Testing noncommutative spacetimes and violations of the Pauli Exclusion Principle through underground experiments

Andrea Addazi1,1) Pierluigi Belli2,3,2) Rita Bernabei2,3,3) Antonino Marciano1,4)

1 Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai, China
2 INFN sezione Roma “Tor Vergata”, I-00133 Rome, Italy, EU
3 Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy, EU

Abstract: We propose to deploy limits that arise from different tests of the Pauli Exclusion Principle: i) to provide theories of quantum gravity with experimental guidance; ii) to distinguish, among the plethora of possible models, the ones that are already ruled out by current data; iii) to direct future attempts to be in accordance with experimental constraints. We first review experimental bounds on nuclear processes forbidden by the Pauli Exclusion Principle, which have been derived by several experimental collaborations making use of various detector materials. Distinct features of the experimental devices entail sensitivities on the constraints hitherto achieved that may differ from one another by several orders of magnitude. We show that with choices of these limits, well-known examples of flat noncommutative space-time instantiations of quantum gravity can be heavily constrained, and eventually ruled out. We devote particular attention to the analysis of the κ-Minkowski and θ-Minkowski noncommutative spacetimes. These are deeply connected to some scenarios in string theory, loop quantum gravity, and noncommutative geometry. We emphasize that the severe constraints on these quantum spacetimes, although they cannot rule out theories of top-down quantum gravity to which they are connected in various ways, provide a powerful limitation for those models. Focus on this will be necessary in the future.

Keywords: non-commutative space-times, tests of violations of the Pauli Exclusion Principle, theta-Minkowski, kappa-Minkowski

PACS: 29.40.-n, 04.60.Bc DOI: 10.1088/1674-1137/42/9/094001

1 Introduction

The Pauli Exclusion Principle (PEP) is a direct implication of the Spin Statistics Theorem (SST) stated by Pauli in Ref. [1]. The PEP automatically arises from the anti-commutation properties of fermionic creation and annihilation operators in the construction of the Fock space of the theory. In turn, the SST is proven by assuming Lorentz invariance. This certainly implies that the PEP is closely connected to the structure of space-time itself. The PEP is indeed a successful fundamental principle not only when addressed from theoretical quantum field theory considerations, but is also in high-precision agreement with all atomic, nuclear, and particle physics experimental data. In other words, if the PEP is violated, the violating channels must be parametrized by very tiny coupling constants in front of the PEP-violating operators. This possibility was suggested within an effective field theory approach in Refs. [2–10].

The possibility of renormalizable PEP-violating operators can be seen as “un-aesthetic” and un-natural. However, the possibility of non-renormalizable effective operators induced by a PEP-violating new physics scale is still an open and natural possibility, which is predicted by many possible models of quantum gravity realizing an ultraviolet completion. A possible way to violate the PEP is, of course, to relax the main hypothesis on the basis of the Spin Statistics Theorem. For example, as mentioned above, the theorem in its standard enunciation — namely in terms of the commutation relation for bosonic ladder operators, and anticommutation relation for fermionic ladder operators — is no longer valid if Lorentz invariance is relaxed. Lorentz symmetry is one of the bases of the Standard Model of particle physics:
its explicit violation must allow any possible Lorentz Violating and CPT violating renormalizable operators. Even fine-tuned to very small couplings, the latter operators will introduce new UV divergent diagrams in the Standard Model sector, affecting the basic requirement of unitarity of the theory. This is why the Spin Statistics Theorem, as a companion of Lorentz symmetry, is considered a milestone of the Standard Model. Notice furthermore, as pointed out in Ref. [11], that Lorentz violating effects — for instance, those induced by the Planck scale in quantum gravity — might manifest themselves in the propagation of low-energy particles with a sizable magnitude that in some cases is already ruled out by experimental data\(^1\).

Nevertheless, the eventuality that the Lorentz Symmetry is dynamically or spontaneously broken at a very high energy scale \(\Lambda_{\text{UV}}\) will not lead to catastrophic consequences, noncommutative quantum field theories with the S-matrix in the Standard Model sector. This comes later, there exists a specific class of models enjoying \(\theta\)-Poincaré group called \(\theta\)-Poincaré and \(\theta\)-Poincaré symmetries lie in a specific class of parametrization that allows a phenomenological falsification of (standard) PEP violations.

2 Parametrization

Operatively, deviations from the PEP in the commutation/anti-commutation relations can be parametrized — see e.g. Refs. [8–10] — by introducing a deviation function \(q(E)\), i.e.

\[
a_i a_j^\dagger - q(E) a_j^\dagger a_i \equiv \delta_{ij},
\]

\[
q(E) = -1 + \beta^2(E), \quad \text{and finally} \quad \delta^2(E) = \beta^2(E)/2.
\]

Among the possible parameterizations of the function \(\delta^2(E)\), we propose a class corresponding to models that, depending on the order in the inverse powers of the energy scale of Lorentz violation, are classified at the \(k\)-th order as

\[
M_k: \delta^2(E) = a_k \frac{E^k}{\Lambda^k} + O(E^{k+1}).
\]

The phenomenological method we deploy here naturally takes into account, through an analytic expansion driven

1) It was shown in Ref. [11] that only a strong and unnatural fine-tuning of the bare parameters of the theory may prevent Lorentz violations at the percent level. Nevertheless, this analysis does not take into account the possibility of a deformation of the Lorentz symmetries.

2) The fact that it appears in both theories may not be just a coincidence, in light of a new H-duality conjecture that has been recently formulated in Ref. [15].
by dimensional analysis, the corrections to the standard statistics that may arise, in the infrared limit, from UV-complete quantum field theories. This parametrization can capture every possible first term of the power series expansions in E/A, for every possible deformation function $q(E)$ in Eq. (1). In other words, constraints on $\delta(E)$ can be translated into constraints on the new physics scale within the framework of the M_n parametrization.

3 Limits on PEP violating processes by underground experiments

To investigate the aforementioned models, we begin by referring to results obtained by underground experiments. Fig. 1 shows the most stringent limits on the relative strength (δ^2) for the studied non-Paulian transitions.

Several methods of experimental investigations for testing PEP have been used. The VIP experiment [52] used a method of searching for PEP forbidden atomic transitions in copper; the limits on the probability that PEP is violated by electrons are reported in Fig. 1. The experimental method consists of the injection of “fresh” electrons into a copper strip, by means of a circulating current, and in the search for the X-rays following the possible PEP forbidden radiative transitions that occur if one of these electrons is captured by a copper atom and cascades down to the already-filled 1S state. In particular, the experiment searches for the K_{α} transition (2P \rightarrow 1S) transition. The energy of this PEP forbidden transition (7.729 keV) would differ from the normal K_{α} transition energy (8.040 keV) by a Δ term (approximately 300 eV) because of the presence of the other electrons in the already-filled shell. This energy shift can be detected by high-resolution CCD devices.

PEP forbidden radiative atomic transitions have also been searched for in iodine atoms deploying NaI(Tl) detectors, as performed using DAMA/LIBRA (DAMA(2009)A in Fig. 1) [54] and ELEGANTS V [53] experiments, and in germanium atoms in PPC HPGe detectors in the MALBEK experiment [55] (see Fig. 1). In such cases, when a PEP-violating electronic transition occurs, X-rays and Auger electrons are emitted by the transition itself and by the following rearrangements of the atomic shell. The detection efficiency of such radiation in the NaI(Tl) detectors of DAMA/LIBRA is ≈ 1 at the low-energy end of the process. Thus, all the ionization energy for the considered shell is detected, but it is actually shifted by a Δ term because of the presence of the other electrons in the already-filled shells. Generally, in this class of experiments, the K-shell is considered, as it provides the largest available energy in subsequent X-ray/Auger-electrons radiation emission. However, stringent limits (not reported in Fig. 1) have also been obtained by DAMA/NaI looking for transitions to the L-shell in iodine atoms [58], providing 4-5 keV radiative emission, thanks to the low energy thresholds of such NaI(Tl) detectors.

The most stringent constraint on this class of PEP violations in atomic transitions comes from the DAMA/LIBRA experiment, a 250 kg array of highly radiopure NaI(Tl) detectors hosted at the Gran Sasso National Laboratory. DAMA/LIBRA searched for PEP violating K-shell transitions in iodine using the data corresponding to 0.53 ton\timesyr; a lower limit on the transition lifetime of 4.7×10^{30} s has been set, giving $\delta^2 < 1.28\times10^{-47}$ at 90% C.L. [54]. This value is reported in Fig. 1.

A similar experiment, MALBEK, used a high-purity germanium (HPGe) detector with an energy threshold suitable for observing the transition from L- to K-shells in germanium. In this case, the energy of the transition was calculated to be 9.5 keV [55], once shifted down by the Δ term. The obtained limit on δ^2 is also reported in Fig. 1.

A different approach for studying PEP violating processes has been exploited by DAMA/LIBRA collaboration (DAMA(2009)B in Fig. 1) [54]. Specifically, PEP violating transitions in nuclear shells of 23Na and 127I have been investigated by studying possible protons emitted with $E_p \geq 10$ MeV. In such a case, events where only one detector fires, that is, each detector has all the others as veto, are considered to search for high-energy protons. The rate of emission of high-energy protons ($E_p \geq 10$ MeV) resulting from PEP violating transitions in 23Na and 127I was constrained to be $\lesssim 1.63\times10^{-33}$ s$^{-1}$ (90% C.L.) [54]. This corresponds to a limit on the relative strength of the studied PEP violating transitions: $\delta^2 < 4.0\times10^{-55}$ at 90% C.L. (see Fig. 1).

Moreover, the PEP has been tested with the Borexino detector [56], considering the nucleons in the 12C nuclei. This research benefits from the extremely low background and the large mass (278 tons) of the Borexino detector. The exploited method is to look for γ, β^\pm, neutrons, and protons, emitted in a PEP violating transition of nucleons from the $1p_{3/2}$ shell to the filled $1s_{1/2}$ shell, and the following limits on the lifetimes for the different PEP violating transitions were set [56] (all the limits are at 90% C.L.): $\tau(^{12}\text{C} \rightarrow ^{12}\tilde{C} + \gamma) \geq 5.0\times10^{31}$ yr, $\tau(^{12}\text{C} \rightarrow ^{12}\tilde{N} + e^- + \nu_e) \geq 3.1\times10^{30}$ yr, $\tau(^{12}\text{C} \rightarrow ^{12}\tilde{B} + e^+ + \nu_e) \geq 2.1\times10^{30}$ yr $\tau(^{12}\text{C} \rightarrow ^{11}\tilde{B} + p) \geq 8.9\times10^{29}$ yr, and $\tau(^{12}\text{C} \rightarrow ^{11}\tilde{C} + n) \geq 3.4\times10^{30}$ yr.

These limits correspond to constraints on the relative strengths for the studied PEP violating electromagnetic, strong, and weak transitions: $\delta_{\gamma}^2 < 2.2 \times 10^{-57}$, $\delta_{\beta}^2 < 4.1 \times 10^{-66}$, and $\delta_{\nu}^2 < 2.1 \times 10^{-55}$ (see Fig. 1) [56].

Finally, we report here the results obtained by the large underground water Cherenkov detector, Kamiokande [57], where anomalous emission of γ rays
in the energy range 19–50 MeV has been searched for. No statistically significant excess was found above the background; this allows setting a limit on the lifetime of PEP violating transitions to $9.0 \times 10^{30} \times \text{Br}(\gamma)$ yr per oxygen nucleus, where $\text{Br}(\gamma)$ is the branching ratio of the ^{16}O decay in the γ channel. In the case where the PEP violating transitions are due to the p-shell nucleons, the limit is $1.0 \times 10^{32} \times \text{Br}(\gamma)$ yr. Thus, the limit at 90% C.L. of the relative strength for forbidden transitions to normal ones is $\delta^2 < 2.3 \times 10^{-57}$ [57], which is also shown in Fig. 1.

4 Implications for Planck-scale deformed symmetries

We can begin by considering a generic model, with the assignments M_k, for $k \in \mathbb{N}$. On these latter, using the DAMA/LIBRA results as an example, the following constraints can be derived:

$$\delta^2 \leq 4 \times 10^{-55} \leftrightarrow \delta^2(E) = c_k \frac{E^k}{\Lambda^k} \leq 4 \times 10^{-55}. \quad (2)$$

We are interested in those cases that are mostly motivated by quantum gravity scenarios. This corresponds to select $\Lambda = M_{Pl} \approx 1.22 \times 10^{19}\text{GeV}$. A straightforward estimate of k can be then achieved, which already has dramatic consequences for several models of quantum gravity. Because nuclear decays processes taking place in the detector have an energy whose order of magnitude is a few times 10^{-3} GeV, we may consider $E = 10 \pm 1\text{MeV}$. For a set of heuristic choices of $c_k = \{1, 4, 10\}$, this implies immediately that at 90% C.L., only $k > k^*$ power suppressions are still experimentally allowed, with respectively

$$k^* = \{2.58, 2.61, 2.63\} \pm 0.01. \quad (3)$$

The exclusion limits on the $k-\Lambda$ plane are displayed in Fig. 2, in which we use the accurate values for E that pertain to the various experiments analyzed, and set the coefficients

$$c_k = 1. \quad (4)$$

The most stringent constraints on the $k-\Lambda$ parameters’ plane, obtained by the above-mentioned experimental limits on the relative strength for non-Paulian transitions, are provided by the Borexino [56], Kamiokande [57] and DAMA [54] collaborations.

A different scenario arises when working at a scale of energy $E \approx 10\text{keV}$, which is induced by transitions from k-electronic shells. This provides the upper bound $\delta^2 \approx 10^{-47} - 10^{-48}$, which is less stringent than the former one. Nevertheless, it still entails rejection of PEP violat-

1) The propagation of the error only affects the last digit of k^* and is effectively independent of these heuristic choices of c_k, which capture the range of values in the literature — see e.g. Refs. [29, 38, 47, 49, 63–65]. Conversely, the theoretical ambiguity in c_k may affect the estimate of k^* up to 2% of its value.

2) As noted in the previous footnote, this choice is motivated by the fact that in the literature on noncommutative spacetimes, the c_k coefficients are order 1.
ing terms that are suppressed at the second order in \(\Lambda \), and at the same time are regulated by coefficients \(c_n \) of order one.

$$\begin{align*}
\frac{\kappa}{\mu} & = 0, \quad \text{for which they cannot be falsified at the level of PEP violations, for instance, in Refs. [29, 38, 63–65]}.
\end{align*}$$

where \(\kappa \) denotes a scale of energy assumed to be on the order of the Planck scale in effective quantum gravity frameworks. There exists at least a basis of the Hopf algebra in which the Lorentz sector is standard, but the action of the Lorentz generators on the translation subgroup is \(\kappa \)-deformed. For instance, in the bicrossproduct basis, there is one \(\kappa \)-deformed commutator, namely

$$[P_i, N_j] = -i\delta_{ij} \left(\frac{\kappa}{2} (1 - e^{\mu l_\infty}) \frac{1}{2\kappa} P^2 + \frac{1}{\kappa} P_i P_j \right),$$

where \(P^0 \) denotes spacetime translation generators and \(N_i \) denotes boost generators. Even in this basis, in which translation generators remain commutative, the co-product map \(\Delta \) acquires a \(\kappa \)-deformation. This is a remarkable deviation from standard properties. When \(P^0 \) are represented as derivatives acting on “coordinates-ordered” exponentials [48], it is trivial to recognize that \(\Delta \) generalizes the Leibnitz rule of derivatives’ action. The \(\kappa \)-deformed Leibnitz rule can then be inferred by the only \(\kappa \)-deformed co-product, i.e.

$$\Delta(P_i) = P_i \otimes 1 + e^{\mu l_\infty} P_0 \otimes P_i.$$

The fate of discrete symmetries in the \(\kappa \)-Poincaré setting was addressed in Ref. [48], while a detailed analysis of the fate of the CPT theorem for \(\kappa \)-Poincaré symmetries and of its consequences is still missing. Nonetheless, a phenomenological analysis of deviations from the standard case is still possible. Moving from the parametrization in Eq. (1), by straightforward dimensional arguments, we can express

$$\delta^2(E) = c_1 \kappa E,$$

where it is assumed that \(\kappa \) is of order one. This implies automatically the rejection of every model available in the literature that predicts a \(c_1 \) that is non-vanishing and of order one.

Following a constructive procedure, we can show that most part of the models hitherto addressed in the literature — see e.g. Refs. [29, 38, 63–65] — either reproduce the case where \(c_1 \) is of order one, or they fall in the class of a vanishing \(c_1 \), for which they cannot be falsified at the level of PEP violations, for instance, in Refs. [29, 38, 63] \(c_1 = 1 \); consequently, these models are ruled out. In Refs. [64, 65], where \(c_0 = 0 \), for \(k \in \mathbb{N} \), the commutation relations are unmodified. This scenario can then be
falsified up to the second order in the ratio E/M_P, but it is not distinguishable from the standard unmodified case.

4.2 The case of the Groenewold-Moyal plane

The algebra $A(R^d)$ of commutative functions on a smooth d-dimensional space-time manifold can be mapped into that of noncommutative functions on the Groenewold-Moyal plane \mathbb{R}^d, if the star-product is considered $(\alpha \ast \beta)(x) = \langle \alpha \tilde{\otimes} \theta^{\mu\nu} \delta_{\nu} \ast \beta \rangle(x)$, where $\theta^{\mu\nu} = -\theta^{\nu\mu}$ and $x = (x^0, \ldots, x^{d-1})$. Accordingly, the Groenewold-Moyal (GM) multiplication map m_θ reads

$$m_\theta(\gamma \ast \delta)(x) = \gamma(x) \delta(x)$$

where $m_\theta(\gamma \ast \delta)(x) = \gamma(x) \delta(x)$ stands for the standard point-wise multiplication rule.

Introducing the invertible element of the \mathcal{R}-matrix

$$m_\theta(\alpha \ast \beta) = m_\theta[\gamma_{\tilde{\otimes}} \theta^{\mu\nu}(-i\theta^\alpha) \ast \gamma(x) \delta(x) \text{ stands for the standard} \text{ point-wise multiplication rule.}$$

the GM multiplication rule can be recast as

$$m_\theta(\alpha \ast \beta) = m_\theta[F_\theta \alpha \ast \beta].$$

The invertible element of the \mathcal{R}-matrix enters in a natural way the twisted deformation of the Fock space of scalar field theory, with spin zero, and thus the commutation relations of the ladder operators, i.e.

$$a(p)a(q) = \eta(q,p)F_\theta^{-1}(-q,p)a(q)a(p) + 2\delta^q(p-q),$$

where η approaches the constant $+1$ in the low-energy limit — this is formally equivalent to the commutative limit $\theta \to 0$. Anti-commutation relations for free spinor fields are equal to the ones given in Eq. (5), provided that η approaches -1 in the low-energy limit.

We may expand Eq. (5) at the first order in $\theta^{\mu\nu}$, neglecting orders $O(\theta^{\mu\nu} \theta^{\nu\mu})$. This corresponds to a second-order expansion in Λ, as $\theta^{\mu\nu}$ has dimensions of length square. This immediately entails $c_1 = 0$ and allows setting $c_2 = 1$, provided that $\theta^{12} = \theta^{11} = \theta^{22} = 1/(3\Lambda^2)$. Focusing on the data provided by DAMA (2009) B [54], and accounting for an isotropic distribution of the protons’ momenta, we obtain

$$\delta_\theta^2 = \left(\frac{E}{\Lambda} \right)^2,$$

the exponent of which can be confronted with the values of k excluded in Fig. 2. Thus, this model seems to be already excluded by the present data. This is as transparent as it is surprising, as it was never pointed out in the wide literature devoted to non-commutative space-times.

4.3 Quantum gravity with lower energy scales

We can resort to the experimental bound in (2) to constrain departures from the standard spin-statistics theorem within those theoretical frameworks that predict a lower energy scale of quantum gravity. Several models fit this scenario, notably the proposals that take into account the eventual role of large-scale extra dimensions in the resolution of the hierarchy problem — see e.g. Refs [66–68]. It is then straightforward to determine that any violation of PEP could arise up to the ninth order in the ratio E/Λ, within those proposals where the scale of quantum gravity is reduced down to the threshold hitherto achievable on terrestrial experiments, $\Lambda \simeq 10$ TeV. This rules out any reliable model of extra dimensions that would break Lorentz invariance and would predict violations of PEP.

5 Conclusions and outlooks

Although a direct connection between the deformation of space-time symmetries and quantum gravity has not yet been decisively proven, there are nevertheless many results in the literature that provide clear instantiations of space-time symmetry deformation or space-time symmetry breakdown regulated by the Planck scale. Making contact with those models that predict a deformation of the energy-momentum dispersion relations for one-particle states in particular, entailing a deformation of the Fock space states and of the SST, we developed a framework to falsify these scenarios accounting for possible PEP violations.

We emphasize that the phenomenological analysis we developed here differs from previous phenomenological investigations accounting for the one-particle Hilbert space structure of quantum field theories on non-commutative space-times. Constraints on energy-momentum dispersion relations apply only to certain classes of non-commutative space-times. For instance, quantum field theories endowed with κ-Poincaré symmetries, in which the algebra and the mass Casimir are deformed, provide an arena to test deformations of the energy-momentum dispersion relations. Alternatively, quantum field theories endowed with θ-Poincaré symmetries can be falsified only by looking at deformations of the Fock space structure, including eventual violations of the Pauli Exclusion Principle.

The tightest constraints on in-vacuo dispersion relations that are sensitive to the Planck scale, as discussed within the phenomenological models in Refs. [69–74], are provided for photons by the observation of TeV flares that originate from active galactic nuclei at redshifts smaller than 1 — see e.g. Refs. [74–79]. Taking into account deformation effects that are linear on the Planck length scale, the bounds can reach 1/10 of the Planck scale. Conversely, the best constraints on anomalous in-vacuo dispersion that are quadratic on the Planck length
scale may be obtained from the detection of neutrinos\(^{1}\)
emitted by gamma ray bursts, with energies between 10\(^{14}\)
and 10\(^{19}\) TeV — see e.g. Refs. [74, 80–86]. This clearly
shows the relevance of our analysis with respect to the
constraints previously discussed in the literature. Our
analysis indeed provides either a restriction of the dimen-
sional parameters entering the UV-complete theories to
be tested or a rejection/acceptance of their theoretical
predictions. For instance, for string theory, we can only
restrict the values of the parameters involved in the the-
oretical construction, while in the case of loop quantum
gravity, the only dimensionful scale is the Planck scale,
and all the order-one dimensionless parameters are fixed
by the theory. Thus, with our analysis, we are able to
provide for all these attempts a restriction of the uni-
versality classes that are allowed on the theoretical side
and rule-out values of the parameters that are either the
most natural ones — from a theoretical perspective — to
be considered, or the only ones that can be considered.

Dedicated measurements can be planned in forthcoming
updates of DAMA/LIBRA and other experiments.
This may provide the chance to constrain \(M_\nu\) with \(n \geq 3\)
contributions, which are suppressed by the \(n\)-th power
of the energy scale \(\Lambda\). In particular, an increase in the
sensitivity of \(\delta\) would trigger the possibility of con-
straining third-order suppressed PEP violating terms.
For completeness, we also mention the potentiality of a
very interesting result on this topic from data collected
by Super-Kamiokande.

We wish to acknowledge G. Amelino-Camelia
and M. Arzano for insightful comments on the draft.

References

1. W. Pauli, Phys. Rev., 58: 716 (1940) doi: 10.1103/PhysRev.58.716
2. A. M. L. Messiah and O. W. Greenberg, Phys. Rev., 136: B248
 (1964) doi: 10.1103/PhysRev.136.B248
3. O. W. Greenberg and A. M. L. Messiah, Phys. Rev., 138: B1155 (1965)
doi: 10.1103/PhysRev.138.B1155
4. G. Gentile, Nuovo Cimento, 17: 493 (1940)
5. H. S. Green, Phys. Rev., 90: 270 (1953) doi: 10.1103/PhysRev.90.270
6. A. Y. Ignatiev and V. A. Kuzmin, JETP Lett., 47: 4 (1988)
7. V. N. Gavrin, A. Y. Ignatiev, and V. A. Kuzmin, Phys. Lett. B, 206: 343 (1988)
doi: 10.1016/0370-2693(88)91518-3
8. O. W. Greenberg, Phys. Rev. Lett., 64: 705 (1990)
9. R. N. Mohapatra, Phys. Lett. B, 242: 407 (1990)
10. O. W. Greenberg, R. C. Hilborn, Fund. Phys., 29: 397 (1999)
11. J. Collins, A. Perez, D. Sudarsky, L. Urrutia, and H. Vucetich, Phys. Lett. B,
 193: 191301 (2004) doi: 10.1103/PhysRevLett.93.191301 gr-qc/0403053
12. R. Jackiw, Nucl. Phys. Proc. Suppl., 108: 30 (2002) [hep-th/0110057]; Letter of
 Heisenberg to Peierls (1930), Wolfgang Pauli, Scientific Correspondence,
Vol. II, p.15, Ed. Karl von Meyenn, Springer-Verlag, 1993
13. H. Snyder, Phys. Rev., 71: 38 (1947)
14. C. N. Yang, Phys. Rev., 72: 874 (1947)
15. A. Abdazri and A. Marciano, arXiv: 1707.05347 [hep-th]
16. J. Frohlich and K. Gawedzki, In Vancouver 1993, Proceedings, Mathematical
 quantum theory, vol. II, p.15, Ed. Karl von Meyenn, Springer-Verlag, 1993
17. A. H. Chamseddine and J. Frölich, Some Elements of Connes’ Noncommutative
 Geometry and Space-time Geometry: in: Yang Festschrift: eds. C.S. Liu and S.-F.
 Yau (International Press, Boston, 1995) 10-34
18. J. Frohlich, O. Grandjean, and A. Recknagel, In Les Houches 1995, Quantum
 symmetries 221-385 [hep-th/9706132]
19. A. Connes, M. R. Douglas, and A. S. Schwarz, JHEP, 9802: 003 (1998) doi:
 10.1088/1126-6708/1998/02/003 [hep-th/9711162]
20. N. Seiberg and E. Witten, JHEP, 9909: 032 (1999) doi:
 10.1088/1126-6708/1999/09/032 [hep-th/9908142]
21. G. Amelino-Camelia, L. Smolin, and A. Starodubtsev, Class. Quant. Grav., 21:
 3095 (2004) doi: 10.1088/0264-9381/21/13/002 [hep-th/0306134]
22. L. Freidel and E. R. Livine, Phys. Rev. Lett., 96: 221301 (2006) doi:
 10.1103/PhysRevLett.96.221301 [hep-th/0512113]
23. F. Cianfrani, J. Kowalski-Glikman, D. Prazzetti, and G. Rosati, Phys. Rev. D,
 94(8): 084044 (2016) doi: 10.1103/PhysRevD.94.084044 arXiv: 1606.03085 [hep-th]
24. G. Amelino-Camelia, M. M. da Silva, M. Ronco, L. Cesarini, and O. M. Lecian,
 Phys. Rev. D, 95(2): 024028 (2017) doi: 10.1103/PhysRevD.95.024028 arXiv:
 1605.00497 [gr-qc]
25. G. Amelino-Camelia, M. M. da Silva, M. Ronco, L. Cesarini, and O. M. Lecian,
 Phys. Rev. D, 95: 024028 (2017) arXiv: 1605.00497
26. S. Brahma, M. Ronco, G. Amelino-Camelia and A. Marciano, Phys. Rev. D,
 95(4): 044005 (2017) arXiv: 1610.07865
27. S. Brahma, A. Marciano, and M. Ronco, arXiv: 1707.05344 [hep-th]
28. S. Alexander, A. Marciano, and L. Modesto, Phys. Rev. D, 85:
 124030 (2012) arXiv: 1202.1824 [hep-th]
29. M. Arzano and A. Marciano, Phys. Rev. D, 76: 125005 (2007) arXiv:
 0707.1329
30. G. Amelino-Camelia, G. Gubitosi, A. Marciano, P. Martinetti, and F. Mercati, Phys.
 Lett. B, 671: 298 (2009) arXiv: 0707.1863
31. G. Amelino-Camelia, A. Marciano and D. Prazzetti, Int. J. Mod. Phys. A,
 24: 5445 (2009) arXiv: 0709.2063
32. G. Amelino-Camelia, F. Briscese, G. Gubitosi, A. Marciano, P. Martinetti, and F.
 Mercati, Phys. Rev. D, 78: 024005 (2008) arXiv: 0709.4600
33. G. Amelino-Camelia, G. Gubitosi, A. Marciano, P. Martinetti, F. Mercati, D.
 Prazzetti, and R. A. Taoci, Prog. Theor. Phys. Suppl., 171: 65 (2007) arXiv:
 0710.1219
34. A. Marciano, Arabian J. Sci. Eng., 33: 365 (2008)
35. A. Marciano, A brief overview of quantum field theory with deformed
 symmetries and their relation with quantum gravity, arXiv: 1003.0395
36. A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marciano, and R. A. Taoci, Mod.
 Phys. Lett. A, 22: 1779 (2007) arXiv: hep-th/0607221
37. M. Arzano and A. Marciano, Phys. Rev. D, 75: 081701 (2007) arXiv:
 hep-th/0701268
38. G. Amelino-Camelia, M. Arzano and A. Marciano, Frascati Phys. Ser., 43:
 155 (2007)
39. A. Marciano, G. Amelino-Camelia, N. R. Bruno, G. Gubitosi, G. Mandanici, and
 A. Melchiorri, JCAP, 1006: 030 (2010) arXiv: 1004.1110
