Retrospective Study

Lymphocyte-to-monocyte ratio effectively predicts survival outcome of patients with obstructive colorectal cancer

Xian-Qiang Chen, Chao-Rong Xue, Ping Hou, Bing-Qiang Lin, Jun-Rong Zhang

ORCID number: Xian-Qiang Chen (0000-0001-5503-9840); Chao-Rong Xue (0000-0001-9543-4909); Ping Hou (0000-0001-6110-8080); Bing-Qiang Lin (0000-0001-7882-4235); Jun-Rong Zhang (0000-0001-8073-7405).

Author contributions: Chen XQ and Xue CR contributed equally to this work; Zhang JR, Hou P, and Chen XQ conceived the study, analyzed the data, and drafted the manuscript; Lin BQ helped revise the manuscript critically for important intellectual content; Xue CR helped collect the data and design the study.

Supported by Qihang Project of Fujian Medical University, No. 2017XQ1050.

Institutional review board statement: The study protocol was approved by the Institutional Review Board of Fujian Medical University Union Hospital.

Conflict-of-interest statement: All authors read and approved the final manuscript and declared no conflicts of interest.

Data sharing statement: No additional data are available.

STROBE statement: All the study design and drafting comply with the guidelines of the STROBE statement.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative

Abstract

BACKGROUND
Obstructive colorectal cancer (OCC) is always accompanied by severe complications, and the optimal strategy for patients with OCC remains undetermined. Different from emergency surgery (ES), self-expandable metal stents (SEMS) as a bridge to surgery (BTS), could increase the likelihood of primary anastomosis. However, the stent failure and related complications might give rise to a high recurrence rate. Few studies have focused on the indications for either method, and the relationship between preoperative inflammation indexes and the prognosis of OCC is still underestimated.

AIM
To explore the indications for ES and BTS in OCCs based on preoperative inflammation indexes.

METHODS
One hundred and twenty-eight patients who underwent ES or BTS from 2008 to 2015 were enrolled. Receiver operating characteristic (ROC) curve analysis was used to define the optimal preoperative inflammation index and its cutoff point. Kaplan-Meier analyses and Cox proportional hazards models were applied to assess the association between the preoperative inflammation indexes and the survival outcomes [overall survival (OS) and disease-free survival (DFS)]. Stratification analysis was performed to identify the subgroups that would benefit from ES or BTS.

RESULTS
OS and DFS were comparable between the ES and BTS groups (P > 0.05). ROC
INTRODUCTION

Although several studies have been implemented in the screening for colorectal cancer, approximately 8%-29% of patients are diagnosed with obstructive colorectal cancer (OCC) as the first symptom[1-3]. Emergency surgery (ES) with or without stoma construction and self-expandable metal stent (SEMS) insertion as a bridge to surgery (BTS) are the current methods for OCC[4,5]. A BTS is preferred for symptomatic OCC due to effective decompression, better preoperative nutritional preparation, an improvement in the immunological reaction, and a lower incidence of stoma creation[4,6]. However, the enhancement of tumor dissemination and early recurrence reported by some studies hinder the usage of a self-expandable metal stent in OCC[6,7]. Despite this, there is still no common consensus. Several predictive models on the prognostic outcome of OCC, including ASA, age, Duck’s stage, and prognostic nutritional index, have been established[8,9], but few focus on the inflammation index[6,7].

The inflammatory response plays a dual role in the development of a tumor. On one hand, a chronic inflammatory response triggers the local accumulation of monocytes, platelets, and neutrophils, which secrete cytokines and inflammatory factors to induce tumor angiogenesis and metastasis. On the other hand, increasing monocytes and lymphatic cells would enhance the resistance against tumor invasion[10]. Increasing evidence shows that an elevated neutrophil-to-lymphocyte ratio (NLR) is closely related to a poor prognosis in ovarian cancer, cholangiocarcinoma, and elective colorectal cancer (CRC)[11-13]. The overexpression of circulating derived NLR, an effective biomarker for the diagnosis of early pancreatic cancer[14], was accompanied by increasing distal organ invasion in metastatic CRC[14,15]. An elevated preoperative lymphocyte-to-monocyte ratio (LMR), as a superior existing biomarker, was positively correlated with the survival outcomes of patients with resectable CRC and presented better overall survival[16]. Other inflammatory indexes, such as the platelet-to-lymphocyte ratio (PLR) [17] and systemic immune inflammation

CONCLUSION

Preoperative dNLR and LMR could predict OS and DFS in patients undergoing ES and BTS, respectively. For OCC, as the potential benefit group, patients with a low LMR might be preferred for BTS via SEMS insertion.

Key words: Inflammation indexes; Emergency surgery; Self-expanding metal stent insertion as a bridge to surgery; Obstructive colorectal cancers

Core tip: As a supplement to recent guidelines, this manuscript demonstrates that lymphocyte-to-monocyte ratio could effectively differentiates the survival outcome between self-expanding metal stenting and emergency surgery in patients with obstructive colon cancer. Self-expanding metal stents might be preferred to the “potential benefit group” that with a low preoperative lymphocyte-to-monocyte ratio (<1.67).

Citation: Chen XQ, Xue CR, Hou P, Lin BQ, Zhang JR. Lymphocyte-to-monocyte ratio effectively predicts survival outcome of patients with obstructive colorectal cancer. World J Gastroenterol 2019; 25(33): 4970-4984

URL: https://www.wjgnet.com/1007-9327/full/v25/i33/4970.htm

DOI: https://dx.doi.org/10.3748/wjg.v25.i33.4970

References
[1-3] Chen XQ et al. Inflammation biomarkers of obstructive colorectal cancers. World J Gastroenterol 2019; 25(33): 4970-4984

Disclosure: The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
index (SII)\(^\text{[18]}\), have also been studied in the exploration of optimal predictive models for tumor recurrence.

Different from the acute inflammatory response in patients undergoing ES, the alleviation of bowel obstruction after successful SEMS insertion in patients undergoing BTS would elicit a better immunological reaction and nutritional support, which might change the predictive factors for prognosis between the two groups. Preoperative inflammation indexes might favor patient selection and the establishment of a valid predictive model for the prognosis of OCC. In this study, we compared different inflammation indexes and other clinicopathological factors to evaluate the potential indications for ES and BTS for OCC.

MATERIALS AND METHODS

Patient population

All patients (\(n = 128\)) who underwent surgery for OCC at the Department of Emergency Surgery of Fujian Medical University Union Hospital from January 2008 to October 2015 were included in this study. Data from the patients' records were retrospectively collected and evaluated. The Institutional Review Board of Fujian Medical Union Hospital approved the study protocol. All patients provided informed consent for surgery. Patients were divided into an ES group and a BTS group based on the grade of bowel obstruction and families’ choices. For incomplete obstruction, ES was preferred as the first choice. For complete obstruction, once patients who refused to accept SEMS insertion or failed in SEMS insertion, they would accept ES with intraoperative decompression.

Classification criteria

Patients who manifested with bowel obstruction were enrolled in this study. All diagnoses of OCC were confirmed by both emergency abdominal computed tomography (CT) and a pathological examination. The exclusion criteria were as follows: (1) Patients who rejected surgery or were diagnosed with acute peritonitis or perforation; (2) Patients with severe infection, hematological diseases, or an immunological deficit; and (3) Patients who received preoperative adjuvant chemotherapy, radiotherapy, or immunotherapy.

Surgical protocols

For left-side OCC, we performed intraoperative lavage or manual decompression for better bowel preparation, and these protocols have been previously depicted. For right-side OCC, radical dissection with one-stage anastomosis was performed\(^{[19]}\).

SEMS with BTS

Stent insertion was performed by an endoscopist who had experienced over 400 endoscopic retrograde cholangiopancreatography (ERCP) procedures. Bridge to elective surgery was performed, once the stent was so successfully inserted that the intestinal obstruction completely relieved. Otherwise, ES was immediately performed.

Definition of variants

The neutrophil, lymphocyte, monocyte, and platelet counts from the peripheral blood tests and the inflammation indexes dependent on these factors were performed before surgery (e.g., NLR, dNLR, LMR, PLR, and SII) and stent insertion (e.g., NLR-pre, dNLR-pre, LMR-pre, PLR-pre, and SII-pre). The methods for the calculation of NLR, dNLR, LMR, and PLR have been described in previous studies\(^{[15]}\). The SII was calculated as \((\text{platelet count} \times \text{neutrophil count})/\text{lymphocyte count}\)\(^{[18]}\). The cutoff point and the area under the curve (AUC) value of each inflammation index for the prediction of OS and DFS were determined with X-tile 3.6.1 software (Yale University, New Haven, CT, United States)\(^{[20]}\). According to the cutoff point, patients were divided into low-ratio and high-ratio groups for further analysis.

According to the American Joint Committee on Cancer (AJCC) Cancer Staging Manual (7th edition)\(^{[21]}\), we classified the tumor pathological stage. Comorbidities were defined as hypertension, diabetes mellitus, and single or multiple organ dysfunction. The degree of obstructive symptoms was divided into five grades, termed as The ColoRectal Obstruction Scoring System (CROSS)\(^{[22]}\). According to the Clavien-Dindo classification system\(^{[23,24]}\), we classified the perioperative complications into five grades.

Statistical analysis

Qualitative variables were compared by the \(\chi^2\) test or Fisher’s exact test, and quantitative variables were compared via \(t\)-tests. Through Kaplan-Meier analysis, the
3-year OS and 3-year DFS were calculated. A Cox proportional hazards regression model was built to identify the independent risk factors for 3-year DFS and 3-year OS. Stratification analysis was used to compare the differences between subgroups. All P-values less than 0.05 were considered statistically significant. All statistical analyses and graphs were generated using SPSS 23.0 software.

RESULTS

Baseline characteristics
There were 128 patients enrolled in this study, who were divided into an ES group (n = 90) and a BTS group (n = 38), with similar age and sex ratios between the groups (P > 0.05). The average tumor size was 6.88 ± 2.68 cm in the BTS group, with a higher proportion of tumors located on the left side of the colon (73.70% vs 41.10%, P = 0.005), and was much larger than the tumor size in the ES group (5.76 ± 2.12 cm, P = 0.015). Moreover, the obstructive symptoms were more severe in the BTS group than in the ES group (Grade 0-I, 97.40% vs 68.50%, P = 0.001), as presented in Table 1. The remaining characteristic factors, including BMI, abdominal surgery history, comorbidities, ASA grade, pTNM stage, histological features, and the ratio of chemotherapy were similar between the ES and BTS groups (P > 0.05).

Outcome comparison between the ES and BTS groups
The blood loss in the BTS group was lower than that in the ES group (133.68 ± 95.76 mL vs 177.30 ± 134.57 mL, P = 0.072), with similar gastrointestinal recovery and postoperative complications (P > 0.05) (Table 2). Analogical survival outcomes including 3-year OS (30.10 ± 9.64 mo vs 29.41 ± 11.33 mo, P = 0.732) and 3-year DFS (27.59 ± 12.19 mo vs 27.48 ± 12.17 mo, P = 0.969) were compared between the ES and BTS groups, and are plotted in Figure 1.

Predictive values and cutoff points of different inflammation indexes
A decreasing tendency was observed for WBC (8.56 × 10^9 ± 3.44 × 10^9), NLR (4.88 ± 3.02), and SII (1235.74 ± 849.53) in the BTS group after SEMS insertion, compared with the WBC (7.57 × 10^9 ± 2.61 × 10^9), NLR (6.05 ± 3.03), and SII (1712.60 ± 1157.32) before SEMS insertion (P < 0.05), as presented in Table 1. Different inflammation indexes were analyzed between the ES and BTS groups. As a result, dNLR was preferred as a prognostic biomarker for the ES group since it had the highest AUC for 3-year OS (0.679, 95%CI: 0.551-0.808) and 3-year DFS (0.679, 95%CI: 0.551-0.808); the cutoff point value was 1.57. Conversely, based on the highest AUC for 3-year OS (0.611, 95%CI: 0.424-0.798) and 3-year DFS (0.571, 95%CI: 0.366-0.776), the LMR was recommended as a prognostic biomarker for the BTS group, with 1.67 as its cutoff point. These data are depicted in Table 3 and plotted in Figure 2.

Clinical evaluation of different inflammation indexes
In Table 4, patients were divided into high-ratio and low-ratio grades based on the dNLR in the ES group and the LMR in the BTS group. A high-ratio grade of dNLR (≥ 1.57) was closely related to a higher proportion of tumors located on the left side of the colon and rectum (P = 0.007), and a higher incidence of stoma construction (P = 0.001) and postoperative pneumonia (P = 0.054), with a lower 3-year DFS (dNLR ≥ 1.57: 23.10 ± 13.85 mo vs dNLR < 1.57: 31.45 ± 9.35 mo, P = 0.009) in the ES group. Separately, a high-ratio grade of the LMR (≥ 1.67) in the BTS group showed more advanced lymphovascular metastasis (P = 0.072) and lymph node invasion (P = 0.009), with a lower 3-year OS (LMR ≥ 1.67: 25.26 ± 13.88 mo vs LMR < 1.67: 33.78 ± 5.35 mo, P = 0.020) and 3-year DFS (LMR ≥ 1.67: 22.67 ± 14.02 mo vs LMR < 1.67: 31.50 ± 8.89 mo, P = 0.046). The dNLR was the only independent risk factor in the ES group both for 3-year OS (HR = 2.34, 95%CI: 1.08-5.07, P = 0.032) and 3-year DFS (HR = 3.02, 95%CI: 1.23-7.42, P = 0.016). In contrast, the status of LVI (HR = 3.52, 95%CI: 1.03-12.02, P = 0.045) and the LMR (HR = 4.57, 95%CI: 0.98-21.38, P = 0.053) significantly affected the 3-year OS in the BTS group. Only the LMR was an independent risk factor for 3-year DFS (HR = 3.11, 95%CI: 1.13-8.54, P = 0.052) in the BTS group, as shown in Tables 5 and 6 and Figure 2.

Selective choices based on inflammatory biomarkers
By stratification analysis of 3-year OS and 3-year DFS in different grades of dNLR and LMR, we revealed that only the LMR obviously differentiated the oncological and survival outcomes between the ES and BTS groups. A lower LMR (<1.67), as a protective factor, indicated a lower rate of death (HR = 0.40, 95%CI: 0.18-0.92, P = 0.031) and tumor recurrence (HR = 0.42, 95%CI: 0.17-1.07, P = 0.068) in the BTS group. Conversely, a higher LMR (≥1.67), as a risk factor, showed a higher proportion of
Table 1 Comparison of clinicopathological characteristics between emergency surgery and bridge to surgery groups

Characteristic	ES group (n = 90)	BTS group (n = 38)	P-value
Age (yr)	61.58 ± 14.84	63.21 ± 13.55	0.561
Female/Male, (%)	31 (34.40)/59 (65.60)	15 (39.50)/23 (60.50)	0.588
Size (cm)	5.76 ± 2.12	6.88 ± 2.68	0.015
BMI, (kg/m²)	21.76 ± 2.42	22.20 ± 3.20	0.411
Cross score, (%)			0.001
0	21 (23.60)	21 (55.30)	
1	40 (44.90)	16 (42.10)	
2	17 (19.10)	1 (2.60)	
3	10 (11.20)	0 (0.00)	
4	1 (0.80)	0 (0.00)	
ASH (+)/(-), (%)	17 (18.90)/73 (81.10)	10 (26.30)/28 (73.70)	0.347
Comorbidities (+)/(-), (%)	37 (41.10)/53 (58.90)	21 (55.30)/17 (44.70)	0.142
ASA grade, (%)			0.299
I	2 (2.20)	3 (7.90)	
II	63 (70.00)	28 (73.70)	
≥ III	25 (27.80)	7 (18.40)	
Location, (%)			0.005
Right-side colon	13 (14.40)	1 (2.60)	
Transverse colon	30 (33.30)	5 (13.20)	
Left-side colon	37 (41.10)	28 (73.70)	
Rectum	10 (11.10)	4 (10.50)	
pTNM stage, (%)			0.186
I	4 (4.40)	0 (0.00)	
II	23 (25.60)	9 (23.70)	
III	44 (48.90)	25 (65.80)	
IV	19 (21.10)	4 (10.50)	
T stage, (%)			0.186
T1	4 (4.40)	0 (0.00)	
T2	23 (25.60)	9 (23.70)	
T3	44 (48.90)	25 (65.80)	
T4	19 (21.10)	4 (10.50)	
N stage, (%)			0.471
N0	31 (34.40)	9 (23.70)	
N1	35 (38.90)	18 (47.40)	
N2	24 (26.70)	11 (28.90)	
M stage, (%)			0.292
M0	71 (78.9)	33 (86.8)	
M1	19 (21.1)	5 (13.2)	
Histological features, (%)			0.308
Well differentiated	3 (2.30)	0 (0.00)	
Moderately differentiated	61 (67.80)	30 (78.90)	
Poorly differentiated	26 (28.90)	8 (21.10)	
LVI (+)/(-), (%)	15 (16.70)/75 (83.30)	14/68/24/36 (60.20)	0.013
WBC, (10^9)	8.99 ± 5.10	7.57 ± 2.61	0.042
NLR, (ratio)	7.11 ± 6.72	4.88 ± 3.02	0.012
dNLR, (ratio)	1.66 ± 0.41	1.67 ± 0.27	0.756
PLR, (ratio)	245.61 ± 144.17	229.98 ± 122.38	0.562
LMR, (ratio)	2.84 ± 2.43	2.34 ± 1.19	0.127
SII, (ratio)	1969.03 ± 2316.10	1235.74 ± 849.53	0.011
WBC-pre, (10^9)	9.18 ± 5.13	8.56 ± 3.44	0.434
NLR-pre, (ratio)	7.62 ± 6.97	6.05 ± 3.03	0.084
dNLR-pre, (ratio)	1.65 ± 0.41	1.68 ± 0.45	0.652
PLR-pre, (ratio) 261.98 ± 161.96 270.89 ± 171.35 0.830
LMR-pre, (ratio) 2.77 ± 2.32 2.38 ± 1.66 0.354
SII-pre, (ratio) 2.77 ± 2.32 2.38 ± 1.66 0.354
CEA, (ng/mL) 30.19 ± 120.54 17.88 ± 27.47 0.541
Chemotherapy (+)/(-), (%): 62 (68.90)/28 (31.10) 20 (52.60)/18 (47.40) 0.080

SEM: Self-expanding metal stents; BTS: Bridge to surgery; ASH: Abdominal surgery history; WBC: White blood cells; dNLR: Derived neutrophil-to-lymphocyte ratio; PLR: Platelet-to-lymphocyte ratio; SII: Systemic immune inflammation index; LMR: Lymphocyte-to-monocyte ratio; Cross: Colorectal obstruction scoring system; LVI: Lymphovascular invasion. P < 0.05 was considered statistically significant.

death (HR = 4.32, 95% CI: 1.27-14.82, P = 0.019) and tumor recurrence (HR = 2.72, 95% CI: 0.97-7.65, P = 0.058) in the BTS group; these data are presented in Table 7 and Figure 3.

DISCUSSION

OCC is always accompanied by a severe local and systemic inflammatory response; some reasons, including the overgrowth of intestinal bacteria, their translocation through the distended colonic wall, and, moreover, septic shock, have been recognized. In this study, we found that the cutoff point for the NLR of 19.30 was much higher than that in elective CRC[14,24], supporting the existing severe systemic inflammation. Although ES and BTS via SEMS insertion have been widely performed, there is still not an objective indication for either. Weighing the balance between oncological outcomes and better preoperative nutritional support with the alleviation of systemic inflammation, BTS via SEMS insertion is only recommended for symptomatic and high surgical risk groups, especially left-side OCC, by the ESGE and World Society of Emergency Surgery (WSES)[1,3]. In this study, analogous with a previous study[25], the BTS group had a higher proportion of LVI (36.80%), though similar 3-year OS and 3-year DFS were observed between the ES and BTS groups. A decreasing tendency in the WBC, NLR, and SII levels was observed after SEMS insertion, which might explain the reason why different inflammation indexes were concluded from the ES (dNLR) and BTS (LMR) groups in our study.

Since 1970, a decreasing peripheral lymphocyte count has been recorded in advanced colon cancer[26], and the inflammation index has been investigated in several kinds of cancer, as it is cost-effective and convenient. The dysbiosis and outgrowth of intestinal microbial species, as a result of acute bowel obstruction and distention, triggers systemic inflammation, leading to the accumulation of neutrophils and monocytes that secrete cytokines and chemokines with the induction of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), which might aggravate colonic injury and DNA damage[11]. OCC almost coexists with immunosuppression, which causes a deficiency in adaptive immunologic cells such as T lymphocytes and B lymphocytes, which play important roles in immune surveillance and pathogen depletion[27]. The mechanical stress of SEMS and chronic ablation to the colonic wall enhances local platelet adhesion and the mediation of tumor invasion into lymphovascular vessels[28], which was supported in the current study by a higher proportion of LVI in the BTS group. In this study, we compared different inflammation indexes, including the NLR, dNLR, PLR, LMR, and SII, with the CEA level in terms of the predictive value for the prognosis between the ES and BTS groups. Finally, the dNLR was defined as the most efficient index in the ES group; a high dNLR (≥ 1.57) was closely related to low survival benefits, a high incidence of stoma construction, and postoperative pneumonia. Dissimilarly, the LMR was defined as the most efficient index in the BTS group; a high LMR (≥ 1.67) was closely related to low survival benefits and a high incidence of LVI and lymph node invasion.

The reason why different predictive models for the ES and BTS groups were observed in OCC is still unknown. This might be owing to the hypothesis that, as a result of bacterial outgrowth and translocation, OCC always has a severe systemic inflammatory response and immunological deficit, and for patients with a high surgical risk, a BTS via SEMS insertion is preferred. In this study, we found that the BTS group had more severe obstructive symptoms and a bigger tumor size than the ES group. Sufficient alleviation of bowel distention and preoperative nutritional support would improve systemic inflammation and enhance the immunological reaction in the BTS group. However, the mechanical stress of the metal stent might aggravate the local inflammatory response[29,30] and enhance tumor invasion. In our
study, with the dramatic decrease of the systemic inflammatory response in the BTS group, the dNLR could not determine the benefit group for ES or BTS. Only the LMR could serve as an objective biomarker for the indication for OCC. A low LMR (< 1.67) was correlated with a low incidence of death and tumor recurrence in the BTS group. Conversely, a high LMR (≥ 1.67) showed a high proportion of death and tumor recurrence in the BTS group, and was preferred for ES.

There were some limitations existing in this study. First, this was a retrospective study in a single center; thus, we will initiate a prospective, multicenter study to confirm our findings. Second, the sample size was not so large that more patients are needed in future research. Furthermore, this study just analyzed the ratio of immune cell populations in the peripheral blood, instead of systematic immune responses including the production of cytokines or expression of PD-1 or CTLA-4. More efforts should be made on the investigation of immune responses occurring in the systemic circulation or tumor.

In conclusion, this study suggests a similar survival and oncological benefits for BTS and ES in patients with OCC. Even though different inflammation indexes for prediction of the prognosis were observed between the ES and BTS groups, they could serve as effective biomarkers. The dNLR was closely related to the prognosis in the ES group, while the LMR was closely related to the prognosis in the BTS group. Specifically, as the potential benefit group, patients with a low LMR might be preferred for BTS via SEMS insertion.

Figure 1 Long-term survival analysis between emergency surgery and bridge to surgery groups. Disease-free survival (DFS, A) and overall survival (OS, B) after surgery seemed similar between the bridge to surgery (BTS) and emergency surgery (ES) groups.

No. at risk	BTS group	ES group
33	29	23
21	20	47
20	38	68
38	90	79

| P > 0.05 |

| Time after surgery (mo) | 0 | 10 | 20 | 30 | 40 |

BTS group	ES group		
29	23		
21	20		
20	47		
38	68		
32	57		
27	52		
Characteristic	ES group (n = 90)	BTS group (n = 38)	P-value
---------------------	------------------	-------------------	---------
Surgical time, (min)	217.89 ± 60.69	204.64 ± 66.13	0.275
Blood loss, (mL)	177.30 ± 134.37	133.68 ± 95.76	0.072
Number of LNs	19.51 ± 9.47	21.45 ± 8.29	0.276
Time to flatus, (d)	3.88 ± 1.65	3.61 ± 1.15	0.359
Time to semi-fluid, (d)	8.62 ± 3.22	8.64 ± 3.96	0.738
Total hospital-stay, (d)	22.17 ± 12.48	22.34 ± 7.78	0.936
Stoma construction, n (%)	20 (22.20)	8 (21.10)	0.884
CD classification system, n (%)			0.547
Grade I	0 (0.00)	2 (2.20)	
Grade II	44 (48.90)	16 (42.10)	
Grade III	13 (14.40)	5 (13.20)	
Grade IV	9 (10.00)	2 (5.30)	
Grade V	1 (2.60)	1 (1.10)	
Pneumonia, n (%)	18 (20.00)	8 (21.10)	0.892
Incision infection, n (%)	16 (17.80)	5 (13.20)	0.519
ICU intervention, n (%)	8 (8.90)	1 (2.60)	0.192
Leakage, n (%)	3 (3.30)	1 (2.60)	0.658
Sepsis, n (%)	3 (3.30)	1 (2.60)	0.658
SAE, n (%)	23 (25.60)	8 (21.10)	0.587
30 d-mortality, n (%)	1 (1.10)	1 (2.60)	0.507
36-OS time, (mo)	30.10 ± 9.64	29.41 ± 11.33	0.732
36-DFS time, (mo)	27.59 ± 12.19	27.48 ± 12.17	0.969

LN: Lymph node; SEMS: Self-expanding metal stents; BTS: Bridge to surgery; SAE: Severe adverse effects. P < 0.05 was considered statistically significant.

Group	Characteristic	3-year OS	3-year DFS				
		Cutoff point	AUC	95%CI	Cutoff point	AUC	95%CI
ES	NLR	19.3	0.582	0.446-0.718	19.3	0.565	0.407-0.723
	dNLR	2.02	0.679	0.551-0.808	1.57	0.696	0.554-0.837
	PLR	155	0.550	0.414-0.686	317	0.549	0.392-0.707
	SII	3645	0.587	0.454-0.721	3645	0.564	0.403-0.726
	CEA	6.7	0.591	0.458-0.724	11.2	0.604	0.442-0.766
BTS	LMR	1.67	0.611	0.424-0.798	1.67	0.571	0.366-0.776
	CEA	7.6	0.549	0.350-0.747	5.5	0.552	0.348-0.756

SEMS: Self-expanding metal stents; BTS: Bridge to surgery; AUC: Area under the receiver operating characteristic curve; dNLR: Derived neutrophil-to-lymphocyte ratio; PLR: Platelet-to-lymphocyte ratio; SII: Systemic immune inflammation index; LMR: Lymphocyte-to-monocyte ratio; OS: Overall survival; DFS: Disease-free survival; CEA: Carcino-embryonic antigen. P < 0.05 was considered statistically significant.
Table 4 Comparison of clinicopathological features between high-ratio and low-ratio grades in both emergency surgery and bridge to surgery groups

Characteristic	ES group (n = 86)	BTS group (n = 38)	P-value	LMR ≥ 1.67	LMR < 1.67	P-value
	dNLR ≥ 1.57	dNLR < 1.57				
Cross score, (%)	0.738	0.378				
0	11 (27.5)	10 (21.7)	10 (50.0)	11 (61.1)		
1	16 (40.0)	22 (47.8)	10 (50.0)	6 (33.3)		
2	8 (20.0)	8 (17.4)	0 (0.0)	1 (5.6)		
3	4 (10.0)	6 (13.0)				
4	1 (2.5)	0 (0.0)				
ASH (+)/(-), (%)	6 (15.0)/34 (85.0)	10 (21.7)/36 (78.3)		4 (20.0)/16 (80.0)	6 (33.3)/12 (66.7)	
Comorbidities (+)/(-), (%)	20 (50.0)/20 (50.0)	17 (37.0)/29 (63.0)		9 (45.0)/11 (55.0)	12 (66.7)/6 (33.3)	
ASA grade, (%)	0.320	0.623				
I	0 (0.0)	1 (1.6)	1 (5.0)	2 (11.1)		
II	13 (56.5)	47 (74.6)	16 (80.0)	12 (66.7)		
≥ III	10 (43.5)	15 (23.8)	3 (15.0)	4 (22.2)		
Location, (%)	0.007	0.523				
Right-side colon	2 (5.0)	11 (23.9)	1 (5.0)	0 (0.0)		
Transverse colon	10 (25.0)	19 (41.3)	3 (15.0)	2 (11.1)		
Left-side colon	21 (52.5)	13 (28.3)	13 (65.0)	15 (83.3)		
Rectum	7 (17.5)	3 (6.5)	3 (15.0)	1 (5.6)		
pTNM stage, (%)	0.141	0.592				
I	0 (0.0)	4 (8.7)	-	-		
II	12 (30.0)	10 (21.7)	4 (20.0)	5 (27.8)		
III	17 (42.5)	24 (52.2)	13 (65.0)	12 (66.7)		
IV	11 (27.5)	8 (17.4)	3 (15.0)	1 (5.6)		
T stage, (%)	0.141	0.592				
T1	0 (0.0)	4 (8.7)	-	-		
T2	12 (30.0)	10 (21.7)	4 (20.0)	5 (27.8)		
T3	17 (42.5)	24 (52.2)	13 (65.0)	12 (66.7)		
T4	11 (27.5)	8 (17.4)	3 (15.0)	1 (5.6)		
N stage, (%)	0.648	0.009				
N0	16 (40.0)	14 (30.4)	4 (20.0)	5 (27.8)		
N1	14 (35.0)	19 (41.3)	6 (30.0)	12 (66.7)		
N2	10 (25.0)	13 (28.3)	10 (50.0)	1 (5.6)		
M stage, (%)	0.260	0.552				
M0	29 (72.5)	38 (82.6)	17 (85.0)	16 (88.9)		
M1	11 (27.5)	8 (17.4)	3 (15.0)	2 (11.1)		
Histological features, (%)	0.605	0.411				
Well differentiated	1 (2.5)	2 (4.3)	-	-		
Moderately differentiated	30 (75.0)	30 (65.2)	15 (75.0)	15 (83.3)		
Poorly differentiated	9 (22.5)	14 (30.4)	5 (25.0)	3 (16.7)		
LVI (+)/(-), (%)	9 (22.5)/31 (77.5)	6 (13.0)/40 (87.0)	0.249	10 (50.0)/10 (50.0)	4 (22.2)/14 (77.8)	0.076
Stoma construction, (%)	0.000	0.589				
Stoma	17 (42.5)	3 (6.5)	4 (20.0)	4 (22.2)		
None	23 (57.5)	43 (93.5)	16 (80.0)	14 (77.8)		
Pneumonia, (+)/(-), (%)	12 (30.0)/28 (70.0)	6 (13.0)/40 (87.0)	0.054	2 (10.0)/18 (90.0)	6 (33.3)/12 (66.7)	0.086
Incision infection, (+)/(-), (%)	8 (20.0)/32 (80.0)	8 (17.4)/38 (82.6)	0.486	2 (10.0)/18 (90.0)	3 (16.7)/15 (83.3)	0.448
ICU intervention, (+)/(-), (%)	5 (12.5)/35 (87.5)	3 (6.5)/43 (93.5)	0.281	1 (5.0)/19 (95.0)	0 (0.0)/18 (100.0)	0.526
Leakage, (+)/(-), (%)	1 (2.5)/39 (97.5)	2 (4.3)/44 (95.7)	0.553	0 (0.0)/20 (100.0)	1 (5.6)/17 (94.4)	0.474
Sepsis, (+)/(-), (%)	1 (2.5)/39 (97.5)	2 (4.3)/44 (95.7)	0.553	0 (0.0)/20 (100.0)	1 (5.6)/17 (94.4)	0.474
SAE, (+)/(-), (%)	10 (25.0)/30 (75.0)	11 (23.9)/35 (76.1)	0.907	5 (25.0)/15 (75.0)	3 (16.7)/15 (83.3)	0.411
30-day mortality, n (%)	1 (2.5)/39 (97.5)	0 (0.0)/46 (100.0)	0.465	1 (5.0)/19 (95.0)	0 (0.0)/18 (100.0)	0.526
36-OS time, (months)	28.05 ± 10.28	31.61 ± 9.16	0.106	25.26 ± 13.88	33.78 ± 5.35	0.020
Table 5 Univariate and multivariate analyses of risk factors for survival outcomes in both emergency surgery and bridge to surgery groups

Characteristic	ES group (n = 90)	BTS group (n = 38)		
	Univariate	Multivariate	Univariate	Multivariate
HR (95%CI) P-value	HR (95%CI) P-value	HR (95%CI) P-value	HR (95%CI) P-value	
CEA (≥ 5 ng/mL vs < 5 ng/mL)	1.48 (0.70-3.11) 0.303	2.53 (0.68-9.35) 0.165		
ASA (Grade ≥ III vs Grade < III)	1.50 (0.72-3.11) 0.277	1.64 (0.45-5.96) 0.454		
pT stage (pT3-4 vs pT1-2)	1.66 (0.72-3.83) 0.238	4.17 (1.09-15.95) 0.037		
pN stage (pN+ vs pN0)	1.05 (0.51-2.19) 0.887	5.02 (0.65-38.66) 0.122		
LVI (+) vs LVI (-)	1.30 (0.53-3.15) 0.568	3.78 (1.23-11.64) 0.020		
NLR ≥ 19.3 vs NLR < 19.3	2.96 (1.27-6.97) 0.012	3.16 (1.01-9.67) 0.045		
dNLR ≥ 1.57 vs dNLR < 1.57	2.40 (1.12-5.13) 0.024	2.34 (1.08-5.07) 0.032		
PLR ≥ 155 vs PLR < 155	1.83 (0.70-4.79) 0.217	2.96 (0.84-10.36) 0.063		
SII ≥ 3645 vs SII < 3645	1.61 (0.71-3.61) 0.252	3.78 (1.23-11.64) 0.020		
LMR ≥ 1.67 vs LMR < 1.67	4.09 (1.12-14.87) 0.033	4.57 (0.98-21.38) 0.053		
Chemotherapy (+) vs (-)	0.74 (0.36-1.51) 0.402	1.43 (0.47-4.38) 0.529		

Table 6 Univariate and multivariate analyses of risk factors for oncological outcomes in both emergency surgery and bridge to surgery groups

Characteristic	ES group (n = 56)	BTS group (n = 32)		
	Univariate	Multivariate	Univariate	Multivariate
HR (95%CI) P-value	HR (95%CI) P-value	HR (95%CI) P-value	HR (95%CI) P-value	
CEA (≥ 5 ng/mL vs < 5 ng/mL)	1.71 (0.74-3.95) 0.209	2.67 (0.72-9.90) 0.141		
ASA (Grade ≥ III vs Grade < III)	0.890 (0.36-2.23) 0.803	1.49 (0.41-5.43) 0.542		
pT stage (pT3-4 vs pT1-2)	2.26 (0.85-6.02) 0.104	2.48 (0.55-11.18) 0.239		
pN stage (pN+ vs pN0)	1.48 (0.64-3.43) 0.361	2.48 (0.55-11.18) 0.239		
LVI (+) vs LVI (-)	2.92 (1.25-6.81) 0.013	1.97 (0.66-5.88) 0.224		
NLR ≥ 19.3 vs NLR < 19.3	2.76 (1.02-7.45) 0.046	2.96 (1.27-6.97) 0.012		
dNLR ≥ 1.57 vs dNLR < 1.57	2.85 (1.17-6.95) 0.021	3.02 (1.23-7.42) 0.016		
PLR ≥ 317 vs PLR < 317	1.55 (0.66-3.67) 0.314	3.21 (1.31-7.80) 0.021		
SII ≥ 3645 vs SII < 3645	2.04 (0.86-4.83) 0.104	2.96 (1.27-6.97) 0.012		
LMR ≥ 1.67 vs LMR < 1.67	2.54 (0.83-7.80) 0.091	3.11 (1.31-8.54) 0.052		
Chemotherapy (+) vs (-)	0.95 (0.41-2.19) 0.236	1.44 (0.47-4.41) 0.523		

SEMS: Self-expanding metal stents; BTS: Bridge to surgery; dNLR: Derived neutrophil-to-lymphocyte ratio; PLR: Platelet-to-lymphocyte ratio; SII: Systemic immune inflammation index; LMR: Lymphocyte-to-monocyte ratio; LVI: Lymphovascular invasion. P < 0.05 was considered statistically significant.
Table 7 Stratification analysis of oncological and survival outcomes between high-ratio and low-ratio grades in both emergency surgery and bridge to surgery groups

Characteristic	3-year OS	3-year DFS		
	HR (95%CI)	P-value	HR (95%CI)	P-value
ES (dNLR < 1.57)	Reference	-	Reference	-
BTS (dNLR < 1.57)	0.51 (0.18-1.39)	0.185	0.42 (0.13-1.34)	0.144
ES (dNLR ≥ 1.57)	Reference	-	Reference	-
BTS (dNLR ≥ 1.57)	1.87 (0.79-4.43)	0.155	1.79 (0.77-4.20)	0.178
ES (LMR < 1.67)	Reference	-	Reference	-
BTS (LMR < 1.67)	4.34 (1.27-14.82)	0.019	2.72 (0.97-7.65)	0.058
ES (LMR ≥ 1.67)	Reference	-	Reference	-
BTS (LMR ≥ 1.67)	0.40 (0.18-0.92)	0.031	0.42 (0.17-1.07)	0.068

SEMS: Self-expanding metal stents; BTS: Bridge to surgery; dNLR: Derived neutrophil-to-lymphocyte ratio; OS: Overall survival; DFS: Disease-free survival; LMR: Lymphocyte-to-monocyte ratio. *P* < 0.05 was considered statistically significant.
Figure 2 Receiver operating characteristic curve and long-term survival analysis of emergency surgery and bridge to surgery group. Derived neutrophil-to-lymphocyte ratio (dNLR) is preferred as a prognostic biomarker for the emergency surgery (ES) group with the highest area under receiver operating characteristic curve (AUC) for 3-year overall survival (OS) (0.679, 95%CI: 0.551-0.808) (A) and 3-year disease-free survival (DFS) (0.679, 95%CI: 0.551-0.808) (B), with a cutoff point value of 1.57. High-ratio grade of dNLR (≥ 1.57) was closely related to lower 3-year DFS (≥ 1.57 vs <1.57, 23.10 ± 13.85 mo vs 31.45 ± 9.35 mo, *P* = 0.009) (D), but not with 3-year OS (C). Lymphocyte-to-monocyte ratio (LMR) was preferred as a prognostic biomarker for bridge to surgery (BTS) group with the highest AUC for 3-year OS (0.611, 95%CI: 0.424-0.798) (E) and 3-year DFS (0.571, 95%CI: 0.366-0.776) (F), with a cutoff point value of 1.67. High-ratio grade of LMR (≥ 1.67) was closely related to lower 3-year OS (≥ 1.67 vs <1.67, 23.10 ± 13.85 mo vs 33.78 ± 5.35 mo, *P* = 0.020) (G) and 3-year DFS (≥ 1.67 vs < 1.67, 22.67 ± 14.02 mo vs 31.50 ± 8.89 mo, *P* = 0.046) in the BTS group (H).

Figure 2 Receiver operating characteristic curve and long-term survival analysis of emergency surgery and bridge to surgery group. Derived neutrophil-to-lymphocyte ratio (dNLR) is preferred as a prognostic biomarker for the emergency surgery (ES) group with the highest area under receiver operating characteristic curve (AUC) for 3-year overall survival (OS) (0.679, 95%CI: 0.551-0.808) (A) and 3-year disease-free survival (DFS) (0.679, 95%CI: 0.551-0.808) (B), with a cutoff point value of 1.57. High-ratio grade of dNLR (≥ 1.57) was closely related to lower 3-year DFS (≥ 1.57 vs <1.57, 23.10 ± 13.85 mo vs 31.45 ± 9.35 mo, *P* = 0.009) in the ES group (D), but not with 3-year OS (C). Lymphocyte-to-monocyte ratio (LMR) was preferred as a prognostic biomarker for bridge to surgery (BTS) group with the highest AUC for 3-year OS (0.611, 95%CI: 0.424-0.798) (E) and 3-year DFS (0.571, 95%CI: 0.366-0.776) (F), with a cutoff point value of 1.67. High-ratio grade of LMR (≥ 1.67) was closely related to lower 3-year OS (≥ 1.67 vs <1.67, 23.10 ± 13.85 mo vs 33.78 ± 5.35 mo, *P* = 0.020) (G) and 3-year DFS (≥ 1.67 vs < 1.67, 22.67 ± 14.02 mo vs 31.50 ± 8.89 mo, *P* = 0.046) in the BTS group (H).
Figure 3 Analysis of 3-year overall survival and 3-year disease-free survival, by different lymphocyte-to-monocyte ratios between emergency surgery and bridge to surgery groups. P < 0.05 (log-rank test). Low lymphocyte-to-monocyte ratio (LMR) (LMR < 1.67) indicated higher rates of 3-year OS (A) (HR = 0.40, 95% CI: 0.18-0.92, P = 0.031) and 3-year disease-free survival (DFS) (C) (HR = 0.42, 95% CI: 0.17-1.07, P = 0.068) in the bridge to surgery (BTS) group. Conversely, high LMR (LMR ≥ 1.67) showed lower proportions of 3-year OS (B) (HR = 4.32, 95% CI: 1.27-14.82, P = 0.019) and 3-year DFS (D) (HR = 2.72, 95% CI: 0.97-7.65, P = 0.058) in the BTS group.

ARTICLE HIGHLIGHTS

Research background
Obstructive colorectal cancer (OCC) presenting with acute abdominal symptoms is always accompanied by severe complications, and the optimal strategy for patients with OCCs remains undetermined. Emergency surgery (ES) and self-expandable metal stents (SEMS) as a bridge to surgery (BTS) were the major treatments for OCCs, however, the indications remain debated. According to different status of immunology and nutrition, predictive factors for prognosis might be different between the two groups. Preoperative inflammation indexes might favor patient selection in terms of the prognosis of OCC.

Research motivation
Weighing the waxes and wanes of ES and BTS, both acute and chronic inflammation responses should be accounted for the selection of optimal patients.

Research objectives
This study was designed to build an inflammatory model for the surgical indications for ES and BTS in OCC.

Research methods
This was a retrospective study in which 128 patients who underwent surgery for OCC at the Department of Emergency Surgery of Fujian Medical University Union Hospital from January 2008 to October 2015 were included in this study. Patients were divided into an ES group and a BTS group according to the surgeon’ advises and patients’ selection. Inflammation indexes were fully evaluated in this study.

Research results
Comparable survival outcomes were observed between the ES and BTS groups. Receiver
operating characteristic curve analysis showed dNLR as the optimal biomarker for the prediction of DFS in ES, by contrast, LMR was recommended for BTS with regard to OS and DFS. dNLR was related to stoma construction, postoperative pneumonia, and DFS in the ES group. LMR was closely related to lymph nodes invasion, OS, and DFS in the BTS group. LMR could differentiate OS between the ES and BTS groups. A low LMR (< 1.67) was correlated with a low incidence of death and tumor recurrence in the BTS group.

Research conclusions
As a supplement for the latest ESGE guidelines, the indications for the use of SEMSs in OCC might elaborate to patients with low preoperative LMR, who would benefit from BTS via SEMS insertion.

REFERENCES

1. van Hoof JE, van Halsema EE, Vanbiervliet G, Beets-Tan RG, DeWitt JM, Donnematt F, Dumonceau JM, Glyn-Jones RG, Hassan C, Jiménez-Perez J, Meissner S, Muthusamy VR, Parker MC, Regimbeau JM, Sabbagh C, Sagae J, Tanis PJ, Vandervoort J, Webster GJ, Menas G, Barthet MA, Repici A; European Society of Gastrointestinal Endoscopy (ESGE). Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Gastrointest Endosc 2014; 80: 747-61.e1-75 [PMID: 25436393 DOI: 10.1016/j.gie.2014.09.018]

2. Lee SW. Colorectal emergencies: reviews and controversies: in the management of large bowel obstruction. J Gastrointest Surg 2013; 17: 2007-2012 [PMID: 24048614 DOI: 10.1007/s11605-013-2343-x]

3. Pisano M, Zorcolo L, Merli C, Cambanassi P, Poisatina E, Ceresoli M, Agresta F, Allivi N, Bellanova G, Coccolin F, Coy C, Fugazza P, Martinez CA, Montori G, Paolillo C, Penachini TJ, Pereira B, Reis T, Restivo A, Rezende-Neto J, Sartielli M, Valentinus M, Barilotti M, Valentinus M, Astronazi I, Bala M, Chiara O, De Angelis N, Deidda S, Di Simone B, Di Saverio S, Finotti E, Kenji I, Moore E, Wexner S, Biffi W, Coimbra R, Guttadauro A, Leppäniemi A, Maier R, Magnone S, Mefire AC, Peitzmann A, Sakakushev B, Sugure M, Viale P, Weber D, Kushak J, Fraga GP, Kluger I, Catena F, Ansaloni L. 2017 WSES guidelines on colon and rectal cancer emergencies: obstruction and perforation. World J Emerg Surg 2018; 13: 36 [PMID: 30123315 DOI: 10.1186/s13017-018-01523-3]

4. Govindarajan A, Naimark D, Coburn NG, Smith AJ, Law CH. Use of colonic stents in emergent malignant left colon obstruction: a Markov chain Monte Carlo decision analysis. Dis Colon Rectum 2007; 50: 1811-1824 [PMID: 17899279 DOI: 10.1007/s10350-007-9407-9]

5. Martinez-Santos C, Lobato RF, Fradejas JM, Pinto I, Ortega-Dehabillón P, Moreno-Aceituna M. Self-expandable stent before elective surgery vs. emergency surgery for the treatment of malignant colonic obstructions: comparison of primary anastomosis and morbidity rates. Dis Colon Rectum 2002; 45: 401-406 [PMID: 12068202]

6. Takahashi G, Yamada T, Iwai T, Takeda K, Koizumi M, Shinji S, Uchida E. Oncological Assessment of Suture Placement for Obstructive Colorectal Cancer from Circulating Cell-Free DNA and Circulating Tumor DNA Dynamics. Ann Surg Oncol 2018; 25: 737-744 [PMID: 29235008 DOI: 10.1245/s10434-017-5600-y]

7. Sloothaak DA, van den Berg MW, Dijkstra MG, Fockens P, Tanis PJ, van Hoof JE, Bemelman WA; collaborative Dutch Stent-In study group. Oncological outcome of malignant colonic obstruction in the Dutch Stent-In 2 trial. Br J Surg 2014; 101: 1751-1757 [PMID: 25298250 DOI: 10.1002/bjs.9645]

8. Tekkis PP, Kinsman R, Thompson MR, Stamatakis JD, Association of Coloproctology of Great Britain, Ireland. The Association of Coloproctology of Great Britain and Ireland and study of large bowel obstruction caused by colorectal cancer. Ann Surg 2004; 240: 76-81 [PMID: 1513621]

9. Haraguchi N, Ikeda M, Miyake Y, Yamada T, Sakakibara Y, Mita E, Doki Y, Mori M, Sekimoto M. Colonic stenting as a bridge to surgery for obstructive colorectal cancer: advantages and disadvantages. Surg Today 2016; 46: 1310-1317 [PMID: 27484552 DOI: 10.1007/s11605-016-3335-3]

10. Palin RP, Devine AT, Hicks G, Burke D. Association of pretreatment neutrophil-lymphocyte ratio and outcome in emergency colorectal cancer care. Ann R Coll Surg Engl 2018; 100: 308-315 [PMID: 29264006 DOI: 10.1186/s13017-017-0232-3]

11. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140: 831-849 [PMID: 20303878]

12. Buettner S, Spolverato G, Kimbrough CW, Alexandrescu S, Marques HP, Lamelas J, Aldrighetti L, Gamblin TC, Maithel SK, Pelitano C, Weiss M, Bauer TW, Shen F, Poultsides GA, Marsh JW, IJzermans JM, Koerkamp BG, Pawlik TM. The impact of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio among patients with intrahepatic cholangiocarcinoma. Surgery 2018; 164: 411-418 [PMID: 29903509 DOI: 10.1016/j.surg.2018.05.002]

13. Farolfi A, Petrone M, Scarpi E, Gallà V, Greco F, Casanova C, Longo L, Corno G, Orditura M, Bologna A, Zavallone L, Ventriglia J, Franzese E, Loizzi V, Giardina D, Pigozzi E, Cioffi R, Pignata S, Giorda G, Fu, De Giorgi U. Inflammatory Indexes as Prognostic and Predictive Factors in Ovarian Cancer Treated with Chemotherapy Alone or Together with Bevacizumab. A Multicenter, Retrospective Analysis by the MITO Group (MITO 24). Target Oncol 2018; 13: 469-479 [PMID: 29948780 DOI: 10.1007/s11525-018-0574-1]

14. Tao Y, Ding L, Yang GG, Qiu JM, Wang D, Wang H, Fu C. Predictive impact of the inflammation-based indices in colorectal cancer patients with adjuvant chemotherapy. Cancer Med 2018; [Epub ahead of print] [PMID: 29761358]

15. Liu JX, Li A, Zhou LY, Liu XF, Wei ZH, Wang XZ, Ying HQ. Significance of combined preoperative serum Alb and dNLR for diagnosis of pancreatic cancer. Future Oncol 2018; 14: 229-239 [PMID: 29338337 DOI: 10.2217/fon-2017-0339]

16. Diakos CI, Tu D, Gebski V, Yip S, Wilson K, Karaperis CS, O’Callaghan CJ, Shapiro J, Tebbutt N, Jonker DJ, Sui LL, Wong R, Doyle C, Strickland AH, Price TJ, Simes J, Clarke S. Is the derived neutrophil to lymphocyte ratio (dNLR) an independent prognostic marker in patients with metastatic colorectal cancer (mCRC)? Analysis of the CO.17 and CO.20 studies. Ann Oncol 2016; 27: 588 [DOI: 10.1093/annonc/mdw730.136]

17. Chan JC, Chan DL, Diakos CI, Engel A, Pavlakis N, Gill A, Clarke SJ. The Lymphocyte-to-Monocyte
Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. Ann Surg 2017; 265: 539-546 [PMID: 27070934]

18 Hu B, Yang XR, Xu Y, Sun YF, Sun C, Guo W, Zhang X, Wang WM, Qiu SJ, Zhou J, Fan J. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res 2014; 20: 6212-6222 [PMID: 25271081 DOI: 10.1158/1078-0432.CCR-14-0442]

19 Lin BQ, Wang RL, Li QX, Chen W, Huang ZY. Investigation of treatment methods in obstructive colorectal cancer. J BUON 2015; 20: 756-761 [PMID: 26214627]

20 Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 2004; 10: 7252-7259 [PMID: 15534099 DOI: 10.1158/1078-0432.CCR-04-0713]

21 Wittekind C. [2010 TNM system: on the 7th edition of TNM classification of malignant tumors]. Pathologe 2010; 31: 331-332 [DOI: 10.1007/s00292-010-1349-3]

22 Saito S, Yoshida S, Isayama H, Matsuzawa T, Kawai T, Maetani I, Shimada M, Yamada T, Tomita M, Koizumi K, Hirata N, Kanazawa H, Enomoto T, Sekido H, Saida Y. A prospective multicenter study on self-expandable metallic stents as a bridge to surgery for malignant colorectal obstruction in Japan: efficacy and safety in 312 patients. Surg Endosc 2016; 30: 3976-3986 [PMID: 26684205 DOI: 10.1007/s00464-015-4709-5]

23 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542]

24 DeOliveira ML, Winter JM, Schafer M, Cunningham SC, Cameron JL, Yeo CJ, Clavien PA. Assessment of complications after pancreatic surgery: A novel grading system applied to 633 patients undergoing pancreaticoduodenectomy. Ann Surg 2006; 244: 931-7; discussion 937-9 [PMID: 17122618 DOI: 10.1097/01.sla.0000246856.03918.9a]

25 Haram A, Boland MR, Kelly ME, Bolger JC, Waldron RM, Kerin MJ. The prognostic value of neutrophil-to-lymphocyte ratio in colorectal cancer: A systematic review. J Surg Oncol 2017; 115: 470-479 [PMID: 28105646 DOI: 10.1002/jso.24522]

26 Sabbagh C, Chatelain D, Trouillet N, Mauvais F, Bendjaballah S, Brouet F, Regimbeau JM. Does use of a metallic colon stent as a bridge to surgery modify the pathology data in patients with colonic obstruction? A case-matched study. Surg Endosc 2013; 27: 3622-3631 [PMID: 23572218 DOI: 10.1007/s00464-013-2934-2]

27 Kim US, Papatestas AE. Letter: Peripheral lymphocyte counts in colonic disease. Lancet 1974; 2: 462-463 [PMID: 4136971]

28 Menges T, Engel J, Welters I, Wagner RM, Little S, Ruwoldt R, Wolfbrueck M, Hempelmann G. Changes in blood lymphocyte populations after multiple trauma: association with posttraumatic complications. Crit Care Med 1999; 27: 733-740 [PMID: 10321662]

29 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11: 123-134 [PMID: 21258396 DOI: 10.1038/nrc3004]

30 Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 2012; 109: 911-916 [PMID: 22203955 DOI: 10.1073/pnas.1118910109]

31 Kim BG, Gao MQ, Kang S, Choi YP, Lee JH, Kim JE, Han HH, Mun SG, Cho NH. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis 2017; 8: e2646 [PMID: 28252641 DOI: 10.1038/cddis.2017.73]
