INTRODUCTION TO QUANTUM ALGORITHMS

PETER W. SHOR

Abstract. These notes discuss the quantum algorithms we know of that can solve problems significantly faster than the corresponding classical algorithms. So far, we have only discovered a few techniques which can produce speed up versus classical algorithms. It is not clear yet whether the reason for this is that we do not have enough intuition to discover more techniques, or that there are only a few problems for which quantum computers can significantly speed up the solution.

In the first section of these notes, I try to explain why the recent results about quantum computing have been so surprising. This section comes from a talk I have been giving for several years now, and discusses the history of quantum computing and its relation to the mathematical foundations of computer science. In Sections 2 and 3, I talk about the quantum computing model and its relationship to physics. These sections rely heavily on two of my papers [SIAM J. Comp. 26 (1997), 1484–1509; Doc. Math. Extra Vol. ICM I (1998), 467–486]. Sections 4 and 5 illustrate the general technique of using quantum Fourier transforms to find periodicity. Section 6 contains an algorithm of Dan Simon showing that quantum computers are likely to be exponentially faster than classical computers for some problems. Section 7 discusses my factoring algorithm, which was inspired in part by Dan Simon’s paper. In the final section, I discuss Lov Grover’s search algorithm, which illustrates a different technique for speeding up classical algorithms. These techniques for constructing faster algorithms for classical problems on quantum computers are the only two significant ones which have been discovered so far.

1. History and Foundations

The first results in the mathematical theory of theoretical computer science appeared before the discipline of computer science existed; in fact, even before electronic computers existed. Shortly after Gödel proved his famous incompleteness result, several papers [13, 27, 32, 41] were published that drew a distinction between computable and non-computable functions. These papers showed that there are some mathematically defined functions which are impossible to compute algorithmically. Of course, proving such a theorem requires a mathematical definition of what it means to compute a function. These papers contained several distinct definitions of computation. What was observed was that, despite the fact that these definitions appear quite different, they all result in the same class of computable functions. This led to the proposal of what is now called the Church-Turing thesis, after two of its proponents. This thesis says that any function that is computable by any means, can also be computed by a Turing machine. This is not a mathematical theorem, because it does not give a mathematical precise definition of computable; it is rather a statement about the real world. In fact, many such mathematical
theorems have been proven for various definitions of computation. What was not widely appreciated until recently is that, since the Church-Turing thesis implicitly refers to the physical world, it is in fact a statement about physics. In the sixty years since Church proposed his thesis, nobody has discovered any counterexamples to it and it is now widely accepted. The current theories of physics appear to support this thesis, although as we do not yet have a comprehensive theory of physical laws, we must wait until we make a final judgment on this thesis.

The model that the majority of these early papers used for intuition about computation does not appear to have been a digital computer, as these did not yet exist. Rather, they appear to have been inspired by considering a mathematician scribbling on sheets of paper. Less than a decade after 1936, the first digital computers were built. As the Church-Turing thesis asserts, the class of functions computable by digital machines with arbitrarily large amounts of time and memory is indeed those functions computable by a Turing machine.

With the advent of practical digital computers, it became clear that the distinction between computable and non-computable was much too coarse for practical use, as actual computers do not have an arbitrary amount of time and memory. After all, it doesn’t do much good in practice to know that a function is computable if the sun will burn out long before any conceivable computer could reach the end of the computation. What was needed was some classification of functions as efficiently or inefficiently computable, based on their computational difficulty. In the late 1960’s and early 1970’s theoretical computer scientists came up with an asymptotic classification that reflects this distinction moderately well in practice, and is also tractable to work with theoretically, that is, useful for proving theorems about the difficulty of computation. Computer scientists call an algorithm polynomial-time if the running time grows polynomially in the input size, and they say that a problem is in the complexity class P if there is a polynomial-time algorithm solving it. This does not capture the intuitive notion of efficient perfectly — hardly anybody would claim that an algorithm with an \(n^{30} \) running time is feasible — but it works reasonably well in practice. Experience seems to show that most natural problems in P tend to have reasonably efficient algorithms, and most natural problems not in P tend not to be solvable much faster than exponential time. Further, the complexity class P has been very useful for proving theorems, an advantage which is unlikely to hold for any definition which differentiates between \(O(n^3) \) and \(O(n^{30}) \) algorithms.

For the definition of P to make sense, you need to know that it does not depend on the exact type of computer used for the computation. This led to a “folk” thesis, which we call the polynomial Church’s thesis, whose origins appear to be impossible to pin down, but which has nevertheless been widely referred to in the literature. This thesis says that any physically computable function can be computed on a Turing machine with at most a polynomial increase in the running time. That is, if a function can be computed on a physical computer in time \(T \), it can be computed on a Turing machine in time \(O(T^c) \) for some constant \(c \) depending only on the class of computing machine used.

Why might this folk thesis be true? One explanation might be that the physical laws of our universe are efficiently simulable by computers. This would explain it via the following argument: if we have some physical machine that solves a problem, then we can simulate the physical laws driving this machine, and by our hypothesis
INTRODUCTION TO QUANTUM ALGORITHMS

this simulation runs in polynomial time. Conversely, if we are interested in counterexamples to the polynomial Church’s thesis, we should look at physical systems which appear to be very difficult to simulate on a digital computer. Two classes of physical systems immediately spring to mind for which simulation currently consumes vast amounts of computer time, even while trying to solve relatively simple problems. One of these is turbulence, about which I unfortunately have nothing further to say. The other is quantum mechanics.

In 1982, Feynman [19] argued that simulating quantum mechanics inherently required an exponential amount of overhead, so that it must take enormous amounts of computer time no matter how clever you are. This realization was come to independently, and somewhat earlier, in 1980, in the Soviet Union by Yuri Manin [30]. It is not true that all quantum mechanical systems are difficult to simulate; some of them have exact solutions and others have very clever computational shortcuts, but it does appear to be true when simulating a generic quantum mechanics system. Another thing Feynman suggested in this paper was the use of quantum computers to get around this. That is, a computer based on fundamentally quantum mechanical phenomena might be used to simulate quantum mechanics much more efficiently. In much the same spirit, you could think of a wind tunnel as a “turbulence computer”. Benioff [5] had already showed how quantum mechanical processes could be used as the basis of a classical Turing machine. Feynman [20] refined these ideas in a later paper.

In 1985, David Deutsch [15] gave an abstract model of quantum computation, and also raised the question of whether quantum computers might actually be useful for classical problems. Subsequently, he and a number of other people [16, 8, 39] came up with rather contrived-appearing problems for which quantum computers seemed to work better than classical computers. It was by studying these algorithms, especially Dan Simon’s [39], that I figured out how to design the factoring algorithm.

2. The Quantum Circuit Model

In this section we discuss the quantum circuit model [44] for quantum computation. This is a rigorous mathematical model for a quantum computer. It is not the only mathematical model that has been proposed for quantum computation; there are also the quantum Turing machine model [8, 44] and the quantum cellular automata model [31, 32]. All these models result in the same class of polynomial-time quantum computable functions. These are, of course, not the only potential models for quantum computation, and some of the assumptions made in these models, such as unitarity of all gates, and the lack of fermion/boson particle statistics, clearly are not physically realistic in that it is easy to conceive of machines that do not conform to the above assumptions. However, there do not seem to be any physically realistic models which have more computational power than the ones listed above. Neither non-unitarity [5] nor fermions [3] add significant power to the mathematical model. Of these models, the quantum circuit model is possibly the simplest to describe. It is also easier to connect with possible physical implementations of quantum computers than the quantum Turing machine model. The disadvantage of this model is that it is not naturally a uniform model. Uniformity is a technical condition arising in complexity theory, and to make the quantum circuit model uniform, additional constraints must be imposed on it. This issue is discussed later.
In analogy with a classical bit, a two-state quantum system is called a qubit, or quantum bit. Mathematically, a qubit takes a value in the vector space \mathbb{C}^2. We single out two orthogonal basis vectors in this space, and label these V_0 and V_1. In Dirac’s “bra-ket” notation, which comes from physics and is commonly used in the quantum computing field, these are represented as $|0\rangle$ and $|1\rangle$. More precisely, quantum states are invariant under multiplication by scalars, so a qubit lives in two-dimensional complex projective space. To conform with physics usage, we treat qubits as column vectors and operate on them by left multiplication.

One of the fundamental principles of quantum mechanics is that the joint quantum state space of two systems is the tensor product of their individual quantum state spaces. Thus, the quantum state space of n qubits is the space \mathbb{C}^{2^n}. The basis vectors of this space are parameterized by binary strings of length n. We make extensive use of the tensor decomposition of this space into n copies of \mathbb{C}^2, where we represent a basis state V_b corresponding to the binary string $b_1b_2\cdots b_n$ by

$$V_{b_1b_2\cdots b_n} = V_{b_1} \otimes V_{b_2} \otimes \cdots \otimes V_{b_n}.$$

In “bra-ket” notation, this state is written as $|b_1b_2b_3\cdots b_n\rangle$ or equivalently, as the tensor product $|b_1\rangle|b_2\rangle|b_3\rangle\cdots|b_n\rangle$. Generally, we use position to distinguish the n different qubits. Occasionally we need some other notation for distinguishing them, in which case we denote the i'th qubit by $V^{[i]}$. Since quantum states are invariant under multiplication by scalars, they can without loss of generality be normalized to be unit length vectors; except where otherwise noted, quantum states in this paper will be assumed to be normalized. Quantum computation takes place in the quantum state space of n qubits \mathbb{C}^{2^n}, and obtains extra computational power from its exponential dimensionality.

In a usable computer, we need some means of giving it the problem we want solved (input), some means of extracting the answer from it (output), and some means of manipulating the state of the computer to transform the input into the desired output (computation). We next briefly describe input and output for the quantum circuit model. We then take a brief detour to describe the classical circuit model; this will motivate the rules for performing the computation on a quantum computer.

Since we are comparing quantum computers to classical computers, and solving classical problems on a quantum computer, in this paper the input to a quantum computer will always be classical information. It can thus be expressed as a binary string S of some length k. We need to encode this in the initial quantum state of the computer, which must be a vector in \mathbb{C}^{2^n}. The way we do this is to concatenate the bit string S with $n-k$ 0's to obtain the length n string $S0\ldots0$. We then initialize the quantum computer in the state $V_{S0\ldots0}$. Note that the number of qubits is in general larger than the input. These extra qubits, which we can take to be initialized to 0, are often required for workspace in implementing quantum algorithms.

At the end of a computation, the quantum computer is in a state which is a unit vector in \mathbb{C}^{2^n}. This state can be written explicitly as $W = \sum_s \alpha_s V_s$ where s ranges over binary strings of length n, $\alpha_s \in \mathbb{C}$, and $\sum_s |\alpha_s|^2 = 1$. These α_s are called probability amplitudes, and we say that W is a superposition of basis vectors V_s. In quantum mechanics, the Heisenberg uncertainty principle tells us that we cannot measure the complete quantum state of this system. There are a
large number of permissible measurements; for example, any orthogonal basis of \mathbb{C}^{2^n} defines a measurement whose possible outcomes are the elements of this basis. However, we assume that the output is obtained by projecting each qubit onto the basis $\{V_0, V_1\}$. This measurement has the great advantage of being simple, and it appears that any physically reasonable measurements can be accomplished by first doing some precomputation and then making the above canonical measurement.

When applied to a state $\sum_s \alpha_s V_s$, this projection produces the string s with probability $|\alpha_s|^2$. The quantum measurement process is inherently probabilistic. Thus we do not require that the computation gives the right answer all the time; but that we obtain the right answer at least $2/3$ of the time. Here, the probability $2/3$ can be replaced by any number strictly between $1/2$ and 1 without altering the class of functions that can be computed in polynomial time by quantum computers—if the probability of obtaining the right answer is strictly larger than $1/2$, it can be amplified by running the computation several times and taking the majority vote of the results of these separate computations.

In order to motivate the rules for state manipulation in a quantum circuit, we now take a brief detour and describe the classical circuit model. Recall that a classical circuit can always be written solely with the three gates AND (\wedge), OR (\lor) and NOT (\neg). These three gates are thus said to form a universal set of gates. Besides these three gates, note that we also need elements which duplicate the values on wires. It is arguable that these elements should also be classified as gates. These duplicating “gates” are not possible in the domain of quantum computing, because of the theorem that an arbitrary quantum state cannot be cloned (duplicated).

A quantum circuit is similarly built out of logical quantum wires carrying qubits, and quantum gates acting on these qubits. Each wire corresponds to one of the n qubits. We assume each gate acts on either one or two wires. The possible physical transformations of a quantum system are unitary transformations, so each quantum gate can be described by a unitary matrix. A quantum gate on one qubit is then described by a 2×2 matrix, and a quantum gate on two qubits by a 4×4 matrix. Note that since unitary matrices are invertible, the computation is reversible; thus starting with the output and working backwards one obtains the input. Further note that for quantum gates, the dimension of the output space is equal to that of the input space, so at all times during the computation we have n qubits carried on n quantum wires.

It should be noted that these requirements of unitary and of maintaining only the original n qubits at all times need to be revised for dealing with noisy gates, an area not covered in this paper. In fact, it can be shown that with these requirements, noisy unitary gates make it impossible to carry out long computations [2]; some means of eliminating noise by resetting qubits to values near 0 is required.

Quantum gates acting on one or two qubits (\mathbb{C}^2 or \mathbb{C}^4) naturally induce a transformation on the state space of the entire quantum computer (\mathbb{C}^{2^n}). For example, if A is a 4×4 matrix acting on qubits i and j, the induced action on a basis vector of \mathbb{C}^{2^n} is

\begin{equation}
A^{[i,j]} V_{b_1 b_2 \cdots b_n} = \sum_{s=0}^{1} \sum_{t=0}^{1} A_{b_i b_j} st V_{b_1 b_2 \cdots b_{i-1} s b_{i+1} \cdots b_j t b_{j+1} \cdots b_n}.
\end{equation}
This is the tensor product of A (acting on qubits i and j) with $n-2$ identity matrices (acting on each of the remaining qubits). When we multiply a general vector by a quantum gate, it can have negative and positive coefficients which cancel out, leading to quantum interference.

As there are for classical circuits, there are universal sets of gates for quantum circuits; such a universal set of gates is sufficient to build circuits for any quantum computation. One particularly useful universal set of gates is the set of all one-bit gates and a specific two-bit gate called the Controlled NOT (CNOT). These gates can efficiently simulate any quantum circuits whose gates act on only a constant number of qubits [4]. On basis vectors, the CNOT gate negates the second (target) qubit if and only if the first (control) qubit is 1. In other words, it takes V_{XY} to V_{XZ} where $Z = X + Y \pmod{2}$. This corresponds to the unitary matrix

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Note that the CNOT is a classical reversible gate. To obtain a universal set of classical reversible gates, you need at least one reversible three-bit gate, such as a Toffoli gate; otherwise you can only perform linear Boolean computations. A Toffoli gate is a doubly controlled NOT, which negates the 3rd bit if and only if the first two are both 1. By itself the Toffoli gate is universal for reversible classical computation, as it can simulate both AND and NOT gates [2]. Thus, if you can make a Toffoli gate, you can perform any reversible classical computation. Further, as long as the input is not erased, any classical computation can be efficiently performed reversibly [1], and thus implemented efficiently by Toffoli gates. The matrix corresponding to a Toffoli gate is

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

(2.2)

We now define the complexity class BQP, which stands for bounded-error quantum polynomial time. This is the class of languages which can be computed on a quantum computer in polynomial time, with the computer giving the correct answer at least $2/3$ of the time.

To give a rigorous definition of this complexity class using quantum circuits, we need to impose uniformity conditions. Any specific quantum circuit can only compute a function whose domain (input) is binary strings of a specific length. To use the quantum circuit model to implement functions taking arbitrary length binary strings for input, we need a family of quantum circuits, that contains one circuit for inputs of each length. Without any further conditions on this family of circuits, the designer of this circuit family could hide an uncomputable function in the design of the circuits for each input length. This definition would thus result in the unfortunate inclusion of uncomputable functions in the complexity class BQP.
One should note that there is a name for this nonuniform class of functions. It is called BQP/poly, meaning that there can be at most a polynomial amount of extra information included in the circuit design.

To exclude this possibility of including non-computable information in the circuit, we require uniformity conditions on the circuit family. The easiest way of doing this is to require a classical Turing machine that on input n outputs a description of the circuit for length n inputs, and which runs in time polynomial in n. For quantum computing, we need an additional uniformity condition on the circuits. It is also be possible for the circuit designer to hide uncomputable (or hard-to-compute) information in the unitary matrices corresponding to quantum gates. We thus require that the k'th digit of the entries of these matrices can be computed by a second Turing machine in time polynomial in k and n. Although we do not have space to discuss this fully, the power of the classical machines designing the circuit family can actually be varied over a wide range; they can be varied from classes much smaller than P to the classical randomized class BPP. This helps us convince ourselves that we have the right definition of BQP.

The definition of polynomial time computable functions on a quantum computer is thus those functions computable by a uniform family of circuits whose size (number of gates) is polynomial in the length of the input, and which for any input gives the right answer at least $2/3$ of the time. The corresponding set of languages (languages are functions with values in \{0,1\}) is called BQP.

3. Relation of the Model to Quantum Physics

The quantum circuit model of the previous section is much simplified from the realities of quantum physics. There are operations possible in physical quantum systems which do not correspond to any simple operation allowable in the quantum circuit model, and complexities that occur when performing experiments that are not reflected in the quantum circuit model. This section contains a brief discussion of these issues, some of which are discussed more thoroughly in [8].

In everyday life, objects behave very classically, and on large scales we do not see any quantum mechanical behavior. This is due to a phenomenon called decoherence, which makes superpositions of states decay, and makes large-scale superpositions of states decay very quickly. A thorough, elementary, discussion of decoherence can be found in [17]; one reason it occurs is that we are dealing with open systems rather than closed ones. Although closed systems quantum mechanically undergo unitary evolution, open systems need not. They are subsystems of systems undergoing unitary evolution, and the process of taking subsystems does not preserve unitarity.

However hard we may try to isolate quantum computers from the environment, it is virtually inevitable that they will still undergo some decoherence and errors. We need to know that these processes do not fundamentally change their behavior. Using no error correction, if each gate results in an amount of decoherence and error of order $1/t$, then $O(t)$ operations can be performed before the quantum state becomes so noisy as to usually give the wrong answer [8]. Active error correction can improve this situation substantially; this is discussed in Gottesman’s notes for this course [24].

In some proposed physical architectures for quantum computers, there are restrictions that are more severe than the quantum circuit model given in the preceding section. Many of these restrictions do not change the class BQP. For example,
it might be the case that a gate could only be applied to a pair of adjacent qubits. We can still operate on a pair of arbitrary qubits: by repeatedly exchanging one of these qubits with a neighbor we can bring this pair together. If there are \(n\) qubits in the computer, this can only increase the computation time by a factor of \(n\), preserving the complexity class BQP.

The quantum circuit model described in the previous section postpones all measurements to the end, and assumes that we are not allowed to use probabilistic steps. Both of these possibilities are allowed in general by quantum mechanics, but neither possibility makes the complexity class BQP larger [8]. For fault-tolerant quantum computing, however, it is very useful to permit measurements in the middle of the computation, in order to measure and correct errors.

The quantum circuit model also assumes that we only operate on a constant number of qubits at a time. In general quantum systems, all the qubits evolve simultaneously according to some Hamiltonian describing the system. This simultaneous evolution of many qubits cannot be described by a single gate in our model, which only operates on two qubits at once. In a realistic model of quantum computation, however, we cannot allow general Hamiltonians, since they are not experimentally realizable. Some Hamiltonians that act on all the qubits at once are experimentally realizable. It would be nice to know that even though these Hamiltonians cannot be directly described by our model, they cannot be used to compute functions not in BQP in polynomial time. This could be accomplished by showing that systems with such Hamiltonians can be efficiently simulated by a quantum computer. Some work has been done on simulating Hamiltonians on quantum computers [1, 29, 45], but I do not believe this question has been completely addressed yet.

4. Simon’s Algorithm

In this section, we give Dan Simon’s algorithm [39] for a problem that takes exponential time on a classical computer, but quadratic time on a quantum computer. This is an “oracle” problem, in that there is a function \(f\) given as a “black box” subroutine, and the computer is allowed to compute \(f\), but is not allowed to look at the code for \(f\). In fact, to prove the lower bound on a classical computer, we must permit the computer to use functions \(f\) which are not efficiently computable.

We now describe Simon’s problem. The computer is given a function \(f\) mapping \(\mathbb{F}_2^n\) to \(\mathbb{F}_2^n\) which has the property that there is a \(c\) such that

\[
(4.1) \quad f(x) = f(y) \iff x \equiv y + c \pmod{\mathbb{F}_2^n}
\]

Here, the addition is bitwise binary addition. Essentially, this is a function which is periodic over \(\mathbb{F}_2^n\) with period \(c\).

We now describe the lower bound for a classical computer. Suppose that the function \(f\) is chosen at random from all functions with property (4.1). We show that you need to compute \(O(2^{n/2})\) function evaluations to find \(c\). Suppose that you have evaluated \(s\) values of \(f\). You have then eliminated at most one value of \(c\) for each pair of the \(s\) values of \(f\) computed, but \(c\) is equally likely to be any of the remaining possibilities. Thus, after computing \(s\) values of \(f\), you will have eliminated at most \(s(s-1)/2\) values of \(c\). At least half the time, you must try more than half the possibilities for \(c\), and this takes \(O(2^{n/2})\) function evaluations.
We now describe Simon’s algorithm for finding the period on a quantum computer. To do this, we need to introduce the Hadamard gate,

\[H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \]

Now, suppose that we apply the Hadamard transformation to each of \(k \) qubits. We obtain, for a vector \(a \) in \(\mathbb{F}_2^k \),

\[H^\otimes k (V_a) = \frac{1}{2^{k/2}} \sum_{b=0}^{2^k-1} (-1)^{a \cdot b} V_b. \]

(4.2)

It is easy to see that each entry of the matrix \(H^\otimes k \) is \(\pm 2^{-k/2} \). Further, the \((a, b)\) entry picks up a factor of \(-1\) for each position which is 1 in both \(a \) and \(b \), giving a sign of \((-1)^{a \cdot b}\). Here,

\[a \cdot b = \sum_i a_i b_i \pmod{2} \]

is the binary inner product of \(a \) and \(b \). This is in fact the Fourier transform over \(\mathbb{F}_2^k \).

We are now ready to describe Simon’s algorithm. We will use two registers, both with \(n \) qubits. We start with the state \(V_0 \otimes V_0 \). The first step is to take each qubit in the first register to \(\frac{1}{\sqrt{2}} (V_0 + V_1) \), putting the first register in an equal superposition of all binary strings of length \(n \). The computer is now in the state

\[2^{-n/2} \sum_{x=0}^{2^n-1} V_x \otimes V_0. \]

The second step is to compute \(f(x) \) in the second register. We now obtain the state

\[2^{-n/2} \sum_{x=0}^{2^n-1} V_x \otimes V_{f(x)}. \]

Note that since the input \(x \) of the function \(f(x) \) is kept in memory, this is a reversible classical transformation, and thus unitary. The third step is to take the Fourier transform of the first register. This leaves the first register in the state

\[2^{-n} \sum_{x=0}^{2^n-1} \sum_{y=0}^{2^n-1} (-1)^{x \cdot y} V_y \otimes V_{f(x)}. \]

Finally, we observe the state of the computer in the basis \(V_i \otimes V_j \). We see the state \(V_y \otimes V_{f(x)} \) with probability equal to the square of its amplitude in the above sum. There are exactly two \(x \) which give the value \(f(x) \), namely \(x \) and \(x + c \). The probability of observing \(V_y \otimes V_{f(x)} \) is thus

\[2^{-2n} \left((-1)^{x \cdot y} + (-1)^{(x+c) \cdot y} \right)^2. \]

This probability is either \(2^{2n-2} \) or 0, depending on whether \(y \cdot c \) is 0 or 1. The above measurement thus produces a random \(y \) with \(c \cdot y = 0 \). It is straightforward to show that \(O(n) \) such \(y \)'s chosen at random will be of full rank in \(c^\perp \), the \(n-1 \) dimensional space perpendicular to \(c \), and thus determine \(c \) uniquely. Thus, if we repeat the above procedure \(O(n) \) times, we will be able to deduce \(c \). Since each of
these repetitions takes $O(n)$ steps on the quantum computer, we obtain the answer in $O(n^2 + nF)$ time, where F is the cost of the evaluating the function f.

Simon’s algorithm is at least a moderately convincing argument that BQP is strictly larger than BPP, although it is not a rigorous proof. However, Simon’s problem is contrived in that it does not seem to have arisen in any other context. It did point the way to my discovery of the factoring algorithm, which will be discussed in the next section. The factoring algorithm is a much less convincing argument that BQP is larger than BPP, as nobody really knows the complexity of factoring. However, as factoring is a widely studied problem that is fundamental for public key cryptography \cite{35}, the quantum factoring algorithm brought widespread attention to the field of quantum computing.

5. The Factoring Algorithm

For factoring an L-bit number N, the best classical algorithm known is the number field sieve \cite{28}; this algorithm asymptotically takes time $O(\exp(cL^{1/3} \log^{2/3} L))$. On a quantum computer, the quantum factoring algorithm takes asymptotically $O(L^2 \log L \log \log L)$ steps. The key idea of the quantum factoring algorithm is the use of a Fourier transform to find the period of the sequence $u_i = x^i \pmod{N}$, from which period a factorization of N can be obtained. The period of this sequence is exponential in L, so this approach is not practical on a digital computer. On a quantum computer, however, we can find the period in polynomial time by exploiting the 2^{2L}-dimensional state space of 2^L qubits, and taking a Fourier transform over this space. The exponential dimensionality of this space permits us to take the Fourier transform of an exponential length sequence. How this works will be made clearer by the following sketch of the algorithm, the full details of which are in \cite{36}, along with a quantum algorithm for finding discrete logarithms.

The idea behind all the fast factoring algorithms (classical or quantum) is fairly simple. To factor N, find two residues mod N such that

\begin{equation}
 s^2 \equiv t^2 \pmod{N} \tag{5.1}
\end{equation}

but $s \not\equiv \pm t \pmod{N}$. We now have

\begin{equation}
 (s+t)(s-t) \equiv 0 \pmod{N} \tag{5.2}
\end{equation}

and neither of these two factors is $0 \pmod{N}$. Thus, $s+t$ must contain one factor of N (and $s-t$ another). We can extract this factor by finding the greatest common divisor of $s+t$ and N; this computation can be done in polynomial time using Euclid’s algorithm.

In the quantum factoring algorithm, we find the multiplicative period r of a residue $x \pmod{N}$. This period r satisfies $x^r \equiv 1 \pmod{N}$. If we are lucky and r is even, then both sides of this congruence are squares and we can try the above factorization method. If we are just a little bit more lucky, then $x^{r/2} \not\equiv -1 \pmod{N}$, and we obtain a factor by computing $\gcd(x^{r/2} + 1, N)$. The greatest common divisor can be computed in polynomial time on a classical computer using Euclid’s algorithm.

It is a relatively simple exercise in number theory to show that for large N with two or more prime factors, at least half the residues $x \pmod{N}$ produce prime factors using this technique, and that for most large N the fraction of good residues x is much higher; thus, if we try several different values for x, we have to be particularly unlucky not to obtain a factorization using this method.
We now need to explain what the quantum Fourier transform is. The quantum Fourier transform on \(k \) qubits maps the state \(V_a \), where \(a \) is considered as an integer between 0 and \(2^k - 1 \), to a superposition of the states \(V_b \) as follows:

\[
V_a \rightarrow \frac{1}{2^{k/2}} \sum_{b=0}^{2^k-1} \exp(2\pi i ab/2^k) V_b
\]

(5.3)

It is easy to check that this transformation defines a unitary matrix. It is not as straightforward to implement this Fourier transform as a sequence of one- and two-bit quantum gates. However, an adaption of the Cooley-Tukey algorithm decomposes this transformation into a sequence of \(k(k-1)/2 \) one- and two-bit gates. More generally, the discrete Fourier transform over any product \(Q \) of small primes (each of size at most \(\log Q \)) can be performed in polynomial time on a quantum computer. We will show how to break the above Fourier transform of Eq. (5.3) into this product of two-bit gates at the end of this section.

We are now ready to give the quantum algorithm for factoring. What we do is design a polynomial-size circuit which starts in the quantum state \(V_0 \ldots 0 \) and whose output, with reasonable probability, lets us factor an \(L \)-bit number \(N \) in polynomial time using a digital computer. This circuit has two main registers, the first of which is composed of \(2L \) qubits and the second of \(L \) qubits. It also requires a few extra qubits of work space, which we do not mention in the summary below but which are required for implementing the step (5.5) below.

We start by putting the computer into the state representing the superposition of all possible values of the first register:

\[
\frac{1}{\sqrt{2^L}} \sum_{a=0}^{2^L-1} V_a \otimes V_0.
\]

(5.4)

This can easily be done using \(2L \) gates by putting each of the qubits in the first register into the state \(\frac{1}{\sqrt{2}}(V_0 + V_1) \).

We next use the value of \(a \) in the first register to compute the value \(x^a \pmod{N} \) in the second register. This can be done using a reversible classical circuit for computing \(x^a \pmod{N} \) from \(a \). Computing \(x^a \pmod{N} \) using repeated squaring takes \(O(L^3) \) quantum gates using the grade school multiplication algorithm, and asymptotically \(O(L^2 \log L \log \log L) \) gates using fast integer multiplication (which is actually faster only for moderately large values of \(L \)). This leaves the computer in the state

\[
\frac{1}{\sqrt{2^L}} \sum_{a=0}^{2^L-1} V_a \otimes V_{x^a \pmod{N}}.
\]

(5.5)

The next step is to take the discrete Fourier transform of the first register, as in Equation (5.3). This puts the computer into the state

\[
\frac{1}{2^{2L}} \sum_{a=0}^{2^L-1} \sum_{b=0}^{2^L-1} \exp(2\pi i ab/2^{2L}) V_c \otimes V_{x^a \pmod{N}}.
\]

(5.6)

Finally, we measure the state of our machine. This yields the output \(V_c \otimes V_{x^j \pmod{N}} \) with probability equal to the square of the coefficient on this state in the sum (5.6). Since many values of \(x^a \pmod{N} \) are equal, many terms in this sum
contribute to each coefficient. All these a’s giving the same value of $x^a \pmod{N}$ can be represented as

$$a = a_0 + br,$$

where a_0 is the smallest of these a’s and b is some integer between 0 and $\lceil 2^{2L}/r \rceil$. Explicitly, this probability is:

$$\left| \frac{1}{2^{4L}} \exp(2\pi ia_0 c/2^{2L}) \sum_{b=0}^{\lceil 2^{2L}/r \rceil + \eta} \exp(2\pi ibr c/2^{2L}) \right|^2. \quad (5.7)$$

where η is either 0 or 1, depending on the values of $2^{2L} \pmod{r}$ and a_0. This sum in Eq. (5.7) is a geometric sum of unit complex numbers equally spaced around the unit circle, and it is straightforward to check that this sum is small except when these complex numbers point predominantly in the same direction. For this to happen, we need that the angle between the two complex phases for b and $b+1$ is on the order of the reciprocal of the number of possible b’s, i.e., that

$$rc/2^{2L} = d + O(r/2^{2L}) \quad (5.8)$$

for some integer d. We thus are likely to observe only values of b satisfying (5.8). Recalling that $2^{2L} \approx N^2$, we can rewrite this equation to obtain

$$\frac{c}{2^{2L}} = \frac{d}{r} + O(1/N^2). \quad (5.9)$$

We know c and 2^{2L}, and we want to find r. Since both d and r are less than N, if the $O(1/N^2)$ in Eq. (5.9) were exactly $1/2N^2$, we would have

$$\left| \frac{c}{2^{2L}} - \frac{d}{r} \right| \leq \frac{1}{2N^2}$$

and $\frac{d}{r}$ would be the closest fraction to $c/2^{2L}$ with numerator and denominator less than N. In actuality, it is likely to be one of the closest ones. Thus, all we need do to find r is to round $c/2^{2L}$ to find all close fractions with denominators less than N. This can be done in polynomial time using a continued fraction expansion, and since we can check whether we have obtained the right value of r, we can search the close fractions until we have obtained the correct one. We chose $2L$ as the size of the first register in order to make d/r likely to be the closest fraction to $c/2^{2L}$ with numerator and denominator at most N.

More details of this algorithm can be found in [36]. Recently, Zalka [46] has analyzed the resources required by this algorithm much more thoroughly, improving upon their original values in many respects. For example, he shows that you can use only $3L + o(L)$ qubits, whereas the original algorithm required $2L$ extra qubits for workspace, giving a total of $5L$ qubits. He also shows how to efficiently parallelize the algorithm to run on a parallel quantum computer.

5.1. Implementing the Quantum Fourier Transform

We now show how to break the discrete Fourier transform (Eq. (5.3)) into a product of two-bit gates, a step which we previously postponed to this subsection. Let us consider the Fourier transform on $k+1$ bits.

$$V_a \rightarrow \frac{1}{2^{(k+1)/2}} \sum_{b=0}^{2^{k+1}-1} \exp(2\pi iab/2^{k+1}) V_b \quad (5.10)$$
We will assume that we have an expression for the Fourier transform on \(k \) qubits, and show how to obtain an expression for the Fourier transform on \(k + 1 \) qubits using only \(k + 1 \) additional gates.

We break the input space \(V_a \) on \(k + 1 \) qubits into the tensor product of a \(k \)-qubit space and a 1-qubit space, so that \(V_a = V_{a_0} \otimes V_a \), where the \((k + 1) \)-bit string \(a = a_k a_{k-1} \ldots a_0 \) is the concatenation of the \(k \)-bit string \(a_0 \ldots a_k \) and the one-bit string \(a_0 \). Thus, \(a_0 \) is the rightmost bit of the binary number \(a \), i.e., the units bit. We similarly break the output space \(V_b \) into the tensor product of a 1-qubit space and a \(k \)-qubit space, but this time we choose the first bit as the 1-qubit space, so \(V_b = V_{b_k} \otimes V_{b_-} \), where \(b_k = b_{k-1} \ldots b_0 \) is the leftmost bit of \(b \), i.e., the bit with value \(2^k \), and \(b_- \) comprises the \(k \) rightmost bits. Now, the Fourier transform becomes

\[
(5.11) \quad V_{a_0} V_a \rightarrow 2^{k+1} \sum_{a_k=0}^{1} \sum_{a_{k-1}=0}^{1} \cdots \sum_{a_0=0}^{1} \exp \left(2\pi i \left(\frac{a_0 b_k + a_0 b_-}{2} + a_- b_k + \frac{a_- b_0}{2} \right) \right) V_{b_k} V_{b_-}.
\]

We now analyze this expression. First, the term \(\exp(2\pi i a_- b_k) \) is always 1, and thus can be dropped. The term \(\exp(2\pi i a_- b_-/2^k) \) is the phase factor in the quantum Fourier transform on \(k \) qubits. Thus, if we first perform the Fourier transform on \(k \) qubits (which we can do by the induction hypothesis), we take \(V_{a_-} \) to \(V_{b_-} \) and obtain this phase factor. The term \(\exp(2\pi i a_0 b_-/2^{k+1}) \) can be expressed as the product of \(k \) gates, by letting the gate

\[
T_{j,k} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \exp \left(\frac{2\pi i}{2^{j+1}} \right)
\end{pmatrix}
\]

operate on the qubits corresponding to \(a_0 \) and \(b_j \), by which we mean the bit of \(b_- \) with value \(2^j \), i.e., the \(j + 1 \)st bit from the right. This gate applies the phase factor of \(\exp(2\pi i b_-^-^2^{j+1}) \) if and only if both the bits \(a_0 \) and \(b_j \) are 1. Finally, the term

\[
\exp(2\pi i a_0 b_k/2) = (-1)^{a_0 b_k}
\]

is the unitary gate

\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\]

which takes \(V_{a_0} \) to \(V_{b_k} \) with the phase factor \((-1)^{a_0 b_k}\). We now see that we can obtain the Fourier transform on \(k + 1 \) qubits by first applying the Fourier transform on \(k \) qubits, taking \(V_{a_-} \) to \(\sum \exp(2\pi i a_- b_-/2^k) V_{b_-} \), next applying the gate \(T_{j,k} \) on the qubits \(V_{a_0} \) and \(V_{b_j} \) for \(j = 0 \) to \(k - 1 \), and finally by applying the gate \(H \) on the qubit \(V_{a_0} \) (yielding in the qubit \(b_k \)). For those readers who are familiar with the Cooley-Tukey fast Fourier transform, this is almost a direct translation of it to a quantum algorithm. Multiplying the gates \(T_{j,k} \) for a fixed \(k \) gives the “twiddle factor” of the Cooley-Tukey FFT.

One objection that might be raised to this expansion of the Fourier transform is that it requires gates with exponentially small phases, which could not possibly be implemented with any physical accuracy. In fact, one can omit these gates and obtain an approximate Fourier transform which is close enough to the actual Fourier transform that it barely changes the probability that the factoring algorithm
Because [13], this reduces the number of gates required for the quantum Fourier transform from \(O(k^2)\) to \(O(k \log k)\).

6. Grover’s Algorithm

Another very important algorithm in quantum computing is L. K. Grover’s search algorithm, which searches an unordered list of \(N\) items (or the range of an efficiently computable function) for a specific item in time \(O(\sqrt{N})\), an improvement on the optimal classical algorithm, which must look at \(N/2\) items on average before finding a specific item [25]. The technique used in this algorithm can be applied to a number of other problems to also obtain a square root speed-up [26].

If you are searching an unordered database, this square root speed-up is as good as a quantum computer can do; this is proved using techniques developed in [7]. Finally, a generalization of both Grover’s search algorithm and the lower bound above gives tight bounds on how much a quantum computer can amplify a quantum procedure that has a given probability of success [10]. The quantum search algorithm can be thought of in these terms; the procedure is just that of choosing a random element of the \(N\)-element list, so the probability of success is \(1/N\). A quantum computer can amplify this probability to near-unity by using \(O(\sqrt{N})\) iterations while a classical computer requires order \(N\) iterations. I sketch Grover’s search algorithm below.

Grover’s algorithm uses only three transformations. The first is the transformation
\[
W = H \otimes H \otimes \ldots \otimes H
\]
which is the transformation obtained by applying the matrix
\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]
to each qubit. It is easy to check that \(W^2 = \text{Id}\), because \(H^2 = \text{Id}\). The second transformation is \(Z_0\), which takes the basis vector \(V_0\) to \(-V_0\) and leaves \(V_i\) unchanged for \(i \neq 0\). The third is \(Z_t\), which takes \(V_t\) to \(-V_t\) and leaves \(V_i\) unchanged for \(i \neq t\), where the \(t\)th element of the list is the one we are trying to find. At first glance, it might seem that we need to know \(t\) to apply \(Z_t\); however, if we can design a quantum circuit that tests whether an integer \(i\) is equal to \(t\), than we can use it to perform the transformation \(Z_t\). For example, if we are searching for a specific element in an unordered list, it is fairly straightforward to write a program that tests whether the \(i\)th element of the list is indeed the desired element, and negates the phase if it is, without knowing where the desired element is in the list. Similarly, if we are searching for a solution to some mathematical problem, we need only to be able to efficiently test whether a given integer \(i\) encodes a solution to the problem.

Suppose that we are searching among \(N = 2^k\) items, which are encoded by the integers 0 to \(N-1\). Here we use \(k\) qubits to keep track of the items. We will now calculate that if we start in the superposition
\[
\sum_{i=0}^{N-1} \alpha_i V_i
\]
then the transformation \(-WZ_0W\) leaves us in the state
\[
\sum_{i=0}^{N-1} (2m - \alpha_i) V_i
\]
where \(m = \frac{1}{N} \sum_{i=0}^{N-1} \alpha_i\) is the mean of all the amplitudes. The proof of this follows from the observation that after the transform \(W\), the amplitude of \(V_0\) is \(\sqrt{N}m\).
Recall that $W^2 = \text{Id}$. These two observations can be used to show that the transformation WZ_0W extracts the mean m in the amplitude of V_0, negates it, and redistributes it negated over all the basis states V_i. The transformation WZ_0W thus takes $\sum_i \alpha_i V_i$ to $\sum_i (\alpha_i - 2m) V_i$.

We are now in a position to describe Grover’s algorithm in detail. We start in the equal superposition of all V_i, i.e. the state $\frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} V_i$. We then repeat the transformation $Z_t W Z_0 W$ for $c \sqrt{N}$ iterations, for the appropriately chosen constant c. What this accomplishes is to gradually increase the amplitude on V_t at the expense of all the other amplitudes, until after $c \sqrt{N}$ iterations the amplitude on V_t is nearly unity. Suppose that we have reached a point where the amplitude on V_i is α for all $i \neq t$ and β for V_t. It is easy to see that in the next step, these amplitudes are $2m - \alpha$ and $\beta + 2m$, respectively, where $m = (\beta + (N-1)\alpha) / N$ is the mean amplitude. When β is small, $m \approx \alpha \approx 1 / \sqrt{N}$, and thus the amplitudes on V_i, $i \neq t$ decrease slightly and the amplitude on V_t increases by approximately $2 / \sqrt{N}$. I will not go into the details in this write-up, but this at least gives the intuition that, after $c \sqrt{N}$ steps, we obtain a state very close to V_t. There are many variations of this algorithm, including ones that work when there is more than one desired solution. For more details, I recommend reading Grover’s paper [25].

Finally, as Feynman suggested, it appears that quantum computing is good at computing simulations of quantum mechanical dynamics. I will not be discussing this. Some work in this regard has appeared in [1, 23, 13], but much remains to be done.

References

[1] D. S. Abrams and S. Lloyd, Simulation of many-body Fermi systems on a universal quantum computer, Phys. Rev. Lett. 79 (1997), 2586–2589.
[2] D. Aharonov, M. Ben-Or, R. Impagliazzo and N. Nisan, Limitations of noisy reversible computation, LANL e-print quant-ph/9611028 available online at [http://xxx.lanl.gov/]
[3] D. Aharonov, A. Kitaev and N. Nisan, Quantum circuits with mixed states, in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computation, ACM Press, New York (1998), 20–30. Also LANL e-print quant-ph/9806025 available online at [http://xxx.lanl.gov/]
[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52 (1995), 3457–3467.
[5] P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Statist. Phys. 22 (1980), 563–591.
[6] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop. 17 (1973), 525–532.
[7] C. Bennett, E. Bernstein G. Brassard and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Computing 26 (1997), 1510–1523.
[8] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Computing 26 (1997), 1411–1473.
[9] S. Bravyi and A. Kitaev, Fermionic quantum computation, LANL e-print quant-ph/0003137 available online at [http://xxx.lanl.gov/]
[10] H. Burhman, R. Cleve, R. de Wolfe, and C. Zalka, Bounds for small-error and zero-error quantum algorithms, Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA (1999), 358–368.
[11] A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Transactions on Information Theory 44 (1998), 1369–1387.
[12] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54 (1995), 1098–1106.
13. A. CHURCH (1936), An unsolvable problem of elementary number theory, Amer. J. Math. 58, (1936) 345–363.
14. R. Coppersmith, An approximate Fourier transform useful in quantum factoring, IBM Research Report RC 19642 (1994).
15. D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. Roy. Soc. London Ser. A 400 (1985), 96–117.
16. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. Roy. Soc. London Ser. A 439, (1992), 553–558.
17. D. Dieks, Communication by EPR devices, Phys. Lett. A 92, 271–272 (1982).
18. David P. DiVincenzo, The physical implementation of quantum computation, Fortsch. Phys. 48 (2000), 771–783. Also LANL e-print quant-ph/0002077, available online at http://xxx.lanl.gov/.
19. R. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys. 21 (1982), 467–488.
20. R. Feynman, Quantum mechanical computers, Found. Phys. 16 (1986), 507–531; originally in Optics News (February 1985), 11–20.
21. E. Fredkin and T. Toffoli, Conservative logic, Internat. J. Theoret. Phys. 21 (1982), 219–253.
22. D. Gottesman, A class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A 54 (1996), 1862–1868.
23. D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. Thesis, California Institute of Technology (1997). Also LANL e-print quant-ph/9705052, available online at http://xxx.lanl.gov/.
24. D. Gottesman, An introduction to quantum error correction, in this volume (2001).
25. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 78 (1997), 325–328. Also LANL e-print quant-ph/9706033, available online at http://xxx.lanl.gov/.
26. L. K. Grover, A framework for fast quantum mechanical algorithms, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM Press, New York (1998), 53–62.
27. S. C. Kleene, General recursive functions of natural numbers, Mathematische Annalen 112 (1936), pp. 727–742.
28. A. K. Lenstra and H. W. Lenstra, Jr., editors, The Development of the Number Field Sieve, Lecture Notes in Mathematics 1554, Springer Verlag, Berlin (1993).
29. S. Lloyd, Universal quantum simulators, Science 273 (1996), 1073–1078.
30. Yu. Manin, Computable and Uncomputable (in Russian), Sovetskoye Radio, Moscow (1980).
31. N. Margolus, Parallel quantum computation, in Complexity, Entropy, and the Physics of Information, edited by W. Zurek, Addison-Wesley (1990) 273–287.
32. E. Post, Finite combinatorial processes. Formulation I, J. Symbolic Logic 1 (1936) 103–105.
33. J. Preskill, Fault-tolerant quantum computation, in Introduction to Quantum Computation, edited by H.-K. Lo, S Popescu and T. P. Spiller, World Scientific, Singapore (1998), 213–269. Also LANL e-print quant-ph/9712048, available online at http://xxx.lanl.gov/.
34. J. Preskill, Lecture notes for Physics 219/Computer Science 219: Quantum Computation (1999), available online at http://www.theory.caltech.edu/people/preskill/ph229.
35. R. L. Rivest, A. Shamir and L. Adleman, A method of obtaining digital signatures and public-key cryptosystems, Comm. Assoc. Comput. Mach. 21 (1978), 120–126.
36. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing 26 (1997), 1484–1509.
37. P. W. Shor, Fault-tolerant quantum computation, in Proc. 37nd Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA (1996), 56–65.
38. P. W. Shor, Quantum computing, Documenta Mathematica Extra Vol. ICM 1 (1998), 467–486.
39. D. R. Simon, On the power of quantum computation, SIAM J. Computing 26 (1997), 1474–1483.
40. A. Steane, Multiple particle interference and quantum error correction, Proc. Roy. Soc. London Ser. A 452 (1996), 2551–2577.
[41] A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. (2) 42 (1936), 230–265; Corrections in Proc. London Math. Soc. (2) 43 (1937), 544–546.

[42] W. van Dam, A universal quantum cellular automaton, in Proceedings of PhysComp96, edited by T. Toffoli, M. Biafore and J. Leão, New England Complex Systems Institute (1996), 323–331.

[43] W. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299 (1982), 802–803.

[44] A. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA (1993), 352–361.

[45] C. Zalka, Efficient simulation of quantum systems by quantum computers, Proc. Roy. Soc. London Ser. A 454 (1998), 313–322.

[46] C. Zalka, Fast versions of Shor’s quantum factoring algorithm, LANL e-print quant-ph/9806084 (1998), available online at http://xxx.lanl.gov/.

[47] W. H. Zurek, Decoherence and the transition from quantum to classical, Physics Today 44 (1991), 36–44.

AT&T Labs—RESEARCH, FLORHAM PARK, NJ 07932, USA
E-mail address: shor@research.att.com
URL: http://research.att.com/~shor