Tuberculosis in Takayasu arteritis: a retrospective study in 1105 Chinese patients

Ying ZHANG, Peng FAN, Fang LUO, Hui-Min ZHANG, Lei SONG, Wen-Jun MA, Hai-Ying WU, Jun CAI, Lin-Ping WANG#, Xian-Liang ZHOU#
Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Abstract

Background Tuberculosis (TB) infection has been reported to have a possible relationship with the occurrence and clinical course of Takayasu arteritis (TA). We aimed to describe the characteristics of TB in a large population of TA patients. Methods We included a total of 1105 patients with TA, who were hospitalized between January 1992 and December 2017. Comparisons of clinical features were made according to the presence of TB. Results Among the 1105 patients, 109 (9.9%) had TB, including 53 patients (48.6%) diagnosed with TB before the onset of TA, 23 (21.1%) with a concurrent diagnosis of TB and TA, and 24 patients (22.0%) who developed TB after TA. Pulmonary TB was the most frequently identified (97 patients, 89.0%). Patients with TB had more frequent involvement of the pulmonary artery and experienced more chest discomfort and constitutional symptoms but had less interventional treatment. Demographic characteristics, comorbid diseases, and use of steroids were similar between patients with and without TB. Conclusions The proportion of Chinese TA patients with TB was not low, and about half of the patients had TB before TA. Pulmonary TB was the most common. Pulmonary artery involvement and pulmonary hypertension was more frequent in TA patients with TB.

Keywords: Immunosuppressive agents; Mycobacterium tuberculosis; Pulmonary artery; Takayasu arteritis

1 Introduction

Takayasu arteritis (TA) is a rare, chronic vasculitis, which mainly involves the aorta and its main branches. Coronary arteries and pulmonary arteries can also be involved. Initially, patients with TA present constitutional symptoms, including low-grade fever, fatigue, night sweats, and weight loss. As inflammation of the artery walls progresses, symptoms of organic ischemia appear, such as weak pulse, exertion fatigue of the limbs, renovascular hypertension, and even ischemic stroke.[1,2] Prednisone and immunosuppressive agents are essential anti-inflammatory medications and can achieve and maintain remission in most patients.[3] TA is more common in Asia area, Turkey, Mexico, and South Africa.[4-6] The exact etiology of TA remains to be elucidated. Genetic, environmental, and autoimmune factors have been suggested to have important roles.[7]

Infection with Mycobacterium tuberculosis (MtB) is very common, affecting one-third of the world’s population, although only a small proportion of people with MtB infection (nine million new cases annually) develop tuberculosis (TB).[8] The prevalence of TB is relatively high in China, although the prevalence of TB is continuously decreasing in the Chinese population.[9] Previous studies have shown that the proportion of the general Chinese population with a history of TB is between 1.36% and 1.69%.[10,11] China remains a country with one of the highest TB burdens and the rate of decline is slower than expected, according to the Global Tuberculosis Report of 2017 published by the World Health Organization.[12] TB is reportedly related to TA, based on observational data. Compared with healthy Brazilian children, the ratio of those with a positive tuberculin skin test (TST) was higher in children with TA.[13] A Korean study showed that the incidence of TB in patients with TA (17%) was higher than that of the general population (5.5%-5.8%).[14] Pathological characteristics of both TA and TB are granulomas and caseous necrosis.[15,16] Some studies
have reported the concurrence of TA and TB, and they have suggested that anti-inflammation therapy should be carefully initiated after the control of active TB.\(^{[17–19]}\) Despite these study findings, how TB manifests in patients with TA remains to be elucidated in a large population.

In this retrospective study, we aimed to describe the proportion of TB and clinical features of patients with TA who have TB, and to determine whether TB affects the clinical course of patients with TA in a large patient population.

2 Methods

2.1 Study population

This study protocol was approved by the Ethics Committee of Fuwai hospital, and was conducted in accordance with the 1964 Helsinki declaration and its later amendments. All patients were given their informed consent for access to their medical records during hospitalization. We retrospectively reviewed the electronic medical records of 1105 patients with TA admitted to Fuwai Hospital from January 1992 to December 2017. All patients fulfilled the TA diagnostic criteria established by the American College of Rheumatology in 1990.\(^{[20]}\) Angiographic classification was made according to the criteria set out by Hata and Numan.\(^{[21]}\)

Disease activity was assessed using the modified National Institutes of Health criteria.\(^{[22]}\) Patient was defined as having active disease if the patient met two or more of the followings: (1) systemic symptoms without another cause; (2) elevated erythrocyte sedimentation rate (ESR) and/or C-reactive protein (CRP) without infection, anemia, or other cause; (3) new onset or deterioration of vascular ischemia or inflammation; and (4) typical angiographic features.

TB was defined according to past medical history and the first discharge diagnosis at our hospital. We calculated the age of the first TB infection and TA symptom onset, respectively. Active TB was diagnosed based on the combination of TB symptoms (cough, sputum, hemoptysis, fever, and chest pain for more than two weeks), chest radiography, and bacteriological examination (sputum smear microscopy or culture).\(^{[9]}\) The TST was defined as strongly positive if the diameter of induration was more than 20 mm or with the presence of blistering, hemorrhage, necrosis, or lymphangitis. TSTs and interferon-gamma release assays (IGRAs) are not done routinely in patients with TA. They were performed if a patient was suspected with TB by physicians. People with latent tuberculosis infection (LTBI) were infected with and had immune sensitization to Mtb and were asymptomatic. We did not describe LTBI in the present study.

2.2 Data collection

Artery lesions (including lesions in the pulmonary artery) were determined with catheter angiography, digital subtraction angiography, computed tomography angiography, and magnetic resonance angiography. For carotid and subclavian arteries, sonographic results were acceptable. We defined results of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) as PET-active if the maximum standardized uptake value (SUV) of the region of interest was higher than the average SUV in liver.

Laboratory findings, such as hemoglobin, white blood cell count, serum creatinine, blood urea nitrogen, ESR, and CRP at the time of admission were noted and compared between patients with and without TB.

Concomitant diseases, such as hepatitis virus B infection, stroke, hypertension, hyperlipidemia, mellitus diabetes, aortic regurgitation, and pulmonary hypertension were also recorded. Pulmonary hypertension was diagnosed according to the results of right heart catheterization (RHC) or estimated pulmonary arterial systolic pressure (PASP). Pulmonary hypertension was defined as a mean pulmonary arterial pressure > 25 mmHg at rest by RHC or PASP > 40 mmHg by transthoracic echocardiography in patients without RHC.\(^{[23]}\)

2.3 Statistical analysis

Continuous variables were expressed as mean ± SD for normally distributed data and as median (interquartile rank) for data with a skewed distribution. Classification variables were described as percentages. Differences were examined using the independent t-test, chi-square test, Fisher’s exact test, or Mann–Whitney U test, as appropriate. Analysis was performed using IBM SPSS software, version 19.0 (IBM Corp., Armonk, NY, USA). We analyzed the proportion of TB in TA on a five-yearly basis, as follows: 1992.01–1996.12, 1997.01–2001.12, 2002.01–2006.12, 2007.01–2011.12, and 2012.01–2017.12. The time trend in the proportion of patients with TA and TB was analyzed using the Cochran–Armitage test (R version 3.5.1). Statistical differences were set at P-value < 0.05.

3 Results

3.1 Demographic data

Of the 1105 patients with TA, 109 patients (9.9%) had TB infection. The proportion of patients with TA and TB...
decreased from 13.7% to 8.3% over time. However, the decrease was not significant ($Z = 1.132, P = 0.190$). The sex ratio was 1 : 3.8 (23 men and 86 women). The mean age at TA onset was 26.7 ± 10.0 years, and the duration from symptom onset to first hospitalization was 56.3 (20.1–143.4) months. These data were similar between patients with and without TB (Table 1).

3.2 TB in patients with TA

Pulmonary TB was most common in 97 patients (89.0%), followed by TB lymphadenitis in eight patients (7.3%), cutaneous TB in two patients (1.8%), joint TB in one patient (0.9%), intestinal TB in one patient (0.9%), and pericardial TB in one patient (0.9%). Among the 97 patients with pulmonary TB, fourteen patients had TB pleurisy. Of the 109 patients with TA and TB, 53 patients (48.6%) were diagnosed with TB before symptom onset of TA, and the interval was 8.0 (3.0–14.5) years. Twenty-four patients (22.0%) developed TB during the follow-up period of TA, and the period between onset of TA and TB was 4.5 (2.0–8.8) years. Nine patients (8.3%) did not have a confirmed time of TB infection. Twenty-three patients (21.1%) were found to have TB concurrently with TA. Among them, ten patients were diagnosed in our hospital.

Variables	Without TB	With TB	P-value
Total	996 (90.1%)	109 (9.9%)	0.523
Female	809 (73.2%)	86 (7.8%)	
Male	187 (16.9%)	23 (2.1%)	
Age at symptom onset, yrs	26.5 ± 10.2	27.6 ± 10.0	0.281
Duration of clinical course, months	57.3 (18.1–156.0)	56.3 (20.1–143.4)	0.848
Symptoms and signs			
Fever or fatigue	87 (8.7%)	17 (15.6%)	0.020*
Carotidynia	14 (1.4%)	1 (0.9%)	1.000
Dizziness	262 (26.3%)	30 (27.5%)	0.784
Headache	109 (10.9%)	13 (11.9%)	0.756
Syncope	48 (4.8%)	9 (8.4%)	0.123
Amaurosis	39 (3.9%)	1 (0.9%)	0.171
Visual disorders	74 (7.4%)	6 (5.5%)	0.462
Weak pulse	164 (16.5%)	17 (15.6%)	0.815
BP discrepancies between arms	39 (3.9%)	7 (6.4%)	0.207
Easy fatigability	136 (13.7%)	14 (12.8%)	0.815
Intermittent claudication	75 (7.5%)	6 (5.5%)	0.441
Exertional dyspnea	173 (17.4%)	36 (33.0%)	< 0.001*
Chest tightness	218 (21.9%)	27 (24.8%)	0.491
Chest pain	81 (8.1%)	4 (3.7%)	0.097
Hemoptysis	14 (1.4%)	8 (7.3%)	0.001*
Cough	25 (2.5%)	4 (3.7%)	0.520
Comorbid diseases			
Hypertension	544 (54.6%)	60 (55.0%)	0.932
Dyslipidemia	110 (11.0%)	8 (7.3%)	0.234
Diabetes mellitus	21 (2.1%)	0 (0.0%)	0.255
Stroke	51 (5.1%)	4 (3.7%)	0.508
Angina	74 (7.4%)	5 (4.6%)	0.274
Renal dysfunction	39 (3.9%)	3 (2.8%)	0.791
Heart failure	65 (6.3%)	11 (10.1%)	0.135
Hepatitis B infection	17 (1.7%)	4 (3.7%)	0.145
Aortic regurgitation	240 (24.1%)	21 (19.3%)	0.788
Pulmonary hypertension	107 (10.7%)	21 (19.3%)	0.008*
NIH active	482 (48.4%)	67 (61.5%)	0.010*

Data are presented as means ± SD, median (interquartile range) or n (%). *P < 0.05. BP: blood pressure; TA: Takayasu arteritis; TB: tuberculosis.
3.3 Clinical manifestations

The proportion of active TA in patients with TB was 61.5% versus 48.4% in patients without TB ($P = 0.010$). Pulmonary artery involvement was more common in patients with TB (31.2% vs. 17.3%, $P = 0.001$). There were no significant differences between patients with and without TB regarding involvement of the aorta and its major branches, except for involvement of the aortic arch ($P = 0.019$). The angiographic classification was similar between patients with and without TB. The ratio of occlusion (19.3% vs. 16.2%) of arteries was similar in patients with and without TB ($P > 0.05$) (Table 2).

Variables	Without TB	With TB	P-value
Angiographic type ($n = 1062$)	0.606		
I	269 (28.1%)	28 (27.2%)	
IIa	45 (4.7%)	7 (6.8%)	
IIb	62 (6.5%)	4 (3.9%)	
III	131 (13.7%)	10 (9.7%)	
IV	92 (9.6%)	10 (9.7%)	
V	360 (37.5%)	44 (42.7%)	
Lesions			
Ascending aorta	109 (10.9%)	12 (11.0%)	0.899
Thoracic aorta	188 (18.9%)	16 (14.7%)	0.502
Abdominal aorta	297 (29.8%)	29 (26.6%)	0.741
Aortic arch	37 (3.7%)	10 (9.2%)	0.019*
Left subclavian artery	497 (49.9%)	50 (45.9%)	0.529
Right subclavian artery	284 (28.5%)	29 (26.6%)	0.734
Left vertebral artery	81 (8.1%)	8 (7.3%)	0.947
Right vertebral artery	60 (6.0%)	5 (4.6%)	0.707
Left carotid artery	343 (34.4%)	30 (27.6%)	0.182
Right carotid artery	232 (23.3%)	26 (23.9%)	0.814
Branchiocephalic artery	83 (8.3%)	10 (9.2%)	0.986
Axillary artery	60 (6.0%)	11 (10.1%)	0.090
Left renal artery	329 (33.0%)	28 (25.7%)	0.142
Right renal artery	312 (31.3%)	33 (30.3%)	0.475
Superior mesenteric artery	107 (10.7%)	8 (7.3%)	0.199
Coeliac trunk	68 (6.8%)	4 (3.7%)	0.126
Iliacofemoral artery	103 (10.3%)	9 (8.3%)	0.522
Pulmonary artery	172 (17.3%)	34 (31.2%)	0.001*
Coronary artery	51 (5.1%)	5 (4.6%)	0.810
Occlusion	238 (23.9%)	21 (19.3%)	0.279
Dilatation	161 (16.2%)	20 (18.3%)	0.559
Stent implantation	235 (23.6%)	16 (14.7%)	0.035*
PTA	427 (42.9%)	36 (33.0%)	0.048*

Data are presented as n (%). $P < 0.05$. PTA: percutaneous transluminal angiography; TA: Takayasu arteritis; TB: tuberculosis.

3.4 Laboratory findings

The level of ESR was significantly higher in patients with TB. Other relevant laboratory results did not show significant differences (Table 3).

3.5 18F-FDG PET/CT with elevated SUV in lymph nodes

Six patients had 18F-FDG PET/CT referred to the SUV of lymph nodes. Elevated SUV of the mediastinal and cervical lymph nodes was found in three patients and of the hilar and supraclavicular lymph nodes in two patients. The diameter of lymph nodes ranged from 1.2 to 2.0 cm, and their SUVs ranged from 3.9 to 8.7. TB infection was ruled out in three patients. One patient had pulmonary TB fourteen years earlier, and two patients had active pulmonary TB. No patients underwent lymph node aspiration.

3.6 Treatment

The initiation of prednisone at discharge was similar with respect to TB (56.0% vs. 57.0%). The most frequent dose at discharge was 20 mg per day, followed by 30 mg per day. Intervention treatment for revascularization, percutaneous transluminal angioplasty and stent implantation was performed more frequently in patients without TB than in those with TB (both $P < 0.05$) (Table 2).

Ten patients had active TB. Elevated ESR was found in eight patients and elevated CRP was found in three patients. They were treated with anti-TB drugs (isoniazid, rifampicin and pyrazinamide), none of them had TB diffusion during follow-up (Table 4).

4 Discussion

In this retrospective study, we found that TB was common in patients with TA, most patients had TB before the
Table 3. Laboratory findings in TA patients according to TB.

Variables	Without TB	With TB	n	With TB	n	P-value
C-reactive protein, mg/L	4.0 (2.1–12.0)	646	4.37 (2.42–16.5)	63	0.233	
Erythrocyte sedimentation rate, mm/h	13.0 (6.0–30.0)	729	17.0 (9.0–45.0)	87	0.010	
White blood cells, ×10^9/L	7.12 (5.85–8.68)	510	7.39 (6.40–8.40)	54	0.328	
Hemoglobin, g/L	125.0 (113.0–140.0)	591	124.0 (111.5–142.0)	61	0.733	
Serum creatinine, umol/L	63.75 (53.71–74.89)	483	65.21 (53.78–75.93)	51	0.723	
Blood urea nitrogen, mmol/L	5.0 (4.0–6.26)	494	5.0 (4.5–6.5)	54	0.426	

Data are presented as median (interquartile range). *P < 0.05. TA: Takayasu arteritis; TB: tuberculosis.

Table 4. Detailed information for TA patients with active TB.

Number/Gender/Age	Clinical duration, months	Symptoms & Signs	ESR, mm/h	CRP, mg/L	Hb, g/L	WBC, ×10^9/L	Evidence for active TB	Dosage of prednisone per day, milligram
1/Female/19	III 84	Extertional chest tightness and dyspnea	75	29.1	-	-	Imaging: cavitary pulmonary tuberculosis	0
2/Female/21	V 48	Weak pulse, cardiac murmurs	26	-	-	-	TST (++++)	0
3/Female/21	VI 12	Fatigue, HTN	40	4.3	109	11.3	Triple anti-tuberculosis regimen on admission	0
4/Female/54	V 216	Dizziness, headache, CHF	75	-	73	-	Imaging: military pulmonary tuberculosis	20
5/Female/23	V 2	HTN	28	2.7	112	11.1	Triple anti-tuberculosis regimen on admission	20
6/Female/33	III 246	Headache, CHF, CRF	32	2.1	111	7.8	Triple anti-tuberculosis regimen on admission	0
7/Female/39	VI 156	HTN, dizziness	67	26.7	108	10.9	Elevated SUV of carotid lymph nodes, T-SPOT.TB(+)	0
8/Female/45	I 188	Fever, stroke	27	2.6	119	16.0	TST (++++)	0
9/Female/13	V 18	Fever, cough, carotidynia, discrepancy of blood pressure	6	14.8	139	11.0	Triple anti-tuberculosis regimen on admission	15
10/Female/55	VI 18	HTN, stroke, cough, hemoptysis	19	2.0	128	7.5	T-SPOT.TB(+); PET/CT: Patchy shadow in right lower lobe	0

All of the patients received triple anti-tuberculosis medication and prednisone was used in three patients (Number: 4, 5, 9). Type refers to angiographic classification according to Hata criteria. CHF: chronic heart failure; CRF: chronic renal failure; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; Hb: hemoglobin; HTN: hypertension; TA: Takayasu arteritis; TB: tuberculosis; TST: tuberculin skin test; WBC: white blood cells counts.

onset of TA, and pulmonary TB was predominant. These findings were consistent with results of studies conducted in other populations.[14,24] Interestingly, compared with patients who did not have TB infection, the ratio of pulmonary artery involvement was higher in patients with TB infection. Furthermore, symptoms related to pulmonary artery involvement, such as pulmonary hypertension, exertional dyspnea, and hemoptysis, were also more common in patients with TB. In addition, we found that more patients with a history of TB were in active disease stage, indicating that TB infection may affect the clinical course and treatment of TA.

Several explanations for how TB triggers TA have been proposed, but the exact mechanism and relationship between TA and TB remain to be elucidated. One possible hypothesis involves superantigens. Mt in widely activates T cells, dendritic cells, and macrophages, mainly via the lipoolarabinomannan on its wall structure. IL-12, IL-18, and resuscitation-promoting factor promote the differentiation of CD4+ T cells into Th1 and Th17 lymphocytes.[25–27] A variety of cytokines, including tumor necrosis factor alpha (TNF-α), IL-1, IL-6 and MMP-1, are upregulated in patients with TA and TB.[28,29] Autoimmune disorder is another possible explanation. The 65 kDa heat shock protein of Mt, hHSP65, is implicated in various rheumatic diseases, indicating a relationship between Mt infection and autoimmune disorders.[30] Cross-reactivity of hHSP65 and human HSP60 (hHSP60) has also been proved in patients with TA. Compared with healthy controls, levels of anti-hHSP60 antibodies were found to be substantially elevated in patients with TA.[31] No studies to date have detected Mt in
artery walls using acid-fast staining. Furthermore, polymerase chain reaction results for the specific gene sequence IS6110 of Mtb are controversial. A previous study reported detection of the IS6110 sequence of Mtb by polymerase chain reaction in 70% of 33 tissue samples from patients with TA. A recent study from Brazil reported that the IS6110 sequence could not be amplified in peripheral blood from 32 patients with TA or in artery tissue samples from 10 patients with TA. This indicates that persistent Mtb infection is not necessary for maintaining inflammation in TA.

Elevated ESR or CRP, fever, and night sweats are indications of active TA, according to the modified National Institutes of Health criteria; however, these could well be owing to active TB. These characteristics are strong indications for initiating anti-inflammatory regimens in patients with TA. Physicians should be attentive for active TB in patients with TA, as treatment with glucocorticoids could cause worsening of constitutional symptoms such as weight loss, night sweats, and low-grade fever, then chest radiography, IGRA, and sputum fast-acid staining should be performed to exclude TB infection. It is advisable to consult an infectious disease specialist for the diagnosis of active TB infection.

4.1 Limitations

Regarding study limitations, this was a retrospective study based on data from a single center for cardiovascular diseases; thus, there might be selection bias. Another shortcoming was that we had no results of lymph node or artery tissue biopsy. Nevertheless, considering the large sample size, comprehensive clinical and imaging evaluation of each patient, the clinical features of TA patients with TB could be well elucidated.

4.2 Conclusions

The proportion of Chinese patients with TA and TB was not low. About half of the patients had TB before TA symptom onset. Pulmonary TB was most common. Pulmonary artery involvement and pulmonary hypertension was more common in TA patients with TB. Active TB should be ruled out before and during anti-inflammatory therapy.

Acknowledgments

This study was supported by the National Key Research and Development Program of China (2016YFC1300100) and CAMS Innovation Fund for Medical Sciences (2016-I2M-1-002). All authors had no conflicts of interest to disclose.
References

1 Ishikawa K, Maetani S. Long-term outcome for 120 Japanese patients with Takayasu’s disease. Clinical and statistical analyses of related prognostic factors. *Circulation* 1994; 90: 1855–1860.

2 Watanabe Y, Miyata T, Tanemoto K. Current clinical features of new patients with Takayasu arteritis observed from cross-country research in Japan: age and sex specificity. *Circulation* 2015; 132: 1701–1709.

3 Freitas DS, Camargo CZ, Mariz HA, et al. Takayasu arteritis: assessment of response to medical therapy based on clinical activity criteria and imaging techniques. *Rheumatol Int* 2012; 32: 703–709.

4 Comarmond C, Biard L, Lambert M, et al. Long-term outcomes and prognostic factors of complications in Takayasu arteritis: a multicenter study of 318 patients. *Circulation* 2017; 136: 1114–1122.

5 Saritas F, Donmez S, Direskeneli H, et al. The epidemiology of Takayasu arteritis: a hospital-based study from northwestern part of Turkey. *Rheumatol Int* 2016; 36: 911–916.

6 Soto ME, Espinola N, Flores-Suarez LF, et al. Takayasu arteritis: clinical features in 110 Mexican Mestizo patients and cardiovascular impact on survival and prognosis. *Clin Exp Rheumatol* 2008; 26: S9–S15.

7 Katsuyama T, Sada KE, Makino H. Current concept and epidemiology of systemic vasculitides. *Allergol Int* 2014; 63: 505–513.

8 Dye C, Scheele S, Dolin P, et al. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. *JAMA* 1999; 282: 677–686.

9 Wang L, Zhang H, Ruan Y, et al. Tuberculosis prevalence in China, 1990-2010; a longitudinal analysis of national survey data. *Lancet* 2014; 383: 2057–2064.

10 Xin H, Zhang H, Liu J, et al. Mycobacterium Tuberculosis infection among the elderly in 20486 rural residents aged 50–70 years in Zhongmu County, China. *Clin Microbiol Infect*. Published Online First: 7 February 2019. DOI: 10.1016/j.cmi.2019.01.021.

11 Shen TC, Lin CL, Wei CC, et al. Previous history of tuberculosis is associated with rheumatoid arthritis. *Int J Tuberc Lung Dis* 2015; 19: 1401–1405.

12 Global tuberculosis Report WHO. Geneva, Switzerland: World Health Organization, 2017.

13 Clemente G, Hilario MO, Lederman H, et al. Takayasu arteritis in a Brazilian multicenter study: children with a longer diagnosis delay than adolescents. *Clin Exp Rheumatol* 2014; 32: S128–S133.

14 Lim AY, Lee GY, Jang SY, et al. Comparison of clinical characteristics in patients with Takayasu arteritis with and without concomitant tuberculosis. *Heart Vessels* 2016; 31: 1277–1284.

15 Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy. *J Am Coll Cardiol* 1988; 12: 964–972.

16 Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. *Nat Rev Immunol* 2012; 12: 352–366.

17 Mukherjee D, Niyogi P. Active tuberculosis with Takayasu arteritis. *Indian Pediatr* 2013; 50: 349–350.

18 Al-Aghbari K, Al-Motarreb A, Askar F. Takayasu’s arteritis associated with tuberculosis in a young Yemeni woman. *Heart Views* 2010; 11: 117–120.

19 Khemiri M, Douira W, Barsaoui S. Co-occurrence of Takayasu’s arteritis and tuberculosis: report of a Tunisian pediatric case. *Ann Pediatr Cardiol* 2016; 9: 75–78.

20 Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. *Arthritis Rheum* 1990; 33: 1129–1134.

21 Hata A, Noda M, Moriwaki R, et al. Angiographic findings of Takayasu arteritis: new classification. *Int J Cardiol* 1996; 54: S155–S163.

22 Kerr GS, Hallahan CW, Giordano J, et al. Takayasu arteritis. *Ann Intern Med* 1994; 120: 919–929.

23 Sari A, Sener YZ, Firat E, et al. Pulmonary hypertension in Takayasu arteritis. *Int J Rheum Dis* 2018; 21: 1634–1639.

24 Mwipatayi BP, Jeffery PC, Beningfield SJ, et al. Takayasu arteritis: clinical features and management: report of 272 cases. *ANZ J Surg* 2005; 75: 110–117.

25 Choi HG, Kim WS, Back YW, et al. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. *Eur J Immunol* 2015; 45: 1957–1971.

26 Deng J, Younge BR, Olshen RA, et al. Th17 and Th1 T-cell responses in giant cell arteritis. *Circulation* 2010; 121: 906–915.

27 Rahman MA, Sobia P, Dwivedi VP, et al. Mycobacterium tuberculosis TlyA protein negatively regulates T helper (Th) 1 and Th17 differentiation and promotes tuberculosis pathogenesis. *J Biol Chem* 2015; 290: 14407–14417.

28 Arnaud L, Haroche J, Mathian A, et al. Pathogenesis of Takayasu’s arteritis: a 2011 update. *Autoimmun Rev* 2011; 11: 61–67.

29 Elkingston P, Shiomi T, Breen R, et al. MMP-1 drives immunopathology in human tuberculosis and transgenic mice. *J Clin Invest* 2011; 121: 1827–1833.

30 Routsias JG, Tzioufas AG. The role of chaperone proteins in autoimmunity. *Ann N Y Acad Sci* 2006; 1088: 52–64.

31 Aggarwal A, Chag M, Sinha N, et al. Takayasu’s arteritis: role of Mycobacterium tuberculosis and its 65 kDa heat shock protein. *Int J Cardiol* 1996; 55: 49–55.

32 Kumar Chauhan S, Kumar Tripathy N, Sinha N, et al. Cellular and humoral immune responses to mycobacterial heat shock protein-65 and its human homologue in Takayasu’s arteritis. *Clin Exp Immunol* 2004; 138: 547–553.

33 Arnaud L, Cambau E, Brocheriou I, et al. Absence of Mycobacterium tuberculosis in arterial lesions from patients with Takayasu’s arteritis. *J Rheumatol* 2009; 36: 1682–1685.
34 Carvalho ES, de Souza AW, Leão SC, et al. Absence of mycobacterial DNA in peripheral blood and artery specimens in patients with Takayasu arteritis. Clin Rheumatol 2017; 36: 205–208.
35 Soto ME, Del Carmen Ávila-Casado M, Huesca-Gómez C, et al. Detection of IS6110 and HupB gene sequences of Mycobacterium tuberculosis and bovis in the aortic tissue of patients with Takayasu’s arteritis. BMC Infect Dis 2012; 12: 194–194.
36 Dheda K, Barry CE 3rd, Maartens G. Tuberculosis. Lancet 2016; 387: 1211–1226.
37 Walters HM, Aguiar CL, Macdermott EJ, et al. Takayasu arteritis presenting in the context of active tuberculosis: a pediatric case. J Clin Rheumatol 2013; 19: 344–347.
38 Pantell RH, Goodman BW, Jr. Takayasu arteritis: the relationship with tuberculosis. Pediatrics 1981; 67: 84–88.
39 Zumla A, Chakaya J, Centis R, et al. Tuberculosis treatment and management—an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med 2015; 3: 220–234.
40 Laskin BL, Goebel J, Starke JR, et al. Cost-effectiveness of latent tuberculosis screening before steroid therapy for idiopathic nephrotic syndrome in children. Am J Kidney Dis 2013; 61: 22–32.
41 Fragoso YD, Adoni T, Anacleto A, et al. How do we manage and treat a patient with multiple sclerosis at risk of tuberculosis? Expert Rev Neurother 2014; 14: 1251–1260.
42 Mor A, Bingham CO 3rd, Kishimoto M, et al. Methotrexate combined with isoniazid treatment for latent tuberculosis is well tolerated in patients with rheumatoid arthritis: experience from an urban arthritis clinic. Ann Rheum Dis 2008; 67: 462–465.
43 Gómez-Reino JJ, Carmona L, Angel Descalzo M. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection. Arthritis Rheum 2007; 57: 756–761.
44 Koike T, Harigai M, Inokuma S, et al. Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: interim analysis of 3881 patients. Ann Rheum Dis 2011; 70: 2148–2151.
45 Goel R, Danda D, Joseph G, et al. Long-term outcome of 251 patients with Takayasu arteritis on combination immunosuppressant therapy: Single centre experience from a large tertiary care teaching hospital in Southern India. Semin Arthritis Rheum 2018; 47: 718–726.
46 Cuomo G, D'Abrsca V, Iacono D, et al. The conversion rate of tuberculosis screening tests during biological therapies in patients with rheumatoid arthritis. Clin Rheumatol 2017; 36: 457–461.
47 Singh JA, Furst DE, Bharat A, et al. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 2012; 64: 625–639.
48 Zar HJ, Workman L, Isaacs W, et al. Rapid diagnosis of pulmonary tuberculosis in African children in a primary care setting by use of Xpert MTB/RIF on respiratory specimens: a prospective study. Lancet Glob Health 2013; 1: e97–e104.
49 Zhu C, Liu Z, Li Z, et al. The performance and limitation of T-SPOT.TB for the diagnosis of TB in a high prevalence setting. J Thorac Dis 2014; 6: 713–719.
50 Ankrah AO, van der Werf TS, de Vries EF, et al. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imaging 2016; 4: 131–144.