REGULAR ORBITS AND PERIODIC LOOPS IN MULTIPLY BARRED GALACTIC POTENTIALS

WITOLD MACIEJEWSKI AND LINDA S. SPARKE
Department of Astronomy, 475 North Charter Street, University of Wisconsin—Madison, Madison, WI 53706-1582;
witold@uwast.astro.wisc.edu, sparke@madraf.astro.wisc.edu
Received 1997 April 2; accepted 1997 May 15

ABSTRACT

We show that nonchaotic multiply periodic particle orbits can exist in a galaxy-like potential where a small, fast-tumbling nuclear bar is nested inside a main bar that has a slower pattern speed. We introduce the concept of a loop: a one-dimensional curve such that particles distributed along it at some initial instant return to the same curve (as viewed in the rotating frame of one of the bars) after the bars return to the same relative position. Just as particles following regular orbits in a simply barred potential are trapped around closed periodic orbits, so regular orbits in a doubly barred potential oscillate about stable loops. We find both loops that remain aligned with the inner bar and loops aligned with the outer bar: particles trapped around these loops could form the building blocks for a long-lived, self-consistent, doubly barred galaxy. In a realistic doubly barred galaxy potential, we demonstrate the existence of stable loops that support the structure of the inner bar. We use the epicyclic approximation to preview the pattern of gas flow in a doubly barred potential.

Subject headings: celestial mechanics, stellar dynamics — galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: structure

1. INTRODUCTION

The idea of bars within bars, with a small nuclear bar lying inside a slower rotating kiloparsec scale bar, was introduced to explain how gas could flow into the center of a galaxy with an active nucleus, to feed the “monster” lurking there (see, e.g., Shlosman, Frank, & Begelman 1989). Torques due to a small bar can efficiently remove angular momentum from gas and cause it to move inward, but if the bar has an inner Lindblad resonance, the gas accumulates in this region, which in a kiloparsec scale bar is generally at least 100 pc out, and flow into the center is slow (see, e.g., Piner, Stone, & Teuben 1995). Nuclear bars nested in the main bar and having a whole range of position angles relative to it have been observed in the optical and near-infrared (see Shaw et al. 1993, 1995; Wozniak et al. 1995; Friedli 1996; Erwin, Sparke, & Gallagher 1996). Self-consistent N-body simulations including a gas component (Friedli & Martinet 1993; Heller & Shlosman 1994; Combes 1994) have produced double bars that persist for at least several rotation periods and significantly influence the gas distribution in the inner parts of the galaxy.

Little work has been done so far to find stable orbits in a potential of two independently rotating bars. Pfenniger & Norman (1990) used a dissipative scheme to show the existence of a periodic orbit in one double-barred potential; this orbit is not aligned so as to support either bar but is located in the region of the nuclear ring and may be related to it. Howard (1994) found a few closed orbits in a Hamiltonian problem for a doubly barred system, but unlike the case of a single bar, they are isolated in phase space. Because there is no reference frame in which the potential of a doubly barred system is constant, the particle motions are often assumed to be chaotic. We show here that this is a misconception; these potentials admit families of regular, multiply periodic orbits. Our work runs somewhat parallel to that of Louis & Gerhard (1988) and of Sridhar (1989), who studied orbits in a pulsating spherical system.

2. THE CONCEPT OF A LOOP

In the symmetry plane of a single steadily rotating bar, there are two principal families of stable orbits that close in the rotating frame of the bar and lie within the corotation radius, at which the pattern speed of the rotating bar is equal to the orbital period of the disk stars: they are the x_1 and x_2 orbits, elongated, respectively, parallel and perpendicular to the bar. In a self-consistent bar, most of the stars will be on orbits trapped around the x_1 family (see, e.g., Contopoulos & Papayannopoulos 1980; Sparke & Sellwood 1987). On these periodic orbits, only the action associated with a star’s orbit around the center is nonzero, and the motion is simply periodic.

Choosing spherical polar coordinates R, θ in the plane of the barred disk, we can approximate the potential $\Phi(R, \theta)$ of a weakly barred galaxy as the sum of an axisymmetric part $\Phi_0(R)$ and a bisymmetric term

$$\Phi_1(R, \theta) = \Phi_0(R) \cos (2(\theta - \Omega_\theta R)),$$

where Ω_θ is the bar’s angular velocity. The motion of a test particle in this potential can be decomposed into the guiding center motion, on a circle of radius R_0 with the angular velocity $\Omega_0(R_0)$ corresponding to the axisymmetric potential Φ_0 together with the epicyclic oscillations resulting from the forcing term Φ_1, and a free oscillation at the local epicyclic frequency $\kappa(R_0)$. On a periodic orbit, this last oscillation is absent, and in the rotating frame of the bar we can write the deviations R_1, θ_1 from a circular orbit as

$$R_1 = B_\theta \cos (\omega t + 2\theta_0), \quad \theta_1 = B_\theta \sin (\omega t + 2\theta_0),$$

where the frequency $\omega = 2[\Omega_0(R_0) - \Omega_\theta]$, the constants B_θ and B_θ are functions of the potential, and θ_0 gives the initial position of the particle (see, e.g., §3.3.3 of Binney & Tremaine 1987). Since the particle returns to the same point after a time $2\pi/\omega$, this orbit is closed.

A second, smaller bar would correspond to an additional potential of the form in equation (1), where Φ_θ and Ω_θ are replaced by the quantities Φ_θ and Ω_θ, appropriate to the second
bar. Since the equations of motion are linear, the new forced oscillation is the sum of those induced by the two bar potentials separately; in the frame rotating with the larger bar, we can write the displacement in radius as

\[R_1 = B_R \cos(\omega t + 2\theta_2) + S_R \cos((\omega - \omega_p)t + 2\theta_2), \]

where \(\omega = 2(\Omega_2 - \Omega_b) \), with a similar equation for \(\theta_2 \). Here \(\theta_2 \) is the initial angular coordinate of the particle, where we measure the time \(t \) from the moment at which the two bars are aligned. We define a loop as the one-dimensional curve defined by varying \(\theta_2 \); if at any instant one places particles along this curve, then after a time \(2\pi/\omega_p \), they will all have returned to the curve but will have moved around it by an angle \(2\pi\omega/\omega_p \). In this linear approximation, a loop is a set of particles that have the same guiding radius and lack any free epicyclic motion but respond only to the periodic forcing of the two bars; a general orbit with that same guiding center will oscillate about the loop.

Abandoning the epicyclic approximation, we can reformulate the two-dimensional problem of motion in the symmetry plane of a general doubly barred system as that of motion in a three-dimensional time-steady potential (Lichtenberg & Lieberman 1992, p. 15). A regular orbit in such a potential can be expressed as the sum of motions with three independent frequencies: the relative pattern speed \(\omega \) and two others that correspond in the epicyclic limit to \(\omega \) and \(\kappa \). On a loop, the action corresponding to the last of these, the free radial oscillation, is zero. In this case, we must find the loops numerically. Clearly, the loop concept can be extended to a potential with three or more periodically varying components.

3. LOOPS IN A REALISTIC GALAXY POTENTIAL

As an example of a realistic double-barred galaxy potential, we modified the standard single-bar model used by Athanasoulou (1992) and Piner et al. (1995), consisting of an axisymmetric disk and bulge and an \(n = 2 \) Ferrers bar. The larger bar in our model is prolate with axial ratio \(b/a = 0.4 \); the quadrupole moment is \(Q_2 = 2.25 \times 10^{10} M_\odot \text{kpc}^2 \), and its semimajor axis \(a_b = 7 \text{kpc} \); the radius of the Lagrangian point \(L_1 \) is \(r_1 = 1.2a_b \). The small bar is also an \(n = 2 \) Ferrers bar, with its mass, linear size, and Lagrangian radius all set at 60% of the corresponding quantities for the big bar. The central density and core radius of the bulge are adjusted so that the central density of the whole system is \(1.0 \times 10^{10} M_\odot \text{kpc}^{-2} \), and the mass within 10 kpc is \(5 \times 10^{10} M_\odot \). Our potential has a somewhat weaker bar than the standard model of Athanasoulou (1992) and Piner et al. (1995), with half the quadrupole moment, because we want to compare our exact loops with those predicted by the epicyclic approximation.

In the epicyclic approximation, our small bar has inner Lindblad resonances at 0.6 and 1.3 kpc; its corotation radius is at 4.9 kpc, beyond the outer of the inner Lindblad resonances of the larger bar at 2.9 kpc. We solve the linearized equations of motion in the \(\cos 2\theta \) component of this potential, to find the loops in the center panels of Figure 1. The four innermost loops behave like the inner \(x_1 \) orbits in the potential of the smaller bar alone; the inner two are almost circular, and the next two follow the small bar as it rotates inside the larger bar. Particles following orbits trapped around these loops should be able to support the figure of the small bar. Farther out, as the influence of the large bar becomes stronger, the loops change smoothly from approximately following the \(x_1 \) orbits in the small bar to being the counterparts of the \(x_1 \) orbits in the big bar. Beyond the inner Lindblad resonance of the large bar at a radius of 2.9 kpc, the loops are elongated along the \(X \)-axis and behave like \(x_1 \) orbits in the large bar. The small bar has little influence at these radii, except close to its corotation point at \(R = 4.9 \text{kpc} \). The epicyclic approach fails close to the Lindblad resonances and the corotation point of either bar, since the perturbations \(R_1 \) and \(\theta_2 \) become large.

When we return to the nonlinear equations of motion in the exact potential, we can again seek one-dimensional closed curves that transform into themselves after a time \(2\pi/\omega_p \), when the two bars return to the same relative position. In general, the frequency \(\omega \) of the two bar patterns relative to each other is not commensurable with the frequency \(\omega \) with which any individual particle circumnavigates the loop, so the position and velocity of a particle on a generic loop at successive times \(2N\pi/\omega_p \), where \(N = 1, 2, \ldots \), will fill the one-dimensional curve that is the loop. In the rotating frame in which the large bar remains parallel to the \(X \)-axis, we searched for loops by following a particle that starts on the \(Y \)-axis at an instant when the bars are aligned. We restricted ourselves to symmetric loops, for which the starting velocity along the \(Y \) direction is zero, and then varied the starting \(X \) velocity so as to converge on the loop, beginning from an initial estimate given by the epicyclic approximation. The left-hand panels of Figure 1 show one of our loop solutions, with the epicyclic approximation for comparison. The dots show successive positions of a particle launched near the loop and followed for 400 orbits; it stays close to the loop, which is seen to be stable. Although (just as in a single bar) particle orbits become chaotic near strong resonances, loops exist over most of the range in radius, which suggests that a self-consistent double bar could be built from particles on orbits trapped around them.

The center panels of Figure 1 show that many of the loops in our doubly barred potential that lie within the small bar (semimajor axis \(a_s = 4.2 \text{kpc} \)) remain aligned with it; particles following orbits trapped around these loops can support the figure of this bar. If the small bar were to rotate somewhat more rapidly, its corotation radius would coincide with large bar’s inner Lindblad resonance; Tagger et al. (1987) have suggested that a secondary bar is most likely to form with resonances in this relation. In that case, loops that are confined within the small bar would not be influenced by any of the resonances of the big bar, and almost all of them would remain aligned with the small bar as it rotates relative to the larger bar; this would be the most favorable case for building a strong secondary bar. Louis & Gerhard (1988) have shown that two bars that make up a self-consistent double-bar system must distort slightly as they rotate through each other, but since this deformation has the same periodicity as the relative rotation of the bars, it will not introduce any extra frequencies into the potential, and the loops should remain qualitatively similar to those we calculate here.

4. GAS FLOW IN DOUBLE BARS

Lindblad & Lindblad (1994) and Wada (1994) added a dissipative term to the equations of motion in a single bar, linearized the equations using the epicyclic approximation, and studied the closed periodic orbits in this system. These two papers used slightly different versions of the frictional term, and their results are substantially independent of the exact form chosen. With the dissipative term included, the devia-
FIG. 1.—Loops (sets of particles) shown at four relative positions of the bars, in the rotating frame of the large bar, which lies along the X-axis. Left: Exact loops (solid lines) remain close to the epicyclic approximation (dashed lines). The heavy crossed lines mark the orientation of the large and the small bar, each extending to the outer of the bar’s inner Lindblad resonances. The dots represent successive positions of a particle that started close to the loop and remains trapped about it. Center: In the same potential, loops calculated in the epicyclic approximation (solid lines) for the same set of bar orientations. Dashed circles, from the outermost inward, mark corotation of the small bar at 4.9 kpc, the outer inner Lindblad resonance of the large bar at 2.9 kpc, and the two inner Lindblad resonances of the small bar at 1.3 and 0.6 kpc. Right: In the same potential, and for the same bar angles, loops for the dissipative epicyclic equations, with the dissipative coefficient $A = 16$ km s$^{-1}$.
tions from circular orbits are finite at the Lindblad resonances, and the major axis of the closed orbits rotates smoothly through 90°, but the epicyclic approximation still breaks down at corotation. Inside corotation, a surprising correspondence was found: the pattern of closed orbits closely reflects the gas flows modeled hydrodynamically—the damped epicyclic equations give us a cheap way to preview the hydrodynamic simulation. Obviously, this approach cannot reproduce a shock structure. Also, self-gravity of the gas, which is not included, could modify the gas flow; Knapen et al. (1995) suggested that a self-gravitating flow diverges from the linear approximation quickly and is more shock focused.

Unlike stars, gas clouds orbiting in a single-bar potential can fill only orbits that do not cross themselves or intersect each other: gas clouds on self-crossing or intersecting orbits would collide, removing the gas from these orbits. In a double bar, if loops that are solutions of linearized equations of motion including dissipation should cross themselves or intersect other loops at any given time, gas will be quickly swept out of these loops. In regions where orbits or loops crowd together, shocks in gas are expected and would be visible in a real galaxy as dark dust lanes.

In order to preview gas flows in a doubly barred potential, we included in our equations of motion a dissipative term

$$F_{\text{friction}} = -2\lambda (r - \Omega(R) \times r) / R$$ \hspace{1cm} (4)

proportional to the difference between the particle’s velocity and the speed on a circular orbit at that radius; the constant λ prescribes the strength of the friction. The results for $\lambda = 16 \text{ km s}^{-1}$, which at $R = 4 \text{ kpc}$ is equal to the value used by Lindblad & Lindblad (1994), are presented in the right-hand panels of Figure 1. This force corresponds only to about 8% of the circular velocity on the flat part of the rotation curve in our potential, so it is small in relation to other speeds in the problem.

The flow breaks into two parts: the outer pattern is generated by the big bar and is almost steady in the rotating frame, while the inner one rotates along with the smaller bar. The shocks induced separately by each bar are at times connected (Fig. 1, two lower panels), while at other relative phases of the two bars, they are disconnected (two upper panels). Connected shocks may speed up the gas inflow into the galaxy center, which might give rise to a long-timescale periodicity in the feeding of an active nucleus. In the dissipative epicyclic approximation, particles remain on closed orbits or periodic loops, so we cannot use this scheme to estimate the rate of gas inflow. Depending on the relative location of resonances induced by both bars, the loop patterns can interfere with each other in different ways, so the arrangement of dust lanes or the distribution of gas can be used as a diagnostic of the bar pattern speeds in observed double-bar systems.

We thank Ortwin Gerhard and Peter Englmaier for helpful discussions and the NSF and NASA for financial support through grants AST93-20403 and NAGW-2796. W. M. acknowledges the hospitality of the Wrocław University Observatory, where part of this work was done.

REFERENCES

Athanassoula, E. 1992, MNRAS, 259, 328
Binney J., & Tremaine S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
Combes, F. 1994, in Mass-Transfer Induced Activity in Galaxies, ed. I. Shlosman (Cambridge: Cambridge Univ. Press), 170
Contopoulos, G., & Papayannopoulos, Th. 1980, A&A, 92, 33
Erwin, P., Sparke, L. S., & Gallagher, J. S. 1996, BAAS, 28, 837
Friedli, D. 1996, in ASP Conf. Proc. 91, Barred Galaxies, ed. R. Buta et al. (San Francisco: ASP), 378
Friedli, D., & Martinet, L. 1993, A&A, 277, 27
Heller, C. H., & Shlosman, I. 1994, ApJ, 424, 84
Howard, G. 1994, M.S. thesis, Univ. Wisconsin—Madison
Knapen, J. H., Beckman, J. E., Heller, C. H., Shlosman, I., & de Jong, R. S. 1995, ApJ, 454, 623
Lichtenberg, A. J., & Lieberman, M. A. 1992, Regular and Chaotic Dynamics (2d ed.; New York: Springer)
Lindblad & Lindblad (1994), are presented in the right-hand panels of Figure 1. This force corresponds only to about 8% of the circular velocity on the flat part of the rotation curve in our potential, so it is small in relation to other speeds in the problem.

The flow breaks into two parts: the outer pattern is generated by the big bar and is almost steady in the rotating frame, while the inner one rotates along with the smaller bar. The shocks induced separately by each bar are at times connected (Fig. 1, two lower panels), while at other relative phases of the two bars, they are disconnected (two upper panels). Connected shocks may speed up the gas inflow into the galaxy center, which might give rise to a long-timescale periodicity in the feeding of an active nucleus. In the dissipative epicyclic approximation, particles remain on closed orbits or periodic loops, so we cannot use this scheme to estimate the rate of gas inflow. Depending on the relative location of resonances induced by both bars, the loop patterns can interfere with each other in different ways, so the arrangement of dust lanes or the distribution of gas can be used as a diagnostic of the bar pattern speeds in observed double-bar systems.

We thank Ortwin Gerhard and Peter Englmaier for helpful discussions and the NSF and NASA for financial support through grants AST93-20403 and NAGW-2796. W. M. acknowledges the hospitality of the Wrocław University Observatory, where part of this work was done.

REFERENCES

Athanassoula, E. 1992, MNRAS, 259, 328
Binney J., & Tremaine S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
Combes, F. 1994, in Mass-Transfer Induced Activity in Galaxies, ed. I. Shlosman (Cambridge: Cambridge Univ. Press), 170
Contopoulos, G., & Papayannopoulos, Th. 1980, A&A, 92, 33
Erwin, P., Sparke, L. S., & Gallagher, J. S. 1996, BAAS, 28, 837
Friedli, D. 1996, in ASP Conf. Proc. 91, Barred Galaxies, ed. R. Buta et al. (San Francisco: ASP), 378
Friedli, D., & Martinet, L. 1993, A&A, 277, 27
Heller, C. H., & Shlosman, I. 1994, ApJ, 424, 84
Howard, G. 1994, M.S. thesis, Univ. Wisconsin—Madison
Knapen, J. H., Beckman, J. E., Heller, C. H., Shlosman, I., & de Jong, R. S. 1995, ApJ, 454, 623
Lichtenberg, A. J., & Lieberman, M. A. 1992, Regular and Chaotic Dynamics (2d ed.; New York: Springer)