Genome-Annotated Bacterial Collection of the Barley Rhizosphere Microbiota

Senga Robertson-Albertyn, James C. Abbott, Federico Concas, Lynn H. Brown, Jamie N. Orr, Timothy S. George, Davide Bulgarelli

ABSTRACT
A culture collection of 41 bacteria isolated from the rhizosphere of cultivated barley (*Hordeum vulgare* subsp. *vulgare*) is available at the Division of Plant Sciences, University of Dundee (UK). The data include information on genes putatively implicated in nitrogen fixation, HCN channels, phosphate solubilization, and linked whole-genome sequences.

The microbial communities thriving at the root-soil interface, that is, the rhizosphere microbiota, represent an untapped resource of plant probiotic functions (1, 2). Bacterial members of the microbiota capable of enhancing a plant’s mineral uptake from soil and pathogen protection, namely, plant growth-promoting rhizobacteria (PGPRs), have gained prominence in both basic scientific and translational applications (3–5). As a resource for comparative investigations of the plant microbiota across host species, we present a collection of 41 bacterial strains encompassing 15 genera with the presence of at least 5 putative plant growth-promoting (PGP)-associated gene orthologs, including, *dinG*, *hcn*, *nif*, *pho*, and *pqq* (Table 1) (6).

Strains were isolated from the rhizosphere of cultivated barley (*Hordeum vulgare* L. subsp. *vulgare*), the fourth most cultivated cereal worldwide (7), which was grown in an agricultural soil used for previous barley-microbiota investigations (8, 9). Bacterial rhizosphere fractions were obtained by detaching the soil adhering the uppermost 6 cm of barley roots by vortexing in phosphate-buffered saline (PBS) buffer. Serial dilutions were plated onto R2A and nutrient agar media and incubated at 20°C for 48 to 72 h (10, 11). Individual CFUs were selected for isolation based on morphological variation; clean isolate liquid cultures were stored at −20°C in 70% glycerol following 24 to 48 h of shaking incubation at 27°C.

DNA was extracted as per the manufacturer’s instructions using the FastDNA spin kit for soil (MP Biomedicals, USA). Individual bacterial isolates were subjected to whole-genome sequencing using the “standard service” of MicrobesNG (Birmingham, UK). Briefly, bacterial genomic DNA libraries were prepared using the Nextera XT library prep kit (Illumina, USA) following the manufacturer’s protocol with the following modifications: 2 ng of DNA were input, and PCR elongation time was increased to 1 min.

DNA quantification and library preparation were conducted on a Hamilton Microlab STAR automated liquid handling system. Pooled libraries were quantified using the Kapa Biosystems library quantification kit for Illumina on a Roche light cycler 96 quantitative PCR (qPCR) machine. Libraries were sequenced by using an Illumina HiSeq instrument with a 250-bp paired-end protocol. Reads were adapter trimmed using Trimmomatic (v0.30) with a sliding window quality cutoff of Q15 (12). De novo assembly was performed using SPAdes (v3.7), and contigs were annotated using Prokka.

Copyright © 2022 Robertson-Albertyn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Isolate	Bacterial species	Genome size (bp)	No. of contigs	N50 (bp)	PGPR operon gene(s) identified	GC content (%)	ENA accession no.			
Bi02	Plantibacter cousiniae	3,994,224	78	112,363	pqq	CH,R,U	69.52	ERS5639569		
Bi03	Microbacterium foliorum	3,548,807	95	63,748	C,D	+	D,H,R	67.79	ERS5639570	
Bi04	Ochryseobacterium sp.	5,066,124	34	280,276	A,D,H,R	A	36.22	ERS5639571		
Bi05	Agrobacterium fabrum	5,161,912	21	417,533	E,H,R,U,A,S,U	59.17	ERS5639572			
Bi06	Pseudomonas brassicaevarum	6,570,464	168	68,008	B,C,D,E,F,H	+	D,H,R,U	A	60.84	ERS5639573
Bi07	Pseudomonas carnis	6,697,465	117	94,768	B,C,D,E,F	+	D,H,R,U	A	59.44	ERS5639574
Bi12	Microbacterium foliorum	3,535,885	57	117,718		68.79	ERS5639578			
Bi13	Enwina aphidicola	4,939,014	42	383,165	B,C,D,E,F	+	A,C,E,H,R,U	56.33	ERS5639577	
Bi15	Chryseobacterium sp.	5,066,124	34	280,276	A,D,H,R	A	36.22	ERS5639571		
Bi16	Agrobacterium fabrum	5,161,912	21	417,533	E,H,R,U,A,S,U	59.17	ERS5639572			
Bi18	Pseudomonas brassicaevarum	6,570,464	168	68,008	B,C,D,E,F,H	+	D,H,R,U	A	60.84	ERS5639573
Bi26	Microbacterium foliorum	3,548,807	95	63,748	C,D	+	D,H,R,U	A	60.84	ERS5639573
Bi27	Pedobacter sp. Bi27	6,285,703	23	908,772	A,H,R,u	39.01	ERS5639579			
Bi28	Pseudomonas carnis	6,697,465	117	94,768	B,C,D,E,F	+	D,H,R,U	A	59.44	ERS5639574
Bi44	Microbacterium foliorum	3,535,885	57	117,718		68.79	ERS5639578			
Bi45	Enwina aphidicola	4,939,014	42	383,165	B,C,D,E,F	+	A,C,E,H,R,U	56.33	ERS5639577	
Bi47	Chryseobacterium sp.	5,066,124	34	280,276	A,D,H,R	A	36.22	ERS5639571		

a ANI cutoff, 96%. Capital letters depict actual genes identified within the inspected metabolic processes.

b Strain taxonomy reflects the lowest and unique rank as defined by GTDBTK (v1.6.0) with data version r202.

c The identification in each bacterial genome is depicted by the plus sign.

Robertson-Albery et al.

Volume 11 Issue 2 e01064-21 mra.asm.org

Downloaded from https://journals.asm.org/journal/mra on 22 February 2022 by 94.174.119.81.
On the basis of GC content, unambiguous taxonomic annotations generated using amphora classification (15) and whole-genome average nucleotide identity (ANI) to identify individual “founder” members (ANI cutoff, 96%) yielded 41 genomes retained for downstream analyses. To compare only components of characterized metabolic pathways, predicted genes were concatenated and annotated with eggNOG-Mapper (v1.0.3) (16, 17). The resultant annotation file was parsed in Python to generate a table of taxonomic identities (IDs) of Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog (KO) identifiers. From this table, a presence-absence matrix of all KOs predicted at least once in each isolate was generated in R (https://www.r-project.org). Predicted proteomes were clustered using OrthoFinder (v2.2.1) and functionally annotated using InterProScan (v5.29-68.0) (18, 19). Clusters and annotations were aggregated using KinFin (v1.0) (20). Cluster and KO intersections were defined using UpSetR (v1.3.3) (21). The phylogenetic tree (Fig. 1) was constructed using

![Phylogenetic Tree](https://example.com/phylogenetic-tree.png)

FIG 1 Whole-genome phylogenetic tree of individual genomes (ANI cutoff, 96%) constructed incorporating additional sequences for *Bifidobacterium longum* NCC2705 (GCA_000007525), *Microbacterium foliorum* DSM 12966 (GCA_000956415), *Bacillus subtilis* NCIB 3610 (GCA_000006765), *Pedobacter luteus* DSM 22385 (GCA_900168015), *Stenotrophomonas lactitubio* M15 (GCA_002803515), and *Pseudomonas aeruginosa* PAO1 (GCA_000006765). Protein predictions were obtained using Prokka (v1.14.6), and the tree was constructed with 100 bootstrap iterations and annotated with iTOL (24). The size of circular shapes on the periphery of the tree reflects the number of the indicated PGPR genes ranging from 1 to 7 present in each individual sample.
bcgTree (v1.1.0) and RAxML (v8.2.12), using RAxML’s GTRGAMMA model and 100 bootstrap iterations (22, 23); default parameters were used for all analyses unless otherwise noted.

The collection is available as frozen isolates preserved in 300 to 500 μL of nutrient or R2A medium containing 50% glycerol and maintained at −70°C. To revive the frozen cultures, we recommend using a sterile inoculating loop to transfer a small amount (e.g., 50 μL equivalent) of the frozen culture onto a nutrient or R2A agar medium base following standard microbiological procedures. The plates should be incubated at 27°C for 24 to 48 h.

Data availability. The genome sequences reported in this study are deposited in the European Nucleotide Archive (ENA). Accession numbers for the individual genomes are provided in Table 1. To acquire isolates, or for questions or suggestions, please contact Davide Bulgarelli at d.bulgarelli@dundee.ac.uk.

Acknowledgments

We are thankful to Federica Caradonia (University of Modena and Reggio Emilia, Italy) and Carmen Escudero-Martinez (University of Dundee, UK) for their technical assistance during the development of the collection. This work was supported by a BBSRC iCASE studentship awarded to D.B. (BB/M016811/1) and partnered by the James Hutton Limited (Invergowrie, UK). F.C. was supported by an Erasmus+ Traineeship program (European Commission). L.H.B. was supported by a James Black Prize Studentship (University of Dundee). J.N.O. was supported by an ERC advanced grant “Shuffle” (project ID 669182) awarded to Robbie Waugh/The James Hutton Institute. S.R.-A., J.C.A., and D.B. are currently supported by the Horizon 2020 Framework Program Innovation Action “CIRCLES” (European Commission grant agreement 818290) awarded to the University of Dundee. James Hutton researchers receive financial support from the Rural and Environment Science and Analytical Service Division of the Scottish Government.

References

1. Compan S, Samad A, Faist H, Sessitsch A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004.
2. Schlaeppi K, Bulgarelli D. 2015. The plant microbiome at work. Mol Plant Microbe Interact 28:212–217. https://doi.org/10.1094/MPMI-10-14-0334-FI.
3. Escudero-Martinez C, Bulgarelli D. 2019. Tracing the evolutionary routes of plant-microbiota interactions. Curr Opin Microbiol 49:34–40. https://doi.org/10.1016/j.mib.2019.09.013.
4. Lugtenberg B, Kamiłova F. 2009. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918.
5. Vorholt JA, Vogel C, Carlström C, Müller DB. 2017. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155. https://doi.org/10.1016/j.chom.2017.07.004.
6. Kaneshia M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070.
7. Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha CA, Russell J, Steffenson BJ, Swanston JS, Thomas WT, Waugh R, White PJ, Bingham IJ. 2011. Crops that feed the world 4: Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Sec 3:141. https://doi.org/10.1007/s12571-011-0126-3.
8. Rodrigo AF, Katharin B-C, Morris J, Hedley PE, Russell J, Paterson E, Baggs EM, Eyal F, Davide B. 2020. A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci Rep 10:12916. https://doi.org/10.1038/s41598-020-69672-x.
9. Robertson-Albertyn S, Alegría Terrazas R, Balbimbé K, Blank M, Janiak A, Szarék J, Chmielenewska B, Karcz J, Morris J, Hedley PE, George TS, Bulgarelli D. 2017. Bacterial hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1094. https://doi.org/10.3389/fpls.2017.01094.
10. Atlas RM. 2005. Handbook of media for environmental microbiology. CRC Press, Boca Raton, FL.
11. Reasoner DJ, Geldreich EE. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7. https://doi.org/10.1128/aem.49.1.1-7.1985.
12. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.
13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
14. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
15. Kerepesi C, Szalkai B, Grolmusz V. 2015. Visual analysis of the quantitative composition of metagenomic communities: the AmphoraViz server webserver. Microb Ecol 69:695–697. https://doi.org/10.1007/s00248-014-0502-6.
16. Huerta-Cepas J, Forslund K, Coelho LP, Sblarzcyk D, Jensen LJ, von Mering C, Bork P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34:2115–2122. https://doi.org/10.1093/molbev/msx148.
17. Huerta-Cepas J, Sblarzcyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gkz1085.
18. Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y.
19. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Schermetjew

Downloaded from https://journals.asm.org/journal/mra on 22 February 2022 by 94.174.119.81.
20. Laetsch DR, Blaxter ML. 2017. KinFin: software for taxon-aware analysis of clustered protein sequences. G3 (Bethesda) 7:3349–3357. https://doi.org/10.1534/g3.117.300233.

21. Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33: 2938–2940. https://doi.org/10.1093/bioinformatics/btx364.

22. Ankenbrand MJ, Keller A. 2016. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 59:783–791. https://doi.org/10.1139/gen-2015-0175.

23. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

24. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOl) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301.