STUDY OF FILTERED-X LOGARITHMIC RECURSIVE LEAST P-POWER ALGORITHM

Zongsheng Zheng*, Lu Lu**, Yi Yu*, Rodrigo C. de Lamare†‡, Zhigang Liu**

* College of Electrical Engineering, Sichuan University, Chengdu 610065, China
** School of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
† School of Information Engineering, Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
‡ CETUC, PUC-Rio, Rio de Janeiro 22451-900, Brazil

ABSTRACT

For active impulsive noise control, a filtered-x recursive least p-power (FxRLP) algorithm is proposed by minimizing the weighted summation of the p-power of the a posteriori errors. Since the characteristic of the target noise is investigated, the FxRLP algorithm achieves good performance and robustness. To obtain a better performance, we develop a filtered-x logarithmic recursive least p-power (FxlogRLP) algorithm which integrates the p-order moment with the logarithmic-order moment. Simulation results demonstrate that the FxlogRLP algorithm is superior to the existing algorithms in terms of convergence rate and noise reduction.

Index Terms— Active impulsive noise control, filtered-x recursive least p-power (FxRLP), filtered-x logarithmic recursive least p-power (FxlogRLP), impulsive noise.

1. INTRODUCTION

On the basis of wave-superposition principle, active noise control (ANC) is realized by utilizing adaptive filters to generate a signal with same magnitude but opposite phase of the signal to be canceled. Thanks to the low computational complexity and simple structure, the filtered-x least mean square (FxLMS) algorithm is frequently performed in the adaptive filtering algorithms [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. As compared to the FxLMS algorithm, the filtered-x recursive least square (FxRLS) algorithm [80] can provide faster convergence rate at the cost of higher computational complexity.

Note that the FxRLS algorithm is based on the assumption that the reference signal follows the Gaussian distribution. But in fact, the target noise always contains outliers, that is, the impulsive noise. For such situations, the FxRLS algorithm always shows bad performance and has stability problems. To address this problem, instead of the mean-square error (MSE) used in the FxLMS algorithm, the filtered-x least mean p-power (FxLMP) algorithm was proposed [85] by minimizing the mean p-power of error. In [86], the filtered-x logarithmic least mean square (FxlogLMS) algorithm was proposed by minimizing the squared logarithmic transformation of the error signal. Simulation results demonstrated that the FxlogLMS algorithm has good robustness and better performance. Furthermore, to achieve faster convergence rate, the filtered-x logarithmic recursive least squares (FxlogRLS) algorithm was proposed [87] by minimizing the weighted summation of the logarithmic transformation of the a posteriori errors.

In this work, we try to work out the above problem in another way. To investigate the characteristic of the target noise, a filtered-x recursive least p-power (FxRLP) algorithm is proposed by minimizing the weighted summation of the p-power of the a posteriori errors. Then, by integrating the p-order moment with the logarithmic-order moment, we develop a filtered-x logarithmic recursive least p-power (FxlogRLP) algorithm.

The main contributions of this paper are summarized as follows: 1) By defining a new cost function based on the p-power of error, a new adaptive filtering algorithm is proposed, which is an extension of the FxLMP algorithm in the recursive least squares structure. 2) By integrating the p-order moment with the logarithmic-order moment, a novel adaptive filtering algorithm is developed. It is worth noting that this paper for the first time combines the benefits of the FxLMP-type algorithm and the FxlogLMS-type algorithm. 3) The properties of the proposed algorithms and their relationship to the existing algorithms are illustrated in detail.

The rest of this paper is organized as follows. Section 2 presents the derivation of the proposed FxRLP algorithm, and the proposed FxlogRLP algorithm is derived in Section 3. In Section 4, the mean stabilities of the proposed algorithms are analyzed. Section 5 illustrates the simulation results, and the conclusions are drawn in Section 6.

2. FXRLP ALGORITHM

Fig. 1 shows a single-channel feed-forward ANC system, where $P(z)$ represents the primary path between the reference signal $x(n)$ and the error microphone $e(n)$, $d(n)$ is the primary noise, $S(z)$
denotes the secondary path from the adaptive filter \(W(z) \) to the error microphone \(e(n) \), \(\hat{S}(z) \) can be obtained by using an off-line or on-line system identification approach \([88, 89, 90]\), and \(y(n) \) represents the output of the secondary sound source. Then, the error microphone \(e(n) \) can be calculated by

\[
e(n) = d(n) - y(n) = d(n) - s(n) * [w^T(n)x(n)],
\]

where \(x(n) = [x(n), x(n-1), ..., x(n-L+1)]^T \) represents the reference signal vector, \(s(n) \) denotes the transposition.

Remark 1: Since the impulsive noise can be modeled as a \(\alpha \)-stable process \(0 < \alpha < 2 \), \(\alpha \) is the characteristic exponent, the second-order moment of the impulsive noise is not finite and the adaptive algorithm based on the MSE suffers from the stability problem. Hence, it is wise to use the cost function with the fractional lower order moment (\(p \)-power of error, \(1 < p < \alpha \)) for designing the robust adaptive algorithm.

Here, the cost function of the FxRLP algorithm is defined as

\[
J_{FxRLP}(n) = \sum_{i=1}^{n} \lambda^{n-i} |\varepsilon(i, n)|^p
\]

where \(0 < \lambda < 1 \) denotes the forgetting factor, \(\varepsilon(i, n) = d(i) - w^T(n)x_s(i) \) represents the a posteriori error, \(w(n) \) is the adaptive filter tap weight vector with length \(L \), \(x_s(n) = [x_s(n), x_s(n-1), ..., x_s(n-L+1)]^T \), \(x_s(n) = \tilde{s}(n) * x(n) \), and \(\tilde{s}(n) \) denotes the impulse response of \(\hat{S}(z) \).

Taking the gradient of \(J_{FxRLP}(n) \) with respect to \(w(n) \) and equating the result to zero, one gets

\[
\frac{\partial J_{FxRLP}(n)}{\partial w(n)} = -p \sum_{i=1}^{n} \lambda^{n-i} |\varepsilon(i, n)|^p \frac{\varepsilon(i, n)}{|\varepsilon(i, n)|} x_s(i) = 0
\]

which can be written as

\[
\sum_{i=1}^{n} \lambda^{n-i} v(i, n) x_s(i)x_s^T(i) w(n) = \sum_{i=1}^{n} \lambda^{n-i} v(i, n) x_s(i)d(i)
\]

where \(v(i, n) = \frac{|\varepsilon(i, n)|^p}{|\varepsilon(i, n)|} \).

From [4], we obtain the following expression for \(w(n) \)

\[
w(n) = P(n) \theta(n)
\]

where

\[
P(n) = R^{-1}(n),
\]

\[
R(n) = \sum_{i=1}^{n} \lambda^{n-i} v(i, n) x_s(i)x_s^T(i),
\]

and

\[
\theta(n) = \sum_{i=1}^{n} \lambda^{n-i} v(i, n) x_s(i)d(i).
\]

To derive an on-line algorithm, the following approximations are used:

\[
R(n) \approx \sum_{i=1}^{n} \lambda^{n-i} v(i, i)x_s(i)x_s^T(i) = \lambda R(n-1) + v(n, n)x_s(n)x_s^T(n),
\]

\[
\theta(n) \approx \sum_{i=1}^{n} \lambda^{n-i} v(i, i)x_s(i)d(i) = \lambda \theta(n-1) + v(n, n)x_s(n)d(n).
\]

By using Woodbury’s matrix inversion lemma \([91, 92, 93]\), the inverse autocorrelation matrix can be updated by

\[
P(n) = \lambda^{-1} P(n-1) - \lambda^{-1} K(n)x_s^T(n)P(n-1)
\]

where the gain vector is defined as

\[
K(n) = \frac{v(n, n)P(n-1)x_s(n)}{\lambda + v(n, n)x_s^T(n)P(n-1)x_s(n)}.
\]

According to (11), (12) can be simplified as

\[
K(n) = v(n, n)P(n)x_s(n).
\]

From [5], [10], [11] and [13], \(w(n) \) can be updated by

\[
w(n) = P(n)(\lambda \theta(n-1) + v(n, n)x_s(n)d(n)) = \lambda P(n) \theta(n-1) + v(n, n)P(n)x_s(n)d(n)
\]

\[
= P(n-1) \theta(n-1) - K(n)x_s^T(n)P(n-1) \theta(n-1) + K(n)d(n)
\]

\[
= w(n-1) + K(n) \phi(n)
\]

where \(\phi(n) = d(n) - x_s^T(n)w(n-1) \) is the a priori error.

3. FXLOGRLP ALGORITHM

According to the zero-order statistics \([94]\) which states that the \(\alpha \)-stable process is a logarithmic-order process with finite logarithmic moments, we define a new cost function as follows

\[
J_{FxLogRLP}(n) = \sum_{i=1}^{n} \lambda^{n-i} \log^p(1 + |\varepsilon(i, n)|).
\]

Taking the gradient of \(J_{FxLogRLP}(n) \) with respect to \(w(n) \) and letting the result to zero, we obtain

\[
\frac{\partial J_{FxLogRLP}(n)}{\partial w(n)} = -p \sum_{i=1}^{n} \lambda^{n-i} \frac{\log^p(1 + |\varepsilon(i, n)|)}{(1 + |\varepsilon(i, n)|)} |\varepsilon(i, n)| x_s(i) = 0
\]
which can be rewritten as
\[
\sum_{i=1}^{n} \lambda^{n-i} v(i, n) x(i) x^T(i) w(n) = \sum_{i=1}^{n} \lambda^{n-i} v(i, n) x(i) d(i)
\]
where \(v(i, n) = \frac{\log^{-1}(1+c(n))}{(1+c(n))} \).

The following derivation of the FxlogRLP algorithm is the same as that of the FxRLP algorithm, as shown in [8]–[11].

Remark 2: To implement the FxRLP and FxlogRLP algorithms recursively and efficiently, we replace the \(\text{a priori} \) error \(\varepsilon(n) \) and the \(\text{a posteriori} \) error \(\varepsilon(n) \) by the residual noise \(e(n) \) which can be measured by the error sensor. Here, \(e(n) \) and \(v(n) \) represent \(e(n, n) \) and \(v(n, n) \), respectively. Table I summarizes the proposed algorithms, where \(\delta \) is a small positive value, \(I \) is the identity matrix and \(\tau \) is a small positive constant to avoid division by zero.

Table 1. Summary of the proposed algorithms

Initialization:
\(w(0) = 0 \), \(P(0) = \delta I \)

Parameters:
\(\tau, \lambda, p \)

Update:
for \(n = 1, 2, 3, \ldots \)
\(v(n) = \frac{\log^{-1}(1+c(n))}{(1+c(n))} \) (FxRLP)
\(v(n) = \frac{\log^{-1}(1+c(n))}{(1+c(n))} + \frac{\lambda}{\tau} \) (FxlogRLP)
\(K(n) = \frac{v(n) P(n-1) x_s(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} \)
\(w(n) = w(n-1) + K(n) c(n) \)
\(P(n) = \lambda^{-1} P(n-1) - \lambda^{-1} K(n) x_s^T(n) P(n-1) \)

Remark 3: As can be seen from Table I the FxRLP and FxlogRLP algorithms have the same structure except for the calculation of \(v(n) \). Note that the FxRLP algorithm reduces to the FxLSL algorithm when \(v(n) = 1 \) (i.e., \(p = 2, \tau = 0 \)).

4. MEAN STABILITY ANALYSIS

In this section, we perform the mean stability analyses of the proposed algorithms.

According to Table I the weight vector can be summarized and rewritten as follows
\[
w(n+1) = w(n) + \frac{v(n) P(n-1) x_s(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} e(n).
\]

Define the weight deviation vector below
\[
\tilde{w}(n) = w_o - w(n)
\]
where \(w_o \) denotes the optimal weight vector of the controller. Subtracting (18) from \(w_o \), we have
\[
\tilde{w}(n+1) = \tilde{w}(n) - \frac{v(n) P(n-1) x_s(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} e(n).
\]

Taking the expectation on both sides of (20) yields
\[
E[\tilde{w}(n+1)] = E[\tilde{w}(n)] - \frac{v(n) P(n-1) x_s(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} E[e(n)]
\]
which can be expressed as
\[
E[\tilde{w}(n+1)] = E[\tilde{w}(n)] - \frac{v(n) P(n-1) x_s(n) x_s^T(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} \tilde{w}(n)
\]
\[
\approx E[\tilde{w}(n)] - \frac{v(n) P(n-1) x_s(n) x_s^T(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} E[\tilde{w}(n)]
\]
where \(E[\cdot] \) represents the expectation operator, and the approximation \(x_s^T(n) \tilde{w}(n) \) was used.

Therefore, the algorithm converges in the mean if and only if
\[
0 < \lambda_{\max} \left\{ E \left[\frac{v(n) P(n-1) x_s(n) x_s^T(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} \right] \right\} < 2
\]
where \(\lambda_{\max} \{ \cdot \} \) denotes the largest eigenvalue of the matrix.

Remark 4: Based on the fact that \(\lambda_{\max}(AB) < \text{Tr}(AB) \) in (23), it obtains
\[
\lambda_{\max} \left\{ E \left[\frac{v(n) P(n-1) x_s(n) x_s^T(n)}{\lambda + v(n) x_s^T(n) P(n-1) x_s(n)} \right] \right\} < E \left[\frac{\text{Tr}(x_s^T(n) P(n-1) x_s(n))}{v(n) + x_s^T(n) P(n-1) x_s(n)} \right] < 1.
\]

Hence, the proposed algorithms are convergent in the mean if the input signal is persistently exciting.

5. SIMULATION RESULTS

Simulations are carried out to examine the performance of the proposed algorithms for active impulsive noise control. The primary path \(P(z) \) and secondary path \(S(z) \) are modeled as finite impulse response (FIR) filters with the length of 256 and 100, respectively, and the estimated secondary path \(\hat{S}(z) \) was exactly identified as \(S(z) \). The magnitude and phase responses of the primary and secondary paths are shown in Fig. 2. The adaptive filter \(W(z) \) is selected as an FIR filter with the length of 128. The reference signal \(x(n) \) is generated through a standard symmetric \(\alpha \)-stable (\(\alpha \)-S\(\alpha \)) process with \(\alpha = 1.35 \) or \(\alpha = 1.55 \) [87].

To evaluate the performance of the algorithms, the averaged noise reduction (ANR) is used:
\[
ANR(n) = 20 \log \left(A_c(n)/A_d(n) \right),
\]
where
\[
A_c(n) = \xi A_c(n-1) + (1 - \xi)|e(n)|,
\]
\[
A_d(n) = \xi A_d(n-1) + (1 - \xi)|d(n)|,
\]
and \(\xi = 0.999 \). The simulation results are obtained by ensemble averaging over 50 trials.

In the following simulations, the proposed algorithms are compared with the FxLMP [65], FxRLS [60], and FxlogRLS [87] algorithms, and the parameters are set as follows: the step size is \(\mu = 0.0001 \) for the FxLMP algorithm; the forgetting factor \(\lambda = 0.999 \)
and $\delta = 0.001$ are set for the FxRLS, FxlogRLS, FxRLP and FxlogRLP algorithms; $p = 1.3$ (1.5) is set for the FxLMP, FxRLP and FxlogRLP algorithms under the S\&S signal with $\alpha = 1.35$ (1.55); $\tau = 0.001$ is set for the FxRLP and FxlogRLP algorithms. The performance comparison of the algorithms is shown in Fig. 3. As can be seen, the FxRLS algorithm diverges because the second-order moment of the target noise is not finite. The FxRLP algorithm shows faster convergence speed relative to the FxLMP algorithm, but has a higher steady-state ANR as compared to the FxlogRLS algorithm. Owing to the new cost function which integrates the p-order moment with the logarithmic-order moment, the FxlogRLP algorithm presents the best performance among the others.

6. CONCLUSION

By minimizing the weighted summation of the p-power of the a posteriori errors, we proposed a FxRLP algorithm for active impulsive noise control. Moreover, by integrating the p-order moment with the logarithmic-order moment, a FxlogRLP algorithm was developed. Simulation results confirmed that the FxlogRLP algorithm outperforms the state-of-the-art algorithms.

7. REFERENCES

[1] S. J. Elliott and P. A. Nelson, “Active noise control,” IEEE Signal Processing Magazine, vol. 10, no. 4, pp. 12–35, 1993.
[2] L. Tan and J. Jiang, “Adaptive Volterra filters for active control of nonlinear noise processes,” IEEE Transactions on Signal Processing, vol. 49, no. 8, pp. 1667–1676, 2001.
[3] G. L. Sicuranza and A. Carini, “A generalized FLANN filter for nonlinear active noise control,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 8, pp. 2412–2417, 2011.
[4] L. Lu, Z. Zheng, and X. Yang, “Power-of-two quantizer FLANN filter for nonlinear active noise control,” in 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2019, pp. 1–5.
[5] L. Lu, K.-L. Yin, R. C. de Lamare, Z. Zheng, Y. Yu, X. Yang, and B. Chen, “A survey on active noise control in the past decade–part I: Linear systems,” Signal Processing, p. 108039, 2021.
[6] ——, “A survey on active noise control in the past decade–part II: Nonlinear systems,” Signal Processing, p. 107929, 2020.
[7] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and filtering,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2503–2514, 2009.
[8] ——, “Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for ds-cdma systems,” IEEE Transactions on Communications, vol. 56, no. 5, pp. 778–789, 2008.
[9] R. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank mmse filtering with interpolated fir filters and adaptive interpolators,” IEEE Signal Processing Letters, vol. 12, no. 3, pp. 177–180, 2005.
[10] R. C. de Lamare, “Adaptive and iterative multi-branch mmse decision feedback detection algorithms for multi-antenna systems,” IEEE Transactions on Wireless Communications, vol. 12, no. 10, pp. 5294–5308, 2013.
[11] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 980–983, 2007.
[12] ——, “Reduced-rank space-time adaptive interference suppression with joint iterative least squares algorithms for spread-spectrum systems,” IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1217–1228, 2010.
[41] R. C. de Lamare and R. Sampaio-Neto, “Sparsity-aware adaptive algorithms based on alternating optimization and shrinkage,” IEEE Signal Processing Letters, vol. 21, no. 2, pp. 225–229, 2014.

[42] L. Wang, “Constrained adaptive filtering algorithms based on conjugate gradient techniques for beamforming,” IET Signal Processing, vol. 4, pp. 686–697(11), December 2010. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2009.0236.

[43] Y. Cai, R. C. de Lamare, and R. Fa, “Switched interleaving techniques with limited feedback for interference mitigation in ds-cdma systems,” IEEE Transactions on Communications, vol. 59, no. 7, pp. 1946–1956, 2011.

[44] Y. Cai and R. C. de Lamare, “Space-time adaptive mmse multiuser decision feedback detectors with multiple-feedback interference cancellation for cdma systems,” IEEE Transactions on Vehicular Technology, vol. 58, no. 8, pp. 4129–4140, 2009.

[45] Z. Shao, R. C. de Lamare, and L. T. N. Landau, “Iterative detection and decoding for large-scale multiple-antenna systems with 1-bit adcs,” IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 476–479, 2018.

[46] R. de Lamare, “Joint iterative power allocation and linear interference suppression algorithms for cooperative ds-cdma networks,” IET Communications, vol. 6, pp. 1930–1942(12), September 2012. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-com.2011.0508.

[47] P. Li and R. C. de Lamare, “Distributed iterative detection with reduced message passing for networked mimo cellular systems,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2947–2954, 2014.

[48] Y. Cai, R. C. de Lamare, B. Champagne, B. Qin, and M. Zhao, “Adaptive reduced-rank receive processing based on minimum symbol-error-rate criterion for large-scale multiple-antenna systems,” IEEE Transactions on Communications, vol. 63, no. 11, pp. 4185–4201, 2015.

[49] C. T. Healy and R. C. de Lamare, “Design of ldpc codes based on multipath emd strategies for progressive edge growth,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3208–3219, 2016.

[50] L. Wang, R. C. de Lamare, and M. Haardt, “Direction finding algorithms based on joint iterative subspace optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 2541–2553, 2014.

[51] J. Gu, R. C. de Lamare, and M. Huermer, “Buffer-aided physical-layer network coding with optimal linear code designs for cooperative networks,” IEEE Transactions on Communications, vol. 66, no. 6, pp. 2560–2575, 2018.

[52] S. Xu, R. C. de Lamare, and H. V. Poor, “Adaptive link selection algorithms for distributed estimation,” EURASIP J. Adv. Signal Process., vol. 86, 2015.

[53] L. Wang, R. C. de Lamare, and Y. Long Cai, “Low-complexity adaptive step size constrained constant modulus algorithms for adaptive beamforming,” Signal Processing, vol. 89, no. 12, pp. 2503–2513, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165168409001767.

[54] L. Qi, Y. Cai, R. C. de Lamare, and M. Zhao, “Reduced-rank doa estimation algorithms based on alternating low-rank decomposition,” IEEE Signal Processing Letters, vol. 23, no. 5, pp. 565–569, 2016.

[55] M. Yukawa, R. C. de Lamare, and R. Sampaio-Neto, “Efficient acoustic echo cancellation with reduced-rank adaptive filtering based on selective decimation and adaptive interpolation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 4, pp. 696–710, 2008.

[56] S. Xu, “Distributed estimation over sensor networks based on distributed conjugate gradient strategies,” IET Signal Processing, vol. 10, pp. 291–301(10), May 2016. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2015.0384.

[57] L. Landau, “Robust adaptive beamforming algorithms using the constrained constant modulus criterion,” IET Signal Processing, vol. 8, pp. 447–457(10), July 2014. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2013.0166.

[58] L. Wang and R. C. de Lamare, “Adaptive constrained constant modulus algorithm based on auxiliary vector filtering for beamforming,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5408–5413, 2010.

[59] Y. Cai and R. C. de Lamare, “Adaptive linear minimum her reduced-rank interference suppression algorithms based on joint and iterative optimization of filters,” IEEE Communications Letters, vol. 17, no. 4, pp. 633–636, 2013.

[60] T. G. Miller, S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed spectrum estimation based on alternating mixed discrete-continuous adaptation,” IEEE Signal Processing Letters, vol. 23, no. 4, pp. 551–555, 2016.

[61] P. Clarke and R. C. de Lamare, “Low-complexity reduced-rank linear interference suppression based on set-membership joint iterative optimization for ds-cdma systems,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4324–4337, 2011.

[62] S. Li, R. C. de Lamare, and R. Fa, “Reduced-rank linear interference suppression for ds-uwb systems based on switched approximations of adaptive basis functions,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 485–497, 2011.

[63] F. G. Almeida Neto, R. C. De Lamare, V. H. Nascimento, and Y. V. Zakharov, “Adaptive reweighting homotopy algorithms applied to beamforming,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1902–1915, 2015.

[64] W. S. Leite and R. C. De Lamare, “List-based omp and an enhanced model for doa estimation with non-uniform arrays,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–1, 2021.

[65] T. Wang, R. C. de Lamare, and A. Schmeink, “Joint linear receiver design and power allocation using alternating optimization algorithms for wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 9, pp. 4129–4141, 2012.

[66] R. C. de Lamare and P. S. R. Diniz, “Blind adaptive interference suppression based on set-membership constrained constant-modulus algorithms with dynamic bounds,” IEEE Transactions on Signal Processing, vol. 61, no. 5, pp. 1288–1301, 2013.

[67] Y. Cai and R. C. de Lamare, “Low-complexity variable step-size mechanism for code-constrained constant modulus stochastic gradient algorithms applied to cdma interference suppression,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 313–323, 2009.
[68] Y. Cai, R. C. de Lamare, M. Zhao, and J. Zhong, “Low-complexity variable forgetting factor mechanism for blind adaptive constrained constant modulus algorithms,” *IEEE Transactions on Signal Processing*, vol. 60, no. 8, pp. 3988–4002, 2012.

[69] M. F. Kaloorazi and R. C. de Lamare, “Subspace-orbit randomized decomposition for low-rank matrix approximations,” *IEEE Transactions on Signal Processing*, vol. 66, no. 16, pp. 4409–4424, 2018.

[70] R. B. Di Renna and R. C. de Lamare, “Adaptive activity-aware iterative detection for massive machine-type communications,” *IEEE Wireless Communications Letters*, vol. 8, no. 6, pp. 1631–1634, 2019.

[71] H. Ruan and R. C. de Lamare, “Distributed robust beamforming based on low-rank and cross-correlation techniques: Design and analysis,” *IEEE Transactions on Signal Processing*, vol. 67, no. 24, pp. 6411–6423, 2019.

[72] S. F. B. Pinto and R. C. de Lamare, “Multistep knowledge-aided iterative esprit: Design and analysis,” *IEEE Transactions on Aerospace and Electronic Systems*, vol. 54, no. 5, pp. 2189–2201, 2018.

[73] Y. V. Zakharov, V. H. Nascimento, R. C. De Lamare, and F. G. De Almeida Neto, “Low-complexity dcd-based sparse recovery algorithms,” *IEEE Access*, vol. 5, pp. 12737–12750, 2017.

[74] S. Li and R. C. de Lamare, “Blind reduced-rank adaptive receivers for ds-uwb systems based on joint iterative optimization and the constrained constant modulus criterion,” *IEEE Transactions on Vehicular Technology*, vol. 60, no. 6, pp. 2505–2518, 2011.

[75] X. Wu, Y. Cai, M. Zhao, R. C. de Lamare, and B. Champagne, “Adaptive widely linear constrained constant modulus reduced-rank beamforming,” *IEEE Transactions on Aerospace and Electronic Systems*, vol. 53, no. 1, pp. 477–492, 2017.

[76] Y. Yu, H. He, T. Yang, X. Wang, and R. C. de Lamare, “Diffusion normalized least mean m-estimate algorithms: Design and performance analysis,” *IEEE Transactions on Signal Processing*, vol. 68, pp. 2199–2214, 2020.

[77] R. B. Di Renna and R. C. de Lamare, “Iterative list detection and decoding for massive machine-type communications,” *IEEE Transactions on Communications*, vol. 68, no. 10, pp. 6276–6288, 2020.

[78] L. Wang, “Set-membership constrained conjugate gradient adaptive algorithm for beamforming,” *IET Signal Processing*, vol. 6, pp. 789–797(8), October 2012. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2011.0324

[80] S. M. Kuo and D. R. Morgan, *Active noise control systems*. New York: Wiley, 1996.

[81] X. Sun, S. M. Kuo, and G. Meng, “Adaptive algorithm for active control of impulse noise,” *Journal of Sound and Vibration*, vol. 291, no. 1-2, pp. 516–522, 2006.

[82] M. T. Akhtar and W. Mitsuhashi, “Improving performance of FxLMS algorithm for active noise control of impulse noise,” *Journal of Sound and Vibration*, vol. 327, no. 3-5, pp. 647–656, 2009.

[83] P. Li and X. Yu, “Active noise cancellation algorithms for impulse noise,” *Mechanical Systems and Signal Processing*, vol. 36, no. 2, pp. 630–635, 2013.