Title:
Dietary inflammatory index positively associated with high-sensitivity C-reactive protein level in Japanese from NIPPON DATA2010

Author names and affiliations:
Yunqing Yang1, Atsushi Hozawa1,2, Mana Kogure1,2, Akira Narita1,2, Takumi Hirata1,2, Tomohiro Nakamura1,2, Naho Tsuchiya1,2, Naoki Nakaya1,2, Toshiharu Ninomiya3, Nagako Okuda4, Aya Kadota5, Takayoshi Ohkubo6, Tomonori Okamura7, Hirotugu Ueshima5, Akira Okayama8, Katsuyuki Miura5, for the NIPPON DATA2010 Research Group*

1Division of Personalized Prevention and Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan

2Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan

3Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

4Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan

5Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan

6Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan

7Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan

Copyright © 2019 Yunqing Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Running title: DII positively associated with CRP in Japanese

Word count:

Abstract: 208

Manuscript: 2733

Number of figures: 1

Number of tables: 5

Supplementary data: 1

Corresponding author’s contact information

Atsushi Hozawa

Division of Personalized Prevention and Epidemiology,

Tohoku University Graduate School of Medicine,

2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan

E-mail: hozawa@megabank.tohoku.ac.jp

Tell: +81 22 273 6212
Conflict of interest:

The authors declare they have no conflict of interest with respect to this research study and paper.
Abstract

Background: It has been reported that chronic inflammation may play an important role in the pathogenesis of several serious diseases and could be modulated by diet. Recently, the Dietary Inflammatory Index (DII®) was developed to assess the inflammatory potential of the overall diet. The DII has been reported as relevant to various diseases but has not been validated in Japanese. Thus in the present study, we analyzed the relationship between DII scores and high-sensitivity C-reactive protein (hs-CRP) levels in a Japanese population.

Methods: Data of the National Integrated Project for Prospective Observation of Non-communicable Disease and its Trends in the Aged 2010 (NIPPON DATA2010), which contained 2898 participants who aged 20 years or older from the National Health and Nutrition Survey of Japan (NHNS2010), were analyzed. Nutrient intakes derived from one-day semi-weighing dietary records were used to calculate DII scores. Energy was adjusted by residual method. Levels of hs-CRP were evaluated using nephelometric immunoassay. Multiple linear regression analyses were performed.

Result: After adjusting for age, sex, smoking status, BMI and physical activity, a significant association was observed between DII scores and log(CRP+1) (standard regression coefficient=0.05, p<0.01). And although it was not statistically significant, the positive association was consistently observed in almost all age-sex subgroups and the non-smoker subgroup.

Conclusions: The current study confirmed that DII score was positively associated with hs-CRP in Japanese.

Keywords: dietary inflammatory index, inflammation, CRP, Japanese, Japanese diet
Introduction

Inflammation constitutes the body's protective response to injury or infection and is generally beneficial to the body \(^1\). However, when the inflammatory response proceeds disorderedly, acute inflammation can progress to chronic inflammation \(^2\), which features sustained increased level of inflammatory cytokines, such as Interleukin 6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and C-reactive protein (CRP). It has been reported that inflammation response and metabolic regulation are highly integrated and interdependent \(^3\). Chronic inflammation, which is the dysfunction of the inflammatory response, can lead to a series of diseases such as diabetes, cancer and depression, which seriously threatens health \(^4-6\).

Growing evidence has shown that diet plays a key role in the regulation of chronic inflammation. For example, the Mediterranean diet, which is rich in fish, monounsaturated fats from olive oil, fruits, vegetables, whole grains, and involves moderate alcohol consumption, has been proved to associate with lower levels of inflammatory markers \(^7\). In contrast, the Western diet, also known as the “obesogenic” diet, characterized by a high intake of saturated fat from red meat and dairy products, refined grains, and sugar, may promote metabolic disorders through pro-inflammatory mechanisms \(^8\).

Recently, a literature-derived, population-based diet quality assessing tool—the Dietary Inflammatory Index (DII\(^\text{®}\))—was developed for evaluating the inflammatory potential of one’s overall diet \(^9\). The DII has been construct validated in American, European, Asian and Australia individuals with inflammatory markers including CRP, IL-6 and TNF-α \(^10-14\), and was reported to have associations with a series of diseases. A recent published meta-analysis reported that there were
consistent and significant positive associations between higher DII scores and cancer incidence and
mortality across cancer types. Another review of cardiovascular diseases concluded that the DII
was a useful tool for appraising the inflammatory potential of diet and for helping to explore the
mechanisms between diet, inflammation, and cardio-metabolic diseases. A few relevant studies
have been carried out in Asia, one of them were conducted in Japan.

Japanese have enjoyed the world’s longest average life expectancy since 1985, which may
partially be due to the Japanese traditional diet, Washoku, which was included in the United Nations
Educational, Scientific and Cultural Organization list of Intangible Cultural Heritage in 2013.
The Japanese diet incorporates high consumption of fish and soybean products and low consumption
of animal fat and meat, and has been reported as having a negative association with cardiovascular
disease risks, psychological distress, and cancer. Therefore, it might be important whether the
DII scores of the Japanese population that consumed a predominantly Japanese diet could be
applicable to epidemiological studies. For this purpose, it was necessary to validate the DII through
a Japanese database so that more researches could be conducted.

Therefore, we evaluated the association between DII scores and hs-CRP levels in Japanese using
data from National Integrated Project for Prospective Observation of Non-Communicable Disease
and Its Trends in the Aged 2010 (NIPPON DATA2010).
NIPPON DATA2010 was a nationally representative cohort study based on the National Health and Nutrition Survey of Japan in 2010 (NHNS2010)\(^{26}\), which used validated high accuracy semi-weighing dietary records. The details of NHNS2010 and NIPPON DATA2010 have been described elsewhere\(^{26,27}\). Briefly, 8,815 residents from 300 randomly selected survey areas throughout Japan participated in NHNS2010. Among them, 7,229 participants were aged 20 years or older, and 3,873 of the 7,229 completed the blood tests. Finally, 2,898 participants (1,239 men and 1,659 women, response rate: 74.6\%) from the NHNS2010 agreed to be involved in the baseline survey of NIPPON DATA2010, which included electrocardiography, urinalysis, and questionnaires and was conducted in November 2010\(^{25,27}\), and were subsequently recruited to the current study.

Among the 2,898 participants, 7 participants could not be included due to unusable data, and 94 were excluded for the following reasons: incomplete data of food and nutrient intake (n=51), extreme calorie intake <500 kcal/d (n=2) or > 5000 kcal/d (n=1)\(^{28}\); missing data on weight, height (n=2), physical activity (n=4) or smoking status (n=8). Considering the extremely low level of hs-CRP in Japanese, which is approximately one third of the median value in Caucasians\(^{29,30}\), and one study conducted in six Asian cities suggested that the reference CRP interval of Japanese was from 0.04mg/l to 2.26mg/l\(^{31}\), so we excluded participants with a CRP level >3mg/l from the analyses (n=251). Finally, a total of 2,572 participants were included in the analysis (Figure 1).

The Institutional Review Board of Shiga University of Medical Science approved this study (No. 22-29, 2010).
Dietary intake and DII

Data on dietary intake were collected from one-day semi-weighing household dietary records. Participants were asked to weigh and record all portions of foods, beverages, and nutrient supplements consumed by each household member in a whole day. In addition, participants were asked to carry out the dietary records on a normal day for representing dietary habits. Trained dietitians visited the participants’ homes to assist with and confirm the dietary records. Nutrient intakes were estimated using the Standard Tables of Food Composition in Japan, Fifth Revised and Enlarged Edition 26,32.

The DII was developed as a diet quality-assessing tool based on the inflammatory potential of the overall diet. Forty-five food or nutrient parameters were identified by their effects on six inflammatory markers (IL-1β, IL-4, IL-6, IL-10, TNF-α, and CRP), and a global standard database was created for comparing DII scores in diverse populations. A more detailed description of the DII has been provided elsewhere 9. Briefly, the DII provided an overall inflammatory effect score, a global daily mean intake, and a standard deviation for each food parameter. Firstly, every nutrient intake was transformed to a Z-score using the standard values described above. To minimize the ‘right skewing,’ each Z-score was converted to a percentile value, which was then doubled, and 1 was subtracted from the doubled percentile value. Next, the centered value was multiplied by its respective overall inflammatory effect score. Finally, all parameter-specific DII scores were summed to achieve the overall DII score for each subject.

In the current study, 26 food or nutrient parameters, including vitamin B12, carbohydrate,
cholesterol, total fat, iron (Fe), protein, saturated fat, magnesium (Mg), zinc (Zn), vitamin A, β-
carotene, vitamin D, vitamin E, thiamine, riboflavin, niacin, vitamin B6, folic acid, vitamin C,
monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), fiber, n-3 fatty acid, n-6 fatty acid, alcohol, and onion could be used to calculate DII scores. Among these, alcohol consumption was calculated from data of lifestyle surveys; the others were derived from dietary records. Energy adjustment was performed using the residual method 33.

C-reactive protein

Fasting blood samples were drawn from all participates in November 2010. Hs-CRP levels were measured using nephelometric immunoassay at a commercial laboratory (SRL, Tokyo, Japan).

Covariates

Anthropometric measurements were performed by trained staff. The height and weight were measured and used to calculate the BMI as the ratio of weight to the square of height. Lifestyle surveys, including information on smoking (current, former, or never smoker), physical activity [Metabolic equivalents, (METs)/d] and antilipidemic agent use (user or non-user), were conducted by public health nurses through a standard questionnaire 26. Information on socioeconomic status, such as marital status (married or unmarried), education (junior high school and below, high school, or university and above) and equivalent household expenditure was collected from the self-administered questionnaires. (1 Yen=0.008989 US dollar as of January 2018)
The characteristics of participants and food intakes across the DII quartiles were compared using chi-square test for categorical variables and ANOVA for continuous variables. Hs-CRP level was log-transformed due to its right-skewed distribution. To determine the association between DII scores and log-transformed (hs-CRP+1) [log (CRP+1)], Spearman’s correlation and multiple linear regression were analyzed. As potential confounders, age, sex, smoking status, BMI and physical activity were adjusted. Moreover, analyses were further stratified by sex (men and women), age group (aged <45, 45-54, 55-64, 65-74 and ≥75 years) and smoking status (never-smoker, former-smoker and current smoker). Additionally, we analyzed other factors as covariates, including economic status, marital status, education and antilipidemic agent use. All statistical analyses were performed by Statistical Analysis Systems statistical software package version 9.4 (SAS Institute, Cary, NC, USA).

Results

The mean DII score of the study participants was 0.82, with a SD of 1.75. Table 1 showed the characteristics of the study participants across DII score quartiles: -5.04 ≤ Q1 <-0.38; -0.38 ≤ Q2 < 0.91; 0.91 ≤ Q3 < 2.18; 2.18 ≤ Q4 ≤ 4.94. The proportion of women decreased with DII score quartiles, indicating that, compared with men, women consumed a more anti-inflammatory diet. Participants in Q4, the most pro-inflammatory diet-consuming group, were more likely to be younger, antilipidemic agent non-user, underweight or overweight, smokers, with higher physical activity, lower equivalent
Comparing the food intakes distribution across the DII quartiles, we found certain food intakes were related to the decrease or increase of DII scores. With the increase in cereal, meat, fat and oil intake, the DII score increased. On the other hand, potato, bean, nut and seed, vegetable, fruit, mushroom, seaweed, seafood, milk and nutrients supplementary food showed an effect of lowering DII score in the current study (Table 2).

We didn’t observe significant correlation between DII scores and log (CRP+1) when analyzing in crude (r=0.02, p=0.41). After adjusting for age, sex, smoking status, BMI and physical activity, a significant relationship was observed between DII scores and log(CRP+1) (standard regression coefficient of total=0.05, p<0.01) (Table 3). The standardized regression coefficient of the covariates was reducing in the order of BMI (0.33), age (0.14), current smoking (0.06), physical activity (0.06) and DII score (0.05).

Furthermore, the results of multiple linear regression analysis stratified by sex and age group are shown in Table 4. Consistent positive associations were observed both in men (although it was not statistically significant, standardized regression coefficient=0.05, p=0.14) and women (standardized regression coefficient=0.06, p=0.02). All age groups displayed a positive association, (standardized regression coefficient<45=0.05, standardized regression coefficient45-54=0.03, standardized regression coefficient55-64=0.03, standardized regression coefficient65-74=0.05, standardized regression coefficient≥75=0.10). The highest standardized regression coefficient between the DII and log (CRP+1) was observed in the ≥75 years age group. As regards age-sex combined subgroups, except
for men aged <45 years and women aged 55-64 years, all subgroups showed positive relationships between DII scores and log (CRP+1).

Additionally, we analyzed other factors as covariates, including economic status, marital status, education, and antilipidemic agent use, gaining unchanging result (standardized regression coefficient=0.06, p<0.01). Further, the positive association was observed in the never-smoker (standardized regression coefficient=0.06, p=0.01, n=1680) and former-smoker (standardized regression coefficient=0.08, p=0.07, n=498) subgroup, but not in the current-smoker subgroup (standardized regression coefficient=-0.02, p=0.71, n=394), when analysis was stratified by smoking status.

Discussion

In our cross-sectional study, we observed a positive association between DII scores and hs-CRP levels in participants of NIPPON DATA 2010. The findings were consistent across almost all age-sex subgroups. The results suggested that the DII was applicable to the Japanese population.

Previous studies on DII scores and CRP levels

To the best of our knowledge, there have been 21 previous studies that investigated the association between DII scores and CRP levels (Table 5). Fourteen of them concurred with our conclusion that the DII scores positively associated with CRP levels. Of the other 7 studies, five concluded that the DII score was associated with other inflammatory markers. To our best knowledge, it was the first
written report of correctly validating DII in Japanese with CRP.

In the current study, 18 items of 45 food parameters were unavailable for DII score calculation, which were caffeine, eugenol, garlic, ginger, saffron, selenium, trans fat, turmeric, green/black tea, flavan-3-ol, flavones, flavonols, flavonones, anthocyanidins, isoflavones, pepper, thyme/oregano, rosemary. However, in previous studies, the number of food parameters used was between 17 and 44. Furthermore, a construct validation study using two different diet record methods, 24-hour dietary recalls and 7-day dietary recalls, reported that the reduction of available food parameters would not lead to a large drop-off in the predictive ability of DII. Thus, the 26 food parameters we used might be sufficient for validation.

International comparison of DII scores

The mean (SD) DII score of this study’s participants was 0.82 (1.75). The Japanese diet is characterized by lower fat intake and higher soy and fish consumption. Therefore, we expected that the mean DII score in our study would be lower than that reported for western populations. However, our results did not bear out this expectation. For instance, a study on the association between the DII score and memory function using a population-based national sample of elderly Americans reported a mean DII score of -0.25 (standard error 0.07). The mean (SD) DII score of the Whitehall II study, which was carried out in the UK, was −0.03 (1.3). We reasoned that it may be due to the different food parameters used. Although DII score is calculated based on the global standard database, it cannot be used to compare the inflammatory potential of diets of different countries directly without
Factors relevant to elevated CRP levels

The multiple linear regression analysis suggested that ageing, smoking, and being overweight were positively associated with CRP levels, while physical activity was reversed. We could not determine the causality through the cross-sectional studies; however, it is unlikely that an increased CRP level leads to smoking. Moreover, many previous studies reported similar results that CRP levels were higher among current smokers \(^{38-40}\). According to our analysis, the effect of smoking on CRP levels was similar to the effect of DII scores (standardized regression coefficient =0.06, \(p<0.01\)).

BMI and physical activity had opposite effects on CRP levels. Our results are in accordance with several previous studies. A systematic review and a reciprocal Mendelian randomization study suggested that obesity was correlated with elevated levels of CRP \(^{41,42}\). Moreover, increasing evidence points to the negative association between physical activity and inflammatory biomarker levels \(^{43,44}\). Given the health benefits in metabolic regulation from physical activity, we propose that, besides diet, weight control, smoking cessation, and increasing physical activity may contribute to lower CRP levels.

We found a positive association between DII scores and CRP levels in almost all age-sex subgroups, but not in a few young men and women aged 55-64 years. This was likely due to that in the current study, participants in the youngest men subgroup had the highest smoking rate (40.09% current smoker and 22.17% former smoker). According to previous researches, smoking was an important
confounder due to its relatively strongly inflammatory effect. The strongly inflammatory effect might cover the affect bought by diet45. As described in results, only the current-smoker subgroup didn’t show the positive association. The smaller sample size of current-smoker may partially effect, however we still believed that smoking could be considered as a reason of the negative association in young men subgroup. Moreover, women in this age group were possibly in menopause, which has been confirmed to associate with increases in CRP levels46. The effect of menopause might modify the association between DII scores and CRP levels. Further study investigating DII scores and CRP levels in this age-sex group might be required.

Strengths and limitations

Our study has several strengths. To our best knowledge, this is the first study of the inflammatory potential of the world-renowned Japanese diet and DII-validation in Japanese. In addition, the participants of NIPPON DATA2010 were collected from all over Japan, with the probably largest age span, ensuring a good representation of the Japanese population. This allowed the relatively detailed analysis of the association between DII scores and CRP levels in different sex and age groups.

Certain limitations should be mentioned. It was difficult to infer the temporal association between DII scores and CRP levels with the cross-sectional study design. However it was almost impossible that participants changed their diets due to a high CRP level. Other limitation was the lack of information on anti-inflammatory medication. The effect of diet on inflammation might partially be masked by medicine using47 that could lead to underestimate. While, the underestimate might
partially explain the reason why only weak associations were observed in the current study. Future study was better to stratified analyze the association between DII and CRP by anti-inflammatory medication.

In conclusion, we confirmed that a positive association between DII scores and CRP levels was observed in the Japanese population. The findings were consistent for almost all age-sex subgroups and the never-smoker subgroup.

Acknowledgments

We deeply appreciate the Japanese Association of Public Health Center Directors and the Japan Medical Association for their support with NIPPON DATA2010’s baseline and follow-up survey. We also appreciate Shionogi Co. Ltd. for their support measuring brain natriuretic peptide. The authors thank Japanese public health centers and medical examination institutions listed in the Appendix of the reference (24) for their support with NIPPON DATA2010’s baseline survey.

Funding sources

This study was supported by Health and Labour Sciences Research Grants of the Ministry of Health, Labour and Welfare, Japan (Comprehensive Research on Life-Style Related Diseases including Cardiovascular Diseases and Diabetes Mellitus [H22-Junkankitou-Seishuu-Sitei-017, H25-Junkankitou-Seishuu-Sitei-022, H30-Junkankitou-Sitei-002])

Conflict of interest
The authors, including YY, AH, MK, AN, TH, TN, NT, NN, TN, NO, AK, TO, TO, HU, AO and KM,
declare they have no conflict of interest with respect to this research study and paper.

Author Contributions

KM, AO, TO, HU: study concept and design. AK, TO, NO: acquisition of data. YY, AH, MK, AN,
TH, TN, NT, NN, TN: analysis and interpretation of data. YY, MK: drafting article. AH: final content.

Statement

All authors, including YY, AH, MK, AN, TH, TN, NT, NN, TN, NO, AK, TO, TO, HU, AO and KM,
have read and approved the final article, and the article is not being considered for publication
elsewhere.
References

1. Janeway CA Jr TP, Walport M, et al. *Immunobiology: The Immune System in Health and Disease*. 5th edition. ed: New York: Garland Science; 2001.

2. Warnberg J, Gomez-Martinez S, Romeo J, Diaz LE, Marcos A. Nutrition, inflammation, and cognitive function. *Ann NY Acad Sci*. 2009;1153:164-175.

3. Hotamisligil GS. Inflammation and metabolic disorders. *Nature*. 2006;444(7121):860-867.

4. Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. *Lancet*. 2004;363(9415):1139-1146.

5. Friedrich MJ. Research on psychiatric disorders targets inflammation. *JAMA*. 2014;312(5):474-476.

6. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? *Lancet*. 2001;357(9255):539-545.

7. Bonaccio M, Cerletti C, Iacoviello L, de Gaetano G. Mediterranean diet and low-grade subclinical inflammation: the Moli-sani study. *Endocr Metab Immune Disord Drug Targets*. 2015;15(1):18-24.

8. Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. *Immunity*. 2014;40(6):833-842.

9. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. *Public Health Nutr*. 2014;17(8):1689-1696.

10. Wirth MD, Shivappa N, Davis L, et al. Construct validation of the Dietary Inflammatory Index among African Americans. *Journal of Nutrition Health & Aging*. 2017;21(5):487-491.

11. Tabung FK, Steck SE, Zhang J, et al. Construct validation of the dietary inflammatory index among postmenopausal women. *Ann Epidemiol*. 2015;25(6):398-405.

12. Vahid F, Shivappa N, Hekmatdoost A, Hebert JR, Davoodi SH, Sadeghi M. Association between Maternal Dietary Inflammatory Index (DII) and abortion in Iranian women and validation of DII with serum concentration of inflammatory factors: case-control study. *Appl Physiol Nutr Me*. 2017;42(5):511-516.

13. Mayr HL, Itsiopoulos C, Tierney AC, et al. Improvement in dietary inflammatory index score after 6-month dietary intervention is associated with reduction in interleukin-6 in patients with coronary heart disease: The AUSMED heart trial. *Nutrition Research*. 2018;55:108-121.

14. Fowler ME, Akinyemiju TF. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. *International Journal of Cancer*. 2017;141(11):2215-2227.

15. Ruiz-Canela M, Bes-Rastrollo M, Martinez-Gonzalez MA. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality. *Int j mol sci*. 2016;17(8):83-93.

16. Abe M, Shivappa N, Ito H, et al. Dietary inflammatory index and risk of upper aerodigestive tract cancer in Japanese adults. *Oncotarget*. 2018;9(35):24028-24040.
18. Organization WH. *World Health Organization, World Health Statistics 2016: Monitoring health for the SDGs*. 2016.
19. Gabriel AS, Ninomiya K, Uneyama H. The Role of the Japanese Traditional Diet in Healthy and Sustainable Dietary Patterns around the World. *Nutrients*. 2018;10(2).
20. Yamori Y, Sagara M, Arai Y, et al. Soy and fish as features of the Japanese diet and cardiovascular disease risks. *Plas One*. 2017;12(4).
21. Hozawa A, Kuriyama S, Nakaya N, et al. Green tea consumption is associated with lower psychological distress in a general population: the Ohsaki Cohort 2006 Study. *American Journal of Clinical Nutrition*. 2009;90(5):1390-1396.
22. Sonoda T, Nagata Y, Mori M, et al. A case-control study of diet and prostate cancer in Japan: possible protective effect of traditional Japanese diet. *Cancer Sci*. 2004;95(3):238-242.
23. Fujiyoshi N, Arima H, Satoh A, et al. Associations between Socioeconomic Status and the Prevalence and Treatment of Hypercholesterolemia in a General Japanese Population: NIPPON DATA2010. *J Atheroscler Thromb*. 2018.
24. Satoh A, Arima H, Ohkubo T, et al. Associations of socioeconomic status with prevalence, awareness, treatment, and control of hypertension in a general Japanese population: NIPPON DATA2010. *J Hypertens*. 2017;35(2):401-408.
25. Kogure M, Tsuchiya N, Hozawa A, et al. Does the flushing response modify the relationship between alcohol intake and hypertension in the Japanese population? NIPPON DATA2010. *Hypertension Research - Clinical & Experimental*. 2016;39(9):670-679.
26. Ministry of Health LaW, Japan. The National Health and Nutrition Survey in Japan 2010. In: Tokyo: Office for Life-style Related Diseases Control GAD, Health Service Bureau, Ministry of Health, Labour and Welfare, ed2013.
27. Kadota A, Okuda N, Ohkubo T, et al. The National Integrated Project for Prospective Observation of Non-communicable Disease and its Trends in the Aged 2010 (NIPPON DATA2010): Objectives, Design, and Population Characteristics. *J Epidemiol*. 2018;28(Supplement III):S2-S9.
28. Okuda N, Miura K, Yoshita K, et al. Integration of data from NIPPON DATA80/90 and National Nutrition Survey in Japan: for cohort studies of representative Japanese on nutrition. *J Epidemiol*. 2010;20 Suppl 3:S506-514.
29. Saito I, Sato S, Nakamura M, et al. A low level of C-reactive protein in Japanese adults and its association with cardiovascular risk factors: the Japan NCVC·Collaborative Inflammation Cohort (JNIC) study. *Atherosclerosis*. 2007;194(1):238-244.
30. Saito I, Maruyama K, Eguchi E. C-reactive protein and cardiovascular disease in East asians: a systematic review. *Clin Med Insights Cardiol*. 2014;8(Suppl 3):35-42.
31. Ichihara K, Itoh Y, Min WK, et al. Diagnostic and epidemiological implications of regional differences in serum concentrations of proteins observed in six Asian cities. *Clin Chem Lab Med*. 2004;42(7):800-809.
32. Agency SaT. *Standard tables of food composition in Japan*. fifth revised and enlarged edition ed. Tokyo, Japan: Printing Bureau of the Ministry of Finance: 2015.
33. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. *Am J
34. Shivappa N, Steck SE, Hurley TG, et al. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). *Public Health Nutrition*. 2014;17(8):1825-1833.
35. Ogce F, Ceber E, Ekti R, Oran NT. Comparison of Mediterranean, Western and Japanese Diets and Some Recommendations. *Asian Pac J Cancer P*. 2008;9(2):351-356.
36. Frith E, Shivappa N, Mann JR, Hebert JR, Wirth MD, Loprinzi PD. Dietary inflammatory index and memory function: population-based national sample of elderly Americans. *Br J Nutr*. 2018;1-7.
37. Akbaraly T, Kerlau C, Wyart M, et al. Dietary inflammatory index and recurrence of depressive symptoms: Results from the Whitehall II Study. *Clin Psychol Sci*. 2016;4(6):1125-1134.
38. Yasue H, Hirai N, Mizuno Y, et al. Low-grade inflammation, thrombogenicity, and atherogenic lipid profile in cigarette smokers. *Circ J*. 2006;70(1):8-13.
39. Hastie CE, Haw S, Pell JP. Impact of smoking cessation and lifetime exposure on C-reactive protein. *Nicotine Tob Res*. 2008;10(4):637-642.
40. Ohsawa M, Okayama A, Nakamura M, et al. CRP levels are elevated in smokers but unrelated to the number of cigarettes and are decreased by long-term smoking cessation in male smokers. *Prev Med*. 2005;41(2):651-656.
41. Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. *Obesity Reviews*. 2013;14(3):232-244.
42. Timpson NJ, Nordestgaard BG, Harbord RM, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. *Int J Obesity*. 2011;35(2):300-308.
43. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. *J Am Coll Cardiol*. 2005;45(10):1563-1569.
44. Phillips CM, Dillon CB, Perry IJ. Does replacing sedentary behaviour with light or moderate to vigorous physical activity modulate inflammatory status in adults? *Int J Behav Nutr Phy*: 2017;14.
45. Shivappa N, Schneider A, Hebert JR, Koenig W, Peters A, Thorand B. Association between dietary inflammatory index, and cause-specific mortality in the MONICA/KORA Augsburg Cohort Study. *European Journal of Public Health*. 2018;28(1):167-172.
46. Yanes LL, Reckelhoff JF. Postmenopausal hypertension. *Am J Hypertens*. 2011;24(7):740-749.
47. Tabung FK, Steck SE, Zhang JJ, et al. Construct validation of the dietary inflammatory index among postmenopausal women. *Annals of Epidemiology*. 2015;25(6):398-405.
48. Vahid F, Shivappa N, Faghefoori Z, et al. Validation of a Dietary Inflammatory Index (DII) and Association with Risk of Gastric Cancer: a Case-Control Study. *Asian Pac J Cancer Prev*: 2018;19(6):1471-1477.
49. Phillips CM, Shivappa N, Hebert JR, Perry IJ. Dietary Inflammatory Index and Biomarkers of Lipoprotein Metabolism, Inflammation and Glucose Homeostasis in Adults. *Nutrients*. 2018;10(8).
50. Shivappa N, Wirth MD, Murphy EA, Hurley TG, Hebert JR. Association between the Dietary Inflammatory Index (DII) and urinary enterolignans and C-reactive protein from the National
51. Farhangi MA, Najafi M. Dietary inflammatory index: a potent association with cardiovascular risk factors among patients candidate for coronary artery bypass grafting (CABG) surgery. *Nutr J.* 2018;17(1).

52. Almeida-de-Souza J, Santos R, Barros R, et al. Dietary inflammatory index and inflammatory biomarkers in adolescents from LabMed physical activity study. *Eur J Clin Nutr.* 2017.

53. Tabung FK, Smith-Warner SA, Chavarro JE, et al. An Empirical Dietary Inflammatory Pattern Score Enhances Prediction of Circulating Inflammatory Biomarkers in Adults. *J Nutr.* 2017;147(8):1567-1577.

54. Julia C, Assmann KE, Shivappa N, et al. Long-term associations between inflammatory dietary scores in relation to long-term C-reactive protein status measured 12 years later: findings from the Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) cohort. *Brit J Nutr.* 2017;117(2):306-314.

55. Shivappa N, Hebert JR, Marcos A, et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. *Molecular Nutrition & Food Research.* 2017;61(6).

56. Shivappa N, Wirth MD, Hurley TG, Hebert JR. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999-2002. *Mol Nutr Food Res.* 2017;61(4).

57. Boden S, Wennberg M, Van Guelpen B, et al. Dietary inflammatory index and risk of first myocardial infarction: a prospective population-based study. *Nutr J.* 2017;16(1):21.

58. Kizil M, Tengilimoglu-Metin MM, Gumus D, Sevim S, Turkoglu I, Mandiroglu F. Dietary inflammatory index is associated with serum C-reactive protein and protein energy wasting in hemodialysis patients: A cross-sectional study. *Nutrition Research and Practice.* 2016:10(4):404-410.

59. Sen S, Rifas-Shiman SL, Shivappa N, et al. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. *Journal of Nutrition.* 2016;146(4):728-736.

60. Alkerwi A, Shivappa N, Crichton G, Hebert JR. No significant independent relationships with cardiometabolic biomarkers were detected in the Observation of Cardiovascular Risk Factors in Luxembourg study population. *Nutrition Research.* 2014;34(12):1058-1065.

61. Wirth MD, Burch J, Shivappa N, et al. Association of a Dietary Inflammatory Index With Inflammatory Indices and Metabolic Syndrome Among Police Officers. *Journal of Occupational and Environmental Medicine.* 2014;56(9):986-989.
Figure legends:

Figure 1 Flow diagram of study population.

Figure 1 is the flow diagram of study population. Participants were excluded for the following reasons:

1) younger than 20 years old or absence of blood examination;

2) without informed consent;

3) data could not be utilized;

4) having incomplete data on food and nutrient intake;

5) calorie intake less than 500 kcal/d or more than 5000 kcal/d;

6) high-sensitivity C-reactive protein level >3 mg/L;

7) physical activity unknown;

8) smoking status unknown;

9) BMI couldn’t be calculated.
Table 1 Characteristics across quartiles of Dietary Inflammatory Index (DII®) scores

Characteristics	Q1	Q2	Q3	Q4	p-value				
Median DII score	-1.38	0.33	1.55	2.85	<0.01				
Sex									
Men	239	37.2	253	39.4	<0.01				
Women	404	62.8	390	60.7					
	n	%	n	%	n	%			
Age (SD) (years)	64.4	(12.3)	61.3	(14.8)	56.1	(16.5)	52.3	(16.5)	<0.01
BMI (kg/m²)									
<18.5	38	5.9	42	6.5	32	5.0	55	8.6	0.03
18.5 to <25.0	448	69.7	441	68.6	430	66.9	400	62.2	
≥25.0	157	24.4	160	24.9	181	28.2	188	29.2	
Smoking									
Current smoker	51	7.9	71	11.0	110	17.1	162	25.2	<0.01
Former smoker	111	17.3	131	20.4	124	19.3	132	20.5	
Never-smoker	481	74.8	441	68.6	409	63.6	349	54.3	
Physical activity (METs/d)	37.3	(8.0)	37.0	(7.9)	37.5	(9.0)	38.6	(9.6)	<0.01
Antilipidemic agent									
User	126	19.6	115	17.9	87	13.6	63	9.8	<0.01
Non-user	517	80.4	528	82.1	555	86.5	580	90.2	
Marital status									
Married	513	80.0	511	79.6	483	75.4	456	71.6	<0.01
Single	128	20.0	131	20.4	158	24.7	181	28.4	
Education									
Middle or lower	167	26.0	162	25.2	145	22.6	142	22.1	0.47
High school	279	43.4	267	41.5	296	46.1	288	44.9	
University or higher	197	30.6	214	33.3	201	31.3	212	33.0	

Note: DII® refers to the Dietary Inflammatory Index.
Equivalent household expenditure (SD) (million Yen/month)*

	16. (10.1)	15.7 (14.5)	14.6 (12.6)	14.3 (18.7)	<0.01

*aMETs, metabolic equivalent

*bDII quartiles: -5.04 ≤ Q1 < -0.38; -0.38 ≤ Q2 < 0.91; 0.91 ≤ Q3 < 2.18; 2.18 ≤ Q4 ≤ 4.94

*cSample size: antilipidemic agent use = 2,571; marital status = 2,561; education = 2,570; equivalent household expenditure = 2,380
Table 2 food intakes across quartiles of Dietary Inflammatory Index (DII®) scoresa

Food item (g)	Q1	SD	Q2	SD	Q3	SD	Q4	SD
Cereal	393.28	145.20	425.79	156.73	449.87	167.15	507.25	191.50
Potato	80.32	84.22	61.00	68.13	52.05	62.93	41.73	53.20
Sugar and Sweeteners	7.89	8.65	7.31	7.88	6.96	8.81	7.77	11.46
Bean	99.18	90.08	75.14	81.23	53.39	64.72	41.92	59.39
Nut and seed	4.45	10.23	2.98	10.01	1.78	6.84	1.24	5.06
Vegetable	459.00	179.31	329.42	145.18	258.89	134.71	179.58	111.20
Fruit	190.88	150.37	138.68	129.31	98.97	113.66	61.13	93.60
Mushrooms	28.83	35.24	22.05	29.48	15.68	24.44	11.57	20.95
Seaweeds	19.13	31.83	11.94	20.51	11.31	20.83	8.04	16.82
Seafood	107.93	76.29	89.63	71.39	79.91	77.64	57.26	66.25
Meat	63.20	57.03	68.38	59.69	78.28	67.28	92.12	80.79
Egg	33.69	30.66	37.99	32.36	36.65	34.39	34.73	33.49
Milk	118.36	122.92	111.36	127.04	100.23	132.26	93.13	125.75
Fat and oil	8.92	8.44	8.95	8.44	10.31	9.73	10.58	8.83
Confectionery	19.86	34.24	26.35	43.89	26.04	44.60	36.36	56.19
Preferred beverage	766.11	469.28	720.00	471.81	702.66	511.27	720.13	522.49
Preferred seasoning and	99.87	146.78	92.96	81.50	84.59	78.21	91.88	95.38
Spice	19.03	58.99	18.39	61.35	18.22	69.16	10.63	62.21
Nutrients	19.03	58.99	18.39	61.35	18.22	69.16	10.63	62.21

aDII quartiles: -5.04 ≤ Q1 < -0.38; -0.38 ≤ Q2 < 0.91; 0.91 ≤ Q3 < 2.18; 2.18 ≤ Q4 ≤ 4.94

bSD, standard deviation
Table 3 Multiple linear regression analysis between log-transformed hs-CRP and other variables, stratified by sex\(^a\)

Variable	Men n=1086\(^c\)	Women n=1486\(^c\)	Total n=2572\(^d\)												
	standardized \(\beta\)	\(\beta\)	95% CI	P	standardized \(\beta\)	\(\beta\)	95% CI	P	standardized \(\beta\)	\(\beta\)	95% CI	P			
DII score\(^b\)	0.05	0.01	-0.003	0.02	0.14	0.06	0.01	0.001	0.02	0.05	0.01	0.003	0.02	<0.01	
Age\(^b\)	0.13	0.003	0.001	0.004	<0.01	0.13	0.002	0.002	0.003	<0.01	0.14	0.003	0.002	<0.01	
BMI\(^b\)	0.27	0.03	0.02	0.03	<0.01	0.37	0.03	0.03	0.04	<0.01	0.33	0.03	0.026	0.032	<0.01
Sex (ref. women)						0.007						0.004	-0.02	0.03	0.76
Smoking (ref. never-smokers)												0.007	-0.02	0.03	0.76
Former	0.03	0.02	-0.02	0.06	0.30	0.04	0.05	-0.01	0.11	0.07	0.03	0.02	-0.01	0.05	0.17
Current	0.10	0.07	0.03	0.12	<0.01	-0.001	-0.001	-0.06	0.06	0.97	0.06	0.05	0.02	0.09	<0.01
Physical activity\(^b\)	-0.06	-0.002	-0.003	-0.0001	0.06	-0.06	-0.003	-0.005	-0.001	0.01	-0.06	-0.002	-0.003	-0.001	<0.01

\(^a\)hs-CRP, high-sensitivity C-reactive protein; DII, Dietary inflammatory index; energy was adjusted by residual method

\(^b\)Continuous variable

\(^c\)Adjusted for age, BMI, smoking status, and physical activity

\(^d\)Adjusted for age, BMI, sex, smoking status, and physical activity
Table 4 Multiple linear regression analysis between log-transformed hs-CRP and Dietary Inflammatory Index (DIIa) scores, stratified by age and sexa

Age Group	Men N	standardized β	Pb	Women N	standardized β	Pb	Total N	standardized β	Pc
<45	212	-0.05	0.42	361	0.11	0.02	573	0.05	0.21
45-54	135	0.05	0.53	202	0.02	0.75	337	0.03	0.51
55-64	255	0.10	0.12	336	-0.04	0.50	591	0.03	0.43
65-74	309	0.01	0.91	369	0.08	0.11	678	0.05	0.19
≥75	175	0.04	0.61	218	0.14	0.04	393	0.10	0.05
Total	1086	0.05	0.14	1486	0.06	0.02	2572	0.05	<0.01

ahs-CRP, high-sensitivity C-reactive protein

bAdjusted for age, smoking status, BMI, and physical activity

cAdjusted for age, sex, smoking status, BMI, and physical activity
Table 5 Previous research on association between Dietary Inflammatory Index (DII®) and CRP

Author	Year	Country or race	Number of food parameters	Inflammatory markers	Risk estimate							
Vahid F⁴⁸	2018	Iran	31	TNF-α⁹	Partial correlation coefficient							
				IL-4⁹	CRP (mg/L) 0.328 p<0.001							
				IL-10⁹	TNF-α (pg/ml) 0.373 p<0.001							
				IL-1β⁹	IL-6 (pg/ml) 0.337 p<0.001							
				CRP⁹	IL-1β (pg/ml) 0.326 p<0.001							
				IL-6⁹	IL-4 (pg/ml) 0.046 p=0.544							
					IL-10 (pg/ml) -0.333 p<0.001							
Phillips CM⁴⁹	2018	Ireland	26	Inflammatory score	Mean of < Median E-DII vs >Median E-DII							
				C3⁹	Inflammatory score 7.74 ± 0.12 vs 8.29 ± 0.10 p<0.001							
				CRP	C3 (mg/dL) 134.31 ± 0.78 vs 136.90 ± 0.76 p=0.04							
				IL-6	CRP (mg/L) 2.19 ± 0.12 vs 2.45 ± 0.11 p=0.03							
				TNF-α	IL-6 (pg/mL) 2.72 ± 0.14 vs 3.02 ± 0.15 p<0.001							
				Adiponectin	TNF-α (pg/mL) 6.23 ± 0.08 vs 6.51 ± 0.09 p=0.001							
				Leptin	Adiponectin (ng/mL) 6.05 ± 0.13 vs 5.41 ± 0.13 p<0.001							
				Resistin	Leptin (ng/mL) 2.85 ± 0.12 vs 2.78 ± 0.10 p=0.11							
				WBC⁹	Resistin (ng/mL) 5.64 ± 0.10 vs 5.78 ± 0.11 p=0.50							
				Neutrophils	WBC (10⁹/L) 5.85 ± 0.07 vs 6.14 ± 0.06 p=0.001							
				Lymphocytes	Neutrophils (10⁹/L) 3.23 ± 0.04 vs 3.48 ± 0.04 p<0.001							
				Monocytes	Lymphocytes (10⁹/L) 1.83 ± 0.02 vs 1.86 ± 0.03 p<0.37							
				Eosinophils	Monocytes (10⁹/L) 0.51 ± 0.005 vs 0.54 ± 0.01 p<0.001							
				Basophils	Eosinophils (10⁹/L) 0.20 ± 0.004 vs 0.21 ± 0.005 p=0.06							
				Neutrophil to lymphocyte ratio	Basophils (10⁹/L) 0.031 ± 0.001 vs 0.033 ± 0.001 p=0.03							
Study	Year	Location	Subjects	CRP	Beta estimate (95% CI)	Overall score (95% CI)	Other biomarkers	Studies	OR (95% CI)			
-------	------	----------	----------	-----	------------------------	--------------------------	---------------------	----------	------------			
Shivappa N	2018 USA	26	CRP	Neutrophil to lymphocyte ratio 1.89 ± 0.03 vs 2.04 ± 0.03 p<0.001								
Shivappa N	2018 Germany	Not found	CRP	OR (95% CI)								
Farhangi MA	2018 Iran	28	CRP	DII continuous (age adjusted) 1.13 (1.07, 1.20)								
Farhangi MA	2018 Iran	28	IL-6	Betas estimate (95% CI) for the association Q4 vs Q1 Men 0.97 (0.89, 1.06)								
Almeida-de-Souza J	2017 Portugal	31	CRP	Beta estimate (95% CI)								
Almeida-de-Souza J	2017 Portugal	31	IL-6	CRP β 0.90: 6.83 (1.11, 12.55)								
Tabung FK	2017 USA	38	CRP	Percentage change (95% CI)								
Wirth MD	2017 African Americans	31	CRP	Percentile regression (95% CI)								
Vahid F	2017 Iran	31	CRP	Beta estimate (95% CI)								
Julia C	2017 France	36	CRP	OR (95% CI)								
Study	Year	Location	N	Measure	Variable	Beta estimates (95%CI)						
---------------------------	-------	----------	----	----------	-----------	---						
Shivappa N 55	2017	European	25	CRP	T3vsT1	1.32 (0.89, 1.95)						
					TNF-α	T3vsT1, CRP° 0.09 (-0.18, 0.36)						
					IL-6, 1,2,4,10,	TNF-α 0.13 (0.007, 0.26)						
					IFN-γ°	IL-6 0.09 (-0.22, 0.40)						
					sICAMα	IL-1 0.30 (0.02, 0.58)						
					sVCAMα	IL-2 0.42 (0.04, 0.79)						
						IL-4 0.17 (-0.25, 0.59)						
						IL-10 0.09 (-0.17, 0.35)						
						INF-γ 0.58 (0.09, 1.06)						
						ICAMα 0.02 (-0.08, 0.11)						
						VCAMα 0.07 (0.01, 0.13)						
Shivappa N 56	2017	USA	27	CRP	OR	1.53 (1.20, 1.95)						
						Q4vsQ1 CRP° 0.41 (0.16, 0.67)						
						IL-6 0.26 (0.06, 0.46)						
Bodén S 57	2017	Sweden	30	CRP	CRP	0.35						
					IL-6	Q4vsQ1 CRP° 0.25 (-0.01, 0.50)						
Kizil M 58	2016	Turkey	25	CRP	r	0.35						
Sarbattama Sen 59	2016	USA	28	CRP	Continuous	CRP° Continuous 0.08 (0.02, 0.14)						
						Q4vsQ1 0.25 (-0.01, 0.50)						
						WBC Continuous -0.03 (-0.11, 0.05)						
						Q4vsQ1 -0.14 (-0.45, 0.17)						
Akbaraly T 37	2016	UK	27	CRP	CRP° T1	-0.13±1.3						
						T2 0.02±1.3						
						T3 0.03±1.3						
						IL-6 T1 -0.12±1.3						
						T2 0.002±1.3						
						T3 0.04±1.3						
Tabung FK 12	2015	USA	32	IL-6	CRP	1.26 (1.15, 1.38)						
						CRP° 1.07 (0.95, 1.2)						
Study	Year	Country	Population	TNF-α-R2	Overall score	OR Q4 vs Q1 (95%CI)	Other Biomarkers	P for trend	OR (95%CI)			
-------	------	---------	------------	----------	---------------	----------------------	-----------------	-------------	-------------			
Shivappa N	2015	Belgians	17	CRP	1.03 (0.86, 1.17)	Leucocyte count	Fibrinogen	Homocysteine	IL-6	1.91 (1.04, 1.36)	1.56 (1.25, 1.94)	1.08 (0.78, 1.48)
Alkerwi A	2014	Luxembourg	24	CRP	1.57 (0.85, 2.88)	IL-6	1.91 (1.04, 1.36)	CRP	1.03 (0.86, 1.17)	1.56 (1.25, 1.94)	1.08 (0.78, 1.48)	
Wirth MD	2014	USA	Not found	CRP	1.47 (1.03, 2.12)	IL-6	TNF-α	CRP	1.03 (0.86, 1.17)	1.56 (1.25, 1.94)	1.08 (0.78, 1.48)	
Shivappa N	2013	USA	44 (24-hour dietary recalls) 28 (7-day dietary recalls)	CRP	1.47 (1.03, 2.12)	7-day dietary recall: 1.61 (1.15, 2.27)						

*TNF-α, Tumor Necrosis Factor-α; IL, Interleukin; CRP, C-reactive protein; C3, complement C3; WBC, white blood cell; C4, complement C4; TNF-αR2, Tumor Necrosis Factor-α Receptor 2; DII, Dietary inflammatory index; HPFS, Health Professionals Follow-Up Study; NHS-II, Nurses' Health Study II; sICAM, soluble intercellular cell adhesion molecule; sVCAM, soluble vascular cell adhesion molecule; NSAIDs, non-steroidal anti-inflammatory drugs
Participants of the National Health and Nutrition Survey 2010 n=8,815

Excluded by
- < 20 years old or absence of blood examination n=4942
- without informed consent n=975

Participated in the baseline examination of NIPPON DATA2010 n=2,898

Excluded by
- data could not be utilized n=7
- incomplete data on food and nutrient intake n=51
- calorie intake:
 - < 500 kcal/d n=2
 - > 5000 kcal/d n=1
- high-sensitivity C-reactive protein level >3 mg/L n=251
- physical activity unknown n=4
- smoking status unknown n=8
- BMI unknown n=2

Study subjects n=2,572

Figure 1 Flow diagram of study population.