Daily Dynamic Change of Soil Moisture in the Forestlands with Typical Vegetation Forms before and after Rainfall in the Mountainous Area of West Hunan

Jia Luo 1,2,3, Xiaoling Zhou 2,3, Yuxin Tian 2,3, Jianhua Chen 1, *

1 Central South University of Forestry and Technology, Changsha, Hunan 410004, China
2 Hunan Forestry Academy, Changsha, Hunan 410004, China
3 Hunan Cili Forest Ecosystem State Research Station, Cili, Hunan 427200, China

*Corresponding author e-mail: cjh11135@sina.com

Abstract. Taking Pinus massoniana forest, maple-camphor mixed forest, Eucommia ulmoides forest and slope cropland as the research objects, research has been carried out on the dynamic change of soil moistures at the soil depths of 7.5cm, 12cm and 20cm before and after typical rainfalls. The result indicates: (1) at the 3 soil depths, the soil moistures under typical vegetation forms rank as follows: Eucommia ulmoides forest > maple-camphor mixed forest > Pinus massoniana forest > slope cropland; (2) before and after rainfall, soil moisture content has negative pertinence with wind speed and temperature, while soil moisture content has positive pertinence with humidity.

Keywords. daily dynamic change of soil moisture; before and after rainfall; typical vegetation form; mountainous area of West Hunan.

1. Introduction

As a space-time continuous variant and an important state parameter of soil [1], soil moisture has obvious spatial heterogeneity for it is complexly influenced by multiple factors including artificial and natural factors. Soil moisture exerts an important influence on water-soil process and matter migration in the soil-atmosphere-vegetation transmission [2], thereby affects forest and trees’ multiple service functions including growth. The previous soil moisture research mainly focused on the response of soil moisture to rainfall and the pertinence between soil moisture and vegetation, e.g. Ru Hao and his colleagues [10] made a study on the response of soil moisture to rainfall in rain-fed orchard in the loess area of West Shanxi, their research result indicates that rainfall has a significant effect on surface soil moisture content. However, with the increase of soil depth, soil moisture content’s response to rainfall recedes layer by layer; Wang Shuai and his colleagues [11], by investigating the vegetation restoration watershed in the loess plateau, analyzed the pertinence between soil moisture and rainfall response, and studied the effects of different vegetation coverage on rainfall infiltration. The previous studies [12-14] focused on the comparative analysis of soil moisture conditions in different artificial forestlands, and the research on the response of forestland soil moisture to rainfall was carried out only
by choosing single woodland as the research object. However, it was rare in the comparative study of soil moisture in artificial pure woodland and in artificial mixed forest land and natural secondary pure woodland.

Taking *Pinus massoniana* forest, maple-camphor mixed forest, *Eucommia ulmoides* forest and slope cropland as the research objects, for the purpose of finding out the daily dynamic change of soil moistures in different vegetation form forestlands, we have carried out observation and analysis on the dynamic change of soil moistures at the soil depths of 7.5cm, 12cm and 20cm before and after typical rainfalls, so as to provide the research area with technical support in forest and water comprehensive management, watershed scientific treatment and forest multi-function efficient operation.

2. Materials and methods

2.1. Profile of the research area

Located at Nverzhai small watershed (E111°12′42.836″, N29°25′27.582″) in Wuling Mountainous Region of West Hunan, the research area lies in Liangxi Village, Lingyang Town, Cili County, Changde City, Hunan Province, 7km away from the northwest part of Cili County Seat. As a grade-II small tributary of the Lishui River, Nverzhai small watershed flows from south to north. Covering an area of 3.15km², the small watershed has minimum altitude 210m (at the exit of the main ravine), maximum altitude 917.4m, length of main ravine 1.2km, vertical gradient of main ravine 28.4‰ and forest coverage 80% above. Its vegetation is mainly of returning-grain-plots-to-forestry forest and secondary forest. It is linked pieces of conserved lands for returning-grain-plots-to-forestry. Its soil mother rocks are mainly sandy shales, and its soils are mainly yellow-red earth.

The main vegetation forms in this watershed are *Eucommia ulmoides* artificial forest, *Pinus massoniana* forest, *Citrus reticulate* forest and some serayah-shrub forest.

2.2. Methods and data analysis

American SPECTRUM TDR300 soil moisture content analyzers were used to monitor the dynamic change of soil moistures at the sample plots of different vegetation forms before and after typical rainfalls [15]. 20m × 30m standard sample plots were set up, three monitoring points with relative homogeneities were selected in each sample plot, PVC tubes were used to demarcate the monitoring points. Based on the different probe lengths (7.5cm, 12cm, 20cm) of the monitoring instrument, we monitored the water-holding capacities at different soil depths on the first day before individual-based rainfall, and on the first, second and third days after rainfall. The monitoring period was from June 29 to July 3 in 2015, during which there was one rainfall on June 30, with a rainfall capacity of 11.176mm, no monitoring was implemented that day. On each monitoring day, monitoring was implemented four times, separately at 6:00, 10:00, 14:00 and 18:00.

3. Result and analysis

3.1. Analysis of difference of soil moistures at different soil depths

Table 1 shows the difference of soil moistures at different soil depths in the monitoring period. At the shallow soil layer and medium soil layer (7.5cm, 12.0cm), the water contents of the four sample plots presented significant difference as follows: *Eucommia ulmoides* forest > maple-camphor mixed forest > *slope cropland* [16-18].

At 7.5cm-12.0cm soil layer, the soil moistures under different vegetation forms reduced along the vertical section, the vertical change feature was that soil moistures under different vegetation forms reduced with the increase of soil depth. At the deep soil layer (20.0cm), the difference between *Eucommia ulmoides* forest and maple-camphor mixed forest was not obvious, while the difference between *Pinus massoniana* forest and slope cropland was obvious. At the three soil depths, the soil moistures under different vegetation forms ranked as follows: *Eucommia ulmoides* forest > *maple-camphor* mixed forest > *Pinus massoniana* forest > *slope cropland*. It shows that forest has relatively
good capacity in water and soil conservation and water resource conservation, for the aboveground
vegetation and litter layer has lowered soil breath and transpiration and reduced water loss. Among the
vegetation forms, *Eucommia ulmoides* forest has the highest effect.

Table 1. Analysis of difference of soil moistures at different soil depths (%)

Soil depth	*Pinus massoniana* forest	Maple-camphor mixed forest	*Pinus massoniana* forest	Slope cropland
7.5 cm	21.483±0.269A	29.731±0.094B	31.076±0.006C	15.018±0.124D
12.0 cm	20.309±0.352A	28.971±0.185B	30.271±0.045C	14.304±0.047D
20.0 cm	18.581±0.146A	29.653±0.241B	30.484±0.161B	16.733±0.104C

Note: the capitalized letters indicate obvious difference of different vegetation forms at the same
soil depth. (P<0.05)

3.2. *Pertinence between soil moisture content and environmental factors in the forestland*

Table 2. Pertinence between soil moisture content and environmental factors in the forestland

Item	Wind speed	Temperature	Humidity	Water content
After rainfall: pertinence				
Wind speed	1			
Temperature	.609*	1		
Humidity	-.602**	-.979**	1	
Water content	-.244	-.579*	.677**	1
Before rainfall: pertinence				
Wind speed	1			
Temperature	.622*	1		
Humidity	-.736**	-.980**	1	
Water content	-.158	-.653**	.544*	1

* Obvious pertinence appears at 0.05 level (two-sided).
** Obvious pertinence appears at 0.01 level (two-sided).

Note: ** the pertinence is obvious at 0.01 level, * the pertinence is obvious at 0.05 level.

The monitoring period was from late June to early July, in this period plants grewed rapidly and
experienced higher transpiration, then rainfall goes into a fastigium. A portion of rainfall was
consumed for plant transpiration and soil evaporation, and a portion of rainfall was reserved for soil
moisture supply, in the end soil water content reached peak value. Before rainfall, soil moisture
content had negative pertinence with wind speed and temperature, reflecting obvious pertinence with
temperature at 0.01 level; soil moisture content had positive pertinence with humidity, reflecting
obvious pertinence with humidity at 0.05 level. After rainfall, soil moisture content also had negative
pertinence with wind speed and temperature, reflecting obvious pertinence with temperature at 0.05
level; soil moisture content also had positive pertinence with humidity, reflecting obvious pertinence
with humidity at 0.01 level.

4. Conclusion and discussion

Regarding water conservation capacity among the 4-vegetation forest stands, *Eucommia ulmoides*
forest ranks the first, *maple-camphor* mixed forest ranks the second, *Pinus massoniana* forest ranks
the third. As coniferous forest, *Pinus massoniana* forest has relatively hard needles, which cannot be easily resolved by microorganisms, as a result the dry branches and fallen leaves remain on the surface layer and cannot easily enter into soil to improve soil structure. In addition, a thick layer of fallen needles covering the land surface obstruct the sunshine for other vegetation growth, therefore there is little vegetation under *Pinus massoniana* forest. Comparing with the other three vegetation forms, *Pinus massoniana* forest has compacted soil, which shall cause slow rainwater seepage, a large proportion of rainwater becoming surface runoff and disadvantageous water resource conservation. Slope cropland has the lowest water resource conservation capacity, since frequent human activities result in relatively serious loss of soil moisture and nutrient. When farming on the slope cropland, farmers must plant crops with high coverage degree and adopt no-tillage or deep-tillage, to improve the water conservation capacity of slope cropland.

Acknowledgments

This work was financially supported by “The 12th Five-year Plan” National Sci-tech Plan for Rural Areas (2015BAD07B04); “Typical Fragile Ecological Restoration and Protection” Special Key Project under the National Major R&D Plan (2017YFC0505506); National Special Funded Project for International Sci-tech Cooperation (2015DF0A90450); 2016 Forest Ecological Benefits Compensation Public Control Project: Research on the Ecological Benefits of Public Welfare Forests in State-owned Forest Farms; 2017 Forest Ecological Benefits Compensation Public Control Project: Monitoring and Evaluation on the Ecological Benefits of Cili County Public Welfare Forests on the basis of Ecological Continuous Inventory; Hunan Provincial Major Research and Development Plan (2017NK2223); Hunan Provincial Forestry Sci-tech Plan Project (XLKPT201710); Hunan Provincial Forestry Sci-tech Plan Project (XLC201701-2).

References

[1] Zuo Xiaohan, Zhao Xueyong, Zhao Halin, et al. Spatial Variability of Response to Drought and Rainfall of the Soil Moisture of the Sandy Meadow in Khorchin Sandland [J]. Water and Soil Conservation Academic Journal, 2005,19(1):140-144.

[2] Song Tongqin, Peng Wanxia, Zeng Fuping, et al. Spatial Heterogeneity of the Soil Moisture in Dry Season in Karst Mulun Natural Reserve [J]. Applied Ecology Academic Journal, 2009,20(1):98-104.

[3] Zhang Jianjun, Li Huimin, Xu Jiajia. Loess Plateau Soil and Water Conservation Forest’s Influence on Soil Moisture [J]. Ecology Academic Journal, 2011,31(23):7056-7066.

[4] Wang Mengben, Li Hongjian. Foreststand Site and Forest Category’s Influence on Soil Moisture[J]. Water and Soil Conservation Academic Journal, 2001,15(6):43-46.

[5] Liu Hongwei, Yu Zhongbo, Cui Guangbai. Study on the Response Model to Rainfall of the Soil Moisture in Humid Area [J]. Academic Journal of Hydraulic Engineering, 2009,40(7):822-829.

[6] Wang Zhiqiang, Liu Baoyuan, Zhang Yan. Influence of Different Vegetation Forms on Moisture Content in Thick-layer Loess Section [J]. Geographical Academic Journal, 2008, 63, (7): 703-713.

[7] Liu H, Lei T W, Zhao J, et al. Effects of Rainfall Intensity and Antecedent Soil Water Content on Soil Infiltrability under Rainfall Conditions Using the run Off-on-out Method [J]. Journal of Hydrology, 2011,396(1/2):24-32.

[8] Wan Li, Shao Mingan, Hou Qingchun. Preliminary Study on Soil Dry Layer Quantitative Indexes[J]. Water and Soil Conservation Academic Journal, 2000,14(4):87-90.

[9] Xu Xuexuan, Liu Jianghua, Gao Peng, etc. Hydrological Effect of the Soil under Loess Hilly Area Vegetation [J]. Northwest Botany Academic Journal, 2003,23 (8):1347-1351.

[10] Ru Hao, Zhang Jianjun, Zhang Qi, et al. Response of the Soil Moisture to Rainfall in the Rain-fed Orchard in the Loess Area of West Shanxi [J]. Water and Soil Conservation Academic Journal, 2014,28(1):37-43.
[11] Wang Shuai, Fu Bojie, Gao Guangyao, et al. Response of the Soil Moisture in Different Vegetation Forms to Rainfall Events in a Re-vegetation Watershed of the Loess Plateau [J]. Catena, 2013,101:122-128.

[12] Wang Jinxin, Luo Weixiang, Liu Guangquan, et al. Soil Water Deficit State and Spatial Distribution in the Artificial Forestland of the Loess Plateau [J]. Academic Journal of Northwest Academy of Forestry, 2004,21(4):1-4.

[13] Cao Ruizhi, Zhou Ziyun, Jin Pengbo, et al. Study on the Soil Moisture Variation and Growth Rhythm of the Artificial Eucommia Ulmoides Forest under Different Site Conditions in Loess Hilly Area [J]. Academic Journal of Northwest Academy of Forestry, 2017,32(1):12-18.

[14] Huang Linlin, Chen Yunming, Wang Yaofeng, et al. Study on the Soil Moisture State of the Artificial Pinus tabulaeformis Forests with Different Densities in Loess Hilly Area [J]. Academic Journal of Northwest Academy of Forestry, 2011,28(5):1-5.

[15] Li Heping, Niu Hai, Zhao Mingli, et al. Analysis of Daily Dynamic Change of the Soil Moisture in Maowusu Sandland [J]. Academic Journal of Irrigation and Drainage, 2008,27(4):102-105.

[16] Li Haifang, Shi Meirong, Wang Jinye, et al. Response of the Soil Moisture Contents at Different Layers to Rainfall in the Phyllostachys Edulis Forest in Guangxi Maoer Mountain [J]. Journal of Water and Soil Conservation Research, 2016,23(5):120-123.

[17] Li Haifang, Shi Meirong, Wang Jinye, et al. Response of the Soil Moisture Contents at Different Layers to Rainfall in the Schima Forest in Guangxi Maoer Mountain [J]. Ecological Science Journal, 2017,36(2):126-134.

[18] Lv Junjie, Yao Yuqing, Wang Yuhong, et al. Influence of Different Tillage Methods on the Soil Moisture in the Slope Cropland [J]. China Agricultural Meteorology Journal, 2002,23(3):39-41.