Carbon Emission from Peat Fire in 2015

W Setyawati\(^1\) and Suwarsono\(^2\)

\(^{1}\)Center of Atmospheric Science and Technology
Indonesian National Institute of Aeronautics and Space (LAPAN)
Jl. Dr. Djundjunan 133, Bandung 4017, Indonesia
\(^{2}\)Remote Sensing Applications Center
Indonesian National Institute of Aeronautics and Space (LAPAN)
Jl. Kalisari No. 8, Pekayon, Pasar Rebo, Jakarta 13710, Indonesia

E-mail: wiwieksetyawati21@gmail.com

Abstract. Peat fire emits a large amount of carbon to the atmosphere. This emission can affect atmospheric composition and also the climate system. This paper discussed the carbon emission from the 2015 peat fire, the largest after 1997 one. Indonesian National Carbon Accounting System (INCAS) published by The Indonesian Ministry of Environment and Forestry was used to calculate the carbon emission from the peat fire. Peat fire emission factors used in the calculation for region of Sumatera and Kalimantan were selected from previous study, while for Papua’s region extrapolation method was applied. Peat area burned was estimated by using Normalized Burn Ratio (NBR) based on hotspot data enquired from MODIS. The cumulative peatland area burned from July – October 2015 in Indonesia was estimated to be about 623,304 ha, where about 270,691 ha (43%), 320,756 ha (51%) and 31,857 ha (5%) were found in Sumatera, Kalimantan and Papua, respectively. By considering only the three biggest gaseous carbon compounds released by biomass burning (CO\(_2\), CO, and CH\(_4\)), therefore total carbon emitted to the atmosphere during these four months peat fire was estimated to be about 0.002 Gtonnes, of which 81% was in the form of CO\(_2\); 16% CO and 2.3% CH\(_4\).

1. Introduction
Peatland is defined as a land composes of organic soils. The land is an area with cumulated half decomposed organic material, ash contents equal or less than 35%, peat depth equal or more than 50 cm and organic carbon contents at least 12% [1]. Indonesia has the largest tropical peatland in the world [2] where about 69.61% of its total area is found in Sumatra and Kalimantan [3]. Tropical peatland is estimated to preserve about 40% of terrestrial carbon [4], but due to traditional slash and burn practices for agricultural and plantation purposes especially in Sumatra and Kalimantan, it has led to large peat fires that released a large amount of carbon to the atmosphere [5], that could affect atmospheric composition and also the climate system. This traditional practice of land clearing is still the cheapest and most efficient way of getting rid of rats, wood debris and grass; the traditional farmers also believe that ash residue from burning can improve the soil pH and fertility [6][7].

In 2015 large peat fires stroked regions of Sumatera, Kalimantan and Papua. Human activities relating to agricultural or plantation purposes were behind the catastrophe [5], while the prolonged drought induced by a strong El Nino enhanced the fires [8]. This 2015 peat fire was the largest after...
the 1997 one. The carbon emissions from peat fire have been investigated by several researchers [5][8][9]. But the results are still inaccurate because the emission was calculated by assuming that peat fire in Sumatra, Kalimantan and Papua emitted the same amount of carbon per-kg of dry peat burned, called emission factor. This study is trying to improve the carbon estimation for the 2015 peat fire by using corresponding emission factor for Sumatra, Kalimantan and Papua peat fires.

2. Materials and Methods

2.1. FIRMS: Hotspot

Daily cumulative hotspots data as indicator of fire used in this analysis were obtained from Fire Information for Resource Management System (FIRMS) website (https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms) retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) on board of Aqua and Terra satellites. The hotspot from July-October 2015 with confidence level bigger than or equal to 95% was selected for further analysis. Daily cumulative hotspots are used to indicate fires. Only hotspot with level of confidence equal to or bigger than 95% are selected.

2.2. TRMM: precipitation rate (mm/hr)

Precipitation rate is a measure of the rainfall intensity by calculating the amount of rain that would fall over a given interval of time if the rainfall intensity were constant over that time period (American Meteorological Society, 2017). Area averaged daily precipitation rate in unit of mm/hour with spatial resolution of 0.25° × 0.25° from July – October 2015 were acquired from Tropical Rainfall Measuring Mission (TRMM) and downloaded from GES-DISC Interactive Online Analysis Infrastructure (Giovanni) NASA website (https://giovanni.gsfc.nasa.gov/giovanni/) as part of the NASA Goddard Earth Sciences Information Services Center (DISC).

2.3. Methods

Indonesian National Carbon Accounting System (INCAS) [1] has followed the model used by IPCC [10] to estimate carbon emission from the forest and peat fire as follows:

\[E = a \times F_t \times C_f \times EF \times 10^{-3} \]

where E is amount of CO₂ or non-CO₂ emission (ton), a is total area burned annually (ha), \(F_t \) is dry fuel mass available for combustion (ton/ha), \(C_f \) is a dimensionless combustion factor and EF refers to emission factor for each gas (g/kg dry mass burned). Dry fuel mass available for combustion (ton/ha) is calculated by multiplying depth of burned peat (m) with bulk density (ton/m³).

Carbon emission from forest and peat fire was limited to peat fire in Sumatra, Kalimantan and Papua. It was calculated for CO₂, CO, and CH₄. These three were the largest gaseous carbon compounds emitted by peat fire and contributed more than 95% of total carbon emitted [11-13]. The other trace gaseous and particulate carbons were neglected.

Emission factor values used to calculate carbon emission from peat fires are listed in Table 1. Emission factor for Kalimantan peat fire was the average of emission factors from three previous studies [12-14]. Because there were no previous studies for Papua and West Papua peat fires, therefore we used emission factor for CO₂ of 1,111 g/kg by extrapolating peat carbon mass fraction of 0.3053 for hemic peat [15] to the regression linear equation of emission factor for smoldering peat fire as shown in Figure 1 [16]. The corresponding emission for CO and CH₄ can be calculated by multiplying their emission ratio, by using CO₂ as a reference species, with the calculated emission of CO₂ by applying the equation below [17]:

\[E_x = E_{CO₂} \times ER_{x/CO₂} \]

(2)
where E_x is amount of emission of x (CO or CH$_4$) (ton), E_{CO2} is amount of emission of CO$_2$ and $ER_{x/CO2}$ refers to emission ratio of x with respect to CO$_2$ (mol/mol). For the purpose of this study, therefore $ER_{CO/CO2}$ is 0.153 mol/mol and $ER_{CH4/CO2}$ is 0.029 mol/mol [16].

Table 1. Emission factors (g/kg dry peat burned) used for the calculation of carbon emission

	Sumatra peat [11]	Kalimantan peat [12, 13, 14]
CO	1,703	1,677
CO	210.3	221
CH$_4$	20.80	13.1

Figure 1. Simple linear regression between peat carbon content and emission factor (EF) of CO$_2$ for smoldering combustion [16]

Total peatland area burned was calculated for four months peat fire from July – October 2015 based on normalized burn ratio (NBR) method. This method used hotspot data as an indicator of peat fire from MODIS.

Dry fuel mass available for combustion is a product of depth of burned peat and bulk density [1]. For depth of burned peat, INCAS recommends using 0.18 m for newly burned peat and 0.11 m and 0.04 m for peat burned two and more than two times, respectively [1]. Bulk density used for Sumatra [18] [19], Kalimantan [16] [19] [20] and Papua [15] peats are 0.1716, 0.23 and 0.23, respectively.

Although INCAS recommends using 1 as the combustion factor, which means peat fire is a complete combustion, but in this study, we used 0.8 for Sumatra and 0.7 for Kalimantan and Papua peat fires [11] [13]. It was because peat fire mostly was dominated by smoldering combustion, a type of combustion when no flame is visually observed but apparent thin or thick smokes [16].

3. Results and Discussion

Analysis of hotspot and precipitation rate in Sumatera, Kalimantan and Papua based on satellite data was presented in **Figure 2.** In 2015, a strong El Nino hit Indonesia and the region suffered with prolonged drought [9]. The minimum precipitation rate in Sumatera, Kalimantan and Papua were found in July, September and August, respectively. Lower precipitation rate in Sumatera and Kalimantan had triggered higher number of hotspots in both regions (**Figure 2a** and **b**). On the contrary, low precipitation rate did not increase number of hotspots dramatically in Papua (**Figure 2c**). Land clearing for palm oil and pulpwood plantations was reported to be responsible for mostly peat fire incidents in Indonesia [21]. In 2015 Sumatera has the largest palm plantation in Indonesia with area of about 7,139,060 ha (63%), Kalimantan had about 3,639,737 ha (32%) and Papua had about
106,402 ha (0.9%) [22]. It is very interesting fact that proved human activities were the main factors that led to peat fires, since Papua and West Papua both have the smallest palm plantation area [22] and also the smallest population density in Indonesia [23] during that year.

Figure 2. Precipitation rate and number of hotspot during July – October 2015 in a) Sumatera, b) Kalimantan and c) Papua

Figure 3 shows the estimation of cumulative peatland area burned in Indonesia during peat fire in July – December 2015 and their related number of hotspot. The three largest peatland areas burned
were found in Central Kalimantan (197,486 ha), South Sumatra (146,986 ha) and West Kalimantan (74,858 ha) provinces. Total peat areas burned in Sumatra, Kalimantan and Papua were 270,691 ha, 320,756 ha and 31,857 ha, respectively. Based on The Ministry of Environment and Forestry statistic data in 2015 [24], it was reported that since 2010 – 2015 the government has allowed the conversion of forest to plantation/agricultural purposes in Sumatra, Kalimantan and Papua with total area of 3.063 million ha, 1.910 million ha and 1.279 million ha, respectively. Unfortunately, there was no detailed information regarding the proportion of peatland and non-peatland conversion in the data. By assuming that all of these conversions and also the agricultural/farming practices were conducted by slash and burn method, it meant that most fires were found in the existing plantation/agricultural areas. Because of this assumption, therefore for this study we used 0.04 m as a depth of peat burned by assuming that most of peat areas were burned more than two times already and they were located in the existing plantation/agricultural areas.

Table 2 presents the carbon emission calculated for Sumatra, Kalimantan and Papua and their corresponding emission variables. During four months peat fire in Indonesia from July – October 2015, total carbon released to the atmosphere was estimated to be about 1.848 million tonnes or 0.002 Gtonnes C, of which 81% is in the form of CO2 (0.0062 Gtonnes CO2); 16% CO (0.0008 Gtonnes CO) and 2.3% CH4 (0.000065 Gtonnes CH4). Huijnen et al. [9] reported their overestimated carbon emission calculation result during two months peat fire (September – October 2015) to be about 0.227 Gtonnes of which 83% was in the form of CO2 (0.692 Gtonnes CO2), 16% CO (0.084 Gtonnes CO) and 1% CH4 (0.0032 Gtonnes CH4). The reason was probably because the area of forest and peatland burned in Huijnen et al.’s estimation was much larger, covering all the South-East Asia region. Secondly, they also neglected the possibility of peat with different carbon content that would emit different carbon concentration. In this case, they used the same emission factor for Sumatra, Kalimantan and Papua peat fires. Page et al. [2002] reported that during four months (July – October), the 1997 peat fire in Indonesia emitted about 0.81 – 2.57 Gtonnes carbon to the atmosphere which was much higher than the one we calculated for the 2015 peat fire. The reason was because the 1997 peat fire burned much larger peatland areas (about 6.8 million ha), and also, they used the same emission factor for Sumatra, Kalimantan and Papua peat fire.

![Figure 3. Peat area burned in July – October 2015](image-url)
Table 2. Emission and their corresponding variables for peat fire in 2015

No.	Descriptions	Sumatra	Kalimantan	Papua	Total
1.	Total peat area burned (ha)	270,691	320,756	31,857	623,304
2.	Dry fuel mass available for combustion (ton/ha)	0.0069	0.0092	0.0092	
3.	Combustion factor (dimensionless) CO₂	0.8 [11]	0.7 [13]	0.7	
4.	Emission factor (g/kg dry fuel burned) CO₂	1,703 [11]	1,677 [13]	1,111	
5.	Emission CO₂ (million ton)	2.545	3.464	0.228	6.237
6.	Emission CO (million ton)	0.314	0.457	0.035	0.806
7.	Emission CH₄ (million ton)	0.031	0.027	0.007	0.065
8.	Emission CO₂ eq. (million ton)	2.756	3.765	0.253	6.774
9.	Emission C (million ton)	0.752	1.027	0.069	1.848

4. Conclusion
During the 2015 peat fire, total peat areas burned in Sumatra, Kalimantan and Papua were about 270,691 ha, 320,756 ha, and 31,857 ha, respectively. By considering that peat with different carbon content would emit different carbon concentration, in this case specific emission factors were applied for Sumatera, Kalimantan and Papua peat fires, therefore this study revealed that during July – October 2015 peat fire in Indonesia had released about 0.002 Gtonnes carbon to the atmosphere, of which 81% was in the form of CO₂; 16% CO and 2.3% CH₄.

Acknowledgement
We thank Tuti Budiwati for her great valuable discussion. We also thank the Center for Atmospheric Science and Technology – LAPAN for facilitating this study and also NASA for providing satellite data in Giovanni and FIRMS webs.

5. References
[1] Krisnawati H, Imanuddin R and Adinugroho W C 2015 Standard method to estimate greenhouse gases emission from forest and peatland in Indonesia, version 2 Bogor: The Agency for Research, Development and Innovation, The Ministry of Environment and Forestry.
[2] The Ministry of Agriculture 2011 Peta Lahan Gambut Indonesia skala 1:250.000 Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.
[3] The Ministry of Environment and Forestry 2017 Map of Indonesia Hydrology Unit. DKI Jakarta, Indonesia. Retrieved from Map of Indonesia Peat Hydrology Unit: http://appgis.dephut.go.id/appgis/KHG/INDONESIA_KH GAMBUT.jpg.
[4] Cochrane M A 2009 Tropical fire ecology: Climate change, land use and ecosystem dynamics Chichester (The UK: Springer).
[5] Page S E, Siegert F, Rieh J O, Boehm H D, Jaya A and Limin S 2002 The amount of carbon released from peat and forest fires in Indonesia during 1997 Nature 420 p 61-65.
[6] Shiv S, Boer R and Conrad E 2017 World Resources Report Case Study. Managing Peatland Fire Risk in Central Kalimantan, Indonesia World Resources Report, Washington DC. Available online at http://www.worldresourcesreport.org.
[7] Matt D G, Gray A, Rein G and Legg C J 2013 Peat consumption and carbon loss due to smoldering wildfire in a temperate peatland Forest Ecology and Management 308 p 169 – 177.
[8] Huijnen V, Wooster M, Kaiser J, Gaveau D, Flemming J, Parrington M,Inness A, Murdiyarso D, Main B, and van Weele, M. (2016). Fire carbon emission over maritime southeast Asia in 2015 largest since 1997. Scientific report, 1-8.
[9] Gaveau D L A, Salim M A, Hergouac’h K, Locatelli B, Sloan S, Wooster M, Marlier M E, Molidena E, Yoen H, DeFries R, Verchat L, Murdiyarso D, Nasi R, Holmgren P and Sheil D
2014 Major atmospheric emission from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires Scientific reports 4:6112 DOI: 10.1038/srep06112.

[10] IPCC 2013 Supplement to the 2006 IPPC guidelines for national greenhouse gas inventories: Wetlands. Methodological guidance on lands with wet and drained soils and constructed wetlands for wastewater treatment Gyldenkaerne S and Lin E (eds). Japan: Institute for Global Environmental Strategies [IGES].

[11] Christian, T J, Kleiss B, Yokelson R J, Holzinger R, Crutzen P J, Hao W M, Saharjo B H and Ward D E, Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels J. Geophys. Res. 108 (D23) 4719 DOI:10.1029/2003JD003704, 2003.

[12] Stockwell C E, Yokelson R J, Kreindeweis S M, Robinson A L, DeMott, P J, Sullivan R C, Reardon J, Ryan K C, Griffith D W T, and Steven L 2014 Trace gas emission from combustion of peat, crop residue, domestic biofuel, grasses and other fuels: configuration and fourier transform infrared (FTIR) component of the fourth fire lab at Missoula Experiment (FLAME-4) Atmospheric chemistry and physics 14 p 9727-9754.

[13] Stockwell C E, Jayarathe T, Cochrane M A, Ryan K C, Putra E I, Saharjo B H, Nurhayati A D, Albar I, Black D R, Simpson I J, Stone E A and Yokelson R J 2016 Field measurements of trace gases and aerosol emitted by peat fires in Central Kalimantan, Indonesia during the 2015 El Nino Atmospheric Chemistry and Physics Discussion DOI: 10.5194/acp-2016-411.

[14] Setyawati W, Damanhuri E, Lestari P, Dewi K 2017 Emission factor from small scale tropical peat combustion IOP Conf. Series: Materials Science and Engineering 180 p 012113 doi:10.1088/1757-899X/180/1/012113.

[15] Wahyunto, Heryanto B, Bekti H and Widiastuti F 2006 Peta-Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Papua / Maps of Peatland Distribution, Area and Carbon Content in Papua, 2000 – 2001 Wetlands International – Indonesia Programme & Wildlife Habitat Canada (WHC).

[16] Setyawati W 2017 Development of peat fire emission factor in Indonesia to support greenhouse gas inventory emission, case study: Kalimantan Doctoral Dissertation Institut Teknologi Bandung.

[17] Penmann J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K and Wagner F 2003 Good practise guidance for land use, land use-change and forestry, IPCC National Green House Gas Inventories Programmes, IPCC Guidelines the Institute for Global Environmental Strategies (IGES) Japan.

[18] Wahyunto, Ritung S and Subagjo H 2003 Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau Sumatra / Maps of Area of Peatland Distribution and Carbon Content in Sumatra, 1990 – 2002 Wetlands International - Indonesia Programme & Wildlife Habitat Canada (WHC).

[19] The Guardian 2015 Indonesia's forest fires: everything you need to know.

[20] Statistics Indonesia 2015 Indonesian forest statistics 2015

[21] Statistics Indonesia 2015 Population of Indonesia: Result of the 2015 Intercensal Population Census.

[22] The Ministry of Environment and Forestry 2016 Statistik Kementerian Lingkungan Hidup dan Kehutanan Tahun 2015 Data and Information Center of The Ministry of Environment and Forestry.