Abstract

Oxygen Saturation alludes to the measure of oxygen that is in your circulatory system. The body requires a particular measure of oxygen in your blood to work appropriately. The typical scope of oxygen immersion for grown-ups is 94 to 99 percent. The reason for this examination is to plan oxygen Saturation with the Android interface. This gadget permits the Patient’s to get a particular measure of oxygen in the blood. This gadget utilized a utilizations a fingertip sensor to recognize oxygen Saturation in the blood. The microcontroller utilizes an Arduino chip combining with AT-Mega328P. Bluetooth HC-05 used to send Oxygen Saturation information to Android, MIT application creator utilized for the android program. In view of the consequences of testing and estimation at that point contrast and another gadget, the after effects of the average were 2.22%.
1. G. Vinci et al., “Six-Port Radar Sensor for Remote Respiration Rate and Heartbeat Vital-Sign Monitoring,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 2093–2100, 2013.
2. J. A. Dawson and C. J. Morley, “Seminars in Fetal & Neonatal Medicine Monitoring oxygen saturation and heart rate in the early neonatal period,” Semin. Fetal Neonatal Med., pp. 1–5, 2010.
3. E. M. J. Durlinger et al., “Hyperoxia: At what level of SpO2 is a patient safe? A study in mechanically ventilated ICU patients,” J. Crit. Care, vol. 39, no. November 2014, pp. 199–204, 2017.
4. Z. Jia et al., “HB-Phone: a Bed-Mounted Geophone-Based Heartbeat Monitoring System,” 978-1-5090-0802-5/16/$31.00©2016 IEEE, 2016.
5. A. A. K. Gupta, M. Pandey, “Micocontroller Based Cardiac Counter System,” IJEAM, vol. 02, no. 01, 2013.
6. W. M. Jubadi and A. H. B. Rate, “Heartbeat Monitoring Alert via SMS,” IEEE Symp. Ind. Electron. Appl., no. Isiea, pp. 1–5, 2009.
7. S. Kästle, F. Noller, S. Falk, A. Bukta, E. Mayer, and D. Miller, “A new family of sensors for pulse oximetry,” Hewlett-Packard J., vol. 48, no. 1, pp. 39–61, 1997.
8. A. Report, “How to Design Peripheral Oxygen Saturation (SpO2) and Optical Heart Rate Monitoring (OHRM) Systems Using the,” Appl. Rep., no. March, pp. 1–7, 2015.
9. Z. Q. He, W. Xu, and G. X. Liu, “Design of a wireless medical monitoring system,” 2011 Int. Conf. Comput. Manag. CAMAN 2011, pp. 1–3, 2011.
10. R. Fensli, T. Gundersen, T. Snaprud, and O. Hejlesen, “Clinical evaluation of a wireless ECG sensor system for arrhythmia diagnostic purposes,” Med. Eng. Phys., vol. 35, no. 6, pp. 697–703, 2013.
11. S. Misra and S. Chatterjee, Social choice considerations in cloud-assisted WBAN architecture for post-disaster healthcare: Data aggregation and channelization, vol. 284. 2014.
12. M. Abo-Zahhad, S. M. Ahmed, and O. Elnahas, “A wireless emergency telemedicine system for patients monitoring and diagnosis,” Int. J. Telemed. Appl., vol. 2014, 2014.

Index Terms

Computer Science

Circuits and Systems

Keywords

Oxygen saturation, Bluetooth, Telemedicine