A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation

Marco A. Farinati* and Juliana García Galofre†

November 23, 2015

Abstract

For a set theoretical solution of the Yang-Baxter equation \((X, \sigma)\), we define a d.g. bialgebra \(B = B(X, \sigma)\), containing the semigroup algebra \(A = k\{X\}/\langle xy = zt : \sigma(x, y) = (z, t) \rangle\), such that \(k \otimes_A B \otimes_A k\) and \(\text{Hom}_{A \otimes A}(B, k)\) are respectively the homology and cohomology complexes computing biquandle homology and cohomology defined in [CEGN, CJKS] and other generalizations of cohomology of rack-quandle case (for example defined in [CES2]). This algebraic structure allows us to show the existence of an associative product in the cohomology of biquandles, and a comparison map with Hochschild (co)homology of the algebra \(A\).

1 Introduction

A quandle is a set \(X\) together with a binary operation \(\ast : X \times X \to X\) satisfying certain conditions (see definition on example 1 below), it generalizes the operation of conjugation on a group, but also is an algebraic structure that behaves well with respect to Reidemeister moves, so it is very useful for defining knot/links invariants. Knot theorists have defined a cohomology theory for quandles (see [CJKS] and [CES1]) in such a way that 2-cocycles give rise to knot invariants by means of the so-called state-sum procedure. Biquandles are generalizations of quandles in the sense that quandles give rise to solutions of the Yang-Baxter equation by setting \(\sigma(x, y) := (y, x \ast y)\). For biquandles there is also a cohomology theory and state-sum procedure for producing knot/links invariants (see [CES2]).

In this work, for a set theoretical solution of the Yang-Baxter equation \((X, \sigma)\), we define a d.g. algebra \(B = B(X, \sigma)\), containing the semigroup algebra \(A = k\{X\}/\langle xy = zt : \sigma(x, y) = (z, t) \rangle\), such that \(k \otimes_A B \otimes_A k\) and \(\text{Hom}_{A \otimes A}(B, k)\) are respectively the standard homology and cohomology complexes attached to general set theoretical solutions of the Yang-Baxter equation. We prove that this d.g. algebra has a natural structure of d.g. bialgebra (Theorem 2). Also, depending on properties of the solution \((X, \sigma)\) (square free, …
quandle type, biquandle, involutive,...) this d.g. bialgebra B has natural (d.g. bialgebra) quotients, giving rise to the standard sub-complexes computing quandle cohomology (as sub-complex of rack homology), biquandle cohomology, etc.

As a first consequence of our construction, we give a very simple and purely algebraic proof of the existence of a cup product in cohomology. This was known for rack cohomology (see [Cl]), the proof was based on topological methods, but it was unknown for biquandles or general solutions of the Yang-Baxter equation. A second consequence is the existence of a comparison map between Yang-Baxter (co)homology and Hochschild (co)homology of the semigroup algebra A. Looking carefully this comparison map we prove that it factors through a complex of ”size” $A \otimes B \otimes A$, where B is the Nichols algebra associated to the solution $(X, -\sigma)$. This result leads to new questions, for instance when (X, σ) is involutive (that is $\sigma^2 = \text{Id}$) and the characteristic is zero we show that this complex is acyclic (Proposition 24), we wander if this is true in any other characteristic, and for non necessarily involutive solutions.

Acknowledgements: The first author wishes to thank Dominique Manchon for fruitful discussion during a visit to Laboratoire de mathématiques de l’Université Blaise Pascal where a preliminary version of the bialgebra B for racks came up. He also wants to thanks Dennis Sullivan for very pleasant stay in Stony Brook where the contents of this work was discussed in detail, in particular, the role of Proposition 12 in the whole construction.

1.1 Basic definitions

A set theoretical solution of the Yang-Baxter equation (YBeq) is a pair (X, σ) where $\sigma : X \times X \to X \times X$ is a bijection satisfying

$$(\text{Id} \times \sigma)(\sigma \times \text{Id})(\text{Id} \times \sigma) = (\sigma \times \text{Id})(\text{Id} \times \sigma)(\sigma \times \text{Id}) : X \times X \times X \to X \times X \times X$$

If $X = V$ is a k-vector space and σ is a linear bijective map satisfying YBeq then it is called a braiding on V.

Example 1. A set X with a binary operation $\triangleright X \times X \to X \times X$ is called a rack if

- $- \triangleright x : X \to X$ is a bijection $\forall x \in X$ and
- $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z) \forall x, y, z \in X$.

$x \triangleright y$ is usually denoted by x^y.

If X also verifies that $x \triangleright x = x$ then X is called a quandle.

An important example of rack is $X = G$ a group, $x \triangleright y = y^{-1}xy$.

If (X, \triangleright) is a rack, then

$$\sigma(x, y) = (y, x \triangleright y)$$

is a set theoretical solution of the YBeq.

Let $M = M_X$ be the monoid freely generated in X with relations

$$xy = zt$$

$\forall x, y, z, t$ such that $\sigma(x, y) = (z, t)$. Denote G_X the group with the same generators and relations. For example, when $\sigma = \text{flip}$ then $M = N_0^{(X)}$ and $G_X = Z_0^{(X)}$. If $\sigma = \text{Id}$ then M is the free (non abelian) monoid in X. If σ comes from a rack (X, \triangleright) then M is the monoid with relation $xy = y(x \triangleright y)$ and G_X is the group with relations $x \triangleright y = y^{-1}xy$.

2
2 A d.g. bialgebra associated to \((X, \sigma)\)

Let \(k\) be a commutative ring with 1. Fix \(X\) a set, and \(\sigma : X \times X \to X \times X\) a solution of the YBeq. Denote \(A_\sigma(X)\), or simply \(A\) if \(X\) and \(\sigma\) are understood, the quotient of the free \(k\) algebra on generators \(X\) modulo the ideal generated by elements of the form \(xy - zt\) whenever \(\sigma(x, y) = (z, t)\):

\[
A := k \langle X \rangle / \langle xy - zt : x, y \in X, (z, t) = \sigma(x, y) \rangle = k[M]
\]

It can be easily seen that \(A\) is a \(k\)-bialgebra declaring \(x\) to be grouplike for any \(x \in X\), since \(A\) agrees with the semigroup-algebra on \(M\) (the monoid freely generated by \(X\) with relations \(xy \sim zt\)). If one considers \(G_X\), the group freely generated by \(X\) with relations \(xy = zt\), then \(k[G_X]\) is the (non commutative) localization of \(A\), where one has inverted the elements of \(X\). An example of \(A\)-bimodule that will be used later, which is actually a \(k[G_X]\)-module, is \(k\) with \(A\)-action determined on generators by

\[
x\lambda y = \lambda, \forall x, y \in X, \lambda \in k
\]

We define \(B(X, \sigma)\) (also denoted by \(B\)) the algebra freely generated by three copies of \(X\), denoted \(x, e_x\) and \(x'\), with relations as follows: whenever \(\sigma(x, y) = (z, t)\) we have

- \(xy \sim zt\), \(xy' \sim z't\), \(x'y' \sim z't'\)
- \(xe_y \sim e_z t\), \(e_x y' \sim z'e_t\)

Since the relations are homogeneous, \(B\) is a graded algebra declaring

\[
|x| = |x'| = 0, \quad |e_x| = 1
\]

Theorem 2. The algebra \(B\) admits the structure of a differential graded bialgebra, with \(d\) the unique superderivation satisfying

\[
d(x) = d(x') = 0, \quad d(e_x) = x - x'
\]

and comultiplication determined by

\[
\Delta(x) = x \otimes x, \quad \Delta(x') = x' \otimes x', \quad \Delta(e_x) = x' \otimes e_x + e_x \otimes x
\]

By differential graded bialgebra we mean that the differential is both a derivation with respect to multiplication, and coderivation with respect to comultiplication.

Proof. In order to see that \(d\) is well-defined as super derivation, one must check that the relations are compatible with \(d\). The first relations are easier since

\[
d(xy - zt) = d(x)y + xd(y) - d(z)t - zd(t) = 0 + 0 - 0 - 0 = 0
\]

and similar for the others (this implies that \(d\) is \(A\)-linear and \(A'\)-linear). For the rest of the relations:

\[
d(xe_y - e_z t) = xe(e_y) - d(e_z)t = x(y - y') - (z - z')t
\]
If one wants to write it in a normal form (say, every \(x\) and the \(e\)’s in the middle), then one should use the relations in \(B\): this might be a very complicated formula, depending on the braiding. We give examples in some particular cases. Let’s denote \(\sigma(x, y) = (\sigma^1(x, y), \sigma^2(x, y))\).

\[
= xy - zt - (xy' - z't) = 0
\]

\[
d(e_x y' - e_z t) = (x - x')y' - z'(t - t') = xy' - z't - (x'y' - z't') = 0
\]

Remark 3. \(\Delta\) is coassociative.

For a particular element of the form \(b = e_{x_1} \ldots e_{x_n}\), the formula for \(d(b)\) can be computed as follows:

\[
d(e_{x_1} \ldots e_{x_n}) = \sum_{i=1}^{n} (-1)^{i+1} e_{x_1} \ldots e_{x_{i-1}} d(e_{x_i}) e_{x_{i+1}} \ldots e_{x_n}
\]

\[
= \sum_{i=1}^{n} (-1)^{i+1} e_{x_1} \ldots e_{x_{i-1}} (x_i - x'_i) e_{x_{i+1}} \ldots e_{x_n}
\]

\[
= \sum_{i=1}^{n} (-1)^{i+1} e_{x_1} \ldots e_{x_{i-1}} x_i e_{x_{i+1}} \ldots e_{x_n} - \sum_{i=1}^{n} (-1)^{i+1} e_{x_1} \ldots e_{x_{i-1}} x'_i e_{x_{i+1}} \ldots e_{x_n}
\]
Example 4. In low degrees we have

- \(d(e_x) = x - x' \)
- \(d(e_x e_y) = (e_z t - e_x y) - (x' e_y - z' e_t) \), where as usual \(\sigma(x, y) = (z, t) \).
- \(d(e_{x_1} e_{x_2} e_{x_3}) = A_I - A_{II} \) where
 \[A_I = e_{\sigma'(x_1,x_2)} e_{\sigma'(\sigma^2(x_1,x_2),x_3)} \sigma^2(x_2,x_3) - e_{x_1} e_{\sigma'(x_2,x_3)} \sigma^2(x_2,x_3) + e_{x_1} e_{x_2} x_3 \]
 \[A_{II} = x'_1 e_{x_2} e_{x_3} - \sigma'(x_1,x_2) e_{\sigma^2(x_2,x_3)} e_{x_3} + \sigma'(x_1, \sigma^2(x_2,x_3)) e_{\sigma^2(x_2,x_3)} e_{\sigma^2(x_2,x_3)} \]

In particular, if \(f : B \rightarrow k \) is an \(A-A' \) linear map, then

\[
\begin{align*}
 f(d(e_{x_1} e_{x_2} e_{x_3})) &= f(e_{\sigma'(x_1,x_2)} e_{\sigma'(\sigma^2(x_1,x_2),x_3)}) - f(e_{x_1} e_{\sigma'(x_2,x_3)}) + f(e_{x_1} e_{x_2}) \\
 &- f(e_{x_2} e_{x_3}) + f(e_{\sigma^2(x_2,x_3)} e_{x_3}) - f(e_{\sigma^2(x_1, \sigma^2(x_2,x_3))} e_{\sigma^2(x_2,x_3)})
\end{align*}
\]

Erasing the \(e \)'s we notice the relation with the cohomological complex given in [CES2], see Theorem 5 below.

If \(X \) is a rack and \(\sigma \) the braiding defined by \(\sigma(x, y) = (y, x \triangleleft y) = (x, x^y) \), then:

- \(d(e_x) = x - x' \)
- \(d(e_x e_y) = (e_y x^y - e_x y) - (x' e_y - y' e_x) \)
- \(d(e_x e_y e_z) = e_x e_y z - e_x e_z y^z + e_y e_z x^{y^z} - x' e_y e_z + y' e_x e_z - z' e_x e_y^z \).

- In general, expressions I and II are

\[
\begin{align*}
 I &= \sum_{i=1}^{n} (-1)^{i+1} x_{i_1} \ldots x_{i_{i-1}} e_{x_{i+1}} \ldots e_{x_n} x^{i+1 \ldots n} \\
 II &= \sum_{i=1}^{n} (-1)^{i+1} x'_1 x_{i_1} x_{i_2} \ldots e_{x_{i_{i-1}}} e_{x_{i+1}} \ldots e_{x_n}
\end{align*}
\]

then

\[
\partial f(x_1, \ldots, x_n) = f(d(e_{x_1} \ldots e_{x_n})) = \sum_{i=1}^{n} (-1)^{i+1} \left(f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) x^{i+1 \ldots n} - x'_1 f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \right)
\]

Let us consider \(k \otimes_{k[M]} B \otimes_{k[M]} k \) then \(d \) represents the canonical differential of rack homology and \(\partial f(e_{x_1} \ldots e_{x_n}) = f(d(e_{x_1} \ldots e_{x_n})) \) gives the traditional rack cohomology structure.

In particular, taking trivial coefficients:

\[
\partial f(x_1, \ldots, x_n) = f(d(e_{x_1} \ldots e_{x_n})) = \sum_{i=1}^{n} (-1)^{i+1} \left(f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) - f(x_1 x_{i+1}, \ldots, x_{i_{i-1}}, x_{i+1}, \ldots, x_n) \right)
\]

5
Theorem 5. Taking in \(k \) the trivial \(\mathcal{A}'-\mathcal{A} \)-bimodule, the complexes associated to set theoretical Yang-Baxter solutions defined in [CES2] can be recovered as

\[
(C_\bullet(X, \sigma), \partial) \simeq (k \otimes_{\mathcal{A}'} B_\bullet \otimes_A k, \partial = id_k \otimes_{\mathcal{A}'} d \otimes_A id_k)
\]

\[
(C^\bullet(X, \sigma), \partial^\bullet) \simeq (\text{Hom}_{\mathcal{A}'-\mathcal{A}}(B, k), \partial^\bullet = d^\bullet)
\]

In the proof of the theorem we will assume first Proposition [12] that says that one has a left \(A' \)-linear and right \(A \)-linear isomorphism:

\[
B \cong A' \otimes TE \otimes A
\]

where \(A' = TX'/\langle x'y' = z't' : \sigma(x, y) = (z, t) \rangle \) and \(A = TX/\langle xy = zt : \sigma(x, y) = (z, t) \rangle \).

We will prove Proposition [12] later.

Proof. In this setting every expression in \(x, x', e_x \), using the relations defining \(B \), can be written as \(x_{i_1} \cdots x_{i_n} e_{x_1} \cdots e_{x_k} x_j \cdots x_{j_l} \), tensorizing leaves the expression

\[
1 \otimes e_{x_1} \cdots e_{x_k} \otimes 1
\]

This shows that \(T = k \otimes_{k[M]} B \otimes_{k[M]} k \simeq T\{e_x\}_{x \in X} \), where \(\simeq \) means isomorphism of \(k \)-modules. This also induces isomorphisms of complexes

\[
(C_\bullet(X, \sigma), \partial) \simeq (k \otimes_{\mathcal{A}'} B_\bullet \otimes_A k, \partial = id_k \otimes_{\mathcal{A}'} d \otimes_A id_k)
\]

\[
(C^\bullet(X, \sigma), \partial^\bullet) \simeq (\text{Hom}_{\mathcal{A}'-\mathcal{A}}(B, k), d^\bullet)
\]

\(\square \)

Now we will prove Proposition [12]. Call \(Y = \langle x, x', e_x \rangle_{x \in X} \) the free monoid in \(X \) with unit 1, \(k \langle Y \rangle \) the \(k \)-algebra associated to \(Y \). Let \(S = \{r_1, r_2, r_3\} \) be the reduction system defined as follows: \(r_i : k \langle Y \rangle \to k \langle Y \rangle \) the families of \(k \)-module endomorphisms such that \(r_i \) fix all elements except

\[
r_1(xy) = z't, \quad r_2(xe_y) = e_x t \quad \text{and} \quad r_3(e_x y') = z'e_t.
\]

Note that \(S \) has more than 3 elements, each \(r_i \) is a family of reductions.

Definition 6. A reduction \(r_i \) acts trivially on an element \(a \) if \(w_i \) does not appear in \(a \), ie: \(Aw_iB \) appears with coefficient 0.

Following [B], \(a \in k \langle Y \rangle \) is called irreducible if \(Aw_iB \) does not appear for \(i \in \{1, 2, 3\} \). Call \(k_{\text{irr}}(Y) \) the \(k \) submodule of irreducible elements of \(k \langle Y \rangle \). A finite sequence of reductions is called final in \(a \) if \(r_{i_n} \circ \cdots \circ r_{i_1}(a) \in k_{\text{irr}}(Y) \). An element \(a \in k \langle Y \rangle \) is called reduction-finite if for every sequence of reductions \(r_{i_n} \circ \cdots \circ r_{i_1}(a) \) for sufficiently large \(n \). If \(a \) is reduction-finite, then any maximal sequence of reductions, such that each \(r_i \) acts nontrivially on \(r_{i_{n-1}} \circ \cdots \circ r_{i_1}(a) \), will be finite, and hence a final sequence. It follows that the reduction-finite elements form a \(k \)-submodule of \(k \langle Y \rangle \) \(a \in k \langle Y \rangle \) is called reduction-unique if is reduction finite and it’s image under every finite sequence of reductions is the same. This common value will be denoted \(r_s(a) \).
Definition 7. Given a monomial \(a \in k(Y) \) we define the disorder degree of \(a \), \(\text{disdeg}(a) = \sum_{i=1}^{n} r_{p_{i}} + \sum_{j=1}^{n'} (p_{j}) \), where \(r_{p_{i}} \) is the position of the \(i \)-th letter “\(x \)” counting from right to left, and \(l_{p_{j}} \) is the position of the \(i \)-th letter “\(x' \)” counting from left to right.

If \(a = \sum_{i=1}^{n} k_{i} a_{i} \) where \(a_{i} \) are monomials in letters of \(X, X', e_{X} \) and \(k_{i} \in K - \{0\} \),

\[
\text{disdeg}(a) := \sum_{i=1}^{n} \text{disdeg}(a_{i})
\]

Example 8.

\(\bullet \) \(\text{disdeg}(x_{1}e_{y}x_{2}z'_{1}x_{3}z'_{2}) = (2 + 4 + 6) + (4 + 6) = 22 \)

\(\bullet \) \(\text{disdeg}(xe_{y}z') = 3 + 3 = 6 \) and \(\text{disdeg}(x'e_{y}z) = 1 + 1 \)

\(\bullet \) \(\text{disdeg}(\prod_{i=1}^{n} x_{i}' \prod_{j=1}^{m} e_{y} \prod_{k=1}^{l} z_{i}) = \frac{n(n+1)}{2} + \frac{k(k+1)}{2} \)

The reduction \(r_{1} \) lowers disorder degree in two and reductions \(r_{2} \) and \(r_{3} \) lowers disorder degree in one.

Remark 9. \(k_{irr}(Y) = \{ \sum A' e_{B}C : A' \text{ word in } X', e_{B} \text{ word in } e_{x}, C \text{ word in } X \} \).

\(k_{irr} \simeq TX' \otimes TE \otimes TX \)

Take for example \(a = xe_{y}z' \), there are two possible sequences of final reductions: \(r_{3} \circ r_{1} \circ r_{2} \) or \(r_{2} \circ r_{1} \circ r_{3} \). The result will be \(a = A'e_{B}C \) and \(a = D'e_{E}F \) respectively, where

\[
A = \sigma^{(1)}(\sigma^{(1)}(x, y), \sigma^{(2)}(x, y, z))
\]

\[
B = \sigma^{(2)}(\sigma^{(1)}(x, y), \sigma^{(2)}(x, y, z))
\]

\[
C = \sigma^{(2)}(\sigma^{(2)}(x, y, z))
\]

\[
D = \sigma^{(1)}(x, \sigma^{(1)}(y, z))
\]

\[
E = \sigma^{(1)}(\sigma^{(2)}(x, \sigma^{(1)}(y, z), \sigma^{(2)}(y, z))
\]

\[
F = \sigma^{(2)}(\sigma^{(2)}(x, \sigma^{(1)}(y, z), \sigma^{(2)}(y, z))
\]

We have \(A = D, B = E \) and \(C = F \) as \(\sigma \) is a solution of \(YBeq \), hence \(r_{3} \circ r_{1} \circ r_{2}(xe_{y}z') = r_{2} \circ r_{1} \circ r_{3}(xe_{y}z') \).

A monomial \(a \) in \(k(Y) \) is said to have an overlap ambiguity of \(S \) if \(a = ABCDE \) such that \(w_{1} = BC \) and \(w_{3} = CD \). We shall say the overlap ambiguity is resolveable if there exist compositions of reductions, \(r, r' \) such that \(r(Ar_{1}(BC)DE) = r'(ABr_{1}(CD)E) \). Notice that it is enough to take \(r = r_{s} \) and \(r' = r_{s} \).

Remark 10. In our case, there is only one type of overlap ambiguity and is the one we solved previously.

Proof. There is no rule with \(x' \) on the left nor rule with \(x \) on the right, so there will be no overlap ambiguity including the family \(r_{1} \). There is only one type of ambiguity involving reductions \(r_{2} \) and \(r_{3} \).

Notice that \(r_{s} \) is a projector and \(I = \langle xy' - z't, xe_{y} - e_{z}t, e_{z}y' - z'e_{i} \rangle \) is trivially included in the kernel. We claim that it is actually equal:

Proof. As \(r_{s} \) is a projector, an element \(a \in ker \) must be \(a = b - r_{s}(b) \) where \(b \in k(Y) \). It is enough to prove it for monomials \(b \).

\(\bullet \) if \(a = 0 \) the result follows trivially.
if not, then take a monomial \(b \) where at least one of the products \(xy' \), \(xe_y \) or \(e_x y' \) appear. Let\u2019s suppose \(b \) has a factor \(xy' \) (the rest of the cases are analogous).

\[
b = Axy'B \quad \text{where} \ A \text{ or } B \text{ may be empty words. } \ r_1(b) = Ar_1(xy')B = Az'tB. \]

Now we can rewrite:

\[
b - r_s(b) = \underbrace{Axy'B - Az'tB + Az'tB - r_s(b)}_{\epsilon I} \quad \text{where} \ \text{as usual} \ \text{disdeg in} \ \text{two, we have}
\]

\[
\text{disdeg}(A\epsilon I B - r_s(b)) < \text{disdeg}(b - r_s(b)) \quad \text{then in a finite number of steps we get}
\]

\[
b = \sum_{k=1}^N i_k \quad \text{where } i_k \in I. \quad \text{It follows that } b \in I.
\]

\[\square\]

Corollary 11. \(r_s \) induces a \(k \)-linear isomorphism:

\[
k\langle Y \rangle / (xy' - z't, xe_y - e_z t, e_x y' - z'e_t) \to TX' \otimes TE \otimes TX
\]

Returning to our bialgebra, taking quotients we obtain the following proposition:

Proposition 12. \(B \simeq (TX'/(x'y' = z't')) \otimes TE \otimes (TX/(xy = zt)) \)

Notice that \(\prod_1 \ldots x_n = \prod [\beta_m \circ \cdots \circ \beta_1(x_1, \ldots, x_n)] \) where \(\beta_i = \sigma_i^{+1} \), analogously with \(\prod_1 \ldots x'_n \).

This ends the proof of Theorem 5

Example 13.

If the coefficients are trivial, \(f \in C^1(X, k) \) and we identify \(C^1(X, k) = kX \), then

\[
(\partial f)(x, y) = f(d(e_x e_y)) = -f(x) - f(y) + f(z) + f(t)
\]

where as usual \(\sigma(x, y) = (z, t) \) (If instead of considering Hom\(_{A' - A} \), we consider Hom\(_{A - A'} \), then \(\partial f)(x, y) = f(d(e_x e_y)) = f(x) + f(y) - f(z) - f(t) \) but with \(\sigma(z, t) = (x, y) \)).

Again with trivial coefficients, and \(\Phi \in C^2(X, k) \cong kX^2 \), then

\[
(\partial \Phi)(x, y, z) = \Phi(d(e_x e_y e_z)) = \Phi \left(I_{x e_y e_z} - I_{x' e'_y e_z} - I_{x z e_y e_z} + e_x y' e_z + e_x e_y e_z - e_x e_y e_z \right)
\]

If considering Hom\(_{A' - A} \) then, using the relations defining \(B \), the terms \(I, III, IV \) and \(VI \) changes leaving

\[
\partial \Phi(x, y, z) = \Phi(\sigma^1(x, y), \sigma^1(\sigma^2(x, y), z)) - \Phi(y, z) - \Phi(x, \sigma^1(y, z)) + \\
\Phi(\sigma^2(x, y), z) + \Phi(x, y) - \Phi(\sigma^2(x, \sigma^1(y, z)), \sigma^2(y, z))
\]

If \(M \) is a \(k[T] \)-module (notice that \(T \) need not to be invertible as in \([CESI]\)) then \(M \) can be viewed as an \(A' - A \)-bimodule via

\[
x' \cdot m = m, \quad m \cdot x = Tm
\]

The actions are compatible with the relations defining \(B \):
\[(m \cdot x) \cdot y = T^2 m, \quad (m \cdot z) \cdot t = T^2 m\]

and
\[x' \cdot (y' \cdot m) = m, \quad z' \cdot (t' \cdot m) = m\]

Using these coefficients we get twisted cohomology as in [CES1] but for general YB solutions. If one takes the special case of \((X, \sigma)\) being a rack, namely \(\sigma(x, y) = (y, x \triangle y)\), then the general formula gives
\[
\partial f(x_1, \ldots, x_n) = f(d(e_{x_1} \ldots e_{x_n})) = \sum_{i=1}^{n} (-1)^{i+1} \left(T f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, x_i, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \right)
\]

that agree with the differential of the twisted cohomology defined in [CES1].

Remark 14. If \(c(x \otimes y) = f(x, y)\sigma^4(x, y) \otimes \sigma^2(x, y)\), then \(c\) is a solution of YBeq if and only if \(f\) is a 2-cocycle.

\[
c_1 \circ c_2 \circ c_1 (x \otimes y \otimes z) = \underbrace{a \sigma^1(\sigma^4(x, y), \sigma^4(\sigma^2(x, y), z)) \otimes \sigma^2(\sigma^1(x, y), \sigma^4(\sigma^2(x, y), z))}^{I} \otimes \sigma^2(\sigma^1(x, y), \sigma^2(\sigma^4(x, y), z))
\]

where
\[
a = f(x, y) f(\sigma^2(x, y), z) f(\sigma^4(x, y), \sigma^4(\sigma^2(x, y), z))
\]

\[
c_2 \circ c_1 \circ c_2 (x \otimes y \otimes z) = \underbrace{b \sigma^4(x, \sigma^4(y, z)) \otimes \sigma^1(\sigma^2(x, \sigma^4(y, z)), \sigma^2(y, z))}^{II} \otimes \sigma^2(\sigma^1(x, \sigma^4(y, z)), \sigma^2(y, z))
\]

where
\[
b = f(y, z) f(x, \sigma^4(y, z)) f(\sigma^2(x, \sigma^4(y, z)), \sigma^2(y, z))
\]

Writing YBeq with this notation leaves:
\[
\sigma \text{ is a braid} \iff I = II \quad (1)
\]

Take \(f\) a two-cocycle, then
\[
0 = \partial f(x, y, z) = f(d(e_x e_y e_z)) = f(((x - x') e_y e_z - e_x (y - y') e_z + e_x e_y (z - z'))
\]

is equivalent to the following equality
\[
f(x e_y e_z) + f(e_x y' e_z) + f(e_x e_y z) = f(x' e_y e_z) + f(e_x y e_z) + f(e_x e_y z')
\]
using the relations defining B we obtain
\[
f(\epsilon_{\sigma(x,y)}\epsilon_{\sigma(\sigma^2(x,y),z)}\sigma^2(\sigma^2(x,y)z)) + f(\sigma^1(x,y)\epsilon_{\sigma^2(x,y)}\epsilon_z) + f(\epsilon_x e_y z) = f(x' e_y e_z) + f(\epsilon_x e_{\sigma(y,z)}\sigma^2(y,z)) + f(\sigma^1(x,\sigma^1(y,z))\epsilon_{\sigma^2(y,z)})
\]

If G is an abelian multiplicative group and $f : X \times X \to (G, \cdot)$ then the previous formula says
\[
f(\epsilon_{\sigma(x,y)}\epsilon_{\sigma(\sigma^2(x,y),z)}\sigma^2(\sigma^2(x,y)z)) f(\sigma^1(x,y)\epsilon_{\sigma^2(x,y)}\epsilon_z) f(\epsilon_x e_y z) = f(x' e_y e_z) f(\epsilon_x e_{\sigma(y,z)}\sigma^2(y,z)) f(\sigma^1(x,\sigma^1(y,z))\epsilon_{\sigma^2(y,z)})
\]
which is exactly the condition $a = b$.

Notice that if the action is trivial, then the equation above simplifies giving
\[
f(\epsilon_{\sigma(x,y)}\epsilon_{\sigma(\sigma^2(x,y),z)}\sigma^2(\sigma^2(x,y)z)) f(\epsilon_x e_y z) = f(e_y e_z) f(\epsilon_x e_{\sigma(y,z)}\sigma^2(y,z)) f(\epsilon_{\sigma^2(x,\sigma(y,z))}\sigma^2(y,z))
\]
which is precisely the formula on [CES2] for Yang-Baxter 2-cocycles (with R_1 and R_2 instead of σ^1 and σ^2).

3 1st application: multiplicative structure on cohomology

Proposition 15. Δ induces an associative product in $\text{Hom}_{A' - A}(B, k)$ (the graded Hom).

Proof. It is clear that Δ induces an associative product on $\text{Hom}_k(B, k)$ (the graded Hom), and $\text{Hom}_{A' - A}(B, k) \subset \text{Hom}_k(B, k)$ is a k-submodule. We will show that it is in fact a subalgebra.

Consider the $A' - A$ diagonal structure on $B \otimes B$ (i.e. $x'_1(b \otimes b') x_2 = x'_1 b x_2 \otimes x'_1 b' x_2$) and denote $B \otimes^D B$ the k-module $B \otimes B$ considered as $A' - A$-bimodule in this diagonal way. We claim that $\Delta : B \to B \otimes^D B$ is a morphism of $A' - A$-modules:
\[
\Delta(x'_1 y x_2) = x'_1 y x_2 \otimes x'_1 y x_2 = x'_1(y \otimes y) x_2
\]
same with y', and with e_x:
\[
\Delta(x'_1 e_y x_2) = (x'_1 \otimes x'_1)(y' \otimes e_y + e_y \otimes y)(x_2 \otimes x_2) = x'_1 \Delta(e_y) x_2
\]

Dualizing Δ one gets:
\[
\Delta^* : \text{Hom}_{A' - A}(B \otimes^D B, k) \to \text{Hom}_{A' - A}(B, k)
\]
consider the natural map
\[
i : \text{Hom}_k(B, k) \otimes \text{Hom}_k(B, k) \to \text{Hom}_k(B \otimes B, k)
\]
\[
i(f \otimes g)(b_1 \otimes b_2) = f(b_1)g(b_2)
\]
and denote $i|_{\text{Hom}_{A' - A}(B,k) \otimes \text{Hom}_{A' - A}(B,k)}$ by
\[
i| = i|_{\text{Hom}_{A' - A}(B,k) \otimes \text{Hom}_{A' - A}(B,k)}
\]
Let us see that
\[\text{Im}(\iota) \subset \text{Hom}_{A' - A}(B \otimes B, k) \subset \text{Hom}_k(B \otimes B, k) \]

If \(f, g : B \to k \) are two \(A' - A \)-module morphisms (recall \(k \) has trivial actions, i.e. \(x' \lambda = \lambda \) and \(\lambda x = x \)), then
\[
\iota(f \otimes g)(x' (b_1 \otimes b_2)) = f(x'b_1)g(x'b_2) = (x'f(b_1))(x'g(b_2)) \\
= f(b_1)g(b_2) = x'\iota(f \otimes g)(b_1 \otimes b_2) \\
\iota(f \otimes g)((b_1 \otimes b_2)x) = f(b_1)xg(b_2x) = (f(b_1)x)(g(b_2)x) \\
= (f(b_1)g(b_2))x = \iota(f \otimes g)(b_1 \otimes b_2)x
\]

So, it is possible to compose \(\iota \mid \) and \(\Delta \), and obtain in this way an associative multiplication in \(\text{Hom}_{A' - A}(B, k) \).

Now we will describe several natural quotients of \(B \), each of them give rise to a subcomplex of the cohomological complex of \(X \) with trivial coefficients that are not only subcomplexes but also subalgebras; in particular they are associative algebras.

3.1 Square free case

A solution \((X, \sigma) \) of YBeq satisfying \(\sigma(x, x) = (x, x) \forall x \in X \) is called square free. For instance, if \(X \) is a rack, then this condition is equivalent to \(X \) being a quandle.

In the square free situation, namely when \(X \) is such that \(\sigma(x, x) = (x, x) \) for all \(x \), we add the condition \(e_x e_x \sim 0 \).

If \((X, \sigma) \) is a square-free solution of the YBeq, let us denote \(sf \) the two sided ideal of \(B \) generated by \(\{e_x e_x\}_{x \in X} \).

Proposition 16. \(sf \) is a differential Hopf ideal. More precisely,
\[
d(e_x e_x) = 0 \quad \text{and} \quad \Delta(e_x e_x) = x' x' \otimes e_x e_x + e_x e_x \otimes xx.
\]

In particular \(B/sf \) is a differential graded bialgebra. We may identify \(\text{Hom}_{A' - A}(B/sf, k) \subset \text{Hom}_{A' - A}(B, k) \) as the elements \(f \) such that \(f(\ldots, x, x, \ldots) = 0 \). If \(X \) is a quandle, this construction leads to the quandle-complex. We have \(\text{Hom}_{A' - A}(B/sf, k) \subset \text{Hom}_{A' - A}(B, k) \) is not only a subcomplex, but also a subalgebra.

3.2 Biquandles

In [KR], a generalization of quandles is proposed (we recall it with different notation), a solution \((X, \sigma) \) is called non-degenerated, or birack if in addition,

1. for any \(x, z \in X \) there exists a unique \(y \) such that \(\sigma^1(x, y) = z \), (if this is the case, \(\sigma^1 \) is called left invertible),
2. for any \(y, t \in X \) there exists a unique \(x \) such that \(\sigma^2(x, y) = t \), (if this is the case, \(\sigma^2 \) is called right invertible),
A birack is called *biquandle* if, given \(x_0 \in X \), there exists a unique \(y_0 \in X \) such that \(\sigma(x_0, y_0) = (x_0, y_0) \). In other words, if there exists a bijective map \(s : X \to X \) such that

\[
\{(x, y) : \sigma(x, y) = (x, y)\} = \{(x, s(x)) : x \in X\}
\]

Remark 17. Every quandle solution is a biquandle, moreover, given a rack \((X, \triangleleft)\), then \(\sigma(x, y) = (y, x \triangleleft y) \) is a biquandle if and only if \((X, \triangleleft)\) is a quandle.

If \((X, \sigma)\) is a biquandle, for all \(x \in X \) we add in \(B \) the relation \(e_x e_{s(x)} \sim 0 \). Let us denote \(BQ \) the two sided ideal of \(B \) generated by \(\{e_x e_{s(x)}\}_{x \in X} \).

Proposition 18. \(BQ \) is a differential Hopf ideal. More precisely, \(d(e_x e_{s(x)}) = 0 \) and \(\Delta(e_x e_{s(x)}) = x' s(x)' \otimes e_x e_{s(x)} + e_x e_{s(x)} \otimes x s(x) \).

In particular \(B/bQ \) is a differential graded bialgebra. We may identify \(\text{Hom}_{A'A'}(B/bQ, k) \cong \{ f \in \text{Hom}_{A'A'}(B, k) : f(\ldots, x, s(x), \ldots) = 0 \} \subset \text{Hom}_{A'A'}(B, k) \).

In [CES2], the condition \(f(\ldots, x_0, s(x_0), \ldots) = 0 \) is called the *type 1 condition*. A consequence of the above proposition is that \(\text{Hom}_{A'A'}(B/bQ, k) \subset \text{Hom}_{A'A'}(B, k) \) is not only a subcomplex, but also a subalgebra. Before proving this proposition we will review some other similar constructions.

3.3 Identity case

The two cases above may be generalized in the following way:

Consider \(S \subseteq X \times X \) a subset of elements verifying \(\sigma(x, y) = (x, y) \) for all \((x, y) \in S\). Define \(idS \) the two sided ideal of \(B \) given by \(idS = \langle e_x e_y / (x, y) \in S \rangle \).

Proposition 19. \(idS \) is a differential Hopf ideal. More precisely, \(d(e_x e_y) = 0 \) for all \((x, y) \in S\) and \(\Delta(e_x e_y) = x' y' \otimes e_x e_y + e_x e_y \otimes x y \).

In particular \(B/idS \) is a differential graded bialgebra. If one identifies \(\text{Hom}_{A'A'}(B/sf, k) \subset \text{Hom}_{A'A'}(B, k) \) as the elements \(f \) such that

\[
f(\ldots, x, y, \ldots) = 0 \quad \forall (x, y) \in S
\]

We have that \(\text{Hom}_{A'A'}(B/idS, k) \subset \text{Hom}_{A'A'}(B, k) \) is not only a subcomplex, but also a subalgebra.

3.4 Flip case

Consider the condition \(e_x e_y + e_y e_x \sim 0 \) for all pairs such that \(\sigma(x, y) = (y, x) \). For such a pair \((x, y)\) we have the equations \(xy = yx \), \(x'y' = y'x' \), \(x'y' = y'x' \) and \(x e_y = e_y x \). Note that there is no equation for \(e_x e_y \). The two sided ideal \(D = \langle e_x e_y + e_y e_x : \sigma(x, y) = (y, x) \rangle \) is a differential and Hopf ideal.

Moreover, the following generalization is still valid:
3.5 Involutive case

Assume \(\sigma(x, y)^2 = (x, y)\). This case is called involutive in \[ESS\]. Define \(\text{Invo}\) the two sided ideal of \(B\) given by \(\text{Invo} = \langle e_x e_y + e_z e_t : (x, y) \in X, \sigma(x, y) = (z, t) \rangle\).

Proposition 20. \(\text{Invo}\) is a differential Hopf ideal. More precisely, \(d(e_x e_y + e_z e_t) = 0\) for all \((x, y) \in X\) (with \((z, t) = \sigma(x, y)\)) and if \(\omega = e_x e_y + e_z e_t\) then \(\Delta(\omega) = x'y' \otimes \omega + \omega \otimes xy\).

In particular \(B/\text{Invo}\) is a differential graded bialgebra. If one identifies \(\text{Hom}_{A' A}(B/\text{Invo}, k) \subset \text{Hom}_{A' A}(B, k)\) then \(\text{Hom}_{A' A}(B/\text{Invo}, k) \subset \text{Hom}_{A' A}(B, k)\) is not only a subcomplex, but a subalgebra.

Conjecture 21. \(B/\text{Invo}\) is acyclic in positive degrees.

Example 22. If \(\sigma = \text{flip}\) and \(X = \{x_1, \ldots, x_n\}\) then \(A = k[x_1, \ldots, x_n] = SV\), the symmetric algebra on \(V = \bigoplus_{x \in X} kx\). In this case \((B/\text{Invo}, d) \cong (S(V) \otimes \Lambda V \otimes S(V), d)\) gives the Koszul resolution of \(S(V)\) as \(S(V)\)-bimodule.

Example 23. If \(\sigma = \text{Id}\), \(X = \{x_1, \ldots, x_n\}\) and \(V = \bigoplus_{x \in X} kx\), then \(A = TV\) the tensor algebra. If \(\frac{1}{2} \in k\), then \((B/\text{invo}, d) \cong TV \otimes (k \oplus V) \otimes TV\) gives the Koszul resolution of \(TV\) as \(TV\)-bimodule. Notice that we don’t really need \(\frac{1}{2} \in k\), one could replace \(\text{invo} = (e_x e_y + e_x e_y : (x, y) \in X \times X)\) by \(\text{idXX} = (e_x e_y : (x, y) \in X \times X)\).

The conjecture above, besides these examples, is supported by next result:

Proposition 24. If \(Q \subseteq k\), then \(B/\text{Invo}\) is acyclic in positive degrees.

Proof. In \(B/\text{Invo}\) it can be defined \(h\) as the unique (super)derivation such that:

\[
h(e_x) = 0; \quad h(x) = e_x, \quad h(x') = -e_x
\]

Let us see that \(h\) is well defined:

\[
h(xy - zt) = e_x y + x e_y - e_z t - z e_t = 0
\]
\[
h(xy' - z't) = e_x y' - x e_y + e_z t - z' e_t = 0
\]
\[
h(x'y' - z't') = -e_x y' - x' e_y + e_z t' + z' e_t = 0
\]
\[
h(x e_y - e_z t) = e_x e_y + e_z e_t = 0
\]

Notice that in particular next equation shows that \(h\) is not well-defined in \(B\).

\[
h(e_x y' - z' e_t) = e_x e_y + e_z e_t = 0
\]
\[
h(z t' - x' y) = e_z t' - z e_t + e_x y - x' e_y = 0
\]
\[
h(z e_t - e_x y) = e_z e_t + e_x e_y = 0
\]
\[
h(e_z t' - x' e_y) = e_z e_t + e_x e_y = 0
\]
\[
h(e_x e_y + e_z e_t) = 0
\]
Since (super) commutator of (super)derivations is again a derivation, we have that \([h, d] = hd + dh\) is also a derivation. Computations on generators:

\[
h(e^x) = 2e^x, \quad h(x) = x - x', \quad h(x') = x' - x
\]
or equivalently

\[
h(e^x) = 2e^x, \quad h(x + x') = 0, \quad h(x - x') = 2(x - x')
\]

One can also easily see that \(\mathcal{B}/\text{Invo}\) is generated by \(e^x, x_{\pm}\), where \(x_{\pm} = x \pm x'\), and that their relations are homogeneous. We see that \(hd + dh\) is nothing but the Euler derivation with respect to the grading defined by

\[
\deg e^x = 2, \quad \deg x = 0, \quad \deg x' = 2,
\]

We conclude automatically that the homology vanish for positive degrees of the \(e^x\)'s (and similarly for the \(x_{\pm}\)’s).

Next, we generalize Propositions 16, 18, 19 and 20.

3.6 Braids of order \(N\)

Let \((x_0, y_0) \in X \times X\) such that \(\sigma^N(x_0, y_0) = (x_0, y_0)\) for some \(N \geq 1\). If \(N = 1\) we have the ”identity case” and all subcases, if \(N = 2\) we have the ”involutive case”. Denote \((x_i, y_i) := \sigma^i(x_0, y_0) 1 \leq i \leq N - 1\)

Notice that the following relations hold in \(B\):

\[
\begin{align*}
\ast x_{N-1}y_{N-1} & \sim x_0y_0, \quad x_{N-1}y'_{N-1} \sim x_0'y_0, \quad x'_{N-1}y'_{N-1} = x'_0y'_0 \\
\ast x_{N-1}e_{y_{N-1}} & \sim e_{x_0}y_0, \quad e_{x_{N-1}}y'_{N-1} \sim x'_0e_{y_0}
\end{align*}
\]

and for \(1 \leq i \leq N - 1:\)

\[
\begin{align*}
\ast x_{i-1}y_{i-1} & \sim x_iy_i, \quad x_{i-1}y'_{i-1} \sim x'_iy_i, \quad x'_{i-1}y'_{i-1} = x'_iy'_i \\
\ast x_{i-1}e_{y_{i-1}} & \sim e_{x_i}y_i, \quad e_{x_{i-1}}y'_{i-1} \sim x'_ie_{y_i}
\end{align*}
\]

Take \(\omega = \sum_{i=0}^{N-1} e_{x_i}e_{y_i}\), then we claim that

\[
d\omega = 0
\]

and

\[
\Delta \omega = x_0y_0 \otimes \omega + \omega \otimes x'_0y'_0
\]

For that, we compute

\[
d(\omega) = \sum_{i=0}^{N-1} \left(x_i - x'_i \right) e_{y_i} - e_{x_i} (y_i - y'_i) = \]

\[
\sum_{i=0}^{N-1} (x_i e_{y_i} - e_{x_i} y_i) - \sum_{i=0}^{N-1} (x'_i e_{y_i} - e_{x_i} y'_i) = 0
\]
For the comultiplication, we recall that
\[\Delta(ab) = \Delta(a)\Delta(b) \]
where the product on the right hand side is defined using the Koszul sign rule:
\[(a_1 \otimes a_2)(b_1 \otimes b_2) = (-1)^{|a_2||b_1|}a_1b_1 \otimes a_2b_2 \]
So, in this case we have
\[\Delta(\omega) = \sum_{i=0}^{N-1} \Delta(e_x e_{y_i}) = \sum_{i=0}^{N-1} (x'_i y'_i \otimes e_x e_{y_i} - x'_i e_{y_i} \otimes e_x y_i + e_x y_i \otimes x_i e_{y_i} + e_x e_{y_i} \otimes x_i y_i) \]
the middle terms cancel telescopically, giving
\[= \sum_{i=0}^{N-1} (x'_i y'_i \otimes e_x e_{y_i} + e_x e_{y_i} \otimes x_i y_i) \]
and the relation \(x_i y_i \sim x_{i+1} y_{i+1} \) gives
\[= x'_0 y'_0 \otimes \left(\sum_{i=0}^{N-1} e_x e_{y_i} \right) + \left(\sum_{i=0}^{n-1} e_x e_{y_i} \right) \otimes x_0 y_0 \]
\[= x'_0 y'_0 \otimes \omega + \omega \otimes x_0 y_0 \]
Then the two-sided ideal of \(B \) generated by \(\omega \) is a Hopf ideal. If instead of a single \(\omega \) we have several \(\omega_1, \ldots, \omega_n \), we simply remark that the sum of differential Hopf ideals is also a differential Hopf ideal.

Remark 25. If \(X \), is finite then for every \((x_0, y_0) \) there exists \(N > 0 \) such that \(\sigma^N(x_0, y_0) = (x_0, y_0) \).

Remark 26. Let us suppose \((x_0, y_0) \in X \times X \) is such that \(\sigma^N(x_0, y_0) = (x_0, y_0) \) and \(u \in X \) an arbitrary element. Consider the element
\[((\text{Id} \times \sigma)(\sigma \times \text{Id})(u, x_0, y_0) = (\tilde{x}_0, \tilde{y}_0, u'') \]
graphically

![Diagram](image)

then \(\sigma^N(\tilde{x}_0, \tilde{y}_0) = (\tilde{x}_0, \tilde{y}_0) \).
Proof.

\[(\sigma^N \times \text{id})(\tilde{x}_0, \tilde{y}_0, u'') = (\sigma^N \times \text{id})(\text{id} \times \sigma)(\sigma \times \text{id})(u, x_0, y_0) = \]

\[(\sigma^{N-1} \times \text{id})(\sigma \times \text{id})(\text{id} \times \sigma)(\sigma \times \text{id})(u, x_0, y_0) = \]

using YBeq

\[(\sigma^{N-1} \times \text{id})(\sigma \times \text{id})(\text{id} \times \sigma)(\sigma \times \text{id})(u, x_0, y_0) = \]

repeating the procedure \(N - 1\) times leaves

\[(\sigma^N - 1 \times \text{id})(\sigma \times \text{id})(\text{id} \times \sigma)(\sigma \times \text{id})(u, x_0, y_0) = \]

\[\text{Corollary 27. For all } A\text{-bimodule } M, \text{ there exists natural maps} \]

\[\tilde{\text{id}}_* : H^*_{YB}(X, M) \rightarrow H^*_*(A, M) \]

\[\tilde{\text{id}}^* : H^*_{YB}(A, M) \rightarrow H^*_{YB}(X, M) \]

that are the identity in degree zero and 1.

Moreover, one can choose an explicit map with extra properties. For that we recall some definitions: there is a set theoretical section to the canonical projection from the Braid group to the symmetric group

\[\mathbb{B}_n \xrightarrow{\tilde{s}} \mathbb{S}_n \]

\[T_s := \sigma_{i_1} \cdots \sigma_{i_k} \leftarrow s = \tau_{i_1} \cdots \tau_{i_k} \]

where

- \(\tau \in \mathbb{S}_n\) are transpositions of neighboring elements \(i\) and \(i + 1\), so-called simple transpositions,
• σ_i are the corresponding generators of \mathbb{B}_n,
• $\tau_{i_1} \ldots \tau_{i_k}$ is one of the shortest words representing s.

This inclusion factorizes through
\[S_n \hookrightarrow \mathbb{B}_n^+ \hookrightarrow \mathbb{B}_n \]
It is a set inclusion not preserving the monoid structure.

Definition 28. The permutation sets
\[\text{Sh}_{p_1, \ldots, p_k} := \{ s \in S_{p_1 + \ldots + p_k} / s(1) < \cdots < s(p_1), \ldots, s(p + 1) < \cdots < s(p + p_k) \} , \]
where $p = p_1 + \cdots + p_{k-1}$, are called shuffle sets.

Remark 29. It is well known that a braiding σ gives an action of the positive braid monoid B_n^+ on $V^\otimes n$, i.e. a monoid morphism
\[\rho : B_n^+ \rightarrow \text{End}_K(V^\otimes n) \]
defined on generators σ_i of B_n^+ by
\[\sigma_i \mapsto \text{Id}_V^{\otimes (i-1)} \otimes \sigma \otimes \text{Id}_V^{\otimes (n-i+1)} \]

Then there exists a natural extension of a braiding in V to a braiding in $T(V)$.

\[\sigma(v \otimes w) = (\sigma_k \ldots \sigma_1) \circ \cdots \circ (\sigma_{n+k-2} \ldots \sigma_{n-1}) \circ (\sigma_{n+k-1} \ldots \sigma_n)(vw) \in V^k \otimes V^n \]
for $v \in V^\otimes n$, $w \in V^k$ and vw being the concatenation.

Graphically
\[\cdots \otimes \cdots \]

Definition 30. The quantum shuffle multiplication on the tensor space $T(V)$ of a braided vector space (V, σ) is the k-linear extension of the map
\[\sqcup \sqcup = \sqcup_{p,q} : V^\otimes p \otimes V^\otimes q \rightarrow V^\otimes (p+q) \]
\[\overline{v} \otimes \overline{w} \mapsto \overline{v} \sqcup \overline{w} := \sum_{s \in \text{Sh}_{p,q}} T^\sigma_s(\overline{vw}) \]

Notation: T^σ_s stands for the lift $T_s \in \mathbb{B}_n^+$ acting on $V^\otimes n$ via the braiding σ. The algebra
\[Sh_\sigma(V) := (TV, \sqcup_\sigma) \]
is called the quantum shuffle algebra on (V, σ).

It is well-known that \sqcup_σ is an associative product on TV (see for example [Le] for details) that makes it a Hopf algebra with deconcatenation coproduct.
Definition 31. Let V be a braided vector space, then the quantum symmetrizer map $\sqcup_{\sigma} : V^\otimes n \to V^\otimes n$ defined by

$$QS_{\sigma}(v_1 \otimes \cdots \otimes v_n) = \sum_{\tau \in S_n} T_{\sigma}^\tau (v_1 \otimes \cdots \otimes v_n)$$

where T_{σ}^τ is the lift $T_{\sigma}^\tau \in B_n^+$ of τ, acting on $V^\otimes n$ via the braiding σ.

In terms of shuffle products the quantum symmetrizer can be computed as

$$\omega \sqcup_{\sigma} \eta := \sum_{\tau \in Sh_{p,q}} T_{\sigma}^\tau (\omega \otimes \eta)$$

The quantum symmetrizer map can also be defined as

$$QS_{\sigma}(v_1 \otimes \cdots \otimes v_n) = v_1 \sqcup_{\sigma} \cdots \sqcup_{\sigma} v_n$$

With this notation, next result reads as follows:

Theorem 32. The $A'\otimes A$-linear quantum symmetrizer map

$$A'V^\otimes n A \xrightarrow{\tilde{\text{Id}}} A \otimes A^\otimes n \otimes A$$

$$a'_1e_{x_1} \cdots e_{x_n}a_2 \mapsto a_1 \otimes (x_1 \sqcup_{\sigma} \cdots \sqcup_{\sigma} x_n) \otimes a_2$$

is a chain map lifting the identify. Moreover, $\tilde{\text{Id}} : B \to (A \otimes TA \otimes A, b')$ is a differential graded algebra map, where in TA the product is $\sqcup_{-\sigma}$, and in $A \otimes TA \otimes A$ the multiplicative structure is not the usual tensor product algebra, but the braided one. In particular, this map factors through $A \otimes B \otimes A$, where B is the Nichols algebra associated to the braiding $\sigma'(x \otimes y) = -z \otimes t$, where $x, y \in X$ and $\sigma(x, y) = (z, t)$.

Remark 33. The Nichols algebra B is the quotient of TV by the ideal generated by (skew)primitives that are not in V, so the result above explains the good behavior of the ideals invo, idS, or in general the ideal generated by elements of the form $\omega = \sum_{i=0}^{N-1} e_{x_i}e_{y_i}$ where $\sigma(x_i, y_i) = (x_{i+1}, y_{i+1})$ and $\sigma^N(x_0, y_0) = (x_0, y_0)$. It would be interesting to know the properties of $A \otimes B \otimes A$ as a differential object, since it appears to be a candidate of Koszul-type resolution for the semigroup algebra A (or similarly the group algebra $k[G_X]$).

The rest of the paper is devoted to the proof of 32. Most of the Lemmas are ”folklore” but we include them for completeness. The interested reader can look at [Le2] and references therein.

Lemma 34. Let σ be a braid in the braided (sub)category that contains two associative algebras A and C, meaning there exists bijective functions

$$\sigma_A : A \otimes A \to A \otimes A, \quad \sigma_C : C \otimes C \to C \otimes C, \quad \sigma_{C,A} : C \otimes A \to A \otimes C$$

such that

$$\sigma_*(1, -) = (-, 1) \text{ and } \sigma_*(-, 1) = (1, -) \text{ for } * \in \{A, C; C, A\}$$

18
\[\sigma_{C,A} \circ (1 \otimes m_A) = (m_A \otimes 1)(1 \otimes \sigma_{C,A})(\sigma_{C,A} \otimes 1) \]

and

\[\sigma_{C,A} \circ (m_C \otimes 1) = (1 \otimes m_C)(\sigma_{C,A} \otimes 1)(1 \otimes \sigma_{C,A}) \]

Diagrammatically

Assume that they satisfy the braid equation with any combination of \(\sigma_A, \sigma_C \) or \(\sigma_{A,C} \). Then, \(A \otimes_{\sigma} C = A \otimes C \) with product defined by

\[(m_A \otimes m_C) \circ (\text{Id}_A \otimes \sigma_{C,A} \otimes \text{Id}_C) : (A \otimes C) \otimes (A \otimes C) \to A \otimes C \]

is an associative algebra. In diagram:

Proof. Take \(m \circ (1 \otimes m)((a_1 \otimes c_2) \otimes ((a_2 \otimes c_2) \otimes (a_3 \otimes c_3)) \) use \([*]\), associativity in \(A \), associativity in \(C \) then \([**]\) and the result follows.

Lemma 35. Let \(M \) be the monoid freely generated by \(X \) module the relation \(xy = zt \) where \(\sigma(x,y) = (z,t) \), then, \(\sigma : X \times X \to X \times X \) naturally extends to a braiding in \(M \) and verifies
Proof. It is enough to prove that the extension mentioned before is well defined in the quotient. Inductively, it will be enough to see that \(\sigma(a_{xy}b, c) = \sigma(a_{zt}b, c) \) and \(\sigma(c, a_{xy}b) = \sigma(c, a_{zt}b) \) where \(\sigma(x, y) = (z, t) \), and this follows immediately from the braid equation:

A diagram for the first equation is the following:

As \(\alpha \beta = \alpha^\ast \beta^\ast \) the result follows.

Lemma 36. \(m \circ \sigma = m \), diagrammatically:
Proof. Using successively that \(m \circ \sigma_i = m \), we have:

\[
m \circ \sigma(x_1 \ldots x_n, y_1 \ldots y_k) = m \left((\sigma_k \ldots \sigma_1) \ldots (\sigma_{n+k-1} \ldots \sigma_n)(x_1 \ldots x_n y_1 \ldots y_k) \right)
\]

\[
= m \left((\sigma_{k-1} \ldots \sigma_1) \ldots (\sigma_{n+k-1} \ldots \sigma_n)(x_1 \ldots x_n y_1 \ldots y_k) \right) = \ldots
\]

\[
= m(x_1 \ldots x_n, y_1 \ldots y_k)
\]

\[\square\]

Corollary 37. If one considers \(A = k[M] \), then the algebra \(A \) verifies all diagrams in previous lemmas.

Lemma 38. If \(T = (TA, \sqcup) \) there are bijective functions

\[
\sigma_{T,A} := \sigma|_{T \otimes A} : T \otimes A \to A \otimes T
\]

\[
\sigma_{A,T} := \sigma|_{A \otimes T} : A \otimes T \to T \otimes A
\]

that verifies the hypothesis of Lemma 34, and the same for \((TA, \sqcup_{-a})\).

Corollary 39. \(A \otimes (TA, \sqcup_{-a}) \otimes A \) is an algebra.

Proof. Use 34 twice and the result follows. \[\square\]

Corollary 40. Taking \(A = k[M] \), then the standard resolution of \(A \) as \(A \)-bimodule has a natural algebra structure defining the braided tensorial product as follows:

\[
A \otimes TA \otimes A = A \otimes_\sigma (T^c A, \sqcup_{-a}) \otimes_\sigma A
\]

Recall the differential of the standard resolution is defined as \(b' : A^{\otimes n+1} \to A^{\otimes n} \)

\[
b'(a_0 \otimes \ldots \otimes a_n) = \sum_{i=0}^{n-1} (-1)^i a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_n
\]

for all \(n \geq 2 \). If \(A \) is a commutative algebra then the Hochschild resolution is an algebra viewed as \(\oplus_{n \geq 2} A^{\otimes n} = A \otimes TA \otimes A \), with right and left \(A \)-bilinear extension of the shuffle product on \(TA \), and \(b' \) is a (super) derivation with respect to that product (see for instance Prop. 4.2.2 [Lo]). In the braided-commutative case we have the analogous result:

Lemma 41. \(b' \) is a derivation with respect to the product mentioned in Corollary 40.

Proof. Recall the commutative proof as in Prop. 4.2.2 [Lo]. Denote \(\ast \) the product

\[
(a_0 \otimes \ldots \otimes a_{p+1}) \ast (b_0 \otimes \ldots \otimes b_{q+1}) = a_0 b_0 \otimes ((a_1 \ldots \otimes a_p) \sqcup (b_1 \otimes \ldots \otimes b_q)) \otimes a_{p+1} b_{q+1}
\]

Since \(\oplus_{n \geq 2} A^{\otimes n} = A \otimes TA \otimes A \) is generated by \(A \otimes A \) and \(1 \otimes TA \otimes 1 \), we check on generators. For \(a \otimes b \in A \otimes A \), \(b'(a \otimes b) = 0 \), in particular, it satisfies Leibnitz rule for elements in \(A \otimes A \). Also, \(b' \) is \(A \)-linear on the left, and right-linear on the right, so

\[
b'((a_0 \otimes a_{n+1}) \ast (1 \otimes a_1 \otimes \ldots \otimes a_n \otimes 1)) = b'(a_0 \otimes a_1 \otimes \ldots \otimes a_n \otimes a_{n+1})
\]

\[
= a_0 b'(1 \otimes a_1 \otimes \ldots \otimes a_n \otimes 1)a_{n+1} = (a_0 \otimes a_{n+1}) \ast b'(1 \otimes a_1 \otimes \ldots \otimes a_n \otimes 1)
\]
and

\[A \text{ is a differential graded algebra morphism, } T_V \]

Corollary 42. There exists a comparison morphism \(f : (B, d) \to (A \otimes TA \otimes A, b') \) which is a differential graded algebra morphism, \(f(d) = b'(f) \), simply defining it on \(e_x (x \in X) \) and verifying \(f(x' - x) = b'(f(e_x)) \).

Proof. Define \(f \) on \(e_x \), extend \(k \)-linearly to \(V \), multiplicatively to \(TV \), and \(A' \)-\(A \) linearly to \(A' \otimes TV \otimes A = B \). In order to see that \(f \) commutes with the differential, by \(A' \)-\(A \)-linearity it suffices to check on \(TV \), but since \(f \) is multiplicative on \(TV \) it is enough to check on \(V \), and by \(k \)-linearity we check on basis, that is, we only need \(f(de_x) = b'f(e_x) \). \(\square \)

Corollary 43. \(f|_{TX} \) is the quantum symmetrizer map, and therefore \(\text{Ker}(f) \cap TX \subset B \) defines the Nichol’s ideal associated to \(-\sigma \).

Proof.

\[
f(e_{x_1} \cdots e_{x_n}) = f(e_{x_1}) \cdots f(e_{x_n}) = (1 \otimes x_1 \otimes 1) \cdots (1 \otimes x_n \otimes 1) = 1 \otimes (x_1 \sqcup \cdots \sqcup x_n) \otimes 1
\]

\(\square \)

The previous corollary explains why \(\text{Ker}(\text{Id} - \sigma) \subset B_2 \) gives a Hopf ideal and also ends the proof of Theorem 32.

Question 44. \(\text{Im}(f) = A \otimes \mathcal{B} \otimes A \) is a resolution of \(A \) as a \(A \)-bimodule? namely, is \((A \otimes \mathcal{B} \otimes A, d) \) acyclic?
This is the case for involutive solutions in characteristic zero, but also for \(\sigma = \text{flip} \) in any characteristic, and \(\sigma = \text{Id} \) (notice this Id-case gives the Koszul resolution for the tensor algebra). If the answer to that question is yes, and \(\mathcal{B} \) is finite dimensional then \(A \) have necessarily finite global dimension. Another interesting question is how to relate generators for the relations defining \(\mathcal{B} \) and cohomology classes for \(X \).

References

[AG] N. Andruskiewitsch, M. Graña, *From racks to pointed Hopf algebras*. Adv. Math. 178 (2003), no. 2, 177243.

[B] *The diamond lemma for ring theory* George M Bergman, Advances in Mathematics Volume 29, Issue 2, February 1978, Pages 178-218

[CEGN] J. Ceniceros, M. Elhamdadi, M. Green, and S. Nelson, Augmented biracks and their homology, Internat. J. Math. 25 (2014), no. 9, 1450087, 19. MR3266530.

[CES1] J. Scott Carter, Mohamed Elhamdadi, Masahico Saito, *Twisted quandle homology theory and cocycle knot invariants*, Algebraic and Geometric Topology (2001).

[CES2] J. Scott Carter, Mohamed Elhamdadi and Masahico Saito, *Homology Theory for the Set-Theoretic Yang-Baxter Equation and Knot Invariants from Generalizations of Quandles*. Fund. Math., 184 (2004), 31-54

[CJKS] S. Carter, D. Jelsovskyb, S. Kamada, M. Saito, *Quandle homology groups, their Betti numbers, and virtual knots*. J. of Pure and Applied Algebra 157 (2001) 135-155.

[Cl] F. Clauwens, *The algebra of rack and quandle cohomology*. J. Knot Theory Ramifications 20, No. 11, 1487-1535 (2011).

[ESS] P. Etingof, T. Schedler, A. Soloviev, *On set-theoretical solutions of the quantum Yang-Baxter equation*, Duke Math. J. Volume 100, Number 2 (1999), 169-209.

[KR] L. Kauffman, D. Radford, *Bi-oriented quantum algebras, and a generalized Alexander polynomial for virtual links*, *Diagrammatic morphisms and applications* (S. Francisco, CA, 2000), 113-140, Contemp. Math., 318, A.M.S. Providence, RI, 2003.

[Le] Lebed, *Homologies of algebraic structures via braidings and quantum shuffles* Journal of Algebra Volume 391, 2013, 152192.

[Le2] Lebed, *Braided Systems: a Unified Treatment of Algebraic Structures with Several Operations* Arxiv.math: 1305.0944

[Lo] J.L. Loday, Cyclic homology, Springer Science and Business Media, 1998.