L + k - 1,
$$

$$
\sum_{p=1}^{2k-2} \beta_{\epsilon,p} = 0,
$$

$$
\sum_{p=1}^{2k-2} \beta_{\epsilon,p} z_{\epsilon,p}^{L+1} = 0.
$$

(65)

These are a set of $2k - 2$ linear homogeneous equations for the $2k - 2$ variables $\beta_{\epsilon,p}$. The condition that there exists a nonzero solution for these variables is that the determinant of matrix of coefficients be zero. This is a condition for ϵ. So, in principle, one can solve this equation to obtain the solutions for ϵ, and then the corresponding solution for $z_{\epsilon,p}$'s. One can then obtain $\beta_{\epsilon,p}$'s, and $F_n(t)$ is obtained using (63) and (61).

4 A model with three-site interaction

As an example, consider a model with three sites (next-nearest-neighbor) interaction. Denoting the eight possible three-state configurations as following

$$
0 := (\circ \circ \circ) \quad 1 := (\circ \circ \bullet) \quad 2 := (\circ \bullet \circ) \quad 3 := (\circ \bullet \bullet) \\
4 := (\bullet \circ \circ) \quad 5 := (\bullet \circ \bullet) \quad 6 := (\bullet \bullet \circ) \quad 7 := (\bullet \bullet \bullet),
$$

(66)

and the transition-rate from the state i to the state j by λ_i^j, one can write the conditions for the solvability of the system through the empty-interval method.
as

\[
\lambda_0^4 = \lambda_2^2,
\lambda_1^3 = \lambda_2^1,
\lambda_3^4 = \lambda_2^1 = \lambda_4^1 = \lambda_1^1,
\lambda_2^1 = \lambda_3^1 = \lambda_4^1 = \lambda_1^1,
\lambda_2^1 + \lambda_2^2 + \lambda_2^5 + \lambda_2^7 = \lambda_4^1 + \lambda_0^3 + \lambda_6^7,
\lambda_3^7 + \lambda_3^6 + \lambda_3^4 = \lambda_2^2 + \lambda_0^5 + \lambda_7^2 + \lambda_2^2,
\lambda_4^2 + \lambda_4^1 = \lambda_3^2 + \lambda_0^5 = \lambda_2^2 + \lambda_0^5 = \lambda_2^2 + \lambda_0^5,
\lambda_5^3 + \lambda_5^2 = \lambda_0^3 + \lambda_7^2 = \lambda_4^3 + \lambda_2^3,
\lambda_6^2 + \lambda_6^1 = \lambda_3^1 + \lambda_4^1,
\lambda_7^6 + \lambda_7^0 = \lambda_5^2 + \lambda_2^1,
\lambda_2^3 = \lambda_3^2,
\lambda_7^6 = \lambda_7^2.
\]

(67)

For example, independence of \(\Lambda_{11}^L \) with respect to \(a \), gives \(\lambda_2^3 = \lambda_0^4 \). One, of course, has also

\[
\lambda_0^4 = \lambda_1^0 = 0.
\]

(68)

This is nothing but eq. (1). Using (21) for \(1 = k - 2 < n < L - k + 3 = L \), we have

\[
\frac{dE_n(t)}{dt} = \sum_{l=1}^{2} \sum_{l'=0}^{2} \Lambda_{ll'} (E_{n+l'-1} - E_{n+l'})
\]

\[
= -\Lambda_{20} E_{n+2} + (-\Lambda_{10} + \Lambda_{20} - \Lambda_{21})E_{n+1} + (\Lambda_{10} - \Lambda_{11} + \Lambda_{21} - \Lambda_{22})E_n
\]

\[
+ (\Lambda_{11} - \Lambda_{12} + \Lambda_{22})E_{n-1} + \Lambda_{12}E_{n-2}, \quad 1 < n < L.
\]

(69)

The time-evolution equations for \(E_1 \) and \(E_L \) come from (37) and (49), respectively:

\[
\frac{dE_1(t)}{dt} = \sum_{l'=0}^{2} \Lambda_{2l'} (E_{2-l'} - E_{3-l'})
\]

\[
+ \Lambda_{11,10} (E_0 + E_2 - 2E_1) + \Lambda_{11,1} (E_1 - E_2)
\]

\[
+ \Lambda_{11,00} (E_1 + E_3 - 2E_2) + \Lambda_{11,0} (E_2 - E_3)
\]

\[
+ \Lambda_{11,0} (E_2 - E_3),
\]

(70)
and
\[
\frac{dE_L(t)}{dt} = \sum_{l'=0}^{2} \Lambda_{1l'}(E_{L-l'} - E_{L+1-l'})
\]
\[+ \Lambda'_{11,00}(E_{L-2} + E_L - 2E_{L-1}) + \Lambda'_{11,01}(E_{L-1} - E_L)
\]
\[+ \Lambda'_{11,11}(E_L - E_{L+1}) + \Lambda'_{11,0}(E_{L-1} - E_L).
\]

(71)

These two equations can be rewritten in the general form of (69), provided one adds the boundary conditions corresponding to (51) and (52). These are in fact definitions of \(E_{-1}\) and \(E_{L+2}\):
\[
\sum_{l'=0}^{2} \Lambda_{1l'}(E_{1-l'} - E_{2-l'}) = \Lambda_{11,10}(E_0 + E_2 - 2E_1) + \Lambda_{11,11}(E_1 - E_2)
\]
\[+ \Lambda_{11,00}(E_1 + E_3 - 2E_2) + \Lambda_{11,01}(E_2 - E_3)
\]
\[+ \Lambda_{11,0}(E_2 - E_3),
\]

(72)

and
\[
\sum_{l'=0}^{2} \Lambda_{2l'}(E_{L+1-l'} - E_{L+2-l'}) = \Lambda'_{11,00}(E_{L-2} + E_L - 2E_{L-1})
\]
\[+ \Lambda'_{11,10}(E_{L-1} - E_L)
\]
\[+ \Lambda'_{11,11}(E_L - E_{L+1}) + \Lambda'_{11,0}(E_{L-1} - E_L).
\]

(73)

Equations (68), (72), and (73) can be solved using the general method of the previous section.

Now consider a special case
\[
\lambda^i_j = \lambda^4_0 = 0.
\]

(74)

The conditions (67), and the nonnegativity of the rates, then lead to
\[
\lambda^2_2 = \lambda^4_2 = \lambda^6_2 = 0,
\]
\[
\lambda^3_1 = \lambda^4_3 = \lambda^5_3 = \lambda^6_3 = 0,
\]
\[
\lambda^4_1 = \lambda^2_4 = \lambda^3_4 = 0,
\]
\[
\lambda^5_1 = \lambda^2_5 = \lambda^3_5 = \lambda^4_5 = \lambda^6_5 = 0,
\]
\[
\lambda^6_1 = \lambda^2_6 = \lambda^3_6 = \lambda^4_6 = 0,
\]
\[
\lambda^7_1 = \lambda^2_7 = \lambda^3_7 = \lambda^4_7 = \lambda^5_7 = \lambda^6_7 = 0,
\]

(75)

and
\[
\lambda^2_5 = \lambda^5_6,
\]
\[
\lambda^3_5 = \lambda^5_5 + \lambda^6_5 + \lambda^5_7,
\]
\[
\lambda^6_5 = \lambda^2_5 + \lambda^5_2.
\]

(76)
Eq. (69) then reduces to
\[
\dot{E}_n = AE_{n+2} + BE_{n+1} - (A + B)E_n, \quad 1 < n < L \tag{77}
\]
where
\[
A := \lambda_1^5 + \lambda_1^7 + \lambda_4^5 + \lambda_7^7,
B := \lambda_2^4 + \lambda_2^6 + \lambda_6^5 + \lambda_6^7. \tag{78}
\]
Eq. (70) becomes
\[
\dot{E}_1 = A'E_3 + B'E_2 - (A' + B')E_1, \tag{79}
\]
where
\[
A' := \lambda_1^3 + 2\lambda_5^3 + 2\lambda_7^3 + \lambda_3^5 + \lambda_4^7 - \lambda_3^7,
B' := -\lambda_1^1 - \lambda_1^7 - 2\lambda_4^7 - 2\lambda_4^5 - 2\lambda_4^7 + 2\lambda_6^7 + \lambda_6^7, \tag{80}
\]
and eq. (71) becomes
\[
\dot{E}_L = B''(E_{L+1} - E_L), \tag{81}
\]
where
\[
B'' := \lambda_1^3 + \lambda_1^5 + \lambda_1^7 + \lambda_2^3 + \lambda_3^7 + \lambda_4^5 + \lambda_4^7 + \lambda_4^7. \tag{82}
\]
This is in fact a degenerate example of the general case considered in the previous section. Note that \(E_n = 0, \quad 1 \leq E_{L+1}\) is obviously a solution. This is expected, since the full lattice does not evolve, as \(\lambda^5 = 0\). Noting that \(E_{L+1} = 0\), one can solve (81) to obtain \(E_L\). This is found to be
\[
E_L(t) = \alpha_L e^{-B''t}. \tag{83}
\]
Using this, one can solve the equation for \(E_{L-1}\), to see that it contains two exponentials, \(\exp(-B''t)\) and \(\exp(-(A + B)t)\). This is provided \(B'' \neq A + B\). (Note that in general \(B'' \leq A + B\). Equality holds iff \(\lambda_3^2 = \lambda_7^2 = 0\).) Let us assume \(B'' \leq A + B\) and proceed. It is not difficult to see that in other \(E_n\)’s there are also terms like \(t^l \exp[-(A + B)t]\). One can write
\[
E_n(t) = \alpha_n e^{-B''t} + \sum_{l=0}^{L-n-1} \beta_{n,l} t^l e^{-(A + B)t}, \quad 1 < n < L + 1 \tag{84}
\]
where
\[
\alpha_{L+1} = \beta_{L+1,1} = 0. \tag{85}
\]
Putting this in (77), one arrives at
\[
A\alpha_{n+2} + B\alpha_{n+1} + (B'' - A - B)\alpha_n = 0, \tag{86}
\]
and
\[(l + 1)\beta_{n,l+1} = A\beta_{n+2,l} + B\beta_{n+1,l}.
\]

The solution to (86) is
\[\alpha_n = A \frac{\xi_1^{L+1-n} - \xi_2^{L+1-n}}{\xi_1 - \xi_2},
\]

where ξ_i's are the roots of the equation
\[(A + B - B'')\xi^2 - B\xi - A = 0, \]

and α_L is arbitrary. The solution to (87) is
\[\beta_{n,l} = \sum_{s=0}^{l} \frac{B^{l-s}}{(l-s)!} \frac{A^s}{s!} \gamma_{n+t+s},
\]

where γ_m's are arbitrary constants if $1 < m < L$, and zero otherwise.

So far, all E_n's except E_1 have been obtained. Using (79), one can also obtain E_1. It is seen that E_1 contains similar terms and a new exponential term $\exp[-(A' + B')t]$. So, in general there are only three time constants in the system, (as long as only the empty intervals are concerned). It may occur that two of these time constants, or all of them, are equal. This does not change the general behavior of the system. Only the degree of the polynomials multiplied in the exponentials are changed, and the corresponding coefficients can be calculated similarly.

Acknowledgement

M. Alimohammadi would like to thank the research council of the University of Tehran, for partial financial support.
References

[1] G. M. Schütz; “Exactly solvable models for many-body systems far from equilibrium” in “Phase transitions and critical phenomena, vol. 19”, C. Domb & J. Lebowitz (eds.), (Academic Press, London, 2000).

[2] F. C. Alcaraz, M. Droz, M. Henkel, & V. Rittenberg; Ann. Phys. 230 (1994) 250.

[3] K. Krebs, M. P. Pfannmuller, B. Wehefritz, & H. Hinrichsen; J. Stat. Phys. 78[FS] (1995) 1429.

[4] H. Simon; J. Phys. A28 (1995) 6585.

[5] V. Privman, A. M. R. Cadilhe, & M. L. Glasser; J. Stat. Phys. 81 (1995) 881.

[6] M. Henkel, E. Orlandini, & G. M. Schütz; J. Phys. A28 (1995) 6335.

[7] M. Henkel, E. Orlandini, & J. Santos; Ann. of Phys. 259 (1997) 163.

[8] A. A. Lushnikov; Sov. Phys. JETP 64 (1986) 811 [Zh. Eksp. Teor. Fiz. 91 (1986) 1376].

[9] F. Roshani & M. Khorrami; Phys. Rev. E60 (1999) 3393.

[10] M. Alimohammadi, V. Karimipour, & M. Khorrami; J. Stat. Phys. 97 (1999) 373.

[11] N. Majd, A. Aghamohammadi, & M. Khorrami; Phys. Rev. E64 (2001) 046105.

[12] G. M. Schütz; J. Stat. Phys. 79(1995) 243.

[13] A. Aghamohammadi, A. H. Fatollahi, M. Khorrami, & A. Shariati; Phys. Rev. E62 (2000) 4642.

[14] A. Shariati, A. Aghamohammadi, & M. Khorrami; Phys. Rev. E64 (2001) 066102.

[15] M. Alimohammadi, & N. Ahmadi; Phys. Rev. 62 (2000) 1674.

[16] F. Roshani & M. Khorrami; Phys. Rev. E64 (2001) 011101.

[17] M. A. Burschka, C. R. Doering, & D. ben-Avraham; Phys. Rev. Lett. 63 (1989) 700.

[18] D. ben-Avraham; Mod. Phys. Lett. B9 (1995) 895.

[19] D. ben-Avraham; in “Nonequilibrium Statistical Mechanics in One Dimension”, V. Privman (ed.), pp 29-50 (Cambridge University press,1997).

[20] D. ben-Avraham; Phys. Rev. Lett. 81 (1998) 4756.
[21] T. Masser, D. ben-Avraham; Phys. Lett. A275 (2000) 382.

[22] M. Alimohammadi, M. Khorrami, & A. Aghamohammadi; Phys. Rev. E64 (2001) 056116.

[23] M. Henkel & H. Hinrichsen; J. Phys. A34, 1561-1568 (2001).

[24] M. Mobilia & P. A. Bares; cond-mat/0107427.