Treatment modalities and evaluation models for periodontitis

Mohammad Tariq, Zeenat Iqbal, Javed Ali, Sanjula Baboota, Sushama Talegaonkar, Zulfiqar Ahmad, Jasjeet K Sahni

Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India

Abstract

Periodontitis is the most common localized dental inflammatory disease related with several pathological conditions like inflammation of gums (gingivitis), degeneration of periodontal ligament, dental cementum and alveolar bone loss. In this perspective, the various preventive and treatment modalities, including oral hygiene, gingival irrigations, mechanical instrumentation, full mouth disinfection, host modulation and antimicrobial therapy, which are used either as adjunctive treatments or as stand-alone therapies in the non-surgical management of periodontal infections, have been discussed. Intra-pocket, sustained release systems have emerged as a novel paradigm for the future research. In this article, special consideration is given to different locally delivered anti-microbial and anti-inflammatory medications which are either commercially available or are currently under consideration for Food and Drug Administration (FDA) approval. The various in vitro dissolution models and microbiological strain investigated to impersonate the infected and inflamed periodontal cavity and to predict the in vivo performance of treatment modalities have also been thrashed out. Animal models that have been employed to explore the pathology at the different stages of periodontitis and to evaluate its treatment modalities are enlightened in this proposed review.

Key words: Chemotherapeutic agents, intra-pocket devices, mechanical therapies, oral hygiene

INTRODUCTION

Periodontal disease is the most common localized dental inflammatory disease caused by bacterial infection of the periodontal cavity associated with subgingival plaque.[1] This is often associated with diverse pathological conditions like inflammation of gums (gingivitis), degeneration of periodontal ligament and dental cementum and alveolar bone loss.[2] Gingivitis is the initial stage of disease which may or may not progress into severe condition like periodontitis which shows evidences of cavity formation, loss of clinical attachment level and degeneration of alveolar bone.[3]

There is an abundance of literature reports of bacteria being the only microbes responsible for the occurrence of periodontal disease. They are believed to release enzymes and toxins that destroy the periodontium.[4] However, some of the recent studies have offered evidences suggesting that the host’s immune inflammatory responses also play an important role in the destruction of periodontal attachment structures.[5] The host responses results in a cascade of events leading to connective tissue and alveolar bone loss.[6] The series of events are often initiated from the lipopolysaccharides present in bacteria that stimulate the release of cytokines.[7] Cytokines are inflammatory mediators that stimulate fibroblasts and epithelial cells. These cells consequently release the prostaglandins (PGE$_2$) and matrix metalloproteinase. Prostaglandins induce the alveolar bone resorption while matrix metalloproteinase (collagenase) damages or destroys the connective tissue. In addition, interleukin-1β and tumor necrosis factor-α are other pro-inflammatory mediators which are also involved in the damage of the periodontium.[8-10]

Despite the fact that the presence of bacteria and their products are important factors to stimulate the disease, the sensitivity of the disease and its progression rate are also governed by the susceptibility of the host.[11]

Host response and increased patient’s susceptibility to periodontitis can be affected by a number of environmental and acquired risk factors like heredity, smoking, hormonal variation (during pregnancy, menopause), systemic diseases (Marfan’s and Ehlers-Danlos syndromes, diabetes, osteoporosis, HIV, neutropenias), stress, nutritional deficiencies, medications
[calcium channel blockers, immunomodulatory agents, anticonvulsants] and poor oral hygiene.\[10-12\]

These risk factors can also affect the onset, rate of progression, severity of periodontal disease and response to therapy and therefore should be evaluated so as to design treatment plan and maintenance therapy.\[1\] The susceptibility of patients to periodontitis can be reduced by modifying the risk factors by frequent dental visits, smoking cessation, intake of hormonal, calcium, biphosphonate and nutritional supplements and improved oral hygiene.\[3\]

The present review highlights the importance of oral hygiene besides providing an insight into the various conventional approaches used for the effective prevention and treatment of periodontal diseases. Over the fast few years, researchers have focused on strategies for optimizing the delivery of the drugs to the periodontal pocket for the treatment of periodontal diseases. The various intrapocket drug delivery systems developed for the localized delivery of therapeutic agents, thereby obviating the shortcomings associated with the systemic delivery of antimicrobial agents used in the treatment of periodontal diseases, have also been discussed. A thorough knowledge of the various evaluation techniques used for the testing of developed periodontal drug delivery systems is a very important aspect for confirming the usefulness and commercial viability of the developed dosage form. Almost all the reviews published so far only concentrate on the various delivery systems used for the treatment of periodontal diseases, with no mention of their evaluation strategies used. The present review, besides giving information on the various conventional approaches used for the effective prevention and treatment of periodontal diseases, describes the various in vitro models, in vivo models and anti microbial studies which have been carried out by various researchers for evaluating the efficacy of the developed periodontal dosage form.

APPROACHES FOR THE TREATMENT OF PERIODONTAL DISEASES

Periodontal disease is usually initiated by opportunistic infections. Treatment of the periodontal disease is a great challenge because the infection occurs due to bacterial biofilm which is highly resistant to the antimicrobials and host response.\[3\] Removal of the bacteria from the periodontal cavity is a tedious task and the bacteria continue to remain in the oral cavity. The severity of disease mainly depends on the bacterial components present as well as on the host response.\[1,3\]

In the initial stage of the disease, inflammation is limited to the gingiva (gingivitis) but later extends to the deeper tissues in turn leading to gingival swelling, bleeding of gums and halitosis. In the late phase of disease, the supporting collagen of periodontium begins to degenerate, resorption of alveolar bone takes place and epithelial tissue of gingiva migrates which leads to formation of pockets.\[1,3\] The choice of the treatment strategy therefore depends upon the stage of disease.

Various approaches applied for the treatment of disease include surgical intervention, mechanical therapy and use of pharmacological agents.\[3,14,15\] Medications are specifically used for better management of periodontitis and include antimicrobials that change microbial flora in periodontal milieu and host response modulating agents which modify host response like reduction of excessive enzymes level, cytokines, prostaglandins and osteoclast activity.\[16\] The anatomy of healthy, infected and diseased tooth is represented in Figure 1 and the pathogenesis of periodontal disease and possible treatments is represented in Figure 2.

The incidence of initiation and progression of periodontal diseases can be reduced by maintenance of good oral hygiene.

STRATEGIES FOR MAINTENANCE OF GOOD ORAL HYGIENE

The initial events of the disease could be often countered by following practices which assures oral hygiene.

Brushing and flossing

The first-line approach is brushing and flossing which appreciably reduces microbes in oral cavity.\[13\] The American Dental Association (ADA) recommends brushing for 2 min twice
It aids effectively in the reduction of gingivitis and in the treatment of periodontitis. However, a large part of the population does not follow the above mentioned protocol. Therefore, a large population, approximately more than 50% of adults suffer from gingivitis.

Supragingival irrigation

Supragingival irrigation potentiates the effectiveness of tooth-brushing and aids in the reduction of gingival inflammation in those patients who do not follow good oral hygiene. A positive correlation was found between supragingival irrigation, which could be either by acetyl salicylic acid (ASA) or water and the reduction in disease severity. Thus, regular supragingival irrigation with either 0.3% ASA or water besides usual oral hygiene seems to be a valuable extra periodontal supportive remedy in patients showing the signs of moderate to severe periodontitis. Antiseptic irrigations have been employed for managing plaque buildup. Peridex, Perioguard and Listrine are the antiseptic irrigations clinically approved by American Dental Association. Clinical studies have revealed other benefits of these antiseptic irrigations, such as control of halitosis, improvement in gingival health around dental implants, reduction in plaque and gingivitis in orthodontic patients.

However, the effects which can be achieved with scaling and root planning are not possible with single episodes of subgingival irrigation. Various studies have revealed that subgingival irrigation is able to decrease mean probing depths by not more than 1 mm. If root planning preceded irrigation therapy, probing depths were decreased to 2 to 3 mm. Therefore, if probing depth reduction is desired, root planning is indicated.

Mechanical therapies for the treatment of periodontal diseases

Plaque is a mixture of bacteria, minerals and some food residue.
Some plaque hardens into calculus. Often, plaque and calculus do not come off with the brush and floss and cause inflammation, an ongoing state of gingivitis.\(^\text{[38]}\)

Tooth scaling is an effective method for inhibition and cure of gingivitis. Periodontal scaling procedures include the removal of plaque, calculus and stain from the crown and root surfaces of teeth.\(^\text{[39]}\) Scaling and root planning has become the “gold standard” nonsurgical treatment of periodontitis.\(^\text{[40]}\) Several clinical investigations have indicated that it effectively reduces the microbial level in periodontal pocket and improves the clinical parameters like bleeding on probing and probing depths and clinical attachment level.\(^\text{[40]}\) Scaling and root planning may be performed using a number of dental tools, including sonic or ultrasonic instruments and hand instruments, such as periodontal scalers and curettes.\(^\text{[5]}\)

Manual scaling and root planning can often be difficult and time consuming due to the complex and unfavorable root morphology when working blindly at deep pocket sites.\(^\text{[41,42]}\) Several investigations have supported the controversy that root planning can reduce probing depths, gain clinical attachment and inhibit disease progression.\(^\text{[43]}\) Scaling and root planning is a localized treatment but is not able to get rid of the pathogenic bacteria at all times due to their presence within periodontal tissues, or in the case of deeper pockets, where the instruments are difficult to reach. As probing depth increases, manual instruments become less efficient to confiscate the root of the problem.\(^\text{[43,44]}\)

This led to the development of power-driven ultrasonic mechanical instruments that have enhanced the capability of the operator to reach into furcations more efficiently and to go through the depth of the pocket more conveniently.\(^\text{[45]}\) These instruments cause the elimination of root surface accretions with a vibrating mechanical device.\(^\text{[46]}\) Many ultrasonic scalars also include a liquid output or lavage, which aids in cooling the tool during use, as well as rinses all the unwanted materials from the teeth and gum line. The lavage can also be used to deliver antimicrobial agents.\(^\text{[46]}\)

Ultrasonic scalars have been extensively used in recent years due to their ease to use, the time advantage, a reduction in effort and stress of the operator.\(^\text{[51, 67]}\) However, several studies have also reported that the microbiological and clinical effects achieved by ultrasonic debridement are similar to those achieved by manual scaling and root planning.\(^\text{[46, 48, 69]}\)

After mechanical debridement, the microbial load drops to 0.1%.\(^\text{[50]}\) However, it recolonizes within a week this time with less pathogenic composition.\(^\text{[50]}\) In this perspective, the concept of one stage, full-mouth disinfection was introduced in 1995 for the avoidance of re-infection from microbial reservoirs and showed potential results.\(^\text{[52]}\) Objective of this concept was to eliminate or at least suppress all periodontopathogens in a very short time period not only from the periodontal pockets but also from all intraoral niches such as tongue, tonsils and mucus membrane.\(^\text{[51]}\)

One stage, full mouth disinfection comprises of combination of therapeutic efforts i.e. mechanical therapy and antimicrobial therapy.\(^\text{[53]}\) Swierkot and coworkers performed a comparative study between one-stage full-mouth disinfection (FMD), full-mouth scaling and root planning (FM-SRP) and quadrant scaling and root planning (Q-SRP) in patients with generalized chronic periodontitis. FMD group was treated as per the following design: scaling and root planning in two sessions within 24 h, one subgingival application of 1% chlorhexidine gel, brushing of dorsum of the tongue with 1% chlorhexidine gel for 1 min, spraying of each tonsil four times with 0.2% chlorhexidine spray and rinsing twice for 1 min with 0.2% chlorhexidine solution. Patients were instructed to rinse the oral cavity once daily for 30 s with 0.2% chlorhexidine solution and also spray the tonsils once daily with 0.2% spray for 14 days after the treatment. In the FM-SRP group, scaling and root planning was performed in two sessions within 24 h without antiseptics and in the Q-SRP group scaling and root planning was performed quadrant-wise in weekly intervals and no additional antiseptics were used. In this study, all three treatment modalities showed significant clinical improvement at any time. In the FM-SRP group, reduction of probing depth and bleeding on probing were significantly higher as compared to other two groups. The bacteria could be reduced in each group even though this reduction was only significant for Prevotella intermedia in the FMD group after 8 months of the treatment. All the treatment modalities (FMD, FM-SRP and Q-SRP) showed an improved clinical and microbiological profile up to 8 months, after which no significant differences were observed in any group.\(^\text{[54]}\)

The use of lasers is also being investigated as a new technique for the treatment for periodontal disease.\(^\text{[55]}\) Several features, such as ablation or vaporization, hemostasis, and sterilization effects, make this laser treatment technique as an adjunct or alternatives to conventional mechanical periodontal therapy.\(^\text{[56]}\) The CO\(_2\) and Neodymium-doped: Yttrium-Aluminum-Garnet (Nd:YAG) lasers have been approved for soft tissue treatment and Erbium–doped: Yttrium–Aluminum–Garnet (Er:YAG) laser has been introduced which can be used for periodontal hard tissues treatment such as root surface debridement, as well as soft tissue management.\(^\text{[55, 56]}\) The authors feel that more extensive research has to be carried out to confirm the usefulness of laser as a technique for treatment of periodontal diseases, especially in terms of chances of recolonization of microorganisms after laser treatment as compared to other techniques used.

Chemotherapeutic agents used for the treatment of periodontal diseases

Chemotherapeutics agents used for the treatment of periodontal diseases are discussed below.

Host modulation therapy (HMT)

Clinical data obtained from the recent research has shown that the periodontal tissue degeneration is brought about by the bacterial plaque, their toxins, and the host’s inflammation-immunity response to them.\(^\text{[58]}\) The objective of host modulatory
therapy (HMT) is to alter the host response to bring down the destruction levels. Various host modulatory agents are available, namely, doxycycline at sub-antimicrobial dose, bisphosphonates, anti-inflammatory drugs, enamel matrix derivatives and growth factors. All these agents are able to modify host-response and block the destructive aspects of the immune response. Anti-inflammatory drugs are able to inhibit the prostaglandins and cytokinins; tetracyclines are the collagenase inhibitors and bisphosphonates reduce the osteoclast cell activity. Recently, FDA approved a new therapy which involves systemic administration of drug that is to be used adjunct to scaling and root planning. It involves the systemic sub antimicrobial dose of tetracycline. Periostat, 20 mg capsule of doxycycline hyclate, is the FDA approved product which is a collagenase inhibitor and marketed for oral administration. Doxycycline hyclate is an antimicrobial agent which does not show the antibacterial activity in this dose level, but it effectively reduces the collagenase activity in patients suffering from periodontitis.

Antimicrobial therapy

The most widely used methods of controlling disease progression are the mechanical methods and surgical debridement. However, they are not efficient to remove all the microbes present in the periodontal pocket and tissues. Thus, residual microbes in the periodontal milieu re-colonize after 8 weeks of treatment. Therefore, adjunct use of chemotherapeutic agents along with mechanical and surgical debridement could be more effective.

The bacteria are the foremost etiological factor responsible for periodontal disease, and therefore the use of antimicrobial therapy along with the mechanical therapy is a good biological rationale for the treatment of the periodontal disease. Undoubtedly, a lot of valuable effects can be achieved by the systemic antimicrobial treatment.

However, currently systemic antibiotics are prescribed only for the treatment of rapidly progressing or refractory periodontitis. Multiple dosing of systemic antibiotics involves several drawbacks, which include erratic antibiotic concentration at the targeted site, a quick fall in the plasma drug concentration below the therapeutic index, and development of resistance to antibiotics. Besides this, a high antibiotic dose is required which in turn causes several side effects in patients. The above-mentioned apparent shortcomings of systemic antimicrobial treatment led to the development of interest in localized intra-pocket drug delivery systems for the treatment of periodontal diseases.

LOCALIZED INTRA-POCKET DRUG DELIVERY SYSTEMS

Intra-pocket drug delivery systems are highly attractive systems due to the following advantages: less unwanted side effects, superior worth and improved patient compliance. The charm of treating periodontal diseases by the localized drug delivery systems is based on the fact that they provide higher accessibility to the periodontal cavity and deliver drugs at bacteriostatic or bactericidal concentration at the targeted site for extended periods of time to generate the wanted clinical benefits. The local drug delivery devices, which have been approved for the treatment of periodontal diseases, are Perio chip®, Jerusalem, Israel (2.5 mg chlorhexidine gluconate, thin solid chip system), Atridox®, Fort Collins, Colo, USA (10% doxycycline hyclate, flowable polymer syringe), Actisite®, Palo Alto CA, USA (25% tetracycline fibers) and Arestin®, Warminster, Pennsylvania (1 mg minocycline hydrochloride, microspheres syringe).

The periodontal pocket provides a natural reservoir, which is easily accessible for the insertion of a delivery device. At the site of the periodontal disease, the flow rate of gingival cravicular fluid (GCF) becomes 40 times higher than in the normal condition. The GCF provides a leaching medium for the release of a drug from the dosage form and for its distribution throughout the pocket. These features, together with the fact that the periodontal diseases are localized to the immediate environment of the pocket, make the periodontal pocket a natural site for treatment with local delivery systems.

Biodegradable and biocompatible polymers of natural, synthetic or semi-synthetic origin are used for development of intrapocket drug delivery devices to meet the pharmacological and biological obligations. There are various chemotherapeutic agents, studied for localized intra pocket drug delivery systems for the treatment of periodontal diseases. The chemotherapeutic agents used include antiseptics, antimicrobials, host response modulating agents such as anti-inflammatory agents, growth factors and enamel derivative matrices. Localized intra-pocket drug delivery systems along with their structural material and chemotherapeutic agent investigated for the treatment of periodontal disease are listed in Table 1.

Despite the fact that localized intrapocket delivery systems are better than the conventional treatment options with regards to targeted delivery of the drug at the site of action, reduced dose, sustained drug action and patient compliance resulting from reduction in frequency of dosing, extensive clinical trials need to be carried out on the prepared dosage forms before any substantial conclusion can be drawn regarding the improved efficacy of these dosage form in long-term management of periodontitis as compared to the conventional therapies already available.

The success of a developed periodontal dosage form also depends on the choice of appropriate evaluation parameters and use of relevant techniques, which has been discussed below.

EVALUATION MODELS FOR PERIODONTAL DOSAGE FORMS

There are various methods which have been used for the
Dosage form	Drug	Polymer used	Ref
Semisolid systems	Gels	Tetracycline	[67]
		Tetracycline	[68]
		Saguinarium	[69]
		Metronidazole	[70]
		Metronidazole	[71]
		Doxycycline hyclate	[72]
		Doxycycline hyclate	[73]
		Isosorbide	[74]
		Chitosan	[75]
		Metronidazole	[76]
		Propolis	[77]
		Azithromycin	[78]
		Doxycycline	[79]
		Simvastatin	[80]
		Pericarp extract of	[81]
		mangostana	[82]
		Doxycycline	[83]
		Chlorhexidine	[84]
		Omnidazole	[85]
		Chlorhexidine	[86]
		Simvastatin	[87]
		Gel foam pellet	[88]
		Tetracycline and	[89]
		Bisphosphonate	[90]
		Tetracycline	[91]
		Gelatinous carrier	[92]
		RHBFGF	[93]
		Single unit solid	[94]
		Inserts	[95]
		Chips	[96]
		Chlorhexidine	[97]
		Sparfloxacin	[98]
		Chlorhexidine	[99]
		Chlorhexidine	[100]
		Chlorhexidine	[101]
		Chlorhexidine	[102]
		Chlorhexidine, Tetracycline and	
		HPC	[103]
		Doxycycline	[104]
		Chlorhexidine	[105]
		Mefenamic acid	[106]
		Tetracycline	[107]
		Chlorhexidine	[108]
		Chlorhexidine	[109]
		Chlorhexidine	[110]
		Tetracycline	[111]
		Chlorhexidine diacetate	
		Gelatin	[112]
		Green tea catechin	[113]
		Minocycline	[114]
		Silver	[115]
		Metronidazole	[116]
		Tetracycline	[117]
		Minocycline	[118]
		Tetracycline	[119]
		Minocycline	[120]
		Chlorhexidine diacetate	
		Gelatin	[121]
		Tetracycline	[122]
		Chlorhexidine	[123]
		Metronidazole	[124]
		Chlorhexidine	[125]
		Film	[126]

(Continued)
Table 1: Contd...

Dosage form	Drug	Polymer used	Ref
Biodegradable membranes	Ornidazole	PVA and Carboxymethyl chitosan	[127]
	Plant extracts	Chitosan and Pululian	[128]
	Doxycycline		[129]
	Metronidazole	PLGA	[130]
Fibers	Tetracycline HCl	CAP	[131]
	Chlorhexidine	CAP	[132]
Fibers	Tetracycline HCl	EVA	[133]
	Tetracycline		[134]
	Tetracycline		[135]
Multiparticulate solid	Minocycline	PGLA	[137]
inserts			
	Minocycline		[138]
	Natamycin	Chitosan	[139]
	Histatin peptides	PLGA	[140]
	Triclosan	Chitosan	[141]
	Bisphosphonate	PLGA	[142]
	Flurbiprofen Sodium	PLGA	[143]
	Minocycline hydrochloride		[144]
	Tetracycline	PLGA	[145]
	Doxycycline	PLGA	[146]
	Tetracycline	Pluronic F 127	[147]
	Propolis	IPM and Gelatin	[148]
	Tetracycline	PLGA	[149]
	Minocycline		[150]
Nanoparticles	Triclosan	CAP and PLGA	[155]
	leaf extract of Harungana madagascariensis	PLGA	[151]
	Antisense oligonucleotide		[152]
	2-HEMA + PEG-Dimethacrylate		
	Chitosan		[153]
Visceral systems	Triclosan	Phosphatidylinositol	[154]
	Anti-oralis		[155]
Immunoliposome	Metronidazole	PC, Cholesterol and Stearylamine	[156]
	Doxycycline	Calcium phosphate biomaterial	[157]
Miscellaneous	Osmotic slow-release system		[158]
Brushite cements	Cetylpyridinium Chloride		[159]
Mucoadhesive tablets	Eugenol		[160]
crystalline pre-concentrates	Metronidazole		[161]
Film-forming solution	Cetylpyridinium chloride		[162]
Other system	Chlorhexidine/ Acyclovir		
evaluation of efficacy of periodontal dosage forms. These models can broadly be divided into in vitro and in vivo and microbiological models.			

IN VITRO MODELS USED FOR EVALUATION OF PERIODONTAL DOSAGE FORMS

The efficacy of the delivery system depends on the release profile of drug from the formulation. *In vitro* release profile gives important information on the *in vivo* performance of the delivery system proposed for controlled release of the drugs. The most excellent dissolution method for *in vivo-in vitro* correlation is, apparently, the method that illustrates what happens *in vivo*. The *in vitro* dissolution depends on type of formulation, manufacturing process, the characteristics of the active pharmaceutical ingredients such as the solubility and dissolution rate, apparatus, dissolution parameters and dissolution medium (volume of dissolution media, pH of media). The selection of a suitable *in vitro* model must be done carefully so as to mimic as stringently as possible the *in vivo* behavior. The data obtained from the *in vitro* release for different parameters may be reliable and predestined. The periodontal pockets provide the reservoir for intra-pocket while gingival cricular fluid act as a leaching medium for the release of a drug from the dosage form and its distribution throughout the pocket. The characteristics of the gingival cricular fluid, like pH, volume, flow rate and composition can influence the dissolution profile of the drug delivery systems. Small volumes of GCF (0.04 μL) and flow rate (0.03 μL/min) were observed in healthy pockets. With respect to protein concentrations, it shows the similarity with extracellular fluid and it is thought to represent a normal extracellular transudate. In contrast to healthy site, the fluid production and flow rate become higher at inflamed site. However, the volume and fluid flow rate depends on the degree of inflammation at individual sites. Volumes of about 0.5 μL and flow rates of 0.5 μL/min and 0.33 μL/min have been reported by Hattingh and Ho and Goodson, respectively, while Cimasoni reported the flow rate at an individual site to be 150-200 μL/hr (2.5-3.33 μL/min), i.e.,
The pH of the gingival cravicular fluid also varies from 6.0 to 8.0 according to the extent of inflammation or severity of periodontal disease.\(^{(166,167)}\)

In order to mimic the inflamed periodontal cavity, selection of \textit{in vitro} model, pH and composition of dissolution media are critical parameters required to achieve a good \textit{in vitro-in vivo} correlation. With respect to the composition, serum rich media would mimic GCF, although, distilled water can also be a good alternative media as it has pH of 6.0-6.5 which is similar to the pH observed in the periodontal pocket at earlier stage of the periodontal disease (pH 6-7).\(^{(167)}\) Distilled water was also chosen as an \textit{in vitro} dissolution media in earlier studies with periocchip.\(^{(114)}\) Parthasarathy \textit{et al.} used 10 ml vial as \textit{in vitro} model and phosphate buffer pH 7.4 as the dissolution media to mimic the \textit{in vivo} condition.\(^{(101)}\) Esposito pointed out that dialysis bag could reproduce condition of a formulation applied to the periodontal cavity.\(^{(168)}\) The various intra pocket devices employed along with their \textit{in vitro} dissolution apparatus and dissolution media used to mimic the periodontal cavity are reported in Table 2.

The \textit{in vitro} methods used for evaluation of periodontal formulation provide a good idea of the release of the drug from the dosage form and its performance \textit{in vitro} under the conditions of test. However, the exact efficacy of the dosage form cannot be interpreted correctly without performing \textit{in vivo} studies in appropriate animal models. The various \textit{in vivo} models used by various researchers for evaluating the efficacy of the periodontal dosage forms are discussed below.

\textbf{IN VIVO MODELS USED FOR EVALUATION OF PERIODONTAL DOSAGE FORMS}

There are many animals which can be and have been used to investigate the pathology of the periodontal diseases and to evaluate its treatment.\(^{(177)}\) However, the data obtained from animal study may be valuable or controversial to humans because different species do not respond identically or even similarly to humans.\(^{(177)}\) But the data obtained from animal studies provides a guide to go ahead for human application. Human studies have many limitations: to evaluate the pathogenesis and its treatment modalities in human studies such as finding out level of the disease, risk factors of individual and susceptibility of disease progression have to be critically studied. Therefore, animal models are required. Before selecting the animal models, consideration should be given to the human anatomy as well as at the stage of the periodontal disease. Non human primates, rats, dogs, ferrets hamsters can be used to study the different aspects of periodontal disease and treatment with some benefits and limitations.\(^{(177)}\)

Non human primates

Considering dental formula and dental anatomy, nonhuman primates are almost similar to humans. There is no difference in histology of healthy monkey gingiva and human gingival.\(^{(177)}\) In all the stages of gingivitis, the composition of plaque flora is also comparable to humans.\(^{(178,179)}\) Cynomolgus monkey (\textit{Mecca fescicularis}) shows similarity with inflammatory infiltrate in periodontal disease to humans which makes them an appropriate model to find out the pathogenesis of periodontitis, while

Table 2: \textit{In vitro} models used for the evaluation of intra-pocket drug delivery systems developed for periodontal diseases

Dosage form	\textit{In vitro} dissolution apparatus	Dissolution media and pH	Volume of media	Ref
Chip	10 ml vial in incubator	Phosphate buffer, pH 7.8	5 ml	[11]
Strip	Bijoux bottles	Distilled water	3 ml	[103]
Wafer	Vial in KS10 orbital shaker at 250 rpm	Deionized water or human serum	1 ml	[168]
Film	Bottle in an orbital shaker at 100 rpm	Distilled water	50 ml	[111]
Film	USP xxv dissolution apparatus (Rotating paddle)	water: Ethanol mixtures 40:60	Suitable volume	[122]
Film	Diffusion cell separated by plastic membrane	Distilled water	50 mL	[169]
Fibers	Container kept on water bath shaker	2.25% glycoprotein in Alkaline borate, pH 8.1	25 ml	[170]
Fibers	Continuous flow through apparatus	2.25% glycoprotein in Alkaline borate, pH 8.1	Flow rate 0.65 mL/min	[170]
Gel	Calvea 7ST dissolution apparatus with paddle	Phosphate buffer solution		[74]
Gel	Dialysis tube in 20 ml vial	Isotonic phosphate buffer, pH 7.4	20 mL	[148]
Gel	Keshary diffusion cell	Phosphate buffer, pH 7.4	50 ml	[146]
Gel	Flow through erosion cell	Phosphate buffer, pH 7.4	Flow rate 10 mL/hr	[171]
Gel	Horizontal tube diffusion cell apparatus	20 mM Phosphate buffer solution	3 ml	[172]
Mucosahesive tablet	Basket apparatus Farmacopea ufficiale xi Ed. 100 rpm	Simulated salivary fluid		[173]
Microsphere	Dialysis bag in a conical flask at 50 rpm	Phosphate buffer, pH 7.4	50 mL	[146]
Microsporites in sol gel	Five paper mesh bag in 100 ml Duran flask	Phosphate buffer, pH 6.8	100 ml	[174]
Microsphere based chip	1.5 mL Eppendorf tubes in orbital shaker	Water, pH 6.65	1 ml	[175]
Microsphere	Dialysis membrane in vials	1wt% sodium oxide in PBS	50 ml	[178]
Nanoparticles	Specifically designed device adopted from USP apparatus 2	2% Brij solution	500 ml	[150]
Squirrel monkey (Saimiri sciureus) and marmosets show the variation in inflammatory infiltrate and these differences make them inappropriate model for the same.179,180 Squirrel monkey is an appropriate model for the study of progressive marginal periodontitis associated with traumatic injury.181 Marmosets are small non human primates with small cavity for periodontal procedure while the Cynomolgus and rhesus monkey (Mecca mulata) are large human primates suitable for experimentally induced periodontitis.182,183 Periodontal regenerative procedure and histometric analysis can be done only in monkey and dog models as they require quantifying new cementum periodontal ligament and alveolar bone formation after regenerative periodontal surgery.

Catton et al. described three types of experimentally induced periodontal lesions in non-human primates.184 In acute defect model, periodontal lesions are induced by surgical removal of bone, cementum and periodontal ligament where spontaneous regeneration of the defects occurs. The chronic defects are induced by placement of orthodontic elastics around the circumference of teeth which may take up to 6 months.184 Deep defects are found more likely in proximal sites rather than on the facial and lingual surfaces. This model has several advantages, including rapidly-produced defects which do not heal with notable amounts of spontaneous regeneration.184 Due to the possibility of obtaining block biopsies, the rhesus monkey, cynomolgus monkey, and baboons have been used to study osseointegrated oral implants. Ligature-induced periodontitis around teeth and ligature induced peri-implantitis follow similar destructive patterns.185

Although various species of non-human primates are adequate for studying different aspects of periodontal diseases, monkeys are expensive to purchase and maintain and are ferocious.179 Wild captured monkeys can also be carriers of Mycobacterium tuberculosis, Herpes Simplex Type B, Shigella species and Simian B.186 Monkeys are also susceptible to systemic infections and diseases, and create difficulties in controlling post-surgical infections and trauma.177

Rats
Rodents show the physiological change in dentination throughout the life period which leads to change in the position of teeth especially in molar teeth.187 Epithelium and connective tissue of rats are similar to humans in regard to histology, the only difference being in sulcular epithelia which is keratinized in rat.187 The inflammatory process in the rats is also different from humans.188 Gnotobiotic or germfree rats are used to study oral diseases.189 Rats showed periodontal destruction within 84 days after contamination with the Gram positive bacteria (Actinomycosis viscosus, A. israelli, streptococcus mutant) isolated from human oral cavity.189,190 Periodontal disease in rats is different from that of humans and rats are relatively resistant to periodontal disease.190 Rats fed a sucrose-rich diet show rapid bacterial plaque formation on molar fissure and inter dental space.191 In the light of the above facts, it can be concluded that rat is a suitable model for calculus and carries but not for periodontal disease. It is mainly used for oral micro flora research.192

Hamsters
Hamsters have been used to evaluate the transmissibility of periodontal disease with plaque bacteria.194 The disease can be induced by introducing isolates from infected hamsters into noninfectious hamsters and can be transmitted from generation to generation.196 Hamsters infected with cariogenic Streptococi strain develop caries and extensive periodontal disease and both the conditions can be evaluated at the same time.190 Hamsters have been used mostly for exploration of caries due to the potential of the cariogenic micro-organisms to form profuse amount of plaque and quickly develop carious lesions.186

Dogs
Beagle dogs are good candidates for studying periodontal disease progression, tissue regeneration, tissue wound recoveries and dental implants. Because of its humble nature, susceptibility to disease and identical pathogenesis to human,196-198 it may also be a valuable model for experimental periodontitis. Gingival recession is a unique character in dogs with periodontitis.197 Gingivitis in young dogs may not essentially progress into periodontitis.199 Different age groups of dogs show the variable severity and range in gingivitis and periodontitis.197 There are many features which govern conversion of gingivitis in to periodontitis.200 The induced gingivitis turns into periodontitis in young dogs by allowing the plaque accumulation.201 Ligature placement may induce the advance lesion and major tissue destruction within first 4 weeks.202 Despite close resemblance in the character of gingivitis in dogs and humans, some difference still exists in inflammatory lesions which occur mainly in the coronal portion of connective tissue at gingival margin in dogs in contrast to humans where they occur in sulcus.203 Much faster bone turnover rate and different architecture and thickness of bone limits the suitability of dogs for regression study.181

Ferrets
Ferrets have been used as a dental model and medical model.204 King et al. 1940 pointed out the similarity in periodontal disease in humans and ferrets and reported the ferrets as an animal model.205 The course of the periodontal lesion in them follows a similar path as in humans and tissue response characteristics in them are also identical in all respects to those found in human gingivitis.206 Ligature-induced periodontitis can be developed in ferrets within 28 days.206 The ferrets are a suitable model for the study of sulcus because sulcus formation is diet independent and shows resemblance with human sulcus and can be screened in living animal which is not possible in rats.204

For the evaluation of the efficacy of treatment modalities of periodontal disease, various practices have been employed. Generally, the effects of treatments are evaluated by enumerating clinical improvements and changes in the subgingival microflora.207 Clinical improvement is assessed by various indices which include, gingival and plaque index, gingival crevicular
flow rate, degree of bleeding on probing, pocket depth, and attachment level.[65,208,209] The various animal models to evaluate the effectiveness of the developed dosage form for the treatment of periodontal diseases are given in Table 3.

Besides the in vitro studies and in vivo studies conducted, a very important study for the evaluation of periodontal dosage form relates to the evaluation of antimicrobial activity of the prepared dosage form.

ANTIMICROBIAL MODELS USED FOR EVALUATION OF PERIODONTAL DOSAGE FORMS

The teeth in the oral cavity are supported by four distinct structures namely gingiva, alveolar bone, cementum and periodontal ligament.[207] A shallow gingival sulcus, less than 3 mm, exists between the gingiva and tooth at healthy sites, the size of which deepens on the disease progression.[207] The healthy gingival sulcus is not free from bacteria. Gram positive bacteria can be found within the cavity. Such bacteria are compatible with the tissue and do not cause any damage.[207] The pocket deeper than 4 mm provides the anaerobic environment which is an ideal condition for the development of the pathogenic bacteria[210] primarily Gram negative, facultative or obligate anaerobic species, major amongst which are *Bacteroides spp.*, *Fusobacterium*, *Actinobacillus*, and *Eikenella sp.*[1] A few microorganisms associated with endodontal and periodontal infections are listed in Table 4.[219,220]

Evaluation from the microbiological point of view involves assessing, changes in the subgingival microflora. There are various in vitro, in vivo and microbiological models which have been studied to evaluate the efficacy of drug delivery systems.

In vitro antimicrobial study is performed to check the efficacy of the formulation against the microorganisms. Selection of the microorganisms for the study depends on the disease. The most common micro organisms, used to check the antimicrobial efficacy of the developed formulation against periodontal diseases, are *Prevotella*, *Fusobacterium*, *Actinobacillus*, and *Eikenella spp.*, *S. aureus, E coli* and many other enlisted in Table 4. The method of microbiological study (Agar dilution technique, Broth dilution technique, Cup plate method, Turbidimetric method) depends upon the type of micro organism (aerobic or anerobic). The media chosen for the study includes media in which the microorganism shows maximum growth. Different investigators have used different methods to check the effectiveness of the formulation by using the aliquots of

Animal Model	Dosage form	Purpose of the study	Ref
Beagle dogs	Dental paste	To study the effect of topical metronidazole therapy on ligature-induced periodontitis	[210]
Film-forming solution	Subgingival biodegradable delivery system	To evaluate the in vivo efficacy of the developed formulation	[211]
Ointment	To evaluate the clinical response of periodontal pockets for bleeding on probing, probing depths and clinical attachment level	[212]	
Ointment	To examine the effects of bFGF on the regeneration of cementum and periodontal ligament in experimentally induced partial defects	[214]	
Biodegradable membrane	To evaluate the regenerative effect of a 25% doxycycline-loaded biodegradable GTR membrane (Doxym-M)	[126]	
Bioabsorbable membranes	To evaluate the regenerative potential of a metronidazole-loaded biodegradable membrane	[130]	
Gelatinous carrier	To evaluate periodontal tissue regeneration, including new bone and cementum formation, by topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2)	[88]	
Collagen gel	To examined the effects of bFGF on the regeneration of cementum and periodontal ligament in experimentally induced partial defects	[214]	
Nanoparticles	To evaluate in vivo efficacy of the developed dosage form of triclosan	[190]	
Gel	To evaluate the potential of locally injected simvastatin in human-sized periodontal defects	[79]	
--------------	-----------	----------------------	-----
Rat	Bioerodible polymer insert	To evaluate the effect of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate (β-TCP) on periodontal regeneration	[215]
Gel foam pellet	To evaluate a new class of bioerodible polymers as periodontal inserts for the controlled release of metronidazole.	[82]	
Isosorbide gel	To evaluate the combined efficacy of local delivery of alendronate and tetracyclines in reducing alveolar bone loss	[96]	
Topical	To evaluate the role of nitric oxide (NO) on bone metabolism and effect of isosorbide on periodontal disease	[74]	
Mouse	Local delivery system	To test the potential effectiveness of the developed formulation in treating periodontal disease	[216]
		To examine the effect of locally delivered antimicrobial drugs on the inflammatory response	[217]
Table 4: Microbiological strain, culture media and methods employed to assess antimicrobial activity developed dosage form for periodontal disease

Drug a/Dosage form	Micro organsisms	Culture media	Methods	Ref
Minocycline film	S. aureus	Blood agar	Cup plate method	[115]
Plant extracts	P. gingivalis and		Agar diffusion and	[128]
	A. actinomycetemcomitans		microdilution methods	
Leaf extract of H.	Lactobacillus, Streptococi and		Modified broth	[151]
madagascariensis/NPs	Actinomyces species			
Metronidazole/liposomes	S. mutans			
Amoxyciline fiber	E. coli, S. aureus, S. mutant and			
Chlorhexidine chip	B. cereus			
Chloritosan/Chitosan with	P. gingivalis			
Chlorhexidine/Gel	P. gingivalis			
Tetracycline microsphere	S. aureus			
Amoxyciline/	B fragilis, B.oralis,			
metronidazole film	P. ashacroticus, A. viscosus			
Amoxyciline/	E. coli, S. Aureus			
metronidazole film				

The in vitro release sample collected at different time intervals or by putting the dosage form directly on the media. Ahuja and coworkers performed the microbiological study to see the effectiveness of dental films containing metronidazole and amoxyciline. The efficacy of dental film was evaluated both by using in vitro release study samples collected at different time intervals and by directly putting dental film on periodontal pathogens. The study was carried out in anaerobic condition consisting of nitrogen (80%), hydrogen (10%) and carbon dioxide (10%). The microorganisms used for the study were B. fragilis, B.oralis, P. sachrolyticus, A. viscosus and E. acne. The agar dilution technique and broth dilution technique were employed. Brain heart infusion agar media was used as the growth media for microorganisms. Similar study was also carried out in S. aureus and E. coli in aerobic condition using Mueller Hinton agar as growth media. In both studies, it was found that the in vitro released samples and dental films were able to inhibit the growth of micro organisms.

The antimicrobial efficacies of tetracycline loaded microspheres and drug free microspheres were evaluated by Govender and coworkers. For the study, cup plate method was adopted and Staphylococcus aureus ATCC 29213 was chosen as the test micro-organism. The study was carried out in aerobic condition in agar media. For the evaluation purpose aliquots collected from in vitro release study of drug loaded and drug free microspheres at different time intervals were filled into the wells made into the solidified agar media plate inoculated with S. Aureus. Results indicated that drug release at different time intervals was found to be above the MIC (1 μg/ml) and effective to inhibit the growth of S. aureus.

Harungana madagascariensis has been identified to have antibacterial, antifungal, and antiviral activity. In vitro bactericidal activity of the H. madagascariensis leaf extract (HLE) on the oral bacterial strains is mainly implicated in dental caries and gingivitis infections. The potential of HLE antibacterial effects using the poly (D, L-lactide-co-glycolide) nanoparticles [PLG-NP] was investigated. Antimicrobial efficacies of Harungana leaf extract (HLE) and HLE loaded NPs were evaluated on different microorganisms using different growth media for individual microorganisms, namely Columbia blood agar for Streptococcus and Actinomyces species; MRS agar medium for Lactobacillus species; Triptych Soy agar for Fusobacterium, Prevotella and Propionibacterium species. For the purpose of this study, serial dilutions in the concentration range 5-500 μg/ml of HLE and HLE PLGA NPs were prepared in nutrient broth. 100 μl of bacterial suspension was put in the wells of microtiter plate along with 100 μl of each serial dilution of HLE or HLE PLGA NPs or HLE free PLGA NPs. Every track of the microtiter plate enclosed 100 μl bacterial suspension and 100 ml plant extract dilution, or 100 μl HLE loaded PLG-NP dilution, or HLE unloaded PLG-NP (control). Plates were incubated for 24 h at 38°C in the environment of carbon dioxide. Each track of microtiter plate was inoculated on the plates of respective media and the plates were incubated for 48 h in incubator. The antimicrobial results obtained from the study showed that HLE-PLG-NPs have a superior bactericidal activity as compared to the HLE solution against different species except the S. mutans.

CONCLUSION

Periodontitis is an inflammatory disease caused primarily by the periodontal plaque bacteria, although the host immune responses also play an important role. With the advent of concept of delivery of systemic antibiotics as intrapocket devices for the treatment of periodontitis, research has been directed to develop and patent more physiologically acceptable and commercially feasible drug delivery systems as an adjunct to the conventional surgical and nonsurgical treatments for periodontal infections.

REFERENCES

1. Haffajee AD, Socransky SS. Attachment level changes in destructive periodontal diseases. J Clin Periodontol
24. Ciancio SG, Lauciello F, Shibly O, Vitello M, Mather M. The effect of an antiseptic mouthrinse on implant maintenance: Plaque and peri-implant gingival tissues. J Periodontol 1995;66:962-5.

25. Greenstein G. Effects of subgingival irrigation on periodontal status. J Periodontol 1987;58:827-36.

26. Shiloah J, Hovius LA. The role of subgingival irrigations in the treatment of periodontitis. J Periodontol 1993;64:835-43.

27. Lang NP, Raber K. Use of oral irrigators as vehicles for the application of antimicrobial agents in chemical plaque control. J Clin Periodontol 1981;8:177-88.

28. Lang NP, Ramseir-Grossman K. Optimal dosage of chlorhexidine digluconate in chemical plaque control when applied by an oral irrigator. J Clin Periodontol 1981;8:189-202.

29. Fiennig TG, Newman MG, Doherty FM, Grossman E, Meckel AH, Bakdash MB. Supragingival irrigation with 0.06% chlorhexidine in naturally occurring gingivitis. I. 6 month clinical observations. J Periodontol 1990;61:112-7.

30. Boyd RL, Hollander BN, Eakle WS. Comparison of subgingivally placed cannula oral irrigator tip with a supragingivally placed standard irrigator tip. J Clin Periodontol 1992;19:340-4.

31. Greenstein G. Effects of subgingival irrigation on periodontal status. J Periodontol 1987;58:827-36.

32. Greenstein G. Research, Science and Therapy Committee of the American Academy of Periodontology. The Role of supra- and subgingival irrigation in the treatment of periodontal diseases. J Periodontol 2005;76:2015-27.

33. Listgarten MA, Grossberg D, Schwimer C, Vito A, Gaffar A. Effect of subgingival irrigation with tetracattesium peroxydiphosphate on scaled and untreated periodontal pockets. J Periodontol 1989;60:4-11.

34. Southard SR, Drisko CL, Killoy WJ, Cobb CM, Tira DE. The effects of 2% chlorhexidine digluconate irrigation on the levels of Bacteroides giaingivalis in periodontal pockets. J Periodontol 1989;60:302-9.

35. Lander PE, Newcomb GM, Seymour GJ, Powell RN. The antimicrobial and clinical effects of a single subgingival irrigation of chlorhexidine in advanced periodontal lesions. J Clin Periodontol 1986;13:74-80.

36. Watts EA, Newman HN. Clinical effects on chronic periodontis of a simplified system of oral hygiene including subgingival pulsed jet irrigation with chlorhexidine. J Clin Periodontol 1986;13:666-70.

37. MacAlpine R, Magnusson I, Kiger R, Crigger M, Garrett S, Egelberg J. Antimicrobial irrigation of deep pockets to supplement oral hygiene instruction and root debridment. I. Biweekly irrigation. J Clin Periodontol 1985;12:568-77.

38. Marsh PD. Dental plaque as a biofilm and a microbial community-implications for health and disease. BMC Oral Health 2006;6(Suppl. 1):S14.

39. Giusto T. Non-surgical vs. surgical periodontal therapy. New York, USA: SUNY Stonybrook; 1997: p. 1.

40. Cobb CM. Non-surgical pocket therapy: Mechanical. Ann Periodontal 1996;1:443-90.

41. Obeid PR, D’Hooore W, Bercy P. Comparative clinical responses related to the use of various periodontal instrumentation. J Clin Periodontol 2004;31:193-9.

42. Serino G, Rosling B, Ramberg P, Socransky SS, Lindhe J. Initial outcome and longterm effect of surgical and nonsurgical treatment of advanced periodontal disease. J Clin Periodontol 2001;28:910-6.

43. Cugini MA, Haffajee AD, Smith C, Kent RL Jr, Socransky SS. The effect of scaling and root planing on the clinical and microbiological parameters of periodontal diseases: 12-month results. J Clin Periodontol 2000;27:30-6.
and disadvantages. J Clin Periodontol 1990;17:479-93.

45. Clifford LR, Needleman IG, Chan YK. Comparison of periodontal pocket penetration by conventional and microtetrinual inserts. J Clin Periodontol 1999;26:124-30.

46. D’Ercole S, Piccolomini R, Capaldo G, Catamo G, Perinetti G, Guida L. Effectiveness of ultrasonic instruments in the therapy of severe periodontitis: A comparative clinical-microbiological assessment with curettes. New Microbiol 2006;29:101-10.

47. Kishida M, Sato S, Ito K. Effects of a new ultra-sonic scaler on fibroblast attachment to root surfaces: A scanning electron microscopy analysis. J Periodontal Res 2004;39:111-9.

48. Cobb CM. Clinical significance of non-surgical periodontal therapy: An evidence-based perspective of scaling and root planing. J Clin Periodontol 2002;29(Suppl. 2):6-16.

49. Sculean A, Schwarz F, Berakdar M, Romanos GE, Brexc M, Willershausen B. Non-surgical periodontal treatment with a new ultrasonic device (Vector-ultrasonic system) or hand instruments. J Clin Periodontol 2004;31:428-33.

50. Goodson JM, Tanner A, McArdle S, Dix K, Watanabe SM. Multicentre evaluation of tetracycline fibre therapy. III. Microbiological response. J Periodontal Res 1991;26:440-51.

51. Harper DS, Robinson PJ. Correlation of histometric, microbial and clinical indicators of periodontal disease indicators status before and after root planning. J Clin Periodontol 1987;14:190-6.

52. Koshy G, Corbet EF, Ishikawa I. A full-mouth disinfection insert for a controlled release of metronidazole. Pharm Res 1996;13:1734-8.

53. Maze GI, Reinhardt RA, Payne JB, Maze C, Baker RA, Bouwsmo OJ, et al. Gingival fluid tetracycline release from bioerodible gels. J Clin Periodontol 1996;23:133-6.

54. Polson AM, Stoller NH, Hanes PJ, Bandt CL, Garrett S, Southard GL. Two multi-center trials assessing the clinical efficacy of 5% sanguinarine in a biodegradable drug delivery system. J Clin Periodontol 1996;23:782-8.

55. Jones DS, Woolfson AD, Brown AF, O’Neill MJ. Mucocadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: In vitro release kinetics, syringeability, mechanical and mucocadhesive property. J Control Rel 1997;49:71-9.

56. Sepulveda AR, Sagar SV, Daisy H, Freitas O, Lara EH. Semisolid systems containing propolis for the treatment of periodontal disease: In vitro release kinetics, syringeability, rheological, textural, and mucocadhesive properties. J Pharm Sci 2007;96:2074-89.

57. Pradeep AR, Sagar SV, Daisy H. Clinical and microbiological effects of subgingivally delivered 0.5% azithromycin in the treatment of chronic periodontitis. J Periodontol 2004;75:1227-32.

58. Akncbay H, Senel S, Ay ZY. Application of chitosan gel in the treatment of chronic periodontitis. J Biomed Res 2008;22:890-6.

59. Leitão RF, Rocha FA, Chaves HV, Lima V, Cunha FQ, Ribeiro RA, et al. Locally applied isosorbide decreases bone resorption in experimental periodontitis in rats. J Periodontol 2004;75:1227-32.

60. Tariq, et al.: Treatment modalities and evaluation models for periodontitis

61. Pitcher GR, Newman HN, Strahan JD. Access to subgingival calculus by disclosing agents using mouthrinsing and direct microscopy analysis. J Periodontol 1996;23:133-6.

62. Gates KA, Grad H, Birek P, Lee PI. A new bioerodible polymer insert for a controlled release of metronidazole. Pharm Res 1994;11:1605-9.

63. Greenstein G. Local drug delivery in the treatment of periodontal diseases: Assessing the clinical significance of the results. J Periodontol 1996;77:665-78.

64. Listgarten MA, Lindhe J, Heldten L. Effect of tetracycline and or scaling on human periodontal disease, clinical, microbiological and histological observations. J Clin Periodontol 1978;5:246-71.

65. Lindhe J, Liljenberg B, Adielsson B. Effect of long-term tetracycline therapy on human periodontal disease. J Clin Periodontol 1983;10:590-601.

66. Goodson JM. Pharmacokinetic principles controlling efficacy of oral therapy. J Dent Res 1989;68:1625-32.

67. Jones DS, Woolfson AD, Djokic J, Coulter WA. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm Res 1996;13:1734-8.

68. Pradeep AR, Sagar SV, Daisy H. Clinical and microbiological effects of subgingivally delivered 0.5% azithromycin in the treatment of chronic periodontitis. J Periodontol 2004;75:1227-32.

69. Polson AM, Garrett S, Stoller NH, Bandt CL, Hanes PJ, Killoy WJ, et al. Multi-center comparative evaluation of subgingivally delivered sanguinarine and doxycycline in the treatment of periodontitis. J Periodontol 1997;68:119-26.

70. Wolinsky LE, Camargo PM, Polson A, Ryder M, Garrett S. The significance of prior mechanical therapy for changes of periodontal status achieved by local delivery of a doxycyclinehydroxyethydrate containing gel. J Clin Periodontol 2001;28:1115-20.

71. Noyan U, Yilmaz S, Kuru B, Kadir T, Acar O, Büget E. A clinical and microbiological evaluation of systemic and local metronidazole delivery in adult periodontitis patients. J Clin Periodontol 1997;24:158-65.

72. Pradeep AR, Sagar SV, Daisy H. Clinical and microbiological effects of subgingivally delivered 0.5% azithromycin in the treatment of chronic periodontitis. J Periodontol 2008;79:2125-35.

73. Brettschneider H, Sagar SV, Daisy H, Freitas O, Lara EH. Semisolid systems containing propolis for the treatment of periodontal disease: In vitro release kinetics, syringeability, rheological, textural, and mucocadhesive properties. J Pharm Sci 2007;96:2074-89.

74. Pradeep AR, Sagar SV, Daisy H. Clinical and microbiological effects of subgingivally delivered 0.5% azithromycin in the treatment of chronic periodontitis. J Periodontol 2008;79:2125-35.

75. Bogren A, Teles RP, Torresyap G, Hassfjall AE, Socransky SS, Wennström J. Locally delivered doxycycline during supportive periodontal therapy: A 3-year study. J Periodontol 2008;79:827-35.

76. Bruschi ML, Jones DS, Panzeri H, Gremião MP, de Freitas O, Lara EH. Semisolid systems containing propolis for the treatment of periodontal disease: In vitro release kinetics, syringeability, rheological, textural, and mucocadhesive properties. J Pharm Sci 2007;96:2074-89.

77. Pradeep AR, Sagar SV, Daisy H. Clinical and microbiological effects of subgingivally delivered 0.5% azithromycin in the treatment of chronic periodontitis. J Periodontol 2008;79:2125-35.

78. Bogren A, Teles RP, Torresyap G, Hassfjall AE, Socransky SS, Wennström J. Locally delivered doxycycline during supportive periodontal therapy: A 3-year study. J Periodontol 2008;79:827-35.

79. Morris MS, Lee Y, Lavin MT, Giannini PJ, Schmid MJ, Marx DB, et al. Injectable simvastatin in periodontal defects and alveolar ridge: Pilot studies. J Periodontol 2008;79:1465-73.

80. Rassameemassuang M, Sirikulsaethean A, Amornchat C, Maungningsook P, Rojanapanthu P, Gritsanaphan W. Topical application of Garcinia mangostana L. pericarp gel as an adjunct to periodontal treatment. Complement Ther Med 2008;16:262-7.

81. Tomasi C, Koutouzis T, Wennström J. Locally delivered doxycycline as an adjunct to mechanical debriement at retreatment of periodontal pockets. J Periodontol 2008;79:431-9.

82. Paolantoni M, D’Ercole S, Pilioni A, D’Archivio D, Lissanti L, Graziani F, et al. Clinical, microbiological, and biochemical effects of subgingival administration of a Xanthan-based chlorhexidine gel in the treatment of periodontitis: A randomized multicenter trial. J Periodontol 2009;80:1479-92.

83. Dahié MR, Nagori SA, Gohel MC, Parikh RK, Sheth NR. Formulation development of smart gel periodontal drug delivery systems for controlled release of metronidazole. J Pharm Res 2009;2:226-7.

84. Tariq, et al.: Treatment modalities and evaluation models for periodontitis

85. Pitcher GR, Newman HN, Strahan JD. Access to subgingival plaque by disclosing agents using mouthrinsing and direct irrigation. J Clin Periodontol 1980;7:300-8.

86. Gates KA, Grad H, Birek P, Lee PI. A new bioerodible polymer insert for a controlled release of metronidazole. Pharm Res 1994;11:1605-9.

87. Greenstein G. Local drug delivery in the treatment of periodontal diseases: Assessing the clinical significance of the results. J Periodontol 2006;77:665-78.

88. Listgarten MA, Lindhe J, Heldten L. Effect of tetracycline and or scaling on human periodontal disease, clinical, microbiological and histological observations. J Clin Periodontol 1978;5:246-71.

89. Lindhe J, Liljenberg B, Adielsson B. Effect of long-term tetracycline therapy on human periodontal disease. J Clin Periodontol 1983;10:590-601.
system for local delivery of chemotherapeutic agents with application of experimental design. Drug Deliv 2010;17:520-31.

84. Ji QX, Zhao QS, Deng J, Lü R. A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: Preparation, antibacterial activity and toxicity evaluation. J Mater Sci Mater Med 2010;21:2435-42.

85. Pradeep AR, Thorat MS. Clinical effect of subgingivally delivered simvastatin in the treatment of patients with chronic periodontitis: A randomized clinical trial. J Periodontol 2010;81:214-22.

86. Yaffe A, Herman A, Bahar H, Binderman I. Combined local application of tetracycline and bisphosphate reduces alveolar bone resorption in rats. J Periodontol 2003;74:1038-42.

87. Jones DS, Woolfson AD, Brown AF, Coullier WA, McClelland C, Irwin CR. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release 2000;67:357-68.

88. Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ikezawa K, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res 2003;38:97-103.

89. Hirasawa M, Hayashi K, Takada K. Measurement of peptidase activity and evaluation of effectiveness of administration of minocycline for treatment of dogs with periodontitis. Am J Vet Res 2000;11:1349-52.

90. Azmak N, Atilla G, Luoto H, Sorsa T. The effect of subgingival controlled-release delivery of chlorhexidine on clinical parameters and matrix metalloproteinase-8 levels in gingival crevicular fluid. J Periodontol 2002;73:808-15.

91. Parthasarathy V, Manavalan R, Mythili R, Siby CT, Jeya M. Ethyl cellulose and polyethylene glycol-based sustained-release sparifloxacin chip: An alternative therapy for advanced periodontitis. Drug Dev Ind Pharm 2002;28:849-62.

92. Kasai A, Chiriachide A, Willershausen B. The adjunctive use of a controlled-release hlorhexidine chip following treatment with a new ultrasonic device in supportive periodontal therapy: A prospective, controlled clinical study. Int J Dent Hyg 2007;5:225-31.

93. Duarte Fe D, Lotufo RF, Pannuti CM. Local delivery of chlorhexidine gluconate in patients with aggressive periodontitis. J Int Acad Periodontol 2008;10:31-5.

94. Paolantonio M, D’Angelo M, Grassi RF, Perinetti G, Piccolomini R, Pizzo G, et al. Clinical and microbiological effects of subgingival controlled-release delivery of chlorhexidine chip in the periodontitis of patients: A multicenter study. J Periodontol 2008;79:271-82.

95. Yamagami H, Takamori A, Sakamoto T, Okada H. Intrapocket chemotherapy in adult periodontitis using a new controlled-release insert containing ofloxacin (PT-01). J Periodontol 1992;63:2-6.

96. Barat R, Srinatha A, Pandit JK, Ridhurkar D, Balasubramaniam J, Mittal N, et al. Niridazole biodegradable inserts for local long-term treatment of periodontitis: Possible new life for an orphan drug. Drug Deliv 2006;13:365-73.

97. Barat R, Srinatha A, Pandit JK, Mittal N, Anupurba S. Ethylcellulose inserts of an orphan drug for periodontitis: Preparation, in vitro, and clinical studies. Drug Deliv 2007;14:531-8.

98. Friedman M, Golomb G. New sustained release dosage form of chlorhexidine for dental use. J Periodontal Res 1982;17:323-8.

99. Addy M, Langeroudi M. Comparison of the immediate effects on the sub-gingival microflora of acrylic strips containing 40% chlorhexidine, metronidazole or tetracycline. J Clin Periodontol 1984;11:379-86.

100. Noguchi T, Izumizawa K, Fukuda M, Kitamura S, Suzuki Y, Ikura H. New method for local drug delivery using resorbable base material in periodontal therapy. Bull Tokyo Med Dent Univ 1984;31:145-53.

101. Addy M, Hassan H, Moran J, Wade W, Newcombe R. Use of antimicrobial containing acrylic strips in the treatment of chronic periodontal disease. A three month follow-up study. J Periodontol 1988;59:557-64.

102. Deasy PB, Collins AE, MacCarthy DJ, Russell RJ. Use of strips containing tetracycline hydrochloride or metronidazole for the treatment of advanced periodontal disease. J Pharm Pharmacol 1989;41:694-9.

103. Abu Fanas SH, Drucker DB, Hull PS. Evaluation of acrylic strips containing amoxycillin with clavulanic acid for local drug delivery. J Dent 1991;19:92-6.

104. Corry D, Moran J. Assessment of acrylic bone cement as a local delivery vehicle for the application of non-steroidal anti-inflammatory drugs. Biomaterials 1998;19:1295-301.

105. Friesen LR, Williams KB, Krause LS, Killoy WJ. Controlled local delivery of tetracycline with polymer strips in the treatment of periodontitis. J Periodontol 2002;73:13-9.

106. Hirasawa M, Takada K, Makimura M, Otake S. Improvement of periodontal status by green tea catechin using a local delivery system: A clinical pilot study. J Periodontal Res 2002;37:433-8.

107. Leung WK, Lin L, Yau JY, Sun Q, Corbet EF. Microflora cultivable from minocycline strips placed in persisting periodontal pockets. Arch Oral Biol 2005;50:39-48.

108. Bromberg LE, Braman VM, Rothstein DM, Spacciapoli P, O’Connor SM, Nelson EJ, et al. Sustained release of silver from periodontal wafers for treatment of periodontitis. J Control Release 2000;31:63-72.

109. Golomb G, Friedman M, Soskolne A, Stabholz A, Sela MN. Sustained release device containing metronidazole for periodontal use. J Dent Res 1984;63:1149-53.

110. Azoury R, Elkayam R, Friedman M. Nuclear magnetic resonance study of an ethyl cellulose sustained-release delivery system. II. Release rate behavior of tetracycline. J Pharm Sci 1988;77:428-31.

111. Elkayam R, Friedman M, Stabholz A, Soskolne AW, Sela MN, Golub L. Sustained release device containing minocycline for local treatment of periodontal disease. J Control Release 1988;7:231-6.

112. Minabe M, Uematsu A, Nishijima K, Tomomatsu E, Tamura T, Hori T, et al. Application of a local drug delivery system to periodontal therapy. I. Development of collagen preparations with immobilized tetracycline. J Periodontol 1989;60:113-7.

113. Kyun KD, Yun KS, Young JS, Pyoung CC, Heui SS. Development of minocycline containing polycaproactone film as a local drug delivery. Taeahn Chikwka Uisa Hyphoe Chi 1990;28:279-90.

114. Steinberg D, Friedman M, Soskolne A, Sela MN. A new degradable controlled release device for treatment of periodontal disease: In vitro release study. J Periodontol 1990;61:393-8.

115. Higashi K, Matsushita M, Morisaki K, Hayashi S, Mayumi T. Local drug delivery systems for the treatment of periodontal disease. J Pharmacobiody 1991;14:72-81.

116. Agarwal RK, Robinson DH, Maze GJ, Reinhardt RA. Development and characterization of tetracycline–poly (lactide/glycolide) films for treatment of periodontitis. J Control Release 1993;23:137-46.

117. Maze GJ, Reinhardt RA, Agarwal RK, Dyer JK, Robinson DH, DuBoism LM, et al. Response to intracrevicular controlled delivery of 25% tetracycline from poly(lactide/glycolide) film strips in SPT patients. J Clin Periodontol 1995;22:860-7.

118. Dedeian VR, Solov’eva N, Ezikian TI, Medvedeva IA. The treatment of periodontal diseases using Dipen-Denta films with chlorhexidine (a clinico-laboratory study). Stomatologija (Mosk) 1997;76:15-22.
137. Paquette DW. Minocycline microspheres: A complementary medical-mechanical model for the treatment of chronic periodontitis. Compend Contiu Educ Dent 2002;23:15-21.

138. Williams RC, Paquette DW, Offenbacher S, Adams DF, Armitage GC, Bray K, et al. Treatment of periodontitis by local administration of minocycline microspheres: A controlled trial. J Periodontol 2001;72:1535-44.

139. Arica B, Aksungur P, Fienel S, Kas SH, Sargon MF, Atilla Hincal AA. Natamycin loaded chitosan microspheres for periodontal therapy. J Fac Pharm 2003;23:77-84.

140. Jeyanthi R, Akiyama A, Roberts FD, VanHamont J, Friden P. One-month controlled release of an antimicrobial peptide from biodegradable poly(lactide/glycolide) microspheres for the treatment of periodontitis. Int Symp Controlled Release Bioact mater 1997;24:883-4.

141. Kockisch S, Rees GD, Tsibouklis J, Smart JD. Mucosahesive, triclosan loaded polymer microspheres for application to the oral cavity: Preparation and the controlled release characteristics. Eur J Pharm Biopharm 2005;59:207-16.

142. Samdancioglu S, Calis S, Sumnu M, Atilla Hincal A. Formulation and in vitro evaluation of biphosphonate loaded microspheres for implantation in osteolysis. Drug Dev Ind Pharm 2006;32:473-81.

143. Samati Y, Yüksel N, Tarimci N. Preparation and characterization of poly (D,L-Lactic-Co-Glycolic Acid) microspheres containing flurbiprofen sodium. Drug Deliv 2006;13:105-11.

144. Bland PS, Goodson JM, Gunsolley JC, Grossi SG, Otomo-Corgel J, Doherty F, et al. Association of antimicrobial and clinical efficacy: Periodontitis therapy with minocycline microspheres. J Int Acad Periodontol 2010;12:11-9.

145. Esposito E, Cortesi R, Cervellati F, Menegatti E, Nastruzzi C. Biodegradable microparticles for sustained delivery of tetracycline to the periodontal pocket: Formulatory and drug release studies. J Microencapsul 1997;14:175-87.

146. Mundargi RC, Srirangrajan S, Agnihotri SA, Patil SA, Ravindra S, et al. Development and evaluation of novel biodegradable microsphere based on Poly (D,L-lactide-co-glycolide) and poly(ε-caprolactone) for controlled delivery of doxycycline in the treatment of periodontal pocket: In vitro and in vivo studies. J Control Release 2007;119:59-68.

147. Baker RW, Krisko EA, Kochinke F. A controlled release drug delivery system for periodontal pocket. International symposium on controlled release Bioactive Materials USA. Controlled Release Soc 1988;140:238a-b.

148. Bruschi ML, De Freitas O, Lara EH, Panzheri H, Gremião MP, Jones DS. Precursor system of liquid crystalline phase containing propolis microparticles for the treatment of periodontal disease: Development and characterization. Drug Dev Ind Pharm 2008;34:267-78.

149. Yeom HR, Park YJ, Lee SJ, Rhyu IC, Chung CP, Nisengard RJ. Clinical and microbiological effects of minocycline-loaded microcapsules in adult periodontitis. J Periodontol 1997;68:1102-9.

150. Pinon-Segundo E, Ganem-Quintanar A, Alonso-Perez V, Quintanar-Guerrero D. Preparation and characterization of tetracyclan microspheres for periodontal topical treatment. Int J Pharm 2005;294:217-32.

151. Moulari B, Lboutounne H, Chaumont JP, Guillaume Y, Milet J, Pellequer Y. Potentiation of the bactericidal activity of harungana madagascariensis lam. Ex poir. (Hypenicaceae) leaf extract against oral bacteria using poly (d, l-lactide-co-glycolide) nanoparticles: In vitro study. Acta Odontol Scand 2006;64:153-8.

152. Bakó J, Szepesi M, Márton I, Borbély J, Hegedüs C. Synthesis of nanoparticles for dental drug delivery systems. Fogorv Sz 2007;100:109-13.

153. Dung TH, Lee SR, Han SD, Kim SJ, Ju YM, Kim MS, et al. Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment. J Nanosci Nanotechnol 2007;7:3695-9.

154. Jones MN, Kaszuba M. Polyhydroxy-mediated interactions...
between liposomes and bacterial biofilms. Biochim Biophys Acta 1994;1193:48-54.

155. Jones MN, Song YH, Kaszuba M, Reboiras MD. The interaction of phospholipid liposomes with bacteria and their use in the delivery of bactericides. J Drug Target 1997;5:25-34.

156. Vyas SP, Shokrav K, Dubey PK. Preparation, characterization and in vitro antimicrobial activity of metronidazole bearing lactozylated liposomes for intra-periodontal pocket delivery. Pharmazie 2001;56:554-60.

157. Tamimi F, Torres J, Bettini R, Ruggera F, Rueda C, Lopez-Ponce M, et al. Doxycycline sustained release from brushite cements for the treatment of periodontal diseases. J Biomed Mater Res A 2008;85:707-14.

158. Vandezekhove BN, Van Steenberge D, Tricio J, Rosenberg D. Inhibition of plaque formation by local application of a degradable controlled release system containing cytochalasin chloride in a slow-release dosage form. J Clin Periodontol 1995;22:824-9.

159. Jadhav BK, Khandelwal KR, Ketkar AR, Pissal SS. Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases. Drug Dev Ind Pharm 2004;30:195-203.

160. Feher A, Urbán E, Eros I, Szabó-Révéész P, Csányi E. Lyotropic liquid crystal preconcentrates for the treatment of periodontal disease. Int J Pharm 2008;358:23-6.

161. Kozlovsky A, Sintov A, Moldovan M, Tal H. Inhibition of plaque formation by local application of a degradable controlled release system containing cetylpyridinium chloride. J Clin Periodontal 1994;21:32-7.

162. Tallury P, Alimohammadi N, Kalachandra S. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: Effect of drug combination, copolymer composition and coating on the drug release rate. Dental Mater 2007;23:404-9.

163. Esposito E, Carotta V, Scabbia A, Tramilli A, Antonia P, Menegatti E, et al. Comparative analysis of tetracycline-containing dental gels: Poloxamer- and monoglyceride-based formulation. Int J Pharm 1996;142:9-23.

164. Emami J. In vitro - In vivo Correlation: From Theory to Applications. J Pharm Pharm Sci 2006;9:169-89.

165. Hattingh J, Ho E. The concentration of proteins in human gingival crevicular fluid. J Periodontal Res 1980;15:90-5.

166. Cimasoni G. Crevicular fluid update. vol 12. Swizerland: Karger Publishing Co; 1983. p. 71.

167. Kobayashi K, Kobayashi K, Soeda W, Watanabe T. Gingival crevicular fluid. J Periodontal Res 1980;15:90-5.

168. Brecx M, Nalbandiam J, Ooya K, Kornman K, Robertson R. Morphological studies on periodontal disease in the Cynomolgus monkey (II). Light microscopic observations on ligature induced Periodontitis. J Periodontal Res 1985;20:165-75.

169. Giannobile WV, Finkelman RD, Lynch SE. Comparison of canine and non-human primate animal models for periodontal regenerative therapy. Result following a single administration of PDGF/IGF-I. J Periodontol 1994;65:1158-68.

170. Caton JG, Kowalski CJ. Primate model for testing periodontal treatment procedures (II). Production of contralaterally similar lesions. J Periodontol 1976;46:506-10.

171. Periole L, Amborgi V, Rubini D, Giovagnoli S, Ricci M, Balsi P, Rossi C. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Release 2004;95:521-33.

172. Kelly HM, Deasy PB, Zieka E, Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 2004;274:167-83.

173. Yue IC, Poff J, Cortés ME, Sinisterra RD, Faris CB, Hidgen P, et al. A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials 2004;25:3743-50.

174. Liuy DZ, Chenz WZ, Lee CP, Wuz SL, Wangz YC, Chung TW. Effects of alginat coated on PLGA microspheres for delivery tetracyline hydrochloride to periodontal pockets. J Microencapsul 2004;21:643-52.

175. Weinberg MA, Bral M. Laboratory animal models in periodontology. J Clin Periodontol 1999;26:335-40.

176. Krygier G, Genco R, Mashimo P, Hausman E. Experimental gingivitis in Macaca Speciosa monkeys: Clinical, bacteriologic and histologic similarities to human gingivitis. J Periodontol 1973;44:454-463.

177. Schoo S, Holmstrup P, Kornman KS. Non-Human primates used in studies of periodontal disease pathogenesis: A review of the literature. J Periodontol 1993;64:497-508.

178. Polson AM. Trauma and progression of marginal periodontitis in squirrel monkeys (II). Co-destructive factors or periodontitis and mechanicallyproduced injury. J Periodontal Res 1974;9:108-13.

179. Caton JG, Kowalski CJ. Primate paradigm for evaluating the efficacy and safety of periodontal therapy. J Periodontal Res 1991;26:335-40.

180. Rolfe L, Amborgi V, Rubini D, Giovagnoli S, Ricci M, Balsi P, Rossi C. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Release 2004;95:521-33.

181. Periole L, Amborgi V, Rubini D, Giovagnoli S, Ricci M, Balsi P, Rossi C. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Release 2004;95:521-33.

182. Caton JG, Landa L, Laskaris B. Non-human primate models for testing the efficacy and safety of periodontal regenerative procedures. J Periodontol 1994;65:1143-50.

183. Fritz EF, Braswell LD, Koth D, Jeff coat M, Reddy M, Cotsonis G. Experimental peri-implantitis in consecutively placed, loaded root-form and plateform implants in adult Macaca mulatta monkeys. J Periodontol 1997;68:1131-5.

184. Navia JM. Animal models in dental research. Vol 169. Alabama: University of Alabama Press; 1977. p. 170-8.

185. Listgarten MA. Similarity of epithelial relationships in the gingiva of rat and man. J Periodontol 1975;46:677-80.

186. Irving J, Socransky S. Histological changes in experimental periodontal disease in gnotobiotic rats and conventional hamsters. J Periodontal Res 1974;9:73-80.

187. Socransky S, Hubersak C, Propas D. Induction of periodontal destruction in gnotobiotic rats by a human oral strain of Actinomyces Naeslundii. Arch Oral Biol 1970;15:993-5.

188. Klausen B, Hougen H, Eriksen W, Fiehn N. Induction of gingivitis in experimental animals by oral bacteria. J Periodontal Res 1974;9:108-13.

189. Brecx M, Nalbandiam J, Ooya K, Kornman K, Robertson R. Morphological studies on periodontal disease in the Cynomolgus monkey (II). Light microscopic observations on ligature induced Periodontitis. J Periodontal Res 1985;20:165-75.

190. Polson AM. Trauma and progression of marginal periodontitis in squirrel monkeys (II). Co-destructive factors or periodontitis and mechanicallyproduced injury. J Periodontal Res 1974;9:108-13.

191. Caton JG, Kowalski CJ. Primate paradigm for evaluating the efficacy and safety of periodontal therapy. J Periodontal Res 1991;26:335-40.
disease in gnotobiotic rats. J Periodontal Res 1980;15:405-19.

193. Baer PM, Stephan R, White C. Studies on experimental calculus formation in the rat. J Periodontal Res 1961;32:190-6.

194. Jordan H, Keyes P. Aerobic, grampositive, filamentous bacteria as etiologic agents of experimental periodontal disease in Hamster. Arch Oral Bio 1964;9:401-14.

195. Keyes P, Jordan H. Periodontal lesions in Syrian hamster (III) findings related to an infectious and transmissible component. Arch Oral Bio 1964;9:377-400.

196. Attstrom R, Graf-De Beer M, Schroeder H. Clinical and histologic characteristics of normal gingival in dogs. J Periodontal Res 1975;10:115-27.

197. Ericsson I, Lindhe J, Rylander H, Okamoto H. Experimental periodontal breakdown in the dog. Scandinavia J Res 1975;83:189-92.

198. Gad T. Periodontal disease in dogs (I). Clinical investigation. J Periodontal Res 1968;3:268-72.

199. Hull PS, Soames JV, Davies RM. Periodontal disease in a Beagle dog colony. J Comp Path 1974;84:143-51.

200. Lindhe J, Hamp S. Löe H. Plaque induced periodontal disease in Beagle Dogs, A 4-year clinical roentgenographical and histometrical study. J Periodontal Res 1975;10:243-55.

201. Soames J, Davies R. Lymphocytomacrophage and lymphocyte-lymphocytet associations in early gingivitis in Beagle dogs. J Periodontal Res 1980;15:341-4.

202. Schroeder H, Lindhe J. Conversion of established gingivitis in the dog into destructive periodontitis. Arch Oral Biol 1975;20:775-82.

203. Lindhe J, Rylander H. Experimental gingivitis in young dogs. Scandinavia J Dent Res 1975;83:314-26.

204. Harper DS, Mann PH, Regnier S. Measurement of dietary effects upon calculus accumulation rates in the domestic ferret. J Dent Res 1990;69:447-50.

205. King JD, Gimson AP. Experimental investigations of periodontal disease in the ferret and related lesions in man. Br Dent J 1947;83:126-7.

206. Fischer RG, Kline B. Clinical and histological evaluation of ligature-induced periodontitis in the domestic ferret. J Clin Periodontal 1994;21:230-9.

207. Mediolt NJ, Rathbone MJ, Tucker IG, Holborow HW. Delivery systems for the administration of drugs to the periodontal pocket. Adv Drug Del Rev 1994;13:181-203.

208. Ainamo J. Epidemiology of periodontal disease. In: Lindhe J, editor. Textbook of clinical periodontology. Munksgaard: Copenhagen; 1989. p. 70-91.

209. Nyman S, Lindhe J. Examination of patients with periodontal disease. In: Lindhe J, editor. Textbook of clinical periodontology. Munksgaard: Copenhagen; 1989. p. 310-22.

210. Klinge B, Kuvatanusuhati J, Alström R, Kalfas S, Edwardsson S. The effect of topical metronidazole therapy on experimentally-induced periodontitis in the beagle dog. J Clin Periodontol 1992;19:702-7.

211. Kozlovska Y, Sintov A, Zubery Y, Tal H. Inhibition of plaque formation and gingivitis in beagle dogs by topical use of a degradable controlled-release system containing chlorhexidine. J Dent Res 1992;71:1577-81.

212. Poslon AM, Southard GL, Dunn RL, Yewey GL, Godowski KC, Poslon AP, et al. Periodontal pocket treatment in beagle dogs using subgingival doxycycline from a biodegradable system. I. Initial clinical responses. J Periodontol 1996;67:1176-84.

213. Hayashi K, Takada K, Hirasawa M. Clinical and microbiological effects of controlled-release local delivery of minocycline on periodontitis in dogs. Am J Veterinary 1995;5:462-7.

214. Sato Y, Kikuchi M, Ohata N, Tamura M, Kuboki Y. Enhanced cementum formation in experimentally induced cementum defects of the root surface with the application of recombinant basic fibroblast growth factor in collagen gel in vivo. J Periodontol 2004;75:243-8.

215. Anzai J, Kitamura M, Nozaki T, Nagayasu T, Terashima A, Asano T, Murakami S. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate (βTCP) on the beagle dog 1-wall periodontal defect model. Biochem Biophys Res Commun 2010;403:345-50.

216. Luan Q, Desta T, Chehab L, Sanders VJ, Plattner J, Graves DT. Inhibition of experimental periodontitis by a topical boron-based antimicrobial. J Dent Res 2008;87:148-52.

217. Houri-Haddad Y, Halabi A, Soskolne WA. Inflammatory response to chlorhexidine, minocycline HCl and doxycycline HCl in an in vivo mouse model. J Clin Periodontal 2008;35:783-8.

218. Vandekerckhove BN, Quirynen M, Van Steeberghde D. The use of locally delivered minocycline in the treatment of chronic periodontitis. A review of literature. J Clin Periodontal 1998;25:964-8.

219. Newman BN. Plaque and chronin inflammatory disease. A question of ecology. J Clin Periodontal 1990;17:533-44.

220. Cheristerson LA, Zambon JJ, Genco RJ. Dental bacterial plaques. Nature and role in periodontal disease. J Clin Periodontal 1991;11:21-32.

221. Ikinci G, Senel S, Akincibay H, Kaş S, Erçiş S, Wilson, CG, Hincal AA. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 2002:235:121-7.

222. Covender S, Pillay V, Chetty DJ, Essack SY, Dangor CM, Covender T. Optimisation and characterisation of biodegradable controlled release tetracycline microspheres. Int J Pharm 2005;306:24-40.

223. Ahuja A, Rahman S, Ali A, Chaudhry R. Effect of Dental Films containing amoxicilline and metronidazole on periodontal pathogens: Microbiological response. Pharmacie 2003;58:716-20.

How to cite this article: Tariq M, Iqbal Z, Ali J, Baboota S, Talegaonkar S, Ahmad Z, et al. Treatment modalities and evaluation models for periodontitis. Int J Pharma Investig 2012;2:106-22.

Source of Support: Nil. Conflict of Interest: None declared.