Linear convergence of a policy gradient method for some finite horizon continuous time control problems

Christoph Reisinger*  Wolfgang Stockinger*  Yufei Zhang †

Abstract. Despite its popularity in the reinforcement learning community, a provably convergent policy gradient method for continuous space-time control problems with nonlinear state dynamics has been elusive. This paper proposes proximal gradient algorithms for feedback controls of finite-time horizon stochastic control problems. The state dynamics are nonlinear diffusions with control-affine drift, and the cost functions are nonconvex in the state and nonsmooth in the control. The system noise can degenerate, which allows for deterministic control problems as special cases. We prove under suitable conditions that the algorithm converges linearly to a stationary point of the control problem, and is stable with respect to policy updates by approximate gradient steps. The convergence result justifies the recent reinforcement learning heuristics that adding entropy regularization or a fictitious discount factor to the optimization objective accelerates the convergence of policy gradient methods. The proof exploits careful regularity estimates of backward stochastic differential equations.

Key words. reinforcement learning, policy gradient method, stochastic control, linear convergence, stationary point, backward stochastic differential equation

AMS subject classifications. 68Q25, 93E20, 49M05

1 Introduction

Stochastic control problems seek optimal strategies to control continuous time stochastic systems and are ubiquitous in modern science, engineering and economics [28, 38]. In most applications, the agent aims to construct a feedback control mapping states of the system to optimal actions. A feedback control has the advantage that it allows for implementing an optimal control in real time through evaluating the feedback map at observed system states. An effective approach to generate (nearly) optimal feedback controls for high-dimensional control problems is via gradient-based algorithms (see e.g., [35, 17, 42, 24]). These algorithms, often referred to as policy gradient methods (PGMs) in the reinforcement learning community, approximate a policy (i.e., a feedback control) in a parametric form, and update the policy parameterization iteratively based on gradients of the control objective.

Despite the notable success of PGMs, a mathematical theory that guarantees the convergence of these algorithms for general (continuous time) stochastic control problems has been elusive. It is known that the objective of a control problem is typically nonconvex with respect to feedback controls, even if all cost functions are convex in state and control variables; see [11, Proposition

*Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK (christoph.reisinger@maths.ox.ac.uk, wolfgang.stockinger@maths.ox.ac.uk)
†Department of Statistics, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE, UK (y.zhang389@lse.ac.uk)
2.4] for a concrete example with deterministic linear state dynamics and strongly convex quadratic costs. This lack of convexity creates an essential challenge in analysing the convergence behavior of PGMs. Most existing theoretical results of PGMs, especially those establishing (optimal) linear convergence, focus on discrete time problems and restrict policies within specific parametric families. This includes Markov decision problems (MDPs) with softmax parameterized policies [33] or overparametrized one-hidden-layer neural-network policies [45, 13, 25], and discrete time linear-quadratic (LQ) control problems with linear parameterized policies [10, 16]. The analysis therein exploits heavily the specific structure of the considered (discrete time) control problems and policy parameterization, and hence is difficult to extend to general continuous time control problems or general policy parameterizations. This leads to the following natural question:

Can one design provably convergent gradient-based algorithms for feedback controls of continuous time nonlinear control problems, without requiring specific policy parameterization?

Analyzing PGMs in the continuous space-time setting avoids discretization artifacts and yields algorithms whose convergence behavior is robust with respect to time and space mesh sizes [44]. Similarly, analyzing gradient-descent algorithms without specific policy parametrization avoids searching for controls in a suboptimal class. This approach also highlights the essential structures of the control problem that affect the algorithmic performance, which subsequently provides a basis for developing improved algorithms with more effective policy parameterizations (see Remark 2.2).

This work takes an initial step towards answering the above challenging question, and designs a convergent PGM for certain control problems with uncontrolled diffusion coefficients and affine control of the drift. Let \( T \in (0, \infty) \) be a given terminal time, \((\Omega, \mathcal{F}, \mathbb{P})\) be a complete probability space on which a \( d \)-dimensional Brownian motion \( W = (W_t)_{t \in [0,T]} \) is defined, \( \mathbb{F} \) be the natural filtration of \( W \) augmented with an independent \( \sigma \)-algebra \( \mathcal{F}_0 \), and \( \mathcal{H}^2(\mathbb{R}^k) \) be the set of \( \mathbb{R}^k \)-valued square integrable \( \mathbb{F} \)-progressively measurable processes \( \alpha = (\alpha_t)_{t \in [0,T]} \). For any initial state \( \xi_0 \in L^2(\mathcal{F}_0; \mathbb{R}^n) \) and any \( \alpha \in \mathcal{H}^2(\mathbb{R}^k) \), consider the following controlled dynamics:

\[
dX_t = b_t(X_t, \alpha_t) \, dt + \sigma_t(X_t) \, dW_t, \quad t \in [0, T], \quad X_0 = \xi_0,
\]

where \( b : [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n \) and \( \sigma : [0, T] \times \mathbb{R}^n \to \mathbb{R}^{n \times d} \) are differentiable functions such that (1.1) admits a unique strong solution \( X^{\xi_0, \alpha} \). The agent’s objective is to minimize the following cost functional

\[
J(\alpha; \xi_0) = \mathbb{E} \left[ \int_0^T e^{-\rho t} \left( f_t(X_t^{\xi_0, \alpha}, \alpha_t) + \ell(\alpha_t) \right) \, dt + e^{-\rho T} g(X_T^{\xi_0, \alpha}) \right]
\]

over all admissible controls \( \alpha \in \mathcal{H}^2(\mathbb{R}^k) \), where \( \rho \geq 0 \) is a given discount factor\(^1\), \( f : [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R} \) and \( g : \mathbb{R}^n \to \mathbb{R} \) are differentiable functions, and \( \ell : \mathbb{R}^k \to \mathbb{R} \cup \{\infty\} \) is a (possibly nondifferentiable) convex function.

The precise conditions on the coefficients in (1.1)-(1.2) will be given in Section 2.1. In particular, we require the drift coefficient to be affine in the control, but allow both drift and diffusion coefficients to be nonlinear in the state. The diffusion coefficient can degenerate, and hence (1.1) includes as a special case the deterministic control-affine system in nonlinear control theory [22]. We allow the cost functions \( f \) and \( g \) to be nonconvex in the state, but require the running cost \( f + \ell \) to be strongly convex in the control. The function \( \ell \) can be discontinuous and can take the value infinity, which are important characteristics of control problems with control constraints and entropy regularizations; see Examples 2.1, 2.2 and 2.3 for details. Note that these structural conditions in general do not imply convexity of the control objective \( J \) in either the open-loop or feedback controls.

\(^1\)We specify the explicit dependence on \( \rho \), as it impacts the convergence rate of PGMs.
Proximal PGMs for the control problem (1.1)-(1.2). By interpreting (1.1)-(1.2) as an optimization problem over \( H^2(\mathbb{R}^k) \), one can design a gradient-descent algorithm for open-loop controls. Let \( H^\text{re} : [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \to \mathbb{R} \) be defined by

\[
H^\text{re}_t(x, a, y) := \langle b_t(x, a), y \rangle + f_t(x, a) - \rho(x, y), \quad \forall (t, x, a, y) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n,
\]

and let \( H : [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R} \) be the Hamiltonian defined by

\[
H_t(x, a, y, z) := H^\text{re}_t(x, a, y) + \langle \sigma_t(x), z \rangle, \quad \forall (t, x, a, y, z) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \times \mathbb{R}^{n \times d}.
\]

Note that \( H^\text{re} \) and \( H \) only involve the differentiable component of the running cost, while the nonsmooth component \( \ell \) will be handled separately by the proximal map defined in (1.8). Then for an initial guess \( \alpha^0 \in H^2(\mathbb{R}^k) \) and a stepsize \( \tau > 0 \), consider the sequence \((\alpha^m)_{m \in \mathbb{N}} \subset H^2(\mathbb{R}^k)\) such that for all \( m \in \mathbb{N} \),

\[
\alpha^{m+1}_t = \text{prox}_{\tau \ell}(\alpha^m_t - \tau \partial_\alpha H^\text{re}_t(X^\xi_0, \alpha^m, Y^\xi_0, \alpha^m)), \quad \text{for } dt \otimes d\mathbb{P} \text{ a.e.,}
\]

where \((X^\xi_0, Y^\xi_0, Z^\xi_0)\) are adapted processes satisfying the following forward-backward stochastic differential equation (FBSDE): for all \( t \in [0, T] \),

\[
dX^\xi_0 &= b_t(X^\xi_0, \alpha^m, \sigma_t(X^\xi_0)) \, dt + \sigma_t(X^\xi_0) \, dW_t, \quad X^\xi_0 = \xi_0,

dY^\xi_0 &= -\partial_\alpha H_t(X^\xi_0, \alpha^m, Y^\xi_0, Z^\xi_0) \, dt + Z^\xi_0 \, dW_t, \quad Y^\xi_0 = \partial_\xi g(X^\xi_0),
\]

and \( \text{prox}_{\tau \ell} : \mathbb{R}^k \to \mathbb{R}^k \) is the proximal map of \( \tau \ell \) defined by

\[
\text{prox}_{\tau \ell}(a) = \arg \min_{p \in \mathbb{R}^k} \left( \frac{1}{2} \| p - a \|^2 + \tau \ell(p) \right), \quad \forall a \in \mathbb{R}^k.
\]

Note that (1.7) involves undiscounted costs and the term \( \rho Y^\xi_0, \alpha^m \), and arises from stochastic maximum principle for the discounted problem (see [32]).

The iteration (1.5) is a proximal gradient method for (1.2). The term \( \partial_\alpha H^\text{re}_t(X^\xi_0, \alpha^m, Y^\xi_0, \alpha^m) \) is related to (up to an exponential time scaling) the Fréchet derivative of the differentiable component of \( J(\cdot; \xi_0) \) at the iterate \( \alpha^m \), while the function \( \text{prox}_{\tau \ell} \) can be identified as the proximal map of the nonsmooth component of \( J(\cdot; \xi_0) \) (see the proof of Theorem 3.13). We refer the reader to [39] for a detailed derivation of the algorithm and to [27, 41] for similar gradient-based algorithms without the nonsmooth term \( \ell \).

The main drawback of the proximal gradient algorithm (1.5) (as well as the algorithms in [27, 41]) is that it iterates over open-loop controls. As for each \( m \in \mathbb{N} \), the iterate \( \alpha^m \in H^2(\mathbb{R}^k) \) is a stochastic process depending on the initial information and the driving Brownian noise terms from previous iterates, the iteration (1.5) is difficult to implement in practice. In the sequel, we overcome the shortcoming of (1.5) and introduce an analogue proximal gradient method for feedback controls of (1.1)-(1.2), which is referred to as the proximal policy gradient method (PPGM).

To this end, we consider a class \( \mathcal{V}_A \) of Lipschitz continuous policies \( \phi : [0, T] \times \mathbb{R}^n \to \mathbb{R}^k \), whose precise definition is given in Definition 2.1. For a given initial guess \( \phi^0 \in \mathcal{V}_A \) and a stepsize \( \tau > 0 \), the PPGM generates the sequence \((\phi^m)_{m \in \mathbb{N}} \subset \mathcal{V}_A\) such that for all \( m \in \mathbb{N} \),

\[
\phi^{m+1}_t(x) = \text{prox}_{\tau \ell}(\phi^m_t(x) - \tau \partial_\phi H^\text{re}_t(x, \phi^m_t(x), Y^t, \phi^m_t)), \quad \forall (t, x) \in [0, T] \times \mathbb{R}^n
\]

where \( \text{prox}_{\tau \ell} \) is defined in (1.8), and for each \( \phi \in \mathcal{V}_A \) and \( (t, x) \in [0, T] \times \mathbb{R}^n \), \((X^{t, x, \phi}, Y^{t, x, \phi}, Z^{t, x, \phi})\) are adapted processes satisfying the FBSDE: for all \( s \in [t, T] \),

\[
dX^{s, x, \phi} &= b_s(X^{s, x, \phi}, \phi_s(X^{s, t, \phi}), s) \, ds + \sigma_s(X^{s, t, \phi}) \, dW_s, \quad X^{s, x, \phi} = x,

dY^{s, x, \phi} &= -\partial_\phi H_s(X^{s, x, \phi}, \phi_s(X^{s, t, \phi}), Y^{s, x, \phi}, Z^{s, x, \phi}) \, ds + Z^{s, x, \phi} \, dW_s, \quad Y^{s, x, \phi} = \partial_\xi g(X^{s, t, \phi}).
\]
The iteration (1.9) is motivated by the observation that if $\alpha_t^m = \phi_t^m(X_t^{\xi_0,\phi_t^m})$ with $X_t^{\xi_0,\phi_t^m}$ being the state process controlled by the policy $\phi_t^m$, then for $dt \otimes dP$ a.e., $Y_t^{\xi_0,\alpha_t^m} = Y_t^{t,x,\phi_t^m}|_{x = X_t^{\xi_0,\phi_t^m}}$ and

$$\partial_\alpha H_t^m(x, \phi_t^m(x), Y_t^{t,x,\phi_t^m}|_{x = X_t^{\xi_0,\phi_t^m}}) = e^{rt} \left( \nabla_\alpha J_{\text{diff}}(\alpha; \xi_0)|_{x = x^m} \right)_t,$$

where $J_{\text{diff}}(\cdot; \xi_0)$ is the differentiable component of $J(\cdot; \xi_0)$ in (1.2): for all $\alpha \in \mathcal{H}^2(\mathbb{R}^k), J_{\text{diff}}(\alpha; \xi_0) := \mathbb{E} \left[ \int_0^T e^{-rt} f_s(X_s^{\xi_0,\alpha}, \alpha_s) \, ds + e^{-rT} g(X_T^{\xi_0,\alpha}) \right], \quad \nabla_\alpha J_{\text{diff}}(\alpha; \xi_0) \in \mathcal{H}^2(\mathbb{R}^k)$ is the Fréchet derivative of $J_{\text{diff}}$ at $\alpha$. In other words, at the $m$-th iteration, (1.9) evaluates the functional derivative of $J_{\text{diff}}(\cdot; \xi_0)$ at the open-loop control $\alpha^m$ induced by the current policy $\phi^m$, and obtains the update direction based on a Markovian representation of the gradient. This choice of gradient directions is crucial for the well-posedness and convergence of the policy iterates $(\phi^m)_{m \in \mathbb{N}_0}$ in (1.9); see the end of Section 2.2 for a detailed comparison between the proposed gradient and the vanilla gradient direction of $J_{\text{diff}}$ over feedback controls.

The PPGM (1.9) improves the efficiency of the policy iteration (see [26, 23]) and the Method of Successive Approximation (see [29, 27]) by avoiding a pointwise minimization of the Hamiltonian over the action space, which may be expensive, especially in a high-dimensional setting. It has been successfully applied to high-dimensional control problems in [39] by solving the linear BSDE (1.11) numerically; see e.g., [20] and [39] and references therein for various numerical schemes.

**Our contributions.** This paper identifies conditions under which the PPGM (1.9) converges linearly to a stationary point of (1.1)-(1.2). These conditions allow for nonlinear state dynamics with degenerate noise, unbounded action space and unbounded cost functions that are nonconvex in state and involve a nonsmooth regulariser in control. To the best of our knowledge, this is the first work which proposes a linearly convergent PGM for a continuous time finite horizon control problem. The convergence result theoretically underpins experimental observations where recent reinforcement learning heuristics, including entropy regularization or fictitious discount factor, accelerate the convergence of PGMs.

We further prove that the PPGM (1.9) remains linearly convergent even if the FBSDEs are solved only approximately and the policies are updated based on these approximate gradients. This stability result allows for computationally efficient algorithms as it shows that it is sufficient to solve the linear BSDEs with low accuracy at the initial iterations, while an accurate BSDE solver is only required for the last few iterations; a similar strategy has been used to design approximate policy iteration algorithms in [23].

**Our approach and related works.** There are various reasons for the relatively slow theoretical progress in PGMs for continuous time stochastic control problems. Due to the nonconvexity of most objective functions of control problems with respect to the policies, establishing linear convergence of PGMs can be linked to analyzing nonasymptotic performance of gradient search for nonconvex objectives, which has always been one of the formidable challenges in optimization theory. Allowing nonparametric policies in the algorithm further compounds the complexity, as the analysis has to be carried out in a suitable function space, instead of in a finite-dimensional parameter space.

Due to these technical difficulties, most existing works on linear performance guarantees of PGMs concentrate on discrete time control problems with specific policy parametrization. The
arguments therein often require specific problem structure, in order to derive a suitable Polyak-Lojasiewicz inequality (also known as the gradient dominance property) for the loss landscape. For instance, in the tabular MDP setting, the policies must be uniformly lower bounded away from zero over the entire state space [33], while in the LQ setting, eigenvalues of state covariance matrices must be lower bounded away from zero over the entire time horizon [10, 16]. Consequently, these analyses are difficult to extend to general control problems (such as those with deterministic initial condition and degenerate noise) or to more sophisticated policy parameterizations (such as deep neural networks).

Here, we introduce a new analytical technique to analyse the PPGM (1.9), without relying on the Polyak-Lojasiewicz condition or convexity. By carrying out a precise regularity estimate of associated FBSDEs, we establish uniform Lipschitz continuity and uniform linear growth of the iterates \((\phi^m)_{m \in \mathbb{N}}\). These estimates further allow us to prove that \((\phi^m)_{m \in \mathbb{N}}\) forms a contraction in a weighted sup-norm, whose limit can be identified as a stationary point of (1.2). To the best of our knowledge, this is the first time BSDEs have been used to study convergence of PGMs.

**Notation.** For each Euclidean space \((E, \cdot | \cdot)\), we introduce the following spaces:

- \(S^p(t,T; E)\), for \(t \in [0,T]\) and \(p \geq 2\), is the space of \(E\)-valued \(\mathbb{F}\)-progressively measurable processes \(Y : [t,T] \times \Omega \to E\) satisfying \(\|Y\|_{S^p} = \mathbb{E}[\sup_{s \in [t,T]} |Y_s|^p]^{1/p} < \infty\); \(^2\)

- \(\mathcal{H}^p(t,T; E)\), for \(t \in [0,T]\) and \(p \geq 2\), is the space of \(E\)-valued \(\mathbb{F}\)-progressively measurable processes \(Z : [t,T] \times \Omega \to E\) satisfying \(\|Z\|_{\mathcal{H}^p} = \mathbb{E}[\left(\int_t^T |Z_s|^2 ds\right)^{p/2}]^{1/p} < \infty\).

For notational simplicity, we denote \(S^p(E) = S^p(0,T; E)\) and \(\mathcal{H}^p(E) = \mathcal{H}^p(0,T; E)\).

## 2 Main results

This section summarises the model assumptions and presents the main results on the linear convergence of the PPGM (1.9).

### 2.1 Standing assumptions

The following assumptions on the coefficients of (1.1)-(1.2) are imposed throughout the paper.

**H.1.** Let \(T > 0\), \(\xi_0 \in L^2(F_0; \mathbb{R}^n)\), \(\ell : \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}\), \(f : [0,T] \times \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}\), \(g : \mathbb{R}^n \to \mathbb{R}\), \(b : [0,T] \times \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n\), and \(\sigma : [0,T] \times \mathbb{R}^n \to \mathbb{R}^{n \times d}\) be measurable functions such that:

1. \(\ell\) is lower semicontinuous and its effective domain \(A := \{z \in \mathbb{R}^k | \ell(z) < \infty\}\) is nonempty; \(^3\)
2. for all \(t \in [0,T]\), \(\mathbb{R}^n \times \mathbb{R}^k \ni (x,a) \mapsto f_t(x,a) \in \mathbb{R}\) is continuously differentiable, \(|f_t(0,0)| < \infty\), and there exist constants \(C_{fx}, C_{fa}, L_{fx}, L_{fa} \geq 0\) such that for all \(t \in [0,T]\), \((x,a),(x',a') \in \mathbb{R}^n \times A\),

\[
\begin{align*}
|\partial_x f_t(x,a)| & \leq C_{fx}, & |\partial_x f_t(x,a) - \partial_x f_t(x',a')| & \leq L_{fx}(|x-x'| + |a-a'|), \\
|\partial_a f_t(0,a)| & \leq C_{fa}, & |\partial_a f_t(x,a) - \partial_a f_t(x',a')| & \leq L_{fa}(|x-x'| + |a-a'|).
\end{align*}
\]

\(^2\)With a slight abuse of notation, we denote by \(\sup\) the essential supremum of a real-valued (Borel) measurable function.

\(^3\)We say a function \(f : X \to \mathbb{R} \cup \{\infty\}\) is proper if it has a nonempty effective domain \(\text{dom } f := \{x \in X | f(x) < \infty\}\).
\(\begin{aligned}
(3) \text{there exist constants } \mu, \nu \geq 0 \text{ such that } \mu + \nu > 0 \text{ and for all } (t, x) \in [0, T] \times \mathbb{R}^n, a, a' \in A \\
\eta f_t(x, a) + (1 - \eta)f_t(x, a') \geq f_t(x, \eta a + (1 - \eta)a') + \eta(1 - \eta)\frac{1}{2}|a - a'|^2, \\
\eta \ell(a) + (1 - \eta)\ell(a') \geq \ell(\eta a + (1 - \eta)a') + (1 - \eta)\frac{1}{2}|a - a'|^2;
\end{aligned}\) 

\(\begin{aligned}
(4) g \text{ is differentiable and there exist constants } C_g, L_g \geq 0 \text{ such that for all } x, x' \in \mathbb{R}^n, \\
|\partial_x g(x)| \leq C_g, \quad |\partial_x g(x) - \partial_x g(x')| \leq L_g |x - x'|;
\end{aligned}\) 

\(\begin{aligned}
(5) \text{there exist } b : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n, \text{ } \tilde{b} : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^{n \times k} \text{ such that} \\
b_t(x, a) = \hat{b}_t(x) + \tilde{b}_t(x)a, \quad \forall (t, x, a) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^k,
\end{aligned}\) 

with \(\mathbb{R}^n \ni x \mapsto (\hat{b}_t(x), \tilde{b}_t(x)) \in \mathbb{R}^n \times \mathbb{R}^{n \times k}\) differentiable for all \(t \in [0, T]\), and there exist constants \(C_{b_t}, C_{\tilde{b}_t}, \zeta \geq 0\) and \(\kappa_{\tilde{b}_t} \in \mathbb{R}\) such that for all \(t \in [0, T], (x, a), (x', a') \in \mathbb{R}_x \times A, \)

\(\begin{aligned}
|\hat{b}_t(0)| + |\partial_x \hat{b}_t(0)| \leq C_{b_t}, \quad |\tilde{b}_t(x)| \leq C_{\tilde{b}_t}, \\
\langle x - x', \hat{b}_t(x) - \hat{b}_t(x') \rangle \leq \kappa_{\tilde{b}}|x - x'|^2, \quad |\partial_x \tilde{b}_t(x) - \partial_x \tilde{b}_t(x')| \leq \zeta \tilde{b}_t |x - x'|, \\
|\hat{b}_t(x) - \hat{b}_t(x')| + |\tilde{b}_t(x) - \tilde{b}_t(x')| \leq \zeta \tilde{b}_t |x - x'| + |a - a'|;
\end{aligned}\) 

\(\begin{aligned}
(6) \text{there exist constants } C_\sigma, L_\sigma \geq 0 \text{ such that for all } t \in [0, T], x, x' \in \mathbb{R}^n, \\
|\sigma_t(x)| \leq C_\sigma, \quad |\sigma_t(x) - \sigma_t(x')| + |\partial_x \sigma_t(x) - \partial_x \sigma_t(x')| \leq L_\sigma |x - x'|.
\end{aligned}\) 

Remark 2.1. The action set \(A\) may be unbounded, and hence (2.9) cannot be further simplified. If one assumes further that \(A\) is bounded, then, by the boundedness of \(\hat{b}\) in (2.7), (2.9) is equivalent to the Lipschitz continuity of \(\partial_x \tilde{b}\) and \(\partial_x \tilde{b}\). Alternatively, if \(A\) is unbounded, then (2.9) is equivalent to the condition that \(\tilde{b}\) is independent in \(x\).

To consider nonlinear state-dependent drift and diffusion coefficients, we impose in (2.1) and (2.5) the boundedness conditions on the spatial partial derivatives of cost functions. Observe from (1.4) and (2.6) that \(\partial_x H\) (resp. \(\partial_x H\)) involve the term \((\partial_x b_t(x) + \partial_x b_t(x)a)' y + \partial_x \sigma(x)' z\) (resp. \(\partial_y (x)' y\)), whose modulus of continuity in \(x\) depends on the magnitude of \(y\) and \(z\). By exploiting the boundedness of \(\partial_x f\) and \(\partial_x g\), we establish an a-priori bound of the adjoint processes, and subsequently prove the iterative scheme (1.9) generates Lipschitz continuous policies \((\varphi^m)_{m \in \mathbb{N}_0}\) (see Proposition 3.7). If the drift and diffusion coefficients are affine in \(x\), then (2.1) and (2.5) can be relaxed to quadratically growing functions, which include as special cases the linear-convex control problems studied in [15, 43].

For clarity, (2.3) and (2.4) assume convexity of \(a \mapsto f_t(x, a)\) and \(a \mapsto \ell(a)\) and strong convexity of \(a \mapsto f_t(x, a) + \ell(a)\). This allows for characterizing the rate of convergence of \((\varphi^m)_{m \in \mathbb{N}_0}\) in terms of \(\mu\) and \(\nu\). Similar analysis can be performed if (2.3) is relaxed into the following semi-convexity condition, i.e., there exists \(\mu \in [-L_{fa}, L_{fa}]\) such that for all \((t, x) \in [0, T] \times \mathbb{R}^n, a, a' \in A\) and \(\eta \in [0, 1],\)

\(\eta f_t(x, a) + (1 - \eta)f_t(x, a') \geq f_t(x, \eta a + (1 - \eta)a') + \eta(1 - \eta)\frac{1}{2}|a - a'|^2,\)

and \(\ell\) is \(\nu\)-strongly convex with a sufficiently large \(\nu\) (cf. Condition (iii) below). Such an assumption allows \(f\) to be concave in \(a\) and can be satisfied if the objective function (1.2) involves entropy regularization (see Example 2.3).
Here we present several important nonsmooth costs used in engineering and machine learning.

**Example 2.1** (Control constraint). Let \( A \subset \mathbb{R}^k \) be a nonempty closed convex set and \( \ell : \mathbb{R}^k \to [0, \infty] \) be the indicator of \( A \) satisfying \( \ell(a) = 0 \) for \( a \in A \) and \( \ell(a) = \infty \) for \( a \in \mathbb{R}^k \setminus A \). Then (2.4) holds with \( \nu = 0 \), and for all \( \tau > 0 \), \( \text{prox}_{\tau \ell} \) is the orthogonal projection on \( A \). In this case, (1.9) extends the projected PGM in [16] to general stochastic control problems.

**Example 2.2** (Sparse control). Let \( (\gamma_i)_{i=1}^{k} \subset [0, \infty) \) and \( \ell : \mathbb{R}^k \to [0, \infty) \) be such that \( \ell(a) = \sum_{i=1}^{k} \gamma_i |a_i| \), for \( a = (a_i)_{i=1}^{k} \in \mathbb{R}^k \). Then (2.4) holds with \( \nu = 0 \), and for all \( \tau > 0 \), \( \text{prox}_{\tau \ell}(a) = (\max\{a_i - \tau \gamma_i, 0\})_{i=1}^{k} \) for each \( a = (a_i)_{i=1}^{k} \in \mathbb{R}^k \). In this case, (1.9) can be viewed as an infinite-dimensional extension of the iterative shrinkage-thresholding algorithm (see [4, 39]).

**Example 2.3** (f-divergence regularized control). Let \( \Delta_k := \{a \in [0,1]^k \mid \sum_{i=1}^{k} a_i = 1\}, \ u = (u_i)_{i=1}^{k} \in \Delta_k \cap (0,1)^k \), and \( \ell : \mathbb{R}^k \to \mathbb{R} \cup \{\infty\} \) be the f-divergence defined by

\[
\ell(a) := \sum_{i=1}^{k} u_i f \left( \frac{a_i}{u_i} \right), \quad a \in \Delta_k; \quad \ell(a) = \infty, \quad a \not\in \Delta_k
\]

with a given lower semicontinuous function \( f : [0, \infty) \to \mathbb{R} \cup \{\infty\} \) satisfying \( f(0) = \lim_{x \to 0} f(x) \), \( f(1) = 0 \), and being \( \kappa_u \)-strongly convex on \([0, \frac{1}{\min u_i}]\) with some \( \kappa_u > 0 \). As shown in [15, Example 2.2], \( \ell \) satisfies (II.1) with \( \nu = \frac{\kappa_u}{\max u_i} > 0 \).

Note that an f-divergence \( \ell \) is typically non-differentiable and may have non-closed effective domain \( A \) (see [15] for concrete examples). For commonly used forms of f-divergence, the proximal map \( \text{prox}_{\ell} \) can be computed by solving (1.8) with Lagrange multipliers. For instance, let \( \ell \) be the relative entropy corresponding to \( f(s) = s \log s \), \( s \in \mathbb{R} \). Then for each \( \tau > 0 \) and \( a = (a_i)_{i=1}^{k} \in \mathbb{R}^k \), \( \text{prox}_{\tau \ell}(a)_{i} = \tau W \left( \frac{u_i}{\tau} \exp \left( \frac{\lambda a_i}{\tau} \right) - 1 \right) \) for all \( i = 1, \ldots, k \), where \( W : [0, \infty) \to [0, \infty) \) is the Lambert W-function, and \( \lambda \in \mathbb{R} \) is the unique solution to \( \sum_{i=1}^{k} \tau W \left( \frac{u_i}{\tau} \exp \left( \frac{\lambda a_i}{\tau} \right) - 1 \right) = 1 \).

### 2.2 Well-posedness of the iterates

In the sequel, we focus on Lipschitz continuous feedback controls such that the corresponding controlled state dynamics (1.1) admits a strong solution. Due to the (possible) unboundedness of the action set \( A \), these controls in general grow linearly with respect to the state variable.

**Definition 2.1.** Let \( B([0,T] \times \mathbb{R}^n; \mathbb{R}^k) \) be the space of measurable functions \( \phi : [0,T] \times \mathbb{R}^n \to \mathbb{R}^k \), and let \( | \cdot, | : B([0,T] \times \mathbb{R}^n; \mathbb{R}^k) \to [0, \infty] \) be such that for all \( \phi \in B([0,T] \times \mathbb{R}^n; \mathbb{R}^k) \),

\[
|\phi|_0 = \sup_{(t,x) \in [0,T] \times \mathbb{R}^n} \frac{|\phi_t(x)|}{1 + |x|}, \quad |\phi|_1 = \sup_{t \in [0,T], x,y \in \mathbb{R}^n, x \neq y} \frac{|\phi_t(x) - \phi_t(y)|}{|x - y|}.
\]

We define the following space of feedback controls:

\[
\mathcal{V}_A := \left\{ \phi \in B([0,T] \times \mathbb{R}^n; \mathbb{R}^k) \mid |\phi|_0 + |\phi|_1 < \infty, \phi_t(x) \in A \text{ for a.e. } (t,x) \in [0,T] \times \mathbb{R}^n \right\}, \quad (2.11)
\]

and for each \( \phi \in \mathcal{V}_A \), define the associated control process \( \alpha^\phi \in \mathcal{H}^2(\mathbb{R}^k) \) by \( \alpha_t^\phi = \phi_t(X_t^{\xi_0,\cdot,\phi}) dt \otimes d\mathbb{P}\text{-a.e.}, \) where \( X^{\xi_0,\cdot,\phi} \in \mathcal{S}^2(\mathbb{R}^n) \) is the solution to the following SDE (cf. (1.1)):

\[
dX_t = b_t(X_t, \phi_t(X_t)) dt + \sigma_t(X_t) dW_t, \quad t \in [0,T]; \quad X_0 = \xi_0. \quad (2.12)
\]
The Lipschitz regularity of $\phi \in \mathcal{V}_A$ ensures that the system (1.10)-(1.11) admits a unique strong solution. We refer the reader to [26, 15] for sufficient conditions under which the control problem admits an optimal feedback control in the class $\mathcal{V}_A$. However, we emphasise that in this work we do not require the control problem (1.1)-(1.2) to have an optimal feedback control. Instead, we focus on constructing a policy $\phi \in \mathcal{V}_A$ whose associated (open-loop) control process is a stationary point of $J(\cdot; \xi_0)$; see Section 2.3 for details.

Under (H.1), the iterative scheme (1.9) is well-defined for any given guess $\phi^0 \in \mathcal{V}_A$ and stepsize $\tau > 0$. The proof of this relies on the well-posedness and stability of the FBSDEs (1.10)-(1.11), with extra difficulties arising from possibly non-Lipschitz and unbounded coefficients, i.e., $b_t$ may be non-Lipschitz in $x$, and $\partial_x H$ non-Lipschitz in $(x, y)$ and unbounded in $x$. The detailed arguments can be found in Appendix A.

**Proposition 2.1.** Suppose (H.1) holds. Then for all $\phi^0 \in \mathcal{V}_A$ and $\tau > 0$, the iterates $(\phi^m)_{m \in \mathbb{N}_0}$ are well-defined functions in $\mathcal{V}_A$.

### Regularity of the gradient direction in (1.9).

Here we emphasise the importance of the gradient direction in (1.9) on the well-posedness of the iterates $(\phi^m)_{m \in \mathbb{N}_0}$. Observe that if $\phi^m \in \mathcal{V}_A$, then classical stability results of (1.10)-(1.11) imply that the map $x \mapsto Y^t_x,\phi^m$ in (1.9) is Lipschitz continuous uniformly in $t$, which subsequently ensures that $\phi^m+1 \in \mathcal{V}_A$. Such a Lipschitz regularity holds even if the diffusion coefficient of (1.1) degenerates, which includes deterministic control problems as special cases.

The above regularity estimate in general does not hold if one updates a feedback control using the gradient of $J$ at the feedback map itself, especially when the diffusion coefficient of (1.1) degenerates. To see this, we assume for simplicity that all variables are one-dimensional, and consider minimising the following cost (with $\xi_0 = x_0$ and $\sigma = 0$ in (1.1) and $\ell = 0$ and $\rho = 0$ in (1.2)) over all $\phi \in \mathcal{V}_A$:

$$J(\phi; x_0) = \int_0^T f_t(X_t^{x_0, \phi}, \phi_t(X_t^{x_0, \phi})) \, dt + g(X_T^{x_0, \phi}),$$

(2.13)

where for each $\phi \in \mathcal{V}_A$, $X_t^{x_0, \phi} = x_0 + \int_0^t b_s(X_s^{x_0, \phi}, \phi_s(X_s^{x_0, \phi})) \, ds$ for all $t \in [0, T]$. By [6, Section 4.1], for any given $\psi \in \mathcal{V}_A$, the derivative of $J$ at $\phi \in \mathcal{V}_A$ in the direction $\psi$ is

$$\left. \frac{dJ(\phi + \varepsilon \psi)}{d\varepsilon} \right|_{\varepsilon = 0} = \int_0^T \partial_\theta H^e_t(x, \phi_t(x), \partial_x u_t(x), \partial_x H^e_t(x, \phi_t(x), \partial_x u_t(x))) \psi_t(X_t^{x_0, \phi}) \, dt,$$

(2.14)

where $H^e$ is defined in (1.3), and $u^\phi : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies for all $(t, x) \in [0, T] \times \mathbb{R}$,

$$\partial_\theta u_t(x) + H^e_t(x, \phi_t(x), \partial_x u_t(x)) = 0; \quad u_T(x) = g(x).$$

(2.15)

Observe that (2.14) is an $L^2$-inner product between $(t, x) \mapsto \partial_\theta H^e_t(x, \phi_t(x), \partial_x u_t(x))$ and $\psi$ with respect to the law of $X_t^{x_0, \phi}$. This leads to the following iterative scheme, which is a direct application of the gradient descent algorithm for feedback controls:

$$\phi_t^{m+1}(x) = \phi_t^{m}(x) - \tau \partial_\theta H^e_t(x, \phi_t^{m}(x), \partial_x u_t^{\phi^{m}}(x)),$$

(2.16)

However, the iteration (2.16) in general does not preserve the regularity of the iterates $(\phi^m)_{m \in \mathbb{N}}$, and hence may not be well-defined. To see this, assume that $\phi^m \in \mathcal{V}_A$ for some $m \in \mathbb{N}$. Then by (2.16), the regularity of $\phi^{m+1}$ depends on the regularity of $\partial_x u^{\phi^m}$. Formally taking derivatives...
of (2.15) with respect to $x$ implies that $w^m := \partial_x u^m$ satisfies the following PDE: for all $(t, x) \in [0, T] \times \mathbb{R}$,

$$
\partial_t w_t(x) + b_t(x, \phi^m_t(x)) \partial_x w_t(x) + \partial_x H^r_t(x, \phi^m_t(x), w_t(x)) = -\partial_a H^r_t(x, \phi^m_t(x), w_t(x)) \partial_x \phi^m_t(x),
$$

with $w_T(x) = \partial_x g(x)$. The term $\partial_a H^r_e \partial_x \phi^m$ on the right-hand side of (2.17) appears due to the application of the chain rule. The Lipschitz continuity of $\phi^m$ only implies the boundedness of $\partial_x \phi^m$, and consequently both $\partial_x u^m$ and $\phi^{m+1}$ are in general not Lipschitz continuous. More crucially, it indicates that estimating the derivatives of $\phi^{m+1}$ requires bounds on higher order derivatives of $\phi^m$, and it is unclear how to close this norm gap.

In contrast, such a loss of regularity does not occur in (1.9). Indeed, in the setting of (2.13), $Z^{t,x,\phi} \equiv 0$ in (1.11), and hence by the Feynman-Kac formula, (1.9) is equivalently to

$$\phi^{m+1}_t(x) = \phi^m_t(x) - \tau \partial_a H^r_t(x, \phi^m_t(x), u^m_t(x)), \quad \forall (t, x) \in [0, T] \times \mathbb{R},$$

where $u^m$ is the unique continuous viscosity solution to the following PDE: for all $(t, x) \in [0, T] \times \mathbb{R}$,

$$
\partial_t u_t(x) + b_t(x, \phi^m_t(x)) \partial_x u_t(x) + \partial_x H^r_t(x, \phi^m_t(x), u_t(x)) = 0, \quad u_T(x) = \partial_x g(x).
$$

Note that (2.18) does not involve the term $\partial_a H^r \partial_x \phi^m$, and under (H.1), all coefficients of (2.18) are sufficiently regular such that $u^m$ is indeed Lipschitz continuous in $x$ (uniformly in $t$), according to classical Lipschitz estimates of viscosity solution (see e.g., [2]).

2.3 Linear convergence of the iterates

The main contribution of this article is to identify conditions under which $(\phi^m)_{m \in \mathbb{N}_0} \subset \mathcal{V}_A$ converge linearly to a stationary point of the control problem (1.1)-(1.2). As the functional $J(\cdot; \xi_0) : \mathcal{H}^2(\mathbb{R}^k) \to \mathbb{R} \cup \{\infty\}$ is typically nonsmooth and nonconvex, we first recall a notion of stationary points for nonsmooth nonconvex functionals on Hilbert spaces, defined as in [34]. By [34, Proposition 1.114], every local minimizer $\alpha^* \in \text{dom} \ J(\cdot; \xi_0)$ is a stationary point in the sense of Definition 2.2. In practice, a stationary point found in this way often gives a good solution candidate [29].

**Definition 2.2.** Let $X$ be a Hilbert space equipped with the norm $\| \cdot \|_X$ and the inner product $\langle \cdot, \cdot \rangle_X$, $F : X \to \mathbb{R} \cup \{\infty\}$, and $x^* \in \text{dom} \ F = \{x \in X \mid F(x) < \infty\}$. The Fréchet subdifferential of $F$ at $x^*$ is defined by

$$
\partial F(x^*) = \left\{ \bar{x} \in X \mid \liminf_{x \to x^*} \frac{F(x) - F(x^*) - \langle \bar{x}, x - x^* \rangle_X}{\| x - x^* \|_X} \geq 0 \right\}.
$$

We say $x^* \in \text{dom} \ F$ is a stationary point of $F$ if $0 \in \partial F(x^*)$.

As alluded to earlier, the map $\mathcal{V}_A \ni \phi \mapsto J(\alpha^\phi; \xi_0) \in \mathbb{R} \cup \{\infty\}$ is typically nonconvex and may not satisfy the Polyak-Lojasiewicz condition as in the setting with parametric policies ([10, 45, 33, 13, 16, 25]). Hence to ensure the linear convergence of the PPGM (1.9), we impose further conditions on the coefficients which guarantee that we are in one of the following six cases:

(i) Time horizon $T$ is small.

(ii) Discount factor $\rho$ is large.

(iii) Running cost is sufficiently convex in control, i.e., $\mu + \nu$ is sufficiently large.
(iv) Costs depend weakly on state, i.e., $C_{fx}, L_{fx}, C_g$ and $L_g$ are small.

(v) Control affects state dynamics weakly, i.e., $C_b$ is small.

(vi) State dynamics is strongly dissipative, i.e., $\kappa_b$ is sufficiently negative.

The above conditions will be made precise in (3.25) and (3.43). Here we give some practical implications of these conditions.

Remark 2.2. Conditions (i) and (ii) are commonly used conditions to ensure the convergence of iterative algorithms for nonconvex problems (see e.g., [5, 3, 19, 23]). Condition (ii) also justifies the use of a fictitious discount factor to accelerate the convergence of PGMs for continuous-time control problems (see [14] and references therein).

Conditions (iii)-(v) help to ease the nonconvexity of $\phi \mapsto J(\alpha^\phi; \xi_0)$ and to reduce the oscillation of the loss function’s curvature, which subsequently promotes the convergence of gradient-based algorithms (see [36]). Condition (iii), along with Example 2.3, also justifies recent reinforcement learning heuristics that adding $f$-divergences, such as the relative entropy, to the optimization objective can accelerate the convergence of PGMs (see e.g., [41, 25]).

Condition (vi) indicates that a strong dissipativity of the state dynamics enhances the efficiency of learning algorithms. Such a phenomenon has already been observed in the LQ setting with $b_t(x) = A_t x$ in (2.6), where the desired dissipativity can be ensured if eigenvalues of $A_t$ are sufficiently negative (see [19, 16]). Condition (vi) also motivates a residual correction method for solving nonlinear control problems. Consider a control problem (1.1)-(1.2) whose drift involves non-dissipative coefficient $\bar{b}$. Then one can search feedback controls of the form $\phi = \bar{\phi} + \hat{\phi}$, where $\bar{\phi}$ is a precomputed candidate policy, and $\hat{\phi}$ is an unknown residual correction. Observe that the state dynamics now has the drift coefficient $b = (\hat{\phi} + \bar{b} \bar{\phi}) + b \bar{\phi}$, and the function $\hat{\phi} + b \bar{\phi}$ may be dissipative for suitably chosen policy $\bar{\phi}$; see [39] and references therein for computing $\hat{\phi}$ via linearization and the efficiency improvement of the residual correction method over plain PGMs.

Now we present the main theorem on the linear convergence of the PPGM (1.9) as $m$ tends to infinity. The precise statement and proof will be given in Section 3.5 (see Theorem 3.13).

**Theorem 2.2.** Suppose (H.1) holds. For all $\phi^0 \in \mathcal{V}_A$ and $\tau \in (0, \frac{2}{\mu + L_{fa}} \land \frac{1}{2}]$, if one of conditions (i)-(vi) holds, then there exist $\phi^* \in \mathcal{V}_A$ and constants $c \in [0, 1)$ and $\tilde{C} \geq 0$ such that

1. $\phi^*$ is a stationary point of $J(\cdot; \xi_0) : \mathcal{H}^2(\mathbb{R}^k) \to \mathbb{R} \cup \{\infty\}$ defined as in (1.2),

2. for all $m \in \mathbb{N}_0$, $|\phi^{m+1} - \phi^*|_0 \leq c|\phi^m - \phi^*|_0$ and $\|\alpha^{\phi^m} - \alpha^{\phi^*}\|_{\mathcal{H}}^2 \leq \tilde{C}c^m$.

The precise constant $c$, which determines the rate of convergence, will be given in the proof based on conditions (i)-(vi). Roughly speaking, the stronger the cost convexity (resp. the stronger the state dissipativity, the weaker the state/control coupling, the smaller the time horizon, the larger the discount factor), the smaller one can choose $c$ and, hence, the faster the iteration converges.

Note that Theorem 2.2 does not require nondegeneracy of $\xi_0$ and $\sigma$, and can be extended to quadratically growing cost functions (see Remark 2.1). As (1.9) concerns iterations of unbounded and nonlinear feedback controls, the proof of convergence is rather technical. Here we outline the key steps for the reader’s convenience.

**Sketched proof of Theorem 2.2.** Observe that a necessary condition on the convergence of $(\alpha^{\phi^m})_{m \in \mathbb{N}_0}$ is that $(\|X^0 \alpha^{\phi^m}\|_{\mathcal{H}}^2)_{m \in \mathbb{N}_0}$ are uniformly bounded in $m$. By standard moment estimates of SDEs, it seems unavoidable to control the Lipschitz constant of $(\phi^m)_{m \in \mathbb{N}}$ in order to obtain
the desired convergence result. This uniform regularity estimate is the main technical difficulty in analyzing (1.9), compared with the analyses of iterative algorithms for open-loop controls in [29, 41, 27].

To this end, suppose that $\phi^m \in \mathcal{V}_A$ for a given $m \in \mathbb{N}_0$. By exploiting (1.9) and the convexity of $f$ and $\ell$, for all sufficiently small $\tau > 0$,

$$\left| \phi^{m+1} \right| \leq (1 - \tau C) \left| \phi^m \right| + \tau C \left( \sup_{t,x,x'} \frac{|Y^t_{x,\phi^m} - Y^t_{x',\phi^m}|}{|x - x'|} + \sup_{t,x} |Y^t_{x,\phi^m}| + 1 \right),$$

where the constant $C > 0$ depends only on coefficients (see Lemma 3.4). An a-priori estimate of (1.11) and the boundedness of $\partial_x f$ and $\partial_x g$ imply $\sup_{m,t,x} |Y^t_{x,\phi^m}| < \infty$, while Lipschitz estimates of (1.10) and (1.11) imply that $x \mapsto Y^t_{x,\phi}$ is Lipschitz continuous uniformly in $t$, where the Lipschitz constant $L_Y([\phi^m]_1)$ depends exponentially on $[\phi^m]_1$ due to the feedback controlled dynamics (1.10) (see Proposition 3.7). Combining these estimates gives $|\phi^{m+1}| \leq (1 - \tau C) |\phi^m| + \tau C (L_Y([\phi^m]_1) + 1)$. We then show in Theorem 3.8 that under suitable conditions on the coefficients, such an exponential dependence can be controlled, and further deduce that $\sup_{m} [\phi^m]_1 < \infty$.

We then proceed to prove the linear convergence of $(\phi^m)_{m \in \mathbb{N}}$. Using the strong convexity of costs, for sufficiently small $\tau > 0$,

$$|\phi^{m+1} - \phi^m|_0 \leq (1 - \tau C) |\phi^m - \phi^{m-1}|_0 + \tau C \sup_{t,x} \frac{|Y^t_{x,\phi^m} - Y^t_{x,\phi^{m-1}}|}{1 + |x|}, \quad \forall m \in \mathbb{N}. \quad (2.19)$$

Based on $\sup_m [\phi^m]_1 < \infty$, we prove by Malliavin calculus that $\sup_{m,t,x,s} |Z^t_{s,x,\phi^m}| < \infty$ (see Lemma 3.10) and further by stability estimates of (1.10) and (1.11) that $|Y^t_{x,\phi^m} - Y^t_{x,\phi^{m-1}}| \leq \bar{C}(1 + |x|)|\phi^m - \phi^{m-1}|_0$, for some constant $\bar{C}$ independent of $t, x, m$ (see Proposition 3.9). By quantifying $C$ in (2.19) and $\bar{C}$ precisely, we prove under each of the conditions (i)-(vi) that there exists $c \in [0, 1]$ such that $|\phi^{m+1} - \phi^m|_0 \leq c|\phi^m - \phi^{m-1}|_0$ for all $m$, which subsequently implies the convergence of $(\phi^m)_{m \in \mathbb{N}}$ due to Banach’s fixed point theorem. Finally, we show that the limit of $(\phi^m)_{m \in \mathbb{N}}$ induces a stationary point of $J(\cdot; \xi_0)$, based on an equivalent characterization of stationary points of $J(\cdot; \xi_0)$ in terms of adjoint processes and proximal map of $\ell$ (see Theorem 3.13).

In practice, (1.11) can only be solved approximately and the update step (1.9) for the feedback controls can only be performed with this approximate solution, which feeds the errors into subsequent iterations. Hence we further quantify this effect by establishing a stability property of (1.9) under perturbations of solutions to (1.11). For clarity, we only carry out perturbation analysis for the computation of $Y^t_{x,\phi}$, but similar analysis can be performed for (1.9) with inexact computation of the proximal map $\text{prox}_{\tau \ell}$. Our analysis allows for stochastic approximations of $Y^t_{x,\phi}$ resulting from applying probabilistic numerical methods to solve (1.11) (see e.g. [12, 18]).

More precisely, let $\phi^0 \in \mathcal{V}_A$ be an initial guess and $\tau > 0$ be a stepsize. At the $m$-th iteration with $m \in \mathbb{N}_0$, let $\tilde{\phi}^m$ be the (random) feedback control obtained at the previous iteration (with $\phi^0 = \phi^0$). That is, $\phi^m : [0, T] \times \mathbb{R}^n \times \Omega \rightarrow \mathcal{A}$ is a measurable function such that $\tilde{\phi}^m(\cdot, \omega) \in \mathcal{V}_A$ for a.s. $\omega \in \Omega$. Consider a measurable function $\tilde{Y}^\phi : [0, T] \times \mathbb{R}^n \times \Omega \rightarrow \mathbb{R}^n$ such that for a.s. $\omega \in \Omega$, $(t, x) \mapsto \tilde{Y}^\phi_{t}(x, \omega)$ approximates $(t, x) \mapsto Y^t_{x,\phi}(x, \omega) := Y^t_{x,\phi^m(\cdot, \omega)}$, where $Y^t_{x,\phi^m(\cdot, \omega)} \in \mathbb{R}^n$ satisfies (1.11) with the realised control $\tilde{\phi}^m(\cdot, \omega) \in \mathcal{V}_A$. The (random) feedback control for the next iteration is then obtained via a proximal gradient update (1.9) based on $\tilde{Y}^\phi$:

$$\tilde{\phi}_{t+1} = \text{prox}_{\tau \ell}(\tilde{\phi}_{t}(x) - \tau \partial_x H^\phi_t(x, \tilde{\phi}_{t}(x), \tilde{Y}^\phi_t(x))), \quad (t,x) \in [0, T] \times \mathbb{R}^n, \quad (2.20)$$
where the identity is understood in an almost sure sense.

The following theorem shows the accuracy of (2.20), whose precise statement and proof will be given in Section 3.5 (see Theorem 3.14). Here we assume that \( \tilde{\phi}^m \) approximates the function \( \phi^m \) well enough such that the resulting controls \( \tilde{\phi}^m \) are uniformly bounded in time and uniformly Lipschitz in space.

**Theorem 2.3.** Suppose (H.1) holds. For all \( \phi^0 \in \mathcal{V}_A \) and \( \tau \in (0, \frac{2}{\mu + L_{fs} \wedge \frac{1}{T}}) \), if \( \sup_{m \in \mathbb{N}, \omega \in \Omega} (|\tilde{\phi}^m(\cdot, \omega)|_1 + |\tilde{\phi}^m(\cdot, \omega)|_2) < \infty \), and one of the conditions (i)-(vi) holds, then there exist constants \( c \in [0, 1) \) and \( C \geq 0 \) such that for a.s. \( \omega \in \Omega \) and for all \( m \in \mathbb{N}_0 \),

\[
|\tilde{\phi}^m(\cdot, \omega) - \phi^*|_0 \leq c^m |\phi^0 - \phi^*|_0 + C \sum_{j=0}^{m-1} c^{m-1-j} |\phi^{\tilde{\phi}^j}(\cdot, \omega) - \phi^{\tilde{\phi}^j}(\cdot, \omega)|_0,
\]

where \( \phi^* \in \mathcal{V}_A \) is the limit function in Theorem 2.2. Consequently, for all \( p \geq 1 \) and \( m \in \mathbb{N}_0 \),

\[
\mathbb{E}[|\tilde{\phi}^m - \phi^*|_0^p] \leq c^m |\phi^0 - \phi^*|_0 + C \sum_{j=0}^{m-1} c^{m-1-j} \mathbb{E}[|\phi^{\tilde{\phi}^j} - \phi^{\tilde{\phi}^j}|_0^p]^{\frac{1}{p}}.
\]

By Lemma 3.4, the condition \( \sup_{m \in \mathbb{N}} (|\tilde{\phi}^m|_1 + |\tilde{\phi}^m|_2) < \infty \) holds if there exists \( C > 0 \) such that for all \( m \in \mathbb{N}, \omega \in \Omega \), and \((t, x, x') \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n\), \( |\tilde{\phi}^m_t(\cdot, x, \omega)| \leq C \) and \( |\tilde{\phi}^m_t(x, \omega) - \tilde{\phi}^m_t(x', \omega)| \leq C|\omega - \omega'| \). This highlights the fact that the numerical approximations of the gradient directions must be sufficiently regular in space, to prevent a spatial oscillation of the iterates and to ensure the convergence of the iterates. This is a reasonable assumption as the exact gradient directions \((\phi^{\tilde{\phi}^m})_m \in \mathbb{N}_0 \) enjoy these properties (see Proposition 3.7 and Theorems 3.5 and 3.8), and any reasonable approximation \( \tilde{\phi}^m \) of \( \phi^m \) should retain these properties; see e.g., [2] for approximation schemes that preserve boundedness and Lipschitz continuity of exact solutions. It would be interesting to derive explicit conditions on model coefficients to ensure the required regularity of \( (\tilde{\phi}^m)_m \in \mathbb{N}_0 \). This would entail imposing precise dependencies of the Lipschitz regularity of \( \tilde{\phi}^m \) on the semi-norm \( [\tilde{\phi}^m]_1 \), and is left for future research.

### 3 Proofs

Throughout the rest of this work, we establish estimates with explicit dependence on the constants \( T, \rho, C_{fa}, L_{fa}, L_{fa}, \mu, \nu, C_g, L_h, \kappa_h, C_b \), which are important for the convergence of (1.9). For notational simplicity, we write \((x)_+ = \max(0, x)\) for all \( x \in \mathbb{R} \), and denote by \( C > 0 \) a generic constant, which depends on the remaining constants appearing in (H.1), and may take a different value at each occurrence. We shall refer to \( C > 0 \) as an absolute constant if its value is independent of the constants in (H.1). Dependence of \( C \) on important quantities will be indicated explicitly by \( C(\cdot) \), e.g., \( C(\phi) \) for \( \phi \in \mathcal{V}_A \).

#### 3.1 Auxiliary lemmas

In this section, we present some technical lemmas used in the subsequent analysis. The following lemma establishes stability of SDEs with non-Lipschitz drift coefficients. The upper bounds involve explicit dependence on relevant constants, whose proof is given in Appendix A.
Lemma 3.1. Let $T > 0$, and for each $i = 1, 2$, let $\mu_i \in \mathbb{R}$, $\nu_i \geq 0$, let $b^i : [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ and $\sigma^i : [0,T] \times \mathbb{R}^n \to \mathbb{R}^{n \times d}$ be measurable functions such that for all $t \in [0,T]$ and $x, x' \in \mathbb{R}^n$, \[
abla_{(x)} \mathbb{E} \left[ \int_t^T \frac{b^i_s(x') + |\sigma^i_s(x')|}{1 + |x'|} \, ds \right] < \infty, \quad (x - x', b^i_s(x) - b^i_s(x')) \leq \mu_i |x - x'|^2, \quad \text{and} \quad |\sigma^i_s(x) - \sigma^i_s(x')| \leq \nu_i |x - x'|, \text{and for each } (t, x) \in [0,T] \times \mathbb{R}^n, \text{let } X^{t,x,i} \in \mathcal{S}^2(t,T; \mathbb{R}^n) \text{ satisfy} \]
\[dX_s = b^i_s(X_s) \, ds + \sigma^i_s(X_s) \, dW_s, \quad s \in [t,T]; \quad X_t = x. \tag{3.1}\]
Then for all $p \geq 2$ there exists an absolute constant $C_{(p)}$ such that for all $t \in [0,T], x_1, x_2 \in \mathbb{R}^n$,
\[
\|X^{t,x_1,1} - X^{t,x_2,2}\|_{S^p} \leq C_{(p)} \mathbb{E} \left[ e^{T(2\mu_1 + C_{(p)} \nu_1^2)} + \sqrt{T} \|b^1(X^{t,x_2,2}) - b^2(X^{t,x_2,2})\|_{\mathcal{H}^p} \right. \\
\left. + \|\sigma^1(X^{t,x_2,2}) - \sigma^2(X^{t,x_2,2})\|_{\mathcal{H}^p} \right]. \tag{3.2}\]

If we further assume that $\sigma^1 \equiv \sigma^2$, then for all $(t, x) \in [0,T] \times \mathbb{R}^n$,
\[
\mathbb{E} \left[ |X^{t,x,1}_T - X^{t,x,2}_T|^2 \right] \leq \mathbb{E} \left[ \int_t^T |b^1_s(X^{t,x,2}_s) - b^2_s(X^{t,x,2}_s)|^2 e^{T(2\mu_1 + \nu_1^2 + 1)} \, ds \right]. \tag{3.3}\]

The following lemma establishes stability of BSDEs with monotone nonlinearity. It has been proved in [37] for $p = 1$ and in [7, Proposition 3.2] for $p > 1$.

Lemma 3.2. For each $i = 1, 2$ and $t \in [0,T]$, let $\xi^i \in L^2(\mathcal{F}_T; \mathbb{R}^n)$, $\gamma_i \geq 0$, $\mu_i \in \mathbb{R}$, $f^i : [t,T] \times \mathbb{R}^n \to \mathbb{R}^{n \times d}$ be such that for all $(y, z) \in \mathbb{R}^n \times \mathbb{R}^{n \times d}$, $(f^i_s(\cdot, y, z))_{s \in [t,T]}$ is progressively measurable, and for all $(s, \omega) \in [t,T] \times \Omega$, $y, y' \in \mathbb{R}^n$ and $z, z' \in \mathbb{R}^{n \times d}$, $|f^i_s(\cdot, y, z) - f^i_s(\cdot, y, z')| \leq \gamma_i |z - z'|$ and $(y - y', f^i_s(\cdot, y, z) - f^i_s(\cdot, y', z')) \leq \mu_i |y - y'|^2$, and let $(Y^i, Z^i) \in \mathcal{S}^2(t,T; \mathbb{R}^n) \times \mathcal{H}^2(t,T; \mathbb{R}^{n \times d})$ satisfy
\[
dY_s = -f^i_s(\cdot, Y_s, Z_s) \, ds + Z_s \, dW_s, \quad s \in [t,T]; \quad Y_T = \xi^i. \tag{3.4}\]

Then for all $p \geq 1$ and $\varepsilon \in (0,1)$, there exists an absolute constant $C_{(p, \varepsilon)} > 0$ such that for all $t \in [0,T]$ and $\alpha \geq \varepsilon^{-1} \gamma_i^2 + 2 \mu_i$,
\[
\mathbb{E} \left[ \sup_{s \in [t,T]} e^{\alpha_s} |Y^1_s - Y^2_s|^2 + \left( \int_t^T e^{\alpha_s} |Z^1_s - Z^2_s|^2 \, ds \right)^{p/2} \right] \\
\leq C_{(p, \varepsilon)} \mathbb{E} \left[ \sup_{s \in [t,T]} e^{\alpha_s} |Y^1_s - Y^2_s|^2 + \left( \int_t^T e^{\alpha_s} |Z^1_s - Z^2_s|^2 + |f^1_s(\cdot, Y^2_s, Z^2_s) - f^2_s(\cdot, Y^2_s, Z^2_s)| \, ds \right)^{p/2} \right]. \tag{3.5}\]

The next lemma estimates the monotonicity and Lipschitz continuity of $\partial_x H$. The proof follows directly from (1.4) and (H.1), and is given in Appendix A. Due to the presence of $(\partial_x \hat{b}_i(x))^\top y$ and the unboundedness of $\partial_x \hat{b}_i, \partial_x \hat{b}_i$ is not globally Lipschitz continuous in $y$.

Lemma 3.3. Suppose (H.1) holds, and let $H$ be defined by (1.4). Then for all $t \in [0,T], x, x' \in \mathbb{R}^n$, $a, a' \in A$, $y, y' \in \mathbb{R}^n$ and $z, z' \in \mathbb{R}^{n \times d}$,
\[

\begin{align*}
&\langle y - y', \partial_x H_t(x, a, y, z) - \partial_x H_t(x, a, y', z) \rangle \leq (\kappa_0 - \rho + \hat{L}_b) |y - y'|^2, \tag{3.3}\n&|\partial_x H_t(x, a, y, z) - \partial_x H_t(x', a', y, z')| \leq \left( \hat{L}_b |x - x'|^2 + \hat{L}_b (|x - x'| + |a - a'|) \right) |y| + \hat{L}_\sigma |x - x'| |z| \\
&\quad + \hat{L}_\sigma |z - z'| + \hat{L}_{f_x} (|x - x'| + |a - a'|). \tag{3.4}\n\end{align*}
\]

We then present a Lipschitz estimate for the proximal gradient mapping (1.9).
Lemma 3.4. Suppose (H.1) holds, and let $H^{re}$ be defined as in (1.3). Then for all $t \in [0, T]$, $x, x' \in \mathbb{R}^n$, $a, a' \in \mathbf{A}$, $y, y' \in \mathbb{R}^n$ and $\tau \in (0, \frac{2}{\mu + L_{fa}} \wedge \frac{1}{\nu}]$,

$$
|\text{prox}_{\tau \ell}(a - \tau \partial_a H_t^{re}(x, a, y)) - \text{prox}_{\tau \ell}(a' - \tau \partial_a H_t^{re}(x', a', y'))| \\
\leq \left(1 - \frac{1}{2} \left(\frac{\mu L_{fa}}{\mu + L_{fa}} + \nu\right)\right) |a - a'| + \tau C_b |y - y'| + \tau (L_b |y'| + L_{fa}) |x - x'|.
$$

Proof. For each $\tau > 0$, since $\tau \ell$ is proper, lower-semicontinuous and $\tau \nu$-strongly convex (cf. (2.4)), by Theorem 12.56 and Exercise 12.59 in [40],

$$
|\text{prox}_{\tau \ell}(x) - \text{prox}_{\tau \ell}(y)| \leq \frac{1}{1 + \tau \nu} |x - y|, \quad \forall x, y \in \mathbb{R}^k.
$$

Hence for any $t \in [0, T]$, $x, x' \in \mathbb{R}^n$, $a, a' \in \mathbf{A}$ and $y, y' \in \mathbb{R}^n$,

$$
|\text{prox}_{\tau \ell}(a - \tau \partial_a H_t^{re}(x, a, y)) - \text{prox}_{\tau \ell}(a' - \tau \partial_a H_t^{re}(x', a', y'))| \\
\leq \frac{1}{1 + \tau \nu} \left((a - \tau \partial_a H_t^{re}(x, a, y)) - (a' - \tau \partial_a H_t^{re}(x', a', y'))\right) \\
\leq \frac{1}{1 + \tau \nu} \left(|a - a'| \leq (\tau \partial_a H_t^{re}(x, a, y)) - (a' \partial_a H_t^{re}(x, a', y'))\right) \\
+ \frac{\tau}{1 + \tau \nu} |\partial_a H_t^{re}(x, a', y) - \partial_a H_t^{re}(x', a', y')|.
$$

We now estimate the two terms in (3.5) separately. Observe that $\partial_a H_t^{re}(x, a, y) = \tilde{b}_t(x)^\top y + \partial_a f_t(x, a)$ for all $(t, x, a, y) \in [0, T] \times \mathbb{R}^n \times \mathbf{A} \times \mathbb{R}^n$. Then by (2.7), (2.1) and (2.2), the second term in (3.5) can be bounded by:

$$
|\partial_a H_t^{re}(x, a', y) - \partial_a H_t^{re}(x', a', y')| \leq |\tilde{b}_t(x)^\top y - \tilde{b}_t(x')^\top y'| + |\partial_a f_t(x, a') - \partial_a f_t(x', a')| \\
\leq C_b |y - y'| + (L_b |y'| + L_{fa}) |x - x'|.
$$

To estimate the first term in (3.5), observe that for all $(t, x, y) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n$, by (2.6), (2.7), (2.2) and (2.3), $\mathbf{A} \ni a \mapsto H_t^{re}(x, a, y) \in \mathbb{R}$ is $\mu$-strongly convex, and $\mathbf{A} \ni a \mapsto \partial_a H_t^{re}(x, a, y) \in \mathbb{R}^k$ is $L_{fa}$-Lipschitz continuous, which along with [36, Theorem 2.1.12], implies for all $a, a' \in \mathbf{A}$,

$$
(\partial_a H_t^{re}(x, a, y) - \partial_a H_t^{re}(x, a', y), a - a') \\
\geq \frac{\mu L_{fa}}{\mu + L_{fa}} |a - a'|^2 + \frac{1}{\mu + L_{fa}} |\partial_a H_t^{re}(x, a, y) - \partial_a H_t^{re}(x, a', y)|^2.
$$

Hence for all $a, a' \in \mathbf{A}$ and $(t, x, y) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n$, and $\tau \in (0, \frac{2}{\mu + L_{fa}}]$,

$$
|\partial_a H_t^{re}(x, a, y) - (a' - \tau \partial_a H_t^{re}(x, a', y))|^2 \\
= |a - a'|^2 - 2\tau \langle a - a', (\partial_a H_t^{re}(x, a, y) - \partial_a H_t^{re}(x, a', y)) \rangle + \tau^2 |\partial_a H_t^{re}(x, a, y) - \partial_a H_t^{re}(x, a', y)|^2 \\
\leq \left(1 - 2\tau \frac{\mu L_{fa}}{\mu + L_{fa}}\right) |a - a'|^2 + \tau \left(\tau - \frac{2}{\mu + L_{fa}}\right) |\partial_a H_t^{re}(x, a, y) - \partial_a H_t^{re}(x, a', y)|^2 \\
\leq \left(1 - 2\tau \frac{\mu L_{fa}}{\mu + L_{fa}}\right) |a - a'|^2.
$$

Taking the square root of both sides of the above estimate and using the inequality $\sqrt{1 - \gamma \tau} \leq 1 - \gamma \tau / 2$ for all $\gamma, \tau \geq 0$ and $\gamma \tau \leq 1$ give that

$$
|(a - \tau \partial_a H_t^{re}(x, a, y)) - (a' - \tau \partial_a H_t^{re}(x, a', y))| \leq \left(1 - \frac{\tau \mu L_{fa}}{\mu + L_{fa}}\right) |a - a'|.
$$
This along with (3.5), (3.6) and $\frac{\tau}{1+\tau\nu} \leq \tau$ shows that for all $\tau \in (0, \frac{2}{\mu+L_{f_a}}],$

$$|\text{prox}_{\bar{\tau}}(a - \tau \partial_n H^e_t (x, a, y)) - \text{prox}_{\tau}(a' - \tau \partial_n H^e_t (x', a', y'))|$$

$$\leq \frac{1}{1 + \tau \nu} \left(1 - \frac{\mu L_{f_a}}{\mu + L_{f_a}}\right) |a - a'| + \tau C_{\delta} |y - y'| + \tau (L_{\delta} |y'| + L_{f_a}) |x - x'|.$$

Observe that for all $a, b, \tau \geq 0$ with $0 \leq \tau b \leq 1$, $1 - \tau a \leq (1 + \tau b) (1 - \frac{\tau a b}{2})$. Then setting $a = \frac{\mu L_{f_a}}{\mu + L_{f_a}}$ and $b = \nu$ in the inequality shows that the desired estimate holds with $\tau \in (0, \frac{2}{\mu+L_{f_a}} \land \frac{1}{\nu}].$ \hfill \Box

### 3.2 Uniform boundedness in time

To establish the boundedness of $\phi^n(t,0)$, we first prove the adjoint processes $(Y^{t,x,\phi}, \bar{Z}^{t,x,\phi})$ defined in (1.1) have bounded $p$-th moments.

**Proposition 3.5.** Suppose (H.1) holds. For each $\phi \in \mathcal{V}_A$ and $(t, x) \in [0, T] \times \mathbb{R}^n$, let $(Y^{t,x,\phi}, \bar{Z}^{t,x,\phi}) \in \mathcal{S}^2(t, T; \mathbb{R}^n) \times H^2(t, T; \mathbb{R}^{n \times d})$ be defined by (1.1). Then for all $p \geq 1$ there exists $C_{(p)} \geq 0$, such that for all $\phi \in \mathcal{V}_A$, $(t, x) \in [0, T] \times \mathbb{R}^n$,

$$\mathbb{E} \left[ \sup_{s \in [t, T]} e^{\alpha s} |Y^{t,x,\phi}_s|^2 p + \left( \int_t^T e^{\alpha s} |\bar{Z}^{t,x,\phi}_s|^2 ds \right)^p \right] \leq C_{(p)} \left( e^{\alpha T} C_g + C_{f_x} \left( \int_t^T e^{\alpha s} ds \right)^{2p} \right),$$

(3.7)

with $\alpha = 2(\kappa_b - \rho + L_b + L_\sigma^2)$. Consequently, there exists an absolute constant $C \geq 0$ such that for all $\phi \in \mathcal{V}_A$ and $(t, x) \in [0, T] \times \mathbb{R}^n$,

$$|Y^{t,x,\phi}_t| \leq C_Y := C(C_g + C_{f_x} T) e^{(\kappa_b - \rho + C)_+ T}.$$ 

(3.8)

**Proof.** Let $\bar{f}^1 : [t, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R}^n$ be such that for all $(s, \omega, y, z) \in [t, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d}$, $\bar{f}^1_t \omega, y, z = \partial_x H_s(X^{t,x,\phi}_s, \phi_s(X^{t,x,\phi}_s, \omega), y, z)$, where $H$ is defined in (1.4), and $X^{t,x,\phi}$ is defined by (1.10). Then by Lemma 3.3, $|\bar{f}^1_t (\omega, y, z) - \bar{f}^1_t (\omega, y, z')| \leq L_\sigma |z - z'|$, and

$$\langle y - y', \bar{f}^1_t (\omega, y, z) - \bar{f}^1_t (\omega, y', z) \rangle \leq (\kappa_b - \rho + L_b) |y - y'|^2.$$ 

(3.9)

By applying Lemma 3.2 with $f^1 = \bar{f}^1, \xi^1 = \partial_x g(X^{t,x,\phi}_t), f^2 = 0, \xi^2 = 0, Y^2 = Z^2 = 0, \varepsilon = 1/2$ and $\alpha = 2(\kappa_b - \rho + L_b + L_\sigma^2)$, it holds with some constant $C \geq 0$ that, for all $p \geq 1$,

$$\mathbb{E} \left[ \sup_{s \in [t, T]} e^{\alpha s} |Y^{t,x,\phi}_s|^2 p + \left( \int_t^T e^{\alpha s} |\bar{Z}^{t,x,\phi}_s|^2 ds \right)^p \right] \leq C_{(p)} \mathbb{E} \left[ e^{\alpha T} |\partial_x g(X^{t,x,\phi}_T)|^2 p + \left( \int_t^T e^{\alpha s} |\partial_x f_s(X^{t,x,\phi}_s, \partial_x \phi(X^{t,x,\phi}_s))| ds \right)^{2p} \right],$$

$$\leq C_{(p)} \left( e^{\alpha T} C_g + C_{f_x} \left( \int_t^T e^{\alpha s} ds \right)^{2p} \right),$$

where the last inequality follows from (2.1) and (2.5).

Consequently, by setting $p = 1$ in the above estimate and taking the square root of both sides, there exists an absolute constant $C \geq 0$ such that for all $(t, x) \in [0, T] \times \mathbb{R}^n$,

$$|Y^{t,x,\phi}_t| \leq C e^{T/2} \left( C_g + C_{f_x} \int_t^T e^{\alpha s} ds \right) \leq C(C_g + C_{f_x} T) e^{(\kappa_b) T}.$$ 

(3.10)

This finishes the proof of the proposition. \hfill \Box
Based on Lemma 3.4 and Proposition 3.5, we now establish the uniform boundedness of \( \phi_t^m(0) \).

**Theorem 3.6.** Suppose (H.1) holds. Let \( a_0 \in A \) and \( z^{a_0} \in \mathbb{R}^k \) such that \( z^{a_0} \in \partial^s \ell(a_0). \) For each \( \phi^0 \in \mathcal{V}_A \), \( \tau > 0 \) and \( m \in \mathbb{N} \), let \( \phi^m \) be defined by (1.9). Then for all \( \phi^0 \in \mathcal{V}_A \) and \( \tau \in (0, \frac{2}{\mu + L_{fa}} \wedge \frac{1}{\nu'}) \),

\[
\sup_{m \in \mathbb{N}, t \in [0, T]} |\phi_t^m(0)| \leq C(\phi^0) := \sup_{t \in [0, T]} |\phi_t^0(0)| + 2 \left( \frac{1}{\mu + \nu'} C_Y C_Y + \frac{2}{\mu + \nu'} (C_f + L_f |a_0| + |z^{a_0}|) + |a_0| \right)
+ 4 C_Y C_Y \left( \frac{\mu + L_{fa}}{\mu + \nu'} \right),
\]

(3.11)

where the constant \( C_Y \geq 0 \) is defined by (3.8).

**Proof.** For each \( (t, x, a) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \) and \( u \in \mathbb{R}^n \), let \( h_t(x, a) = f_t(x, a) + \ell(a) \) and \( \phi^*_t[u] = \arg \min_{a \in \mathbb{R}^k} (H^e_t(0, a, u) + \ell(a)) \), with \( H^e \) defined as in (1.3). By (1.3) and (2.6),

\[
\phi_t^*[u] = \arg \min_{a \in \mathbb{R}^k} (\langle \partial h_t(0, a), u \rangle + h_t(0, a)) = \partial_z h_t^\ast(0, -\nabla^\tau h_t^\ast(0, u)),
\]

(3.12)

where \( h^*: [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^k \) is the convex conjugate function of \( h \) defined by

\[
h_t^\ast(x, z) := \text{sup}\{ \langle a, z \rangle - h_t(x, a) \mid a \in \mathbb{R}^k \}.
\]

(3.13)

Note that by (H.1), for each \( (t, x) \in [0, T] \times \mathbb{R}^n \), the function \( a \mapsto h_t(x, a) \) is proper, lower semicontinuous and \( (\mu + \nu') \)-strongly convex, which implies that \( z \mapsto h_t^\ast(x, z) \) is finite and differentiable on \( \mathbb{R}^k \), \( z \mapsto \partial_z h_t^\ast(x, z) \) is \( \frac{1}{\mu + \nu'} \)-Lipschitz continuous, and \( \partial_z h_t^\ast(x, z) = \arg \max_{a \in \mathbb{R}^k} \langle (a, z) - h_t(x, a) \rangle \).

Let \( a_0 \in \text{dom } \ell \) and \( z^{a_0} \in \mathbb{R}^k \) such that \( z^{a_0} \in \partial^s \ell(a_0) \neq \emptyset \). Then for all \( t \in [0, T] \), by the differentiability and convexity of \( a \mapsto f_t(0, a), \partial_a f_t(0, a_0) + z^{a_0} \in \partial^s h_t(0, a_0) \) (see [40, Corollary 10.9]). Hence, by the fact that \( \partial_z h_t^\ast(0, 0) = \arg \min_{a \in \mathbb{R}^k} h_t(0, a) \) and the \( (\mu + \nu) \)-strong convexity of \( a \mapsto h_t(0, a) \),

\[
h_t(0, a_0) \geq h_t(0, \partial_z h_t^\ast(0, 0)) \geq h_t(0, a_0) + \langle \partial_a f_t(0, a_0) + z^{a_0}, \partial_z h_t^\ast(0, 0) - a_0 \rangle + \frac{\mu + \nu'}{2} |\partial_z h_t^\ast(0, 0) - a_0|^2,
\]

which implies that

\[
|\partial_z h_t^\ast(0, 0) - a_0| \leq \frac{2}{\mu + \nu'} |\partial_a f_t(0, a_0)| + z^{a_0}| \leq \frac{2}{\mu + \nu'} (C_f + L_f |a_0| + |z^{a_0}|),
\]

where the last inequality follows from (2.2). Hence by using (2.6) and the \( \frac{1}{\mu + \nu'} \)-Lipschitz continuity of \( z \mapsto \partial_z h_t^\ast(0, z) \), for all \( t \in [0, T] \) and \( u \in \mathbb{R}^n \),

\[
|\phi_t^*[u]| \leq |\partial_z h_t^\ast(0, -\nabla^\tau h_t^\ast(0, u)) - \partial_z h_t^\ast(0, 0)| + |\partial_z h_t^\ast(0, 0)|
\leq \frac{1}{\mu + \nu'} C_b |u| + \frac{2}{\mu + \nu'} (C_f + L_f |a_0| + |z^{a_0}|) + |a_0|.
\]

(3.14)

Let \( \phi^0 \in \mathcal{V}_A \) and \( \tau \in \left(0, \frac{2}{\mu + L_{fa}} \wedge \frac{1}{\nu'} \right] \) be fixed in the subsequent analysis. For each \( t \in [0, T] \), let \( c^0_t := \phi_t^0[Y^t_{\ell,0,\phi^0}] \). Observe that for all \( t \in [0, T], c \in \mathbb{R}^k \) and \( u \in \mathbb{R}^n \), by the definition of \( \text{prox}_{\tau \ell} \) in (1.8),

\[
c = \arg \min_{a \in \mathbb{R}^k} (H^e_t(0, a, u) + \ell(a)) \iff 0 \in \partial_a H^e_t(0, c, u) + \partial^s \ell(c)
\]

\[
\iff 0 \in (c - (c - \tau \partial_a H^e_t(0, c, u))) + \partial^s (\tau \ell)(c) \iff c = \text{prox}_{\tau \ell}(c - \tau \partial_a H^e_t(0, c, u)).
\]

\footnote{For any \( a \in A = \text{dom } \ell \), the convex subdifferential of \( \ell \) at \( a \) is defined as \( \partial^s \ell(a) := \{ z \in \mathbb{R}^k \mid \ell(a') - \ell(a) \geq \langle z, a' - a \rangle, \forall a' \in \mathbb{R}^k \} \). As \( \ell \) is proper, lower semicontinuous and convex, \( \partial^s \ell(\cdot) \) is nonempty on a dense subset of \( A \) by [1, Corollary 2.44].}
Then for all \( t \in [0, T] \), the fact that \( c^0_t = \arg \min_{a \in \mathbb{R}^k} (H^e_t(0, a, Y^{t,0,\phi}_t) + \ell(a)) \) implies that
\[
\phi^m_t = \text{prox}_{\tau \ell}(c^0_t - \tau \partial_a H^e_t(0, c^0_t, Y^{t,0,\phi}_t)).
\]
Hence for all \( m \in \mathbb{N}_0 \) and \( t \in [0, T] \), (1.9) and Lemma 3.4 imply that
\[
|\phi^m_{t+1}(0) - c^0_t| = |\text{prox}_{\tau \ell}(\phi^m_t(0) - \tau \partial_a H^e_t(0, \phi^m_t(0), Y^{t,0,\phi}_t)) - \text{prox}_{\tau \ell}(c^0_t - \tau \partial_a H^e_t(0, c^0_t, Y^{t,0,\phi}_t))| \\
\leq \left(1 - \frac{\tau}{2} \left(\frac{\mu Lfa}{\mu + Lfa + \nu}\right)\right)|\phi^m_t(0) - c^0_t| + \tau Cb|Y^{t,0,\phi}_t - Y^{t,0,\phi}_t|.
\]
By Proposition 3.5, there exists an absolute constant \( C \geq 0 \) such that for all \( t \in [0, T] \) and \( \phi \in \mathcal{V}_A \),
\[
|Y^{t,0,\phi}_t| \leq C(C_g + LfaT)(e^{\alpha T} + T),
\]
with \( \alpha = \kappa_b - \rho + L_b + L_a^2 \), which implies that for all \( m \in \mathbb{N}_0 \),
\[
|\phi^m_t(0) - c^0_t| \leq |\phi^0_t(0) - c^0_t| + 2\bar{C}_b \frac{\mu + Lfa}{(\mu + \nu)Lfa + \mu \nu} \sup_{m \in \mathbb{N}_0} |Y^{t,0,\phi}_t - Y^{t,0,\phi}_t| \\
\leq |\phi^0_t(0)| + |c^0_t| + 4C_Y \bar{C}_b \frac{\mu + Lfa}{(\mu + \nu)Lfa + \mu \nu}.
\]
By (3.14), for all \( t \in [0, T], |c^0_t| \leq \frac{1}{\mu + \nu} \bar{C}_b C_Y + \frac{2}{\mu + \nu} (Cfa + Lfa |a_0| + |z^{a_0}|) + |a_0|, \) from which for all \( m \in \mathbb{N}_0 \) and \( t \in [0, T], \)
\[
|\phi^m_t(0)| \leq |\phi^0_t(0)| + 2|c^0_t| + 4C_Y \bar{C}_b \frac{\mu + Lfa}{(\mu + \nu)Lfa + \mu \nu} \\
\leq \sup_{t \in [0, T]} |\phi^0_t(0)| + 2\left(\frac{1}{\mu + \nu} \bar{C}_b C_Y + \frac{2}{\mu + \nu} (Cfa + Lfa |a_0| + |z^{a_0}|) + |a_0|\right) + 4C_Y \bar{C}_b \frac{\mu + Lfa}{(\mu + \nu)Lfa + \mu \nu}.
\]
This finishes the proof of the uniform boundedness of \( \phi^m_t(0) \).

3.3 Uniform Lipschitz continuity in space

This section proves that the iterates \( (\phi^m)_{m \in \mathbb{N}_0} \) satisfy \( \sup_{m \in \mathbb{N}_0} |\phi^m_1| < \infty \) if one of the conditions (i)-(vi) holds. The following proposition estimates the Lipschitz continuity of the function \( x \mapsto Y^{t,x,\phi}_t \) in terms of the Lipschitz continuity of a given feedback control \( \phi \in \mathcal{V}_A \).

**Proposition 3.7.** Suppose (H.1) holds. For each \( \phi \in \mathcal{V}_A \) and \( (t, x) \in [0, T] \times \mathbb{R}^n \), let \( (Y^{t,x,\phi}_t, Z^{t,x,\phi}_t) \in S^2(t, T; \mathbb{R}^n) \) be defined by (1.11). Then there exists a constant \( C \geq 0 \) such that for all \( \phi \in \mathcal{V}_A \), \( t \in [0, T], x, x' \in \mathbb{R}^n, \)
\[
|Y^{t,x,\phi}_t - Y^{t,x',\phi}_t| \leq L_Y(\|\phi\|_1) |x - x'|,
\]
where for each \( M \geq 0 \), the constant \( L_Y(M) \geq 0 \) is defined by
\[
L_Y(M) := C \left[ L_g e^{(2L_b M + 2\kappa_i + C)_T} + e^{\alpha T}_T + \left(\left(1 + M L_b M (C_g + Cfa T) e^{(\kappa_b - \rho + C)_T} + T \right) + Lfa (1 + M) e^{\alpha T} + \frac{\sqrt{T}}{\alpha} e^{\alpha T} + Lfa e^{\alpha T} \right) + e^{2L_b M + 2\kappa_i + C}) T \right],
\]
\( \alpha := \kappa_b - \rho + L_b + L_a^2 \).

**Proof.** Let \( f_1, f_2 : [t, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) be such that for all \( (s, \omega, y, z) \in [t, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^n \),
\[
f^1_{s}(\omega, y, z) = \partial_x H_s(X^{t,x,\phi}_s(\omega), \phi_s(X^{t,x,\phi}_s(\omega)), y, z), \\
f^2_{s}(\omega, y, z) = \partial_y H_s(X^{t,x,\phi}_s(\omega), \phi_s(X^{t,x,\phi}_s(\omega)), y, z),
\]
and let \( f^3_{s}(\omega, y, z) = \partial_z H_s(X^{t,x,\phi}_s(\omega), \phi_s(X^{t,x,\phi}_s(\omega)), y, z), \)
where $H$ is defined by (1.4), and for each $\phi \in \mathcal{V}_A$, $X^{t,x,\phi} \in \mathcal{S}^2(t,T;\mathbb{R}^n)$ is defined by (1.10).

By using (3.9) and applying Lemma 3.2 with $p = 1$, $f^1 = \bar{f}^1$, $\xi^1 = \partial_x g(X^{t,x,\phi}_t)$, $f^2 = \bar{f}^2$, $\xi^2 = \partial_x g(X^{t,x',\phi}_t)$, $(\nu^2, Z^2) = (\nu^{t,x,\phi}, Z^{t,x,\phi})$ and $\varepsilon = 1/2$, there exists a absolute constant $C \geq 0$ such that

\[
E \left[ \sup_{s \in [t,T]} e^{\tilde{\alpha}s} |Y_s^{t,x,\phi} - Y_s^{t,x',\phi}|^2 + \int_t^T e^{\tilde{\alpha}s} |Z_s^{t,x,\phi} - Z_s^{t,x',\phi}|^2 \, ds \right] 
\leq C \mathcal{E} \left( e^{\tilde{\alpha}T} |\partial_x g(X^{t,x,\phi}_t) - \partial_x g(X^{t,x',\phi}_t)|^2 + \left( \int_t^T e^{\tilde{\alpha}s} \left| \tilde{f}_s^{1}(\cdot, Y_s^{t,x,\phi}, Z_s^{t,x,\phi}) - \tilde{f}_s^{2}(\cdot, Y_s^{t,x',\phi}, Z_s^{t,x',\phi}) \right| \, ds \right)^2 \right) \]  

(3.17)

where we defined $\tilde{\alpha} := 2(\kappa_b^2 + \rho + L_b + L_2^2)$ above and hereafter. Recall that in the subsequent analysis, $C$ denotes a generic constant independent of $T, \kappa_b, C_b, C_f, L_f, \mu, L_f, C_g, L_g$.

We now estimate the two terms on the right-hand side of (3.17). Let $b^1, b^2 : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ be such that for all $(t, x) \in [0, T] \times \mathbb{R}^n$, $b^1_t(x) = b^2_t(x) = b_t(x, \phi_t(x))$, and let $\Delta X^{t,x,\phi} = X^{t,x,\phi} - X^{t,x',\phi}$. Then by (2.8) and (2.9), for all $(t, x, x') \in \mathbb{R}^n$, $\langle x - x', b^1_t(x) - b^2_t(x') \rangle \leq \langle x - x', \hat{b}_t(x) - \hat{b}_t(x') \rangle + \tilde{b}_t(x) \phi_t(x) - \hat{b}_t(x') \phi_t(x'))$ $\leq \kappa_b |x - x'|^2 + L_b |x - x'| \left( |x - x'| + |\phi(x) - \phi(x')| \right) \leq (\kappa_b + L_b(1 + |\phi(x)|)) |x - x'|^2.

By Lemma 3.1 for $p \geq 2$ and (2.10), for all $x, x' \in \mathbb{R}^n$, $\|\Delta X^{t,x,\phi}\|_{S^p} \leq C_p e^{T(2(\kappa_b^2 + |\phi_1|) + C(\nu^2) + |x - x'|}, \quad (3.18)$

from which by setting $p = 2$ and using (2.5), we obtain

\[
e^{-\tilde{\alpha}T} \mathcal{E} \left( e^{\tilde{\alpha}T} |\partial_x g(X^{t,x,\phi}_t) - \partial_x g(X^{t,x',\phi}_t)|^2 \right)^{1/2} \leq C L_g e^{(T-0)\tilde{\alpha}/2 + T(2(\kappa_b^2 + L_b(1 + |\phi_1|)) + C)} |x - x'|. \quad (3.19)
\]

We then proceed to estimate the second term in (3.17). Note that for all $t \in [0, T], x, x' \in \mathbb{R}^n$, $\phi \in \mathcal{V}_A, (y, z) \in \mathbb{R}^n \times \mathbb{R}^{n \times d}$, by Lemma 3.3,

\[
|\partial_x H_t(x, \phi_t(x), y, z) - \partial_x H_t(x', \phi_t(x'), y, z)| \leq \left( L_b |x - x'| + L_b |x - x'| + |\phi_t(x) - \phi_t(x')| \right) |y| + L_\sigma |x - x'| |z| + L_f z |x - x'| + L_f z |x - x'| + |\phi_t(x) - \phi_t(x')| \leq \left( L_b + L_b(1 + |\phi_1|) \right) |y| + L_f z (1 + |\phi_1|) + L_\sigma |z| |x - x'|,
\]

which along with the Cauchy-Schwarz inequality implies that

\[
E \left[ \left( \int_t^T e^{\tilde{\alpha}s} \left| \tilde{f}_s^{1}(\cdot, Y_s^{t,x,\phi}, Z_s^{t,x,\phi}) - \tilde{f}_s^{2}(\cdot, Y_s^{t,x',\phi}, Z_s^{t,x',\phi}) \right| \, ds \right)^2 \right]^{1/2} \leq \mathcal{E} \left[ \left( \int_t^T e^{\tilde{\alpha}s} (C + L_b(1 + |\phi_1|)) |Y_s^{t,x,\phi}| |x - x'| + L_f z (1 + |\phi_1|) + L_\sigma |Z_s^{t,x'}| \right) |\Delta X^{t,x,\phi}_s| \, ds \right]^{2/1} \leq \mathcal{E} \left[ \left( \int_t^T e^{\tilde{\alpha}s} (C + L_b(1 + |\phi_1|)) |Y_s^{t,x,\phi}| |x - x'| + L_f z (1 + |\phi_1|) + C |Z_s^{t,x'}| \right) \, ds \right]^{1/4} |\Delta X^{t,x,\phi}| \quad (3.20)
\]

\[
\leq \left( \mathcal{E} \left[ \left( \int_t^T e^{\tilde{\alpha}s} (C + L_b(1 + |\phi_1|)) |Y_s^{t,x,\phi}| + L_f z (1 + |\phi_1|) \right) \, ds \right]^{1/4} \right) |\Delta X^{t,x,\phi}| \quad (3.20)
\]

\[
+ C \mathcal{E} \left[ \left( \int_t^T e^{\tilde{\alpha}s} |Z_s^{t,x'}| \, ds \right) \right]^{1/4} |\Delta X^{t,x,\phi}| \quad (3.20)
\]

18
By Proposition 3.5, there exists an absolute constant \( C \geq 0 \) such that for all \((t, x') \in [0, T] \times \mathbb{R}^n\),
\[
|Y_t^{t,x',\phi}| \leq C_Y := C(C_g + C_{f_x}T)e^{(\kappa_\rho + C) + T}.
\] (3.21)

The Markovian property of \( Y^{t,x',\phi} \) implies that \( Y^{s,t,x',\phi} = Y^{s,x',\phi} \) (see e.g., [46, Theorem 5.1.3]), which subsequently shows that
\[
\mathbb{E} \left[ \left( \int_t^T e^{\frac{\alpha s}{2}Z_s^{t,x',\phi}} |dV_s| \right)^{\frac{4}{2}} \right] \leq \left( \left( \int_t^T e^{\frac{\alpha s}{2}|Z_s^{t,x',\phi}|^2} |dV_s| \right)^{\frac{1}{2}} \right)^{\frac{4}{2}} 
\] (3.22)
\[
\leq \left( (1 + L_b|\phi|_1)C_Y + L_{f_x}(1 + |\phi|_1) \right) \int_t^T e^{\frac{\alpha s}{2}} ds.
\]

On the other hand, by the Cauchy-Schwarz inequality and Proposition 3.5 with \( p = 2 \), there exists an absolute constant \( C \geq 0 \) such that
\[
\mathbb{E} \left[ \left( \int_t^T e^{\frac{\alpha s}{2}|Z_s^{t,x',\phi}|} |dV_s| \right)^{\frac{4}{2}} \right] \leq \sqrt{T - t} \mathbb{E} \left[ \left( \int_t^T e^{\frac{\alpha s}{2}|Z_s^{t,x',\phi}|^2} |dV_s| \right)^{\frac{1}{2}} \right]^{\frac{4}{2}} 
\] (3.23)
\[
\leq C\sqrt{T - t} \left( e^{\frac{\alpha T}{2}C_g} + C_{f_x} \int_t^T e^{\frac{\alpha s}{2}} ds \right). \]

Combining (3.18) (with \( p = 4 \)), (3.20), (3.22), and (3.23) gives
\[
\mathbb{E} \left[ \left( \int_t^T e^{\frac{\alpha s}{2}|Z_s^{t,x',\phi}|} |dV_s| \right)^{\frac{4}{2}} \right] \leq C \left( (1 + L_b|\phi|_1)C_Y + L_{f_x}(1 + |\phi|_1) \right) \int_t^T e^{\frac{\alpha s}{2}} ds
\]
\[
+ \sqrt{T} \left( e^{\frac{\alpha T}{2}C_g} + C_{f_x} \int_t^T e^{\frac{\alpha s}{2}} ds \right) \left( e^{T(2(\kappa_\rho + L_b|\phi|_1) + C)} + |x - x'| \right),
\]
with \( C_Y \) defined in (3.21). Consequently, by using (3.17), and (3.19) and the identity that
\[
e^{-\frac{\alpha t}{2}} \int_t^T e^{\frac{\alpha s}{2}} ds = \frac{2}{\alpha} \left( e^{\frac{\alpha}{2}(T-t)} - 1 \right),
\]
\[
|Y_t^{t,x,\phi} - Y_t^{t,x',\phi}| \leq C \left[ L_g e^{(T-t)\frac{\alpha}{2} + T(2(\kappa_\rho + L_b|\phi|_1) + C)} + \right.
\]
\[
+ \left( \left( (1 + L_b|\phi|_1)(C_g + C_{f_x}T)e^{(\kappa_\rho + C) + T} + L_{f_x}(1 + |\phi|_1) \right) \frac{2}{\alpha} \left( e^{\frac{\alpha}{2}(T-t)} - 1 \right) \right.
\]
\[
+ \sqrt{T} \left( e^{\frac{\alpha T}{2}C_g} + C_{f_x} \frac{2}{\alpha} \left( e^{\frac{\alpha}{2}(T-t)} - 1 \right) \right) e^{T(2(\kappa_\rho + L_b|\phi|_1) + C)} \right] |x - x'|.
\]

Then the facts that for all \( \alpha \in \mathbb{R}, [0, T] \ni t \mapsto \frac{\alpha}{2} \left( e^{\frac{\alpha}{2}(T-t)} - 1 \right) \) is maximized at \( t = 0 \), and \( \alpha = 2(\kappa_\rho - \rho + L_b + L_{\rho}^2) \) lead to the desired Lipschitz estimate uniformly in \( t \). \( \square \)

With Proposition 3.7 in hand, we prove that under suitable assumptions, for any initial guess \( \phi^0 \in \mathcal{V}_\Lambda \), the sequence of feedback controls \((\phi^m)_{m \in \mathbb{N}_0}\) generated by (1.9) is uniformly Lipschitz continuous. For notational simplicity, let \( C > 0 \) be a constant such that (3.8) and (3.15) hold, \( C_Y \)}
and \( \alpha \) be defined in (3.8) and (3.16), respectively, and for each \( \phi^0 \in \mathcal{V}_A \), define
\[
A_1 := C_b e \left( (L_g + \sqrt{T} C_g) e^{\alpha_+ T} + \frac{e^{\alpha_+ T - 1}}{\alpha} \left( (C_g + C_{fx} T) e^{\alpha_+ T} + L_{fx} + \sqrt{T} C_{fx} \right) \right)
\]
\[
A_2 := C_b e^{\frac{\alpha T - 1}{\alpha}} \left( (C_g + C_{fx} T) e^{\alpha_+ T} L_b + L_{fx} \right),
\]
\[
\mu_0 := \frac{1}{4} \left( \frac{\mu L_{fa}}{\mu + L_{fa} + \nu} \right), \quad K := \max \left\{ 2TL_b[\phi^0]_1, \frac{2TL_b A_1 + 2TL_b (L_b C_Y + L_{fa})}{\mu_0} + 1 \right\}
\]  

(3.24)

**Theorem 3.8.** Suppose (H.1) holds. For each \( \phi^0 \in \mathcal{V}_A \), \( \tau > 0 \) and \( m \in \mathbb{N} \), let \( \phi^m \) be defined by (1.9) with the initial guess \( \phi^0 \) and stepsize \( \tau \). Let \( C \geq 0 \) be a constant such that (3.8) and (3.15) hold, let \( C_Y \geq 0 \) be defined in (3.8), let \( \alpha \in \mathbb{R} \) be defined in (3.16), and let \( A_1, A_2, \mu_0, K \geq 0 \) be defined in (3.24). Then for all \( \phi^0 \in \mathcal{V}_A \) satisfying
\[
2TL_b A_1 e^{(2\kappa_b + C)T + K} \leq \mu_0, \quad \text{and} \quad A_2 (e^{(2\kappa_b + C)T + K} + 1) \leq \mu_0,
\]
and for all \( \tau \in (0, \frac{2}{\mu + L_{fa}}) \) and \( m \in \mathbb{N}_0 \),
\[
[\phi^m]_1 \leq L_{(\phi^0)} := [\phi^0]_1 + \frac{1}{\mu_0} \left( L_b C_Y + L_{fa} + A_1 (e^{(2\kappa_b + C)T + K} + 1) \right).
\]  

(3.25)

**Proof.** Throughout this proof, let \( \phi^0 \in \mathcal{V}_A \) and \( \tau \in (0, \frac{2}{\mu + L_{fa}}) \) be fixed. Suppose that \( \phi^m \in \mathcal{V}_A \) for some \( m \in \mathbb{N}_0 \). For all \( (t, x, x') \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \), by applying Lemma 3.4 with \( a = \phi^m_t(x), a' = \phi^m_t(x') \), \( y = Y^t_{t,x,\phi^m} \), \( y' = Y^t_{t,x',\phi^m} \),
\[
|\phi^m_{t+1}(x) - \phi^m_{t+1}(x')| \leq \left( 1 - \tau \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) |\phi^m_t(x) - \phi^m_t(x')| + \tau C_b |Y^t_{t,x,\phi^m} - Y^t_{t,x',\phi^m}|
\]
\[
+ \tau (L_b |Y^t_{t,x,\phi^m} + L_{fa}) |x - x'|.
\]

By using the Lipschitz continuity of \( \phi^m \), and the Lipschitz continuity and uniform boundedness of the mapping \((t, x) \mapsto Y^t_{t,x,\phi^m}\) (see Propositions 3.5 and 3.7), we further deduce
\[
|\phi^m_{t+1}(x) - \phi^m_{t+1}(x')| \leq \left( [\phi^m]_1 \left( 1 - \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) + \tau C_b L_Y ([\phi^m]_1 + \tau (L_b C_Y + L_{fa}) \right) |x - x'|,
\]
where \( C_Y \) is defined by (3.8) and \( L_Y ([\phi^m]_1) \) is defined by (3.16). Consequently, we have
\[
[\phi^{m+1}]_1 \leq [\phi^m]_1 \left( 1 - \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) + \tau (L_b C_Y + L_{fa}) + \tau C_b L_Y ([\phi^m]_1).
\]  

(3.27)

In the sequel, we aim to establish a uniform bound of \( ([\phi^m]_1)_{m \in \mathbb{N}_0} \) based on (3.27). Observe from the definition of \( L_Y ([\phi^m]_1) \) in (3.16) that
\[
L_Y ([\phi^m]_1) := C \left[ L_g e^{(2L_b[\phi^m]_1 + 2\kappa_b + C)T} e^{\alpha T} + \left( (1 + L_b[\phi^m]_1) (C_g + C_{fx} T) e^{(\kappa_b + \rho + C)T} + L_{fx} (1 + [\phi^m]_1) e^{\alpha T - 1} + \sqrt{T} \left( e^{\alpha T} C_g + C_{fx} e^{\alpha T - 1} \right) e^{(2L_b[\phi^m]_1 + 2\kappa_b + C)T} \right) \right.
\]
\[
\times \left( e^{(2L_b[\phi^m]_1 + 2\kappa_b + C)T} + 1 \right) + \left( (C_g + C_{fx} T) e^{(\kappa_b + \rho + C)T} L_b + L_{fx} \right) \frac{e^{\alpha T - 1}[\phi^m]_1 \left( e^{(2L_b[\phi^m]_1 + 2\kappa_b + C)T} + 1 \right)}{\alpha} \right]
\]
\[
+ \left( (C_g + C_{fx} T) e^{(\kappa_b + \rho + C)T} L_b + L_{fx} \right) \frac{e^{\alpha T - 1}[\phi^m]_1 \left( e^{(2L_b[\phi^m]_1 + 2\kappa_b + C)T} + 1 \right)}{\alpha} \right].
\]  

(3.28)
Let \( A_1, A_2, \mu_0, K \) be defined as in (3.24). Then by writing \( \tilde{A}_1 := 2TL_\delta A_1 \) and \( [\tilde{\phi}^m]_1 := 2TL_\delta [\phi^m]_1 \) for all \( m \in \mathbb{N}_0 \), multiplying both sides of (3.27) by \( 2TL_\delta \) and using (3.28), we have

\[
[\tilde{\phi}^{m+1}]_1 \leq [\tilde{\phi}^m]_1 (1 - 2\mu_0 \tau) + 2\tau TL_\delta (L_\delta C_Y + L_{fa}) + \tau \left( \tilde{A}_1 (e^{(2\kappa_\delta + C)T + [\tilde{\phi}^m]_1} + 1) + A_2 [\tilde{\phi}^m]_1 (e^{(2\kappa_\delta + C)T + [\tilde{\phi}^m]_1} + 1) \right).
\] (3.29)

Now we prove by induction that \( \text{sup}_{m \in \mathbb{N}_0} [\tilde{\phi}^m]_1 \leq K \) under the conditions that

\[
\tilde{A}_1 e^{(2\kappa_\delta + C)T + K} \leq \mu_0, \quad \text{and} \quad A_2 (e^{(2\kappa_\delta + C)T + K} + 1) \leq \mu_0.
\] (3.30)

The statement holds for \( m = 0 \) by the definition of \( K \). Suppose that \( [\tilde{\phi}^m]_1 \leq K \) for some \( m \in \mathbb{N}_0 \). Then by the induction hypothesis, (3.29) and (3.30),

\[
[\tilde{\phi}^{m+1}]_1 \leq [\tilde{\phi}^m]_1 (1 - 2\mu_0 \tau) + 2\tau TL_\delta (L_\delta C_Y + L_{fa}) + \tau \left( \tilde{A}_1 + \mu_0 + \mu_0 [\tilde{\phi}^m]_1 \right) = [\tilde{\phi}^m]_1 (1 - \mu_0 \tau) + \tau \left( 2TL_\delta (L_\delta C_Y + L_{fa}) + \tilde{A}_1 + \mu_0 \right)
\] (3.31)

\[
\leq K (1 - \mu_0 \tau) + \tau \mu_0 K \leq K.
\]

This finishes the proof of the fact \( \text{sup}_{m \in \mathbb{N}_0} [\tilde{\phi}^m]_1 \leq K \). Substituting this a-priori bound into (3.29) and using (3.30) give that

\[
[\tilde{\phi}^{m+1}]_1 \leq [\tilde{\phi}^m]_1 (1 - 2\mu_0 \tau) + 2\tau TL_\delta (L_\delta C_Y + L_{fa}) + \tau \left( \tilde{A}_1 (e^{(2\kappa_\delta + C)T + K} + 1) + A_2 [\tilde{\phi}^m]_1 (e^{(2\kappa_\delta + C)T + K} + 1) \right)
\]

from which one can deduce that for all \( m \in \mathbb{N}_0 \),

\[
[\tilde{\phi}^m]_1 \leq [\tilde{\phi}^0]_1 + \frac{1}{\mu_0} \left( 2TL_\delta (L_\delta C_Y + L_{fa}) + \tilde{A}_1 (e^{(2\kappa_\delta + C)T + K} + 1) \right).
\]

Dividing both sides of the above inequality by \( 2TL_\delta \) shows

\[
[\phi^m]_1 \leq [\phi^0]_1 + \frac{1}{\mu_0} \left( L_\delta C_Y + L_{fa} + A_1 (e^{(2\kappa_\delta + C)T + K} + 1) \right).
\]

with constants \( A_1, K, \mu_0 \) defined as in (3.24).

\[\square\]

### 3.4 Contraction in a weighted sup-norm

Based on the uniform Lipschitz continuity of \( (\phi^m)_{m \in \mathbb{N}_0} \) in Theorem 3.8, we prove the contrac-
tivity of the iterates \( (\phi^m)_{m \in \mathbb{N}_0} \) with respect to the weighted sup-norm \( | \cdot |_0 \) (see Definition 2.1).

The following proposition estimates the Lipschitz stability of the adjoint process \( Y^{t,x,\phi} \) with respect to the feedback control \( \phi \in \mathcal{V}_A \).
Proposition 3.9. Suppose (H.1) holds. For each \( \phi \in \mathcal{V}_\mathcal{A} \) and \((t, x) \in [0, T] \times \mathbb{R}^n \), let \((Y^{t,x,\phi}, Z^{t,x,\phi}) \in \mathcal{S}^2(t, T; \mathbb{R}^n) \times \mathcal{H}^2(t, T; \mathbb{R}^{n \times d}) \) be defined by (1.11). Suppose that for all \( \phi' \in \mathcal{V}_\mathcal{A} \) and \((t, x) \in [0, T] \times [t, T] \times \mathbb{R}^n \), it holds with some constant \( C_{\mathcal{Z}}^{\phi'} \geq 0 \) that \(|Z^{t,x,\phi'}_s| \leq C_{\mathcal{Z}}^{\phi'} \) for \( dt \otimes d\mathbb{P} \)-a.e. Then there exists a constant \( C \geq 0 \) such that for all \( \phi, \phi' \in \mathcal{V}_\mathcal{A} \) and \((t, x) \in [0, T] \times \mathbb{R}^n \),

\[
|Y^{t,x,\phi}_t - Y^{t,x,\phi'}_t| \leq B(\phi, \phi', C_{\mathcal{Z}}^{\phi'}) (1 + |x|) |\phi - \phi'|_0, \tag{3.32}
\]

where the constant \( B(\phi, \phi', C_{\mathcal{Z}}^{\phi'}) \) is defined by

\[
B(\phi, \phi', C_{\mathcal{Z}}^{\phi'}) := C C_{\mathcal{Z}} \left( 1 + T + T C_{\mathcal{Z}} \sup_{t \in [0, T]} |\phi'_t(0)| \right) e^{T \beta} \left( L \mathbf{m}_{(\alpha, \beta)} \right) + e^{\frac{T \beta - 1}{\alpha}} \left[ \left( (C Y + L f_x)(1 + [\phi]_1) + C_{\mathcal{Z}} \right) T e^{T \beta} + L f_x + C_Y \right], \tag{3.33}
\]

\[
\beta := 2 \kappa_b + 2 L_t \max\{[\phi]_1, [\phi']_1\} + C, \quad \mathbf{m}_{(\alpha, \beta)} := \sup_{t \in [0, T]} e^{2 \alpha(T - t)} \int_t^T e^{(T - s) \beta} ds,
\]

with \( C_Y \) and \( \alpha \) defined as in (3.8) and (3.16), respectively.

Proof. Let \( \bar{f}_1, \bar{f}_2 : [t, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R}^n \) be such that for all \((s, \omega, y, z) \in [t, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \),

\[
\bar{f}_1(s, \omega, y, z) = \partial_x H_s(X^{t,x,\phi}_s(\omega), \phi_s(X^{t,x,\phi}_s(\omega)), y, z),
\]

\[
\bar{f}_2(s, \omega, y, z) = \partial_x H_s(X^{t,x,\phi'}_s(\omega), \phi'_s(X^{t,x,\phi'}_s(\omega)), y, z),
\]

where \( H \) is defined in (1.4), and for each \( \phi \in \mathcal{V}_\mathcal{A} \) and \((t, x) \in [0, T] \times \mathbb{R}^n \), \( X^{t,x,\phi} \in \mathcal{S}^2(t, T; \mathbb{R}^n) \) is defined by (1.10). By using (3.9) and applying Lemma 3.2 with \( p = 1 \), \( f_1 = \bar{f}_1 \), \( \xi_1 = \partial_x g(X^{t,x,\phi}_T) \), \( f_2 = \bar{f}_2 \), \( \xi_2 = \partial_x g(X^{t,x,\phi'}_T) \), \( (Y^2, Z_2) = (Y^{t,x,\phi}, Z^{t,x,\phi'}) \) and \( \varepsilon = 1/2 \), it holds with an absolute constant \( C \geq 0 \) that

\[
\mathbb{E} \left[ \sup_{s \in [t, T]} e^{\bar{\alpha} s} |Y^{t,x,\phi}_s - Y^{t,x,\phi'}_s|^2 + \int_t^T e^{\bar{\alpha} s} |Z^{t,x,\phi}_s - Z^{t,x,\phi'}_s|^2 ds \right] \leq C \mathbb{E} \left[ e^{\bar{\alpha} T} |\partial_x g(X^{t,x,\phi}_T) - \partial_x g(X^{t,x,\phi'}_T)|^2 \right. + \left. \left( \int_t^T e^{\bar{\alpha} s} |\bar{f}_1(s, Y^{t,x,\phi}_s, Z^{t,x,\phi}_s) - \bar{f}_2(s, Y^{t,x,\phi'}_s, Z^{t,x,\phi'}_s)| ds \right)^2 \right] \tag{3.34}
\]

where we defined \( \bar{\alpha} := 2(\kappa_b - \rho + L_t + L_\phi^2) \) above and hereafter. In the subsequent analysis, we denote by \( C \geq 1 \) a generic constant independent of \( T, \rho, \kappa_b, C_b, C_f, L_f, \mu, \nu, L_f, \mu, C_\phi, L_\phi \).

To estimate the right-hand side of (3.34), we first quantify the dependence of \( X^{t,x,\phi} \) on \( \phi \). For all \((t, x) \in [0, T] \times \mathbb{R}^n \), let \( \Delta X^{t,x} = X^{t,x,\phi} - X^{t,x,\phi'} \). Similar to (3.18), by Lemma 3.1 with \( p = 2 \), \( b_1(x) = b_1(x, \phi_1(x)) \) and \( b_2(x) = b_2(x, \phi_1(x)) \), for all \((t, x) \in [0, T] \times \mathbb{R}^n \), \( \phi, \phi' \in \mathcal{V}_\mathcal{A} \),

\[
\|\Delta X^{t,x}\|_{S^2} \leq C_b \sqrt{T M_{([\phi]_1)}} \|\phi(X^{t,x,\phi'}) - \phi'(X^{t,x,\phi'})\|_{\mathcal{H}^2} \leq C_b T M_{([\phi]_1)} \|\phi(X^{t,x,\phi'}) - \phi'(X^{t,x,\phi'})\|_{S^2}, \tag{3.35}
\]

where the constant \( M_{([\phi]_1)} \) is defined by

\[
M_{([\phi]_1)} := C e^{T (2(\kappa_b + L_\phi (1 + [\phi]_1)) + C L_\phi^2)} \leq C e^{2T (\kappa_b + L_\phi [\phi]_1 + C)} . \tag{3.36}
\]
Moreover, by using the fact that \(|\phi(x) - \phi'(x)| \leq |\phi - \phi'|_0 (1 + |x|)|

\[
\|\phi(X^{t,x,\phi'}) - \phi'(X^{t,x,\phi'})\|_{S^2} \leq (1 + \|X^{t,x,\phi'}\|_{S^2}) |\phi - \phi'|_0. \tag{3.37}
\]

We estimate \(\|X^{t,x,\phi'}\|_{S^2}\), by setting \(\|\phi'(0)\|\infty = \sup_{t \in [0,T]} |\phi'_t(0)|\) and applying Lemma 3.1 with \(p = 2\), \(x_1 = x\), \(b^t_1(x) = b_t(x, \phi'_t(x))\), \(\sigma^t_1(x) = \sigma_t(x)\), \(x_2 = 0\), \(b^2_t(x) = 0\) and \(\sigma^2_t(x) = 0\),

\[
\|X^{t,x,\phi'}\|_{S^2} \leq CM_{(\phi'_1)}(|x| + \sqrt{T} \|b(0, \phi'(0))\|H^2 + \|\sigma(0)\|H^2)
\leq CM_{(\phi'_1)}(|x| + T + TC\|\phi'(0)\|\infty + \sqrt{T})
\leq CM_{(\phi'_1)}(1 + T + TC\|\phi'(0)\|\infty)(1 + |x|),
\]

which along with (3.35), (3.37) and \(M_{(\phi'_1)} \geq 1\) shows

\[
\|\phi(X^{t,x,\phi'}) - \phi'(X^{t,x,\phi'})\|_{S^2} \leq CM_{(\phi'_1)}(1 + T + TC\|\phi'(0)\|\infty)|\phi - \phi'|_0
\|\Delta X^{t,x}\|_{S^2} \leq CC\|T M_{(\phi'_1)}M_{(\phi'_1)}(1 + T + TC\|\phi'(0)\|\infty)(1 + |x|)|\phi - \phi'|_0.
\]

Similarly, by setting \(\beta = 2(\kappa_b + L_b(1 + [\phi]) + L^2_\sigma) + 1\) and using (3.2) with \(b^t_1(x) = b_t(x, \phi'_t(x))\) and \(b^2_t(x) = b_t(x, \phi'_t(x))\), we have

\[
\mathbb{E}\left[|\Delta X^{t,x}_{T}|^2\right]^{\frac{1}{2}} \leq CC\left(\int_t^T e^{(T-s)\beta} ds\right)^{\frac{1}{2}} \|\phi(X^{t,x,\phi'}) - \phi'(X^{t,x,\phi'})\|_{S^2}
\leq CC\left(\int_t^T e^{(T-s)\beta} ds\right)^{\frac{1}{2}} M_{(\phi'_1)}(1 + T + TC\|\phi'(0)\|\infty)(1 + |x|)|\phi - \phi'|_0,
\]

with \(\beta = 2(\kappa_b + L_b(\phi) + C)\), where the last inequality used (3.39).

Now we are ready to estimate the right-hand side of (3.34). By using (3.40),

\[
e^{-\frac{\bar{\alpha}}{2}T} \mathbb{E}\left[e^{\bar{\alpha}(T-t)}|\partial_x g(X^{t,x,\phi}) - \partial_x g(X^{t,x,\phi'})|^2\right]^\frac{1}{2} \leq L_g e^{\frac{\bar{\alpha}}{2}(T-t)} \mathbb{E}\left[|\Delta X^{t,x}_T|^2\right]^{\frac{1}{2}}
\leq CC\|L_g m^{1/2}(\alpha, \beta) M_{(\phi'_1)}(1 + T + TC\|\phi'(0)\|\infty)(1 + |x|)|\phi - \phi'|_0,
\]

where we recall \(m_{(\alpha, \beta)} = \sup_{t \in [0,T]} e^{\bar{\alpha}(T-t)} \int_t^T e^{(T-s)\beta} ds\). On the other hand, by Lemma 3.3, for all \(t \in [0,T]\), \(x, x' \in \mathbb{R}^n\), \(\phi, \phi' \in \mathcal{V}_A\), \((y, z) \in \mathbb{R}^n \times \mathbb{R}^{n \times d},

\[
|\partial_x H_t(x, \phi_t(x), y, z) - \partial_x H_t(x', \phi'_t(x'), y, z)|
\leq (L_b |x - x'| + L_b (|x - x'| + |\phi_t(x) - \phi'_t(x)|)) |y| + L_\sigma |x - x'| |z| + L_{fx} (|x - x'| + |\phi_t(x) - \phi'_t(x')|)
\leq (L_b + L_b(1 + [\phi]) + L_\sigma |z| + L_{fx}(1 + [\phi])) |x - x'| + (L_{fx} + L_b|y|)|\phi_t(x') - \phi'_t(x')|.
\]

23
This along with (3.8) and the assumption that $|Z^{t,x,\phi}| \leq C_Z^\phi$ implies that
\[
\mathbb{E} \left[ \left( \int_t^T e^{\frac{\bar{\kappa}}{2}s} |f_s^1(\cdot, Y_s^{t,x,\phi'}, Z_s^{t,x,\phi'}) - f_s^2(\cdot, Y_s^{t,x,\phi'}, Z_s^{t,x,\phi'})| \, ds \right)^2 \right]^{\frac{1}{2}}
\leq \mathbb{E} \left[ \left( \int_t^T e^{\frac{\bar{\kappa}}{2}s} \left( (C + L_\bar{b}[\phi]_1)|Y_s^{t,x,\phi'}| + L_{f_\phi}(1 + [\phi]_1) + C|Z_s^{t,x,\phi'}| \right) |\Delta X_s^{t,x}|| \, ds \right)^2 \right]^{\frac{1}{2}}
\leq C \left( \int_t^T e^{\frac{\bar{\kappa}}{2}s} \, ds \right) \left[ (1 + |[\phi]_1|)C_Y + L_{f_\phi}(1 + [\phi]_1) + C_Z^{\phi'} \right] \|\Delta X^t\|_{L^2}
\leq C \left( \int_t^T e^{\frac{\bar{\kappa}}{2}s} \, ds \right) \left[ (1 + |[\phi]_1|)C_Y + L_{f_\phi}(1 + [\phi]_1) + C_Z^{\phi'} \right] \|\Delta X^t\|_{L^2}.
\]

Substituting (3.39) into the above estimate yields
\[
\mathbb{E} \left[ \left( \int_t^T e^{\frac{\bar{\kappa}}{2}s} |f_s^1(\cdot, Y_s^{t,x,\phi'}, Z_s^{t,x,\phi'}) - f_s^2(\cdot, Y_s^{t,x,\phi'}, Z_s^{t,x,\phi'})| \, ds \right)^2 \right]^{\frac{1}{2}}
\leq CC_\bar{b} \left( \int_t^T e^{\frac{\bar{\kappa}}{2}s} \, ds \right) \left[ (C + L_{f_\phi}(1 + [\phi]_1) + C_Z^{\phi'})TM_{([\phi]_1)1}M_{([\phi']_1)1}(1 + T + TC_\bar{b})\|\phi'(0)\|_{\infty} \right] \left( 1 + |x| \right)|\phi - \phi'|_0,
\]

Combining with above estimate with (3.34) and (3.41), and using $e^{-\frac{\bar{\kappa}}{2}t} \int_t^T e^{\frac{\bar{\kappa}}{2}s} \, ds \leq \frac{2}{\bar{\kappa}}(e^{\frac{\bar{\kappa}}{2}T} - 1)$ with $\alpha = 2(\kappa_\bar{b} - \rho + L_\bar{b} + L_\phi^2)$, we conclude the desired estimate
\[
|Y_s^{t,x,\phi} - Y_s^{t,x,\phi'}| \leq CC_\bar{b}(1 + |x|)|\phi - \phi'|_0(1 + T + TC_\bar{b})\|\phi'(0)\|_{\infty}M_{([\phi']_1)} \left( L_g m_1^{1/2}(a,b) \right.
\]
Theorem 3.11. Suppose (H.1) holds. For each \( \phi^0 \in V_A \), \( \tau > 0 \) and \( m \in \mathbb{N} \), let \( \phi^m \) be defined by (1.9) with the initial guess \( \phi^0 \) and stepsize \( \tau \). Let \( C \geq 0 \) be a constant such that (3.8), (3.15) and (3.32) hold, let \( C_Y \geq 0 \) be defined in (3.8), and let \( \alpha \in \mathbb{R} \) be defined in (3.16). For each \( \phi^0 \in V_A \) and \( M \geq 0 \), let \( C_{(\phi^0)} \geq 0 \) be defined in (3.11), let \( L_{(\phi^0)} \geq 0 \) be defined in (3.26), and let \( L_Y(M) \geq 0 \) be defined in (3.16). Then for all \( \phi^0 \in V_A \), if we assume further that (3.25) holds and

\[
C(1 + T + TC_bC_{(\phi^0)})e^{T\beta}(Te^{T\beta} + 1)B_{(\phi^0)} < \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right),
\]

with the constants \( \beta \in \mathbb{R} \), \( m_{(\alpha, \beta)} > 0 \) and \( B_{(\phi^0)} \geq 0 \) defined by

\[
\beta := 2\kappa_b + 2L_bL_{(\phi^0)} + C, \quad m_{(\alpha, \beta)} := \sup_{t \in [0, T]} e^{2\alpha(T-t)} \int_t^T e^{(T-s)\beta} ds,
\]

\[
B_{(\phi^0)} := C^2_b \left[ L_b m^{1/2}_{(\alpha, \beta)} + e^{\frac{\tau\alpha - 1}{\alpha}} \left( (C_Y + L_{fx})(1 + L_{(\phi^0)}) + C_{\sigma}L_Y(L_{(\phi^0)}) \right) \right],
\]

then for all \( \tau \in (0, \frac{2}{\mu + L_{fa}} \land \frac{1}{\nu}] \), there exists a constant \( c \in [0, 1) \) such that

\[
|\phi^{m+1} - \phi^m|_0 \leq c|\phi^m - \phi^{m-1}|_0, \quad \forall m \in \mathbb{N}.
\]

Remark 3.1. Theorem 3.11 shows that if (3.25) and (3.43) hold, then the iterates \( (\phi^m)_{m \in \mathbb{N}} \) form a Cauchy sequence, whose limit will be characterized in Theorem 3.13. We now observe that the inequalities (3.25) and (3.43) can be ensured if one of the conditions (i)-(vi) holds. To this end, we focus on (3.43), as (3.25) can be analyzed similarly. Suppose all remaining parameters are fixed. Then one can clearly see that (3.43) holds if (a) \( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \) is sufficiently large or (b) \( B_{(\phi^0)} \) is sufficiently small. The former case holds if either \( \mu \) or \( \nu \) is sufficiently large (note that (2.2) and (2.3) imply that \( \mu \leq L_{fa} \)). The latter case holds for (a) small \( C_b \), or (b) small \( \frac{\tau\alpha - 1}{\alpha} \) and \( m_{(\alpha, \beta)} \), or (c) small \( L_b, C_Y, L_{fx} \) and \( L_Y(L_{(\phi^0)}) \). By the definitions of \( \alpha \) and \( \beta \), \( \frac{\tau\alpha - 1}{\alpha} \) and \( m_{(\alpha, \beta)} \) tend to 0, as \( T \to 0 \) or \( \kappa_b \to -\infty \) or \( \rho \to \infty \) (see Lemma A.2 in Appendix A), while by (3.8) and (3.15), \( C_Y \) and \( L_Y(L_{(\phi^0)}) \) scale linearly in \( C_g, L_g, C_{fx}, L_{fx} \), and hence \( B_{(\phi^0)} \) is close to zero if \( C_g, L_g, C_{fx}, L_{fx} \) are sufficiently small.

Proof. For any \( (t, x) \in [0, T] \times \mathbb{R}^n \), Lemma 3.4 with \( x = x', y = Y^t\tau, x, \phi^m, y' = Y^t\tau, x, \phi^{m-1}, a = \phi^m_t(x) \) and \( a' = \phi^{m-1}_t(x) \) immediately yields that for all \( \tau \in (0, \frac{2}{\mu + L_{fa}} \land \frac{1}{\nu}] \),

\[
|\phi^{m+1}_t(x) - \phi^m_t(x)| \leq \left( 1 - \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) |\phi^m_t(x) - \phi^{m-1}_t(x)| + \tau C_b |Y^t\tau, x, \phi^m - Y^t\tau, x, \phi^{m-1}|.
\]

(3.46)

Applying Proposition 3.9 further gives

\[
\frac{|\phi^{m+1}_t(x) - \phi^m_t(x)|}{1 + |x|} \leq \left( 1 - \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) \frac{|\phi^m_t(x) - \phi^{m-1}_t(x)|}{1 + |x|} + \tau C_b B[\phi^m, \phi^{m-1}, C Z^{m-1}]|\phi^m - \phi^{m-1}|_0.
\]

Hence, taking supremum over \( (t, x) \in [0, T] \times \mathbb{R}^n \) results in

\[
|\phi^{m+1} - \phi^m|_0 \leq \left( 1 + \tau \left( C_b B[\phi^m, \phi^{m-1}, C Z^{m-1}] - \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) \right) |\phi^m - \phi^{m-1}|_0.
\]
with the constant $B[\phi^m, \phi^{m-1}, C_Z^\phi]$, defined in (3.33). Observe that under (3.25), Theorem 3.8 shows that for all $\tau \in (0, \frac{2}{\mu + L_f a} \wedge \frac{1}{\nu})$ and $m \in N_0$, $[\phi^m]_1 \leq L(\phi^0)$, which along with Proposition 3.9 implies that $C_Z^\phi \leq C L_Y(L(\phi^0))$. Hence, by Theorem 3.6 and (3.33),

$$C_b B[\phi^m, \phi^{m-1}, C_Z^\phi] \leq C C_b^2 \left(1 + T + T C_b \sup_{t \in [0, T]} |\phi_t^{m-1}(0)| \right) e^{T \beta + 1} \left( L_m^{1/2} \right) + e^{T \alpha - 1} \left((C_Y + L_f a)(1 + [\phi^m]_1) + C_Z^\phi \right) (T e^{T \beta + 1}) \leq C (1 + T + T C_b C(\phi^0)) e^{T \beta + (T e^{T \beta + 1})} B(\phi^0),$$

with $\beta$, $m_{(\alpha, \beta)}$ and $B(\phi^0)$ defined as in (3.44). Then under (3.43), the desired estimate holds with

$$c = 1 + \tau \left(C(1 + T + T C_b C(\phi^0)) e^{T \beta + (T e^{T \beta + 1})} B(\phi^0) - \frac{1}{2} \left( \frac{\mu L_f a}{\mu + L_f a} + \nu \right) \right) \in [0, 1).$$

Note that (3.43) implies $c < 1$, and $\tau \leq \frac{2}{\mu + L_f a} \wedge \frac{1}{\nu}$ implies that $c \geq 1 - \frac{\tau}{\tau} \left( \frac{\mu L_f a}{\mu + L_f a} + \nu \right) \geq 0$. \qed

### 3.5 Linear convergence to stationary points

Based on Theorem 3.11, we prove the linear convergence of the iterates $(\phi^m)_{m \in \mathbb{N}_0}$ in the weighted sup-norm $\| \cdot \|_0$ (see Definition 2.1) and the associated control processes $(\alpha^m)_{m \in \mathbb{N}_0}$ to stationary points of $J(\cdot; \xi_0)$.

The following proposition characterizes stationary points of the summation of a nonconvex differentiable function and a convex nonsmooth function.

**Proposition 3.12.** Let $X$ be a Hilbert space equipped with the norm $\| \cdot \|_X$, $F : X \to \mathbb{R}$ be a Fréchet differentiable function, $G : X \to \mathbb{R} \cup \{\infty\}$ be a proper, lower semicontinuous, convex function, and $x^* \in \text{dom } G$. Then $x^*$ is a stationary point of $F + G$ if and only if for some $\tau > 0$,

$$x^* = \text{prox}_{\tau G}(x^* - \tau \nabla F(x^*)), $$

where for all $x \in X$, $\text{prox}_{\tau G}(x) = \arg \min_{z \in X} \left( \frac{\tau}{2} \|z - x\|_X^2 + \tau G(z) \right)$.

**Proof.** By [34, Proposition 1.107], the Fréchet differentiability of $F$ implies that $\partial(F + G)(x^*) = \nabla F(x^*) + \partial G(x^*)$. Hence $x^*$ is a stationary point of $F + G$ if and only if $-\nabla F(x^*) \in \partial G(x^*)$. By the properties of $G$, $\partial G$ agrees with the convex subdifferential of $G$ (see [34, Equation 1.51 and Theorem 1.93]), which along with the definition of prox shows that for all $x, u \in X$ and $\tau > 0$, $u = \text{prox}_{\tau G}(x)$ if and only if $x - u \in \partial(\tau G)(u)$. Hence by $-\nabla F(x^*) \in \partial G(x^*)$, for all $\tau > 0$, $(x^* - \tau \nabla F(x^*)) - x^* \in \partial(\tau G)(x^*)$, which leads to the desired result. \qed

The following theorem presents a precise statement of Theorem 2.2, which establishes the linear convergence of the iterates $(\phi^m)_{m \in \mathbb{N}_0}$, and characterizes the limit of the associated control processes $(\alpha^m)_{m \in \mathbb{N}_0}$ based on Proposition 3.12.

**Theorem 3.13.** Assume the same notation as in Theorem 3.11. For each $\phi \in \mathcal{V}_A$, let $\alpha^\phi \in \mathcal{H}^2(\mathbb{R}^k)$ be the associated control process. Then for all $\phi^0 \in \mathcal{V}_A$ satisfying (3.25) and (3.43), and for all $\tau \in (0, \frac{2}{\mu + L_f a} \wedge \frac{1}{\nu})$, there exists $c \in [0, 1)$, $C \geq 0$ and $\phi^* \in \mathcal{V}_A$ such that

1. for all $m \in \mathbb{N}_0$, $|\phi^{m+1} - \phi^*|_0 \leq c|\phi^m - \phi^*|_0$,
(2) for all \( m \in \mathbb{N}_0 \), \( \|\alpha \phi^m - \alpha \phi^*\|_{\mathcal{H}^2} \leq \tilde{C} c^m |\phi^0 - \phi^*|_0 \),

(3) \( \alpha \phi^* \) is a stationary point of \( J(\cdot; \xi_0) : \mathcal{H}^2(\mathbb{R}^k) \to \mathbb{R} \cup \{\infty\} \) defined as in (1.2).

**Proof.** Throughout the proof, let \( \phi^0 \in \mathcal{V}_A \) satisfy (3.25) and (3.43), and \( \tau \in (0, \frac{2}{\mu + L_{fa}} \wedge \frac{1}{2}] \). In the present setting, Theorem 3.8 implies that \( \sup_{m \in \mathbb{N}_0} [\phi^m]_1 \leq L(\phi^0) \), and Theorem 3.11 shows that \( (\phi^m)_{m \in \mathbb{N}_0} \) is a Cauchy sequence in \( \mathcal{B}([0, T] \times \mathbb{R}^n ; \mathbb{R}^k) \) with \( 0 \) as a point of the Banach space, the Banach fixed point theorem shows that there exists \( \phi^* \in \mathcal{B}([0, T] \times \mathbb{R}^n ; \mathbb{R}^k) \) such that \( \lim_{m \to \infty} |\phi^m - \phi^*|_0 = 0 \). The convergence of \( (\phi^m)_{m \in \mathbb{N}_0} \) in the \( \cdot \|_0 \)-norm and \( \sup_{m \in \mathbb{N}_0} [\phi^m]_1 \leq L(\phi^0) \) imply that \( [\phi^*]_1 \leq L(\phi^0) \). Hence, to show \( \phi^* \in \mathcal{V}_A \), it remains to prove \( \phi^* \) takes values in \( A \) a.e.

By Proposition 3.9 and \( \sup_{m \in \mathbb{N}_0, \alpha \in [0, T]} \left( |f^m(0)| + [\phi^m]_1 \right) < \infty \), there exists \( C \geq 0 \) such that for all \( (t, x) \in [0, T] \times \mathbb{R}^n \) and \( m, m' \in \mathbb{N}_0 \), \( |Y_t^{t,x,\phi^m} - Y_t^{t,x,\phi^{m'}}| \leq C(1 + |x|)|\phi^m - \phi^{m'}|_0 \). This along with the fact that \( (\phi^m)_{m \in \mathbb{N}} \) is a Cauchy sequence in \( \mathcal{B}([0, T] \times \mathbb{R}^n ; \mathbb{R}^k) \) with \( 0 \) as a point of the Banach space, the Banach fixed point theorem shows that there exists \( \phi^* \in \mathcal{B}([0, T] \times \mathbb{R}^n ; \mathbb{R}^k) \) such that \( \lim_{m \to \infty} |\phi^m - \phi^*|_0 = 0 \). Hence, there exists a function \( \gamma : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n \) such that \( \lim_{m \to \infty} Y_t^{t,x,\phi^m} = \gamma_t(x) \) for all \( (t, x) \in [0, T] \times \mathbb{R}^n \).

Then for any \( (t, x) \in [0, T] \times \mathbb{R}^n \), by the continuity of \( \text{prox}_{\tau \ell} \) and \( \partial_a H^{te}_t \) and the pointwise convergence of \( (\phi^m)_{m \in \mathbb{N}_0} \) and \( (Y_t^{t,x,\phi^m})_{m \in \mathbb{N}_0} \), one can pass \( m \) to infinity in (1.9) and show for a.e. \( (t, x) \in [0, T] \times \mathbb{R}^n \),

\[
\phi^*_t(x) = \lim_{m \to \infty} \phi^{m+1}_t(x) = \lim_{m \to \infty} \text{prox}_{\tau \ell} \left( \phi^m_t(x) - \tau \partial_a H^{te}_t(x, \phi^m_t(x), Y_t^{t,x,\phi^m}) \right) = \text{prox}_{\tau \ell} \left( \phi^*_t(x) - \tau \partial_a H^{te}_t(x, \phi^*_t(x), Y_t(x)) \right).
\]

As \( \text{prox}_{\tau \ell}(z) \in \text{dom} \ell = A \) for all \( z \in \mathbb{R}^k \), \( \phi^*_t(x) \in A \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \), and hence \( \phi^* \in \mathcal{V}_A \).

Furthermore, by \( \phi^* \in \mathcal{V}_A \), \( \lim_{m \to \infty} |\phi^m - \phi^*|_0 = 0 \) and Proposition 3.9, \( \lim_{m \to \infty} Y_t^{t,x,\phi^m} = Y_t^{t,x,\phi^*} = \gamma_t(x) \) for all \( (t, x) \in [0, T] \times \mathbb{R}^n \), which along with (3.47) shows that

\[
\phi^*_t(x) = \text{prox}_{\tau \ell} \left( \phi^*_t(x) - \tau \partial_a H^{te}_t(x, \phi^*_t(x), Y_t(x)) \right)
\]

(3.48)

We are now ready to establish the desired statements. To prove Item (1), for any \((t, x) \in [0, T] \times \mathbb{R}^n \), Lemma 3.4 with \( x' = x \), \( y' = Y_t^{t,x,\phi^*} \), \( a = \phi^m_t(x) \) and \( \alpha' = \phi^*_t(x) \) and (3.48) immediately yield that for all \( \tau \in (0, \frac{2}{\mu + L_{fa}} \wedge \frac{1}{2}] \),

\[
|\phi^{m+1}_t(x) - \phi^*_t(x)| \leq \left( 1 - \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) |\phi^m_t(x) - \phi^*_t(x)| + \tau C_B |Y_t^{t,x,\phi^m} - Y_t^{t,x,\phi^*}|
\]

Now, following the exact same lines as the proof of Theorem 3.11 (cf. (3.46)) and using the above facts that \( \phi^* \in \mathcal{V}_A \), \( \sup_{t \in [0, T]} |\phi^0_t(x)| \leq C(\phi^0) \) and \( [\phi^*]_1 \leq L(\phi^0) \), we deduce \( |\phi^{m+1} - \phi^*|_0 \leq c|\phi^m - \phi^*|_0 \) with the same constant \( c \in [0, 1) \) as in Theorem 3.11.

To prove Item (2), observe that for each \( m \in \mathbb{N}_0 \), \( \alpha \phi^m = \phi^m(X^{\xi_0,\phi^m}) \) and \( \alpha \phi^* = \phi^*(X^{\xi_0,\phi^*}) \), which implies that

\[
\|\alpha \phi^{m+1} - \alpha \phi^*\|_{\mathcal{H}^2} \leq \|\phi^{m+1}(X^{\xi_0,\phi^m+1}) - \phi^{m+1}(X^{\xi_0,\phi^*})\|_{\mathcal{H}^2} + \|\phi^{m+1}(X^{\xi_0,\phi^*}) - \phi^*(X^{\xi_0,\phi^*})\|_{\mathcal{H}^2} \\
\leq [\phi^{m+1}]_1 \|X^{\xi_0,\phi^m+1} - X^{\xi_0,\phi^*}\|_{\mathcal{H}^2} + [\phi^{m+1} - \phi^*]_0(1 + \|X^{\xi_0,\phi^*}\|_{\mathcal{H}^2})
\]

(3.49)

By using \( \phi^* \in \mathcal{V}_A \) and \( \sup_{m \in \mathbb{N}_0}(|\phi^m_t(0)| + [\phi^m]_1) < \infty \) and Lemma 3.1, one can easily show that there exists \( C \geq 0 \) such that for all \( m \in \mathbb{N}_0 \), \( \|X^{\xi_0,\phi^m}\|_{\mathcal{H}^2} \leq C \) and \( \|X^{\xi_0,\phi^m} - X^{\xi_0,\phi^*}\|_{\mathcal{H}^2} \leq C|\phi^m - \phi^*|_0 \), which along with (3.49) leads to the desired estimate \( \|\alpha \phi^{m+1} - \alpha \phi^*\|_{\mathcal{H}^2} \leq \tilde{C} c^m |\phi^0 - \phi^*|_0 \) for all \( m \in \mathbb{N}_0 \), with some constant \( \tilde{C} \geq 0 \) independent of \( m \).
It remains to prove Item (3). Let $\tilde{H}^{te} : [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \to \mathbb{R}$ and $\bar{H} : [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R}$ be such that for all $(t, x, a, y, z) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \times \mathbb{R}^{n \times d}$, $\bar{H}(x, a, y) := \langle b_t(x, a), y \rangle + e^{-\mu t} f_t(x, a)$ and $\tilde{H}^{te}(x, a, y, z) := \tilde{H}^{te}(x, a, y) + \langle \sigma_t(x), z \rangle$. For each $(t, x) \in [0, T] \times \mathbb{R}^n$, let $X^{t,x,\phi^\ast}_s \in \mathcal{S}^2(t, T; \mathbb{R}^n)$ satisfy (1.10) with $\phi = \phi^\ast$, and $(Y^{t,x,\phi^\ast}, Z^{t,x,\phi^\ast}) \in \mathcal{S}^2(t, T; \mathbb{R}^n) \times \mathcal{H}^2(t, T; \mathbb{R}^{n \times d})$ satisfy $\tilde{Y}^{t,x,\phi^\ast}_T = e^{-\rho T} \partial_x g(X^{t,x,\phi^\ast}_T)$, and
\[
d\tilde{Y}^{t,x,\phi^\ast}_s = -\partial_x \tilde{H}_s(X^{t,x,\phi^\ast}_s, \phi^\ast(X^{t,x,\phi^\ast}_s), \tilde{Y}^{t,x,\phi^\ast}_s, \tilde{Z}^{t,x,\phi^\ast}_s) \, ds + \tilde{Z}^{t,x,\phi^\ast}_s \, dW_s, \quad \forall s \in [t, T).
\]
The affineness of $H$ and $\bar{H}$ in $y$ and $z$ implies that $Y^{t,x,\phi^\ast} = e^{-\rho s} Y^{t,x,\phi^\ast}$ for all $(t, x) \in [0, T] \times \mathbb{R}^n$ and $s \in [t, T]$. Moreover, by (1.8), for all $a, u \in \mathbb{R}^k$ and $\eta > 0$,
\[
a = \text{prox}_\ell(a - \eta u) \iff 0 \in (a - (a - \eta u)) + \partial \ell(a) \iff 0 \in u + \partial (\eta^{-1} \ell)(a)
\]\[\iff 0 \in (a - (a - u)) + \partial (\eta^{-1} \ell)(a) \iff a = \text{prox}_{\eta^{-1} \ell}(a - u).
\]
Hence by (3.48) and the affineness of $H^{te}$ and $\tilde{H}^{te}$ in $y$, for all $(t, x) \in [0, T] \times \mathbb{R}^n$,\[
\phi^\ast_t(x) = \text{prox}_{\rho \ell}(\phi^\ast_t(x) - \tau e^{\rho t} \partial_x \tilde{H}^{te}(t, x, \phi^\ast_t(x), e^{-\rho t} Y^{t,x,\phi^\ast}))(3.50)
\]
Now consider the solution $(X^{\xi_0,\phi^\ast}, Y^{\xi_0,\phi^\ast}, Z^{\xi_0,\phi^\ast}) \in \mathcal{S}^2(\mathbb{R}^n) \times \mathcal{S}^2(\mathbb{R}^n) \times \mathcal{H}^2(\mathbb{R}^{n \times d})$ to the following FBSDE: for all $t \in [0, T]$,
\[
dX^{\xi_0,\phi^\ast}_t = b_t(X^{\xi_0,\phi^\ast}_t, \phi^\ast_t(X^{\xi_0,\phi^\ast}_t)) \, dt + \sigma_t(X^{\xi_0,\phi^\ast}_t) \, dW_t, \quad X^{\xi_0,\phi^\ast}_0 = \xi_0,
\]
\[
dY^{\xi_0,\phi^\ast}_t = -\partial_x \tilde{H}_t(X^{\xi_0,\phi^\ast}_t, \phi^\ast_t(X^{\xi_0,\phi^\ast}_t), \bar{Y}^{\xi_0,\phi^\ast}_t, \bar{Z}^{\xi_0,\phi^\ast}_t) \, dt + \bar{Z}^{\xi_0,\phi^\ast}_t \, dW_t, \quad \bar{Y}^{\xi_0,\phi^\ast}_T = e^{-\rho T} \partial_x g(X^{\xi_0,\phi^\ast}_T).
\]
The Markov property in [46, Theorem 5.1.3] implies $\bar{Y}^{\xi_0,\phi^\ast}_t = \tilde{Y}^{t, X^{\xi_0,\phi^\ast}, \phi^\ast}_t \, dt \otimes d\mathbb{P}$ a.e., which along with (3.50) gives that for $dt \otimes d\mathbb{P}$ a.e.,\[
\phi^\ast_t(X^{\xi_0,\phi^\ast}_t) = \text{prox}_{\rho \ell}(\phi^\ast_t(X^{\xi_0,\phi^\ast}_t) - \tau \partial_x \bar{H}^{te}(t, X^{\xi_0,\phi^\ast}_t, \phi^\ast_t(X^{\xi_0,\phi^\ast}_t), \bar{Y}^{\xi_0,\phi^\ast}_t)).(3.51)
\]
Observe that for all $\alpha \in \mathcal{H}^2(\mathbb{R}^k)$, $J(\alpha; \xi_0) = F(\alpha) + G(\alpha)$, where\[
F(\alpha) := \mathbb{E} \left[ \int_0^T e^{-\mu t} f_t(X^{\xi_0,\alpha}_t, \alpha_t) \, dt + e^{-\rho T} g(X^{\xi_0,\alpha}_T) \right], \quad G(\alpha) := \mathbb{E} \left[ \int_0^T e^{-\rho T} \ell(\alpha_t) \, dt \right],
\]
where $X^{\xi_0,\alpha}$ satisfies (1.1). Then the regularity of coefficients and [8, Corollary 4.11] imply that $F$ is Fréchet differentiable, and the derivative $\nabla F$ at $\alpha^{\phi^\ast} = \phi^\ast(X^{\xi_0,\phi^\ast})$ is given by\[
\nabla F(\alpha^{\phi^\ast})_t = \partial_x \bar{H}^{te}(t, X^{\xi_0,\phi^\ast}_t, \phi^\ast_t(X^{\xi_0,\phi^\ast}_t), \bar{Y}^{\xi_0,\phi^\ast}_t), \quad dt \otimes d\mathbb{P} \text{ a.e.}
\]
Moreover, by (H.1(1)), one can easily prove that $G$ is proper, lower semicontinuous and convex, and satisfies for all $\alpha \in \mathcal{H}^2(\mathbb{R}^k)$ and $\tau > 0$, $\text{prox}_{\tau \rho \ell}(\alpha) = \text{prox}_{\tau \rho \ell}(\alpha)$ for $dt \otimes d\mathbb{P}$ a.e. Hence, Proposition 3.12 shows that $\alpha^{\phi^\ast} \in \mathcal{H}^2(\mathbb{R}^k)$ is a stationary point of $J(\cdot; \xi_0)$.

The following theorem presents a precise statement of Theorem 2.3, where the feedback controls $(\phi^m)_m \in \mathbb{N}_0$ are updated with approximate gradients.
Theorem 3.14. Suppose (H.1) holds. Let \( C \geq 0 \) be a constant such that (3.8), (3.15) and (3.32) hold, let \( C_Y \geq 0 \) be defined in (3.8), and let \( \alpha \in \mathbb{R} \) be defined in (3.16). Let \( \phi^0 \in \mathcal{V}_A \), let \( C_{(\phi^0)} \geq 0 \) be defined in (3.11), let \( L(\phi^0) \geq 0 \) be defined in (3.26), and let \( L_Y(M), M \geq 0, \) be defined in (3.16). Suppose that (3.25) is satisfied, \( \tau \in (0, \frac{2}{\mu + Lf_a} \land \frac{1}{\nu}] \), and there exist constants \( \bar{C}, \bar{L} \geq 0 \) such that for all \( \omega \in \Omega \sup_{t \in [0,T]} |\bar{\phi}^m_t(0,\omega)| \leq \bar{C} \) and \( |\bar{\phi}^m(\cdot,\omega)| \leq \bar{L} \) for all \( m \in \mathbb{N}_0 \), and
\[
\mathcal{D} := \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) - C(1 + T + TC_b \bar{C})e^{T\beta_+}(Te^{T\beta_+} + 1)\bar{B} > 0, \tag{3.52}
\]
with the constants \( \beta \in \mathbb{R}, \ m_{(\alpha,\beta)} > 0 \) and \( \bar{B} \geq 0 \) defined by
\[
\beta := 2\kappa_b + 2L_b \max \{L(\phi^0), \bar{L}\} + C, \quad m_{(\alpha,\beta)} := \sup_{t \in [0,T]} e^{2\alpha(T-t)} \int_t^T e^{(T-s)\beta} ds,
\]
\[
\bar{B} := C^2_b \left[ L_a m_{(\alpha,\beta)}^{1/2} + \frac{\tau \alpha - 1}{\alpha}\left( (C_Y + L_{fa})(1 + L(\phi^0)) + C_s L_Y(\bar{L}) \right) \right].
\]
Let \( c = 1 - \tau \mathcal{D} \in [0,1) \). Then for a.s. \( \omega \in \Omega \) and for all \( m \in \mathbb{N}_0 \),
\[
|\phi^* - \bar{\phi}^m(\cdot,\omega)| \leq c^m |\phi^0 - \phi^*|_0 + \sum_{j=0}^{m-1} c^{m-1-j}\tau C_b \sup_{(t,x) \in [0,T] \times \mathbb{R}^n} \frac{|Y^\phi_t(x,\omega) - \tilde{Y}^\phi_t(x,\omega)|}{1 + |x|}, \tag{3.54}
\]
where \( \phi^* \in \mathcal{V}_A \) is the limit function in Theorem 3.13. Consequently, for all \( p \geq 1 \) and for all \( m \in \mathbb{N}_0 \),
\[
\mathbb{E}[|\phi^* - \bar{\phi}^m|_0^p] \leq c^m |\phi^0 - \phi^*|_0 + \sum_{j=0}^{m-1} c^{m-1-j}\tau C_b \mathbb{E}[|Y^\phi_t - \tilde{Y}^\phi_t|_0^p]. \tag{3.55}
\]

Proof. Throughout this proof, we fix \( \omega \in \Omega \) and omit the explicit dependence on \( \omega \) if no confusion occurs. First, observe that the conditions \( \sup_{t \in [0,T]} |\bar{\phi}^m_t(0)| \leq \bar{C} \) and \( |\bar{\phi}^m|_1 \leq \bar{L} \) for all \( m \in \mathbb{N}_0 \) guarantee \( \bar{\phi}^m \in \mathcal{V}_A \). We continue by quantifying \( |\phi^{m+1}_t(x) - \bar{\phi}^{m+1}_t(x)| \) for any \( (t,x) \in [0,T] \times \mathbb{R}^n \), where \( \bar{\phi}^{m+1}_t(x) \) is defined by (2.20). By Lemma 3.4 with \( x = x', a = \phi^m_t(x), a' = \bar{\phi}^m_t(x), y = Y^\phi_t(x) \) and \( y' = \tilde{Y}^\phi_t(x) \),
\[
|\phi^{m+1}_t(x) - \bar{\phi}^{m+1}_t(x)| \leq \left( 1 - \tau \frac{1}{2} \left( \frac{\mu L_{fa}}{\mu + L_{fa}} + \nu \right) \right) |\phi^m_t(x) - \bar{\phi}^m_t(x)| + \tau C_b |Y^\phi_t(x) - \tilde{Y}^\phi_t(x)|. \tag{3.56}
\]
Now, by applying Proposition 3.9 and using the definition of \( \bar{B} \) given in (3.53),
\[
C_b |Y^\phi_t(x) - \tilde{Y}^\phi_t(x)| \leq C_b |Y^\phi_t(x) - \bar{\phi}^m_t(x)| + C_b |\bar{\phi}^m_t(x) - \tilde{Y}^\phi_t(x)| \leq C(1 + T + TC_b \bar{C})e^{T\beta_+}(Te^{T\beta_+} + 1)\bar{B}(1 + |x|)|\phi^m - \bar{\phi}^m|_0 + C_b |Y^\phi_t(x) - \tilde{Y}^\phi_t(x)|.
\]
Now let \( c = 1 - \tau \mathcal{D} \) with \( \mathcal{D} > 0 \) defined in (3.52). The condition (3.52) implies \( c < 1 \), and \( \tau \leq \frac{2}{\mu + Lf_a} \land \frac{1}{\nu} \) implies that \( c \geq 1 - \frac{\tau}{2} \left( \frac{\mu Lfa}{\mu + Lfa} + \nu \right) \geq 0 \). Hence, for a.s. \( \omega \in \Omega \),
\[
|\phi^{m+1} - \bar{\phi}^{m+1}(\cdot,\omega)|_0 \leq c|\phi^m - \bar{\phi}^m(\cdot,\omega)|_0 + \tau C_b |Y^\phi(\cdot,\omega) - \tilde{Y}^\phi(\cdot,\omega)|_0, \tag{3.57}
\]
which along with \( \phi^0 = \bar{\phi}^0 \) implies that \( |\phi^{m+1} - \bar{\phi}^{m+1}|_0 \leq \sum_{j=0}^{m} c^{m-j}\tau C_b |Y^\phi(\cdot,\omega) - \tilde{Y}^\phi(\cdot,\omega)|_0 \). The estimate (3.54) then follows from Theorem 3.13 Item (1), and the estimate (3.55) follows by taking the \( L^p \)-norm on both sides of (3.54). \( \Box \)
A Proofs of technical results

This section is devoted to the proofs of Proposition 2.1 and Lemmas 3.1, 3.3, 3.10.

To prove Proposition 2.1, we first establish a general well-posedness result for BSDEs with non-Lipschitz and unbounded coefficients. Although the result does not follow directly from [7, Proposition 3.5] due to the unboundedness of $A_t$ (i.e., the condition (A1(3)) in [7]) fails, the techniques there can be extended to the present setting.

Lemma A.1. Let $T > 0$, $\kappa \in \mathbb{R}$, $L \geq 0$, $\xi \in L^\infty(F_T; \mathbb{R}^n)$, let $A \in \mathcal{H}^2(\mathbb{R}^{n \times n})$ be such that $y^\top A_t(\omega)y \leq \kappa |y|^2$ for all $(t, \omega, y) \in [0, T] \times \Omega \times \mathbb{R}^n$, and let $f : [0, T] \times \Omega \times \mathbb{R}^{n \times d} \to \mathbb{R}^n$ satisfy for all $(t, \omega) \in [0, T] \times \Omega$ and $z, z' \in \mathbb{R}^{n \times d}$, $(f_t(z), z)_{t \in [0, T]}$ is progressively measurable, $|f_t(\omega, z) - f_t(\omega, z')| \leq L |z - z'|$ and $\sup_{(t,\omega)\in[0,T]\times\Omega} |f_t(\omega, 0)| < \infty$. Then the following BSDE

$$dY_t = -(A_tY_t + f_t(\cdot, Z_t)) dt + Z_t dW_t, \quad t \in [0, T]; \quad Y_T = \xi,$$

admits a unique solution $(Y, Z) \in \mathcal{S}^2(\mathbb{R}^n) \times \mathcal{H}^2(\mathbb{R}^{n \times d})$.

Proof of Lemma A.1. Throughout this proof, let $h_t(\omega, y, z) = A_t(\omega)y + f_t(\omega, z)$ for all $(t, \omega, y, z) \in [0, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d}$. Then for all $(t, \omega) \in [0, T] \times \Omega$ and $y, y' \in \mathbb{R}^n$ and $z, z' \in \mathbb{R}^{n \times d}$, $|y - y' - h_t(\omega, y, z) - h_t(\omega, y', z')| \leq \kappa |y - y'|^2$ and $|h_t(\omega, y, z) - h_t(\omega, y, z')| \leq L |z - z'|$. Hence the a-priori estimate in Lemma 3.2 shows that (A.1) admits at most one solution in the space $\mathcal{S}^2(\mathbb{R}^n) \times \mathcal{H}^2(\mathbb{R}^{n \times d})$.

To establish the existence of solutions, we construct a sequence of Lipschitz functions $(h^m)_{m \in \mathbb{N}}$ approximating $h$ as in [7, Proposition 3.5]. Without loss of generality, we assume that $\kappa = 0$, which in general can be achieved with an exponential time scaling of the solution. For each $m \in \mathbb{N}$, let $h : [0, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R}^n$ be such that $h^m_t(\omega, y, z) := A^m_t(\omega)y + f_t(\omega, z), \quad \forall (t, \omega, y, z) \in [0, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d},$

where $A^m_t(\omega) := \min_{A_t(\omega)} A_t(\omega)$. It is clear that for each $m \in \mathbb{N}$, $h^m$ is uniformly Lipschitz continuous in $y$ and $z$. Hence by [46, Theorem 4.3.1], there exist unique processes $(Y^m, Z^m) \in \mathcal{H}^2(\mathbb{R}^n) \times \mathcal{H}^2(\mathbb{R}^{n \times d})$ satisfying

$$dY_t = -h^m_t(Y_t, Z_t) dt + Z_t dW_t, \quad t \in [0, T]; \quad Y_T = \xi.$$

Observe from $\kappa = 0$ that for all $(t, \omega, y, z) \in [0, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d},$

$$\langle y, h^m_t(\omega, y, z) \rangle = \langle y, A^m_t(\omega)y \rangle + \langle y, f_t(\omega, z) \rangle \leq |y| (C_f + L |z|), \quad (A.2)$$

where $C_f = \sup_{(t,\omega)\in[0,T]\times\Omega} |f_t(\omega, 0)|$. Hence by [7, Proposition 2.1], for $dt \otimes d\mathbb{P}$ a.e.,

$$\sup_{t \in [0, T]} |Y^m|^2 \leq \|\xi\|_{L^\infty}^2 e^{\beta T} + \frac{C^2}{\beta} (e^{\beta T} - 1), \quad \text{with } \beta = 1 + L^2.$$

We now denote by $C$ a generic constant independent of $m$. By Lemma 3.2, for all $m, m' \in \mathbb{N}$,

$$\|Y^m - Y^m\|_{\mathcal{S}^2}^2 + \|Z^m - Z^m\|_{\mathcal{H}^2}^2 \leq C \mathbb{E} \left[ \left( \int_0^T |h^m_t(\cdot, Y^m_t, Z^m_t) - h^m_t(\cdot, Y^m_t, Z^m_t)| dt \right)^2 \right] \leq C \mathbb{E} \left[ \left( \int_0^T |A^m_t - A^m_t||Y^m_t| dt \right)^2 \right] \leq C \|A^m - A^m\|_{\mathcal{H}^2}^2,$$

where the last inequality follows from the uniform bound of $(Y^m)_{m \in \mathbb{N}}$. Lebesgue’s dominated convergence theorem shows that $\|A^m - A^m\|_{\mathcal{H}^2}$ tends to zero as $m, m' \to \infty$ with $m' \geq m$. This
implies that \((Y^m, Z^m)_{m \in \mathbb{N}}\) is a Cauchy sequence in \(S^2(\mathbb{R}^n) \times \mathcal{H}^2(\mathbb{R}^{n \times d})\), and hence converges to some processes \((Y, Z)\) in \(S^2(\mathbb{R}^n) \times \mathcal{H}^2(\mathbb{R}^{n \times d})\). Moreover, by Fatou’s lemma, there exits \(C \geq 0\) such that \(|Y| \leq C\) for \(dt \otimes d\mathbb{P}\) a.e.

It remains to verify that \((Y, Z)\) is a solution to (A.1). As \((Z^m)_{m \in \mathbb{N}}\) converges to \(Z\) in \(\mathcal{H}^2(\mathbb{R}^{n \times d})\), for all \(t \in [0, T]\), \(\lim_{m \to \infty} \| \int_t^T Z^m_s \, dW_s - \int_t^T Z_s \, dW_s \|_{L^2} = 0\). Moreover, for all \(t \in [0, T]\),

\[
\left\| \int_0^T (h^m_t(\cdot), Y^m_t, Z^m_t) - h_t(\cdot, Y_t, Z_t) \right\|_{L^1} \\
\leq \left\| \int_0^T (|A^m_t - A_t||Y^m_t| + |A_t||Y^m_t - Y_t|) \right\|_{L^1} + \left\| \int_0^T |f_t(\cdot, Z^m_t) - f_t(\cdot, Z_t)| \right\|_{L^1},
\]

which converge to zero as \(m \to \infty\), due to the Cauchy-Schwarz inequality, Lebesgue’s dominated convergence theorem, the boundedness of \((Y^m)_{m \in \mathbb{N}}\) and the convergence of \((Y^m, Z^m)_{m \in \mathbb{N}}\). This proves the desired existence result.

Armed with Lemma A.1, we prove the well-posedness of the iterates \((\phi^m)_{m \in \mathbb{N}_0}\) for general stepizes \(\tau > 0\).

**Proof of Proposition 2.1.** For any given \(\phi^0 \in \mathcal{V}_A\) and \(\tau > 0\), we prove the statement with an induction argument. Due to the assumption \(\phi^0 \in \mathcal{V}_A\), the statement clearly holds for \(m = 0\).

Suppose that \(\phi^m \in \mathcal{V}_A\) for some \(m \in \mathbb{N}_0\). Then by (H.1), \((t, x) \mapsto (b_t(x, \phi^m_t(x)), \sigma_t(x))\) is locally Lipschitz and monotone in \(x\). Hence, for each \((t, x) \in [0, T] \times \mathbb{R}^n\), by [31, Theorem 3.6, p. 58], (1.10) admits a unique solution \(X^{t,x,\phi^m} \in S^2(t, T; \mathbb{R}^n)\).

We then apply Lemma A.1 for the well-posedness of \((Y^{t,x,\phi^m}, Z^{t,x,\phi^m})\). By Lemma 3.3 and the fact that \(\phi^m\) takes values in \(A\), \(|\partial_x H_t(x, \phi_t(x), y, z) - \partial_x H_t(x, \phi_t(x), y, z')| \leq L_0|z - z'|\), and

\[
(y - y', \partial_x H_t(x, \phi_t^m(x), y, z) - \partial_x H_t(x, \phi_t^m(x), y', z)) \leq (\kappa_0 - \rho + L_0)^2|y - y'|^2.
\]

Moreover, by (2.1) and (2.5), \(\partial_x g(X^{t,x,\phi^m}_T)\) and \(\partial_x f_s(X^{t,x,\phi^m}_s, \phi^m_s(X^{t,x,\phi^m}_s))\) are uniformly bounded \(dt \otimes d\mathbb{P}\)-a.e., and

\[
\| \partial_x b(X^{t,x,\phi^m}, \phi^m(X^{t,x,\phi^m})) \|_H^2 \leq C(1 + \|X^{t,x,\phi^m}\|_{S^2}) < \infty,
\]

where we used the linear growth of \(\partial_x \hat{b}\) and \(\phi^m\) and the boundedness of \(\partial_x \hat{b}\). Hence by Lemma A.1, (1.11) admits a unique solution in the space \(S^2(t, T; \mathbb{R}^n) \times \mathcal{H}^2(t, T; \mathbb{R}^{n \times d})\). The fact that \((t, x) \mapsto Y^{t,x,\phi^m}_t\) can be identified as a deterministic function follows from [37, Remark 2.1].

Finally, similar to Propositions 3.5 and 3.7, one can prove that \((t, x) \mapsto Y^{t,x,\phi^m}_t\) is bounded and \(x \mapsto Y^{t,x,\phi^m}_t\) is Lipschitz continuous uniformly in \(t\). As \(\tau \ell : \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}\) is proper, lower semicontinuous and convex, \(z \mapsto \text{prox}_{\tau \ell}(z)\) is Lipschitz continuous and takes values in \(A\). Hence, one can easily deduce from (H.1) that \(\phi^{m+1} \in \mathcal{V}_A\), which completes the induction argument. 

**Proof of Lemma 3.1.** Throughout this proof, let \(C\) be a generic constant depending only on \(p\), let \(t \in [0, T]\), \(x_1, x_2 \in \mathbb{R}^n\) and write \(X_s^1 = X_s^{1,x_1,1}\), \(X_s^2 = X_s^{1,x_2,2}\) and \(\Delta X_s = X_s^1 - X_s^2\). By applying Itô’s formula to \((|\Delta X_s|^p)_{s \in [t, T]}\), for \(t \leq s \leq T\)

\[
|\Delta X_s|^p \leq |x_1 - x_2|^p + \int_t^s \left( \left( p|\Delta X_r|^{p-2}(\Delta X_r, b^1_r(X_r^1) - b^2_r(X_r^2)) \right) \\
+ \left( \frac{p(p-1)}{2} |\Delta X_r|^{p-2} |\sigma^1_r(X_r^1) - \sigma^2_r(X_r^2)|^2 \right) \right) dr \\
+ p \int_t^s |\Delta X_r|^{p-2}(\Delta X_r, \sigma^1_r(X_r^1) - \sigma^2_r(X_r^2)) \, dW_r,
\]

(A.3)
which along with the assumptions of $b^1$ and $\sigma^1$ gives

\[
|\Delta X_s|^p \leq |x_1 - x_2|^p + \int_t^s \left( (p\mu_1 + p(p-1)\nu_1^2) |\Delta X_r|^p + p|\Delta X_r|^{p-1} |b_1^1(X_r^2) - b_2^2(X_r^2)| + p(p-1)|\Delta X_r|^{p-2} |\sigma_1^1(X_r^2) - \sigma_2^2(X_r^2)|^2 \right) dr
\]

\[
+ p \left( \int_t^s |\Delta X_r|^{p-2} \langle \Delta X_r, \sigma_1^1(X_r^1) - \sigma_2^2(X_r^2) \rangle dW_r \right) \Bigg].
\]  

(A.4)

Observe that by the Burkholder-Davis-Gundy inequality (see [46, Theorem 2.4.1]) and Young’s inequality, for all $\varepsilon > 0$,

\[
pE \left[ \sup_{s \in [t,T]} \left| \int_t^s |\Delta X_r|^{p-2} \langle \Delta X_r, (\sigma_1^1(X_r^1) - \sigma_2^2(X_r^2)) \rangle dW_r \right|^2 \right]
\]

\[
\leq C_2 \left( \int_t^T |\Delta X_r|^{2p-4} |\Delta X_r|^2 |\sigma_1^1(X_r^1) - \sigma_2^2(X_r^2)|^2 dr \right)^{1/2}
\]

\[
\leq C_2 \left( \sup_{s \in [t,T]} |\Delta X_s|^{p/2} \left( \int_t^T |\Delta X_r|^{p-2} |\sigma_1^1(X_r^1) - \sigma_2^2(X_r^2)|^2 dr \right)^{1/2} \right)
\]

\[
\leq \varepsilon \|\Delta X\|_{Sp}^p + C \varepsilon^{-1} p^2 \left( \int_t^T |\Delta X_r|^p dr \right) + C \varepsilon^{-1} p^2 \left( \int_t^T |\Delta X_r|^{p-2} |\sigma_1^1(X_r^2) - \sigma_2^2(X_r^2)|^2 dr \right).
\]

Hence, by taking supremum over $s \in [t,T]$ and expectations on both sides of (A.4),

\[
\|\Delta X\|_{Sp}^p
\]

\[
\leq |x_1 - x_2|^p + (p\mu_1 + p(p-1)\nu_1^2) \left( \int_t^T |\Delta X_r|^p dr \right) + \varepsilon \|\Delta X\|_{Sp}^p + C \varepsilon^{-1} p^2 \left( \int_t^T |\Delta X_r|^p dr \right)
\]

\[
+ \left( \int_t^T \left( p|\Delta X_r|^{p-1} |b_1^1(X_r^2) - b_2^2(X_r^2)| + (p(p-1) + C \varepsilon^{-1} p^2) |\Delta X_r|^{p-2} |\sigma_1^1(X_r^2) - \sigma_2^2(X_r^2)|^2 \right) dr \right).
\]

Then by Young’s inequality,

\[
E \left[ \int_t^T \left( p|\Delta X_r|^{p-1} |b_1^1(X_r^2) - b_2^2(X_r^2)| + (p(p-1) + C \varepsilon^{-1} p^2) |\Delta X_r|^{p-2} |\sigma_1^1(X_r^2) - \sigma_2^2(X_r^2)|^2 \right) dr \right]
\]

\[
\leq \varepsilon \|\Delta X\|_{Sp}^p + \varepsilon^{-1} T^{p/2} C_d \left( \int_t^T \left[ |b_1^1(X_r^2) - b_2^2(X_r^2)|^2 dr \right]^{p/2} \right)
\]

\[
+ \varepsilon^{-1} C_d (p(p-1) + C \varepsilon^{-1} p^2)^{p/2} \left( \int_t^T \left[ |\sigma_1^1(X_r^2) - \sigma_2^2(X_r^2)|^2 dr \right]^{p/2} \right),
\]

which gives us that

\[
\|\Delta X\|_{Sp}^p \leq |x_1 - x_2|^p + (p\mu_1 + p(p-1)\nu_1^2) \left( \int_t^T |\Delta X_r|^p dr \right) + \varepsilon \|\Delta X\|_{Sp}^p
\]

32
follows from the Cauchy–Schwarz inequality and the fact that
\[ b_2 \]
where the second inequality follows from the assumptions of
\[ p \]
Moreover, by (2.9),
\[ \frac{1}{2} \]
Proof of Lemma 3.3. By (2.8) and (2.9),
\[ \langle y - y', \partial_x H_t(x, a, y, z) - \partial_x H_t(x, a, y', z) \rangle = \langle y - y', \partial_x b_t(x, a) \rangle (y - y') - \rho(y - y') \]
\[ = \langle y - y', (\partial_x b_t(x) + \partial_x b_t(x)a) \rangle (y - y') - \rho(y - y') \leq (\kappa_b - \rho + L_b) |y - y'|. \]
Moreover, by (2.8), (2.9) and (2.1),
\[ |\partial_x H_t(x, a, y, z) - \partial_x H_t(x', a', y, z')| \]
\[ \leq |\partial_x b_t(x, a) - \partial_x b_t(x', a')| |y| + |\text{tr}(\partial_x \sigma_t(x) z) - \text{tr}(\partial_x \sigma_t(x') z')| + |\partial_x f_t(x, a) - \partial_x f_t(x', a')| \]
\[ \leq (L_b |x - x'| + L_b |\sigma| |a| |x - x'| + |a - a'|) |y| + L_\sigma |x - x'| |z| + L_\sigma |z - z'| + L_{fx} (|x - x'| + |a - a'|). \]
This completes the proof of the desired estimates. 

Proof of Lemma 3.10. Throughout this proof, for each \( p > 1 \) and Euclidean space \( E \), we denote by \( \mathbb{D}^1,p(E) \) and \( \mathbb{L}^1,p(E) \) the spaces of Malliavin differentiable random variables and processes; see [30, Appendix A.2] for details.

By Corollary 3.5 and Remark 3.4 in [21], for any \( (t, x) \in [0, T] \times \mathbb{R}^n, \phi \in \mathcal{V}_\Lambda, s \in [t, T] \) and \( p > 1, X_{s,t,x,\phi}^s \in \mathbb{D}^1,p(\mathbb{R}^n) \), and the derivative \( DX_{s,t,x,\phi}^t = (DX_{s,t,x,\phi}^t(1), \ldots, DX_{s,t,x,\phi}^t(d)) \), which is \( \mathbb{R}^{n \times d} \)-valued, satisfies for \( t \leq r < s \leq T \) that \( D_s X_{r,t,x,\phi}^r = 0 \) and for \( t \leq s \leq r \leq T \) that
\[ D_s X_{r,t,x,\phi}^r = \sigma_s(X_{s,t,x,\phi}^r) + \int_s^r \partial b_u D_s X_{u,t,x,\phi}^r du + \sum_{k=1}^d \int_s^r \partial \sigma_u^{(k)} D_s X_{u,t,x,\phi}^r dW_u^{(k)} \]
for some adapted process \( \partial b : [t, T] \times \Omega \to \mathbb{R}^{n \times n} \).

We proceed to establishing the Malliavin differentiability of \( (Y_{s,t,x,\phi}^r, Z_{s,t,x,\phi}^r) \). By [46, Theorem 5.1.3], for all \( s \in [t, T] \), \( Y_{s,t,x,\phi}^r = u_s(X_{s,t,x,\phi}^r) \), with the function \( (t, x) \mapsto u_t(x) := Y_{t,x,\phi}^t \). Thus
the Lipschitz continuity of $x \mapsto Y^t,x,\phi$, the chain rule and $X^t,x,\phi \in L_{1,p}(\mathbb{R}^n)$ imply that $Y^t,x,\phi \in L_{1,p}(\mathbb{R}^n)$ for all $p > 1$.

For the Malliavin differentiability of $Z^t,x,\phi$, for each $(t,x) \in [0,T] \times \mathbb{R}^n$ and $\phi \in \mathcal{V}_A$, consider the following BSDE:

$$U^t,x,\phi = \partial_x g(X^t,x,\phi) + \int_s^T \hat{f}_r(V^t,x,\phi) \, dr - \int_s^T V^t,x,\phi \, dW_r,$$

where $\hat{f} : [t,T] \times \Omega \times \mathbb{R}^{n \times d} \to \mathbb{R}^n$ is defined by

$$\hat{f}_r(v) := \partial_x H_r(X^t,x,\phi(\omega), \phi_r(X^t,x,\phi(\omega)), Y^t,x,\phi(\omega), v), \quad \forall (r,\omega,v) \in [t,T] \times \Omega \times \mathbb{R}^{n \times d}.$$

The Lipschitz continuity of $\mathbb{R}^{n \times d} \ni v \mapsto \hat{f}_r(v)$ imply that (A.7) admits the unique solution $(U^t,x,\phi, V^t,x,\phi)$, which along with the uniqueness of solutions to (1.11) shows that $(U^t,x,\phi, V^t,x,\phi) = (Y^t,x,\phi, Z^t,x,\phi)$. Observe from (H.1), $\phi \in \mathcal{V}_A$ and $X^t,x,\phi, Y^t,x,\phi \in L_{1,p}$ for all $p > 1$ that for all $v \in \mathbb{R}^{n \times d}$,

$$\partial_x H_r(X^t,x,\phi(\omega), \phi_r(X^t,x,\phi(\omega)), Y^t,x,\phi(\omega), v) \in L_{1,2}.$$ 

Hence applying [9, Proposition 5.3] to (A.7) implies $(U^t,x,\phi, V^t,x,\phi)$ are Malliavin differentiable. By further applying [9, Proposition 5.3] to (1.11), $Z^t,x,\phi = D_s Y^t,x,\phi$ for $dt \otimes d\mathbb{P}$-a.e.

Recall the representation $Y^t,x,\phi = u_t(x)$ with $u_t(x) = Z^t,x,\phi$. By the chain rule and (A.6), $Z^t,x,\phi = D_s Y^t,x,\phi = \partial u_s D_s X^t,x,\phi = \partial u_s s(X^t,x,\phi)$ for a uniformly bounded process $\partial u$. In fact, $\partial u$ is the weak limit of the sequences $(\partial u_\varepsilon(X^t,x,\phi))_{\varepsilon > 0}$ in $\mathcal{H}^2(t,T; \mathbb{R}^{n \times n})$, where $(u_\varepsilon)_{\varepsilon > 0}$ is a standard mollification of $u$. Then by Proposition 3.7, $|\partial u| \leq L_Y(|\phi|_1)$, which along with (2.10) leads to the desired result.

**Lemma A.2.** Let $m_{(\alpha,\beta)}$ be defined as in (3.33), where $\alpha$ and $\beta$ are given by (3.16) and (3.33), respectively. Then $m_{(\alpha,\beta)} \to 0$, as $T \to 0$, or $\rho \to \infty$ or $\kappa_\beta \to -\infty$.

**Proof.** We start by fixing $T > 0$ and $\kappa_\beta$ and considering $\rho \to \infty$. Then $\beta$ is fixed and $\alpha$ tends to $-\infty$. By definition of $m_{(\alpha,\beta)}$,

$$m_{(\alpha,\beta)} = \sup_{t \in [0,T]} e^{2\alpha(T-t)} \frac{e^{\beta(T-t)} - 1}{\beta} = \sup_{t \in [0,T]} \frac{e^{2\alpha + \beta}t - e^{2\alpha t}}{\beta}.$$ 

Assume without loss of generality that $\alpha$ is sufficiently negative such that $2\alpha + \beta < 0$. A straightforward computation shows that the supremum is attained for $t^* = \frac{1}{2\alpha + \beta} \ln \left( \frac{2\alpha}{2\alpha + \beta} \right)$, and hence

$$m_{(\alpha,\beta)} = e^{2\alpha \left( \frac{\ln (2\alpha + \beta)}{\beta} \right)} - 1 = e^{2\alpha \left( \frac{\ln (2\alpha + \beta) - 2\alpha}{2\alpha + \beta} \right)} - 1 = -e^{2\alpha \ln \left( \frac{2\alpha + \beta}{2\alpha} \right)} \frac{1}{2\alpha + \beta}.$$ 

By L'Hospital's rule, $\lim_{\alpha \to -\infty} \frac{2\alpha}{2\alpha + \beta} = -1$, which shows that $\lim_{\rho \to \infty} m_{(\alpha,\beta)} = 0$.

Now we fix $\rho$ and send $\kappa_\beta \to -\infty$ (i.e., $\beta \to -\infty$) or $T \to 0$. Observe that

$$m_{(\alpha,\beta)} = \sup_{t \in [0,T]} e^{2\alpha(T-t)} \int_t^T e^{(T-s)\beta} \, ds \leq \sup_{t \in [0,T]} e^{2\alpha(T-t)} \int_0^T e^{(T-s)\beta} \, ds \leq e^{2\alpha + T \frac{\beta}{2\alpha + \beta} - 1},$$

from which one can easily deduce that $\lim_{T \to 0} m_{(\alpha,\beta)} = \lim_{\kappa_\beta \to -\infty} m_{(\alpha,\beta)} = 0$. 

$\square$
Acknowledgements

Wolfgang Stockinger is supported by a special Upper Austrian Government grant.

References

[1] V. Barbu and T. Precupanu, *Convexity and optimization in Banach spaces*, Springer Science & Business Media, 2012.

[2] G. Barles and E. R. Jakobsen, *On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations*, ESAIM: Mathematical Modelling and Numerical Analysis, 36 (2002), pp. 33–54.

[3] E. Bayraktar, A. Budhiraja, and A. Cohen, *A numerical scheme for a mean field game in some queueing systems based on Markov chain approximation method*, SIAM Journal on Control and Optimization, 56 (2018), pp. 4017–4044.

[4] A. Beck and M. Teboulle, *A fast iterative shrinkage-thresholding algorithm for linear inverse problems*, SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.

[5] C. Bender and J. Zhang, *Time discretization and Markovian iteration for coupled FBS-DEs*, The Annals of Applied Probability, 18 (2008), pp. 143–177.

[6] A. Bensoussan, J. Frehse, and P. Yam, *Mean field games and mean field type control theory*, vol. 101 of Springer Briefs in Mathematics, Springer, 2013.

[7] P. Briand and R. Carmona, *BSDEs with polynomial growth generators*, Journal of Applied Mathematics and Stochastic Analysis, 13 (2000), pp. 207–238.

[8] R. Carmona, *Lectures on BSDEs, stochastic control, and stochastic differential games with financial applications*, SIAM, 2016.

[9] N. El Karoui, S. Peng, and M. C. Quenez, *Backward stochastic differential equations in finance*, Mathematical finance, 7 (1997), pp. 1–71.

[10] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, *Global convergence of policy gradient methods for the linear quadratic regulator*, in International Conference on Machine Learning, PMLR, 2018, pp. 1467–1476.

[11] M. Giegrich, C. Reisinger, and Y. Zhang, *Convergence of policy gradient methods for finite-horizon stochastic linear-quadratic control problems*, arXiv preprint arXiv:2211.00617, (2022).

[12] E. Gobet, J.-P. Lemor, and X. Warin, *A regression-based Monte Carlo method to solve backward stochastic differential equations*, The Annals of Applied Probability, 15 (2005), pp. 2172–2202.

[13] H. Gu, X. Guo, X. Wei, and R. Xu, *Mean-field multi-agent reinforcement learning: A decentralized network approach*, arXiv preprint arXiv:2108.02731, (2021).

[14] X. Guo, A. Hu, and J. Zhang, *Theoretical guarantees of fictitious discount algorithms for episodic reinforcement learning and global convergence of policy gradient methods*, arXiv preprint arXiv:2109.06362, (2021).
X. Guo, A. Hu, and Y. Zhang, *Reinforcement learning for linear-convex models with jumps via stability analysis of feedback controls*, arXiv preprint arXiv:2104.09311, (2021).

B. Hambly, R. Xu, and H. Yang, *Policy gradient methods for the noisy linear quadratic regulator over a finite horizon*, SIAM Journal on Control and Optimization, 59 (2021), pp. 3359–3391.

J. Han and W. E, *Deep learning approximation for stochastic control problems*, arXiv preprint arXiv:1611.07422, (2016).

J. Han, A. Jentzen, and W. E, *Solving high-dimensional partial differential equations using deep learning*, Proceedings of the National Academy of Sciences, 115 (2018), pp. 8505–8510.

R. Hu, *Deep fictitious play for stochastic differential games*, arXiv preprint arXiv:1903.09376, (2019).

C. Huré, H. Pham, and X. Warin, *Deep backward schemes for high-dimensional nonlinear PDEs*, Mathematics of Computation, 89 (2020), pp. 1547–1579.

P. Imkeller, G. Dos Reis, and W. Salkeld, *Differentiability of sdes with drifts of super-linear growth*, Electronic journal of probability, 24 (2019), pp. 1–43.

A. Isidori, *Nonlinear control systems: an introduction*, Springer, 1985.

K. Ito, C. Reisinger, and Y. Zhang, *A neural network-based policy iteration algorithm with global $H^2$-superlinear convergence for stochastic games on domains*, Foundations of Computational Mathematics, 21 (2021), pp. 331–374.

Y. Jia and X. Y. Zhou, *Policy gradient and actor-critic learning in continuous time and space: Theory and algorithms*, arXiv preprint arXiv:2111.11232, (2021).

B. Kerimkulov, J.-M. Leahy, D. Šiška, and L. Szpruch, *Convergence of policy gradient for entropy regularized MDPs with neural network approximation in the mean-field regime*, arXiv preprint arXiv:2201.07296, (2022).

B. Kerimkulov, D. Šiška, and L. Szpruch, *Exponential convergence and stability of Howard’s policy improvement algorithm for controlled diffusions*, SIAM Journal on Control and Optimization, 58 (2020), pp. 1314–1340.

Y. Jia and X. Y. Zhou, *Policy gradient and actor-critic learning in continuous time and space: Theory and algorithms*, arXiv preprint arXiv:2111.11232, (2021).

A. Lionnet, G. Dos Reis, and L. Szpruch, *Time discretization of FBSDE with polynomial growth drivers and reaction–diffusion PDEs*, The Annals of Applied Probability, 25 (2015), pp. 2563–2625.

X. Mao, *Stochastic differential equations and applications*, Elsevier, 2007.
[32] B. Maslowski and P. Veverka, *Sufficient stochastic maximum principle for discounted control problem*, Applied Mathematics & Optimization, 70 (2014), pp. 225–252.

[33] J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans, *On the global convergence rates of softmax policy gradient methods*, in International Conference on Machine Learning, PMLR, 2020, pp. 6820–6829.

[34] B. S. Mordukhovich, *Variational analysis and generalized differentiation I: Basic theory*, vol. 330, Springer Science & Business Media, 2006.

[35] R. Munos, *Policy gradient in continuous time*, Journal of Machine Learning Research, 7 (2006), pp. 771–791.

[36] Y. Nesterov, *Introductory lectures on convex optimization: A basic course*, vol. 87, Springer Science & Business Media, 2003.

[37] É. Pardoux, *Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order*, in Stochastic Analysis and Related Topics VI, Springer, 1998, pp. 79–127.

[38] H. Pham, *Continuous-time stochastic control and optimization with financial applications*, vol. 61, Springer Science & Business Media, 2009.

[39] C. Reisinger, W. Stockinger, and Y. Zhang, *A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems*, arXiv preprint arXiv:2108.06740, (2021).

[40] R. T. Rockafellar and R. J.-B. Wets, *Variational analysis*, vol. 317, Springer Science & Business Media, 2009.

[41] D. Šiška and L. Szpruch, *Gradient flows for regularized stochastic control problems*, arXiv preprint arXiv:2006.05956, (2020).

[42] R. S. Sutton and A. G. Barto, *Reinforcement learning: An introduction*, MIT press, 2018.

[43] L. Szpruch, T. Trietanthiploet, and Y. Zhang, *Exploration-exploitation trade-off for continuous-time episodic reinforcement learning with linear-convex models*, arXiv preprint arXiv:2112.10264, (2021).

[44] C. Tallec, L. Blier, and Y. Ollivier, *Making deep q-learning methods robust to time discretization*, in International Conference on Machine Learning, PMLR, 2019, pp. 6096–6104.

[45] L. Wang, Q. Cai, Z. Yang, and Z. Wang, *Neural policy gradient methods: Global optimality and rates of convergence*, arXiv preprint arXiv:1909.01150, (2019).

[46] J. Zhang, *Backward Stochastic Differential Equations*, Springer, 2017.