Small Locally Compact Linearly Lindelöf Spaces*

Kenneth Kunen†‡

November 21, 2018

Abstract

There is a locally compact Hausdorff space of weight \aleph_ω which is linearly Lindelöf and not Lindelöf.

We shall prove:

Theorem 1 There is a compact Hausdorff space X and a point p in X such that:

1. $\chi(p, X) = w(X) = \aleph_\omega$.
2. For all regular $\kappa > \omega$, no κ-sequence of points distinct from p converges to p.

As usual, $\chi(p, X)$, the character of p in X, is the least size of a local base at p, and $w(X)$, the weight of X, is the least size of a base for X. This theorem with “\beth_ω” replacing “\aleph_ω” was proved in [11]. Arhangel’skii and Buzyakova [11] point out that if X, p satisfy (2) of the theorem, then the space $X \setminus \{p\}$ is linearly Lindelöf and locally compact; if in addition $\chi(p, X) > \aleph_0$, then $X \setminus \{p\}$ is not Lindelöf. (2) requires $\text{cf}(\chi(p, X)) = \omega$, because there must be a sequence of type $\text{cf}(\chi(p, X))$ converging to p. Thus, in (1) of the theorem, \aleph_ω is the smallest possible uncountable value for $\chi(p, X)$ and $w(X)$.

As in [11], the X of the theorem will be constructed as an inverse limit, using the following terminology:

*2000 Mathematics Subject Classification: Primary 54D20, 54D80; Secondary 03E55. Key Words and Phrases: linearly Lindelöf, weak P-point, Jónsson cardinal.

†University of Wisconsin, Madison, WI 53706, U.S.A., kunen@math.wisc.edu

‡Author partially supported by NSF Grant DMS-0097881.
Definition 2 An inverse system is a sequence \(\{X_n, \pi^{n+1}_n : n \in \omega\} \), where each \(X_n \) is a compact Hausdorff space, and each \(\pi^{n+1}_n \) is a continuous map from \(X_{n+1} \) onto \(X_n \).

Such an inverse systems yields a compact Hausdorff space, \(X_\omega = \lim_i X_n \), and maps \(\pi^n_m : X_\omega \to X_m \) for \(m < \omega \) and \(\pi^n_m : X_n \to X_m \) for \(m \leq n < \omega \).

Exactly as in \([11]\), one easily proves:

Lemma 3 Suppose that \(\{X_n, \pi^{n+1}_n : n \in \omega\} \) is an inverse system and \(p \in X = X_\omega \), with the \(p_n = \pi^n_\omega(p) \in X_n \) satisfying:

A. Each \(p_n \) is a weak \(P_{\aleph_n} \)-point in \(X_n \).
B. Each \(w(X_n) < \aleph_\omega \).
C. Each \((\pi^n_0)^{-1}\{p_0\} \) is nowhere dense in \(X_n \).

Then \(X, p \) satisfies Theorem [10].

As usual, \(y \in Y \) is a weak \(P_\kappa \)-point iff \(y \) is not in the closure of any subset of \(Y \setminus \{y\} \) of size less than \(\kappa \), and \(y \) is a \(P_\kappa \)-point iff the intersection of fewer than \(\kappa \) neighborhoods of \(y \) is always a neighborhood of \(y \). These properties are trivial for \(\kappa = \aleph_0 \). The terms “\(P \)-point” and “weak \(P \)-point” denote “\(P_{\aleph_1} \)-point” and “weak \(P_{\aleph_1} \)-point”, respectively.

Every \(P_\kappa \)-point is a weak \(P_\kappa \)-point, but as pointed out in \([11]\), one cannot have each \(p_n \) being a \(P_{\aleph_n} \)-point, as that would contradict (C). In the construction we describe, it will be natural to make every \(p_n \) fail to be a \(P \)-point in \(X_n \).

We shall build the \(X_n \) and \(p_n \) inductively using the following:

Lemma 4 Assume that \(y \in F \subseteq Y \), where \(Y \) is compact Hausdorff, \(w(Y) \leq \aleph_n \), and \(\text{int}(F) = \emptyset \). Then there is a compact Hausdorff space \(X \), a point \(x \in X \), and a continuous \(g : X \to Y \) such that:

1. \(g(X) = Y \) and \(g(x) = y \).
2. \(g^{-1}(F) \) is nowhere dense in \(X \).
3. \(w(X) = \aleph_n \).
4. In \(X \), \(x \) is a weak \(P_{\aleph_n} \)-point and not a \(P \)-point.

Proof of Theorem [12] Inductively construct the inverse system as in Lemma [19] with each \(w(X_n) = \aleph_n \). \(X_0 \) can be the Cantor set. When \(n > 0 \) and we are given \(X_{n-1}, p_{n-1} \), we apply Lemma [14] with \(F = (\pi^{n-1}_0)^{-1}\{p_0\} \).
Of course, we still need to prove Lemma 4. We remark that we do not assume that F is closed, although that was true in our proof of Theorem 1. Even if F is dense in Y in Lemma 4, we still get (2) — that is $\text{int}(\text{cl}(g^{-1}(F))) = \emptyset$.

When $n = 0$ in Lemma 4 the “weak P_{\aleph_0}-point” is trivial, and the lemma is easily proved by an Aleksandrov duplicate construction. A more convoluted proof is: Let $D \subseteq Y \setminus F$ be dense in Y and countable. Let g map ω onto D and extend g to a map $\beta g : \beta \omega \to Y$. Choosing x to be any point in $(\beta g)^{-1}(\{y\})$ yields (1)(2)(4), but $\beta \omega$ has weight 2^{\aleph_0}. Now, we can take a countable elementary submodel of the whole construction to get an X of weight \aleph_0. Our proof for a general n will follow this pattern.

As usual, $\beta \kappa$ denotes the Čech compactification of a discrete κ, and $\kappa^* = \beta \kappa \setminus \kappa$. Equivalently, $\beta \kappa$ is the space of ultrafilters on κ and κ^* is the space of nonprincipal ultrafilters. If $g : \kappa \to Y$, where Y is compact Hausdorff, then βg denotes the unique extension of g to a continuous map from $\beta \kappa$ to Y. Our weak P_{κ}-points in Lemma 4 will be good ultrafilters in the sense of Keisler [9]:

Definition 5 An ultrafilter x on κ is good iff for all $H : [\kappa]^{<\omega} \to x$, there is a $K : \kappa \to x$ such that for each $s = \{\alpha_1, \ldots, \alpha_n\} \in [\kappa]^{<\omega}$, $K(\alpha_1) \cap \cdots \cap K(\alpha_n) \subseteq H(s)$.

The following is well-known.

Lemma 6 Let κ be any infinite cardinal.

1. There are ultrafilters x on κ which are both good and countably incomplete.
2. Any x as in (1) is a weak P_{κ} point and not a P-point in $\beta \kappa$.

In (2), x is not a P-point by countable incompleteness, and proofs that it is a weak P_{κ} point can be found in [2, 3, 5]. For (1), see [4], Theorem 6.1.4; also, [2, 3] construct good ultrafilters with various additional properties.

We first point out (Lemma 4) that taking x to be a good ultrafilter on ω_n will give us (1)(2)(4) of Lemma 4. Unfortunately, $w(\beta \omega_n) = 2^{\aleph_n}$, so we shall take an elementary submodel to bring the weight down. Omitting the elementary submodel, our argument is as in [11], which obtained the X of Theorem 4 with $w(X) = \beth_\omega$, rather than \aleph_ω. A related use of elementary submodels to reduce the weight occurs in [7].

Before we consider the weight problem, we explain how to map the good ultrafilter onto the given point y. This part of the argument works for any regular ultrafilter.
Definition 7 An ultrafilter \(x \) on \(\kappa \) is regular iff there are \(E_\alpha \in x \) for \(\alpha < \kappa \) such that \(\{ \alpha : \xi \in E_\alpha \} \) is finite for all \(\xi < \kappa \).

Such an \(x \) is countably incomplete because \(\bigcap_{n<\omega} E_n = \emptyset \). For the following, see Exercise 6.1.3 of [4] or the proof of Lemma 2.1 in Keisler [10]:

Lemma 8 If \(x \) is a countably incomplete good ultrafilter on \(\kappa \), then \(x \) is regular.

Lemma 9 Let \(x \) be a regular ultrafilter on \(\kappa \). Assume that \(y \in F \subseteq Y \), where \(Y \) is compact Hausdorff, \(w(Y) \leq \kappa \), and \(\text{int}(F) = \emptyset \). Then there is a map \(g : \kappa \to Y \) such that

A. \(\beta g \) maps \(\beta \kappa \) onto \(Y \).
B. \((\beta g)(x) = y \).
C. \(g(\xi) \notin F \) for all \(\xi \in \kappa \).
D. \(g^{-1}(F) \) is nowhere dense in \(\beta \kappa \).

Proof. Of course, (D) follows from (C) because \(g^{-1}(F) \subseteq \kappa^* \). Fix \(A \subseteq \kappa \) with \(A \notin x \) and \(|A| = \kappa \). Let \(\{ E_\alpha : \alpha < \kappa \} \) be as in Definition 7, with each \(E_\alpha \cap A = \emptyset \). Let \(\{ U_\alpha : \alpha < \kappa \} \) be an open base at \(y \) in \(Y \). Let \(D \subseteq Y \setminus F \) be dense in \(Y \). Choose \(g : \kappa \to Y \) such that \(g \) maps \(A \) onto \(D \) (ensuring (A)) and each \(g(\xi) \in \bigcap \{ U_\alpha : \xi \in E_\alpha \} \setminus F \) (ensuring (B)(C)).

To apply the elementary submodel technique (as in Dow [6]), we put the construction of Lemma 9 inside an \(H(\theta) \), where \(\theta \) is a suitably large regular cardinal. Let \(M \prec H(\theta) \), with \(\kappa \subset M \) and \(|M| = \kappa \), such that \(M \) contains \(Y \) and its topology \(T \), along with \(F, g, x, y \). Let \(B = \mathcal{P}(\kappa) \cap M \), let \(\text{st}(B) \) denote its Stone space, and let \(\Gamma : \beta \kappa \to \text{st}(B) \) be the natural map; so \(\Gamma(x) = x \cap B = x \cap M \). Since \(T \cap M \) is a base for \(Y \) (by \(w(Y) \leq \kappa \)), we have \(\Gamma(z_1) = \Gamma(z_2) \to (\beta g)(z_1) = (\beta g)(z_2) \), so that \(\beta g \) yields a map \(\tilde{g} : \text{st}(B) \to Y \) with \(\beta g = \tilde{g} \circ \Gamma \). Note that \(B \) contains all finite subsets of \(\kappa \), so that \(\text{st}(B) \) is some compactification of a discrete \(\kappa \). It is easily seen that we still have (A–D), replacing \(\beta g \) by \(\tilde{g} \) and \(\beta \kappa \) by \(\text{st}(B) \), and \(x \) by \(\Gamma(x) \). Note that \(\Gamma(x) \) must be countably incomplete by \(M \prec H(\theta) \), so that \(\Gamma(x) \) will not be a \(P \)-point in \(\text{st}(B) \). But to prove Lemma 4 (letting \(\kappa = \aleph_\omega \)), we also need \(\Gamma(x) \) to be a weak \(P_\kappa \)-point in \(\text{st}(B) \). We may assume that \(x \in \beta \kappa \) is good, so it is a weak \(P_\kappa \)-point there. But we need to show that in \(\text{st}(B) \), \(\Gamma(x) \) is not a limit point of any set of size \(\lambda < \kappa \). Our argument here needs to assume that \(M \) is \(\lambda \)-covering and that \(\lambda^+ \) is not a Jónsson cardinal. These two assumptions will cause no problem when \(\lambda < \aleph_\omega \).
As usual, \(M \prec H(\theta) \) is \(\lambda \)-covering iff for all \(E \in [M]^{\lambda}, \) there is an \(F \in [M]^{\lambda} \) such that \(E \subseteq F \) and \(F \in M. \) By taking a union of an elementary chain of type \(\lambda^+ \) (see [3], §3), we see that there is an \(M \prec H(\theta) \) with \(|M| = \lambda^+ \) such that \(M \) is \(\lambda \)-covering.

\(\kappa \) is called a Jónsson cardinal iff for all \(\psi : [\kappa]^{<\omega} \rightarrow \kappa, \) there is a \(W \in [\kappa]^\kappa \) such that \(\psi([W]^{<\omega}) \) is a proper subset of \(\kappa. \) By Tryba [12] (or see [8]):

Lemma 10 No successor to a regular cardinal is Jónsson.

In particular, each \(\aleph_n \) is not a Jónsson cardinal; this fact is much older and is easily proved by induction on \(n. \)

Lemma 11 Let \(\kappa \) be infinite and \(x \in \beta \kappa \) a good ultrafilter on \(\kappa. \) Fix an infinite \(\lambda < \kappa \) and let \(\theta > 2^\kappa \) be regular. Let \(M \prec H(\theta), \) with \(x, \kappa \in M \) and \(\kappa \in M. \) Assume that \(M \) is \(\lambda \)-covering and \(\lambda^+ \) is not a Jónsson cardinal. Let \(\mathcal{B} = \mathcal{P}(\kappa)^{<\omega}, \) and let \(\Gamma : \beta \kappa \rightarrow \text{st}(\mathcal{B}) \) be the natural map. Then \(\Gamma(x) \) is a weak \(P_{\lambda^+} \)-point of \(\text{st}(\mathcal{B}). \)

Proof. Fix \(S \subseteq \text{st}(\mathcal{B}) \setminus \{\Gamma(x)\} \) with \(|S| \leq \lambda. \) We shall show that \(\Gamma(x) \) is not in the closure of \(S. \) For each \(z \in S, \) choose \(F_z \in \Gamma(x) = x \cap \mathcal{B} = x \cap M \) such that \(F_z \notin z. \) Since \(M \) is \(\lambda \)-covering, we can get \(\langle G_\xi : \xi < \lambda \rangle \in M \) such that each \(G_\xi \in x \) and \(\forall z \in S \exists \xi < \lambda [G_\xi = F_z]. \) Since \(\lambda^+ \) is not Jónsson and \(\lambda^+ \in M, \) we can fix \(\psi \in M \) such that \(\psi : [\lambda^+]^{<\omega} \rightarrow \lambda \) and such that \(\psi([W]^{<\omega}) = \lambda \) for all \(W \in [\lambda^+]^{\lambda^+}. \) Define \(H(s) = G_{\psi(s)}. \) Then \(H \in M \) and \(H : [\lambda^+]^{<\omega} \rightarrow \Gamma(x). \) Since \(x \) is good, we can find \(\langle K_\alpha : \alpha < \lambda^+ \rangle \in M \) such that each \(K_\alpha \) is in \(x \) (and hence in \(\Gamma(x) = x \cap M \)), and such that \(K_{\alpha_1} \cap \cdots \cap K_{\alpha_n} \subseteq H(\{\alpha_1, \ldots, \alpha_n\}) \) for each \(n \) and each \(\alpha_1, \ldots, \alpha_n \in \lambda^+. \)

Now (in \(V \)), we claim that \(\exists \alpha < \lambda^+ \forall z \in S [K_\alpha \notin z] \) (so that \(\Gamma(x) \notin \text{cl}(S)). \) If not, then we can fix \(W \in [\lambda^+]^{\lambda^+} \) and \(z \in S \) such that \(K_\alpha \notin z \) for all \(\alpha \in W. \) Fix \(\xi < \lambda \) such that \(G_\xi \notin z. \) Since \(\psi([W]^{<\omega}) = \lambda, \) fix \(s \in [W]^{<\omega} \) such that \(\psi(s) = \xi. \) Say \(s = \{\alpha_1, \ldots, \alpha_n\}. \) Then \(G_\xi = G_{\psi(s)} = H(s) \supseteq K_{\alpha_1} \cap \cdots \cap K_{\alpha_n} \in z, \) a contradiction. \(\square \)

Proof of Lemma 4. Use Lemmas 11 and 9 with \(\kappa = \lambda^+ = \aleph_n. \) \(\square \)

In view of Lemma 10, we can also prove Theorem 1 replacing \(\aleph_\omega \) with any other singular cardinal of cofinality \(\omega, \) since we can replace \(\aleph_n \) in Lemma 4 by any successor to a regular cardinal.
References

[1] A. V. Arhangel’skii and R. Z Buzyakova, Convergence in compacta and linear Lindelöfness, *Comment. Math. Univ. Carolin.* 39 (1998) 159–166.

[2] J. Baker and K. Kunen, Limits in the uniform ultrafilters, *Trans. Amer. Math. Soc.* 353 (2001) 4083–4093.

[3] J. Baker and K. Kunen, Matrices and ultrafilters, in *Recent Progress in General Topology II*, Elsevier–North-Holland, 2002, pp. 59–81.

[4] C. C. Chang and H. J. Keisler, *Model theory*, Third Edition, North-Holland, 1990.

[5] A. Dow, Good and OK ultrafilters, *Trans. Amer. Math. Soc.* 290 (1985) 145–160.

[6] A. Dow, An introduction to applications of elementary submodels to topology, *Topology Proc.* 13 (1988) 17–72.

[7] I. Juhász and K. Kunen, Some points in spaces of small weight, *Studia Scientiarum Mathematicarum Hungarica* 39 (2002) 369–376.

[8] A. Kanamori, *The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings*, Second Edition, Springer-Verlag, 2003.

[9] H. J. Keisler, Good ideals in fields of sets, *Ann. of Math.* 79 (1964) 338–359.

[10] H. J. Keisler, Ultraproducts of finite sets, *J. Symbolic Logic* 32 (1967) 47–57.

[11] K. Kunen, Locally compact linearly Lindelöf Spaces, *Comment. Math. Univ. Carolinae* 43 (2002) 155–158.

[12] J. Tryba, On Jónsson cardinals with uncountable cofinality, *Israel J. Math.* 49 (1984) 315–324.