Effects of substitutions of C atoms by Al and N in the w-AlN compound

J F Murillo¹, C Ortega¹ and M J Espitia²
¹ Universidad de Córdoba, Montería, Colombia.
² Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.

E-mail: juanfmg1973@gmail.com

Abstract. We present ab-initio calculations in the pseudopotential approximation for the carbon atoms substitutions by aluminium and nitrogen sites at the AlN compound in wurtzite phase. Structural parameters for the AlN with and without carbon were optimized. Subsequently, the electronic and magnetic properties are determined by the density of states (DOS). Also it was determined that Carbon substitutions (AlN:C) are quite stable. This substitution exhibits magnetic properties, indicating that these compounds are good candidates for possible application in diluted magnetic semiconductors, spin injectors, and other spintronics applications.

1. Introduction
The aluminium nitride (AlN), which crystallizes in the wurtzite structure, is a semiconductor material with a wide band gap of approximately 6.2eV, not only is a suitable material for the design Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) [1], also has been used in electronics and optoelectronics [2]. The AlN present stability to high temperature, a considerable thermal conductivity, low thermal expansion and high resistance to gases and chemicals [3]. Recently, AlN has received extensive attention because of its possible use as a diluted magnetic semiconductor (DMS) with potential application in the field of spintronics. For these applications, ferromagnetism at room temperature is a requirement. In recent years, high-temperature ferromagnetism has been reported by many researchers in several types of transition metal (TM)-doped semiconducting oxides and nitrides [4-6]. However, it was found that the magnetic TM dopants in TM-doped DMS segregate to form ferromagnetic clusters, precipitate, or secondary phases [7-9]. This represents a big obstacle for practical applications of diluted magnetic semiconductors. To avoid this problem, many researchers have focused on investigating the effect of nonmagnetic ion doping in semiconductors in order to obtain high-temperature ferromagnetic semiconductors. Experimental results have proved that it is possible to obtain high-temperature ferromagnetism in nonmagnetic anion, for example nonmagnetic C- and N-doped ZnO, TiO₂ and C-doped GaN [10-12]. In this paper, we present first-principles total energy calculations of the structural, electronic, and magnetic properties of AlC₀.₆₂₅N₀.₃₇₅ and Al₀.₃₇₅C₀.₆₂₅N compounds. First, we calculated the structural parameters of pure AlN and the two ternary compounds considered in this study. Finally, we made a detailed of the density of states. We found that the ternary compounds exhibit magnetic properties, and therefore they can be used in diluted magnetic semiconductors and spintronics.
2. **Computational method**

The calculations were performed within the DFT framework using the Quantum ESPRESSO package [13]. The correlation and exchange effects of the electrons were treated using the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [14]. Electron–ion interactions were treated with the pseudopotential method [15, 16]. The electron wave functions were expanded into plane waves with a kinetic-energy cutoff of 40 Ry. For the charge density, a kinetic energy cutoff of 400Ry was used. A 6×6×4 Monkhorst-Pack mesh [17] was used to generate the k-points in the unit cell. The calculations were performed taking into account the spin polarization. To calculate the structural, electronic, and magnetic properties of pure AlN, a 32-atom 2a×2b×2c wurtzite supercell was considered. The concentrations AlC_{0.0625}N_{0.9375} (C by N) and Al_{0.9375}C_{0.0625}N (C by Al) were obtained by substituting one N-atom and one Al-atom, respectively.

3. **Results and discussion**

3.1. **Structural parameters**

To determine the structural properties in the ground state, such as the lattice constant (\(a_0\)), the bulk modulus (\(B_0\)), the c/a ratio, and the total energy (\(E_0\)), of AlC_{0.0625}N_{0.9375} and Al_{0.9375}C_{0.0625}N concentrations in the wurtzite structure, the total energy was calculated as a function of the volume, and the results were fitted to the Murnaghan equation of state [18]. Figure 1 shows the energy-volume curves for AlC_{0.0625}N_{0.9375} (C by N) and Al_{0.9375}C_{0.0625}N (C by Al).

![Figure 1. Total energy as a function of volume for AlN:C. Up C by N and bottom C by Al.](image)

The lattice constant, the c/a value, the bulk modulus (\(B_0\)), the total energy (\(E_0\)), and the magnetic moment (\(\mu_\beta\)) per cell are shown in Table 1.

Structure	\(a_0\) (Å)	c/a	\(V_0\) (Å³/atom)	\(B_0\) (GPa)	\(E_0\) (eV/atom)	\(\mu_\beta\) (µ/μ\text{B}/cell)
AlN	3.121	1.602	10.551	192.93	-221.66	0.0
AlC_{0.0625}N_{0.9375}	3.110	1.601	10.432	192²	-	-
Al_{0.9375}C_{0.0625}N	3.129	1.609	10.769	184.71	-214.40	~ 2.0
Al_{0.9375}C_{0.125}N	3.084	1.594	10.135	182.88	-220.49	~ 0.4

²Experimental Reference [19], "Theoretical Reference [20], "Experimental Reference [21].
Figure 1 show that Al$_{0.9375}$C$_{0.0625}$N compound is energetically most favourable than the AlC$_{0.0625}$N$_{0.9375}$ compound; additionally, the lattice constant a and c/a ratio calculated for the pure AlN accords well with values reported experimentally [19], since it differs by less than one percent. The values of the bulk modules of the pure AlN, AlC$_{0.0625}$N$_{0.9375}$ and Al$_{0.9375}$C$_{0.0625}$N concentrations are higher, which confirms that they are quite rigid, making them good candidates for possible application in devices operated at high temperature and high power, as well as in hard coatings.

As we can see in the Table 1, when one N atom in the 2a×2b×2c supercell is substituted with a C atom, the lattice constant in the AlC$_{0.0625}$N$_{0.9375}$ compound changes only slightly with respect to pure AlN. This small change in the parameters may be because the radius of the C atom (0.914Å) is very close to the atomic radius of N (0.92Å). Moreover, when one Al-atom is substituted by a C atom, the lattice constant in the Al$_{0.9375}$C$_{0.0625}$N compound decreases because the radius of the C atom (0.914Å) is most smaller than the atomic radius of Al (1.43Å). The spin polarization calculations for the AlC$_{0.0625}$N$_{0.9375}$ and Al$_{0.9375}$C$_{0.0625}$N compounds result in a magnetic moment of 2.0 and 0.4µβ per supercell, respectively. Similar magnetic behaviour has been found in C-doped GaN [12] and ZnO [22].

3.2. Electronic properties

Figure 2 shows the total and partial density of states for pure AlN and AlC$_{0.0625}$N$_{0.9375}$ (C by N) compound.

![Figure 2](image_url)

Figure 2. Total and partial density of states of (a) AlN, (b) AlC$_{0.0625}$N$_{0.9375}$

Figure 2(a) show the density of state pure AlN. This confirms the semiconductor behaviour. Figure 2(b) show the density state of the ternary AlC$_{0.0625}$N$_{0.9375}$ compound. We can observe that the majority spin (up) states preserve a band gap, but in the minority spin (down) states there is a penetration towards the prohibited energy zone of the state C-p in greater proportion and states 2p-N and 2p-Al in lesser proportion. Therefore, due to the introduction of a C atom into the structure of AlN, it loses its semiconductor nature. The allowed ternary compound exhibit half-metallic behaviour, determined by such states. We can see in Figure 2(b) that in the majority spin, the partial density of states belonging to the C-2p orbital exhibits a high peak near the Fermi level, about -0.4eV for AlC$_{0.0625}$N$_{0.9375}$ indicating localized states in that region. In the valence band around the Fermi level, the C-2p states overlap with another two peaks of smaller amplitude belonging N-2p and Al-2p. Therefore, there is strong hybridization and polarization between the C-2p, N-2p, and Al-2p orbitals. Additionally, the TDOS confirms the presence of some unoccupied bands above the Fermi level, because there is no
contribution of spin up and the minority spin exhibits a strong hybridization and polarization between the C-2p, N-2p, and Al-2p states, resulting in a magnetic moment of 2.0µB. The main contribution to the magnetic moment comes from the carbon atom. A similar result was obtained by Lin Yu et al. [12] in their first-principles study of the effects of carbon on the ferromagnetism in doped GaN.

4. Conclusions
First-principles total energy calculations to determine the structural, electronic, and magnetic properties of the AlC0.0625N0.9375 and Al0.9375C0.0625N compounds were carried out. The calculated values of the bulk modules were quite high; therefore, the ternary compounds are quite rigid, which makes them attractive for potential applications at high temperatures and for hard coatings. Also, we found that the compounds exhibit magnetic properties with magnetic moments 2µB and 0.4µB per supercell, respectively. These properties show that these compounds are good candidates for possible application in diluted magnetic semiconductors, spin injectors, and other spintronics applications.

References
[1] Taniyasu Y and Kasu M 2008 Diam Relat Mater 17 1273
[2] Venkataraj S, Severin D, Drese R, Koerfer F and Wutting M 2006 Thin Solid Films 18 235
[3] Beheshtian J, Baei M T, Bagheri Z and Peyghan A A 2012 Microelectr J 43 452
[4] Gonzalez N, Majewski J A and Dietl T 2011 Phys Rev B 83 184417
[5] Vargas-Hernández C, Espitia-Rico M, Bez Cruz R 2015 Computational Condensed Matter 4 1
[6] Frazier R M, Thaler G T, Leifer J Y, Hite J K, Gila B P, et al 2005 Appl Phys Lett 86 052101
[7] Park J H, Kim M G, Jang H M, Ryu S, Kim Y M 2004 Appl Phys Lett 84 1338
[8] Kaspar T C, Droubay T, Heald S M, Engelhard M H, Nachimuthu P, et al 2008 Phys Rev B 77 201303
[9] Zhou S, Potzger K, Von-Borany J, Grotzschel R, Skorupa W, Helm M, et al 2008 Phys Rev B 77 035209
[10] Hereng T S, Lau S P, Wei C S, Wang L, Zhao B C, Tanemura M, et al 2009 Appl Phys Lett 95 133103
[11] Cruz M M, Da-Silva R C, Franco N, Godinho M 2009 Condens Matter 21 206002
[12] Yu L, Wang Z Y, Guo M, Liu D, Dai Y, Huang B 2010 Chem Phys Lett 487 251
[13] Giannozzi P, Baroni S, Bonin N 2009 J Phys Condens Matter 21 395502
[14] Perdew J, Burke K, Ernzerhof M 1996 Physical Review Letter 77 3865
[15] Vanderbilt D 1990 Phys Rev B 41 7892
[16] Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D 1990 Phys Rev B 47 10142
[17] Monkhorst H, Pack J 1990 Phys Rev B 13 5188
[18] Murnaghan F D 1944 Proceedings of the National Academy Science USA 30 244
[19] Schulz H and Thieman K H 1977 Solid State Commun 23 815
[20] Peng F, Chen D, Fu H and Cheng X 2008 Physica B 403 4259
[21] Strite S, Morkoc H and Vacuum J 1992 Sci Technol B 10 1237
[22] Peng H W, Xiang H J, Wei S H, Li SS, Xia J B, Li J B 2009 Phys Rev Lett 102 017201