Automata for dynamic answer set solving: Preliminary report

Pedro Cabalar
University of Corunna, Spain

Martín Diéguez
Université d’Angers, France

Susana Hahn and Torsten Schaub
University of Potsdam, Germany

Abstract

We explore different ways of implementing temporal constraints expressed in an extension of Answer Set Programming (ASP) with language constructs from dynamic logic. Foremost, we investigate how automata can be used for enforcing such constraints. The idea is to transform a dynamic constraint into an automaton expressed in terms of a logic program that enforces the satisfaction of the original constraint. What makes this approach attractive is its independence of time stamps and the potential to detect unsatisfiability. On the one hand, we elaborate upon a transformation of dynamic formulas into alternating automata that relies on meta-programming in ASP. This is the first application of reification applied to theory expressions in gringo. On the other hand, we propose two transformations of dynamic formulas into monadic second-order formulas. These can then be used by off-the-shelf tools to construct the corresponding automata. We contrast both approaches empirically with the one of the temporal ASP solver telingo that directly maps dynamic constraints to logic programs. Since this preliminary study is restricted to dynamic formulas in integrity constraints, its implementations and (empirical) results readily apply to conventional linear dynamic logic, too.

1 Introduction

Answer Set Programming (ASP [1]) has become a popular approach to solving knowledge-intense combinatorial search problems due to its performant solving engines and expressive modeling language. However, both are mainly geared towards static domains and lack native support for handling dynamic applications. Rather change is accommodated by producing copies of variables, one for each state. This does not only produce redundancy but also leaves the ASP machinery largely uninformed about the temporal structure of the problem.

This preliminary work explores alternative ways of implementing temporal (integrity) constraints in (linear) Dynamic Equilibrium Logic (DEL; [2, 3]) by using automata [4]. On the one hand, DEL is expressive enough to subsume
more basic systems, like (linear) Temporal Equilibrium Logic \[5, 6\] or even its metric variant \[7\]. On the other hand, our restriction to integrity constraints allows us to draw on work in conventional linear dynamic and temporal logic (cf. Proposition \[3]\). Although this amounts to using dynamic formulas to filter “stable temporal models” rather than to let them take part in the formation of such models, it allows us to investigate a larger spectrum of alternatives in a simpler setting. Once fully elaborated, we plan to generalize our approach to the full setting. Moreover, we are interested in implementing our approach by means of existing ASP systems, which motivates our restriction to the finite trace variant of DEL, called DELf.

In more detail, Section \[2\] to \[4\] lay the basic foundations of our approach by introducing DEL, some automata theory, and a translation from dynamic formula into alternating automata. We then develop and empirically evaluate three different approaches. First, the one based on alternating automata from Section \[1\]. This approach is implemented entirely in ASP and relies on meta-programming. As such it is the first application of gringo’s reification machinery to user defined language constructs (defined by a theory grammar; cf. \[8\]). Second, the one elaborated in Section \[5\] proposing two alternative transformations of dynamic formula into monadic second order formulas. These formulas can then be passed to the off-the-shelf automata construction tool MONA \[9\] that turns them into deterministic automata. And finally, the approach of telingo \[10, 11\], transforming each dynamic constraint directly into a logic program. All three approaches result in a program that allows us to sift out “stable temporal models” satisfying the original dynamic constraints. Usually, these models are generated by another logic program, like a planning encoding and instance.

2 Linear Dynamic Equilibrium Logic

Given a set \(\mathcal{P}\) of propositional variables (called alphabet), dynamic formulas \(\varphi\) and path expressions \(\rho\) are mutually defined by the pair of grammar rules:

\[
\varphi ::= a \mid \bot \mid \top \mid [\rho] \varphi \mid \langle \rho \rangle \varphi
\]

\[
\rho ::= \tau \mid \varphi ? \mid \rho + \rho \mid \rho ; \rho \mid \rho ^*.
\]

This syntax is similar to the one of Dynamic Logic (DL; \[12\]) but differs in the construction of atomic path expressions: While DL uses a separate alphabet for atomic actions, LDL has a single alphabet \(\mathcal{P}\) and the only atomic path expression is the (transition) constant \(\tau \notin \mathcal{P}\) (read as “step”). Thus, each \(\rho\) is a regular expression formed with the constant \(\tau\) plus the test construct \(\varphi\) that may refer to propositional atoms in the (single) alphabet \(\mathcal{P}\). As with LDL \[13\], we sometimes use a propositional formula \(\phi\) as a path expression and let it stand for \((\phi?; \tau)\). This means that the reading of \(\top\) as a path expression amounts to \((\top?; \tau)\) which is just equivalent to \(\tau\), as we see below. Another abbreviation is the sequence of \(n\) repetitions of some expression \(\rho\) defined as \(\rho^n \overset{\text{def}}{=} \top ?\) and \(\rho^{n+1} \overset{\text{def}}{=} \rho ; \rho^n\).

The above language allows us to capture several derived operators, like the
Boolean and temporal ones \(\exists\):

\[
\begin{align*}
\varphi \land \psi & \overset{\text{def}}{=} (\varphi?) \psi \quad & \varphi \lor \psi & \overset{\text{def}}{=} (\varphi? + \psi?) \top \\
\varphi \rightarrow \psi & \overset{\text{def}}{=} [\varphi?] \psi \quad & \neg \varphi & \overset{\text{def}}{=} \varphi \rightarrow \bot \\
\circ \varphi & \overset{\text{def}}{=} (\tau) \varphi \quad & \Delta \varphi & \overset{\text{def}}{=} [\tau] \varphi \\
\Diamond \varphi & \overset{\text{def}}{=} (\tau^*) \varphi \quad & \Box \varphi & \overset{\text{def}}{=} [\tau^*] \varphi \\
\varphi \mathbf{U} \psi & \overset{\text{def}}{=} ((\varphi?; \tau^*) \psi \quad & \varphi \mathbf{R} \psi & \overset{\text{def}}{=} (\psi \mathbf{U} (\varphi \land \psi)) \lor \Box \psi
\end{align*}
\]

All connectives are defined in terms of the dynamic operators \(\langle \cdot \rangle\) and \([\cdot]\). This involves the Booleans \(\land, \lor,\) and \(\rightarrow\), among which the definition of \(\rightarrow\) is most noteworthy since it hints at the implicative nature of \([\cdot]\). Negation \(\neg\) is then expressed via implication, as usual in HT. Then, \(\langle \cdot \rangle\) and \([\cdot]\) also allow for defining the future temporal operators \(F, \circ, \Delta, \Box, \mathbf{U}, \mathbf{R}\), standing for final, next, weak next, eventually, always, until, and release. A formula is propositional, if all its connectives are Boolean, and temporal, if it includes only Boolean and temporal ones. As usual, a (dynamic) theory is a set of (dynamic) formulas.

For the semantics, we let \([a..b]\) stand for the set \(\{i \in \mathbb{N} \mid a \leq i \leq b\}\) and \([a..b]\) for \(\{i \in \mathbb{N} \mid a \leq i < b\}\) for \(a \in \mathbb{N}\) and \(b \in \mathbb{N} \cup \{\omega\}\). A trace of length \(\lambda\) over alphabet \(P\) is then defined as a sequence \((H_i)_{i \in [0..\lambda]}\) of sets \(H_i \subseteq P\). A trace is infinite if \(\lambda = \omega\) and finite otherwise, that is, \(\lambda = n\) for some natural number \(n \in \mathbb{N}\). Given traces \(H = (H_i)_{i \in [0..\lambda]}\) and \(H' = (H'_i)_{i \in [0..\lambda]}\) both of length \(\lambda\), we write \(H \leq H'\) if \(H_i \subseteq H'_i\) for each \(i \in [0..\lambda]\); accordingly, \(H < H'\) iff both \(H \leq H'\) and \(H \not= H'\).

Although DHT shares the same syntax as LDL, its semantics relies on traces whose states are pairs of sets of atoms. An HT-trace is a sequence of pairs \((\langle H_i, T_i \rangle)_{i \in [0..\lambda]}\) such that \(H_i \subseteq T_i \subseteq P\) for any \(i \in [0..\lambda]\). As before, an HT-trace is infinite if \(\lambda = \omega\) and finite otherwise. The intuition of using these two sets stems from HT: Atoms in \(H_i\) are those that can be proved; atoms not in \(T_i\) are those for which there is no proof; and, finally, atoms in \(T_i \setminus H_i\) are assumed to hold, but have not been proved. We often represent an HT-trace as a pair of traces \((H, T)\) of length \(\lambda\) where \(H = (H_i)_{i \in [0..\lambda]}\) and \(T = (T_i)_{i \in [0..\lambda]}\), such that \(H \leq T\). The particular type of HT-traces that satisfy \(H = T\) are called total.

The overall definition of DHT satisfaction relies on a double induction. Given any HT-trace \(M = \langle H, T \rangle\), we define DHT satisfaction of formulas, namely, \(M, k \models \varphi\), in terms of an accessibility relation for path expressions \(||\rho||^M \subseteq \mathbb{N}^2\) whose extent depends again on \(\models\) by double, structural induction.

Definition 1 (DHT satisfaction; \(\exists\)). An HT-trace \(M = \langle H, T \rangle\) of length \(\lambda\) over alphabet \(P\) satisfies a dynamic formula \(\varphi\) at time point \(k \in [0..\lambda]\), written \(M, k \models \varphi\), if the following conditions hold:

1. \(M, k \models \top\) and \(M, k \not\models \bot\)
2. \(M, k \models a\) if \(a \in H_k\) for any atom \(a \in P\)
3. \(M, k \models (\rho) \varphi\) if \(M, i \models \varphi\) for some \(i\) with \((k, i) \in ||\rho||^M\)
4. $M, k \models [\rho] \varphi$ if $M', i \models \varphi$ for all i with $(k, i) \in \parallel \rho \parallel_{M'}$ for both $M' = M$ and $M' = \langle T, T \rangle$

where, for any HT-trace M, $\parallel \rho \parallel_M \subseteq \mathbb{N}^2$ is a relation on pairs of time points inductively defined as follows.

5. $\parallel \tau \parallel_M \overset{\text{def}}{=} \{(k, k + 1) \mid k, k + 1 \in [0..\lambda)\}$

6. $\parallel \varphi ? \parallel_M \overset{\text{def}}{=} \{(k, k) \mid M, k \models \varphi\}$

7. $\parallel \rho_1 + \rho_2 \parallel_M \overset{\text{def}}{=} \parallel \rho_1 \parallel_M \cup \parallel \rho_2 \parallel_M$

8. $\parallel \rho_1 : \rho_2 \parallel_M \overset{\text{def}}{=} \{(k, i) \mid (k, j) \in \parallel \rho_1 \parallel_M \text{ and } (j, i) \in \parallel \rho_2 \parallel_M \text{ for some } j\}$

9. $\parallel \rho^* \parallel_M \overset{\text{def}}{=} \bigcup_{n \geq 0} \parallel \rho^n \parallel_M$

An HT-trace M is a model of a dynamic theory Γ if $M, 0 \models \varphi$ for all $\varphi \in \Gamma$. We write DHT(Γ, λ) to stand for the set of DHT models of length λ of a theory Γ, and define DHT(Γ) $\overset{\text{def}}{=} \bigcup_{\lambda=0}^\infty \text{DHT}(\Gamma, \lambda)$, that is, the whole set of models of Γ of any length. A formula φ is a tautology (or is valid), written $\models \varphi$, iff $M, k \models \varphi$ for any HT-trace M and any $k \in [0..\lambda)$. The logic induced by the set of all tautologies is called (Linear) Dynamic logic of Here-and-There (DHT) for short.

We distinguish the variants DHT$_n$ and DHT$_f$ by restricting DHT to infinite or finite traces, respectively.

Proposition 1. For any $(x, y) \in \mathbb{N} \times \mathbb{N}$, path expression ρ and trace M, we have $(x, y) \in \parallel \rho \parallel_M$ implies $x \leq y$.

Proposition 2 ([11],[12]). The following formulas are DHT$_f$-valid.

1. $[\rho_1 + \rho_2] \varphi \leftrightarrow (\rho_1 \varphi \land \rho_2 \varphi)$
2. $\langle \rho_1 + \rho_2 \rangle \varphi \leftrightarrow ((\rho_1) \varphi \lor (\rho_2) \varphi)$
3. $[\rho_1 : \rho_2] \varphi \leftrightarrow ([\rho_1] \rho_2 \varphi)$
4. $\langle \rho_1 : \rho_2 \rangle \varphi \leftrightarrow ((\rho_1) \varphi \lor (\rho_2) \varphi)$
5. $[\rho^*] \varphi \leftrightarrow (\varphi \land [\rho] [\rho^*] \varphi)$
6. $\langle \rho^* \rangle \varphi \leftrightarrow (\varphi \lor (\rho) \langle \rho^* \rangle \varphi)$

We refrain from giving the semantics of LDL [13], since it corresponds to DHT on total traces $\langle T, T \rangle$ [3]. Letting $T, k \models \varphi$ denote the satisfaction of φ by a trace T at point k in LDL, we have $\langle T, T \rangle, k \models \varphi$ iff $T, k \models \varphi$ for $k \in [0..\lambda)$. Accordingly, any total HT-trace $\langle T, T \rangle$ can be seen as the LDL-trace T. As above, we denote infinite and finite trace variants as LDL$_n$ and LDL$_f$, respectively.

The work presented in the sequel takes advantage of the following result that allows us to treat dynamic formulas in occurring in integrity constraints as in LDL:

Proposition 3. For any HT-trace $\langle H, T \rangle$ of length λ and any dynamic formula φ, we have $\langle H, T \rangle, k \models \neg \neg \varphi$ iff $T, k \models \varphi$, for all $k \in [0..\lambda)$.
We now introduce non-monotonicity by selecting a particular set of traces called *temporal equilibrium models*. First, given an arbitrary set \mathcal{S} of HT-traces, we define the ones in equilibrium as follows. A total HT-trace $\langle T, T \rangle \in \mathcal{S}$ is an *equilibrium model* of \mathcal{S} iff there is no other $\langle H, T \rangle \in \mathcal{S}$ such that $H < T$. If this is the case, we also say that trace T is a *stable model* of \mathcal{S}. We further talk about *temporal equilibrium* or *temporal stable models* of a theory Γ when $\mathcal{S} = \text{DHT}(\Gamma)$. We write $\text{DEL}(\Gamma, \lambda)$ and $\text{DEL}(\Gamma)$ to stand for the temporal equilibrium models of $\text{DHT}(\Gamma, \lambda)$ and $\text{DHT}(\Gamma)$ respectively. Note that stable models in $\text{DEL}(\Gamma)$ are also LDL-models of Γ. Besides, as the ordering relation among traces is only defined for a fixed λ, the set of temporal equilibrium models of Γ can be partitioned by the trace length λ, that is, $\bigcup_{\lambda=0}^{\infty} \text{DEL}(\Gamma, \lambda) = \text{DEL}(\Gamma)$.

(Linear) *Dynamic Equilibrium Logic* (DEL; [2, 3]) is the non-monotonic logic induced by temporal equilibrium models of dynamic theories. We obtain the variants DEL_ω and DEL_f by applying the corresponding restriction to infinite or finite traces, respectively.

As a consequence of Proposition 3, the addition of formula $\neg\neg \varphi$ to a theory Γ enforces that every temporal stable model of Γ satisfies φ. With this, we confine ourselves in Section 4 and 5 to LDL_f rather than DEL_f.

In what follows, we consider finite traces only.

3 Automata

A *Nondeterministic Finite Automaton* (NFA; [4]) is a tuple $(\Sigma, Q, Q_0, \delta, F)$, where Σ is a finite nonempty alphabet, Q is a finite nonempty set of states, $Q_0 \subseteq Q$ is a set of initial states, $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function and $F \subseteq Q$ a finite set of final states. A run of an NFA $(\Sigma, Q, Q_0, \delta, F)$ on a word $a_0 \cdots a_{n-1}$ of length n for $a_i \in \Sigma$ is a finite sequence q_0, \cdots, q_n of states such that $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, a_i)$ for $0 \leq i < n$. A run is accepting if $q_n \in F$. Using the structure of a NFA, we can also represent a *Deterministic Finite Automata* (DFA), where Q_0 contains a single initial state and δ is restricted to return a single successor state. A finite word $w \in \Sigma^*$ is accepted by an NFA, if there is an accepting run on w. The language recognized by a NFA A is defined as $L(A) = \{ w \in \Sigma^* \mid A \text{ accepts } w \}$.

An *Alternating Automaton over Finite Words* (AFW; [15, 13]) is a tuple $(\Sigma, Q, q_0, \delta, F)$, where Σ and Q are as with NFAs, q_0 is the initial state, $\delta : Q \times \Sigma \rightarrow B^+(Q)$ is a transition function, where $B^+(Q)$ stands for all propositional formulas built from Q, \land, \lor, \top and \bot, and $F \subseteq Q$ is a finite set of final states.

A run of an AFW $(\Sigma, Q, q_0, \delta, F)$ on a word $a_0 \cdots a_{n-1}$ of length n for $a_i \in \Sigma$, is a finite tree T labeled by states in S such that

1. the root of T is labeled by q_0,
2. if node o at level i is labeled by a state $q \in Q$ and $\delta(q, a_i) = \varphi$, then either $\varphi = \top$ or $P \models \varphi$ for some $P \subseteq Q$ and o has a child for each element in P,
3. the run is accepting if all leaves at depth n are labeled by states in F.

5
A finite word \(w \in \Sigma^* \) is accepted by an AFW, if there is an accepting run on \(w \). The language recognized by an AFW \(\mathfrak{A} \) is defined as \(\mathcal{L}(\mathfrak{A}) = \{ w \in \Sigma^* \mid \mathfrak{A} \text{ accepts } w \} \).

AFWs can be seen as an extension of NFAs by universal transitions. That is, when looking at formulas in \(B^+(Q) \), disjunctions represent alternative transitions as in NFAs, while conjunctions add universal ones, each of which must be followed. In Section 6.2, we assume formulas in \(B^+(Q) \) to be in disjunctive normal form (DNF) and represent them as sets of sets of literals; hence, \(\{\emptyset\} \) and \(\emptyset \) stand for \(\top \) and \(\bot \), respectively.

4 LDL\(_f\) to AFW

This section describes a translation of dynamic formulas in LDL\(_f\) to AFW due to [16]. More precisely, it associates a dynamic formula \(\varphi \) in negation normal form with an AFW \(\mathfrak{A}_\varphi \), whose number of states is linear in the size of \(\varphi \) and whose language \(\mathcal{L}(\mathfrak{A}_\varphi) \) coincides with the set of all traces satisfying \(\varphi \). A dynamic formula \(\varphi \) can be put in negation normal form \(\text{nnf}(\varphi) \) by exploiting equivalences and pushing negation inside, until it is only in front of propositional formulas.

The states of \(\mathfrak{A}_\varphi \) correspond to the members of the closure \(\text{cl}(\varphi) \) of \(\varphi \) defined as the smallest set of dynamic formulas such that [17]

1. \(\varphi \in \text{cl}(\varphi) \)
2. if \(\psi \in \text{cl}(\varphi) \) and \(\psi \) is not of the form \(\neg\psi' \) then \(\neg\psi \in \text{cl}(\varphi) \)
3. if \(\langle p \rangle \psi \in \text{cl}(\varphi) \) then \(\psi \in \text{cl}(\varphi) \)
4. if \(\langle ? \rangle \psi \in \text{cl}(\varphi) \) then \(\psi \in \text{cl}(\varphi) \)
5. if \(\langle \rho_1; \rho_2 \rangle \psi \in \text{cl}(\varphi) \) then \(\langle \rho_1 \rangle \langle \rho_2 \rangle \psi \in \text{cl}(\varphi) \)
6. if \(\langle \rho_1 + \rho_2 \rangle \psi \in \text{cl}(\varphi) \) then \(\langle \rho_1 \rangle \psi \in \text{cl}(\varphi) \) and \(\langle \rho_2 \rangle \psi \in \text{cl}(\varphi) \)
7. if \(\langle \rho^* \rangle \psi \in \text{cl}(\varphi) \) then \(\langle \rho \rangle \langle \rho^* \rangle \psi \in \text{cl}(\varphi) \)

The alphabet of an AFW \(\mathfrak{A}_\varphi \) for a formula \(\varphi \) over \(P \) is \(\Sigma = 2^{P \cup \{\text{last}\}} \). It relies on a special proposition \(\text{last} \) [16], which is only satisfied by the last state of the trace. A finite word over \(\Sigma \) corresponds to a finite trace over \(P \cup \{\text{last}\} \).

\textbf{Definition 2 (LDL}\(_f\) to AFW [16]). Given a dynamic formula \(\varphi \) in negation normal form, the corresponding AFW is defined as

\[\mathfrak{A}_\varphi = (2^{P \cup \{\text{last}\}}, \{q_{\text{nnf}(\phi)} \mid \phi \in \text{cl}(\varphi)\}, q_{\varphi}, \delta, \emptyset) \]

where transition function \(\delta \) mapping a state \(q_{\text{nnf}(\phi)} \) for \(\phi \in \text{cl}(\varphi) \) and an interpretation \(X \subseteq P \cup \{\text{last}\} \) into a positive Boolean formula over the states in \(\{q_{\text{nnf}(\phi)} \mid \phi \in \text{cl}(\varphi)\} \) is defined as follows:
1. $\delta(q_{\top}, X) \overset{\text{def}}{=} \top$
2. $\delta(q_{\bot}, X) \overset{\text{def}}{=} \bot$
3. $\delta(q_a, X) \overset{\text{def}}{=} \begin{cases} \top & \text{if } a \in X \\ \bot & \text{if } a \notin X \end{cases}$
4. $\delta(q_{\neg a}, X) \overset{\text{def}}{=} \begin{cases} \bot & \text{if } a \in X \\ \top & \text{if } a \notin X \end{cases}$

5. $\delta(q_{(\tau)} \varphi, X) \overset{\text{def}}{=} \begin{cases} q_\varphi & \text{if } \text{last} \notin X \\ \bot & \text{if } \text{last} \in X \end{cases}$
6. $\delta(q_{[\tau]} \varphi, X) \overset{\text{def}}{=} \begin{cases} q_\varphi & \text{if } \text{last} \notin X \\ \top & \text{if } \text{last} \in X \end{cases}$

7. $\delta(q_{(\psi)} \varphi, X) \overset{\text{def}}{=} \delta(q_\psi, X) \land \delta(q_\varphi, X)$
8. $\delta(q_{(p_1+p_2)} \varphi, X) \overset{\text{def}}{=} \delta(q_{(p_1)} \varphi, X) \lor \delta(q_{(p_2)} \varphi, X)$
9. $\delta(q_{(p_1:p_2)} \varphi, X) \overset{\text{def}}{=} \delta(q_{(p_1)}(p_2) \varphi, X)$

10. $\delta(q_{(p^*)} \varphi, X) \overset{\text{def}}{=} \begin{cases} \delta(q_\varphi, X) & \text{if } \rho \text{ is a test} \\ \delta(q_\varphi, X) \lor \delta(q_{(p^*) \varphi}, X) & \text{otherwise} \end{cases}$
11. $\delta(q_{(\psi^*)} \varphi, X) \overset{\text{def}}{=} \delta(q_\varphi, X)$
12. $\delta(q_{(\psi^*)} \varphi, X) \overset{\text{def}}{=} \delta(q_{\exists \psi(\neg \psi)}, X) \lor \delta(q_\varphi, X)$
13. $\delta(q_{(p_1+p_2)} \varphi, X) \overset{\text{def}}{=} \delta(q_{(p_1)} \varphi, X) \land \delta(q_{(p_2)} \varphi, X)$
14. $\delta(q_{(p_1:p_2)} \varphi, X) \overset{\text{def}}{=} \delta(q_{(p_1)}(p_2) \varphi, X)$

15. $\delta(q_{(p^*)} \varphi, X) \overset{\text{def}}{=} \begin{cases} \delta(q_\varphi, X) & \text{if } \rho \text{ is a test} \\ \delta(q_\varphi, X) \land \delta(q_{(p^*) \varphi}, X) & \text{otherwise} \end{cases}$
16. $\delta(q_{(\psi^*)} \varphi, X) \overset{\text{def}}{=} \delta(q_\varphi, X) \land \delta(q_{(\psi^*) \varphi}, X)$
17. $\delta(q_{(\psi^*)} \varphi, X) \overset{\text{def}}{=} \delta(q_\varphi, X)$

Note that the resulting automaton lacks final states. This is compensated by the dedicated proposition last. All transitions reaching a state, namely $\delta(q_{(\tau)} \varphi, X)$ and $\delta(q_{(\psi)} \varphi, X)$, are subject to a condition on last. So, for the last interpretation $X \cup \{\text{last}\}$, all transitions end up in \top or \bot. Hence, for acceptance, it is enough to ensure that branches reach \top.

As an example, consider the formula, φ,

$$
\langle (\langle \tau^* \rangle b) ? ; \tau \rangle a = \Box b \land Oa,
$$

(1)

stating that b always holds and a is true at the next step. The AFM for φ is $\mathfrak{A}_\varphi = \langle Q_{\varphi}^{a,b,\text{last}}, Q^+ \cup Q^-, \delta, \emptyset \rangle$, where

$$
Q^+ = \{ q_{(\langle \tau^* \rangle b) ? ; \tau \rangle a} , q_{(\langle \tau^* \rangle b) ? ; \tau \rangle a} , q_{(\tau^* b) ? ; \tau \rangle a} , q_{\tau^* b} , q_{\tau^* \psi} , q_{\tau^* a} , q_{\tau^*} \}
$$

and Q^- contains all states stemming from negated formulas in Q^+; all these are unreachable in our case. The alternating automaton can be found in Figure [1]
5 Translating LDL\(_f\) to MSO

It is well-known that while LTL and LTL\(_f\) can be encoded into first-order logic, the case of LDL and LDL\(_f\) is rather different. The encoding of LDL\(_f\) requires the translation of path expressions of the type \(\rho^*\) (the reflexive, transitive closure of a relation), which is not first-order representable.

This is why we need to consider a more expressive formalism and Monadic Second Order (MSO) of Linear Order \([18]\) (MSO(<)) will be our target logic. This logic enhances monadic first-order logic of linear order \([19]\) with second order quantification.

5.1 Monadic Second-order of Linear Order

Let \(\mathcal{P}\) be an input alphabet, \(\mathcal{V}_1\) be a set of first-order variables denoted by bolded lowercase letters and a set \(\mathcal{V}_2\) of second-order variables usually denoted by bolded uppercase letters.

Well-formed formulas of MSO(<) are defined according to the following syntax:

\[
\varphi := X(x) \mid x < y \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x. \varphi \mid \exists X \varphi.
\]

where \(x, y \in \mathcal{V}_1\) and \(X \in \mathcal{V}_2\).

The following abbreviations involving logical formulas and orders are valid:

\(^1\)By abuse of notation, we use the symbol \(\mathcal{P}\) as for the set of propositional variables in LDL\(_f\), since they will be translated into elements of the alphabet.
\(\forall \varphi \land \psi \iff \neg(\neg\varphi \lor \neg\psi) \)

\(\forall \varphi \iff \psi \iff \neg\varphi \lor \psi \)

\(\varphi \iff \psi \iff (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) \)

\(\forall x \varphi \iff \neg\exists x \neg\varphi \)

\(x \geq y \iff \neg(x < y) \)

\(x \leq y \iff y \geq x \)

\(x = y \iff (x \leq y) \land (y \leq x) \)

\(x > y \iff \neg(x = y) \)

Moreover, the following abbreviations involving first-order and second-order variables will be used along this section.

\[
\text{succ}(x, y) \iff x < y \land \neg \exists z \,(x < z \land z < y)
\]

\[
\text{first}(x) \iff \neg \exists y \,(y < x)
\]

\[
\text{last}(x) \iff \neg \exists y \,(y > x)
\]

\[
\text{bound}(X, w, v) \iff \forall r(X(r) \rightarrow (w \leq r \land r \leq v))
\]

\[
X \subseteq Y \iff \forall x \,(x \in X \rightarrow x \in Y)
\]

A MSO(\(<\)) formula is interpreted over a trace \(T \) of length \(\lambda \) with respect to two assignments \(v_1 : \mathcal{V}_1 \mapsto \{0, \ldots, \lambda - 1\} \) and \(v_2 : \mathcal{V}_2 \mapsto 2^{\{0, \ldots, \lambda - 1\}} \). Notice that \(v_1 \) maps every first-order variable in \(\mathcal{V}_1 \) into a position in \(T \) while \(v_2 \) maps each second order variable of \(\mathcal{V}_2 \) to a set of positions in \(T \). Given a second-order assignment \(v_2 \), by \(v_2[X := D] \) we refer to an extension of \(v_2 \) obtained by assigning to the second-order variable \(X \) the set \(D \subseteq \{0, \ldots, \lambda - 1\} \). For the case of a first-order assignment \(v_1 \), by \(v_1[x := d] \) we refer to an extension of \(v_1 \) obtained by assigning to the first-order variable \(x \) the value \(d \in \{0, \ldots, \lambda - 1\} \).

Definition 3 (MSO(\(<\)) satisfaction). A trace \(T \) of length \(\lambda \) satisfies a MSO(\(<\)) formula \(\varphi \) wrt. assignments \(v_1 \) and \(v_2 \), written as \(T, v_1, v_2 \models \varphi \) if the following conditions hold:

1. \(T, v_1, v_2 \models X(x) \iff v_1(x) \in v_2(X) \)
2. \(T, v_1, v_2 \models x < y \iff v_1(x) < v_1(y) \)
3. \(T, v_1, v_2 \models \neg \varphi \iff T, v_1, v_2 \not\models \varphi \)
4. \(T, v_1, v_2 \models \varphi \land \psi \iff T, v_1, v_2 \models \varphi \) and \(T, v_1, v_2 \models \psi \)
5. \(T, v_1, v_2 \models \varphi \lor \psi \iff T, v_1, v_2 \models \varphi \) or \(T, v_1, v_2 \models \psi \)
6. \(T, v_1, v_2 \models \varphi \rightarrow \psi \iff T, v_1, v_2 \not\models \varphi \) or \(T, v_1, v_2 \models \psi \)
7. \(T, v_1, v_2 \models \exists x \varphi \iff T, v_1[x := d], v_2 \models \varphi \) for some \(0 \leq d < \lambda \)
8. \(T, v_1, v_2 \models \forall x \varphi \iff T, v_1[x := d], v_2 \models \varphi \) for all \(0 \leq d < \lambda \)
9. \(T, v_1, v_2 \models \exists X \varphi \iff T, v_1, v_2[X := D] \models \varphi \) for some \(D \in 2^{\{0, \ldots, \lambda - 1\}} \)
10. \(T, v_1, v_2 \models \forall X \varphi \iff T, v_1, v_2[X := D] \models \varphi \) for all \(D \in 2^{\{0, \ldots, \lambda - 1\}} \)
5.2 Standard Translation

In this subsection we extend the so called standard translation of LTL [13] to the case of LDL. In order to represent \(\rho^*\), first-order logic can be equipped with countable infinite disjunctions as proposed in [20]. Conversely, we use a second order quantified predicate \(X\) to capture the points where path expressions are satisfied in a trace. As in [20] our standard translation is defined in terms of two translations \(ST_m\) and \(ST_p\) for dynamic formulas and paths, respectively.

Definition 4 (LDL Standard Translation). Given a dynamic formula \(\varphi\) and a free variable \(w\) representing the time point in which \(\varphi\) is evaluated, \(ST_m\) is defined as follows:

1. \(ST_m(w, p) \stackrel{\text{def}}{=} P(w)\)
2. \(ST_m(w, \top) \stackrel{\text{def}}{=} \top\)
3. \(ST_m(w, \bot) \stackrel{\text{def}}{=} \bot\)
4. \(ST_m(w, [p] \varphi) \stackrel{\text{def}}{=} \forall v(ST_p(wv, p) \rightarrow ST_m(v, \varphi))\)
5. \(ST_m(w, \langle p \rangle \varphi) \stackrel{\text{def}}{=} \exists v(ST_p(wv, p) \land ST_m(v, \varphi))\)

The translation for paths \(ST_p\) takes as inputs a path expression \(\rho\) and two free variables \(w\) and \(v\) meaning that \(\rho\) is satisfied between the time points \(w\) and \(v\), defined as follows:

6. \(ST_p(wv, \tau) \stackrel{\text{def}}{=} v = w + 1\)
7. \(ST_p(wv, \varphi?) \stackrel{\text{def}}{=} ST_m(w, \varphi) \land w = v\)
8. \(ST_p(wv, \rho_1 \lor \rho_2) \stackrel{\text{def}}{=} ST_p(wv, \rho_1) \lor ST_p(wv, \rho_2)\)
9. \(ST_p(wv, \rho_1; \rho_2) \stackrel{\text{def}}{=} \exists u(ST_p(wu, \rho_1) \land ST_p(uv, \rho_2))\)
10. \(ST_p(wv, \rho^*) \stackrel{\text{def}}{=} \exists X(X(w) \land X(v) \land \text{bound}(X, w, v) \land \text{regular}(X))\)

where \(\text{bound}(X, w, v)\) is defined in Subsection 5.1 and

\[\text{regular}(X) \stackrel{\text{def}}{=} \forall x, y ((\text{succ}(x, y) \land X(x) \land X(y)) \rightarrow ST_p(xy, \rho)).\]

Let \(T\) be a trace of length \(\lambda\) and let \(v_2\) be an assignment such that each \(p \in P, v_2(P) = \{x \mid p \in T_x\}\). With this definition we can prove the model correspondence stated in the following theorem.

Theorem 1. Let \(\varphi\) be a dynamic formula. Then, for any trace \(T\) of length \(\lambda; k, d \in [0, \lambda)\) and free variables \(x, y\), we have

1. \(T, k \models \varphi\) iff \(T, v_1[x := k], v_2 \models ST_m(x, \varphi)\)
2. \((k, d) \in \|\rho\|T\) iff \(T, v_1[x := k, y := d], v_2 \models ST_p(xy, \rho)\)
As an example, the standard translation of the formula \(\varphi = (([\tau^*] b) \land \tau) a \) with respect to the free variable \(t \) is

\[
ST_m(t, \varphi) = \exists v_0(\exists v_1(\forall v_2(\exists X(X(t) \land X(v_2)) \land \\
\forall x, y((X(x) \land X(y) \land \text{succ}(x, y)) \\
\rightarrow (y = x + 1))) \\
\rightarrow b(v_2)) \land (v_0 = v_1 + 1) \land a(v_0))
\]

5.3 Monadic Second Order Encoding

In this subsection we provide an alternative translation into (\(\text{MSO}(\prec) \)) where the second-order encoding consists of a sequence of existential monadic second-order quantifiers followed by a single universal first-order quantifier. We extend the translation in \([21]\) from LTL\(_f \) to the case of LDL\(_f \) based on the notion of Fisher-Ladner closure \([17]\).

Definition 5 (LDL\(_f\) Monadic Second Order Encoding). Given a dynamic formula \(\varphi \) and a free variable \(t \), \(\text{mso}(t, \varphi) \) states the truth of \(\varphi \) at \(t \) as follows:

\[
\text{mso}(t, \varphi) \overset{\text{def}}{=} (\exists Q_{\theta_0} \cdots \exists Q_{\theta_m}(Q_{\varphi}(t) \land (\forall x (\land_{i=0}^m t(\theta_i, x)))))
\]

where, \(\theta_i \in \text{cl}(\varphi) \), \(Q_{\theta_i} \) is a fresh predicate name and \(t(\theta_i, x) \) asserts the truth of every non-atomic subformula \(\theta_i \) in \(\text{cl}(\varphi) \) at time point \(x \), imitating the semantics of LDL\(_f\), provided in Table 1.

\(\mu \in \text{cl}(\varphi) \)	\(t(\mu, x) \)
\(\neg \psi \)	\(Q_{\mu}(x) \leftrightarrow \neg Q_{\psi}(x) \)
\((\tau) \psi \)	\(Q_{\mu}(x) \leftrightarrow (\exists y (y = x + 1 \land (Q_{\psi}(y)))) \)
\((\mu^?) \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{\mu}(x) \land Q_{\psi}(x)) \)
\((\rho_1 + \rho_2) \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{(\rho_1)}(x) \lor Q_{(\rho_2)}(x)) \)
\((\rho_1; \rho_2) \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{(\rho_2)}(x) \land Q_{(\rho_1)}(x)) \)
\(\tau \psi \)	\(Q_{\mu}(x) \leftrightarrow (\forall y (y = x + 1 \rightarrow (Q_{\psi}(y)))) \)
\(\mu^2 \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{\mu}(x) \rightarrow Q_{\psi}(x)) \)
\((\rho_1; \rho_2) \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{(\rho_2)}(x) \land Q_{(\rho_1)}(x)) \)
\([\rho_1; \rho_2] \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{(\rho_2)}(x) \land Q_{(\rho_1)}(x)) \)
\([\rho^*] \psi \)	\(Q_{\mu}(x) \leftrightarrow (Q_{\psi}(x) \land Q_{(\rho^*)}(x)) \)

Table 1: MSO Translation for subformulas in the closure.

Let \(T \) be a trace of length \(\lambda \) and let \(v_2 \) be a second-order assignment such that for each \(p \in \mathcal{P}, v_2(P) = \{ x \mid p \in T_x \} \). With this definition we can prove the model correspondence stated in the following theorem.
Theorem 2. Let φ be a dynamic formula. Then, for any trace T of length λ and time point $k \in [0, \lambda)$, we have that $T, k \models \varphi$ iff $T, v_1[t := k], v_2 \models \text{mso}(t, \varphi)$.

For instance, given $\varphi = \langle ([\tau^*]b) ? ; \tau \rangle a$,

$$\text{mso}(t, \varphi) = \exists Q_0 \exists Q_1 \exists Q_2 \exists Q_3 \exists Q_4 (Q_0(t) \land \forall x \left(\right. (\land_{i=0}^{4} t(\mu_i, x)),$$

where each $t(\mu_i, x)$ is defined in Table 2.

Q_μ	$\mu \in \text{cl}(\varphi)$	$t(\mu, x)$
Q_0	$([\tau^*]b) ? ; \tau \rangle a$	$Q_0(x) \leftrightarrow Q_1(x)$
Q_1	$([\tau^*]b) ? ; \tau \rangle a$	$Q_1(x) \leftrightarrow Q_4(x) \land Q_2(x)$
Q_2	$\tau^* b$	$Q_2(x) \leftrightarrow Q_0(x) \land Q_3(x)$
Q_3	$\tau \tau^* b$	$Q_3(x) \leftrightarrow \forall v \ v = x + 1 \rightarrow Q_2(v)$
Q_4	$\langle \tau \rangle a$	$Q_4(x) \leftrightarrow \exists v \ v = x + 1 \land Q_a(v)$

Table 2: MSO Translation for non atomic subformulas of φ.

6 Using automata for implementing dynamic constraints

Our goal is to investigate alternative ways of implementing constraints imposed by dynamic formulas. To this end, we pursue three principled approaches:

(3) Tseitin-style translation into regular logic programs,

(2) ASP-based translation into alternating automata,

(2) MONA-based translation into deterministic automata, using M_m and M_s for the Monadic Second Order Encoding and the Standard Translation, respectively.

These alternatives are presented in our systems’ workflow from Figure 4.

The common idea is to compute all fixed-length traces, or plans, of a dynamic problem expressed in plain ASP (in files $<$ins$>.lp$ and $<$enc$>.lp$) that satisfy the dynamic constraints in $<$dyncon$>.lp$. All such constraints are of form :- not φ. which is the logic programming representation of the formula $\neg \neg \varphi$. Note that these constraints may give rise to even more instances after grounding. The choice of using plain ASP rather than temporal logic programs, as used in telingo [6, 10], is motivated by simplicity and the possibility of using existing ASP benchmarks.

For expressing dynamic formulas all three approaches rely on clingo’s theory reasoning framework that allows for customizing its input language with theory-specific language constructs that are defined by a theory grammar [5]. The part telingo uses for dynamic formulas is given in Listing 1.

The source code can be found in https://github.com/potassco/atlingo v1.0.
Figure 4: Workflows of our framework. Elements in yellow correspond to user input, green ones are automatically generated, and red ones are provided by the system to solve the problem.

Listing 1: Theory specification for dynamic formulas (grammar.lp)

```
#theory del {
  formula_body {
    & : 7, unary; ~ : 5, unary;
    ? : 4, unary; * : 3, unary; + : 2, binary, left; ;; : 1, binary, left;
    . >? : 0, binary, right; . >* : 0, binary, right
  };
  &del/0 : formula_body, body
}
```

The grammar contains a single theory term definition for `formula_body`, which consists of terms formed from the theory operators in Line 3 to 5 along with basic `gringo` terms. More specifically, & serves as a prefix for logical constants, eg. &true and &t stand for \top and τ, while ~ stands for negation. The path operators ?, ? , +, ; are represented by ?, *, +, ;, where ? and * are used as prefixes, and the binary dynamic operators ⟨⟩ and ⟦⟧ by . >? and . >*, respectively (extending `telingo`’s syntax >> and >> for unary temporal operators \Diamond and \Box). Such theory terms can be used within the set associated with the (zero-ary) theory predicate &del/0 defined in Line 7 (cf. 8). Since we impose our dynamic constraints
through integrity constraints, we restrict the occurrence of corresponding atoms to rule bodies, as indicated by the keyword `body`. The representation of our running example `\langle(\tau^* b) ; \tau \rangle a` as an integrity constraint is given in Listing 2.

\[:- \text{not} \text{ del} \{ ? (* \&t .>* b) ; ; \&t .>* a \} . \]

Listing 2: Representation of `←\neg \langle(\tau^* b) ; \tau \rangle a` from (1) (`delex.lp`)

Once such a dynamic formula is parsed by `gringo`, it is processed in a different way in each workflow. At the end, however, each workflow produces a logic program that is combined with the original dynamic problem in `<ins>.lp` and `<enc>.lp` and handed over to `clingo` to compute all traces of length `lambda` satisfying the dynamic formula(s) in `<dyncon>.lp`. We also explored a translation from the alternating automata generated in `A` into an NFA using both ASP and python. This workflow, however, did not show any interesting results, hence, due to space limitations it is omitted.

6.1 Tseitin-style translation into logic programs

The leftmost part of the workflow in Figure 4 relies on `telingo`'s infrastructure [6, 10]: Once grounded, a dynamic formula is first translated into a temporal formula (`ldlf2ltlf.py`), which is then translated into a regular logic program (`ltlf2lp.py`). These translations heavily rely on the introduction of auxiliary variables for subformulas, a technique due to Tseitin [22]. In this way, all integrity constraints in `<dyncon>.lp` get translated into the ground program `program.lp`. In the worst case, this program consists of `lambda` copies of the translated constraint. This approach is detailed in [10, 11].

6.2 ASP-based translation into alternating automata

The approach illustrated in the middle of Figure 4 follows the construction in Section 4. More precisely, it builds the AFW `A_ϕ` for each ground constraint `\neg \neg \phi` by taking advantage of Proposition 3. Notably, the approach is fully based on ASP and its meta-programming capabilities: It starts by reifying each `\neg \neg \phi` into a set of facts, yielding the single file `reified.lp`. These facts are then turned into one or more AFW `A_ϕ` through logic program `ldlf2afw.lp`. In fact, each `A_ϕ` is once more represented as a set of facts, gathered in file `afw.lp` in Figure 4. Finally, the encoding in `run.lp` makes sure that the trace produced by the encoding of the original dynamic problem is an accepted run of `A_ϕ`.

In what follows, we outline these three steps using our running example.

The dynamic constraint in Listing 2 is transformed into a set of facts via `gringo`'s reification option `--output=reify`. The facts provide a serialization of the constraint’s abstract syntax tree following the `aspif` format [8]. Among the 42 facts obtained from Listing 2 we give the ones representing subformula `\tau^* b`, or `* \&t .>* b`, in Listing 3. `Gringo`’s reification format uses integers to identify substructures and to tie them together. For instance, the whole expression

\[^\text{Filenames are of indicative nature only.}\]
Listing 3: Facts 11-20 obtained by a call akin to `gringo --output=reify grammar.lp delex.lp > reified.lp`

'* &t .>* b' is identified by 11 in Line 20. Its operator '.>*' is identified by 4 and both are mapped to each other in Line 16. The two arguments '* &t' and 'b' are indirectly represented by tuple 2 in Line 17-19 and identified by 9 and 10, respectively. While 'b' is directly associated with 10 in Line 15, '* &t' is further decomposed in Line 14 into operator '*' (cf. Line 11) and its argument '&t'. The latter is captured by tuple 1 but not further listed for brevity.

The reified representation of the dynamic constraint in Listing 2 is now used to build the AFW in Figure 1 in terms of the facts in Listing 4. As shown in

Listing 4: Generated facts representing the AFW in Figure 1 (afw.lp)

Figure 4, the facts in afw.lp are obtained by applying clingo to ldlf2afw.lp and reified.lp, the facts generated in the first step.

An automaton A_φ is represented by the following predicates:

- **prop/2**, providing a symbol table mapping integer identifiers to atoms,
• state/2, providing states along with their associated dynamic formula;
 the initial state is distinguished by initial_state/1, and
• delta/2,3,4, providing the automaton’s transitions.

The symbol table in Line 1 to 3 in Listing 4 is directly derived from the reified format. In addition, the special proposition last is associated with the first available identifier. The interpretations over a, b, last constitute the alphabet of the automaton at hand.

More efforts are needed for calculating the states of the automaton. Once all relevant symbols and operators are extracted from the reified format, they are used to build the closure cl(ϕ) of ϕ in the input and to transform its elements into negation normal form. In the final representation of the automaton, we only keep reachable states and assign them a numerical identifier. The states in Line 4 to 5 correspond to the ones labeled \(q_\varphi \), \(q_a \) and \(q_\square b \) in Figure 1.

The transition function is represented by binary, ternary, and quaternary versions of predicate delta. The representation is centered upon the conjunctions in the set representation of the DNF of \(\delta(q, X) \) (cf. Section 3). Each conjunction C represents a transition from state Q and is captured by \(\text{delta}(Q, C, Q') \). An atom of form \(\text{delta}(Q, C, Q') \) indicates that state \(Q' \) belongs to conjunction C and \(\text{delta}(Q, C, T, A) \) expresses the condition that either \(A \in X \) or \(A \notin X \) depending on whether \(T \) equals in or out, respectively. The binary version of \(\text{delta} \) is needed since there may be no instances of the ternary and quaternary ones.

The facts in Line 8 to 9 in Listing 4 capture the only transition from the initial state in Figure 1, viz. \(\delta(q_\varphi, X) = \{\{q_\square b, q_a\}\} \). Both the initial state and the transition are identified by 0 in Line 8. Line 8 also gives the conditions last \(\notin X \) and \(b \in X \) needed to reach the successor states given in Line 9. Line 10 accounts for \(\delta(q_a, X) = \{\emptyset\} \), reaching \(\top \) (ie., an empty set of successor states) from \(q_a \) provided \(a \in X \). We encounter two possible transitions from state 2, or \(q_{[\tau^*]b} \). Transition 0 in Line 11 to 12 represents the loop \(\delta(q_{[\tau^*]b}, X) = \{\{q_{[\tau^*]b}\}\} \) for last \(\notin X \) and \(b \in X \), while transition 1 in Line 13 captures \(\delta(q_{[\tau^*]b}, X) = \{\emptyset\} \) that allows us to reach \(\top \) whenever \(\{\text{last}, b\} \subseteq X \).

Finally, the encoding in Listing 5 checks whether a trace is an accepted run of a given automaton. We describe traces using atoms of form \(\text{trace}(A, T) \), stating that the atom identified by A is true in the trace at time step T. Although

1 node(Q,0) :- initial_state(Q).
2 { select(C,Q,T): delta(Q,C) } = 1 :- node(Q,T), T<=lambda-1.
3 node(Q’,T+1) :- select(C,Q,T), delta(Q,C,Q’).
4 :- select(C,Q,T), delta(Q,C,in,A), not trace(A,T).
5 :- select(C,Q,T), delta(Q,C,out,A), trace(A,T).

Listing 5: Encoding defining the accepted runs of an automaton (run.lp).
such traces are usually provided by the encoding of the dynamic problem at hand, the accepted runs of an automaton can also be enumerated by adding a corresponding choice rule. In addition, the special purpose atom `last` is made true in the final state of the trace.

For verifying whether a trace of length λ is accepted, we build the tree corresponding to a run of the AFW on the trace at hand. This tree is represented by atoms of form `node(S,T)`, indicating that state S exists at depth/time T. The initial state is anchored as the root in Line 1. In turn, nodes get expanded by depth by selecting possible transitions in Line 3. The nodes are then put in place by following the transition of the selected conjunction in Line 5. Lines 7 and 8 verify the conditions for the selected transition.

6.3 MONA-based translation into deterministic automata

The rightmost part of the workflow in Figure 4 relies on our translations of dynamic formulas into MSOs in Section 5. We use the off-the-shelf tool MONA\(^5\)\[9\] to translate the resulting MSO formulas into DFAs. More precisely, we use clingo’s API to transform each dynamic constraint $\neg\neg \phi$ in `<dyncon>.lp` either into MSO formula $\text{mso}(0, \varphi)$ or $\text{stm}(0, \varphi)$. This results in a file `mso.mona` in MONA’s syntax, which is then turned by MONA into a corresponding DFA in `dot` format. All these automata are then translated into facts and gathered in `dfa.lp` (Listing 6) in the same format as used for AFWs. The encoding in Listing 5 can be used to find accepted runs of DFAs by adding the following integrity constraint ensuring that runs end in a final state.

```prolog
:- node(Q,lambda), not final_state(Q).
```

![DFA automata computed by MONA for φ](image)

Figure 5: DFA automata computed by MONA for φ.

1 prop(0,"a").
2 prop(1,"b").
3 prop(2,"last").

\(^4\)Note that we do not need to represent the edges between nodes as their depth is indicative enough for the acceptance. In the literature, runs of AFW are often represented using directed acyclic graphs instead of trees.

\[^5^\]https://www.brics.dk/mona

17
7 Evaluation

For our experimental studies, we use benchmarks from the domain of robotic intra-logistics stemming from the asprilo framework [23]. As illustrated in Figure 6 and 7, we consider grids of size 7×7 with $n \in \{2, 3\}$ robots and $n \times 2$ orders of single products, each located on a unique shelf. At each timestep, a robot can: (i) move in a direction (ii) pickup a shelf (iii) putdown a shelf or (iv) wait. Moreover, a robot will deliver an order if it waits at a picking station while carrying a shelf. The goal is to take each shelf to a picking station; in an optimal plan (wrt. trace length) each robot processes two orders.

We consider three different dynamic constraints. The first one restricts plans such that if a robot picks up a shelf, then it must move or wait several times until the shelf is delivered. This is expressed by the dynamic formula φ_1 and
represented in Listing 7 were pickup\textsubscript{s} and deliver\textsubscript{s} refer to a specific shelf.

\[\varphi_1 = [\tau^*] [\text{pickup}\textsubscript{s}?] (\tau; (\text{move}? + \text{wait}?))^{\ast}; \text{deliver}\textsubscript{s}? \top \]

The second one, \(\varphi_2 \), represents a procedure where robots must repeat a sequence

\[
\begin{align*}
\text{Listing 7: Dynamic constraint for formula } \varphi_1. \\
\end{align*}
\]

in which they move towards a shelf, pickup, move towards a picking station, deliver, move to the dropping place and putdown, and finish with waiting until the end of the trace; it is represented in Listing 8.

\[\varphi_2 = ((\text{move}\ast; \text{pickup}\ast; \text{move}\ast; \text{deliver}; \text{move}\ast; \text{putdown})\ast; \text{wait}\ast) \mathcal{F} \]

For our last constraint we use the dynamic formula \(\varphi_3 \) given in Listing 9. This

\[
\begin{align*}
\text{Listing 8: Dynamic constraint for formula } \varphi_2. \\
\end{align*}
\]

corresponds to a procedure similar to \(\varphi_2 \) but which relies on a predefined pattern, restricting the direction of movements with move\textsubscript{r}, move\textsubscript{l}, move\textsubscript{u} and move\textsubscript{d} to refer to moving right, left, up and down, respectively. We use the path \(\rho = (\text{move}\textsubscript{r}\ast + \text{move}\textsubscript{l}\ast) \) so that robots only move in one horizontal direction. Additionally, each iteration starts by waiting so that whenever a robot starts moving, it fulfills the delivery without intermediate waiting.

\[\varphi_3 = ((\text{wait}\ast; \rho; \text{move}\textsubscript{u}\ast; \text{pickup}; \rho; \text{move}\textsubscript{u}\ast; \text{deliver}; \rho; \text{move}\textsubscript{d}\ast; \text{putdown})\ast; \text{wait}\ast) \mathcal{F} \]

We use these constraints to contrast their implementations by means of our workflows \(\mathcal{A}, \mathcal{S}, \mathcal{M}_m \) and \(\mathcal{M}_s \) with \(\lambda \in \{25, \ldots, 31\} \), while using the option of

\(^6 \)We start repetitions with \(\tau \) as \&t, to cope with movements in asprilo starting at time point 1.
having no constraint, namely NC, as a baseline. The presented results ran using clingo 5.4.0 on an Intel Xeon E5-2650v4 under Debian GNU/Linux 9, with a memory of 20 GB and a timeout of 20 min per instance. All times are presented in milliseconds and any time out is counted as 1 200 000 ms in our calculations.

We first compare the size of the automata in Table 3 in terms of the instances of predicates state/2 and delta/2. We see that A generates an exponentially smaller automata, a known result from the literature [24]. More precisely, for \(\varphi_3 \) the number of transitions in \(M_s \) is 90 times larger than for \(A \). Furthermore, for this constraint, \(M_m \) reached the limit of nodes for MONA's BDD-based architecture, thus producing no result. This outcome is based on the fact that the MSO formulas computed by \(M_m \) are significantly larger than those of \(M_s \).

Next, we give the preprocessing times obtained for the respective translations in Table 4. For the automata-based approaches \(A, M_m \) and \(M_s \), the translation is only performed once and reused in subsequent calls, whereas for \(T \) the translation is redone for each horizon. The best performing approach is \(A \), for the subsequent calls the times were very similar with the exception of \(T \). We see how for \(\varphi_2 \) the \(M_m \) translation takes considerably longer than for \(M_s \).

The results of the final solving step in each workflow are summarized in Table 5, showing the geometric mean over all horizons for obtaining a first solution. First of all, we observe that the solving time is significantly lower when using dynamic constraints, no matter which approach is used. For \(\varphi_1 \)
Table 3: Automata size for the 3 robots instance showing the number of appearances of each atom.

φ_i	predicate	A	M_m	M_s
φ_1	state/2	36	72	72
	delta/2	162	234	216
φ_2	state/2	24	51	51
	delta/2	60	390	471
φ_3	state/2	45	-	372
	delta/2	189	-	16 503

Table 4: Pre-processing time in milliseconds shown as t_1/t_2 were t_1 is the time for the first horizon and t_2 the average over subsequent calls.

φ_i	#r	A	M_m	M_s	T	NC
φ_1	2	194/637	5412/638	5867/604	27992	306/598
	3	1991/600	6280/671	6780/610	3390/369	302/617
φ_2	2	2182/579	33091/661	4966/598	2107/2814	285/577
	3	1632/608	45303/665	4973/604	2718/3179	318/631
φ_3	2	2533/599	-	12682/766	3343/3280	261/605
	3	3112/600	-	11001/795	3278/3718	272/598

Table 5: Statistics computed by calculating the geometric mean of all horizons.

φ_i	#r	A	M_m	M_s	T	NC	
clingo time	φ_1	2	3374	2788	2975	3033	21 823
	3	23173	27866	27505	23748	249 737	
	2	10840	9424	9484	9347	21 378	
	3	70709	58739	83521	60765	246 739	
	2	31986	-	606914	16 145	21 548	
	3	67287	-	657633	48 190	247 718	
	2	274851	-	2743736	264 847	241 752	
	3	89282	97396	97404	96793	77 832	
	3	172641	196220	190943	189637	147 209	
rules	φ_2	2	84180	122003	126634	90178	77 832
	3	157525	214454	229063	166391	147 209	
	2	94653	-	4413056	102687	77 832	
	3	173210	-	3360382	185155	147 209	
constraints	φ_1	2	146999	146323	146306	140 801	132 370
	3	275747	274419	274382	260 675	241 752	
	φ_2	2	138418	166449	171796	139909	132 370
	3	252023	295946	308204	254020	241 752	
	φ_3	2	153179	-	3341017	147 123	132 370
and φ_2 the difference is negligible, whereas for φ_3, \mathcal{I} is the fastest, followed by \mathcal{A}, which is in turn twenty and ten times faster than \mathcal{M}_s for 2 and 3 robots, respectively. Furthermore, \mathcal{M}_s times out for φ_3 with $\lambda = 31$ and $\lambda \in \{30, 31\}$ for 2 and 3 robots, respectively. The size of the program before and after clingo’s preprocessing can be read off the number of ground rules and internal constraints, with \mathcal{A} having the smallest size of all approaches. However, once the program is reduced the number of constraints shows a slight shift in favour of \mathcal{I}.

8 Discussion

To the best of our knowledge, this work presents the first endeavor to represent dynamic constraints with automata in ASP. The equivalence between temporal formulas and automata has been widely used in satisfiability checking, model checking, learning and synthesis [24, 25, 26, 27]. Furthermore, the field of planning has benefited from temporal reasoning to express goals and preferences using an underlying automaton [28, 29, 30]. There exists several systems that translate temporal formulas into automata: SPOT [31] and LTLf2DFA\(^7\) for linear temporal logic; abstem [32] and stelp [33] for temporal answer set programming. Nonetheless, there have only been a few attempts to use automata-like definitions in ASP for representing temporal and procedural knowledge inspired from GOLOG programs [34, 35].

We investigated different automata-based implementations of dynamic (integrity) constraints using clingo. Our first approach was based on alternating automata, implemented entirely in ASP through meta-programming. For our second approach, we employed the off-the-shelf automata construction tool MONA [9] to build deterministic automata. To this aim, we proposed two translations from dynamic logic into monadic second-order logic. These approaches were contrasted with the temporal ASP solver telingo which directly maps dynamic constraints to logic programs. We provided an empirical analysis demonstrating the impact of using dynamic constraints to select traces among the ones induced by an associated temporal logic program. Our study showed that the translation using solely ASP to compute an alternating automata yielded the smallest program in the shortest time. While this approach scaled well for more complex dynamic formulas, the MONA-based implementation performed poorly and could not handle one of our translations into second order formulas. The best overall performance was exhibited by telingo with the fundamental downside of having to redo the translation for each horizon.

Our future work aims to extend our framework to arbitrary dynamic formulas in DEL\(_f\). Additionally, the automaton’s independence of time stamps points to its potential to detect unsatisfiability and to guide an incremental solving process. Finally, we also intend to take advantage of clingo’s application programming interface to extend the model-ground-solve workflow of ASP with automata techniques.

\(^7\)https://github.com/whitemech/LTLf2DFA
References

[1] V. Lifschitz. Answer set planning. In D. de Schreye, editor, *Proceedings of the International Conference on Logic Programming (ICLP’99)*, pages 23–37. MIT Press, 1999.

[2] A. Bosser, P. Cabalar, M. Diéguez, and T. Schaub. Introducing temporal stable models for linear dynamic logic. In M. Thielscher, F. Toni, and F. Wolter, editors, *Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR’18)*, pages 12–21. AAAI Press, 2018.

[3] P. Cabalar, M. Diéguez, and T. Schaub. Towards dynamic answer set programming over finite traces. In Balduccini et al. [36], pages 148–162.

[4] J. Hopcroft and J Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, 1979.

[5] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal. Temporal equilibrium logic: a survey. *Journal of Applied Non-Classical Logics*, 23(1-2):2–24, 2013.

[6] P. Cabalar, R. Kaminski, T. Schaub, and A. Schuhmann. Temporal answer set programming on finite traces. *Theory and Practice of Logic Programming*, 18(3-4):406–420, 2018.

[7] P. Cabalar, M. Diéguez, T. Schaub, and A. Schuhmann. Towards metric temporal answer set programming. *Theory and Practice of Logic Programming*, 20(5):783–798, 2020.

[8] R. Kaminski, T. Schaub, and P. Wanko. A tutorial on hybrid answer set solving with clingo. In G. Ianni, D. Lembo, L. Bertossi, W. Faber, B. Glimm, G. Gottlob, and S. Staab, editors, *Proceedings of the Thirteenth International Summer School of the Reasoning Web*, volume 10370 of *Lecture Notes in Computer Science*, pages 167–203. Springer-Verlag, 2017.

[9] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in practice. volume 1019 of *Lecture Notes in Computer Science*, pages 89–110. Springer-Verlag, 1995.

[10] P. Cabalar, R. Kaminski, P. Morkisch, and T. Schaub. telingo = ASP + time. In Balduccini et al. [36], pages 256–269.

[11] P. Cabalar, M. Diéguez, F. Laferriere, and T. Schaub. Implementing dynamic answer set programming over finite traces. In G. De Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, and J. Lang, editors, *Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI’20)*, volume 325 of *Frontiers in Artificial Intelligence and Applications*, pages 656–663. IOS Press, 2020.
[12] D. Harel, J. Tiuryn, and D. Kozen. *Dynamic Logic*. MIT Press, 2000.

[13] G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic logic on finite traces. In F. Rossi, editor, *Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence (IJCAI’13)*, pages 854–860. IJCAI/AAAI Press, 2013.

[14] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In D. Gabbay and F. Guenthner, editors, *Handbook of Philosophical Logic*, volume 4, pages 99–107. Springer-Verlag, 2001.

[15] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. *Journal of the ACM*, 28(1):114–133, 1981.

[16] G. De Giacomo and M. Vardi. Synthesis for LTL and LDL on finite traces. In Q. Yang and M. Wooldridge, editors, *Proceedings of the Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI’15)*, pages 1558–1564. AAAI Press, 2015.

[17] M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. *Journal of Computer and System Sciences*, 18(2):194–211, 1979.

[18] T. Wolfgang. Languages, automata, and logic. In Grzegorz Rozenberg and Arto Salomaa, editors, *Handbook of Formal Languages, Volume 3: Beyond Words*, pages 389–455. Springer, 1997.

[19] J. Kamp. *Tense Logic and the Theory of Linear Order*. PhD thesis, University of California at Los Angeles, 1968.

[20] H. Jürgen Ohlbach, A. Nonnengart, M. de Rijke, and M. Gabbay. Encoding two-valued nonclassical logics in classical logic. In John Alan Robinson and Andrei Voronkov, editors, *Handbook of Automated Reasoning (in 2 volumes)*, pages 1403–1486. Elsevier and MIT Press, 2001.

[21] S. Zhu, G. Pu, and M. Vardi. First-order vs. second-order encodings for ltl-to-automata translation. volume 11436 of *Lecture Notes in Computer Science*, pages 684–705. Springer-Verlag, 2019.

[22] G. Tseitin. On the complexity of derivation in the propositional calculus. *Zapiski nauchnykh seminarov LOMI*, 8:234–259, 1968.

[23] M. Gebser, P. Obermeier, T. Otto, T. Schaub, O. Sabuncu, V. Nguyen, and T. Son. Experimenting with robotic intra-logistics domains. *Theory and Practice of Logic Programming*, 18(3-4):502–519, 2018.

[24] M. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and G. Birtwistle, editors, *Logics for Concurrency: Structure versus Automata*, volume 1043 of *Lecture Notes in Computer Science*, pages 238–266. Springer-Verlag, 1995.
[25] M. Vardi. Alternating automata: Unifying truth and validity checking for temporal logics. In W. McCune, editor, *Proceedings of the Fourteenth International Conference on Automated Deduction (CADE’97)*, volume 1249 of *Lecture Notes in Computer Science*, pages 191–206. Springer-Verlag, 1997.

[26] K. Rozier and M. Vardi. LTL satisfiability checking. In *International SPIN Workshop on Model Checking of Software*, pages 149–167. Springer-Verlag, 2007.

[27] A. Camacho and S. McIlraith. Learning interpretable models expressed in linear temporal logic. In J. Benton, N. Lipovetzky, E. Onaindia, D. Smith, and S. Srivastava, editors, *Proceedings of the Twenty-ninth International Conference on Automated Planning and Scheduling (ICAPS’19)*, pages 621–630. AAAI Press, 2019.

[28] J. Baier, C. Fritz, Me. Bienvenu, and S. McIlraith. Beyond classical planning: Procedural control knowledge and preferences in state-of-the-art planners. In D. Fox and C. Gomes, editors, *Proceedings of the Twenty-third National Conference on Artificial Intelligence (AAAI’08)*, pages 1509–1512. AAAI Press, 2008.

[29] G. De Giacomo and S. Rubin. Automata-theoretic foundations of fond planning for LTLf and LDLf goals. In J. Lang, editor, *Proceedings of the Twenty-seventh International Joint Conference on Artificial Intelligence (IJCAI’18)*, pages 4729–4735. ijcai.org, 2018.

[30] J. Baier and S. McIlraith. Planning with first-order temporally extended goals using heuristic search. In Y. Gil and R. Mooney, editors, *Proceedings of the Twenty-first National Conference on Artificial Intelligence (AAAI’06)*, pages 788–795. AAAI Press, 2006.

[31] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot 2.0 - A framework for LTL and ω-automata manipulation. In C. Artho, A. Legay, and D. Peled, editors, *Proceedings of Fourteenth International Symposium on Automated Technology for Verification and Analysis (ATVA’16)*, volume 9938 of *Lecture Notes in Computer Science*, pages 122–129, 2016.

[32] P. Cabalar and M. Diéguez. Strong equivalence of non-monotonic temporal theories. In C. Baral, G. De Giacomo, and T. Eiter, editors, *Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR’14)*. AAAI Press, 2014.

[33] P. Cabalar and M. Diéguez. STELP — a tool for temporal answer set programming. In J. Delgrande and W. Faber, editors, *Proceedings of the Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11)*, volume 6645 of *Lecture Notes in Artificial Intelligence*, pages 370–375. Springer-Verlag, 2011.
[34] T. Son, C. Baral, T. Nam, and S. McIlraith. Domain-dependent knowledge in answer set planning. *ACM Transactions on Computational Logic*, 7(4):613–657, 2006.

[35] M. Ryan. Efficiently implementing GOLOG with answer set programming. In C. Brodley and P. Stone, editors, *Proceedings of the Twenty-Eighth National Conference on Artificial Intelligence (AAAI’14)*, pages 2352–2357. AAAI Press, 2014.

[36] M. Balduccini, Y. Lierler, and S. Woltran, editors. *Proceedings of the Fifteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’19)*, volume 11481 of *Lecture Notes in Artificial Intelligence*. Springer-Verlag, 2019.
A Proofs

Proof. [Theorem 1]

By double induction on φ and ρ.

- If $\varphi = p$, with p a propositional variable, $ST_m(x, p) = P(x)$. If $T, k \models p$ then $p \in T_k$. By construction of $v_2, k \in v_2(P)$ so $T, v_1[x := k], v_2 \models P(x)$.

 Conversely, if $T, v_1[x := k], v_2 \models P(x)$ then $v_1(x) = k \in v_2(P)$. By the construction of $v_2, p \in T_k$ so $T, k \models p$.

- The cases \top and \bot are straightforward.

- Negation, disjunction, conjunction and implication are proved directly by using the induction hypothesis.

- If $\varphi = [\rho] \psi$, from left to right, assume by contradiction that $T, k \models \varphi$ but $T, v_1[x := k], v_2 \not\models ST_m(x, \varphi)$. This means that $T, v_1[x := k, y := d], v_2 \not\models ST_p(xy, \rho)$ and $T, v_1[x := k, y := d], v_2 \not\models ST_m(y, \psi)$ for some $0 \leq d < \lambda$. By induction hypothesis, $(k, d) \not\in \| \rho \|_T$ and $(k, d) \not\in \| \psi$:

 - a contradiction. Conversely, assume that $T, k \not\models [\rho] \psi$. This means that $(k, d) \not\in \| \rho \|_T$ and $(k, d) \not\in \| \psi$. By induction, $T, v_1[x := k, y := d], v_2 \not\models ST_p(xy, \rho)$ and $T, v_1[x := k, y := d], v_2 \not\models ST_m(y, \psi)$. Therefore, $T, v_1[x := k, y := d], v_2 \not\models (ST_p(xy, \rho) \rightarrow ST_m(y, \psi))$ so $T, v_1[x := k], v_2 \not\models \exists y (ST_p(xy, \rho) \rightarrow ST_m(y, \psi))$: a contradiction.

- If $\varphi = \langle \rho \rangle \psi$ then, from left to right, if $T, k \models \langle \rho \rangle \varphi$, there exists $0 \leq d < \lambda$ such that $(k, d) \in \| \rho \|_T$ and $T, d \models \psi$. By induction, $T, v_1[x := k, y := d], v_2 \models ST_m(y, \psi)$. Therefore, $T, v_1[x := k], v_2 \models ST_m(x, \varphi)$, then $T, v_1[x := k, y := d], v_2 \models ST_p(xy, \rho)$ and $T, v_1[x := k, y := d], v_2 \models ST_m(y, \psi)$. By induction $(k, d) \in \| \rho \|_T$ and $T, d \models \psi$. Therefore, $T, k \models \langle \rho \rangle \psi$.

Let us consider now the case of path formulas.

- If $\rho = \tau$, from left to right, if $(k, d) \in \| \tau \|_T$ then $d = k + 1$. By construction, $T, v_1[x := k, y := d], v_2 \models y = x + 1$. Conversely, if $T, v_1[x := k, y := d], v_2 \models y = x + 1$ then $d = k + 1$ holds. Consequently, $(k, d) \in \| \tau \|_T$.

- If $\rho = \psi$ then $ST_p(xy, \rho) = (x = y) \land ST_m(y, \psi)$. It holds that $(k, d) \in \| \rho \|_T$ iff $k = d$ and $T, d \models \psi$ if $k = d$ and $T, v_1[x := k, y := d], v_2 \models ST_m(y, \psi)$ (by induction) iff $T, v_1[x := k, y := d] \models ST_p(xy, \rho)$.

- If $\rho = \rho_1 + \rho_2$ then $ST_p(xy, \rho) = ST_p(xy, \rho_1) \lor ST_p(xy, \rho_2)$. It holds that $(k, d) \in \| \rho_1 + \rho_2 \|_T$ if either $(k, d) \in \| \rho_1 \|_T$ or $(k, d) \in \| \rho_2 \|_T$ if $T, v_1[x := k, y := d], v_2 \models ST_p(xy, \rho_1)$ or $T, v_1[x := k, y := d], v_2 \models ST_p(xy, \rho_2)$ (by induction) iff $T, v_1[x := k, y := d], v_2 \models ST_p(xy, \rho)$.

27
• If \(\rho = \rho_1; \rho_2 \) then \(ST_p(xy, \rho) = \exists u(ST_p(xu, \rho_1) \land ST_p(uy, \rho_2)) \). It holds that \((k, d) \in\| \rho_1; \rho_2 \|_T \) iff there exists \(d' \) such that \((w, d') \in\| \rho_1 \|_T \) and \((d', v) \in\| \rho_2 \|_T \) iff \(T, v_1[x := k, u := d'], v_2 = ST_p(xu, \rho_1) \) and \(T, v_1[u := d', y := d], v_2 = ST_p(uy, \rho_2) \) (by induction) iff \(T, v_1[x := k, y := d] = ST_p(xy, \rho) \).

• If \(\rho = \rho^* \) then, from left to right, we will prove that for all \(n \geq 0 \) and for all \((k, d) \in \mathbb{N} \times \mathbb{N} \) if \((k, d) \in\| \rho^n \|_T \) then \(T, v_1[x := k, y := d], v_2 = ST_p(xy, \rho^*) \) by induction on \(n \):

 - If \(n = 0 \) then \(k = d \). Let \(v_2' = v_2[\{ x := \{ k \} \}] \). Clearly, \(T, v_1[x := k, y := d], v_2' = \text{bound}(X, x, x) \) and \(T, v_1[x := k, y := d], v_2' = \text{regular}(X) \) since \(T, v_1[x := k, y := d], v_2' \not\models \text{succ}(x, x) \). Thanks to the second-order semantics we conclude \(T, v_1[x := k, y := d], v_2 = ST_p(xy, \rho^*) \).

 - Assume that the claim holds for all \(n > 0 \) and let us prove it for \(n+1 \). If \((k, d) \in\| \rho^{n+1} \|_T \) then, by definition, \((k, u) \in\| \rho \|_T \) and \((u, d) \in\| \rho^n \|_T \) for some \(0 \leq u < \lambda \). By induction on \(\rho \) we get \(T, v_1[x := k, y := u], v_2 = ST_p(xy, \rho) \). By induction on \(n \) we get \(T, v_1[x := u, y := d], v_2 | ST_p(xy, \rho^*) \).

 From the previous result it follows \(T, v_1[x := u, y := d], v_2' = X(x) \land X(y) \land \text{bound}(X, x, y) \land \text{regular}(X) \), where \(v_2' \) is an extension of \(v_2 \) for which \(v_2'(X) \) is defined.

 Let \(v_2'' \) be an extension of \(v_2 \) such that \(v_2''(X) \overset{\text{def}}{=} v_2'(X) \cup \{ k \} \) and \(v_2'' = v_2 \) for the rest of second-order variables. Notice that \(T, v_1[x := k, y := d], v_2'' = X(x) \) and \(T, v_1[x := k, y := d], v_2'' = X(y) \). From \(k \leq u \) and the definition of \(v_2''(X) \), we get that \(T, v_1[x := k, y := d], v_2'' = \text{bound}(X, x, y) \). To prove that \(T, v_1[x := k, y := d], v_2'' = \text{regular}(X) \), let us take \(d_1, d_2 \in v_2''(X) \). We consider three cases:

 - If \(d_1, d_2 \in v_2''(X) \) we use the fact that \(T, v_1[x := u, y := d], v_2'' = \text{regular}(X) \) to conclude that \(T, v_1[x := u, y := d, a := d_1, b := d_2], v_2'' = (\text{succ}(a, b) \land X(a) \land X(b)) \rightarrow ST_p(ab, \rho) \).

 - If \(d_1 = d_2 \) then \(T, v_1[x := u, y := d, a := d_1, b := d_2], v_2'' = (\text{succ}(a, b) \land X(a) \land X(b)) \rightarrow ST_p(ab, \rho) \) since \(T, v_1[x := u, y := d, a := d_1, b := d_2], v_2'' \not\models \text{succ}(a, b) \).

 - If \(d_1 = k \) and \(d_2 \neq w \). Necessarily, \(d_1 = u \). In this case, \(T, v_1[x := u, y := d, a := d_1, b := d_2], v_2'' = (\text{succ}(a, b) \land X(a) \land X(b)) \rightarrow ST_p(ab, \rho) \) because \(T, v_1[x := u, y := d, a := d_1, b := d_2], v_2'' = ST_p(ab, \rho) \).

 Thus, we conclude \(T, v_1[x := k, y := d], v_2'' = \text{regular}(X) \).

 For the converse direction, if \(T, v_1[x := k, y := d], v_2 \models ST_p(xy, \rho^*) \) then there exists an assignment \(v_2' \) that extends \(v_2 \) with an assignment for the second-order variable \(X \). By definition, it holds that

1. \(T, v_1[x := k, y := d], v_2' = X(x) \)
2. $T, v_1[x := k, y := d], v_2'[\lor] = X(y)$
3. $T, v_1[x := k, y := d], v_2'[*] = \text{bound}(X, x, y)$
4. $T, v_1[x := k, y := d], v_2'[\rightarrow] = \text{regular}(X)$

From all those items we get that there exists u_0, u_1, \ldots, u_n in $v_2(X)$ such that $u_0 = k$, $u_n = d$ and for all $0 \leq i < n$, $(u_i, u_{i+1}) \in \|\rho\|^T$. By using the definition of $\|\rho^*\|^T$, we conclude that $(k, d) \in \|\rho^*\|^T$.

\[\square \]

Proof. Theorem 2

If φ is propositional atom p then $\text{mso}(t, p) = P(t)$. It is true that $T, k \models \varphi$ iff $T, v_1[t := k], v_2' = \text{mso}(t, p)$. If φ is a nonatomic formula, we prove this theorem in two directions.

Suppose first that $T, k \models \varphi$. Let v_2' be a second-order assignment such that $v'_2(Q_{\theta_i}) = \{x \mid T, x \models \theta_i\}$ for each $\theta_i \in \text{cl}(\varphi)$ and $v'_2(P) = v_2(P)$ otherwise. By assumption, $T, v_1[t := k], v_2' = Q_{\varphi}(t)$. It remains to prove that $T, v_1[t := k], v_2' = \forall x. t(\theta, x)$ for each nonatomic subformula $\theta_i \in \text{cl}(\varphi)$, which we prove by induction over θ_i

- If $\theta_i = \neg \theta_j$, then $t(\theta_i, x) = (Q_{\theta_i}(x) \leftrightarrow \neg Q_{\theta_j}(x))$. This holds, since $v'_2(Q_{\theta_i}) = \{x \mid T, x \models \theta_i\}$ and $v'_2(Q_{\theta_j}) = \{x \mid T, x \models \theta_j\}$.

- If $\theta_i = \theta_j \land \theta_k$, then $t(\theta_i, x) = (Q_{\theta_i}(x) \leftrightarrow (Q_{\theta_j}(x) \land Q_{\theta_k}(x)))$. This holds since $v'_2(Q_{\theta_i \land \theta_k}) = \{x \mid T, x \models \theta_j\}$ and $T, x \models \theta_k\}, v'_2(Q_{\theta_i}) = \{x \mid T, x \models \theta_j\}$ and $v'_2(Q_{\theta_k}) = \{x \mid T, x \models \theta_k\}$.

- If $\theta_i = \theta_j \lor \theta_k$, then $t(\theta_i, x) = (Q_{\theta_i}(x) \leftrightarrow (Q_{\theta_j}(x) \lor Q_{\theta_k}(x)))$. This holds since $v'_2(Q_{\theta_i \lor \theta_k}) = \{x \mid T, x \models \theta_j\}$ or $T, x \models \theta_k\}, v'_2(Q_{\theta_i}) = \{x \mid T, x \models \theta_j\}$ and $v'_2(Q_{\theta_k}) = \{x \mid T, x \models \theta_k\}$.

- If $\theta_i = \theta_j \rightarrow \theta_k$, then $t(\theta_i, x) = (Q_{\theta_i}(x) \leftrightarrow (Q_{\theta_j}(x) \rightarrow Q_{\theta_k}(x)))$. This holds since $v'_2(Q_{\theta_i \rightarrow \theta_k}) = \{x \mid T, x \models \theta_j\}$ or $T, x \models \theta_k\}, v'_2(Q_{\theta_i}) = \{x \mid T, x \models \theta_j\}$ and $v'_2(Q_{\theta_k}) = \{x \mid T, x \models \theta_k\}$.

- If $\theta_i = \exists \theta_j \theta_k$ we proceed as in the case of implication.

- If $\theta_i = \langle \theta_j \rangle \theta_k$ we proceed as in the case of conjunction.

- If $\theta_i = \langle \tau \rangle \theta_j$, then $t(\theta_i, x) = Q_{\theta_i}(x) \leftrightarrow (\forall y (y = x + 1) \rightarrow Q_{\theta_j}(y))$. This holds since

$$v'_2(Q_{\theta_i}) = \{x \mid T, x \models [\tau] \theta_k\} = \{x \mid \text{for all } (x, y) \text{ if } (x, y) \in \|\tau\|^T \text{ then } T, y \models \theta_j\} = \{x \mid \text{for all } y, \text{if } y = x + 1 \text{ then } T, y \models \theta_j\}.$$

and $v'_2(Q_{\theta_j}) = \{x \mid T, x \models \theta_j\}$.
\begin{itemize}
\item If $\Theta_i = \langle \tau \rangle \Theta_j$, then $t(\Theta_i, x) = Q_{\Theta_i}(x) \leftrightarrow (\exists y \ (y = x + 1) \rightarrow Q_{\Theta_j}(y))$.
This holds because
\[
v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \langle \tau \rangle \Theta_j \} = \{ x \mid \text{there exits } (x, y) \in \tau\} \text{ such that } T, y \models \Theta_j \} = \{ x \mid \text{there exits } y = x + 1 \text{ such that } T, y \models \Theta_j \}
\]
and $v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \Theta_j \}$.

\item If $\Theta_i = \langle \rho_1, \rho_2 \rangle \Theta_j$, then $t(\Theta_i, x) = Q_{\Theta_i}(x) \leftrightarrow (Q_{\rho_1} \wedge Q_{\rho_2}) \Theta_j(x)$.
This holds because $v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \langle \rho_1, \rho_2 \rangle \Theta_j \} = \{ x \mid T, x \models \rho_1 \} \wedge \{ x \mid T, x \models \rho_2 \} \Theta_j$ by Proposition \ref{prop2} (item 3) and $v'_{2}(Q_{\rho_1} \wedge Q_{\rho_2}) \Theta_j = \{ x \mid T, x \models \rho_1 \} \wedge \{ x \mid T, x \models \rho_2 \} \Theta_j$.

\item If $\Theta_i = \langle \rho_1, \rho_2 \rangle \Theta_j$, then $t(\Theta_i, x) = Q_{\Theta_i}(x) \leftrightarrow (Q_{\rho_1} \vee Q_{\rho_2}) \Theta_j(x)$.
This holds because $v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \langle \rho_1, \rho_2 \rangle \Theta_j \} = \{ x \mid T, x \models \rho_1 \} \vee \{ x \mid T, x \models \rho_2 \} \Theta_j$ thanks to Proposition \ref{prop2} (item 4) and $v'_{2}(Q_{\rho_1} \vee Q_{\rho_2}) \Theta_j = \{ x \mid T, x \models \rho_1 \} \vee \{ x \mid T, x \models \rho_2 \} \Theta_j$.

\item If $\Theta_i = \langle \rho_1 + \rho_2 \rangle \Theta_j$, then $t(\Theta_i, x) = Q_{\Theta_i}(x) \leftrightarrow (Q_{\rho_1} \wedge Q_{\rho_2}) \Theta_j(x)$.
This holds because $v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \langle \rho_1 + \rho_2 \rangle \Theta_j \} = \{ x \mid T, x \models \rho_1 \} \wedge \{ x \mid T, x \models \rho_2 \} \Theta_j$ by Proposition \ref{prop2} (item 1), $v'_{2}(Q_{\rho_1} \wedge Q_{\rho_2}) \Theta_j = \{ x \mid T, x \models \rho_1 \} \wedge \{ x \mid T, x \models \rho_2 \} \Theta_j$ and $v'_{2}(Q_{\rho_1} \vee Q_{\rho_2}) \Theta_j = \{ x \mid T, x \models \rho_1 \} \wedge \{ x \mid T, x \models \rho_2 \} \Theta_j$.

\item If $\Theta_i = \langle \rho^* \rangle \Theta_j$, then $t(\Theta_i, x) = Q_{\Theta_i}(x) \leftrightarrow (Q_{\rho^*}) \Theta_j(x)$.
This holds since $v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \langle \rho^* \rangle \Theta_j \} = \{ x \mid T, x \models \rho^* \} \Theta_j$ by Proposition \ref{prop2} (item 5), $v'_{2}(Q_{\rho^*}) \Theta_j = \{ x \mid T, x \models \rho^* \} \Theta_j$ and $v'_{2}(Q_{\rho^*}) \Theta_j = \{ x \mid T, x \models \rho^* \} \Theta_j$.

\item If $\Theta_i = \langle \rho \rangle \Theta_j$, then $t(\Theta_i, x) = Q_{\Theta_i}(x) \leftrightarrow (Q_{\rho} \Theta_j(x))$.
This holds since $v'_{2}(Q_{\Theta_i}) = \{ x \mid T, x \models \langle \rho \rangle \Theta_j \} = \{ x \mid T, x \models \rho \} \Theta_j$ by Proposition \ref{prop2} (item 6), $v'_{2}(Q_{\rho}) \Theta_j = \{ x \mid T, x \models \rho \} \Theta_j$ and $v'_{2}(Q_{\rho} \Theta_j) = \{ x \mid T, x \models \rho \} \Theta_j$.
\end{itemize}

Assume now that $T, v_1[t := k], v_2 = \models \langle t, \varphi \rangle$. This means that there is an assignment v'_{2} that extends v_2 by defining $v'_{2}(Q_{\Theta_i})$ for each predicate Q_{Θ_i} with Θ_i being a non-atomic formula in $cl(\varphi)$ and satisfying $T, v_1[t := k], v'_{2} \models Q_{\varphi}(t) \wedge (\forall x(\exists y \models \langle t, \varphi \rangle, x))$. We now prove by induction on φ that if $T, v_1[t := k, x := d], v_2 = \models Q_{\varphi}(x)$ then $T, d \models \varphi$ for all $0 \leq d < \lambda$ so $T, v_1[t := k, x := d], v_2 = \models Q_{\varphi}(x)$ indicates that $T, k \models \varphi$.

If $\varphi = \neg \Theta_j$, then $t(\varphi, x) = (Q_{\varphi}(x) \leftrightarrow \neg Q_{\Theta_j}(x))$. Since $T, v_1[t := k, x := d], v_2 = \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it holds that $d \in v'_{2}(Q_{\varphi})$ iff $d \notin v'_{2}(Q_{\Theta_j})$.

By induction we get $T, d \not\models \Theta_j$. Thus, $T, d \not\models \varphi$.

30
• If $\varphi = \Theta_j \land \Theta_k$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow Q_{\Theta_j}(x) \land Q_{\Theta_k}(x))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{\Theta_j}) \cap v_2'(Q_{\Theta_k})$. By induction $T, d \models \Theta_j$ and $T, d \models \Theta_k$.

• If $\varphi = \Theta_j \lor \Theta_k$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow Q_{\Theta_j}(x) \lor Q_{\Theta_k}(x))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{\Theta_j}) \cup v_2'(Q_{\Theta_k})$. By induction $T, d \not\models \Theta_j$ and $T, d \models \Theta_k$.

• If $\varphi = [\Theta_k?] \Theta_j$ we proceed as for implication.

• If $\varphi = (\Theta_k?) \Theta_j$ we proceed as for conjunction.

• If $\varphi = [\tau] \Theta_j$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow (\forall y. y = x + 1 \to Q_{\Theta_j}(y)))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{\Theta_j}) \land (d + 1 \models y \in v_2'(Q_{\Theta_j}))$. By induction it follows that either $d + 1 = \lambda$ or $T, d + 1 \models \Theta_j$ so $T, d \models \varphi$.

• If $\varphi = \langle t \rangle \Theta_j$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow (\exists y. y = x + 1 \land Q_{\Theta_j}(y)))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{\Theta_j}) \text{ and } T, d \models \Theta_j$ so $T, d \models \varphi$.

• If $\varphi = [p_1; p_2] \Theta_j$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow Q_{[p_1;p_2]}(x))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{[p_1;p_2]}).$ By induction it follows that $T, d \models [p_1; p_2] \Theta_j$ and, by Proposition 2 (item 3) so $T, d \models \varphi$.

• If $\varphi = (p_1; p_2) \Theta_j$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow Q_{p_1}(x) \land Q_{p_2}(x))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{[p_1]} \land Q_{p_2} \Theta_j(x)).$ By induction it follows that $T, d \models (p_1; p_2) \Theta_j$ and, by Proposition 2 (item 4) so $T, d \models \varphi$.

• If $\varphi = [p_1 + p_2] \Theta_j$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow (Q_{[p_1]}(x) \land Q_{[p_2]}(x)))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{[p_1]} \land Q_{[p_2]} \Theta_j).$ By induction it follows that $T, d \models [p_1 + p_2] \Theta_j$ and, by Proposition 2 (item 1) so $T, d \models \varphi$.

• If $\varphi = (p_1 + p_2) \Theta_j$ then $t(\varphi, x) = (Q_x(x) \leftrightarrow (Q_{[p_1]}(x) \lor Q_{[p_2]}(x)))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_x) \text{ iff } d \in v_2'(Q_{[p_1]} \lor Q_{[p_2]} \Theta_j).$ By induction it follows that $T, d \models (p_1 + p_2) \Theta_j$ and, by Proposition 2 (item 2) so $T, d \models \varphi$.

31
• If $\varphi = [\rho^*] \Theta_j$ then $t(\varphi, x) = (Q_{\varphi}(x) \leftrightarrow (Q_{\Theta_j}(x) \land Q_{[\rho][\rho^*]\Theta_j}(x)))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_{\varphi})$ iff $d \in v_2'(Q_{\Theta_j}) \cap v_2'(Q_{[\rho][\rho^*]\Theta_j})$. By induction it follows that there $T, d \models \Theta_j \land [\rho][\rho^*]\Theta_j$. By Proposition 2 (item 5) so $T, d \models \varphi$.

• If $\varphi = \langle \rho^* \rangle \Theta_j$ then $t(\varphi, x) = (Q_{\varphi}(x) \leftrightarrow (Q_{\Theta_j}(x) \lor Q_{\langle \rho \rangle \langle \rho^* \rangle \Theta_j}(x)))$. Since $T, v_1[t := k, x := d], v_2' \models t(\varphi, x)$ for all $0 \leq d < \lambda$, it follows that $d \in v_2'(Q_{\varphi})$ iff $d \in v_2'(Q_{\Theta_j}) \lor v_2'(Q_{[\rho][\rho^*]\Theta_j})$. By induction it follows that there $T, d \models \Theta_j \lor \langle \rho \rangle \langle \rho^* \rangle \Theta_j$. By Proposition 2 (item 6) so $T, d \models \varphi$.

\[\square\]

B Detailed results tables

In the following tables, lambdas appear crossed out when the instance was UNSAT with the corresponding constraint. The results are for finding the first model and the best performance excluding NC is found in bold.
Table 6: Statistics for constraint φ_1 and the 2 robots instance.

λ	A	M_m	M_s	T	NC	
translation time	25	1194	412	5867	2696	305
	26	557	451	725	3407	397
	27	837	914	638	2683	558
	28	589	648	617	3218	454
	29	508	670	448	2873	799
	30	663	445	472	2197	768
	31	672	701	724	3574	614
clingo time	25	3395	2387	2775	2657	10104
	26	3900	3732	3016	3375	14131
	27	4497	2335	2128	3769	31167
	28	2153	3779	3509	2434	29118
	29	3032	2826	2796	3280	25184
	30	2700	2183	2332	3730	24176
	31	4744	2700	5059	2348	29871
choices	25	15197	14196	16509	11267	51711
	26	24236	21258	17956	14982	91708
	27	27412	15038	15995	19005	120714
	28	17473	23631	41320	12952	124386
	29	25394	20823	20373	17310	121999
	30	23611	16924	18829	21436	125925
	31	37079	20815	36333	21725	150685
conflicts	25	5916	5927	6933	4986	31833
	26	9397	9302	7627	6551	40969
	27	10591	5608	5710	7832	80625
	28	5255	9671	8523	4241	77873
	29	7281	7353	6550	6029	71170
	30	6391	5065	5577	7012	71750
	31	11411	6690	13001	3443	84896
rules	25	77980	85216	85224	84688	67749
	26	81860	89396	89404	88842	71213
	27	85740	93576	93584	92996	74677
	28	89620	97756	97764	97150	78141
	29	93500	101936	101944	101304	81605
	30	97380	106116	106124	105458	85069
	31	101260	110296	110304	109612	88533
constraints	25	125800	124948	124932	120596	113198
	26	133109	132321	132305	127561	119809
	27	140418	139694	139678	134526	126420
	28	147727	147067	147051	141491	133031
	29	155036	154440	154424	148456	139642
	30	162345	161813	161797	155421	146253
	31	169654	169186	169170	162386	152864
Table 7: Statistics for constraint φ_1 and the 3 robots instance.

λ	\mathfrak{M}	\mathfrak{M}_m	\mathfrak{M}_s	\mathfrak{M}_t	NC
translation time					
25	1,991	6,280	6,978	3,390	301
26	474	477	689	4,123	477
27	670	937	**632**	3,316	611
28	633	634	637	3,578	388
29	574	712	**476**	3,240	751
30	628	501	**490**	3,601	842
31	623	767	738	4,289	629
clingo time					
25	12,069	11,375	11,196	**10,687**	49,097
26	12,487	15,689	13,500	13,588	77,250
27	**16,865**	26,711	20,568	17,957	193,067
28	38,528	**28,985**	29,708	38,543	530,237
29	**49,117**	52,888	60,487	49,148	796,953
30	36,833	62,928	55,439	**36,765**	508,369
31	**20,253**	28,378	38,456	23,454	385,140
choices					
25	59,635	49,477	117,691	**45,287**	173,746
26	64,653	64,926	62,331	59,828	245,978
27	91,121	239,786	84,908	**71,137**	417,294
28	311,375	252,341	**98,109**	237,270	912,562
29	144,001	350,208	151,183	**132,747**	2,561,235
30	**145,468**	464,029	156,648	285,323	3,058,806
31	381,453	130,569	425,412	264,940	2,508,802
conflicts					
25	21,663	19,473	21,694	**18,113**	106,940
26	**21,750**	26,160	24,368	24,112	154,251
27	**28,000**	46,206	34,613	29,302	284,788
28	55,972	48,958	**41,437**	55,795	670,627
29	311,375	252,341	**98,109**	237,270	912,562
30	144,001	350,208	151,183	**132,747**	2,561,235
31	**145,468**	464,029	156,648	285,323	3,058,806
rules					
25	151,147	172,162	167,464	166,327	128,422
26	**158,522**	180,413	175,517	174,322	134,873
27	**165,897**	188,664	183,570	182,317	141,324
28	**173,272**	196,915	191,623	190,312	147,775
29	**180,647**	205,166	199,676	198,307	154,226
30	**188,022**	213,417	207,729	206,302	160,677
31	**195,397**	221,668	215,782	214,297	167,128
constraints					
25	236,285	234,560	234,524	**223,456**	206,819
26	249,887	248,806	248,270	**236,284**	218,864
27	263,489	262,052	262,016	**249,112**	230,909
28	277,091	275,708	275,762	**261,940**	242,954
29	290,693	289,544	289,508	**274,768**	254,999
30	304,295	303,290	303,254	**287,596**	267,044
31	317,897	317,036	317,000	**300,424**	279,089
Table 8: Statistics for constraint φ_2 and the 2 robots instance.

	λ	\mathfrak{A}	\mathfrak{M}_m	\mathfrak{M}_s	\mathfrak{T}	NC
translation time	25	2 182	33 091	4 966	**2 107**	285
	26	529	**522**	670	3 006	444
	27	**548**	904	624	2 150	560
	28	592	620	633	2 372	377
	29	504	719	**478**	2 533	729
	30	653	488	**476**	3 254	807
	31	**650**	714	711	3 572	577
clingo time	25	5 815	5 712	6 921	7 081	9 845
	26	8 918	10 307	12 229	7 465	13 729
	27	13 902	9 206	**8 105**	11 135	30 361
	28	11 543	11 859	9 095	**6 658**	28 158
	29	10 057	**7 346**	8 105	11 135	25 309
	30	13 708	10 204	9 093	16 829	23 784
	31	15 338	13 696	**9 805**	12 629	29 339
choices	25	33 023	39 073	42 068	33 878	51 711
	26	45 972	50 647	62 204	**39 592**	91 708
	27	61 491	55 236	**50 548**	53 343	120 714
	28	59 980	65 021	57 297	**38 631**	124 386
	29	57 594	188 241	67 603	**42 736**	121 999
	30	71 743	66 340	72 332	80 171	125 925
	31	80 675	75 532	285 296	**69 654**	150 685
conflicts	25	18 989	19 514	**18 501**	19 431	31 833
	26	27 180	27 906	33 399	**20 912**	40 969
	27	38 262	26 728	**24 532**	30 634	80 625
	28	34 453	33 157	26 112	**18 682**	77 873
	29	31 597	**18 412**	28 473	20 295	71 170
	30	40 803	**28 115**	30 613	43 978	71 750
	31	44 385	35 627	**23 957**	35 219	84 896
rules	25	**73 406**	106 969	111 079	78 734	67 749
	26	**77 106**	112 126	116 414	82 663	71 213
	27	**80 806**	117 283	121 749	86 592	74 677
	28	**84 506**	122 440	127 084	90 521	78 141
	29	**88 206**	127 597	132 419	94 450	81 605
	30	**91 906**	132 754	137 754	98 379	85 069
	31	**95 606**	137 911	143 089	102 308	88 533
constraints	25	**118 320**	142 056	146 621	119 776	113 198
	26	**125 251**	150 471	155 306	126 717	119 809
	27	**132 182**	158 886	163 391	133 658	126 420
	28	**139 113**	167 301	172 676	140 599	133 031
	29	**146 044**	175 716	181 361	147 540	139 642
	30	**152 975**	184 131	190 046	154 481	146 253
	31	**159 906**	192 546	198 731	161 422	152 864
Table 9: Statistics for constraint φ_2 and the 3 robots instance.

λ	\mathfrak{M}	\mathfrak{M}_m	\mathfrak{M}_a	\mathfrak{M}_s	\mathfrak{N}	NC
translation time						
25	1 632	45 303	4 973	2 718	317	
26	567	479	718	3 389	450	
27	557	889	635	2 676	533	
28	599	652	558	2 779	523	
29	564	718	490	3 160	800	
30	680	495	455	3 289	888	
31	683	762	769	3 786	592	
clingo time						
25	17 910	14 564	16 993	14 647	47 761	
26	33 219	50 909	36 179	29 358	539 328	
27	40 397	59 909	78 488	60 510	195 261	
28	74 244	197 182	402 643	186 005	496 808	
29	110 278	122 672	91 111	800	786 940	
30	177 537	117 736	234 057	172 171	376 699	
31	252 945	117 736	234 057	172 171	376 699	
choices						
25	79 355	89 839	82 854	68 478	173 746	
26	126 138	117 782	137 992	113 770	245 798	
27	141 902	167 256	178 598	131 983	417 294	
28	222 615	215 795	215 028	199 998	912 562	
29	388 048	464 021	786 940	401 158	2 508 802	
30	539 032	464 021	786 940	401 158	2 508 802	
conflicts						
25	41 110	39 086	37 373	33 142	106 940	
26	72 849	58 218	69 422	61 248	154 251	
27	81 352	117 872	137 992	113 770	245 798	
28	137 837	167 256	178 598	131 983	417 294	
29	222 615	215 795	215 028	199 998	912 562	
30	388 048	464 021	786 940	401 158	2 508 802	
31	539 032	464 021	786 940	401 158	2 508 802	
rules						
25	137 614	188 131	201 109	145 489	128 422	
26	144 449	197 159	210 695	152 663	134 873	
27	151 284	206 187	220 821	159 837	141 324	
28	158 119	215 215	229 867	167 011	147 775	
29	164 954	224 243	239 453	174 185	154 226	
30	171 789	233 271	249 039	181 359	160 677	
31	178 624	242 299	258 625	188 533	167 128	
constraints						
25	215 577	253 048	263 456	217 522	206 819	
26	228 144	267 841	278 888	230 104	218 864	
27	240 711	282 634	294 320	242 686	230 909	
28	253 278	297 427	309 752	255 268	242 954	
29	265 845	312 220	325 184	267 850	254 999	
30	278 412	327 013	340 616	280 432	267 044	
31	290 979	341 806	356 048	293 014	279 089	
Table 10: Statistics for constraint φ_3 and the 2 robots instance.

λ	\mathfrak{A}	\mathfrak{M}_m	\mathfrak{M}_s	\mathfrak{T}	NC
translation time					
25	2 533	-	12 682	3 343	260
26	517	-	926	3 717	436
27	606	-	578	2 781	599
28	623	-	834	2 864	381
29	547	-	739	3 429	761
30	654	-	754	3 276	822
31	652	-	-	3 613	630
clingo time					
25	12 253	-	229 981	9 291	9 904
26	25 188	-	359 347	13 409	14 406
27	41 912	-	575 544	12 090	30 541
28	42 680	-	898 255	16 686	28 792
29	46 213	-	837 573	18 315	24 138
30	36 066	-	70 622	17 020	23 975
31	37 229	-	-	36 629	29 704
choices					
25	54 885	-	15 989 429	44 122	51 711
26	96 641	-	26 420 540	57 103	91 708
27	140 631	-	53 728 668	53 232	120 714
28	140 053	-	75 682 776	70 231	124 386
29	148 264	-	70 859 664	78 123	121 999
30	130 536	-	29 387 312	71 563	125 925
31	133 751	-	-	131 548	150 685
conflicts					
25	38 229	-	42 422	28 841	31 833
26	70 619	-	54 901	38 380	40 969
27	106 770	-	91 584	35 137	80 625
28	105 411	-	123 025	47 733	77 873
29	110 880	-	120 513	52 747	71 170
30	95 068	-	106 837	46 265	71 750
31	96 986	-	-	93 448	84 896
rules					
25	82 732	-	3 970 094	89 873	67 749
26	86 824	-	4 151 638	94 270	71 213
27	90 916	-	4 333 182	98 667	74 677
28	95 008	-	4 514 726	103 064	78 141
29	99 100	-	4 696 270	107 461	81 605
30	103 192	-	4 877 814	111 858	85 069
31	107 284	-	-	116 255	88 533
constraints					
25	130 874	-	2 856 055	126 120	113 198
26	138 567	-	3 057 106	133 359	119 809
27	146 260	-	3 258 157	140 598	126 420
28	153 953	-	3 459 208	147 837	133 031
29	161 646	-	3 660 259	155 076	139 642
30	169 339	-	3 861 310	162 315	146 253
31	177 032	-	-	169 554	152 864
Table 11: Statistics for constraint φ_3 and the 3 robots instance.

λ	N	M_{on}	M_{s}	T	NC	
translation time	25	3 112	-	11 001	3 278	271
26	481	-	3 895	441		
27	621	-	3 314	546		
28	627	-	3 375	449		
29	531	-	3 855	777		
30	679	-	3 351	815		
31	663	-	4 519	555		
clingo time	25	23 083	-	407 903	14 376	49 111
26	29 884	-	364 093	21 753	74 915	
27	36 847	-	472 354	30 569	195 389	
28	60 786	-	476 299	45 751	526 867	
29	107 503	-	1 105 621	78 207	796 914	
30	151 375	-	-	108 197	500 901	
31	248 384	-	-	163 082	378 597	
choices	25	98 424	-	36 202 304	60 086	173 746
26	110 269	-	26 575 984	86 056	245 978	
27	111 872	-	32 814 318	103 601	417 294	
28	170 755	-	297 764	142 450	912 562	
29	259 262	-	57 960 092	142 450	2 561 235	
30	310 797	-	-	262 182	3 058 806	
31	460 825	-	-	163 082	3 058 806	
conflicts	25	63 019	-	97 082	36 166	106 940
26	72 644	-	81 166	53 689	154 251	
27	75 839	-	129 245	66 361	284 788	
28	116 876	-	136 306	93 099	670 627	
29	184 608	-	249 421	137 604	956 430	
30	230 970	-	-	185 500	753 632	
31	347 612	-	-	254 287	576 474	
rules	25	151 581	-	3 083 856	162 198	128 422
26	159 003	-	3 225 088	170 074	134 873	
27	166 425	-	3 366 320	177 950	141 324	
28	173 847	-	3 507 552	185 826	147 775	
29	181 269	-	3 648 784	193 702	154 226	
30	188 691	-	-	201 578	160 677	
31	196 113	-	-	209 454	167 128	
constraints	25	235 091	-	2 435 143	227 044	206 819
26	248 801	-	2 594 044	240 073	218 864	
27	262 511	-	2 752 945	253 102	230 909	
28	276 221	-	2 911 846	266 131	242 954	
29	289 931	-	3 070 747	279 160	254 999	
30	303 641	-	-	292 189	267 044	
31	317 351	-	-	305 218	279 089	