Finiteness of attractors and repellers on sectional hyperbolic sets

A. M. López B. *

Abstract

We obtain an upper bound for the number of attractors and repellers that can appear from small perturbations of a sectional hyperbolic set. This extends results from [7] and [9].

1 Introduction

A sectional hyperbolic set is a partially hyperbolic set whose singularities are hyperbolic and whose central subbundle is sectionally expanding.

The result [9] asserts that for every sectional hyperbolic transitive attracting set Λ of a vector field X on a compact 3-manifold there are neighborhoods U of X and U of $Λ$ such that the number of attractors in U of a vector field in U is less than one plus the number of equilibria of X. This result was extended later in [11] by allowing $Λ$ to be an attracting set contained in the nonwandering set (rather than transitive). An extension of [9] to higher dimensions was recently obtained in [7]. The present work removes both transitivity and nonwandering hypotheses in order to prove that for every sectional hyperbolic set $Λ$ of a vector field X on a compact manifold there are neighborhoods U of X, U of $Λ$ and a positive integer n_0 such that the number of attractors in U of a vector field in U is less than n_0. Let us state our result in a precise way.

Consider a compact manifold M of dimension $n \geq 3$ (a compact n-manifold for short) with a Riemannian structure $\| \cdot \|$. We denote by ∂M the boundary of M. Let $\mathcal{X}^1(M)$ be the space of C^1 vector fields in M endowed with the C^1 topology. Fix $X \in \mathcal{X}^1(M)$, inwardly transverse to the boundary ∂M and denotes by X_t the flow of X, $t \in \mathbb{R}$. The maximal invariant set of X is defined by

$$M(X) = \bigcap_{t \geq 0} X_t(M).$$

*Key words and phrases: Attractor, Repeller, Maximal invariant, Sectional-Anosov flow.

This work is partially supported by CAPES, Brazil.
Notice that $M(X) = M$ in the boundaryless case $\partial M = \emptyset$. A subset Λ is called invariant if $X_t(\Lambda) = \Lambda$ for every $t \in \mathbb{R}$. We denote by $m(L)$ the minimum norm of a linear operator L, i.e., $m(L) = \inf_{\|v\|
eq 0} \frac{\|Lv\|}{\|v\|}$.

Definition 1.1. A compact invariant set Λ of X is partially hyperbolic if there is a continuous invariant splitting $T_\Lambda M = E^s \oplus E^c$ such that the following properties hold for some positive constants C, λ:

1. E^s is contracting, i.e., $\|DX_t(x)\big|_{E^s}\| \leq Ce^{-\lambda t}$, for all $x \in \Lambda$ and $t > 0$.

2. E^s dominates E^c, i.e., $\frac{\|DX_t(x)\big|_{E^c}\|}{m(DX_t(x)\big|_{E^s})} \leq Ce^{-\lambda t}$, for all $x \in \Lambda$ and $t > 0$.

We say the central subbundle E^c_x of Λ is sectionally expanding if $\dim(E^c_x) \geq 2$ and $|\det(DX_t(x)\big|_{L_x})| \geq C^{-1}e^\lambda$, $\forall x \in \Lambda$ and $t > 0$ for all two-dimensional subspace L_x of E^c_x. Here $\det(DX_t(x)\big|_{L_x})$ denotes the jacobian of $DX_t(x)$ along L_x.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of its linear part have non zero real part.

Definition 1.2. A sectional hyperbolic set is a partially hyperbolic set whose singularities (if any) are hyperbolic and whose central subbundle is sectionally expanding.

The ω-limit set of $p \in M$ is the set $\omega_X(\Lambda)$ formed by those $q \in M$ such that $q = \lim_{n \to \infty} X_{t_n}(p)$ for some sequence $t_n \to \infty$. We say that $\Lambda \subset M$ is transitive if $\Lambda = \omega_X(\Lambda)$ for some $p \in \Lambda$. We say that Λ is singular if it contains a singularity; and attracting if $\Lambda = \cap_{t > 0} X_t(U)$ for some compact neighborhood U of Λ. This neighborhood is called isolating block of Λ. It is well known that the isolating block U can be chosen to be positively invariant, namely $X_t(U) \subset U$ for all $t > 0$. An attractor is a transitive attracting set. A repelling is an attracting for the time reversed vector field $-X$ and a repeller is a transitive repelling set.

With these definitions we can state our main result.

Theorem A. For every sectional hyperbolic set Λ of a vector field X on a compact manifold there are neighborhoods U of X, U of Λ and $n_0 \in \mathbb{N}$ such that

$$\#\{L \subset U : L \text{ is an attractor or repeller of } Y \in U\} \leq n_0.$$

To finish we state a direct corollary of our result. Recall that a sectional-Anosov flow is a vector field whose maximal invariant set is sectional hyperbolic [8].

Corollary 1.3. For every sectional-Anosov flow of a compact manifold there are a neighborhood U and $n_0 \in \mathbb{N}$ such that

$$\#\{L \text{ is an attractor or repeller of } Y \in U\} \leq n_0.$$
2 Proof

An useful property of sectional hyperbolic sets is given below.

Lemma 2.1. Let X be a C^1 vector field of a compact n-manifold M, $n \geq 3$, $X \in \mathcal{X}^1(M)$. Let $\Lambda \subset M$ be a sectional hyperbolic set of X. Then, there is a neighborhood $U \subset \mathcal{X}^1(M)$ of X and a neighborhood $U \subset M$ of Λ such that if $Y \in U$, every nonempty, compact, non singular, invariant set H of Y in U is hyperbolic saddle-type (i.e. $E^s \neq 0$ and $E^u \neq 0$).

Proof. See ([10]).

This following theorem examining the sectional hyperbolic splitting $T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda$ of a sectional hyperbolic set Λ of $X \in \mathcal{X}^1(M)$ appears in [3].

Theorem 2.2. Let X be a C^1 vector field of a compact n-manifold M, $n \geq 3$, $X \in \mathcal{X}^1(M)$. Let $\Lambda \subset M$ be a sectional hyperbolic set of X. If $\sigma \in \text{Sing}(X) \cap \Lambda$, then $\Lambda \cap W^{ss}(\sigma) = \{\sigma\}$.

We use it to prove the following.

Proposition 2.3. Let X be a C^1 vector field of a compact n-manifold M, $n \geq 3$, $X \in \mathcal{X}^1(M)$. Let $\Lambda \subset M$ be a sectional hyperbolic set of X. Let σ be a singularity of X in Λ. Then, for every isolating block U of Λ, there is a neighborhood V of $W^{ss}(\sigma) \setminus \{\sigma\}$ in U such that

$$(\cap_{t>0} Y_t(U)) \cap V = \emptyset,$$

for every C^1 vector field Y close to X.

Proof. The equality in Theorem 2.2 implies that the negative orbit of every point in $W^{ss}(\sigma) \setminus \{\sigma\}$ leaves Λ. Hence we can arrange neighborhood V containing $W^{ss}(\sigma) \setminus \{\sigma\}$ and such that

$$\Lambda \cap V = \emptyset$$

Since U is the isolating block of Λ we can find $T > 0$ such that

$$X_T(U) \cap V = \emptyset.$$

Hence

$$Y_T(U) \cap V = \emptyset,$$

for all C^r vector field close to X. The result follows since $\cap_{t>0} Y_t(U) \subset Y_T(U)$.

Next we recall the standard definition of hyperbolic set.
Definition 2.4. A compact invariant set Λ of X is hyperbolic if there are a continuous tangent bundle invariant decomposition $T_\Lambda M = E^s \oplus E^x \oplus E^u$ and positive constants C, λ such that

- E^x is the vector field’s direction over Λ.
- E^s is contracting, i.e., $\| DX_t(x) \|_{E^s} \leq C e^{-\lambda t}$, for all $x \in \Lambda$ and $t > 0$.
- E^u is expanding, i.e., $\| DX_{-t}(x) \|_{E^u} \leq C e^{-\lambda t}$, for all $x \in \Lambda$ and $t > 0$.

A closed orbit is hyperbolic if it is also hyperbolic, as a compact invariant set. An attractor is hyperbolic if it is also a hyperbolic set.

It follows from the stable manifold theory [6] that if p belongs to a hyperbolic set Λ, then the following sets

$$W^s_X(p) = \{ x : d(X_t(x), X_t(p)) \to 0, t \to \infty \},$$
$$W^u_X(p) = \{ x : d(X_t(x), X_t(p)) \to 0, t \to -\infty \},$$

are C^1 immersed submanifolds of M which are tangent at p to the subspaces E^s_p and E^u_p of $T_p M$ respectively. Similarly,

$$W^s_X(p) = \bigcup_{t \in \mathbb{R}} W^s_{X}(t(p)),$$
$$W^u_X(p) = \bigcup_{t \in \mathbb{R}} W^u_{X}(t(p)).$$

are also C^1 immersed submanifolds tangent to $E^s_p \oplus E^u_p$ and $E^s_p \oplus E^u_p$ at p respectively. Moreover, for every $\epsilon > 0$ we have that

$$W^s_X(p, \epsilon) = \{ x : d(X_t(x), X_t(p)) \leq \epsilon, \forall t \geq 0 \},$$
$$W^u_X(p, \epsilon) = \{ x : d(X_t(x), X_t(p)) \leq \epsilon, \forall t \leq 0 \}$$

are closed neighborhoods of p in $W^s_X(p)$ and $W^u_X(p)$ respectively.

Let $O = \{ X_t(x) : t \in \mathbb{R} \}$ be the orbit of X through x, then the stable and unstable manifolds of O defined by

$$W^s(O) = \bigcup_{x \in O} W^s(x),$$
$$W^u(O) = \bigcup_{x \in O} W^u(x)$$

are C^1 submanifolds tangent to the subbundles $E^s_\Lambda \oplus E^u_\Lambda$ and $E^u_\Lambda \oplus E^u_\Lambda$ respectively.

A homoclinic orbit of a hyperbolic periodic orbit O is an orbit in $\gamma \subset W^s(O) \cap W^u(O)$. If additionally $T_q M = T_q W^s(O) + T_q W^u(O)$ for some (and hence all) point $q \in \gamma$, then we say that γ is a transverse homoclinic orbit of O.

Definition 2.5. The homoclinic class $H(O)$ of a hyperbolic periodic orbit O is the closure of the union of the transverse homoclinic orbits of O. We say that an invariant set L is a homoclinic class if $L = H(O)$ for some hyperbolic periodic orbit O.

4
We denote by:
\(\text{Sing}(X) \) the set of singularities of \(X \).
\(\text{Cl}(A) \) the closure of \(A, A \subset M \).
If \(\delta > 0 \), \(B_\delta(A) = \{ x \in M : d(x,A) < \delta \} \), where \(d(\cdot, \cdot) \) is the metric in \(M \).

Lemma 2.6. Let \(X \) be a \(C^1 \) vector field of a compact \(n \)-manifold \(M, X \in \mathcal{X}^1(M) \).
Let \(\Lambda \in M \) be a hyperbolic set of \(X \). Then, there is a neighborhood \(U \subset \mathcal{X}^1(M) \) of \(X \), a neighborhood \(U \subset M \) of \(\Lambda \) and \(n_0 \in \mathbb{N} \) such that
\[\# \{ L \subset U : L \text{ is homoclinic class of } Y \in U \} \leq n_0 \]
for every vector field \(Y \in U \).

Proof. By the stability of hyperbolic sets we can fix a neighborhood \(U \subset M \) of \(\Lambda \), a neighborhood \(U \subset \mathcal{X}^1(M) \) of \(X \) and \(\epsilon > 0 \) such that every hyperbolic set \(H \subset U \) of every \(Y \in U \) satisfies that
\[W^{ss}_Y(x, \epsilon), W^{uu}_Y(x, \epsilon) \text{ have uniform size } \epsilon \text{ for all } x \in H \] (1)

By contradiction, we suppose that there exists a sequence of vector fields \(X^n \in U \) converging to \(X \) such that
\[\# \{ L \subset U : L \text{ is homoclinic class of } X^n \} \geq n \]

It is well known [5] that the periodic orbits are dense in \(L^n \subset \Lambda^n = \Lambda_{X^n} \), for all \(n \in \mathbb{N} \). Moreover, these homoclinic classes are pairwise disjoint.

Let \(\epsilon > 0 \) be the uniform size by (1), and let \(\eta > 0 \) be such that \(0 < \eta < \frac{\epsilon}{2} \).
Since \(U \) is neighborhood of \(\Lambda \), \(\text{Cl}(U) \) is compact neighborhood of \(\Lambda \), then we can cover \(\text{Cl}(U) \) with a finite number of balls with radius \(\frac{\eta}{2} \). We denote this finite number by \(n_0 \).

Thus, if two periodic points \(p_1, p_2 \in L \) satisfies \(d(p_1, p_2) < \eta \), then
\[W^{ss}_X(p_1, \epsilon) \cap W^{uu}_X(p_2, \epsilon) \neq \emptyset \] (2)

Therefor, for every vector field \(X^N \) with \(N > n_0 \), we have that there are homoclinic classes \(L^i, L^j \) of \(X^N \) in \(\text{Cl}(U) \) contained in the same ball with radius \(\frac{\eta}{2}, 1 \geq i < j \geq N \).

Since \(L^i \) and \(L^j \) are homoclinic classes, there are periodic points \(p^i \) and \(p^j \) of \(L^i \) and \(L^j \) respectively satisfying (2), then \(p^i \) and \(p^j \) belongs to the same homoclinic class and this imply \(L^i = L^j \). Thus, the sequence \((L^n)_{n \in \mathbb{N}} \), is constant for \(n \) enough large. This is a contradiction and the proof follows. \(\square \)

Lemma 2.7. Let \(X \) be a \(C^1 \) vector field of a compact \(n \)-manifold \(M, n \geq 3, X \in \mathcal{X}^1(M) \). Let \(\Lambda \in M \) be a sectional hyperbolic set of \(X \). Let \(Y^n \) be a sequence of vector fields converging to \(X \) in the \(C^1 \) topology. There is a neighborhood
$U \subset M$ of Λ, such that if R^n is a repeller of Y^n, $R^n \subset \cap_{t>0}Y^n_t(U)$ for each $n \in \mathbb{N}$, then the sequence $(R^n)_{n \in \mathbb{N}}$ of repellers do not accumulate on the singularities of X, i.e.,

$$Sing(X) \cap Cl(\cup_{n \in \mathbb{N}} R^n) = \emptyset$$

Proof. Let $\sigma \in Sing(X)$ and we denote $\Lambda_Y = \cap_{t>0}Y^n_t(U)$. Fix the neighborhood U of Λ as in Lemma 2.1 and thus we can assume that U is an isolating block of Λ. Assume by contradiction that

$$Sing(X) \cap Cl(\cup_{n \in \mathbb{N}} R^n) \neq \emptyset.$$

Then, exist a sequence $(x_n)_{n \in \mathbb{N}}$, with $x_n \in R^n \subset \Lambda_Y$, for all $n \in \mathbb{N}$, and such that

$$x_n \rightarrow \sigma.$$

Since Λ is sectional hyperbolic set, we have (by Theorem 2.2) that $\Lambda \cap W^{ss}_X(\sigma) = \{\sigma\}$, and as $Y^n \rightarrow X$ (by Proposition 2.3), there is a neighborhood V of $W^{ss}(\sigma) \setminus \{\sigma\}$ in M such that $\Lambda_Y \cap V = \emptyset$, for $n \in \mathbb{N}$ large enough.

As $x_n \rightarrow \sigma$, for $\epsilon > 0$ uniform size, $W^{ss}_Y(x_n, \epsilon) \rightarrow W^{ss}_X(\sigma, \epsilon)$ in the sense C^1 manifolds [11].

Then, for $n \in \mathbb{N}$ enough large, $W^{ss}_Y(x_n, \epsilon) \cap V \neq \emptyset$. Note that $W^{ss}_Y(x_n, \epsilon) \subset W^{ss}_Y(x^n) \subset R^n$, since is repeller of Y^n. Hence $R^n \cap V \neq \emptyset$, then $\Lambda_Y \cap V \neq \emptyset$. This is a contradiction. \thickhline

Let M be a compact n-manifold, $n \geq 3$. Fix $X \in \chi^1(M)$, inwardly transverse to the boundary ∂M. We denotes by X_t the flow of X, $t \in \mathbb{R}$.

There is also a stable manifold theorem in the case when Λ is sectional hyperbolic set. Indeed, denoting by $T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda$ the corresponding the sectional hyperbolic splitting over Λ we have from [8] that the contracting subbundle E^s_Λ can be extended to a contracting subbundle E^s_U in M. Moreover, such an extension is tangent to a continuous foliation denoted by W^{ss} (or W^{ss}_X to indicate dependence on X). By adding the flow direction to W^{ss} we obtain a continuous foliation W^s (or W^s_X) now tangent to $E^u_U \oplus E^c_U$. Unlike the Anosov case W^s may have singularities, all of which being the leaves $W^{ss}(\sigma)$ passing through the singularities σ of X. Note that W^s is transverse to ∂M because it contains the flow direction (which is transverse to ∂M by definition).

It turns out that every singularity σ of a sectional hyperbolic set Λ satisfies $W^{ss}_X(\sigma) \subset W^s_X(\sigma)$. Furthermore, there are two possibilities for such a singularity, namely, either $\dim(W^{ss}_X(\sigma)) = \dim(W^s_X(\sigma))$ (and so $W^{ss}_X(\sigma) = W^s_X(\sigma)$) or $\dim(W^s_X(\sigma)) = \dim(W^{ss}_X(\sigma)) + 1$. In the later case we call it Lorenz-like according to the following definition.

Definition 2.8. We say that a singularity σ of a sectional-Anosov flow X is Lorenz-like if $\dim(W^s(\sigma)) = \dim(W^{ss}(\sigma)) + 1$.

6
Let σ be a singularity Lorenz-like of a sectional hyperbolic set Λ. We will denote $\dim(W^s(X)(\sigma)) = s$ and $\dim(W^s(X)(\sigma)) = u$, therefore σ has a $(s + 1)$-dimensional local stable manifold $W^s(X)(\sigma)$. Moreover $W^s(X)(\sigma)$ separates $W^s_{\text{loc}}(\sigma)$ in two connected components denoted by $W^s_{\text{loc}}(\sigma)$ and $W^s_{\text{loc}}(\sigma)$ respectively.

Definition 2.9. A singular-cross section of a Lorenz-like singularity σ will be a pair of submanifolds Σ^t, Σ^b, where Σ^t, Σ^b are cross sections and:

\[\Sigma^t \text{ is transversal to } W^s_{\text{loc}}(\sigma). \]
\[\Sigma^b \text{ is transversal to } W^s_{\text{loc}}(\sigma). \]

Note that every singular-cross section contains a pair singular submanifolds l^t, l^b defined as the intersection of the local stable manifold of σ with Σ^t, Σ^b respectively.

Also note that $\dim(l^*) = \dim(W^{ss}(\sigma))$.

If $* = t, b$ then Σ^* is a hypercube of dimension $(n - 1)$, i.e., diffeomorphic to $B^u[0, 1] \times B^{ss}[0, 1]$, with $B^u[0, 1] \approx I^u, B^{ss}[0, 1] \approx I^s, I^k = [-1, 1]^k, k \in \mathbb{Z}$ and where:

- $B^{ss}[0, 1]$ is a ball centered at zero and radius 1 contained in $\mathbb{R}^{\dim(W^{ss}(\sigma))} = \mathbb{R}^s$.
- $B^u[0, 1]$ is a ball centered at zero and radius 1 contained in $\mathbb{R}^{\dim(W^u(\sigma))} = \mathbb{R}^{n-s-1}$.

Let $f : B^u[0, 1] \times B^{ss}[0, 1] \to \Sigma^*$ be the diffeomorphism, where
\[f(\{0\} \times B^{ss}[0, 1]) = l^* \]
and $\{0\} = 0 \in \mathbb{R}^u$. Hence, we denoted the boundary of Σ^* for $\partial\Sigma^*$, and $\partial\Sigma^* = \partial^h\Sigma^* \cup \partial^v\Sigma^*$ such that
\[\partial^h\Sigma^* = \{ \text{the union of the boundary submanifolds which are transverse to } l^* \} \]
\[\partial^v\Sigma^* = \{ \text{the union of the boundary submanifolds which are parallel to } l^* \}. \]

Moreover,
\[\partial^h\Sigma^* = (I^u \times [\bigcup_{j=0}^{-1}(I^j \times \{-1\} \times I^{s-j-1})) \bigcup (I^u \times [\bigcup_{j=0}^{-1}(I^j \times \{1\} \times I^{s-j-1})]) \]
\[\partial^v\Sigma^* = ([\bigcup_{j=0}^{-1}(I^j \times \{-1\} \times I^{u-j-1})) \times I^s) \bigcup ([\bigcup_{j=0}^{-1}(I^j \times \{1\} \times I^{u-j-1})] \times I^s) \]
and where $I^0 \times I = I$.

Hereafter we denote $\Sigma^* = B^u[0, 1] \times B^{ss}[0, 1]$.

Proposition 2.10. Let X be a C^1 vector field of a compact n-manifold M, $n \geq 3$, $X \in \mathcal{X}^1(M)$. Let $\Lambda \subset M$ be a sectional hyperbolic set of X. Then, there are neighborhoods U of X, U of Λ and $n_0 \in \mathbb{N}$ such that
\[\# \{ A \subset U : A \text{ is an attractor of } Y \in U \} \leq n_0. \]

Proof. The proof is by contradiction, i.e., suppose that for \(n \in \mathbb{N} \), we have that for all neighborhood \(U \) of \(X \), exists \(Y \in U \) such that
\[\# \{ A \subset U : A \text{ is an attractor of } Y \in U \} \geq n. \]

Then, there is a sequence of vectors fields \((X^n)_n \in \mathbb{N}\), such that \(X^n \xrightarrow{C^1} X \), and a sequence \((A^n)_n \in \mathbb{N}\) where \(A^n \) is an attractor of vector field \(X^n \), for all \(n \).

By compactness we can suppose that the attractors are non-singular, since the singularities are isolated. Fix the neighborhood \(U \) of \(\Lambda \) as in Lemma 2.1 and thus we can assume that \(U \) is an isolating block of \(\Lambda \).

We claim that the sequence \((A^n)_n \in \mathbb{N}\) of attractors accumulate on the singularities of \(X \), otherwise \(Sing(X) \cap Cl(\cup_{n \in \mathbb{N}} A^n) = \emptyset \), then there is \(\delta > 0 \), such that \(B_\delta(Sing(X)) \cap (\cup_{n \in \mathbb{N}} A^n) = \emptyset \).

Thus, in the same way as in \([7]\), we define
\[H = \cap_{t \in \mathbb{R}} X_t \left(U \setminus B_{\delta/2}(Sing(X)) \right) \tag{3} \]

By definition \(Sing(X) \cap H = \emptyset \), \(H \) is compact since \(\Lambda \) is, and \(H \) is a nonempty compact set \([7]\), which is clearly invariant for \(X \). It follows that \(H \) is hyperbolic by Lemma 2.1 and by Lemma 2.6 there is \(n_0 \in \mathbb{N} \) such that the sequence of attractors is bounded by \(n_0 \), that is a contradiction.

Then, the sequence \((A^n)_n \in \mathbb{N}\) of attractors accumulate on the singularities of \(X \), i.e., \(Sing(X) \cap Cl(\cup_{n \in \mathbb{N}} A^n) \neq \emptyset \). Thus, exists \(\sigma \in U \) such that \(\sigma \in Sing(X) \cap Cl(\cup_{n \in \mathbb{N}} A^n) \).

The subbundle \(E^s \) of \(\Lambda \) extends to a contracting invariant subbundle on the whole \(U \) and we take a continuous (not necessarily invariant) extension of \(E^c \) in \(U \). We have that this extension persists by small perturbations of \(X \) \([6]\) and we denote the splitting by \(E^{s,n} \oplus E^{c,n} \), where \(E^{s,0} \oplus E^{c,0} = E^s \oplus E^c \). We can assume that \(\sigma(X^n) = \sigma \) and \(l^t \cup l^b \subset W^s_{X^n}(\sigma) \) for all \(n \).

As before we fix a coordinate system \((x,y) = (x^*,y^*) \) in \(\Sigma^s \) with \(* = t,b \) and such that \(\Sigma^* = B^u[0,1] \times B^{ss}[0,1] \) and \(l^* = \{0\} \times B^{ss}[0,1] \) with respect to \((x,y)\).

Denote by \(\Pi^* : \Sigma^s \to B^u[0,1] \) the projection, where \(\Pi^*(x,y) = x \) and for \(\Delta > 0 \) we define \(\Sigma^s,\Delta = B^u[0,\Delta] \times B^{ss}[0,1] \).

Then, by Theorem 2.2 we have that \(\Lambda \cap W^s_{X^n}(\sigma) = \{\sigma\} \) and by Lemma 2.1 \(A^n \) is a hyperbolic attractor of type saddle of \(X^n \) for all \(n \). Then by \([7]\) for every isolating block \(U \) of \(\Lambda \) we can choose \(\Sigma^t, \Sigma^b \), singular-cross section for \(\sigma \) in \(U \) such that
\[(\cap_{t > 0} X^n_t(U)) \cap (\partial^b \Sigma^t \cup \partial^h \Sigma^b) = \emptyset \tag{4} \]
and we have that there is \(n_1 \) such that \(A^{n_1} \cap \text{int}(\Sigma^s,\Delta_0) \neq \emptyset \).
We shall assume that $A^{n_1} \cap \text{int}(\Sigma^t, \Delta_0) \neq \emptyset$ (Analogous proof for the case $* = b$). By (4) we have $A^{n_1} \cap \partial^h \Sigma^t, \Delta_0 = \emptyset$, and by compactness we have that there is $p \in \Sigma^t, \Delta_0 \cap A^{n_1}$ such that

$$\text{dist}(\Pi^t(\Sigma^t, \Delta_0 \cap A^{n_1}), 0) = \text{dist}(\Pi^t(p), 0),$$

where dist denotes the distance in $B^n[0, \Delta_0]$. Note that $\text{dist}(\Pi^t(p), 0)$ is the minimum distance of $\Pi^t(\Sigma^t, \Delta_0 \cap A^{n_1})$ to 0 in $B^n[0, \Delta_0]$.

As $W^u_{X^{n_0}}(p) \subset A^{n_1}$, since A^{n_1} is attractor, we have that $W^u_{X^{n_1}}(p) \cap \Sigma^t, \Delta_0$ contains some compact manifold K^{n_1}.

We have that K^{n_1} is transverse to Π^t (i.e. K^{n_1} is transverse to the curves $(\Pi^t)^{-1}(c)$, for every $c \in B^n[0, \Delta_0]$). First we denote $\Pi^t(K^{n_1}) = K^{n_1}$, the image of K^{n_0} by the projection Π^t in $B^n[0, \Delta_0]$. Note that $K^{n_1} \subset B^n[0, \Delta_0]$ and $\Pi^t(p) \in \text{int}(K^{n_1})$.

Since $\dim(K^{n_1}) = \dim(B^n[0, \Delta_0]) = (n - s - 1)$, there is $z_0 \in K^{n_0}$ such that

$$\text{dist}(\Pi^t(z_0), 0) < \text{dist}(\Pi^t(p), 0).$$

As $A^{n_1} \cap \partial^h \Sigma^t, \Delta_0 = \emptyset$, $K^{n_1} \subset W^u_{X^{n_1}}(p)$ and $\dim(K^{n_1}) = \dim(B^n[0, \Delta_0])$, we conclude that $\text{dist}(\Pi^t(\Sigma^t, \Delta_0 \cap A^{n_1}), 0) = 0$, and this last equality implies that

$$A^{n_1} \cap l^t \neq \emptyset.$$

Since $l^t \subset W^s_{X^{n_1}}(\sigma)$ and A^{n_1} is closed invariant set for X^{n_1} we conclude that $\sigma \in A^{n_1}$. This is a contradiction, since by hypotheses we have that A^n is non-singular for all $n \in \mathbb{N}$ and the proof follows.

\[\square\]

Proof of Theorem [1] We prove the theorem by contradiction. Let X be a C^1 vector field of a compact n-manifold M, $n \geq 3$, $X \in \mathcal{X}^1(M)$. Let $\Lambda \in M$ be a sectional hyperbolic set of X. Then, we suppose that there is a sequence $(X^n)_{n \in \mathbb{N}} \subset \mathcal{X}^1(M)$, $X^n \xrightarrow{C^1} X$ such that every X^n exhibits n attractors or repellers, with $n > n_0$. By Proposition 2.10 there is a neighborhood $U \subset \mathcal{X}^1(M)$ of X and a neighborhood $U \subset M$ of Λ such that the attractors in U are finite for all $Y \in U$. Thus, we are left to prove only for the repeller case. We denote by R^n a repeller of X^n in $\cap_{t \geq 0} X^n(U) = \Lambda_{X^n}$. Since Λ_{X^n} arbitrarily close to Λ and since $R^n \in \Lambda_{X^n}$, R^n also is arbitrarily close to Λ, we can assume that L^n belongs to Λ for all n.

Let $(R^n)_{n \in \mathbb{N}}$ be the sequence of repellers contained in Λ. By the Lemma 2.7 we have that

$$\text{Sing}(X) \cap \text{Cl}(\cup_{n \in \mathbb{N}} R^n) = \emptyset$$
Then, we have that there is $\delta > 0$, such that $B_\delta(Sing(X)) \cap (\cup_{n \in \mathbb{N}} R^n) = \emptyset$.

As in (3) we define $H = \bigcap_{t \in \mathbb{R}} X_t (U \setminus B_{\delta/2}(Sing(X)))$. It follows that H is hyperbolic by Lemma 2.1 and by the Lemma 2.6 we have that there is a neighborhood $U \subset X^1(M)$ of X, a neighborhood $U \subset M$ of H, and $n_1 \in \mathbb{N}$ such that

$$\#\{R \subset U : R \text{ is a repeller of } Y \in U\} \leq n_1 \leq n_0$$

for every vector field $Y \in U$. This is a contradiction, since by hypotheses we have that

$$\#\{R \subset H : R \text{ is a repeller of } Y \in U\} \geq n > n_0.$$
[7] Lopez, A., M., Sectional Anosov flows in higher dimensions, http://arxiv.org/abs/1308.6597.

[8] Metzger, R., Morales, C.A., Sectional-hyperbolic systems, *Ergodic Theory Dynam. Systems* 28 (2008), no. 5, 1587-1597.

[9] Morales, C., A., The explosion of singular-hyperbolic attractors, *Ergodic Theory Dynam. Systems* 24 (2004), no. 2, 577-591.

[10] Morales, C. A., Pacífico, M. J., Pujals, E.R., Singular Hyperbolic Systems, *Proc. Amer. Math. Soc.* 127 (1999), 3393-3401.

[11] Palis, J., Takens, F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations (1993), *Cambridge Univ. Press.*

A. M. López B
Instituto de Matemática, Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil
E-mail: barragan@im.ufrj.br