Structural insights into Aβ42 oligomers using site-directed spin labeling

Lei Gu1, Cong Liu2 and Zhefeng Guo1

1From the Department of Neurology, Brain Research Institute, Molecular Biology Institute
2UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA

*Running title: Structural insights into Aβ42 oligomers using spin labeling

Keywords: Electron paramagnetic resonance, amyloid, Alzheimer’s disease, protein aggregation

Background: Aβ42 oligomers underlie neurotoxicity in Alzheimer’s disease but their molecular structures are unknown.

Results: Electron paramagnetic resonance studies reveal inter-molecular distances at 11.5–12.5 Å for C-terminal region of Aβ42.

Conclusion: Aβ42 oligomers consist of a tightly packed C-terminal region that adopts antiparallel structures.

Significance: This work provides insights into the structures of Aβ42 oligomers and helps understand their oligomerization mechanism and toxicity.

SUMMARY

Oligomerization of the 42-residue peptide Aβ42 plays a key role in the pathogenesis of Alzheimer’s disease. Despite great academic and medical interest, the structures of these oligomers have not been well characterized. Site-directed spin labeling combined with electron paramagnetic resonance spectroscopy is a powerful approach for studying structurally ill-defined systems, but its application in amyloid oligomer structure study has not been systematically explored. Here we report a comprehensive structural study on a toxic Aβ42 oligomer, called globulomer, using site-directed spin labeling complemented by other techniques. Transmission electron microscopy shows that these oligomers are globular structures with diameters of ~7-8 nm. Circular dichroism shows primarily β structures. X-ray powder diffraction suggests a highly ordered intra-sheet hydrogen-bonding network and a heterogeneous inter-sheet packing. Residue-level mobility analysis on spin labels introduced at 14 different positions shows a structured state and a disordered state at all labeling sites. Side chain mobility increases from N- to C-terminal regions. Inter-molecular distance measurements at 14 residue positions suggest that C-terminal residues G29-V40 form a tightly packed core with inter-molecular distances in a narrow range of 11.5-12.5 Å. These inter-molecular distances rule out the existence of fibril-like parallel in-register β structures, and strongly suggest an antiparallel β sheet arrangement in Aβ42 globulomers.

Aggregation of amyloid β (Aβ) peptide is a key event in the pathogenesis of Alzheimer’s disease (AD) (1). Aβ is the proteolytic product of amyloid precursor protein by the sequential cleavages of β- and γ-secretases (2). There are two major Aβ isoforms: Aβ42 (42-residue long) and Aβ40 (40-residue long). Aβ42 differs from Aβ40 by having two additional C-terminal residues. Although Aβ40 is several-fold more abundant than Aβ42 in the brain, Aβ42 is the major component in AD plaques (3), suggesting that the aggregation of Aβ40 precedes Aβ40. Aggregation of Aβ results in the formation of insoluble amyloid fibrils, soluble oligomers and protofibrils. In recent years, AD research has shifted from a fibril-centric to an oligomer-centric view, reflecting the good correlation between soluble Aβ oligomers and AD progression (4,5). A number of oligomeric Aβ assemblies have been identified in vivo and in vitro. Oligomer formation has also been found in other amyloid-related disorders, suggesting that oligomer-induced toxicity may be a common mechanism for a range of protein misfolding diseases (6). Different Aβ oligomers such as dimers (7,8), trimers (9), and Aβ*56 (9) have been identified in
AD brains, transgenic AD model animals, or cultured cells. Various protocols have also been devised to stabilize and enrich Aβ oligomers in the test tube (10,11). Antibodies have been generated using several of these oligomer preparations including Aβ-derived diffusible ligands (12), globulomers (13), prefibrillar oligomers (14), and amylospheroids (15). Positive staining has been found in AD brain slices using these antibodies, suggesting that these Aβ oligomers are related to endogenous Aβ assemblies. Without the atomic-level structural information of these Aβ oligomers, it is impossible to know how many unique structures are present in these oligomers. The general lack of cross-reactivity among different oligomer-specific antibodies suggests that the surface-exposed groups are distinct in different oligomer preparations. On the other hand, similar structural features have also been found, which include β-strand structures at the central hydrophobic cluster (residues 17-20) and the C-terminal hydrophobic region (residues 30-40), and a turn/loop structure at residues 20-30. Antiparallel arrangement between β-strands has also been suggested based on Fourier transform infrared (FTIR) studies of Aβ oligomers prepared using a range of protocols (16-24).

Detailed structural studies of these Aβ oligomers are urgently needed for several reasons. First, Aβ oligomers are toxic species and thus represent drug targets in AD. Second, structural knowledge is critical for understanding the structural basis of Aβ toxicity and the mechanism of aggregation. Third, detailed structural studies will help to determine if each in vitro oligomer preparation can be assigned a unique structural identity. High-resolution structural studies on peptide fragments and macrocyclic β-sheet mimics have provided insights into the potential organization of amyloid oligomers (25,26). However, detailed structures of full-length Aβ oligomers still remain elusive.

To this end, we performed a comprehensive structural study on a toxic Aβ42 oligomer termed globulomer (13) using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy (27-31). Globulomers are a relatively stable and homogeneous preparation of Aβ oligomers, and they do not convert to fibrils (32). Endogenous Aβ globulomers are detected in the brain by globulomer-specific antibodies (13,33). Previous studies suggest that globulomers are dodecamers and show synaptic toxicity (13,33,34). Solution NMR studies on preglobulomers show that they contain both antiparallel and parallel structures (35), but the detailed structures of globulomers are still unknown.

In this work, Aβ42 forms globular oligomers revealed by transmission electron microscopy (TEM), which are toxic to mammalian cell lines. Circular dichroism (CD) and X-ray powder diffraction show that these oligomers consist of cross-β structures. We then performed SDSL EPR studies on the Aβ42 globulomers with spin labels introduced, one at a time, at 14 different residue positions throughout Aβ42 sequence. Spin label mobility analysis shows increasing structural order from N- to C-terminal regions. Distance measurements reveal that inter-molecular distances for most labeling sites are in the range of 11.5–13.5 Å in the oligomers. These measured distances indicate a tightly packed C-terminal region and a loosely packed N-terminal region. These distances also suggest that Aβ42 globulomers adopt antiparallel β-structures.

EXPERIMENTAL PROCEDURES

Preparation of Aβ42 peptides and spin labeling – The DNA construct of GroES-ubiquitin-Aβ42 (36) and the deubiquitylating enzyme Usp2cc (37) were kindly provided by Dr. Rohan T. Baker at Australian National University (Australia) and Dr. Il-Seon Park at Chosun University (South Korea). Single cysteine mutations at various sites were introduced into Aβ42 sequence using QuikChange kit (Agilent). Mutations were confirmed with DNA sequencing.

Expression of GroES-ubiquitin-Aβ42 and Usp2cc proteins in E. coli and their purification were performed as previously described (28,38). Full-length Aβ42 was cleaved from the fusion protein with Usp2cc. The enzymatic digestion was performed in a buffer containing 19 mM phosphate, 3 M urea, 2 mM TCEP, pH 10.0. Usp2cc was added to the fusion protein at a molar ratio of 1:100. The digestion reaction was allowed to proceed at 37°C for 15 min. The reaction mixture was then immediately filtered with 0.2-μm filter (Whatman) and loaded on a 5-mL HisTrap column (GE Healthcare) equilibrated with PSU buffer (50 mM phosphate, 0.3 M NaCl, 8 M urea, pH 10.0). Aβ42 protein was eluted using a gradient of 25 mM imidazole. Purified Aβ42 was
checked with SDS-PAGE, and no non-cleaved proteins were detected.

For spin labeling, dithiothreitol was added to purified protein fraction to a final concentration of 10 mM and was allowed to incubate at room temperature for 20 min to break any disulfide bonds. Then the Aβ42 sample was buffer exchanged to labeling buffer (20 mM MOPS, 7 M guanidine hydrochloride, 50 mM NaCl, pH 6.8) using a 5-mL HiTrap desalting column (GE Healthcare). The spin labeling reagent MTSSL (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate, Enzo Life Sciences) was added at 10-times molar excess and then incubated at room temperature for 1 h. The spin-labeled Aβ42 was further buffer exchanged to 30 mM ammonium acetate, pH 10.0. Spin-labeled Aβ42 was lyophilized and stored at -80°C. MALDI-TOF mass spectrometry was performed to ensure that the mass of Aβ42 is correct, and the extent of labeling is >95%.

Preparation of Aβ42 globulomer – Aβ42 oligomers were prepared using the globulomer protocol(35) with modifications. Aβ42 peptide was suspended in 100% 1,1,1,3,3,3 hexafluoro-2-propanol (HFIP) at 1 mM and then bath sonicated for 5 min. Then the sample was incubated at room temperature for 30 min. HFIP was removed by evaporation overnight in the fume hood and then under vacuum for 1 h. HFIP-treated Aβ42 was resuspended in dimethylsulfoxide at 5 mM and sonicated for 5 min. Then Aβ42 was diluted in phosphate-buffered saline (PBS) (20 mM phosphate, 140 mM NaCl, pH 7.4) to 400 μM and sodium dodecyl sulfate (SDS) was added to a final concentration of 0.2%. After incubation for 6 h at 37°C, Aβ42 samples were further diluted with three volumes of H2O to a final concentration of 100 μM and incubation for another 18 h at 37°C. After centrifugation at 14,000 g for 20 min, the supernatant was concentrated by ultrafiltration using 30-kDa molecular weight cut-off filters.

Transmission Electron Microscopy – The Aβ42 oligomer sample (5 μl) was placed on glow-discharged copper grids covered with 400 mesh formvar/carbon film (Ted Pella). The sample was negatively stained with 2% uranyl acetate. Samples were examined using a JEOL JEM-1200EX transmission electron microscope at 80 kV and images were recorded using a top-mounted charge-coupled device (CCD) camera (Gatan).

MTT-based cell viability assays – [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) based CellTiter 96 nonradioactive cell proliferation assay (Promega) was performed for cell viability test. HeLa and PC-12 cell lines were used in the assay. Prior to MTT test, PC-12 cells were cultured in ATCC-formulated RPMI 1640 medium (ATCC cat.#30-2001) with 10% heat-inactivated horse serum and 5% fetal bovine serum at 37°C in 5% CO2, and HeLa cells were cultured in DMEM medium with 10% fetal bovine serum at 37°C in 5% CO2. HeLa and PC-12 cells were plated out at 10,000 cells/well in 96-well plates (Costar cat. #3596) and cultured for 20 h at 37°C in 5% CO2. To initiate the test, 10 μl of sample was added into each well containing 90 μl medium. After 24 h incubation, 15 μl Dye Solution (Promega. cat. #G4000) were added into each well and the mixture was further incubated for 4 h at 37°C in 5% CO2. Then, 100 μl Solubilization Solution/Stop Mix (Promega cat. #G4000) were added to each well with 12 h incubation at room temperature for completely solubilizing the dye crystals. The absorbance was measured at 570 nm. The background absorbance was recorded at 700 nm. The readout from buffer blank treated cell is regarded as 100% viability and that from 0.2% treated cell treated as 0% viability. Four replicates per sample were measured for calculating standard deviation.

Circular Dichroism – Secondary structures of Aβ42 oligomers were analyzed by circular dichroism (CD). Samples (~ 40 μl) were placed into 0.01 cm path length quartz cell (Starna) at the concentration of 310 μM. A Jasco J-715 CD spectrometer was employed. The measurement were carried out in a wavelength range of 190-260 nm at a rate of 20 nm min-1 with a step resolution of 0.5 nm, a time constant of 4 s and a band-width of 1 nm. The CD spectra were obtained by averaging 16 scans. The temperature was set at 25°C. All the spectra were corrected by subtracting the buffer background.

X-ray powder diffraction – Aβ42 oligomer was washed with H2O using the 30-kDa molecular weight cut-off filter and lyophilized. The powder was mounted on the tip of a broken glass rod. Then, the specimen was placed on the goniometer of an in-house X-ray machine and shot using a
Rigaku FR-D X-ray generator equipped with a Rigaku HTC imaging plate detector.

Analytical size exclusion chromatography—The size of Aβ42 globulomer was analyzed by analytical SEC using a Superdex 200 10/300 GL column (GE Healthcare) attached to an AKTA explorer system (GE Healthcare). Prior to Aβ42 oligomer sample injection (50 µl), the column was washed with two column volumes of filtered, degassed globulomer buffer (5 mM phosphate, pH 7.4, 35 mM NaCl, 2% DMSO, and 0.05% SDS). The molecular mass of Aβ42 globulomer is estimated based on the SEC profiles of protein standards (Bio-Rad).

EPR spectroscopy—EPR measurements were performed at X-band frequency on a Bruker EMX spectrometer equipped with the ER 4102ST cavity. A modulation frequency of 100 kHz was used. For measurements performed at room temperature, 20 mW microwave power was employed. EPR spectra of both the retentate and filtrate after ultrafiltration with 30-kD filter were collected. The filtrate component, accounting for <1% of total EPR signal, is subtracted from the retentate spectra to obtain the spectra of “pure” globulomers. For measurements performed at 170 K, 631 mW (28 dB) microwave power was used. Modulation amplitude was optimized to each individual spectrum. For each sample, 20 µl of solution was loaded into glass capillaries (VitroCom) sealed at one end. For measurements performed in frozen solution at 170 K, 20% (v/v) glycerol was added to the sample solution, following by flash freezing the sample in liquid nitrogen. EPR spectra in each figure panel were normalized to the same number of spins.

Spectral simulations and distance analysis—Spectral simulations were performed using the program MultiComponent (developed by Dr. Christian Altenbach, University of California, Los Angeles), which provides a LabVIEW interface for the program NLSL developed by Freed and co-workers (39,40). A microscopic order macroscopic disorder (MOMD) model is used for all simulations (40). A non-linear least squares fit of the user-defined spectral parameters was performed using the Levenberg-Marquardt algorithm. For all fits, the values for the magnetic tensors A and g were fixed as \(A_{\alpha\alpha} = 6.2 \), \(A_{\beta\beta} = 5.9 \), \(A_{\gamma\gamma} = 37.0 \), and \(g_{\alpha\alpha} = 2.0078 \), \(g_{\beta\beta} = 2.0058 \), \(g_{\gamma\gamma} = 2.0022 \), which were determined previously for R1. Each spectrum was fitted with two spectral components. The isotropic rotational diffusion constant (\(D \)) was allowed to vary for each component. The rotational correlation time (\(\tau \)) was calculated from \(\tau = 1/(6D) \). The values of \(\tau \) and populations of each spectral component are plotted in Figure 3. Local structural stability at each labeling site was calculated using \(\Delta G = -RT\ln K \), where \(K \) is the ratio between the slow component population and the fast component population, while assuming the fast component represent the locally unfolded state.

Distance analysis was performed using the program ShortDistances (developed by Dr. Christian Altenbach, University of California, Los Angeles). The detailed fitting procedure to obtain distances has been previously described (41). The 25% labeled spectra were used as the spectra without dipolar interactions. The width of the distance distribution was fixed at 3 Å. The distance, percentage of the spin labels at the fitted distance, and the percentage of non-interacting spin labels were allowed to vary. The best fits of these parameters are plotted in Figure 5.

RESULTS

Characterization of wild-type Aβ42 globulomers—We prepared Aβ42 oligomers using a globulomer protocol (13), which uses low concentration of SDS (0.05%) to mimic the lipid environment in the cell (42). TEM shows that the oligomer preparation contains mostly globular structures (Figure 1A). Most globular oligomers have diameters ranging from 5 to 10 nm, with majority of them around 7–8 nm (Figure 1B). Elongated structures with a beaded-string morphology can also be observed. The morphologies are similar to previous atomic force microscopy studies on globulomers, which show heights of 4–5 nm (35). MTT-based cell survival assays show that these Aβ42 oligomers are toxic to both PC-12 neuronal cells and HeLa cells in a dose-dependent manner (Figure 1C). Approximately 20% of the cells died in the presence of 0.2 µM (monomer equivalent) Aβ42 globulomers, and ~60% of cells died in the presence of 2 µM Aβ42 globulomers. CD spectrum shows a major negative peak at 216–218 nm, indicative mostly β-structures (Figure 1D), and it is similar to Aβ42 fibrils (Figure 1D). In comparison, the Aβ42 monomers show a single
large negative peak at around 198 nm, characteristic of random coil structures (Figure 1D). X-ray powder diffraction reveals three major diffraction peaks at 4.2, 4.7 and 10 Å (Figure 1E). The 4.7-Å reflection arises from separation of strands within the same β-sheet. The peak at ~10 Å corresponds to separations between β-sheets. The diffuse nature of the 10-Å peak suggests high heterogeneity of the inter-sheet packing. The origin of the 4.2-Å reflection is not well understood. Previously, an X-ray powder diffraction study of porcine stomach mucin protein under 4.2 Å corresponds to separations between monomers or small oligomers (Figure 1F).

The diffuse nature of the 10-Å peak suggests high heterogeneity of the inter-sheet packing. The presence of two spectral components suggests that globulomers contain at least two structural states whose interconversion is slower than nanosecond timescale. The slow component has a correlation time of 2.0-3.0 ns in N-terminal region and 3.0-4.5 ns in C-terminal region, corresponding to a structured state. Spin labels at positions 1 and 4 have correlation time of ~2.1 ns. Although they are the most flexible region in the Aβ42 sequence, the spin label mobility at these residues is comparable to ordered helix surface sites (44) or solvent exposed β-sheet sites (48,49). Therefore, the EPR data suggest that the N-terminal region spans residues 32–40, with a correlation time between 3.5 and 4.5 ns. These residues have spin label mobility comparable with spin labels located in the hydrophobic core of globular proteins (50). The correlation time of the fast component is in the range of 0.7 to 1.7 ns, with decreasing side chain mobility from N- to C-terminal regions (Figure 3B). Spin labels in completely unfolded proteins have a correlation time of ~0.5 ns (46,47), suggesting that this fast component corresponds to a partly disordered state. The relative population of the fast component is ~25% for N-terminal region (residues 1-10), and 10-15% for most other residues (Figure 3C), suggesting that the fast component represents a locally disordered state rather than a disordered monomer. This notion is further supported by the absence of significant amount of monomer or small oligomer peaks in the SEC profile (Figure 1F).

Preparation of spin-labeled Aβ42 globulomers for EPR study – To study the structure of Aβ42 globulomers by EPR, we introduced spin labels, one at a time, at 14 residue positions throughout the Aβ42 sequence (Figure 2A). The spin label side chain used in this study is named R1 (Figure 2B). TEM studies on selected spin-labeled Aβ42 globulomer samples show mostly globular structures without fibrils or protofibrils (Figure 2C), suggesting that spin labeling does not significantly perturb the formation of Aβ42 globulomers.

Spin label mobility analysis in Aβ42 globulomers – The EPR spectra of spin-labeled Aβ42 globulomers are shown in Figure 3A (black traces). For spin label mobility analysis, we prepared the oligomers using a mixture of spin-labeled Aβ42 with wild-type Aβ42 at 1:3 molar ratio. Therefore, in the oligomer sample, only 25% of the Aβ42 molecules were labeled, and this will greatly reduce dipolar interactions between spin labels. Spin-spin interactions may broaden the EPR spectra and complicate the mobility analysis. The site-specific spin label mobility is an indicator of residue-level structural order (44). The EPR spectra of spin-labeled Aβ42 globulomers encode information about the mobility of the spin label at each labeling site. The spin label mobility can be measured using center line width (45) or the ratio of high-field and center line amplitude (46). For EPR spectra with multiple components reflecting multiple motional states of the spin label, however, these measurements report only the combined mobility from different spin label states. A quantitative method to extract mobility information is to perform spectral simulations. Multiple spectral components can be simulated simultaneously and the population of each component can be obtained from simulation (47). Therefore, we performed non-linear least squares fitting to the EPR spectra (see Experimental Procedures). The best fits are shown in Figure 3A (red traces). Spectral fitting revealed two spectral components at every spin labeling position: a fast component and a slow component (Figure 3A, magenta and blue traces).

The structural order increases from N-terminus to C-terminus. The most ordered region spans residues 32–40, with a correlation time between 3.5 and 4.5 ns. These residues have spin label mobility comparable with spin labels located in the hydrophobic core of globular proteins (50).
The residue-level local stability can be calculated with the assumption that the structured state (corresponding to the slow component) and the locally disordered state (corresponding to the fast component) are in equilibrium. The free energy of local unfolding in Aβ42 globulomers is calculated using the percentages of slow and fast components from simulation (Figure 3D). This local stability plot reveals three low stability regions: D1–Y10, S26–G29, and G37. The low stability at residue G37 supports a likely turn feature. Therefore, EPR data suggest that Aβ42 globulomers adopt structures different from fibrils.

We measured inter-molecular distances in Aβ42 globulomers using continuous-wave EPR, which is sensitive to distances in the range of 8-20 Å (41). For distance measurements, EPR spectra were collected at 170 K and the EPR spectra are shown in Figure 5B. The measured distances are shown in Figure 5C (top panel). The segment with shortest distances is located at residues G29–V40, with distances of 11.5–12.5 Å. Residues F4–S26 have slightly longer distances in the range of 12.5–13.5 Å. The two terminal residues D1 and A42 give distances >13.5 Å.

The inter-molecular distances from EPR provide structural restraints for the inter-molecular organization of Aβ42 subunits in globulomers. First, Aβ42 globulomers consist of a tightly packed C-terminal region (G29–V40) and a loosely packed N-terminal region. Second, the shorted distances observed at residues G29–V40 are in the range of 11.5–12.5 Å, suggesting the absence of parallel in-register β structures. Third, the inter-molecular distances for most labeling positions are in a narrow range of 11.5–13.5 Å, suggesting an overall parallel arrangement for the Aβ42 subunits at this spacing. In Figure 6, we depict four schematic models for the potential arrangement for the C-terminal region (G29–V40). In Figure 6A and C, the measured inter-spin distances correspond to spacing between alternating β-strands within the same β sheet. In Figure 6B and D, the inter-spin distances correspond to spacing between two face-to-back packed β-sheets.

From distance analysis, we obtained not only distances in the range of 8-20 Å, but also the population of spin labels at the measured distances. We also obtained population of spin labels at distances >20 Å, which do not contribute to spectral broadening. Figure 5C (bottom panel) shows that only ~25-50% of spin labels give rise to the measured distances in the range of 11.5–14.5 Å. Majority of the spin labels are at distances >20 Å (Figure 5D). This information may also be useful in detailed structural modeling studies. For example, spin labels on the green β-strand in Figure 6A would fall into the category of >20 Å.

EPR studies of Aβ42 preglobulomers – Previous studies suggest that globulomer...
Formation involves the formation of preglobulomers in 0.2% SDS (13). After a 4-fold dilution of preglobulomers with water, preglobulomers convert to globulomers. Yu et al. (35) characterized the preglobulomers and proposed an inter-molecular parallel in-register β-sheet model for residues 34-41. Here we also characterized the preglobulomer structures with Aβ42 L34R1. The EPR spectrum of preglobulomers prepared in 0.2% SDS also consists of two spectral components, similar as globulomers (Figure 7A). Superimposition of the preglobulomer and globulomer spectra shows that the major difference between the two spectra is the more pronounced population of the disordered component. The lineshape for the ordered component is similar between preglobulomer and globulomer samples, suggesting structural similarity. Because Yu et al. (35) characterized the preglobulomers prepared in 1.5% SDS with solution NMR, we also performed EPR measurements at 1.5% SDS. The EPR spectrum of preglobulomers in 1.5% SDS (Figure 7B) is slightly sharper than that in 0.2% SDS, suggesting higher structural flexibility in 1.5% SDS. But the overall EPR spectral lineshape is similar between 0.2 and 1.5% SDS, suggesting overall similar structure for Aβ42 preglobulomers at the two SDS concentrations.

DISCUSSION

Formation of Aβ42 oligomers has been viewed as a key event in the pathogenesis of AD. The structures of Aβ42 oligomers, although essential for rational design of therapeutic agents that target these oligomers, remain elusive. In this work, we provide a systematic investigation into the structure of a toxic Aβ42 oligomer termed globulomers. CD and X-ray powder diffraction data show that Aβ42 globulomers are rich in β structures (Figure 1). Side chain mobility studies show increasing structural order from N- to C-terminal regions, with residues I32-V40 being the most ordered region (Figure 3). Inter-molecular distance measurements show that side chains at residues G29-V40 have an inter-molecular spacing of approximately 11.5-12.5 Å (Figure 5). Because EPR measures distances between the nitroxide groups, the linking arm between the nitroxide group and the Cα carbon introduces an additional variant when translating distances into structural models. Despite these uncertainties, the inter-molecular distances for the C-terminal residues G29–V40 are in a range of 11.5–12.5 Å, close to the spacing between alternating β-strands within the same sheet or between adjacent β-sheets.

Although a detailed structural model for Aβ42 globulomers is still beyond reach, the distance measurements provide restraints to assess published computational models. First, the measured distances rule out parallel in-register arrangement in globulomers. Recent studies using FTIR spectroscopy have suggested the existence of antiparallel β-structures in Aβ oligomers prepared using a wide range of protocols (16-24). Some investigators have questioned whether FTIR is able to definitively distinguish parallel from antiparallel structures in amyloid oligomers (51,52). The distance measurements strongly support the antiparallel arrangement in Aβ42 globulomers and may put this concern to rest. In computational modeling (53-55), Aβ42 subunits (residues 17–42) are generally modeled as a β-hairpin (56,57) or a U-shaped strand–turn-strand motif as observed in Aβ fibrils (58). The measured distances are generally in support of the antiparallel structural models in these modeling studies (53-55).

Previously, Yu et al. (35) characterized the structures of preglobulomers using solution NMR. Preglobulomers are formed in a higher concentration of SDS (0.2% versus 0.05% for globulomers). NMR data on Aβ42 preglobulomers show that residues 34-41 adopt inter-molecular parallel in-register β-sheet model for residues 34-41 (35), consistent with EPR data that show higher structural order and closer inter-molecular distances in the C-terminal region. The EPR spectra of Aβ42 preglobulomers are similar to that of globulomers (Figure 7), suggesting similar structural features. The reason for this apparent contradiction between EPR results and the previous NMR studies remains elusive, and may result from structural polymorphism commonly observed for Aβ oligomers.

The findings here demonstrate that EPR studies can resolve structurally heterogeneous states. One property of Aβ oligomer preparations that makes it challenging to do high-resolution structural studies is the sample heterogeneity. This
work has demonstrated several advantages of EPR in obtaining structural information from structurally heterogeneous samples. First, spectral subtraction can be used to obtain the EPR spectrum of “pure” oligomers by subtracting a spectral component with known lineshape (Figure 8A). Using 30-kD molecular-weight-cut-off filter, we separated Aβ42 globulomers into two fractions. The 30-kD-filter filtrate contains disordered Aβ monomers based on the sharp EPR lines. The EPR spectra of the “pure” high-molecular-weight species can be obtained by subtracting the 30-kD-filter filtrate spectra from the retentate spectra (Figures 6A). Second, multiple spectral components can be resolved using spectral simulations, which give dynamic parameters and populations of each component (Figure 8B). Third, in distance measurements, the distance and its population can be determined simultaneously using spectral fitting (Figure 8C). Furthermore, EPR has the ability to measure a wide range of distances (8-70 Å). These advantages make SDSL EPR an extremely powerful tool in the structural studies of the heterogeneous amyloid oligomers of Aβ and other proteins.

REFERENCES

1. Selkoe, D. J. (2011) Alzheimer's Disease. Cold Spring Harb. Perspect. Biol. 3, a004457
2. De Strooper, B. (2010) Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol. Rev. 90, 465-494
3. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. (1994) Visualization of Aβ42(43) and Aβ-40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 13, 45-53
4. Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 297, 353-356
5. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860-866
6. Bemporad, F., and Chiti, F. (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem. Biol. 19, 315-327
7. Kawarabayashi, T., Shoji, M., Younkin, L. H., Wen-Lang, L., Dickson, D. W., Murakami, T., Matsubara, E., Abe, K., Ashe, K. H., and Younkin, S. G. (2004) Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci. 24, 3801-3809
8. Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardon, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., and Selkoe, D. J. (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837-842
9. Lesné, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., and Ashe, K. H. (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352-357
10. Roychaudhuri, R., Yang, M., Hoshi, M. M., and Teplow, D. B. (2009) Amyloid β-protein assembly and Alzheimer disease. J. Biol. Chem. 284, 4749-4753
11. Benilova, I., Karran, E., and De Strooper, B. (2012) The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat. Neurosci. 15, 349-357
12. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448-6453
13. Barghorn, S., Nimmrich, V., Striebinger, A., Krantz, C., Keller, P., Janson, B., Bahr, M., Schmidt, M., Bittner, R. S., Harlan, J., Barlow, E., Ebert, U., and Hillen, H. (2005) Globular amyloid β-peptide 1-42 oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. J. Neurochem. 95, 834-847
14. Glabe, C. G. (2008) Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639-29643
15. Hoshi, M., Sato, M., Matsumoto, S., Noguchi, A., Yasutake, K., Yoshida, N., and Sato, K. (2003) Spherical aggregates of β-amyloid (amylospHERoid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl. Acad. Sci. USA 100, 6370-6375
16. Cerf, E., Sarroukh, R., Tamamizu-Kato, S., Breydo, L., Derclaye, S., Dufrene, Y. F., Narayanaswami, V., Goormaghtigh, E., Ryuyschaert, J. M., and Raussens, V. (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem. J. 421, 415-423
17. Eckert, A., Hauptmann, S., Scherping, I., Meinhardt, J., Rhein, V., Drose, S., Brandt, U., Fandrich, M., Muller, W. E., and Gotz, J. (2008) Oligomeric and fibrillar species of beta-amyloid (A beta 42) both impair mitochondrial function in P301L tau transgenic mice. J. Mol. Med. 86, 1255-1267
18. Morgado, I., Wieligmann, K., Bereza, M., Ronicke, R., Meinhardt, K., Annamalai, K., Baumann, M., Wacker, J., Hortschansky, P., Elaht, C., Mawrin, C., Schiene-Fischer, C., Heymann, K. G., Stubbs, M. T., Balbach, J., Gorlach, M., Horn, U., and Fandrich, M. (2012) Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc. Natl. Acad. Sci. USA 109, 12503-12508
19. Habicht, G., Haupt, C., Friedrich, R. P., Hortschansky, P., Sachse, C., Meinhardt, J., Wieligmann, K., Gellermann, G. P., Brodhun, M., Gotz, J., Hahhuber, K. J., Rocken, C., Horn, U., and Fandrich, M. (2007) Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc. Natl. Acad. Sci. USA 104, 19232-19237
20. Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E., and Smith, S. O. (2010) Structural conversion of neurotoxic amyloid-β(1-42) oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561-567
21. Stroud, J. C., Liu, C., Teng, P. K., and Eisenberg, D. (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc. Natl. Acad. Sci. USA 109, 7717-7722
22. Sandberg, A., Luheshi, L. M., Sollvander, S., Pereira de Barros, T., Macao, B., Knowles, T. P., Biverstal, H., Lendel, C., Ekholm-Pettersson, F., Dubnovitsky, A., Lannfelt, L., Dobson, C. M., and Hard, T. (2010) Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc. Natl. Acad. Sci. USA 107, 15595-15600
23. Sarroukh, R., Cerf, E., Derclaye, S., Dufrene, Y. F., Goormaghtigh, E., Ryuyschaert, J. M., and Raussens, V. (2011) Transformation of amyloid beta(1-40) oligomers into fibrils is characterized by a major change in secondary structure. Cell. Mol. Life Sci. 68, 1429-1438
24. Vandersteen, A., Hubin, E., Sarroukh, R., Baets, G. D., Schynkowitz, J., Rousseau, F., Subramaniam, V., Raussens, V., Wenschuh, H., Wildemans, D., and Broersen, K. (2012) A comparative analysis of the aggregation behavior of amyloid-beta peptide variants. FEBS Lett. 586, 4088-4093
25. Liu, C., Sawaya, M. R., Cheng, P. N., Zheng, J., Nowick, J. S., and Eisenberg, D. (2011) Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic beta-sheet mimics. J. Am. Chem. Soc. 133, 6736-6744
26. Laganowsky, A., Liu, C., Sawaya, M. R., Whitelegge, J. P., Park, J., Zhao, M., Pensalfini, A., Soriaga, A. B., Landau, M., Teng, P. K., Cascio, D., Glabe, C., and Eisenberg, D. (2012) Atomic view of a toxic amyloid small oligomer. Science 335, 1228-1231
27. Margittai, M., and Langen, R. (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q. Rev. Biophys. 41, 265-297
28. Agopian, A., and Guo, Z. (2012) Structural origin of polymorphism for Alzheimer's amyloid-β fibrils. Biochem. J. 447, 43-50
29. Hubbell, W. L., Cafiso, D. S., and Altenbach, C. (2000) Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735-739
30. Fanucci, G. E., and Cafiso, D. S. (2006) Recent advances and applications of site-directed spin labeling. Curr. Opin. Struct. Biol. 16, 644-653
31. McHaourab, H. S., Steed, P. R., and Kazmier, K. (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. *Structure* **19**, 1549-1561
32. Gellermann, G. P., Byrnes, H., Striebinger, A., Ullrich, K., Mueller, R., Hillen, H., and Barghorn, S. (2008) Aβ-globulomers are formed independently of the fibril pathway. *Neurobiol Dis* **30**, 212-220
33. Hillen, H., Barghorn, S., Striebinger, A., Labkovsky, B., Muller, R., Nimmrich, V., Nolte, M. W., Perez-Cruz, C., van der Auwerda, I., van Leuven, F., van Gaalen, M., Bespalov, A. Y., Schoemaker, H., Sullivan, J. P., and Ebert, U. (2010) Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. *J. Neurosci.* **30**, 10369-10379
34. Nimmrich, V., Grimm, C., Draguhn, A., Barghorn, S., Lehmann, A., Schoemaker, H., Hillen, H., Gross, G., Ebert, U., and Bruehl, C. (2008) Amyloid β-oligomers (Aβ(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. *J. Neurosci.* **28**, 788-797
35. Yu, L., Edalji, R., Harlan, J. E., Holzman, T. F., Lopez, A. P., Labkovsky, B., Hillen, H., Barghorn, S., Ebert, U., Richardson, P. L., Miesbauer, L., Solomon, L., Bartley, D., Walter, K., Johnson, R. W., Hajduk, P. J., and Olejniczak, E. T. (2009) Structural characterization of a soluble amyloid β-peptide oligomer. *Biochemistry* **48**, 1870-1877
36. Shahnawaz, M., Thapa, A., and Park, I. S. (2007) Stable activity of a deubiquitylating enzyme (Usp2-cc) in the presence of high concentrations of urea and its application to purify aggregation-prone peptides. *Biochem. Biophys. Res. Commun.* **359**, 801-805
37. Baker, R. T., Catanzariti, A. M., Karunasekara, Y., Soboleva, T. A., Sharwood, R., Whitney, S., and Board, P. G. (2005) Using deubiquitylating enzymes as research tools. *Methods Enzymol.* **398**, 540-554
38. Ngo, S., and Guo, Z. (2011) Key residues for the oligomerization of Aβ42 protein in Alzheimer's disease. *Biochem. Biophys. Res. Commun.* **414**, 512-516
39. Schneider, D. J., and Freed, J. H. (1989) Calculating slow motional magnetic resonance spectra. in *Spin Labeling: Theory and Applications* (Berliner, L. J., and Reuben, J., eds.), Plenum Press, New York. pp 1-76
40. Budil, D. E., Lee, S., Saxena, S., and Freed, J. H. (1996) Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. *J. Magn. Reson.* **120**, 155-189
41. Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K., and Hubbell, W. L. (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. *Biochemistry* **40**, 15471-15482
42. Yamamoto, N., Hasegawa, K., Matsuzaki, K., Naiki, H., and Yanagisawa, K. (2004) Environment- and mutation-dependent aggregation behavior of Alzheimer amyloid β-protein. *J. Neurochem.* **90**, 62-69
43. Veluraja, K., Vennila, K. N., Umamakeshvari, K., Jasmine, A., and Velmurugan, D. (2011) Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling. *Biochem. Biophys. Res. Commun.* **406**, 570-573
44. Lopez, C. J., Oga, S., and Hubbell, W. L. (2012) Mapping molecular flexibility of proteins with site-directed spin labeling: a case study of myoglobin. *Biochemistry* **51**, 6568-6583
45. Columbus, L., and Hubbell, W. L. (2002) A new spin on protein dynamics. *Trends Biochem. Sci.* **27**, 288-295
46. Ngo, S., Chiang, V., Ho, E., Le, L., and Guo, Z. (2012) Prion domain of yeast Ure2 protein adopts a completely disordered structure: a solid-support EPR study. *PLoS One* **7**, e47248
47. Gu, L., Ngo, S., and Guo, Z. (2012) Solid-support EPR studies of Aβ40 monomers reveal a structured state with three ordered segments. *J. Biol. Chem.* **287**, 9081-9089
48. Cunningham, T. F., McGoff, M. S., Sengupta, I., Jaroniec, C. P., Horne, W. S., and Saxena, S. (2012) High-resolution structure of a protein spin-label in a solvent-exposed beta-sheet and comparison with DEER spectroscopy. *Biochemistry* **51**, 6350-6359
49. Lietzow, M. A., and Hubbell, W. L. (2004) Motion of spin label side chains in cellular retinol-binding protein: correlation with structure and nearest-neighbor interactions in an antiparallel beta-sheet. *Biochemistry* **43**, 3137-3151

50. Guo, Z., Cascio, D., Hideg, K., Kállai, T., and Hubbell, W. L. (2007) Structural determinants of nitroxide motion in spin-labeled proteins: Tertiary contact and solvent-inaccessible sites in helix G of T4 lysozyme. *Protein Sci.* **16**, 1069-1086

51. Zandomeneghi, G., Krebs, M. R. H., Mccammon, M. G., and Fandrich, M. (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. *Protein Sci.* **13**, 3314-3321

52. Barth, A., and Zscherp, C. (2002) What vibrations tell us about proteins. *Q. Rev. Biophys.* **35**, 369-430

53. Shafrir, Y., Durell, S. R., Anishkin, A., and Guy, H. R. (2010) β-Barrel models of soluble amyloid β oligomers and annular protofibrils. *Proteins* **78**, 3458-3472

54. Ma, B., and Nussinov, R. (2010) Polymorphic C-terminal beta-sheet interactions determine the formation of fibril or amyloid beta-derived diffusible ligand-like globulomer for the Alzheimer Abeta42 dodecamer. *J. Biol. Chem.* **285**, 37102-37110

55. Ma, B., and Nussinov, R. (2011) Polymorphic triple beta-sheet structures contribute to amide hydrogen/deuterium (H/D) exchange protection in the Alzheimer amyloid beta42 peptide. *J. Biol. Chem.* **286**, 34244-34253

56. Streltsov, V. A., Varghese, J. N., Masters, C. L., and Nuttall, S. D. (2011) Crystal structure of the amyloid-β p3 fragment provides a model for oligomer formation in Alzheimer's disease. *J. Neurosci.* **31**, 1419-1426

57. Hoyer, W., Gronwall, C., Jonsson, A., Stahl, S., and Hard, T. (2008) Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-beta peptide inhibits amyloid formation. *Proc. Natl. Acad. Sci. USA* **105**, 5099-5104

58. Tycko, R. (2011) Solid-state NMR studies of amyloid fibril structure. *Annu. Rev. Phys. Chem.* **62**, 279-299

Acknowledgements – We thank Dr. David Eisenberg for use of the X-ray facility, Sam Ngo for preparation of Aβ proteins, Dr. Christian Altenbach and Dr. Wayne Hubbell for providing EPR analysis programs.

FOOTNOTES

*This work was supported by the Alzheimer’s Association (Grant NIRG-09-133555) and American Health Assistance Foundation (Grant A2010362).

1To whom correspondence should be addressed: Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA, Phone: (310) 206-8773; E-mail: zhefeng@ucla.edu

2UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA

3The abbreviations used are: Aβ, amyloid β; AD, Alzheimer’s disease; SDSL, site-directed spin labeling; EPR, electron paramagnetic resonance; TEM, transmission electron microscopy; CD, circular dichroism; SEC, size exclusion chromatography; MTSSL, 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate; FTIR, Fourier transform infrared; HFIP, 1,1,1,3,3,3 hexafluoro-2-propanol; PBS, phosphate-buffered saline; SDS, sodium dodecyl sulfate; MOMD, microscopic order macroscopic disorder; MTT, [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide].
FIGURE LEGENDS

Figure 1. Characterization of wild-type Aβ42 globulomers. (A) TEM images of Aβ42 globulomers. (B) Diameters of Aβ42 globulomers from TEM studies. (C) Survival of PC-12 and HeLa cells in the presence of Aβ42 globulomers using MTT-based cell viability assay. The buffer control has the exact composition as in the final step of globulomer preparation. (D) CD measurement of Aβ42 globulomers, fibrils, and monomers. A major negative peak at 216-218 nm suggests that Aβ42 globulomers contain predominantly β structures. (E) X-ray powder diffraction of lyophilized Aβ42 globulomers. (F) Analytical size exclusion chromatography profile of Aβ42 globulomers. Solid trace, globulomers; dotted trace, protein standards. The molecular masses of protein standards are: peak 1, thyroglobulin, 670 kD; peak 2, bovine γ globulin, 158 kD; peak 3, chicken ovalbumin, 44 kD; peak 4, equine myoglobin, 17 kD; peak 5, vitamin B12, 1.35 kD.

Figure 2. Globulomers of spin-labeled Aβ42. (A) Amino acid sequence of Aβ42 with spin labeling positions shown with arrow heads. (B) Structure of the spin label side chain R1 used in this work. (C) TEM images of four representative spin-labeled Aβ42 globulomers show globular structures as major species.

Figure 3. Residue-specific EPR mobility analysis for spin-labeled Aβ42 globulomers. (A) The experimental EPR spectra of 25% labeled Aβ42 globulomers, which consist of spin-labeled and wild-type Aβ42 at 1:3 molar ratio, are shown in black. The best non-linear least squares fits from spectral simulations are shown in red. All the fits contain two spectral components: a slow component (magenta) and a fast component (blue). (B) Plot of correlation time for the slow and fast components obtained from spectral simulations. (C) Plot of the populations of the fast and slow components from spectral simulations. (D) Residue-level local structural stability calculated using the relative populations of the slow (for structured state) and fast (for disordered state) components.

Figure 4. Temporal stability of Aβ42 globulomers. (A) Globulomers in preparation buffer (5 mM phosphate, pH 7.4, 35 mM NaCl, 2% DMSO, and 0.05% SDS). (B) Globulomers after 10-fold dilution to cell culture medium, which is ATCC-formulated RPMI-1640 medium (ATCC catalog# 30-2001) with 10% heat-inactivated horse serum and 5% fetal bovine serum.

Figure 5. Inter-molecular distance measurements for spin-labeled Aβ42 globulomers. (A) The spectra of 100% labeled oligomers show significantly reduced spectral amplitude than 25% labeled samples, suggesting inter-molecular dipolar interactions. (B) EPR spectra of 25% and 100% labeled Aβ42 globulomers measured at 170K. Inter-spin distances are obtained by simulating the 100% labeled spectra. The residual is the difference between simulated spectra and 100% labeled spectra. (C) Plot of inter-molecular distance between spin labels and percentage of spin labels at measured distances. (D) Plot of the populations of spin labels at >20 Å.

Figure 6. Potential structural origins of measured inter-molecular distances for C-terminal residues G29–A42. Red balls represent spin labels. Numbers in panels A and C show approximate residue positions for each β-strand segment. Each model consists of only minimum repeating unit, which can be extended in either hydrogen-bonding or side chain directions.

Figure 7. EPR spectra of Aβ42 preglobulomers. (A) Preglobulomers prepared in 0.2% SDS; (B) Preglobulomers prepared in 1.5% SDS.

Figure 8. EPR analysis can resolve structural heterogeneity in Aβ oligomers. (A) Spectral subtraction to isolate the spectral component of interest. (B) Spectral simulations to reveal multiple structural states. (C) Distance analysis to reveal both distance and its percentage in total population of spin labels.
Figure 2

A

DAEFRHDSGY EVHHQKLFFF AEDVGSNKGA IGLMVGGVV IA

B

Spin label side chain R1

C

F4R1 G37R1

L34R1 A42R1
Figure 4

A

0 hours 4 hours 8 hours 24 hours 48 hours

B

0 hours 4 hours 8 hours 24 hours 48 hours

Disordered = 3.7±0.1% Disordered = 3.9±0.1% Disordered = 4.3±0.1% Disordered = 4.9±0.1% Disordered = 5.5±0.1%
Figure 7

A

- Preglobulomer (0.2% SDS)
- Globulomer

B

- Preglobulomer (1.5% SDS)
- Globulomer
Figure 8

A 30 kD filter retentate 30 kD filter filtrate 30 kD filter retentate after subtracting filtrate component

B

Data Fit

Slow component of the fit, 85%
Fast component of the fit, 15%

C

25% labeled 100% labeled Simulated Residual

Percentage in total spins (%) Inter-spin distance (Å)
Structural insights into Aβ42 oligomers using site-directed spin labeling
Lei Gu, Cong Liu and Zhefeng Guo

J. Biol. Chem. published online May 16, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.457739

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Read an Author Profile for this article at
http://www.jbc.org/content/suppl/2013/06/27/M113.457739.DCAuthor_profile