COVID-19 Vaccine Misinformation Campaigns and Social Media Narratives

Karishma Sharma, Yizhou Zhang, Yan Liu
University of Southern California
krsharma@usc.edu, zhangyiz@usc.edu, yanliu.cs@usc.edu

Abstract
COVID-19 vaccine hesitancy has increased concerns about vaccine uptake required to overcome the pandemic and protect public health. A critical factor associated with anti-vaccine attitudes is the information shared on social media. In this work, we investigate misinformation communities and narratives that can contribute to COVID-19 vaccine hesitancy. During the pandemic, anti-science and political misinformation/conspiracies have been rampant on social media. Therefore, we investigate misinformation and conspiracy groups and their characteristic behaviours in Twitter data collected on COVID-19 vaccines. We identify if any suspicious coordinated efforts are present in promoting vaccine misinformation, and find two suspicious groups - one promoting a ‘Great Reset’ conspiracy which suggests that the pandemic is orchestrated by world leaders to take control of the economy, and another promoting the Bioweapon theory. Misinformation promoted is largely from the anti-vaccine and far-right communities in the 3-core of the retweet graph, with its tweets proportion of conspiracy and questionable sources to reliable sources being much higher. In comparison with the mainstream and health news, the right-leaning community is more influenced by the anti-vaccine and far-right communities, which is also reflected in the disparate vaccination rates in left and right U.S. states. The misinformation communities are also more vocal, either in vaccine or other discussions, relative to remaining communities, besides other behavioral differences. Furthermore, we investigate the COVID-19 vaccine narratives spread on social media. Besides misinformation narratives about vaccine safety, effectiveness and conspiracies, we find that rarer vaccine side-effects, reported less frequently in CDC VAERS reports, were more frequently discussed on social media, and in misinformation narratives, which also use other known tactics of science narratives distortion.

Introduction
The COVID-19 pandemic has amplified the concerns surrounding social media communications, which have on one hand facilitated pro-social messaging like “#wearamask”, “#staysafe” (Godfrey 2020), but also has been a breeding ground for health and political misinformation and conspiracies (Sharma et al. 2020). While global efforts have been made to rapidly vaccinate people against COVID-19 and prevent the risk of severe illness, there is significant unwillingness to vaccinate in part of the population (Masson 2021).

Earlier COVID-19 misinformation studies found narratives related to cures, prevention, mortality rate, hoax, scientific facts, and partisan conspiracies (Memon and Carley 2020), both diminishing the seriousness of the virus, and opposing public health measures with anti-mask, anti-lockdown campaigns (Sharma et al. 2021). With the availability of COVID-19 vaccines, it has similarly become a target for misinformation. An earlier study found that participants shown material supporting anti-vaccine conspiracies exhibited lower vaccination intent than those in anti-conspiracy conditions or controls (Jolley and Douglas 2014).

Since differential exposure to vaccine misinformation and scientific health information can be detrimental (Jolley and Douglas 2014), we focus on characterization of misinformation and information communities in the COVID-19 vaccine discussion. In this work, we characterize suspicious hidden efforts in coordinated promotion of misinformation, anti-vaccine conspiracy communities, and information and health news communities along with their narratives. The key findings are that (i) anti-vaccine attitudes in the COVID-19 vaccine discussion are correlated with partisan attitudes, with right-leaning communities closer to retweeting content from anti-vaccine misinformation communities (ii) misinformation and coordinated conspiracies promote distrust in public health authorities, and COVID-19 vaccines safety and effectiveness. (iii) distortion of facts with false, misleading and conspiracy narratives encompass scientific facts, safety and effectiveness, and political conspiracies, including more frequent discussion of rarer side-effects on social media.

Recent ongoing studies on social media discourse about COVID-19 vaccines, and past studies on vaccines in general, and our work share some overlapping and new insights. Cossard et al. 2020 findings of anti-vaccine and pro-vaccine echo-chambers in Italian social media vaccine debate reaffirm our findings of anti-vaccine Italian communities in the larger COVID-19 vaccine discussion, along with presence of similar echo-chamber structures based on partisan ideology and conspiracy groups (far-right conspiracy group, and a larger anti-vaccine community of English tweets, besides French, Italian and Spanish-En COVID-19 anti-vaccine communities).
With inferred political ideology, geographical analysis, misinformation sources proportion shared by each community, and account characteristics, we provide detailed insights about the misinformation and informational communities and their structure in the discourse. In recent concurrent work, Miyazaki et al. 2021 found that COVID-19 anti-vaccine accounts interact through toxic replies to pro-vaccine accounts, while the latter ignore the former. In another concurrent work, Pierri et al. 2021 also confirms the negative correlation between misinformation rate and vaccination rate by partisan nature of US states as in our findings. In addition to the previous findings, we found suspicious coordinated efforts behind two conspiracies - suggesting a ‘Bioweapon’ or Dehumanization theory, and a ‘Great Reset’ political conspiracy with greater automated and colluding account behaviours. We also observed that distortion of facts with misleading rather than outright false narratives, through exaggeration of rarer vaccine side-effects, questioning of scientific facts, and coordinated promotion of conspiracies are present, which can be more challenging for misinformation detection and mitigation efforts. Our insights can bring attention to the nuances of distorted facts to further research in detection and contextualization of social media biases and misleading narratives from anti-vaccine groups, and mitigation efforts to prevent coordinated conspiracies, and to reduce the partisan and anti-vaccine misinformation.

We examine the following research questions:

• RQ1. Are there hidden coordinated efforts promoting misinformation/conspiracies about COVID-19 vaccines? What misinformation communities are present, and which communities are most influenced by them? We apply AMDN-HAGE (Sharma et al. 2021) to identify hidden coordinated efforts in misinformation promotion from observed account activities, and we apply Louvain method (Blondel et al. 2008) for community detection on the retweet graph. We characterize communities by top retweeted accounts, tweet features, political leaning, geographical demographic, and misinformation proportion.

We find suspicious coordinated groups, one promoting a ‘Great Reset’ conspiracy which suggests that the pandemic is orchestrated by world leaders to take control of the economy, with anti-vaccine/lockdown misinformation, and another promoting the Bioweapon theory. In the 3-core of the retweet graph, we find a large anti-vaccine misinformation and conspiracy community (16%) that spans US (48.9%) and UK (27.5%) accounts, and other smaller anti-vaccine communities of different languages (Spanish, French, Italian). Misinformation promoted on the network is largely from the anti-vaccine and far-right communities, with its tweets’ proportion of conspiracy and questionable to reliable sources being much higher at about 60%. The right-leaning community (that retweets top Republican accounts) are closer to the anti-vaccine and far-right conspiracy communities, compared to mainstream and health news, correlated with lower vaccination rates in Republican states.

• RQ2. How do the behaviours of anti-vaccine misinformation/conspiracy communities differ from informational communities, in general and specific to the vaccine discussion? We investigate distribution of account features in the communities to characterize their behaviours.

We find that the anti-vaccine misinformation community is the most vocal in the vaccine discussion even though it has fewer tweets in totality (considering tweets outside of the vaccine discussions), has younger account ages than other communities, and it has a sizable audience. In contrast, the far-right conspiracy group is more vocal but in other discussions compared to the vaccine discussions, and is more interconnected with accounts having more followers-followings. In the vaccine discussion, mainstream news and left-leaning communities are more vocal than far-right and right-leaning ones, but less than the anti-vaccine community.

• RQ3. What are the misinformation narratives present and spread through social media? We consider five types of science narratives distortions and examine how they manifest on social media through correlation of reported vaccine side-effects with frequency in the tweets, topic modeling, and news source characterization for misinformation tweets. We observe misinformation narratives distort facts through false, misleading, and conspiracy claims. We find that rarer side-effects are discussed more frequently in tweets and misinformation narratives. Other tactics such as setting impossible expectations about vaccines effectiveness and scientific facts, logical fallacies such as vaccines are rushed or experimental, pseudoscience, political propaganda, and conspiracies such as the pandemic is planned or a ‘Great Reset’ or vaccines are a Bioweapon for dehumanization, were present.

Data Collection

COVID-19 Vaccine Twitter Data. We use the streaming Twitter API which returns a ~1% sample of all tweets filtered by tracked keywords (vaccine, Pfizer, BioNTech, Moderna, Janssen, AstraZeneca, Sinopharm) in real-time, to collect Twitter data related to COVID-19 vaccines. The dataset collection includes tweets from Dec 9, 2020 - April 24, 2021, i.e., just before Pfizer-BioNTech and Moderna were approved by the FDA for Emergency Use Authorization (EUA). The dataset contains 29,743,178 tweets from 7,417,592 accounts. Fig 1 shows the timeline of tweets.1

1https://www.ajmc.com/view/a-timeline-of-covid-19-vaccine
CDC-VAERS U.S. Post-Vaccine Side-Effects Records.2 Post vaccination side-effects are reported to the FDA/CDC Vaccine Adverse Event Reporting System (VAERS). We download the official records from (accessed June 6, 2021). Healthcare providers are required to report, while individuals are advised to report post vaccine effects, even if a causal link to the vaccine has not yet been established for monitoring. We use the data to study correlation between discussion of side-effects in VAERS and on social media.

Unreliable/Conspiracy News-Source Credibility Lists. We use misinformation as an umbrella term to refer to unreliable (false, misleading, and conspiracy) claims. Low-quality news-sources to analyze misinformation shared on social media are used in numerous prior works (Bozarth, Saraf, and Budak 2020). We utilize low-quality sources reported by three fact-checking resources, as consistently promoting COVID-19 or general misinformation: Media Bias/Fact Check (questionable and pseudoscience/conspiracy lists with low/very low factual rating), NewsGuard (accessed September 22, 2020), and Zimdars (Zimdars 2016) tagged as unreliable or related labels. For reliable mainstream news sources, Wikipedia:Reliable sources/Perennial sources tagged as reliable are included. In total, we obtain 124 reliable and 1380 unreliable/conspiracy sources.

Coordinated Misinformation Campaigns

In recent years, social media has witnessed misinformation or influence campaigns from network of both human and bot accounts colluding maliciously to promote specific agendas and misinformation (Sharma et al. 2021; Zhang, Sharma, and Liu 2021). Different from social bots, or accounts sharing similar contents or topical interests, uncovering suspicious coordinated groups is a hard task since the mechanism of coordination employed is unknown, and inconsistent over time. A recent unsupervised method AMDN-HAGE (Sharma et al. 2021) is a significant advance over earlier approaches in estimating coordination efforts from observed activity traces on social media and can also be integrated with prior domain knowledge (Zhang, Sharma, and Liu 2021). Sharma et al. 2021 evaluated the method discussed below on Russian coordinated campaigns in US 2016 Election data with ground-truth labels from the US Congress investigations, achieving 0.93 AUC and 0.73 F1 having a large margin over the existing unsupervised methods.

Methodology

We apply unsupervised AMDN-HAGE (Sharma et al. 2021) to identify suspicious coordinated accounts in the dataset. AMDN-HAGE models hidden influence between accounts from observed activity traces (account ids and timestamps). Specifically, it models the conditional density of future activities given past activities, thereby estimating a mutual triggering effect (influence) between accounts. The model parameters to estimate the conditional density (and influence) are trained using maximum likelihood (MLE) from observed social media data, as an unsupervised generative model. AMDN-HAGE assumes that coordinating accounts have (1) a hidden influence between their activities (centrally controlled, externally colluding, or jointly motivated) (2) are collectively anomalous from other accounts that are not colluding to promote.

Other accounts who are operating individually (not in coordination) would have less organized or more independent and randomized activity patterns. Leveraging this, AMDN-HAGE estimates this mutual account influence and group behavior to uncover coordinated groups directly from observed activities. It does not observe or utilize any content or tweet features (other than the time-stamped sequence of activities from accounts) and therefore captures coordination behaviors rather than topical interests of accounts. Methods like Louvain community detection (Blondel et al. 2008) have distinct differences that make them less suitable for detecting hidden coordination of collaborating accounts (1) Community detection would capture direct interactions e.g. retweet graph communities. However organized campaign accounts might operate through a hidden indirect influence rather than direct retweets of each other. (2) Topical interest based associations from a retweet graph or other pre-defined graphs in community detection result in many false positives (Sharma et al. 2021; Pacheco et al. 2021).

Set-Up. We construct observed sequences of accounts’ activities from the diffusion cascade of a tweet, i.e., sequence of retweet, reply, quotes of the tweet (direct engagements) and all subsequent engagements to those, as a time-ordered sequence of posts represented as $C = \{(u_i, t_i)\}_{i=1}^L$ corresponding to account u_i, posting time t_i, and number of posts L i.e., sequence length. The extracted sequences contain 316k activity cascades of 205k accounts, after filtering accounts less than 20 times in the collected tweets, and cascade sequences shorter than length 5. We applied the method3 to the observed sequences to identify coordinated account groups, which resulted in 3 clusters (the method found 2 distinct small group of accounts that are suspicious of coordination, and the large group is the rest of the accounts referenced here as ‘Normal’ i.e., non-coordinated as estimated by the method.) where the silhouette score has highest increase with the max at 10 clusters which are at finer granularity.

Analysis

We examine the two identified account groups (∼8k and 3k accounts) and the remaining ‘Normal’ accounts in terms of tweets features and account behaviors. The tweets from the identified coordinated group contained 5% more misinformation (unreliable/conspiracy URLs in tweets) than over all tweets. Although there were false positives due to the large scale of accounts which makes clustering and learning harder, the groups identified were notably suspicious in terms of the content promoted in their tweets, even though the model has never seen the tweet contents.

Tweet Features and Conspiracies. In Fig. 3, we compare the lowercase top-35 hashtags in the tweets of each group.

3The AMDN-HAGE implementation is available at https://github.com/USC-Melady/AMDN-HAGE-KDD21.
Figure 2: Tweets from a pair of accounts (A, B) in the detected coordinated group. Left: Tweets from the Twitter profile of accounts A and B suggesting anti-lockdown and anti-government narratives. Right: Three example tweets from the collected dataset, of the same pair of accounts (A, B) suspected of amplifying misinformation by coordinately sharing similar agendas.

(4) The conspiracy started trending globally after a video of Canadian Prime Minister Justin Trudeau at a UN meeting talking about economic recovery or reset went viral. Tweets from the second coordinated group promote the Bioweapon theory that the virus is a Chinese (CCP) originated Bioweapon. Both coordinated group tweets contain anti-vaccine misinformation. The top hashtags in normal accounts support health interventions (#maskup, #healthcare, #staysafe). Example vaccine misinformation tweet from the coordinated group, “@CNN Remember the Covid vaccine is substantially more dangerous than the virus. Issues range from severe allergic reactions to blindness, stroke and even sudden death! You have been warned! #Pandemic #Agenda21 #ID2020 #OperationLockstep #covidvaccine #Coronavirus #Covid19 #Greatreset.”

Account Activities. We inspected activities of a sample of the detected coordinated accounts. We randomly sampled account pairs that had retweeted at least one common tweet in the observed collected dataset. For a pair of accounts, we checked their Twitter profile and their tweets in the collected dataset. Fig. 2 shows an example account pair (A, B) from the coordinated group, still active on Twitter as of June, 2021. The account names are anonymized here. The tweets of both accounts promoted the same agendas in coordination over similar time periods. In one instance, both retweeted different sources that independently posted the same content, seemingly part of a coordinated network, as shown in the example @NVIClocDown and @CalivaxChoice posted exactly the same content and they re-shared each respectively.

Quantitative Analysis. Fig 5 examines the bot i.e., automated account score distribution of suspicious coordinated group accounts. Conspiracies promoted from coordinating account groups (colluding in a hidden, unknown manner) tend to employ both bot (automated) and human actors to push agendas (Luceri, Giordano, and Ferrara 2020; Badawy et al. 2019). We evaluate the bot scores using Botometer v4 API (Sayyadiharikandeh et al. 2020) on 500 randomly sampled accounts each from normal and coordinated groups to compare the distribution. We assume the null hypothesis that there is no difference in bot score distributions and use Mann-Whitney U test to compare the distributions. We find statistically significant differences with the normal sample for each coordinated group. As seen in Fig 5, for the suspicious Bioweapon (CCP) group the (z-score - 2.56, p-val 0.00523) are significant at 0.05. Similarly for the suspicious Great Reset conspiracy, at 0.1 significance level, suggesting higher distribution of automated behaviours in the detected coordinated account groups.

Fig 6 examines what the model learns from observed account activities in detecting coordinated groups. We obtain the estimates of the mutual triggering effect (or influence) between accounts from the learned model. The model estimates the density of future activities on the network given past activities, encoding which account pairs trigger each other’s activities. Fig 6 shows the average influence weight from accounts in one group (Influencer) on accounts in other groups (Influenced). As we observe, the model picks up stronger influence within accounts of the suspicious coordinating groups. Weaker influence patterns with normal accounts indicate more random activities of normal accounts (that may not be centrally controlled, ex-
ternally colluding, or jointly collaborating to promote agendas). Also, the model does not find hidden influence across accounts in the two coordinated groups, suggesting presence of separate efforts, as is also evident from the separate agendas of the two groups (Bioweapon (CCP) vs. Great Reset conspiracy, as seen in Fig 3).

Misinformation and Information Communities

In the vaccine discussion, earlier works have observed echo-chambers or communities of accounts with similar opinions that endorse and re-share (retweet) each other’s content (Garimella et al. 2018; Cossard et al. 2020). Since retweets are a form of endorsement, we identify community structure of accounts from the retweet graph.

Structure

Similar to prior work (Garimella et al. 2018), we use RT edges with minimum count of retweets ≥ 2, including mutual retweets. We restrict the analysis to accounts appearing

Figure 3: Top-35 hashtags of normal and identified suspicious coordinated accounts. Unique in each group in bold.

Figure 4: Characterization of communities in 3-core of Retweet (RT) graph to find misinformation communities.

Figure 5: Bot score distribution. Mann-Whitney U-Test for suspicious coordinated Bioweapon (CCP) vs. Normal accounts sample (z-score -2.56, p-val 0.00523 < 0.05) and suspicious coordinated (Great Reset) vs Normal accounts sample (z-score -1.35, p-val 0.0869 < 0.1).

Figure 6: Mutual triggering effect (influence). Between activities of accounts, estimated from data by AMDN-HAGE shown as Avg. estimated triggering effect from Influencer accounts (whose activities trigger future activities in time). Normal accounts have weaker influence patterns (more random activities) compared to coordinating accounts.
at least 5 times in the dataset, to ensure that the collected tweets sampled by Twitter API contain enough information about the account. For the RT graph, we use the 3-core decomposition to exclude users with only weak connections to the primary discussions (Miyazaki et al. 2021). We split the tweets in the dataset into four quarters by the timeline of collected tweets, and construct the RT graph on the first quarter. The decomposition helps to limit the size of the network for easier inspection and visualization of the graph for characterization of the communities. We obtain a graph with 91k accounts, 121k edges, and avg. degree 2.66 before the k-core decomposition. After 3-core decomposition we have 8,974 accounts, 121k edges, and avg. degree 2.66. We applied Louvain community detection (Blondel et al. 2008) and obtained 39 communities.

Characterization

We characterize the top-20 diffusion communities that account for 96% of the accounts in the 3-core RT graph. Fig. 4 presents the communities with its characterization in Table. 1 and Table. 2 based on nature of accounts in tweets in each community. The table includes the community number with size (% accounts) in the graph, language in tweets from the community, geolocation extracted from geo-enabled tweets reported valid locations in account profiles (Dredze et al. 2013) to characterize the general demographic of the community. In addition, we infer the political leaning of accounts using left/right media URLs (as classified by allsides.com) endorsed directly or through retweet structure, similar to (Badawy et al. 2019). We jointly inspect these with the top retweeted accounts and tweets, and distribution of URL news sources, top URL/news domains, and contents in top retweeted and random subset of tweets.

- A large (16.24%) community (C1) of Anti-vaccine misinformation and conspiracies. From accounts that have valid locations reported in the profile or tweets, this community spans US (48.9%) and UK (27.5%).
- Other smaller communities with dominant misinformation or conspiracy tweets correspond to the U.S. Far-right conspiracy group that post anti-vaccine content (C8). Another Spanish-English tweets community (C14) contains strongly anti-vaccine conspiracies, very similar to the larger Anti-vaccine misinformation community. A French tweets community (C9) with relatively less conspiracy content but anti-vaccine, and an Italian tweets community (C12) of mixed stance to vaccine hesitancy are present close to the anti-vaccine community.

- Benign communities included Mainstream News (15.58%) (C2), Health news (1.48%) (C13), U.S. Left Leaning (C0) (with Joe Biden, Kamala Harris as top retweeted accounts). The former contain accounts with more global geolocations, while the latter was dominantly with US geolocations. There are several regional news and politics communities centered close to the Mainstream and Health News communities (e.g. UK based with top retweeted accounts corresponding to the National Health Service NHS and Department of Health and Social Care DHSC (C5), Latin America (C6), Philippines News (C11), India and Canada News and Politics (C4, C10 and C7)). These are identified based on tweets language, contents and inferred geolocations.

- The U.S. Right-leaning community (C3) (Mike Pence, OANN, top Republicans as most retweeted accounts), however different from other communities, has roughly equal proportions of unreliable, conspiracy and reliable URLs in their tweets. In terms of tweet contents and proximity to other communities, the right-leaning community is closer to the Anti-vaccine misinformation and conspiracy community (C1), as well as the far right group (C8), with relatively sparse edges to the global mainstream informational community (C2,C13). The top news domains in their tweets include relatively credible sources with possible right-leaning bias such as Foxnews, and also conspiracy sources like zero-hedge and Truepundit. Inspecting top retweeted and random sample of tweets suggests a mixture of vaccine news updates, politically biased views and also conspiracies (e.g. numerous anti-China messages, Bill Gates conspiracies), and largely anti-vaccine/protocol stance (including misinformation about the vaccines). The misinformation and information communities are strongly separated with sparse RT edges between them (as seen from the separation in the RT graph visualization), the proximity within different anti-vaccine misinformation communities, and within pro-vaccine/news dense communities being higher.

In additional details of the table, note that unreliable, conspiracy, reliable news source URLs proportions are included. For tweets containing no URLs or unidentified URL domains, the fraction of such tweets is listed under Others column in the Table. The inferred political leanings that are for majority of the accounts in a community are highlighted in bold or color. The asterisk is used for communities with more than a single prominent inferred leaning type. Languages and geolocations smaller than 10% in the tweets are not reported. Top News Domains and Top Retweeted Accounts are presented for each community, and left unmentioned if the top-20 ones contained only individuals that were not agencies or well known figures (e.g. C8).

Feature Distributions

The feature distributions of accounts in the most significant communities (circled in Fig 4) are compared in Fig. 7 and Fig. 8. In Fig. 7, we compare Followings (accounts followed by accounts in the community), Followers, Listed (accounts mentioned in topical lists created by other accounts on Twitter), Favourites (number of tweets liked/favourited by the accounts in the community), Tweets (which is the total tweets posted by the account in its lifetime). These features are available in the account metadata obtained using the Twitter API, and we use the account’s statistics at its last observed tweet in the dataset. The main insights about account characteristics in each community are,

- Followers and Followings distribution interquartile range is significantly higher for the Far-right conspiracy community (C8) (Fig. 7). The distribution across other groups
is similar, with the Anti-vaccine community (C1) having slightly lower upper quartile. This suggests more interconnected accounts in the Far-right conspiracy group, which likely actively follow each other.

- More accounts appear in Twitter Lists (Listed) from Left (C0), Mainstream (C2), Right (C3), and Far-right communities, compared to Anti-vaccine misinformation and Spanish-En conspiracy community (C14). Yet, the anti-vaccine community do have many Listed accounts, suggesting that such content does have a sizable audience.

In Fig 7 we also have the Tweets (total tweets posted by the account in its lifetime). To better understand the accounts activities, in Fig 8, we additionally compare the Account Age (Days between first observed tweet in the dataset and the account creation date), Vax Tweets (tweets posted by the account specific to vaccine related content, quantified by observed tweets of the account in the collected dataset), Vax Tweet Engagements (number of vaccine tweets that refer to the account creation date), Vax Tweets (tweets posted by the account specific to vaccine related content, quantified by observed tweets of the account in the collected dataset), Vax Tweet Engagements (number of vaccine tweets that refer to the account creation date), Vax Tweets (tweets posted by the account specific to vaccine related content, quantified by observed tweets of the account in the collected dataset), Vax Tweet Engagements (number of vaccine tweets that refer to the account creation date), Vax Tweets (tweets posted by the account specific to vaccine related content, quantified by observed tweets of the account in the collected dataset)

Vaccine Uptake Distribution in U.S. States

In Fig. 9, we compare the ratio of misinformation (unreliable/conspiracy URLs) to reliable URLs observed in collected tweets for accounts with geolocation available extracted using (Dredze et al. 2013). The public records of how many people have been vaccinated in each state available through CDC is curated and maintained by the research community (Mathieu et al. 2021) (accessed June 6, 2021).

Analysis. The vaccine uptake i.e., percentage of vaccinated individuals as of June 6, 2021 per U.S. state is plotted against the rate of misinformation (ratio of unreliable/conspiracy URL tweets to reliable URL tweets) in Fig 9. The states political affiliation is designated based on the 2020 Election votes (Red states voted for Donald Trump and Blue States for Joe Biden in the 2020 Presidential Election). The analysis is state-wise, therefore, only account tweets with valid extracted geolocations of US States are utilized in the plot. The estimated correlation results are that Pearson’s correlation coefficient is -0.731 between vaccine uptake and misinformation rate. This confirms a high negative correlation of % individuals vaccinated (lower in red states) and the

Table 1: (Mis)information communities in 3-core of the Retweet Graph (misinformation highlighted based on proportion of unreliable/conspiracy tweets, and correspond to anti-vaccine/far-right conspiracy groups).

No.	Language	Locations	Inferred Leaning	Low-Quality News URLs					
			Left	Right	Und	Conspiracy	Unreliable	Reliable	Others
0(20%)	EN (97.4%)	US (90.3%)	98.7	0.3	1	0.26	2.87	96.87	92.22
1(16%)	EN (94.0%)	US (48.9%), UK (27.5%)	2.8	6.8	90.4	39.61	33.82	26.57	87.56
2(16%)	EN (95.3%)	US (57.5%), India (7.6%), UK (6.1%)	94.4	1.2	4.4	0.94	5.47	93.59	91.54
3(11%)	EN (96.9%)	US (86.6%)	5.8	83.9	10.3	32.31	35.14	32.55	89.62
4(6%)	EN (84.5%)	India (90.3%)	8.2	0.2	91.6	10.27	37.76	51.97	97.92
5(5%)	EN (96.6%)	UK (76.9%), US (13.8%)	64.6*	0.2	35.2	1.28	10.25	88.47	93.12
6(5%)	ES (81.2%), EN (13.3%), Argentine (34.3%), Mexico (11.9%)	56.9*	0	43.1	3.48	7.32	89.2	97.68	
7(3%)	EN (95.6%)	Canada (91.0%)	87.8	0	12.2	1.78	4.07	94.15	97.05
8(3%)	EN (97.3%)	US (94.8%)	0	97.7	2.3	31.86	45.14	23	85.09
9(3%)	FR (81.9%), EN (10.6%), TL (18.8%)	France (92.0%)	4	0	96	14.18	62.88	22.94	90.18
10(3%)	EN (90.8%)	India (84.2%)	92.3	0	7.7	0	2.66	97.34	95.92
11(2%)	EN (79.2%), TL (38.7%)	Philippines (85.7%)	100	0	0	7.5	1.25	91.25	98.25
12(2%)	EN (53.5%), IT (38.7%)	Italy (32.7%), US (20.4%)	34.5	1.9	63.56	22.22	55.19	22.59	91.28
13(2%)	EN (88.4%)	US (30.8%), Africa (13.8%)	86.9	0.8	12.3	1.79	1.57	96.64	90.33
14(1%)	ES (48.6%), EN (26.0%)	Netherlands (28.6%), Uruguay (14.3%), Latvia (14.3%)	60.3*	1.8	37.9	49.52	29.61	20.87	90.84
Table 2: Top Tweeted URLs and Top Retweeted Accounts in (Mis)information communities in 3-core Retweet Graph.

No.	Top News Domains	Top Retweeted Accounts
0	(20%) nytimes, washingtonpost, cnn, latimes, politico	JoeBiden, KamalaHarris, NYGovCuomo
1	(16%) childrenshealthdefense, dailymail, zero Hedge, rt, lifesitenews	ChildrensHD, zero Hedge
2	(16%) reuters, theguardian, nytimes, independent, latimes	Reuters, NBCNews, AP, CoronaUpdateBot
3	(11%) truepundit, foxnews, theepochtimes, zero Hedge, dailymail	Mike_Pence, GOPChairwoman, OANN, nypost
4	(6%) swarajyamag, indianexpress, dailymail, nationalfile, wsj	timesofindia, WIONews, mygovindia
5	(5%) theguardian, nytimes, telegraph, bbc, express	DHScgovuk, NHSEngland, NHSuk
6	(5%) nytimes, reuters, bbc, theguardian, thetimes	ReutersLatam, CoronavirusNewv, AlertaNews24
7	(3%) nytimes, theguardian, reuters, washingtonpost, bloomberg	JustinTrudeau, CBCAlerts, CPHO_Canada
8	(3%) francesoir, fr, reseauinternational, childrenshealthdefense, dailymail	sputnik_fr, VirusWar, franceinfo, afpfr
9	(2%) reuters, buzzfeednews, theguardian, nytimes, prevention	CNBCTV18News
10	(2%) imolaaggi, zero Hedge, rt, dailymail, nytimes	ANCAAlerts, CNNPhilippines
11	(2%) npr, nytimes, latimes, theguardian, wsj	RT_com, SputnikInt
12	(1%) humansarefree, dailymail, rt, childrenshealthdefense, zero Hedge	NPRHealth, WHO, EU_Health, CovidSupportSA

Misinformation Narratives of Vaccines

Social media communication studies have outlined factors that can mislead the public and increase vaccine hesitancy (Lewandowsky et al. 2021). The five techniques of science denial are provided under the acronym FLICC (fake experts, logical fallacies, impossible expectations, cherry-picking, and conspiracy theories). In this section, we look at different types of narratives and contexts of misinformation.

Social Media Discussion of Vaccination Effects

We examine vaccine side-effects discussed on social media in misinformation narratives. We study whether the discussion of vaccine side-effects on social media differs from the CDC VAERS (accessed June 10, 2021) recorded side-effects obtained from healthcare providers and public reports.

1. Are the side-effects widely discussed in vaccine related tweets also common in VAERS reports?

2. Is the distribution of side-effects discussed in misinformation URL tweets distinct from all tweets?

To answer the above questions, we explore the correlation between frequency of the discussed side-effects on social media and their frequency in the VAERS records. To measure the frequency on Twitter, we first extract the medical concepts from the tweets via text matching based on a large medical concept corpus: AskAPatient (Limsopatham and Collier 2016). This corpus provides us with common medical concepts on social media in different forms, such as abbreviations, complete names and even misspelling versions. We use the number of tweets in which a medical concept appears to represent its frequency on Twitter. To measure the frequency in VAERS records, we conduct medical concept extraction in the same way and count the number of individuals whose medical records mention a concept.

Analysis. In Fig. 10, we plot the medical concept frequencies in all collected tweets (Fig. 10a) and in unreliable/conspiracy URLs tweets (Fig. 10b) against corresponding frequencies in VAERS records. From the visualization, we can
The biased discussion of vaccine side-effects or adverse effects falls under cherry-picking, one of the five science de-
fects, Deaths, Vaccine Effectiveness, and Vaccine Refusal, along with misinformation related to Vaccine Rollout, and
Dehumanization/Depopulation/Great Reset/Bill Gates/Phar-
mageddon conspiracies. Table. 3 provides examples of top representative tweets and word distributions for each iden-
tified topic. Examination of the tweets suggests presence of the five techniques of manipulation FLICC (Lewandowsky
et al. 2021) mentioned earlier. In part for vaccine safety and effectiveness, out-wright false claims about scientific facts,
and side-effects existed, but also true reported side-effects were discussed with negative strong anti-vaccine sentiment,
or missing or misleading contexts, including misleading ex-
pectations about vaccine effectiveness, by suggesting that since vaccines cannot prevent the infection, then its ineffec-
tive or not useful, as seen in Table.

Frequent News Sources Categorization. Fig. 11 presents categorization of the top news domains in unreliable/con-
spiracy URLs tweets. The categorization is based on the Media Bias/Fact Check ratings of (i) degree of factual re-
porting (ii) political bias, and (iii) scientific reporting mea-
sures. The factual reporting level from these sources is re-
garded as either Low, very Low, or Mixed on Media Bi-
as/Fact Check. The top domains contain sources promoting both extreme pseudoscience and conspiracy (e.g. Children-
sHealthDefense.org), Left/Right political propaganda (e.g. dailymail.co.uk, rt.com, truepundit.com).

Related Work
Vaccine hesitancy and misinformation on social media and e-commerce platforms has gained much attention in the past
few years (Cossard et al. 2020; Juneja and Mitra 2021). Cos-
sard et al. studied the Italian vaccine debate finding echo chambers of anti-vaccine and pro-vaccine groups in 2016
on Twitter, with interaction between the communities being asymmetrical, as vaccine advocates ignore the skep-

Footnote:
5Pre-trained embeddings can be downloaded from https://fasttext.cc/docs/en/english-vectors.html
Figure 10: Frequency correlation of side-effects discussed on Twitter compared with that recorded in VAERS.

Figure 11: Tweet volume for top-35 news sources.

Misinformation and coordinated campaigns during COVID-19 have been highly prevalent throughout the pandemic (Sharma et al. 2020; Memon and Carley 2020; Sharma et al. 2021; Jamison et al. 2020; Lewandowsky et al. 2021). Several studies in social science have conducted surveys to identify how vaccine misinformation decreases pro-vaccine intents (Enders et al. 2020; Jolley and Douglas 2014). Pierri et al. 2021 found misinformation URLs shared on Twitter are correlated with vaccine hesitancy rates taken from survey data and vaccinations in the U.S., and effect of misinformation on is stronger in U.S. Democratic counties, although hesitancy is higher in Republican counties. Wilson and Wiysonge 2020 found similar correlation with foreign disinformation indicators.

Dataset of English Tweets related to COVID-19 vaccines (DeVerna et al. 2021) and longitudinal dataset of accounts promoting anti-vaccine hashtags sampled from Twitter discussions (Muric et al. 2021) have been curated recently by the research community. Lastly, another line of work investigates effects of platform actions on vaccine misinformation. Sharevski et al. 2021 examined Twitter’s soft moderation efforts against misinformation i.e., warning labels and covers on Tweets with unreliable information, and found that warning covers work but not labels in reducing perceived accuracy of the content, through a randomized survey participant study. Kim et al. 2020 looked at YouTube’s information interventions on likely misinformation videos, and observed reduced traffic on affected videos.

Discussion and Conclusion

This work examined coordinated campaigns, and other anti-vaccine misinformation and conspiracy communities on Twitter in the context of COVID-19 vaccines discussions. Suspicious coordinated efforts uncovered from the observed account activities, appear to promote a ‘Great Reset’ conspiracy narrative, a Bioweapon conspiracy, with greater automated account-like behaviors. Furthermore, the influence from the anti-vaccine community and the far-right conspiracy communities on right-leaning accounts (who retweet top-republican accounts such as Mike Pence) can further distance right-leaning accounts from mainstream and informational health news and science. Misinformation narratives and distortion of COVID-19 vaccine facts is more nuanced as observed through narrative analysis. The structure and differential partisan exposure to COVID-19 anti-vaccine misinformation and conspiracies, coupled with distrust of authorities, and nuanced distortion of true facts especially in the case of COVID-19 vaccines, poses serious challenges to detection/mitigation of this type of misinformation.
Table 3: Misinformation topic clusters along with representative tweets and word distribution with highest TF-IDF scores.

We discuss limitations of the work with future research opportunities. First, the study of misinformation is based on unreliable/conspiracy news sources for analysis of misinformation narratives. Bozarth, Saraf, and Budak 2020 evaluated the effect of using low-quality news sources for misinformation in previous studies, and found that the dataset bias affects the prevalence of misinformation in the analysis, but the temporal and narrative differences remain moderately consistent. Second, we estimated correlation of vaccination uptake and misinformation rate, but did not study the causal estimation of misinformation exposure through social media. Few interesting future research questions that arise from our work, is to study whether social media exposure changes user perception in different partisan communities. In addition, does biased exposure to rarer vaccine side-effects in misinformation narratives cause increased vaccine hesitancy? Jolley and Douglas provides participant studies to show that when participants are shown support for anti-vaccine conspiracies, compared to anti-conspiracy or control groups, they have reduced vaccination intent. The social media based causal studies we proposed here could provide additional evidence and insight for mitigation of anti-vaccine conspiracies.

References

Badawy, A.; Addawood, A.; Lerman, K.; and Ferrara, E. 2019. Characterizing the 2016 Russian IRA influence campaign. Social Network Analysis and Mining, 9(1): 1–11.

Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefebvre, E. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10): P10008.

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017. Enriching word vectors with subword information. Transactions of the association for computational linguistics, 5: 135–146.

Bozarth, L.; Saraf, A.; and Budak, C. 2020. Higher Ground? How Groundtruth Labeling Impacts Our Understanding of Fake Science. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2343–2348.
News about the 2016 U.S. Presidential Nominees. *Proceedings of the International AAAI Conference on Web and Social Media*, 14(1): 48–59.

Cossard, A.; De Francisci Morales, G.; Kalimeri, K.; Mejova, Y.; Paolotti, D.; and Starnini, M. 2020. Falling into the Echo Chamber: The Italian Vaccination Debate on Twitter. *Proceedings of the International AAAI Conference on Web and Social Media*, 14(1): 130–140.

DeVerna, M. R.; Pierri, F.; Truong, B. T.; Bollenbacher, J.; Axelrod, D.; Loynes, N.; Torres-Lugo, C.; Yang, K.-C.; Menczer, F.; and Bryden, J. 2021. CoVaxxy: A Collection of English-Language Twitter Posts About COVID-19 Vaccines. *Proceedings of the International AAAI Conference on Web and Social Media*, 15(1): 992–999.

Dredze, M.; Paul, M. J.; Bergsma, S.; and Tran, H. 2013. Carmen: A twitter geolocation system with applications to public health. In *Workshops at the Twenty-Seventh AAAI Conference*. Enders, A. M.; Uscinski, J. E.; Kofstad, C.; and Stoler, J. 2020. The different forms of COVID-19 misinformation and their consequences. *The Harvard Kennedy School Misinformation Review*.

Garimella, K.; Morales, G. D. F.; Gionis, A.; and Mathioudakis, M. 2018. Quantifying controversy on social media. *ACM Transactions on Social Computing*, 1(1): 1–27.

Godfrey, L. 2020. Social Media’s Role in the Coronavirus Pandemic. https://www.business2community.com/social-media/social-medias-role-in-the-coronavirus-pandemic-02296280. Accessed: 2020-01-20.

Jamison, A. M.; Broniatowski, D. A.; Dredze, M.; Sangraula, A.; Smith, M. C.; and Quinn, S. C. 2020. Not just conspiracy theories: Vaccine opponents and proponents add to the COVID-19 ‘infodemic’ on Twitter. *Harvard Kennedy School Misinformation Review*, 1(3).

Jolley, D.; and Douglas, K. M. 2014. The effects of anti-vaccine conspiracy theories on vaccination intentions. *PloS one*, 9(2).

Juneja, P.; and Mitra, T. 2021. Auditing e-commerce platforms for algorithmically curated vaccine misinformation. In *Proceedings of the 2021 chi conference on human factors in computing systems*, 1–27.

Kim, S.; Yalcin, O. F.; Bestwater, S. E.; Munger, K.; Monroe, B. L.; and Desmarais, B. A. 2020. The Effects of an Informational Intervention on Attention to Anti-Vaccination Content on YouTube. *Proceedings of the International AAAI Conference on Web and Social Media*, 14(1): 949–953.

Lewandowsky, S.; Cook, J.; Schmid, P.; Holford, D. L.; Finn, A.; Leask, J.; Thomson, A.; Lombardi, D.; Al-Rawi, A. K.; Amazeen, M. A.; et al. 2021. The COVID-19 Vaccine Communication Handbook. A practical guide for improving vaccine communication and fighting misinformation.

Li, C.; Wang, H.; Zhang, Z.; Sun, A.; and Ma, Z. 2016. Topic modeling for short texts with auxiliary word embeddings. In *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval*, 165–174.

Limsoopatham, N.; and Collier, N. 2016. Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics*, volume 1, 1014–1023.

Luceri, L.; Giordano, S.; and Ferrara, E. 2020. Detecting Troll Behavior via Inverse Reinforcement Learning: A Case Study of Russian Trolls in the 2016 US Election. *Proceedings of the International AAAI Conference on Web and Social Media*, 14(1): 417–427.

Masson, G. 2021. 1 in 4 American adults don’t want a COVID-19 vaccine. NPR. http://maristpoll.marist.edu/wp-content/uploads/2021/03/NPR_Marist-Poll_USA-NOS-and-Tables_2021032911133.pdf#page=1. Accessed: 2021-06-14.

Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; and Rodés-Guirao, L. 2021. A global database of COVID-19 vaccinations. *Nature human behaviour*, 5(7): 947–953.

Memon, S.; and Carley, K. 2020. Characterizing COVID-19 misinformation communities using a novel twitter dataset. In *CEUR Workshop Proc*.

Miyazaki, K.; Uchiba, T.; Tanaka, K.; and Sasahara, K. 2021. The Strategy Behind Anti-Vaxxers’ Reply Behavior on Social Media. arXiv:2105.10319.

Muir, G.; Wu, Y.; Ferrara, E.; et al. 2021. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies. *JMIR public health and surveillance*, 7(11): e30642.

Pacheco, D.; Hui, P.-M.; Torres-Lugo, C.; Truong, B. T.; Flammini, A.; and Menczer, F. 2021. Uncovering Coordinated Networks on Social Media: Methods and Case Studies. *Proceedings of the International AAAI Conference on Web and Social Media*, 15(1): 455–466.

Pierri, F.; Perry, B.; DeVerna, M. R.; Yang, K.-C.; Flammini, A.; Menczer, F.; and Bryden, J. 2021. The impact of online misinformation on US COVID-19 vaccinations. arXiv:2104.10635.

Sayyadharikandeh, M.; Varol, O.; Yang, K.-C.; Flammini, A.; and Menczer, F. 2020. Detection of novel social bots by ensembles of specialized classifiers. In *Proceedings of the 29th ACM international conference on information & knowledge management*, 2725–2732.

Sharevski, F.; Alsaadi, R.; Jachim, P.; and Pieroni, E. 2021. Misinformation Warning Labels: Twitter’s Soft Moderation Effects on COVID-19 Vaccine Belief Echoes. arXiv:2104.00779.

Sharma, K.; Seo, S.; Meng, C.; Rambhatla, S.; and Liu, Y. 2020. COVID-19 on social media: Analyzing misinformation in twitter conversations. arXiv:2003.12309.

Sharma, K.; Zhang, Y.; Ferrara, E.; and Liu, Y. 2021. Identifying Coordinated Accounts on Social Media through Hidden Influence and Group Behaviours. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, 1441–1451.

Wilson, S. L.; and Wiysonge, C. 2020. Social media and vaccine hesitancy. *BMJ Global Health*, 5(10): e004206.

Zhang, Y.; Sharma, K.; and Liu, Y. 2021. VigDet: Knowledge Informed Neuval Temporal Point Process for Coordination Detection on Social Media. *Advances in Neural Information Processing Systems*, 34.

Zimdars, M. 2016. False, Misleading, Clickbait-Y, and Satirical ‘News’ Sources. https://21stcenturywire.com/wp-content/uploads/2017/02/2017-DR-ZIMDARS-False-Misleading-Clickbait-y-and-Satirical-%E2%80%9CNews%E2%80%9D-Sources-Google-Docs.pdf. Accessed: 2019-07-06.