A Multi-feature Dataset for Windows PE Malware Classification

Muhammad Irfan Yousuf*, Izza Anwer², Tanzeela Shakir¹, Minahil Siddiqui¹ and Maysoon Shahid¹

¹Department of Computer Science (New Campus), University of Engineering & Technology, Lahore, Pakistan.
²Department of Transportation Engineering and Management, University of Engineering & Technology, Lahore, Pakistan.

*Corresponding author(s). E-mail(s): irfan.yousuf@uet.edu.pk;

Abstract

This paper describes a multi-feature dataset for training machine learning classifiers for detecting malicious Windows Portable Executable (PE) files. The dataset includes four feature sets from 18,551 binary samples belonging to five malware families including Spyware, Ransomware, Downloader, Backdoor and Generic Malware. The feature sets include the list of DLLs and their functions, values of different fields of PE Header and Sections. First, we explain the data collection and creation phase and then we explain how did we label the samples in it using VirusTotal’s services. Finally, we explore the dataset to describe how this dataset can benefit the researchers for static malware analysis. The dataset is made public in the hope that it will help inspire machine learning research for malware detection.

Keywords: Windows Portable Executable, Malware Detection, Multi-feature Dataset

1 Introduction

Malicious programs or malware have different types including Trojans, Spyware, Ransomware, Backdoor, and Downloaders to name a few [1]. Nowadays,
A Dataset for Malware Classification

Computers have become an essential part of everyday life, and as a result, computer intruders are attacking computers using different methods, or trying to use these computers as weapons. Malware analysis is the study of determining the behavior of malware samples to prevent future attacks. In static malware analysis, we do not run the malware code in real rather we examine the file for malicious contents or signatures. Dynamic malware analysis executes the malicious program in a safe environment such as a sandbox and detects the run-time behavior of the program [2].

Different malware have different purposes, e.g., obtaining personal or sensitive data such as bank accounts and passwords, gaining unauthorized access to a network, and blocking a few or all applications running on a system etc [3]. Generally, a malware attacks a specific platform or operating system, therefore, its behavior could depend on the underlying operating system being attacked [4]. For example, a Windows Programmable Executable (PE) malware could access different Dynamic Link Libraries (DLLs) or call Application Programming Interface (API) routines to access files or other resources in a Windows environment.

It has been observed that although malware have evolved structurally over the years, there are still some constant characteristics or features that help analysts to detect them. For example, if a malware is running on a Windows operating system, it will use some of the services of the operating system. The malware will access Windows DLLs to call different API functions. The set of DLLs accessed or the API functions called generate the malicious behavior. Similarly, the information of PE header and its different sections could help in detecting the malware. In short, if the malicious behavior is analyzed well, the detection of malware is possible.

The main objective of this study is to collect a multi-feature dataset for Windows PE malware classification so that the researchers do not have to invest their time in collecting malware samples and extracting features from them. We focus on four features for static malware analysis including DLLs accessed, API functions called, PE Header and Sections information. We shared our dataset on GitHub site. We believe that the researchers working on cybersecurity or related fields would benefit from this dataset. The dataset will fill the void in static malware analysis using machine learning. [5, 6, 7, 8].

2 Data Collection

The data were collected in two steps. Figure 1 summarizes these steps. In the first step, we collected the data from MalwareBazaar Database 1 using its API. Only Windows PE files were targeted in API calls and more than 20,000 samples were downloaded. We used pefile library 2 of Python to extract PE statistics or features from those samples. The samples with incorrect or missing values in PE header were discarded. Similarly, we also discarded samples with

1 https://bazaar.abuse.ch/
2 https://pypi.org/project/pefile/
After discarding unwanted samples, we have a total of 18,551 samples in our dataset.

In the second step, we submitted the SHA256 hashes of all the samples to VirusTotal using its API for labeling the families of these samples. VirusTotal is a free service that allows us to analyze malware samples online. It has more than 70 antivirus engines or scanners for malware analyses. VirusTotal’s public API can fetch the name of the malware family as classified by each antivirus. We pulled the family name of each sample as returned by all the antivirus engines and saved them in a Comma Separated Values (CSV) file.

2.1 Dataset Creation

The data set, as uploaded on GitHub, has a very simple structure. We provide it as Comma Separated Values (CSV) files so that no specific software or tool is required to read it. We extracted four features including DLLs...
Table 1: Distribution of malware according to their families

Malware Family	Count	Description
Generic Malware	6,231	Generic malware that do not fit in any class below.
Spyware	5,766	It monitors activities on an infected system and steals sensitive information such as passwords and bank details.
Downloader	2,438	It helps in downloading other malwares onto an infected system.
Ransomware	2,376	It prevents users from accessing their system or personal files and demands ransom payment in order to regain access.
Backdoor	1,740	A trojan that negates normal authentication procedures to access a system. It grants remote access to the resources under attack.
Total	18,551	

imported, APIs called, PE Header and Section information using pefile library. Each feature is presented in a separate CSV file. The first column of each CSV file contains SHA256 value of a sample whereas the second column contains its family name or label. We labeled the samples using majority voting method in which we label a sample with the family name that is returned by the majority of antivirus engines of VirusTotal. Based on the results of VirusTotal’s public API, we classified the dataset into five classes as shown in Table 1. Each row of DLL and DLL Functions CSV files enlist the DLLs imported and API functions called by a sample respectively. Each row of Header CSV file provides values of 52 fields of header of each sample. Similarly, each row of Section CSV file gives values of ten fields of ten sections (a total of 100 features) of a sample.

3 Dataset Description

The dataset contains four features extracted from 18,551 malware samples. We detail the four features as follows.

3.1 Features

The dataset contains the following four features of Windows PE malware samples. These are static malware analysis features, i.e., we did not run the samples in a sandbox. All these features have been extracted using Python’s pefile library.

List of Imported DLLs: We extracted the list of all the DLLs imported by a sample. Malware writers use Windows DLLs to avoid writing the code that they think is available in a Windows DLL. A program can be characterized by the set of DLLs it imports. Therefore, this feature can be used for classification of malware.

List of API calls: This feature contains the list of all the API functions called by a malware. This feature supplements the first feature and it can be used to improve the classification accuracy.

PE Header: PE header contains useful data about the sample under study. A PE file contains a number of headers such as COFF file header, MS-DOS
Table 2: PE Header fields in the 3rd feature set

DOS Header	Optional Header
e_magic	Magic
e_cblp	MajorLinkerVersion
e_cp	MinorLinkerVersion
e_cric	SizeOfCode
e_cparhdr	SizeOfInitializedData
e_minalloc	SizeOfUninitializedData
e_maxalloc	AddressOfEntryPoint
e_ss	BaseOfCode
e_sp	ImageBase
e_csum	SectionAlignment
e_ip	FileAlignment
e_cs	MajorOperatingSystemVersion
e_lfanew	MinorOperatingSystemVersion
e_ovno	MajorImageVersion
e_oemid	MinorImageVersion
e_oeminfo	MajorSubsystemVersion
e_lfanew	MinorSubsystemVersion
-	Reserved1
-	SizeOfImage
-	SizeOfHeaders
File Header	CheckSum
Machine	Subsystem
NumberOfSections	DllCharacteristics
TimeDateStamp	SizeOfStackReserve
PointerToSymbolTable	SizeOfHeapReserve
NumberOfSymbols	SizeOfHeapCommit
SizeOfOptionalHeader	LoaderFlags
Characteristics	NumberOfRvaAndSizes

Stub, and optional header etc. We collected the values of 52 fields of PE Header as our third feature set. The list of these 52 fields is given in Table 2.

PE Section: Many sections such as code section (.text), data section (.data, .rdata), and resource section (.rsrc) etc. are part of Windows PE files. We extracted the values of ten fields of each of ten sections (a total of 100 section values) as our fourth feature set. The details of these sections and values are given in Table 3.

3.2 Exploring Dataset

Table 4 enlist the top-30 DLLs imported by each malware family. We see that top-5 DLLs are same for all families, however, as we move down the list each malware family starts importing task specific DLLs. The top-5 DLLs provide basic functionalities such as memory, files and hardware access and almost all programs whether malware or benign need these basic functionalities. Then, we see that Spyware and Ransomware import crypt32.dll for Certificate and Cryptographic Messaging functions whereas Downloader malware family does not import this DLL. It means that imported DLLs can be used as a feature for classification tasks as each malware family will probably import a different
Table 3: PE sections and fields of 4th feature set

Section Name	Description
.text	This section contains the executable code. It also contains program entry point.
.data	This section contains initialized data of a program.
.rdata	It contains data that is to be only readable, such as literal strings, and constants.
.bss	It represents uninitialized data to reduce the size of executable file.
.idata	The .idata section contains information about imported functions.
.edata	This section contains information about symbols that other images can access through dynamic linking.
.rsrc	This resource-container section contains resource information.
.reloc	Relocation information is saved in this section.
.tls	TLS stands for Thread Local Storage. Each thread running in Windows uses its own storage called TLS.
.pdata	The .pdata section contains an array of function table entries that are used for exception handling.

Field Name	Description
Name	An 8-byte encoded string contains name of the section.
Misc.VirtualSize	The total size of the section when loaded into memory.
VirtualAddress	The address of the first byte of a section.
SizeOfRawData	The size of the section.
PointerToRawData	The file pointer to the first page of the section within the COFF file.
PointerToRelocations	The file pointer to the beginning of relocation entries for the section.
PointerToLinenumbers	The file pointer to the beginning of line-number entries for the section.
NumberOfRelocations	The number of relocation entries for the section.
NumberOfLinenumbers	The number of line-number entries for the section.
Characteristics	The flags that describe the characteristics of the section.

set of DLLs. Similarly, Table 5 enlist top-30 API functions called by each malware family. We see that each malware family calls a different set of API functions to accomplish its specific task and makes the list of API function calls an important feature for classification. We believe that combining these two features can enhance the accuracy of a classification model.

To summarize, a total of 13,835 unique API functions from 427 unique DLLs are called by the malware samples in this dataset. There are 52 features in the Header feature set whereas the Sections feature set contains 100 features. Overall, the dataset contains 14,414 features of Windows PE files.
Table 4: Top 30 DLLs imported by each malware family.

Generic Malware	Backdoor	Downloader	Ransomware	Spyware
mscoree.dll	mscoree.dll	kernel32.dll	kernel32.dll	kernel32.dll
kernel32.dll	kernel32.dll	mscoree.dll	user32.dll	user32.dll
user32.dll	user32.dll	user32.dll	advapi32.dll	advapi32.dll
advapi32.dll	advapi32.dll	advapi32.dll	ole32.dll	ole32.dll
ole32.dll	ole32.dll	ole32.dll	mscoree.dll	advapi32.dll
gd32.dll	oleaut32.dll	gd32.dll	gd32.dll	gd32.dll
shell32.dll	gd32.dll	shell32.dll	shell32.dll	oleaut32.dll
oleaut32.dll	shell32.dll	oleaut32.dll	shell32.dll	shell32.dll
comctl32.dll	comctl32.dll	oleaut32.dll	comctl32.dll	comctl32.dll
msvcrtd.dll	msvcrtd.dll	msvcrtd.dll	msvcrtd.dll	msvcrtd.dll
user32.dll	version.dll	version.dll	winhttp.dll	winhttp.dll
version.dll	version.dll	version.dll	version.dll	version.dll
shlwapi.dll	winmm.dll	shlwapi.dll	shlwapi.dll	comdlg32.dll
comdlg32.dll	comdlg32.dll	winmm.dll	shlwapi.dll	comdlg32.dll
wininet.dll	wininet.dll	shlwapi.dll	ntdll.dll	shlwapi.dll
wininet.dll	wininet.dll	wininet.dll	wininet.dll	odbc32.dll
winspool.dll	api-ms-win-crt-runtime-l1-1-0.dll	api-ms-win-crt-runtime-l1-1-0.dll	comdlg32.dll	winspool.dll
winspool.dll	api-ms-win-crt-runtime-l1-1-0.dll	comdlg32.dll	winsmm.dll	winspool.dll
msvbnm60.dll	netapi32.dll	api-ms-win-crt-runtime-l1-1-0.dll	gdiplus.dll	dwrite.dll
msvcrtd0.dll	gdiplus.dll	gdiplus.dll	winspool.dll	wininet.dll
gdiplus.dll	gdiplus.dll	ntosknl.dll	ntosknl.dll	gdiplus.dll
gdiplus.dll	ntosknl.dll	api-ms-win-crt-runtime-l1-1-0.dll	netapi32.dll	winspool.dll
msvcrtd.dll	msvcrtd.dll	api-ms-win-crt-runtime-l1-1-0.dll	msvcrtd.dll	msvcrtd.dll
api-ms-win-crt-runtime-l1-1-0.dll	api-ms-win-crt-runtime-l1-1-0.dll	api-ms-win-crt-runtime-l1-1-0.dll	urlmon.dll	api-ms-win-crt-runtime-l1-1-0.dll
api-ms-win-crt-runtime-l1-1-0.dll	api-ms-win-crt-runtime-l1-1-0.dll	mfc42.dll	msxml.dll	msxml.dll
api-ms-win-crt-runtime-l1-1-0.dll	api-ms-win-crt-runtime-l1-1-0.dll	mfc42.dll	msxml.dll	msxml.dll
api-ms-win-crt-runtime-l1-1-0.dll	api-ms-win-crt-runtime-l1-1-0.dll	mfc42.dll	msxml.dll	msxml.dll
Table 5: Top 30 API functions called by each malware family.

Generic Malware	Backdoor	Downloader	Ransomware	Spyware
corexemain	corexemain	corexemain	getprocaddress	getprocaddress
getprocaddress	getprocaddress	getprocaddress	getlasterror	getlasterror
getlasterror	getlasterror	getlasterror	exitprocess	exitprocess
getcurrentprocess	exitprocess	writefile	getcurrentprocess	getcurrentthreadid
exitprocess	writefile	closehandle	writefile	closehandle
closehandle	closehandle	exitprocess	closehandle	writefile
writefile	sleep	getcurrentprocess	getcurrentthreadid	multibytetowidechar
multibytetowidechar	getcurrentthreadid	sleep	multibytetowidechar	getcurrentprocess
sleep	getcurrentprocess	multibytetowidechar	sleep	entercriticalsection
getcurrentthreadid	multibytetowidechar	widechartomultitype	widechartomultitype	leavecriticalsection
widechartomultitype	entercriticalsection	freememcy	entercriticalsection	widechartomultitype
entercriticalsection	leavecriticalsection	getmodulehandlea	leavecriticalsection	deletecriticalsection
leavecriticalsection	deletecriticalsection	getmodulehandlew	deletecriticalsection	_corexemain
deletecriticalsection	widechartomultitype	readfile	unhandledexceptionfilter	getstdhandle
unhandledexceptionfilter	unhandledexceptionfilter	gettickcount	terminateprocess	getcurrentprocessid
terminateprocess	terminateprocess	getcurrentthreadid	getcurrentprocessid	unhandledexceptionfilter
getcurrentprocessid	getcurrentprocessid	getmodulefilenamew	getstdhandle	sleep
setunhandledexceptionfilter	getstdhandle	creatememcy	setunhandledexceptionfilter	terminateprocess
getstdhandle	getmodulehandlea	entercriticalsection	queryperformancecounter	setunhandledexceptionfilter
queryperformancecounter	queryperformancecounter	leavecriticalsection	getsystemtimeasfiletime	setlasterror
getsystemtimeasfiletime	loadlibrary	deleterecriticalsection	getmodulehandlew	queryperformancecounter
loadlibrary	freememcy	getstdhandle	freememcy	getsystemtimeasfiletime
freememcy	setunhandledexceptionfilter	unhandledexceptionfilter	setlasterror	getacp
setlasterror	getsystemtimeasfiletime	getcurrentprocessid	getacp	tlgsetvalue
getcommandlinea	getmodulefilenamew	setfilepointer	tlgsetvalue	heapfree
getacp	getcommandlinea	findclose	getmodulefilenamew	getcpinfo
getmodulehandlea	tlgsetvalue	terminateprocess	heapalloc	gettypeid
heapalloc	getmodulehandlew	setunhandledexceptionfilter	heapfree	isdebuggerpresent
heapfree	readfile	queryperformancecounter	gettypeid	raiseexception
Acknowledgment

This project was funded by KIST School Partnership Project, an initiative by Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea, to support its alumni.

References

[1] Razak, M.F.A., Anuar, N.B., Salleh, R., Firdaus, A.: The rise of malware. J. Netw. Comput. Appl. 75(C), 58–76 (2016)
[2] Ijaz, M., Durad, M.H., Ismail, M.: Static and dynamic malware analysis using machine learning. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 687–691 (2019)
[3] Shalaginov, A., Banin, S., Dehghantanha, A., Franke, K.: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial, pp. 7–45. Springer, ??? (2018)
[4] Soliman, S.W., Sobh, M.A., Bahaa-Eldin, A.M.: Taxonomy of malware analysis in the iot. In: 2017 12th International Conference on Computer Engineering and Systems (ICCES), pp. 519–529 (2017)
[5] Aggarwal, N., Aggarwal, P., Gupta, R.: Static malware analysis using pe header files api. In: 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), pp. 159–162 (2022)
[6] Balram, N., Hsieh, G., McFall, C.: Static malware analysis using machine learning algorithms on apt1 dataset with string and pe header features. In: 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 90–95 (2019)
[7] Damaševičius, R., Venčkauskas, A., Toldinas, J., Grigaliūnas, Š.: Ensemble-based classification using neural networks and machine learning models for windows pe malware detection. Electronics 10(4), 485 (2021)
[8] Wu, C., Shi, J., Yang, Y., Li, W.: Enhancing machine learning based malware detection model by reinforcement learning. In: Proceedings of the 8th International Conference on Communication and Network Security, pp. 74–78 (2018)
[9] O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: The hidden malware. IEEE Security & Privacy 9(5), 41–47 (2011)