Supplementary Information

Partial proteasomal degradation of Lola triggers the male-to-female switch of a dimorphic courtship circuit

Sato et al.
Supplementary Figure 1: The fru and lola loci.

a, The fru locus and exon (box)-intron (thin line) organization of isoform types A, E, and B with different zinc-finger motifs and isoform type D without a zinc-finger motif. The types A, E and B in our study correspond to isoforms A, B and C of other research groups, respectively. The P-insertions (triangles), promoters (P1-P4) and exons (1-11) are indicated. The regions containing epitopes for the anti-Fru antibodies are indicated. b, Schematic representation of the genomic organization of the lola locus. The entire locus consists of 32 exons. Transcription starts at either of the 5’ variable exons (exons 1-4), and 3’ variable exons (exons 9-32) are alternatively spliced to the constant exons (exons 5-8), generating variants encoding 20 Lola isoforms with distinct C-terminal domains containing zinc finger motifs. The protein coding regions recognized by the anti-Lola antibodies are indicated. The exon-intron organization and possible splicing patterns are drawn based on Goeke et al.1 and Ohsako et al.2 for lola and Billeter et al.3 and Ito et al.4 for fru.
Supplementary Figure 2: Phenotypes associated with heterologous and endogenous Fru expression.

a-g. The eye structure defects induced by fru+ overexpression and its modification by lola gene dosage. a, Strategy to recover fru modifiers using the GeneSearch (GS) system. b, An eye-antennal disc with ectopic FruB expression. c-g, The compound eye of a control fly carrying only GMR-GAL4 (c), flies in which GMR-GAL4 was used to overexpress fru+ type B alone (d) or together with GS2169 (e), that of lola heterozygotes without (f) or with fru+-type B overexpression as driven by GMR-GAL4 (g) The scale bar shown in panel c applies to panels c-g. h, Neuroblast clones of the sexually dimorphic mAL neurons in the female (upper panel) and male (lower panel) brain. The ipsilateral neurite is present only in the male (circled with a dotted line). Scale bars: 100 μm (left-hand side) and 10 μm (right-hand side) in (c-g); 50 μm in (h).
Supplementary Figure 3: Lola expression detected by an anti-Lola-Exon 29 antibody.

Western blot analysis of lysates prepared from *lola* homozygous (left-hand side lane) and heterozygous (right-hand side lane) embryos as probed by the anti-Lola-exon 29 antibody, demonstrating that this antibody specifically recognizes Lola29M. α-Tubulin served as a loading control. Source data are provided as a Source Data file.
Supplementary Figure 4: Lola29M is coexpressed with FruM in the wandering-stage larval CNS.

a-c, CNS cells in a wandering-stage larva labeled by the combination of UAS-ChRFP and insc-GAL4 (a) are immunopositive for the anti-Deadpan (Dpn) antibody (b), indicating that insc-GAL4 serves as a neuroblast marker. A merged image is shown in (c).

d-I, Immunostaining of CNS cells from wild-type larvae at the wandering stages with anti-FruMale, anti-Propero (Pros), and anti-Lola-exon 29 antibodies. Pros is a marker for ganglion mother cells (GMCs) differentiating into neurons and not expressed in neuroblasts. Neuroblasts are indicated with arrows and differentiating GMCs and neurons are shown with arrowheads. FruM was detectable in some GMCs and neurons (g-i) but not in neuroblasts. The anti-Lola-exon 29 antibody that specifically recognizes Lola29M/F labeled some of the differentiating GMCs and neurons (j-l) but none of the neuroblasts (d-f). Scale bar: 10 µm.
Supplementary Figure 5: No sex difference in promoter usage for transcripts containing the sequence from exon 29.

a, Flow diagram for the steps of 5’ and 3’ RACE experiments. b, Primer design for 5’ and 3’ RACE experiments to obtain full length cDNAs for exon 29-containing transcripts. c, 5’ and 3’ RACE PCRs with female-derived RNAs each yielded cDNAs that encoded sequences identical to the male transcripts. d, Full-length cDNAs contained either exon 2 or exon 3 at the 5’-most segment, indicating that the exon 29-containing primary RNAs are transcribed by two different promoters immediately upstream of exon 2 and exon 3, respectively, in both female and males. Source data are provided as a Source Data file.
Supplementary Figure 6: Effectiveness of *lola* knockdown with RNAi evaluated by western blotting.
GMR-GAL4-driven expression of *lola-COM RNAi* and *lola-exon 29 RNAi* reduced the amount of Lola proteins. Comparisons of a blot probed with the anti-LolaCOM antibody (left-hand panel) and that with anti-Lola-exon 29 antibody (right-hand panel) indicated the specific knockdown of Lola29M by *lola-exon 29 RNAi*. Source data are provided as a Source Data file.
Supplementary Figure 7: S2 cells transfected with a full-length *lola29m* construct produce both Lola29M and Lola29F-like proteins. Western blotting of lysates from S2 cells transfected with a vector encoding Lola29M decorated with the N-terminal HA-tag and the C-terminal V5-tag. Whereas an anti-V5 antibody detected two bands, Lola29M and Lola29F-like (right-hand side panel), an anti-HA antibody detected only Lola29M (left-hand side panel), suggesting that Lola29F-like may be an N-terminally truncated derivative of Lola29M. Source data are provided as a Source Data file.
Supplementary Figure 8: Lola29M is K48-polyubiquitinated.

Western blotting of K48-polyubiquitinated proteins in immunoprecipitates of transfected S2 cells. The anti-Ub-K48 antibody was used as a probe in the western blotting. The proteins were immunoprecipitated with the anti-FLAG antibody that recognizes Lola29M::3xFLAG, which is overexpressed in S2 cells alone or together with FruBM. 0 (-) or 1 (+) μg of pMT-lola29m-3xFLAG and 0 (-), 1 (+) or 3 (++) μg of pMT-frubm were cotransfected into S2 cells (indicated above the gel). Source data are provided as a Source Data file.
Supplementary Figure 9: Lola29M promotes the male-specific ipsilateral neurite formation in mAL neurons.

mAL neuroblast clones induced by MARCM in fruNP21 heterozygous females. Overexpression of truncation-resistant Lola29M[K41R] induced the ipsilateral neurite in some females (b cf. a), whereas overexpression of Lola29F-like (Lola29M[Δ1-300]) did not (c). d, Quantification of the effects of overexpression of Lola29M[K41R] and Lola29F-like (Lola29M[Δ1-300]) on the proportion of flies with the ipsilateral neurite. *: P<0.05 by the Fisher’s exact probability test. Scale bar: 50 μm.
Supplementary Figure 10: Diminished Robo1 immunoreactivity of the larval CNS by Lola29M[K41R] overexpression.

The brain-VNC complexes from female third instar larvae with (b, c, e, f) or without (a, c, d, f) Lola29M[K41R] overexpression were subjected to the double immunostaining for Robo1 (a-c) and Lola29M/F (d-f). The control and test samples were processed in the same tubes at the same time. Scale bars: 100 μm in (a, b, d, e) and 200 μm in (c, f).
Supplementary Figure 11: Precocious wing switching during male courtship induced by the deletion of DR1 within the robo1 promoter.

a. Examples of ethograms of a wild-type (CS) male and a robo1Δ4/robo1Δ4 mutant male. The time elapsed since the start of observation is shown on the top. The period during which the fly displayed precocious wing switching (orange bar), wing extension (magenta bar), or any courtship actions (green bar) is indicated. Vertical lines above the magenta bars indicate the time at which the fly switched the wing to be extended from the left wing to the right wing (right) and vice versa (left).
b. The wing usage pattern in courtship compared among the indicated genotypes. The larger wing switching index indicates more-frequent switching of the right and left wings during courtship. The numbers of flies examined are indicated in parentheses below the abscissa. The box plot shows median and 10th, 25th, 75th, and 90th percentiles. The statistical differences among the datasets were evaluated by the Kruskal-Wallis analysis of variance followed by Steel’s nonparametric multiple comparisons. *p < 0.05.
Supplementary Figure 12: Cul1 expression in mAL neurons.

A female brain doubly stained for GFP (a, c, d, f; green) and Cul1 (b, c, e, f; magenta) is shown at lower (a-c) and higher (d-f) magnification (scale bars indicate 50 µm for a-c and 5 µm for d-f). GFP expression was targeted to mAL neurons by the intersection of 9-189-GAL4 and fru^{FLP} (arrowheads).
Supplementary Figure 13: Lola29M-FruBM interactions depend on the BTB domain of each. The antibody that recognizes the C-terminal V5 tag of Lola29M-V5 (anti-V5) precipitated intact FruBM (a) but not BTB-deleted FruBM (FruBMΔBTB; b) in lysates from S2 cells cotransfected with constructs encoding the respective proteins. Note that the lack of the BTB domain of FruBM resulted in the production of Lola29F-like, which was not detected when both FruBM and Lola29M were structurally intact and had the BTB-domain. Source data are provided as a Source Data file.
Supplementary Figure 14: Western Blot analysis of FruBM in S2 cell lysates.
FruBM protein was detected only when the cells were transfected with a FruBM-encoding sequence. α-tubulin served as an internal control. Source data are provided as a Source Data file.
Accession	Description	Score	Coverage	# Peptides	# AAs	MW [kDa]
Q9V5M3	Longitudinals lacking protein, isoforms N/O/W/X/Y OS=Drosophila melanogaster GN=lola PE=1 SV=3 - [LOLA6_DROME]	3246.00	25.40	19	878	96.1
P02828	Heat shock protein B3 OS=Drosophila melanogaster GN=Hsp83 PE=1 SV=1 - [HSBP3_DROME]	1464.02	55.23	39	717	81.8
P52034	ATP-dependent 6-phosphofructokinase OS=Drosophila melanogaster GN=Prk PE=2 SV=2 - [PKFA_DROME]	1193.64	51.40	31	788	86.6
Q9VHP0	ATP-dependent RNA helicase bel OS=Drosophila melanogaster GN=bel PE=1 SV=1 - [DDX3_DROME]	1182.89	60.03	37	798	85.0
Q99322	Myosin heavy chain, non-muscle OS=Drosophila melanogaster GN=zip PE=1 SV=2 - [MYSN_DROME]	980.80	18.08	28	2057	236.5
P29894	Heat shock 70 kDa protein cognate 3 OS=Drosophila melanogaster GN=Hsc70-3 PE=2 SV=2 - [HSP70_DROME]	813.14	38.57	22	656	72.2
P54351	Vesicle-fusing ATPase 2 OS=Drosophila melanogaster GN=Na+2 PE=2 SV=2 - [NSF2_DROME]	703.21	52.39	31	752	83.4
P11147	Heat shock 70 kDa protein cognate 4 OS=Drosophila melanogaster GN=Hsc70-4 PE=1 SV=3 - [HSP70D_DROME]	689.32	41.32	26	651	71.1
Q9NFU0	Fragile X mental retardation syndrome-related protein 1 OS=Drosophila melanogaster GN=Fmr1 PE=1 SV=1 - [FMR1_DROME]	639.87	38.16	19	694	76.0
Q7KN90	Cysteine--tRNA ligase, cytoplasmic OS=Drosophila melanogaster GN=Aats-cys PE=1 SV=1 - [SYCC_DROME]	627.24	60.19	32	741	84.2
P10987	Actin-SC OS=Drosophila melanogaster OS=Act5C PE=1 SV=4 - [ACT1_DROME]	565.54	60.11	16	376	41.8
Q9XYU0	DNA replication licensing factor Mcm7 OS=Drosophila melanogaster GN=Mcm7 PE=1 SV=1 - [MCM7_DROME]	507.45	33.75	23	720	81.2
Q0E5M0	Eukaryotic translation initiation factor 3 subunit B OS=Drosophila melanogaster GN=eIF3-S9 PE=1 SV=1 - [EIF3B_DROME]	453.38	30.87	16	690	80.4
Q9VHR8	Dipeptidyl peptidase 3 OS=Drosophila melanogaster GN=DppIII PE=2 SV=2 - [DPP3_DROME]	449.97	27.74	21	786	89.1
O46037	Vinculin OS=Drosophila melanogaster GN=Vinc PE=1 SV=1 - [VINC_DROME]	445.56	20.29	14	961	83.7
Q9VWV3	ATP-dependent RNA helicase Ddx1 OS=Drosophila melanogaster GN=Ddx1 PE=2 SV=2 - [DDX1_DROME]	406.40	19.94	11	727	80.8
Q9WWX9	Centromere/kinetochore protein zw10 OS=Drosophila melanogaster GN=mtn1(1)15 PE=1 SV=2 - [ZW10_DROME]	401.08	30.51	15	721	82.2
Q94S11	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondri OS=Drosophila melanogaster GN=ND75 PE=2 SV=3 - [NDU1_DROME]	399.35	23.94	11	731	78.6
Q29114	Cytochrome--tRNA ligase, cytoplasmic OS=Drosophila melanogaster OS=pseudosubcuape pseudobosueca GN=Aats-cys PE=3 SV=1 - [SYCC_DROPS]	391.27	19.97	12	741	83.7
P13469	DNA-binding protein module OS=Drosophila melanogaster GN=mod PE=1 SV=2 - [MODU_DROME]	373.82	30.26	12	542	60.3
Q9VRA2	Molybdenum cofactor sulfatase OS=Drosophila melanogaster GN=mal PE=1 SV=1 - [MCOS_DROME]	349.64	19.33	10	781	88.0
Q9VF8C	Glycerokin [starch] synthase OS=Drosophila melanogaster GN=GlyS PE=1 SV=2 - [GYS_DROME]	345.01	23.13	10	709	81.7
A12A1X	Eukaryotic translation initiation factor 3 subunit C OS=Drosophila melanogaster GN=eIF3-S8 PE=1 SV=1 - [EIF3C_DROME]	330.39	22.42	17	910	105.6
P29843	Heat shock 70 kDa protein cognate 1 OS=Drosophila melanogaster GN=Hsc70-1 PE=1 SV=1 - [HSPIA_DROME]	327.98	13.73	6	641	70.6
Q9VP61	Acetyl-coenzyme A synthetase OS=Drosophila melanogaster GN=AcCoA5 PE=2 SV=1 - [ACSA_DROME]	315.81	31.49	16	670	75.9
Q960Z0	Kinesin-like protein Klp10A OS=Drosophila melanogaster GN=Klp10A PE=1 SV=1 - [K10A_DROME]	313.98	22.61	14	805	88.6
P25991	Protein suppressor of forked OS=Drosophila melanogaster GN=suf(f) PE=1 SV=2 - [SUF_DROME]	277.35	16.99	10	765	88.2
P10981	Actin-87E OS=Drosophila melanogaster GN=Act87E PE=1 SV=1 - [ACT5_DROME]	247.80	41.76	12	376	41.8
B4HY41	Elongation factor G, mitochondrial OS=Drosophila melanogaster GN=igo PE=3 SV=1 - [EFM_DROSE]	236.87	22.15	12	745	83.5
Q9VKE2	Inhibitor of nuclear factor kappa-B kinase subunit beta OS=Drosophila melanogaster GN=iir5 PE=1 SV=2 - [IKKB_DROME]	229.55	13.85	9	751	86.3
Q24311	Culkin homolog 1 OS=Drosophila melanogaster GN=Cul1 PE=1 SV=2 - [CUL1_DROME]	209.28	20.67	15	774	89.5
P20480	Protein claret segregational OS=Drosophila melanogaster GN=ncd PE=1 SV=1 - [NCD_DROME]	206.23	23.00	13	700	77.4
Q9W1A2	N-alpha-acetyltransferase, 35 Na+auxiliary subunit homolog OS=Drosophila melanogaster GN=CG0655 PE=2 SV=1 - [NAAS5_DROME]	182.93	10.97	6	784	89.1
Q9VZI3	Unc-112-related protein OS=Drosophila melanogaster GN=Ft1 PE=1 SV=1 - [UN112_DROME]	176.39	10.88	6	708	80.4
Q9V8K2	Exocyst complex component 3 OS=Drosophila melanogaster GN=secb PE=2 SV=2 - [EXOC3_DROME]	175.79	11.38	8	738	86.6
Q7KN62	Transitional endoplasmic reticulum ATPase 70K OS=Drosophila melanogaster GN=TER94 PE=1 SV=1 - [TERA_DROME]	175.72	15.98	9	801	88.8
Q9VSH4	Cleavage and polyadenylation specificity factor subunit CG7185 OS=Drosophila melanogaster GN=CG7185 PE=1 SV=2 - [CPSF6_DROME]	172.77	8.90	4	652	71.1

Supplementary Table 1. List of proteins identified by mass spectrometry in immunoprecipitates that were obtained with an antibody recognizing Lola29M.
Accession	Description	Score	Coverage	# Peptide	AAs	MW
Q9XTM1	Exocyst complex component OS=Drosophila melanogaster GN=sec10 PE=2 SV=1 - [EXOC5_DROME]	20.61	1.41	1	710	82.0
Q27415	Nucleoplasmin-like protein OS=Drosophila melanogaster GN=Nlp PE=1 SV=1 - [NLP_DROME]	20.52	7.89	1	152	17.0

The name of identified proteins (Description, 2nd column) is listed in order from largest to smallest peptide probability score (Score: 3rd column). Accession, accession number in NCBI; Coverage, the percent sequence coverage identified from MS/MS results; # Peptide, number of the identified peptides by LC-MS/MS; AAs, number of amino acids; MW, molecular weight. The S2 cells transfected with a Lola29M[Δ1-150] expression vector were the source of lysates subjected to immunoprecipitation. The E3 ubiquitin ligase Cullin1 is highlighted in red.
#	Name Sequence 5'-3' Plasmid vector	Note
1	fruBM-DBTB F1 TGCGAATTCGGATCC	pact-FLAG-fruBM[DBTB] and pact-FLAG-fruBM[DZn-finger, DBTB] vectors Paired with FruBM-DBTB R1
2	fruBM-DBTB R1 GTCCATGCTCCTTGTCAG	pact-FLAG-fruBM[DBTB] and pact-FLAG-fruBM[DZn-finger, DBTB] vectors Paired with FruBM-DBTB R2
3	fruBM-DBTB F2 CAAGGAGCGATGGAC	pact-FLAG-fruBM[DBTB] and pact-FLAG-fruBM[DZn-finger, DBTB] vectors Paired with FruBM-DBTB R2
4	fruBM-DBTB R2 TCTTCAATGTCGAGCGCTACTTTAATGAGTGAGTTCAGCT	pact-FLAG-fruBM[DBTB] and pact-FLAG-fruBM[DZn-finger, DBTB] vectors Paired with FruBM-DBTB R2
5	HA-lola29m(WT) F GGGTGATCCAAATTGCTACCGTAGTGGCCGGATTACGGCATAGCATCAGCAGTTTGGTC (KpnI) pMT-HA-lola29m-V5 vector Paired with HA-lola29m(WT) R	
6	HA-lola29m(WT) R GGGCGGCCGCGTTGCAAGATTCGCTCC (NotI) pMT-HA-lola29m-V5 vector Paired with HA-lola29m(WT) F	
7	COM F GGGATCTAGATCGGGGTACC	pMT-HA-lola29m-V5 vector Paired with COM R
8	COM R GAGAAAGGGCTCTCGGCGG	pMT-HA-lola29m-V5 vector Paired with COM F
9	K41R F GAGGCCGCGTTTCTCAAGGCCC	pMT-HA-lola29m-V5 vector Paired with K41R F
10	K41R R GGGCGGCCGCGTTGCAAGG	pMT-HA-lola29m-V5 vector Paired with K41R R
11	K44R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K44R R
12	K47R R GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R R
13	K47R F GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R F
14	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
15	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
16	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
17	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
18	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
19	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
20	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
21	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
22	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
23	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
24	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
25	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
26	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
27	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
28	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
29	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
30	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
31	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
32	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
33	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
34	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
35	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
36	K47R F GCACCACCGGCTGAGCC	pMT-HA-lola29m-V5 vector Paired with K47R F
37	K47R R GGCGGCGCTGAGCCGCGGGCG	pMT-HA-lola29m-V5 vector Paired with K47R R
38	K47R R GTGGGCAGCG	pMT-HA-lola29m-V5 vector Paired with K47R R

Supplementary Table 2. List of primer pairs for constructing plasmid vectors.
Single underlining is used to denote 15 bp overlaps for In-fusion cloning. Double underlining is used to denote restriction enzyme recognition sites. An amino acid replacement (K to R) is highlighted in red. F, forward primer; R, reverse primer.
Supplementary Table 3. List of primer pairs for 5'/3' RACE experiments (Supplementary Fig. 5).

#	Name	Sequence 5'-3'	Note
1	5' RACE primer (F)	Mixture of oligos: 5'-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3' (0.4 μM) and 5'-CTAATACGACTCACTATAGGGC-3' (2 μM)	Same as Universal Primer A Mix (UPM) in SMARTer RACE cDNA Amplification Kit (Clontech) Paired with Primer 1
2	Primer 1 (R)	CGTGCTGTCACCTTCATGGCCTCC	Paired with 3' RACE primer
3	Primer 2 (F)	GGAGGCCCATGAAGGTGACCAGCACG	Paired with 3' RACE primer
4	3' RACE primer (R)	Mixture of oligos: 5'-CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3' (0.4 μM) and 5'-CTAATACGACTCACTATAGGGC-3' (2 μM)	Same as Universal Primer A Mix (UPM) in SMARTer RACE cDNA Amplification Kit (Clontech)

F, forward primer; R, reverse primer.
Supplementary Table 4. DNA probes used in EMSA experiments (Figure 4).

	Name	Sequence 5’-3’	Note
1	Probe DNA B	CCGGGCGTTGCGCTCTCAAAATTTCACAGACACGACCCACGTCAATTGTGAGGTTTTCGCTGCGCCGTGAA	120 bp
		TCACAAAGGAGCAGGAAAATAGTTAATTTCACACAGTTAATTGAG	
2	Probe DNA B△DR1	CCGGGCGTTGCGCTCTCAAAATTTCACAGACACGACCCACGTCAATTGTGAGGTTTTCGCTGCGCCGTGAA	102 bp
		TCATAGTTAATTTCACACAGTTAATTGAG	

Direct repeat 1 (DR1) is highlighted in red.
Supplementary References

1. Goeke, S. et al. Alternative splicing of lola generates 19 transcription factors controlling axon guidance in *Drosophila*. *Nat. Neurosci.* 6, 917-924 (1993).

2. Ohsako, T., Horiuchi, T., Matsuo, T., Komaya, S. & Aigaki, T. *Drosophila lola* encodes a family of BTB-transcription regulators with highly variable C-terminal domains containing zinc finger motifs. *Gene* 311, 59-69 (2003).

3. Billeter, J.-C. et al. Isoform-specific control of male neuronal differentiation and behavior in *Drosophila* by the fruitless gene. *Curr. Biol.* 16, 1063-1076 (2006).

4. Ito, H. et al. Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism. *Cell* 149, 1327-1338 (2012).