Associations of complement factor B and complement component 2 genotypes with subtypes of polypoidal choroidal vasculopathy

Koji Tanaka1, Tomohiro Nakayama2*, Ryusaburo Mori1, Naoyuki Sato2, Akiyuki Kawamura1 and Mitsuko Yuzawa1

Abstract

Background: We previously reported on subtypes of polypoidal choroidal vasculopathy (PCV), and categorized PCV as polypoidal choroidal neovascularization (CNV) and typical PCV. The aim of this study was to clarify whether complement component 2 (C2) and complement factor B (CFB) genotypes are associated with subtypes of polypoidal choroidal vasculopathy, such as polypoidal CNV and typical PCV.

Methods: First, we categorized 677 patients into typical age-related macular degeneration (tAMD; 250 patients), PCV (376) and retinal angiomatous proliferation (RAP; 51). Second, we categorized 282 patients with PCV as having polypoidal CNV (84 patients) or typical PCV (198) based on indocyanine green angiographic findings. In total, 274 subjects without AMD, such as PCV and CNV, served as controls. A SNP (rs547154) in the C2 gene and three SNPs (rs541862, rs2072633, rs4151667) in the CFB gene were genotyped, and case–control studies were performed in subjects with these PCV subtypes.

Results: In tAMD, no SNPs were associated with allele distributions. In PCV, rs547154 and rs2072633 were associated with allele distributions. RAP was only associated with rs2072633. After logistic regression analysis with adjustment for confounding factors, tAMD, PCV and RAP were found to be associated with rs2072633. As to PCV subtypes, there were significant differences in the distributions of rs547154, rs541862 and rs2072633 in the case–control studies for polypoidal CNV, but not between the typical PCV and control groups. Logistic regression analysis with adjustment for confounding factors showed the distributions of rs547154, rs541862 and rs2072633 to differ significantly between the controls and polypoidal CNV cases and that these SNPs were protective. The A/A genotype of rs2072633 was significantly more common in the polypoidal CNV than in the typical PCV group (p = 0.03), even with adjustment for polyp number and greatest linear dimension.

Conclusions: PCV might be genetically divisible into polypoidal CNV and typical PCV. The C2 and CFB gene variants were shown to be associated with polypoidal CNV. Typical PCV was not associated with variants in these genes.

Keywords: Subtypes of PCV, C2, CFB, Genetic variants

Background

Age-related macular degeneration (AMD) is a leading cause of blindness in Western countries and its prevalence is increasing in Japan [1]. AMD is thought to be a heterogeneous multifactorial disease associated with several environmental factors and genetic variants. Hypertension [2] and cigarette smoking [3] are closely related to the development of AMD. Identification of AMD susceptibility genes might increase our ability to predict the risk of developing this disease. Complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HTRA1) have been shown to be associated with AMD in both Japanese and Caucasian patients [4–7]. In addition, complement component 2(C2) and complement factor B (CFB) known as activators of alternative complement cascades are reportedly related to AMD in Caucasians [8]. Both were reported to be protective.

* Correspondence: nakayama.tomohiro@nihon-u.ac.jp
2Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
Full list of author information is available at the end of the article

© 2014 Tanaka et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
genes against AMD development [9,10]. Genetic studies of PCV have found no association between either C2 or CFB and PCV [11,12]. Nakata et al. reported that, in the Japanese population, C2 and CFB are associated with both PCV and typical AMD (tAMD) [13].

Polypoidal choroidal vasculopathy (PCV), characterized by a branching vascular network with polypoidal lesions detectable by indocyanine green angiography (IA) [14], is included among the forms of exudative AMD in Japan [15]. Our group previously reported on subtypes of PCV, and categorized PCV as polypoidal choroidal neovascularization (CNV) and PCV in the narrow sense (also referred to as typical PCV) [16]. In the first type, both feeder and draining vessels are visible on IA and network vessels are numerous. This type is thought to be the representative form of CNV beneath the retinal pigment epithelium. In the second group, neither feeder nor draining vessels are detectable and the number of network vessels is small. This type is thought to represent an abnormality of the choroidal vasculature based on hyaline arteriosclerosis [17]. We also showed that there are differences in these two types classified according to IA and optic coherence tomography findings [18]. Genetically, we demonstrated an association between the ARMS2 gene and these two types of PCV [19]. There was a significant ARMS2 gene difference in case–control studies of polypoidal CNV, but no difference between the typical PCV and control groups. This observation suggests that PCV might be genetically divisible into polypoidal CNV and typical PCV.

The possibility of dividing PCV into two types has been raised by other investigators. Okubo et al. reported that PCV can be divided into two types; the small-short and large-long types, but the clinical features in their report differed from those described by our group [20]. Miki et al. recently advocated dividing PCV into polypoidal lesions with a clear branching vascular network and polypoidal lesions without such a vascular network [21]. After classifying PCV into two types based on IA findings, we conducted ARMS2 and CFH genotyping for our patients. The results were highly consistent with our report showing typical PCV to be unrelated to the ARMS2 gene.

The present study aimed to investigate whether there is an association between the C2 or the CFB gene and any of the subtypes of PCV. To our knowledge, this is the first study to examine associations of the C2 and CFB genes with PCV subtypes.

Methods
Participants
Six hundred and seventy-seven patients diagnosed as having AMD at Nihon University Surugadai Hospital in Tokyo were enrolled in this study between 2008 and 2010 (472 men, 205 women; mean age 72.11 years). We then categorized AMD as tAMD, PCV and RAP based on IA and color photograph. (tAMD: 187 men, 63 women, PCV: 266 men, 110 women, RAP: 19 men, 32 women)

Furthermore, we also classified PCV patients into groups with two different types of PCV, polypoidal CNV and typical PCV. Two hundred and eighty-two (195 men, 87 women; mean age 70.0 ± 8.8 years) out of 376 patients were enrolled after classification based on whether or not both feeder and draining vessels were seen on IA (Figures 1 and 2). Due to unclear IA findings, we could not classify the remaining 94 patients. Eighty-four patients were diagnosed with polypoidal CNV, 198 with typical PCV. Polyp numbers and greatest linear dimension (GLD) were determined by IA at the first visit.

Information on hypertension, diabetes mellitus and smoking was obtained from medical histories collected for each patient. Smokers were defined as current or former smokers, whereas non-smokers were defined as subjects with no previous or current smoking history.

In total, 274 subjects free of AMD (110 men, 164 women; mean age 72.9 ± 7.4 years) served as controls. There were no remarkable findings on fundus examinations of the controls. Informed consent was obtained from each individual as per the protocol approved by the Human Studies Committee of Nihon University. This investigation was performed according to the guidelines of the Declaration of Helsinki.

Genotyping
DNA was extracted from peripheral blood leukocytes by the phenol and chloroform extraction method [22,23]. Genotyping was performed using the TaqMan® SNP Genotyping Assay (Applied Biosystems Inc. Foster City,
CA, USA). TaqMan® SNP Genotyping Assays were performed using the Taq amplification method [22,23].

We targeted C2 rs547154(IVS10), and CFB rs541862, rs2072633(IVS17) and rs4151667(H9L), all of which were identified as having positive associations with AMD in prior studies [11,13].

Plates were read on the SDS 7700 instrument with the end-point analysis mode of the SDS version 1.6.3 software package (Applied Biosystems). Genotypes were determined visually based on the dye-component fluorescent emission data depicted in the X-Y scatter-plot of the SDS software. Genotypes were also determined automatically by the signal processing algorithms of the software [22,23].

Statistical analysis

Data are shown as means ± SD. Differences between the PCV subtype and control groups were assessed by analysis of variance (ANOVA) followed by Fisher’s protected least significant difference test. Hardy-Weinberg equilibrium was assessed by chi-squared analysis. The overall distribution of alleles was analyzed using 2 × 2 contingency tables. The distribution of the genotypes between patient groups and controls was tested using a 2-sided Fisher’s exact test and multiple logistic regression analysis. After Bonferroni correction, statistical significance was set at p < 0.0125.

Based on the genotype data of the genetic variations, linkage disequilibrium (LD) analyses and a haplotype-based case–control study were carried out using the expectation maximization algorithm with the SNPAlyze software program ver3.2 (Dynacom, Yokohama, Japan). |D'| values > 0.5 were used to assign SNP locations to one haplotype block. The frequency distribution of occurrence of the haplotypes was calculated by χ² analyses.

Results

The clinical features of AMD patients and the control group are shown in Table 1. Distributions of genotypes and alleles are shown in Table 2. Four variants were in Hardy-Weinberg equilibrium in the control group (data not shown, p > 0.05). There were significant differences in PCV the allele distributions of rs547154 (C2 gene) and rs2072633 (CFB gene) between the PCV group and the controls. The RAP allele distribution of rs2072633 differed significantly between the RAP group and the controls. The tAMD group showed no difference from the controls.

The results of logistic regression analysis, with adjustment for confounding factors, including age, gender and risk factors, are shown in Table 3. This analysis was performed for the dominant or recessive genotype models showing significant results, as presented in

Table 1 Characteristics of study participants

	Case	Control							
	Total AMD	P vs. control	Typical AMD	P vs. control	PCV	P vs. control	RAP	P vs. control	
Subjects, n	677	250	376	51	274				
Male/female	472/205	<0.0001*	187/63	<0.0001*	266/110	<0.0001*	19/32	0.757	110/164
Age	72.1(±8.7)	0.157	73.6(±7.5)	0.289	70.0(±8.9)	<0.0001*	80.9(±6.8)	<0.0001*	72.9(±7.4)
HT	39%	0.308	41%	0.658	38%	0.226	41%	0.878	43%
DM	11%	<0.0001*	14%	0.079	9%	0.081	6%	0.016*	20%
Smoker	35%	<0.0001*	37%	<0.0001*	36%	<0.0001*	16%	0.84%	18%

*p-values reflect comparisons between each of the case groups and the control group, calculated using Fisher’s exact test.

p < 0.05.
Table 2 Genotype and allele distributions in AMD patients and control group

Genotype	Total AMD patients	tAMD	Total	PCV	RAP	Control						
	n	%	p-value	n	%	p-value	n	%	p-value	n	%	
rs547154	G/G	601	88.8%	0.024	221	88.4%	0.192	335	89.1%	0.053	45	88.2%
	T/G	74	10.9%		28	11.2%		40	10.6%		6	11.8%
	T/T	2	0.3%		1	0.4%		1	0.3%		0	0.0%
Dominant	G/G	601	88.8%	0.032	221	88.4%	0.132	335	89.1%	0.046	45	88.2%
	T/G	76	11.2%		29	11.6%		41	10.9%		6	11.8%
	T/T	2	0.3%		1	0.4%		1	0.3%		0	0.0%
Recessive	T/T	1276	94.2%	0.004*	470	94.0%	0.026	710	94.4%	0.005*	96	94.1%
Allele	G	1276	94.2%	0.004*	470	94.0%	0.026	710	94.4%	0.005*	96	94.1%
	T	78	5.8%		30	6.0%		42	5.6%		6	5.9%
rs541862	T/T	600	88.6%	0.054	221	88.4%	0.246	335	89.1%	0.078	44	86.3%
	T/C	75	11.1%		28	11.2%		40	10.6%		7	13.7%
	C/C	2	0.3%		1	0.4%		1	0.3%		0	0.0%
Dominant	T/T	600	88.6%	0.038	221	88.4%	0.132	335	89.1%	0.046	44	86.3%
	C/C	2	0.3%		1	0.4%		1	0.3%		0	0.0%
Recessive	T/T	675	99.7%		249	99.6%		375	99.7%	0.51	100	99.7%
Allele	T	1275	94.2%	0.025	470	94.0%	0.099	710	94.4%	0.027	95	93.1%
	C	79	5.8%		30	6.0%		42	5.6%		7	6.9%
rs2072633	G/G	653	96.5%	0.0024*	48	19.2%	0.120	61	16.2%	0.0026*	6	11.8%
	G/A	323	47.7%		120	48.0%		178	47.3%		25	49.0%
	A/A	239	35.3%		82	32.8%		137	36.4%		20	39.2%
Dominant	G/G	562	83.0%	0.0038*	48	19.2%	0.101	61	16.2%	0.0048*	6	11.8%
	G/A	239	35.3%		82	32.8%		137	36.4%	0.0045*	20	39.2%
	A/A	0	0.0%		0	0.0%		0	0.0%		0	0.0%
Recessive	A/A	438	64.7%	0.0051*	82	32.8%	0.083	137	36.4%	0.0045*	20	39.2%
Allele	G	553	40.8%	0.0005*	216	43.2%	0.037	300	39.9%	0.0005*	37	36.3%
	A	801	59.2%		284	56.8%		452	60.1%		65	63.7%
rs4151667	T/T	653	96.5%	0.036	241	96.4%	0.514	363	96.5%	0.412	49	96.1%
	A/T	24	3.5%		9	3.6%		13	3.5%		2	3.9%
	A/A	0	0.0%		0	0.0%		0	0.0%		0	0.0%
Dominant	T/T	653	96.5%	0.049	241	96.4%	0.664	363	96.5%	0.424	49	96.1%
	AT + AA	24	3.5%		9	3.6%		13	3.5%		2	3.9%
Recessive model	A/A	0	0.0%	-	0	0.0%	-	0	0.0%	-	0	0.0%
-----------------	-----	----	------	----	----	------	----	----	------	----	----	------
AT + TT	677	100.0%	250	100.0%	376	100.0%	51	100.0%	274	100.0%		
Allele												
T	1330	98.2%	491	98.2%	739	98.3%	100	98.0%	535	97.6%		
A	24	1.8%	9	1.8%	13	1.7%	2	2.0%	13	2.4%		

AMD; age related macular degeneration tAMD; typical age related macular degeneration PCV; polypoidal choroidal vasculopathy RAP; retinal angiomatous proliferation.

P-values are for the comparison between cases and controls.

P-values for genotypes were calculated by Fisher’s exact test. (after Bonferroni correction *p < 0.0125).
Table 3 Logistic regression analysis with adjustment for confounding factors

	Total AMD patients			
	OR 95% CI	p-value vs. control (Bonferroni correction)	OR 95% CI	p-value vs. control (Bonferroni correction)
rs547154				
dominant model	0.044*	0.176	0.62	0.39-0.99
recessive model	0.051	0.204	0.159	0.636
rs541862				
dominant model	0.049*	0.196	0.63	0.39-0.99
recessive model	0.133	0.532	0.232	0.928
rs2072633				
dominant model	0.0003*	0.001**	0.49	0.33-0.73
recessive model	0.031*	0.124	0.68	0.48-0.97
rs4151667				
dominant model	0.273	1	0.952	1
recessive model				

Logistic regression analysis was performed for each genotype with adjustment for confounding factors (age, gender, hypertension, diabetes mellitus and smoking).

PCV; polypoidal choroidal vasculopathy.
OR; odds ratios CI; confidence intervals.
p-values are for the comparisons between cases and controls.
p-values for genotypes were calculated using Fisher’s exact test. *p < 0.05.
Bonferroni correction was performed for each of the genotypes. **p < 0.05.
Blanks indicate that there were no significant differences.
Table 2. Susceptibility genotypes were those with high frequencies in patient groups in case–control studies. The rs2072633 distribution of the controls differed significantly from those of the tAMD, PCV and RAP groups. After Bonferroni correction, only PCV showed significant difference in this SNP.

The clinical features of PCV patients and the control group are shown in Table 4. There were significant differences in polyp numbers and GLD, both of which were greater in polypoidal CNV group.

Distributions of genotypes and alleles of the four variants are shown in Table 5. Four variants were in Hardy-Weinberg equilibrium in the control group (data not shown, p > 0.05). There were significant differences in all genotype models and allele distributions of rs547154 (C2 gene), rs541862 and rs2072633 (CFB gene), but not rs4151667, between the polypoidal CNV group and the controls. However, there were no significant differences in any genotype model or allele distribution for any of the SNPs between the typical PCV and control groups.

The results of logistic regression analysis, with adjustment for confounding factors, including age, gender and risk factors, are shown in Tables 6 and 7. This analysis was performed for the dominant or recessive genotype models showing significant results, as presented in Table 5. Susceptibility genotypes were those with high frequencies in patient groups in case–control studies. The distributions of rs541862, rs547154 and rs2072633 differed significantly between the controls and the polypoidal CNV group. After Bonferroni correction, the distribution of rs2072633 remained significant only for polypoidal CNV, i.e. not for typical PCV. Logistic regression analysis was also performed to compare the polypoidal CNV and typical PCV groups. The only significant difference, after adjusting for confounding factors such as polyp numbers and GLD, was in rs2072633. After Bonferroni correction, no significant difference remained.

LD was assessed for three SNPs in CFB, and the distribution of estimated haplotype frequencies is shown in Tables 8 and 9. The T-A-T(rs541862-rs2072633-rs4151667) and C-G-T haplotypes both showed strong associations in the polypoidal CNV, typical PCV and control groups. Furthermore, the T-A-A haplotype differed significantly between polypoidal CNV and typical PCV.

Discussion

ARMS2 genes, especially the rs10490924 of CFH and rs1061170, are both known as PCV susceptibility genes [24,25]. On the other hand, our group previously reported that typical PCV did not correlate significantly with rs10490924 [19]. This result raised the possibility of two distinct genetic types of PCV. In the present study, the C2 gene and the CFB gene were also found to be associated with polypoidal CNV, in terms of both genotypes and allele distributions. No associations with typical PCV were detected. These results indicate the C2 and CFB genes to also be associated with PCV subtypes. Our group recently reported typical PCV to have the features of abnormal choroidal vessels and that polypoidal CNV also has features of neovascularization. The differences between tAMD and polypoidal CNV were that the latter had polypoidal lesion detectable by IA, while tAMD had no polypoidal lesion. Furthermore, polypoidal CNV is characterized by a larger GLD and more polyps than typical PCV [18]. As polypoidal CNV has neovascularization features, the ARMS2 gene might be highly associated with neovascularization. Though there are reports describing rs4151667 as being associated with AMD, the minor allele homozygous frequency was very low in all of these reports [9,10]. In this

Table 4 Characteristics of PCV participants

	Case					Control		
	Total PCV	P vs. control	Polypoidal CNV	P vs. control	P vs. typical PCV	Typical PCV	P vs. control	
Subjects, n	282	84				198	274	
Male/female	195/87	<0.0001*	63/21	<0.0001*	0.205	132/66	<0.0001*	110/164
Age(±SD)	70.0(±8.7)	<0.0001*	68.8(±8.9)	<0.0001*	0.130	70.5(±8.7)	<0.0001*	72.9(±7.4)
Hypertension	39%	0.390	38%	0.45	0.792	40%	0.509	43%
Diabetes	9%	<0.0001*	10%	0.032*	0.649	8%	<0.0001*	20%
Smoking	33%	<0.0001*	37%	<0.0001*	0.406	31%	0.001*	18%
Number of polyps	-	4.17		<0.0001*	1.95	-	-	-
GLD, mm	-	3.78		<0.0001*	2.78	-	-	-

p-values reflect comparisons between each of the case groups and the control group, calculated using Fisher’s exact test *p < 0.05.

PCV; polypoidal choroidal vasculopathy CNV; choroidal neovascularization GLD; greatest linear dimension SD; standard deviation.
In the present study, we showed rs2072633 to be significantly associated with PCV. This result indicates the

Table 5 Genotype and allele distributions in PCV patients and control group

Genotype	Total PCV patients	Polypoidal CNV	Typical PCV	Control										
	Number	%	p-value	Number	%	p-value	Number	%						
rs547154														
G/G	255	90.4%		80	95%	0.0400	175	88%	229	84%				
T/G	26	9.2%	0.168	4	5%	0.023	22	11%	0.276	41	15%			
T/T	1	0.4%		0	0%		1	1%	4	1%				
Dominant	G/G	255	90.4%	0.016	80	95%	0.007*	175	88%	229	84%			
T/G	27	9.6%		4	5%		23	12%	45	16%				
Recessive	T/T	1	0.4%	0.168	0	0%	0.265	1	1%	0.317	4	1%		
Allele	G	536	95.0%	0.009*	164	98%	0.004*	372	94%	499	91%			
	T	28	5.0%		4	2%		24	6%	49	9%			
rs541862														
T/T	255	90.4%		80	95%	0.049	22	11%	0.318	42	15%			
T/C	26	9.2%	0.168	4	5%	0.023	23	12%	45	16%				
C/C	1	0.4%		0	0%		1	1%	3	1%				
Dominant	T/T	255	90.4%	0.016	80	95%	0.007*	175	88%	229	84%			
T/C	27	9.6%		4	5%		23	12%	45	16%				
Recessive	T/C	1	0.4%	0.302	0	0%	0.336	1	1%	0.490	3	1%		
Allele	T	536	95.0%	0.013	164	98%	0.004*	372	94%	500	91%			
	C	28	5.0%		4	2%		24	6%	48	9%			
rs2072633														
G/G	50	17.7%		13	15%		37	19%	69	25%				
G/A	131	46.5%	0.017	34	40%	0.005*	97	49%	134	49%				
A/A	101	35.8%		37	44%		64	32%	71	26%				
Dominant	G/G	50	17.7%	0.032	13	15%	0.064	37	19%	69	25%			
G/A	232	82.3%		71	85%		161	81%	205	75%				
GA + AA	101	35.8%	0.012*	37	44%	0.002*	64	32%	71	26%				
Recessive	A/A	181	64.2%		47	56%		134	68%	203	74%			
Allele	G	231	41.0%	0.004*	60	36%	0.002*	171	43%	272	50%			
	A	333	59.0%		108	64%		225	57%	276	50%			
rs4151667														
T/T	273	96.8%		81	96%	0.348	3	4%	0.649	6	3%	0.350	13	5%
A/T	9	3.2%	0.000	3	4%	0.649	6	3%	0.350	13	5%			
A/A	0	0.0%		0	0%		0	0%	0	0%				
Dominant	T/T	273	96.8%	0.348	81	96%	0.649	192	97%	0.350	261	95%		
A/T	9	3.2%		3	4%		6	3%	0.350	13	5%			
A/A	0	0.0%		0	0%		0	0%	0	0%				
Recessive	T/T	282	100.0%		84	100%		198	100%	274	100%			
A/T	282	100.0%	0.000	84	100%	0.775	390	98%	0.482	535	98%			
A/A	0	0.0%		0	0%		0	0%	0	0%				
Allele	T	555	98.4%	0.394	165	98%	0.775	390	98%	0.482	535	98%		
	A	9	1.6%		3	2%		6	2%	13	2%			

PCV: polypoidal choroidal vasculopathy. CNV: choroidal neovascularization.

*p-values for genotypes were calculated by Fisher’s exact test. (after Bonferroni correction *p < 0.0125).
Table 6 Logistic regression analysis between cases and controls

	Total PCV patients	Polypoidal CNV	Typical PCV		
	p-value vs. control (Bonferroni correction)	OR 95% CI	p-value vs. Control (Bonferroni correction)	OR 95% CI	
rs547154	dominant model	0.018*	0.072 0.48 0.26-0.89	0.014*	0.056 0.22 0.05-0.86
	recessive model	0.217	0.868 0.097 0.388	0.009	0.131 0.524 0.05-0.87
rs541862	dominant model	0.023*	0.092 0.49 0.26-0.91	0.015*	0.060 0.22 0.05-0.87
	recessive model	0.417	1 0.131 0.524	1.000	0.646 1.000 0.05-0.87
rs2072633	dominant model	0.012*	0.048** 0.52 0.32-0.87	0.104	0.416 0.037* 0.148 0.55 0.32-0.96
	recessive model	0.035*	0.140 0.63 0.41-0.96	0.009*	0.036** 0.40 0.20-0.79
rs4151667	dominant model	0.326	1 0.984 1	0.211 0.844	
	recessive model	-	-	-	-

Logistic regression analysis was performed for each genotype with adjustment for confounding factors (age, gender, hypertension, diabetes mellitus and smoking).

PCV; polypoidal choroidal vasculopathy.

OR; odds ratios CI; confidence intervals.

p-values are for comparisons between cases and controls.

p-values for genotypes were calculated using Fisher's exact test. *p < 0.05.

Bonferroni correction was performed for each of the genotypes. **p < 0.05.

Blanks indicate that there were no significant differences.
CFB genes to be associated with PCV. Before Bonferroni correction, tAMD was also associated with rs547154 and rs2072633. We previously reported that polypoidal CNV resembles tAMD, while typical PCV clearly differs from CNV. Though not significant after Bonferroni correction, given the prior reports dividing PCV into two types, we can reasonably speculate that the C2 and CFB genes might be related to tAMD and polypoidal CNV but not to typical PCV. The present C2 and CFB gene results also are not inconsistent with this possibility. Since typical PCV was not associated with any of the SNPs tested, we can also speculate that typical PCV might differ genetically from AMD.

C2 and CFB functioned as activators of the complement cascade. CFB is localized to the choroidal vasculature and Bruch’s membrane [26]. Smailhodzic et al. reported AMD patients to show increased alternative pathway activation and elevated CFB levels [27]. Scholl et al. also showed plasma CFB to be significantly elevated in AMD patients [28]. For these reasons, AMD might be related to CFB.

Recently, Liu et al. reported the C2-CFB-RDBP-SKIV2L region of SNPs to be associated only with tAMD, not with PCV. They concluded that the mechanisms underlying the development of tAMD and PCV might be different [29]. Nakashizuka et al. reported histopathological characteristics of PCV [17]. In their report, areas of PCV showed little fibrosis or granulation as compared to those with CNV. This might indicate that typical PCV involves less inflammation than CNV. Since polyoidal CNV has AMD features, C2 and CFB might be related only to polypoidal CNV.

The results presented in Table 8 show that three of the SNPs in CFB were in LD block. Haplotypes T-A-T and T-G-T differed significantly between the PCV and control groups. Furthermore, T-A-T would confer a risk for PCV, while T-G-T would be protective against PCV development. We could reasonably draw the same conclusion for haplotypes C-A-T and C-G-T. These results indicate that rs2072633 might be one of the key SNPs favoring PCV development.

There has been controversy regarding the division of PCV into two subtypes. Tsujikawa et al. reported that if there is risk associated with being homozygous for the ARMS2 gene, it would be the larger GLD in PCV [30]. Their report described two types of PCV, with larger GLD and smaller GLD. The aforementioned report by Miki and colleagues presented results very similar to ours, indicating the ARMS2 gene to have no association with typical PCV [21]. These two reports also support the assumption that the ARMS2 gene is unrelated to PCV [17,18]. While IA findings of polypoidal CNV appeared to be consistent with CNV, the histopathological and IA features of typical PCV showed choroidal vasculature abnormalities. These observations suggested polyoidal CNV to be genetically and histopathologically close to tAMD, a representative form of CNV. Furthermore, typical PCV showed no association with CNV.
The small sample size with only one genotype is the major limitation of this study. Further study is clearly needed.

Conclusion
The present study is the first to examine the associations between variants in the C2 and CFB genes and PCV subtypes. We found the C2 and CFB genes to possibly be genetic markers for polypoidal CNV. Furthermore, these variants showed no associations with typical PCV. These results suggest polypoidal CNV to have a genetic background different from that of typical PCV. Further studies are needed to examine the effects of various treatments on PCV subtypes.

Abbreviations
PCV: Polypoidal choroidal vasculopathy; CNV: Choroidal neovascularization; C2: Complement component 2; CFB: Complement factor B; AMD: Age-related macular degeneration; CFH: Complement factor H; ARMS2: Age-related maculopathy susceptibility 2; HTRA1: High-temperature requirement factor A1; TMD: Typical AMD; IA: Indocyanine green angiography; GLD: Greatest linear dimension.

Competing interests
The authors have no competing interests to declare.

Authors’ contributions
KT, TN and MY participated in the design of this study. KT and NS participated in the laboratory work. RM and AK were responsible for participants’ enrollment. KT performed the statistical analysis and wrote the draft manuscript. All authors read and approved the final manuscript.

Acknowledgments
We would like to thank all patients who participated in this study. This work was funded in part by the Research Committee on Chorioretinal Degenerations and Optic Atrophy, and by The Ministry of Health and Welfare of Japan (Mitsuko Yuzawa).

Author details
1Department of Ophthalmology, Nihon University School of Medicine, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8309, Japan. 2Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.

Received: 10 March 2014 Accepted: 9 June 2014
Published: 25 June 2014

Table 9 Haplotype association analysis in cases and controls

Polypoidal CNV vs. control	Haplotypes	rs541862	rs2072633	rs4151667	%	Polypoidal CNV	Control	Chi-Squ	p-value
T A T	rs541862	rs2072633	rs4151667	63%	42%	22.177	<0.0001*		
C A T	rs541862	rs2072633	rs4151667	0%	9%	14.9366	0.0001*		
T G T	rs541862	rs2072633	rs4151667	35%	47%	7.9166	0.0049*		
C G T	rs541862	rs2072633	rs4151667	2%	0%	13.5581	0.0002*		
T G A	rs541862	rs2072633	rs4151667	0%	2%	3.9293	0.0475*		

Typical PCV vs. control	Haplotypes	rs541862	rs2072633	rs4151667	%	Typical PCV	Control	Chi-Square	p-value
T A T	rs541862	rs2072633	rs4151667	57%	42%	20.5614	<0.0001*		
C A T	rs541862	rs2072633	rs4151667	0%	9%	34.8144	<0.0001*		
T G T	rs541862	rs2072633	rs4151667	37%	47%	9.3704	0.0022*		
C G T	rs541862	rs2072633	rs4151667	6%	0%	33.5324	<0.0001*		

Polypoidal CNV vs. typical PCV	Haplotypes	rs541862	rs2072633	rs4151667	%	Typical PCV	Polypoidal CNV	Chi-Squ	p-value
T A T	rs541862	rs2072633	rs4151667	57%	63%	1.5687	0.2104		
C A T	rs541862	rs2072633	rs4151667	0%	0%	0	1		
T G T	rs541862	rs2072633	rs4151667	36%	33%	0.3302	0.5656		
C G T	rs541862	rs2072633	rs4151667	6%	2%	3.0395	0.0813		
T A A	rs541862	rs2072633	rs4151667	0%	2%	7.1092	0.0077*		
C A A	rs541862	rs2072633	rs4151667	0%	0%	0	1		
T G A	rs541862	rs2072633	rs4151667	1%	0%	2.1402	0.1435		
C G A	rs541862	rs2072633	rs4151667	0%	0%	0	1		

*p-value > 0.05 calculated by chi-square analysis.
References

1. Yasuda M, Kyohara Y, Hata Y, Arakawa S, Yonomoto K, Doi Y, Iida M, Ishibashi T: Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population: the Hisayama study. Ophthalmology 2009, 116:2135–2140. PubMed.

2. Sperduto RD, Hiller R: Systemic hypertension and age-related maculopathy in the Framingham Study. Arch Ophthalmol 1986, 104:215–219. PubMed.

3. Klein R, Klein BE, Linton KL, DeMets DL: Second major susceptibility gene for age-related macular degeneration. Science 2006, 308:385–389. PubMed.

4. Sperduto RD, Hiller R: Systemic hypertension and age-related maculopathy. Invest Ophthalmol Vis Sci 2008, 49:4729–4737. PubMed.

5. Matsumoto M, Nakashizuka H, Hirakawa M, Sameshima M, Sakamoto T, Okubo A, Takagi Y, Ito M, Saito N: Clinical features of early and late stage polygonal choroidal vasculopathy characterized by lesion size and disease duration. Graefes Arch Clin Exp Ophthalmol 2008, 246:491–499. PubMed.

6. Mikita A, Honda S, Kondo N, Negi A: The association of age-related maculopathy susceptibility 2 (ARMS2) and complement factor H (CFH) variants with two angiographic subtypes of polygonal choroidal vasculopathy. Ophthalmic Genet 2013, 34:146–150. PubMed.

7. Kawasaki H, Nakanishi H, Hayashi H, Yamauchi A, Katsura K, Nakamura A, Otani A, Tsujikawa A, Yamashiro K, Tamura H, Saito M, Iida T, Matsuo F, Yoshimura N: ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polygonal choroidal vasculopathy. Am J Ophthalmol 2009, 147:1037–1041. PubMed.

8. Matsumoto M, Nakashizuka H, Hirakawa M, Sameshima M, Sakamoto T, Okubo A, Takagi Y, Ito M, Saito N: Clinical features of early and late stage polygonal choroidal vasculopathy characterized by lesion size and disease duration. Graefes Arch Clin Exp Ophthalmol 2008, 246:491–499. PubMed.

9. Mikita A, Honda S, Kondo N, Negi A: The association of age-related maculopathy susceptibility 2 (ARMS2) and complement factor H (CFH) variants with two angiographic subtypes of polygonal choroidal vasculopathy. Ophthalmic Genet 2013, 34:146–150. PubMed.

10. Kawasaki H, Nakanishi H, Hayashi H, Yamauchi A, Katsura K, Nakamura A, Otani A, Tsujikawa A, Yamashiro K, Tamura H, Saito M, Iida T, Matsuo F, Yoshimura N: ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polygonal choroidal vasculopathy. Am J Ophthalmol 2009, 147:1037–1041. PubMed.

Cite this article as: Tanaka et al.: Associations of complement factor B and complement component 2 genes with subtypes of polygonal choroidal vasculopathy. BMC Ophthalmology 2014 14:83.