ON THE DEFINITION OF THE KOBAYASHI-BUSEMAN PSEUDOMETRIC

NIKOLAI NIKOLOV AND PETER PFLUG

Abstract. We prove that the $(2n-1)$-th Kobayashi pseudometric of any domain $D \subset \mathbb{C}^n$ coincides with the Kobayashi–Buseman pseudometric of D, and that $2n-1$ is the optimal number, in general.

1. Introduction and results

Let $\mathbb{D} \subset \mathbb{C}$ be the unit disc. Recall first the definitions of the Lempert function \tilde{k}_D and the Kobayashi–Royden pseudometric k_D of a domain $D \subset \mathbb{C}^n$ (cf. [1]):

\[\tilde{k}_D(z, w) = \inf \{ \tanh^{-1} |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D}, D) : \varphi(0) = z, \varphi(\alpha) = w \}, \]

\[\kappa_D(z; X) = \inf \{ \alpha \geq 0 : \exists \varphi \in \mathcal{O}(\mathbb{D}, D) : \varphi(0) = z, \alpha \varphi'(0) = X \}, \]

where $z, w \in D$, $X \in \mathbb{C}^n$. The Kobayashi pseudodistance k_D can be defined as the largest pseudodistance which does not exceed \tilde{k}_D. Note that if $k_D^{(m)}$ denotes the m-th Lempert function of D, that is,

\[k_D^{(m)}(z, w) = \inf \{ \sum_{j=1}^{m} \tilde{k}_D(z_j, z_{j+1}) : z_1, \ldots, z_m \in D, z_1 = z, z_m = w \}, \]

then

\[k_D(z, w) = \inf_m k_D^{(m)}(z, w) = \inf \{ \int_0^1 \kappa_D(\gamma(t); \gamma'(t))dt \}, \]

where the infimum is taken over all piecewise C^1-curves $\gamma : [0, 1] \to D$ connecting z and w. By a result of M. Y. Pang (see [5]), the Kobayashi–Royden pseudometric is the infinitesimal form of the Lempert function

2000 Mathematics Subject Classification. 32F45.

Key words and phrases. Lempert function, Kobayashi pseudodistance, Kobayashi–Royden pseudometric, Kobayashi–Buseman pseudometric.

This note was written during the stay of the first named author at the Universität Oldenburg supported by a grant from the DFG (January – March 2006). He likes to thank both institutions for their support.
for taut domains; more precisely, if D is a taut domain, then

$$\kappa_D(z; X) = \lim_{C \ni t \to 0} \frac{\hat{k}_D(z, z + tX)}{t}. \quad (1)$$

In [3], S. Kobayashi introduces a new invariant pseudometric, called the Kobayashi–Buseman pseudometric in [1]. One of the equivalent ways to define the Kobayashi–Buseman pseudometric $\hat{\kappa}_D$ of D is just to set $\hat{\kappa}_D(z; \cdot)$ to be largest pseudonorm which does not exceed $\kappa_D(z; \cdot)$.

Recall that

$$\hat{\kappa}_D(z; X) = \inf \left\{ \sum_{j=1}^{m} \kappa_D(z; X_j) : m \in \mathbb{N}, \sum_{j=1}^{m} X_j = X \right\}. \quad (2)$$

Thus, it is natural to consider the new function $\kappa_D^{(m)}$, namely,

$$\kappa_D^{(m)}(z; X) = \inf \left\{ \sum_{j=1}^{m} \kappa_D(z; X_j) : \sum_{j=1}^{m} X_j = X \right\}. \quad (3)$$

We call $\kappa_D^{(m)}$ the m-th Kobayashi pseudometric of D. It is clear that $\kappa_D^{(m)} \geq \kappa_D^{(m+1)}$ and if $\kappa_D^{(m)}(z; \cdot) = \kappa_D^{(m+1)}(z; \cdot)$ for some m, then $\kappa_D^{(m)}(z; \cdot) = \kappa_D^{(j)}(z; \cdot)$ for any $j > m$. It is shown in [3] that

$$\kappa_D^{(2n)} = \hat{\kappa}_D. \quad (4)$$

Let now $D \subset \mathbb{C}^n$ be a taut domain. We point out that, using the equalities (1) and (2), M. Kobayashi (see [2]) shows that

$$\hat{\kappa}_D(z; X) = \lim_{C \ni t \to 0} \frac{k_D(z, z + tX)}{t}. \quad (5)$$

Obvious modifications in the proof of this result lead to

$$\lim_{u, v \to z, u \neq v} \frac{k_D^{(m)}(u, v) - k_D^{(m)}(z; u - v)}{||u - v||} = 0. \quad (6)$$

uniformly in m and locally uniformly in z; thus,

$$\kappa_D^{(m)}(z; X) = \lim_{C \ni t \to 0} \frac{k_D^{(m)}(z, z + tX)}{t}$$

uniformly in m and locally uniformly in z and X.

The aim of this note is the following result which improves (2).

Theorem 1. For any domain $D \subset \mathbb{C}^n$ we have that

$$\kappa_D^{(2n-1)} = \hat{\kappa}_D. \quad (7)$$
On the other hand, if \(n \geq 2 \) and
\[
D_n = \{ z \in \mathbb{C}^n : \sum_{j=2}^{n} (2|z_1^3 - z_j^3| + |z_1^3 + z_j^3|) < 2(n - 1) \},
\]
then
\[
\kappa_{D_n}^{(2n-2)}(0; \cdot) \neq \hat{k}_{D_n}(0; \cdot).
\]

Note that the proof below shows that the equality (4) remains true for any \(n \)-dimensional complex manifold.

An immediately consequence of Theorem 1 and the equality (3) is:

Corollary 2. For any taut domain \(D \subset \mathbb{C}^n \) one has that
\[
\lim_{w \to z, w \neq z} k_D^{(2n-1)}(z, w) = 1
\]
locally uniformly in \(z \), and \(2n - 1 \) is the optimal number, in general.

Remarks. (i) If \(D \subset \mathbb{C} \), then even \(\tilde{k}_D = k_D \) (cf. [1]).

(ii) Corollary 2 holds for \(n \)-dimensional taut complex manifolds.

(iii) Observe that Corollary 2 may be taken as a very weak version of the following question asked by S. Krantz (see [4]): whether there is a positive integer \(m = m(D) \) such that \(k_D = k_D^{(m)} \).

Let now \(h_S \) be the Minkowski functions of a starlike domain \(S \subset \mathbb{R}^N \), that is, \(h_S(X) = \inf\{ t > 0 : X/t \in S \} \). We may define as above
\[
h_S^{(m)}(X) = \inf\left\{ \sum_{j=1}^{m} h_S(X_j) : \sum_{j=1}^{m} X_j = X \right\}.
\]

Then the Minkowski function \(h_{\hat{S}} \) of the convex hull \(\hat{S} \) of \(S \) is the largest pseudonorm which does not exceed \(h_S \). It follows by a lemma due to C. Carathéodory (cf. [2]) that
\[
h_{\hat{S}} = h_{\hat{S}}^{(N)} = \inf\{ \sum_{j=1}^{M} h_S(X_j) : M \leq N, \sum_{j=1}^{M} X_j = X, X_1, \ldots, X_M \text{ are } \mathbb{R}\text{-linearly independent} \}.
\]

One can easily see that \(N \) is the optimal number for the class of starlike domains in \(\mathbb{R}^N \).

Denote by \(I_{D,z} \) the indicatrix of \(\kappa_D(z; \cdot) \), that is, \(I_{D,z} = \{ X \in \mathbb{C}^n : \kappa_D(z; X) < 1 \} \). Note that \(I_{D,z} \) is a balanced domain (a domain \(B \subset \mathbb{C}^n \) is said to be balanced if \(\lambda X \in B \) for any \(\lambda \in \mathbb{D} \) and any \(X \in B \)). In particular, \(I_{D,z} \) is a starlike domain and hence (2) follows by (6). Similarly, (4) will follow by the following.
Proposition 3. If $B \subset \mathbb{C}^n$ is a balanced domain, then
\begin{equation}
 h_B = h_B^{(2n-1)}.
\end{equation}

Observe that the domain D_n from Theorem 1 is pseudoconvex and balanced, thus $\kappa_{D_n}(0; \cdot) = h_{D_n}$ (cf. \cite{[1]}) and so $\kappa_{D_n}^{(m)}(0; \cdot) = h_{D_n}^{(m)}$. Then inequality (5) is equivalent to
\begin{equation}
 h_{D_n} \neq h_{D_n}^{(2n-2)}.
\end{equation}

2. Proofs

To prove Proposition 3, we shall need the following result.

Lemma 4. Any balanced domain can be exhausted by bounded balanced domains with continuous Minkowski functions.

Proof. Let $B \subset \mathbb{C}^n$ be a balanced domain. Denote by $B_n(z, r) \subset \mathbb{C}^n$ the ball with center z and radius r. For $z \in \mathbb{C}^n$ and $j \in \mathbb{N}$, set $F_{n,j,z} := B_n(z, ||z||^2/j)$. We may assume that $B_n(0, 1) \subset B$. Put
\begin{equation}
 B_j := \{z \in B_n(0, j) : F_{n,j,z} \subset B\}, \quad j \in \mathbb{N}.
\end{equation}

Then $(B_j)_{j \in \mathbb{N}}$ is an exhaustion of B by non-empty bounded open sets. We shall show that B_j is a balanced domain with continuous Minkowski functions.

For this, take any $z \in B_j$ and $0 \neq \lambda \in \overline{B}$, and observe that $F_{n,j,\lambda z} \subset \lambda F_{n,j,z} \subset B$. Thus, B_j is a balanced domain.

Since h_{B_j} is an upper semicontinuous function, it remains to prove that it is lower semicontinuous. Assuming the contrary, we may find a sequence of points $(z_k)_{k \in \mathbb{N}}$ converging to some point $z \in \mathbb{C}^n$ and a positive number c such that $h_{B_j}(z_k) < 1/c < h_{B_j}(z)$ for any k. Note that $F_{n,j,cz_k} \subset B$, $k \in \mathbb{N}$. Hence $B_n(cz, c^2||z||^2/j) \subset B$. On the other hand, fix $t \in (0, 1)$ such that $h_{B_j}(tcz) > 1$. Then $F_{n,j,tcz} \subset B_n(tcz, c^2||z||^2/j) \subset B$; thus $h_{B_j}(tcz) < 1$, a contradiction. \hfill \square

Proof of Proposition 3. First, we shall prove (7) in the case, when $B \subset \mathbb{C}^n$ is a bounded balanced domain with continuous Minkowski function. Fix a vector $X \in \mathbb{C}^n \setminus \{0\}$. Then $h_B(X) \neq 0$ and we may assume that $h_B(X) = 1$. By the continuity of h_B and (6), there exist \mathbb{R}-linearly independent vectors X_1, \ldots, X_m ($m \leq 2n$) such that $\sum_{j=1}^m X_j = X$ and
\begin{equation}
 \sum_{j=1}^m h_B(X_j) = 1. \quad \text{Since } h_B \text{ is a norm, the triangle inequality implies that } h_B(X_j) = h_B(X_j), \quad j = 1, \ldots, m. \quad \text{To prove (7), it suffices to show}
\end{equation}
that \(m \neq 2n \). The convexity of \(\hat{B} \) provides a support hyperplane \(H \) for \(\hat{B} \) at \(X \in \partial \hat{B} \), say \(H = \{ z \in \mathbb{C}^n : \text{Re}(z - X, \overline{X_0}) = 0 \} \), \(X_0 \in \mathbb{C}^n \), where \(\langle \cdot , \cdot \rangle \) stands for the Hermitian scalar product in \(\mathbb{C}^n \). Assuming \(m = 2n \) implies that \(H = \{ \sum_{j=1}^{m} \alpha_j \hat{X}_j : \sum_{j=1}^{m} \alpha_j = 1, \alpha_1, \ldots, \alpha_m \in \mathbb{R} \} \), where \(\hat{X}_j := X_j/h_B(X_j) \in \partial \hat{B} \). In particular, \(\partial \hat{B} \) contains a relatively open subset of \(H \). Since \(\hat{B} \) is a balanced domain, it follows that its intersection with the plane, spanned by \(X_0 \), is a disc whose boundary contains a line segment, a contradiction.

Now let \(B \subset \mathbb{C}^n \) be an arbitrary balanced domain. If \((B_j)_{j=1}^\infty \) is an exhaustion of \(B \) given by Lemma 4, then \(h_{B_j} \searrow h_B \) pointwise and hence \(h_{B_j} \searrow h_B \) by (6). Then (7) follows by the inequalities \(h_B \leq h_{B_j}^{(2n-1)} \leq h_{B_j}^{(2n-1)} \) and the equality \(h_{B_j} = h_{B_j}^{(2n-1)} \) from above. \(\square \)

Proof of the inequality (8). Let \(L_n = \{ z \in \mathbb{C}^n : z_1 = 1 \} \). Then the triangle inequality implies that \(D_n \subset D \times \mathbb{C}^{n-1} \) and

\[
F_n := \partial D_n \cap L_n = \{ z \in \mathbb{C}^n : z_1 = 1, z_j \in \Omega, 2 \leq j \leq n \},
\]

where \(\Omega \) is the set of the third roots of unity. Denoting by \(\Delta \) the convex hull of \(\Omega \), it follows that

\[
\partial \hat{D}_n \cap L_n = \hat{F}_n = \{ 1 \} \times \Delta^{n-1}.
\]

Hence, \(\partial \hat{D}_n \cap L_n \) is a \((2n-2)\)-dimensional convex set. Put \(\tilde{F}_n = \{ Y \in \hat{F}_n : h_{D_n}^{(2n-2)}(Y) = 1 \} \). If \(X \in \tilde{F}_n \), then there exist \(X_1, \ldots, X_m \in \mathbb{C}^n \setminus \{ 0 \} \), \(m \leq 2n - 2 \), such that \(\sum_{j=1}^{m} X_j = X \) and \(\sum_{j=1}^{m} h_{D_n}(X_j) = 1 \) (note that \(D_n \) is taut). Hence, \(X_1/h_{D_n}(X_1), \ldots, X_m/h_{D_n}(X_m) \in F_n \) and \(X \) belongs to their convex hull. Since \(F_n \) is a finite set, it follows that \(\tilde{F}_n \) is contained in a finite union of at most \((2n-3)\)-dimensional convex sets. Thus, \(\tilde{F}_n \neq \hat{F}_n \) which implies that \(h_{D_n} \neq h_{D_n}^{(2n-2)} \). \(\square \)

References

[1] M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, de Gruyter Exp. Math. 9, de Gruyter, Berlin, New York, 1993.
[2] M. Kobayashi, On the convexity of the Kobayashi metric on a taut complex manifold, Pacific J. Math. 194 (2000), 117–128.
[3] S. Kobayashi, A new invariant infinitesimal metric, Internat. J. Math. 1 (1990), 83–90.
[4] S. Krantz, Convexity in complex analysis, Several Complex Variables and Complex Geometry, Proc. Symp. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 119–137.
[5] M.-Y. Pang, *On infinitesimal behavior of the Kobayashi distance*, Pacific J. Math. 162 (1994), 121–141.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev 8, 1113 Sofia, Bulgaria
E-mail address: nik@math.bas.bg

Carl von Ossietzky Universität Oldenburg, Fachbereich Mathematik, Postfach 2503, D-26111 Oldenburg, Germany
E-mail address: pflug@mathematik.uni-oldenburg.de