A Potential Prognostic Biomarker for Glioma: Aldo-Keto Reductase Family 1 Member B1

Hulin Zhao,1 Xuetao Dong,2 Tianxiang Huang3,3 and Xueji Li4

1Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
2Department of Neurosurgery, Chuiyangliu Hospital Affiliated To Tsinghua University, Beijing, China
3Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
4Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Correspondence should be addressed to Tianxiang Huang; huang966931guo7533@163.com and Xueji Li; lixueji@cumt.edu.cn

Received 20 January 2022; Accepted 23 February 2022; Published 18 March 2022

Academic Editor: Deepika Koundal

Copyright © 2022 Hulin Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aldo-keto reductase family 1 member B1 (AKR1B1) plays a vital role in tumor development and is involved in the tumor immune process. However, its role in glioma cell is poorly studied. This study’s aim was to assess the role of AKR1B1 in glioma through bioinformatics analysis. The AKR1B1 expression data and corresponding clinical data of glioma were collected from the Cancer Genome Atlas (TCGA) database. The R packages were used for data integration, extraction, analysis, and visualization. According to the median value of the risk score, all patients were divided into high-risk and low-risk groups to draw the Kaplan–Meier (KM) survival curves and to explore the level of immune infiltration. The expression of AKR1B1 was significantly elevated in glioma tissues compared to normal tissues \( (P < 0.001) \). The high expression of AKR1B1 was significantly associated with WHO grade \( (P < 0.001) \), IDH status \( (P < 0.001) \), 1p/19q codeletion \( (P < 0.001) \), primary therapy outcome \( (P = 0.004) \), and age \( (P < 0.05) \). Kaplan–Meier survival analysis found that OS (HR = 3.75, \( P < 0.001 \)), DSS (HR = 3.85, \( P < 0.001 \)), and PFI (HR = 2.76, \( P < 0.001 \)) were lower in patients with glioma with high AKR1B1 expression than in the group with low AKR1B1 expression. Based on GESA, six pathways (including interferon gamma signaling, signaling by interleukins, cell cycle checkpoints, cytokine receptor interaction, cell adhesion molecules (CAMs), and cell surface interactions) at the vascular wall were identified as significantly different between the two groups. Moreover, highly expressed AKR1B1 was associated with immune cell infiltration. AKR1B1 plays a key role in glioma progression and prognosis and, therefore, serves as a potential biomarker for prediction of patients’ survival.

1. Introduction

Glioma is one of the most common classes of brain tumors, comprising 80% of malignant primary brain tumors [1]. Glioma is the most common and aggressive cancer of the neuroepithelial tissue, with an average survival time of only 15 months [2]. Gliomas are highly heterogeneous with multiple genetically distinct clones which makes it difficult to successfully implement clinical treatments, even with the many new therapies now being investigated [3]. Moreover, even with improved surgical techniques and postoperative radiotherapy, the average survival time of glioma patients after neurosurgical radiotherapy is still limited to around 12 months, and the factors affecting the prognosis of glioma patients are complex. The lack of appropriate screening and diagnostic biomarkers has led to failure in the early diagnosis of glioma. Although a variety of biomarkers have been used in the diagnosis of glioma, their reliability remains controversial [4]. Therefore, the discovery of biomarkers relevant to tumor staging and prognosis is extremely important to facilitate the early diagnosis, prognosis, and treatment of glioma.

AKR1B1, aldehyde reductase (AR) protein, is one of the key members of the superfamily of aldehyde reductases (AKRs) [5]. It is an NADPH-dependent, multifunctional enzyme class with the spatial structure of a single-chain...
polypeptide containing a sulfhydryl group, which is generally present in organisms as a monomer [6]. AKRs have been implicated in the development of various tumors in humans. Previous study has reported that overexpression of AKR1B1 was found to promote the development and metastasis of breast cancer, suggesting that the overexpression of AKR1B1 could predict poor prognosis in breast cancer patients [7]. In addition, overexpression of AKR1B1 could decrease the expression of β2-adrenergic receptor (β2-AR) and increase the expression of p-ERK1/2, thereby promoting the proliferation and metastasis of pancreatic cancer [8]. Moreover, many members of the aldose reductase superfamily have been used as diagnostic markers for tumors in the detection of cancers [9, 10]. There are also members that are potential diagnostic markers for cancers. However, the association of AKR1B1 expression and clinicopathological characteristics, as well as prognosis of glioma patients with OS, has not yet been characterized.

In our study, we tried to determine the association between AKR1B1 and glioma and to explore the prognostic role of AKR1B1 in glioma based on RNA-sequencing data from TCGA. We used the information of glioma patients in TCGA database to analyze the correlation between AKR1B1 expression and clinicopathological features, prognosis, and immune cell infiltration and then selected several possible signaling pathways for further study to help future clinical treatment.

2. Materials and Methods

2.1. Data Collection, Screening, and Analysis. UCSC Xena (https://xenabrowser.net/datapages/) RNAseq data in TPM format for TCGA and GTEx were harmonized by the Toil process [11]. Data were extracted from the GBMLGG of TCGA (1157 cases of glioma) and the corresponding normal tissues in GTEx (689 cases). The gene expression data were divided into high and low expression groups according to the median expression of AKR1B1.

2.2. Gene Enrichment Analysis. GSEA was used for analysis, and the c2.cp.v7.2.symbols.gmt dataset was obtained using the gene enrichment analysis website MSigDB database. Enrichment analysis was performed according to the default weighted enrichment statistics, with the number of random combinations set to 1000. The expression level of AKR1B1 was used as the expression marker. Enrichment pathways were ranked for each phenotype by P values and normalized enrichment scores (NES).

2.3. Data Analysis. The R package (v.3.6.1) was used for all statistical analyses. The relationship between AKR1B1 and clinicopathological characteristics was analyzed using the Wilcoxon rank sum test. Cox regression and Kaplan–Meier survival analysis were used to analyze the relationship between clinicopathological characteristics and OS, DSS, and PFI in patients with glioma. P < 0.05 was considered a statistically significant difference.

3. Results

3.1. Clinical Characteristics. We collected clinicopathological characteristics of glioma patients from TCGA database, including WHO grade, IDH status, 1p/19q codeletion, primary therapy outcome, gender, race, and age (shown in Table 1). Patients with glioma were divided into high and low-AKR1B1 expression groups according to the median AKR1B1 expression. We subsequently analyzed the relationship between AKR1B1 expression and clinical characteristics by the chi-square test and Wilcoxon rank sum test. The results showed that high levels of AKR1B1 expression were associated with WHO grade (P < 0.001), IDH status (P < 0.001), 1p/19q codeletion (P < 0.001), primary therapy outcome (P = 0.004), and age (P < 0.05) but not gender and race.

3.2. The Expression of AKR1B1 in Glioma Tissues and Paraneoplastic Tissues. Analysis of 1157 cases of paraneoplastic and 689 cases of glioma tissues in TCGA database revealed that AKR1B1 expression levels were significantly higher in tumor tissues than in normal paraneoplastic tissues (P < 0.001, Figure 3(a)). In addition, AKR1B1 overexpression showed promising discriminative power with an AUC value of 0.935 to distinguish discriminating tumors from normal tissues (Figure 1(b)).

3.3. Associations between AKR1B1 Expression and Clinicopathologic Variables. Based on the analysis of glioma patients from TCGA database, the Kruskal–Wallis test showed that AKR1B1 overexpression was significantly associated with histological type (Figure 2(a)). The Wilcoxon rank sum test showed that AKR1B1 overexpression was significantly associated with 1p/19q codeletion and IDH status (Figures 2(d)–2(e)). Also, independent sample t-test found that AKR1B1 overexpression was significantly correlated with age (Figure 2(f)).

3.4. The Relationship between AKR1B1 Expression and Glioma Prognosis. To assess the value of AKR1B1 in predicting the prognosis of glioma patients, we analyzed the relationship between AKR1B1 expression and OS, DSS, and PFI. As shown in Figure 3(a), the prognosis of glioma patients in the high AKR1B1 expression group was worse (HR = 3.75 (2.87–4.80), P < 0.001) (Figure 3(a)). We further analyzed the DSS and PFI by Kaplan–Meier plotter database and found that both DSS and PFI were lower in patients with glioma with high AKR1B1 expression than in the group with low AKR1B1 expression (Figures 3(b)–3(c)). The altered results suggested that patients with overexpressed AKR1B1 have a worse prognosis.

3.5. AKR1B1-Related Signaling Pathways Based on GSEA. We used GESA to perform enrichment analysis of high AKR1B1 expression to identify signaling pathways activated in glioma. As shown in Figure 4, six pathways, including interferon gamma signaling, signaling by interleukins, cell
cycle checkpoints, cytokine receptor interaction, cell adhesion molecules (CAMs), and cell surface interactions at the vascular wall, were identified as significantly different between the two groups.

3.6. Correlation between Immune Cell Infiltration and AKR1B1. We analyzed the correlation between AKR1B1 expression level and the degree of immune cell enrichment based on Spearman’s correlation coefficient. AKR1B1

| Characteristic                     | Low expression of AKR1B1 | High expression of AKR1B1 | $P$  |
|-----------------------------------|--------------------------|---------------------------|------|
| $n$                               | 348                      | 348                       |      |
| WHO grade, $n$ (%)                |                          |                           | <0.001|
| G2                                | 160 (25.2%)              | 64 (10.1%)                |      |
| G3                                | 132 (20.8%)              | 111 (17.5%)               |      |
| G4                                | 17 (2.7%)                | 151 (23.8%)               |      |
| IDH status, $n$ (%)               |                          |                           | <0.001|
| WT                                | 61 (8.9%)                | 185 (27%)                 |      |
| Mut                               | 284 (41.4%)              | 156 (22.7%)               |      |
| 1p/19q codeletion, $n$ (%)        |                          |                           | <0.001|
| Codel                             | 133 (19.3%)              | 38 (5.5%)                 |      |
| Non-codel                         | 215 (31.2%)              | 303 (44%)                 |      |
| Primary therapy outcome, $n$ (%)  |                          |                           | 0.004 |
| PD                                | 55 (11.9%)               | 57 (12.3%)                |      |
| SD                                | 100 (21.6%)              | 47 (10.2%)                |      |
| PR                                | 42 (9.1%)                | 22 (4.8%)                 |      |
| CR                                | 96 (20.8%)               | 43 (9.3%)                 |      |
| Gender, $n$ (%)                   |                          |                           | 0.146 |
| Female                            | 139 (20%)                | 159 (22.8%)               |      |
| Male                              | 209 (30%)                | 189 (27.2%)               |      |
| Race, $n$ (%)                     |                          |                           | 0.383 |
| Asian                             | 4 (0.6%)                 | 9 (1.3%)                  |      |
| Black or African American         | 16 (2.3%)                | 17 (2.5%)                 |      |
| White                             | 319 (46.7%)              | 318 (46.6%)               |      |
| Age, $n$ (%)                      |                          |                           | <0.001|
| $\leq$60                         | 305 (43.8%)              | 248 (35.6%)               |      |
| >60                               | 43 (6.2%)                | 100 (14.4%)               |      |
| Histological type, $n$ (%)        |                          |                           | <0.001|
| Astrocytoma                       | 110 (15.8%)              | 85 (12.2%)                |      |
| Glioblastoma                      | 17 (2.4%)                | 151 (21.7%)               |      |
| Oligoastrocytoma                  | 81 (11.6%)               | 53 (7.6%)                 |      |
| Oligodendroglia                   | 140 (20.1%)              | 59 (8.5%)                 |      |
| Age, median (IQR)                 | 40 (32, 53)              | 51 (38, 62)               | <0.001|

**Figure 1:** AKR1B1 expression between cancer and normal tissues in glioma patients. (a) AKR1B1 expression levels in glioma and normal tissues. (b) ROC analysis of AKR1B1 showed promising discrimination power between tumor and normal tissues.
The expression of AKR1B1
Log2 (TPM+1)

Astrocytoma
Oligodendroglioma
Oligoastrocytoma
Glioblastoma

***
***
***
*

(a)

Histological type
WHO grade
Primary therapy outcome
1p/19q codeletion
IDH status
Age

***
***
**

(b)

(c)

(d)
(e)
(f)

Figure 2: The correction of AKR1B1 expression with clinicopathologic characteristics. (a) Histological type. (b) WHO grade. (c) Primary therapy outcome. (d) 1q/19q codeletion. (e) IDH status. (f) Age.

Figure 3: Kaplan–Meier survival curves comparing the high expression and low expression of AKR1B1 in glioma. (a) Overall survival. (b) Disease-specific survival. (c) Progression-free survival.
expression levels were negatively correlated with NK CD56bright cells, pDC, Tcm, and Tgd, while they were positively related with the most abundance of macrophages (Figure 5(a)). Moreover, overexpression of AKR1B1 in macrophages was correlated (Figure 5(b)). Therefore, we further analyzed the correlation between AKR1B1 and marker CD163 and TGFBI in M2 macrophages (Figures 5(c) and 5(d)). The results revealed that AKR1B1 expression levels were significantly and negatively correlated with marker CD163 ($P < 0.001$, $r = 0.520$), TGFBI ($P < 0.001$, $r = 0.500$), and VSIG4 ($P < 0.001$, $r = 0.520$) in M2 macrophages.

4. Discussion

According to the Central Brain Tumor Registry of the United States (CBTRUS), approximately 2% of adult tumors are brain tumors, and up to 80% of these are gliomas. The current surgical treatment of glioma, radiotherapy, chemotherapy, and molecular targeted therapy have achieved considerable success, but the recurrence rate of surgical treatment is still very high [12]. Radiotherapy and chemotherapy are prone to resistance and metastasis with a poor prognosis [13]. Therefore, there is an urgent need for new studies to discover more effective diagnostic criteria and diagnostic methods. The literature reported that silencing NORAD inhibited the proliferation, invasion, and migration of glioma cells, while overexpression of AKR1B1 reversed the effects of silencing NORAD on glioma cells [14]. This suggested that AKR1B1 was involved in the proliferation and progression of glioma cells, but its role and significance in the clinical setting have rarely been investigated, so this study focused on the clinical aspects.

AKR1B1 protein is an important member of the aldo-keto reductase superfamily and has been found to be closely associated with the development of many human tumors [15]. However, the effect of AKR1B1 on tumors may vary depending on the stage, type, and aggressiveness of the tumor. For example, in colorectal cancer, AKR1B1 levels were higher in metastatic SW620 cells than in non-metastatic SW480 [16]. In addition, inhibition of AKR1B1 inhibited the proliferation, migration, and invasion of colon cancer cells, which in turn impeded liver metastasis of CRC [17]. In the literature, knockdown of AKR1B1 in HeLa cells was found to inhibit proliferation, migration, and invasion of Hela cells [18]. Another study found that AKR1B1 was overexpressed in
BLBCs but unchanged in tubular cells [19]. In contrast, some studies found that AKR1B1 was significantly less expressed in breast cancer tissues than in normal paracancerous tissues [20]. Although the current level of AKR1B1 expression does not indicate its function in breast cancer, AKR1B1 may play an important function in breast cancer and EMT [21].

**Figure 5:** Association between immune cell infiltration and AKR1B1 in glioma. (a) Correlation between the relative abundance of 24 immune cells and AKR1B1 expression level. (b) Macrophage infiltration level in the high AKR1B1 expression group and low AKR1B1 expression group in TCGA cohort. (c–e) Correlation between AKR1B1 expression and M2-like macrophage marker.
In this study, we first analyzed glioma-related transcriptomic data from TCGA database and found that AKR1B1 expression was significantly elevated in glioma tissues. Previous literature reported that patients with high AKR1B1 expression had poorer OS, and the prognostic analysis of this study also found that AKR1B1 overexpression predicted poorer OS, DSS, and PFI in glioma patients. We further investigated the function of AKR1B1 in glioma tissues using GSEA and found that interferon gamma signaling, signaling by interleukins, cell cycle checkpoints, cytokine receptor interaction, cell adhesion molecules (CAMs), and cell surface interactions at the vascular wall all showed significantly differential enrichment in high AKR1B1 expression phenotype. The results of the AKR1B1-related signaling pathway enrichment analysis involved several signaling pathways that are closely related to tumors, including interferon gamma signaling, signaling by interleukins, cell cycle checkpoints, cytokine receptor interaction, cell adhesion molecules (CAMs), and cellular surface interactions at the vascular wall. The signaling pathways mentioned above may play a key role in the development and progression of hepatocellular carcinoma. Cell adhesion molecules play a significant role in cancer progression and metastasis [22]. Cell-cell interactions of cancer cells with endothelium determine the metastatic spread. In addition, direct tumor cell interactions with platelets, leukocytes, and soluble components significantly contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Tumor microenvironment immune cells constitute a key component of tumor tissue [23]. Tumor infiltrating immune cells are an integral component of the tumor microenvironment, and their composition and distribution are thought to be associated with cancer prognosis. Specifically, the level of TAM infiltration accelerates glioma progression. TAM is composed mainly of M2 macrophages and is a complex factor in exposure to the tumor microenvironment [24]. Therefore, we further analyzed the relationship between the expression level of AKR1B1 and the level of immune cell infiltration in glioma tissues. By analyzing the relationship between AKR1B1 expression levels and immune cells, we found that an increase in AKR1B1 expression was significantly and positively correlated with marker of M2 macrophages. The correlation between AKR1B1 and immune cells suggested that AKR1B1 played a key role in the regulation of tumor immunity.

There are still several limitations in the current study. One of the major shortcomings of this study is that it only provides ideas for clinical treatment from a genetic perspective, for involving AKR1B1 protein, and the relationship between gene expression and protein expression still needs to be further explored. In addition, to improve the credibility of the results, the sample size should be further expanded to include more clinical factors for a comprehensive evaluation. Also, the phenotypic assays and in vivo animal experiments for the validation of our findings are necessary in the future.

5. Conclusion

In conclusion, our study found that overexpression of AKR1B1 is associated with poor prognosis in glioma and is considered to be an independent factor in patients with glioma. AKR1B1 may play an important role in immune cell infiltration and may represent a valuable prognostic biomarker for glioma.

Data Availability

The datasets used and analyzed during the current study are available from the corresponding authors on reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] R. Inano, N. Oishi, T. Kunieda et al., “Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading,” NeuroImage: Clinical, vol. 5, pp. 396–407, 2014.
[2] T.-Y. Chen, Y. Liu, L. Chen, J. Luo, C. Zhang, and X.-F. Shen, “Identification of the potential biomarkers in patients with glioma: a weighted gene co-expression network analysis,” Carcinogenesis, vol. 41, no. 6, pp. 743–750, 2020.
[3] S. M. D. Rizvi, T. Hussain, K. Mehmood, A. Moin, A. S. Alanazi, and G. M. Subaiea, “Molecular docking and dynamic simulation study to explore quercetin as a multi-potent candidate against gliomas,” Tropical Journal of Pharmaceutical Research, vol. 20, no. 4, pp. 815–823, 2021.
[4] F. H. Hochberg, N. A. Atai, D. Gonda et al., “Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science,” Expert Review of Molecular Diagnostics, vol. 14, no. 4, pp. 439–452, 2014.
[5] S. P. Baba, K. Wetzelberger, J. D. Hoetker, and A. Bhatnagar, “Posttranslational glutathiolation of aldose reductase (AKR1B1): a possible mechanism of protein recovery from S-nitrosylation,” Chemico-Biological Interactions, vol. 178, no. 1-3, pp. 250–258, 2009.
[6] F. Balestri, V. Barraco, G. Renzone et al., “Steroselectivity of aldose reductase in the reduction of glutathionyl-hydroxynonal adduct,” Antioxidants, vol. 8, no. 10, p. 502, 2019.
[7] X. Wu, X. Li, Q. Fu et al., “AKR1B1 promotes basa-like breast cancer progression by a positive feedback loop that activates the EMT program,” Journal of Experimental Medicine, vol. 214, no. 4, pp. 1065–1079, 2017.
[8] M.-B. Xiao, D.-D. Jin, Y.-J. Jiao et al., “β2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway,” Molecular Biology Reports, vol. 45, no. 6, pp. 1863–1871, 2018.
[9] M. Hjojnik, G. S. Frkovic, I. Verdenik, and T. L. Rizner, “AKR1B1 and AKR1B10 as prognostic biomarkers of endometrioid endometrial carcinomas,” Cancers, vol. 13, no. 14, 2021.
[10] E. S. Kropotova, R. A. Tycho, O. L. Zinov’eva et al., “[Downregulation of AKR1B10 gene expression in colorectal cancer],” Molecular Biology (Moscow), vol. 44, no. 2, pp. 243–250, 2010.
[11] J. Vivian, A. A. Rao, F. A. Nothaf et al., “Toil enables reproducible, open source, big biomedical data analyses,” Nature Biotechnology, vol. 35, no. 4, pp. 314–316, 2017.
[12] B. Luo and J. Zhang, “MicroRNA-16 inhibits the migration and invasion of glioma cell by targeting Bcl-2 gene,” Tropical Journal of Pharmaceutical Research, vol. 19, no. 12, pp. 2499–2504, 2020.
[13] A. B. Ghaemmaghami, M. Mahjoubin-Tehran, A. Movahedpour et al., "Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis," Cell Communication and Signaling, vol. 18, no. 1, p. 120, 2020.

[14] L. Luo, C. Chen, H. He, M. Cai, and C. Ling, "Silencing of long non-coding RNA (LncRNA) non-coding RNA activated by DNA damage (NORAD) inhibits proliferation, invasion, migration, and promotes apoptosis of glioma cells via downregulating the expression of AKR1B1," Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 26, Article ID e922659, 2020.

[15] R. Khayami, S. R. Hashemi, and M. A. Kerachian, "Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential," Journal of Cellular and Molecular Medicine, vol. 24, no. 16, pp. 8890–8902, 2020.

[16] A. Schwab, A. Siddiqui, M. E. Vazakidou et al., “Polyol pathway links glucose metabolism to the aggressiveness of cancer cells,” Cancer Research, vol. 78, no. 7, pp. 1604–1618, 2018.

[17] R. Tamnali, A. B. M. Reddy, A. Saxena et al., “Inhibition of aldose reductase prevents colon cancer metastasis,” Carcinogenesis, vol. 32, no. 8, pp. 1259–1267, 2011.

[18] J. Ji, M.-X. Xu, T.-Y. Qian et al., “The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer,” Molecular Biology Reports, vol. 47, no. 8, pp. 6091–6103, 2020.

[19] M. Saraswat, T. Mrudula, P. U. Kumar et al., “Overexpression of aldose reductase in human cancer tissues,” Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 12, no. 12, pp. 525–529, 2006.

[20] K. A. Reddy, P. U. Kumar, M. Srinivasulu et al., “Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers,” The Breast, vol. 31, pp. 137–143, 2017.

[21] T. Yoda, K. Kikuchi, Y. Miki et al., “11β-Prostaglandin F2α, a bioactive metabolite catalyzed by AKR1C3, stimulates prostaglandin F receptor and induces slug expression in breast cancer,” Molecular and Cellular Endocrinology, vol. 413, pp. 236–247, 2015.

[22] G. Bendas and L. Borsig, “Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins,” Int J Cell Biol, vol. 2012, Article ID 676731, 2012.

[23] K.-Y. Au and R. C.-L. Lo, “An immunohistochemical study of β-catenin expression and immune cell population in metastatic carcinoma to the liver,” Pathology and Oncology Research, vol. 27, Article ID 1609752, 2021.

[24] Q. Yang, N. Guo, Y. Zhou, J. Chen, Q. Wei, and M. Han, “The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy,” Acta Pharmaceutica Sinica B, vol. 10, no. 11, pp. 2156–2170, 2020.