Search for the neutron-rich hypernucleus $^9_\Lambda$He

M. Agnello,1,2 L. Bemussi,3 M. Bertani,3 H.C. Bhang,4 G. Bonomi,5,6 E. Botta,7,2,8 M. Bregant,8 T. Bressani,7,2 S. Bufalino,2 L. Busso,7,2 D. Calvo,2 P. Camerini,9,10 B. Dalena,11 F. De Mori,7,2 G. D’Erasmo,12,13 F.L. Fabbri,3 A. Feliciello,2 A. Filippini,2 E.M. Fiore,12,13 A. Fontana,6 H. Fujioka,14 P. Genova,6 P. Gianotti,3 N. Grion,9 V. Lucheri,3 S. Marcello,7,2 N. Mirfakhrai,15 F. Moia,3,6 O. Morra,16,2 T. Nagae,14 H. Outa,17 A. Pantaleo,13,14,15 V. Paticchio,13 S. Pinno,9 R. Rui,9,10 G. Simonetti,12,13 R. Wheadon,2 and A. Zenoni5,6

(The FINUDA Collaboration)

A. Gal18

1Dipartimento di Fisica, Politecnico di Torino, corso Duca degli Abruzzi 24, Torino, Italy
2INFN Sezione di Torino, via P. Giuria 1, Torino, Italy
3Laboratori Nazionali di Frascati dell’INFN, via E. Fermi 40, Frascati, Italy
4Department of Physics, Seoul National University, 51-742 Seoul, South Korea
5Dip. di Ingegneria Meccanica e Industriale, Università di Brescia, via Valotti 9, Brescia, Italy
6INFN Sezione di Pavia, via Bassi 6, Pavia, Italy
7Dipartimento di Fisica, Università di Torino, via P. Giuria 1, Torino, Italy
8SUBATECH, École des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
9INFN Sezione di Trieste, via Valerio 2, Trieste, Italy
10Dipartimento di Fisica, Università di Trieste, via Valerio 2, Trieste, Italy
11CEA, Irfu/SACM, Gif-sur-Yvette, France
12Dipartimento di Fisica Università di Bari, via Amendola 173, Bari, Italy
13INFN Sezione di Bari, via Amendola 173, Bari, Italy
14Department of Physics, Kyoto University, Sakyo-ku, Kyoto, Japan
15Department of Physics, Shahid Beheshty University, 19834, Tehran, Iran
16INAF-IFSI, Sezione di Torino, Corso Fiume 4, Torino, Italy
17RIKEN, Wako, Saitama 351-0198, Japan
18Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

(Dated: May 3, 2014)

Search for the neutron-rich hypernucleus $^9_\Lambda$He is reported by the FINUDA experiment at DAΦNE, INFN-LNF, studying (π^+,π^-) pairs in coincidence from the $K_{stop}^+ + ^{9}$Be $\rightarrow ^9_\Lambda$He $+$ π^+ production reaction followed by $^9_\Lambda$He $\rightarrow ^9$Li $+$ π^- weak decay. An upper limit of the production rate of $^9_\Lambda$He undergoing this two-body π^- decay is determined to be $(2.3 \pm 1.9) \times 10^{-6}/K_{stop}^+$ at 90% confidence level.

PACS numbers: 21.80.+a, 25.80.Nv, 21.10.Gv

In recent papers we reported 1 and described in detail 2 the first experimental evidence for the existence of hyper superheavy hydrogen $^6_\Lambda$H. Three candidate events for such a particle-stable nuclear system were uniquely identified in the FINUDA experiment at DAΦNE, Frascati (Italy) by observing π^+ mesons from the (K^-,π^+) reaction on 6Li targets, in coincidence with π^- mesons from $^6_\Lambda$H $\rightarrow ^6$He $+$ π^- weak decay. The $^6_\Lambda$H binding energy with respect to 5H $+$ Λ was determined jointly from production and decay processes to be $B_{\Lambda}(^6_\Lambda$H) $= (4.0 \pm 1.1)$ MeV, assuming that the 5H ground-state (g.s.) resonance lies at 1.7 MeV above the 3H $+$ 2α lowest neutron emission threshold 3. We remark that $^6_\Lambda$H is a particle-stable nuclear system with the highest $N/Z = 4$ value ($(N + \Lambda)/Z = 5$) measured so far, higher than for the archetype neutron-rich nucleus 11Li. Since 7Li and 9Be targets were used in the same data taking in which $^6_\Lambda$H was produced on 6Li targets, with a similar number of stopped K^-, we examined whether the method applied to the successful search for $^6_\Lambda$H could be extended to $^7_\Lambda$H and $^{9}_\Lambda$He. The case of $^7_\Lambda$H was dismissed, since the daughter nucleus 7He produced in the two-body weak decay $^7_\Lambda$H $\rightarrow ^7$He $+$ π^- is particle-unstable, making non-applicable the experimental method that will be briefly outlined in the following. However, the method could be applied in the case of $^9_\Lambda$He, since both 9Li g.s. and first excited state at 2.691 MeV are particle stable 4, allowing thus a two-body weak decay $^9_\Lambda$He $\rightarrow ^9$Li $+$ π^-.

The neutron-rich $^9_\Lambda$He hypernucleus is one of the exotic Λ-hypernuclear species considered decades ago by Dalitz and Levi Setti 5, and by Majling 6 who estimated the binding-energy $B_{\Lambda}(^9_\Lambda$He) $= 8.5$ MeV. This value, coinciding with $B_{\Lambda}(^9_\Lambda$Li) 7, is based on the assumption that the increased neutron excess in $^9_\Lambda$He with respect to 9Li does not induce irregularities in the known binding energy systematics. The assumption is consistent with the similarity of B_{Λ} values for $^6_\Lambda$H 11,2 and $^6_\Lambda$H 7, and for $^7_\Lambda$H 8 and $^7_\Lambda$Li. Millener’s recent shell-model study of p-shell B_{Λ} values, Table 2 in Ref. 9, suggests that $B_{\Lambda}(^9_\Lambda$He) $\approx B_{\Lambda}(^9_\Lambda$Li) to within less than 0.1 MeV. We
shall therefore adopt the value \(B_A(\Lambda^+\text{He}) = 8.5 \text{ MeV} \) as a working hypothesis. Fig. 1 shows the expected particle-stable \(\Lambda^+\text{He} \) levels, together with the neutron emission thresholds below the 8.5 MeV \(\Lambda \) emission threshold.

\[
\begin{align*}
8.5 & : \Lambda^+\text{He} + 4n \\
8.3 & : \Lambda^+\text{He} + 3n \\
4.9 & : \Lambda^+\text{He} + 2n \\
3.9 & : \Lambda^+\text{He} + n \\
3.1 & : 3^2 \Lambda^+\text{He} \\
0.0 & : 1^2 \Lambda^+\text{He}
\end{align*}
\]

FIG. 1. Anticipated \(\Lambda^+\text{He} \) energy level scheme below the lowest neutron emission threshold, together with higher neutron emission thresholds. Note the schematically marked \(\Lambda^+\text{He} \) excited doublet which is based on \(\Lambda^+\text{He} \) (particle-unstable) first excitation \(2^+ \) at \(\approx 3.1 \text{ MeV} \) [3].

We outline now briefly the experimental method adopted in the search for \(\Lambda^+\text{He} \). The DA\(\Phi \)NE \(\phi \)-Factory in Frascati uses \(e^+e^- \) collisions at total c.m. energy \(\sqrt{s} = 1020 \text{ MeV} \) to produce \(\phi \) mesons that decay into \((K^+, K^-)\) pairs with a 49\% branching ratio. The resulting \(K^- \) mesons of kinetic energy 16.1 \pm 0.5 \text{ MeV} \) can be stopped in nuclear targets. In the FINUDA experiment, a total of \(2.5 \cdot 10^7 \) \(K^- \) mesons were detected as stopped in two \(^9\text{Be} \) targets, 2 mm thick. The FINUDA detector has been described in detail recently in [2] [10]. \(\Lambda^+\text{He} \) can be produced in the two-body reaction:

\[
K_{\text{stop}}^- + ^9\text{Be} \rightarrow \Lambda^+\text{He} + \pi^+ . \tag{1}
\]

Assuming \(B_A(\Lambda^+\text{He}) = 8.5 \text{ MeV} \), it is straightforward to evaluate the momentum \(p_{\pi^+} = 257.5 \text{ MeV/c} \) and kinetic energy \(T_{\pi^+} = 153.3 \text{ MeV} \) for a \(\pi^+ \) meson emitted in (1). The two-body weak decay

\[
\Lambda^+\text{He}_{\text{g.s.}} \rightarrow ^9\text{Li}_{\text{g.s.}} + \pi^- \tag{2}
\]

should then produce a \(\pi^- \) meson with \(p_{\pi^-} = 116.9 \text{ MeV/c} \) and \(T_{\pi^-} = 42.5 \text{ MeV} \). We note that \(^9\text{Li} \) could be produced in the reaction (2) also in one of the excited doublet levels marked schematically in Fig. 1 that, if particle-stable, would \(\gamma \)-decay to \(^9\text{Li}_{\text{g.s.}} \), which then decays weakly according to (2). However, one or both of these \(^9\text{Li} \) doublet levels could prove to be isomeric, similar to what is believed to occur for \(\Lambda^\text{He} \) [7]. One has to allow for such a scenario when considering the spread of the \(\pi^\pm \) accepted momenta and kinetic energies.

The formation (1) and decay (2) reactions occur both at rest, since the stopping time of \(\Lambda^+\text{He} \) in the material (Be) is shorter than its lifetime which is of the order of 2.6\times10^{-10} \text{ s} \) (the free \(\Lambda \) lifetime). Momentum conservation is then automatically ensured and energy conservation is expressed explicitly for (1):

\[
M(K^-) + 4M(p) + 5M(n) - B(\Lambda^+\text{Be}) = M(\Lambda^+\text{He}) + T(\Lambda^+\text{He}) + M(\pi^+) + T(\pi^+) , \tag{3}
\]

and for (2):

\[
M(\Lambda^+\text{He}) = 3M(p) + 6M(n) - B(\Lambda^+\text{Li}) + T(\Lambda^+\text{Li}) + M(\pi^-) + T(\pi^-) , \tag{4}
\]

in which \(M \) stands for mass, \(T \) for kinetic energy, and \(B \) for nuclear binding energy. Combining Eqs. (3) and (4) in order to eliminate \(M(\Lambda^+\text{He}) \), we get the following equation:

\[
T(\pi^+) + T(\pi^-) = M(K^-) + M(p) - M(n) - 2M(\pi^-) - B(\Lambda^+\text{Be}) - B(\Lambda^+\text{Li}) - T(\Lambda^+\text{He}) . \tag{5}
\]

All the terms on the right hand side are known constants except for \(T(\Lambda^+\text{He}) \) and \(T(\Lambda^+\text{Li}) \) that can be evaluated from momentum and energy conservation and depend on the unknown value of \(B_A(\Lambda^+\text{He} \).

A variation of \(B_A(\Lambda^+\text{He}) \) between 0 and 10 MeV introduces a change of \(\sim 0.1 \text{ MeV} \) in \(T(\pi^+) + T(\pi^-) \) [5], corresponding to a sensitivity of 10 keV per MeV of \(B_A(\Lambda^+\text{He} \). This change is much smaller than the measured energy resolutions for \(\pi^+ \) (deduced from the 235.6 MeV/c monochromatic \(\mu^- \) line in \(K_{\Lambda\mu} \) decays) and \(\pi^- \) (deduced from the 132.8 MeV/c monochromatic \(\pi^- \) line in the two-body \(\Lambda^+\text{He} \) mesonic decay): \(\sigma_{T(\pi^+)} = 0.96 \text{ MeV} \) and \(\sigma_{T(\pi^-)} = 0.84 \text{ MeV} \). The FINUDA energy resolution for a \((\pi^+, \pi^-)\) pair in coincidence is \(\sigma_T = 1.3 \text{ MeV} \) [2]. We assume a value of \(B_A(\Lambda^+\text{He}) = 8.5 \text{ MeV} \) [1]; therefore \(T_{\Sigma} = T(\pi^+) + T(\pi^-) = 195.8 \pm 1.3 \text{ MeV} \).

Then we consider, for the coincidence \((\pi^+, \pi^-)\) events, only those for which the sum of the kinetic energies \(T_{\Sigma} \) assumes values in the range \((194.5 - 197.5) \text{ MeV} \). The half-width of this interval corresponds to 1.15 \(\sigma_T \), in order to be selective on possible background events and benefiting from the excellent stability of the FINUDA magnetic spectrometry. A two-dimensional plot of these selected events is shown in Fig. 2. Events associated with the formation of \(\Lambda^+\text{He} \) should fall in the hatched (red) rectangle in the figure, with \(p_{\pi^+} = (253.5 - 259) \text{ MeV/c} \) and \(p_{\pi^-} = (114.5 - 122) \text{ MeV/c} \). These values correspond to pion momenta that span values of \(B_A(\Lambda^+\text{He}) \) between 5 and 10 MeV.

Fig. 3 shows the projections on the two axes of the distribution of Fig. 2, there are clearly no events satisfying the conditions required by the formation and decay of \(\Lambda^+\text{He} \) with \(B_A(\Lambda^+\text{He}) \geq 5 \text{ MeV} \); recall from Fig. 1 that \(B_A(\Lambda^+\text{He}) = 5 \text{ MeV} \) is about 1 MeV above the lowest neutron emission threshold expected for \(\Lambda^+\text{He} \).

Since no events that could be attributed to the existence of a bound \(\Lambda^+\text{He} \) were found, we did not follow
FIG. 2. (color online). π^+ momentum vs π^- momentum for 3Be target events with $T_{\text{sum}} = (194.5 - 197.5)$ MeV. The shaded (red) rectangle indicates the position of events with $p_{\pi^+} = (253.5 - 259)$ MeV/c and $p_{\pi^-} = (114.5 - 122)$ MeV/c. The analysis done for 4H [2] in which extensive calculations were performed on possible backgrounds that would mimic the expected true events. Events filling the full distribution of Fig. 2 are certainly attributable primarily to reactions with the production of a quasi-free Σ^+, but it was outside the scope of the present analysis to reproduce the shape and strength of this distribution.

Given the experimental procedure described above, it was possible to derive an upper limit for $R \cdot \text{BR}(\pi^-)$, where R is $^3\Lambda$He production rate per stopped K^- in reaction (1) and $\text{BR}(\pi^-)$ is the branching ratio (BR) for $^3\Lambda$He two-body weak decay [2]:

$$R \cdot \text{BR}(\pi^-) \leq \frac{N}{\epsilon(\pi^+) \epsilon(\pi^-) K_{\text{stop}}^{-}(^9\text{Be})} = (1.6 \pm 1.3) \cdot 10^{-6}/K_{\text{stop}}.$$

(6)

Here, N is the expected mean value of the observation for which a null observation is 10% probable [upper limit at 90% confidence level (C.L.)], $\epsilon(\pi^+)$ and $\epsilon(\pi^-)$ indicate the global efficiencies for π^+ and π^-, respectively, including detection efficiency, geometrical and trigger acceptances and pattern recognition, reconstruction and selection efficiencies, all of which have been evaluated by means of the full FINUDA simulation code, well tested in calculations for other reactions in similar momentum ranges [11,13]. $K_{\text{stop}}(^9\text{Be})$ is the number of K^- detected at stop in 3Be targets.

For the evaluation of the upper limit a correction for the 1.15 σ_T cut applied to $T(\pi^+) + T(\pi^-)$ has to be taken into account and a correction for the fraction of $^3\Lambda$He decaying in flight has to be applied too, which is estimated to be smaller than 8% [14]. The $R \cdot \text{BR}(\pi^-)$ value, corrected for both effects is: $R \cdot \text{BR}(\pi^-) < (2.3 \pm 1.9) \cdot 10^{-6}/K_{\text{stop}}$.

To derive the upper limit R for the production rate of $^3\Lambda$He particle-stable levels, we need to know the branching ratio $\text{BR}(\pi^-)$ for the two-body weak decay $^9\Lambda_{\text{g.s.}} \rightarrow ^9\text{Li}_{\text{g.s.}} + \pi^-$. The other possible two-body decay, to $^7\text{Li}(2.691$ MeV) with $p_{\pi^-} = 112.6$ MeV/c corresponding to the value $B_A = 8.5$ MeV assumed here, is outside of the p_{π^-} cut imposed in the present search and, therefore, it does not contribute to $\text{BR}(\pi^-)$. Nevertheless, inspection of the π^- momentum distribution in Fig. 3 (b) suggests that this two-body decay too is not observed in our measurement. In absence of published evaluations of the branching ratio for the weak decay $^9\Lambda_{\text{g.s.}} \rightarrow ^9\text{Li}_{\text{g.s.}} + \pi^-$ in which a 1s Λ is transformed to a 1p proton, we follow Ref. [15] and evaluate

$$\Gamma(\Lambda_{\text{g.s.}} \rightarrow \Lambda_{\text{exc}} + \pi^-) = 0.094 \Gamma_{\Lambda},$$

(8)

where Γ_{Λ} is the free-Λ decay rate which approximates fairly the total Λ-hypernuclear decay rate in the relevant mass range [16]. For completeness, we give also the rate evaluated for decay to $^9\text{Li}(2.691$ MeV):

$$\Gamma(\Lambda_{\text{g.s.}} \rightarrow \text{Li}_{\text{exc}} + \pi^-) = 0.261 \Gamma_{\Lambda},$$

(7)

Using the branching ratio value $\text{BR}(\pi^-) = 0.261$ from [7], we obtain the following upper limit for the production of 9He:

$$R < (2.3+1.9)/0.261 \cdot 10^{-6}/K_{\text{stop}} = 1.6 \cdot 10^{-5}/K_{\text{stop}}$$

(9)

at 90% C.L. This improves by over an order of magnitude the previous upper limit set in in an experiment performed at the High Energy Accelerator Research Organization, Tsukuba, Japan (KEK) [17].

| TABLE I. Upper limits on rates R per stopped K^- for production of p-shell neutron-rich hypernuclei in the (K_{stop}, \pi^+) reaction. |
|-----------------|-----------------|-----------------|-----------------|
| $^4\Lambda\text{H}$ [18] | $^3\Lambda\text{He}$ [19] | $^6\Lambda\text{Li}$ [18] | $^4\Lambda\text{C}$ [17] |
| 5.4 \cdot 10^{-5} | 1.6 \cdot 10^{-5} | 2.4 \cdot 10^{-5} | 6.2 \cdot 10^{-5} |

Table I summarizes the lowest upper limits on production rates for neutron-rich hypernuclei in the p-shell from searches done at KEK [17] and during the first data taking of FINUDA [18]; to compare directly to (9), the statistical error in [18] has been added. These upper limits were deduced through the analysis of inclusive spectra of π^+ mesons emitted following the capture of Λ into nuclei and looking for peaks in relevant momentum regions. We note that all of these upper limits do not go below the value $R = 10^{-5}/K_{\text{stop}}$ higher than the $^4\Lambda\text{H}$ production rate deduced from the observation of three $^4\Lambda\text{H}$ candidate events [11]. Clearly, the observation of neutron-rich hypernuclei by studying inclusive spectra
of \(\pi^+ \) mesons was hindered in these experiments by the overwhelming background from reactions leading to the production of a \(\Sigma^+ \) hyperon on one or two correlated protons. The technique of taking in coincidence also a \(\pi^- \) meson from the weak decay of the produced neutron-rich hypernucleus, while applying a narrow selection on the sum of the kinetic energies of the \((\pi^+, \pi^-)\) pair, allowed to distinguish for the first time \(^6 \Lambda H \) and to improve by over one order of magnitude the upper limit on the production of \(^9 \Lambda He \) reported from KEK [17]. We note that the method of enforcing a \(\pi^- \) weak decay coincidence suffers from the theoretical uncertainty associated with deducing the particular two-body weak decay branching ratio \(BR \). However, it was shown [13] that the available relevant theoretical calculations [15, 20, 21] are fully reliable.

There are no detailed theoretical calculations on the production rates for light neutron-rich hypernuclei in \(K^- \) capture at rest. From experiment, the production rate of \(^6 \Lambda H \) [1, 2] is two to three orders of magnitude lower than those for the production of bound states of ‘ordinary’ light hypernuclei in \((K^-_{\text{stop}}, \pi^-) \) reactions [14]. These new measurements by FINUDA provide a new impetus that should stimulate further efforts in this field both experimentally and theoretically.

\[^1 \text{deceased}\]

[1] M. Agnello et al., Phys. Rev. Lett. 108, 042501 (2012).
[2] M. Agnello et al., Nucl. Phys. A 881, 269 (2012).
[3] A.A. Korsheninnikov et al., Phys. Rev. Lett. 87, 092501 (2001).
[4] see http://www.nndc.bnl.gov/ for nuclear data compilation.
[5] R.H. Dalitz and R. Levi Setti, N. Cim. 30, 489 (1963).
[6] L. Majling, Nucl. Phys. A 585, 211c (1995).
[7] D.H. Davis, Nucl. Phys. A 754, 3c (2005).
[8] O. Hashimoto et al., J. Phys. Conf. Ser. 312, 022015 (2011); S.N. Nakamura et al., arXiv:1207.0571v3.
[9] D.J. Millener, Nucl. Phys. A 881, 298 (2012).
[10] M. Agnello et al., Phys. Lett. B 685, 247 (2010).
[11] M. Agnello et al., Phys. Lett. B 698, 219 (2011).
[12] M. Agnello et al., Nucl. Phys. A 775, 35 (2006).
[13] M. Agnello et al., Phys. Lett. B 681, 139 (2009).
[14] H. Tamura et al., Phys. Rev. C 40, R479 (1989).
[15] A. Gal, Nucl. Phys. A 828, 72 (2009); we thank Dr. John Millener for providing the needed intermediate-coupling \(^8 \text{He}_{\Lambda s} \rightarrow ^9 \text{Li} \) spectroscopic factors.
[16] E. Botta, T. Bressani, and G. Garbarino, Eur. Phys. J. A 48, 41 (2012).
[17] K. Kubota et al., Nucl. Phys. A 602, 327 (1996).
[18] M. Agnello et al., Phys. Lett. B 640, 145 (2006).
[19] present work.
[20] T. Motoba, K. Itonaga, and H. Bando, Nucl. Phys. A 489, 683 (1988).
[21] T. Motoba and K. Itonaga, Prog. Theor. Phys. Suppl. 117, 477 (1994).

* Corresponding author: Elena Botta, botta@to.infn.it