Exploration of Potential Roles of m5C-Related Regulators in Colon Adenocarcinoma Prognosis

Yuancheng Huang1, Chaoyuan Huang1, Xiaotao Jiang1, Yanhua Yan1, Kunhai Zhuang2, Fengbin Liu2,3*, Peiwu Li3* and Yi Wen3*

1First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China, 2Department of Gastroenterology, Baiyun Branch of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 3Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Objectives: The purpose of this study was to investigate the role of 13 m5C-related regulators in colon adenocarcinoma (COAD) and determine their prognostic value.

Methods: Gene expression and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) datasets. The expression of m5C-related regulators was analyzed with clinicopathological characteristics and alterations within m5C-related regulators. Subsequently, different subtypes of patients with COAD were identified. Then, the prognostic value of m5C-related regulators in COAD was confirmed via univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. The prognostic value of risk scores was evaluated using the Kaplan-Meier method, receiver operating characteristic (ROC) curve. The correlation between the two m5C-related regulators, risk score, and clinicopathological characteristics were explored. Additionally, Gene Set Enrichment Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) analysis were performed for biological functional analysis. Finally, the expression level of two m5C-related regulators in clinical samples and cell lines was detected by quantitative reverse transcription-polymerase chain reaction and through the Human Protein Atlas database.

Results: m5C-related regulators were found to be differentially expressed in COAD with different clinicopathological features. We observed a high alteration frequency in these genes, which were significantly correlated with their mRNA expression levels. Two clusters with different prognostic features were identified. Based on two independent prognostic m5C-related regulators (NSUN6 and ALYREF), a risk signature with good predictive significance was constructed. Univariate and multivariate Cox regression analyses suggested that the risk score was an independent prognostic factor. Furthermore, this risk signature could serve as a prognostic indicator for overall survival in subgroups of patients with different clinical characteristics. Biological processes and pathways associated with cancer, immune response, and RNA processing were identified.

Conclusion: We revealed the genetic signatures and prognostic values of m5C-related regulators in COAD. Together, this has improved our understanding of m5C RNA
modiﬁcation and provided novel insights to identify predictive biomarkers and develop molecular targeted therapy for COAD.

Keywords: colon adenocarcinoma, epigenetics, RNA modiﬁcation, 5-methylcytosine, gene expression proﬁle, prognostic signature, TCGA

INTRODUCTION

Changes in gene expression are closely associated with the development of disease, and epigenetic processes are heritable changes in gene expression that do not alter the nucleotide sequence (Wu and Morris, 2001). Traditional epigenetic modifications, including chromatin remodeling, DNA methylation, and histone modiﬁcations, are involved in various biological processes related to the occurrence and progression of tumors, including gastrointestinal cancers (Dawson and Kouzarides, 2012; Darwiche, 2020; Grady et al., 2021). With considerable progress in zymology and high-throughput sequencing technology, epitranscriptomics has attracted signiﬁcant attention recently (Angelova et al., 2018; Porcellini et al., 2018; Minervini et al., 2020; Song et al., 2020; Zhao et al., 2020; Schaefer, 2021). Research investigating the physiological and pathological functions of RNA modiﬁcations have identiﬁed multiple dynamic modiﬁcations of RNA, including N6-methyladenosine, 2-O-dimethyladenosine, 5-methylcytosine (m5C), 7-methylguanosine, N1-methyladenosine, and pseudouridylation (Roundtree et al., 2017; Shi et al., 2020). Increasing evidence suggests that RNA modiﬁcations play critical roles in tumorigenesis and the progression of different cancers (Barbieri and Kouzarides, 2020; Begik et al., 2020). m5C RNA modiﬁcation is found in a variety of RNAs, including messenger RNAs, transfer RNAs, ribosomal RNAs. This modiﬁcation introduces a methyl group in the ﬁfth carbon atom of cytosine (Yu-Sheng Chen et al., 2021). Based on published data, m5C RNA modiﬁcation plays a critical role in the translation, transport, and stability of mRNAs, and is also closely associated with the biogenesis and function of other RNA species (Xue et al., 2020; Hussain, 2021). As a dynamic and reversible process, m5C RNA modiﬁcation is primarily regulated by “writers” (adenosine methyltransferases) and “erasers” (demethylases), and achieves different functions by interacting with “readers” (m5C-binding proteins). The “writers” include the NOL1/NOP2/Sun domain RNA methyltransferase family NSUN1-NSUN7 and DNMT2. m5C “erasers” include enzymes in the TET family (TET1, TET2, TET3 and ALKBH1, ALYREF, and YBX1) recognize and bind to methylated RNAs to realize different functions (Nombela et al., 2021; Xie et al., 2020).

Globally, colorectal cancer (CRC) is the third most common cancer and the second most deadly neoplasm (Bray et al., 2018). Colon adenocarcinoma (COAD) is the most common pathological type of CRC, and despite considerable progress in diagnosis and therapeutic strategies for COAD, the prognosis of patients with COAD remains poor due to advanced stage and postsurgical recurrence (White et al., 2017; Miller et al., 2019). Therefore, the identiﬁcation of novel biomarkers for early detection and effective therapeutic targets for treating patients with COAD is critical and urgent.

In this study, we analyzed a TCGA dataset for m5C-related regulators involved in COAD, the correlation between the expression levels of 13 m5C-related regulators and clinicopathological features, as well as potential independent prognostic m5C-related regulators and a risk signature to predict the prognosis of patients with COAD.

MATERIAL AND METHODS

Acquisition of Datasets

The RNA-seq transcriptome data (fragments per kilobase million, FPKM) from 437 samples (Mortazavi et al., 2008), copy number variant (CNV) data from 825 samples, single nucleotide variant (SNV) data from 399 samples, and clinical information from 385 patients with COAD in TCGA database (http://cancergenome.nih.gov/) were downloaded for our study. Patients with complete clinicopathological and survival information were included for further assessment (Table 1).

Selection of m5C-Related Regulators

Based on published data, 14 m5C-related regulators, including NOP2 (NSUN1), NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, DNMT2, TET1, TET2, TET3, ALKBH1, ALYREF, and YBX1 were used in our study. DNMT2 was not found to be expressed in COAD from TCGA datasets. Therefore, the remaining 13 m5C-related regulators were used for further analysis.

Tumor Classiﬁcation and Principal Component Analysis

To explore the function of m5C-related regulators in COAD, a consistent clustering algorithm was used to determine the clustering of samples and estimate the stability of the clustering. Using the “Consensus ClusterPlus” R package (Wilkerson and Hayes, 2010), two different subgroups (cluster I and cluster II) were identiﬁed based on the following classiﬁcation parameters: 1) slow growth rate of the cumulative distribution function value; 2) high correlation in the subgroup; and 3) no small clusters in the clustering data. Furthermore, principal component analysis (PCA) was used to assess gene expression patterns in different subgroups using the “Limma” R package (Ritchie et al., 2015).

Analysis of Clinicopathological Features and Prognosis

The correlation between m5C-related regulators and clinicopathological features was analyzed. Then, to filter the
m5C-related regulators that were highly correlated with overall survival (OS), univariate Cox regression analysis was performed. Next, the Lasso Cox regression algorithm was used to identify m5C-related regulators with powerful prognostic significance. According to the best penalty parameter λ, the selected regulators' coefficients were calculated. The risk score (RS) was estimated using the following formula:

$$RS = \sum_{i=1}^{n} \text{Coef}(i) \times X(i)$$

Where Coef(i) is the coefficient and X(i) represents the expression levels of the selected m5C-related regulators. Using the obtained median risk score as the demarcation value, patients with COAD were classified into two groups: high-risk group and low-risk group. Kaplan-Meier analysis and the receiver operating characteristic (ROC) curves were used to validate the predictive efficiency (Hanley and McNeil, 1982). Additionally, the prognostic value of the RS was verified using univariate and multivariate Cox regression analyses. The hazard ratio (HR) with 95% confidence intervals and log-rank p-value were calculated using the "glmnet" and "survival" R packages (Simon et al., 2011).

Biological Function Analysis

To explore the biological functions associated with m5C RNA modification, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Ontology (GO) analysis and Gene Set Enrichment Analysis (GSEA) were performed. The genes that were differentially expressed between the high-risk group and the low-risk group were functionally annotated using GO analysis and KEGG pathway analysis. Next, GSEA was conducted to determine the signaling pathways related to different clusters. Later, to explore the latent biological function of the m5C-related genes in COAD, GSEA for the m5C-related regulatory genes with powerful prognostic value was performed. The flow chart of bioinformatic analysis was shown in Figure 1.

Cell Culture

The COAD cell lines LS174T and normal colon mucosal epithelial cell line NCM460 were purchased from the American Type Culture Collection (ATCC, Manassas, VA, United States). All cells were cultured in RPMI-1640 medium (Life Technologies, Grand Island, NY, United States) supplemented with 10% fetal bovine serum (Life Technologies) at 37°C in a humidified atmosphere with 5% CO2.

Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from cells with TRIzol reagent (Invitrogen, China) according to manufacturer's instruction. Reverse transcription was carried out according to the manufacturer’s instructions using the PrimeScript RT Reagent Kit (Takara, China). The SYBR PrimeScript RT-PCR Kit (Takara)

Table 1 | Clinicopathological features of patients included in this study.

	Total patients (337)	High-risk group (163)	Low-risk group (168)	p-value			
	Number	Percentage (%)	Number	Percentage (%)	Number	Percentage (%)	
Fustat							
Alive	279	82.8	125	76.7	148	88.1	0.009
Dead	58	17.2	38	23.3	20	11.9	0.178
Age							
≤65	135	40.1	72	44.2	61	36.3	0.714
>65	202	59.9	91	55.8	107	63.7	
gender							
female	156	46.3	78	47.9	76	45.2	
male	181	53.7	85	52.1	92	54.8	
Stage							
I	59	17.5	28	17.2	30	17.9	0.016
II	137	40.7	61	37.4	73	43.5	
III	87	25.8	42	25.8	44	26.2	
IV	54	16.0	32	19.6	21	12.5	
Stage T							
T1	7	2.1	5	4.0	2	1.2	
T2	59	17.5	26	16.0	32	19.0	
T3	235	69.7	106	65.0	124	73.8	
T4	36	10.7	26	16.0	10	6.0	
Stage M							
M0	283	84.0	131	80.4	147	87.5	0.105
M1	54	16.0	32	19.6	21	12.5	
Stage N							
N0	203	60.2	92	56.4	107	63.7	0.202
N1	76	22.6	37	22.7	38	22.6	
N2	58	17.2	34	20.9	23	13.7	
was applied for the analysis of quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Related mRNAs expression levels were calculated using the 2-ΔΔCT method and the related GAPDH mRNA expression was used as an endogenous control. Primers sequences used in our study were as follows: GAPDH forward 5'-GGACCTGACCTGCCGTCT
AG-3′, and reverse 5′-GTAGCCAGGATGCCCTTGA-3′; NSUN6 forward 5′-TTTGCCATCTGCCTTAGT-3′, and reverse 5′-GTGTGTTGTTTTCCCTCC-3′; ALYREF forward 5′-GCAGGCCAAAACAACTTCCC-3′, and reverse 5′-AGTTCTCTGAATATCGGCGTCT-3′.

Validation of the Protein Expression Levels of the m5C-Related Regulators via the Human Protein Atlas

To verify the protein expression levels of NSUN6 and ALYREF in COAD and normal tissues, immunohistochemistry (IHC) data were downloaded from the Human Protein Atlas (HPA, http://www.proteinatlas.org). The HPA online database provides IHC expression data for nearly 20 different cancers (Asplund et al., 2012) and enables the validation of the differential protein expression levels between tumor and normal tissues.

Statistical Analysis

The expression data of m5C-related regulators in tumor tissues and adjacent mucosa of COAD obtained from TCGA were compared using one-way analysis of variance (ANOVA); the clinical characteristics and m5C-related regulators of different groups were compared using the chi-square test; the Kaplan-
Meier method was used to perform a bilateral logarithmic rank test in overall survival analysis; *p*-values < 0.05 were regarded as statistically significant. All statistical analyses were implemented using Rv4.0.3 (https://www.r-project.org/).

RESULTS
RNA-Seq Transcriptome Data of \textit{m}⁵\textit{C}-Related Regulators in COAD
Based on RNA-seq transcriptome data of COAD from TCGA database, the expression of 13 \textit{m}⁵\textit{C}-related regulators between tumor tissues and adjacent mucosa was compared (Figure 2). With the exceptions of TET1 and TET3, the expression levels of the other 11 factors were significantly different in the tumor tissues and the adjacent mucosal tissues. Compared with the adjacent mucosa, the expression of NSUN3 (*p* < 0.001) and TET2 (*p* < 0.001) in the tumor group was significantly downregulated. The expression of ALKBH1 (*p* = 0.036), ALYREF (*p* < 0.001), NOP2 (*p* < 0.001), NSUN2 (*p* < 0.001), NSUN4 (*p* < 0.001), NSUN5 (*p* < 0.001), NSUN6 (*p* < 0.001), NSUN7 (*p* = 0.006), and YBX1 (*p* < 0.001) were significantly upregulated in tumor tissues compared with the adjacent mucosa.

Correlation and Interaction of \textit{m}⁵\textit{C}-Related Regulators in COAD
The correlations between the \textit{m}⁵\textit{C}-related regulators were analyzed using the “corrplot” package in R and their interrelationships were retrieved from the STRING database (https://string-db.org/). The expression levels of the seven “writers” were correlated with each other, except for NSUN2 and NSUN7, NSUN5 and NSUN7, NSUN2 and NSUN3, and NSUN5 and NSUN6. There were also close and complicated relationships between each regulator in the protein-protein interaction (PPI) network. We also found that the expression of TET family genes (TET1, TET2, TET3) were highly related to each other and had little correlation with ALKBH1. However, the TET family was associated with ALKBH1 in the PPI network and had interrelationships with the “writer” genes via ALKBH1. In addition, there was evidence supporting the interaction between the “reader” genes ALYREF and YBX1 in the PPI network. The expression of these genes was also positively associated with each other (Figure 3).

CNVs and SNPs of \textit{m}⁵\textit{C}-Related Regulators in COAD
Regarding CNVs, we found that 10 of the 13 \textit{m}⁵\textit{C}-related regulators were significantly different between the tumor tissue and the adjacent mucosa from 825 samples with CNV data. Furthermore, it was found that CNVs affect the expression of \textit{m}⁵\textit{C}-related regulators. The highest frequency of CNVs occurred in the “writer” gene NSUN5 (24.47%), followed by the “eraser” gene ALKBH1 (19.53%). The “eraser” gene TET3 had the lowest CNV frequency (2.35%) (Table 2). The “writer” genes NOP2, NSUN2, NSUN5, and NSUN7, the “eraser” genes TET2 and ALKBH, and the “reader” gene ALYREF displayed a significant difference in expression due to CNVs (Figure 4).

Regarding SNPs, we found that all of the \textit{m}⁵\textit{C}-related regulators had missense mutations, and missense mutations were the highest frequency mutation in 399 COAD cases with available sequencing data. Among them, the \textit{m}⁵\textit{C} “eraser” gene TET2 had the highest frequency of mutation events (96/399), followed by TET3 and TET1 (both 39/399). In addition, the “writer” genes NSUN2 and NSUN7, the “eraser” gene TET2, and the “reader” gene ALYREF displayed significant differences in expression levels due to SNPs. Next, we evaluated the effect of SNPs on patient prognosis, but no difference was observed due to the relatively few numbers of mutations (Figure 5).

Consensus Clustering of Patients With COAD
Based on the expression levels of 13 \textit{m}⁵\textit{C}-related regulators, consistent clustering analysis of patients with COAD was performed, and they were clustered into two subgroups because there was minimal interference between the two subgroups (Figures 6A–D).

PCA showed that the RNA expression levels in patients with COAD in clusters I and II were specific (Figure 6E). Nevertheless, there were many overlapping areas between each cluster on the whole, indicating that the clusters had something in common. The cluster II had a longer survival time than cluster I when analyzed using the Kaplan-Meier method, but they had no significant different (Figure 6F).

Prognostic Value of \textit{m}⁵\textit{C}-Related Regulators in COAD Prognosis
To evaluate the prognostic value of these 13 \textit{m}⁵\textit{C}-related regulators in COAD, univariate Cox regression analysis was used to identify \textit{m}⁵\textit{C}-related regulators that were highly correlated with the OS in patients with COAD, and two regulators with prognostic significance (*p* < 0.05) were found: NSUN6 and ALYREF. Specifically, ALYREF was considered a protective factor with HR < 1 in patients with COAD, and NSUN6 was considered as a risk factor with HR > 1 (Figure 7A). To further evaluate the prognostic significance of these two \textit{m}⁵\textit{C}-related regulators, LASSO Cox regression analysis was performed and it was revealed that NSUN6 (Coef = 0.300256795278519) and ALYREF (Coef = 0.00796895949684636) could serve as powerful prognostic factors in COAD (Figures 7B–C).

Based on NSUN6 and ALYREF, a risk signature was constructed and the risk score was calculated. Using the median risk score as the demarcation value, patients with COAD ($n = 525$) were classified into two groups, namely the high-risk and low-risk groups. To test the prognostic role of the two gene risk signatures, survival and ROC curve analyses were conducted. Based on the Kaplan-Meier (KM) survival analysis, the low-risk group had significantly longer survival time than the high-risk group (Figure 7D). In particular, compared with the 46.4% 5-year survival rate in the high-risk group, that of the low-
risk group was 78.7%. The area under the curve (AUC) value in the time-dependent ROC curve was 0.754, suggesting good prediction performance of the survival model (Figure 7E).

Correlation Between the Two m⁵C-Related Regulators, Risk Score, and Clinicopathological Characteristics in COAD

We further analyzed the relationship between the two m⁵C-related regulators, risk score, and different clinical variables. KM survival analysis showed a close association of the two m⁵C-related regulators (NSUN6 and ALYREF) with the OS of patients with COAD (Figures 8A,B). In terms of TMN stage, the expression of ALYREF was differentially expressed between T3 stage and T4 stage and between M0 stage and M1 stage (Figure 8C). However, the expression of NSUN6 was not significantly different across groups in the TMN stage (Figure 8D). The expression of the two m⁵C-related regulators and the distribution of clinicopathological characteristics in the high-risk and low-risk groups are displayed as a heatmap (Figure 8E). Evident differences
between the two groups according to stage T (p < 0.05) and fustat (p < 0.01) were observed.

To evaluate whether the risk score could serve as a prognostic indicator for OS in subgroups of patients with different clinical characteristics, we stratified subgroups by age (≤ 65 and > 65), gender (female and male), clinical stage (stage I-II and stage III-IV), stage T (T1-2 and T3-4), stage M (M0 and M1) and stage N (N0 and N1-2). As the result shown in Figures 9A-D, the OS of the low-risk patients based on age (p < 0.001 in age ≤ 65), sex (p < 0.001 in male), and stage T (p < 0.005 in stage T1-2 and T3-4) was significantly higher than those of the high-risk patients.

To further examine whether the risk score was an independent prognostic factor, univariate and multivariate Cox regression analyses were conducted. This revealed that the risk score was significantly associated with OS in univariate analysis, in addition to age at diagnosis, pathological stage, and TNM stage (p < 0.05). However, only the age at diagnosis and risk score were correlated with OS (p < 0.05) in the multivariate Cox regression analysis (Figures 9E,F).

Biological Functional Analysis

As we clustered the patients with COAD into cluster I and cluster II, genes that were significantly upregulated (fold change >1 and p < 0.05) or downregulated (fold change <1 and p < 0.05) between the high-risk group and low-risk group were identified using the “edgeR” package in R. GO and KEGG pathway analysis were used for biological functional analysis.

Concerning GO analysis, the differentially expressed genes were associated with immune-related biological processes, such as “antigen binding” and “immunoglobulin receptor binding,” and pre-mRNA-related biological processes, such as “pre-mRNA 5’-splice site binding” and “pre-mRNA binding.” (Figure 10A). KEGG pathway analysis results were correlated with immune-related pathways, including “complement and coagulation cascades” and “NOD-like receptor signaling pathway,” and RNA-related pathways, including “RNA transport” and “spliceosome.” Moreover, cancer-related pathways were enriched, such as “transcriptional misregulation in cancer” and “MAPK signaling pathway” (Figure 10B).

Next, we used GSEA to predict the functional difference between clusters I and II. The results showed that cluster I had a worse OS and lower 5-year survival rate associated with malignancy-associated pathways, including the ATP-binding cassette transporter (NES = 1.79, normalized p = 0.006) and phosphatidylinositol signaling system (NES = 1.63, normalized p = 0.03) (Figures 10C,D).

Furthermore, as NSUN6 and ALYREF were shown to be important regulators of m5C in our study, GSEA was performed to investigate the potential biological processes associated with NSUN6 and ALYREF in COAD pathogenesis. GSEA suggested that increased expression of NSUN6 and ALYREF is involved in various biological functions in RNA processing, such as spliceosome, RNA polymerase, and RNA degradation. Upregulation of these genes was associated with malignancy-associated pathways, such as the cell cycle (Figures 10E,F).

Validation of the Expression Levels of the m5C-Related Regulators in Cell Lines and Clinical Samples

For validating the expression levels of the two m5C-related prognostic regulators from prognostic signature, we detected the expression levels in the COAD cell lines LS174T and normal colon mucosal epithelial cell line NCM460 by qRT-PCR. Our results showed that NSUN6 and ALYREF were significantly upregulated in LS174T compared with NCM460 (Figures 11A,B). IHC data from the HPA online database also demonstrated that the protein levels of NSUN6 and ALYREF were more highly expressed in cancer tissues than in normal tissues (Figure 11C).

DISCUSSION

RNA modifications have been increasingly demonstrated in tumorigenesis and tumor progression, suggesting that RNA epigenetic regulators may play an important role in COAD. Previous studies have shown that m5A RNA modification not only plays a critical role in the tumorigenesis and progression of CRC, but also has powerful significance in the diagnosis and prognosis of CRC patients (Li et al., 2021). Additionally, a
FIGURE 4 | The landscape of CNV of m^5C-related regulators in COAD. (A,B) Frequency of CNV of 13 m^5C-related regulators in COAD. (B) Percentage of CNV of 13 m^5C-related regulators in COAD. (C) Location of CNV alteration of 13 m^5C-related regulators on chromosomes. (D) NOP2, NSUN2, NSUN5, NSUN7, TET2, ALKBH, and ALYREF displayed a significant difference in expression due to CNVs.
A growing body of evidence shows that m5C-related regulators could be latent predictive biomarkers in a variety of cancer (Huang et al., 2021a; Huang et al., 2021b; Pan et al., 2021). However, the literature on CRC and m5C has largely focused on DNA methylation (Zhu et al., 2018). Little is known about the relationship between m5C-related RNA modifications and CRC, which calls our attention to investigate the aberrant expression of m5C-related regulators in COAD and explore whether m5C-related regulators could serve as ideal biomarkers for COAD prognosis and participate in COAD initiation and progression.

In our study, we showed that the expressions of m5C-related regulators were significantly altered between tumor tissues and adjacent mucosa and had a strong correlation with the tumor progression and prognosis. This indicated that m5C-related regulators play a crucial role in COAD. First, the "writer" genes NSUN1-NSUN7, the "eraser" genes TET2 and ALKBH1, and the "reader" genes ALYREF and YBX1 were significantly

FIGURE 5 | The landscape of SNP of m5C-related regulators in COAD. (A) Waterfall plot of SNP of 13 m5C-related regulators in COAD. (B) NSUN2, NSUN7, TET2, and ALYREF displayed significant differences in expression levels due to SNPs.
FIGURE 6 | Consistent cluster analysis and principal component analysis of COAD. (A) The consistency clustering cumulative distribution function (CDF) when k is between 2 and 10. (B) The relative change of the area under the CDF curve from 2 to 10 of k. (C) At k = 2, the correlation between groups. (D) The distribution of the sample when k is between 2 and 10. (E) Principal component analysis of 2 clusters of total RNA expression profile after consistency analysis. (F) Comparison of Kaplan-Meier overall survival curves for COAD patients in cluster I and II.
ALKBH1	0.448	1.072(0.895–1.284)
NSUN2	0.313	1.023(0.979–1.069)
NSUN7	0.617	0.941(0.742–1.194)
ALYREF	0.034	0.989(0.978–0.999)
NSUN4	0.170	0.814(0.607–1.092)
YBX1	0.184	0.998(0.996–1.001)
TET2	0.705	0.924(0.615–1.390)
NSUN3	0.712	0.934(0.649–1.343)
TET1	0.195	1.770(0.746–4.198)
NSUN6	<0.001	1.396(1.173–1.662)
TET3	0.240	1.100(0.938–1.289)
NOP2	0.077	1.040(0.996–1.087)
NSUN5	0.075	1.049(0.995–1.105)

FIGURE 7 | The process of constructing the signature based on NSUN6 and ALYREF and evaluating its prognostic value. (A) The Hazard ratio (HR), 95% confidence interval (CI) of 13 m5C-related regulators estimated by univariate Cox regression. (B) The point with the smallest cross verification error corresponds to the number of factors included in the Lasso regression model. (C) The lines of different colors represent the trajectory of the correlation coefficient of different factors in the model with the increase of Log Lambda. (D) Kaplan-Meier overall survival curves for patients in high-risk group- and low-risk group divided according to the risk score. (E) ROC analysis and AUC value of the ROC curve suggested the sensitivity and specificity for risk signature.
FIGURE 8 | Survival analysis and clinicopathological characteristics of the two m^5^C-related regulators. (A) Kaplan-Meier survival curve of ALYREF in high- and low-expression groups. (B) Kaplan-Meier survival curve of NSUN6 in high- and low-expression groups. (C) Analysis of the relationship between the expression of ALYREF and TMN stage. (D) Analysis of the relationship between the expression of NSUN6 and TMN stage. (E) The heatmap shows the expression of NSUN6 and ALYREF in high-risk and low-risk. The distribution of clinicopathological characteristics was compared between the high-risk and low-risk groups. *p < 0.05, **p < 0.01.
upregulated or downregulated in tumor tissues, suggesting these genes may be critical in m5C-related occurrence and progression of COAD. To investigate the relationship between CNVs or SNPs of m5C-related regulators and their mRNA expression levels, COAD samples with CNV or SNP data from TCGA were analyzed. Regarding CNVs, the copy number of seven m5C-related regulators increased or was lost, and their mRNA expression was upregulated or downregulated accordingly and was significantly correlated. SNPs in TET2 and ALYREF were highly correlated with their high mRNA expression, while SNPs

FIGURE 9 | Subgroup analysis with risk score in different clinicopathological features and Prognostic risk model verification. (A) age ≤ 65. (B) male. (C) T1-T2. (D) T3-T4. (E) Univariate Cox regression analysis of risk score combined with clinicopathological factors. (F) Multivariate Cox regression analysis of risk score combined with clinicopathological factors.
of NSUN2 and NSUN7 were significantly correlated with their low mRNA expression levels. Additionally, m5C-associated mutations in COAD could be studied in RMVar and RMdisease database, which were recently constructed and focused on genetic variants in RNA modifications (Kunqi Chen et al., 2021; Xin Luo et al., 2021).

FIGURE 10 | Biological functional analysis. (A,B) GO analysis and KEGG pathways analysis of the genes significantly upregulated or downregulated between cluster I and cluster II. (C,D) Cluster I had a worse overall survival and lower 5-year survival rate associated with malignancy-associated pathways, including the ATP-binding cassette transporter and phosphatidylinositol signaling system. (E) GSEA results for NSUN6 in COAD. (F) GSEA results for ALYREF in COAD.
Furthermore, this m5C-related regulators prognostic model could serve as a prognostic indicator for OS in subgroups of patients with different clinical characteristics, especially age ≤65, male, and stage T. The results presented above indicated that NSUN6 and ALYREF can be used as potential biomarkers, and a reliable risk model is critical for providing the necessary evidence for clinical adoption. Apart from our results, there was another study similarly demonstrated that a risk score developed from the three-m5C signature represented an independent prognostic factor for patients with COAD (Geng et al., 2021).

Recently, many studies have indicated that m5C RNA modification is involved in all types of human cancer. NSUN2 is the most studied m5C methyltransferase and participates in various cancers, such as bladder cancer, gallbladder carcinoma, and hepatocellular carcinoma (Chen et al., 2019; Gao et al., 2019; Sun et al., 2020). It was reported that NSUN2 is highly expressed in colon cancers (Okamoto et al., 2012), which was corroborated in our results. NSUN2 mainly exerts an oncogenic role by maintaining the stability of oncocgenic RNA (Chellamuthu and Gray, 2020), but whether NSUN2 plays the same role in COAD requires further research. With respect to the two m5C-related regulators (NSUN6 and ALYREF) identified in our results, there have been some studies on cancer and related mechanisms. The role of NSUN6 in regulating cell proliferation and pancreatic cancer tumor growth was recently confirmed, and NSUN6 performs well in evaluating tumor recurrence and survival among pancreatic cancer patients (Yang et al., 2021). Next, ALYREF was found to be upregulated in hepatocellular carcinoma and oral squamous cell carcinoma, and it may have an effect on tumorigenesis via cell cycle regulation and mitosis (Koveitypour et al., 2019; He et al., 2020).

To provide a comprehensive analysis, GO, KEEG pathway, and GSEA analyses of m5C-related regulators were also conducted. Several biological processes and pathways associated with the occurrence and progression of COAD were enriched, including “MAPK signaling pathway” and “cell cycle” (Koveitypour et al., 2019; Malki et al., 2020). Moreover, previous studies have reported that m5C-related RNA modifications are closely associated with mRNA translation, transport, and stability. Here, we found that the m5C-related regulators were associated with “pre-mRNA 5′-splice site binding” and “spliceosome,” suggesting they play important roles in RNA processing.

Thereafter, based on the expression of the m5C-related regulators, patients with COAD were clustered into two subgroups (cluster I and cluster II), an the cluster II had a longer survival time than cluster I. To further study the effect of m5C-related regulators on the prognosis and clinicopathological characteristics of COAD, we constructed a prognostic risk signature using two identified m5C-related regulators (NSUN6 and ALYREF) and were able to assign patients with COAD into high- and low-risk groups. The correlation between the groups and clinicopathological characteristics was assessed, which revealed that the high-risk group was linked with stage T and fustat. Based on the risk value, the established ROC curve showed a satisfactory prediction performance. Moreover, the risk score can be used as an independent prognostic factor for COAD, suggesting that NSUN6 and ALYREF may be vital m5C-related regulators and significant prognostic factors for patients with COAD.
of COAD and the crosstalk between m^5C RNA modification and DNA methylation in COAD need to be further explored. Secondly, our research mainly focused on bioinformatic analysis, more experimental studies exploring the function of m^5C on the different types of RNA and sites in COAD are in urgent need in future work. The m^5C-Atlas database, a comprehensive database for decoding and annotating the m^5C epitranscriptome, may be useful in the research (Ma et al., 2022). Thirdly, overall survival between cluster I and cluster II had no significant difference, more m^5C-related regulators and more cohort need to be included in future analysis.

CONCLUSION

In this study, we first found that there was a significant correlation between the expression of m^5C-related regulators and clinicopathological features and OS of patients with COAD. This revealed that a prognostic signature obtained using m^5C-related regulators (NSUN6 and ALYREF) had significant value in COAD and could effectively predict the survival of patients with COAD. Additionally, biological processes and pathways associated with m^5C-related RNA modifications were identified, which may facilitate the malignant development of COAD, thus improving our understanding of the role of m^5C-related RNA modifications in the occurrence and progression of COAD. This work also provides important evidence towards the development of predictive biomarkers and molecular targeted therapy for COAD (Bray et al., 2018).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study, which can be found in the Cancer Genome Atlas (TCGA) database and the Human Protein Atlas (HPA) online database.

ETHICS STATEMENT

This study met the publication guidelines stated by TCGA (https://cancergenome.nih.Gov/publications/publicationsguidelines) HPA (https://www.proteinatlas.org) about/publications). All data used in the study were obtained from TCGA and HPA, and ethics approval and informed consent were not required.

FUNDING

This study was supported by The National Natural Science Foundation (No. 81904139, No. 81973819, No. 81904145 and No. 82104602), Collaborative Innovation Team Project of First-Rate Universities and Disciplines and High-level University Discipline of Guangzhou University of Chinese Medicine (No. 2021xk47), The Natural Science Foundation of Guangdong Province (No. 2019A1515011145), Guangdong Medical Science and Technology Research Fund (No. B2021089, No. A2020186), Guangzhou Science and Technology Project (No. 202102020535), Clinical Research Project of Innovation Hospital in the First Affiliated Hospital of Guangzhou University of Chinese Medicine (No. 2019IIIT19) and Innovation Development project of the First Affiliated Hospital of Guangzhou University of Chinese Medicine (No. 2019QN01).

REFERENCES

Angelova, M. T., Dimitrova, D. G., Dinges, N., Lence, T., Worpenberg, L., Carré, C., et al. (2018). The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Front. Bioeng. Biotechnol. 6, 46. doi:10.3389/fbioe.2018.00046

Asplund, A., Edqvist, P.-H. D., Schwenk, J. M., and Pontén, F. (2012). Antibodies for Profiling the Human Proteome- The Human Protein Atlas as a Resource for Cancer Research. Proteomics 12 (13), 2067–2077. doi:10.1002/pmic.201100504

Barbieri, I., and Kouzarides, T. (2020). Role of RNA Modifications in Cancer. Nat. Rev. Cancer 20 (6), 303–322. doi:10.1038/s41568-020-0253-2

Begik, O., Lucas, M. C., Liu, H., Ramirez, J. M., Mattick, J. S., and Novoa, E. M. (2020). Integrative Analyses of the RNA Modification Machinery Reveal Tissue- and Cancer-specific Signatures. Genome Biol. 21 (1), 97. doi:10.1186/s13059-020-02009-2

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J. Clinicians 68 (6), 394–424. doi:10.3322/caac.21492

Chellamuthu, A., and Gray, S. G. (2020). The RNA Methyltransferase NSUN2 and its Potential Roles in Cancer. Cells 9 (8), 1758. doi:10.3390/cells9081758

Chen, X., Li, A., Sun, B.-F., Yang, Y., Han, Y.-N., Yuan, X., et al. (2019). 5-Methylcytosine Promotes Pathogenesis of Bladder Cancer through Stabilizing mRNAs. Nat. Cell Biol. 21 (8), 978–990. doi:10.1038/s41556-019-0361-y

Darwiche, N. (2020). Epigenetic Mechanisms and the Hallmarks of Cancer: An Intimate Affair. Am. J. Cancer Res. 10 (7), 1954–1978.

Dawson, M. A., and Kouzarides, T. (2012). Cancer Epigenetics: From Mechanism to Therapy. Cell 150 (1), 12–27. doi:10.1016/j.cell.2012.06.013

ACKNOWLEDGMENTS

This study benefited from the Cancer Genome Atlas (TCGA) databases. We appreciate the data platform and the authors uploaded their data. We would like to thank Editage (www.editage.cn) for English language editing.
Zhu, Y., Lu, H., Zhang, D., Li, M., Sun, X., Wan, L., et al. (2018). Integrated Analyses of Multi-Omics Reveal Global Patterns of Methylation and Hydroxymethylation and Screen the Tumor Suppressive Roles of HADHB in Colorectal Cancer. *Clin. Epigenet* 10, 30. doi:10.1186/s13148-018-0459-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Huang, Huang, Jiang, Yan, Zhuang, Liu, Li and Wen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.