Evidence for charge localization in the ferromagnetic phase of La\(_{1-x}\)Ca\(_x\)MnO\(_3\) from High real-space-resolution x-ray diffraction

S. J. L. Billinge, Th. Proffen, V. Petkov

Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116.

J. L. Sarrao

Los Alamos National Laboratory, Los Alamos, New Mexico 87545.

S. Kycia

Cornell High Energy Synchrotron Source, Ithaca, New York 14853.

(July 21, 1999)

High real-space-resolution atomic pair distribution functions of La\(_{1-x}\)Ca\(_x\)MnO\(_3\) (x = 0.12, 0.25 and 0.33) have been measured using high-energy x-ray powder diffraction to study the size and shape of the MnO\(_6\) octahedron as a function of temperature and doping. In the paramagnetic insulating phase we find evidence for three distinct bond-lengths (∼1.88, 1.95 and 2.15 Å) which we ascribe to Mn\(^{3+}\)-O, Mn\(^{4+}\)-O short and Mn\(^{4+}\)-O long bonds respectively. In the ferromagnetic metallic (FM) phase, for x = 0.33 and T = 20 K, we find a single Mn-O bond-length; however, as the metal-insulator transition is approached either by increasing T or decreasing x, intensity progressively appears around r = 2.15 and in the region 1.8 – 1.9 Å suggesting the appearance of Mn\(^{4+}\)-O long bonds and short Mn\(^{4+}\)-O bonds. This is strong evidence that charge localized and delocalized phases coexist close to the metal-insulator transition in the FM phase.

I. INTRODUCTION

The importance of the lattice to the colossal magnetoresistance (CMR) phenomenon is now fairly well established. There is a strong electron-lattice coupling due to the Jahn-Teller effect which affects Mn\(^{3+}\) ions and the doped carriers tend to localize as small polarons at high temperature and low doping. However, exact agreement about the detailed nature of local Jahn-Teller (JT) and polaronic distortions is lacking. This information is important for separating competing models describing the CMR phenomenon.

Early diffraction atomic pair distribution function (PDF) and extended x-ray absorption fine structure (XAFS) studies demonstrated that atomic disorder, measured as the Mn-O bond-length distribution, increases as samples pass through the metal-insulator (MI) transition with temperature. This is qualitatively what is expected if polarons are forming as the sample enters the insulating phase. These techniques also agree that the onset of polaron formation is gradual with temperature, taking place over a temperature range of 50-100 K below the MI transition temperature \(T_m\). In general, PDF and XAFS results suggest that in CMR materials the local structure is significantly different from that observed crystallographically. In particular, Mn-O\(_6\) octahedra can have a significant JT distortion locally even when globally the average JT distortion is zero or negligible. Although the local structural studies agree on this point there is disagreement on the amplitude of the distortions, in particular the length of the long JT bond. For instance, Louca et al. propose, based on the observation of a persistent negative fluctuation in the neutron PDFs of La\(_{1-x}\)Sr\(_x\)MnO\(_3\) at around 2.2-2.3 Å, that this is the length of the JT long-bond. This seems surprising given that the JT long-bond in the undoped material is shorter at 2.18 Å. On the other hand, XAFS measurements of the Ca doped system suggest that the JT long-bond is between 2.1-2.2 Å and a difference modeling of the neutron PDF from the La\(_{1-x}\)Ca\(_x\)MnO\(_3\) system supports these findings, as we discuss below.

Another question which is not resolved is the nature of the charge ground-state of the ferromagnetic metallic (FM) phase. Local density approximation calculations suggest that a delocalized charge state would not have any JT distortion even when the \(e_g\) band is not completely empty. Thus, the ferromagnetic metallic state, which we refer to as the Zener state (following Radaelli), would have regular undistorted octahedra. The observation of essentially undistorted MnO\(_6\) octahedra at low temperature in the FM phase is supported by XAFS and PDF results at high enough doping (away from the low-temperature MI transition). However, there has been a prediction based on XAFS data that small octahedral distortions persist at low temperature in the FM phase suggesting that the ground-state is a large polaron state. PDF data have also been interpreted in terms of a three-site polaron model at low temperature persisting at least up to a doping level of x = 0.3. It is important to determine the ground state of the FM phase.

Other interesting phenomena also take place in the FM phase when the MI transition is approached as a function...
II. EXPERIMENTAL

The $\text{La}_{1-x}\text{Ca}_x\text{MnO}_3$ samples were synthesized by standard solid-state reaction. Stoichiometric amounts of La_2O_3, CaCO_3 and MnO_2 were mixed with a mortar and pestle and placed in an alumina crucible. The material was fired at 1050 °C, 1300 °C and 1350 °C for one day each with intermediate grindings. After the final grinding, the material was fired at 1400 °C for an additional day and then slow-cooled over 20 hours to room temperature. Samples were characterized by conventional powder x-ray diffraction, temperature-dependent magnetization, and electrical resistivity.

Synchrotron powder diffraction experiments were carried out at the A2 56 pole wiggler beam line at Cornell High Energy Synchrotron Source (CHESS). This beam line is capable of delivering an intense beam of high energy x-rays required for high resolution PDF measurements. Data were collected in symmetric transmission geometry. The polychromatic incident beam was dispersed using a Si (111) monochromator and x-rays of energy 61 keV ($\lambda = 0.203\text{Å}$) were used. An intrinsic Ge detector coupled to a multi-channel analyzer was used to detect the scattered radiation, allowing us to extract the coherent component of the scattered x-ray intensities by setting appropriate energy windows. The diffraction spectra were collected by scanning at constant Q steps of $\Delta Q = 0.025\text{Å}^{-1}$. Multiple scans up to $Q_{\max} = 40\text{Å}^{-1}$ were conducted and the resulting spectra averaged to improve the statistical accuracy and reduce any systematic error due to instability in the experimental set-up. The data were normalized for flux, corrected for background scattering and experimental effects such as detector dead-time and absorption. The part of the Compton scattering at low values of Q not eliminated by the preset energy window was removed analytically applying a procedure suggested by Ruland. The resulting intensities were divided by the average atomic form factor for the sample to obtain the total structure factor $S(Q)$,

$$S(Q) = 1 + \frac{I_r(Q) - \sum c_i f_i^2(Q)}{\sum c_i f_i^2(Q)}$$

where I_r is the measured coherent part of the spectrum, c_i and f_i are the atomic concentration and scattering factor of the atomic species of type i ($i = \text{La}, \text{Ca}, \text{Mn}$ and O), respectively. All data processing procedures were carried out using the program RAD. The measured reduced structure factors, $F(Q) = Q[S(Q) - 1]$, for $x = 0.12, 0.25$ and 0.33 at $T = 20$ K are shown in Figure 1. The data are terminated at $Q_{\max} = 35\text{Å}^{-1}$ below which the signal to noise ratio became unfavorable. Note that this a a very high wavevector for x-ray diffraction measurements; for example, a conventional Cu Kα x-ray source has a Q_{\max} of less than $8\ \text{Å}^{-1}$. The corresponding reduced atomic distribution functions, $G(r)$, obtained via Fourier transform

$$G(r) = \frac{2}{\pi} \int_0^{\infty} Q[S(Q) - 1] \sin(Qr) \, dQ,$$
III. RESULTS

A. Polarons versus JT distortion

For the sake of clarity we would like to define the terminology we will use in the following discussion. There are two types of octahedral distortions which are observed in manganites. The first is a quadrupolar symmetry elongation of the MnO₆ octahedron: i.e., it has two long Mn-O bonds and four shorter Mn-O bonds. This is associated with the presence of a Mn³⁺ ion and is referred to as a Jahn-Teller distortion. Another possible distortion is an isotropic breathing-mode collapse of the MnO₆ octahedron where a regular octahedron stays regular (6 equal bond lengths) but the octahedron shrinks. This type of distortion can be associated with the presence of a Mn⁴⁺ ion. We refer to this as a polaronic distortion since the Mn⁴⁺ ions appear only when doped holes become localized.

We note that in the literature the Jahn-Teller distorted octahedra are often referred to as “Jahn-Teller polarons”. We avoid this terminology because the presence of Jahn-Teller distorted octahedra need not imply the presence of polarons in the sense of localized doped holes; for example, the undoped LaMnO₃ compound is fully Jahn-Teller distorted but contains no doped holes. Whilst it can be argued that these are polarons because the Jahn-Teller distortion splits the e_g band making this compound insulating it confuses the discussion of the state, localized or delocalized, of the doped holes. In our discussion we confine the use of “polaron” to describe a doped hole localized with an associated lattice distortion.

These doped-hole polarons have also been described in the literature as “anti-Jahn-Teller polarons”. This terminology comes about when one considers what happens when a doped hole localizes in a background of Jahn-Teller distorted Mn³⁺ octahedra, for example, in the lightly doped region of the phase diagram. On the site where the hole localizes the Jahn-Teller distortion is locally destroyed; thus the name. Again, we avoid this terminology because it is not appropriate when the polaronic state is approached from the delocalized ferromagnetic metallic state (the Zener state). In this case, as we discuss below, there are initially no Jahn-Teller distorted octahedra. The octahedra are regular and conform to those seen in the average crystal structure. As the metal-insulator transition is approached the doped holes begin to localize. When they localize both breathing mode collapsed doped-hole polarons (Mn⁴⁺) and Jahn-Teller distorted sites (Mn³⁺) are created. From this perspective it seems confusing to think of the polarons as “anti-Jahn-Teller” polarons. This also raises the point that, whilst we are not calling the Jahn-Teller distorted octahedra polarons, in the heavily doped material the presence of fully Jahn-Teller distorted octahedra implies the presence of localized Mn⁴⁺ polarons and vice versa.
FIG. 3. Low r region of the data (open circles) and refinements (solid line) shown in Figure 2 and calculated PDFs for a structural model showing full JT distortions on all sites are shown as dotted lines. See text for more details.

B. Comparison to the crystal structure

First we compare the present experimental PDFs to the average crystal structure determined by other independent studies. Experimental PDFs were fit with the crystallographic model. The refinement was done using the program PDFFIT. Lattice parameters, isotropic thermal parameters and atomic positions were refined conserving the symmetry of the space group (Pbnm). The calculated PDFs corresponding to the best fit are shown in Figure 2 as solid lines. Inspection of the figure shows a satisfactory agreement between the calculated and measured PDFs for all three compositions which shows that the present experimental PDFs are, in general, consistent with the average crystal structure of doped manganites. Furthermore, the values refined reproduce the Rietveld found values very well. The rather large difference observed for the PDF peak at \(r \approx 4.0 \AA \) is believed to be related to dopant ion effects on the La/Ca site. Attempts to model these differences are currently under way.

Local structural deviations from the average structure will show up as deficiencies in the agreement since the fits were constrained so the model has the average structure. We are particularly interested in the size and shape of the local MnO\(_6\) octahedron; we therefore concentrate on the low-r region of the PDF. An enlarged view of the region around the nearest neighbor Mn-O distance is shown in Figure 3. The experimental data are shown as open circles. Two model PDFs are shown: The solid line represents the PDF of the refined average structural model for doped manganites. Although the average structure is orthorhombic, the difference in the three distinct Mn-O bond-lengths is very small making the MnO\(_6\) octahedra virtually regular. The dotted line is the PDF calculated from the average structure of undoped LaMnO\(_3\) where all Mn-O octahedra have a large JT distortion, i.e. short and long Mn-O bonds are present. These are clearly resolved in the calculation. All the model curves are convoluted with the experimental real-space resolution function of the data which comes from the finite Q-range of the data.

It is apparent from Fig. 3 that the model based on the average structure fits the \(x = 0.33 \) and 0.25 data quite well in this low-r region but less well in the \(x = 0.12 \) data set. In fact, in the \(x = 0.12 \) data the dashed line representing the JT distorted octahedra does a qualitatively better job of reproducing the shape of the Mn-Octahedra bonds in the region 2.0 – 2.5 Å and the shape of the second neighbor multiplet around 2.4 – 2.8 Å. This supports the idea that, locally, large JT distortions persist in the insulating phase although these do not show up in the average crystal structure. In the ferromagnetic metallic phase (\(x = 0.25 \) and 0.33) the local structure is much closer to the average crystal structure.

C. Low temperature structure of the MnO\(_6\) octahedra

We now focus on the region of the PDF from 1.7 \(\leq r \leq \) 2.3 Å containing the peaks from the MnO\(_6\) octahedra. This region is shown on an expanded scale in Fig. 4 for doping levels \(x = 0.12, 0.25 \) and 0.33 at 20 K.

We are interested to know how the MnO\(_6\) octahedron evolves as a function of doping. At \(x = 0.33 \) the first PDF peak is fit with a single Gaussian. There is a suggestion of peak asymmetry, but there is negligible intensity in the region above 2.1 Å. This single Gaussian fit means that all six Mn-O bonds have almost the same length of \(r = 1.96 \) Å at \(x = 0.33 \) and \(T = 20 \) K. This is what would be expected for a fully delocalized charge state.

The PDF for \(x = 0.25 \) sample clearly has intensity on the high-r side of its first peak at 1.95 Å which has been fit with a second Gaussian component. The presence of intensity at this \(r = 2.15 \) Å position remains invariant as \(Q_{\text{max}} \) is varied (although the resolution of the feature changes). This suggests that it is real and not artificial since noise artifacts and termination ripples change position and intensity as \(Q_{\text{max}} \) is varied. The suggestion is, therefore, that even at \(T = 20 \) K and \(x = 0.25 \) long Mn-O bonds and, therefore, residual Jahn-Teller distorted sites persist in the material. There is no direct evidence for intensity on the low-r side of the main 1.95 Å peak although it does not decrease as sharply as the \(x = 0.33 \) sample.

The \(x = 0.12 \) sample is in the insulating state and is expected to be fully localized and polaronic. In this case
we see three components to the peak and have fit it with three Gaussians. At this composition there exist nominally Mn$^{4+}$ octahedra which are Jahn-Teller distorted. Based on the structure of undoped LaMnO$_3$, we expect these to have four short bonds at 1.92–1.96 Å and two long bonds at 2.18 Å. The two higher-r components of the peak seem consistent with this allocation. The third component at low-r might then be expected to originate from the Mn$^{4+}$ polaronic sites. This is consistent with the prediction of the breathing mode model12 which suggests short polaronic bonds of < 1.9 Å, and is also consistent with the crystal chemistry of Mn$^{4+}$. Based on Shannon’s ionic radii33 the expected Mn$^{4+}$(VI)-O$^{2-}$(II) ionic radius is 1.88 Å. This short Mn-O bond length is also found in the material CaMnO$_3$ which all Mn sites are nominally Mn$^{4+}$. It appears clear that Mn$^{4+}$ polarons exist with bonds ≤ 1.9 Å together with Mn$^{3+}$ sites which have a JT distortion which is similar to that in the undoped material.

D. Temperature dependence of the MnO$_6$ octahedra

We now concentrate on the temperature evolution of MnO$_6$ octahedra. In Fig. 1 we show the evolution of the PDF peaks around $r = 2.0$ Å as a function of temperature between $T = 20$ K and $T = 300$ K for the $x = 0.25$ sample. The metal-insulator transition for this sample is at $T = 235$ K. The data-sets are offset for clarity. As we discussed in the previous section, at low temperature a large central peak centered around 1.97 Å is evident with a small high-r component at 2.15 Å. As temperature is raised, the intensity in the high-r component increases. It is dangerous to infer a bond length directly from the position of a maximum in the data because of the influence of noise on these data. The small intensity of these peaks is evident in Fig. 2 and noise contamination can cause a peak intensity to be shifted somewhat. However, the presence or absence of intensity at some position is a robust result. It is clear that the intensity of the peak grows in the region $r = 2.1$–2.15 Å and below 1.9 Å. It is also apparent that there is no intensity above 2.2 Å suggesting that the JT long-bond is $\sim 2.15 - 2.18$ Å.

It is also interesting to see how the PDF of the MnO$_6$ octahedron of the $x = 0.33$ sample evolves with temperature. This is shown in Fig. 3. At low temperature this sample exhibited a single peak centered at ~ 1.96 Å. There is no evidence of any JT long-bond. At 100 K clear evidence of a component of intensity at $r = 2.18$ Å appears. The central peak also comes down less steeply on the low-r side and the peak centroid is shifted somewhat to lower-r which suggest that some intensity is appearing on the low-r side of the peak.

It is interesting to note the similarity between the $x = 0.33$ sample at 100 K with the $x = 0.25$ sample at 20 K which is shown in the top panel of Fig. 4.
The ability to collect high-quality data at high values of the wavevector, Q, using high-energy synchrotron radiation has allowed us to decompose the bond length distribution of the MnO$_6$ octahedra into its components more reliably than was previously possible with neutrons. This is well demonstrated by the fact that the present PDF data are consistent with the structure models derived by independent Rietveld studies and, furthermore, produce physically reasonable values for the short Mn$^{4+}$ and the short and long Mn$^{3+}$ bonds.

We draw the following conclusions from our results described above. If we assume that the $x = 0.12$ sample is fully localized in the polaronic state at 0.375 K, as is suggested by by its exponential resistivity, we can interpret the three components of the first peak in the PDF as being due to JT distorted Mn$^{3+}$ octahedra and regular but contracted Mn$^{4+}$ octahedra. If we assume the number of doped holes, p, to be the nominal Ca concentration, x, then we expect the number of 1.88 Å bonds to be $6p = 6x = 0.72$. The number of JT distorted sites will be $(1-p) = (1-x)$. Then, if we assume that the JT distorted Mn$^{3+}$ octahedra have essentially 4 short and 2 long bonds with average lengths 1.95 and 2.18 Å, as observed in the undoped material, we expect a peak with intensity $4(1-x) = 3.52$ at 1.95 Å and $2(1-x) = 1.76$ at 2.18 Å. Fitting the first peak in the experimental PDF with Gaussians (Fig. 7(a)) yields subcomponents with intensity ratios of $1.0(5):4.0(5):1.0(5)$ centered at 1.84, 1.96 and 2.18 Å (the corresponding values for the model are 0.72:3.52:1.76 at 1.88, 1.95 and 2.18 Å). Given the noise level of the data the agreement is satisfactory providing some confidence to this interpretation.

We would like now to expand on the interplay between the polaron formation and the existence of JT distortions in the manganites studied. A simple picture could be constructed as follows: There are no distorted Mn–O octahedral units in the delocalized Zener phase and all Mn–O bond-lengths in the MnO$_6$ octahedron are \sim 1.97 Å, as found in the average crystal structure. This is the case observed at $x = 0.33$ and $T = 20$ K so that the sample may be considered to be in fully delocalized charge state. In the insulating phase there coexist small, regular Mn$^{4+}$ octahedra with six Mn–O bonds of \sim 1.85 – 1.9 Å and Jahn–Teller distorted Mn$^{3+}$ octahedra with four bonds of \sim 1.97 Å and two bonds of \sim 2.18 Å length. This is the picture which we see at $x = 0.12$, $T = 20$ K and at $x = 0.25$, $T = 300$ K (see Figs. 7(a) and 7(b)). These two samples are in the insulating phase and the charge carriers, as the measured Mn–O bond length distributions suggest, are essentially fully localized. Within the FM phase but at intermediate temperatures, and compositions approaching the MI transition, we see evidence for JT-long bonds appearing. This suggests that there is a coexistence of localized Jahn–Teller phase and delocalized Zener phase material. The sample is still conducting because the regions of Zener phase percolate. This is similar to the picture emerging for the MI transition in La$_{0.625}$Pr$_{0.375}$MnO$_3$ which occurs as a function of x although the length-scale of the inhomogeneities is much smaller in this case.

Our picture is consistent with the earlier observation of a breathing mode distortion on one-in-four manganite sites which set in below the MI transition in La$_{0.75}$Ca$_{0.25}$MnO$_3$. This was found to reproduce the changes in the local structure which occur at the MI transition in this sample when the amplitude of the collapse was $\delta = 0.12$ Å. Since the starting value of the Mn–O bond-length at low temperature before the distortion set in was 1.97 Å this results in short Mn$^{4+}$ bonds of 1.85 Å shorter than, but similar to, what we observe here. Furthermore, because the model was evaluated at the special composition of $x = 0.25$, this breathing mode collapse coincidently resulted in Jahn–Teller-like distortions on all the remaining Mn sites with Mn$^{3+}$-long bonds of 1.97 + 0.12 = 2.09 Å. This is illustrated schematically in Fig. 7. This model gives a very satisfactory agreement with the current results given its simplicity. We do not wish to imply here that the breathing mode collapse causes the Jahn–Teller distortion; merely that they coexist in the localized phase and that there is good consistency between the earlier neutron data and the current x-ray data.

It is interesting to note from Fig. 7 that $x = 0.25$ is a special composition where small polarons can form an ordered lattice separated by JT distorted Mn$^{3+}$ sites which

FIG. 6. Low-r region of the PDF on an expanded scale from $x = 0.33$ at 20 K and 100 K and from $x = 0.25$ at 20 K. The data-sets are offset for clarity.

IV. DISCUSSION

The ability to collect high-quality data at high values of the wavevector, Q, using high-energy synchrotron radiation has allowed us to decompose the bond length distribution of the MnO$_6$ octahedra into its components more reliably than was previously possible with neutrons. This is well demonstrated by the fact that the present PDF data are consistent with the structure models derived by independent Rietveld studies and, furthermore, produce physically reasonable values for the short Mn$^{4+}$ and the short and long Mn$^{3+}$ bonds.

We draw the following conclusions from our results described above. If we assume that the $x = 0.12$ sample is fully localized in the polaronic state at 0.375 K, as is suggested by by its exponential resistivity, we can interpret the three components of the first peak in the PDF as being due to JT distorted Mn$^{3+}$ octahedra and regular but contracted Mn$^{4+}$ octahedra. If we assume the number of doped holes, p, to be the nominal Ca concentration, x, then we expect the number of 1.88 Å bonds to be $6p = 6x = 0.72$. The number of JT distorted sites will be $(1-p) = (1-x)$. Then, if we assume that the JT distorted Mn$^{3+}$ octahedra have essentially 4 short and 2 long bonds with average lengths 1.95 and 2.18 Å, as observed in the undoped material, we expect a peak with intensity $4(1-x) = 3.52$ at 1.95 Å and $2(1-x) = 1.76$ at 2.18 Å. Fitting the first peak in the experimental PDF with Gaussians (Fig. 7(a)) yields subcomponents with intensity ratios of $1.0(5):4.0(5):1.0(5)$ centered at 1.84, 1.96 and 2.18 Å (the corresponding values for the model are 0.72:3.52:1.76 at 1.88, 1.95 and 2.18 Å). Given the noise level of the data the agreement is satisfactory providing some confidence to this interpretation.

We would like now to expand on the interplay between the polaron formation and the existence of JT distortions in the manganites studied. A simple picture could be constructed as follows: There are no distorted Mn–O octahedral units in the delocalized Zener phase and all Mn–O bond-lengths in the MnO$_6$ octahedron are \sim 1.97 Å, as found in the average crystal structure. This is the case observed at $x = 0.33$ and $T = 20$ K so that the sample may be considered to be in fully delocalized charge state. In the insulating phase there coexist small, regular Mn$^{4+}$ octahedra with six Mn–O bonds of \sim 1.85 – 1.9 Å and Jahn–Teller distorted Mn$^{3+}$ octahedra with four bonds of \sim 1.97 Å and two bonds of \sim 2.18 Å length. This is the picture which we see at $x = 0.12$, $T = 20$ K and at $x = 0.25$, $T = 300$ K (see Figs. 7(a) and 7(b)). These two samples are in the insulating phase and the charge carriers, as the measured Mn–O bond length distributions suggest, are essentially fully localized. Within the FM phase but at intermediate temperatures, and compositions approaching the MI transition, we see evidence for JT-long bonds appearing. This suggests that there is a coexistence of localized Jahn–Teller phase and delocalized Zener phase material. The sample is still conducting because the regions of Zener phase percolate. This is similar to the picture emerging for the MI transition in La$_{0.625}$Pr$_{0.375}$MnO$_3$ which occurs as a function of x although the length-scale of the inhomogeneities is much smaller in this case.

Our picture is consistent with the earlier observation of a breathing mode distortion on one-in-four manganite sites which set in below the MI transition in La$_{0.75}$Ca$_{0.25}$MnO$_3$. This was found to reproduce the changes in the local structure which occur at the MI transition in this sample when the amplitude of the collapse was $\delta = 0.12$ Å. Since the starting value of the Mn–O bond-length at low temperature before the distortion set in was 1.97 Å this results in short Mn$^{4+}$ bonds of 1.85 Å shorter than, but similar to, what we observe here. Furthermore, because the model was evaluated at the special composition of $x = 0.25$, this breathing mode collapse coincidently resulted in Jahn–Teller-like distortions on all the remaining Mn sites with Mn$^{3+}$-long bonds of 1.97 + 0.12 = 2.09 Å. This is illustrated schematically in Fig. 7. This model gives a very satisfactory agreement with the current results given its simplicity. We do not wish to imply here that the breathing mode collapse causes the Jahn–Teller distortion; merely that they coexist in the localized phase and that there is good consistency between the earlier neutron data and the current x-ray data.

It is interesting to note from Fig. 7 that $x = 0.25$ is a special composition where small polarons can form an ordered lattice separated by JT distorted Mn$^{3+}$ sites which
are unstrained. Each Mn$^{4+}$ site has 6 neighboring Mn$^{3+}$ sites whose long-bonds point towards it and these complexes fit together into a space filling 3d network. There is no experimental evidence that polarons order in this way in this system; rather charge stripes are observed. However, this model does show how orbitals can order locally around an Mn$^{4+}$ defect site to minimize strain.

So far, we have shown that by studying the size and shape of the MnO$_6$ octahedra we can determine whether the charge is localized as small polarons (observation of 1.88 Å and 2.18 Å Mn-O bonds in the PDF) or delocalized (observation of a single Mn-O bond length ~ 1.97 Å). These two states are exemplified by the $x = 0.12$ sample at 20 K (Fig. 5(a)) and the $x = 0.33$ sample at 20 K (Fig. 5(c)) respectively. As the temperature is increased below T_c in the $x = 0.33$ and $x = 0.25$ samples, significant components of the long and short bonds become evident. This suggests that carriers are becoming localized in parts of the sample. The high-resolution PDF data therefore support the idea of an inhomogeneous sample with charge delocalized metallic regions of Zener phase coexisting with regions of charge localized JT phase. As T_c is approached from below the amount of charge localized phase increases at the expense of the charge delocalized phase as evidenced by the growth of intensity at approximately 1.88 and 2.1 Å on increasing temperature in the $x = 0.25$ sample (Fig. 5). This view is consistent with Booth et al.’s interpretation of their XAFS data and the interpretation of our earlier neutron PDF data.

The MI transition and the onset of long-range ferromagnetic order presumably coincides with the percolation of the Zener phase. This is similar to the original proposition that the MI transition was a percolation transition by Louca et al., though our data support the idea that the Zener phase percolates rather than a network of connected 3-site polarons. A number of theories predict charge phase segregation or two-fluid behavior of the charge system. We note that our data is entirely consistent with the coexistence of delocalized Zener phase and localized JT phase below T_c but does not directly imply the existence of charge segregation between these phases; rather it is just the state of localization of the charges which differs in the different regions of the sample as is proposed for $La_{1-y}Pr_yCa_{0.375}MnO_3$.

Finally, we address the issue of how the charge state evolves as the MI transition is approached as a function of doping x. As the experimental data suggest for $x = 0.33$ and $T=20$ K no polaronic or JT distortions are present i.e. the true ground-state of the FM metallic phase is a completely delocalized Zener state. Although we have a sparse data-set one can notice the similarity of the Mn-O bond length distributions for $x = 0.33$ at 100 K and $x = 0.25$ at 20 K. Thus, as one moves away from the ground-state a localized state appears that coexists with the delocalized one. The volume of the localized state

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig7.png}
\caption{Ordered polaron model for $x = 0.25$. The small octahedra are on 1/4 of the sites and contain localized Mn$^{4+}$ ions. The other Mn sites (large balls) have elongated JT distorted octahedral coordination whose long-bonds are represented by thick lines. These can be oriented along x, y or z and always point towards a polaron. Three of the octahedra have been drawn in to illustrate this fact. For clarity the magnitude of the polaronic/Jahn-Teller distortions are exaggerated.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{Schematic phase diagram for $La_{1-x}Ca_xMnO_3$. The solid lines are electronic and magnetic transitions taken from Refs. 17 and 18. “I” and “M” refer to insulating and metallic respectively and “P”, “F” and “AF” to paramagnetic, ferromagnetic and antiferromagnetic. Superimposed on the figure are the low-r PDF peaks showing the MnO$_6$ octahedra. In the insulating phases the JT long-bond is clearly apparent. There is no JT-long bond deep in the FM phase; however, it gradually appears as the MI boundary is approached. The fully localized polaronic phases have dark shading. The light shading indicates the region where localized and delocalized phases coexist and the white region indicates homogeneous FM phase. The boundaries between the shaded regions are diffuse and continuous and are meant to be suggestive only.}
\end{figure}
increases as the MI transition is approached, whether as a function of temperature (see Fig. 3) or doping (see Fig. 4). The MI transition itself then occurs when the proportion of delocalized phase is too small to percolate. This view is summarized in Fig. 6. In this figure the first peaks in the experimental PDFs, reflecting the MnO$_6$ octahedral bond length distribution, are plotted at the positions on the phase diagram where they were measured. The dark shading signifies essentially fully charge localized material; the light shaded areas indicate a coexistence of charge localized and delocalized phases and the white area is the fully charge delocalized region. The positions of the MI transitions are taken from standard phase diagrams of this system.

V. CONCLUSIONS

Using the PDF analysis of high energy x-ray diffraction we can distinguish the charge localized and charge delocalized states of La$_{1-x}$Ca$_x$MnO$_3$ ($x = 0.12, 0.25, 0.33$). We characterize the nature of the polaronic distortion around Mn$^{4+}$ as being an isotropic octahedron with Mn-O bond length of $\sim 1.88 - 1.9$ Å. The FM phase is only homogeneous at low temperature and high doping above $\sim x = 0.3$. As temperature is raised or doping lowered towards the MI transition the FM state becomes inhomogeneous with a coexistence of localized JT phase and delocalized Zener phase.

ACKNOWLEDGMENTS

We would like to thank J. D. Thompson and M. F. Hundley for help in characterizing the samples, Matthias Gutmann for help with data collection and E. Bozin for a critical reading of the manuscript. We would like to acknowledge stimulating discussions with P. G. Radaelli. This work was supported by the NSF through grant DMR-9700966 and by the Alfred P. Sloan Foundation. CHESS is funded by NSF through grant DMR97-13424.

1. A. P. Ramirez, J. Phys: Condens. Matter 9, 8171 (1997).
2. A. J. Mills, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
3. H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
4. S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier, and J. D. Thompson, Phys. Rev. Lett. 77, 715 (1996).
5. P. Dai, J. Zhang, H. A. Mook, S.-H. Liou, P. A. Dowben, and E. W. Plummer, Phys. Rev. B 54, R3694 (1996).
6. C. H. Booth, F. Bridges, G. J. Snyder, and T. H. Geballe, Phys. Rev. B 54, R15606 (1996).
7. G. Zhao, K. Conder, H. Keller, and K. A. Müller, Nature 381, 676 (1996).
8. J. R. Fletcher and K. W. H. Stephens, J. Phys. C: Solid State Phys. 2, 444 (1969).
9. D. Louca, T. Egami, E. L. Brosha, H. Röder, and A. R. Bishop, Phys. Rev. B 56, R8475 (1997).
10. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).
11. G. M. Jonker and J. H. van Santen, Physica (Utrecht) 16, 337 (1950).
12. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B 54, 11914 (1996).
13. T. T. M. Palstra, A. P. Ramirez, S.-W. Cheong, B. R. Zegarski, P. Schiffer, and J. Zaanen, Phys. Rev. B 56, 5104 (1997).
14. M. Jaime, H. T. Hardner, M. B. Salamon, M. Rubinstein, P. Dorsey, and D. Emin, Phys. Rev. Lett. 78, 951 (1997).
15. P. Matl, N. F. Ong, Y. F. Yan, Y. Q. Li, D. Studebaker, T. Baum, and G. Doubinina, Phys. Rev. B 57, 10248 (1998).
16. C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier, Phys. Rev. B 57, 10440 (1998).
17. D. Louca and T. Egami, Phys. Rev. B 59, 6193 (1999).
18. A. Lanzara, N. L. Saini, M. Brunelli, F. Natali, A. Bianconi, P. G. Radaelli, and S. Cheong, Phys. Rev. Lett. 81, 878 (1998).
19. Note that for neutron scattering the Mn-O peak in the PDF is negative because of the negative scattering length of Mn. However, for x-rays this peak is positive.
20. Th. Proffen, R. G. DiFrancesco, S. J. L. Billinge, E. L. Brosha, and G. H. Kwei, submitted (preprint available at http://xxx.lanl.gov/abs/cond-mat/9903084).
21. P.B. Allen, and V. Perebeinos, (preprint available at http://xxx.lanl.gov/abs/cond-mat/9812250v3).
22. P. G. Radaelli, Mater. Res. Soc. Proc. Symp., 1999.
23. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
24. B. E. Warren, X-ray Diffraction, Dover, New York, 1990.
25. C. N. J. Wagner, J. Non-Crystalline Solids 31, 1 (1978).
26. T. Egami, in Local Structure from Diffraction, edited by S. J. L. Billinge and M. F. Thorpe, page 1, New York, 1998, Plenum.
27. V. Petkov, I-K. Jeong, J. S. Chung, M. F. Thorpe, S. Kyucia, and S. J. L. Billinge, submitted (preprint available at http://xxx.lanl.gov/abs/cond-mat/9906098).
28. W. Ruland, Brit. J. Appl. Phys. 15, 1301 (1964).
29. Y. Waseda, The structure of non-crystalline materials, McGraw-Hill, New York, 1980.
30. V. Petkov, J. Appl. Crystallogr. 23, 387 (1989).
31. M. D. Sturges, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich, volume 20, page 91, Academic Press, 1967.
32. J. M. D. Coey, M. Viret, and S. von Molnár, Adv. in Phys. 48, 167 (1999).
33. E. Pollert, S. Krupicka, and E. Kuzwicova, J. Phys. Chem.
solids 43, 1137 (1996).

34 J. B. A. A. Ellemans, B. van Laar, K. R. van der Veer, and B. O. Loopstra, J. Solid State Chem. 3, 328 (1971).

35 G. H. Kwei, D. N. Argyriou, S. J. L. Billinge, A. C. Lawson, J. J. Neumeier, A. P. Ramirez, M. A. Subramanian, and J. D. Thompson, volume 475 of Mat. Res. Soc. Symp. Proc., page 533, 1997.

36 Th. Proffen and S. J. L. Billinge, J. Appl. Cryst. 32, 572 (1999).

37 R. D. Shannon, Acta Cryst. A. 32, 751 (1976).

38 K. Poeppelmeier, M. Leonowicz, J. Scanlon, J. Longo, and W. Yelon, J. Solid State Chem. 45, 71 (1982).

39 J. B. A. A. Elemans, B. Van Laar, K. R. Van Der Veen, and B. O. Loopstra, J. Solid State Chem. 3, 238 (1971).

40 M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999).

41 S-W. Cheong and C. H. Chen, in Colossal magnetoresistance and related properties, edited by B. Raveau and C. N. R. Rao, World Scientific, 1999.

42 A. P. Ramirez, P. Schiffer, S-W. Cheong, W. Bao, T. T. M. Palstra, P. L. Gammel, D. J. Bishop, and B. Zegarski, Phys. Rev. Lett. 76, 3188 (1996).

43 S. J. L. Billinge, in Physics of Manganites, edited by T. A. Kaplan and S. D. Mahanti, page 201, Kluwer Academic/Plenum, 1999.

44 S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).

45 M. Jaime and M. B. Salamon, in Physics of Manganites, Kluwer Academic/Plenum, 1999.