Evaluation of phytochemicals in the leaf extract of *Clitoria ternatea* Willd. through GC-MS analysis

Anupsingh Vijaysingh Thakur¹, Sonu Ambwani¹*, Tanuj Kumar Ambwani², A. H. Ahmad³ and Dharmendra Singh Rawat⁴

¹Department of Molecular Biology and Genetic Engineering, CBSH, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India
²Department of Veterinary Physiology and Biochemistry, CVAS, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India
³Department of Veterinary Pharmacology and Toxicology, CVAS, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India
⁴Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India

*Corresponding Author: sonuambwani@yahoo.co.in [Accepted: 18 July 2018]

Abstract: *Clitoria ternatea* is a perennial herb of India which is reported to possess several therapeutic properties. It is also found in China, Philippines and Madagascar. It is a vigorous, persistent, herbaceous perennial legume. Most of the plant parts are reported to possess therapeutic properties. In the traditional system of medicine, *Clitoria ternatea* has been utilized for treatment of worm infestation, infertility, skin problems, tonsillitis, cough, asthma traditionally etc. In the present study, fifty percent hydromethanolic extract of leaf of *Clitoria ternatea* (CTE) was prepared and subjected to various biochemical qualitative tests and GC-MS analysis to detect the presence of various phytoconstituents in CTE. Biochemical tests confirmed the presence of various phytochemicals viz., saponins, resins, tannins, flavonoids, alkaloids, glycosides, etc. GC-MS analysis revealed the occurrence of thirty compounds in CTE. The main phyto-composition of *Clitoria ternatea* is predicted to be Butyl-2-methyl-propylphthalate (20.11%), Butyl-2-methyl-pentylphthalate (10.39%), Butyl-octyl-phthalate (11.29%), Diisonylonaphthalate (3.54%) etc., whereas, Butyl-2-ethyl-hexyl-phthalate was major phytoconstituents with 30.19% of total constituents. Thus it could be inferred that the therapeutic potential of CTE is because of different phytochemicals present in the extract prepared.

Keywords: *Clitoria ternatea* - GC-MS analysis - Phytochemicals.

[Cite as: Thakur AV, Ambwani S, Ambwani TK, Ahmad AH & Rawat DS (2018) Evaluation of phytochemicals in the leaf extract of *Clitoria ternatea* Willd. through GC-MS analysis. *Tropical Plant Research* 5(2): 200–206]

INTRODUCTION

Clitoria ternatea Willd. commonly known as butterfly-pea, blue-pea and cordofan-pea belong to the Fabaceae family. It is a perennial herb found in India, China, Philippines and Madagascar. It is widely found in the humid, low land tropics, occurring naturally as well as in cultivated form (Devi et al. 2003, Gupta et al. 2010). Varieties (white-flower and blue flower) of *C. ternatea* are found in India, China, Madagascar and Philippines. It is popularly called as “Shankpushpi” in India as the flowers of this plant resemble a conch shell (Kulkarni et al. 1988).

Clitoria ternatea is widely used as a nerve tonic since ancient time and is believed to promote memory and intelligence (Kulkarni et al. 1988). In Ayurvedic system of medicine, it has been used as a memory enhancer, nootropic, antistress, antidepressant, anticonvulsant, tranquilizing and sedative agent (Jain et al. 2003, Mukherjee et al. 2008). Several studies have been carried out to explore the medicinal properties likes anthelmintic, anti-hyperglycemic, anti-inflammatory, anti-diarrheal, antioxidant, hepatoprotective, Immunomodulatory, anti-histaminic; cholinergic activity of *C. ternatea* (Devi et al. 2003, Chauhan et al. 2012).
Leaves contain sitosterol, kaempferol-3-monoglucoside, kaempferol-3-rutinoside, kaempferol-3-neohesperidoside, kaempferol-3-O-rhamnosyl-(1,6)-glucoside, kaempferol-3-O-rhamnosyl-(1,6)-galactoside and kaempferol-3-O-rhamnosyl-(1,2)-O-chalmsnosyl-(1,2)-O-[rhamnosyl-(1,6)]-glucoside. Lactones aparajitin and clitorin from leaves were also reported. The leaves also contain an essential oil, colouring matter and mucilage (Tiwari & Gupta 1959, Rao et al. 2009, Shekhawat & Vijayvergia, 2010, Sarumathy et al. 2011). Keeping in view the mentioned facts, the present study was planned to explore phytochemicals in the fifty percent hydro-methanolic leaf extract of *C. ternatea* (CTE) through biochemical and GC-MS analyses.

MATERIALS AND METHODS

Plant material

The authentic plant material i.e., leaves of *C. ternatea* were obtained from the Medicinal Plant Research and Development Centre (MRDC), GBPUA&T, Pantnagar, Uttarakhand, India.

Preparation of Extract of Clitoria ternatea (CTE)

Leaves were washed properly, shade dried and ground into a fine powder and stored in sterile containers in a cool dry place till further use. Extraction was carried out by using solvents with different polarities. The hydromethanolic extract was prepared as described by Ukwuani et al. (2012). 50 gm of the powder was allowed to soak in 500 ml 50% methanol (v/v) for 48 hours under continuous agitation in a shaking incubator. The mixture was first filtered through muslin cloth, then through Whatmann filter paper No 1. The filtrate was then kept in the rotatory evaporator (45°C). Finally, the extract was obtained by drying the filtrate under hot circulating air at 40°C followed by lyophilization. The percent yield was calculated by dividing quantity of the plant extract obtained from dry leaves powder by 50. The prepared extract was kept at -20°C in air tight container till further use.

Phytochemical Analyses of CTE

Qualitative phytochemical tests for the identification of carbohydrates, resins, tannins, saponins, flavonoids, alkaloids, steroids, phenols and glycosides were carried out for 50% hydromethanolic extract of *C. ternatia* leaves (CTE) as per the methods described by Trease & Evans (1983), Harborne (1998), Sazada et al. (2009) and Thakur et al. (2018a, b).

Characterization of CTE by GC-MS analysis

The samples were analyzed at the commercial facility of GC-MS analysis available at Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi, with the following parameters as described earlier by Thakur et al. (2018a, b).

A. Sample preparation: 200 mg of the medicinal plant extract was dissolved in 2 ml of methanol and then filtered through a syringe filter (0.22µ). A finally prepared sample of each extract was loaded in GC-MS column.

B. GC-MS analysis: GC MS analysis was carried out by splitless injection of 1µl of the sample onto Shimadzu QP2010 GC-MS assembly fitted with a column, coupled with a mass detector. Following parameters were used during analysis of an extract of medicinal plants. Column Oven Temperature was set at 100.0°C, the pressure was 175.1 kPa with total Flow of 16.3 ml/min, column flow was 1.21 ml min⁻¹, linear velocity was 28.9 cm sec⁻¹ and purge flow was 3.0 ml/min. Mass detector was set with start time 6.00 min and end time 40.49 min. The spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST and WELLY library as well as TOX Library. Various phytochemicals in the plant extract with the name of the compound along with its molecular weight and structure were determined.

RESULTS

Percent Yield of CTE

Total of 6.23 g of the hydromethanolic extract was prepared from 50 g of leaves of *Clitoria ternatea* with percent yield of 12.46%.

Phytochemical analyses of CTE

As per the biochemical tests conducted, CTE showed the presence of all the tested phytochemicals, viz. carbohydrates, tannins, saponins, flavonoids, alkaloids, steroids, phenols and glycosides (Table 1).

GC-MS analysis of CTE

The major phyto-composition of *C. ternatea* is predicted by comparison with Tox library and was found to be Butyl-2-methyl-propylphthalate (20.11%), Butyl-2-methylpropylphthalate (10.39%), Butyllocty-lphthalate
(11.29%), Diisononylphthalate (3.54%) etc., whereas, Butyl-2-ethyl-hexyl-phthalate was major phyto-
constituents with 30.19% of total constituents. Upon comparison with NIST and WELLY library, the major
phyto-constituent of *C. ternatea* was predicted to be 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester
with 20.11% among total phyto-constituents (Fig. 1; Table 2, 3).

S.No.	Phytoconstituents	CTE
1.	Protein	+
2.	Carbohydrates	+
3.	Resins	+
4.	Tannins	+
5.	Saponins	+
6.	Flavonoids	+
7.	Alkaloids	+
8.	Steroids	+
9.	Phenols	+
10.	Glycosides	+

Table 1. Phytochemicals present in the leaf extract of *Clitoria ternatea* Willd.

Figure 1. Chromatogram showing peaks for phytoconstituents in the leaf extract of *Clitoria ternatea* Willd.

www.tropicalplantresearch.com
PEAK	R TIME	AREA	AREA%	NAME	Formula	CAS No	Mol Wt.
1	10.508	31452	0.21	Lauric acid ME	C_{17}H_{35}O_{2}	111-82-0	214
2	11.676	303199	20.11	Butyl-2-methylpropylphthalate	C_{16}H_{20}O_{4}	17851-53-5	278
3	11.913	248936	0.65	Pentaedcanoic acid ME	C_{19}H_{16}O_{2}	7132-64-1	256
4	12.025	156677	10.39	Butyl-2-methylpropylphthalate	C_{16}H_{20}O_{4}	17851-53-5	278
5	12.151	145092	0.96	Decyloctylphthalate	C_{19}H_{18}O_{4}	119-07-3	418
6	12.396	4551903	30.19	Butyl-2-ethylhexylphthalate	C_{16}H_{20}O_{4}	85-69-8	334
7	12.529	1701712	11.29	Butylbutylphthalate	C_{16}H_{20}O_{4}	84-78-6	334
8	12.668	364432	0.24	Disoctylphthalate	C_{22}H_{34}O_{4}	27554-26-3	390
9	12.85	38739	0.26	Amfetamineintermediate	C_{6}H_{2}NO_{2}	705-60-2	163
10	12.942	178606	0.18	Decyltetradecylphthalate	C_{22}H_{34}O_{4}	0-00-0	502
11	12.992	44006	0.29	Isopropylbenzene	C_{6}H_{14}	98-82-8	120
12	13.143	166239	0.10	Diethylphthalate	C_{12}H_{14}O_{4}	84-66-2	222
13	13.233	65562	0.43	3-methylhexane	C_{6}H_{16}	589-34-4	100
14	13.389	534008	0.35	Diisononylphthalate	C_{16}H_{20}O_{4}	28553-12-0	418
15	13.881	235288	0.56	Decylhexylphthalate	C_{16}H_{20}O_{4}	119-07-3	418
16	13.486	185302	0.23	Lignoceric acid ME	C_{22}H_{34}O_{4}	2442-49-1	382
17	13.596	657030	0.46	Pcc	C_{12}H_{30}N_{2}	3867-15-0	192
18	13.811	247004	0.64	Cyclotetradecane	C_{12}H_{28}	295-17-0	196
19	13.968	491009	0.26	Decyltetradecylphthalate	C_{22}H_{34}O_{4}	0-00-0	502
20	14.058	209979	0.33	Decyldodecylphthalate	C_{18}H_{30}O_{4}	0-00-0	474
21	14.301	67108	0.45	2-methylpentane	C_{6}H_{14}	107-83-5	86
22	14.738	177895	0.18	Diethylphthalate	C_{12}H_{14}O_{4}	84-66-2	222
23	14.858	56097	0.37	Decyldecylphthalate	C_{16}H_{20}O_{4}	--	474
24	18.156	90780	0.60	Decyloctylphthalate	C_{26}H_{34}O_{4}	119-07-3	418
DISCUSSION

Clitoria ternatea L. is a perennial twining herb with several medicinal properties. Various plant parts have different phytochemicals that are responsible for various pharmacological activities. The fatty acid content of Clitoria ternatea seeds includes palmitic, stearic, oleic, linoleic, and linolenic acids as well as a water soluble mucilage, delphinidin 3, 3’, 5’-triglucoside useful as a food dye, beta-sitosterol (Sinha 1960, Deb Nath & Chakravarti 1975, Joshi et al. 1981, Macedo & Xavier-Filho 1992, Husain & Devi 1998). Phytochemistry helps in standardizing the herbal preparations so as to get the optimal concentrations of known active constituents and in preserving their activities. Shekhwat & Vijayvergia (2010) studied the presence of metabolites in various plant parts of C. ternatea. Rai (2010) reported the presence of tannins, flavonoids and steroids in the ethanolic extract of C. ternatea that are known to be the reason for the antioxidative potential of the plants. The salient phytoconstituents present in C. ternatea are pentacetyltriterpenoids such as taraxerol and taraxerone. Phytochemical screening of the roots showed the presence of tannins, alkaloids, flavonoids, saponins, tannins, carbohydrates, proteins, resins, starch, taraxerol and taraxerone (Trease & Evans 1983). Leaves of C. ternatea are reported to contain beta-sitosterol, 3-rutinoside, 3-neohesperidoside, 3 monoglucoside, 3- o- rhamnosyl Glycoside, kaempferol- 3- o-rhamnosylband essential oils. The flower contains delphinidin-3-, 5-diglucoside, delphinidin-38- glucoside, and malvidin- 3B - glucoside, kaempherol, p-coumaricacid. Rootcontains ß-carotene, stigmast-4- ene- 3, 6, diene, taraxerol & taraxerone, starch, tannins & resins (Tiwari & Gupta 1959). The present study also reports the presence of carbohydrates, tannins, saponins, flavonoids, alkaloids, steroids, phenols and glycosides in CTE.

For many chronic and degenerative diseases, oxidative stress is considered one of the leading cause (Vadalapudi & Naid 2010). Petals of C. ternatea have been reported to exhibit potent anti-oxidant activity (Kankanon et al. 1999, Shan et al. 2005, Hinneburg et al. 2006). Aqueous extracts of petals showed stronger anti-oxidant activity in comparison to ethanolic extracts (Kamkaen & Wilkinson 2009). Aqueous leaf extracts of C. ternatea was subjected to various enzymatic and non-enzymatic antioxidative analyses to explore their antioxidant potential. In vitro antioxidant capacity was also determined using different assays such as Ferric reducing power assay (FRAP), Reducing activity assay, diphenypicrylhydrazyl (DPPH) assay and Hydroxyl radical scavenging activity. C. ternatea has shown significant antioxidative properties which were found to be comparable with standard antioxidants used in the study (Rao et al. 2009). Several workers reported its medicinal value such as anti-inflammatory (Devi et al. 2003), anti-oxidant (Sarumathy et al. 2011), immunomodulatory, hypoprotective (Daisy et al. 2004, Solanki & Jain 2011) etc.

Sarumathy et al. (2011) prepared an ethanolic extract of the aerial part of C. ternatea and subjected it to GC-MS analysis. Seven compounds were identified in this plant by GC-MS viz., n-hexadecanoic acid (48.77), 1-butanol, 3-methyl-acetate (30.27), propane, 1,1,3-trithoxy-(3.92), Z, Z, Z-1, 4, 6, 9-nonadecatraene (4.60), undecanoic acid (2.80), 3-trifluoroacetoxy pentadecane (3.59) and 4-ethyl - 5-octyl- 2, 2- bis(trifluoromethyl) -cisc 1, 3 - dioxalane - (6.05) through coupled GC-mass spectroscopy. In the present study, a complex mixture of 24 different compounds was detected through GC-MS analysis in CTE. Butyl-2-methyl-propylphthalate (20.11%), Butyl-2-methylpropylphthalate (10.39%), Butyloxy-tpbthlate (11.29%), Diisononylphthalate (3.54%) and Butyl-2-ethyl-hexyl-phthalate (30.19%) were found to be the major compounds in CTE of total constituents. Thus it could be inferred from the present study that the presence of various phytochemicals as revealed through biochemical and GC-MS analyses may be responsible for antioxidative and medicinal potential of C. ternatea leaf extract. However, the advanced analysis is required to further harness the medicinal potential of C. ternatea.

ACKNOWLEDGMENTS

Authors are thankful to the Director, MRDC, G.B.P.U.A. &T., Pantnagar, for providing the plant material. The facilities provided by Director Experiment Station; Dean, Veterinary & Animal Sciences, GBPUA&T, Pantnagar, to carry out the present study, are duly acknowledged. Master’s thesis grant provided to A.V. Thakur by DBT, New Delhi, India is duly acknowledged.

REFERENCES

Chauhan N, Rajvaidhya S & Dubey BK (2012) Pharmacognostical, phytochemical and pharmacological review on Clitoria ternatea for antiasthmatic activity. International Journal of Pharmaceutical Sciences and Research 3(2): 398–404.

Daisy P, Priya NN & Rajathi M (2004) Immunomodulatory activity of Eugenia jambolana, Clitoria ternatea and Phyllanthus emblica on alloxan-induced diabetic rats. Journal of Experimental Zoology, India 7(2):
Debnath NB & Chakravarti D (1975) Fatty acids of Clitoria ternatea seed oils. Journal of the Institution of Chemists 47: 253–255.

Devi BP, Boominathan R & Mandal SC (2003) Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root. Fitoterapia 74 (4): 345–349.

Gupta GK, Chahal J & Bhatia M (2010) Clitoria ternatea L.: Old and new aspects. Journal of Pharmacy Research 3(11): 2610–2614.

Harborne JB (1998) Phytochemical Methods - A guide to modern techniques of plant analysis. Chapman and Hall, London.

Hinneburg I, Dorman HJD & Hiltunen R (2006) Antioxidant activities of extracts from selected culinary herbs and species. Food Chemistry 97(1): 122–129.

Husain S & Devi KS (1998) Fatty acid composition of three plant species: Clitorea ternatea, Mandulea suberosa and Ruta chalapensis. Journal of Oil Technologists Association of India 30: 162–164.

Jain NN, Ohal CC & Shroff SK (2003) Mixtures of Eclipta prostrata and Vigna mungo against hepatotoxicity in rats. Indian Journal of Biochemistry and Biophysics 47(10): 3954–3962.

Kulkarni C, Pattanshetty JR & Amruthraj G (1988) Effect of aqueous root extract of Asparagus racemosus (L.) Willd. on centralnervous system in rodents. Indian Journal of Experimental Biology 26: 957–960.

Macedo MLR & Xavier-Filho J (1992) Purification and partial characterization of trypsin inhibitors from seeds of Clitoria ternatea L. Journal of the Science of Food and Agriculture 58(1): 55–58.

Mukherjee PK, Kumar V, Kumar NS & Heinrich M (2008) The Ayurvedic medicine Clitoria ternatea- From traditional use to scientific assessment. Journal of Ethnopharmacology 120: 291–301.

Rai KS (2010) Neurogenic potential of Clitoria ternatea aqueous root extract–A basis for enhancing learning and memory. World Academy of Science, Engineering & Technology 70: 237–240.

Rao DB, Kiran CR, Madhavi Y, Rao PK & Rao TR (2009) Evaluation of antioxidant potential of a Clitoria ternatea L. and Eclipta prostrata L. Indian Journal of Biochemistry and Biophysics 46: 247–252.

Sarumathy K, Dhana Rajan MS, Vijay T & Jayakanthi J (2011) Evaluation of phytocomponents, nephro-protective and antioxidant activities of Clitoria ternatea. Journal of Applied Pharmaceutical Science 1(5): 164–172.

Shan B, Cai YZ, Sun M & Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agriculture and Food Chemistry 53(20): 7749–7759.

Shekhawat N & Vijayvergia R (2010) Comparative study of primary metabolites in different plant parts of Clitoria ternatea (L.), Guazuma ulmifolia (Lam.) and Madhuca indica (Gmel.). Journal of Chemical and Pharmaceutical Research 2(2): 168–171.
Publisher, London. pp. 343–383.
Ukwuani AN, Abubakar MG, Hassan SW & Agaie BM (2012) Toxicological studies of hydromethanolic leaves extract of *Grewia crenata*. *International Journal of Pharmaceutical Sciences and Drug Research* 4(4): 245–249.
Vadlapudi V & Naid K (2010) *In vitro* bioevaluation of some Indian Medicinal Plants. *Drug Invention Today* 2(1): 65–68.