Supporting Information

Interligand Communication in a Metal Mediated LL’CT System – A Case Study
Sara A. Dille,[a] Kyle J. Colston,[a] Stephen C. Ratvasky,[b] Jingzhi Pu,[a] and Partha Basu*[a]

[a] Dr. S. A. Dille, Mr. K. J. Colston, Dr. J. Pu, and Dr. P. Basu
Department of Chemistry and Chemical Biology
Indiana University – Purdue University Indianapolis
Indianapolis, IN, 46202, USA
E-mail: basup@iupui.edu

[b] Mr S. C. Ratvasky
Department of Chemistry and Biochemistry
Duquesne University
Pittsburgh, PA, 15282, USA
Experimental Section

Materials. All reagents and solvents were purchased from either Sigma Aldrich or Thermo Fisher Scientific and used as received without further purification. All work was carried out under an inert atmosphere either in a dry box or using Schlenk line techniques under argon. [MoOCl((Pr2Dt0)2][PF6], [MoOCl(Me2Dt0)2][PF6]12, N,N'-diisopropylpiperazine-2,3-dithione ((Pr2Dt0), and N,N'-dimethylpiperazine-2,3-dithione (Me2Dt0)60 were synthesized following literature procedures. Multivariate regression analyses for Kamlet-Taft models were performed using Minitab 18 software.

Physical Methods. 1H NMR spectra were recorded on either a Bruker 500 MHz Avance spectrometer or a Bruker 400 MHz Avance spectrometer in air-tight NMR tubes.31P NMR spectra were recorded on a Bruker 400 MHz Avance spectrometer in air-tight NMR tubes. Infrared spectroscopy (FTIR) was recorded using a Thermofisher Nicolet iS10 spectrometer at room temperature using a KBr pellet. Electronic absorbance spectra were collected on a Shimadzu UV-3600 Plus in an air tight quartz cuvette. Cyclic voltammetry was recorded on a Metrohm PGSTAT204 galvanostat/potentiostat. A Pt disk working electrode, Ag+/Ag reference electrode and Pt wire auxillary electrode and tetrabutylammonium hexafluorophosphate supporting electrolyte were used. All voltammograms were referenced to the Fe+/Fc couple as an internal standard. All potentials are presented versus the Fe+/Fc couple, Mass spectra were collected using an Agilent Technologies 6520 Accurate Mass-QTOF LC/MS.

Computational Methods. All computational work was performed using Gaussian 09 software package running on UNIX OS and visualized utilizing GaussView 5.0.9.
Calculations were done using the Lee-Yang-Parr nonlocal correlation functional (B3LYP) and a combination of the LANL2DZ effective core potential basis set for molybdenum and the 6-31G** basis set for all other atoms. The crystal structure geometry was optimized using DFT to afford the geometry used for subsequent calculations. Atomic composition for molecular orbitals was determined using C-squared population analysis from single-point calculations with the program QM-Forge. The lowest 60 transition energies were generated using non-equilibrium TDDFT calculations with the polarizable continuum model (PCM) algorithm. PCM-TDDFT calculations were performed using acetonitrile as the solvent to match experimental conditions. Electron density difference maps (EDDMs) were generated using the cubman package in Gaussian09.

X-Ray Crystallography. Single crystals were mounted using glass fiber and data collected using a Bruker SMART Apex II diffractometer with a graphite monochromator for Mo Kα radiation (0.71073 Å). The absorption correction was performed using SADABS routine. The structure solution and the refinement were done using SHELXS-97 and SHEXLX-2018 programs. The X-ray data were collected at room temperature (296 K). Hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters. The methyl group on the toluene-2,3-dithiolene moiety of MoO(tdt)(PrDt⁰) was refined as disordered over two moieties with different rotational orientations. The disorder extends to the other carbon and sulfur atoms of the toluene-2,3-dithiolene moiety, and they were included in the disorder modeling. The two moieties were restrained to have similar geometries (SAME command of Shelxl) and U_ij components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be
similar. Subject to these conditions, the occupancy ratio refined to 0.517(5) to 0.483(5).

Details of the structure determination are listed in Table S1.

Table S1. Crystallographic Data for MoO(tdt)(iPr2Dt)

Property	Value
Formula	C_{17}H_{24}MoN_{2}OS_{4}
Formula weight	496.56
Temperature	296 K
Color/shape	Purple/Block
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	a=12.6981 (1) Å
	b=15.8799 (2) Å
	c=21.2754 (2) Å
Volume (Å³)	4290.07(8)
Z, Formula unit/unit cell	8
density (calculated)	1.534 Mg m⁻³
μ (mm⁻¹)	1.01
Diffractometer	Bruker Smart Apex II
Radiation, graphite monochrome	Mo Kα (λ=0.71073 Å)
Crystal size	0.20 x 0.11 x 0.08 mm
Reflections collected/unique	70727/6665
Parameters/restraints	314/292
R_{int}	0.054
Refinement method	Full-matrix least-squares on F²
Goodness-of-fit on F²	1.03
Final R indices [I>2σ(I)]	R=0.041 wR2=0.100
Maximum residue peaks (eÅ⁻³)	0.53 and -0.44
Syntheses of Complexes

MoO(bdt)(Me₂Dt₀) (1). [MoOCl(Me₂Dt₀)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of benzenedithiol (63 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple and the release of white vapor. The reaction mixture was stirred for one hour. The solution was filtered, and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. Yield 56% (75 mg, 0.175 mmol). Calcd (Expt) for C₁₂H₁₄MoN₂O₄S₄: C, 33.80 (33.95): H, 3.31 (3.34); N, 6.33 (6.57). ¹H NMR (CD₃CN): δ 3.77 (s, CH₃, 6H), 3.89 (m, CH₂, 2H), 4.18 (m, CH₂, 2H), 7.10 (dd, J = 5.8 Hz, 3.2 Hz, aromatic, 2H), 7.65 (dd, J = 5.8 Hz, 3.2 Hz, aromatic, 2H). FTIR (KBr, cm⁻¹): 1531 (vs, C(-N)S), 1354 (vs, C=S), 940 (s, Mo=O). UV-Vis (MeCN): λₘₐₓ (ε, M⁻¹cm⁻¹) 380 nm (1610), 532 nm (4400).

MoO(tdt)(Me₂Dt₀) (2). [MoOCl(Me₂Dt₀)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of toluene-3,4-dithiol (53 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple and the release of white vapor. The reaction mixture was stirred for one hour. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. (79 mg, 0.164 mmol). Calcd (Expt) for C₁₃H₁₆MoN₂O₄S₄: C, 35.45 (35.44): H, 3.66 (3.74); N, 6.36 (6.24). ¹H NMR (CD₃CN): δ 2.34 (s, CH₃, 3H), 3.76 (s, CH₃, 6H), 3.86 (m, CH₂, 2H), 4.14 (m,
CH₂, 2H), 6.92 (d, J= 7.87 Hz, aromatic 1H), 7.47 (s, aromatic, 1H), 7.51 (d, J= 7.9 Hz, aromatic, 1H). FTIR (KBr, cm⁻¹): 1534 (vs, C(-N)S), 1355 (vs, C=S), 929 (s, Mo=O).

UV-Vis (MeCN): \(\lambda_{\text{max}} \) (\(\varepsilon, M^{-1} \text{cm}^{-1}\)) 380 nm (2320), 531 nm (6050).

MoO(qdt)(Me₂Dt⁰) (3). [MoOCl(Me₂Dt⁰)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of quinioxalinedithiol (66 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple and the release of white vapor. The reaction mixture was stirred for one hour. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. (20 mg, 0.0401 mmol). 11% Calcd (Expt) for C₁₄H₁₄MoN₄O₄S₄ +H₂O: C, 33.87(34.21); H, 3.25(2.82); N, 11.28 11.84).

¹H NMR (CD₃CN): δ 3.84 (s, CH₃, 6H), 4.00 (q, J= 8.2 Hz, 7.0 Hz, CH₂, 2H), 4.21(q, J= 7.0 Hz, 6.4 Hz, CH₂, 2H), 7.63 (dd, J= 6.4 Hz, 3.4 Hz, aromatic, 2H), 7.93 (dd, J= 6.4 Hz, 3.4 Hz, aromatic, 2H). FTIR (KBr, cm⁻¹): 1524 (vs, C(-N)S), 1350 (vs, C=S), 955 (s, Mo=O). UV-Vis (MeCN): \(\lambda_{\text{max}} \) (\(\varepsilon, M^{-1} \text{cm}^{-1}\)) 410 nm (6110), 548 nm (7450).

MoO(bdtCl₂)(Me₂Dt⁰) (4). [MoOCl(Me₂Dt⁰)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of 3,6-dichloro-1,2-benzenedithiol (72 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for thirty minutes. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. Yield 42% (65 mg,
0.132 mmol). Calcd (Expt) for C₁₂H₁₂Cl₂MoN₂OS₄: C, 29.10 (29.35): H, 2.44 (2.50); N, 5.66 (5.69). ¹H NMR (CD₃CN): δ 3.81 (s, CH₃, 6H), 4.10 (m, CH₂, 2H), 4.20 (m, CH₂, 2H), 7.12 (s, aromatic 2H). FTIR (KBr, cm⁻¹): 1527 (vs, C(-N)S), 1353 (vs, C=S), 926 (s, Mo=O). Electronic spectrum, UV-Vis (MeCN): λ_{max} (ε, M⁻¹cm⁻¹) 385 nm (2050), 531 nm (4460).

MoO(bdt)(Pr₂Dt⁰) (5). [MoOCl(Pr₂Dt⁰)]²[PΦ₆] (200 mg, 0.26 mmol) was dissolved in 10.5 mL of acetonitrile generating a dark blue solution. A solution of benzenedithiol (49 mg, 0.34 mmol) and triethylamine (59 mg, 0.58 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for one hour. The solution was filtered, and dark purple solid was collected. Free Pr₂Dt⁰ ligand was present in the crude product. To remove the free ligand, the crude product (80 mmol) was dissolved in 7.5 mL of CH₃Cl. MoCl₅ (10 mg, 0.037 mmol) was dissolved in 3 mL of MeOH generating HCl gas. The MoCl₅ was stirred until the cessation of the HCl gas was observed resulting in a green solution. The methanolic solution was added dropwise to the chloroform solution of the crude MoO(bdt)(Pr₂Dt⁰). The mixture was stirred for 1.5 hours and filtered. A dark purple filtrate of analytically pure complex was collected. Yield 41% (52 mg, 0.107 mmol) Calcd (Expt) for C₁₆H₂₂MoN₂OS₄: C, 39.82 (40.24): H, 4.60 (4.51); N, 5.81 (5.54). ¹H NMR (CD₃CN): δ 1.28 (d, J= 6.7 Hz, CH₃, 6H), 1.43 (d, J= 6.7 Hz, CH₃, 6H), 3.74 (m, CH₂, 2H), 4.02 (m, CH₂, 2H), 5.23 (h, J= 6.7 Hz, CH, 2H), 7.10 (dd, J= 5.8 Hz, 3.2 Hz, aromatic, 2H), 7.65 (dd, J= 5.8 Hz, 3.3 Hz, aromatic, 2H) FTIR (KBr, cm⁻¹): 1501 (vs, C(-N)S), 1350 (vs, C=S), 931 (s, Mo=O). Electronic spectrum, UV-Vis (MeCN): λ_{max} (ε, M⁻¹cm⁻¹) 380 (2880), 529 nm (6900).
MoO(tdt)(Pr2Dt) (6). [MoOCl(Pr2Dt)][PF6] (200 mg, 0.26 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of toluene-3,4-dithiol (0.45 g, 0.00029 moles) and triethylamine (59 mg, 0.58 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for one hour. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform resulting in analytically pure product. Yield 58% (77 mg, 0.155 mmol). Calcd (Expt) for C17H24MoN2O5S4: C, 41.12 (41.04); H, 4.87 (4.76); N, 5.64 (5.52). 1H NMR (CD2Cl2): δ 1.24 (d, CH3, J = 6.9 Hz, 6H), 1.43 (d, J = 6.8 Hz, CH3, 6H), 2.34 (s, CH3, 3H), 3.62 (m, CH2, 2H), 3.88 (m, CH2, 2H), 5.22 (h, J = 6.7 Hz, CH, 2H), 6.93 (d, J = 8.1 Hz, aromatic H), 7.47 (s, aromatic, H), 7.51 (d, J = 7.9 Hz, aromatic, H). FTIR (KBr, cm⁻¹): 1501 (vs, C(-N)S), 1350 (vs, C=S), 931 (s, Mo=O). UV-Vis (MeCN): λmax (ε, M⁻¹cm⁻¹) 380 (2880) 533 nm (7500).

MoO(qdt)(Pr2Dt) (7). [MoOCl(Pr2Dt)][PF6] (200 mg, 0.26 mmol) was dissolved in 13.5 mL of acetonitrile generating a dark blue solution. A solution of quinoxalinedithiol (56 mg, 0.29 mmol) and triethylamine (59 mg, 0.58 mmol) in 4.5 mL of methanol was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for one hour. The solution was filtered and green solid was collected. The green solid was washed with CH3Cl to collect a dark purple filtrate. The solvent was dried en vacuo to obtain analytically pure complex. Yield 34% (49 mg, 0.091 mmol). Calcd (Expt) for C18H22MoN4O5S4 + CH3Cl: C, 40.27 (39.77): H, 4.63 (4.52); N, 9.89 (9.16). 1H NMR (CD3CN): δ 1.27 (d, J = 6.7 Hz, CH3, 6H), 1.41 (d, J = 6.7 Hz, CH3, 6H), 3.63 (m, CH2, 2H), 3.87 (m, CH2, 2H), 5.25 (h, J = 6.7 Hz, CH,
2H), 7.54 (dd, J= 6.4 Hz, 3.4 Hz, aromatic, 2H), 7.98 (dd, J= 6.3 Hz, 3.4 Hz, aromatic, 2H). FTIR (KBr, cm⁻¹): 1491 (vs, C(-N)S), 1351 (vs, C=S), 950 (s, Mo=O). UV-Vis (MeCN): λmax (ε, M⁻¹cm⁻¹) 400 nm (8240), 543 nm (7070).

MoO(bdtCl₂)(iPr₂D₅) (8). [MoOCl(iPr₂D₅)₂][PF₆] (200 mg, 0.26 mmol) was dissolved in 13.5 mL of acetonitrile generating a dark blue solution. A solution of 3,6-dichloro-1,2-benzenedithiol (61 mg, 0.29 mmol) and triethylamine (59 mg, 0.58 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for 15 minutes. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure complex. Yield: 68% (100 mg, 0.181 mmol).

Calcd (Expt) for C₁₆H₂₀Cl₂MoN₂O₄S₄: C, 34.85 (34.65); H, 3.66 (3.67); N, 5.08 (5.08). ¹H NMR (CD₃CN): δ1.31 (d, J= 6.7 Hz, CH₃, 6H), 1.45 (d, J= 6.7 Hz, CH₃, 6H), 3.71 (m, CH₂, 2H), 4.01 (m, CH₂, 2H), 5.28 (h, J= 6.7 Hz, CH, 2H), 7.23 (s, aromatic 2H). FTIR (KBr, cm⁻¹): 1507 (vs, C(-N)S), 1356 (vs, C=S), 939 (s, Mo=O). UV-Vis (MeCN): λmax (ε, M⁻¹cm⁻¹) 390 nm (4070), 530 nm (9400).
Figure S1. A plot showing the linearity of the peak current (i_p) versus the square root of the scan rate (v) for complex 6 suggesting diffusion-controlled processes. Fit of the equations are given below.

Oxidation
- $i_p = 1.40E-6 (+/- 6.36E-8)n^{3/2}A^{1/2}D^{1/2}C^b - 8.71E-7 (+/- 1.27E-6)$; $r^2 = 0.99$
- $i_p = 5.63E-7 (+/- 7.84E-8) n^{3/2}A^{1/2}D^{1/2}C^b - 8.56E-7 (+/- 1.57E-6)$; $r^2 = 0.93$

Reduction
- $i_p = -1.44E-6 (+/- 1.91E-8) n^{3/2}A^{1/2}D^{1/2}C^b - 2.12E-6 (+/- 3.82E-7)$; $r^2 = 0.99$
- $i_p = -1.60E-6 (+/- 3.78E-8) n^{3/2}A^{1/2}D^{1/2}C^b - 3.44E-6 (+/- 7.56E-7)$; $r^2 = 0.99$
Figure S2 Cyclic voltammogram of $^{1}\text{Pr}_2\text{D}t^0$. Scan rate, 100mV s$^{-1}$; solvent, acetonitrile; temperature, 25°C; Glassy carbon working electrode, Ag/Ag$^{+}$ reference electrode, and a Pt-wire auxiliary electrode; supporting electrolyte, 1BuNPF$_6$. Potentials referenced internally to Fc$^{+}$/Fc couple.
Figure S3. Cyclic voltammogram of Zn(mnt)(iPr_2Dt_0) at varying scan rates; solvent, acetonitrile; temperature, 25°C; Platinum disk working electrode, Ag/Ag^+ reference electrode, and a Pt-wire auxiliary electrode; supporting electrolyte, Bu_4NPF_6. Potentials referenced internally to Fc^+/Fc couple. The two poorly defined couples are due to potential dissociation of the iPr_2Dt_0 ligand. Support for this suggestion comes from multiple scan rate experiment. As scan rate increases, the couple at E_{1/2} = -1556 mV (ΔE_p = 90 mV) is no longer observed. The peak height of the two reversible couples attributed to the coordinated ligand increase with increasing scan rate whereas the peak heights of the couple at E_{1/2} = -1556 mV (ΔE_p = 90 mV) does not increase. At a scan rate of 100 mV/sec the peak heights -1923 mV is ~50% and at a scan rate of 900 mV/sec the peak height at -1923 mV is ~8% of the peak height at -1601 mV. Dissociation of the ligand is a slow electron process and the concentration of free ligand can be decreased by increasing the scan rate.
Electronic Spectra

Figure S4. Absorbance spectra for complexes possessing the Me₂Dt⁰ dithione ligand in acetonitrile.

Figure S5. Absorbance spectra for complexes possessing the Pr₂Dt⁰ dithione ligand in acetonitrile.
Figure S6. Absorbance spectra of 3 and 7 in acetonitrile.
Solvatochromic Effect
Figure S7. Linear correlation between dipole moment (μ) and the energy of the LL’CT of MoO(bdt)(Me$_2$Dt0). Equation of fit: $E = -518.86\mu + 20432 \ R^2 = 0.97$

Figure S8. Linear correlation between dipole moment (μ) and the energy of the LL’CT of MoO(tdt)(Me$_2$Dt0). Equation of fit: $E = -739.58\mu + 21146 \ R^2 = 0.93$
Figure S9. Linear correlation between dipole moment (μ) and the energy of the LL’CT of MoO(bdtCl$_2$)(Me$_2$Dt$_0$). Equation of fit: $E = -397.27 \mu + 20038$ $R^2 = 0.98$

Figure S10. Linear correlation between dipole moment (μ) and the energy of the LL’CT of MoO(bdt)(iPr$_2$Dt0). Equation of fit: $E = -399.03 \mu + 20108$ $R^2 = 0.92$
Figure S11. Linear correlation between dipole moment (μ) and the energy of the LL’CT of MoO(tdt)(iPr$_2$Dt0). Equation of fit: $E = -610.17\mu + 20884$ $R^2 = 0.90$

Figure S12. Linear correlation between dipole moment (μ) and the energy of the LL’CT of MoO(bdtCl$_2$)(iPr$_2$Dt0). Equation of fit: $E = -338.3\mu + 19833$ $R^2 = 0.93$
Table S2. Composition of the molecular orbitals in 6.

Orbital	E, eV	Mo	Mo(d)	O	tdt	S_{tdt}	iPr₂Dt⁰	S^{Dt}
L+2	-1.05	48.47	39.81	10.24	17.89	16.34	23.40	17.21
L+1	-1.41	42.55	35.40	9.71	9.32	7.67	38.42	14.78
LUMO	-2.81	25.82	25.37	1.70	3.08	1.56	69.40	22.97
HOMO	-4.91	7.46	4.16	5.63	82.26	39.79	4.66	1.60
H-1	-5.33	1.36	1.05	1.99	87.81	49.26	8.84	6.62
H-2	-5.64	46.93	44.00	0.11	13.71	8.27	39.25	6.25

Table S3. Dt⁰ fold angles (°) of 2, 5, 6, 7, and 8 calculated from gas phase optimizations. Compounds without crystallographic data were generated by editing 6 in GaussView6.0 to change Dt²⁻ and Dt⁰ substituents.

Complex	Dt⁰ Fold Angle (°)
MoO(tdt)(Me₂Dt⁰) (2)	65.93
MoO(bdt)(iPr₂Dt⁰) (5)	70.53
MoO(tdt)(iPr₂Dt⁰) (6)	70.47
MoO(bdtCl₂)(iPr₂Dt⁰) (7)	69.85
MoO(qdt)(iPr₂Dt⁰) (8)	69.58

Table S4. Equation of the fit for the multivariate regression using the Kamlet-Taft model.

Complex	Equation of Fit
MoO(bdt)(Me₂Dt⁰) (1)	23726+1514 π– 1675 α - 9347 β
MoO(tdt)(Me₂Dt⁰) (2)	26752+1785 π– 27025 α - 1406 β
MoO(bdtCl₂)(Me₂Dt⁰)(4)	20777-3031 π+ 425.9 α + 606 β
MoO(bdt)(iPr₂Dt⁰) (5)	23041+366 π– 12720 α - 6794 β
MoO(tdt)(iPr₂Dt⁰) (6)	25891+1336 π– 23442 α - 11962 β
MoO(bdtCl₂)(iPr₂Dt⁰) (8)	21829-104 π– 7887 α - 4563 β
Table S5. Correlation coefficients of peak maxima fit to the Kamlet-Taft model.

Complex	Dipole Moment R^2	Kamlet-Taft R^2
MoO(bdt)(Me$_2$Dt0) (1)	0.97	0.98
MoO(tdt)(Me$_2$Dt0) (2)	0.93	0.94
MoO(bdtCl$_2$(Me$_2$Dt0) (4)	0.98	0.98
MoO(bdt)(iPr$_2$Dt0) (5)	0.92	0.96
MoO(tdt)(iPr$_2$Dt0) (6)	0.90	0.97
MoO(bdtCl$_2$(iPr$_2$Dt0) (8)	0.93	0.99

Theoretical Calculations

Charge = 0 Multiplicity = 1

Element	Mo	C	N	S	O	S	C	C	H	H	S	C	C	H	H	H	H	H	H
Mo	-0.432	0.003	0.128																
C	-3.633	-1.017	0.206																
N	3.519	-1.183	-0.197																
S	-2.028	-1.772	0.311																
O	-0.02	0.464	1.72																
S	-2.327	1.303	-0.534																
C	-3.764	0.33	-0.151																
N	2.922	1.551	0.052																
C	-5.04	0.908	-0.239																
H	-5.126	1.955	-0.517																
S	0.967	-1.799	-0.81																
C	-6.191	0.164	0.024																
S	0.729	1.37	-1.528																
C	-6.045	-1.188	0.377																
C	3.845	-2.633	-0.168																
H	3.062	-3.121	-0.75																
C	-4.786	-1.772	0.468																
H	-4.687	-2.819	0.742																
C	3.953	3.772	-0.375																
H	3.752	4.848	-0.362																
H	4.174	3.479	-1.405																
H	4.849	3.604	0.234																
Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 1.9465 eV 636.95 nm f=0.0115 <S**2>=0.000
113 ->114 0.70049
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-KS) = -2507.39909459
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.3850 eV 519.84 nm f=0.0091 <S**2>=0.000
111 ->114 0.62758
112 ->114 -0.30273

Excited State 3: Singlet-A 2.4944 eV 497.06 nm f=0.1752 <S**2>=0.000
111 ->114 0.30744
112 ->114 0.56780
112 ->115 -0.14893
112 ->116 -0.17355
Excited State	Singlet-A	E (eV)	λ (nm)	f	<S**2>
4	2.8406	436.47	0.0146	0.000	
112 -> 114	0.10439				
112 -> 115	0.56066				
112 -> 116	-0.15536				
113 -> 115	-0.33777				
5	3.0308	409.08	0.0034	0.000	
112 -> 115	0.33978				
113 -> 115	0.59747				
6	3.0657	404.43	0.0046	0.000	
109 -> 114	0.17121				
110 -> 114	0.64063				
112 -> 116	0.18533				
7	3.2085	386.43	0.1255	0.000	
110 -> 114	-0.18069				
112 -> 116	0.22461				
112 -> 115	0.11939				
113 -> 116	-0.25749				
8	3.3153	373.98	0.0232	0.000	
111 -> 115	0.15594				
112 -> 116	0.28653				
113 -> 116	0.61029				
9	3.4525	359.11	0.0056	0.000	
109 -> 114	0.12833				
112 -> 117	0.55843				
112 -> 118	0.24788				
113 -> 117	-0.26725				
10	3.4706	357.25	0.0032	0.000	
109 -> 114	0.66222				
110 -> 114	-0.17874				
11	3.5612	348.15	0.0651	0.000	
111 -> 115	0.64750				
113 -> 116	-0.10787				
113 -> 117	0.14787				
12	3.6969	335.37	0.0319	0.000	
111 -> 115	-0.11913				
111 -> 116	-0.18849				
112 -> 117	0.24848				

22
112 -> 118 0.11893
113 -> 117 0.56256
113 -> 118 0.17253

Excited State 13: Singlet-A 3.8104 eV 325.39 nm f=0.0194 <S**2>=0.000
105 -> 114 -0.17815
107 -> 114 0.53624
111 -> 116 0.37740

Excited State 14: Singlet-A 3.8181 eV 324.73 nm f=0.0181 <S**2>=0.000
105 -> 114 0.12181
107 -> 114 -0.36016
111 -> 116 0.53083
113 -> 117 0.14213
113 -> 118 0.16120

Excited State 15: Singlet-A 3.9125 eV 316.89 nm f=0.0544 <S**2>=0.000
108 -> 114 -0.10789
112 -> 117 -0.22713
112 -> 118 0.50035
113 -> 117 0.11114
113 -> 118 -0.32321

Excited State 16: Singlet-A 3.9883 eV 310.87 nm f=0.0213 <S**2>=0.000
106 -> 114 -0.31306
108 -> 114 0.55191
110 -> 115 -0.16152
112 -> 118 0.18408

Excited State 17: Singlet-A 4.0079 eV 309.35 nm f=0.0178 <S**2>=0.000
106 -> 114 0.51169
108 -> 114 0.39698
110 -> 115 0.17722
112 -> 118 -0.10505

Excited State 18: Singlet-A 4.0864 eV 303.40 nm f=0.0936 <S**2>=0.000
106 -> 114 0.13289
110 -> 115 0.11047
111 -> 117 0.11717
112 -> 117 -0.12638
112 -> 118 0.27889
113 -> 117 -0.16113
113 -> 118 0.52994

Excited State 19: Singlet-A 4.1768 eV 296.84 nm f=0.0248 <S**2>=0.000
111 -> 117 0.65572
Excited State 20: Singlet-A 4.2372 eV 292.61 nm f=0.0116 \ <S^2>=0.000
104 ->114 0.21900
106 ->114 -0.20315
110 ->115 0.59258

Excited State 21: Singlet-A 4.3018 eV 288.21 nm f=0.0041 \ <S^2>=0.000
103 ->114 -0.11423
104 ->114 -0.12329
105 ->114 0.61661
106 ->114 -0.11980
107 ->114 0.24420

Excited State 22: Singlet-A 4.3662 eV 283.97 nm f=0.0326 \ <S^2>=0.000
104 ->114 0.62972
105 ->114 0.15770
106 ->114 0.13554
110 ->115 -0.16634

Excited State 23: Singlet-A 4.4504 eV 278.59 nm f=0.0073 \ <S^2>=0.000
109 ->115 0.13758
110 ->116 0.67425

Excited State 24: Singlet-A 4.4871 eV 276.31 nm f=0.0033 \ <S^2>=0.000
111 ->117 -0.11582
111 ->118 0.64608
113 ->119 -0.12271

Excited State 25: Singlet-A 4.5981 eV 269.64 nm f=0.0558 \ <S^2>=0.000
103 ->114 0.56617
105 ->114 0.14260
107 ->115 0.11061
109 ->115 0.24862
113 ->119 0.14037

Excited State 26: Singlet-A 4.6295 eV 267.81 nm f=0.0029 \ <S^2>=0.000
103 ->114 -0.31111
109 ->115 0.55523
113 ->119 0.13118

Excited State 27: Singlet-A 4.6418 eV 267.10 nm f=0.0615 \ <S^2>=0.000
109 ->115 -0.14256
111 ->118 0.10484
111 ->121 0.11979
112 ->119 -0.10786
Transition	Excited State	Energy (eV)	Wavelength (nm)	Oscillator Strength (f)	Squared dipole moment ($<S^2>$)
113 -> 119	Excited State 28: Singlet-A	4.7577	260.59	0.0236	0.000
109 -> 116	0.27602				
111 -> 121	0.16228				
112 -> 119	0.46782				
113 -> 120	-0.34471				
109 -> 116	Excited State 29: Singlet-A	4.7731	259.76	0.0089	0.000
107 -> 115	0.21167				
109 -> 116	0.51861				
112 -> 119	-0.31514				
113 -> 119	-0.10042				
109 -> 116	Excited State 30: Singlet-A	4.8107	257.73	0.0291	0.000
111 -> 121	0.01900				
111 -> 119	-0.20458				
113 -> 119	0.14494				
113 -> 120	0.47616				
113 -> 121	-0.12391				
113 -> 121	0.11561				
110 -> 117	Excited State 31: Singlet-A	4.8633	254.94	0.0077	0.000
112 -> 119	0.13687				
113 -> 121	0.11108				
110 -> 117	0.67121				
112 -> 119	Excited State 32: Singlet-A	4.8841	253.85	0.0383	0.000
110 -> 118	0.15455				
109 -> 115	0.50334				
107 -> 115	-0.22939				
108 -> 115	-0.30955				
110 -> 118	0.11500				
111 -> 119	0.34877				
107 -> 115	0.49262				
107 -> 116	-0.14406				
112 -> 119	0.13687				
113 -> 121	0.11108				
110 -> 118	0.15455				
106 -> 115	0.50334				
107 -> 115	-0.22939				
108 -> 115	-0.30955				
110 -> 118	0.15050				
111 -> 119	0.52546				
113 -> 121	-0.34854				
Excited State	Configuration	Energy (eV)	Wavelength (nm)	Oscillator Strength (f)	Square of Dipole Moment (S**2)
---------------	---------------	------------	----------------	------------------------	-------------------------------
35: Singlet-A	106 \rightarrow 115	5.1479	240.85	0.0589	0.000
	107 \rightarrow 115	-0.14084			
	108 \rightarrow 115	0.45922			
	110 \rightarrow 118	-0.22321			
	111 \rightarrow 119	0.10786			
	113 \rightarrow 121	0.27042			
36: Singlet-A	106 \rightarrow 115	5.1506	240.72	0.0061	0.000
	106 \rightarrow 116	-0.17265			
	108 \rightarrow 115	0.23890			
37: Singlet-A	106 \rightarrow 116	5.2094	238.00	0.0348	0.000
	107 \rightarrow 116	0.31467			
	108 \rightarrow 115	0.23890			
	109 \rightarrow 118	-0.12356			
	110 \rightarrow 118	0.56891			
38: Singlet-A	106 \rightarrow 116	5.2194	237.54	0.0081	0.000
	107 \rightarrow 116	-0.15554			
	108 \rightarrow 115	0.010114			
	109 \rightarrow 117	0.20857			
	111 \rightarrow 119	-0.12246			
	112 \rightarrow 120	0.30144			
39: Singlet-A	107 \rightarrow 116	5.2623	235.61	0.0072	0.000
	108 \rightarrow 116	0.11285			
	109 \rightarrow 117	0.13057			
	111 \rightarrow 120	0.10582			
	112 \rightarrow 119	-0.12338			
	112 \rightarrow 120	0.60004			
	113 \rightarrow 120	-0.10003			
Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
---------------	-----------	-------------	----------------	---	-------
40	5.2988	233.99	0.0160	0.000	
104 -> 115	0.15956				
105 -> 116	0.15174				
106 -> 116	0.42719				
107 -> 116	-0.27396				
108 -> 116	-0.29159				
109 -> 117	-0.13034				
110 -> 118	0.11539				
112 -> 120	0.18514				

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
41	5.3569	231.45	0.0043	0.000	
106 -> 116	0.23066				
108 -> 116	0.32084				
111 -> 120	0.20483				
112 -> 120	-0.10581				
112 -> 121	0.48865				

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
42	5.3827	230.34	0.0046	0.000	
106 -> 116	0.19008				
107 -> 117	-0.11211				
108 -> 116	0.47604				
112 -> 121	-0.39969				

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
43	5.4083	229.25	0.1751	0.000	
104 -> 115	0.38268				
105 -> 115	0.10464				
106 -> 116	-0.16401				
107 -> 116	-0.17642				
107 -> 117	-0.11803				
109 -> 117	0.31810				
109 -> 118	-0.28836				

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
44	5.4326	228.22	0.0101	0.000	
102 -> 114	0.16363				
105 -> 115	0.57934				
107 -> 115	0.20014				
109 -> 117	-0.11005				
111 -> 120	-0.11958				

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
45	5.4489	227.54	0.0006	0.000	
102 -> 114	0.64540				
105 -> 115	-0.12692				
111 -> 120	0.16194				

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	f	<S^2>
46	5.4807	226.22	0.0124	0.000	
102 -> 114	0.64540				
105 -> 115	-0.12692				
111 -> 120	0.16194				
Transition	E (eV)	f	\(<S^2>\)		
------------	--------	---	-----------		
100 -> 114	-0.23961	0.0621	0.000		
101 -> 114	0.19987				
102 -> 114	0.13808				
103 -> 115	-0.10328				
104 -> 115	-0.19897				
109 -> 118	-0.18857				
111 -> 120	-0.10507				
111 -> 121	0.16781				
113 -> 122	0.43012				

Excited State 47: Singlet-A 5.5015 eV 225.37 nm f=0.0621 \(<S^2>\)=0.000

Transition	E (eV)	f	\(<S^2>\)
100 -> 114	0.23975		
101 -> 114	-0.17767		
103 -> 115	0.12739		
106 -> 117	-0.10970		
107 -> 116	0.16829		
109 -> 118	0.13177		
111 -> 120	0.21300		
111 -> 121	0.10324		
112 -> 122	-0.10107		
113 -> 122	0.42764		

Excited State 48: Singlet-A 5.5346 eV 224.02 nm f=0.0222 \(<S^2>\)=0.000

Transition	E (eV)	f	\(<S^2>\)
104 -> 115	-0.26849		
105 -> 115	0.16586		
107 -> 117	-0.22299		
108 -> 116	-0.11954		
111 -> 120	0.41425		
112 -> 121	-0.14051		
113 -> 121	-0.13108		
113 -> 122	-0.11303		
113 -> 123	0.10605		

Excited State 49: Singlet-A 5.5548 eV 223.20 nm f=0.0278 \(<S^2>\)=0.000

Transition	E (eV)	f	\(<S^2>\)
100 -> 114	-0.24516		
101 -> 114	0.29052		
104 -> 115	0.34898		
107 -> 116	0.10953		
107 -> 117	0.12770		
110 -> 119	-0.14344		
111 -> 120	0.24071		
113 -> 121	-0.10523		

Excited State 50: Singlet-A 5.5971 eV 221.52 nm f=0.3068 \(<S^2>\)=0.000

Transition	E (eV)	f	\(<S^2>\)		
105 -> 116	-0.23973				
107 -> 117	0.16790				
Transition	110 -> 119	111 -> 121	113 -> 120	113 -> 122	113 -> 123
------------	------------	------------	------------	------------	------------
110 -> 119	0.15418				
111 -> 121	0.34851				
113 -> 120	0.15887				
113 -> 122	-0.13031				
113 -> 123	0.38273				

Excited State 51: Singlet-A 5.6245 eV 220.44 nm $f=0.0377$ $<S^2>=0.000$

Transition	105 -> 116	107 -> 117	110 -> 119	111 -> 121	112 -> 122	113 -> 120	113 -> 122	113 -> 123	113 -> 124
105 -> 116	0.27856								
107 -> 117	0.25760								
110 -> 119	0.25134								
111 -> 121	-0.19794								
112 -> 122	-0.16703								
113 -> 120	-0.10374								
113 -> 122	0.11229								
113 -> 123	0.29587								
113 -> 124	0.21572								

Excited State 52: Singlet-A 5.6343 eV 220.05 nm $f=0.0832$ $<S^2>=0.000$

Transition	103 -> 115	105 -> 116	107 -> 117	110 -> 119	111 -> 120	113 -> 123	113 -> 124
103 -> 115	-0.13358						
105 -> 116	-0.10829						
107 -> 117	0.19326						
110 -> 119	0.43097						
111 -> 120	0.10085						
113 -> 123	-0.37643						
113 -> 124	-0.15653						

Excited State 53: Singlet-A 5.6411 eV 219.79 nm $f=0.3031$ $<S^2>=0.000$

Transition	103 -> 115	105 -> 116	109 -> 117	109 -> 118	111 -> 121	112 -> 122	112 -> 125	113 -> 122	113 -> 124
103 -> 115	-0.13789								
105 -> 116	0.22921								
109 -> 117	0.16348								
109 -> 118	0.37368								
111 -> 121	0.13076								
112 -> 122	0.28176								
112 -> 125	-0.10729								
113 -> 122	0.10099								
113 -> 124	0.21434								

Excited State 54: Singlet-A 5.6804 eV 218.27 nm $f=0.0302$ $<S^2>=0.000$

Transition	104 -> 116	105 -> 116	107 -> 116	107 -> 117	109 -> 118	112 -> 122	113 -> 124
104 -> 116	0.19742						
105 -> 116	0.27118						
107 -> 116	0.11384						
107 -> 117	0.16546						
109 -> 118	-0.20397						
112 -> 122	0.35766						
113 -> 124	-0.32231						
Excited State	Singlet-A	E (eV)	λ (nm)	f	S^2		
---------------	-----------	--------	--------	---	-----		
55	5.6932	217.77	0.1248	0.000			
101 -> 114	0.13860						
103 -> 115	-0.12258						
104 -> 116	0.21958						
105 -> 116	0.14729						
106 -> 117	-0.19196						
106 -> 118	0.11019						
107 -> 117	-0.14419						
107 -> 118	0.13816						
108 -> 117	0.24140						
109 -> 118	0.17675						
111 -> 121	0.13873						
112 -> 122	-0.15132						
113 -> 122	-0.11436						
113 -> 123	0.13431						
113 -> 124	-0.20188						
56	5.7106	217.11	0.0709	0.000			
104 -> 116	-0.18794						
105 -> 116	0.23858						
106 -> 117	0.39136						
107 -> 117	-0.14292						
108 -> 117	-0.16357						
110 -> 119	0.13909						
112 -> 122	-0.21471						
113 -> 124	-0.22602						
57	5.7214	216.70	0.0515	0.000			
101 -> 114	0.19353						
103 -> 115	0.19094						
104 -> 116	0.43783						
106 -> 117	0.17131						
108 -> 117	-0.22790						
110 -> 119	0.15879						
113 -> 123	-0.10885						
113 -> 124	0.19923						
58	5.7396	216.01	0.0513	0.000			
99 -> 114	0.13143						
100 -> 114	0.24059						
101 -> 114	0.29713						
103 -> 115	0.23650						
104 -> 116	-0.24899						
107 -> 117	-0.12148						
110 -> 119	0.16992						
112 -> 122	0.23811						
Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	Oscillator Strength (f)	<S**2>>		
---------------	-----------	-------------	-----------------	-------------------------	---------		
59:	5.7444	215.84	0.1251	0.000			
100	0.20373						
101	0.37849						
103	0.23903						
106	-0.25745						
107	-0.12772						
110	-0.14531						
111	0.14409						
112	-0.10573						
113	-0.11229						

Excited State	Singlet-A	Energy (eV)	Wavelength (nm)	Oscillator Strength (f)	<S**2>>
60:	5.7640	215.10	0.0240	0.000	
103	0.29635				
106	0.16461				
108	0.46809				
108	0.13178				
111	0.15247				
113	-0.12717				
113	0.17370				