PRO-INFLAMMATORY non-pancreatic phospholipase A2 (sPLA2) is markedly over-expressed in acute systemic and chronic local inflammatory processes. Since in acute phase reaction sPLA2 is often over-expressed simultaneously with acute phase proteins (APP), it is important to determine whether APP interacts with sPLA2. We tested ten APPs for interaction with sPLA2 using as a substrate multimamellar liposomes composed either of PC:Lyso PC or PE:Lyso PE. Using PC:Lyso PC substrate, CRP, lactoferrin and SAP were found to inhibit sPLA2 activity with an IC\textsubscript{50} of 25 \(\mu\)g/ml, 7.5 \(\mu\)g/ml and 50 \(\mu\)g/ml, respectively, corresponding to 0.21 \(\mu\)M, 0.1 \(\mu\)M and 0.21 \(\mu\)M respectively. Using PE:Lyso PE substrate only SAP was inhibitory, with an IC\textsubscript{50} of 10 \(\mu\)g/ml (0.04 \(\mu\)M). Phosphorylcholine abolished the inhibitory activity of CRP but not of SAP or lactoferrin. Addition of phosphorylethanolamine or of excess calcium had no effect on the inhibitory activity of APP. Limulin, lysozyme, transferrin, \(\beta\)-microglobulin, \(\alpha\)-macroglobulin, human and bovine albumins had no effect on sPLA2 activity. Therefore neither the structure of pentraxins, or iron-binding, bacteriostatic property or amyloidogenic property preclude whether APP modulates sPLA2 activity. Inhibition of pro-inflammatory sPLA2 by APP may be one of the protective mechanisms of the acute phase reaction.

Key words: Acute phase proteins, Inflammation, Phospholipase A2

Inhibition of the activity of pro-inflammatory secretory phospholipase A2 by acute phase proteins

W. Pruzanski, CA E. Stefanski and P. Vadas

Inflammation Research Group, The Wellesley Hospital Research Institute, University of Toronto, Ontario, Canada, M4Y 1J3

CA Corresponding Author

Introduction

Secretory non-pancreatic phospholipase A\(_2\) (sPLA\(_2\)) belongs to the group of low-molecular-weight, calcium-dependent, lipolytic enzymes.\(^1\) It plays an important physiological role in host defence participating in the destruction of Gram-negative microorganisms.\(^2,3\) sPLA\(_2\) was also found to exert modulatory activity on the cellular proliferation and tumour formation in the intestinal tract.\(^4,5\) Excessive activity of circulating sPLA\(_2\) was discovered in several systemic inflammatory response syndromes (SIRS) such as clinical and experimental sepsis, multiorgan failure and salicylate intoxication,\(^6-9\) and in more localized processes such as peritonitis and inflammatory arthritis.\(^10,11\) A pathogenetic role of sPLA\(_2\) was implicated by the observation that enzymatic activity and immunoreactivity of sPLA\(_2\) in SIRS correlated with the severity and outcome of the disease,\(^6-9\) and by the fact that hypotension induced either by Gram-negative microorganisms\(^2\) or by infusion of sPLA\(_2\)\(^5\) could be attenuated by inhibition of the enzyme. Acute inflammatory processes induced by sPLA\(_2\) administered intracutaneously,\(^12\) into subcutaneous air pouches\(^13\) or intraarticularly,\(^14,15\) could be blocked by inhibitors of PLA\(_2\).\(^12-15\)

In general terms inhibition of sPLA\(_2\) can be induced by three mechanisms: inhibition of synthesis, competition for substrate, or direct inhibition of sPLA\(_2\) enzymatic activity. The best characterized inducers of its synthesis are cytokines, such as IL-1 and TNF.\(^16\) IL-6 and oncostatin M induce sPLA\(_2\) in cells of hepatic origin such as Hep G\(_2\)\(^17,18\) and normal human liver cells (W. Pruzanski *et al.*, unpublished). Endotoxin was also found to be a strong inducer of sPLA\(_2\).\(^18\) The above observations were consistent with the postulate that sPLA\(_2\) plays an important pathogenetic role in inflammatory processes and led to an extensive search for exogenous inhibitors. However, very little is known about endogenous modulation of sPLA\(_2\). Two endogenous inhibitors, glucocorticoid-inducible lipocortin\(^19\) and complement fragments\(^20\) have been found, but neither has evolved into a useful therapeutic agent.
During the acute phase reaction the synthesis and release of sPLA2 occurs simultaneously with that of a large number of acute phase proteins.21,22 Experimental studies have shown that endotoxin, IL-1, TNF and IL-6 are the main inducers of such release.21,22 Therefore the process of induction of acute phase proteins by liver cells seems to be similar to that of sPLA2. Little is known about the possible interactions of acute phase proteins. We reported recently that CRP, one of the classical acute phase proteins is a strong inhibitor of sPLA2, binding competitively to the phosphorylcholine-containing substrates23 whereas SAA, another acute phase protein, enhances sPLA2 activity.24 Herein we report that two other acute phase proteins, serum amyloid P (SAP) and lactoferrin suppress sPLA2 activity. These, previously unrecognized, interactions of acute phase proteins with proinflammatory sPLA2, may add a new aspect to the understanding of the complex role of acute phase reaction.

Materials and Methods

1,2-Dipalmitoyl-phosphatidylcholine (dipalmityl PC) was obtained from Avanti Polar Lipids (Birmingham, AL). Phosphatidylcholine 1 α,2-dipalmitoyl [2-palmitoyl-1-14C] (55.5 mCi/mmmol) and oleic acid [1-14C] (40–60 mCi/mmol) were purchased from DuPont NEN Products. 1,3-phosphatidylethanolamine 1-palmitoyl [2-14C] linoleoyl] (50–60 mCi/mmol) was obtained from Amer- sham (Arlington Heights, IL). Recombinant human sPLA2 (rh-sPLA2) was a generous gift of Dr Jeffrey Browning, Biogen Corporation (Cambridge, MA). Bio-Rad protein assay reagent was purchased from Bio-Rad (Richmond, CA). 1 α,3-phosphatidylethanolamine-1-palmitoyl, 1 α,2-phosphatidylethanolamine-β-linoleoyl-γ-palmitoyl, 1,α-lysophosphatidylethanolamine palmitoyl, bovine serum albumin and silica gel were purchased from Sigma Chemical Corporation. All reagents were analytical grade or better.

Recombinant human lysozyme, bovine serum albumin (BSA), human serum albumin (HSA), lactoferrin purified from human milk, transferrin, β2-microglobulin purified from human urine, limulin from *Limulus polyphemus* and α1-macroglobulin were obtained from Sigma Chemical Company (St Louis, MO). CRP purified from human plasma was obtained from Helix Biotech Corporation, Richmond, BC and SAP purified from human serum, from Calbiochem, San Diego, CA.

Liposome assay: Aliquots of dipalmitoyl PC, [14C] dipalmitoyl PC, with or without lysoPC (2:1) or phosphatidylethanolamine (PE) with or without LysoPE (2:1) were prepared in chloroform and evaporated to dryness. Multilamellar liposomes were made by dispersing the resulting lipid mixture in 100 mM Tris HCl buffer, pH 8.0, followed by heating for 2 min at 41°C and vortexing for 2 min before use. Only freshly prepared liposomes were used. Assays were carried out in a total volume of 0.2 ml of 100 mM Tris HCl, pH 8.0 containing 2.5 or 10 mM CaCl\textsubscript{2}, 0.1% bovine serum albumin and 5–30 nmoles of PC or PE vesicles (containing 2–16 nCi of [14C] dipalmitoyl PC per assay). The optimal concentration was found to be 20 nmoles/assay and this was used in all experiments. If acute phase proteins were included, they were preincubated with 20 nmoles of liposomes for 1 h at 41°C before the assay. The reaction was then started by addition of 20 µl of recombinant human sPLA2 stock solution with final sPLA2 concentrations ranging between 10 and 200 ng/200 µl assay volume unless otherwise stated. The reaction mixture was then incubated for 30 min at 41°C. The reaction was stopped by the addition of 1.32 ml isopropanol/heptane/0.5 M H\textsubscript{2}SO\textsubscript{4} (10:1:1 (v/v/v)). The mixture was heated for 1 min at 60°C before addition of 0.66 ml H\textsubscript{2}O and 0.8 ml heptane. The two phases were allowed to separate and after centrifugation for 10 min at 1500 rpm, 0.8 ml of the upper phase was added to 1.0 ml heptane containing 100 mg silica gel. The mixture was spun again for 10 min at 1500 rpm and 1.0 ml of the supernatant was used for scintillation counting of [14C]-labelled free palmitic acid. All assays were done in triplicate.

Immunologic assays: Anti-human (mouse IgG2) CRP/SAP antibody (clone CRP-20) C6552 was obtained from Sigma (St Louis, MO). It reacted with an epitope located on the 24 kDa subunit of denatured and reduced CRP and it recognized CRP independently of the Ca2+ binding site. This antibody did not recognize the calcium dependent phosphorylcholine binding site of CRP. It cross-reacted with human SAP, but not with CRP from *Limulus polyphemus*. Working dilutions were at least 1:4 000 per µg of antigen in indirect ELISA assay. In antibody assays, the antigens were preincubated with appropriately diluted antibodies for 60 min at room temperature. Then the liposomal substrate was added and the mixture was further incubated for 60 min at 41°C. The PLA2 was finally added and the incubation was carried on for an additional 30 min at 41°C.

Each experiment was repeated at least three times. The differences between the results and controls were assessed by Student’s *t* test.
Results

Ten acute phase proteins were tested for modulation of sPLA2 activity, using as a substrate multilamellar liposomes composed either of PC:Lyso PC or PE:Lyso PE in the ratio of 2:1. Using the former substrate, lactoferrin (Fig. 1) CRP (Fig. 2) and SAP (Fig. 3) were inhibitory, with an IC50 of 7.5 μg/ml, 25 μg/ml and 50 μg/ml respectively. These concentrations corresponded to 0.10 μM, 0.21 μM and 0.21 μM respectively (Fig. 4). Using the latter substrate, only SAP was inhibitory, with an IC50 of 10 μg/ml (0.04 μM) (Fig. 3). Using mixed substrate (PE:Lyso PC), no inhibition of sPLA2 activity by CRP was noted (Table 1).

Addition of phosphorylcholine in concentrations ranging from 0.5 to 10 μM abolished inhibitory activity of CRP. Fifty per cent attenuation was achieved by 2.0 μM and complete inhibition by 10 μM of phosphorylcholine.25 Phosphorylcholine did not alter inhibitory activity of SAP or of lactoferrin. Phosphorylethanolamine, 10 μM, had no effect on inhibitory activity of SAP, CRP or lactoferrin.

Anti CRP/SAP monoclonal antibody alone had no effect on sPLA2 activity. This antibody preincubated with CRP or SAP did not alter their inhibitory activity in the range of concentrations used in the assays (CRP or SAP 40 μg/ml, sPLA2 100 ng).

To test whether chelation may have an effect on activity of sPLA2, various concentrations of calcium were tested using either PC:Lyso PC or...
Table 1. Impact of substrate on inhibitory activity of CRP

Substrate	sPLA2 (nmoles/30')
PE:Lyso PE	0.99
PE:Lyso PE + CRP	1.09
PC:Lyso PE	0.93
PC:Lyso PE + CRP	0.31
PE:Lyso PC	0.93
PE:Lyso PC + CRP	1.35

*sPLA 100 ng, CRP 40 μg/ml.

PE:Lyso PE as a substrate. Maximum activity of sPLA2 was observed at the level of 0.5–1.0 μM Ca^{2+}. In some experiments with sPLA2, SAP, or lactoferrin, Ca^{2+} concentrations were increased up to 20 μM. Excess of Ca^{2+} had no effect on inhibitory activity of these proteins.

Human and bovine serum albumin, transferrin, lysozyme, β2-microglobulin, α2-macroglobulin and limulin had no effect on the activity of sPLA2.

Discussion

An insult to an organism’s homeostasis caused by injury, infection or inflammation, leads to a swift systemic response called the acute phase reaction (APR) (reviewed in References 21, 25–27). In the case of chronic or recurrent inflammation, APR may become quite prolonged. An integral part of APR is a rapid synthesis and extracellular release of a large number of acute phase proteins (APP), and simultaneous decrease in some other proteins, the so called negative APP. Liver is the major source of APP synthesis, but other cells participate in the synthesis of APP as well. APR is orchestrated by a group of inflammatory mediators, including glucocorticoids, cytokines, anaphylatoxins and growth factors. The group of cytokines which induce APP synthesis includes, but is not limited to, IL-1, TNF, IL-6 and oncostatin.

The same group of cytokines was also found to induce the synthesis and release of the pro-inflammatory enzyme, secretory non-pancreatic phospholipase A2 (sPLA2). sPLA2 was found to be involved in experimental peritonitis and in fluids draining inflammatory sites. was found to raise rapidly in the circulation in systemic inflammatory response syndromes such as septic shock, salicylate poisoning and malaria and in the milieu of more localized inflammatory sites such as arthritis. In the former group, circulating sPLA2 correlated with both complications and the outcome of the disease whereas in the latter it correlated with the disease activity.

Since the increase in circulatory sPLA2 activity parallels temporally that of acute phase proteins, it was of interest to investigate whether there is an interaction between APPs and sPLA2. Of ten APPs tested, three were found to inhibit sPLA2 activity. These included CRP, SAP and lactoferrin. CRP is one of the best studied acute phase proteins, increasing rapidly up to 1000-fold in APR. Both sPLA2 and CRP bind to the phospholipids of perturbed membranes of living cells and to PC:Lyso PC substrate. It was found that CRP is a strong inhibitor of sPLA2 activity, acting most probably as a competitor for the substrate. The substrates used in the former and present study form vesicles of different phospholipid composition. It was found that binding of CRP to such vesicles is preferential when they are composed of PC:Lyso PC in the proportion of 2:1. Most probably it is related to optimally altered surface packing density of the substrate. PE:Lyso PE and PC:Lyso PC substrates were not susceptible to hydrolytic activity of sPLA2.

Since CRP belongs to the family of pentraxins (PEP), two other pentraxins, SAP and limulin were also tested. The former was found to inhibit sPLA2 whereas the latter did not. SAP is a major APP in mice but a minor one in man, increasing in APR only three-fold from the physiological level of 30–40 μg/ml to no more than 90 μg/ml. It shares 60% homology in amino acid sequence with CRP. SAP circulates in the form of two pentameric molecules bound ‘face to face’ and, in contrast to CRP, is glycosylated. The gene for SAP is located on the long arm of chromosome 1 (1q12–1q23), close to the gene coding for CRP. It was suggested that both are products of an ancestral duplication event. Whereas CRP binds mainly to phosphorycholine, SAP has high affinity to phospholylethanolamine. In our study, SAP inhibited sPLA2 activity when either PE:Lyso PE or PC:Lyso PC were used as substrates; however, much lesser concentrations of SAP were needed to achieve IC50 when PE:Lyso PE was employed. In human serum, SAP binds to C4-binding protein (C4BP) and to various types of phospholipid vesicles. These reactions were found to be calcium dependent and can be disrupted by phospholylethanolamine. In our study phospholylethanolamine did not block the inhibitory activity of SAP.

Limulin in Limulus polyphemus is analogous to CRP in humans. It shares only 25–30% amino acid homology with CRP and SAP and, similarly to CRP, binds avidly to phosphorycholine. Limulin shares with human CRP two regions of preserved residues, 52–67, respon-
sible for the binding site to phosphorylcholine and 139–153 that binds Ca^{2+}. The fact that, in contrast to human CRP, limulin does not inhibit sPLA₂ activity, may mean that either the above two binding sites are not responsible for inhibition of sPLA₂ activity, or that the affinity of limulin to the substrate is much weaker than that of CRP. Therefore, pentraxin structure does not automatically confer anti-sPLA₂ activity, since in contrast to CRP and SAP, limulin was not inhibitory. Neither amyloidogenic property of SAP can be linked to the inhibition of sPLA₂, since SAA²⁴ and β₂-microglobulin, both known participants in amyloidogenesis, did not inhibit sPLA₂ activity (Table 2).

Of the three sPLA₂ inhibitors, lactoferrin was the most active. Lactoferrin is one of the iron-carrying proteins, produced mainly by polymorphonuclear cells. Its synthesis is induced by TNF⁴⁵,⁴⁶ and in sepsis it behaves like a classical acute phase protein⁴⁶,⁴⁷ with the potential to increase in the circulation ten or more fold from its physiological level of 0.2–2.8 mg/ml.⁴⁶–⁴⁸ Infusions of LPS to healthy volunteers⁴⁵ or to piglets,⁴⁹ or of *Escherichia coli* to piglets⁵⁰ lead to a marked increase in circulating lactoferrin. In turn, lactoferrin interacts with LPS, preventing iron-catalysed formation of hydroxyl radicals.⁵¹ Lactoferrin protects mice against a lethal dose of *E. coli in vivo*,⁵² acting as bacteriostatic glycoprotein and inducing damage to the outer membrane of Gram-negative bacteria.⁵³

It seems, therefore, that lactoferrin acts upon Gram-negative bacteria similarly to bacterial permeability increasing protein (BPI). Since sPLA₂ hydrolyses membrane phospholipids of microorganisms killed by BPI,⁵⁴ the fact that lactoferrin inhibits sPLA₂ activity may mean that it acts as a limiting factor in hydrolytic activity of the latter. The property of iron chelation by lactoferrin was not related to inhibitory anti-sPLA₂ activity, since transferrin, another iron chelator did not inhibit sPLA₂.

The fact that during the acute phase there is simultaneous co-induction and over-expression of both inhibitors such as CRP, SAP and lactoferrin, and enhancers such as SAA²⁴ of sPLA₂ activity, emphasizes the complexity of the organism’s response to injury. Since, *in vivo*, various acute phase proteins are over-expressed to very different orders of magnitude, the end result regarding their impact on proinflammatory activity of sPLA₂ cannot be predicted.

Table 2. Acute phase proteins as inhibitors of sPLA₂

Group	Inhibitors	Non-inhibitors
Pentraxin	CRP, SAP	Limulin
Iron binders	Lactoferrin	Transferrin
Bacteriostatic	Lactoferrin Lysozyme	
Amyloidogenic substances	SAP	SAA*, β₂-m
Negative APP	HDL*	BSA, HSA
Proteinase inhibitors	N/D	α₂-Macroglobulin

*Published in Biochem J 1995; 309: 461–464.

References

1. Dennis EA. Diversity of group types, regulation and function of phospholipase A2. *J Biol Chem* 1994; 269: 15957–15960.
2. Wright GW, Ooi CE, Weiss J, Elshab P. Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A₂ that participates in the destruction of *Escherichia coli* in rabbit inflammatory exudate. *J Biol Chem* 1990; 265: 6675–6681.
3. Harwig SSL, Tan L, Qu X-D, Cho Y, Eisenhauser PB, Lehrer RI. Bactericidal properties of murine intestinal phospholipase A₂. *J Clin Invest* 1995; 95: 593–610.
4. MacPhee M, Cheperik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM. The secretory phospholipase A₂ gene is a candidate for the Momb locus, a major modifier of Age-induced intestinal neoplasia. *Cell* 1995; 81: 957–966.
5. Kennedy BP, Parete P, Moggott J, et al. A natural disruption of the secretory group II phospholipase A₂ gene in inbred mouse strains. *J Biol Chem* 1995; 270: 22739–22745.
6. Vadas P, Hay JB. Involvement of circulating phospholipase A₂ in the pathogenesis of the hemorrhagic changes in endotoxin shock. *Crit Care Med* 1995; 23: 1142–1147.
7. Vadas P, Pruzanski W. Induction of group II phospholipase A₂ expression and the pathogenesis of the sepsis syndrome. *Circulatory Shock* 1993; 19: 160–167.
8. Vadas P, Pruzanski W, Stefanis E, et al. The pathogenesis of hypotension in septic shock: correlation of circulating phospholipase A₂ levels with circulatory collapse. *Crit Care Med* 1996; 10: 1–7.
9. Vadas P, Schouten B, Stefanis E, Scott E, Pruzanski W. The association of hyperlipoproteinaemia A with multisystem organ failure due to sepsis in the intensive care unit. *J Clin Invest* 1995; 95: 1087–1101.
10. Vadas P, Pruzanski W, Stefanis E, et al. Phospholipase A₂ in acute bacterial peritonitis in man. In: Dennis EA, Hunter T, eds. *Cell Death and Differentiation*. London: Academic Press, 1989; 311–316.
11. Pruzanski W, Koo Seen Lin M, Vadas P. Secretory phospholipase A₂ in rheumatic diseases. In: Glaser KB, Vadas P, eds. *Phospholipases A₂ in Clinical Inflammation*. Molecular approaches to pathophysiology. CRC Press, 1995; 127–147.
12. Pruzanski W, Vadas P, Fortasiewicz V. Inflammatory effect of intradermal administration of soluble phospholipase A₂ from *rabbittissue*. *J Invest Dermatol* 1990; 85: 380–383.
13. Citron G, Gicca C, Sorrentino L, Maiello MF, Browning JL. Reconstituent secreted nonpancreatic phospholipase A₂ induces a synovitis-like inflammation in the rat air pouch. *J Rheumatol* 1995; 21: 824–829.
14. Vadas P, Pruzanski W, Kim J, Fortasiewicz V. The proinflammatory effect of extra-articular injections of soluble human and venom phospholipase A₂. *Arthritis Rheum* 1995; 38: 807–811.
15. Bomalaski JS, Clark MA. Phospholipase A₂ and arthritis. *Arthritis Rheum* 1993; 36: 190–198.
16. Vadas P, Pruzanski W, Stefanis E, et al. Extracellular phospholipase A₂ secretion is a common effector pathway of interleukin-1 and tumour necrosis factor action. *Immunology Letters* 1991; 28: 187–194.
17. Crowl RM, Stoller TJ, Conroy RW, Storer CR. Induction of phospholipase A₂ gene expression in human hepatoma cells by mediators of the acute phase response. *J Biol Chem* 1991; 266: 2647–2651.
18. Vadas P, Browning J, Edelson J, Pruzanski W. Extracellular phospholipase A₂ expression and inflammation: the relationship with associated disease states. *J Lipid Mediators* 1993; 8: 1–30.
19. Goulidag NJ, Goyne FM. Glucocorticoids, lipocortin and the immune response. *Current Opinion Immunol* 1993; 5: 108–113.
20. Soza Y, Kudo I, Imazumi, et al. Proteinase inhibitors of phospholipase A₂ purified from inflammatory sites in rats. *Proc Natl Acad Sci USA* 1990; 87: 2395–2399.
21. Baumann H, Gauldie J. The acute phase response. *Immunol Today* 1994; 15: 74–80.
22. Ramadori G, Sipe JD, Dinarello CA, Mind M, Colten HB. Pretranslational modulation of acute phase hepatic protein synthesis by murine recombinant interleukin-1 (IL-1) and purified human IL-1. *J Exp Med* 1985; 162: 940–942.
23. Vadas P, Stefanis E, Grouix B, Schouten BD, Pruzanski W. Inhibition of human group II phospholipase A₂ by C-reactive protein in vitro. *J Lipid Mediators Cell Signalling* 1995; 11: 187–200.
24. Pruzanski W, de Beer FC, de Beer MG, Stefanis E, Vadas P.
Amyloid A protein enhances the activity of secretory non-pancreatic phospholipase A₂. *Biochem J* 1995; 309: 461–464.

25. Steel DM, Whitehead AS. The major acute phase reactants. C-reactive protein, serum amyloid P component and serum amyloid A protein. *Immunol Today* 1994; 15: 81–88.

26. Richards, C, Gauldie J, Baumann H. Cytokine control of acute phase protein expression. *Eur J Immunol* 1995; 2: 89–96.

27. Pepys MB, Baltz ML. Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. *Adv Immunol* 1983; 34: 141–212.

28. Councler PJ, Lomibar C, Feldmann G, Mogalikesi N, Roigier E. Synchronous increase of four acute phase proteins synthesized by the same hepatocytes during the inflammatory reaction. *Lab Invest* 1981; 44: 105–115.

29. Heinze RG, Casell JV, Andus T. Interleukin-6 and the acute phase response. *Biochem J* 1990; 265: 621–636.

30. Richards CD,肴hoy M. The role of oncostatin M in the acute phase response. In: Mackiewicz A, Kushner I, Baumann H, eds. Acute Phase Proteins: Molecular Biology, Biochemistry, Clinical Applications. Boca Raton: CRC Press, 1993; 321–327.

31. Fransen R, Dobrow R, Weiss J, Elsback P, Weglicki WB. Isolation and characterization of a phospholipase A₂ from an inflammatory exudate. *J Lipid Res* 1978; 19: 18–23.

32. Vadis P, Wais S, Movat HZ, Hay JB. A novel, vasoactive product and plasminogen activator from atheroma lymph cells draining chronic inflammatory lesions. *Proc Soc Exp Biol Med* 1979; 161: 82–85.

33. Vadis P, Taylor T, Molyneux M, Stefanski E, Preszanski W. Serum phospholipase A₂ and disease severity in children with falciparum malaria. *Am J Trop Med Hyg* 1993; 49: 455–459.

34. Schultz DI, Arnold PL. Properties of four acute phase proteins. C-reactive protein, serum amyloid A protein, α₁-acid glycoprotein and fibrinogen. *J Biol Chem* 1981; 256: 969–975.

35. Nagsarkar A, Saxena U, Mookerjea S. Interaction of rat serum phosphorylcholine-binding protein with phospholipid-containing liposomes. *J Biol Chem* 1983; 258: 10514–10523.

36. Schwalbe RA, Dahlback B, Goe JJ, Nebestuen GL. Pentraxin family of proteins interact specifically with phosphorylcholine and/or phosphorylthanolamine. *Biochem Biophys Acta* 1992; 1160: 309–316.

37. Swanson SJ, Christner RB, Mortensen RF. Human serum amyloid P-component (SAP) selectively binds to immobilized or bound forms of C-reactive protein (CRP). *Biochem Biophys Acta* 1992; 1160: 309–316.

Received 24 January 1996; accepted 22 February 1996