Abstract. In this article we study combinatorial non-positive curvature aspects of various simplicial complexes with natural $A_n$ shaped simplicies, including Euclidean buildings of type $A_n$ and Cayley graphs of Garside groups and their quotients by the Garside elements. All these examples fit into the more general setting of lattices with order-increasing $Z$-actions and the associated lattice quotients proposed in a previous work by the first named author. We show that both the lattice quotients and the lattices themselves give rise to weakly modular graphs, which is a form of combinatorial non-positive curvature. We also show that several other objects fit into this setting of lattices/lattice quotients, including Artin complexes of Artin-Tits groups of type $A_n$, a class of arc complexes and weak Garside groups arising from a categorical Garside structure in the sense of Bessis. Hence our result also implies to these objects and shows that they give weakly modular graphs. Along the way, we also clarify the relationship between categorical Garside structures, lattices with $Z$ action and different classes of complexes studied this article. We use this point of view to describe the first examples of Garside groups with exotic properties, like non-linearity or rigidity results.

The authors would like to acknowledge the very deep influence of Jacques Tits in many topics relating algebra and geometry, notably buildings and Artin-Tits groups, which are both at the core of this article.

The topic of combinatorial non-positive curvature (CNPC) lies in the intersection of metric graph theory and geometric group theory. We refer to [CCHO21] for a detailed discussion of the context and motivation for CNPC. The basic idea is to identify local combinatorial patterns of graphs or complexes that lead to standard consequences of non-positive curvature, e.g. propagation of these combinatorial patterns from local to global in the spirit of the classical Cartan-Hadamard theorem, control of isoperimetric inequalities, existence of nice combings, fixed point properties, asphericity etc. Pioneering examples of CNPC include small cancellation theory, Gromov’s flagness condition [Gro87], and systolic complexes [JS96]. For a group, being able to act on graphs or complexes that satisfy some form of CNPC usually has strong implications on the structure of this group. Thus it is of great interest to construct such actions - there are many works in this direction, and we simply mention a few which are closely related to this article [Bes99, HO20, HO19, CCG+20, Mun19, Hac20, CMV20, Hae21a, Hae21b, Soe21, Blu21, HO21].

*Thomas Haettel, IMAG, Univ Montpellier, CNRS, France, and IRL 3457, CRM-CNRS, Université de Montréal, Canada.
†Jingyin Huang, Department of Mathematics, The Ohio State University, 100 Math Tower, 231 W 18th Ave, Columbus, OH 43210, U.S.

Keywords : Buildings, Artin-Tits groups, Garside groups, nonpositive curvature, weakly modular graphs. AMS codes : 20E42, 20F36, 20F55, 05B35, 06A12, 20F65, 05C25
There is a strong connection between affine Coxeter groups and forms of CNPC. Each such Coxeter group gives a Euclidean polyhedron which is the fundamental domain of the action of this group on the associated Euclidean space. Then one can try to build more complicated spaces using such Euclidean polyhedra, and ask whether there is a specific local combinatorial pattern of assembling these Euclidean polyhedrons such that the resulting space is non-positively curved in some sense. For example, systolic complexes and bridged graphs [Che00, JS06] describe a form of CNPC for spaces made of equilateral triangles; CAT(0) cube complexes and median graphs describe another form of CNPC for spaces made of unit cubes, quasi-medians graphs and bucolic complexes can be viewed as forms of CNPC for spaces made with prisms [BCC+13, Gen17], and CNPC of spaces made of orthoschemes is closely related to swim-graphs [CCHO21] and Helly graphs [Hae21b]. This raises two questions. First, whether there is a form of CNPC which is a common generalization of all these notions, hence can be applied to spaces made of mixed types of shapes. Second, whether each affine Coxeter group hints at a particular form of CNPC, which is applicable to complexes built with fundamental domains of such Coxeter group. This question is already unknown for Coxeter groups of type $A_n$ with $n \geq 3$, which partially motivates this article.

Attempting to answer the first question leads to the notion of weakly modular graph. This notion, initially introduced in [Che89, BC96], demands metric balls in the graph satisfy a weak form of convexity (see Section 1.2 for a detailed definition). It is a common generalization of bridged graphs, median graphs and Helly graphs mentioned in the previous paragraph, and serves as a mother notion to study its various sub-classes in [CCHO21]. Though it is widely open whether weak modularity is compatible with other Coxeter shapes. Notable features of weakly modular graphs are that they enjoy a local-to-global characterization, and that they admit Euclidean isoperimetric inequalities.

Back to the $\tilde{A}_n$ case of the second question with $n \geq 3$, as an initial step, it is shown by Munro [Mun19] that while the 1-skeleton of the Coxeter complex of type $A_n$ fails most form of CNPC, it does satisfy weak modularity. He also proved that the 1-skeleton of a 3-dimensional Euclidean building is weakly modular, though the high dimensional case remains open. In this article we prove weak modularity for a much wider class of simplicial complexes with $\tilde{A}_n$ simplices, including the higher dimensional $\tilde{A}_n$ buildings.

It turns out that many simplicial complexes may be endowed with natural $\tilde{A}_n$ simplices, notably $\tilde{A}_n$ Euclidean buildings, the Artin complex of the Artin-Tits group of type $A_n$, and quotients of Garside groups. One common feature in all these examples is that the complex in question may be realized as the quotient of a (poset-theoretic) lattice under an action by $Z$, as in [Hae21b] and [Hae21a]. The geometry of the corresponding lattice can be turned into a Helly graph by thickening, i.e. adding extra edges. However, there are no results about the original simplicial complex, i.e. the quotient of the lattice.

For instance, Hoda [Hod20] proved that affine Coxeter groups of type $\tilde{A}_n$ are not Helly, and Haettel [Hae21a] proved that if $n \geq 4$, then Euclidean buildings of type $\tilde{A}_n$, even after equivariant thickening, are not Helly graphs.

In this article, we prove the following.

**Theorem A.** (Theorem 5.1) The 1-skeleton of any Euclidean building of type $\tilde{A}_n$ is a weakly modular graph.

This theorem, as well as several other theorems below is a consequence of more general theorems on weak modularity of graphs coming from lattices with increasing $Z$-action and the associated quotients, see Theorem 2.1 and Theorem 3.1. We also note that the 1-skeletons considered in the above theorem also satisfy a stronger version of weak modular graph, as discussed in the end of Section 2.

On the other hand, the affine Coxeter complexes of type $\tilde{C}_2$ and $\tilde{G}_2$ are not weakly modular. Nevertheless, up to equivariantly adding edges, they become weakly modular.
Concerning more general buildings, we formulate the following.

**Conjecture B.** Any building has an equivariant thickening which is a weakly modular graph.

To be precise, we say that a graph $\Gamma$ is an equivariant thickening of a Euclidean building $X$ if $\Gamma$ contains $X$ as a subgraph, $X$ is quasi-isometric to $\Gamma$, and the automorphism group of $X$ extends as an automorphism group of $\Gamma$. This is motivated by the following particular cases.

**Theorem C.** *(Theorem 5.5)* Conjecture B holds for the following buildings:

- Any spherical building.
- Any Euclidean building of type $\tilde{A}_n, \tilde{B}_n, \tilde{C}_n, \tilde{D}_n$ or $\tilde{G}_2$.
- Any right-angled building.
- Any rank 3 building.
- Any Gromov-hyperbolic building.

We are also able to apply the same techniques to various classes of groups and complexes, first with Garside groups and weak Garside groups. Garside structures are essentially structures which locally look like a lattice, see Section 4 for precise definitions.

**Theorem D.** *(Theorem 5.7)* Let $(G, \Delta, S)$ denote a (weak) Garside group. Then $\text{Cay}(G, S)$, and its quotient by $\langle \Delta \rangle$, are weakly modular graphs.

This applies notably to finite type Garside groups, such as braid groups and spherical type Artin-Tits groups. Recall that Artin-Tits groups, defined by Tits in [Tit60], are natural generalizations of Coxeter groups and braid groups (see Section 1.1). In this case of braid groups, one statement of the theorem is that the Cayley graph of braid groups with respect to simple braids is weakly modular. This also applies to infinite type Garside groups, such as braid crystallographic groups [AMi07], some Euclidean type Artin-Tits groups [Dig06, Dig12, McC15], and some braid groups of imprimitive complex reflection groups [CLL15]. Among weak Garside groups of finite types, one has all braid groups of complex reflection groups [BC06, Bes15, CP11] except possibly the exceptional complex braid group of type $G_{31}$, all fundamental groups of complements of complexified real simplicial arrangements of hyperplane [Del72], and some extensions of Artin-Tits groups of type $B_n$ [CP05].

The techniques also apply to some Artin complexes. Recall that Artin-Tits groups have a natural candidate analogue of the curve complex known as the Artin complex, see [CD95, CMV20]. It is the flag simplicial complex with vertices being cosets of maximal proper standard parabolic subgroups, with an edge for non-trivial intersection. In the case of Euclidean type Artin-Tits groups, the Artin complex is closely related to the Deligne complex.

**Theorem E.** *(Theorem 5.8)* Let $A$ denote the Artin-Tits group of Euclidean type $\tilde{A}_n$, and let $X$ denote the Artin complex of $A$. Then $X$ is a weakly modular graph.

We observe the Artin complex of the Artin-Tits group of Euclidean type $\tilde{A}_n$ has a topological interpretation as the complex of a certain collection of arcs in a surface (cf. Proposition 5.10). Thus we give two treatments of Theorem 5.8, one is more on the Artin-Tits group side, the other uses surface topology and factors through the following theorem.
**Theorem F.** *(Theorem 5.9)* Let \( n \geq 0 \), and let \( \Sigma \) be the 2-sphere with \( n + 2 \) punctures \( N, S, p_1, \ldots, p_n \). Let \( A(\Sigma) \) denote the subcomplex of the arc complex consisting of arcs between \( N \) and \( S \). Then \( A(\Sigma) \) is a weakly modular graph.

The key objects in this article are lattices. In some applications, the corresponding lattice will be transparent: the lattice of norms in the case of \( A_n \) buildings, and the lattice of a Garside group. In some other examples, the lattice will be revealed through a mere local lattice property, as in the case of Artin complexes and arc complexes. To this end, we also reformulate work of Bessis into a simple local-to-global property for lattices, in the framework of Garside categories (see Section 1.3 for definitions).

**Theorem G.** *(Theorem 1.3)* Suppose \( (P, \leq) \) is a homogeneous weakly ordered set. If there exists an automorphism \( \varphi : P \to P \) which generates \( \leq \) such that

1. \( \varphi(x) > x \) for any \( x \in P \);
2. \( X_\varphi \) is simply connected;
3. \( [x, \varphi(x)] \) is a lattice for any \( x \in P \).

Then \( \leq \) generates a partial order \( \leq_t \) on \( P \), and \( (P_{\geq_t x}, \leq_t) \) and \( (P_{\leq_t x}, \leq_t) \) are lattices for any \( x \in P \).

Interestingly, the framework of Garside categories in Bessis [Bes06] and the framework of lattices with \( \mathbb{Z} \)-action in Haettel [Hae21b] have many connections. Actually the former is a special case of the latter in an appropriate sense, and the latter contains a “continuous” version of the former (see the example and remark after Theorem 5.2). To this end, we record the following theorem, which gives a dictionary between different settings, under appropriate assumptions. See Section 4.3 for precise definitions for terms in the following theorem. We hope this dictionary will help more geometric group theorists get interested in Garside groups.

**Theorem H.** *(Theorem 4.7)* The following objects are equivalent:

- A categorical Garside structure.
- A Garside lattice.
- A Garside flag complex.

Note that, as most examples of Garside groups came from braid groups, the following questions were asked (see [Deh15, Question 2], [CW17b, CW17a]):

**Question.** Are Garside groups linear? Do Garside groups act on Gromov-hyperbolic spaces?

We use our framework to promote lattices in triangular buildings into Garside groups with exotic properties. This is one of the first and simplest evidence that affine buildings are closely related to Garside theory. In particular, we answer the previous questions by the negative, in the following way.

**Theorem I.** *(Corollary 5.4)* There exists a non-linear Garside group \( G_1 \).

There exists a Garside group \( G_2 \) without any non-trivial action on a Gromov-hyperbolic space. Moreover, any normal subgroup of \( G_2 \) is either finite, or has virtually cyclic quotient.

In addition, for each of these Garside groups \( G_i \), the central quotient \( G_i/\mathbb{Z}(G_i) \) has Lafforgue’s strong Property (T).
Note that, for the Garside group $G_2$, the hyperbolic space constructed by Calvez and West in [CW17b], called the additional length complex, has finite diameter.

Acknowledgements: The authors thank warmly to the anomalous referee for a very careful reading of the article and many helpful comments. The authors would like to thank Andrew Putman for precise references concerning the arc complex on the punctured sphere. The authors would also like to thank Owen Garnier and Ivan Marin for many precisions concerning complex braid groups. The authors thank Anthony Genevois for many helpful comments. The authors thank Damian Osajda for stimulating discussions. The authors thank Sami Douba and Jean Lécureux for discussions on buildings.

Contents

1 Preliminary

1.1 Artin-Tits groups and Coxeter groups ................................................. 5
1.2 Weakly modular graphs and local to global ............................................. 6
1.3 Posets, Lattices and local to global .................................................. 6

2 The diagonal quotient of a lattice is weakly modular ................................. 8

3 A lattice with a diagonal action is weakly modular ..................................... 10

4 Garside categories, Garside lattices and Garside flag complexes ................. 13

4.1 Definition of Garside category and an example ....................................... 13
4.2 From Garside category to Garside lattice ............................................ 15
4.3 Garside categories, Garside lattices and Garside flag complexes ............... 16

5 Applications ......................................................................................... 19

5.1 Euclidean buildings ............................................................................ 19
5.2 Exotic Garside groups ....................................................................... 20
5.3 Weakly modular thickenings of buildings ............................................. 21
5.4 Weak Garside groups ....................................................................... 21
5.5 Artin complexes ............................................................................ 22
5.6 Arc complexes ............................................................................. 22

References .............................................................................................. 25

1 Preliminary

1.1 Artin-Tits groups and Coxeter groups

Let $\Gamma$ be a finite simple graph with each edge labeled by an integer $\geq 2$. The Artin-Tits group with defining graph $\Gamma$, also known as Artin group, denoted $A_\Gamma$, is given by the following presentation. Generators of $A_\Gamma$ are in one to one correspondence with vertices of $\Gamma$, and there is a relation of the form

$$aba\ldots = bab\ldots$$

whenever two vertices $a$ and $b$ are connected by an edge labeled by $m$. The Coxeter group with defining graph $\Gamma$, denoted $W_\Gamma$, has the same generator sets and the same relators as the Artin-Tits group, with extra relations $v^2 = 1$ for each vertex $v \in \Gamma$.

An Artin group is spherical, if the associated Coxeter group is finite. A standard parabolic subgroup of $A_\Gamma$ is a subgroup generated by a subset of the vertices of $\Gamma$. Each
standard parabolic subgroup is an Artin group as well [Val83]. A parabolic subgroup is a conjugate of a standard parabolic subgroup.

In this article we are mostly interested in Artin groups and Coxeter groups of type $\tilde{A}_{n-1}$, in which case the defining graph $\Gamma$ is a complete graph on $n$ vertices such that there exists an embedded $n$-cycle in $\Gamma$ with each edge contained in the cycle are labeled by 3 and all other edges are labeled by 2.

Let $A\Gamma$ be an Artin-Tits group of type $\tilde{A}_{n-1}$ with consecutive generators in its Dynkin diagram labeled by $\{s_1, s_2, \ldots, s_n\}$. Let $A_i$ be the subgroup of $A\Gamma$ generated by all the generators except $s_i$. Let $X$ be the Artin complex of $A\Gamma$ (cf. [CD95] [CMV20]), namely vertices of $X$ are in 1-1 correspondence with left cosets of the form $\langle gA_i \mid g \in A\Gamma, 1 \leq i \leq n \rangle$. Two vertices are joined by an edge if the associated left cosets have non-empty intersection. Then $X$ is defined to be the flag completion of its 1-skeleton.

Note that the barycentric subdivision of $X$ coincides with another complex, called the modified Deligne complex of $A\Gamma$ as defined in [CD95], since vertices of the modified Deligne complex correspond to left cosets of spherical standard parabolic subgroups, and in type $\tilde{A}_{n-1}$ the spherical standard parabolic subgroups are exactly the proper standard parabolic subgroups.

1.2 Weakly modular graphs and local to global

Let $\Gamma$ be a simplicial graph. We endow $\Gamma$ with the path metric such that each edge has length $= 1$. Recall that $\Gamma$ is weakly modular if for every vertex $x \in \Gamma$, and every positive integer $n \geq 2$, the following two conditions hold:

1. (triangle condition $TC(x)$) for any two adjacent vertices $x_1, x_2 \in \Gamma$ such that $d(x, x_1) = d(x, x_2) = n$, there exists vertex $y$ with $d(y, x) = n - 1$ such that $d(y, x_1) = d(y, x_2) = 1$;

2. (quadrangle condition $QC(x)$) for any two vertices $x_1, x_2 \in \Gamma$ with $d(x, x_1) = d(x, x_2) = n$ and $d(x_1, x_2) = 2$ such that $x_1$ and $x_2$ are adjacent to a common vertex at distance $n + 1$ from $x$, there exists a vertex $y$ with $d(y, x) = n - 1$ such that $d(y, x_1) = d(y, x_2) = 1$.

A graph $\Gamma$ is local weakly modular if for every vertex $x \in \Gamma$, the triangle condition $TC(x)$ and quadrangle condition $TC(x)$ hold with $n = 2$.

An induced subgraph of $\Gamma$ is a subgraph which contains all edges of $\Gamma$ that join two vertices of the subgraph. A square of $\Gamma$ is an induced embedded 4-cycle of $\Gamma$.

Given a graph $\Gamma$, the triangle-square complex of $\Gamma$ is a two-dimensional cell complex with 1-skeleton $\Gamma$ such that we fill in a solid triangle for each embedded 3-cycle in the graph and fill in a solid square for each square of $\Gamma$.

**Theorem 1.1.** ([CCHO21], Theorem 3.1) If $\Gamma$ is a local weakly modular graph, and its triangle-square complex is simply-connected, then $\Gamma$ is a weakly modular graph.

Actually the converse to this theorem is also true, i.e. if $\Gamma$ is a weakly modular graph, then its triangle-square complex is simply-connected [BCC13, Lemma 5.5].

1.3 Posets, Lattices and local to global

Let $P$ be a poset, i.e. a partially ordered set. Let $S \subset P$. An upper bound (resp. lower bound) for $S$ is an element $x \in P$ such that $s \leq x$ (resp. $s \geq x$) for any $s \in S$. The join of $S$ is an upper bound $x$ of $S$ such that $x \leq y$ for any other upper bound $y$ of $S$. The meet of $S$ is a lower bound $x$ of $S$ such that $x \geq y$ for any other lower bound $y$ of $S$. We will write $x \vee y$ for the join of two elements $x$ and $y$, and $x \wedge y$ for the meet of two elements (if the join or the meet exists). We say $P$ is lattice if $P$ is a poset and any two elements
in $P$ have a join and have a meet. For $a, b \in P$ with $a \leq b$, the interval between $a$ and $b$, denoted by $[a, b]$, is the collection of all elements $x$ of $P$ such that $a \leq x$ and $x \leq b$. A poset $P$ is homogeneous if there is a function $\ell$ from each comparable pair in $P$ to the non-negative integers such that if $a \leq b \leq c$, then $\ell(a \leq c) = \ell(a \leq b) + \ell(b \leq c)$; and $\ell(a \leq b) = 0$ if and only if $a = b$. Note that if $P$ is homogeneous lattice, then any upper bounded subset of $P$ has a join and any lower bounded subset of $P$ has a meet. We will also need the following notion of weakly ordered set which generalizes the notion of poset by allowing the transitivity to fail.

**Definition 1.2.** A weakly ordered set $P$ is a set with a binary relation $\leq$ over $P$ which is reflexive and antisymmetric. Moreover, while transitivity may fail, we do require the following associativity law for transitivity. Define $(a, b, c) \in P^3$ to be a transitive triple if $a \leq b, b \leq c$ and $a \leq c$. We require $\leq$ satisfies the following condition:

$(*)$: for any quadruple $a, b, c, d \in P$ with $a \leq b, b \leq c$ and $c \leq d$, we have $(b, c, d)$ and $(a, b, d)$ are transitive triples if and only if $(a, b, c)$ and $(a, c, d)$ are transitive triples.

The notions of upper bound, join, lower bound, meet, interval and homogeneity can be defined for a weakly ordered set in the same way. Let $(P, \leq)$ be a weakly ordered set. For $x \in P$, let $P_{\geq x}$ be the collection of all elements which are $\geq x$. Similarly we define $P_{\leq x}$. Note that $P_{\geq x}$ and $P_{\leq x}$ are actually posets by $(*)$. A weak chain in a weakly ordered set $P$ is a sequence of elements $c_1 < c_2 < c_3 < \cdots < c_n$ such that any two adjacent elements in the sequence are comparable. A chain is a weak chain such that any two elements in the weak chain are comparable. Note that if $P$ does not contain non-trivial weak chains which start and end at the same element, then the weak order $\leq$ on $P$ actually generates a partial order $\leq_t$, where $a \leq_t b$ if $a$ and $b$ are the first and the last member of a weak chain in $P$ with respect to $\leq$.

An automorphism of $(P, \leq)$ is a bijection of $P$ preserving the relation $\leq$. Suppose $(P, \leq)$ is a weakly ordered set with an automorphism $\varphi : P \to P$ such that $\varphi(x) > x$ for any $x \in P$. Let $\leq_\varphi$ be the subrelation of $\leq$ of all possible $a \leq b$ such that there exists $x \in P$ such that $a, b \in [x, \varphi(x)]$. We say $\varphi$ generates $\leq$ if $a$ and $b$ fit into the first element and the last element of a weak chain with respect to $\leq_\varphi$ whenever $a \leq b$.

Let $X_\varphi$ be the simplicial complex whose vertex set is $P$, and $a$ and $b$ are joined by an edge if $a \leq_\varphi b$. Simplices of $X_\varphi$ correspond to weak chains in $P$ that are contained in an interval of the form $[x, \varphi(x)]$ for some $x \in P$. Note that though a weak chain contained in $[x, \varphi(x)]$ is automatically a chain.

The following is a consequence of work of Bessis [Bes06].

**Theorem 1.3.** Suppose $(P, \leq)$ is a homogeneous weakly ordered set. If there exists an automorphism $\varphi : P \to P$ which generates $\leq$ such that

1. $\varphi(x) > x$ for any $x \in P$;
2. $X_\varphi$ is simply connected;
3. $[x, \varphi(x)]$ is a lattice for any $x \in P$.

Then $\leq$ generates a partial order $\leq_t$ on $P$, and $(P_{\geq x}, \leq_t)$ and $(P_{\leq x}, \leq_t)$ are homogeneous lattices for any $x \in P$. Moreover, $X_\varphi$ is contractible.

**Proof.** By definition of $\leq_\varphi$, we have $x \leq a \leq \varphi(x)$ if and only if $x \leq_\varphi a \leq_\varphi \varphi(x)$. Thus the interval $[x, \varphi(x)]$ with respect to $\leq$ and the same interval with respect to $\leq_\varphi$ are the same. Thus we can assume without loss of generality that $\leq = \leq_\varphi$. We claim for any $x \in P$, if $x \leq a$, then $a \leq \varphi(x)$. Indeed, $x \leq a$ implies there exists $y \in P$ such that $x, a \in [y, \varphi(y)]$. As $y \leq x$, we have $\varphi(y) \leq \varphi(x)$. We now consider the quadruple $x, a, \varphi(y), \varphi(x)$. Then $(x, a, \varphi(y))$ and $(x, \varphi(y), \varphi(x))$ are transitive triples as $x \in [y, \varphi(y)]$. Thus $a \leq \varphi(x)$ and the claim is proved. Similarly, we know for any $x \in P$, if $a \leq x$, then $\varphi^{-1}(x) \leq a$. 


Note that \((P, \leq)\) is a special example of a germ in the sense of [Bes06, Definition 1.1]. More precisely, the objects of the germ are elements in \(P\), and there is a morphism from \(a\) to \(b\) if \(a \leq b\). This germ is homogeneous Garside in the sense of [Bes06, Definition 3.2]. Indeed, [Bes06, Definition 3.2] (i) is clear. By the above claim, the collection of morphism starting at \(x\) has a maximal element, which is \(x \leq \varphi(x)\), thus [Bes06, Definition 3.2] (ii) holds true. Now [Bes06, Definition 3.2] (iv) follows from assumption (3). [Bes06, Definition 3.2] (iii) translates into the following: we consider the map from the set of morphisms starting at \(x\) to the set of morphisms ending at \(\varphi(x)\) sending \(x \leq a\) to \(a \leq \varphi(x)\). By the above claim, this map is well-defined and is a bijection. Now [Bes06, Definition 3.2] (iii) is clear.

Consider the category \(\mathcal{C}\) generated by \(\leq\), whose objects are \(P\) and whose morphisms are equivalent classes of chains of the form \(a_1 \leq a_2 \leq \cdots \leq a_n\) (we require adjacent members in the sequence to be comparable, however, non-adjacent members might not be comparable), where the equivalence relation is generated by \(\sim\) with

\[(a_1 \leq \cdots \leq a_i \leq a_{i+1} \leq \cdots \leq a_n) \sim (a_1 \leq \cdots \leq a_i \leq a_{i+2} \leq \cdots \leq a_n)\]

if either \((a_i, a_{i+1}, a_{i+2})\) is a transitive triple or \(a_i = a_{i+1}\).

By [Bes06, Theorem 3.3], \(\mathcal{C}\) is a categorical Garside structure in the sense of [Bes06, Definition 2.4]. In particular, the collection of all morphisms starting from \(x \in P\), endowed with the prefix order (i.e. \(f \leq g\) if \(g = fh\) for a morphism \(h\) of \(\mathcal{C}\), is a lattice; and the collection of all morphisms ending at \(x \in P\), endowed with the suffix order (i.e. \(f \geq g\) if \(hg = f\) for a morphism \(h\) of \(\mathcal{C}\), is a lattice. These lattices are homogeneous by [Bes06, Theorem 3.3], where the length function \(\ell(f \leq g)\) is defined to be the sum \(\sum_{i=1}^n \ell(f_i \leq f_{i+1})\) where \(f_1 \leq f_2 \leq \cdots \leq f_n\) is a chain with \(f_1 = f\) and \(f_n = g\) such that adjacent members in the chain are comparable in \(\mathcal{P}\). Thus we are done as long as we can show there are no non-trivial weak chains in \(P\) which start and end at the same element.

Let \(\mathcal{G}\) be the groupoid obtained by adding formal inverses to all morphisms in \(\mathcal{C}\). It follows from [Bes06, Section 2] (more precisely the discussion of normal forms of morphisms in \(\mathcal{G}\) between [Bes06, Definition 2.10] and [Bes06, Definition 2.11]) that the map \(\mathcal{C} \to \mathcal{G}\) is injective. Take an object \(x \in P\), let \(\mathcal{G}_x\) be the collection of morphisms in \(\mathcal{G}\) starting at \(x\). Let \(|\mathcal{G}_x|\) be the simplicial complex defined by Bessis as follows. The vertices are corresponding to elements in \(|\mathcal{G}_x|\). Two different vertices are joined by an edge if the corresponding two morphisms \(f\) and \(g\) satisfy \(f = gh\) or \(g = fh\) for some simple morphism \(h\) in \(\mathcal{C}\) (a simple morphism of \(\mathcal{C}\) is a morphism of the form \(a < b\) such that \(b \leq \varphi(a)\)). Then \(|\mathcal{G}_x|\) is the flag complex of its 1-skeleton. By [Bes06, Corollary 7.6], \(|\mathcal{G}_x|\) is contractible, hence simply-connected. Note that there is a map \(p\) from \(\mathcal{G}_x\) to \(P\) by sending each morphism to its endpoint. By the proof of [Bes06, Corollary 7.6], a simplex in \(|\mathcal{G}_x|\) corresponds to a collection \(\{f_1, \ldots, f_k\}\) such that \(f_j\) is the composition of \(f_i\) with some simple morphism in \(\mathcal{C}\) whenever \(j > i\). Thus the map \(p\) extends to a simplicial map \(p : |\mathcal{G}_x| \to |\mathcal{X}_\varphi|\) which is also a covering map. As \(\mathcal{X}_\varphi\) is simply connected, we know \(p\) is a simplicial isomorphism. If there exist a non-trivial weak chain in \(P\) starting and ending at the same element, then there exists a morphism \(g\) in \(\mathcal{G}_x\), and a collection of non-trivial simple morphisms \(\{h_1, \ldots, h_k\}\) in \(\mathcal{C}\) such that \(gh_1 \cdots h_k = g\). By cancellation property in the groupoid \(\mathcal{G}\), \(h_1 \cdots h_k\) is an identity morphism in \(\mathcal{G}\), hence in \(\mathcal{C}\) due to the injectivity of \(\mathcal{C} \to \mathcal{G}\). However, this contradicts the homogeneity assumption on \(\mathcal{C}\).

\[\square\]

## 2 The diagonal quotient of a lattice is weakly modular

Assume that \(L\) is a lattice, such that each nonempty upper bounded subset of \(L\) has a join (as a consequence, each nonempty lower bounded subset of \(L\) has a meet). Assume that there is an order-preserving increasing action of \(\mathbb{Z}\) on \(L\), notated additively (i.e. the image of \(x \in L\) under the action \(n \in \mathbb{Z}\) is denoted by \(x + n\)), such that

\[\forall x, y \in L, \exists k \in \mathbb{N}, x - k \leq y \leq x + k.\]
We will define a graph $X$ from $L$, with vertex set $L/\mathbb{Z}$. Add an edge between $x, y \in X$ if, for some representatives $x_0, y_0$ of $x, y$ in $L$, we have

$$x_0 \leqslant y_0 \leqslant x_0 + 1.$$ 

We have the following.

**Theorem 2.1.** $X$ is a weakly modular graph.

Note that $X$ is connected by Lemma 2.2 below and our assumption on $L$. Thus the theorem is a consequence of Lemma 2.3 and Lemma 2.4 below.

**Lemma 2.2.** Given any vertices $x, y \in X$ and any representatives $x_0, y_0 \in L$, we have

$$d(x, y) = \min \{n \geqslant 0 \mid \exists k, h \in \mathbb{Z}, x_0 + k \leqslant y_0 + h \leqslant x_0 + k + n \}.$$ 

**Proof.** Let us denote the formula in the statement by $d'$. Given an edge path in $X$, we can consider a lift of consecutive vertices in this path to $L$ of the form $x_0 \leqslant x_1 \leqslant \ldots \leqslant x_n$ such that $x_i \leqslant x_{i+1} \leqslant x_i + 1$ for all $i$. Then $x_0 \leqslant x_n \leqslant x_0 + n$, so $d'(x_0 + \mathbb{Z}, x_n + \mathbb{Z}) \leqslant n$. Hence $d' \leqslant d$.

Conversely, we will prove by induction on $n \geqslant 0$ that, if $x, y \in L$ are such that $d'(x, y) = n$, then $d(x, y) = n$. When $n \leqslant 1$ it is obvious. Assume that the statement holds for values smaller than $n$, and fix vertices $x, y \in X$ and representatives $x_0, y_0 \in L$ such that $x_0 \leqslant y_0 \leqslant x_0 + n$, where $n = d'(x, y)$.

Let $z_0 = (x_0 + 1) \wedge y_0$; we have $z_0 + n - 1 = (x_0 + n) \wedge (y_0 + n - 1)$. As $y_0 \leqslant x_0 + n$ and $y_0 \leqslant y_0 + n - 1$, we have $z_0 \leqslant y_0 \leqslant z_0 + n - 1$, so $d'(y, z) \leqslant n - 1$. By induction, we deduce that $d(y, z) = d'(y, z) \leqslant n - 1$. Furthermore, we have $d(x, z) \leqslant 1$, so as $d(x, y) \geqslant d'(x, y) = n$ we conclude that $d(x, y) = n = d'(x, y)$.

**Lemma 2.3.** $X$ satisfies the triangle condition: fix $n \geqslant 2$, and let $x, y, z \in X$ such that $d(x, y) = d(x, z) = n$ and $d(y, z) = 1$. There exists $u \in X$ such that $d(x, u) = d(u, y) = 1$ and $d(u, z) = n - 1$.

**Proof.** Consider representatives $x_0, y_0, z_0$ such that $x_0 \leqslant y_0 \leqslant x_0 + n$ and $y_0 \leqslant z_0 \leqslant y_0 + 1$. We will prove that we can further assume that $z_0 \leqslant x_0 + n$.

Since $x_0 \leqslant z_0 \leqslant y_0 + 1 \leqslant x_0 + n + 1$ and $d(x, z) = n$, by Lemma 2.2 there are two only possibilities (note that):

- either $x_0 \leqslant z_0 \leqslant x_0 + n$
- or $x_0 + 1 \leqslant z_0 \leqslant x_0 + n + 1$.

To see these are the only two possibilities, note that $d(x, z) = n$ implies that $[x_0, x_0 + n]$ contains a unique lift of $z$.

In the former case, we have indeed $z_0 \leqslant x_0 + n$. In the latter case, we have $x_0 \leqslant z_0 - 1 \leqslant y_0 \leqslant x_0 + n$ and $z_0 - 1 \leqslant y_0 \leqslant z_0$, so up to replacing the pair $(y_0, z_0)$ by the pair $(z_0 - 1, y_0)$, we can always assume that $z_0 \leqslant x_0 + n$.

Let $u_0 = (x_0 + n - 1) \wedge y_0$: we have $x_0 \leqslant u_0 \leqslant x_0 + n - 1$, so $d(x, u) \leqslant n - 1$.

Furthermore, since $z_0 \leqslant x_0 + n$ and $z_0 \leqslant y_0 + 1$, we deduce that $u_0 + 1 = (x_0 + n) \wedge (y_0 + 1) \geqslant z_0$, hence $u_0 \leqslant y_0 \leqslant z_0 \leqslant u_0 + 1$. Hence $d(u, y) \leqslant 1$ and $d(u, z) \leqslant 1$.

Hence we have $d(x, u) = n - 1$ and $d(u, y) = d(u, z) = 1$.

**Lemma 2.4.** $X$ satisfies the quadrangle condition: let $n \geqslant 2$ and $x, y, z, t \in X$ such that $d(x, y) = d(x, z) = n$, $d(y, t) = d(z, t) = 1$ and $d(x, t) = n + 1$. There exists $u \in X$ such that $d(x, u) = n - 1$ and $d(u, y) = d(u, z) = 1$. 

9
Proof. We first prove that there exists \( s \in X \) such that \( d(y, s) = d(z, s) = 1 \) and \( d(x, s) \leq n \). Consider representatives \( x_0, y_0, z_0, t_0 \) such that \( x_0 \leq y_0 \leq x_0 + n, x_0 \leq z_0 \leq x_0 + n \) and \( y_0 \leq t_0 \leq y_0 + 1 \).

We will prove that also \( z_0 \leq t_0 \leq z_0 + 1 \). Since \( x_0 \leq y_0 \leq t_0 \leq y_0 + 1 \leq x_0 + n + 1 \) and \( d(x, t) = n + 1 \), we deduce from Lemma 2.2 that \( t_0 \) is not comparable to \( x_0 + 1 \) nor \( x_0 + n \). Since \( z_0 \leq x_0 + n \), we deduce that \( t_0 \) is not inferior to \( z_0 \), hence \( t_0 \geq z_0 \) as \( d(z, t) = 1 \).

Similarly, since \( z_0 + 1 \geq x_0 + 1 \), we deduce that \( t_0 \leq z_0 + 1 \). So we have \( z_0 \leq t_0 \leq z_0 + 1 \).

Let \( s_0 = y_0 \wedge z_0 \). Since \( x_0 \leq s_0 \leq x_0 + n \), we know that \( d(x, s) \leq n \). Furthermore, since \( t_0 - 1 \leq y_0 \leq t_0 \) and \( t_0 - 1 \leq z_0 \leq t_0 \), we deduce that also \( t_0 - 1 \leq s_0 \leq t_0 \). Thus if we take \( s \in X \) to be the vertex associated with \( s_0 \), then \( d(s, y) \leq 1 \) and \( d(s, z) \leq 1 \).

Let \( u_0 = (x_0 + n - 1) \wedge s_0 \); we have \( d(x, u) \leq n - 1 \). Moreover, \( u_0 \leq y_0 \) and \( u_0 \leq z_0 \). We will prove that \( y_0 \leq u_0 + 1 \) and \( z_0 \leq u_0 + 1 \). Since \( s_0 = y_0 \wedge z_0 \), we have \( u_0 = (x_0 + n - 1) \wedge y_0 \wedge z_0 \), so \( u_0 + 1 = (x_0 + n) \wedge (y_0 + 1) \wedge (z_0 + 1) \). Note that \( y_0 \leq x_0 + n \) and \( y_0 \leq y_0 + 1 \). Furthermore, we have \( y_0 \leq t_0 \leq z_0 + 1 \). As a conclusion, we have \( u_0 \leq u_0 + 1 \), and similarly \( z_0 \leq u_0 + 1 \). We conclude that \( d(u, y) \leq 1 \) and \( d(u, z) \leq 1 \).

Hence \( d(x, u) = n - 1 \) and \( d(u, y) = d(u, z) = 1 \). \( \Box \)

Remark. The above argument implies that \( X \) satisfies the following stronger versions of the triangle condition and the quadrangle condition, namely:

1. for any vertex \( x \in X \) and any complete subgraph \( Y \subseteq X \) such that each vertex of \( Y \) is at distance \( n \) from \( x \), there exists a vertex \( z \in X \) such that \( d(x, z) = n - 1 \) and \( z \) is adjacent to each vertex in \( Y \);
2. for any vertex \( x \in X \) and any vertex \( t \in X \) with \( d(x, t) = n + 1 \), let \( Y = \{ y \in X : d(y, t) = 1 \text{ and } d(y, x) = n \} \), then there exists a vertex \( u \) at distance \( n - 1 \) from \( x \) such that \( u \) is adjacent to each vertex in \( Y \), moreover, there exists a vertex \( s \in Y \) such that \( s \) is adjacent to each vertex in \( Y \setminus \{ s \} \).

The proof of property (2) is identical to Lemma 2.4. The proof of property (1) is a small adjustment of Lemma 2.3. Namely take \( y \in Y \) and choose representatives \( x_0, y_0 \) of \( x, y \) such that \( x_0 \leq y_0 \leq x_0 + n \). Then for any \( z \in \), the proof of Lemma 2.3 implies that there exists a representative \( z_0 \) of \( z \) such that either \( y_0 - 1 \leq z_0 \leq y_0 \) and \( x_0 \leq z_0 \leq x_0 + n \) or \( y_0 \leq z_0 \leq y_0 + 1 \) and \( x_0 \leq z_0 \leq x_0 + n \). Let \( Y_0 \) be the collection of all such representatives of elements in \( Y \). We claim each pair of elements \( z_0, z'_0 \) in \( Y_0 \) are comparable, and if \( z_0 \geq z'_0 \), then \( z_0 \leq z'_0 + 1 \). First we consider the case \( z_0 \geq y_0 \geq z'_0 \). The first part of the claim is clear. As \( z \) and \( z' \) are adjacent, \( z_0 \) and \( z'_0 + 1 \) are comparable. If \( z_0 > z'_0 + 1 \), then \( x_0 + n - 1 \geq z_0 - 1 \geq z'_0 \geq x_0 \), which contradicts that \( d(x, z) = n \). Thus \( z_0 \leq z'_0 + 1 \). Now we consider the case where both \( z_0, z'_0 \) are lower bounded by \( y_0 \), then \( z_0, z'_0 \) are upper bounded by \( y_0 + 1 \). This, together with the fact that \( z \) and \( z' \) are adjacent imply the claim.

3 A lattice with a diagonal action is weakly modular

Assume that \( L \) is a lattice, such that each nonempty upper bounded subset of \( L \) has a join. Assume that there is an order-preserving increasing action of \( Z \) on \( L \), notated additively, such that

\[
\forall x, y \in L, \exists k \in \mathbb{N}, x - k \leq y \leq x + k.
\]
We will define a graph $X$ from $L$, with vertex set $L$. Add an edge between $x, y \in X$ if $x \leq y \leq x + 1$ or $y \leq x \leq y + 1$.

**Theorem 3.1.** $X$ is a weakly modular graph.

This theorem is a consequence of Theorem 1.1, as well as Lemma 3.2, Lemma 3.4, Lemma 3.5 and Lemma 3.6 below.

**Lemma 3.2.** The graph $X$ is connected.

**Proof.** Fix $x, y \in X$. Since there is an edge between $x$ and $x + 1$, we may assume that $x \leq y$. For each $n \in \mathbb{N}$, let $x_n = (x + n) \land y$. For each $n \in \mathbb{N}$, we have $x_n = (x + n) \land y \leq (x + n + 1) \land y = x_{n+1}$, and also $x_{n+1} = (x + n + 1) \land y \leq (x + n + 1) \land (y + 1) = ((x + n) \land y) + 1 = x_{n+1} + 1$. So $x_n$ and $x_{n+1}$ are adjacent in $X$.

By assumption, there exists $n \in \mathbb{N}$ such that $y \leq x + n$. So we deduce that $x_n = y,$ and $x$ and $y$ are connected by the path $x_0 = x, x_1, \ldots, x_n = y$ in $X$. $\square$

**Lemma 3.3.** Given any vertices $x, y \in X$, we have

$$d(x, y) = \min\{n + m | n, m \in \mathbb{N}, x \leq y + n, y \leq x + m\}.$$ Moreover, $x \lor y$ and $x \land y$ each belong to a geodesic between $x$ and $y$.

**Proof.** Fix $x, y \in X$, and consider minimal $n, m \in \mathbb{N}$ such that $x \leq y + n, y \leq x + m$.

According to the previous proof, there is a length $n$ path from $x \land y$ to $x \land (y + n) = x$. There is also a length $m$ path from $x \lor y$ to $(x + m) \land y = y$. Hence $d(x, y) \leq n + m$.

Conversely, we will prove by induction on $n + m$ that $d(x, y) = n + m$. Let $y' \in X$ be adjacent to $y$, and we will show that the corresponding integers for $x$ and $y'$ satisfy $n' + m' \leq n + m + 1$.

$$\text{If } y \leq y' \leq y + 1, \text{ then } x \leq y + n \leq y' + n \text{ and } y' \leq y + 1 \leq x + m + 1, \text{ so } n' \leq n \text{ and } m' \leq m + 1.$$  

$$\text{If } y' \leq y \leq y' + 1, \text{ then } x \leq y + n \leq y' + n + 1 \text{ and } y' \leq y \leq x + m, \text{ so } n' \leq n + 1 \text{ and } m' \leq m.$$  

We conclude that $d(x, y) = n + m$. $\square$

**Lemma 3.4.** $X$ satisfies the triangle condition: fix $n \geq 2$, and let $x, y, z \in X$ such that $d(x, y) = d(x, z) = n$ and $d(y, z) = 1$. There exists $u \in X$ such that $d(u, y) = d(u, z) = 1$ and $d(u, x) = n - 1$.

**Proof.** Assume, without loss of generality, that $y \leq z \leq y + 1$. Let $p, m \in \mathbb{N}$ be minimal such that $x \leq y + p$ and $y \leq x + m$.

Since $d(x, z) = d(x, y) = p + m$, there are two possibilities:

- either $x \leq z + p$ and $z \leq x + m$. Assume first that $m \geq 1$, and let $u = y \land (x + m - 1)$: we have $d(u, y \land x) \leq m - 1$ and $d(y \land x, y) \leq p$, so $d(u, x) \leq p + m - 1$. Also $u \leq y \leq z$, and $y, z \leq y + 1, x + m$, so $y, z \leq u + 1$: we have $d(u, y) \leq 1$ and $d(u, z) \leq 1$. By the triangular inequality we have $d(x, u) = p + m - 1$ and $d(u, y) = d(u, z) = 1$.

Assume now that $m = 0$, let us then define $u = (y + 1) \land x$. We have $u \leq x$ and $x \leq y + p \leq u + p - 1$, hence $d(u, x) \leq p - 1$. Also $u \geq z \land x = z \geq y$, and $u \leq y + 1 \leq z + 1$, so $d(u, y) \leq 1$ and $d(u, z) \leq 1$. By the triangular inequality we have $d(x, u) = m - 1$ and $d(u, y) = d(u, z) = 1$.

- or $x \leq z + p - 1$ and $z \leq x + m + 1$.

Let $u = z \land (x + m)$: we have $d(u, z \land x) \leq m$ and $d(z \land x, x) \leq p - 1$, so $d(u, x) \leq p + m - 1$. Also $y \leq z, x + m$ so $y \leq u$. And $u \leq z \leq y + 1$, so $d(u, y) \leq 1$. We also have $u \leq z$ and $z \leq (z + 1), (x + m + 1)$ so $z \leq u + 1$: we have $d(u, z) \leq 1$. By the triangular inequality we have $d(x, u) = p + m - 1$ and $d(u, y) = d(u, z) = 1$. 

11
Lemma 3.5. $X$ satisfies the local quadrangle condition. More precisely, for any $x, y, z, t \in X$ such that $d(x, y) = d(x, z) = 2$, $d(x, t) = 3$ and $d(y, t) = d(z, t) = 1$, there exists $u \in X$ such that $d(x, u) = d(y, u) = d(z, u) = 1$.

Proof. Note that, if $d(x, y) = 2$, there are three possibilities: $x \leq y + 1$ and $y \leq x + 1$, $x \leq y \leq x + 2$ and $y \leq x \leq y + 2$. In this proof, we will call the last two possibilities of type $(2,0)$.

- Let us first assume that $x \leq y + 1$, $y \leq x + 1$, $x \leq z + 1$, $z \leq x + 1$, $y \leq z + 1$ and $z \leq y + 1$. Let $u = x \wedge y \wedge z$. We have $u \leq x$ and, since $x \leq x + 1, y + 1, z + 1$, we have $x \leq u + 1$. So $d(x, u) \leq 1$. Similarly $d(y, u) \leq 1$ and $d(z, u) \leq 1$. By the triangular inequality we have $d(x, u) = d(y, u) = d(z, u) = 1$.

- Assume now that $x \leq y + 1$, $y \leq x + 1$, $x \leq z + 1$, $z \leq x + 1$ and $y \leq z \leq z + 2$. We will show that this contradicts the existence of $t$. Since $d(x, t) = 3$, there are three possibilities:
  1. If $x \leq t \leq x + 3$, then since $d(y, t) = d(z, t) = 1$ we deduce that $t \leq z + 1 \leq x + 2$, which is a contradiction.
  2. If $x - 1 \leq t \leq x + 2$, then since $z \leq x + 1$, we have $t \not\leq z$, so $y \leq z \leq t$. Hence $t \leq y + 1$, so $z \leq y + 1$, which is a contradiction.
  3. If $x - 2 \leq t \leq x + 1$, then since $x - 1 \leq y$, we have $t \not\geq y$, so $t \leq y \leq z$. Hence $t \geq z - 1$, so $z \leq y + 1$, which is a contradiction.
  4. If $x - 3 \leq t \leq x$, then since $d(y, t) = d(z, t) = 1$ we deduce that $t \geq z - 1 \leq x - 2$, which is a contradiction.

- Assume now that $x \leq y \leq x + 2$, $x \leq z + 1$, $z \leq x + 1$, $y \leq z + 1$ and $z \leq y + 1$. We will show that this contradicts the existence of $t$. We know that $t \leq z + 1 \leq x + 2$ and $t \geq y - 1 \geq x - 1$. Hence $x - 1 \leq t \leq x + 2$. So $t \not\leq x + 1$, hence $t \not\leq z$: $z \leq t$. Similarly $t \not\geq x$, hence $t \not\geq y$: $t \leq y$. We deduce that $z \leq t \leq y$, which contradicts $d(y, z) = 2$.

- Assume now that $y \leq x \leq y + 2$, $x \leq z + 1$, $z \leq x + 1$, $y \leq z + 1$ and $z \leq y + 1$. We will show that this contradicts the existence of $t$. We know that $t \leq y + 1 \leq x + 1$ and $t \geq z - 1 \geq x - 2$. Hence $x - 2 \leq t \leq x + 1$. So $t \not\leq x$, hence $t \not\leq y$: we have $t \geq y$. Similarly $t \not\geq x - 1$, hence $t \not\geq z$: we have $t \leq z$. We deduce $y \leq t \leq z$, which contradicts $d(y, z) = 2$.

- Assume now that there are two distances of type $(2,0)$: we will show the existence of $u$ independently of the assumption on $t$. Remark that if $x \leq y \leq x + 2$ and $z \leq x \leq z + 2$, we have $z \leq y \leq z + 1$, which contradicts $d(y, z) = 2$. So we may assume that, for instance, we have $x \leq y \leq x + 2$, $x \leq z \leq x + 2$, $y \leq z + 1$ and $z \leq y + 1$. Let $u = (x + 1) \wedge y \wedge z$. Then $x \leq u \leq x + 1$, so $d(u, x) \leq 1$. Also $u \leq y \leq u + 1$, so $d(u, y) \leq 1$. Similarly $d(u, z) \leq 1$. By the triangular inequality we have $d(x, u) = d(y, u) = d(z, u) = 1$.

- Assume now that the three distances are of type $(2,0)$. Without loss of generality, we may assume that $y \leq z$, so $y \leq t \leq z$.
  1. If $x \leq y \leq z$, then $x \leq t \leq x + 2$, which is a contradiction.
  2. If $y \leq x \leq z$, then $t \leq y + 1 \leq x + 1$ and $t \geq z - 1 \geq x - 1$, so $x - 1 \leq t \leq x + 1$, which is a contradiction.
3. If \( y \leq z \leq x \), then \( x - 2 \leq y \leq t \leq x \), which is a contradiction. \( \square \)

**Lemma 3.6.** The triangle-square complex of \( X \) is simply connected.

**Proof.** Assume that \( \ell \) is a combinatorial loop in \( X \), and fix \( x \in X \) such that \( x \leq \ell \). Then, for each \( n \in \mathbb{N} \), let \( \ell_n \) denote the loop \( \ell \cap (x + n) \): more precisely, if \( y \) is a vertex of \( \ell \), then \( y \cap (x + n) \) is a vertex of \( \ell_n \). This actually defines a loop since, if \( d(y, z) = 1 \), for instance \( y \leq z \leq y + 1 \), then \( y \cap x \leq y \cap (x + 1) \leq y \cap (x + 2) \leq y \cap (x + n) \), so \( d(y \cap x, z \cap x) \leq 1 \). Since also \( d(y \cap (x + n), y \cap (x + n + 1)) \leq 1 \), we deduce that, for each \( n \in \mathbb{N} \), the loops \( \ell_n \) and \( \ell_{n+1} \) are homotopic in the triangle-square complex of \( X \).

If \( N \in \mathbb{N} \) is such that \( \ell \leq x + N \), the loop \( \ell_N \) is constant equal to \( \ell \), whereas \( \ell_0 \) is the constant loop at \( x \). Hence the triangle-square complex of \( X \) is simply connected. \( \square \)

### 4 Garside categories, Garside lattices and Garside flag complexes

In this section, we explicit a dictionary between categorical Garside structures and certain lattices and simplicial complexes, following Bessis (Bes15). In particular, we make connections between categorical Garside structures and the type of lattices studied in Section 2 and Section 3.

#### 4.1 Definition of Garside category and an example

Let \( C \) be a small category. One may think of \( C \) as an oriented graph, whose vertices are objects in \( C \) and oriented edges are morphisms of \( C \). Arrows in \( C \) compose like paths: \( x \xrightarrow{f} y \xrightarrow{g} z \) is composed into \( x \xrightarrow{fg} z \). For objects \( x, y \in C \), let \( C_{x->y} \) denote the collection of morphisms whose source object is \( x \). Similarly we define \( C_{y->x} \) and \( C_{x->y} \).

For two morphisms \( f \) and \( g \), we define \( f \preceq g \) if there exists a morphism \( h \) such that \( g = fh \). Define \( g \succeq f \) if there exists a morphism \( h \) such that \( g = hf \). A nontrivial morphism \( f \) which cannot be factorized into two nontrivial factors is an atom.

The category \( C \) is cancellative if, whenever a relation \( afb = agb \) holds between composed morphisms, it implies \( f = g \). \( C \) is homogeneous if there exists a length function \( l \) from the set of \( C \)-morphisms to \( \mathbb{Z}_{\geq 0} \) such that \( l(fg) = l(f) + l(g) \) and \( l(f) = 0 \) if \( f \) is a unit. If \( C \) is homogeneous, then \( (C_{x->y}, \preceq) \) and \( (C_{y->x}, \succeq) \) are posets.

We consider the triple \( (\mathcal{C}, \mathcal{C}, \Delta) \) where \( \phi \) is an automorphism of \( \mathcal{C} \) and \( \Delta \) is a natural transformation from the identity function to \( \phi \). For an object \( x \in \mathcal{C} \), \( \Delta \) gives morphisms \( x \xrightarrow{\Delta(x)} \phi(x) \) and \( \phi^{-1}(x) \xrightarrow{\Delta(\phi^{-1}(x))} x \). We denote the first morphism by \( \Delta_x \) and the second morphism by \( \Delta^x \). A morphism \( x \xrightarrow{f} y \) is simple if there exists a morphism \( y \xrightarrow{\phi} x \) such that \( f \phi = \Delta_x \). When \( C \) is cancellative, such \( \phi \) is unique.

**Definition 4.1 (Bes06).** A homogeneous categorical Garside structure is a triple \( (\mathcal{C}, \mathcal{C}, \phi, \mathcal{C} \xrightarrow{\Delta} \phi) \) such that:

1. \( \phi \) is an automorphism of \( \mathcal{C} \) and \( \Delta \) is a natural transformation from the identity function to \( \phi \);
2. \( \mathcal{C} \) is homogeneous and cancellative;
3. all atoms of \( \mathcal{C} \) are simple;
4. for any object \( x \), \( \mathcal{C}_{x->} \) and \( \mathcal{C}_{->x} \) are lattices.
It has **finite type** if the collection of simple morphisms of \( C \) is finite.

A fundamental property of \( C \) is that the natural map \( C \to G \) is an embedding, where \( G \) denotes the enveloping groupoid, as follows from the discussion in [Bes06, Section 2]. For the convenience of the reader, we will remind below the existence of a normal form (see also [Deh15] for more details on normal forms in Garside theory, and also [Bes99]).

**Proposition 4.2.** Let \((C, C \xrightarrow{\phi} C, 1_C \xrightarrow{\Delta} \phi)\) denote a homogeneous categorical Garside structure, and let \( G \) denote the enveloping groupoid. Then any \( f \in G \) has a unique (left greedy) normal form, i.e. a unique way to write \( f \) as a product

\[
 f = s_1 s_2 \ldots s_\ell \Delta^k,
\]

where \( s_1, s_2, \ldots, s_\ell \) are simple elements of \( C \) with sources \( x_1, x_2, \ldots, x_\ell, k \in \mathbb{Z}, s_1 < \Delta x_1 \), and for all \( 1 \leq i \leq \ell - 1 \) we have the left-weighted condition

\[
 s_i = s_i s_{i+1} \wedge \Delta x_i.
\]

**Proof.** Let us first prove that there exists such a product, without restriction on the \( s_i \)'s. Since simple elements generate \( G \), we deduce that \( f \) may be written as \( f = s_1^{-1} s_2 \ldots s_\ell^{-1}, \) where for each \( 1 \leq i \leq \ell \) the element \( s_i \) is simple. For each simple element \( s \) with source \( x \) and terminal object \( y \), by definition, there exists a simple element \( s^* \) such that \( ss^* = \Delta_x \). As a consequence, we may rewrite \( s^{-1} = s^* \Delta^{-1}_x \). Furthermore, given any simple element \( s \) with source \( x \), we have \( \Delta^2 s = \Delta^{-1}(s) \Delta^2 \), with \( \Delta^{-1}(s) \) simple. Hence we see from this two properties that one can write \( f \) as a product \( f = s_1 s_2 \ldots s_\ell \Delta^k \), where \( s_1, s_2, \ldots, s_\ell \) are simple. Moreover, we may assume that \( s_1 < \Delta x_1 \).

We will now prove that we can assume the left-weighted condition: assume that \( 1 \leq i \leq \ell - 1 \) is such that \( s_i < s'_i = s_i s_{i+1} \wedge \Delta x_i \). Then \( s'_i \) is simple, and we may write \( s_i s_{i+1} = s'_i s'_{i+1} \), we will show that \( s'_{i+1} \) is simple. Let us also write \( s'_i = s_i t_i \) since \( C \) is cancellative, we have \( ts'_{i+1} = s_{i+1} \). Since \( s_{i+1} \) is simple, we have \( s_{i+1} s'_i = \Delta x_{i+1} \), so \( ts'_{i+1} s'_i = \Delta x_{i+1} \). In particular, \( t^* = s'_{i+1} s'_i \) is simple, so \( s'_{i+1} \) is simple. Hence there exists a left-weighted normal form for \( f \).

Let us now prove that this form is unique. Without loss of generality, we may assume that \( f \in C \). Let us consider a left-weighted forms \( f = s_1 s_2 \ldots s_\ell \Delta^k \), with \( k \geq 0 \). Then it is easy to see by induction that, for all \( 1 \leq i \leq \ell \), we have \( s_1 s_2 \ldots s_i = f \wedge \Delta^i_{x_i} \). Uniqueness follows.

**Definition 4.3.** A **Garside category** is a category \( C \) that can be equipped with \( \phi \) and \( \Delta \) to obtain a homogeneous categorical Garside structure. A **Garside groupoid** is the enveloping groupoid of a Garside category. Informally speaking, it is a groupoid obtained by adding formal inverses to all morphisms in a Garside category.

Let \( x \) be an object in a groupoid \( G \). The **isotropy** group \( G_x \) at \( x \) is the group of morphisms from \( x \) to itself. A **weak Garside group** is a group isomorphic to the isotropy group of an object in a Garside groupoid.

A **Garside monoid** is a Garside category with a single object and a **Garside group** is a Garside groupoid with a single object.

**Example.** Let \( A \) be a finite central arrangement in \( \mathbb{R}^n \), i.e. a finite collection of linear hyperplanes in \( \mathbb{R}^n \). Let \( ch(A) \) be the set of chambers (connected components of the complement of the hyperplanes in \( A \)). We consider an oriented graph \( \Gamma \), whose vertices are in 1-1 correspondence with the collection of chambers, and we draw a pair of oriented edges going in opposite directions between two vertices if the associated chambers are adjacent along a hyperplane.
A *positive path* on $\Gamma$ is an edge path from one vertex to another vertex which goes along the positive orientation on each edge. Take a positive path $f_1$ and a subpath $g$ of $f_1$ which is a geodesic between its endpoints with respect to the path metric on $\Gamma$. An *elementary homotopy* of $f_1$ is the procedure of replacing the subpath $g$ of $f_1$ by another positive subpath which is a geodesic between the two endpoints of $g$. Two positive paths are *equivalent* if they differ by a finite sequence of elementary homotopies.

Now we consider the category $\mathcal{C}$ as follows. Objects of $\mathcal{C}$ are vertices of $\Gamma$, and morphisms of $\mathcal{C}$ are equivalence classes of positive paths from one vertex to another vertex. There is an orientation-preserving automorphism $\alpha : \Gamma \to \Gamma$ arising from the central symmetry of $\mathbb{R}^n$ with respect to the origin. Note that $\alpha$ induces an automorphism of the category $\mathcal{C} \xrightarrow{\phi} \mathcal{C}$, which is a functor sending object $x$ to $\alpha(x)$, and the morphism represented by a path $f$ to the morphism represented by $\alpha(f)$. For each object $x \in \mathcal{C}$, let $\Delta_x$ be the morphism from $x$ to $\phi(x)$ represented by a positive geodesic in $\Gamma$ from $x$ to $\phi(x)$. One readily verifies that the family of morphisms $\{\Delta_x\}_{x \in \text{Obj}(\mathcal{C})}$ gives a natural transformation between the identity function and the functor $\phi$, i.e. for each morphism $[f]$ in $\mathcal{C}$ represented by a positive path $f$ from $x$ to $y$, we have $\Delta_x \phi([f]) = [f] \Delta_y$.

It is shown in [Del72] (see also [Bes06, Example 3.4]) if the arrangement $\mathcal{A}$ is simplicial, namely, hyperplanes in $\mathcal{A}$ cuts the unit sphere of $\mathbb{R}^n$ into a simplicial complex, then $\mathcal{C}$ is a homogeneous categorical Garside structure in the above sense (the non-trivial part is property (4) of Definition 4.1). Moreover, the associated weak Garside group is isomorphic to the fundamental group of the complement of the complexification of hyperplanes of $\mathcal{A}$ in $\mathbb{C}^n$.

### 4.2 From Garside category to Garside lattice

The type of lattices studied in Section 2 and Section 3 if they are assumed homogeneous, are what we call a Garside lattice, which we define now.

**Definition 4.4.** A *Garside lattice* is a pair $(L, \varphi)$, where $L$ is a homogeneous lattice and $\varphi$ is an increasing automorphism of $L$, such that, for any $x, y \in L$, there exists $k \in \mathbb{N}$ such that $x \leq \varphi^k(y)$.

We now see that a categorical Garside structure naturally gives rise to a Garside lattice.

**Proposition 4.5.** Let $(\mathcal{C}, \phi, \Delta)$ be a categorical Garside structure, and let $\mathcal{G}$ be the associated Garside groupoid. Let $x$ be an object in $\mathcal{G}$, and let $L_x$ denote the set of morphisms from $x$ in $\mathcal{G}$. Let us consider the map $\psi : f \in L_x \mapsto \Delta_x \phi(f)$ of $L_x$. We endow $L_x$ with the partial order $\leq$ such that $g \leq h$ if $h = gf$ with $f \in \mathcal{C}$. Then $(L_x, \leq)$ is a lattice such that

1. any non-empty upper bounded set in $L_x$ has a join;
2. $\psi$ is an increasing automorphism of $(L_x, \leq)$;
3. for any $g, h \in L_x$, there exists $k \in \mathbb{N}$ such that $\psi^{-k}(g) \leq h \leq \psi^k(g)$.

**Proof.** Recall that the natural map $\mathcal{C} \to \mathcal{G}$ is an embedding. Given $g \in L_x$, by Definition 4.1 (4), the collection $(L_x)_{\geq g}$ of all elements of $L_x$ that is $\geq g$ form a lattice under the order $\leq$. To prove that $(L_x, \leq)$ is a lattice, we will show that any two elements in $L_x$ have a lower bound. Indeed, given $f, g \in L_x$, by Definition 4.1 (2) and (3), we can write $f = gs_1^{e_1} s_2^{e_2} \cdots s_n^{e_n}$, where $e_i = \pm 1$, and each $s_i \in \mathcal{C}$ is a simple element. We claim $\psi(f)$ is of the form $gh(s_1)^{e_1} \cdots (s_n)^{e_n}$ where $h \in \mathcal{C}$ and each $s_i \in \mathcal{C}$ is simple. Indeed, as $\Delta$ gives a natural transformation from the identity function to $\phi$, we know $\psi(f) = \Delta_x \phi(g) \phi(s_1^{e_1}) \cdots \phi(s_n^{e_n}) = g \Delta_{l(g)} \phi(s_1^{e_1}) \cdots \phi(s_n^{e_n})$ where $l(g)$ denotes the terminal object of $g$. Then the claim is clear if $e_1 = 1$. If $e_1 = -1$, we find $s_1^{e_1}$ such that $s_1^{e_1} s_1 = \Delta_{l(s_1^{e_1})}$. As $\Delta$ is a natural transformation, we know $\Delta_{l(g)} \phi(s_1^{e_1}) = s_1^{e_1} \Delta_{l(s_1^{e_1})}$. Let $y$ be the starting
point of $s_1$. Then $\Delta_\ell(s_1^{t_1}) = \Delta y = s_1 s_1^t$ for some $s_1^t \in \mathcal{C}$. Thus $\Delta_\ell(x) \phi(s_1^{t_1}) = s_1^t$ and the claim follows. By applying the claim several times, we know $\psi^n(f) = gh$ with $h \in \mathcal{C}$. Thus $g \leq \psi^n(f)$. Similarly $f \leq \psi^n(g)$. Thus property (3) of the proposition holds. In particular, any two elements in $L_x$ have a lower bound. Hence, given any non-empty subset $A \subset L_x$ with an upper bound $f \in L_x$, by considering the joins of increasing finite subsets of $A$, one sees that $A$ itself has a join. Hence property (1) holds.

Note that, if $f \in \mathcal{G}$ has source $x$ and terminal object $y$, then $\psi(f) = \Delta_x \phi(f) = f \Delta_y$. From this, one sees that $\psi$ is invertible and increasing, hence property (2) holds. \qed

4.3 Garside categories, Garside lattices and Garside flag complexes

We will relate three Garside notions: categorical Garside structures, Garside lattices, and Garside flag complexes, which we define now. These are flag simplicial complexes with a local lattice structure and a special automorphism.

**Definition 4.6.** A Garside flag complex is a pair $(X, \varphi)$, where $X$ is a simply connected flag simplicial complex with a consistent total order on each simplex, a labeling of edges $\ell : EX \to \mathbb{Z}_{\geq 0}$ and $\varphi$ is an order-preserving and $\ell$-preserving automorphism of $X$. Let $<$ be the binary relation on the set of vertices of $X$ such that $x < y$ if $x$ and $y$ are adjacent in $X$ and $x < y$ with respect to the order on the edge connecting $x$ and $y$. We also require the following:

1. for any 2-dimensional simplex with vertices $a < b < c$, we have $\ell(ab) + \ell(bc) = \ell(ac)$;
2. $a \leq b$ if and only if $b \leq \varphi(a)$;
3. for any $x \in X$, the set $[x, \varphi(x)] = \{z \in X^{(0)} | x \leq z \leq \varphi(x)\}$ with the binary relation $< \leq$ is a lattice.

Note that, given any Garside flag complex $(X, \varphi)$ and for any simplex $\sigma$ in $X$, we have that $\sigma \cup \varphi(\min \sigma)$ is a simplex, whose maximal element is $\varphi(\min \sigma)$.

Theses notions enable us to write the following dictionary between categorical Garside structures, Garside lattices and Garside flag complexes.

A categorical Garside structure $(\mathcal{C}, \phi, \Delta)$ is special if

1. for any pair of objects $x, y$, there is at most one morphism from $x$ to $y$;
2. the nerve of $\mathcal{C}$ (cf. [Bes06, Section 7]) is simply-connected.

Each connected categorical Garside structure $(\mathcal{C}, \phi, \Delta)$ gives a canonical special categorical Garside structure via a “universal covering” construction as in [Bes06, Section 6] as follows. Let $\mathcal{G}$ be the associated Garside groupoid. Take an object $x$ of $\mathcal{G}$. Consider the category $\mathcal{C}'$ whose objects corresponds to morphisms of $\mathcal{G}$ starting at $x$. Given two objects $x'_f$ and $x'_g$ of $\mathcal{C}'$, corresponding to two morphisms $f, g$ of $\mathcal{G}$ starting at $x$, we assign a morphism from $x'_f$ to $x'_g$ if $g = fh$ for $h \in \mathcal{C}$. One readily verifies that $\mathcal{C}'$ is indeed special. Let $\phi'$ be the automorphism of $\mathcal{C}'$ sending the morphism $f$ of $\mathcal{G}$ from $x$ to $y$ to the morphism $f \Delta_y$ of $\mathcal{G}$. Now we check that $\phi'$ is indeed an automorphism of the category $\mathcal{C}'$. This amounts to check that, if the elements $f, g$ of $\mathcal{G}$ start at $x$ and end at $y$ and $z$ respectively, and $f = gh$ for $h \in \mathcal{C}$, then $f \Delta_y = g \Delta_z h'$ for $h' \in \mathcal{C}$. Indeed, $f \Delta_y = gh \Delta_y = g \Delta_x h'$ as $\Delta$ is a natural transformation from the identity functor on $\mathcal{C}$ to $\phi$. For each object $x'_f$ of $\mathcal{C}'$ associated with the morphism $f$ of $\mathcal{G}$ from $x$ to $y$, let $\Delta'_y x'_f$ be the unique morphism of $\mathcal{C}'$ from $x'_f$ to $x'_{f \Delta_y}$. Then one readily verifies that $(\mathcal{C}', \phi', \Delta')$ gives a special categorical Garside structure (see also [Bes06, Lemma 6.2]). As the category $\mathcal{C}$ is connected, $(\mathcal{C}', \phi', \Delta')$ does not depend on the choice of the object $x$ of $\mathcal{G}$, as different choices of $x$ give isomorphic special categorical Garside structure.
Theorem 4.7. The following objects are in one to one correspondence:

1. A connected special categorical Garside structure, up to isomorphism.
2. A Garside lattice, up to isomorphism.
3. A Garside flag complex, up to isomorphism.

Proof. First we establish the correspondence between item 1 and item 2. Given a connected special categorical Garside structure \((\mathcal{C}, \phi, \Delta)\), let \(\mathcal{G}\) be the associated Garside groupoid. Note that \(\mathcal{G}\) and \(\mathcal{C}\) have the same set of objects. Fix an object \(a\) of \(\mathcal{G}\) and let \(L\) be the collection of morphisms of \(\mathcal{G}\) starting at \(a\). Let \(\varphi : L \rightarrow L\) send a morphism \(f\) of \(\mathcal{G}\) from \(x\) to \(y\) to the morphism \(f \Delta_y\). We can define an order on \(L\) by \(f \leq g\) for morphisms \(f, g\) of \(\mathcal{G}\) starting from \(x\) if and only if \(f = gh\) for \(h\) being a morphism of \(\mathcal{C}\). Note that the homogeneous structure on \(\mathcal{C}\) implies that \((L, \leq)\) is indeed a poset, and it is homogeneous. By the discussion of normal forms in [Bes06, Section 2] that every two elements in \((L, \leq)\) have an upper bound and a lower bound, now item 4 of Definition 4.1 implies that \((L, \leq)\) is a lattice. It follows that \((L, \varphi)\) is a Garside lattice. As \(\mathcal{C}\) is connected, the isomorphism type of this Garside lattice does not depend on the choice of \(a\).

Given a Garside lattice \((L, \varphi)\), one may consider the category \(\mathcal{C}'\) whose objects are elements from \(x\) to \(y\) if and only if \(x \leq y\). Then \(\mathcal{C}'\) is special, where the simply-connectedness requirement follows from the lattice property (for a given loop in the nerve of \(\mathcal{C}'\), we can find a common lower bound \(x_0 \in L\) for the vertex set of this loop, and use the lattice property to deform this loop towards \(x_0\) in the nerve).

The automorphism \(\varphi\) of \(L\) induces an automorphism \(\varphi'\) of \(\mathcal{C}'\). Given any morphism \(x < y\), one may also define \(\varphi'(x < y)\) as the unique morphism \(\varphi(x) < \varphi(y)\). Given any \(x \in L\), one may define \(\Delta'(x)\) as the unique morphism \(x < \varphi(x)\). So \((\mathcal{C}', \varphi', \Delta')\) is a special categorical Garside structure.

Now we check the procedures in the previous paragraphs are inverses of each other. We will only verify one direction, and leave the other direction to the reader. Consider \((\mathcal{C}, \phi, \Delta) \rightarrow (L, \varphi) \rightarrow (\mathcal{C}', \varphi', \Delta')\) and we show the two Garside categories \(\mathcal{C}\) and \(\mathcal{C}'\) are isomorphic. By construction, objects of \(\mathcal{C}'\) are in 1-1 correspondence with the set of morphisms \(\mathcal{G}_x\rightarrow \mathcal{G}\) starting at \(x\). As \(\mathcal{C}\) is connected, for any object \(y\) of \(\mathcal{G}\), there is a morphism \(y\rightarrow \mathcal{G}_x\) ending at \(y\). As any morphism of \(\mathcal{G}\) from \(x\) to \(y\) is a finite composition of morphisms in \(\mathcal{C}\) or their inverses, the specialness of \(\mathcal{C}\) implies that there is a unique morphism in \(\mathcal{G}\) from \(x\) to \(y\). Thus objects of \(\mathcal{C}'\) are in 1-1 correspondence with objects in \(\mathcal{C}\) by sending an element in \(\mathcal{G}_x\rightarrow \mathcal{G}\) to its end object. Now one readily checks such 1-1 correspondence actually induces isomorphism an of the associated categorical Garside structure.

Now we establish the correspondence between item 2 and item 3. Given a Garside flag complex \((X, \varphi)\), we consider the binary relation \(<\) on the vertex set \(L\) of \(X\). Suppose \(a, b, c, d \in L\) such that \(a \leq b, b \leq c, c \leq d\). Now we verify condition (1) in Definition 1.2. First assume \((a, b, c, d)\) and \((a, b, d)\) are transitive triples. Then \(a \leq d\), \(b \leq d\) and \(c \leq d\). Then Definition 4.6 (2) implies that \(\{a, b, c, d\} \subseteq \varphi^{-1}(d, d)\). As \(\varphi^{-1}(d, d)\) is a lattice by Definition 4.6 (3), in particular it is a poset, hence \((a, b, c)\) and \((a, c, d)\) are transitive triples. Conversely, if \((a, b, c)\) and \((a, c, d)\) are transitive triples, then \(a \leq b, a \leq c, a \leq d\), implying \(\{a, b, c, d\} \subseteq [a, \varphi(a)]\) by Definition 4.6 (2). Now we deduce from Definition 4.6 (3) as before that \((b, c, d)\) and \((a, b, d)\) are transitive triples. Thus the binary relation gives a weak order on \(L\). This weak order is homogeneous by Definition 4.6 (1). The map \(\varphi : L \rightarrow L\) is an automorphism of this weak order, which satisfies the assumptions of Theorem 4.3 by the definition of a Garside flag complex. Thus for any \(x \in L\), the posets \(L_{\leq x}\) and \(L_{\geq x}\) are lattices. Since \(X\) is connected, we deduce that, for any \(x, y \in L\), there exists \(k \in \mathbb{N}\) such that \(x \leq \varphi^k(y)\). In particular, one sees that any two elements of \(L\) have a lower bound, so \(L\) is a lattice. Hence \(L\) generates a Garside lattice as in Theorem 1.3.
Conversely, consider a Garside lattice \((L, \varphi)\). Let \(X\) denote the simplicial complex whose vertices are elements in \(L\), with a \(k\)-simplex for each length \(k\) chain \(x_0 < x_1 < \cdots < x_k\) in \(L\) such that \(x_k \leq \varphi(x_0)\). The automorphism \(\varphi\) of \(L\) induces an order-preserving automorphism (still denoted \(\varphi\)) of \(X\). Since \(L\) is homogeneous, there exists a function \(\ell\) from the set of comparable pairs of \(L\) to \(\mathbb{Z}_{>0}\). This function restricts to \(\ell : E(X) \to \mathbb{Z}_{>0}\) such that, for any 2-dimensional simplex with vertices \(a < b < c\), we have \(\ell(ab) + \ell(bc) = \ell(ac)\). Moreover, if \(a < b\) are the vertices of an edge of \(X\), then by definition we have \(b \leq \varphi(a)\). Conversely, if \(b < \varphi(a)\) are the vertices of an edge of \(X\), then \(\varphi(a) \leq \varphi(b)\), hence \(a \leq b\).

Finally, for any vertex \(x\) in \(X\), the set \([x, \varphi(x)]\) is an interval in the lattice \(L\), hence it is a lattice. Moreover, this procedure of passing from Garside lattice to Garside flat complex and the procedure in the previous paragraph are inverses of each other, which gives the correspondence between item 2 and item 3.

**Remark.** Here is a way to go directly from item 1 of the above theorem to item 3. Given a special categorical Garside structure \((\mathcal{C}, \phi, \Delta)\), let \(\mathcal{G}\) denote the associated Garside groupoid, fix an object \(x \in \mathcal{G}\), and let \(G\) denote the weak Garside group that is the isotropy group of \(\mathcal{G}\) at \(x\). Then the simplicial complex \(\text{gar}(\mathcal{G}, S, x)\) from [Bes15, Definition B.11], whose vertex set is the set of morphisms from \(x\) and whose edges correspond to morphisms of \(\mathcal{G}\) from \(x\) that differ by a simple morphism in \(\mathcal{C}\), is a Garside flag complex. More precisely, the map \(\varphi\) in Definition 4.6 sends a morphism \(f\) of \(\mathcal{G}\) from \(x\) to \(y\) to the morphism \(f\Delta_y\). The length function on the edges of \(\text{gar}(\mathcal{G}, S, x)\) comes from the length function on morphisms of \(\mathcal{C}\). Note that, since \(\mathcal{G}\) is connected, \(\text{gar}(\mathcal{G}, S, x)\) does not depend on \(x\).

We also have a similar characterization of (weak) Garside groups.

**Theorem 4.8.** A group \(G\) is a Garside group (resp. weak Garside group) if and only if there exists a Garside flag complex \((X, \varphi)\) (or equivalently on a Garside lattice) such that \(G\) can be realized as a group of order-preserving automorphisms of \(X\) commuting with \(\varphi\), acting freely and transitively (resp. freely) on vertices of \(X\).

Moreover, the group \(G\) is a (weak) Garside group of finite type if and only if \(X\) can be chosen such that the action of \(G\) is cocompact.

**Proof.** If \(G\) is a (weak) Garside group, it is clear from Theorem 4.7 that \(G\) acts on the associated Garside lattice satisfying these properties.

Conversely, assume that \(G\) acts on a Garside lattice \(X\) satisfying these properties. Then, if we fix a vertex \(x \in X\), we may consider the categorical Garside structure whose objects are elements of \(X\) bigger than \(x\) as in Theorem 4.7. Its quotient by \(G\) is a categorical Garside structure \((\mathcal{C}, \phi, \Delta)\), and the isotropy group at the image of \(x\) in the associated groupoid coincides with \(G\).

**Example.** As a very simple example, consider the \(n\)-strand braid group \(B_n\), with the standard Garside element \(\Delta_n\) and positive monoid \(B_n^+\). Note that \(B_n^+\) plays the role of the categorical Garside structure (with only one object), and \(B_n\) is the associated Garside groupoid. Let \(L\) denote the lattice consisting of elements in \(B_n\), where \(g \leq h\) if and only if \(h \in gB_n^+\). The automorphism \(\varphi : g \mapsto g\Delta\) of \(L\) turns \(L\) into a Garside lattice. Now the group \(B_n\) acts freely transitively on \(L\) by left multiplication, commuting with \(\varphi\), so we recover that \(B_n\) is a Garside group. Moreover, any subgroup of \(B_n\) is a weak Garside group, and any finite index subgroup of \(B_n\) is a weak Garside group of finite type. This is the case of the pure braid group, in which case the categorical Garside structure coincides with the structure described in the example about simplicial hyperplane arrangements.
5 Applications

5.1 Euclidean buildings

Theorem 5.1. Let $X$ denote a Euclidean building of type $\tilde{A}_n$. Then the 1-skeleton of $X$ is a weakly modular graph.

Proof. Let $m = n + 1$. Let us denote the type function $\tau : X^{(0)} \to \mathbb{Z}/m\mathbb{Z}$ (see for instance [AB08, Section 6.9]). Let us consider

$$L = \{(x, k) \in X^{(0)} \times \mathbb{Z} | \tau(x) \equiv k [m]\}.$$

Let us consider the order relation on $L$ generated by $(x, k) \leq (x', k')$ if $x$ and $x'$ are adjacent in $X$ and $k \leq k'$. According to [Hir20], $L$ is a lattice.

Note that this lattice is quite explicit in the Bruhat-Tits case: let $X$ denote the Bruhat-Tits building of $\text{PGL}(n, \mathbb{K})$, where $\mathbb{K}$ is a non-Archimedean local field. The vertex set of $X$ may be described as the set of homothety classes of ultrametric norms on $\mathbb{K}^n$. The extended Bruhat-Tits building $\tilde{X}$ of $\text{GL}(n, \mathbb{K})$ may be described as the set of ultrametric norms on $\mathbb{K}^n$. There is a canonical simplicial map $\tilde{X} \to X$, such that the preimage of a vertex is isomorphic to $\mathbb{Z}$. The vertex set $L$ of $\tilde{X}$, with the natural order on norms on $\mathbb{K}^n$, is in fact a lattice (see also [Hae21a]).

Let us consider the action of $\mathbb{Z}$ on $L$ by $p \cdot (x, k) = (x, k + pm)$. This action satisfies the assumptions of Theorem 2.1, so the quotient graph of $L/\mathbb{Z}$, which coincides with $X^{(1)}$, is weakly modular.

In fact, we can see Euclidean buildings of type $\tilde{A}_n$ as categorical Garside structures, as follows.

Theorem 5.2. Let $X$ denote a Euclidean building of type $\tilde{A}_n$, and let $G$ denote an automorphism group of $X$. Then $X^{(0)}/G$ is the set of objects of a categorical Garside structure. Moreover, for any subgroup $H$ of $G$ acting freely on $X$, the group $H \times \mathbb{Z}$ is weakly Garside.

Proof. According to the proof of Theorem 5.1, the lattice $L \subset X^{(0)} \times \mathbb{Z}/n\mathbb{Z}$ is a Garside lattice. So according to Theorem 4.7, we deduce that $X^{(0)}$ is the set of objects of a categorical Garside structure on which $G$ acts by automorphisms. Hence $X^{(0)}/G$ is the set of objects of a categorical Garside structure.

Moreover, given any subgroup $H$ of $G$ acting freely on $X$, the group $H \times \mathbb{Z}$ acts freely by automorphisms on $L$, so according to Theorem 4.8, it is a weak Garside group.

Example. For instance, the Bruhat-Tits building of $\text{PGL}(n, \mathbb{K})$, for a non-Archimedean valued field $\mathbb{K}$, may be described as the categorical Garside structure associated to the following Garside germ $(\mathcal{C}, S)$. The category $\mathcal{C}$ has one object, and the set of simple morphisms $S$ coincide with the poset of vector subspaces of $k^n$, where $k$ is the residue field. The partial composition of morphisms coincides with the natural inclusion order on $S$. If one considers the Bruhat-Tits building of $\text{SL}(n, \mathbb{K})$ instead, one may naturally consider a similar Garside structure, whose objects are $\mathbb{Z}/n\mathbb{Z}$.

Remark. In the view of [Hae21a], one may also consider the space $X$ of all convex symmetric bodies of $\mathbb{R}^n$, which can be understood as the injective hull of the symmetric space $\text{GL}(n, \mathbb{R})/\text{O}(n)$, as a "continuous" categorical structure, where the homogeneous assumption should be replaced with a graded with values in $\mathbb{R}$. Hence torsion-free subgroups of $\text{GL}(n, \mathbb{R})$ can therefore be described as "continuous" weak Garside groups.
5.2 Exotic Garside groups

In fact, we can use the previous result to produce actual Garside groups with exotic properties.

We will describe the construction of Theorem 5.1 in the more general and simple framework of a typed $\tilde{A}_2$ complex: it is a connected, simply connected CAT(0) equilateral triangle complex $X$, with a type function $\tau : X^{(0)} \rightarrow \mathbb{Z}/3\mathbb{Z}$ such that adjacent vertices have different types. Let us say that an automorphism $g$ of $X$ is type-rotating if there exists $a \in \mathbb{Z}/3\mathbb{Z}$ such that $\tau \circ g = \tau + a$.

**Theorem 5.3.** Let $X$ denote a locally finite typed $\tilde{A}_2$ complex, and let $G$ denote a group of type-rotating automorphisms of $X$ acting freely and transitively on vertices of $X$. Then a (virtually split) central extension of $G$ by $\mathbb{Z}$ is a Garside group.

**Proof.** Let $Y$ denote the flag simplicial complex with vertex set $\{(x, n) \in X^{(0)} \times \mathbb{Z} | \tau(x) \equiv n[3]\}$, with an ordered edge from $(x, n)$ to $(y, m)$ if and only if:

- either $x$ is adjacent to $y$, and $n < m < n + 3$,
- or $x = y$, and $m = n + 3$.

Note that, in case $X$ is an $\tilde{A}_2$ building, the complex $Y$ is called a building of extended type $\tilde{A}_2$. Consider the map $\ell = EY \rightarrow \mathbb{Z}_{>0}$ sending the edge between $(x, n)$ and $(y, m)$ to $m - n$. Consider the automorphism $\varphi : (x, n) \mapsto (x, n + 3)$ of $Y$. We see easily that $Y$ is a Garside flag complex.

Let $H$ denote the group of automorphisms of $Y$ commuting with $\varphi$, whose induced action on the quotient $X$ coincides with $G$. Note that since we assume the action of $G$ is type rotating, the natural homomorphism $H \rightarrow G$ is surjective. Then the group $H$ is a central extension of $G$ by $\mathbb{Z}$. It is easy to see that $H$ acts freely and transitively on vertices of $Y$, and commuting with the automorphism $\varphi$. According to Theorem 4.8, we see that $H$ is a Garside group.

**Corollary 5.4.** There exists a non-linear finite type Garside group $G_1$.

There exists a finite type Garside group $G_2$ without any non-trivial action on a Gromov-hyperbolic space. Moreover, any normal subgroup of $G_2$ is either finite, or has virtually cyclic quotient.

In addition, for each of these Garside groups $G_i$, the central quotient $G_i/\mathbb{Z}(G_i)$ has Lafforgue’s strong Property (T).

**Proof.** According to [Rad17] Theorem 1.1], there exists an exotic locally finite $\tilde{A}_2$ building $X_1$ with a group $H_1$ of type-rotating automorphisms of $X_1$ acting freely and transitively on vertices of $X_1$. According to Theorem 5.3, there exists a central extension $G_1$ of $H_1$ by $\mathbb{Z}$ which is a finite type Garside group. According to [BCL10], the group $H_1$ is not linear. Note that the group $G_1$ has an index 3 subgroup $G_1'$ isomorphic to the split central extension $H_1' \times \mathbb{Z}$, where $H_1'$ is the index 3 type-preserving subgroup of $H_1$. Since $H_1'$ is not linear, $G_1'$ is not linear.

According to [CMSZ93a][CMSZ93b], there are many examples of algebraic locally finite $\tilde{A}_2$ building $X_2$ with a group $H_2$ of type-rotating automorphisms of $X_2$ acting freely and transitively on vertices of $X_2$. According to Theorem 5.3, there exists a central extension $G_2$ of $H_2$ by $\mathbb{Z}$ which is a finite type Garside group. According to [Hae20], the group $H_2$ has only elliptic and parabolic action by isometries on Gromov-hyperbolic spaces. We deduce that any action of $G_2$ on a Gromov-hyperbolic space is trivial: more precisely, it is elliptic, parabolic or linear.

Finally, according to [DLNW23], the groups $H_1$ and $H_2$ satisfy Lafforgue’s strong Property (T).
Note that it is believed that lattices in exotic \( \tilde{A}_2 \) buildings also satisfy a hyperbolic rigidity, either by adapting the proof from [Hae20], or by using the powerful theory developed by Bader and Furman (see [BF14]).

5.3 Weakly modular thickenings of buildings

Here we prove Theorem C, showing that Conjecture B is true for many buildings.

Let \( \tilde{X} \) denote the 1-skeleton of a building. We say that a graph \( \Gamma \) is an equivariant thickening of \( \tilde{X} \) if \( \Gamma \) contains \( \tilde{X} \) as a subgraph, \( \tilde{X} \) is quasi-isometric to \( \Gamma \), and the automorphism group of \( \tilde{X} \) extends as an automorphism group of \( \Gamma \). Combining our result for Euclidean buildings of type \( \tilde{e}A_n \) with other results, we deduce the following.

**Theorem 5.5.** The following buildings have equivariant weakly modular thickenings.

- Any spherical building.
- Any Euclidean building of type \( \tilde{e}A_n, \tilde{B}_n, \tilde{C}_n, \tilde{D}_n \) or \( \tilde{G}_2 \).
- Any right-angled building.
- Any rank 3 building.
- Any Gromov-hyperbolic building.

**Proof.**

- The spherical case is trivial, since the full graph on the \( \tilde{X} \) is a weakly modular equivariant thickening.

- If \( \tilde{X} \) is a Euclidean building of type \( \tilde{e}A_n \), Theorem 5.1 states that \( \tilde{X} \) is weakly modular, without the need of a thickening. According to [Hae21a], any Euclidean building of type \( \tilde{B}_n, \tilde{C}_n \) or \( \tilde{D}_n \) has an equivariant thickening which is Helly, thus weakly modular.

- Any right-angled building has a 1-skeleton which is a median graph, and is in particular weakly modular.

- According to [PS16], any rank 3 building which is not of type \( (2,4,4), (2,4,5) \) or \( (2,5,5) \) has an equivariant thickening which is systolic, thus weakly modular. The type \( (2,4,4) \) is the affine type \( \tilde{C}_2 \), which is already covered. The types \( (2,4,5) \) or \( (2,5,5) \) are of hyperbolic type, and are covered by the last case.

- Any Gromov-hyperbolic building has a cobounded Helly hull according to [Lan13], and in particular has an equivariant thickening which is weakly modular.

\( \Box \)

5.4 Weak Garside groups

Let \((\mathcal{C}, \phi, \Delta)\) be a categorical Garside structure, let \( x \) be an object in \( \mathcal{C} \), and let \( L_x \) denote the set of morphisms from \( x \) in the groupoid \( \mathcal{G} \) associated with \( \mathcal{C} \).

**Definition 5.6.** Let us consider a weak Garside group \( G_x \) associated to an object \( x \) in a categorical Garside structure \((\mathcal{C}, \phi, \Delta)\) and set of simple morphisms \( S \). The weak Cayley graph \( \text{Cay}(G_x, S) \) of \( G_x \) is the graph with vertex set \( L_x \), the set of morphisms from \( x \), with an edge between \( f \) and \( g \) if there exists a simple morphism \( s \in S \) such that \( f = gs \) or \( g = fs \). The Garside automorphism of \( \text{Cay}(G_x, S) \) is the map \( f \mapsto \Delta_x \phi(f) \). Note that the group \( G_x \) acts on \( \text{Cay}(G_x, S) \) by precomposition.
Theorem 5.7. Let $G_x$ denote a weak Garside group, with set of simple morphisms $S$. Then the weak Cayley graph $\text{Cay}(G_x, S)$ and its quotient $\text{Cay}(G_x, S)/\langle \Delta_x \rangle$ are weakly modular graphs.

Proof. By Proposition 4.5, $L_x$ is a Garside lattice, and one remarks that the edge relation on $\text{Cay}(G_x, S)$ coincides with the one given in Section 3, and the edge relation on the quotient $\text{Cay}(G_x, S)/\langle \Delta_x \rangle$ coincides with the one given in Section 2.

5.5 Artin complexes

Theorem 5.8. Let $X$ be the Artin complex of the Artin-Tits group of type $\tilde{A}_{n-1}$ (cf. Section 1.1). Then the 1-skeleton of $X$ is a weakly modular graph.

Proof. Let $A_i$ be as defined in Section 1.1. We represent vertices of $X$ by left cosets of the form $gA_i$. Let $P = X^{(0)} \times \mathbb{Z}$. We put a weak order on $P$ as follows. Define $(g_1A_{i_1}, n) \leq (g_2A_{i_2}, m)$ if one of the following holds:

1. $n = m$, $g_1A_{i_1} \cap g_2A_{i_2} \neq \emptyset$ and $i_1 \leq i_2$;
2. $m = n + 1$, $g_1A_{i_1} \cap g_2A_{i_2} \neq \emptyset$ and $i_2 \leq i_1$.

Note that $(P, \leq)$ is a weakly ordered set. If $(x, n) \leq (y, m)$, then $x$ and $y$ are adjacent in $X$. Conversely, if $x$ and $y$ are adjacent, then either $(x, n) \geq (y, m)$ or $(x, n) \geq (y, m - 1)$. As $X^{(1)}$ is connected, we deduce that for any $(x, n) \in P$ and any $y \in X$, there exists $m \in \mathbb{Z}$ that we can find a weak chain from $(y, m)$ to $(x, n)$. The weakly ordered set $P$ is homogeneous, indeed, for $a \leq b$ in $P$, we can define the length function $\ell(a \leq b)$ to be the maximal length of chains in $P$ from $a$ to $b$.

Let $\varphi : P \to P$ be the map sending $(x, n)$ to $(x, n + 1)$. Then $\varphi$ is an automorphism of weakly ordered set. Then $\varphi$ generates the weak order $\leq$. Theorem 1.3 (2) holds true by [Hac21b, Theorem 4.3]. Thus Theorem 1.3 implies $\leq$ generates a partial order $\leq_t$ on $P$. The previous paragraph implies any two elements in $(P, \leq_t)$ have lower bound, thus $(P, \leq_t)$ is a homogeneous lattice by Theorem 1.3. As $(P, \leq_t)$ is homogeneous, we know any lower bounded subset in $(P, \leq_t)$ has a meet and any upper bounded subset in $(P, \leq_t)$ has a join. Now the automorphism $\varphi$ gives an action of $\mathbb{Z}$ on $(P, \leq_t)$. The previous paragraph also implies for any $a, b \in (P, \leq_t)$, there exists $k \in \mathbb{Z}$ such that $-k \cdot a \leq b \leq k \cdot a$. Note that $X^{(1)}$ coincides with the quotient graph of $(P, \leq_t)$ by $\mathbb{Z}$ as defined in Section 2. Thus we are done by Theorem 2.1.

5.6 Arc complexes

The following is nothing more than a topological description of the Artin complex of the Artin-Tits group of type $\tilde{A}_{n-1}$. Let $\Sigma$ denote a 2-sphere with $n + 2$ punctures $\{N, S, p_1, \ldots, p_n\}$ with two distinguished punctures $N, S$ which could thought of as the North pole and the South pole of $\Sigma$. The punctures $p_1, \ldots, p_n$ may be thought as cyclically ordered on the equator of the 2-sphere.

Let $A(\Sigma)$ denote the following simplicial complex. Its vertex set consists of isotopy classes of arcs in $\Sigma$ from $N$ to $S$. Two vertices are adjacent if they can be realized disjointly. Then $A(\Sigma)$ is the associated flag simplicial complex, see Figure 1. According to [Wah08, Lemma 2.5], this arc complex $A(\Sigma)$ is contractible.
Theorem 5.9. The arc complex $\mathcal{A}(\Sigma)$ is a weakly modular graph.

Proof. Let us consider the cyclic cover $\tilde{\Sigma}$ of $\Sigma$ over the set of poles $\{N, S\}$. More precisely, consider the group morphism $\psi : \pi_1(\Sigma) \to \mathbb{Z}$ sending a loop around $N$ to $+1$, a loop around $S$ to $-1$, and a loop around any $p_i$ to $0$. The cyclic covering $\tilde{\Sigma}$ of $\Sigma$ associated to $\text{Ker } \psi$ is homeomorphic to a 2-sphere, with 2 distinguished punctures denoted $N, S$, and infinitely many punctures forming $n \phi$-orbits $\{\phi^k(\hat{p}_i), 1 \leq i \leq n, k \in \mathbb{Z}\}$, where $\phi$ is a generator of the deck transformation group of $\tilde{\Sigma}$ and $\hat{p}_i$ is a lift of $p_i$ in $\tilde{\Sigma}$, see Figure 2.

Let us consider the set $P$ of isotopy classes of arcs $a$ from $N$ to $S$ in $\tilde{\Sigma}$, which are lifts of arcs in $\mathcal{A}(\Sigma)$. There is an induced induced action of $\phi$ on $P$.

We will put a weak order on $P$ as follows. Say that $a \leq a'$ if $a' = a$, $a' = \phi(a)$, or $a'$ is disjoint from $\phi(a)$, and $a'$ separates $a$ and $\phi(a)$. Since the arc complex $\mathcal{A}(\Sigma)$ is connected, we deduce that $\phi : P \to P$ generates $\leq$.

We will show that we can apply Theorem 1.3.

1. By definition of the weak order, for any $a \in P$, we have $\phi(a) > a$.

2. Since the arc complex $\mathcal{A}(\Sigma)$ is simply connected, we deduce that $X_\phi$ is simply connected.

3. For any $a \in P$, the interval $[a, \phi(a)]$ is isomorphic to the lattice of cut-curves, see [Bes03] and [Hae21b] for the proof of the lattice property due to Crisp and McCammond (unpublished). The lattice property is quite geometric in this case: roughly speaking, the meet of two arcs $b, c$ in the interval $[a, \phi(a)]$ may be defined as the "westmost" part of $b \cup c$, see Figure 3.
Figure 3: The lattice property: the meet $b \land c$ and the join $b \lor c$ of the two arcs $b, c$ in the interval $[a, \phi(a)]$.

According to Theorem 1.3, we deduce that $(P, \preceq_t)$ is a lattice. Moreover, given any $a, a' \in P$, there exists $k \in \mathbb{N}$ such that $a \preceq_t \phi^k(a')$. So we can apply Theorem 2.1 and deduce that the quotient graph, which coincides with $\mathcal{A}(\Sigma)$, is a weakly modular graph.

It turns out that this arc complex coincides with the above Artin complex.

**Proposition 5.10.** The arc complex $\mathcal{A}(\Sigma)$ is isomorphic to the Artin complex of the affine Artin-Tits group of type $A(A_{n-1})$.

**Proof.** Note that the mapping class group $G = \text{Mod}(\Sigma, \{N, S\})$ fixing the set of North and South poles act by simplicial automorphisms on $\mathcal{A}(\Sigma)$. According to [CC05], $G$ is isomorphic to the semidirect product $A(A_{n-1}) \rtimes \mathbb{Z}/n\mathbb{Z}$, where $A(A_{n-1})$ is the affine Artin group of type $A_{n-1}$ and $\mathbb{Z}/n\mathbb{Z}$ acts by rotations on the defining graph of $A(A_{n-1})$.

Note that the subgroup $A = A(A_{n-1})$ of $G$ acts on $\mathcal{A}(\Sigma)$, with strict fundamental domain the $n$-simplex consisting of the $n$ meridians $a_1, \ldots, a_n$ "separating" the points $p_1, \ldots, p_n$ in this cyclic order. More precisely, $a_i$ crosses the equatorial arc between $p_i$ and $p_{i+1}$, see Figure 4.

Figure 4: The fundamental simplex $a_1, a_2, \ldots, a_n$ of the arc complex.

Note that the stabilizer of each $a_i$ is naturally isomorphic to the $n$-strand braid group, generated by $n - 1$ consecutive standard generators of $A(A_{n-1})$. Similarly, the stabilizer
of \((a_i, \ldots, a_k)\) is isomorphic to the corresponding product of braid groups. We deduce that both \(A(\Sigma)\) and the Artin complex of affine type \(A(\tilde{A}_{n-1})\) are universal covers of the simplex of groups defining the Artin complex of affine type \(A(\tilde{A}_{n-1})\).

References

[AB08] Peter Abramenko and Kenneth S. Brown. Buildings. Theory and Applications. Grad. Text. Math. Springer, 2008.

[BC96] Hans-Jürgen Bandelt and Victor Chepoi. A helly theorem in weakly modular space. Discrete Mathematics, 160(1-3):25–39, 1996.

[BC06] David Bessis and Ruth Corran. Non-crossing partitions of type \((e, e, r)\). Advances in Mathematics, 202(1):1–49, 2006.

[BCC+13] Boštjan Brešar, Jérémie Chalopin, Victor Chepoi, Tanja Gologranc, and Damian Osajda. Bucolic complexes. Advances in mathematics, 243:127–167, 2013.

[BCL16] Uri Bader, Pierre-Emmanuel Caprace, and Jean Lacroix. On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. 2016. arXiv:1608.06265.

[Bes99] Mladen Bestvina. Non-positively curved aspects of Artin groups of finite type. Geom. Topol., 3:269–302, 1999.

[Bes03] David Bessis. The dual braid monoid. Ann. Sci. École Norm. Sup. (4), 36(5):647–683, 2003.

[Bes06] David Bessis. Garside categories, periodic loops and cyclic sets. arXiv preprint math/0610778, 2006.

[Bes15] David Bessis. Finite complex reflection arrangements are \(K(\pi, 1)\). Annals of mathematics, pages 809–904, 2015.

[BF14] Uri Bader and Alex Furman. Boundaries, rigidity of representations, and Lyapunov exponents. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, pages 71–96. Kyung Moon Sa, Seoul, 2014.

[Blu21] Martin Axel Blufstein. Parabolic subgroups of two-dimensional Artin groups and systolic-by-function complexes. arXiv preprint arXiv:2108.04929, 2021.

[CC05] Ruth Charney and John Crisp. Automorphism groups of some affine and finite type Artin groups. Math. Res. Lett., 12(2-3):321–333, 2005.

[CCG+20] Jérémie Chalopin, Victor Chepoi, Anthony Genevois, Hiroshi Hirai, and Damian Osajda. Helly groups. arXiv preprint arXiv:2002.06895, 2020.

[CCHO21] Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, and Damian Osajda. Weakly modular graphs and nonpositive curvature. Mem. Amer. Math. Soc., 2021.

[CD95] Ruth Charney and Michael W. Davis. The \(K(\pi,1)\)-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc., 8(3):597–627, 1995.
[Che89] VD Chepoi. Classification of graphs by means of metric triangles. *Metody Diskret. Analiz*, 49:75–93, 1989.

[Che00] Victor Chepoi. Graphs of some cat (0) complexes. *Advances in Applied Mathematics*, 24(2):125–179, 2000.

[CLL15] Ruth Corran, Eon-Kyung Lee, and Sang-Jin Lee. Braid groups of imprimitive complex reflection groups. *Journal of Algebra*, 427:387–425, 2015.

[CMSZ93a] Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa. Groups acting simply transitively on the vertices of a building of type $\tilde{A}_2$. I. *Geom. Dedicata*, 47(2):143–166, 1993.

[CMSZ93b] Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa. Groups acting simply transitively on the vertices of a building of type $\tilde{A}_2$. II. The cases $q = 2$ and $q = 3$. *Geom. Dedicata*, 47(2):167–223, 1993.

[CMV20] María Cumplido, Alexandre Martin, and Nicolas Vaskou. Parabolic subgroups of large-type Artin groups. *arXiv preprint arXiv:2012.02693*, 2020.

[CP05] John Crisp and Luis Paris. Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups. *Pacific journal of mathematics*, 221(1):1–27, 2005.

[CP11] Ruth Corran and Matthieu Picantin. A new garside structure for the braid groups of type $(e, e, r)$. *Journal of the London Mathematical Society*, 84(3):689–711, 2011.

[CW17a] Matthieu Calvez and Bert Wiest. Acylindrical hyperbolicity and Artin-Tits groups of spherical type. *Geom. Dedicata*, 191:199–215, 2017.

[CW17b] Matthieu Calvez and Bert Wiest. Curve graphs and Garside groups. *Geom. Dedicata*, 188:195–213, 2017.

[Deh15] Patrick Dehornoy. *Foundations of Garside theory*, volume 22 of *EMS Tracts in Mathematics*. European Mathematical Society (EMS), Zürich, 2015. With François Digne, Eddy Godelle, Daan Krammer and Jean Michel, Contributor name on title page: Daan Kramer.

[Del72] Pierre Deligne. Les immeubles des groupes de tresses généralisés. *Inventiones mathematicae*, 17(4):273–302, 1972.

[Dig06] François Digne. Présentations duales des groupes de tresses de type affine a. *Commentarii Mathematici Helvetica*, 81(1):23–47, 2006.

[Dig12] François Digne. A garside presentation for artin-tits groups of type $\tilde{C}_n$. In *Annales de l’Institut Fourier*, volume 62, pages 641–666, 2012.

[dlSLW23] Mikael de la Salle, Jean Lécureux, and Stefan Witzel. Strong property (T), weak amenability and $\ell^p$-cohomology in $\tilde{A}_2$-buildings. *Ann. Sci. école Norm. Sup.*, 2023.

[Gen17] Anthony Genevois. Cubical-like geometry of quasi-median graphs and applications to geometric group theory. *arXiv preprint arXiv:1712.01618*, 2017.

[Gro87] M. Gromov. Hyperbolic groups. In *Essays in group theory*, volume 8 of *Math. Sci. Res. Inst. Publ.*, pages 75–263. Springer, New York, 1987.
[Hae20] Thomas Haettel. Hyperbolic rigidity of higher rank lattices. *with an appendix by Vincent Guirardel et Camille Horbez, Ann. Sci. Éc. Norm. Supér. (2)*, 53:439–468, 2020.

[Hae21a] Thomas Haettel. Injective metrics on buildings and symmetric spaces. *arXiv:2101.09367*, 2021.

[Hae21b] Thomas Haettel. Lattices, injective metrics and the \( k(\pi,1) \) conjecture. *arXiv preprint arXiv:2109.07891*, 2021.

[Hir20] Hiroshi Hirai. Uniform modular lattices and affine buildings. *Adv. Geom.*, 20(3):375–390, 2020.

[HO19] Jingyin Huang and Damian Osajda. Helly meets Garside and Artin. *arXiv:1904.09060*, 2019.

[HO20] Jingyin Huang and Damian Osajda. Large-type artin groups are systolic. *Proceedings of the London Mathematical Society*, 120(1):95–123, 2020.

[HO21] Thomas Haettel and Damian Osajda. Locally elliptic actions, torsion groups, and nonpositively curved spaces. *arXiv preprint arXiv:2110.12431*, 2021.

[Hod20] Nima Hoda. Crystallographic Helly groups. *arXiv preprint arXiv:2010.07407*, 2020.

[JS06] Tadeusz Januszkiewicz and Jacek Światkowski. Simplicial nonpositive curvature. *Publications Mathématiques de l’Institut des Hautes Études Scientifiques*, 104(1):1–85, 2006.

[Lan13] Urs Lang. Injective hulls of certain discrete metric spaces and groups. *J. Topol. Anal.*, 5(3):297–331, 2013.

[McC15] Jon McCammond. Dual euclidean artin groups and the failure of the lattice property. *Journal of Algebra*, 437:308–343, 2015.

[MS17] Jon McCammond and Robert Sulway. Artin groups of euclidean type. *Inventiones mathematicae*, 210(1):231–282, 2017.

[Mun19] Zachary Munro. Weak modularity and \( \tilde{A}_n \) buildings. *arXiv preprint arXiv:1906.10259*, 2019.

[PS16] Piotr Przytycki and Petra Schwer. Systolizing buildings. *Groups Geom. Dyn.*, 10(1):241–277, 2016.

[Rad17] Nicolas Radu. A lattice in a residually non-Desarguesian \( \tilde{A}_2 \)-building. *Bull. Lond. Math. Soc.*, 49(2):274–290, 2017.

[Soe21] Mireille Soergel. Systolic complexes and group presentations. *arXiv preprint arXiv:2105.01345*, 2021.

[Tit66] J. Tits. Normalisateurs de tores. I. Groupes de Coxeter étendus. *J. Algebra*, 4:96–116, 1966.

[VdL83] Harm Van der Lek. The homotopy type of complex hyperplane complements. 1983. PhD thesis, Radboud University of Nijmegen.

[Wah08] Nathalie Wahl. Homological stability for the mapping class groups of non-orientable surfaces. *Invent. Math.*, 171(2):389–424, 2008.