Abstract: Geometrids are a species-rich group of moths that serve as reliable indicators for environmental changes. Little is known about the Mongolian moth fauna, and there is no comprehensive review of species richness, diversity, and distribution patterns of geometrid moths in the country. Our study aims to review the existing knowledge on geometrid moths in Mongolia. We compiled geometrid moth records from published scientific papers, our own research, and from the Global Biodiversity Information Facility (GBIF) to produce a checklist of geometrid moths of Mongolia. Additionally, we analyzed spatial patterns, species richness, and diversity of geometrid moths within 14 ecoregions of Mongolia and evaluated environmental variables for their distribution. In total, we compiled 1973-point records of 388 geometrid species. The most species-rich ecoregion in Mongolia was Daurian Forest Steppe with 142 species. Annual precipitation and maximum temperature of the warmest month were the most important environmental variables that correlated with NMDS axes in an analysis of geometrid assemblages of different ecoregions in Mongolia.

Keywords: beta diversity; ecoregions; environmental variables; location; NMDS; species checklist

1. Introduction

Regarded as disturbing pests or less charismatic than butterflies, moths are nevertheless creatures with an important role in the ecosystem and the potential to serve as environmental indicators [1–4]. Moths are globally distributed and it is estimated that more than 130,000 described species exist [5], far more than the more conspicuous and mostly diurnal butterflies with ca. 20,000 species. Many moths are pollinators, but due to their nocturnal activity they are not well studied [6]. In a recent review from the current literature, Hahn and Brühl reported that in Europe and North America there are 227 moth–plant interactions with 129 moth species involved [6]. Geometrid moths (Geometridae), constituting one of the biggest families of Lepidoptera, are a species-rich and easily recognizable family that have served as indicators for environmental changes in many previous studies [7–10]. These groups also appear to be effective at colonizing habitats after natural or anthropogenic disturbances [11]. There are approximately 24,000 described species of Geometridae worldwide [12]. Although Mongolia is one of the largest countries (rank 19th in size) on Earth, little is known about its moth fauna, and there is no comprehensive review of species richness, diversity, and distribution patterns of geometrid moths in the country. A few researchers attempted to summarize information to mainly confirm this lack of information [13].

Mongolia is a country that encompasses landscapes with a high variety of climatic and geographic features with forest in the north, high mountains in the west, desert in the south, and steppes in the
eastern and central parts of Mongolia [14,15]. Altogether, it comprises 16 ecoregions [16] (Figure 1). Ecosystems change along a latitudinal gradient from forest in the north, over steppe and semi-desert to desert in the south [17]. In most areas of the country, livestock herding is a dominant land-use practice, and due to overgrazing, some pasture lands have recently been degraded [18]. With recent discoveries of various mineral resources, mining has become not only the main economic sector, but also the major reason for environmental disturbance in Mongolia. Together with climate change, it is the major driver for habitat loss and environmental changes [14,19]. As a result of these anthropogenic changes, many species are disappearing, but there is little information about which species are at greatest risk of becoming extinct, especially for the less studied taxa.

In order to monitor diversity loss and gain, and to further study the influence of environmental disturbance and climate change on geometrid moths in Mongolia, we need an up-to-date dataset that mirrors the current state of knowledge and that includes all species already recorded. Given this knowledge gap, this study aims to review, summarize, and evaluate the existing knowledge on geometrid moths in Mongolia. It will provide a baseline for further studies, as well as define research priorities in the field. In this study, we aim to: (1) provide a checklist of geometrid moths of Mongolia, setting a baseline for future studies, (2) analyze distribution patterns and species richness and diversity of geometrid moths within ecoregions of Mongolia, and (3) analyze which environmental variables are most important in determining their distribution. We are aware that all results can only give a provisional status due to the data situation, especially the results for Objectives 2 and 3 can only be given with caution; however, our detailed review of the current data will help to define the needs for further research more efficiently.

Figure 1. Mongolian 14 ecoregions with distribution of 1557 geometrid moth records (211 of 1973 records are missing exact locations, 205 records were sampled at the same location, but at different time period). For two small ecoregions (marked in gray), there is no scientific knowledge of geometrid moths.
Study Review

Information on the species composition of Macrolepidoptera of Mongolia began to accumulate from the end of the nineteenth century, as a result of the works of collectors such as Fritz Dörries, Hauberhauer and Leder, and others. Otto Staudinger [20] published the first paper on the collection of Fritz Dörries, who made a trip in 1879 to Khentii Mountains to collect Lepidoptera. This resulted in data on the location of 75 species of geometrids in central and western parts of Mongolia [20]. Later, Staudinger published several papers and books on the fauna of Palaeartic Lepidoptera which included some geometrid species from Mongolia [21–23]. In 1964, a Mongolian–German expedition conducted a biological survey, as a result of the expedition 214 Lepidopteran exemplars were sampled. Burchard Alberti later published the results on Lepidoptera and nine geometrid species were listed in the paper [24]. Likewise, Joseph Moucha listed four geometrid species from a Mongolian–Czech entomological–botanical expedition, which was conducted around 1960 [25]. Grigory Grum-Grshimailo found three geometrid species from Selenge Aimag in the collection of M.I. Molleson [26]. Alexander Mikhailovich Djakonov [27,28] recorded a new occurrence of Horisme scosiata and described one new species Scotopteryx transbaicalica from the family of Geometridae based on old material of Staudinger. Other researchers such as Karl Dietze [29], Eugen Wehrli [30], and Fritz Heydemann [31] also described new species. In the fourth volume and its supplementary of “Die Gross-Schmetterlinge der Erde. Die Spanner des Palaearktischen Faunengebietes” series edited by Adalbert Seitz, 34 geometrid species were listed for Mongolia [32,33].

The most important contribution to the collection and study of Mongolian geometrid moths were made by Russian and Soviet expeditions led by Pyotr Kuzmich Kozlov and later by Soviet–Mongolian expeditions [34–36]. During the survey of Soviet–Mongolian expeditions, Jaan Viidalepp recorded a total of 201 geometrid species. Viidalepp later in 1999 compiled a checklist of geometric moths of the former U.S.S.R and in this monograph 210 species were included for Mongolia [37]. Particularly rich and diverse material on Lepidoptera (41,000 specimens) were collected by the Hungarian expeditions conducted by Zoltán Kaszab, who made six entomological collecting trips along latitudinal and longitudinal gradients in Mongolia, between 1963 and 1968. András Vojnits published several papers based on the Kaszab’s collections dedicated to subfamilies of Geometridae in the period between 1974 and 1979. He recorded 177 species from the whole collection, described 39 species new to the fauna of Mongolia and four species new to science [38–44]. Malcolm J. Scoble [45] presented 66 taxa from Mongolia.

Other researchers also contributed to the study of Mongolian geometric moths. For instance, Gantigmaa Ch. and coworkers recorded 90 species in the West Khentii of Northern Mongolia [46]. In the book “Biodiversity of Sokhondinsky Reserve”, 29 geometrid species from Mongolia have been included [47]. Beljaev and Vasilenko [48] noted 29 species of geometric moths in Mongolia. Vasilenko and colleagues [49–51] recorded eight species and described one new species Rhodostrophia ustuyzanini in Western Mongolia. In 2012 and 2013, we collected 70 geometrid species from central and northern parts of Mongolia [4]. Mironov and Glasworthy [52] reported 57 species with two species (Eupithecia ankini, Eupithecia munguata) new to science and 12 species new to the fauna of Mongolia. Erlacher et al., studied six geometric species from Mongolia and described one new species Charissa beljaevi [53–55]. In 2019, Makhov and Beljaev [56] studied the geometrid moths of the Baikal Region and recorded 14 species from Mongolia. In six volumes of “The Geometrid Moths of Europe”, 117 moth species are listed from Mongolia. We validated our species checklist with these volumes [57–62].

2. Materials and Methods

We compiled geometric moth records from published scientific papers, from our work [63] (all sample identifications were double checked by curator T. Enkhbayar, Department of Biology, National University of Mongolia), from the collections of the Siberian Zoological Museum (curator - S.V.Vasilenko) [64], and also from the Global Biodiversity Information Facility (GBIF) [65]. Lastly, we checked the “Revised, annotated systematic checklist of the Geometridae of Europe and adjacent
areas, Vols 1–6” [62]. From the Museum collections we could only get country-level information, not the exact location. From GBIF data, we included 380 records into our species list [65]. Fourteen specimens of six species were found in the public data of The Barcode of Life Data System (Bold System) [66].

We used Google Scholar to search the literature with following search strings:
- With all of the words: Mongol (in English Mongolia, in German Mongolei, thus it was better to use only Mongol);
- With at least one of the words: Geometrid OR Larentiinae OR Desmobathrinae OR Ennominae OR Archiearinae OR Geometrinae OR Oenochrominae OR Orthostixinae OR Sterrhinae;

As a result of the search, 184 literatures appeared, though many of them were about geometrid moths of Inner Mongolia. These we excluded from our list.
- Without the words: Inner Mongolia.

After excluding Inner Mongolia, 96 results remained and of these, 73 were relevant to our study. Totally, we compiled 1973-point records of 388 geometrid species (Table S1). Of these records, 87 species were missing information on exact locations, these 87 species are used to estimate species richness and listed in the species checklist but are excluded from other analysis. We georeferenced species locations from literature and generated coordinates of each location with Google Earth [67].

After that we cross-checked each species name in “The Global Lepidoptera Names Index” [68]. Moreover, experts on geometrid moths such as Axel Hausmann, Jaan Viidalepp, Gunnar Brehm, Sven Erlacher, and Pasi Sihvonen validated most species of our checklist and provided further literatures.

In the next step we used the sampled data in order to estimate true species richness, to evaluate the distribution of species within Mongolia, and to identify regions that have been undersampled so far by species rarefaction. For these reasons, we transformed all species locations into 2° × 2° grid cells, resulting in 51 grid cells inhabited by 301 species. Of 301 species, 121 were unique species occurring only once within 51 grids. To estimate species richness we applied Good Turing Theory, which uses unique species for estimation [69]. We used the application SuperDuplicates (https://chao.shinyapps.io/SuperDuplicates/) for the estimation with the following setting: Data type: incidence data; Number of observed species (SOBs): 388; Number of uniques (Q1): 208 (we combined the 121 unique species with the former mentioned 87 species without locations).

Further we calculated rarefaction curves for single ecoregions to assess collection quality in different areas of Mongolia. Four ecoregions (Altai Alpine Meadow and Tundra, Dzungarian Basin Semi-Desert, Khangai Mountains Alpine Meadow and Sayan Alpine Meadows, and Tundra) were strongly under sampled, having species richness below 15, thus we excluded them from the analysis to avoid misleading interpretation.

To estimate the rarefaction curve across grid cells and ecoregions, we calculated interpolation and extrapolation of species richness using the ‘iNEXT’ package: Interpolation and extrapolation for species richness in R [70,71] with 0.95 confidence interval and prepared the rarefaction plots with ‘devtools’ package [72] and ggiNEXT function of ‘ggplot2’ package [73].

We performed Non-Metric Multidimensional Scaling Analysis (NMDS) to check the dissimilarity of geometrid species composition between ecoregions based on the zero-adjusted Bray–Curtis dissimilarity measure using ‘phytomosaic/ecole’ and ‘vegan’ package [74–76]. For estimation of pairwise similarities between ecoregions, we calculated the estimated abundance based Soerensen Index by abundance data using online program SpadeR [77]. We preferred Soerensen Index over Jaccard Index, while the result was a little bit higher than Jaccard. This estimated abundance based index can detect unseen shared species and is appropriate to evaluate beta diversity of samples under sampling bias [78].

We used 19 Bioclim data with 30 arc seconds resolution as climatic variables for the region [79]. We extracted these variables for the fourteen ecoregions. Ecoregion GIS data for Mongolia were downloaded from The Nature Conservancy (TNC) [80]. In two ecoregions no geometrid moths were found, namely, Khangai Mountains Conifer Forests and Sayan Intermontane Steppe (Figure 1). We thus excluded these ecoregions from the further analysis. To check for strong linear dependencies
among explanatory variables we computed the variance inflation factor (VIF) for each variable in R package ‘vegan’. We excluded variables with VIF values higher than 10 [81] (Table 1). We chose the most significant environmental variables with forward selection method by using vegan’s ‘ordistep’ function [81]. Variables selected by forward selection method were fitted into the ordination plot using vegan’s ‘entfit’ function.

All analysis were performed in R [82] and most graphs were made with package ‘ggplot2’ [73].

Table 1. List of the environmental [79] variables* for the fourteen ecoregions used in this study. All variables have been entered into forward selection method for selecting most important variables. The selected variables were later fitted in the Non-Metric Multidimensional Scaling Analysis (NMDS). Colors refer to the map in Figure 1.

Ecoregions	Bio1	Bio2	Bio5	Bio6	Bio7	Bio10	Bio11	Bio12	Biome [83]
Alashan Plateau	5.1	14.1	28.6	−20.3	49	20.6	−11.7	85	Deserts and Xeric Shrublands
Semi-Desert	−4.5	12.3	17.1	−28.1	45.2	10.3	−20.3	199	Montane Grasslands and Shrublands
Altai Alpine Meadow and Tundra	−1.8	13.1	20.5	−26.8	47.3	13.4	−18.5	148	Temperate Conifer Forests
Montane Forest and Forest Steppe	3.9	14	27.4	−23	50.4	19.6	−13.9	91	Deserts and Xeric Shrublands
Dzungarian Basin	−1.5	13.9	23.7	−29.1	52.9	16	−21	306	Temperate Grasslands, Savannas and Shrublands
Semi-Desert									
Daurian Forest Steppe	3.3	13.4	27.6	−22.5	50.1	19.8	−14.7	130	Deserts and Xeric Shrublands
Eastern Gobi Desert Steppe	0.7	14.6	23.8	−24.3	48.1	15.9	−15.5	141	Deserts and Xeric Shrublands
Gobi Lakes Valley Desert Steppe	−1.6	13.5	24.2	−31.7	55.9	16.6	−23.1	147	Deserts and Xeric Shrublands
Great Lakes Basin Desert Steppe	−5.6	14.3	17.3	−30.5	47.8	9.7	−22.1	261	Montane Grasslands and Shrublands
Khangai Mountains Alpine Meadow	0.3	13.6	25.4	−26.4	51.8	17.6	−18.7	224	Temperate Grasslands, Savannas and Shrublands
Mongolian-Manchurian Grassland	−8.4	13.6	16.3	−34.9	51.2	8.5	−27.3	355	Montane Grasslands and Shrublands
Sayan Alpine Meadows and Tundra	−5.1	13.7	19.2	−31.3	50.4	11.4	−23.5	381	Temperate Conifer Forests
Sayan Montane Coniferous Forests	−3.2	14.3	20.6	−29.7	50.3	12.9	−21.4	277	Temperate Grasslands, Savannas and Shrublands
Selenge-Orkhon Forest Steppe	−3.3	13.4	22.1	−31.1	53.2	14.6	−23.3	366	Boreal Forests/Taiga

* Environmental variables with VIF under 10. Bio1—Annual Mean Temperature [°C]; Bio2—Mean Diurnal Range [°C]; Bio5—Max Temperature °C; Bio6—Min Temperature °C; Bio7—Temperature Annual Range [°C]; Bio10—Mean Temperature of Warmest Quarter [°C]; Bio11—Mean Temperature of Coldest Quarter [°C]; Bio12—Annual precipitation [mm].

3. Results

Altogether, we recorded 388 geometrid species of six subfamilies: Archiearinae, Desmobathrinae, Ennominae, Geometrinae, Larentiinae, and Sterrhinae (Appendix A Table A1). The most species-rich subfamily was Larentiinae with 203 species, while we recorded only one species in the subfamily Desmobathrinae. For 301 species with exact location data (Table S1), we recorded species richness within 2° × 2° grid cells in whole Mongolia (Figure 2).
Results

Altogether, we recorded 388 geometrid species of six subfamilies: Archiearinae, Desmobathrinae, Ennominae, Geometrinae, Larentiinae, and Sterrhinae (Appendix Table 1). The most species-rich subfamily was Larentiinae with 203 species, while we recorded only one species in the subfamily Desmobathrinae. For 301 species with exact location data (Table S1), we recorded species richness within 2° × 2° grid cells in whole Mongolia (Figure 2).

Species richness was highest in the northern central part of the country, with 133 species recorded near Darkhan-Uul Aimag and the capital Ulaanbaatar. Four most frequently recorded species were Rhodostrophia jacularia (in n = 32 grids), Scopula beckeraria (n = 18) Scopula albiceraria (n = 17), and Horisme aquata (n = 17).

As a result of the Good–Turing theory, estimated species richness for whole Mongolia was 663.19 with 0.95 confidence interval (606.80–734.12), which is nearly double the observed species richness (Q2.est = 78.51; se = 32.31; Undetected # species = 275.19; Undetected percentage (%) = 41.49). Also, we constructed a sample-based interpolation and extrapolation curve of 301 species with exact reported location within 51 grids. The interpolated and extrapolated estimators of species richness show similar results (Figure 3), the curve was not asymptotic, indicating under-sampling of the communities.

In the next step we used the fourteen Mongolian ecoregions (Figure 1) to investigate the distribution of the sampled geometrid species in more detail. The most species-rich ecoregion was Daurian Forest.
Steppe with 142 species, while Khangai Mountains Alpine Meadow was the lowest in species richness with only three species of geometrid moths (Figure 4). One species (*Rhodostrophia jacularia*) occurred in 10 ecoregions, there were five further generalist species (*Euphyia unangulata*, *Eupithecia nephelata*, *Scopula albiceraria*, *Scopula beckeraria*) that occurred in eight to nine ecoregions. In contrast, 126 species were recorded only in one ecoregion. Four ecoregions were clearly under-sampled (Altai Alpine Meadow and Tundra, Dzungarian Basin Semi-Desert, Khangai Mountains Alpine Meadow, Sayan Alpine Meadows and Tundra) thus to avoid misleading interpretation, we excluded those ecoregions from further analysis.

![Figure 4. Geometrid moth species richness of 14 ecoregions of Mongolia. Under-sampled ecoregions are Altai Alp, Dzungarian, Khangai, and Sayan Alp. Colors refer to the map in Figure 1. Ecoregion abbreviations: Alashan: Alashan Plateau Semi-Desert, Altai Alp: Altai Alpine Meadow and Tundra, Altai Mont: Altai Montane Forest and Forest Steppe, Dzungarian: Dzungarian Basin Semi-Desert, Daurian: Daurian Forest Steppe, Eastern: Eastern Gobi Desert Steppe, Gobi: Gobi Lakes Valley Desert Steppe, Great: Great Lakes Basin Desert Steppe, Khangai: Khangai Mountains Alpine Meadow, Mongolian: Mongolian-Manchurian Grassland, Sayan Alp: Sayan Alpine Meadows and Tundra, Sayan Mont: Sayan Montane Coniferous Forests, Selenge: Selenge-Orkhon Forest Steppe, Trans: Trans-Baikal Coniferous Forests.](image)

Interpolation and extrapolation curves of particular ecoregions differ in their shapes, thus indicating different “sample quality”. Curves of Alashan Plateau Semi-Desert, Altai Montane Forest and Forest Steppe, Eastern Gobi Desert Steppe, Gobi Lakes Valley Desert Steppe, and Great Lakes Basin Desert Steppe are not asymptotic, only half of the estimated maximum species richness is sampled; while curves of Daurian Forest Steppe, Mongolian-Manchurian Grassland, Selenge-Orkhon Forest Steppe and Trans-Baikal Coniferous Forests are half asymptotic, thus tending to increase, while the curve of Sayan Montane Coniferous Forests is flattening, thus pointing to complete sampling of the moth community (Figure 5).
Figure 5. Sampling unit-based interpolation and extrapolation curves of ecoregions with 0.95 confidence interval. Axes X and Y axes represent the number of records and species richness, respectively. Ecoregions are jointly drawn on plots according to their grouping in the NMDS graph (Figure 6). Colors refer to the map in Figure 1. Ecoregion abbreviations as in Figure 4.

Figure 6. Non-metric multidimensional scaling (NMDS) ordination of 10 ecoregions of Mongolia according to their dissimilarity in geometrid moth species assemblage (zero-adjusted Bray-Curtis dissimilarity index for presence-absence data; stress 0.05). Significant variables are drawn in blue arrows. Temp: Maximum temperature of warmest month, Precip: Precipitation, Records: Number of records of geometrid moths. Colors refer to the map in Figure 1. Ecoregion abbreviations as in Figure 4.
For assessment of beta-diversity, we calculated estimates of the abundance-based Sorensen Index between ecoregions (Table 2). We excluded ecoregions with fewer than 20 species to avoid sampling bias in similarity analysis. The highest pairwise estimated Sorensen Similarity Index was between Eastern Gobi Desert Steppe and Gobi Lakes Valley Desert Steppe ($\beta_s = 0.942$), while the lowest were between Trans-Baikal Coniferous Forests and both of Gobi Lakes Valley Desert Steppe, Great Lakes Basin Desert Steppe ($\beta_s = 0.076$).

Table 2. Pairwise estimates of similarity between ecoregions with online tool Spade [69]. Shown is the estimated abundance-based Sorensen Index. Colors refer to the map in Figure 1. Ecoregion abbreviations as in Figure 4. Highest and lowest values in bold.

C_{ij}	Alashan	Altai	Daurian	Eastern	Gobi	Great	Mongol	Sayan	Selenge	Trans
Alashan	1 0.504 0.184 0.595 0.716 0.446 0.433 0.097 0.206 0.244									
Altai	1 0.451 0.64 0.742 0.702 0.523 0.311 0.594 0.445									
Daurian	1 0.188 0.324 0.267 0.669 0.499 0.769 0.685									
Eastern	1 0.942 0.644 0.533 0.127 0.424 0.141									
Gobi	1 0.8 0.679 0.14 0.371 0.076									
Great	1 0.497 0.301 0.544 0.139									
Mongol	1 0.417 0.719 0.522									
Sayan	1 0.631 0.447									
Selenge	1 0.606									
Trans	1									

An NMDS ordination biplot (stress = 0.05) shows two separate groups of geometrid species communities within ecoregions (Figure 6). Altai Montane Forest and Forest Steppe, Alashan Plateau Semi-Desert, Eastern Gobi Desert Steppe, Gobi Lakes Valley Desert Steppe, and Great Lakes Basin Desert Steppe are clustered in the first group, Sayan Montane Coniferous Forests, Mongolian-Manchurian Grassland, Daurian Forest Steppe, Selenge-Orkhon Forest Steppe, and Trans-Baikal Coniferous Forests are grouped in the second group. Precipitation was positively correlated with NMDS1, while temperature was positively correlated with NMDS2, both correlations were highly significant ($p < 0.01$). Number of records was positively correlated with both axes but was not significant (Table 3).

Table 3. NMDS vector fitted values. Temp: Max temperature of warmest month, Precipitation: Annual precipitation, Records: Number of records of geometrid moths.

Variable	NMDS1	NMDS2	r^2	Pr (> 0)
Temperature	-0.32277	0.94648	0.7473	0.009
Precipitation	0.97252	-0.23281	0.9183	0.001
Records	0.73924	0.67344	0.5096	0.095

4. Discussion

In this study, we compiled a geometrid species checklist for Mongolia, examined species richness and diversity of geometrid communities among ecoregions. In addition, we investigated which environmental variables impact the distribution of geometrid moths. Compiling a species checklist on geometrid moths from a variety of sources published since 1892 was quite challenging, as names of species and locations were changing over the years, while sample efforts in different studies and areas differed considerably. Despite all our efforts we may not have included all species recorded in Mongolia in our list.
In total, we found 1973 records of 388 geometrid species of six subfamilies, but these records were not evenly sampled. The sample-based interpolation and extrapolation curve of gridded sample was not asymptotic, indicating that our records do not represent the whole potential geometrid fauna in Mongolia (Figure 3). Species richness for whole Mongolia was estimated as 663.19 species with Good–Turing theory and this estimated species richness was nearly double the observed species richness. These results confirm the rarefaction analysis and show that our inventory of geometrid moths in Mongolia is still incomplete, with less than 60% of the estimated species being recorded. The fact that countrywide diversity was highest in the grid cell of the capital draws further attention towards an obvious sampling bias with undersampling for the rest of the country. Moreover, we expect to find species of two other subfamilies, Orthostixinae and Alsophilinae in Mongolia. Species of these subfamilies were recorded in adjacent areas, such as in Kazakhstan and in China [37]. However, according to Müller et al. Alsophilinae is transferred to Ennominae, while the subfamily status of Orthostixinae is still not clear [62].

Given the huge size of Mongolia the estimated richness of 663 geometrid species for the whole country seems to be not high. But we wanted to compare the species richness of Mongolia with species richness of other countries similar in size. Norway + Sweden + Finland (1,173,940 km²) together are similar in size to Mongolia (1,564,000 km²). Altogether, for these countries, 341 geometrid species are recorded [84]. If we compare observed species richness (388) of Mongolia with the richness of those countries, it is almost similar; if we compare estimated species richness (663), it is almost double. However, Scandinavia is an area at high latitudes, with harsh climate, not really suited for an ectotherm group like moths. Further south, Iberian Peninsula and Balearic Islands together, have 589 geometrid species (According to a personal information of Javier Gastón, one of the authors of the paper, due to scientific efforts the total number of Geometridae recorded on Iberian Peninsula and the Balearic Islands is now 605 species.) [85] and their areas (596,740 km² + 4564 km²) are almost three times smaller than the landlocked area of Mongolia, which is situated at higher latitude. Comparisons between distant countries are always somewhat lacking, but no figures on geometrid species richness are available for the countries in Inner Asia (e.g., Kazakhstan).

The most frequently recorded species, which occurred in 10 ecoregions of Mongolia, was *Rhodostrophia jacularia*, an inhabitant of steppe and semi-desert [34,86]. Sihvonen and Nupponen [87] studied female wing shape of this species, but we could not find other studies related to the biology of this species.

Most records were found in Daurian Forest Steppe, Selenge-Orkhon Forest Steppe, and Mongolian-Manchurian Grassland. For many ecoregions, rarefaction curves were not asymptotic, thus revealing that sampling there was incomplete. Two ecoregions have no geometrid moth records at all and were thus excluded from analysis, namely Khangai Mountains Conifer Forests and Sayan Intermontane Steppe. The less studied areas comprise higher altitude areas from central Mongolia, as well as border regions. Sampling in these ecoregions, many of them with high habitat heterogeneity, will certainly expand our checklist.

To assess beta diversity among these unevenly sampled groups we used an estimator for Soerenson similarity that includes unseen species in the calculation [70]. The results, on the one hand, reflect the high habitat heterogeneity of Mongolia, with steep ecological north-south gradient and the diverse biomes of the country that promote high beta diversity (Table 1). On the other hand, it proved that ecoregions that include similar biomes have higher similarity of moth communities, a result corroborated by NMDS. The most similar ecoregions were Eastern Gobi Desert Steppe and Gobi Lakes Valley Desert Steppe that adjoin each other ($\beta_s = 0.942$).

In NMDS, ecoregions were grouped in two big groups. The first group included Alashan Plateau Semi-Desert, Eastern Gobi Desert Steppe, Gobi Lakes Valley Desert Steppe, Great Lakes Basin Desert Steppe and Altai Montane Forest and Forest Steppe, while in the second group there were Daurian Forest Steppe, Mongolian-Manchurian Grassland, Sayan Montane Coniferous Forests, Selenge-Orkhon Forest Steppe, and Trans-Baikal Coniferous Forests. The geographically nearest ecoregions were
grouped together, and also the ecoregions included in the same group belonged to mostly same biome type (Table 1). The first group comprised mostly Deserts and Xeric Shrublands except Altai Montane Forest and Forest Steppe, while three ecoregions of the second group belonged to Temperate Grasslands, Savannas and Shrublands.

Environmental variables that shaped species distribution were nominated by forward selection in NMDs and included annual precipitation and maximum temperature of warmest quarter. Number of records was also selected as variable, but only temperature and precipitation were significant in NMDs, thus corroborating the general robustness of our analysis, which was less influenced by sample effort. The aforementioned groups of ecoregions in NMDs differ along the precipitation gradient and within groups in temperature, e.g., the montane forests regions of both groups have lower values of NMDs2.

In a study on Borneo, geometrid moths showed a similar relationship with precipitation and temperature [88]. Temperature has also been a major impact on geometrid species distribution in the Andes [89]. Moreover, habitat disturbance played a big role in shaping the geometrid moth ensemble in northern Borneo [90]. Similarly, grazing proved to be a factor influencing community pattern in Mongolian moths [4]. Temperature, rainfall and habitat disturbance are impacted by climate change and anthropogenic influence, so we expect future changes within the Mongolian geometrid communities. The species list we present here can be a tool helping to monitor these changes.

Finally, we have to admit that our study has a few weaknesses. We compiled records only from literature (we apologize if we missed any) due to limited time and funding. A total of 87 of the 388 species in our checklist are still missing an exact location. This information may be available in the museum collections pinned to the respective specimens. A detailed research in museums would have certainly brought more records and species. In addition, all our records were not systematically collected, which might affect the statistical analysis. The mere fact that data were sampled over a long period of time in different research projects, with different ways of sampling certainly impacts the value of a statistical analysis. For example, in our field study [4], we used UV light, but in other studies normal light bulbs were used, sometimes even moths have even been collected during day time. Together with the general problem of undersampling, these points hamper a more detailed analysis of the Mongolian geometrid communities at the present time.

Nevertheless, due to our study, future directions of research on Mongolian Geometridae have become more clear: geometrid moths are really under-studied in Mongolia. We found two unsampled and four extremely under-sampled ecoregions and for all ecoregions expected species numbers were higher than recorded ones. So, we expect to find many more amazing moth species in future collections in the respective regions.

5. Conclusions

In total, 1973 records of 388 species were recorded, but we also expect that many more species will be recorded in the future in more elaborated sampling designs, especially from locations of southern, eastern and western Mongolia. Despite the fact that our compiled data is not good enough to analyze the distribution and diversity pattern in full detail, our study could reveal the knowledge gaps and undersampled areas, provide a first estimate of the approximate species number in whole Mongolia (n = 663), visualize the currently recorded distribution and diversity pattern of geometrid moths of Mongolia and evaluate the main environmental factors that shape the communities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/5/186/s1, Table S1: Occurrence data of geometrid moths compiled from Mongolia.

Author Contributions: K.E., B.B. and M.P . designed research. K.E. performed research, analyzed data and wrote the paper with inputs from M.P . and B.B. All authors have read and agreed to the published version of the manuscript.

Funding: K.E. funded by DAAD (Research Grants Doctoral Programme in Germany, 2017/18 (57299294)). K.E. and B.B. were partly supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology. This publication was funded by the German Research Foundation (DFG) and the University of Bayreuth in the funding programme Open Access Publishing.
Acknowledgments: We thank Reinhold Stahlmann for his support in GIS techniques and are grateful to our colleagues from the Department of Biogeography, University of Bayreuth, for their helpful comments on earlier drafts of the manuscript. We would like to express our deepest appreciation to anonymous referees for their detailed comments and useful suggestions, as these comments and suggestions led us to a significant improvement of the work and opened helpful contacts. We are grateful for Gunnar Brehm, Jena, for his kind assistance in providing important literature. We thank Javier Gastón, who provided us with updated information on the geometrid checklist of Iberian Peninsula. Finally, we deeply thank Axel Hausmann, Jaan Viidalepp, Sven Erlacher and Pasi Sihvonen for the review of the species checklist, their advise and provision of literatures.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Checklist of geometrid moths in Mongolia. Note that we conducted all analysis at species level. Here subspecies are listed to show compiled data in more detail. The listed references include in most cases articles with location information.

Subfamily	Species	Author	Year	Reference
Archiearinae	Archiearis notha	Hübner	1802	[34]
Archiearinae	Archiearis parthenias	Linnaeus	1761	[34]
Archiearinae	Archiearis parthenias sajana	Prout	1912	[46]
Archiearinae	Leucoserephos middenforst	Ménetriès	1858	[41]
Desmobathrinae	Gypsocrhoa renitidata	Hübner	1817	[57]
Ennominae	Abraxas grossulariata	Linnaeus	1758	[21,34,46,63,65]
Ennominae	Abraxas grossulariata dsungarica	Wehrli	1939	[38]
Ennominae	Alcis deversata	Staudinger	1892	[34,39,46,63,65]
Ennominae	Alcis extinctaria	Eversmann	1851	[23,34,36,39,65,91]
Ennominae	Alcis jubata	Thunberg	1788	[37]
Ennominae	Alcis repandata	Linnaeus	1758	[65]
Ennominae	Allopachra conjungens	Alphéraky	1892	[33]
Ennominae	Anuraica superans	Butler	1878	[33]
Ennominae	Angeron prunaria	Linnaeus	1758	[24,34,46,63,65]
Ennominae	Angeron prunaria kentaria	Staudinger	1892	[39]
Ennominae	Angeron prunaria mongolgena	Bryk	1949	[62]
Ennominae	Apetra syringaria	Linnaeus	1758	[63]
Ennominae	Apocheina haidarida	Denis & Schiffermüller	1775	[34]
Ennominae	Apocoloits almatensis	Djakonov	1952	[39]
Ennominae	Apocoloits smirnowi	Romanoff	1885	[39]
Ennominae	Arichanna barteli	Prout	1915	[32,45]
Ennominae	Arichanna melanaria	Linnaeus	1758	[34,46,65,91]
Ennominae	Arichanna melanaria decolorata	Staudinger	1892	[45]
Ennominae	Arichanna melanaria praeolivina	Wehrli	1933	[39]
Ennominae	Aspitates conspersaria	Staudinger	1901	[23,45]
Ennominae	Aspitates curvaria	Eversmann	1852	[1,5,14]
Ennominae	Aspitates forbesi	Munroe	1963	[65]
Ennominae	Aspitates gilvaria	Denis & Schiffermüller	1775	[23,24,34,36,63,91]
Ennominae	Aspitates gilvaria minimes	Vojnits	1975	[39]
Ennominae	Aspitates insignis	Alphéraky	1883	[36,39]
Ennominae	Aspitates kozhantchikovi	Munroe	1963	[36,65]
Ennominae	Aspitates mongolicus	Vojnits	1975	[39,65]
Ennominae	Aspitates mundataria	Stoll	1782	[34,46,63,65]
Subfamily	Species	Author	Year	Reference
-----------	---------	------------	------	-----------
Ennominae	Aspitates mundataria uncinataria	Vojnits	1975	[39]
Ennominae	Aspitates obscurata	Wehrli	1953	[33,34,39]
Ennominae	Aspitates staudingeri	Vojnits	1975	[39]
Ennominae	Aspitates tayloriae sibirica	Djakonov	1955	[36,65]
Ennominae	Aspitates tristrigaria	Bremer & Grey	1853	[34,37]
Ennominae	Astegetia honesta	Prout	1908	[34]
Ennominae	Biston betularia	Linnaeus	1758	[34,46,63,91]
Ennominae	Biston betularia sibiricus	Fuchs	1899	[37]
Ennominae	Cabera exanthemata	Scopoli	1763	[23,34,46,65]
Ennominae	Cabera exanthemata lamica	Wehrli	1939	[39]
Ennominae	Cabera pusaria	Linnaeus	1758	[34,39,63]
Ennominae	Calcaritis pallida	Hedemann	1881	[47]
Ennominae	Charissa atropunctata	Eversmann	1837	[37]
Ennominae	Charissa aurata	Staudinger	1897	[55]
Ennominae	Charissa ambiguata	Duponchel	1830	[34,36,46,65]
Ennominae	Charissa ambiguata ophthalmicata	Lederer	1853	[39]
Ennominae	Charissa beljaevi	Erlacher et al., 2017	2017	[55]
Ennominae	Charissa bidentatus	Schetkin & Vidalepp	1980	[46]
Ennominae	Charissa creperaria	Erschhoff	1877	[34,55,65]
Ennominae	Charissa difficilis	Alphéraky	1883	[21,24,34,39,65]
Ennominae	Charissa gozmanyi	Vojnits	1975	[14]
Ennominae	Charissa macquifini	Smiles	1979	[65]
Ennominae	Charissa ochrofasciata	Staudinger	1895	[21,30,34,39,55,65]
Ennominae	Charissa remni	Viidalepp	1988	[56,63]
Ennominae	Charissa sibirata	Guenée	1858	[21,24,30,34,66]
Ennominae	Charissa subsplendidaria	Wehrli	1922	[63,92]
Ennominae	Charissa turfolaria	Wehrli	1922	[30,34,39,65,62]
Ennominae	Charissa vastaria	Staudinger	1892	[30,34]
Ennominae	Chiasmia aestimaria	Hübner	1809	[65]
Ennominae	Chiasmia aestimaria kalaschana	Wehrli	1940	[39]
Ennominae	Chiasmia clathrata	Linnaeus	1758	[23,24,26,34,36,39,56,91]
Ennominae	Chiasmia clathrata djakonovi	Kardakoff	1928	[38,39]
Ennominae	Chiasmia saburraria	Eversmann	1851	[21,34,65]
Ennominae	Chiasmia saburraria kenteata	Staudinger	1892	[38]
Ennominae	Cleora cinctaria	Denis & Schiffermüller	1775	[34,46,63]
Ennominae	Colotois pennaria	Linnaeus	1760	[46]
Ennominae	Deileptenia ribeata	Clerck	1759	[63]
Ennominae	Dogrammia rippingaria	Duponchel	1830	[34]
Ennominae	Ectropis crepuscularia	Denis & Schiffermüller	1775	[34,46]
Ennominae	Eilicrinia orias	Wehrli	1933	[45]
Ennominae	Elopheis banghaesi	Wehrli	1922	[30,34,45]
Ennominae	Ematurga atomaria	Linnaeus	1758	[23,24,34,36,46,65]
Ennominae	Ematurga atomaria krasnojarscensis	Fuchs	1899	[39]
Ennominae	Ennomos autumnaria	Werneburg	1859	[46]
Ennominae	Epione repandaria	Hufnagel	1767	[34]
Table A1. Cont.

Subfamily	Species	Author	Year	Reference
Ennominae	Epione vespertaria	Linnaeus	1767	[34,39]
Ennominae	Epirranthis diversata	Denis & Schiffermüller	1775	[63]
Ennominae	Enania jacobsoni	Djakonov	1926	[34,46,65]
Ennominae	Gnophosodos ravistriolaria	Wehrli	1922	[36]
Ennominae	Gnophosodos ravistriolaria ravistriolaria	Wehrli	1922	[55]
Ennominae	Gnophosodos sternmataria	Eversmann	1848	[39]
Ennominae	Gnophosodos thaleraria	Püngeler	1901	[50]
Ennominae	Gnophos bipartitus	Vojnits	1975	[39]
Ennominae	Gnophos rubacaria	Püngeler	1902	[37]
Ennominae	Heliomata glarearia	Denis & Schiffermüller	1775	[46]
Ennominae	Hypomecis punctalis	Scopoli	1763	[46]
Ennominae	Hypomecis roboraria	Denis & Schiffermüller	1775	[23,34,39,63]
Ennominae	Hypoxystis pluviaria	Fabricius	1787	[34,46,63]
Ennominae	Isturgia altaica	Vojnits	1978	[43]
Ennominae	Isturgia arenacaria	Denis & Schiffermüller	1775	[63,91]
Ennominae	Isturgia arenacaria mongolica	Vojnits	1974	[38]
Ennominae	Isturgia falsaria	Alphéraky	1892	[34]
Ennominae	Isturgia halitutaria	Guenée	1858	[48]
Ennominae	Isturgia kaszabi	Vojnits	1974	[38]
Ennominae	Isturgia murinaria	Denis & Schiffermüller	1775	[34,36]
Ennominae	Isturgia murinaria uralica	Wehrli	1937	[63]
Ennominae	Jankowska bituminaria	Lederer	1853	[65]
Ennominae	Jankowska bituminaria raddensis	Wehrli	1941	[93]
Ennominae	Lomaspilis marginata	Linnaeus	1758	[23,34,46,65]
Ennominae	Lomaspilis opis amuresensis	Hedemann	1881	[38]
Ennominae	Lomographa buraceta	Staudinger	1892	[34]
Ennominae	Lomographa temperata	Denis & Schiffermüller	1775	[46]
Ennominae	Lycia hirtaria	Clerck	1759	[63]
Ennominae	Lycia lapponaria	Boisduval	1840	[37]
Ennominae	Macaria alternata	Denis & Schiffermüller	1775	[34,46,91]
Ennominae	Macaria artesaria	Denis & Schiffermüller	1775	[54,38]
Ennominae	Macaria brunneaeta	Thunberg	1784	[36,38,91]
Ennominae	Macaria circumflexaria	Eversmann	1848	[38,46,63,91]
Ennominae	Macaria costmaculata	Graeser	1888	[34]
Ennominae	Macaria latefasciata	Staudinger	1896	[21,34]
Ennominae	Macaria liturata	Clerck	1759	[65]
Ennominae	Macaria liturata pressaria	Christoph	1893	[37]
Ennominae	Macaria loricaria	Eversmann	1837	[36]
Ennominae	Macaria notata	Linnaeus	1758	[34,63]
Ennominae	Macaria notata kirina	Wehrli	1940	[38]
Ennominae	Macaria serenaria	Staudinger	1896	[21,34]
Ennominae	Macaria signaria	Hubner	1809	[38,46]
Ennominae	Macaria wuauria	Linnaeus	1758	[34,36]
Ennominae	Megalychnia strictaria	Lederer	1853	[21,34,39,46,63]
Ennominae	Meganetopon piperatum	Alphéraky	1892	[34,39,65]
Subfamily	Species	Author	Year	Reference
-----------------	-----------------------	--------------	------	----------------------------
Ennominae	Narraga fasciolaria	Hufnagel	1767	[34, 63]
Ennominae	Odontopera bidentata	Clerck	1759	[21, 35, 40, 47, 66]
Ennominae	Odontopera bidentata exsul	Tchetrerikov	1905	[36, 39]
Ennominae	Ourapteryx persica	Ménétrisés	1832	[34]
Ennominae	Ourapteryx sambucaria	Linnaeus	1758	[63, 65]
Ennominae	Perconia strigillaria	Hübner	1787	[46, 63]
Ennominae	Petrophora kaszabi	Vojnits	1978	[43]
Ennominae	Phaselia narynaria	Oberrhür	1913	[49]
Ennominae	Phaselia serrularia	Eversmann	1847	[65]
Ennominae	Phthonandria emaria	Bremer	1864	[39]
Ennominae	Plagodis dolabaria	Linnaeus	1767	[34]
Ennominae	Plagodis pulvaria	Linnaeus	1758	[21, 34, 65]
Ennominae	Selenia dentaria	Fabricius	1775	[39]
Ennominae	Selenia dentaria alpestris	Wehrli	1940	[37]
Ennominae	Selenia ononica	Kostjkuk	1991	[37]
Ennominae	Selenia sordidaria	Lecch	1897	[39]
Ennominae	Selenia tetralunaria	Hufnagel	1767	[34, 36, 46, 63]
Ennominae	Siona lineata	Scopoli	1763	[23, 26, 34, 36, 39, 46, 63, 65]
Ennominae	Spartopteryx kindermannaria	Staudinger	1871	[36, 39, 46]
Ennominae	Xandrames dholaria	Moore	1868	[33]
Ennominae	Yeozgnosphos vittaria	Thanberg	1792	[65]
Geometrinae	Chlorissa virulata	Linnaeus	1758	[34]
Geometrinae	Dyacheloropsis impararia	Guenée	1858	[21, 24, 34, 40, 41, 65]
Geometrinae	Geometra papilionaria	Linnaeus	1758	[40, 46, 63]
Geometrinae	Geometra papilionaria herbaceaaria	Ménétrisés	1859	[41, 65]
Geometrinae	Hemistola chrysoprasaria	Esper	1794	[46, 63]
Geometrinae	Hemistola chrysoprasaria lissas	Prout	1912	[40]
Geometrinae	Hemistola zimmermanni	Hedemann	1879	[34, 40, 41]
Geometrinae	Hemitha aesticaria	Hübner	1799	[16]
Geometrinae	Jodis lactaria	Linnaeus	1758	[37]
Geometrinae	Microloxia herbaria	Hübner	1813	[34, 65]
Geometrinae	Microloxia herbaria adrolata	Eversmann	1837	[41]
Geometrinae	Thaleria chlorosaria	Graeser	1890	[34, 40, 41, 91]
Geometrinae	Thaleria finbrialis	Scopoli	1763	[63]
Geometrinae	Thetidia atyche	Prout	1935	[40, 41]
Geometrinae	Thetidia chlorophyllaria	Hedemann	1879	[37]
Geometrinae	Thetidia correspondens	Alpheraky	1883	[49]
Geometrinae	Thetidia vulgaria	Guenée	1858	[21, 34, 40, 46, 65]
Larentiinae	Acasis appensata	Eversmann	1842	[46, 65]
Larentiinae	Anticlea bafiata	Denis & Schimmermüller	1775	[54, 63]
Table A1. Cont.

Subfamily	Species	Author	Year	Reference
Larentiinae	Anticlea derivata	Denis & Schiffermüller	1775	[24,34,46,63]
Larentiinae	Aplocera plagia roddi	Vasilenko	1995	[59]
Larentiinae	Baptria tribiae	Esper	1804	[34,42]
Larentiinae	Camptogramma bilineata	Linnaeus	1758	[46]
Larentiinae	Carsia sororita	Hübner	1813	[23,34,36]
Larentiinae	Catarhoe cuculata	Hufnagel	1767	[37,46,59,63]
Larentiinae	Catarhoe rubidata	Denis & Schiffermüller	1775	[46]
Larentiinae	Chlorocraspa miata	Linnaeus	1758	[36]
Larentiinae	Cidaria distinctata	Staudinger	1892	[37]
Larentiinae	Cidaria fulvata	Forster	1771	[34,44,63,65]
Larentiinae	Coenocalpe lapidata	Hübner	1809	[21,23,34,36,46,65]
Larentiinae	Coenotephria korschunovi	Viidalepp	1976	[34]
Larentiinae	Colostygia ocellata	Linnaeus	1758	[37]
Larentiinae	Dysstroma autocrypta	Heydemann	1929	[34,44,63,65]
Larentiinae	Dysstroma citrata septentrionalis	Heydemann	1929	[31,34,44]
Larentiinae	Dysstroma truncata	Hufnagel	1767	[23,31,34,44,65,91]
Larentiinae	Dysstroma truncata transbaicalensis	Heydemann	1929	[36]
Larentiinae	Ecliptopera capitata	Herrich-Schäffer	1839	[63]
Larentiinae	Ecliptopera domita	Prout	1938	[37]
Larentiinae	Ecliptopera umbrosaria	Motschulsky	1861	[34]
Larentiinae	Ecliptopera oblongata	Guenée	1858	[44]
Larentiinae	Electrophaes chimakalepia	Oberthür	1893	[44]
Larentiinae	Electrophaes corylata	Thunberg	1792	[46,65]
Larentiinae	Entephrina caesiata	Denis & Schiffermüller	1775	[34,36,44]
Larentiinae	Entephrina kuznetzovi	Viidalepp	1976	[34,45]
Larentiinae	Entephrina tzigankovoi	Wehrli	1929	[36]
Larentiinae	Epirhoe atteraria	Müller	1764	[23,34,36]
Larentiinae	Epirhoe hastulata	Hübner	1790	[34,36,44,46]
Larentiinae	Epirhoe hastulata reducta	Džakonov	1929	[48]
Larentiinae	Epirhoe papillata	Thunberg	1788	[23,34,36,44,66,65,91]
Larentiinae	Epirhoe tristata	Linnaeus	1758	[23,34,46]
Larentiinae	Epirrita autumnata	Borkhausen	1794	[21,34,34]
Larentiinae	Epirrita autumnata smetanini	Beljaev & Vasilenko	2002	[48]
Larentiinae	Epirrita autumnata tucuana	Bang-Haas	1910	[36]
Larentiinae	Eukipteryx volitans	Butler	1878	[44]
Larentiinae	Eulithis mellinata	Fabricius	1787	[34]
Larentiinae	Eulithis populata	Linnaeus	1758	[36,44,63,91]
Larentiinae	Eulithis prunata	Linnaeus	1758	[34,44,46]
Larentiinae	Eulithis pyralata	Denis & Schiffermüller	1775	[23,34,44,6,63,65]
Larentiinae	Eulithis pyropata	Hübner	1809	[91]
Subfamily	Species	Author	Year	Reference
-----------	---------	--------	------	-----------
Larentiinae	Eulithis testata	Linnaeus	1761	[23,34,44,46,63]
Larentiinae	Euphyia coangulata	Prout	1914	[21,23,24,36,44,65]
Larentiinae	Euphyia intersecta	Staudinger	1882	[21,23,34]
Larentiinae	Euphyia unangulata	Haworth	1809	[34,46,65]
Larentiinae	Euphyia selinata	Herrich-Schäffer	1861	[34]
Larentiinae	Eupithecia absinthiata	Clerck	1759	[95]
Larentiinae	Eupithecia actaeata	Walderdorff	1869	[37]
Larentiinae	Eupithecia addictata	Dietze	1908	[37]
Larentiinae	Eupithecia aggregata	Guenée	1858	[37]
Larentiinae	Eupithecia amplexata	Christoph	1881	[34,65]
Larentiinae	Eupithecia anikini	Mironov & Galsworthy	2014	[52]
Larentiinae	Eupithecia aporia	Vojnits	1975	[41,45]
Larentiinae	Eupithecia assimilata	Doubleday	1856	[52]
Larentiinae	Eupithecia bastebergeri	Dietze	1910	[52]
Larentiinae	Eupithecia biornata	Christoph	1867	[34,65]
Larentiinae	Eupithecia bohatschi	Staudinger	1897	[25,34,65]
Larentiinae	Eupithecia carpophilata	Staudinger	1897	[34,65]
Larentiinae	Eupithecia catharinana	Vojnits	1969	[65]
Larentiinae	Eupithecia centaurata	Denis & Schiffermüller	1775	[34,63,65]
Larentiinae	Eupithecia chingana	Wehrli	1926	[45]
Larentiinae	Eupithecia corborata	Dietze	1908	[36]
Larentiinae	Eupithecia denotata	Hubner	1813	[34]
Larentiinae	Eupithecia despectaria	Lederer	1853	[54,37]
Larentiinae	Eupithecia dissertata	Püngeler	1905	[34,36,65]
Larentiinae	Eupithecia djakonovi	Shchetkin	1956	[37]
Larentiinae	Eupithecia dolosa	Vojnits	1977	[45]
Larentiinae	Eupithecia ericata	Rambur	1833	[52,65]
Larentiinae	Eupithecia extensaria	Freyer	1844	[36,65]
Larentiinae	Eupithecia fennoscandica	Knaben	1949	[36,96]
Larentiinae	Eupithecia fuscoostata	Christoph	1887	[65]
Larentiinae	Eupithecia graciliata	Dietze	1906	[34]
Larentiinae	Eupithecia hannemannii	Vojnits & De Laever	1973	[65]
Larentiinae	Eupithecia holti	Viidalepp	1973	[34,65,97]
Larentiinae	Eupithecia illaborata	Dietze	1904	[52]
Larentiinae	Eupithecia impolita	Vojnits	1980	[52]
Larentiinae	Eupithecia incula	Vojnits	1975	[65]
Larentiinae	Eupithecia indigata	Hubner	1813	[63]
Larentiinae	Eupithecia innatata	Hufnagel	1767	[21,34,65]
Larentiinae	Eupithecia intricata	Zetterstedt	1839	[34]
Larentiinae	Eupithecia inveterata	Vojnits	1987	[65]
Larentiinae	Eupithecia irriguata	Hubner	1813	[65]
Larentiinae	Eupithecia kazlovii	Viidalepp	1973	[34,97]
Larentiinae	Eupithecia kulschaensis	Staudinger	1892	[34,65]
Larentiinae	Eupithecia laboriosa	Vojnits	1977	[65]
Larentiinae	Eupithecia lariciata	Freyer	1841	[34,36,65]
Larentiinae	Eupithecia leptogrammata	Staudinger	1882	[65]
Subfamily	Species	Author	Year	Reference
-----------	--------------------	----------------------	-------	-----------
Larentiinae	Eupithecia linariata	Denis & Schiffermüller	1775	[65]
Larentiinae	Eupithecia mima	Mironov	1989	[65]
Larentiinae	Eupithecia minusculata	Alphéraky	1883	[34,65]
Larentiinae	Eupithecia mongolica	Vojnits	1974	[65]
Larentiinae	Eupithecia morosa	Vojnits	1976	[65]
Larentiinae	Eupithecia musgusta	Mironov & Galsworthy	2014	[52]
Larentiinae	Eupithecia necessaria	Vojnits	1977	[41,45]
Larentiinae	Eupithecia nephelata	Staudinger	1897	[21,23,34,65]
Larentiinae	Eupithecia nobilitata	Staudinger	1882	[36,65]
Larentiinae	Eupithecia olgae	Mironov	1986	[52]
Larentiinae	Eupithecia opisthographata	Dietze	1906	[34]
Larentiinae	Eupithecia perpuscata	Vojnits	1975	[65]
Larentiinae	Eupithecia pernotata	Gueneé	1858	[48]
Larentiinae	Eupithecia pimpinellata	Hubner	1813	[34,65]
Larentiinae	Eupithecia propria	Vojnits	1977	[65]
Larentiinae	Eupithecia pusililata	Denis & Schiffermüller	1775	[52]
Larentiinae	Eupithecia pygmaeata	Hubner	1799	[65]
Larentiinae	Eupithecia recens	Dietze	1904	[34,36]
Larentiinae	Eupithecia relaxata	Dietze	1904	[65]
Larentiinae	Eupithecia repentina	Vojnits & De Laever	1978	[52]
Larentiinae	Eupithecia rabeilata	Dietze	1904	[41,45]
Larentiinae	Eupithecia saisanaria	Staudinger	1882	[52]
Larentiinae	Eupithecia satyrata	Hubner	1813	[36]
Larentiinae	Eupithecia selinata	Herrich-Schäffer	1861	[95]
Larentiinae	Eupithecia simpliata	Haworth	1809	[52]
Larentiinae	Eupithecia sinuosaria	Eversmann	1848	[23,34,36]
Larentiinae	Eupithecia subbrunnnea	Dietze	1904	[52]
Larentiinae	Eupithecia subexiguata	Vojnits	1974	[65]
Larentiinae	Eupithecia subfuscata	Haworth	1809	[34]
Larentiinae	Eupithecia suboxydata	Staudinger	1897	[65,98]
Larentiinae	Eupithecia subtacincta	Hampson	1895	[37]
Larentiinae	Eupithecia subumbrita	Denis & Schiffermüller	1775	[23,34,65]
Larentiinae	Eupithecia succenturiata	Linnaeus	1758	[95]
Larentiinae	Eupithecia satliata	Christoph	1877	[65]
Larentiinae	Eupithecia thalicrata	Püngeler	1902	[52]
Larentiinae	Eupithecia undata	Freyer	1840	[65]
Larentiinae	Eupithecia veratraria	Herrich-Schäffer	1848	[95]
Larentiinae	Eupithecia vicina	Mironov	1989	[65]
Larentiinae	Eupithecia virgaureata	Doubleday	1861	[21,23,34,65]
Larentiinae	Eupithecia vulgata	Haworth	1809	[21,23,34]
Larentiinae	Eupithecia vulgaris	Staudinger	1882	[37]
Larentiinae	Eupithecia unedonata	Mabille	1868	[33]
Larentiinae	Eustroma reticulatum obsolenta	Djakonov	1929	[48]
Larentiinae	Gagitodes sagittata	Fabricius	1787	[44,46,63]
Larentiinae	Gagitodes sagittata albiflora	Prout	1939	[48]
Larentiinae	Horismus aemulata	Hübner	1813	[25,34,46,65]
Table A1. Cont.

Subfamily	Species	Author	Year	Reference
Larentiinae	*Horisme aquata*	Hübner	1813	[23,34,36,46,65,91]
Larentiinae	*Horisme falcata*	Bang-Haas	1907	[25,27,34,36,63,65]
Larentiinae	*Horisme incurvaria*	Erschoff	1877	[34,36,65]
Larentiinae	*Horisme lucillata*	Guenée	1858	[23,34]
Larentiinae	*Horisme parcata*	Püngeler	1909	[65]
Larentiinae	*Horisme scotosiata*	Guenée	1858	[21,23,34,63,65]
Larentiinae	*Horisme tersata*	Denis & Schiffermüller	1775	[34,65]
Larentiinae	*Horisme tersata tetricata*			
Larentiinae	*Hydrelia flammeolaria*	Hufnagel	1767	[44,46]
Larentiinae	*Hydria cervinalis*	Scopoli	1763	[34]
Larentiinae	*Hydria undulata*	Linnaeus	1758	[34,65]
Larentiinae	*Hydriomena furcata*	Thunberg	1784	[21,23,34,36,44]
Larentiinae	*Hydriomena impluviata*	Denis & Schiffermüller	1775	[21,34,36]
Larentiinae	*Hydriomena impluviata djakonovii*	Beljaev & Vasilenko	2002	[48]
Larentiinae	*Hydriomena ruberata*	Freyer	1831	[65]
Larentiinae	*Juxtephria consentaria*	Freyer	1846	[36,44,65]
Larentiinae	*Klytoliia obstinata*	Staudinger	1892	[34]
Larentiinae	*Laciniodes denigrata abiens*	Prout	1938	[33]
Larentiinae	*Lampropteryx albigerata*	Kollar	1848	[65]
Larentiinae	*Lampropteryx jameza*	Butler	1898	[37]
Larentiinae	*Lampropteryx minna*	Butler	1881	[44,45,65]
Larentiinae	*Lampropteryx suffumata*	Denis & Schiffermüller	1775	[63]
Larentiinae	*Leptostege tenatera*	Christoph	1881	[99]
Larentiinae	*Lithosege coassata mongolica*	Vojnits	1978	[42]
Larentiinae	*Lithosege coassata ochraceata*	Staudinger	1897	[42,65]
Larentiinae	*Lithosege mesolecata*	Püngeler	1899	[34,42]
Larentiinae	*Lithosege pallescens*	Staudinger	1897	[21,34]
Larentiinae	*Labophora halterata*	Hufnagel	1767	[44,46]
Larentiinae	*Martania taeniata*	Stephens	1831	[44]
Larentiinae	*Mesoleuca albicillata*	Linnaeus	1758	[34,37,44,46]
Larentiinae	*Mesotype verbata*	Scopoli	1763	[44]
Larentiinae	*Nebula lamata*	Staudinger	1897	[21,34]
Larentiinae	*Nebula mongolata*	Staudinger	1897	[21,34,44,65]
Larentiinae	*Odezia atrata*	Linnaeus	1758	[23,34]
Larentiinae	*Orthonana obstipata*	Fabricius	1794	[34]
Larentiinae	*Pelurga comitata*	Linnaeus	1758	[34,44,63,65]
Larentiinae	*Pelurga taczanowskii*	Oberthür	1880	[63,91]
Larentiinae	*Perizoma alchemillata*	Linnaeus	1758	[34,36,44]
Larentiinae	*Perizoma bifaciata*	Haworth	1809	[65]
Larentiinae	*Perizoma blandiata*	Denis & Schiffermüller	1775	[23,34]
Larentiinae	*Perizoma hydrata*	Treitschke	1829	[36,44,65]
Larentiinae	*Perizoma minorata*	Treitschke	1828	[46]
Larentiinae	*Phibalapteryx virgata*	Hufnagel	1767	[34,36,42,91]
Larentiinae	*Photoscotosia palanaeartica*	Staudinger	1882	[23,34]
Larentiinae	*Plemyria rubiginata*	Denis & Schiffermüller	1775	[34,44,65]
Subfamily	Species	Author	Year	Reference
---------------	--------------------------------	-----------------	------	-----------------
Larentiinae	Plesioscotosia pulchrata	Alphéraky	1883	[23,34]
Larentiinae	Povilasiia kasghara	Moore	1878	[51]
Larentiinae	Pseudentephria remni	Viidalepp	1976	[35]
Larentiinae	Pseudobaptria corpudaria	Graeser	1889	[34]
Larentiinae	Rheumaptera hastata	Linnaeus	1758	[34,36,44,46,65]
Larentiinae	Rheumaptera subhastata	Nolcken	1870	[36]
Larentiinae	Rheumaptera subhastata commixta	Matsumura	1925	[48]
Larentiinae	Rhisostosteae subhilaria	Hübner	1799	[23,34,36,42,65]
Larentiinae	Scotopteryx chenopodata	Linnaeus	1758	[23,34,46,63,65]
Larentiinae	Scotopteryx golovuschkini	Kostjuk	1991	[65]
Larentiinae	Scotopteryx sinensis	Alphéraky	1883	[23,34]
Larentiinae	Scotopteryx transcaaticula	Djakonov	1955	[28,34,36]
Larentiinae	Spargania lactuata	Denis & Schiffermüller	1775	[23,34,44,46,65]
Larentiinae	Stamnodes danilovi	Erschoff	1877	[21,23,34,46,65]
Larentiinae	Stamnodes danilevi djakonovi	Alphéraky	1916	[33]
Larentiinae	Stamnodes pauperaria	Eversmann	1848	[65]
Larentiinae	Theria obeliscata	Hübner	1787	[34,91]
Larentiinae	Theria variata	Denis & Schiffermüller	1775	[23,34]
Larentiinae	Trichopterigia consobrinaria	Leech	1891	[44]
Larentiinae	Trichopterix carpinita	Borkhausen	1794	[65]
Larentiinae	Xanthorhoe abrasaria	Herrich-Schäffer	1855	[36,44,65]
Larentiinae	Xanthorhoe deflurata	Erschoff	1877	[23,34,44,65]
Larentiinae	Xanthorhoe montanata	Denis & Schiffermüller	1775	[34,36,46]
Larentiinae	Xanthorhoe quadrifasiata tannuensis	Prout	1924	[45,63]
Larentiinae	Xanthorhoe sajanaria	Prout	1914	[36,44]
Larentiinae	Xanthorhoe sajanaria djakonovi	Vasilenko	1995	[100]
Larentiinae	Xanthorhoe spadiccaria	Denis & Schiffermüller	1775	[44,46]
Larentiinae	Xanthorhoe stupida aridela	Prout	1937	[37]
Larentiinae	Zola lerranea	Butler	1879	[34]
Sterrhinae	Cleta jacutica (Axel Hausmann: probably only one Cleta species occurring in Mongolia)	Viidalepp	1976	[36]
Sterrhinae	Cleta perpusillaria	Eversmann	1847	[65]
Sterrhinae	Cyclophora albiplunctata	Hufnagel	1767	[46]
Sterrhinae	Cyclophora pendularia	Clerck	1759	[46]
Sterrhinae	Glossotrophia rufotinctata	Prout	1913	[49]
Sterrhinae	Holarctias rufinaria	Staudinger	1861	[58]
Sterrhinae	Idea aureolaria	Denis & Schiffermüller	1775	[23,34,46]
Sterrhinae	Idea biselata extincta	Staudinger	1897	[101]
Sterrhinae	Idea muricata	Hufnagel	1967	[34]
Sterrhinae	Idea muricata minor	Sterneck	1727	[40]
Sterrhinae	Idea nitidata	Herrich-Schäffer	1861	[37]
Sterrhinae	Idea nudaria	Christoph	1881	[37]
Sterrhinae	Idea pallidata	Denis & Schiffermüller	1775	[34,40]
Sterrhinae	Idea rufaria	Hübner	1799	[65]
Table A1. Cont.

Subfamily	Species	Author	Year	Reference
Sterrhinae	Idaea rusticata	Denis & Schiffermüller	1775	[40,63]
Sterrhinae	Idaea serpentina	Hufnagel	1767	[23,34,36,41,63]
Sterrhinae	Idaea straminata	Borkhausen	1794	[34,91]
Sterrhinae	Idaea straminata sibirica	Djakonov	1926	[40]
Sterrhinae	Ochodontia adustaria	Fischer de Waldheim	1840	[23,34,65]
Sterrhinae	Rhodometra sacaria	Linnaeus	1767	[34]
Sterrhinae	Rhodostrophia jaculata	Hübner	1813	[21,23,34,36,40,41,63,65]
Sterrhinae	Rhodostrophia tyugui	Vasilenko	1998	[64]
Sterrhinae	Rhodostrophia ustuzhanini	Vasilenko	2006	[49]
Sterrhinae	Rhodostrophia vibicaria	Clerck	1759	[34,46,63]
Sterrhinae	Scopula aesquifasciata	Christoph	1881	[47]
Sterrhinae	Scopula albicernaria	Herrich-Schäffer	1847	[21,25,34,65]
Sterrhinae	Scopula albilascata	Eversmann	1851	[40,41]
Sterrhinae	Scopula beckeraria	Lederer	1853	[34,40,41,63,65]
Sterrhinae	Scopula beckeraria amata	Wehrli	1927	[36,40,65]
Sterrhinae	Scopula cajanderi	Herz	1903	[41,46]
Sterrhinae	Scopula caricaria	Reutti	1853	[46]
Sterrhinae	Scopula contramutata	Prout	1920	[34]
Sterrhinae	Scopula cumulata	Alpheraky	1883	[65]
Sterrhinae	Scopula decorata	Denis & Schiffermüller	1775	[21,23,34,41,63,65]
Sterrhinae	Scopula decorata przewalskii	Vidalpepp	1975	[36,40,65]
Sterrhinae	Scopula dignata	Guenée	1858	[34]
Sterrhinae	Scopula floslactata	Haworth	1809	[37]
Sterrhinae	Scopula frigidaria	Moschler	1860	[47]
Sterrhinae	Scopula immorata	Linnaeus	1758	[23,34,36,40,46,63,65]
Sterrhinae	Scopula immutata contramutata	Prout	1913	[58]
Sterrhinae	Scopula impersonata	Walker	1861	[34]
Sterrhinae	Scopula impersonata macescens	Butler	1879	[40,41]
Sterrhinae	Scopula incanata	Linnaeus	1758	[34,41,65]
Sterrhinae	Scopula latelinata	Graeser	1892	[49]
Sterrhinae	Scopula marginpunctata	Goeeze	1781	[23,34,63]
Sterrhinae	Scopula nigropunctata	Hufnagel	1767	[34]
Sterrhinae	Scopula nigropunctata subcandidata	Walker	1863	[37]
Sterrhinae	Scopula ornata	Scopoli	1763	[34,41,46]
Sterrhinae	Scopula permutilata	Staudinger	1897	[34,39,65]
Sterrhinae	Scopula rubiginata	Hufnagel	1767	[34,40,41,63,65,91]
Sterrhinae	Scopula ternata	Schrank	1802	[25,34,36,46]
Sterrhinae	Scopula tessellaria	Boisduval	1840	[65]
Sterrhinae	Scopula umbelaria	Hübner	1813	[34,46,63]
Sterrhinae	Scopula umbelaria graeseri	Prout	1935	[41,65]
Sterrhinae	Scopula virgulata	Denis & Schiffermüller	1775	[23,34,40,41,46,63,65,91]
Sterrhinae	Scopula virgulata substrigaria	Staudinger	1900	[36]
Sterrhinae	Timandra griseata	Petersen	1902	[46]
Sterrhinae	Timandra paralis	Prout	1935	[34,40]
Sterrhinae	Timandra recompta	Prout	1930	[40,63]
References

1. Summerville, K.S.; Ritter, L.M.; Crist, T.O. Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: A preliminary assessment. *Biol. Conserv.* 2004, 116, 9–18. [CrossRef]
2. Pöyry, J.; Lindgren, S.; Salminen, J.; Kuussaari, M. Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. *Biol. Conserv.* 2005, 122, 465–478. [CrossRef]
3. Bachand, M.; Pellerin, S.; Côté, S.D.; Moretti, M.; De Cáceres, M.; Brousseau, P.-M.; Cloutier, C.; Hébert, C.; Cardinal, É.; Martin, J.-L. Species indicators of ecosystem recovery after reducing large herbivore density: Comparing taxa and testing species combinations. *Ecol. Indic.* 2014, 38, 12–19. [CrossRef]
4. Enkhtur, K.; Pfeiffer, M.; Lkhagvaa, A.; Boldgiv, B. Response of moths (Lepidoptera: Heterocera) to livestock grazing in Mongolian rangelands. *Ecol. Indic.* 2017, 72, 667–674. [CrossRef]
5. Frequently Asked Questions|The Lepidopterists’ Society. Available online: https://www.lepsoc.org/content/frequently-asked-questions#9 (accessed on 17 January 2020).
6. Hahn, M.; Brühl, C.A. The secret pollinators: An overview of moth pollination with a focus on Europe and North America. *Arthropod Plant Interact.* 2016, 10, 21–28. [CrossRef]
7. Scoble, M.J. *The Lepidoptera. Form, Function and Diversity*; Oxford University Press: Oxford, UK, 1992.
8. Ashton, L.A.; Kitching, R.L.; Maunsell, S.; Bito, D.; Putland, D. Macrolepidopteran assemblages along an altitudinal gradient in subtropical rainforest-exploring indicators of climate change. *Mem. Qld. Mus.* 2011, 55, 375–389.
9. Choi, S.-W. Patterns of species description and species richness of Geometrid moths (Lepidoptera: Geometridae) on the Korean peninsula. *Zool. Sci.* 2006, 23, 155–160. [CrossRef]
10. Alonso-Rodríguez, A.M.; Finegan, B.; Fiedler, K. Neotropical moth assemblages degrade due to oil palm expansion. *Biodivers. Conserv.* 2017, 26, 2295–2326. [CrossRef]
11. Hilt, N.; Fiedler, K. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. *Divers. Distrib.* 2005, 11, 387–398. [CrossRef]
12. Brehm, G.; Murillo-Ramos, L.; Sihvonen, P.; Hausmann, A.; Schmidt, B.C.; Öunap, E.; Moser, A.; Mörtter, R.; Bolt10, D.; Bodner11, F. New World geometrid moths (Lepidoptera: Geometridae): Molecular phylogeny, biogeography, taxonomic updates and description of 11 new tribes. *Arthropod Syst. Philogeny* 2019, 77, 457–486.
13. Sihvonen, P.; Siljander, M. Species diversity and geographical distribution of Scopulini moths (Lepidoptera: Geometridae, Sterrhinae) on a world-wide scale. *Biodivers. Conserv.* 2005, 14, 703–721. [CrossRef]
14. Pfeiffer, M.; Dulamsuren, C.; Wesche, K. Grasslands and Shrublands of Mongolia. In *Reference Module in Earth Systems and Environmental Sciences*; Elsevier: Amsterdam, The Netherlands, 2019.
15. Enkhnasan, D.; Boldgiv, B. Biogeography of predaceous diving beetles (Coleoptera, Dytiscidae) of Mongolia. *ZooKeys* 2019, 853, 87. [CrossRef] [PubMed]
16. WWF About Mongolia|WWF. Available online: http://mongolia.panda.org/en/about_mongolia/ (accessed on 27 December 2019).
17. Paknia, O.; Grundler, M.; Pfeiffer, M. Species richness and niche differentiation of darkling beetles (Coleoptera: Tenebrionidae) in Mongolian steppe ecosystems. In *Steppe Ecosystems: Biological Diversity, Management and Restoration*, 1st ed.; Chapter: Species Richness and Niche Differentiation of Darkling beetles (Coleoptera: Tenebrionidae) in Mongolian Steppe Ecosystems; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 47–72.
18. Pfeiffer, M.; Dulamsuren, C.; Jäschke, Y.; Wesche, K. Grasslands of China and Mongolia: Spatial extent, land use and conservation. In *Grasslands of the World: Diversity, Management and Conservation*; CRC Press: Boca Raton, FL, USA, 2018; pp. 170–198.
19. Suzuki, Y. Conflict between mining development and nomadism in Mongolia. In *The Mongolian Ecosystem Network*; Springer: Tokyo, Japan, 2013; pp. 269–294.
20. Staudinger, O. Lepidopteren des Kentei-Gebirges. *Dtsch. Entomol. Z. Iris* 1892, 5, 300–393.
21. Staudinger, O. Über Lepidopteren von Ulissatsui. *Dtsch. Entomol. Z. Iris* 1896, 9, 240–283.
22. Staudinger, O. Neue Lepidopteren des palaearktischen Faunengebietes. *Dtsch. Entomol. Z. Iris* 1899, 12, 354–356.
23. Staudinger, O.; Rebel, H. Catalog of the Lepidopteren des Palaearktischen Faunengebietes, 3. aufl. des Cataloges der Lepidopteren des Europäischen Faunengebietes, Berlin, 1901. *Distrib. Recurvaric Nanella* 1901, 2, 155.
24. Alberti, B. Lepidopteren aus der Mongolischen Volksrepublik. Resulte der Mongolisch-Deutschen Biologischen Expeditionen seit 1962, nr. 58. *Dtsch. Entomol. Z.* 1971, 18, 361.

25. Moucha, J. Ergebnisse der 1. mongolische-tschechoslowakischen entomologisch-botanischen Expedition. 2. Lepidoptera. *Acta Faun. Entomol. Musei Natl. Pragae* 1967, 12, 35–42.

26. Grum-Grshimailo, A. Butterflies collected in the vicinity of Troitskosavsk in 1896–1897 and in northern Mongolia in 1907. *Tr. Troitskosavsk Dep. Russ. Geographer. Ob-VA* 1911, 13, 65–67.

27. Djakonov, A.M. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the northern part of the Kamchatka Peninsula and adjacent islands. *Entomol. Fenn.* 1975, 4, 35–42.

28. Djakonov, A.M. New and little known Lepidoptera, Geometridae of the fauna of the USSR. *Tr. Troitskosavsky Dep. Russ. Geographer. Ob-VA* 1911, 13, 65–67.

29. Wehrli, E. Die Spanner des Palaearktischen Faunengebietes. In *Die Gross-Schmetterlinge der Erde*; Seitz, A., Ed.; Verlag A. Kernen: Stuttgart, Germany, 1912; Volume 4, pp. 1–479.

30. Heydemann, F. Monographie der palaarktischen Arten des Subgenus *Dysstroma* Hub. (trunctata-citrata-Gruppe) der Gattung Cidaria. *Mitt. Münchner Entomol. Ges.* 1929, 19, 207–292.

31. Prout, L.B. Die Spanner des Palaearktischen Faunengebietes. In *Die Gross-Schmetterlinge der Erde*; Seitz, A., Ed.; Verlag A. Kernen: Stuttgart, Germany, 1912; Volume 4, pp. 1–479.

32. Wehrli, E. Die Spanner des Palaearktischen Faunengebietes. In *Die Gross-Schmetterlinge der Erde*; Seitz, A., Ed.; Verlag A. Kernen: Stuttgart, Germany, 1939–1954; Volume 4, pp. 254–766.

33. Viidalepp, J. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1975, 3, 438–490.

34. Viidalepp, J.R. New genera and species of geometrid moths (Lepidoptera, Geometridae) from Southern Mongolia in 1907. *Insects Mong.* 1982, 4, 138–207.

35. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

36. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

37. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

38. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

39. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

40. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

41. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

42. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

43. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

44. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

45. Viidalepp, J.R. On the fauna of Geometric moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

46. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

47. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

48. Viidalepp, J.R. On the fauna of Geometric moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.

49. Viidalepp, J.R. On the fauna of Geometrid moths (Lepidoptera, Geometridae) of the Mongolian People’s Republic. *Insects Mong.* 1982, 4, 207–212.
49. Vasilenko, S.V. New records of geometro-moths (Lepidoptera, Geometridae) from West Mongolia. *Eurasiat. Entomol. Zhurnal Eurasian Entomol. J.* 2016, 5, 344–346. (In Russian)

50. Vasilenko, S.V. Interesting findings of rare geometrid species (Lepidoptera, Geometridae) in the Altai. *Entomol. Rev.* 2011, 91, 405–409. [CrossRef]

51. Vasilenko, S.V.; Ivanin, V.V.; Knyazev, S.A. New records of geometrid moths (Lepidoptera, Geometridae) from the Russian Altai. *Eurasian Entomol. J.* 2017, 16, 99–103.

52. Mironov, V.; Galsworthy, A. A survey of Eupithecia Curtis, 1825 (Lepidoptera, Geometridae, Larentiinae) in Mongolia with descriptions of two new species. *Zootaxa* 2014, 3774, 101–130. [CrossRef]

53. Erlacher, S.; Erlacher, J. A systematic revision of the genus Gnophopsodos Wehrli, 1945, with description of two new species (Lepidoptera: Geometridae). *Zootaxa* 2016, 4169, 435–456. [CrossRef]

54. Erlacher, S.; Erlacher, J. Description of the female of *Gnophopsodos ravistriolaria* (Wehrli, 1922) (Lepidoptera: Geometridae). *Zootaxa* 2019, 4586, 391–394. [CrossRef]

55. Erlacher, S.; Palma, L.M.; Erlacher, J. A systematic revision of Charissa, subgenus Pterygnophos Wehrli, 1951, with description of a new species (Lepidoptera: Geometridae). *Zootaxa* 2017, 4341, 400. [CrossRef]

56. Makhov, I.A.; Beljaev, E.A. New data on geometrid moths (Lepidoptera: Geometridae) of the Baikal region, Russia. *Far East. Entomol.* 2019, 391, 1–23. [CrossRef]

57. Hausmann, A. *The Geometrid Moths of Europe*; Apollo Books: Stenstrup, Denmark, 2001; Volume 1, ISBN 978-87-88757-35-4.

58. Hausmann, A. *The Geometrid Moths of Europe*; Apollo Books: Stenstrup, Denmark, 2004; Volume 2, ISBN 978-87-88757-37-8.

59. Hausmann, A.; Mironov, V.; Viidalepp, J. *The Geometrid Moths of Europe*; Apollo Books: Stenstrup, Denmark, 2012; Volume 3, ISBN 978-87-88757-39-2.

60. Mironov, V. *The Geometrid Moths of Europe*; Apollo Books: Stenstrup, Denmark, 2003; Volume 4, ISBN 978-87-88757-40-8.

61. Skou, P.; Siivonen, P. *The Geometrid Moths of Europe*; Brill: Leiden, The Netherlands, 2015; Volume 5, ISBN 978-90-04-25220-2.

62. Müller, B.; Erlacher, S.; Hausmann, A.; Rajaei, H.; Siivonen, P.; Skou, P. *The Geometrid Moths of Europe*; Brill: Leiden, The Netherlands, 2019; Volume 6 (Part 1–2), ISBN 978-90-04-25222-6.

63. Enkhtur, K.; Pfeifer, M.; Munkhbat, U.; Boldgiv, B. Diversity of moths (Lepidoptera: Heterocera) in north-central Mongolia. *Erforsch. Biol. Ressour. Mong.* 2020, 14, in press.

64. Geometridae Collection of SZMN. Available online: http://szmn.eco.nsc.ru/Lepidop/Geometr/Geometr.htm (accessed on 10 March 2020).

65. GBIF.org GBIF Occurrence Download. Available online: https://doi.org/10.15468/dla9dxof (accessed on 11 November 2019).

66. Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). *Mol. Ecol. Notes* 2007, 7, 355–364. [CrossRef] [PubMed]

67. Google Earth. Available online: https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0r/data=KAE (accessed on 8 November 2019).

68. Schaffer, M.; Beccaloni, G.; Scoble, M.; Kitching, I.; Simonsen, T.; Robinson, G.; Pitkin, B.; Hine, A.; Lyal, C. The Global Lepidoptera Names Index (LepIndex). World Wide Web Electronic Publication. Available online: https://www.nhm.ac.uk/our-science/data/lepidoptera/lepidindex/ (accessed on 6 November 2019).

69. Chao, A.; Colwell, R.K.; Chiu, C.-H.; Townsend, D. Seen once or more than once: Applying Good–Turing theory to estimate species richness using only unique observations and a species list. *Methods Ecol. Evol.* 2017, 8, 1221–1232. [CrossRef]

70. Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. *Ecol. Monogr.* 2014, 84, 45–67. [CrossRef]

71. Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). *Methods Ecol. Evol.* 2016. [CrossRef]

72. Wickham, H.; Hester, J.; Chang, W.; RStudio; R Core team (Some namespace and vignette code extracted from base R). *Devtools: Tools to Make Developing R Packages Easier*; R package version 2.2.2. 2020. Available online: https://CRAN.R-project.org/package=devtools (accessed on 22 March 2020).
73. Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; RStudio. *ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics*; Springer-Verlag: Berlin, Germany, 2016.

74. Smith, R. *ecole: ecole: School of Ecology Package*. R package version 0.7-2019. Available online: https://github.com/phytomas/ecoledownload (accessed on 22 March 2020).

75. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Minchin, P.R.; O'Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. *Vegan: Community Ecology Package*; R package version 2.5-6. Available online: https://CRAN.R-project.org/package=vegan (accessed on 22 March 2020).

76. Clarke, K.R.; Somerfield, P.J.; Chapman, M.G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. *J. Exp. Mar. Biol. Ecol.* 2006, 330, 55–80. [CrossRef]

77. Chao, A.; Ma, K.H.; Hsieh, T.C.; Chiu, C.H. Online Program SpadeR (Species-Richness Prediction and Diversity Estimation in R). Program and User’s Guide. Available online: http://chao.stat.nthu.edu.tw/wordpress/software_download (accessed on 15 November 2019).

78. Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. *Biometrics* 2006, 62, 361–371. [CrossRef]

79. Fick, S.E.; Hijmans, R.J. *WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas*. Int. J. Climatol. 2019. Available online: https://worldclim.org/version2 (accessed on 11 November 2019).

80. Conservation GIS Data—The Nature Conservancy. Available online: http://maps.tnc.org/gis_data.html (accessed on 11 November 2019).

81. Borcard, D.; Gillet, F.; Legendre, P. *Numerical Ecology with R.*; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-7975-9.

82. *R Core Team R: A Language and Environment for Statistical Computing*; R Foundation for Statistical Computing: Vienna, Austria, 2020.

83. Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. *Ann. Mo. Bot. Gard.* 2002, 199–224. [CrossRef]

84. Aarvik, L.; Bengt Ake, B.; Elven, H.; Ivinskis, P.; Jürivete, U.; Karshol, O.; Mutanen, M.; Savenkov, N. *Nordic-Baltic Checklist of Lepidoptera*. Nor. J. Entomol. 2017, 3, 1–236.

85. Redondo, V.M.; Gaston, J.; Gimeno, R. *Geometridae Ibericae*; BRILL: Leiden, The Netherlands, 2009; ISBN 978-90-04-26101-3.

86. Polev, V. Landscape distribution of geometer moths of the subfamily Sterrhinae (Lepidoptera, Geometridae) in Kuznetskaya Holl. *Euroasian Entomol. J.* 2008, 7, 389–392.

87. Sihvonen, P.; Nupponen, K. Taxonomy of Rhodostrophia jacularia (Hübner, 1813)–a Sterrhinae moth with variable female wing shape (Lepidoptera: Geometridae). *Notula Lepidopterol.* 2005, 28, 113–122.

88. Beck, J.; Schwanghart, W.; Khen, C.V.; Holloway, J.D. Predicting geometrid moth diversity in the Heart of Borneo. *Insect Conserv. Divers.* 2011, 4, 173–183. [CrossRef]

89. Brehm, G.; Homeier, J.; Fiedler, K. Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. *Divers. Distrib.* 2003, 9, 351–366. [CrossRef] [PubMed]

90. Beck, J.; Khen, C.V. Beta-diversity of geometrid moths from northern Borneo: Effects of habitat, time and space. *J. Anim. Ecol.* 2007, 76, 230–237. [CrossRef] [PubMed]

91. Korsun, O.V.; Akulova, G.A.; Gordeev, S.Y.; Gordeeva, T.V.; Budaeva, A.A. Insects of the Onon-Balj National Park (Mongolia). *Amurian Zool.* 2012, 4, 18–25.

92. Smiles, K.H. A revision of the subgenus *Dysgnophos* (Lepidoptera: Geometridae). *J. Nat. Hist.* 1979, 13, 99–119. [CrossRef]

93. Jiang, N.; Xue, D.; Han, H. A review of Jankowskia Oberthür, 1884, with descriptions of four new species (Lepidoptera: Geometridae, Ennominae). *Zootaxa* 2010, 2559, 1–16. [CrossRef]

94. Beljaev, E.A. A new subspecies of the *Pseudopanthera macularia* L.(Lepidoptera: Geometridae, Ennominae) from South Siberia. *Far East. Entomol.* 1997, 51, 1–7.

95. Makhov, I.A. *Eupithecia Curtis, 1825 (Geometridae, Larentiinae) of Southern Baikal Siberia*. *Euroasian Entomol. J.* 2015, 14, 149–156.

96. Vojnits, A.M. Data to the *Eupithecia* fauna of Asia (Lepidoptera, Geometridae). [Studies on Palaeartic *Eupithecia* species XV]. *Ann. Hist. -Nat. Musei Natl. Hung* 1981, 73, 221–237.
97. Viidalepp, J. Two species of the genus *Eupithecia* Curt.(Lepidoptera,-Geometridae) from the Mongolian People’s Republic. *Entomol. Rev.* 1973, 52, 397–399.

98. Choi, S.-W.; Kim, S.-S. New Records of Seven *Eupithecia* (Lepidoptera: Geometridae) from Korea. *Anim. Syst. Evol. Divers.* 2015, 31. [CrossRef]

99. Vasilenko, S.V. To the knowledge of the fauna of geometrid moths (Lepidoptera: Geometridae) of Tajikistan. *Cauc. Entomol. Bull.* 2019, 15, 347–354. [CrossRef]

100. Vasilenko, S.V.; Beljaev, E.A. Review of geometrid moths of the *Xanthorhoe incursata* (Hübner, 1813 [“1796”]) group (Lepidoptera, Geometridae, Larentiinae) from the Asian part of Russia, with description of a new species. *Entomol. Rev.* 2017, 97, 1149–1165. [CrossRef]

101. Sihvonen, P. The Sterrhinae moth fauna of Fenglin Nature Reserve, North-East China. *Spixiana* 2006, 29, 247–257.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).