Highly selective fluorescent chemosensor for detection of Fe$^{3+}$ based on Fe$_3$O$_4$@ZnO

Jingshuai Li1, Qi Wang2, Zhankui Guo3, Hongmin Ma1, Yong Zhang1, Bing Wang1, Du Bin1 & Qin Wei1

The combination of fluorescent nanoparticles and specific molecular probes appears to be a promising strategy for developing fluorescent nanoprobes. In this work, L-cysteine (L-Cys) capped Fe$_3$O$_4$@ZnO core-shell nanoparticles were synthesized for the highly selective detection of Fe$^{3+}$. The proposed nanoprobe shows excellent fluorescent property and high selectivity for Fe$^{3+}$ due to the binding affinity of L-Cys with Fe$^{3+}$. The binding of Fe$^{3+}$ to the nanoprobe induces an apparent decrease of the fluorescence. Thus a highly selective fluorescent chemosensor for Fe$^{3+}$ was proposed based on Fe$_3$O$_4$@ZnO nanoprobe. The magnetism of the nanoprobe enables the facile separation of bound Fe$^{3+}$ from the sample solution with an external magnetic field, which effectively reduces the interference of matrix. The detection limit was 3 nmol L$^{-1}$ with a rapid response time of less than 1 min. The proposed method was applied to detect Fe$^{3+}$ in both serum and wastewater samples with acceptable performance. All above features indicated that the proposed fluorescent probe as sensing platform held great potential in applications of biological and analytical field.

The development of highly sensitive fluorescent probes for the selective detection of heavy metal ions and transition metals has been inspiring the scientific community in the past few years as a result of concern for human health and environmental safety$^{1-3}$. Among them, iron ion is not only one of the heavy metal ions but also one of the most essential trace elements in human body. The maximum level of Fe$^{3+}$ permitted in drinking water is 5.4 μmol L$^{-1}$ by the U.S. Environmental Protection Agency4. And it presents in many enzymes and proteins and acts as cofactor for many cellular metabolism reactions5. Many physiological processes could not miss the participation of iron, such as oxygen transportation, oxygen metabolism, transcriptional regulation and electron transfer6,7. In particular, iron ion in blood can promote the formation of red blood proteins. And the lack of iron can lead to anemia8. However, excess iron contents may also impair biological systems, because its redox-active form catalyzes the generation of highly reactive oxygen species9, which involves in kinds of diseases including Parkinson's syndrome, Alzheimer's disease and cancer$^{10-14}$. Therefore, the assay of iron levels has been an active issue in environmental and biomedical analysis.

By now, many methods have been raised for the detection of Fe$^{3+}$ such as atomic absorption spectroscopy15, colorimetric analysis16, mass spectrometry17, electrochemical18,19 and fluorescence spectroscopic analysis$^{20-26}$. Among these methods, fluorimetric assay is a favorable method due to its ease of operation, high sensitivity and efficiency. Therefore, the design of fluorescent probes for detecting Fe$^{3+}$ has attracted increasing attentions. The successful Fe$^{3+}$ fluorescent probes mainly limited to organic fluorescent molecules$^{20-26}$, quantum dots27,28 and their complexes29,30. However, organic dyes involved in complicated synthesis route and poor photostability. Quantum dots such as CdSe and CdTe are toxic to biological systems31. Therefore, designing appropriate nanoprobes toward synthesis facile, photostable and environmental friendly orientation for detecting Fe$^{3+}$ is still a worthwhile and challenging undertaking.

ZnO nanoparticles are currently intensively studied as photocatalysts, sensors and phosphors. It was reported that ZnO nanoparticles were able to penetrate living cells and were generally nontoxic32. Therefore, ZnO nanoparticles are ideal candidates as replacement for Cd-based fluorescent labels since they are nontoxic, less expensive and chemically stable in air. Magnetite Fe$_3$O$_4$ as commercial nanomaterial has strong magnetism, magnetic

1Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China. 2School of Material Science and Engineering, University of Jinan, Jinan 250022, P.R. China. Correspondence and requests for materials should be addressed to Q.W. (email: sdjndxwq@163.com)
manipulability and good biocompatibility. Also it has widespread applications in magnetic bioseparation, drug delivery and magnetic resonance imaging. In this work, we develop an L-cysteine capped magnetic Fe$_3$O$_4$@ZnO nanosensor (Fe$_3$O$_4$@ZnO@L-Cys) for detection and removal of Fe$^{3+}$ (Fig. 1). The results showed that Fe$_3$O$_4$@ZnO@L-Cys quantificationally detected Fe$^{3+}$ with high sensitivity and selectivity under a pH range (pH 4.98–7.39) and could remove Fe$^{3+}$ from the water sample. Moreover, the fabricated magnetic fluorescent probe could be removed by external magnetic field, and the potential secondary pollution was avoided.

** Experimental

Regents and apparatus. Fe$_3$O$_4$ nanoparticles were purchased from Aladdin Chemical Co., Ltd. Zinc acetate (Zn(Ac)$_2$) was purchased from Tianjin Hongyan Chemical Reagent Factory. Triethanolamine was purchased from Guangcheng Chemical Reagent Co., Ltd. (Tianjin). L-Cys was purchased from Yunxiang Chemical Industry Co., Ltd. Absolute ethyl alcohol was purchased from Fuyu Chemical Reagent Factory. All other reagents used in this study were analytical grade, and ultrapure water was used in the preparation of all solutions.

Transmission electron microscope (TEM) images were obtained from a Tecnai G220 TEM (FEI Company, USA). Energy Dispersive X-Ray Spectroscopy (EDS) was recorded by JEOL JSM-6700 F microscope (Japan). FT-IR spectra were collected using a FT-IR-410 infrared spectrometer (JASCO, Japan). Ultraviolet absorption spectra were obtained from a Lambda35 UV-Vis spectrophotometer (PerkinElmer, America). Fluorescence spectra were obtained from a LS-55 fluorescence spectrophotometer (PerkinElmer, America).

Preparation of Fe$_3$O$_4$@ZnO@L-Cys. The Fe$_3$O$_4$@ZnO was prepared according to the published procedure. 60 mg of L-Cys was dispersed into 20 mL of ethanol solution by sonication for 20 min in 100 mL conical flask. Then, 10 mg of Fe$_3$O$_4$@ZnO was added into the conical flask. The flask was wrapped with aluminum foil and vigorous stirring for 6 h. The L-Cys was linked on the surface of Fe$_3$O$_4$@ZnO by thiol groups of L-Cys. The product was magnetically collected and washed with ultrapure water and ethanol for four times, respectively. The sample of Fe$_3$O$_4$@ZnO@L-Cys was re-dispersed into 50 mL ethanol solution (Fe$_3$O$_4$@ZnO@L-Cys stocking solution).

Effect of pH values and ionic strength. The effect of pH values was studied as follows: 300 μL of Fe$_3$O$_4$@ZnO@L-Cys stocking solution was suspended in 2.7 mL of phosphate buffered saline (PBS) (20 mmol L$^{-1}$) aqueous solution in colorimetric cylinder at different pH values (4.98, 5.83, 6.30, 7.02, 7.39, 7.95 and 8.35, respectively). The suspension was laid aside for 5 min and the emission spectra of the suspension were measured. Then, 200 μL of Fe$^{3+}$ (2 mmol L$^{-1}$) was added respectively. The suspension was laid aside for another 5 min and the emission spectra of the suspension were measured.

To test the influence of ionic strength on the fluorescence of Fe$_3$O$_4$@ZnO@L-Cys before and after the addition of Fe$^{3+}$, a series of Fe$_3$O$_4$@ZnO@L-Cys solutions containing different concentrations of NaCl (0.33, 0.99, 1.98, 2.97, 3.96 and 4.95 mmol L$^{-1}$) was prepared and the emission spectra was then measured.

Time course of the Fe$_3$O$_4$@ZnO@L-Cys toward Fe$^{3+}$. The response time of Fe$_3$O$_4$@ZnO@L-Cys toward Fe$^{3+}$ was carried out as follows: 300 μL of Fe$_3$O$_4$@ZnO@L-Cys stocking solution was suspended in 2.7 mL...
of PBS (20 mmol L⁻¹, pH 7.02) aqueous solution. Then the fluorescence intensity was tested. Subsequently, 300 μL of Fe³⁺ was added into the above solution. The fluorescence intensity was tested again every other 30 s for 10 min.

Determination of the standard solution of Fe³⁺. The quantification of Fe³⁺ adsorbed by Fe₃O₄@ZnO@L-Cys was carried out as follows: 300 μL of Fe₃O₄@ZnO@L-Cys stock solution was added in 2.7 mL of PBS (20 mmol L⁻¹, pH 7.02) aqueous solution. Then the emission spectra of the Fe₃O₄@ZnO@L-Cys suspension with different concentrations of Fe³⁺ (0, 0.01, 0.1, 5, 50, 100, 133, 200, 300, 400 μmol L⁻¹) were measured respectively.

Selectivity and stability of Fe₃O₄@ZnO@L-Cys. In addition, the selectivity of Fe₃O₄@ZnO@L-Cys toward Fe³⁺ over other metal ions was investigated. The selective and sensitive adsorption experiments were also conducted at PBS (20 mmol L⁻¹, pH 7.02) with Fe³⁺ (50 μmol L⁻¹) and other metal ions (Pb²⁺, Cr³⁺, Cd²⁺, Mg²⁺, Mn²⁺, Cu²⁺, Co²⁺ and Al³⁺, 200 μmol L⁻¹) in the solutions. The emission spectra of the Fe₃O₄@ZnO@L-Cys suspension were measured respectively.

To evaluate the stability of Fe₃O₄@ZnO@L-Cys, the emission spectra was measured every other 10 d.

Removal of Fe³⁺ from the standard solution. The removal ability of Fe₃O₄@ZnO@L-Cys from standard solution was investigated as follows: 600 μL of Fe³⁺ standard solution was added into 2.4 mL of PBS (20 mmol L⁻¹, pH 7.02) aqueous solution. Then, 300 μL of Fe₃O₄@ZnO@L-Cys stock solution was added into above solution and kept stewing for 30 min. Then, a magnet was used to separate the Fe³⁺-bound nanoprobes from aqueous solution. The assay method of the maximum adsorption amount of Fe₃O₄@ZnO@L-Cys toward Fe³⁺ was shown in supplementary materials.

Application of Fe₃O₄@ZnO@L-Cys in real samples. Fresh human blood sample was obtained from the local hospital and pretreated according to the early published procedures. In addition, the wastewater sample was collected from the local lake. The amount of Fe³⁺ was estimated using a standard addition method. For recovery studies, known concentrations of Fe³⁺ solution were added to the samples and the total iron concentrations were then determined at the same condition.

Results and discussion

Characterization of Fe₃O₄@ZnO@L-Cys. The morphology of Fe₃O₄ and Fe₃O₄@ZnO was observed by TEM. Fig. 2B showed the morphology of Fe₃O₄@ZnO. Compared with the bare Fe₃O₄ (Fig. 2A), it can be seen that ZnO was coated on the surface of Fe₃O₄ as a thin layer or single nanoparticle. Signal peaks for Fe, O and Zn were observed from the EDS spectrum (Fig. 2C) of Fe₃O₄@ZnO, indicating the successful synthesis of Fe₃O₄@ZnO. The FT-IR spectra of Fe₃O₄@ZnO@L-Cys were examined and shown in Fig. 2D. As shown, the peak at 1550–1650 cm⁻¹ was corresponding to the C=O bending band. The bands located in the range of 600–800 cm⁻¹ can be assigned to the N-H stretching vibration. The absorption band for the N-H was at 2900–3420 cm⁻¹. The peak of 2550–2650 cm⁻¹ which was related to the S=H for L-Cys disappeared, indicating that the sulfur atom in mercapto group of L-Cys is coordinated with Zn²⁺ ions on the surface of Fe₃O₄@ZnO.

The interaction between Fe³⁺ and Fe₃O₄@ZnO@L-Cys. The absorption spectra of Fe₃O₄@ZnO in the presence of varying Fe³⁺ concentrations were investigated. As shown in Fig. S1, the main absorption band at approximately 380 nm of the Fe₃O₄@ZnO had a minor enhancement in the presence of 100 μmol L⁻¹ Fe³⁺ without an obvious change of the peak shape. The slight changes in absorption spectra suggested that the quencher-Fe³⁺ did not affect the structure of the nanoparticles. The absorption band of Fe₃O₄@ZnO is usually very sensitive to the presence of adsorbed substances. However, the presence of Fe³⁺ only generated slight changes in absorption spectra of the Fe₃O₄@ZnO@L-Cys. Thus, we may rule out the possibility of direct binding of Fe³⁺ to the Fe₃O₄@ZnO from the absorption spectra point of view. It could be clearly seen that the fluorescence intensity of the Fe₃O₄@ZnO@L-Cys was quenched dramatically with increase of Fe³⁺. So we speculated the added Fe³⁺ should interact with the L-Cys. Fe³⁺ ion is a well-known efficient fluorescence quencher due to its paramagnetic properties via electron or energy transfer. And L-cysteine, a common amino acid, possesses both amino and carboxyl function groups. It could be used to recognize the Fe³⁺ because the Fe³⁺ was known to be preferentially binding with nitrogen atom of imino group and oxygen atom of carbonyl group. Thus we inferred the nitro-group atom of imino group and oxygen atom of carbonyl group in the L-Cys molecule might donor electrons to the Fe³⁺, as described in Fig. 1. In the same time, other interaction sites of six-coordinated Fe³⁺ may be occupied by the other Fe₃O₄@ZnO@L-Cys. Thus the coordination interaction occurred and induced intra-particles cross links which resulted in the fluorescence quenching.

Effect of pH values and ionic strength. Usually, the pH values of probes’ solution have tremendous influence on the detection of target analytes. So, the Fe³⁺-sensing ability of Fe₃O₄@ZnO@L-Cys at different pH was also investigated. The result showed that Fe₃O₄@ZnO@L-Cys was stable within a pH range from 4.98 to 7.39, and its response ability toward Fe³⁺ was stable within a pH range from 4.98 to 7.39 (Fig. 3a). Therefore, we choose the neutral aqueous solution (pH 7.02) as the analytical condition for the detection and removal of Fe³⁺.

The ionic strength was also a parameter for the detection of target analytes. The effect of ionic strength was conducted at PBS (20 mmol L⁻¹, pH 7.02) aqueous solution. Then the fluorescence intensity was tested. Subsequently, 300 μL of Fe₃O₄@ZnO@L-Cys stock solution was added into 2.7 mL of PBS (20 mmol L⁻¹, pH 7.02) aqueous solution. Then the emission spectra of the Fe₃O₄@ZnO@L-Cys suspension were measured respectively.

Time course of the Fe₃O₄@ZnO@L-Cys toward Fe³⁺. Fig. 3c presents the response time of Fe₃O₄@ZnO@L-Cys toward Fe³⁺. As can be seen, the fluorescence intensity decreased rapidly within 1 min. At first the
fluorescence intensity decreased minimum and then achieved a platform. Therefore, the fluorescent probe could realize the rapid analysis of Fe$^{3+}$ in the samples.

Determination of the standard solution of Fe$^{3+}$. Quantitative detection of Fe$^{3+}$ was carried out under PBS (20 mmol L$^{-1}$, pH 7.02) aqueous solution. As shown in Fig. 4a, with the increasing concentration of Fe$^{3+}$ (0, 0.01, 0.1, 5, 100, 133, 200, 300, 400 μmol L$^{-1}$), fluorescence intensity of Fe$_3$O$_4$@ZnO@L-Cys was decreased gradually and when the concentration of Fe$^{3+}$ was 400 μmol L$^{-1}$, the fluorescence of Fe$_3$O$_4$@ZnO@L-Cys was almost quenched. Furthermore, there was a linear relation between the relative fluorescence intensity at 337 nm and the concentration of Fe$^{3+}$ varying from 0.01 to 133 μmol L$^{-1}$ with a detection limit of 3 nmol L$^{-1}$ (Fig. 4b).

Compared with other reports (Table S1), the method we proposed can realize the real-time analysis of trace amount of Fe$^{3+}$ with sensitivity and celerity. This may be attributed to the amount of amino and carboxyl groups on the surface of Fe$_3$O$_4$@ZnO.

Selectivity and stability. High selectivity is a matter of necessity for an excellent sensor. Therefore, the selectivity of Fe$_3$O$_4$@ZnO@L-Cys for Fe$^{3+}$ (200 μmol L$^{-1}$) was investigated by screening its response to relevant analytes under the same condition. The results showed that other metal ions could enhance the fluorescence intensity of Fe$_3$O$_4$@ZnO@L-Cys, and the Fe$^{3+}$ could decrease the fluorescence intensity of Fe$_3$O$_4$@ZnO@L-Cys (Fig. 5a). To further demonstrate the ability to recognize Fe$^{3+}$ in the presence of other competitive metal ions (Al$^{3+}$, Pb$^{2+}$, Cr$^{3+}$, Cd$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Cu$^{2+}$ and Co$^{2+}$), the anti-interferential capability of the nanoparticle was also studied. When one equivalent of Fe$^{3+}$ was added into the solution of the nanoparticle in the presence of four equivalents of other metal ions, higher concentration of the other metal ions did not affect the selectivity of Fe$_3$O$_4$@ZnO@L-Cys toward Fe$^{3+}$ (Fig. 5b), except Cu$^{2+}$ ion. This was because L-Cys molecule contained amino, carboxylic and thiol groups and many researches reported that the Cu$^{2+}$ could bind with L-Cys.41,45,46 Therefore, the Cu$^{2+}$ showed an influence on the detection of Fe$^{3+}$.

The stability of Fe$_3$O$_4$@ZnO@L-Cys was also examined. The fluorescence intensity of Fe$_3$O$_4$@ZnO@L-Cys at 337 nm was tested. After 20 d, the fluorescence intensity decreased to about 98% of its initial value, indicating the stability of Fe$_3$O$_4$@ZnO@L-Cys.
Removal of Fe$^{3+}$ from the standard solution. To investigate the removal ability of Fe$_3$O$_4$@ZnO@L-Cys, Fe$^{3+}$ standard solution (3 mL, 400 μmol L$^{-1}$) was chosen as testing solution. As indicated by Fig. S2A, the solution presented light yellow before the Fe$_3$O$_4$-based fluorescent nanoparticle was added into the solution. Then, 300 μL Fe$_3$O$_4$@ZnO@L-Cys stocking solution was added. A magnet was used to separate the Fe$^{3+}$-bound nanosensors from aqueous solution after half an hour, the solution became clear and colorless (Fig. S2B), which indicated Fe$_3$O$_4$@ZnO@L-Cys could be used for the extraction of Fe$^{3+}$ from solution. Hence, the maximum adsorption amount of Fe$_3$O$_4$@ZnO@L-Cys toward Fe$^{3+}$ was determined. And the result obtained by calculation is 192.64 mg/g, which can be seen clearly in Fig. S4.
In summary, a really facile detection method based on fluorescent probe Fe3O4@ZnO@L-Cys has been developed, which allowed the highly sensitive and selective determination of Fe3+. It is the first time to apply Fe3O4@ZnO based sensing platform for the analysis of iron contents. And the magnetic nanoparticle Fe3O4@ZnO could be prepared easily and environmentally friendly. The fluorescence intensity of fluorescent probe Fe3O4@ZnO@L-Cys was quenched significantly in the presence of Fe3+ within 1 min. Other common metal ions at four times concentrations of Fe3+ did not cause interference. Furthermore, the proposed fluorescent probe could be applied to detect iron contents in real samples and extract the Fe3+ from the solution which containing high concentration of Fe3+ with the aid of external magnetic field.

Determination of iron contents in real samples. The serum and the wastewater sample were determined and the results were shown in Table S2. The determined iron contents were at reasonable range in accordance to the literature values detected with other approaches, such as the methods of fluorescent gold nanoclusters, atomic absorption spectrometry and inductively coupled plasma mass spectrometry. The recoveries of the known amount Fe3+ in serum samples were 92.6–108.4%, while in wastewater samples were 89.6–113.0%. The results demonstrated reliability of Fe3O4@ZnO@L-Cys for detecting iron contents in real samples.

Conclusion

In summary, a really facile detection method based on fluorescent probe Fe3O4@ZnO@L-Cys has been developed, which allowed the highly sensitive and selective determination of Fe3+. It is the first time to apply Fe3O4@ZnO based sensing platform for the analysis of iron contents. And the magnetic nanoparticle Fe3O4@ZnO could be prepared easily and environmentally friendly. The fluorescence intensity of fluorescent probe Fe3O4@ZnO@L-Cys was quenched significantly in the presence of Fe3+ within 1 min. Other common metal ions at four times concentrations of Fe3+ did not cause interference. Furthermore, the proposed fluorescent probe could be applied to detect iron contents in real samples and extract the Fe3+ from the solution which containing high concentration of Fe3+ with the aid of external magnetic field.

References

1. Chan, J., Dodani, S. C. & Chang, C. J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. *Nature Chem.* 4, 973–984 (2012).
2. Dong, Y. et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. *Anal. Chem.* 84, 6220–6224 (2012).
3. Hosseini, M. et al. Fluorescence “turn-on” chemosensor for the selective detection of zinc ion based on Schiff-base derivative. *Spectrochim. Acta. A.* 75, 978–982 (2010).
4. Quang, D. T. & Kim, J. S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. *Chem. Rev.* 110, 6280–6301 (2010).
5. Song, C. et al. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in aqueous media. *Talanta.* 81, 643–649 (2010).
6. Ja-an Annie, H., Heng-Chia, C. & Wen-Ta, S. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. *Anal. Chem.* 84, 3246–3253 (2012).
7. Wang, J. & Pantopoulos, K. Regulation of cellular iron metabolism. *Biochem. J.* 434, 365–381 (2011).
8. Bothwell, T. H., Chariton, R., Cook, J. & Finch, C. A. Iron Metabolism in Man (Blackwell Scientific Publications, Oxford, 1979).
9. Lohani, C. R. & Lee, K.-H. The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors. *Sensor. Actuat. B-Chem.* 143, 649–654 (2010).
10. Allen, L. H. Iron supplements: scientific issues concerning efficacy and implications for research and programs. *J. Nutr.* 132, 813–819 (2002).
11. Annie Ho, J.-a., Chang, H.-C. & Su, W.-T. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. *Anal. Chem.* 84, 3246–3253 (2012).
12. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. *Nat. Rev. Neurosci.* 5, 863–873 (2004).
13. Altamura, S. & Muckenthaler, M. U. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. *J. Alzheimers. Dis.* 16, 879–895 (2009).
14. Wang, R., Yu, F., Liu, P. & Chen, L. A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells. *Chem. Commun.* 48, 5310–5312 (2012).
15. Gaedti, M., Mortazavi, K., Montazerzohori, M., Shokrollahi, A. & Soyak, M. Flame atomic absorption spectrometry (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761. *Mat. Sci. Eng. C-Mater.* 33, 2338–2344 (2013).
16. Wilhelm, T. Biocompatible macro-initiators controlling radical retention in microfluidic on-chip photo-polymerization of water-in-oil emulsions. *Chem. Commun.* 50, 112–114 (2014).
17. Spolaor, A. et al. Determination of Fe3+ and Fe4+ species by FIA-CRC-ICP-MS in Antarctic ice samples. *J. Anal. Atom Spectrom.* 27, 310–317 (2012).
18. Bobrowski, A., Nowak, K. & Zarębski, J. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(III)-TEA-BrO3− catalytic system. *Anal. Bioanal. Chem.* 382, 1691–1697 (2005).
19. Sil, A., Ijeri, V. S. & Srivastava, A. K. Coated-wire iron (III) ion-selective electrode based on iron complex of 1, 4, 8, 11-tetraazacyclotetradecane. *Sensor. Actuat. B-Chem.* 106, 648–653 (2005).
Author Contributions
J.L. and Q.W. conceived and designed the experiments. J.L., Z.G. and B.W. performed the experiments, analyzed the data and wrote the first draft of the manuscript. H.M., Q.W., Y.Z. and B.D. contributed substantially to revisions.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, J. et al. Highly selective fluorescent chemosensor for detection of Fe^{3+} based on Fe_{3}O_{4}@ZnO. Sci. Rep. 6, 23558; doi: 10.1038/srep23558 (2016).
