Antimicrobial Activity of Aqueous and Alcoholic Extracts of Chamomile, Fleawort, Aquatic Pennyroyal and Nettle Plants on *Klebsiella pneumoniae* and Comparing Their Effects with Common Antibiotics

Fatemeh Azizi Alidoost1, Masoumeh Anvari1,2,*, Somayeh Ataei Jaliseh1

1. Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran

10.30699/ijmm.14.4.361

ABSTRACT

Background: In recent years, the use of medicinal plants has increased due to their lower side effects and costs compared to chemical drugs and patients' adaptation to these drugs. This study was performed to investigate the antibacterial effect of aqueous and alcoholic extract of four native medicinal plants of Gilan province against the bacterium *Klebsiella pneumoniae*.

Materials & Methods: In this study, plant species were collected from different areas of Gilan province and extraction was performed. The antibacterial effect of the extracts was investigated by the disc diffusion method. Then, using microdilution method, the minimum inhibitory concentration of bacterial growth was determined.

Results & Conclusion: The results showed that chamomile alcoholic extract with the maximum average halo diameter of 14 mm showed the best effect against *K. pneumoniae*. The bacterium showed resistance against the aqueous and alcoholic extracts of fleawort. Also, the ethanolic extracts of nettle and chamomile plants had the best antibacterial effect at 0.39 mg/ml. The minimum inhibitory concentration of aqueous extract of fleawort plant against *Klebsiella pneumoniae* was 12.5 mg/ml which was lower than other types of extracts. According to the results, these extracts can be used as antibacterial products in the pharmaceutical and food industries and in the treatment of infection symptoms.

Keywords: Antibacterial effect, Chamomile, Fleawort, Aquatic pennyroyal, Nettle, *Klebsiella pneumoniae*

Introduction

Consumption of medicinal plants for the treatment of ailments has a long history in human life. In recent years, the use of medicinal plants has increased due to lower side effects and costs compared to the chemical drugs with known side effects, and also for the patients' adaptation to these drugs.

Although a large proportion of medicines used today are chemical drugs, it is estimated that at least one-third of all medicinal products are of plant origin or have been modified after extraction from the plant (1,2).

Infectious diseases are among the most well-known diseases that have always plagued humans. Lots of efforts have been made to identify their causative agents to help for their treatment and control (1,3).

Chemical drugs, with all their effectiveness, have many adverse effects, and there are fewer pure substances with no adverse effects. In contrast, the active ingredients in medicinal plants have a biological balance due to their association with other substances (6,7).
Due to the fact that Gilan province has a wide range and unique plant diversity in terms of climatic conditions, especially in the case of medicinal species, research on the antimicrobial properties of plant species of this province provides a suitable background and treasure. This study was performed to investigate the antibacterial effect of aqueous and alcoholic extracts of four native medicinal plants of Gilan province (chamomile, fleawort, aquatic pennyroyal and nettle) against the bacterium *Klebsiella pneumoniae*.

Materials and Methods

Plants Identification and Collection

The species were collected from different areas of Gilan province between April to June 2015 and were identified in the herbarium of the Islamic Azad University of Rasht, Gilan, Iran. The parts needed were dried in the air, under shady and dry conditions, and then were ground to extract (Table 1).

Table 1. Specifications of the studied plants

Scientific name of the plant	Plant	Family	Organ used
Anthemis austriaca	Chamomile	Asteraceae	Flower
Plantago major	Fleawort	Plantaginaceae	Leaf
Mentha aquatica	Aquatic pennyroyal	Lamiaceae	Leaf
Urtica dioica	Nettle	Urticaceae	Leaf

Aquatic Extract

Distilled water (300 mL) was added to 30 gr of plant powder and placed on the shaker for 24 hours. The solution was passed through 0.45 μm filter to remove larger decanter particles. The resulting extract was dried by freeze dryer (Christ, Germany) and the resulting dry powder was dissolved in distilled water and used as an aqueous extract (8).

Bacterial Strains Studied

The bacterium *Klebsiella pneumoniae* is among the most common bacteria in urinary tract infections (9). It was isolated from clinical samples of the patients referred to Farabi Laboratory in Ardabil in 2014. This bacterium was characterized after growing on nutrient agar culture media (Merck, Germany), using biochemical tests such as TSI, SIM, and MR VP citrate. It was sent to the Microbiology Department for antibacterial experiments of medicinal plants.

Dilution of Plant Extracts and Preparing Discs Containing Extracts

The aqueous and ethanolic extracts were dissolved in water and DMSO, respectively. The concentrations of 400 and 200 mg/mL were prepared for the aqueous and alcoholic extracts, respectively. Then, blank discs (Padtan Teb, Iran) were placed into the tubes containing the determined dilutions of the extracts. Following three to five minutes immersion, the discs were placed at 37°C to dry completely (8).

Antibacterial Effect of Extracts

Disc Diffusion Method

First, the bacterial suspension of *Klebsiella pneumoniae* was prepared (0.5 McFarland comparable to a bacterial suspension of 1.5 × 10⁸ cfu/mL). Then, uniform culture was performed with 100 μL of prepared suspension on the surface of nutrient agar medium (Christ, Germany).

The extracts-impregnated discs were then placed at a certain distance from the edge of the plate on the surface of the agar culture medium. The test was repeated three times. The diameter of the non-growth halo was finalized measuring the mean diameter after three repetitions (10). The aura diameter of less than 8 mm growth was considered to be resistant, 8 to 9 mm was relatively resistant and more than 10 to 12 mm was considered to be relatively sensitive and more than 12 mm was considered as sensitive (11).

Microdilution Broth

Using microdilution broth, the minimum inhibitory concentration (MIC) of the aqueous and alcoholic extracts of the studied plants was determined. One mL of 1.5×10⁵ cfu/mL bacterial suspension was added to the 0.3-200 mg/mL aqueous extract and 0.1-100 mg/mL of alcohol extract. The optical density (OD) was measured at 680 nm wavelength using the ELISA reader (Update, Belgium).
The samples were then placed at 37°C, and the OD was re-read in periods of 12 and 24 hours. Finally, the minimum concentration of the extract in which the OD decreased was calculated. It was considered as MIC (12).

Results & Discussion

In this study, the antimicrobial effect of aqueous and alcoholic extracts of *Anthemis austriaca*, *Plantago major*, *Mentha equatica* and *Urtica dioica* was evaluated and their effect was compared with common antibiotics. (Tables 2-4).

Table 2. MIC in µg/mL and the diameter of the inhibition zone in millimeters in terms of standard antibiotic discs of *Klebsiella pneumoniae* and result interpretations.

Row	Antibiotics	µg/mL	Disc diffusion	R	I	S
1	Amikasin	0.015	15	14<	16-15	17>
2	Ampicillin	-	-	13<	16-14	17>
3	Cefazidime	1	12	17<	20-18	21>
4	Cefalotin	-	-	14<	17-15	18>
5	Co-trimoxazole	-	-	10<	15-11	16>
6	Ciprofloxacin	-	-	15<	20-16	21>
7	Gentamicin	-	-	12<	14-13	15>
8	Imipenem	0.007	25	19<	22-20	23>
9	Tetracycline	-	-	11<	14-12	15>
10	Cefixime	-	-	15<	18-16	19>

Table 3. Average diameter of inhibition zone in millimeters of plant extract against bacterium *Klebsiella pneumoniae*

Concentration mg/mL	Aqueous extracts	400	Alcoholic extracts	200
Anthemis austriaca	12		Anthemis austriaca	14
Plantago major	-		Plantago major	-
Mentha equatica	8		Mentha equatica	9
Urtica dioica	10		Urtica dioica	11

Table 4. The amount of MIC in mg/mL extract of medicinal plants against *Klebsiella pneumoniae*

Aqueous extracts	Concentration mg/mL	Alcoholic extracts	Concentration mg/mL
Anthemis austriaca	0.78	Anthemis austriaca	0.39
Plantago major	5/12	Plantago major	1.56
Mentha equatica	6.25	Mentha equatica	0.78
Urtica dioica	1.5	Urtica dioica	0.39

Composition of extracts | 3.12 | Composition of extracts | 0.78 |

Among the four plant species studied, the highest inhibition zone diameter was observed for the ethanolic chamomile extract at concentrations of 200 mg/mL and 14 mg/mL. However, the aqueous and alcoholic extract of the fleawort had no effect against the bacterium *Klebsiella pneumoniae*. Also, the ethanolic extract of the plants in the amount of 200 mg/mL showed the best antimicrobial efficacy. The lowest antimicrobial effect was assessed for the fleawort (Table 3).

Also, the aqueous and alcoholic extracts of chamomile in the concentration of 0/39 and 0/78 mg/mL showed the lowest inhibitory concentration. The results of this study were consistent with the results of Ataei (16), Dadgar (13), NuriZadeh’s (14) research outcome.

The results of MIC showed that the ethanolic extract of these plants, even at much lower concentrations, could inhibit the growth of the bacterium *Klebsiella pneumoniae*. So that, the lowest inhibitory concentrations of chamomile
and nettle plants was 0.39 mg/mL. The ethanolic extracts of other plants had also very good effect in their low concentrations (Table 4).

The aqueous and alcoholic extracts of fleawort in 400 and 200 mg/mL concentrations did not develop any inhibition zone against the bacterium *Klebsiella pneumoniae*. It was found that the MICs of aqueous and alcoholic extracts of fleawort had an inhibitory effect at 12.5 and 1.56 mg/mL concentrations, respectively. The results obtained for the aqueous and alcoholic extracts of fleawort MIC were consistent with the study of Kiai (17) et al. However, the non-inhibitory concentration of *Klebsiella pneumoniae* was lower than that of the present study. Our results were not consistent with the Chiang study in 2002 and the Eshraghi study (18). This can be due to the type of species and habitat of the plant as the habitat and climate of the plant is effective in the concentration of the active ingredients of the plant (21).

We showed that antibacterial effect of the aqueous and alcoholic extracts of aquatic pennyroyal at concentrations of 400 and 200 mg/mL, made an inhibition zone with a diameter of 8 and 9 mm. The results were consistent with Eshraghi (18) and NuriZadeh (14) studies in terms of antimicrobial effect but different regarding the diameter of the inhibition zone, which can be attributed to the differences in the type of species studied and the concentration of the extract and the type of solvent used (23). In the MIC results of this study, it was found aqueous and alcoholic extracts with the concentrations of 6.25 and 0.78 mg/mL have a minimum inhibitory concentration against *Klebsiella*. The results of the present study were almost similar to those of the Pajouhi (24) study, but the minimum inhibitory concentration of peppermint was lower in their study, which can be attributed to the differences in the type of strains studied.

In the present study, it was found that aqueous and alcoholic extracts of nettle at concentrations of 400 and 200 mg/mL, created halos of 10 and 11 mm against *Klebsiella pneumoniae*, respectively. Also, aqueous and alcoholic extracts of nettle against *Klebsiella pneumoniae* in the present study showed minimum inhibitory concentrations at 1/5 and 0/39 mg/mL. This is consistent with the study of Shariat (26) and Jafari (27), but the amount of MIC in their research is higher, and this discrepancy can be attributed to the type of species studied.

From the 10 antibiotics used, three, including amikacin, ceftazidime, and imipenem had the greatest inhibitory effect on the bacterium *Klebsiella pneumoniae*. Other antibiotics showed fewer inhibitory effects on this bacterium (Table 2). Comparing the results in Tables 2, 3, and 4 shows the suitability of the studied plants and standard antibiotics for their anti-bacterial effects. Comparing the inhibition zones of the extracts of the studied medicinal plants with a certain concentration was clarified by the diffusion disc method (Table 3).

These results showed the antibacterial effects of the above medicinal plants crude extracts, which is a mixture of the active ingredients. The active ingredients with antimicrobial effect in these extracts should be isolated and purified. They may have better effects compared to antibiotics. Although the present results are laboratory-based, it seems that these findings are justifiable and can be generalized to in vivo experiments and it is useful for further examination on laboratory animals.

Conclusion

The results of this study showed the optimal effect of aqueous and ethanolic extracts of the studied plants (chamomile, fleawort, aquatic pennyroyal and nettle) against *Klebsiella pneumoniae*. The outcome of this study is important due to the fact that medicinal plants are more compatible with the body, their natural nature, fewer side effects and lower chance in antibiotic resistance. In continue the active ingredients of the extracts with antimicrobial properties can be extracted and their antibacterial effects and clinical conditions can be investigated in vivo.

Acknowledgment

The authors thank all those who helped them writing this article.

Conflict of Interest

Authors declared no conflict of interests.
اثر ضد میکروبی عصاره‌های آبی و الکلی گیاهان باوبونه، باره‌نک، بونه آبی و گزنه بر باکتری‌های کلبسیلا پنومونیه و مقایسه اثر آنها با آنتی‌بیوتیک‌های رایج

فرات همی، علیکری، بابونه، معصومه انوار

مجله میکروب شناسی پزشکی ایران
1399 شماره ۴- مدرد و شهباز
Journal homepage: www.jimm.ir

چکیده

زمینه و هدف: در سال‌های اخیر کاربرد گیاهان درمانی بازیابی به عوارض و هزینه کمتر بکر می‌کنند. باکتری‌های کم‌مقاوم به آنتی‌بیوتیک‌های رایج، حاضر به یافتن داروها با قدرت ضدباکتریایی بالایی است. این تحقیق به منظور بررسی اثر ضدباکتریایی عصاره‌های آبی و الکلی (ازبین) گردن‌گردنی کلبسیلا پنومونیه انجام شده است.

مواد و روش کار: در این تحقیق گونه‌ای گیاهی از نوع مختلف استان گیلان جمع‌آوری و عصاره‌گیری میانگین قطر هاله عدم رشد صورت گرفت. سپس با استفاده از روش میکروبالانس برای حداکثر قطع بی‌بازداری از رشد باکتری‌ها نیز کنده شد.

یافته‌ها و نتیجه‌گیری: نتایج نشان داد که عصاره آبی باوبونه با حداکثر قطعیت قطع هاله عدم به رنگ سبز‌اصلی و سبز ساوانی، تأثیرات ضدباکتریایی حاصل نمی‌کند. عصاره الکلی گزنه باعث پایین‌آیدیون به رنگ سبز ساوانی و سبز‌اصلی در مقایسه با عصاره آبی کمتر قطعیت قطع هاله عدم را داشت.

کلیدواژه‌ها: آنتی‌بیوتیک، باوبونه، باره‌نک، بونه آبی، گزنه، کلبسیلا پنومونیه

مقدمه

استفاده از آنتی‌بیوتیک‌ها، هسته‌ای درمان شدید عفونت‌ها باکتری‌ای را تشکیل می‌دهد و با دلیل افزایش رشد باکتری‌ها، مقاومت آنتی‌بیوتیک در باکتری‌ها و وجود عوارض جانبی، باکتری‌های کم‌مقاوم به آنتی‌بیوتیک‌های رایج، حاضر به یافتن داروها با قدرت ضدباکتریایی بالایی است. این تحقیق به منظور بررسی اثر ضدباکتریایی عصاره‌های آبی و الکلی (ازبین) گردن‌گردنی کلبسیلا پنومونیه انجام شده است.

مصرف گیاهان درمانی برای درمان، سابقه‌ای به دقت عمر انسان دارد. در سال‌های اخیر کاربرد گیاهان درمانی بازیابی به عوارض و هزینه کمتر بکر می‌کنند. باکتری‌های کم‌مقاوم به آنتی‌بیوتیک‌های رایج، حاضر به یافتن داروها با قدرت ضدباکتریایی بالایی است. این تحقیق به منظور بررسی اثر ضدباکتریایی عصاره‌های آبی و الکلی (ازبین) گردن‌گردنی کلبسیلا پنومونیه انجام شده است.

مطالعات انجام شده در دنیا بینانه خواسته این است که عصاره سبزیایی از گیاهان توانایی مهار رشد میکروب‌گانگلیسما حاصل نماید. در این تحقیق گیاهان باعث پایین‌آیدیون به رنگ سبز‌اصلی و سبز‌ساف و سبز‌سافی در مقایسه با عصاره آبی کمتر قطعیت قطع هلاله عدم را داشت.

مقیده

مجله میکروب‌شناسی پزشکی ایران

Majallah-i mikrob/shināsī-i pizishkšt-i Irān

365
فاطمه عزیزی علی‌اصغر و همکاران | بررسی اثر ضد میکروبی عصاره آبی و کلکی گیاهان با پوشه... 366

داکتری به دلیل همبستگی تاکید عصاره آبی و اتانولی گونه های دارویی بابونه، بارهنگ، پونه آبی و گزنه علیه کلکی گیاهان پوشه نبوده.

روش پژوهش
شناسی و جمع آوری گیاهان
گونه‌های مورد نظر در فاصله اسفند ماه 93 تا بهار 94 از نواحی مختلف استان گیلان جمع‌آوری و در هرباریوم دانشگاه آزاد اسلامی رشت شناسایی شدند. اندام‌های مورد استفاده در شرایط سایه و خشک برای عصاره‌گیری از روش ماسراسیون استفاده شد. به‌طور کلی، گیاهان پودر شده می‌تواند حلال را در خود جذب نماید و حداکثر مواد موثره در اتانول حل خواهد شد.

آماده‌سازی عصاره‌های آبی و کلکی گیاهان

در این آزمایش عصاره‌های آبی و الکلی در دمای 40 درجه سانتی‌گراد طولانی‌ترین 24 ساعت به شیکر قرار داده شد. پس از عصاره‌گیری، عمل جدا‌سازی حلال از عصاره و خشک نمودن آن توسط روش لیوفیلیزاسیون در پارک علم و فن آوری استان گیلان انجام شد. سپس پودر حاصل از توزین در DMSO حل گردید و به عنوان عصاره الکلی استفاده گردید. در گروه نظیر کنترل، عصاره حاصل توسط دستگاه فریزدرایر (کریست، آلمان) خشک شد و پودر خشک حاصل پس از توزین در آب مقرط حل گردیده و به عنوان عصاره آبی استفاده شد.

سویه باکتری مورد بررسی
در این آزمایش باکتری‌ها گیاهی و منجمد سعودی و منصح به فرد مختص با مورد گونه‌های دارویی و بیماری‌های متعدد از جمله بیماری‌های ادراری و عفونت‌های بیشتری مورد مطالعه قرار گرفتند. در این شرایط، از گل‌های مختلف استان گیلان بکتری‌های مورد نظر، بررسی شدند. به‌طور کلی، گیاهان پودر شده می‌تواند حلال را در خود جذب نماید و حداکثر مواد موثره در اتانول حل خواهد شد. پس از عصاره‌گیری، عمل جدا‌سازی حلال از عصاره و خشک نمودن آن توسط روش لیوفیلیزاسیون در پارک علم و فن آوری استان گیلان انجام شد. سپس پودر حاصل از توزین در DMSO حل گردید و به عنوان عصاره الکلی استفاده شد.

در این آزمایش آبی و الکلی مورد نظر 300 گرم از پودر نمونه های گیاهی و منجمد سعودی مورد نظر در دمای 40 درجه سانتی‌گراد طولانی‌ترین 24 ساعت به شیکر قرار داده شد. پس از عصاره‌گیری، عمل جدا‌سازی حلال از عصاره و خشک نمودن آن توسط روش لیوفیلیزاسیون در پارک علم و فن آوری استان گیلان انجام شد. سپس پودر حاصل از توزین در DMSO حل گردید و به عنوان عصاره الکلی استفاده شد.

۴۰pm

۱۰۵/۲۰/۱۲۱۹
یافته‌ها و بحث
در این تحقیق اثر ضد میکروبی عصاره آبی و الکلی گیاهان به‌کار گرفته شد. میکرو دایلومیر در مراحل مختلف تحقیق و در مراحل مختلف نتایج می‌تواند در بهبود کارایی درمان‌ها و مقاومت مواد ضد میکرو‌بیولوژیکی کمک کند. در این تحقیق عصاره آبی و الکلی گیاهان به‌کار گرفته شد و در مراحل مختلف تحقیق نتایج می‌تواند در بهبود کارایی درمان‌ها و مقاومت مواد ضد میکرو‌بیولوژیکی کمک کند. در این تحقیق عصاره آبی و الکلی گیاهان به‌کار گرفته شد و در مراحل مختلف تحقیق نتایج می‌تواند در بهبود کارایی درمان‌ها و مقاومت مواد ضد میکرو‌بیولوژیکی کمک کند. در این تحقیق عصاره آبی و الکلی گیاهان به‌کار گرفته شد و در مراحل مختلف تحقیق نتایج می‌تواند در بهبود کارایی درمان‌ها و مقاومت مواد ضد میکرو‌بیولوژیکی کمک کند. در این تحقیق عصاره آبی و الکلی گیاهان به‌کار گرفته شد و در مراحل مختلف تحقیق نتایج می‌تواند در بهبود کارایی درمان‌ها و مقاومت مواد ضد میکرو‌بیولوژیکی کمک کند.

جدول 1: نام آنتی بیوتیک استاندارد بر اساس MIC

S.I.	MIC (mg/ml)	رندرف	دیسک دیفیوزن	نام آنتی بیوتیک
1	15	1	0.5	امیکسین
2	15	2	15	امیل سیلیک
3	15	3	1	سفازودم
4	15	4	15	سفاروپین
5	15	5	15	کریمی‌موسالول
6	15	6	15	سیروکلایسن
7	15	7	15	دی‌کلنیا
8	15	8	15	پی‌پین
9	15	9	15	تنتراساکلین
10	15	10	15	سیفیکسیم

جدول 2: M. یافته‌ها و بحث

S.I.	MIC (mg/ml)	رندرف	دیسک دیفیوزن	نام آنتی بیوتیک
1	15	1	0.5	امیکسین
2	15	2	15	امیل سیلیک
3	15	3	1	سفازودم
4	15	4	15	سفاروپین
5	15	5	15	کریمی‌موسالول
6	15	6	15	سیروکلایسن
7	15	7	15	دی‌کلنیا
8	15	8	15	پی‌پین
9	15	9	15	تنتراساکلین
10	15	10	15	سیفیکسیم

جدول 3: میزان‌گر درصدی عصاره گیاهان بر حسب MIC

S.I.	MIC (mg/ml)	رندرف	دیسک دیفیوزن	نام آنتی بیوتیک
1	15	1	0.5	امیکسین
2	15	2	15	امیل سیلیک
3	15	3	1	سفازودم
4	15	4	15	سفاروپین
5	15	5	15	کریمی‌موسالول
6	15	6	15	سیروکلایسن
7	15	7	15	دی‌کلنیا
8	15	8	15	پی‌پین
9	15	9	15	تنتراساکلین
10	15	10	15	سیفیکسیم

جدول 4: مقدار مایع مایع عصاره گیاهان بر حسب MIC

S.I.	MIC (mg/ml)	رندرف	دیسک دیفیوزن	نام آنتی بیوتیک
1	15	1	0.5	امیکسین
2	15	2	15	امیل سیلیک
3	15	3	1	سفازودم
4	15	4	15	سفاروپین
5	15	5	15	کریمی‌موسالول
6	15	6	15	سیروکلایسن
7	15	7	15	دی‌کلنیا
8	15	8	15	پی‌پین
9	15	9	15	تنتراساکلین
10	15	10	15	سیفیکسیم
فاطمه عزیزی علی‌دوست و همکاران | بررسی اثر ضد میکروبی عصاره‌های آبی و الکلی گیاه‌های گربه‌پای...
صادرات آبی و الکلی گزنه در بروز نشان دهنده که اثرات مهارکننده عصاره این گیاهان، با آنتی‌بیوتیک تناسب تاثیر گیاهان مورد مطالعه و آنتی‌بیوتیک‌های قارچ نشان می‌دهد. بسیار کمتر از آنتی‌بیوتیک‌های رایج است. و اگر ترکیبات الکلی و الکلی پونه در غلظت‌های مورد مطالعه، باعث ناتوانی می‌شود که عصاره به‌کمیت کمتری به باکتری‌ها اثرات مهارکننده کمتری بر باکتری‌ها داشته باشد. سایر آنتی‌بیوتیک‌ها آثار مهارکننده کمتری بر باکتری‌های گرم منفی، مخصوصاً باکتری‌های رنگی و هآلها، ایجاد کردند. نتایج حاضر با رویکردی متفاوتی نسبت به آنتی‌بیوتیک‌های رایج نشان می‌دهند.

در تحقیق به توجه حاصل می‌باشد که عصاره گزنه در غلظت‌های ۵/۰ تا ۵/۲۵ میلی‌گرم در میلی‌لیتر به‌صورت هاله نمایش داده که باعث شد آنتی‌بیوتیک‌های موجود در عصاره گزنه را به‌صورت نسبی به‌طور قابل توجهی مهار کنند.

از این‌رو این تحقیق نشان می‌دهد که عصاره آبی و الکلی گزنه به‌طور قابل توجهی فوکه مهارکننده باعث شده که باعث کاهش اندازه حفرات باکتری‌ها و افزایش اندازه حفرات باکتری‌ها می‌شود.

این مطالعه انجام شده توسط NuriZadeh و همکارانش با تحقیقی دیگر که در سال ۲۰۰۹ در مطالعه نشان دادند که عصاره گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.

در مطالعه انجام شده توسط Shariat و همکارانش در سال ۲۰۱۲ نشان دادند که عصاره الکلی گزنه به‌طور قابل توجهی به‌صورت هاله نمایش داده که باعث شد آنتی‌بیوتیک‌های موجود در عصاره گزنه را به‌طور قابل توجهی مهار کنند.

این مطالعه همچنین نشان داد که عصاره آبی و الکلی گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.

این مطالعه نشان داد که عصاره آبی و الکلی گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.

در مطالعه انجام شده توسط Kavalali و همکارانش در سال ۲۰۰۶ نشان دادند که عصاره گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.

در مطالعه انجام شده توسط Modarrssi و همکارانش در سال ۲۰۱۲ نشان دادند که عصاره آبی و الکلی گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.

در مطالعه انجام شده توسط Modarrssi و همکارانش در سال ۲۰۱۲ نشان دادند که عصاره آبی و الکلی گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.

در مطالعه انجام شده توسط Modarrssi و همکارانش در سال ۲۰۱۲ نشان دادند که عصاره آبی و الکلی گزنه به‌طور قابل توجهی به‌طور قابل توجهی باعث شد که اندازه حفرات باکتری‌ها کاهش یابد.
حرارت آزمایشگاهی است. لیکن به دلیل نتایج قطعی به دست آمده به نظر می‌رسد این بافت‌ها همیشه شبیه‌سازی برای بیماری‌های بیشتری به صورت درون موجودی دوره حیات آزمایشگاهی است.

به طور کلی ترکیبات گیاهی خاصی ضد میکروویروس خود را از طریق سازوکارهای چنین اتفاق دارد. سلول‌های افزایش‌سوزی‌ای آسف، بسیاری از بافت‌های rollback به اثر درختی از نقل و انتقال پروتئن‌ها و بافت‌های فعالیت‌های جالبی غلیط و جلوگیری از متابولیسم باکتری، کنترل و جلوگیری از متابولیسم باکتری می‌تواند به علت نوع سوش و زیستگاه گیاه باشد.

به این نکته می‌توان به مدت زمان و زیستگاه گیاه منتظر آنها و آب‌پذیری در مطالعه Eshraghi، (2013) یکی از ویژگی‌های مهم عصاره‌های گیاهی مرتبط با حیاتی باید اگریزی زیادی ساخته‌شده با کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان همچون گزنه و پونه و استخراج کنترل و نیاز موثری به منابع غذایی باعث داشته باشد. همچنین عصاره الکلی‌های گیاهان H
سرد این پایه ها زمینه بسیار مناسب برای بررسی های بیشتر تهیه شده با استفاده از روش‌های بیولوژیکی است. در پژوهش‌های مناسب مورد بررسی قرار گرفته‌اند که این نوع از پودر از گیاهان به حجم زیادی در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به علت در دسترس بودن این گیاهان با حجم زیاد در آینده با جدا کردن اجزای موثر می‌توان به اثرات بیوشیمیایی این مواد و به عل...
پژوهش مستقلی است که بدون مالیات و راهنمایی استاد محترم آقای بررسی قرار داد.

Referance

1. Buhner SH. Herbal antibiotics: natural alternatives for treating drug-resistant bacteria. Storey Publishing; 2012 Jul 17.
2. Moghtader M, Saleh V, Farahmand A. Anti-bacterial Effects of the Essential Oil of Teucrium polium L. on Human Pathogenic Bacteria. Iran J Med Microbiol. 2013; 7 (2):1-7
3. Talei GR, Moshkatalasadat MH, Mosavi Z. Antibacterial activity and chemical composition of essential oils from four medicinal plants of Lorestan, Iran. J Med Plants. 2007 Mar 10;1(21):45-52.
4. Abbasi N, Azizi Jalilian F, Abdi M, Saifmanesh M. A comparative study of the antimicrobial effect of Scrophularia striata Boiss. extract and selective antibiotics against Staphylococcus aureus and Pseudomonas aeruginosa. J Med Plants. 2007 Mar 10;1(21):10-8.
5. Soleymani N, Sattari M, Sepehri-Seresht S, Daneshmandi S, Derakhshan. Evaluation of reciprocal pharmaceutical effects and antibacterial activity of Bunium persicum essential oil against some Gram positive and Gram negative bacteria. Iran J Med Microbiol. 2010; 4 (1 and 2) :26-34
6. Velag, J. and Studlla, G. The Medicinal Plants. Persian Translation by Zaman S. Sixth ed. Tehran. Naghsh Iran publication. 2005. 9-10.
7. Monavari H, Hamkar R, Norooz-Bahaei Z, Adibi L, Noroozi M, Ziaeie A. Antiviral effect assay of twenty species of various medicinal plants families in Iran. Iran J Med Microbiol. 2007; 1 (2):49-59
8. Mashhadian NV, Rakhshehdeh H. Antibacterial and antifungal effects of Nigella sativa extracts against S. aureus, P. aeroginosa and C. albicans. Pak J Med Sci. 2005;21(1):47-52.
9. Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology E-Book. Elsevier Health Sciences; 2020 Apr 26.
10. Andrews JM, BSAC Working Party on Susceptibility Testing FT. BSAC standardized disc susceptibility testing method. J Antimicrob Chemother. 2001;48(1):43-57. [PMID:10.1093/jac/48.suppl_1.43] [PMID]
11. Nostro A, Germanò MP, D'angelo V, Marino A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol. 2000;30(5):379-384 [PMID:10.1046/j.1472-765x.2000.00731.x] [PMID]
12. Thornsberry C and Dougal L. Successful use of broth microdilution in susceptibility tests for methicillin resistant Staphylococcus aureus. J Clinical Microbiol. 1983; 18 (5): 1084 - 91. [PMID:10.1128/JCM.18.5.1084-1091.1983] [PMID]
13. Dadgar T, Ghasemi AS; Massoud B, Mazandarani M, Seifi, Bayat. Antibacterial effect of 20 species of plants against methicillin-resistant and sensitive to Staphylococcus aureus. Scientific Journal of University of Medical Sciences, 2007.(1). 62-65.
14. Nourizadeh A., Mirzapour I, Ghasemi K, Razavi Seyed Mehdi, Latifi N. Antibacterial effects of mint, licorice, mint, chamomile and thyme extracts on Helicobacter pylori. Scientific-research bi-monthly of Shahed University. 2004;11(52): 71-67.
15. Jalali M, Abedi D, Ghasemini, Chaharmahal A, Antimicrobial effects of hydroalcoholic extract of a number of medicinal plants against Listeria monocytogenes, Shahrekord University of Medical Sciences, 2006;(3): 33-25.
16. Atai, Z., Abdolah, H., Poor, S. N., & Mohamadi, S. (2007). An in vitro study of the effects of Yarrow, Chamomile and Rhubarb herbal extracts on candida albicans and common oral bacteria. Journal of Islamic Dental Association of IRAN, 18(3), 25.
17. Kiam A, Mazandarani M, Ghaemi A. The effect of ethanolic extract of 7 authorized medicinal plants against bacteria isolated from other virtual one to urinary tract.
18. Eshraghi S, Amin Gh, Fakhri S, Study of antibacterial and phytochemical effects of total extracts of 12 species of Iranian plants on Nocardia pathogenic strains, Veterinary Research. 2009 (82): 73-63.

19. Chiang LC, Chiang W, Chang MY, Ng TL and Lin CC. Antiviral activity of P. major extracts and related compounds in vitro. Antiviral Res 2002; 55: 53 - 62. [DOI:10.1016/S0166-3542(02)00007-4]

20. Kavalali GM. Urtica: therapeutic and nutritional aspects of stinging nettles. CRC; 2003. [DOI:10.4324/9780203351505] [PMID] [PMCID]

21. Hayder M Alkuraishy, Ali I Al-Gareeb, Ali K Albuhadilly, Salah Alwindy. In vitro Assessment of the Antibacterial Activity of Matricaria chamomile Alcoholic Extract against Pathogenic Bacterial Strains. British Microbiology Research Journal, 2015. 7(2): 55-61. [DOI:10.9734/BMRJ/2015/16263]

22. Judy L., Investigation of antimicrobial properties and important chemical compounds of extracts and essential oils of marjoram, peppermint and peppermint from the mint family. thesis. Urmia University. 2003.

23. Sourav Das, Barbara Horváth, Silvija Šafranko, Stela Jokič, Aleksandar Széchenyi, Tamás K ˝oszegi. Antimicrobial Activity of Chamomile Essential Oil: Effect of Different Formulations. Molecules Research Journal, 2019. 24(23):4321. [DOI:10.3390/molecules24234321] [PMID] [PMCID]

24. Pajooh M, Tayk H, Akhundzadeh, Gandami H, Ehsani M. Study of chemical composition and antimicrobial activity of origanum and cumin essential oils in soup. Journal of Food Science and Technology. 2012. 36. Pages 45-33.

25. Modarressi Chahardehi A, Ibrahim D, Soleiman SF, Abolhassani F. Evaluation of the effect of alcoholic extracts of nettle plant on a number of gram-negative and gram-positive bacteria, J. Med. Plant. 2012; 42.

26. Shariat E, Hosseini H, Poorahmad R. Investigation of the antibacterial effect of nettle extract and marzengoni extract on total echinacea, salmonellate and soda and Monas Aerogenaousa. J. Innov Food Tech. 2012;4:15-9.

27. Jafari Z, Muhammad A, Mehrabian S. Investigation of antibacterial properties of extract of different parts of bipedal nettle plant. National Conference on Natural Products and Medicinal Plants. Bojnourd North Khorasan University of Medical Sciences; 2012

28. Proestos C, Boziaris IS, Nychas GJ, Komaitis M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food chem. 2006 Apr 1;95(4):664-71. [DOI:10.1016/j.foodchem.2005.01.049]

29. Joshi B, Lekhak S, Sharma A. Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. Kathmandu university journal of science, engineering and technology. 2009;5(1):143-50. [DOI:10.3126/kuset.v5i1.2854]