Charge conjugation from space-time inversion in QED: discrete and continuous groups

B. Carballo Pérez and M. Socolovsky

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, 04510, México D.F., México

Abstract
We show that the CPT groups of QED emerge naturally from the \mathcal{PT} and \mathcal{P} (or \mathcal{T}) subgroups of the Lorentz group. We also find relationships between these discrete groups and continuous groups, like the connected Lorentz and Poincaré groups and their universal coverings.

Keywords: CPT groups; space-time inversion; Lorentz and Poincaré groups

*brendacp@nucleares.unam.mx
†socolovs@nucleares.unam.mx
1 Introduction

It was shown in [1] that the CPT group, $G_{\hat{\theta}}(\hat{\psi})$ ($\hat{\theta} = \hat{C} \ast \hat{P} \ast \hat{T}$), of the Dirac quantum field is a non abelian group with sixteen elements isomorphic to the direct product of the quaternion group, Q, and the cyclic group, \mathbb{Z}_2:

$$G_{\hat{\theta}}(\hat{\psi}) \cong Q \times \mathbb{Z}_2.$$ (1)

Unlike $G_{\hat{\theta}}(\hat{\psi})$ [1, 2, 3], the CPT group, $G_{\hat{\theta}}(\hat{A}_\mu)$, of the electromagnetic field is an abelian group of eight elements with three generators [2]:

$$G_{\hat{\theta}}(\hat{A}_\mu) \cong \mathbb{Z}_2^3.$$ (2)

As the CPT transformation properties of the interacting $\hat{\psi} - \hat{A}_\mu$ fields are the same as for the free fields [4], the complete CPT group for QED, $G_{\hat{\Theta}}(QED)$, is the direct product of the above mentioned two groups, $G_{\hat{\Theta}}(\hat{\psi})$ and $G_{\hat{\Theta}}(\hat{A}_\mu)$, i.e.,

$$G_{\hat{\Theta}}(QED) = G_{\hat{\Theta}}(\hat{\psi}) \times G_{\hat{\Theta}}(\hat{A}_\mu) \cong (Q \times \mathbb{Z}_2) \times \mathbb{Z}_2^3.$$ (3)

2 C from \mathcal{PT}

It was shown in [3] that Q becomes isomorphic to a subgroup H of $SU(2)$, being λ the isomorphism:

$$Q \xrightarrow{\lambda} H < SU(2),$$

$1 \mapsto I, \quad \iota \mapsto -i\sigma_1, \quad \gamma \mapsto -i\sigma_2, \quad \kappa \mapsto -i\sigma_3,$ (4)

where ι, γ, κ are the three imaginary units of the quaternion group and σ_k ($k = 1, 2, 3$) are the Pauli matrices; and taking also into account that \mathbb{Z}_2 is isomorphic to the center of $SU(2)$: $\{I, -I\}$, then:

$$G_{\hat{\theta}}(\hat{\psi}) \cong H \times (\text{center of } SU(2)).$$ (5)

Since $SU(2)$ is the universal covering group of $SO(3)$:

$$SU(2) \xrightarrow{\Phi} SO(3),$$ (6)
then $\Phi(H)$ has 4 elements and, for that reason, the unique candidates are groups isomorphic to C_4 and $D_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, the Klein group. A simple application of Φ to the elements of H led to:

$$\Phi(H) = \{I, R_x(\pi), R_y(\pi), R_z(\pi)\},$$

(7)

with $R_x(\pi), R_y(\pi), R_z(\pi)$ the rotations in π around the axes x, y and z, respectively, and I, the unit matrix in $SO(3)$. It was then immediately verified that the multiplication table of $\Phi(H) < SO(3)$ is the same as for D_2.

Then, we have:

$$G_\theta(\hat{\psi}) \cong \Phi^{-1}(D_2) \times \mathbb{Z}_2.$$

(8)

Within the Lorentz group $O(3,1)$, the transformations of parity \mathcal{P} and time reversal \mathcal{T}, together with their product $\mathcal{P}\mathcal{T}$ and the 4×4 unit matrix E, lead to the subgroup of the Lorentz group, called the $\mathcal{P}\mathcal{T}$-group, which is also isomorphic to D_2.

On the other hand, \mathcal{P} or \mathcal{T} separately, together with the unit 4×4 matrix E, give rise to the group \mathbb{Z}_2. Then, we obtain the desired result for the Dirac field:

$$G_\theta(\hat{\psi}) \cong \Phi^{-1}(\langle \{ \mathcal{P}, \mathcal{T} \} \rangle \times \langle \{ \mathcal{P} \} \rangle)$$

(9)

or

$$G_\theta(\hat{\psi}) \cong \Phi^{-1}(\langle \{ \mathcal{P}, \mathcal{T} \} \rangle \times \langle \{ \mathcal{T} \} \rangle);$$

(10)

while, for the electromagnetic field, we have:

$$G_\theta(\hat{\mathcal{A}}_{\mu}) \cong \langle \{ \mathcal{P}, \mathcal{T} \} \rangle \times \langle \{ \mathcal{P} \} \rangle$$

(11)

or

$$G_\theta(\hat{\mathcal{A}}_{\mu}) \cong \langle \{ \mathcal{P}, \mathcal{T} \} \rangle \times \langle \{ \mathcal{T} \} \rangle.$$

(12)

The above result suggests that the Minkowskian space-time structure of special relativity, in particular the unconnected component of its symmetry group, the real Lorentz group $O(3,1)$, implies the existence of the CPT group as a whole, and therefore the existence of the charge conjugation transformation, and thus the proper existence of antiparticles.
3 Discrete and continuous groups

The relationships between the discrete groups: $Q, G_{PT} = \{P, T\}$, $G_{\hat{\phi}(\hat{\psi})}$ and $G_{\hat{\phi}(\hat{A}_\mu)}$ and continuous groups, like the Lorentz group and its universal covering group, can be summarized in the following diagram:

\[
\begin{array}{cccccc}
Z_2 & \downarrow & Z_2 & \downarrow & Z_2 & \downarrow \\
G_{\hat{\phi}(\hat{\psi})} \cong Q \times Z_2 & \xleftarrow{\psi} & Q & \xrightarrow{\mu} & SU(2) & \xrightarrow{\beta} SL_2(\mathbb{C}) & \xrightarrow{\gamma} \mathbb{R}^4 \times SL_2(\mathbb{C}) \\
G_{\hat{\phi}(\hat{A}_\mu)} \cong \mathbb{Z}_2^3 & \xleftarrow{\bar{\alpha}} & G_{PT} \cong \mathbb{Z}_2^2 & \xrightarrow{\bar{\nu}} SO(3) & \xrightarrow{\bar{\beta}} SO^c(3,1) & \xrightarrow{\bar{\gamma}} \mathbb{R}^4 \times SO^c(3,1) \\
\end{array}
\]

The homomorphism μ is defined by $\mu(q) = \lambda(q)$ (see (14)) and the homomorphism Φ was described in (6); $\tilde{\Phi}$ and $\bar{\Phi}$ are the homomorphisms between the connected Lorentz ($SO^c(3,1)$) and Poincaré ($\mathbb{R}^4 \times SO^c(3,1) \equiv \mathcal{P}_4^c$) groups, respectively, and their universal coverings ($SL_2(\mathbb{C})$ and $\mathbb{R}^4 \times SL_2(\mathbb{C}) \equiv \bar{\mathcal{P}}_4^c$); while ρ, ψ, $\bar{\rho}$, $\bar{\alpha}$, β, $\bar{\beta}$, γ and $\bar{\gamma}$ are given by:

\[
Q \xrightarrow{\rho} \frac{Q}{\mathbb{Z}_2} \cong G_{PT}, \quad q \mapsto [q], \quad (14)
\]

\[
G_{\hat{\phi}(\hat{\psi})} \xrightarrow{\psi} \frac{Q \times \mathbb{Z}_2}{\mathbb{Z}_2} \cong G_{\hat{\phi}(\hat{A}_\mu)}, \quad (q,1) \mapsto [(q,1)], \quad (q,-1) \mapsto [(q,1)], \quad (15)
\]

\[
G_{PT} \xrightarrow{\bar{\nu}} SO(3), \quad [q] \mapsto \Phi(h), \quad h = \lambda(q), \quad (16)
\]

\[
Q \xrightarrow{\alpha} G_{\hat{\phi}(\hat{\psi})}, \quad q \mapsto (q,1), \quad (17)
\]

\[
G_{PT} \xrightarrow{\bar{\alpha}} G_{\hat{\phi}(\hat{A}_\mu)}, \quad [q] \mapsto [(q,1)], \quad (18)
\]

\[
SU(2) \xrightarrow{\beta} SL_2(\mathbb{C}), \quad A \mapsto A, \quad (19)
\]

\[
SO(3) \xrightarrow{\bar{\beta}} SO^c(3,1), \quad R \mapsto \begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix}, \quad (20)
\]
\[SL_2(\mathbb{C}) \xrightarrow{\gamma} \mathbb{R}^4 \rtimes SL_2(\mathbb{C}), \quad B \mapsto (0, B), \quad (21) \]

\[SO^c(3, 1) \xrightarrow{\bar{\gamma}} \mathbb{R}^4 \rtimes SO^c(3, 1), \quad \Lambda \mapsto (0, \Lambda). \quad (22) \]

Let \(\nu \) the function which goes from \(Q \times \mathbb{Z}_2 \) to \(SU(2) \):

\[Q \times \mathbb{Z}_2 \xrightarrow{\nu} SU(2), \quad (q, g) \mapsto \nu(q, g) := sg(g)\lambda(q), \quad (23) \]

where \(sg(g) = 1 \) if \(g = 1 \) and \(sg(g) = -1 \) if \(g = -1 \).

Then, it holds:

- \(\nu \) is an homomorphism.

 Proof:

\[\nu((q', g')(q, g)) = \nu(q'q, g'g) = sg(g')\lambda(q'q) = sg(g')sg(g)\lambda(q')\lambda(q) \]

\[= (sg(g')\lambda(q'))(sg(g)\lambda(q)) = \nu(q', g')\nu(q, g). \quad (24) \]

- \(\nu \) is 2 to 1.

 Proof:

\[\nu(q, -1) = \nu(-q, 1). \quad (25) \]

\(\bar{\nu} \) is determined by \(\nu \) due to the commutative diagram:

\[G_{\hat{\theta}}(\hat{\psi}) \xrightarrow{\nu} SU(2) \]

\[\downarrow \psi \quad \downarrow \Phi \]

\[G_{\hat{\theta}}(\hat{A}_\mu) \xrightarrow{\bar{\nu}} SO(3) \quad (26) \]

and is also a 2 to 1 homomorphism. If \(x \in \mathbb{Z}_2^3 \) then \(\psi^{-1}\{x\} = \{y_1, y_2\} \subset Q \times \mathbb{Z}_2 \). Hence:

\[\bar{\nu}(x) = \bar{\nu}(\psi(y_k)) = \bar{\nu} \circ \psi(y_k) = \Phi \circ \nu(y_k) \]

\[= \Phi(\nu(y_k)) = \Phi(\nu(q_k, g_k)), \quad (27) \]

with \(k = 1 \) or 2. Then:

- \(\bar{\nu} \) is an homomorphism.

 Proof:

\[\bar{\nu}(x'x) = \Phi(\nu((q'_k, g'_k)(q_l, g_l))) = \Phi(\nu(q_k, g_k))\Phi(\nu(q_l, g_l)) \]

\[= \Phi \circ \nu(q'_k, g'_k)\Phi \circ \nu(q_l, g_l) = \bar{\nu} \circ \psi(q'_k, g'_k)\bar{\nu} \circ \psi(q_l, g_l) \]

\[= \bar{\nu}(x')\bar{\nu}(x), \quad (28) \]

with \(l = 1 \) or 2.
4 Discussion

• $\bar{\nu}$ is 2 to 1.

Proof: From $\Phi \circ \nu = \bar{\nu} \circ \psi$ and the fact that Φ, ν and ψ are 2 to 1, it follows that $\bar{\nu}$ is also 2 to 1.

Taking into account diagrams (13) and (26), the group homomorphisms:

$$\varphi = \gamma \circ \beta \circ \nu$$

and

$$\bar{\varphi} = \bar{\gamma} \circ \bar{\beta} \circ \bar{\nu},$$

make commutative the following diagram:

$$\begin{array}{c}
G_\psi(\hat{\psi}) \xrightarrow{\varphi} \mathcal{P}_4^c \\
\downarrow \psi \quad \downarrow \bar{\psi} \\
G_\phi(\hat{A}_\mu) \xrightarrow{\bar{\varphi}} \mathcal{P}_4^c;
\end{array}$$

making explicit the close and possibly deep relationship between these discrete and continuous groups.

4 Discussion

In summary, we have that $G_\psi(\hat{\psi})$ and $G_\psi(\hat{A}_\mu)$, which are groups acting at the quantum field level that include the charge conjugation operator, emerge in a natural way from the \mathcal{PT}-group and its \mathcal{P} (or \mathcal{T}) subgroups. That is, from matrices acting on Minkowski classical space-time.

It is important to note that $G_{\mathcal{PT}}$ generates $G_\phi(\hat{A}_\mu)$, the CPT group of the electromagnetic field, without passing through $SU(2)$. That is, without the need of using spinors; while the group $SU(2)$ is needed in order to generate $G_\psi(\hat{\psi})$, the CPT group of the Dirac field.

Finally, another important thing that we found is the relationship between discrete groups, like $G_\phi(\hat{A}_\mu)$ and $G_\psi(\hat{\psi})$, and continuous groups, like the connected Poincaré group (\mathcal{P}_4^c) and its universal covering ($\bar{\mathcal{P}}_4^c$). This is shown in diagram (31).

5 Acknowledgment

This work was partially support by the project PAPIIT IN 118609-2, DGAPA-UNAM, México.
References

[1] M. Socolovsky, *The CPT group of the Dirac Field*, Int J Theor Phys, **43** (2004), pp. 1941-1967; arXiv: math-ph/0404038.

[2] B. Carballo Pérez and M. Socolovsky, *Irreducible representations of the CPT groups in QED*, IJPAM (in press) (2010); arXiv: math-ph/0906.2381v3.

[3] B. Carballo Pérez and M. Socolovsky, *Charge conjugation from spacetime inversion*, Int J Theor Phys, **48** (2009), pp. 1712-1716; arXiv: hep-th/0811.0842v1.

[4] J. A. de Azcárraga, *P, C, T, θ in Quantum Field Theory*, GIFT 7/75 (1975), 69.