Ethnobotanical, Phytochemical and Pharmacological Potential of Cycas revoluta Thunb - A review

G.S. Deora, Monika K. Shekhawat*, Sarswati

ABSTRACT
Cycas revoluta Thunb. or sago palm is an important species of cycads, endemically found in Japan, especially in southern Japan throughout the Ryukyu Island. The species is of massive ethnobotanical significance and used at large by the poor people and population of hilly areas in famine condition. It is mainly valued for its starch contains and used as fiber to construct cloth and ropes. It shows several pharmacological activities since different parts of this plant contain several chemicals like glycodies, amino acids, flavonoids, fatty acids and lectins. The aim of the present review is to compile all the informations available related to taxonomy, ethnobotany, chemical constituents and their pharmacological activities to explore the importance of C. revoluta.

Key words: Ethnobotany, Phytochemistry, Pharmacology, Cycas revoluta, Endemic species.

INTRODUCTION
Cycas revoluta Thunb. is a gymnosperm belonging to the family Cycadaceae. Sago Cycas, Sago Palm. Sotetsu Nut, False Sago, Sago Palm of Japan and king sago palm are some common name of this species. Cycads have long been known to cause toxicity. Sago starch requires appropriate processing to eliminate its toxin before use otherwise, it can lead liver damage, vomiting and even death. In geological time scale, Mesozoic era was the golden period of this plant group. Many rare and endangered species are present in Cycadaceae family. It is endemic to Japan but originally came from Southeast Asia. At present it is bounded to warm climate that previously found worldwide. It is a xerophytic plant. It is bounded to warm climate that previously found worldwide. It is a xerophytic plant. It is bounded to warm climate that previously found worldwide. It is a xerophytic plant.

TAXONOMIC DESCRIPTION
Cycas revulata is a palm-liked evergreen, slow-growing, medium sized, perennial, branched with multiple heads, woody, 0.5-2 m tall and 35–95 cm wide trunked dioecious tree which has a lifespan of more than 100 years. Stem of young age tree is tuberous while old tree has thick columnar and rough stem. Glossy green, thick, many, populous, large pinnately compound and 0.5 to 1.5m long leaves are found in it that have more than 100 linear leaflets with downward rolled margins and sunken midrib. Veins are absent in midrib. Male rachis is curled in young leaves. It bears both scal y and foliage leaves which are arranged in alternative manner. Scaly leaves are persistent and brown in colour and foliage leaves are pinnately compound and large with 60 cm length. Scaly leaves existing in more quantity than foliage leaves and play a role in the protection. Leaves have quadrangular and thickened petiole. Leaves are produced by the plant throughout the year and last for many years. The flowers of C. revoluta are dioecious it means that both female and male flowers are on different plants and an individual plant has either female flower or male flower. Flowering begins in May and ends in July. Male cones are characterized by sporophylls, narrowly ovoid to cylindrical, hairy, brown in color and a short up curved point with narrowly wedge shaped whereas loose, open, hairy, brown, densely brown hairs on sporophylls, apical lobe ovate, deeply laciniate margin with 12-18 tapered lobes characters are present in female cone. Cycas revoluta has...
anemophily and entomophily both type of pollination. A red coated approximately 3cm wide and 4 cm long and seeds are produced by C. revoluta. Normally seeds of cycads are heavy in weight that’s why they sink in water. Seeds of C. revoluta show very low percentage of germination.

SCIENTIFIC CLASSIFICATION

Kingdom- Plantae
Division- Cycadophyta
Class- Cycadophyta
Order- Cycadales
Family- Cycadaceae
Genus- Cycas
Species- revoluta

ETHNOBOTANICAL POTENTIAL OF CYCAS REVOLUTA

C. revoluta is very important ethnobotanical plant for the local people of hilly areas because it is used by them as medicinal and non medicinal purposes. It contains starch in a very good quantity so it is used as a food by different ways such as sago, flour, bread, cake, vegetables etc. Its different plant parts are also used to household needs and to treat many diseases. Household needs include funeral wreaths, decoration and the making of huts, ropes, cloths, brooms, baskets from plant parts (Table 1).

PHYTOCHEMICAL CONSTITUENTS OF CYCAS REVOLUTA

Many types of phytoconstituents have been extracted and isolated from different solvents of various plant parts of C. revoluta. The potent phytochemicals are lectins, flavonoids, lipids, chitinase, estragole, glycoside, nonprotein amino acid and essential oil. NaCl/Pi, chloroform, ethyl acetate, methanol, diethyl ether, petroleum ether, and ethanol are some solvents which have been used for extraction (Table 2).

PHARMACOLOGICAL ACTIVITIES OF CYCAS REVOLUTA

Researchers have been reported many kinds of pharmacological activities in C. revoluta like antiviral, astringent diuretic, antioxidant, antidiabetic, antimicrobial, antibacterial, antileishmanial activity, antifungal, cytotoxic, anticancer, antirheumatic. The detailed pharmacological activities are tabulated in Table 3.

Plant part used	Use category	Processing method	Form of use	Purpose of use	Reference
Stem	Food	Cut the stem, Chopped the pith and cortical cells and grind it. Then processed to remove toxins before use. After proper washing of extract with water	Sago Grains	Food source (starch)	4
			extract with water		4
			Drink	Nutrition (A large amount of starch), valuable famine food	4
				Formation of wine	4
	Medicine	Take the pith of stem then wrapped in the animal skin and inter in the ground	Partially fermented stem	Nutrition (Bread)	4
	Household	Mixed coconut oil in Crushed Seeds or megasporophylland bark	Paste	Ointment for wound and sores	4
			Fiber	To prepare cloth and rope	4
				Nutrition	4
	Food	Tender leaves are boiled and decocation is prepared	Drink (tender leaves)	Treatment of flatulence and vomiting	17
	Medicine		Tincture	Estrogen dependent carcinoma	13
			nursery stock	Hepatoma and cancer	18
	Household	Whole leaves	Decoration in festivals and marriages	4	
		Strong and leathery leaves	To prepare basket and brooms	4	
		Strong and leathery leaves	To thatch huts	4	
		Fiber	To prepare twines, rope and cloths	4	
		Manure	For growing mushrooms	1	
	Root	Burying the roots by a house	After proper washing of extract with water	Nutrition	4
				Protect from lightning	4

Table 1: Ethnobotanical importance of Cycas revoluta.
Table 2: Phytochemical constituents of Cycas revoluta.

S.NO.	Plant parts	Extract with	Chemical constituent	References	
1	Leaves	NaCl/Pi Hydro-alcoholic and chloroformic extracts	2,3-dihydro-4′-O-methyl-amentoflavone	22, 23	
2	Leaf rachises	homogenized with 1000 mL of deionized water Methanolic	Class V chitinase(CrChi-A)	27	
3	Leaflet	Ethyl acetate extract	Dihydroamentoflavone (glycosidesprunin and vitexin-200-thamnoside)	29	
4	Female cones	Diethyl ether Chloroform + Methanol	Estragole (4-allylanisole)	31	
5	Male cones	Diethyl ether Chloroform + Methanol	Estragole (4-allylanisole)	31	
6	Microsporangia	Chloroform Chloroform + Methanol	Lipid (fatty acid composition)	24, 24	
7	Pollen	Chloroform Cold H.Ø.	Lipid (Δ5 polymethylene-interrupted FA, Δ5, 11-octadecadienoic acid)	32	
8	kernels of the seeds	Ice water + sulphuric acid Acetate buffer Phosphate buffered	Azoxy glycoside (Neocycasin)	34	
9	Seeds	Nonprotein amino acid (cycasthioamide and cycasindene)	β-D-Glucosidase	35	
10	Essential oil	petroleum ether	Linolenic acid (18.47%), Oleic acid (12.96%), Linoleic acids (10.9%), Palmitic acid (8.82%) and Octadecanoic acid (7.85%)	39	
S.NO.	Plant part	Activity/action	Preparation	Against	References
-------	----------------	--------------------------	--------------------------------------	---	------------
1	Coralloid root	Antiviral	Crude extract in distilled water	Tobacco mosaic virus, tomato ring spot virus, potato virus X, tomato aspermy virus, potato virus Y	40
2	Terminal shoots	Astringent diuretic	1. Hydro-alcoholic (More potent)	S. aureus, B. subtilis, P. aeruginosa	2
		Antioxidant	2. Methanolic		2
			Hydrous		25
		Antidiabetic	Methanol, ethanol and ethyl acetate		42
			Methanol and ethanol		43
3	Leaves	Antimicrobial	1. Hydro-alcoholic (More potent)	E. coli, Klebsiella pneumoniae and Saccharomyces cerevisiae	41
			2. Methanolic	Lactobacillus plantarum, Micrococcus luteus and Salmonella abony,	23
			Hydro-alcoholic and chloroformic	E. coli, S. aureus, P. aeruginosa, S. typhimurium, K. pneumonia and B. subtilis	42
			extracts		44
			Methanol, ethanol and ethyl acetate		
		Moderate antibacterial	Chloroform	Staphylococcus aureus	28
		Antioxidant	Methanol and its Methylene chloride		30
			and ethyl acetate fractions		
			Methanol and its fractions 1. Ethyl		
			acetate (highest inhibitory activity)		
			2. n-butanol		
			3. Methylene chloride		
		Antimicrobial	Methanol and its fraction 1. n-butanol (most active)		
			2. pt ether		
			3. Methylene chloride		
		Antileishmanial activity	Methanolic	L. donavani, Candida albicans, Candida glabrata, Candida krusei,	29
				Cryptococcus neoformans Aspergillus fumigatus	
5	Leaf rachis	Antifungal	Methanolic		29
				Trichoderma viride	27
6	Female Cone	Antimicrobial	Chloroformic		23
				E. coli, Lactobacillus plantarum, Micrococcus luteus, Salmonellaabony,	
				Candida albicans, Aspergillus niger and Methicillin resistant strains	
				of Staphylococcus aureus (MRSA).	
7	Male Cone	Anticancer	Methanolic	Colon cancer	46
8	ovule	Antibacterial	Methanolic extract	E. coli, Pseudomonas, Staphylococcus aureus, Bacillus cereus	47
					2
		Antirheumatic, Expectorant, and tonic	phosphate buffered saline	S. epidermidis, Bacillus subtilis, Pseudomonas aeruginosa, and	36
				Escherichia coli	
9	Seeds	Antimicrobial	phosphate-buffered saline		48
				Erwinia carotovora subsp. carotovora, Agrobacterium rhizogenes, Agrobacterium radiobacter, Clavibacterium michiganensis subsp. michiganensis, Curtobacterium flaccum faciens pv. oortii, Geotrichum candidum	
		Anticancer	phosphate-buffered saline		36
				human epidermoid cancer (Hep2) and colon carcinoma cells (HCT15)	
CONCLUSION
This review comprises ethnobotanical, phytochemical and pharmacological potential of *Cycas revoluta*. The different plant parts are used as food, medicine, liquor, fiber and other household purposes and also used to cure many diseases like piles, painful urination, flatulence and vomiting by local population of hilly areas. Present review concluded that large number of chemicals like lipids, flavonoids, cycasin, lectin, peptides, biflavonoid are present in this plant hence it shows several pharmacological activities such as antioxidant, anticancer, antileishmanian, antifungal, antibacterial and antimicrobial etc.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

REFERENCES
1. Lim TK. *Cycas revoluta*. Edible Medicinal and Non-Medicinal Plants. 2011;1:732-8.
2. Duke JA, Ayensu ES. Medicinal plants of China. 1st ed. Algonac, Michigan: Reference Publications; 1985.
3. Whiting MG. Toxicity of Cycads. Econ Bot. 1963;17:270-302.
4. Lal JJ. Sago palm. Elsevier Science Limited; 2003, p.9035-9.
5. Jones DL. Cycads of the world. Reed Books, Chats wood;1993.
6. Kiong ALP, Thing YS, Gansau JA, Hussein S. Induction and multiplication of *Cycas circinalis* cells through sulfuric acid and hot water. Philippine Journal of Science. 2001;129(4):448-54.
7. Yamazaki T. *Cycadaceae*. In: Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (ed.) *Japanese Flora*. Kodansha, Tokyo;1995, 1:263.
8. Kyoda S, Setoguchi H. Phylogeny of *Cycas revoluta* on the Ryukyu Islands: very low genetic diversity and geographical and ecological differentiation. Plant Syst Evol. 2010;288:177-89.
9. Thieret JW. Economic botany of the Cycads. *Econ Bot.* 1958;12:3–41.
10. Thiru JV. Economic botany of the Cycads. *Econ Bot.* 1958;12:3–41.
11. Kowalska MT , Itzhak Y , Puett D. Presence of aromatase inhibitors in Cycads. *J Ethnopharmacol.* 1995;47(3):113-6.
12. Kiong ALP, Thing YS, Gansau JA, Hussein S. Induction and multiplication of *Cycas circinalis* cells through sulfuric acid and hot water. *Philippine Journal of Science*. 2001;129(4):448-54.
13. Kru¨ ger T , Mo¨ nch B, Oppenha¨user S, Luckas B. LC–MS/MS determination of the isomeric neurotoxins BMMA (β-N-methylamino-Lalanine) and DAB (2,4-diaminobutyric acid in cyanobacteria and seeds of *Cycas revoluta* and *Lathyrusalpinolius.* Toxicol. 2010;55:547-57.
14. Xue Y, Dai G, Luan Z, Xiang Z, Xu X. *Cycas revoluta*. Toxicon. 2010;55:547-57.
15. Moawad A, Hetta M, Zjawiony JK, Jacob MR, Hifnawy M, Marais JPJ, et al. *Cycas revoluta* seeds. *Nat Prod Res.* 2016;30(21):2574-80.
16. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. New dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
17. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
18. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
19. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
20. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
21. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
22. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
23. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
24. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
25. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
26. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
27. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
28. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
29. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
30. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
31. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
32. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
33. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
34. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
35. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
36. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
37. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
38. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
39. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
40. Moawad A, Hetta M, Zjawiony JK, Ferreira D, Hifnawy M. Two new dihydroamantofovanolic glycocides from *Cycas revoluta*. *Nat Prod Res.* 2016;30(21):2574-80.
Deora, et al.: Ethnobotanical, Phytochemical and Pharmacological Potential of Cycas revoluta Thunb - A review

GRAPHICAL ABSTRACT

ABOUT AUTHORS

Dr. **G.S Deora** did his M.Sc. (1986) Ph.D. (1990) in Botany from Mohanlal Sukhadia University, Udaipur (Rajasthan). He has more than 25 years of teaching and research experience at College and University level. Deora is a fellow of Indian Botanical Society (F.B.S), Society of Sciences India (F.S.Sc.), Fellow of Natural Resources Society, India (F.N.R.S.) and life member of many academic bodies. He is an active researcher and guided 11 Ph.D. scholars successfully and 5 are still registered for Ph.D. under his supervision. He has authored 7 text and reference books, published 60 research papers, and attended more than 35 national and international conferences/seminars/symposia. He has been awarded as APSI Innovative Scientist Award by Academy of Plant Sciences India in Nov.2019.
Miss Monika K. Shekhawat did her M.Sc. Botany from Banasthali Vidhyapith Rajasthan. She is NET JRF qualified and actively engaged to explore various active phytochemicals from important medicinal plants of Rajasthan and assess their antimicrobial activity. She has attended several national and international conferences/seminars.

Miss Sarswati has completed her master’s degree in Botany (2017) from Jai Narain Vyas University Jodhpur Rajasthan. She has qualified NET JRF and actively engaged to work on phytochemistry and DNA barcoding of certain bryophytes from Rajasthan as a research scholar.

Cite this article: Deora GS, Shekhawat MK, Sarswati. Ethnobotanical, Phytochemical and Pharmacological Potential of Cycas revoluta Thunb - A review. Pharmacogn J. 2020;12(5):1165-71.