INTRODUCTION

Oral cavities are colonized by *Candida albicans* or other yeast species in 40–60% of healthy persons. In the presence of any local or general predisposing factors, *Candida* may cause acute or chronic oral infections such as...
Antifungal drug susceptibility of Candida species in HIV positive and HIV negative individuals

Dar, et al.

pseudomembranous (oral thrush), atrophic (erythematous), angular cheilitis or hyperplastic candidiasis. The advent of human immunodeficiency virus (HIV) infection has entirely altered the incidence and prevalence of fungal infections. In HIV/acquired immune deficiency syndrome (AIDS) patients,

Figure 1: Human immunodeficiency virus seropositive patient with evidence of oropharyngeal candidiasis

Figure 2: Colonies of Candida species

Figure 3: Candida species showing zone of inhibition for clotrimazole, itraconazole and nystatin

Figure 4: Candida colonies showing susceptibility to fluconazole minimum inhibitory concentration strip

Figure 5: Amphotericin minimum inhibitory concentration strip showing resistance to Candida colonies

Figure 6: Candida colonies showing resistance to all selected antifungal drugs
Oropharyngeal candidiasis (OPC) is the most commonly reported opportunistic infection observed, accounting in approximately 80–95% of those with HIV patients [Figure 1]. The prevalence of OPC in HIV-positive patients appears to be correlated to the severity of the immunological dysfunction. The occurrence of oral candidiasis at initial stages of HIV-infected and AIDS (HIV/AIDS) patients particularly the risk is considered to be higher in patients with a CD4+ cell count is low (400–700 cells/mm³) or <200 cells/mm³ and high plasma HIV-RNA loads.[2] In India, OPC is the second most common opportunistic infection among patients infected with HIV and occurs in more than 95% of AIDS patients and it is considered as an important marker of the AIDS disease and its progression.[1]

Among various species of Candida, C. albicans is the main cause of oral candidiasis in HIV infection and AIDS, but in advanced stage, rise and epidemiological shift in candidiasis has resulted in infections with Candida species other than C. albicans. Candida dubliniensis has also been linked to OPC in such patients. Hence, identification of various members of Candida species causing infection in HIV patients has gained importance.[4] Fluconazole is considered to be the drug of choice for the treatment of the most common HIV-associated opportunistic yeast infections. It has been the most widely used drug because of its good absorption, low toxicity and ability to be administered through both oral and intravenous routes and its resistance is associated with prolonged exposure to azoles.[2]

The common use of fluconazole and otherazole antifungal agents for treating this infection has been associated with the emergence of azole-resistant isolates of C. albicans in HIV/AIDS patients.[2] The prolonged management of OPC might cause the development of drug-resistant OPC and there have been reports of the emergence of resistance to antifungal agents in HIV/AIDS patients with OPC.[3] The increasing resistance to antifungal treatments and expanding drug therapy options has prompted the need for clinically relevant antifungal susceptibility testing (AST).[6] The aim of this study is to isolate the Candida species in HIV-positive and control individuals, with or without clinical OPC and to determine the antifungal drug susceptibility of Candida for fluconazole, itraconazole, nystatin, amphotericin B and clotrimazole.

MATERIALS AND METHODS

Study sample size

The prospective case-control study included 70 individuals, who were divided into two studies and two control groups (HIV seropositive = 36 and HIV-seronegative = 34) with and without clinical evidence of oral candidiasis. All of them were tested for HIV by tests (COOMB AIDS, TRI-DOT), according to National AIDS Control Organization guidelines and confirmed by Western Blot. The protocol for the present study was approved by the Institutional Ethics Committee.

Sample collection

The study sample was collected from both the HIV seropositive and negative patients after thorough clinical examination with their written and verbal consent. The patient was asked to swish the mouth with normal saline to remove superficial debris, with the help of sterile cotton swabs sample was collected from the faucial region by rolling the swab several times across the surface. Immediately, after sampling swab replaced into its sterile container and taken to the laboratory within 2 h. Oral specimens were coded according to clinical group and patient.

Laboratory methods

The collected oral swabs were inoculated onto Sabarad’s Dextrose Agar (SDA) supplemented with chloramphenicol, and incubated at 36°C (±1°C) for 2 days and for a 7 days additional period at 30°C (±1°C) before being discharged as negative. The presence of Candida was confirmed by the presence of creamy white colonies [Figure 2] and for reconfirmation positive isolates were then analyzed by light microscopy on lactophenol cotton blue wet mount slides to reveal presence of ovoid yeasts (hyphae and pseudohyphae). Yeasts were identified to the species level by standard methods, microscopic morphology on Corn Meal Agar-Tween 80 (pseudohyphae and true hyphae formation, as well as chlamydoconidia production) and sugar fermentation tests (glucose, maltose, sucrose and lactose). In addition, for presumptive identification of C. dubliniensis, all isolates identified as C. albicans were also tested for growth at 45°C (±1°C) for 48 h on SDA. Isolates were stored in sterile containers for further use. The antifungal agents tested were: Fluconazole, amphotericin B, nystatin, clotrimazole and itraconazole. The isolates were subcultured on SDA and incubated at 37°C overnight. Saline suspensions of isolates were made and the turbidity was adjusted at 0.5 McFarland standards. A lawn culture was done on freshly prepared Muller Hinton Agar (MHA) (Hi-Media) plates. The antifungal E-strips and disks were placed on MHA plates and incubated at 37°C. The zone of inhibition was measured after 24–48 h. The isolates were classified as susceptible, susceptible dose-dependent (SDD) and resistant and interpretive criteria used were according to Clinical and Laboratory Standards Institute guidelines [Figure 3, Table 1].

RESULTS

The present study evaluates the drug susceptibility test in Candida isolated from HIV seropositive and HIV seronegative patients in Lucknow population. A total of 70 patients (females = 24 and males = 46) aged between 19 and 69 years were recruited. Of total, 36 (51.4%) were HIV seropositive and 34 (48.6%) were HIV seronegative. Table 2
Table 1: CLSI guidelines for antifungal agents

MIC strips (µg/ml)	Susceptible	Susceptible dose dependent	Resistance
Fluconazole	≤8	8-64	≥64
Amphotericin B	≤1	1-4	≥4

Diffusion disc (mm)	Susceptible	Susceptible dose dependent	Resistance
Nystatin	≥15	14-10	<10
Clotrimazole	≥20	19-10	<10
Itraconazole	≥23	22-14	<13

MIC: Minimum inhibitory concentration, CLSI: Clinical and Laboratory Standards Institute

Table 2: Association of HIV seropositivity with demographic and clinical characteristics

Characteristics	HIV seropositive (n=36) (%)	HIV seronegative (n=34) (%)	χ²/U	P
Age (years)				
15-25	4 (11.1)	4 (11.8)	10.74	0.030
26-35	14 (38.9)	10 (29.4)		
36-45	16 (44.2)	8 (23.5)		
46-55	2 (5.6)	9 (26.5)	1.79	0.181
≥56	0 (0.0)	3 (8.8)		
Sex				
Females	15 (41.7)	9 (26.5)		
Males	21 (58.3)	25 (73.5)		
Oral candidiasis				
Absent	19 (52.8)	20 (58.8)	0.26	0.611
Present	17 (47.2)	14 (41.2)		
Candidiasis type				
Erythematous	2 (11.8)	0 (0.0)	2.44	0.295
Hyperplastic	4 (23.5)	2 (14.3)		
Pseudomembranous	11 (64.7)	12 (85.7)		
Candida species				
Albicans	24 (66.7)	25 (73.5)	13.82	0.008
Dubliniensis	1 (2.8)	0 (0.0)		
Glabrata	9 (25.0)	1 (2.9)		
Guilliermondii	1 (2.8)	0 (0.0)		
Tropicalis	1 (2.8)	8 (23.5)		

The incidence of OPC has increased over the last several decades due to the widespread use of antibiotics and immunosuppressive drugs to combat conditions associated with immunosuppression such as patients with cancer, HIV/AIDS. Despite some effective treatment options such as azoles and polyenes, OPC is associated with high morbidity and mortality rates.[2]

The prolonged management of OPC might cause the development of drug-resistant OPC and there have been reports of the emergence of resistance to antifungal agents in HIV/AIDS patients with OPC.[6] The increasing resistance to antifungal treatments and expanding drug therapy options has prompted the need for clinically relevant AST.[11]

Among the clinical forms of OPC pseudomembranous was predominant followed by erythematous and hyperplastic candidiasis in HIV seropositive patients.[7-9] These findings were in contrast with the reported findings[10,9,11] where erythematous form outnumbered pseudomembranous candidiasis reasoning that patients under antimicrobial therapy and habit of smoking showed increased the incidence of erythematous candidiasis. In the present study, most subjects selected were not on antimicrobials and were nonsmokers. 85.7% of HIV-seronegative individuals showed pseudomembranous candidiasis in the present study.

C. albicans being the normal commensals of the oral cavity is isolated more commonly in OPC of HIV seropositive and HIV seronegative patients due to increased level of immune-suppression that has led the opportunity for their growth and shift to non-albicans.[12-20]
The susceptibility rate for amphotericin B was higher in HIV-seronegative patients while as susceptibility dose-dependent and resistance was seen more in HIV seropositive patients.

The susceptibility rate for nystatin in HIV seronegative patients was much higher as compared to HIV seropositive patients on contrary the susceptibility dose-dependent and resistance rate was more in HIV seropositive patients as compared to seronegative patients and these results were in accordance with the findings of Gutiérrez et al. 2002. [25]

The susceptibility rate to clotrimazole in HIV seropositive patients were less than HIV-seronegative patients whereas dose-dependent and resistant were seen more predominant in HIV seropositive patients, these findings were in accordance with the findings of Gutiérrez et al. 2002. [25]

The susceptibility, susceptibility dose-dependent and resistance rate of C. albicans [29] in HIV seropositive patients against the selected antifungal drugs showed the highest percentage of susceptibility for fluconazole followed by amphotericin B, clotrimazole, nystatin and least susceptibility was found to itraconazole. The SDD was highest against itraconazole and least for amphotericin B. Resistance was found highest to amphotericin B and no resistance was found for fluconazole [Table 4]. Hamza et al. 2008[29] also reported similar findings of no resistance of C. albicans to fluconazole but the reported findings by Jeddy et al. 2011[37] and Badiee et al. 2010[21] were in contrast to our findings who found resistance of C. albicans to fluconazole in HIV-positive patients. Sánchez-Vargas et al. 2005,[6] Jeddy et al. 2011[7] also reported no resistance to amphotericin B, but the findings of Blignaut et al. 2002, Wabe et al. 2011,[30] Mulu et al.[31] were in accordance with our findings who also reported resistance to amphotericin B.

The species C. glabrata[12] in HIV seropositive patients showed the highest percentage of susceptibility for fluconazole followed by amphotericin B nystatin and clotrimazole and least susceptibility was found to itraconazole. The SDD was highest for itraconazole followed by clotrimazole and least for fluconazole. Resistance was found highest to amphotericin B followed by nystatin, clotrimazole, itraconazole and no resistance was found for fluconazole [Table 5]. These findings are in accordance with the findings of Satana et al. 2010[32] and in contrast to the reported findings by Sánchez-Vargas et al. 2005,[6] Hamza et al. 2008.[28]

The species C. tropicalis[1] in HIV seropositive patients showed susceptibility to all the selected antifungal drugs and our findings were in accordance with Satana et al. 2010[32] and Nweze et al. 2011.[33]

Species C. guillermondii[1] [Table 6] isolated in HIV seropositive patients was susceptible to clotrimazole and

Table 3: Association of HIV seropositivity with antifungal drug susceptibility

Characteristics	HIV seropositive (n=36) (%)	HIV seropositive (n=34) (%)	\(\chi^2 \)	\(P \)
Fluconazole				
Susceptible	31 (86.1)	32 (94.1)	3.63	0.163
SDD	5 (13.9)	1 (2.9)		
Resistant	0 (0.0)	1 (2.9)		
Amphotericin B				
Susceptible	24 (66.7)	29 (85.3)	3.36	0.187
SDD	4 (11.1)	2 (5.9)		
Resistant	8 (22.2)	3 (8.8)		
Nystatin				
Susceptible	22 (61.1)	31 (91.2)	8.73	0.013
SDD	13 (36.1)	3 (8.8)		
Resistant	1 (2.8)	0 (0.0)		
Clotrimazole				
Susceptible	24 (66.7)	32 (94.1)	8.55	0.014
SDD	9 (25.0)	2 (5.9)		
Resistant	3 (8.3)	0 (0.0)		
Itraconazole				
Susceptible	19 (52.8)	30 (88.2)	10.75	0.005
SDD	15 (41.7)	3 (8.8)		
Resistant	2 (5.6)	1 (2.9)		

SDD: Susceptible dose dependent

Among non-albicans C. glabrata and Candida tropicalis were isolated predominantly in HIV seropositive and HIV seronegative patients, respectively.

The present study also reported a rare, enigmatic more pathogenic non-albicans, C. dubliniensis and C. guillermondii in HIV seropositive patients. One strain of C. dubliniensis has also been isolated by other authors in different parts of world. [21-25] C. guillermondii has also been isolated in HIV seropositive patients by other authors. [17,18,21] In the present study, among non-albicans C. glabrata, C. guillermondii and C. dubliniensis were significantly (0.001) increased in HIV-positive patients whereas C. tropicalis was predominant in HIV seronegative patients.

Most predominant species isolated in pseudomembranous candidiasis was C. albicans followed C. glabrata. In four cases of hyperplastic candidiasis two cases showed C. albicans species and two cases showed C. glabrata, whereas in two cases erythematous candidiasis one case showed species of C. glabrata and one species of C. guillermondii.

The assessment of susceptibility, susceptibility dose-dependent, and resistance of fl uconazole against Candida species showed higher rate of susceptibility in HIV seronegative patients, whereas dose-dependent was seen higher in HIV-seropositive patients and only one patient was resistant in HIV seronegative patients. [26,27]
Fluconazole, clotrimazole, and nystatin were found to be susceptible to most isolates of HIV seropositive patients. Resistance to amphotericin B was found in 4.1% of isolates. In contrast, fluconazole, itraconazole, and clotrimazole were more susceptible to HIV seronegative patients, with resistance found in only 8% of isolates.

Table 4: Antifungal drug susceptibility against C. albicans

Drug	HIV seropositive patients (24%)	HIV seronegative individuals (25%)				
	S	SDD	R	S	SDD	R
Fluconazole	22 (91.6)	2 (8.4)	0 (0)	23 (92)	1 (4)	1 (4)
Amphotericin B	19 (79.1)	1 (4.1)	4 (16.6)	23 (92)	0 (0)	2 (8)
Nystatin	17 (70.8)	7 (29.1)	0 (0)	24 (96)	1 (4)	0 (0)
Clotrimazole	19 (79.1)	3 (12.5)	2 (8.4)	23 (92)	2 (8)	0 (0)
Itraconazole	15 (62.5)	8 (33.3)	1 (4.1)	23 (92)	1 (4)	1 (4)

C. albicans: Candida albicans, SDD: Susceptible dose dependent

Table 5: Antifungal drug susceptibility against C. glabrata

Drug	HIV seropositive patients (9%)	HIV seronegative individuals (1%)				
	S	SDD	R	S	SDD	R
Fluconazole	7 (77.7)	2 (22.2)	0 (0)	1 (100)	0 (0)	0 (0)
Amphotericin B	4 (44.4)	3 (33.3)	2 (22.2)	1 (100)	0 (0)	0 (0)
Nystatin	4 (44.4)	4 (44.4)	1 (11.1)	1 (100)	0 (0)	0 (0)
Clotrimazole	2 (22.2)	6 (66.6)	1 (11.1)	1 (100)	0 (0)	0 (0)
Itraconazole	1 (11.1)	7 (77.7)	1 (11.1)	1 (100)	0 (0)	0 (0)

C. glabrata: Candida glabrata, SDD: Susceptible dose dependent

Table 6: Antifungal drug susceptibility of C. dubliniensis and C. guilliermondii in HIV seropositive patients

Drug	C. dubliniensis (1%)	C. guilliermondii(1) (%)				
	S	SDD	R	S	SDD	R
Fluconazole	1 (100)	0 (0)	0 (0)	0 (0)	1 (100)	0 (0)
Amphotericin B	0 (0)	0 (0)	1 (100)	0 (0)	0 (0)	1 (100)
Nystatin	0 (0)	1 (100)	0 (0)	0 (0)	1 (100)	0 (0)
Clotrimazole	1 (100)	0 (0)	0 (0)	1 (100)	0 (0)	0 (0)
Itraconazole	1 (100)	0 (0)	0 (0)	1 (100)	0 (0)	0 (0)

C. dubliniensis: Candida dubliniensis, C. guilliermondii: Candida guilliermondii, SDD: Susceptible dose dependent

Table 7: Antifungal drug susceptibility against C. tropicalis

Drug	HIV seropositive patients (1%)	HIV seronegative individuals (8%)				
	S	SDD	R	S	SDD	R
Fluconazole	1 (100)	0 (0)	0 (0)	8 (100)	0 (0)	0 (0)
Amphotericin B	1 (100)	0 (0)	0 (0)	5 (62.5)	2 (25)	1 (12.5)
Nystatin	1 (100)	0 (0)	0 (0)	6 (75)	2 (25)	0 (0)
Clotrimazole	1 (100)	0 (0)	0 (0)	8 (100)	0 (0)	0 (0)
Itraconazole	1 (100)	0 (0)	0 (0)	6 (75)	2 (25)	0 (0)

C. tropicalis: Candida tropicalis, SDD: Susceptible dose dependent

C. dubliniensis[1] isolated in HIV seropositive patients was susceptible to fluconazole, itraconazole and clortrimazole, SDD to nystatin and resistance to amphotericin B. Findings of Hamza et al. 2008,[28] Maninder et al. 2008, Badiee et al. 2010[21] were favoring for susceptibility to fluconazole, itraconazole and clortrimazole, but their findings are in contrast to our findings related to resistance for amphotericin B.

In the present study, the assessment of susceptibility, susceptibility dose dependent and resistance of the isolated *albicans* and non-*albicans* Candida species in HIV seropositive patients against the selected antifungal drugs were also assessed. As per the knowledge pertaining to the published scientific literature this study is the first of its kind in the literature carried out with above parameters in HIV seronegative patients and revealed the following facts.

Among the 39 species of Candida isolated in both HIV seropositive and HIV seronegative patients without the evidence of clinical oral candidiasis [Table 4]. *C. albicans* were highly predominant than non-*albicans* isolates. In HIV seronegative individuals, *C. albicans* showed the highest percentage of susceptibility against nystatin followed by fluconazole, amphotericin B, itraconazole and clortrimazole. Resistance was found highest to amphotericin B. Lone isolate of *C. glabrata* [Table 5] in HIV seropositive individuals showed susceptible to all selected antifungal drugs. *C. Tropicalis* showed highest percentage of susceptibility for fluconazole and clortrimazole followed by nystatin and itraconazole and least susceptibility to amphotericin B [Table 7]. It was observed that HIV seronegative patients showed higher susceptibility activity than HIV seropositive patients against itraconazole while as susceptibility dose-dependent and resistance was seen much higher in case of HIV seropositive patients.

CONCLUSION

Our results demonstrate that the tested antifungal agents showed good susceptibility activity for most isolates of both HIV seropositive and HIV seronegative groups; however, variability found among some isolates and resistance to antifungal agents emphasizes the need for antifungal drug susceptibility testing as a guide to the therapeutic prescription of antifungals agents.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Enwuru CA, Ogunledun A, Idika N, Enwuru NV, Ogbonna F, Aniedobe M, et al. Fluconazole resistant opportunistic oro-pharyngeal Candida and non-Candida yeast-like isolates from HIV infected patients attending ARV clinics in Lagos, Nigeria. Afr Health Sci 2008;8:142-8.

2. Brito GN, Inocêncio AC, Querido SM, Jorge AO, Koga-Ito CY.
Antifungal drug susceptibility of Candida species in HIV positive and HIV negative individuals

In vitro antifungal susceptibility of Candida spp. oral isolates from HIV-positive patients and control individuals. Braz Oral Res 2011;25:28-33.

3. Ranganathan K, Reddy BV, Kumarasamy N, Solomon S, Viswanathan R, Johnson NW. Oral lesions and conditions associated with human immunodeficiency virus infection in 300 south Indian patients. Oral Dis 2000;6:152-7.

4. Weinert M, Grimes RM, Lynch DP. Oral manifestations of HIV infection. Ann Intern Med 1996;125:485-96.

5. Reef SE, Mayer KH. Opportunistic candidal infections in patients infected with human immunodeficiency virus: Prevention issues and priorities. Clin Infect Dis 1995;21 Suppl 1:S99-102.

6. Sánchez-Vargas LO, Ortiz-López NG, Villar M, Moragues MD, Aguirre JM, Cashat-Cruz M, et al. Point prevalence, microbiology and antifungal susceptibility patterns of oral Candida isolates colonizing or infecting Mexican HIV/AIDS patients and healthy persons. Rev Iberoam Micol 2005;22:83‑92.

7. Jedd N, Ranganathan K, Devi U, Joshua E. A study of antifungal drug sensitivity of Candida isolated from human immunodeficiency virus infected patients in Chennai, South India. J Oral Maxillofac Pathol 2011;15:182-6.

8. Maurya V, Srivastava A, Mishra J, Gaidn R, Marak RS, Tripathi AK, et al. Oropharyngeal candidiasis and Candida colonization in HIV positive patients in Northern India. J Infect Dev Ctries 2013;7:608-13.

9. Moniacci D, Greco D, Flechina G, Raiteri R, Sinicco A. Epidemiology, clinical features and prognostic value of HIV-1 related oral lesions. J Oral Pathol Med 1990;19:477-81.

10. Bodhade AS, Ganvir SM, Hazarey VK. Oral manifestations of HIV infection and their correlation with CD4 count. J Oral Sci 2011;53:203-11.

11. Sharma SK, Mohan A, Kadhirvan T. HIV-TB co-infection: Epidemiology, diagnosis and management. Indian J Med Res 2005;121:550-67.

12. Baradkar VP, Karyakarte RP. Isolation and characterization of Candida species in Acquired immunodeficiency syndrome. Indian J Med Microbiol 1999;17:42-4.

13. Ayyagari A, Sharma AK, Prasad KN, Dhole TN, Kishore J, Choudary G. Spectrum of opportunistic infections in HIV infected cases in a tertiary care hospital. Indian J Med Microbiol 1999;17:78-80.

14. Ranganathan K, Umadevi M, Saraswathi TR, Kumarasamy N, Solomon S, Johnson N. Oral lesions and conditions associated with human immunodeficiency virus infection in 1000 South Indian patients. Ann Acad Med Singapore 2004;33 4 Suppl: 37-42.

15. Anwar KP, Malik A, Subhan KH. Profile of candidiasis in HIV infected patients. Iran J Microbiol 2012;4:204-9.

16. Maninder J, Usha A. Isolation, characterization and antifungal susceptibility pattern of Candida species causing oropharyngeal candidiasis in HIV positive patients. J Commun Dis 2008;40:177-81.

17. Usha A, Arun A, Renuka B. Oral candidiasis in HIV seropositive patients. J Conserv Dent 2003;6:62-4

18. Kwong Chung KJ, Benett JE. Candidiasis. In: Medical Mycology. Philadelphia: Lea and Febiger; 1992. p. 280-336.

19. Dorko E, Jautová J, Tkáčiková L, Wantrubová A. The frequency of Candida species in onychomycosis. Folia Microbiol (Praha) 2002;47:727-31.

20. Shaheen MA, Taha M. Species identification of Candida isolates obtained from oral lesions of Hospitalized and non-hospitalized patients with oral candidiasis. Egypt Dermatol J 2006;2:14.

21. Badiee P, Alborzi A, Davarpanah MA, Shakiba E. Distributions and antifungal susceptibility of Candida species from mucosal sites in HIV positive patients. Arch Iran Med 2010;13:282-7.

22. Gautam RK, Garg AP. Microbiological and clinical assessment of Candida carriage in different clinical samples from HIV-infected and non infected patients. Sch J App Med Sci 2013;1:69-75.

23. Coleman DC, Sullivan DJ, Bennett DE, Moran GP, Barry HJ, Shanley DB. Candidiasis: The emergence of a novel species, Candida dubliniensis. AIDS 1997;11:557-67.

24. Milan EP, de La Sant’ Ana P, de Azevedo Melo AS, Sullivan DJ, Coleman DC, Levi D, et al. Multicenter prospective surveillance of oral Candida dubliniensis among adult Brazilian human immunodeficiency virus-positive and AIDS patients. Diagn Microbiol Infect Dis 2001;41:29-35.

25. Gutiérrez J, Morales P, González MA, Quindós G. Candida dubliniensis, a new fungal pathogen. J Basic Microbiol 2002;42:207-27.

26. Anna L N, Dickson SN, Jules CNA, Henri JK, Pride T. Antifungal susceptibility patterns of Candida albicans from HIV and AIDS patients attending the Nylon Health District Hospital in Douala, Cameroon. J Public Health Afr 2012;2:e2.

27. Mane A, Panchvalli S, Bembalkar S, Risbud A. Species distribution and antifungal susceptibility of oral Candida colonising or infecting HIV infected individuals. Indian J Med Res 2010;131:836-8.

28. Hamza OJ, Matee MI, Moshi MJ, Simon EN, Mugusi F, Milks FH, et al. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis. BMC Microbiol 2008;8:135.

29. Blignaut E, Messer S, Hollis RJ, Pfaller MA. Antifungal susceptibility of South African oral yeast isolates from HIV/AIDS patients and healthy individuals. Diagn Microbiol Infect Dis 2002;44:169-74.

30. Wabe NT, Hussein J, Suleman S, Abdella K. In vitro antifungal susceptibility of Candida albicans isolates from oral cavities of patients infected with human immunodeficiency virus in Ethiopia. J Exp Integr Med 2011;1:265-71.

31. Mulu A, Kassu A, Anagaw B, Moges B, Gelaw A, Alemyahu M, et al. Frequent detection of ‘azole’ resistant Candida species among late presenting AIDS patients in northwest Ethiopia. BMC Infect Dis 2013;13:82.

32. Satana D, Genc GE, Erturan Z. The antifungal susceptibilities of oral Candida spp isolates from HIV-infected patients. Afr J Microbiol Res 2010;4:466-70.

33. Nweze EI, Ogbonnaya UL. Oral Candida isolates among HIV-infected subjects in Nigeria. J Microbiol Immunol Infect 2011;44:172-7.