Lower central subgroups of a free group and its subgroup

Minkyoung Song

Abstract. For a given free group F of arbitrary rank (possibly infinite), and its subgroup G, we address the question whether a lower central subgroup of G can contain a lower central subgroup of F. We show that the answer is no if G does not normally generate F. The question comes from a study of Hirzebruch-type invariants from iterated p-covers for 3-dimensional homology cylinders.

1. Introduction

For a group G, denote by G_m the mth term of the lower central series of G, defined inductively by $G_1 = G$, $G_{m+1} = [G_m, G]$ for each $m \geq 1$.

If F is a free group and G its subgroup, then it is obvious that G_m is contained in F_m for every $m \geq 1$. In this paper, we investigate the converse relation: whether some F_m is contained in some G_k. Note that $\bigcap_m F_m = 0$. For $k = 1$, if G is a normal subgroup of F with abelian F/G, then G_1 contains F_m for every $m \geq 2$. We can ask if a subgroup G satisfies $G_2 \supseteq F_m$ for a certain large m. As an answer, we prove the following result:

Theorem 1.1. Let F be a free group and G a subgroup of F whose normal closure is not F. Then G_2 never contains F_m for any $m \in \mathbb{N}$.

This starts from a study of structures of geometric objects. Let $\Sigma_{g,n}$ be a compact oriented surface of genus g with n boundary components. A homology cylinder over $\Sigma_{g,n}$ is defined as a homology cobordism between two copies of $\Sigma_{g,n}$. The set $\mathcal{H}_{g,n}$ of homology cobordism classes of homology cylinders becomes a group under juxtaposition. The group was introduced as an enlargement of the mapping class group by Garoufalidis and Levine [GL05, Lev01]. It is also a generalization of the concordance group of framed string links.

In [So16], the author studied the structure of $\mathcal{H}_{g,n}$ by defining extended Milnor invariants and Hirzebruch-type invariants for homology cylinders. Throughout this paper, p denotes a prime number. Hirzebruch-type intersection form defects associated to p-fold covers are defined by Cha in [Cha10] to study homology cobordism of closed 3-manifolds and concordance of links. Let d be a power of p. For a CW-complex X, a pair of a cover \tilde{X} obtained by taking p-covers repeatedly and a homomorphism $\pi_1(\tilde{X}) \to \mathbb{Z}_d$ is called a (\mathbb{Z}_d-valued) p-structure for X. Here, a p-cover means a cover of p-power degree. The invariant of a p-structure for a 3-manifold is the difference between the Witt classes of the $\mathbb{Q}(\zeta_d)$-valued intersection form and the ordinary intersection form of a 4-manifold bounded by \tilde{X} over \mathbb{Z}_d, where $\zeta_d = \exp(2\pi\sqrt{-1}/d)$. This lives in the Witt group $L^0(\mathbb{Q}(\zeta_d))$ of nonsingular hermitian forms over $\mathbb{Q}(\zeta_d)$.

1
The invariants give rise to invariants of a subgroup of string link concordance group, consisting of \hat{F}-string links [Cha09]. We refer [So16, p.897] for the definition of \hat{F}-string link. Remark that \hat{F}-(string) links form the largest known class of (string) links with vanishing Milnor invariants; it is a big open problem in link theory whether all (string) links with vanishing Milnor invariants are \hat{F}-(string) links. It turned out that the Hirzebruch-type invariants are homomorphisms on the subgroup of \hat{F}-string links.

In [So16], a Hirzebruch-type invariant λ_T is defined for homology cylinders with a p-structure T for $\Sigma_{g,n}$, or equivalently for $\sqrt{2g+n-1} S^1$. The p-structures are classified in [So16]. Let $(\hat{X}, \phi; \pi_1(\hat{X}) \to \mathbb{Z}_d)$ be a p-structure for X. For the cover \hat{X} induced by ϕ, if $\pi_1\hat{X} \supseteq (\pi_1X)_m$, the p-structure is said to be of order m. Every p-structure of a finite CW-complex is of order m for some finite m; For the proof, see [So16, Lemma 5.3]. We revealed that when the invariant is defined; For a p-structure T of order m, the invariant λ_T is defined for (the homology cobordism class of) a homology cylinder if and only if the homology cylinder has vanishing extended Milnor invariants of length m. Let $\mathcal{H}_{g,n}(m)$ be the subgroup of $\mathcal{H}_{g,n}$ consisting of homology cylinders with vanishing extended Milnor invariants of length m in $\mathcal{H}_{g,n}$. For a p-structure T for $\Sigma_{g,n}$ of order m, the Hirzebruch-type invariant
\[\lambda_T : \mathcal{H}_{g,n}(m) \to L^0(Q(\zeta_d)) \]
is well-defined. A sufficient condition that λ_T is additive is given in [So16, Theorem 5.12]. It follows that λ_T is a homomorphism on $\bigcap_m \mathcal{H}_{g,n}(m)$ for any p-structure T. Using homomorphisms λ_T, it turned out that the abelianization of $\bigcap_m \mathcal{H}_{g,n}(m)$ contains a subgroup isomorphic to \mathbb{Z}^∞ if $b_1(\Sigma_{g,n}) = 2g + n - 1 > 1$ [So16, Theorem 6.7].

If we find m such that the λ_T are homomorphisms on $\mathcal{H}_{g,n}(m)$, then we will obtain that $H_1(\mathcal{H}_{g,n}(m))$ also contains a subgroup isomorphic to \mathbb{Z}^∞. To find λ_T which is a homomorphism on $\mathcal{H}_{g,n}(m)$, the author extracted the following from the sufficient condition.

Proposition 1.2. [So16, Corollary 5.13] Let $\Sigma = \Sigma_{g,n}$. Suppose $\mathcal{T} = (\hat{\Sigma}, \pi_1\hat{\Sigma} \to \mathbb{Z}_d)$ is a p-structure for Σ of order m. If $(\pi_1\hat{\Sigma})_2 \supseteq (\pi_1\Sigma)_m$ for the \mathbb{Z}_d-cover $\hat{\Sigma}$ of Σ then T gives a homomorphism $\lambda_T : \mathcal{H}_{g,n}(m) \to L^0(Q(\zeta_d))$.

This naturally poses the problem to find a p-structure T for Σ satisfying the assumption of the proposition. The problem can be interpreted algebraically as follows:

Problem. Suppose F is a finitely generated free group. Find a proper subgroup G of F such that there is an ascending chain $G = F_1 \supseteq F_k \supseteq \cdots \supseteq F_1 \supseteq F_0 = F$ with each F_i/F_{i+1} an abelian p-group and $G_2 \supseteq F_m$ for some m.

We can simplify the problem as follows:

Problem. (simple version) Suppose F is a finitely generated free group. Find a proper normal subgroup G such that F/G is abelian and $G_2 \supseteq F_m$ for some m.

This is equivalent to the following geometric problem which is the core of the original problem:

Problem. Let X be a CW-complex with π_1X free. Find an abelian cover \hat{X} of X such that the natural map $\pi_1\hat{X}/(\pi_1X)_m \to H_1(\hat{X})$ factors through $\pi_1\hat{X}/(\pi_1X)_m$ for some $m \geq 2$.

But, we finally obtain non-existence for the above problems as Theorem 1.1 shows. That said, it does not mean that there is no homomorphism λ_T on $\mathcal{H}_{g,n}(m)$ since
Proposition 1.2 follows from only a sufficient condition for λ_τ to be additive in [So10, Theorem 5.12].

Extending the domain of λ_τ as a homomorphism may help study the mapping class groups of surfaces. The restriction of $H_{g,n}(m)$ on the mapping class group is the Johnson filtration $M_{g,n}[m] := \text{Ker}(M_{g,n} \to \text{Aut}(F/F_m))$. In other words, $H_{g,n}(m) \cap M_{g,n} = M_{g,n}[m]$. The subgroups $M_{g,n}[2]$ and $M_{g,n}[3]$ are well known as the Torelli group and the Johnson kernel, respectively. In 1938, Dehn proved that $M_{g,n}$ is finitely generated [Den38]. In 1983, Johnson proved that $M_{g,1}[2]$ and its quotient $M_{g,0}[2]$ are also finitely generated for $g \geq 3$, but it is discovered that $M_{g,1}[2]$ and $M_{2,0}[2] = M_{2,0}[3]$ are infinitely generated by McCullough and Miller [MM86] in 1986. Thereby, the question whether $M_{g,n}[3]$ is finitely generated for $g \geq 3$ has received a lot of attention since 1990s. Just lately, for $n = 0, 1$, Ershov and He [EH17] showed that $M_{2,n}[3]$ is finitely generated if $g \geq 12$ and $H_1(M_{g,n}[m])$ is also finitely generated if $m \geq 3, g \geq 8m - 12$. Church, Ershov and Putman proved that also for $n = 0, 1, M_{g,n}[3]$ is finitely generated if $g \geq 4$ and $M_{g,n}[m]$ is finitely generated if $m \geq 4, g \geq 2m - 3$ in [CEP17]. It is still open whether $M_{g,n}[m]$ is finitely generated for general g and n. The Hirzebruch-type invariants may be used to prove that the abelianization is infinitely generated if we find a homomorphism λ_τ on the higher order Johnson subgroup.

Acknowledgements

The author thanks Jae Choon Cha for helpful comments. The work was supported by NRF grant 2011-0030044 (SRC-GAIA).

2. Non-existence of subgroups

We denote $[x, y] := xyx^{-1}y^{-1}$ where x means x^{-1}.

Theorem 2.1. Suppose F is a finitely generated free group. Then there is no normal subgroup of F of prime index whose commutator subgroup contains a term of the lower central series of F.

Proof. Suppose there is an index p normal subgroup G of F such that the commutator subgroup $[G, G]$ contains F_m for some $m \in \mathbb{N}$. Then G can be considered as the kernel of a surjective homomorphism $F \to \mathbb{Z}_p$.

It is enough to show that if $F = \langle x, y \rangle$ and $G = \text{Ker}(F \to \mathbb{Z}_p)$ where $f(x) = 1, f(y) = 0$, then $G_2 \not\subseteq F_m$ for all m.

Let $\omega_n := [\ldots [[x, y], x], \ldots, x] = [x, y, x, \ldots, x] \in F_{n+2}$ for $n \geq 0$. We claim that $\omega_n \notin G_2$ for every $n \in \mathbb{N}$. Since ω_n is an element of G, our claim is equivalent that $[\omega_n] \neq 0$ in $G/G_2 = H_1(G)$.

The subgroup $G = \langle \langle x^k, y \rangle \rangle_F = \langle x^p, y, xyx^{-1}y^2, \ldots, x^{p-1}y^{p-1} \rangle$. Let $a := x^p$ and $b_k := x^{k-1}y^{2k-1}$ for $k = 1, \ldots, p$, then $G = \langle a, b_1, \ldots, b_p \rangle$. Denote by S the free generating set $\{a, b_1, \ldots, b_p\}$.

For $\omega \in G$ and $k = 1, \ldots, p$, let $P_k(\omega)$ be the sum of the powers of b_k in ω as a word expressed in S. In other words, $P_k(\omega)$ is the power of $[b_k]$ in $[\omega] \in H_1(G)$. We note that

$$\sum_{k=1}^{p} \omega(k) b_k = \omega^p$$

where $\omega := \langle \langle x, y \rangle \rangle_F$.

(1)\hspace{1cm} xa = b_1 x b_2, \ldots, x b_{p-1} x b_p x = ab_1 a.$
Thus, conjugating any element of G by x preserves the sum of powers of a in a word in S.

Since a does not appear in the reduced word of $\omega_0 = xy_1x$ – b_2b_1, $[\omega_n, 0] = 0 \in H_1(G)$ if and only if $P_k(\omega_n) = 0$ for all k. We observe $P_1(\omega_0) = -1$, $P_2(\omega_0) = 1$, $P_k(\omega_0) = 0$ for $k \geq 3$, and $P_k(\omega_{n+1}) = P_k([\omega_n, x]) = P_k(\omega_n) + P_k(x\omega_n) = P_k(\omega_n) - P_k(x\omega_n) = P_k(\omega_n) - P_{k-1}(\omega_n)$. The last equality comes from (1). Hence we obtain

$$
\begin{pmatrix}
P_1(\omega_n) \\
P_2(\omega_n) \\
\vdots \\
P_p(\omega_n)
\end{pmatrix} =
\begin{pmatrix}
1 & -1 \\
-1 & 1 \\
\vdots & \vdots \\
-1 & 1
\end{pmatrix}^n
\begin{pmatrix}
-1 \\
1 \\
0 \\
0
\end{pmatrix}
$$

Let us calculate the eigenvalues of A. Since $\det(A - \lambda I) = (1 - \lambda)^p - 1$, the eigenvalues λ_j of A are $1 - \zeta^j$ where ζ is the p-th root of unity $e^{2\pi i/p}$ and $j = 1, \ldots, p$. The corresponding eigenvector x_j to the eigenvalue λ_j is

$$
\begin{pmatrix}
1 \\
\zeta^{(p-1)j} \\
\vdots \\
\zeta^{2j} \\
\zeta^j
\end{pmatrix}
$$

Since the eigenvalues λ_j are all distinct, x_j are linearly independent. Thus, v_0 can be expressed as a linear combination of x_j. Let $v_0 = \sum_{i=1}^p \alpha_i x_j$. Note that α_j is nonzero for some $j \neq p$ since $v_0 \neq \alpha x_p$ for any α. Therefore, $v_n = A^n v_0 = \sum_{i=1}^p \alpha_i \zeta^{ij} x_j$ is nonzero for any $n \geq 1$. In conclusion, ω_n is not an element of G_2, and it implies that G_2 does not contain any F_m. \hfill \square

Note that prime index does not guarantee normality. For instance, there is a non-normal subgroup $\langle a, b^3, bab^2, bab \rangle$ of index 3 in $\mathbb{Z} \ast \mathbb{Z} = \langle a, b \rangle$.

In fact, the same argument holds not only for p prime, but also when p is replaced by an arbitrary integer > 1. Hence the theorem also holds not only for index p normal subgroups but also for normal subgroups with finite cyclic factor groups. Moreover, we can extend Theorem 2.1 as follows:

Corollary 2.2. Let F be a (possibly infinitely generated) free group. Suppose G is a subgroup of F such that there are H and K with $G \leq K \triangleleft H \leq F$, a nontrivial abelian factor group H/K. Then G_2 does not contain F_m for any $m \in \mathbb{N}$.

Proof. First we generalize Theorem 2.1 to a free group of arbitrary rank. Let G be a normal subgroup of index p where p is a prime. We can assume that $\{x_i \mid i \in I\}$ is a free generating set of F with an index set $I \supseteq 1, 2$ and $G = \ker(f: F \rightarrow \mathbb{Z}_p)$ with $f(x_1) = 1$, $f(x_j) = 0$ for $j \neq 1 \in I$. Suppose $G_2 \supseteq F_m$ for some m. Let $H = \langle x_1, x_2 \rangle$, a subgroup of F. Then, $H \cap G = \ker(f|_H: H \rightarrow \mathbb{Z}_p)$ is an index p normal subgroup of H. But, $(H \cap G) = H \cap G_2 \supseteq H \cap F_m \supseteq H_m$. It contradicts Theorem 2.1.
Now let us extend G to a subgroup of F with $G \leq K \triangleleft H \leq F$ and nontrivial abelian H/K. Suppose $G_2 \supseteq F_m$ for some $m \in \mathbb{N}$. Then, $K_2 \supseteq G_2 \supseteq F_m \supseteq H_m$. There is a prime index normal subgroup K' of H which contains K since there is an epimorphism of H/K onto a cyclic group of prime order. We have $(K')_2 \supseteq K_2 \supseteq H_m$, which is a contradiction.

For instance, if F/G is the alternating group A_5, it has abelian subgroups isomorphic to $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5$, so G satisfies the hypothesis of the above corollary.

Lastly, we give a proof of Theorem 1.1 stated in the introduction:

Proof of Theorem 1.1. Let K be the normal closure of G. Every nontrivial group has a nontrivial abelian subgroup, so there is a nontrivial abelian subgroup H/K of F/K. Then $G < K < H < F$ satisfies the hypothesis of Corollary 2.2. Consequently, the conclusion of the corollary holds for every subgroup whose normal closure is not F. Hence we obtain Theorem 1.1. □

References

[Cha09] J. C. Cha, *Structure of the string link concordance group and Hirzebruch-type invariants*, Indiana Univ. Math. J. 58 (2009), no. 2, 89–927.

[Cha10] J. C. Cha, *Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers*, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 555–610.

[CEP17] T. Church, M. Ershov and A. Putman, *On finite generation of the Johnson filtrations*, preprint (2017) arXiv:1711.04779

[Den38] M. Dehn, *Die Gruppe der Abbildungsklassen*, Acta Math. 69 (1938), no. 1, 135–206.

[EH17] M. Ershov and S. He, *On finiteness properties of the Johnson filtrations*, preprint (2017) arXiv:1703.04190

[GL05] S. Garoufalidis and J. P. Levine, *Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism*, Graphs and patterns in mathematics and theoretical physics, 173–203, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005.

[Joh83] D. Johnson, *The Structure of the Torelli Group I: A Finite Set of Generators for J*, Ann. of Math. (2) 118 (1983), no. 3, 423–442.

[Lev01] J. P. Levine, *Homology cylinders: an enlargement of the mapping class group*, Algebr. Geom. Topol. 1 (2001), 243–270 (electronic).

[MM86] D. McCullough and A. Miller, *The genus 2 Torelli group is not finitely generated*, Topology Appl. 22 (1986), 43–49.

[So16] M. Song, *Invariants and structures of the homology cobordism group of homology cylinders*, Algebr. Geom. Topol. 16 (2016), 899–943