Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T

Junwei Cao1,2*, Qiliang Lai1*, Jun Yuan1 & Zongze Shao1

1State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China, 2School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.

Celeribacter indicus P73T, isolated from deep-sea sediment from the Indian Ocean, is capable of degrading a wide range of polycyclic aromatic hydrocarbons (PAHs) and is the first fluoranthene-degrading bacterium within the family Rhodobacteraceae. Here, the complete genome sequence of strain P73T is presented and analyzed. Besides a 4.5-Mb circular chromosome, strain P73T carries five plasmids, and encodes 4827 predicted protein-coding sequences. One hundred and thirty-eight genes, including 14 dioxygenase genes, were predicted to be involved in the degradation of aromatic compounds, and most of these genes are clustered in four regions. P73_0346 is the first fluoranthene 7,8-dioxygenase to be discovered and the first fluoranthene dioxygenase within the toluene/biphenyl family. The degradative genes in regions B and D in P73T are absent in Celeribacter baekdonensis B30, which cannot degrade PAHs. Four intermediate metabolites [acenaphthylene-1(2H)-one, acenaphthenequinone, 1,2-dihydroxyacenaphthylene, and 1,8-naphthalic anhydride] of fluoranthene degradation by strain P73T were detected as the main intermediates, indicating that the degradation of fluoranthene in P73T was initiated by dioxygenation at the C-7,8 positions. Based on the genomic and metabolitic results, we propose a C-7,8 dioxygenation pathway in which fluoranthene is mineralized to TCA cycle intermediates.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, toxic, and persistent organic compounds in the environment. Microbial degradation studies have shown that biodegradation of PAHs is an efficient way to remove these pollutants from the environment. Microorganisms can produce a number of catabolic enzymes and have developed different mechanisms to degrade PAHs. The degradation of PAH is usually initiated by hydroxylation, especially dioxygenation, which is catalyzed by oxygenase. PAHs are then transformed through different peripheral pathways into a few key intermediates (such as protocatechuate, salicylate, gentisate, and catechol), which subsequently are metabolized via the central pathways. Metabolic pathways have been proposed in many degraders; for example, Mycobacterium vanbaalenii PYR-15, Mycobacterium sp. JS14, Sinorhizobium sp. C4, Sphingomonas sp. LB126, Rhodococcus spp., Pasteurella sp. IFA, Staphylococcus sp. PN/Y10, Burkholderia fungorum LB400 and Pseudomonas sp. PP2, but rarely in marine bacteria. Although great advances have been made, many aspects of PAH biodegradation, especially of high-molecular-weight PAHs, remain unclear.

Fluoranthene, a non-alternant high-molecular-weight PAH, that contains a five-member ring, is structurally similar to other compounds of environmental concern, such as acenaphthylene, carbazole, fluorene, dibenzodioxin, dibenzofuran, and dibenzothiophene. Therefore fluoranthene has been used as a model compound for biodegradation studies, and many bacterial fluoranthene degraders have been reported; for example, bacteria in the genera Sphingomonas, Alcaligenes, Burkholderia, Pseudomonas, Mycobacterium and Rhodococcus. However, only a few fluoranthene degraders belonging to the genera Ochrobactrum, Novosphingobium, Cycloclasticus, and Celeribacter have been isolated from the marine environment. Fluoranthene degradation was found to be initiated by dioxygenation at the C-1,2, C-2,3, C-7,8, and C-8,9 positions or a possible monooxygenation to produce monohydroxyfluoranthene. Despite these advances, gaps in our knowledge of the mechanisms of fluoranthene degradation still exist, especially for marine-sourced degraders.
Complete genome sequencing can provide more information, including possible insights into the mechanisms of aromatic compounds degradation, and a large number of PAH-degraders have been sequenced. For example, the *Mycobacterium vanbaalenii* PYP-1 genome was reported with focus on the aromatic catabolic genes in the PAH pathway. The phenanthrene-degrading bacterium *Delftia* sp. C51-4 harbors a novel genomic island, *phn* island, containing genes in the PAH catabolic pathway. Comparative genomic analyses of the marine bacterium *Alteromonas* sp. SN2 revealed that genetic acquisitions contributed to its ability to metabolize PAHs. The genome of *Polarononas naphthalenivorans* CJ2 was reported to contain genes for at least four central pathways and numerous peripheral pathways for aromatic compound metabolism. However, research on the mechanism of PAH degradation is far from being understood, many aspects of the metabolic pathways remain unknown.

Celerbacter indicus P73 (＝MCCC 1A01112＝LMG 27600＝DSM 27257), isolated from deep-sea sediment from the Indian Ocean by enrichment of PAHs, was shown to be able to degrade a wide range of PAHs, including naphthalene, phenanthrene, dibenzothiophene, and fluoreanthene. Strain P73 is the first fluoranthene-degrading bacterium to be found within the family *Rhodobacteraceae*. Here we report the complete genome sequence of *C. indicus* P73 with the focus on the aromatic degradative genes involved in the metabolism of PAHs, and describe a possible fluoranthene degradation pathway in strain P73.

Results

General aspects of the P73 genome. The complete genome sequence of *C. indicus* P73 was 4,969,388-bp long, comprising a circular chromosome of 4,529,105 bp and five plasmids ranging from 7053 bp to 155,183 bp in length (Figure 1 and Table 1). The complete genome had a G + C content of 65.74 mol%, and contained 4827 predicted protein-coding sequences (CDSs) with an average length of 909 bp, giving a coding density of 88.30%. Among the 4827 CDSs, 3908 (80.96%) were assigned to 22 different clusters of orthologous groups (COGs) (see Supplementary Text S1 and Supplementary Data S1 for details). The chromosome encodes two sets of RNA genes (two SS rRNA, two 16S rRNA, and two 23S rRNA), 48 tRNA genes with 42 different anticodons that represent only 19 amino acids, and a tRNA for OTHER amino acid. No gene for tRNA-Tyr was found, although the corresponding tyrosyl-tRNA synthetase gene (P73_1712) was identified.

Thirty-seven GIs (36 in the chromosome, one in plasmid pP73C) were predicted in the genome of strain P73 by SIGI-HMM using IslandViewer, comprising a total of 314,694-bp (6.33% of the genome) and 346 predicted CDSs (see Supplementary Text S2, Supplementary Figure S1 and Supplementary Data S2 for details). Seven hundred and forty nine horizontally transferred genes (HTG) in the P73 genome were identified against the genomes of other bacteria in the IMG database (24 October 2013), most of which (56.6%, 424/749) had best hits to HTG from order *Rhizobiales*. Genes involved in PAH degradation were found among these HTG suggesting that strain P73 may have used gene transfer to enhance its PAH degradation ability (see Supplementary Text S3 and Supplementary Data S3 for details).

Strain P73 can use many sugars, including D-cellobiose, D-fructose, D-trehalose, L-rhamnose, maltose, sucrose, turanose, and x-D-glucose. Genes that encode the enzymes required for all the steps in the glycolysis/glucogenesis pathways were present, except for glucose-6-phosphatase (EC3.1.3.9), which converts D-glucose 6-phosphate to D-glucose in the glucogenesis pathway. In addition, strain P73 harbors genes that encode all the enzymes needed in the pentose phosphate (PP) pathway, the Entner–Doudoroff (ED) pathway, and the tricarboxylic acid (TCA) cycle.

The principal fatty acids of strain P73 were found to be the C18 unsaturated fatty acids, which are classified as long-chain fatty acids. Unsaturated fatty acids contribute to the fluidization of membranes for adaption to low temperatures or starvation in the deep sea, and to poor aqueous solubility of aromatic hydrocarbon substrates. Fifty-three genes in fatty acid biosynthesis and metabolism pathways were identified, including two fatty acid desaturases (P73_2794 and P73_2801). In addition, two *fadL* long-chain fatty acid transport protein genes (P73_0184 and P73_2224) and six genes encoding the proposed fatty acid transporter (FAT) family (*TC:4.C.1*) of proteins were detected in the P73 genome.

A total of 848 transport protein genes (see Supplementary Text S4 and Supplementary Data S4 for details) belonging to 102 transporter families were identified in the Transporter Classification (TC) Database (http://tcdb.org)/. These transport protein genes made up about 17.57% of the total CDSs in the P73 genome compared with 13.01% in the average bacterial genome in the IMG database. Many transporter genes in the P73 genome were found to encode proteins belonging to the ATP-binding cassette (ABC) superfamily (*TC:3.A.1, 371 genes*), the tripartite ATP-independent periplasmic transporter (TRAP-T) family (*TC:2.A.56, 96 genes*), the major facilitator superfamily (*MFS, TC:2.A.21, 25 genes*), the tricarboxylate transporter (TTT) family (*TC:2.A.80, 8 genes*), the outer membrane protein (FadL) family (*TC:1.B.9, P73_0184 and P73_2224*), and the benzoate:H+ symporter (BenE) family (*TC:2.A.46, P73_3226*), all of which have been reported to be involved in the uptake of various aromatic compounds.

The COG analysis identified 305 genes in the P73 genome that were assigned to the transcription (K, 7.09%) category (see Supplementary Text S5 and Supplementary Data S5 for details). Many transcriptional regulator genes in the P73 genome were predicted to belong to the LysR-type transcriptional regulator (LTTT) family (*COG0583, 53 genes*), the multiple antibiotic resistance regulator (MarR) family (*COG1846, 19 genes*), the isotocrylate lyase regulator (IclR) family (*COG2447, 19 genes*), the AraC, GntR, TetR, and FNR families or to two component regulatory systems, all of which have been reported to be associated with the degradation pathways of aromatic compounds.

Plasmids. Together, the five plasmids in strain P73 contained 438 CDSs, accounting for 9.07% of the total CDSs in the genome. The COG analysis showed that the genes in four COG functional groups (information storage and processing, cellular processes and signaling, metabolism, and poorly characterized) were distributed quite differently among the plasmids, indicating a specialized function for each plasmid (see Supplementary Text S6 and Supplementary Figure S2 for details).

Phylogenetic analysis of the plasmid partition protein (*para*) and plasmid replication protein (*rep*) genes has been used previously to gain insight into the origin and evolution of plasmids. Neighbor-joining phylogenetic trees were constructed with the Rep (Figure 2A) and ParA (Figure 2B) protein sequences encoded by genes from the P73 chromosome and plasmids (see Supplementary Text S6 for details). The ParA and Rep proteins encoded from the different plasmids belonged to different clades, suggesting that divergent evolution of the *para* and *rep* genes had occurred, and confirming the important role of gene horizontal transfer, which has been reported previously. Based on the HTG analysis, the replicative genes P73_4797 and P73_4817 were predicted to originate from *Acetobacter acetii* ATCC 23746 (IMG Gene ID:2516943643) and the plasmid pYAN-1 of *Sphingobium yanoikuyae* ATCC 51230 (JCM 7371), respectively (Supplementary Data S3), in agreement with their predicted phylogenetic positions (Figure 2A).

Genomic comparisons with closely related bacteria. *C. indicus* P73 in the family *Rhodobacteraceae*, was found to be closely related to species in the genera *Celerbacter*, *Pseudorugeria*, *Lutimaribacter*, *Charon microbiom* and *Roseibacterium* based on similarities in the 16S rRNA gene sequences. All the predicted
proteins from strain P73T were compared against the NCBI non-redundant protein sequence database (nr, 29 May 2013) to estimate the taxonomic distribution of the proteome. The results showed that most of the proteins encoded by the chromosomal genes of strain P73T were closely related to proteins from species in genera *Celeribacter* (2096, 47.76%), *Paracoccus* (133, 3.03%), *Oceanicola* (123, 2.80%), *Rhizobium* (122, 2.78%), *Citreicella* (114, 2.60%), and *Rhodobacter* (106, 2.42%) (Figure 3), and the greatest overlap was between the proteomes of strain P73T and *Celtiberacter baekdonensis* B30. The MUMmer alignments of the strain P73T genome with the whole genome sequences of other closely related bacteria also showed that P73T was closest to *C. baekdonensis* B30, although the genomes of these two strains revealed extensive chromosomal rearrangements (Supplementary Figure S3). However, the taxonomic distributions of the five plasmid proteomes of strain P73T were different from that of the chromosome, suggesting the chromosome and the plasmids may have had potentially different origins. The major proteins of pP73A closely matched proteins in genera *Chelativorans* (18, 13.33%) and *Celeribacter* (15, 11.11%); for pP73B they matched *Roseovarius* (41, 28.67%) and *Celeribacter* (23, 16.08%); for pP73C, they matched *Celeribacter* (32, 25%) and *Maritimibacter* (25, 19.53%); for pP73D, they matched *Oceanicola* (4, 19.05%); and for pP73E, they matched *Sulfitobacter* (3, 27.27%).

Bioavailability of PAHs. Aromatic compounds, especially PAHs, are hydrophobic and insoluble in water. Biosurfactants, including glycolipids, lipopeptides and lipoproteins, phospholipids, and fatty

Figure 1 | Circular maps of the chromosome and five plasmids of *Celeribacter indicus* P73T. The chromosome (4,529,105 bp) scale is in megabases beginning from the start of the dnaA gene. Plasmids pP73A (155,183 bp), pP73B (135,821 bp), and pP73C (122,964 bp) are shown at 15× scale relative to the chromosome scale; pP73D (19,262 bp) is shown at 40× scale; and pP73E (7,053 bp) is shown at 60× scale. Rings 1 and 4 (from the outside inwards) show the forward and reverse noncoding RNAs (tRNA, rRNA, and sRNA). Rings 2 and 3 indicate all the genes in the forward and reverse strands, respectively, and the colors indicate the predicted COG categories of the genes, as shown in the figure. Ring 5 (black) represent the G + C content (higher values outward), and ring 6 shows the G + C skew [(G − C)/(G + C), where green indicates values > 0, and purple indicates values < 0].
acids, can emulsify and solubilize hydrocarbons to promote the bioavailability of substrates\(^a\). Previous studies have shown that strain P73\(^b\) contained glycolipids, two phospholipids, phosphatidyl-
glycerol, aminolipid, and one unknown lipid\(^b\). Some genes associated with the synthesis of lipids were found in the P73\(^b\) genome: for example, 1-acetylglucose-3-phosphate O-acetyltransferase gene \textit{plsC} (P73_2315 and P73_4246); phosphatidate cytidyly-
transferase gene \textit{cdsA} (P73_268); CDP-diacetylglycerol-3-
phosphate 3-phosphatidyltransferase gene \textit{pgsA} (P73_4294);
glycerol-3-phosphate acyltransferase gene \textit{plsX} (P73_2678); and glycerol-3-phosphate acyltransferase gene \textit{plsY} (P73_4283)\(^4\). Other genes involved in lipid transport and metabolism were identified based on the COG analysis (Supplementary Data S6).

Chemotaxis and cell motility can actively increase the bioavail-
ability of PAHs\(^5\). Many genes for flagella assembly, cell motility,
and chemotaxis were identified based on the GOG and ‘KEGG
Orthology (KO) terms’ analyses available on the IMG server\(^6\); they included genes predicted to encode flagellin, flagellar motor protein,
and the chemotaxis complex proteins CheY, CheD, CheR, CheW,
CheA, CheB, McpH, and McpA (Supplementary Data S7). However,
as reported previously, strain P73\(^b\) was non-motile and no flagella
were observed\(^5\). Flagellum assembly is a complex process in which
many genes are known to be involved\(^6\). Compared with a motile
bacterium \textit{Alteromonas tansacensis} SN2\(^7\), P73\(^b\) lacked genes that
code the flagellar proteins FliO, FliJ, FlgM, FliD, and FliS. As
reported previously, both FliD and FliS are essential elements in
the assembly of functional flagella\(^7\). FlgM and FliA are part of a
complex regulatory network that controls flagellum number\(^8\),
and FlhA play roles in the energy coupling mechanism for
bacterial flagellar protein export\(^8\).

Degradation of PAHs. P73\(^b\) is capable of degrading a wide range of
aromatic compounds including PAHs\(^9\). A total of 138 genes in the
P73\(^b\) genome were predicted to be involved in the metabolism of
aromatic hydrocarbons. Most of the predicted catabolic genes were
located in four regions of the genome: region A, position 168707–
176856 bp (P73_0169–P73_0177, 8150 bp); region B, position
331325–381010 bp (P73_0326–P73_0372, 49686 bp); region C,
position 828348–837837 bp (P73_0835–P73_0846, 9490 bp); and
region D, position 2990411–2998597 bp (P73_2960–P73_2968,
8187 bp) (Supplementary Data S8). Other genes involved in the
metabolism of aromatic hydrocarbons were found dispersed all
over the genome.

Within the 49.7-kb region B, genes that were involved in the
peripheral pathway for PAH degradation were identified (Figure 4).
P73_0346 (biphenyl 2,3-dioxogenase subunit alpha), P73_0347
(biphenyl 2,3-dioxogenase subunit beta), P73_0348 (dioxogenase fer-
redoxin subunit), and P73_0354 (ferredoxin-NAD\(^+\) reductase) were
predicted to encode the three components of an aromatic-ring-
hydroxylating dioxygenase. Downstream genes P73_0349 (2,3-dihy-
droxy-2,3-dihydrophenylpropionate dehydrogenase), P73_0353
(catechol 2,3-dioxygenase), P73_0352 (2-hydroxychromene-2-
carboxylate isomerase), P73_0351 (trans-o-hydroxybenzylidenepyr-
urate hydratase-aldolase), and P73_0350 (dehydrogenase PhnF),
were proposed to be responsible for the next several steps of PAH
ring-hydroxylation (Figure 5). Another downstream gene P73_0355,
encoding an OmpW family protein (COG3047), which was reported
to be a receptor of colicin S4\(^1\), may play a role in the sensing of
aromatic compounds. Genes P73_0329 (gentisate 1,2-dioxigenase),
P73_0331 (maleylacetacetoacetate isomerase), and P73_0330 (fumaryl-
pyruvate hydrolyase) involved in the homogentisate ring-cleavage
pathway were also found in region B (Figure 5, homogentisate
pathway).

Two tRNA genes (tRNA-Lys and tRNA-Arg), suggested to be
common sites for the integration of foreign sequences\(^5\), were found
flanking each end of region B, and several putative transposases and
integrases were encoded adjacent to the two tRNA genes. Several
horizontally transferred genes (P73_0329–0341) likely involved in
PAHs degradation were identified within region B (Supplementary
Data S3). These observations suggested that the P73\(^b\) genome might
have gained region B, which contained the PAH-degrading genes, via
lateral gene transfer.

Based on the sequence similarities among dioxygenase alpha sub-
unit genes, two related PAH-degrading gene clusters from \textit{P.
naphthaleniinovorans} CJ2\(^2\) and \textit{Polymorphism gilvum} SL003B-26A1\(^4\)
were selected for comparison with the related cluster from the gen-
ome of strain P73\(^b\). The organization of gene clusters involved in
PAHs catabolism of strains P73\(^b\) and SL003B-26A1 were almost
identical, with only a minor gene rearrangement, while extensive
rearrangements were found in the corresponding gene clusters in
strains P73\(^b\) and CJ2, with the absence of the dehydrogenase PhnF,
\textit{trans-o-hydroxybenzylidenepyruvate hydratase-aldolase}, and 2-
hydroxychromene-2-carboxylate isomerase genes in the gene cluster
from strain CJ2.

Phthalate has been reported as a common metabolic intermediate
during PAH metabolism\(^9\). Region D contained genes predicted to be
related to phthalate degradation (Figure 5), including P73_2964
(4,5-dihydroxylphthalate decarboxylase), P73_2965 (oxidoreductase
domain-containing protein), P73_2966 (ferredoxin), and P73_2968
(phthalate 4,5-dioxygenase), which convert phthalate to another
central metabolite, protocatechuate. The gene cluster for protoca-
techuate degradation via the β-ketoacidipate pathway was located in
region C with a 4-hydroxybenzoate 3-monooxygenase gene, which
transforms 4-hydroxybenzoate to protocatechuate, included in the
cluster (Figure 5). Three sets of genes involved in the gentisate ring-
cleavage pathway were found in the P73\(^b\) genome (Figure 5):
Figure 2 | Neighbor-joining phylogenetic trees constructed with replication protein (Rep) (A) and partition protein (ParA) (B) sequences from strain P73T chromosome and plasmids. Bootstrap values > 50% (expressed as percentages of 1000 replications) are shown at branch points.
P73_0175 (gentisate 1,2-dioxygenase), P73_0176 (maleylacetoacetate isomerase), and P73_0177 (fumarylpyruvate hydrolase) in region A; P73_1454 (gentisate 1,2-dioxygenase), P73_1455 (maleylacetoacetate isomerase), and P73_1456 (fumarylpyruvate hydrolase) adjacent to a salicylate hydroxylase gene (P73_1457) in the chromosome; and, P73_4775 (gentisate 1,2-dioxygenase), P73_4774 (maleylacetoacetate isomerase), and P73_4773 (fumarylpyruvate hydrolase) in plasmid pP73C.

Many other genes were predicted to encode other enzymes including aromatic-ring-hydroxylating dioxygenase, ferredoxin reductase, ferredoxin, hydroxylase, decarboxylase, cytochrome P450, monoxygenase, dehydrogenase, hydratase, thiolase, and racemase (Supplementary Data S8). These genes, often clustered with other catabolic genes or were distributed all over the genome, may also enhance the catabolic ability of strain P73T.

Several transporter genes were found in the vicinity of aromatic catabolic genes. For instance, within region B, transporter genes P73_0342, P73_0343, and P73_0344 were adjacent to ring-hydroxylating dioxygenase genes (P73_0346 and P73_0347). P73_2224 was predicted to encode an aromatic hydrocarbon degradation membrane protein belonging to the outer membrane transport protein (OMPP1/FadL/TodX) family, and two transmembrane protein genes (P73_2223 and P73_2225) were located flanking P73_2224. In region D, an EamA-like transporter gene (P73_2962), which belonged to the drug/metabolite transporter family, was found adjacent to the phthalate degradative genes. P73_3226 encoded a benzoate membrane transport protein (BenE), which may transport benzoate-like aromatic compounds.

At the regulation level, several LTR family transcriptional regulators were found adjacent to aromatic catabolic genes in the gen-

Figure 3 | Taxonomic distribution of the *C. indicus* P73T proteome in the chromosome and plasmids. NA indicates the proteins without matches in the nr database.

Figure 4 | Organization of the gene cluster involved in PAHs catabolism in the P73T genome. For comparison, orthologous genes from *Polaromonas naphthalenivorans* CJ2 and *Polymorphum gilvum* SL003B-26A1 are aligned to the corresponding genes from P73T. Orthologous genes are connected by shaded boxes. Annotation data for genes P73_0346–0357 from strain P73T are provided in (Supplementary Data S9). The CJ2 genes Pnap_4140–4152 are located at positions 15183–26352 bp in the genome. The SL003B-26A1 genes SL003B_4095–4110 are located at positions 4401320–4416076 bp in the genome.
ome, including P73_0332 regulating the homogentisate catabolic genes, P73_0840 regulating the β-ketoadipate pathway for protocatechuate degradation, and P73_1052 regulating the aromatic-ring-hydroxylating dioxygenase gene (P73_1053). In addition, three MarR family transcriptional regulator genes (P73_0337, P73_0357, and P73_2961) were predicted to be involved in aromatic compounds degradation, and P73_0836 was predicted to encode the β-ketoadipate pathway transcription regulator (PcaR), which regulates the β-ketoadipate pathway for protocatechuate degradation.

Gene knockout. P73_0346, which was located in the PAH-degrading gene cluster, was predicted to encode the aromatic-ring-hydroxylating dioxygenase alpha subunit. When this gene was disrupted by deletion with a kan cassette inserted, we found that the resulting mutant ΔP73_0346:kan was unable to use fluoranthene and naphthalene, or was defective in degrading biphenyl, phenanthrene and dibenzothiophene. These results demonstrated that P73_0346 encoded the dioxygenase subunit alpha responsible for the dioxygenation of fluoranthene, naphthalene, biphenyl, phenanthrene, and dibenzothiophene (Figure 5).

Figure 5 | Proposed pathways for the degradation of PAHs in strain P73T. I to IV indicate the metabolites detected from the fluoranthene degradation experiment. Dashed arrows indicate two or more successive reactions. The numbers above the arrows represent the gene loci in the P73T genome (Supplementary Data S8). No closely related homologues were found for Gene 1 (muconolactone delta-isomerase) and Gene 2 (salicylate 5-hydroxylase) in the genome.
Dioxygenases. The metabolism of PAHs begins with ring hydroxylation, which is the most difficult catalytic step and usually catalyzed by ring-hydroxylating dioxygenases (RHDs). RHD is a multicomponent enzyme system that consists of a terminal oxygenase(s) and an electron transfer component(s)\(^1\). Multiple paralogs to ring-hydroxylating dioxygenase subunit alpha (P73_0346, P73_1053, P73_2151, P73_2875, P73_2968, and P73_4415), ring-hydroxylating dioxygenase subunit beta (P73_0347 and P73_2150), ferredoxin (P73_0348, P73_1051, P73_2167, P73_2169, P73_2960, P73_3499, and P73_4762), and ferredoxin reductase (P73_0335, P73_0354, P73_0554, P73_1054, P73_2874, P73_4416, and P73_4758) were found in the P73\(^+\) genome. Because RHD subunit alpha plays a major role in determining substrate specificity, RHD alpha subunit has been used in phylogenetic analysis to classify RHDs\(^4\). The phylogenetic tree of RHD alpha subunits from P73\(^+\) and other representative species is shown in Figure 6. The tolue/ biphenyl family (group IV) comprises three-component enzymes from pathways for the degradation of chlorobenzenes, alkylbenzenes, benzene, and biphenyl\(^5\). P73_0346, which could catalyze the dioxygenation of fluoranthene, naphthalene, biphenyl, phenanthrene, and dibenzothiophene, also clustered with group IV. P73_2151 may catalyze the dihydroxylation or deamination of aniline, because it was grouped with the benzoate dioxygenase family (group II), which has been reported to perform similar functions\(^4\). P73_1053, P73_2875, and P73_2968, which comprised two components (an a\(_x\) oxygenase component and a reductase component), fell into the phthalate (a\(_x\) family) group (I) and were predicted to be involved in the degradation of aromatic compounds structurally similar to phthalate. The protein encoded by the plasmid gene P73_4415 clustered with some phenylpropionate dioxygenases, which may form a new family (group VII). No closely related homologues were found in the P73\(^+\) genome for the naphthalene family (group III), the Gram\(^+\) PAH/phthalate family (group V), or the salicylate dioxygenase family (group VI).

Several dioxygenases that can transform fluoranthene have been reported previously. For example, ArhA1 [GenBank:BAD34447] from Sphingomonas sp. A4\(^10\), PhnA1a [GenBank:CAG17576] from Sphingomonas sp. CHY-1\(^12\), and PhnA1f [GenBank:ABW37061] from Sphingomonas sp. LH128\(^2\), all of which belong to the naphthalene family (group III), can convert fluoranthene to the corresponding dihydriodiol or monohydroxylated products. NidA3 [GenBank:ABM11369] from Mycobacterium vanbaalenii PYR-1\(^6\), and PhnA1 [GenBank:ABK27720] from Mycobacterium sp. SNP118\(^2\), which were clustered with Gram\(^+\) PAH/phthalate family (group V) dioxygenases, can oxidize fluoranthene. Fluoranthene 2,3-dioxygenase CarAa [GenBank:BAA21728] from Pseudomonas sp. CA10\(^6\) was grouped with the phthalate (a\(_x\) family) group (I), while Mvan_0533 [GenBank:ABM11377] and Mvan_0539 [GenBank:ABM11383] from Mycobacterium vanbaalenii PYR-1\(^6\), FlmA1 [GenBank:ABV68886] from Shigepnosmas sp. LB126\(^2\), and IdoA [GenBank:AF479635] from Pseudomonas alkaligenes PA-1\(^10\), all of which were also reported to oxidize fluoranthene, did not fall into any dioxygenase family group. To our knowledge, P73_0346 is the first fluoranthene dioxygenase to be identified within the RHD alpha subunit tolue/biphenyl family (group IV).

Ring-cleaving dioxygenases catalyze critical dearomatization steps in the PAH degradation pathway\(^2\). Nine genes in the genome of P73\(^+\) were predicted to encode different ring-cleaving dioxygenases, namely, gentisate 1,2-dioxygenase (P73_0175, P73_1454, and P73_4775), homogentisate 1,2-dioxygenase (P73_0329), catechol 2,3-dioxygenase (P73_0353), extradiol ring-cleavage dioxygenase III subunit B (P73_0507), protocatechuic 3,4-dioxygenase (P73_0843 and P73_0844), and catechol 1,2-dioxygenase (P73_1122).

Fluoranthene degradation. It has been reported previously that strain P73\(^+\) can degrade fluoranthene, a high-molecular-weight PAH that has been used as a model PAH for biodegradation studies. Growing strain P73\(^+\) with fluoranthene resulted in the accumulation of a brown compound that had a maximal absorbance at 225 nm. Four major metabolites were confirmed during fluoranthene degradation using gas chromatography-mass spectrometry (GC-MS): acenaphthene-1(2H)-one (I), acenaphthenequinone (II), 1,2-dihydroxycarbazole (III) and 1,8-naphthalic anhydride (IV) (Supplementary Figures S4–S7), indicating that strain P73\(^+\) metabolized fluoranthene through the C-7,8 dioxygenation pathway. Indeed, it has been suggested previously that 1,8-naphthalic anhydride (IV) is formed by the thermal decomposition of naphthalene-1, 8-dicarboxylic acid\(^2\).

The C-7,8 dioxygenation pathway for fluoranthene degradation was proposed initially in Alcaligenes denitrificans WW1\(^1\), Mycobacterium vanbaalenii PYR-1\(^6\), and Mycobacterium sp. AP1\(^4\). Based on the genomic analysis and the metabolic data in this study, and on studies reported previously\(^4,5,12\), here we propose metabolic pathways for fluoranthene and assign the most probable genes to each enzymatic reaction in the pathways (Figure 5). Firstly, fluoranthene is dioxygenated at the C-7,8 positions to form fluoranthene cis-7,8-dihydrodiol, which is then catalyzed by an RHD encoded by P73_0346, P73_0347, P73_0348, and P73_0354. The resultant fluoranthene cis-7,8-dihydrodiol is then dehydrogenated by dihydrodiol dehydrogenase (P73_0349) to produce 7,8-dihydroxyfluoranthene, which is subjected to extradiol ring rupture by an extradiol-type ring-cleavage dioxygenase (P73_0353) to produce (2Z,4Z)-2-hydroxy-4-(2-oxoacenaphthylene-1(2H)-ylidene) but-2-enolic acid\(^6\). Subsequently, a ketol bond is formed automatically and the resulting cis isomer is transformed to (E)-4-(2-hydroxy-1,2-dihydroxycarbazole-1-yl)-2-oxobut-3-enolic acid by an isomerase (P73_0352)\(^6\). The next step is catalyzed by hydratase-aldolase (P73_0351), which releases a pyruvate to produce 2-hydroxy-1,2-dihydroxycarbazole-1-carbaldehyde, the aldehyde group of which is then oxidized to a carboxy group\(^6\). Next, acenaphthene-1(2H)-one (I) and acenaphthenequinone (II) are formed through two or more successive reactions. Aacenaphthenequinone (II) can be reduced to 1,2-dihydroxycarbazole (III), after which the central metabolite naphthalene-1, 8-dicarboxylic acid, which can be decomposed thermally to 1,8-naphthalic anhydride (IV), is formed\(^6\). Further mineralization produces 1,2-benzenecarboxylic acid, phthalate, and protocatechuic acid, which are then metabolized through the \(\beta\)-ketoadipate pathway mentioned above (Figure 5).

The gentisate ring-cleavage pathway\(^6\), catechol ortho ring-cleavage pathway\(^7\), and homogentisate ring-cleavage pathway\(^8\) have also been reported to be involved in the central pathways for PAHs shown in Figure 5. All the genes involved in these central pathways were found in the genome of P73\(^+\), except for genes that encode muconolactone D-isomerase (Figure 5, Gene 1) and salicylate 5-hydroxylase (Figure 5, Gene 2).

Comparison of strain P73\(^+\) with Celeribacter baekdonensis B30. Strain B30 was isolated from deep-sea sediment of the Arctic Ocean (W170 29.31’, N87 04.27’) at a water depth of 4000 m by our group. It was named *Celeribacter baekdonensis* based on the 16S rRNA gene sequence, which shared 99.79% similarity with that of *Celeribacter baekdonensis* L-6\(^6\). The draft B30 genome sequence is available in GenBank (Accession: AMRK00000000). The PAH degradation test showed that strain B30 was unable to degrade naphthalene, phenanthrene, pyrene, or fluoranthene (unpublished observations).

Based on the COG analysis of the two *Celeribacter* genomes, we found that compared with strain B30, genes involved in amino acid transport and metabolism (E, 10.34%) were less abundant in strain P73\(^+\), while genes involved in inorganic ion transport and metabolism (P, 9.19%), and replication, recombination and repair (L, 6.42%) (12.53%, 6.31% and 4.06%, respectively) were more abundant. The abundances of genes in others COG were similar in the two strains.
Figure 6 | Phylogenetic tree constructed using the sequences of alpha subunits of aromatic ring hydroxylating dioxygenases. The P73T proteins are shown in bold. Bootstrap values $>50\%$ (expressed as the percentages of 1000 replications) are shown at the branch points.
The IMG 'Phylogenetic Profiler for Single Genes' was used to find genes in the P73 T genome that had no homologs in the B30 genome. A total of 1484 genes in P73 T with no homologs in B30 were detected (Supplementary Data S9). Interestingly, almost all the genes in regions B and D of the P73 T genome—which are responsible for PAH degradation, especially the metabolism of fluoranthene—were absent in the B30 genome. Only three RHDs were identified in the B30 genome; their phylogenetic positions are shown in Figure 5. The B30 genome had no homologues for the dioxygenases encoded by P73_0346, P73_0153, P73_2875, and P73_2968, which were predicted to be involved in the metabolism of PAHs in strain P73 T.

Discussion

Our analyses of the complete genome of *C. indicus* P73 T have expanded the knowledge of the mechanisms used to metabolize PAHs in this bacterium. The P73 T genome contains 138 candidate genes that may be involved in the metabolism of aromatic compounds, including genes that encode six ring hydroxylating dioxygenases, eight ring cleaving dioxygenases, other catabolic enzymes, transcriptional regulators, and transporters in the degradation pathways. We found that genetic acquisitions via lateral gene transfer may have contributed to the ability of strain P73 T to catabolize aromatic compounds. Notably, region B of the genome, which contained the PAH-degrading genes and were absent in another bacterium of *Celeribacter*, strain B30, was predicted to have been acquired via lateral gene transfer. This study will provide a molecular basis for future research into the functions of the P73 T genes.

Aromatic ring hydroxylation is the most difficult catalytic step of fluoranthene degradation. Several dioxygenases that can transform fluoranthene have been reported previously, including ArhA1 [GenBank:BAD34447]16, PhnA1a [GenBank:CAI7576]16, PhnA1f [GenBank:ABW37061]17, NidA3 [GenBank:ABM11369]19, PhdA [GenBank:ABK27720]20, CarAa [GenBank:BAA21728]21, Mvn_0533 [GenBank:ABM11377] and Mvn_0539 [GenBank:ABM11383]22, FinA1 [GenBank:ABV68886]23, and IdoA [GenBank:AF474963]24. However, none of these belong to the tolueine/biphenyl family (group IV). The P73_0346 gene represents the first identified fluoranthene 7,8-dioxygenase and the first tolueine/biphenyl family fluoranthene dioxygenase to be reported. P73_0346 is also responsible for the dioxygenation of naphthalene, biphenyl, phenanthrene and dibenzo-ghiophththalene, which are structurally similar to fluoranthene.

The proposed C-7,8 dioxygenation pathway for fluoranthene metabolism in strain P73 T is consistent with the pathway that involved extradiol cleavage of 7,8-dihydroyfloranthene reported previously24. However, the C-7,8 dioxygenation pathway was the only pathway detected in strain P73 T, in contrast to other bacteria, which typically have two or more different pathways for fluoranthene metabolism.25,26,17,18. Therefore, strain P73 T, the first fluoranthene-degrading *Rhodobacteraceae* bacterium reported, may be a useful strain in which the C-7,8 dioxygenation pathway involving extradiol cleavage of 7,8-dihydroyfluoranthene can be studied. Further, P73 T is a novel PAH-degrading bacterium that may have the potential to be applied in marine oil spill bioremediation.

Although this study presents the genomic complement of PAH degradation and the fluoranthene degradative pathway in strain P73 T, finding out the complete physiology of the bacterium towards PAH degradation still demands more explorations. Additional experiment is necessary to study the functions of catabolic gene as well as the mechanisms of regulation and transportation in strain P73 T with respect to PAH degradation. It is also interesting to study the role of the five plasmids in the PAH metabolism.

Methods

Bacterial growth and DNA extraction. *C. indicus* P73 T, isolated from deep-sea sediment of the Indian Ocean, and *C. baikdonensis* B30, isolated from deep-sea sediment of the Arctic Ocean, were grown on LB agar medium at 28°C. Genomic DNA was extracted according to the method of Ausubel et al.26.
21. Yuan, J., Lai, Q., Zheng, T. & Shao, Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int. J. Syst. Evol. Microbiol. 59, 2084–2088 (2009).

22. Geiselbrecht, A. D., Hedlund, B. P., Tichy, M. A. & Staley, J. T. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cyclolactatus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl. Environ. Microbiol. 64, 4703–4710 (1998).

23. Lai, Q., Cao, J., Yuan, J., Li & Shao, Z. Celeribacter indicus sp. nov. a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huashiia huashii as Celeribacter halophilus comb. nov. Int. J. Syst. Evol. Microbiol. 64, 4160–4167 (2014).

24. Weissenfels, W., Beyer, M., Klein, J. & Rehm, H. Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl. Microbiol. Biotechnol. 34, 528–535 (1991).

25. Kim, S. J., Kweon, O., Jones, R. C., Edmondson, R. D. & Cerniglia, C. E. Genomic reclassification of Polymorphum gilvum sp. nov. a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea bacterium. Environ. Microbiol. 7, 125–132 (2005).

26. Hickey, W. J., Chen, S. & Zhao, J. The Phn island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons. Front. microbiol. 3, 125 (2012).

27. Math, R. K. et al. Comparative genomics reveals adaption by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS ONE 7, e35784 (2012).

28. Yagi, J. M., Sims, D., Brettin, T., Bruce, D. & Madsen, E. L. The genome of Polaronomas napthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ. Microbiol. 11, 2253–2270 (2009).

29. Langille, M. G. & Brinkman, F. S. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25, 664–665 (2009).

30. Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr. Rev. Food Sci. Food Saf. 3, 1–20 (2004).

31. Saier, M. H., Jr., Yen, M. R., Noto, K., Tamang, D. G. & Elkan, C. The Transporter Classification Database: recent advances. Nucleic Acids Res. 37, D274–278 (2009).

32. Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364 (2008).

33. Chang, H. K., Dennis, J. J. & Zylstra, G. J. Regulation of flagellum number by FliA and FlgM and role in biofilm formation by Rhodobacter sphaeroides. J. Bacteriol. 193, 4010–4014 (2011).

34. Macnab, R. M. Type III flagellar protein export and flagellar assembly. Biochem. Biophys. Acta 1694, 207–217 (2004).

35. Pöld, H., Smajs, D. & Braun, V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J. Bacteriol. 181, 3578–3581 (1999).

36. Hacker, J., Blum-Oehler, G., Muhldorfer, J. & Tschape, H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23, 1089–1097 (1997).

37. van den Berg, B., Black, P. N., Clemons, W. M., Jr. & Rapport, T. A. Crystal structure of the long-chain fatty acid transporter FadL. Science 304, 1506–1509 (2004).

38. Parales, R. E. & Resnick, S. M. Aromatic ring hydroxylating dioxygenases. Pseudomonas 4, 287–340 (2006).

39. Pinyakong, O. et al. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol. Lett. 238, 297–305 (2004).

40. Jouanneau, Y., Meyer, C., Jakoniec, J., Stojanoff, V. & Gaillard, J. Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45, 12380–12391 (2006).

41. Dierckxsens, J., Donders, R. E., Zuckermann, J. L. & Ramos, J. L. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl. Microbiol. Biotechnol. 83, 465–475 (2009).

42. Pagnout, C. et al. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SN11: Expression in Mycobacterium smegmatis mc2155. Res. Microbiol. 158, 175–186 (2007).

43. Nojiri, H. et al. Diverse oxygenases catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J. Bacteriol. 181, 3105–3113 (1999).

44. Schier, L. et al. Characterization of a novel angular dioxygenase from fluoranthene-degrading Sphingomonas sp. strain LB126. Appl. Environ. Microbiol. 74, 1050–1057 (2008).

45. Ali, A., Hayat, K., Ahsan, M. I., Mahomdy, M. M., O’Leary, N. D. & Dobson, A. D. Cloning and functional analysis by gene disruption of a novel gene involved in indigo production and fluoranthene metabolism in Pseudomonas alcaligenes. Biochemistry 47, 6710–6722 (2007).

46. Zuckermann, J. L., O’Leary, N. D., Ahsan, M. I. & Dobson, A. D. Cloning and functional analysis by gene disruption of a novel gene involved in indigo production and fluoranthene metabolism in Pseudomonas alcaligenes. Biochemistry 48, 6710–6722 (2009).

47. Keck, A. et al. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152, 1929–1940 (2006).

48. Li, T. T. et al. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus rhodochrous sp. strain NCIMB 12038. Appl. Microbiol. Biotechnol. 90, 671–678 (2011).

49. Brzostowicz, P. C., Reams, A. B., Clark, T. J. & Neidle, E. L. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp strain ADP1 polb gene. Appl. Environ. Microbiol. 69, 1598–1606 (2003).

50. Arias-Barran, E. et al. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-lysine, and 3-hydroxyphenylacetate in Pseudomonas putida. J. Bacteriol. 186, 5062–5077 (2004).

51. Lee, S. Y., Park, S., Oh, T. K. & Yoon, J. H. Celeribacter halophilus sp. nov., isolated from seawater, and emended description of the genus Celeribacter. Int. J. Syst. Evol. Microbiol. 62, 1359–1364 (2012).

52. Ausubel, F. M. et al. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Wiley, New York, 2002).

53. Bentley, D. R. et al. Accurate whole genome sequence using reversible terminator chemistry. Nature 456, 53–59 (2008).

54. Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

55. Fukuo, M. et al. Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KR290 harboring nine plasmids reveals genomic stability. PLoS ONE 8, e60521 (2013).

56. Marx, C. J. & Lidstrom, M. E. Broad-host-range cre-lox system for antibiotic resistance recycling in gram-negative bacteria. Biotechniques 33, 1062–1067 (2002).

57. Denef, V. J. et al. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl. Environ. Microbiol. 72, 585–595 (2006).
74. Liu, C. & Shao, Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int. J. Syst. Evol. Microbiol. 55, 1181–1186 (2005).

Acknowledgments
This work was financially supported by COMRA program (No. DY125-15-R-01), Public Welfare Project of SOA (201005032), National Natural Science Foundation of China (41176154/41276005) and National Infrastructure of Microbial Resources of China (No. NIMR-2014-9). We thank Dr. Shicheng CHEN for providing us strain Escherichia coli WM3064 and plasmid pJK100, and thank Dr. Mohamed JEBBAR for critical reading of this manuscript.

Author contributions
Z.S. conceived the project and supervised the genomic and bioinformatics studies. J.C., Q.L., J.Y. and Z.S. performed the experiments and analyzed the data. J.C., Q.L. and Z.S. wrote the paper.

Additional information
Accession codes: The sequences of the six replicons of strain P73T have been deposited in GenBank (Accession: CP004393 – CP004398). The whole genome shotgun sequence of strain B30 is also available (Accession: AMRK00000000).

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Cao, J., Lai, Q., Yuan, J. & Shao, Z. Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci. Rep. 5, 7741; DOI:10.1038/srep07741 (2015).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/